Supporting Report 14

Environmental and Social Conditions

Table of Contents

CHAPTER 14 ENVIRONMENTAL AND SOCIAL CONDITIONS	14-1
14.5 Scoping	14-1
14.7 ESTIMATION OF POTENTIAL IMPACTS AT IEE LEVEL	14-13
14.8 RECOMMENDED MITIGATION MEASURES	14-16
14.9	14-27
14.9.2 Environmental Monitoring Plan (JICA Environmental Monitoring Form)	14-28

List of Tables

Table 14.5.1 Scoping Results for Water Supply Project for Stage V Conveyance Pipeline Project 14-1
Table 14.5.2 Scoping Results for Stage V Transmission Pipeline Project in the City
Table 14.5.3 Scoping Results for Water Supply Project for 110 Villages Distribution Pipelines 14-6
Table 14.5.4 Scoping Results for 110 Villages Sewerage Component Project (Lateral and House
Connection) 14-8
Table 14.5.5 Scoping Results for UFW Reduction Project
Table 14.7.1 Potential Adverse Impacts by Stage V Conveyance Pipeline Project
Table 14.7.2 Potential Adverse Impacts by Stage V Transmission Pipeline in the City 14-13
Table 14.7.3 Potential Adverse Impacts by Water Supply Project for 110 Villages
Table 14.7.4 Potential Adverse Impacts by 110 Villages Sewerage Component Project 14-15
Table 14.8.1 Recommended Mitigation Measures for Stage V Conveyance Pipeline Project 14-16
Table 14.8.2 Recommended Mitigation Measures for Stage V Transmission Pipeline Project 14-18
Table 14.8.3 Recommended Mitigation Measures for UFW Reduction Project
Table 14.8.4 Recommended Mitigation Measures for 110 Villages Sewerage Component Project 14-
22
Table 14.8.5 Recommended Mitigation Measures for UFW Reduction Project

Chapter 14 Environmental and Social Conditions

14.5 Scoping

(1) Stage V Conveyance Pipeline Project

The scoping results of the project are shown in Table 14.5.1. The project site is the existing BWSSB's facility areas of pipeline roads.

Table 14.5.1 Scoping Results for Water Supply Project for Stage V Conveyance Pipeline Project

Type No.	NT.	Elements to	Rating		D 6 D 1 d
	No.	be Assessed	Const.	Oper.	Reason for Evaluation
	1	Protected Area	D	D	The project site and surrounding area is not located in any national parks or nature reserves.
	2	Ecosystem	D	D	Most of the project sites are located in the existing developed areas of BWSSB's pipeline road. Only some shrubs and grasses are identified.
Natural Environ- ment	3	Hydrology	D	D	At construction stage: The proposed pipeline crosses river stream of Hulluhalla and Shimsha rivers. However, the construction will be carried out at dry season when the water level is low and may cause less impact on the river flow. At operation stage: The completed structure will change the river flow locally at the crossing points of the rivers. However, the overall flow regime will be recovered at the downstream.
		Topography / Geology	D	D	The project does not include large scaled excavation works.
	5	Resettlement / Land Issue	D	D	The project site is the existing BWSSB's facility area of pipeline road where no residential houses exists.
	6	Poverty	D	D	The project is a part of the construction work of the Stage V water supply scheme and has less direct relation to the future tariff system.
	7	Ethic Minor- ity	D	D	There are neither ethnic minorities nor indigenous people at the project sites.
Social En-	8	Employment, sustenance and regional economy	B+	D	The construction works will contribute to employment local labors which may cause positive impact on local economy.
vironment	9	Land Use / Regional Re- source	D	D	The construction is carried out within the existing BWSSB's facility area, which may not cause land use change.
	10	Water Use	D	D	The project is a part of the construction work of the Stage V water supply scheme and has less direct relation to the future tariff system.
	11	Social Infra- structure / Service	D	D	The proposed pipeline crosses several village roads. However, the current traffic at the project site is small compared to the urban area of BBMP.
	12	Local society for decision making	D	D	The project is to implement a public works by the government which aim to bring public benefit and will not affect local society.

_		Elements to	Ratir	ıg	D 6 D 1 6	
Type	No.	be Assessed	Const.	Oper.	Reason for Evaluation	
	13	Unbalance of damages and benefits	D	D	The project will not bring unbalance damage and benefit.	
	14	Local Conflicts of Interests	D	D	The project does not supply water to specific people or structure, and it will not bring local conflicts.	
	15	Heritage or Cultural Assets	D	D	The project is implemented at the existing BWSSB's facility area of pipeline road where no historical and cultural assets exists.	
	16	Landscape	D	D	The laying of water pipelines will be carried out at existing BWSSB's pipeline road where existing CWSS pipelines are exposed.	
	17	Gender	D	D	The project does not relate to the issues of gender.	
	18	Right of Children	D	D	The project is not related to the issue of right of children. Child labor is prohibited for implementation of the project by compliance with national laws or international guidelines.	
	19	Infectious Diseases (e.g. HIV / AIDS)	D	D	The scale of the construction works is small compared to overall stage V project.	
	20	Occupational Health and Safety	В-	D	At Construction stage: Appropriate care should be taken for the working environment of the construction workers. At Operation stage: There will be no operation works which increase the risks for operation staffs.	
	21	Air Pollution	В-	D	The construction vehicles and equipment at construction stage will generate dust.	
	22	Water Pollu- tion	D	D	At Construction stage: Turbid water will be generated at the crossing points of the rivers by the construction works. However, the construction is temporary and local scale. At Operation stage: The operation works does not generate water pollution.	
Pollution	23	Waste	В-	D	During Construction stage: Construction debris, excavation soil and the garbage at construction camps will be generated. At Operation stage: The operation works will not generate waste.	
	24	Soil Contami- nation	D	D	The hazardous matter causing soil contamination will not be generated.	
	25	Noise / Vibration	D	D	During Construction stage: The construction work is carried out existing public roads where surrounding traffic noise is large. At Operation stage: The operation works will not use equipment which will generate noise.	
	26	Ground Subsidence	D	D	The project does not extract groundwater.	

Type No.	Elements to	Rating		Reason for Evaluation	
	be Assessed	Const.	Oper.	Reason for Evaluation	
	27	Odour	D	D	The project does not include the activities which generates odour.
	28	Sediments	D	D	The construction works is not carried out at rivers.
Others	29	Accident	В-	D	During Construction: Care should be taken for the accidents which are estimated at the construction works. At Operation: The operation works which cause significant accidents will not be generated.
	30	Climate Change	D	D	The project does not use equipment which use large amount of electricity or chemical substances of GHGs.

Notes:

A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected. Source: JICA Survey Team

(1) Branch Feeding Pipes (Expansion of City Trunk Mains) to Share Water to Core/ULBs The scoping results of the project are shown in Table 14.5.2. The project site is the existing public roads in Core / ULB areas of BBMP.

Table 14.5.2 Scoping Results for Stage V Transmission Pipeline Project in the City

					Ι υ	
Туре	No.	Elements to	Ratin	ıg	Reason for Evaluation	
Турс	110.	be Assessed	Const.	Oper.	Reason for Evaluation	
	1	Protected Area	D	D	The project site and surrounding area is not located in any national parks or nature reserves.	
	2	Ecosystem	D	D	Most of the project sites are located in the existing public roads in Core/ULB areas of BBMP.	
Natural Environ- ment	3	Hydrology	D	D	At construction stage: There are no construction works at crossing points of rivers. At operation stage: There are no construction works at crossing points of rivers.	
	4	Topography / Geology	D	D	The project does not include large scaled excavation works.	
	5	Resettlement / Land Issue	D	D	The project site is the existing pubic road areass.	
Social En-	6	Poverty	D	D	The project is a part of the construction work of the Stage V water supply scheme and has less direct relation to the future tariff system.	
vironment	7	Ethic Minor- ity	D	D	There are neither ethnic minorities nor indigenous people at the project sites.	
	8	Employment, sustenance and regional economy	B+	D	The construction works will contribute to employment local labors which may cause positive impact on local economy.	

9 10 11	Land Use / Regional Resource Water Use Social Infrastructure / Service Local society for decision	D D B-	Oper. D D	Reason for Evaluation The construction is carried out within the existing public road areas which may not cause land use change. The project is a part of the construction work of the Stage V water supply scheme and has less direct relation to the future tariff system.
10	Regional Resource Water Use Social Infrastructure / Service Local society for decision	D	D	areas which may not cause land use change. The project is a part of the construction work of the Stage V water supply scheme and has less direct relation to the future tariff system.
11 12	Social Infra- structure / Service Local society for decision			water supply scheme and has less direct relation to the future tariff system.
12	Service Local society for decision	В-	D	1. C
	for decision			At Construction stage: The construction works at existing public road areas in Core/ULBs may affect surrounding traffic and underground utilities.
12	making	D	D	The project is to implement a public works by the government which aim to bring public benefit and will not affect local society.
13	Unbalance of damages and benefits	D	D	The project will not bring unbalance damage and benefit.
14	Local Conflicts of Interests	D	D	The project does not supply water to specific people or structure, and it will not bring local conflicts.
15	Heritage or Cultural Assets	D	D	The project is implemented at the existing public road areas where no historical and cultural assets exists.
16	Landscape	D	D	The laying of water pipelines will be carried out at existing BWSSB's pipeline road where existing CWSS pipelines are exposed.
17	Gender	D	D	The project does not relate to the issues of gender.
18	Right of Children	D	D	The project is not related to the issue of right of children. Child labor is prohibited for implementation of the project by compliance with national laws or international guidelines.
19	Infectious Diseases (e.g. HIV / AIDS)	D	D	The scale of the construction works is small compared to overall stage V project.
20	Occupational Health and Safety	В-	D	At Construction stage: Appropriate care should be taken for the working environment of the construction workers. At Operation stage: There will be no operation works which increase the risks for operation staffs.
21	Air Pollution	В-	D	The construction vehicles and equipment at construction stage will generate dust.
22	Water Pollution	D	D	At Construction stage: Turbid water will be generated at the crossing points of the rivers by the construction works. However, the construction is temporary and local scale.l At Operation stage: The operation works does not generate water pollution.
2	20	Diseases (e.g. HIV / AIDS) Occupational Health and Safety Air Pollution Water Pollu-	Diseases (e.g. Diseases (e.g. HIV / AIDS) Occupational Health and Safety B- Air Pollution B-	D Diseases (e.g. HIV / AIDS) Occupational Health and Safety Air Pollution B- D Water Pollu- D D

Type	No.	Elements to	Ratir	ıg	Reason for Evaluation
Туре	NO.	be Assessed	Const.	Oper.	Keason for Evaluation
	23	Waste	В-	D	During Construction stage: Construction debris, excavation soil and the garbage at construction camps will be generated. At Operation stage: The operation works will not generate waste.
	24	Soil Contami- nation	D	D	The hazardous matter causing soil contamination will not be generated.
	25	Noise / Vibration	D	D	During Construction stage: Noise will be generated temporarily by the construction works. However, there are sparse residential houses around the project site. At Operation stage: The operation works will not use equipment which will generate noise.
	26	Ground Sub- sidence	D	D	The project does not extract groundwater.
	27	Odour	D	D	The project does not include the activities which generates odour.
	28	Sediments	D	D	The scale of the pipe support bridges is not large and will not affect the sediments of the river bed.
Others	29	Accident	В-	D	During Construction: Care should be taken for the accidents which are estimated at the construction works. At Operation: The operation works which cause significant accidents will not be generated.
	30	Climate Change	D	D	The project does not use equipment which use large amount of electricity or chemical substances of GHGs.

Notes:

A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected. Source: JICA Survey Team

(2) 110 Villages Water Supply Project (Distribution Pipeline and Service Connections; and Feeder Pipes between GLRs and OHTs, OHTs and Pumping facilities)

The scoping results for the 110 villages water supply project (distribution pipeline and service connections) is shown in Table 14.5.3. The environmental and social elements of poverty, social infrastructure / service, infectious diseases, occupational health and safety, air pollution (dust), waste, noise and accident are to be assessed for IEE.

Table 14.5.3 Scoping Results for Water Supply Project for 110 Villages Distribution Pipelines

Type No.		Elements to be Assessed	Rating		D 0 D 1 1
	No.		Const.	Oper.	Reason for Evaluation
	1	Protected Area	D	D	The project site and surrounding area is not located in any national parks or nature reserves.
	2	Ecosystem	D	D	Most of the project sites are located in the existing built-up area of BBMP
Natural Environ- ment	3	Hydrology	D	D	At construction stage: The construction works of laying water pipes are implemented at existing public road areas and not at rivers. At operation stage: The future operation works will be implemented at public road areas and not at rivers.
	4	Topography / Geology	D	D	The project does not include large scaled excavation works.
	5	Resettlement / Land Issue	D	D	The project sites does not include residential area nor compensation problems since the project sites are all public lands, not private lands.
	6	Poverty	D	B-	At Operation stage: The increase of water tariff may affect the household economy of low income level.
	7	Ethic Minor- ity	D	D	There are no ethnic minorities nor indigenous people at the project sites.
	8	Employment, sustenance and regional economy	B+	D	At construction stage: An opportunity for employment of local residents is expected by the construction works and may contribute to local economy.
	9	Land Use / Regional Re- source	D	D	The project sites at existing public road areas and the vacant area in the built-up area will not affect the local land use nor regional resources.
	10	Water Use	D	D	The project does not relate to water use.
Social Environment	11	Social Infra- structure / Service	В-	D	At construction stage: The construction works of the water pipelines at road areas may affect the traffic flow and existing underground utilities. At Operation stage: The operation works does not interfere the road areas.
	12	Local society for decision making	D	D	The project is to implement a public works by the government which aim to bring public benefit and will not affect local society.
	13	Unbalance of damages and benefits	D	D	The project will not bring unbalance damage and benefit.
	14	Local Conflicts of Interests	D	D	The project does not supply water to specific people or structure, and it will not bring local conflicts.
	15	Heritage or Cultural Assets	D	D	The project is implemented at public road areas where the historical and cultural assets are reserved separately from roads.
	16	Landscape	D	D	The replacement of water pipelines will be laid under existing public road areas.

		Elements to	Rating		
Type	No.	be Assessed	Const.	Oper.	Reason for Evaluation
	17	Gender	D	D	The project does not relate to the issues of gender.
	18	Right of Chil- dren	D	D	The project is not related to the issue of right of children. Child labor is prohibited for implementation of the project by compliance with national laws or international guidelines.
	19	Infectious Diseases (e.g. HIV / AIDS)	В-	D	The inflow of construction workers may generate or expand infection diseases.
					At Construction stage:
	20	Occupational Health and Safety	В-	D	Appropriate care should be taken for the working environment of the construction workers. At Operation stage: There will be no operation works which increase the risks for operation staffs.
	21	Air Pollution	В-	D	The construction vehicles and equipment at construction stage will generate dust.
	22	Water Pollu- tion	D	D	At Construction stage: Turbid water will not be generated by the generation of underground water at excavation works due to the low table of the groundwater. At Operation stage:
					The operation works does not generate water pollution.
	23	Waste	В-	D	During Construction stage: Construction debris, excavation soil and the garbage at construction camps will be generated. At Operation stage: The operation works will not generate waste.
Pollution	24	Soil Contami- nation	D	D	The hazardous matter causing soil contamination will not be generated.
	25	Noise / Vibra- tion	B-	D	During Construction stage: Noise will be generated by the operation of construction vehicles and equipment. At Operation stage: The operation works will not use equipment which will generate noise.
	26	Ground Sub- sidence	D	D	The project does not extract groundwater.
	27	Odour	D	D	The project does not include the activities which generates odour.
	28	Sediments	D	D	The scale of the pipe support bridges is not large and will not affect the sediments of the river bed.
Others	29	Accident	В-	D	During Construction: Care should be taken for the accidents which are estimated at the construction works. At Operation: The operation works which cause significant accidents will not be generated.
	30	Climate Change	D	D	The project does not use equipment which use large amount of electricity or chemical substances of GHGs.

Notes: A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected.

Source: JICA Survey Team

(3) 110 Villages Sewerage Component Project (Lateral Sewers and House Connections)

The scoping results for the 110 village sewerage component project for lateral sewers and house connection is shown in Table 14.5.4. The environmental and social elements of poverty, social infrastructure / service, infectious diseases, occupational health and safety, air pollution (dust), waste, noise and accident are to be assessed for IEE.

Table 14.5.4 Scoping Results for 110 Villages Sewerage Component Project (Lateral and House Connection)

Thurs	NI.	Elements to be Assessed	Rating		December Fundantion
Туре	No.		Const.	Oper.	Reason for Evaluation
	1	Protected Area	D	D	The project site and surrounding area is not located in any national parks or nature reserves.
	2	Ecosystem	D	D	Most of the project sites are located in the existing built-up area of BBMP
Natural Environ- ment	3	Hydrology	D	D	At construction stage: The construction works of laying lateral sewers and house connection are implemented at existing public road areas and not at rivers. At operation stage: The future operation works will be implemented at public road areas and not at rivers.
	4	Topography / Geology	D	D	The project does not include large scaled excavation works.
	5	Resettlement / Land Issue	D	D	The project sites does not include residential area nor compensation problems since the project sites to will be implemented at public lands, not private lands.
	6	Poverty	D	В-	At Operation stage: The increase of sewerage tariff may affect the household economy of low income level.
Social En-	7	Ethic Minor- ity	D	D	There are no ethnic minorities nor indigenous people at the project sites.
vironment	8	Employment, sustenance and regional economy	B+	D	At construction stage: An opportunity for employment of local residents is expected by the construction works and may contribute to local economy.
	9	Land Use / Regional Re- source	D	D	The project sites at the BWSSB's facility areas, public road areas and the vacant area in the built-up area will not affect the local land use nor regional resources.
	10	Water Use	D	D	The downstream water use and maintenance flow in Cauvery river will be secured.

		Elements 4e	Rating		Supporting Report
Туре	No. Lichients to	Const.	Oper.	Reason for Evaluation	
	11	Social Infra- structure / Service	В-	D	At construction stage: The construction works of the lateral pipes at road areas may affect the traffic flow and existing underground utilities. At Operation stage: The operation works does not interfere the road areas.
	12	Local society for decision making	D	D	The project is to implement a public works by the government which aim to bring public benefit and will not affect local society.
	13	Unbalance of damages and benefits	D	D	The project will not bring unbalance damage and benefit.
	14	Local Conflicts of Interests	D	D	The project does not supply water to specific people or structure, and it will not bring local conflicts.
	15	Heritage or Cultural As- sets	D	D	The project is implemented at public road areas where the historical and cultural assets are reserved separately from roads.
	16	Landscape	D	D	The replacement of water pipelines will be laid under existing public road areas.
	17	Gender	D	D	The project does not relate to the issues of gender.
	18	Right of Children	D	D	The project is not related to the issue of right of children. Child labor will be prohibited for implementation of the project by compliance with national laws or international guidelines.
	19	Infectious Diseases (e.g. HIV / AIDS)	B-	D	The inflow of construction workers may generate or expand infection diseases.
	20	Occupational Health and Safety	B-	D	At Construction stage: Appropriate care should be taken for the working environment of the construction workers. At Operation stage: There will be no operation works which increase the risks of operation staffs.
	21	Air Pollution	В-	D	The construction vehicles and equipment at construction stage will generate dust.
Pollution	22	Water Pollution	D	D	At Construction stage: Turbid water will not be generated by the generation of underground water at excavation works due to the low table of the groundwater. At Operation stage: The operation works does not generate water pollution.
	23	Waste	В-	D	During Construction stage: Construction debris, excavation soil and the garbage at construction camps will be generated. At Operation stage: The operation works will not generate waste.
	24	Soil Contami- nation	D	D	The hazardous matter causing soil contamination will not be generated.

Trunc	No.	Elements to	Rating		Reason for Evaluation	
Type	NO.	be Assessed	Const.	Oper.	Reason for Evaluation	
	25	Noise / Vibration	В-	D	During Construction stage: Noise will be generated by the operation of construction vehicles and equipment. At Operation stage: The operation works will not use equipment which will generate noise.	
	26	Ground Subsidence	D	D	The project does not extract groundwater.	
	27	Odour	D	D	The project does not include the activities which generates odour.	
	28	Sediments	D	D	The scale of the pipe support bridges is not large and will not affect the sediments of the river bed.	
Others	29	Accident	В-	D	During Construction: Care should be taken for the accidents at working area or traffic accidents which are estimated at the construction works. At Operation: The operation works which cause significant accidents will not be generated.	
	30	Climate Change	D	D	The project does not use equipment which use large amount of electricity or chemical substances of GHGs.	

Notes:

A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected. Source: JICA Survey Team

(4) UFW Reduction Project

The scoping results for the UFW reduction project are shown in Table 14.5.5. The environmental and social elements of poverty, social infrastructure / service, infectious diseases, occupational health and safety, air pollution (dust), waste, noise and accident are to be assessed for IEE.

Table 14.5.5 Scoping Results for UFW Reduction Project

Туре	No.	Elements to	Rating		Reason for Evaluation	
Турс		be Assessed		Const.	Oper.	Reason for Evaluation
	1	Protected Area	D	D	The project site and surrounding area is not located in any national parks or nature reserves.	
N	2	Ecosystem	D	D	Most of the project sites are located in the existing built-up area of BBMP	
Natural Environ- ment	3	Hydrology	D	D	At construction stage: The construction works of replacing the existing water pipes are implemented at existing public road areas and not at rivers. At operation stage: The future operation works will be implemented at public road areas and not at rivers.	

Elements to Rating						
Туре	No.	be Assessed	Const.	Oper.	Reason for Evaluation	
	4	Topography / Geology	D	D	The project does not include large scaled excavation works.	
	5	Resettlement / Land Issue	D	D	The project sites does not include residential area nor compensation problems since the project sites to be acquired are all public lands, not private lands.	
	6 Poverty		D	B-	At Operation stage: The increase of water tariff may affect the household economy of low income level.	
	7	Ethic Minor- ity	D	D	There are no ethnic minorities nor indigenous people at the project sites.	
	8	Employment, sustenance and regional economy	В+	D	At construction stage: An opportunity for employment of local residents is expected by the construction works and may contribute to local economy.	
	9 Land Use / Regional Re- source		D	D	The project sites at public road areas and the vacant area in the built-up area will not affect the local land use nor regional resources.	
	10	Water Use	D	D	The project replaces existing water pipelines and does not relate to water use.	
Social Environment	11	Social Infra- structure / Service	В-	B-	At construction stage: The replacing works of the water pipelines at road areas may affect the traffic flow and existing underground utilities. At Operation stage: The leakage detection survey at road areas may interfere the traffic flow.	
VIIOIIIICIIC	12	Local society for decision making	D	D	The project is to implement a public works by the government which aim to bring public benefit and will not affect local society.	
	13	Unbalance of damages and benefits	D	D	The project will not bring unbalance damage and benefit.	
	14	Local Conflicts of Interests	D	D	The project does not supply water to specific people or structure, and it will not bring local conflicts.	
	15	Heritage or Cultural As- sets	D	D	The project is implemented at public road areas where the historical and cultural assets are reserved separately from roads.	
	16	Landscape	D	D	The replacement of water pipelines will be laid under existing public road areas without any appearance of structure on the ground.	
	17	Gender	D	D	The project does not relate to the issues of gender.	
	18	Right of Children	D	D	The project is not related to the issue of right of children. Child labor will be prohibited for implementation of the project by compliance with national laws or international guidelines.	
	19	Infectious Diseases (e.g. HIV / AIDS)	В-	D	The inflow of construction workers may generate or expand infection diseases.	

		Elements to	Rating			
Type	No.	be Assessed	Const.	Oper.	Reason for Evaluation	
		Occupational Health and Safety	B-	D	At Construction stage: Appropriate case should be taken for the working environment of the construction workers. At Operation stage: There will be no operation works which increase the risks of operation staffs.	
	21	Air Pollution	В-	D	The construction vehicles and equipment at construction stage will generate dust.	
	22	Water Pollu- tion	D	D	At Construction stage: Turbid water will not be generated by the generation of underground water at excavation works due to the low table of the groundwater. At Operation stage: The operation works does not generate water pollution.	
	23	Waste	В-	D	During Construction stage: Construction debris, excavation soil and the garbage at construction camps will be generated. At Operation stage: The operation works will not generate waste.	
Pollution	24	Soil Contami- nation	D	D	The hazardous matter causing soil contamination will not be generated.	
	25	Noise / Vibration	D	D	During Construction stage: The construction works will be carried out at existing public road areas in Core/ULB areas of BBMP where surrounding traffic noise is large. At Operation stage: The operation works will not use equipment which will generate noise.	
	26	Ground Subsidence	D	D	The project does not extract groundwater.	
	27	Odour	D	D	The project does not include the activities which generates odour.	
	28	Sediments	D	D	The scale of the pipe support bridges is not large and will not affect the sediments of the river bed.	
Others	29	Accident	В-	B-	During Construction: Care should be taken for the accidents which are estimated at the construction works. At Operation: The leakage detection survey at operation stage will increase the risk of traffic accidents.	
Notes:	30	Climate Change	D	D	The project does not use equipment which use large amount of electricity or chemical substances of GHGs.	

Notes:

A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected. Source: JICA Survey Team

14.7 Estimation of Potential Impacts at IEE Level

(1) Stage V Conveyance Pipeline Project

The potential adverse impacts to be caused by the project are shown in Table 14.7.1.

Table 14.7.1 Potential Adverse Impacts by Stage V Conveyance Pipeline Project

No.	Environmental and Social Ele- ments	Potential Adverse Impacts
1	Occupational Health and Safety	At construction phase: During construction stage, the adverse impacts on construction workers, surrounding residents potentially to be caused by the construction works or traffic accidents is estimated.
2	Air Pollution	At construction phase: At the construction phase, dust will be generated by the operation of construction vehicles and construction equipment at construction sites and surrounding areas. Some adverse impact is estimated.
3	Waste	At construction phase: The excavation works or demolition works at the construction sites will generate excavated soil and demolition waste. And also, domestic garbage will be generated at the construction camps.
4	Accident	At construction phase: The increase of vehicles for the construction works may cause some risk of traffic accidents around the construction sites. The vehicles carrying the materials, wastes to and from the construction area may drop spoil or soil on the road surface which cause slippery condition and increases the risk of unsafe traffic.

Source: JICA Survey Team

(1) Branch Feeding Pipes (Stage V Transmission Pipeline in the City) to Share Water to Core/ULBs The potential adverse impacts to be caused by the project are shown in Table 14.7.2.

Table 14.7.2 Potential Adverse Impacts by Stage V Transmission Pipeline in the City

No.	Environmental and Social Ele- ments	Potential Adverse Impacts
1	Social infrastruc- ture / service (At construction phase)	At construction phase: The laying works of water pipes may affect the traffic at major roads because of the temporary use of the road areas.
2	Occupational Health and Safety	At construction phase: During construction stage, the adverse impacts on construction workers, surrounding residents potentially to be caused by the construction works or traffic accidents is estimated.
3	Air Pollution	At construction phase: At the construction phase, dust will be generated by the operation of construction vehicles and construction equipment at construction sites and surrounding areas. Some adverse impact is estimated.

No.	Environmental and Social Ele- ments	Potential Adverse Impacts
4	Waste	At construction phase: The excavation or demolition works at the construction sites will generate excavated soil and demolition waste. And also, domestic garbage will be generated at the construction camp The issues of handling or disposal of asbestos should be clarified.
5	Accident	At construction phase: The increase of vehicles for the construction works may cause traffic congestions on the local road network, and increase the risk of traffic accidents around the construction sites. A part of roads around the project sites may be temporarily blocked and cause traffic congestion at some sections. Traffic may be encroached due to the arrangement of the works such as scaffold, material yard and operation of construction equipment. The vehicles carrying the materials, wastes to and from the construction area may drop spoil or soil on the road surface which cause slippery condition and increases the risk of unsafe traffic.

(2) 110 Villages Water Supply Project (Distribution Pipeline and Service Connections; and Feeder Pipes between GLRs and OHTs, OHTs and Pumping facilities)

The potential adverse impacts to be caused by the project is shown in Table 14.7.3.

Table 14.7.3 Potential Adverse Impacts by Water Supply Project for 110 Villages

No.	Environmental and Social Ele- ments	Potential Adverse Impacts
1	Poverty (At Operation Phase)	At operation phase: At the operation phase after the construction of the pipe laying works and the house connection, the water tariff will be increased to recover the future increase of the operation and maintenance cost. Therefore, future increase of water tariff may affect the household economy of the urban poor.
2	Social infrastruc- ture / service (At construction phase)	At construction phase: The laying works of water pipes may affect the traffic at major roads because of the temporary use of the road areas.
3	Infectious Diseases (e.g. HIV / AIDS)	At construction phase: According to National AIDS Control Organization of India, the prevalence of AIDS in India in 2013 was 0.27, while they estimated that 2.39 million people live with HIV/AIDS in India in 2008–09, and the British Medical Journal (2010) estimates the population to be between 1.4–1.6 million people. And also, Karnataka state is one of the states with high HIV prevalence as shown that Manipur (1.40%), Andhra Pradesh (0.90%), Mizoram (0.81%), Nagaland (0.78%), Karnataka (0.63%) and Maharashtra (0.55%). During the construction phase, risk of HIV/AIDS infection may increase among construction workers around construction sites.
4	Occupational Health and Safety	At construction phase: During construction stage, the adverse impacts on construction workers, surrounding residents potentially to be caused by the construction works or traffic

No.	Environmental and Social Ele- ments	Potential Adverse Impacts		
		accidents is estimated.		
5	Air Pollution	At construction phase: At the construction phase, dust will be generated by the operation of construction vehicles and construction equipment at construction sites and surrounding areas. Some adverse impact is estimated.		
6	Waste	At construction phase: The excavation works or demolition works at the construction sites will generate excavated soil and demolition waste. And also, domestic garbage will be generated at the construction camps.		
7	Noise / Vibration	At construction phase: The excavation works or demolition works at the construction sites will generate noise and may affect the residents in case that the site is close to residential area.		
8	Accident	At construction phase: The increase of vehicles for the construction works may cause traffic congestions on the local road network, and increase the risk of traffic accidents around the construction sites. A part of roads around the project sites may be temporarily blocked and cause traffic congestion at some sections. Traffic may be encroached due to the arrangement of the works such as scaffold, material yard and operation of construction equipment. The vehicles carrying the materials, wastes to and from the construction area may drop spoil or soil on the road surface which cause slippery condition and increases the risk of unsafe traffic.		

(3) 110 Villages Sewerage Component Project (Lateral Sewers and House Connection) The potential adverse impacts to be caused by the project are shown in Table 14.7.4.

Table 14.7.4 Potential Adverse Impacts by 110 Villages Sewerage Component Project

No.	Environmental and Social Ele- ments	Potential Adverse Impacts		
1	Poverty (At Operation Phase)	At operation phase: At the operation phase after the construction of the pipe laying works and the house connection, the sewerage tariff will be increased to recover the future increase of the operation and maintenance cost. Therefore, future increase of sewerage tariff may affect the household economy of the urban poor.		
2	Social infrastruc- ture / service (At construction phase)	At construction phase: The laying works of lateral sewers and house connection may affect the traffic at major roads because of the temporary use of the road areas.		
3	Infectious Diseases (e.g. HIV / AIDS)	At construction phase: According to National AIDS Control Organization of India, the prevalence of AIDS in India in 2013 was 0.27, while they estimated that 2.39 million people live with HIV/AIDS in India in 2008–09, and the British Medical Journal (2010) estimates the population to be between 1.4–1.6 million people. And also,		

No.	Environmental and Social Ele- ments	Potential Adverse Impacts
		Karnataka state is one of the states with high HIV prevalence as shown that Manipur (1.40%), Andhra Pradesh (0.90%), Mizoram (0.81%), Nagaland (0.78%), Karnataka (0.63%) and Maharashtra (0.55%).
		During the construction phase, risk of HIV/AIDS infection may increase among construction workers around construction sites.
4	Occupational Health and Safety	At construction phase: During construction stage, the adverse impacts on construction workers, surrounding residents potentially to be caused by the construction works or traffic accidents is estimated.
5	Air Pollution	At construction phase: At the construction phase, dust will be generated by the operation of construction vehicles and construction equipment at construction sites and surrounding areas. Some adverse impact is estimated.
6	Waste	At construction phase: The excavation works or demolition works at the construction sites will generate excavated soil and demolition waste. And also, domestic garbage will be generated at the construction camps.
7	Noise / Vibration	At construction phase: The excavation works or demolition works at the construction sites will generate noise and may affect the residents in case that the site is close to residential area.
8	Accident	At construction phase: The increase of vehicles for the construction works may cause traffic congestions on the local road network, and increase the risk of traffic accidents around the construction sites. A part of roads around the project sites may be temporarily blocked and cause traffic congestion at some sections. Traffic may be encroached due to the arrangement of the works such as scaffold, material yard and operation of construction equipment. The vehicles carrying the materials, wastes to and from the construction area may drop spoil or soil on the road surface which cause slippery condition and increases the risk of unsafe traffic.

14.8 Recommended Mitigation Measures

(1) Stage V Conveyance Pipeline Project

The recommended mitigation measures indicating its actor, regulatory authority and budget $/\cos t$ are shown in Table 14.8.1.

Table 14.8.1 Recommended Mitigation Measures for Stage V Conveyance Pipeline Project

At Construction Phase

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Occu- pa- tional Health and	 Preparation of construction plan Training of construction workers Provide construction workers with sufficient personal 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
	Safety	 Protection equipment such as hard hats, earpiece, safety shoes, and others; Conduct explanation meetings on safety issues for local communities Install warning signs whereas the potential dangers are expected Erect temporary fence around high risk areas to control public access and light them at night if that is on the regular roads used by the locals; Assign construction staffs on or near places where construction vehicles are crowded to ensure safety. 			
2	Air Pollu- tion	 Preparation of construction plan for control dust Training of construction workers Provide construction workers with sufficient personal Examination of Contractor's construction plan Monitoring of Contractor's dust control 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
3	Waste	 Preparation of construction plan for excavated soil and demolition waste Examination of Contractor's construction plan Monitoring of Contractor's management of excavated soil, construction debris 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
4	Acci- dent	 Preparation of appropriate construction vehicle operation plan to avoid concentration of machinery and vehicles in limited roads. Allotment of traffic guide for proper control of traffic in order to minimize disruption to traffic flows The construction site should be enclosed with temporary fence to provide a visual barrier between the construction site and adjacent traffic. Contractor's advance notification to communities in case of blocking traffic for transport of heavy equipment the contractor Environmental monitoring 	Project Cost / Contract Amount	Project Cost / Contract Amount	Project Cost / Contract Amount

(2) Stage V Transmission Pipeline in the City to Share Water to Core/ULBs

The recommended mitigation measures indicating its actor, regulatory authority and budget / cost is shown in Table 14.8.2 .

 ${\bf Table~14.8.2~Recommended~Mitigation~Measures~for~Stage~V~Transmission~Pipeline~Project}$

At Construction Phase

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Social Infra- struc- ture / Service	 Prior notice to traffic police before the construction works Placement of traffic guides at each end of construction sections for smooth inducement of traffic Careful examination of construction schedule Setting detouring route if necessary. Sufficient information disclosure such as construction period or work section to media such as television, radio, newspapers, etc. as well as utilization of internet media Socialization activity to local residents including distribution of leaflet or announcement letters, or holding meetings if required. Implementation of underground utility survey for existing water pipes, power lines, telephone lines and gas pipes not to cause damage on these utilities 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
2	Occu- pa- tional Health and Safety	 Preparation of construction plan Training of construction workers Provide construction workers with sufficient personal Protection equipment (PPE) such as hard hats, earpiece, safety shoes, and others; Conduct explanation meetings on safety issues for local communities Install warning signs whereas the potential dangers are expected Erect temporary fence around high risk areas to control public access and light them at night if that is on the regular roads used by the locals; Assign construction staffs on or 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
		near places where construction vehicles are crowded to ensure safety.			
3	Air Pollu- tion	 Preparation of construction plan for control dust Training of construction workers Provide construction workers with sufficient personal Examination of Contractor's construction plan Monitoring of Contractor's dust control 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
4	Waste	 Preparation of construction plan for excavated soil and demolition waste Examination of Contractor's construction plan Monitoring of Contractor's management of excavated soil, construction debris 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
5	Acci-dent	 Preparation of appropriate construction vehicle operation plan to avoid concentration of machinery and vehicles in limited roads. Allotment of traffic guide for proper control of traffic in order to minimize disruption to traffic flows The construction site should be enclosed with temporary fence to provide a visual barrier between the construction site and adjacent traffic. Contractor's advance notification to communities in case of blocking traffic for transport of heavy equipment the contractor Environmental monitoring 	Project Cost / Contract Amount	Project Cost / Contract Amount	Project Cost / Contract Amount

(3) Water Supply Project for 110 Villages

The recommended mitigation measures indicating its actor, regulatory authority and budget / cost is shown in Table 14.8.3.

Table 14.8.3 Recommended Mitigation Measures for UFW Reduction Project

At Construction Phase

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Social Infra- struc- ture / Service	 Prior notice to traffic police before the construction works Placement of traffic guides at each end of construction sections for smooth inducement of traffic Careful examination of construction schedule Setting detouring route if necessary. Sufficient information disclosure such as construction period or work section to media such as television, radio, newspapers, etc. as well as utilization of internet media Socialization activity to local residents including distribution of leaflet or announcement letters, or holding meetings if required. Implementation of underground utility survey for existing water pipes, power lines, telephone lines and gas pipes not to cause damage on these utilities 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
2	Infectious Disceases (e.g. HIV / AIDS)	 Preparation of appropriate working health plan Training of construction workers 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
3	Occu- pa- tional Health and Safety	 Preparation of construction plan Training of construction workers Provide construction workers with sufficient personal Protection equipment (PPE) such as hard hats, earpiece, safety shoes, and others; Conduct explanation meetings on safety issues for local communities Install warning signs whereas the potential dangers are expected Erect temporary fence around high risk areas to control public access and light them at night if that is on the regular roads used by the locals; Assign construction staffs on or near places where construction vehicles are crowded to ensure safety. 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
4	Air	Preparation of construction plan for	Contractor	KPCB/BWSSB/C	Project Cost /

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
	Pollu- tion	control dust Training of construction workers Provide construction workers with sufficient personal Examination of Contractor's construction plan Monitoring of Contractor's dust control		onsultant	Contract Amount
5	Waste	 Preparation of construction plan for excavated soil and demolition waste Examination of Contractor's construction plan Monitoring of Contractor's management of excavated soil, construction debris 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
6	Noise / Vibra- tion	 Utilization of low-noise type construction machineries if applicable. Temporary enclosure of the site during the construction works if necessary Instructing the contractors to examine low noise/vibration construction methods. Encouragement of idling reduction to the workers. To avoid works at night and early morning at the sites close to residential areas, schools and hospitals Monitoring of noise level at facility boundaries 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
7	Acci- dent	 Preparation of appropriate construction vehicle operation plan to avoid concentration of machinery and vehicles in limited roads. Allotment of traffic guide for proper control of traffic in order to minimize disruption to traffic flows The construction site should be enclosed with temporary fence to provide a visual barrier between the construction site and adjacent traffic. Contractor's advance notification to communities in case of blocking traffic for transport of heavy equipment the contractor Environmental monitoring 	Project Cost / Contract Amount	Project Cost / Contract Amount	Project Cost / Contract Amount

(4) 110 Villages Sewerage Component Project (Lateral Sewers and House Connection)

The recommended mitigation measures indicating its actor, regulatory authority and budget / cost is shown in Table 14.8.4.

Table 14.8.4 Recommended Mitigation Measures for 110 Villages Sewerage Component Project<u>At Construction Phase</u>

No.	Elements	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Social Infrastructure / Service	 Prior notice to traffic police before the construction works Placement of traffic guides at each end of construction sections for smooth inducement of traffic Careful examination of construction schedule Setting detouring route if necessary. Sufficient information disclosure such as construction period or work section to media such as television, radio, newspapers, etc. as well as utilization of internet media Socialization activity to local residents including distribution of leaflet or announcement letters, or holding meetings if required. Implementation of underground utility survey for existing water pipes, power lines, telephone lines and gas pipes not to cause damage on these utilities 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
2	Infectious Diseases (e.g. HIV / AIDS)	 Preparation of appropriate working health plan Training of construction workers 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
3	Occupational Health and Safety	 Preparation of construction plan Training of construction workers Provide construction workers with sufficient personal Protection equipment (PPE) such as hard hats, earpiece, safety shoes, and others; 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Elements	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
		 Conduct explanation meetings on safety issues for local communities Install warning signs whereas the potential dangers are expected Erect temporary fence around high risk areas to control public access and light them at night if that is on the regular roads used by the locals; Assign construction staffs on or near places where construction vehicles are crowded to ensure safety. 			
4	Air Pollution	 Preparation of construction plan for control dust Training of construction workers Provide construction workers with sufficient personal Examination of Contractor's construction plan Monitoring of Contractor's dust control 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
5	Waste	 Preparation of construction plan for excavated soil and demolition waste Examination of Contractor's construction plan Monitoring of Contractor's management of excavated soil, construction debris 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
6	Noise / Vibration	 Utilization of low-noise type construction machineries if applicable. Temporary enclosure of the site during the construction works if necessary Instructing the contractors to examine low noise/vibration construction methods. Encouragement of idling reduction to the workers. To avoid works at night and early morning at the sites close to residential areas, schools and hospitals Monitoring of noise level at 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Elements	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
		facility boundaries			
7	Accident	 Preparation of appropriate construction vehicle operation plan to avoid concentration of machinery and vehicles in limited roads. Allotment of traffic guide for proper control of traffic in order to minimize disruption to traffic flows The construction site should be enclosed with temporary fence to provide a visual barrier between the construction site and adjacent traffic. Contractor's advance notification to communities in case of blocking traffic for transport of heavy equipment the contractor Environmental monitoring 	Project Cost / Contract Amount	Project Cost / Contract Amount	Project Cost / Contract Amount

At Operation Phase

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Poverty	 Establishment of tariff collection system for urban poor Implementation of public aware- ness survey 	Contractor	KPCB/BWSSB/C onsultant	O & M Cost

Source: JICA Survey Team

(5) UFW Reduction Project

The recommended mitigation measures indicating its actor, regulatory authority and budget / cost is shown in Table 14.8.5.

Table 14.8.5 Recommended Mitigation Measures for UFW Reduction Project

At Construction Phase

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
1	Social Infra- structure / Service	 Prior notice to traffic police before the construction works Placement of traffic guides at each end of construction sections for 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
		 smooth inducement of traffic Careful examination of construction schedule Setting detouring route if necessary. Sufficient information disclosure such as construction period or work section to media such as television, radio, newspapers, etc. as well as utilization of internet media Socialization activity to local residents including distribution of leaflet or announcement letters, or holding meetings if required. Implementation of underground utility survey for existing water pipes, power lines, telephone lines and gas pipes not to cause damage on these 			
2	Infectious Diseases (e.g. HIV / AIDS)	 Preparation of appropriate working health plan Training of construction workers 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
3	Occupational Health and Safety	 Preparation of construction plan Training of construction workers Provide construction workers with sufficient personal Protection equipment (PPE) such as hard hats, earpiece, safety shoes, and others; Conduct explanation meetings on safety issues for local communities Install warning signs whereas the potential dangers are expected Erect temporary fence around high risk areas to control public access and light them at night if that is on the regular roads used by the locals; Assign construction staffs on or near places where construction vehicles are crowded to ensure safety. 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
4	Air Pol- lution	 Preparation of construction plan for control dust Training of construction workers Provide construction workers with sufficient personal Examination of Contractor's construction plan 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount

No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost
		Monitoring of Contractor's dust con- trol			
5	Waste	 Preparation of construction plan for excavated soil and demolition waste Examination of Contractor's construction plan Monitoring of Contractor's management of excavated soil, construction debris 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
6	Noise / Vibration	 Utilization of low-noise type construction machineries if applicable. Temporary enclosure of the site during the construction works if necessary Instructing the contractors to examine low noise/vibration construction methods. Encouragement of idling reduction to the workers. To avoid works at night and early morning at the sites close to residential areas, schools and hospitals Monitoring of noise level at facility boundaries 	Contractor	KPCB/BWSSB/C onsultant	Project Cost / Contract Amount
7	Accident	 Preparation of appropriate construction vehicle operation plan to avoid concentration of machinery and vehicles in limited roads. Allotment of traffic guide for proper control of traffic in order to minimize disruption to traffic flows The construction site should be enclosed with temporary fence to provide a visual barrier between the construction site and adjacent traffic. Contractor's advance notification to communities in case of blocking traffic for transport of heavy equipment the contractor Environmental monitoring 	Project Cost / Contract Amount	Project Cost / Contract Amount	Project Cost / Contract Amount

At Operation Phase

 at operation i hase									
No.	Ele- ments	Proposed Mitigation Measures	Actor for Mitigation Measures	Regulatory authority	Budget / Cost				
1	Poverty	• Establishment of tariff collection system for urban poor	Contractor	KPCB/BWSSB/C onsultant	O & M Cost				

Supporting Report

	• Implementation of public awareness		
	survey		

Source: JICA Survey Team

14.9.2 Environmental Monitoring Plan (JICA Environmental Monitoring Form)

- (1) Stage V Water Supply Project, Transmission Pipelines to share water to Core Area and Connection pipelines between GLRs and OHTs
- 1) Construction Phase

a) Air Quality (Dust)

Method	Proposed Location	Frequency	Me	asured	Value	
Visual in- spection	Facility boundaries at construction sites	Monthly (Examination of daily or monthly report)	Item	Yes	No	If Yes, Mdeasures Taken (e.g. water sprinkling)
			Dusts			
			Other (Specify:)			

b) Waste

Method		Proposed Location	Frequency	Measured	l Value
Visual in- spection	•	Construction sites for excavation works Construction sites for backfill Final disposal site of con-	Monthly (Examination of daily or monthly report)	Item Type of construction debris Amount of construction debris Amount of excavated soil Location of final disposal sites	Amount
		struction debris		of construction debris Location of final disposal sites of excavated soil	

c) Noise / Vibration

Monitoring Item	Measured Value (Mean)	Measured Value (Max.)	Standards	Frequency	Measurement Point
Noise Level			Indian stand- ard*	Monthly	Facility boundaries at the following facilities; Gottigere GLR Singapura GLR Kingadeeranahalli GLR

* Indian standard as per Schedule III under the Noise Pollution (Regulation and Control) Rules, 2000 and amendment 2002

Area Code	Cotogowy of Amoo	Limits in dB (A)		
Area Code	Category of Area	Day time	Night time	
A	Industrial	75	70	
В	Commercial	65	55	
С	Residential	55	45	
D	Silence zone	50	40	

Note 1: Daytime is reckoned in between six (6) am to 10 p.m.

Note 2: Night time is reckoned in between 10 p.m. to six (6) a.m.

Note 3: Silence zone is defined as areas up to 100 meters around such premises as hospitals, educational institutions and courts. The silence zones are to be declared by the Competent Authority. Use of vehicular horns, loudspeakers and bursting of crackers shall be banned in these zones.

Note 4: Mixed categories of areas should be declared as one of the four above-mentioned categories by the Competent Authority and the corresponding standards shall apply.

d) Accident

Item	Monitoring Place	Monitoring Method	Frequency	Monitoring Result
Adequate safety traffic control manners	Н	Visual inspection Examination of daily / monthly	Monthly (Examination of daily or monthly report)	,
		report		

2) Operation Phase

a) Water Quality

	Parameters	Raw Water	Treated Water	Frequency	Proposed Location
1	Turbidity	V	V	Daily	WTP at TK Halli (Raw water,
2	pН	V	V	Daily	treated water)
3	Alkalinity	V	V	Daily	Vasudevapura GLR (Treated)
4	Total hardness	V		Daily	water) Singapura GLR (Treated water)
5	Total dissolved solids	V		Daily	Chokkanahalli GLR (Treated)
6	Electrical conductivity	V		Daily	water)
7	Calcium	V		Daily	Lingadeeranahalli GLR
8	Iron	V	V	Daily	(Treated water)
9	Magnesium	V		Daily	Lingadeeranahalli GLR (Transtad annatan)
10	Total Coliforms	V		Daily	(Treated water)Doddakanalli GLR (Treated wa-
11	Temperature	V		Daily	ter)
12	Color		V	Daily	Kadugodi GLR (Treated water)
13	Fecal coliforms		V	Daily	1
14	Residual chlorine		V	Daily	1

b) Waste

Method	Proposed Location	Frequency	Measured Value		
Visual in-	WTP at TK Halli	Monthly (Examina-	Item	Amount	
spection	Final Disposal		Type of construction debris		
	Site	monthly report)	Mount of construction de- bris		
			Amount of excavated soil		

c) Noise / Vibration

Monitoring Item	Measured Value (Mean)	Measured Value (Max.)	Standards	Frequency	Measurement Point
Noise Level			Indian stand- ard*	Monthly	Facility boundaries at the following facilities; TK Halli WTP Haraholi Pumping Station Tataguni Pumping Station

^{*}Refer to information at "Noise/Vibration", 1) Construction Phase, (1) Stage V Water Supply Project.

d) Accident

Item	Monitoring Place	Monitoring Method	Frequency	Monitoring Result
Adequate safety traffic control manners	The following facilities and surrounding road areas; TK Halli WTP Harohalli Pumping Station Tataguni Pumping Station	Visual inspection Examination of daily / monthly report	Monthly (Examination of daily or monthly report)	

(2) Sewerage Project for 110 Villages

1) Constriction Phase

a) Air Quality (Dust)

Method	Proposed Location	Frequency	Me	easured	Value	
Visual inspection	Facility boundaries at construction sites	Monthly (Examination of daily or monthly report)	Item	Yes	No	If Yes, Mdeasures Taken (e.g. water sprinkling)
			Dusts			
			Other (Specify:)			

b) Waste

Method		Proposed Location	Frequency	Measured	l Value
Visual in-	-	Construction sites for exca-	Monthly (Exami-	Item	Amount
spection		vation works Construction sites for backfill Final disposal site of construction debris	nation of daily or monthly report)	Type of construction debris	
	-			Mount of construction debris	
	_			Amount of excavated soil	
				Location of final disposal sites	
				of construction debris	
				Location of final disposal sites	
				of excavated soil	

c) Noise / Vibration

Monitoring Item	Measured Value (Mean)	Measured Value (Max.)	Standards	Frequency	Measurement Point
Noise Level			Indian stand- ard*	Monthly	Facility boundaries at the following facilities; Herohhali STP Hosahalli STP Doddabettahalli STP Chikkabanavara STP

^{*}Refer to information at "Noise/Vibration", 1) Construction Phase, (1) Stage V Water Supply Project.

d) Accident

Item	Monitoring Place	Monitoring Method	Frequency	Monitoring Result
Adequate safety traffic control manners	Construction sites	Visual inspection Examination of daily / monthly report	Monthly (Examination of daily or monthly report)	

2) Operation Phase

a) Water Quality (Treated Effluent)

	Parameters	Measured Value (Mean)	Measured Value (Max.)	Stand- ards*	Freque- ncy	Measurement Point
1	pН			6.0 - 9.5	Daily	Jakkur Hemigepura
2	BOD			< 10	Daily	Yelahankakere Nagasandra
3	COD			< 50	Daily	Doddabettahalli Karivobanahalli
4	TSS			< 20	Daily	Bilishivalli Herohalli
5	NH4-N			< 5	Daily	 Varthur Hosahalli Chikkabanavara-2
6	T-N			< 10	Daily	Tilagalalalii Talaghattapura
7	Fecal Coliform**			< 100	Daily	Somapura

^{*} As per CPCB New Standards dated 27th April 2016, **MPN/100 ml

b) Waste

Method	Proposed Location		Proposed Location		Measured Va	alue
Visual in-	i) The following STPs*	•	Somapura	Monthly (Examination	Item	Amount
spection	 Jakkur Yelahankakere	•	Hemigepura Nagasandra	of daily or monthly report)	Generation amount of treated sludge	
	DoddabettahalliBilishivalli	•	Karivobanahalli Herohalli		Disposal amount of treated sludge	
	 Varthur Pillaganahalli Talaghattapura Hosahalli Chikkabanavara-2 ii) Final disposal site 			Location of final disposal site of treated sludge		

c) Noise / Vibration

Monitoring Item	Measured Value (Mean)	Measured Value (Max.)	Standards	Frequency	Measurement Point
Noise Level			Indian stand- ard*	Monthly	Facility boundaries at the following STPs; Herohhali STP Hosahalli STP Doddabettahalli STP Chikkabanavara -2 STP

^{*}Refer to information at "Noise/Vibration", 1) Constriction Phase, (1) Stage V Water Supply Project.

d) Offensive Odor

Monitoring Item	Measured Value (Mean)	Measured Value (Max.)	Standards* (ppm)	Measurement Point	Frequency
Ammonia			1.0	Facility boundaries at the following	Monthly
Methyl mercaptan			0.002	STPs;	
Hydrogen Sulfide (H ₂ S)			0.02	Herohhali STPHosahalli STP	
Methyl sulfide			0.01	Doddabettahalli STP	
Styrene			0.4	Chikkabanavara -2 STP	

Notes; Japanese Offensive Odour Control Law, Law No. 91 / 1971 or latest amendment by Law No. 71 / 1995

e) Accident

Item Monitoring Place		Monitoring Method	Frequency	Monitoring Result
Adequate safety traffic control manners	All STP sites and surrounding areas All ISPS sites and surrounding areas	Visual inspection Examination of daily / monthly report	Monthly (Examination of daily or monthly report)	

Supporting Report 14.12

Stakeholder Meeting

Minutes of Meeting

for

Stakeholders' Meeting

on

CAUVERY WATER SUPPLY AND SEWERAGE PROJECT STAGE V

Date and Time: 11 AM, August 22, 2017 Venue: BWSSB Auditorium, 4th floor

Stakeholders (list attached) and the representatives of Bangalore Water Supply and Sewerage Board (BWSSB) exchanged opinions on the contents of CAUVERY WATER SUPPLY AND SEWERAGE PROJECT STAGE V. The main points discussed are as attached hereto.

Nushar Giri Nath, Chairman, BWSSB

<List of Attachment>

- (1) Invitation letter to attendants
- (2) Attendants list
- (3) Explanation materials
- (4) Minutes of Discussions
- (5) Photos of the Meetings

Phone / Fax: 9 608492344 AbUReport

BANGALORE WATER SUPPLY AND SEWERAGE BOARD Office of the Chief Engineer(K), 5th Floor, Cauvery Bhavan, K.G.Road, Bangalore 560009.

No.BWSSB/CH/CE(K)/ 546 /2017-18

Dated: 16-08-2017

To,	Commisioner,	Chairman,
Commissioner, BBMP Hudson Circle, Sampangi Rama Nagar. Bengaluru, Karnataka 560002, India	Bangalore Development Authority, T. Chowdaiah Road, Kumara park West, Bangalore.	Karnataka State Pollution Control Board, "Parisara Bhavan", #49,4th & 5th Floor, Church Street, Bangalore-560001
Chief Executive Officer, Lake Development Authority No.49, 2nd Floor, Parisara Bhavan, Church Street, Bangalore - 560001, Near Mg Road	Metropolitan Commissioner Bangalore Metropolitan Region Development Authority (BMRDA), Bangalorc. , # 1, Ali Askar Road, LRDE Building, Bangalore- 560052.	Managing Director, BESCOM, Corporate Office, K.R.Circle, Bengaluru-560001
MLAs of 110 Villages	Corporators of 110 Villages	

Sir,

Sub: Stake Holder Meeting on Cauvery Water Supply Scheme (CWSS) V stage to provide drinking water supply and Sewerage facility to 110 Villages of BBMP.

Ref: Japan International Cooperation Agency (JICA), Japan and BWSSB agreed Minutes of Discussion on Project.

Adverting to above, Government of Karnataka (GOK) has taken decision to provide drinking water facility and sanitation for the newly added 110 villages of BBMP on priority. The Detailed Project Report (DPR) is forwarded to JICA, Japan to fund the project in terms of Loan to BWSSB. JICA study team did the feasibility of this project and based on their recommendation JICA is considering loan facilities to the project.

Main components of the Project;

7) Augmenting BWSSB with additional 775 MLD of water from Cauvery Source to 110 Villages and to satisfy the needs of entire Bangalore city (800 Sq KM).

8) 7 Ground level reservoirs on periphery of the city.

9) Providing Sewerage System to cover entire 110 Villages

.....2

- 4) 14 numbers of Sewage treatment Plants (STP's)all round the Bangalore to treat the sewage and make environmentally viable solutions for the water bodies located in 110 villages.
- 5) 7 numbers of Intermediate sewage Pumping Stations (ISPS) to pump the sewage to STP.
- 6) SCADA system for entire system to Control monitoring and all the above works to be executed by BWSSB under the supervision and coordination by International consultants appointed by funding agency based on the guide line prescribed by JICA.

The time frame for this project is 36 months and expected to start by 2019 March.

This project is counter guaranteed by Government of India (GoI) and all the other formalities are under process. As a preconditions to the final approval from JICA towards this project, a Stake Holders meeting is to be conveyed to explain the importance of this project and the necessity of this project to all the agency taking the benefit of this project.

- 1. The underlying principle of stakeholder engagement is to have the opportunity to know about the details of the Project.
- 2. to establish what issues matter most to them
- 3. develop understanding and agree how best to deal with issues of concern
- 4. ensure project sustainability by involving stakeholders in implementation and monitoring
- 5. Through working together, key stakeholders can identify common concerns, develop common goals and reap the benefits of the impact of a Stage V project.
- 6. Making project more effective

In this regard, I request you to attend the Stake Holders meeting to be held on August 2017, Tuesday at 11:00AM in Auditorium, 4th Floor, Cauvery Bhavan, K.G.Road, Bangalore and oblige.

Thanking You.

Chairman BWSSB.

Copy submitted to Additional Chief Secretary, UDD for kind information. Copy to EIC/all CEs for information and necessary action.

·Copy to M/s NJS for information.

Bengaluru Water Supply and Sewerage Project (Stage V)

Bangalore Water Supply & Sewerage Board In Coordination with NJS Consultants Co. Ltd., Japan

Ag	enda of the Stakeholder Med	eting
Purpose/Objective	Stakeholder Meeting	
Meeting Date and Time	22 nd August 2017	11:00 – 13:00
Venue	BWSSB Auditorium, 4 th floor	
Registration	i i	
Welcome Speech by	Shri Tushar Giri Nath, IAS., Hon'al	ole Chairman, BWSSB
Presentation on the P BWSSB	roject by Shri K R Manjunath, Chief	Engineer – Projects,
Discussion and Sugg	estions from the Stake Holder	
	v.	
Summary of Worksh	op	2
1		
Vote of Thanks by S	hri Dr. P N Ravindra, Chief Enginee	er - Kaveri
Lunch	•	

Bengaluru Water Supply and Sewerage Project (Stage, W) ting Report

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

S/N	Name, vic	Designation/ gorganization	Contact(Details)	Signature:
1	Yoshihiro KIRISHIMA	Sr. Engineer NJS Consultants Co., Ltd		
2	RAGHU	Bussb Fee		B
3	P.R. Frances	te k-1-2		dod
4	Gamalalestrova on ora, ne	ВВК- Ч		2
5	Pavan - N	AERK-1.2		Não -
6	Facha Asheaf fi	AE		ant
7	Narell B.k	AEE (t-3)2		dent
8	Roghavendra, C.P.	EE (K-3)		14
9	Chethanky	AEE (K-1)-1		Cheffer
10	Elizabeth	XE (K-1)1		Sulv
11	B.14. Manjunder	AEE(BLOW)M-1		(3)
12	Maneen	BWSSB		Novinon
13	SRINATH-S	AE CECH)		8
14	Kanakaráj	AE(K)Ele-1		The last
15	FIRO2 PALMA	AE CELES		£.,
16	Svilivas.	Pa to would st, with		lar.
17	SURESHUT	APECO(K) COLT		3
18	T.R. Somvin	4 BE NW-2		Fend
19	Rames ti Annes teles	AE (K-q)	_	881
20	Shwitha S	A(5 (K-1)		Sla

Bengaluru Water Supply and Sewerage Project (Stage, Noting Report

In coordination with 2 NJS Consultants Co. Ltd.

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

S/N	Name	na, (Designation). Scopenibation	Contact Details. (IIel/E-mail)	CONTRACTOR	
21	G-V-NABARAT	A-c. whom D.c.of		ANG	
22	Midmohe	Busm		NX-	
23	Chamber 5	NEE BUSER		Jan.	
24	KR Ramakvich	EECMG-2/ANGO		and the	_
25	COULASA EKAL	n			-
26	Roveendrates	EE (nowwold)		Called	
27	B.C. Gargas	n EE (south)		2	
28	Mudestosa	AE ONGEDIT		MU9-	
29	Nanaymorry	CE Cimc. 3)		Dr. 1	
30	Role Alyadan	CESTPLEN)		84	_
31	Hemath Koms	ABELLIELE-2		Jarait	
32	Musulic.p	DE (6)66, 2		Marce	
33	G. Mahadarson	odg EE(DW)-2,	,	81/3/2	`
34	P. N. Nayak	CE/BOA			•
35	H. M. RAVINDRA			A s	
36	Dorangu. M	ACE (M-2) mag		Cy	
37	R.Ram	F-A		N	
38	H. Laushman	S.E.O, KSPCUS		V2->	<
39	SUPETAR	EE (Contra)		Pen	/
40	Somasholar	196. 5 Cm		Sono	

Bengaluru Water Supply and Sewerage Project (Stage Noting Report

In coordination with 2 NJS Consultants Co. Ltd.

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

SNEEDEN SETT	The state of the department of the state of			Section of the sectio	
S/N	Name	Designation/ Organization	Contact Details.	[七][[4][[2][[6][[6][[6][[6][[6][[6][[6][[6][[6	
41	DE TENDE	F TO CLESTON	_1(4	
42				Jon	
43	AMRUTESHPL	Romwyer word. Row SSB		4.	
44	R.S. Dakued	MWSSM .	_	JR.	
45	RANGASUAM	13. W.S I 13		P	
46	M. Vagheegho	JWICO		M	
47	Chandfum	Corporator - word()			
48	Prodey Box	AKEBWILD			
49	B.S. JAYALMA	BUSIB		dt=	
50	T- Pullays	r knows ABE		LA!	
51	B. Phivoprased	ACE (DOW), BINGET		P.C.	
52	A. Ravi	Samon Assistant		of the	
53	R. Brecenry	Aer (M)?		and the same	•
54	B.m. wagerabaf	who AEK King			
55	Dajeer-7	EETE-A		1	
56	An mape	7 COSROPPAN		Ausce	-dM
57	U CO BEADOS	(B) 194			۲ ۱
58	K-580000	1055		e011	
59	Shobbu Goi	when band 97			
60	Enforal!	DINAN			
				<u></u>	

Bengaluru Water Supply and Sewerage Project (Stagepy) ing Report

In coordination with 2 NJS Consultants Co. Ltd.

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

S/N	Name / Ax		©ontacı Details ∴ (ilel/l≅mail)	
61	Cholinege	E-14		2
62	PHANJUNATH	AFE		
63	Satham	Corpueper.		95
64	Slashi	C-H9M		Bashi-
65	Maroyana Ra	Dr. CA BOAD		Dock
66	all with so	Prec Barran	•	8
67	MANOHAS SINSH	AEr		Dangler
68	Moham	Str Ste (NISEN)		Me
69	Mizom	SR.77 (NZS)	,	iro
70	Reme	BBND '		
71	Reme	Design Enix		less.
72	Such Visughmay	Mord No. Siturary		D X 7
73	Savetta	Conformation BBMP.		
74	Charol partie	BBMP.		
75	Ragha Lui	Sha AIC		R
76	Ahred CK.	ARR		Ameel
77	Zijch hurton		W	M
78	Devros.	13. RM.P.		Sel
79	Romananda S.V. Douzh	BEE (E) BWW		Down
80	S.V. Daniel	ACE (M-4)		Deel

Bengaluru Water Supply and Sewerage Project (Stage, W) ting Report

In coordination with NJS Consultants Co. Ltd.

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

SIN	" Name	. Designation/ Organization	Contact Details (Tel/E-mail)	Signa- ture
81	K-R-Manjuras	Bwiles		My.
82	Jagaelcesh k.L			7700
83	PN. Rawnah	e CEC/RUSY		(P)
84	N. Satish	CE. WWT	<u>-</u>	000 AO
85	KEMPARA	RWSN		tre'
86	MALAH			
87	Suresh it	WOS BUSSING (Project)	Le
88	Lawn-	(N3) Conjoughts.	λ	Ange
89	Seemakuman	BBMP		Se .
90	Muthurpy.	/ penfor	(Rees
91	Krishremitz	Conjunction		- Later
92	Horish Knob	Have A.		Harin
93	Rajiv	BWSSO/ EE		02m
94	R.W. ZRINATH	BWSSB/EE		R.KC-S
95	Angmi	NISER		Ac
96	P. Solves	MILBI		7
97	Savilla	NTS		See
98	Servil	MJS		81
99	Chand Paste	CC.		- T
100	Profible	NJSIZI		Breekel

Bengaluru Water Supply and Sewerage Project (Stage, W)ting Report

In coordination with NJS Consultants Co. Ltd.

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

ŝ/N	Name	Designation/ Organization	Contact Details	Signa- ture
101	Rojet Kung.	224		y_
102	Kajeh Kung. Madhe	RussB.		
103	Bhagyala kshi	NISS		B
104(garged hava	ess		Gent
105	Vaibhar .	NII		
106	Shrekman'	BussB		2
107	M. Jayamma	PS to CE(F) BN SSB		AD
108	Sweld Sich	Dec. Exp.	•	8>
109	Yogesh Cokler	NJS		B
110	૪ ૭	ष्ठेव संवद्येव		مرا
111	Rajesh.y	Experate.		ROCK
112	2वी	Busse		
113	Rayani	RPTCL		Qu
114	Nanolini	coorposate		ne.
115	'Thoshi'	BMSSB	L	3,/
116	Doublina	Corporation		Ben
117	Rusil	Bemp		Rr.
118	Toupti	Boss		De.
119	ನಲಾನ	forluter Bond		(Str.
120	Lage Series	MG 505 -722 02 50		D.) 55°

Bengaluru Water Supply and Sewerage Project (Stage, W)ting Report

Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

S/N	Name	(ADesignation/ Organization :)	© Contact Deaths :: (Tel/Email):	. Signa∋ ture
121	Jayesh. S Pagin S.P Sofeste & . f. Sidoppusum. Jayaprallesh Timnegoude	コ・医・		56 :
122	Pagi S.P.	ARE 258 31-30 (proporter Driver BBMP BBMP		M.
123	ವ್ಯಾಕ್ಟಿತ್ವಂತ್ರ .ಕ್ಕೆ.	52 gl-zn		
124	Soldoppesung.	Compositor Donn		
125	Jayaprallesh	BBMP		70°
126	Timmegocala	BRMP	400	Tour.
127				
128				
129				
130		1.00		
131				
132				
133				
134				
135				
136				
137				
138				
139				
140				

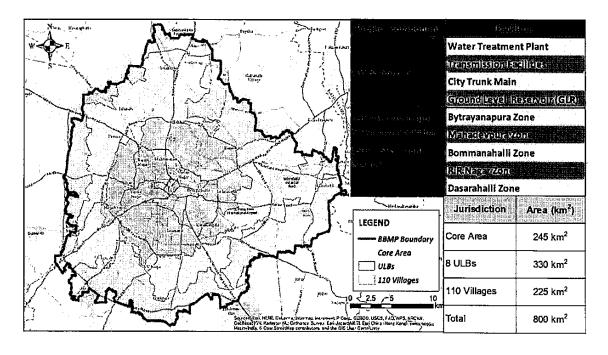
Bengaluru Water Supply and Sewerage Project (Stage V) ing Report

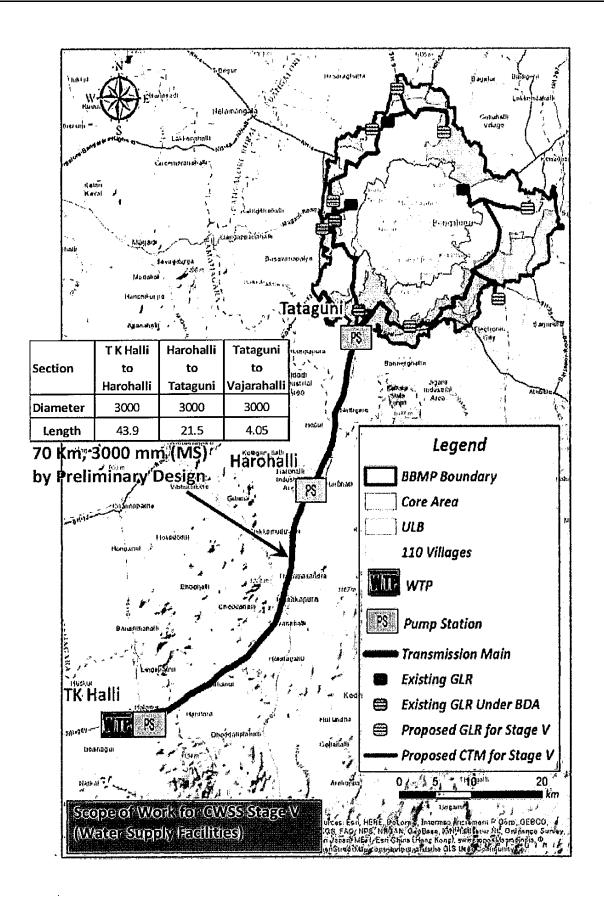
Date: 22-Aug-2017

enue: Cauvery Bhavan 4th Floor Conference Hall

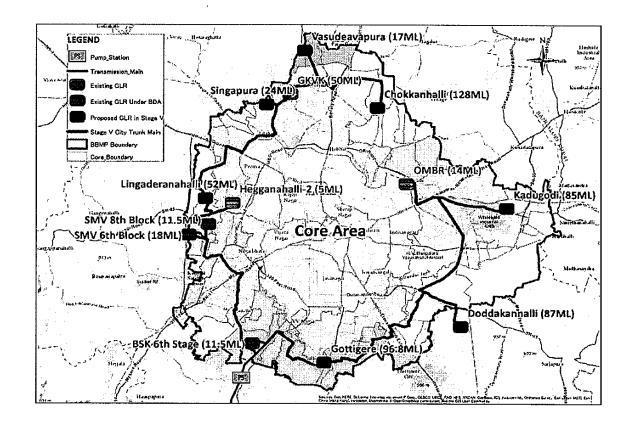
S/N	Name*	Designation/ Organization	©ontact:Details (Tel/E=mail)	Signá- ture
141				
142				
143				
144				
145				
146				
147				
148				
149				
150				
151				
152				
153				
154				
155	,			
156				
157				
158				
159				
160				

Bengaluru Water Supply and Sewerage Project (Stage V)

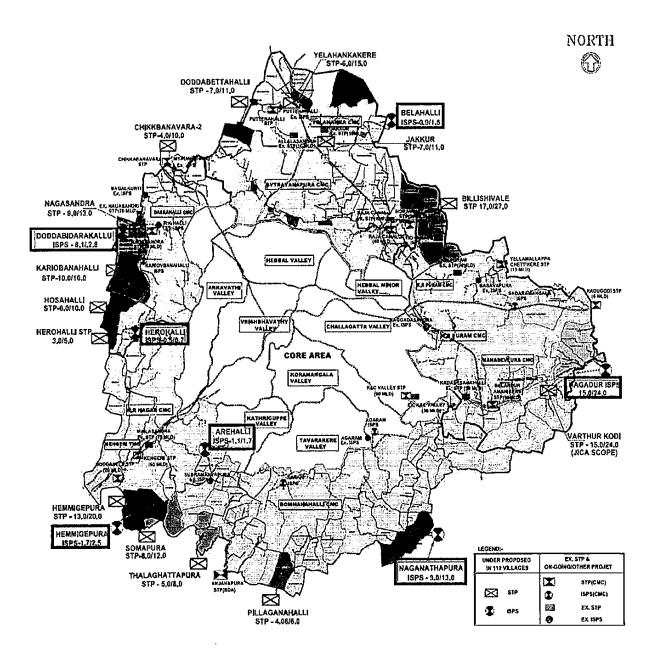

General


Bangalore is among the fastest growing cities in Asia and one of India's rapidly developing modern urban centers with quality residential complexes; tree lined street corridors, parks, natural valleys and lakes. In spite of its burgeoning growth the city is still attractive for its open parkland environment with naturally undulating topography and water bodies. It is aptly called the "Garden City". As a result of its moderate climate and cosmopolitan nature, the city has attracted people from all over India including pensioners and young professionals alike. It is also home to some of the most high tech industries of India and many multinational information technology companies and the city is often referred to as "Silicon Valley" of India. As a result of growth of information technology companies in the urban agglomeration the habitation started increasing and the cultivation lands are being converted to residential and industrial layouts.

Objective of the Project


The objective of the Project is to provide residents in BBMP area with safe and stable water supply, and sewerage services to meet increasing water demand and the need of environmental improve-ment and to contribute to the promotion of industry. The location of project area is presented in the location map, which covers the jurisdiction of the BWSSB incuding core, ULBs (Urban Local Bodies) and 110 villages, and pipeline routes from the water intake at Cauvery River to the en-trance of BBMP.

Overall Project Scope



Proposed GLR Capacities and Locations					
SI No	Name of GLR	Proposed GLR Capacity (MLD)	Location of GLR		
1	Gottigere GLR	112.9	Gottigere Village		
2	Doddakannahalli GLR	48	Hadosiddapura Village		
3	Kadugodi GLR	48	Kadugodi Plantation		
4	Chokkanhalli	128	Chokkanahalli Village		
5	Vasudevapura GLR	64.8	Harohalli Village		
6	Singapura	40	Singapura		
7	Lingadeeranahalli GLR	17.8	Lingadeeranahalli Village		

Scope of 110 Villages Sewerage Systems

-		STPs		ISPSs	Pipe Size	Length
Zone	(Nos)	(MLD)	(Nos)	(MLD)	(mm)	(km)
Bytrayanapura	4	7+6+7+17=37	1	0.9	ф300-ф1,000	50.3
Mahadevapura	1	15	1	15.0	ф300-ф900	44.7
Bommanahalli	2	4+5=9	1	9.0	ф300-ф1,200	65
RR Nagar	2	8+13=21	2	1.1+1.6=2.7	ф300-ф700	14.8
Dasarahalli	5	10+3+6+4+9=32	2	0.5+8.1=8.6	ф300-ф600	27.5
Total	14	114	7	36.2	-	202.3

Proposed Location of STPs and ISPSs

Zone	S	TPs .	ISPSs		
ze Zone	Name	Location	Name	Location	
	1.Jakkur	Adjacent Exsting STP Jakkkur			
Bytrayana	2. Yelahankakere	Near Yelahanka Lake	1.Bellahalli	Near Bellhalli Village	
pura	3. Doddabettahalli	Near Attur Lake			
	4. Bilishivalli	Near Rampur Lake			
Mahadev pura	5. Varthur	Near Varthur Kodi	2.Hagadur	Near Sammethanahalli Village	
Bommana	6. Pillaganahalli	Near Bilavardahalli Lake	3.Naganatha	Near Naganathapura Lake	
halli	7. Talaghattapura	Near Nice Road	pura		
	8. Somapura	Near Somapura Lake	4.Arehalli	Areahalli Village	
R.R.Nagar	9. Hemigepura	Near Nice Road	5.Hemmigep ura	Near Varasandra Lake	
	10. Kariobavanahalli	Near Kariobavanahlli Lake	6.Herohalli	Herohalli Village	
_	11. Herohalli	ohalli Near Kodihalli Lake			
Dasara	12. Hosahalli	Near Kachohalli Lake	7.Doddabida		
halli	13. Chikka	Near Chikkabanavar	rkallu	Near Anchepalya Lake	
	banavara-2	Lake			
	14. Nagasandra*	Adjacent Exsting STP Nagasandra			

ಬೆಂಗಳೂರು ನೀರು ಸರಬರಾಜು ಮತ್ತು ಒಳಚರಂಡಿ ಮಂಡಳಿ

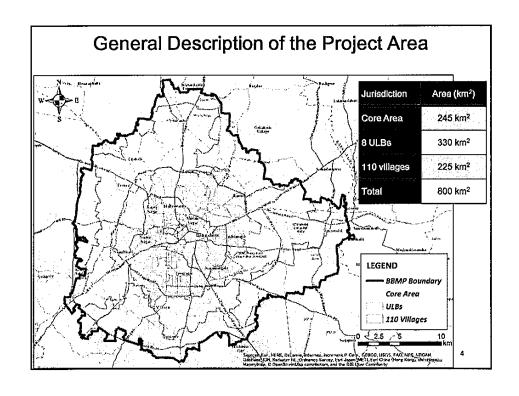
BANGALORE WATER SUPPLY AND SEWERAGE BOARD

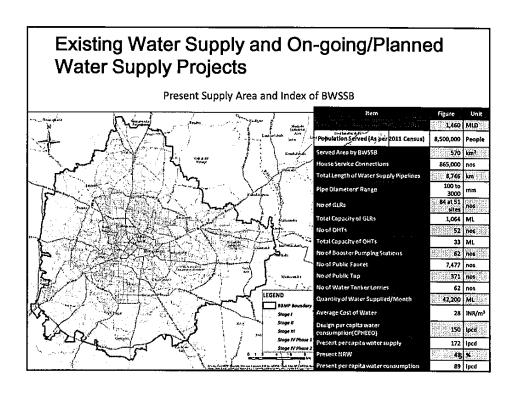
ಬೆಂಗಳೂರು ನೀರು ಸರಬರಾಜು ಮತ್ತು ಒಳಚರಂಡಿ ಯೋಜನೆ (೫ ನೇ ಹಂತ)

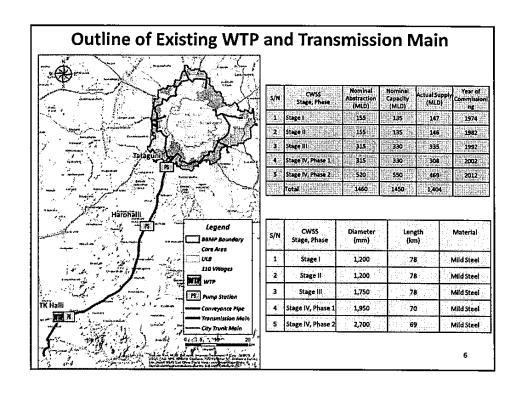
BENGALURU WATER SUPPLY AND SEWERAGE PROJECT (Stage -V)

Stakeholder Meeting 22nd/AUGUST/2017

BWSSB / JICA Survey Team

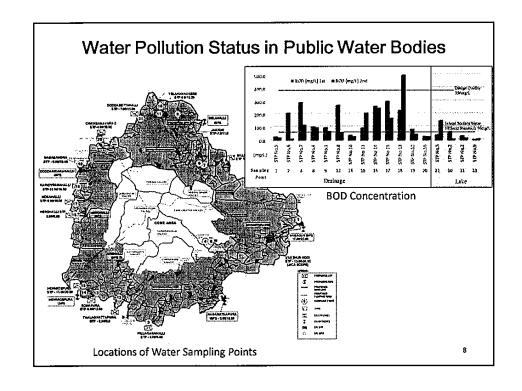

1


Purpose of this Discussion ಯೋಜನೆಯ ಉದ್ದೇಶ


- (1) Provide Information on the JICA assisted Water Supply and Sewerage Project
- Discuss on the Project and to promote understanding /Cooperation by Stakeholders
- ೧) ಜೈಕಾ ನೆರವಿನೊಂದಿಗೆ ನೀರು ಸರಬರಾಜು ಮತ್ತು ಒಳಚರಂಡಿ ಯೋಜನೆಯ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಒದಗಿಸುವದು.
- 9) ಯೋಜನೆಯ ಬಗ್ಗೆ ಅರಿವು, ಮುಂದುವರಿಯುವಿಕೆ ಮತ್ತು ಪಾಲುದಾರರಗೆ ಸಹಕಾರದ ಬಗ್ಗೆ ಚರ್ಚೆ.

.

Project Group	Project Component	Facilities
JICA Survey	CWSS Stage V	Water Treatment Plant
Project		Transmission Facilities
		City Trunk Main
		Ground Level Reservoir (GLR)
	110 Villages major Sewerage	Bytrayanapura Zone
	Facilities (STP, ISPS, Trunk	Mahadevpura Zone
	Sewer)	Bommanahalli Zone
		R.R.Nagar Zone
		Dasarahalli Zone
BWSSB	CWSS Stage V	Conveyance pipeline
Undertaken Project		Branch Feeding Pipes in the City to share water to Core /ULB
	110 Villages Water Supply	Distribution pipeline and, House
		connections
		Distribution facilities between GLRs
		and OHTs for permanent systems
	110 Villages Sewerage	Lateral sewer and House connection


Existing Sewerage Facilities	es and On-going/ Planned Sewerage
Outline of STP	Projects

Outline of STP						
1	K&C Valley_	308	Activated Sludge Process (ASP)			
2	V Valley	180	Trickling Filter (TF)			
3	Hebbal	60	ASP			
4	Raja Canal -i	40	Extended Aeration			
	Raja Canal -II	40	(EA)			
5	Cubbon Park	1.5	Membrane Bio Reactor			
6	Labaugh	1.5	EA			
7	Kempbudhi	1	EA			
8	(ITI Colony)		1			
9	Mailasandra	75	EA			
10	Kadabesanahalli	50	EA			
11	Nagasandra-I	20	EA			
	Nagasandra-II	20				
12	K.R. Purum	20	UASB			
13	Yelahanka	10	ASP+Filtration			
14	Jakkur	10	UASB+EA			
15	Chikkabanavar	5	SBR			
16	Kadugodi	6	SBR			
17	Horamavu	20	SBR			
18	Ye!lamallappche tti	15	SBR			
19	Doddabele	20	SBR			
20	Belanduramanik ere	90	ASP			
21	Kengerl	80	ASP			

Treated Sewage Discharge Standard

ilijanaan		Newstandards desired nameros
Нq	5.5 to 9.00	6.5 to 9.00
BODS	Not more than 20 mg/1	Not more than 10 mg/l
COD	Not more than 250 mg/l	Not more than 50 mg/l
ss	Not more than 30 mg/l	Not more than 10 mg/l
TK-N	Not more than 100 mg/l	Not more than 10 mg/las T-N
NH4·N	Not more than 50 mg/l	Not more than 5 mg/1
Nitrate Nitrogen	Not more than 10 mg/l	N.A.
Dissolved Phosphate	Not more than 5 mg/l	N.A.
PO4-P	N.A.	Not more than 2 mg/l
Fecal Coliform	N.A.	100 MPN/ 100ml
Total Residual Chlorine	Not more than 1 mg/1	N.A.

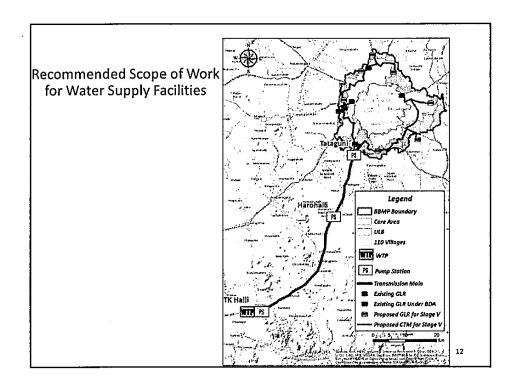
N.A.: Not Applicable

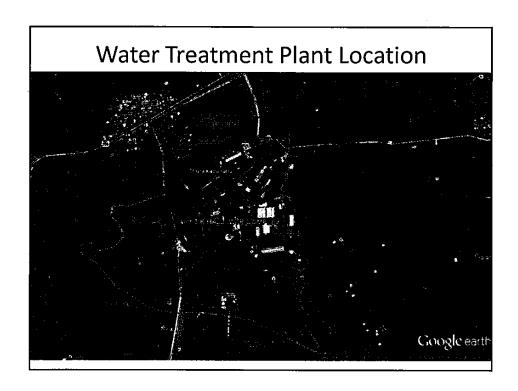
Projects Needs and Implementation Arrangements for Proposed **Projects**

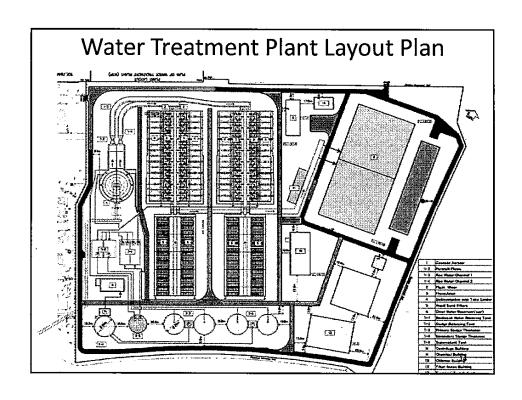
ಉದ್ದೇಶಿತ ಯೋಜನೆಯ ಬೇಡಿಕೆ ಮತ್ತು ಚಾಲನೆಗೆ ಸಲಕರಣೆ

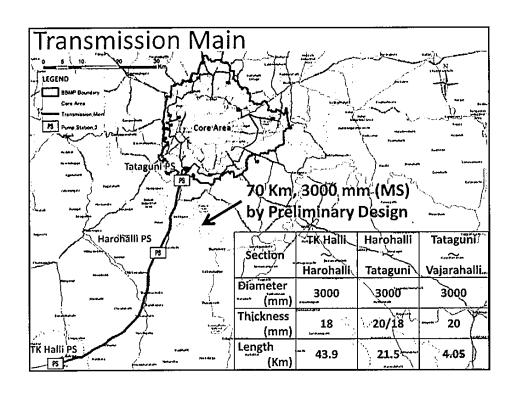
- (1) General Project Needs ಯೋಜನೆಗೆ ವಾಡಿಕೆಯ ಅಗತ್ಯ 1) To meet the increasing water demand and need of sanitation improvement ೧) ನೀರು ಮತ್ತು ನಿರ್ಮಲೀಕರಣದ ಬೇಡಿಕ ಮತ್ತು ಅಗತ್ಯತೆಯ ಹೆಚ್ಚುದರಿಯನ್ನು ಸರಿದೂಗಿಸುವದು
 - To use limited groundwater effectively avoiding over exploitation ಅಂತರ್ಜಲವನ್ನು ತುಂಬಾ ಪ್ರಜ್ಞಾಪೂರ್ವಕವಾದ ಬಳಕ ಹಾಗು ದುರ್ಲಾಭವನ್ನು ತಡೆಯುವದು.
- (2) **Specific Project Needs and Benefits**
 - Specific Project Needs and Benefits ಯೋಜನೆಯ ನಿರ್ದಿಷ್ಟ ಉದ್ದೇಶ ಮತ್ತು ಲಾಭ Water demand for the BBMP area can be satisfied up to 2034 in provision of CWSS Stage V Project. Therefore, satisfactory / continuous water supply can be practiced through the cooperation by all stakeholders. Uniform water supply services can be provided for entire BBMP area Profile of the city with environmental soundness can be enhanced. Investment in BBMP area both by domestic and foreign companies will be promoted.

- ೧) ಕಾವೇರಿ ೫ ನೇ ನೇ ಹಂತ ಯೋಜನೆಯಿಂದ ಬಿ ಬಿ ಎಂ ಪಿ ಪ್ರದೇಶಕ್ಕೆ ೨೦೩೪ ಇಸವಿವರೆಗೆ ನೀರಿನ ಬೇಡಿಕೆಯನ್ನು ಪೂರ್ಕೈಸುವುದು. ಇದರಿಂದ ಸಂತೃಪ್ತಿಯಾಗಿ ನಿರಂತರ ನೀರು ಸರಬರಾಜನ್ನು ಪಾಲುದಾರರ ಸಹಾಯದಿಂದ ಮಾಡುವುದು
- ೨) ನೀರು ಸರಬರಾಜನ್ನು ಬಿ ಬಿ ಎಂ ಪಿ ಪ್ರದೇಶಕ್ಕೆ ಸಮನಾಗಿ ಪೂರೈಕೆ
- a) ನಗರದ ಭೌಗೋಳಿಕ ಆದಾರದಂತೆ ಪರಿಸರಕ್ಕೆ ತಕ್ಕಂತೆ ವಿಸ್ತರಿಸುವುದು. ಬಿ ಬಿ ಎಂ ಪಿ ಪ್ರದೇಶಕ್ಕೆ ಸ್ಥಳೀಯ ಮತ್ತು ಹೊರದೇಶದ ಕಂಪನಿಗಳನ್ನು ಆಕರ್ಷಿಸಿ ನಗರವನ್ನು ಮೇಲ್ದರ್ಜೆಗೆ ಕೊಂಡೊಯುವುದು.⁹

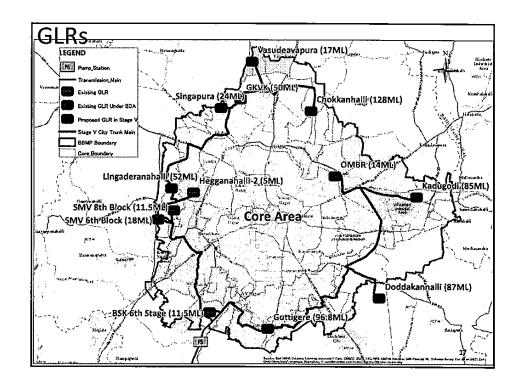

Water Demand for 110 villages

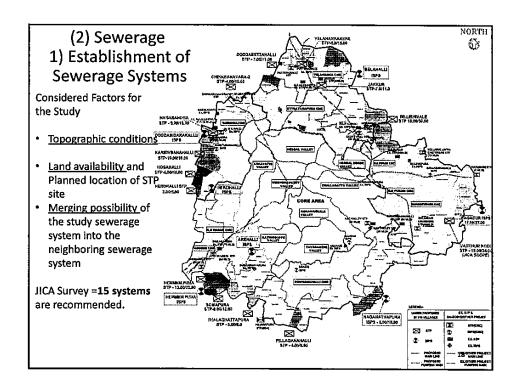

(1) Water Supply Water Demand of 110 villages


Sn	Name of Zone	Area (in population Projected Population Sq.Km.) as per		lation (Pers	on)	Water Demand (MLD)					
			census	2019	2024	2034	2049	2019	2024	2034	2049
1	Bytrayanpura (26 Villages)	55,0	243,210	342,710	416,991	593,904	941,116	61	74	106	168
2	Mahadevpura (23 Villages)	51.0	225,491	317,709	386,568	550,573	872,455	57	69	98	156
3	Bommanahalli (33 Villages)	64.3	285,174	401,838	488,932	696,365	1,103,482	72	87	124	197
4	R.R Nagar (17 Villages)	31.4	165,763	313,233	379,077	529,350	824,182	56	68	95	147
5	Dasarahalli (11 Villages)	23.5	193,656	272,877	332,030	472,882	749,344	49	59	84	134
		225.2	1,113,294	1,648,367	2,003,598	2,843,074	4,490,579	294	358	508	802
	Total		1,110,000	1,650,000	2,000,000	2,840,000	4,490,000	290	360	510	800
Wate	r Source		HILLIAN IZAN EK		41.4.	\$110.000 in 100.000		HALL LIES		\$10000	
	Cauvery			3351 111 15 K					775	775	775
	Ground water	HAMBER LINE							100	100	100
	Balance								517	367	73
											10


ಕಾವೇರಿ ಯೋಜನೆಯ 5 ನೇ ಹಂತದ ಕಾಮಗಾರಿ Scope of Work for CWSS Stage V

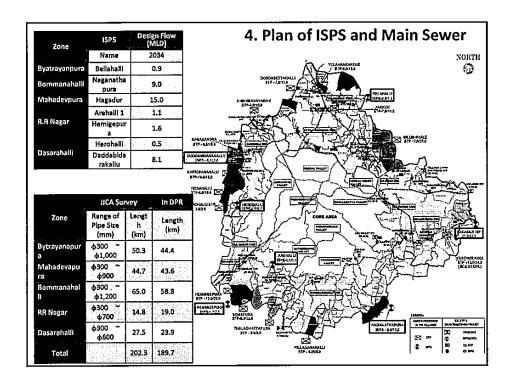
- WTP ನೀರು ಸಂಸ್ಕರಣಾ ಘಟಕ
- Pump Stations and CWR's
- ಯಂತ್ರಾಗಾರಗಳು ಮತ್ತು ಕಾವೇರಿ ನೀರು ಶೇಖರಣಾ ತೊಟ್ಟಿಗಳು
- Transmission Pipeline
- ನೀರು ಸಾಗಣೆ ಕೊಳವೆ ಮಾರ್ಗ
- City Trunk Main
- ನಗರದ ಪ್ರಮುಖ ಮುಖ್ಯ ಕೊಳವೆ
- City Reservoirs (GLR)
- ನಗರದಲ್ಲಿರುವ ಜಲಾಶಯಗಳು
- STP's and ISPS in 110 villages ೧೧೦ ಹಳ್ಳಿಗಳ ವ್ಯಾಪ್ತಿಯಲ್ಲಿರುವ ತ್ಯಾಜ್ಯ ನೀರು ಸಂಸ್ಕರಣಾ ಮತ್ತು ಯಂತ್ರಾಗಾರಗರು
- Trunk Sewers in 110 villages
- ೧೧೦ ಹಳ್ಳಿಗಳಲ್ಲಿ ಪ್ರಮುಖ ದೊಡ್ಡ ಗಾತ್ರದ ಒಳಚರಂಡಿ ಕೊಳವೆಗಳು

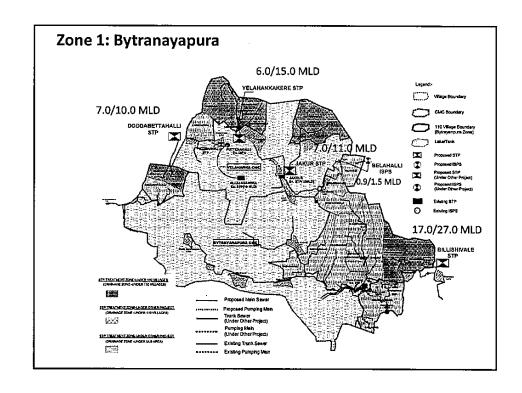


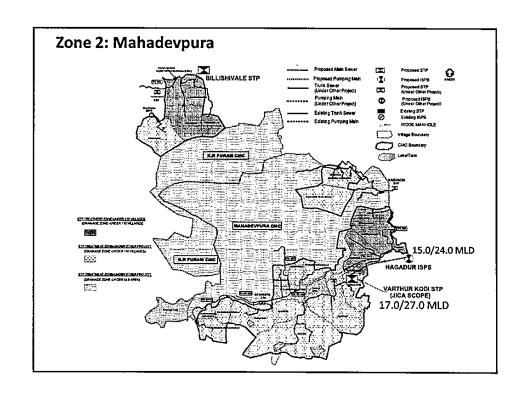


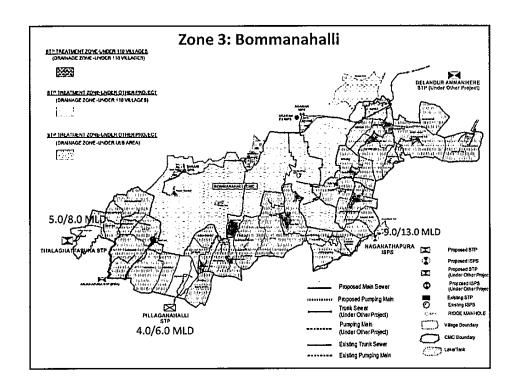
ಉದ್ದೇಶಿತ ನೆಲಮಟ್ಟದ ಜಲಾಶಯಗಳು ಹಾಗೂ ಸ್ಥಳ Proposed Ground Level Reservoirs(GLR's)

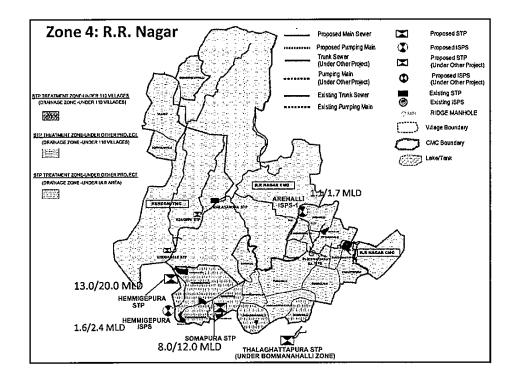
	Proposed	GLR Capacities and	Locations
ಕ್ರ ನಂ ಜಲಾಶಯದ ಹೆಸರು SI No Name of GLR		ಸಾಮರ್ಥ್ಯ Proposed GLR Capacity (ML)	ನೆಲಮಟ್ಟದ ಜಲಾಶಯದ ಸ್ಥಳ Location of GLR
1	Gottigere GLR	96.8	Gottigere Village
2	Doddakannahalli GLR	87	Hadosiddapura Village
3	Kadugodi GLR	85	Kadugodi Plantation
4	Chokkanhalli	128	Chokkanahalli Village
5	Vasudevapura GLR	17	Harohalli Village
6	Singapura	24	Singapura
7	Lingadeeranahalli GLR	52	Lingadeeranahalli Village

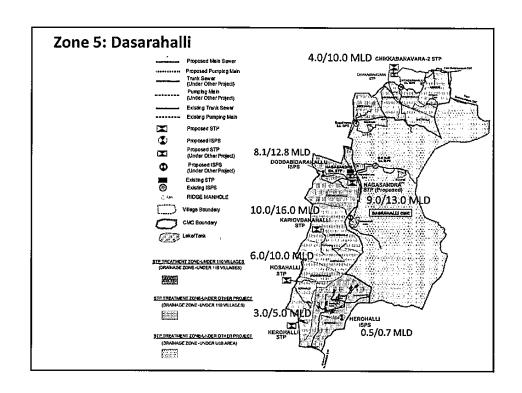



19


3) Plan of Sewage Treatment Plant
Application of EA process with chlorination of effluent is recommended for all 14 STPs. For sludge treatment, thickening and mechanical dewatering process shall be adopted. But, in case of the STPs with less than 10 MLD capacity, thickening process may be omitted depending on types of dewatering machine


	Naa	Flow (MI D)	Flow (MI D) Treatmen		Sludge
Zone	Name	Flow (MLD)	Sewage	Sludge	Disposat/ Utilization
	Jakkur Changed from Kattigenahalli	7.0	EA + CHL	(TH) + DW	Fertilizer for farmland
Bytrayanapura	2. Yelahankakere	6.0	ditto	ditto	ditto
	3. Doddabettahalfi	7.0	ditto	ditto	ditto
	4. Bilishivalli	17.0	ditto	TH + DW	ditto
Mahadovpura	5. Varthur	15.0	ditto	ditto	ditto
	8-Naganathapura	9,0	Changed to ISPS		
Bommanahalli	7. Pillaganahalli	4.0	ditto	(TH) + DW	ditto
	8. Talaghattapura	5,0	ditto	ditto	ditto
D.D. N	9. Somapura	8.0	ditto	ditto	ditto
R.R.Nogar	10. Hemigepura (&11)	13.0 (Merged)	ditto	TH + DW	ditto
	13. Kariobavanahalli	10.0	ditto	ditto	ditto
	14. Herohalil	3.0	ditto	(TH) + DW	dillo
Dasarahalli	15, Hosahalli	6.0	ditto	ditto	dillo
	16. Chikkabanavara-2	4.0	dillo	ditto	ditto
	12. Nagasandra*	9.0	ditto	ditto	ditto
Total	14 STPs	114 MLD	EA + CHL	-	-


Note: EA: Extended Aeration Process, CHL: Chlorination, TH: Thickener, (): Possibility of Cancel, DW: Mechanical Dewatering



Construction Cost for the Project (JICA funded)

Unit: Crore

No.	Project Budget					
NO.		Component	Cost			
1	Water Supply	Component	31,825			
2	Sewerage Con	nponent .	8,819			
	Total Base C Excluded)	cost of the Project (Land Acquisition	40,644			
	Funding Patter	·				
	ЛСА	- 85 %				
	GOK	- 7.5 %				
	BWSSB	- 7.5 %				

Associated Projects of BWSSB

No	Project	Funding Source	Implementation Period	Detailed information
1.	110 Villages Water Supply	GOK (67%) + BWSSB (33%)	24 Months	GBWASP funds
2.	UFW Reduction	GOK (67%) + BWSSB (33%)	36 Months (Construction) + 5 years Maintenance	GBWASP funds
3.	110 Villages Sewerage: Lateral sewers and House connections	BWSSB	Lateral sewers – 36 months House connections as per requests	BCC funds
4.1	Stage V Project Conveyance pipeline	BWSSB	24 Months	Already awarded
4.2	Stage V Project Branch Feeding Pipes for sharing water from Stage V to Core & ULBs	BWSSB	36 Months	

27

ಸಮಾಲೋಚಕರು ಸೇವೆಯ ಗುರಿ **Scope of Consultancy Services**

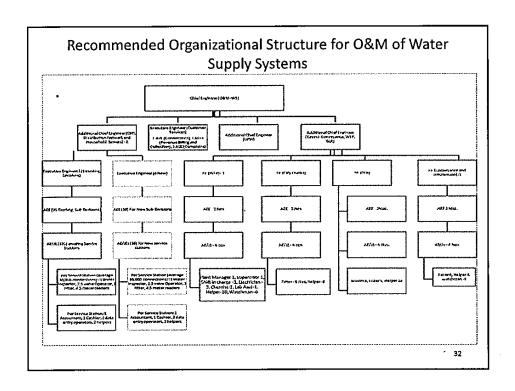
- The Design and Project Management Consultants will be appointed
- as per the procurement guidelines of JICA ಯೋಜನೆಯ ವಿನ್ನಾ ಸ ಮತ್ತು ಕಾರ್ಯನಿರ್ವಣೆಗೆ ಜೈಕಾ ಮಾರ್ಗದರ್ಶದದ ಆಧಾರದಂತೆ ಸಮಾಲೋಚಕರು ನೇಮಕ ಮಾಡಿ ಕೊಳ್ಳುವುದು
- The Consultants will be responsible for
- ಸಲಹೆಗಾರರ ಹೊಣೆಗಾರಿಕೆಗಳು
 - Design and Engineering
 - ವಿನ್ನ್ಯಾಸ ಮತ್ತು ತಾಂತ್ರಿಕತೆ
 - Tendering assistance for procurement ಖರೀದಿಸಲು ದರ್ಖಾಸ್ತುವಿಗೆ ಸಹಾಯ
 - Project Management ಯೋಜನೆಯ ಕಾರ್ಯನಿರ್ವಹಣಿ
 - Construction supervision and Quality Control ಕಾಮಗಾರಿಯ ವೀಕ್ಷಣೆ ಮತ್ತು ಗುಣಮಟ್ಟ
 - Commissioning and Testing ಪರೀಕ್ಷೆ ಮತ್ತು ಕಮಿಷನಿಂಗ್

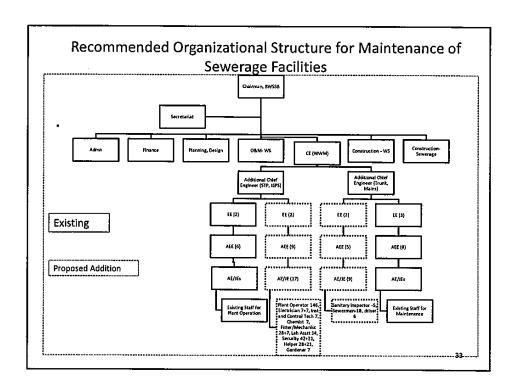
ಸಲಹಾ ಸೇವೆಯ ಮಾಹಿತಿ Input of Consultancy Services

- Period of Consultancy Services 70 months
- ಸಲಹಾ ಸೇವೆಯ ಅವಧಿ-೭೦ ತಿಂಗಳು
- Input of Experts ತಜ್ಞರ ಬಳಕೆ
 - International Experts 492 manmonths
 - ಅಂತಾರಾಷ್ಟ್ರೀಯ ತಜ್ಞರು-೪೯೨ ತಿಂಗಳದಿನ
 - National Experts 2515 manmonths
 - ರಾಷ್ಟ್ರೀಯ ತಜ್ಞರು-೨೫೧೫ ತಿಂಗಳದಿನ
 - Supporting Staffs 2112 manmonths
 - ಅಭಿಯಂತರರು -೨೧೧೨ ತಿಂಗಳದಿನ

2

Operation and Maintenance of Water Supply and Sewerage Facilities


ನೀರು ಸರಬರಾಜು ಮತ್ತು ಒಳಚರಂಡಿಯ ಕಾರ್ಯಾಚರಣೆ ಮತ್ತು ನಿರ್ವಹಣಿ


The appointed Contractors will be responsible for 10 years of O&M for the water supply and sewerage facilities

ನಿಯೋಜಿತ ಗುತ್ತಗೆದಾರರಿಗೆ ನೀರಿನ ಮತ್ತು ಒಳಚರಂಡಿಯ ಸೌಲಭ್ಯವನ್ನು ೧೦ ವರ್ಷದವರಗೆ ಕಾರ್ಯಾಚರಣೆ ಮತ್ತು ನಿರ್ವಹಣಿಯ ಜವಾಬ್ದಾರಿಯಾಗಿರುತ್ತದೆ

The distribution systems and sewerage network O&M will be undertaken by BWSSB

ಜಲಮಂಡಳಿಯಿಂದ ವಿತರಣಾ ವ್ಯವಸ್ಥೆ ಮತ್ತು ಒಳಚರಂಡಿ ಜಾಲದ ಕಾರ್ಯಾಚರಣೆ ಮತ್ತು ನಿರ್ವಹಣಿ ಮಾಡಲಾಗುತ್ತದೆ

Environmental and Social Considerations

ಸಾಮಾಜಿಕ ಮತ್ತು ಪರಿಸರದ ಪರಿಗಣನೆ

(1) Baseline Situation ಪ್ರಾರಂಭಿಕ ಸಂದರ್ಭ

- 1) Site Description ಜಾಗದ ವಿವರಣೆ
- WTP / Pump Stations: Existing BWSSB's Facility Areas
 ನೀರು ಸಂಸ್ಕರಣಾ ಘಟಕ / ಯಂತ್ರಾಗಾರಗಳು ಪ್ರಸ್ತುತ ಜಲಮಂಡಳಿಯ ಸೌಲಭ್ಯದ ಪ್ರದೇಶ
- Clear Water Transmission: Existing BWSSB's Pipeline Road ನಿಖರ ನೀರು ಸಾಗಿಸುವಿಕೆ ಕೊಳವೆ ಮಾರ್ಗ - ಪ್ರಸ್ತುತ ಜಲಮಂಡಳಿಯ ಕೊಳವೆ ಮಾರ್ಗ ರಸ್ತ
- City Trunk Main: Public Roads in Built-up Areas ನಗರದ ಪ್ರಮುಖ ಮುಖ್ಯ ಕೊಳವೆ – ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ ಪ್ರದೇಶದ ರಸ್ತಗಳು
- GURS Vacantiands of Government (Gov BBMP, BDA) Lands in Built-up Areas ನಲಮೆಟ್ಟಿದ ಜಲಾಶಯ: ಸರ್ಕಾರದ ಖಾಲಿ ಜಾಗ (ಬಿ ಬಿ ಎಂ ಪಿ, ಬಿ ಡಿ ಎ) ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ ಪ್ರದೇಶದ ಖಾಲಿ ಜಾಗ

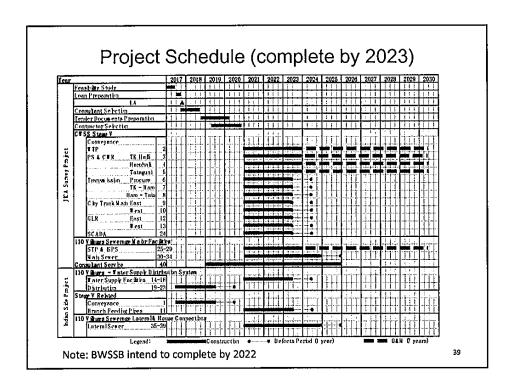
Sewerage Project for 110 Villages: ೧೧೦ ಹಳ್ಳಿಗಳಲ್ಲಿ ಒಳಚರಂಡಿ ಯೋಜನೆ

- STRS://ISRSs: Vacantillands:of:Government (GoX, BBMP; BDA) Lands in Built-up Areas ಸರ್ಕಾರದ ಖಾಲಿ ಜಾಗ ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ ಪ್ರದೇಶದ ಖಾಲಿ ಜಾಗ
- Main Sewers: Public Roads and Along the Drain in Built-up Areas ಮುಖ್ಯ ಒಳಚರಂಡಿ ಕೊಳವೆ : ಸಾರ್ವಜನಿಕ ರಸ್ತ ಮತ್ತು ಸಮಾನಂತರ ಚರಂಡಿಯ ಉದ್ದಗಲಕ್ಕೂ.
- 2) EIA Requirement EIA ಅವಶ್ಯಕತೆ
- The projects (CWSS Stage V, Sewerage project for 110 Villages) do not require EIA according to EIA Notification 2006. ಯೋಜನೆಗಳು (ಕಾವೇರಿ ನೀರು ೫ ನೇ ಹಂತ, ಒಳಚರಂಡಿ ಯೋಜನೆ ೧೧೦ ಹಳ್ಳಿಗಳಿಗೆ) EIA ಅಭಿಯೋಜನೆಯ ೨೦೦೬ ರಂತೆ ಅವಶ್ಯಕತೆಯಿರುವುದಿಲ್ಲ

(3) Recommended Mitigation Measures

- Coordination mechanism with Stakeholders
- Appropriate traffic management at pipe laying works
- Incorporation of requirements for mitigation measures into bidding documents, contract documents
- Examination of Contractor's construction plan, O& M plan
- Environmental monitoring (Dust, noise, water quality, odour)
- Climate change: Selection of higher efficient pump units,
- Recommendation of future installation of biogas recovery system (Biogas power generation, incineration, etc.)

(4) Land Acquisition ಭೂಮಿಗಳಿಗೆ


The project sites to require Land Acquisition or Land Transfer: ಯೋಜನಾ ಜಾಗದ ಅಗತ್ಯಗೆ ದರ್ಖಾಸ್ತುವಿಗೆ ಅಥವಾ ವರ್ಗಾವಣೆ

- CWSS Stage V Project: GLRs ಕಾವೇರಿ ೫ ನೇ ಹಂತ ಯೋಜನೆ : ನೆಲಮಟ್ಟದ ಜಲಾಶಯ
- Sewerage Project for 110 Villages: STPs and ISPSs ೧೧೦ ಹಳ್ಳಿಗಳಿಗೆ ಒಳಚರಂಡಿ ಕಾಮಗಾರಿ
- All project sites located on government lands (GoK, BBMP, BDA) ಎಲ್ಲಾ ಒಳಚರಂಡಿ ಯೋಜನೆಯ ಜಾಗವು ಸರ್ಕಾರಿ ಪ್ರದೇಶವಾಗೇರಬೇಕು
- Resettlement is not required.
- Land Transfer of ALL Project Sites to BWSSB is required before implementation of the projects.
- ಯೋಜೆನೆಯ ಪ್ರಾರಂಭಿಕ ಹಂತದಲ್ಲೇ ಎಲ್ಲಾ ನಿವೇಶನಗಳು ಜಲಮಂಡಳಿಗೆ, ವರ್ಗಾವಣೆಯಾಗಬೇಕು

37

Implementation Plan

ಕಾರ್ಯಾಚರಣೆ ರಚನೆ

Institutional Development

ಸಂಸ್ಥೆಯ ಅಭಿವೃದ್ಧಿ

ಪಾಲುದಾರರಿಂದ ಅಪೇಕ್ಷ Expectations from the Key Stakeholders

Revenue Department ಕಂದಾಯ ಇಲಾಖೆ

Govt Land to be Transferred to BWSSB With in Time Frame. ಕಾಲಾವಧಿಯೊಳಗೆ ಸರ್ಕಾರೀ ಜಾಗವನ್ನು ಜಲಮಂಡಳಿ ವರ್ಗಾಯಿಸುವುದು

BDA ಬೆಂಗುಳೂರು ಅಭಿವೃದ್ಧಿ ಪ್ರಾಧಿಕಾರ

BDA Land to be transferred to BWSSB with in Time Frame. ಕಾಲವಾದಿಯೊಳಗೆ ಬಿ ಡಿ ಎ ಯಿಂದ ಜಲಮಂಡಳಿಗೆ ಜಾಗವನ್ನು ವರ್ಗಾಯಿಸುವುದು

Some of the identified land for immediate attention. ಗುರುತಿಸುವ ಜಾಗವನ್ನು ತಕ್ಷಣ ಗಮನ ಹರಿಸುವುದು

- STP Land Near Talaghattapura Survey No.41 of Thalaghattapura Village ತಲಘಟ್ಟಪುರ ಗ್ರಾಮದೊಳಗಿನ ತಲಘಟ್ಟಪುರ ಸರ್ವೇ ನಂ ೪೧ ಜಾಗವನ್ನು ತ್ಯಾಜ್ಯನಿರು ಸಂಸ್ಕರಣೆ ಘಟಕ
- STP Land Near Sompura Lake Survey No 2,3(P) at Somapura Village
- ಸರ್ವೇ ನಂ ೨,೩ (ಪಿ) ನಲ್ಲಿ ಸಂಸ್ಕರಣೆ ಘಟಕ ಸೋಮಪುರ ಗ್ರಾಮ
- ISPS Land Near Varasandra Lake Survey No.25 at Varasandra Village
- ವಾರಸಂದ್ರ ಗ್ರಾಮ ಸರ್ವೇ ನಂ ೨೫ ವಾರಸಂದ್ರ ಕೆರೆ ISPS ಜಾಗ

41

ಪಾಲುದಾರರಿಂದ ಆಪೇಕ್ಷ ಮುಂದುವರಿದಿದೆ Expectations from the Key Stakeholders (Cont..)

Permission to provide Power Supply to STP's ,ISPS, Pumping station at GLR's ವಿದ್ಯುತ್ ಸಂಪರ್ಕದನ್ನು STP ಮತ್ತು ISPS ಯಂತ್ರಾಗಾರಗಳಿಗೆ ಒದಗಿಸಲು ಅನುಮತಿ

- Power Requirement for ISPS / STP: 1,14,884 Kwh / day ವಿದ್ಯುತ್ ಅಗತ್ಯತೆ ISPS ಗೆ ಪ್ರತಿದಿನ 1,14,884 Kwh /day
- Power Requirement for Pumping Station GLR: 329 Kwh / day – ಯಂತ್ರಾಗಾರಕ್ಕೆ ವಿದ್ಯುತ್ ಬೇಡಿಕೆ 329 Kwh ಪ್ರತಿದಿನ

Permission to provide Power Supply to WTP in T K Halli, Pumping station's ಟಿ ಕೆ ಹಳ್ಳಿ ಯಂತ್ರಾಗಾರಕ್ಕೆ ನೀರು ಸಂಸ್ಕರಣೆ ಫಟ್ಟಕ್ಕಕ್ಕೆ ವಿದ್ಯುತ್ ಸರಬರಾಜುವಿಗೆ ಅನುಮತಿ

- Power Requirement for Pumping Station at T K Halli :3,36,346 Kwh/day ಯಂತ್ರಾಗಾರಕ್ಕೆ ವಿದ್ಯುತ್ ಬೇಡಿಕೆ ಟಿ ಕೆ ಹಳ್ಳಿ ಘಟ್ಟಕ್ಕಕ್ಕೆ3,36,346 KWH ಪ್ರತಿದಿನ
- Power Requirement for Pumping Station at Harohalli: 3,93,101 Kwh/day – ಯಂತ್ರಾಗಾರಕ್ಕೆ ವಿದ್ಯುತ್ ಬೇಡಿಕೆ ಹಾರೋಹಳ್ಳಿ ಘಟ್ಟಕ್ಕಕ್ಕೆ3,93,101 Kwh ಪ್ರತಿದಿನ
- Power Requirement for Pumping Station at Tataguni: 3,87,960 kwh/day ಯಂತ್ರಾಗಾರಕ್ಕೆ ವಿದ್ಯುತ್ ಬೇಡಿಕೆ ತಾತಗುಣಿ ಫಟ್ನಕ್ಕಕ್ಕೆ:3,87,960 kwh ಪ್ರತಿದಿನ
- Power Requirement for WTP: 70666 KWH/day ವಿದ್ಯುತ್ ಬೇಡಿಕ ಸಂಸ್ಕರಣೆ ಘಟ್ಟಕ್ಕಕ್ಕೆ 70666 Kwh

ಪಾಲುದಾರರಿಂದ ಆಪೇಕ್ಷ ಮುಂದುವರಿದಿದೆ Expectations from the Key Stakeholders (Cont..)

- Pollution Control Board ಮಾಲಿನ್ಯ ನಿಯಂತ್ರಣ ಮಂಡಳಿ Permission for construction STP's near by lake as per Govt Direction held 11-1-2017 ಕೆರೆಯ ಹತ್ತಿರದಲ್ಲಿ ತ್ಯಾಜ್ಯನಿರು ಸಂಸ್ಕರಣೆ ಘಟ್ರಕ್ಕದ ಕಾಮಗಾರಿ ಮತ್ತು ಕೊಳವೆಮಾರ್ಗ ಅಳವಡಿಸಲು ಸರ್ಕಾರದ ನಿರ್ದೇಶನದಂತೆ ದಿನಾಂಕ 11-1-2017 ರ ಆದಾರದಂತಿರುತ್ತದೆ
- Traffic Police ಟ್ರಾಫಿಕ್ ಪೊಲೀಸ್ Permission for Traffic diversion ಟ್ರಾಫಿಕ್ ಬದಲಾಯಿಸಲು ಅನುಮತಿ
- ಟ್ರಾಫಿಕ್ ಬದಲಾಯಿಸಲು ಅನುಮತಿ

 LCDA
 - Permission to lay the pipe line and construct the STP near by lake as per Govt Direction held 11-1-2017 ಕೆರೆಯ ಹತ್ತಿರದಲ್ಲಿ ತ್ಯಾಜ್ಯನಿರು ಸಂಸ್ಕರಣೆ ಘಟ್ಟಕ್ಕದ ಕಾಮಗಾರಿ ಮತ್ತು ಕೊಳವೆಮಾರ್ಗ ಅಳವಡಿಸಲು ಸರ್ಕಾರದ ನಿರ್ದೇಶನದಂತೆ ದಿನಾಂಕ 11-1-2017 ರ ಆದಾರದಂತಿರುತ್ತದೆ
- Elected Representative's Cooperation for Implementation of the project and make the people aware of the benefits of the project ಚುನಾಯಿತ ಪ್ರತಿನಿಧಿ ಯೋಜನೆಯನ್ನು ಕಾರ್ಯಗತಗೊಳಿಸಲು ಸಾರ್ವ ಜನಿಕರಿಗೆ ಯೋಜನೆಯ ಉಪಯುಕ್ತತೆಯ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸಲು ಸಹಕಾರ ಕೋರಲಾಗಿದೆ

43

ಪಾಲುದಾರರಿಂದ ಅಪೇಕ್ಷೆ ಮುಂದುವರಿದಿದೆ Expectations from the Key Stakeholders (Cont...)

Citizens of the 110 villages area: ೧೧೦ ಹಳ್ಳಿಯ ಪ್ರದೇಶದ ನಾಗರಿಕರು

Co-operation is requested from the Citizens of the 110 villages area who will be the main Stake Holder for this project. The project is going to improve the water and sanitation facilities in the 110 villages area.

೧೧೦ ಹಳ್ಳಿಗಳಲ್ಲಿರುವ ನಾಗರಿಕರು ಪ್ರಮುಖ ಪಾಲುದಾರರಾಗಿದ್ದು ಇವರ ಸಹಕಾರವನ್ನು ಕೋರಲಾಗಿದೆ. ಈ ಯೋಜನೆಯಿಂದ ನೀರಿನ ಮತ್ತು ಒಳಚರಂಡಿ ಸೌಲಭ್ಯವು ೧೧೦ ಹಳ್ಳಿ ಪ್ರದೇಶಕ್ಕೆ ದೊರಕುವುದರಿಂದ ಇದು ಅವರಿಗೆ ತುಂಬ ಉಪಯುಕ್ತವಾಗಿಲಿದೆ

The cooperation of the citizens are critical for the success of the project.

ಈ ಯೋಜನೆಯೇ ಯೆಶಸ್ವಿಗೆ ನಾಗರಿಕರ ಸಹಕಾರ ಪ್ರಮುಖವಾಗಿರುತ್ತದೆ

44

Thank You ದಂದನೆಗಳು

45

ಯೋಜನೆಯದ ವ್ಯತಿರಿಕ್ತ ಪರಿಣಾಮಗಳು

(2) Potential Adverse Impacts by the Projects

Both CWSS Stage V Project and Sewerage Project for 110 <u> Villages : ಕಾವೇರಿ ೫ ನೇ ಹಂತ ಮತ್ತು ೧೧೦ ಹಳ್ಳಿಗೆ ಒಳಚರಂಡಿ</u>

- Social infrastructure / service: Impacts on underground utilities, traffic ಸಾಮಾಜಿಕ ಮೂಲಬೂತ ಸೌಕರ್ಯಗಳು/ಸೇವೆ : ಬೂಮಿಯೊಳಗಿನ ಸೌಕರ್ಯಗಳ ಮೇಲೆ ವರಿದಾಮ ವಾಹನದಟ್ಟಣೆ Occupational health & safety: Impacts on work environment ಉದ್ಯೋಗದಾರರ ಅರೋಗ್ಯ ಮತ್ತು ರಕ್ಷಣೆ : ಕೆಲಸದ
- Water pollution: Water pollution due to malfunction of facilities ನೀರಿನ ಮಾಲಿನ್ನತ ಸೌಲಭ್ಯತಯಿಂದ ನೀರಿನ
- Waste (Excavation soil, treated sludge) ತ್ಯಾಚ್ಚಿ (ಮಣ್ಣಿನ ಆಗತ, ಶುದ್ಧಿಕರಿಸಿದ ತ್ಯಾಚ್ಚಿ) Noise: Noise due to construction equipment, pump operation ಶಬ್ದ ಮಾಲಿನ್ಯ : ಕಾಮಗಾರಿ ಸಾಮಗ್ರಿಗಳಿಂದ ಮತ್ತು ಯಂತ್ರಗಳ ಚಾಲನೆಯಿಂದ
- Accidents: Accidents due to construction and operation ಅಪಘಾತ : ಕಾಮಗಾರಿ ಮತ್ತು ಕಾರ್ಯನಿರ್ವಹಣೆಯಿಂದ
- Climate change (Generation of GHGs): due to consumption of electricity ವಾಹಾವರಣ ಬದಲಾವಣೆ (Generation of GHGs) ವಿದ್ಯುತ್ಮಕ್ತಿ ಬಳಿಕೆಯಿಂದ

Sewerage Project for 110 Villages:

• Odour: due to treatment and transport of sludge ವಾಸನೆ : ಸಂಸ್ಕರಣೆ ಮತ್ತು ಕೆಸರು ಸಾಗಾಣಿಕೆಯಿಂದ

46

Approach to Institutional Development

- Situational Analysis: Review, Feedback, Analysis and validation of "AS IS" situation of BWSSB encompassing its Plans, Policies, Management Systems, Organizational Structure, Human Resources, other resources, Work Environment etc.
- Review of Vision, mission, mandate and plans/targets of BWSSB, emerging external developments, public demand etc.
- · Projection of main attributes of a TO BE State for BWSSB
- Assessment of gaps in present (AS IS) and desired (TO BE) scenario
- · Development of strategies to bridge the gap
- Development of action plans with resource requirements
- Implementation Plan
- · Monitoring, Evaluation, Feedback and Integration Plan

47

Cauvery Water Supply and Sewerage Project (Stage V)

Bangalore Water Supply and Sewerage Board

In Coordination with NJS Consultants Co. Ltd.

		Minutes of Discussi	ons	
F	Purpose/Objective	Stakeholder Meeting		
	Meeting Date	22 nd August 2017		11:00 - 13:30
Ī	Venue	BWSSB Auditorium, 4th floor	eporter Name	Mr.Yoshihiro Kirishima
	Attendees	Stakeholders (list attached): 125 p	persons	
D	ocuments			
	Meeting Notice			
	Meeting Agenda			
	Short Write-up on the	Project		
	Project Presentation	4		
	Topics	Actions /	Decisions	
2.	Explanation of the Project	 all the participants and provided a Presentation on the Project was BWSSB 	-	
3.	Clarification & recommendation on proposed project	 Following recommendations are (1) Karnataka State Pollution Control It was suggested to explore with Private Partnership like BBMP area. This is mainly Care should be taken that unalas / Storm Water Drains KSPCB informed that all pathe project (2) Bangalore Development Authoric Engineer It was conveyed that BDA implementation of the Project (3) Corporator, Ward No 196 (110) Welcomed the decision to take Sanitary problem to be attended at the All the road restoration work be taken up on priority. Better coordination is required Departments (4) Corporator, Ward No 1 (110 Villowelcomed the decision to take Piped water Supply to be presented. 	the possibility of set the possibility of set and the possibility of set and the possibility of set and the possible support will an and the possible support will assist the possible support will extend all assist the possible support will extend all assist the possible support will extend all assist the project will ages), Mr K Somake up the project in the project will ages), Ms Chandran ake up the project	etting up of STP Courses etc in the ity of land issued not diverted into the extended for ented by Chief estance for smooth mashekhar emplementation to and Government to the course of the extended for smooth and Government to the course of the extended for smooth and Government to the course of the extended for

- The present water supply is from Bore wells which are not reliable and frequenty under repair. (5) Corporator, Ward No 192 (110 Villages), Mr. Anjanappa Welcomed the decision to take up the project Water problem to be attended on priority Actual start of the works to be intimated in advance Corporator, Ward No 14 (110 villaged), Mr Narasimha Naidu Water supply to be provided on priority. Requested to speed up the project implementation as the borewells are all drying up Coordination with all departments are required for smooth project implementation Corodination meeting with all the coorporators, MLA's during project implementation Borewell maintenance to be taken up on priority It was requested for arranging a visit to the Water Works facility of BWSSB for the Corporators so that they get proper exposure and hence can explain the public accordingly.
- (7) Corporator, Ward No 197 (110 villages), Ms Shobha Narayan
 - Welcomed the decision to take up the project as 60% of the area in 110 villages area is having no water.
 - Pro Rata charges to be collection by disconnection of the sewerage connections.
 - Sanitary issues to be resolved
- (8) Corporator, Ward No 85 (110 villages)
 - Welcomed the decision to take up the project.
 - The project implementation to be expedited
- (9) Corporator, Ward No 26 (110 villages), Ramamurthy Nagar
 - Welcomed the decision to take up the project.
 - The project implementation to be expedited
- Protection of Vulnerable groups in society BWSSB indicated that special provisions will be made for improving the water supply and sanitation facilties for the vulnerable groups in the society (slum dewellers etc).
- Notice methods on the project, cooperation and undertakings by beneficiaries

Internet and newspaper will be used and report periodically every month initially and then every quarterly.

- Plan for the succeeding meeting. As suggested a Coordination Meeting will be taken up on monthly basis during the project implementation period.
- Closing remarks was given by Mr Kemparamaiah, Engineering Chief, 4. Closing Remarks **BWSSB**
- Vote of Thanks was given by Mr Rajiv K N, EE (K-1), BWSSB 5. Vote of Thanks

Meeting Program

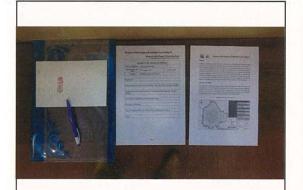

Time schedule	In charge
10:45 - 11:00 Tea	
11:00 Opening Remarks	Hon'ble Chairman, BWSSB
11:30 - 12:00 Explanation of the Project	Dr. Ravindra (CE-K, BWSSB)
12:00 -13:00 Discussion	All Stakeholders
13:15 Closing Remarks	Mr Kemparamaiah (EIC, BWSSB)
13:25 Vote of Thanks	Mr Rajiv K N (EE-K1, BWSSB)
13:30 - 14:30 Lunch	

Photo Title	Venue: Auditorium & Welcome Board
Description	Welcome Board in front of Autitorium
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Set of Documents
Description	Distribution Documents and Materials
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Set of Documents etc.
Description	Distribution Documents and Materials (inside the clear file)
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Reception
Description	Attendants list was filled at the reception
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Paticipants
Description	126 paticipants including BWSSB staff
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

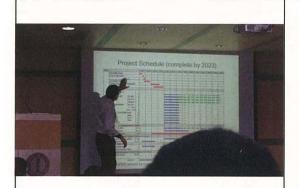

Photo Title	Paticipants
Description	126 paticipants including BWSSB staff (Before starting the meeting)
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Opening by BWSSB Chairman
Description	Chairman, BWSSB inagurated the conference and welcomed all
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Explanation of the Project
Description	Explanation (PPT) was given by Dr. Ravindra, Chief Engineer (Kaveri), BWSSB
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Explanation of the Project
Description	Explanation (PPT) was given by Dr. Ravindra, Chief Engineer (Kaveri), BWSSB
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Explanation of the Project
Description	Additional Explanation given by Chairman, BWSSB
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Paticipants
Description	126 paticipants including BWSSB staff (During the meeting)
Venue	Auditorium 4th Floor, BWSSB
Date Taken	2017/Aug/22 (Tue)

Photo Title	Question from the Stakeholder	
Description	Discussion, question-and-answer session after the presentation	
Venue	Auditorium 4th Floor, BWSSB	
Date Taken	2017/Aug/22 (Tue)	

Supporting Report 15.7.1

Draft TOR for Consulting Services

Terms of Reference (TOR) of the consultancy services

1. Background and Objectives of the Project

(1) Background

Bengaluru, the capital city of Karnataka State with 8,500 thousand population in 2011 is one of the fastest developing Metropolitan cities in India. Bengaluru is an industrial center of South India and is a center for research institutions and high-tech electronic houses. The population of Metro Bengaluru in 2024 are projected to be beyond 11 million with required water demand of 2,355 MLD. However, present water supply for the area is limited to 1,400 MLD. The ever-increasing water demand needs augmentation/improvement of water supply and sewerage services.

Under these conditions, Government of India decided to provide water supply and sewerage facilities for the urban population in its 12th Five Year Plan (from April 2012 to March 2017). The plan policy emphasizes on the water saving through the reduction of unaccounted for water (UFW) and the recycle/ re-use of treated sewage considering limited water sources available.

The Government of India through Bangalore Water Supply and Sewerage Board (hereinafter referred to as BWSSB) utilizing Japanese Government ODA loan proposed "Bengaluru Water Supply and Sewerage Project" in March 2016. In this connection, BWSSB, responsible for implementation of the Project and O&M of the water supply and sewerage facilities, prepared some "Detailed Project Reports (DPR)" to confirm the Project feasibility.

After a series of discussions on the scope and implementation arrangements of the Preparatory Survey between the Japanese and Indian sides, M/M (Minutes of Meetings) was exchanged in March 7th, 2016 to start "the Preparatory Survey on the Bengaluru water Supply and Sewerage Project, Phase III. Then, the survey work for the Project commenced in May 25th, 2016.

(2) Objectives of the Project

The objective of the Project is to provide residents in BBMP (Bruhat Bengaluru Mahanagara Palike) area with safe and stable water supply, and sewerage facilities to meet increasing water demand. The Project is expected to improve sanitary environment in BBMP area and contribute to the promotion of industry.

(3) Location of the Project

The Project area covers the jurisdiction of BWSSB (Bangalore Water Supply and Sewerage Board) for

water supply and sewerage services, located in the State of Karnataka, as shown in Attachment 1, including core area, 8 ULBs and 110 Villages as shown in Table 1.

Table 1: The project area

Core Area	245 km^2
8 ULBs (Yelahanka, K.R. Puram, Mahadevpura, Bommanahalli,	330 km^2
R.R. Nagar, Kengeri, Dasarahalli, Byatrayanapura)	
110 Villages	225 km^2

2. Outline of the Project

(1) Construction Items

The component of the Project is shown in Attachment 2. The contractors' work for CP-2 to CP-5 for water supply and CP-25 to CP-29 for sewerage will include O&M of facilities for seven years after construction/installation of the facilities.

(2) Procurement packages and procedure

Local Competitive Bidding (LCB) will be applied for CP-1 and CP-14 to CP-23 for water supply and CP-35 to CP-39 for sewerage. On the other hand International Competitive Bidding (ICB) based on Single-Stage Two-Envelope Bidding Procedure with Pre-qualification (P/Q) in compliance with the JICA's Procurement Guideline (Section 2.03, Part II) will be employed for other packages.

Table 2: Procurement Package and Procedure of the Project

Package	Procurement procedure
CP-1 and CP-14 to CP-23	Local Competitive Bidding (LCB). Out of Consulting Service
CP-30 to CP-39	Local Competitive Bidding (LCB). With Consulting Service
	International Competitive Bid (ICB) with P/Q
	Single-Stage Two-Envelope
CP-2 to CP-5 and CP-25 to	Design-Build-Operation (DBO) contract
CP-29 to CP-3 and CP-23 to	7 years of O&M after the commissioning
CF-29	JICA's Standard Bidding Document "Design-Build"*
	*It is noted that the general conditions of the contract shall be prepared using the
	FIDIC Gold book (Edition 2008)
	International Competitive Bid (ICB) with P/Q
CP-24	Single-Stage Two-Envelope
CF-24	Design-Build (DB) contract
	JICA's Standard Bidding Document "Design-Build"*
	International Competitive Bid (ICB) with P/Q
Others	Single-Stage Two-Envelope
Others	Design-Bid-Build contract
	JICA's Standard Bidding Document "Works"

(3) Funding Source

Funding sources of the Project, including that for the Services, are both Japanese ODA Loan and Government of Karnataka (GoK) own budget.

- CP-2 to CP-10, CP-12 to CP-13 and CP-24 to CP-34 are funded by Japanese ODA Loan
- CP-1, CP-11, CP-14 to CP-23 and CP 35 to CP-39 are funded by GoK own budget/BCC fund
- Consulting Service for all packages excluding CP-1 and CP-19 to CP-23 is funded by Japanese ODA Loan

(4) Executing Agency

The Executing Agency / Implementing Agency of the project is BWSSB.

(5) Technical Information

The final report on the "Preparatory Survey on Bengaluru Water Supply and Sewerage Project Phase 3 as well as the results of topographical surveys, raw water quality and wastewater quality analysis, test pit surveys at the water supply and sewerage facility sites are available at BWSSB.

3. Objective of the Consulting Service

The consulting services shall be provided by an international consulting firm (hereinafter referred to as "the Consultant") in association with national consultants in compliance with Guidelines for the Employment of Consultants under Japanese ODA Loans (April 2012). The objective of the consulting services is to achieve the efficient and proper preparation and implementation of the Project through the following works:

- Conceptual design for DB / DBO packages
- Detailed design
- Bid document preparation
- Tender assistance
- Construction supervision for DB and DBO contract packages
- Construction supervision including defect notification period for other contract packages
- Facilitation of Implementation of Environmental Management Plan (EMP), Environmental Monitoring Plan (EMOP) and Resettlement Action Plan (RAP)
- Management assistance for the construction of all components of the project including supervision during the defect liability period
- NRW reduction management and technology transfer
- Water saving campaign
- Development of recycle and reuse program based on demand assessment and reuse need for effective implementation.
- Facilitation of a platform to discuss surface water pollution abatement in Bengaluru

4. Scope of the Consulting Service

The Consultant shall carry out the Consulting Services through the following work items:

(1) Conceptual Design for DBO packages

The conceptual design will include the following works:

- a) Review of the technical information on the Project and recommend modifications with justifications, if necessary;
- b) Implementation of the land availability survey, soil condition survey and traffic impact survey for conceptual design, as applicable to the project components;
- c) Implementation of the topographic survey, geotechnical surveys, raw water quality analysis, wastewater quality analysis and other related engineering survey, which will be provided as a part of the tender document, as applicable to the project components;
- d) Conceptual design of the DBO contract packages;
- e) Preparation of conceptual design report, which includes a description of all the processes, general layout plan, water and material balance sheet, overall process flow diagram, and instrumentation plan;
- f) Preparation of technical specifications to be included in the bid documents; and
- g) Preparation of "Operation and Maintenance Requirement (including risk allocation, payment method, monitoring and evaluation method etc.) to be included in the bid documents of DBO contract packages.

(2) Detailed design

The detailed design will include the following works:

- a) Review of the technical information on the Project and recommend modifications with justifications, if necessary;
- b) Collect and review topographic data of the BBMP;
- c) Implementation of the land availability survey, soil condition survey and traffic impact survey for detailed design, as applicable to the project components;
- d) Implementation of the topographic survey, geotechnical surveys and other related engineering survey for detailed design, as applicable to the project components;

- e) Preparation of large sectorization plan including hydraulic analyses, namely Distribution Blocking System, for optimization of water distribution, especially for detail design of CP-14 to CP-18;
- f) Hydraulic analyses of the pipelines for final determination of the pump head, countermeasure for water hammer and diameter of pipes;
- g) Detailed design of all facilities including architectural, structural, civil, mechanical and electrical works:
- h) Preparation of the construction plan including design of the temporary works;
- i) Preparation of detailed design drawings; and
- j) Preparation of technical specifications and bill of quantities to be included in the bid documents

(3) Bid document preparation

The bid document preparation will include the following works:

- a) Preparation of the pre-qualification (PQ) document, complying with the following instructions:
 - ✓ The technical and financial requirements for PQ shall take into account the technical feature and the magnitude of the Project;
 - ✓ The PQ part shall be in accordance with the latest version of Standard Prequalification Documents under Japanese ODA Loans;
 - ✓ Assistance to BWSSB in PQ announcement, addendum/corrigendum, and clarifications to the applicants' queries;
 - ✓ PQ evaluation of the applicants in accordance with the criteria set forth; and
 - ✓ Preparation of PQ evaluation report to be submitted to BWSSB.
- b) Preparation of the Bid document, complying with the following instructions:
 - ✓ For procurement of goods and services under CP 2 to 6 and 24 to 29 the latest version of "Standard Bidding Documents under Japanese ODA Loans, Procurement of Electrical and Mechanical Plant, and for Building and Engineering Works, Designed by the Contractor" will be applied, together with all relevant specifications, drawings and other documents. The general conditions of the contract shall be prepared using the FIDIC Gold book (Edition 2008), since the operation work of the DSP will be included in these packages under DBO scheme;
 - ✓ For procurement of goods and services under CP7 to 18 and 30 to 39, the latest version of "Standard Bidding Documents under Japanese ODA Loans, Procurement of Works" will be applied, along with all relevant specifications, drawings, and other documents;

✓ Prepare bidding documents which includes i) clauses stating that the Contractor is to comply with the requirement of the Environmental Management Plan (EMP) and JICA Guidelines for environmental and social considerations (April 2010) (JICA Environmental Guidelines) and to conduct environmental monitoring following the Environmental Monitoring Plan (EMoP), ii) the specification clearly stipulating the safety requirements in accordance with the laws and regulations in the country of the Borrower, relevant international standards (including guidelines of international organization), if any, and also in consideration of "the Guidance for the Management of Safety for Construction Works in Japanese ODA Projects of JICA," iii) the requirement to furnish a safety plan to meet the safety requirements, iv) the requirement for the personnel for key positions to include an accident prevention officer, and v) the requirement to submit method statements of safety to BWSSB and the consultant at the construction stage;

(4) Tender Assistance

The Consultant shall assist BWSSB in the bid by the following works:

- a) Assistance to BWSSB in tender call, addendum/corrigendum, clarifications to the bidders and conducting pre-bid conferences;
- b) Evaluations of the bids in accordance with the criteria set forth in the bidding documents. In such evaluation, the Consultant shall carefully confirm that bidders' submissions in their technical proposal including, but not limited to; site organization, mobilization schedule, method statement, construction schedule, safety plan, and EMP, have been prepared in consistent with each other and meet requirements set forth in applicable laws and regulations, specifications and other parts of the bidding documents;
- c) ,Preparation of bid evaluation reports for approval to be submitted to BWSSB;
- d) Assistance to BWSSB in contract negotiations by preparing agenda and facilitating negotiations including preparation of minutes of negotiation meetings; and
- e) Preparation of draft and final contract agreements.

(5) Construction supervision for DBO contract packages

The Consultant shall perform his duties during the construction period in accordance with the contracts to be executed between BWSSB and the contractors. In this context, the Consultant shall act as the Engineer for DB and DBO packages to execute construction supervision and contract administration services in accordance with the power and authority delegated by BWSSB. Construction supervision by the Consultant will include the following works:

- a) Act as the Engineer to execute construction supervision and contract administration services in accordance with the power and authority to be delegated by the Employer;
- b) Provide assistance to the Employer concerning variations and claims that are to be ordered/issued at the initiative of the Employer. Advise the Employer on resolution of any dispute with the Contractor:
- c) Issue instructions, approvals, and notices as appropriate;
- d) Provide recommendation to the Employer for acceptance of the Contractor's performance security, advance payment security and required insurances;
- e) Provide commencement order to the Contractor;
- f) Assess adequacy of all inputs such as materials, labor, and equipment provided by the Contractor;
- g) Check and approve the Contractor's method of work, including site organization, program of performance, quality assurance system, safety plan, method statements of safety, and environmental monitoring plan so that the requirements set forth in the applicable laws and regulations, the specifications or other parts of the contract are to be duly respected;
- h) Regularly monitor physical and financial progress and take appropriate action to expedite progress, if necessary, so that the time for completion set forth in the contract will be duly respected by the Contractor;
- Explain and/or adjust ambiguities and/or discrepancies in the Contract Documents and issue any necessary clarifications or instructions;
- Review and approve the Contractor's design for the works to be constructed, working drawings, shop drawings and drawings for temporary works;
- k) Liaise with the appropriate authorities to ensure that all the affected utility services are promptly relocated;
- Carry out field inspections on the Contractor's setting out of the works in relation to original points, lines and levels of reference specified in the contract;
- m) Organize, as necessary, management meetings with the Contractor to review the arrangements for future work. Prepare and deliver minutes of such meetings to the Employer and the Contractor;
- n) Supervise the works so that all the contractual requirements are met by the Contractor, including those in relation to i) quality of the works, ii) safety, and iii) protection of the environment. Confirm that an accident prevention officer proposed by the Contractor is duly assigned at the project site. Require the contractors to take appropriate remedies if any questions are recognized regarding the safety measures;

- o) Supervise field tests, sampling, and laboratory test to be carried out by the Contractor;
- p) Inspect the construction method, equipment to be used, and workmanship at the site, and attend shop inspection and manufacturing tests in accordance with the Employer's Requirements;
- q) Verify statements submitted by the Contractor and issue payment certificates such as interim payment certificates and final payment certificate as specified in the contract;
- r) Coordinate the works among different contractors employed for the Project;
- s) Modify the Employer's Requirements as may be necessary in accordance with the actual site conditions and issue variation orders (including necessary actions in relation to the works performed by other contractors working on other projects, if any);
- t) Carry out timely reporting to the Employer for any inconsistency / causes of delay in executing the works and suggesting appropriate corrective measures to be applied;
- u) Inspect, verify and fairly determine claims issued by the parties to the contract (i.e. the Employer and Contractor) in accordance with the contract;
- v) Supervise the Test on Completion carried out by the Contractor and assist the Employer in carrying out the Test after Completion, if applicable;
- w) Perform the inspection of the works and issue certificates such as the Taking-Over Certificate, Performance Certificate as specified in the contract,
- x) Check and certify as-built drawings prepared by the Contractor; and
- y) Check and certify the operation and maintenance manual prepared by the Contractor.

(6) Construction supervision including notification period for other contract packages

The Consultant shall perform his duties during the construction period in accordance with the contracts to be executed between BWSSB and the contractors. In this context, the Consultant shall act as the Engineer for other packages to execute construction supervision and contract administration services in accordance with the power and authority delegated by BWSSB. Construction supervision by the Consultant will include the following works:

- a) Act as the Engineer to execute construction supervision and contract administration services in accordance with the power and authority to be delegated by the Employer;
- b) Provide assistance to the Employer concerning variations and claims that are to be ordered/issued at the initiative of the Employer. Advise the Employer on resolution of any dispute with the Contractor:
- c) Issue instructions, approvals, and notices as appropriate;

- d) Provide recommendation to the Employer for acceptance of the Contractor's performance security, advance payment security and required insurances;
- e) Provide commencement order to the Contractor;
- f) Assess adequacy of all inputs such as materials, labor, and equipment provided by the Contractor;
- g) Check and approve the Contractor's method of work, including site organization, program of performance, quality assurance system, safety plan, method statements of safety, and environmental monitoring plan so that the requirements set forth in the applicable laws and regulations, the specifications or other parts of the contract are to be duly respected;
- h) Regularly monitor physical and financial progress and take appropriate action to expedite progress if necessary, so that the time for completion set forth in the contract will be duly respected by the Contractor;
- i) Explain and/or adjust ambiguities and/or discrepancies in the Contract Documents and issue any necessary clarifications or instructions. Issue further drawings and give instructions to the Contractor for any works that may not be sufficiently detailed in the contract documents, if any;
- Review and approve the Contractor's working drawings, shop drawings, and drawings for temporary works. Also review and approve, if any, designs prepared by the Contractor for any part of the permanent works;
- k) Liaise with the appropriate authorities to ensure that all the affected utility services are promptly relocated:
- l) Carry out field inspections on the Contractor's setting out of the works in relation to original points, lines, and levels of reference specified in the contract;
- m) Organize, as necessary, management meetings with the Contractor to review the arrangements for future work. Prepare and deliver minutes of such meetings to the Employer and the Contractor;
- n) Supervise the works so that all the contractual requirements are met by the Contractor, including those in relation to i) quality of the works, ii) safety and iii) protection of the environment. Confirm that an accident prevention officer proposed by the Contractor is duly assigned at the project site. Require the contractors to take appropriate remedies if any questions are recognized regarding the safety measures;
- o) Supervise field tests, sampling, and laboratory test to be carried out by the Contractor;
- p) Inspect the construction method, equipment to be used, and workmanship at the site, and attend shop inspection and manufacturing tests in accordance with the specifications;

- q) Survey and measure the work output performed by the Contractor. Assist the Employer to verify statements submitted by the Contractor and issue payment certificates such as interim payment certificates and final payment certificate as specified in the contract;
- r) Coordinate the works among different contractors employed for the Project;
- s) Modify the designs, technical specifications and drawings, relevant calculations and cost estimates as may be necessary in accordance with the actual site conditions, and issue variation orders (including necessary actions in relation to the works performed by other contractors working on other projects, if any);
- t) Carry out timely reporting to the Employer for any inconsistency in executing the works and suggesting appropriate corrective measures to be applied;
- Inspect, verify, and provide recommendation to the Employer concerning claims issued by the
 parties to the contract (i.e. the Employer and Contractor) in accordance with the civil works
 contract;
- v) Perform the inspection of the works and issue certificates such as the Taking-Over Certificate, Performance Certificate as specified in the contract;
- w) Supervise commissioning and carry out tests during the commissioning, if applicable;
- x) Provide periodic and/or continuous inspection services during defects notification period, and if any defects are noted, instruct the Contractor to rectify;
- y) Check and certify as-built drawings; and
- z) Check and certify an operation and maintenance manual for the works constructed in the Project.

(7) Facilitation of Implementation of Environmental Management Plan (EMP), Environmental Monitoring Plan (EMOP) and Resettlement Action Plan (RAP)

The Consultant shall assist BWSSB in the environmental management and monitoring through the following works:

- a) Review and update EMP according to the actual site conditions, designs, technical specifications and contract documents:
- b) Review and update EMoP according to the updated EMP;
- c) During the preparation of bidding documents, clearly identify environmental responsibilities as explained in the EIA, Final Report of Preparatory Survey and EMP;

- d) Assist BWSSB to review the Construction Contractor's Environmental Program to be prepared by the contractor in accordance with EMP, relevant plans and JICA Environmental Guidelines and to make recommendations to BWSSB regarding any necessary amendments for its approval
- e) Supervision of EMP implementation and implementation of regular compliance monitoring according to EMoP to ensure that the construction works are implemented in accordance with the EMP:
- f) Assist BWSSB to implement the measures identified in the EMP
- g) Monitor the effectiveness of EMP and negative impacts on environment caused by the construction works and provide technical advice, including a feasible solution, so that BWSSB can improve situation when necessary;
- h) Assist BWSSB in monitoring the compliance with conditions stated in the environmental permit certifications and the requirements under EMP and JICA Environmental Guidelines;
- i) Assist BWSSB in preparation of the answer to the request from JICA's advisory committee for environmental and social considerations if necessary; and
- j) Assistance to BWSSB in the capacity building of BWSSB staff on environmental management through on-the-job training so that the EMoP would be carried out appropriately in the O&M of the seawater desalination plant.

(8) Management assistance for the construction of all components of the project including supervision during the defect liability period

The Consultants shall provide technical assistance and training for the PIU members in the field from design stage to O&M stage. Required control items for the project implementation shall include schedule, quality of facilities and risk avoidance.

The Consultant shall provide the opportunity to the BWSSB officers and staff to be involved in the working team of the Consultant during the design, contract administration and supervision works for their capacity building wherever possible. If requested by BWSSB, the Consultant shall brief and demonstrate the survey and design procedure, the construction supervision and contract management process and procedures. The consultant shall assist BWSSB and its staff to build their capacity as a part of on the job training under the Project.

(9) NRW Deduction Management

The consultants shall assist existing organization established in the BWSSB to promote the reduction of UFW. The management required with reference to field staff shall be studied to reflect in the systematic arrangements including tariff collection. Aside from management improvement,

at least one team for field work shall be established by BWSSB and they shall be trained by Japanese expert team.

(10) Water saving campaign

The Consultant shall assist BWSSB to carry out the campaign for the saving of water. During the campaign, community meeting shall be conducted from administrative chief level to common people level to cover larger areas in the BBMP. Implementation plan for the meeting shall be prepared in the initial stage of consulting services and the meetings shall be implemented periodically in the two years during project implementation period.

(11) Development of recycle and reuse program based on demand assessment and reuse need for effective implementation.

The proposed recycle and reuse program task will be conducted to achieve the following specific objectives:

- a) Identify impact of water demands based on currently planned water supply projects;
- b) Develop and analyze zonal water supply and demand for the entire PMC areas to be served by the water utilities in the future:
- Conduct a GAP analysis Demand and Supply and prepare a survey of potential consumers of recycle water.
- d) Prepare and conduct a willingness survey for use of recycled water based on end use application
 such as agriculture, construction industry, horticulture, washing etc.
- e) Assessment of "what if" scenarios for dynamic streamlining of the reuse water supply to identify projects for the medium term and long term; and
- f) Development and Prioritization of reuse potential projects for their future service areas.

(12) Facilitation of a platform to discuss surface water pollution abatement in Bengaluru

The Consultants shall assist BWSSB to facilitate a platform to discuss surface water pollution abatement in Bengaluru through the following works:

- a) Hold a seminar where the stakeholders, encountering the water pollution problem, such as pollution dischargers, regulators and/or surface water users can understand and discuss the causes and the effects of pollution; and
- b) Arrange inputs of successful experiences on wastewater discharge regulations such as administrative system and monitoring technologies to the seminar stipulated in item a).

(13) Promotion of the construction of sewerage house connections

The Consultants shall assist BWSSB to promote the construction of sewerage house connections through the following works:

- a) Hold information sessions where target residents and business establishments for sewerage services easily understand the sewerage system and the importance of the house connections; and
- b) Make and distribute visual materials to help target residents and business establishments for sewerage services to understand the sewerage system and the importance of the house connections.

5. Expected Time Schedule

The total duration of consulting services will be 87 months including defects notification period. The implementation schedule expected is as shown in Table 3.

Duration in **Duration from Key Activities** Date Months the start, Months Commencement of Consulting Services October 2018 18 18 Completion of Detailed Design October 2018 to March 2020 14 Tender process including Pre-Qualification January 2019 to February 2020 32 48 80 Construction Works January 2021 to December 2024 Completion of the Const. Works December 2024 _ 12 12 Defect Notification Period January 2025 to December 2025 Completion of Consulting Services 31 December 2025 87.5

Table 3: Implementation Schedule Expected

6. Staffing

(1) Staffing and Consulting Input

It is proposed that 9 Professional (A) consultants (Foreign Persons) and 58 Professional (B) consultants (Local Persons) will be engaged for a total of 678 man-months (MM) and 2,233 MM, respectively. Total consulting input is 2,911 MM. In addition to the consultants, supporting staff such as secretaries, CAD operators, GIS operators, office keepers, and inspectors will be necessary, and the total input is estimated at 2,036 MM.

(2) Basic professional requirements of key expert

The qualification of Key Experts is shown in Table 4.

Table 4: Qualification of Key Experts

Designation	Qualifications
Key International Staff	
Team Leader – Design	Should have at least 20 years' experience in urban water supply and wastewater / sewerage
(Overall management -	related projects. Should have degree in Civil / Mechanical / Electrical / Chemical

Designation	Qualifications
Design period)	engineering. He should be well versed with e-governance procedures and handled coordination of a project with similar size. Should have handled at least one comprehensive urban water supply and/or wastewater/sewerage project with capacity of 250MLD involving planning, design, detailed engineering, pre-qualification and Bid document development and contract award. Should have handled at least one Japanese
TL - Construction Management (Overall management – Construction Period)	ODA Loan project. Experience in India preferred Should have at least 20 years' experience in urban water supply and wastewater / sewerage related projects. Should have degree in Civil / Mechanical / Electrical / Chemical engineering. He should we well versed with e-governance procedures and handled coordination of a project with similar size. Should have handled at least one comprehensive urban water supply and/or wastewater/sewerage project with capacity of 250MLD during construction phase and commissioning including Defect Liability Period. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Resident Engineer - Water Treatment, pumping and transmission (Overall responsibility of the conveyance, water treatment, and transmission at	Should have at least 15 years' experience in urban water supply related projects. Should have degree in Civil / Mechanical / Electrical / Chemical engineering. Should have handled at least one comprehensive urban water supply project with capacity of 250MLD during planning, detailed engineering, construction phase and commissioning including Defect Liability Period. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
construction stage) Senior Resident Engineer - Sewage Conveyance and Sewage Treatment (Overall responsibility of the sewage conveyance and treatment at construction stage)	Should have at least 15 years' experience in urban water supply related projects. Should have degree in Civil / Mechanical / Electrical / Chemical engineering. Should have handled at least one comprehensive urban sewerage and treatment project with combined capacity of 250MLD during planning, detailed engineering, construction phase and commissioning including Defect Liability Period. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (Hydraulics Transmission)	Should be at least bachelor's degree in Civil / Mechanical Electrical / Environmental Engineering with 12 years overall experience, with at least 10 years relevant experience in water transmission hydraulics including modelling, in Water GEMS or equivalent including water hammer. He should be well versed with pumped conveyance system for minimum total head of 100m design of water system. He should be familiar with English Language. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (Sewage Hydraulics)	Should be at least bachelor's degree in Civil / Mechanical Electrical / Environmental Engineering with 12 years overall experience, with at least 10 years relevant experience in sewers and pumping stations including modelling, in Sewer GEMS or equivalent. He should be well versed with sewage conveyance system for minimum total capacity of 100MLD. He should be familiar with English Language. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (Water Supply / Water Treatment Plant)	Should be at least bachelor's degree in Civil / Mechanical Electrical / Chemical Environmental Engineering with 20 years overall experience, with at least 10 years relevant experience in water pumping stations and water treatment plants. He should be familiar with English Language. Should have handled at least one comprehensive urban water supply project involving detailed design, construction supervision and project management consultancy for a project with capacity of 250MLD. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (ISPS / STP)	Should be at least bachelor's degree in Civil / Mechanical Electrical / Chemical Environmental Engineering with 20 years overall experience, with at least 10 years relevant experience in sewage conveyance and sewage treatment. He should be familiar with English Language. Should have handled at least one comprehensive urban sewerage project involving detailed design and construction supervision. Should have handled at

Designation	Qualifications
	least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (Electrical and Instrumental Control and Automation)	Should be at least bachelor's degree in Electrical / Instrumentation Control and Automation with 20 years overall experience, with at least 10 years relevant experience in water supply transmission and sewerage, pumping and treatment. He should be familiar with English Language. Should have handled at least one comprehensive urban water supply / sewerage project involving detailed design, construction supervision and project management consultancy with a total capacity of 100MLD. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Senior Design Engineer (Mechanical)	Should be at least bachelor's degree in Electrical / Instrumentation Control and Automation with 20 years overall experience, with at least 10 years relevant experience in water supply transmission and sewerage, pumping and treatment. He should be familiar with English Language. Should have handled at least one comprehensive urban water supply project / sewerage involving detailed design, construction supervision and project management consultancy. Should have handled at least one Japanese ODA Loan project. Experience in India preferred
Key National Staff	
DTL (Sewerage, ISPS and STPs)	Should have at least 20 years' experience in urban water supply and wastewater / sewerage related projects. Should have degree in Civil / Mechanical engineering. Should have handled at least one comprehensive urban sewerage / Sewage Treatment project comprising of sewers, sewage pumping stations and sewage treatment plants having area greater than 100sqkm including process design, detailed design, construction supervision, monitoring and commissioning of sewerage project including project management consultancy. Should have handled at least one Japanese ODA Loan project.
DTL (Water Conveyance, WTP, Water Pumping Station and Transmission)	Should have at least 20 years' experience in urban water supply and wastewater / sewerage related projects. Should have degree in Civil / Mechanical engineering. Should have handled at least one comprehensive urban water supply / water treatment project comprising of conveyance and transmission, pumping stations and water treatment plants with capacity of 250MLD for more including involving contract award, process, design, detailed design, construction supervision, monitoring and commissioning of sewerage project including project management consultancy. Should have handled at least one Japanese ODA Loan project.
Sr. Design Engineer (Instrumentation Control and Automation)	Should be at least bachelor's degree in Electrical / Instrumentation Control and Automation with 15 years overall experience, with at least 10 years relevant experience in Instrumentation Control and Automation in water supply transmission and sewerage, pumping and treatment. Should have completed at least 1 project in India with water treatment / pumping facility capacity of 100MLD or more involving centralized SCADA system for a city comparable to Bangalore. Should have handled at least one Japanese ODA Loan project. Should have international experience.

Consultant may propose other experts and supporting staff required to accomplish the tasks outlined in the ToR.

(3) Scope of works for the respective personnel

Detailed information on the major tasks and duties to be undertaken by Key Experts of the detailed engineering design team and the construction supervision team is summarized in Table 5.

Table 5: Major Tasks and Duties of Key Expert

Designation	Responsibilities
International Staff	
Team Leader – Design	Pre-Construction Stage – Design and package award stage:

Designation	Responsibilities
(Overall management – Design period)	 General coordination Supervises the Consultant's services Review Bidding documents prepared by Contract specialist. Interact with client to provide input in particular conditions of the contract. Assumes direct responsibility for day-to-day consulting services Represents the Consultant's Team in all matters relating to the performance of services
	 Prepare monthly and quarterly progress reports Interact and liaison with BWSSB, GOK as well as JICA.
TL - Construction Management (Overall management – Construction Period)	 Construction Stage: General coordination Supervises the Consultant's services during Construction Assumes direct responsibility for day-to-day consulting services and construction activities on all the packages – Coordinate with client and contractors for each package Assist client in resolving construction issues as well as review and assist client in preparing progress charts for financial as well as construction activities.
Senior Resident Engineer - Water Treatment, pumping and transmission (Overall responsibility of the conveyance, water treatment, and transmission at construction stage)	 Interact and liaison with BWSSB, GOK as well as JICA. Pre-Construction Stage – Design stage Review existing designs and specifications as prepared in study report and DPR Prepare basis of design for all the Water Conveyance / Water Transmission WTP / WPS packages Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals. Prepare Bid document for each package considering selected basis of design and client requirements Prepare cost estimates for comparative Assessment. Assist client in technical evaluation of bids and making recommendations on selection of contractor for each package. Direct local engineers attending the designs Review and make recommendations to STP designs submitted by contractors. Prepare the basic design of civil structures for the WTP / STP / GLRs packages including WPS / ISPS Prepare Bill of Quantities for sewerage and WTP / WPS / STP / ISPS work Direct the local civil engineers attending the designs of civil works for the WTP/ STPs as well as WPS / ISPS facilities Prepare Specifications works Supervise process review during construction Providing assessment and input during operation and maintenance – during Defect liability period. Review and contractors' proposed O&M supervision work program and training programs for Distribution Control System Coordinate the contractor's commissioning works Coordinate the contractor's O&M supervision and training Monitor and assess the effect of training and instruct any improvement of training services if necessary
Senior Resident Engineer - Sewage Conveyance and Sewage Treatment (Overall responsibility of the sewage conveyance and treatment at construction stage)	Pre-Construction Stage – Design stage Review existing designs and specifications as prepared in study report and DPR Prepare basis of design for all the Sewage Conveyance / ISPS / STP packages Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals. Prepare Bid document for each package considering selected basis of design and client requirements Prepare cost estimates for comparative Assessment. Assist client in technical evaluation of bids and making recommendations on selection of contractor for each package.

Designation	Responsibilities
	Direct local engineers attending the designs
	 Review and make recommendations to STP designs submitted by contractors.
	• Prepare the basic design of civil structures for the WTP / STP / GLRs packages
	including WPS / ISPS
	Prepare Bill of Quantities for sewerage and WTP / WPS / STP / ISPS work
	• Direct the local civil engineers attending the designs of civil works for the WTP/
	STPs as well as WPS / ISPS facilities
	Prepare Specifications works
	Supervise process review during construction
	Providing assessment and input during operation and maintenance – during Defect
	liability period.
	• Review and contractors' proposed O&M supervision work program and training
	programs for Distribution Control System
	Coordinate the contractor's commissioning works
	Coordinate the contractor's O&M supervision and training
	Monitor and assess the effect of training and instruct any improvement of training arrives if page 2007.
Canian Danian Engineer	services if necessary
Senior Design Engineer	Pre-construction stageReview existing designs
(Hydraulics Transmission)	 Review existing designs Prepare the basic design of civil structures for the hydraulic transmission in water
Transmission)	conveyance and transmission packages
	Direct the local civil engineers attending the designs of civil works for the Water
	Conveyance and transmission pipelines
	 Prepare hydraulic models in Water GEMS of the water transmission pipelines up to
	GLRs.
Senior Design Engineer	Pre-construction stage
(Sewage Hydraulics)	Review existing designs
(Sewage 11) draunes)	Prepare the basic hydraulic design of civil structures for sewage conveyance
	packages
	Direct the local civil engineers attending the designs of civil works for the sewage
	conveyance pipelines
	Prepare hydraulic models in Sewer GEMS of the sewage conveyance pipelines up to
	STPs including sub-mains, mains and trunk mains network
Senior Design Engineer	<u>Pre-Construction Stage – Design stage</u>
(Water Supply / Water	Review existing designs and specifications as prepared in study report and DPR
Treatment Plant)	Prepare basis of design for all the WTP / WPS packages
	• Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals.
	Prepare Bid document for each package considering selected basis of design and
	client requirements
	Prepare cost estimates for comparative Assessment.
	Assist client in technical evaluation of bids and making recommendations on
	selection of contractor for each package.
	Direct local engineers attending the designs
	Review and make recommendations to WTP designs submitted by contractors.
	Supervise process review during construction
	Providing assessment and input during operation and maintenance – during Defect The second of the second
	liability period.
	Review and contractors' proposed O&M supervision work program and training programs for Distribution Control System
	programs for Distribution Control System
	Coordinate the contractor's commissioning works Coordinate the contractor's O.S.M. supervision and training.
	Coordinate the contractor's O&M supervision and training Monitor and assess the effect of training and instruct any improvement of training.
1	 Monitor and assess the effect of training and instruct any improvement of training services if necessary
Senior Design Engineer	Review existing designs and specifications as prepared in study report and DPR
Senior Design Engineer	Review existing designs and specifications as prepared in study report and DPR

Designation	Responsibilities
(ISPS / STP)	Prepare basis of design for all the STP / ISPS packages
	Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals.
	• Prepare Bid document for each package considering selected basis of design and
	client requirements
	Prepare cost estimates for comparative Assessment.
	Assist client in technical evaluation of bids and making recommendations on
	selection of contractor for each package.
	Direct local engineers attending the designs
	Review and make recommendations to STP designs submitted by contractors.
	Supervise process review during construction
	Providing assessment and input during operation and maintenance – during Defect
	liability period.
	Review and contractors' proposed O&M supervision work program and training
	programs
	Coordinate the contractor's commissioning works
	Coordinate the contractor's O&M supervision and training
	Monitor and assess the effect of training and instruct any improvement of training
	services if necessary
Senior Design Engineer	<u>Pre-construction stage</u>
(Electrical and	Review existing designs
Instrumental Control and	• Prepare the basic design of electrical equipment, SCADA and I&C for the WTP /
Automation)	STPs including WPS / ISPS facilities
	Direct the local electrical engineers attending the designs electrical, SCADA, I&C of
	the WTP / STP and WPS / ISPS facilities
	Prepare Specifications for electrical works
	Prepare Bill of Quantities for electrical works
	• Construction stage
	Check the shop drawings submitted by the contractors A second by the substitution of any day to proposed by the contractors.
	Assess the substitution of products proposed by the contractors Supervises the installation work of electrical equipment.
	Supervise the installation work of electrical equipment Attend the feature inspection to eather with PWSSP engineer if requested.
	 Attend the factory inspection together with BWSSB engineer, if requested Attend the trial operation of mechanical equipment
Senior Design Engineer	
(Mechanical)	Pre-construction stage Review existing designs
(Mechanical)	Prepare the basic design of mechanical equipment for the WTP / STP packages
	including WPS and ISPS
	Direct the local mechanical engineers attending the designs of mechanical works for
	the WTP / STPs as well as WPS / ISPS facilities
	Prepare Specifications for mechanical works
	Prepare Bill of Quantities for mechanical works
	Construction stage
	Check the shop drawings submitted by the contractors
	Assess the substitution of products proposed by the contractors
	Supervise the installation work of mechanical equipment
	Attend the factory inspection together with PMC's engineer, if requested
	Attend the trial operation of mechanical equipment
Project Director Review	Pre-Construction Stage – Design and package award stage:
(Overall review of the	General coordination
project and liaison with	Occasional Interact and liaison with BWSSB, GOK as well as JICA.
higher levels of JICA and	Assist client in resolving construction issues as well as review and assist client in
BWSSB)	preparing progress charts for financial as well as construction activities.
DTL (Sewerage, ISPS and	Assist Team Leader in carrying out all tasks and duties of Team Leader
STPs)	Represent the Consultant's team during absence of the Team Leader
*	Perform specific issues/aspects delegated by Team Leader in Sewage conveyance,

Designation	Responsibilities
	pumping and sewage treatment plants
DTL (Water Conveyance,	Assist Team Leader in carrying out all tasks and duties of Team Leader
WTP, Water Pumping	Represent the Consultant's team during absence of the Team Leader
Station and Transmission)	Perform specific issues/aspects delegated by Team Leader in Water conveyance,
	pumping and water treatment plants
Sr. Design Engineer	Assist the Sr. Design Engineer – International
(Water Hydraulics)	Pre-construction stage
	Review existing designs
	Prepare the basic design of civil structures for the hydraulic transmission in water
	conveyance and transmission packages
	Direct the local civil engineers attending the designs of civil works for the Water
	Conveyance and transmission pipelines
	Prepare hydraulic models in Water GEMS of the water transmission pipelines up to
	GLRs.
Sr. Design Engineer	Assist the Sr. Design Engineer – International
(Water Treatment Plant)	Review existing designs and specifications as prepared in study report and DPR
	Prepare basis of design for all the WTP / WPS packages
	Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals.
	Prepare Bid document for each package considering selected basis of design and
	client requirements
	Prepare cost estimates for comparative Assessment. A print plant in the height production of hide and making appropriation of hide and making appropriation.
	Assist client in technical evaluation of bids and making recommendations on selection of contractor for each models.
	selection of contractor for each package. • Direct local engineers attending the designs
	Review and make recommendations to WTP designs submitted by contractors.
	Supervise process review during construction
	Providing assessment and input during operation and maintenance – during Defect
	liability period.
	Review and contractors' proposed O&M supervision work program and training
	programs for Distribution Control System
	Coordinate the contractor's commissioning works
	Coordinate the contractor's O&M supervision and training
	Monitor and assess the effect of training and instruct any improvement of training
	services if necessary
Sr. Design Engineer	Assist the Sr. Design Engineer – International
(Sewage Treatment	Review existing designs and specifications as prepared in study report and DPR
Plants)	Prepare basis of design for all the STP / ISPS packages
	• Prepare PQ documents and provide detailed evaluation of PQ and bidder submittals.
	Prepare Bid document for each package considering selected basis of design and
	client requirements
	Prepare cost estimates for comparative Assessment.
	Assist client in technical evaluation of bids and making recommendations on
	selection of contractor for each package.
	Direct local engineers attending the designs Parious and make recommendations to STR designs submitted by contractors.
	Review and make recommendations to STP designs submitted by contractors. Supervise process review during construction.
	 Supervise process review during construction Providing assessment and input during operation and maintenance – during Defect
	liability period.
	Review and contractors' proposed O&M supervision work program and training
	programs
	Coordinate the contractor's commissioning works
	Coordinate the contractor's Commissioning works Coordinate the contractor's O&M supervision and training
	Monitor and assess the effect of training and instruct any improvement of training
	services if necessary
	SET LOCK IN INCOMENT

Designation	Responsibilities
Sr. Design Engineer	Assist the Sr. Design Engineer – International
(Sewerage Hydraulics)	Pre-construction stage
	Review existing designs
	Prepare the basic hydraulic design of civil structures in sewage conveyance packages
	• Direct the local civil engineers attending the designs of civil works for the sewage
	conveyance pipelines
	• Prepare hydraulic models in Sewer GEMS of the sewage conveyance pipelines up to
	STPs including sub-mains, mains and trunk mains network
Sr. Design Engineer	Assist the Senior Design Engineer - International
(Mechanical)	Review existing designs
	• Prepare the basic design of mechanical equipment for the WTP / STP packages
	including WPS and ISPS
	• Direct the local mechanical engineers attending the designs of mechanical works for
	the WTP / STPs as well as WPS / ISPS facilities
	Prepare Specifications for mechanical works
	Prepare Bill of Quantities for mechanical works
	Construction stage
	Check the shop drawings submitted by the contractors
	Assess the substitution of products proposed by the contractors
	Supervise the installation work of mechanical equipment
	Attend the factory inspection together with PMC's engineer, if requested
	Attend the trial operation of mechanical equipment
Sr. Design Engineer	Assist the Senior Design Engineer - International
(Electrical)	Review existing designs
	Prepare the basic design of electrical equipment, SCADA and I&C for the WTP / STPs including WPS / ISPS facilities
	• Direct the local electrical engineers attending the electrical designs of the WTP / STP and WPS / ISPS facilities
	Prepare Specifications for electrical works
	Prepare Bill of Quantities for electrical works
	Construction stage
	Check the shop drawings submitted by the contractors
	Assess the substitution of products proposed by the contractors
	Supervise the installation work of electrical equipment
	Attend the factory inspection together with BWSSB engineer, if requested
	Attend the trial operation of mechanical equipment
Sr. Design Engineer	Assist the Senior Design Engineer - International
(Instrumentation Control	Review existing designs
and Automation)	Prepare the basic design of SCADA and I&C for the WTP / STPs including WPS / ISPS facilities
	Direct the ICA engineers under him attending the designs- SCADA, I&C of the WTP / STP and WPS / ISPS facilities
	Prepare Specifications for instrumentation / SCADA works Prepare Bill of Quantities for instrumentation / SCADA works
	Construction stage
	Check the shop drawings submitted by the contractors
	Assess the substitution of products proposed by the contractors
	Supervise the installation work of electrical equipment
	Attend the factory inspection together with BWSSB engineer, if requested
	Attend the trial operation of mechanical equipment
Sr. Design Engineer	Assist the Senior Design Engineer - International
(Structural)	Review existing designs
(www.m.)	Prepare the basic design of SCADA and I&C for the WTP / STPs including WPS /
	ISPS facilities

Designation	Responsibilities
	 Direct the ICA under him engineers attending the designs- SCADA, I&C of the WTP / STP and WPS / ISPS facilities Prepare Specifications for structural works Prepare Bill of Quantities for structural works Construction stage Check the shop drawings submitted by the contractors Assess the substitution of products proposed by the contractors Supervise the installation work of electrical equipment Attend the factory inspection together with BWSSB engineer, if requested
Construction Supervision S	Attend the trial operation of mechanical equipment
Procurement Engineer (All Components) Senior. Resident Engineer (Water) Senior. Resident Engineer (Sewerage Component)	 Assist the Senior Design Engineer – International and national Check the drawings submitted by the contractors Assess the substitution proposed by the contractors Supervise the work of water supply component Attend the factory inspection together with BWSSB engineer, if requested Assist the Senior Design Engineer - International Check the drawings submitted by the contractors
Contract Engineer (All Components)	 Assess the substitution proposed by the contractors Supervise the work of sewerage component Attend the factory inspection together with BWSSB engineer, if requested Assist the Team Leader Check the drawings submitted by the contractors Assess the substitution proposed by the contractors Supervise the work of sewerage component Attend the factory inspection together with BWSSB engineer, if requested
HRD and Institutional	, , , , , , , , , , , , , , , , , , ,

7. Reporting

Within the scope of consulting services, the Consultant shall prepare and submit reports and documents to Project Director/ Project Manager in charge in BWSSB as shown in Table 6. The Consultant shall provide electronic copy of each of these reports.

Table 6: Summary of Reports to be submitted

Category	Type of Report	Timing	No. of Copies
Consultancy Services	Inception Report	Within 1 month after commencement of the services	10
	Monthly Progress Report	Every month	10
	Quarterly Progress Report	Every quarter	10
	Project Completion Report	At the end of the services	10
Detailed Design	Project Definition Report	Within 3 months after commencement of the services	10
	Draft Design Report	Within 6 months after commencement of the services	
	Cost Estimate Report	As per the Project Schedule for each Package	10
	Final Design Report	As per the Project Schedule for each Package	10
Tender Assistance	Pre-qualification Document	As per the Project Schedule for each Package	10
	Bidding Document	As per the Project Schedule for each Package	10
	Pre-qualification Evaluation	At appropriate timing	10

Category	Type of Report	Timing	No. of Copies
	Report		
	Technical Evaluation Report	At appropriate timing	10
	Price and Commercial Evaluation Report	At appropriate timing	10
Assistance in Environment Monitoring	Environmental Monitoring Report	Every quarter after commencement of the services	10
Construction	Quality Control Report	Every month	10
Supervision	Construction Completion Report	Within 3 months after completion of construction	10
Technology Transfer	O&M Manual – review comments based on Contractor's submittal and suggestions for improvements	At appropriate timing in accordance with the Inception Report	10
	Evaluation Report of Contractors' Training Services	Within 1 month after completion of training	10
Other Report	Development of Recycle and Reuse Program	Within 6 months after commencement of the services	10
	NRW Deduction Management Program	Within 1 month after commencement of the services and every year	
	Water Saving Campaign Program	Within 1 month after commencement of the services and every year	10
	Technical Report	As required or upon request	As required

Contents to be included in each report are as follows:

For Inception Report

Inception Report: presents the methodologies, schedule, organization, etc.

For Monthly and Quarterly Progress Report

Monthly Progress Report: describes briefly and concisely all activities and progress for the previous month by the 10th day of each month. Problems encountered or anticipated will be clearly stated, together with actions to be taken or recommendations on remedial measures for correction. Also indicates the work to be performed during the coming month.

Quarterly Progress Report: presents the progress status of the Project.

For Detailed Design

 $\underline{Project\ Definition\ Report} : presents\ the\ design\ criteria\ and\ standards.$

<u>Draft Design Report:</u> presents detailed engineering design as well as 30% designs for WTP/ WPS / STPs /ISPS.

<u>Cost Estimate Report:</u> presents detailed cost estimate.

Final Design Report: presents final documents of detailed design and cost estimate and bid plan through

the incorporation of comments on the Draft Design Report provided by the Consultant.

For Tender Assistance

Pre-qualification Document: presents the pre-qualification documents and its evaluation criteria.

Bidding Document: presents the bidding documents and bid evaluation criteria.

<u>Pre-qualification Evaluation Report:</u> presents the results of the evaluation with recommendation on the selection of the qualified applicants.

<u>Technical Evaluation Report:</u> presents the results of technical evaluation with recommendation on technically responsive bidders.

<u>Price and Commercial Evaluation Report:</u> presents the results of the tenders with recommendation on the successful bidder for award of contract.

For Construction Supervision

Quarterly Progress Report: presents the progress status of the Project.

<u>Construction Completion Report:</u> comprises outline of all facilities completed and construction records from the commencement through completion, together with key data and records.

For Technology Transfer

<u>O&M Manuals</u>: Comments on O&M Manuals submitted by Contractors and Consultants suggestions on its improvement.

<u>Evaluation Report of Contractors' Training Services</u>: presents the evaluation of contractors training services.

For Other Report

Development of Recycle and Reuse Program:

Summarize present practices on recycle and reuse with issues and problems. Relevant laws and regulations are also to be reviewed and recommend improvement plan.

NRW Reduction Management Program:

Analyze achieved performances on completed UFW reduction projects. Prepare plan for the improvement in NRW Reduction management and develop program for the implementation of the plan.

Water Saving Campaign Program:

Prepare plan with methodology for water saving by different water user together with community development. Required materials for information provision on water supply and sewerage services and improvement of environment will be prepared. Based on the plan, community meetings shall be carried out starting from local government staff up to residents. Strategic annual program shall be prepared to cover as much area as possible in the BBMP during consulting service period.

8. Obligation of Executing Agency

A certain range of arrangements and services will be provided by BWSSB to the Consultant for smooth implementation of the Consulting Services. In this context, PMC will:

(1) Reports and data

Make available to the Consultant existing reports and data related to the Project as required.

(2) Office space

The Consultant's requirement for office space, including necessary equipment, furniture and utilities, shall be clearly stated in the proposal with its rental cost for the case where BWSSB would be unable to provide such facilities;

(3) Cooperation and counterpart staff

Appoint counterpart officials, agent and representative as may be necessary for effective implementation of the Consulting Services. Required arrangements for Community Development shall be made timely;

(4) Assistance and exemption

Use its best efforts to ensure that the assistance and exemption, as described in the Standard Request for Proposal issued by JICA, will be provided to the Consultant, in relation to:

- work permit and such other documents;
- entry and exit visas, residence permits, exchange permits and such other documents
- clearance through customs;
- instructions and information to officials, agent and representatives of the GOI as well as GoK;
- Privilege pursuant to the applicable law in India.

Supporting Report 15.8.1

Preliminary Cost Estimates

Annual Fund Requirement

Base Year for Cost Estimation: Apr, 2017

Exchange Rates INR = JPY 1.7 Price Escalation: FC: 2.0% LC:

Physical Contingency 5% Physical Contingency for Consultant 5%

I) Pr VV	Item IGIBLE PORTION rocurement / Construction BY-U1 Bytrayanapura BY-U2 Bytrayanapura BY-U3 Bytrayanapura	FC	Total LC 10,153	Total	Million INR
I) Pr VV	rocurement / Construction BY-U1 Bytrayanapura BY-U2 Bytrayanapura BY-U3 Bytrayanapura	FC			
I) Pr VV	rocurement / Construction BY-U1 Bytrayanapura BY-U2 Bytrayanapura BY-U3 Bytrayanapura		10,153		
V	BY-U1 Bytrayanapura BY-U2 Bytrayanapura BY-U3 Bytrayanapura		10,153		
V V V V V V	BY-U2 Bytrayanapura BY-U3 Bytrayanapura	<u> </u>		17,260	
V V V V V	BY-U3 Bytrayanapura		912	1,551	
V V V V V	BY-U3 Bytrayanapura		369	628	
V V V V		. 	853	1,450	
V V V	M-U1 Mahadevpura	<u> </u>	158	268	
V V	M-U2 Mahadevpura		1,488	2,530	
V V	BO-U1 Bommanahalli	<u> </u>	507	862	
V V	BO-U2 Bommanahalli	1	348	591	
	BO-U3 Bommanahalli		372	632	
17	BO-U4 Bommanahalli		438	744	
V	R-U1 R.R.Nagar		479	813	
	R-U2 R.R.Nagar		524	891	
	D-U1 Dasarahalli	1	291	495	
	D-U2 Dasarahalli	† †	1,603	2,726	<u> </u>
	ase cost for JICA financing		8,341	14,180	8,341
	rice escalation	·†	1,328	2,258	1,328
	hysical contingency	· 	483	822	483
	Consulting services	234	348	826	
	ase cost	212	302	726	427
	rice escalation	11	29	61	36
	hysical contingency	11	17	39	23
					23
		234	10,501	18,086	
	N ELIGIBLE PORTION				
a Pi	rocurement / Construction				
	. C. HOLE	1			
	ase cost for JICA financing				
	rice escalation	1			
	hysical contingency				
b L	and Acquisition				
	ase cost				
	rice escalation				
	hysical contingency				
c A	dministration cost		319	543	319
d V	AT		7	12	7
e In	nport Tax		21	35	21
	Total (a+b+c+d+e)		347	589	
TOTA	AL (A+B)	234	10,848	18,675	
	_				
C. In	terest during Construction	204		204	
	nterest during Construction(Const.)	204		204	120
	nterest during Construction (Consul.)	0		0	0
	ont End Fee	37		37	22
	GRAND TOTAL (A+B+C+D)		10,848	18,916	11,127
Jawai	101111 (11111111111)	475	10,010	13,710	11,127
E 114	CA finance portion incl. IDC (A + C)	438	10,501	18,290	10,759

Indirect Cost Total (Eligible) 2,418

Indirect Cost Total (Non Eligible) 368

Indirect Cost Total 2,786

Direct Cost Total 8,341

Pre-Conditions for Cost Estimation

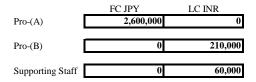
1. General Conditions

Exchange Rate

			INR	
(1)	JPY/USD	USD 1 =	100 JI	PΥ
(2)	LC/USD	USD 1 =	70 II	۱R
(3)	JPY/INR	INR 1 =	1.7 JI	PΥ

Price Escalation

FC	2.0%	LC	3.7%


Physical Contingency

Construction	5.0%	Consultant	5.0%
--------------	------	------------	------

Base Year for Cost Estimation: Schedule

2017/04	Start	2017/01	End	2024/12
---------	-------	---------	-----	---------

Billing Rate of Consultant

2. Others

Rate of Tax

VAT	5.0%	Import Tax	15.0%

Rate of Administration Cost

3.0%

Rate of Interest During Construction

Construction	0.30%	Consultant	0.01%

Rate of Front End Fee

0.2%

Payment Method for I	nterest during construction	<u>Front End Fee</u>
	loan covered	not loan covered

Fiscal Year

Apr - Mar

VAT and Import TAX

Construction/Procurement Works
Consultant Services
Land Acquisition

VAT		
FC	LC	
TRUE	FALSE	
TRUE	FALSE	
FALSE	FALSE	

Import TAX
FC
TRUE
TRUE

Advanced Payment

	Advanced Payme
Construction	30.0%
Consultant Services	30.0%

Retention Money			
RM at Completion	After DNP		
0.0%	0.0%		
0.0%	0.0%		

Defect Notification Period(DNP)

Cost Breakdown for Package

USD =JPY 100 INR =JPY 1.7

item	Local	Total
Reili	INR	JPY
Land Acquisition Cost	0	0

VBY-U1 Bytrayanapura Loan Coverage Ratio 100

DI CI Djulujulupulu				soun coverage reams	100			
			Unit I	Unit Price		Cost		
item	unit	Quantity	Foreign	Local	Foreign	Local	Total	
			JPY	INR	JPY	INR	JPY	
Providing Submain and trunk sewer	Set	1		289,736,711	0	289,736,711	492,552,408	
Construction of STP	Set	1		578,000,000	0	578,000,000	982,600,000	
Construction of Wet Well cum pumphouses	Set	1		9,900,000	0	9,900,000	16,830,000	
Providing D.I.Pumping mains	Set	1		0	0	0	0	
Restration of Storm Water Drains	Set	1		3,148,616	0	3,148,616	5,352,648	
Roads restration	Set	1		31,608,034	0	31,608,034	53,733,658	
Total					0	912,393,361	1,551,068,714	

VBY-U2 Bytrayanapura Loan Coverage Ratio 100

VDI CZ Dytrayanapara						soun coverage reams	100	
			Unit I	Unit Price		Cost		
item	unit	Quantity	Foreign	Local	Foreign	Local	Total	
			JPY	INR	JPY	INR	JPY	
Providing Submain and t runk sewer	Set	1		71,172,251	0	71,172,251	120,992,827	
Construction of STP	Set	1		278,000,000	0	278,000,000	472,600,000	
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0	
Providing D.I.Pumping mains	Set	1		5,934,000	0	5,934,000	10,087,800	
Restration of Storm Water Drains	Set	1		1,297,677	0	1,297,677	2,206,051	
Roads restration	Set	1		13,027,000	0	13,027,000	22,145,901	
Total					0	369,430,929	628,032,579	

VBY-U3 Bytrayanapura Loan Coverage Ratio 100

· =							
			Unit Price		C	Total	
item	unit	Quantity	Foreign	Local	Foreign	Local	Total
			JPY	INR	JPY	INR	JPY
Providing Submain and t runk sewer	Set	1		297,511,215	0	297,511,215	505,769,065
Construction of STP	Set	1		516,000,000	0	516,000,000	877,200,000
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0
Providing D.I.Pumping mains	Set	1		0	0	0	0
Restration of Storm Water Drains	Set	1		3,553,706	0	3,553,706	6,041,301
Roads restration	Set	1		35,674,613	0	35,674,613	60,646,842
Total					0	852,739,534	1,449,657,209

VM-U1 Mahadevpura	M-U1 Mahadevpura Loan Coverage Ratio										
			Unit I	Price	C	Total					
item	unit	Quantity	Foreign	Local	Foreign	Local	Total				
			JPY	INR	JPY	INR	JPY				
Providing Submain and t runk sewer	Set	1		143,342,217	0	143,342,217	243,681,769				
Construction of STP	Set	1		0	0	0	0				
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0				
Providing D.I.Pumping mains	Set	1		0	0	0	0				
Restration of Storm Water Drains	Set	1		1,197,350	0	1,197,350	2,035,494				
Roads restration	Set	1		13,173,170	0	13,173,170	22,394,389				
Total					0	157,712,737	268,111,652				

VM-U2 Mahadevpura	VM-U2 Mahadevpura Loan Coverage Ratio										
			Unit I	Price	C	ost	Total				
item	unit	Quantity	Foreign	Local	Foreign	Local	Total				
						JPY	INR	JPY	INR	JPY	
Providing Submain and trunk sewer	Set	1		566,987,224	0	566,987,224	963,878,281				
Construction of STP	Set	1		472,000,000	0	472,000,000	802,400,000				
Construction of Wet Well cum pumphouses	Set	1		183,400,000	0	183,400,000	311,780,000				
Providing D.I.Pumping mains	Set	1		196,100,000	0	196,100,000	333,370,000				
Restration of Storm Water Drains	Set	1		5,802,650	0	5,802,650	9,864,506				
Roads restration	Set	1		63,840,417	0	63,840,417	108,528,708				
Total					0	1,488,130,291	2,529,821,495				

VBO-U1 Bommanahalli Loan Coverage Ratio										
			Unit I	Price	C	ost	Total			
item	unit	Quantity	Foreign	Local	Foreign	Local	Total			
			JPY	INR	JPY	INR	JPY			
Providing Submain and t runk sewer	Set	1		218,055,035	0	218,055,035	370,693,559			
Construction of STP	Set	1		253,000,000	0	253,000,000	430,100,000			
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0			
Providing D.I.Pumping mains	Set	1		0	0	0	0			
Restration of Storm Water Drains	Set	1		5,075,747	0	5,075,747	8,628,769			
Roads restration	Set	1		31,042,368	0	31,042,368	52,772,025			
Total					0	507,173,149	862,194,354			

VBO-U2 Bommanahalli					I	oan Coverage Ratio	100
			Unit I	Price	C	ost	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	Total
			JPY	INR	JPY	INR	JPY
Providing Submain and t runk sewer	Set	1		97,645,970	0	97,645,970	165,998,149
Construction of STP	Set	1		231,000,000	0	231,000,000	392,700,000
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0
Providing D.I.Pumping mains	Set	1		0	0	0	0
Restration of Storm Water Drains	Set	1		2,686,064	0	2,686,064	4,566,309
Roads restration	Set	1		16,427,493	0	16,427,493	27,926,738
Total					0	347,759,528	591,191,197

VBO-U3 Bommanahalli	/BO-U3 Bommanahalli Loan Coverage Ratio									
			Unit I	Price	C	Total				
item	unit	Quantity	Foreign	Local	Foreign	Local	Total			
			JPY	INR	JPY	INR	JPY			
Providing Submain and t runk sewer	Set	1		137,236,213	0	137,236,213	233,301,562			
Construction of STP	Set	1		0	0	0	0			
Construction of Wet Well cum pumphouses	Set	1		136,600,000	0	136,600,000	232,220,000			
Providing D.I.Pumping mains	Set	1		73,800,000	0	73,800,000	125,460,000			
Restration of Storm Water Drains	Set	1		3,360,569	0	3,360,569	5,712,967			
Roads restration	Set	1		20,552,646	0	20,552,646	34,939,498			
Total					0	371,549,428	631,634,027			

VBO-U4 Bommanahalli	VBO-U4 Bommanahalli Loan Coverage Ratio										
			Unit I	Price	Cost		Total				
item	unit	Quantity	Foreign	Local	Foreign	Local	Total				
			JPY	INR	JPY	INR	JPY				
Providing Submain and t runk sewer	Set	1		388,834,943	0	388,834,943	661,019,403				
Construction of STP	Set	1		0	0	0	0				
Construction of Wet Well cum pumphouses	Set	1		0	0	0	0				
Providing D.I.Pumping mains	Set	1		0	0	0	0				
Restration of Storm Water Drains	Set	1		6,877,620	0	6,877,620	11,691,954				
Roads restration	Set	1		42,062,306	0	42,062,306	71,505,921				
Total					0	437,774,870	744,217,278				

VR-U1 R.R.Nagar Loan Coverage Ratio 100 Unit Price Cost Total item unit Quantity Foreign Local Foreign Local JPY INR JPY INR JPY Providing Submain 120,064,504 0 120,064,504 204,109,656 Set 1 and trunk sewer Construction of STP Set 1 313,000,000 0 313,000,000 532,100,000 Construction of Wet Well cum Set 1 0 pumphouses Providing D.I.Pumping mains Set 1 20,839,000 0 20,839,000 35,426,300 Restration of Storm Water Set 1 3,359,968 0 3,359,968 5,711,945 Roads restration Set 1 21,247,632 0 21,247,632 36,120,975 Total 478,511,103 813,468,876

VR-U2 R.R.Nagar					I	oan Coverage Ratio	100
			Unit I	Price	C	ost	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	Total
			JPY	INR	JPY	INR	JPY
Providing Submain and t runk sewer	Set	1		28,296,980	0	28,296,980	48,104,867
Construction of STP	Set	1		439,000,000	0	439,000,000	746,300,000
Construction of Wet Well cum pumphouses	Set	1		51,900,000	0	51,900,000	88,230,000
Providing D.I.Pumping mains	Set	1		0	0	0	0
Restration of Storm Water Drains	Set	1		640,032	0	640,032	1,088,055
Roads restration	Set	1		4,047,412	0	4,047,412	6,880,600
Total					0	523,884,425	890,603,522

17,446,315

494,519,461

VD-U1 Dasarahalli Loan Coverage Ratio 100 Unit Price Total item unit Quantity Foreign Local Foreign Local JPY INR JPY INR JPY Providing Submain 0 50,700,586 86,190,996 Set 50,700,586 and trunk sewer 228,000,000 0 228,000,000 387,600,000 Construction of STP Set 1 Construction of Wet Well cum 0 Set 1 pumphouses 0 0 0 0 Providing D.I.Pumping mains Set 1 Restration of Storm Water 0 1 1,930,676 1,930,676 3,282,149 Set Drains

10,262,539

0

0

10,262,539

290,893,801

Roads restration

Total

Set

1

VD-U2 Dasarahalli					I	Loan Coverage Ratio	100
			Unit I	Price	C	ost	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	Total
			JPY	INR	JPY	INR	JPY
Providing Submain and t runk sewer	Set	1		185,048,967	0	185,048,967	314,583,244
Construction of STP	Set	1		1,181,000,000	0	1,181,000,000	2,007,700,000
Construction of Wet Well cum pumphouses	Set	1		138,700,000	0	138,700,000	235,790,000
Providing D.I.Pumping mains	Set	1		60,320,000	0	60,320,000	102,544,000
Restration of Storm Water Drains	Set	1		6,069,324	0	6,069,324	10,317,851
Roads restration	Set	1		32,261,586	0	32,261,586	54,844,696
Total					0	1,603,399,877	2,725,779,790

Cost Breakdown for the Consulting Services

USD = JPY 100 INR = JPY 1.7

					INR	= JPY	1.7
							Combined
			Foreign			Portion	Total
	Llevid	/ Mr.	(JP			NR	COON
	Unit	Qty.	Rate	Amount ('000)	Rate	Amount ('000)	('000) JPY
A Remuneration							
1 Professional (A)	M/M	81	2,600,000	210,600	0	0	210,600
2 Professional (B)	M/M	189	0	0	210,000	39,690	67,473
3 Supporting Staffs	M/M	720	0	0	60,000	43,200	73,440
Subtotal of A				210,600		82,890	351,513
B Direct Cost							
1 International Airfare		6.75	250,000	1,688		0	1,688
2 Domestic Airfare		90	-	0	18,000	1,620	2,754
3 Domestic Travel				0	3,000	0	0
3 Accommodation Allowance	Month	81		0	30,000	2,430	4,131
	Month	189		0	20,000	3,780	6,426
	Month	720		0	5,000	3,600	6,120
4 Vehicle Rental	Month	90		0	47,000	4,230	7,191
5 Office Rental	M/M	990		0	165,000	163,350	277,695
6 International Communications	M/M	81		0	25,000	2,025	3,443
7 Domestic Communications	M/M	990		0	20,000	19,800	33,660
8 Office Supply	M/M	1		0	10,000,000	10,000	17,000
9 Office Furniture and Equipment	M/M	1		0	3,000,000	3,000	5,100
10 Report Preparation	Month	70		0	75,000	5,250	8,925
Subtotal of B				1,688		219,085	374,132
Total				212,288		301,975	725,645

Summary of Cost for Construction of Main facility of 110 Village's Sewarage

	Item		Million I	NR
		Open cut	198,944MR	2,370
0.1	Providing Submain	Trenchless	1,130MR	218
S-1	and trunk sewer	Miscellaneous	-	7
		Sub-Total	-	2,595
S-2	Construction of	STP	14 NOS	4,489
S-3	Construction of pumphouses	Wet Well cum	7 NOS	521
S-4	Providing D.I.P	rumping mains	15,310MR	357
S-5	Restration of St Drains	orm Water	-	45
S-6	Roads restration	1	1 (4)	335
	Direct cost	Total		8,341
	Indirect cos	t Total		2,786
	Land acqui	sition		0
	Grand T	otal		11,127

The control of the					Summary of Dire	Direct	Cost for Construction o	† Main T	ct Cost for Construction of Main facility of 110 Village's Sewarage	arage				-		Г
	Zone		Rem		Total								Package-U4			
1				Open cut	300~1001 48,598	MR	DIA 300~60 19,127	MR	DIA 300~601 7,883	50.6	DIA 300~100(21,588	297.1			J	œ
		ā	Providing Submain	Trenchless			DIA 400~60		DIA 300∼	20.4						
1 20 Controlled 20 C		,	and trunk sewer	Miscellaneous			6.0		0.3	0.1		0.4				
100 100						8		281		71.2		297.5				
1	Bytrayanapura		Construction of STF	W-II	4 NOS	,5,		22		278.0	-	216.0			4 NOS	T
1		, V	Providing D.I.Pumpin	mein dum pumpnouses	202			+	DIA250 ~ 1,380	5.9					200	n
		S-5	Restration of Storm	Water Drains			8.0			1.3		3.6				
		9-S	Roads restration			3	90.3	3.	1.6	13.0		35.7				
		╽	Tota					4		369.4		852.7				Ī
1				Open cut			DIA 300~50 7,632	_	DIA 300~801 36,988	_						œ
Contentioned PTA Part Pa		<u>.</u>	Providing Submain	Trenchless			31.9	 	DIA 300~60	31.9						
1 1 1 1 1 1 1 1 1 1				Sub-T-del			60.	149	3.0	587.0						T
Page Controlled With With With With With With With With		ĵ	Construction of STP		SON 1		0.00	É		472.0					NOS 1	T
1	Mahadevpura	8-8	Construction of Wet	Well cum pumphouses	1 NOS	182	33.4		1 NOS	183.4						T
1		\$-S	Providing D.I.Pumpin	ş mains	~008		19.1		5,300	196.1						Ī
1		S-5	Restration of Storm	Water Drains			7.0			5.8						
		å	Roads restration			•	0.77	7	3.2	63.8						
Provincia classical control		_	Tota							1,488.1						
1				Open cut	300~120	Æ	DIA 300~70	Σ	DIA 300~60	85.1	DIA 300∼500 12,087	104.1	24,737 MR	372.0		œ
1		S-1	Providing Submain	Trenchless			DIA 500∼60		DIA 300∼	11.9	DIA 400∼	32.3	80 MR	15.2		
				Sub-Total		84	8 17	916	3.1	97.6		137.9		388.8		T
2-12 Concentration of the name parabosas 1822 Concentratio		S-2	Construction of STP		2 NOS	48		255		231.0		!			3 NOS	T
5-4 Providet District Column 1-12 1-	Bommanahalli	8-8	Construction of Wet	Well cum pumphouses	1 NOS	122					-	136.6				
1 1 1 1 1 1 1 1 1 1		\$ *	Providing D.I.Pumpin	g mains	~009		73.8				3,000	73.8				
1		S-5	Restration of Storm	Water Drains		T I	18.0	1	5.1	2.7		3.4		6.9		
Particular Par		ę,	Roads restration			=	10.1	3	0.1	16.4		20.6		42.1		
Providite Scheme Tracticies Tracticies		_	Tota				:	4		347.8		371.5				T
				Open cut			DIA 300~50	Σ	DIA 300~40i	28.2						r .
		<u>S</u>	Providing Submain and trunk sewer	Miscellaneous			200 MI		13	0.1						
9-24 Control C				Sub-Total		1	18.4	120	9.1	28.3						T
		S-2	Construction of STP		2 NOS	2		315		439.0					3 NOS	Ī
9-4 Providing DLP mayney makes DIA 200-400 2,200 MR 200 DIA 200-400 200 MR 200 DIA 200-400 200 MR	K.K.Nagar	S-3	Construction of Wet	Well cum pumphouses	2 NOS		91.9			51.9					1 NOS	
St-6 Resident winter Dailes 4.0 2.2 Resident winter Dailes 4.0 2.2 4.0 Diameter Dailes		\$ -	Providing D.I.Pumpin	g mains			DIA 250~40		0.8							
5-6 Roadin entironical control contro		S-2	Restration of Storm	Water Drains			4.0		3.4	9.0						Т
Providing Submain Coperator Coperato		φ	Roads restration			7 8	25.3	2 1	2.	4.0						
5-1 Providing Submining Transcrises Dia 200-200 H 20 MR 102 Dia 200-200 H 20 MR 102 Dia 200-200 H 20 MR 102 Dia 200-200 H 20 MR 103 Dia 200-200 H 20 MR 104 Dia 200-200 H 20 MR 105 Dia 200-		ļ	5				DIA 300~70	+	DIA 300~70	1		l				œ
2-3 Construction of Standards and Tunik ewer Miscellancous 0.6 0.0 0		į	Providing Submain	Trenchless			DIA 300∼		DIA 200∼			L				
S-A Construction of STP Sub-Total 5 NOS 1 88.0 4 NOS 1 88.0 5 NOS 1 88.0 1 188.0 1 1 NOS 5 NOS 1 NOS <th< th=""><th></th><th>Ī</th><th>and trunk sewer</th><th>Miscellaneous</th><th></th><th></th><th></th><th></th><th></th><th>0.5</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Ī	and trunk sewer	Miscellaneous						0.5						
S-9 Construction of SIP						22		æ		185.0					1	Т
S−1 Construction of Storm Water Drains DA 200–600 3.400 MR 613 Annual Construction of Storm Water Drains BDA 200–600 3.400 MR 613 Annual Construction of Storm Water Drains BDA 200–600 3.400 MR Construction of Storm Water Drains BDA 200–600 3.400 MR Construction of Storm Water Drains BDA 200–600 3.400 MR Construction of Storm Water Drains BDA 200–600 1.184-35 Construction of Storm Water Drains BDA 200–600 1.180-45 Construction of Storm Water Drains BDA 200–600 1.180-45 Construction of Storm Water Drains BDA 200–600 DDA 200–600	Dasarahalli	S-2	Construction of STF		5 NOS	±.		Ž		1,181.0					S NOS	
S-6 Restration of Storm Meter Drailes 4.25 1.13 6.13 6.13 9.10		2 4	Providing D I Pumping	Well cum pumphouses	g		m38.7	1		138.7		İ			202	Τ.
S-6 Roader restration 42.5 16.2 32.2 Post office Submish 42.5 1.003.4 R.2 1.003.4 R.2 1.003.4 R.2 1.003.4 R.2 R.2 <th></th> <th>9</th> <th>Restration of Storm</th> <th>Water Drains</th> <th></th> <th></th> <th>8.0</th> <th></th> <th>00 007 007</th> <th>9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Τ</th>		9	Restration of Storm	Water Drains			8.0		00 007 007	9						Τ
S-1 Total Distriction 1,894.3 290.9 1,003.4 In 1,003.4		8-8	Roads restration			•	12.5	11	0.3	32.3						П
Providing Submain Terebless			Tota				34.3	290	0.0	1,603.4						
S-1 Providing Solument And Color Soluments Providing Solument And Color Soluments Providing Solument And Color A			:	Open cut			89.6	\	_	/		/		4	DIA 300~120(338,333 M	Œ,
S-2 Construction of YRP Mode multiple and a state of		ŗ,	Providing Submain and trunk sewer	Miscellaneous			£/1	\	_	\	`	\	\	\perp		r
S-2 Construction of STIP 14 NOS 4489D S-4 Provider United in Marker Drains DA 200-800 15310 MR 850 Back of State and S				Sub-Total		2,58	97	\	_		\		\			T
S-4 Providing DLPumphe mains 7 NOS 55.05 S-4 Providing DLPumphe mains DIA 200-800 53.10 MR 357.00 DIA 150-250 S-5 Retaration of Som Water Drains 45.00 Brain Social MR 358.20 Brain Social MR 358.20 S-6 Repertation 358.2 Brain Social MR 358.2 Brain Social MR Brain Social	Total	S-2	Construction of STP		14 NOS	4,4	080		<u> </u>		\		\		16 NOS	П
Provinging Unitary Proving		S-9	Construction of Wet	Well cum pumphouses	S				\		\		\		'n	٦,
Roads restration Total		, v	Providing D.L.Pumpin	g mains Water Drains		+	150		\		\		\			r
		9-8	Roads restration			8	16.2		\		\		\			T
			Tota			8,34	114						_			П

Summary of Direct Cost for Construction of Main sewers and Pumping Mains

					Sum	mary	סד ט			. tor	Cons	truct	ion o	T Main	sewer	s and	Pump						
Marchas Marc	Package		Item																				
HereMay 100 100 100 100 100 100 100 100 100 10						450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia			450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
Marchang					4,249		4,565							16,348,800	41,215,300								
		Opun		351			844							10,038,600			24,636,040						
West				2 010			5.400							22 047 400			71 100 040						
Marchard 18	VBY-U1		Sub Total	3,919	9,431		5,409		127					33,047,400	135,077,120		71,199,040		920				
						700 Dia										700 Dia							
1			Trenchless	30	140									5,700,000	32,200,000								
1	ŀ			250 Dia	300 Dia			1	/0 					250 Dia	300 Dia		1	37,900,0	100	ı		ı .	Γ
March Mar		D.I.	Pumping mains																				
March Mar																							
Mathia M							500 Dia		700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia				500 Dia		700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
Mathieum								102										010,000					
			Above 4 Up to 6	73	45									2,087,800	1,291,500								
			Above 6	2 702	2.005	174		100						00 070 000	00 100 700	1 577 000		E40 000					
	VBY-U2		Sub Total	3,702	3,303	174			383					20,370,200	20,132,700	1,377,000			500				1
No. Process			•																				
			Trenchless	120				1:	20					20,400,000				20 400 0	000				
Part	ŧ			250 Dia	I				Ī					250 Dia			·	20,100,	Ī				
March Marc		D.I.	Pumping mains	1,380										5,934,000									
May			Dth (MD)	200 Di-	400 Di-	450 Di-	E00 Di-			000 Di-	000 Di-	1000 Di-	1000 Di-	200 Die	400 Di-	450 Di-	500 Di-			000 Di-	000 Di-	1000 Di-	1000 Di-
Marchand						430 DIS		OUV DIS	700 DIS	ovo Dia	ann Dig	TOOU DIS	1200 DIS			430 DIS		OUV DIS	700 DIS	OUJ DIS	and Dia	TOUR DIS	1200 DIB
March Mar		Onum	Above 2 Up to 4	2,675	852		244							25,676,160	8,262,460		2,488,800						
March Mar				653	1,045				766			100		18,678,660	29,994,370				23,430,420			401000	
Part				9,702	5,661				1,645					69,853,620	53,690,460				33,630.300				
Part	VBY-U3		Sub Total																				
Part			Trenchioss													\Box	\vdash						
Note Part			Trenchiess																	l		l	
Note Part																							
May		D.I.	Pumping mains												لـــــــا								
May			Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
March Marc			Up to 2	317		169	1,036						2.0	1,266,800	-	727,990	4,764,220						
March Marc		Opun													———								
May		cut				217	50									6,265,520	1,460,000						
				3,648		513	1,296									8,245,860	8,371,320						
Part	VM-U1		000 1000					7,6	332					ļ				143,185,	080	1			
Part			Trenchless			<u> </u>	<u> </u>							 			-						
March Marc																			l	I		l	
March Marc																							
May 1		D1.	Pumping mains																				
Marco Sale			Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
Note Part																							
Make					394										3,821,800								
Value Valu		cut																					
Value Part			Sub Total	14,592	978	10,836	1,400			1,931				172,491,900	6,216,200	135,674,600	25,619,000			57,781,200			
Part	VM-U2			300 Dia	600 Dia			36,	988					300 Dia	600 Dia		1	534,325,	700	ı		I	Γ
Value Part			Trenchless																				
Part								11	70									31,900,0	000	1			
Value		DJ	Pumping mains			<u> </u>	<u> </u>										-						
Value Part									300											!		!	
Marcon M										800 Dia	900 Dia	1000 Dia	1200 Dia							800 Dia	900 Dia	1000 Dia	1200 Dia
Value																							
March Marc							.,_0,									-,-30,400							
VBO-14 Sile			Above 6	0.30	0.46-	70-	4.05	0.54-	004					00.004.555	E4 700	0.000	10.101	27.027.	20 500 15				
Trenchess 500 Da 600 Da	VBO-U1		Sub Total	3,707	0,495	735	1,372							20,004,600	54,/82,900	0,330,100	13,484,800						
Purposing mains	ļ																						
Page			Trenchless	100	100			-	00					21,000,000	23,000,000			44 000 7	000	<u> </u>			
Paper Mark	ŀ																						
VBO-UE V		D.I.	Pumping mains																				
VBO-UE V			Dooth (MD)	200 01-	400.00	450.00	500 Di-	600 01-	700 01-	900 51-	900 51-	1000 01	1200 D	200 01-	400 DI-	450 01-	500 Di-	600 01-	700 01-	900 01-	900 Di-	1000 D	1200 D
VBO-U2 VBO-U2 VBO-U2 VBO-U2 VBO-U2 VBO-U2 VBO-U2 VBO-U3 VBO-U3 Above 2 Up to 4 49 to 16 6 285 297 1 15 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1						470 DIS			700 018	oou Dia	out Dia	1000 Dia	1200 Dia			4/0 DIS			700 Dia	out Dia	ouu Dia	1000 Dia	1200 Dia
VBO-U2 VBO-U2 VBO-U3 VBO-U4 Above 4 Da to 1		0	Above 2 Up to 4		3,333	166	697								32,330,100	1,643,400	7,109,400						
VBO-U2 Sub Total 2,785 5,018 168 1,511 201		cut			285				\vdash	_				 	8,179,500	H					_		
VBO-US Sub Cital				2,765	5,018	166		201						15,254,400	46,249,600	1,643,400		1,821,300					
VBO-US Trenchless Trenchless To	VBO-U2		Sub Total						361										00				
VBO-UB D1Pumping mains			Tranchioss			\vdash	\vdash									H	\vdash						
VBO-US Depth (Mpt) S00 Dis 400 Dis 450 Dis 500 Dis 600 Dis 700 Dis 800 Dis 500 Dis 1000 Dis 1200 Dis 1220 D			discines5	/0				7	10					11,300,000				11,900,0	000	<u> </u>			
VBO-US Depth (MR) Side	ļ																						
Up to 2 3.05 2.306 31		D.I.	Pumping mains					L											L	L			L
Up to 2 3.05 2.306 31			Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
VBO-U3		Up to 2	3,051	2,306		31							12,204,000	9,454,600		142,600							
VBO-U3 VBO-U3 VBO-U3 VBO-U3 Above 6 5.72 5.392 5.15 458 15.087 5.072.600 4.488.000 1.08.0						515	427									5,098,500	4,355,400						
VBO-US Sub Total 5/12 5/38 5/15 458 5/30 5/				6/7	233			-						19,362,200	0,687,100								
VBO-US 12,007 104,120,000 Trenchless 170 1 232,300,000 1 104,120,000 Trenchless 170 32,300,000 32,300,000 D1Pumping mains 3,000 1 0 000 is 1 1				5,722	5,392	515	458							50,708,600	43,815,800	5,098,500	4,498,000						
Trenchless 170 32,300,000 32,300,	VBO-U3		1000	400 Di-				12,	087					400 01-				104,120,	900				
170 32,200,000			Trenchless			\vdash	\vdash																
D1Pumping mains 3,000 73,800,000								1	70									32,300,0	000				
				600 Dia																1			
		۲.	Pumping mai-	0.00-																			
		D.I.	Pumping mains	3,000				9.0	000					73,800,000				73.800 (000				

		Depth (MR)	300 Dia	100 D	450 Dia	500 Dia	600 Dia	200 D	000 D	900 Dia	1000 Dia	4000 D	000 D:	400 D	450 D.	500 Dia	000 D	700 0:	800 Dia	900 Dia	1000 Dia	4000 D
		Up to 2	300 Dia 3.822	400 Dia 1.381	450 Dia 348	500 Dia	112	700 Dia 279	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia 15.286.400	400 Dia 5,662,100	450 Dia 1.496.400	500 Dia	600 Dia 593,600	700 Dia 1,674,000	800 Dia	900 Dia	1000 Dia	1200 Dia
		Above 2 Up to 4	4,738	2,070	348	93	894	197	211	3,430	347	328	45,486,144	20,074,538	3.663.000	943,500	9,744,600	2,285,200	2 637 500	54 194 000	5,725,500	6,297,600
	Opun		1,485	781	102	964	34	197	211	606	753	680	42,471,000	22,425,319	2,948,956	28,137,996	1,016,600	2,203,200	2,037,300	21.088.800		25,976,000
	cut	Above 4 Up to 6	126	268	102	904	34			600	/55	319	3.943.800	8,415,200	2,940,930	20,137,990	1,010,000			21,000,000	20,731,300	13,047,100
		Above 6	10,171	4,500	820	1,056	1,040	476	211	4,036	1,100	1,327	107,187,344	56,577,157	8,108,356	29,081,496	11,354,800	3,959,200	2,637,500	75,282,800	20 457 000	
VBO-U4		Sub Total	10,171	4,300	020	1,036		737	211	4,036	1,100	1,327	107,107,344	36,377,137	0,100,330	29,061,490	371,966,		2,037,300	73,202,000	32,437,000	45,320,700
.50 5.			400 Dia	450 Dia	l				l	l			400 Dia	450 Dia			071,000,					
		Trenchless	30	50									5,700,000	9.500.000								
					L			10					0,700,000	5,000,000			15,200,0	000				
	D.I.	Pumping mains																				
					!																	
		Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
		Up to 2	4,241	1,437	36	199							16,964,000	5,891,700	154,800	915,400						
	Opun	Above 2 Up to 4	3,311	1,297	92	382							31,785,600	12,580,900	910,800	3,896,400						
	cut	Above 4 Up to 6	1,206	217		29							34,491,600	6,227,900		846,800						
		Above 6																				
VR-U1		Sub Total	8,758	2,951	128	610	10	447					83,241,200	24,700,500	1,065,600	5,658,600	114,665,	000				
*K-01			300 Dia		г		14,		г	г			300 Dia				114,000,	-				
		Trenchless	300 Dia										5,100,000									
								10					0,100,000				5,100,0	00				
			250 Dia	400 Dia									250 Dia	400 Dia			-,,,,					
	D.I.	Pumping mains	730	1,500									3,139,000	17,700,000								
							2,1	230									20,839,0	000				
		Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
		Up to 2	411	569									1,644,000	2,332,900								
		Above 2 Up to 4	486	333									4,665,600	3,230,100								
	Opun	Above 4 Up to 6	489	83									13,985,400	2,382,100								
		Above 6																				
		Sub Total	1,386	985									20,295,000	7,945,100			20.010					
VR-U2							2,:	371			-						28,240,1	00			_	
		Trenchless																				
		Trenchiess																				
}			-								1											
	DJ	Pumping mains																				
					l			l	l	l												
		Depth (MR)	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	300 Dia	400 Dia	450 Dia	500 Dia	600 Dia	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
		Up to 2	2,929	1,056		88		52					11,716,000	4,329,600		404,800		312,000				
		Above 2 Up to 4	1,230	663				185					11,808,000	6,431,100				2,146,000				
	Opun	Above 4 Up to 6												1,836,800								
	cut	Above 4 Up to 6	48	64									1,372,800	1,030,000								
	cut	Above 6	48																			
	cut			1,783		88		237					1,372,800 24,896,800	12,597,500		404,800		2,458,000				
VD-U1	cut	Above 6	4,207			88	6,3	237					24,896,800			404,800	40,357,1					
VD-U1		Above 6 Sub Total	48 4,207 300 Dia			88	6,:						24,896,800 300 Dia			404,800	40,357,1					
VD-U1		Above 6	4,207			88		315					24,896,800			404,800		00				
VD-U1		Above 6 Sub Total	48 4,207 300 Dia			88							24,896,800 300 Dia			404,800	40,357,1 10,200,0	00				
VD-U1		Above 6 Sub Total	48 4,207 300 Dia			88		315					24,896,800 300 Dia			404,800		00				
VD-U1		Above 6 Sub Total Trenchless	48 4,207 300 Dia			88		315					24,896,800 300 Dia			404,800		00				
VD-U1		Above 6 Sub Total Trenchless	48 4,207 300 Dia		450 Dia	88 88		315	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia		450 Dia	404,800 500 Dia		00	800 Dia	900 Dia	1000 Dia	1200 Dia
VD-U1		Above 6 Sub Total Trenchless Pumping mains	48 4,207 300 Dia 60	1,783	450 Dia 363		(315	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000	12,597,500	450 Dia 1,560,900		10,200,0	000	800 Dia	900 Dia	1000 Dia	1200 Dia
VD-U1	DI	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4	48 4,207 300 Dia 60 300 Dia 6,819 3,496	1,783 400 Dia 2,157 2,142		500 Dis 212 701	600 Dia 471 835	315	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600	12,597,500 400 Dia 8,843,700 20,777,400		500 Dia 975,200 7,150,200	10,200,0 600 Dia 2,496,300 9,101,500	000	800 Dia	900 Dia	1000 Dia	1200 Dia
VD-U1		Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426	1,783 400 Dia 2,157 2,142 55	363	500 Dia 212	600 Dia 471 835 587	700 Dia	800 Dia	900 Dia	1000 Día	1200 Dis	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500	1,560,900	500 Dia 975,200	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300	00 000 700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
VD-U1	D.I.	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4	300 Dia 60 300 Dia 6.819 3.496 426 211	1,783 400 Dia 2,157 2,142 55 36	363 94	500 Dia 212 701 67	600 Dia 471 835 587 392	700 Dia	800 Dia	900 Dia	1000 Dis	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 32,183,600 6,604,300	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	D.I.	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426	1,783 400 Dia 2,157 2,142 55	363	500 Dis 212 701	600 Dia 471 835 587 392 2,285	700 Dia 788	800 Dia	900 Dia	1000 Dis	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500	1,560,900	500 Dia 975,200 7,150,200	10,200,0 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
VD-U1	D.I.	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952	1,783 400 Dia 2,157 2,142 55 36	363 94	500 Dia 212 701 67	600 Dia 471 835 587 392 2,285	700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600 12,183,600 12,183,600 79,625,500	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952	1,783 400 Dia 2,157 2,142 55 36	363 94	500 Dia 212 701 67	600 Dia 471 835 587 392 2,285	700 Dia 788	800 Dia	900 Dis	1000 Dia	1200 Dis	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 12,183,600 6,604,300 79,625,500 200 Dia	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,0 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952	1,783 400 Dia 2,157 2,142 55 36	363 94	500 Dia 212 701 67	600 Dis 471 835 587 392 2,285	700 Dia 788	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600 12,183,600 12,183,600 79,625,500	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,0 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952	1,783 400 Dia 2,157 2,142 55 36	363 94	500 Dia 212 701 67	600 Dis 471 835 587 392 2,285	700 Dia 788 852	800 Dia	900 Dia	1000 Dia	1200 Dis	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300 175,597,	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	D.I. Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60	1,783 400 Dia 2,157 2,142 55 36 4,390	363 94	500 Dia 212 701 67	600 Dis 471 835 587 392 2,285	700 Dia 788 852	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 12,183,600 6,604,300 79,625,500 200 Dia	400 Dia 8,843,700 20,777,400 1,578,500 1,130,400 32,330,000	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300 175,597,	700 Dia 9,140,800	800 Dia	900 Dia	1000 Dia	1200 Dia
	D.I. Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total Trenchless	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 200 Dia 200 Dia 200 Dia	1.783 400 Dia 2.157 2.152 55 36 4.390	363 94	500 Dia 212 701 67	600 Dia 471 835 587 392 2,285	700 Dia 788	800 Dia	900 Dia	1000 Dia	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 300 Dia 22,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000	400 Dia 8,843,700 20,777,400 1,137,400 32,330,000	1,560,900 930,600	500 Dia 975,200 7,150,200 1,956,400	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 12,779,200 41,928,300 175,597,	700 Dia 9,140,800 900	800 Dia	900 Dia	1000 Dis	1200 Dia
	D.I. Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total Trenchless	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 200 Dia 200 Dia 200 Dia	1.783 400 Dia 2.157 2.152 55 36 4.390	363 94	500 Dia 212 701 67	600 Dia 471 835 587 392 2,285	700 Dia 788 788 852	800 Dia	900 Dia	1000 Dis	1200 Dia	24,896,800 300 Dia 10,200,000 300 Dia 27,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000 200 Dia 3,740,000 300 Dia	12,597,500 400 Dia 8,843,700 20,777,400 1,578,500 1,130,400 32,330,000 600 Dia 56,580,000 400 Dia	1,560,900 930,600 2,491,500 450 Dia	500 Dia 975,200 7,150,200 1,956,400	10,200,0 600 Dia 2.496,300 9.101,500 17,551,300 12,779,200 41,928,300 175,597,	700 Dia 9,140,800 900 900 700 Dia	800 Dia	900 Dia	1000 Dia	1200 Dia
	D.I. Opun cut	Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total Trenchless	48 4.207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 200 Dia 1,100 300 Dia 43,642	1,783 400 Dia 2,157 2,142 55 36 4,390 600 Dia 2,300 400 Dia 2,300	363 94 457 450 Dia 3,903	500 Dia 212 701 67 980	600 Dia 471 835 587 392 2.285 19,	700 Dia 788 788 852 100 100 100 100 100 100 100 100 100 10	800 Dia	900 Dia	1000 Dia	1200 Dia	24.896,800 300 Dia 10.200,000 300 Dia 27.276,000 33.561,600 12.183,600 6.604,300 79,625,500 9,000,000 200 Dia 3,740,000 300 Dia 174,568,000	12,597,500 400 Dia 8,843,700 20,777,400 1,130,400 32,330,000 600 Dia 56,580,000 400 Dia 85,879,830	1,560,900 930,600 2,491,500 450 Dia 16,784,190	500 Dia 97.52.200 1.956.400 10.081.800	10,200,0 600 Dia 2.496,300 9.101,500 12,779,200 41,928,300 175,597, 9,000,0	700 Dia 9,140,800 9,140,800 900 900 900 900 900 900	800 Dia	900 Dia	1000 Dia	1200 Dia
	Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total Trenchless Depth (MR) Up to 1 Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total	48 4,207 300 Dia 60 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 1,100 300 Dia 43,642 28,477	1,783 400 Dia 2,157 2,142 55 36 4,390 400 Dia 2,300 400 Dia 2,300 400 Dia 2,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 400 Dia 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4,200 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	363 94 457 457 450 Dia 3.903 7.836	500 Dia 212 701 67 980 500 Dia 502 Dia 9,041	600 Dia 471 835 587 392 2.285 19, 600 Dia 2.770 4.736	700 Dia 788 788 852 100 100 100 Dia 6,708 6,708	800 Dia	900 Dia 3,430	1000 Dia	1200 Dis	24.896.800 300 Dia 10.200.000 300 Dia 27.276.000 33.561.600 12.183.600 6.604.300 79.625.500 200 Dia 3,740.000 300 Dia 174.556.000 300 Dia	400 Dia 8.843.700 1.177.600 1.177.600 1.177.600 1.130.400 32.330.000 400 Dia 85.878.830 23.584.000	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450	500 Dia 97.150.200 1.956.400 10.081.800 500 Dia 511.411.220 92.218.200	10,200,6 600 Dia 2,496,300 9,101,500 17,551,300 17,551,300 175,597, 41,928,300 175,597, 600 Dia 14,681,000	700 Dia 9,140,800 9,140,800 900 700 Dia 3,648,000 77,816,280	800 Dia 4,962,500	900 Dia 54,194,000	1000 Dis 5,725,500	1200 Dia 6,297,600
VD-U2	D.I. Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Sub Total	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 200 Dia 1,100 300 Dia 43,642 28,477 10,125	1,783 400 Dia 2,157 2,142 55 36 4,390 600 Dia 2,300 400 Dia 20,346 400 Dia 2,340 400 Dia 2,340 400 Dia 2,431 4,722	363 94 457 450 Dia 3,903 7,836 2,383	500 Dia 2121 67 980 500 Dia 2,481 2,999	600 Dia 471 835 587 392 2,285 19, 600 Dia 2,770 4,736 2,375	700 Dia 788 788 788 788 600 700 Dia 608 6.708 1.926	800 Dia 397 2,745	900 Dia 3,430 774	1000 Dia 347 753	1200 Dis 328 680	24,896,800 300 Dia 10,200,000 300 Dia 272,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 3,740,000 300 Dia 174,568,000 273,380,544 2885,721,40	400 Dia 8.843,700 20,777.400 1,138,400 1,138,500 600 Dia 56,580,000 400 Dia 85,878,830 235,440,098 225,444,098	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450 68,864,076	500 Dia 975.200 7.150.200 1.956.400 10.081.800 500 Dia 11.411.220 92.218.200 92.218.200	10,200,6 600 Dia 2,496,300 9,10,5500 117,551,300 12,779,200 41,928,300 175,597, 600 Dia 14,681,000 51,621,310	700 Dia 9.140.800 900 700 Dia 700 Dia 3.648.000 77.816.280	800 Dia 4.962.500 86.480.100	900 Dia 54,194,000 26,931,720	1000 Dia 5,725,500 26,731,500	1200 Dia 6,297,600 25,976,000
VD-U2	D.I. Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total Trenchless Depth (MR) Up to 1 Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total	48 48 4207 4207 500 Dis 60 50 50 50 50 50 50 50 50 50 50 50 50 50	1,783 400 Dia 2,157 2,142 536 4,390 600 Dia 2,300 400 Dia 2,300 400 Dia 2,300 400 Dia 2,300	450 Dia 3,903 7,836 2,383 222	500 Dia 2121 67 980 500 Dia 2,481 2,941 2,991	600 Dia 471 835 587 392 2,285 19, 600 Dia 2,770 4,736 2,336 1,761	700 Dia 788 852 100 100 100 100 100 100 100 100 100 10	800 Dia 397 2,745 441	900 Dia 3,430 774 789	1000 Dia 347 753 129	1200 Dia 328 680 319	24,896,800 300 Dia 10,200,000 300 Dia 21,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000 200 Dia 3,740,000 273,380,544 285,572,140 308,0580	400 Dia 8,843,700 20,777,400 1,578,500 1,130,400 32,330,000 600 Dia 56,580,000 400 Dia 55,578,030 235,844,008 207,474,309 37,523,000	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450 68,884,076 7,015,200	500 Dia 97.50.200 1.956,400 10.081,800 500 Dia 11.411,220 92.218,200 87.580,436	10,200,6 600 Dia 2,496,300 9,101,500 11,7551,300 12,779,200 41,928,300 175,597, 600 Dia 14,681,000 51,621,310 71,000,540 57,418,380	700 Dia 9,140,800 9,140,800 900 00 00 00 00 00 00 00 00 00 00 00	800 Dia 4,962,500 86,480,100 15,071,940	900 Dia 54,194,000 24,931,720 29,595,000	1000 Dia 5,725,500 26,731,500 4,916,340	1200 Dia 6.297.600 25,976.000
VD-U2	D.I. Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Sub Total	48 4,207 300 Dia 60 300 Dia 6,819 3,496 426 211 10,952 200 Dia 60 200 Dia 1,100 300 Dia 43,642 28,477 10,125	1,783 400 Dia 2,157 2,142 55 36 4,390 600 Dia 2,300 400 Dia 20,346 400 Dia 2,340 400 Dia 2,340 400 Dia 2,431 4,722	363 94 457 450 Dia 3,903 7,836 2,383	500 Dia 2121 67 980 500 Dia 2,481 2,999	600 Dia 471 835 587 392 2.285 19, 600 Dia 2.770 4.736 2.375 11,642	700 Dia 788 788 788 788 780 Dia 600 700 Dia 600 6,700 Dia 1,926 700 Dia 100 225 700 Dia 100 22	800 Dia 397 2,745	900 Dia 3,430 774	1000 Dia 347 753	1200 Dis 328 680	24,896,800 300 Dia 10,200,000 300 Dia 272,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 3,740,000 300 Dia 174,568,000 273,380,544 2885,721,40	400 Dia 8.843,700 20,777.400 1,138,400 1,138,500 600 Dia 56,580,000 400 Dia 85,878,830 235,440,098 225,444,098	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450 68,864,076	500 Dia 975.200 7.150.200 1.956.400 10.081.800 500 Dia 11.411.220 92.218.200 92.218.200	600 Dia 2,496,300 17,551,300 12,779,200 41,928,300 175,597, 175,597, 600 Dia 14,681,000,540 51,621,310 71,000,540 194,721,230	700 Dia 9,140,800 900 700 Dia 3,646,020 58,926,420 32,733,900	800 Dia 4.962.500 86.480.100	900 Dia 54,194,000 24,931,720 29,595,000	1000 Dia 5,725,500 26,731,500 4,916,340	1200 Dia 6,297,600 25,976,000
VD-U2	D.I. Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 6 Sub Total Depth (MR) Up to 6 Above 6 Sub Total	48 48 4207 4207 500 Dis 60 50 50 50 50 50 50 50 50 50 50 50 50 50	1,783 400 Dia 2,157 2,142 536 4,390 600 Dia 2,300 400 Dia 2,300 400 Dia 2,300 400 Dia 2,300	450 Dia 3,903 7,836 2,383 222	500 Dia 2121 67 980 500 Dia 2,481 2,941 2,991	600 Dia 471 835 587 392 2,285 19, 600 Dia 2,770 4,736 2,375 1,761	700 Dia 788 788 788 788 788 788 788 788 788 78	800 Dia 397 2,745 441	900 Dia 3,430 774 789	1000 Dia 347 753 129	1200 Dia 328 680 319	24,896,800 300 Dia 10,200,000 300 Dia 21,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000 200 Dia 3,740,000 273,380,544 285,572,140 308,0580	400 Dia 8,843,700 20,777,400 1,578,500 1,130,400 32,330,000 600 Dia 56,580,000 400 Dia 55,578,030 235,844,008 207,474,309 37,523,000	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450 68,884,076 7,015,200	500 Dia 97.50.200 1.956,400 10.081,800 500 Dia 11.411,220 92.218,200 87.580,436	10,200,0 600 Dia 2,496,300 17,551,300 12,79,200 41,928,300 175,597, 600 Dia 14,681,000 51,621,310 71,000,540 57,418,380 194,721,230 2,389,810	700 Dia 9,140,800 900 00 00 00 00 00 00 00 00 00 00 00	800 Dia 4,962,500 86,480,100 15,071,940	900 Dia 54,194,000 24,931,720 29,595,000	1000 Dia 5,725,500 26,731,500 4,916,340	1200 Dia 6.297.600 25,976.000
VD-U2	D.I. Opun cut	Above 6 Sub Total Trenchless Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Sub Total Trenchless Pumping mains Depth (MR) Up to 2 Above 2 Up to 4 Above 4 Up to 6 Above 6 Sub Total	48 48 4207 4207 500 Dis 60 50 50 50 50 50 50 50 50 50 50 50 50 50	1,783 400 Dia 2,157 2,142 536 4,390 600 Dia 2,300 400 Dia 2,300 400 Dia 2,300 400 Dia 2,300	450 Dia 3,903 7,836 2,383 222	500 Dia 2121 67 980 500 Dia 2,481 2,941 2,991	600 Dia 471 885 587 392 2.285 19, 600 Dia 2.2770 4.736 1.761 11.642 1864 1874 1874 1874 1874 1874 1874 1874 187	700 Dia 788 788 788 788 780 Dia 600 700 Dia 600 6,700 Dia 1,926 700 Dia 100 225 700 Dia 100 22	800 Dia 397 2,745 441	900 Dia 3,430 774 789	1000 Dia 347 753 129	1200 Dia 328 680 319	24,896,800 300 Dia 10,200,000 300 Dia 21,276,000 33,561,600 12,183,600 6,604,300 79,625,500 200 Dia 9,000,000 200 Dia 3,740,000 273,380,544 285,572,140 308,0580	400 Dia 8,843,700 20,777,400 1,578,500 1,130,400 32,330,000 600 Dia 56,580,000 400 Dia 55,578,030 235,844,008 207,474,309 37,523,000	1,560,900 930,600 2,491,500 450 Dia 16,784,190 77,571,450 68,884,076 7,015,200	500 Dia 97.50.200 1.956,400 10.081,800 500 Dia 11.411,220 92.218,200 87.580,436	600 Dia 2,496,300 17,551,300 12,779,200 41,928,300 175,597, 175,597, 600 Dia 14,681,000,540 51,621,310 71,000,540 194,721,230	700 Dia 9,140,800 900 700 Dia 3,646,020 700 Dia 3,646,020 58,925,420 22,733,900 173,124,600	800 Dia 4,962,500 86,480,100 15,071,940	900 Dia 54,194,000 24,931,720 29,595,000	1000 Dia 5,725,500 26,731,500 4,916,340	1200 Dia 6.297.600 25,976.000

	Depth (MR)	Dia 300	Dia 400	Dia 450	Dia 500	Dia 600	Dia 700	Dia 800	Dia 900	Dia 1,000	Dia 1,200
	Up to 2	4,000	4,100	4,300	4,600	5,300	6,000	6,900	10,200	10,900	13,600
Open cut	Above 2 Up to 4	9,600	9,700	9,900	10,200	10,900	11,600	12,500	15,800	16,500	19,200
	Above 4 Up to 6	28,600	28,700	28,900	29,200	29,900	30,600	31,500	34,800	35,500	38,200
	Above 6	31,300	31,400	31,600	31,900	32,600	33,300	34,200	37,500	38,200	40,900

Unit Cost

	150	2,700
	200	3,400
	250	4,300
	300	5,400
Pumping Main	400	11,800
	500	18,200
	600	24,600
	700	31,000
	800	37,000

	200	150,000
	300	170,000
	400	190,000
Trenchiless	500	210,000
	600	230,000
	700	250,000
	800	270,000

Sl. No.

Insterest of construction(1.4%) Front end fee(0.2%)

Miscellaneous & Rounding Off

GRAND TOTAL =

Construction workers welfare cess @ 1% of Total Project Cost.

Consultancy fees for DPR preperation (Reimbursement) On

UGD component 0.75%,Road Restoration Component 0.50% Consultancy fees Including price escaration and tax(0.01%) Project Management Consultants & Material Inspection charges

Work contract Tax @ 4% of Total Project Cost.

Provision of Vehicle and Laptop for Department

Particulars

	Providing Sewerage System		Trenchless			Trenchless			Trenchless			Trenchless			Trenchless				
A	Providing Sewerage System		Other		0.09	Other		0.09	Other		0.44	Other		0.04	Other		0.06	0.71	
			Sub-Total		54.6	Sub-Total		62.3	Sub-Total		77.2	Sub-Total		20.7	Sub-Total		42.9	258	44.2%
			Kattigenahalli	14.0		Hagadur	34.0		Talaghattapura	10.0		Sompura	16.0		Kariobanahalli	20.0			
			Dottabettahalli	8.0					t Pillaganahalli	6.0		Hemigepura-1	26.0		Herohalli	6.0			
В	Construction of STP		Yelhankakere	10.0	68.0			34.0	Naganathapur	10.0	26.0	Hemigepura-2	22.0	64.0	Chikkabanavara	10.0	66.0	258	44.3%
			Billeshivalli	36.0											Doddabidaraukall u	16.0			
															Hosahalli	14.0			
С	Construction of Wet Well cum pumphouses, D.G.Set room with office building, Pumping machinery & allied accessories , and KPTCL, BESCOM Deposits.		Intermediate Sewage Pumping Station - Bellahalli	1.39	1.4							ISPS (Arehalli -1)	0.99	1.0	Manhole Pump & Sump (IV. Herohallii- 1477)	0.62	0.6	3	0.5%
D.	Providing D.I.Pumping Mains																		
E	Restoration of Storm Water Drains				0.8			0.7			1.8			0.4			0.8	4.5	
F	House Service Connection																		
G	Sewer Cleaning Machine (SCM)							13.9			160			50			0.7		
Н	Roads Restore				12.5			97.0			16.9 105.0			5.0 87.1			8.7 110.4	57 526	
	Sub-total(without road restore)				126.1													583	
	Sub-total				138.6			110.9			121.9			92.1			119.1		
	Physical Contingencies @ 3%	3.0%			4.2			3.3			3.7			2.8			3.6	17	
	Administrative Charges @ 0.5%	0.5%			0.7			0.6			0.6			0.5			0.6	3	
	Land Acquisition (LP.S/OHT,SUMP,PUMP HOUSE,DG RROOM)				41.3			11.3			15.0			23.0			25.3	115.9	
	Indirect Costs Total				34.2			26.9			29.8			22.7			29.4	143	
	Price Escalation at 6% / annum of Total Project Cost for 3 years period	6.0% 3 years			24.9			20.0			21.9			16.6			21.4	105	
	Price Escalation at 5% SOR Price escalation																		
	Environmental Compliance Cost @ 1% of Total Project Cost.																		
	Technical and Supervisory Staff to be Employed for the specified Works in 110 villages.																		
	Insurance for employees / workers employed by the contractor @ 0.6% per year																		
	Bank Commission on B.G. for Performance security @ 0.2%/annum over 10% of Total Project Cost for for 3 years			-															
	period for UGD & WS only.																		

1.1

0.8

0.6

4.4

0.0

153.0

1.2

0.9

0.6

4.9

0.3

171.0

0.9

0.7

0.5

3.7

141.0

1.2

0.9

0.6

4.8

0.3

178.0

6

4

3

23

0

2

862

Bommanahalli

Open Cut

R R Nagar Total

Open Cut

Summary of Cost for Construction of 110 Village's Main Facility of Sewerage by DPR (Rate Revised)

1.4

1.0

0.7

5.5

0.7

219.0

0.5% 0.75%

0.5%

4.0%

Open Cut

Mahadevapura

Byatarayanpura

Open Cut

INR (Crore)

Grand Total

Dasarahalli

Open Cut

Direct Cost for Construction of STPs

Sample Data

Cost Function

Construction Cost of STPs

Unit : Million INF

Capacity	Item	INR
	Civi and Archtect	92,400,000
	Mechanical	56,100,000
3MLD	Electrical	44,800,000
	Total INR	193,300,000
	Unit cost	64.4
	Civi and Archtect	187,200,000
	Mechanical	100,400,000
10MLD	Electrical	70,400,000
	Total INR	358,000,000
	Unit cost	35.8
	Civi and Archtect	241,200,000
	Mechanical	124,400,000
15MLD	Electrical	85,600,000
	Total INR	451,200,000
	Unit cost	30.1
	Civi and Archtect	346,800,000
	Mechanical	175,500,000
24MLD	Electrical	108,700,000
	Total INR	631,000,000
	Unit cost	26.3

		ML	.D				Million INR	
	x	=	3		y	=	193	
	x	=	4	2	/	=	217	
	x	=	5	2	/	=	241	
	x	=	6	2	/	=	265	
	x	=	7	2	y	=	289	
	x	=	8	2	y	=	313	
	x	=	9	2	/	=	337	
	x	=	10	2	y	=	358	
>	x	=	11	2	y	=	377	
	x	=	12	2	/	=	396	
	x	=	13	2	y	=	415	
	х	=	14	2	/	=	434	
	x	=	15		y	=	451	
	x	=	16	2	y	=	471	
	х	=	17	2	/	=	491	
	x	=	18	2	y	=	511	
	x	=	19	2	/	=	531	
	х	=	20	2	y	=	551	
	х	=	21	2	y	=	571	
	x	=	22	2	/	=	591	
	x	=	23		y	=	611	
	x	=	24	,	v	=	631	

				n Flow MLD)		Cost (Mi	llion INR)	
Zone	Package	STP	ЛСА			JICA	Surbey	
			Surbey	DPR	Basis	Foundation ※1	Land Filling ※ 2	Total
	VBY-U1	Doddabettahalli	7.0	4.0	289			
D	V D I -U I	Jakkur	7.0	-	289			
Bytrayanapura	VBY-U2	Yelahankakere	6.0	5.0	265	13		1,372
	VBY-U3	Bilishivalli	17.0	18.0	491	25		
		Kattigenahalli	_	7.0	_			
Mahadevpura	VM-U2	Varthur*	15.0	-	451		21	472
Manadevpura		Hagadur	_	17.0	_			4/2
	VBO-U1	Talaghattapura	5.0	5.0	241	12		
Bommanahalli	VBO-U2	Pillaganahalli	4.0	_	217		14	484
Бопшапапапаш		t Pillaganahalli	-	3.0	-			464
		Naganathapur	_	5.0	_			
	VR-U1	Somapura	8.0	8.0	313			
R.R.Nagar	VR-U2	Hemigepura(-1)	13.0	13.0	415		24	752
		Hemigepura-2	-	11.0	-			
	VD-U1	Chikkabanavara-2	4.0	5.0	217	11		
		Kariobavanahalli	10.0	10.0	358	18		
Dasarahalli	VD-U2	Herohalli	3.0	3.0	193	10		1.409
Dasaranani	VD-U2	Hosahalli	6.0	7.0	265			1,409
		Nagasandra*	9.0	-	337			
		Doddabidaraukallu	ı	8.0	=			
		Total				4,4	189	

^{※1 5%} of basis

^{%2} required Sqm x600 INR/Sqr

Cost function for Civil Construction of STPs (3MLD) UNIT:INR Size of Facility Backfilling PCC Rainforced Cement Concrete Form Work 1 Form Work 2 Water Proofing Wall/L Wall/W Sub Total Slab Sub Total Wall/W Basement Wall/L Wall/W V4 =V1-V3 V2 Sub Total MPS(TSPS) 5.50 5.20 5.00 2.50 2.20 5.00 2.50 2.20 0.40 2.2 2.20 1.75 0.35 2.7 1.80 1.75 0.35 3.3 1.80 1.50 0.25 9.40 3.76 7.70 9.45 20.9 2.70 Inlet Chamber 1.30 6.70 0.40 3.5 6.70 1.15 0.35 5.4 0.60 1.15 0.35 0.7 0.60 6.00 0.25 0.4 4.30 9.70 5.00 208.6 1.30 6.70 5.00 1.30 6.70 0.20 3.6 Main Screen Channel 16.00 6.40 15.41 2.07 23.9 3.60 7.71 1 04 0.4 4.30 9.70 5.00 208.6 1.30 6.70 5.00 1.30 6.70 0.40 3.5 6.70 1.15 0.35 5.4 0.60 1.15 0.35 0.7 0.60 6.00 0.25 16.00 6.40 15.41 23.9 3.60 3.6 7.71 1.04 3 Bypass Screen Channel 5.00 176.2 6.70 0.20 6.70 0.40 14.1 21.04 2.45 0.35 18.0 6.00 2.45 0.35 111.5 28.26 Dia 6.0 9.70 6.70 21.04 8.42 103.09 28.3 51.54 4 Raw Sewage Sump 369.3 3.00 STP Civil Work 3.00 1 Inlet Chamber 1.8 1.5 1.0 5.50 5.20 1.00 28.6 2.50 2.20 1.00 2.50 2.20 0.20 2.50 2.20 0.40 2.2 2.20 1.75 0.35 2.7 1.80 1.75 0.35 3.3 1.80 1.50 0.25 9.40 3.76 7.70 9.45 20.9 2.70 2.7 3.85 4.73 1.30 6.70 0.40 3.5 6.70 1.15 0.35 5.4 0.60 1.15 0.35 0.7 0.60 6.00 0.25 0.4 4.30 9.70 1.00 41.7 1.30 6.70 1.00 1.30 6.70 0.20 16.00 6.40 15.41 2.07 3.6 7.71 1.04 Main Screen Channe 0.6 6.0 10.5 23.9 3.60 3 Bypass Screen Channel 0.6 6.0 0.4 4.30 9.70 1.00 41.7 1.30 6.70 1.00 1.30 6.70 0.20 1.30 6.70 0.40 3.5 6.70 1.15 0.35 5.4 0.60 1.15 0.35 0.7 0.60 6.00 0.25 10.5 16.00 6.40 15.41 2.07 23.9 3.60 3.6 7.71 1.04 8.74 0.40 8.6 11.62 1.65 0.35 13.4 3.00 1.65 0.35 0.9 6.70 70.5 3.70 1.00 21.5 3.70 0.20 3.70 3.00 25.5 86.0 14.13 14.1 38.34 4 Grit Chamber Dia 3.0 11.62 9.29 76.68 38.34 Parshall Flume 1.5 10.0 0.8 5.20 13.70 1.00 71.2 2.20 10.70 1.00 23.5 2.20 10.70 0.20 2.20 10.70 0.40 9.4 10.70 1.55 0.35 11.6 1.50 1.55 0.35 2.4 1.50 10.00 0.25 27.2 25.80 10.32 33.17 6.98 50.5 15.00 15.0 16.59 3.49 6 Distribution Chamber 3.00 8.0 39.0 5.5 H 11.70 42.70 5.00 4,995.9 8.70 39.70 5.00 3,453.9 138.2 8.70 39.70 0.40 276.3 39.70 6.25 0.35 347.4 8.00 6.25 0.35 105.0 8.00 39.00 0.25 156.0 884.7 96.80 77.44 992.50 300.00 1,369.9 624.00 624.0 Anoxic/Aerobic Tank 3.5 16.70 2,189.3 5.00 1,473.4 0.20 0.40 117.9 43.02 4.25 0.35 128.0 13.00 4.25 0.35 13.00 43.02 34.41 731.31 265.3 8 Secandary Clarifire 13.70 312.2 765.7 265.33 9 Secondary Sludge Sump 3 00 1.5 30.0 1.5 5.20 33.70 5.00 876.2 2.20 30.70 5.00 337.7 2.20 30.70 0.20 13.5 2.20 30.70 0.40 27.0 30.70 2.25 0.35 48.4 1.50 2.25 0.35 3.5 1.50 30.00 0.25 11.3 65.80 26.32 138.15 10.13 174.6 45.00 5.3 3.0 1.5 9.00 6.70 5.00 3015 6.00 3.70 5.00 111.0 6.00 3.70 0.20 4.4 6.00 3.70 0.40 8.9 3.70 2.25 0.35 5.8 5.30 2.25 0.35 12.5 5.30 3.00 0.25 31.2 19.40 7.76 16.65 35.78 60.2 15.90 11 Dechlorine Mixing Tank 13 Thickened Sludge Sump 3.5 7.70 8.20 14 Centrifuge Feed Sump 4.0 4.5 4.70 5.20 9.8 4.70 5.20 0.40 19.6 5.20 4.25 0.35 30.9 4.00 4.25 0.35 35.7 4.00 4.50 0.25 9.0 19.80 15.84 88.40 102.00 206.2 36.00 6.80 2.72 5.95 5.25 1.70 1.70 0.40 1.2 1.70 1.75 0.35 2.1 1.00 1.75 0.35 1.8 1.00 1.00 0.25 15 Filtrate Sump 1.0 1.0 1.0 4.70 4.70 1.70 1.70 1.70 1.70 0.20 5.3 13.9 1.00 251 1,064 9,546 5.735 3.811 5,735 1.570 2,976 521 5,82 6,542 Rate (INR) Rate 126 76.219 Rate 373 Rate Rate 10% of Sub Total 480,500 146,088 4,974,41 834,974 1,460,76 10,274,217 11,970,032 1,109,893 521,11 Sub Total Cost (INR) Total Cost (INR) 35.000.000 Architecht Sam INR/Sam 20 Administration Building 15.0 15.0 10.0 H 225 8,775,000 9,000,000 21 Maintenance Building 10.0 8.0 4.5 H 80 27,000 2,160,000 3 000 000 10.0 10.0 5.0 H 22 D.G Room 100 27,000 2,700,000 3.000.000 23 Air Blower Building 8.0 12.0 6.0 H 4,416,000 5,000,000 24 Centrifuse Building 15.0 15.0 10.0 H 225 64 000 14 400 000 15,000,000 8.0 10.0 6.0 H 26 Clolorination Building 5.0 5.0 4.0 H 25 44 000 1 100 000 2,000,000 Other Work 10.0% of above 27 Sewer and Sludge Pine Line 7 700 000 28 Road Construction and othe 10.0% of above 7,700,000

3MLD

Cost function for Civil Construction of STPs (10MLD)

		Size o	f Faci	ity		E	xcava	tion			Be	ckfilling		Di	isposal	_	PCC	_		_		_	Rai	nforced C	ement C	oncre	te		_	_		Reinforce ment Steel		ı	orm W	ork 1		Fort	m Work 2	2	Water P	roofing	Miscellaneou
Items	Noe	W /Dia	L	SWD/	H W/D	ia L	н	V1	W/	/Dia	L I	H V2	V3=V1-	·V2 _	V4 =V1-V3	W/Dia	L t	V	W/D		ment t V		Wall/L	1/0	Wall/		(2)		ilab	s	Sub Total	Sub Total	-	ment	Wall/L	Wall/V	Sub Total	Slab A4	Sub Tot		all/L Wall/V		
	NOS	MR	MR	MR	MF	R MF	R MR	Cum	N	MR	MR M	IR Cum	Cum		Cum	MR	MR MF	Cum	MR		t V	1 L m MR	MR ME		W H MR MR		/3 W um M			V4 Cum	Cum	Tone	L MR	A1 Sqm	A2 Sqm	A3 Sqm	Cum	Sqm	Cum		AI AZ iqm Sqm		
MPS(TSPS)																																											
1 Inlet Chamber	1	2.0	2.5	0.6	5.7	70 6.2	20 5.00	17	76.7	2.70	3.20 5.0	00 43	3.2			2.70	3.20 0.2	0	1.7 2.7	70 3.2	0.40	1.5 3.20	1.35 0.3	3.0	2.00 1.35 0	0.35	2.8 2.	00 2.5	0 0.25	1.3	10.6		11.80	4.72	8.64	8.10	21.5	5.00)	5.0 4.	1.32 4.05	8.37	
2 Main Screen Channel	2	1.0	6.0	0.6	4.7	70 9.3	70 5.00	45	55.9	1.70	6.70 5.0	00 113	1.9			1.70	6.70 0.2	0 -	4.6 1.7	70 6.7	0.40	6.70	1.35 0.3	12.7	1.00 1.35	0.35	2.8 1.	00 6.0	0.25	3.0	27.6		16.80	13.44	36.18	8.10	57.7	12.0) 1	2.0 18.	3.09 4.05	22.14	
3 Bypass Screen Channel	1	1.0	6.0	0.6	4.7	70 9.3	70 5.00	22	28.0	1.70	6.70 5.0	00 57	7.0			1.70	6.70 0.2		2.3 1.7	6.7	0.40	6.70	1.35 0.3	6.3	1.00 1.35	0.35	1.4 1.	00 6.0	0.25	1.5	13.8		16.80	6.72	18.09	4.05	28.9	6.00)	6.0 9.	0.05 2.03	11.07	
4 Raw Sewage Sump	1	Dia 11.0		1.7	14.7	70	5.00	84	48.2 11	1.70	5.0	537	7.3			11.70	0.2	2	1.5 11.7	07	0.40 43	36.74	2.45 0.3	31.5 1	1.00 2.45	0.35	11.	00	0.25	23.7	98.2		36.74	14.70	180.02		194.7	94.9	9	5.0 90.	0.01	90.01	
					3.0	00																																					
STP																																											
Civil Work					3.0	00																																					
1 Inlet Chamber	1	2.0	2.0	2.0	5.7	70 5.	70 1.00	3	32.5	2.70	2.70 1.	00 7	1.3			2.70	2.70 0.2	0	1.5 2.7	70 2.7	0 0.40	2.70	2.75 0.3	5.2	2.00 2.75	0.35	5.8 2.	00 2.0	0 0.25	1.0	14.9		10.80	4.32	14.85	16.50	35.7	4.00	ð	4.0 7.	7.43 8.25	15.68	
2 Main Screen Channel	2	0.8	6.0	0.4	4.5	50 9.3	70 1.00	8	37.3	1.50	6.70 1.6	00 20	0.1			1.50	6.70 0.2	0 .	4.0 1.5	6.7	0 0.40 8	6.70	1.15 0.3	10.8	0.80 1.15 0	0.35	1.9 0.	80 6.0	0 0.25	2.4	23.2		16.40	13.12	30.82	5.52	49.5	9.60	ð	9.6 15.	5.41 2.76	18.17	
3 Bypass Screen Channel	1	0.8	6.0	0.4	4.5	50 9.3	70 1.00) 4	43.7	1.50	6.70 1.0	00 10	0.1			1.50	6.70 0.2	0 :	2.0 1.5	6.7	0 0.40 4	1.0 6.70	1.15 0.3	5.4	0.80 1.15 0	0.35	1.0 0.	80 6.0	0 0.25	1.2	11.6		16.40	6.56	15.41	2.76	24.7	4.80	0	4.8 7.	7.71 1.38	9.09	
4 Grit Chamber	2	Dia 5.0		0.9	8.7	70	1.00	11	18.8	5.70	1.0	00 51	.0			5.70	0.2	0 10	0.2 5.7	70	0.40 20	17.90	1.65 0.3	20.7	5.00 1.65 0	0.35	5.	00	0.25	9.8	50.9		17.90	14.32	118.13		132.4	39.2	5 5	9.3 59.	0.06	59.06	
5 Parshall Flume	1	1.5	10.0	0.8	5.2	20 13.	70 1.00	;	71.2	2.20	10.70 1.	00 23	1.5			2.20	10.70 0.2	0 .	4.7 2.2	20 10.7	0 0.40 1	10.70	1.55 0.3	11.6	1.50 1.55 0	0.35	2.4 1.	50 10.0	0 0.25	3.8	27.2		25.80	10.32	33.17	6.98	50.5	15.00	0 1	5.0 16.	5.59 3.49	20.07	
6 Distribution Chamber					3.0	_				T																	1		TT							t					1		
7 Anoxic/Aerobic Tank	2	8.0	123.0	5.5	н 11.3	70 126.	70 5.00	14,82	23.9	8.70 1	23.70 5.0	00 10,761	.9			8.70	123.70 0.2	0 43	0.5 8.7	70 123.7	0 0.40 86	.0 123.70	6.25 0.3	1,082.4	3.00 6.25 0	0.35 10	5.0 8.	00 123.0	0 0.25 4	192.0	2,540.3		264.80	211.84	3,092.50	300.00	3,604.3	1,968.00	0 1,96	8.0	+		
8 Secandary Clarifire	2	Dia 23.0		3.5	26.7	70	5.00	5,59	96.2 23	3.70	5.0	00 4,409	0.3			23.70	0.2	0 17	_	-		.7 74.42				_	23.	_	0.25 2		781.8		74.42	59.53	1,265.11		1,324.6	830.5	3 83	10.5			
9 Secondary Sludge Sump					3.0	00																							1														
10 Chlorine Contact Tank	1	2.0	54.0	2.0	+-	_	70 5.00	1,64	44.5 2	2.70	54.70 5.0	00 738	1.5			2.70	54.70 0.2	0 2:	9.5 2.7	70 54.7	0 0.40 59	1.1 54.70	2.75 0.3	105.3	2.00 2.75 0	0.35	5.8 2.	00 54.0	0 0.25	27.0	197.1		114.80	45.92	300.85	16.50	363.3	108.0	0 10	0.80	_		
11 Dechlorine Mixing Tank	1	6.8	-			_	70 5.00		_	_	5.70 5.0	_					5.70 0.2		8.6 7.5	_	0 0.40 13	_			6.80 2.75 0	_	_	_	+	8.5	56.2		26.40	10.56		56.10				84.0	-		
12 Sludge Thickner					╁					+																															-		
13 Thickened Sludge Sump					╁					+																															-		
14 Centrifuge Feed Sump	2	6.0	7.0	4.0	9.7	70 10.3	70			6.70	7 70					6.70	7.70 0.2	n 21	0.6 6.7	77	0 0.40 41	.3 7.70	4.75 0.3	51.2	5.00 4.75 0	135 5	9.9 6.	00 70	0 0.25	21.0	173.3		28.80	23.04	146 30	171.00	340.3	84.0	0 8	24.0			
15 Filtrate Sump	1	2.0	-		+	_	_		_	2.70	_					_	_		1.5 2.7	+		1.9 2.70			2.00 1.75 0	_	3.7 2	_	+	1.0	10.9		10.80	4.32		10.50			_	4.0			
Quantity	H	2.0	2.0	1.0	-		,,,	24,1	_	2.70	2.70	16,91	37 7,5	07	16,987	2.70	2.70 0.2		19	2			1.70 0.0	0.0		,.00	0.7	2.0	010	1.0	4,038	404	10.00	1.02	0.40	10.00	6,350		3,2	210	+	254	
Rate (INR)					-		Rate		521	\dashv		Ra	_	26	146		Rati			-		-			+			+	+	Rate	6.542	76,219				Rate	-			190	Rate		
rate (INIV)					-		reate			\dashv		rea		-			reat		_	-		-			+			+	+		-,					rtate		reate			reate		10% of Sub To
Sub Total Cost (INR)							١.	12,810,					957,7		2,473,263			4,193,6													26,414,462	30,774,312				١.	2,368,461	١.	1,576,0			228,647	
Total Cost (INR)					+-			12,811,0	000				958,0	00 2	2,474,000			4,194,0	00											- 20	8,415,000	30,775,000				-	2,369,000	•	1,577,0	000		229,000	
Total Gost (INR)																																											0,000,00
A					+-	1		1			- 1	_			1			1	-	1		1		г г	т т				т т							ı			Т				
Architecht										_		-		+						+					\perp				+	_							Sq		_	₹/Sqm		INR	
20 Administration Building	1	15.0	-		_							-		-						-									+	_							34			9,000	_	13,455,000	14,000,0
21 Maintenance Building	1	15.0	-		+-									+													-										12			7,000	_	3,240,000	4,000,0
22 D.G Room	1	15.0	-		_	+		1	4	_		1	1	_						_	\Box	-			\perp	_	-	_	1-1	_							22			7,000	4	6,075,000	7,000,0
23 Air Blower Building	1	8.0	-		Н									4						_					$\perp \downarrow \downarrow$		_		\perp	_						<u> </u>	16		_	6,000		7,360,000	8,000,0
24 Centrifuge Building	1	15.0	-	10.0	н																																37			4,000		24,000,000	24,000,0
25 Chemical Building	1	8.0	10.0	6.0	н																																81)	6.	2,000		4,960,000	5,000,0
26 Clolorination Building	1	10.0	7.0	5.5	н																																70)	4/	4,000		3,080,000	4,000,0
Other Work																																											
27 Sewer and Sludge Pipe Lines																																									10.0	% of above	15,600,0
28 Road Construction and other																																									10.0	% of above	15,600,0
20 House Constitution and Care			1																																						10.0		
to the construction and outer																																									10.0		

10MLD

Supporting Repo

Cost function for Civil Construction of STPs (15MLD)

	1																												Reinforce	l .					l		Т			UNIT:INR
	Size o	f Facili	ty		Excavation	on			Back	filling		Disposal		PC	C						Rainf	forced Cen	ent Con	crete					ment Steel		F	orm W	ork 1		Fon	n Work 2		later Pro	-	Miscellaneous
Items	W /Dia	L	SWD/H V	N/Dia	L H	V1	W/Dia	a L	н	V2	V3=V1-V2	V4 =V1-V3	W/Dia	L	t	٧		aseme	nt t V1		Wall/L	V2 W	Wall/W			Slab L t	V4	Sub Total	Sub Total	Base L	ment A1	Wall/L A2	Wall/W A3		Slab A4	Sub Total	Wall/	L Wall/W	Sub Total	
	MR	MR	MR	MR	MR MR	Cum	MR	MR	MR	Cum	Cum	Cum	MR	MR	MR	Cum		IR N			R MR MR		MR M		MR M			Cum	Tone	MR	Sqm	Sqm	Sqm		Sqm	Cum	Sqm	AZ.		
MPS(TSPS)																																								
1 Inlet Chamber	1 2.9	2.5	0.6	6.60	6.20 5.00	204.6	3.60	3.20	5.00	57.6			3.60	3.20	0.20	2.3	3.60	8.20 0.	40 4.6	3.2	20 1.35 0.35	3.0 2.9	1.35 0.3	5 4.1	2.90 2	2.50 0.25	1.8	13.6		13.60	5.44	8.64	11.75	25.8	7.2	5 7.3	4.3	5.87	10.19	
2 Main Screen Channel	2 1.2	8.0	0.6	4.90	11.70 5.00	573.3	1.90	8.70	5.00	165.3			1.90	8.70	0.20	6.6	1.90	3.70 0.	40 13.2	2 8.7	70 1.35 0.35	16.4 1.2	1.35 0.3	5 3.4	1.20 8	3.00 0.25	4.8	37.9		21.20	16.96	46.98	9.72	73.7	19.2	0 19.2	23.4	19 4.86	28.35	
3 Bypass Screen Channel	1 1.2	8.0	0.6	4.90	11.70 5.00	286.7	1.90	8.70	5.00	82.7			1.90	8.70		3.3	1.90	8.70 0.			70 1.35 0.35		1.35 0.3			3.00 0.25	_	18.9		21.20		23.49	4.86	36.8	9.6	0 9.6	11.7	5 2.43	14.18	
4 Raw Sewage Sump	1 Dia 11.0)	2.2	14.70	5.00	848.2	11.70)	5.00	537.3			11.70	(20	21.5	11.70	0.	40 43.0	36.7	74 2.95 0.35	37.9 11.0	2.95 0.3	15 1	1.00	0.25	23.7	104.7		36.74	14.70	216.75		231.4	94.9	9 95.0	108.3	8	108.38	
				3.00																																				
STP																																								
Civil Work				3.00																																				
1 Inlet Chamber	1 2.9	2.5	2.0	6.60	6.20 1.00	40.9	3.60	3.20	1.00	11.5			3.60	3.20	0.20	2.3	3.60	8.20 0.	40 4.6	3.2	20 2.75 0.35	6.2 2.9	2.75 0.3	5 8.4	2.90 2	2.50 0.25	1.8	21.0		13.60	5.44	17.60	23.93	47.0	7.2	5 7.3	8.8	11.96	20.76	
2 Main Screen Channel	2 1.0	6.0	0.5	4.70	9.70 1.00	91.2	1.70	6.70	1.00	22.8			1.70	6.70	0.20	4.6	1.70	5.70 0.	40 9.1		70 1.25 0.35		1.25 0.3	5 2.6	1.00 6	6.00 0.25	3.0	26.5		16.80	13.44	33.50	7.50	54.4	12.0	0 12.0	16.7	3.75	20.50	
3 Bypass Screen Channel	1 1.0		0.5	4.70	9.70 1.00	45.6	-	_	1.00	11.4			1.70	6.70	0.20	2.3	1.70	6.70 0.	_	_	70 1.25 0.35		1.25 0.3				1.5	13.2		16.80		16.75	3.75	27.2	6.0	0 6.0	8.3	1.88	10.25	
4 Grit Chamber	2 Dia 6.0		0.9	9.70	1.00	147.7	6.70	0	1.00	70.5			6.70	(0.20	14.1	6.70	_	_	21.0	04 1.65 0.35	24.3 6.0	1.65 0.3	15	6.00	0.25	14.1	66.6		21.04	16.83	138.85		155.7	56.5	2 56.5	69.4	3	69.43	
5 Parshall Flume	1 1.5	10.0	0.8	5.20	13.70 1.00	71.2	2.20	10.70	1.00	23.5			2.20	10.70	20	4.7	2.20 10	0.70 0.	40 9.4	10.7	70 1.55 0.35	11.6 1.5	1.55 0.3	5 2.4	1.50 10	0.00 0.25	3.8	27.2		25.80	10.32	33.17	6.98	50.5	15.0	0 15.0	16.5	9 3.49	20.07	
6 Distribution Chamber				3.00																	$\perp \! \! \perp$																	\bot		
7 Anoxic/Aerobic Tank	2 8.0	180.0	5.5 H	11.70	183.70 5.00	21,492.9	8.70	180.70	5.00	15,720.9			8.70	180.70	0.20	628.8	8.70 180	_	_		70 6.25 0.35					0.00 0.25 7	_	3,663.8		378.80	303.04	4,517.50	300.00	5,120.5	2,880.0	2,880.0)			
8 Secandary Clarifire	2 Dia 28.5	5	3.5	32.20	5.00	8,139.2	29.20	0	5.00	6,693.2			29.20	(0.20	267.7	29.20	0.	40 535.5	91.6	69 4.25 0.35	272.8 28.5	4.25 0.3	5 2	8.50	0.25 3	318.8	1,127.0		91.69	73.35	1,558.70		1,632.0	1,275.2	3 1,275.2	2			
9 Secondary Sludge Sump				3.00																																				
10 Chlorine Contact Tank	1 2.0	81.0	2.0	5.70	84.70 5.00	2,414.0	2.70	81.70	5.00	1,103.0			2.70	81.70	0.20	44.1	2.70 81	.70 0.	40 88.2	2 81.7	70 2.75 0.35	157.3 2.0	2.75 0.3	5 5.8	2.00 81	1.00 0.25	40.5	291.8		168.80	67.52	449.35	16.50	533.4	162.0	0 162.0)			
11 Dechlorine Mixing Tank	1 6.8	8.0	2.0	10.50	11.70 5.00	614.3	7.50	8.70	5.00	326.3			7.50	8.70	20	13.1	7.50 8	3.70 0.	40 26.1	1 8.7	70 2.75 0.35	16.7 6.8	2.75 0.3	5 19.6	6.80 8	3.00 0.25	13.6	76.1		32.40	12.96	47.85	56.10	116.9	54.4	0 54.4				
12 Sludge Thickner	2 Dia 11.0)	4.0	14.70	5.00	1,696.3	11.70	0	5.00	1,074.6			11.70	(20	43.0	11.70	0.	40 86.0	36.7	74 4.75 0.35	122.2 11.0	4.75 0.3	15 1	1.00	0.25	47.5	255.6		36.74	29.39	698.02		727.4	189.9	7 190.0)			
13 Thickened Sludge Sump	2 3.5	4.0	3.0	7.20	7.70 5.00	554.4	4.20	0 4.70	5.00	197.4			4.20	4.70	20	7.9	4.20	1.70 0.	40 15.8	8 4.7	70 3.75 0.35	24.7 3.5	3.75 0.3	5 27.6	3.50 4	1.00 0.25	7.0	75.0		17.80	14.24	70.50	78.75	163.5	28.0	0 28.0)			
14 Centrifuge Feed Sump	2 6.0	6.0	4.0	9.70	9.70 5.00	940.9	6.70	6.70	5.00	448.9			6.70	6.70	0.20	18.0	6.70	5.70 0.	40 35.9	6.7	70 4.75 0.35	44.6 6.0	4.75 0.3	5 59.9	6.00 6	6.00 0.25	18.0	158.3		26.80	21.44	127.30	171.00	319.7	72.0	0 72.0)			
15 Filtrate Sump	1 2.0	2.0	1.0	5.70	5.70 5.00	162.5	2.70	2.70	5.00	36.5			2.70	2.70	20	1.5	2.70 2	2.70 0.	40 2.9	2.7	70 1.75 0.35	3.3 2.0	1.75 0.3	5 3.7	2.00 2	2.00 0.25	1.0	10.9		10.80	4.32	9.45	10.50	24.3	4.0	0 4.0)			
Quantity						38,324				26,583	11,740	26,583				1,088												5,988	599					9,340		4,893			302	
Rate (INR)					Rate	521				Rate	126	146		F	ate	5,829											Rate	6,542	76,219				Rate	373	Rat	490)	Rate	901	
Sub Total Cost (INR)						19,970,391					1,480,148 1,481,000	3,870,516				6,328,144 6, 329,000												39,174,427 39,175,000	45,640,378 45,641,000					3,483,592 3,484,000	١.	2,395,712 2,396,000			272,322 273,000	10% of Sub Tota
Total Cost (INR)					- 1 '1	10,011,000					17151,000	40111000				,,,,,,,,,,											- 1		10,011,000	_				GI GI GI			1		1,0,000	135,000,00
																					-																		\rightarrow	100,000,00
Architecht									П						Т						\top													Sa	m	INR/S	Sam	\top	INR	
20 Administration Building	1 150	23.0	10.0 H																		++-					\pm								34	5	39,0	100	+	13,455,000	14.000.00
21 Maintenance Building	1 15.0		4.5 H												+			-			+													12		27,0			3,240,000	4,000,00
22 D.G.Room		15.0	5.0 H																		++-					\pm								22		27.0		_	6.075.000	7,000,00
23 Air Blower Building		20.0	6.0 H												+			-			+													16	0	46.0	100	+	7,360,000	8,000,000
24 Centrifuge Building		25.0	10.0 H	-	-++			+	+					-	+			+		1	++				+	+	\dashv							37		64,0	100	_	24,000,000	24,000,00
25 Chemical Building	1 8.0	-	6.0 H	-				+		_				-	+			\dashv		\vdash	+				_	+								80		62,0			4,960,000	5,000,00
26 Clolorination Building	1 10.0	-	5.5 H	+			1	+						+	+			+		-	+			++	-	+	-							70		44.0			3.080.000	4,000,00
							1	1	Ш											1										1				1		1				.,,
Other Work			T																																					-
27 Sewer and Sludge Pipe Lines																																						10.0%	of above	20,100,00
28 Road Construction and other																																						10.0%	of above	20,100,00
Gran Total																																								241,200,000
		-																																						15MLD

15MLD

NJS Consultants Co., Ltd.

	<
	Ç
	-
	4
_	
Supporting	
~	
2	
-	
0	
7	
9	0
\sim	
-2	
4	
C	
~	
~	-
<i>y</i> 0	
h	
27	
Rep	
7	

Cost function for Civil Construction of STPs (24MLD)

		Size	of Fac	cility			Exc	avatio	on			Bac	kfilling		Disp	osal		PCC	0							Rainfo	orced (Cemer	nt Conc	crete					Reinforce ment	1	-	orm W	ork 1		Fo	rm Work		Water P	_	Miscellan
Items		W /Dia	L	ew	D/H W	//Dia	L	, l	V1	W/E	Dia L		V2	V3=V1-	· ·	4 -V3	I/Dia			v		Basem	ent		W	/all/L			Wall/W			Slab		Sub Total	Steel Sub Total	Base	ement	Wall/L	Wall/W	Sub Total	Slal	Sub To	Wal	II/L Wall/	N Sub Tota	
	Nos	MR					MR	MR	Cum	M			Cum	V3-V1-	VZ =V1			IR MF		v Sum	W/Dia MR	L MR			L H			W MR N	H t	V3 V Cum M		1 - 1	V4	Cum	Tone	L MR	A1 Sam	A2 Sam	A3 Sam	Cum	A4 Sar		_ ^	ı1 A2 gm Sgn	Cum	
MPS(TSPS)	T	imit							Odili				Cum	Oum						Zum	, man x						Cum		mix mix	Odin in			Zum	Ouiii	TOTO		Oqn	Ogiii	Oqiii	Ouiii		Can		gii Oqii	Oum	
I Inlet Chamber	1	4.4	2.	.8	0.6	8.10	6.50	5.00	26	3.3 5.	.10 3.	.50 5.00	89.3	3			5.10	3.50 0.2	10	3.6	5.10	3.50	0.40	7.1	3.50 1.35	0.35	3.3	4.40 1	1.35 0.35	6.2 4.	.40 2.1	30 0.25	3.1	19.8		17.20	6.88	9.45	17.82	34.	2 12	32 1	2.3 4.	.73 8.9	13.64	
Main Screen Channel	3	1.2	6.	.0	0.6	4.90	9.70	5.00	71:	3.0 1.	90 6.	.70 5.00	191.0				1.90	6.70 0.2	10	7.6	1.90	6.70	0.40	15.3	6.70 1.35	0.35	19.0	1.20 1	1.35 0.35	5.1 1.	20 6.0	0.25	5.4	44.8		17.20	20.64	54.27	14.58	89.	5 21	60 2	1.6 27.	.14 7.2	34.43	:
3 Bypass Screen Channel	1	1.2	6.	.0	0.6	4.90	9.70	5.00	23	7.7 1.	90 6.	.70 5.00	63.7	7			1.90	6.70 0.2	10	2.5	1.90	6.70	0.40	5.1	6.70 1.35	0.35	6.3	1.20 1	1.35 0.35	1.7 1.	20 6.0	0.25	1.8	14.9		17.20	6.88	18.09	4.86	293	8 7	20	7.2 9.	.05 2.4	11.48	
4 Raw Sewage Sump	1	Dia 14:	0		2.2 1	7.70		5.00	1,22	9.7 14.	.70	5.00	848.2	2		1	14.70	0.2	:0	33.9	14.70		0.40	67.9 4	16.16 2.95	0.35	47.7	14.00 2	2.95 0.35	14.	.00	0.25	38.5	154.0		46.16	18.46	272.33		2903	8 153	86 15	3.9 136.	.17	136.17	
						3.00																																								
STP																																														
Civil Work						3.00																																								
1 Inlet Chamber	1	2.8	2.	.8	1.5	6.50	6.50	1.00	4:	2.3 3.	.50 3.	.50 1.00	12.3	3			3.50	3.50 0.2	10	2.5	3.50	3.50	0.40	4.9	3.50 2.25	0.35	5.5	2.80 2	2.25 0.35	6.6 2.	.80 2.1	30 0.25	2.0	19.0		14.00	5.60	15.75	18.90	40.	3 7	84	7.8 7.	.88 9.4	17.33	
2 Main Screen Channel	2	1.2	6.	.0	0.6	4.90	9.70	1.00	9	5.1 1.	.90 6.	.70 1.00	25.5	5			1.90	5.70 0.2	10	5.1	1.90	6.70	0.40	10.2	6.70 1.35	0.35	12.7	1.20 1	1.35 0.35	3.4 1.	20 6.0	00 0.25	3.6	29.8		17.20	13.76	36.18	9.72	59.	7 14	40 1	4.4 18.	.09 4.8	22.95	
3 Bypass Screen Channel	1	1.2	6.	.0	0.6	4.90	9.70	1.00	4	7.5 1.	90 6.	.70 1.00	12.7	,			1.90	5.70 0.2	10	2.5	1.90	6.70	0.40	5.1	6.70 1.35	0.35	6.3	1.20 1	1.35 0.35	1.7 1.	20 6.0	00 0.25	1.8	14.9		17.20	6.88	18.09	4.86	293	8 7	20	7.2 9.	.05 2.4	11.48	
4 Grit Chamber	2	Dia 7.	+-	_	_	1.20		1.00	191	_	20	1.00	105.6			_	8.20	0.2	10	21.1		_	_	_	25.75 1.65	+	_	_	1.65 0.35		50		22.1	94.0		-	20.60			190.	_		8.3 84.	_	84.97	
5 Parshall Flume	1	1.5	+			_	15.70		8	_	_	.70 1.00	_				_	2.70 0.2	10	5.6		12.70	-		12.70 1.55	+	_	-	1.55 0.35		_		4.5	31.9		29.80	-		6.98		_	_	_	.69 3.4		_
6 Distribution Chamber	T				-+	3.00												1					1	1		T																				
7 Anoxic/Aerobic Tank	4	8.0	147.	.0 5	.5 H 1	1.70 1	150.70	5.00	35,26	3.8 8.	70 147.	.70 5.00	25,699.8				8.70 14	7.70 0.2	10	1,028.0	8.70	147.70	0.40 2,0	56.0 14	17.70 6.25	0.35 2	2,584.8	8.00 6	5.25 0.35	210.0 8.	.00 147.0	00 0.25 1,1	176.0	6,026.7		312.80	500.48	7,385.00	600.00	8,485.	5 4,704	00 4,70	4.0			
8 Secandary Clarifire	4	Dia 26.	_	-		9.70		5.00		3.8 26.	_	_	11,192.4				26.70	0.2			26.70	_	_	_	33.84 4.25							0.25	_	1,924.9			-	2,850.49			6 2,122		2.6			
9 Secondary Sludge Sump			+	+	_	3.00		H			+		1				+	+				_	۳	+	+	H		- -			+					Ė					H					
10 Chlorine Contact Tank	1	2.0	130.	.0	_		133.70	5.00	3,810	0.5 2.	70 130.	.70 5.00	1,764.5	5			2.70 13	0.70 0.2	10	70.6	2.70	130.70	0.40 1	41.2 13	30.70 2.75	5 0.35	251.6	2.00 2	2.75 0.35	5.8 2.	.00 130.0	00 0.25	65.0	463.5		266.80	106.72	718.85	16.50	842.	1 260	00 26	0.0	+		
11 Dechlorine Mixing Tank	1	11.6	-	-		_	11.70		89	_	_	.70 5.00					_	3.70 0.2			12.30	_	_	_	8.70 2.75	+	_	_	2.75 0.35		_		23.2	116.2		_	16.80		-		_		2.8			
12 Sludge Thickner		Dia 14:	-	-		7 70	11.70	5.00	2,451	_	70	5.00	_				14.70	0.2		67.9		_	_	_	16.16 4.75	+	153.5 1	_	4.75 0.35		_		76.9	366.1		_	36.93		00.70	913.	_		_			
13 Thickened Sludge Sump	2	3.5	+-	_			7.70	_	55	_	_	.70 5.00	_				_	1.70 0.2			4.20	4.70		_	4.70 4.25	+	_	_		31.2 3.	_		7.0	82.0		17.80	-		89.25		_		8.0			
14 Centrifuge Feed Sump	^	6.0	-	-	-	_	10.70		1,03	_	_	.70 5.00					_	7.70 0.2		20.6		7.70	_	-	7.70 4.75	+	51.2		4.75 0.35		_		21.0	173.3		_	23.04		-	340.	_		4.0			
15 Filtrate Sump		2.0	+-	_		-	5.70	-	1,03	_	_	.70 5.00	+			_		2.70 0.2			2.70	2.70	_	_	2.70 1.75	+	3.3		1.75 0.35		_	00 0.25	1.0	10.9		10.80	-		-	24.3	_		4.0			
Quantity	Ľ	2.0	2	.0	1.0	3.70	5.70	5.00		_	.70 2.	.70 5.00					2.70 .	2.70 0.2	:0	1,750		2.70	0.40	2.9	2.70 1.75	0.35	3.3	2.00 1.	1.75 0.35	3.1 2.	.00 2.1	0.23	1.0				4.32	9.45	10.30		_		_			
Rate (INR)					-				60,9	_			43,014			3,014	_	-		-				-		++		-						9,587	956					14,75	_	7,6	_		35	_
Mate (INR)				-	_	_		Rate	5	_			Rate		26	146		Rat	·e	5,829						+							Rate	6,542	76,219	-			Rate		_		190	Rat		
Sub Total Cost (INR)									31,755,2					2,259,8		52,792				200,151														62,718,092	73,070,052					5,503,91		3,884,2			320,53	
				-	_			*	31,756,0	00			•	2,260,0	6,26	3,000		•	10,2	01,000													4 6	2,719,000	73,071,000	1			4	5,504,000	9	3,885,0	00		321,00	
Total Cost (INR)					_																																									216,0
					_	-				_			1						1							т т								-		1						1		_	INR	
Architecht	L				_																			_				_													qm		2/Sqm			
20 Administration Building	1	15.0	_	_		4		Н		-	-		1	1		_			-				4	_		1		_				\perp									50	_	9,000	-	17,550,00	_
21 Maintenance Building	1	12.0	_	.0 4		_									-			-	-		\vdash		_	-		+			_				_			-					96		7,000	_	2,592,00	
22 D.G Room	1	15.0	_		.0 H	4		Н		-	-		1	1		_			-				4	_		1		_				\perp									25		7,000	-	6,075,00	
23 Air Blower Building	1	8.0	-	-	.0 H								1						_				_			\sqcup	_														60		6,000		7,360,00	
24 Centrifuge Building	1	15.0	+-					Ш		_	_																													_	75		4,000		24,000,00	-
25 Chemical Building	1	8.0	-	_	.0 Н	_		Ш		_	\perp		1		_				_				1	1		Ш		_					_								60		2,000		9,920,00	
26 Clolorination Building	1	6.5	7.	.5 5	.5 H																																			4	19	4	4,000		2,145,00	0 3,
Other Work	-		-	+																																										1
	┞		-	-	4																																							10.0	V . C . L	1
27 Sewer and Sludge Pipe Lines	H		+	+																																									% of above	28,
28 Road Construction and other	H		-																																									10.0	% of above	28,5
	H		-																																											
Gran Total	l	1																																												346,80

Cost function for Mechanical and Electrical Construction of STPs

Unit: Million INR

Item		3MLD			10MLD			15MLD			24MLD	
Item	TSPS	STP	Sub-Total	TSPS	STP	Sub-Total	TSPS	STP	Sub-Total	TSPS	STP	Sub-Total
Machanical	8,945,522	47,118,456	56,063,978	18,475,324	81,852,871	100,328,195	25,526,974	98,790,264	124,317,238	29,556,489	145,868,425	175,424,914
Mechanical			≒ 56,100,000			≒100,400,000			≒124,400,000			≒175,500,000
Electrical	Included	44,782,240	44,782,240	Included	70,329,420	70,329,420	Included	85,526,640	85,526,640	Included	108,635,584	108,635,584
Electrical	in STP		≒ 44,800,000	in STP		≒ 70,400,000	in STP		≒ 85,600,000	in STP		≒108,700,000
Total	8,945,522	91,900,696	100,846,218	18,475,324	152,182,291	170,657,615	25,526,974	184,316,904	209,843,878	29,556,489	254,504,009	284,060,498
1 Otal			≒100,900,000			≒170,700,000			≒ 209,900,000			⇒ 284,100,000

Supporting Report

Mechanical Cost for TSPSs (3MLD)

	MECHANICAL ITEMS			SI	PECIFI	CATION			(k W/LIN	т	NUM	IBER		DESCRIPTION	ELECTRIC CAPACITY	Consu	al power mptioon	NJS 複算単価	BISIC	EXCISE DUTY	TAX/V	PACKING & FORWAR	T	BASIC COST	TOTAL COST	ERECTI ON	NJS積算 TOTAL	Toshiba 見機額
										W		S	Т		k W	hours/d 3.0	kWh/d 0.70	Rs./unit	8	12.36% 9=8 ×	12.50% 10=(8+8)×	2.00% 11=8 ×	2.00%	13=SUM(8:12)	14=13×TOTAL NO	3.00% 15=14×	16=14+15	-
-	INLET GATE	W (m	: 0.40	L(i	m) :	0.60	Design Water Depth(m) :	8.00		- 2			2	Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. Floor+5.000, Bottom+0.000	0.00			190,000	190,000	23,484	26,686	3,800	3,800	247,770	495,539	14,866	510,405	1,368,00
2	COARSE SCREEN (MECHANICAL)	W (m	: 0.60	L(i	m) :	6.00	SWD(m) :	0.50	1.5) 1	-	0	. 0	Climber screen, including control panel. Screen: SS316L Open space 20mm Floor+5.000, Bottom+0.000	1.50			1,500,000	1,500,000	185,400	210,675	30,000	30,000	1,956,075	1,956,075	58,682	2,014,757	
3	COARSE SCREEN (MANUAL)	W (m	: 0.60	L(i	m) :	6.00	SWD(m) :	0.50		- 0		1	. 1	Manually Bar Screen. Screen: SS316L Open space 50mm Floor+5.000, Bottom+0.000	0.00			160,000	160,000	19,776	22,472	3,200	3,200	208,648	208,648	6,259	214,907	1,044,00
4	BELT CONVEYOR	Belt Width (m	0.60	L(i	m) :	5.00		-	1.50	0		0	0	Frame: MS+ Epoxy, Belt: NBR 3mm	0.00			400,000	400,000	49,440	56,180	8,000	8,000	521,620	0	0	0	
5	SEWAGE PUMP 1	Dia (mm)	: 200	Q(m3/	'h) :	315	H(m):	15.00	30.0) 1		1	2	Submeraible sludge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impelier SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%. Floor+6,000, Bottom+0,000	30.00	9.5	203.75	800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	2,086,480	62,594	2,149,074	5,940,00
9	SEWAGE PUMP 2																		0	0	0	0	0	0	0	0	0	
7	ELECTRIC HOIST	RL(T)	: 3.00	LG	m) :	6.00		-	8.5) 1		0	1	Single-girder overhead type.	8.50			800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	1,043,240	31,297	1,074,537	1,224,00
												T	OTAL		40.00		203.75										5,963,681	9,576,00
				_		_		_						Tota	kW		kWh/d											
																												<u> </u>
																												1

Mechanical Cost for TSPSs (10MLD)

			SPECI	FICATION			(k W/UNIT		NUMBER	t	DESCRIPTION	ELECTRIC CAPACITY	Consu	al power mptioon	NJS 被算単価	BISIC	EXCISE DUTY	TAX/V	PACKING & FORWAR	T	BASIC	TOTAL COST	ERECTI ON	NJS 積算額 TOTAL	Toshiba 見積額
								w	S	T		k W		kWh/d 0.70			12.36%		2.00%	2.00%			3.00%	40.44.40	
							-						10.0	0.70			9=8 ×	10=(8+9) ×	11=8 ×	12=8 ×	13=SUM(8:12)	14=13×TOTAL NO.	15=14×	10=14+15	-
ET GATE	W (m)	: 0.60	L(m) :	0.90	Design Water Depth(m) :	8.00	-	2	1	3	Manuelly Sluice Gete, Wall Thimble:Cast Iron, Gete: cast iron, Frame: cast iron. Floor+5.000, Bottom+0.000	0.00			270,000	270,000	33,372	37,922	5,400	5,400	352,094	1,056,281	31,688	1,087,969	2,511,000
ARSE SCREEN CHANICAL)	W (m)	: 1.00	L(m) :	6.00	SWD(m) :	0.60	1.50	1	0	1	Climber screen, including control panel. Screen: SS318L Open space 20mm Floor+5.000, Bottom+0.000	1.50	6.0	6.30	2,100,000	2,100,000	259,560	294,945	42,000	42,000	2,738,505	2,738,505	82,155	2,820,660	4,950,000
ARSE SCREEN (MANUAL)	W (m)	: 1.00	L(m) :	6.00	SWD(m) :	0.60	-	. 0	1	1	Manually Bar Screen. Screen: SS316L Open space 50mm Floor+5.000, Bottom+0.000	0.00			260,000	260,000	32,136	36,517	5,200	5,200	339,053	339,053	10,172	349,225	1,710,000
T CONVEYOR	Belt Width (m	0.60	L(m) :	5.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	537,269	963,000
YAGE PUMP 1	Dia (mm)	: 200	Q(m3/h) :	380	H(m):	15.00	30.00	2	1	3	60%. Casing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%.	60.00	10.5	543.33	1,000,000	1,000,000	123,600	140,450	20,000	20,000	1,304,050	3,912,150	117,365	4,029,515	6,210,000
VAGE PUMP 2	Die (mm)	: 150	Q(m3/h) :	190	H(m):	15.00	15.00	1	1	2	Submersible sludge pump with detachable device. Overall efficiency more than 80%. Caeing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%. Floor+8,000. Bottom+0,000	15.00	10.5	135.83	900,000	900,000	111,240	126,405	18,000	18,000	1,173,645	2,347,290	70,419	2,417,709	3,510,000
CTRIC HOIST	RL(T)	: 3.00	L(m) :	6.00		-	8.50	1	0	1	Single-girder overhead type.	8.50			800,000	800,000	98,880	112,380	18,000	16,000	1,043,240	1,043,240	31,297	1,074,537	1,440,000
										TOTAL		86.50		692.82										12,316,883	21,294,000
												kW		kWh/d										INR	INR
							1	1																	t
							+	!																	
A)	RSE SOREEN HANICAL) RSE SOREEN (MANUAL) CONVEYOR AGE PUMP 1 AGE PUMP 2	RSE SOREEN W (m) RSE SOREEN (MANUAL) CONVEYOR Bet Web (m) AGE PUMP 1 Dia (mm) Dia (mm)	RSE SOREEN W (m): 1.00 RSE SOREEN (MANUAL) W (m): 1.00 CONVEYOR Belt Week (m): 0.60 AGE PUMP 1 Dia (mm): 200 AGE PUMP 2 Dia (mm): 150	RSE SOREEN W (m): 1.00 L(m):	RSE SCREEN HANICALD W (m): 1.00 L(m): 6.00 RSE SCREEN (MANUAL) W (m): 1.00 L(m): 6.00 CONVEYOR Belt Week (m): 0.60 L(m): 5.00 AGE PUMP 1 Dia (mm): 200 Q(m3/h): 380 AGE PUMP 2 Dia (mm): 150 Q(m3/h): 190	Depth(m) : RSE SOREEN	Depth(m) :	Depth(m):	Depth(m):	Depth(m) :	RSE SCREEN W (m): 1.00 L(m): 6.00 SWD(m): 0.60 1.50 1 0 1	RSE SCREEN W (m): 1.00 L(m): 6.00 SWD(m): 0.60 1.50 1 0 1	No. Converger Converger	RSE SCREEN W (m): 1.00	RSE SCREEN W (m): 1.00	RSE SCREEN W (m): 1.00	CALLE W (m) 1.00 L(m) 0.00 SWD(m) 0.80 1.50 1 0 1 0 1 0 0 0 0	RSE SCREEN W (m): 1.00	Columber Screen W (m) 1.00 L(m) 1.	Columber Columber	Floor-SQUE Pump	CALLE W (m) 1.00 L(m) 0.00 Depth(m) 0.00 1.50 1	## Note: Column C	CALLE Wildly Unit Unit	CONVEYOR Discriment Discr

Supporting Report

Mechanical Cost for TSPSs (15MLD)

	MECHANICAL ITEMS			SPECII	FICATION			(k W/UNIT		NUMBE		DESCRIPTION	ELECTRIC CAPACITY	Consu	al power mptioon	NJS 複算単価	BISIC	EXCISE DUTY	TAX/V AT	PACKING & FORWAR	т	BASIC COST	TOTAL COST	ON	NJS 積算額 TOTAL	
									W	S	T		k W		kWh/d			12.36%		2.00%	2.00%			3.00%		Rs
														15.0	0.70		8	9=8 ×	10+(8+9) ×	11=8 ×	12=8 ×	13=SUM(8:12)	14=13 × TOTAL NO.	15=14×	16=14+15	
1	INLET GATE	W (m) :	0.60	L(m) :	0.90	Design Water Depth(m) :	8.00	-	2	1	3	Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. Floor+5.000, Bottom+0.000	0.00			270,000	270,000	33,372	37,922	5,400	5,400	352,094	1,056,281	31,688	1,087,969	
2	COARSE SCREEN (MECHANICAL)	W (m) :	1.00	L(m) :	6.00	SWD(m) :	0.60	1.50	2	0	2	Climber screen, including control panel. Screen: SS316L Open space 20mm Floor+5.000, Bottom+0.000	3.00	6.0	12.60	2,100,000	2,100,000	259,560	294,945	42,000	42,000	2,738,505	5,477,010	164,310	5,641,320	
3	COARSE SCREEN (MANUAL)	W (m) :	1.00	L(m) :	6.00	SWD(m) :	0.60	-	0	1	1	Manually Ber Screen: Screen: SS316L Open space 50mm Floor+5.000, Bottom+0.000	0.00			280,000	260,000	32,136	36,517	5,200	5,200	339,053	339,053	10,172	349,225	
4	BELT CONVEYOR	Belt Width (m) :	0.60	L(m) :	5.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	537,269	
5	SEWAGE PUMP 1	Dia (mm) :	300	Q(m3/h) :	570	H(m):	15.00	45.00	2	1	3	Submerable sludge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impelier SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%. Floor+8,000. Bottom+0,000	90.00	10.5	815.00	1,400,000	1,400,000	173,040	196,630	28,000	28,000	1,825,670	5,477,010	164,310	5,641,320	
6	SEWAGE PUMP 2	Dia (mm) :	200	Q(m3/h) :	285	H(m):	15.00	30.00	1	1	2	Submersible studge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%. Floor+8.000, Bottom+0.000	30.00	10.5	203.75	1,000,000	1,000,000	123,600	140,450	20,000	20,000	1,304,050	2,608,100	78,243	2,686,343	
7	ELECTRIC HOIST	RL(T):	3.00	L(m) :	6.00		-	8.50	1	0	1	Single-girder overhead type.	8.50			800,000	800,000	98,880	112,380	18,000	16,000	1,043,240	1,043,240	31,297	1,074,537	
											TOTA		133.00		1038.70										17,017,983	
													k W	1	kWh/d										INR	
																	-									
П								1 -		1																1

Supporting Report

Mechanical Cost for TSPSs (24MLD)

	MECHANICAL ITEMS			SPECIF	TCATION			(k	NU	JMBER		DESCRIPTION	ELECTRIC CAPACITY		al power	NJS 被算単価	BISIC	EXCISE DUTY	TAX/V	PACKING &	т	BASIC	TOTAL COST	ERECTI ON	NJS被算額 TOTAL	Toshiba 見物額
								W/UNIT_	w		-		k W		kWh/d	カー・カー	0081	12.36%		FORWAR 2.00%	INSURA 2.00%	0081		3,00%	TOTAL	Rs.
									"	•	•		K 17	24.0	0.70		8	9=8 X	12.5U% 10=(8+9)×	11=8 ×		13=SUM(8:12)	14=13×TOTAL NO.		16=14+15	FUS.
1 INL	LET GATE	W (m) :	0.60	L(m) :	0.90	Design Water Depth(m) :	8.00	-	3	1		Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. Floor+5.000, Bottom+0.000	0.00			270,000	270,000	33,372	37,922	5,400	5,400	352,094	1,408,374	42,251	1,450,625	3,348,000
2 CO	OARSE SCREEN IECHANICAL)	W (m) :	1.20	L(m) :	6.00	SWD(m):	0.60	1.50	2	0		Climber screen, including control panel. Screen: SS316L Open apace 20mm Floor+5.000, Bottom+0.000	3.00	6.0	12.60	2,200,000	2,200,000	271,920	308,990	44,000	44,000	2,868,910	5,737,820	172,135	5,909,955	7,680,000
з со	DARSE SCREEN (MANUAL)	W (m) :	1.20	L(m) :	6.00	SWD(m):	0.60	-	0	1		Manually Bar Screen. Screen: SS316L Open apace 50mm Floor+5.000, Bottom+0.000	0.00			340,000	340,000	42,024	47,753	6,800	6,800	443,377	443,377	13,301	456,678	2,160,000
4 BEI	ELT CONVEYOR	Belt Width (m) :	0.60	L(m) :	7.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	537,269	1,143,000
5 SET	EWAGE PUMP 1	Die (mm) :	350	Q(m3/h) :	900	H(m):	15.00	75.00	2	1	3	Submerable studge pump with detachable device. Overall efficiency more than 80%. Casing: CI, Impeller SS ASTM A743, Quide/Lifting chain: SS316. Pump efficiency shall be more than 80%.	150.00	10.7	1304.00	1,750,000	1,750,000	216,300	245,788	35,000	35,000	2,282,088	6,846,263	205,388	7,051,650	9,990,000
6 SE	EWAGE PUMP 2	Dia (mm) :	250	Q(m3/h) :	450	H(m):	15.00	37.00	1	1	2	Submerable studge pump with detachable device. Overall efficiency more than 80%. Casing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%. Floor+6.000, Bottom+0.000.	37.00	10.7	326.00	1,200,000	1,200,000	148,320	168,540	24,000	24,000	1,564,860	3,129,720	93,892	3,223,612	4,500,000
7 ELI	ECTRIC HOIST	RL(T):	3.00	L(m) :	6.00		-	8.50	1	0	1	Single-girder overhead type.	8.50			800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	1,043,240	31,297	1,074,537	1,440,000
											TOTAL		200.00		1649.95										19,704,326	30,261,000
													k W		kWh/d										INR	INR

Supporting Report

Mechanical Cost for STPs (3MLD)

MECHANICAL ITEMS		SPECI	FICATION			(k W/LINIT		JMBER		DESCRIPTION	ELECTRIC CAPACITY	Consu	al power mptioon	NJS 被算単価	BISIC	DO11	TAX/V AT	FORWAR	T	BASIC	TOTAL COST	ON	NJS 被算额 TOTAL	見積
							w	S	Т		k W	hours/d 3.0	kWh/d 0.70				12.50%		2.00%	13=51 4/9-19\	14=13×TOTAL NO	3.00% 15=14×	16=14+15	Rs./u
INLET GATE	W (m): 0.40	L(m) :	0.60	Design Water Depth(m) :	2.00	-	1	1	2	Manually Sluice Gate, Well Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor+****** bottom+******	0.00	0.0	0.70	190,000	190,000	23,484	26,686	3,800	3,800	247,770	495,539	14,866	510,405	1,674
FINE SCREEN (MECHANICAL)	W (m): 0.60	L(m) :	6.00	SWD(m) :	0.40	1.50	1	0	1	Step Type Screen including control panel. Screen: SS316L Open space 6mm	1.50	6.0	6.30	1,900,000	1,900,000	234,840	266,855	38,000	38,000	2,477,695	2,477,695	74,331	2,552,026	3,330
FINE SCREEN (MANUAL)	W (m): 0.60	L(m) :	6.00	SWD(m) :	0.40	-	0	1	1	Manually Bar Screen: Screen: SS316L Open space 20mm	0.00	0.0		160,000	160,000	19,776	22,472	3,200	3,200	208,648	208,648	6,259	214,907	901
BELT CONVEYOR	Belt Width (m): 0.60	L(m) :	5.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	537,269	54
GRIT CHAMBER	W (m): 3.00	L(m) :	3.00	SWD(m) :	0.90	2.25	1	1	2	DETRITOR MECHANIS including a grit collector, a classifier, an organic return pumpa, control panel. Wetted Parts : MS+Epoxy coated	2.25	24.0	37.80	1,100,000	1,100,000	135,960	154,495	22,000	22,000	1,434,455	2,868,910	86,067	2,954,977	3,2
INLET WEIR GATE	W (m): 0.30	H(m) :	0.30	Stroke (m) :	0.35	-	2	0	2	Manually Sluice Weir, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor+******* bottom+*******	0.00	0.0		110,000	110,000	13,596	15,450	2,200	2,200	143,446	286,891	8,607	295,498	1,1
MIXERS FOR ANAEROBIC TANK	W (m): 8.00	L(m) :	3.00	SWD(m) :	5.50	4.00	2	0	2	Submersible Mixer. Casing: SS316L, Impeller: SS316L.	8.00	24.0	134.40	750,000	750,000	92,700	105,338	15,000	15,000	978,038	1,956,075	58,682	2,014,757	3,18
MIXERS FOR ANOXIC TANK	W (m): 8.00	L(m) :	8.00	SWD(m) :	5.50	4.00	2	0	2	Submersible Mixer. Casing: SS316L, Impeller: SS316L.	8.00	24.0	134.40	750,000	750,000	92,700	105,338	15,000	15,000	978,038	1,956,075	58,682	2,014,757	3,1
DIFFUSER	SOR(kg/h) 65	depth of diffusers	5.0	Efficiency E(%)	28.0	-	2	0	2	Fine Bubble Membrane Type.	0.00	0.0		800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	2,086,480	62,594	2,149,074	1,6
Air Grid Pipe Work for Diffuser imported UPVC Pipes.	W (m): 8.00	L(m) :	30.00	SWD(m) :	5.50	-	2	0	2	Air Grid Pipe Work for Diffuser imported UPVC Pipes.	0.00	0.0		0	0	0	0	0	0	0	0	0	0	1,8
AIR BLOWER	Dia (mm): 150	Q(m3/h) :	1000	P(K Pa)	65	30.00	2	1	3	Rotary lobe blower, Tri-lube type with VFD. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	60.00	24.0	1284.05	500,000	500,000	61,800	70,225	10,000	10,000	652,025	1,956,075	58,682	2,014,757	3,0
CIRCULATION PUMP	Dia (mm): 150	Q(m3/h) :	120	H(m):	5.00	3.70	4	2	6	Submersible sludge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%.	14.80	24.0	248.64	350,000	350,000	43,260	49,158	7,000	7,000	456,418	2,738,505	82,155	2,820,660	3,1
RAS PUMP	Dia (mm): 100	Q(m3/h) :	40	H(m):	5.00	1.50	2	2	4	Submerable studge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impelier SS ASTM A743, Gulde/Lifting chain: SS316. Pump efficiency shall be more than 60%. Submerable studge pump with detachable device. Overall efficiency more than	3.00	24.0	50.40	220,000	220,000	27,192	30,899	4,400	4,400	286,891	1,147,584	34,427	1,181,991	8
SAS PUMP	Dia (mm): 80	Q(m3/h) :	14	H(m):	15.00	2.20	2	2	4	60%. Casing: Cf. Impeller SS ASTM A743, Guide/Lifting chain: SS316. Pump efficiency shall be more than 60%.	4.40	6.0	18.48	200,000	200,000	24,720	28,090	4,000	4,000	260,810	1,043,240	31,297	1,074,537	7
BLOC FOR RAS/SAS PUMP	RL(T): 1.00	L(m) :	6.00		-	-	3	0	3	Bridge-supported type including a centre drum, two scraper arms, a scum	0.00	0.0		170,000	170,000	21,012	23,877	3,400	3,400	221,689	665,066	19,952	685,017	1
FINAL CLARIFIER	Dia (m): 13.00	L(m) :	-	SWD(m) :	3.50	0.40	2	0	2	oollector, a fixed bridge. MS+epoxy resin painting Disphragm Type. Casing: SS, Disphragm: PTFE.	0.80	24.0	13.44	2,200,000	2,200,000	271,920	308,990	44,000	44,000	2,868,910	5,737,820	172,135	5,909,955	6,8
ALUM DOSING PUMP	Dia (mm) : 25	Q(I/h) :	60	H(MPa):	0.70	0.40	2	1	3	Turbine impeller. SS316L	0.80	24.0	13.44	40,000	40,000	4,944	5,618	800	800	52,162	156,486	4,695	161,181	4
MIXERS FOR ALUM SOLUTION	W (m): 1.00	L(m) :	1.00	SWD(m) :	1.00	0.40	2	0	2	Gas Chlorination System including Vacuum Chlorinators, Booster Pumps ,	0.80		1.12	60,000	60,000	7,416	8,427	1,200	1,200	78,243	156,486	4,695	161,181	_ '
CHLORINATOR	Q(kg/h): 3.1	-	-	-	-	0.10	1	1	2	Interconnecting Piping , Leak Detector, Residual Ohlorine Analyses, Leak Absorption System ,Safety equipment and other accessories	0.10	24.0	1.68	1,300,000	1,300,000	160,680	182,585	26,000	26,000	1,695,265	3,390,530		3,492,246	
CHLORINE BOOSTER PUMP	Dia (mm): 25	Q(m3/h) :	2.1	H(m):		0.75	1	1	2		0.75	24.0	12.60	0	0	0	0	0	0	0	0	0	0	4
CHLORINE TONNERS ELECTRIC HOIST FOR	-		-		-	-	2	2	4	Single-girder overhead type.	0.00			150,000	150,000	18,540	21,068	3,000	3,000	195,608	782,430	23,473	805,903	8
TONNERS	RL(T): 3.00	L(m) :	6.00		-	8.60	1	0	1	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	8.60		6.02	800,000	800,000	98,880	112,380	16,000	16,000	1,043,240	1,043,240	31,297	1,074,537	1
DECHLORINE DOSING PUMP MIXER FOR DECLORINE	Dia (mm): 15	Q(I/h) :	7.5	P(M Pa)	1.0	0.20	1	0	1	Turbine impeller. SS318L	0.20		3.36	20,000	50,000	2,472 6.180	7,023	1,000	1,000	26,081 65,203	52,162 65,203	1,565	53,727 67,159	2
SOLUTION AIR BLOWER FOR DECHLORINE MIXING	Dia (mm): 40	Q(m3/h) :	12	P(K Pa)	20	0.75	1	1	2	Rotary lobe blower, Tri-lube type. Casing: Cl, Lobes Cl. With Accustic Enclosures Noise Levelt8dB at 1m DISTANCE	0.10		12.60	100,000	100,000	12,360	14,045	2,000	2,000	130,405	260,810	7,824	268,634	8
TANK ELECTRIC HOIST FOR	RL(T): 1.00	L(m):		r(n ra)	-	4.70	1	0	1	Single-girder overhead type.	4.70	1.0	3.29	500,000	500,000	61,800	70,225	10,000	10,000	652.025	652,025	19,561	671,586	
AIR BLOWER FOR CENTRIFUGE FEED	Dia (mm): 65	Q(m3/h) :	130	P(K Pa)	40	3.70	1	1		Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Levek85dB at 1m DISTANCE	3.70		31.08	160,000	160,000		22,472		3,200	208.648	417.296	12,519	429,815	7

pply
and
Sewerage
Project
(Pha

Supporting Report

STATIFUGE FEED PUMP Dia (mm) : 100 O(m3/h) : 16	MECHANICAL ITEMS		SPEC	IFICATION			(k W/LINIT		NUMBEI	R	DESCRIPTION	ELECTRIC CAPACITY		ical power umptioon	NJS 積算単価	BISIC	EXCISE DUTY	TAX/V	PACKING & FORWAR	Т	BASIC	TOTAL COST	ERECTI ON	NJS 積算額 TOTAL	Toshiba 見積額
INTRIFUCE FEED PUMP Dia (mm): 100 Q(m3/h): 16 Hm): 20 5.50 1 1 2 Progress Cevity Pump. Casing: CI, Rotor: SS316, Stator: NB. 5.50 10.3 38.66 210,000 210,000 25,856 28,465 4,200 4,200 273,851 547,701 16,431 544,132 594. INTRIFUCE Q(m3/h): 16.00 22.20 1 1 2 Solid bowl type with Motor including a control panel. Input TSS Oct. Min. W/L. Westerd Parks SS304. Input TSS Oct. Min. Will Parks SS304. Input TSS Oct. Min. W/L. Westerd Parks SS304. Input TSS Oct. Min. W/L. West								W	S	Т		k W													Rs./unit
INTRIFUGE FEED PUMP Dia (mm): 100 Q(m3/h): 160 Hm): 20 5.50 1 1 1 2 Solid bowl type with Motor including a control panel. Wetted Parts SS304. Early TSS 0.5% w/r. Dewatered sludge TSS required 19%w/w st polymer dose INTRIFUGE Q(m3/h): 1.00 22.20 1 1 2 Solid bowl type with Motor including a control panel. Wetted Parts SS304. Early TSS 0.5% w/r. Dewatered sludge TSS required 19%w/w st polymer dose INTRIFUGE Q(m3/h): 1.00 22.20 1 1 1 2 Solid bowl type with Motor including a control panel. INTRIFUGE Q(m3/h): 1.00 22.20 1 1 1 2 Solid bowl type with Motor including a control panel. INTRIFUGE Q(m3/h): 1.00 22.20 1 1 1 2 Solid bowl type with Motor including a control panel. INTRIFUGE PARTS SS304. Early TSS 0.5% w/r. Dewatered sludge TSS required 19%w/w st polymer dose INTRIFUGE Q(m3/h): 1.00 22.20 1 1 1 2 Solid bowl type with Motor including a control panel. INTRIFUGE Q(m3/h): 1.00 22.20 1 1 1 2 Solid bowl type with Motor including a control panel. INTRIFUGE PARTS SS304. Early TSS 0.5% w/r. Dewatered sludge TSS required 19%w/w st polymer dose INTRIFUGE Q(m3/h): 1.00 - 1.00.00 1.100													3.0	0.70		8	9=8 ×	10+(8+8) ×	11=8×	12=8 ×	13=SUM(8:12)	14=13 × TOTAL NO.	15=14×	16=14+15	
INTRIFUGE Q(m3/h): 16.00 22.20 1 1 2 Wetted Parts SS304. Input TSS O(sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge TSS required 19km/w at polymer does Input TSO (sk W/n. Dewatered sludge	CENTRIFUGE FEED PUMP	Dia (mm): 100	Q(m3/h) :	16	H(m):	20	5.50	1	1	2	Progress Cavity Pump. Casing: Cl., Rotor: SS316, Stator: NB.	5.50	10.3	39.66	210,000	210,000	25,956	29,495	4,200	4,200	273,851	547,701	16,431	564,132	594,0
LECTRIC HOIST RL(T): 5.00 L(m): 8.00 - 17.10 1 0 1 T T T T T T T T T T T T T T T T	GENTRIFUGE	Q(m3/h): 16.00	-	-	-	-	22.20	1	1	2	Wetted Parts SS304.	22.20	10.3	160.08	3,600,000	3,600,000	444,980	505,620	72,000	72,000	4,694,580	9,389,160	281,675	9,670,835	7,920,0
Vivile (Procedure Dosing W (m): 1.00 L(m): 1.50 SWD(m): 1.80 0.75 2 0 2 0 2 0 2 0 2 0 0	ELECTRIC HOIST	RL(T): 5.00	L(m) :	6.00		-	17.10	1	0	1	Single-girder overhead type.	17.10	0.0	0.00	1,100,000	1,100,000	135,980	154,495	22,000	22,000	1,434,455	1,434,455	43,034	1,477,489	1,440,0
NYELEGYROL/TE DOSING Dia (mm): 20 Q(m3/h): 0.50 H(m): 20.00 0.40 1 1 2 288,834 450 4	POLYELECTROLYTE DOSING SYSTEM	W (m): 1.00	L(m) :	1.50	SWD(m) :	1.80	0.75	2	0	2	Agitator 100RPM,Slow Speed, SS304	1.50	2.0	2.10	80,000	80,000	9,888	11,236	1,600	1,600	104,324	208,648	6,259	214,907	540,0
INTRATE TRANSFER PUMP Dia (mm): 100 Q(m3/h): 40 H/m): 15 5.50 1 1 2 with detachable device Efficiency >50% 5.50 1.0 15.40 300,000 30,000 37,080 42,135 6,000 6,000 391,215 782,430 23,473 806,903 306,000 30,0	POLYELECTROLYTE DOSING PUMP	Dia (mm): 20	Q(m3/h) :	0.50	H(m):	20.00	0.40	1	1	2	Progress Cavity Pump. Casing: CI, Rotor: SS316, Stator: NB.	0.40	10.3	2.88	100,000	100,000	12,360	14,045	2,000	2,000	130,405	260,810	7,824	268,634	450,
	CENTRATE TRANSFER PUMP	Dia (mm): 100	Q(m3/h) :	40	H(m):	15	5.50	1	1	2	with detachable device	5.50	4.0	15.40	300,000	300,000	37,080	42,135	6,000	6,000	391,215	782,430	23,473	805,903	306,0
										TOTAL	•	176.95		2240.69										47,118,456	60,246,0
												kW	٧	kWh/d										INR	INR
													1												1

Mechanical Cost for STPs (10MLD)

MECHANICAL ITEMS			SPECI	FICATION	ı		(k W/HNIT	,	NUMBER	t	DESCRIPTION	ELECTRIC CAPACITY	Electric Consu	al power mptioon	NJS 積算単価	BISIC	EXCISE DUTY	SALES TAX/V	PACKING & FORWAR	T	BASIC	TOTAL COST	ERECTI ON	NJS積算額 TOTAL	Toshiba 見積額
							W/ Care	w	S	т		k W	hours/d	kWh/d			12.36%	12.50%		2.00%			3.00%		Rs.
													10.0	0.70		8	9=8×	10=(8+9)×	11=8×	12=8×	13=SUM(8:12)	14=13×TOTAL NO.	15=14×	16=14+15	
INLET GATE	W (m) :	0.40	L(m) :	0.60	Design Water Depth(m) :	2.00	-	2	1	3	Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor*******	0.00			190,000	190,000	23,484	26,686	3,800	3,800	247,770	743,309	22,299	765,608	2,511,0
FINE SCREEN (MECHANICAL)	W (m) :	0.80	L(m) :	6.00	SWD(m) :	0.40	1.50	2	0	2	Step Type Screen including control panel. Screen: SS316L. Open space 6mm	3.00	6.0	12.60	2,000,000	2,000,000	247,200	280,900	40,000	40,000	2,608,100	5,216,200	156,486	5,372,686	6,660,0
FINE SCREEN (MANUAL)	W (m) :	0.80	L(m) :	6.00	SWD(m) :	0.40	-	0	1	1	Manually Bar Screen. Screen: SS316L Open space 20mm	0.00			250,000	250,000	30,900	35,113	5,000	5,000	326,013	326,013	9,780	335,793	1,350,0
BELT CONVEYOR	Belt Width (m) :	0.60	L(m) :	7.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	537,269	810,0
GRIT CHAMBER	W (m) :	5.00	L(m) :	5.00	SWD(m) :	0.90	2.25	1	1	2	DETRITOR MECHANIS including a grit collector, a classifier, an organic return pumps, control panel. Wetted Parts: MS+Epoxy coated	2.25	24.0	37.80	1,550,000	1,550,000	191,580	217,698	31,000	31,000	2,021,278	4,042,555	121,277	4,163,832	4,140,0
3 INLET WEIR GATE	W (m) :	0.80	H(m) :	0.40	Stroke (m) :	0.45	-	2	0	2	Manually Sluice Weir, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor+******	0.00			340,000	340,000	42,024	47,753	6,800	6,800	443,377	886,754	26,603	913,357	1,566,0
MIXERS FOR ANAEROBIC TANK	W (m) :	8.00	L(m) :	8.00	SWD(m) :	5.50	4.00	2	0	2	Submersible Mixer. Casing: SS316L, Impeller: SS316L	8.00	24.0	134.40	750,000	750,000	92,700	105,338	15,000	15,000	978,038	1,956,075	58,682	2,014,757	6,300,0
MIXERS FOR ANOXIC TANK	W (m) :	8.00	L(m) :	12.50	SWD(m) :	5.50	4.00	4	0	4	Submersible Mixer. Casing: SS316L, Impeller: SS316L.	16.00	24.0	268.80	750,000	750,000	92,700	105,338	15,000	15,000	978,038	3,912,150	117,365	4,029,515	6,300,0
DIFFUSER	SOR(kg/h)	218	depth of diffusers	5.0	Efficiency E(%)	28.0	-	2	0	2	Fine Bubble Membrane Type.	0.00			2,500,000	2,500,000	309,000	351,125	50,000	50,000	3,260,125	6,520,250	195,608	6,715,858	2,700,0
0 AIR BLOWER	Dia (mm) :	200	Q(m3/h) :	1700	P(K Pa)	65	55.00	4	2	8	Rotary lobe blower, Tri-lube type with VFD. Casing Cl, Lobes Cl. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	220.00	24.0	4365.79	550,000	550,000	67,980	77,248	11,000	11,000	717,228	4,303,365	129,101	4,432,466	6,588,0
1 CIRCULATION PUMP	Dia (mm) :	200	Q(m3/h) :	385	H(m):	5.00	11.00	4	2	6	Submersible sludge pump with detachable device. Overall efficiency more than 60%. Casing: Cl, Impeller SS ASTM A743, Guide/Lifting chain: SS316.	44.00	24.0	739.20	880,000	880,000	108,768	123,596	17,600	17,600	1,147,564	6,885,384	206,562	7,091,946	10,098,
2 RAS PUMP	Dia (mm) :	100	Q(m3/h) :	125	H(m):	5.00	3.70	2	2	4	Submersible sludge pump with detachable device. Overall efficiency more than 60%. Casing: Cl, Impeller SS ASTM A743, Guide/Lifting chain: SS316.	7.40	24.0	124.32	250,000	250,000	30,900	35,113	5,000	5,000	326,013	1,304,050	39,122	1,343,172	2,088,
3 SAS PUMP	Dia (mm) :	100	Q(m3/h) :	50	H(m):	15.00	5.50	2	2	4	Submersible sludge pump with detachable device. Overall efficiency more than 60%. Casing: Cl, Impeller SS ASTM A743, Guide/Lifting chain: SS316.	11.00	6.0	46.20	300,000	300,000	37,080	42,135	6,000	6,000	391,215	1,564,860	46,946	1,611,806	1,800,
HAND OPERATION CHAIN BLOC FOR RAS/SAS PUMP	RL(T):	1.00	L(m) :	6.00			-	3	0	3		0.00			170,000	170,000	21,012	23,877	3,400	3,400	221,689	665,066	19,952	685,017	999,
FINAL CLARIFIER	Dia (m) :	23.00	L(m) :	-	SWD(m) :	3.50	2.20	2	0	2	Column-supported type including a centre drum, two scraper arms, a scum collector, a fixed bridge. MS+epoxy resin painting	4.40	24.0	73.92	3,500,000	3,500,000	432,600	491,575	70,000	70,000	4,564,175	9,128,350	273,851	9,402,201	12,600,
6 ALUM DOSING PUMP	Dia (mm) :	25	Q(I/h) :	180	H(MPa):	0.70	0.40	2	1	3	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	0.80	24.0	13.44	40,000	40,000	4,944	5,618	800	800	52,162	156,486	4,695	161,181	1,026,0
7 MIXERS FOR ALUM SOLUTION	W (m) :	1.20	L(m) :	1.20	SWD(m) :	1.80	0.75	2	0	2	Turbine impeller. SS316L	1.50	2.0	2.10	60,000	60,000	7,416	8,427	1,200	1,200	78,243	156,486	4,695	161,181	666,0

NJS Consultants Co.,

MECHANICAL ITEMS

19 CHLORINE BOOSTER PUMP

21 ELECTRIC HOIST CRANE

22 DECHLORINE DOSING PUMP

23 MIXER FOR DECLORINE SOLUTION

25 ELECTRIC HOIST FOR CHEMICALS

AIR BLOWER 26 FOR CENTRIFUGE FEED

27 CENTRIFUGE FEED PUMP

28 CENTRIFUGE

29 ELECTRIC HOIST

30 MIXER FOR POLYELECTROLYTE SOLUTION TANK

31 DRY POLYELECTROLYTE FEEDER

AIR BLOWER 24 FOR DECHLORINE MIXING

20 CHLORINE TONNERS

18 CHLORINATOR

SPECIFICATION

Q(m3/h): 3.6

L(m): 6.00

Q(I/h): 23

Q(m3/h): 40

L(m): 6.00

Q(m3/h): 27

L(m): 6.00

L(m): 1.50

Q(m3/h): 0.80

Dia (mm): 100 Q(m3/h): 400

Q(kg/h): 9.4

Dia (mm): 25

RL(T): 3.00

Dia (mm): 15

Dia (mm): 40

RL(T): 1.00

Dia (mm): 125

Q(m3/h): 27.00

RL(T): 5.00

W (m): 1.50

needty (tuz/h): 15.00

Dia (mm): 32

33 CENTRATE TRANSFER PUMP Dia (mm): 100 Q(m3/h): 40

(k W/UNIT

0.10

1.50 1 1

8.60

0.20 1

1.50 1 1

4.70

11.00 1

7.50 2 1

44.50 2

17.10

1.50 2 0

0.40 2 0

0.75 2

5.50 2

1 0

0.10 1

H(m): 50.00

H(MPa): 1.00

P(K Pa) 40

SWD(m):

P(K Pa) 20

H(m): 20

H(m): 20.00

H(m): 15

NUMBER

1

0

0

1

w s

2 2

Bengaluru
Water
Supply
and
Sewerage
Project
(Phase

EXCISE DUTY AT FORWAR INSURA

12.36% 12.50% 2.00% 2.00%

40,000 40,000

3,000 3,000

2,200 2,200

4.400 4.400 286.891

11,000 11,000 717,228

84,000 84,000 5,477,010

4,000 4,000 260,810

6,000 6,000 391,215

22,000

247,200 280,900

18,540 21,068

98,880 112,360 16,000 16,000 1,043,240

2,472 2,809 400 400 26,081

7,416 8,427 1,200 1,200 78,243

13.596

61,800 70,225 10,000 10,000

11,124 12,641 1,800 1,800 117,365

17,304 19,663 2,800 2,800

27.192 30.899

67,980 77,248

519,120 589,890

24,720 28,090

37,080 42,135

135,980 154,495 22,000

15,450

BASIC

9=8 × 10=(0=0)× 11=8 × 12=8 × 13=SUM(8:12) 14=13×TOTAL NO. 15=14 × 16=14+15

2,608,100

195,608

143,446

652,025

1,434,455

182,567

TOTAL COST ERECTI NJS被算額 TOTAL

5,216,200

782,430

1,043,240

52,162

78,243

286.891

652,025

573,782

2,151,683

16,431,030

1.434.455

234,729

521.620

547,701

1,173,645

3.00%

156,486 5,372,686

0 0

23,473 805,903

31,297 1,074,537

1.565

2,347 80,590

8,607 295,498

19,561 671,586

17.213 590.995

64,550 2,216,233

492,931 16,923,961

43.034 1.477.489

7,042 241,771

15,649 537,269

16,431 564,132

35,209 1,208,854

53,727

Toshiba 見積額

Rs.

6,480,000

450,000

864,000

900,000

450,000

324,000

1.152.000

900,000

1,926,000

1,755,000

20,520,000

1.440,000

666,000

2.520.000

945,000

594,000

INR

81,852,871 110,088,000

INR

Electrical power Consumptioon

hours/d kWh/d

10.0 0.70

NJS 積算単価

2,000,000

150,000 150,000

800,000 800,000

20,000 20,000

60,000 60,000

110,000 110,000

500,000 500,000

550,000 550,000

4,200,000

1.100.000

90,000 90,000

200.000 200.000

140,000 140,000

300,000 300,000

6799.17

kWh/d

220.000 220.000

4,200,000

1.100,000

BISIC

8

2,000,000

ELECTRIC CAPACITY

k W

0.10 24.0 1.68

1.50 24.0 25.20

0.00

8.60 1.0 6.02

0.20 24.0 3.36

0.10 2.0 0.14

1.50

4.70 1.0 3.29

11.00 12.0 92.40

15.00 10.3 108.15

89.00 10.3 641.69

17.10 0.0 0.00

0.80 0.5 0.28

1.50 10.3 10.82

11.00 6.6 50.82

484.95

k W

24.0 25.20

2.0 4.20

DESCRIPTION

Gas Chlorination System including Vacuum Chlorinators, Booster Pumps , Interconnecting Piping , Leak Detector, Residual Chlorine Analyses, Leak Absorption System ,Safety equipment and other

Single-girder overhead type.

Turbine impeller. SS316L

Single-girder overhead type.

ingle-girder overhead type.

CI, Submersible Type with detachable device Efficiency >50%

TOTAL

Agitator 100RPM.Slow Speed, SS304

Diaphragm Type. Casing: SS, Diaphragm: PTFE.

Rotary lobe blower, Tri-lube type. Casing: Cl, Lobes Cl. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE

Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE

Progress Cavity Pump. Casing: Cl, Rotor: SS316, Stator: NB.

Solid bowl type with Motor including a control panel. Wetted Parts SS304. Input TSS 0.8% w/w. Dewatered sludge TSS required 18%w/w at

Automatic feed system for batch-wise preparation and metering of

Progress Cavity Pump. Casing: CI, Rotor: SS316, Stator: NB.

Supporting Report

Mechanical Cost for STPs (15MLD)

MECHANICAL ITEMS			SPECI	FICATION			(k W/UNIT	w	NUMBER	₹ T	DESCRIPTION	ELECTRIC CAPACITY k W	Consu	al power nptioon	NJS 積算単価	BISIC	EXCISE DUTY 12.36%	TAX/V AT	PACKING & FORWAR 2.00%	INSURA NGE	BASIC	TOTAL COST	ON	
									•	•		KΨ	hours/d 15.0	kWh/d 0.70		8	9=8 ×	12.50% 10=(8+9)×	2.00% 11=8 ×	2.00% 12=8×	13=SUM(8:12)	14=13×TOTAL NO	3.00% 15=14×	× 16=
INLET GATE	W (m):	0.50	L(m) :	0.75	Design Water Depth(m) :	2.00	-	2	1	3	Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor+****** bottom**********************************	0.00			240,000	240,000	29,664	33,708	4,800	4,800	312,972	938,916	28,167	7 96
FINE SCREEN (MECHANICAL)	W (m) :	1.00	L(m) :	6.00	SWD(m) :	0.50	1.50	2	0	2	Step Type Screen including control panel. Screen: SS316L Open space 6mm	3.00	6.0	12.60	2,100,000	2,100,000	259,560	294,945	42,000	42,000	2,738,505	5,477,010	164,310	0 5,6
FINE SCREEN (MANUAL)	W (m):	1.00	L(m) :	6.00	SWD(m) :	0.50	-	0	1	1	Manually Bar Screen. Screen: SS316L Open space 20mm	0.00			310,000	310,000	38,316	43,540	6,200	6,200	404,256	404,256	12,128	8 41
BELT CONVEYOR	Beit Width (m) :	0.60	L(m) :	7.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649	9 5
GRIT CHAMBER	W (m):	6.00	L(m) :	6.00	SWD(m) :	0.90	2.25	1	1	2	DETRITOR MECHANIS including a grit collector, a classifier, an organic return pumps, control panel. Wetted Parts: MS+Epoxy coated	2.25	24.0	37.80	1,600,000	1,600,000	197,760	224,720	32,000	32,000	2,086,480	4,172,960	125,189	19 4,
INLET WEIR GATE	W (m) :	0.80	H(m) :	0.50	Stroke (m) :	0.55	-	2	0	2	Manually Sluice Weir, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron.	0.00			340,000	340,000	42,024	47,753	6,800	6,800	443,377	886,754	26,603	3 9
MIXERS FOR ANAEROBIC TANK	W (m):	8.00	L(m) :	12.00	SWD(m) :	5.50	4.00	2	0	2	bottom****** Submersible Mixer. Casing: SS316L, Impeller: SS316L.	8.00	24.0	134.40	750,000	750,000	92,700	105,338	15,000	15,000	978,038	1,956,075	58,682	2 2,
MIXERS FOR ANOXIC TANK	W (m):	8.00	L(m) :	12.40	SWD(m):	5.50	4.00	6	0	6	Submersible Mixer. Casing: SS316L, Impeller: SS316L.	24.00	24.0	403.20	750,000	750,000	92,700	105,338	15,000	15,000	978,038	5,868,225	176,047	7 6,0
DIFFUSER	SOR(kg/h)	345	The setting depth of diffusers	5.0	Efficiency E(%)	28.0	-	2	0	2	Fine Bubble Membrane Type.	0.00			3,200,000	3,200,000	395,520	449,440	64,000	64,000	4,172,960	8,345,920	250,378	8 8,
AIR BLOWER	Dia (mm) :	200	H(m) · Q(m3/h) :	2600	P(K Pa)	65	90.00	4	2	6	Rotary lobe blower, Tri-lube type with VFD. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	360.00	24.0	6676.99	650,000	650,000	80,340	91,293	13,000	13,000	847,633	5,085,795	152,574	4 5
CIRCULATION PUMP	Dia (mm) :	300	Q(m3/h):	580	H(m):	5.00	18.50	4	2	6	Submersible sludge pump with detachable device. Overall efficiency more than 80%. Casing: CI, Impeller SS ASTM A743, Quide/Lifting chain: SS316.	74.00	24.0	1243.20	1,300,000	1,300,000	160,680	182,585	26,000	26,000	1,695,265	10,171,590	305,148	8 10
RAS PUMP	Dia (mm) :	150	Q(m3/h):	190	H(m):	5.00	5.50	2	2	4	Submersible sludge pump with detachable device. Overall efficiency more than 80%. Casing: Cl, Impeller SS ASTM A743, Quide/Lifting chain: SS316.	11.00	24.0	184.80	400,000	400,000	49,440	56,180	8,000	8,000	521,620	2,086,480	62,594	4 2
SAS PUMP	Dia (mm) :	100	Q(m3/h):	80	H(m):	15.00	7.50	2	2	4	Submersible sludge pump with detachable device. Overall efficiency more than 80%. Casing: Cl, Impeller SS ASTM A743, Quide/Lifting chain: SS316.	15.00	6.0	63.00	340,000	340,000	42,024	47,753	6,800	6,800	443,377	1,773,508	53,205	5 1,
HAND OPERATION CHAIN BLOC	RL(T):	1.00	L(m) :	6.00		-	-	3	0	3		0.00			170,000	170,000	21,012	23,877	3,400	3,400	221,689	665,066	19,952	2 6
FOR RAS/SAS PUMP FINAL CLARIFIER	Dia (m) :	28.50	L(m) :	-	SWD(m) :	3.50	2.20	2	0	2	Column-supported type including a centre drum, two scraper arms, a soum collector, a fixed bridge. MS+epoxy resin painting	4.40	24.0	73.92	4,000,000	4,000,000	494,400	561,800	80,000	80,000	5,216,200	10,432,400	312,972	2 10
ALUM DOSING PUMP	Dia (mm) :	40	Q(I/h) :	260	H(MPa):	0.30	0.75	2	1	3	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	1.50	24.0	25.20	100,000	100,000	12,360	14,045	2,000	2,000	130,405	391,215	11,736	6 4
MIXERS FOR ALUM SOLUTION	W (m) :	1.40	L(m) :	1.40	SWD(m) :	1.80	0.75	2	0	2	Turbine impeller. \$\$316L	1.50	2.0	2.10	60,000	60,000	7,416	8,427	1,200	1,200	78,243	156,486	4,695	, 1
CHLORINATOR	Q(kg/h):	14.1	-	-	-	-	0.10	1	1	2	Gas Chlorination System including Vacuum Chlorinators, Booster Pumps , Interconnecting Piping , Leak Detector, Residual Chlorine Analyses, Leak Absorption System ,Safety equipment and other accessories	0.10	24.0	1.68	2,550,000	2,550,000	315,180	358,148	51,000	51,000	3,325,328	6,650,655	199,520	20 6
CHLORINE BOOSTER PUMP	Dia (mm) :	25	Q(m3/h) :	5.4	H(m):	50.00	2.20	1	1	2	Paradiplication of the paradiplication and the paradip	2.20	24.0	36.96	0	0	0	0	0	0	0	0	0	1
CHLORINE TONNERS		-		-		-	-	2	2	4		0.00			150,000	150,000	18,540	21,068	3,000	3,000	195,608	782,430	23,473	3
ELECTRIC HOIST CRANE	RL(T):	3.00	L(m) :	6.00		-	8.60	1	0	1	Single-girder overhead type.	8.60	1.0	6.02	800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	1,043,240	31,297	7 1
DECHLORINE DOSING PUMP	Dia (mm) :	15	Q(I/h) :	17	H(MPa):	1.00	0.20	2	1	3	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	0.40	24.0	6.72	20,000	20,000	2,472	2,809	400	400	26,081	78,243	2,347	,
MIXER FOR DECLORINE SOLUTION	Capacity(m3) :	0.20					0.10	2	0	2	Turbine impeller. SS316L	0.20	2.0	0.28	60,000	60,000	7,416	8,427	1,200	1,200	78,243	156,486	4,695	5
AIR BLOWER FOR DECHLORINE MIXING TANK	Dia (mm) :	40	Q(m3/h) :	55	P(K Pa)	20	1.50	1	1	2	Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI, With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	1.50	24.0	25.20	110,000	110,000	13,596	15,450	2,200	2,200	143,446	286,891	8,607	, :
ELECTRIC HOIST FOR CHEMICALS	RL(T) :	1.00	L(m) :	6.00		-	4.70	1	0	1	Single-girder overhead type.	4.70	1.0	3.29	500,000	500,000	61,800	70,225	10,000	10,000	652,025	652,025	19,561	11
SLUDGE THICKENER	Dia (m) :	11.00	L(m) :	-	SWD(m):	4.00	0.40	2	0	2	Bridge-supported type including a centre drum, two scraper arms, a scum collector, a fixed bridge. MS-tepoxy resin painting	0.80	24.0	13.44	2,000,000	2,000,000	247,200	280,900	40,000	40,000	2,608,100	5,216,200	156,486	6 5,

	,	,	,	
	4	ı		
	į	۱		
,				
•	4			
	1		•	
C		ì		
٠	,			

MECHANICAL ITEMS			SPECIF	ICATION			(k W/UNIT	ı	NUMBE	R	DESCRIPTION	ELECTRIC CAPACITY	Electric Consu	al power nptioon	NJS 積算単価	BISIC	EXCISE DUTY	TAX/V	PACKING & FORWAR	FREIGHT INSURA NCF	BASIC COST	TOTAL COST	. ERECTI	I NJS被算机 TOTAL
								W	S	Т		k W	hours/d 15.0	kWh/d 0.70		8	12.36% 9=8 ×	12.50% 10=(8+9)×	2.00% 11=8 ×	2.00% 12=8×	13=SUM(8:12)	14=13×TOTAL NO	3.00% 15=14 ×	Rs. × 16=14+1
7 THICKENED TRANSFERSLUDGE PUMP	Dia (mm) : 1	00	Q(m3/h) :	80	H(m):	15.00	11.00	2	2	4	CI, submersible sludge pump with detachable device	22.00	6.0	92.40	520,000	520,000	64,272	73,034	10,400	10,400	678,106	2,712,424	81,373	2,793,797
AIR BLOWER FOR CENTRIFUGE FEED SUMP	Dia (mm) : 1	00	Q(m3/h) :	350	P(K Pa)	40	11.00	1	1	2	Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	11.00	12.0	92.40	220,000	220,000	27,192	30,899	4,400	4,400	286,891	573,782	17,213	590,995
9 CENTRIFUGE FEED PUMP	Dia (mm): 1	00	Q(m3/h) :	14	H(m):	20	5.50	2	1	3	Progress Cavity Pump. Casing: CI, Rotor: SS316, Stator: NB.	11.00	10.3	79.31	210,000	210,000	25,956	29,495	4,200	4,200	273,851	821,552	24,647	846,198
0 CENTRIFUGE	Q(m3/h): 1-	1.00	-	-	-	- .	22.20	2	1	3	Solid bowl type with Motor including a control panel. Wetted Parts SS304. Input TSS 0.8% w/w. Dewatered sludge TSS required 18%w/w at polymer dose	44.40	10.3	320.12	3,600,000	3,600,000	444,960	505,620	72,000	72,000	4,694,580	14,083,740	422,512	14,508,25
ELECTRIC HOIST	RL(T): 3	.00	L(m) :	6.00		-	8.60	1	0	1	Single-girder overhead type.	8.60	0.0	0.00	800,000	800,000	98,880	112,360	16,000	16,000	1,043,240	1,043,240	31,297	1,074,537
MIXER FOR 2 POLYELECTROLYTE SOLUTION TANK	W (m): 1	.50	L(m) :	2.00	SWD(m) :	2.00	1.50	2	0	2	Agitator 100RPM,Slow Speed, SS304	3.00	2.0	4.20	90,000	90,000	11,124	12,641	1,800	1,800	117,365	234,729	7,042	241,771
3 DRY POLYELECTROLYTE FEEDER	Capacity (kg/h): 20	0.00					0.40	2	0	2	Automatic feed system for batch—wise preparation and metering of polymer solutions from powdered.	0.80	0.5	0.28	200,000	200,000	24,720	28,090	4,000	4,000	260,810	521,620	15,649	537,269
4 POLYELECTROLYTE DOSING PUMP	Dia (mm) :	32	Q(m3/h) :	1.30	H(m):	20.00	0.75	2	1	3	Progress Cavity Pump. Casing: CI, Rotor: SS316, Stator: NB.	1.50	10.3	10.82	140,000	140,000	17,304	19,663	2,800	2,800	182,567	547,701	16,431	564,132
5 CENTRATE TRANSFER PUMP	Dia (mm): 1	00	Q(m3/h):	40	H(m):	15	5.50	2	1	3	OI, Submersible Type with detachable device Efficiency >50%	11.00	12.0	92.40	300,000	300,000	37,080	42,135	6,000	6,000	391,215	1,173,645	35,209	1,208,854
										TOTAL	•	637.95		9,650.08	28,980,000									98,790,26

Mechanical Cost for STPs (24MLD)

MECHANICAL ITEMS		SPEC	IFICATION	ı		(k W/UNIT	NU	UMBER		DESCRIPTION	CAPACITY		cal power imptioon	NJS 被算単価	BISIC	EXCISE	TAX/V	PACKING & FORWAR	T	BASIC	TOTAL COST	ERECTI NJS見積着 ON TOTAL	頁 Tos
						W/UNIT_	w	s	Т		k W	hours/d 24.0	kWh/d 0.70		8	12.36%	12.50%	2.00% 11=8 ×	1NSURA 2.00% 12=8 ×	13=SUM(8:12)	14=13×TOTAL NO.	3.00% 15=14× 16=14+15	5 F
INLET GATE	W (m): 0.60	L(m) :	0.90	Design Water Depth(m) :	2.00	-	2	1	3	Manually Sluice Gate, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor=***********************************	0.00			270,000	270,000		37,922	5,400	5,400	352,094	1,056,281	31,688 1,087,969	9 2,5
FINE SCREEN (MECHANICAL)	W (m): 1.20	L(m) :	6.00	SWD(m) :	0.60	2.20	2	0	2	Step Type Screen including control panel. Screen: SS316L Open space 6mm	4.40	6.0	18.48	2,660,000	2,660,000	328,776	373,597	53,200	53,200	3,468,773	6,937,546	208,126 7,145,672	2 9,1
FINE SCREEN (MANUAL)	W (m): 1.20	L(m) :	6.00	SWD(m) :	0.60	-	0	1	1	Manually Bar Screen. Screen: SS316L Open space 20mm	0.00			370,000	370,000	45,732	51,967	7,400	7,400	482,499	482,499	14,475 496,973	1,5
BELT CONVEYOR	Beit Width (m): 0.60	L(m) :	9.00		-	1.50	1	0	1	Frame: MS+ Epoxy, Belt: NBR 3mm	1.50	7.0	7.35	400,000	400,000	49,440	56,180	8,000	8,000	521,620	521,620	15,649 537,269	
GRIT CHAMBER	W (m): 7.50	L(m) :	7.50	SWD(m) :	0.90	2.25	1	1	2	DETRITOR MECHANIS including a grit collector, a classifier, an organic return pumpa, control panel. Wetted Parts : MS4Epoxy coated	2.25	24.0	37.80	1,800,000	1,800,000	222,480	252,810	36,000	36,000	2,347,290	4,694,580	140,837 4,835,417	7 5,
NLET WEIR GATE	W (m): 0.80	H(m) :	0.40	Stroke (m) :	0.45	-	4	0	4	Manually Sluice Weir, Wall Thimble:Cast Iron, Gate: cast iron, Frame: cast iron. floor+sesses bottom+sesses	0.00			340,000	340,000	42,024	47,753	6,800	6,800	443,377	1,773,508	53,205 1,826,713	3 3,
MIXERS FOR ANAEROBIC TANK	W (m): 8.00	L(m) :	10.00	SWD(m) :	5.50	4.00	4	0	4	Submersible Mixer. Ceaing: \$\$318L, Impeller: \$\$316L.	16.00	24.0	268.80	750,000	750,000	92,700	105,338	15,000	15,000	978,038	3,912,150	117,365 4,029,515	5 18,
MIXERS FOR ANOXIC TANK	W (m): 8.00	L(m) :	10.00	SWD(m) :	5.50	4.00	12	0	12	Submersible Mixer. Casing: \$\$316L, Impeller: \$\$316L.	48.00	24.0	806.40	750,000	750,000	92,700	105,338	15,000	15,000	978,038	11,736,450	352,094 12,088,54	14 18
DIFFUSER	SOR(kg/h) 262	the setting depth of diffusers	5.0	Efficiency E(%)	28.0	-	4	0	4	Fine Bubble Membrane Type.	0.00			3,000,000	3,000,000	370,800	421,350	60,000	60,000	3,912,150	15,648,600	469,458 16,118,05	8 5
AIR BLOWER	Dia (mm): 250	Q(m3/h) :	4100	P(K Pa)	65	130.00	4	2	6	Rotary lobe blower, Tri-lube type with VFD. Caeing: Cl. Lobes Cl. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	520.00	24.0	10529.18	900,000	900,000	111,240	126,405	18,000	18,000	1,173,645	7,041,870	211,256 7,253,126	8 10
CIRCULATION PUMP	Dia (mm): 250	Q(m3/h) :	460	H(m):	5.00	15.00	8	4	12	Submeraible studge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impeller SS ASTM A743, Guide/Lifting chain: SS316.	120.00	24.0	2016.00	750,000	750,000	92,700	105,338	15,000	15,000	978,038	11,736,450	352,094 12,088,54	4 20
RAS PUMP	Dia (mm): 150	Q(m3/h) :	150	H(m):	5.00	5.50	4	4	8	Submeraible sludge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impelier SS ASTM A743, Quide/Lifting chain: SS316.	22.00	24.0	369.60	400,000	400,000	49,440	56,180	8,000	8,000	521,620	4,172,980	125,189 4,298,149	
SAS PUMP	Dia (mm): 100	Q(m3/h) :	65	H(m):	15.00	5.50	4	4	8	Submeraible sludge pump with detachable device. Overall efficiency more than 60%. Casing: CI, Impelier SS ASTM A743, Guide/Lifting chain: SS316.	22.00	6.0	92.40	300,000	300,000	37,080	42,135	6,000	6,000	391,215	3,129,720	93,892 3,223,612	2 3
HAND OPERATION CHAIN BLOC FOR RAS/SAS PUMP	RL(T): 1.00	L(m) :	6.00		-	-	6	0	6		0.00			170,000	170,000	21,012	23,877	3,400	3,400	221,689	1,330,131	39,904 1,370,035	5 1
FINAL CLARIFIER	Dia (m): 26.00	L(m) :	-	SWD(m) :	3.50	2.20	4	0	4	Column-supported type including a centre drum, two scraper arms, a scum collector, a fixed bridge. MS+epoxy resin painting	8.80	24.0	147.84	3,800,000	3,800,000	469,680	533,710	76,000	76,000	4,955,390	19,821,560	594,647 20,416,20	7 33
ALUM DOSING PUMP	Dia (mm): 40	Q(I/h) :	410	H(MPa):	0.30	0.75	2	1	3	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	1.50	24.0	25.20	100,000	100,000	12,360	14,045	2,000	2,000	130,405	391,215	11,736 402,951	1
MIXERS FOR ALUM SOLUTION	W (m): 1.60	L(m) :	1.60	SWD(m) :	2.00	1.50	2	0	2	Turbine impeller. SS316L	3.00	2.0	4.20	80,000	80,000	9,888	11,236	1,600	1,600	104,324	208,648	6,259 214,907	
CHLORINATOR	Q(kg/h): 23.0	-	-	-	-	0.10	1	1	2	Gas Chlorinstion System including Vacuum Chlorinstors, Booster Pumps , Interconnecting Piping . Leak Detector, Residual Chlorine Analyses, Leak Absorption System ,Safety equipment and other accessories	0.10	24.0	1.68	4,000,000	4,000,000	494,400	561,800	80,000	80,000	5,216,200	10,432,400	312,972 10,745,37	2 11,
CHLORINE BOOSTER PUMP	Dia (mm): 40	Q(m3/h) :	8.1	H(m):	50.00	3.70	1	1	2		3.70	24.0	62.16		0	0	0	0	0	0	0	0 0	
CHLORINE TONNERS	-		-		-	-	3	2	5		0.00			150,000	150,000	18,540	21,068	3,000	3,000	195,608	978,038	29,341 1,007,379	9 1
ELECTRIC HOIST CRANE	RL(T): 3.00	L(m) :	6.00		-	8.60	1	0	1	Single-girder overhead type.	8.60	1.0	6.02	800,000	800,000	98,880	112,380	16,000	16,000	1,043,240	1,043,240	31,297 1,074,537	7
MIXER FOR DECLORINE SOLUTION	Capacity(m3): 0.36					0.10	2	0	2	Turbine Impeller. SS316L	0.20	2.0	0.28	60,000	60,000	7,416	8,427	1,200	1,200	78,243	156,486	4,695 161,181	
DECHLIRINE DOSING PUMP	Dia (mm): 15	Q(I/h) :	27	H(MPa):	0.30	0.20	2	1	3	Diaphragm Type. Casing: SS, Diaphragm: PTFE.	0.40	24.0	6.72	100,000	100,000	12,360	14,045	2,000	2,000	130,405	391,215	11,736 402,951	1
AIR BLOWER FOR DECHLORINE MIXING TANK	Dia (mm) : 50	Q(m3/h) :	95	P(K Pa)	30	2.20	1	1	2	Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:83dB at 1m DISTANCE Single-girder overhead type.	2.20	24.0	36.96	140,000	140,000	17,304	19,663	2,800	2,800	182,567	365,134	10,954 376,088	1
ELECTRIC HOIST FOR CHEMICALS	RL(T): 1.00	L(m) :	6.00		-	4.70	1	0	1	Bridge-supported type including a centre drum, two scraper arms, a soum	4.70	1.0	3.29	500,000	500,000	61,800	70,225	10,000	10,000	652,025	652,025	19,561 671,586	
SLUDGE THICKENER	Dia (m): 14.00	L(m) :	-	SWD(m) :	4.00	0.75	2	0	2	Bridge-supporced type including a centre grum, two scraper arms, a soum collector, a fixed bridge. MS+epoxy resin painting	1.50	24.0	25.20	2,200,000	2,200,000	271,920	308,990	44,000	44,000	2,868,910	5,737,820	172,135 5,909,955	5 6,
THICKENED TRANSFERSLUDGE PUMP	Dia (mm): 100	Q(m3/h) :	120	H(m):	15.00	15.00	2	2	4	Cl, submersible sludge pump with detachable device	30.00	6.0	126.00	450,000	450,000	55,620	63,203	9,000	9,000	586,823	2,347,290	70,419 2,417,709	9 2,

Supporting Report

engaluru	
Water	
Supply	
and	
Sewerage	
Project	

MECHANICAL ITEMS			SPECI	FICATION			(k W/LINIT		IUMBEF	₹	DESCRIPTION	ELECTRIC CAPACITY		cal power imptioon	NJS 複算単価	BISIC	EXCISE DUTY	TAX/V	PACKING & FORWAR	T	BASIC	TOTAL COST	ERECTI ON	NJS見積額 TOTAL	Toshiba 見積額
								W	S	Т		k W	hours/d 24.0	kWh/d 0.70			12.36%	12.50% 10+(8+8)×	2.00%	2.00%	19-01114/0-19\	14=13×TOTAL NO	3.00%	16=14+15	Rs.
AIR BLOWER FOR CENTRIFUGE FEED SUMP	Dia (mm)	100	Q(m3/h) :	400	P(K Pa)	40	11.00	1	1	2	Rotary lobe blower, Tri-lube type. Casing: CI, Lobes CI. With Acoustic Enclosures Noise Level:85dB at 1m DISTANCE	11.00	12.0	92.40	500,000	500,000		70,225	10,000	10,000	652,025	1,304,050		1,343,172	1,926,000
29 CENTRIFUGE FEED PUMP	Dia (mm) :	: 125	Q(m3/h) :	25	H(m):	20	7.50	2	1	3	Progress Cavity Pump. Casing: CI, Rotor: SS316, Stator: NB.	15.00	10.3	108.15	550,000	550,000	67,980	77,248	11,000	11,000	717,228	2,151,683	64,550	2,216,233	2,079,000
30 CENTRIFUGE	Q(m3/h) :	21.00	-	-	-	-	44.50	2	1	3	Solid bowl type with Motor including a control panel. Wetted Parts SS304. Input TSS 0.8% w/w. Dewatered sludge TSS required 18%w/w at polymer dose	89.00	10.3	641.69	4,000,000	4,000,000	494,400	561,800	80,000	80,000	5,216,200	15,648,600	469,458	16,118,058	16,200,00
31 ELECTRIC HOIST	RL(T)	5.00	L(m) :	6.00		-	17.10	1	0	1	Single-girder overhead type.	17.10	0.0	0.00	1,100,000	1,100,000	135,960	154,495	22,000	22,000	1,434,455	1,434,455	43,034	1,477,489	1,440,00
MIXER FOR 32 POLYELECTROLYTE SOLUTION TANK	W (m) :	2.00	L(m) :	2.00	SWD(m) :	2.50	2.20	2	0	2	Agitator 100RPM,Slow Speed, SS304	4.40	2.0	6.16	120,000	120,000	14,832	16,854	2,400	2,400	156,486	312,972	9,389	322,361	900,000
33 DRY POLYELECTROLYTE FEEDER	Capacity (kg/h)	: 37.00					0.40	2	0	2	Automatic feed system for betch—wise preparation and metering of polymer solutions from powdered.	0.80	0.5	0.28	750,000	750,000	92,700	105,338	15,000	15,000	978,038	1,956,075	58,682	2,014,757	2,880,00
34 POLYELECTROLYTE DOSING PUMP	Dia (mm) :	: 40	Q(m3/h) :	1.90	H(m):	20.00	0.75	2	1	3	Progress Cavity Pump. Casing: Cl, Rotor: SS316, Stator: NB.	1.50	10.3	10.82	140,000	140,000	17,304	19,663	2,800	2,800	182,567	547,701	16,431	564,132	891,00
35 CENTRATE TRANSFER PUMP	Dia (mm) :	100	Q(m3/h) :	40	H(m):	15	5.50	3	1	4	CI, Submersible Type with detachable device Efficiency 50%	16.50	12.0	138.60	300,000	300,000	37,080	42,135	6,000	6,000	391,215	1,564,860	46,946	1,611,806	594,00
										TOTAL	•	976.15		15589.66										145,868,425	195,696,00
												kW	1	kWh/d										INR	INR
												1	1			l									1

Capacity	Estim	ated cost INR	Unit cost Million INR/MLD	Reference
0.5MLD	9,9	000,000	19.8	DPR
1.0MLD	13,	900,000	13.9	DEK
5MLD	92,000,000	Ave105.500.000	18.4	StageIV
5MLD	119,000,000	Ave103,300,000	23.8	phase II (Except
20MLD	222	,000,000	11.1	O&M)

※1 92,000,000 ≒72,100,000 × 1.27
 ※2 119,000,000 ≒77,400,000 × 1.53

%3 222,000,000 ≒145,000,000 × 1.53

Cost Function

MI	LD		Million INR
x =	0.5	у =	9.9
x =	1.0	у =	20.6
x =	1.5	у =	31.3
x =	2.0	у =	42.0
x =	2.5	у =	52.7
x =	3.0	у =	63.4
x =	3.5	у =	74.1
x =	4.0	у =	84.8
x =	4.5	у =	95.5
x =	5.0	у =	105.5
x =	6.0	у =	113.3
x =	7.0	у =	121.0
x =	8.0	у =	128.8
x =	9.0	у =	136.6
x =	10.0	у =	144.4
x =	11.0	у =	152.2
x =	12.0	у =	160.0
x =	13.0	у =	167.8
x =	14.0	у =	175.6
x =	15.0	у =	183.4
x =	16.0	у =	191.2
x =	17.0	у =	199.0
x =	18.0	у =	206.8
x =	19.0	у =	214.6
x =	20.0	у =	222.0

Construction Cost of ISPSs

Zone	Package	Nome	of ISPS		n Flow MLD)	Million INR
Zone	1 ackage	Name	01 131 3	JICA Surbey	DPR	JICA Surbey
Byatrayanpura	VB-U1	Bellahalli		0.9	1.0	9.9
Mahadevapura	VM-U2	Hagadur	Changed from STP	15.0	-	183.4
Bommanahari	VBO-U3	Naganathapura	Changed from STP	9.0	-	136.6
R.R Nagar	VRRN-U2	Arehalli 1		1.1	0.5	20.6
K.K Nagai	VKKIN-UZ	Hemigepura	Changed from STP	1.7	-	31.3
Dasarahalli	VD-U2	Herohalli	Changed from MP	0.5	0.5	9.9
Dasaranani	VD-02	Daddabidarakallu	Changed from STP	8.1	-	128.8
		Tota				520.5

NJS Consultants Co., Ltd.

Result of Stage IV hase II (Unit Cost for Construction of STPs and ISPSs)

Proj	ect		Items	Avg Initial Capacity	Treatment Process	Total HRT (at high level for SBR)	Direc	mated t Cost <1	Estimated Cost ※2	Awarded Cost ※2	Estimated (SOR) Year	Awarded Year	Escalation for Estimated 5-2017	Escalation for Awarded 6-2017	Revised Estimated Cost 2017	Revised Awarded Cost 2017	Estimated Unit Direct cost MillionINR / MLD	Estimated Unit Direct cost MillionINR / MLD	Awarded Unit Direct cost MillionINR / MLD	NOTE 1 (Range of Capacity)	NOTE 2	
			Raja canal	40 MLD	EA	23 hrs	590		3	7	,	· ·	,	Ů	3-3-7	10-4-0	14.8	22.6	20.1			
		STP	Horamavu agara	20 MLD	SBR	34 hrs	366	1	247.8 290.6								18.3	28.0	24.9	STP 20~40 MLD		
	S1a1		Nagasandra	20 MLD	SBR	34 hrs	342	1,521		247.8	290.6	290.6 2010	2013 1.53	1.53	1.16	379.1	337.1	17.1	26.1	23.2		
			Horamavu agaraat Rajacanal	20 MLD	-	_	145	†										7.3	11.1	9.9	ISPS 20 MLD	Not Include Pumping Main
		ISPS	Karibuvanahalli	5 MLD	-	_	77.4	İ									15.5	23.7	21.1	ISPS 5 MLD	Not Include Pumping Main	
	S1a2	STP	Kadugodi	6 MLD	SBR	37 hrs	246	461	72.3 95.6	OE e	2010 2014 1.53	1 50	1.10	110.6	105.2	41.0	62.8	59.7	STP 5~6 MLD			
Phase II		SIP	Chika banavara	5 MLD	SBR	36 hrs	214	401	72.3	95.0	2010	2014	1.53	1.10	110.6	105.2	42.9	65.6	62.4	215 2~0 MFD		
Stage IV	S1a3	STP	Kachohalli,(Agaram?)	3 MLD	MBR	23 hrs		_	_	_					_	-	ı	-				
	S1b	STP	Kengari	60 MLD	AS w/o PG	14 hrs		-		_					_	-	ı	-				
	S1c	STP	K&C Valley	60 MLD	AS with PG	14 hrs	-	_	_	_					_	-	ı	1		Expantion		
	S1d	STP	Bellundor Amanikere	90 MLD	AS w/o PG	14 hrs	-	_	_	_					_	-	-	1				
		STP	Doddabela	20 MLD	SBR	34 hrs	486										24.3	30.8	27.3	STP 15~20 MLD		
	S1e	011	Yellemall-appa Chetty	15 MLD	SBR	35 hrs	458	1,016	151.9	155.0	2012	2014	1.27	1.10	192.9	170.5	30.5	38.8	34.3	011 10 20 MLD		
		ISPS	Sadoramangala	5 MLD	-	_	72.1										14.4	18.3	16.2	ISPS 5 MLD	Not Include Pumping Main	

X1 Based on Excel Data obtained from BWSSB. In the Civil Cost, O & M Cost is not included and It is considered the defferance of HRT. (HRT of JICA-S = 25 hrs)

※2 Based on MONTHLY PROGRESS REPORT of Stage

▼ Phase II

Cost of ISPSs [Based on DPR]

		Capacit	ty(MLD)	INR (Crore)			
Area	Item	2034	2049	INK (Grore)	2 /①	Note	
		1		2			
Byatarayanpura	Intermediate Sewage Pumping Station - Bellahalli	1.00	1.55	13.9	13.9	Not Include Pumping Main	
R R Nagar Total	ISPS (Arehalli −1)	0.50	0.75	9.9	19.8	Not Include Pumping Main	
Dasarahalli	Manhole Pump & Sump (IV. Herohallii-1477)	0.50	0.75	6.2	12.4	Manhole Pump	

	Price Escaration in India							
Base Year	escaratio n/Year		2010	2011	2012	2013	2014	
2009	10.61							
2010	9.50	1.000	1.000					
2011	9.54	1.095	1.095	1.000				
2012	9.94	1.099	1.204	1.099	1.000			
2013	9.44	1.094	1.318	1.203	1.094	1.000		
2014	5.93	1.059	1.396	1.275	1.159	1.059	1.00	
2015	4.91	1.049	1.465	1.337	1.216	1.111	1.04	
2016	2.00	1.020	1.494	1.364	1.241	1.134	1.07	
2017	2.00	1.020	1.524	1.391	1.265	1.156	1.09	
			→ 1.53	→ 1.40	→ 1.27	→ 1.16	→ 1.1	

ote: : http://www.globalnote.jp/p-cotime/
(Based on IMF Data)

Supporting Repo

Supporting Report 16

Financial and Economic Considerations

Chapter 16 FINANCIAL AND ECONOMIC CONSIDERATIONS 16.3 PRESENT PRACTICE FOR WATER AND SEWERAGE TARIFF

16.3.2 Study on Present Water and Sewerage Tariff

(1) Other Special Arrangement

The details of special sanitary charges are shown in Table 16.3.1 to Table 16.3.2

Table 16.3.1 Special Sanitary Charges for Domestic-Connection

Conditions of Domestic-Connection

INR.50 per month per individual house or per flat

Source: BWSSB

Table 16.3.2 Special Sanitary Charges for Non-Domestic-Connection

Conditions of Non-Domestic Connection	Special Sanitary Charge (INR/month)	
1.Hotels	All Kinds of Hotels	2,000
	Darshini hotels, cafeteria and coffee bars	1,000
2.Hotels with lodging facility	Up to 50 rooms	2,000
	50 to 100 rooms	4,000
	more than 100 rooms	10,000
	Bar and Restaurant	2,000
3.Star Hotels	Less than 50 rooms	10,000
	51 to 100 rooms	15,000
	More than 100 rooms	20,000
4.Hospitals	Without beds	2,500
	Up to 50 beds	5,000
	More than 50 and up to 100	7,500
	More than 100 beds	10,000
	Dispensary, Clinic	100
5.Hostels	Paying Guest accommodations	2,000
	Hostels with Non Domestic Water Supply	2,000
6.Shopping Malls	Having theatres	25,000
	Without theatres	5,000
	Super Bazaars	1,000
7.Multiplex, Theatres, Cinema halls		10,000
8.Community halls/ Kalyana Mantapas	With A.C	7,500
	Without A.C	5,000
9.Choultries/Party halls	Less than 250 seats	2,000
<u> </u>		<u> </u>

The details of new connection charges are shown in Table 16.3.3 to Table 16.3.11

Table 16.3.3 Application form fee rate

Application form fee rate
(INR/Application)
100

Source: BWSSB.

Table 16.3.4 Attachment Fee for Pro Rata Charges

1. Pro Rata Charges	2. Attachment Cost		
	Rate	Class of water supply	Rate
Class/Nature of Building	(INR/m ² of	connection	(INR/connec
	built up area)	connection	tion)
1)Residential building	150	1)15 mm & 20 mm dia	25
2)Multi storeyed residential building	200	2)25 mm up to 80 mm dia	50
3)Fully owned buildings by Cen-			
tral/State Govt.(not applicable to	240	3)100 mm & above dia	100
Govt undertakings organization)			
4)Commercial Buildings	300		

Source: BWSSB

Table 16.3.5 Inspection Charges

1. Inspection Charge for Residential I	Buildings	2. Inspection Charge for Commercial Buildings			
Decidential Duilding true	Charge	Built up area	Charge		
Residential Building type	(INR/Application)	(m^2)	(INR/Application)		
A)Domestic connections & temporary					
Non-Domestic connection for con-	250	1)up to 100	500		
struction purpose					
B)Residential apartments:		2)101 up to 200	2,000		
1)up to 50 apartments	1,000	3)201 up to 400	4,000		
2)50 and above up to & inclusive of	2,000	4) from 101	5,000		
100 apartments	2,000	4)from 401 up	5,000		
3) for every increase of 100 apartments	Plus 1,000				
or part thereof of 100 apartments	Fius 1,000				

Table 16.3.6 Three Months Minimum Deposit

No.	Size	Rate for Non-Domestic Connection (INR)	Rate for Domestic Connection (INR)
1	15 mm dia	1,300/- for 10,000 ltrs	315/- for 15,000 ltrs
2	20 mm dia	5,900/- for 40,000 ltrs	1,800/- for 40,000 ltrs
3	25 mm dia	11,600/- for 70,000 ltrs	4,300/- for 70,000 ltrs
4	40 mm dia	28,600/- for 1,50,000 ltrs	14,500/- for 1,50,000 ltrs
5	50 mm dia	61000/- for 3,00,000 ltrs	35,300/- for 3,00,000 ltrs

Source: BWSSB

Table 16.3.7 Water Meter Cost (AMR)

No	Cino	AMR Meter Cost
No.	Size	(INR/Meter)
1	15 mm multi jet mech meters with AMR facilities for Non Domestic	37,200
2	20 mm multi jet mech meters with AMR facilities for Non Domestic	43,800
	25 mm multi jet mech meters with AMR facilities for Domestic & Non	50.400
3	Domestic	50,400
	40 mm multi jet mech meters with AMR facilities for Domestic & Non	56 400
4	Domestic	56,400
5	50 mm electromagnetic AMR flow meters	84,000
6	80 mm electromagnetic AMR flow meters	96,000
7	100 mm electromagnetic AMR flow meters	114,500
8	150 mm electromagnetic AMR flow meters	133,000
9	200 mm electromagnetic AMR flow meters	154,500
10	150 mm electromagnetic AMR flow meters	133,000
11	200 mm electromagnetic AMR flow meters	154,500

Source: BWSSB

Table 16.3.8 Water Meter Cost (Mechanical)

No	Size	Mechanical Meter Cost for Domestic (INR./Meter)	Mechanical Meter Cost for Non-Domestic (INR./Meter)
1	1/2inch mech meter	965	965
2	3/4inch mech meter	2,250	2,250

Source: BWSSB

Table 16.3.9 Sanitary Point Charges

Sanitary Point Charge Rate
(INR./point)
120

Table 16.3.10 GBWASP Charges

No.	Conditions	Total Charges		
NO.	Conditions	(INR.)		
A	Residential SITES			
1	up to 600 sq. ft.	NIL		
2	600 to 1200 sq. ft.	8,000/- per site		
3	1200 to 2400 sq. ft.	16,000/- per site		
4	up to 2400 sq. ft. & above	24,000/- per site		
В	Residential HOUSE/ FLAT			
1	up to 600 sq. ft. built up area (B.A)	4,000/- per house or flat		
2	600 to 1200 sq. ft. B.A	8,000/- per house or flat		
3	1200 to 2400 sq. ft. B.A	16,000/- per house or flat		
4	up to 2400 sq. ft. & above B.A	24,000/-per house or flat		
С	Educational Institutions / Hospitals / Nursing Homes, Charity etc.,	14/-per sft per B.A		
D	Commercial Establishments / Shops etc.,	14/-per sft per B.A		
Б	Office / Industries / Software & Hardware companies / BPOs/ Call Centers /	11/		
Е	Convention Halls / Community Halls / Marriage Halls etc.,	11/-per sft per B.A		
F	Hotels / Restaurants	24/-per sft per B.A		

Table 16.3.11 Pro Rata Charges

No.	Particulars	Conditions and Remarks		Rates (INR.)
1	Residential build-	Up to 1,199 sq.ft. Sital area	1.	Regular deposit and meter cost
	ing having base-	(Does not apply Pro Rata	2.	Sanitary point charges at INR.120/-per point (minimum 5
	ment, GF + 1st	charges up to 2 nd Floor)		points per house)
	floor & 2 nd Floor		3.	Inspection charges at INR.250/-per building
2	Residential build-	For 1,200 sq.ft. sital area	1.	INR.150/-per m ² on built area for both water supply con-
	ing having base-	(Does not attract Pro Rata		nection & sanitary connection.
	ment, GF + 1st	charges up to 1st Floor)	2.	Sanitary point charges at INR120/-per point (minimum 5
	floor, 2 nd Floor &			points per house)
	additional floors		3.	Inspection charges at INR.250/-per building.
3	Residential build-	Above 1,200 sq.ft. sital area	1.	Regular deposit and meter cost
	ing having base-	Does not apply Pro Rata	2.	Sanitary point charges at INR.120/-per point (minimum 5
	ment, GF + 1st	charges up to 1st Floor)		points per house).
	Floor (a single		3.	Inspection charges at INR.250/-per building
	kitchen house			
	accommodation)			
4	Residential build-	Above 1,200 sq.ft. sital area	1.	INR.150/-per m ² on built area for both water supply con-
	ing having base-	Attracts Pro Rata charges for		nection & sanitary connection.

No.	Particulars	Conditions and Remarks		Rates (INR.)
	ment, GF + 1st	2 nd Floor & above floors	2.	Sanitary point charges at INR.120/-point (minimum 5
	Floor + additional			points per house)
	floors (a single /		3.	Inspection charges at INR.250/-per building.
	double kitchen			
	house accommo-			
	dation)			
5	Residential build-	For sital area of 2,400 sq.ft.	1.	INR.150/-per sqmt on built area for both water supply
	ing having GF +1st	Attracts Pro Rata charges for		connection & sanitary connection.
	floor + additional	2 nd Floor & above floors	2.	Sanitary point charges at INR.120/-point (minimum 5
	floors(in the erst-			points per house)
	while 7 CMC & 1		3.	Inspection charges at INR.250/-per building
	TMC areas)			
6	Residential mul-	Above 1,200 sq.ft. sital area	1.	INR.200/-per sqmt on built area for both water supply
	tistoried building	Attracts Pro Rata charges for		connection & sanitary connection.
	(having 3 & above	all floors inclusive of Base-	2.	Sanitary point charges at INR.120/-per point (minimum 5
	kitchen house	ment Floor (since it is con-		points per house)
	accommodation)	sidered as an apartment)	3.	Inspection charges at INR.1,000/-up to 50 flats
	Exclusively in the		4.	Inspection charges at INR.2,000/-from 51up to 100 flats
	jurisdiction of		5.	Inspection charges at INR.,3000/-from 101 up to 200 flats
	BBMP core area		6.	Inspection charges at INR.4,000/-from 201 up to 300 flats
			7.	Inspection charges at INR.5,000/-from 301 up to 400 flats
			8.	Inspection charges at INR.6,000/-from 401 up to 500 flats
			9.	Inspection charges at INR.7,000/-from 501 up to 600 flats
7	Residential	Irrespective of sital area	1.	INR.200/-per sqmt on built area for both water supply
	apartment	Attractive Pro Rata for the		connection & sanitary connection.
		entire built area inclusive of	2.	Sanitary point charges at INR.120/-per point (minimum 5
		basement area		points per house)
			3.	Inspection charges at INR.1,000/-up to 50 flats
			4.	Inspection charges at INR.,2000/-from 51upto 100 flats
			5.	Inspection charges at INR.3,000/-from 101 up to 200 flats
			6.	Inspection charges at INR.4,000/-from 201 up to 300 flats
			7.	Inspection charges at INR.5,000/- from 301 up to 400 flat
			8.	Inspection charges at INR.6,000/- from 401 up to 500 flat
			9.	Inspection charges at INR.7,000/- from 501 up to 600flats
8	Government	Irrespective of sital area	1.	INR.240/-per sqmt on built area for water supply connec-
	owned buildings	Attractive pro rate for the		tion& sanitary connection.
		entire built area inclusive of	2.	Sanitary point charges at INR.120/-per point (minimum 5
		basement area		point per house)

No.	Particulars	Conditions and Remarks		Rates (INR.)
			3.	Inspection charges at INR.500/-up to 1000 sft built up
				area
			4.	INR.2,000/-up to 2,000 sft built up area
			5.	INR.4,000/-up to 4,000 sft built up area
			6.	INR.5,000/-above 4,000 sft built up area
9	Commercial	Irrespective of sital area	1.	INR.300/-per sqmt on built area for water supply connec-
	buildings & Edu-	Attractive prorate for the		tion& sanitary connection.
	cational Institu-	entire built area inclusive of	2.	Sanitary point charges at INR.120/-per point (minimum
	tions	basement area		5point per house)
			3.	Inspection charges at INR.500/-up to 1000 sft built up
				area
			4.	INR.2000/-up to 2000 sft built up area
			5.	INR.4000/-up to 4000 sft built up area
			6.	INR.5000/-above 4000 sft built up area

Source: BWSSB

16.4 STUDY ON ALTERNATIVES FOR WATER AND SEWERAGE TARIFF 16.4.3 Study for the Number of Beneficiary

Beneficiaries to be served by the JICA Survey Project are shown in Table 16.4.1

Table 16.4.1 Population Projections for Water & Sewerage (Core + ULB + 110 Villages)

Unit: Person

			Population	Projections for W	ater & Sewerage	(Core + ULB + 1	10 Villages)			Water+ Se	ewerage
Year	Core Area	ULB	Service Population	Service Population	Service Population	Projected Connections for Water	110 Villages - Service Population	Projected Connections for Sewerage	Avg HH Size	Total Households Served	Total Service Population
		MLD	1,827	367	1,460		408				
2016	5,636,817	2,440,189	8,077,006	1,622,475	6,454,531	-	1,429,293	-	4.00	-	9,506,299
2017	5,680,784	2,547,069	8,227,853	1,652,776	6,575,077	-	1,491,896	-	4.00	-	9,719,749
2018	5,725,094	2,658,631	8,383,725	1,684,087	6,699,638	-	1,557,241	-	4.00	-	9,940,966
2019	5,769,750	2,775,080	8,544,830	1,716,449	6,828,381	-	1,648,369	-	4.00	-	10,193,199
2020	5,814,754	2,879,146	8,693,900	1,746,394	6,947,506	-	1,720,568	-	4.00	-	10,414,467
2021	5,860,109	2,987,113	8,847,223	1,777,192	7,070,030	-	1,795,928	-	4.00	-	10,643,151
2022	5,905,818	3,099,130	9,004,948	1,808,876	7,196,072	-	1,874,590	-	4.00	-	10,879,538
2023	5,951,883	3,215,348	9,167,231	1,841,474	7,325,757	100%	1,956,697	24%	4.00	577,770	11,123,928
2024	5,998,307	3,376,559	9,374,866	1,883,183	7,491,683	100%	2,003,593	37%	4.00	656,128	11,378,459
2025	6,045,094	3,503,180	9,548,274	1,918,017	7,630,257	100%	2,078,728	47%	4.00	723,755	11,627,001
2026	6,092,246	3,634,549	9,726,795	1,953,877	7,772,918	100%	2,156,680	57%	4.00	795,796	11,883,475
2027	6,139,765	3,770,845	9,910,610	1,990,801	7,919,809	100%	2,237,556	67%	4.00	872,491	12,148,165
2028	6,187,655	3,912,251	10,099,907	2,028,826	8,071,080	100%	2,321,464	77%	4.00	954,088	12,421,371
2029	6,235,919	4,058,961	10,294,880	2,067,992	8,226,888	100%	2,408,519	87%	4.00	1,040,851	12,703,399
2030	6,284,559	4,211,172	10,495,731	2,108,338	8,387,393	100%	2,498,838	92%	4.00	1,101,817	12,994,569
2031	6,333,579	4,369,091	10,702,670	2,149,907		100%	2,592,545	95%	4.00	1,153,206	13,295,214
2032	6,382,981	4,532,932	10,915,912	2,192,742	8,723,170	100%	2,689,765	97%	4.00	1,200,454	13,605,677
2033	6,432,768	4,702,917	11,135,685	2,236,889	8,898,796	100%	2,790,631	99%	4.00	1,249,903	13,926,316
2034	6,482,943	4,809,070	11,292,013	2,268,292	9,023,722	100%	2,843,080	100%	4.00	1,277,843	14,135,093
2035	6,533,510	4,965,365	11,498,875	2,309,845	9,189,030	100%	2,935,480	100%	4.00	1,311,331	14,434,355
2036	6,584,472	5,126,739	11,711,211	2,352,498	9,358,713	100%	3,030,883	100%	4.00	1,345,845	14,742,094
2037	6,635,831	5,293,358	11,929,189	2,396,285		100%	3,129,387	100%	4.00	1,381,418	15,058,576
2038	6,687,590	5,465,392	12,152,982	2,441,239	, ,	100%	3,231,092	100%	4.00	1,418,083	15,384,074
2039	6,739,753	5,643,018	12,382,771	2,487,398	9,895,372	100%	3,336,102	100%	4.00	1,455,875	15,718,873
2040	6,792,323	5,826,416	12,618,739	2,534,799	10,083,940	100%	3,444,526	100%	4.00	1,494,831	16,063,265
2041	6,845,303	6,015,774	12,861,078	2,583,479	10,277,599	100%	3,556,473	100%	4.00	1,534,988	16,417,551
2042	6,898,697	6,211,287	13,109,984	2,633,478	, ,	100%	3,672,058	100%	4.00	1,576,384	16,782,042
2043	6,952,507	6,413,154	13,365,660	2,684,837	10,680,823	100%	3,791,400	100%	4.00	1,619,059	17,157,060
2044	7,006,736	6,621,581	13,628,317	2,737,599	10,890,719	100%	3,914,621	100%	4.00	1,663,055	17,542,938
2045	7,061,389	6,836,782	13,898,171	2,791,806	, ,	100%	4,041,846	100%	4.00	1,708,413	17,940,017
2046	7,116,468	7,058,978	14,175,446	2,847,503	, ,	100%	4,173,206	100%	4.00	1,755,177	18,348,651
2047	7,171,976	7,288,395	14,460,371	2,904,738	11,555,633	100%	4,308,835	100%	4.00	1,803,393	18,769,206
2048	7,227,917	7,525,268	14,753,185	2,963,557	11,789,628	100%	4,448,872	100%	4.00	1,853,107	19,202,057
2049	7,284,295	7,620,606	14,904,901	2,994,033	11,910,868	100%	4,490,582	100%	4.00	1,871,154	19,395,483

16.5 FINANCIAL ANALYSIS AND CONSIDERATIONS ON THE PROPOSED PROJECT 16.5.4 Financial Sensitivity

The detailed analysis is shown in Table 16.5.1 to Table 16.5.2.

Table 16.5.1 Sensitivity Analysis (Benefit Base)

Unit: Million INR.

Cost in Total	Benefit in Total		Cost in Total	Benefit in Total		Cost in Total	Benefit in Total	
Base			5%		_	10%		
Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
7,485	0	-7,485	7,859	0	-7,859	8,233	0	-8,233
4,428	0	-7,483 -4,428	4,649	0	-7,839 -4,649	4,870	0	-6,233 -4,870
2,001	0	-2,001	2,102	0	-2,102	2,202	0	-2,202
23,524	0	-23,524	24,700	0	-24,700	25,876	0	-25,876
15,665	0	-15,665	16,449	0	-16,449	17,232	0	-17,232
15,912	0	-15,912	16,708	0	-16,708	17,503	0	-17,503
7,774	6,183	-1,591	8,162	6,183	-1,980	8,551	6,183	-2,368
4,518	6,183	1,664	4,744	6,183	1,439	4,970	6,183	1,213
2,782	6,183	3,401	2,921	6,183	3,261	3,060	6,183	3,122
2,816	6,183	3,366	2,957	6,183	3,225	3,098	6,183	3,085
2,862	6,183	3,321	3,005	6,183	3,178	3,148	6,183	3,035
2,907	6,183	3,276	3,052	6,183	3,131	3,197	6,183	2,985
2,952	6,183	3,231	3,099	6,183	3,083	3,247	6,183	2,936
2,974	6,183	3,208	3,123	6,183	3,059	3,272	6,183	2,911
2,988	6,183	3,195	3,137	6,183	3,045	3,287	6,183	2,896
2,997	6,183	3,186	3,147	6,183	3,036	3,297	6,183	2,886
3,006	6,183	3,177	3,156	6,183	3,026	3,307	6,183	2,876
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
4,513	6,183	1,670	4,738	6,183	1,444	4,964	6,183	1,219
4,513	6,183	1,670	4,738	6,183	1,444	4,964	6,183	1,219
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
3,011	6,183	3,172	3,161	6,183	3,022	3,312	6,183	2,871
149,732	148,383	(1,350)	157,219	148,383	(8,836)	164,706	148,383	(16,323)
		-0.13%			-0.85%			-1.54%

Table 16.5.2 Sensitivity Analysis (Benefit-5%)

Cost in	Benefit in		Cost in	Benefit in		Cost in	Benefit in	
Total	Total		Total	Total		Total	Total	
Base	-5%		5%	-5%		10%	-5%	
Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
7,485	0	-7,485	7,859	0	-7,859	8,233	0	-8,233
4,428	0	-4,428	4,649	0	-4,649	4,870	0	-4,870
2,001	0	-2,001	2,102	0	-2,102	2,202	0	-2,202
23,524	0	-23,524	24,700	0	-24,700	25,876	0	-25,876
15,665	0	-15,665	16,449	0	-16,449	17,232	0	-17,232
15,912	0	-15,912	16,708	0	-16,708	17,503	0	-17,503
7,774	5,873	-1,900	8,162	5,873	-2,289	8,551	5,873	-2,678
4,518	5,873	1,355	4,744	5,873	1,129	4,970	5,873	903
2,782	5,873	3,091	2,921	5,873	2,952	3,060	5,873	2,813
2,816	5,873	3,057	2,957	5,873	2,916	3,098	5,873	2,775
2,862	5,873	3,012	3,005	5,873	2,869	3,148	5,873	2,726
2,907	5,873	2,967	3,052	5,873	2,821	3,197	5,873	2,676
2,952	5,873	2,922	3,099	5,873	2,774	3,247	5,873	2,626
2,974	5,873	2,899	3,123	5,873	2,750	3,272	5,873	2,602
2,988	5,873	2,885	3,137	5,873	2,736	3,287	5,873	2,587
2,997	5,873	2,876	3,147	5,873	2,727	3,297	5,873	2,577
3,006	5,873	2,867	3,156	5,873	2,717	3,307	5,873	2,567
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
4,513	5,873	1,361	4,738	5,873	1,135	4,964	5,873	910
4,513	5,873	1,361	4,738	5,873	1,135	4,964	5,873	910
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
3,011	5,873	2,863	3,161	5,873	2,712	3,312	5,873	2,562
149,732	140,964	(8,769)	149,732	140,964	(16,255)	149,732	140,964	(23,742)
		-0.88%			-1.62%			-2.34%

Table 16.5.3 Sensitivity Analysis (Benefit-10%)

Cost in Total	Benefit in Total		Cost in Total	Benefit in Total		Cost in Total	Benefit in Total	
Base	-10%		5%	-10%	•	10%	-10%	
Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
7,485	0	-7,485	7,859	0	-7,859	8,233	0	-8,233
4,428	0	-4,428	4,649	0	-4,649	4,870	0	-4,870
2,001	0	-2,001	2,102	0	-2,102	2,202	0	-2,202
23,524	0	-23,524	24,700	0	-24,700	25,876	0	-25,876
15,665	0	-15,665	16,449	0	-16,449	17,232	0	-17,232
15,912	0	-15,912	16,708	0	-16,708	17,503	0	-17,503
7,774	5,564	-2,209	8,162	5,564	-2,598	8,551	5,564	-2,987
4,518	5,564	1,046	4,744	5,564	820	4,970	5,564	594
2,782	5,564	2,782	2,921	5,564	2,643	3,060	5,564	2,504
2,816	5,564	2,748	2,957	5,564	2,607	3,098	5,564	2,466
2,862	5,564	2,703	3,005	5,564	2,560	3,148	5,564	2,417
2,907	5,564	2,658	3,052	5,564	2,512	3,197	5,564	2,367
2,952	5,564	2,612	3,099	5,564	2,465	3,247	5,564	2,317
2,974	5,564	2,590	3,123	5,564	2,441	3,272	5,564	2,292
2,988	5,564	2,576	3,137	5,564	2,427	3,287	5,564	2,278
2,997	5,564	2,567	3,147	5,564	2,417	3,297	5,564	2,268
3,006	5,564	2,558	3,156	5,564	2,408	3,307	5,564	2,258
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
4,513	5,564	1,052	4,738	5,564	826	4,964	5,564	601
4,513	5,564	1,052	4,738	5,564	826	4,964	5,564	601
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
3,011	5,564	2,554	3,161	5,564	2,403	3,312	5,564	2,253
149,732	133,544	(16,188)	149,732	133,544	(23,675)	149,732	133,544	(31,161)
		-1.70%			-2.46%			-3.22%

16.6 ECONOMIC ANALYSIS AND CONSIDERATIONS ON THE PROPOSED PROJECT

Table 16.6.1 shows population projections for water & sewerage services in 110 Villages.

Table 16.6.1 Population Projections for Water & Sewerage (110 Villages)

Unit: Number.

Year	110 villages HH
2016	357,323
2017	372,974
2018	389,310
2019	412,092
2020	430,142
2021	448,982
2022	468,648
2023	489,174
2024	500,898
2025	519,682
2026	539,170
2027	559,389
2028	580,366
2029	602,130
2030	624,710
2031	648,136
2032	672,441
2033	697,658
2034	710,770
2035	733,870
2036	757,721
2037	782,347
2038	807,773
2039	834,026
2040	861,131
2041	889,118
2042	918,015
2043	947,850
2044	978,655
2045	1,010,461
2046	1,043,301
2047	1,077,209
2048	1,112,218
2049	1,122,646

16.6.5 Economical Sensitivity

The detailed analysis is shown in Table 16.6.2 to Table 16.6.4

Table 16.6.2 Economic Sensitivity Analysis (Benefit: Base)

Unit: Million INR.

	Cost in Total	Benefit in Total		Cost in Total	Benefit in Total		Cost in Total	Benefit in Total	milon ivk.
	Base			5%			10%		
	Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
	= 22 0		7.22 0	7. 500		5.500	7 051	^	7 074
	7,230	0	-7,230	7,592	0	-7,592	7,954	0	-7,954
	4,277	0	-4,277	4,491	0	-4,491	4,705	0	-4,705
	1,933 22,724	0 0	-1,933 -22,724	2,030 23,860	0	-2,030 -23,860	2,127 24,996	0	-2,127 -24,996
	15,133	0	-22,724	15,889	0	-25,889	16,646	0	-24,990 -16,646
	15,371	0	-15,371	16,140	0	-16,140	16,908	0	-16,908
	7,359	25,142	17,783	7,727	25,142	17,415	8,095	25,142	17,047
	4,390	25,032	20,643	4,609	25,032	20,423	4,829	25,032	20,204
	2,529	25,026	22,497	2,655	25,026	22,371	2,782	25,026	22,245
	2,744	25,055	22,311	2,881	25,055	22,174	3,018	25,055	22,037
	2,787	25,086	22,299	2,926	25,086	22,160	3,066	25,086	22,020
	2,830	25,118	22,289	2,971	25,118	22,147	3,113	25,118	22,006
	2,872	25,153	22,280	3,016	25,153	22,137	3,160	25,153	21,993
	2,894	25,102	22,208	3,039	25,102	22,063	3,183	25,102	21,919
	2,907	25,088	22,181	3,052	25,088	22,036	3,197	25,088	21,890
	2,915	24,995	22,079	3,061	24,995	21,934	3,207	24,995	21,788
	2,924	25,009	22,085	3,070	25,009	21,938	3,216	25,009	21,792
	2,928	25,019	22,091	3,075	25,019	21,944	3,221	25,019	21,798
	2,928	25,025	22,097	3,075	25,025	21,951	3,221	25,025	21,804
	2,928	25,032	22,104	3,075	25,032	21,957	3,221	25,032	21,811
	2,928	25,038	22,110	3,075	25,038	21,964	3,221	25,038	21,818
	4,379	25,045	20,666	4,598	25,045	20,447	4,817	25,045	20,228
	4,379	25,053	20,674	4,598	25,053	20,455	4,817	25,053	20,236
	2,928	25,060	22,132	3,075	25,060	21,986	3,221	25,060	21,839
	2,928	25,068	22,140	3,075	25,068	21,993	3,221	25,068	21,847
	2,928	25,076	22,148	3,075	25,076	22,001	3,221	25,076	21,855
	2,928	25,084	22,156	3,075	25,084	22,009	3,221	25,084	21,863
	2,928	25,093	22,164	3,075	25,093	22,018	3,221	25,093	21,872
	2,928	25,101	22,173	3,075	25,101	22,027	3,221	25,101	21,880
	2,928	25,104	22,176	3,075	25,104	22,029	3,221	25,104	21,883
	127.556	0	0	144 424	0	457.160	151 212	0	450.201
-	137,556	601,603	464,047	144,434	601,603	457,169	151,312	601,603	450,291
			21.26%			20.39%			19.57%

Table 16.6.3 Economic Sensitivity Analysis (Benefit-5%)

								VIIIIon INK.
Cost in	Benefit in		Cost in	Benefit in		Cost in	Benefit in	
Total	Total		Total	Total		Total	Total	
Base	-5 %		5%	-5 %		10%	-5 %	
Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
7,230	0	-7,230	7,592	0	-7,592	7,954	0	-7,954
4,277	0	-4,277	4,491	0	-4,491	4,705	0	-4,705
1,933	0	-1,933	2,030	0	-2,030	2,127	0	-2,127
22,724	0	-22,724	23,860	0	-23,860	24,996	0	-24,996
15,133	0	-15,133	15,889	0	-15,889	16,646	0	-16,646
15,371	0	-15,371	16,140	0	-16,140	16,908	0	-16,908
7,359	23,885	16,526	7,727	23,885	16,158	8,095	23,885	15,790
4,390	23,781	19,391	4,609	23,781	19,172	4,829	23,781	18,952
2,529	23,775	21,246	2,655	23,775	21,120	2,782	23,775	20,993
2,744	23,802	21,058	2,881	23,802	20,921	3,018	23,802	20,784
2,787	23,832	21,045	2,926	23,832	20,905	3,066	23,832	20,766
2,830	23,862	21,033	2,971	23,862	20,891	3,113	23,862	20,750
2,872	23,895	21,023	3,016	23,895	20,879	3,160	23,895	20,735
2,894	23,847	20,953	3,039	23,847	20,808	3,183	23,847	20,663
2,907	23,833	20,927	3,052	23,833	20,781	3,197	23,833	20,636
2,915	23,745	20,830	3,061	23,745	20,684	3,207	23,745	20,538
2,924	23,758	20,834	3,070	23,758	20,688	3,216	23,758	20,542
2,928	23,768	20,840	3,075	23,768	20,693	3,221	23,768	20,547
2,928	23,774	20,846	3,075	23,774	20,699	3,221	23,774	20,553
2,928	23,780	20,852	3,075	23,780	20,706	3,221	23,780	20,559
2,928	23,787	20,858	3,075	23,787	20,712	3,221	23,787	20,566
4,379	23,793	19,414	4,598	23,793	19,195	4,817	23,793	18,976
4,379	23,800	19,421	4,598	23,800	19,202	4,817	23,800	18,983
2,928	23,807	20,879	3,075	23,807	20,733	3,221	23,807	20,586
2,928	23,814	20,886	3,075	23,814	20,740	3,221	23,814	20,593
2,928	23,822	20,894	3,075	23,822	20,747	3,221	23,822	20,601
2,928	23,830	20,902	3,075	23,830	20,755	3,221	23,830	20,609
2,928	23,838	20,910	3,075	23,838	20,763	3,221	23,838	20,617
2,928	23,846	20,918	3,075	23,846	20,772	3,221	23,846	20,625
2,928	23,849	20,921	3,075	23,849	20,774	3,221	23,849	20,628
127.556	571.522	422.067	144 424	571.522	427.090	144 424	571.522	420.211
137,556	571,523	433,967	144,434	571,523	427,089	144,434	571,523	420,211
		20.35%			19.49%			18.69%

Table 16.6.4 Economic Sensitivity Analysis (Benefit-10%)

							Unit: N	Million INR.
Cost in Total	Benefit in Total		Cost in Total	Benefit in Total		Cost in Total	Benefit in Total	
Base	-10 %		5%	-10 %		10%	-10 %	
Total	Total	Cash Balance	Total	Total	Cash Balance	Total	Total	Cash Balance
7,230		-7,230	7,592	0	-7,592	7,954	0	-7,954
4,277		-4,277	4,491	0	-4,491	4,705	0	-4,705
1,933		-1,933	2,030	0	-2,030	2,127	0	-2,127
22,724		-22,724	23,860	0	-23,860	24,996	0	-24,996
15,133		-15,133	15,889	0	-15,889	16,646	0	-16,646
15,371		-15,371	16,140	0	-16,140	16,908	0	-16,908
7,359		15,268	7,727	22,627	14,900	8,095	22,627	14,533
4,390		18,139	4,609	22,529	17,920	4,829	22,529	17,701
2,529		19,995	2,655 2,881	22,524 22,550	19,868 19,668	2,782	22,524 22,550	19,742
2,744 2,787		19,806	2,881	22,530	19,668	3,018 3,066	22,530	19,531 19,512
2,787		19,790 19,777	2,920	22,607	19,635	3,113	22,607	19,312
2,830		19,777	3,016	22,637	19,633	3,113	22,637	19,494
2,894		19,698	3,039	22,592	19,553	3,183	22,592	19,408
2,907		19,672	3,052	22,579	19,527	3,197	22,579	19,382
2,915		19,580	3,061	22,495	19,434	3,207	22,495	19,288
2,924		19,584	3,070	22,508	19,438	3,216	22,508	19,291
2,928		19,589	3,075	22,517	19,442	3,221	22,517	19,296
2,928		19,594	3,075	22,523	19,448	3,221	22,523	19,302
2,928		19,600	3,075	22,529	19,454	3,221	22,529	19,308
2,928		19,606	3,075	22,535	19,460	3,221	22,535	19,314
4,379		18,162	4,598	22,541	17,943	4,817	22,541	17,724
4,379		18,168	4,598	22,547	17,949	4,817	22,547	17,730
2,928		19,626	3,075	22,554	19,480	3,221	22,554	19,333
2,928	22,561	19,633	3,075	22,561	19,487	3,221	22,561	19,340
2,928	22,568	19,640	3,075	22,568	19,494	3,221	22,568	19,347
2,928	22,576	19,647	3,075	22,576	19,501	3,221	22,576	19,355
2,928	22,583	19,655	3,075	22,583	19,509	3,221	22,583	19,362
2,928	22,591	19,663	3,075	22,591	19,517	3,221	22,591	19,370
2,928	22,593	19,665	3,075	22,593	19,519	3,221	22,593	19,372
(0	0	0	0	0	0	0
144,434	541,443	403,886	144,434	541,443	397,009	144,434	541,443	390,131
		19.40%			18.56%			17.77%

Supporting Report 17.1.1

Details of Service Stations with Number of Connections and Water Consumption

Supporting Report 17.1.1

Details of Service Stations with Number of Connections and Water Consumption

Sl No.	SDID	Name of Service Station	No. of Connections	Consumption in ML
1	C-1	Banappa Park	5,632	94.49
2	C-1	Chikkalalbagh	8,403	126.12
3	C-1	L.L.R Station	3,068	338.62
4	C-1	Sudhamanagar	4,457	91.36
5	C-2	Coles Park	6,671	299.50
6	C-2	H.G.R	6,979	319.25
7	C-3	Frazer Town	6,729	183.69
8	C-3	Machalibetta	9,206	251.06
9	C-3	Pillanna Garden	20,621	211.90
10	E-1	Banasawadi	7,013	118.58
11	E-1	H.B.R	10,153	170.30
12	E-1	H.R.B.R	5,077	136.92
13	E-1	Lingarajapuram	9,421	135.69
14	E-1	O.M.B.R	4,516	100.41
15	E-2	AECS Layout	5	1.07
16	E-2	AECS-1	6,840	169.72
17	E-2	AECS-2	2,545	101.07
18	E-2	Hoodi	4,599	469.63
19	E-3	A.Narayanapura	4	0.04
20	E-3	Devasandra Service Station	3,578	53.35
21	E-3	K.R.Puram	10,496	140.54
22	E-3	Ramamurthynagar	10,058	249.76
23	E-3	Vijinapura Service Station	4,711	65.49
24	E-4	A. Narayanapura	5,647	115.57
25	E-4	HAL Airport	6,039	125.72
26	E-4	Vignananagar	7,121	183.32
27	N-1	Bahubali Nagar N-1	5,890	330.31
28	N-1	M.E.I Layout (DSH)	13,857	242.57
29	N-2	Yelahanka New Town	8,687	430.49
30	N-2	Yelahanka Old Town	1,495	25.01
31	N-3	Jakkur	8,231	191.92

Sl No.	SDID	Name of Service Station	No. of Connections	Consumption in ML
32	N-3	Sahakara Nagar	5,095	98.28
33	N-3	Vidyaranyapura	14,198	234.06
34	NE1	Bhashym Park	8,445	152.34
35	NE1	Malleswaram	9,879	345.42
36	NE1	No Name	1	0.00
37	NE1	SRIRAMPURAM	5,546	136.08
38	NE1	YASHWANTHPURA	14,881	306.82
39	NE2	JayaMahal	6,140	238.40
40	NE2	K.G.Tower	3,875	108.52
41	NE2	Kumara Park	7,012	157.20
42	NE3	R.T.Nagar	26,816	543.99
43	NE3	Sanjayanagar	13,175	242.67
44	NW1	Kethmaranahalli	6,265	164.00
45	NW1	Mahalakshmi Layout	7,134	170.26
46	NW1	Nandini Layout	13,846	321.74
47	NW1	Rajajinagar	9,645	275.53
48	NW1	Yet to be assigned	3	0.00
49	NW2	A.D.Halli	5,216	142.73
50	NW2	Kamalanagar / Kamakshi Palya	16,341	393.80
51	NW2	West Of Chord Road – I	11,188	320.37
52	NW2	Yet to be Assigned	1	0.00
53	NW3	Hegganahally	17,994	383.06
54	NW3	Peenya	17,828	360.13
55	NW3	Peenya Dasarahalli	5,942	158.75
56	S-1	Banashankari-I	5,277	135.90
57	S-1	Banashankari-II	4,680	148.56
58	S-1	ISRO Layout	5,448	100.36
59	S-1	Kumaraswamy Layout	7,496	209.04
60	S-1	Poornapragna Layout	7,195	215.18
61	S-2	KothnurDinne	25,269	693.22
62	S-2	Vijayabank Layout S-2	9,043	333.28
63	S-3	B.T.M layout-1	13,970	427.64
64	S-3	B.T.Mlayout-2	7,129	249.70
65	S-4	HSR Layout	13,865	463.67

Sl No.	SDID	Name of Service Station	No. of Connections	Consumption in ML
66	S-4	KodiChikkanahalli	11,897	418.92
67	SE1	CLR	10,955	240.55
68	SE1	Domlur	10,484	382.47
69	SE1	Jhonson Market	11,789	255.17
70	SE1	Ulsoor	8,406	307.19
71	SE1	Yet to be Assigned	1	0.00
72	SE2	Bayappanahalli	2,384	54.71
73	SE2	Bhuvaneshwari Nagar	4,547	360.31
74	SE2	H.A.L	4,224	130.55
75	SE2	Indiranagar	4,264	85.71
76	SE2	Jeevan Bhimanagar	7,789	158.80
77	SE3	Koramangala-1	7,281	319.76
78	SE3	Koramangala-2	7,374	202.61
79	SE3	Bellandur	1,033	10.13
80	SW1	Chamarajpet	10,652	227.48
81	SW1	JJNager	10,668	188.15
82	SW1	K.G.Nagar	3,666	81.17
83	SW1	V.V.Puram	8,458	162.42
84	SW2	Devagiri-1	5,456	139.45
85	SW2	Devagiri-2	7,727	193.02
86	SW2	Giri Nagar	5,836	134.00
87	SW2	Hosakerehalli	6,824	146.48
88	SW2	Ittamadu	4,010	97.86
89	SW2	Kathriguppa	5,155	122.00
90	SW3	Girinagar SW3	1,899	35.74
91	SW3	M.N.K Park	10,209	233.65
92	SW3	MountJoy	9,375	223.59
93	SW3	Nagendra Block	11,679	258.29
94	SW3	Yet to be assigned	1	0.00
95	SW4	Byrasandra – I	7,520	181.79
96	SW4	Hombegowda Nagara	8,623	298.99
97	SW4	J.P.Nagar I Phase	4,234	134.29
98	SW4	J.P.Nagar III Phase	4,833	149.09
99	SW4	Jayanagar	3,247	89.04

Sl No.	SDID	Name of Service Station	No. of Connections	Consumption in ML
100	SW4	Jayanagar T – Block	7,156	187.06
101	W-1	Hosahalli	8,759	228.16
102	W-1	MagadiRoad	12,061	206.59
103	W-1	Mysore Road	68,52	154.55
104	W-2	Annapoorneshwari Nagara	11,525	271.58
105	W-2	Nagarbhavi	6,635	143.31
106	W-2	Sir M. Visveswaraiah – I	1,868	31.73
107	W-3	Ideal Home (B E M L)	5,236	110.75
108	W-3	Kengeri Satalite Town	14,291	232.04
109	W-3	W-3-BEML Layout	6,683	133.83
110	W-4	Chandra Layout	20,703	522.18
111	W-4	Moodalapalya W-4	7,562	166.57
112	W-4	Vijayanagara OHT	7,508	165.58
		Total	872,926	22,281.48
	There are 105 operational service stations out of a total of 112. The seven stations (Sl no. 15, 19, 36, 48, 52, 71 and 94) are yet to be made fully operational.			

Supporting Report 17.1.2

Existing Staff Strength of BWSSB as on Jan 25, 2017

Supporting Report 17.1.2

Existing Staff Strength of BWSSB as on Jan 25, 2017 (Source: Personnel Officer, BWSSB)

No.	Category of the Post	Sanctioned strength	In-position Strength	Vacant Positions
	GROUP- 'A'	~~~ ~	2 12 12 g	
1	Chairman	1	1	
2	Chief Administrative officer cum Secretary	1	1	
3	Project Director	1	0	1
4	Financial Advisor & Chief Accounts Officer	1	1	
5	Engineer in Chief	1	0	1
6	Chief Engineer	4	2	2
7	Additional Chief Engineer	13	11	2
8	Executive Engineer	39	37	2
9	Assistant Executive Engineer	133	95	38
10	Law Officer	1	1	
11	Personnel Manager	1	0	1
12	Administrative Officer	1	0	1
13	Public Relation Officer	1	1	
14	Accounts Officer	8	6	2
15	Asst. Labor Commissioner (Depu)	1	0	1
	Total	207	155	52
	GROUP- 'B'			
1	Assistant Personnel Manager	1	0	1
2	Asst. Welfare Officer	1	0	1
3	Medical Officer (Depu)	1	0	1
4	Asst. Law Officer	1	1	
5	Asst. Public Relation Officer	1	0	1
6	Sr. Labor Inspector	1	0	1
7	Asst. Accounts Officer	14	13	1
8	Asst. Engineer	233	126	107
9	Asst. Chemical Examiner	1	0	1
10	Asst. Stores Officer	2	1	1
11	Asst. Marketing Officer	1	1	
12	PS to Chairman	1	1	
13	Revenue Recovery Officer (Depu)	1	0	1
14	Accounts Superintendent	50	48	2
	Total	309	191	118

No.	Category of the Post	Sanctioned	In-position	Supporting Rep Vacant
110.		strength	Strength	Positions
	GROUP- 'C'	-	50	22
1	Junior Engineer	82	59	23
2	J. E. (Operation)	12	11	1
3	Draughtsman	1	0	1
4	Senior Manager	14	10	4
5	Superintendent	45	28	17
6	Superintendent (PRO)	1	0	1
7	Senior Personal Asst.	4	3	1
8	Junior Personal Asst.	6	0	6
9	Stenographer	10	9	1
10	Special Grade Typist cum DEO	10	9	1
11	Senior Typist cum DEO	21	16	5
12	Typist cum Data Entry Operator	61	20	41
13	Senior Assistant	109	105	4
14	Assistant	167	108	59
15	Junior Assistant	275	164	111
16	Stores Superintendent	10	0	10
17	First Division Storekeeper	13	1	12
18	Second Division Storekeeper	19	6	13
20	Telephone Operator (MR)	6	2	4
21	Special Grade Driver	12	9	3
22	Senior Driver	20	14	6
23	Driver	74	43	31
24	Senior Sanitary Inspector	2	1	1
25	Sanitary Inspector	7	1	6
26	Sanitary Overseer	22	18	4
27	Sanitary Mistry	60	23	37
28	Electrician Grade-I	5	0	5
29	Electrician Grade-II	9	9	
30	Sr. Work Inspector (MR)	6	3	3
31	Work Inspector (MR)	14	0	14
32	Water Analyst	3	0	3
33	Chemist-Grade-1	1	1	
34	Chemist-Grade-2	3	3	
35	Lab-Assistant Grade-1	6	2	4

No.	Category of the Post	Sanctioned	In-position	Supporting Re Vacant
		strength	Strength	Positions
36	Lab-Assistant Grade-2	10	5	5
37	Senior Operator	17	17	
38	Operator	45	41	04
39	Senior Water Inspector	31	28	3
40	Water Inspector	150	141	9
41	Meter Reader	360	239	121
42	Senior Jamedhar	2	0	2
43	Jamedhar	4	1	3
44	Senior Dafedar	2	0	2
45	Head Gardener	3	1	2
46	Senior Fitter	60	1	59
47	Fitter	140	100	40
48	Senior Cook	1	1	
	Total	1,935	1,253	682
	GROUP- 'D'			
1	Sr. Attendant	25	16	17
2	Jr. Attendant	105	63	42
3	Sr. Watchman	31	4	27
4	Watchman	6	2	4
5	Sanitary Worker	250	133	117
6	Dafedar	1	0	1
7	Sweeper	50	28	22
8	Gardener	2	0	2
9	Helper	550	351	199
10	Cook	4	1	3
11	Junior Helper	25	6	19
	Total	1,049	604	445

ABSTRACT

1	Group A	207	155	52
2	Group B	309	191	118
3	Group C	1,935	1,253	682
4	Group D	1049	604	445
	Total	3500	2203	1297