REPUBLIC OF INDIA BANGALORE WATER SUPPLY AND SEWERAGE BOARD

BENGALURU WATER SUPPLY AND SEWERAGE PROJECT (PHASE 3)

IN

THE STATE OF KARNATAKA, INDIA

FINAL REPORT (Supporting Report)

NOVEMBER 2017

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NJS CONSULTANTS CO., LTD. (NJS)

4

4R CR(5) 17-062

Table of Contents

SUPPORTING REPORT 5.1.1	DETAILS ON THE POPULATION PROJECTION	
	IN MASTER PLAN	5-1
SUPPORTING REPORT 9	PROJECT NEEDS AND SELECTION OF	
	JICA SURVEY PROJECTS	9-1
SUPPORTING REPORT 10.1	AVAILABLE EXISTING SOIL DATA FOR CWSS STAG AND MAJOR SEWERAGE FACILITIES	
SUPPORTING REPORT 10.1	AVAILABLE EXISTING SOIL DATA FOR CWSS STAG AND MAJOR SEWERAGE FACILITIES	
SUPPORTING REPORT 12.2.1	FLOW CALCULATION FOR 110VILLAGE MAIN SEWER SAMPLE	12.2-1
SUPPORTING REPORT 12.2.2	ISPS PORCESS AND PRESSURE PIPE LOSS CALCULATION SAMPLE	12.2-8
SUPPORTING REPORT 12.2.3	STP PORCESS CALCULATION SAMPLE FLOW < 10 MLD	12.2-13
SUPPORTING REPORT 12.2.3	S STP PORCESS CALCULATION SAMPLE FLOW≥ 10 MLD	12.2-34
SUPPORTING REPORT 14	ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	514-1
SUPPORTING REPORT 15.7.1	DRAFT TOR FOR CONSULTING SERVICES	15-1
SUPPORTING REPORT 15.8.1	PRELIMINALY COST ESTIMATES	15-25
SUPPORTING REPORT 16	FINANCIAL AND ECONOMIC CONSIDERATIONS	16-1
SUPPORTING REPORT 17.1.1	DETAILS OF SERVICE STATIONS WITH NUMBER O	
SUPPORTING REPORT 17.1.2	EXISTING STAFF STRENGTH OF BWSSB	AS
~ CLI CALLING ALLI CALL ITTIE	ON JAN 25, 2017	

Supporting Report 5.1.1 Details on the Population Projection in Master Plan

Bengaluru Water Supply and Sewerage Project (Phase 3

Ch2m:

DOCUMENT CONTROL SHEET

CH2M HILL (India) Pvt. Ltd.

Windsor Tower

B-1D, Sector 10

Noida 201301

Telephone: +91 120 468 2500

Fax: +91 120 468 2534

Email: vinod.singh@ch2m.com

Project Manager: Mr. Vinod Singh

Project No.: 662694

Report No.: 3

Original Date of Issue: 9th November, 2015

REPORT DETAILS

Master Planning Criteria Title:

Author(s): Gaurav Bhatt, Shital Chinchwade, Andy McConkey,

John Poon, Lee Tuck Wai, Priska Grace, Brad

Lawrence, Kumud Joshi, Avanish Pendharkar, Wai

Teng, Ken Thompson

Bangalore Water Supply and Sewerage Board Client:

(BWSSB)

Client Contact: Dr P.N. Ravindra

Synopsis:

Current report on Master Planning Criteria (MPC) Report encapsulates key criteria that will be considered while developing water, wastewater and asset management solutions for Bengaluru over a horizon of 35 years.

This report presents the boundary conditions against which a criteria has been selected, and how any particular criteria have an influence over planning of water and wastewater infrastructure of Bengaluru, over a 35 year horizon.

It also presents the effective timeline of a particular planning criteria, stages of actuation and its impact on BWSSB's overall water and wastewater infrastructure planning.

Current report includes the comments provided by the Office of Chief

Planning for future water and wastewater infrastructure for a city is not an exact science. It entails identification of factors that are likely to have a significant impact on future water and wastewater demand, and then based on the comparison with growth experience of similar cities, planners can select the most critical influencing factors. Figure 2-1 presents key factors that influences future water demand and wastewater generation for a growing city.

change on the availability of water resources and on utility performance.

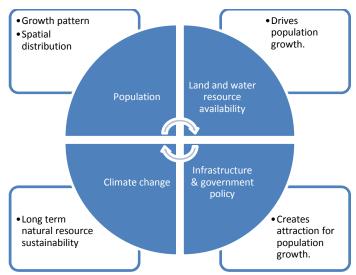


Figure 2-1: Key factors affecting water demand and wastewater generation

Climate Change and

This chapter critically examines the influencing factors that are likely to impact the future water demand and wastewater generation potential of Bengaluru city, in the years 2020, 2035 and 2050, in the subsequent sections.

2.2 What prompts population migration to Bengaluru

In order to understand "what prompts population migration to Bengaluru" some of the key contributing factors are listed below.

2.2.1 Fertility Rate

- The average number of children expected to be born per woman in India fell to 2.3 in 2013 as compared to 3.6 in 1991, marking a significant slowdown in population growth,.
- However, India's 2.3 fertility rate is higher than the replacement level fertility of 2.1—the rate at which "a population exactly replaces itself from one generation to the next, without migration."
- Karnataka has been successful in attaining replacement fertility rate, which lead us to migration being the major reason for population growth

2.2.2 Employment

- General trend for India: Census 2011 indicates that main reasons for migration into cities for males is employment and for females is marriage.
- **General trend for Bangalore:** Employment has been the key factor for migration.

Master Planning Criteria

Ch2m

Employment generating avenues for Bengaluru

- Karnataka State GDP 7% of India's GDP
- Karnataka attracts 4th highest Foreign Direct Investment in India
- 90,000 acres of land bank available in Karnataka
- Bengaluru ranked as "Best Place to Live and Work for Expats" in India
- Global Investors meet 2010 MOU signed for 413 projects worth 473,382 crores
- Global Investors meet 2016 MOU signed for 1,201 projects worth 308.810 crores
- Today, Karnataka is home to more than 80 Fortune 500 companies and more than 700 MNCs.

2.3 What thwarts population migration in Bengaluru

Bengaluru attracts a lot of population primarily due to its good weather and job opportunities, however the two most critical aspects which may become a potential deterrent to population migration are traffic and water.

Water Sources for comparable Indian cities

The below table presents water sources available for three other Indian mega cities as compared with Bengaluru.

Table 2-1: Water sources for metropolitan cities

Particul ars	Mumbai Metropolitan Region	National Capital Region	Kolkata Metropolitan Region	Bengaluru
Water resourc	Modak sagar dam,	Ganga,Yamuna,	GangaGroundwater	CauveryGroundwater

Particul ars	Mumbai Metropolitan Region	National Capital Region	Kolkata Metropolitan Region	Bengaluru
es	 Tansa lake, Vihar lake, Tulsi lake, Upper vaitarana dam, Bhatsa dam, Middle vaitarna dam Groundwater 	BeasSatlujGround water		

As could be seen from the table above, Mumbai and Delhi have multiple sources of water, whereas Kolkata and Bengaluru have surface water as their primary source, supplemented by groundwater. However, the Kolkata lies in the proximity of River Ganga and is located in the Ganga's alluvial floodplain that can hold significant amount of groundwater due to its groundwater supporting geology. Whereas in case of Bengaluru, the underlying geology does not support storage of large amount of groundwater. Also, Bengaluru gets water from Cauvery, which is a distant water source.

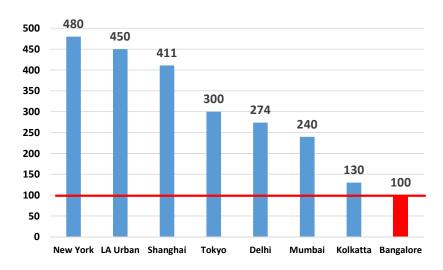


Figure 2-2: Comparison of per capita water supply among various national and international cities

The figure above presents comparison of per capita water supply in Bengaluru as compared with other cities in India and abroad. Bengaluru's litres per capita water supply is lowest.

2.3.2 Vehicles and road infrastructure

Vehicular traffic and traffic congestion are another deterrent which are more than often faced by the commuters. Below figures shows comparison of road length, and number of private vehicles per kilometre length of Bengaluru as compared with other mega cities.

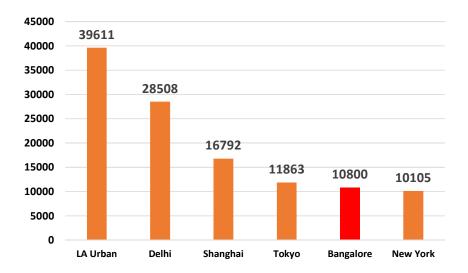


Figure 2-3: Bengaluru road length as compared with other mega cities



Figure 2-4: Number of private vehicles per kilometre of road length

2.4 Comparative Population Growth in other cities in India

The following **Figure 2-5** presents decadal population growth rate for seven (7) major cities, out of which two (Delhi and Mumbai) are mega cities.

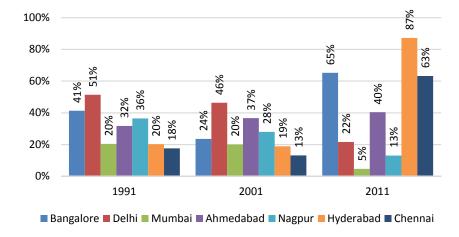


Figure 2-5: Decadal population growth rate for major Indian cities

Some of the key observations from the above figure are:

- Delhi and Mumbai see a decline in growth rate. As is also evident that the cities are now approaching the state where city's infrastructure will not be able to support any more population influx. These cities have started to expand in peripheral metropolitan regions such as National Capital Region around Delhi and Navi Mumbai.
- Ahmedabad, which is another business city, still witnessing some growth, but as compared to the growth it had in the years prior to 1991, it is now trending towards population stabilisation.

 Hyderabad and Chennai see are witnessing growth in past two decades. This is attributed to the state government's effort towards attracting more national and international investments in IT and automobile sectors respectively. Both of cities are now expanding towards the and utilising the expanded

2.5 Comparative Population for other Karnataka major cities

The figure below presents population comparative of 10 largest cities in Karnataka.

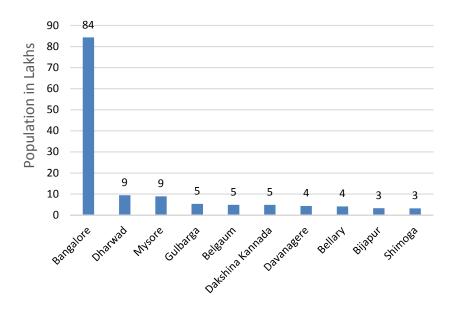


Figure 2-6: Comparative population of 10 biggest cities in Karnataka

The above figure shows the comparison of population for 10 biggest cities in Karnataka. Bengaluru is almost 9 times bigger than 2^{nd} largest city in the state. This population influx is primarily driven by the job

opportunities, better education and health market that this city provides to its citizens.

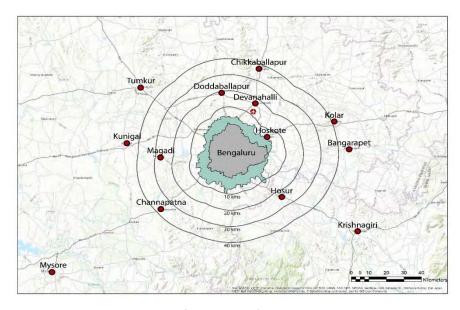


Figure 2-7: Relative locations of other cities from Bengaluru

The above figure shows the relative location of cities in 10 kilometres concentric circles. It represents the potential location of cities that will see population influx from the people who wants to live and work around Bengaluru.

Figure 2-8 presents location of smart cities and the cities identified under Chennai Bengaluru Industrial Corridor (CBIC). These cities could potentially be counter magnets to Bengaluru for attracting population by providing better job opportunities and infrastructure.

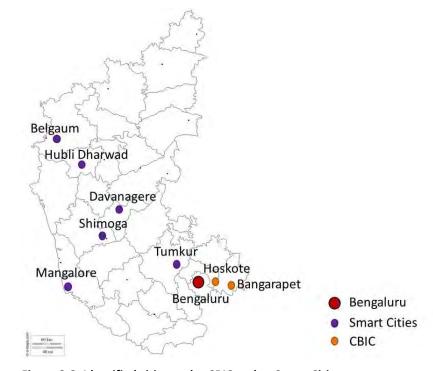


Figure 2-8: Identified cities under CBIC and as Smart Cities

2.6 Population growth in the Core Area of Bengaluru

Area of Bengaluru City within the BBMP limit is around 800 km². Bengaluru City can be divided in to two parts; historic core area, which represents the central portion of city. The peripheral area, up to the BBMP boundary, is called the non-core area. In last five decades, the core area has been expanded from 134 km² in 1971 to 226 km² in 2011. The **Figure 2-9** below presents population growth within core area from 1961 to 2011.

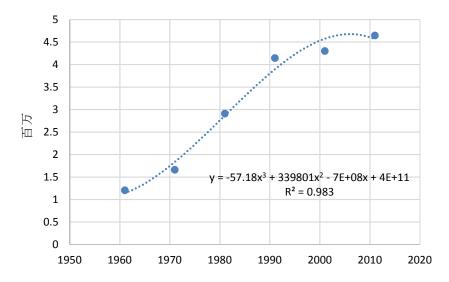


Figure 2-9: Population growth in core area from 1961 to 2011

As could be seen from the above figure, population within core area has been stabilised, and shows a decreasing trend. The core area is well covered with water and wastewater network, but in terms of transportation infrastructure and affordability, people are no moving towards outskirts of the city.

Lately, all the new IT/ITES based establishments and other industries are establishing themselves in the peripheral areas, mostly because of affordability and reducing the travel time for their employees. This is the region which is expected to see maximum population growth in the years to come.

2.7 Population changes expected to 2050

For Bengaluru, the Bangalore Development Authority (BDA) is the statutory body for planning and development of the city. Its mission is "To transform Bangalore to an ideal global destination with high quality

infrastructure, better quality of life by ensuring sustainable and planned development based on effective monitoring, regulation, through participatory and innovative approach". BDA undertakes the following planning activities:

- Preparation of development plan for Bangalore.
- Preparation of Scheme Plans.
- Approval of Development Plans for Group Housing and Layouts.
- Approval of building plans.
- Other statutory functions under KTCP Act

BDA also undertakes the following development activities:

- Planning and implementation of schemes to provide for Residential sites, Commercial sites, Industrial sites, Civic Amenity sites, Parks and playgrounds.
- Construction of Commercial complexes.
- Construction of homes for Economically Weaker Sections, Low Income Group, Middle Income Group, High Income Group.
- Development of major infrastructure facilities.

2.7.1 BDA input in current study

BDA is currently preparing the Land Use Master Plan 2031 for Bengaluru, for its jurisdictional area of approximately 1, 300 km². The area considered for the current Master Plan study is a subset of this area, and is approximately 800 km² in size. **Figure 2-10** shows the relative location of BDA Planning Area and Master Planning area.

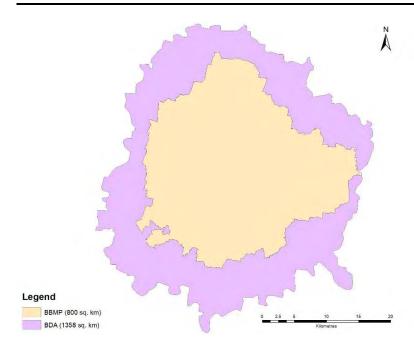


Figure 2-10: Relative location of BDA planning area and Master Planning area In order to have synergy between BDA's proposed land use plan and current Master Plan study, CH2M, with assistance from BWSSB, contacted BDA for procuring the population projection and proposed land use data. However, BDA cited their inability in sharing the proposed land use information, and also the population distribution information, although the agency shared the total population projection numbers for up to the year 2031 at 5 years interval from 2016, for the entire BDA jurisdictional area.

Having a block population number for an area that is larger than the current study area, without future spatial population distribution and proposed land use, has a very limited utility in terms of generating the future water demand. In order to overcome this challenge, CH2M developed its own strategy for projecting the population figures for the

years 2020, 2035 and 2050, based on the proposed infrastructure development projects that are currently ongoing or are likely to be implemented in the next 15 to 20 years¹. This methodology is explained in subsequent section.

2.7.2 Population projection

With its pleasing climate, connectivity to major Indian cities, an educational and medical facilities hub, and reputation of being the IT capital of India, Bengaluru has been an attractive destination for migration, and has witnessed an unprecedented population growth.

Population of Bengaluru city for the year 2011 is reported close to 8.5 million². As of today, the estimated population for Bengaluru City is close to 10 million³.

However, such population growth is not perpetual. Future growth of Bengaluru is dependent on a variety of factors such as availability of basic infrastructure like roads, public transport, affordable housing, power, water and sanitation facilities, educational and medical facilities, job opportunities etc.

Consequently, any such infrastructure development project also acts as a "trigger" for spurt in population growth. In absence of any available land use projection details, CH2M team has identified key ongoing and proposed infrastructure projects, which are likely to trigger the population growth up to the year 2050.

¹ Based on the list of proposed infrastructure development projects listed by Karnataka Urban Development Department.

² Census of India.

³ http://www.indiaonlinepages.com/population/bangalore-population.html http://worldpopulationreview.com/world-cities/bangalore-population/

Ch2m.

2.7.3 Key assumptions - population growth

The population growth for any particular ward in Bengaluru is considered under either of two scenarios – without any "triggers" and with "triggers" present. The assumptions for population growth under these two scenarios are further elaborated in the subsequent sub-sections.

2.7.3.1 Absence of any "triggers":

Every city reaches a stage of population saturation. However, the rate of population growth to approach saturation can be different for different stages. For instance, in case of any new infrastructure development, the population influx start increasing when the project is nearing or at completion.

Wards that are not located in close proximity to any growth "triggers" or infrastructure projects are considered as not having any "triggers" for population growth. The growth of population in these wards are primarily driven by natural decadal growth of Bengaluru city from the perspective of birth and death rates⁴, with some migration where people are cognisant of extant infrastructural challenges associated with Bengaluru. Based on the population data available, and comparison with the other similar cities in India, the population growth rate considered under this scenario is 2% per 5 years from 2015 to 2050.

2.7.3.2 Presence of "triggers"

⁴ at an average of 1.349% per decade

Wards that are located in close proximity to any growth "triggers" are considered to experience an increase in population growth beyond the natural growth rate. Key infrastructure development projects that are already under construction or are likely to commence in next 15 to 20

years period 5 are identified as growth "triggers". The following infrastructure development "triggers⁶" have been identified:

- Namma Metro Phase I, and its extension.
- Namma Metro Phase II
- BDA affordable housing scheme
- Peripheral ring road

It is important to note here that the identified "triggers" link major infrastructure and housing projects in the city to population influx, based on their anticipated date of completion. Based on the information available from Government of Karnataka (GoK) Urban Development Department, the following are the key assumptions for project completion dates:

- By 2020 Metro Phase I is complete
- By 2035 Metro Phase I (Extension) is complete, Metro Phase II is complete, Peripheral Ring Road is complete, 5 new BDA affordable housing sites are complete
- By 2050 Metro Phase I and II is complete, development around Peripheral Ring Road, 4 more affordable housing projects by BDA are complete

For each of the catalysts, an associated net residential population density⁷ has been assumed. For residential areas, the Floor Area Ratio

⁵ Information available from Urban Development Department, Government of Karnataka.

⁶ Please refer to reference section for each of the identified projects.

⁷ RMP 2015

NJS Consultants Co.,

(FAR) is directly linked to the population density. This is especially true in areas with a higher demand for residential housing for lower and middle income housing along the metro corridor and for the affordable housing sites proposed by BDA.

The key assumptions for correlation between population density and FAR are as follows:

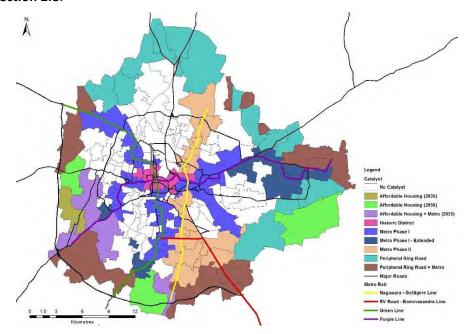
- A plot measuring one hectare (10,000 m²) with an FAR of 1.00 would have a built up area of 10,000 m².
- On an average, a two-bedroom apartment in Bengaluru would have an area of about 100 m², which would translates into 100 houses in the one hectare plot. (Houses would be smaller for EWS and LIG housing)
- Considering an average of 4 people per family, this would mean that the average population density in a 1.00 FAR area would be 400 persons per hectare.

Based on the above assumptions, Table 2-2 lists the net densities organized by catalyst and projected year:

Table 2-2: Net population densities based on population growth triggers

Catalyst	Resulting net residential population density (people per hectare)		
	2020	2035	2050
Metro Phase I	600 to 800	Natural Growth	Natural Growth
Metro Phase I (Extension)	Natural Growth	400 to 600	800 to 1000
Metro Phase II	Natural Growth	200 to 400	600 to 800
Metro + BDA	Natural Growth	400 to 600	600 to 800

Catalyst	Resulting net residential population density (people per hectare)		
Affordable Housing Scheme			
Metro + Peripheral Ring Road	Natural Growth	400 to 600	800 to 1000
BDA Affordable Housing Scheme (2035)	Natural Growth	150 to 200	200 to 300
BDA Affordable Housing Scheme (2050)	Natural Growth	Natural Growth	200 to 300
Peripheral Ring Road	Natural Growth	100 to 150	150 to 200
No direct catalyst	Natural Growth	Natural Growth	Natural Growth


The following assumption are to be read in reference with the identified densities as listed in the Table 2-2:

- Wards with access to metro in the peripheral areas are assigned the highest net density of 800 to 1000 pph,
- Wards in the city, with access to the metro are assigned a final net density of 600 to 800 pph,
- Going by the current trend, it is safe to assume that for extension to Phase I and Phase II of the metro, some impact will be seen in 2035 but the total impact of this phase of the metro will not be seen until 2050.

NJS Consultants Co.,

- While affordable housing projects will have an impact, since they occupy only part of the ward, the overall ward density will not be as high as ward with a metro,
- Wards in the periphery near the peripheral ring road without access to the metro will also see a rise in population, but since there is little public transport connectivity, LIG/EWS housing are unlikely to be built in these areas. Consequently, the assumed net density in pph is lower than wards with metro connectivity.

Figure 2-11 shows the wards affected by the different identified growth "triggers". Further description of each growth trigger is provided in Section 2.8.

Figure 2-11: Affected wards with all triggers in place

Apart from the triggers listed above, the following factors were also considered:

Presence of commercial/ industrial activity⁸ – Wards with a high percentage of commercial/ industrial land are likely to be employment generating wards. For this reason, a "multiplying factor" is applied to these wards.

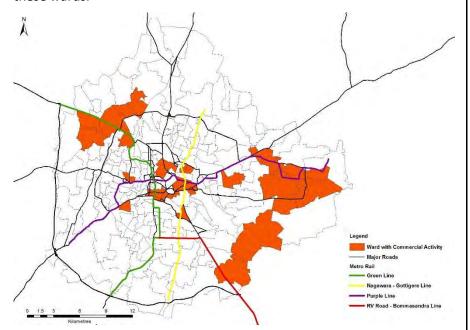


Figure 2-12: Wards with commercial activities

Wards with more than 30% land zoned as commercial/industrial are given a factor of 1.05 (5% increase).

⁸ Source: RMP 2015, BDA

NJS Consultants Co.,

Bengaluru Water Supply and Sewerage Project (Phase

Availability of land¹¹ – Wards with a high percentage of land currently zoned as agriculture or land that is currently unclassified are likely to see more development in the coming years.

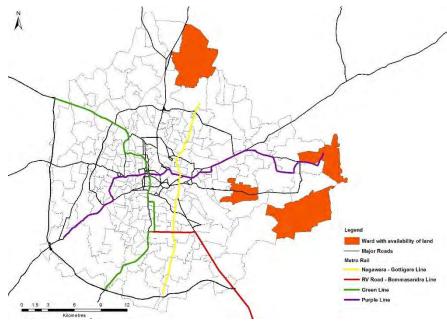


Figure 2-13: Wards with availability of land

Wards with more than 40% land available for development are given a factor of 1.1 (10% increase).

Historic Core – Wards in the inner city Bangalore area have an existing net population density ranging from 560 pph going up to 1270 pph and are least likely to see a high population influx.

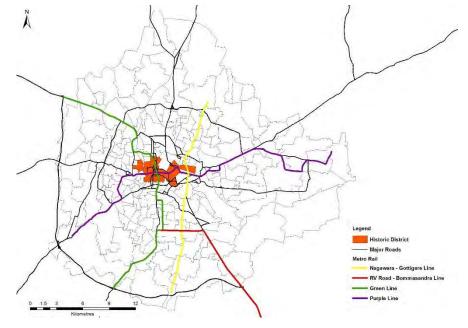


Figure 2-14: Historic core area of Bengaluru

These areas also have a higher concentration of heritage structures, large public parks and huge tracts of government land, making these less likely to redevelop in the near future. For these reasons, these ward are given a factor of 0.95 (5% decrease).

2.8 Description of triggers and identified population densities

This section provides further description of identified population growth triggers and the resulting densities.

ch2m:

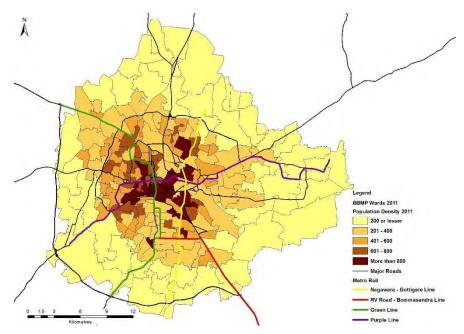


Figure 2-15: 2011 Population density of Bengaluru

Figure 2-15 illustrates 2011 population densities in each of the 198 wards of Bengaluru City. It has been observed that the historic core area of Bengaluru is the densest area. It includes areas such as Chikpete, Kalasipalayam and Majestic, comprising of the old markets and residential areas of historic Bangalore. This area is characterized by a dense network of roads and small plot sizes. The existing net population density in these areas ranges from 560 to 1,270 pph (persons per hectare).

A comparative study of the 2001 and 2011 census reveals that while the central core is the densest, it has not grown at the same rate as the rest of the City. Most of the growth in the last decade in Bengaluru has taken place in and around the peripheral areas.

2.8.1 BDA affordable housing

BDA has proposed affordable housing on the south east and south west corner of city. The housing is likely to be built in two phases. It is assumed that the first phase of affordable housing will be completed and inhabited by 2035 and the second phase will be completed and inhabited by 2050.

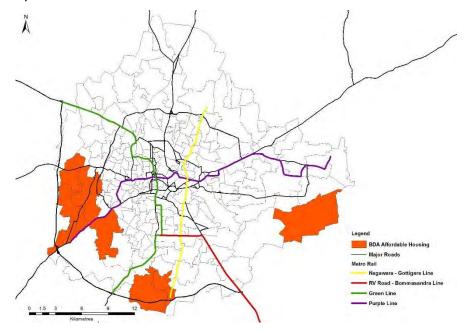


Figure 2-16: Wards affected by BDA's proposed affordable housing

Table 2-3 presents the assumed densities associated with BDA housing schemes.

NJS Consultants Co.,

Table 2-3: Population density for wards affected by BDA's proposed affordable housing

Catalyst	Resulting net residential population density (people per hectare)		
	2020	2035	2050
BDA Affordable Housing Scheme (2035)	Natural Growth	150 to 200	200 to 300
BDA Affordable Housing Scheme (2050)	Natural Growth	Natural Growth	200 to 300

2.8.2 Metro corridor

The development of a Metro corridor is one of the key catalysts for growth in population. As per the UDD Notification (UDD 93 MNJ 2008), all areas within 500m of the metro station will have a separate Development Control Rules (DCR), and fall under Transit Oriented Development (TOD) areas. These areas would receive a higher FAR (Floor Area Ratio) of 4, and are likely to see mixed use development and provision for affordable housing. Owing to these reasons, the wards along the metro line are likely to see a very high influx of population. **Table 2-4** presents the population density for the wards affected by metro corridor expansion.

Table 2-4: Population density for wards along metro corridor extension

Catalyst	Resulting net residential population density (people per hectare)		
	2020	2035	2050
Metro Phase I	600 to 800	Natural Growth	Natural Growth

Catalyst	Resulting net residential population density (people per hectare)		
Metro Phase I (Extension)	Natural Growth	400 to 600	800 to 1000
Metro Phase II	Natural Growth	200 to 400	600 to 800

Figure 2-17 shows the affected wards by the proposed metro corridor.

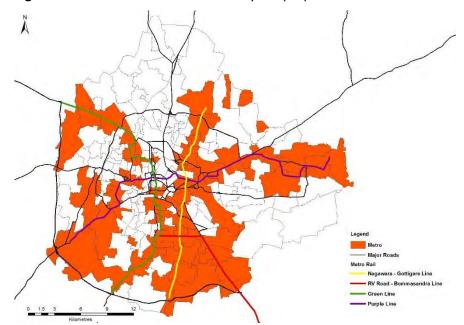


Figure 2-17: Wards along the metro corridor

2.8.3 Peripheral ring road

The proposed peripheral road construction is likely to be partially completed by the year 2035 and fully completed by the year 2050. **Table**

27

ch2m:

2-5 presents the population density for the wards affected by metro corridor expansion.

Table 2-5: Population density for wards in close proximity of proposed ring road

Catalyst	Resulting net residential population density (people per hectare)		
	2020	2035	2050
Peripheral Ring Road	Natural Growth	100 to 150	150 to 200

Figure 2-18 shows the affected wards by the construction of peripheral

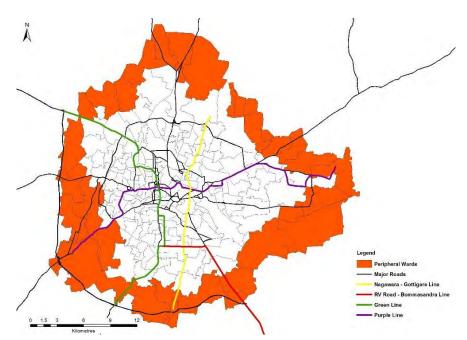
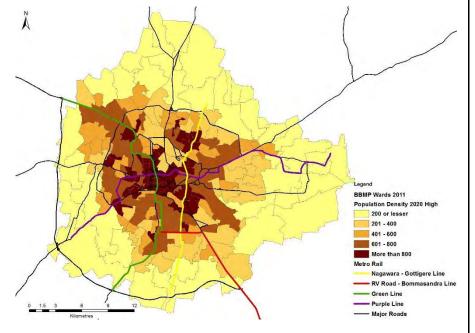



Figure 2-18: Wards affected by peripheral ring road.

ring road.

2.9 Projected population numbers.

Figure 2-19 to Figure 2-21 present the changes in population density and the overall impact on future population growth of Bengaluru, with all the triggers in place. All the population figures presented below correspond to high population growth range.

28

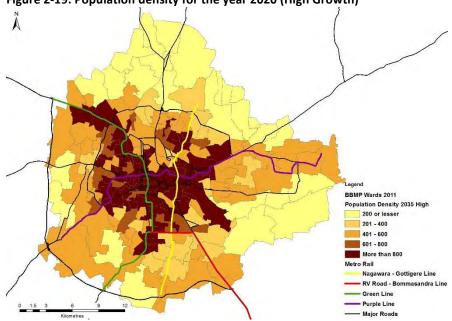


Figure 2-20: Population density for the year 2035 (High Growth)

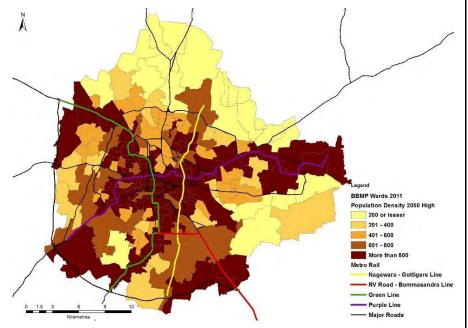
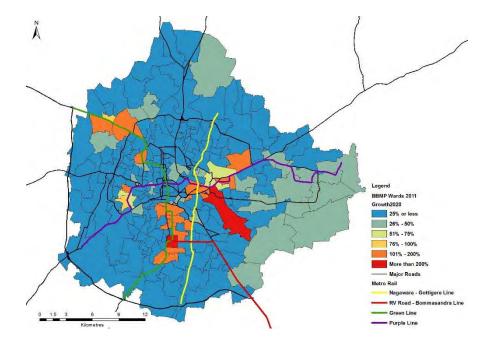
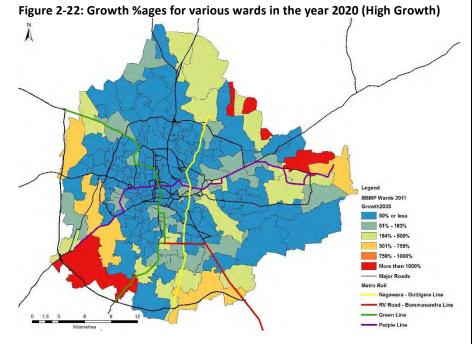
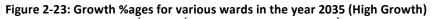




Figure 2-21: Population density for the year 2050 (High Growth)

Figure 2-22 to Figure 2-24 shows the resulting growth percentages (for high growth scenario) for the wards for years 2020, 2035 and 2050 respectively. As expected the highest growth rates (red, orange and yellow colours) occur in the peripheral areas, where the growth triggers are (see Figure 2-11).



5-17

NJS Consultants Co., Ltd.

NJS Consultants Co., Ltd.

ch2m:

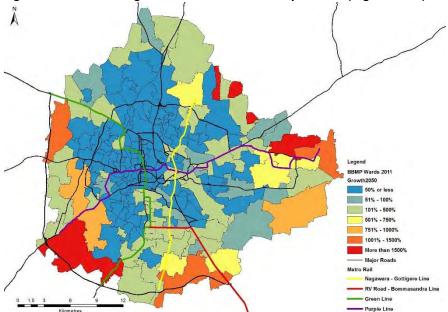


Figure 2-24: Growth %ages for various wards in the year 2050 (High Growth)

31

Ref: 662694

Figure 2-25 presents the final population range with all the triggers in place.

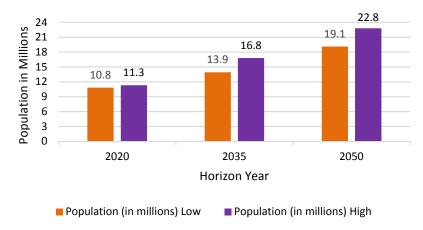


Figure 2-25: Population range (low growth to high growth) for the planning years

2.10 Climate Change Impact on Surface Water Availability to 2050

The following section presents the potential climate change scenarios in terms of precipitation changes and drought frequency for the Cauvery Watershed, and the key aspects considered for building climate change resiliency as part of this Master Plan study.

2.10.1 Potential climate change scenarios for Bengaluru

River Cauvery is the major, and to an extent, only source of water, for meeting Bengaluru's water needs. In recent years, the impact of climate change is becoming more and more prominent, where large number of cities around the world are now experiencing variation in temperature and rainfall, resulting into increased frequency of flooding and drought

events. In order to have a secure and sustained water supply for Bengaluru, it is imperative that BWSSB considers potential impacts of climate change in water resources planning, and going forward, equips itself with measures that will help in effectively addressing such challenges. The first step in this direction is to understand the potential changes in rainfall, temperature and frequency of droughts over Cauvery River basin that may be brought about by climate change.

Cauvery basin covers an area of approximately 64,679 square kilometres⁹. **Figure 2-26** below presents the entire basin of Cauvery River; three sub basins highlighted reflect the part of Cauvery Watershed that contributes to KRS Reservoir¹⁰, Kabini Reservoir¹¹ and to the point of water extraction from Cauvery for Bengaluru. Collectively, this watershed represents the northwest quadrant of Cauvery Watershed, and is approximately 1/4th of the total Cauvery Watershed Area.

Typically, the climate change scenarios for a region are studied with reference to a base year, which according to Intergovernmental Panel on Climate Change (IPCC), is defined as the most recent 30-year climate 'normal' period, and should be adopted as the climatological baseline period in impact and adaptation assessments. As per IPCC standard, the year 1995 represents the baseline year for the thirty year period 1981 to 2010. In the cases of precipitation and temperature modelled the baseline is provided and one future time slice of 2050.

32

⁹(Gosain et al 2006)

¹⁰ On Cauvery River

¹¹ On Kabini River

Supporting Report 9 Project Needs and Selection of JICA Survey Projects

Table of Contents

C	HAPTER 9 PROJECT NEEDS AND SELECTION OF JICA SURVEY PROJECTS	9-1
	9.1 PROJECT COMPONENTS PROPOSED BY BWSSB	9-1
	9.2 Baseline Plan for the Implementation of Proposed Projects	9-1
	9.3 STUDY ON ALTERNATIVE ARRANGEMENTS FOR THE IMPLEMENTATION OF PROPOSED PROJECTS	9-4
	9.3.1 Utilization of Saved Water to be Generated in the Core Area for 110 Villages Water Supply	as a
	Temporary Countermeasure in the Medium Term	9-4
	9.3.2 Provision of Stage V Project with Financial Assistance either by JICA or State Governmen	ıt.9-6
	9.4 ROUGH COST ESTIMATE FOR ALTERNATIVE OPTIONS IN USE OF COST BASE IN THE DPRS	9-7
	9.4.1 Scope of Work for the Proposed Project Considering Sub-components	9-7
	9.4.2 Rough Cost Estimate for the Alternative Options	9-9
	9.4.3 Alternative Study for the Selection of JICA Survey Projects	.9-10
	9.5 SELECTION OF JICA SURVEY PROJECTS	.9-14

List of Tables

Table 9.2.1 Outline of Baseline Options for Project Implementation Arrangements	9-2
Table 9.2.2 Plan of Alternative Arrangements for the Implementation of Proposed Projects	and
Conclusions & Recommendations	9-3
Table 9.3.1 Water Balance in case of the Utilization of Saved UFW from Core Area for 110 Vill	ages
	9-5
Table 9.3.2 Sub-component projects considered in the Proposed Projects	9-7
Table 9.3.3 Options on Priority Projects in combination of Sub-components of Proposed Projects	.9-7
Table 9.4.1 Scope of Work for the Proposed Project	9-8
Table 9.4.2 Updated/Modified Construction Cost for Proposed Projects with DPR estimates	9-11
Table 9.4.3 Information for Selection of Priority Project with Options -1/2	9-12
Table 9.4.4 Information for Selection of Priority Project with Options -2/2	9-13
Table 9.5.1 Sorted Reasons for Project Implementation.	9-14

Chapter 9 Project Needs and selection of JICA Survey Projects

BWSSB proposed three major projects for JICA assistance. However, a huge cost is required to implement the projects at the same time. Therefore, study on priority projects had been made entailing water balance study. Feasibility of baseline plan with three options for project implementation arrangements was firstly studied considering required cost. Alternative arrangements were studied and finally all project components were divided into two groups for JICA Survey and Indian undertaking projects. These recommendations were the basis for finalization of project implementation arrangements. In this Chapter, a series of study results is included.

9.1 Project Components Proposed by BWSSB

BWSSB proposed three major projects as shown below.

- (1) 110 Villages Water Supply and Sewerage Project
- (2) CWSS Stage V Project
- (3) UFW Reduction and Distribution Improvement Project (Majority of UFW is assumed to be caused by leakage based on the experience in the on-going project, hereinafter "UFW Reduction Project" is used in this chapter)

All projects proposed by BWSSB are to be implemented at the same time to meet present urgent needs/benefits. However, due to their cost requirements, huge areas to be covered and large range of scope of work, priority and/or arrangements for the implementation among them were studied. In view of this, an urgency of the proposed projects is summarized giving priority to water source development followed by the provision of water supply facilities. Sewerage facilities will be required upon completion of water supply systems. The following are conceptual urgency among proposed projects.

- Water source: Water source development is a pre-condition for 110 villages water supply as well as ensuring stable water supply in the BBMP area. Saved leakage water (majority of UFW) derived from the core area can be utilized for 110 villages water supply as a temporary water source. The water shall also be used together with the water to be provided by Stage V Project.
- Water supply facilities for 110 villages shall be constructed upon/before completion of Stage V project
- Sewerage facilities for 110 villages shall be constructed timely with reference to the commencement of water supply services. In the area where water supply pipes and sewers will be installed along the same roads, sewers shall be installed before the construction of water pipe lines for saving the construction cost.

9.2 Baseline Plan for the Implementation of Proposed Projects

In Chapter 6, water balance study was made between water demand and potential supply amount for the BBMP area broken down into core and ULB area, and 110 villages area. Table 9.2.1 shows the outline of the three options.

Table 9.2.1 Outline of Baseline Options for Project Implementation Arrangements

Option	Project Implementation Arrangements
1	JICA assists both of 110 villages Water Supply and Sewerage Project, UFW Reduction Project and CWSS Stage V Project
2	GoK assures implementation of CWSS Stage V Project
3	Water to be saved from UFW Reduction Project in core area shall be utilized for 110 villages water supply. In this regard water balance study shall be made.

(1) Water balance study

Water balance study was conducted for Option 3 in Table 9.2.2 to analyze the feasibility on the utilization of saved water by the reduction of UFW in the core area. BWSSB studied on the water balance in advance to this JICA survey. The following are the comparison between the two studies (BWSSB and JICA Survey).

There are some differences in the manner of calculation between the two studies in the conditions/assumptions and study process as summarized below. However, water balance finally calculated by the respective studies is on the same level for the comparison purpose.

- Water demand projection: In case of BWSSB, present UFW % is assumed to be maintained through the future. On the other hand, JICA Survey considers planned UFW% reducing from present (48% in core/ULB area) to 2049 (16%) for BWSSB service population (subtract served population by individual system using groundwater from administrative population). Water demand served by individual water supply systems which is equivalent to groundwater available (a total of 500 MLD through the future) is added to the demand served by the BWSSB systems.
- In JICA Survey, composition of supplied water from Cauvery River is shown (consumption, UFW saving and UFW), While in BWSSB study, saving water is shown as a part of potential water volume against water demand.
- JICA Survey does not include tertiary treated sewage and rainwater as potential water sources, since such water can't be used for BWSSB water supply systems.

The following are salient differences between the two studies.

(2) Potential water source available

Tertiary treated sewage and rainwater considered by BWSSB as potential water sources are omitted by JICA Survey, since such water from these sources is not used for BWSSB water supply systems. With regard to UFW saving, BWSSB study estimated saved water by target year comparing with the base UFW% at present, while JICA Survey considered UFW% in the demand projection.

Table 9.2.2 Plan of Alternative Arrangements for the Implementation of Proposed Projects and Conclusions & Recommendations

Water sources for			Solutions			Scope of Work for Proposed Project to be assisted	The second secon		
	villages	Issue	Options Conditions		Conditions	JCA loan	Conclusions and recommendations based on JICA Survey		
А	River Stage			JICA assists both of 110 villages WS and Sewerage Project, and CWSS Stage V Project	Scope of the Project is subjects to GoJ's approval.	1. 110 Village Water Supply facilities 1.1 Distribution networks with approx. 3,000 km 1.2 Feeder Mains with approx. 200 km 1.3 Over head tanks with 137 nos. 1.4 House connections with 106,000 nos. including			
						meters 1.5 SCADA system 2. 110 Village Sewerage facilities 2.1 STPs with 16 nos. and 129 MLD, 2.2 Trunk and lateral sewers with approx. 3,600 km 2.3 Sewer cleaning machines with 11 nos. 2.4 House connections with 106,000 nos. 3. Stage V. Facilities	It is obvious that the construction cost estimated at about 104 billion INRs (JICA survey) is beyond the debt ceiling of GoK, 4309 Crore INRs (43,090 million INRs). Accordingly, it is require to select package components to be undertaken by JICA assistance, and to arrange other funding agencies for executing the other package components.		
		Financial source for Stage V Project			BWSSB should include both projects in its Rolling Plan.	3. Stage V, Facilities 3.1 WTP with 775 MLD including coagulation and rapid sand filtration, chlorination 3.2 Clear water reservoirs and Pumping Stations at T. K. Halli, Harohalli and Tataguni, 3.3 GLR with 7 nos. 4. Stage V, Pipelines 4.1 Raw water transmission 4.2 Clear water transmission main with length of approx. 70 km and diameter of 3,000 mm 4.3 City trunk mains 5. UFW Reduction by DMA establishment, distribution, improvement in East, North and South-East within total area of 118 km²			
			Option 2	GoK assures implementation of Stage V Project.	GoK should assure implementation of Stage V Project in some way.	1. 110 Village Water Supply 2. 110 Village Sewerage 5. UFW Reduction	The total cost required for the three components is about 63 billion INRs, which is beyond the GoK debt ceiling amount of 43,090 million INRs. Accordingly, there are some sub-options to be studied to reduce the cost to meet the ceiling amount as follows; 1) 110 village sewerage project shall be financed by other agencies, 2) Service coverage shall be reduced both for water supply and sewerage services, 3) Only major facilities shall be included such as OHT, trunk distribution, STPs and trunk sewers.		
В	Allocation of saved water (UWF reduction) from core area	Feasibility of the allocation	Option 3	Preparatory survey team assesses the feasibility of the allocation.	GoK should assure the water allocation from Core area to 110 villages in some way.	1. 110 Village Water Supply 2. 110 Village Sewerage 5. UFW Reduction Note: Stage V Project shall be implemented timely.	Water amount to be saved reducing UFW in the core area by 2024 is estimated in assumption of UFW% (from 48% at present to 33% in 2024). Thus, 219 MLD may be utilized for 110 villages water supply (about 65% of the demand in the BWSSB service area). However, from the current achievements reported on the on-going UFW reduction project, there seems to have a risk to ensure the saved water amount. Intentional countermeasures are required for UFW reduction.		

(3) Water balance from 2024 to 2049

From the year planned that Stage V Project will be completed (BWSSB; 2022 and JICA Survey 2024), water balance is calculated. BWSSB projected that in 2022 supply amount will exceed water demand, but, from medium term to final target years, supply will be in short with final deficit of 3,175 MLD in 2049. While JICA Survey projected that water balance will be managed up to the year 2034. In the final target year the shortage is less than 1/4 of BWSSB's projection, mainly caused by projected population (about 2/3).

(4) Water saving by the reduction of UFW

In 2024, saved water in the reduction of UFW is calculated with more than 200 MLD in the both studies.

9.3 Study on Alternative Arrangements for the Implementation of Proposed Projects

The study results in this section are those to be refereed to for the selection of priority projects for JICA assistance at the beginning of September, 2016. Baseline alternative plans were firstly studied and additional options were worked out.

9.3.1 Utilization of Saved Water to be Generated in the Core Area for 110 Villages Water Supply as a Temporary Countermeasure in the Medium Term

In case that additional water supply by Stage V project could not be provided on time (before 2024), saved water in the core area may be utilized for 110 villages water supply as a temporary service (even per captita consumption rate may be less than 150 lpcd) at least for medium term period. Needless to say there is another way to use such saved water for the core/ULB area to supplement increasing demand as well as filling present shortages. In application of this arrangement for 110 villages water supply, water supply amount provided for core and ULB area at present shall be at least maintained. It is also self-explanatory to implement leakage reduction (named as UFW reduction in BWSSB related works) projects to cover entire core area, as soon as possible.

Option 3 shown in Table 9.2.2 corresponds to the above mentioned case to use saved water from physical losses which is generated in the core area. Table 9.3.1 presents water balance from 2024 to 2049 in the proposed case (BWSSB study case is also shown as a reference). The following are major assumptions in the JICA Survey.

- Water demand by area: Water demand consists of water consumption and UFW (core /ULB area; 48% at present to 16% in 2049, 110 villages; 16% upon completion of facilities)
- Water sources available: Cauvery River water (a total of 1,460 MLD, from Stage I to IV), groundwater (a total of 500 MLD). No consideration of water supply by Stage V Project.
- Saved water in the core area is used for 110 villages and present supply amount for core/ULB area is assumed to be kept through the future.

Table 9.3.1 Water Balance in case of the Utilization of Saved UFW from Core Area for 110 Villages

11 1 15	Study Source	Area	Demand MLD	Supply							Balance					
					Cauvery					Tertiary	1	Total ②	between			
				Groundw		CWSS	CWSS 1-4		Stage V	UFW	Treated	Rainwater	=(a)+(b)+			
					0	ater (a)	(b)	Current Effective	UFW Saving	UFW	(c)	saving (d)	Water (e)	Harvesting (f)	(c)+(d)+ (e)+(f)	2-0
2022	BWSSB	Core & ULB	2,700	400	1,460				557	250	150	100	2,917	217		
		110 Villages	318	100	0				218	-1 -1 1			318	0		
	-	Total	3,018	500	1,460				775	250	150	100	3,235	217		
2024	JICA Survey	Core & ULB	1,997	400	1,241	759		482					1,641	-356	82%	
		110 Villages	338	100	219		219						319	-19	94%	
		Total	2,335	500	1,460	759	219	482	0	N.A.	0	0	1,960	-375	84%	
2034	BWSSB	Core & ULB	3,500	400	1,460				470	300	200	150	2,980	-520		
		110 Villages	480	100	0				305		50	25	480	0		
		Total	3,980	500	1,460				775	300	250	175	3,460	-520		
	JICA	Core & ULB	2,210	400	1,124	759		365					1,524	-686	69%	
	Survey	110 Villages	480	100	336		336			-			436	-44	91%	
	100	Total	2,690	500	1,460	759	336	365	0	N.A.	0	0	1,960	-730	73%	
2049	BWSSB	Core & ULB	6,000	400	1,460				215	350	250	150	2,825	-3,175		
		110 Villages	760	100	0				560		50	50	760	0		
		Total	6,760	500	1,460				775	350	300	200	3,585	-3,175		
	JICA Survey	Core & ULB	2,660	400	993	759		234					1,393	-1,267	52%	
		110 Villages	763	100	467		467						567	-196	74%	
		Total	3,423	500	1,460	759	467	234	0	N.A.	0	0	1,960	-1,463	57%	

Note: N.A.; Not Applicable

1) UFW saving in JICA Survey is calculated:

(UFW saving) = ((Current UFW) - (Planned UFW)) x (Cauvery Stage 1-4)

 $= (48\% - 33\%) \times (1460) =$

219 MLD at 2024

 $= (48\% - 25\%) \times (1460) =$

336 MLD at 2034

 $= (48\% - 16\%) \times (1460) =$

467 MLD at 2049

3) UFW saved water is allocated to 110 villages

²⁾ Current UFW is 48 % and 33 % in 2024, 25 % in 2034, 16% in 2049 for JICA Calculation

Referring to Table 9.3.1, water supply for 110 villages will be provided with a higher satisfaction level, while the shortfall for core/ULB area will become larger than that in case of the provision of Stage V project. Scope of the work for the Option 3 includes the following three components; UFW reduction project, Water Supply and Sewerage for 110 Villages.

9.3.2 Provision of Stage V Project with Financial Assistance either by JICA or State Government

If option 3 can't be adopted, option 1 or 2 (refer to Table 9.2.2) shall be studied as baseline alternatives. The following were issues and problems by each option in the course of the study to decide priority projects.

(1) Option 1: This option covers two major construction projects in addition to UFW (mainly leakage) Reduction project; Water Supply and Sewerage Project for 110 villages, and Stage V Project. As of July, 2016, financial approval from State Government has been made for only water supply and sewerage project for 110 villages with the ceiling amount of 4,309 Crore (43,090 Million) INR as JICA assistance. For the implementation of Stage V Project to expand/augment water supply in the BBMP area using Cauvery River water, capital cost arrangements had not yet been made.

Overall cost for the construction of all proposed components would be beyond 100 billion INR (in the concerned DPRs, 91 billion INR) considering escalation cost and requirements in application of Japanese loan. If the above ceiling amount is kept for this project, reduction of scope of work or cancelation of some components is required to implement as a loan project. In this connection, additional finance by the State Government, especially for Stage V Project is necessary. If the financial assistance from GoK for the implementation of Stage V Project would be determined, scope of work for the two major projects would be further studied considering ceiling amount of both JICA and Indian sides.

(2) Option 2: Proposed two major projects are assumed to financially divide into two sources; Stage V Project for State Government (GoK) and 110 villages Water Supply and Sewerage Project for JICA assistance.

For this Option, if GoK will make a decision for the financial assistance to implement Stage V Project, JICA assistance will be 110 villages water supply and sewerage development together with UFW reduction project. At the beginning of September 2016, the revised DPR for Stage V Project was submitted by BWSSB to GoK.

Under the above transitional situation in the Indian side on the implementation arrangements on baseline plans, the following potential alternatives were enumerated in combination of some component projects. Sub-components are set for Stage V Project and 110 villages Sewerage Project considering magnitude of required cost, packaging and requirement of technical expertise (refer to Table 9.3.2).

Table 9.3.2 Sub-component projects considered in the Proposed Projects

Proposed 1	project	Considered Sub-Components					
	Water Supply	None					
110 Villages WS & Sewerage	Sewerage	Case 1	Major sewerage Facilities (Main sewers, ISPSs and STPs)	Cara 2	STPs		
es se werage			Lateral sewers /House connections	Case 2	Sewerage facilities excepting STPs		
Stage V Project		Case 1	Major Facilities (Intake, WTP, Surge tank, Transmission PSs and GLRs)				
			Pipelines (conveyance, transmission and trunk main)				
UFW Reduction		None					

Note: Each proposed project covers all required project components, while sub-components are considered for the two major projects; 110 villages sewerage project and Stage V project.

Table 9.3.3 shows additional options in combination of the above mentioned sub-components.

Table 9.3.3 Options on Priority Projects in combination of Sub-components of Proposed Projects

Alternative Options	Contents of project components	Comments
Option 4-1	Stage V Project	Priority is given water supply
Option 4-2	Stage V Project + 110 villages WS Project	-do-
Option 4-3	110 villages WS Project	-do-
Option 5-1	Stage V Project + Major Facilities for 110 villages Sewerage Project	Combination of Stage V Project and some sewerage facilities for 110 villages
Option 5-2	Stage V Project + STP s for 110 villages Sewerage Project	-do-
Option 6-1	Major Facilities for Stage V Project	Combination of major facilities for Stage V Project and 110 vil- lages some sewerage facilities or UFW reduction project
Option 6-2	Major Facilities for Stage V Project + Major Facilities for 110 villages Sewerage Project	-do-
Option 6-3	Major Facilities for Stage V + STPs for 110 villages Sewerage Project	-do-
Option 6-4	Major Facilities for Stage V Project + UFW Reduction Project	-do-

9.4 Rough Cost Estimate for Alternative Options in use of cost base in the DPRs 9.4.1 Scope of Work for the Proposed Project Considering Sub-components

Proposed three projects are summarized blow as a result of the review of concerned DPRs.

(1) 110 Villages Water Supply and Sewerage Project

As a result of the review of major factors for demand projection in the DPRs, planning parameters were regarded as adequate in general including the assumptions on population projection and per capita water consumption rate. However, minor revisions are made for UFW % (16% as practiced at preset from planned 15%) and per capita sewage generation volume (according to national standard, 132 lpcd from planned 135 lpcd) as well as minor revision of population for a few villages. Some modifications seem not to affect capacity requirements of the facilities, therefore, the scope of work proposed both for water supply and sewerage development for 110 Villages in the DPR is employed in this study.

(2) Stage V Project

Required facilities for the additional water supply supplementing those provided by the four stages of CWSS (up to Stage IV), are reviewed to improve water supply in the BBMP area. The planned scope of work in the DPR for Stage V Project (updated at the beginning of September, 2016) to cover facilities including pipelines from intake to ground reservoir in the city is regarded as adequate.

(3) UFW Reduction Project

The remaining core area which is out of on-going project area for the reduction of UFW is regarded as the priority area for effective countermeasures to save supplied water. The same scope of work for UFW reduction in the DPR is adopted.

For the purpose of cost comparison among alternative options to discuss priority projects, proposed projects are further sub-divided into a total of 5 sub-projects with reference to sub-component projects in Table 9.3.2. Five sub-projects are summarized in Table 9.4.1. Namely, two sub-projects for water supply and sewerage (possible to further sub-divide sewerage requirements) under 110 villages Water Supply and Sewerage Project, and other two sub-projects for the facilities and pipelines/conduits for Stage V Project. In addition to the four sub-projects, UFW reduction Project is considered.

Table 9.4.1 Scope of Work for the Proposed Project

Item	Component	DPR			
(1) 110 Villages	Supply amount/facility design amount	760 MLD/ 660 MLD			
Water Supply Facilities	1. Distribution	Approx. 3,000 km			
	2. Feeder main	Approx. 200 km			
	3 Over Head Tank	137 nos			
	4. House Connection	106,000 nos including water meter			
	5. SCADA System	1 set			
(2) 110 Villages	1. Sewage Treatment Plant	16 nos (129 MLD)			
Sewerage Facilities	2. Trunk and Lateral Sewer	Approx. 2,600 km			
	3. Sewer Cleaning Machines	11 nos			
	4. House Connection	106,000 nos			

Item	Component	DPR			
(3) CWSS Stage V Facilities	1.Water Treatment Plant	Coagulation, Flocculation, Sedimenta-			
		tion, rapid sand filtration and chlorina-			
		tion			
		Capacity 775 MLD			
	2. Clear Water Reservoir and Pumping	Capacity 775 MLD			
	Station at T K Halli, Harohalli and				
	Tataguni				
	3. City Trunk Mains and Ground	7 Nos			
	Level Reservoirs				
(4) CWSS Stage V Pipelines	1. Conveyance (Raw water transmis-	Approx. 10 km Length			
	sion)				
	2. Clear Water Transmission Main	Approx. 70 km Length			
(5) UFW Reduction	DMA Establishment	East, North and South East			
	Distribution Improvement	Total 118 km2			
	UFW reduction				

9.4.2 Rough Cost Estimate for the Alternative Options

Without preparation of basic design of the facilities for the proposed projects in this JICA Survey, rough cost for the alternative projects, as discussed in the previous sub-section, was estimated using the direct construction cost studied in the existing DPRs, though there was a possibility of cost increase as experienced in the on-going Phase II project. On the other hand, indirect construction cost was updated/modified to meet the requirements as a loan project. The rough cost by alternative project may be referred to for the study to select priority projects. The following conditions/assumptions on indirect cost are adopted for updating/modification of those in the DPRs.

- (1) Assumptions for Common Factors for Indirect Cost Estimate, as JICA Loan Project
- 1) Price escalation; 3.7 % annually
- 2) Physical contingency; 5 %
- 3) PMC (Project Management Consultant) fee; 5 % of direct cost
- 4) Administration fee; 3 % of direct cost
- 5) Front end fee; 0.2 % of direct cost
- (2) Updating/modification for each sub-project
- 1) 110 Village Water Supply
 - \Rightarrow The PMC fee of 5 % is applied instead of 1.5 %.
 - \Rightarrow The physical contingency of 5 % is applied instead of 3 %.
 - ⇒ The price escalation of 3.7 % annually is applied for 4 year period instead of 6 % annually for 3 year period.

- 2) 110 Village Sewerage
 - \Rightarrow The PMC fee of 5 % is applied instead of 1.5 %.
 - ⇒ The price escalation of 3.7 % is applied for 4 year period instead of 6 % annually for 3 years.
- 3) 775 MLD WTP and 775 MLD Pump Stations in the Stage V Project and the Raw Water Transmission;
 - ⇒ The price escalation of 3.7 % per annum is added for 4 year period, though no escalation percentage is applied in DPR.
 - \Rightarrow The physical contingency of 5 % is applied instead of 10 %.
- 4) Pipelines such as Clear Water Transmission and City Trunk Mains;
 - ⇒ The price escalation of 3.7 % per annum is added for 4 year period, though no escalation percentage is applied in DPR.
 - \Rightarrow The physical contingency of 5 % is applied instead of 10 %.
- 5) UFW reduction in the three zones; East, South, and South East in a total area of 118 km2;
 - ⇒ The price escalation of 3.7 % per annum is applied for 6 year period instead of 15 % for 6 year period.
 - \Rightarrow The physical contingency of 5 % is applied instead of 8 %.
 - \Rightarrow The PMC fee of 5 % is applied instead of 0.75 %.

The cost required covering all sub-projects are shown in Table 9.4.2 with the estimate shown in the DPRs.

9.4.3 Alternative Study for the Selection of JICA Survey Projects

As a result of water balance study for the BBMP area, it was found that about 200 MLD would be available for 110 villages water supply by 2024 using expected water to be saved in the core area through UFW reduction projects (on-gong and planned projects to finally cover entire core area). Although this arrangement may be a temporary countermeasure, but it is effective to expedite water supply services for 110 villages waiting for additional water supply by Stage V Project.

Three baseline options in view of water source availability are presented Table 9.4.3 including rough cost required by option. All options exceed the ceiling amount agreed with GoK as of July, 2016. The required total cost in this study for Option 1 is about 15 % higher than that of DPRs. Needless to say, considerable reduction of scope of work is necessary for Japanese loan assistance to meet this ceiling amount by GoK (Total cost is 2.4 times higher than ceiling amount of 43 billion INR).

While, Options 2 and 3 require same cost. Even for these cases, reduction of scope of work is required in the same reason as Option 1. Other alternative options categorized into three groups are also included in the table for cost comparison purpose (Options 4-1 to Option 6-4; total 9 alternatives).

Table 9.4.2 Updated/Modified Construction Cost for Proposed Projects with DPR estimates

Unit: **INR Millions** Scheme Description **DPR** JICA Survey Raw Water Pipeline from SBR to NBR(6.3km):*1 1,054 1,054 Raw Water Transmission Main from NBR to T K Halli *1 2.642 2,642 Water Treatment Plant at T K Halli *2 Clear Water Reservoir and Pumping Station at T K Halli, Harohalli and Tataguni *2 4,862 4,862 Clear Water Transmission Main 12,090 12,090 City Trunk Mains **CWSS Stage V** 7,659 7,659 3,087 3,087 City Reservoirs Provision for Land Acqiosition *3 1,850 Sub Total 33,244 31,394 Additional cost *4 8,711 9,703 Total Project Cost for CWSS Stage V 41,955 41,097 BILL I - Design and Management 474 474 BILL II - Physical Works 4,676 4,676 Taxes @ 15% of Bill I, Bill II (VAT , S.T and labour welfare cess) 772 772 **UFW Reduction** Sub-Total (1) 5.922 5.922 Additional cost *5 1.248 2,218 Total 7,170 8,140 Water Supply System, IPS & Pumping mains, SCADA 18,687 18.687 UDG System, ISPS, Pumping mains and Restoration of Drains, Sewer cleaning 11,287 11,287 Restoration of Roads 7,169 7,169 110 villages 37,143 Sub-total 37,143 Additional cost *6 13,041 16,896 Total 50,184 54,039 99,309 **Grand Total** 103,275

Notes 1: The additional raw water pipeline 2750 mm dia. will be laid from the intake at SBR to NBR with a length of 6.3 km for Stage V Project and project for the other additional raw water pipeline from NBR to TK Halli is at the tender stage in a separate project. Notes 2: The Water Treatment Plant at TK Halli and the Clear Water Reservoirs at TK Halli, Tataguni and Horohalli will be constructed for the supply of 775 MLD at one time without phases. Notes 3: The cost for land acquisition is not covered by JICA fund (managed by BWSSB). Notes 4: Supervision expense: 2.5 %, Consultancy expense: 2.5 %, Physical contingency: 5 %, Escalation: 10%, Interest capitalized: 2,062 INR Millions are included in the DPR. Notes 5: Price escalation: 15 %, Physical Contingency: 8 %, PMC: 0.75 % are included in the DPR. Notes 6: Price escalation: 18 %, Physical Contingency: 3 %, PMC: 1.5 % are included in the DPR.

The base line options were firstly studied considering related conditions as of end of July, 2016 as follows:

- (1) Ceiling budgetary amount (loan amount) agreed with GoK for 110 villages project implementation; 43 billion INR for JICA assistance
- (2) Approval process with GoK for Stage V Project had been under way requiring at least half a year for finalization

The following are initially discussed by concerned parties.

• Application of Option 3: If there is no prospect on timely provision of Stage V Project, water supply for 110 villages shall be implemented by 2024 using UFW saved water in the core area. In addition, within the agreed budget with GoK, UFW Reduction Project and Construction of some sewerage facilities for 110 villages may be included. While, BWSSB shall timely undertake other components to complete water or sewerage systems. In the implementation of this option, BWSSB shall manage on-going UFW reduction project properly and timely, and implement succeeding similar project.

Table 9.4.3 Information for Selection of Priority Project with Options -1/2

Unit: Million INR

	Solutions				STPs for 110	Major facilities	Stage V Major	Stage V Pipelines		JICA Survey	
	Options	Conditions	110 village water supply	110 village sewerage	village sewerage	for 110 village sewerage	Facilities (WTP, Pump Station,	(Raw water transmission, C W transmission and	UFW Reduction	Cost as of Se pte mbe r 2016	DPR Cost
Option 1	JICA assists both of 110 villages and CWSS Stage V.	It is subjects to GoJ's approval. Project cost should be less than the debt ceiling of GoK (43090 million=4309 Crore) BWSSB should include both projects in Rolling Plan.	33,134	20,905			13,864	27,232	8,140	103,275	99,309
	GoK assures implementation of CWSS Stage V.	GoK should assure implementation of CWSS Stage V in some way.	33,134	20,905					8,140	62,179	57,354
Option 3	Preparatory survey team assesses the feasibility of the allocation.	GoK should assure the water allocation from Core area to 110 villages in some way.	33,134	20,905					8,140	62,179	57,354
Option 4-1	GoK assures implementation of the components except CWSS Stage V .	GoK should assure implementation of the components except CWSS Stage V.					13,864	27,232		41,096	41,955
Option 4-2	GoK assures implementation of the components except CWSS Stage V and 110 village WS.	GoK should assure implementation of the components except CWSS Stage V and 110 village WS in some way.	33,134				13,864	27,232		74,230	75,352
Option 4-3	GoK assures implementation of the components except 110 village WS.	GoK should assure implementation of the components except 110 village WS in some way.	33,134							33,134	33,398
	GoK assures implementation of the components except CWSS Stage V and major facilities for 110 village Sewerage Project.	GoK should assure implementation of the components except CWSS Stage V and major facilities for 110 village Sewerage Project in some way.				11,228	13,864	27,232		52,324	53,273

Table 9.4.4 Information for Selection of Priority Project with Options -2/2

Unit: Million INR

	Solutions				STPs for 110	Major facilities	Stage V Major	Stage V Pipelines	HEW	JICA Survey	
	Options	Conditions	110 village 110 village water supply sewerage		village sewerage	for 110 village sewerage	Facilities (WTP, Pump Station, City	(Raw water transmission, C W transmission and	UFW Reduction	Cost as of Se pte mber 2016	DPR Cost
Option 5-2		GoK should assure implementation of the components except CWSS Stage V and STPs for 110 village Sewerage Project in some way.					13,987	27,473		41,460	49,090
Option 6-1	GoK assures implementation of the components except major facilities for CWSS Stage V.	GoK should assure implementation of the components except major facilities for CWSS Stage V in some way.					13,987			13,987	8,955
Option 6-2		GoK should assure implementation of the components except major facilities for CWSS Stage V and major facilities for 110 village Sewerage Project in some way.				11,318	13,987			25,305	27,019
Option 6-3	GoK assures implementation of the components except major facilities for CWSS Stage V and STPs for 110 village Sewerage Project	GoK should assure implementation of the components except major facilities for CWSS Stage V and STPs for 110 village Sewerage Project in some way.					13,987			13,987	22,836
Option 6-4	components except major facilities for	GoK should assure implementation of the components except major facilities for CWSS Stage V and UFW Reduction Project in some way.					13,987		8,213	22,200	22,871

• Application of Option 2; Stage V Project shall be undertaken timely by Indian side to meet the implementation schedule for water supply project for 110 villages. Because of a huge cost required for the Stage V Project, sharing by Japanese loan may be studied for some components as considered in option 4 to 6 (Table 9.3.3).

It was concluded as of end of July, 2016 that under the approval process with GoK for Stage V Project, it was necessary to make clear the following conditions for alternative options. Accordingly, BWSSB made actions to come up with the projects to be implemented using local funds.

- ⇒ Financial source/s in the Indian side
- ⇒ Action plan to realize the financial assistance from specific financial sources with schedule.

9.5 Selection of JICA Survey Projects

As a result of alternative study of priority projects, as mentioned above, proposed projects were sorted into two groups employing Option 5-1 in Table 9.3.3, one for those to prepare preliminary design of facilities by JICA Survey and another to be undertaken by Indian side, as shown below.

- Projects for preparation of preliminary design of the facilities: Stage V Project and major sewerage facilities for 110 villages Sewerage Project
- Projects to be implemented by Indian side: 110 villages Water Supply Project, upstream sewage collection facilities (lateral sewer & House connections) for 110 villages Sewerage Project and UFW Reduction Project

Table 9.5.1 summarizes the reasons of the sorting proposed projects into two groups (identifying priority projects for foreign assistance). This arrangement was proposed before finalization of scope of work for JICA Preparatory Survey (at the beginning of September, 2016) in consideration of major three factors; (1) urgency of the component project to catch up the needs affected by rapid population increase in the 110 villages, (2) Availability of local funds for the development of relevant sector in BBMP area and (3) currently practiced financial assistance from GBWASP/KMRP (assistance to ULBs is under way).

Table 9.5.1 Sorted Reasons for Project Implementation

Implementation Arrangements	Projects to be studied / to be undertaken	Reasons					
Preliminary Survey	Stage V Project	The Project is a large size with huge cost requirements (difficulty to manage by only local fund). In addition, the Project is very urgent among proposed projects and one time construction is advantageous technically, economically and for the augmentation of services in the entire BBMP area. Revised DPR was submitted to GoK for financial assistance at the beginning of September, 2016.					
	Major Facilities for 110 villages Sewerage Project	Need of the introduction of technical expertise for plan ning/design, construction and O&M of sewerage facilities for maintaining stable and higher quality of effluent discharged from					

Implementation Arrangements	Projects to be studied / to be undertaken	Reasons				
		STPs Revised proposal in combination of Stage V Project and Sewerage for 110 villages was submitted to GoK for financial assis-				
		tance.				
	110 villages Water Supply	Need of immediate water supply: GoK assistance (67% approved in Oct., 2016) and BWSSB BCC Funds (12 Billion INR) can be expected to start work in early 2017.				
	project	On-going water supply project for LBUs may be referred to.				
Undertakings by		Staged expansion of water supply systems is adoptable without large investment at one time.				
Indian side	110 villages Sewerage Project	The project can be started during the implementation of Stage V project expecting finance from BBC/ GBWASP / Mega City / AMRUT / GOK.				
	UFW Reduction Project	BWSSB has experience in managing UFW Reduction project GoK (approved in Oct., 2016) /BWSSB BCC fund is expected.				

BWSSB has initiated financial arrangements for the project components to be undertaken by Indian side. Even if those for sewerage project component, it is possible to get guarantee letter from BWSSB before loan agreement will be made.

Supporting Report 10.1 Available Existing Soil Data for CWSS Stage V and Major Sewerage Facilities

Chapter 10 Scope of Work for JICA Survey Projects

10.1 Existing Soil Data Available for CWSS Stage V

Due to non-availability of permissions to conduct boring tests at the proposed sites for GLRs, STPs and ISPSs till the end of November, 2016, soil survey could not be conducted until then.

The available soil survey data of CWSS Stage IV phase 2 conducted at the locations near the proposed sites are listed in Table 10.1.1 and Figure 10.1.1. These previous soil survey data were referred to in the preliminary design.

Two (2) proposed GLRs (Gottigere and Singapura) are located at BWSSB's land and the soil survey was conducted during the preparation of DPR for CWSS Stage V and the results were used in the preliminary design.

As mentioned above, soil survey could not be conducted at 4 (Four) proposed GLR sites. A total of twenty four soil data are available, which were surveyed near the proposed GLR sites in the previous CWSS Stages IV phase 2. The data are summarized in to Table 10.1.1 and Figure 10.1.1 shows their locations.

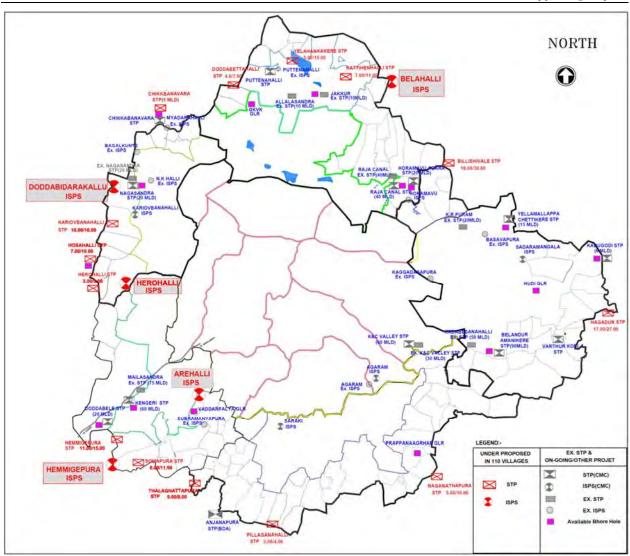
Table 10.1.1 Available Soil Survey Data for GLRs

S/N	Location	Field Test	Total Nos	Notation Remarks	Date of Investigation	Proposed GLR Near by	Reference No. in Supporting Report
		Borehole	2	BH-1, BH-2			
1	Hudi GLR	Trail Pit	1	TP-1	I1 9- C 2007	V-44:	W 01 t- W 05
1	Hudi GLK	Plate Load Test	1	PLT-1	July & Sep-2007	Kadugodi	W-01 to W-05
		Electrical Resistivity Test	1	ERT-1			
		Borehole	2	BH-1, BH-2,			
2	GKVK GLR	Trail Pit	1	TP-1	Oct 2007	Vasudevpura	W-06 to W-10
2	GK VK GLK	Plate Load Test	1	PLT-1	Oct 2007	Singapur	W-06 to W-10
		Electrical Resistivity Test	1	ERT-1			
3	Jakkur STP	Borehole	2	BH-1, BH-2,	Sept 2007	Chokkanahalli	W-11 to W-14
3	Jakkui STF	Electrical Resistivity Test	2	ERT-1, ERT-2	Sept 2007	Chokkananam	W-11 to W-14
		Borehole	4	BH-1, BH-2, BH-3,BH-4			
4	Nagasandra STP	Plate Load Test	1	PLT-1	Aug 2007	Lingaderanahalli	W-15 to W-20
		Electrical Resistivity Test	1	ERT-1,			
		Borehole	2	BH-1, BH-2,			
5		Plate Load Test	1	PLT-1	Oct 2007	Doddakannahalli	W-21 to W-24
		Electrical Resistivity Test	1	ERT-1,			

Note: BWSSB has selected the existing GLR for proposed Lingderanahalli GLR on 9/Dec/2016, therefore, the soil survey for it could be conducted, but other 4sites were suspended.

Source: JICA Survey Team

Figure 10.1.1 Locations of Proposed GLRs and Available Soil Data of CWSS Stage IV Phase 2


10.2 Existing Soil Data Available for Major Sewerage Facilities

Available soil survey data are summarized in to Table 10.2.1 and Figure 10.2.1.

Table 10.2.1 Available Soil Survey Data for STP and ISPSs

Existing Data (Locations)	Field Test	Qty (No.)	Notation /Remarks	Date of Investigation	Proposed STP & ISPS nearby	Reference No. in Supporting Report
	Borehole	3	BH-1, BH-2, BH-3			
Horamavu Agara STP	Plate Load Test	1	PLT-1	Nov & Dec 2007	4.Bilishivale	S-01 to S-05
	Electrical Resistivity Test	1	ERT-1			
	Borehole	3	BH-1, BH-2, BH-3		13.Kariobavanahalli 14.Herohalli	
Kachohalli STP	Electrical Resistivity Test	1	ERT-1	Jun 2006	15.Hosahalli E-1.Herohalli ISPS	S-06 to S-9
	Borehole	4	BH-1, BH-2, BH-3, BH-4		12 N1	
Nagasandra STP	Test Pit	1	TP-1	Feb 2008	12.Nagasandra	S-10 to S-15
	Electrical Resistivity Test	1	ERT-1		E-2.Doddabidarkallu ISPS	
Chikkabanavara STP	Borehole	2	BH-1, BH-2	Aug 2000	16.Chikkabanayara	S-16 to S-18
Cilikkabanavara STP	Electrical Resistivity Test	1	ERT-1	Aug 2009	16.Cnikkabanavara	3-10 10 3-16
Jakkur STP	Borehole	2	BH-1, BH-2	Nov 2008	1.Jakkur	S-18 to S-22
	Electrical Resistivity Test	2	ERT-1, ERT-2	NOV 2008	2.Yelahanka	3-18 to 3-22
	Borehole	2	BH-1, BH-2			
GLR at GKVK	Test Pit	1	TP-1	Oct 2007	3.Doddabettahalli	S-23 to S-27
OLK at OK V K	Plate load test	1	PLT-1	Oct 2007	3.Doddabettalialii	3-23 10 3-27
	Electrical Resistivity Test	1	ERT-1			
Kadugodi STP	Borehole	3	BH-1, BH-2, BH-3	Dec 2010	B-1.Hagadur ISPS	S-28 to S-31
Kadugodi STF	Electrical Resistivity Test	1	ERT-1	Dec 2010	B-1.Hagadul ISFS	3-28 10 3-31
Doddabele STP	Borehole	3	BH-1, BH-2, BH-3	Dec 2010	D-2.Hemmigepura ISPS	S-32 to S-35
Doddabele STF	Electrical Resistivity Test	1	ERT-1	Dec 2010	11.Hemmigepura	3-32 10 3-33
Bellandur Amanikere STP	Borehole	14	BH-1, BH-2, BH-3, BH-4, BH-5 in Northern Area BH-1, BH-2, BH-3, BH-4, BH-5, BH-6, BH-7, BH-8, BH-9 in Southern Area	Oct 2012 and Dec 2012	5.Varthur	S-36 to S-51
	Electrical Resistivity Test	2	ERT-1, ERT-2			
Parappana Agrahara	Borehole	2	BH-1, BH-2,			
GLR	Plate Load Test	1	, ,		C-1.Naganathpura ISPS	S-52 to S-55
OLK	Electrical Resistivity Test	1	ERT-1,			

Source: JICA Survey Team

Source: JICA Survey Team

Figure 10.2.1 Locations of Proposed Sewerage Facilities and Available Soil Data of CWSS Stage IV
Phase 2

NJS-MM-TCE CONSORTIUM, BANGALORE Annexure-II Final Report

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY WORKS

BORE HOLE NO : BH-1 LOCATION : HOODI

TYPE OF BORING : ROTARY BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : 1.5m

STANBOLIC REPRESENTATION ENGINEERING CTASSILICATION IN (m) MOLIDA BEEVATION IN (m) MOLIDA BEEVALUE (m) (m) MOLIDA BEEVALUE (m)	& SAMPLING ANTURE OF SAMPLING SAMPLING BEDTH OF SAMPLE BELOW REFERENCE LEVEL	REF NO WATER M.L.	WPLE	SPT DETA		-			ROCK DRILLIN						\dashv
ENGINEERING (E) N	WPLING URE OF PLING TH OF SAMPLE OW REFERENCE	REF NO WATER M.L	WPLE			-		_	SING FE	d					1 . I
REPRE	SAN SAN ST.	SAMPLE REF NO LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS N1 N0 OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3 N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DECREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
Brownish Silty Sand 24, 25, 25, 25, 27, 26,	/09 SPT 0.5 /09 SPT 2.5 2.8-3.8	SPT1	25/45	3 3	3 6		100	DC		- .	15+28+43+14=100cm	100			
Whitish Grey Hard 27, 5.0 27,	/09 3.8-4.8 /09 4.8-5.8						89 92	DC DC			25+4+14+7+3+6+22+8=89cm 7+3+4+8+7+7+56=92cm		99 99		
	TC- TUNGSTEN			ID CORE BIT	B-NO OF BL). Dle terminated at 5.8m depth				

SECON, INDIA

Page No: 12

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

NJS-MM-TCE CONSORTIUM, BANGALORE Annexure-II Final Report

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY WORKS

BORE HOLE NO : BH-2

TYPE OF BORING : ROTARY BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil

CASING DEPTH LOCATION : HOODI ROCK DRILLING SPT DETAILS DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT TYPE OF DRILL BIT USED (TC/DIAMOND) DETAILS OF WATER, SLURRY COLOUR ETC. DEPTH IN (m) BELOW REFERENCE DEPTH OF SAMPLE BELOW REFERENCE LEVEL RECOVERY FOR SOIL SAMPLE ELEVATION IN (m) DATE OF BORING & SAMPLING LEVEL OF WATER TABLE/L.W.L N VALUE=N2+N3 õ SEATING BLOWS N1 ENGINEERING NO OF BLOWS FOR 2nd 15CM N2 NO OF BLOWS FOR 3rd 15CM N3 PERCENT CORE RECOVERY DIA OF CASING IF USED (mm) WATER LOSS IF SAMPLE REF CLASSIFICATION STS N 25/09 0.0-1.0 90 DC 9+4+6+29+9+33=90cm 62 | 99 | Nil

Whitish Grey Hard Rock 1.0-2.2 DC 25+14+8+24+47=118cm 98 99 Nil 98 2.2-3.0 DC 38+6+19=63cm 78 71 99 Nil 28/09

> TC- TUNGSTEN CARBIDE DC-DIAMOND CORE BIT B-NO OF BLOWS BOREHOLE TERMINATED AT 3.0m DEPTH

SECON, INDIA

Page No: 13

NJS-MM-TCE CONSORTIUM

Annexure-II

Final Report Hoody

GWT : Not met

TRIAL PIT LOG

PROJECT : GEOTECHNICAL INVESTIGATION FOR SIZE OF PIT. : 3.0x3.0x0.6m

WATER SUPPLY COMPONENT WORKS

: M/S.NJS-MM-TCE CONSORTIUM

COMPLETION DATE: 25.09.07

LOCATION : HOODY
TRIAL PIT NO. : TP-1

CLIENT

COMPLETION DATE : 25.09.07
BACKFILLING DATE : 25.09.07

DEPTH	I NO 117-1		LAYE	R THICKNES	SS ON EACH		
BELOW EGL (m)	SOIL STRATA DESCRIPTION	TYPE OF SAMPLING	N	S	E	W	Remarks
0.10							
_	Brownish Sandy Silt with gravels						
0.20							
0.30							
0.40							
	Weathered Rock Stratum						
0.50							
0.60							

TP-1 Terminated at 0.6m

SECON Page No.14

NJS-MM-TCE Consortium Annexure - III Hoodi Final report

PROJECT : Geo-technical Investigations for Water Supply Component VSTARTING DATE OF TESTING :07-11-2007

CLIENT : NJS-MM-TCE CONSORTIUM COMPLETION DATE OF TESTING :08-11-2007

TEST LOCATION: HOODI SIZE OF PLATE: 75x75x25cm

SIZE OF PIT:3x3m

PLATE LOAD TEST AS PER IS:1888

	LOAD				GE DIVISIO		CUMMULATIVE	
SL NO.	INTENSITY kg/cm ²	TIME IN MIN	DG I	DG II	DG III	DG IV	AVERAGE SETTLEMENT (mm)	REMARKS
1	0.07	1	29	39	45	32		Loading Cyc l e Started
		5	31	40	50	35		
		10	31	40	51	35		
		15	31	40	51	35		
		25	32	42	53	36		
		35	33	42	54	37		
		50	33	43	54	38		
		60	35	44	54	39	0.430	
2	0.84	0	100	130	110	115		
		1	107	135	115	122		
		5	112	137	116	125		
		10	114	138	117	125		
		15	116	139	118	125		
		25	117	139	118	126		
		35	118	140	119	127		
		50	119	140	119	127		
		60	120	140	121	127	1.270	
3	1.68	0	210	201	241	201		
		1	230	209	248	207		
		5	240	213	252	209		
		10	249	218	254	212		
		15	250	220	255	213		
		25	253	221	255	216		
		35	255	222	255	216		
		50	257	224	255	216		
		60	258	226	255	217	2.390	

SL	LOAD	TIME IN	DI	AL GAUC	CUMMULATIVE AVERAGE			
NO.	INTENSITY kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	REMARKS
4	2.52	0	332	361	298	294	,	
		1	349	370	302	295		
		5	361	380	309	298		
		10	367	385	312	300		
		15	371	388	312	302		
		25	375	391	312	302		
		35	376	393	314	303		
		50	379	395	315	304		
		60	381	396	316	305	3.495	
5	3.36	0	740	749	585	580		
		1	765	760	594	585		
		5	775	770	600	590		
		10	785	780	608	597		
		15	787	782	608	597		
		25	792	785	610	600		
		35	794	787	611	601		
		50	795	790	612	602		
		60	798	791	613	603	7.013	
6	4.20	0	1290	1150	845	855		
		1	1300	1162	852	861		
		5	1308	1171	856	865		
		10	1315	1175	860	870		
		15	1320	1180	863	873		
		25	1325	1184	867	875		
		35	1328	1186	869	878		
		50	1330	1189	870	879		
		60	1332	1190	872	880	10.685	
7	5.04	0	1672	1480	1192	1022		
		1	1692	1509	1205	1040		
		5	1715	1528	1220	1055		
		10	1731	1540	1230	1062		
		15	1738	1542	1233	1065		
		25	1740	1547	1237	1068		
		35	1742	1549	1238	1070		
		50	1745	1551	1239	1072		
		60	1746	1552	1240	1073	14.028	
		- 50	1740	1002	1270	1070	17.020	

SL	LOAD	TIME IN	DI	AL GAUC	SE DIVISIO	NS	CUMMULATIVE	
NO.	INTENSITY kg/cm ²	MIN	DGI	DG II	DG III	DG IV	AVERAGE SETTLEMENT (mm)	REMARKS
8	5.88	0	1945	1810	1430	1291	(11111)	
		1	1965	1826	1444	1305		
		5	1983	1841	1456	1307		
		10	1993	1850	1464	1312		
		15	1996	1853	1466	1325		
		25	2000	1855	1468	1328		
		35	2002	1858	1470	1330		
		50	2005	1860	1471	1332		
		60	2007	1861	1472	1333	16.683	
			2007	1001	1172	1000	10.000	
9	6.72	0	2220	2156	1760	1550		
<u></u>	0.72	1	2241	2161	1775	1570		
		5	2255	2172	1775	1576		
		10						
			2261	2176	1796	1584		
		15	2268	2182	1805	1589		
		25	2274	2185	1808	1592		
		35	2279	2191	1811	1599		
		50	2286	2194	1816	1601	10.700	
		60	2290	2199	1819	1607	19.788	
		_						
10	7.56	0	2420	2388	2129	1840		
		1	2435	2406	2141	1850		
		5	2445	2415	2145	1856		
		10	2452	2421	2152	1860		
		15	2457	2425	2157	1864		
		25	2462	2428	2158	1868		
		35	2467	2431	2159	1869		
		50	2469	2434	2162	1872		
		60	2474	2437	2165	1875	22.378	
11	8.40	0	2654	2615	2341	2180		-
		1	2674	2632	2360	2195		
		5	2682	2640	2367	2206		
		10	2692	2647	2374	2210		
		15	2695	2650	2376	2217		
		25	2702	2653	2379	2222		
		35	2705	2657	2382	2230		
		50	2707	2659	2384	2237		
		60	2712	2661	2385	2241	24.998	

•	LOAD		DI	AL GAU	GE DIVISIO	NS	CUMMULATIVE	
SL NO.	INTENSITY kg/cm ²	TIME IN MIN	DGI	DG II	DG III	DG IV	AVERAGE SETTLEMENT (mm)	REMARKS
12	9.24	0	2876	2805	2541	2486		
		1	2885	2830	2560	2490		
		5	2893	2840	2567	2499		
		10	2903	2847	2575	2504		
		15	2910	2852	2580	2509		
		25	2915	2858	2584	2514		
		35	2924	2862	2589	2520		
		50	2924	2867	2592	2524		
		60	2929	2868	2594	2531	27.305	
13	10.08	0	2931	2952	2749	2701		
		1	3015	2963	2777	2708		
		5	3031	2980	2790	2715		
		10	3055	2989	2797	2721		
		15	3065	2997	2805	2726		
		25	3075	3003	2809	2732		
		35	3081	3005	2813	2736		
		50	3086	3011	2816	2731		
		60	3091	3016	2819	2734	29.150	

REBOUND READINGS

SL	LOAD INTENSITY	TIME IN	ı	DIAL GAUG	GE DIVISIO	N	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	
1	9.24	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		Unloading cycle started
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
2	8.40	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
3	7.56	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
4	6.72	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
5	5.88	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
6	5.04	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
7	4.20	1	3091	3016	2819	2734		
		5	3091	3016	2819	2734		
		10	3091	3016	2819	2734		
		15	3091	3016	2819	2734	29.150	
8	3.36	1	3082	3016	2812	2730		
		5	3081	3016	2811	2730		
		10	3080	3016	2811	2729		
		15	3080	3016	2811	2729	29.090	
9	2.52	1	2995	3016	2792	2701		
		5	2994	3016	2790	2700		
		10	2993	3016	2789	2699		
		15	2992	3016	2789	2669	28.665	

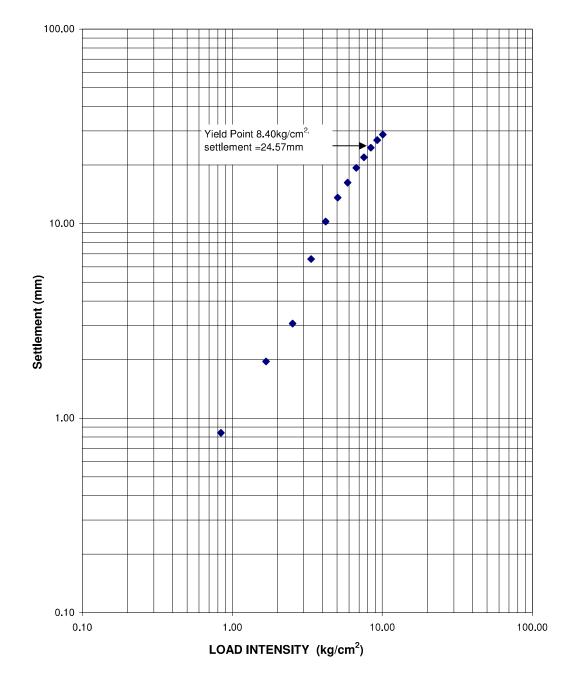
NJS-MM-TCE Consortium Annexure III Hoodi Final Report

SL NO.	LOAD INTENSITY	TIME IN	Í	DIAL GAUG	E DIVISIO	N	CUMMULATIVE AVERAGE SETTLEMENT	REMARKS
NO.	kg/cm ²	IVIIN	DG I	DG II	DG III	DG IV	(mm)	
10	1.68	1	2979	3016	2770	2628		
		5	2979	3016	2769	2627		
		10	2978	3015	2769	2626		
		15	2978	3015	2768	2625	28.465	
11	0.84	1	2962	2980	2761	2620		
		5	2958	2978	2757	2624		
		10	2954	2973	2751	2621		
		15	2952	2971	2750	2620	28.233	
12	0.00	1	2871	2851	2729	2658		
		5	2864	2841	2714	2637		
		10	2860	2837	2709	2631		
		15	2856	2832	2704	2628	27.550	

PLT NO: PLT-1

DEPTH (m): 1.75m

PROJECT


PLATE LOAD TEST: LOAD INTENSITY vs SETTLEMENT CURVE

CLIENT: NJS-MM-TCE CONSORTIUM

: GEOTECHNICAL INVESTIGATION FOR WATER

SUPPLY COMPONENT WORKS-HOODI

SIZE OF PLATE(mm) :750 x 750 x 25

SECON 21

Final Report Hoody

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for Water Component Works

ERT NO: 1

DATE OF COMMENCEMENT: 23.09.07

LOCATION: HOODY

DATE OF COMPLETION: 23.09.07

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	120.000	6.283	753.982	
	2.0	55.100	12.566	692.407	
	3.0	54.700	18.850	1031.071	East -West. Dry Land and
	5.0	14.570	31.416	457.730	Rocky
	10.0	10.650	62.832	669.159	110011
ERT-1	15.0	9.590	94.248	903.836	
ENI-I	1.0	81.000	6.283	508.938	
	2.0	59.700	12.566	750.212	N O
	3.0	53.800	18.850	1014.106	North-South
	5.0	15.210	31.416	477.836	Dry Land and Rocky
	10.0	11.320	62.832	711.257	. iooky
	15.0	9.640	94.248	908.549	

SECON Page No: 22

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO LOCATION : GKVK

TYPE OF BORING : ROTARY BOREHOLE DIA
GWT FROM EGL : 150mm/Nx Size
CASING DEPTH : 1.5m

Ī	JOA 110		. 9848										SPT DETA	ils			I	I	ROCK DRILLI	NG		_			
	SYMBOLIC		ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
Ī					_ 1.0	03/10	DS	0.5	DS																
					- 2.0		SPT	1.5	SPT1		35/45	7	9	12	21										
			Reddish Sandy Silt with clay Binder		- 3.0 - 4.0		UDS	3.0	UDS																
			4.0 Brownish Yellow Sandy Silt With Clay Binder		5.0		SPT	4.5	SPT2		28/45	16	21	22	43										
ŀ		4	6.0		6.0	04/10	UDS	6.0	UDS																
			Brownish Yellow Sandy Silt With Traces of Clay		7.0 - 8.0 - 9.0		SPT	9.0	SPT3		25/45	12	14	21	35										
L		Ш	10.0		10.0	.	SPT	10.0	SPT4		30/45	13	17	27	44										

BOREHOLE TERMINATED AT 10.0m DEPTH

NJS Consultants Co., Ltd.

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2 LOCATION : GKVK

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : Nil

	,,,,,		GKVK	`																					
													SPT DETAI	ıs					ROCK DRILLI	NG					
	SYMBOLIC REPRESENTATION		ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE		NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	in situ rock tests
1 × × 1	1000 10	I wal			1.0	03/10	SPT	0.5	SPT1		20/45	2	4	5	9										
× 1 × × 1					_ 2.0		UDS	2.0	UDS																
The state of the s			Reddish Sandy Silt With Clay Binder		3.0 - 4.0		SPT	3.5	SPT2		25/45	6	10	12	22										
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					5.0 -		UDS	5.0	UDS																
		Th	6.0 Brownish Yellow Silty Sand with Traces of Clay		6.0 - 7.0 - 8.0	. 03/10	SPT	6.5	SPT3		30/45	8	11	13	24										
**		***	9.0 Brownish Yellow Highly Weathered Rock 10.0		9.0 _ 10.0		SPT	9.5	SPT5		Nil	50B/2cm			>100										

BOREHOLE TERMINATED AT 10.0m DEPTH

NJS Consultants Co., Ltd.

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

SECON

NJS-MM-TCE CONSORTIUM

Annexure-II

Final Report GKVK

TRIAL PIT LOG

PROJECT : GEOTECHNICAL INVESTIGATION FOR SIZE OF PIT. : 2.0x2.0x3.0m

WATER SUPPLY COMPONENT WORKS GWT : Not met

CLIENT: M/S.NJS-MM-TCE CONSORTIUMCOMMENCEMENT DATE: 19.11.07LOCATION: GKVKCOMPLETION DATE: 20.10.07TRIAL PIT NO.: TP-1BACKFILLING DATE21.11.07

DEPTH	4		LAYE	R THICKNES	SS ON EACH	FACE	ket ometer kg/cm²	
BELOV EGL (m	V SOIL STRATA DESCRIPTION	TYPE OF SAMPLING	N	S	E	W	Pocket penetrometer reading kg/cm	Remarks
1.00							0.75	
	Reddish Sandy Silt with Clay	BS						
2.00	Binder and gravels							In Situ density Conducted at 3m Depth
3.00		BS						Density is 1.71g/cc

Secon Page No.18

NJS-MM-TCE Consortium Annexure -IV GKVK Final Report

PROJECT : Geo-technical Investigations for Water Supply Component Works

CLIENT : NJS-MM-TCE CONSORTIUM

TEST LOCATION GKVK

STARTING DATE OF TESTING:20-11-2007 COMPLETION DATE OF TESTING:20-11-2007

SIZE OF PLATE:75x75x2.5cm

SIZE OF PIT:3x3m

PLATE LOAD TEST AS PER IS:1888

SL	LOAD INTENSITY	TIME IN		DIAL GAU	GE DIVISIONS	5	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	TILMATIKO
1	0.07	0	0	0	0	0		Loading cycle started
		1	39	30	25	15		Loading cycle started
		5	39	30	28	15		
		10	40	30	29	16		
		15	40	30	29	16		
		25	41	30	29	16		
		35	41	30	30	17		
		50	41	30	30	17		
		60	41	30	30	17	0.295	
2	0.84	0	62	71	42	20		
		1	65	72	44	21		
		5	66	72	45	21		
		10	67	73	45	22		
		15	67	73	46	22		
		25	68	73	47	23		
		35	68	73	47	23		
		50	68	74	47	23		
		60	68	74	47	23	0.530	
3	1.68	0	81	96	58	31		
		1	82	97	60	32		
		5	84	97	61	33		
		10	86	97	62	33		
		15	86	97	63	34		
		25	87	97	63	35		
		35	89	98	65	36		
		50	90	99	66	36		
		60	90	99	66	36	0.728	
4	2.52	0	94	141	72	43		
		1	95	144	74	44		
		5	97	145	76 	45		
		10	98	146	77	46		
		15	100	146	77	47		
	_	25	100	148	77	47		
	_	35	100	148	78	47		
		50	100	149	78	48		
		60	100	149	78	48	0.938	

NO. 5	INTENSITY kg/cm ² 3.36	0 1 5 10 15 25 35	104 105 107 109	136 163 163	DG III 84 86	DG IV 50	SETTLEMENT (mm)	REMARKS
	3,36	1 5 10 15 25	105 107 109 109	163				
6		5 10 15 25	107 109 109		86			
6		10 15 25	109 109	163		51		
6		15 25	109		89	53		
6		25		164	91	54		
6				164	92	55		
6		35	110	165	92	56		
6		55	110	165	93	56		
6		50	111	166	94	57		
6		60	111	166	94	57	1.070	
6								
J	4.20	0	113	179	99	60		
		1	116	179	100	61		
		5	118	179	103	62		
		10	120	181	104	63		
		15	120	182	106	64		
		25	120	183	107	66		
		35	121	185	108	67		
		50	121	187	108	67		
		60	121	188	108	67	1.210	
7	5.04	0	122	189	111	68		
		1	123	190	112	69		
		5	125	192	115	71		
		10	126	194	117	72		
		15	127	195	118	73		
		25	127	196	118	74		
		35	127	197	118	75		
		50	128	198	120	76		
		60	128	198	120	76	1.305	
		00	.20	100	120	, 0	11000	
8	5.88	0	129	199	123	77		
	0.00	1	129	199	125	79		
		5	129	199	126	81		
		10	129	199	127	82		
		15	130	199	128	83		
		25	131	199	128	84		
		35	132	199	129	85		
		50	132	199	130	86		
		60	132	199	131	87	1.373	
		00	132	133	131	0/	1.3/3	
9	6.72	0	133	200	133	88		
9	0.72	1	134	200	134	89		
		5	134	201	134	90		
		10		201				
		15	134 134	202	138	92 93		
					139			
		25	135	204	140	94		
		35	137	205	141	95		
		50 60	137 137	205 205	141 141	95 95	1.445	

SL	LOAD INTENSITY	TIME IN		DIAL GAU	GE DIVISIONS	S	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	HEMAIIKO
10	7.56	0	138	206	142	97		
		1	138	206	144	99		
		5	138	206	147	101		
		10	138	207	150	106		
		15	139	208	151	108		
		25	140	209	152	109		
		35	141	210	153	109		
		50	141	210	153	109		
		60	141	211	154	110	1.540	
11	8.40	0	142	213	156	113		
		1	142	213	159	116		
		5	142	214	162	120		
		10	142	215	164	123		
		15	143	216	167	124		
		25	144	217	168	125		
		35	144	218	169	126		
		50	145	218	170	127		
		60	145	218	171	128	1.655	
12	9.24	0	146	220	173	130		
		1	147	221	174	132		
		5	148	222	175	134		
		10	148	223	177	135		
		15	149	224	177	136		
		25	150	225	178	137		
		35	150	225	180	140		
		50	151	226	181	141		
		60	152	227	182	142	1.758	
13	10.08	0	160	234	194	167		
		1	161	235	195	168		
		5	163	237	198	171		
		10	164	238	200	175		
		15	165	239	202	178		
		25	166	240	204	180		
		35	168	241	208	182		
		50	169	245	212	183		
		60	170	246	215	184	2.038	

GKVK Final Report

REBOUND READINGS

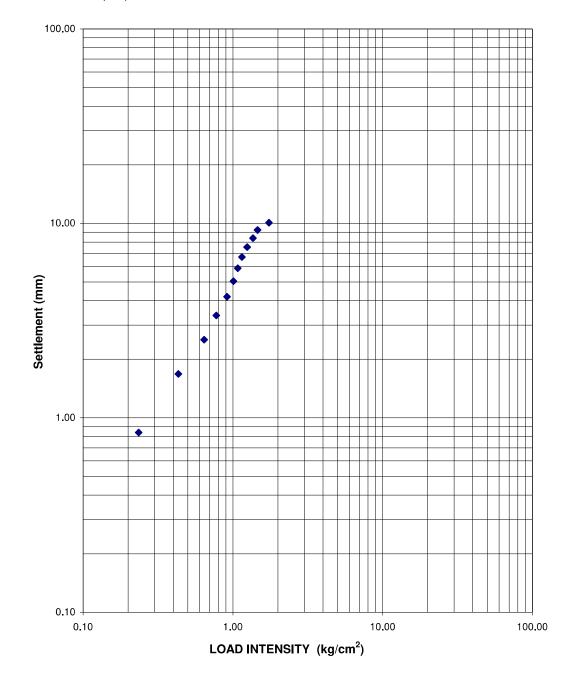
SL NO.	LOAD INTENSITY	TIME IN		DIAL GAUC	GE DIVISIOI	N	CUMMULATIVE AVERAGE SETTLEMENT	REMARKS
NO.	kg/cm ²	IVIIIN	DG I	DG II	DG III	DG IV	(mm)	
1	9.24	1	170	246	215	184		
		5	170	246	215	184		Unloading cycle started
		10	170	246	215	184		
		15	170	246	215	184	2.038	
2	8.40	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
3	7.56	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
4	6.72	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
5	5.88	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
6	5.04	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
7	4.20	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
8	3.36	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
9	2.52	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	

SL	LOAD INTENSITY	TIME IN	l	DIAL GAUC	SE DIVISIOI	N	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	
10	1.68	1	168	240	211	181		
		5	167	239	209	179		
		10	167	239	208	178		
		15	167	239	208	178	1.980	
11	0.84	1	160	232	201	171		
		5	158	230	199	169		
		10	157	229	198	168		
		15	157	229	198	168	1.880	
12	0.00	1	149	221	191	160		
		5	148	220	190	157		
		10	147	219	189	156		
		15	146	218	188	155	1.778	
		15	271	459	346	211	1.768	
11	0.84	1	272	460	348	216		
		5	272	460	348	216		
		10	273	461	349	217		
		15	273	461	349	217	3.250	
12	0.00	1	272	460	349	216		
		5	272	460	349	216		
		10	272	460	349	216		
		15	272	460	349	216	3.243	

PLT NO: PLT-1

PROJECT

PLATE LOAD TEST: LOAD INTENSITY vs SETTLEMENT CURVE


CLIENT: NJS-MM-TCE CONSORTIUM

: GEOTECHNICAL INVESTIGATION FOR WATER

DEPTH (m): 3.0m

SUPPLY COMPONENT WORKS-GKVK

SIZE OF PLATE(mm) :750 x 750 x 25

SECON 25

Final Report GKVK

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for Water Components

ERT NO: 1DATE OF COMMENCEMENT: 10.10.07LOCATION : GKVKDATE OF COMPLETION :10.10.07

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	33.000	6.283	207.345	
	2.0	16.140	12.566	202.821	
	3.0	10.790	18.850	203.387	East-West
	5.0	6.270	31.416	196.978	Dry Land
	10.0	3.260	62.832	204.832	
ERT-1	15.0	2.700	94.248	254.469	
ERI-I	1.0	31.300	6.283	196.664	
	2.0	17.570	12.566	220.791	
	3.0	13.160	18.850	248.060	North-South.
	5.0	7.340	31.416	230.593	Dry Land
	10.0	4.250	62.832	267.035	
	15.0	2.940	94.248	277.088	

Secon Page No: 34

NJS-MM-TCE CONSORTIUM Final Report JAKKUR Annexure II

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-1 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.5m below EGL
CASING DEPTH : 3.0m

l	OCATIO	N_	: JAKK	UR																	CASING DEPTH	3.Ur	m		
													SPT DETAIL						ROCK DRILLI	NG					
	SYMBOLIC REPRESENTATION		ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	PIECES		اام	SIZE OF HOLE	IN SITU ROCK TESTS
			Reddish Brown Sandy Silt with Clay Binder		L	. 07/12	SPT	0.5	SPT1	\	30/45	2	2	2	4										
			2.3 Brownish Grey Sandy Silt with Clay Binder		3.0		UDS	2.5	UDS																
			4.0		4.0 _ 5.0		SPT UDS/RS	4.0 5.5	SPT2 UDS/RS		43/45	6	7	9	16										
			Brownish Grey Highly Weathered Rock		6.0 - 7.0		SPT	7.0	SPT3		44/45	16	36	46	82										
					8.0 9.0	08/12	SPT	8.5	SPT4		42/45	15	32	46	78										
					10.0 11.0		SPT	10.0	SPT5		44/45	13	24	40	64										
		XX	12.2 Brownish Boulders		12.0		SPT	11.5	SPT6		38/45	17	40	50	90										
			12.7 Yellowish Highly Weathered Rock		13.0 _ 14.0		SPT	13.0	SPT7		22/26		50	50	100										
		₩	15.1				SPT	14.5	SPT8		14/15	50B/15cm			>100										
			Yellowish Grey Highly Weathered Rock		17.0		SPT SPT	16.0	SPT9 SPT10		30/45	40	50B/15cm	50	>100 94										
B	⋘⋘	⋘		1	18.0	1	1	1			Ι ΄	l			٠	l	l	1		1				- 1	1

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-1 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.5m below EGL
CASING DEPTH : 3.0m

			SPT DETAILS			ROCK DRILLI			ROCK DRILLI	NG												
 GINEERING SSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
i Grey Highly ered Rock		-	ত্র _ব	SPT SPT	19.0	SPTI11 SPTI2	1 h		80B/10cm 35			>100	vid	HEC	RSD RSD	23d Root	7TS	Z/S	<u>c</u>	2/8	MA	2
•	¥		WT		•	•		DC-DIAMO	OND CORE	BIT	•						BOREHO	LE TERMINATED AT 20.0m DEPTH				

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2 LOCATION : JAKKUR TYPE OF BORING : ROTARY

: 150mm/Nx Size : 0.3m above EGL : 3.0m BOREHOLE DIA GWT FROM EGL CASING DEPTH

										SPT DETAIL	•					ROCK DRILLI	NG		_				
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
			1.0	07/12	SPT	0.5	SPT1	0.3	29/45	1	1	1	2										
	Greyish Brown Sandy Silt with Clay Binder		2.0	07712	SPT UDS	2.0	SPT2 UDS		30/45	6	7	8	15										
	3.6		4.0	00.40	SPT	4.0	SPT3		25/45	10	15	35	50										
	Greyish Brown Highly Weathered		5.0 - 6.0	08/12	uds/Rs	5.5	uds/Rs																
	Rock 6.3		_ 7.0		SPT	6.5	SPT4		28/45	10	19	26	45										
			8.0		UDS/RS	7.5	UDS/RS																
	9.3		9.0		SPT	9.0	SPT5		22/45	20	45	60	105										
	Brownish Boulders		10.0 _ 11.0		DS	10.5	DS																
20			12.0		DS	10.5	DS																
	12.7		13.0		SPT	13.0	SPT6		5/7	100B7cm			>100										
	Greyish White Highly Weathered Rock		_	09/12	14.8–15.8										20	DC			6+5+6+3=20cm	Nil	76	Nil	
	5.8 Brownish White Moderately Weathered Rock		16.0 17.0 18.0		15.8–16.8 16.8–17.8										60 51	DC DC			10+23+7+10+10=60cm 12+6+5+11+7+10=51cm		76 76		

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

TC- TUNGSTEN CARBIDE

BORE HOLE NO : BH-2 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.3m above EGL
CASING DEPTH : 3.0m

BOREHOLE TERMINATED AT 20.0m DEPTH

UANICE CONTROL							SPT DETAIL	.s					ROCK DRILLI	NG	I				
SWABOLIC ENGINEERING CLASSIFICATION CLASSIFICATION	ELEVATION IN (m) DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS N1		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
Brownish White Moderately Weathered Rock		10/12 17.8-2					Z LZ	r r			47	DC DC	30 PR		77+10+17=104cm		76		

DC-DIAMOND CORE BIT RS-REPRESENTATIVE SAMPLE

M/S NJS-MM-TCE CONSORTIUM

Annexure VI

Final Report -Jakkur STP

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for STP, JAKKUR

ELECTRICAL RESISTIVITY TEST RESULTS

ERT NO: 1 DATE OF COMMENCEMENT: 17.11.07 LOCATION: Jakkur DATE OF COMPLETION: 17.11.07

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	4.300	6.283	27.018	
	2.0	1.522	12.566	19.126	
ERT-1	3.0	0.804	18.850	15.155	East-West
LNI-I	5.0	0.412	31.416	12.943	Lasi-Wesi
	10.0	0.242	62.832	15.205	
	15.0	0.179	94.248	16.870	

ERT NO: 2 DATE OF COMMENCEMENT: 17.11.07 LOCATION: Jakkur DATE OF COMPLETION: 17.11.07

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	4.280	6.283	26.892	
	2.0	1.497	12.566	18.812	
	3.0	0.680	18.850	12.818	North-West.
	5.0	0.462	31.416	14.514	North-west.
	10.0	0.258	62.832	16.211	
ERT-2	15.0	0.135	94.248	12.723	
Eni-2	1.0	4.390	6.283	27.583	
	2.0	1.510	12.566	18.975	
	3.0	0.676	18.850	12.742	East-West
	5.0	0.493	31.416	15.488	Easi-Wesi
	10.0	0.249	62.832	15.645	
	15.0	0.152	94.248	14.326	

SECON Page No: 37

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-1

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size

GWT FROM EGL : Nil CASING DEPTH : Nil

LOCATION	: NAGA	A SAN	DRA																CASING DEPTH : NII				
										ROCK DRILLI	NG												
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
			_	05/02	DS	0.5	DS																
			1.0 _		SPT	1.5	SPT1		35	5	9	12	21										
	Brownish Clayey Silt		2.0																				
			3.0		UDS	3.0	UDS																
			- 4.0																				
	4.3		_ 5.0		SPT	4.5	SPT2		R				>100			DC							
			_ 6.0						_							DC							
	Fractured Rock		L		SPT	6.0	SPT3		R				>100			00							
				06/02	SPT	7.5	SPT4		R				>100			DC							
			8.0																				
	8.5		9.0		SPT	9.0	SPT5		20	35	55	46B/29cm	>100			DC							
	Brownish Highly Weathered Rock		10.0																				
	10.3 Yellowish Brown		_ 11.0		SPT	10.5	SPT6		14	60	100B/14cm		>100			DC							
	Highly Weathered Rock		_ 12.0		SPT	12.0	SPT7		Nil				>100			DC							
	12.1		13.0		.	12.0	J,																
	Fractured Rock		14.0		SPT	13.5	SPT8		Nil				>100			DC							
			<u>14.0 </u>																				
<u>x x x</u>	15.0		15.0		SPT	15.0	SPT9		Nil				>100			DC							

DC-DIAMOND CORE BIT

R=Rebound

BOREHOLE TERMINATED AT 15.0m DEPTH

10-30

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

10-31

NJS-MM-TCE CONSORTIUM Annexure II Final Report Naga Sandra

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : 1.0m

									ROCK DRILLING SPT DETAILS														
TATION	ENGINEERING CLASSIFICATION	(E) NI N	(m) SFERENCE	BORING	۳.,	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	REF NO	. WATER W.L	RY SAMPLE	BLOWS			=N2+N3	SING mm)	CORE	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	OF WATER, COLOUR ETC.	CORE		OLE	SS IF ANY	SITU ROCK TESTS
SYMBOLIC REPRESENTATION		ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF BELOW RE LEVEL	SAMPLE REF	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS N1	NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF I	DESCRIPTIC ROCK TYPI DEGREE OI JOINT	DETAILS O SLURRY CO	SIZE OF C	RQD	SIZE OF HOLE	WATER LOSS	IN SITU RO
			1.0	04/02	DS	0.5	DS																
	Brownish Clayey Silt		2.0 2.0		SPT	1.5	SPT1		32	8	9	11	20										
	2.4 Greyish BrownYellow Clayey Silt		- 3.0 - 4.0		UDS	3.0	UDS																
	4.3 Brownish Silty Sand		_ 5.0 _		SPT	4.5	SPT2		30	8	10	12	22			TC							
KIKIK	5.9 Fractured Rock		6.0 - 7.0	05/02	SPT	6.5	SPT3		Nil	R			>100			TC							
	Brownish Highly Weathered Rock		8.0 _																				
	8.6 Yellowish Highly Weathered Rock		9.0		SPT	9.0	SPT4		18	58	71	30B/22cm	>100			тс							
	10.3		_ 11.0		SPT	10.5	SPT5		10	65	100B/14cm		>100			TC							
	Grevish Green Highly		12.0 _ 13.0		SPT	12.0	SPT6		WS	80	100B/10cm		>100			тс							
	Greyish Green Highly Weathered Rock		14.0		SPT	13.5	SPT7		5	100B/5cm			>100			тс							
	15.0		15.0		SPT	15.0	SPT8		2	100B/2cm			>100			TC							

TC- TUNGSTEN CARBIDE

R=Rebound WS-Wash Sample

BOREHOLE TERMINATED AT 15.0m DEPTH

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS : $\ensuremath{\mathsf{BH-3}}$

BORE HOLE NO

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil

BOREHOLE TERMINATED AT 15.0m DEPTH

OCATION	10 : BH-: : NAG/	A SAN	IDRA																CASING DEPTH :	Nil			
											SPT DETA	LS					ROCK DRILLI			$\overline{}$	1	Г	\top
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE	0 0 %	SIZE OF HOLE	WATER LOSS IF ANY	STORY AND INCIDENT
			1.0	05/02	DS	0.5	DS																Ī
	Brownish Clayey Silt		2.0		SPT	1.5	SPT1		30	6	8	11	19										
			3.0	.	UDS	3.0	UDS																
	4.4	-	4.0 - 5.0	06/02	SPT	4.5	SPT2		Nil				>100			DC							
			6.0		SPT	6.0	SPT3		Nil				>100			DC							
			7.0 _ 8.0		SPT	7.5	SPT4		Nil				>100			DC							
			9.0		SPT	9.0	SPT5		Nil				>100			DC							
	Fractured Rock		10.0 _ 11.0	07/02	SPT	10.5	SPT6		Nil				>100			DC							
			12.0		SPT	12.0	SPT7		Nil				>100			DC							
			13.0 _ 14.0		SPT	13.5	SPT8		Nil				>100			DC							
	15.0		15.0		SPT	15.0	SPT9		Nil				>100			DC							

DC-DIAMOND CORE BIT

R=Rebound

10-32

NJS Consultants Co., Ltd.

SECON

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

DC-DIAMOND CORE BIT

R=Rebound

BORE HOLE NO : BH-4

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Not Met
CASING DEPTH : 1.5m

LOCATION	: NAGA	N SAN	DRA																CASING DEPTH : 1.5	,,,,,			
																	ROCK DRILLI	NG					\neg
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS THE TOWN		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
07E				08/02										<u> </u>	u. u.		9		S E		<u>"</u>	_	╼┤
			- 1.0	00, 02	DS	0.5	DS																
			1.0								_	40											
			- 2.0		SPT	1.5	SPT1		32	8	9	10	19										
	Greyish Black Clayey Silt		2.0																				
	Siit		- 3.0																				
			0.0		UDS	3.0	UDS																
			4.0																				
rui tui tui					SPT	4.5	SPT2		Nil				>100			DC							
Qar Qar Qa	4.3		5.0		3F1	4.5	3512		IVII				7100			, DC							
Dar Dar Da	Fractured Rock		6.0		SPT	6.0	SPT3		Nii				>100			DC							
HACHACHI	Fractured Rock		L		31 1	0.0	31 13		1411				7100										
			7.0																				
			L	08/02	SPT	7.5	SPT4		Nil				>100			DC							
	7.5		8.0																				

10-33

NJS Consultants Co., Ltd.

SECON

BOREHOLE TERMINATED AT 7.5m DEPTH

 $\ensuremath{\mathbf{GWT}}$: Not met

TRIAL PIT LOG

PROJECT : GEOTECHNICAL INVESTIGATION FOR SIZE OF PIT. : 3.0x3.0x3.0m

STP WORKS

CLIENT: M/S.NJS-MM-TCE CONSORT**I**UM **COMMENCEMENT DATE**: 08.02.08

 LOCATION
 : NAGASANDRA
 COMPLETION DATE
 : 08.02.08

 TRIAL PIT NO.
 : TP-1
 BACKFILLING DATE
 : 08.02.08

THIALTH	10 II -I				TOTAL ILLI	NG DAIL	. 00.02.00	
DEPTH		TYPE OF	LAYEF	RTHICKNES	SS ON EAC	H FACE	et neter tg/cm²	
BELOW EGL (m)	SOIL STRATA DESCRIPTION	SAMPLING	N	s	E	w	Pocket penetrometer reading kg/cm ²	Remarks
).50								
1.00							4.50	
1.50		_						
	Brownish Clayey Silt						2.50	
2.00							2.30	
2.50								
							2.00	
3.00		BS						

Pit Termnated at 3.00m

Nagasandra Report GKVK

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for STP works

ERT NO: 1DATE OF COMMENCEMENT: 7.2.08LOCATION: NagasandraDATE OF COMPLETION :7.2.08

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	5.350	6.283	33.615	
	2.0	1.620	12.566	20.358	
	3.0	0.682	18.850	12.855	
	5.0	0.494	31.416	15.519	Near TD 1 Fact West
	7.0	0.421	43.982	18.517	Near TP-1,East West
	10.0	0.320	62.832	20.106	
	12.0	0.321	75.398	24.203	
	15.0	0.308	94.248	29.028	
ERT-1					
	1.0	4.480	6.283	28.149	
	2.0	1.513	12.566	19.013	
	3.0	0.612	18.850	11.536	
	5.0	0.337	31.416	10.587	East-West
	7.0	0.307	43.982	13.503	East-West
	10.0	0.262	62.832	16.462	
	12.0	0.231	75.398	17.417	
	15.0	0.208	94.248	19.604	

Secon Page No: 35

NJS-MM-TCE CONSORTIUM Final Report

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE PROJECT : GEOTECHNICAL INVESTIGATIONS FOR STP

BORE HOLE NO : BH-1

LOCATION : Horamavu TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.9m below EGL
CASING DEPTH : Nil

BOREHOLE TERMINATED AT 17.5m DEPTH

	7 110101										SPT DETA	II S					ROCK DRILLI	NG				
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	PIECES	R Q D	SIZE OF HOLE	: I 5. I
	Brownish Sandy Silt	٣		25/11					30/45	4	5	6		0 =	0.00	- 5	0 6 0 3	_ o v	<u></u>	+*+	<u>د اع</u>	
	0.6		1.0	10,	SPT	0.5	SPT1		30/43	4	"	0	11									
	Greyish Brown Sandy Silt with Clay Binder				uds Spt	2.5	UDS SPT2		37/45	7	9	12	21									
	6.0		_		SPT	6.0	SPT3		31/45	10	12	17	29									
	Brownish Highly Weathered Rock		7.0 - 8.0		SPT	7.5	SPT4		Nil	50B/10cm	1		R									
**********	9.3		9.0		8.3-9.3										Nil	DC			Core Pieces Collected	Nil	N	ii
	5.3		<u> </u>		9.3-10.7										Nil	DC			Core Pieces Collected	Nil	N	a !
			10.0		10.7-11.7	,									14	DC			16+8+10=34cm	Nil	N	a !
	Brownish White Moderately Weathered Rock		- 11.0 - 12.0		11.7-12.7										21	DC			3+6+5=14cm	11	N	
			L		12.7-13.7	1									Nil	DC			11+6+4=21cm	Nil	N	"
			13.0		13.7-14.5	5									17	DC			Core Pieces Collected	Nil	N	a !
			14.0		14.5–15.0)									33	DC			4+5+3+5=17cm	24	N	il
	14.5		15.0		14.5-15.5	5									81	DC			10+9+14=33cm	63	N	a
	Greyish White Hard Rock		- 16.0 - 17.0	01/12	15.5-16.5 16.5-17.5										102	DC DC			8+5+10+5+5+38=71cm 22+32+9+21+18=102cm	93	N	
	17.5		-																			
	17.5		18.0																			

R=REBOUND

TC- TUNGSTEN CARBIDE

DC-DIAMOND CORE BIT

SECON

Page No: 20

NJS-MM-TCE CONSORTIUM

Final Report

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE PROJECT : GEOTECHNICAL INVESTIGATIONS FOR STP

BORE HOLE NO : BH-2 LOCATION : Horamavu TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.3m below EGL
CASING DEPTH : 2.0m

BOREHOLE TERMINATED AT 14.0m DEPTH

								ROCK DRILLING SPT DETAILS														
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	PIECES	ROD	SIZE OF HOLE WATER LOSS IF ANY	15.1
			1.0	14/11	DS SPT	0.5 1.0	DS SPT1		38/45	2	3	3	6	0 -			520,		<i>y,</i> <u>u</u>			
	Greyish Brown Sandy Silt with Clay Binder		2.0 _ 3.0		UDS	2.5	UDS															
			4.0 - 5.0	15/11	SPT	4.0	SPT2		40/45	5	6	10	16									
	4.9 Reddish Silty Sand with Traces of Clay		_ 6.0 _		UDS	5.5	UDS															
	6.7 Brownish Grey Highly		7.0 _ 8.0	16/11	SPT	7.0	SPT3		29/45	23	26	32	58									
	Weathered Rock 1		9.0	,	SPT	9.0	SPT4		29/45	20B/R			R						2+11+5+10+8+4			
	Brownish White Moderately Weathered Rock		10.0		9-10 10-11										65 41	DC			+5+5+15=65cm 26+15=41cm	36	Ni Ni	
	11.0 Greyish White Hord		12.0	17/11	11-12										85	DC			38+21+10+7+9=85cm	69	Ni	
	Rock		13.0 14.0	18/11	12-13.1 13.1-14.0										86 89	DC			60+34=94cm 31+33+16=80cm	86	Ni Ni	
	14.0		14.0																			

NJS Consultants Co., Ltd.

SECON Page No: 21

R=REBOUND

DC-DIAMOND CORE BIT

TC- TUNGSTEN CARBIDE

NJS-MM-TCE CONSORTIUM

CLIENT : NJS-MM-TCE CONSORTIUM,BANGALORE
PROJECT : GEOTECHNICAL INVESTIGATIONS FOR STP

BORE HOLE NO : BH-3 LOCATION : Horamavu **BORELOG**

TYPE OF BORING : HYDRAULIC
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.5m below EGL

CASING DEPTH : 1.0m

											SPT DETA	ILS			ı		ROCK DRILLI	NG				
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	ROD	SIZE OF HOLE	. =
	Brownish Sandy Silt		1	20/11	SPT	0.5	SPT1		30/45	2	2	3	5									
	0.8 Greyish Brown Sandy Silt with Clay Binder		1.0 - 2.0 - 3.0 - 4.0 - 5.0 - 6.0		SPT UDS SPT	2.0 3.5 5.0	SPT2 UDS SPT3		33/45 40/45	2	2	3	5									
	6.5		7.0	21/11	UDS	6.5	UDS															
	Yellowish White Highly Weathered Rock		9.0 10.0	22/11	SPT SPT	8.0 9.5	SPT4		Nil 5/8	25B/2cm 50B/8cm			>100									
	10.2 Whitish Brown Moderately Weathered Rock		11.0		10.2-11.2										56	DC			2+12+8+6+7+7+14= 56cm	26	N	ii
	11.2 Greyish White Hard Rock		12.0 - 13.0		11.2-12.2 12.27-13.18										100	DC DC			24+29+54=107cm 35+30+26=91cm	100	N	
	14.2		14.0	24/11	13.18-14.2										100	DC			10+50+42=102cm	100	N	il

TC- TUNGSTEN CARBIDE DC-DIAMOND CORE BIT R=REBOUND BOREHOLE TERMINATED AT 14.2m DEPTH

SECON

NJS-MM-TCE Consortium Annexure -V Final Report

PROJECT : Geo-technical Investigations for STP CLIENT : NJS-MM-TCE CONSORTIUM

TEST LOCATION : HORAMAVU

STARTING DATE OF TESTING :26-11-2007 COMPLETION DATE OF TESTING :26-11-2007

SIZE OF PLATE: 75x75x25cm SIZE OF PIT:3x3x1.5m

PLATE LOAD TEST AS PER IS:1888

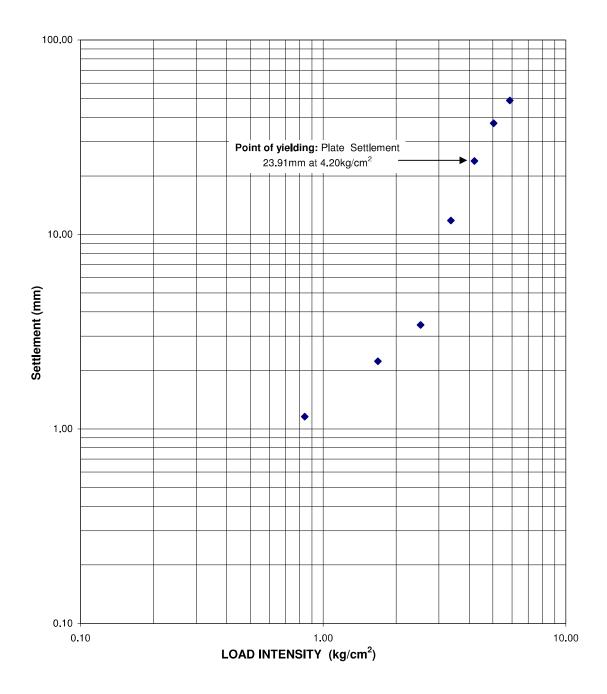
SL	LOAD	TIME IN		DIAL GAU	GE DIVISIONS	I	CUMMULATIVE	
NO.	INTENSITY kg/cm ²	MIN	DG I	DG II	DG III	DG IV	AVERAGE SETTLEMENT (mm)	REMARKS
1	0.07	0	0	0	0	0		Loading cycle
		1	35	25	26	24		started
		5	36	25	28	24		
		10	36	25	29	24		
		15	36	25	29	24		
		25	36	25	29	24		
		35	36	25	29	24		
		50	37	27	31	25		
		60	37	27	31	25	0.300	
2	0.84	0	94	107	171	112		
		1	101	118	179	121		
		5	105	122	185	135		
		10	106	124	188	137		
		15	107	125	190	137		
		25	109	128	192	138		
		35	110	128	194	140		
		50	110	129	196	143		
		60	111	130	197	145	1.458	
3	1.68	0	160	206	281	207		
		1	187	214	289	249		
		5	191	216	291	254		
		10	195	221	296	256		
		15	198	225	299	259		
		25	202	227	302	362		
		35	205	230	304	264		
		50	206	231	305	265		
		60	207	232	306	266	2.528	
4	2.52	0	265	294	371	329		
		1	278	301	380	335		
		5	295	315	395	363		
		10	302	322	401	373		
		15	306	325	406	381		
		25	312	330	412	389		
		35	316	334	417	395		
		50	322	338	421	397		
		60	325	341	424	400	3.725	

SL	LOAD	TIME IN		DIAL GAU	GE DIVISIONS		CUMMULATIVE AVERAGE	
NO.	INTENSITY kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	REMARKS
5	3.36	0	1080	1100	1180	1160		
		1	1115	1125	1212	1172		
		5	1135	1143	1226	1188		
		10	1145	1152	1233	1199		
		15	1153	1159	1240	1204		
		25	1160	1164	1246	1210		
		35	1165	1170	1248	1214		
		50	1173	1177	1255	1225		
		60	1179	1178	1257	1233	12,118	
6	4.20	0	2350	2380	2355	2295		
		1	2380	2397	2370	2304		
		5	2410	2427	2394	2320		
		10	2416	2431	2399	2329		
		15	2422	2434	2404	2341		
		25	2430	2444	2410	2348		
		35	2434	2448	2417	2354		
		50	2440	2451	2420	2358		
		60	2443	2453	2424	2363	24.208	
7	5.04	0	3890	3723	3645	3511		
		1	3922	3741	3663	3523		
		5	3948	3762	3682	3538		
		10	3954	3767	3688	3547		
		15	3961	3775	3696	3555		
		25	3964	3778	3700	3558		
		35	3968	3779	3708	3561		
		50	3971	3782	3714	3564		
		60	3972	3783	3716	3567	37.595	
8	5.88	0	4974	4886	4838	4801		
		1	4986	4896	4841	4816		
		5	4997	4899	4849	4827		
		10	5001	4903	4856	4831		
		15	5008	4911	4864	4839	_	
		25	5012	4916	4869	4842		
		35	5016	4920	4873	4847		
		50	5027	4931	4885	4859		
		60	5029	4933	4857	4863	49.205	

NJS-MM-TCE Consortium Annexure V Final Report

REBOUND READINGS

SL NO.	LOAD INTENSITY	TIME IN	I	DIAL GAUG	E DIVISIO	N	CUMMULATIVE AVERAGE SETTLEMENT	REMARKS
NO.	kg/cm ²	IVIJIN	DG I	DG II	DG III	DG IV	(mm)	
1	5.04	1	5029	4933	4857	4863		
		5	5029	4933	4857	4863		Unloading cycle started
		10	5029	4933	4857	4863		
		15	5029	4933	4857	4863	49.205	
2	4.20	1	5029	4933	4857	4863		
		5	5029	4933	4857	4863		
		10	5029	4933	4857	4863		
		15	5029	4933	4857	4863	49.205	
3	3.36	1	5029	4933	4857	4863		
		5	5029	4933	4857	4863		
		10	5029	4933	4857	4863		
		15	5029	4933	4857	4863	49.205	
4	2.52	1	5029	4933	4857	4863		
		5	5029	4933	4857	4863		
		10	5029	4933	4857	4863		
		15	5029	4933	4857	4863	49.205	
5	1.68	1	5020	4923	4846	4851		
		5	5018	4920	4841	4846		
		10	5017	4919	4840	4845		
		15	5017	4919	4840	4844	49.050	
6	0.84	1	4922	4897	4818	4816		
		5	4984	4890	4808	4811		
		10	4984	4890	4808	4811		
		15	4983	4889	4806	4807	48.713	
7	0.00	1	4776	4679	4514	4584		
		5	4771	4673	4507	4573		
		10	4764	4667	4501	4568		
		15	4762	4665	4497	4564	46.220	


PLATE LOAD TEST: LOAD INTENSITY vs SETTLEMENT CURVE

CLIENT : NJS-MM-TCE CONSORTIUM PROJECT : GEOTECHNICAL INVESTIGATION FOR STP

PLT NO: PLT-1
DEPTH (m): 1.5m

HORAMAVU

SIZE OF PLATE(mm) :750 x 750 x 25

SECON 28

Final Report M/S NJS-MM-TCE CONSORTIUM Annexure -VIII

CLIENT: M/s NJS-MM-TCE CONSORTIUM **PROJECT**: Geotechnical Investigation for STP

ERT NO: 1(Electrical Substation) **DATE OF COMMENCEMENT**: 17.11.07

LOCATION: Horamavu DATE OF COMPLETION :17.11.07

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-	Direction of test and Remarks
	1.0	8.010	6.283	50.328	
	2.0	1.470	12.566	18.473	
	3.0	0.698	18.850	13.157	East-West
	5.0	0.423	31.416	13.289	East-West.
	10.0	0.234	62.832	14.703	
ERT-1	15.0	0.365	94.248	34.400	
<u> </u>	1.0	8.190	6.283	51.459	
	2.0	1.525	12.566	19.164	
	3.0	0.710	18.850	13.383	North-South
	5.0	0.451	31.416	14.169	North-South
	10.0	0.285	62.832	17.907	
	15.0	0.321	94.248	30.254	

Page No: 49 Secon

NJS-MM-TCE Consortium 12 Kachohalli STP

BORE LOG

PROJECT: GEOTECH INVESTIGATIONS FOR KACHOHALLI STP

BH No and LOCATION : BH-2,KACHOHALLI STP

CLIENT: NJS-MM-TCE CONSORTIUM

TYPE OF BORING: ROTARY BORE HOLE DIA. : 150mm/Nx : 1**.**5m GWT

CASING DEPTH : Nil

DATE OF COMMENCEMENT : 29.06.08 DATE OF COMPLETION : 30.06.08

DEPTH BELOW	SUB-SOIL CLASSIFICATION	TYPE OF SAMPLING	STA	NO. OF BL		ST	ROCK D	RILLING	
EGL (m)			FIRST 15 cm (N ₁)	NEXT 15 cm (N ₂)	NEXT 15 cm (N ₃)	'N'-VALUE (N ₂ + N ₃)	CR (%)	RQD (%)	REMARKS
		DS							
1.00		SPT	3	3	4	7			
2.00 3.00	Reddish Brown Clayey Silt (Stratified with Sand)	UDS							TC Bit used : 4.5 to 5.5m
4.00		SPT	50B/15cm			>100			Diamond Bit used : 5.5
5.00	Whitish Highly Weathered Rock								to 9.5m
6.00		Run I		5 . 5-6,	.5m		NiI	Nil	Broken Cores
7.00	Greyish White Moderately Weathered Rock	Run II		6 . 5-7.	.5m		48	20	5+5+4+5+9+20=48cm
8.00		Run III		7,5-8	.5m		47	27	9+8+3+15+12=47cm
9.00	Greyish White Hard Rock	Run IV		8.5-9.	.5m		72	52	16+9+6+5+18+18 =72cm

SPT = STANDARD PENETRATION TEST

BH-2 Terminated at 9.5m

B: NO OF BLOWS

DS = DISTURBED SAMPLE

UDS

Undisturbed Sample

SECON PRIVATE LIMITED

NJS-MM-TCE Consortium 11 Kachohalli STP

BORE LOG

PROJECT: GEOTECH INVESTIGATIONS FOR KACHOHALLI STP

BH No and LOCATION: BH-1,KACHOHALLI STP

CLIENT: NJS-MM-TCE CONSORTIUM

TYPE OF BORING: ROTARY BORE HOLE DIA. : 150mm/Nx GWT : 1.2m

: 25.06.08

CASING DEPTH : Nil DATE OF COMMENCEMENT : 21.06.08

DATE OF COMPLETION

DEPTH BELOW	SUB-SOIL CLASSIFICATION	TYPE OF SAMPLING	STA	NO. OF BL		EST	ROCK D	RILLING	
EGL (m)			FIRST 15 cm (N ₁)	NEXT 15 cm (N ₂)	NEXT 15 cm (N ₃)	'N'-VALUE (N ₂ + N ₃)	CR (%)	RQD (%)	REMARKS
		DS							
1.00		SPT	4	5	7	12			
2.00	Reddish Brown Clayey Silt (Stratified with								
3.00	sand)	UDS							
4.00									
L .		SPT	4	5	8	13			
5.00	Brownish Black Clayey Silt (Stratified with sand)	UDS/RS							
6.00	· · · · · · · · · · · · · · · · · · ·	บบอ/หอ							TC Bit used : 6,5 to 8m
7.00	Greyish Yellow Highly Weathered Rock	SPT	50B/10cm			>100			Diamond Bit used : 8.0 to 12.0m
8.00									
9.00		Run I		8.0 -9	.0m		Nil	Nil	Broken Cores
10.00	Greyish Moderately Weathered Rock	Run II		9.0-10	0 . 0m		75	Nil	8+7+7+4+3+5+4+7+5 +4+2+5+4+7=75cm
11.00		Run III		10.0-1	1.0m		83	49	3+9+4+7+6+11+5+18 +20=83cm
12.00	Greyish Hard Rock	Run IV		11.0-1	2 . 0m		92	71	11+25+5+6+10+23 +12=92cm
	STANDADD DENETDAT				rminated			ı	

SPT = STANDARD PENETRATION TEST

BH-1 Terminated at 12.0m

B: NO OF BLOWS DS = DISTURBED SAMPLE UDS

Undisturbed Sample UDS/RS : Representative Sample

SECON PRIVATE LIMITED

NJS-MM-TCE Consortium 13 Kachohalli STP

BORE LOG

PROJECT: GEOTECH INVESTIGATIONS FOR KACHOHALLI STP

BH No and LOCATION : BH-3,KACHOHALLI STP **CLIENT**: NJS-MM-TCE CONSORTIUM

TYPE OF BORING: ROTARY BORE HOLE DIA. : 150mm/Nx

GWT : 1.2m CASING DEPTH : Nil

DATE OF COMMENCEMENT : 29.06.08 DATE OF COMPLETION : 30.06.08

DEPTH BELOW	SUB-SOIL CLASSIFICATION	TYPE OF SAMPLING	STA	ANDARD PENE NO. OF BLO		EST	ROCK D	RILLING	
EGL (m)			FIRST 15 cm (N₁)	NEXT 15 cm (N ₂)	NEXT 15 cm (N ₃)	'N'-VALUE (N ₂ + N ₃)	CR (%)	RQD (%)	REMARKS
		DS							
1.00		SPT	6	9	12	21			
3.00	Reddish Brown/Brownish Clayey Silt (Stratified with Sand)	UDS							TC Bit used : 6.0 to 9.0m
4.00		SPT	50B/15cm			>100			Diamond Bit used: 9.0-
5.00 6.00		SPT	50B/10cm			>100			11.0m
7.00	Yellowish Grey/Greyish Brown Highly Weathered Rock	SPT	50B/R			>100			
9.00									
10.00	Greyish White	Run I		9.0 -10).0m		NiI	Nil	Broken Cores recovered
11.00	Moderately Weathered Rock	Run III		10.0-1	1.0m		27	10	5+5+3+4+10=27cm

SPT = STANDARD PENETRATION TEST

BH-3 Terminated at 11.0m

B: NO OF BLOWS

DS = DISTURBED SAMPLE

UDS R

Undisturbed Sample Refusal

SECON PRIVATE LIMITED

M/S NJS-MM-TCE CONSORTIUM

Final Report -STP at Kachohalli

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for Kachohalli STP

ERT NO: 1 DATE OF COMMENCEMENT: 25.06.08

LOCATION : Kachohalli STP DATE OF COMPLETION: 25.06.08

Coordinates: I 768005, E:1438061

ELECTRICAL RESISTIVITY TEST RESULTS

	-	LLLOTTIOAL	nesistiviti test	IILSUL1S	1
ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	6.100	6,283	38,327	
	2.0	1.858	12.566	23.348	
	3.0	0.855	18.850	16.116	
	5.0	0.556	31,416	17.467	East-West
	7.0	0.520	43.982	22.871	East-west
	10.0	0.520	62.832	32.673	
	12.0	0.499	75.398	37.624	
	15.0	0.493	94.248	46.464	
ERT-1	1.0	7.790	6.283	48.946	
	2.0	1.591	12.566	19.993	
	3.0	0.895	18.850	16.870	
	5.0	0.600	31.416	18.850	
	7.0	0.540	43,982	23,750	North-South
	10.0	0.561	62.832	35,249	
	12.0	0.539	75.398	40.640	
	15.0	0.507	94.248	47.784	

SECON Page No : 15

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : Nil

LUCATION	: NAGA	SAN	IDRA																CASING DEFITE : 1111				
											SPT DETA	NLS					ROCK DRILLI	NG			_		\Box
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
				05/02	DS	0.5	DS												=				\Box
			1.0 _ 2.0		SPT	1.5	SPT1		35	5	9	12	21										
	Brownish Clayey Silt		- 3.0 - 4.0		UDS	3.0	UDS																
	4.3		5.0		SPT	4.5	SPT2		R				>100			DC							
	Fractured Rock		_ 6.0 _		SPT	6.0	SPT3		R				>100			DC							
			7.0 _ 8.0	06/02	SPT	7.5	SPT4		R				>100			DC							
	8.5 Brownish Highly Weathered Rock		9.0 _ _ 10.0		SPT	9.0	SPT5		20	35	55	46B/29cm	>100			DC							
	10.3 Yellowish Brown Highly Weathered Rock		11.0		SPT	10.5	SPT6		14	60	100B/14cm		>100			DC							
09000	Rock 12.1		12.0		SPT	12.0	SPT7		Nil				>100			DC							
	Fractured Rock		13.0 - 14.0		SPT	13.5	SPT8		Nil				>100			DC							
	15.0		 15.0		SPT	15.0	SPT9		Nil				>100			DC							

10-48

NJS Consultants Co., Ltd.

DC-DIAMOND CORE BIT

R=Rebound

BOREHOLE TERMINATED AT 15.0m DEPTH

10-49

NJS-MM-TCE CONSORTIUM Annexure II Final Report Naga Sandra

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : 1.0m

											SPT DETAI	16					ROCK DRILLI	NG				_	
SYMBOLC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	PIECES	кар	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
			Г	04/02	DS	0.5	DS																
	Brownish Clayey Silt		1.0 _ 2.0		SPT	1.5	SPT1		32	8	9	11	20										
	2.4 Greyish BrownYellow Clayey Silt		- 3.0 - 4.0		UDS	3.0	UDS																
	4.3 Brownish Silty Sand		- 5.0 -		SPT	4.5	SPT2		30	8	10	12	22			TC							
CKICKICK.	5.9 Fractured Rock 6.8		6.0 _ 7.0	05/02	SPT	6.5	SPT3		Nil	R			>100			TC							
	Brownish Highly Weathered Rock		8.0																				
	8.6 Yellowish Highly Weathered Rock		9.0		SPT	9.0	SPT4		18	58	71	30B/22cm	>100			тс							
	10.3		11.0		SPT	10.5	SPT5		10	65	100B/14cm		>100			тс							
	Greyish Green_Highly		12.0 13.0		SPT	12.0	SPT6		ws	80	100B/10cm		>100			TC							
	Weathered Rock		14.0		SPT	13.5	SPT7		5	100B/5cm			>100			TC							
	15.0		15.0		SPT	15.0	SPT8		2	100B/2cm			>100			TC							

TC- TUNGSTEN CARBIDE

R=Rebound WS-Wash Sample

BOREHOLE TERMINATED AT 15.0m DEPTH

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-3

LOCATION : NAGA SANDRA TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/

: 150mm/Nx Size

GWI	FRUM	EGL	:	NII	
CAS	NG DE	PTH	•	Nil	

											SPT DETAIL	LS					ROCK DRILLI	NG	T			$\overline{}$	\Box
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS N1	NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
			L	05/02	DS	0.5	DS																
	Brownish Clayey Silt		1.0 _ 2.0		SPT	1.5	SPT1		30	6	8	11	19										
			3.0 4.0		UDS	3.0	UDS																
	4.4	-		06/02	SPT	4.5	SPT2		Nil				>100			DC							
			6.0 _ 7.0		SPT	6.0	SPT3		Nil				>100			DC							
			8.0		SPT	7.5	SPT4		Nil				>100			DC							
	Freedown I Post		9.0		SPT	9.0	SPT5		Nil				>100			DC							
	Fractured Rock		11.0	07/02	SPT	10.5	SPT6		Nil				>100			DC							
			13.0		SPT	12.0	SPT7		Nil				>100			DC							
			_ 14.0 _		SPT	13.5	SPT8		Nil				>100			DC							
M M M	15.0		15.0		SPT	15.0	SPT9		Nil				>100			DC							

NJS Consultants Co., Ltd.

DC-DIAMOND CORE BIT

R=Rebound

BOREHOLE TERMINATED AT 15.0m DEPTH

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

DC-DIAMOND CORE BIT

R=Rebound

BORE HOLE NO : BH-4

LOCATION : NAGA SANDRA

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Not Met
CASING DEPTH : 1.5m

BOREHOLE TERMINATED AT 7.5m DEPTH

LUCATION	: NAGA	SAN	DRA																CASING DEFINE . 1.0				
																	ROCK DRILLI	NG					
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS TA FOR 2nd 15CM TA N2		N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	in situ rock tests
			-	08/02	DS	0.5	DS												=				П
			1.0										١.,										
	Grevish Black Clavey		- 2.0		SPT	1.5	SPT1		32	8	9	10	19										
	Greyish Black Clayey Silt		_ 3.0																				
			-		UDS	3.0	UDS																
			4.0										>100										
ŘZČZČ	4.3		5.0		SPT	4.5	SPT2		Nil				>100			DC							
62626			- 6.0		SPT	6.0	CDTZ						>100			DC							
84848	Fractured Rock		L		3P1	6.0	SPT3		Nil				7100										
			7.0	08/02	SPT	7.5	SPT4		Nil				>100			DC							
	7.5		8.0		٠.	"]		•••														
1													1								- [

10-51

NJS Consultants Co., Ltd.

SECON

 $\ensuremath{\mathbf{GWT}}$: Not met

TRIAL PIT LOG

PROJECT : GEOTECHNICAL INVESTIGATION FOR SIZE OF PIT. : 3.0x3.0x3.0m

STP WORKS

CLIENT: M/S.NJS-MM-TCE CONSORTIUMCOMMENCEMENT DATE: 08.02.08LOCATION: NAGASANDRACOMPLETION DATE: 08.02.08

TRIAL PIT NO. : TP-1

BACKFILLING DATE : 08.02.08

BACKFILLING DATE : 08.02.08

DEPTH			LAYEF	THICKNES	S ON EAC	H FACE	et neter g/cm²	
BELOW EGL (m)	SOIL STRATA DESCRIPTION	TYPE OF SAMPLING	N	S	E	w	Pocket penetrometer reading kg/cm ²	Remarks
0.50								
1.00		-					4.50	
1.50	Brownish Clayey Silt							
2.00							2.50	
2.50								
3.00		BS					2.00	

Secon Page No: 17

Nagasandra Report GKVK

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for STP works

ERT NO: 1DATE OF COMMENCEMENT: 7.2.08LOCATION: NagasandraDATE OF COMPLETION :7.2.08

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	5.350	6.283	33.615	
	2.0	1.620	12.566	20.358	
	3.0	0.682	18.850	12.855	
	5.0	0.494	31.416	15.519	Noor TD 1 Foot West
	7.0	0.421	43.982	18.517	Near TP-1,East West
	10.0	0.320	62.832	20.106	
	12.0	0.321	75.398	24.203	
	15.0	0.308	94.248	29.028	
ERT-1					
	1.0	4.480	6.283	28.149	
	2.0	1.513	12.566	19.013	
	3.0	0.612	18.850	11.536	
	5.0	0.337	31.416	10.587	Foot West
	7.0	0.307	43.982	13.503	East-West
	10.0	0.262	62.832	16.462	
	12.0	0.231	75.398	17.417	
	15.0	0.208	94.248	19.604	

Secon Page No: 35

NJS-MM-TCE CONSORTIUM Annexure I

BORE LOG

PROJECT : GEOTECH INVESTIGATION FOR PROPOSED ISPSTYPE OF BORING: ROTARYCLIENT : NJS-MM-TCE CONSORTIUMBORE HOLE DIA.: 150mm/76mmBH NO. : BH 1GWT: Not metLOCATION : ISPS at CHIKKABANAVARA (C.B.VARA)CASING: 2.70m

COMMENCED : 22.08.09 **COMPLETED** : 22.08.09

DEPTH	SOIL/ROCK	TYPE OF	STA	NDARD PEN				OCK LLING	
BELOW EGL (m)	CLASSIFICATION	SAMPLING	FIRST 15 cm (N ₁)	NEXT 15 cm (N ₂)	NEXT 15 cm (N ₃)	'N'-VALUE (N ₂ + N ₃)	CR (%)	RQD (%)	REMARKS
		DS							
1.00	Brownish Silty Sand								
L		SPT	5	5	6	11			
2.00									
3.00									
	Greyish Brown	UDS							
4.00	Clayey Silt / Sand								
		SPT	6	7	12	19			
5.00									
6.00	Brownish white	SPT	100B/3cm			>100			
	Very Dense Sandy gravels								
		SPT	10	18	26	44			
8.00									
	Greyish white								
9.00	highly weathered	SPT	11	24	35	59			
	rock								
10.00		SPT	40	50B/17cm		>100			ND MATER TABLE

SPT = STANDARD PENETRATION TEST

BH 1 Terminated at 10.00m

....

GWT: GROUND WATER TABLE BH: BOREHOLE

B: NO OF BLOWS
DS: DISTURBED SAMPLE

EGL: EXISTING GROUND LEVEL

SECON PRIVATE LIMITED

10-54

NJS-MM-TCE CONSORTIUM

BORE LOG

PROJECT : GEOTECH INVESTIGATION FOR PROPOSED ISPSTYPE OF BORING: ROTARYCLIENT : NJS-MM-TCE CONSORTIUMBORE HOLE DIA.: 150mm/76mm

BH NO.: BH 2 GWT : 3.00m
LOCATION: ISPS at CHIKKABANAVARA (C.B.VARA) CASING : -

COMMENCED : 23.08.09

COMPLETED : 24.08.09

DEPTH			STAN	DARD PEN				OCK LLING	
BELOW EGL (m)	SOIL/ROCK CLASSIFICATION	TYPE OF SAMPLING	FIRST 15 cm (N ₁)	NEXT 15 cm (N ₂)	NEXT 15 cm (N ₃)	'N'-VALUE (N ₂ + N ₃)	CR (%)	RQD (%)	REMARKS
		DS							
1.00	Brownish Silty Sand	SPT	4	7	9	16			
2.00									
3.00		UDS							
4.00	Greyish Brown Clayey Silt / Sand	SPT	F	7	11	18			
 5.00		381	5		11	10			T.C. Bit used from 5.70 to
6.00	5 7	SPT	R			>100			8.8m depth
7.00		SPT	100B/4cm			>100			Diamond Bit used from 8.80 to 15.0m depth
8.00	Brownish white								
9.00	Highly weathered rock	SPT	R			>100			
10.00									
		SPT	R			>100			
11.00									
12.00		SPT	100B/11cm			>100			
13.00	Greyish Brown Highly weathered	SPT	100B/10cm			>100			
14.00	rock	2	,,						
15.00	AND ADD DENITEDATIO	SPT	100B/12cm	DU 3 Tam		>100			ND WATER TARLE

SPT = STANDARD PENETRATION TEST

BH 2 Terminated at 15.00m

GWT: GROUND WATER TABLE BH: BOREHOLE

B: NO OF BLOWS
DS: DISTURBED SAMPLE

EGL: EXISTING GROUND LEVEL UDS: UNDISTURBED SAMPLE

SECON PRIVATE LIMITED

SECON

Soil Investigations- Chikkabanavara ISPS

M/S NJS-MM-TCE CONSORTIUM Final report - ISPS at CB VARA Annexure II

CLIENT: M/s NJS-MM-TCE CONSORTIUM

DATE OF COMMENCEMENT: 26.08.09

PROJECT: Geotech Investigation for ISPS, C B Vara

DATE OF COMPLETION: 26.08.09

	El	ECTRICAL RESIS	TIVITY TEST RES	SULTS	
ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.00	4.910	6.283	30.850	
	2.00	2.450	12.566	30.788	
	3.00	1.660	18.850	31.290	East-West
	5.00	0.890	31.416	27.960	Last-west
	10.00	0.550	62.832	34.558	
	15.00	0.325	94.248	30.631	
ERT-1					
	1.00	4.890	6.283	30.725	
	2.00	3.880	12.566	48.758	
	3.00	1.475	18.850	27.803	North-South
	5.00	0.600	31.416	18.850	เพอเนา-วอนเก
	10.00	0.280	62.832	17.593	
	15.00	0.375	94.248	35.343	

SECON

NJS-MM-TCE CONSORTIUM Final Report JAKKUR Annexure II

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-1 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.5m below EGL
CASING DEPTH : 3.0m

	. 071111																						_
											SPT DETAIL						ROCK DRILLI	NG					
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS 67 FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	ROD	SIZE OF HOLE	MAIER LOSS IF ANT IN SITU ROCK TESTS	
	Reddish Brown Sandy Silt with Clay Binder		L	07/12	SPT	0.5	SPT1	7	30/45	2	2	2	4										
	2.3 Brownish Grey Sandy Silt with Clay Binder		- 3.0 - 4.0		UDS SPT	2.5	UDS		43/45		,												
	4.0		_ 5.0 _		UDS/RS	5.5	SPT2 UDS/RS		TO/TO	6	7	9	16										
	Brownish Grey Highly Weathered Rock		6.0 - 7.0 - 8.0		SPT	7.0	SPT3		44/45	16	36	46	82										
	ROCK		9.0 - 10.0	08/12	SPT SPT	10.0	SPT4 SPT5		42/45 44/45	15 13	32 24	46	78 64										
	12.2		- 11.0 - 12.0		SPT	11.5	SPT6		38/45	17	40	50	90										
	12.7 Yellowish Highly Weathered Rock		- 13.0 - 14.0		SPT	13.0	SP17		22/26	40	50	50	100										
	15.1		_ 15.0 _		SPT	14.5	SPT8			50B/15cm			>100										
	Yellowish Grey Highly Weathered Rock		16.0 _ 17.0		SPT	16.0	SPT9		17/30	40	50B/15cm		>100										
			18.0		SPT	17.5	SPT10		30/45	40	44	50	94										

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-1 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.5m below EGL
CASING DEPTH : 3.0m

										SPT DETAILS						ROCK DRILLI	NG					
ENGINEERING CLASSIFICATION CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
Yellowish Grey Highly Weathered Rock		-	09/12		19.0	SPT112	1		60B/10cm 35		2 (2	>100	네 10	22 2d 2	AT SU	30 S S S S S S S S S S S S S S S S S S S	ns	ald 21S		55	/A	<u>N</u>
	7	<mark>Z</mark> - 0	GWT					DC-DIAMO	OND CORE	BIT			_				BOREHO	LE TERMINATED AT 20.0m DEPTH				

SECON

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : 0.3m above EGL
CASING DEPTH : 3.0m

LOCATION	٧.	: JAKK	UK																	CASING DEPTH . 5.	•			
										ROCK DRILLING SPT DETAILS														
SYMBOLIC REPRESENTATION		ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	or BLOWS 2nd 15CM	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
	П			-		SPT	0.5	SPT1	0.3	29/45	1	1	1	2										
		Greyish Brown Sandy Silt with Clay Binder		1.0 _ 2.0 _ 3.0	07/12	SPT UDS	2.0	SPT2 UDS		30/45	6	7	8	15										
	***	3.6	İ	- 4.0		SPT	4.0	SPT3		25/45	10	15	35	50										
	***			_ 5.0	08/12	UDS/RS	5.5	uds/rs																
	$\overset{ imes}{ imes}$	Greyish Brown Highly Weathered Rock		6.0		'				00 /15														
	※	6.3		- 7.0		SPT	6.5	SPT4		28/45	10	19	26	45										
				8.0		UDS/RS	7.5	uds/Rs																
		9.3		9.0		SPT	9.0	SPT5		22/45	20	45	60	105										
W O		3.3		10.0			40.5																	
		Brownish Boulders		11.0		DS	10.5	DS																
HČ				12.0		DS	10.5	DS																
		12.7		13.0		SPT	13.0	SPT6		5/7	100B7cm			>100										
	$\overset{\infty}{\otimes}$			_ 14.0																				
	*** ***	Greyish White Highly Weathered Rock			09/12	14.8–15.8	3									20	DC			6+5+6+3=20cm	Nil	76	Nil	
		15.8		16.0		15.8–16.8	3									60	DC			10+23+7+10+10=60cm	53	76	Nil	
	***	Brownish White Moderately Weathered Rock		17.0 _ 18.0		16.8–17.8	3									51	DC			12+6+5+11+7+10=51cm	33	76	Nil	

NJS-MM-TCE CONSORTIUM Annexure II Final Report JAKKUR

BORELOG

: NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2 LOCATION : JAKKUR TYPE OF BORING : ROTARY

BOREHOLE DIA : 150mm/Nx Size GWT FROM EGL : 0.3m above EGL CASING DEPTH : 3.0m

											SPT DETAIL						ROCK DRILLI	NG					
I F I	EERING FICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS		NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
Brownis	sh White erately red Rock		_		₹ð		3	The state of the s	FE FE	35 N	N FO	NC FG	Z	DIA DIA	33U 47	ISIN E	PEC	nns 3d	हुँ ≝ 77+10+17=104cm		76		<u>x</u>
		¥	– GI	WT	TC- TU	NGSTEN	L Carbide		DC-DIAMO	IND CORE	BIT RS-	REPRESE	NTATIVE	SAMPLI	<u> </u>			BOREHO	l Le terminated at 20.0m depth		Ш		

M/S NJS-MM-TCE CONSORTIUM

Annexure VI

Final Report -Jakkur STP

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for STP, JAKKUR

ELECTRICAL RESISTIVITY TEST RESULTS

ERT NO: 1 DATE OF COMMENCEMENT: 17.11.07 LOCATION: Jakkur DATE OF COMPLETION: 17.11.07

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	4.300	6.283	27.018	
	2.0	1.522	12.566	19.126	
ERT-1	3.0	0.804	18.850	15.155	East-West
LNI-I	5.0	0.412	31.416	12.943	Lasi-Wesi
	10.0	0.242	62.832	15.205	
	15.0	0.179	94.248	16.870	

ERT NO: 2 DATE OF COMMENCEMENT: 17.11.07 LOCATION: Jakkur DATE OF COMPLETION: 17.11.07

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity ρ _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	4.280	6.283	26.892	
	2.0	1.497	12.566	18.812	
	3.0	0.680	18.850	12.818	North-West.
	5.0	0.462	31.416	14.514	North-west.
	10.0	0.258	62.832	16.211	
ERT-2	15.0	0.135	94.248	12.723	
Eni-2	1.0	4.390	6.283	27.583	
	2.0	1.510	12.566	18.975	
	3.0	0.676	18.850	12.742	East-West
	5.0	0.493	31.416	15.488	Easi-Wesi
	10.0	0.249	62.832	15.645	
	15.0	0.152	94.248	14.326	

SECON Page No: 37

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

: GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS PROJECT

BORE HOLE NO LOCATION : GKVK TYPE OF BORING : ROTARY BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : 1.5m

	. 90.40										SPT DETA	ILS					ROCK DRILLI					$\overline{}$	
SYMBOLIC REPRESENTATION	ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/L.W.L	RECOVERY FOR SOIL SAMPLE	SEATING BLOWS	NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE	RQD	SIZE OF HOLE	WATER LOSS IF ANY	IN SITU ROCK TESTS
N.S.	Reddish Sandy Silt with clay Binder 4.0 Brownish Yellow Sandy Silt With Clay Binder 6.0 Brownish Yellow Sandy Silt With Traces of Clay			රි ම 03/10	DS SPT UDS SPT UDS SPT SPT	0.5 1.5 3.0 4.5 6.0	DS SPT1 UDS SPT2 UDS SPT3 SPT4	37	28/45 28/45 25/45 30/45	7 16 12 13	9 9 21 14 17	22 21 27	21 43 44 44	VIG.	HEG REC	84.1 85.0	ESD STATE OF THE S	nrs Lad	27.S	α	IZIS	WA	- N

BOREHOLE TERMINATED AT 10.0m DEPTH

NJS Consultants Co., Ltd.

CLIENT : NJS-MM-TCE CONSORTIUM, BANGALORE

PROJECT : GEOTECHNICAL INVESTIGATIONS FOR WATER SUPPLY COMPONENTS

BORE HOLE NO : BH-2 LOCATION : GKVK

TYPE OF BORING : ROTARY
BOREHOLE DIA : 150mm/Nx Size
GWT FROM EGL : Nil
CASING DEPTH : Nil

	,,,,,		GKVK	`																					
													SPT DETAI	ıs					ROCK DRILLI	NG					
	SYMBOLIC REPRESENTATION		ENGINEERING CLASSIFICATION	ELEVATION IN (m)	DEPTH IN (m) BELOW REFERENCE	DATE OF BORING & SAMPLING	NATURE OF SAMPLING	DEPTH OF SAMPLE BELOW REFERENCE LEVEL	SAMPLE REF NO	LEVEL OF WATER TABLE/LW.L	RECOVERY FOR SOIL SAMPLE		NO OF BLOWS FOR 2nd 15CM N2	NO OF BLOWS FOR 3rd 15CM N3	N VALUE=N2+N3	DIA OF CASING IF USED (mm)	PERCENT CORE RECOVERY	TYPE OF DRILL BIT USED (TC/DIAMOND)	DESCRIPTION OF CORE ROCK TYPE COLOUR DEGREE OF WEATHERING JOINT	DETAILS OF WATER, SLURRY COLOUR ETC.	SIZE OF CORE PIECES	RQD	SIZE OF HOLE	WATER LOSS IF ANY	in situ rock tests
1 × × 1	1000 10	I wal			1.0	03/10	SPT	0.5	SPT1		20/45	2	4	5	9										
× 1 × × 1					_ 2.0		UDS	2.0	UDS																
The state of the s			Reddish Sandy Silt With Clay Binder		3.0 - 4.0		SPT	3.5	SPT2		25/45	6	10	12	22										
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					5.0 -		UDS	5.0	UDS																
			6.0 Brownish Yellow Silty Sand with Traces of Clay		6.0 - 7.0 - 8.0	. 03/10	SPT	6.5	SPT3		30/45	8	11	13	24										
**		***	9.0 Brownish Yellow Highly Weathered Rock 10.0		9.0 _ 10.0		SPT	9.5	SPT5		Nil	50B/2cm			>100										

BOREHOLE TERMINATED AT 10.0m DEPTH

SECON

NJS-MM-TCE CONSORTIUM

Annexure-II

Final Report GKVK

TRIAL PIT LOG

PROJECT : GEOTECHNICAL INVESTIGATION FOR SIZE OF PIT. : 2.0x2.0x3.0m

WATER SUPPLY COMPONENT WORKS GWT : Not met

 CLIENT
 : M/S.NJS-MM-TCE CONSORTIUM
 COMMENCEMENT DATE
 : 19.11.07

 LOCATION
 : GKVK
 COMPLETION DATE
 : 20.10.07

 TRIAL PIT NO.
 : TP-1
 BACKFILLING DATE
 21.11.07

DEPTH			LAYE	R THICKNES	S ON EACH	FACE	ket ometer kg/cm²	
BELOW EGL (m)	SOIL STRATA DESCRIPTION	TYPE OF SAMPLING	N	S	E	W	Pocket penetrometer reading kg/cm	Remarks
1.00							0.75	
	Reddish Sandy Silt with Clay	BS						
2.00	Binder and gravels							In Situ density Conducted at 3m Depth
3.00		BS						Density is 1.71g/cc

Secon Page No.18

NJS-MM-TCE Consortium Annexure -IV GKVK Final Report

PROJECT: Geo-technical Investigations for Water Supply Component Works

CLIENT : NJS-MM-TCE CONSORTIUM

TEST LOCATION GKVK

STARTING DATE OF TESTING:20-11-2007 COMPLETION DATE OF TESTING:20-11-2007

SIZE OF PLATE:75x75x2.5cm

SIZE OF PIT:3x3m

PLATE LOAD TEST AS PER IS:1888

SL	LOAD INTENSITY	TIME IN		DIAL GAU	GE DIVISIONS	5	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	TILMATIKO
1	0.07	0	0	0	0	0		Loading cycle started
		1	39	30	25	15		Loading cycle started
		5	39	30	28	15		
		10	40	30	29	16		
		15	40	30	29	16		
		25	41	30	29	16		
		35	41	30	30	17		
		50	41	30	30	17		
		60	41	30	30	17	0.295	
2	0.84	0	62	71	42	20		
		1	65	72	44	21		
		5	66	72	45	21		
		10	67	73	45	22		
		15	67	73	46	22		
		25	68	73	47	23		
		35	68	73	47	23		
		50	68	74	47	23		
		60	68	74	47	23	0.530	
3	1.68	0	81	96	58	31		
		1	82	97	60	32		
		5	84	97	61	33		
		10	86	97	62	33		
		15	86	97	63	34		
		25	87	97	63	35		
		35	89	98	65	36		
		50	90	99	66	36		
		60	90	99	66	36	0.728	
4	2.52	0	94	141	72	43		
		1	95	144	74	44		
		5	97	145	76 	45		
		10	98	146	77	46		
		15	100	146	77	47		
	_	25	100	148	77	47		
	_	35	100	148	78	47		
		50	100	149	78	48		
		60	100	149	78	48	0.938	

NJS-MM-TCE Consortium Annexure -IV GKVK Final Report

SL NO.	LOAD INTENSITY kg/cm²	TIME IN MIN	DIAL GAUGE DIVISIONS				CUMMULATIVE AVERAGE	REMARKS
			DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	iii.Ai ii.O
5	3.36	0	104	136	84	50		
		1	105	163	86	51		
		5	107	163	89	53		
		10	109	164	91	54		
		15	109	164	92	55		
		25	110	165	92	56		
		35	110	165	93	56		
		50	111	166	94	57		
		60	111	166	94	57	1.070	
6	4.20	0	113	179	99	60		
		1	116	179	100	61		
		5	118	179	103	62		
		10	120	181	104	63		
		15	120	182	106	64		
		25	120	183	107	66		
		35	121	185	108	67		
		50	121	187	108	67		
		60	121	188	108	67	1.210	
		00	121	100	100	- 07	11.210	
7	5.04	0	122	189	111	68		
	3.04	1	123	190	112	69		
		5	125	192	115	71		
				194	117			
		10	126			72		
		15	127	195	118	73		
		25	127	196	118	74		
		35	127	197	118	75		
		50	128	198	120	76	4 005	
		60	128	198	120	76	1.305	
8	5.88	0	129	199	123	77		
		1	129	199	125	79		
		5	129	199	126	81		
		10	129	199	127	82		
		15	130	199	128	83		
		25	131	199	128	84		
		35	132	199	129	85		
		50	132	199	130	86		
		60	132	199	131	87	1.373	
9	6.72	0	133	200	133	88		
		1	134	201	134	89		
		5	134	201	136	90		
		10	134	202	138	92		
		15	134	203	139	93		
		25	135	204	140	94		
		35	137	205	141	95		
		50	137	205	141	95		
		60	137	205	141	95	1.445	

SL	LOAD INTENSITY	TIME IN		DIAL GAU	CUMMULATIVE AVERAGE	REMARKS		
NO.	kg/cm ²	MIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	112
10	7.56	0	138	206	142	97		
		1	138	206	144	99		
		5	138	206	147	101		
		10	138	207	150	106		
		15	139	208	151	108		
		25	140	209	152	109		
		35	141	210	153	109		
		50	141	210	153	109		
		60	141	211	154	110	1.540	
11	8.40	0	142	213	156	113		
		1	142	213	159	116		
		5	142	214	162	120		
		10	142	215	164	123		
		15	143	216	167	124		
		25	144	217	168	125		
		35	144	218	169	126		
		50	145	218	170	127		
		60	145	218	171	128	1.655	
12	9.24	0	146	220	173	130		
		1	147	221	174	132		
		5	148	222	175	134		
		10	148	223	177	135		
		15	149	224	177	136		
		25	150	225	178	137		
		35	150	225	180	140		
		50	151	226	181	141		
		60	152	227	182	142	1.758	
13	10.08	0	160	234	194	167		
		1	161	235	195	168		
		5	163	237	198	171		
		10	164	238	200	175		
		15	165	239	202	178		
		25	166	240	204	180		
		35	168	241	208	182		
		50	169	245	212	183		
-		60	170	246	215	184	2.038	

Secon 22

GKVK Final Report

REBOUND READINGS

SL NO.	LOAD INTENSITY	TIME IN		DIAL GAUC	GE DIVISIOI	N	CUMMULATIVE AVERAGE SETTLEMENT	REMARKS
NO.	kg/cm ²	IVIIIN	DG I	DG II	DG III	DG IV	(mm)	
1	9.24	1	170	246	215	184		
		5	170	246	215	184		Unloading cycle started
		10	170	246	215	184		
		15	170	246	215	184	2.038	
2	8.40	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
3	7.56	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
4	6.72	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
5	5.88	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
6	5.04	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
7	4.20	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
8	3.36	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	
9	2.52	1	170	246	215	184		
		5	170	246	215	184		
		10	170	246	215	184		
		15	170	246	215	184	2.038	

Secon 23

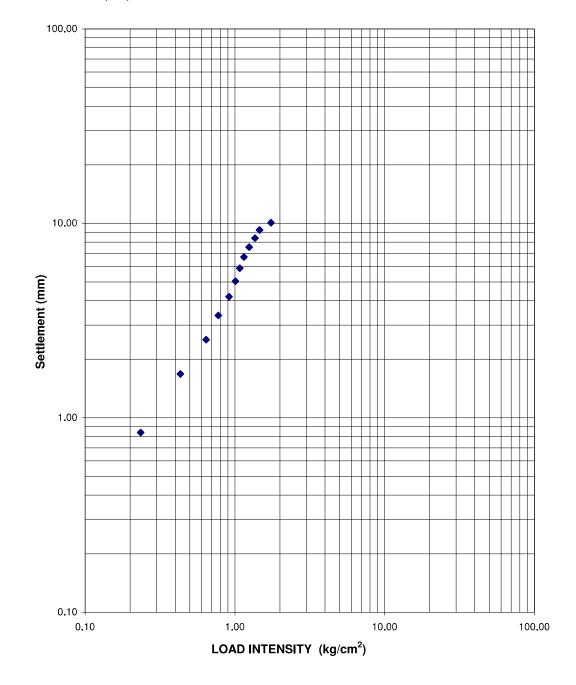
SL	LOAD INTENSITY	TIME IN	l	DIAL GAUC	SE DIVISIOI	N	CUMMULATIVE AVERAGE	REMARKS
NO.	kg/cm ²	WIIN	DG I	DG II	DG III	DG IV	SETTLEMENT (mm)	
10	1.68	1	168	240	211	181		
		5	167	239	209	179		
		10	167	239	208	178		
		15	167	239	208	178	1.980	
11	0.84	1	160	232	201	171		
		5	158	230	199	169		
		10	157	229	198	168		
		15	157	229	198	168	1.880	
12	0.00	1	149	221	191	160		
		5	148	220	190	157		
		10	147	219	189	156		
		15	146	218	188	155	1.778	
		15	271	459	346	211	1.768	
11	0.84	1	272	460	348	216		
		5	272	460	348	216		
		10	273	461	349	217		
		15	273	461	349	217	3.250	
12	0.00	1	272	460	349	216		
		5	272	460	349	216		
		10	272	460	349	216		
		15	272	460	349	216	3.243	

Secon 24

PLT NO: PLT-1

DEPTH (m): 3.0m

PROJECT


PLATE LOAD TEST: LOAD INTENSITY vs SETTLEMENT CURVE

CLIENT: NJS-MM-TCE CONSORTIUM

: GEOTECHNICAL INVESTIGATION FOR WATER

SUPPLY COMPONENT WORKS-GKVK

SIZE OF PLATE(mm) :750 x 750 x 25

SECON 25

Final Report GKVK

CLIENT: M/s NJS-MM-TCE CONSORTIUM

PROJECT: Geotechnical Investigation for Water Components

ERT NO: 1DATE OF COMMENCEMENT: 10.10.07LOCATION : GKVKDATE OF COMPLETION :10.10.07

ELECTRICAL RESISTIVITY TEST RESULTS

ERT No	Electrode Spacing "a" (m)	Resistance R (ohm)	Multiplier = 2 πa	Apparent resistivity r _a = 2πaR (Ohm-m)	Direction of test and Remarks
	1.0	33.000	6.283	207.345	
	2.0	16.140	12.566	202.821	
	3.0	10.790	18.850	203.387	East-West
	5.0	6.270	31.416	196.978	Dry Land
	10.0	3.260	62.832	204.832	
ERT-1	15.0	2.700	94.248	254.469	
ERI-I	1.0	31.300	6.283	196.664	
	2.0	17.570	12.566	220.791	
	3.0	13.160	18.850	248.060	North-South.
	5.0	7.340	31.416	230.593	Dry Land
	10.0	4.250	62.832	267.035	
	15.0	2.940	94.248	277.088	

Secon Page No: 34

Geotechnical Investigations for STP at Kadugodi

ANNEXURE II

ENGINEERING BORELOG

 Client:
 NJS-MM-TCE Consortium
 Size of Borehole:
 150mm

 Borehole No:
 BH 1
 Ground water table (m):
 1.00m

 Project:
 Soil Investigations for Kadugodi STP
 Commenced:
 28.12.10

Project : Soil Investigations for Kadugodi STPCommenced : 28.12.10Location : Kadugodi STPCompleted : 28.12.10

Description of Soil /Book	kness	(m)	Legend	ole		TEST, nur lows recor		ie = 4 ₃		ing in le rock	
Description of Soil /Rock Stratum	Layer thickness (m)	(m) Depth (m)		Sample	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value N ₂ +N ₃	CR (%)	RQD (%)	Remarks
	La				N_1	N_2	N_3		(70)	(70)	
Top Soil -Blackish clayey		0.5		DS							
sand with silt & vegetal cover	1.5	1.5		SPT	3	4	7	11			
Greyish Brown clayey silt	3.0	3.0		UDS SPT	8	15	20	35			
Greyish brown dense sandy silt with clay binder	1.5	6.0		SPT	35	40B/ 2cm	R	>100			Less sample
Greyish /Pale Brownish completely weathered rock	2.0	8.0		SPT	48B/ 2cm	R		>100			Wash sample

SPT=Standard penetration test

DS= Disturbed Sample

0.0 to $8.0 \mathrm{m}$, soil cutter used

RQD = Rock Quality designation

CR = Core recovery

Geotechnical Investigations for STP at Kadugodi

ENGINEERING BORELOG

Client: NJS-MM-TCE Consortium Borehole No: BH 2

 $\textbf{Project}: \ Soil \ Investigations \ for \ Kadugodi \ STP$

Location : Kadugodi STP

Size of Borehole: 150mm/Nx Ground water table (m) : 1.00 m

Commenced: 30.12.10 **Completed:** 31.12.10

	cness	m)	q	9		TEST, nu				ing in le rock	
Description of Soil /Rock Stratum	Layer thickness (m)	Depth (m)	Legend	Sample	1 st 15cm N ₁	2 nd 15cm	3 rd 15cm N ₃	$N Value = N_2 + N_3$	CR (%)	RQD (%)	Remarks
		0.5		DS							
Brownish yellow clayey		1.5		UDS							
silt		3.0		SPT	3	4	4	8			
		4.5		SPT	4	5	6	11			
	6.0	6.0		SPT	6	7	7	14			
		7.5		SPT	7	9	10	19			
Blackish /Greyish sandy silt with clay binder		9.0		SPT	8	10	13	23			
siit with clay bilider		10.5		SPT	10	13	15	28			
	6.0	12.0		SPT	15	15	18	33			
Brownish completely weathered rock		13.5		SPT	35	40B/ 3cm	R	>100			Less sample
	3.0	15.0		SPT	55B/ <5cm	R		>100			Wash sample

SPT=Standard penetration test

0.0 to 12.0m, soil cutter used

12.0-15.0m , TC Bits used

DS= Disturbed Sample

 $RQD = Rock\ Quality\ designation$

CR = Core recovery

Geotechnical Investigations for STP at Kadugodi

ENGINEERING BORELOG

 $\begin{array}{lll} \textbf{Project}: Soil Investigations for Kadugodi STP & \textbf{Commenced: } 31.12.10 \\ \textbf{Location}: Kadugodi \ STP & \textbf{Completed: } 1.01.11 \end{array}$

D : :: (0.1/D)	kness	(m)	pı	ele .		TEST, nur lows recor		le = 1 ₃		ing in le rock	
Description of Soil /Rock Stratum	Layer thickness (m)	Depth (m)	Legend	Sample	1 st 15cm	2 nd 15cm	3 rd 15cm	$N Value = N_2 + N_3$	CR (%)	RQD (%)	Remarks
	'nТ				N_1	N_2	N_3		(,0)	(,0)	
		0.5		DS SPT	3	4	7	11			
Brownish grey clayey silt with gravels		1.3		371	3	4	,	11			
wan graves		3.0		UDS							
	4.5	4.5		SPT	6	10	15	25			
Greyish Brown /yellow		6.0		SPT	14	18	22	40			
dense sandy silt with clay binder		7.5		SPT	16	20	25	45			
	4.5	9.0		SPT	35	40B/ 3cm	R	>100			Less sample
Brownish completely weathered rock	1.0	10.0		SPT	50	55B/ 1cm	R	>100			Less sample

SPT=Standard penetration test 0.0 to 10.0m, soil cutter used

DS= Disturbed Sample

RQD = Rock Quality designation

CR = Core recovery

Geotechnical Investigation for STP at Kadugodi

Annexure III

ELECTRICAL RESISTIVITY BY WENNER'S 4 ELECTRODE METHOD, FIELD TABULATIONS & COMPUTATIONS

Client NJS-MM-TCE Consortium

Project Soil Investigations for Kadugodi STP

Test Location ERT-1, Near BH-2

Test No	Electrode spacing a,m	Resistance R (Ohm) = V/I	Multiplier k= 2 πa	Apparent resistivity = KR (ohm-m)	Direction	
(1)	(2)	(3)	(4)	$(5) = ((3)^*(4)$	(6)	
	0.5	2.120	3.142	6.66		
	1.0	1.259	6.283	7.91		
	1.5	1.114	9.425	10.50		
	2.0	1.009	12.566	12.68		
	3.0	0.876	18.850	16.51		
	4.0	0.478	25.133	12.01		
	5.0	0.288	31.416	9.05	North-South	
	7.0	0.256	43.982	11.26		
	10.0	0.223	62.832	14.01		
	12.0	0.219	75.398	16.51		
	15.0	0.219	94.248	20.64		
	17.0	0.214	106.814	22.86		
ERT-1 Near BH-2	20.0	0.198	125.664	24.88		
EKT-T Near BH-2	0.5	1.397	3.142	4.39		
	1.0	1.030	6.283	6.47		
	1.5	1.010	9.425	9.52		
	2.0	0.746	12.566	9.37		
	3.0	0.400	18.850	7.54		
	4.0	0.384	25.133	9.65		
	5.0	0.343	31.416	10.78	East -West	
	7.0	0.316	43.982	13.90		
	10.0	0.297	62.832	18.66		
	12.0	0.289	75.398	21.79		
	15.0	0.280	94.248	26.39	7	
_	17.0	0.274	106.814	29.27		
	20.0	0.269	125.664	33.80		

Geo Engineering Company Pvt Ltd, Bangalore

NJS-MM-TCE Consortium

ANNEXURE II

ENGINEERING BORELOG

 Client:
 NJS-MM-TCE Consortium

 Borehole No:
 BH 1

 Ground water table (m):
 Not met

Project : Soil Investigations for Doddabele STPCommenced : 2.12.10Location : Doddabele STPCompleted : 3.12.10

Description of Soil	ckness	(m)	pu	əlc	blo	EST, nu ws recor	ded	ue = V ₃		ing in le rock	Remarks/ Rock Core
/Rock Stratum	Layer thickness (m)	Depth (m)	Legend	Sample	1 st 15cm N ₁	2 nd 15cm N ₂	3 rd 15cm N ₃	$N \text{ Value} = N_2 + N_3$	CR (%)	RQD (%)	dimensions in centimetre
Reddish brown clayey		0.5		DS				50			
sand with gravels	1.5	1.5		SPT	22	37	22	59			
Pale Brownish white completely weathered rock with black patches	1.5	3.0		SPT	34B	R		>100			Less sample
Blackish Brown /white higly weathered rock (4.0		Wash	R						
refusal strata, wash samples)		5.0		Samples	R						Coarse grained samples
	3.0	6.0			R						
		7.5		Run I		6.00 to	7.50m		<10	Nil	Broken cores
Whitish Brown /Pnk		9.0		Run II		7.50 to	9.00m		<10	Nil	Broken cores
fractured rock (with evidence of intense		10.5		Run III		9.00 to	10.50m		<10	Nil	Broken cores
weathering along discontinuities)		12.0		Run IV		10.50 to	12.00m		<10	Nil	Fractured and broken cores
		13.5		Run V		12.00 to	13.50m		<10	Nil	Broken cores
	9.0	15.0		Run VI			15.00m		10	9	14cm piece+ Broken cores

SPT=Standard penetration test

DS= Disturbed Sample

 $0.0\,\mathrm{to}\,4.0\mathrm{m}$, soil cutter used

RQD = Rock Quality designation

CR = Core recovery

4.0 to 6.0m, TC Bits used

6.0 to 15.0m, Diamond bits used

NJS-MM-TCE Consortium

ENGINEERING BORELOG

Client: NJS-MM-TCE Consortium

Size of Borehole : 150mm/Nx

Borehole No : BH 2

Ground water table (m) : Not met

Project : Soil Investigations for Doddabele STPCommenced : 30.11.10Location : Doddabele STPCompleted : 1.12.10

Description of Soil	ckness	(m)	pu	ole		EST, nu		ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا		ing in le rock	Remarks/ Rock Core
/Rock Stratum	Layer thickness (m)	Depth (m)	Legend	Sample	1 st 15cm N ₁	2 nd 15cm N ₂	3 rd 15cm N ₃	$N Value = N_2 + N_3$	CR (%)	RQD (%)	dimensions in centimetre
Brownish red sandy silt	1.5	0.5 1.5		DS SPT	32	31B/3cm		>100			
Pale Brownish white /greenish completely weathered rock with											
black patches	1.5	3.0		SPT	33B/3cm			>100			Limited sample
Blackish Brown /white		4.0		Run I		3.50 to	4.00m		<10	Nil	Broken cores
higly weathered rock	2.5	5.5		Run II		4.00 to	5.50m		<10	Nil	2 Broken cores <5cm
Blackish jointed &		7.0		Run III		5.50m to	7.00m		25	Nil	Heavily weathered &
fractured rock (with evidence of intense weathering along		8.5		Run IV		7.00 to	8.50m		25	Nil	broken cores
discontinuities)	4.5	10.0		Run V		8.50 to	10.00m		25	7	10*cm + Broken cores

SPT=Standard penetration test

0.0 to 1.5m, soil cutter used

 $1.5\ to\ 3.5m$, TC Bits used

DS= Disturbed Sample

RQD = Rock Quality designation 3.5 to 10.0m, Diamond bits used

CR = Core recovery

* Fractured

NJS-MM-TCE Consortium

ENGINEERING BORELOG

Client: NJS-MM-TCE Consortium

Size of Borehole : 150mm/Nx

Borehole No : BH 3

Ground water table (m) : Not met

 Project : Soil Investigations for Doddabele STP
 Commenced : 01.12.10

 Location : Doddabele STP
 Completed : 2.12.10

Description of Soil	kness	(m)	рı	ole		EST, nu	mber of ded	le = 1 ₃		ing in le rock	Remarks/ Rock Core
Description of Soil /Rock Stratum	Layer thickness (m)	Depth (m)	Legend	Sample	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value : N_2+N_3	CR (%)	RQD	dimensions in centimetre
	Ä				N_1	N_2	N_3		` ′	` ′	
Pale brownish clayey sand	1.5	0.5 1.5		DS SPT	23	25	27	52			
Pale greenish black completely weathered rock	2.0	3.5		SPT	R			>100	Nil	Nil	Wash samples
Blackish / Brownish		4.5		SPT	R			>100	Nil	Nil	Wash samples
white disintegrated /fractured rock (Refusal strata, wash samples)		6.0		SPT	R			>100	Nil	Nil	Wash samples
	4.0	7.5		SPT	R			>100	Nil	Nil	Wash samples
Blackish Jointed & fractured rock with		9.0		Run I		7.50 to	9.00m		15	7	2+4+3+3+10*=22cm
evidence of intense to moderate weathering	2.5	10.0		Run II		9.00 to	10.00m		27	27	15+12=27cm

SPT=Standard penetration test

 $0.0\, to\, 3.5m$, soil cutter used

3.5 to 7.5m, TC Bits used

DS= Disturbed Sample

RQD = Rock Quality designation 7.5 to 10.0m, Diamond bits used

CR = Core recovery

NJS-MM-TCE Consortium Annexure III

ELECTRICAL RESISTIVITY BY WENNER'S 4 ELECTRODE METHOD, FIELD TABULATIONS & COMPUTATIONS

Client NJS-MM-TCE Consortium

Project Soil Investigations for Doddabele STP

Test Location ERT-1, Near BH-1

Test No	Electrode spacing a,m	Resistance R (Ohm) = V/I	Multiplier K= 2 πa	Apparent resistivity = KR (ohm-m)	Direction	
(1)	(2)	(3)	(4)	(5) =((3)*(4)	(6)	
	1.0	90.0	6.283	565.49		
	2.0	2.23	12.566	28.02		
	3.0	2.01	18.850	37.89	East-West	
	5.0	1.102	31.416	34.62	East-west	
	10.0	0.756	62.832	47.50		
ERT-1	15.0	0.672	94.248	63.33		
ERI-I	1.0	9.62	6.283	60.44		
	2.0	3.43	12.566	43.10		
	3.0	2.17	18.850	40.90	North Couth	
	5.0	1.333	31.416	41.88	North-South	
	10.0	0.702	62.832	44.11		
	15.0	0.639	94.248	60.22		

Annexure II

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

NORTHERN AREA (Approach from Varthur Side)

BORELOG

Consultants NJS-MM-TCE

Borehole No: BH 1

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Northern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): 1.00m

Commenced: 12.10.12

Completed: 15.10.12

Description of Soil	Layer thickness (m)	h (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow	s recorded	$Value = N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	Layer th	Depth	stratification	Leg	Sar	1 st 15cm N ₁	2 nd 15cm N ₂	3 rd 15cm N ₃	N V ₂	CR (%)	RQD (%)	in cm
Brownish clayey silt	0.5	0.5			DS							Top Soil
Greyish brown silty sand with clay binder		1.5 3.0	Soil overburden		SPT UDS	3	3	4	7			
	4.0	4.5			SPT	47B/2cm	R		>100			REFUSAL /ROCK STRATA
Greyish white /brown			Weathered rock									Broken cores total =40cm
highly weathered rock	1.0	5.5			BRC					40	Nil	
		6.5			RC					99	90	17+18+5+4+55=99cm
Geyish white jointed		7.5			RC					99	99	99cm
hard rock		8.5	Intact Rock		RC					87	45	11+11+8+8+4+5+2+8+10 + 6+15=87cm
	4.0	9.5(T)			RC					80	80	80cm

Consultants NJS-MM-TCE Size of Borehole: 150mm/Nx

Borehole No: BH 2 Ground water level in borehole*(m): 1.00m

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Commenced: 16.10.12

Location: Northern Area

Completed: 18.10.12

Location : Northern Area	l .									Completed :	18.10.12	
Description of Soil	ness (m)	(m)	Sub-soil	pu	ole	SPT TEST, n	number of blow	s recorded	: N ₂ +N ₃	using Nx siz	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	hick	Depth (m)	stratification	Legend	Sample	1 st 15cm	2 nd 15cm	3 rd 15cm	Value =			in cm
	Layer thickness	Q		I		N ₁	N ₂	N ₃	N Va	CR (%)	RQD (%)	
Reddish Brownish												
clayey silt	0.5	0.5			DS							Top Soil
		1.5	Soil overburden		SPT	1	3	6	9			
Greyish brown sandy silt		2.0	Son overburden		UDS							
with clay binder		3.0										
	4.0	4.5			SPT	10	12	13	12			REFUSAL /ROCK STRATA
Greyish white /brown highly weathered rock	0.5	5.0			BRC					<10	Nil	Broken cores , 2pieces
Greyish white /brown moderately weathered		6.25	Weathered rock		BRC					27	21	2+14+6+12=34cm
rock	2.5	7.5			BRC					33	13	4+5++7**+10+2=31 cm
Geyish white jointed			Intact Rock									
hard rock	1.0	8.5(T)	and Hour		A					71	71	18+43+10 =71 cm

^{**}Fractured

Borehole No: BH 3

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Northern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole*(m): Water Logged

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 19.10.12

Completed : 20.10.12

Description of Soil /Rock Stratum	Layer thickness (m)	Depth (m)	Sub-soil stratification	Legend	Sample	SPT TEST, n	2 nd 15cm	3 rd 15cm	$Value = N_2 + N_3$	using Nx si	corable rock ze Diamond its RQD (%)	Remarks/Rock piece dimensions in cm
Greyish brown clayey	La					11/1	1\2	1N3	Z			
silt	0.5	0.5			DS							
		1.5	a		SPT	2	4	4	8			
Greyish brown silty sand		3.0	Soil overburden		UDS							
with clay binder	Greyish brown silty sand with clay binder	4.5			SPT	5	9	14	23			
	5.5	6.0			SPT	21	37B/3cm	R	>100			REFUSAL STRATA
		7.5			SPT	41B/3cm	R		>100			TC bits used
		9.0			WS					Nil	Nil	
Greyish / Brownish completely weathered rock		10.5	Weathered rock		WS					Nil	Nil	
		12.0			WS					Nil	Nil	
		13.5			WS					Nil	Nil	
	9.0	15.0(T)			WS					Nil	Nil	

Borehole No: BH 4

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location : Northern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): 2.00m

Commenced: 20.10.12

Completed : 22.10.12

										Compicion .		
Description of Soil	Layer thickness (m)	(m)	Sub-soil	pua	ple	SPT TEST, n	number of blow		$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	thicl	Depth	stratification	Legend	Sample	1 st 15cm	2 nd 15cm	3 rd 15cm	Value			in cm
	Layer	D				N_1	N ₂	N ₃	N Va	CR (%)	RQD (%)	
Brownish grey clayey silt	0.5	0.5			DS							Top Soil
Consideration of the second		1.5	Soil overburden		SPT	3	6	6	12			
Greyish brown silty sand with clay binder		3.0			SPT	11	14	21	35			
	4.0	4.5			SPT	27	41B/5cm	R	>100			REFUSAL /ROCK STRATA
Brownish grey completely weathered		6.0			SPT	48B/5vm	R		>100			
rock	2.0	6.5										
Brownish white highly		7.5	Weathered rock		BRC					24	10	10+6+8=24cm
to moderately weathered rock		8.5			BRC					25	10	10cm +Broken cores total 25cm
TOCK	3.0	9.5			BRC					25	Nil	Broken Cores total to 25cm
Geyish white jointed			Intact Rock									
hard rock	1.0	10.5(T)			RC					37	32	32**+5=37cm

^{**}Fractured

Borehole No: BH 5

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Northern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): Rains Occurred

Commenced: 28.10.12

Completed : 29.10.12

Description of Soil	Layer thickness (m)	(m)	Sub-soil	puq	ple	SPT TEST, n	umber of blow	s recorded	= N ₂ +N ₃	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	er thick	Depth (m)	stratification	Legend	Sample	1 st 15cm	2 nd 15cm N ₂	3 rd 15cm	Value =]	CR (%)	RQD (%)	in cm
	Lay					1	2		Z			
Reddish Brown clayey silt	0.5	0.5			DS							Top Soil
		1.5			SPT	2	2	3	5			
		3.0			SPT	1	2	4	6			
Brownish grey clayey		4.5			SPT	3	4	5	9			
Silt		6.0	Soil overburden		SPT	5	5	6	11			
		7.5			SPT	6	7	7	14			
	7.0	9.0			SPT	4	6	6	12			
G :1.1 (7)		10.5			SPT	4	7	8	15			
Greyish clayey /silty sand		12.0			SPT	8	8	8	16			
	4.5	13.5			SPT	60B/2cm	R		>100			REFUSAL STRATA
Greyish white completely weathered			Weathered rock									TC bits used
rock	1.5	15.0(T)			SPT	65B/3cm	R		>100			

B= Number of blows

WRC= Weathered rock cores

SPT =Standard Penetration test

DS= Disturbed sample CR=Core recovery

RC=Rock Cores, CR>10%

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

R= Refusal /Rebound

WS= Wash sample

T-Termination depth

UDS=Undisturbed sample

RQD=Rock quality designation

^{*}Water levels correspond to level recorded 24 hours after borehole completion

SOUTHERN AREA (Approach from Panathur Side)

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

BORELOG

Consultants NJS-MM-TCE

Borehole No: BH 1'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): < 0.5m

Commenced: 13.12.12

Completed: 14.12.12

Description of Soil	Layer thickness (m)	(m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blows	s recorded	Γ Value = $N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	er th'	Depth	stratification	Leg	San	1 st 15cm	2 nd 15cm	3 rd 15cm	$\sum_{2}^{\mathbf{Z}}$	CD (0/)	POD (9/)	in cm
	Lay	I				N_1	N_2	N ₃		CR (%)	RQD (%)	
Brownish clayey silt	0.5	0.5			DS							Top Soil
Guillian a la		1.5			SPT	2	3	3	6			
Greyish brown clayey silt		3.0	Soil overburden		UDS							
	4.0	4.5			SPT	4	5	7	12			
Greyish brown silty sand		6.0			SPT	5	7	8	15			
with clay binder	3.0	7.5			SPT	50B/2cm	R		>100			REFUSAL STRATA
		9.0			SPT	50B/R			>100			
Brownish completely weathered rock		10.5	Weathered rock		WS					Nil	Nil	
		12.0			WS					Nil	Nil	
	7.5	15.0(T)			WS					Nil	Nil	

Borehole No: BH 2'

 $\textbf{Project}: \ \ Soil \ Investigations \ for \ BWSSB's \ Proposed \ STP, \ Bellandur \ Ammanaikere$

Location: Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m) : $\leq 0.5 m$

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 14.12.12

Completed: 15.12.12

Description of Soil	Layer thickness (m)	Depth (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow		$=N_2+N_3$	using Nx siz	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	r thic	Deptl	stratification	Leg	San	1 st 15cm	2 nd 15cm	3 rd 15cm	Value	CR (%)	RQD (%)	in cm
	Laye					N_1	N ₂	N_3	١N	CK (%)	KQD (%)	
Greyish brown clayey silt	0.5	0.5			DS							Top Soil
0 :11		1.5			SPT	2	2	3	5			
Greyish brown clayey silt		3.0			SPT	3	4	4	8			
Sift	4.0	4.5	Soil overburden		UDS							
		6.0			SPT	4	4	5	9			
Brownish sandy Silt with clay binder		7.5			SPT	5	9	12	21			
	4.5	9.0			SPT	50B/3cm	R		>100			REFUSAL STRATA
		10.5			SPT	50B/R			>100			
Brownish white completely weathered rock		12.0	Weathered rock		WS					Nil	Nil	
		13.5	Weathered fock		WS					Nil	Nil	
	6.0	15.0(T)			WS					Nil	Nil	

Ground water level in borehole* (m) : $\leq 0.5 m$

Size of Borehole: 150mm/Nx

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere **Commenced:** 19.12.12 Completed : 21.12.12 Location : Southern Area

Consultants NJS-MM-TCE

Location : Southern Area	l									Completed :	: 21.12.12	
Description of Soil	Layer thickness (m)	Depth (m)	Sub-soil	Legend	Sample	SPT TEST, n	number of blows	s recorded	$= N_2 + N_3$	using Nx siz	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	thic.	Septl	stratification	Leg	San	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value =			in cm
	Layeı	I				N_1	N ₂	N ₃	> Z	CR (%)	RQD (%)	
Greyish black clayey silt	0.5	0.5			DS							Top Soil
		1.5			SPT	3	4	6	10			
Greyish brown sandy silt		3.0	Soil overburden		UDS							
with clay binder		4.5			SPT	6	7	9	16			
with clay billider		6.0			SPT	6	9	13	22			
	7.0	7.5			SPT	46	50B/4cm	R	>100			REFUSAL STRATA
		9.0			SPT	50B/3cm	R		>100			
		10.5			SPT	50B/R			>100			
Yellowish/Pale white		12.0			WS					Nil	Nil	
completely weathered rock		13.5			WS					Nil	Nil	
TOCK		15.0	Weathered rock		WS					Nil	Nil	
		16.5			WS					Nil	Nil	
	10.5	18.0			WS					Nil	Nil	
Greyish brown white		19.5			BRC					<10	Nil	Broken rock cores
highly weathered rock	3.0	21.0(T)			BRC					<10	Nil	Broken rock cores

Borehole No: BH 4'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): Water Logged

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 23.12.12

Completed: 24.12.12

Description of Soil	Layer thickness (m)	Depth (m)	Sub-soil	Legend	Sample	,	umber of blows		$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	er thic	Dept	stratification	Leg	Sar	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value	CR (%)	RQD (%)	in cm
	Lay					N ₁	N ₂	N_3	z	. ,		
Greyish black clayey silt	0.5	0.5			DS							Top Soil and slushy
		1.5			SPT	1	2	3	5			
Greyish brown sandy silt		3.0	Soil overburden		SPT	5	9	10	19			
with clay binder		4.5			UDS							
		6.0			SPT	6	10	15	25			
	7.0	7.5			SPT	50B/3cm	R		>100			REFUSAL STRATA
		9.0			SPT	50B/R			>100			
Greyish to Brownish		10.5			SPT	50B/R			>100			
white completely weathered rock		12.0	Weathered rock		WS					Nil	Nil	
weathered fock		13.5			WS					Nil	Nil	
	7.5	15.0(T)			WS					Nil	Nil	

Borehole No: BH 5'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): Water Logged

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 28.10.12

Completed : 29.10.12

Description of Soil	Layer thickness (m)	Depth (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow	s recorded	$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	r thic	Deptl	stratification	Leg	Sar	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value	CD (0/)	DOD (0/)	in cm
	Laye	[N_1	N ₂	N ₃	١N	CR (%)	RQD (%)	
Greyish black clayey silt	0.5	0.5			DS							Top Soil and slushy
		1.5			SPT	1	2	2	4			
Greyish brown sandy silt		3.0	Soil overburden		SPT	4	7	11	18			
with clay binder		4.5			SPT	5	9	16	25			
	5.5	6.0			SPT	27	39B/5cm	R	>100			REFUSAL STRATA
		7.5			SPT	50B/3cm	R		>100			
		9.0			SPT	50B/3cm	R		>100			
		10.5			WS					Nil	Nil	
Greyish black to Brownish white		12.0			WS					Nil	Nil	
completely weathered		13.5	Weathered rock		WS					Nil	Nil	
completely weathered rock		15.0			WS					Nil	Nil	
		16.5			WS					Nil	Nil	
		18.0			WS					Nil	Nil	
	14.0	20.0(T)			WS					Nil	Nil	

Borehole No: BH 6'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location: Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m) : $\leq 0.5 m$

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 29.12.12

Completed: 31.12.12

Description of Soil		h (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow		$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	r thic	Deptl	stratification	Leg	Sar	1 st 15cm	2 nd 15cm	3 rd 15cm	N Value	CD (0/)	DOD (0/)	in cm
	Laye					N_1	N ₂	N ₃	N	CR (%)	RQD (%)	
Greyish black clayey silt	0.5	0.5			DS							Top Soil and slushy
		1.5			SPT	1	2	2	4			
Greyish sandy silt with		3.0	Soil overburden		SPT	2	2	3	5			
clay binder		4.5			SPT	2	2	3	5			
	5.5	6.0			SPT	28	45B/3cm	R	>100			REFUSAL STRATA
Greenish grey /black		7.5			SPT	53B/4cm	R		>100			
completely weathered rock		9.0			BRC					<10	Nil	Broken rock cores
TOUR	4.5	10.5			WS					Nil	Nil	
Greenish /greyish white completely weathered		12.0			WS					Nil	Nil	
rock	3.0	13.5	Weathered rock		WS					Nil	Nil	
Brownish white completely weathered		15.0	Weathered fock		BRC					<10	Nil	Broken rock cores
rock	3.0	16.5			WS					Nil	Nil	
Blackish /Greenish		17.5			BRC					<10	Nil	Broken rock cores
white highly weathered rock		19.0			BRC					<10	Nil	Broken rock cores
1308	3.5	20.0(T)			BRC					<10	Nil	Broken rock cores

Borehole No: BH 7'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location : Southern Area

Size of Borehole : 150 mm/Nx

Ground water level in borehole* (m): $\leq 0.5 \mathrm{m}$

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

 $\textbf{Commenced:}\ 05.01.13$

Completed : 06.01.13

Description of Soil	Layer thickness (m)	h (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow		$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	ayer thic	Depth	stratification	Leg	San	1 st 15cm N ₁	2 nd 15cm N ₂	3 rd 15cm	N Value	CR (%)	RQD (%)	in cm
Greyish brown sandy silt with gravels	0.5	0.5			DS							Top Soil
		1.5			SPT	2	3	5	8			
Greyish brown clayey		3.0	Soil overburden		SPT	4	6	8	14			
silt		4.5			SPT	5	9	14	23			
	5.5	6.0			SPT	39	48B/3cm	R	>100			REFUSAL STRATA
Greenish white		7.5			SPT	53B/3cm	R		>100			
completely weathered		9.0			WS					Nil	Nil	
rock	4.5	10.5	Weathered rock		WS					Nil	Nil	
Greenish /greyish white completely weathered					WS					Nil	Nil	
rock	0.5	11.0			BRC					<20	Nil	Broken rock cores
Greyish white Jointed	•	12.0	Intact Rock		RC					53	53	53cm
Hard Rock	2.0	13.0(T)			RC					96	96	96cm

Borehole No : BH 8'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location : Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): 2.00m

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

Commenced: 06.01.13

Completed : 07.01.13

Description of Soil	kness (m)	n (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow	s recorded	$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions
/Rock Stratum	Layer thickness	Depth	stratification	Leg	San	1 st 15cm N ₁	2 nd 15cm N ₂	3 rd 15cm N ₃	N Value	CR (%)	RQD (%)	in cm
Reddish brown sandy silt with gravels	0.5	0.5			DS							Top Soil
Greyish to reddish		1.5	Soil overburden		SPT	4	6	10	16			
brown sandy silt with		3.0			SPT	12	16	20	36			
cray bilider	4.0	4.5			SPT	32	57B/2cm	R	>100			REFUSAL STRATA
Yellowish brown completely weathered		6.0			WS					Nil	Nil	
rock	2.5	7.0	Weathered rock									
Whitish /greyish brown highly weathered rock	1.0	8.0								<20	Nil	Broken rock cores
Whitish /greyish brown		9.5			RC					74	57	8+12+12+8*+10*+24+38=112cm
moderately weathered		10.5	Intact Rock		RC					58	49	5+2+2+18+19+12.5=58cm
rock	4.0	12.0(T)			RC					60	60	36+24=60cm

Borehole No: BH 9'

Project: Soil Investigations for BWSSB's Proposed STP, Bellandur Ammanaikere

Location : Southern Area

Size of Borehole: 150mm/Nx

Ground water level in borehole* (m): < 0.5m

Commenced: 07.01.13

Completed: 08.01.13

Description of Soil	Layer thickness (m)	Depth (m)	Sub-soil	Legend	Sample	SPT TEST, n	umber of blow	s recorded	$= N_2 + N_3$	using Nx si	corable rock ze Diamond its	Remarks/Rock piece dimensions	
/Rock Stratum	er thic	Depti	stratification	Leg		1 st 15cm	2 nd 15cm	3 rd 15cm	Value	CR (%)	RQD (%)	in cm	
	Lay					N_1	N ₂	N_3	Z				
Greyish brown clayey silt	0.5	0.5			DS							Top Soil and slushy	
		1.5			SPT	2	3	3	6				
Greyish brown sandy silt		3.0	Soil overburden		SPT	6	10	19	29				
with clay binder		4.5			SPT	5	8	11	19				
	5.5	6.0			SPT	35	47B/4cm	R	>100			REFUSAL STRATA	
		7.5			SPT	55B/3cm	R		>100				
		9.0			WS					Nil	Nil		
Greyish white /brown completely weathered rock		10.5	Weathered rock		WS					Nil	Nil		
		12.0	Weathered fock		WS					Nil	Nil		
		13.5			WS					Nil	Nil		
	9.0	15.0(T)			WS					Nil	Nil		

B= Number of blows

R= Refusal /Rebound

WS= Wash sample

T-Termination depth

UDS=Undisturbed sample

RC=Rock Cores, CR>10%

Bengaluru Water Supply and Sewerage Project (Phase 3) Supporting Report

WRC= Weathered rock cores

SPT =Standard Penetration test

DS= Disturbed sample CR=Core recovery

RQD=Rock quality designation

^{*}Water levels correspond to level recorded 24 hours after borehole completion

Test No	Electrode spacing a,m	Resistance R (Ohm) = V/I	Multiplier k= 2 πa	Soil resistivity = KR (ohm-m)	Direction	
(1)	(2)	(3)	(4)	(5) = ((3)*(4)	(6)	
	1.0	1.252	6.283	7.87		
Northern	2.0	0.774	12.566	9.73	North-South	
Area	5.0	0.702	31.416	22.05	North-South	
ERT-1 (In between	10.0	0.643	62.832	40.40		
BH-1 and 2, Beyond 10m	1.0	1.933	6.283	12.15	East -West	
spacing area is	2.0	1.162	12.566	14.60		
waterlogged	5.0	0.710	31.416	22.31		
	10.0	0.660	62.832	41.47		

Test No	Electrode spacing a,m	Resistance R (Ohm) = V/I	Multiplier k= 2 πa	Soil resistivity = KR (ohm-m)	Direction	
(1)	(2)	(3)	(4)	(5) =((3)*(4)	(6)	
1	1.0	4.629	6.283	29.08		
	2.0	1.633	12.566	20.52		
	5.0	0.702	31.416	22.05	North-South	
Southern Area	10.0	0.499	62.832	31.35		
ERT-2	15.0	0.508	94.248	47.88		
(In between BH-9' and	1.0	2.200	6.283	13.82		
KMRP Trunk Sewer),	2.0	1.612	12.566	20.26		
GGW3.7,	5.0	0.663	31.416	20.83	East -West	
	10.0	0.493	62.832	30.98	1	
	15.0	0.505	94.248	47.60		

Supporting Report 10.2.1 Population Projection and Sewage Flow for 110 Villages

Ѕирр	
orting	
Report	

	110 Village - Bytrayanapura												
		Area	2011		ulation / Gro		4.38	4.38	4.38	4.38	4.38	4.38	4.38
No	Villge	(Sq Km)	(Census)	2019	2034	2049	2011	2012	2013	2014	2015	2016	2017
1	Anantha Pura	1.30	7,049	9,932	17,212	27,274	7,049	7,358	7,680	8,016	8,367	8,733	9,116
2	Doddabetthalli	1.61	12,171	17,150	29,722	47,097	12,171	12,704	13,260	13,841	14,447	15,080	15,741
3	Chikkabetthalli	2.00	17,790	25,067	43,439	68,834	17,790	18,569	19,382	20,231	21,117	22,042	23,007
4	Harohalli	3.00	9,548	13,454	23,316	36,946	9,548	9,966	10,403	10,858	11,334	11,830	12,348
5	Kenchnehalli	0.81	4,858	6,846	11,863	18,798	4,858	5,071	5,293	5,525	5,767	6,020	6,284
6	Govindapura	0.79	3,084	4,345	7,529	11,932	3,084	3,219	3,360	3,507	3,661	3,821	3,988
7	Vasudvapura	0.58	372	524	910	1,444	372	388	405	423	442	461	481
8	Manchenhalli	1.00	263	372	644	1,021	263	275	287	300	313	327	341
9	Kattigenahalli	5.00	20,312	28,622	49,601	78,599	20,312	21,202	22,131	23,100	24,112	25,168	26,270
10	Srinivasapura	1.00	2,322	3,273	5,674	8,991	2,322	2,424	2,530	2,641	2,757	2,878	3,004
11	Bellhalli	2.36	2,922	4,119	7,138	11,312	2,922	3,050	3,184	3,323	3,469	3,621	3,780
12	Tirumenhalli	1.72	1,255	1,768	3,063	4,854	1,255	1,310	1,367	1,427	1,490	1,555	1,623
13	Chokkanahalli	0.60	2,554	3,600	6,237	9,882	2,554	2,666	2,783	2,905	3,032	3,165	3,304
14	Dasrahalli	2.35	14,405	20,299	35,175	55,737	14,405	15,036	15,695	16,382	17,100	17,849	18,631
15	Rachnehalli	2.85	9,359	13,188	22,854	36,216	9,359	9,769	10,197	10,644	11,110	11,597	12,105
16	Thanisandra	4.00	40,857	57,571	99,769	158,096	40,857	42,647	44,515	46,465	48,500	50,624	52,841
17	Chalakere	1.76	34,287	48,314	83,724	132,670	34,287	35,789	37,357	38,993	40,701	42,484	44,345
18	Horamavau Agara	4.00	17,307	24,386	42,260	66,969	17,307	18,065	18,856	19,682	20,544	21,444	22,383
19	Amani Byaratahikane	0.00	699	985	1,706	2,702	699	730	762	795	830	866	904
20	Geddalahalli	1.00	7,792	10,979	19,026	30,149	7,792	8,133	8,489	8,861	9,249	9,654	10,077
21	Kottanur Narayanpura	1.00	7,205	10,153	17,596	27,883	7,205	7,521	7,850	8,194	8,553	8,928	9,319
22	Kottanur	8.00	8,560	12,062	20,901	33,120	8,560	8,935	9,326	9,735	10,161	10,606	11,071
23	N Naganehalli	1.14	1,941	2,735	4,739	7,510	1,941	2,026	2,115	2,207	2,304	2,405	2,510
24	Kylasanahalli	2.57	5,609	7,904	13,698	21,706	5,609	5,855	6,111	6,379	6,658	6,950	7,254
25	Byrathi	2.35	6,979	9,835	17,047	27,015	6,979	7,285	7,604	7,937	8,285	8,648	9,027
26	Bilishivalli	2.21	3,710	5,227	9,061	14,359	3,710	3,872	4,042	4,219	4,404	4,597	4,798
	SUB TOTAL-2	55.004	243,210	342,710	593,904	941,116	243,210	253,865	264,984	276,590	288,707	301,353	314,552

NJS Consultants Co., Ltd.

1	10	Village	- Bytra	yanapura
ı	10	v illaye	- Dylla	yanapura

		4.38	4.38	4.38	4.38	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
No	Villge	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
1	Anantha Pura	9,515	9,932	10,367	10,821	11,227	11,648	12,085	12,538	13,008	13,496	14,002	14,527
2	Doddabetthalli	16,430	17,150	17,901	18,685	19,386	20,113	20,867	21,650	22,462	23,304	24,178	25,085
3	Chikkabetthalli	24,015	25,067	26,165	27,311	28,335	29,398	30,500	31,644	32,831	34,062	35,339	36,664
4	Harohalli	12,889	13,454	14,043	14,658	15,208	15,778	16,370	16,984	17,621	18,282	18,968	19,679
5	Kenchnehalli	6,559	6,846	7,146	7,459	7,739	8,029	8,330	8,642	8,966	9,302	9,651	10,013
6	Govindapura	4,163	4,345	4,535	4,734	4,912	5,096	5,287	5,485	5,691	5,904	6,125	6,355
7	Vasudvapura	502	524	547	571	592	614	637	661	686	712	739	767
8	Manchenhalli	356	372	388	405	420	436	452	469	487	505	524	544
9	Kattigenahalli	27,421	28,622	29,876	31,185	32,354	33,567	34,826	36,132	37,487	38,893	40,351	41,864
10	Srinivasapura	3,136	3,273	3,416	3,566	3,700	3,839	3,983	4,132	4,287	4,448	4,615	4,788
11	Bellhalli	3,946	4,119	4,299	4,487	4,655	4,830	5,011	5,199	5,394	5,596	5,806	6,024
12	Tirumenhalli	1,694	1,768	1,845	1,926	1,998	2,073	2,151	2,232	2,316	2,403	2,493	2,586
13	Chokkanahalli	3,449	3,600	3,758	3,923	4,070	4,223	4,381	4,545	4,715	4,892	5,075	5,265
14	Dasrahalli	19,447	20,299	21,188	22,116	22,945	23,805	24,698	25,624	26,585	27,582	28,616	29,689
15	Rachnehalli	12,635	13,188	13,766	14,369	14,908	15,467	16,047	16,649	17,273	17,921	18,593	19,290
16	Thanisandra	55,155	57,571	60,093	62,725	65,077	67,517	70,049	72,676	75,401	78,229	81,163	84,207
17	Chalakere	46,287	48,314	50,430	52,639	54,613	56,661	58,786	60,990	63,277	65,650	68,112	70,666
18	Horamavau Agara	23,363	24,386	25,454	26,569	27,565	28,599	29,671	30,784	31,938	33,136	34,379	35,668
19	Amani Byaratahikane	944	985	1,028	1,073	1,113	1,155	1,198	1,243	1,290	1,338	1,388	1,440
20	Geddalahalli	10,518	10,979	11,460	11,962	12,411	12,876	13,359	13,860	14,380	14,919	15,478	16,058
21	Kottanur Narayanpura	9,727	10,153	10,598	11,062	11,477	11,907	12,354	12,817	13,298	13,797	14,314	14,851
22	Kottanur	11,556	12,062	12,590	13,141	13,634	14,145	14,675	15,225	15,796	16,388	17,003	17,641
23	N Naganehalli	2,620	2,735	2,855	2,980	3,092	3,208	3,328	3,453	3,582	3,716	3,855	4,000
24	Kylasanahalli	7,572	7,904	8,250	8,611	8,934	9,269	9,617	9,978	10,352	10,740	11,143	11,561
25	Byrathi	9,422	9,835	10,266	10,716	11,118	11,535	11,968	12,417	12,883	13,366	13,867	14,387
26	Bilishivalli	5,008	5,227	5,456	5,695	5,909	6,131	6,361	6,600	6,848	7,105	7,371	7,647
	SUB TOTAL-2	328,329	342,710	357,720	373,389	387,392	401,919	416,991	432,629	448,854	465,686	483,148	501,266

Supporting Report

1	10	Village	- Bytray	vanapura
п	10	v IIIaue	- Dvua	vanabura

		3.75	3.75	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
No	Villge	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1	Anantha Pura	15,072	15,637	16,145	16,670	17,212	17,771	18,349	18,945	19,561	20,197	20,853	21,531
2	Doddabetthalli	26,026	27,002	27,880	28,786	29,722	30,688	31,685	32,715	33,778	34,876	36,009	37,179
3	Chikkabetthalli	38,039	39,465	40,748	42,072	43,439	44,851	46,309	47,814	49,368	50,972	52,629	54,339
4	Harohalli	20,417	21,183	21,871	22,582	23,316	24,074	24,856	25,664	26,498	27,359	28,248	29,166
5	Kenchnehalli	10,388	10,778	11,128	11,490	11,863	12,249	12,647	13,058	13,482	13,920	14,372	14,839
6	Govindapura	6,593	6,840	7,062	7,292	7,529	7,774	8,027	8,288	8,557	8,835	9,122	9,418
7	Vasudvapura	796	826	853	881	910	940	971	1,003	1,036	1,070	1,105	1,141
8	Manchenhalli	564	585	604	624	644	665	687	709	732	756	781	806
9	Kattigenahalli	43,434	45,063	46,528	48,040	49,601	51,213	52,877	54,596	56,370	58,202	60,094	62,047
10	Srinivasapura	4,968	5,154	5,322	5,495	5,674	5,858	6,048	6,245	6,448	6,658	6,874	7,097
11	Bellhalli	6,250	6,484	6,695	6,913	7,138	7,370	7,610	7,857	8,112	8,376	8,648	8,929
12	Tirumenhalli	2,683	2,784	2,874	2,967	3,063	3,163	3,266	3,372	3,482	3,595	3,712	3,833
13	Chokkanahalli	5,462	5,667	5,851	6,041	6,237	6,440	6,649	6,865	7,088	7,318	7,556	7,802
14	Dasrahalli	30,802	31,957	32,996	34,068	35,175	36,318	37,498	38,717	39,975	41,274	42,615	44,000
15	Rachnehalli	20,013	20,763	21,438	22,135	22,854	23,597	24,364	25,156	25,974	26,818	27,690	28,590
16	Thanisandra	87,365	90,641	93,587	96,629	99,769	103,011	106,359	109,816	113,385	117,070	120,875	124,803
17	Chalakere	73,316	76,065	78,537	81,089	83,724	86,445	89,254	92,155	95,150	98,242	101,435	104,732
18	Horamavau Agara	37,006	38,394	39,642	40,930	42,260	43,633	45,051	46,515	48,027	49,588	51,200	52,864
19	Amani Byaratahikane	1,494	1,550	1,600	1,652	1,706	1,761	1,818	1,877	1,938	2,001	2,066	2,133
20	Geddalahalli	16,660	17,285	17,847	18,427	19,026	19,644	20,282	20,941	21,622	22,325	23,051	23,800
21	Kottanur Narayanpura	15,408	15,986	16,506	17,042	17,596	18,168	18,758	19,368	19,997	20,647	21,318	22,011
22	Kottanur	18,303	18,989	19,606	20,243	20,901	21,580	22,281	23,005	23,753	24,525	25,322	26,145
23	N Naganehalli	4,150	4,306	4,446	4,590	4,739	4,893	5,052	5,216	5,386	5,561	5,742	5,929
24	Kylasanahalli	11,995	12,445	12,849	13,267	13,698	14,143	14,603	15,078	15,568	16,074	16,596	17,135
25	Byrathi	14,927	15,487	15,990	16,510	17,047	17,601	18,173	18,764	19,374	20,004	20,654	21,325
26	Bilishivalli	7,934	8,232	8,500	8,776	9,061	9,355	9,659	9,973	10,297	10,632	10,978	11,335
	SUB TOTAL-2	520,065	539,568	557,105	575,211	593,904	613,205	633,133	653,712	674,958	696,895	719,545	742,929

	_
	aver
	ater supply
	ana
Supporting Report	ana sewerage Froject (Frase 3)

	110 Village - Bytrayanapura											
		3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	
No	Villge	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	
1	Anantha Pura	22,177	22,842	23,527	24,233	24,960	25,709	26,480	27,274	28,092	28,935	
2	Doddabetthalli	38,294	39,443	40,626	41,845	43,100	44,393	45,725	47,097	48,510	49,965	
3	Chikkabetthalli	55,969	57,648	59,377	61,158	62,993	64,883	66,829	68,834	70,899	73,026	
4	Harohalli	30,041	30,942	31,870	32,826	33,811	34,825	35,870	36,946	38,054	39,196	
5	Kenchnehalli	15,284	15,743	16,215	16,701	17,202	17,718	18,250	18,798	19,362	19,943	
6	Govindapura	9,701	9,992	10,292	10,601	10,919	11,247	11,584	11,932	12,290	12,659	
7	Vasudvapura	1,175	1,210	1,246	1,283	1,321	1,361	1,402	1,444	1,487	1,532	
8	Manchenhalli	830	855	881	907	934	962	991	1,021	1,052	1,084	
9	Kattigenahalli	63,908	65,825	67,800	69,834	71,929	74,087	76,310	78,599	80,957	83,386	
10	Srinivasapura	7,310	7,529	7,755	7,988	8,228	8,475	8,729	8,991	9,261	9,539	
11	Bellhalli	9,197	9,473	9,757	10,050	10,352	10,663	10,983	11,312	11,651	12,001	
12	Tirumenhalli	3,948	4,066	4,188	4,314	4,443	4,576	4,713	4,854	5,000	5,150	
13	Chokkanahalli	8,036	8,277	8,525	8,781	9,044	9,315	9,594	9,882	10,178	10,483	
14	Dasrahalli	45,320	46,680	48,080	49,522	51,008	52,538	54,114	55,737	57,409	59,131	
15	Rachnehalli	29,448	30,331	31,241	32,178	33,143	34,137	35,161	36,216	37,302	38,421	
16	Thanisandra	128,547	132,403	136,375	140,466	144,680	149,020	153,491	158,096	162,839	167,724	
17	Chalakere	107,874	111,110	114,443	117,876	121,412	125,054	128,806	132,670	136,650	140,750	
18	Horamavau Agara	54,450	56,084	57,767	59,500	61,285	63,124	65,018	66,969	68,978	71,047	
19	Amani Byaratahikane	2,197	2,263	2,331	2,401	2,473	2,547	2,623	2,702	2,783	2,866	
20	Geddalahalli	24,514	25,249	26,006	26,786	27,590	28,418	29,271	30,149	31,053	31,985	
21	Kottanur Narayanpura	22,671	23,351	24,052	24,774	25,517	26,283	27,071	27,883	28,719	29,581	
22	Kottanur	26,929	27,737	28,569	29,426	30,309	31,218	32,155	33,120	34,114	35,137	
23	N Naganehalli	6,107	6,290	6,479	6,673	6,873	7,079	7,291	7,510	7,735	7,967	
24	Kylasanahalli	17,649	18,178	18,723	19,285	19,864	20,460	21,074	21,706	22,357	23,028	
25	Byrathi	21,965	22,624	23,303	24,002	24,722	25,464	26,228	27,015	27,825	28,660	
26	Bilishivalli	11,675	12,025	12,386	12,758	13,141	13,535	13,941	14,359	14,790	15,234	
	SUB TOTAL-2	765,216	788,170	811,814	836,168	861,253	887,091	913,704	941,116	969,347	998,430	

NJS Consultants Co., Ltd.

NJS Consultants Co., Ltd.

No

2

3

5

22

23

K.Channasandra

Varanasi

SUB TOTAL-2

1

1

51.037

7,805

3,271

225,471 317,705

10,998

4,609

S	
Idn	
ortii	
ng R	
Repor	
7	

3,681

7,951

7,832

4,199

11,395

32,453

24,654

21,812

13,483

10,094

4,230

291,605

9,671

4,053

279,368

110 Village - Mahadevpura												
Village	Area	2011	Po	Population / Growt		owth Rate→ 4.38		4.38	4.38	4.38	4.38	4.38
• mage	(Sq Km)	(Census)	2019	2034	2049	2011	2012	2013	2014	2015	2016	2017
Balagere	1.82	3,862	5,442	9,431	14,944	3862	4,031	4,208	4,392	4,584	4,785	4,995
Bellanduramanikere (B) (P)	2.63	470	662	1,148	1,819	470	491	512	535	558	582	608
Belthur	1	26,380	37,172	64,417	102,077	26380	27,535	28,741	30,000	31,314	32,686	34,118
Channasandra	2.08	23,913	33,696	58,393	92,531	23913	24,960	26,054	27,195	28,386	29,629	30,927
Devarabeesanahalli	2	7,757	10,930	18,942	30,016	7757	8,097	8,451	8,822	9,208	9,611	10,032
Gunjur	7.93	9,380	13,217	22,905	36,296	9380	9,791	10,220	10,667	11,135	11,622	12,131
Hagadur	0.004	21,445	30,218	52,366	82,981	21445	22,384	23,365	24,388	25,456	26,571	27,735
Kadabeesanahalli	1	3,711	5,229	9,062	14,360	3711	3,874	4,043	4,220	4,405	4,598	4,799
Kariyammana Agrahara	1	3,482	4,906	8,503	13,474	3482	3,635	3,794	3,960	4,133	4,314	4,503
Kadugodi Plantation	3.79	12,555	17,691	30,658	48,581	12555	13,105	13,679	14,278	14,903	15,556	16,238
Khanekandya (B)	0.003	470	662	1,148	1,819	470	491	512	535	558	582	608
Kumbena Agrahar (P)	1.36	2,416	3,404	5,900	9,349	2416	2,522	2,632	2,748	2,868	2,994	3,125
	l	1										

8,147

3,414

235,347

7805

3271

225,471

8,504

3,564

245,655

9,265

3,883

267,645

8,876

3,720

256,414

19,059

7,987

550,577

30,201

12,657

872,459

Supporting Report

1	10	Villago	- Mahadevpura
1	10	village -	- Manadevbura

No 1	Village	2018	2019										3.75
1			2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	Balagere	5,214	5,442	5,680	5,929	6,151	6,382	6,621	6,870	7,127	7,395	7,672	7,960
2	Bellanduramanikere (B) (P)	634	662	691	722	749	777	806	836	867	900	934	969
3	Belthur	35,612	37,172	38,800	40,499	42,018	43,594	45,228	46,925	48,684	50,510	52,404	54,369
4	Channasandra	32,282	33,696	35,171	36,712	38,089	39,517	40,999	42,536	44,131	45,786	47,503	49,285
5	Devarabeesanahalli	10,472	10,930	11,409	11,909	12,355	12,819	13,299	13,798	14,316	14,852	15,409	15,987
6	Gunjur	12,663	13,217	13,796	14,400	14,940	15,501	16,082	16,685	17,311	17,960	18,633	19,332
7	Hagadur	28,950	30,218	31,541	32,923	34,158	35,438	36,767	38,146	39,577	41,061	42,601	44,198
8	Kadabeesanahalli	5,010	5,229	5,458	5,697	5,911	6,133	6,363	6,601	6,849	7,105	7,372	7,648
9	Kariyammana Agrahara	4,701	4,906	5,121	5,346	5,546	5,754	5,970	6,194	6,426	6,667	6,917	7,176
10	Kadugodi Plantation	16,949	17,691	18,466	19,275	19,998	20,748	21,526	22,333	23,170	24,039	24,941	25,876
11	Khanekandya (B)	634	662	691	722	749	777	806	836	867	900	934	969
12	Kumbena Agrahar (P)	3,262	3,404	3,553	3,709	3,848	3,993	4,142	4,298	4,459	4,626	4,799	4,979
13	Nagondhalli	3,842	4,010	4,186	4,369	4,533	4,703	4,879	5,062	5,252	5,449	5,654	5,866
14	Panathur	8,300	8,663	9,043	9,439	9,793	10,160	10,541	10,936	11,346	11,772	12,213	12,671
15	Ramagondanahalli	8,175	8,533	8,907	9,297	9,646	10,008	10,383	10,772	11,176	11,595	12,030	12,481
16	Siddapura	4,383	4,575	4,776	4,985	5,172	5,366	5,567	5,776	5,992	6,217	6,450	6,692
17	Sorahunise	11,895	12,415	12,959	13,527	14,034	14,560	15,106	15,673	16,261	16,870	17,503	18,159
18	Tubarahalli	33,875	35,358	36,907	38,523	39,968	41,467	43,022	44,635	46,309	48,046	49,847	51,717
19	Varthur	25,734	26,861	28,038	29,266	30,364	31,502	32,683	33,909	35,181	36,500	37,869	39,289
20	Kalkere	22,767	23,764	24,805	25,892	26,863	27,870	28,915	29,999	31,124	32,291	33,502	34,759
21	Horamavu	14,073	14,690	15,333	16,005	16,605	17,228	17,874	18,544	19,239	19,961	20,709	21,486
22	K.Channasandra	10,536	10,998	11,480	11,982	12,432	12,898	13,382	13,883	14,404	14,944	15,505	16,086
23	Varanasi	4,416	4,609	4,811	5,022	5,210	5,405	5,608	5,818	6,037	6,263	6,498	6,742
	SUB TOTAL-2	304,377	317,709	331,624	346,149	359,130	372,597	386,570	401,066	416,106	431,710	447,899	464,695

S	
uр	
porting	
Repo	
ort	

No	Village	3.75	3.75	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
140	Village	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1	Balagere	8,258	8,568	8,846	9,134	9,431	9,737	10,053	10,380	10,718	11,066	11,426	11,797
2	Bellanduramanikere (B) (P)	1,005	1,043	1,077	1,112	1,148	1,185	1,223	1,263	1,304	1,347	1,390	1,436
3	Belthur	56,408	58,523	60,425	62,389	64,417	66,510	68,672	70,904	73,208	75,587	78,044	80,580
4	Channasandra	51,133	53,050	54,774	56,555	58,393	60,290	62,250	64,273	66,362	68,519	70,745	73,045
5	Devarabeesanahalli	16,587	17,209	17,768	18,345	18,942	19,557	20,193	20,849	21,527	22,226	22,949	23,695
6	Gunjur	20,057	20,809	21,486	22,184	22,905	23,649	24,418	25,211	26,031	26,877	27,750	28,652
7	Hagadur	45,856	47,575	49,121	50,718	52,366	54,068	55,825	57,640	59,513	61,447	63,444	65,506
8	Kadabeesanahalli	7,935	8,233	8,500	8,777	9,062	9,356	9,660	9,974	10,299	10,633	10,979	11,336
9	Kariyammana Agrahara	7,446	7,725	7,976	8,235	8,503	8,779	9,064	9,359	9,663	9,977	10,301	10,636
10	Kadugodi Plantation	26,846	27,853	28,758	29,693	30,658	31,654	32,683	33,745	34,842	35,974	37,143	38,351
11	Khanekandya (B)	1,005	1,043	1,077	1,112	1,148	1,185	1,223	1,263	1,304	1,347	1,390	1,436
12	Kumbena Agrahar (P)	5,166	5,360	5,534	5,714	5,900	6,091	6,289	6,494	6,705	6,923	7,148	7,380
13	Nagondhalli	6,086	6,314	6,519	6,731	6,950	7,175	7,409	7,649	7,898	8,155	8,420	8,693
14	Panathur	13,146	13,639	14,082	14,540	15,013	15,501	16,004	16,524	17,062	17,616	18,189	18,780
15	Ramagondanahalli	12,949	13,435	13,872	14,323	14,788	15,269	15,765	16,277	16,806	17,352	17,916	18,499
16	Siddapura	6,943	7,203	7,437	7,679	7,929	8,186	8,453	8,727	9,011	9,304	9,606	9,918
17	Sorahunise	18,840	19,547	20,182	20,838	21,515	22,215	22,937	23,682	24,452	25,246	26,067	26,914
18	Tubarahalli	53,656	55,668	57,477	59,345	61,274	63,265	65,322	67,445	69,637	71,900	74,236	76,649
19	Varthur	40,762	42,291	43,665	45,084	46,550	48,062	49,624	51,237	52,902	54,622	56,397	58,230
20	Kalkere	36,062	37,415	38,631	39,886	41,182	42,521	43,903	45,329	46,803	48,324	49,894	51,516
21	Horamavu	22,292	23,128	23,879	24,655	25,457	26,284	27,138	28,020	28,931	29,871	30,842	31,844
22	K.Channasandra	16,689	17,315	17,878	18,459	19,059	19,678	20,318	20,978	21,660	22,364	23,091	23,841
23	Varanasi	6,994	7,257	7,492	7,736	7,987	8,247	8,515	8,792	9,077	9,372	9,677	9,992
	SUB TOTAL-2	482,122	500,201	516,458	533,243	550,573	568,467	586,942	606,017	625,713	646,049	667,045	688,724

110 Village - Mahadevpura

I10 Village -	Mahadevpura
---------------	-------------

No	Village	3	3	3	3	e - Manadev 3	3	3	3	3	3
NO	Villaye	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051
1	Balagere	12,151	12,515	12,891	13,277	13,676	14,086	14,509	14,944	15,392	15,854
2	Bellanduramanikere (B) (P)	1,479	1,523	1,569	1,616	1,664	1,714	1,766	1,819	1,873	1,929
3	Belthur	82,998	85,488	88,052	90,694	93,415	96,217	99,104	102,077	105,139	108,293
4	Channasandra	75,236	77,493	79,818	82,212	84,679	87,219	89,836	92,531	95,307	98,166
5	Devarabeesanahalli	24,405	25,138	25,892	26,668	27,468	28,293	29,141	30,016	30,916	31,843
6	Gunjur	29,512	30,397	31,309	32,248	33,216	34,212	35,239	36,296	37,385	38,506
7	Hagadur	67,471	69,495	71,580	73,728	75,939	78,218	80,564	82,981	85,470	88,034
8	Kadabeesanahalli	11,676	12,026	12,387	12,758	13,141	13,535	13,941	14,360	14,790	15,234
9	Kariyammana Agrahara	10,955	11,284	11,622	11,971	12,330	12,700	13,081	13,474	13,878	14,294
10	Kadugodi Plantation	39,501	40,686	41,907	43,164	44,459	45,793	47,166	48,581	50,039	51,540
11	Khanekandya (B)	1,479	1,523	1,569	1,616	1,664	1,714	1,766	1,819	1,873	1,929
12	Kumbena Agrahar (P)	7,601	7,829	8,064	8,306	8,555	8,812	9,076	9,349	9,629	9,918
13	Nagondhalli	8,954	9,223	9,500	9,784	10,078	10,380	10,692	11,013	11,343	11,683
14	Panathur	19,343	19,923	20,521	21,137	21,771	22,424	23,097	23,790	24,503	25,238
15	Ramagondanahalli	19,054	19,625	20,214	20,820	21,445	22,088	22,751	23,434	24,137	24,861
16	Siddapura	10,216	10,522	10,838	11,163	11,498	11,843	12,198	12,564	12,941	13,329
17	Sorahunise	27,722	28,553	29,410	30,292	31,201	32,137	33,101	34,094	35,117	36,170
18	Tubarahalli	78,949	81,317	83,757	86,269	88,857	91,523	94,269	97,097	100,010	103,010
19	Varthur	59,977	61,776	63,629	65,538	67,504	69,530	71,615	73,764	75,977	78,256
20	Kalkere	53,061	54,653	56,293	57,982	59,721	61,513	63,358	65,259	67,217	69,233
21	Horamavu	32,800	33,784	34,797	35,841	36,916	38,024	39,164	40,339	41,549	42,796
22	K.Channasandra	24,556	25,293	26,052	26,833	27,638	28,468	29,322	30,201	31,107	32,041
23	Varanasi	10,291	10,600	10,918	11,246	11,583	11,930	12,288	12,657	13,037	13,428
	SUB TOTAL-2	709,386	730,667	752,587	775,165	798,420	822,373	847,044	872,455	898,629	925,588

١	110	\/illana	- Bommanahalli	

		Area	2011	Pop	ulation / Gr	owth Rate→	4.38	4.38	4.38	4.38	4.38	4.38	4.38
No	Village	(Sq Km)	(Census)	2019	2034	2049	2011	2012	2013	2014	2015	2016	2017
1	Alahalli	2	18,768	26,446	45,829	72,622	18,768	19,590	20,448	21,344	22,279	23,254	24,273
2	Ambalipura	1.06	2,907	4,096	7,099	11,249	2,907	3,034	3,167	3,306	3,451	3,602	3,760
3	Anjanapura	3	5,830	8,215	14,236	22,559	5,830	6,085	6,352	6,630	6,921	7,224	7,540
4	Basapura	1	2,140	3,015	5,226	8,281	2,140	2,234	2,332	2,434	2,540	2,652	2,768
5	Basavanapura	2	6,972	9,824	17,025	26,978	6,972	7,277	7,596	7,929	8,276	8,639	9,017
6	Beguru	8	35,837	50,498	87,510	138,670	35,837	37,407	39,045	40,755	42,540	44,404	46,348
7	Bellandur	2	17,021	23,984	41,563	65,862	17,021	17,767	18,545	19,357	20,205	21,090	22,013
8	Chandrashekarapura	1	631	889	1,541	2,442	631	659	687	718	749	782	816
9	Doddakallasandra	3	5,797	8,168	14,156	22,431	5,797	6,051	6,316	6,593	6,881	7,183	7,497
10	Gollahalli	3	6,977	9,831	17,037	26,997	6,977	7,283	7,602	7,935	8,282	8,645	9,023
11	Gottigere	3	15,366	21,652	37,522	59,458	15,366	16,039	16,742	17,475	18,240	19,039	19,873
12	Haraluru	2.65	5,726	8,068	13,982	22,157	5,726	5,977	6,239	6,512	6,797	7,095	7,406
13	Junnasandra	0.87	3,830	5,397	9,352	14,820	3,830	3,998	4,173	4,356	4,546	4,746	4,953
14	Kaikondranahalli	1.03	6,282	8,852	15,340	24,308	6,282	6,557	6,844	7,144	7,457	7,784	8,125
15	Kalenaagrahara	1	5,252	7,401	12,825	20,322	5,252	5,482	5,722	5,973	6,234	6,507	6,792
16	Kambathahalli	2	2,952	4,160	7,208	11,423	2,952	3,081	3,216	3,357	3,504	3,658	3,818
17	Kammanahalli	3	11,125	15,676	27,166	43,048	11,125	11,612	12,121	12,652	13,206	13,784	14,388
18	Kasavanahalli	2.49	5,767	8,126	14,082	22,315	5,767	6,020	6,283	6,558	6,846	7,146	7,459
19	Kudlu	3.36	35,405	49,889	86,455	136,999	35,405	36,956	38,574	40,264	42,028	43,868	45,790
20	Parappana Agrahara	3	12,093	17,040	29,530	46,794	12,093	12,623	13,176	13,753	14,355	14,984	15,640
21	Pillaganahalli	2	3,803	5,359	9,286	14,716	3,803	3,970	4,143	4,325	4,514	4,712	4,918
22	Raghuvanahalli	1	1,956	2,756	4,776	7,569	1,956	2,042	2,131	2,224	2,322	2,424	2,530
23	Talaghattapura	0	11,259	15,865	27,493	43,566	11,259	11,752	12,267	12,804	13,365	13,950	14,561
24	Thippasandra	1	1,280	1,804	3,126	4,953	1,280	1,336	1,395	1,456	1,519	1,586	1,655
25	Vajarahalli	1	6,867	9,676	16,768	26,572	6,867	7,168	7,482	7,809	8,151	8,509	8,881
26	Yelenahalli	2	1,562	2,201	3,814	6,044	1,562	1,630	1,702	1,776	1,854	1,935	2,020
27	Bharathena Agrahara	1	1,205	1,698	2,942	4,663	1,205	1,258	1,313	1,370	1,430	1,493	1,558
28	Bhoganahalli	0.008	2,756	3,883	6,730	10,664	2,756	2,877	3,003	3,134	3,272	3,415	3,564
29	Chikkabelandur	1.75	6,799	9,580	16,602	26,309	6,799	7,097	7,408	7,732	8,071	8,424	8,793
30	Chikkathoguru	2	3,609	5,085	8,813	13,965	3,609	3,767	3,932	4,104	4,284	4,472	4,668
31	Doddakannahalli	1.93	13,872	19,547	33,874	53,677	13,872	14,480	15,114	15,776	16,467	17,188	17,941
32	Doddathoguru	0.12	14,481	20,405	35,361	56,034	14,481	15,115	15,777	16,468	17,190	17,943	18,728
33	Naganathapura	2	9,049	12,751	22,097	35,015	9,049	9,445	9,859	10,291	10,742	11,212	11,703
	Total	64.268	285,176	401,837	696,366	1,103,482	285,176	297,667	310,705	324,313	338,518	353,345	368,822

1	10	Village -	Bommanahalli
ı	10	village -	Dullillialialiali

		4.38	4.38	4.38	4.38	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
No	Village	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
1	Alahalli	25,336	26,446	27,604	28,813	29,894	31,015	32,178	33,384	34,636	35,935	37,283	38,681
2	Ambalipura	3,924	4,096	4,276	4,463	4,630	4,804	4,984	5,171	5,365	5,566	5,775	5,991
3	Anjanapura	7,870	8,215	8,575	8,950	9,286	9,634	9,996	10,370	10,759	11,163	11,581	12,016
4	Basapura	2,889	3,015	3,148	3,285	3,409	3,536	3,669	3,807	3,949	4,097	4,251	4,411
5	Basavanapura	9,412	9,824	10,254	10,704	11,105	11,521	11,953	12,402	12,867	13,349	13,850	14,369
6	Beguru	48,379	50,498	52,709	55,018	57,081	59,222	61,443	63,747	66,137	68,617	71,190	73,860
7	Bellandur	22,978	23,984	25,035	26,131	27,111	28,128	29,182	30,277	31,412	32,590	33,812	35,080
8	Chandrashekarapura	852	889	928	969	1,005	1,043	1,082	1,122	1,165	1,208	1,253	1,300
9	Doddakallasandra	7,826	8,168	8,526	8,900	9,233	9,580	9,939	10,312	10,698	11,100	11,516	11,948
10	Gollahalli	9,419	9,831	10,262	10,711	11,113	11,530	11,962	12,411	12,876	13,359	13,860	14,380
11	Gottigere	20,743	21,652	22,600	23,590	24,475	25,393	26,345	27,333	28,358	29,421	30,525	31,669
12	Haraluru	7,730	8,068	8,422	8,791	9,120	9,462	9,817	10,185	10,567	10,964	11,375	11,801
13	Junnasandra	5,170	5,397	5,633	5,880	6,100	6,329	6,567	6,813	7,068	7,333	7,608	7,894
14	Kaikondranahalli	8,480	8,852	9,240	9,644	10,006	10,381	10,770	11,174	11,593	12,028	12,479	12,947
15	Kalenaagrahara	7,090	7,401	7,725	8,063	8,365	8,679	9,005	9,342	9,693	10,056	10,433	10,824
16	Kambathahalli	3,985	4,160	4,342	4,532	4,702	4,878	5,061	5,251	5,448	5,652	5,864	6,084
17	Kammanahalli	15,018	15,676	16,363	17,079	17,720	18,384	19,074	19,789	20,531	21,301	22,100	22,929
18	Kasavanahalli	7,785	8,126	8,482	8,854	9,186	9,530	9,888	10,258	10,643	11,042	11,456	11,886
19	Kudlu	47,795	49,889	52,074	54,355	56,393	58,508	60,702	62,978	65,340	67,790	70,332	72,970
20	Parappana Agrahara	16,325	17,040	17,786	18,566	19,262	19,984	20,733	21,511	22,318	23,155	24,023	24,924
21	Pillaganahalli	5,134	5,359	5,593	5,838	6,057	6,285	6,520	6,765	7,018	7,282	7,555	7,838
22	Raghuvanahalli	2,641	2,756	2,877	3,003	3,116	3,232	3,354	3,479	3,610	3,745	3,886	4,031
23	Talaghattapura	15,199	15,865	16,560	17,285	17,933	18,606	19,304	20,027	20,778	21,558	22,366	23,205
24	Thippasandra	1,728	1,804	1,883	1,965	2,039	2,115	2,195	2,277	2,362	2,451	2,543	2,638
25	Vajarahalli	9,270	9,676	10,100	10,542	10,938	11,348	11,773	12,215	12,673	13,148	13,641	14,153
26	Yelenahalli	2,109	2,201	2,297	2,398	2,488	2,581	2,678	2,778	2,883	2,991	3,103	3,219
27	Bharathena Agrahara	1,627	1,698	1,772	1,850	1,919	1,991	2,066	2,143	2,224	2,307	2,394	2,484
28	Bhoganahalli	3,720	3,883	4,054	4,231	4,390	4,554	4,725	4,902	5,086	5,277	5,475	5,680
29	Chikkabelandur	9,178	9,580	10,000	10,438	10,829	11,236	11,657	12,094	12,548	13,018	13,506	14,013
30	Chikkathoguru	4,872	5,085	5,308	5,541	5,748	5,964	6,188	6,420	6,660	6,910	7,169	7,438
31	Doddakannahalli	18,727	19,547	20,403	21,297	22,095	22,924	23,784	24,675	25,601	26,561	27,557	28,590
32	Doddathoguru	19,549	20,405	21,299	22,232	23,065	23,930	24,828	25,759	26,725	27,727	28,767	29,845
33	Naganathapura	12,216	12,751	13,309	13,892	14,413	14,954	15,515	16,096	16,700	17,326	17,976	18,650
	Total	384,976	401,838	419,439	437,810	454,228	471,262	488,934	507,269	526,292	546,028	566,504	587,747

110 Village - Bommanah	alli
------------------------	------

		3.75	3.75	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
No	Village	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1	Alahalli	40,131	41,636	42,989	44,387	45,829	47,319	48,856	50,444	52,084	53,776	55,524	57,329
2	Ambalipura	6,216	6,449	6,659	6,875	7,099	7,329	7,567	7,813	8,067	8,330	8,600	8,880
3	Anjanapura	12,466	12,934	13,354	13,788	14,236	14,699	15,177	15,670	16,179	16,705	17,248	17,808
4	Basapura	4,576	4,748	4,902	5,061	5,226	5,395	5,571	5,752	5,939	6,132	6,331	6,537
5	Basavanapura	14,908	15,467	15,970	16,489	17,025	17,578	18,149	18,739	19,348	19,977	20,626	21,297
6	Beguru	76,630	79,503	82,087	84,755	87,510	90,354	93,290	96,322	99,453	102,685	106,022	109,468
7	Bellandur	36,396	37,761	38,988	40,255	41,563	42,914	44,309	45,749	47,236	48,771	50,356	51,992
8	Chandrashekarapura	1,349	1,400	1,445	1,492	1,541	1,591	1,643	1,696	1,751	1,808	1,867	1,927
9	Doddakallasandra	12,396	12,860	13,278	13,710	14,156	14,616	15,091	15,581	16,087	16,610	17,150	17,708
10	Gollahalli	14,919	15,478	15,981	16,501	17,037	17,591	18,162	18,753	19,362	19,991	20,641	21,312
11	Gottigere	32,857	34,089	35,197	36,341	37,522	38,741	40,000	41,300	42,643	44,029	45,460	46,937
12	Haraluru	12,244	12,703	13,116	13,542	13,982	14,437	14,906	15,390	15,890	16,407	16,940	17,491
13	Junnasandra	8,190	8,497	8,773	9,058	9,352	9,656	9,970	10,294	10,629	10,974	11,331	11,699
14	Kaikondranahalli	13,433	13,936	14,389	14,857	15,340	15,838	16,353	16,885	17,433	18,000	18,585	19,189
15	Kalenaagrahara	11,230	11,651	12,030	12,421	12,825	13,242	13,672	14,116	14,575	15,049	15,538	16,043
16	Kambathahalli	6,312	6,549	6,762	6,982	7,208	7,443	7,685	7,934	8,192	8,458	8,733	9,017
17	Kammanahalli	23,788	24,681	25,483	26,311	27,166	28,049	28,960	29,902	30,873	31,877	32,913	33,982
18	Kasavanahalli	12,331	12,794	13,210	13,639	14,082	14,540	15,013	15,500	16,004	16,524	17,061	17,616
19	Kudlu	75,706	78,545	81,098	83,733	86,455	89,265	92,166	95,161	98,254	101,447	104,744	108,148
20	Parappana Agrahara	25,858	26,828	27,700	28,600	29,530	30,489	31,480	32,503	33,560	34,650	35,777	36,939
21	Pillaganahalli	8,132	8,437	8,711	8,994	9,286	9,588	9,900	10,222	10,554	10,897	11,251	11,617
22	Raghuvanahalli	4,182	4,339	4,480	4,626	4,776	4,932	5,092	5,257	5,428	5,605	5,787	5,975
23	Talaghattapura	24,075	24,978	25,790	26,628	27,493	28,387	29,309	30,262	31,245	32,261	33,309	34,392
24	Thippasandra	2,737	2,840	2,932	3,027	3,126	3,227	3,332	3,440	3,552	3,668	3,787	3,910
25	Vajarahalli	14,684	15,234	15,729	16,241	16,768	17,313	17,876	18,457	19,057	19,676	20,316	20,976
26	Yelenahalli	3,340	3,465	3,578	3,694	3,814	3,938	4,066	4,198	4,335	4,476	4,621	4,771
27	Bharathena Agrahara	2,577	2,673	2,760	2,850	2,942	3,038	3,137	3,239	3,344	3,453	3,565	3,681
28	Bhoganahalli	5,893	6,114	6,313	6,518	6,730	6,949	7,174	7,408	7,648	7,897	8,153	8,418
29	Chikkabelandur	14,538	15,083	15,574	16,080	16,602	17,142	17,699	18,274	18,868	19,481	20,115	20,768
30	Chikkathoguru	7,717	8,006	8,267	8,535	8,813	9,099	9,395	9,700	10,015	10,341	10,677	11,024
31	Doddakannahalli	29,662	30,775	31,775	32,808	33,874	34,975	36,111	37,285	38,497	39,748	41,040	42,373
32	Doddathoguru	30,965	32,126	33,170	34,248	35,361	36,510	37,697	38,922	40,187	41,493	42,841	44,234
33	Naganathapura	19,349	20,075	20,727	21,401	22,097	22,815	23,556	24,322	25,112	25,928	26,771	27,641
	Total	609,788	632,655	653,216	674,446	696,365	718,997	742,365	766,491	791,402	817,123	843,679	871,099

110 Village - Bommanaha	alli
110 village Dominanana	A 1 1 1 1

	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3								3		
No	Village	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051
1	Alahalli	59,049	60,820	62,645	64,524	66,460	68,454	70,507	72,622	74,801	77,045
2	Ambalipura	9,146	9,421	9,703	9,994	10,294	10,603	10,921	11,249	11,586	11,934
3	Anjanapura	18,343	18,893	19,460	20,043	20,645	21,264	21,902	22,559	23,236	23,933
4	Basapura	6,733	6,935	7,143	7,357	7,578	7,805	8,039	8,281	8,529	8,785
5	Basavanapura	21,936	22,594	23,271	23,970	24,689	25,429	26,192	26,978	27,787	28,621
6	Beguru	112,752	116,134	119,618	123,207	126,903	130,710	134,632	138,670	142,831	147,116
7	Bellandur	53,552	55,159	56,813	58,518	60,273	62,082	63,944	65,862	67,838	69,873
8	Chandrashekarapura	1,985	2,045	2,106	2,169	2,234	2,301	2,371	2,442	2,515	2,590
9	Doddakallasandra	18,239	18,786	19,349	19,930	20,528	21,144	21,778	22,431	23,104	23,797
10	Gollahalli	21,951	22,610	23,288	23,987	24,706	25,448	26,211	26,997	27,807	28,641
11	Gottigere	48,345	49,795	51,289	52,828	54,413	56,045	57,727	59,458	61,242	63,079
12	Haraluru	18,015	18,556	19,113	19,686	20,276	20,885	21,511	22,157	22,821	23,506
13	Junnasandra	12,050	12,412	12,784	13,167	13,562	13,969	14,388	14,820	15,265	15,723
14	Kaikondranahalli	19,765	20,358	20,968	21,597	22,245	22,913	23,600	24,308	25,037	25,788
15	Kalenaagrahara	16,524	17,020	17,530	18,056	18,598	19,156	19,731	20,322	20,932	21,560
16	Kambathahalli	9,288	9,566	9,853	10,149	10,453	10,767	11,090	11,423	11,765	12,118
17	Kammanahalli	35,002	36,052	37,134	38,248	39,395	40,577	41,794	43,048	44,339	45,670
18	Kasavanahalli	18,144	18,689	19,249	19,827	20,422	21,034	21,665	22,315	22,985	23,674
19	Kudlu	111,393	114,734	118,176	121,722	125,373	129,135	133,009	136,999	141,109	145,342
20	Parappana Agrahara	38,047	39,189	40,365	41,576	42,823	44,107	45,431	46,794	48,197	49,643
21	Pillaganahalli	11,965	12,324	12,694	13,075	13,467	13,871	14,287	14,716	15,157	15,612
22	Raghuvanahalli	6,154	6,339	6,529	6,725	6,926	7,134	7,348	7,569	7,796	8,030
23	Talaghattapura	35,424	36,486	37,581	38,708	39,869	41,066	42,298	43,566	44,873	46,220
24	Thippasandra	4,027	4,148	4,272	4,401	4,533	4,669	4,809	4,953	5,102	5,255
25	Vajarahalli	21,605	22,253	22,921	23,609	24,317	25,046	25,798	26,572	27,369	28,190
26	Yelenahalli	4,914	5,062	5,214	5,370	5,531	5,697	5,868	6,044	6,225	6,412
27	Bharathena Agrahara	3,791	3,905	4,022	4,143	4,267	4,395	4,527	4,663	4,803	4,947
28	Bhoganahalli	8,671	8,931	9,199	9,475	9,759	10,052	10,354	10,664	10,984	11,314
29	Chikkabelandur	21,391	22,033	22,694	23,375	24,076	24,798	25,542	26,309	27,098	27,911
30	Chikkathoguru	11,355	11,695	12,046	12,408	12,780	13,163	13,558	13,965	14,384	14,815
31	Doddakannahalli	43,645	44,954	46,303	47,692	49,122	50,596	52,114	53,677	55,288	56,946
32	Doddathoguru	45,561	46,928	48,335	49,785	51,279	52,817	54,402	56,034	57,715	59,446
33	Naganathapura	28,470	29,324	30,204	31,110	32,044	33,005	33,995	35,015	36,065	37,147
	Total	897,232	924,149	951,873	980,430	1,009,843	1,040,138	1,071,342	1,103,482	1,136,587	1,170,684

NJS Consultants Co., Ltd.

1	10	Village	- R R	Nagar

		Area	2011		Population / G	Frowth Rate→	4.38	4.38	4.38	4.38	4.38	4.38	4.38
No	Village	(Sq Km)	(Census)	2019	2034	2049	2011	2012	2013	2014	2015	2016	2017
1	Vasanthapura	1.2	30,921	43,570	75,505	119,648	30921	32,275	33,689	35,165	36,705	38,312	39,991
2	Ullalu	4	21,994	30,991	53,707	85,105	21994	22,957	23,963	25,012	26,108	27,252	28,445
3	Sonnenhalli	2	2,889	4,071	7,055	11,179	2889	3,016	3,148	3,285	3,429	3,580	3,736
4	Ganakallu	1.33	7,452	10,501	18,197	28,835	7452	7,778	8,119	8,475	8,846	9,233	9,638
5	Hemmeigepura	4.58	4,961	54,561	89,005	126,708	4961	11,161	17,361	23,561	29,761	35,961	42,161
6	Somapura	1.61	1,358	34,000	51,000	80,505	1358	5,438	9,519	13,599	17,679	21,759	25,840
7	Varahasandra	1.07	1,434	2,021	3,502	5,549	1434	1,497	1,562	1,631	1,702	1,777	1,855
8	Manavarthkavalu	1.35	1,062	1,496	2,593	4,109	1062	1,109	1,157	1,208	1,261	1,316	1,373
9	Lingdernahalli	1.34	1,874	2,641	4,576	7,251	1874	1,956	2,042	2,131	2,225	2,322	2,424
10	Hosahalli	0.8	3,716	5,236	9,074	14,379	3716	3,879	4,049	4,226	4,411	4,604	4,806
11	Arehalli	1.31	7,457	10,508	18,209	28,855	7457	7,784	8,125	8,480	8,852	9,240	9,644
12	Vaddarpalya	1.25	1,873	2,639	4,574	7,248	1873	1,955	2,041	2,130	2,223	2,321	2,422
13	Uttrahalli	2.85	27,312	38,485	66,693	105,683	27312	28,508	29,757	31,060	32,421	33,841	35,323
14	Subramanyapura	0.68	12,569	17,711	30,692	48,635	12569	13,120	13,694	14,294	14,920	15,574	16,256
15	Gubbullalu	1.87	5,602	7,894	13,679	21,677	5602	5,847	6,103	6,371	6,650	6,941	7,245
16	Turahalli	2.9	2,187	3,082	5,340	8,463	2187	2,283	2,383	2,487	2,596	2,710	2,828
17	Giddakonenhalli	1.28	31,103	43,827	75,950	120,352	31103	32,465	33,887	35,372	36,921	38,538	40,226
	Total =	31.42	165,764	313,233	529,351	824,181	165764	183,028	200,598	218,487	236,709	255,279	274,213

Changed as population added due to BDA Development. Straightline interpolation
Changed as population added due to BDA Development. Straightline interpolation

								•					
5	Hemmeigepura	4.58	4961	6,990	12,114	19,196	4961	5,178	5,405	5,642	5,889	6,147	6,416
				6,990	12,114	19,196	1.0312						
	BDA Development - Deposit												
	Contribution basis for sewer			47,571	76,891	107,512	1.0226		-	-	-	-	-
				54,561	89,005	126,708	1.0238						
6	Somapura	1.61	1358	1,914	3,316	5,255	1358	1,417	1,480	1,544	1,612	1,683	1,756
				1,914	3,316	5,255							
	BDA Development - Deposit												
	Contribution basis for sewer			32,086	47,684	75,250							
				34,000	51,000	80,505							

Bengaluru Water Supply and Sewerage Project (Phase 3)

Supporting Report

1	10	Village	- R.R.	Nagar
	10	v illugo	1 \ . 1 \ .	Nugui

		4.38	4.38	4.38	4.38	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
No	Village	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
1	Vasanthapura	41,742	43,570	45,479	47,471	49,251	51,098	53,014	55,002	57,065	59,205	61,425	63,728
2	Ullalu	29,691	30,991	32,349	33,766	35,032	36,346	37,709	39,123	40,590	42,112	43,691	45,330
3	Sonnenhalli	3,900	4,071	4,249	4,435	4,602	4,774	4,953	5,139	5,332	5,532	5,739	5,954
4	Ganakallu	10,060	10,501	10,960	11,441	11,870	12,315	12,776	13,256	13,753	14,268	14,803	15,359
5	Hemmeigepura	48,361	54,561	56,857.27	59,153.53	61,449.80	63,746.07	66,042.33	68,338.60	70,634.87	72,931.13	75,227.40	77,523.67
6	Somapura	29,920	34,000	35,133.33	36,266.67	37,400.00	38,533.33	39,666.67	40,800.00	41,933.33	43,066.67	44,200.00	45,333.33
7	Varahasandra	1,936	2,021	2,109	2,202	2,284	2,370	2,459	2,551	2,646	2,746	2,849	2,955
8	Manavarthkavalu	1,434	1,496	1,562	1,630	1,692	1,755	1,821	1,889	1,960	2,033	2,110	2,189
9	Lingdernahalli	2,530	2,641	2,756	2,877	2,985	3,097	3,213	3,333	3,458	3,588	3,723	3,862
10	Hosahalli	5,016	5,236	5,466	5,705	5,919	6,141	6,371	6,610	6,858	7,115	7,382	7,659
11	Arehalli	10,067	10,508	10,968	11,448	11,878	12,323	12,785	13,264	13,762	14,278	14,813	15,369
12	Vaddarpalya	2,528	2,639	2,755	2,875	2,983	3,095	3,211	3,332	3,457	3,586	3,721	3,860
13	Uttrahalli	36,870	38,485	40,171	41,930	43,503	45,134	46,826	48,582	50,404	52,294	54,255	56,290
14	Subramanyapura	16,968	17,711	18,487	19,296	20,020	20,771	21,550	22,358	23,196	24,066	24,968	25,905
15	Gubbullalu	7,562	7,894	8,239	8,600	8,923	9,257	9,605	9,965	10,338	10,726	11,128	11,546
16	Turahalli	2,952	3,082	3,217	3,358	3,483	3,614	3,750	3,890	4,036	4,187	4,344	4,507
17	Giddakonenhalli	41,988	43,827	45,747	47,750	49,541	51,399	53,326	55,326	57,401	59,553	61,786	64,103
	Total =	293,525	313,233	326,503	340,205	352,814	365,767	379,077	392,758	406,824	421,288	436,166	451,473

Hemmeigepura Somapura

5	Hemmeigepura	6,697	6,990	7,297	7,616	7,902	8,198	8,506	8,825	9,156	9,499	9,855	10,225
	BDA Development - Deposit Contribution basis for sewer	-	-	-	-	-	-	-	-	-	-	-	_
6	Somapura	1,833	1,914	1,997	2,085	2,163	2,244	2,328	2,416	2,506	2,600	2,698	2,799
	BDA Development - Deposit Contribution basis for sewer												

1	10	Village	- R	R	Nagar
1	10	v illaye	- n.	η.	Ivayai

		3.75	3.75	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
No	Village	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1	Vasanthapura	66,118	68,597	70,827	73,129	75,505	77,959	80,493	83,109	85,810	88,599	91,478	94,451
2	Ullalu	47,029	48,793	50,379	52,016	53,707	55,452	57,254	59,115	61,036	63,020	65,068	67,183
3	Sonnenhalli	6,178	6,409	6,617	6,833	7,055	7,284	7,521	7,765	8,017	8,278	8,547	8,825
4	Ganakallu	15,935	16,532	17,069	17,624	18,197	18,788	19,399	20,029	20,680	21,352	22,046	22,763
5	Hemmeigepura	79,819.93	82,116.20	84,412.47	86,708.73	89,005.00	91,519	94,032	96,546	99,059	101,573	104,086	106,600
6	Somapura	46,466.67	47,600.00	48,733.33	49,866.67	51,000	52,967	54,934	56,901	58,868	60,835	62,802	64,769
7	Varahasandra	3,066	3,181	3,285	3,391	3,502	3,615	3,733	3,854	3,980	4,109	4,242	4,380
8	Manavarthkavalu	2,271	2,356	2,433	2,512	2,593	2,678	2,765	2,854	2,947	3,043	3,142	3,244
9	Lingdernahalli	4,007	4,157	4,293	4,432	4,576	4,725	4,878	5,037	5,201	5,370	5,544	5,724
10	Hosahalli	7,946	8,244	8,512	8,788	9,074	9,369	9,673	9,988	10,312	10,648	10,994	11,351
11	Arehalli	15,945	16,543	17,081	17,636	18,209	18,801	19,412	20,043	20,694	21,367	22,061	22,778
12	Vaddarpalya	4,005	4,155	4,290	4,430	4,574	4,722	4,876	5,034	5,198	5,367	5,541	5,721
13	Uttrahalli	58,401	60,591	62,560	64,593	66,693	68,860	71,098	73,409	75,795	78,258	80,801	83,427
14	Subramanyapura	26,876	27,884	28,790	29,726	30,692	31,689	32,719	33,783	34,881	36,014	37,185	38,393
15	Gubbullalu	11,979	12,428	12,832	13,249	13,679	14,124	14,583	15,057	15,546	16,052	16,573	17,112
16	Turahalli	4,676	4,852	5,009	5,172	5,340	5,514	5,693	5,878	6,069	6,266	6,470	6,680
17	Giddakonenhalli	66,507	69,001	71,244	73,559	75,950	78,418	80,967	83,598	86,315	89,120	92,017	95,007
	Total =	467,226	483,440	498,366	513,665	529,350	546,485	564,030	582,000	600,409	619,270	638,599	658,410

Hemmeigepura Somapura

5	Hemmeigepura	10,608	11,006	11,364	11,733	12,114	12,508	12,914	13,334	13,767	14,215	14,677	15,154
	BDA Development - Deposit Contribution basis for sewer	-	-	-	-	-	-	-	-	-	-	-	-
6	Somapura	2,904	3,013	3,111	3,212	3,316	3,424	3,535	3,650	3,769	3,891	4,018	4,148
	BDA Development - Deposit Contribution basis for sewer												

Bengaluru
Water
Supp
and
ily and Sewerage Pro
ge Project (
'Phase
S

4	40	\/:!!~~~	В	В	Noner
1	10	Village	- K	.к.	wagar

	110 Village - R.R. Nagai										
		3	3	3	3	3	3	3	3	3	3
No	Village	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051
1	Vasanthapura	97,285	100,203	103,210	106,306	109,495	112,780	116,163	119,648	123,238	126,935
2	Ullalu	69,198	71,274	73,413	75,615	77,883	80,220	82,627	85,105	87,658	90,288
3	Sonnenhalli	9,089	9,362	9,643	9,932	10,230	10,537	10,853	11,179	11,514	11,860
4	Ganakallu	23,446	24,149	24,874	25,620	26,388	27,180	27,995	28,835	29,700	30,591
5	Hemmeigepura	109,113	111,627	114,140	116,654	119,167	121,681	124,194	126,708	130,509	134,425
6	Somapura	66,736	68,703	70,670	72,637	74,604	76,571	78,538	80,505	82,920	85,408
7	Varahasandra	4,512	4,647	4,786	4,930	5,078	5,230	5,387	5,549	5,715	5,887
8	Manavarthkavalu	3,341	3,442	3,545	3,651	3,761	3,873	3,990	4,109	4,233	4,360
9	Lingdernahalli	5,896	6,073	6,255	6,443	6,636	6,835	7,040	7,251	7,469	7,693
10	Hosahalli	11,691	12,042	12,403	12,776	13,159	13,554	13,960	14,379	14,810	15,255
11	Arehalli	23,462	24,165	24,890	25,637	26,406	27,198	28,014	28,855	29,720	30,612
12	Vaddarpalya	5,893	6,070	6,252	6,439	6,633	6,831	7,036	7,248	7,465	7,689
13	Uttrahalli	85,930	88,508	91,163	93,898	96,715	99,617	102,605	105,683	108,854	112,119
14	Subramanyapura	39,545	40,731	41,953	43,212	44,508	45,844	47,219	48,635	50,095	51,597
15	Gubbullalu	17,625	18,154	18,699	19,260	19,837	20,432	21,045	21,677	22,327	22,997
16	Turahalli	6,881	7,087	7,300	7,519	7,744	7,977	8,216	8,463	8,716	8,978
17	Giddakonenhalli	97,857	100,793	103,817	106,932	110,139	113,444	116,847	120,352	123,963	127,682
	Total =	677,501	697,032	717,013	737,460	758,385	779,804	801,731	824,182	848,907	874,375

Hemmeigepura Somapura

5	Hemmeigepura	15,608	16,077	16,559	17,056	17,567	18,095	18,637	19,196	19,772	20,366
	BDA Development - Deposit Contribution basis for sewer	· -	-	-	-	-	-	-	-	-	-
6	Somapura	4,273	4,401	4,533	4,669	4,809	4,953	5,102	5,255	5,412	5,575
	BDA Development - Deposit Contribution basis for sewer										

1	10	\/illana	_ [Dasarahalli
ı	10	villaue	- L	Jasaranam

		Area	2011	Popu	lation / Gro	wth Rate→	4.38	4.38	4.38	4.38	4.38	4.38	4.38
No	Village	(Sq Km)	(Census)	2019	2034	2049	2011	2012	2013	2014	2015	2016	2017
1	Abbigere	2	8,980	12,654	21,928	34,748	8,980	9,373	9,784	10,212	10,660	11,127	11,614
2	Chikkasandra	2	9,976	14,058	24,360	38,602	9,976	10,413	10,869	11,345	11,842	12,361	12,902
3	Shettihalli	2	7,248	10,214	17,699	28,046	7,248	7,565	7,897	8,243	8,604	8,981	9,374
4	Sidedahalli	1	31,302	44,108	76,436	121,122	31,302	32,673	34,104	35,598	37,157	38,785	40,483
5	Kariobanhalli	4	25,107	35,378	61,308	97,151	25,107	26,207	27,355	28,553	29,803	31,109	32,471
6	Handrahalli	2	12,553	17,689	30,653	48,574	12,553	13,103	13,677	14,276	14,901	15,554	16,235
7	Myadarahalli	1	1,692	2,385	4,132	6,547	1,692	1,766	1,843	1,924	2,008	2,096	2,188
8	Doddabidarakallu	3.5	25,113	35,387	61,323	97,174	25,113	26,213	27,361	28,559	29,810	31,116	32,479
9	Lingadeeranahalli (B)	1	6,276	8,844	15,325	24,285	6,276	6,551	6,838	7,137	7,450	7,776	8,117
10	Herohalli	4.5	62,207	87,656	151,902	240,709	62,207	64,932	67,776	70,744	73,843	77,077	80,453
11	Hosahalli	0.51	3,201	4,511	7,816	12,386	3,201	3,341	3,488	3,640	3,800	3,966	4,140
	Total =	23.51	193,655	272,884	472,882	749,344	193,655	202,137	210,991	220,232	229,878	239,947	250,457

110 Village - Dasarahalli

		4.38	4.38	4.38	4.38	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
No	Village	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
1	Abbigere	12,123	12,654	13,208	13,786	14,303	14,840	15,396	15,974	16,573	17,194	17,839	18,508
2	Chikkasandra	13,467	14,057	14,673	15,315	15,890	16,486	17,104	17,745	18,411	19,101	19,817	20,561
3	Shettihalli	9,785	10,213	10,660	11,127	11,545	11,978	12,427	12,893	13,376	13,878	14,398	14,938
4	Sidedahalli	42,256	44,107	46,039	48,056	49,858	51,727	53,667	55,680	57,768	59,934	62,182	64,513
5	Kariobanhalli	33,893	35,378	36,928	38,545	39,990	41,490	43,046	44,660	46,335	48,072	49,875	51,746
6	Handrahalli	16,946	17,688	18,463	19,272	19,994	20,744	21,522	22,329	23,167	24,035	24,937	25,872
7	Myadarahalli	2,284	2,384	2,489	2,598	2,695	2,796	2,901	3,010	3,123	3,240	3,361	3,487
8	Doddabidarakallu	33,902	35,386	36,936	38,554	40,000	41,500	43,056	44,671	46,346	48,084	49,887	51,758
9	Lingadeeranahalli (B)	8,472	8,843	9,231	9,635	9,996	10,371	10,760	11,164	11,582	12,017	12,467	12,935
10	Herohalli	83,977	87,655	91,494	95,502	99,083	102,799	106,654	110,653	114,803	119,108	123,575	128,209
11	Hosahalli	4,321	4,510	4,708	4,914	5,099	5,290	5,488	5,694	5,907	6,129	6,359	6,597
	Total =	261,427	272,877	284,829	297,305	308,454	320,021	332,021	344,472	357,390	370,792	384,697	399,123

Bengaluru
Water
Supply
and Sev
Sewerage I
Project
(Phase 3
0

					110 \	/illage - Dasa	ırahalli						
		3.75	3.75	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25
No	Village	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1	Abbigere	19,202	19,922	20,569	21,238	21,928	22,641	23,377	24,136	24,921	25,731	26,567	27,430
2	Chikkasandra	21,332	22,131	22,851	23,593	24,360	25,152	25,969	26,813	27,685	28,585	29,514	30,473
3	Shettihalli	15,498	16,079	16,602	17,142	17,699	18,274	18,868	19,481	20,114	20,768	21,443	22,140
4	Sidedahalli	66,933	69,443	71,699	74,030	76,436	78,920	81,485	84,133	86,867	89,691	92,605	95,615
5	Kariobanhalli	53,686	55,699	57,509	59,378	61,308	63,301	65,358	67,482	69,675	71,940	74,278	76,692
6	Handrahalli	26,842	27,848	28,754	29,688	30,653	31,649	32,678	33,740	34,836	35,968	37,137	38,344
7	Myadarahalli	3,618	3,754	3,876	4,002	4,132	4,266	4,405	4,548	4,696	4,848	5,006	5,168
8	Doddabidarakallu	53,699	55,712	57,523	59,393	61,323	63,316	65,374	67,498	69,692	71,957	74,296	76,710
9	Lingadeeranahalli (B)	13,420	13,923	14,376	14,843	15,325	15,823	16,338	16,869	17,417	17,983	18,567	19,171
10	Herohalli	133,016	138,004	142,490	147,121	151,902	156,839	161,936	167,199	172,633	178,244	184,036	190,018
11	Hosahalli	6,845	7,101	7,332	7,570	7,816	8,070	8,333	8,604	8,883	9,172	9,470	9,778
	Total =	414,090	429,618	443,581	457,997	472,882	488,251	504,119	520,503	537,419	554,885	572,919	591,539

10	Village	- Dasa	rahalli
----	---------	--------	---------

	110 Village - Dasaranalii										
		3	3	3	3	3	3	3	3	3	3
No	Village	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051
1	Abbigere	28,253	29,101	29,974	30,873	31,799	32,753	33,736	34,748	35,790	36,864
2	Chikkasandra	31,387	32,328	33,298	34,297	35,326	36,386	37,478	38,602	39,760	40,953
3	Shettihalli	22,804	23,488	24,193	24,918	25,666	26,436	27,229	28,046	28,887	29,754
4	Sidedahalli	98,484	101,438	104,481	107,616	110,844	114,169	117,595	121,122	124,756	128,499
5	Kariobanhalli	78,993	81,362	83,803	86,317	88,907	91,574	94,321	97,151	100,066	103,067
6	Handrahalli	39,495	40,680	41,900	43,157	44,452	45,785	47,159	48,574	50,031	51,532
7	Myadarahalli	5,323	5,483	5,648	5,817	5,992	6,171	6,356	6,547	6,744	6,946
8	Doddabidarakallu	79,012	81,382	83,823	86,338	88,928	91,596	94,344	97,174	100,089	103,092
9	Lingadeeranahalli (B)	19,746	20,338	20,948	21,577	22,224	22,891	23,578	24,285	25,013	25,764
10	Herohalli	195,718	201,590	207,637	213,866	220,282	226,891	233,698	240,709	247,930	255,368
11	Hosahalli	10,071	10,373	10,684	11,005	11,335	11,675	12,025	12,386	12,758	13,141
	Total =	609,285	627,564	646,391	665,782	685,756	706,328	727,518	749,344	771,824	794,979

\gtrsim
S
Consul
ltants
Co.,
Ltd.

Zone No Name			STP	Sewage Flo	w (MLD)	Sewage Flow in	DPR (MLD)	Defference (MLD)		
No	Name	No	Name	2034	2049	2034	2049	2034	2049	
		1	Kattigenahalli	6.5	10.3	7.0	11.0	-0.5	-0.7	
		2	Yelahankakere	5.8	9.2	5.0	15.0	0.8	-5.8	
		3	Doddabettahalli	6.3	10.0	4.0	7.0	2.3	3.0	
		4	Bilishivalli	16.8	26.6	18.0	30.0	-1.2	-3.4	
1	Bytrayanapura	17	Puttenahalli	2.3	3.6					
		18	Jakkur	2.1	3.3					
		19	Horamavu	3.3	5.3					
		20	Allalasandra	0.0	0.0					
		21	Raja Canal	43.6	69.1					
		5	Hagadur	14.6	23.1	17.0	27.0	-2.5	-3.9	
		22	Varthur Kodi	16.5	26.2					
		23	Amanikere	80.8	128.0					
2	Mahadevpura	24	Kadugodi	14.7	23.4					
		25	Yellamalappa Chetty	0.0	0.0					
		26	Kadabesanahalli	0.0	0.0					
		27	K R Puram	0.1	0.2					
	Bommanahalli	6	Naganathapura	8.1	12.8	5.0	10.0	3.1	2.8	
3			Pillaganahalli	3.5	5.5	3.0	4.0	0.5	1.5	
	Bommananam	8	Talaghattapura	4.8	7.6	5.0	8.0	-0.2	-0.4	
		27	Anjanapura	18.1	28.7					
		9	Somapura	7.3	11.5	8.0	11.0	-0.7	0.5	
		10	Hemigepura 1	7.0	11.2	13.0	20.0	-6.0	-8.9	
4	R.R.Nagar	11	Hemigepura 2	5.1	8.1	11.0	15.0	-5.9	-7.0	
		29	Doddabele	64.6	102.4					
			Kengeri	0.0	0.0					
		12	Doddabidarakallu	8.0	12.7	8.0	13.0	0.0	-0.3	
			Kariobavanahalli	9.9	15.7	10.0	16.0	-0.1	-0.3	
			Herohalli	2.9	4.6	3.0	5.0	-0.1	-0.4	
5	Dasarahalli	_	Hosahalli	5.8	9.2	7.0	10.0	-1.2	-0.8	
			Chikkabanavara 2	8.9	14.1	5.0	5.0	3.9	9.1	
			Chikkabanavara	3.3	5.2					
			Nagasandra	12.7	20.1					
	Total		383	607	129	207	-8	-15		
	Sub-t	otal (1	16 STPs)	121	192	129	207	-8	-15	

No	STP Name	Capacity in MLD 2034	Capacity in MLD 2049
1	Kattigenahalli	7.0	11.0
2	Yelahankakere	5.0	15.0
3	Doddabettahalli	4.0	7.0
4	Bilishivale	18.0	30.0
5	Hagadur	17.0	27.0
6	Naganathapura	5.0	10.0
7	Pillaganahalli	3.0	4.0
8	Talaghattapura	5.0	8.0
9	Sompura	8.0	11.0
10	Hemigepura 1	13.0	20.0
11	Hemigepura 2	11.0	15.0
12	Daddabidarakallu	8.0	13.0
13	Kariovbanahalli	10.0	16.0
14	Herohalli	3.0	5.0
15	Hosahalli	7.0	10.0
16	Chikkabanavar	5.0	5.0

129.0

Bengaluru Water Supply and Sewerage Project (Phase 3)

Bytrayanapura Zone STP Detials

STP FLOW CAPACITY (MLD)

	T 7411	G 435 . G	Popul	lation	Conecting	ъ.
No	Village	Connection of Main Sewer	Year 2034	Year 2049	STP	Remarks
,	4 d D	O-1 Connecting to C-8 of Yelahanka ULB	7,945		Puttenahalli	
1	Anantha Pura	O-2 Connecting to Existing TS for ULB	9,123	14,455	STP	
		Total	17,068	27,044		
		O-1 Connecting to Proposed STP	15,476	24,522	Doddabetthal	
2	Doddabetthalli	O-2 Connecting to Proposed STP	13,997	22,179		
		Total	29,473	46,701		From Village No 3
		Doddabettahalli	4,519	7,160		To Village No 2
		Doddabettahalli	9,885	15,663	Doddabetthal	To Village No 2
		Dodddabettahalli	3,756	5,951	li STP	To Village No 2
3	Chikkabetthalli		2,,20			Excess Flow goes to
				39,481	Chikkabanav	Chikkabanavara 2
		O-4 Connecting to MH-1 of TS-821 (ULB)	24,915	, .	ar STP	STP
		Total	43,075	68,255		511
		O-1 Connecting to MH-1 of TS-121	15,946	25,268		
4	Harohalli	O-2 Connecting to MH-32 of TS-121	1,973	3,126	Yelahanka	
•	Tiui oliulii	O-3 Connecting to MH-37 of TS-121	5,201	8,241	STP	
		Total	23,120	36,635		
		Total	23,120	0		
		O-3 Connecting to MH-53 of TS-121	3,157	5,002		
5	Kenchnehalli	O-1 Connecting to MH-42 of TS-121	2,486	3,939	Yelahanka	
5	Kenemenam	O-2 Connecting to MH-48 of TS-121	6,120	9,699	STP	
		Total	11,763	18,640		
		121	6,448	10,219		
		121	0,446	10,219	37 1 1 1	
6	Govindapura		1 022	1 (21	Yelahanka	To Village No 7, and
			1,023	1,621	311	again come back to
		O-2 Connecting to MH-1 of Vasudevpura				Village No 6
		Total	7,471	11,840		Village No.8
7	Vasudvapura	O-1 Connecting to Mh-75 of Govindapura	902		Yelahanka	To Village No 6
		Total	902	1,432		From Village No.6
8	Manchenhalli	O-1 Connecting to MH-82 of Govindapura	639		Yelahanka	
		Total	639	1,012		To Village No 6
9	Kattigenahalli	O-1 Connecting to Proposed STP	49185		Kattigenahalli	
	Tauti genunum	Total	49185	77,938	STP	
		All the village goes to ULB Area (Ex-Jakkur			Ex-Jakkur	Lateral System
10	Srinivasapura	STP) in "Green Belt Project"	5626	8,915	STP	Considered in ULB
		-				Project
11	Bellhalli	O-1 of MH-58 Connecting to Proposed ISPS	4889		EX-Jakkur	
		MH-157 Connecting to Proposed ISPS	2189	3,468		
		Total	7078	11,217		To Village No 12
		O-1 (MH-21 of C-10 Yelahanka ULB)	2,040	3,233	EX-Jakkur	
12	Tirumenhalli	O-2 (MH-35 of C-10 yelahanka ULB)	693	1,098	STP	
		O-3 Connecting to MH-49 of Chokkanahalli	304	482		To Village No 13
		Total	3,037	4,813		From Village No 11
		O-1(MH -35 of C-10 Yelahanka ULB)	3,181	5,039		
13	Chokkanahalli	O-2 (MH-549 of C-29 of Bytrayanapura	1,673	2,651	Raja Canal	
10		ULB)	•		STP	
		O-3 Connecting to MH-1 of TS-224	1,331	2,109		
		Total	6,185	9,799		From Village No 12

No	V:11a aa	Compation of Main Samon	Popul	ation	Conecting	Remarks
NO	Village	Connection of Main Sewer	Year 2034	Year 2049	STP	Kemarks
14	Dasrahalli	O-1 TO MH-58 OF C-21(ULB)	141	223		
		O-2 TO MH-57 OF C-21(ULB)	157	249		
		O-3 TO MH-56 OF C-21(ULB)	169	268		
		O-4 TO MH-55 OF C-21(ULB)	197	312		
		O-5 TO MH-54 OF C-21(ULB)	218	345		
		O-6 to MH-52 of C-21(ULB)	238	377		
		O-7 to MH-51 of C-21(ULB)	147	233		
		O-8 to MH-50 of C-21(ULB)	90	143		
		O-9 to MH-49 of C-21(ULB)	286	453		
		O-10 to MH-48 of C-21(ULB)	147	233		
		O-11 to MH-240 of C-21(ULB)	691	1,095		
		O-12 to MH-236 of C-21(ULB)	129	204	Raja Canal	
		O-13 to MH-235 of C-21(ULB)	187	296	STP	
		O-14 to MH-234 of C-21(ULB)	330	523		
		O-15 to MH-151 of C-25 (ULB)	1,099	1,741		
		O-16 to MH-102 of TS-222 (ULB)	3,024	4,791		
		O-17 to MH-111 of TS-222 (ULB)	706	1,119		
		O-18 to MH-112 of TS-222 (ULB)	275	436		
		O-19 to MH-113 of TS-222 (ULB)	305	483		
		O-20 to MH-114 of TS-222 (ULB)	1,896	3,004		
		O-21 to MH-116 of TS-222 (ULB)	4,175	6,615		
		O-22 to MH-128 of TS-222 (ULB)	3,824	6,059	_	
		O-23 to MH-102 of TS-222 (ULB)	11,247	17,824		
		O-24 to MH-132 of TS-222 (ULB)	477	756		
		O-25 to MH-134 of TS-222 (ULB)	528	837		
		O-26 TO MH-201 OF TS-221 (ULB)	138	219		
		O-27 TO MH-202 OF TS-221 (ULB)	136	215		
		O-28 TO MH-203 OF TS-221 (ULB)	133	211		
		O-29 TO MH-204 OF TS-221 (ULB)	123	195		
		O-30 TO MH-209 OF TS-221 (ULB)	754	1,195		
		O-31 TO MH-210 OF TS-221 (ULB)	233	369		
		O-32 TO MH-217 OF TS-221 (ULB)	342		Raja Canal	
		O-33 TO MH-832 OF C-24 (ULB)	834	1,321		
		O-34 TO MH-842 OF C-24 (ULB)	231	366		
		O-35 TO MH-845 OF C-24 (ULB)	229	363		
		O-36 TO MH-846 OF C-24 (ULB)	124	196		
		O-37 TO MH-94 OF C-24 (ULB)	240	380		
	1	O-38 to MH-704 OF C24 (ULB)	325	515		
		O-39 to MH-707 of C-24 (ULB)	219	347		
		O-40 to MH-710 of C-24 (ULB)	136	215		
		Total	34880	55,268		
		O-1 CONNECTING TO MH-213 OF TS-		22,200		
		222 (ULB)	19,980	31,661		
15	Rachnehalli	O-2 CONNECTING TO MH-4 OF TS-223 (ULB)	2,172	3,442	Raja Canal STP	
		O-3 CONNECTING TO MH-290 OF THANISANDRA-P2 (ULB)	510	808		To Village No 16
		Total	22,662	35,911		From Village No 16

	T7011	G ANT 1 G	Popu	lation	Conecting	
No	Village	Connection of Main Sewer	Year 2034	Year 2049	STP	Remarks
16	Part-1	O-1 (Connecting to MH-1 Nagenahalli)	387	613		To Village No 23
		O-2 (Connecting to Mh-17 of Nagenahalli)	618	979		To Village No 23
		O-3 (Connecting to MH-23 of Nagenahalli)	1,433	2,271]	To Village No 23
		O-4(Connecting to Mh-59 of Nagenahalli)	3,816	6,046]	To Village No 23
		O-5 (Connecting to Mh-35 of K.		7.401]	
		Narayanpura)	4,728	7,491		To Village No 21
		O-6(Connecting to MH-80 of	,, ,		1	
		K.Narayanpura Village)	4.7.000	23,799		
		7	15,020			To Village No 21
		O-7 (Connecting to Mh-574 of Thanisandra-		0		Double count
		P2			Paia Canal	reduction
		O-8 (Connecting to MH-1193 of Rachenhalli		1,073	Raja Canal	
		Village)	677	-,	(Phase-1)	To Village No 15
	Part-2	(ULB)	18,860	29,883	(Timbe 1)	
		(ULB)	38,085	60,356		
		(ULB)	245	388		
		(ULB)	3,411	5,405		
		O-5 Connecting to MH-44 of TS-223 (ULB)	2,666	4,224]	
		O-6 Connecting to MH-45 of TS-223 (ULB)	399	632		
		O-7 Connecting to MH-2 of TS-226 (ULB)	2,354	3,730		
		GEDDALAHALLI	1,905	3,018		To Village No 20
		GEDDALAHALLI	366	580]	To Village No 20
		GEDDALAHALLI	2,142	3,394]	To Village No 20
		GEDDALAHALLI	1,820	2,884]	To Village No 20
		Total	98,932	156,766		From Village No 15
17	Chalakere	TS-25 (ULB)	5,497	8,710		
		TS-25 (ULB)	3,912	6,199		
		TS-25 (ULB)	3,141	4,977		
		TS-25 (ULB)	4,512	7,149		
		TS-25 (ULB)	49,955	79,159	Raja Canal	
		TS-25 (ULB)	2,340		STP (Phase-	
		TS-25 (ULB)	2,226			
		TS-25 (ULB)	2,359	3,738		
		TS-25 (ULB)	2,008	3,182		
		TS-25 (ULB)	529	838	1	
		TS-25 (ULB)	6,543	10,367	1	
		Total	83,022	131,554		From Village No 18
18	Agara	228	4,881	7,734		Č
	Č	228	7,569		Bilishivalli	
		TS-228	22,517	35,684		
		TS-228	920	1,458	1	
		O-5 Connecting to Raja Canal STP (ULB)	1,252	1,984		
		O-6 to MH-467 of Chalkere	3,319			To Village No 17
		O-7 to MH-471 of Chalkere	1,447	2,293	1 *	<i>5.</i>
		Total	41,905		66,405	
	Amani		,- 00	22,100	Raja Canal	
19	Byaratahikane		1692	2,679		Present Open Land
		O-1 CONNNECT TO MH-76 of TS-224		,		Excess Flow goes to
20	Geddalahalli	(ULB)	7,537	11,942		Horamav STP
		(ULB)	134	212		Ditto
		(ULB)	191	303	Raja Canal	Ditto
		(ULB)	298	472	STP	Ditto
		(ULB)	867	1,374	1	Ditto
		(ULB)	9,839	15,592	1	Ditto
—		Total	18,866			From Village No 16
	l	าบเลา	10,000	49,095	L	1 10111 village NO 10

Nie	\$7 : 110 ~ ~	Connection of Main Sewer	Popu	lation	Conecting	Remarks
No	Village	Connection of Main Sewer	Year 2034	Year 2049	STP	кепагкѕ
21	Narayanpura	O-1 connecting to MH-47of TS 224 (ULB)	1,526	2,418		Horamav STP
		O-2 Connecting MH-50of TS 224 (ULB)	2,072	3,283	RajaCanal	Ditto
		O-3 to connect MH-73 of TS 224 (ULB)	13,890	22,011	STP	Ditto
		Total	17,488	27,711		and No 23
22	Kottanur	O-1 to connect to MH-44 of TS 224 (ULB)	3,468	5,495		Horamav STP
		O-2 conectt to MH-50 OF TS 224 (ULB)	2,949	4,673	STP	Ditto
		O-3 Connecting to MH-62 of TS-224 (ULB)	929	1,472		Ditto
		O-4 Connecting to MH-66 of TS-224 (ULB)	857	1,358		Ditto
		O-5 conecting to MH-76 of TS 224 (ULB)	12,523	19,843		Ditto
		Total	20,726	32,841		
23	N Naganehalli	O-1 Connecting to Mh-1 of K.Narayanpura	4,037	6,397	Horamavu	To Village No 21
						Excess Flow goes to
		O-2 Connecting to MH-34 of TS-224 (ULB)	662	1,050		Horamav STP
		Total	4,699	7,447		From Village No 16
24	Kylasanahalli	228	13,583	21,523	Bilishivalli ST	P
		Total	13,583	21,523		From Village No 26
25	Byrathi	O-1 CONNECTING TO MH-37 OF TS224	3,881	6,149	Bilishivalli ST	
		O-2 Connecting to MH-90 of TS-224	13,023	20,639	Dilisilivalii 51	
		Total	16,904	26,788	26,788	
26	Bilishivalli	O-1 Connecting TO Proposed STP	8,190	12,978	Bilishivalli ST	
		O-2 Connecting to MH-79 of Kylasanahalli	795	1,260	Dinsilivani ST	To Village No 24
		Total	8,985	14,238		

	Mahadevpura Zone STP Detials STP FLOW CAPACITY (MLD)							
		STP FLOW CAP	PACITY (MLD Popul	<u>′</u>	Compating			
No	Village	Connection of Main Sewer	2034	2049	Conecting STP	Remarks		
		O-2 Connecting to Mh-71 of TS-4213 (ULB)	1,997	3,174	Belandur Amanikere STP	Under Construction CWSS IV-Phase-2		
1	Balagere	O-3 Connecting to MH-1 OF VARTHUR Total	7,355 9,352	11,692 14,866	Varthur STP	To Village No 19 Proposed under other project From Village No.6, No.14 and No.19		
	Bellanduramani		·	,	Belandur	To be developped		
2	kere (B) (P)	Open Land	1,138	1,809	amanikere	Open Land		
		O-1ONNECTING TO MH-84 OF SUB MAIN FROM SADARMANGLA	214	340		Under Construction CWSS IV-Phase-2		
	Belthur &	O-2 CONNECTING TO MH-89 OF SADARMANGALA SUB MAIN	34,577	54,964	Kadugodi STP	Taking ULB Population		
3	Kumbenaagraha r	O-3 CONNECTING TO MH-122 OF SADARMANGALA SUB MAIN O-4 CONNECTING TO MH-1 OF Submain-	20,734	32,959	511			
		3	8,351	13,275				
		Total	63,876	101,537		From ULB		
Maha	adevapura (ULB)	From ULB (Inflow)	11,557	18,371		To VIllage No 3		
		O-1 Connecting to MH-1 of TS-328	53,927	85,722				
4	Channasandra	O-3 Connecting to Mh-243 of Nagondanahalli	3,976	6,320	Hagadur STP	To Village No 13		
		Total	57,903	92,043				
		O-1Connecting to Bhoganhalli MH-173	12,023	19,112		By Manhole PS to MH24		
	Davarahasaarah	O-2 Connecting to MH-24 of TS-4213 (ULB)	5,916	9,404	Belandur Amanikere	From Manhole PS		
5	Devarabeesanah alli	O-3 Connecting to MH-1 of Karyammana Agrahara	510	811	STP	Under Construction CWSS IV-Phase-2		
		O-4 Connecting to MH-12 of Kadabisanahalli	878	1,396		To Village No 8		
		Total	18,783	29,857		From Zone 3 Village No 31		
6	Gunjur	O-1 CONNECTING TO MH-165 OF BALAGERE	22,713	26 105	Vorthur STD	From Zone 3 Village No 29 and To Village No 1		
0	Oulijui	DALAGERE	22,713	30,105	varuiur 51P	TO VIHAGE NO I		

NT-	\$72U	Connection of Main Sewer	Popul	lation	Conecting	Remarks
No	Village	Connection of Main Sewer	2034	2049	STP	
		O-1 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	208	331		Under Construction CWSS IV-Phase-2
		O-2 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	384	610		
		O-3 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	513	815		
		O-4 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	4,789	7,613		
		O-5 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	270	429	Belandur	
		O-6 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	282	448	Amanikere STP	
		O-7 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	243	386		
7	Hagadur	O-8 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	180	286		
		O-8A TO SUB MAIN 4 OF PACKAGE 3C (ULB)	299	475		
		O-9 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	246	391		
		O-10 TO SUB MAIN 4 OF PACKAGE 3C (ULB)	333	529		
		O-11 to MH-11 of TS-324	2,778	4,416		
		O-12 to MH-25 of TS-324	1,124	1,787	Hagadur STP	
		O-13 to Mh-29 of TS-324	1,066	1,695	Tiagadai 511	
		O-13 to MH-47 of TS-324	40,477	64,342		
		Total	51,927	82,543		From Village No 13
		O-1 Connecting to MH-120 of Panathur	3,956	6,288		Under Construction CWSS IV-Phase-2
8	Kadabisanahalli	O-3 Connecting to MH-88 of Kariyammana Agrahara	1,633	2,596	L	
		O-4 Connecting to MH-58 of ts-4213 ULB	3,397	5,400	STP	
		Total	8,986	14,284		From Village No 5 and No 14
9	Kayammana Agrahara	O-1C-MH-48-TS-4213 of ULB	8,432	13,404	Amanikere STP	Under Construction CWSS IV-Phase-2 Inflow from No 8 and
		Total	8,432	13,404		No 9
10	Kadugodi Plantation	O-1 connecting to MH-271 C-34 of Mahadevpura ULB	30,401	48,325	Kadugodi STP	
11	Khanekandya (B)	Open Land	1,138	1,809	Belandur Amanikere STP	Open Land (Under Construction CWSS IV-Phase-2)
12	Belthur & Kumbenaagraha	Refer to SL No 3	5,850	9,299		Considered as Village No 3
		O-1 to MH-333 of Haggadur	813	1,292		To Village No 7
13	Nagondhalli	O-2 to MH-345 of Haggadur	452	718	Hagadur STP	To Village No 7
		O-3 connecting to MH-29 of TS-328	324	515		
	ı	O-4 connecting to MH-40 TS-328	5,303	8,430		
		Total	6,892	10,956		Inflow from No 4

N.T.	¥7*11	G C CALL G	Popul	ation	Conecting	n 1
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
		O-1 Connectting MH-201 of Balegere	10,430	16,580		From Bom
14	Panathur	O-2 Connecting to MH-45 of Kadabisanahalli	536	852	Belandur	To Village No 8
		O-3 Connecting to MH-65 of TS-4213 (ULB)	3,921	6,233	Amanikere STP	Under Construction CWSS IV-Phase-2
		Total	14,887	23,664		Inflow from Zone 3 No 28 and Village No
		O-1 to connect MH-50 Siddapura	10,963	17,427		To Village No 16
15	Ramagondanah alli	O-2 to connect TS-4213 (ULB)	2,568	4,082	Belandur Amanikere	Under Construction
		O-3 to connect TS -4213 (ULB)	1,133	1,801	STP	CWSS IV-Phase-2
		Total	14,664	23,310		
		O-1 CONNECTING TO MH-83 OF TS- 4213 (ULB)	3,113	4,948		Under Construction CWSS IV-Phase-2
	Siddapura	O-2 CONNECTING TO MH-35 TS-322 OF (ULB)	1,476	2,346	Belandur	
16		O-3 CONNECTING TO MH-45 OF TS-322 (ULB)	1,196	1,901	Amanikere STP	
		O-4 CONNECTING TO MH-50 OF TS-322 (ULB)	1,008	1,602	511	
		O-5 CONNECTING TO MH-80 OF TS- 4213(ULB)	1,069	1,699		
		Total	7,862	12,497		From Village No 15
17	Sorahunise	O-1 CONNECTING TO MH-78 OF VARTHUR	16,946	26,937	Varthur STP	To Village No 19
		O-2 CONNECTING TO Varthur STP directly	4,388	6,975	, with the second	Other Project
		Total	21,334	33,913		
18	Tubarahalli	O-1 connecting MH-64 of TS-4213 (ULB)	60,760	96,584	Belandur Amanikere	Under Construction
10	Tubaranam	Total	60,760	96,584	STP	CWSS IV-Phase-2
		O-1 CONNECTING To VARTHUR STP	44,808	71,227	W. al. orr	Other Project
19	Varthur	O-3 CONNECTING TO MH-53 OF BALAGERE	1,351	2,148	Varthur STP	
		Total	46,159	73,374		From No 17 and No 1

NT.	¥7211	Commention of Main Commen	Popul	lation	Conecting	Remarks
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
		0-1 T0 connecting TS-228 24,164 38,411	38,411			
		O-3 T0 Connecting TS-228	254	404		
		O-4 T0 Connecting TS-228	2,553	4,058		
		O-5 T0 Connecting TS-228	260	413		
		O-6 T0 Connecting TS-228	260	413		
		O-7 T0 Connecting TS-228	258	410		
		O-8 T0 Connecting TS-228	259	412		
		O-9 T0 Connecting TS-228	258	410		
		O-10 T0 Connecting TS-228	265	421	Bilishivalli STP	
20	Kalkere	O-11 T0 Connecting TS-228	272	432		
		O-12 TO Connecting TS-228	1,284	2,041		
		O-13 TO MH-131 OF VARANASI	441	701		To Village No 23
		O-14 TO MH-165 OF VARANSI	384	610		To Village No 23
		O-14TO MH OF 154 OF VARANASI	412	655		To Village No 23
		O-16 TO MH-430 OF VARANASI	1,103	1,753		To Village No 23
		O-17 TO MH-437 OF VARANASI	1,957	3,111		To Village No 23
		O-18 TO MH-98 OF K. CHANNASANDRA	990	1,574		To Village No 22
		OF-2 T0 TS-228	5,462	8,682		
		Total	40,836	64,913		From Village No 22

No	Village	Connection of Main Sewer	Population		Conecting	Remarks
110	vmage	Connection of Main Sewer	2034	2049	STP	Kemarks
		O-1 Connecting to MH-F3 of EX-TS-26 (ULB)	7,976	12,679		
		O-2 Connecting to MH-F4 of EX-TS-26 (ULB)	82	130		
		O-3 Connecting to MH-F6 of EX-TS-26 (ULB)	93	148		
		O-4 Connecting to MH-F8 of EX-TS-26 (ULB)	49	78		
		O-5 Connecting to MH-F9 of EX-TS-26 (ULB)	47	75		
		O-6 Connecting to MH-F12 of EX-TS-26 (ULB)	42	67		
		O-7 Connecting to MH-F15 of EX-TS-26 (ULB)	52	83		
21	Horamavu	O-8 Connecting to MH-F16 of EX-TS-26 (ULB)	51	81	Horamavu STP	
		O-9 Connecting to MH-F17 of EX-TS-26 (ULB)	35	56	•	
		O-10 Connecting to MH-F18 of EX-TS-26 (ULB)	5,761	9,158	•	
		O-11 Connecting to MH-F23 of EX-TS-26 (ULB)	51	81	•	
		O-12 Connecting to MH-F27 of EX-TS-26 (ULB)	4,996	7,942		
		O-13 Connecting to MH-F35 of EX-TS-26 (ULB)	328	521		
		O-14 Connecting to MH-F40 of EX-TS-26 (ULB)	958	1,523		
		O-15 Connecting to MH-F48 of EX-TS-26 (ULB)	4,722	7,506	5	
		Total	25,243	40,126		
		O-1 CONNECTING TO MH-86 TS-228	2,714	4,314		
		O-2 CONNECTING TO MH-89 TS-228	6,050	9,617		
		O-3 Connecting to MH-81 of Kalkere	462	734		To Village No 20
22	K.Channasandr	O-4 Connecting to MH-82 ofKalkere	459	730	Bilishivalli	To Village No 20
	a	O-5 Connecting to MH-89 of Kelkere	126	200	STP	To Village No 20
		O-6 Connecting to MH-90 of Kalkere	1,349	2,144		To Village No 20
		O-7 Connecting to MH -533 of Kalkere	4,504	7,160		To Village No 20
		O-8 Connecting to MH-74 of Varanasi	3,235	5,142		To Village No 23
		Total	18,899	30,042		From Village No 20 and No 23
		O-1 Connecting to Mh-278 of K.Channasandra)	7,198	11,442	Bilishivalli STP	To Village No 22
23	Varanasi	O-2 Connecting to MH-2 of C-9 of KRP (ULB)	291	463		
	Varanası	O-3 CONNECTING TO MH-85 OF C-9 of KRP (ULB)	329	523	K R puram	
		O-4 (Connecting to Mh-61 of C-9 of KRP (ULB)	102	162		
		Total	7,920	12,590		Inflow from No 20 and No 22

		Bommanahalli Z				
		STP FLOW CAF	,	,	Compating	
No	Village	Connection of Main Sewer	Popu		Conecting	Remarks
		0.1.0	2034	2049	STP	T. A1.1 III (D. (A)
	Alahalli-1 (Part-1	O-1 Connecting to MH-4 Of alahalli part-2	8,639	13,733		To Alahalli (Part-2)
		O-2 Connecting to MH-51 of Gollahalli	23,817	37,860	Anjanapura	To village No 10
		O-1 Connecting to MH-1 of TS-429	2,140	3,402	STP (BDA	From Alahalli (Part-1)
1	Alahalli-1 (Part-2	O-2 Connecting to MH-5 of TS-429	1,249	1,985	Proposed)	
		O-3 Connecting to MH-7 of TS-429	3,357	5,336	1	
		O-4 Connectiong to MH-15 of TS-429	6,242	9,922		
		Total	45,444	72,238		
		O-1 Connecting to MH-325 of Belandur	1,347	2,141	D 1 1	To Village No 7
2	Ambalipura	O-2 Connecting to MH-1 of Kaikondanahalli	1,569	2,494	Belandur	To Village No 14
_	rimounpuru				Amanikere	Under Construction
		O-3 Connecting to Ex. TS of Iblur	4,123	6,554	STP	CWSS IV-Phase-2
		Total	7,039	11,189		From Village No 18
		O-1 Connecting to MH-22 of TS-430	846	1,345	Anionomuno	
2	A	O-2 TO MH-186 OF GOLHALLI	1,077	1,712	Anjanapura STP (BDA	To Village No 10
3	Anjanapura	O-3 Connecting to MH-1 of TS-431	5,240	8,330	,	Ŭ
		O-4 CONNECTING TO MH-19 OF TS-429	6,954	11,054	Proposed)	
		Total	14,117	22,440		
				,	Belandur	
	_	O-1 connecting to MH-39 of Beguru	5,010	7,964	Amanikere	To Village No 6
4	Basapura		2,020	,,,,		
		O-2 Connectig to MH-313 Of Chikkaathogur	172	273	Naganathapur	
		Total	5,182	8,237	a STP	From Village No 30
		Total	3,102	0,237	Belandur	To Village No 11
					Amanikere	(Under Construction
_	D	O 1 CONNECTING TO MIL 77 OF COTTIC	1 < 0.00	26.926		`
5	Basavanapura	O-1 CONNECTING TO MH-77 OF GOTTIC	16,882	26,836	STP	CWSS IV-Phase-2)
		Total	16,882	26,836		TT 1 C
						Under Construction
		O-1 Connecting to TS-422 (ULB) (ULB)	6,559	10,426		CWSS IV-Phase-2
		O-2 Connecting to TS-422 (ULB)	7,504	11,928		
		O-3 TO MH-25 OF TS-422 (ULB)	7,280	11,572		
		O-4 TO MH-37 OF TS-422 (ULB)	571	908		
		O-5 TO MH-44 OF TS-422 (ULB)	1,683	2,675		
		O-6 TO MH-45 OF TS-422 (ULB)	33,378	53,058		
		O-7 TO MH-50OF TS-422 (ULB)	9,930	15,785		
		O-8 TO SUBMAIN 1 OF 4D PACKAGE (ULB	369	587		
		O-9 TO SUBMAIN 1 OF 4D PACKAGE (ULB	401	637		
		O-10 TO SUBMAIN 1 OF 4D PACKAGE (UL	270	429		
		O-11 TO SUBMAIN 1 OF 4D PACKAGE (UL	155	246		
		O-12 SUBMAIN 1 OF 4D PACKAGE (ULB)	222	353	•	
		O-13 TO SUBMAIN 1 OF 4D PACKAGE (UL	229	364	•	
		O-14 SUBMAIN 1 OF 4D PACKAGE (ULB)	236	375	,	
		O-15 TO SUBMAIN 1 OF 4D PACKAGE (ULF	137	218		
		O-16 SUBMAIN 1 OF 4D PACKAGE (ULB)	237	377	Belandur	
6	Beguru	O-17 TO SUBMAIN 1 OF 4D PACKAGE (ULF	237	377	Amanikere	
		O-18 SUBMAIN 1 OF 4D PACKAGE (ULB)	778	1,237	STP	
		O-19 TO SUBMAIN 1 OF 4D PACKAGE (ULB)	240	382	}	
		`			,	
		O-20 Connecting to TS-422 (ULB)	222	353		
		O-21 CONNECTING TO TS-422 (ULB)	753	1,197		
		O-22 CONNECTING TO TS-422 (ULB)	2,085	3,314	,	
		O-23 CONNECTING TO TS-422 (ULB)	158	251	ļ	
		O-24 CONNECTING TO TS-422 (ULB)	158	251		
		O-25 CONNECTING TO TS-422 (ULB)	400	636		
		O-26 CONNECTING TO TS-422 (ULB)				
		O-27 CONNECTING TO TS-422 (ULB)	1,598	2,540		
		O-28 Connecting to C-9 OF Bommanahalli	471	749		
		O-29C0nnecting toMH-22of C-10 Of				
		Bommanahalli(ULB)	8,111	12,893		
		O-30 connecting to C-9 of	362	575		
		O-31 Connecting to MH- 174 OF	232	273		
		Yellenahalli(ULB)	792	1,259		To Village No 26
	<u> </u>	Total	86,776	137,939		From Village No 4
<u> </u>		Total	00,770	131,739		110m vmage NO 4

Nie	Village	Compostion of Main Samon	Popul	ations	Conecting	Domonles
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
		O-1 MH-200 of TS-426	1,350	2,146	Belandur	Under Construction
7	Bellandur	O-2 MH-207 of TS-426	1,444	2,295	amanikere	CWSS IV-Phase-2
′	Benanaar	O-3 MH-212 of TS-426	31,795	50,541	STP	
		O-4 MH-240 of Kaikondanahalli	6,625	10,531	511	To Village No 14
		Total	41,214	65,514		From Village No 2
	Chandrashekara				No	
8	pura	ULB Total	1,528	2,429	Development Doddabele	To Village No 17
		O-1 Connecting to Vasanthapura in R R Nag	6,065	9,641	STP	
9	Doddakallacandro	O-2 Connecting to Wasanthaptra in K K Nag	1,012	1,609	Anjanapura	To Village No 22
9	Doddakanasandra	O-3 Connecting to MH-16 TS-428	5,539	8,805	STP (BDA	10 village No 22
		O-4 Connecting to MH-1 of TS-428	1,421	2,259	Proposed)	
		Total	14,037	22,313	11oposeu)	
		O-1 connecting to MH-13 of TS-430	918	1,459		
		O-2 connecting to MH-15 of TS-430	83	132		
		O-3 Connecting to MH-16 of TS-430	108	172		
		O-4 connecting to MH-17 of TS-430	86	137	,	
		O-5 Connecting to MH-18 of TS-430	76	121		
		O-6 Connecting to MH-22 of TS-430	34,209	54,379	Anjanapura	
10	Gollahalli	O-7 connecting to MH-23 of TS-430	88	140	STP (BDA	
		O-8 Connecting to MH-24 of TS-430	91	145	Proposed)	
		O-9 Connecting to MH-26 of TS-430	414	658	-	
		O-10 Connecting to MH-27 of TS-430	239	380		
		O-11 Connecting to Mh-28 of TS-430	135	215		
		O-12 Connecting to MH-30 of TS-430	1,263	2,008		
		O-13 Connecting to MH-34 of TS-430	4,078	6,482		
						From Village No 1 and
		Total	16,894	26,855		No 3
		O-1 connecting to MH-56 ofpillaganahalli	2,988	4,750		
		O-2 Connecting to MH-105 of pilaganahalli	2,410	3,831		
		O-3 mh-178 OF pilaganahalli O-4 MH-204 of pillaganhalli	1,122 44	1,784 70		
		O-5 MH-272 of Pillganahalli	80	127		
	Gottigere-1	O-6 MH-265 of Pillaganahalli	83	132	32 Pilaganahalli	
	Gottigere-1	O-7 MH-259 of Pillganahalli	95	151		
		O-8 MH-253 of Pillaganahalli	107	170	511	
11		O-9 MH-248 of Pillaganahalli	108	172		
		O-10 To MH-243 of Pillaganahalli	112	178	,	
		O-11 MH-227 of Pillaganahalli	3,144	4,998		
		Total	10,293	16,362		To Village No 21
		O-1 Connecting to MH-23 of kalena agrahara	92	146		To Village No 15
		O-2 Connecting to MH-25 of kalena agrahara	99	157	Belandur	To Village No 15
	Gottigere-2				Amanikere	Under Construction
		O-3 connecting to MH-591 of kammanahalli	793	1,261	STP	CWSS IV-Phase-2
		O-4 Connecting to MH-97 OF Kalena agraha	25,930	41,218		To Village No 15
		Total	26,914	42,782		Engas VIII N 27
		Sub Total (Cattions 1 3 Cattion 2)	27 207	50 1 4 4		From Village No 5, No
-		Sub-Total (Gottigere-1 and Gottigere-2)	37,207 11.962	59,144 19,015	Belandur	15 and No 21
12	Haralur	O-1 Connecting to MH-80 of TS-426 O-2 Connecting to MH-81 of TS-426	688		amanikere	
12	Haraiui	O-3 Connecting to MH-96 of TS-426	1,215	1,094 1,931	STP	
-		Total	13,865	22,040	511	
		Total	10,000	22,070	Belandur	
13	Junnasandra	O-1 Connecting to MH-173 of Kaikondranah	9,274	14,742	Amanikere	From Village No 18
1.5	- Carriagandia	Total	9,274	14,742	STP	To Village No 14
		O-1 Connecting to MH-142 of TS-426	1,024	1,628	-	,ge 1.0 11
		O-2 connecting to MH-152 OF TS-426	1,525	2,424	D.J. J	
1,4	17.91 1.99	O-3 Connecting to MH-155 TS-426	1,942	3,087	Belandur	Under Construction
14	Kaikondranahalli	O-4 Connecting to MH-163 of TS-426	3,560	5,659	amanikere	CWSS IV-Phase-2
		O-5 CONNECTING TO MH-180 OF TS-426	6,042	9,604	STP	
L		O-6 Connecting to MH-183 of TS-426	1,541	2,450		
			·		·	From Village No 2, No
		Total	15,634	24,852		7, No13 and No 31

N	¥7*II	C 4 CM C	Popul	ations	Conecting	D 1
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
					Dalandur	From Village No 11
15	Kalenaagrahara	O-1 connecting to MH-482 gottigere part 2	12,717	20,215	Belandur Amanikere	and To Village No 11
					STP	Under Construction
		Total	12,717	20,215	311	CWSS IV-Phase-2
16	Kambathahalli	O-1 Connecting to MH-1 of TS-430	7,148	11,362	Anjanapura	From Village No 21
		Total	7,148	11,362	STP	BDA Proposed
	Kammanahalli		1,210	,	D.1 1	Under Construction
17	&	O-1 Connecting MH-1 of TS-421	26,938	42,821	Belandur	CWSS IV-Phase-2
					Amanikere STP	From Village No 8 and
		Total	26,938	42,821	SIP	No 21
		O-1 CONNECTING MH-65 OF				
		AMBILIPURA	418	664		
		O-2 CONNECTING MH-115 TS-426	688	1,094		
		O-3 CONNECTING MH-125 ofTS-426	563	895		
		O-4 CONNECTING MH-127 of TS-426	278	442		Hadan Canatanatian
		O-5 CONNECTING MH-130 of TS-426	323	513		Under Construction CWSS IV-Phase-2
		O-6 -CONNECTING MH-133 TS-426	696	1,106	Belandur	CWSS IV-Phase-2
18	Kasavanahalli	O-7 CONNECTING TO MH-1 OF	2.710	5.012	Amanikere	To Willows No. 12
		JUNNASANDRA O-8 CONNECTING to MH-26 of	3,719	5,912	STP	To Village No 13
		KAIKONDNAHALLI	2,714	4,314		To Village No 14
		O-9 CONNECTING MH-31 of	2,714	4,314		10 vinage No 14
		KAIKONDANAHALLI	431	685		To Village No 14
		O-10 CONNECTING MH-163 of	131	002		To vinage to 11
		KAIKONDANAHLLI	1,943	3,089		To Village No 14
		O-11 Connecting to MH-8 of	2,191	3,483		To Village No 14
		Total	13,964	22,197		Ü
		O-1 CONNECTING C-21 OF				
		BOMMANHALLI (ULB)	2,435	3,871		
		O-2 CONNECTING C-21 OF			7.5	
		BOMMANHALLI (ULB)	802	1,275		
		O-3 CONNECTING C-21 OF				
		BOMMANHALLI (ULB)	1,075	1,709		
		O-4CONNECTING C-21 OF	122		Belandur	H. I. G
19	Kudlu	BOMMANHALLI (ULB) O-5 CONNECTING C-21 OF	433	688	amanikere	Under Construction
			1.500	2 200	STP	CWSS IV-Phase-2
		BOMMANHALLI (ULB) O-6 connecting to Sub main of	1,509	2,399		
		Bommanahalli (ULB)	7,012	11,146		
		O-7 Connecting to Mh-45 of TS-426	38,165	60,667		
		O-8 Connecting to MH-56 of TS426	18,674	29,684		
		O-9 Connecting to MH-62 of TS-426	15,860	25,211		
		O-10 Connecting to C-14 of Bommanahalli	7,354	11,690		
		Total	85,730	136,276		From Village No 20
		O-1 Connecting to MH-1 TS-426	6,218	9,884		Ŭ
		O-2 Connecting to MH-5 TS-426	2,816	4,476		
		O-3 Connecting to MH-9 TS-426	1,916	3,046		Under Construction
		O-4 Connectig to MH-18 TS-426	5,858	9,312		CWSS IV-Phase-2
		O-5 Connecting to MH-20 TS-426	966	1,536	Belandur	
20	20 arappana Agraha	O-6 Connectig to MH-22 TS-426	1,457	2,316	amanikere	
		O-7 Connecting to MH-500 kudlu	2,445	3,887	STP	To Village No 19
		O-8 connecting to MH-274 KUDLU	1,107	1,760		To Village No 19
		O-9 Connectying to Mh-36 of C-20 of	2.462	2014		
		Bommanahalli O 10 Connecting to MH 566, Kudlu	2,462	3,914		To Village No 19
-		O-10 Connecting to MH-566 Kudlu	4,037	6,417		10 viliage No 19
		Total	29,282	46,547		

	7741	G 4 01 1 G	Popul	lation	Conecting	ъ.
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
					Pillaganahalli	
		O-1 Connecting to Proposed STP	15,817	25,143	STP	
					Belandur	
		O-2 Connecting to MH-99 of Gottigere-2	1,914	3,042	amanikere	To Village No 11
21	Pillaganahalli	O-3 CONNECTING TO MH-65 of			STP	
		Gottigere-2	937	1,489	(Under	To Village No 11
					Anjanapura	
					STP (BDA	
		O-4 Connecting to MH-1 of Kembathalli	833	1,324	Proposed)	To Village No 16
		Total	9,208	14,637		From Village No 11
		O-1 Connecting to MH-34 of TS-428	3,908	6,212		Ŭ
22	Raghuvanahalli	O-2 Connecting to MH-29 of TS-428	828	1,316	Vathur STP	BDA Proposed
		Total	4,736	7,528		From Village No 9
23	Talaghattapura	O-3 Connectining to Talaghttapura	27,262	43,336	Thalaghattap	
		Total	27,262	43,336	ura STP	
24	Thippasandra	O-1 connecting to MH-33 Of TS-428	3,100	4,928	Anjanapura	
24	Tinppasanura	O-1 connecting to WIII-33 Of 13-428	3,100	4,920	STP (BDA	
		Total	3,100	4,928	Proposed)	
25	Vajarahalli	O-1 CONNECTING TO MH-67 OF PROP T	16,627	26,430	Anjanapura STP (BDA	
	_	T 4.1	17.70	26 420	`	
26	37 1 1 11	Total	16,627	26,430	Proposed)	Under Construction
26	Yelenahalli	O-1 Connecting to MH-272 0F C-9 of Bomm	3,267	5,193	Belandur	CWSS IV-Phase-2
		O-2 Connecting to MH-57 of Kammanahalli	469	746	Amanikere	To Village No 17
		O-3 Connecting to MH-281 of Kammanahalli	46	73	STP	To Village No 17
		Total			511	
		10tai	3,782	6,012		From Village No 6
		0.1.0	5 0 5 0	0.200	Naganathapur	
		O-1 Connecting to MH-58 TS-427 O-2 Connecting to MH-74 of C-20 of	5,850	9,299	a STP	
		Bommanahalli ULB	123	196	asii	
			123	190	Belandur	
27	narathena Agraha				Amanikere	Under Construction
		O-3 Connecting to MH-1 Parapana agrahara	277	440	STP	CWSS IV-Phase-2
		O-4 Connecting to MH-49 of TS-427	9,748	15,495		C VV SS TV T Huse 2
		O-5 Connecting to mh-59 TS-427	406	645	Naganathapur	
		O-6 CONNECTING MH-80 OF TS-427	1,406	2,235	a STP	
		Total	2,917	4,637		From Village No 30
			,	•	Belandur	
					Amanikere	Under Construction
28	Bhoganahalli	O-1 CONNECTING TO MH-307 OF PANAT	6,674	10,609	STP	CWSS IV-Phase-2
		Total	6,674	10,609		
29	Chikkabelandur	O-1 CONNECTING TO MH-231 OF GUNJU	19,688		r Kodi (Other I	To Zone 2 Village No
		Total	16,463	26,170		From Village No 31

		a a a	Population		Conecting	
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
		O-1 Connecting to MH-1 of TS-427	2,375	3,775	Naganathapur	
		O-2Connecting to MH-29 TS-427	7,943	12,626		
		O-3 Connectig to MH-34 TS-427	2,095	3,330	a STP	
		O-4 Connecting to MH-103 Basapura	3,313	5,266		To Village No 4
		O-5 Connecting to Mh-12 of Basapura	9,951	15,818	Belandur	To Village No 4
		O-6 Connecting to Mh-10 of Basapura	856	1,361	Amanikere	To Village No 4
30	Chikkathoguru	O-7 Connecting to Mh-6 of Basapura	629	1,000	STP	To Village No 4
&	&	O-8 Connecting to MH-189 of	9,644	15,330		To Village No 27
32	Doddathoguru	O-9 connecting to MH-11	1,574	2,502	Naganathapur	To Village No 27
		O-10 Connecting to MH-1 of	3,076	4,890	a STP	To Village No 27
		O-11 Connecting to MH-1 of	599	952		To Village No 27
		O-12 connecting to MH-110 of C-20				
		(BOMMANAHALLI ULB)	876	1,392	Belandur	Under Construction
		O-13 connecting to MH-110 of C-20			amanikere	CWSS IV-Phase-2
		(BOMMANAHALLI ULB)	872	1,386	STP	
		Total	43,803	69,629		
		O-1 Connecting to MH-171 of	5,226	8,307	Belandur	To Village No 14
		O-2 Connecting to MH-172 of	19,823	31,511	amanikere	To Village No 14
		O-3 Connecting to MH-37 of			STP	To Zone 2 Village No
		Devarabishanahalli	544	865	(Under	5
31	Doddakannahalli				Varthur Kodi	
		O-4 Connecting to MH-1 of Chikkabelandur	3,225	5,126	(Other	To Village No 29
					Belandur	II. 1 G
					Amanikere	
		O-5 Connecting to MH-245 of Kaikondanaha	4,772	7,586	STP	CWSS IV-Phase-2
		Total	33,590	53,395		
			, ,			
		O-1 CONNECTING MH-88 OF TS-427	3,007	4,780		
		O-2 CONNECTING MH-96 OF TS-427	8,885		Naganathapur	To Zone 2 Village No. 5 di To Village No 29 Under Construction CWSS IV-Phase-2
		O-3 CONNECTING TO NAGANATHPURA	4,318	6,864	a STP	
		O-4 CONNECTING TO MH-1 OF PARAPPA	1,125	1,788		
33	Naganathapura	O-5 CONNECTING MH-21 OF PARAPPAN	858	1,364	D.L. I	
		O-6 CONNECTING TO MH-29 OF PARAPE	1,254	1,993	Belandur	Under Construction
		O-7 CONNECTINGTO MH-332 OF PARAP	1,282	2,038	Amanikere	CWSS IV-Phase-2
		O-8 CONNECTING TP MH-312 OF PARAP	296	471	STP	
		O-9 CONNECTING TO MH-251 PARAPPA	887	1,410	†	
		Total	21,912	34,831		

	R.R. Nagar Zone STP FLOW CAPACITY (MLD)							
		STP FLOW CA				T		
No	Village	Connection of Main Sewer	Popu		Conecting	Remarks		
-110	, zzange		2034	2049	STP	11011111111		
		O-1 Connecting to MH-Q40B EX TS-52A	17,530	27,576				
		O-2 Connecting to Q-47 of EX TS-52A	10,657	16,765				
		O-3 Connecting to MH-131 of	11,937	18,778		To village No 14		
		O-4 Connecting to MH-126 of	3,317	5,218	Doddabele	To village No 14		
1	Vasanthapura	O-5 Connectimng to MH-303 of Gubbullalu	5,772	9,080	STP Under	To village No 15		
1	vasantnapara	O-6 Connecting to MH-294 of Gubullalu	4,422	6,956	Construction	To village No 15		
		O-7 Connecting to MH-197	7,921	12,461	(Phase-II)	To village No 14		
		O-8 Connecting to MH-Q87of TS-52B	2,450	3,854				
		O-9 Connecting to MH-Q101 of TS-52B	10,258	16,137				
		O-10 Connecting to Q-63 of TS-52A	608	956				
		Total	74,872	117,781				
2	Ullalu		53,256	83,777	Doddabele	Lateral System		
		Total	53,256	83,777		Considered in BDA		
3	Sonnenhalli		6,996	11,005	Doddabele	Considered in BDA		
						Project		
	C 1 11	O 1	10.044	20.205		. J		
4	Ganakallu	O-1 connectin to MH-133 of TS-521	18,044	28,385	Doddabele	Under Construction		
		Total	18,044	28,385	STP			
		1000	20,011	20,000	511	(Phase-II) Only Village		
5	Hemmeigepura	O-1 Connecting to Hemmigerepura STP-1	7,939	12,489				
3	<i>U</i> 1				Heemigepura	Population considered		
		O-2 Connecting to MH-48 of Varahasandra	3,409	5,363	-2 STP	BDA Development		
			-,	- ,		Population is not		
		Total	88,258	138,839		76,910 from BDA		
		Total	00,230	130,037		BSK 6th stage		
		Erom PDA Dovolonment area 1	20 155	60,494	Heemigepura	To Village No 5		
		From BDA Development area 1	38,455	00,494	-1 STP	BDA BSK 6th stage		
		E BDA D	20.455	60.404	Heemigepura	To Village No 5		
		From BDA Development area 2	38,455	60,494	-2 STP	BDA BSK 6th stage		
					G	Lateral System		
6	Somapura	110 Village	50,572	79,555	Somapura	Considered in BDA		
	1		,	ĺ	STP	Project		
7	Varasandra	O-1 connecting to Hemmigepura STP-1	3,473	5,463	Heemigepura			
		5-11-11-15-11-11-11-11-11-11-11-11-11-11	-,	,	-1 STP			
		Total	3,473	5,463				
		Total	3,473	3,403				
	Manavarthkaval				Doddabele	Lateral System		
8	u		2,571	4,044	STP	Considered in BDA		
	u				511	Project		
						Lateral System		
9	Lingderanahalli		4,538	7,139	Somapura	Considered in BDA		
	8		,	,	STP	Project		
					Thalaghattap	Troject		
10	Hosahalli	O-1 Connecting to Thalagattapura STP	8,998	14,155	ura STP			
		Tetal	0.000					
		Total	8,998	14,155				
		O-1 connecting to MH -1271 of uttarahalli	8,559	13,464				
		<u> </u>			Doddabele			
11&	Arehalli/Vaddar	O-2 Connecting to Prop Arehalli ISPS (mh-	2,088	3,285	STP Under			
	palya	19 of this network)			Construction			
12	Parya	O-3 Connecting to MH-1052 of Uttarahalli	2,809	4,419		To Village No 13		
		O-4 connecting to MH-689 Of uttahahalli	901	1,417	(Phase-II)	To Village No 13		
		O-5 Connecting to ISPS pumped to MH-153	8,235	12,954				
		Total		25 520		From ULB Population		
		Total	22,592	35,539		1210		
				-	-			

		Population		Conecting	D 1	
No	Village	Connection of Main Sewer	2034	2049	STP	Remarks
		O-1 Connecting to MH-46 of TS-521	2,834	4,458		
		O-2 Connecting to MH-35 of TS-521	5,577	8,773		
		O-3 Connecting to MH-38 of TS521	624	982	,	
		O-4 connecting to MH-306 of arehalli	302	475		To Village No 11
		O-5 connecting to MH-303 of arehalli	138	217	•	To Village No 11
		O-6 Connecting toR-13 of TS-53-A	5,036	7,922		
		O-7 Connecting to MH-R-25 of TS-53A	1,457	2,292		
		O-8 Connecting to MH-R26 of TS-53A	53	83		
		O-9 Connecting to MH-R19 of TS-53A	2,637	4,148	Y	
		O-10 Connecting to MH-R20 of TS-53A	65	102		
		O-11 Connecting to MH-R32 of TS-53A	257	404		
		O-12 Connecting to MH-R21 of TS-53A	49	77	Y	
		O-13 Connecting to MH-R22 of TS-53A	72	113	D 11.1.1	
		O-14 Connecting to MH-R28 of TS-53A	149	234	Doddabele	
13	Uttrahalli	O-15 Connecting to MH-R29 of TS-53A	16,243	25,552	STP Under	
		O-16 Connecting to MH-R30 of TS-53A	50	79	Construction	
		O-17 Connecting to MH-R49 of TS-53A	240	378	(Phase-II)	
		O-18 Connecting to MH-R54 of TS-53A	126	198		
		O-19 Connecting to MH-R57 of TS-53A	491	772		
		O-20 Connecting to MH-R64 of TS-53A	4,199	6,605		
		O-21 Connecting to MH-R72 of TS-53A	4,756	7,482		
		O-22 Connecting to MH-R11 of TS-53A	3,260	5,128		
		O-23 Connecting to MH-R61 of TS-53A	991	1,559		
		O-24 Connecting to MH-R39 of TS-53A	7,521	11,831		
		O-25 Connecting to MH-R55 of TS-53A	113	178		
		O-26 Connecting to MH-R56 of TS-53A	110	173	·	
		O-27 Connecting to MH-R45 of TS-53A	1,859	2,924		
		O-28 Connecting to MH-R14 of TS-53A	141	222		
		O-29 Connecting to MH-45 of TS-521	7,534	11,852		
						From Village No 11
		Total	66,884	105,215		and No 14, To ULB
						5,599 People
		O-1 Connecting to MH-1542 of Uttarahalli	13,107	20,619		To Village No 13
		O-2 Connecting to MH-275 of	1,102	1,734	Doddabele	
14	Subramanyapur	O-3 CONNECING TO MH-325 of	921	1,449	STP Under	
1.	a	UTTARAHALLI		·	Construction	To Village No 13
		O-4 Connecting to MH-369 ofuttarahalli	14,188	22,319	(Phase-II)	To Village No 13
		O-5 connecting to MH-344 of uttarahalli	1,374	2,161		To Village No 13
		Total	30,692	48,282		From Village No 1 and No 15
		O-1 connecting to MH-17 of Turahalli	9,257	14,562	Doddabele	To village No.16
15	Gubbullalu	O-2 Connecting to MH- 88 of Thurahalli	262	412	STP Under	To village No.16
		O-3 Connecting to MH-60 of	4,169	6,558		Ü
		Total	13,688	21,533		
		O-1 CONNECTING TO MH-65 OF TS-521				
		OF RR NAGAR CMC	2,211	3,478	Doddabele	
		O-2 CONNECTING TO MH-14 of TS-521	1 001	1 701	STP Under	
16	Turahalli	OF RR NAGAR CMC	1,081	1,701	Construction	
		O-3 Connecting to NH-135 of TS-521	214	337	(Phase-II)	
		O-4 Connecting to MH-32 of TS-521	200	315	(1 masc-m)	
		O-5 Connecting to MH-26 of TS 521	1,634	2,570		
		Total	5,340	8,400		From Village No 15
					Doddabele	
	Giddakonenhall				STP Under	Lateral System
17	i	O-1 Connectiong to Doddabele STP	75,950	119,477	Construction	Considered in BDA
	-				(Phase-II)	Project
					·	

	Dasarahalli Zone STP FLOW CAPACITY (MLD) STP FLOW CAPACITY (MLD)							
			PACITY (MLL Popul					
No	Village	Connection of Main Sewer	2034	2049	Conecting STP	Remarks		
1	Abbigere	O-1 connecting to MH-102 of myadarahalli O-2 connecting to mh-36 of ts-821 A O-3 connecting to mh-40 of ts-821A O-4 connecting to mh-43 of ts-821A O-5 Connecting to Mh-48 of ts-821A O-6 connecting to mh-24 of ts-821 O-7 Connecting to mh-34 of ts-821 O-8 connecting to mh-35 of ts-821 O-9 connecting to mh-36 of ts-821 O-10 connecting to mh-37 of ts-821 O-11 connecting to mh-39 of ts-821 O-12 connecting to mh-39 of ts-821 O-13 connecting to mh-40 of ts-821 O-15 connecting to mh-40 of ts-821 O-16 connecting to mh-42 of ts-821 O-16 connecting to mh-43 of ts-821 O-17 connecting to mh-44 of ts-821 O-18 connecting to mh-45 of ts-821	3,320 419 130 141 96 1,429 154 145 139 224 94 71 99 133 7,117 135 97	2049 5,277 666 207 224 153 2,272 245 230 221 356 149 113 157 211 11,313 215 154 153	Chikkabanavara 2 STP	To Village No 5		
		O-19 connecting to mh-52 of ts-821	7,705	12,248				
		Total	21,744	34,564				
		O-1 (Connecting to MH-36 of TS-823)	14,095	22,405				
		O-2 (Connecting to MH-45 of TS-823)	1,419	2,256				
2	Chikkasandra	O-4 Connecting to Chikkabanavara ISPS	1,495	2,376	Chikkabanavara 2 STP			
		O-5 Connecting to Chikkabanavara ISPS	6,622	10,526				
		O-6 Connecting to out let of TS-823	525	835				
		Total	24,156	38,398				

No	Village	Connection of Main Sewer	Popul	Population		Domonles
NU	village	Connection of Main Sewer	2034	2049	Conecting STP	Remarks
		O-1(Connecting to MH-36 of TS-823)	8,353	13,278		
		O-2(Connecting to MH-15 of TS-823)	3,113	4,948	Ch librah an anna	Remarks From Village No 1
3	Shettihalli	O-3(Connecting to MH-10 of EX TS-83)	315	501	Chikkabanavara 2 STP	
		O-4 (Connecting to MH-11 TS-823)	1,176	1,869		
		O-5(Connecting to MH-34 of TS-823)	4,593	7,301		
		Total	17,550	27,897		
4	Sidedahalli	O-2 (Connecting to Ex- Bagalkunte ISPS)	75,795	120,484	Nagasandra STP	
		Total	75,795	120,484		
		O-1 Connecting MH-43 of TS-823	875	1,391		
		O-2 cONNECTING TO MH-45 OF TS-823)	215	342		From Village No 1
		O-3 Connecting to Mh-39 of TS-823	233	370		From Village No 1
		O-4 Connecting to Mh-43 of TS-823	82	130		
		O-5 Connecting to Mh-45 of TS-823	506	804	1	
		O-6 Connecting to Mh-46 of TS-823	88	140		
		O-7 Connecting to Mh-47 of TS-823	722	1,148		
		O-8Connecting to Mh-48 of TS-823	74	118		
		O-9 Connecting to Mh-49 of TS-823	64	102		
5	Myadarahalli	O-10 Connecting to Mh-50 of TS-823	225	358	Chikkabanavara	
3	Wiyadaranam	O-11 Connecting to Mh-53 of TS-823	115	183	2 STP	From Village No 1
		O-12 Connecting to Mh-54 of TS-823	72	114		
		O-13 Connecting to Mh-55 of TS-823	75	119		
		O-14 Connecting to Mh-56 of TS-823	59	94		
		O-15 Connecting to Mh-57 of TS-823	60	95		
		O-16 Connecting to Mh-58 of TS-823	51	81		
		O-17 Connecting to Mh-59 of TS-823	42	67		
		O-18 Connecting to Mh-60 of TS-823	120	191		
		O-19 Connecting to Mh-37 of TS-823	88	140		
		O-20 MH-67 of TS-823	331	526		
		Total	4,097	6,513		From Village No 1

No	Village	Connection of Main Sewer	in Sewer Population		Conecting STP	Remarks
110	vinage	Connection of Want Sewer	2034	2049	Concerning 511	Kemai Ks
		O-1 Connecting to MH-17 of TS-722	3,207	5,098		
		O-2 Connecting to MH-21 of TS-722	5,623	8,938		
		O-3 Connecting to MH-37 of TS-722	4,462	7,093	Nagasandra STP	
		O-4 Connecting to MH-31 of TS-722	633	1,006		
6	Kariobanhalli	O-5 Connecting to MH-46of TS-722	6,363	10,115		
		O-6 connecting to MH-699 of handrahalli	18,003	28,618	•	From Village No 7 li To Village No 6 To Village No 9 To Village No 9 From Village No 6 and ULB To Village No 7
		O-7 Connecting to MH-811 of Handrahalli	787	1,251	Kariobavanahalli	
		O-8 Connecting to MH-298 Handrahalli	2,428	3,860	STP	From Village No 7 lli To Village No 6 To Village No 9 To Village No 9 From Village No 6 and ULB To Village No 7
		O-9 Connecting to Proposed STP	19,288	30,660		
		Total	60,794	96,638		From Village No 7
		O-1 Connecting to MH-414 of			Kariobavanahalli	
		Kariobanahalli	23,542	37,422	STP	li To Village No 6 To Village No 9
7	Handrahalli	O-2 Connecting to MH-391 of	4,210	6,692		To Village No 9
		O-3 Connecting to MH -318 of Lingaderanahalli	2,644	4,203	Hosahalli STP	To Village No 9
		Total				
		Total	30,396	48,317		
	Dasarahalli	From Chatchment 20 of 7-B package ULB	10,779	17,134		To Village No 7
8	Doddabidarakal lu	O-1 Connecting to Proposed STP	49,167	78,156	Doddabidarkallu	
		O-2 Connecting to Proposed STP	11,641	18,505	STP	
		Total	60,808	96,660		
	Lingadeeranaha		-			
9	lli (B)	O-1 Connecting to MH-41 of Hosahalli	15,196	24,156	Hosahalli STP	
		Total	15,196	24,156		
10	Hosahalli	O-1 Conecting to Hosahalli STP	6,672	10,606		
		O-2 Cennecting to MH-2110 of Herohalli	113	180	Hosahalli STP	To Village No 11
		O-3 connecting to MH-2118 of Herohalli	965	1,534		To Village No 11
		Total	7,750	12,319		From Village No 9 and No 11

No	Village	Connection of Main Sewer	Popul	lation	Conecting STP	Remarks
110	v mage	Connection of Fram Sewer	2034	2049	Concernig 511	Remarks
		O-1 Connecting to MH-1 OF TS-621	1,928	3,065		
		O-2 Connecting to Mh-20 of TS-621	33,188	52,756	<u>, </u>	
		O-3 Connecting to Mh-17 of TS-621	2,795	4,443		
		O-4 Connecting to MH-16 of TS-621	188	299		
		O-5 Connecting to Mh-22 of TS-621	937	1,489		
		O-6 Connecting to Mh-21 of TS-621	437	695	Doddabele STP	Under Construction
		O-7 Connecting to Mh-28 of TS-621	18,949	30,121	•	Phase-2
		O-8 Connecting to Mh-35 of TS-621	1,211	1,925	•	
		O-9 Connecting to Mh-36 of TS-621	94	149	•	
		O-10 Connecting to Mh-37 of TS-621	163	259	•	
		O-11 Connecting to Mh-41 of TS-621	116	184	•	
		O-12 Connecting to Mh-42 of TS-621	242	385		
		O-13 Connecting to Mh-43 of TS-621	236	375		
		O-14 Connecting to Mh-45 of TS-621	17.402	27,662		
		O-15 Connecting to MH-464 of	17,402	27,002		
		Lingaderanahalli	202	321		To Village No 9
		O-16 Connecting TO MH-463 OF	202	321	Hosahalli STP	10 village NO 9
		_	260	412		T. Will N. 0
		Lingaderanahalli	260	413		To Village No 9
11	Herohalli	O-17 Connecting to Mh-180 of Hosahalli	1,499	2,383		To Village No 10
		O-18 Connecting to MH-14 of TS-621	153	243		Under Construction Phase-2
		O-19 Connecting to Mh-46 of TS-621	10,656	16,939		
		O-20 Connecting to Mh-50 of TS-621	123	196		
		O-21 Connecting to Mh-51 of TS-621	119	189		
		O-22 Connecting to Mh-52 of TS-621	403	641		
		O-23 Connecting to Mh-56 of TS-621	631	1,003	Doddasele 511	
		O-24 Connecting to Mh-57 of TS-621	315	501	•	
		O-25 Connecting to Mh-58 of TS-621	490	779		
		O-26 Connecting to Mh-59 of TS-621	1,596	2,537		
			,		•	
		O-27 Connecting to Mh-60 of TS-621	1,129	1,795	11 1 11 CTD	
		O-28 Connecting to Proposed STP	22,107	35,141	Herohalli STP	T. 1. G
		0.00 G	0.010	14.540	D 11 1 1 cm	Under Construction
		O-29 Connecting to Mh-77 of TS-621	9,210	14,640	Doddabele STP	Phase-2
		O-30 Connecting to MH-228 of Hosahalli	5,087	8,086	TT 1	To Village No 10
		O-31 Connecting to Mh-335 of Hosahalli	1,938	3,081	Hosahalli STP	To Village No 10
		O-32 Connecting to Mh-18 of TS-621	276	439		Under Construction
		O-33 Connecting to MH-32 of TS-621	391	622		Phase-2
		O-34 Connecting to Mh-78 of TS-621	7,256	11,534	Doddabele STP	
		O-35 Connecting to ISPS&connecting to				Under Construction
		MH-831	3,521	5,597	Doddabele STP	Phase-2
		O-36 Connecting to MH-1 Hosahalli	5,379	8,550	Hosahalli STP	To Village No 10
		Total	150,627	239,437		From Village No 9