**People's Republic of Bangladesh Ministry of Power, Energy and Mineral Resources** 

# Data Collection Survey on Computerization of Gas and Power Network Infrastructure in Bangla desh

**Final Report** 

January 2018

Japan International Cooperation Agency (JICA)

Nippon Koei Co., Ltd. Chiyoda U-tech Co., Ltd.

| BD            |
|---------------|
| <b>CR</b> (3) |
| 17-003        |

The People's Republic of Bangladesh Ministry of Power, Energy and Mineral Resources

# Data Collection Survey on Computerization of Gas and Power Network Infrastructure in Bangladesh

**Final Report** 

January 2018

Nippon Koei Co., Ltd. Chiyoda U-tech Co., Ltd.

## Data Collection Survey on Computerization of Gas and Power Network Infrastructure Final Report

#### **Table of Contents**

| EXECUTIVE SUMMARY1 |           |                                                                |    |
|--------------------|-----------|----------------------------------------------------------------|----|
| СНАР               | TER 1     | INTRODUCTION                                                   | 5  |
| 1.1                | Backgro   | und of the Project                                             | 5  |
| 1.2                | Purpose   | of the Survey                                                  | 6  |
| 1.3                | Scope of  | f Work                                                         | 7  |
| 1.4                | The Cou   | interpart Agencies                                             | 8  |
| 1.5                | Basic Co  | oncept of Network Infrastructure Management System             | 9  |
| 1.6                | Survey F  | Flow and Survey Team                                           | 10 |
| СНАР               | TER 2     | GAS SECTOR                                                     | 13 |
| 2.1                | Organiza  | ation Structure of Gas Sector                                  | 13 |
|                    | 2.1.1     | Ministry of Power, Energy and Mineral Resources (MoPEMR)       | 13 |
|                    | 2.1.2     | Petrobangla                                                    | 13 |
|                    | 2.1.3     | Gas Companies                                                  | 14 |
|                    | 2.1.4     | History of Gas Field Development and Associated Infrastructure |    |
|                    |           | (Pipeline and Distribution System)                             | 18 |
|                    | 2.1.5     | Issues and Challenges in Maintenance                           | 18 |
|                    | 2.1.6     | Issues and Challenges in Operation                             | 20 |
| 2.2                | Gas Proc  | duction                                                        | 21 |
|                    | 2.2.1     | Summary of Gas Production                                      | 21 |
|                    | 2.2.2     | Summary of Gas Exploration                                     | 21 |
| 2.3                | LNG Int   | roduction Project Summary                                      | 26 |
| 2.4                | Status of | f Gas Production/Transmission and Distribution Infrastructure  | 27 |
|                    | 2.4.1     | Data Collection Summary                                        | 27 |
|                    | 2.4.2     | General Observation on Collected Data and Issues               | 29 |
|                    | 2.4.3     | Gas Field Data                                                 | 30 |
|                    | 2.4.4     | Gas Transmission Facilities                                    | 32 |
|                    | 2.4.5     | Valve Stations                                                 | 36 |
|                    | 2.4.6     | Material Specifications and Design Specifications              | 40 |
|                    | 2.4.7     | Design Standard and Standard Drawings                          | 41 |
|                    | 2.4.8     | Cathodic Protection System                                     | 44 |
|                    | 2.4.9     | Operation & Maintenance Records                                | 47 |
| 2.5                | Issues an | nd Challenges in Gas Sector                                    | 47 |
|                    | 2.5.1     | Gas Operation Mode Change                                      | 47 |

|      | 2.5.2                                                        | Integrated Operation and Information Sharing System            | 48  |
|------|--------------------------------------------------------------|----------------------------------------------------------------|-----|
|      | 2.5.3                                                        | Reliable Gas Network Infrastructure                            | 49  |
| 2.6  | Control/Monitoring Target                                    |                                                                |     |
| 2.7  | Recomm                                                       | nendation on Asset Management in Gas Sector                    | 55  |
|      | 2.7.1                                                        | Recommendation on Network Infrastructure Management System     | 55  |
|      | 2.7.2                                                        | Data Group Configuration in Network Infrastructure Management  |     |
|      |                                                              | System                                                         | 56  |
| СНАР | TER 3                                                        | POWER SECTOR                                                   | 58  |
| 3.1  | Power S                                                      | ector Organization                                             | 58  |
|      | 3.1.1                                                        | Ministry of Power, Energy and Mineral Resources (MoPEMR)-Power | 58  |
|      | 3.1.2                                                        | Power Division                                                 | 58  |
|      | 3.1.3                                                        | Power Sub-Division Organization                                | 59  |
| 3.2  | Develop                                                      | ment Planning                                                  | 64  |
|      | 3.2.1                                                        | Generation                                                     | 64  |
|      | 3.2.2                                                        | Transmission and Distribution                                  | 75  |
| 3.3  | Operatio                                                     | on & Maintenance                                               | 94  |
|      | 3.3.1                                                        | Generation                                                     | 94  |
|      | 3.3.2                                                        | Transmission                                                   | 94  |
|      | 3.3.3                                                        | Substation                                                     | 95  |
| 3.4  | Budget f                                                     | for Operation & Maintenance                                    | 96  |
|      | 3.4.1                                                        | BPDB (Generation)                                              | 96  |
|      | 3.4.2                                                        | PGCB (Transmission and Substation)                             | 97  |
| 3.5  | Asset M                                                      | anagement                                                      | 98  |
|      | 3.5.1                                                        | BPDB                                                           | 98  |
|      | 3.5.2                                                        | PGCB                                                           | 99  |
|      | 3.5.3                                                        | Methodology for Valuation of Fixed Assets                      | 100 |
|      | 3.5.4                                                        | Recommendation on Asset Management in Power Sector             | 100 |
| 3.6  | Prospect                                                     | tive Improvement Project for Power Sector                      | 100 |
| СНРТ | ER 4                                                         | ENVIRONMENT                                                    | 103 |
| 4.1  | Possibili                                                    | ty about the Environmental Supporting Database                 | 103 |
|      | 4.1.1                                                        | Restricted or Designated Areas by the Bangladesh Regulations   | 103 |
|      | 4.1.2                                                        | Policy and Plans related to Environment                        | 113 |
|      | 4.1.3                                                        | Baseline and Monitoring Data                                   | 122 |
| 4.2  | Institutio                                                   | onal Set up by Environmental and Social Issues                 | 129 |
| 4.3  | EIA and                                                      | SEA System                                                     | 133 |
|      | 4.3.1                                                        | EIA System                                                     | 133 |
|      | 4.3.2                                                        | SEA System                                                     | 135 |
| 4.4  | Opportu                                                      | nities of Spatial Database for Environment                     | 135 |
| 4.5  | Environmental Issues about the Proposed Sub-sea Gas Pipeline |                                                                |     |

| CHAP | TER 5     | DEMONSTRATION OF INTEGRATED GAS AND POWER                         |     |
|------|-----------|-------------------------------------------------------------------|-----|
|      |           | STRATEGIC PLAN                                                    | 147 |
| 5.1  | Software  | e Features                                                        | 147 |
|      | 5.1.1     | The Features of Smallworld                                        | 147 |
|      | 5.1.2     | Dataset and Version Management of Smallworld                      | 150 |
|      | 5.1.3     | Object, Physical Fields and Geometry Fields                       | 151 |
|      | 5.1.4     | Geometry and Manifold                                             | 152 |
|      | 5.1.5     | Network Trace                                                     | 152 |
|      | 5.1.6     | Geometry and "World"                                              | 153 |
|      | 5.1.7     | Data model definition                                             | 154 |
|      | 5.1.8     | Configuration of Visibilities and Styles                          | 155 |
|      | 5.1.9     | Terminology of Smallworld                                         | 156 |
| 5.2  | Pilot Are | ea for Asset Management                                           | 159 |
|      | 5.2.1     | Outline Map of Gas Pipeline                                       | 159 |
|      | 5.2.2     | Schematic Diagram of Gas Pipelines                                | 161 |
|      | 5.2.3     | Internal Drawing of Gas Valve Station Building                    | 162 |
|      | 5.2.4     | Detailed Drawings of Main Gas Pipelines                           | 163 |
|      | 5.2.5     | Gas Distribution Pipeline Data                                    | 165 |
|      | 5.2.6     | Power Network                                                     | 167 |
|      | 5.2.7     | Internal Drawing of Substation                                    | 169 |
|      | 5.2.8     | Topographic Maps used for Background Image                        | 170 |
|      | 5.2.9     | Data Preparation Methods according to Status of Existing Material | 173 |
| 5.3  | Data Gro  | oup/Field Definition in Network Infrastructure Management System  | 175 |
|      | 5.3.1     | Physical Field of Object                                          | 175 |
|      | 5.3.2     | Physical Fields                                                   | 176 |
| 5.4  | Utilizati | on of GIS Shapefile Data                                          | 179 |
| 5.5  | Integrati | on of Gas and Power Network Data in Network Infrastructure        |     |
|      | Manage    | ment System                                                       | 180 |
|      | 5.5.1     | Gas and Power Network Connection                                  | 180 |
|      | 5.5.2 I   | Power Plant Location and Regional Gas Consumption                 | 182 |
| 5.6  | Recomm    | nendation for Improvement in the Next Stage                       | 183 |
|      | 5.6.1     | Collaboration of Smallworld with SCADA                            | 183 |
|      | 5.6.2     | Documents and Drawings Management System                          | 184 |
|      | 5.6.3     | Collaboration of Smallworld with Simulators and ERP               | 185 |
|      | 5.6.4     | Collection and Incorporation of Base Maps                         | 185 |
| 5.7  | System ]  | Improvement Target                                                | 186 |
|      | 5.7.1     | Pre-Paid Meter Introduction and System Integration                | 186 |
|      | 5.7.2     | Location Data Accuracy Improvement                                | 187 |
|      | 5.7.3     | Smart Grid Introduction                                           | 187 |
| СНАР | TER 6     | POLICY AND STRATEGY OF GAS INFRASTRUCTURE                         | 189 |
| 6.1  | Overviev  | w of Present Issues and Challenges of Gas Infrastructure          | 189 |

| 6.1.1     | Maximum Allowable Operating Pressure (MAOP)                                                                                                                                                                                                           | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.1.2     | Supply Pipeline Configuration                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Proposal  | for Strategic Gas Network Infrastructure                                                                                                                                                                                                              | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.2.1     | Loop Pipeline System                                                                                                                                                                                                                                  | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.2.2     | Gas Supply Capacity and Infrastructure Development Plan                                                                                                                                                                                               | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.2.3     | Preliminary Evaluation of Offshore Pipeline                                                                                                                                                                                                           | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Review    | of Performance of Gas Infrastructure Project by International                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Develop   | ment Partners                                                                                                                                                                                                                                         | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.1     | Outline of Gas Infrastructure Investment Projects                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.2     | Asian Development Bank (ADB)                                                                                                                                                                                                                          | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.3     | World Bank (WB)                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.4     | Japan International Cooperation Agency (JICA)                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.5     | Government of Bangladesh                                                                                                                                                                                                                              | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.6     | Consistency with GSMP                                                                                                                                                                                                                                 | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.7     | Gas Transmission Network                                                                                                                                                                                                                              | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Draft Pol | licy Recommendation on Gas Supply and Gas Price                                                                                                                                                                                                       | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.4.1     | Diversification of Gas Supply                                                                                                                                                                                                                         | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.4.2     | Gas Price Reform                                                                                                                                                                                                                                      | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.4.3     | Recommendations for Investment/Loan Arrangement for Gas                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | Infrastructure                                                                                                                                                                                                                                        | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TER 7     | CONCLUSION AND RECOMMENDATIONS                                                                                                                                                                                                                        | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Challeng  | es facing with Bangladesh Energy Sector                                                                                                                                                                                                               | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Recomm    | endations and Conclusion                                                                                                                                                                                                                              | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.2.1     | Introduction of Network Infrastructure Management System                                                                                                                                                                                              | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.2.2     | Next Step: Proposed Technical Cooperation (T/C)                                                                                                                                                                                                       | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Further F | Recommendation on Future Projects in Gas Sector                                                                                                                                                                                                       | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 6.1.1<br>6.1.2<br>Proposal<br>6.2.1<br>6.2.2<br>6.2.3<br>Review<br>Develop<br>6.3.1<br>6.3.2<br>6.3.3<br>6.3.4<br>6.3.5<br>6.3.6<br>6.3.7<br>Draft Po<br>6.4.1<br>6.4.2<br>6.4.3<br><b>TER 7</b><br>Challeng<br>Recomm<br>7.2.1<br>7.2.2<br>Further H | 6.1.1       Maximum Allowable Operating Pressure (MAOP)         6.1.2       Supply Pipeline Configuration         Proposal for Strategic Gas Network Infrastructure       6.2.1         Loop Pipeline System       6.2.2         Gas Supply Capacity and Infrastructure Development Plan       6.2.3         Review of Performance of Gas Infrastructure Project by International       Development Partners         6.3.1       Outline of Gas Infrastructure Investment Projects       6.3.1         6.3.2       Asian Development Bank (ADB)       6.3.3         6.3.3       World Bank (WB)       6.3.4         6.3.4       Japan International Cooperation Agency (JICA)       6.3.5         6.3.5       Government of Bangladesh       6.3.6         6.3.6       Consistency with GSMP       6.3.7         6.3.7       Gas Transmission Network       Draft Policy Recommendation on Gas Supply and Gas Price         6.4.1       Diversification of Gas Supply       6.4.2         6.4.2       Gas Price Reform       6.4.3         6.4.3       Recommendations for Investment/Loan Arrangement for Gas Infrastructure         CONCLUSION AND RECOMMENDATIONS       Challenges facing with Bangladesh Energy Sector         Recommendations and Conclusion       7.2.1       Introduction of Network Infrastructure Management System |

## List of Appendices

| Appendix-A | List of C | ollected Drawing and Documents                                     |
|------------|-----------|--------------------------------------------------------------------|
| Appendix-B | Demonst   | tration of Gas and Power Network Infrastructure Management System  |
| Appendi    | x B-1     | Manuals for Gas and Power Network Infrastructure Management System |
| Appendi    | x B-2     | Energy Sector Maps prepared in Smallworld Demonstration            |
| Appendix-C | Smallwo   | rld Physical Fields                                                |
| Appendix-D | Power D   | ata                                                                |
| Appendix-E | Presentat | tion Materials                                                     |
| Appendi    | x E-1     | Inception Report                                                   |
| Appendi    | x E-2     | Interim Seminar                                                    |
|            |           |                                                                    |

Appendix E-3 Final Seminar

### List of Figures

| Figure 1.5.1  | Concept of Network Infrastructure Management System                | 9   |
|---------------|--------------------------------------------------------------------|-----|
| Figure 1.5.2  | Particular Functions of Network Infrastructure Management System   | 10  |
| Figure 1.6.1  | Study Flow                                                         | 12  |
| Figure 2.1.1  | Organization Structure of MoPEMR                                   | 13  |
| Figure 2.1.2  | Company Structure of Petrobangla                                   | 14  |
| Figure 2.1.3  | Gas Production in FY2014-15                                        | 15  |
| Figure 2.1.4  | Condensate Production in FY2014-15                                 | 15  |
| Figure 2.1.5  | Gas Distribution Franchise Area                                    | 17  |
| Figure 2.1.6  | Gas Sales Share of Gas Distribution Companies in FY2014-15         | 17  |
| Figure 2.1.7  | Concept of ICT Platform for EAM                                    | 20  |
| Figure 2.2.1  | Gas Production Trend in Bangladesh                                 | 21  |
| Figure 2.2.2  | Gas Block Map in 2016                                              | 25  |
| Figure 2.3.1  | Gas Supply Scenario by PSMP 2016                                   |     |
| Figure 2.4.1  | Data Collection from Gas Fields                                    | 29  |
| Figure 2.4.2  | GTCL Pipeline Schematic Diagram                                    |     |
| Figure 2.4.3  | CP Station Type (TEG/TR) and Locations Along Gas Pipelines         | 45  |
| Figure 2.5.1  | Gas Operation Mode Change to Demand Base                           | 48  |
| Figure 2.5.2  | Flow Equation Basics                                               | 50  |
| Figure 2.5.3  | Compressor Station Basics                                          | 51  |
| Figure 2.5.4  | Cost and Benefit of MAOP and Diameter                              |     |
| Figure 2.5.5  | Benefit from MAOP and Diameter                                     |     |
| Figure 2.5.6  | Pipeline Transportation Cost by Diameter                           | 53  |
| Figure 2.7.1  | Valve Station Group by Pressure                                    | 57  |
| Figure 3.1.1  | Overview of Bangladesh Power Sector                                | 59  |
| Figure 3.1.2  | Distribution Companies and Areas                                   | 62  |
| Figure 3.2.1  | Installed Capacity (MW) of Power Plants (As on June 2017)          | 65  |
| Figure 3.2.2  | Present Generation Capacity (MW) of Power Plants (As on June 2017) | 65  |
| Figure 3.2.3  | Fuel Mix of Installed Capacity of Power Plants                     | 66  |
| Figure 3.2.4  | Fuel Mix of Present Capacity of Power Plants                       | 66  |
| Figure 3.2.5  | Plant wise Installed Capacity of Power Plants                      | 67  |
| Figure 3.2.6  | Plant wise Present Generation Capacity of Power Plants             | 67  |
| Figure 3.2.7  | PDP in PSMP2016 and PDP                                            | 68  |
| Figure 3.2.8  | Map of Power Grid Network in 2017                                  | 76  |
| Figure 3.2.9  | Map of Power Grid Network in 2025                                  | 91  |
| Figure 3.2.10 | Map of Power Grid Network in 2035                                  | 92  |
| Figure 3.4.1  | FY wise O&M Cost Per Unit Generation of BPDB                       | 97  |
| Figure 3.4.2  | FY wise O&M Cost per unit Transmission of PGCB                     |     |
| Figure 4.1.1  | Examples of Regulation Maps                                        | 113 |
| Figure 4.1.2  | Examples of Planning Maps                                          | 121 |

| Figure 4.1.3   | Examples of Baseline Data                                                | 129 |
|----------------|--------------------------------------------------------------------------|-----|
| Figure 4.3.1   | Procedure of Environmental Clearance Certificate (ECC)                   | 134 |
| Figure 4.4.1   | Image of the Common Database                                             | 135 |
| Figure 4.5.1   | Environment Maps and Proposed Sub-sea Pipeline                           | 142 |
| Figure 4.5.2   | Process before the acquisition of the property                           | 144 |
| Figure 4.5.3   | The Acquisition process of the property                                  | 145 |
| Figure 5.1.1   | Layer Model and Object Model                                             | 148 |
| Figure 5.1.2   | Smallworld Database Performance                                          | 149 |
| Figure 5.1.3   | Smallworld as the Information Platform                                   | 149 |
| Figure 5.1.4   | Example of Datasets                                                      | 150 |
| Figure 5.1.5   | Version Management on a Dataset                                          | 151 |
| Figure 5.1.6   | Object, Physical Fields and Geometries                                   | 151 |
| Figure 5.1.7   | Geometries and Manifold Rules                                            | 152 |
| Figure 5.1.8   | Network Trace Functionality                                              | 153 |
| Figure 5.1.9   | Single Object with multiple Geometries and different "Worlds"            | 154 |
| Figure 5.1.10  | Case Tool for Data Model Definition                                      | 154 |
| Figure 5.1.11  | Object Configuration Tool                                                | 155 |
| Figure 5.1.12  | Style Designer                                                           | 156 |
| Figure 5.1.13  | Visible Geometries changed from Large Scale to Details According to      |     |
| View           | Scale                                                                    | 156 |
| Figure 5.2.1 C | Gas Pipeline Outline Map                                                 | 160 |
| Figure 5.2.2   | Gas Pipeline Schematic Diagram                                           | 161 |
| Figure 5.2.3   | Example of Gas Valve Station's internal drawing                          | 163 |
| Figure 5.2.4   | Detailed Gas Pipeline and related objects                                | 164 |
| Figure 5.2.5   | Example of Gas Distribution Data of Karnaphuli                           | 165 |
| Figure 5.2.6   | Gas Distribution Data of TGTDCL                                          | 166 |
| Figure 5.2.7   | Service Pipe and Customer Information                                    | 167 |
| Figure 5.2.8   | Power Transmission Network                                               | 168 |
| Figure 5.2.9   | Example of Substation Single Line Diagram incorporated as Internal World | 169 |
| Figure 5.2.10  | Structure of Index Map Mesh in Bangladesh Background Maps                | 170 |
| Figure 5.2.11  | District Map of Bangladesh                                               | 171 |
| Figure 5.2.12  | Spatial Query by using Districts Polygon                                 | 171 |
| Figure 5.2.13  | Topographic Maps used as Background Image of Network Infrastructure      | 172 |
| Figure 5.2.14  | Data Preparation Procedure (1)                                           | 173 |
| Figure 5.2.15  | Data Preparation Procedure (2)                                           | 174 |
| Figure 5.2.16  | Data Preparation Procedure (3)                                           | 174 |
| Figure 5.2.17  | Data Preparation Procedure (4)                                           | 175 |
| Figure 5.2.18  | Data Preparation Procedure (5)                                           | 175 |
| Figure 5.4.1   | Soil Type Map with Pipeline Alignment in Smallworld                      | 179 |
| Figure 5.4.2   | Constrained Area Map with Transmission Line Alignment in Smallworld      | 180 |
| Figure 5.5.1   | Connection of Gas and Power Network                                      | 181 |
| Figure 5.5.2   | Connection of Gas and Power Network                                      | 182 |

vi

| Figure 5.5.3 | List of Power Stations with Divisional Gas Consumption Projection    | 182 |
|--------------|----------------------------------------------------------------------|-----|
| Figure 5.6.1 | Collaboration between SCADA and Smallworld                           |     |
| Figure 5.7.1 | Use of GNSS for Exact Pipeline Facility Positioning                  | 187 |
| Figure 5.7.2 | Concept of Smart Grid with Network Infrastructure Management System  |     |
| Figure 6.1.1 | Flow Capacity Comparison of Different Pressure Rating                |     |
| Figure 6.1.2 | Pipe Material Cost Comparison                                        | 190 |
| Figure 6.1.3 | Concept of Fishbone Gas Supply System                                | 190 |
| Figure 6.2.1 | Concept of Loop Pipeline Supply System                               | 192 |
| Figure 6.2.2 | Gas Import Forecast and LNG Import Assumption                        | 193 |
| Figure 6.2.3 | Pipeline Capacity for Gas Import (LNG) in 2018                       | 194 |
| Figure 6.2.4 | Pipeline Capacity for Gas Import (LNG) in 2025                       | 195 |
| Figure 6.2.5 | Concept of Dhaka Loop and West Loop for 2035 with Off-shore Pipeline | 196 |
| Figure 6.2.6 | Pipeline Flow Calculation                                            | 197 |
| Figure 6.2.7 | GTCL Gas Transmission Line Network and Proposed Sub-sea Pipeline     | 198 |
| Figure 7.1.1 | Summary of Challenges and Necessary Actions in Bangladesh Energy     |     |
| Secto        | r                                                                    | 208 |
| Figure 7.2.1 | Overall Project Road Map                                             | 210 |
| Figure 7.2.2 | Proposed Structure of Working Group                                  | 213 |

### List of Tables

| Table 1.6.1 | Members of JICA Survey Team(JST)                                      | 11 |
|-------------|-----------------------------------------------------------------------|----|
| Table 2.1.1 | Depreciation vs. Expense for Annual Maintenance (in Bangladesh Taka)  | 19 |
| Table 2.2.1 | List of Exploration Project under Implementation                      | 22 |
| Table 2.3.1 | LNG Import Projects                                                   | 27 |
| Table 2.4.1 | BAPEX Gas Facilities                                                  |    |
| Table 2.4.2 | BGFCL Gas Field Facilities                                            | 31 |
| Table 2.4.3 | Transmission Line List-GPS Information (Coordinate data) and ROW      |    |
| Table 2.4.4 | Transmission Pipeline List-Design Information                         |    |
| Table 2.4.5 | Pressure Reference Table                                              | 35 |
| Table 2.4.6 | Valve Station List of GTCL and Other Gas Companies                    |    |
| Table 2.4.7 | Available Information on Collected Drawings                           |    |
| Table 2.4.8 | Design Parameters for Pipelines                                       | 42 |
| Table 2.4.9 | Summary of CP Facilities                                              | 45 |
| Table 2.5.1 | Design Standard and Valves and Fittings (Typical MOAP and Bangladesh) | 53 |
| Table 2.5.2 | Applied Material and Standard by Project                              | 54 |
| Table 2.7.1 | Recommended Data Items in Asset Management                            | 56 |
| Table 3.2.1 | Summary of Power Plants                                               | 65 |
| Table 3.2.2 | Fuel Mix of Power Plants                                              | 66 |
| Table 3.2.3 | Plant Type of Power Plants                                            | 67 |
| Table 3.2.4 | PDP in PSMP2016                                                       | 68 |
|             |                                                                       |    |

| Table 3.2.5  | Gap analysis for Power Development Plan (PDP) as of August 2017    | 70  |
|--------------|--------------------------------------------------------------------|-----|
| Table 3.2.6  | The Year-Wise Transmission Infrastructures under PGCB's Management | 75  |
| Table 3.2.7  | List of Existing Transmission Lines                                | 77  |
| Table 3.2.8  | List of Existing Substations                                       | 81  |
| Table 3.2.9  | On-going Projects by PGCB on September 2017                        | 85  |
| Table 3.2.10 | Projects Planned by PGCB on September 2017                         | 89  |
| Table 3.2.11 | List of Gas-fired Thermal Power Development Plan                   | 93  |
| Table 3.4.1  | FY Wise O&M Cost Per Unit Generation                               | 97  |
| Table 3.4.2  | FY Wise O&M Cost Per Unit Transmission                             | 98  |
| Table 3.5.1  | List of Main Assets of BPDB Facility                               | 98  |
| Table 3.5.2  | List of Main Assets of PGCB Facility                               | 99  |
| Table 4.1.1  | Designated areas by Laws and Regulations                           | 103 |
| Table 4.1.2  | Standard of Air                                                    | 107 |
| Table 4.1.3  | Standards for Sound                                                | 107 |
| Table 4.1.4  | Standards for Waste From Industrial Units or Projects              | 108 |
| Table 4.1.5  | Clearance distance/set back distance of Foreshore area             | 109 |
| Table 4.1.6  | Allowed and Prohibited Activities in the Protected Areas           | 109 |
| Table 4.1.7  | Hilsha Sancturies                                                  | 111 |
| Table 4.1.8  | Zoning or Target Areas                                             | 113 |
| Table 4.1.9  | Hydrological Zones by National Water Management Plan (NWMP) 2001   | 117 |
| Table 4.1.10 | Action plans for wildlife conservation                             | 119 |
| Table 4.1.11 | Integrated Coastal Zone                                            | 119 |
| Table 4.1.12 | Monitoring and Baseline Data                                       | 122 |
| Table 4.2.1  | Organizations Managing Special Data by Items                       | 129 |
| Table 4.5.1  | Scoping Table                                                      | 136 |
| Table 4.5.2  | Recommended Survey Items on Route Selection Stage                  | 139 |
| Table 4.5.3  | Matters to be considered/ not to be considered in determing Stage  | 145 |
| Table 5.1.1  | Glossary of Smallworld                                             | 157 |
| Table 5.2.1  | List of Valve Stations input to Internal Worlds                    | 162 |
| Table 5.2.2  | List of Substation incorporated in Internal Worlds in Smallworld   | 169 |
| Table 5.3.1  | Common Physical Fields of All Facilities                           | 176 |
| Table 5.3.2  | Physical Fields of Gas Pipeline                                    | 177 |
| Table 5.6.1  | Pros and Cons of SCADA Connection Methods                          | 184 |
| Table 5.6.2  | Summary of SoB Maps incorporated in the System                     | 186 |
| Table 5.7.1  | Pre-paid Meter Installation Plan                                   | 186 |
| Table 6.1.1  | Current Pressure System in Fish Bone Supply System                 | 191 |
| Table 6.3.1  | List of Recent Energy Projects in Bangladesh Funded by ADB         | 200 |
| Table 6.3.2  | List of Other Energy Projects in Bangladesh                        | 201 |
| Table 6.3.3  | List of Project Supported by International Donners                 | 203 |
| Table 6.4.1  | New Gas Tariff at consumer level for Gas Distribution Companies    | 204 |

#### List of Terms

| Abbreviations | Description                                                   |
|---------------|---------------------------------------------------------------|
| ADB           | Asian Development Bank                                        |
| AGC           | Automatic Generation Control                                  |
| API           | American Petroleum Institute                                  |
| APSCL         | Ashuganj Power Station Company Limited                        |
| ASME          | American Society of Mechanical Engineers                      |
| ASTM          | American Society for Testing and Materials                    |
| Bangladesh    | the People's Republic of Bangladesh                           |
| BAPEX         | Bangladesh Petroleum Exploration & Production Company Limited |
| BARC          | Bangladesh Agricultural Research Council                      |
| BAU           | Business as Usual                                             |
| bbl           | Barrel                                                        |
| BCF           | Billion Cubic Feet                                            |
| BDT           | Bangladesh Taka                                               |
| BERC          | Bangladesh Energy Regulatory Commission                       |
| BGDCL         | Bakhrabad Gas Distribution Company Limited                    |
| BGFCL         | Bangladesh Gas Fields Company Limited                         |
| BOC           | Burmah Oil Company                                            |
| BOG           | Boil-off-gas                                                  |
| BP            | British Petroleum                                             |
| BPC           | Bangladesh Petroleum Corporation                              |
| bpd           | Barrel per Day                                                |
| BPDB          | Bangladesh Power Development Board                            |
| BREB          | Bangladesh Rural Electrification Board                        |
| C/P           | Counterpart                                                   |
| CAPEX         | Capital Expenditure                                           |
| CC            | Combine Cycle                                                 |
| CCGT          | Combined Cycle Gas Turbine                                    |
| ССРР          | Combined Cycle Power Plant                                    |
| CEGIS         | Center for Environmental and Geographic Information Service   |
| CGS           | City Gate Station                                             |
| CIF           | Cost. Insurance and Freight                                   |
| CLDO          | Central Load Dispatching Office                               |
| CNG           | Compressed Natural Gas                                        |
| COD           | Commercial Operation Date                                     |
| СР            | Cathodic Protection                                           |
| CPGCBL        | Coal Power Generation Company of Bangladesh Limited           |
| DES           | Delivered Ex-Ship                                             |
| DESCO         | Dhaka Electricity Supply Company Limited                      |
| DFR           | Draft Final Report                                            |
| DOE           | Department of Environment                                     |
| DOF           | Department of Forest                                          |
| DPDC          | Dhaka Power Distribution Company Limited                      |
| DRS           | District Regulating Station                                   |
| DSM           | Demand Side Management                                        |
| EAL           | Engineering Associates Limited                                |
| EAM           | Enterprise Asset Management                                   |
| EBA           | Electricity Business Act                                      |
| ECC           | Environment Clearance Certificate                             |
| EDC           | Economical load Dispatching Control                           |
| EEC           | Energy Efficiency and Conservation                            |
| EGCB          | Electricity Generation Company of Bangladesh                  |

| Abbreviations | Description                                                           |  |  |
|---------------|-----------------------------------------------------------------------|--|--|
| EIA           | Environmental Impact Assessment                                       |  |  |
| EIRR          | Economic Internal Rate of Return                                      |  |  |
| EMRD          | Energy and Mineral Resources Division, Ministry of Power, Energy, and |  |  |
|               | Mineral Resources                                                     |  |  |
| EMS           | Enegry Management System                                              |  |  |
| EN            | European Norm (European Standards)                                    |  |  |
| EQMS          | EQMS Consulting Ltd.                                                  |  |  |
| ERD           | Economic Relation Division                                            |  |  |
| EU            | European Union                                                        |  |  |
| F/S           | Feasibility Study                                                     |  |  |
| FDI           | Foreign Direct Investment                                             |  |  |
| FGMO          | Free Governor Mode Operation                                          |  |  |
| FIRR          | Financial Internal Rate of Return                                     |  |  |
| FOB           | Free On Board                                                         |  |  |
| FR            | Final Report                                                          |  |  |
| FSRU          | Floating Storage and Regasification Unit                              |  |  |
| FSU           | Floating Storage Unit                                                 |  |  |
| FY            | Fiscal Year                                                           |  |  |
| GDP           | Gross Domestic Product                                                |  |  |
| GE            | General Electric Company                                              |  |  |
| GHG           | Greenhouse Gas                                                        |  |  |
| GNI           | Gross National Income                                                 |  |  |
| GoB           | Government of Bangladesh                                              |  |  |
| GPS           | Geographic Positioning System                                         |  |  |
| GSMP          | Gas Sector Master Plan                                                |  |  |
| GSRR          | Gas Sector Reform Roadmap                                             |  |  |
| GTCC          | Gas Turbine Combined Cycle                                            |  |  |
| GTCL          | Gas Transmission Company Limited                                      |  |  |
| GUI           | Graphical User Interface                                              |  |  |
| ha            | Hectare                                                               |  |  |
| HSD           | High Speed Diesel                                                     |  |  |
| HVDC          | High Voltage Direct Current transmission line                         |  |  |
| Hz            | Hertz                                                                 |  |  |
| IBRD          | International Bank for Reconstruction and Development                 |  |  |
| ICI           | Indonesian Coal Index                                                 |  |  |
| IcR           | Inception Report                                                      |  |  |
| ICT           | Information and Communication Technology                              |  |  |
| IEA           | International Energy Agency                                           |  |  |
| IEE           | Initial Environmental Examination                                     |  |  |
| IEEE          | Institute of Electrical and Electronics Engineers                     |  |  |
| IGCC          | Integrated Gasifier Combined Cycle                                    |  |  |
| IGFC          | Integrated Gasifier Fuel Cell                                         |  |  |
| IMF           | International Monetary Fund                                           |  |  |
| INDC          | Intended Nationally Determined Contributions                          |  |  |
| IOC           | International Oil Company                                             |  |  |
| IPP           | Independent Power Producer                                            |  |  |
| IRR           | Internal Rate of Return                                               |  |  |
| ISO           | International Organization for Standardization                        |  |  |
| ItR           | Interim Report                                                        |  |  |
| JETRO         | Japan External Trade Organization                                     |  |  |
| JGTDSL        | Jalalabad Gas Transmission and Distribution System Limited            |  |  |
| JICA          | Japan International Cooperation Agency                                |  |  |
| JST           | JICA Survey Team                                                      |  |  |
| KGDCL         | Karnaphuli Gas Distribution Company Limited                           |  |  |

| Abbreviations                         | Description                                                 |  |
|---------------------------------------|-------------------------------------------------------------|--|
| KPI                                   | key performance indicators                                  |  |
| ktoe                                  | Kilo tonne of Oil Equivalent                                |  |
| KV                                    | Kilovolt                                                    |  |
| kWh                                   | Kilowatt Hour                                               |  |
| LED                                   | Light Emitting Diode                                        |  |
| LFC                                   | Load Frequency Control                                      |  |
| lkm                                   | Line kilometer                                              |  |
| LNG                                   | Liquefied Natural Gas                                       |  |
| LPG                                   | Liquefied Petroleum Gas                                     |  |
| M/P                                   | Master Plan                                                 |  |
| MAOP                                  | Maximum Allowable Operating Pressure                        |  |
| MCF                                   | Million Cubic Feet                                          |  |
| MDGs                                  | Millennium Development Goals                                |  |
| METI                                  | Ministry of Economy, Trade and Industry                     |  |
| MF                                    | Ministry of Finance                                         |  |
| mm                                    | millimeter                                                  |  |
| MMBTU                                 | Million British Thermal Unit                                |  |
| mcf                                   | Million Cubic Feet                                          |  |
| mmscfd                                | Million Standard Cubic Feet per Day                         |  |
| MTPA                                  | Million Metric Ton per Annam                                |  |
| MOI                                   | Ministry of Industries                                      |  |
| MoPEMR                                | Ministry of Power, Energy and Mineral Resources             |  |
| MPL                                   | Meghna Petroleum Limited                                    |  |
| MPM&P                                 | Management, Production, Maintenance & provisioning Services |  |
| MW                                    | Megawatt                                                    |  |
| MWh                                   | Megawatt Hour                                               |  |
| NEXI                                  | Nippon Export and Investment Insurance                      |  |
| NGO                                   | Non Governmental Organization                               |  |
| NK                                    | Nippon Koei Co., Ltd                                        |  |
| NLDC                                  | National Load Dispatching Center                            |  |
| NPV                                   | Net Present Value                                           |  |
| NSAPR II                              | National Strategy for Accelerated Poverty Reduction II      |  |
| NWPGCL                                | North West Power Generation Company                         |  |
| O&M                                   | Operation and Maintenance                                   |  |
| O/C                                   | Open Cut                                                    |  |
| OCR                                   | Ordinary Capital Resources                                  |  |
| ODA                                   | Official Development Assistance                             |  |
| OECD                                  | Organization for Economic Co-operation and Development      |  |
| OPEX                                  | Operating Expense                                           |  |
| P&ID                                  | Piping and Instrument Diagram                               |  |
| p.a.                                  | Per Annum                                                   |  |
| PC                                    | Power Cell                                                  |  |
| PDP                                   | Power Development Plan                                      |  |
| PFD                                   | Process Flow Diagram                                        |  |
| PGCB                                  | Power Grid Company of Bangladesh Limited                    |  |
| PGCL                                  | Pasnenimanchal Gas Company Limited                          |  |
| POCL                                  | Padma Uil Company Limited                                   |  |
| PPI                                   | Power Purchase Agreement                                    |  |
| I I I I I I I I I I I I I I I I I I I | Pakistan Petroleum Ltd                                      |  |
|                                       | Public Private Partnership                                  |  |
| PKF                                   | Protected Public Forest                                     |  |
|                                       | Power Station                                               |  |
| r5A<br>DCC                            | Production Sharing Agreements                               |  |
| I PSU                                 | Product Sharing Contract                                    |  |

| Abbreviations | Description                                                           |  |  |
|---------------|-----------------------------------------------------------------------|--|--|
| PSMP          | Power System Master Plan                                              |  |  |
| PSOC          | Pakistan Shell Oil Company                                            |  |  |
| PSS/E         | Power System Simulator for Engineering                                |  |  |
| PV            | Photo Voltaic                                                         |  |  |
| Q & A         | Questions & Answers                                                   |  |  |
| R&D           | Research and Development                                              |  |  |
| REB           | Rural Electrification Board                                           |  |  |
| RES           | Renewable Energy power Source                                         |  |  |
| RPGCL         | Rupantarita Prakritik Gas Company Limited                             |  |  |
| SCADA         | Supervisory Control And Data Acquisition                              |  |  |
| SDGs          | Sustainable Development Goals                                         |  |  |
| SEZ           | Special Economic Zone                                                 |  |  |
| SGFL          | Sylhet Gas Fields Limited                                             |  |  |
| SIPP          | Small Independent Power Producers                                     |  |  |
| SME           | Small and Medium Enterprise                                           |  |  |
| SMYS          | Specified minimum yield strength                                      |  |  |
| SoB           | Survey of Bangladesh                                                  |  |  |
| SREDA         | Sustainable and Renewable Energy Development Authority                |  |  |
| ST            | Steam Turbine                                                         |  |  |
| STANVAC       | The Standard Vacuum Oil Company                                       |  |  |
| SW            | Smallworld                                                            |  |  |
| T/D           | Transmission and Distribution                                         |  |  |
| TCF           | Trillion Cubic Feet                                                   |  |  |
| TDS           | Transmission and Distribution Sector (in General Electricity Utility) |  |  |
| TEG           | Thermo-Electric Generator                                             |  |  |
| TEPCO         | Tokyo Electric Power Company, Inc.                                    |  |  |
| TEPSCO        | Tokyo Electric Power Services Co., Ltd.                               |  |  |
| TGTDCL        | Titas Gas Transmission and Distribution Company Limited               |  |  |
| Tk            | Taka                                                                  |  |  |
| TOR           | Terms of Reference                                                    |  |  |
| U/G           | Under Ground                                                          |  |  |
| UFR           | Under Frequency Relay                                                 |  |  |
| USC           | Ultra Super Critical                                                  |  |  |
| USD           | United States Dollar                                                  |  |  |
| WB            | World Bank                                                            |  |  |
| WZPDCL        | West Zone Power Distribution Company Limited                          |  |  |
| η             | Efficiency                                                            |  |  |
|               |                                                                       |  |  |

Currency Exchange Rate (if not specified, as of End of December 2017) 1.3823 BDT/USD 113.27 JPY/USD



## **EXECUTIVE SUMMARY**

The major source of primary energy in Bangladesh is domestic natural gas. The demand for gas is increasing rapidly, while its production is projected to start declining. Energy sector of Bangladesh is facing challenges, such includes (i) Shift of gas operation mode from "allocation" to "demand-based", (ii) Reliability enhancement of gas network infrastructure, (iii) Coordinated planning of gas and power investment project, and (iv) Modernization of Operation System.

Considering the above issues, Network Infrastructure Management System is the key system to overcome these challenges jointly with the development of modernized of Gas Operation System. The system should be flexible enough to accommodate all the existing systems and to support preventive maintenance, operation safety, and future development plan. SCADA (Supervisory Control And Data Acquisition) system is used to support advanced process control system primarily, and the acquired data will be shared with the Network Infrastructure Management System to support design engineering and long-term monitoring to detect gas leakage and system bottleneck.

Originally the introduction of Network Infrastructure Management System for Bangladesh was proposed in the Power Sector Master Plan 2016. In this regard, the Government of Bangladesh and JICA have agreed to conduct the Survey as a pilot project to see if the Network Infrastructure Management System is applicable to the energy sector of Bangladesh.

The purposes of the Survey are:

- To create framework of Network Infrastructure Management System for modernized O&M (Operation and Management) and asset management of gas/power infrastructure;
- 2) To transfer knowledge to set up efficient gas/power infrastructure using Network Infrastructure Management System; and
- 3) To integrate information on power station and gas/power transmission systems, modelled in the computer system

Network Infrastructure Management System consists of high-performance GIS (Geographical Information System), and highly efficient database. Various existing data can be accommodated and integrated into the system, such include design data, O&M data, SCADA data, field survey data, topographic maps, and pipeline aliment drawings and process flow diagrams, etc. The Network Infrastructure Management System is designed to effectively manage a large-scale infrastructure network, with a network tracing capability from gas field/terminals and/or power plants to each customer.

Report Summary is provided as follows:

CHAPTER 1 INTRODUCTION summarizes the background, survey objective, scope of work, study flow, counterpart agencies, and member of the survey team.

CHAPTER 2 GAS SECTOR describes the result of data collection, current data status and issues in gas sector of Bangladesh. Gas production has continued to be increasing in Bangladesh and producing

approx..900 BCF/year in 2016. However, it is considered to be declining because of aging of existing gas fields, and no significant scale of new discovery has been made so far.

Gas business entities in Bangladesh have experienced several times of entity splits and aggregations, office moves. Numbers of important documents appears to be lost or missing in such transactions. The challenges in gas sector are: (i) Need of reproduction of missing design documents, as-build drawings, process flow diagrams, specifications, etc., (ii) Unify the design standard by reviewing all the past design specifications, and to minimize the numbers of spare parts, (iii) Secure the integrity of transmission and distribution systems to be ready for LNG introduction. (iv) Share the infrastructure information among the entities including power sectors to minimize time and cost for infrastructure investment. The recommendations are:

- (i) Introduction of centralized document management system including specification, process follow diagram, and drawing,
- (ii) Review of all the specifications and design standard including Maximum Allowable Operation Pressure which appears to be lower than international practice and may have lost gas transmission capacity.
- (iii) Preparation of unified and common design standard, standard drawing, and standard specification, and
- (iv) Establishment of system integrity from LNG import terminal, transmission pipeline, distribution piping systems up to end users.

CHAPTER 3 POWER SECTOR summarizes power infrastructure update from PSMP2016. As of June 2017, the installed capacity of the total 108 power plants including import power is 13,555 MW, and the present capacity (or de-rated capacity) is 12,771 MW. Of which, in total 61 power plants are gas power with installed capacity 8,810 MW or de-rated present capacity 8,102 MW. There are delay in commissioning power plant due to finance, lengthy approval process, and land acquisition. Power station and power grid network in 2025 and in 2035 was reviewed for future consistency with gas sector.

ICT (Information and Communications Technology) road map is being prepared. It proposes introduction of ERP (Enterprise Resource Planning) system for respective organization. For ERP, basic system with documentation management and database is necessary in the near future. In addition, database for operation data with SCADA, maintenance record, field service, and engineering design needs to be developed. In this regard, it is proposed to introduce Network Infrastructure Management System of asset management system platform.

CHAPTER 4 ENVIRONMENT refers lows and regulations, various document, maps and database which is possible to be applied for strategic environmental assessment for network infrastructure. The information includes: (i) Regulated areas by laws, regulations, act, and rules, (ii) Zoning and policies of related sectors, (iii) Baseline data of related sectors, and (iv) organizations that manage special environmental data in Bangladesh. Environmental scoping for sub-sea pipeline proposed in Chapter 6 was also conducted and major impact was summarized for pipeline corridor, pipeline construction and

operation. The preliminary route of proposed pipeline is overlapped with environmental maps and recommendation for route selection was made.

CHAPTER 5 DEMONSTRATION OF HARMONIZED GAS AND POWER STRATEGIC PLAN is the part that illustrates the prepared demonstration of gas and power network infrastructure in Bangladesh, using the Network Infrastructure Management System "Smallworld". The Network Infrastructure Management System applied "Object Model" which is suitable for large scale, high-accuracy database. The Smallworld system can be the platform of various information system such as ERP, EAM (Enterprise Asset Management), GIS, simulator, and SCADA. It manages network infrastructure facilities in real world mapping together with logical schematic diagram (such as single line diagram) and facility internal building asset data. Collected infrastructure data were incorporated and demonstrated, including data of gas transmission and distribution facilities, power transmission line, substation, and power stations in Bangladesh, together with survey maps and environment base maps. Manuals of demonstration were also prepared.

It was pointed that the drawing preparation, pipe detection survey, and GPS data collection survey is inevitable for system preparation which requires large human resources. The organization for fundamental data preparation and management needs to be set up.

CHAPTER 6 POLICY AND STRATEGY OF GAS INFRASTRUCTURE reviewed current challenges and issues of gas infrastructure. First, two fundamental design issues, MAOP (Maximum Allowable Operating Pressure) and Fish Bone Pipeline Infrastructure was discussed. Due to a lower MAOP used in Bangladesh in comparison with the international engineering practice, overall infrastructure system has been distorted to a certain extend. To provide flexibility in the operation, MAOP need to be raised. Current Fish Bone Pipeline Infrastructure had some advantage in the initial stage of the development but not suitable for current circumstances of Bangladesh. Investment should be directed to Loop construction, especially Dhaka Loop. Loop configuration has advantage of following: 1) Increase of Gas Supply Capacity, 2) Higher Reliability 3) Simple Operation and higher Operational Flexibility.

Gas supply capacity and infrastructure development plan is prepared for the year 2025 and 2035 assuming gas import of 1,750 mmscfd in 2025 and 5,000 mmscfd in 2035. It is recommended that:

By 2025, Dhaka Loop and West Loop to be constructed. Supply capacity to be increased to more than 1,750 mmscfd. Gas evacuation plan from Maheshkhali/Kutubdia to be prepared.

By 2035, Submarine Pipeline from Maheshkhali/Kutubdia to Dhaka Loop to be constructed as part of gas evacuation plan from Maheshkhali/Kutubdia. Proposed pipeline will be #900 ANSI Class, 36 inch, which is capable of transporting 1,700 mmscfd of gas. If required second pipeline can also be constructed in parallel.

This section reviews the performance of gas infrastructure by international development partners. Lessons learned are: (i) It is necessary to use unified and common design standard, (ii) Investment priority to be discussed among the development partners for consistent infrastructure development plan. (iii) Hiring internationally qualified consultant knowledgeable about the industry.

There is a large price gap between the imported gas and domestic gas. There are three LNG Pricing System in Asia, i.e., 1) traditional long-term oil linked pricing system, 2) NBP (National Balancing

Point) linked pricing system, 3) US henry Hub linked pricing system. CIF (Cost, Insurance and Freight) price or DES (Delivered Ex-Ship) price in December 2016 in Japan is USD 8.00/MMBTU, and in Europe (UK) USD 5.88/MMBTU. While Henry Hub price is USD 2.82/MMBTU. This Henry Hub Price is translated to LNG FOB (Free On Board) price of USA at USD 7.00/MMBTU. The most realistically LNG CIF price at Bangladesh will be USD 6.00-8.00/MMBTU under the international market circumstances. On the other hand, gas price for power in Bangladesh is in the range of USD 0.90-1.10/MMBTU.

It is therefore unavoidable for the Bangladesh government to raise gas price, taking into consideration of the current and future international gas price and the most appropriate long-term scenario for gas price reform. It is important to increase the natural gas price progressively to reduce the gap with the international market price of LNG so that the further increase of financial deficit in the national budget is minimized.

CHAPTER 7 SUMMARY AND RECOMMENDATIONS summarizes overall contents, challenges and recommendations. The challenges include (i) Missing system integrity and lack of common design standard, (ii) Operation mode change, (iii) Insufficient pipeline capacity for future LNG import, (iv) Absence of LNG import regulation, (v) Lack of gas and power infrastructure integrated plan, (vi) Lack of centralized data and document management system, (vii) Insufficient readiness for introduction of ERP, and (viii) Insufficient coordination of infrastructure plan among government agencies, companies, and development partners. For the necessary actions toward above challenges, JST (JICA Survey Team) listed the necessary actions as follows

- Review of overall pipeline network and introduction of Loop pipeline system
- Preparation of common design standard
- Construction of #900, 36" Off-shore pipeline
- Establishment of Capacity Right and Quality Bank structure system and accounting system
- Introduction of Network Infrastructure Management System
- Development partner coordination and elaboration of unified specification with qualified consultants

Of the above, introduction of Network Infrastructure Management System to cope with above challenges is the key recommendation in this study, and JST prepared demonstration Network Infrastructure Management System of gas and power sector in Bangladesh. The contents of T/C (Technical Cooperation) project were proposed for the establishment of Network Infrastructure Management System and capacity development in energy sector for the next phase.

4

## CHAPTER 1 INTRODUCTION

#### **1.1 Background of the Project**

The major source of primary energy in the People's Republic of Bangladesh (hereinafter referred to as "Bangladesh") is domestic natural gas. The demand for gas is increasing rapidly, while its production is projected to start declining due to depletion around 2018. Under these circumstances, the Government of Bangladesh (hereinafter referred to as GoB) has developed the Power System Master Plan 2016 to 2041 (hereinafter referred to as PSMP2016) including not only long term power generation development target but also energy demand forecast, energy diversification plans emphasized on LNG and Coal import, and implications for energy supply and tariffs. However, Bangladesh faces challenges in energy sector.

#### (1) Operation Mode Shift

Gas supply system will be shifted from "allocation" to "demand-based", and introduction of advanced process control systems will be required. Mixed supply of domestic gas and LNG would require new billing system to cater the difference in pricing and heating value. Moreover, LNG might become the primary gas source and domestic gas might be the second gas source as LNG is not flexible enough to meet demand fluctuation in the load center. (Planned LNG terminal is located 400 km away from Dhaka area, and gas delivery from LNG terminal takes 10 hours. It is not possible to meet the gas demand fluctuation in Dhaka area without advanced control.)

In this regard, integrated operation system from production to final consumption need to be set up. Currently, subsidiaries of the Bangladesh Oil & Gas Corporation (hereinafter referred to as Petrobangla) operates their business independently, and so it is necessary to enhance the information sharing and coordination among all the companies in an efficient manner.

(2) Enhancement of Gas Network Infrastructure Reliability

Gas network infrastructures need to be strengthened. With the depletion of domestic gas and injection of LNG, gas flow direction will be drastically change. Currently, Gas fields and related infrastructures are concentrated in the north-eastern part of Bangladesh. Therefore, new infrastructures need to be constructed to transport LNG gas and to mitigate the gas shortage especially in the western part of the country. Minimization of Gas leakage is essential, especially during LNG injection. Rehabilitation of aged gas infrastructures is recommended together with updating process flow diagrams and route map, as well as introduction of systematic maintenance system.

#### (3) Gas and Power Sector Coordinated Planning

There should be more attention paid to collaboration of gas and power supply system. Power stations play an important role as the basic customer for gas pipeline development/extension; on the other hand, gas infrastructures are important for selecting construction site for power stations. Therefore, coordinated plan for both the sectors is necessary to ensure efficient development minimizing time and cost.

#### (4) Operation Modernizing

Last but not least, modernizing organizations including human resource development is inevitable. System integration and centralized operation/monitoring system need to be introduced in the current gas supply system to ensure proper monitoring. In addition, human resource development, especially the capacity development of the engineers, is a key success variable for Bangladesh at this stage.

For coping with the above-mentioned challenges, it was suggested that modernizing the gas operation and Network Infrastructure Management System would be a starting point in PSMP2016.

"Network Infrastructure Management System" is defined as the computer system with customised database of asset, mapping system, and document/drawings for infrastructure planning and management.

Data of infrastructures will be fed into Network Infrastructure Management System and integrated with the current systems such as SCADA. Information in the system can be utilized for realization of advanced process control, preventive maintenance, safety operation, efficient asset management, etc.

In this regard, GoB and JICA have agreed to conduct this Survey as a pilot project to introduce the Network Infrastructure Management System and investigate its applicability to Bangladesh gas and power sector.

#### **1.2** Purpose of the Survey

The purposes of the Survey are:

- 1) To create framework of Network Infrastructure Management System for better O&M, and asset management of gas/power infrastructure;
- 2) To transfer knowledge to set up efficient gas/power infrastructure using Network Infrastructure Management System; and
- 3) To integrate information on power station and gas/power transmission systems, modelled in the computer system

The survey areas are as follows:

- Gas fields, gas processing plants and connecting pipeline system
- Gas Transmission Company Bangladesh Limited (hereinafter referred to as GTCL) pipelines systems and related facilities such as valve stations
- A part of Titas Gas Transmission and Distribution Company Limited (hereinafter referred to as TGTDCL) pipelines and other gas distribution companies,
- Major industrial gas users including power stations
- Power Transmission system (Lines and Sub-station)

#### 1.3 Scope of Work

The scopes of the work of the Survey are as follows:

- 1) Data Collection in the Gas Sector (Production/Transmission/Distribution)
  - Gas/Condensate Component and Production, Operating Pressure
  - Process Flow Diagram (hereinafter referred to as PFD) and Piping and Instrument Diagram (hereinafter referred to as P&ID)
  - Transmission/distribution pipe route drawings, and Right-of-way (ROW<sup>1</sup>) information
  - As-build drawings
  - Piping Material Specification/Standard Construction Drawings
  - Construction/Operation Year and Construction Cost
  - Information on tie-in point (location, size, pressure rating, flow meters, etc.)
  - Information on Process Control, Maintenance, Emergency Transaction,
  - Information on CP (Cathodic Protection) System
  - Future expansion and rehabilitation plan (short term: up to 2025, mid term: up to 2035, long term: up to 2041)
- 2) Data Collection in the Power Sector (Power Station and Power Transmission system)
  - Gas based power station (numbers, location, construction year, requirement of gas, heat rate and efficiency)
  - Transmission line network route (GIS or CAD) (single line diagram, voltage level, size of conductor, number of circuit, construction year)
  - Grid Substation (location, construction year, transformer & breaker capacity, O&M information)
  - Future expansion plan of Transmission system (short term: up to 2025, mid term: up to 2035, long term: up to 2041)
- 3) Integration of the information of Energy and Power Sector and Proposing an integrated strategy
- 4) Proposal for the strategy and policy actions for gas infrastructure
- 5) Data Collection of relevant environment information
- 6) Draft the demonstration of the Network Infrastructure Management System
- 7) Study Tour to Japan and USA
  - 1st visit: Introduction and Basic Course (Japan)

<sup>&</sup>lt;sup>1</sup> Right-of-way (ROW) is the land used for pipeline or transmission line, of which ownership belongs to land owner and right to use is given to the pipeline/transmission line owner.

- 2nd visit: Advanced Course (Japan and USA)
- 8) Seminars in Bangladesh
  - 1st seminar: Introduction
  - 2nd seminar: Demonstration and Technical Transfer

#### 1.4 The Counterpart Agencies

The counterpart agencies for the Survey were both sectors of gas and power division in Ministry of Power, Energy and Mineral Resources (hereinafter referred to as MoPEMR) and its subsidized organizations, as follows.

- (1) The Energy and Mineral Resources Division (hereinafter referred to as EMRD) of MoPEMR is coordinating bodies for the Survey with other organizations
- (2) The Power Division, MoPEMR coordinate the meetings and discussions with each energy and power related agencies and companies with EMRD of MoPEMR.
- (3) Each utility agency or company cooperate to provide data and participate in the Survey. The organizations are;
  - Petrobangla and its following subsidiaries
    - Bangladesh Petroleum Exploration and Production Company (hereinafter referred to as BAPEX)
    - Bangladesh Gas Fields Company Limited (hereinafter referred to as BGFCL)
    - Sylhet Gas Field Limited (hereinafter referred to as SGFL)
    - Gas Transmission Company Limited (hereinafter referred to as GTCL)
    - Titas Gas Transmission and Distribution Company Limited (hereinafter referred to as TGTDCL)
    - Bakhrabad Gas Distribution Company Limited (hereinafter referred to as BGDCL)
    - Jalalabad Gas Transmission and Distribution System Limited (hereinafter referred to as JGTDSL)
    - Pashchimanchal Gas Company Limited (hereinafter referred to as PGCL)
    - Karnaphuli Gas Distribution Company Limited (hereinafter referred to as KGDCL)
    - Rupantarita Prakritik Gas Company Limited (hereinafter referred to as RPGCL)

• Bangladesh Power Development Board (hereinafter referred to as BPDB) and its following subsidiaries

- Ashugonj Power Station Company Limited (hereinafter referred to as APSCL)
- Electricity Generation Company of Bangladesh Limited (hereinafter referred to as EGCB)

- North West Power Generation Company Limited (hereinafter referred to as NWPGCL)
- Power Grid Company of Bangladesh (hereinafter referred to as PGCB)
- West Zone Power Distribution Company Ltd. (hereinafter referred to as WZPDCL)
- North west Zone Power Distribution Company Ltd. (hereinafter referred to as NWZPDCL)
- Power Cell

#### 1.5 Basic Concept of Network Infrastructure Management System

Network Infrastructure Management System was proposed to be introduced to tackle the challenges in energy sector in Bangladesh in PSMP2016.

Network Infrastructure Management System consists of computerized infrastructure components with customized system model. It includes asset management database, high-performance GIS (Geographical Information System), and document database. Various types of data can be input and integrated in the system such as planning data with simulator, O&M data from SCADA, field survey data, topographic maps, and drawings and diagrams. The Network Infrastructure Management System is designed to effectively manage a large-scale infrastructure network.



Source: Prepared by JST

Figure 1.5.1 Concept of Network Infrastructure Management System

Object Model has been developed for Network Infrastructure Management System. The features of Object Model are as follows:

 Accurate physical configurations of network system components (such as valves, pipes, transformers, cables, etc.) are re-created in a computer system with precise positioning on various scale of maps

- 2) Connection status (opened/closed, connected/disconnected, etc.) of network system component can be recognized and applied for flow analysis
- 3) Attribute data of huge amount of objects can be stored
- 4) Large amount of concurrent users are possible to operate and maintain the system

With the above features, identification of accurate location of system components becomes possible, which enables efficient asset management, optimum infrastructure planning, and operation/safety management. The Network Infrastructure Management System with Object Model has been applied to more than 1,300 utility companies such as gas, power, water, and telecommunications all over the world.



Source: Prepared by JST

Figure 1.5.2 Particular Functions of Network Infrastructure Management System

The details of Network Infrastructure Management System is as illustrated in section 5.1.1.

#### 1.6 Survey Flow and Survey Team

The survey was conducted by a Joint-Venture Team of Nippon Koei Co., Ltd. & Chiyoda U-tech Co., Ltd. The JICA Survey Team consists (hereinafter referred to as JST) of members as shown in the table below.

| SN | Title                                                                                           | Name                    |
|----|-------------------------------------------------------------------------------------------------|-------------------------|
| 1  | Team Leader, Gas Infrastructure (Transmission Pipeline Plan)                                    | Mr. Masaaki Ebina       |
| 2  | Deputy Team Leader, Gas Infrastructure, and Network<br>Infrastructure Management System (Power) | Ms. Yuka Nakagawa       |
| 3  | Network Infrastructure Management System (Gas)                                                  | Mr. Tsunetaka Komachiya |
| 4  | Energy Economy and Policy                                                                       | Mr. Kunio Hatanaka      |
| 5  | Power Plant Plan                                                                                | Mr. Toshiyuki Kobayashi |
| 6  | Transmission Line Plan                                                                          | Mr. Keisuke Ueda        |
| 7  | Gas Infrastructure (Process Design)                                                             | Mr. Takashi Sato        |
| 8  | Piping Design and Standard                                                                      | Mr. Takehiro Hirobe     |
| 9  | Environmental and Social Consideration-1                                                        | Ms. Akiko Urago         |
| 10 | Environmental and Social Consideration-2 and Gas Supply Plan                                    | Mr. Kentaro Yamamoto    |
| 11 | Study Tour Supervision                                                                          | Mr. Genshiro Kano       |

#### Table 1.6.1 Members of JICA Survey Team(JST)

Source: Prepared by JST

The flow of the survey is as shown in the figure on the next page.



Data Collection Survey on Computerization Gas and Power Network Infrastructure

12

of

Nippon Koei Co., Ltd and Chiyoda U-tech Co., Ltd..

Introduction Chapter 1

Final Report

## CHAPTER 2 GAS SECTOR

This Chapter describes about gas sector in Bangladesh. It includes organization structure of gas sector, gas production, LNG introduction, status of gas infrastructure, and result of data and document collection. Then, the chapter clarifies issues and challenges of gas sector in Bangladesh and gives recommendations.

#### 2.1 Organization Structure of Gas Sector

#### 2.1.1 Ministry of Power, Energy and Mineral Resources (MoPEMR)

MoPEMR is the main ministry to deal with primary energy and electrical power policy and administration in Bangladesh. As of May 2016, the Prime Minister holds the position of the minister of MoPEMR and State Minister is responsible for conducting the businesses of the Ministry/division in the parliament unless otherwise directed by the Prime Minister.

Under MoPEMR, EMRD and Power Division exist. Energy Division is responsible for all activities related to Energy and Mineral Resources. The structure of MoPEMR is as shown in the figure below.



Source: Prepared by JST with inform website of MoPEMR (https://www.mpemr.gov.bd/ as of 25 Dec. 2017) Figure 2.1.1 Organization Structure of MoPEMR

#### 2.1.2 Petrobangla

Petrobangla is the National Oil Company of Bangladesh founded under Energy Division in 1985. Currently there are 13 companies operating under Petrobangla dealing in oil and gas exploration, production, transmission, distribution, and marketing of coal and granite. The following is the company structure under Petrobangla.



Source: Petrobangla

Figure 2.1.2 Company Structure of Petrobangla

Under the organization, there are four major groups: Gas and Oil Exploration and Production Companies (BAPEX, BGFCL, SGFL), a Transmission Company (GTCL), a Gas Transmission and Distribution companies (TGTDCL and JGTDCL), Gas distribution Companies (BGDCL, PGCL, KGDCL, SGCL), CNG & LPG Marketing Company (RPGCL), and Coal and Granite Mining Companies (BCMCL, MGMCL). RPGCL is given responsibility to manage and operate LNG import facilities including LNG receiving Terminals.

#### 2.1.3 Gas Companies

Gas Sector consists of three segments, i.e., Gas Exploration and Production Companies, Gas Transmission Company, and Gas Distribution Companies, as follows:

(1) Gas Exploration and Production Companies

The following are the national companies of gas exploration.

- BAPEX (Bangladesh Petroleum Exploration and Production Company Limited)
- SGFL (Sylhet Gas Field Limited)
- BGFCL (Bangladesh Gas Field Company Limited)

In addition to above three national companies, there are two international oil companies producing gas and condensate under Product Sharing Contract with Petrobangla, i.e., Chevron and Tullow.

Gas Production by above companies in FY 2014 -15 is shown in the figure below.



Gas production by international oil companies (Chevron and Tullow) accounts for 60% of total gas production.

Condensate, the liquid component, is also produced as an associated product. The figure below shows the amount of production of condensate by gas companies.



Source: Petrobangla Annual Report 2015 Figure 2.1.4 Condensate Production in FY2014-15

Condensate is sold to petroleum companies in Bangladesh from the gas field companies. The total condensate production was 12,490 bbl/d in 2014-15.

(2) Gas Transmission Company

GTCL(Gas Transmission Company Limited) is the company under Petrobangla which has the responsibility to transport gas from gas field to six (6) franchise distribution companies in Bangladesh as listed in (3) below.

(3) Gas Distribution Companies

There are 6 franchise gas distribution companies to cover the country, as follows and as the following figure.

1) TGTDCL (Titas Gas Transmission and Distribution Company limited)

TGTDCL has a distribution franchise area including Dhaka. Sales volume accounts for 62% of the market share, which is the largest among others.

2) BGDCL (Bakhrabad Gas Distribution Company Limited)

BGDCL has a market franchise area in the south-east part of the country in Comilla area. Sales volume is the second largest and accounts for 14% of the market share.

3) JGTDSL (Jalalabad Gas Transmission and Distribution System Limited)

JGTDSL has a market franchise area around Sylhet. The sales volume accounts for 9% in the market.

4) KGDCL (Karnaphuli gas Distribution Company Limited)

KGDCL is splinted out from BGDCL and covers Chittagon Area. The sales volume accounts for 11% of the market.

5) PGCL (Pashchimanchal Gas Company Limited)

PGCL is relatively new company with its franchise area in the north-west part of the country.

6) SGCL(Sundarban Gas Company Limited)

SGCL is new company with its franchise area in the south-west part of the country.

The locations of franchise areas of the above companies are shown in the figure below.



Source: Prepare by JST using GTCL Map Figure 2.1.5 Gas Distribution Franchise Area

Gas Sales share by each franchise company is as shown in the figure below.



Source: Petrobangla Annual Report 2015



#### History of Gas Field Development and Associated Infrastructure (Pipeline and 2.1.4 **Distribution System**)

After formation of Petroleum Act in 1948, The Standard Vacuum Oil Company (hereinafter referred to as STANVAC) of USA, Pakistan Petroleum Ltd. (hereinafter referred to as PPL), and Pakistan Shell Oil Company (hereinafter referred to as PSOC) started the exploration in Bangladesh. PPL was founded by Burmah Oil Company (BOC) of the United Kingdom, known as British Petroleum or BP in the present day, for exploration, prospecting, development and production of oil and natural gas resources in Indian continents.

STANVAC drilled north western part of the county, i.e., Hazipur, Bogra, and Kuchman; however no success and withdraw from the exploration race.

PPL discovered three gas fields in Haripur, Patharia, and Chhattak, and PSOC discovered 5 gas fields in Titas, Habiganj, Rashidpur, Kailashtila and Bakhrabad.

After independence of Bangladesh, 5 gas field of PSOC were bought under the state ownership in 1975, and entrusted to BGFCL. BGFCL is contributing 35% of gas production in the country. Three gas fields of PPL was entrusted to SGFL. SGFL currently operates gas fields of Haripur (Sylhet), Kailashtila, Rashidpur, and Beanibazar, a total of 13 wells produce in total 150 mmscfd of gas, which account for 5.5% of total gas production in Bangladesh in FY2014-2015.

TGTDCL was founded in 1964 as a Joint Venture (JV) between the Government of Pakistan and PSOC to commercialize the gas produced by PSCO. The company began its commercial operation with the commissioning of gas supply to Siddhirganj Thermal Power Plant in 1968 via. 14 inch 93 km gas transmission pipeline, i.e., Titas-Demra pipeline.

BGDCL was named as Bakhrabad Gas Systems Limited (BGSL) operating as gas production, transmission and distribution company. The franchise area includes Chittagon area. Bakhrabad Gas field was handed over to BGFCL and two main transmission lines: 24 inch 110 km Bakhrabad-Chittagon and 20 inch 69 km Bakhrabad Demra pipeline, were handed over to GTCL. Franchise area of BGSL was also divided into Comilla area as BGDCL and Chittagon area as KGDCL.

Gas Transmission Company Limited (GTCL) was incorporated in 1993 with the objective s of 1) centralized O&M of national gas grid, and 2) expanding national gas grid to cover all regions of the country.

In 2000, PGCL was founded to distribute the gas to North West area of the county. SGCL was also founded in 2009 to supply the gas to South West region.

#### 2.1.5 **Issues and Challenges in Maintenance**

Maintenance work has not been given enough importance in Bangladesh. Physical location of the pipelines or distribution piping system is recorded only in the memory of the person in charge. Once these people retire or move, no other people can trace the exact location. Although project documents

18
and drawings are available, there is no centralized overall drawing/document management system at present, and important drawing/document has been dispersed or lost during personnel reshuffling.

Maintenance program and maintenance cost for gas transmission and distribution asset is not always shown in the annual report of each Petrobangla Companies. It is considered that recognition for maintenance and Asset Management needs to be enhanced.

Construction project will take a few years to complete but maintenance work will last much longer time to secure the integrity of the assets and support reliable operations.

Depreciation is based on 5% of devaluation for 20 years in average and added back to the cash flow. The idea of Depreciation is to support the renewal of the production facility in future. To justify maintenance budget, budget allocation should be reviewed and more budget should be allocated to the maintenance side to secure the integrity of the system.

| Description                            | GTCL          | JGTDCL      | TGTDCL      |
|----------------------------------------|---------------|-------------|-------------|
| Depreciation for Transmission and      | 2,018,795,610 | 103,513,476 | 783,906,283 |
| Distribution Asset                     |               |             |             |
| Expenditure for Repair and Maintenance | 90,496,737    | 34,733,431  |             |
| Expenditure for Transmission and       |               |             | 330,839,046 |
| Distribution                           |               |             |             |

Table 2.1.1Depreciation vs. Expense for Annual Maintenance (in Bangladesh Taka)

Source: Annual report of JGTDCL and TGTDCL in 2015-16, GTCL in 2016-17

In this regard, World Bank is supporting the introduction of Enterprise Resource Planning (hereinafter referred to as ERP). GTCL has started to install ERM (Enterprise Resource Management) and EAM (Enterprise Asset Management) system for its own management information system and asset register as part of ERP, which will be the starting point to achieve the system integrity.

ERP is a concept to optimize enterprise's resource via. Information and Communication technology (ICT), not a simple software. Objective of ERP differs from industry to industry. The manufacturing industry may use the ERP to maximize the profit and minimize the cost, while utility industry may maximize the safety and minimize the cost. The difference is that lifetime of the asset is short for manufacturing industry, while that of utility industry is much longer and need to maintain as an infrastructure for long time. Each entity need to customize the system to suit by itself.

ERP is generally recognized as follows:

- 1) ERP is a Concept, not a System, to maximize <u>Profit</u> and minimize <u>Cost introduced by</u> <u>Manufacturing Industry.</u>
- 2) Concept of ERP <u>differs</u> from Industry to Industry.
- 3) Gas Industry has its <u>own Concept</u> of ERP.
- 4) ERP in Gas Industry has been developed since end 1970s, for <u>40 years</u>.
- 5) ERP is <u>continuous effort</u> to customize and update to cope with real situation over the years

Standardization and sound documentation system is the key for the success of ERP 6)

Concept of Maintenance should be developed as part of ERP and supporting budget for it should be allocated.

The following is a typical organization to support ERP through ICT. Typical organization consist of Engineering & Maintenance Department and Operation Department and Field Service Section. Field Service Section is designed to work for both O&M, and customer services for emergency transaction. Enterprise Asset Management (hereinafter referred to as EAM) is the system for the management of the physical assets of enterprise, such as design, construction, commissioning, O&M of equipment and facilities, as part of ERP. Note that integration of ERP/EAM with Network Infrastructure Management System, namely, "Smallworld" is proven by its manufacturer.



Source: Prepared by JST

**Concept of ICT Platform for EAM Figure 2.1.7** 

In this survey, JST recommend use of "Small World" as the data platform. Engineering, Operation, Maintenance, and ICT should work in harmony to achieve ERP.

#### 2.1.6 **Issues and Challenges in Operation**

Current gas infrastructure operation system in Bangladesh is based on Gas Allocation System, managed by independent gas production, transmission, and distribution companies under Petrobangla umbrella. LNG introduction requires the system integration and the advanced control system to meet the change of operation mode. To minimize the operational and financial risk associated with LNG introduction for Petrobangla, it is worth considering the introduction of Capacity Right and Quality Bank in LNG Terminal Operation. Capacity Right is the right to use gas transmission capacity

20

allocated to each LNG suppliers. Quality Bank works to settle the account among the supply projects with difference in gas supply capacity, heating values, pricing and contract terms.

## 2.2 Gas Production

## 2.2.1 Summary of Gas Production

Gas Production has continued to be increasing in Bangladesh until now. The following figure shows a record of gas production for the last 15 years in Bangladesh.

Gas production is increasing; however, it is considered that gas production is declining because of aging of existing gas fields, and no significant scale of new discovery has been made so far and long lead time is necessary for future new exploration.



Source: Petrobangla Annual Report 2015 Figure 2.2.1 Gas Production Trend in Bangladesh

Although Petrobangla regards the enhancement of exploration and exploitation of natural gas in Bangladesh is one of their mission, it is necessary to prepare the case when gas exploration is not successful as expected.

## 2.2.2 Summary of Gas Exploration

## (1) Onshore Exploration Activities

BAPEX as the only state-owned petroleum exploration company, is given responsibility of exploration. Most of the fund comes from Gas Development Fund (hereinafter referred to as GDF), financed by part of gas sales revenue. BGFCL is trying to solve the issues of gas seepage in the Titas gas field associated with gas exploration and production activities, supported by Azia Development Bank (hereinafter referred to as ADB). SGFL is also actively drilling the gas field in Sylhet, Kailashtilla, and Rashidpur fields. It is supported by GDF.

1) BAPEX

BAPEX has set plan to accelerate the development activity and to trim down the dependence on IOCs in 2015. To materialize the objective, BAPEX has undertaken the following work-plan to reach the goal of Vision 2021:

- BAPEX will conduct 3,000-line km 2D seismic survey under proposed project named "Block 8 and 11 Regional 2D Seismic Survey Program" from July 2016 to June 2019;
- Drilling of 53 exploratory wells, 35 development wells and workover/remedial of 20 wells (a total of 108 wells) from July 2015 to June 2021; and
- To strengthening BAPEX and to implement the above work plan, employment of consultants and experts of different relevant fields on contractual basis is under active consideration.

2) Summary of Onshore Exploration Investment Project

The following is a list of project and budget scale under implementation; it summarizes the activities.

|    |                                                                      |                 |       | Unit: Taka i | n Million         |
|----|----------------------------------------------------------------------|-----------------|-------|--------------|-------------------|
|    | Project Name                                                         | Project Period  | Fund  | Executing    | Estimated<br>Cost |
| 1  | Maharakaur Oil/Caa Evalaratian Wall Drilling Project                 | lon 06 Dog 15   | CoP   |              | 002 G             |
| 1  | Cas Fields Development Desiret of DADEX (Caldered) Welling 2.4 and   | Jan 00-Dec 15   | GOD   | DAFEA        | 092.0             |
| 2  | Gas Fields Development Project of BAPEX (Saldanadi well no. 3,4 and  | Jan 10-Jun 16   | GoB   | BAPEX        | 3056.4            |
|    | Fenchuganj Well no. 4, 5)                                            |                 |       |              |                   |
|    | Augmentation of Gas Production under Fast Track Program (Drilling of |                 |       | BGFCL,       |                   |
| 3  | 4 wells under BGFCL and 1 well under SGFL) (Titas Well no. 19, 20,   | Jul 10-March 16 | GoB   | SGFL         | 13005             |
|    | 21, 22 and Rashidpur Well no. 8)                                     |                 |       |              |                   |
| 4  | Gas Seepage Control and Appraisal and Development of Titas Gas       | lan 10- lun 17  | ADB   | BGECI        |                   |
|    | Field (Titas Well no. 23, 24, 25 and 26)                             |                 | , lob | DUI OL       |                   |
| 6  | Procurement of Standby Gas Process Plant for Shahbazpur Field        | June'17         | GDF   | BAPEX        | 953.4             |
| 7  | Workover of Wells at Titas Gas Field Seepage Area                    | Jul 13-Dec 16   | GDF   | BGFCL        | 2350              |
| 0  | Drilling of 1 Appraisal Oil Well/ Development Gas Well (Kailashtilla | Con 12 Doo 16   | CDE   |              | 2101.0            |
| 0  | no. 7) at Kailashtilla Structure                                     | Sep 12-Dec 16   | GDF   | SGFL         | 2101.9            |
| 9  | 3D Seismic Project of BAPEX                                          | Dec 12 -Nov 17  | GDF   | BAPEX        | 1825              |
| 10 | 2D Seismic Project of BAPEX                                          | Dec 12- Jun 17  | GDF   | BAPEX        | 711.3             |
| 11 | Drilling of Well no. Kailashtilla-9 (Appraisal/ Development Well)    | Nov 13- Dec 17  | GDF   | SGFL         | 1400.7            |
| 12 | Drilling of Well no. Sylhet-9 (Appraisal/ Development Well)          | Dec 13-Jun 18   | GDF   | SGFL         | 1602.7            |
| 13 | Drilling of Well no. Rashidpur-9 (Appraisal/ Development Well)       | Feb 15- Jun 17  | GDF   | SGFL         | 1980.7            |
| 14 | Drilling of Well nos. Rashidpur-10 and 12 (Exploratory Wells)        | Jul 14- Dec 17  | GDF   | SGFL         | 4098.1            |
| 15 | Installation of Gas Compressors at Bakhrabad Field                   | Jqn 14- Jun 17  | GDF   | BGFCL        | 1197.5            |
| 16 | Procurement of Gas Process Plant for Srikail Gas Field               | Jul 14- Dec 16  | GDF   | BAPEX        | 754.5             |
| 17 | Shahjadpur-Sundalpur (Sundalpur-2) Appraisal/ Development Well       | Oat 14 June 16  | ODE   |              | 754 5             |
| 17 | Drilling Project                                                     | OCI 14- Jun 16  | GDF   | DAPEA        | 754.5             |
| 10 | Rehabilitation of Engine, Mud Tanks & Electrical Power System of     |                 |       |              | 000               |
| 18 | IDECO-Rig Project                                                    | 100V 14- Jun 16 | GDF   | BAPEX        | 389               |
|    |                                                                      |                 | 1     |              |                   |

 Table 2.2.1
 List of Exploration Project under Implementation

Note:

GoB: Government of Bangladesh

GDF: Gas Development Fund ADB: Asia Development Bank

Source: Petrobangla Annual Report 2016

(2) International Oil Company (IOC) and Product Sharing Contract (PSC)

According to Annual Report of Betrobangla 2016, 4 gas fields are currently being operated by IOCs under PSC. Of them, 3 fields (namely Bibiyana, Jalalabad and Moulvibazar Gas Fields) are being operated by Chevron and Bangora Gas Field by Tullow/KrisEnergy.

**Bibiyana:** Bibiyana field is now the largest supplier of gas to the national grid, delivering around 1,200 mmscfd gas and 9,500 bbl/day condensate from 26 wells. The design capacity of the process plant is 1,350 mmscfd.

**Jalalabad:** Jalalabad Gas Field has 7 wells including 3 additional new wells drilled at 2015. Currently, total production from this field is around 270 mmscfd gas and 2,000 bbl/day condensate.

**Moulvibazar:** Moulvibazar is producing 40 mmscfd (down from 110 mmscfd) from 6 wells while the installed process plant capacity is 125 mmscfd. As production is now declining, the operator is investigating ways to enhance or at least sustain present rate of production.

**Bangora:** Bangora field started its production in 2006, peaking at 120 mmscfd in 2010 and thereafter declining to 100 mmscfd from 4 wells. 2 development wells have been planned to drill to sustain the current rate of production. In December 2016, one well has been drilled successfully.

(3) Preparation for future Offshore Bidding Round:

High investments and technologies are required for deep sea exploration and production.

To attract the IOCs who are capable of developing the offshore field, model PSC need to recognize, address and accommodate this issue in their model PSC offerings. Current offshore exploration status is as follows:

1) Block SS-04 and 09 by ONGC Videsh Ltd. (OVL)

In the 1st phase ONGC Videsh Ltd.(OVL) has completed 3,008 lkm<sup>2</sup> of 2D marine seismic survey data acquisition. In the 2nd phase OVL will carry out 2542 lkm 2D OBC survey. As of December 2016 OVL completed about 500 lkm survey. By January 2019 OVL will drill 1 exploratory well in block SS-04 and 2 exploratory wells in block SS-09.

2) Block SS-11 by Santos

Santos conducted 3,050 line kilometers of 2D seismic survey in 2015 Interpretation and integration of the data sets have been completed and submitted the report to Petrobangla in the first quarter of 2016. They are going to conduct 300 sq. kilo meters of 3D seismic survey in the 3rd quarter 2017. By February 2019 Santos will drill 1 exploratory well in block SS-11.

3) 2D Seismic Survey by Petrobangla

Petrobangla has planned to undertake 2D Non-Exclusive Multi-Client Seismic Survey in the offshore area of Bangladesh. The objective of the survey is to provide oil and gas industry

 $<sup>^2</sup>$  Line kilometer

with 2D Non-Exclusive Multi-Client Seismic data of the offshore areas in order to help with basin evaluation, prospect generation and robust bid round participation. Bids have been invited, received and evaluated. Government approval is now awaiting for signing the contract with successful bidder.

4) Block DS-12 by POSCO DAEWOO Corporation

Under the Special Act for speedy gas supply, PSC for deep sea block DS-12 is going to be signed with POSCO DAEWOO Corporation. Initially they will carry out 1800 lkm 2D seismic survey. Depending upon the outcome of the survey Daewoo will conduct 1000 Sq.km. 3D seismic survey and drill one exploratory well.

5) BAPEX Farm-in to Block 16

BAPEX has taken over 49% of rights of Santos Bangladesh Ltd's block 16 Magnama stake under PSC. BAPEX and Santos have started to drill Magnama-2 exploratory well.



Source: Petrobangra Annual Report 2016 Figure 2.2.2 Gas Block Map in 2016

As stated above, there are large expectation of new gas field development including offshore field. Financial resources should be injected for the enhancement of capacity of BAPEX for gas exploration including 2D/3D seismic survey.

Meanwhile, new gas field exploration takes long time. It should prepare for the cases if the new gas exploration does not be developed as expected.

### 2.3 LNG Introduction Project Summary

In accordance with PSMP 2016, LNG requirement by 2041 will be increased to 4000 mmscfd, assuming that 1000 mmscfd of gas is produced from new onshore/offshore gas fields in future.

However, there are risks in future discoveries in onshore and offshore gas fields, what if it is not happening as expected, and what if depleting profile of existing gas field is faster than expected. To avoid such risk exposure, LNG import plan should be prepared and facility should be constructed soonest and to be ready for any conceivable risks in supply.



Figure 2.3.1 Gas Supply Scenario by PSMP 2016

According to Draft Final Report of Gas Sector Master Plan (GSMP) as of July 2017, Forecast gas requirement is much higher than that of PSMP 2016. Even in the moderate case, 12,000 mmscfd of gas will need to be imported in 2041, while PSMP forecast 4,000 to 5,000 mmscfd, if no new discovery is made by 2041.

The following table shows LNG import projects statuses known at this stage.

(as of Nov 2017)

|   |               |                                                        |            |                          |                                 |                 | ```                                |
|---|---------------|--------------------------------------------------------|------------|--------------------------|---------------------------------|-----------------|------------------------------------|
|   | Туре          | Terminal<br>Operator                                   | Location   | Flow<br>Rate<br>(mmscfd) | Commissionin<br>g Schedule      | Project<br>Type | Status                             |
| 1 | FSRU          | Excelerate<br>Energy                                   | Moheskhali | 500                      | Apr-18                          | BOOT            | Contract Signed                    |
| 2 | FSRU          | Summit Corp.                                           | Moheskhali | 500                      | Oct-18                          | BOOT            | Contract Signed                    |
| 3 | Land Terminal | China Huanqiu<br>Contracting &<br>Engineering<br>(HQC) | Moheskhali | 1,000                    | Dec-21                          |                 | MoU Signed                         |
| 4 | FSU           | Hongkong<br>Shanghai<br>Manjala Power<br>Ltd. (HSMPL)  | Moheskhali | 500                      | 26 months<br>after<br>Agreement |                 | Term Sheet<br>Signed               |
| 5 | Land Terminal | Petronet                                               | Kutubdia   | 1,000                    | Under confirmation              |                 | Head of<br>Understanding<br>Signed |
| 6 | FSU           | Relience                                               | Kutubdia   | 500                      | Dec-19                          |                 | MoU signed                         |
| 7 | Land Terminal | Sembcorp                                               | Moheskhali | 1,000                    | Dec-22                          |                 | MoU signed                         |

Table 2.3.1LNG Import Projects

Source: RPGCL

So far, seven projects are listed and under development stage. Some developer proposes to use Floating Storage Re-Gasification Unit (FSRU), some propose land terminal, and some proposes Floating Storage Unit (FSU). Proposed site is also different project by project.

RPGCL, one of the state-owned companies under Petrobangla, has been given responsibility to manage gas import and LNG Terminal Operation. RPGCL will need to set up the system to manage mixture of several different aspect of gases as follows:

- (1) Different pricing
- (2) Different Quantity/Profile/Contract Term
- (3) Different Heating Value

### 2.4 Status of Gas Production/Transmission and Distribution Infrastructure

### 2.4.1 Data Collection Summary

Data are collected from Petrobangla and its 10 subsidiary companies. These include the following:

- Gas Transmission/ Distribution: Target Organization is GTCL, TGTDCL, BGDCL, JGTDCL, PGCL, SGCL, and KGTDCL
- Gas Field and Processing Facilities: Target Organization is Petrobangla, SGFL, BGTCL, BAPEX
- LNG Terminal: RPGCL

(1) Data for Gas Transmission and Distribution

The following data was collected from gas transmission and distribution companies

- Gas transmission pipeline alignment drawings and Right-of-way<sup>3</sup> (ROW)
- Distribution pipe drawings
- PFD (Process Flow Diagram), P&ID (Piping and Instrument Diagram) for transmission and distribution systems
- PFD, P&ID for Valve Stations
- Data/design information:
  - Design standard and specifications
  - Material specifications
  - Standard drawings
- Information on cathodic protection systems

There is no centralized drawing/document management system in the organizations for long term storage, and most of the old paper drawings are degraded and some are already not visible. Data collection therefore can be done only by personal relations and finding of the person who supposed to own. Physical location of the pipeline or distribution piping systems relies on the memory of the person in charge. Once these people retire or move, no other people can trace the exact location.

(2) Data Collection for Gas Fields

Process flow diagram of gas treatment facilities and associated operation/process data are collected from BAPEX for 8 gas fields and BGFCL for 5 gas fields. The locations of those 13 gas fields are shownbelow.

<sup>&</sup>lt;sup>3</sup> Right-of-way (ROW) is the land used for pipeline or transmission line, of which ownership belongs to land owner and right to use is given to the pipeline/transmission line owner.



Source : PSMP2016, modified by JST **Figure 2.4.1 Data Collection from Gas Fields** 

### 2.4.2 General Observation on Collected Data and Issues

Collected drawings and data are a mixture of as-build stage and planning stage, and difficult to identify. Some drawings are old and available in a form of blue print. Some drawings are not readable due to deterioration.

In view of data consistency, gas flow tracing from gas fields to transmission system and to each franchise distribution companies are not possible since no updated flow diagram exist.

The following are general observations and situation of the collected data.

- Lack of information on interfaces and/or connection point to related facilities:
  - > Between gas field facilities and transmission pipeline
  - Between Transmission pipeline and related valve stations (construction drawings)
  - Process conditions of connection points (design pressure/temperature, operation pressure/temperature, design/operation flow rate)
- Lack of process flow diagram (PFD):
  - Process flow sheet is a basis for designing pipeline and related facilities, and identify limit of operational performance together with flow rate, direction of flow, variable range of operating pressure, and temperature. However, no such PFDs exists.

- So-called PFD for valve stations are more like assembly drawing, and different from the one expected to be used for process flow tracing/control
- Preparation of appropriate PFDs are essential to assess the impact of process change including gas flow direction, flow rate, and pressure.
- PFDs from BGFCL are satisfactory and collected data includes operating temperature, pressure, flow rate, design pressure and temperature.

From the collected drawings, tie-in or battery limit among the gas field/transmission/distribution companies were not clear. Many drawings were lost and dispersed, and drawings indicating demarcation of responsible facilities of each company have not been prepared during the gas company separation and reformation process. The preparation of such drawings will require time for investigation and verification, which need to be implemented in the next stage of the technical cooperation projects, and most importantly require human resources.

## 2.4.3 Gas Field Data

Data on gas field facilities and operational information are collected from 2 companies. Table 2.4.1 summarizes data from BAPEX where chemical analysis data of Gas/Condensate together with Gas Pressure/Temperature were taken on the time as shown, e.g. July 2017, November 2015, etc. BGFCL provided information shown in Table 2.4.2 where Gas/Condensate data were given without data date and chronological records of monthly production for the period from January 2012 through June 2017.

Production rates of those two companies correspond to 1/3 of total daily production of Bangladesh. Information on the largest gas field, Bybiana, that produce 56% of Bangladesh under Production Sharing Agreements (PSA) by international oil company (IOC) is not available.

| BAPEX<br>Gas Fields | PRO DUCTION<br>CAPACITY<br>(MMSCFD) | DATA DATE OF<br>CHEMICAL<br>ANALYSIS<br>FOR GAS<br>/CONDENSATE | GAS PPRESSURE,<br>TEMPERATURE,<br>ETC. | PRODUCTION<br>REPORT<br>( 8 July 2017) | PFD / P&ID | GP LOCATION<br>& TIE-IN<br>INFORMATION | NUMBER AND<br>COMPLETION<br>YEAR OF GAS<br>PROCESS PLANTS |
|---------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------|------------|----------------------------------------|-----------------------------------------------------------|
| SALDANADI GF        | 20                                  | Jul-17                                                         | v                                      | 4                                      |            | ✔ (*)                                  | 1<br>1998                                                 |
| FENCHUGANJ GF       | 60                                  | Jul-17                                                         | v                                      | 20                                     | V          | ✔ (*)                                  | 1<br>2005                                                 |
| SHAHBAZPUR GF       | 70                                  | Jul-17                                                         | v                                      | 40                                     | ~          | ✔ (*)                                  | 1<br>2015                                                 |
| SEMTANG GF          | 30                                  | Jul-17                                                         | v                                      | 1                                      | ~          | ✔ (*)                                  | 1<br>2010                                                 |
| SUNDALPUR GF        | 10                                  | Nov-15                                                         | v                                      | 0                                      |            | ✔ (*)                                  | 1<br>2011                                                 |
| SRIKAL GF           | 60                                  | Jul-17                                                         | v                                      | 36                                     | ~          | ✔ (*)                                  | 1<br>2016                                                 |
| BEGUMGANJ GF        | 20                                  | Aug-15                                                         | v                                      | 0                                      | ~          | ✔ (*)                                  | 1<br>2015                                                 |
| RUPGANJ GF          | 30                                  | Jul-17                                                         | v                                      | 2                                      | V          | ✔ (*)                                  | 1<br>2017                                                 |
| LEGENDS:            | ✓<br>""(blank)                      | Received<br>Not received                                       |                                        |                                        | (*         | ) With coordina                        | tes                                                       |

Table 2.4.1BAPEX Gas Facilities

Source: Compiled by JST from BAPEX data

| <b>Table 2.4.2</b> | BGFCL | Gas Field | Facilities |
|--------------------|-------|-----------|------------|
| <b>Table 2.4.2</b> | BGFCL | Gas Field | Facilitie  |

| BGFCL<br>Gas Fields | PRODUCTION<br>CAPACITY<br>(MMSCFD) | GAS<br>/CONDENSATE<br>DATA | GAS<br>PPRESSURE/TE<br>MPERATURE,<br>ETC. | PRODUCTION REPORT<br>(Monthly Reports) | PFD/P&ID | GP LOCATION &<br>TIE-IN<br>INFORMATION |
|---------------------|------------------------------------|----------------------------|-------------------------------------------|----------------------------------------|----------|----------------------------------------|
| TITAS GF            | 557                                | ~                          | ~                                         | Jan-12 thru Jun-17                     | *        | ✓ (*)                                  |
| HABIGANJ GF         | 222                                | ~                          | ~                                         | Jan-12 thru Jun-17                     |          | ✓ (*)                                  |
| BAKHRABAD GF        | 1                                  | ~                          | ~                                         | Jan-12 thru Jun-17                     | *        | ✓ (*)                                  |
| NARSINGDI GF        | 28                                 | ~                          | ~                                         | Jan-12 thru Jun-17                     |          | ✓ (*)                                  |
| MEGHNA GF           | 13                                 | ~                          | ~                                         | Jan-12 thru Jun-17                     |          | ✔ (*)                                  |

(\*) With coordinate

Source: Compiled by JST from BGFCL data

BAPEX owns 8 gas processing plants at 8 sites, and 32 processing plants owned by BGFCL at 6 sites. All of processing plants of BAPEX were constructed within these 20 years. BGFCL plants are aging where a half of the processing plants exceed service life of 30 years or more.

31

## 2.4.4 Gas Transmission Facilities

The following schematic diagram is only available transmission system drawing provided by GTCL, however, there are many flaws in the drawing and it needs to be corrected and updated to reflect actual situation.



Source: Prepared by JST referring to GTCL information. Figure 2.4.2 GTCL Pipeline Schematic Diagram

Above GTCL Schematic Diagram is also included in Appendix B-2.

Pipeline route alignment drawings are collected from GTCL, TGTDCL, JDTDCL, and BGFCL. 29 pipeline drawings have been collected out of 49. Majority of the drawings are collected from GTCL. Main GTCL pipelines from north to south and east to west includes coordinate data (location data with longitude and latitude, collected by GPS), and can be physically identified.

The following table summarize the data acquisition status of each transmission system.

| Compar | y Name of The Line and Route                                                                             | Data<br>Received<br>*1 | Pipe<br>Diameter<br>*2 | Alignment<br>Drawing<br>*3 | ROW<br>*4 | Alignment<br>(Coordinate) | Alignment<br>(Bending) | Valve<br>Station in<br>between | Data<br>Clearness<br>*5 |
|--------|----------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------------|-----------|---------------------------|------------------------|--------------------------------|-------------------------|
|        |                                                                                                          |                        |                        |                            |           |                           |                        |                                |                         |
| TGTDCL | 1 TITAS-DHAKA                                                                                            | No                     | 14                     |                            |           |                           |                        |                                |                         |
|        | 2 TITAS-NARSHINGDI                                                                                       | No                     | 16                     |                            |           |                           |                        |                                |                         |
|        | 3 NARSHINGDI-JOYDEVPUR                                                                                   | Yes                    | 14                     | Mouza                      | No        | Yes                       | Yes                    | 0                              | BA                      |
|        | 4 NARSHINGDI-GHORASAL (Third Parallel)                                                                   | Yes                    | 14                     | Mouza                      | Yes       | No                        | No                     | 1                              | BA                      |
|        | 5 HABIGANJ-ASHUGANJ                                                                                      | Yes                    | 12                     | Yes                        | Yes       | Yes                       | No                     | 0                              |                         |
|        | 6.1 MONOHARDI-NARSHINGDI                                                                                 | Yes                    | 20                     | Route Map                  | Yes       | Yes                       | Yes                    | 0                              | AA                      |
|        | 6.2 MONOHARDI-NARSHINGDI                                                                                 | Yes                    | 20                     | Yes                        | No        | Yes                       | Yes                    | 1                              | AA                      |
|        | 7 MONOHARDI-KISHORGDI                                                                                    | No                     | 4                      |                            |           |                           |                        |                                |                         |
|        | 8 ASHUGANJ V.S. #3-ZFCL                                                                                  | No                     | 10                     |                            |           |                           |                        |                                |                         |
|        | 9 ELENGA-TARAKANDI                                                                                       | No                     | 12                     |                            |           |                           |                        |                                |                         |
|        | 10 DHONUA-MYMENSINGH                                                                                     | No                     | 12                     |                            |           |                           |                        |                                |                         |
|        | 11 TARAKANDI-JAMALPUR                                                                                    | No                     | 8/6                    |                            |           |                           |                        |                                |                         |
|        | 12 MYMENSHINGH-NETROKONA                                                                                 | Yes                    | 8/6                    | Yes                        | Yes       | Yes                       | Yes                    | 1                              | AA                      |
| GTCL   | 13 NORTH SOUTH                                                                                           | Yes                    | 24                     | As Built                   | No        | Yes                       | Yes                    | 6                              | AB                      |
|        | 14 ASHUGANJ-BAKHRABAD 1                                                                                  | Yes                    | 30                     | As Built                   | Yes       | Yes                       | No                     | 0                              | AA                      |
|        | 15 BANGABANDU BRIDGE(DN)                                                                                 | Yes                    | 30                     | As Built                   | Yes       | Yes                       | No                     | 0                              | AA                      |
|        | 16 ELENGA-NALKA(DN)                                                                                      | Yes                    | 24                     | As Built                   | Yes       | Yes                       | No                     | 0                              | BA                      |
|        | 17 NALKA-BAGHABARI(DN)                                                                                   | Yes                    | 20                     | As Built                   | Yes       | Yes                       | No                     | 0                              | AA                      |
|        | 18 BEANIBAZAR-KAILASHTILA                                                                                | No                     | 20                     |                            |           |                           |                        |                                |                         |
|        | 19 ASHUGANJ-HABIGANJ                                                                                     | Yes                    | 30                     | Mouza                      | No        | Yes                       | Yes                    | 3                              | AB                      |
|        | 20 RASIDPUR-HABIGANJ                                                                                     | Yes                    | 30                     | As Built                   | No        | No                        | Yes                    | 2                              | AA                      |
|        | 21 NALKA-HATIKUMRUL                                                                                      | Yes                    | 30                     | As Built                   | As Built  | Yes                       |                        | 0                              |                         |
|        | 22 HATIKUMRUL-BOGRA                                                                                      | Yes                    | 20                     | As Built                   | Yes       | Yes                       | Yes                    | 0                              | BB                      |
|        | 23 MONOHARDI-DHANUA ELENGA PIPELINE (1ST PHASE)                                                          | Yes                    | 30                     | As Built                   | Yes       | Yes                       | -                      | 0                              | AA                      |
|        | 24 BAKHRABAD-DEMRA                                                                                       | Yes                    | 20                     | As Built                   | No        | Yes                       | No                     | 1                              |                         |
|        | 25 BAKHRABAD-CHITTAGONG                                                                                  | Yes                    | 24                     | Yes                        | No        | Yes                       |                        |                                |                         |
|        | 26 ASHUGANJ-ELENGA(B-B)                                                                                  | Yes                    | 24                     |                            |           |                           |                        |                                |                         |
|        | 27 ASHUGANJ-MONOHARDI                                                                                    | Yes                    | 30                     | Mouza Map                  | No        | Yes                       | Yes                    | 0                              | AA                      |
|        | 28 DHAKA CLEAN FUEL (GTCL PART)                                                                          | Yes                    | 20                     | As Built                   | No        | No                        | Yes                    | 0                              | AB                      |
|        | 29 BONPARA RAJSHAHI                                                                                      | No                     | 12                     |                            |           |                           |                        |                                |                         |
|        | 30 HATIKUMRUL-BHERAMARA                                                                                  | Yes                    | 30                     | As Built                   | Yes       | Yes                       | Yes                    | 0                              | AB                      |
|        | 31 24" DIA 8 KM FROM TITAS GAS FIELD-AB PIPELINE                                                         | Yes                    | 24                     | As Built                   | No        | No                        | No                     | 0                              | AA                      |
|        | 32 SRIKAIL GAS FIELD (LOCATION 2)-AB PIPELINE PROJECT                                                    | No                     | 20                     |                            |           |                           |                        |                                |                         |
|        | 33 BIBIYANA-DHANUA                                                                                       | No                     | 36                     |                            |           |                           |                        |                                |                         |
|        | 34 BAKHRABAD-SIDDHIRGANJ(BS)                                                                             | Yes                    | 30                     | As Built                   | No        | Yes                       | Yes                    | 2                              | AA                      |
|        | 35 SRIKAIL GAS FIELD (LOCATION 2)-AB PIPELINE PROJECT<br>INTAKE POINT OF TITAS AB PIPELINE AT CHAYABARIA | No                     | 10                     |                            |           |                           |                        |                                |                         |
| KGDCL  | 36 ASHUGANJ-BAKHRABAD 2                                                                                  | No                     | 30                     |                            |           |                           |                        |                                |                         |
|        | 37 CHITTAGONG RING MAIN                                                                                  | No                     | 24/20/16               |                            |           |                           |                        |                                |                         |
|        | 38 KPM SPAUR                                                                                             | No                     | 8                      |                            |           |                           |                        |                                |                         |
|        | 39 CHITTAGONG-RAUZAN                                                                                     | No                     | 20                     |                            |           |                           |                        |                                |                         |
| JGTDSL | 40 SEMUTANG-CHITTAGONG                                                                                   | No                     | 10                     |                            |           |                           |                        |                                |                         |
|        | 41 HARIPUR-NGFF                                                                                          | No                     | -                      |                            |           |                           |                        |                                |                         |
|        | 42 KAILASHTILA-KUCHAI                                                                                    | No                     | 8                      |                            |           |                           |                        |                                |                         |
|        | 43 KUCHAI-CHATAK                                                                                         | No                     | 6                      |                            |           |                           |                        |                                |                         |
|        | 44 DEVPUR-KUMARGAON                                                                                      | No                     | 6                      |                            |           |                           |                        |                                |                         |
|        | 45 HABIGANJ-SHAHJI BAZAR                                                                                 | No                     | 8                      |                            |           |                           |                        |                                |                         |
|        | 46 SHAHAJI BAZAR-SHAMSHER NAGAR                                                                          | No                     | 6                      |                            |           |                           |                        |                                |                         |
|        | 47 SRIMONGAL-MOULOVI BAZAR                                                                               | No                     | 6                      |                            |           |                           |                        |                                |                         |
|        | 48 CHATAK-TENGRATILA                                                                                     | No                     | 4                      |                            |           |                           |                        | 1                              |                         |
|        | 49 TENGRATILA-SUNAMGANJ                                                                                  | No                     | 4                      |                            |           |                           |                        |                                |                         |
|        |                                                                                                          |                        |                        |                            |           |                           |                        |                                |                         |

#### Table 2.4.3 Transmission Line List-GPS Information (Coordinate data) and ROW

Yes: Existence

Document Acuracy

Document data sufficiency;

\*1. Although data might exist in related companies, Yes ; JST could collect, No; JST could not collect And there are some missing data (Row' Bending data and Coordinate data) in received drawings...

\*2. Unit : inch

\*3. Mouza Map and Route Map had been prepared for Land acquisition. Some project used Mouza Map and project used Route Map.

\*4. ; Row ; Right of Way.

Yes ; Row is mentioned in drawing.

No ; Row is not mentioned.

\*5. : Data Clearness.

: A; Initial Pont & End Point are clear, B; Insufficient Initial Point and End point and/or Data lack in between XY X : Data Accuracy Y : Document data Sufficiency. : A; Coordinate data, Angle data, ROM which are attached, B; Illegible due to Data fade, and lack of information

Source: Prepared by JST

| Compan | y   | Name of The Line and Route                                                                               | Data<br>Received | Diameter | Length  | MAOP<br>*1 | Operating<br>Pressure | Max. Flow<br>Capacity | Date of<br>Original<br>Drawing<br>*2 |                         |                | Design Da    | ata (Notel)<br>*2 |                                 |                            |
|--------|-----|----------------------------------------------------------------------------------------------------------|------------------|----------|---------|------------|-----------------------|-----------------------|--------------------------------------|-------------------------|----------------|--------------|-------------------|---------------------------------|----------------------------|
|        |     |                                                                                                          |                  |          |         |            |                       |                       |                                      | Design<br>Data<br>Exist | Material       | Design Class | Wall<br>Thickness | Drawin                          | g Status                   |
|        |     |                                                                                                          |                  | (Inch)   | (Km)    | (Psig)     | (Psig)                | (MMSCFD)              | Year                                 |                         |                | API          | mm                | Electronic<br>or Paper<br>(E/P) | Angle<br>Point<br>(Yes/No) |
| TGTDCL | 1   | TITAS-DHAKA                                                                                              | No               | 14       | 81.8    |            | 1000                  | 175                   |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 2   | TITAS-NARSHINGDI                                                                                         | No               | 16       | 46.31   |            | 1000                  | 265                   | T-1 00                               |                         |                |              |                   |                                 |                            |
| TGTDCL | 4   | NARSHINGDI-GHORASAL                                                                                      | Yes              | 14       | 10.3    |            | 1000                  | 220                   | Apr-83                               |                         |                |              |                   |                                 |                            |
| TGTDCL | 5   | HABIGANJ-ASHUGANJ                                                                                        | Yes              | 12       | 57.75   |            | 1000                  | 85                    |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 6-1 | MONOHARDI-NARSHINGDI                                                                                     | Yes              | 20       | 24.5    |            | 1000                  | 300                   | Jul-95                               |                         |                |              |                   |                                 |                            |
|        | 6-2 | MONOHARDI-NARSHINGDI                                                                                     | Yes              | 20       |         |            |                       |                       |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 7   | MONOHARDI-KISHORGANJ                                                                                     | No               | 4        | 35      |            | 1000                  | 6                     |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 8   | ASHUGANJ V.S. # 3-ZFCL                                                                                   | No               | 10       | 4 42 41 |            | 1000                  | 95                    |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 10  | DHONUA-MYMENSINGH                                                                                        | No               | 12       | 42.41   |            | 1000                  | 55                    |                                      |                         |                |              |                   |                                 |                            |
| TGTDCL | 11  | TARAKANDI-JAMALPUR                                                                                       | No               | 8/6      | 21      |            | 1000                  | 25                    |                                      | <u> </u>                |                |              |                   |                                 |                            |
| TGTDCL | 12  | MYMENSINGH-NETROKONA                                                                                     | Yes              | 8/6      | 40      |            | 1000                  | 60                    | Mar-95                               |                         |                |              |                   |                                 |                            |
| GTCL   | 13  | NORTH SOUTH                                                                                              | Yes              | 24       | 175     |            | 1050                  | 330                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 14  | ASHUGANJ-BAKHRABAD 1                                                                                     | Yes              | 30       | 58      |            | 1000                  | 425                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 15  | BANGABANDU BRIDGE(DN)                                                                                    | Yes              | 30       | 9       |            | 1000                  | 300                   | May-16                               |                         |                |              |                   |                                 |                            |
| GTCL   | 16  | ELENGA-NALKA(DN)                                                                                         | Yes              | 24       | 28.5    |            | 1000                  | 250                   | May-16                               |                         |                |              |                   |                                 |                            |
| GTCL   | 17  | NALKA-BAGHABARI                                                                                          | Yes              | 20       | 35.5    |            | 1000                  | 250                   | May-10                               |                         |                |              |                   |                                 |                            |
| GTCL   | 10  | ASHIGANLHABIGANI                                                                                         | N0<br>Vec        | 20       | 54      |            | 1050                  | 230                   |                                      | Vec                     |                |              | 14.3              |                                 |                            |
| GTCL   | 20  | RASIDPUR-HABIGANI                                                                                        | Ves              | 30       | 28      |            | 1050                  | 500                   |                                      | 105                     |                |              | 14.5              |                                 |                            |
| GTCL   | 21  | NALKA-HATIKUMRUL                                                                                         | Yes              | 30       | 6       |            | 1000                  | 425                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 22  | HATIKUMRUL-BOGRA                                                                                         | Yes              | 20       | 54      |            | 1000                  | 225                   |                                      |                         |                |              |                   |                                 |                            |
| CTCI   | 22  | MONOHARDI-DHANUA ELENGA                                                                                  | Vec              | 20       | 51      |            | 1000                  | 750                   |                                      |                         |                |              |                   |                                 |                            |
| GICL   | 25  | PIPELINE (1ST PHASE)                                                                                     | 105              | 50       | 1 51    |            | 1000                  | /50                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 24  | BAKHRABAD-DEMRA                                                                                          | Yes              | 20       | 68.72   |            | 1000                  | 250                   | Jul-85                               | Yes                     |                |              | 0.375″            |                                 |                            |
| GTCL   | 25  | BAKHKABAD-CHITTAGONG                                                                                     | Yes              | 24       | 174.05  |            | 1000                  | 300                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 20  | ASHUGANI-ELENGA                                                                                          | Ves              | 30       | 37      |            | 1000                  | 425                   |                                      |                         |                |              |                   |                                 |                            |
| GICL   | 21  | DHAKA CLEAN FUEL (GTCL PART)                                                                             | 105              | 50       | 57      |            | 1000                  | 425                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 28  | Dhonua-Aminbazar                                                                                         | Yes              | 20       | 60      |            | 1000                  | 425                   | Jul-97                               |                         |                |              |                   |                                 |                            |
| GTCL   | 29  | BONPARA-RAJSHAHI                                                                                         | No               | 12       | 53      |            | 1000                  | 450                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 30  | HATIKUMRUL-BHERAMARA                                                                                     | Yes              | 30       | 78      |            | 1000                  | 400                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 31  | 24" DIA 8 KM FROM TITAS GAS FIELD-AB<br>PIPELINE PROJECT                                                 | Yes              | 24       | 8       |            | 1050                  | 330                   |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 32  | SRIKAIL GAS FIELD (LOCATION 2)-AB                                                                        | No               | 20       | 1.5     |            | 1000                  | 250                   |                                      |                         |                |              |                   |                                 |                            |
| omor   |     | PIPELINE PROJECT                                                                                         |                  |          | 107     |            |                       |                       |                                      |                         |                |              |                   |                                 |                            |
| GTCL   | 33  | BIBIYANA-DHANUA                                                                                          | No               | 36       | 137     |            | 1000                  | 640                   |                                      |                         | ADIST          |              |                   |                                 |                            |
| GTCL   | 34  | BAKHRABAD-SIDDHIRGANJ(BS)                                                                                | Yes              | 30       | 60      |            | 1000                  | 450                   | Sep-16                               | Yes                     | CRx' PSL-<br>2 | Class 3      | 14.3              |                                 |                            |
| GTCL   | 35  | SRIKAIL GAS FIELD (LOCATION 2)-AB<br>PIPELINE PROJECT INTAKE POINT OF<br>TITAS AB PIPELINE AT CHAYABARIA | No               | 10       | 7.7     |            | 1000                  | 250                   |                                      |                         |                |              |                   |                                 |                            |
| KGDCL  | 36  | ASHUGANJ-BAKHRABAD 2                                                                                     | No               | 30       | 61      |            | 1000                  | 450                   |                                      |                         |                |              |                   |                                 |                            |
| KGDCL  | 37  | CHITTAGONG RING MAIN                                                                                     | No               | 24/20/16 | 59.48   |            | 350                   | 451                   |                                      |                         |                |              |                   |                                 |                            |
| KGDCL  | 38  | KPM SPAUR                                                                                                | No               | 8        | 36.15   |            | 350                   | 18                    |                                      |                         |                |              |                   |                                 |                            |
| KGDCL  | 39  | CHITTAGONG-RAUZAN                                                                                        | No               | 20       | 18      |            | 350                   | 150                   |                                      |                         |                |              |                   |                                 |                            |
| KGDCL  | 40  | SEMUTANG-CHITTAGONG                                                                                      | No               | 10       | 56      |            | 960                   | 70                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 41  | HARIPUR-NGFF                                                                                             | No               | -        | 43      |            | 1000                  | 62                    |                                      |                         |                |              |                   |                                 |                            |
| IGTDSL | 42  | KUCHALCHATAK                                                                                             | No               | 8<br>6   | 13      |            | 1000                  | 02                    |                                      | <u> </u>                |                |              |                   |                                 |                            |
| JGTDSL | 44  | DEVPUR-KUMARGAON                                                                                         | No               | 6        | 11      |            | 1000                  | 36                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 45  | HABIGANJ-SHAHJI BAZAR                                                                                    | No               | 8        | 2       |            | 1000                  | 53                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 46  | SHAHAJI BAZAR-SHAMSHER NAGAR                                                                             | No               | 6        | 65      |            | 1000                  | 11                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 47  | SRIMONGAL-MOULOVI BAZAR                                                                                  | No               | 6        | 26      |            | 1000                  | 11                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 48  | CHATAK-TENGRATILA                                                                                        | No               | 4        | 19      |            | 1000                  | 10                    |                                      |                         |                |              |                   |                                 |                            |
| JGTDSL | 49  | TENGRATILA-SUNAMGANJ                                                                                     | No               | 4        | 13      |            | 1000                  | 10                    |                                      |                         |                |              |                   |                                 |                            |

#### **Transmission Pipeline List-Design Information** Table 2.4.4

\*1. To study maximum allowable flow rate from the relation of MAOP, Operating Pressure and Design Pressure \*2 Data from Drawings

Source: Prepared by JST

The oldest as-built drawings (or design document) date back to late 1980's. Numbers of important information, including design pressure, design flow rate or materials of construction are missing and quality of data image is degraded.

It is not easy to retrieve correct information since long time after construction. There are also several cases of inconsistency between data summary sheet and as-built drawing, material specification, and design pressure or Maximum Allowable Operating Pressure (MAOP).

In view of weakness, it is difficult to assess overall integrity of the system.

In addition to the review of material specification, MAOP needs to be reviewed. Pressure system for fittings are specified by American Society of Mechanical Engineers (ASME) Code to follow. ASME code regulates the design and construction standard of pipe and pressure vessels. These include Hydrostatic Test Pressure and Rated Design Pressure. MAOP and System Design Pressure and Normal Operating Pressure are decided by project owners.

In general, MAOP for long distance pipeline is set closer to Rated Design Pressure to maximize the transmission capacity. It is noted that the higher the compression ratio is, the higher the transportation capacity will be.

#600 Class is used for transmission line in Bangladesh. MAOP of #600 Class can go up to 1,480 psig, however, 960-1,135 psig has been used in Bangladesh, and pipe wall thickness has been designed to 960-1,135 psig. This has been limited the gas transportation capacity and results in increasing numbers of compressor stations.

|                                | ASME Class |           |          |          |  |  |  |
|--------------------------------|------------|-----------|----------|----------|--|--|--|
| 21.                            | #600 V     | Vorld STD | #600 Ba  | ngladesh |  |  |  |
|                                | psig       | kg/cm2g   | psig     | kg/cm2g  |  |  |  |
| Rated HydrostaticTest Pressure | 2225       | 156       | 2225     | 156      |  |  |  |
| Rated Design Pressure          | 1480       | 104       | 1480     | 104      |  |  |  |
| MAOP (Design Pressure)         | 1440       | 101       | 960-1135 | 80       |  |  |  |
| Operating Pressure             | 1000       | 70        | 1000     | 70       |  |  |  |

| Table 2.4.5 | Pressure | Reference | Table |
|-------------|----------|-----------|-------|
|             |          |           |       |

#600 means ASME pressure rating class of the pipeline is 600 lb.

Rated Hydrostatic Test Pressure is a pressure in which pipeline fittings can be tested for ensuring mechanical strength. Rated Design Pressure is the maximum pressure for fittings that can be allowed to expose. MAOP is the Maximum Allowable Operating Pressure, and equivalent of design pressure by which wall thickness of the pipe is calculated. Operating Pressure is the normal operating pressure of a pipeline. Source: prepared by JST referring to ASME 31.8

For information management purposes, the following data items should be included in design/as-built alignment drawings:

- Project Name
- Pipeline Name
- Date of Taking-over of the Facility from Contractor
- Start Point (Name of Valve Station with ID No) with Coordinates
- End Point (Name of Valve Station with ID No) with Coordinates
- Total Distance
- Notes for ROW (Reference information for Land Acquisition/Requisition and use of ROW of existing Pipeline)

- Nominal Diameter of Pipe
- Design Code
- Pipe Material
- Wall Thickness of Pipe
- Design Pressure (with Temperature)
- Maximum Allowable Operating Pressure (MAOP) for each pressure level
- Normal Operating Pressure (for each pressure level)
- Hydrostatic Test Pressure
- Hydrostatic Test Records
- Rated Flow
- Flow Rate at Normal Operating Conditions
- No of Valve Stations en route
- No of Tie-ins and/or Off-takes en route
- No. of Cathodic Protection Station en route
- No of Cathodic Protection Test Points en route
- No of Insulating Joints en route
- Name of Contractor (with Date of Design Approval for Construction)
- Name of Owners Engineer
- Name of Surveyor for As-built Certificate (with Date of As-built Certificate)

### 2.4.5 Valve Stations

Process flow of valve stations are the key information for assessing the operational change and preparing expansion or modification plan. However, available data at present is more like assembly drawing and not suitable for these purposes. All of the valve stations need to be reviewed and re-drawn. Identification numbers also need to be given to each valve station to identify exact location of the station. The following table is the list of valve station for transmission line.

| Valve Station ID | Valve Station Name        | District      | <b>Operation Status</b> |
|------------------|---------------------------|---------------|-------------------------|
| VS1010           | KAILASTHTILA 2&3 MANIFOLD | Sylhet        | Existing                |
| VS1020           | MUCHAI CS-2 MANIFOLD      | Habiganj      | Existing                |
| VS1030           | HOBIGONJ MONIFOLD         | Habiganj      | Existing                |
| VS1040           | KHATIHATA METERING ST     | Brahamanbaria | Existing                |
| VS1050           | ASHUGONJ GMS              | Brahamanbaria | Existing                |
| VS1060           | VALVE STATION VS-3        | Brahamanbaria | Existing                |
| VS1070           | JDTDSL SYSTEM A           | Sylhet        | Existing                |
| VS1080           | JDTDSL SYSTEM B           | Brahamanbaria | Existing                |
| VS1090           | MUNSHIBAZAR DRS           | Sylhet        | Existing                |
| VS2010           | BAKHRABAD HUB             | Comilla       | Existing                |

Table 2.4.6Valve Station List of GTCL and Other Gas Companies

| Valve Station ID   | Valve Station Name         | District      | Operation Status |
|--------------------|----------------------------|---------------|------------------|
| VS2020             | KUTAMBAPUR TBS             | Comilla       | Existing         |
| V\$2030            | BIRATBS                    | Comilla       | Existing         |
| V\$2040            | FENI TBS                   | Eeni          | Existing         |
| V\$2050            | CHITTAGONICGS              | Chittagong    | Existing         |
| VS2060             |                            | Comilla       | Existing         |
| VS2000             | CHANDDUD TDS               | Chandnur      | Existing         |
| VS2070             | CHANDPUK IDS               | Chandpur      | Existing         |
| VS2000             | MAILAD IDS                 | Labahaniana   | Existing         |
| V S2090            |                            | Chittagang    | Existing         |
| VS2100             | NASIKADAD IIP/DKS          | Chittagang    | Existing         |
| VS2110             | KALURGHAI HP/DRS           |               | Existing<br>D1 1 |
| VS2120             | MOHESHKHALI SI             | Cox'S Bazar   | Flanned          |
| VS2130             | KHAGKACHARI SI             | Khagrachhari  | Existing         |
| VS2140             | VS RING CONNECTION         | Bandarban     | Existing         |
| VS2150             | BANDARBAN ST               | Bandarban     | Existing         |
| VS2160             | COXS BAZAR ST              | Cox'S Bazar   | Existing         |
| VS3010             | BB M&R STATION             | Narsingdi     | Existing         |
| VS3020             | DAULATKANDI                | Narsingdi     | Existing         |
| VS3030             | MONOHORDI                  | Narsingdi     | Existing         |
| VS3040             | DHONUA                     | Gazipur       | Existing         |
| VS3050             | ELENGA                     | Tangail       | Existing         |
| VS3060             | JMB-E                      | Tangail       | Existing         |
| VS3070             | JMB-W TBS                  | Sirajganj     | Existing         |
| VS3080             | NALKA ST                   | Sirajganj     | Existing         |
| VS3090             | HATIKUMRUL ST              | Sirajganj     | Existing         |
| VS3100             | BONPARA NATORE ST          | Natore        | Existing         |
| VS3110             | ISWARDI ST                 | Pabna         | Existing         |
| VS3120             | BHARAMARA CGS              | Kushtia       | Existing         |
| VS3130             | KUSHTIA TBS                | Kushtia       | Existing         |
| VS3140             | JHINAYDAH TBS              | Jhenaidah     | Existing         |
| VS3150             | JESSOR TBS                 | Jessore       | Existing         |
| VS3160             | KHULNA CGS                 | Khulna        | Existing         |
| VS3170             | BOGRA TBS                  | Bogra         | Existing         |
| VS3180             | RANGPUR ST                 | Rangpur       | Existing         |
| VS3190             | RAJSHAHI CGS               | Rajshahi      | Existing         |
| VS3200             | KISHOREGONJ TBS            | Kishoreganj   | Existing         |
| VS3210             | MIMENSINGH RMS             | Mymensingh    | Existing         |
| VS3220             | NETROKONA RMS              | Netrakona     | Existing         |
| VS3230             | TARAKANDI/JAMALPUR/SHERPUR | Jamalpur      | Existing         |
| VS3240             | GHATAIL ST                 | Tangail       | Existing         |
| VS3250             | MODHUPUR ST                | Tangail       | Existing         |
| VS3260             | MUKTAGACHA ST              | Mymensingh    | Existing         |
| VS3270             | SIRAJGONJ DRS              | Siraigani     | Existing         |
| V\$3300            | GHATURA M&R                | Brahamanbaria | Existing         |
| V\$3310            | VALVE STATION VS-11        | Narsingdi     | Existing         |
| V\$3320            | NARSINGDI VS-12            | Narsingdi     | Existing         |
| V\$3330            | GHORASHAL ST               | Narsingdi     | Existing         |
| V\$3340            | IOVDEVPLIB CGS             | Gazinur       | Existing         |
| V\$3350            | TANGAIL TRS/DRS            | Tangail       | Existing         |
| V\$3350            |                            | Tangail       | Existing         |
| V\$3370            |                            | Dhaka         | Existing         |
| VS2280             |                            | Dhaka         | Existing         |
| V 55500<br>V 52200 | DILAMDALDDS                | Dhaka         | Existing         |
| V 53390<br>V 52400 |                            | Monilson      | Existing         |
| V 53400<br>V 52410 |                            | Ivianikganj   | Existing         |
| V 53410            | AMINBAZAK CGS              | Dnaka         | EXISTING         |

| Valve Station ID | Valve Station Name              | District      | <b>Operation Status</b> |
|------------------|---------------------------------|---------------|-------------------------|
| VS3420           | HAZARIBAGH DRS                  | Dhaka         | Existing                |
| VS3430           | JINJIRA DRS                     | Dhaka         | Existing                |
| VS3440           | ASHULIA CGS                     | Dhaka         | Existing                |
| VS3450           | GOURIPUR ST                     | Comilla       | Existing                |
| VS3460           | DAUNDANDI ST                    | Munshiganj    | Existing                |
| VS3470           | MEGHNAGHAT ST                   | Narayanganj   | Existing                |
| VS3480           | BGSL CGS                        | Narayanganj   | Existing                |
| VS3490           | DEMRA CGS                       | Dhaka         | Existing                |
| VS3500           | SIDDHIRGANJ CGS                 | Narayanganj   | Existing                |
| VS3510           | TEJGAON TBS                     | Dhaka         | Existing                |
| VS3520           | GULSHAN TBS                     | Dhaka         | Existing                |
| VS3530           | TONGI TBS/DRS                   | Gazipur       | Existing                |
| VS3540           | NANDIPARA TBS                   | Dhaka         | Existing                |
| VS3550           | MUNSHIGON DRS Narayar           |               | Existing                |
| VS3560           | POSTOGOLA DRS                   | Dhaka         | Existing                |
| VS3570           | KADAMTALI TBS                   | Dhaka         | Existing                |
| VS3580           | VALVE STATION VS-15             | Narayanganj   | Existing                |
| VS3590           | SONARGAON TBS                   | Narayanganj   | Existing                |
| VS3600           | DEWANBAG TBS Narayanga          |               | Existing                |
| VS3610           | B.BARIA, A'GONJ, B'BAZAR SECTOR | Brahamanbaria | Existing                |
| VS3620           | BHOLA ST                        | Bhola         | Existing                |
| VS3700           | KHULNA BAKHRABAD JP             | Narayanganj   | Existing                |
| VS5010           | PADMA EAST                      | Munshiganj    | Proposed                |
| VS5030           | MOHESHKHALI LNG TERMINAL        | Cox'S Bazar   | Planned                 |
| VS2125           | ANOWARA ST                      | Chittagong    | Proposed                |
| VST0010          | Gulshan DRS                     | Dhaka         | Existing                |
| VST0020          | Tejgoan TBS                     | Dhaka         | Existing                |
| VST0030          | City Center DRS, Gulistan       | Dhaka         | Existing                |
| VST0040          | Postogola DRS                   | Dhaka         | Existing                |
| VST0050          | Dhania, Chittagong Road         | Dhaka         | Existing                |
| VST0060          | Demra CGS                       | Dhaka         | Existing                |
| VST0070          | Nondipara DRS                   | Dhaka         | Existing                |
| VST0080          | Shiddhirganj RMS                | Narayanganj   | Existing                |
| VST0090          | NEPC RMS                        | Narayanganj   | Existing                |
| VST0100          | Horipur RMS                     | Narayanganj   | Existing                |

"Planned" means the line is included in GTCL plan and budgeting is underway. "Proposed" means proposed but budget plan is not arranged.

Source: Prepared from JST, based on Schematic Diagram of GTCL

Drawings of limited numbers of above valve stations were available. The Table below summarizes design information available from collected drawings. A check mark ( $\checkmark$ ) represents availability of data while a blank indicates that required information is not shown in the drawings. A letter "P" signifies that the information does not cover all interface points but is partial.

|                           | INLET                                  |                                                                                                                                                                              |                | OUTLET        |              |    |              | INSUL.         |               |              |               |
|---------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--------------|----|--------------|----------------|---------------|--------------|---------------|
| VALVE STATION             | FROM                                   | PIPE<br>SIZE                                                                                                                                                                 | RATING<br>(*1) | PRESS<br>-URE | FLOW<br>RATE | ТО | PIPE<br>SIZE | RATING<br>(*1) | PRESS<br>-URE | FLOW<br>RATE | JOINT<br>(*2) |
| AGMS PLANT                | ~                                      | Р                                                                                                                                                                            |                | Р             | Р            | ~  | Р            |                | Р             | Р            | Р             |
| ASHULIA CGS               | ~                                      | ~                                                                                                                                                                            |                | ~             | ~            | ~  | ~            |                | ~             | ~            |               |
| BKB GAS FIELD END         | ~                                      | ~                                                                                                                                                                            |                |               |              | ~  |              |                |               |              |               |
| DEMRA CGS                 | ~                                      | ~                                                                                                                                                                            |                |               |              | ~  | ~            |                |               |              |               |
| KHATIHATA GTCL GMS        | ~                                      | ~                                                                                                                                                                            |                |               | ~            | ~  |              |                |               |              |               |
| KTL-2 SCRAPPER STATION    | ~                                      | ~                                                                                                                                                                            |                |               |              | ~  | ~            |                |               |              |               |
| MUCHAI COMPRESSOR STATION | ~                                      | ~                                                                                                                                                                            |                |               |              | ~  |              |                |               |              |               |
| MUCHAI SCRAPER STATION    | ~                                      | ~                                                                                                                                                                            |                | ~             |              | ~  |              |                |               |              |               |
| VS-3                      | ~                                      | ~                                                                                                                                                                            |                |               | ~            | ~  | Р            |                |               | ~            |               |
| SHAHJALAL FERTILIZER CMS  | ~                                      | ~                                                                                                                                                                            | ~              | ~             | ~            | ~  | ~            | ~              | ~             | ~            | ~             |
| BAGHABARI DRS             | ~                                      | ~                                                                                                                                                                            | ~              |               |              |    | ~            | ~              |               |              | ~             |
| BOGRA                     |                                        | ~                                                                                                                                                                            | ~              | ~             |              |    | ~            | ~              | ~             |              | ~             |
| HATIKUMRUL                |                                        | ~                                                                                                                                                                            | ~              |               |              |    | ~            |                |               |              | ~             |
| ISHWARDI DRS              |                                        | ~                                                                                                                                                                            | ~              | ~             |              | ~  | ~            |                | ~             |              | ~             |
| RAJSHAHI                  |                                        | ~                                                                                                                                                                            |                | ~             |              | ~  | ~            |                | ~             |              | ~             |
| SADANANDAPUR TBS (*3)     |                                        |                                                                                                                                                                              |                |               |              |    |              |                |               |              |               |
| ULLAPARA DRS              |                                        | ~                                                                                                                                                                            |                |               |              |    |              |                |               |              | ~             |
|                           | P     blank     (*1)     (*2)     (*3) | Data availble     P     Data partially available     Data not shown     *1)     Pressure rating of connecting flange with outsiside facilities     *2)     Insulating joints |                |               |              |    |              |                |               |              |               |

| Table 2.4.7         Available Information on Collected Drawing |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

Source: Prepared by JST

The valve station diagram currently used is more like assembly drawing rather than PFD. Process flow and interface with other system needs to be indicated and basic instrumentation and control system or SCADA system is also necessary to be shown.

PDF is available in some gas distribution companies. However, in many drawings, images are fading and degraded. To protect important information, reproduction of drawings by engineering software is essential to preserve available information, as well as updating the design data to reflect changes or modifications of facilities.

The following is a list of information to be included in PFD drawings.

- Project Name (If applicable)
- Station Name (with ID No and Coordinates)
- Date of commissioning
- Gas Inlet Pipes; Name of Connected Pipeline, (Size, Pressure Rating) and Process Design Conditions (Design/Operating Pressure, Temperature and Flow Rates)
- Gas Outlet Pipes; Name of Connected Pipeline or Destination of Connected Local Distribution Network together with Process Design Conditions (Design/Operating Pressure, Temperature and Flow Rates)

- Class Break Points of Pressure Rating within the Station
- Design Pressure for Each Class Break
- Test Pressure for Each Class Break
- Protection Device and Specifications for Overpressure
- Location of Insulating Joints with Size and Pressure Rating
- Flow Meter (Make, Type, Size and Operating Range)
- Maximum Allowable Operating Pressure (for each pressure level)
- Emergency Shutdown Valves with Operation Schematics
- Information Interface with SCADA system (if applicable)
- Date of Updating "As-built" Information
- Odorizer (Expected Monthly Consumption of Odorant, and Minimum Stock Level)

## 2.4.6 Material Specifications and Design Specifications

"Technical Specification for Gas Distribution Pipe Line and Gas Connection Materials" was published in 2004 by Petrobangla for low pressure pipe system. This appears to be used by TGTDCL and other companies primarily. The following specifications are included in the above Technical Specification:

- Technical Specification of Line Pipe for Gas Distribution Network up to 150 psig
- Technical Specifications for Miscellaneous Fittings
- Technical Specifications for Hot Formed Beds
- Technical Specifications for Domestic Regulator and Others
- Technical Specifications for meters
- Technical Specifications for Commercial and Industrial Gas Pressure and Regulator
- Technical Specifications for Ball Valves
- Technical Specifications for Relief Valves
- Technical Specifications for Cathodic Protection Materials
- Technical Specifications for Other Materials (covering Odorizer, Tetrahydrothiophene, Gas Pressure and Temperature Recorder, Single Basket Type Strainer, Y-Type Strainer, Pressure Gauge, Master Pressure Gauge, Single Channel Flow Data Logger, and Valve Tee & Flanged Tee)

Review of Technical Specification is continued effort and reviewed regularly to refract updated experiences and failure cases. One of the important discoveries in this survey is about the use of ERW (Electrical Resistance Weld) Steel Pipe in some of the pipeline system in Bangladesh. Due to a number of pipeline rupture cases reported in the world, industrial practice restricts the use of ERW pipe, if not treated by heat properly and inspected, only to non-critical services.

ERW pipes in general, if they are not treated by heat, have higher residual stress due to its production process, i.e., welding by high electric current along the limited areas of longitudinal seam in a short time.

A technical report<sup>4</sup> states that laboratory test indicate fracture risk of ERW pipe. It is pointed out that Impressued Current Cathodic Protection (CP) system tends to cause producing hydrogen along higher stress area, leading into hydrogen stress corrosion and embrittlement of the pipe.

Pipelines using ERW are as follows:

- Bibiyana Gas Field to to Aushkadi DRS (6"x 5 km at 1000 psig, Completed in 2012)
- Sreemongal TBS to Bhairabgonj Bazar DRS (6"x 2.5 km at 500 psig, Completed in 2016)
- Debpur to Kumargaon (8"x 10 km at 1000 psig, Completed in 2014)
- Patibag DRS to Jalalpur Valve Station (6" x 18 km at 500 psig, Completed in 2016)

These pipeline systems need to be monitored and investigated carefully and need to be replaced with appropriate materials to avoid potential rupture case.

As mentioned earlier, design standard differs from project by project. A set of specifications used by "Dhanua-Elenga and West Bank of Bangabandhu Bridge-Nalka Gas Transmission Pipeline Project" of GTCL provides complete set of specifications and can be a base for future common standard in Bangladesh.

## 2.4.7 Design Standard and Standard Drawings

### (1) Design Standard

Design Standard is the technical standard that all projects in the same organization have to be referred and applied in design.

However, two recent projects were constructed with slight difference in design philosophy and standard. The difference is summarized as follows:

<sup>&</sup>lt;sup>4</sup> Study on applicability of HF-ERW pipes for the high-pressure gas pipelines (JFE Technical Report Vol.2-2011)

| Project              | Bakhrabad -Siddihirg        | anj Pipeline Project | Dhanua-Elenga and West Bank of<br>Banghabandhu Bridge-Nalka Gas Transmission<br>Pipeline Project |                  |  |
|----------------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------|------------------|--|
| Pipeline             | 30''*60 km                  |                      | 30"*52 km (Along with existing 24" Pipepline)                                                    |                  |  |
| Owner's Engineer     | Dorsch International Co     | onsultants GmbH      | Penspen Ltd.                                                                                     |                  |  |
| Contractor           | Fernas Construction Co      | o., INC.             | <not shown=""></not>                                                                             |                  |  |
| Drawing Issued       | October 2016                |                      | July 2016                                                                                        |                  |  |
| Design Code          | Not shown in Drawings       |                      | ASME B31.8                                                                                       |                  |  |
| Location Class       | Class-3 (Location Facto     | or F=0.5)            | Class-2 (Location Factor F=0.6)                                                                  |                  |  |
|                      | Class-4 (Location Facto     | or F=0.4)            |                                                                                                  |                  |  |
| Depth of Cover (min) | 1.2 m (2.5 m for crossi     | ng portion)          | 1.0 m (1.8m for crossing                                                                         | portion)         |  |
|                      |                             |                      | (Along with existing 24" pipeline)                                                               |                  |  |
|                      |                             |                      | Casing Pipe: 34" NPS                                                                             |                  |  |
| Size*Thickness       | 762mm OD*14.3mm<br>WT, 3LPE | for Class-3 Zone     | 762mm OD*14.27 mm<br>WT, 3LPE                                                                    | for Class-2 Zone |  |
|                      | 762mm OD*17.5mm<br>WT, 3LPE | for Class-4 Zone     | 762mm OD*15.88 mm<br>WT, 3LPE                                                                    | for HDD Portion  |  |
| Pipe Material        | API 5L X70                  |                      | API 5L X60                                                                                       |                  |  |
| Design Pressure      | Not sh                      | own                  | 1135 psig                                                                                        |                  |  |

 Table 2.4.8
 Design Parameters for Pipelines

Note: Location Class in the above table is the safety factor for steel pipe in the design code of ANSI B31.8, the derating factor dependent upon the location class unit, which is an area that extends 220 yards on either side of the centerline of any continuous 1-mile length of pipeline. Each separate dwelling unit in a multiple-dwelling-unit building is counted as a separate building intended for human occupancy.

Source: Compiled by JST from GTCL drawings

In addition to the above, construction practice of CP system installation may be different and corrosion allowance may also be different. The design class is the rating factor dependent upon the location class determined mainly according to population and building density.

Systematic and global spacious approach, not project by project approach, is required to determine the design factors including the following:

| Design Classification: | Design classification is related to thickness of pipe, specifie  |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
|                        | according to population. Current population and future           |  |  |  |  |  |  |
|                        | development plan need to be considered prior to decide           |  |  |  |  |  |  |
|                        | classification, and determined during Environmental Impact       |  |  |  |  |  |  |
|                        | Assessment (EIA).                                                |  |  |  |  |  |  |
| Soil Resistivity:      | CP system may differ to the soil resistivity and condition. Data |  |  |  |  |  |  |
|                        | should be prepared and verified as part of EIA.                  |  |  |  |  |  |  |

### (2) Standard Drawings

Standard Drawings are the drawings designed to minimize construction and maintenance cost and avoid risk in unique design. Standard drawings are the platform of accumulating knowledge and lessons learnt through past experience, and outcome of systematic gathering and compilation will serve as a knowledge base.

Standard drawings will contribute to uphold the integrity of overall systems and to minimize the numbers of spare parts by making those interchangeable among the companies. By its nature, however, standard drawings require continued updating by reflecting own experience from day-to-day work, and collecting information about new developments of technologies. For this, Structured approach (i.e., centralized organization) to register and maintain the documents would be essential and centralized information and technology management system need to be in place.

The following are a list of standard drawings classified according to each discipline category:

(1) Civil

- > Typical Crossing Details:
  - Road, Railway, Cable/Pipeline, Water Course, River, River Crossing with HDD (Horizontal Directional Drilling)
- Site Construction:
  - Road, Pavement, Boundary Wall and Gate, Fence, Trench, Drainage, Concrete Foundations, Valve Pit, Valve Pit Cover, Pig Trap Foundation
- (2) Piping
  - Pipe Support Standard, Welding Details, Scraper Trap, Pig Launcher and Receiver, Scraper Signaler, Vent and Drain Piping at Valve Station
- (3) Instrument

Instrument Hook-up for:

- Direct Mounted Pressure Gauge
- Direct Mounted Gas Operated Valve
- Remote Mounted Pressure Transmitter
- > Thermo-Electric Generator (TEG)
- (4) Electrical
  - > Earthing System, Electrical Load List, Hazardous Area Classification Electric
- (5) CP System
  - Anode Grounding (Horizontal/Vertical),
  - Test Station Installation (Various Types)
  - Test point Installation (Various Types)

Standardization should include drawings such as PFD, P & ID and alignment drawings that differ from project to project.

(3) Criteria for Contractor Selection

Currently, contractors for construction of pipeline facilities are selected based on proposals submitted by bidders. Accordingly, the design philosophy is depending on contractors, which is different from project to project, and it causes design inconsistency of overall system. In a general practice, list of venders including material suppliers, contractors, and service providers should be prepared prior to the commencement of the project. In the process of the formulating the list, each business entity need to submit its experiences and track record of financial statement in addition to the quality assurance/control systems, and pricing indications. The listed vendors should be knowledgeable about the design philosophy/specification of the facility owner before commencement of the project.

## 2.4.8 Cathodic Protection System

There are the following items in cathodic protection (CP) system. Each distribution company applies different CP system according to site condition.

## (1) Installed Facilities

Cathodic protection of buried pipeline with insulating type of external coating is a mandatory requirement except for use in a limited service life. As corrosion attributes difference in electric potential between contacting materials, protection of buried pipe depends on control of electric current between pipe and environments (i.e., soil). When materials susceptible to corrosion (e.g., magnesium) is buried along with pipeline, it will corrode instead of steel pipe and pipe is protected. This is called as Sacrificial Anode System. Electric current charged from outside sources to mitigate generated current between pipe and soil will also protect pipe from corrosion, and it is called as Impressed Current System.

## (2) Sacrificial Anode System

Sacrificial Anode system is used for isolated installations in general. The system does not require supply of electricity and installation is rather easy. However, a change of surface conditions of sacrificial anode in contact with soil may cause failure of protection mechanism to corrode underground structure instead of anode itself. Therefore, it can be used when direct monitoring is practicable and replacement of anode in short service period is acceptable.

### (3) Impressed Current System

Beside a need of external electric supply, Impressed Current system is widely used for pipelines as the effective performance of the protection system is attainable for long service period. The system has flexibility to adjust itself for changes of soil conditions or influence from foreign installations such as nearby pipelines, railways, buildings, etc.

Electricity for the system is supplied by either transformer/rectifier or by TEG (Thermo-Electric Generator), while recent market information introduces hybrid type of TEG consolidated with solar panel to eliminate needs of external power supply.

## (4) Summary of Installed CP Facilities

Data were collected from four operating gas distribution companies. All companies use Impressed Current system while method of electricity supply varies. The Table below summarizes those facilities of CP Stations and Test Posts.

| COMPANY | No. OF CP | No. OF   |              |
|---------|-----------|----------|--------------|
| COMPACT | USING TEG | USING TR | TEST POINTS  |
| GTCL    | 50        | 5        | 1618(*1)     |
| JGTDSL  | 31        | 4        | 100 (*2)     |
| BGDCL   | 10        | 0        | NO DATA (*3) |
| PGCL    | 5         | 29       | 743 (*2)     |

Table 2.4.9Summary of CP Facilities

TEG: Thermo-Electric Generator, TR: Transformer/Rectifier

(\*1) Aggregate sum of pipeline length with cathodic protection: 1425 km

(\*2) Local town distribution network

(\*3) Collected from "Site Visit Report" for inspection of facilities

Source: Compiled by JST from data of GTCL, JGTDSL, BGDCL and PGCL

General practice in Bangladesh is to use transformer/rectifier where external electric supply is available and TEG for remote/isolated locations, however, actual installation for town distribution in JGTDCL areas uses TEG, and transformer/rectifier is used for pipelines from Ashuganj to Elenga in GTCL. It is understood that such design options are depending on local availability of electricity at the time of pipeline construction.

Recent development promotes the use of hybrid type of TEG with solar panel, and study/investigation of new technology is to be implemented for maintenance/replacement of existing facilities.

Locations of stations installed along with transmission/distribution pipelines are plotted in the figure below where type of electric sources is identified.





## (5) Maintenance of Cathodic Protection System

Among those collected data, no information is available as to items for test/monitoring or its intervals and acceptance criteria. However, a site inspection by CP Equipment supplier recorded 8 days to complete tests of 10 test points, and 6 locations are reported as "maintenance/repair is needed". Thus, it is understood that CP maintenance is an issue.

Most important requirements for maintenance of Cathodic Protection System is known as "record-keeping" while the collected data by JST did not include such record, except for one report shown in the above.

Number of CP facilities are spread all over the country which includes remote locations, and it makes such proper maintenance difficult. Structured organizational set-up is needed including education and training involving engineers/technicians as they are required to discharge duties at remote locations without additional supervision. Thus maintenance is fully dependent on discipline and capability of each individual.

There are numbers of training programs which are provided by NACE (National Association of Corrosion Engineers)<sup>5</sup> or by equipment suppliers and consultants.

The material requisition/specification of GTCL specifies requirements for materials, together with a suppliers' proposal for training course.

Environments for installed pipelines are changing and operation parameters (such as soil resistivity, distance, etc) are needed to be properly adjusted. Accordingly, involvements of well qualified engineer/technicians are essential.

GTCL sublets the measurement of pipe to soil potential (PSP) to third party and the monthly repors are submitted to GTCL. The ability and quality of the third party reports of PSP need to be investigated.

(6) Maintenance Pprogram for CP System

It is recommended to establish Maintenance Program including the following:

- Procedure for planning test and maintenance of entire CP system
- Written procedure or guideline for test/evaluation/adjustments/repair of CP system
- To avail necessary tools /equipment and calibration tools
- Implementation of test/inspections according to established procedures, and record-taking
- Set-up of adequate organization and assignment of qualified personnel, including education and training
- Collection of operational data alongside the existing pipeline network and compile comprehensive data base covering whole areas of pipeline installation. As a result, consistency

<sup>&</sup>lt;sup>5</sup> National Association of Corrosion Engineers (NACE) International, is a professional organization for the corrosion control industry of which headquarter is located in Houston, USA. It is a society for protection of people, assets, and the environment from the adverse effects of corrosion.

and integrity of CP system is maintained by sharing information among operating companies to cover entire area of pipeline installation.

## 2.4.9 Operation & Maintenance Records

Data as to O&M Record were not available except some CP data. As noted in the Para 850.2 "Basic Requirements" of ASME B 31.8 for Gas Transmission and Distribution Piping Systems, the gas operating company needs to:

- have a written plan covering O&M
- have a written emergency plan covering facility failure and other emergencies
- operate and maintain its facilities in conformance with these plans
- modify the plans periodically
- provide training for employees
- keep records to administer plans and training properly

These must be implemented as part of Enterprise Resource Planning (ERP). ERP is the system to manage human resource, asset, and financial data. It integrates and covers necessary information for enterprise such as production, sales, procurement, asset, O&M, accounting system. The system needs to be customized for necessary aspects of each company.

## 2.5 Issues and Challenges in Gas Sector

### 2.5.1 Gas Operation Mode Change

Gas demand in Bangladesh will be increasing while domestic gas production is considered declining. Significant amount of gas will be imported to fill in the demand and supply gap. Operation mode will also be changing from Gas Allocation Base to Gas Demand Base, as shown in the figure below. Gas system integrity considering such operation mode change has not been reviewed in the past. There is no standard design philosophy and standard, and applied standards differ from project to project. Systematic maintenance system need to be in place.



Source: Prepared by JST

Figure 2.5.1 Gas Operation Mode Change to Demand Base

# 2.5.2 Integrated Operation and Information Sharing System

Advanced Operation and Information Sharing System is necessary in Bangladesh considering the following.

# (1) LNG introduction

LNG will be introduced by several different entities. Nature of LNG may also differ from sources to sources. These gases are also mixed with domestic gases in gas transmission system. Gas flow speed is slow, different from electricity transmission which can be sent instantaneously. Accordingly, if electricity demand and gas demand for power is suddenly increased, amount of gas flow cannot respond to cope with power demand increase. Time gap will be created between gas demand and gas supply.

Due to a gas delivery time lags created by pipeline transmission system, proportion of gas mixture may change with the supply profile. Supply profile is designed to fill out the demand curve predicted based on historical data, similar to power supply profile, i.e., base load and peak shaving supply.

LNG terminal and FSRU should have high utilization factor in terms of economic efficiency, and gasification rate should be kept at rated capacity as possible. Accordingly, amount of gas from LNG is preferred be stable. Meanwhile, the gas production in domestic gas field can be adjusted. Considering this aspect, LNG may be used to supply to a base load profile, while domestic gas may be used to fill out a middle/peak shaving profile portion. To accommodate these issues, <u>central monitoring and control system should be introduced</u>. As the minimum requirement, The following system should be introduced in section 2.1.5.

To minimize the operational and financial risk associated with LNG introduction for Petrobangla, it is worth to consider introduction of "Capacity Right allocation" and "Quality Bank" in LNG Terminal Operation.

- Capacity Right is the right to use gas transmission capacity allocated to each LNG suppliers.
- Quality Bank works to settle the account among the supply projects with difference in gas supply capacity, heating values, pricing and contract terms.

## (2) Operation mode

Operation mode will change from the current "Gas Allocation System" to "Demand Base System". Operators in gas supply side need to know gas demand profile beforehand and send the gas to meet the actual demand profile. Advanced operation system must be designed to integrate the system from gas fields/LNG terminals to downstream customers.

## (3) System Integrity

Integrity of gas transmission and distribution system has not been reviewed in the past. There is no design philosophy and standard commonly applied in all organizations in Bangladesh. Applicable standard and design philosophy are differently selected from project to project.

There is no centralized information management system, and no asset register is maintained. No process of physical asset verification is also in place, and therefore, system integrity is not known. GTCL has started to install ERM and EAM system for management of information system and asset register, which will be the starting point to achieve system integrity.

## 2.5.3 Reliable Gas Network Infrastructure

### (1) Design Philosophy

Before discussion about Reliability of Gas Network Infrastructure, Design Basics should be shared among the engineers:

In general, gas flow rate and pipe length are the given parameter in design. In addition, sometimes operation pressure is also set as target. In case of compressor design, Maximum Allowable Operating Pressure (MAOP) is also set as a compressor inlet design pressure. Pressure will decline according to the distance. The higher the inlet pressure is, the longer the travel distance will be.

Basic calculation method of gas flow is as shown in the figure below.



MAOP : Maximum Allowable Operating Pressure

Source: Prepared by JST

Figure 2.5.2 Flow Equation Basics

Compressor station is installed to deliver the gas for longer distance. Compression ratio is pressure at pipe outlet divided by pressure at pipe inlet. Theoretically, the higher the compression ratio is, the longer the compressor station spacing will be, which can save the numbers of compressor stations. It is noted that construction of compressor station is costly. Currently MAOP of Bangladesh for Class #600 is set to be 1,135 psig and operating pressure is set to be 1,000 psig. Compression ratio is 1.135, which is considered to be too low. International practice for Class #600 system allows raising the MAOP to 1,440 psig. This need to be considered in the review of design philosophy.

The concept of compression ratio of compressor station is as illustrated below.



CS: Compressor Station, P1: pressure at gas field or CS, P2: pressure at CS inlet, L1, L2, L3, L4: length between CS's, HP : Horse Power Source: Prepared by JST

Figure 2.5.3 Compressor Station Basics

MAOP is basically comes from pressure limitation of valves and fittings. Specified minimum yield strength (SMYS) is dependent on steel material. SMYS is a common term used in the steel pipes for oil and in accordance with a listed standard specification in USA. It is recommended to use American Petroleum Institute standard (API) X60<sup>6</sup> or X65 as a standard steel pipe material in a view point of the welding quality.

Welding of higher yield strength material require more skills and quality control. In terms of cost and benefit, cost impact is larger if diameter is increased in comparison with raising MAOP. The following figure illustrates Cost and Benefit of MAOP and Diameter.

<sup>&</sup>lt;sup>6</sup> X60 indicates that Specified Minimum Yield Strength of material is 60,000 psi.



Tonnes of steel  $\propto$  d \* t, therefore:

| Increase MAOP<br>Tonnes of steel ∝ MAOP  |
|------------------------------------------|
| Increase diameter                        |
| Tonnes of steel $\propto$ d <sup>2</sup> |

t: thickness, d:diameter, MAOP: maximum allowable operating pressure, SMYS: Minimum Yield Strength Source: Prepared by JST

| Figure 2.5.4 Cost and Denenit of MAOF and Diameter | Figure 2.5.4 | <b>Cost and Benefit of MAOP and Diamete</b> |
|----------------------------------------------------|--------------|---------------------------------------------|
|----------------------------------------------------|--------------|---------------------------------------------|

$$P_1^2 - P_2^2 \propto LQ^2 / d^5$$
 Rc =  $P_1 / P_2$  = Fixed,  
L = Fixed

Hence:

$$P_1^2 \propto Q^2/d^5$$
$$Q \propto P_1^* d^{2.5}$$

## **Therefore :**

| F   | lowrat | e ∝ MA            | ٩OP  | ∝ Tor | nnes of S | teel               |
|-----|--------|-------------------|------|-------|-----------|--------------------|
|     |        |                   |      |       |           |                    |
| Flo | owrate | $\propto d^{2.5}$ | ∝ To | onnes | of Steel  | * d <sup>0.5</sup> |

P1: outlet pressure, P2: inlet pressure, d: diameter, Q: Flow rate, L: pipe length, Rc: Compression rate Source: Prepared by JST

#### Figure 2.5.5 Benefit from MAOP and Diameter

In case flow rate is needed to be maximized, it is more advantageous to use larger pipe rather than to use higher MAOP.

J-Curve is produced taking all the design elements and economic elements into consideration, which provides optimum operation range.



Source: Prepared by JST Figure 2.5.6 Pipeline Transportation Cost by Diameter

The following is a comparison table showing the typical MAOP and what used in Bangladesh:

| ASME Class | MAOP      | Comment                |
|------------|-----------|------------------------|
| 400 #      | 960 psig  | Not commonly used      |
| 600 #      | 1440 psig | Popular                |
|            | 1135 psig | Bangladesh             |
|            | 1000 psig | Bangladesh             |
|            | 960 psig  | Bangladesh             |
| 900#       | 2160 psig | Offshore/Long Distance |

### Table 2.5.1 Design Standard and Valves and Fittings (Typical MOAP and Bangladesh)

Source: Prepared by JST

Current MAOP in Bangladesh is in the range of 960-1,135 psig. MAOP can be raised to 1,440 psig, if pipe wall thickness is also designed to1,440 psig to maximize the system performance. Pipe material grade is specified by Specified Minimum Yield Strength (SMYS) in ASME standard. Considering the welder qualification and education system in Bangladesh, it is safer to use Grade X60 (SMYS is 60,000 psi) or X65 (SMYS is 65,000 psi). Welding of X70 and higher grade material require higher skill and knowledge and systematic quality control, and contractors also need to be qualified.

2) Design Standard

There is no unified design standard in Bangladesh. Design standard differs from project to project in Bangladesh. The following is an example of the design difference, each has its own standard and design philosophy and meets international standard. However, it is not preferred way in view of overall integrity of the system and spare parts management. When applied material standard is different, different range of spare parts are required.

|               | Material | General Section |        | Road Crossing |         | Corrosion | Soil Cover |
|---------------|----------|-----------------|--------|---------------|---------|-----------|------------|
| Pipeline      |          | Class/          | Safety | Class/        | Safety  | Allowance | Depth      |
|               |          | Zone            | Factor | Zone          | factor  | (mm)      | (m)        |
| Bakhrabad-    | API 5L   | 2               | 0.5    | 4             | 0.4     | 1 27      | 1.2        |
| Siddhrirgonji | X70      | 3               | 0.5    | 4             | 0.4     | 1.27      | 1.2        |
| Dhonua-Elenga | API 5L   | C               | 0.6    | Casim         | a Din a | 1.5       | 1          |
| (D-N)         | X60      | Z               | 0.0    | Casing Pipe   |         | 1.3       | 1          |

 Table 2.5.2
 Applied Material and Standard by Project

Source: Prepared by JST, according to information form GTCL

Design Class and safety factor, specified in ANSI B31.8 Pipeline design Code, must be decided as part of EIA. Future area development plan must also be incorporated to decide the pipe Classification. Organized and standardized approach must be discussed and introduced. When classifying locations for the purpose of determining the design class for the pipeline construction and testing that should be prescribed, due consideration shall be given to the possibility of future development of the concerning area. At the time of planning a new pipeline, if the future development is likely to change each piping classification in each location, this should be taken into consideration in the design and testing of the proposed pipeline.

## 3) Asset Management

It appears that more focus has been given to new construction projects; however, asset management including maintenance plan should significantly be improved. There are needs to update process flows and pipeline alignment drawings;, also, available complete valve station and manifold information is quite insufficient so far.

Introduction of Enterprise Asset Management (EAM) and Enterprise Resource Planning (ERP) is discussed among the government entities. In order to introduce the systems successfully, The following are the basics things to be prepared:

- Drawings/Documents Management System
- Unified Design Standard, including Unified Material Specification

Centralized information management system need to be established, and asset register should be maintained and process of physical asset verification is also necessary in be in place, and only after that, system integrity will be known.
### 2.6 Control/Monitoring Target

Control and Monitoring Target for Transmission and distribution in Bangladesh will be as follows:

(1) Transmission System

Real time monitoring of flow and pressure will be conducted via SCADA system, however, long term monitoring to find out abnormalities is necessary, including:

- Detect System bottlenecks
- Detect System loss
- CP Monitoring and Maintenance

Monitoring of these should be carried out as part of asset management.

All the information, including updated process flow diagram, alignment drawings and material specifications update need to be properly managed and kept in the system.

### (2) Distribution System

Major control and monitoring target for Distribution System is necessary to:

- Minimize system loss
- Minimize accident.
- Prevent pilferage of gas i.e., gas theft

These are monitored and detected.

(3) Accident and Alternative Supply Routing

In case one of the gas field system is shut down, the system needs to indicate alternative routing to back up operational transaction.

- In case part of transmission line is shut down, the system allows to detect alternative route to minimize the affected area.

Any accident areas need to be spotted and alternatives supply routing should be calculated.

### 2.7 Recommendation on Asset Management in Gas Sector

### 2.7.1 Recommendation on Network Infrastructure Management System

As was stated in Chapter 2.4, it is necessary to establish asset management system with document and drawing management for long term operation.

For that, Network Infrastructure Management System, capable of creating virtual database by communicating with various data systems and sources owned by each company, is proposed. Using the virtual database, spare parts can be shared in common and minimize the material redundancy. Reality of the current situation is that there are no useful drawings and documents to support introduction of computer systems.

In the Network Infrastructure Management System for asset management of gas pipeline facility, necessary data field is studied and compiled. The following table is the list of minimum requirements of data field items for (i) gas transmission line, (ii) valve stations, and (iii) gas fields.

Detailed items for the gas network infrastructure and data fields are explained in detail in section 5.3.

| Transmission Line                              | Valve Stations (Manifold)     | Gas Field                               |
|------------------------------------------------|-------------------------------|-----------------------------------------|
| Pipeline ID                                    | Valve Station ID              | Gas Field ID                            |
| Company Name                                   | Station Name                  | Gas Field name                          |
| Pipeline Name                                  | Process Flow Diagram          | Gas Production (mmscfd)                 |
| From (VS ID)                                   | P & ID                        | Processing Plant Outlet Pressure (psig) |
| To (VS ID)                                     | Piping Layout                 | Processing Plant Inlet Pressure (psig)  |
| OD (inch)                                      | Piping Drawing                | Condensate Production (bpd)             |
| Length (km)                                    | Bill of Material              | Processing Plant PFD                    |
| Pipe Material                                  | SCADA ID Flow Meter           | Processing Plant P&ID                   |
| Design Class                                   | SCADA ID Pressure Gauge       | Latitude                                |
| Wall Thickness (mm)                            | Utlity                        | Longitude                               |
| Corrosion Allowance (mm)                       | Latitude                      | Elevation                               |
| Design Pressure (psig)                         | Longitude                     | Temporary latitude, longitude           |
| Maximum Allowable Operating<br>Pressure (psig) | Elevation                     | Longitude temp                          |
| Normal Operating Pressure (psig)               | Temporary latitude, longitude |                                         |
| Normal Flow Rate (mmscfd)                      |                               |                                         |
| Operation Status                               |                               |                                         |
| Year of Commissioning (YYYY/MM)                |                               |                                         |
| CP System                                      |                               |                                         |
| Crossing (River, Road, Pipeline, etc.)         |                               |                                         |
| Angle Point (Latitude, longitude, elevation)   |                               |                                         |

 Table 2.7.1
 Recommended Data Items in Asset Management

Source: Prepared by JST

The asset management system should also have document management system with searching function for reference serial number, date, document type, department, responsible staff, related information (such as ongoing/incoming, project name, etc.), and soft copy should be saved in a central server and shared by responsible person in charge as necessary.

# 2.7.2 Data Group Configuration in Network Infrastructure Management System

Data Group consist of three pressure levels (i.e., High Pressure, Mid Pressure and Low Pressure. High Pressure system) is used by transmission system. Mid pressure and Low Pressure is used by local distribution companies. Gas is sourced from onshore gas fields and LNG terminal in near future. These gasses are transmitted by high pressure pipeline (1000 psig) to each areal franchise companies,

through City Gate Station (CGS) stations, or manifold stations. Local Franchise company receives gas from high pressure gas transmission company via Town Bordering Station (TBS) where gas pressure level is further reduced to the level of 300 psig or 140 psig to supply each District Regulating Station (DRS) stations. Gas pressure is further reduced at DRS to 50 psig (Low pressure system) to deliver the gas to each customer. The typical system is as illustrated below.



CGS: City Gate Station, TBS: Town Bordering Station, DRS: District Regulating Station Source: Prepared by JST



# **CHAPTER 3 POWER SECTOR**

This chapter describes about power sector in Bangladesh. It summarizes organizational structure, development planning, O&M status, and asset management status. The Chapter clarifies the space for improvements in O&M in power sector especially with SCADA.

# 3.1 Power Sector Organization

# 3.1.1 Ministry of Power, Energy and Mineral Resources (MoPEMR)-Power

Ministry of Power, Energy and Mineral Resources (MoPEMR) is the main ministry to deal with primary energy and electrical power policy and administration in Bangladesh. As of May 2016, the Prime Minister holds the position of the minister of MoPEMR and State Minister is responsible for conducting the businesses of the Ministry/division in the parliament unless otherwise directed by the Prime Minister.

The organization diagram of MoPEMR is shown in Figure Figure 2.1.1. Under MoPEMR, Energy Division (Energy and Mineral Resources Division) and Power Division exist.

All prices of main energy sources, natural gas, oil and electrical power are subject to approval or consent by either government or regulatory body.

Power generation entities are partly public corporations and some private companies, however, natural gas entities are all state-owned, and substantial oil import/refinery entities are also state-owned.

# 3.1.2 **Power Division**

In Bangladesh power sector (mainly on-grid related) entities exist under the supervision and administration of Power Division, as shown below.



Source: PSMP2016, modified by JST



From early 1990s, Power Sector Reform made substantial progress and led to the corporatization of then vertically integrated power giant Bangladesh Power Development Board (BPDB). These public corporations have in general improved operational performance.

### 3.1.3 Power Sub-Division Organization

Power Division is responsible for all activities related to power generation, transmission and distribution. Its scope also covers the coordination with other divisions and ministries to promote public-private partnership, private investment, rural electrification and renewable energy, and energy efficiency and conservation. Power Division also monitors the performance of public-owned power utilities with key performance indicators (KPIs). If a utility performs below the pre-determined/agreed KPI, then the utility needs to pay a penalty.

Power Division has below sub-division organizations:

(1) Power Cell

Power Cell was established in 1995 as a promoter of the power sector reform. They played a central role of the sector reform in the late 1990 to the early 2000s and contributed to the establishment of public generation companies and distribution companies. Recently Power Cell provides strategic advices on business planning and human resource development for those public power utilities. In

addition to those rolls, Power Cell takes a counterpart role in land-based LNG terminal project to ensure stable primary energy supply for power sector<sup>7</sup>.

(2) Office of the Electrical Advisor & Chief Electric Inspector and Energy Monitoring Unit:

Electrical Advisor and Chief Electrical Inspector (EA & CEI): This office was established to ensure the safety of those who work for power generation, transmission and distribution, by not only licensing for high voltage and medium voltage consumers, electrical contractors, engineers and electricians, but also inspecting installations, substations and lines. The subdivision office of Energy Monitoring Unit (a subdivision of EA & CEI) ensures that industries are using energy efficiently and energy is being conserved were possible<sup>8</sup>.

(3) Bangladesh Power Development Board (BPDB)

BPBD was initially established as Water and Power Development Board under East Pakistan administration. After the independence, it became Power Development Board in 1972, with the installed capacity just 200 MW. Until 1990s, when the power sector reform made a substantial progress, BPDB was a vertically integrated power entity. Even now BPDB owns 30 to 40% of installed capacity and distribution lines (however, BPDB-owned thermal power plants in general suffer poor maintenance and low efficiency, which results in the BPDB-own power plants contribute less than 30% of electricity generation). BPDB Board consists of chairperson and other 6 members.

BPDB plays a vital role as a single buyer of power sector. As a result of non-cost recovery tariff, BPDB has accumulated operation deficit, and it once reached 64 billion BDT in FY2012. Currently Bangladesh has strived for continuous power tariff raise, and also benefited from the oil price decline (this reduces the BPDB's expense for fuel subsidy to the rental power plants). These factors contributed to the reduction of the accumulated deficit to 52 billion in FY2015.

BPDB's distribution networks were unbundled and made into public distribution companies in the 1990s to the early 2000s. Two distribution companies were established in Dhaka area, and another one in the western area.

# (4) Power Grid Company of Bangladesh (PGCB)

PGCB was formed under the restructuring process of Power Sector in Bangladesh with the objective of bringing about commercial environment including increase in efficiency, establishment of accountability and dynamism in accomplishing its objectives. PGCB was incorporated in November 1996 with an authorized capital of Tk.10 billion. It was entrusted with the responsibility to own the national power grid to operate and expand the same with efficiency. Pursuant to Government decision to transfer transmission assets to PGCB from Bangladesh Power Development Board (BPDB) and Dhaka Electric Supply Authority (DESA), PGCB completed taking over of all the transmission assets on 31.12.2002. PGCB expanded its network and capacity manyfold and operating those efficiently and effectively. PGCB is a public limited company, where 23.75% of its issued shares are listed in a stock market and the rest 76.25% is owned by the Government. PGCB has a long list of development

<sup>&</sup>lt;sup>7</sup> Source: www.powercell.gov.bd.

<sup>&</sup>lt;sup>8</sup> Source: www.eacei.gov.bd

partner's funded projects, including JICA, World Bank, ADB and KfW.

(5) Distribution Entities and Rural Electrification

There are urban distribution companies in Bangladesh. Dhaka Electric Supply Company Limited (DESCO) and Dhaka Power Distribution Company Limited (DPDC) are in charge of Dhaka area, and West Zone Power Distribution Company Limited (WZPDCL) is in charge of the western municipalities including Khulna and Barisal areas. The rest municipal power distribution is still under BPDB's operation.

DESCO and DPDC have made significant operational improvement sometime after its corporatization. DESCO outsourced its meter-readers and introduced performance-based compensation and reduced the meter-reader's frauds. DESCO and DPDC introduced prepayment billing system on a trial basis. As a result of the assessment and also associated operational efforts, both companies achieved system loss less than 9%, and improved billing collection ratio by more than 98% at DESCO and 90% at DPDC, which is higher than other distribution entities.

Bangladesh Rural Electrification Board (BREB) was established in 1977, with reference to the US's rural electrification cooperatives. BREB supervise and manages 72 PBS (Palli Bidyut Samity, or electrification cooperatives) all over in Bangladesh, and monitor the electrification projects in PBSs. BREB also promotes use of electricity to facilitate socio-economic development and improve agriculture in rural areas. The number of BREB's customer (the total contracts of all sectors including industry, commercial and domestic) is more than 14 million, as of February 2016.





### (6) Power Generation Entities<sup>9</sup>

There are several power generation companies and entities as shown in Figure 3.1.1. Followings are the main power generation companies are summarized as follows:

- Ashganji Power Station Company Limited (APSCL): Established in 2000. The APSCL started based on the transferred asset from BPDB. As of 2016 its generation capacity reaches 960 MW and contributes to the 9% of the county's power generation. APSCL has also a good track record of development partner's funded projects, such as ADB.
- 2) Electricity Generation Company of Bangladesh (EGCB): Established in 2004. As of 2016, it has 622 MW installed capacity, and contributes to the 7% of the Bangladesh's power

<sup>&</sup>lt;sup>9</sup> The installed capacity varies depending on the source. Therefore in this section, the installed capacity is solely based on the BPDB web site as of February 2015, and BPDB Annual report FY2014-2015. http://www.bpdb.gov.bd/bpdb/index.php?option=com\_content&view=article&id=193&Itemid=120

generation. EGCB also has attracted development partner's funding, including JICA, World Bank and ADB.

- 3) North West Power Generation Company Limited (NWPGCL): Established in 2007. As of 2016, it has 368 MW mainly in western part of Bangladesh, and contributes to the 5% of the Bangladesh's power generation. NWPGCL also has attracted development partner's funding, including JICA. Recently, NWPGCL has launched a project of LNG import from West Bengal, India, to ensure fuel supply for its gas-fired power plants.
- 4) Coal Power Generation Company of Bangladesh Limited (CPGCBL): Established in 2011. CPGCBL is an executing agency of JICA-supported Matarbari Ultra-Super Critical (USC) coal fired power plant. It has yet any working power generation plant.
- 5) Rural Power Company Limited (RPCL): Established in 1993. BREB (described later) owns 30% of equity and 12 PBS own the rest (no capital ties with BPDB). Its installed capacity is 77 MW and impact to the grid network is limited.
- 6) Independent Power Producers (IPPs) and Quick Rentals: There are in total 16 IPPs in Bangladesh with total installed capacity 2,627 MW. In order to accelerate the introduction of power urgently in 2010 and after, so called "Crash Program" was introduced. The program was to install about 40 numbers of "rental" and "quick rental" power plants. Most of them were oil-based in a period of 3 years. The total power generation from IPP and these rental and quick rental power plants can be up to 50% of entire power generation in Bangladesh. This rapid expansion of rental and quick rental power plants greatly contributed to the reduction of power outage; however, the expensive power purchase price also expands the deficit of BPDB.
- 7) Ministry of Science and Technology: Ministry of Science and Technology and Bangladesh Atomic Energy Commission are the main body to implement Bangladesh's first nuclear power plant.

### (7) Bangladesh Energy Regulatory Commission (BERC)

BERC was established in 2003, under BERC Act. BERC has set rules and regulations to ensure transparency of operation and tariffs in electricity, domestic natural gas, and oil subsectors. Commission protects the benefit of consumer and industry, and promotes competitive market. Commission consists of one chairperson and four members.

In respect of the electricity, BERC Act defines the Commissions major responsibilities are taking regulatory measures for efficient generation of electricity, transmission and distribution of quality electricity, creating enabling environment for private sector investment, management of the sector through fixing reasonable tariff with transparency and creating competitive market.

Specifically the energy prices, BERC only exercises its authority on natural gas and electricity prices, while the BERC Act (2003) stipulates the following:

Notwithstanding anything contained in any other law for the time being in force, the price of power generation in wholesale, bulk and retail, and the supply of energy at the level of end-user,

shall be determined in accordance with the policy and methodology made by the Commission in consultation with the Government

Currently oil prices except LPG are determined by Energy and Mineral Resources Division (to be described in the following section), based on the discussion with Bangladesh Petroleum Corporation (BPC). LPG price is currently determined in the market base, but some regulation will be introduced shortly for the sake of customer protection.

Furthermore, it should be noted that the Commission has responsibilities of two critical areas namely i) to set codes and standards for quality electricity supply, and ii) to facilitate energy efficiency, energy audit and setting standards for the power plants. These areas have been undermined in power sector operation; however, the strengthening BERC's capability and related regulations are indispensable for the further development of the Bangladesh's power sector<sup>10</sup>.

(8) Sustainable and Renewable Energy Development Authority (SREDA)

SREDA<sup>11</sup> was established in 2012 based on the SREDA Act. The main mission of SREDA is to ensure the Bangladesh's energy security through promoting renewable energy, and energy efficiency and conservation (EEC). SREDA is responsible for promoting and approval of renewable energy projects, and sets an ambitious target, additional renewable energy capacity approximately 3,200MW by 2021. SREDA is also responsible to develop an energy audit/ energy management system and administrate related activities to promote energy efficiency and conservation.

Regarding the EEC promotion, SREDA is considered to be responsible for demand side, while BERC is responsible for supply side (e.g. power generation plants), although such demarcation is not in a publically opened written document. As of May 2016, SREDA is designing various EEC systems, based on the JICA-supported Energy Efficiency and Conservation Master Plan (2015).

### 3.2 Development Planning

### 3.2.1 Generation

### (1) Existing facility

As of June 2017, there are 44 power plants having installed capacity of 7,582 MW under Public sector and 64 Power Plants having capacity of 5,373 MW under Private sector in Bangladesh. Apart from the power plants, Bangladesh is also importing power of 600 MW from India. The installed capacity of the total 108 power plants including import power is 13,555 MW. However, due to an aging of the facility, performance is degraded, which is called de-rated capacity. Present capacity (or de-rated capacity) of the above power plants is discounted to 12,771 MW. A summary of power plants is given in the following Table.

<sup>&</sup>lt;sup>10</sup> Source : www.berc.org.bd, and interview with Energy Division

<sup>&</sup>lt;sup>11</sup> http://www.sreda.gov.bd/oldsreda/index.php/about-sreda/function

| Owner          | No. of Power Plants | Installed<br>Capacity (MW) | Present Generation<br>Capacity (MW) |
|----------------|---------------------|----------------------------|-------------------------------------|
| Public Sector  | 44                  | 7,582                      | 6,913                               |
| Private Sector | 64                  | 5,373                      | 5,258                               |
| Power Import   | 0                   | 600                        | 600                                 |
| TOTAL          | 108                 | 13,555                     | 12,771                              |

| Table 3.2.1 | Summary | of Power | Plants |
|-------------|---------|----------|--------|
|-------------|---------|----------|--------|

Source: System Planning, BPDB



Source: System Planning, BPDB

Figure 3.2.1 Installed Capacity (MW) of Power Plants (As on June 2017)



Source: System Planning, BPDB

```
Figure 3.2.2 Present Generation Capacity (MW) of Power Plants (As on June 2017)
```

The fuel type of power plants is given in Table 3.2.2. The fuel mix of installed capacity shown in chart is given in Figure 3.2.3 and present capacity in Figure 3.2.4.

| Fuel Ture    | No of DD  | Installed Consulty (MW) | Present Generation |  |  |  |
|--------------|-----------|-------------------------|--------------------|--|--|--|
| ruer Type    | 100 01 FF | Instance Capacity (MW)  | Capacity (MW)      |  |  |  |
| Hydro        | 1         | 230                     | 230                |  |  |  |
| Natural Gas  | 61        | 8,810                   | 8,102              |  |  |  |
| Furnace Oil  | 36        | 2,785                   | 2,783              |  |  |  |
| Diesel       | 9         | 880                     | 856                |  |  |  |
| Coal         | 1         | 250                     | 200                |  |  |  |
| Power Import |           | 600                     | 600                |  |  |  |
| Total        | 108       | 13,555                  | 12,771             |  |  |  |

| <b>Table 3.2.2</b> | <b>Fuel Mix</b> | of Power | Plants |
|--------------------|-----------------|----------|--------|
|--------------------|-----------------|----------|--------|

Source: System Planning, BPDB





Figure 3.2.3 Fuel Mix of Installed Capacity of Power Plants



Figure 3.2.4 Fuel Mix of Present Capacity of Power Plants

The Plant type of power plants is given in Table 3.2.3. The plant type wise installed capacity of the power plants shown in chart is given in Figure 3.2.5 and present capacity in Figure 3.2.6.

| Fuel Type                 | Installed Capacity (MW) | Present Generation Capacity (MW) |  |  |  |
|---------------------------|-------------------------|----------------------------------|--|--|--|
| Hydro                     | 230                     | 230                              |  |  |  |
| Steam Turbine (ST)        | 2,404                   | 1,826                            |  |  |  |
| Combined Cycle (CC)       | 4,625                   | 4,586                            |  |  |  |
| Gas Turbine (CT)          | 1,105                   | 1,053                            |  |  |  |
| Receprocating Engine (RE) | 4,591                   | 4,476                            |  |  |  |
| Power Import              | 600                     | 600                              |  |  |  |
| Total                     | 13,555                  | 12,771                           |  |  |  |

| Table 3.2.3 | Plant Type | of Power | Plants |
|-------------|------------|----------|--------|
|-------------|------------|----------|--------|

Source: System Planning, BPDB



Source: System Planning, BPDB





Source: System Planning, BPDB Figure 3.2.6 Plant wise Present Generation Capacity of Power Plants

### (2) Power Development Plan (PDP)

Based on Power Development Plan (PDP) prepared in PSMP2016. The total generation capacity in PSMP2016 was counted to be 24,459 MW in 2025 and 40,858 MW in 2035.

The following tables and figures shows the total generation capacity of PDP in PSMP 2016 by fuel type. The generation capacity of power plants planned to be retired deducted in each year.

| Year | Gas    | Coal   | FO, HSD | Nuclear | Hydro | Import | TOTAL  |
|------|--------|--------|---------|---------|-------|--------|--------|
| 2017 | 8,102  | 200    | 3,639   | 0       | 230   | 600    | 12,771 |
| 2025 | 8,515  | 6,977  | 4,005   | 2,232   | 230   | 2,500  | 24,459 |
| 2035 | 15,446 | 11,777 | 1,673   | 4,632   | 330   | 7,000  | 40,858 |
| 2041 | 20,177 | 20,195 | 0       | 7,032   | 330   | 9,000  | 56,734 |

Table 3.2.4PDP in PSMP2016

Source: Prepared by JST, referring to PSMP2016



Source: Prepared by JST, referring to PSMP2016 Figure 3.2.7 PDP in PSMP2016 and PDP

In addition to the above, BPDB is planning additional generation plans considering rapid demand increase considering IPP and other generation plans.

### (3) Investment planning

The list of Power Development Plan (PDP) as of August 2017 is as shown in the table below. As per PSMP 2016, Power Development Plan (PDP) was prepared with expected Commissioning Date (COD) of the planned power plants to meet the power requirement in future. System Planning of BPDB has updated the status of the planned power plants in 2017. Comparing the status of the planned power plants in 2017 with the status given in the PSMP2016, it was found that COD of some power plants were delayed. The main reasons for the delay in commissioning of the power plants are as follows:

1) Finance Problem:

After initiation of the projects, finance is to be arranged from the financing organizations: development partner agencies, banks etc. Sometimes, it takes long time to arrange the fund, which causes the delay in project implementation for both public and private sector.

2) Lengthy Project Approval:

During implementation of the project, sometimes deviation occurs with the planning. These deviations need to be approved by the approving authority. This approval process takes lot of time causing delay in implementation.

3) Land Availability

The difficulty in implementation of land acquisition caused the delay of schedule. Especially, solar and coal based power plants in private sector are facing land crisis.

Gap analysis of the status of the planned power plants in 2017 with the status given in the PSMP2016 is given in Table 3.2.5

|         |                                                 | Gross            |                |                 |                                          |                                |                                        | PSM                     | IP2016                              | Gap a          | nalysis |                                                 |
|---------|-------------------------------------------------|------------------|----------------|-----------------|------------------------------------------|--------------------------------|----------------------------------------|-------------------------|-------------------------------------|----------------|---------|-------------------------------------------------|
| Sl. No  | Name of the Power Plant                         | Capacity<br>(MW) | Owner-<br>ship | Type of<br>Fuel | Expected Commi<br>Date                   | Expected Commissioning<br>Date |                                        | Net<br>Capacity<br>(MW) | Expected<br>Commissio-<br>ning Date | in<br>capacity | in COD  | Remarks                                         |
| Project | ts Completion by Year 201                       | 7                |                |                 |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| Public  | Sector                                          |                  |                |                 |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| 1       | Siddirganj 335 MW CCPP                          | 335              | EGCB           | Gas             | SC:June, 2017<br>ST: Dec.,2017           | 2018                           | •Achieved: 92 %                        | 328                     | 2016                                | -7             | -2      | Finance Problem and<br>Lengthy project approval |
| 2       | Shikalbaha 225 MW<br>CCPP                       | 225              | BPDB           | Gas/<br>HSD     | SC:Jun, 2017<br>ST: Dec.,2017            | 2018                           | •Achieved: 71 %<br>• GT Under Test Run | 218                     | 2017                                | -7             | -1      | Finance Problem and<br>Lengthy project approval |
| 3       | Bheramara 360 MW<br>CCPP                        | 410              | NWPGCL         | Gas             | SC:May, 2017<br>ST: Dec.,2017            | 2018                           | •Achieved: 86 %<br>•Under Test Run     | 402                     | 2018                                | -8             | 0       |                                                 |
| 4       | Ashugonj (North) CCPP                           | 381              | APSCL          | Gas             | June, 2017                               | 2017                           | •Achieved: 59 %<br>•Under Test Run     | 370                     | 2017                                | -11            | 0       |                                                 |
| 5       | Chapai Nababganj 104<br>MW PP                   | 104              | BPDB           | FO              | June, 2017                               | 2017                           | •Achieved: 94 %<br>•Under Test Run     | 102                     | 2017                                | -2             | 0       |                                                 |
| 6       | Ghorasal 365 MW<br>CCPP                         | 365              | BPDB           | Gas             | SC:July, 2017<br>ST: Dec, 2017           | 2017                           | •Achieved: 56 %                        | 352                     | 2017                                | -13            | 0       |                                                 |
|         | Sub-Total ( Public)                             | 1,820            |                |                 |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| Private | Sector                                          | •                | •              | •               |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| 1       | Bosila, Keranigonj 108<br>MW PP (CLC Power)     | 108              | IPP            | FO              | 22.02.2017                               | 2017                           | •Under Commercial<br>Operation.        | 108                     | 2017                                | 0              | 0       |                                                 |
| 2       | Power import from<br>Tripura                    | 60               | IPP            | Import          | May, 2017                                | 2017                           | •Under Test Run                        | 60                      | 2017                                | 0              | 0       |                                                 |
| 3       | Kamalaghat 50 MW PP                             | 54               | IPP            | FO              | August, 2017                             | 2017                           | •Achieved: 60 %                        | 55                      | 2017                                | 1              | 0       |                                                 |
| 4       | Kusiara 163 MW CCPP                             | 163              | IPP            | Gas             | August, 2017                             | 2017                           | •Achieved:85 %                         | 163                     | 2018                                | 0              | 1       |                                                 |
|         | Sub-Total (Private)                             | 385              |                |                 |                                          |                                |                                        |                         |                                     | -385           | 0       |                                                 |
|         | Total (2017)                                    | 2205             |                |                 |                                          |                                |                                        |                         |                                     | -2205          | 0       |                                                 |
| Project | ts Completion by Year 201                       | 8                |                |                 |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| Public  | Sector                                          |                  |                |                 |                                          |                                |                                        |                         |                                     |                |         |                                                 |
| 1       | Sirajgonj 225 MW CCPP<br>(2 <sup>nd</sup> Unit) | 220              | NWPGCL         | Gas/<br>HSD     | SC:Sept., 2017<br>ST: June,2018          | 2018                           | •Achieved: 72 %                        | 216                     | 2019                                | -4             | 1       |                                                 |
| 2       | Sirajgonj 225 MW CCPP<br>(3rd Unit)             | 220              | NWPGCL         | Gas/<br>HSD     | SC: March, 2018<br>ST: December,<br>2018 | 2018                           | •Achieved: 18 %                        | 216                     | 2020                                | -4             | 2       |                                                 |
| 3       | Bibiana #3 CCPP                                 | 400              | BPDB           | Gas             | SC: March, 2018<br>ST: December,<br>2018 | 2018                           | •Achieved: 29 %                        | 388                     | 2019                                | -12            | 1       |                                                 |
| 4       | Barapukuria 275 MW (3rd                         | 274              | BPDB           | Coal            | June, 2018                               | 2018                           | •Achieved: 60 %                        | 252                     | 2019                                | -22            | 1       |                                                 |

 Table 3.2.5
 Gap analysis for Power Development Plan (PDP) as of August 2017

Data Collection Survey on Computerization of Gas and Power Network Infrastructure

|        |                                                                    |                           |                       |                 |                                          | PSN                                 | IP2016                            | Gap analysis            |                                     |                |        |                                                 |
|--------|--------------------------------------------------------------------|---------------------------|-----------------------|-----------------|------------------------------------------|-------------------------------------|-----------------------------------|-------------------------|-------------------------------------|----------------|--------|-------------------------------------------------|
| Sl. No | Name of the Power Plant                                            | Gross<br>Capacity<br>(MW) | Owner-<br>ship        | Type of<br>Fuel | Expected Comm<br>Date                    | Expected Commissioning<br>Date prog |                                   | Net<br>Capacity<br>(MW) | Expected<br>Commissio-<br>ning Date | in<br>capacity | in COD | Remarks                                         |
|        | Unit)                                                              |                           |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
|        | Sub-Total ( Public)                                                | 1114                      |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
| Privat | e Sector                                                           |                           |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
| 1      | Power import                                                       | 500                       | IPP                   | Import          | July, 2018                               | 2018                                |                                   | 500                     | 2018                                | 0              | 0      |                                                 |
| 2      | Potia, Chittagong 54 MW<br>PP (Re-located from<br>Satkhira)        | 54                        | IPP                   | FO              | December, 2018                           | 2018                                | • LOI issued on 07.03.2017        | 100                     | 2020                                | 46             | 2      |                                                 |
| 3      | Gazipur 150 MW PP<br>(Summit)                                      | 149                       | IPP                   | FO              | December, 2018                           | 2018                                | •Contract Signed on<br>12.04.2017 | 147                     | 2016                                | -2             | -2     |                                                 |
| 4      | Julda, Chittagong 100<br>MW PP (Acorn Inf)<br>(Unit-2)             | 100                       | IPP                   | FO              | December, 2018                           | 2018                                | Contract Signed                   | 100                     | 2020                                | 0              | 2      |                                                 |
|        | Sub-Total (Private)                                                | 803                       |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
|        | Total (2018)                                                       | 1917                      |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
| Projec | ts Completion by Year 201                                          | 9                         |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
| Public | Sector                                                             |                           |                       | •               |                                          |                                     |                                   |                         |                                     |                |        |                                                 |
| 1      | Khulna 330 MW CCPP<br>(D/F) GT Unit                                | 336                       | BPDB                  | Gas/HSD         | SC: March, 2019<br>ST: December,<br>2019 | 2019                                | •Contract Signed                  | 196                     | 2019                                | -140           | 0      |                                                 |
| 2      | Bibiana South 383 MW<br>CCPP                                       | 383                       | BPDB                  | Gas             | SC: March, 2019<br>ST: December,<br>2019 | 2019                                | •Achieved: 17 %                   | 372                     | 2018                                | -11            | -1     | Finance Problem and<br>Lengthy project approval |
| 3      | Shajibazar 100 MW PP                                               | 100                       | BPDB                  | Gas             | June, 2019                               | 2019                                | • Tender Under<br>Evaluation      | 98                      | 2018                                | -2             | -1     | Finance Problem and<br>Lengthy project approval |
| 4      | Ghorasal 4th Unit<br>Repowering (Capacity<br>Addition)             | 200                       | BPDB                  | Gas             | May, 2019                                | 2019                                | •Achieved: 14 %                   | 388                     | 2018                                | 188            | -1     | Finance Problem and<br>Lengthy project approval |
| 5      | Sylhet 150 MW PP<br>Conversion                                     | 75                        | BPDB                  | Gas             | June, 2019                               | 2019                                | •Tender under evaluation          | 221                     | 2018                                | 146            | -1     | Finance Problem and<br>Lengthy project approval |
| 6      | Ghorasal 3 <sup>rd</sup> Unit<br>Repowering (Capacity<br>Addition) | 206                       | BPDB                  | Gas             | September, 2019                          | 2019                                | •Achieved: 22%                    | 388                     | 2018                                | 182            | -1     | Finance Problem and<br>Lengthy project approval |
| 7      | Satkhira 25 MW PP                                                  | 25                        | BPDB                  | FO              | December, 2019                           | 2019                                |                                   | 50                      | 2019                                | 25             | 0      |                                                 |
| 8      | Payra, Potuakhali 1320<br>Coal Fired Power Plant<br>(1st Phase)    | 1320                      | BCPCL<br>(NWPGC<br>L) | Imp. Coal       | December, 2019                           | 2019                                | •Achieved: 14%                    | 1214                    | 2020                                | -106           | 1      |                                                 |
|        | Sub-Total (Public)                                                 | 2645                      |                       |                 |                                          |                                     |                                   |                         |                                     |                |        | ļ                                               |
| Privat | e Sector                                                           |                           |                       |                 |                                          |                                     |                                   |                         |                                     |                |        |                                                 |

Nippon Koei Co., Ltd. & Chiyoda U-tech Co., Ltd.

|        |                                                         | Cross            |                |                 |                               |           |                                         | PSIV                    | IP2010                              | Gap analysis   |        | 4                                               |
|--------|---------------------------------------------------------|------------------|----------------|-----------------|-------------------------------|-----------|-----------------------------------------|-------------------------|-------------------------------------|----------------|--------|-------------------------------------------------|
| 51. No | Name of the Power Plant                                 | Capacity<br>(MW) | Owner-<br>ship | Type of<br>Fuel | Expected Commi<br>Date        | issioning | progress                                | Net<br>Capacity<br>(MW) | Expected<br>Commissio-<br>ning Date | in<br>capacity | in COD | Remarks                                         |
| 1      | Sirajganj 414 MW CCPP                                   | 414              | IPP            | Gas/<br>HSD     | SC:Jan, 2019<br>ST: May, 2019 | 2019      | •Achieved: 24 %                         | 414                     | 2020                                | 0              | 1      |                                                 |
| 2      | Chandpur 100 MW Power<br>Plant                          | 115              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on<br>15.05.2017           |                         |                                     | -115           | -2019  |                                                 |
| 3      | Choumohoni, Noakhali<br>100 MW Power Plant              | 113              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on 15.05.2017              |                         |                                     | -113           | -2019  |                                                 |
| 4      | Feni 100 MW Power Plant                                 | 114              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on 15.05.2017              |                         |                                     | -114           | -2019  |                                                 |
| 5      | Meghnaghat 100 MW<br>Power Plant                        | 104              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on<br>15.05.2017           |                         |                                     | -104           | -2019  |                                                 |
| 6      | Thakurgao 100 MW<br>Power Plant                         | 115              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on 15.05.2017              |                         |                                     | -115           | -2019  |                                                 |
| 7      | Rangpur100 MW Power<br>Plant                            | 113              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on<br>15.05.2017           |                         |                                     | -113           | -2019  |                                                 |
| 8      | Bogra 100 MW Power<br>Plant                             | 113              | IPP            | FO              | March, 2019                   | 2019      | • LOI issued on<br>15.05.2017           |                         |                                     | -113           | -2019  |                                                 |
| 9      | Jamalpur 100 MW Power<br>Plant                          | 115              | IPP            | FO              | June, 2019                    | 2019      | • Tender Under<br>Evaluation            |                         | 2017                                | -115           | -2     | Finance Problem and<br>Lengthy project approval |
| 10     | Anowara, Chittagong 300<br>MW PP (United<br>Enterprise) | 300              | IPP            | FO              | May, 2019                     | 2019      | Contract Signed                         | 300                     | 2022                                | 0              | 3      |                                                 |
| 11     | Potiya, Chittagong 100<br>MW PP (Pricisan Energy)       | 116              | IPP            | FO              | October, 2019                 | 2019      | • LOI Issued on 18.04.2016              | 100                     | 2020                                | -16            | 1      |                                                 |
| 12     | Bhairab 50 MW PP                                        | 54               | IPP            | FO              | December, 2019                | 2019      | • LOI issued on 20.03.2012              | 50                      | 2019                                | -4             | 0      |                                                 |
| 13     | Gabtoli 108 MW PP                                       | 108              | IPP            | FO              | December, 2019                | 2019      | <ul> <li>Contract Signed</li> </ul>     |                         |                                     | -108           | -2019  |                                                 |
| 14     | Bhola 220 MW CCPP<br>(D/F)(Saporji Palonji)             | 220              | IPP            | Gas/<br>HSD     | December, 2019                | 2019      | • LOI Issued on 18.04.2016              |                         | 2016                                | -220           | -3     | Finance Problem and<br>Lengthy project approval |
| 15     | Import from Tripura (2nd<br>Phase)                      | 340              | IPP            | Import          | December, 2019                | 2019      | • Preliminary works                     |                         |                                     | -340           | -2019  |                                                 |
|        | Sub-Total (Private)                                     | 2454             |                |                 |                               |           |                                         |                         |                                     |                |        |                                                 |
|        | Total (2019)                                            | 5099             |                |                 |                               |           |                                         |                         |                                     |                |        |                                                 |
| roject | ts Completion by Year 202                               | 0                |                |                 |                               |           |                                         |                         |                                     |                |        |                                                 |
| ublic  | Sector                                                  | 1                |                | 1               | T                             |           |                                         |                         |                                     |                |        |                                                 |
| 1      | Sayedpur 150 MW PP                                      | 150              | BPDB           | HSD             | January, 2020                 | 2020      | • Tender Document<br>under preparation. |                         |                                     | -150           | -2020  |                                                 |
| 2      | Mymenshingh 360 MW<br>CCPP                              | 360              | RPCL           | Gas/HSD         | June, 2020                    | 2020      |                                         |                         |                                     | -360           | -2020  |                                                 |

DOM (DA01/

. .

72

|         |                                                                  |                           |                |                 | PSM                   | IP2016    | Gap analysis                                     |                         |                                     |                |        |                                                 |
|---------|------------------------------------------------------------------|---------------------------|----------------|-----------------|-----------------------|-----------|--------------------------------------------------|-------------------------|-------------------------------------|----------------|--------|-------------------------------------------------|
| Sl. No  | Name of the Power Plant                                          | Gross<br>Capacity<br>(MW) | Owner-<br>ship | Type of<br>Fuel | Expected Comm<br>Date | issioning | progress                                         | Net<br>Capacity<br>(MW) | Expected<br>Commissio-<br>ning Date | in<br>capacity | in COD | Remarks                                         |
| 3       | Mirsorai, Chittagong 150<br>MW PP                                | 150                       | BPDB-RP<br>CL  | Gas/HSD         | June, 2020            | 2020      | • Preliminary works                              |                         |                                     | -150           | -2020  |                                                 |
| 4       | Borisal 225 MW CCPP<br>(D/F)                                     | 225                       | BPDB           | Gas/HSD         | December, 2020        | 2020      | • Preliminary works                              |                         |                                     | -225           | -2020  |                                                 |
| 5       | Gazaria 350 MW Coal<br>Fired Thermal Power Plant<br>(Phase-1)    | 350                       | RPCL           | Imp. Coal       | December, 2020        | 2020      |                                                  |                         |                                     | -350           | -2020  |                                                 |
| 6       | Sreepur 150 MW HFO<br>Based Power Plant                          | 150                       | BPDB-RP<br>CL  | FO              | December, 2020        | 2020      |                                                  |                         |                                     | -150           | -2020  |                                                 |
|         | Sub-Total ( Public)                                              | 1385                      |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |
| Private | Sector                                                           |                           |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |
| 1       | LNG based 750 MW<br>CCPP (Reliance)                              | 750                       | IPP            | LNG             | January, 2020         | 2020      | <ul> <li>Preliminary works</li> </ul>            |                         |                                     | -750           | -2020  |                                                 |
| 2       | Chittagong 612 MW Coal<br>Fired Power<br>Project(S.Alam Group)-1 | 612                       | IPP            | Imp. Coal       | June, 2020            | 2020      | Preliminary works                                | 612                     | 2020                                | 0              | 0      |                                                 |
| 3       | Chittagong 612 MW Coal<br>Fired Power<br>Project(S.Alam Group)-2 | 612                       | IPP            | Imp. Coal       | June, 2020            | 2020      | Preliminary works                                | 612                     | 2020                                | 0              | 0      |                                                 |
| 4       | Fenchugonj 50 MW Power<br>Plant                                  | 55                        | IPP/NRB        | Gas             | June, 2020            | 2020      | • Approved by purchase committee.                |                         |                                     | -55            | -2020  |                                                 |
|         | Sub-Total (Private)                                              | 2029                      |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |
|         | Total (2020)                                                     | 3,414                     |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |
| Project | s Completion by Year 202                                         | 1                         |                |                 |                       |           |                                                  |                         |                                     | 0              | 0      |                                                 |
| Public  | Sector                                                           |                           |                |                 |                       |           |                                                  |                         |                                     | 0              | 0      |                                                 |
| 1       | Ashugonj 400 MW CCPP<br>(East)                                   | 400                       | APSCL          | Gas             | January,2021          | 2021      | • Tender Under<br>Evaluation                     |                         |                                     | -400           | -2021  |                                                 |
| 2       | BIFPCL, Rampal, Coal<br>Fired Power Plant                        | 1,320                     | BIFPCL         | Imp. Coal       | March,2021            | 2021      | Contract Signed                                  | 1214                    | 2020                                | -106           | -1     | Finance Problem and<br>Lengthy project approval |
| 3       | Baghabari 100 MW PP<br>Conversion                                | 50                        | BPDB           | Gas             | June, 2021            | 2021      | <ul> <li>Tender under<br/>evaluation.</li> </ul> | 102                     | 2020                                | 52             | -1     | Finance Problem and<br>Lengthy project approval |
| 4       | Shajibazar 70 MW PP<br>Conversion                                | 35                        | BPDB           | Gas             | June, 2021            | 2021      | • Tender under evaluation.                       |                         |                                     | -35            | -2021  |                                                 |
| 5       | Raojan 550 MW CCPP                                               | 550                       | BPDB           | LNG             | December, 2021        | 2021      | <ul> <li>Preliminary works</li> </ul>            |                         |                                     | -550           | -2021  |                                                 |
| 6       | Gazipur 450 MW CCPP                                              | 450                       | RPCL           | LNG             | December, 2021        | 2021      | • Land acquisition<br>Complete.                  |                         |                                     | -450           | -2021  |                                                 |
|         | Sub-Total ( Public)                                              | 2,805                     |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |
| Private | Sector                                                           |                           |                |                 |                       |           |                                                  |                         |                                     |                |        |                                                 |

Nippon Koei Co., Ltd. & Chiyoda U-tech Co., Ltd.

#### Power Sector Chapter3

|        |                                                                 | G                         |                |                 |                       |           |                   | PSM                     | P2016                               | Gap a          | nalysis |                                                 |
|--------|-----------------------------------------------------------------|---------------------------|----------------|-----------------|-----------------------|-----------|-------------------|-------------------------|-------------------------------------|----------------|---------|-------------------------------------------------|
| Sl. No | Name of the Power Plant                                         | Gross<br>Capacity<br>(MW) | Owner-<br>ship | Type of<br>Fuel | Expected Comm<br>Date | issioning | progress          | Net<br>Capacity<br>(MW) | Expected<br>Commissio-<br>ning Date | in<br>capacity | in COD  | Remarks                                         |
| 1      | Maowa, Munshiganj 522<br>MW Coal Fired Power<br>Project (Orion) | 522                       | IPP            | Imp. Coal       | June, 2021            | 2021      | •Achieved:3 %     | 522                     | 2020                                | 0              | -1      | Finance Problem and<br>Lengthy project approval |
| 2      | Borisal 307 MW Coal<br>Fired Power Plant                        | 307                       | IPP            | Imp. Coal       | December, 2021        | 2021      | · LOI Issued      |                         |                                     | -307           | -2021   |                                                 |
| 3      | Dhaka 635 MW Coal<br>Fired Power Project<br>(Orion Group)       | 635                       | IPP            | Imp. Coal       | December, 2021        | 2021      | • Contract Signed | 635                     | 2020                                | 0              | -1      | Finance Problem and<br>Lengthy project approval |
|        | Sub-Total (Private)                                             | 1,464                     |                |                 |                       |           |                   |                         |                                     |                |         |                                                 |
|        | Total (2021)                                                    | 4,269                     |                |                 |                       |           |                   |                         |                                     |                |         |                                                 |
|        | Total                                                           | 16,904                    | MW             |                 |                       |           |                   |                         |                                     |                |         |                                                 |

FO: Fuel Oil, ST: Steam Turbine, Source: BPDB System Planning, BPDB

### 3.2.2 Transmission and Distribution

#### (1) Existing facility

The power system network of 2017 made by PGCB is shown in the figure in the next page. The black lines represent 400 kV transmission lines, which are planned in a radial configuration from Dhaka toward Chittagong, Comilla, Khulna, and Bogra. A ring of 400 kV transmission lines are constructing around the Dhaka metropolitan area, with 230 kV transmission lines leading into the city, fed by the 400 kV ring.

Currently some 400 kV transmission lines were already commenced. Existing 400 kV transmission lines in 2017 are as follows:

- Beheramara-Baharampur 400kV transmission line
- Kaliakoir Bibiyana 400 kV transmission line
- Aminbazar Meghnaghat 400 kV transmission line (Presently operating at 230 kV)
- Comilla (N)–Surjyamaninagar, India 400 kV transmission line (Presently operating at 132kV)

The following table summarizes transmission line infrastructure.

| Table 3.2.6 | The Year-Wise Transmission | n Infrastructures under | PGCB's Management |
|-------------|----------------------------|-------------------------|-------------------|
|-------------|----------------------------|-------------------------|-------------------|

|         | Transmis | sion Line ( | (Ckt. km) |    |          |     |                   | Sub | ostation          |     |                   |     |                   |
|---------|----------|-------------|-----------|----|----------|-----|-------------------|-----|-------------------|-----|-------------------|-----|-------------------|
| Veen    |          |             |           | I  | HVDC     | 400 | /230 kV           | 400 | /132 kV           | 230 | )/132 kV          | 132 | 2/33 kV           |
| Tear    | 400 kV   | 230 kV      | 132 kV    | No | Capacity | No  | Capacity<br>(MVA) | No  | Capacity<br>(MVA) | No. | Capacity<br>(MVA) | No. | Capacity<br>(MVA) |
| 2010-11 | -        | 2,647       | 6,018     | -  | -        | -   | -                 |     |                   | 13  | 6,675             | 81  | 8,437             |
| 2011-12 | -        | 2,647       | 6,080     | -  | -        | -   | -                 |     |                   | 13  | 6,675             | 83  | 8,737             |
| 2012-13 | -        | 3,021       | 6,080     | -  | -        | -   | -                 |     |                   | 15  | 6,975             | 84  | 9,705             |
| 2013-14 | 165      | 3,045       | 6,120     | 1  | 500 MW   | -   | -                 |     |                   | 18  | 8,775             | 86  | 10,714.30         |
| 2014-15 | 165      | 3,171       | 6,274     | 1  | 500 MW   | 1   | 520               |     |                   | 19  | 9,075             | 89  | 11,963.72         |
| 2015-16 | 221      | 3,185       | 6,402     | 1  | 500 MW   | 1   | 520               |     |                   | 19  | 9,375             | 90  | 12,655.50         |
| 2016-17 | 560      | 3,325       | 6,466     | 1  | 500 MW   | 2   | 1,560             | 1   | 650               | 19  | 9,675             | 91  | 14,154.50         |

Source: PGCB

Detailed data of existing transmission lines and substations are as shown in the following Tables.

Power Sector Chapter3



Source: PGCB Transmission Line Map modified by JST **Figure 3.2.8 Map of Power Grid Network in 2017** 

| Table 3.2.7 List of Existing Transmission Li | nes |
|----------------------------------------------|-----|
|----------------------------------------------|-----|

| Transmission<br>Line ID | Transmission Line Name                        | From SS                                  | To SS             | Operating<br>Status | Voltage<br>Level (kV) | Route<br>Length<br>(km) | Circuit<br>Length<br>(km) | Number of<br>Circuit | Conductor<br>name | Conductor<br>Size (mm2) | Capacity<br>(MW) | Construction<br>year |
|-------------------------|-----------------------------------------------|------------------------------------------|-------------------|---------------------|-----------------------|-------------------------|---------------------------|----------------------|-------------------|-------------------------|------------------|----------------------|
| TL-001                  | HVDC Bheramara-Bangladesh Border (Baharampur) | SS-0001                                  | Bangladesh Border | Existing            | 400                   | 27.35                   | 54.70                     | Double               | Twin Finch        | 1113 MCM                | 1142.5612        | 2013                 |
| TL-002                  | Aminbazar-Meghnaghat                          | SS-0007                                  | SS-0024           | Existing            | 400                   | 55.00                   | 110.00                    | Double               | Quad Egret        | 636 MCM                 | 1654.0184        | 2014                 |
| TL-003                  | Comilla(N)- Bangladesh Border                 | SS-0015                                  | Bangladesh Border | Existing            | 400                   | 28.00                   | 56.00                     | Double               | Twin Finch        | 1113 MCM                | 1142.5612        | 2015                 |
| TL-004                  | Bibiyana-Kaliakoir                            | SS-0002                                  | SS-0003           | Existing            | 400                   | 169.53                  | 339.06                    | Double               | Twin Finch        | 1113 MCM                | 1142.5612        | 2016                 |
| TL-005                  | Ghorasal–Ishurdi                              | SS-0017                                  | SS-0021           | Existing            | 230                   | 175.00                  | 350.00                    | Double               | Mallard           | 795 MCM                 | 288              | Not Available        |
| TL-006                  | Tongi - Ghorasal                              | SS-0028                                  | SS-0017           | Existing            | 230                   | 27.00                   | 54.00                     | Double               | Mallard           | 795 MCM                 | 288              | Not Available        |
| TL-007                  | Ghorasal - Ashuganj                           | SS-0017                                  | SS-0008           | Existing            | 230                   | 44.00                   | 88.00                     | Double               | Mallard           | 795 MCM                 | 288              | Not Available        |
| TL-008                  | Raojan - Hathazari                            | PS-11001-2                               | SS-0020           | Existing            | 230                   | 22.50                   | 45.00                     | Double               | Twin 300 sq.mm    |                         | 438              | Not Available        |
| TL-009                  | Ashuganj – Comilla North                      | SS-0008                                  | SS-0015           | Existing            | 230                   | 79.00                   | 158.00                    | Double               | Finch             | 1113 MCM                | 346              | Not Available        |
| TL-010                  | Ghorasal - Rampura                            | SS-0017                                  | SS-0025           | Existing            | 230                   | 50.00                   | 100.00                    | Double               | Twin Mallard      | 2x795 MCM               | 575              | Not Available        |
| TL-011                  | Rampura – Haripur                             | SS-0025                                  | SS-0018           | Existing            | 230                   | 22.00                   | 44.00                     | Double               | Twin Mallard      | 2x795 MCM               | 575              | Not Available        |
| TL-012                  | Haripur – Meghnaghat                          | SS-0018                                  | SS-0024           | Existing            | 230                   | 12.50                   | 25.00                     | Double               | Twin Mallard      | 2x795 MCM               | 575              | Not Available        |
| TL-013                  | Meghnaghat - Hasnabad                         | SS-0024                                  | SS-0019           | Existing            | 230                   | 24.50                   | 49.00                     | Double               | Twin Mallard      | 2x795 MCM               | 575              | Not Available        |
| TL-014                  | Comilla North - Hathazari                     | SS-0015                                  | SS-0020           | Existing            | 230                   | 151.00                  | 302.00                    | Double               | Finch             | 1113 MCM                | 346              | Not Available        |
| TL-015                  | AES, Haripur – Haripur                        | PS-11026                                 | SS-0018           | Existing            | 230                   | 2.40                    | 4.80                      | Double               | Finch             | 1113 MCM                | 346              | Not Available        |
| TL-016                  | Comilla North – Meghnaghat                    | SS-0015                                  | SS-0024           | Existing            | 230                   | 58.00                   | 116.00                    | Double               | Twin Mallard      | 2x795 MCM               | 575              | Not Available        |
| TL-017                  | Tongi-Aminbazar                               | SS-0028                                  | SS-0007           | Existing            | 230                   | 25.20                   | 50.40                     | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | Not Available        |
| TL-018                  | Aminbazar-Hasnabad                            | SS-0007                                  | SS-0019           | Existing            | 230                   | 21.50                   | 43.00                     | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | Not Available        |
| TL-019                  | Siddhirganj 210 MW P/S -Haripur               | PS-11013                                 | SS-0018           | Existing            | 230                   | 1.50                    | 1.50                      | Single               | ACSR              | 600 sq. mm.             | 288              | Not Available        |
| TL-020                  | Ashuganj - Sirajganj                          | SS-0008                                  | SS-0027           | Existing            | 230                   | 144.00                  | 288.00                    | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | 2007                 |
| TL-021                  | Khulna-Bheramara HVDC                         | SS-0022                                  | SS-0001           | Existing            | 230                   | 176.50                  | 353.00                    | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | 2013                 |
| TL-022                  | Bheramara HVDC-Ishurdi                        | SS-0001                                  | SS-0021           | Existing            | 230                   | 10.10                   | 20.20                     | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | Not Available        |
| TL-023                  | Bogra-Barapukuria                             | SS-0013                                  | SS-0010           | Existing            | 230                   | 106.00                  | 212.00                    | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | 2008                 |
| TL-024                  | Sirajganj-Bogra                               | SS-0027                                  | SS-0013           | Existing            | 230                   | 72.50                   | 145.00                    | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | 2008                 |
| TL-025                  | Ishurdi-Baghabari                             | SS-0021                                  | SS-0009           | Existing            | 230                   | 55.00                   | 110.00                    | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | Not Available        |
| TL-026                  | Baghabari-Sirajganj                           | SS-0009                                  | SS-0027           | Existing            | 230                   | 38.00                   | 76.00                     | Double               | Twin AAAC         | 37/4.176 mm.            | 501              | 2009                 |
| TL-027                  | Fenchuganj-Bibiyana                           | SS-0016                                  | SS-0002           | Existing            | 230                   | 33.19                   | 67.37                     | Double               | Twin Mallard      | 2x795 MCM               | 575              | 2012                 |
| TL-028                  | Bibiyana-Comilla(N)                           | SS-0002                                  | SS-0015           | Existing            | 230                   | 153.55                  | 307.00                    | Double               | Twin Mallard      | 2x795 MCM               | 575              | 2012                 |
| TL-029                  | Aminbazar-Old Airport (O/H)                   | SS-0007                                  | Old Airport       | Existing            | 230                   | 3.58                    | 7.15                      | Double               | Twin Mallard      | 2x795 MCM               | 575              | 2013                 |
| TL-030                  | Aminbazar-Old Airport (U/G)                   | SS-0007                                  | Old Airport       | Existing            | 230                   | 4.01                    | 8.03                      | Double               | XLPE              | 2000 sq. mm.            | 579              | 2013                 |
| TL-031                  | Siddhirganj-Maniknagar                        | SS-0026                                  | SS-0023           | Existing            | 230                   | 11.00                   | 22.00                     | Double               | Twin Mallard      | 2x795 MCM               | 575              | 2014                 |
| TL-032                  | Bhola-Barisal                                 | SS-0044                                  | SS-0038           | Existing            | 230                   | 62.50                   | 125.00                    | Double               | Twin Mallard      | 2x795 MCM               | 575              | 2015                 |
| TL-033                  | LILO of Comilla(N)-Hathazari line at BSRM     | LILO of Comilla(N)-<br>Hathazari SS-0015 | SS-0014           | Existing            | 230                   | 0.18                    | 0.72                      | Double               | Finch             | 1113 MCM                | 346              | 2015                 |
| TL-034                  | LILO of Comilla(N)-Hathazari line at AKSPL    | LILO of Comilla(N)-<br>Hathazari SS-0015 | SS-0006           | Existing            | 230                   | 6.50                    | 13.00                     | Double               | Finch             | 1113 MCM                | 346              | 2015                 |
| TL-035                  | LILO of Aminbazar-Tongi line at Kaliakoir     | LILO of Comilla(N)-<br>Hathazari SS-0007 | SS-0004           | Existing            | 230                   | 31.96                   | 127.83                    | Four                 | Twin AAAC         |                         | 501              | Not Available        |
| TL-036                  | Bheramara HVDC-Bheramara 230                  | SS-0001                                  | SS-0012           | Existing            | 230                   | 3.00                    | 12.00                     | Double               | Twin AAAC         |                         | 501              | 2017                 |
| TL-037                  | Shahjibazar-Brahmanbaria                      | SS-0129                                  | SS-0047           | Existing            | 132                   | 57                      | 114                       | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-038                  | Brahmanbaria-Ashuganj                         | SS-0047                                  | SS-0030           | Existing            | 132                   | 16.5                    | 33                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-039                  | Ashuganj–Ghorasal                             | SS-0030                                  | SS-0064           | Existing            | 132                   | 45.32                   | 90.64                     | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-040                  | Ghorasal-Narsingdi                            | SS-0064                                  | SS-0109           | Existing            | 132                   | 13.35                   | 13.35                     | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-041                  | Narsingdi-Haripur                             | SS-0109                                  | SS-0069           | Existing            | 132                   | 34.33                   | 34.33                     | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-042                  | Ghorasal-Bhulta                               | SS-0064                                  | SS-0045           | Existing            | 132                   | 29.1                    | 29.1                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-043                  | Bhulta-Haripur                                | SS-0045                                  | SS-0069           | Existing            | 132                   | 15.25                   | 15.25                     | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-044                  | Haripur-Siddhirganj                           | SS-0069                                  | SS-0133           | Existing            | 132                   | 2                       | 4                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-045                  | Shahjibazar-Srimangal                         | SS-0129                                  | SS-0138           | Existing            | 132                   | 36.2                    | 72.4                      | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-046                  | Srimangal-Fenchuganj                          | SS-0138                                  | SS-0061           | Existing            | 132                   | 49                      | 98                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-047                  | Fenchuganj-Fenchuganj PS                      | SS-0061                                  | PS-11021          | Existing            | 132                   | 3.66                    | 14.64                     | Four                 | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-048                  | Fenchuganj-Sylhet                             | SS-0061                                  | SS-0140           | Existing            | 132                   | 31.7                    | 63.4                      | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-049                  | Sylhet-Chhatak                                | SS-0140                                  | SS-0051           | Existing            | 132                   | 32.9                    | 65.8                      | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-050                  | Kaptai-Hathazari                              | SS-0082                                  | SS-0071           | Existing            | 132                   | 45                      | 90                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |

| Transmission<br>Line ID | Transmission Line Name  | From SS | To SS       | Operating<br>Status | Voltage<br>Level (kV) | Route<br>Length<br>(km) | Circuit<br>Length<br>(km) | Number of<br>Circuit | Conductor<br>name    | Conductor<br>Size (mm2) | Capacity<br>(MW) | Construction<br>year |
|-------------------------|-------------------------|---------|-------------|---------------------|-----------------------|-------------------------|---------------------------|----------------------|----------------------|-------------------------|------------------|----------------------|
| TL-051                  | Hathazari-Feni          | SS-0071 | SS-0062     | Existing            | 132                   | 85.4                    | 170.8                     | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-052                  | Feni-Comilla (N)        | SS-0062 | SS-0054     | Existing            | 132                   | 66                      | 132                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-053                  | Comilla (N)– Daudkandi  | SS-0054 | SS-0057     | Existing            | 132                   | 55                      | 110                       | Double               | Grosbeak/AAAC        | 636 MCM                 | 129              | Not Available        |
| TL-054                  | Daudkandi-Sonargaon     | SS-0057 | SS-0137     | Existing            | 132                   | 61.7                    | 123.4                     | Double               | Grosbeak/AAAC        | 636 MCM                 | 129              | Not Available        |
| TL-055                  | Sonargaon-Haripur       | SS-0137 | SS-0069     | Existing            | 132                   | 15                      | 30                        | Double               | Grosbeak/AAAC        | 636 MCM                 | 129              | Not Available        |
| TL-056                  | Haripur-Siddhirganj     | SS-0069 | SS-0133     | Existing            | 132                   | 2.25                    | 4.5                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-057                  | Khulshi-Halishahar      | SS-0084 | SS-0068     | Existing            | 132                   | 13                      | 26                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-058                  | Comilla (N)-Chandpur    | SS-0054 | SS-0048     | Existing            | 132                   | 77.5                    | 77.5                      | Single               | Linnet +<br>Grosbeak | (336.4 + 636)<br>MCM    | 88               | Not Available        |
| TL-059                  | Comilla (N)–Comilla (S) | SS-0054 | SS-0055     | Existing            | 132                   | 16                      | 16                        | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-060                  | Comilla (S)-Chandpur    | SS-0055 | SS-0048     | Existing            | 132                   | 62                      | 62                        | Single               | Linnet               | 336.4 mCM               | 88               | Not Available        |
| TL-061                  | Ashuganj-Kishoreganj    | SS-0033 | SS-0085     | Existing            | 132                   | 52                      | 104                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-062                  | Kishoreganj-Mymensingh  | SS-0085 | SS-0106     | Existing            | 132                   | 59                      | 118                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-063                  | Mymensingh-Jamalpur     | SS-0106 | SS-0073     | Existing            | 132                   | 55                      | 110                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-064                  | Madunaghat-Sikalbaha    | SS-0095 | SS-0134     | Existing            | 132                   | 16.5                    | 16.5                      | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-065                  | Madunaghat-TKC          | SS-0095 | SS-0143     | Existing            | 132                   | 8.5                     | 8.5                       | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-066                  | TKC-Sikalbaha           | SS-0143 | SS-0134     | Existing            | 132                   | 8.5                     | 8.5                       | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-067                  | Sikalbaha-Dohazari      | SS-0134 | SS-0059     | Existing            | 132                   | 32                      | 64                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-068                  | Sikalbaha-Juldah        | SS-0134 | SS-0078     | Existing            | 132                   | 7.5                     | 7.5                       | Single               | AAAC                 | 804 sq.mm               | 129              | Not Available        |
| TL-069                  | Juldah-Halishahar       | SS-0078 | SS-0068     | Existing            | 132                   | 8                       | 8                         | Single               | AAAC                 | 804 sq.mm               | 129              | Not Available        |
| TL-070                  | Khulshi-Baroaulia       | SS-0084 | SS-0039     | Existing            | 132                   | 15                      | 15                        | single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-071                  | Khulshi-AKSML           | SS-0084 | SS-0031     | Existing            | 132                   | 11                      | 11                        | single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-072                  | AKSML-Baroaulia         | SS-0031 | SS-0039     | Existing            | 132                   | 4                       | 4                         | single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-073                  | Madunaghat-Khulshi      | SS-0095 | SS-0084     | Existing            | 132                   | 13                      | 13                        | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-074                  | Madunaghat-Khulshi      | SS-0095 | SS-0084     | Existing            | 132                   | 13                      | 13                        | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-075                  | Kaptai-Chandraghona     | SS-0082 | SS-0049     | Existing            | 132                   | 11.5                    | 23                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-076                  | Chandraghona-Madunaghat | SS-0049 | SS-0095     | Existing            | 132                   | 27                      | 54                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-077                  | Madunaghat-Hathazari    | SS-0095 | SS-0071     | Existing            | 132                   | 10.2                    | 20.4                      | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-078                  | Hathazari-Baroaulia     | SS-0071 | SS-0039     | Existing            | 132                   | 11                      | 22                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-079                  | Dohazari–Cox's Bazar    | SS-0059 | SS-0056     | Existing            | 132                   | 87                      | 174                       | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-080                  | Feni-Chowmuhani         | SS-0062 | SS-0052     | Existing            | 132                   | 32                      | 64                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-081                  | Baroaulia- Kabir Steel  | SS-0039 | Kabir Steel | Existing            | 132                   | 4                       | 4                         | Single               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-082                  | Mymensingh-Netrokona    | SS-0106 | SS-0111     | Existing            | 132                   | 34                      | 68                        | Double               | Grosbeak             | 636 MCM                 | 129              | Not Available        |
| TL-083                  | Goalpara-Khulna (C)     | SS-0065 | SS-0083     | Existing            | 132                   | 1.5                     | 3                         | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-084                  | Khulna (C)–Noapara      | SS-0083 | SS-0114     | Existing            | 132                   | 22.8                    | 45.6                      | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-085                  | Noapara-Jessore         | SS-0114 | SS-0074     | Existing            | 132                   | 27.9                    | 55.8                      | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-086                  | Jessore-Jhenaidah       | SS-0074 | SS-0075     | Existing            | 132                   | 47.5                    | 95                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-087                  | Jhenaidah-Kustia        | SS-0075 | SS-0089     | Existing            | 132                   | 43                      | 86                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-088                  | Kustia-Bheramana        | SS-0089 | SS-0043     | Existing            | 132                   | 23                      | 46                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-089                  | Bheramara-Ishwardi      | SS-0043 | SS-0072     | Existing            | 132                   | 10                      | 20                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-090                  | Ishwardi-Natore         | SS-0072 | SS-0110     | Existing            | 132                   | 42                      | 84                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-091                  | Natore-Bogra            | SS-0110 | SS-0046     | Existing            | 132                   | 61                      | 122                       | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-092                  | Bogra-Palashbari        | SS-0046 | SS-0116     | Existing            | 132                   | 50                      | 100                       | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-093                  | Palashbari-Rangpur      | SS-0116 | SS-0122     | Existing            | 132                   | 52                      | 104                       | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-094                  | Rangpur-Saidpur         | SS-0122 | SS-0124     | Existing            | 132                   | 41.5                    | 83                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-095                  | Saidpur-Purbasadipur    | SS-0124 | SS-0119     | Existing            | 132                   | 24.5                    | 49                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| 1L-096                  | Purbasadipur-Thakurgaon | SS-0119 | SS-0142     | Existing            | 132                   | 45                      | 90                        | Double               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-097                  | Goalpara-Bagerhat       | SS-0065 | SS-0034     | Existing            | 132                   | 45                      | 45                        | Single               | AAAC                 | 804 MCM                 | 129              | Not Available        |
| TL-098                  | Barisal-Bhandaria       | SS-0038 | SS-0041     | Existing            | 132                   | 49                      | 49                        | Single               | HAWK                 | 477 MCM                 | 109              | Not Available        |
| TL-099                  | Bhandaria-Bagerhat      | SS-0041 | SS-0034     | Existing            | 132                   | 40                      | 40                        | Single               | HAWK                 | 477 MCM                 | 109              | Not Available        |
| IL-100                  | Bagerhat-Mongla         | SS-0034 | SS-0104     | Existing            | 132                   | 28                      | 28                        | Single               | HAWK                 | 477 MCM                 | 109              | Not Available        |

| Transmission<br>Line ID | Transmission Line Name    | From SS  | To SS      | Operating<br>Status | Voltage<br>Level (kV) | Route<br>Length<br>(km) | Circuit<br>Length<br>(km) | Number of<br>Circuit | Conductor<br>name | Conductor<br>Size (mm2) | Capacity<br>(MW) | Construction<br>year |
|-------------------------|---------------------------|----------|------------|---------------------|-----------------------|-------------------------|---------------------------|----------------------|-------------------|-------------------------|------------------|----------------------|
| TL-101                  | Barisal-Patuakhali        | SS-0038  | SS-0118    | Existing            | 132                   | 38.2                    | 38.2                      | Single               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-102                  | Bheramara-Faridpur        | SS-0043  | SS-0060    | Existing            | 132                   | 105                     | 210                       | Double               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-103                  | Faridpur-Madaripur        | SS-0060  | SS-0093    | Existing            | 132                   | 65.5                    | 131                       | Double               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-104                  | Madaripur-Barisal         | SS-0093  | SS-0038    | Existing            | 132                   | 59                      | 118                       | Double               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-105                  | Rajshahi-Natore           | SS-0121  | SS-0110    | Existing            | 132                   | 37                      | 37                        | Single               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-106                  | Ishwardi-Baghabari        | SS-0072  | PS-11023   | Existing            | 132                   | 63                      | 63                        | Single               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-107                  | Baghabari-Shahjadpur      | PS-11023 | SS-0128    | Existing            | 132                   | 5                       | 5                         | Single               | HAWK              | 477 MCM                 | 109              | Not Available        |
| TL-108                  | Ishwardi-Pabna            | SS-0072  | SS-0115    | Existing            | 132                   | 18                      | 18                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-109                  | Pabna-Shahjadpur          | SS-0115  | SS-0128    | Existing            | 132                   | 41                      | 41                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-110                  | Bogra-Sirajganj           | SS-0046  | SS-0135    | Existing            | 132                   | 66                      | 132                       | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-111                  | Sirajganj-Shahjadpur      | SS-0135  | SS-0128    | Existing            | 132                   | 34                      | 34                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-112                  | Sirajganj-Baghabari       | SS-0135  | PS-11023   | Existing            | 132                   | 39.7                    | 39.7                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-113                  | Rajshahi−Chapai Nawabganj | SS-0121  | SS-0050    | Existing            | 132                   | 48                      | 96                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-114                  | Rangpur-Lalmonirhat       | SS-0122  | SS-0091    | Existing            | 132                   | 38                      | 38                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-115                  | Bogra-Naogaon             | SS-0046  | SS-0107    | Existing            | 132                   | 44                      | 88                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-116                  | Kabirpur-Tangail          | SS-0079  | SS-0141    | Existing            | 132                   | 51                      | 102                       | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-117                  | Tongi-Mirpur              | SS-0144  | SS-0101    | Existing            | 132                   | 17                      | 17                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-118                  | Tongi-Uttara              | SS-0144  | SS-0146    | Existing            | 132                   | 14.5                    | 14.5                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-119                  | Uttara-Mirpur             | SS-0146  | SS-0101    | Existing            | 132                   | 8.5                     | 8.5                       | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-120                  | Mirpur-Aminbazar          | SS-0101  | SS-0007    | Existing            | 132                   | 7                       | 14                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-121                  | Aminbazar-Kallayanpur     | SS-0007  | SS-0080    | Existing            | 132                   | 4                       | 8                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-122                  | Hasnabad–Lalbagh          | SS-0070  | SS-0090    | Existing            | 132                   | 30                      | 30                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-123                  | Kamrangirchar-Lalbagh     | SS-0081  | SS-0090    | Existing            | 132                   | 2.6                     | 2.6                       | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-124                  | Kallayanpur-Kamrangirchar | SS-0080  | SS-0081    | Existing            | 132                   | 11                      | 11                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-125                  | Kallayanpur-Keraniganj    | SS-0080  | Keraniganj | Existing            | 132                   | 20                      | 20                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-126                  | Hasnabad-Keraniganj       | SS-0070  | Keraniganj | Existing            | 132                   | 13.6                    | 13.6                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-127                  | Tongi-New Tongi           | SS-0144  | SS-0112    | Existing            | 132                   | 0.5                     | 1                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-128                  | Hasnabad-Sitalakhya       | SS-0070  | SS-0136    | Existing            | 132                   | 12.6                    | 12.6                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-129                  | Madanganj-Sitalakhya      | SS-0092  | SS-0136    | Existing            | 132                   | 4                       | 4                         | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-130                  | Hasnabad-Shyampur         | SS-0070  | SS-0132    | Existing            | 132                   | 21                      | 21                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-131                  | Shyampur-Haripur          | SS-0132  | SS-0069    | Existing            | 132                   | 30                      | 30                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-132                  | Madanganj-Haripur         | SS-0092  | SS-0069    | Existing            | 132                   | 12.4                    | 12.4                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-133                  | Siddhirganj-Ullon         | SS-0133  | SS-0145    | Existing            | 132                   | 16                      | 32                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-134                  | Haripur-Matuail           | SS-0069  | SS-0099    | Existing            | 132                   | 5.65                    | 5.65                      | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-135                  | Maniknagar-Matuail        | SS-0098  | SS-0099    | Existing            | 132                   | 16                      | 16                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-136                  | Siddhirganj-Maniknagar    | SS-0133  | SS-0098    | Existing            | 132                   | 10                      | 10                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-137                  | Maniknagar-Bangabhaban    | SS-0098  | SS-0036    | Existing            | 132                   | 3                       | 6                         | Double               | Cu.Cable          | 240 sq.mm               | 99               | Not Available        |
| TL-138                  | Maniknagar-Narinda        | SS-0098  | SS-0108    | Existing            | 132                   | 5                       | 10                        | Double               | Cu.Cable          | 240 sq.mm               | 99               | Not Available        |
| TL-139                  | Ullon-Dhanmondi           | SS-0145  | SS-0058    | Existing            | 132                   | 5.5                     | 11                        | Double               | Cu.Cable          | 240 sq.mm               | 99               | Not Available        |
| TL-140                  | Ullon-Dhanmondi           | SS-0145  | SS-0058    | Existing            | 132                   | 5.5                     | 11                        | Double               | XLPE              | 500 sq.mm               | 152              | Not Available        |
| TL-141                  | Tongi-Kabirpur            | SS-0144  | SS-0079    | Existing            | 132                   | 22.5                    | 45                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-142                  | Kabirpur-Manikganj        | SS-0079  | SS-0097    | Existing            | 132                   | 32                      | 64                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-143                  | Ullon-Rampura             | SS-0145  | SS-0025    | Existing            | 132                   | 4                       | 8                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-144                  | Rampura-Bashundhara       | SS-0025  | SS-0040    | Existing            | 132                   | 8                       | 16                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| IL-145                  | Bashundhara-Tongi         | SS-0040  | SS-0144    | Existing            | 132                   | 11                      | 22                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-146                  | Rampura-Moghbazar         | SS-0025  | SS-0103    | Existing            | 132                   | 4.5                     | 9                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-147                  | Ghorasal-Joydevpur        | SS-0064  | SS-0076    | Existing            | 132                   | 28                      | 56                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| IL-148                  | Baghabari-Shahjadpur      | PS-11023 | SS-0128    | Existing            | 132                   | 5.5                     | 5.5                       | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| IL-149                  | Chandpur-Chowmuhani       | SS-0048  | SS-0052    | Existing            | 132                   | 68                      | 136                       | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-150                  | Barapukuria-Rangpur       | SS-0037  | SS-0122    | Existing            | 132                   | 42                      | 84                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |

| Transmission<br>Line ID | Transmission Line Name                        | From SS     | To SS      | Operating<br>Status | Voltage<br>Level (kV) | Route<br>Length<br>(km) | Circuit<br>Length<br>(km) | Number of<br>Circuit | Conductor<br>name | Conductor<br>Size (mm2) | Capacity<br>(MW) | Construction<br>year |
|-------------------------|-----------------------------------------------|-------------|------------|---------------------|-----------------------|-------------------------|---------------------------|----------------------|-------------------|-------------------------|------------------|----------------------|
| TL-151                  | Barapukuria-Saidpur                           | SS-0037     | SS-0124    | Existing            | 132                   | 36                      | 72                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-152                  | Madaripur-Gopalganj                           | SS-0093     | SS-0066    | Existing            | 132                   | 45                      | 45                        | Single               | AAAC              | 804 MCM                 | 129              | Not Available        |
| TL-153                  | Khulna (C)–Khulna(S)                          | SS-0083     | SS-0022    | Existing            | 132                   | 9                       | 18                        | Double               | Twin AAAC         | 37/4.176 mm.            | 259              | Not Available        |
| TL-154                  | Khulna(S)-Satkhira                            | SS-0022     | SS-0125    | Existing            | 132                   | 47                      | 94                        | Double               | AAAC              | 804 MCM                 | 129              | Not Available        |
| TL-155                  | Rajshahi-Natore                               | SS-0121     | SS-0110    | Existing            | 132                   | 40                      | 40                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-156                  | Rampura-Gulshan                               | SS-0025     | SS-0067    | Existing            | 132                   | 3.3                     | 6.6                       | Double               | XLPE              | 800 sq.mm               | 193              | Not Available        |
| TL-158                  | Sikalbaha-Bakulia                             | SS-0134     | SS-0035    | Existing            | 132                   | 4                       | 8                         | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-159                  | Juldah-Shahmirpur                             | SS-0078     | SS-0130    | Existing            | 132                   | 6                       | 12                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-160                  | Khulshi-Bakulia                               | SS-0084     | SS-0035    | Existing            | 132                   | 15                      | 30                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-161                  | Haripur-Maniknagar                            | SS-0069     | SS-0098    | Existing            | 132                   | 13                      | 13                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-162                  | Joydevpur-Kodda PP                            | SS-0076     | SS-0086    | Existing            | 132                   | 8                       | 16                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-163                  | Kodda PP-Kabirpur                             | SS-0086     | SS-0079    | Existing            | 132                   | 10                      | 20                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-164                  | Sikalbaha-Shahmirpur                          | SS-0134     | SS-0130    | Existing            | 132                   | 9                       | 18                        | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-165                  | Khulshi-Halishahar (Open atKhulshi)           | SS-0084     | SS-0068    | Existing            | 132                   | 13                      | 13                        | Single               | Grosbeak          | 636 MCM                 | 129              | Not Available        |
| TL-166                  | BograOld-BograNew                             | SS-0046     | SS-0013    | Existing            | 132                   | 1.5                     | 3                         | Double               | Twin AAAC         | 37/4.176 mm.            | 259              | Not Available        |
| TL-167                  | Ashuganj-Shahjibazar                          | SS-0033     | SS-0129    | Existing            | 132                   | 53                      | 53                        | Single               | Grosbeak          | 636 MCM                 | 129              | 2009                 |
| TL-168                  | Khulna (S) –Gallamari                         | SS-0022     | SS-0063    | Existing            | 132                   | 4.2                     | 8.4                       | Double               | Grosbeak          | 636 MCM                 | 129              | 2009                 |
| TL-169                  | Naogaon-Niyamatpur                            | SS-0107     | SS-0113    | Existing            | 132                   | 46                      | 46                        | Single               | AAAC              | 804 MCM                 | 129              | 2010                 |
| TL-170                  | Aminbazar-Savar                               | SS-0007     | SS-0127    | Existing            | 132                   | 15.8                    | 31.6                      | Double               | Grosbeak          | 636 MCM                 | 129              | 2010                 |
| TL-171                  | Jhenaidah-Magura                              | SS-0075     | SS-0096    | Existing            | 132                   | 26.5                    | 26.5                      | Single               | Grosbeak          | 636 MCM                 | 129              | 2010                 |
| TL-172                  | Jhenaidah-Chuadanga                           | SS-0075     | SS-0053    | Existing            | 132                   | 39.3                    | 39.3                      | Single               | Grosbeak          | 636 MCM                 | 129              | 2010                 |
| TL-173                  | Naogaon-Joypurhat                             | SS-0107     | SS-0077    | Existing            | 132                   | 46.2                    | 46.2                      | Single               | Grosbeak          | 636 MCM                 | 129              | 2010                 |
| TL-174                  | Thakurgaon-Panchagarh                         | SS-0142     | SS-0117    | Existing            | 132                   | 45                      | 45                        | Single               | AAAC              | 636 MCM                 | 129              | 2010                 |
| TL-175                  | Sonargaon S/S to Megnaghat Rental PP          | SS-0137     | PS-31026   | Existing            | 132                   | 5                       | 10                        | Double               | Grosbeak          | 636 MCM                 | 129              | 2011                 |
| TL-176                  | Shiddhirganj to Siddhirganj Dutch Bangla PP   | SS-0133     | PS-31027   | Existing            | 132                   | 2.4                     | 2.4                       | Single               | Grosbeak          | 636 MCM                 | 129              | 2011                 |
| TL-177                  | Goalpara-Khulna (C)                           | SS-0065     | SS-0083    | Existing            | 132                   | 2.4                     | 2.4                       | Single               | XLPE              |                         | 193              | 2011                 |
| TL-178                  | Noapara PP to Noapara SS                      | PS-31024    | SS-0114    | Existing            | 132                   | 1.6                     | 1.6                       | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-179                  | Daudkandi PP to Daudkandi SS                  | PS-31005    | SS-0057    | Existing            | 132                   | 1.3                     | 1.3                       | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-180                  | Gopalganj PP to Gopalganj SS                  | PS-31008    | SS-0066    | Existing            | 132                   | 1.2                     | 1.2                       | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-181                  | Shiddhirganj desh energy PP to Siddhirganj SS | PS-21011    | SS-0133    | Existing            | 132                   | 2.5                     | 2.5                       | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-182                  | Faridpur PP to Faridpur -Bheramara            | PS-31007    | SS-0060    | Existing            | 132                   | 1                       | 1                         | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-183                  | Bera PP to Baghabari -Ishwardi line           | PS-31010    | SS-0072    | Existing            | 132                   | 4.5                     | 4.5                       | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-184                  | Amnura PP to Rajshahi-Chapai                  | PS-31028    | SS-0121    | Existing            | 132                   | 12.6                    | 12.6                      | Single               | Grosbeak          | Grosbeak                | 129              | 2011                 |
| TL-185                  | Madanganj-Munsiganj                           | SS-0092     | SS-0105    | Existing            | 132                   | 4                       | 8                         | Double               | Grosbeak          | Grosbeak                | 129              | Not Available        |
| TL-186                  | Old Airport-Cantonment                        | Old Airport | Cantonment | Existing            | 132                   | 6.99                    | 13.98                     | Double               | XLPE              | 800 sq.mm               | 193              | 2013                 |
| TL-187                  | Fenchuganj- Kulaura                           | SS-0061     | SS-0088    | Existing            | 132                   | 25                      | 50                        | Double               | Grosbeak          | 636 MCM                 | 129              | 2014                 |
| TL-188                  | Jamalpur- Sherpur                             | SS-0073     | SS-0131    | Existing            | 132                   | 20                      | 40                        | Double               | Grosbeak          | 636 MCM                 | 129              | 2014                 |
| TL-189                  | Old Airport-Sajmasjid                         | Old Airport | SS-0126    | Existing            | 132                   | 8.294                   | 16.588                    | Double               | XLPE              | 800 sq.mm               | 193              | 2014                 |
| TL-190                  | Rampura-Madertek                              | SS-0025     | SS-0094    | Existing            | 132                   | 4.5                     | 9                         | Double               | XLPE              | 500 sq.mm               | 152              | 2015                 |
| TL-191                  | Comilla(N)- Comilla(S)                        | SS-0054     | SS-0055    | Existing            | 132                   | 19                      | 38                        | Double               | Grosbeak          | 636 MCM                 | 129              | 2015                 |
| TL-192                  | Goalpara-Bagerhat New                         | SS-0065     | SS-0034    | Existing            | 132                   | 45                      | 90                        | Double               | Grosbeak          | 636 MCM                 | 129              | 2016                 |
| TL-193                  | LILO of Kabirpur-Tangail at Kaliakoir         | SS-0079     | SS-0141    | Existing            | 132                   | 4.28                    | 17.12                     | Four                 | Grosbeak          | 636 MCM                 | 129              | 2016                 |
| TL-194                  | Tangail-RPCL                                  | SS-0141     | PS-11025   | Existing            | 132                   | 93.44                   | 186.88                    | Double               | Grosbeak          | 636 MCM                 | 129              | Not Available        |

Source: PGCB

| Substation | Station Name         | Facility | Operating | PGCB Grid  | Latitude    | Longitude   | Nos of      | Capacity of         | Total<br>Capacity | Type of    | Construction  |
|------------|----------------------|----------|-----------|------------|-------------|-------------|-------------|---------------------|-------------------|------------|---------------|
| ID         |                      | category | Status    | Division   |             | 5           | Transformer | transformer         | (MVA)             | insulation | year          |
| SS-0001    | Bheramara HVDC       | 400/230  | Existing  | HVDC       | 89.001182   | 24.067198   | 1           | 1x500 MW            | 500 MW            | AIS        | 2013          |
| SS-0002    | Bibiyana             | 400/230  | Existing  | Srimangal  | 91.657406   | 24.634435   | 2           | 2×520               | 1040              | AIS        | 2015          |
| SS-0003    | Kaliakoir            | 400/230  | Existing  | Dhaka(N)   | 90.197913   | 24.092692   | 2           | 2x325               | 650               | AIS        | 2016          |
| SS-0004    | Kaliakoir 230        | 400/230  | Existing  | Dhaka(N)   | 90.197913   | 24.092692   | 1           | 1x520               | 520               | AIS        | 2017          |
| SS-0005    | Agargaon             | 230/132  | Existing  | Dhaka(N-W) | 90.37341552 | 23.78119462 | 2           | 2x300               | 600               | GIS        | 2013          |
| SS-0006    | AKSPL                | 230/132  | Existing  | -          | 91.733244   | 22.471727   | 3           | 2x130/150,<br>1x80  | 380               | GIS        | 2015          |
| SS-0007    | Aminbazar            | 230/132  | Existing  | Dhaka(N-W) | 90.31622303 | 23.78828048 | 3           | 3x225               | 675               | AIS        | Not Available |
| SS-0008    | Ashuganj             | 230/132  | Existing  | -          | 91.01660444 | 24.04354795 | 2           | 2x150               | 300               | AIS        | Not Available |
| SS-0009    | Baghabari            | 230/132  | Existing  | Ishwardi   | 89.59462957 | 24.13683245 | 1           | 1x225(4x75)         | 225               | AIS        | 2009          |
| SS-0010    | Barapukuria          | 230/132  | Existing  | Rangpur    | 88.95307033 | 25.54961457 | 2           | 2x225               | 450               | AIS        | Not Available |
| SS-0011    | Barisal (N)          | 230/132  | Existing  | Barisal    | 90.308879   | 22.753807   | 2           | 2x300               | 600               | AIS        | 2015          |
| SS-0012    | Bheramara            | 230/132  | Existing  | -          | 89.016598   | 24.050144   | 2           | 2x255/300           | 600               | AIS        | 2017          |
| SS-0013    | Bogra                | 230/132  | Existing  | Bogra      | 89.35065828 | 24.82944068 | 2           | 2x225(7x75)         | 450               | AIS        | 2008          |
| SS-0014    | BSRM                 | 230/132  | Existing  | -          | 91.54759    | 22.856856   | 2           | 2x130/140           | 280               | GIS        | 2015          |
| SS-0015    | Comilla (N)          | 230/132  | Existing  | Comilla    | 91.10155702 | 23.50887223 | 2           | 2x225               | 450               | AIS        | Not Available |
| SS-0016    | Fenchuganj           | 230/132  | Existing  | Srimangal  | 91.93311509 | 24.65839813 | 1           | 1x300               | 300               | AIS        | 2012          |
| SS-0017    | Ghorasal             | 230/132  | Existing  | -          | 90.63743708 | 23.9790212  | 2           | 2x125               | 250               | AIS        | Not Available |
| SS-0018    | Haripur              | 230/132  | Existing  | Dhaka(E)   | 90.53339937 | 23.68415289 | 3           | 3x225(10x75)        | 675               | AIS        | Not Available |
| SS-0019    | Hasnabad             | 230/132  | Existing  | Dhaka(S)   | 90.42865337 | 23.68066392 | 3           | 3x225(10x75)        | 675               | AIS        | Not Available |
| SS-0020    | Hathazari            | 230/132  | Existing  | CTG(N)     | 91.80727456 | 22.49203869 | 4           | 4x150               | 600               | AIS        | Not Available |
| SS-0021    | Ishurdi              | 230/132  | Existing  | Ishwardi   | 89.08441773 | 24.09592995 | 3           | 3x225               | 675               | AIS        | Not Available |
| SS-0022    | Khulna (S)           | 230/132  | Existing  | Khulna     | 89.50752887 | 22.79513634 | 2           | 2x225(7x75)         | 450               | AIS        | 2006          |
| SS-0023    | Maniknagar           | 230/132  | Existing  | Dhaka(C)   | 90.4358658  | 23.72218567 | 2           | 2x300               | 600               | GIS        | 2014          |
| SS-0024    | Meghnaghat Switching | 230      | Existing  | Dhaka(E)   | 90.60157822 | 23.61087286 | -           | -                   | -                 | AIS        | Not Available |
| SS-0025    | Rampura              | 230/132  | Existing  | Dhaka(C)   | 90.43140716 | 23.7674602  | 3           | 3x225(10x75)        | 675               | AIS        | Not Available |
| SS-0026    | Siddhirganj          | 230/132  | Existing  | Dhaka(E)   | 90.51715638 | 23.68559957 | 2           | 2x300               | 600               | AIS        | 2014          |
| SS-0027    | Sirajganj Switching  | 230      | Existing  | Bogra      | 89.74414712 | 24.38864581 | -           | -                   | -                 | AIS        | 2007          |
| SS-0028    | Tongi                | 230/132  | Existing  | Dhaka(N)   | 90.41288499 | 23.89726017 | 3           | 3x225(10x75)        | 675               | AIS        | Not Available |
| SS-0029    | Sikalbaha            | 230/132  | Existing  | #N/A       | 91.867559   | 22.323119   | 1           | 1x300               | 300               | AIS        | 2017          |
| SS-0030    | Agargaon             | 132/33   | Existing  | Dhaka(N-W) | 90.37341552 | 23.78119462 | 2           | 2x80/120            | 240               | GIS        | 2013          |
| SS-0031    | AKSML                | 132/33   | Existing  | CTG(N)     | 91.74268083 | 22.4456504  | 1           | 1x25/30             | 30                | AIS        | Not Available |
| SS-0032    | Amnura               | 132/33   | Existing  | Rajshahi   | 88.40196    | 24.633954   | 2           | 2x35/50             | 100               | AIS        | 2015          |
| SS-0033    | Ashuganj             | 132/33   | Existing  | -          | 91.01484094 | 24.04285608 | 2           | 2x25/41             | 82                | AIS        | Not Available |
| SS-0034    | Bagerhat             | 132/33   | Existing  | Khulna     | 89.79781522 | 22.64732946 | 2           | 2x25/41             | 82                | AIS        | Not Available |
| SS-0035    | Bakulia              | 132/33   | Existing  | CTG(C)     | 91.85104594 | 22.35303221 | 3           | 2x48/64<br>1x50/75  | 203               | AIS        | Not Available |
| SS-0036    | Bangabhaban          | 132/33   | Existing  | -          | 90.42095851 | 23.7239721  | 2           | 2x28/35             | 70                | AIS        | Not Available |
| SS-0037    | Barapukuria          | 132/33   | Existing  | Rangpur    | 88.95307077 | 25.54963007 | 4           | 2x25/41,<br>2x15/20 | 122               | AIS        | Not Available |
| SS-0038    | Barisal              | 132/33   | Existing  | Barisal    | 90.34473404 | 22.67687846 | 2           | 2x50/75             | 150               | AIS        | Not Available |
| SS-0039    | Baroaulia            | 132/33   | Existing  | CTG(N)     | 91.72298644 | 22.47476349 | 2           | 2x48/64             | 128               | AIS        | Not Available |
| SS-0040    | Bashundhara          | 132/33   | Existing  | -          | 90.43584003 | 23.81757314 | 3           | 3x50/75             | 225               | AIS        | Not Available |

### Table 3.2.8 List of Existing Substations

Nippon Koei Co., Ltd. & Chiyoda U-tech Co., Ltd.

| Substation<br>ID | Station Name     | Facility<br>category | Operating<br>Status | PGCB Grid<br>Division | Latitude    | Longitude   | Nos of<br>Transformer | Capacity of transformer        | Total<br>Capacity<br>(MVA) | Type of<br>insulation | Construction<br>year |
|------------------|------------------|----------------------|---------------------|-----------------------|-------------|-------------|-----------------------|--------------------------------|----------------------------|-----------------------|----------------------|
| SS-0041          | Bhandaria        | 132/33               | Existing            | Barisal               | 90.06999313 | 22.48036385 | 2                     | 2x25/41                        | 82                         | AIS                   | Not Available        |
| SS-0042          | Bhasantek        | 132/33               | Existing            | Dhaka(N-W)            | 90.38999756 | 23.80726171 | 2                     | 2x80/120                       | 240                        | GIS                   | 2013                 |
| SS-0043          | Bheramara PGCB   | 132/33               | Existing            | Jhenaidah             | 89.01635253 | 24.04361378 | 3                     | 2x25/41,<br>1x15/20            | 102                        | AIS                   | Not Available        |
| SS-0044          | Bhola            | 132/33               | Existing            | -                     | 90.710229   | 22.479463   | 1                     | 1x60<br>(230/33kV)             | 60                         | AIS                   | Not Available        |
| SS-0045          | Bhulta           | 132/33               | Existing            | Dhaka(E)              | 90.58588701 | 23.80389583 | 2                     | 1x35/50<br>1x50/75             | 125                        | AIS                   | Not Available        |
| SS-0046          | Bogra            | 132/33               | Existing            | Bogra                 | 89.35082833 | 24.84095441 | 4                     | 2x25/41,<br>2x50/75            | 390                        | AIS                   | Not Available        |
| SS-0047          | Brahmanbaria     | 132/33               | Existing            | Srimangal             | 91.10680681 | 23.95903536 | 3                     | 3x25/41                        | 123                        | AIS                   | 2011                 |
| SS-0048          | Chandpur         | 132/33               | Existing            | Comilla               | 90.66754779 | 23.22057257 | 2                     | 2x50/75                        | 150                        | AIS                   | Not Available        |
| SS-0049          | Chandraghona     | 132/33               | Existing            | CTG(S)                | 92.1226125  | 22.48162162 | 2                     | 2x15/20                        | 40                         | AIS                   | Not Available        |
| SS-0050          | Chapai Nawabganj | 132/33               | Existing            | Rajshahi              | 88.28991989 | 24.58008421 | 4                     | 3x15/20,<br>1x25/41            | 101                        | AIS                   | Not Available        |
| SS-0051          | Chhatak          | 132/33               | Existing            | Srimangal             | 91.66339923 | 25.03132909 | 3                     | 2x15/20,<br>1x25/41            | 81                         | AIS                   | Not Available        |
| SS-0052          | Chowmuhani       | 132/33               | Existing            | Comilla               | 91.10430045 | 22.94604699 | 3                     | 1x80/120<br>1x50/75            | 270                        | AIS                   | Not Available        |
| SS-0053          | Chuadanga        | 132/33               | Existing            | Jhenaidah             | 88.85730632 | 23.62256319 | 2                     | 2x25/41                        | 82                         | AIS                   | 2010                 |
| SS-0054          | Comilla (N)      | 132/33               | Existing            | Comilla               | 91.10234997 | 23.50830356 | 2                     | 2x50/75                        | 150                        | AIS                   | Not Available        |
| SS-0055          | Comilla (S)      | 132/33               | Existing            | Comilla               | 91.17001734 | 23.42905973 | 4                     | 2x50/75,<br>2x25/41            | 232                        | AIS                   | Not Available        |
| SS-0056          | Cox's Bazar      | 132/33               | Existing            | CTG(S)                | 92.01403275 | 21.42377053 | 3                     | 2x25/41,<br>1x50/75            | 157                        | AIS                   | Not Available        |
| SS-0057          | Daudkandi        | 132/33               | Existing            | Comilla               | 90.78365289 | 23.55335324 | 2                     | 2x50/75                        | 150                        | AIS                   | 2011                 |
| SS-0058          | Dhanmondi        | 132/33               | Existing            | -                     | 90.39188278 | 23.73918985 | 4                     | 4x50/75                        | 300                        | AIS                   | Not Available        |
| SS-0059          | Dohazari         | 132/33               | Existing            | CTG(S)                | 92.07193213 | 22.15344797 | 2                     | 2x50/75                        | 150                        | AIS                   | Not Available        |
| SS-0060          | Faridpur         | 132/33               | Existing            | Faridpur              | 89.79899801 | 23.59132576 | 2                     | 2x50/75                        | 150                        | AIS                   | Not Available        |
| SS-0061          | Fenchuganj       | 132/33               | Existing            | Srimangal             | 91.93397112 | 24.65930035 | 3                     | 2x15/20,<br>1x25/41            | 81                         | AIS                   | Not Available        |
| SS-0062          | Feni             | 132/33               | Existing            | Comilla               | 91.38430949 | 23.01058051 | 2                     | 1X50/75<br>1x50/75             | 150                        | AIS                   | Not Available        |
| SS-0063          | Gallamari        | 132/33               | Existing            | Khulna                | 89.53622403 | 22.78833839 | 2                     | 2x25/41                        | 82                         | GIS                   | 2009                 |
| SS-0064          | Ghorasal         | 132/33               | Existing            | -                     | 90.63545022 | 23.97962483 | 2                     | 2x41/63                        | 126                        | AIS                   | Not Available        |
| SS-0065          | Goalpara         | 132/33               | Existing            | Khulna                | 89.53794421 | 22.86788562 | 2                     | 2x12.5/16.67                   | 33                         | AIS                   | Not Available        |
| SS-0066          | Gopalganj        | 132/33               | Existing            | Faridpur              | 89.82738364 | 23.03066726 | 2                     | 2x25/41                        | 82                         | AIS                   | Not Available        |
| SS-0067          | Gulshan          | 132/33               | Existing            | Dhaka(C)              | 90.41737434 | 23.78029104 | 2                     | 2x80/120                       | 240                        | GIS                   | 2007                 |
| SS-0068          | Halishahar       | 132/33               | Existing            | CTG(C)                | 91.78686595 | 22.27215646 | 3                     | 2x44.1/63,<br>1x48/64          | 190                        | AIS                   | Not Available        |
| SS-0069          | Haripur          | 132/33               | Existing            | -                     | 90.53339536 | 23.68412769 | 2                     | 2x80/120                       | 240                        | AIS                   | Not Available        |
| SS-0070          | Hasnabad         | 132/33               | Existing            | Dhaka(S)              | 90.42861001 | 23.68118175 | 3                     | 3x66/100                       | 300                        | AIS                   | Not Available        |
| SS-0071          | Hathazari        | 132/33               | Existing            | CTG(N)                | 91.80727859 | 22.49202021 | 2                     | 1x50/75,<br>1x50/83            | 158                        | AIS                   | Not Available        |
| SS-0072          | Ishurdi          | 132/33               | Existing            | Ishwardi              | 89.08442071 | 24.09594548 | 3                     | 2x15/20,<br>1x25/41            | 81                         | AIS                   | Not Available        |
| SS-0073          | Jamalpur         | 132/33               | Existing            | Mymensingh            | 89.96003565 | 24.92030235 | 4                     | 3x25/41,<br>1x15/20            | 143                        | AIS                   | Not Available        |
| SS-0074          | Jessore          | 132/33               | Existing            | Jhenaidah             | 89.2082289  | 23.14692985 | 3                     | 1x50/83.3,<br>1x40<br>1x80/120 | 243.3                      | AIS                   | Not Available        |
| SS-0075          | Jhenaidah        | 132/33               | Existing            | Jhenaidah             | 89.17723974 | 23.52990171 | 2                     | 1x25/41                        | 161                        | AIS                   | Not Available        |

Power Sector Chapter3

| Substation<br>ID | Station Name  | Facility<br>category | Operating<br>Status | PGCB Grid<br>Division | Latitude    | Longitude   | Nos of<br>Transformer | Capacity of<br>transformer      | Total<br>Capacity<br>(MVA) | Type of<br>insulation | Construction<br>year |
|------------------|---------------|----------------------|---------------------|-----------------------|-------------|-------------|-----------------------|---------------------------------|----------------------------|-----------------------|----------------------|
| SS-0076          | Joydevpur     | 132/33               | Existing            | Dhaka(N)              | 90.38252583 | 23.99195596 | 3                     | 2x35/50,<br>1x80/120            | 220                        | AIS, GIS<br>mixed     | Not Available        |
| SS-0077          | Joypurhat     | 132/33               | Existing            | Bogra                 | 89.01025126 | 25.10636248 | 4                     | 4x25/41                         | 164                        | AIS                   | 2010                 |
| SS-0078          | Juldah        | 132/33               | Existing            | CTG(C)                | 91.8075535  | 22.29982615 | 1                     | 1x48/64                         | 64                         | AIS                   | Not Available        |
| SS-0079          | Kabirpur      | 132/33               | Existing            | Dhaka(N)              | 90.25359725 | 24.00154533 | 3                     | 2x50/75,<br>1x80/120            | 270                        | AIS                   | Not Available        |
| SS-0080          | Kallayanpur   | 132/33               | Existing            | Dhaka(N-W)            | 90.34792468 | 23.7821128  | 3                     | 3x50/75                         | 225                        | AIS                   | Not Available        |
| SS-0081          | Kamrangirchar | 132/33               | Existing            | -                     | 90.37216886 | 23.72332809 | 3                     | 3x50/75                         | 225                        | AIS                   | 2008                 |
| SS-0082          | Kaptai        | 132/33               | Existing            | -                     | 92.2156078  | 22.49871154 | 1                     | 1x15/20<br>(132/11kV)           | 20                         | AIS                   | Not Available        |
| SS-0083          | Khulna (C)    | 132/33               | Existing            | Khulna                | 89.52571054 | 22.85882667 | 3                     | 3x48/64                         | 192                        | AIS                   | Not Available        |
| SS-0084          | Khulshi       | 132/33               | Existing            | CTG(N)                | 91.79557839 | 22.36176406 | 3                     | 2x80/120<br>1x64/80             | 320                        | AIS                   | Not Available        |
| SS-0085          | Kishoreganj   | 132/33               | Existing            | Mymensingh            | 90.79023924 | 24.41864637 | 3                     | 1x15/20,<br>2x25/41             | 102                        | AIS                   | Not Available        |
| SS-0086          | Kodda         | 132/33               | Existing            | Dhaka(N)              | 90.343593   | 23.99062    | 4                     | 4x50/75                         | 300                        | AIS                   | 2016                 |
| SS-0087          | KSRM          | 132/33               | Existing            | -                     | 91.713827   | 22.502843   | 2                     | 2x35/50                         | 100                        | AIS                   | Not Available        |
| SS-0088          | Kulaura       | 132/33               | Existing            | Srimangal             | 92.01807972 | 24.51212911 | 2                     | 2x25/41                         | 82                         | AIS                   | 2014                 |
| SS-0089          | Kustia        | 132/33               | Existing            | #N/A                  | 89.09492471 | 23.88073392 | 2                     | 2x50/75                         | 150                        | AIS                   | Not Available        |
| SS-0090          | Lalbagh       | 132/33               | Existing            | -                     | 90.39035413 | 23.71343486 | 2                     | 2x50/75                         | 150                        | GIS                   | 2014                 |
| SS-0091          | Lalmonirhat   | 132/33               | Existing            | Rangpur               | 89.45432533 | 25.91800932 | 5                     | 4X15/20<br>1X25/33              | 113                        | AIS                   | Not Available        |
| SS-0092          | Madanganj     | 132/33               | Existing            | -                     | 90.51548649 | 23.59372878 | 2                     | 2x35/50                         | 100                        | AIS                   | Not Available        |
| SS-0093          | Madaripur     | 132/33               | Existing            | Faridpur              | 90.14138933 | 23.14780038 | 3                     | 2x25/41<br>1x50/75              | 157                        | AIS                   | Not Available        |
| SS-0094          | Madartek      | 132/33               | Existing            | -                     | 90.44103053 | 23.74358052 | 2                     | 2x50/75                         | 150                        | GIS                   | 2015                 |
| SS-0095          | Madunaghat    | 132/33               | Existing            | CTG(S)                | 91.87049103 | 22.43237895 | 2                     | 2x25/41                         | 82                         | AIS                   | Not Available        |
| SS-0096          | Magura        | 132/33               | Existing            | Jhenaidah             | 89.3992929  | 23.47298635 | 2                     | 2x25/41                         | 82                         | AIS                   | 2010                 |
| SS-0097          | Manikganj     | 132/33               | Existing            | Aricha                | 90.01209737 | 23.87218577 | 3                     | 3x35/50                         | 150                        | AIS                   | Not Available        |
| SS-0098          | Maniknagar    | 132/33               | Existing            | Dhaka(C)              | 90.43523416 | 23.72193486 | 2                     | 2x50/75                         | 150                        | AIS                   | Not Available        |
| SS-0099          | Matuail       | 132/33               | Existing            | -                     | 90.48665424 | 23.65987937 | 2                     | 2x50/75                         | 150                        | AIS                   | Not Available        |
| SS-0100          | MI Cement     | 132/33               | Existing            | -                     |             |             | 1                     | 1x28                            | 28                         | AIS                   | Not Available        |
| SS-0101          | Mirpur        | 132/33               | Existing            | Dhaka(N-W)            | 90.35979201 | 23.83092126 | 3                     | 1x35/50,<br>2x50/75             | 200                        | AIS                   | Not Available        |
| SS-0102          | MSML          | 132/33               | Existing            | CTG(C)                | 91.810286   | 22.38718    | 1                     | 1x25/30                         | 30                         | AIS                   | Not Available        |
| SS-0103          | Moghbazar     | 132/33               | Existing            | -                     | 90.4011209  | 23.75418735 | 3                     | 3x50/75                         | 225                        | AIS                   | Not Available        |
| SS-0104          | Mongla        | 132/33               | Existing            | Khulna                | 89.59535303 | 22.50573448 | 2                     | 2x25/41                         | 82                         | AIS                   | Not Available        |
| SS-0105          | Munshiganj    | 132/33               | Existing            | Dhaka(S)              | 90.4970881  | 23.57194699 | 2                     | 2x50/75                         | 150                        | AIS                   | 2012                 |
| SS-0106          | Mymensingh    | 132/33               | Existing            | Mymensingh            | 90.42143862 | 24.73473456 | 3                     | 1x50/75<br>2x80/120             | 315                        | AIS                   | Not Available        |
| SS-0107          | Naogaon       | 132/33               | Existing            | Rajshahi              | 88.96343112 | 24.80308167 | 3                     | 2x50/75<br>1x25/41              | 191                        | AIS                   | Not Available        |
| SS-0108          | Narinda       | 132/33               | Existing            | -                     | 90.42085721 | 23.71365368 | 2                     | 2x50/75                         | 150                        | AIS                   | Not Available        |
| SS-0109          | Narsingdi     | 132/33               | Existing            | Dhaka(E)              | 90.70474362 | 23.91363119 | 2                     | 2x50/75                         | 150                        | AIS                   | 2009                 |
| SS-0110          | Natore        | 132/33               | Existing            | Rajshahi              | 89.00886458 | 24.41172627 | 5                     | 2x25/41,<br>1x35/50,<br>2x15/20 | 172                        | AIS                   | Not Available        |

| Substation<br>ID | Station Name | Facility<br>category | Operating<br>Status | PGCB Grid<br>Division | Latitude    | Longitude   | Nos of<br>Transformer | Capacity of transformer         | Total<br>Capacity<br>(MVA) | Type of insulation | Construction<br>year |
|------------------|--------------|----------------------|---------------------|-----------------------|-------------|-------------|-----------------------|---------------------------------|----------------------------|--------------------|----------------------|
| SS-0111          | Netrokona    | 132/33               | Existing            | Mymensingh            | 90.69806948 | 24.86742648 | 3                     | 2x25/41,<br>1x25/33             | 115                        | AIS                | Not Available        |
| SS-0112          | New Tongi    | 132/33               | Existing            | Dhaka(N)              | 90.4107     | 23.895329   | 2                     | 2x50/75                         | 150                        | AIS                | 2008                 |
| SS-0113          | Niyamatpur   | 132/33               | Existing            | Rajshahi              | 88.58360628 | 24.83361873 | 3                     | 2x35/50,<br>1x25/41             | 141                        | AIS                | 2010                 |
| SS-0114          | Noapara      | 132/33               | Existing            | Khulna                | 89.4053835  | 23.02350331 | 3                     | 2x20,<br>1x44.1/63              | 103                        | AIS                | Not Available        |
| SS-0115          | Pabna        | 132/33               | Existing            | Ishwardi              | 89.23423942 | 24.023599   | 2                     | 2x50/75                         | 150                        | AIS                | Not Available        |
| SS-0116          | Palashbari   | 132/33               | Existing            | Bogra                 | 89.34992522 | 25.27714717 | 5                     | 3X15/20<br>2X25/41              | 142                        | AIS                | Not Available        |
| SS-0117          | Panchagarh   | 132/33               | Existing            | Rangpur               | 88.55700775 | 26.35403217 | 2                     | 2x25/41                         | 82                         | AIS                | 2010                 |
| SS-0118          | Patuakhali   | 132/33               | Existing            | Barisal               | 90.31805184 | 22.35861054 | 3                     | 2x15/20,<br>1x25/41             | 81                         | AIS                | Not Available        |
| SS-0119          | Purbasadipur | 132/33               | Existing            | Rangpur               | 88.6785732  | 25.75414601 | 4                     | 1x25/41,<br>1x20,2x50/75        | 211                        | AIS                | Not Available        |
| SS-0120          | RSRM         | 132/33               | Existing            | -                     | 90.53326689 | 23.70062278 | 1                     | 1x20/25                         | 25                         | AIS                | Not Available        |
| SS-0121          | Rajshahi     | 132/33               | Existing            | Rajshahi              | 88.67602745 | 24.36622519 | 3                     | 2x50/75,<br>1x35/50             | 200                        | AIS                | Not Available        |
| SS-0122          | Rangpur      | 132/33               | Existing            | Rangpur               | 89.25210187 | 25.72884097 | 4                     | 2x50/75,<br>2x10/13.3           | 176.6                      | AIS                | Not Available        |
| SS-0123          | Rooppur      | 132/33               | Existing            | Ishwardi              | 89.049713°  | 24.072135°  | 1                     | 1x25/41                         | 41                         | AIS                | 2017                 |
| SS-0124          | Saidpur      | 132/33               | Existing            | Rangpur               | 88.88522712 | 25.81296779 | 3                     | 2x25/41,<br>1x35/50             | 132                        | AIS                | Not Available        |
| SS-0125          | Satkhira     | 132/33               | Existing            | Khulna                | 89.09307983 | 22.74347519 | 2                     | 2x25/41                         | 82                         | GIS                | Not Available        |
| SS-0126          | Satmasjid    | 132/33               | Existing            | Dhaka(N-W)            | 90.3620503  | 23.75634343 | 2                     | 2x80/120                        | 240                        | GIS                | 2014                 |
| SS-0127          | Savar        | 132/33               | Existing            | Dhaka(N-W)            | 90.25516585 | 23.81642316 | 2                     | 2x50/75                         | 150                        | AIS                | 2010                 |
| SS-0128          | Shahjadpur   | 132/33               | Existing            | Ishwardi              | 89.58428227 | 24.17261349 | 4                     | 2x15/20,<br>1x25/41,<br>1x35/50 | 131                        | AIS                | Not Available        |
| SS-0129          | Shahjibazar  | 132/33               | Existing            | Srimangal             | 91.37927877 | 24.25369771 | 3                     | 2x25/41,<br>1x50/75             | 157                        | AIS                | Not Available        |
| SS-0130          | Shahmirpur   | 132/33               | Existing            | CTG(C)                | 91.8481379  | 22.26742751 | 2                     | 2x48/64                         | 128                        | AIS                | Not Available        |
| SS-0131          | Sherpur      | 132/33               | Existing            | Mymensingh            | 90.0833137  | 25.04825697 | 2                     | 2x35/50                         | 100                        | AIS                | 2014                 |
| SS-0132          | Shyampur     | 132/33               | Existing            | Dhaka(S)              | 90.44579926 | 23.67660809 | 4                     | 4x50/75                         | 300                        | AIS                | Not Available        |
| SS-0133          | Siddhirganj  | 132/33               | Existing            | Dhaka(E)              | 90.51715827 | 23.68564612 | 2                     | 2x50/83.3                       | 166.6                      | AIS                | Not Available        |
| SS-0134          | Sikalbaha    | 132/33               | Existing            | -                     | 91.8656961  | 22.32208451 | 2                     | 1x25/41.6,<br>1x50/75           | 116.6                      | AIS                | Not Available        |
| SS-0135          | Sirajganj    | 132/33               | Existing            | Bogra                 | 89.67008236 | 24.44821905 | 4                     | 1x15/20,<br>1x35/50,<br>2x25/41 | 152                        | AIS                | Not Available        |
| SS-0136          | Sitalakhya   | 132/33               | Existing            | -                     | 90.49459881 | 23.60165278 | 3                     | 3x50/75                         | 225                        | AIS                | Not Available        |
| SS-0137          | Sonargaon    | 132/33               | Existing            | Dhaka(E)              | 90.59068851 | 23.64187926 | 2                     | 2x50/75                         | 150                        | AIS                | 2011                 |
| SS-0138          | Srimangal    | 132/33               | Existing            | Srimangal             | 91.70211804 | 24.30772062 | 3                     | 3x15/20                         | 60                         | AIS                | Not Available        |
| SS-0139          | SSML         | 132/33               | Existing            | -                     | 91.722529   | 22.474345   | 1                     | 1x25/30                         | 30                         | AIS                | Not Available        |
| SS-0140          | Sylhet       | 132/33               | Existing            | Srimangal             | 91.83014981 | 24.90922413 | 3                     | 2x25/41,<br>1x50/83             | 165                        | AIS                | Not Available        |
| SS-0141          | Tangail      | 132/33               | Existing            | Dhaka(N)              | 89.92135491 | 24.27695587 | 3                     | 3x50/75                         | 225                        | AIS                | Not Available        |
| <u>SS-0142</u>   | Thakurgaon   | 132/33               | Existing            | Rangpur               | 88.42560234 | 26.03873375 | 2                     | 2x25/41                         | 82                         | AIS                | Not Available        |
| <u>SS-0143</u>   | TKCCL        | 132/33               | Existing            | CTG(S)                | 91.89104055 | 22.38392767 | 1                     | 1x50/75                         | 75                         | AIS                | Not Available        |
| <u>SS-0144</u>   | Tongi        | 132/33               | Existing            | Dhaka(N)              | 90.41288468 | 23.89727813 | 3                     | 3x50/75                         | 225                        | AIS                | Not Available        |
| <u>55-0145</u>   | Ulion        | 132/33               | Existing            | Dnaka(C)              | 90.41443383 | 23./024/11/ | 3                     | 3x35/50<br>2x50/75              | 150                        | AIS                | Not Available        |
| 00-0140          | Ullara       | 132/33               | EXISTING            |                       | 30.3/32009/ | 23.0/293901 | L 2                   | 2x30//3                         | 150                        | AIS                | INULAVAIIADIE        |

84

### (2) Investment planning

We reviewed the development plan for transmission line and substation based on the development plan of PSMP 2016. The list of the on-going projects as of September 2017 is as shown in the following Table.

|    | <b>D</b> N                                                                             | Scope of works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Main Objectives of the Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project Cost (M US\$) |                 | Foreign             | Project                | Present              | 0017 Obsture | Bemerke   |
|----|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------|------------------------|----------------------|--------------|-----------|
| SN | Projects Name                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Local                 | Foreign<br>(PA) | Financing<br>Status | Year Year              | Status<br>(PSMP2016) | 2017 Status  | Remarks   |
| 1  | Bibiyana-Kaliakoir 400 kV and<br>Fenchuganj-Bibiyana 230 kV<br>Transmission Line (NG2) | <ul> <li>i) 168.64 km 400 kV Bibiyana-Kaliakoir Double ckt line. ii) 33.18 km<br/>Fenchuganj-Bibiyana 230 kV double ckt line</li> <li>iii) Installation of 400/230 kV 1x520 MVA transformer at Bibiyana.</li> <li>iv) 400/230 kV, 1x520 MVA &amp; 400/132 kV, 2x325 MVA S/S at<br/>Kaliakoirv) 230/132 kV, 1x300 MVA S/S at Fenchuganj and renovation &amp;<br/>extension of existing 132 kV substation at Fenchuganj</li> <li>vi) Construction of 36 km 230 kV line for turn-in and out of existing<br/>Aminbazar-Tongi230 kV line on four ckt tower at Kaliakoir.</li> <li>vii) Construction of 5 km 132 kV line for turn-in and out of existing<br/>Kabirpur-Tangail 132 kV line on four ckt tower at Kaliakoir.</li> <li>viii) Construction of 16 km Kaliakoir-Dhamrai double circuit 132 kV line.</li> <li>ix) Construction of about 3.75 km 132 kV Four circuit transmission line<br/>on Four circuit tower from Fenchuganj SS to Fenchuganj PS</li> </ul>                                                                                                                       | To build the power evacuation facilities for<br>upcoming 2x450 MW CCPP at Bibiyana & to<br>evacuate the surplus power of Sylhet area<br>and also to supply adequate power to the<br>northern part of Dhaka city.                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.01                | 146.73          | EDCF Korea<br>& GOB | July,2017<br>(Revised) | 91.30%               | Completed    | Completed |
| 2  | National Power Transmission<br>Network Development Project                             | <ul> <li>i) 230 kV Line:</li> <li>(a) 25 km Hathazari- Sikalbaha d/c TL (b) 25 km Hathazari- Rampur d/c TL</li> <li>(c) 5 km Hathazari- Rampur d/c u/g line ii) 132 kV Line:</li> <li>(a) 6 km d/c In Out u/g line of Khulshi-Halishaharline at new Rampur 132/33 kV GIS SS</li> <li>(b) 7 km d/c Rampur-Agrabad u/g</li> <li>(c) 132 kV interconnection line : 354 Ckt.km.</li> <li>iii) Two nos. 230/132 kV, 2x300 MVA Sub Stations at Rampur and Sikalbaha, Ctg. iv) 132/33 kV SS: 11 Sub Stations (1536 MVA) at Agrabad, Chowddagram, Benapole, Shariatpur, Ramganj, Baroirhat (Ctg.), Bhaluka (Mymensingh), Barisal- (N), Mahastangarh (Bogra), Jaldhaka (Nilfamari), Rajshahi-2.</li> <li>v) Bay Extension:</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>i) To evacuate power from the proposed<br/>225MW power plant at Sikalbaha</li> <li>ii) Provide reliable power to Chittagong<br/>citythrough</li> <li>Rampur &amp; Sikalbaha</li> <li>iii) Meet the growing load demand of the<br/>areas under the proposed new 132/33 kV<br/>substations atAgrabad (Ctg).; Chouddagram,<br/>Ramganj,Bhaluka (Myn), Baroirhat (Ctg),<br/>Benapol, Shariatpur, Barisal- (N),<br/>Mahastangarh (Bogra), Jaldhaka (Nilfamari) &amp;<br/>Rajshahi-2</li> </ul>                                                                                                                                         | 134.62                | 168.70          | JICA                | June, 2019             | 5.40%                | 31.85%       | Running   |
| 3  | 132 kV Grid Network Development<br>Project in Eastern Region                           | <ul> <li>i) 132 kV line:</li> <li>(a) 100 km RPCI-Tangail double circuitLine</li> <li>(b) 80 km Chandraghona-Rangamati-Khagrachari double circuit line</li> <li>(c) 55 km Brahmanbaria-Narsingdi double circuit line</li> <li>(d) 28 km Beanibazar-Sylhet(S) single circuit line on double circuit tower</li> <li>(e) 30 kmSunamganj-Chhatak single circuit line on double circuit tower</li> <li>(e) 30 kmSunamganj-Chhatak single circuit line on double circuit tower</li> <li>(e) 30 kmSunamganj (chatak single circuit line on double circuit tower</li> <li>(ii) 132/33 kV SS: 4 nos. atRangamati, Khagrachari, Beanibazar, Sunamganj (each 82</li> <li>MVA)</li> <li>iii) 132 kV Bay Extension : 17 nos. at Tangail (2), RPCL (2),</li> <li>Chandraghona (4), Brahmanbaria (2), Chhatak (1), Narsingdi (6).</li> <li>iv) 3 nos. of 132 kV Bay Modification at Narsingdi</li> <li>v) Conversion of Single Bus-bar configuration into Double Bus-bar at Narsingdi</li> <li>132/33 kV S/S</li> <li>vi) Installation of one 132/33 kV 50/75 MVA transformer at Narsingdi</li> </ul> | <ul> <li>i) To increase the power supply reliability of<br/>Mymensingh area.</li> <li>ii) To reduce dependency on Ashuganj-<br/>Kishorganj</li> <li>132kV line.</li> <li>iii) To evacuate the Power from the<br/>upcoming Power</li> <li>Plant in Mymensingh area.</li> <li>iv) To meet the growing demand of<br/>Rangamati, Khagrachari, Beanibazar &amp;<br/>Sunamganj.</li> <li>v) To supply reliable power to Hill Tract area.</li> <li>vi) To minimize the accumulation of huge<br/>power at<br/>Ashuganj 132 kV bus bar.</li> <li>vii) To minimize the overloading of existing<br/>"Ashuganj-Ghorasal 132 kV transmission</li> </ul> | 36.00                 | 85.00           | ADB                 | June, 2018             | 39.90%               | 8471%        | Running   |

#### Table 3.2.9 On-going Projects by PGCB on September 2017

|    |                                                                                   | Scope of works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Cost (M US\$) |                 | Foreign                 | Project           | Present                                   | 0017 Shahua |         |
|----|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------------------|-------------------|-------------------------------------------|-------------|---------|
| SN | Projects Name                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Main Objectives of the Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Local                 | Foreign<br>(PA) | Status                  | Year              | (PSMP2016)                                | 2017 Status | Remarks |
| 4  | 400/230/132 Network Development<br>project                                        | <ul> <li>(i)Construction of substations.</li> <li>a) 230 kV GIS Switching,Substation at Ghorasal</li> <li>b) 230/132 kV GIS, Substation at Ullon(2x225/300 MVA) , Basundhara</li> <li>(2x225/300MVA) &amp; Shyampur(3x225/300 MVA) and 230/132 kV AIS</li> <li>Substation at Sripur(2x225/300MVA)</li> <li>c) 132/33 kV GIS, 2x80/120 MVASubstation at Ullon</li> <li>(d) 132/33 kV GIS, 2x80/120 MVASubstation at Ullon</li> <li>(ii) Construction of Lines.</li> <li>a) Construction of Ghorasal-Tongi 28 km 400 kV double circuit line.</li> <li>b) Construction of 132 kV line : 358 Ckt.km. c) Construction of 230 kV line : 62.6 Ckt.km.</li> <li>(ii) Re-conductoring 54 Ckt.km Ghorasal-Tongi 230kV line.</li> <li>(e) 132/33 kV SS Renovation: Manikganj, Comilla(S), Madunaghat.</li> <li>f) 132 kV bay Extension : 4</li> <li>g) 230 kV bay Extension : 6</li> </ul> | <ul> <li>i) To evacuate power from upcoming power<br/>plant at Ghorasal.</li> <li>(ii) To minimize the overloading of existing<br/>"Tongi-Ghorasal 230 kV transmission line".</li> <li>(iii) To meet up upcoming demand of Ullon<br/>and Dhanmondi area.</li> <li>(iv) To replace aged Ullon 132kV substation.</li> <li>(v) To strengthen the power supply stability,<br/>reliability &amp; transmission capability in Ullon,<br/>Dhanmondi as well as inner of Dhaka city.(vi)<br/>To relieve the overloaded adjacent<br/>substations in different areas of the<br/>country(vii) To meet up upcoming demand of<br/>potential areas. (viii) To strengthen the power<br/>supply stability, reliability &amp; transmission<br/>capability all over the country.</li> </ul> | 117.57                | 311.56          | IDB & ADB               | June, 2019        | 20.96%                                    | 40%         | Running |
| 5  | Enhancement of Capacity of Grid<br>Substations and Transmission Line<br>(Phase-I) | <ul> <li>i)Capacity Enhancement offive existing 132/33 kV S/S. ii)Construction of<br/>one new 230/132/33 kV S/S.</li> <li>iii) Construction of five new 132/33kV S/Ss.</li> <li>iv) Renovation / Upgradation of some existing transmission lines.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To meet the growing demand of respective area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.00                 | 115.00          | WB                      | June, 2018        | 10.40%                                    | 43.21%      | Running |
| 6  | Ashuganj-Bhulta 400 kV Transmission<br>line                                       | (i) 70 km double ckt 400 kV line.<br>(ii) 400/230 kV S/S at Bhulta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To strengthing the power evacuation<br>capability from Ashuganj to Dhaka.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                    | 89              | GOB & PGCB<br>financing | June, 2018        | 40.70%                                    | 90.50%      | Running |
| 7  | Aminbazar-Maowa - Mongla 400 kV<br>Transmission line                              | i) 174 km 400 kV line<br>ii) 400/230 kV 3x520 MVA at <b>Aminbazar</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | To evacuate the Generated power of<br>upcoming Rampal 1320 MW Coal Power<br>Plant toDhaka & Khunla.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                    | 85.22           | ADB                     | June, 2020        | ECNEC<br>approved<br>DPP on<br>26.04.2016 | 6.20%       | Running |
| 8  | Capacity Upgradation(500MW) of<br>Existing Bheramara HVDC Station<br>Project      | i.500MW BtB HVDC Station<br>ii.Bheramara – Ishurdi 230 kV Double Circuit: 12km<br>ii. Two 230 kV bay extension at Bheramara & Ishwardi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To import additional 500MW power from India.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.65                 | 109.72          | ADB                     | June, 2018        | 3.30%                                     | 51.78%      | Running |
| 9  | Western Grid Network Development<br>Project                                       | i)Two no. of230/132 kV,2x225 MVA S/S at <b>Rajshahi &amp; Jhenaidah</b><br>ii) 70 km Ishurdi-Rajshahi 230 kV Lines<br>iii) 3 new 132/33 kVS/S at <b>Rajbaari, Mithapukur &amp; Bangura(Pabna)</b><br>(iv) 60 km Khulna(S)-Gopalganj132 kV double ckt transmission line,<br>(v) 45km Gopalganj-Madaripur & 56 km Khulna(S)-Satkhira 132 kV 2nd<br>ckt stringing<br>(vi) Bagerhat-Mongla & Baghabari-Bhangura 132 kV Double ckt tower<br>line with single ckt stringing & 80 km ( Bherama-Rajbari)132 kV double<br>ckt line re-conductoring<br>(vii) Eight 132 kV bay extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i)To meet the growing demand of Rajshahi<br>area.<br>ii) To enhance the power supply capacity &<br>reliability of western Region.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65                    | 77              | KīW                     | June, 2018        | 1.82%                                     | 8.41%       | Running |
| 10 | Dhaka-Chittagong Main Power<br>Grid Strengthening Project                         | i) 400 kV line : 214 km ii) 230kV line: 38 km<br>iii)400/230 kV, GIS SS at <b>Madunaghat (3x750MVA) &amp; Meghnaghat</b><br>(2x750MVA)<br>iii) 230/132 kV, 2x300 MVA S/S at <b>Madunaghat old</b><br>v) 2 no. of 230 kV bay extension at Meghnaghat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>i) To create facilities to transmit power from<br/>upcoming Matarbari 1200 MW Power<br/>Station.</li> <li>li) To enhance the power transmission<br/>capability between Chittagong and Dhaka.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232.30                | 357.10          | JICA                    | December,<br>2020 | NA                                        | 6.84%       | New     |

| <b>CN</b> | Ducieste Nome                                                                                                                       | Saaaa of werks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scope of works Main Objectives of the Project -                                                                                                                                                                                    | Project Cost (M US\$) |                 | Foreign                                       | Project           | Present    | 2017 Status                                           | Bomorko   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-----------------------------------------------|-------------------|------------|-------------------------------------------------------|-----------|
| SN        |                                                                                                                                     | Scope of works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    | Local                 | Foreign<br>(PA) | Status                                        | Year              | (PSMP2016) | 2017 Status                                           | rtemarks  |
| 11        | Matarbari Ultra Super Critical Coal-<br>Fired Power Project (II) (PGCB Part:<br>"Matarbari-Madunaghat 400 kV<br>Transmission Line") | i) 400 kV line: <b>92 km</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>i) To create facilities to evacuate power from<br/>upcoming Matarbari 1200 MW Power Station</li> <li>ii) To create power transmission capacity/<br/>facility between Matarbari and Madunaghat.</li> </ul>                 | 39.20                 | 101.60          | JICA                                          | December,<br>2020 | NA         | a) Bid<br>Document<br>Preparation in<br>progress      | New       |
| 12        | Patuakhali – Gopalganj 400 kV Line &<br>Gopalganj 400 kV Super Grid Sub-<br>Station Project                                         | i) 400/230/132 kV SS: <b>Gopalgan</b> j (2x325MVA)<br>ii) Patuakhali – Gopalganj 400 kV Double Circuit Line : <b>330 Ckt. km</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To ensure power evacuation from coal<br>based<br>power projects of Patuakhali area<br>To create a high capacity power evacuation<br>node at Gopalganj.                                                                             | 179.00                | 158.00          | Expected<br>from ADB &<br>GoB                 | December,<br>2019 | NA         | 1.00%                                                 | New       |
| 13        | Barisal-Bhola-Borhanuddin 230 kV line<br>project                                                                                    | (i) 230KV Line (Double Circuit) : 61 km<br>(ii) New 230/132 kV S/S:1 No (Barisal). 600 MVA (AIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To evacuate power to generated in<br>upcomming Bhola power plant.                                                                                                                                                                  | 40.06                 | 23.36           | PGCB Own<br>Fund<br>(HSBC)                    | June, 2016        | 96.58%     | Completed                                             | Completed |
| 14        | Energy Efficiency in Grid Based<br>Power Supply Project                                                                             | <ul> <li>i) Construction of 5 nos of 230/132 kV, 2x300 MVA s/s at</li> <li><b>Purbasadipur, Naogaon, Feni, Bhulta &amp; Biruli(Savar)</b>with<br/>interconnecting lines.</li> <li>ii) Construction of 8 nos of 132/33 kV s/s in rural areas (<b>Pubail</b>,<br/><b>Gazaria, Ullapara, Bajitpur,Ghatail, Araihzar, Nabinagar &amp;</b><br/><b>Rajendropur</b>) &amp; interconnecting lines.</li> <li>iii) Renovation &amp; upgragation of 9 nos of 132/33 kV s/s.</li> <li>vi) Upgradation &amp; modification of 744 ckt-km 132 kV transmission line.</li> </ul>                                                                                                                                                             | To meet the growing power demand &<br>quality improvement of-<br>-Dhaka City Adjacent<br>-Greater Noakhali<br>-Naogaon District<br>-Saidpur District                                                                               | 109.00                | 199.00          | KfW                                           | June, 2021        | NA         | 10.00%                                                | New       |
| 15        | Two New 132/33 kV Substations at<br>Kulaura & Sherpur with<br>InterconnectingLines                                                  | (i)132 KV Line (Double Circuit) : 45 km<br>(ii)New 132/33 kV S/S:2 Nos. (AIS) 1) Kulaura & 2) Sherpur<br>(iii) 132 kV Bay Extension:4 Nos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | To meet the growing demand of the<br>respective areas                                                                                                                                                                              | 11.72                 | 16.52           | PGCB Own<br>Fund                              | June, 2016        | 99.60%     | Completed                                             | Completed |
| 16        | Goalpara-Bagerhat 132 kV Double<br>Circuit Transmission Line                                                                        | (i) 45 km. 132 kV Double circuit lineand<br>(ii) 4 nos. 132kV bay extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To evaquite power from Goalpara Power<br>Plant                                                                                                                                                                                     | 5.4                   | 5.3             | PGCB Own<br>Fund                              | June, 2016        | 91.62%     | Completed                                             | Completed |
| 17        | Power Grid Network<br>Strengthening Project under PGCB                                                                              | i.400/132kV New Substation :1 <b>no.</b> , <b>650 MVA</b><br>ii.230/132kV New Substation :1 <b>3 nos.</b> , <b>9200 MVA</b><br>ii.230/132kV Old Substation (Capacity Upgradation) :7 <b>nos.</b> , <b>3075 MVA</b><br>iv.132/33kV Old Substation :28 <b>nos.</b> , <b>7240 MVA</b><br>v.132/33kV Old Substation (Capacity Upgradation) :28 <b>nos.</b> , <b>3383 MVA</b><br>vi.Substation Renovation :18 <b>nos.</b><br>vii.New Transmission Line:<br>- 400kV Line:200 Ckt. km<br>- 132kV Line: 676 Ckt. km<br>- 132kV Line: 676 Ckt. km<br>viii.Old Transmission Line (All 132kV):6 nos.<br>- Second Ckt. Stringing:147 Ckt. km<br>- Conductor Upgradation :312 Ckt. km viii. 7 Nos. Spacialized<br>Engineering Facilities | <ul> <li>To build up and renovate necessary<br/>infrastructure for reliable transmission of<br/>power</li> </ul>                                                                                                                   | 503.00                | 1,221.00        | Expected<br>from EXIM<br>Bank, China<br>(G-G) | June, 2021        | NA         | 10.00%                                                | New       |
| 18        | Bangladesh Power System Reliability<br>and Efficiency Improvement Project                                                           | i) NLDC upgradation<br>ii) DLR Installation: 400km<br>iii) Conductor Upgradation: 80 ckt. km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To address some fundamental measure that<br>must be<br>put in place so that the power system can be<br>operated in a secure and economic manner<br>in line with the longer term goals to deliver<br>much greater quantum of power. | 27.00                 | 33.00           | Expected<br>from WB                           | June, 2020        | NA         | DPP Approved<br>on 18.07.2017<br>in ECNEC<br>meeting. | New       |

|    | Dania ata Marra                                                             | Design of works                                                                                                           | Project Cost                                                                |       | t Cost (M US\$) | Foreign            | Project    | Present    |                                                       | Bernarder |
|----|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|-----------------|--------------------|------------|------------|-------------------------------------------------------|-----------|
| SN |                                                                             | Scope of works                                                                                                            | Main Objectives of the Project                                              | Local | Foreign<br>(PA) | Status             | Year       | (PSMP2016) | 2017 Status                                           | Remarks   |
| 19 | Mongla-Khulna (S) 230 kV<br>Transmission Line Project                       | i) 230 kV Mongla-Khulna d/c line :24km<br>ii) Two 230kV bay extension at Khulna.                                          | Power evacuation from coal based power<br>plant at Mongla.                  | 9.28  | 8.64            | PGCB Own<br>Fund   | Dec, 2017  | 5.00%      | 57.05%                                                | Running   |
| 20 | Construction of Patuakhali-Payra<br>230 kV Transmission Line                | i) 230 kV line: <b>94 ckt. km</b><br>ii) 132kV switchyard: <b>Payra</b><br>iii) 132kV Bay Extension: 2 no's at Patuakhali | i) To supply back feed power to upcoming<br>1st unit of<br>Payra 1320 MW PP | 5.17  | 37.66           | GoB                | June, 2019 |            | DPP Approved<br>on 31.01.2017<br>in ECNEC<br>meeting. | New       |
| 21 | Amnura 132/33 kV Grid Substation with<br>Associated 132kV Transmission Line | i) 132/33 kV AIS Substation, 1x35/50 MVA<br>ii) 132kV line 15 km                                                          | To evacuate power to generated in<br>upcomming 100MW power plant.           | 5.37  | 6.46            | Bidders<br>Finance | June, 2017 | 11.44%     | 91.55%                                                | Running   |

Source: PGCB

The list of the currently planned projects made by PGCB on September 2017 is as shown in the following Table.

| Chi | Due la ste Manue                     | Compare of words                                                        | Male Objectives of the Design                       | Pr     | Project Cost(M US\$) |        | Project Cost(M US\$) Foreign |                 | Project                                       | Dura and Status |
|-----|--------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|--------|----------------------|--------|------------------------------|-----------------|-----------------------------------------------|-----------------|
| SIN | Projects Name                        | Scope of works                                                          | Wain Objectives of the Project                      | Local  | Foreign              | Total  | Financing                    | Completion Year | Present Status                                |                 |
| 1   | Expansion and Strengthening of Power | i.400/230kV New Indoor GIS Substation :2 nos.,3000 MVA ii.230/132kV     | To meet the growing power demand &                  | 98.00  | 850.00               | 948.00 | Expected from EXIM           | June, 2022      | a) Financial Negotiation in progress. b)      |                 |
|     | System Network Under DPDC Area       | New Indoor GIS Substation :7 nos. ,7650 MVA iii.New Transmission Line:  | guality improvement of-                             |        |                      |        | Bank, China (G-G)            |                 | Feasibility study in progress                 |                 |
|     |                                      | - 400kV Line:370 Ckt. km                                                | -Dhaka City & Adjacent                              |        |                      |        |                              |                 |                                               |                 |
|     |                                      | - 230kV Line:111 Ckt. Km                                                | ,,                                                  |        |                      |        |                              |                 |                                               |                 |
|     |                                      | - 230kV Cable 96 Ckt Km                                                 |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | 123W/Line: 9.9 Cht. km                                                  |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | in Day Extension work at other Substations + 9 nee                      |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | W.Bay Extension work at other Substations . 8 nos.                      |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| 2   | Salar and B. Characthering of Down   |                                                                         |                                                     | 444.00 | 202.00               | 427.00 |                              |                 |                                               |                 |
| 2   | Network in Fastern Region            | I. 230/132kV GIS Substation: 2 nos (Chowmohoni, Kachua,                 | 1. To enhance & strengthen existing grid network    | 144.00 | 295.00               | 437.00 | Expected from                | June, 2022      | a) PGCIL has been appointed as                |                 |
|     | Network in Eastern Region            | 1750 MVA),                                                              | of Eastern Region.                                  |        |                      |        | WB                           |                 | Feasibility Consultant.                       |                 |
|     |                                      | ii. 132/33kV Substation: 9no.(Muradnagar, Laksham, Maijdee, Paitya,     | ii. To meet up the growing demand of                |        |                      |        |                              |                 | B) Interim Report submitted                   |                 |
|     |                                      | Chandina, New Mooring, Basurhat, Laxmipur, Kosba,                       | Eastern Region.                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | 1920 MVA)                                                               | iii. To ensure reliable power supply to Industrial/ |        |                      |        |                              |                 |                                               |                 |
|     |                                      | iii. 230kV Line: 246 Ckt. km                                            | Commercial /Residence points of Greater             |        |                      |        |                              |                 |                                               |                 |
|     |                                      | iv. 132kV Line: 304 Ckt. km                                             | Comilla, Chittagong, Greater Noakhali area.         |        |                      |        |                              |                 |                                               |                 |
|     |                                      | v. 132/33kV SS Renovation: 01 no. (360 MVA)                             |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| 3   | Madunaghat - Moheskhali 765kV        | i) 765 kV Line: 200 Ckt. km                                             | * To establish transmission                         | 149.00 | 194.00               | 343.00 | Proposed for AllB            | June. 2022      | a) PDPP sent to Power Division on             |                 |
|     | Transmission line                    | ii) Two 400 kV bay at Madunaghat                                        | infrastructure for evacuation of power to be        |        |                      |        | (Initailly                   |                 | 30-08-2015                                    |                 |
|     |                                      | .,                                                                      | generated from proposed power plants at             |        |                      |        | Proposed for                 |                 | b) Feasibility consultant appointment in      |                 |
|     |                                      |                                                                         | Maheshkhali                                         |        |                      |        | EDCF, Korea)                 |                 | progress                                      |                 |
|     |                                      |                                                                         | * To provide reliable power to all over the         |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         | country.                                            |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| 4   | Grid Network Development Project at  | i) 230kV Switching Station: Gogalganj (400/230kV, 2x350/450             | To improve Southern Area power supply               | 145.00 | 278.00               | 423.00 | Expected from                | June, 2023      | a) PDPP sent to Power Division on             |                 |
|     | Southern Area                        | MVA), Bhola (230/33, 2x120/150 MVA)                                     | reliability                                         |        |                      |        | ADB                          |                 | 06-12-2015                                    |                 |
|     |                                      | ii) 230/132KV SS: Faridpur (2x350/450 MVA),                             | To ensure adequate and reliable power supply        |        |                      |        |                              |                 | b) Feasibility consultant appointment in      |                 |
|     |                                      | iii) 132/33 kV SS: Jhalokhati. Kolapara. Bangha(2x50/75 MVA Each).      | for Mirsarai Economic Zone                          |        |                      |        |                              |                 | progress                                      |                 |
|     |                                      | Shibchar (2x80/120 MVA), Barguna Switching                              |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | v) 230 kV/Line: 338Ckt. km vi) 132 kV/Line: 106 Ckt. Km                 |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | vi) 132kV line Strining EO Ckt. Km                                      |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | VII) 152KV IIIE Strining.50 CKt. Kiii                                   |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| -   |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| 5   | Expansion and Strengthening of Power | i) 230/132/33 kV GIS SS: Anowara, Khulshi (2x350/450 MVA,               | To improve CTG city power supply reliability        | 85.00  | 199.00               | 283.00 | Expected from                | June, 2022      | a) PDPP sent to Power Division on             |                 |
| 1   | system wetwork onder chillagong Area | 3x80/120 MVA)                                                           | To meet growing demand of CTG City                  |        |                      |        | AllD                         |                 | 31.01.16                                      |                 |
| 1   |                                      | ii) 230/132kV GIS Switching: New Mooring                                | Adjacent Area                                       |        |                      |        |                              |                 | b) Feasibility study in progress c) Draft IEE |                 |
| 1   |                                      | ii) 400 kV Line: 54 Ckt. km. (OH & UG)                                  |                                                     |        |                      |        |                              |                 | submitted                                     |                 |
| 1   |                                      | iv) 230kV U/G line: 44 Ckt. km v) 230kV bay extension: 2 no's           |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |
| 6   | 230 & 132 kV Transmission Network    | i) 230/132/33 KV SS: Rupsha (3x350/450, 2x80/120 MVA)                   | i)To meet the growing demand of Khulna              | 45.00  | 106.00               | 152.00 | Expected from                | June, 2023      | a) PDPP sent to Power Division on             |                 |
|     | Development Project in Western Zone  | ii) 132/33 kV SS: Meherpur Kesabpur, Mahespur, Assasuni                 | & Barisal area                                      |        |                      |        | ADB                          |                 | 18.02.16                                      |                 |
| 1   |                                      | (2x50/75 MVA Each) .Phultola (2x80/120MVA)                              | ii) To enhance the power supply capacity            |        |                      |        |                              |                 | b) Feasibility consultant appointment in      |                 |
| 1   |                                      | iii) 230 kV/line: 212 Ckt km iv) 132 kV/line: 208 Ckt Km                | & reliability of Khulna & Barisal Region            |        |                      |        |                              |                 | progress                                      |                 |
| 1   |                                      | u) 122 W/ Line Stringing: 92 Ckt. km. vi) 220 W/ hav ovtoneicas: 4 acts | a reasonry of kituina a bansai kegioti.             |        |                      |        |                              |                 |                                               |                 |
| 1   |                                      | v) 152 kV Line Schrighte, 62 CKL KHL VIJ 250 KV Day extension: 4 no s   |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      | VIIJ 152 KV DAY EXCENSION : 8 NO S                                      |                                                     |        |                      |        |                              |                 |                                               |                 |
|     |                                      |                                                                         |                                                     |        |                      |        |                              |                 |                                               |                 |

 Table 3.2.10
 Projects Planned by PGCB on September 2017

|                        |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                    | Project Cost(M US\$) |           |          | Foreign Project                         |                 |                                                                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------|-----------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| SN                     | Projects Name                                                                                            | Scope of works                                                                                                                                                                                                                                                                                                                                                       | Main Objectives of the Project                                                                                                                                                                                                                     | Local                | Foreign   | Total    | Financing                               | Completion Year | Present Status                                                                                                                               |
| 7                      | Banshkhali-Madunaghat 400kV Transmission<br>Line Project                                                 | i) 400 kV line: <b>130 Ckt. km.</b><br>ii) 400 kV GIS Bay Extension: 2 no's                                                                                                                                                                                                                                                                                          | <ol> <li>To ensure reliable transmission facilities to<br/>evacuate power from proposed coal based<br/>thermal PP project at Banshkhali (1320 MW).</li> <li>To meet the growing demand of the<br/>Chittagong zone in more reliable way.</li> </ol> | 29.00                | 69.00     | 99.00    | Proposed for<br>AllB                    | June, 2021      | a) PDPP sent to Power Division on<br>27.04.16<br>b) Feasibility consultant appointment in<br>progress c) Waiting for Funding<br>conformation |
| 8                      | Expansion and Strengthening of Power System<br>Network in DESCO & its Adjacent Area (Phase-<br>1)        | i) 400/230 kV GIS SS: Kaliganj, Purbachal<br>ii) 230/132 kV GIS/GIT SS: Gulshan, Uttara, Mirpur, Ashulia, Mohakhali,<br>Purbachal-2<br>ii) 400 kV (0/H+U/G) line: 56 Ckt. km<br>iv) 230 kV (0/H+U/G) line: 102 Ckt. km                                                                                                                                               | To meet the growing power demand &<br>quality improvement of-<br>-DESCO & Adjacent area                                                                                                                                                            | 174.00               | 356.00    | 530.00   | Proposed for<br>ADB                     | December,2023   | a) PDPP sent to Power Division on<br>02.11.16<br>b) Feasibility consultant appointment in<br>progress                                        |
| 9                      | Infrastructure Development for Power<br>Evacuation facilities of Rooppur Nuclear Power<br>Plant          | i) 400 kV Line: <b>889 Ckt. km.</b><br>ii) 230 kV Line: <b>120 Ckt. km.</b><br>iii) 400/230 kV SS: <b>Bogra GIS</b> (2x 520MVA)<br>iv) 400kV Bay extension: 5 no's (Kaliakoir-2, Aminbazar-2, Gopalganj-1)<br>v) 230kV Bay Extension: 2 no at Baghabari<br>vi) Implementing frequency control & drop projection, Projection System,<br>Emergency Control System etc. | <ul> <li>To ensure power evacuation from<br/>Rooppur NPP</li> <li>To upgrade the standard of Bangladesh Power<br/>System for the integration &amp; safe operation of<br/>Rooppur NPP</li> </ul>                                                    | 477.00               | 963.00    | 1,440.00 | Proposed for New Credit<br>Loan (India) | December,2022   | a) PDPP sent to Power Division on<br>15.12.16<br>b) Environmental Studies in progress.                                                       |
| 10                     | Bogra-Chapainawabganj (Rahanpur) 400 kV<br>Transmission Line Project                                     | i) 400kV line: 250 Ckt. Km ii) 132kV line: 68 Ckt. Km<br>iii) 400/230 GIS Substation: <b>Bogra</b> (2x750 MVA),<br>iv) 400/132 kV GIS Substation: <b>Chapainawabganj</b> (2x325MVA)                                                                                                                                                                                  | <ul> <li>To supply adequate, quality and relaible power<br/>for Bangladesh Largest agriculture area.</li> </ul>                                                                                                                                    | 101.00               | 177.00    | 278.00   | Proposed for<br>ADB                     | June,2022       | a) Feasibility consultant appointment in<br>progress<br>b) PDPP under Preparation                                                            |
| 11                     | Replacement of Ashuganj Old 132kV AIS<br>Substation by New 132 kV GIS Substation<br>Project              | i) Replacement of Ashuganj Old 132kV AIS to GIS.<br>li) Replacement of existing 230/132kV Transformer by<br>2x225/300MVA                                                                                                                                                                                                                                             | <ul> <li>To increase reliable power supply Ashuganj and<br/>it's adjacent area including Dhaka</li> <li>To minimize Grid Fail risks.</li> </ul>                                                                                                    | 20.00                | 44.00     | 64.00    | Expected from<br>GoB                    | December,2020   | DPEC meeting held on 02.07.2017                                                                                                              |
| 12                     | Development of Transmission Infrastructure at<br>BEZA Areas for reliable power supply (Phase-1)          | i) 230 kV line: 414 ckt. Km ii) 132 kV line: 32 ckt. Km<br>iii) 132/33 kV SS: Ramu (2x80/120 MVA), Teknaf (2x50/75<br>MVA)                                                                                                                                                                                                                                           | To ensure adequate & reliable power supply for<br>Economic Zone in Misrarai & Cox's Bazar Area.     To ensure reliable power supply to Commercial<br>/Residence points of Cox's Bazar                                                              | 85.00                | 118.00    | 203.00   | Expected from<br>GoB                    | December,2020   | a) DPP under Preparation b) Feasibility<br>consultant appointment in progress                                                                |
| 13                     | Bornagar-Parbitipur-Katihar 765 kV<br>Bangladesh-India Grid Interconnection Project<br>(Bangladesh Part) | i.500MW HVDC Station at <b>Barapukuria</b><br>ii.765kV double circuit transmission Line: <b>308 Ckt. Km</b>                                                                                                                                                                                                                                                          | <ul> <li>To connect the huge hydroelectric potential of<br/>Bhutan and Arunachal Province to India through<br/>Bangladesh territory</li> <li>To draw 500-100MW power at Barapukuria<br/>from Cross Border Interconnection</li> </ul>               | 177.00               | 413.00    | 590.00   | Proposed for New Credit<br>Loan (India) | December,2022   | Scope of the Project will be finalize after<br>JSC meeting.                                                                                  |
| 14                     | HVDC BtB Station at Comilla for 500 MW<br>Import from Tripura & Assam (India)                            | i. 500MW HVDC Station at <b>Comilla</b><br>ii. 132kV bay extension: 2 no's at Comilla (N)                                                                                                                                                                                                                                                                            | i. To import 500MW power from India                                                                                                                                                                                                                | 28.00                | 102.00    | 130.00   | Yet to be funded                        | December,2019   | Scope of the Project will be finalize after<br>JSC meeting                                                                                   |
| 15                     | Madunaghat-Bhulta 765 kV Transmission<br>Line Project                                                    | i) 765 kV line: 500 ckt. Km (Conductor: Hexa Cardinal)<br>ii) 400kV bay extension: 4 no's (Bhulta & Madunaghat)                                                                                                                                                                                                                                                      | <ol> <li>To establish high capacity transmission<br/>infrastructure for evacuation of power from<br/>Chittagong to Dhaka</li> <li>To provide reliable power to all over the<br/>country</li> </ol>                                                 | 293.00               | 412.00    | 705.00   | Yet to be funded                        | December,2024   | a) PDPP sent to Power Division on<br>06.09.16<br>b) Fessibility consultant appointment in<br>progress                                        |
|                        | i                                                                                                        | otal Cost (M US\$)                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    | 2,050.00             | 4,574.00  | 6,624.00 |                                         |                 |                                                                                                                                              |
| Total Cost (Crore BDT) |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      | 16,004.00                                                                                                                                                                                                                                          | 35,669.00            | 51,673.00 |          |                                         |                 |                                                                                                                                              |

Source: PGCB
Based on above lists, the development plan of the power system network in 2025 and in 2035 are as shown in the following Figures.





Power Sector Chapter3



Source: PGCB Transmission Line Map, modified by JST Figure 3.2.10 Map of Power Grid Network in 2035

### Table 3.2.11 List of Gas-fired Thermal Power Development Plan

| Category Fuel |     | ID       | Power Station Name                                     | PGCB Grid<br>Division/ | Power Grid<br>connection | Output<br>(MW) | COD  | Retirement | Cap  | acity (MW) |      | Gas Const | amption (mn | ncfd) | Locatio      | n data M     | ap index Gas sup<br>company | ply Accor<br>name |
|---------------|-----|----------|--------------------------------------------------------|------------------------|--------------------------|----------------|------|------------|------|------------|------|-----------|-------------|-------|--------------|--------------|-----------------------------|-------------------|
|               |     |          |                                                        | Circle                 |                          |                |      |            | 2017 | 2025       | 2035 | 2017      | 2025        | 2035  | Latitude (N) | Longitude    |                             |                   |
|               |     |          |                                                        |                        |                          |                |      |            |      |            |      |           |             |       | in deg       | E) in deg    |                             |                   |
| Comitted      | Gas | PS-12001 | Bhola 225 MW CCPP                                      | Khulna                 |                          | 189            | 2016 | 2041       | 189  | 189        | 189  | 38        | 34          | 20    | 22.478529    | 90.710174 K- | -1                          |                   |
| Comitted      | Gas | PS-12002 | Siddirganj 335 MW CCPP                                 | Dhaka                  |                          | 328            | 2016 | 2041       | 328  | 328        | 328  | 66        | 58          | 35    | 23.682712    | 90.526347 D  | -3                          |                   |
| Comitted      | Gas | PS-12003 | Ashuganj (North) CCPP                                  | Comilla                | 132kV                    | 370            | 2017 | 9999       | 370  | 370        | 370  | 74        | 66          | 39    | 24.037906    | 91.009083 D  | -1 Bakhrabad                | Ashugonj          |
| Comitted      | Gas | PS-12004 | Ashuganj (South) CCPP                                  | Comilla                | 132kV                    | 361            | 2016 | 2041       | 361  | 361        | 361  | 72        | 64          | 38    | 24.037342    | 91.00843 D   | -1 Bakhrabad                | Ashuganj          |
| Comitted      | Gas | PS-12005 | Ghorasal 363 MW (7th Unit) CCPP                        | Dhaka                  |                          | 352            | 2017 | 9999       | 352  | 352        | 352  | 71        | 63          | 37    | 23.980512    | 90.638189 D  | -2                          |                   |
| Comitted      | Gas | PS-12006 | Shajibazar CCPP                                        | Comilla                | 132kV                    | 322            | 2016 | 2041       | 322  | 322        | 322  | 65        | 57          | 34    | 24.25331     | 91.375713 C- | -2 Jalalabad                | Shahjibaza        |
| Comitted      | Gas | PS-12007 | Shikalbaha 225 MW CCPP                                 | Chittagong             |                          | 218            | 2017 | 9999       | 218  | 218        | 218  | 44        | 39          | 23    | 22.324971    | 91.86718 Cl  | H-2                         |                   |
| Comitted      | Gas | PS-12008 | Bibiana South CCPP BPDB                                | Comilla                |                          | 372            | 2018 | 9999       | 0    | 372        | 372  | 0         | 66          | 40    | 24.637275    | 91.660716 C- | -5                          |                   |
| Comitted      | Gas | PS-12009 | Bibiana III CCPP BPDB                                  | Comilla                |                          | 388            | 2019 | 9999       | 0    | 388        | 388  | 0         | 69          | 41    | 24.637275    | 91.660716 C- | -5                          |                   |
| Comitted      | Gas | PS-12010 | Bheramara 414 MW CCPP                                  | Khulna                 | 132kV                    | 402            | 2018 | 9999       | 0    | 402        | 402  | 0         | 71          | 43    | 24.048519    | 89.016255 K- | -2 Sundarban                | Bheramar          |
| Comitted      | Gas | PS-12011 | Fenchugonj 50 MW Power Plant (NRB)                     | Comilla                |                          | 50             | 2019 | 2034       | 0    | 50         | 0    | 0         | 9           | 0     | 24.684574    | 91.917779 C- | -4                          |                   |
| Comitted      | Gas | PS-12012 | Sylhet 150 MW PP Conversion                            | Comilla                |                          | 221            | 2018 | 9999       | 0    | 221        | 221  | 0         | 39          | 23    | 24.909378    | 91.829196 C- | -3                          |                   |
| Comitted      | Gas | PS-12013 | Ghorasal 3rd & 4th Unit Repowering (Capacity Addition) | Dhaka                  |                          | 776            | 2018 | 9999       | 0    | 776        | 776  | 0         | 138         | 83    | 23.980542    | 90.638149 D  | -2                          |                   |
| Comitted      | Gas | PS-12014 | Kushiara 163 MW CCPP                                   | Comilla                |                          | 163            | 2018 | 9999       | 0    | 163        | 163  | 0         | 29          | 17    | 24.688712    | 91.917632 D  | -9                          |                   |
| Comitted      | Gas | PS-12015 | Bagabari 71MW PP Conversion                            | Bogra                  |                          | 102            | 2020 | 2042       | 0    | 102        | 102  | 0         | 18          | 11    | 24.134873    | 89.59288 B-  | -1                          |                   |
| Comitted      | Gas | PS-12016 | Sirajganj 414 MW CCPP (4th unit)                       | Bogra                  |                          | 414            | 2020 | 9999       | 0    | 414        | 414  | 0         | 74          | 44    | 24.385855    | 89.743056 B- | -2                          |                   |
| Comitted      | Gas | PS-12017 | Shahajibazar 100 MW                                    | Comilla                |                          | 98             | 2018 | 2038       | 0    | 98         | 98   | 0         | 17          | 10    | 24.25196     | 91.377239 C- | -2                          |                   |
| Candidate     | Gas | PS-13001 | CC800 Mohesikali                                       | Chittagong             |                          | 800            | 2032 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | Cl           | H-5                         |                   |
| Candidate     | Gas | PS-13002 | CC800 Mohesikali                                       | Chittagong             |                          | 800            | 2033 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | Cl           | H-5                         |                   |
| Candidate     | Gas | PS-13003 | CC800 Mohesikali                                       | Chittagong             |                          | 800            | 2034 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | Cl           | H-5                         |                   |
| Candidate     | Gas | PS-13004 | CC800 Pyra                                             | Khulna                 |                          | 800            | 2034 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13005 | CC800 Pyra                                             | Khulna                 |                          | 800            | 2035 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13006 | CC800 Pyra                                             | Khulna                 |                          | 800            | 2035 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13007 | CC800 Pyra                                             | Khulna                 |                          | 800            | 2035 | 9999       | 0    | 0          | 800  | 0         | 0           | 85    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13015 | CC500 Mohesikali                                       | Chittagong             |                          | 500            | 2028 | 9999       | 0    | 0          | 500  | 0         | 0           | 53    |              | Cl           | H-5                         |                   |
| Candidate     | Gas | PS-13016 | CC500 Mohesikali                                       | Chittagong             |                          | 500            | 2029 | 9999       | 0    | 0          | 500  | 0         | 0           | 53    |              | Cl           | H-5                         |                   |
| Candidate     | Gas | PS-13017 | CC250 Anowara                                          | Chittagong             |                          | 250            | 2026 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | Cl           | H-6                         |                   |
| Candidate     | Gas | PS-13018 | CC250 Anowara                                          | Chittagong             |                          | 250            | 2029 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | Cl           | H-6                         |                   |
| Candidate     | Gas | PS-13019 | CC250 Anowara                                          | Chittagong             |                          | 250            | 2031 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | Cl           | H-6                         |                   |
| Candidate     | Gas | PS-13020 | CC250 Pyra                                             | Khulna                 |                          | 250            | 2032 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13021 | CC250 Pyra                                             | Khulna                 |                          | 250            | 2033 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13022 | CC250 Pyra                                             | Khulna                 |                          | 250            | 2034 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | K            | -3                          |                   |
| Candidate     | Gas | PS-13023 | CC250 Pyra                                             | Khulna                 |                          | 250            | 2035 | 9999       | 0    | 0          | 250  | 0         | 0           | 27    |              | K            | -3                          |                   |

Source: Prepared by JST

## **3.3 Operation & Maintenance**

## 3.3.1 Generation

Almost all power stations mentioned the delay in maintenance work, which is mainly caused by a delay in BPDB approval of maintenance plan/budget, and a delay in shutdown permission from Power Division of MoPEMR. BPDB has to check all of the maintenance plans and budget of power plants. However, every power plant submits its plan and budget one by one. It is thought that it is hard to make an objective, rough estimate of the necessary expense for BPDB as a whole beforehand. It is also found that Power Division does not have all power maintenance plans of power plants; therefore, there are few judgment grounds to shut down a power station in a particular time. It is necessary to coordinate with individual power stations and to judge accordingly and, as a result, judgment for the shutdown permission is delayed.

The survey result shows some issues, including the case in which facility runs until it is broken, i.e., run-to-failure practice, or absence of manufacturer's support, and/or the procurement delay of spare parts.

## 3.3.2 Transmission

In order to maintain the 132 kV and above transmission lines, an annual maintenance planning: (Scheduled) and planning for monthly inspection & maintenance are prepared by the respective division of PGCB. The planning is implemented in the following way as required:

## (1) For scheduled maintenance

The respective division follows the checklist for inspection and maintenance. When shutdown of line is required for maintenance work, the engineer in charge will submit a requisition for shutdown of the lines in prescribed format through proper channel. After getting the approval, maintenance works is done during the requested shutdown period. After completion of the maintenance works, both Load Dispatch Centre (LDC) and concerned Grid sub-station control room are informed.

## (2) For Emergency Maintenance

Senior executive concerned is informed over telephone about the required outage. Team leader of the working party from grid substation directly contacts LDC control room over telephone for the outage of line(s) and submit the work permit form (duly filled-up and signed in) to the grid substation control room requesting shutdown of the line. Clearance is issued to the team leader of the working party. After getting the requested shutdown of the line, maintenance work is done as required. Proper safety measures must be followed throughout by the maintenance gang. After completion of work, team leader of the working party will give clearance to both LDC and concerned Grid sub-station control room.

## (3) For Break Down Maintenance

Whenever a fault occurs in transmission line, the tripping record is analyzed to confirm whether there is a breakdown. The concerned officials are informed about the break down within the quickest possible time. Line patrol groups will move for total line inspection (tower to tower basis) and send feedback information confirming the nature of fault. Action plan for repairing and maintenance of the line is taken up immediately. Team leader of working party will submit the work permit form, filled-up and signed in to the grid sub-station control room for isolation of the line. After getting the requested shutdown of the line and necessary clearance, repair work is done (as required). Proper safety measures must be followed throughout the work by the maintenance gang. After completion of maintenance work, team leader of the working party will give clearance to both LDC and concerned Grid sub-station control room ensuring suitability of the line for charging and safety.

## (4) For Monthly Line Inspection and Maintenance

Officer in charge of the line inspects the line twice a month. Each line is inspected visually twice a month by lineman/foreman. Every tower of the line is inspected. Maintenance to be carried out in the line is identified. Repair works are carried out, if no outage is required. Trees growing under and/or

around are immediately trimmed if outage and police protection is not required. Proper safety measures must be followed throughout by the maintenance gang.

#### 3.3.3 Substation

In order to maintain the substations, a master list of Substation equipment is maintained. Maintenance Instruction for the following equipment is maintained and followed (as applicable and required).

- 400/230 kV 230/132 kV and 132/33 kV Power Transformer
- 400 kV, 230 kV and/or 132 kV Circuit Breaker
- 400 kV, 230 kV and/or 132 kV Isolator
- Battery Charger
- Battery Sets, etc.

In substation maintenance planning, the first consideration should be:

- Substation bus-bar and bay arrangement,
- Available manpower for maintenance,
- Minimum interruption,
- Minimum outage time, and
- Minimum cost involvement

Maintenance plan should be in such a way that the maintenance of all equipment in the bay or feeder can be carried out in single interruption and to implement it. All bay equipment should be kept in one shutdown plan as far as possible.

Annual maintenance planning (Scheduled): Planning for monthly maintenance are prepared. The maintenance of substation is implemented in the following ways as required:

#### (1) For Scheduled Maintenance

The frequency of the scheduled maintenance should be decided by the equipment manufacturer's maintenance guide/manual, location of equipment and also the condition of the system. If there is a question of shutdown of the equipment for the implementation of maintenance schedule, the engineer in charge will submit a requisition for shutdown in prescribed format through proper channel. After getting approval for shutdown copies should be sent to grid sub-station control room and LDC Control Room. After getting the requested shutdown of the equipment and necessary clearance, maintenance work is done as planned in the annual/monthly maintenance program. Proper safety measures must be followed throughout by the maintenance gang. After completion of maintenance work, team leader of the working party will give clearance to both LDC and concerned Grid substation control room.

#### (2) For Emergency Maintenance

Senior executive concerned is informed over telephone about the outage required. Working party from grid substation directly contacts LDC control room over telephone for the outage of equipment/ lines and submit the work permit form and safety meeting form QF-GMD-41 duly filled-up and signed in, to grid sub-station control room. Clearance will be issued to the team leader of the working party following form WI-PSO-03. After getting the requested shutdown of the equipment and necessary clearance, maintenance work is done. Proper safety measures must be followed throughout the work by the maintenance gang. After completion of maintenance work, team leader of the working party will give clearance to both LDC and concerned Grid sub-station control room.

(3) For Break Down Maintenance

Whenever a fault occurs in substation equipment, the tripping record is analyzed to confirm whether there is a break down. Senior executives concerned are informed over telephone about the break down within the quickest possible time. Maintenance personnel inspect the equipment and send feedback information confirming the fault nature. Action plan for repairing and maintenance of the equipment is taken up immediately. The Engineer in Charge will (i) Contact LDC control room over telephone for the outage of equipment/ lines, and (ii) submit the work permit form and safety meeting form QF-GMD-41duly filled-up and signed in, to grid sub-station control room. Clearance will be issued to the team leader of the working party following form WI-PSO-03. After getting the requested shutdown of the equipment and necessary clearance, maintenance gang. After completion of maintenance work, team leader of the working party will give clearance to both LDC & concerned Grid substation control room.

(4) For Monthly Equipment Inspection and Maintenance

All equipment is visually inspected monthly, maintenance works to be carried out in the equipment is earmarked, and immediate repair works are carried out if no outage is required, proper safety measures must be followed throughout the work by the maintenance gang. Program schedule for maintenance works will be submitted for necessary approval of outage.

(5) For Hot Spot Check of Junction Points in Switchyard

Junction point temperatures of lines, transformers etc. in the switchyard will be measured by thermos-vision camera, and temperature will be recorded. If any abnormality is observed, then remedial action will be carried out and record shall be maintained.

### (6) For Insulation Oil Test

Insulation oil for transformer, etc. shall be tested for determining;

- Break Down voltage: once in a year
- Tan Delta value: once in 2 years
- Acidity number: once in 2 years
- Dissolved gas content: once in 2 years

If any abnormality is observed, then remedial action will be carried out and record shall be maintained.

### (7) For Ground Resistance Test

During annual maintenance, ground resistance value in several points shall be measured (0-1 Ohm). Extra electrode will be driven to minimize ground resistance (as necessary and applicable).

## 3.4 Budget for Operation & Maintenance

## 3.4.1 BPDB (Generation)

The economics of power generation is largely a matter of costing. As with any other production technology, power generation entails fixed and variable costs. The fixed costs are relatively straightforward, but the variable cost of power generation is remarkably complex.

The fixed costs of power generation are essentially capital costs and land. The capital cost of building varies from region to region, largely as a function of labour costs and "regulatory costs", which include things such as obtaining siting permits, environmental approvals, and so on. It is important to realize that building power station takes an enormous amount of time.

Operating costs for power plants include fuel, labour and maintenance costs. Unlike capital costs which are "fixed" (don't vary with the level of output), a plant's total operating cost depends on how much electricity the plant produces. The operating cost required to produce each MWh of electric energy is referred to as the "marginal cost". Fuel costs dominate the total cost of operation for

fossil-fuel fired power plants. For renewables, fuel is generally free (perhaps with the exception of biomass power plants in some scenarios); and the fuel costs for nuclear power plants are actually very low. For these types of power plants, labour and maintenance costs dominate total operating costs.

In general, power plants face a trade-off between capital and operating costs. Those types of power plants that have higher capital costs tend to have lower operating costs. Further, generators which run on fossil fuels tend to have operating costs that are extremely sensitive to changes in the underlying fuel price.

In BPDB, operating expenses for power generation include fuel expenses, personnel expenses, office expenses, repairs and maintenance expenses, and Depreciation. Operating expenses against energy generation (kWh) of BPDB for fiscal year 2010- 2011, 2011-2012, 2012-2013, 2013-2014, and 2014-2015 are given in Table 3.4.1

| T4                            | Unit    | FY2010-2011    | FY2011-2012    | FY2012-2013    | FY2013-2014    | FY2014-2015    |
|-------------------------------|---------|----------------|----------------|----------------|----------------|----------------|
| Item                          |         |                |                |                |                |                |
| OPERATING                     | DDT     | 20 505 056 624 | 21 752 160 226 | 15 227 755 620 | 57 750 502 504 | 51 116 440 247 |
| EXPENSES                      | BD1     | 29,505,950,054 | 54,755,409,550 | 45,527,755,058 | 57,750,595,504 | 51,110,440,247 |
| Generation(GWh)               | GWh     | 14 672         | 15 201         | 17.004         | 10.645         | 21 102         |
| by BPDB                       | Gwii    | 14,075         | 15,201         | 17,994         | 19,045         | 21,105         |
| Generation O&M<br>Expense/kWh | BDT/kWh | 2.01           | 2.29           | 2.52           | 2.94           | 2.42           |

| Table 3.4.1 | FY Wise | <b>O&amp;M</b> | <b>Cost Per</b> | Unit | Generation |
|-------------|---------|----------------|-----------------|------|------------|
|             |         |                |                 |      |            |

Source: BPDB Annual Report

The FY wise O&M cost per unit generation of BPDB shown in chart is given in Figure 3.4.1.



Source: BPDB Annual Report

Figure 3.4.1 FY wise O&M Cost Per Unit Generation of BPDB

### **3.4.2 PGCB** (Transmission and Substation)

The cost structure for transmission and distribution is different from that of power generation, since there is basically no fuel cost involved with operating transmission and distribution wires (and their associated balance-of-systems, like substations). Capital cost thus dominates the economics of transmission and distribution.

In PGCB, operating expenses for power transmission include personnel expenses, office expenses, repairs and maintenance expenses, and depreciation. Operating expenses against total energy transmission (kWh) of Bangladesh for fiscal year 2010-2011, 2011-2012, 2012-2013, 2013-2014, and 2014-2015 are given in Table 3.4.2.

| Item                          | Unit    | FY2010-2011   | FY2011-2012   | FY2012-2013   | FY2013-2014   | FY2014-2015   |
|-------------------------------|---------|---------------|---------------|---------------|---------------|---------------|
| OPERATING<br>EXPENSES         | BDT     | 4,574,983,949 | 4,320,538,770 | 4,718,696,940 | 6,145,559,935 | 6,903,893,347 |
| Generation(GWh)<br>by BPDB    | GWh     | 29,485        | 35,118        | 38,229        | 42,195        | 45,834        |
| Generation O&M<br>Expense/kWh | BDT/kWh | 0.1552        | 0.1230        | 0.1234        | 0.1456        | 0.1506        |

Table 3.4.2 FY Wise O&M Cost Per Unit Transmission

Source: PGCB Annual Report



Source: PGCB Annual Report

Figure 3.4.2 FY wise O&M Cost per unit Transmission of PGCB

#### 3.5 **Asset Management**

#### 3.5.1 **BPDB**

BPDB is responsible for power generation partly and distribution partly. There are some generation companies responsible for power generation. Similarly, there are several distribution companies responsible for power distribution. However, PGCB is solely responsible for power transmission at grid level. So, BPDB has different category of assets for power generation and distribution. The major category of assets belonged to BPDB are given in Table 3.5.1.

| SI. No. | Major Category of Assets | Sub-Category of Assets                                                                                                                 |
|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Land                     |                                                                                                                                        |
| 2       | Building                 | <ul> <li>Office</li> <li>Residence</li> <li>Power station</li> <li>Substation</li> <li>Others</li> </ul>                               |
| 3       | Civil Works              | <ul> <li>Road</li> <li>Boundary walls</li> <li>Pump House</li> <li>Sentry Post (Guard Room)</li> <li>Toilet</li> <li>Others</li> </ul> |
| 4       | Power Plants             | <ul> <li>Boiler,</li> <li>Turbine (GT, ST)</li> <li>Reciprocating Engine</li> <li>Generator</li> </ul>                                 |

| Table 3.5.1 | List | of Main     | Assets | of BPDB | Facility |
|-------------|------|-------------|--------|---------|----------|
| Idole cicil |      | 01 11100111 | LODGED |         | 1 activy |

| Sl. No. | Major Category of Assets              | Sub-Category of Assets                                                                                                          |
|---------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|         |                                       | <ul> <li>Heat Recovery Steam Generator (HRSG)</li> <li>Power transformer</li> <li>Others</li> </ul>                             |
| 5       | Power Plant Structure                 | <ul> <li>Pump</li> <li>Fuel Tank</li> <li>Cooling Tower</li> <li>Others</li> </ul>                                              |
| 6       | Substations                           | <ul> <li>132/11 kV substations</li> <li>33/11 kV substations</li> </ul>                                                         |
| 7       | Transmission Lines                    | • 132 kV                                                                                                                        |
| 8       | Distribution Lines                    | <ul> <li>33 kV, 11kV</li> <li>11/0.4kV, 0.4/0.23 kV</li> </ul>                                                                  |
| 9       | Distribution Transformers             | <ul> <li>250 kVA, 200 kVA, 100 kVA</li> <li>Others</li> </ul>                                                                   |
| 10      | Protective Devices                    | <ul> <li>Circuit Breakers</li> <li>Drop Out Fuse/ Isolator/ Disconnector</li> <li>Lightning Arrester</li> <li>Others</li> </ul> |
| 11      | Distribution Service Drops and Meters | <ul> <li>Service Drops (3-phase/ 1-phase)</li> <li>Meters (3-phase/ 1-phase)</li> </ul>                                         |

Source: IVVR, BPDB

### 3.5.2 PGCB

PGCB is solely responsible for power transmission at grid level. So, PGCB has different category of assets for power transmission at grid level. The major category of assets belonged to PGCB are given in Table 3.5.2.

| Sl. No. | Major Category of Assets | Sub-Category of Assets                                                                                                                   |  |  |  |  |
|---------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1       | Land                     |                                                                                                                                          |  |  |  |  |
| 2       | Building                 | <ul> <li>Office</li> <li>Residence</li> <li>Power station</li> <li>Substation</li> <li>Others</li> </ul>                                 |  |  |  |  |
| 3       | Civil Works              | <ul> <li>Road</li> <li>Boundary walls</li> <li>Pump House</li> <li>Sentry Post (Guard Room)</li> <li>Toilet</li> <li>Others</li> </ul>   |  |  |  |  |
| 4       | Substations              | <ul> <li>400/230/132 kV substations</li> <li>230/132 kV substations</li> <li>132/33 kV substations</li> <li>Switching Station</li> </ul> |  |  |  |  |
| 5       | Transmission Lines       | <ul> <li>400 kV transmission lines</li> <li>230 kV transmission lines</li> <li>132 kV transmission lines</li> </ul>                      |  |  |  |  |
| 6       | Protective Devices       | <ul> <li>Circuit Breakers</li> <li>Drop Out Fuse/ Isolator/ Disconnector</li> <li>Lightning Arrester</li> <li>Others</li> </ul>          |  |  |  |  |

 Table 3.5.2
 List of Main Assets of PGCB Facility

Source: PGCB

## 3.5.3 Methodology for Valuation of Fixed Assets

For the valuation of Fixed Assets as per International Accounting Standard, i.e., IAS-16, the following methodologies are used with priority:

- 1) Historical Cost
- 2) Replacement Value
- 3) Fair Value

For calculation of depreciation, straight line method is used.

Revaluation of assets is normally done after every five years. However, in BPDB, revaluation is being done after 17 years. In 2000, revaluation was done under "Identification, Verification, Valuation, Recording of Fixed Asset & Store Project" (IVVR project). BPDB has undertaken IVVR Phase-2 Project in 2017 to re-evaluate the assets of BPDB.

## 3.5.4 Recommendation on Asset Management in Power Sector

In BPDB and PGCB, assets in local stores are managed with manual ledger, and there is no central asset management system. Currently, a consultant is engaged to prepare the database for asset.

Information and Communications Technology (ICT) road map is being prepared by Power Cell with the support of World Bank for organizations in power sector. It proposes introduction of Enterprise Resource Planning (ERP) system for respective organization. However, as stated in Section 2.1.4. ERP requires customization for each organization, and requires continuous effort to cope with changeable situation over years. Basic system with documentation management and database is necessary. In addition, database for operation data with SCADA, maintenance record, field service, and engineering design needs to be developed.

In this regard, it is proposed to introduce Network Infrastructure Management System of asset management system platform, as illustrated in Chapter 2.1.4.

## 3.6 Prospective Improvement Project for Power Sector

Currently National Load Dispatch Centre (NLDC) in Bangladesh is using the Energy Management System (EMS) and Supervisory Control and Data Acquisition (SCADA) system called "e-terra" manufactured by GE/Alstom. Therefore, in this survey, we discussed with GE engineers about the collaboration between GE's Smallworld and "e-terra" described later. Our team explained the current situation of frequency in Bangladesh and we also discussed about functions of current EMS/SCADA system and necessary improvement for improving frequency quality as follows.

- (1) Issues of frequency control
  - Grid Code stipulates that the frequency must be kept within  $50 \pm 1.0$  Hz, while it is stipulated to control frequency within  $\pm 0.2$  Hz normally in developing countries. Even under such circumstances frequency is currently deviating from  $\pm 1.0$  Hz range.
  - Communication networks between the NLDC and power stations are not in place. Therefore, all instructions of changing power output from the NLDC to power stations are implemented by telephone.
  - In order to instruct automatically from the NLDC to power stations, it is necessary to check whether the functions of Automatic Generation Control (AGC) and Automatic Frequency Control (AFC) are installed.
  - Free Governor Operation Mode (FGMO) is used only by a few power stations.
  - There is insufficient description of the system for providing reserve for frequency control in the Grid Code.

(2) Fact findings from the discussion with GE engineer

From the discussion with GE engineer, JST have found the following fact findings regarding EMS/SCADA system.

- The "e-terra" is a platform. It is possible to combine various functions (supply-demand control, supervising the transmission lines and substations and asset management, so on) on the platform by customizing it according to user's request.
- AGC function for automatic output control of generator has already installed in the EMS/ SCADA system in NLDC. However, an engineer who is in charge of Bangladesh at the Indian office of GE confirmed to NLDC and received a reply that the AGC function is not used.
- Since LFC function is included in as part of the AGC function, EMS detect minute fluctuations of demand and can keep frequency to 50 Hz.
- Preparation for using the AGC function. The AGC function requires the data of generator such as Maximum Output, Minimum Output, Ramp Rate (Output Change Speed) and so on. The collected data is input to the EMS.
- Economic Dispatching Control (EDC) function can also be used in cooperation with AGC function. EDC function takes into consideration the fuel cost of the generator to be controlled, and the generator output is determined so as to achieve the optimal and economical operation.
- GE/ Alstom does not deal with the communication network between NLDC, power stations, and the receiving terminal on the power plant side.
- There are various kinds of communication networks such as an optical fiber, micro wave, Virtual Private Network (VPN) and so on. There is no particular restriction on the communication method. Therefore, communication method generally adopted in Bangladesh can be used.
- Since there is no particular restriction on the receiving terminal, anything can be used as long as it can receive a signal from a communication network.
- Supply demand control and supervising transmission network functions contain the detailed functions in package. If a user pays the license fee, they can use these functions immediately.

It was confirmed that the current EMS/SCADA system already has AGC function which is necessary for automatic control of generator from NLDC. However, currently NLDC have not used the AGC function, because it needs modification of configuration in the communication network system and equipment in power stations to realize the AGC control.

- (3) Recommendations for improving frequency quality
  - 1) Bangladesh Electricity Grid Code 2012

Grid Code has the rule that all Generators are subject to instructions of NLDC and shall regulate generation according to these instructions, however, it have not yet been realized. The existing frequency range needs to be modified.

Therefore, it is recommended that the terminal of receiving AGC instruction and FGMO function be installed in all new generators. It is also recommended that penalties be added when a generator greatly deviates from the scheduled output.

2) Communication network

In order to realize LFC control, it is recommended that the communication network between NLDC and power stations are installed.

In addition, all power stations need to provide PGCB/NLDC with the necessary parameters of generator for setting AGC function.

It is also recommended that the information system with SCADA installed in NLDC be incorporated when Network Infrastructure Management System is established in the future. The visual mapping and asset database information in Network Infrastructure Management System will enable more advanced operation when it is incorporated with SCADA, as follows:

- Sharing gas generation data and demand forecast data with gas sector through SCADA will help demand-oriented gas supply system. This improves power generation and supply quality.
- Middle term and long term monitoring of SCADA operation data with asset data can be used for the preparation of preventive maintenance and system improvement plan.

Network Infrastructure Management System and SCADA will enable system improvement and advance d operation, as described in section 5.6.1 later.

# CHPTER 4 ENVIRONMENT

This chapter refers various document, maps and database which is possible to be applied for strategic environmental assessment for network infrastructure. Then, environmental scoping for proposed sub-sea pipeline was conducted and major impact was summarized for pipeline corridor, pipeline construction and operation. The preliminary route of the proposed new pipeline is overlapped with environmental maps and recommendation for route selection was made.

### 4.1 **Possibility about the Environmental Supporting Database**

National spatial database like the Small-world could be used for the integrated Environmental and social database for conservation, monitoring and planning too. If the various spatial maps prepared by various organizations in one place, sustainability analysis and sustainability planning could be possible. In order to see the possibility of the special database, designated areas maps, development policy maps, and monitoring maps are examined.

#### 4.1.1 Restricted or Designated Areas by the Bangladesh Regulations

There are various Ordinance, Laws, Act, Rules and Regulations. For example, Industrial areas or Sensitive areas designated by Environment Conservation Rules, 1997, Ecologically Critical Areas designated by Environment (Conservation) Act, 1995, Reserved forest designated by Forest act 1927 or others. This information should be referred at the concept stage of all the infrastructure development. Table 4.1.1 shows a part of designated areas by laws and regulations. But some of them have not been identified the areas yet or have not been opened to the public yet. When Gas and electricity sector project owners select the project location, they have to examine these regulations in detail and have to follow the various environmental standards, keep the air quality and water quality, and avoid the prohibited activities.

| ID | Category | Item                              | Standard/<br>Condition                       | Spatial map                                                                                                                                                           | Authority                             | Ordinance, Law,<br>Act, Rule,<br>Regulation                                                                |
|----|----------|-----------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------|
| R1 | Air      | Ambient air                       | AIR QUALITY<br>STANDARDS                     | Industrial and<br>mixed, (i)<br>National<br>Monument; ii)<br>Health Centres,<br>Hospitals;<br>Archaeological<br>sites, educational<br>institutions; and<br>ECA areas) | Department of<br>Environment<br>(DOE) | Schedule 2,<br>Environment<br>Conservation<br>Rules, 1997                                                  |
| R2 | Air      | Emission<br>standard              | Vehicles,<br>Mechanized<br>Vessels, Industry | -                                                                                                                                                                     | Department of<br>Environment<br>(DOE) | The MotorVehiclesOrdinance,1983EnvironmentConservationRules, 1997                                          |
| R3 | Air      | Emission<br>from brick<br>burning | Industries<br>Brick burning                  | i. Residential,<br>Commercial and<br>restricted area.<br>ii. City<br>Corporation,<br>Paurashava and                                                                   | Department of<br>Environment<br>(DOE) | <u>The</u><br><u>Environment</u><br><u>Pollution</u><br><u>Control</u><br><u>Ordinance,</u><br><u>1977</u> |

 Table 4.1.1
 Designated areas by Laws and Regulations

| ID   | Category | Item             | Standard/<br>Condition                  | Spatial map                                                                                                                                                               | Authority                                                                          | Ordinance, Law,<br>Act, Rule,<br>Regulation                                    |
|------|----------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|      |          |                  |                                         | Upazila Sadar<br>iii. Government<br>and private<br>forest, reserve<br>forest, Garden or<br>Wetland<br>iv. Agriculture<br>land<br>v. ECA areas<br>vi. Degraded Air<br>Shed |                                                                                    | Brick Burning<br>Act, 1989<br>Burning of<br>Bricks<br>(Control) Act,<br>1989   |
| R3-2 | Noise    | Sounds           | Standards for<br>sound (Table<br>4.1.3) | Silent zone,<br>Residential area,<br>Mixed area,<br>Commercial<br>area, Industrial<br>area                                                                                | <u>Department of</u><br><u>Environment</u><br>(DOE)                                | Schedule 4,<br><u>Environment</u><br><u>Conservation</u><br><u>Rules, 1997</u> |
| R4   | Water    | Ambient<br>water | Standards for<br>Water                  | -                                                                                                                                                                         | Department of<br><u>Environment</u><br>(DOE)                                       | TheEnvironmentPollutionControlOrdinance,1977EnvironmentConservationRules, 1997 |
| R5-1 | Water    | River water      | Unknown                                 | Water stress area (Article 17),                                                                                                                                           | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)<br>National<br>water council | Water Act 2013<br>National River<br>Protection<br>Commission<br>Act, 2013      |
| R5-2 | Water    | River water      | Unknown                                 | The lowest safe<br>yield level of<br>aquifer (Article<br>19)                                                                                                              | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                              | Article 19,<br>Water Act 2013                                                  |
| R5-3 | Water    | River water      | Unknown                                 | Conservation of<br>water source and<br>management<br>(ECA river,<br>Haor, Baor,<br>24/10/2017,<br>Hakaluki,<br>Tanguar Haor on<br>09.10.2017)                             | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                              | Article 22,<br>Water Act 2013                                                  |
| R5-4 | Water    | River water      | Unknown                                 | Water zone<br>(Article 23)                                                                                                                                                | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                              | Article 23,<br>Water Act 2013                                                  |
| R5-5 | Water    | River water      | Unknown                                 | Restrictions on<br>water storing<br>(Article 24)                                                                                                                          | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                              | Article 24,<br>Water Act 2013                                                  |

| ID   | Category | Item                           | Standard/<br>Condition                                                                | Spatial map                                                                                                                  | Authority                                                                                                    | Ordinance, Law,<br>Act, Rule,<br>Regulation                                                                                                                               |
|------|----------|--------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R5-6 | Water    | River water                    | Unknown                                                                               | Flood control<br>zone and<br>management<br>(under processed<br>by Rajuk.)                                                    | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                                                        | Article 25,<br>Water Act 2013                                                                                                                                             |
| R6   | Water    | Water supply                   | _                                                                                     | -                                                                                                                            | Department of<br>Public Health<br>Engineering<br>Dhaka Water<br>Supply &<br>Sewerage<br>Authority<br>(DWASA) | Water Supply<br>and Drainage<br>Authority Act,<br>1996                                                                                                                    |
| R7   | Water    | Irrigation                     | Water rights                                                                          | -                                                                                                                            |                                                                                                              | The Irrigation<br>Act, 1876<br>The Tanks<br>Improvement<br>Act, 1939                                                                                                      |
| R7-2 | Water    | Water<br>discharge             | Standards for<br>Waste From<br>Industrial Units or<br>Projects Waste<br>(Table 4.1.4) | Inland Surface<br>Water, Public<br>Sewerage<br>system<br>connected to<br>treatment at<br>second stage,<br>Irrigated Land     | Department of<br>Environment<br>(DOE)                                                                        | Schedule 10,<br>Environment<br>Conservation<br>Rules, 1997                                                                                                                |
| R8   | Water    | River                          | Construction<br>rules (Table 4.1.5)                                                   | Foreshore area                                                                                                               | Bangladesh<br>Inland Water<br>Transport<br>Authority<br>(BIWTA)                                              | <u>Construction &amp;</u><br><u>Installation</u><br><u>control rules on</u><br><u>Inland</u><br><u>waterways &amp;</u><br><u>foreshore 2010</u><br>The Ports Act,<br>1908 |
| R9   | Water    | Water zone                     |                                                                                       | The Territorial<br>Waters and<br>Maritime Zones<br>(Figure 4.1.1)                                                            | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)                                                        | The Territorial<br>Waters and<br>Maritime Zones<br>Act, 1974                                                                                                              |
| R10  | Forest   | Protected<br>Area              | Land use<br>condition in the<br>protected area                                        | Protected Area                                                                                                               | Forest<br>department                                                                                         | Environment<br>Conservation<br>Rules, 1997                                                                                                                                |
| R11  | Forest   | Ecologically<br>Critical Areas | Land use<br>condition in the<br>ECA (Table<br>4.1.6)                                  | Ecologically<br>Critical Areas<br>(Figure 4.1.1)                                                                             | Forest<br>department                                                                                         | Environment<br>(Conservation)<br>Act, 1995<br>Ecologically<br>Critical Area<br>Management<br>Rules, 2016                                                                  |
| R12  | Forest   | Reserved<br>forest             | Rules or restricted<br>activities in the<br>Reserved forest<br>(Table 4.1.6)          | Chapter II:<br>Reserved forest<br>(Figure 4.1.1)<br>Chapter III:<br>Village-Forests<br>and Social<br>Forestry<br>Chapter IV: | Forest<br>department                                                                                         | Forest act 1927                                                                                                                                                           |

| ID  | Category  | Item                        | Standard/<br>Condition                                        | Spatial map                                                                                                                                                     | Authority                                                                                                                                                                                                                 | Ordinance, Law,<br>Act, Rule,<br>Bogulation                                                                                                                   |
|-----|-----------|-----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |           |                             |                                                               | Protected forest                                                                                                                                                |                                                                                                                                                                                                                           | Regulation                                                                                                                                                    |
| R13 | Land use  | City planning               | Land use rules or<br>restrictions in the<br>city planned area | City planning<br>map in Dhaka<br>( <u>Detailed Area</u><br><u>Plan DAP</u> ),<br>Chittagong<br>( <u>Land use plan</u> ),<br>Khulna and<br>Rajshahi<br>division. | RAJUk for<br>Dhaka,<br>Chittagong<br>Development<br>Authority<br>(CDA) for<br>Chittagomg,<br>Khulna<br>Development<br>Authority<br>(KDA) for<br>Khulna and<br>Rajshahi<br>Development<br>Authority<br>(RDA) for<br>Rajshi | Local<br>Government<br>(Municipal)<br>Act, 2009<br>Local<br>Government<br>(City<br>Corporation)<br>Act. 2009<br>Local<br>Government<br>(Union<br>Council) Act |
| R14 | Land use  | Real Estate<br>Development  | Allowed<br>development<br>areas                               | Proposed<br>Detailed Area<br>Plan (Dap) by<br>development<br>control authority<br>(RAJUK, CDA,<br>RDA and KDA)                                                  |                                                                                                                                                                                                                           | Real Estate<br>Development<br>and Control<br>Act, 2010                                                                                                        |
| R15 | Water     | Water traffic               | Water traffic<br>routes                                       | BIWTA Routes:<br>Class 1:<br>Class II:<br>Class III:<br>Class IV:<br>(Table 4.1.5)                                                                              | Bangladesh<br>Inland Water<br>Transport<br>Authority<br>(BIWTA)                                                                                                                                                           | The Canal Act,<br>1864                                                                                                                                        |
| R16 | Water     | River bank                  | River bank                                                    | Four rivers bank<br>of Dhaka city's<br>(Buriganga,<br>Turag,<br>Shitalakhya,<br>Balue)                                                                          | Bangladesh<br>Inland Water<br>Transport<br>Authority<br>(BIWTA)                                                                                                                                                           | The<br>Embankment &<br>Drainage Act,<br>1952                                                                                                                  |
| R18 | Culture   | Heritage,<br>cultural asset | -                                                             | -                                                                                                                                                               | <u>Ministry of</u><br><u>Cultural</u><br><u>Affairs</u><br><u>Department of</u><br><u>Archaeology</u><br>Bangladesh<br>Parjatan<br>Corporation,<br>Ministry of<br>Civil Aviation<br>and Tourism                           | National<br>Cultural<br>Policy-2006<br>Law of<br>Archaeology<br>2015                                                                                          |
| R19 | Fisheries | Fisheries                   | Fish catch control<br>areas (Table<br>4.1.7)                  | Hilsha<br>Sancturies                                                                                                                                            | Department<br>of Fisheries,<br>Ministry of<br>Fisheries<br>And<br>Livestock                                                                                                                                               | East bangal<br>Protection and<br>Conservation of<br>Fish Act 1950<br>Part 01<br>East bangal<br>Protection and<br>Conservation of<br>Fish Act 1950             |

| ID  | Category | Item    | Standard/<br>Condition | Spatial map                | Authority                                              | Ordinance, Law,<br>Act, Rule,<br>Regulation                    |
|-----|----------|---------|------------------------|----------------------------|--------------------------------------------------------|----------------------------------------------------------------|
|     |          |         |                        |                            |                                                        | Part 02<br>Animal and                                          |
| R20 | Economy  | Economy | Unknown                | Economic<br>exclusive zone | Bangladesh<br>Economic<br>Zones<br>Authority<br>(BEZA) | Fish Act, 2010<br>Bangladesh<br>Economic<br>Zones Act,<br>2010 |

Source: Prepared by JST

Environment Conservation Rules 1997 stipulates environmental standards. The following table summarizes the environmental standard of Air.

| Categories of<br>Area | Suspended<br>Particulate<br>Maters (SPM)<br>(mg/m <sup>3</sup> ) | Sulphur dioxide<br>(mg/m <sup>3</sup> ) | Carbon<br>Monoxide<br>(mg/m <sup>3</sup> ) | Oxides Nitrogen<br>(mg/m <sup>3</sup> ) |
|-----------------------|------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|
| a. Industrial and     | 500                                                              | 120                                     | 5000                                       | 100                                     |
| mixed                 |                                                                  |                                         |                                            |                                         |
| b. Commercial         | 400                                                              | 100                                     | 5000                                       | 100                                     |
| and mixed             |                                                                  |                                         |                                            |                                         |
| c. Residential and    | 200                                                              | 80                                      | 2000                                       | 80                                      |
| rural                 |                                                                  |                                         |                                            |                                         |
| d. Sensitive          | 100                                                              | 30                                      | 1000                                       | 30                                      |

Notes:

(1) At national level, sensitive area includes monuments, health center, hospital, archaeological site, educational institution, and government designated areas (if any).

(2) Industrial units located in areas not designated as industrial areas shall not discharge pollutants which may contribute to exceeding the standard for air surrounding the areas specified at Sl. nos. c and d above.

(3) Suspended Particulate Matter means airborne particles of a diameter of 10 micron or less.

Source: Schedule 2, Environment Conservation Rules, 1997

Standards for sound in decibel are stipulated in five categories of areas, as shown in the table below.

| SI No           | Catagory of among                                                                                               | Standards determined at dB unit |       |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|-------|--|
| <b>51.</b> INO. | Category of areas                                                                                               | Day                             | Night |  |
| a.              | Silent zone                                                                                                     | 45                              | 35    |  |
| b.              | Residential area                                                                                                | 50                              | 40    |  |
| c.              | Mixed area (mainly residential area, and also<br>simultaneously used for commercial and<br>industrial purposes) | 60                              | 50    |  |
| d.              | Commercial area                                                                                                 | 70                              | 60    |  |
| e.              | Industrial area                                                                                                 | 75                              | 70    |  |

Table 4.1.3Standards for Sound

Notes:

1. The time from 6 a.m. to 9 p.m. is counted as daytime.

2. The time from 9 p.m. to 6 a.m. is counted as night time.

3. Area up to a radius of 100 meters around hospitals or educational institutions or special institutions/ establishments identified/to be identified by the Government is designated as Silent Zones where use of horns of vehicles or other audio signals, and loudspeakers are prohibited.

Source: Schedule 4, Environment Conservation Rules, 1997

Waste standard is settled for inland surface water, public sewerage system connected to treatment, and irrigated land. The following table indicates the standards for waste from industrial activities or projects by places.

|         |                                                          |                  | Places for determination of standards                    |                                                                        |                   |  |
|---------|----------------------------------------------------------|------------------|----------------------------------------------------------|------------------------------------------------------------------------|-------------------|--|
| Sl. No. | Parameter                                                | Unit             | Inland<br>Surface<br>Water                               | Public Sewerage<br>system connected<br>to treatment at<br>second stage | Irrigated<br>Land |  |
| 1       | Ammoniacal Nitrogen<br>(as elementary N)                 | mg/l             | 50                                                       | 75                                                                     | 75                |  |
| 2       | Ammonia (as free ammonia)                                | mg/l             | 5                                                        | 5                                                                      | 15                |  |
| 3       | Arsenic (As)                                             | mg/l             | 0.2                                                      | 0.05                                                                   | 0.2               |  |
| 4       | BOD5 at 20 °C                                            | mg/l             | 50                                                       | 250                                                                    | 100               |  |
| 5       | Boron                                                    | mg/l             | 2                                                        | 2                                                                      | 2                 |  |
| 6       | Cadmium (as CD)                                          | mg/l             | 0.50                                                     | 0.05                                                                   | 0.05              |  |
| 7       | Chloride                                                 | mg/l             | 600                                                      | 600                                                                    | 600               |  |
| 8       | Chromium (as total Cr)                                   | mg/l             | 0.5                                                      | 1.0                                                                    | 1.0               |  |
| 9       | COD                                                      | mg/l             | 200                                                      | 400                                                                    | 400               |  |
| 10      | Chromium (as<br>hexavalent Cr)                           | mg/l             | 0.1                                                      | 1.0                                                                    | 1.0               |  |
| 11      | Copper (as Cu)                                           | mg/l             | 0.5                                                      | 3.0                                                                    | 3.0               |  |
| 12      | Dissolved Oxygen (DO)                                    | mg/l             | 4.5 - 8                                                  | 4.5 - 8                                                                | 4.5 - 8           |  |
| 13      | Electro-conductivity<br>(EC)                             | Micro mho/<br>cm | 1200                                                     | 1200                                                                   | 1200              |  |
| 14      | Total Dissolved Solids                                   | mg/l             | 2,100                                                    | 2,100                                                                  | 2,100             |  |
| 15      | Fluoride (as F)                                          | mg/l             | 2                                                        | 15                                                                     | 10                |  |
| 16      | Sulfide (as S)                                           | mg/l             | 1                                                        | 2                                                                      | 2                 |  |
| 17      | Iran (as Fe)                                             | mg/l             | 2                                                        | 2                                                                      | 2                 |  |
| 18      | Total Kjeldahl Nitrogen<br>(as N)                        | mg/l             | 100                                                      | 100                                                                    | 100               |  |
| 19      | Lead (as Pb)                                             | mg/l             | 0.1                                                      | 1.0                                                                    | 0.1               |  |
| 20      | Manganese (as Mn)                                        | mg/l             | 5                                                        | 5                                                                      | 5                 |  |
| 21      | Mercury (as Hg)                                          | mg/l             | 0.01                                                     | 0.01                                                                   | 0.01              |  |
| 22      | Nickel (as Ni)                                           | mg/l             | 1.0                                                      | 2.0                                                                    | 1.0               |  |
| 23      | Nitrate (as elementary N)                                | mg/l             | 10.0                                                     | Not yet Fixed                                                          | 10                |  |
| 24      | Oil and Grease                                           | mg/l             | 10                                                       | 20                                                                     | 10                |  |
| 25      | Phenolic Compounds (as C <sub>6</sub> H <sub>5</sub> OH) | mg/l             | 1.0                                                      | 5                                                                      | 1                 |  |
| 26      | Dissolved Phosphorus<br>(as P)                           | mg/l             | 8                                                        | 8                                                                      | 15                |  |
| 27      | Radioactive substance                                    |                  | To be specified by Bangladesh Atomic Energ<br>Commission |                                                                        | mic Energy        |  |
| 28      | pH                                                       |                  | 6 – 9                                                    | 6 – 9                                                                  | 6 – 9             |  |
| 29      | Selenium (as Se)                                         | mg/l             | 0.05                                                     | 0.05                                                                   | 0.05              |  |
| 30      | Zinc (as Zn)                                             | Degree           | 5                                                        | 10                                                                     | 10                |  |
| 31      | Total Dissolved Solids                                   | mg/l             | 2,100                                                    | 2,100                                                                  | 2,100             |  |
| 32      | Temperature                                              | Centigrade       | 40-Summer                                                | 40-Summer                                                              | 40-Summer         |  |

 Table 4.1.4
 Standards for Waste From Industrial Units or Projects

|         |                       |      | Places for determination of standards |                                                                        |                   |
|---------|-----------------------|------|---------------------------------------|------------------------------------------------------------------------|-------------------|
| Sl. No. | Parameter             | Unit | Inland<br>Surface<br>Water            | Public Sewerage<br>system connected<br>to treatment at<br>second stage | Irrigated<br>Land |
|         |                       |      | 45-Winter                             | 45-Winter                                                              | 45-Winter         |
| 33      | Suspended Solids (SS) | mg/l | 150                                   | 500                                                                    | 200               |
| 34      | Cyanide (as Cn)       | mg/l | 0.1                                   | 2.0                                                                    | 0.2               |

Notes:

(1) These standards shall be applicable to all industries or projects other than those specified under the heading "Standards for sectorwise industrial effluent or emission."

(2) Compliance with these standards shall be ensured from the moment an industrial unit starts trial production, and in other cases, from the moment a project starts operation.

(3) These standards shall be inviolable even in case of any sample collected instantly at any point of time. These standards may be enforced in a more stringent manner if considered necessary in view of the environmental conditions of a particular situation.

(4) Inland Surface Water means drains/ponds/tanks/water bodies/ ditches, canals, rivers, springs and estuaries.

(5) Public sewerage system means treatment facilities of the first and second stage and also the combined and complete treatment facilities.

(6) Irrigable land means such land area which is sufficiently irrigated by waste water taking into consideration the quantity and quality of such water for cultivation of selected crops on that land.

(7) Inland Surface Water Standards shall apply to any discharge to a public sewerage system or to land if the discharge does not meet the requirements of the definitions in notes 5 and 6 above.

Source: Schedule 10, Environment Conservation Rules, 1997

Related with R15 in Table 4.1.1, the following clearance distance/set back distance is regulated in the each class.

| Class | Vertical clearance | Horizontal clearance |  |  |  |
|-------|--------------------|----------------------|--|--|--|
| Ι     | 18.30 meter        | 76.22 meter          |  |  |  |
| II    | 12.20 meter        | 76.22 meter          |  |  |  |
| III   | 7.62 meter         | 30.48 meter          |  |  |  |
| IV    | 1.50 meter         | 20.00 meter          |  |  |  |
|       |                    |                      |  |  |  |

 Table 4.1.5
 Clearance distance/set back distance of Foreshore area

Note: Any type of overhead electricity line, if crossed on the BIWTA routes additional vertical distance 3.05 meter should be added with above mentioned vertical distance. Source: BIWTA

Ministry of Environment and Forests regulates prohibited activities in the protected areas. The name of regulation, type of protected area, allowed activities and prohibited activities are summarized in the following table

| <b>Table 4.1.6</b> | Allowed and Prohibited Activities in the Protected Areas |
|--------------------|----------------------------------------------------------|
|--------------------|----------------------------------------------------------|

| Act                    | Name                  | Number | Allowed activities                                                                                                                                                                                                                                                                                   | Prohibited activities                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|-----------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wildlife<br>(Preservat | National<br>Park      | 17     | • The following persons can<br>enter or reside in protected                                                                                                                                                                                                                                          | <ul><li>cultivate any land;</li><li>establish or undertake any industrial</li></ul>                                                                                                                                                                                                                                                                                                                              |
| ion) Act,<br>1973      | Wildlife<br>Sanctuary | 20     | <ul> <li>areas, namely:</li> <li>(a) an officer on duty under<br/>this Act or rules made<br/>thereunder;</li> <li>(b) a person permitted by the<br/>Chief Warden or an officer<br/>authorized by him in this<br/>behalf;</li> <li>(c) a person nominated by the<br/>Forest Department for</li> </ul> | <ul> <li>operation;</li> <li>harvest, destroy or collect any plant;</li> <li>set any kind of fire;</li> <li>enter into a sanctuary with any weapon<br/>without the permission of the Chief<br/>Warden or the officer authorized by him in<br/>this behalf;</li> <li>disturb or threat any wildlife, or use<br/>chemicals, explosives or any other weapon<br/>or substances which may destroy wildlife</li> </ul> |

| Act                                                                                                                      | Name                                                                                        | Number                                                                                    | Allowed activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prohibited activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |                                                                                             |                                                                                           | <ul> <li>conservation- work;</li> <li>(d) a person passing through highway, road and waterway constructed in the sanctuary; and</li> <li>(e) a person necessary for the purpose of management or conservation of, who is permitted by the Chief Warden or an officer authorized by him in this behalf.</li> <li>Permit to enter may be granted to enter in sanctuary for the following purposes, namely: <ul> <li>(a) study or investigation on relevant and helpful subject on wildlife;</li> <li>(b) photography;</li> <li>(c) research; and</li> <li>(d) ecotourism.</li> </ul> </li> </ul> | <ul> <li>habitat;</li> <li>introduce any exotic animal or plant;</li> <li>introduce any domestic animal or allow<br/>any domestic animal to stray;</li> <li>dump any materials detrimental to<br/>wildlife;</li> <li>explore or dig for extraction of minerals;</li> <li>fell any plant or part thereof except<br/>silvicultural operations required for natural<br/>regeneration of plants;</li> <li>divert, stop or pollute watercourse; or</li> <li>introduce any alien and invasive plant<br/>species</li> <li>no person, institution or company shall<br/>establish or operate any industrial factory<br/>or brick-field within 2 (two) kilometers<br/>from the boundary of a sanctuary.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Environm<br>ent<br>(Conserva<br>tion) Act,<br>1995<br>Ecological<br>ly Critical<br>Area<br>Managem<br>ent Rules,<br>2016 | Ecological<br>ly Critical<br>Areas:<br>area<br>Ecological<br>ly Critical<br>Areas:<br>River | 9<br>4<br>(Buriganga,<br>Sitalakhya, Balu<br>and Turag river<br>around the<br>Dhaka city) | Subject to the approval of village<br>conservation team and/or<br>Department of<br>Environment(DOE) to the<br>scheme/ project beneficial for the<br>ECA conservation and<br>development.                                                                                                                                                                                                                                                                                                                                                                                                       | Polluting water by discharging waste or any<br>other activities that could destroy or change the<br>natural characteristics and land cover of an<br>ECA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Forest<br>Act, 1927                                                                                                      | Forest<br>reserve                                                                           | 4                                                                                         | Any act done with the permission<br>in writing of the Forest-officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Kindles, keeps or carries any fire except at such seasons as the Forest-Officer may notify in this behalf.</li> <li>trespasses or pastures cattle, or permits cattle to trespass;</li> <li>causes any damage by negligence in felling any tree or cutting or dragging any timber;</li> <li>quarries stone, burns lime or charcoal, or collects, subjects to any manufacturing process, or removes, any forest produce other than timber;</li> <li>enters a reserved forest with fire arms without prior permission from the Divisional Forest Officer concerned,</li> <li>makes any fresh clearing</li> <li>removes any timber from a reserved forest;</li> <li>fells, girdles, lops, taps or burns any tree or strips off the bark or leaves from or otherwise damages, the same;</li> <li>clears or breaks up any land for cultivation or any other purpose or cultivates or attempts to cultivate any land in any other manner</li> <li>hunts, shoots, fishes, poisons water or sets traps or snares;</li> <li>establishes saw-pits or saw-benches or converts trees into timber without lawful authority</li> </ul> |

| Act                                      | Name                                                                                                               | Number                                                       | Allowed activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prohibited activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Act<br>Ex-situ<br>Conservat<br>ion Areas | Name<br>Botanical<br>Garden<br>Eco-parks<br>and Safari<br>Park<br>Marine<br>protected<br>area<br>Marine<br>reserve | Number         2           8         1           1         1 | <ul> <li>Allowed activities</li> <li>The following persons can<br/>enter or reside in protected<br/>areas, namely: <ul> <li>a) an officer on duty under<br/>this Act or rules made<br/>thereunder;</li> <li>b) a person permitted by the<br/>Chief Warden or an officer<br/>authorized by him in this<br/>behalf;</li> <li>c) a person nominated by the<br/>Forest Department for<br/>conservation- work;</li> <li>d) a person passing through<br/>highway, road and<br/>waterway constructed in<br/>the sanctuary; and</li> <li>a person person person the</li> </ul></li></ul> | <ul> <li>Prohibited activities</li> <li>cultivate any land;</li> <li>establish or undertake any industrial operation;</li> <li>harvest, destroy or collect any plant;</li> <li>set any kind of fire;</li> <li>enter into a sanctuary with any weapon without the permission of the Chief Warden or the officer authorised by him in this behalf;</li> <li>disturb or threat any wildlife, or use chemicals, explosives or any other weapon or substances which may destroy wildlife habitat;</li> <li>introduce any exotic animal or plant;</li> <li>introduce any domestic animal or allow any domestic animal to stray;</li> <li>dump any materials detrimental to</li> </ul> |
|                                          |                                                                                                                    |                                                              | <ul> <li>e) a person necessary for the purpose of management or conservation of, who is permitted by the Chief Warden or an officer authorized by him in this behalf.</li> <li>Permit to enter may be granted to enter in sanctuary for the following purposes, namely: <ul> <li>a) study or investigation on relevant and helpful subject on wildlife;</li> <li>b) photography;</li> <li>c) research; and</li> <li>d) acotavirism</li> </ul></li></ul>                                                                                                                          | <ul> <li>dump any materials detrimental to wildlife;</li> <li>explore or dig for extraction of minerals;</li> <li>fell any plant or part thereof except silvicultural operations required for natural regeneration of plants;</li> <li>divert, stop or pollute watercourse; or</li> <li>introduce any alien and invasive plant species</li> <li>no person, institution or company shall establish or operate any industrial factory or brick-field within 2 (two) kilometers from the boundary of a sanctuary.</li> </ul>                                                                                                                                                       |

Source: MOFE

Related with R19 in Table 4.1.1, the following information is obtained. Hilsha is the one of the national food for Bangladeshis and to control the amount to be caught, the catch is banned in the following periods.

#### Table 4.1.7Hilsha Sancturies

| Area                                                                                    | Ban period             |
|-----------------------------------------------------------------------------------------|------------------------|
| i. 100 Km stretch of the lower Meghna River from Shatnol, Chandpur District to C        | Thar March to April    |
| Alexander, Laxmipur District                                                            |                        |
| ii. 90 km strtch of Shahbazpur Channel, tributary of the Meghna River, Char Ilisha to C | Char March to April    |
| Pial, Bhola District                                                                    |                        |
| iii. 100 Km stretch of the Tetulia River from Bheduria, Bhola District to Char Rust     | am. March to April     |
| Patuakhali District                                                                     | -                      |
| iv. Whole 40 Km stretch of the Andarmanik River in Kalapara Upazila Patuakhali Distric  | ct November to January |
| v. 20 Km stretch of lower Padilla river, between Naria-Bhedorganj Upazila, Shariat      | pur March to April     |
| District in the north and Matlab Upazila, Chandpur District and Bhedorganj Upaz         | vila,                  |
| Shariatpur District in the south                                                        |                        |
|                                                                                         |                        |

Source: Department of Fisheries, Ministry of Fisheries and Livestock

The environmental maps indicating regulated areas are issued from various organizations. Following figures are examples of regulation maps.





Figure 4.1.1 Examples of Regulation Maps

## 4.1.2 Policy and Plans related to Environment

Other than designated areas there are many zonings or target areas planned by many sectors. Some actions in the zones or areas are encouraged and targets are set by the plans or policies. Developers should refer the zonings and targets and make their plans fit for them. Table 4.1.7 shows zoning, target areas and policy. When Gas and electricity sector project owner start designing, they have to see all the other sector's policy and plan and examine whether their plan will be in consistent with the other sectors policy and plan or not.

| ID | Category | Item                                          | Plan/ Strategy                                                                                                                                                                                                                                                                | Spatial map       | Authority                                                                              | Ordinance, Law,<br>Act, Rule                                                            |
|----|----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| P1 | Air      | Ambient air                                   | <u>Air Quality</u><br><u>Management</u><br><u>Project</u><br>(AQMP)                                                                                                                                                                                                           | 11 project sites  | Department of<br>Environment<br>(DOE)                                                  | The Environment<br>Conservation<br>Rules, 1997                                          |
| P2 | Air      | Emission<br>from Industry,<br>transportation, | Environment<br>Policy, 1992<br>National Land<br>Transport<br>Policy 2004<br>Strategic<br>Transport Plan<br>2005<br>Bangladesh<br>Climate<br>Change Action<br>Plan 2009<br><u>Air Pollution</u><br><u>Reduction</u><br><u>Strategy for</u><br><u>Bangladesh</u><br>(2012, DOE) | -                 | Department of<br>Environment<br>(DOE)                                                  | The Environment<br>Conservation<br>Rules, 1997                                          |
| P3 | Water    | Water right                                   | National water<br>Management<br>Plan<br>(NWMP)-2004<br><u>National Water</u><br><u>Management</u><br><u>Plan (NWMP)</u><br>2001                                                                                                                                               | Hydrological zone | Bangladesh<br>Water<br>Development<br>Board<br>(BWDB)<br>Water<br>Resource<br>Planning | Water ResourcePlanning Act, 1992National WaterPolicy(NWPo)-1999Bangladesh WaterAct 2013 |

Table 4.1.8Zoning or Target Areas

| ID   | Category | Item                    | Plan/ Strategy                                                                                                                                                         | Spatial map                                                                                      | Authority                                                                                                                                           | Ordinance, Law,<br>Act, Rule                                                                             |
|------|----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|      |          |                         |                                                                                                                                                                        |                                                                                                  | Organization<br>(WARPO)<br>National<br>Water<br>Resources<br>Council<br>(NWRC)                                                                      |                                                                                                          |
| P3-2 | Water    | Coast                   | Integrated<br>Coastal Zone<br>Management<br>Plan (ICZMP)                                                                                                               | Coastal Zone<br>(Figure 4.1.2)                                                                   | Planning<br>Organization<br>(WARPO)                                                                                                                 | National Water<br>Policy<br>(NWPo)-1999                                                                  |
| P3-3 | Water    | Flood                   | Bangladesh<br>Flood Action<br>Plan (FAP)<br>2015                                                                                                                       | Unknown                                                                                          | Planning<br>Organization<br>(WARPO)                                                                                                                 | National Water<br>Policy<br>(NWPo)-1999                                                                  |
| P3-4 | Water    | Disaster                | Integrated<br>Coastal Zone<br>Management<br>Plan (Table<br>4.1.9)                                                                                                      | Water zone (Figure<br>4.1.2)<br>Coastal districts                                                | <u>Planning</u><br><u>Organization</u><br>(WARPO)                                                                                                   | Article 23,<br>Bangladesh Water<br>Act 2013                                                              |
| P4   | Water    | Flood                   | Flood Control.<br>Drainage and<br>Irrigation<br>(FCDI) project                                                                                                         | Flood Control.<br>Drainage and<br>Irrigation (FCDI)<br>project areas (Figure<br>4.1.2)           | Ministry of<br>Food and<br>Disaster<br>Management<br>Disaster<br>Management<br>Bureau<br>(DMB)<br><u>Planning</u><br><u>Organization</u><br>(WARPO) | Disaster<br>Management Act<br>(DMA) 2012                                                                 |
| P4-2 | Water    | Water<br>resource       | The<br>Traditional<br>Approach To<br>Management<br>Of The Water<br>Resources<br>System (NWP<br>II, 2015)                                                               | Unknown                                                                                          | <u>Planning</u><br><u>Organization</u><br>(WARPO)                                                                                                   | National Water<br>Policy<br>(NWPo)-1999                                                                  |
| P5   | Water    | Water supply            | National<br>Policy for Safe<br>Water Supply<br>and Sanitation<br>1998<br>National<br>Policy for<br>Arsenic<br>Mitigation<br>2004<br>National<br>Sanitation<br>Strategy | Whole country<br>except Dhaka,<br>Narayanganj and<br>Chittagong cities<br>where WASAs<br>operate | Department of<br>Public Health<br>and<br>Engineering<br>(DPHE)                                                                                      | National Drinking<br>Water Policy<br>(1999)<br>National Water<br>Supply and<br>Drainage Policy<br>(1998) |
| P6   | Water    | Irrigation<br>water use | Planning for<br>irrigation<br>water due to<br>scarcity in<br>cropping                                                                                                  | Coastal Region of<br>Bangladesh                                                                  | Department of<br>Agricultural<br>Extension<br>(DAE)                                                                                                 | National<br>Agriculture Policy<br>(1999)                                                                 |

| ID  | Category | Item                                   | Plan/ Strategy                                                                                                                                                                                                                                   | Spatial map                              | Authority                                                                                                                                 | Ordinance, Law,<br>Act, Rule                            |
|-----|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|     |          |                                        | season<br>Master Plan<br>for<br>Agricultural<br>Development<br>in Coastal<br>Region of<br>Bangladesh<br>2013                                                                                                                                     |                                          |                                                                                                                                           |                                                         |
| P7  | Water    | Underground<br>water<br>(Arsenic)      | Unknown                                                                                                                                                                                                                                          | Unknown                                  | Department of<br>Public Health<br>Engineering<br>(DPHE)                                                                                   | National Policy for<br>Arsenic Mitigation<br>2004       |
| P8  | Fishery  | Fishery                                |                                                                                                                                                                                                                                                  | Unknown                                  | Bangladesh<br>Fisheries<br>Development<br>Corporation<br>Ministry of<br>Fisheries and<br>Livestock                                        | National Fish<br>Polity (1998)                          |
| Р9  | Forest   | Forest<br>protection                   | <u>Forest</u><br><u>Management</u><br><u>Strategy</u>                                                                                                                                                                                            | Unknown                                  | Bangladesh<br>Forest<br>Industries<br>Development<br>Forest<br>department                                                                 | National forest<br>policy 2016                          |
| P10 | Forest   | Wildlife                               | <u>Management</u><br><u>Plans</u>                                                                                                                                                                                                                | Unknown                                  | <u>Strengthening</u><br><u>Regional</u><br><u>Cooperation</u><br><u>for Wildlife</u><br><u>Protection</u><br><u>Project</u> , FD,<br>MOEF | Environment<br>Conservation<br>Rules, 1997              |
| P11 | Wildlife | Coastal and<br>Wetland<br>Biodiversity | Coastal and<br>Wetland<br>Biodiversity<br>Management<br>(CWBMP)                                                                                                                                                                                  | Cox's Bazar and<br>Hakaluki Haor         | Department of<br>Environment<br>(DOE)                                                                                                     | Environment<br>Conservation Act,<br>1995                |
| P12 | Wildlife | Bird                                   | (1) <u>Action</u><br><u>Plan for the</u><br><u>Management</u><br><u>of Birds in</u><br><u>Bangladesh</u> ,<br>(2)<br><u>Strengthening</u><br><u>Regional</u><br><u>Cooperation</u><br><u>for Wildlife</u><br><u>Protection</u><br><u>Project</u> | 19 sites (Table<br>4.1.10, Figure 4.1.2) | <u>Forest</u><br><u>department</u><br>(FD) MOEF                                                                                           | WILDLIFE<br>(CONSERVATION<br>AND SECURITY)<br>ACT, 2012 |
| P13 | Wildlife | Vulture                                | Bangladesh<br>vulture<br>conservation<br>action plan<br>2016-2025                                                                                                                                                                                | Two Vulture Safe<br>Zones (Table 4.1.10) | Forest<br>Department<br>(FD)                                                                                                              | WILDLIFE<br>(CONSERVATION<br>AND SECURITY)<br>ACT, 2012 |
| P14 | Wildlife | Herpetofauna                           | <u>Herpetofauna</u><br>Management                                                                                                                                                                                                                | Unknown                                  | <u>Forest</u><br>Department                                                                                                               | WILDLIFE<br>(CONSERVATION                               |

| ID  | Category    | Item                                               | Plan/ Strategy                                                                                         | Spatial map                                                                                              | Authority                                                                                                                               | Ordinance, Law,<br>Act, Rule                                                                                   |
|-----|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|     |             |                                                    | Strategy,<br>Strengthening<br>Regional<br>Cooperation<br>for Wildlife<br>Protection<br>Project         |                                                                                                          | (FD)                                                                                                                                    | AND SECURITY)<br>ACT, 2012                                                                                     |
| P15 | Wildlife    | Mammal                                             | MammalManagementStrategy,StrengtheningRegionalCooperationfor WildlifeProtectionProject                 | Unknown                                                                                                  | Forest<br>Department<br>(FD)                                                                                                            | WILDLIFE<br>(CONSERVATION<br>AND SECURITY)<br>ACT, 2012                                                        |
| P17 | Road        | Road<br>development                                | Road Master<br>Plan                                                                                    | Road plan maps                                                                                           | Ministry of<br>Road<br>Transport and<br>Bridges<br>Road<br>Transport and<br>Highways<br>Division                                        |                                                                                                                |
| P18 | Gas         | Gas field, Gas<br>pipeline,<br>Storage<br>facility | <u>National</u><br><u>Energy</u><br><u>Policy-2004</u>                                                 | Planned Gas storage<br>facilities, Planned<br>gas field<br>Planned Gas<br>pipelines (to be<br>confirmed) | Ministry of<br>Power,<br>Energy and<br>Mineral<br>Resources<br>Energy and<br>Mineral<br>Resources<br>Division                           | <u>Gas Act-2010</u>                                                                                            |
| P19 | Electricity | TML, Power<br>plant                                | Power System<br>Master<br>Plan-2016                                                                    | Planned Power plant<br>map, TML plan<br>(to be confirmed)                                                | <u>Ministry of</u><br><u>Power,</u><br><u>Energy and</u><br><u>Mineral</u><br><u>Resources</u><br><u>Power</u><br>Division              | Electricity Act<br>2015                                                                                        |
| P20 | People      | Poverty                                            | The National<br>Food Policy<br>Plan of Action<br>(NFP PoA)                                             | Unknown                                                                                                  | Food<br>Planning and<br>Monitoring<br>Unit (FPMU),<br><u>Ministry of</u><br>Food                                                        |                                                                                                                |
| P21 | Waste       | Waste                                              | Solid Waste<br>Management<br>Action Plan<br>for Eight<br>Secondary<br>Towns in<br>Bangladesh<br>(2005) | -                                                                                                        | Local<br>Government<br>Engineering<br>Department<br>Ministry of<br>Local<br>Government,<br>Rural<br>Development<br>and<br>Co-operatives | Draft National<br>Solid Waste<br>Management<br>Handling Rules,<br>2005<br>National Sanitation<br>Strategy 2005 |

| ID    | Category | Item                 | Plan/ Strategy                                     | Spatial map                          | Authority                                                           | Ordinance, Law,<br>Act, Rule                                                                                                                   |
|-------|----------|----------------------|----------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| P23   | Industry | Export<br>processing | Export<br>Processing<br>Zones                      | EPZ's location map<br>(Figure 4.1.2) | Bangladesh<br>Export<br>Processing<br>Zones<br>Authority<br>(BEPZA) | <u>The Bangladesh</u><br><u>Export Processing</u><br><u>Zones Authority</u><br><u>Act, 1980</u>                                                |
| P23-2 | Industry | Industry             | Industrial<br>zones                                | Unknown                              | Ministry of<br>Industry                                             | National Industry<br>Policy (2010)                                                                                                             |
| P24   | Coast    | Coast<br>protection  | Integrated<br>Coastal Zone<br>Management<br>(ICZM) | Coastal Zone map<br>(Figure 4.1.2)   | Bangladesh<br>Inland Water<br>Transport<br>Authority<br>(BIWTA)     | Land Use Policy<br>(2001), Coastal<br>Zone Policy<br>(2005), Tsunami<br>Vulnerability Map<br>(2005), Coastal<br>Development<br>Strategy (2006) |

Source: Prepared by JST

National Water Management Plan (NWMP) conducts several projects according to problems in hydrological Zones. The following table summarizes water projects by regions.

| Regions   | Problems                                                                | Projects                                |
|-----------|-------------------------------------------------------------------------|-----------------------------------------|
| North     | • Erosion along the right bank of the Brahmaptura, which threatens      | MC 005 Rajshahi Bulk Water              |
| West      | to break through to the Bangali River and is the cause of much          | Supply and Distribution                 |
|           | hardship to those living in the area. A major project to prevent this   | Systems                                 |
|           | happening, the River Bank Protection Project, has recently been         | MC 009 Rajshahi Sanitation              |
|           | completed. A long-term master plan for extending bank protection        | and Sewerage Systems                    |
|           | was formulated under FAP.                                               | MC 016 Rajshahi Flood                   |
|           | • Flooding and drainage problems in areas such as the Lower Atrai       | Protection                              |
|           | and Chalan Beel, and remedial measures for the numerous existing        | MC 017 Rajshahi Stormwater              |
|           | FCD(I) schemes in such areas.                                           | Drainage                                |
|           | • Drought in the western fringes, especially the High Barind. The       | AW 004 New Public Deep                  |
|           | existing BMDA DTW irrigation development is one successful              | Tubewell Irrigation Schemes             |
|           | attempt at addressing this issue.                                       |                                         |
|           | • The need for flood proofing of the dwellings of the numerous          |                                         |
|           | people living in the Branmaputra and Ganges river charlands,            |                                         |
|           | which are neavily flooded in most years (this is also covered in the    |                                         |
|           | KE Region).                                                             |                                         |
|           | • The possible eventual need for a Branmaputra barrage (its eastern     |                                         |
| NI - utle | end would be in NC Region).                                             | MC 002 Dhalas Balla Watar               |
| Control   | • Further raw water supplies for Diaka City. At present, these come     | Supply and Distribution                 |
| Central   | largely from DT ws, with a consequent severe over-exploitation of       | Supply and Distribution                 |
|           | the local aquifier. The only long-term solution is to bring surface     | Systems<br>MC 006 Dhalas Sanitation and |
|           | Election and during a method in version and of the major                | NIC 006 Dhaka Sanitation and            |
|           | • Flooding and drainage problems in various parts of the region.        | Sewerage Systems                        |
|           | I nese are most serious in the low-lying parts of Manikganj, Dhaka      | MC 010 Dhaka Flood                      |
|           | and Munshigan Districts on the feit banks of the Branmaputra and        | MC 011 DL L St                          |
|           | radma rivers. However, due to topographic and drainage conditions       | Ducing as                               |
|           | In this area, it will be difficult to reduce such flooding appreciably. | Drainage                                |
|           | • Flood proofing needs in the Branmaputra and Padma river               |                                         |
|           | The persible eventual need for homeses on the Drehman-tree and          |                                         |
|           | • The possible eventual need for barrages on the Brahmaputra and        |                                         |
| N         | The energie much have exhibit in formal in most of the second in        | EA 007 Lucraneers 1 Weter               |
| INORTH    | • The arsenic problem, which is found in most of the region             | EA UU / Improved water                  |
| East      | • Environmental management of the wetlands of the Haor Basin, for       | Management in the Haor                  |

Table 4.1.9Hydrological Zones by National Water Management Plan (NWMP) 2001

| Regions       | Problems                                                                                                                                                                                                                                                      | Projects                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| regions       | fisheries and bio-diversity purposes                                                                                                                                                                                                                          | Basins of the North East                             |
|               | • Remedial actions for existing FCD schemes. About half the existing FCD area of 0.56Mha has partial rather than full flood protection (i.e. submersible embankments), which has been found to be preferable to full protection is accommis and environmental | Region                                               |
|               | <ul> <li>to be preferable to full protection is economic and environmental terms.</li> <li>Flood proofing of the 1,000 or so villages in the Haor Basin</li> </ul>                                                                                            |                                                      |
|               | <ul> <li>Reducing drainage congestion in the Kaim–Kushiyara and other<br/>major rivers</li> <li>Local development of hill irrigation</li> </ul>                                                                                                               |                                                      |
| South<br>West | <ul> <li>The arsenic problem</li> <li>For environmental and other purposes, restoration of dry season</li> </ul>                                                                                                                                              | MC 004 Khulna Bulk Water<br>Supply and Distribution  |
|               | freshwater inflows to the region from the Ganges through the Gorai<br>and possibly other channels                                                                                                                                                             | Systems<br>MC 008 Khulna Sanitation                  |
|               | • Maintenance, rehabilitation and, where necessary, improvement of the coastal embankment system and alleviation of its associated                                                                                                                            | and Sewerage Systems<br>MC 014 Khulna Flood          |
|               | <ul> <li>drainage congestion</li> <li>Remedial actions for the large areas of existing FCDI schemes,<br/>aspecially the GK Irrigation Project</li> </ul>                                                                                                      | Protection<br>MC 015 Khulna Stormwater               |
|               | <ul> <li>Flood proofing in the Ganges river charlands (also covered in the RE Region).</li> </ul>                                                                                                                                                             | EA 009 Improved Water<br>Management and Salinity     |
| South         | • The arsenic problem                                                                                                                                                                                                                                         | None                                                 |
| Central       | <ul> <li>Maintenance of the existing coastal embankment system</li> <li>Siltation and drainage congestion</li> </ul>                                                                                                                                          |                                                      |
|               | <ul> <li>Improved cyclone protection</li> <li>Elocal proofing adjacent to the Padma and in the Padma river</li> </ul>                                                                                                                                         |                                                      |
|               | charlands (also covered in the RE Region)                                                                                                                                                                                                                     |                                                      |
| South<br>Fast | The arsenic problem     Gaseous aquifers                                                                                                                                                                                                                      | None                                                 |
| Last          | Improved cyclone protection                                                                                                                                                                                                                                   |                                                      |
|               | • The existing coastal embankment system and its drainage congestion                                                                                                                                                                                          |                                                      |
|               | <ul> <li>Protection of newly accreted lands against tidal flooding</li> <li>Remedial action for existing inland FCDI schemes.</li> </ul>                                                                                                                      |                                                      |
| Rivers<br>and | • An affordable long-term strategy for erosion protection of the main rivers                                                                                                                                                                                  | MR 002 Main Rivers<br>Abstraction Projects           |
| Estuaries     | • An affordable long-term strategy for regional augmentation from the main rivers                                                                                                                                                                             | MR 003 Ganges Barrage and<br>Ancillary Works         |
|               | • Flood proofing in the Brahmaputra, Ganges and Padma river charlands                                                                                                                                                                                         | MR 004 Meghna Barrage and<br>Ancillary Works         |
|               | <ul> <li>Improved cyclone protection in the Meghna Estuary</li> <li>Flood protection on newly accreted lands in the Meghna Estuary.</li> </ul>                                                                                                                | MR 005 Brahmaputra Barrage<br>and Ancillary Works    |
|               | where these have had long enough to build up sufficient height                                                                                                                                                                                                | MR 010 Main Rivers Erosion                           |
|               | <ul> <li>The arsenic problem, although this is less severe than in adjoining mainland areas along the rivers.</li> </ul>                                                                                                                                      | MR 011 River Dredging for<br>Navigation              |
| Eastern       | • Small-scale irrigation development in the CHT                                                                                                                                                                                                               | MR 012 Hydropower                                    |
| Hills         | <ul> <li>Mini-hydropower development in the CHT</li> <li>Improved cyclone protection in the CCP</li> </ul>                                                                                                                                                    | Development and Upgrading<br>MC 003 Chittagong Bulk  |
|               | • Maintenance of the existing coastal embankment system in the CCP                                                                                                                                                                                            | Water Supply and Distribution<br>Systems             |
|               |                                                                                                                                                                                                                                                               | MC 007 Chittagong Sanitation<br>and Sewerage Systems |
|               |                                                                                                                                                                                                                                                               | MC 012 Chittagong Flood<br>Protection                |
|               |                                                                                                                                                                                                                                                               | MC 013 Chittagong<br>Stormwater Drainage             |

Source: Prepared by JST

Related with P10-P15 in Table 4.1.8, the Action Plans for wildlife conservation are planned like as the following table.

| Action plan/ Project    | Areas                                                                                            |
|-------------------------|--------------------------------------------------------------------------------------------------|
| Action Plan for the     | 19 sites (Madhupur National Park, Tanguar Haor and Pana beel, Aila Beel, Hakaluki haor,          |
| Management of Birds     | Lawachara/West Bhanugach Reserved Forest, Hail Haor, Rajkandi Reserved Forest,                   |
| in Bangladesh           | Rema-Kalenga Wild life Sanctuary, Jamuna-Brahmaputra river, Sundarbans (East, South, West        |
|                         | Wildlife Sancturies), Ganges-Brahmaputra-Meghna delta, Muhuri dam, Hazarikhil Wildlife           |
|                         | Sanctury, Pablakhali Wildlife Sanctury, Rampahar-Sitapahar Wildlife Sanctury, Patenga Beach,     |
|                         | Sangu Matamuhuri, Himchari National Park, and Teknaf Game Reserve)                               |
| Bangladesh vulture      | The government of Bangladesh has declared two Vulture Safe Zones (VSZ-1: 19,663.18 km2 and       |
| conservation action     | VSZ-2: 27717.26 km2) on 23 December, 2014 under the Wildlife (Conservation and Security) Act,    |
| plan 2016-2025          | 2012, as specialized 'Landscape zones'. These are the only government declared safe zones in the |
|                         | world and share boundary with India                                                              |
| Herpetofauna            | 19 sites ( Madhupur National Park, Tanguar Haor and Pana beel, Aila Beel, Hakaluki haor,         |
| Management Strategy,    | Lawachara/West Bhanugach Reserved Forest, Hail Haor, Rajkandi Reserved Forest,                   |
| Strengthening           | Rema-Kalenga Wild life Sanctuary, Jamuna-Brahmaputra river, Sundarbans (East, South, West        |
| Regional Cooperation    | Wildlife Sancturies), Ganges-Brahmaputra-Meghna delta, Muhuri dam, Hazarikhil Wildlife           |
| for Wildlife Protection | Sanctury, Pablakhali Wildlife Sanctury, Rampahar-Sitapahar Wildlife Sanctury, Patenga Beach,     |
| Project                 | Sangu Matamuhuri, Himchari National Park, and Teknaf Game Reserve)                               |
| Mammal Management       | 19 sites ( Madhupur National Park, Tanguar Haor and Pana beel, Aila Beel, Hakaluki haor,         |
| Strategy,               | Lawachara/West Bhanugach Reserved Forest, Hail Haor, Rajkandi Reserved Forest,                   |
| Strengthening           | Rema-Kalenga Wild life Sanctuary, Jamuna-Brahmaputra river, Sundarbans (East, South, West        |
| Regional Cooperation    | Wildlife Sancturies), Ganges-Brahmaputra-Meghna delta, Muhuri dam, Hazarikhil Wildlife           |
| for Wildlife Protection | Sanctury, Pablakhali Wildlife Sanctury, Rampahar-Sitapahar Wildlife Sanctury, Patenga Beach,     |
| Project                 | Sangu Matamuhuri, Himchari National Park, and Teknaf Game Reserve)                               |

| Table 4.1.10 | Action | plans | for | wildlife | conservatio | on |
|--------------|--------|-------|-----|----------|-------------|----|
|              |        |       |     |          |             |    |

Source: Forest Department

Related with P24 in Table 4.1.8, the integrated costal area is clasified as follows.

| Name              | Туре                                | Policy  |
|-------------------|-------------------------------------|---------|
| Water Zone        | Industrial water zone               | Unknown |
|                   | Agricultural water zone             | Unknown |
|                   | Brackish water and aquaculture zone | Unknown |
|                   | Hatchery water zone                 | Unknown |
| Coastal districts | 19 districts                        | Unknown |

 Table 4.1.11
 Integrated Coastal Zone

Source: Integrated Coastal Zone Management Plan (Bangladesh Water Act 2013)

There are various types of maps that can be used for environmental policy and plans and formulation of environmental management plan, such as potential habitats of birds, industrial parks, coastal zones, roads, flood control drainage and irrigation (FCDI), and water zones. Following figures shows examples of such maps.





# Figure 4.1.2 Examples of Planning Maps

## 4.1.3 Baseline and Monitoring Data

Not only regulations and planning information but also baseline information which records past and current condition is useful for examine the proposed planning. Table 4.1.9 shows availability of the monitoring and baseline data. In the designing stage of the gas and electricity project, these baseline data will provide current critical areas. In the future these chronological baseline data will be examined multi-directionally and used for the forecasting.

| ID  | Category | Item                                                   | System/ map                                                                                      | GIS<br>(y/n)           | Authority                                                                                                                                                                        | Ordinance,<br>Law, Act,<br>Rule            |
|-----|----------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| M1  | Air      | Ambient air                                            | <u>National</u><br><u>Ambient Air</u><br><u>Quality</u><br><u>Monitoring</u><br><u>Programme</u> | Y<br>(station<br>only) | Department of<br>Environment (DOE),<br>Dhaka South City<br>Corporation (DSCC),<br>Dhaka North City<br>Corporation (DNCC),<br>Dhaka Transport<br>Coordination Authority<br>(DTCA) | Environment<br>Conservation<br>Rules, 1997 |
| M2  | Air      | Industry Air<br>emission                               | Bangladesh Air<br>Pollution<br>Studies (BAPS)                                                    | Y<br>(mesh<br>data)    | Department of<br>Environment (DOE)                                                                                                                                               | Environment<br>Conservation<br>Rules, 1997 |
| M3  | Air      | Mobile air<br>emission                                 | -                                                                                                | Ν                      | Department of<br>Environment (DOE)                                                                                                                                               |                                            |
| M4  | Air      | CH4 leakage                                            | -                                                                                                | N                      | Department of<br>Environment (DOE)                                                                                                                                               |                                            |
| M5  | Noise    | City                                                   | -                                                                                                | N                      | Department of<br>Environment (DOE)                                                                                                                                               |                                            |
| M6  | Noise    | Airport                                                | -                                                                                                | N                      | Department of<br>Environment (DOE)                                                                                                                                               |                                            |
| M7  | Water    | Surface water,<br>River water,<br>Underground<br>water | -                                                                                                | N                      | Monitoring cell of<br>Department of<br>Environment (DOE)                                                                                                                         | Environment<br>Conservation<br>Rules, 1997 |
| M8  | Water    | All available<br>information<br>related to<br>water    | National WaterResourcesDatabase(NWRD)IntegratedCoastalResourcesDatabase(ICRD)                    | Y                      | <u>Water Resources</u><br><u>Planning Organization</u><br>(WARPO)                                                                                                                | BWDB Act,<br>2000                          |
| M9  | Water    | Ground water                                           | <u>National Water</u><br><u>Management</u><br><u>Plan (2001)</u>                                 | Y                      | National Water<br>Resources Council<br>(NWRC)<br><u>Water Resources</u><br><u>Planning Organization</u><br>(WARPO)                                                               | Water Act<br>2013                          |
| M10 | Water    | Salinity                                               | -                                                                                                | Y                      | BangladeshAgricultural ResearchCouncil (BARC)Bangladesh WaterDevelopment Board(BWDB)                                                                                             | BARC Act,<br>2012                          |
| M11 | Water    | Flood                                                  | Processing and<br>Flood                                                                          | У                      | Bangladesh Water<br>Development Board                                                                                                                                            | BWDB Act,<br>2000                          |

 Table 4.1.12
 Monitoring and Baseline Data

| ID    | Category | Item                                                                              | System/ map                                                                       | GIS<br>(y/n) | Authority                                                                                  | Ordinance,<br>Law, Act,<br>Rule |
|-------|----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------|---------------------------------|
|       |          |                                                                                   | Forecasting<br>Circle                                                             |              | (BWDB)                                                                                     |                                 |
| M11-2 | Water    | Flood                                                                             | Smart scheme<br>information<br>system<br>(Smart-SIMS)                             | N            | Institute of Water<br>Modelling (IWM)<br>Flood Forecasting and<br>warning Center<br>(FFWC) | Unknown                         |
| M12   | Water    | River<br>environment                                                              | Environmental<br>Baseline                                                         | N            | Bangladesh Water<br>Development Board<br>(BWDB)                                            | BWDB Act,<br>2000               |
| M13   | Water    | River<br>morphology<br>and sediment<br>transportation                             | INTEGRATED<br>RIVER<br>MONITORING<br>SYSTEM<br>(IRMSRG)                           | Y            | Water Resources<br>Division of SPARRSO                                                     | SPARRSO<br>Act 1991             |
| M14   | Water    | Ocean and<br>Coast                                                                | Satellite based<br>Coastal<br>Monitoring<br>System<br>(SCMS)                      | Y            | Water Resources<br>Division of SPARRSO                                                     | SPARRSO<br>Act 1991             |
| M15   | Water    | Drought                                                                           | <u>NATIONAL</u><br><u>DROUGHT</u><br><u>MONITORING</u><br><u>SYSTEM</u><br>(NDMS) | Y            | Water Resources<br>Division of SPARRSO                                                     | SPARRSO<br>Act 1991             |
| M16   | Water    | Flood                                                                             | <u>National Flood</u><br><u>Monitoring</u><br><u>System</u><br>(NFMS)             | Y            | Water Resources<br>Division of SPARRSO                                                     | SPARRSO<br>Act 1991             |
| M17   | Water    | Flood                                                                             | Bangladesh<br>flood 2017                                                          | N            | ICIMOD                                                                                     |                                 |
| M18   | Water    | Water-logging                                                                     | National<br>Water-logging<br>Monitoring<br>system<br>(WLMS)                       | N            | Water Resources<br>Division of SPARRSO                                                     | SPARRSO<br>Act 1991             |
| M19   | Water    | Water usage,<br>water right                                                       | Surface water<br>availability                                                     | N            | Bangladesh<br>Agricultural<br>Development<br>Corporation (BADC)                            |                                 |
| M20   | Water    | Water quality<br>of industrial<br>effluent                                        | -                                                                                 | Ν            |                                                                                            |                                 |
| M21   | Sea      | Bathymetric<br>feature,<br>periodic<br>current                                    | -                                                                                 | N            | <u>National</u><br><u>Oceanographic &amp;</u><br><u>Maritime Institute</u><br>(NOAMI)      |                                 |
| M22   | Weather  | Rainfall,<br>Temperature,<br>Humidity,<br>Sunlight,<br>Evaporation,<br>Wind speed | 36 weather stations                                                               | Y            | Bangladesh<br>Meteorological<br>Department (BMD)                                           |                                 |
| M23   | Weather  | Rainfall,<br>Flood                                                                | 304 rainfall<br>stations under<br>BMD                                             | Ν            | Flood Forecasting and<br>warning Center<br>(FFWC)                                          |                                 |

| ID    | Category          | Item                                                                                                                                                                                            | System/ map                                                                                         | GIS<br>(y/n) | Authority                                                                                                                                         | Ordinance,<br>Law, Act,<br>Rule          |
|-------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|       |                   |                                                                                                                                                                                                 | <u>Rainfall</u><br><u>Distribution</u><br><u>Map</u><br><u>Flood map</u>                            |              | INSTITUTE OF<br>WATER<br>MODELLING (IWM)                                                                                                          |                                          |
| M24   | Climate<br>change | Climate<br>change                                                                                                                                                                               | <u>Climate</u><br><u>Information</u><br><u>Management</u><br><u>System</u>                          | Y            | <u>Bangladesh</u><br><u>Agricultural Research</u><br><u>Council (BARC)</u><br>Cell for Climate<br>Change Research and<br>Impact Study<br>(CRAIST) | BARC Act,<br>2012<br>SPARRSO<br>Act 1991 |
| M25   | Topography        | Administrative<br>Boundary<br>Building and<br>Structure<br>Facilities<br>Forest<br>Geodetic<br>Control Point<br>Hydrographic<br>Feature<br>Industrial<br>Relief<br>Transportation<br>Vegetation | 1:25,000 and<br>1:5,000<br>Geo-database                                                             | Y            | Survey of Bangladesh                                                                                                                              |                                          |
| M26   | Soil              | Flood and<br>drought,<br>Edaphic,<br>Salinity,<br>Climate                                                                                                                                       | Land Resources<br>Information and<br>Maps                                                           | Y            | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                                                             | BARC Act,<br>2012                        |
| M27   | Forest            |                                                                                                                                                                                                 | National Forest<br>and Tree<br>Resources<br>Assessment<br>2005-07                                   | Y            | Bangladesh Forest<br>Research Institute<br>(BFRI)<br>Forest Department<br>(FD)                                                                    | <u>Forest act</u><br><u>1927</u>         |
| M28   | Wildlife          | Gharials                                                                                                                                                                                        | <u>Gharials of</u><br><u>Bangladesh</u><br>(IUCN, 2016)                                             | Ν            | <u>Forest Department</u><br>(FD)                                                                                                                  | Forest act<br>1927                       |
| M28-2 | Wildlife          | Elephant                                                                                                                                                                                        | Status of Asian<br>elephants in<br>Bangladesh<br>(IUCN, 2016)                                       | Y            | Forest Department<br>(FD)                                                                                                                         | Forest act<br>1927                       |
| M28-3 | Wildlife          | Elephant                                                                                                                                                                                        | Atlas : elephant<br>routes and<br>corridors in<br>Bangladesh<br>(IUCN, 2016)                        | Y            | Forest Department<br>(FD)                                                                                                                         | <u>Forest act</u><br><u>1927</u>         |
| M28-4 | Wildlife          | Wild life                                                                                                                                                                                       | Red list ofBangladesh:Mammals,Birds, ReptilesandAmphibians,FreshwaterFishes,Crustaceans,Butterflies | Y            | Forest Department<br>(FD)                                                                                                                         | <u>Forest act</u><br><u>1927</u>         |

124

| ID  | Category   | Item                                                | System/ map                                                                                                   | GIS<br>(y/n) | Authority                                                                                              | Ordinance,<br>Law, Act,<br>Rule                                                                                    |
|-----|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|     |            |                                                     | (IUCN, 2016)                                                                                                  |              |                                                                                                        |                                                                                                                    |
| M29 | Waste      | Domestic<br>waste                                   | -                                                                                                             | Ν            | <u>Ministry of Local</u><br><u>Government, Rural</u><br><u>Development and</u><br><u>Co-operatives</u> | National<br>Policy for<br>Water<br>Supply and<br>Sanitation,<br>1998<br>Draft<br>National<br>Urban<br>Policy- 2006 |
| M30 | Waste      | Industrial<br>waste                                 | -                                                                                                             | N            | <u>Ministry of Local</u><br><u>Government, Rural</u><br><u>Development and</u><br><u>Co-operatives</u> | National<br>Policy for<br>Water<br>Supply and<br>Sanitation,<br>1998                                               |
| M31 | Waste      | Hazardous<br>waste                                  | -                                                                                                             | Ν            | <u>Ministry of Local</u><br><u>Government, Rural</u><br><u>Development and</u><br><u>Co-operatives</u> | National<br>Policy for<br>Water<br>Supply and<br>Sanitation,<br>1998                                               |
| M32 | Population | Population,<br>Poverty,<br>Indigenous<br>people     | -                                                                                                             | Y            | Bangladesh Bureau of<br>Statistics (BBS)                                                               |                                                                                                                    |
| M33 | Poverty    | Poverty<br>reduction                                | Monitoring<br>report 2014                                                                                     | Y            | Food Planning and<br>Monitoring Unit<br>(FPMU), Ministry of<br>Food                                    |                                                                                                                    |
| M34 | Land       | Land use                                            | -                                                                                                             | N            | Center for Natural<br>Resource Studies<br>(CNRS)                                                       |                                                                                                                    |
| M35 | Land       | Land owner                                          | Mouza map                                                                                                     | Ν            | Land Record and<br>Survey Department                                                                   |                                                                                                                    |
| M36 | Сгор       | -                                                   | Crop<br>Estimation,<br>Analysis &<br>Monitoring<br>System<br>(CEAMONS)                                        | N            | Agriculture Division,<br>SPARRSO                                                                       | SPARRSO<br>Act 1991                                                                                                |
| M37 | Сгор       | Crop<br>suitability,<br>Crop Zoning,<br>Agriculture | Land Resources<br>Information and<br>Maps                                                                     | Y            | Bangladesh<br>Agricultural Research<br>Council (BARC)<br>Bangladesh<br>Agricultural Extension<br>(BAE) | BARC Act,<br>2012                                                                                                  |
| M38 | Crops      | Crops                                               | Agricultural<br><u>Research</u><br><u>Management</u><br><u>Information</u><br><u>System</u><br><u>(ARMIS)</u> | Y            | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                  | BARC Act,<br>2012                                                                                                  |
| M39 | Fishery    | -                                                   | -                                                                                                             | Ν            | <u>Bangladesh Fisheries</u><br><u>Research Institute</u>                                               |                                                                                                                    |
| M40 | Disaster   | -                                                   | -                                                                                                             | Ν            | Disaster Management                                                                                    |                                                                                                                    |

| ID    | Category        | Item                      | System/ map                                                | GIS<br>(y/n) | Authority                                                       | Ordinance,<br>Law, Act,<br>Rule |
|-------|-----------------|---------------------------|------------------------------------------------------------|--------------|-----------------------------------------------------------------|---------------------------------|
|       |                 |                           |                                                            |              | <u>Directorate</u>                                              |                                 |
| M40-2 | Disaster        | Earthquake                | Earthquake<br>(Epi center)                                 | Y            | USGS                                                            | -                               |
| M41   | Road            | Road and<br>Bridge (main) | Road and<br>Bridge Asset<br>Management<br>System<br>(RAMS) | Y            | <u>Roads and Highways</u><br><u>Department</u>                  |                                 |
| M42   | Road            | Road (local)              | <u>Road digital</u><br>map                                 | Y            | Local Government<br>Engineering<br>Department (LGED)            |                                 |
| M43   | Transport       | Transportation volume     | -                                                          | Ν            |                                                                 |                                 |
| M44   | Railway         | -                         | -                                                          | Ν            |                                                                 |                                 |
| M44-2 | Waterway        | Port and<br>fairway       | Port and<br>fairway map                                    | Ν            | Bangladesh Inland<br>Water Transport<br>Authority (BIWTA)       | ?                               |
| M45   | Water supply    | Water supply              | <u>WASA map</u><br>SCADA                                   | Y            | Dhaka Water Supply &<br>Sewerage Authority<br>(DWASA)           |                                 |
| M46   | Electrification | Electrification           | Grid and S/S<br>(Existing, plan),<br>33 kV source<br>line  | Y            | Directorate of<br>GIS,Bangladesh Rural<br>Electrification Board |                                 |
| M47   | Security        | -                         | Unknown                                                    | Ν            |                                                                 |                                 |

Source: Prepared by JST

Maps that can be used for base maps for environmental study are as shown in the figure below.




127





Figure 4.1.3 Examples of Baseline Data

#### 4.2 Institutional Set up by Environmental and Social Issues

Regulated areas, planned areas and baseline special data listed above are prepared and managed by various Ministries, Authorities, and other organizations. Ideally one organization covers one item for Regulation, Baseline and Planning. The following table shows organizations and covered issues.

| Item        | Ministry        | Commission, Board,<br>Department,<br>Authority | Council, Unit, Cell  | Regula-<br>tion | Baseline | Plan |
|-------------|-----------------|------------------------------------------------|----------------------|-----------------|----------|------|
| Ambient Air | Ministry of     | Department of                                  | Dhaka South City     | R1              | M1       | P1   |
|             | Environment and | Environment (DOE)                              | Corporation (DSCC),  |                 |          |      |
|             | Forest (MOEF)   |                                                | Dhaka North City     |                 |          |      |
|             |                 |                                                | Corporation (DNCC),  |                 |          |      |
|             |                 |                                                | Dhaka Transport      |                 |          |      |
|             |                 |                                                | Coordination         |                 |          |      |
|             |                 |                                                | Authority (DTCA)     |                 |          |      |
| Emission    | Ministry of     | Department of                                  | DoE collect the      | R2, R3          | -        | P2   |
|             | Environment and | Environment (DOE)                              | emission information |                 |          |      |
|             | Forest (MOEF)   |                                                | of 8 major cities    |                 |          |      |
|             |                 |                                                | (Dhaka,              |                 |          |      |
|             |                 |                                                | Narayangonj,         |                 |          |      |
|             |                 |                                                | Gazipur, Chittagong, |                 |          |      |
|             |                 |                                                | rajshahi, Khulna,    |                 |          |      |
|             |                 |                                                | Barisal and Sylhet)  |                 |          |      |

 Table 4.2.1
 Organizations Managing Special Data by Items

| Itom                                                                                        | Ministry                                                                        | Commission, Board,                                                                           | Council Unit Cell                                                                                      | Regula-          | Bacalina              | Plan                        |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------------------------|
| Item                                                                                        | iviinisti y                                                                     | Authority                                                                                    | Council, Olint, Cen                                                                                    | tion             | Dasenne               | 1 1411                      |
| Water<br>quality                                                                            | <u>Ministry of</u><br><u>Environment and</u><br><u>Forest (MOEF)</u>            | Department of<br>Environment (DOE)                                                           | Monitoring cell of<br>Department of<br>Environment                                                     | R4               | M7                    | -                           |
| Protected<br>areas                                                                          | Ministry of<br>Environment and<br>Forest (MOEF)                                 | Forest Department<br>(FD)                                                                    | District level Forest<br>Office                                                                        | R10, R11,<br>R12 | -                     | P9, P10                     |
| Coastal and<br>Wetland<br>Biodiversity                                                      | <u>Ministry of</u><br><u>Environment and</u><br>Forest (MOEF)                   | Department of<br>Environment (DOE)                                                           | District level<br>Department of<br>Environment                                                         | -                | -                     | P11                         |
| Biodiversity<br>and Wildlife                                                                | <u>Ministry of</u><br>Environment and<br>Forest (MOEF)                          | Forest Department<br>(FD)                                                                    | District level Forest<br>Office                                                                        | -                | (M28)                 | P12,<br>P13,<br>P14,<br>P15 |
| Forest                                                                                      | Ministry of<br>Environment and<br>Forest (MOEF)                                 | Forest Department<br>(FD)                                                                    | District level Forest<br>Office                                                                        | -                | M27                   | -                           |
| Climate<br>change                                                                           | <u>Ministry of</u><br><u>Defense (</u> MOD)                                     | Bangladesh<br>Meteorological<br>Department (BMD)                                             | Cell for Climate<br>Change Research and<br>Impact Study<br>(CRAIST)                                    | -                | M22                   | -                           |
| Topography,<br>land use                                                                     | <u>Ministry of</u><br>Defense (MOD)                                             | Survey of Bangladesh                                                                         | Land Record and<br>Survey Department<br>(DLRS)                                                         | -                | M25                   | -                           |
| River<br>morphology<br>and sediment<br>transportatio<br>n,<br>Ocean and<br>Coast<br>Drought | <u>Ministry of</u><br><u>Defense</u> (MOD)                                      | -                                                                                            | Water Resources<br>Division of<br>SPARRSO                                                              | -                | M13, M14,<br>M15, M16 | -                           |
| Crop                                                                                        | <u>Ministry of</u><br><u>Defense</u> (MOD)                                      | -                                                                                            | Water Resources<br>Division of<br>SPARRSO                                                              | -                | M36                   | -                           |
| Flood                                                                                       | <u>Ministry of</u><br><u>Defense</u> (MOD)                                      | -                                                                                            | INSTITUTE OF<br>WATER<br>MODELLING<br>(IWM)                                                            | -                | M23                   | -                           |
| Flood                                                                                       | <u>Ministry of</u><br><u>Disaster</u><br><u>Management and</u><br><u>Relief</u> | <u>Disaster</u><br><u>Management</u><br><u>Directorate</u>                                   | <u>Flood Forecasting</u><br><u>and warning Center</u><br>(FFWC)<br>Disaster Management<br>Bureau (DMB) | -                | M23                   | -                           |
| Flood                                                                                       | Ministry of Water<br>Resources                                                  | Bangladesh Water<br>Development Board<br>(BWDB)<br>Joint Rivers<br>Commission,<br>Bangladesh | Flood Forecasting &<br>Warning Centre<br>(FFWC)<br>INSTITUTE OF<br>WATER<br>MODELLING<br>(IWM)         | -                | M11                   | P16                         |
| Disaster                                                                                    | <u>Ministry of</u><br><u>Disaster</u><br><u>Management and</u><br><u>Relief</u> | Disaster<br>Management<br>Directorate                                                        | Disaster Management<br>Bureau (DMB)                                                                    | -                | (M40)                 | Р4                          |
| Irrigation                                                                                  | <u>Ministry of</u><br>Agriculture                                               | Department of<br>Agricultural                                                                | <u>Bangladesh</u><br>Agricultural Research                                                             | R7, R8           | M19                   | P6                          |

| Item                            | Ministry                                                                             | Commission, Board,<br>Department,<br>Authority                                                                                                                  | Council, Unit, Cell                                                                                                                  | Regula-<br>tion | Baseline | Plan |
|---------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|------|
|                                 |                                                                                      | Extension (DAE)                                                                                                                                                 | Council (BARC)<br>Bangladesh<br>Agricultural<br>Development<br>Corporation (BADC)<br>Barind Multipurpose<br>Development<br>Authority |                 |          |      |
| Climate<br>change               | <u>Ministry of</u><br><u>Agriculture</u>                                             | Department of<br>Agricultural<br>Extension (DAE)                                                                                                                | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                                                | -               | M24      | -    |
| Salinity                        | <u>Ministry of</u><br><u>Agriculture</u>                                             | Department of<br>Agricultural<br>Extension (DAE)                                                                                                                | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                                                | -               | M10      | -    |
| Soil                            | Ministry of<br>Agriculture                                                           | Department of<br>Agricultural<br>Extension (DAE)                                                                                                                | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                                                | -               | M26      | -    |
| Сгор                            | <u>Ministry of</u><br><u>Agriculture</u>                                             | Department of<br>Agricultural<br>Extension (DAE)                                                                                                                | Bangladesh<br>Agricultural Research<br>Council (BARC)                                                                                |                 | M37, M38 | -    |
| Poverty                         | Ministry of Food                                                                     | Food Directorate                                                                                                                                                | Food Planning and<br>Monitoring Unit<br>(FPMU),                                                                                      | -               | M33      | P20  |
| Indigenous<br>people            | <u>Ministry of</u><br><u>Chittagong Hill</u><br><u>Tracts Affairs</u>                | -                                                                                                                                                               | -                                                                                                                                    | -               | -        | -    |
| Culture                         | <u>Ministry of</u><br><u>Cultural Affairs</u>                                        | -                                                                                                                                                               | -                                                                                                                                    | R18             | -        | -    |
| Industry                        | Ministry of<br>Industries<br>(Bangladesh)                                            | Bangladesh Export<br>Processing Zones<br>Authority (BEPZA)                                                                                                      | -                                                                                                                                    | R17             | -        | P23  |
| Fisheries                       | Ministry of<br>Fisheries and<br>Livestock                                            | Department of<br>Fisheries                                                                                                                                      | Bangladesh<br>Fisheries Research<br>Institute                                                                                        | -               | (M39)    | P8   |
| Gas, Coal,<br>other<br>Minerals | Ministry of<br>Power, Energy<br>and Mineral<br>Resources                             | Energy and Mineral<br>Resources Division                                                                                                                        | -                                                                                                                                    | -               | -        | P18  |
| Electricity                     | <u>Ministry of</u><br><u>Power, Energy</u><br><u>and Mineral</u><br><u>Resources</u> | Power Division                                                                                                                                                  | -                                                                                                                                    | -               | M46      | P19  |
| Road,<br>bridges<br>Railways    | Ministry of Road<br>Transport and<br>Bridges<br>Ministry of                          | Road Transport and<br>Highways Division<br>Bridges DivisionBridges Division<br>Roads and HighwaysDepartment<br>Bangladesh Road<br>Transport Authority<br>(BRTA) | -                                                                                                                                    | -               | M41, M42 | P17  |

| Item                                                                          | Ministry                                                                                                         | Commission, Board,<br>Department,<br>Authority                                                                                | Council, Unit, Cell                                                                                                                   | Regula-<br>tion | Baseline | Plan   |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------|
|                                                                               | Railwavs                                                                                                         |                                                                                                                               |                                                                                                                                       |                 |          |        |
| Population,<br>Poverty,<br>Indigenous<br>people                               | <u>Ministry of</u><br><u>Planning</u>                                                                            | Planning Division,<br>Statistics and<br>Informatics<br>Division,<br>Implementation<br>Monitoring &<br>Evaluation Division     | Bangladesh Bureau<br>of Statistics                                                                                                    | -               | M32      | -      |
| Telecommun<br>ication                                                         | Ministry of Posts,<br>Telecommunicati<br>ons and<br>Information<br>Technology                                    | Bangladesh<br>Telecommunication<br>Regulatory<br>Commission (BTRC)<br>Information and<br>Communication<br>Technology Division | -                                                                                                                                     | -               | -        | -      |
| Water<br>transport                                                            | <u>Ministry of</u><br><u>Shipping</u>                                                                            | Bangladesh Inland<br>Water Transport<br>Authority (BIWTA)                                                                     | -                                                                                                                                     | R8, R15         | -        | -      |
| River Bank<br>Coastal Zone                                                    | <u>Ministry of</u><br><u>Shipping</u>                                                                            | Bangladesh Inland<br>Water Transport<br>Authority (BIWTA)                                                                     | -                                                                                                                                     | R16             | -        | P24    |
| Sea water<br>environment                                                      | <u>Ministry of</u><br><u>Shipping</u>                                                                            | -                                                                                                                             | <u>National</u><br><u>Oceanographic &amp;</u><br><u>Maritime Institute</u><br>(NOAMI)                                                 | -               | M21      | -      |
| Water rights,<br>surface<br>water<br>quality,<br>underground<br>water quality | <u>Ministry of Water</u><br><u>Resources</u>                                                                     | Department of<br>Bangladesh Haor and<br>Wetland<br>Development<br>Bangladesh Water<br>Development Board<br>(BWDB)             | Water ResourcePlanningOrganization(WARPO)National WaterResources Council(NWRC)Center forEnvironment andGeographicInformation Services | R5              | M8, M9   | Р3     |
| Water supply                                                                  | Ministry of Water<br>Resources                                                                                   | Department of Public<br>Health Engineering<br>Dhaka Water Supply<br>& Sewerage<br>Authority (DWASA)                           | Paurashavas and<br>Municipalities                                                                                                     | R6              | M45      | P5, P7 |
| Waste                                                                         | <u>Ministry of Local</u><br><u>Government.</u><br><u>Rural</u><br><u>Development and</u><br><u>Co-operatives</u> | Local Government<br>Division                                                                                                  | <u>Local Government</u><br><u>Engineering</u><br><u>Department</u><br>Paurashavas and<br>Municipalities                               | -               | -        | (P21)  |
| Land use                                                                      | Ministry of Local<br>Government,<br>Rural<br>Development and<br>Co-operatives                                    | Local Government<br>Division                                                                                                  | RAJUK and UDD                                                                                                                         | R13, R14        | -        | -      |
| Land registration                                                             | Ministry of Land                                                                                                 | Land Record and<br>Survey Department                                                                                          | -                                                                                                                                     | -               | M35      | -      |

## 4.3 EIA and SEA System

#### 4.3.1 EIA System

According to the ECA 1995, the proponent of a proposed development project must need to obtain an Environmental Clearance Certificate from the Director General of the Department of Environment (DoE) in the manner prescribed by the Rules. DoE under the Ministry of Environment and Forest (MoEF) is the agency responsible for environmental planning, management and monitoring. The DoE has prepared EIA guidelines for industries on the requirement of the legislation.

Environmental clearance has to be obtained in two steps: first site clearance and thereafter environmental clearance. Environmental Clearance Certificate is issued to all existing and proposed industrial units and projects falling in the Green category, but it is required to obtain a Site Clearance Certificate for industrial units and projects falling in the Orange – A, Orange – B and Red categories, and then the Environmental Clearance Certificate will be issued. According to the categorization, projects fall under the 'Red' category necessitates a full-scale EIA.

The Environmental Clearance Certificate requires submission of the following documents along with the application:

- Feasibility Report for the Project (where applicable)
- Environmental Impact Assessment (EIA) Report
- Environmental Management Plan (EMP)
- No Objection Certificate from relevant Local Authority (where applicable)
- Other necessary information, (where applicable)

Process to be followed for obtaining Environmental Clearance Certificate (ECC) from DOE is outlined in the following Figure.



Source: DOE

Figure 4.3.1 Procedure of Environmental Clearance Certificate (ECC)

## 4.3.2 SEA System

There is no SEA system stipulated in Bangladesh.

#### 4.4 **Opportunities of Spatial Database for Environment**

There are various special data in Bangladesh described in Figure 4.4.1. If these spatial data are stored in one common database and shared mutually among organizations, various benefit would be expected for sustainable development. Image of the common database would be:

- Data control centre and organization should be identified,
- Data format should be common type,
- Uploading and downloading procedures and rules should be prepared,
- Backup and safety system should be established,
- Access security levels should be set by data,
- Interface and access should be simple and easily designed,
- Maintenance cost should be lowered,
- Feasible for IT innovation,
- General data should be opened to public,
- Checking system of data reliability is required, and
- The organization only manage exact data and should not add any intentions.



135

The benefit of integrated common database would be:

- Data management cost would be lowered,
- Development can avoid some conflicts with other sectors,
- Data security is easily controlled,
- Data reliability will be secured,
- Nation-wide cross sector analysis will be easier,
- Foundation of spatial trend analysis can be prepared, and
- Future development simulation by various scenarios could be possible.

In addition to that if integrated decision-making system is established based on the common database, the policy of Strategic Environmental Assessment or Sustainable Assessment could be naturally combined and no need to establish new system. Off-set mitigation can be combined for planning approval and environmental actions could be accelerated by development planning.

#### 4.5 Environmental Issues about the Proposed Sub-sea Gas Pipeline

For the future gas pipeline network to accommodate LNG injection, JST proposes 1,700 mmcfd capacity Sub-sea Pipeline from Moheshkari to West Padoma, as explained in later Chapter 6. Environmental scoping is conducted for the sub-sea pipeline

It is not cleared that the exact planned route but some kinds of environmental and social matters should be considered in some project stages.

(1) Scoping

Scoping is conducted following the items of JICA guideline. Items should be concerned during route selection stage are examined ferreting Possibility, Time, Area, Intensity and Recoverability. Selected items area Biota and ecosystems, Accidents, Involuntary resettlement, Local economies, Land use and utilization of local resources, Social institutions, Existing social infrastructures and services, Poor, indigenous, or ethnic people, and Cultural heritage.

| Items           | Impact                                                                                                                                    | Possibility | Time                        | Area           | Intensity | Recoverability | Considering in<br>route selection |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------|-----------|----------------|-----------------------------------|
| Air pollution   | Emission from construction                                                                                                                | High        | Temporary<br>(Construction) | Along the line | Low       | Difficult      | No                                |
| Water pollution | Chemical additives<br>of hydrostatic<br>Testing (corrosion<br>inhibitors, oxygen<br>scavengers,<br>biocides, and dyes)<br>may cause water | Middle      | When failure<br>(Operation) | Along the line | High      | Difficult      | No                                |

Table 4.5.1Scoping Table

| Items                                      | Impact                                                                                              | Possibility    | Time                                                         | Area                                              | Intensity                 | Recoverability | Considering in<br>route selection |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|---------------------------------------------------|---------------------------|----------------|-----------------------------------|
|                                            | pollution.                                                                                          |                |                                                              |                                                   |                           |                |                                   |
|                                            | Spills by leaks,<br>equipment failure,<br>accidents, or human<br>error                              | Low-<br>Middle | When failure<br>(Operation)                                  | Along the line                                    | Middle<br>to Very<br>high | Difficult      | No                                |
| Soil pollution                             | Spills by leaks,<br>equipment failure,<br>accidents, or human<br>error                              | Middle         | When failure<br>(Operation)                                  | Line of on<br>sure part                           | Middle<br>to Very<br>high | Difficult      | No                                |
| Waste                                      | Construction waste                                                                                  | High           | Temporary<br>(Construction)                                  | Land part<br>and<br>terminal                      | Low                       | Easy           | No                                |
| Noise/ vibrations                          | Construction<br>machine, vehicle,<br>blasting                                                       | High           | Temporary<br>(Construction)                                  | Along the line                                    | High                      | Difficult      | No                                |
| Ground<br>subsidence                       | -                                                                                                   | -              | -                                                            | -                                                 | -                         | -              | -                                 |
| Offensive odors                            | -                                                                                                   | -              | -                                                            | -                                                 | -                         | -              | -                                 |
| Geographical features                      | Deformation of<br>coastal<br>geomorphology                                                          | High           | Long term<br>(Operation)                                     | Near the<br>landing<br>points                     | Low                       | Easy           | No                                |
|                                            | Flooding risk                                                                                       | Low            | Long term<br>(Operation)                                     | Line of on<br>sure part                           | Low                       | Easy           | No                                |
| Biota and<br>ecosystems                    | Project might<br>impact on ECA,<br>KBA, and<br>UNESCO Marine<br>Reserve directly<br>and indirectly  | High           | Long term<br>(Operation)                                     | Around<br>landing<br>point and<br>access<br>roads | High                      | Difficult      | Yes                               |
|                                            | Ganges River<br>Dolphin (Platanista<br>gangetica) and<br>other fishes might<br>be affected.         | High           | Long term<br>(Construction<br>- Operation)                   | River<br>crossing<br>points                       | Middle                    | Easy           | Yes                               |
| Water usage                                | Water use by<br>Hydrostatic Testing                                                                 | High           | On and off for<br>Long term<br>(Construction<br>- Operation) | Pigging<br>stations                               | Low                       | Easy           | No                                |
| Accidents                                  | Contact or hit by<br>fish net, anchoring,<br>or dropped objects<br>by ships may<br>damage the pipe. | Low            | Long term<br>(Operation)                                     | Along the line                                    | High                      | Middle         | Yes                               |
| Global warming                             | Spills by leaks,<br>equipment failure,<br>accidents, or human<br>error                              | Low            | Long term<br>(Operation)                                     | Along the line                                    | High                      | Difficult      | No                                |
| Involuntary<br>resettlement                | Houses in the ROW<br>must be resettled                                                              | High           | Permanently                                                  | Along the<br>line of on<br>sure part              | High                      | Easy           | Yes                               |
| Local economies,<br>such as<br>employment, | Pipeline<br>construction might<br>prevent fishery                                                   | High           | Long term<br>(Construction<br>- Operation)                   | Along the<br>line of off<br>shore part            | High                      | Easy           | Yes                               |

| Items                                                                                                   | Impact                                                                        | Possibility | Time                                       | Area                                   | Intensity        | Recoverability | Considering in<br>route selection |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|--------------------------------------------|----------------------------------------|------------------|----------------|-----------------------------------|
| livelihood, etc.                                                                                        | activities.                                                                   |             |                                            |                                        |                  |                |                                   |
| Land use and<br>utilization of local<br>resources                                                       | Forestry and<br>Agricultural<br>activities will be<br>affected in the<br>ROW. | High        | Long term<br>(Construction<br>- Operation) | Along the<br>line of on<br>sure part   | High             | Easy           | Yes                               |
|                                                                                                         | Land in the pipeline<br>corridor will be<br>acquired.                         | High        | Permanently                                | ROW of on sure part                    | High             | Easy           | Yes                               |
| Social institutions<br>such as social<br>infrastructure and<br>local<br>decision-making<br>institutions | Village forest,<br>village community<br>might be divided.                     | High        | Long term<br>(Construction<br>- Operation) | ROW of on<br>sure part                 | Low to<br>middle | Difficult      | Yes                               |
| Existing social<br>infrastructures and<br>services                                                      | Maritime traffic<br>might be<br>constrained during<br>construction.           | High        | Long term<br>(Construction<br>- Operation) | Along the<br>line of off<br>shore part | High             | Difficult      | Yes                               |
|                                                                                                         | Community road<br>might be divided.                                           | High        | Long term<br>(Construction<br>- Operation) | Along the<br>line of on<br>shore part  | High             | Difficult      | Yes                               |
| Poor, indigenous, or ethnic people                                                                      | Poor people might be affected                                                 | High        | Long term<br>(Construction<br>- Operation) | Along the<br>line of on<br>shore part  | High             | Easy           | Yes                               |
| Misdistribution of<br>benefits and<br>damages                                                           | Affected people<br>might not get<br>enough direct<br>benefit                  | High        | Long term<br>(Construction<br>- Operation) | Along the<br>line of on<br>shore part  | Middle-<br>High  | Easy           | No                                |
| Local conflicts of interest                                                                             | It might happen<br>depend on the<br>compensation.                             | Middle      | Long term<br>(Construction<br>- Operation) | Along the<br>line of on<br>shore part  | Low -<br>Middle  | Easy           | No                                |
| Limitation of<br>accessibility to<br>information,<br>meetings, etc. on a<br>specific person or<br>group | It might happen<br>depend on the ways<br>of communication.                    | Middle      | Temporary<br>(Construction)                | Along the<br>line of on<br>shore part  | Low -<br>Middle  | Easy           | No                                |
| Gender                                                                                                  | It might happen<br>depend on the<br>compensation.                             | Middle      | Temporary<br>(Construction)                | Along the<br>line of on<br>shore part  | Low -<br>Middle  | Easy           | No                                |
| Children's rights                                                                                       | It might happen<br>during construction.                                       | Low         | Temporary<br>(Construction)                | Along the<br>line of on<br>shore part  | Low -<br>Middle  | Easy           | No                                |
| Cultural heritage                                                                                       | Cultural heritage<br>might be damaged.                                        | Low         | Permanently                                | Along the<br>line of on<br>shore part  | High             | Difficult      | Yes                               |
| Infectious diseases<br>such as HIV/AIDS                                                                 | It might happen<br>during construction.                                       | Low         | Temporary<br>(Construction)                | Along the<br>line of on<br>shore part  | Low -<br>Middle  | Easy           | No                                |
| Other                                                                                                   | unknown                                                                       | -           | -                                          | -                                      | -                | -              | -                                 |

(2) Basic examination in route selection stage

All the relevant regulations, policies and baselines described above should be reviewed in detail during route selection stage. Planned have to visit all the relevant authorities and confirm the updated information.

(3) Scoped items and survey plan in route selection stage

In order to avoid natural or social conflicts or troubles, careful designing based on brief site survey is recommended. The items shown in the following table are selected by preliminary scoping in above. In terms of the protected areas, one ECA locates in the project site. The project is also in the KBA areas. The IUCN red list species should be considered are some fishes and river dolphin.

| Sconed items                                                  | Survey methods                                                                                                                                                                                                                                                                    | Expected                                                                                                       | Consideration to                                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Scoped items                                                  | Survey methods                                                                                                                                                                                                                                                                    | output                                                                                                         | design/plan                                                                      |
| Biota and ecosystems                                          | Hearing survey and literature<br>survey: Identify the boundary of<br>the ECA,<br>Hearing survey and site survey:<br>Identify the important terrestrial<br>and subsea vegetation including<br>coral reef and mangrove<br>Site survey: Identify the habitat of<br>the river dolphin | ECA boundary<br>map (scale 1:<br>5,000)<br>Vegetation map<br>Detail dolphin<br>habitat and<br>distribution map | Select the design which will<br>not impact on ecosystem<br>and protected species |
| Accidents, existing<br>social infrastructures<br>and services | Hearing survey: identify the river<br>boat route and sea channels                                                                                                                                                                                                                 | Boat and ship<br>route map                                                                                     | Avoid the main boat or ship route.                                               |
| Involuntary<br>resettlement                                   | Site survey and satellite image                                                                                                                                                                                                                                                   | Housing maps                                                                                                   | Select the minimum                                                               |
| Local economies                                               | Hearing survey: Identify the major<br>economic activities on shore and<br>off shore                                                                                                                                                                                               | Economic activity<br>map                                                                                       | Select the plan of less impact route and design.                                 |
| Land use and<br>utilization of local<br>resources             | Satellite image examination and site survey                                                                                                                                                                                                                                       | Land use map                                                                                                   | Select the plan of less impact route and design.                                 |
| Social institutions                                           | Literature survey and site survey:<br>Identify the village boundaries and<br>center of the villages                                                                                                                                                                               | Village center and<br>boundary map                                                                             | Select the plan of less dividing villages.                                       |
| Poor, indigenous, or ethnic people                            | Site survey: Identify whether<br>poverty communities or refugee<br>camps exists or not.                                                                                                                                                                                           | Poverty village,<br>refugee camps<br>location map                                                              | Select the plan of less impact one.                                              |
| Cultural heritage                                             | Site survey and literature survey:<br>Identify the locations of the<br>cultural assets including local<br>worship places.                                                                                                                                                         | Cultural asset and<br>heritage map                                                                             | Select the design which will<br>not impact on cultural assets                    |

 Table 4.5.2
 Recommended Survey Items on Route Selection Stage

Source: Prepared by JST

Preliminary pipeline routes are shown on maps with social and environmental information, such as domestic protected areas, international protected areas, habitat of protected fish and river dolphin, school locations, poverty areas, tourism resource locations, and land use, as in the figures below.







Figure 4.5.1 Environment Maps and Proposed Sub-sea Pipeline

# (4) Project design stage

During the design stage, the following issues should be considered.

- Minimize the acoustic impact on the underwater wildlife such as dolphins
- Minimize the destruction of the coastal vegetation
- Off-set the coastal vegetation
- Early discussion with the local residence and revise the design
- Early discussion with the fishermen and revise the design
- Simulate the worst case including disaster and accidents and estimate the damage
- (5) EIA process of gas pipeline project

Project types of EIA categories are listed in the Annex-I of Industrial Categories under Environmental Conservation Rules, 1997. Although gas pipeline is not listed in Annex-I, it will be fallen in red category, since "Water, power and gas distribution line laying/ relaying/ extension" is listed in red category.

According to the "A Guide to Environmental Clearance Procedure (DOE, 2010), the documents should be submitted to DOE are as follows.

- i. Report on the feasibility study of the project
- ii. Following report (1) or (2)
  - Report on the Initial Environmental Examination (IEE) relating to the project, and the terms of reference (ToR) for the Environmental Impact Assessment (EIA) of the project and its Process Flow Diagram;
  - (2) Environmental Impact Assessment (EIA) report prepared on the basis of ToR previously approved by the Department of Environment, along with the Layout Plan (showing location of pipeline facility), Process Flow Diagram, design and time schedule of the pipeline facility of the project
- iii. Report on the Environmental Management Plan (EMP) for the industrial unit or project, and also the Process Flow Diagram, Layout Plan (showing location of the pipeline facility).
- iv. No objection certificate (Prescribed Form) of the local authority
- v. Emergency plan relating adverse environmental impact and plan for mitigation of the effect of pollution
- vi. Other necessary information

The steps for Environmental Clearance are as follows.

Step 1 : Submit application with supporting documents.

- Step 2 : Verification of application and supporting documents by DOE
- Step 3 : Inspection by the authorized officer after verification of all report and documents.
- Step 4 : Meeting of Environmental Clearance Committee
- Step 5 : Decision

After submission all the required documents, 60 days are required for obtaining Site Clearance. After that, 30 days are required for obtaining Environmental Clearance.

(6) Land acquisition

The land acquisition process in Bangladesh could be referred from the Acquisition and Requisition of Immovable Property Ordinance, 1982. To decide whether the acquisition of the property would be conducted or not, the following process is initially conducted.



\* Bighas (Bigha) is a traditional unit of measurement of area of land. In Bangladesh, it is converted to International System of Units, traditionaly; 1 bigha= 1,337.8 m<sup>2</sup>(in British custom, 1 bigha= 14,400 square feet).
 Source: Prepared by JST, referring to The Acquisition and Requisition of Immovable Property Ordinance, 1982

# Figure 4.5.2 Process before the Acquisition of the Property

In case the government, the Divisional commissioner or the Deputy Commissioner makes the decision to start the acquisition of the concerned property, the following process is started.

144



#### Source: Prepared by JST, referring to The Acquisition and Requisition of Immovable Property Ordinance, 1982 Figure 4.5.3 The Acquisition Process of the Property

To determine the award of compensation, matters in the following table are considered.

#### Table 4.5.3 Matters to be considered/ not to be considered in Determining Stage

| Matters to be considered in determining compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>the market value of the property at the date of publication of the notice (In determining such market value, the Deputy Commissioner shall take into account the average value of the properties of similar description and with similar advantages in the vicinity during the twelve months preceding the date of publication of the notice)</li> <li>the damage that may be sustained by the person interested, by reason of the taking of any standing crops or trees which may be on the property at the time of taking possession thereof by the Deputy Commissioner</li> <li>the damage that may be sustained by the person interested, at the time of taking possession of the property by the Deputy Commissioner, by reason of severing such property from his other property</li> <li>the damage that may be sustained by the person interested, at the time of taking possession of the property by the Deputy Commissioner, by reason of severing such property from his other property</li> <li>the damage that may be sustained by the person interested, at the time of taking possession of the property by the Deputy Commissioner, by reason of the acquisition injuriously affecting his other properties, movable or immovable, in any other manner, or his earnings</li> <li>if in consequence of the acquisition of the property, the person interested is likely to be compelled to change his residence or place of business, the reasonable expenses, if any, incidental to such change</li> <li>the damage that may be resulting from diminution of the profits of the property between the date of service of notice and the date date of service of notice of the activity of the property by the Deputy Commissioner.</li> </ul> |
| Matters <i>NOT</i> to be considered in determining compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>the degree of urgency which has led to the acquisition</li> <li>any disinclination of the person interested to part with the property to be acquired</li> <li>any damage that may be sustained by him which, if caused by a private person, would not render such person liable to a suit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • any damage which is likely to be caused to the property to be acquired, after the date of service of notice to person interested or in consequence of the use to which it will be put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

• any increase to the value of the property to be acquired likely to accrue from the use to which it will be put when acquired

• any alteration or improvement in, or disposal of, the property to be acquired, made or effected without the sanction of the Deputy Commissioner after the date of publication of the notice

Source: Prepared by JST, referring to The Acquisition and Requisition of Immovable Property Ordinance, 1982

The draft of Immovable Property Lease and Acquisition Act 2017, the update of this ordinance, had been approved in April 2017. The updated law has proposed an increase in the compensation, and expected to enter in force soon.

# CHAPTER 5 DEMONSTRATION OF INTEGRATED GAS AND POWER STRATEGIC PLAN

This chapter presents the demonstration of Network Infrastructure Management System with gas and power data in Bangladesh, using "Smallworld" software. It illustrates the feature of Smallworld and data model. The chapter visualizes the pilot area modeling in Smallworld with asset data and mapping of gas pipeline and power transmission line network. Preliminary integrated gas and power network system was incorporated in the demonstration. Utilization of other systems such as GIS was also illustrated. Then, the recommendation for improvement in the next stage was made.

## 5.1 Software Features

## 5.1.1 The Features of Smallworld

Smallworld is an asset management system with GIS function. The advantages of Smallworld compared with other general GIS or database management systems are summarized as follows:

- "Object Model" oriented system
- Large scale and high-accuracy specialized database
- Utilization as an information platform

# (1) The advantage of the Object Model in Smallworld

Smallworld adopts "Object Model". The Object Model has a specific structure which is different from general GIS which adopts a layer model.

In a layer model applied in general GIS, annotation information and location information are placed in different layers. Text information may be stored in different database. Information related to one "thing" is dispersed differently in a system. As a result, the system and data structure tends to be complicated.

Meanwhile, Smallworld encapsulates text attributes and geometric attributes such as annotation or location information into one object. A "thing" in the real world is related one-to-one to an Object in the Smallworld system. As a result, the system and data structure is simplified.

147



Figure 5.1.1 Layer Model and Object Model

# (2) Large scale, high-accuracy specialized database

In general GIS, a significant performance reduction tends to occur when large scale data is handled in one file. Accordingly, it should divide the database into several files, for example, region-wise, and it needs to switch among the different files as necessary. In addition, a performance problem easily occurs under the environment in which many concurrent users access to one data at the same time.

In contrast to above, Smallworld specialized database system can store very large number of facility data, more than a million number of data, in one unified database file. Furthermore, Smallworld can keep high performance without speed reduction under the environment that many concurrent users access to one database at the same time.

Smallworld provides large scale coordinates in the virtual area with 40,000 km width (virtual distance that can be managed in Smallworld system) with 1cm accuracy. It can place objects with various levels of location information, from gas pipelines to each customer's meter, on the coordinate space. Even if the number of each object exceeds over a million, speed or performance problems will not occur. It can manage all assets information of whole Bangladesh network infrastructure in one unified system.



Figure 5.1.2 Smallworld Database Performance

## (3) Smallworld's role as the information platform

Smallworld has a highly flexible specialized development programming language (Magik) and a developing API (Application Programming Interface). By them, it can easily customize the system to meet requirements for collaboration with other systems. Accordingly, Smallworld can act as an information platform which exchanges and shares data between various systems such as SCADA, simulators, etc.



Source: Prepared by JST



As the example with the demo system structure of this Project, the features of Smallworld function is explained as follows:

- Dataset and version management,
- Object, physical fields and geometry fields,
- Geometry and manifold,
- Network trace,
- Geometry and world,
- Data model definition, and
- Configuration of display and style.

The terminology of Smallworld is shown in Section 5.1.9.

# 5.1.2 Dataset and Version Management of Smallworld

When several and large-scale infrastructures are handled compositely on Smallworld, we usually create physically separated databases for each infrastructure. Such database is called "Dataset". The demo system in this Project has three datasets, namely, gas, electricity, and background.



Source: Prepared by JST using Smallworld GUI (graphical user interface) Figure 5.1.4 Example of Datasets

Smallworld uses "Version Management" function for each dataset. Version Management is the function of updating with maintaining revised record and edited items at each step.

Editors can create several versions concurrently in each dataset. We call such versions "Alternatives". Alternative has a parent-child relationship. It can do a "Merge" operation, which reflects changes from

Parent Alternative to Child Alternative. It can also do a "Post" operation which reflects changes from Child Alternative to Parent Alternative.



Source: Prepared by JST using Smallworld GUI Figure 5.1.5 Version Management on a Dataset

## 5.1.3 Object, Physical Fields and Geometry Fields

Smallworld manages a "thing" (asset, equipment, machinery etc.) in the real world by a unit called "Object". An Object has physical fields and geometry fields.

Physical fields have a "Type". A Type defines what the data it is. "Type" identifies data if it is string, integer, real number, or date and time, etc. It represents type of features and specifications of each object. The details of physical fields is described in Section 5.3.1.

"Geometry" is the information represents location and shape of each object on the map. They have the Type of area, chain, point, and text (annotation) etc.





# 5.1.4 Geometry and Manifold

"Manifold" means a network group to which a geometry belongs. A geometry (information of location and shape) belongs to a group called "Manifold".

Geometries belonging to the same manifold are connected each other automatically if their coordinates are exactly at the same location. (For example, end of gas pipe segments connect each other etc.)

Geometries belonging to different manifolds are not connected even if their coordinates are same. (For example, a gas pipe and a power line don't connect each other.)

We can designate exceptional rules explicitly even if they belong to the same manifold, for example, (i) an abandoned pipeline does not connect to other existing pipelines, and (ii) a service pipe does not connect to pipelines directly, etc.



Source: Prepared by JST

Figure 5.1.7 Geometries and Manifold Rules

# 5.1.5 Network Trace

"Network trace" is a function that chases facilities connected each other. Smallworld has the network trace function. We can blockade a facility at which a failure occurs, and we can also find a detour route bypassing the blockaded facility. The following figure shows a simplest example of a shortest path search.

When connections between facilities are constructed in the demo system, the network trace will be enabled from the most upstream to the most downstream (i.e., from gas field to each customer's meter).



Source: Prepared by JST

Figure 5.1.8 Network Trace Functionality

## 5.1.6 Geometry and "World"

A "World" means a coordinate space in Smallworld system. Smallworld can have several Words with different coordinate space. Smallworld can define a coordinate system, a minimum unit of length, and an area that geometries can be allocated, in each "World" separately.

All geometries belong to a "World". An object can exist across several different "Worlds" by having several geometries belonging to different "Worlds".

For example, gas valve station objects can have two different geometries, (i) a geometry represents an actual coordinate on a map and (ii) a geometry represents a location on a schematic diagram of the gas network. As a result, we can relate locations of the same gas valve station, which exists in different two "Worlds": logical schematic space and an actual map space.

A gas valve station can also have another detailed coordinate space called an "Internal world". This represents an internal structure of facility inside its own building.





#### 5.1.7 Data model definition

"Case Tool" is a specific tool by which a system developer creates and stores data models. By using Case tool, we define objects such as a gas valve stations and a gas pipelines, and also define each object's physical fields and geometry fields.

By conducting "Apply" the data model definitions to a dataset, defined contents are reflected to the dataset.



Source: Prepared by JST using Smallworld GUI Figure 5.1.10 Case Tool for Data Model Definition

# 5.1.8 Configuration of Visibilities and Styles

"Object Configuration Tool" is the specific tools that configures each object visible or not, and selectable or not, at various range of scales.

| Object Configuration            |                |                           |            |                |                       |       |       |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × |
|---------------------------------|----------------|---------------------------|------------|----------------|-----------------------|-------|-------|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SOC Dis                         | • Datase       | t Gis                     | ← Applicat | ion Environmen | t Default             |       |       |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Objects                         | Edit           | Auto                      | 500        | 2500           | 5000                  | 10000 | 25000 | 50000   | 100000    | 250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500000 | 3000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ |
| *** Gas Pipeline Schematics *** |                |                           |            |                |                       |       |       |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Schematic Drawing           |                | ***                       | Mark 1     | 244            | +++-                  | -     | -     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Gas Schematic Pipeline          |                | ***                       |            |                |                       |       |       |         | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Gas Schematic Valve Station     |                | ***                       | ***        | ***            | ***                   | ***   | ***   | ***     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Schematic Gas Field             |                | ***                       | ***        | ***            |                       | ***   | ***   | +++     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Schematic Fertilizer Plant      |                | ***                       | ***        | +++            |                       | +++   | ***   | +++     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***     | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Schematic Power Station         |                | ***                       | ***        | ***            | ***                   | ***   | ***   | +++     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| *** Gas Pipeline Details ***    |                | -                         |            |                | _                     |       | _     | -       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Detailed Pipeline           | +              | ***                       | ***        | +++            | ***                   | +++   | ***   | +++     | +++       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Angle Point                 |                | ***                       | ***        | ***            | ***                   | ***   | ***   | ***     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Crossing                    |                | ***                       | ***        | +++            | ***                   | ***   | ***   | ++*     | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Soil Resistivity            |                | ***                       | ***        | ***            | ***                   | ***   | ***   |         | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas OP                          | ×              | ***                       |            |                | ***                   | ***   |       |         | ***       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| *** Gas Distributions ***       | _              | -                         | C          |                | -                     |       | -     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Pipe                        |                | ***                       | +++        | +++,           | ***                   |       |       |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Control                     |                | ***                       | ***        | ***            | ***                   | 1     |       |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Riser                       |                | ***                       | ***        | ***            | 444                   | 1     | 1     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Pipe Casing                 | 1.41           | ***                       | ***        | ***            |                       |       | -     |         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| *** Other Sample Data ***       | _              |                           |            |                |                       |       |       |         |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Gas Pipeline                    |                | a designed and the second |            | and an other   | to and the local data |       | 1     | -       | -         | And a local diversion of the local diversion | and a second sec |         | And a local diversity of the local diversity |   |
| Gas Station                     |                | -                         |            |                |                       |       |       |         |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Rae Schamatin Ractar            |                |                           | inter a    | bee.           | 100                   |       |       |         |           | 1-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~ |
| Active Status : 🔽 Accessible    | Visible R      | F Hittable 🔽              | Selectable |                |                       |       | Obje  | ct Con  | figura    | tion To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ol to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Set selection                   | Drawing Prior  | ity: • 0                  | -          |                |                       |       | set   | visibi  | lity, hit | tability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Show Single Sort selection      | Move selection | Find Entry                | Add Header | Delete Header  | 1                     |       | sel   | ectabil | lity of a | objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Update Reset Help Quit          |                |                           |            |                |                       |       | ead   | ch scal | e.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |

Source: Prepared by JST using Smallworld GUI

Figure 5.1.11 Object Configuration Tool

Smallworld also has a specific tool called "Style Designer". This configures shapes and colors of geometries in each scale. By using the tool, we can show geometries in different styles according to their attribute values. (For example, existing pipelines are shown with solid line, and planned pipelines are shown by dash lines)



Figure 5.1.12 Style Designer

Smallworld can configure different setting. In a large scale Bangladesh whole country map, only main pipeline geometries are shown which connects between gas valve stations by a straight line. As we zoom in to a larger-scale map, detailed pipeline geometries are shown which have more accurate coordinates, in place of former summarized geometries.



Only summarized pipeline geometries are shown.

Both summarized and detailed pipeline geometries are shown.

Only detailed pipeline geometries are shown.

Source: Prepared by JST using survey map of SoB



#### 5.1.9 Terminology of Smallworld

There are various specific technical words used in Smallworld. The following table shows the terminology typically used in Smallworld.

| Term        | Description                                                                            |
|-------------|----------------------------------------------------------------------------------------|
| ACE         | ACE is the abbreviation of "Application Configuration Environment". The                |
|             | following various ACE information is stored in the Dataset "ace.ds".                   |
|             | - Selecting visible and selectable objects and geometry by each scale                  |
|             | - Bookmark information                                                                 |
|             | - Database connection information, etc.                                                |
| Alternative | "Alternative" is a version of a dataset. Alternative has a parent-child relationship.  |
|             | The parent alternative at the top of the hierarchic structure is called a "top         |
|             | alternative". An alternative can have multiple sub (child) alternatives. Only one user |
|             | can be writable at one certain alternative simultaneously. Meanwhile, other users      |
|             | can access the same alternative only by read-only mode.                                |
| Apply       | "Apply" of the data model definitions stored in "Case.ds" dataset (refer Case Tool)    |
|             | is conducted to an actual dataset. Then, operation of objects represented by defined   |
|             | data model is enabled. "Apply" also can be conducted to existing objects. In that      |
|             | case, we can add new attributes, update, or delete current existing attributes.        |
|             |                                                                                        |
| Case Tool   | "Case Tool" is a specific tool for defining and storing data models including the      |
|             | following information. Data model definitions are stored in Case.ds dataset. It        |
|             | defines:                                                                               |
|             | - What kind of objects exist.                                                          |
|             | - What type of attributes each object has.                                             |
| Checkpoint  | When we make a "Checkpoint" on Alternative, the dataset status becomes                 |
|             | "committed". Then, the current status of the dataset is named with a label. After      |
|             | operation, we can recover the status of the dataset to the saved status with the       |
|             | checkpoint name, which is called "Rollback".                                           |
| Collection  | An area where the same kind of objects are stored in dataset is called "Collection"    |
|             | or "Table". Attributes of objects are stored in the Table.                             |
| Commit      | Saving edited contents in a dataset is called "Commit". When we access a current       |
|             | Alternative with writable mode and when we have "uncommitted" edited                   |
|             | information, we can do "Commit".                                                       |
| Conflict    | When the same object is edited in both parent and child Alternatives, "Conflict" will  |
|             | occur when "Merge" is performed. At that time, a specific menu window for              |
|             | resolving "Conflict" is shown. Then, we can determine which change on Child            |
|             | Alternative or Parent Alternative is prioritized, or we can discard both changes and   |
|             | recover the status before the edit of each object.                                     |
| Dataset     | Smallworld can manage different infrastructures in one system. It physically builds    |
|             | different databases for each kind of infrastructure (such as gas, power, water, etc.). |
|             | The respective database is called "Datasets". The "Gis" Dataset is the default         |
|             | dataset and is the most basic dataset. Usually, we store most important infrastructure |
|             | data in Gis dataset. In our demo system we store the gas infrastructure data in Gis    |

# Table 5.1.1 Glossary of Smallworld

| Term           | Description                                                                           |
|----------------|---------------------------------------------------------------------------------------|
|                | dataset. Each "Dataset" is stored in a sub folder of which name is started with "ds_" |
|                | conventionally. For example, Gis dataset is stored in "ds_gis" sub folder.            |
|                | The databases for administration such as "ace.ds" and "style.ds" are also a kind of   |
|                | datasets. Such datasets are stored in "ds_admin" sub folder conventionally.           |
| Geometry       | "Geometry Field" is the attributes of shapes of each object. There are several kinds  |
| Field          | of shapes. For example, "Area" (a polygon shape), "Chain" (a line shape), "Point      |
|                | "(one location) and "text" (annotation), etc.                                         |
| Image          | "Image" is a saved status of a system execution environment with datasets             |
|                | connection that includes Magik source code. By reloading an previous built image,     |
|                | we can recover an execution environment on which we can operate Smallworld.           |
| Magik          | "Magik" is a specific programming language for development of Smallword. It has       |
|                | a feature of object oriented programming language which has a concept of class and    |
|                | instance, multiple inheritace etc.                                                    |
| Mandatory      | "Mandatory Field" is the Attributes which are necessary (cannot be neglected) when    |
| Field          | creating or updating an object.                                                       |
| Manifold       | "Manifold" is a group of network that Geometries belongs to. Geometries belonging     |
|                | to same manifold are connected each other automatically if their coordinates are in   |
|                | the same location. Geometries belonging to different manifolds are not connected      |
|                | even if their coordinates are same. We can also define non-connected Geometries by    |
|                | setting exception rules explicitly, even if they belong to the same manifold.         |
| Merge          | "Merge" is an operation which reflects changes from Parent Alternative to Child       |
|                | Alternative. If the same object is changed both in Parent Alternative and Child       |
|                | Alternative, a conflict may be occurred when "Merge" is performed.                    |
| Object         | "Object" is the information management unit in Smallworld. It corresponds to a        |
|                | thing in the real world (asset, equipment, machinery etc.) one by one. We can         |
|                | operate things as objects by encapsulating text attributes and location information   |
|                | on a map. It may be called "Real World Object" or "RWO" (by taking initial            |
|                | characters of each word) or simply "Record".                                          |
| Physical Field | "Physical Field" is a text or numerical attributes of each object. We can allocate    |
|                | different types of Physical Field for each attribute.                                 |
| Post           | "Post" is an operation which reflects changes from Child Alternative to Parent        |
|                | Alternative. A "Merge" is necessary before a post. Accordingly, a conflict does not   |
|                | occur at the timing of "Post".                                                        |
| Real World     | Refer to Object.                                                                      |
| Object         |                                                                                       |
| Record         | Refer to Object.                                                                      |
| Rollback       | "Rollback" is an operation which recovers the Dataset to the last committed status    |
|                | or a specified status by a Checkpoint. The updates of a Dataset may be lost and it    |
|                | may not be possible to recover the latest Dataset status after doing "Rollback".      |
| Rollforward    | "Rollforward" is an operation which updates a Dataset to the latest committed status  |

| Term       | Description                                                                             |
|------------|-----------------------------------------------------------------------------------------|
|            | by a user who is accessing to the Alternative with read only mode.                      |
| RWO        | Refer to Object.                                                                        |
| Style      | "Style" is the information for representing geometries with various color and shape     |
|            | at various scale view. The information of "Style" is stored in the dataset "Style.ds".  |
| Table      | Refer to "Collection."                                                                  |
| Version    | Each Dataset can have parallel different status of data contents ("Version") at the     |
| Management | same time. The management of "Version" of a Dataset is called "Version                  |
|            | Management". A dataset concerning version managed is called VMDS ("Version              |
|            | Managed Dataset")                                                                       |
|            |                                                                                         |
| World      | "World" is defined to be a coordinate space that Geometries belong to. In               |
|            | Smallworld, we can define multiple different coordinate spaces ("World") in             |
|            | datasets. Geometries belonging to different worlds cannot be shown simultaneously.      |
|            | In addition to the Geographic "World" showing an actual map, Smallworld can             |
|            | define a virtual "World" that represents schematic diagram. In addition, World with     |
|            | details in a building with internal structure of facility is called "Internal World". A |
|            | different coordinate systems and length units are applicable to each "World".           |
|            |                                                                                         |

# 5.2 Pilot Area for Asset Management

# 5.2.1 Outline Map of Gas Pipeline

The following figure shows approximate pipeline locations and connection information of main gas valve stations and gas fields in Bangladesh country.

| Term       | Description                                                                             |
|------------|-----------------------------------------------------------------------------------------|
|            | by a user who is accessing to the Alternative with read only mode.                      |
| RWO        | Refer to Object.                                                                        |
| Style      | "Style" is the information for representing geometries with various color and shape     |
|            | at various scale view. The information of "Style" is stored in the dataset "Style.ds".  |
| Table      | Refer to "Collection."                                                                  |
| Version    | Each Dataset can have parallel different status of data contents ("Version") at the     |
| Management | same time. The management of "Version" of a Dataset is called "Version                  |
|            | Management". A dataset concerning version managed is called VMDS ("Version              |
|            | Managed Dataset")                                                                       |
|            |                                                                                         |
| World      | "World" is defined to be a coordinate space that Geometries belong to. In               |
|            | Smallworld, we can define multiple different coordinate spaces ("World") in             |
|            | datasets. Geometries belonging to different worlds cannot be shown simultaneously.      |
|            | In addition to the Geographic "World" showing an actual map, Smallworld can             |
|            | define a virtual "World" that represents schematic diagram. In addition, World with     |
|            | details in a building with internal structure of facility is called "Internal World". A |
|            | different coordinate systems and length units are applicable to each "World".           |
|            |                                                                                         |

# 5.2 Pilot Area for Asset Management

# 5.2.1 Outline Map of Gas Pipeline

The following figure shows approximate pipeline locations and connection information of main gas valve stations and gas fields in Bangladesh country.



Source: Prepared by JST

Figure 5.2.1 Gas Pipeline Outline Map

The national gas pipeline map with power transmission line prepared in Smallworld is included in Appendix B-2.

(1) The method of data import

We have identified locations of gas valve stations and gas fields in Bangladesh of GTCL and Google Earth in Internet. In addition, we have imported existing GIS Shapefile<sup>12</sup> data to Smallworld by the Shapefile data loading tool, which was developed by Geoplan.

(2) Contents of data

- Gas fields Objects (Approximate locations on the map)
- Gas Valve Station Objects (Approximate locations on the map)

<sup>&</sup>lt;sup>12</sup> A Shapefile is a file type used in GIS, a geographic information, attribute data, and coordinate system information.

- Summarized Gas Pipeline Objects (Pipeline routes connected between gas valve stations by a straight line)
- (3) Necessary works in the next stage

At present, most of locations of gas valve stations and pipelines are not accurate. It should identify accurate position data by GPS survey or other method. It needs to modify locations of gas fields and valve stations in the system when detailed locations of facilities are identified.

# 5.2.2 Schematic Diagram of Gas Pipelines

The project has compiled schematic diagrams of gas pipelines owned by the following gas transmission/distribution companies in Smallworld system.

- ✓ GTCL: The schematic diagram of gas pipelines, which includes gas valve stations, large power plants, large scale fertilizer plants and gas fields in whole Bangladesh country.
- ✓ TGTDCL: The schematic diagram of gas pipelines, which includes gas valve stations, large scale fertilizer plants and gas fields in their service area.
- ✓ JGTDSL: The schematic diagram of gas pipelines, which includes gas valve stations and gas fields in their service area.



Source: Prepared by JST using Schematic Diagram of TGTDCL, GTCL, and JGTDCL Figure 5.2.2 Gas Pipeline Schematic Diagram

#### (1) The method of data capture

Firstly, gas schematic diagram of each company is pasted as an image data (a raster data) in the system. Secondly, point geometries are created at the corresponding locations of the valve stations on the raster. It is also possible to input geometries by hand with looking original drawings without raster pasting.
Thirdly, geometries of valve stations are connected each other with pipeline geometries automatically or by hand according to connection information.

(2) Data structure of Objects

- Gas Valve Station (at expedient locations on the schematic diagram)
- Gas Field (at expedient locations on the schematic diagram)
- Fertilizer Plants (at expedient location on the schematic diagram)
- Outline of Gas Pipeline (Pipeline routes connected between gas valve stations by a line)
- (3) Necessary work in the next stage

The following works will be required in the next stage

- To add schematic diagrams of remaining gas distribution companies.
- To modify existing schematic diagrams according to newly found valve stations and connection data.

### 5.2.3 Internal Drawing of Gas Valve Station Building

The internal drawings of buildings in the following table are input to Smallworld system. They are a part of one hundred and several tens of gas valve stations. In the next stage, it is necessary to gather remaining building internal drawings and to input them into Smallworld.

| Station ID | Station Name              |
|------------|---------------------------|
| VS1010     | KAILASTHTILA 2&3 MANIFOLD |
| VS1020     | MUCHAI CS-2 MANIFOLD      |
| VS1030     | HOBIGONJ MONIFOLD         |
| VS1040     | KHATIHATA METERING ST     |
| VS1050     | ASHUGONJ GMS              |
| VS2010     | BAKHRABAD HUB             |
| VS1060     | VALVE STATION VS-3        |
| VS3030     | MONOHORDI                 |
| VS3440     | ASHULIA CGS               |

 Table 5.2.1
 List of Valve Stations input to Internal Worlds

Source: Prepared by JST



Source: Prepared by JST Figure 5.2.3 Example of Gas Valve Station's internal drawing

#### (1) The method of data capture

First, the internal drawing of valve station building is pasted in an area of the Internal World allocated for each gas valve station. Then, point data of valves and vector data of piping in the building is input according to the drawing.

(2) Data Structure

- Internal Worlds allocated for each valve station.
- Raster data of piping drawing in the building
- Vector data of piping drawing in the building
- (3) Necessary work in the next step

It is necessary to collect piping drawings of the building of remaining gas valve station and preparation of point and vector data.

### 5.2.4 Detailed Drawings of Main Gas Pipelines

Detailed locations of gas pipelines and associated information (such as Angle Point, Crossing, CP, and Soil Resistivity) collected from concerning drawings of the following projects have been incorporated to Smallworld as demo contents.

- Dhanua-Elenga and West Bank of Bangabandhu Bridge-Nalka Gas Transmission Pipeline Project (prepared by PENSPEN)
- Bakhrabad-Siddhirganj Gas Transmission Pipeline Project (Prepared by Dorsch International Consultants GmbH)

An example of detailed drawing and related objects incorporated into Smallworld system is shown in the figure below. While the blue straight line indicates the approximate transmission pipe alignment in a wide area map, the detailed pipeline alignment is shown in the zoomed map with accurate positioning. The location of objects such as Angle Point and River Crossing are shown on the map when the scale is zoomed up. The locations of such objects overlap accurately on the topographic map issued from Survey of Bangladesh (SOB).



Source: Prepared by JST Figure 5.2.4 Detailed Gas Pipeline and related objects

(1) The method of data import

We digitized the data according to the drawings such as pipeline alignment sheet in which coordinates of pipelines are given in the drawings. Such drawings were rasterized in Shapefile format and imported into Smallworld system by the Shapefile data import tool.

(2) Data structure

- Gas pipeline objects with accurate coordinates
- Objects which represent associated information of pipelines (Angle Point, Crossing, CP, Soil Resistivity)
- (3) Necessary works in the next stage

It is necessary to digitize and import data in the same way as other collected drawings, in which coordinates of gas pipelines are known.

### 5.2.5 Gas Distribution Pipeline Data

Gas distribution pipes, risers and valves data in a part of Karnaphuli Upazila in Chittagong District have been imported into Smallworld as a sample. In addition, gas distribution pipes and associated facilities in the city center, one of TGTDCL service, have also been incorporated into Smallworld demo system.

The sample area of Karnaphuli, of which data is from Shapefile prepared by KGDCL using ArcGIS<sup>13</sup> is shown in the figure below.



Source: Prepared by JST

Figure 5.2.5 Example of Gas Distribution Data of Karnaphuli

The sample TGTDCL area of which data is incorporated in the demo system is shown in the figure below. The details of the area are as follows:

- Region name: TGTDCL Metro Dhaka Marketing Dept. No.5
- Land name: Dhanmondi, Lalmatia, Jigatala, Kalabagan, Mohammadpur, Shamoly, Agargaon, Farmgate
- Contents of facilities: Gas distribution pipes, gas gate valves, pipe reducers, pipe end caps and pipe casings

<sup>&</sup>lt;sup>13</sup> ArcGIS is a geographic information system for working with maps and geographic information, produced by ESRI.



Source: Prepared by JST, with base map of SoB 1/5000 Figure 5.2.6 Gas Distribution Data of TGTDCL

- (1) The method of data import
  - (i) Karnaphuli: Shapefile format data prepared by KGDCL using ArcGIS was imported into Smallworld system by the Shapefile data import tool.
  - (ii) TGTDCL: The paper maps with coordinate grid prepared by TGTDCL was used. The gas distribution pipeline alignment and facilities are drawn on it. Those were once digitized in ArcGIS and Shapefiles. Then, the Shapefile data was imported in Smallworld system with data import tool.

(2) Data Structure

- Gas distribution pipe objects with accurate locations
- Objects related to gas distribution pipes (Gas gate valves, pipe reducers, pipe end caps, and pipe casings)
- Objects for customer service (such as Risers)

#### (3) Necessary works in the next stage

It is necessary to collect drawings of each gas distribution company and digitize data in the same way.

The drawings with coordinate information is limited, and it is necessary to confirm coordinate for most of the drawings. Conducting GPS survey is necessary for such drawings to incorporate in map system.

In addition, customer data can be incorporated with service pipe when customer information is available from gas distribution companies. The following figure is an example of customer data and connection to customer. The customer information such as Customer ID, Customer Name, Customer Type, Customer Address and Tel, Postal Code, Status, location data, Gas Consumption, etc., can be displayed in the data field.



Source: Prepared by JST

Figure 5.2.7 Service Pipe and Customer Information

#### 5.2.6 Power Network

The approximate locations of power stations, substations, and power transmission lines in whole Bangladesh country were collected mainly from Google Earth. The position data and related attribute data of facility was once assembled in Shapefile in ArcGIS, and incorporated into Smallworld System.

The nation-wide power network facilities in Smallworld system is shown in the figure below.



Figure 5.2.8 Power Transmission Network

The power transmission line map with the gas transmission pipeline facility is attached in Appendix B-2.

### (1) The method of data import

We have processed location information of power stations, substations, and power transmission lines owned by PGCB and BPDB, and created Shapefiles from those data. Then, we have imported the Shapefiles into Smallworld system by the Shapefile data import tool, as well as gas facility data.

(2) Data structure

- Power plant objects
- Substation objects
- Power transmission line objects

(3) Necessary works in the next stage

It is necessary to update the location and facility information of power stations, substations, and power transmission lines planned in future. The as-build drawings of transmission line layout, tower structure, and the layouts of substations are also recommended to be collected and incorporated into Smallworld system for facilitation of overall O&M. In addition, the demo system in Smallworld does not have power distribution lines. It is recommended to incorporate distribution line information in the future to manage overall network connections from power station to consumers as separate project.

#### 5.2.7 Internal Drawing of Substation

Facilities indicated in single line diagrams of substations were incorporated using Internal World in the Smallworld demo system as sample. The list of five (5) substations already incorporated into Smallworld system is as shown in the table and figure below.

| Table 5.2.2 | List of Substation | incorporated in | Internal | Worlds in | Smallworld |
|-------------|--------------------|-----------------|----------|-----------|------------|
|-------------|--------------------|-----------------|----------|-----------|------------|

| Station ID | Station Name         |
|------------|----------------------|
| SS-0015    | Comilla (N)          |
| SS-0005    | Agargaon             |
| SS-0007    | Aminbazar            |
| SS-0021    | Ishurdi              |
| SS-0024    | Meghnaghat Switching |

Source: Prepared by JST



#### Source: Prepared by JST

Figure 5.2.9 Example of Substation Single Line Diagram incorporated as Internal World

### (1) The method of data import

A building internal drawing is pasted in Internal World allocated for each substation. Position data of switches and vector data of power lines vector data in the building internal structure is input along with the drawing.

(2) Data Structure

- Internal Worlds allocated for each substation
- Raster data of a single line diagram in substation buildings
- Vectorised data of a single line diagram and facility position data in substations
- (3) Necessary works in the next stage

It is necessary to collect remaining single line diagrams of the substations, and to prepare position and vector data.

# 5.2.8 Topographic Maps used for Background Image

(1) Structure of Index Map Mesh

There are four (4) scales (1:250,000, 1:50,000, 1:25,000, and 1:5,000) in Bangladesh topographic map system prepared by Survey of Bangladesh (SoB). Index maps are prepared with mesh for the maps 1:250,000, 1:50,000, 1:25,000 in one sheet by SoB. Other mesh sheet is independently prepared for 1:5000. We have imported these meshes into Smallworld to facilitate background map management to display with network infrastructure information.





#### (2) Administrative boundaries

We have imported Bangladesh administrative boundaries into Smallworld using polygon data of Shapefile format, as shown in the figure below.



Source: Prepared by JST

Figure 5.2.11 District Map of Bangladesh

The administrative boundary data can be used for searching facilities by districts or states. For example, we can prepare a list of valve stations in Dhaka district by a spatial query with a polygon data of the district, as illustrated in the figure below.



Source: Prepared by JST



### (3) Topographic maps as background raster images

As mentioned above, topographic maps of Bangladesh were prepared by SoB. In Smallworld demo system, we have incorporated some of the topographic maps to overlay gas and power network infrastructure of demo areas. Those are utilized not only as background image but also to confirm accurate location of infrastructure facility.



Source: Prepared by JST

Figure 5.2.13 Topographic Maps used as Background Image of Network Infrastructure

#### (4) Background maps obtained from Internet

Background maps can be obtained from Internet such as Google Earth. The advantages of the maps are as follows:

- Maps are automatically and periodically updated to latest ones
- Maps cover whole areas in Bangladesh at every scale
- Objects prepared on the Google Earth maps are compatible with ArcGIS through kml/kmz file types by customization of data exchange facilities

Meanwhile, they have the following disadvantages.

- Connection with Internet is required.
- It takes a certain time until maps are downloaded, and the required time is depending on communication environment.
- Usage fee or license fee is required when it is operated with different system such as Smallworld.

### 5.2.9 Data Preparation Methods according to Status of Existing Material

Utility companies and organizations in Bangladesh have been merged or separated several times in the past, and many drawings and relates materials have been dispersed or left unknown. If the drawing is available, many of them are out of date. There are different status of available drawing and other information for network infrastructure as follows:

- 1) Drawings with coordinate system and position data of facility is available
- 2) Position data (latitude and longitude) is available at drawing frame or angle point, but coordinate system is unknown.
- 3) Both the coordinate system and position data are unknown in the drawing, and facilities information such as roads, buildings, and land names are included
- 4) Locations identification is not possible from drawings
- 5) No drawings exist, or facility locations in maps are unable to identify

The following are data preparation methods to incorporate in Network Infrastructure Management System according to the availability of drawings and other information.

(1) Drawings with coordinate system and position data of facility is available

The data input procedure in the case (1) is as shown below.



Source: Prepared by JST

Figure 5.2.14Data Preparation Procedure (1)

(2) Position data (latitude and longitude) is available at drawing frame or angle point, but coordinate system is unknown

The data input procedure in the case (2) is as follows.



Figure 5.2.15 Data Preparation Procedure (2)

(3) Both the coordinate system and position data are unknown in the drawing, and facilities information such as roads, buildings, and land names are included



The data input procedure in the case (3) is as shown below.

Figure 5.2.16 Data Preparation Procedure (3)

(4) Locations identification is not possible from drawings

The data input procedure in the case (4) is as shown in the figure below.



(5) No drawings exist, or locations in maps are unable to identify

The data input procedure in the case (5) is as shown below.



Source: Prepared by JST

Figure 5.2.18 Data Preparation Procedure (5)

The drawing preparation, pipe detection survey, and GPS data collection survey is inevitable for base system preparation, which requires large human resources. The organization for fundamental data preparation and management needs to be set up for integrated data management.

### 5.3 Data Group/Field Definition in Network Infrastructure Management System

### 5.3.1 Physical Field of Object

Physical Fields of Objects in Network Infrastructure Management System represent specifications and characteristics of each facility. Those items are defined in Object Model. The following are the examples of items to be identified in the Object Model:

- Gas pipe: pipe type, material, diameter, design pressure, etc.
- Gas valve: type of valve, design flow, design pressure, etc.
- Power line: voltage, ampere, conductor type and size, number of circuit, etc.

Similarly, Physical Fields have own features according to facilities. In addition, when a facility has information about operation status (such has Proposed, Under-Construction, Existing, and Abandoned) as the value of Physical Field. Styles of symbol of the facility can be set differently according to the status and values in Physical Field.

Various numerical values obtained from facility operation data can also be included in Physical Fields. For example, a gas valve station has operation data such as gas flow and pressure and a power station has operation data of generated energy and fuel consumption. It is possible to utilize such operation data in the understanding of current issue and in the future planning, after tabulation and statistical analysis of the values in Physical Fields. For example, it is possible to calculate and compare total quantity of gas flow in valve stations and total gas consumption in gas power stations in Dhaka Division easily.

As mentioned above, Physical Fields of Objects provide important information for each phase of planning, construction, operation, and maintenance of asset in network infrastructure.

Details of Physical Fields of each Object are explained in the section below.

### 5.3.2 Physical Fields

There are data items common to various types of Objects, such as updated time, a file path of an associated document. Such of common type data items in the Physical Fields of objects are listed in the table below.

| Name               | Туре    | Description                                                       |
|--------------------|---------|-------------------------------------------------------------------|
| ID                 | system  | System unique identifier of object                                |
|                    | id      |                                                                   |
| Name               | string  | Facility specific name                                            |
| Operation Status   | string  | One of : 'Proposed', 'Planned', 'Under-Construction', 'Existing', |
|                    |         | and'Abandoned'                                                    |
| Commissioning Year | integer | The year of commissioning                                         |
| Commissioning      | integer | The month of commissioning                                        |
| Month              |         |                                                                   |
| Related Document 1 | string  | File path of associated document                                  |
| Related Document 2 | string  | File path of associated document                                  |
| Related Document 3 | string  | File path of associated document                                  |
| Latitude           | float   | Latitude value of object's location                               |
| Longitude          | float   | Longitude value of object's location                              |
| Elevation          | float   | Elevation value of object's location                              |
| Latitude Temp      | float   | Temporary latitude value of object's location                     |
| Longitude Temp     | float   | Temporary longitude value of object's location                    |
| Elevation Temp     | float   | Temporary elevation value of object's location                    |
| Create Date        | date    | Object created date                                               |
| Update Time        | time    | Object updated time                                               |
| Data Source Type   | string  | One of: 'Drawing','Hearing','Field Survey',and'GPS                |

 Table 5.3.1
 Common Physical Fields of All Facilities

Data Collection Survey on Computerization of Gas and Power Network Infrastructure Nippon Koei Co., Ltd and Chiyoda U-tech Co., Ltd..

|                     |        | Measurement'                        |
|---------------------|--------|-------------------------------------|
| Data Source Details | string | Detailed information of data source |
| Note                | string | Free text information, remarks      |

There are data items specific to each type of Physical Field such as gas pipeline, valve station, gas field, etc. Physical Fields need to be prepared for each type of Object. For example, Physical Field of Gas Pipeline is shown in the table below.

| Name                    | Туре    | Description                                               |
|-------------------------|---------|-----------------------------------------------------------|
| Company                 | string  | Owner company's name                                      |
| From Station ID         | string  | Valve Station ID from which the pipeline comes            |
| From Station Name       | string  | Valve Station name from which the pipeline comes          |
| To Station ID           | string  | Valve Station ID to which the pipeline goes               |
| To Station Name         | string  | Valve Station ID to which the pipeline goes               |
| Outside Diameter [inch] | integer | Outside diameter value                                    |
| Length [km]             | float   | Length of the pipeline                                    |
| Pipe Material           | string  | Material of the pipe                                      |
| Corrosion Allowance     | float   | Allowance of pipe corrosion                               |
| [mm]                    |         |                                                           |
| Design Pressure [psig]  | float   | Design pressure                                           |
| MAOP [psig]             | float   | Maximum allowable operating pressure                      |
| OP Normal [psig]        | float   | Normal operating pressure                                 |
| Normal Flow Rate        | float   | Normal flow rate                                          |
| [mmscfd]                |         |                                                           |
| CP System               | string  | The pipeline has cathodic protection system, or not. (Yes |
|                         |         | or No)                                                    |
| Flow Direction          | string  | Flow direction of the pipeline                            |

 Table 5.3.2
 Physical Fields of Gas Pipeline

Source: Prepared by JST

Physical Fields for Objects installed in gas network infrastructure was prepared in Smallworld system, for the items below. This is to indicate the overall layout and asset data of gas transmission infrastructure in large scale maps. The details of Physical Fields are listed in Appendix C.

- (1) Gas Pipeline
- (2) Gas Valve Station
- (3) Gas Field
- (4) Fertilizer Plant
- (5) Power Station (in gas schematic drawing)

In addition to the above, Physical Field of Objects in the detailed pipeline drawing was prepared separately to indicate actual layout and asset data with precise position data of facilities. The Smallworld system incorporated the following items.

- (1) Gas Detailed Pipeline
- (2) Angle Point of Gas Pipeline
- (3) Gas Crossing Point
- (4) Soil Resistivity
- (5) Cathodic Protection (CP) of Gas Pipeline

For gas distribution network, Physical Fields were prepared for the following facility objects.

- (1) Gas Pipe
- (2) Gas Riser
- (3) Gas Control
- (4) Gas Pipe Casing
- (5) Consumer information (Gas Meter)

Physical Fields were also prepared exclusively for Internal World objects that presents equipment and materials installed inside facilities. The Physical Fields of those objects of Internal World include the following.

- (1) Gas Pipes
- (2) Valves
- (3) Meters
- (4) Manifolds
- (5) Instruments
- (6) Filters,
- (7) K.O. drum
- (8) Heat exchanger

As well as gas network infrastructure, Physical Fields of power network infrastructure were prepared for the following items.

For World maps:

- (1) Power Stations
- (2) Substations
- (3) Transmission Lines

For Internal World Objects:

(1) Power Lines/Cables

- (2) Disconnect switches
- (3) Circuit breakers
- (4) Earth
- (5) Generators

### 5.4 Utilization of GIS Shapefile Data

Network Infrastructure Management System can be utilized for planning of network system with several background maps including environmental and social data. Various types of environmental and social maps are available in GIS Shapefile format. It is possible to utilize shapefile data in Smallworld system together with network infrastructure Object data. Such utilization of various types data enables efficient infrastructure network planning.

For example, soil condition data is necessary to assess electrical conductivity of soils, which is used as a parameter for designing cathodic protection of pipeline. The soil type GIS shapefile map can be utilized and overlaid with pipeline transmission line alignment to support cathodic protection plan, as shown in the figure below.



Source: Prepared by JST using GIS Shapefile data of BARC Figure 5.4.1 Soil Type Map with Pipeline Alignment in Smallworld

For other example, environmentally constrained area needs to be considered when extension of power transmission line and construction of power station is planned. GIS shapefile data of environmentally constrained area map can be overlapped with power transmission line data and power station data to assess necessary consideration and mitigation plan, as shown in the figure below.



Source: Prepared by JST based on GIS Shapfile data of BARC Figure 5.4.2 Constrained Area Map with Transmission Line Alignment in Smallworld

Likewise, there are many possibilities for application of environmental and social background map data with Smallworld. The following are other examples of utilization of GIS shapefile together with Smallworld system.

- 1) Use of population density map for determination of classification of pipe material in terms of safety and protection
- 2) Planning of power transmission line considering biological corridor of birds specified as rare species
- 3) Application of land use shapefile data to prepare and estimate land acquisition and compensation planning in environmental impact assessment

# 5.5 Integration of Gas and Power Network Data in Network Infrastructure Management System

### 5.5.1 Gas and Power Network Connection

As described earlier, different type of infrastructure is managed by each dataset. Smallworld system can display different type of networks as necessary with recognizing the connection.

In the following figure, "PS" symbol indicating the Power Station is connected from "VS" symbol indicating the Valve Station through green line indicating distribution pipeline. "VS" is connected

180

from blue line which indicates as transmission line, and "PS" is connected from pink line which indicates power transmission line. It shows both gas and power network infrastructure is managed in one system with recognizing connection of two different type of infrastructure.



Source: Prepared by JST

Figure 5.5.1 Connection of Gas and Power Network

Recognition of the connection in different dataset is possible through an Object with Key Field. Object with Key Field indicating power station in Gas Dataset (GIS Dataset), for example, can be referred for searching power stations connected from a certain pipeline in Power Dataset.

"Network Trace" function will identify the pipeline network paths from supply source through transmission pipes, distribution pipes, and valve stations to the final consumers. This identifies the accurate connection from gas source to gas power station, and provides necessary geometry data for demand-based operation for respective power station.



Figure 5.5.2 Connection of Gas and Power Network

#### 5.5.2 Power Plant Location and Regional Gas Consumption

Regional gas consumption by power station can be estimated by Spatial Search function, as shown in Figure 5.2.2. Gas power station belonging to a certain region can be searched and selected, and total gas consumption in power stations belonging to a certain region can be calculated. Such function is utilized for regional gas demand estimation and planning of gas pipeline enhancement with gas demand future projections.

The following figure shows an example of query and selection of gas power with present and future gas demand in Dhaka Region in Smallworld.



Source: Prepared by JST Figure 5.5.3 List of Power Stations with Divisional Gas Consumption Projection

## 5.6 Recommendation for Improvement in the Next Stage

## 5.6.1 Collaboration of Smallworld with SCADA

Supervisory control and data acquisition (SCADA) is the system consists of software and hardware for real-time data gathering from various locations to conduct remote control and condition setting. SCADA is used in network infrastructure such as gas, power, telecommunication, water, and road.

When the information of SCADA data is incorporated and monitored in Smallworld, there are several advantages in operation.

Currently only the staffs of the department concerning SCADA can access SCADA information. When SCADA is collaborated with Smallworld, more staffs who need SCADA information can share operation status in both gas and power network. Then, information sharing is facilitated and necessary correspondence such as demand response and countermeasure of failure will be fastened.

In addition, we can check mid term and long term historical trend in gas flow and pressure for each facility with overlaying actual geographical information. Then, it will be utilized for preparation of the maintenance and emergency plan, considering various aspects such as geographic analysis of gas leakage points, condition change of CP, and detection of other abnormal trend values.

From the above point of view, it is recommend collaborating Smallworld and SCADA in the technical cooperation project of the next stage.



Source: Prepared by JST using material of Namtech Inc. Figure 5.6.1 Collaboration between SCADA and Smallworld Interface are needed to be examined to develop the method of collaboration of Smallworld and SCADA. The following candidate methods can be considered. In principle any SCADA system can be connected to Smallworld via. JAVA API.

(1) Method via text files

The latest facility operation data is periodically output from SCADA in text formatted file. Smallworld clients import the text file and show latest information of facilities on the map.

(2) Method of direct access to SCADA Database

Smallworld clients directly access to SCADA database via interface such as Open Database Connectivity (ODBC) etc., and collect the latest operation data in SCADA. Using a database view is also available to cope with changes of SCADA database specifications.

(3) Method of specialized server

A new server is prepared to collect data from the server of SCADA system via a protocol for inter-server communication, such as ICCP (Inter Control Center Protocol) etc., and Smallworld clients access to the server to obtain SCADA data.

Advantages and disadvantages of above methods are compared in the table below.

| Methods       | Pros                                     | Cons                                    | Evaluation |
|---------------|------------------------------------------|-----------------------------------------|------------|
| Via Text File | Coupling between servers is not          | A periodical and automatic information  | А          |
|               | frequent, accordingly, one system is not | output function is necessary at SCADA   |            |
|               | affected from failures of others such as | side. Output information by hand may    |            |
|               | system down. Implementation is           | also be necessary at the initial stage. |            |
|               | relatively easy.                         |                                         |            |
| Direct        | Data acquisition is relatively faster    | A communication path is required for    | В          |
| Access to     | than other methods.                      | each Smallworld client to access        |            |
| SCADA DB      | Implementation is relatively             | SCADA database directly. There is a     |            |
|               | difficult.                               | risk that SCADA side may be affected    |            |
|               |                                          | by the direct access to SCADA           |            |
|               |                                          | database from Smallworld clients.       |            |
| Specialized   | Risk of bad influence on SCADA is        | Cost of the new application server      | В          |
| Server        | small since data collection is           | development will be high.               |            |
|               | conducted via the formal protocol.       |                                         |            |
|               |                                          |                                         |            |

 Table 5.6.1
 Pros and Cons of SCADA Connection Methods

Source: Prepared by JST

#### 5.6.2 Documents and Drawings Management System

Current demo system provides function of accommodation of drawings, maximum three (3) drawings of electronic files per each object.

In future, much more concerned electronic drawings and documents will need to be accommodated in the system. In such case, more efficient system for managing and storing large amount of drawings and documents is required, instead of current simple document accommodation system.

From the above point of view, it is recommend to develop and introduce the specialized document management system, namely, Electronic Filing System in the technical cooperation project of the next stage. Electronic Filing System can display large amount of related drawings by using facility ID as the key to collaborate with Smallworld.

### 5.6.3 Collaboration of Smallworld with Simulators and ERP

As mentioned also in 5.1.1(3), Smallworld can act as an information platform which exchanges data between various systems.

If Smallworld can collaborate with a simulator, Smallworld can overlay simulation results on the geographical location information of input facilities. For example, when there are alternative plans of gas pipeline route, pressure, gas flow, and diameter, the simulation result corresponding to the alternative plans can be displayed with asset information on Smallworld with detailed locations in visual maps.

Furthermore, if Smallworld can collaborate with Enterprise Resource Planning (ERP) system, asset or organization information managed by ERP can be located with facility asset data on the maps.

In this way, useful information for works in network infrastructure, such as planning, design, construction, operation, and maintenance, can be provided from Smallworld system as the information platform, by assembling the facility data distributed in various existing systems.

From the above point of view, it is recommended to implement collaborations of Smallworld and other systems in the technical cooperation project of the next stage.

As well as SCADA, collaborations of Smallworld with other systems need to be conducted by designing and testing the details of data exchange methods and interfaces between the systems.

#### 5.6.4 Collection and Incorporation of Base Maps

Survey of Bangladesh publishes topographic map of Bangladesh of scale of 1:250,000, 1:50,000, 1:25,000, and 1:5,000. They are used as base maps of Network Infrastructure Management System, and a part of maps were incorporated as demonstration in the Network Infrastructure Management System. Currently, SoB is preparing and updating national 1:25,000 topographic maps based on satellite image. They are targeted to be completed in 2018. In addition, 1:5000 maps are being prepared for local cities. As soon as the update topographic maps are prepared, those needs to be procured and incorporated in the Network Infrastructure Management System in the next phase.

The Table below shows the type of SoB maps and number of maps incorporated in the current Network Infrastructure Management System.

| Scale                   | 1:250,000                                        | 1:50,000                                                                      | 1:25,000                                 | 1:5,000                                     |
|-------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| Usage                   | Whole Map<br>Summary                             | Mid-Range Map<br>Big River and<br>Broad Road                                  | Detailed Map<br>Land Mark<br>Normal Road | Most Detailed<br>All Road<br>Each Buildings |
| Example                 | Mutanovation 200 PB<br>appr Dhilmond DB<br>DHARA | anna ann an Arranna<br>Martana<br>Martana<br>Tir Anna Arranna<br>Anna Arranna | N/A                                      |                                             |
| Incorporated /<br>Total | 26 / 27                                          | 68 / 267                                                                      | 0 / 988                                  | 8 / 124                                     |
| Next Step               | Import all area                                  | Import facility existing area                                                 | Import urban<br>area mainly              | Import all Dhaka<br>area                    |

 Table 5.6.2
 Summary of SoB Maps incorporated in the System

#### 5.7 System Improvement Target

#### 5.7.1 Pre-Paid Meter Introduction and System Integration

Currently, the gas is distributed to domestic consumer at fixed rate according to number of burners, not according to gas flow amount. Demand side saving of gas is hardly conducted and gas leakage is not detected. This has been caused to the loss of gas in distribution network.

In 2014-2015, the demonstration project was conducted for gas pre-paid meter installation with approx..200 consumers. The customer will charge gas tariff in pre-paid card, and gas meter will read the pre-paid card and allows the gas flow according to the charged balance.

Based on the result, installation of gas pre-paid meter is under implementation by Japanese loan. The 1st phase of the pre-paid meter project has been installing 200,000 units of pre-paid meter in TGTDCL franchise area and 60,000 meters in KGDCL, which is targeting to be completed in March 2018. By 2021, approx. three million units of pre-paid meters are planned to be installed in Bangladesh, as shown in the table below.

| Project Target | Number of Pre-paid | Status                         |
|----------------|--------------------|--------------------------------|
|                | Meter units        |                                |
| TGTDCL         | 200,000            | 1st phase Under implementation |
| TGTDCL         | 1,500,000          | To be planned                  |
| KGDCL          | 60,000             | 1st phase Under implementation |
| KGDCL          | 460,000            | To be planned                  |
| BGDCL          | 220,000            | To be planned                  |
| JGTDSL         | 100,000            | To be planned                  |
| JGTDSL         | 150,000            | To be planned                  |
| SGCL           | 5,000              | To be planned                  |
| PGCL           | 209,528            | To be planned                  |
| TOTAL          | 2,904,528          |                                |

 Table 5.7.1
 Pre-paid Meter Installation Plan

186



Source: Helios Halding Co., Ltd.

The customer data is sent to the server which will be installed in the head office of each gas distribution company. The customer data collected from server of pre-paid meter system can be sent to Network Infrastructure Management System and managed together with asset data. Demand data can be analysed with pre-paid meter system.

### 5.7.2 Location Data Accuracy Improvement

For precise positioning using GPS, Global Navigation Satellite System (GNSS) can improve accuracy of GPS survey at the level of within 10 cm. Electrical control point for GNSS has been installed at six locations in Bangladesh, namely, Dhaka, Chittagong, Sylhet, Khulna, Rangpur, and Rajshahi. One control point covers approx. 30 km radius. Thus, only corresponding areas can be covered for precise GPS survey using GNSS. It is planned that the electrical control point is increased to be 70 km, which will cover overall Bangladesh area.

Asset positioning by GPS survey using GNSS and data management with visual mapping will enable minimization of repair hours and optimum O&M works. It is proposed to conduct asset positioning survey using GNSS to incorporate in the Network Infrastructure Management System for important gas facility.



Source: Prepared by JST

Figure 5.7.1 Use of GNSS for Exact Pipeline Facility Positioning

#### 5.7.3 Smart Grid Introduction

Smart Grid is the advanced power grid system with variety of energy generation sources and large number of demand supported by information technology. Monitoring, conditioning, and control of the

production, transmission, and distribution of electricity are important aspects of the smart grid. The components of smart gird are not limited to be:

- Planning and optimization of generation considering efficiency and supply forecast;
- Outage control and minimization of outage;
- Power quality management and frequency adjustment;
- Asset management and real-time monitoring of asset performance
- Demand forecast, demand response and demand side management based on historical demand dataTo enable above, hardware system as well as soft system is necessary to be developed such as:
  - Smart meters supported by communication system to provide demand data;
  - SCADA and wide area monitoring system
  - GIS and mapping system
  - Battery energy storage system
  - Communication system for large volume of information with big data analysis

Network Infrastructure Management System will function as one of the fundamental database to manage above system components with SCADA, distribution management system (DMS), and information system. The concept of smart grid is as shown in the figure below.



Source: Prepared by JST

Figure 5.7.2 Concept of Smart Grid with Network Infrastructure Management System

# CHAPTER 6 POLICY AND STRATEGY OF GAS INFRASTRUCTURE

This Chapter summarizes present issues and challenges of energy sector in Bangladesh, and provides proposal for strategic gas network infrastructure plan. Then, gas infrastructure projects conducted by development partners were reviewed and guidelines for development partner projects and draft policy recommendations were presented.

#### 6.1 Overview of Present Issues and Challenges of Gas Infrastructure

### 6.1.1 Maximum Allowable Operating Pressure (MAOP)

As stated in Section 2.4, current design is not fully benefited from the design limit of valves and fittings in ASME Code. Design Pressure (MAOP) used in Bangladesh appears to be a legacy of #400 rating standard and limit the design pressure at 960 psig. Current design standard uses #600 class which allows to use 1,440 psig, as MAOP. While in Bangladesh, MAOP of #600 ASME Class is 960-1,135 psig. Gas compressor station is necessary to keep gas pressure at required level.

With the use of 1,135 psig, gas transmission capacity will be half the level of 1,440 psig, and more compressor station are required.



Figure 6.1.1 Flow Capacity Comparison of Different Pressure Rating

Currently in Bangladesh, pipeline diameters of 16" to 36" are generally used. Appendix B-2 includes gas transmission pipeline diagram with its sizes.

Higher design pressure requires thicker wall. Material cost impact is calculated as follows:



The relationship of pressure and distance is as illustrated in Figure 2.2.5.

Material cost will raise 20% (5% in terms of construction cost) if 1,440 psig of MAOP is used in comparison with the case of 1,135 psig, but allow to increase the capacity by 200% and reduce the numbers of compressor stations and construction cost.

### 6.1.2 Supply Pipeline Configuration

Current Gas Supply system in Bangladesh is called Fish Bone supply system. This Fish Bone system is typical of initial stage of the gas infrastructure development.



Following table is an example of pressure reduction from gas field (Kailashtila) to consumption area (Ashulia) through several as valve stations in Fish Bone gas supply system.

| Valve Station                        | psig                                                                                                                                                                                                                         | kg/cm <sup>2</sup> g                                                                                                                                                                                                   | Gas Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design Pressure                      | 1135                                                                                                                                                                                                                         | 79.8                                                                                                                                                                                                                   | MAOP (Design Pressure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kailashtila A2/3                     | 1133                                                                                                                                                                                                                         | 79.7                                                                                                                                                                                                                   | MAOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Target Operating Pressure            | 1000                                                                                                                                                                                                                         | 70.3                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ghatura M & R                        | 970                                                                                                                                                                                                                          | 68.2                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BB M&R                               | 950                                                                                                                                                                                                                          | 66.8                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monohohordi                          | 740                                                                                                                                                                                                                          | 52.0                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Narsingdi                            | 650                                                                                                                                                                                                                          | 45.7                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dhonua                               | 600                                                                                                                                                                                                                          | 42.2                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Elenga                               | 550                                                                                                                                                                                                                          | 38.7                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Demra/Siddhirgonj/Chittago<br>nj CGS | 400                                                                                                                                                                                                                          | 28.1                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Joydepur                             | 350                                                                                                                                                                                                                          | 24.6                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ashiulia                             | 218                                                                                                                                                                                                                          | 15.3                                                                                                                                                                                                                   | Minimum Operating Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | Valve Station<br>Design Pressure<br>Kailashtila A2/3<br>Target Operating Pressure<br>Ghatura M & R<br>BB M&R<br>Monohohordi<br>Narsingdi<br>Dhonua<br>Elenga<br>Demra/Siddhirgonj/Chittago<br>nj CGS<br>Joydepur<br>Ashiulia | Valve StationpsigDesign Pressure1135Kailashtila A2/31133Target Operating Pressure1000Ghatura M & R970BB M&R950Monohohordi740Narsingdi650Dhonua600Elenga550Demra/Siddhirgonj/Chittago400nj CGS400Joydepur350Ashiulia218 | Valve Station         psig         kg/cm <sup>2</sup> g           Design Pressure         1135         79.8           Kailashtila A2/3         1133         79.7           Target Operating Pressure         1000         70.3           Ghatura M & R         970         68.2           BB M&R         950         66.8           Monohohordi         740         52.0           Narsingdi         650         45.7           Dhonua         600         42.2           Elenga         550         38.7           Demra/Siddhirgonj/Chittago         400         28.1           Joydepur         350         24.6           Ashiulia         218         15.3 |

| Table 6.1.1 | <b>Current Pressure</b> | System in | Fish Bone | Supply System |
|-------------|-------------------------|-----------|-----------|---------------|
|-------------|-------------------------|-----------|-----------|---------------|

Pressure

Source: GTCL

Highest pressure is at Kailashtilla Gas Field, which is gradually lowered toward the downstream to supply the gas to end users. In principle, higher pressure is required at the inlet of the system to maintain the overall pressure system. The system worked well under gas allocation system, however, it is not necessarily fit in with the gas demand system. To increase the capacity and extend the delivery area, installation of numbers of compressor stations are required and/or gas inlet pressure may need to be raised. Since the supply system relies on a certain level of high pressure, operational flexibility is limited. The system is also vulnerable to disruption in the trunk line. Once part of the trunk line is damaged or closed, all the downstream customers are affected, and also backup capability is limited.

### 6.2 Proposal for Strategic Gas Network Infrastructure

### 6.2.1 Loop Pipeline System

In the advanced supply system, gas infrastructure has a looped configuration. Loop system has the following advantages:

- Supply Capacity to customer will be increased because of number of injection points and potential of network construction with in the loop..
- Reliability is higher. Even if one side is blocked, gas is still available, because of bi-directional gas flow.
- Suitable for demand base supply due to a flexibility in gas supply without complex control system, since there are several gas injection points.

- System Operating Pressure can be lowered with in a loop system. Gas flow rate is maintained by supply of gas from several injection points and also potential network configuration.
- No compressor station will be required in the loop system if designed properly.



### 6.2.2 Gas Supply Capacity and Infrastructure Development Plan

Bangladesh will be a gas importer sooner and required gas to be imported will be significant. Two Master Plans [i.e., Power System Master Plan (PSMP 2016) and Gas System Master Plans (GSMP 2017)] have been prepared and submitted to the GoB. Each has its own ground for gas demand forecast. Latent demand is considered significant and counted in GSMP 2017. Significant difference in demand forecast between the Master Plans.

The following is the gas demand forecast assumed by JST, based on PSMP in 2016 and GSMP in 2017. Note that Indigenous gas production which has not yet been confirmed or discovered is counted as gas "import" (i.e., LNG import).

Applying the average gas import assumption of PSMP2016 and GSMP in 2017, 1,750 mmscfd in 2025 and 5,000 mmscfd in 2035 are assumed in this infrastructure development scenario.



Figure 6.2.2 Gas Import Forecast and LNG Import Assumption

(1) Gas Supply Infrastructure in 2018

Gas Latent Demand is reportedly 800-1,000 mmscfd as in a journal "Energy and Power" issued in November 2017". This demand and supply gap will be filled out by the LNG import plan as follows:

- 1) 500 mmscfd FSRU at Moheshkali developed by Excelerate Energy
- 2) 500 mmscfd FSRU at Moheshkali developed by Summit Corp.

Gas supply pipeline infrastructure is under construction as follows:

- 1) 30" 90 km Pipeline from Moheshkari to Anowa completed (500 mmscfd to Chittagon)
- 36"/42" 310 km Pipeline from Mohaeshkari to Bakhrabad under construction (1000 mmscfd)

Although the infrastructure is completed, it still requires additional transmission capacity for future increasing demand.

Based on the schematic diagram incorporated in Network Infrastructure Management System, the simulation model with capacity, pressure, and length of transmission pipeline was prepared. The model of pipeline capacity with gas import is illustrated in the figure below.



Source: Prepared by JST Figure 6.2.3 Pipeline Capacity for Gas Import (LNG) in 2018

(2) Proposed infrastructure for 2025

Gas Import of 1,750 mmscfd is assumed in 2025. To meet the requirement, some more FSRUs and part of land based LNG Terminal at Mohaeshkali/Kutubdia need to be commissioned or Payra LNG terminal to be commissioned. Expected gas supply from Payra LNG Terminal is 500 mmscfd. Import of gas from India (200 mmscfd) to Khuluna started.

Reinforcement of Transmission Pipeline from the LNG terminal to load center in Dhaka and Dhaka Loop System need to be completed to mitigate gas shortage in capital area.

Recommended Infrastructure Construction is as follows:

1) Dhaka Pipeline Loop Completed.

Pipeline from Shiddilgonji to Dhonua via. Aminbazar Loop to be constructed to close the loop. All the valve stations and manifolds located on the loop will need to be reviewed and modified to allow bi-directional flow.

2) West Pipeline Loop to be completed

Section of the pipeline from Dhaka Loop to Khuluna will be constructed to close the West Loop.

 To fill in the requirement of gas in Bangladesh by 2035 and after, evacuation plan for 5,000 mmscfd LNG Gas from Mohaeshkali/Kutubdia to be prepared.



Figure 6.2.4 Pipeline Capacity for Gas Import (LNG) in 2025

To support Loop system, LNG Import Terminal in Payra and import of gas from India to be materialized, and those contribute to injections from multiple points for Loop system.

(3) Proposed infrastructure for 2035

Gas import of 5,000 mmscfd is assumed by the year 2035. New additional LNG receiving Terminal will be constructed at Mohaeshkali/Kutubdia. Supply capacity from Moheshkali/Kutubudia to Dhaka will need to be increased further. LNG Terminal at Payra will be expanded.

Recommended Gas Infrastructure will be:

• 36" Offshore #900 Class Pipeline (MAOP 2,160 psig) from Moheshkali/Kutubudia to west part of Padoma bridge

The recommended offshore pipeline works to transport the gas from potential offshore gas field at the border of Myanmar, where major gas fields are discovered, to main gas grid.

The gas pipeline loop is connected to power clusters in each region. The power clusters are the areas with a group of planned power stations that provide power for planned industry development in each region.

Image of the infrastructure will be as follows:



### 6.2.3 Preliminary Evaluation of Offshore Pipeline

In general, offshore pipeline and long distance pipeline uses higher pressure rating, i.e., #900 system. In case of Bangladesh, it is considered appropriate to use the higher pressure system.

In this paragraph, #900 offshore pipeline is evaluated in a form of comparison with on-going onshore #600 ANSI Class in Bangladesh Standard, under construction:

- (1) Offshore Pipeline calculation base is as follows:
  - 1) Design Condition:

2)

| Pressure Rating:                    | ANSI Class #900 |
|-------------------------------------|-----------------|
| Size:                               | 36 inch         |
| Send Out Pressure:                  | 2,160 psig      |
| Pressure at the destination:        | 1,000 psig      |
| Pipeline Length:                    | 300 km          |
| Calculation result                  |                 |
| Calculated Flow Rate:               | 1,700 mmscfd    |
| Calculated velocity at Outlet       | 42.7 ft/sec     |
| Nos of required compressor station: | Zero            |
|                                     |                 |

(2) Onshore Pipeline calculation base is as follows:

Figure 6.2.5 Concept of Dhaka Loop and West Loop for 2035 with Off-shore Pipeline

| 1) | Design Condition:                   |                                                     |
|----|-------------------------------------|-----------------------------------------------------|
|    | Pressure Rating:                    | ANSI Class #600                                     |
|    | Size:                               | 42/36 inch                                          |
|    | Send Out Pressure:                  | 1,135 psig (Based on Bangladesh Standard)           |
|    | Pressure at the destination:        | 1,000 psig                                          |
|    | Pipeline Length:                    | 300 km                                              |
| 2) | Calculation result                  |                                                     |
|    | Calculated Flowrate:                | 700 mmscfd to at Shiddhirganji                      |
|    |                                     | 1,000 mmscfd at Bakhrabad                           |
|    |                                     | 1,400 mmscfd at Faujarhat                           |
|    | Calculated velocity                 | 24.6 ft/sec at Bakhurabad                           |
|    | Nos of required compressor station: | Two (2) to Bakhrabad, and Three (3) to Shiddirganji |



Figure 6.2.6 Pipeline Flow Calculation

### (3) Result of Case Comparison

Calculation result shows that #900 36inch pipeline from Moheshkari to Dhaka area (West Padoma Bridge) will be able to transmit 1,700 mmscfd of gas without any compressor stations.
Onshore #600 42/36-inch pipeline under construction will be able to transmit 1,000 mmscfd of gas with two more compressor stations to Dhaka area (Bakhrabad).

Considering the scale of the gas flow, 5,000 mmscfd by LNG import it is necessary to construct further pipelines in addition to ongoing 42/36" onshore pipeline. In view of the construction cost and schedule for new pipeline, offshore Pipeline will be advantageous since there is no RoW issue. It can be an option to evacuate the gas from Moheshkali/Kutubudia, and injected into Dhaka Loop and West Loop.

The following figure indicate the potential routing of the offshore pipeline. This option will not only serve the gas supply to the west part of the country and reinforce the supply system in Dhaka area but serve the support the offshore gas field development.



Source: Prepared by JST with GTCL Map Figure 6.2.7 GTCL Gas Transmission Line Network and Proposed Sub-sea Pipeline

Regarding construction cost, offshore portion is assumed 150 km and recent similar project in North Sea is used as a benchmark and adjusted to suit. Onshore portion of 150 km is calculated based on US construction index. Total estimated construction cost will be USD 860 million +/- 30% accuracy.

# 6.3 Review of Performance of Gas Infrastructure Project by International Development Partners

## 6.3.1 Outline of Gas Infrastructure Investment Projects

Until now, Asian Development Bank (ADB) is the biggest development partner institution in the gas infrastructure investment projects in Bangladesh. The World Bank group has funded one project in the past and Gas Master Plan (GSMP) is also under preparation thanks to a technical assistance provided by the World Bank. Furthermore, Japan International Cooperation Agency (JICA) funded one project which is currently under implementation.

In the years 1980's and 1990's, ADB promoted directly development of gas fields. However, since most of gas field development projects (gas production projects) are undertaken nowadays by International Oil Companies (IOC), gas infrastructure investment projects funded by international development partners mainly consist of (i) gas transmission pipelines, (ii) gas distribution pipelines, (iii) installation of other auxiliary equipment such as compressors, and (iv) installation of gas meters for end users. Due to the shortage of available funds by Bangladesh governmental agencies, international development partners' involvements are welcomed in order to construct necessary public and common gas infrastructure needed to ensure a smooth operation of gas transmission from gas production field as well as gas distribution to final customers.

## 6.3.2 Asian Development Bank (ADB)

ADB's involvement in the gas infrastructure investment projects goes back to 1974 with its first technical assistance (TA) on "Energy Policy Study". Gas infrastructure investment project started also with "Greater Dacca Gas Distribution Project" accompanied by a TA in 1975. Until the beginning of year 2000's, as mentioned above, ADB financed not only transmission and distribution pipeline projects but also gas field development projects undertaken by Bangladesh governmental agencies (First, Second and Third Natural Gas Development Projects), together with several TAs aiming at institutional arrangements including promotion of private sector participation in the energy sector.

The Table below shows all gas infrastructure investment projects funded by ADB. It is noted that some projects are co-financed with other development partners ("Natural Gas Infrastructure and Efficiency Project" under implementation is the first co-financing project with Asian Infrastructure Investment Bank (AIIB)), and many of these projects are supplemented by TAs which are provided in parallel with project financing.

| Project Name                                                              | Funding<br>Source                                                     | Amount<br>(Million<br>US \$) | Date of<br>Approval | Project Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current status                                                          |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Dhaka Clean<br>Fuel Project                                               | Nordic Development<br>Fund (loan)<br>9.3<br>Ordinary 42.4<br>ADF 30.2 |                              | Nov. 26,<br>2002    | <ol> <li>Construction of 60-km, 20-inch pipeline between Dhanua and<br/>Aminbazar</li> <li>Construction of 97-km, 16-inch natural gas distribution pipelines in<br/>Dhaka</li> <li>Construction of CNG filling stations in Dhaka and outside of<br/>Dhaka</li> <li>Purchase of CNG-fueled buses and related facilities</li> </ol>                                                                                                                                                                                                                                    | All construction<br>works and<br>purchase of<br>equipments<br>completed |
| Gas<br>Transmission<br>and<br>Development<br>Project                      | Government of<br>Norway (grant)<br>5<br>Ordinary 225                  |                              | Oct. 27,<br>2005    | <ol> <li>Improvement and expansion of gas transmission pipelines and<br/>distribution network in Western part of Bangladesh (51 km, 30-inch<br/>between Monohardi-Dhanua-Elenga and Jumuna Bridge East Bank,<br/>87 km, 30-inch between Hatikumrul-Ishwardi and Bheramara, 53 km,<br/>12-inch between Bonapara and Rajshahi and 165 km, 20-inch<br/>between Bheramara and Khulna, and Rajshahi City gas dsitribution<br/>network)</li> <li>Appraisal of gas fields to update estimated reserves</li> <li>Gas sector reform to attract private investments</li> </ol> | All works<br>completed                                                  |
| Natural Gas<br>Access<br>Improvement<br>Project                           | Ordinary<br>ADF                                                       | 261<br>5                     | Mar. 26,<br>2010    | <ol> <li>Safety and supply efficiency improvement at Titas gas field</li> <li>Construction of 845 km gas distribution pipelines (from 2-inch to 20-inch) in South-West Region</li> </ol>                                                                                                                                                                                                                                                                                                                                                                             | Under<br>Implementation                                                 |
| Natural Gas<br>Infrastructure<br>and Efficiency<br>Improvement<br>Project | Ordinary<br>ADF<br>AIIB                                               | 100<br>67<br>60              | Nov. 18,<br>2016    | <ol> <li>Construction of 181-km, 36-inch gas transmission pipeline from<br/>Chittagong to Bakhrabad in parallel with exisiting pipeline</li> <li>Installation of seven wellhead gas compressors at Titas gas field</li> </ol>                                                                                                                                                                                                                                                                                                                                        | Co-finance with<br>AIIB Under<br>Implementation                         |

## Table 6.3.1 List of Recent Energy Projects in Bangladesh Funded by ADB

Remarks: "Ordinary" means loans using ordinary capital resources of ADB, "ADF" means concessional ordinary capital resources lending Development Fund, "AIIB" means Asian Infrastructure Investment Bank of Asian

### 6.3.3 World Bank (WB)

WB financed one gas transmission pipeline project until now. The 60-km and 30-inch pipeline was constructed as one of the components of "Siddhirganj Power Project" with a main objective of constructing gas power plant, now modified to 335 MW combiled cycle gas-fired turbines, at Siddhirganj as advised by GTCL, located outside the metro Dhaka area. The gas pipeline was therefore built in order to ensure the availability of gas at Siddhirganj power plant (together with two other power generating sites and an export processing zone), as an extension from Bakhrabad gas processing plant which has been already connected with Ashuganj (Titas gas field).

### 6.3.4 Japan International Cooperation Agency (JICA)

JICA has approved one gas related project until now with an ODA loan (Yen loan) of 23,598 million Japanese yen, as shown in the Table below. This project has four components; (i) Construction of

200

53-km, 30-inch gas pipeline between Danua and Elenga and 14-km, 24-inch gas pipeline between West of Jamuna Bridge and Nalka, (ii) Installation of three well-head compressors at Titas gas field C and Narshingonj gas field, and (iii) Installation of prepaid meters (approximately 260,000 units).

The project is currently under implementation.

| Project Name                                          | Funding             | Amount                 | Date of          | Project Description                                                                                                                                   | Remarks                 |  |
|-------------------------------------------------------|---------------------|------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
|                                                       | Jource              |                        | Approvar         | 1. Construction of 300 MW (two 150 MW simple cycle gas<br>turbines) power plant at Siddhirganj                                                        |                         |  |
| Siddhirganj<br>Peaking Power<br>Project               | World Bank<br>(IDA) | 300<br>Million US \$   | Dec. 14, 2007    | 2. Construction of 60-km, 30-inch gas pipeline between Bakhrabad and Siddhirganj                                                                      | Completed               |  |
|                                                       |                     |                        |                  | 3. Construction of 11-km, 230 kV power transmission line from Siddhirganj to a grid substation in south Dhaka                                         |                         |  |
|                                                       |                     |                        |                  | 4. Related technical assistance and consulting services                                                                                               |                         |  |
|                                                       | JICA<br>(ODA loan)  | 23.598<br>M illion Yen | June 16,<br>2014 | 1. Construction of 53-km, 30-inch gas pipeline between Danua and<br>Elenga and 14-km, 24-inch gas pipeline between West of Jamuna<br>Bridge and Nalka |                         |  |
| Natural Gas<br>Efficiency<br>(Improvement)<br>Project |                     |                        |                  | 2. Installation of three welhead compressors at Titas gas field C and Narshingonj gas field                                                           | Under<br>Implementation |  |
|                                                       |                     |                        |                  | 3. Installation of prepaid meters (approximately 260,000 units)                                                                                       |                         |  |
|                                                       |                     |                        |                  | 4. Rehabilitation and expansion of SCADA and related consulting services                                                                              |                         |  |

Source: Prepared by JST

### 6.3.5 Government of Bangladesh

The Government of Bangladesh is also financing by its own funds two gas transmission pipeline projects. One is "Capacity Expansion of Ashuganj – Bahkurabad Pipeline" (61-km, 30-inch) and the other is new construction of a gas transmission pipeline between Moheshkali and Anowara (91-km, 30-inch). The latter is intended to secure gas transmission from future Floating Storage Regasification Unit (FSRU) planned to be installed very soon in Moheshkali surrounding area.

In addition, GTCL has constructed 137 km, 36-inch Bibyana-Dohnua pipeline to transport gas from Bibyana to west area.

## 6.3.6 Consistency with GSMP

During this survey, JST visited a consultant company that prepared GSMP 2017 contacted from World Bank to exchange the view on the demand and supply forecast scenario and economics of LNG terminal between FSRU and Land Terminal.

This was the first attempt for consultants to meet together to improve the quantity of actual commercial data in the report. During the visit, however, issues of the Design Standard and operational issues could not be fully discussed with the consultant.

Issue of Maximum Allowable Operating Pressured (MAOP) as part of Design Standard was discussed at later stage and reached agreement that raised issue is correct and MAOP can be higher in Bangladesh. Advantage of Loop Configuration was also discussed and also reached agreement that Loop configuration is more stable than Fish-Bone Configuration. These may be incorporated in the GSMP 2017 Report.

## 6.3.7 Gas Transmission Network

Table 6.3.3 shows a list of major gas transmission pipelines project. Substantial part of the network was financed by ADB as well as by other international development partners mentioned above. It is easily understood that the current network of main gas transmission pipelines has been constructed by financial assistance of international development partners.

Numbers of gas projects are contributed by development partners and most of them are used for pipeline expansion.

## Table 6.3.3 List of Project Supported by International Donners

Source: Petrobangla Annual Report

|    | Name of the Project                                                                                                                    | Project Period |         | Executing | Estimated        | Development |
|----|----------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-----------|------------------|-------------|
|    |                                                                                                                                        | From           | То      | Agency    | Cost             | Partner     |
| 1  | Installation of Compressor Stations at Ashuganj and Elenga                                                                             | Jan'06         | Sep'17  | GTCL      | 14,941           | ADB         |
| 2  | Hatikumrul-Bheramara Gas<br>Transmission Pipeline Project (30" x<br>98.1 km)                                                           | July'06        | Dec'16  | GTCL      | 7,269            | ADB         |
| 3  | Bonpara-Rajshahi Gas Transmission<br>Pipeline Project (12"x 53 km)                                                                     | July'06        | Dec'14  | GTCL      | 1,835            | ADB         |
| 4  | Bheramara-Khulna Gas Transmission<br>Pipeline Project (20" x 162.5 km)                                                                 | July'07        | Dec'15  | GTCL      | 9,038            | ADB         |
| 5  | Bakhrabad-Siddhirganj Gas<br>Transmissin Pipeline Project (30"x 60<br>km)                                                              | July'07        | June'16 | GTCL      | 8,000            | WB/IDA      |
| 6  | Natural gas Efficiency Project<br>(Welhead Compressor at Titas Gas<br>Field C and Narshingonj gas field)                               | July'14        | June'18 | BGFCL     | 8,686            | ЛСА         |
| 7  | Natural gas Efficiency Project<br>(Dhanua-Elenga and W of Jamuna<br>Bridge-Nalka Gas Transmission<br>Pipeline 30"x53km, 24"x14 km)     | July'14        | June'19 | GTCL      | 9791.76          | ЛСА         |
| 8  | Gas transmission capacity expansion<br>Project (Ashuganj=Bahkurabad (30"x<br>61 km)                                                    | Jan'10         | june'16 | GTCL      | 7,434            | GoB         |
| 9  | Moheshkhali-Anowara Gas<br>Transmission Project (30" x 91 km)                                                                          | Jan'13         | June'16 | GTCL      | 9,819            | GoB         |
| 10 | Muchai=Ashuganj Compressor Station<br>Installation Project                                                                             | Jan'06         | June'13 | GTCL      | 304.08<br>Crores | ADB         |
| 11 | Monohordi-Danua, Elenga-east Bank<br>of Jamna Bridge (30"x 103 km) and<br>Installation of compressor station at<br>Ashugnji and Elenga | Jan'06         | Dec'12  | GTCL      | 834.62<br>Crores | ADB         |
| 12 | West Bank jamuna Bridge-Nalka,<br>Halikumrul, Iswardi, Bheramara 30"x<br>98.1km Gas Transmission Pipeline                              | July'06        | Dec'13  | GTCL      | 628.7<br>Crores  | ADB         |
| 13 | Rehabilitation and Expansion of<br>Existing SCADA (Supervisory Control<br>and Data Acquisition System)                                 | Jan'13         | June'16 | GTCL      | 2940,04          | ЛСА         |
| 14 | Natural gas Efficiency Project (Prepaid<br>Meter for KGDCL)                                                                            | July'14        | June'19 | KGDCL     | 2,466            | ЛСА         |
| 15 | Natural gas Efficiency Project (Prepaid Meter for TGTDCL)                                                                              | July'15        | Dec'18  | TGTDCL    | 7,121            | ЛСА         |
| 16 | South West Region Gas Distribution<br>Network Project                                                                                  | Jan'10         | Sep'15  | SGFL      | 6,000            | ADB         |

It was found that specification and standard of pipelines differs project by project, and standard specification and design standard is not commonly applied in the above projects.

.

## 6.4 Draft Policy Recommendation on Gas Supply and Gas Price

## 6.4.1 Diversification of Gas Supply

It is probable that the supply of natural gas will fall very short in meeting domestic demand in Bangladesh in the coming years, and Bangladesh needs to expand gas supply through diversified sources. LNG import is a realistic solution given the current international spot market price as well as an expected long term contract price, for which terms of supply have become more flexible than before. Thanks to new discoveries of offshore natural gas reserves in Myanmar, import from Myanmar is also worth examining in the long run, as suggested in GSMP, although this solution is not applicable immediately given various geo-political difficulties. It is not also to be forgotten to make efforts in developing domestic gas fields and increasing gas production not only of onshore existing fields bur also of new offshore fields attracting as much as possible international oil companies (IOC) by introducing attractive product sharing contract (PSC).

Construction of LNG receiving terminals is an urgent issue requiring detailed and realistic executing plan as well as necessary funding of projects. If import of natural gas from Myanmar becomes feasible in future, construction of a gas pipeline between two countries will also be necessary.

## 6.4.2 Gas Price Reform

Table 6.5.1 shows "Current Gas Tariff at consumer level for Gas Distribution Companies" as determined by Bangladesh Energy Regulatory Commission (BERC) on 23 February 2017.

| Memo No.: | BERC/Tariff/Gas-12/T&D/Part-1/085 | Date: 23 Feb                 | ruary 2017                      |  |  |
|-----------|-----------------------------------|------------------------------|---------------------------------|--|--|
|           |                                   | Tariff (BDT/cum)             |                                 |  |  |
| Sl. No.   | Category of Consumers             | with effect from1 March 2017 | with effect from<br>1 June 2017 |  |  |
| 1         | Electricity                       | 2.99                         | 3.16                            |  |  |
| 2         | Captive power                     | 8.98                         | 9.62                            |  |  |
| 3         | Fertilizer                        | 2.64                         | 2.71                            |  |  |
| 4         | Industry                          | 7.24                         | 7.76                            |  |  |
| 5         | Tea garden                        | 6.93                         | 7.42                            |  |  |
| 6         | Commercial                        | 14.20                        | 17.04                           |  |  |
| 7         | CNG                               | 38.00                        | 40.00                           |  |  |
| 8         | Domestic                          |                              |                                 |  |  |
|           | Meter based                       | 9.10                         | 11.20                           |  |  |
|           | Single Burner (Fixed per month)   | 750.00                       | 900.00                          |  |  |
|           | Double Burner (Fixed per month)   | 800.00                       | 950.00                          |  |  |

 Table 6.4.1
 New Gas Tariff at consumer level for Gas Distribution Companies

 The tariff of CNG in phase-1 and phase-2 included BDT30.00 and BDT32.00 respectively for feed gas and BDT 8.00 for Operator margin in both phases.

2) The other terms and conditions for gas distribution will remain unchanged.

Source: Bangladesh Energy Regulatory Commission (BERC)

There are three LNG Pricing System in Asia, i.e., 1) traditional long term oil linked pricing system, 2) NBP linked pricing system, 3) US henry Hub linked pricing system. CIF or DES in December 2016 in Japan is USD 8.00/MMBTU, and in Europe (UK) USD 5.88/MMBTU. While Henry Hub price is

USD 2.82/MMBTU. This Henry Hub Price is translated to FOB price of USA at USD 7.00/MMBTU, and CIF price in Japan is USD 9.00-10.00/MMBTU.

LNG requirement in Europe is determined by Market, and only the occasion of import is based on price and requirement dictated by the Market on a spot basis. At this stage, this is the cheapest LNG in the world, and mostly provided by Qatar. There is a possibility for Bangladesh to acquire NBP linked LNG from Qatar but may be limited amount. The most realistically LNG CIF price at Bangladesh will be USD 6.00-8.00/MMBTU for the time being.

Other than CNG of which price is linked with international oil price, the domestic gas price is low compared with LNG. From Table 6.5.1, it is estimated that gas price for electricity and fertilizer is about 0.9-1.1 USD/MMBTU and gas price for industry and tea garden is around 2.5-2.7 USD/MMBTU.

Consequently, it is obvious that there is a huge gap between domestic gas sales price in Bangladesh as we see at present and predominant international LNG or natural gas price. If Bangladesh begins to import considerable volume of gas and intends to fill such price gap with subsidies, financial deficit of the Bangladesh government will certainly accumulate to an unaffordable level.

Under such circumstances, if Bangladesh government's financial situation is deteriorated to a level unacceptable by international development partner agencies, they would become reluctant to provide new loans to infrastructure projects in Bangladesh. As a result, development of infrastructure in Bangladesh would be hampered, leading to a possible deceleration of economic growth.

It is therefore unavoidable for the Bangladesh government to raise gas price, taking into consideration of the current and future international gas price and the most appropriate long term scenario for gas price reform, as suggested in the PSMP 2016.

As mentioned in the PSMP 2016, the Bangladesh Energy Regulatory Commission Act 2003 (BERC Act 2003), in its Chapter 6, article 34, paragraph 2(b), stipulates that it is necessary "to harmonize the tariff with the cost of production, transmission, marketing, distribution, supply and storage of energy". This text does not seem to be taken into consideration the coming new situation where the cost will increase tremendously driven by LNG import. If and when Bangladesh revises the BERC Act 2003, the harmonization with international gas market price should also be taken into consideration.

Hence, it is important to consider increasing the natural gas price progressively to reduce the gap with the international market price of natural gas so that the further increase of financial deficit in the national budget is minimized as much as possible.

The gas tariff was increased in February 2017 as in Table 6.5.1. In addition, ERC has increased gas tariff again in June 2017, but Supreme Court cited that laws prohibit the energy regulator from changing tariffs more than once in a fiscal year unless fuel prices change, and second tariff increase is repealed

Determination of gas price based on post-LNG import evidence will be taken after LNG import starts. For the preparation of gas tariff increase scenario, strong governmental leadership is inevitable with formulation of consensus. Mixing domestic gas with LNG gas supply will take a role for tariff scenario with soft landing.

Since gas price increase affects various sectors and daily life of many vulnerable people in Bangladesh, various transitional scenarios should be examined to mitigate the impact trough the adjustment of tariff for each sector consumers, and use of domestic gas mix as a buffer to mitigate the impact while minimizing the financial risk to GoB.

## 6.4.3 Recommendations for Investment/Loan Arrangement for Gas Infrastructure

(1) Lessons from Past Projects

As explained in Section 6.1, it is necessary to determine firstly the most suitable and adequate (efficient) specification of gas transmission pipeline in Bangladesh and secondly to introduce and apply such specification in all future related projects either financed by international development partners or by Bangladesh Government own funds. This common and unified specification is also very important in order to secure a smooth operation of gas transmission over all territory of Bangladesh.

## (2) Ways to Go

We consider that following steps urgently need to be taken.

- Development partners meeting to get a common understanding on the necessity of formulating a unified specification of gas transmission pipeline, including auxiliary equipment, and Basic Infrastructure Development Plan (BIDP), i.e., from Fish Bone Structure to Loop Structure.
- (2) Formulation of a technical assistance with an objective of engaging international qualified consultant(s) to elaborate above-mentioned unified specification, higher qualification system need to be in place and make it common among the international development partners.
- (3) At each step of elaboration of unified specification and review of BIDP, development partners' meeting is also necessary to secure consensus of all development partners.

When unified standards and specifications are adopted, these design basics are always to be agreed upon when Government of Bangladesh concludes a loan or grant agreement with international development partners. Such updated standard specifications and designs should also be shared among governmental agencies and related companies.

# CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

## 7.1 Challenges facing with Bangladesh Energy Sector

There are challenges facing with Bangladesh energy sector as in the following areas:

### (1) Missing system integrity and lack of design standard

Integrity of gas transmission and distribution system has not been reviewed in the past. There is no common design philosophy and standard commonly applied in all organizations in Bangladesh. Applicable standard and design These philosophies are differently selected from project to project.

There is no centralized information management system, and no asset register is maintained, and no system for physical asset verification is in place, and therefore, there is no way to assess the integrity of infrastructure. Advanced infrastructure management system including asset and document management should be introduced.

### (2) Operation mode change

Operation mode will change from the current "Gas Allocation System" to "Supply to Demand Base System". Operators in gas supply side need to know gas demand profile beforehand and send the gas to meet the actual demand profile. Advanced operation system must be designed to integrate the system from gas fields/LNG terminals to downstream customers. Current Fish Bone system should be modified to Loop System.

(3) Insufficient pipeline capacity for future LNG import

Current pipeline system plan will be insufficient after large amount of gas from LNG import is injected. The pipeline expansion plan should be consistent with LNG import plan.

(4) Absence of LNG import regulation

LNG will be introduced by several different entities. Nature of LNG may also differ from sources to sources. These gases are also mixed with domestic gases in gas transmission system. Different from electricity transmission, gas flow speed is slow. Due to a gas delivery time lags created by pipeline transmission system, proportion of gas mixture may change with the supply profile. Supply profile is the variation of supply to cope with different types of demand such as peak demand and base load demand. LNG may be used to supply to a base load profile, while domestic gas may be used to fill out a middle/peak shaving profile portion. To accommodate these issues, central monitoring and control system should be introduced. As the minimum requirement and at least the following system should be introduced:

- Capacity Right for gas transmission by each supplier
- Quality Bank to rationalize the difference in specification and pricing.

System design must be done by professionals in this sector.

(5) Lack of gas and power infrastructure integrated plan

Current pipeline development plan does not consider gas power and industry development plan. The infrastructure development plan should be coordinated among gas, power, and industry sectors considering future demand and supply quantity. System for sector-wise infrastructure planning should be introduced.

(6) Lack of centralized data and document management system

There is no centralized data and document management system, and thus important drawings, specifications, and other technical documents are dispersed and lost.

(7) Insufficient readiness for introduction of ERP

Introducing ERP should be designed to solve the issues of the above. However, ERP need to be designed and customized according to each organization's requirement, and system elaboration is necessary. It will be a long-term effort to build ERP and can be achieved through the framework of technical cooperation project.

(8) Insufficient coordination of infrastructure plan among development partners

Coordination among organizations, development partners, and project owners is insufficient in the infrastructure development especially shearing plans and common specification and design standard. It is necessary to determine firstly the most suitable and efficient specification of gas transmission pipeline in Bangladesh and secondly to introduce and apply such specification in all future related projects either financed by international development partners or by the Government own funds.

The issues and challenges and necessary actions are summarized in the following figure.



### Source: prepared by JST

### Figure 7.1.1 Summary of Challenges and Necessary Actions in Bangladesh Energy Sector

Necessary actions to cope with above challenges are summarized in the figure above, which are:

- Review of overall pipeline network and introduction of Loop pipeline system
- Preparation of common design standard
- Construction of #900, 36" Off-shore pipeline
- Establishment of Capacity Right and Quality Bank structure system and accounting system
- Introduction of Network Infrastructure Management System
- Coordination between government agencies, companies, and development partners and elaboration of unified specification with qualified consultants

### 7.2 **Recommendations and Conclusion**

### 7.2.1 Introduction of Network Infrastructure Management System

To cope with the challenges as described in Chapter 7.1, advanced data management system is inevitable, among several proposed solutions. Reviewing current infrastructure status by drawings and specification documents in detail is necessary to prepare the plan and design for future infrastructure.

However, required data(s) were not in centralized manner nor updated as a matter of fact. There were no structured way of book keeping system in the organization to take care of drawings and specifications. These were mostly kept at a personal level and sometimes dispersed or discarded during office shifting or transfer/retirement of personnel etc.

Under such circumstances, personal influence and connection was also crucial factor to carry out such data collection activities. Without personal influence and relationship with the officers who supposed to own documents, data collection work would be a challenging task and take longer tine.

In order to improve the situation, data management organization and supporting system must be in place to facilitate an access to the data/information by engineers, operators and service contractors, etc.

The data must be digitized and the digitized component must be stored in the database, ideally as an object. JST recommend digitizing the gas and power network infrastructure by use of "Smallworld". By which "Network Infrastructure Management System" is constructed reflecting physical infrastructure in the computer system and used as a base for asset management and facilitate application of various analytical tools.

### 7.2.2 Next Step: Proposed Technical Cooperation (T/C)

It is recommended to use the framework of Technical Cooperation (T/C) Project. Exact program should be discussed and agreed upon with the counterpart in Bangladesh before commencement of Technical Cooperation Program.

Construction of "Network Infrastructure Management System" and capacity building T/C is important to achieve efficient use of gas and modernize the gas operation and management system. For O&M sustainable body of advanced Network Infrastructure Management System in the future after T/C, Build, Operation, Transfer (BOT) model is an idea. The feasibility of such BOT body need to be assessed.

The overall project road map is as shown in the figure below.

| Stage                                                   | Data<br>Collection<br>Survey | Phase 1<br>(3years)<br>Techn<br>Coope<br>Projec | Phase 2<br>(3years)<br>ical<br>eration | Operating<br>Organization<br>(BOO) |  |  |  |
|---------------------------------------------------------|------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------|--|--|--|
| Soft component                                          |                              |                                                 |                                        |                                    |  |  |  |
| Smallworld                                              | $\star$                      | $\star$                                         | $\star$                                | $\star$                            |  |  |  |
| Design Standard                                         |                              | *                                               |                                        |                                    |  |  |  |
| Digitizing Pilot Project                                |                              |                                                 |                                        |                                    |  |  |  |
| Digitizing All Area                                     |                              |                                                 | $\star$                                | *                                  |  |  |  |
| BOO Framework                                           |                              | $\star$                                         |                                        |                                    |  |  |  |
| BOO Set up                                              |                              |                                                 | $\star$                                |                                    |  |  |  |
| Capacity Building: System Operation                     |                              |                                                 |                                        |                                    |  |  |  |
| Reliable Infrastructure                                 |                              |                                                 |                                        |                                    |  |  |  |
| Asset Management System Development with ERP Team 🛛 🕺 🥇 |                              |                                                 |                                        |                                    |  |  |  |
| Capacity Building: Engineering and Maintenance          |                              |                                                 |                                        |                                    |  |  |  |
| System Transfer                                         |                              |                                                 |                                        | *                                  |  |  |  |

Source: Prepared by JST

Figure 7.2.1 Overall Project Road Map

The proposed components of T/C for discussion are as follows. The details will be discussed in the later stage.

(1) Proposed Overall Goal

To modernize the Gas and Power Operation System in a technically and financially sustainable manner so that Gas and Power Infrastructure can be more reliable to contribute to the economic growth of the country

### (2) Proposed T/C Purpose

To develop human resources and implementing organization, and establish integrated and advanced gas and power asset management system

### (3) Proposed Outputs

 Network Infrastructure Management System covering selected pilot area in Bangladesh to be constructed. Initial target pilot area will be GTCL Pipeline System, and TGTDCL, BGDCL, KGDCL, or JGTDCL, PBCB, BPDB, DESCO Franchise Areas

- Capacity building on planning, design, maintenance, and operation safety is conducted and standard is prepared achieve advanced control, asset management and operation safety in gas sector
- 3) Human resources are developed to attain efficient and harmonized operation of gas and power sectors
- 4) Institutional structure for provisional organization of gas and power asset management to be founded
- (4) Proposed T/C Site

T/C site covers Dhaka and other areas in Bangladesh, including locations of gas transmission systems and all the gas distribution franchise areas, and power plants and grid systems.

- (5) Proposed T/C Activity (Provisional, for discussion)
  - 1) Network Infrastructure Management System covering selected pilot area
    - i. Updated pipe alignment drawings, including transmission and distribution system.
    - ii. Pipe location to be identified and recorded and digitized.

Since majority of pipe distribution drawings are missing or not readable or exact location was not recorded, exact location must be identified by using Subsurface Object Detection which is one of the effective way to locate the pipe without digging soil.

- iii. Create and update data model of power network facility
- iv. Update of power sector facility to incorporate soft infra.
- v. Create/Update Soft infra model (pilot area)
- 2) Capacity Building and Design Standard
  - i Update Process Flow Diagram from gas field to distribution
  - ii. Review of past maintenance record and assess system integrity
  - iii. Flow analysis through the use of computer simulator
  - iv. Prepare and update unified design standard
  - v. Keep track of Cathodic Protection System
  - vi. Accident Data Collection, Route Cause Analysis

vii. Prepare Preventive Maintenance and safety plan to minimize the risk of accident and system loss

- viii. Prepare Emergency Transaction Plan
- ix. Prepare Guidelines/Manual of the above
- 3) Gas and Power Integrated System Operation

i. Integrated gas operation from gas field, transmission system, to distribution system, and power plants.

ii. Assist continuous monitoring of gas/power through SCADA

- 4) Institutional Structure for Asset Management
  - i. Plan for asset management organizational structure
  - ii. Preparation of financial and operation framework
  - iii. Organization, regulation, and document preparation for government approval
  - iv. Transfer of system to operational body
- (6) Proposed Input from Counterpart

For the successful implementation of technical cooperation project, the committed input from counterpart is important:

- Allocation of project manager and support staff
- Building of working group among concerned gas and power organizations
- Full time involvement of engineers for project activity in the working group
- Office and equipment for project room

## (7) Proposed JICA Expert Team

The following fields of experts are proposed as the member of JICA Expert Team

- Team leader/ gas system specialist
- Network Infrastructure Management System specialist (modeling)
- Network Infrastructure Management System specialist (capacity development)
- Network Infrastructure Management System specialist (database creation)
- Geographical Information System (GIS) Specialist
- System Engineer (information communication system)
- Pipeline engineer (planning and operation)
- Pipeline operation and safety specialist
- Process engineer (gas flow analysis and process design)
- Design engineer (standard and mechanical engineering)
- Electrical engineer (power generation)
- Electrical engineer (transmission/distribution)
- Institutional specialist
- Financial specialist
- Human resource and training expert

Working Group consists of engineers of related gas and power companies are proposed for implementation of T/C activities. The proposed working group structure is as shown in the figure below.



Source: Prepared by JST

Figure 7.2.2 Proposed Structure of Working Group

## 7.3 Further Recommendation on Future Projects in Gas Sector

This section describes recommendations about future projects that can be carried out to improve and/or maximize the performance in gas sector.

(1) Engineering and Construction of LNG Tank Terminal

The Technology to design and construct 230,000 m<sup>3</sup> LNG tank, the largest in the world, with seismic design is can be provided. Use of larger LNG tank allows to accommodate Q-Max LNG tankers to minimize the transportation cost.

Note that Q-Max LNG tanker size is 345 m long, 53.8 m wide with a draft of 12 m. The tanker has a LNG capacity of 266,000 m<sup>3</sup>.

(2) Cryogenic Power Generator as part of Vaporization Facility

Cold energy is released when LNG is vaporized by a vaporizer. Cryogenic Power Generator is to recover the cold energy and utilize it for power generation. Special type of vaporizer is necessary for Cryogenic generation. Maximize the use of cold heat by recovering electric power will save electric energy and thus contribute to  $CO_2$  emission reduction. Available power unit is 6000 kW, in case LNG vaporization capacity is 150 ton/hr, for example.

(3) LNG Terminal Operation

On Job Training Program for LNG terminal operation can be arranged as program of capacity building

(4) LNG Contract Strategy

Japan is the largest importer of LNG in the world and also investor to various LNG development project. Japanese entities including utility companies and/or trading houses would be able to provide consultancy training to Bangladesh

## (5) Pipeline System Simulation

Capacity building in hydraulics of pipeline system to enhance the capability in reviewing the operation performance and in planning of expansion project. High Performance Simulator, commonly used in Japan, may be introduced in Bangladesh. Training is part of the program.

(6) Pipeline System Maintenance and Construction Technologies

Training opportunity can be arranged as part of capacity building

Japanese gas and power companies have developed their own LNG import and gas transmission system for the last 40 years. There are numbers of areas in which the entities can assist in developing in the same fields in Bangladesh. In case Bangladesh requests, Government of Japan may consider.

In addition to the above, there are several related matters which are not in the scope of the Study but important for future Bangladesh energy sector. Such issues are indicated as follows:

(1) Provision of Export Insurance

There may be possibility to provide export insurance for the purchase of LNG cargo arranged by Japanese business entity. This will contribute to the stable supply of energy for Bangladesh.

(2) Methane Leakage Prevention Program

Special care is required to develop gas field due to a fragile nature of strata and reservoir sandstones. Four major blowouts have occurred in the Sylhet area, and significant amount of gas resources were lost. Gas is still leaking out to the atmosphere from these blown out wells. Methane, the main component of natural gas, is a strong greenhouse gas which influences on global warming twenty-five times than CO<sub>2</sub>. Collection and utilization of leaking methane will contribute to emission reduction of greenhouse gas effectively.

214