## Chapter.7 Financial and Economic Analysis and Business Evaluation

## 7.1 Financial and Economic Analysis

The purpose of the project is to improve transmission capacity by replacement of the existing transmission line with a high quality and low loss transmission line and to increase the number of the transmission lines. The benefit of the improvement of the transmission network is to contribute to the increase of power supply to the capital city area and to the improvement of the reliability of electricity supply.

The objective for evaluation of the project is to analyse the possibility of implementation of improvement of the existing 220kV transmission line between Tarbela substation and Burhan substation (approximately 35 km). In addition to the improvement mentioned above, analysis of the possibility of implementation of the new construction of a branch transmission line (approximately 40 km) will also be conducted, which will be reviewed in the other report.

The output of the implementation of the project, e.g. goods and services, is the transmission infrastructure to be improved by the project. The fundamental framework of the project is to be as follows;

- (1) Output: Increase of electricity supply by improvement of the transmission line
- (2) Outcome: Improvement of reliability on electricity supply and countermeasures against future expected insufficient transmission line capacity
- (3) Impact: Sustainable economic and social development

## 7.1.1 Financial Analysis

Financial analysis is to be carried out to evaluate the profitability of NTDCL as the implementation organization. The investment amount is to be estimated by the market price as the financial cost and at the same time the financial benefit given by the implementation of the project is also to be estimated by the market price.

## (1) Financial Cost

The financial expenses are consisting of the following items<sup>7</sup>;

- 1) Construction cost and materials price
- 2) Consultant costs

<sup>&</sup>lt;sup>7</sup> Interest during construction (IDC) and price escalation are not included.

- 3) Fund of the construction and materials (physical contingency)
- 4) Administrative expenses
- 5) Taxes (VAT and Import Duties<sup>8</sup>)
- 6) Front-End Fee

## (2) Financial Benefit

The major benefit is to be recognised by the increase in income based on increased quantity of electric transmission of 87.75MW together with the benefit of 2.78MW gained by the reduction of transmission loss. The benefit is estimated as the increase of income by NTDCL using a wheeling charge of PKR130 /kW month<sup>9</sup>. Assessment of the benefit is based on① transmission quantity due to the strengthened transmission lines and ②reduction of transmission loss by the usage of high quality transmission lines. The following table shows the annual increase of the quantity measured between the "With-project" and "Without-project" cases.

| Table 7.1.1 Benefits of implementation of the pro | bject |
|---------------------------------------------------|-------|
|---------------------------------------------------|-------|

|                | Tarbela-Bruhan (circuit 3) |             |      | Т         | arbela-ISPI | Total<br>(MW) |             |      |
|----------------|----------------------------|-------------|------|-----------|-------------|---------------|-------------|------|
|                |                            | (MW)        |      |           | (MW)        |               | (IVI)       | VV)  |
|                | Send. End                  | Receiv. End | Loss | Send. End | Receiv. End | Loss          | Performance | Loss |
| 2020 (without) | 233.52                     | 230.71      | 2.81 | 241.26    | 238.58      | 2.68          | 469.29      | 5.49 |
| 2020 (with)    | 289.96                     | 288.41      | 1.55 | 269.79    | 268.63      | 1.16          | 557.04      | 2.71 |
| Difference     |                            | 57.7        | 1.26 |           | 30.05       | 1.52          | 87.75       | 2.78 |

(Source: JICA Survey Team)

## (3) Prerequisites for the IRR calculation

Followings are the assumptions for estimating IRR;

| Table 7.1.2 | Assumptions for | estimating | IRR <sup>10</sup> |
|-------------|-----------------|------------|-------------------|
|-------------|-----------------|------------|-------------------|

| O&M Cost                 | 2% of linitial nvestment |
|--------------------------|--------------------------|
| Transmission Loss        | 3%                       |
| Annual Increase of Power | 5%                       |
| Income by TL (UOSC)      | 130 Rs/kW/month          |

(Source: JICA Survey Team)

<sup>&</sup>lt;sup>8</sup> VAT in Pakistan are defined as 17% as General Sales Tax (GST), Customs Duty: 20% (Conductor), GST: 17%, Income Tax: 5.5% . Comprehensive tax rate is (1+20%) x (1+17%) x (1+5.5%) = 1.481 (48%)

<sup>&</sup>lt;sup>9</sup> PKR 126.75/kW month is the official rate of the wheeling charge determined by NEPRA for NTDCL as of June 2016. The

<sup>&</sup>lt;sup>10</sup> PKR130/kW month is used by the JICA survey derived from the rate for the economic evaluation in PC-1 planned by NTDCL

in January 2016.

Financial costs and financial benefits are compared as the present value over the expected useful life of the project, i.e. 40 years. The discount rate in the case of the present value of the total financial cost, being equal to the present value of the total financial benefit, is evaluated as the benchmark to evaluate the feasibility of this project, which is determined as the financial internal rate of return, FIRR. Being based on the conditions above, IRR is calculated as follows;

- 1) Financial internal rate of return (FIRR) is to be 3.35%.
- 2) B/C ratio is to be 0.72 (discount rate of 10%) and 0.65 (discount rate of 12%).
- 3) Annual benefit of 72.8 million yen gives a breakeven period of 42.7 years for the investment cost of 3,109.4 million yen.

Table 7.1.7 shows the result of estimation of the financial internal rate of return (FIRR).

|          |                   |                            |                     |                      | L ANALY<br>bera - Brul               | SIS - CAS<br>han (Exist |                                                        | JPY =                                            |                  | x PKR<br>(JPY. in Millior |  |
|----------|-------------------|----------------------------|---------------------|----------------------|--------------------------------------|-------------------------|--------------------------------------------------------|--------------------------------------------------|------------------|---------------------------|--|
|          |                   |                            | Project Cos         | it                   |                                      | Project Benefit         |                                                        |                                                  |                  |                           |  |
|          | inancia<br>I year | Investment<br>Cost         | O & M<br>Cost<br>2% | Total<br>Annual Cost | Power Gross<br>(increase p.a.)<br>5% | Power Net<br>97%        | Project<br>Revenue @<br>USCF<br>Rs./kW/month<br>130.00 | Loss<br>Reduction<br>USCF (MW)<br>2.78<br>130.00 | Total<br>Revenue | Net Benefits              |  |
|          |                   | (JPY.mln)                  | (JPY.mln)           | (JPY.mln)            | (MW)                                 | (MW)                    | (JPY.mln)                                              | (JPY.mln)                                        | (JPY.mln)        | (JPY.mln)                 |  |
|          | 1                 | 2                          | 3                   | 4                    | 5                                    | 6                       | 7                                                      | 8                                                | 9                | 10                        |  |
|          | 2016              | 0.0                        |                     | 0.0                  |                                      |                         |                                                        |                                                  |                  | 0.                        |  |
|          | 2017              | 66.8                       |                     | 66.8                 |                                      |                         |                                                        |                                                  |                  | -66.                      |  |
|          | 2018              | 469.5                      |                     | 469.5                |                                      |                         |                                                        |                                                  |                  | -469.                     |  |
| . –      | 2019              | 2,421.4                    |                     | 2,421.4              |                                      |                         |                                                        |                                                  | 100 5            | -2,421                    |  |
| 1        | 2020              | 151.7                      | 62.2                | 213.9                | 87.8                                 | 85.1                    | 134.1                                                  | 4.4                                              | 138.5            |                           |  |
| 2        | 2021              |                            | 62.2                | 62.2                 | 92.1                                 | 89.4                    | 140.8                                                  | 4.6                                              | 145.4            |                           |  |
| 3<br>4   | 2022<br>2023      |                            | 62.2<br>62.2        | 62.2<br>62.2         | 96.7<br>101.6                        | 93.8<br>98.5            | 147.9<br>155.3                                         |                                                  | 152.7<br>160.3   |                           |  |
| 4<br>5   | 2023              |                            | 62.2                | 62.2                 | 101.6                                | 98.5                    | 163.0                                                  |                                                  | 160.3            |                           |  |
| 5<br>6   | 2024              |                            | 62.2                | 62.2                 | 112.0                                | 103.5                   | 103.0                                                  |                                                  | 176.8            |                           |  |
| 7        | 2025              |                            | 62.2                | 62.2                 | 112.0                                | 114.1                   | 171.2                                                  | 5.9                                              | 185.6            |                           |  |
| 8        | 2027              |                            | 62.2                | 62.2                 | 123.5                                | 119.8                   | 188.7                                                  | 6.2                                              | 194.9            |                           |  |
| 9        | 2028              |                            | 62.2                | 62.2                 | 129.6                                | 125.8                   | 198.1                                                  | 6.5                                              | 204.6            | 142.                      |  |
| 10       | 2029              |                            | 62.2                | 62.2                 | 136.1                                | 132.0                   | 208.1                                                  | 6.8                                              | 214.8            | 152.                      |  |
| 11       | 2030              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  | 7.1                                              | 225.6            | 163.                      |  |
| 12       | 2031              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 13       | 2032              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 14       | 2033              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 15       | 2034              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 16       | 2035              |                            | 62.2                | 62.2                 | 142.9<br>142.9                       | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 17<br>18 | 2036<br>2037      |                            | 62.2<br>62.2        | 62.2<br>62.2         | 142.9                                | 138.6<br>138.6          | 218.5<br>218.5                                         |                                                  | 225.6<br>225.6   |                           |  |
| 19       | 2037              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 20       | 2039              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 21       | 2040              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 22       | 2041              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  | 7.1                                              | 225.6            | 163.                      |  |
| 23       | 2042              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  | 7.1                                              | 225.6            | 163.                      |  |
| 24       | 2043              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 25       | 2044              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 26       | 2045              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 27       | 2046              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 28<br>29 | 2047<br>2048      |                            | 62.2<br>62.2        | 62.2<br>62.2         | 142.9<br>142.9                       | 138.6<br>138.6          | 218.5<br>218.5                                         |                                                  | 225.6<br>225.6   |                           |  |
| 29<br>30 | 2048              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 31       | 2049              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 32       | 2051              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 33       | 2052              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 34       | 2053              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 35       | 2054              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 36       | 2055              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 37       | 2056              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 38       | 2057              |                            | 62.2                | 62.2                 | 142.9                                | 138.6                   | 218.5                                                  |                                                  | 225.6            |                           |  |
| 39<br>40 | 2058<br>2059      |                            | 62.2<br>62.2        | 62.2<br>62.2         | 142.9<br>142.9                       | 138.6<br>138.6          | 218.5<br>218.5                                         |                                                  | 225.6<br>225.6   |                           |  |
|          | Total             | 3,109.4                    | 2,487.5             | 5,596.9              | 5,391.8                              |                         | 210.3                                                  | 1.1                                              | 8,509.6          |                           |  |
| -        |                   |                            |                     |                      |                                      |                         |                                                        |                                                  |                  | IRR                       |  |
|          |                   |                            |                     |                      |                                      |                         |                                                        |                                                  |                  | 3.35%                     |  |
| -        |                   | Total Capita               | Cost                | 3,109.4              |                                      | 40.000/                 | Costs                                                  | Benefits                                         | B/C Ratio        |                           |  |
| -        |                   | Income p.a.<br>Simple Payb |                     | 72.8<br>42.7         | NPV @                                | 10.00%<br>12.00%        | 2,571.4<br>2,338.2                                     |                                                  | 0.72             |                           |  |

## Table 7.1.3 Financial internal rate of return (FIRR)

## 7.1.2 Economic Analysis

Economic analysis is to be carried out from the viewpoint of the national economy rather than the implementation organization, NTDCL of the project. The economic cost is 2,282.1 million yen as described earlier.

## (1) Economic Cost

The economic cost consists of the following items<sup>11</sup>;

- 1) Construction and materials cost
- 2) Consultant services costs
- 3) Physical contingency for construction and materials
- 4) Administrative expenses
- 5) Front end fee

The price and cost of the goods and services generated in Pakistan are converted by the standard conversion factor<sup>12</sup>.

## (2) Economic Benefit

Assessment of the economic benefit is based on ① increase of the transmission quantity of electricity by the strengthened transmission lines and ② the reduction of transmission loss by the usage of high quality transmission lines. Economic benefit is calcurated according to the values reviewed in Table 7.1.5 Benefits of implementation of the project

1) Conversion to the power supply amount of transmission

84MW, the increase of power transmission, are translated into electric energy of MWh, which can be regarded as the supplied generation power.

Power supply amount = Load flow (MW)  $\times$  8,760(hour)  $\times$  Annual load factor<sup>13</sup> (20%)  $\times$  Installation Factor of Diesel Generators<sup>14</sup> (73%)

= 87.75W × 97% (Transmission loss3%) × 8,760 × 20% × 73% = 108,861.88 MWh/year

<sup>&</sup>lt;sup>11</sup> Price escalation, tax and interest during construction are excluded.

<sup>&</sup>lt;sup>12</sup> Price and cost of construction works and goods including local consultant services are converted by the standard conversion factor, i.e. 90%, to convert the price and cost as the international level.

<sup>&</sup>lt;sup>13</sup> Annual load factor is reported as 20 - 100%. 20% is applied to estimation of generated power for the project analysis.

<sup>&</sup>lt;sup>14</sup> Electrification ratio of Pakistan at the national level of 73% (2013) is published in "Electricity Access in Developing Asia-2013 of IEA World Energy Outlook 2015".

2) Benefits as alternative cost reduction (avoided cost)

If this project were not carried out, it can be assumed that relying on the installation of diesel generators would be the alternative. The alternative diesel generators are no longer required by the implementation of the project. Thus the alternative cost (generation cost of diesel generators: PKR 5.78 /  $kWh^{15}$ ) should be regarded as the avoided cost, i.e. benefit.

Alternative cost reduction = 108,861.88 MWh/year × PKR 5.78/kWh

= PKR 629.2 million

= JPY 635.5 million

Together with the avoided cost, i.e. alternative cost saving reviewed as above, the increase of income realised by the increase of transmission quantity 2.78 MW (see Table 7.1.8), from the reduction effect of transmission loss is to be considered as the benefit. PKR 130/kW month (Table 7.1.8) provides the amount of income with NTDCL from wheeling charges.

(3) Assumption for estimation of IRR and the estimation result IRR estimated with the assumptions mentioned above are as follows;

Table 7.1.4 Assumptions for estimation of IRR

| O&M Cost                      | 2% of Initial Investment |
|-------------------------------|--------------------------|
| Transmission Loss             | 3%                       |
| Income by TL                  | 130 Rs/kW/month          |
| Diesel Generation Cost Saving | Rs.5.78/kWh              |
| Annual Increase of Power      | 5%                       |

(Source: JICA Survey Team)

Economic costs and economic benefits are compared as the present value over the expected useful life of the project, i.e. 40 years. The discount rate in the case of the present value of the total financial cost, being equal to the present value of the total financial benefit, is evaluated as the benchmark to evaluate the feasibility of this project, which is determined as the financial internal rate of return, FIRR. The IRR estimated with the assumptions mentioned above are as follows;

<sup>&</sup>lt;sup>15</sup> Diesel generation cost: PKR 13.9/kWh

Based on the generation cost in the report of power project in Pakistan, correction of the generation costs is made in terms of the diesel fuel price from official statistics as at June 2016.

- 1) Economic internal rate of return (EIRR) is to be 29.59%
- 2) B/C ratio is to be 4.53 (discount rate of 10%) and 4.11 (discount rate of 12%)
- 3) Annual benefit of 880.3 million yen gives a breakeven period of 2.59 years for the investment cost of 2,282.1 million yen

An EIRR 29.59% is more feasible than 12% or 15%<sup>16</sup>, the Pakistan social development IRR.

<sup>&</sup>lt;sup>16</sup> "Survey for the Economic Benefit by Implementation by the smooth Yen Loan", JICA & Mitsubishi Research Institute Inc., March 2013

|                    |                    |                                                                                                   |                      |                                      |                  |                                                     |                                                  |                                                 | (JPY. in Millio |
|--------------------|--------------------|---------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------|
|                    | P                  | ROJECT COS                                                                                        | т                    |                                      |                  | PROJEC                                              | T BENEFITS                                       | 6                                               |                 |
| Financi<br>al year | Investment<br>Cost | O & M Cost<br>2%                                                                                  | Total<br>Annual Cost | Power Gross<br>(increase p.a.)<br>5% | Power Net<br>97% | Atternative<br>Cost<br>(Saving )<br>Rs./kWh<br>5.78 | Loss<br>Reduction<br>USCF (MW)<br>2.78<br>130.00 | Total<br>Revenue                                | Net Benefits    |
|                    | (JPY.mln)          | (Rs.mln)                                                                                          | (Rs.mln)             | (MW)                                 | (MW)             | (JPY.mln)                                           | (JPY.mln)                                        | (JPY.mln)                                       | (JPY.mln)       |
| 1                  | 2                  | 3                                                                                                 | 4                    | 5                                    | ()               | 6                                                   | 7                                                | 8                                               | 9               |
| 2016               |                    |                                                                                                   | 0.0                  |                                      |                  |                                                     |                                                  |                                                 |                 |
| 2017               | 55.6               |                                                                                                   | 55.6                 |                                      |                  |                                                     |                                                  |                                                 | -5              |
| 2018               | 335.9              |                                                                                                   | 335.9                |                                      |                  |                                                     |                                                  |                                                 | -33             |
| 2019               | 1,780.6            | 45.0                                                                                              | 1,780.6              | 07.0                                 | 05.4             | COF 5                                               | 4.4                                              | c20.0                                           | -1,78           |
| 2020<br>2021       | 110.0              | 45.6<br>45.6                                                                                      | 155.6<br>45.6        | 87.8<br>92.1                         | 85.1<br>89.4     | 635.5<br>667.3                                      | 4.4                                              | 639.9<br>671.9                                  | 48              |
| 2021               |                    | 45.6                                                                                              | 45.6                 | 92.1                                 | 93.8             | 700.7                                               | 4.0                                              | 705.5                                           | 65              |
| 2022               |                    | 45.6                                                                                              | 45.6                 | 101.6                                | 98.5             | 735.7                                               | 5.1                                              | 740.8                                           | 69              |
| 2024               |                    | 45.6                                                                                              | 45.6                 | 106.7                                | 103.5            | 772.5                                               | 5.3                                              | 777.8                                           | 73              |
| 2025               |                    | 45.6                                                                                              | 45.6                 | 112.0                                | 108.6            | 811.1                                               | 5.6                                              | 816.7                                           | 77              |
| 2026               |                    | 45.6                                                                                              | 45.6                 | 117.6                                | 114.1            | 851.6                                               | 5.9                                              | 857.5                                           | 81              |
| 2027               |                    | 45.6                                                                                              | 45.6                 | 123.5                                | 119.8            | 894.2                                               | 6.2                                              | 900.4                                           | 85              |
| 2028               |                    | 45.6                                                                                              | 45.6                 | 129.6                                | 125.8            | 938.9                                               | 6.5                                              | 945.4                                           | 89              |
| 2029               |                    | 45.6                                                                                              | 45.6                 | 136.1                                | 132.0            | 985.9                                               | 6.8                                              | 992.7                                           | 94              |
| 2030               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2031<br>2032       |                    | 45.6<br>45.6                                                                                      | 45.6<br>45.6         | 142.9<br>142.9                       | 138.6<br>138.6   | 1,035.2<br>1,035.2                                  | 7.1                                              | 1,042.3<br>1,042.3                              | 99              |
| 2032               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2033               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2035               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2036               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2037               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2038               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2039               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2040               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2041<br>2042       |                    | 45.6<br>45.6                                                                                      | 45.6<br>45.6         | 142.9<br>142.9                       | 138.6<br>138.6   | 1,035.2<br>1,035.2                                  | 7.1                                              | 1,042.3<br>1,042.3                              | 99              |
| 2042               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2043               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2045               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2046               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2047               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2048               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2049               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2050               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2051               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2052               |                    | 45.6<br>45.6                                                                                      | 45.6                 | 142.9<br>142.9                       | 138.6            | 1,035.2<br>1,035.2                                  | 7.1                                              | 1,042.3<br>1,042.3                              | 99              |
| 2053<br>2054       |                    | 45.6                                                                                              | 45.6<br>45.6         | 142.9                                | 138.6<br>138.6   | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2054               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2055               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2057               | 1                  | 45.6                                                                                              |                      | 142.9                                |                  | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2058               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| 2059               |                    | 45.6                                                                                              | 45.6                 | 142.9                                | 138.6            | 1,035.2                                             | 7.1                                              | 1,042.3                                         | 99              |
| Total              | 2,282.1            | 1,825.7                                                                                           | 4,107.8              | 5,391.8                              | 5,230.0          |                                                     |                                                  | 39,318.1                                        | 35,21           |
|                    |                    |                                                                                                   |                      |                                      |                  |                                                     |                                                  |                                                 | IRR             |
|                    | Total Capital      | Cost                                                                                              | 2,282.1              |                                      |                  | Costs                                               | Benefits                                         | B/C Ratio                                       | 29.5            |
|                    | Income p.a.        |                                                                                                   | 880.3                | NPV @                                | 10.00%           | 1,887.6                                             | 8,549.0                                          | 4.53                                            |                 |
|                    | Simple Payba       | uck Yrs                                                                                           | 2.59                 |                                      | 12.00%           | 1,716.6                                             | 7,050.4                                          | 4.11                                            |                 |
|                    |                    |                                                                                                   |                      | -14/1-                               |                  |                                                     |                                                  |                                                 | 2042-B- 0.4     |
| 代替案:               | ぎル発電機の設置           | <ol> <li>Diesel Generation</li> <li>Penetration Ration</li> <li>(Electrification Rate)</li> </ol> | o of Diesel Genera   | ition: 73%                           |                  |                                                     |                                                  | rage Power Tariff in<br>– Rs.8.1/kWh = <u>R</u> |                 |

## Table 7.1.5 Economic internal rate of eturn (EIRR)

(Source: JICA Survey Team)

## 7.2 Estimation of reduction of CO2

The reduction effect will result from the usage of high quality low loss transmission lines and so on. Estimation of CO2 emission is conducted assuming that transmission loss is to be considered as the reduction of power generation.

In order to estimate the reduction of CO2 emmission, i.e. the reduction of transmission loss, reference is made to Table 7.1.5.

It is to be noted that the estimation and calculation of CO2 emissions is based on the procedures of the "JICA Climate Finance Impact Tool for Mitigation and Adaptation, June 2011".

7.2.1 The calculation method of CO2 emission reduction based on the transmission power loss

(1) The reduction of losses due to implementation of the project is considered as the reduction of power generation, which should be estimated in terms of the CO2 emission reductions.

- (a) The estimation of the power generation corresponds to the transmission loss without the project implementation
- (b) The estimation of the power generation corresponds to the transmission loss with the project implementation
- (c) Power generation reduction given by the difference between and (a) and (b) is to be estimated as the CO2 emissions reduction.

7.2.2 The calculation of CO2 emission reduction

The following formula (ref. NNEX-3.1.5-1) is used to provide the power loss.

Loss of power : Q y kWh =  $P \times (0.3f + 0.7f^2) \times 8760$ 

- P: Load flow f: Annual load factor (50%)
- (1) Tarbela-Burhan circuit-3
  - 1) Calculation of power generation amount corresponding to the power transmission loss without the project implementation

 $2.81 \text{ MW} \times (0.3 \times 50\% + 0.7 \times 50\% \times 50\%) \times 8760 = 8,000.07 \text{ MWh}$ 

2) Calculation of power generation amount corresponding to the power transmission loss with the project implementation

 $1.55 \text{ MW} \times (0.3 \times 50\% + 0.7 \times 50\% \times 50\%) \times 8760 = 4,412.85 \text{ MWh}$ 

- 3) Reduced amount of power generation (a) (b)
- = 8,000.07 MWh 4,412.85 MWh = 3,587.22 MWh
- 4) Calculation of CO2 emission reductions due to the reduced amount of power generation

 $3,587.22 \text{ MWh} \times 0.5403 \text{ t CO2/MWh}^{17} = 1,938.17 \text{ t CO2/year}$ 

- (2) Tarbela-ISPR
  - 1) Calculation of power generation amount corresponding to the transmission loss without the project implementation

2.68 MW×(0.3×50% + 0.7×50% ×50%)×8760 = 7,629.96 MWh

2) Calculation of power generation amount corresponding to the power transmission loss with the project implementation

1.16 MW×(0.3×50% + 0.7×50% ×50%)×8760 = 3,302.52 MWh

3) Reduced amount of power generation (a) - (b)

= 7,629.96 MWh - 3,302.52 MWh = 4,276.29 MWh

 Calculation of CO2 emission reductions due to the reduced amount of power generation 4,276.29 MWh

 $4,276.29 \text{ MWh} \times 0.5403 \text{ t CO2/MWh} = 2,338.12 \text{ t CO2/year}$ 

## (3) Overall project CO2 emission reductions

CO2 emission reduction is as follows throughout this project.

| Tarbela-Burhan Circuit-3 | : 1,938.17 t CO2/year |
|--------------------------|-----------------------|
| Tarbela ISPR             | : 2,338.12 t CO2/year |
| Total                    | : 4,276.29 t CO2/year |

## 7.3 Operation and effect Indicators

The Yen Loan project is carried out to conduct an ex-post evaluation after two years from the completion of the project in order to scrutinize the goal attainment level of operation and effect in terms of indicators. Operation and effect Indicators are to be fixed referring to the guidelines of the "Yen loan operation and effect indicators reference".

In order to understand the operational status of the infrastructure, the following are considered;

- 1) Indicators should be linked to the factors belonging to transmission business;
- 2) In order to mitigate the manpower burden, the data should be obtained through the day-to-day operations.

<sup>&</sup>lt;sup>17</sup> IGES "Grid Emission Factor, as of October 31st, 2015", Pakistan, Combined Margin (CM) /average

7.3.1 Operation and effect indicators (Part 1), plant factor of the transmission linePart 1 of the operation and effect indicators is the plant factor.

| Name of Transmission Line    | Baseline Value in 2015 | Target Value in 2022 |  |  |  |  |
|------------------------------|------------------------|----------------------|--|--|--|--|
| Name of Transmission Line    | (%)                    | (%)                  |  |  |  |  |
| Tarbela – Burhan (circuit 3) | 62.5                   | 17.3                 |  |  |  |  |
| Tarbela – ISPR               | 68.8                   | 12.3                 |  |  |  |  |
|                              |                        |                      |  |  |  |  |

Table 7.3.1 Operation and Effect Indicators (Part 1), Plant Factor (%)

(Source: JICA Survey Team)

(1) Calculation: Maximum load (MW) / {Transmission line capacity (MVA) x Power Factor}

(2) Base line value in 2015, Tarbela – Burhan (Circuits 1 and 2) and Tarbela – Burhan (Circuit 3), is calculated based on the data provided by GSO Burhan, i.e. "AVAILABILITY FACTOR OF TRANSFORMERS AND TRANSMISSION LINES FOR THE YEAR 2011-2015 IN RESPECT OF 220KV GRID STATION NTDC BURHAN ISLAMABAD p.5", using the maximum load (MW) and power factor of 0.95 of each capacity of the transmission line section.

(3) Base line value in 2015, Tarbela – ISPR, Burhan – ISPR, is calculated based on the data provided by GSO Burhan, i.e. "AVAILABILITY FACTOR OF TRANSFORMERS AND TRANSMISSION LINES FOR THE YEAR 2011-2015 IN RESPECT OF 220KV GRID STATION NTDC SANGJANI (ISPR) ISLAMABAD p.5", using the maximum load (MW) and power factor of 0.95 of each capacity of the transmission line section.

(4) Example: Case of Tarbela-Burhan (circuit 1 and 2)

Availability Factor = 200 (MW)  $\div$  (337 (MVA)  $\times$  0.95)  $\times$ 100 = 62.5 (%)

The maximum load of each transmission network is to calculate the plant factor, i.e. the operation and effect indicators, shown in the table below. Data for 2020 are based on the value provided by the system analysis software PSS / E.

Table 7.3.2 Basic Data for Calculation of Operation and Effect Indicators for Maximum Load (MW)

| Name of Transmission Line    | Baseline Value in 2015<br>(%) | Target Value in 2022<br>(%) |
|------------------------------|-------------------------------|-----------------------------|
| Tarbela – Burhan (circuit 3) | 200 (MW)                      | 151.1 (MW)                  |
| Tarbela – ISPR               | 220 (MW)                      | 107.1 (MW)                  |
|                              |                               |                             |

(Source: JICA Survey Team)

The rated capacity of transmission line (in MVA) at each section, which is used for analysis of the project, is as indicated in the table below.

 Table 7.3.3
 Basic Data for Calculation of Operation and Effect Indicators Rated

 Capacity of Transmission Line (MVA)

| Name of Transmission Line    | Baseline Value in 2015<br>(%) | Target Value in 2022<br>(%) |
|------------------------------|-------------------------------|-----------------------------|
| Tarbela – Burhan (circuit 3) | 337MVA (Rail)                 | 919.8MVA                    |
|                              |                               | (LL-ACSR/AC610)             |
| Tarbela – ISPR               | 337MVA (Rail)                 | 919.8MVA                    |
|                              |                               | (Tarbela-Burhan,            |
|                              |                               | partially LL-ACSR/AC610)    |

(Source: JICA Survey Team)

# 7.3.2 Operation and effect indicators that show the annual amount of transmitted power (MWh)

The second operation and effect indicator is the annual amount of transmitted power (MWh) as indicated in the table below.

| Table 7.3.4 | Operation and effect indicators (2) the amount of transmitted power |
|-------------|---------------------------------------------------------------------|
|-------------|---------------------------------------------------------------------|

| ((((((((((((((((((((((((((((((((((((((( |                        |                      |  |  |  |  |  |  |  |
|-----------------------------------------|------------------------|----------------------|--|--|--|--|--|--|--|
| Name of Transmission                    | Baseline Value in 2015 | Target Value in 2020 |  |  |  |  |  |  |  |
| Line                                    | (MWh/year)             | (MWh/year)           |  |  |  |  |  |  |  |
| Tarbela-Burhan (circuit 3)              | 1,086,100              | 761,091              |  |  |  |  |  |  |  |
| Tarbela-ISPR                            | 505,233                | 539,463              |  |  |  |  |  |  |  |

(MWh)

(Source: JICA Survey Team)

- (1) The baseline value for 2015 refers to the data provided from NPCC.
- (2) The target value for 2020 is estimated with 57.5% of the annual load factor. The following formula (ref. ANNEX 3.1.5-1) is used to provide with the loss power of transmission line. Loss of Power: Q x kWh=P×(0.3f+0.7f^2)×8760 (hours)

  - P: Load Flow f: Annual load factor (50%)

7.3.3 Operation and effect Indicators i3) Transmission Loss Rate (%)

The third indicator is the transmission loss rate (%) as reviewed below;

Table 7.3.5 compares the loss power rate between the conventional conductors based on PC-1 and the low-loss conductors based on the project.

|                           | Baseline Value (%)    | Target Value (%) |
|---------------------------|-----------------------|------------------|
| Name of Transmission Line | Rail Single Conductor | LL ACSR / AC 610 |
|                           | 2015                  | 2020             |
| Tarbela-Bruhan circuit 3  | 1.02                  | 0.26             |
| Tarbela-ISPR              | 1.15                  | 0.19             |

 Table 7.3.5
 Operation and Effect Indicators (Part 3) Loss Power Rate (%)

## 7.4 Project evaluation

The overall purpose of the project is to contribute to the improvement of the infrastructure in Pakistan, which is aimed to improve the reliability of the power supply and as a response to the insufficient capacity for a future transmission line in the Islamabad metropolitan area.

In order to evaluate the project effectiveness, as reviewed in the previous section, Table 7.4.1 shows the comprehensive output of the financial and economic evaluation;

|                       | Financia | Analysis | Economic Analys   |         |  |  |  |
|-----------------------|----------|----------|-------------------|---------|--|--|--|
| Discounted Rate       | 10%      | 12%      | 10%               | 12%     |  |  |  |
| Net Benefit           | 2,9      | 12.6     | 35,2 <sup>-</sup> | 10.3    |  |  |  |
| Investment Cost       | 3,10     | 09.4     | 2,282.1           |         |  |  |  |
| Income p.a.           | 72       | 2.8      | 880.3             |         |  |  |  |
| Simple Payback Period | 42       | .70      | 2.59              |         |  |  |  |
| IRR (%)               | 3.       | 35       | 29.59             |         |  |  |  |
| NPV Cost              | 2,571.4  | 2,338.2  | 1,887.6           | 1,716.6 |  |  |  |
| NPV Benefits          | 1,850.2  | 1,525.9  | 8,549.0           | 7,050.4 |  |  |  |
| B/C Ratio             | 0.72     | 0.65     | 4.53              | 4.11    |  |  |  |

Table 7.4.1 Internal Rate of Return, Investment Recovery Period and B / C ratio

(Source: JICA Survey Team)

## 7.4.1 Financial Benefit

The increase of the transmission power including the reduction of transmission losses are considered as the benefit provided by the project implementation. For the analysis of internal rate of return (IRR), the discount rates of both 10% and 12% are applied. Payback time and B/C ratio are also presented to evaluate the project feasibility.

At a discount rate of 10%, the financial internal rate of return (FIRR) is calculated to be 3.35%, which is not feasible because it is lower than the discount rate of 10%.

To identify a more feasible situation in search of a higher feasibility for the project, the sensibility analysis, i.e. both benefits and costs assumed with + / - 5% and + / - 10% is conducted. Table 7.4.2 represents the results of the sensitivity analysis of Financial Analysis.

| FIRR |      | Benefit |       |       |       |       |  |  |
|------|------|---------|-------|-------|-------|-------|--|--|
|      |      | 90%     | 95%   | 100%  | 105%  | 110%  |  |  |
|      | 110% | 1.73%   | 2.16% | 2.57% | 2.97% | 3.35% |  |  |
|      | 105% | 2.10%   | 2.54% | 2.95% | 3.35% | 3.73% |  |  |
| Cost | 100% | 2.49%   | 2.93% | 3.35% | 3.75% | 4.13% |  |  |
|      | 95%  | 2.91%   | 3.35% | 3.77% | 4.17% | 4.57% |  |  |
|      | 90%  | 3.35%   | 3.79% | 4.22% | 4.63% | 5.03% |  |  |

Table 7.4.2 Sensitivity Analysis of Financial Internal Rate of Return (FIRR)

(Source: JICA Survey Team)

The maximum feasible case is seen with a benefit increase of 10% together with a cost reduction of 10% which nevertheless provides a FIRR of only 5.03%, which is still not to enable to clear the 10% criteria, i.e. the discount rate applied.

If the stabilization of the power supply in the metropolitan area is regarded as high priority target from the view point of national economic development, the project should be examined from a different perspective, i.e. a feasibility study using economic analysis.

## 7.4.2 Economic Benefits (alternative cost reduction benefits)

If the project, i.e. transmission improvement, were not implemented, diesel generators might be assumed to be promoted as one of the alternative projects. However, if the project is implemented, the diesel generators project promotion will be no longer required. Thus the avoided cost, the cost saved by the cancellation of the diesel generators project, is to be estimated by the generation cost of diesel generators, i.e. PKR 5.78/kWh<sup>18</sup>.

As reviewed in section 7.1.2 Economic Analysis, the following 108,861.88 MWh/year is the basis of the benefit of alternative cost saving.

<sup>&</sup>lt;sup>18</sup> See 7.1.2 Economic Analysis

Benefit of alternative cost saving = 108,861.88 MWh/year × PKR 5.78 / kWh = PKR 629.2 million = 635.5 million yen

As seen in the previous section in the economic analysis, the Economic internal rate of return (EIRR) of 29.59% is much better than the social discount rate of Pakistan, either 12% or 15%. Table 7.4.3 shows the results of the sensitivity analysis by economic analysis.

| EIRR                    |      | Benefit |        |                     |        |        |  |
|-------------------------|------|---------|--------|---------------------|--------|--------|--|
| (Discount Rate = 10.0%) |      | 90%     | 95%    | 100%                | 105%   | 110%   |  |
|                         | 110% | 24.72%  | 25.95% | 27.17%              | 28.39% | 29.59% |  |
|                         | 105% | 25.77%  | 27.06% | 28.33%              | 29.59% | 30.84% |  |
| Cost                    | 100% | 26.93%  | 28.27% | <mark>29.59%</mark> | 30.91% | 32.21% |  |
|                         | 95%  | 28.20%  | 29.59% | 30.97%              | 32.35% | 33.71% |  |
|                         | 90%  | 29.59%  | 31.05% | 32.57%              | 33.93% | 35.36% |  |

Table 7.4.3 Sensitivity Analysis of Economic Internal Rate of Return (EIRR)

(Source: JICA Survey Team)

## **Chapter.8 Environmental Social Consideration**

## 8.1 Basic Social and Natural Environment

8.1.1 Basic Social Condition

The Project target area is located in northern part of Punjab and a part of KP. Figure 8.1.1 shows the administrative boundaries. Tehsil is an administrative area, part of a Division. The target transmission lines are Tarbela-Burhan 1 circuit and Tarbela-Burhan-Islamabad 1 circuit. The blue line in the figure indicates Tarbela- Burhan section and the purple line indicates Burhan-ISPR section.



Figure 8.1.1 Administrative Boundaries

The population data is summarised in Table 8.1.1. The latest official census data was collected in 1998, and the population in 2016 is estimated by the growth rate. The latest official census was carried out in 1998. Therefore, some statistical data are estimates and there is variation among data sources. The survey team examined trustworthiness for the selection of sources, and the data used is indicated with its data source.

|           |            |                | :         | Population |     |                  |               |               |         |           |                |
|-----------|------------|----------------|-----------|------------|-----|------------------|---------------|---------------|---------|-----------|----------------|
|           |            |                |           |            |     | Dist             | rict          |               |         |           |                |
| District  | District   | District       | Male      | Female     | 1   | Urban            | R             | ural          |         | Total     | Growth<br>Rate |
| Islamabad |            |                | 434,239   | 370,996    | 529 | 9,180            | 276,0         | )55           | 805     | 5,235     | 5.20           |
|           | Rawalpindi |                | 1,723,000 | 1,641,000  | 1,7 | 88,000           | 1,576         | 5,000         | 3,30    | 64,000    | 2.64           |
|           |            | Taxila         | 194,000   | 177,000    | 271 | 1,000            | 100,0         | 000           | 371     | ,000      | 2.64           |
| Punjab    | Attock     |                | -         | -          | 118 | 3,000            | 144,0         | 000           | 262     | 2,000     | 2.64           |
| runjao    |            | Hasan<br>Abdal | 70,000    | 66,000     | 38, | 38,000 98,000    |               | 8,000 136,000 |         | 5,000     | 2.64           |
|           |            | Hazro          | -         | -          | 42, | 2,000 197,0      |               | 197,000       |         | ,000      | 2.64           |
| КР        | Haripur    |                | 345,561   | 346,667    | 82, | 32,735 609,4     |               | 609,493 69    |         | 2,228     | 2.82           |
| КР        | Haripur    | Ghazi          | 56,366    | 56,683     | -   | 113,0            |               | 113,049 13    |         | 049       | 2.82           |
| Distuist  | Division   | Tabail         |           |            |     | Estimatio        | on 201        | 15            |         |           |                |
| District  | Division   | Tehsil         | Male      | Female     |     | Urbaı            | ı             | Rur           | al      | Total     |                |
| Islamabad |            |                | 1,080,869 | 924,554    | 1   | 1,303,525 701,89 |               | 701,89        | 8       | 2,005,423 |                |
|           | Rawalpindi |                | 2,392,410 | 2,298,590  | 2   | ,622,000         |               | 2,069,0       | 000     | 4,691,000 | )              |
|           |            | Taxila         | 275,400   | 264,600    | 3   | 343,000 197,000  |               | 0             | 540,000 |           |                |
| Dunich    | Attock     |                | -         | -          | 1   | 55,000           | 5,000 199,000 |               | 0       | 354,000   |                |
| Punjab    |            | Hasan<br>Abdal | 91,290    | 87,710     | 5   | 50,000 129,      |               | 129,00        | 0       | 179,000   |                |
|           |            | Hazro          | -         | -          | 5   | 55,000 268,00    |               | 268,00        | 0       | 323,000   |                |
| <b>VD</b> | Haripur    |                | 421,000   | 422,000    | 1   | 01,280           |               | 742,72        | 0       | 844,000   |                |
| KP        |            | Ghazi          | 72,000    | 72,000     | -   |                  |               | -             |         | 144,000   |                |

| Table 8.1.1 | Population of | <b>Project Area</b> |
|-------------|---------------|---------------------|
|-------------|---------------|---------------------|

(Source: Census 1998, Survey team)

The major proportion of total population is self-employed; others are private employees and government employees. The difference in the proportions of employed population is significant between the genders and between urban and rural residents. The major occupation in the project area is agricultural farming, small businesses and employment in the public and private sectors.

The women in rural areas are mainly housewives and working for housekeeping that includes taking care of cattle, extracting butter and ghee from milk, weaving and sewing of family clothes. In addition, they generally help in farm work with the lighter duties like transplanting of seedlings, threshing and winnowing of grains. Sometimes the women also help in harvesting. In the city, women are housewives or work as professionals, such as doctors, nurses, teachers, or in private jobs etc.

The table 8.1.2 shows the literacy rates in the project area. The data of 1998 is the result of a census. The Pakistan Bureau of Statistics carried out a survey named 'Pakistan Social and Living Standards Measurement Survey' from 2014 to 2015 and its result is also shown in the table. These are the literacy rates of the population of 10 years of age and older.

|            | D          | As per 1998 Census   |        |       |  |  |  |
|------------|------------|----------------------|--------|-------|--|--|--|
| District   | Division   | Male                 | Female | Total |  |  |  |
| Islamabad  |            | 75.09                | 48.78  | 62.52 |  |  |  |
| Punjab     | Rawalpindi | 81.19                | 59.18  | 70.40 |  |  |  |
|            | Attock     | 66.94                | 31.99  | 49.30 |  |  |  |
| КР         | Haripur    | 70.50                | 37.40  | 53.70 |  |  |  |
| District   | Districtor | PSLM* Survey 2014-15 |        |       |  |  |  |
| District   | Division   | Male                 | Female | Total |  |  |  |
| Islamabad  |            | 91.00                | 79.00  | 85.00 |  |  |  |
| Punjub     | Rawalpindi | 90.00                | 76.00  | 83.00 |  |  |  |
|            | Attock     | 81.00                | 57.00  | 68.00 |  |  |  |
| KP Haripur |            | 81.00                | 59.00  | 69.00 |  |  |  |

Table 8.1.2 Literacy Rates in the Project Area

(Source: Pakistan Bureau of Statistics, Pakistan Social & Living Standards Measurement Survey 2014-15)

The literacy rate is highest in Islamabad. The literacy rate has improved, but still the women's literacy level is lower than that for men, and in the rural area it is lower than in urban areas. Tehsil level data is not available.

## 8.1.2 Basic Natural Condition

The basic natural condition is described in section 1. The detailed condition revealed by the survey is explained in section 8.4.

## 8.2 Comparison of Alternatives

The Study Team examined a number of scopes to improve the capacity of power transmission. During this study, NTDCL has decided to implement the part of two routes of Tarbela – Burhan with their own funds. Then, the study has been concentrated in the route of Tarbela – Burhan – ISPR on the basis that the reinforcement plan of NTDCL in Tarbela – Burhan would be completed in 2017 as planned. The following alternatives have been considered:

- 1) Zero option: No change
- 2) Replacing to increased capacity conductor
- 3) Change from single conductor to double conductors
- 4) Replacing to low loss conductors
- 5) Reinforcement of towers in case of double conductor use (reconstruction or increase of number of towers)

The result of comparison is summarised in Table 8.2.1. And the comparison of reinforcement of towers in case of double conductor use is shown in Table 8.2.2.

|   | Options      | Content                     | Positive impact                      | Negative impact                  | Evaluation |
|---|--------------|-----------------------------|--------------------------------------|----------------------------------|------------|
| 1 | Zero option  | No any change               | No further positive impact occurs.   | Supply capacity cannot meet      |            |
|   |              |                             |                                      | the increasing demand caused     |            |
|   |              |                             |                                      | by urbanization and population   |            |
|   |              |                             |                                      | growth. Current network cannot   |            |
|   |              |                             |                                      | cover N-1 contingency.           |            |
| 2 | Replacing to | To increase supply          | Social infrastructure is improved by | Increased capacity conductor     | ++         |
|   | increased    | capacity by use of          | increased power supply. Present      | has larger transmission loss to  |            |
|   | capacity     | 'increased capacity         | towers can be used because weight    | compare with conventional        |            |
|   | conductor    | conductor instead of        | of conductor is almost same but      | conductor, so the lower energy   |            |
|   |              | existing conductor          | capacity is double. Negative impact  | efficiency causes negative       |            |
|   |              |                             | is limited because it is only        | environmental effect for         |            |
|   |              |                             | replacement. The impact in           | long-term vision.                |            |
|   |              |                             | construction stage is limited        | The same reason results in the   |            |
|   |              |                             | because it is short.                 | financially negative impact on   |            |
|   |              |                             |                                      | NTDCL.                           |            |
| 3 | Change from  | To increase capacity by use | Social infrastructure is improved by | Towers should be reinforced or   | +          |
|   | single       | of conventional double      | increased power supply. NTDCL        | added to tolerate the doubled    |            |
|   | conductor to | conductors instead of       | can manage implementation            | weight of conductors. It might   |            |
|   | double       | single conductor            | because of the conventional          | create negative impact by        |            |
|   | conductors   |                             | technology.                          | construction, and potential land |            |
|   |              |                             |                                      | acquisition and resettlement.    |            |
| 4 | Replacing to | To increase capacity by use | Social infrastructure is improved by | Towers should be reinforced or   | ++         |
|   | low loss     | of low loss double          | increased power supply.              | added to tolerate the doubled    |            |
|   | conductors   | conductors instead of       | Transmission loss could be           | weight of conductors. It might   |            |
|   |              | conventional single         | improved by use of low loss          | create negative impact by        |            |
|   |              | conductor                   | conductor, and it will provide       | construction, and potential land |            |
|   |              |                             | positive impact on environment due   | acquisition and resettlement.    |            |
|   |              |                             | to better energy efficiency. For     |                                  |            |
|   |              |                             | same reason, it is good for NTDCL    |                                  |            |
|   |              |                             | finance.                             |                                  |            |

Table 8.2.1 Result of comparison of alternatives

Item 2 and 4 are similar in the evaluation. Use of low loss conductors is recommended for long-term energy conservation.

| 0                 | Castart                | N                             | E                                |            |
|-------------------|------------------------|-------------------------------|----------------------------------|------------|
| Options           | Content                | Positive impact               | Negative impact                  | Evaluation |
| Reinforcement of  | Number of towers is    | Occupied area by towers is    | Feasible design and              | +-         |
| towers            | same but increase in   | almost same, and impact on    | construction method in           |            |
|                   | strength               | land use is limited.          | Pakistan should be considered.   |            |
|                   |                        | For same reason, resettlement | Removal of towers is required    |            |
|                   |                        | is minimum.                   | and it needs additional cost     |            |
|                   |                        |                               | and longer construction          |            |
|                   |                        |                               | period.                          |            |
| Increase a number | Present towers are     | Removal of present towers is  | Number of towers will be         | -          |
| of towers         | used, and new towers   | not necessary.                | almost double and the            |            |
|                   | are added between      | Conventional construction     | occupied area will be            |            |
|                   | existing ones in order | method and design of tower    | increased. It may create impact  |            |
|                   | to cover the necessary | are applicable.               | on land use.                     |            |
|                   | strength.              |                               | For same reason, the potential   |            |
|                   |                        |                               | resettlement scale is increased. |            |
|                   |                        |                               | The mixture of new and old       |            |
|                   |                        |                               | towers will create the           |            |
|                   |                        |                               | difficulty of maintenance.       |            |

Table 8.2.2 Comparison of reinforcement of towers

(Source: JICA Survey Team)

There are two procedures for tower reinforcement, and there is an option to mix these methods. The reinforcement method is recommended from the above evaluation.

#### 8.3 Scoping Result and TOR of Survey

Basically, the T/L already exists and the further environmental impact created by the replacement is limited. However, if reinforcement of the towers is required, it may increase the environmental and social impact significantly. The extent of impact depends highly on the necessity for tower reinforcement, procedure of enforcement and its scale.

NTDCL said that replacement was considered as a kind of maintenance, so that such type of project did not require EIA/IEE and any permission. NTDCL has never requested the permission for similar project. ESIC explained that the permission would not be required in the

range of the same ROW. The director of Pak-EPA stated the same opinion. However, NTDCL has decided to replace all towers for the part of project with its own funds, and they have considered the necessity of EIA. This project will prepare the EIA report as well.

The survey team re-examined the scoping and revised the TOR. The result is shown in Table 8.3.1.

|                        |   |                     | Evalu        | ation     |                                                                                                                                                                                                                |  |  |
|------------------------|---|---------------------|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Category               |   |                     | Construction | Operation | Reason of evaluation                                                                                                                                                                                           |  |  |
| Mitigation<br>Measures | 1 | Air pollution       | В-           | D         | Construction : During the construction phase, air pollution<br>such as exhaust fumes from earthmoving equipment as<br>well as construction vehicles will occur. However, the<br>impact is temporary and minor. |  |  |
|                        | 2 | Water pollution     | В-           | B-        | Construction : During the construction phase, water<br>pollution from construction vehicles, machinery and<br>worker's camp will occur. However, the impact is<br>temporary and minor.                         |  |  |
|                        | 3 | Waste               | B-           | D         | Construction:Construction waste, soil, litter建 of workers will be generated.                                                                                                                                   |  |  |
|                        | 4 | Soil pollution      | B-           | D         | Construction : During the construction phase, soil pollution by oil spill from construction vehicles or machinery may occur.                                                                                   |  |  |
|                        | 5 | Noise and vibration | B-           | D         | Construction : During the construction phase, noises and<br>vibration associated with construction anticipated.<br>However, the impact is temporary and minor.                                                 |  |  |
|                        | 6 | Ground subsidence   | D            | D         | There is not any work to cause subsidence.                                                                                                                                                                     |  |  |
|                        | 7 | Smell               | D            | D         | There is not any work to generate bad smell.                                                                                                                                                                   |  |  |
|                        | 8 | Sediment            | D            | D         | There is not any work to effect sediment condition.                                                                                                                                                            |  |  |
| Natural<br>Environment | 9 | Protected Areas     | D            | D         | There is no protected area and national park inside and vicinity of the project site.                                                                                                                          |  |  |

Table 8.3.1 Result of Scoping

|                       | 10 | Ecosystem and biota                    | B- | D  | The existing T/L is there and further impact on ecosystem<br>is limited. However, traffic of construction vehicle and<br>noise at construction site will affect during construction<br>stage.                                             |
|-----------------------|----|----------------------------------------|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 11 | Hydrology                              | D  | D  | There is not any work to change water flow or riverbed.                                                                                                                                                                                   |
|                       | 12 | topography and<br>geography            | D  | D  | The existing T/L is there and further impact on topography and geography.                                                                                                                                                                 |
| Social<br>Environment | 13 | Resettlement                           | B- | В- | In case of use of double conductors, the number of towers<br>might be increased. Consequently, the encroachment                                                                                                                           |
|                       | 14 | Poverty group                          | С  | B+ | Construction : Poverty group is possible to be a part of resettlement target.                                                                                                                                                             |
|                       | 15 | Ethnic Minorities<br>and Indigenous    | D  | D  | There is no ethnic minorities and indigenous peoples in<br>the project site and surroundings                                                                                                                                              |
|                       | 16 | Employment and<br>Livelihood           | B+ | B+ | Construction : Construction work will create new employment.                                                                                                                                                                              |
|                       | 17 | Land use and resources                 | B- | D  | The existing T/L is there and further impact on land use<br>and resources is limited. However, the construction work<br>could disturb the land use of the area under T/L, and<br>compensation will be required.                           |
|                       | 18 | Water use                              | B- | B- | Construction : Effect of turbid water generated by<br>construction work if the river or water body exist near the<br>project site. Operation: Cover ratio of vegetation under<br>the transmission line will be decreased and turbid water |
|                       | 19 | Disturbance to social                  | B- | B+ | Construction : Traffic congestion will occur during construction stage.                                                                                                                                                                   |
|                       | 20 | Social capital and social organization | D  | D  | It is not expected any effect on Social capital and social organization.                                                                                                                                                                  |
|                       | 21 | Uneven existence of damage and profit  | D  | D  | It is no significant the uneven existence of damage and profit caused by the project.                                                                                                                                                     |
|                       | 22 | Interruption to residential activities | D  | D  | It is not expected that the project create interruption of residential activities.                                                                                                                                                        |

|        | 23 | Heritage                                                        | С  | C  | There is no information about heritage in and around the project site, so that the survey is required.                                                                                                                    |
|--------|----|-----------------------------------------------------------------|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 24 | Landscape                                                       | D  | D  | The existing T/L is there and further impact on landscape is limited.                                                                                                                                                     |
|        | 25 | Gender                                                          | D  | D  | It is not significant the effect on gender issues by this project.                                                                                                                                                        |
|        | 26 | Children's right                                                | D  | D  | It is not expected the effect on children's right.                                                                                                                                                                        |
|        | 27 | Increase the risk of<br>infectious diseases<br>such as HIV/AIDS | B- | D  | Construction: A temporary influx of migrant labor increases the risk of sexual transmitted diseases incidents in the project area.                                                                                        |
|        | 28 | working conditions<br>(including                                | B- | D  | Risk of injure is increased with construction work, vehicle operation, etc.                                                                                                                                               |
| Others | 29 | Accident                                                        | B- | B- | Construction : Risk of accident is increased with construction work, vehicle operation, etc.                                                                                                                              |
|        | 30 | Impact of<br>cross-border, climate<br>change                    | D  | B+ | The impacts of cross-border and climate change are<br>ignorable.<br>Stabilized power supply decreases the individual use of<br>generators, and it will enhance energy efficiency and<br>impact positively on environment. |

A+/-: Significant positive or negative impact is anticipated

B+/-: Positive or negative impact is anticipated

C+/-: Extent of impact is unknown (Examination is needed. Impacts may become clear as study progresses)

D: No impact is anticipated

The draft TOR for the environmental and social survey is shown in Table 8.3.2.

| Item                 | Target                                         | Procedure                                              |
|----------------------|------------------------------------------------|--------------------------------------------------------|
| Alternatives         | (1) Selection of appropriate technology        | (1) Minimizing land acquisition and resettlement,      |
|                      | (2) Examination of method of construction      | maximize the benefit                                   |
| Air quality          | (1) Environmental standards (Pakistan, Japan,  | (1) Literature survey                                  |
|                      | WHO, etc.)                                     | (2) Literature survey                                  |
|                      | (2) Current condition of Air pollution         | (3) Field survey and hearing                           |
|                      | (3) Location of premise, school, hospital near | (4) Study of construction type, procedure, period,     |
| Water quality        | (1) Water quality of river water               | (1) Literature survey, hearing                         |
| Waste                | (1) Management of construction waste           | (1) Hearing of relevant organization, Case research    |
| Soil contamination   | (1) Preventive measures to oil spill during    | (1) Method of construction, duration, kind of          |
|                      | construction                                   | vehicles and machinery, procedure to store the oil     |
|                      |                                                | and place to store                                     |
| Noise and vibration  | (1) Environmental standards (Pakistan, Japan,  | (1) Literature survey                                  |
|                      | WHO, etc.)                                     | (2) Literature survey, hearing                         |
|                      | (2) Distance from source to the premises,      | (3) Study of construction type, procedure, period,     |
|                      | school, and hospital.                          | location, using equipment, transportation road,        |
|                      | (3) Effect of construction                     | simulation                                             |
| Ecosystem and        | Laws and regulations for protection of         | Literature survey                                      |
| biota                | ecosystem                                      | Site survey                                            |
|                      | Present condition at the site                  | Literature and site survey                             |
|                      | Presence of important species                  |                                                        |
| Land acquisition and | (1)Laws and regulations in Pakistan and        | (1) Investigation of the information of relevant       |
| resettlement         | difference from JICA and WB standards          | laws and regulations                                   |
|                      | (2) Magnitude of land acquisition, and         | (2) Survey by satellite image, site visit to check the |
|                      | resettlement Existence of poverty group.       | presence of target person, crop and building.          |
|                      | (3) In case of the land acquisition and        | Interview at the site to check the land use and        |
|                      | resettlement is required, relocation plan is   | presence of poverty group.                             |
|                      | prepared.                                      | (3) Preparation of RAP or ARAP to satisfy the          |
|                      |                                                | requirement of Pakistani Lands Act, JICA               |
|                      |                                                | guideline, NTDCL LATF and Operational Policy           |
| Poverty group        | (1) Presence of poverty group in POP           | (1) Site survey and hearing                            |
| Land use             | Current condition of land use at project area  | Survey by satellite image and site visit               |
|                      | Estimation of affected area                    | Survey by satellite image and site visit               |
|                      | 1                                              | I                                                      |

Table 8.3.2 Draft TOR for Environmental and Social Survey

| Water use             | Location of water sources near project site     | Survey by satellite image and site visit              |
|-----------------------|-------------------------------------------------|-------------------------------------------------------|
|                       | Purpose of use                                  | Site survey and interview                             |
| Disturbance to social | (1) Residents, school, hospital, road condition | (1) Projection of the traffic jam during construction |
| infrastructures and   | of the Project site and vicinity                |                                                       |
| services              |                                                 |                                                       |
| Heritage              | (1) Location of heritage near the project site  | (1) Literature survey and hearing to archaeological   |
| Increase the risk of  | (1) Incident rate of HIV/AIDS at project site   | (1) Literature survey, hearing                        |
| infectious diseases   | and surroundings                                | (2) Hearing to relevant organizations                 |
| working conditions    | (1) Safety measures for labors                  | (1) Literature survey, hearing, case survey           |
| (including            |                                                 | (2) Planning of countermeasures and training          |
| Accident              | (1) Preventive measures of accident             | (1) Literature survey and site survey                 |
| Stakeholder           | SHM will be held 2 times                        | (1) Individual visit and group interview              |
| meetings (SHM)        | (1) At scoping stage                            | (2) Participation of stakeholders                     |

## 8.4 Results of social and environmental survey (Including projection)

8.4.1 Protected Area and Heritage

The Figure 8.4.1 shows the natural reserves and protected areas near the project site





Figure 8.4.1 Natural reserves and protected areas near the project site

The nearest reserve is Margalla Hills National Park (MHNP), the boundary of which is indicated by the green line in Figure 9.4.1. The area containing Rawal Lake is a detached piece of MHNP. The nearest distance between the edge of MHNP and existing T/L is about 85m at the east part of MHNP. There is a six-lane national highway (N5) in between the T/L and MHNP, and the continuity of the natural environment has been divided. Therefore, the reinforcement of the T/L does not create further significant impact.

The main bird migration route is from Tarbela dam to Rawal Lake via Khampur dam. The location of T/L is far from the route and the impact on migratory bird is limited.

The nearest important archaeological place named Taxila is also shown in Figure 8.4.1. It is an ancient Buddhist ruin and registered as one of the world heritage by UNESCO. The distance from T/L is about 10km at nearest point. The effect is negligible.

### 8.4.2 Air Quality

The air quality in the project area is not so clean. In Pakistan, many of households use biomass for energy source such as fire trees. It is a major source of air pollution especially for particulate materials in whole country. It has been pointed out that use of fire trees causes the serious air pollution inside the house. The other major sources of air pollution are vehicular emissions on the road, dust arising from construction and other ground or soil disturbance, during dry weather, and from movement of vehicles on poorly surfaced or unpaved access roads. Table 8.4.1 shows the result of observation in Islamabad. In urban area, NOx and lead which are caused by vehicle exhaust are also over the NEQS as well as PM2.5.

| Source    | PM2.5             | NO                | $SO_2$            | O3                | СО                 | NO <sub>2</sub> | Lead              |
|-----------|-------------------|-------------------|-------------------|-------------------|--------------------|-----------------|-------------------|
| Units     | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m <sup>3</sup> | mg/ m <sup>3</sup> | ppm             | ug/m <sup>3</sup> |
| Islamabad | 65                | 80                | 6 <u>+</u> 3      | 83                | 1                  | 49 <u>+</u> 28  | 2                 |
| NEQS      | 15                | 40                | 120               | 130               | 10                 | 40              | 1.5               |

 Table 8.4.1
 Ambient Air Quality of the Project Area

(Source: Research Article on Measurements and analysis of air quality in Islamabad, Pakistan by Anjum Rasheed, Viney P. Aneja, Anantha Aiyyer, and Uzaira Rafique, Policy Options to Address the Cost of Outdoor Air Pollution by World Bank and Air Pollution: causes and control by Dr. Muhammad Anwar)

The impact on air quality by the project is created by the operation of vehicles, machinery and generators at the time of construction. The extent is not large and the period is limited, so that it cannot create a significant impact on the current pollution condition. It is necessary to know the status of the current air quality as a background to be compared for assessing the impact of the project. However, it requires continuous monitoring for certain periods at the site and not practical. Therefore, the Project controls the air quality by the emission control but not by monitoring of air quality.

## 8.4.3 Water Resource and Quality

The potential water sources along the transmission line are Tarbela Dam, Ghazi Barotha Canal, Qibla Bandi Dam, tube wells and wells. According to the hearing survey, the water present there is used for both drinking and irrigation purposes. A map showing the locations of dams is shown in Figure 8.4.2.



(Source: JICA Survey Team) Figure 8.4.2 Water Sources and sampling points

The water quality was tested at two places along the route; Qibla Bandi Dam and groundwater taken from well near the Burhan Grid station. The water samples were delivered to National Physical & Standard Laboratory, Islamabad (NPSL) for determining different parameters of water. The result is summarised in Table 8.4.2.

| Properties/ Parameters                           | Standard Values<br>for Pakistan | WHO<br>Guidelines | 1 <sup>st</sup> Sample | 2 <sup>nd</sup> Sample |  |
|--------------------------------------------------|---------------------------------|-------------------|------------------------|------------------------|--|
| pH at 25°C                                       | 6.5 - 8.5                       | 6.5 - 8.5         | 7.45                   | 7.55                   |  |
| Conductivity ( $\mu$ S/ cm) at 25 <sup>o</sup> C | -                               | -                 | 524                    | 1030                   |  |
| Total dissolved solids (mg/L)                    | < 1000                          | < 1000            | 259 <u>+</u> 1         | 506 <u>+</u> 1         |  |
| Total suspended solids (mg/L)                    | -                               | -                 | < 2                    | < 2                    |  |
| Total Hardness (mg/L)                            | < 500                           | -                 | 130 <u>+</u> 5         | 323 <u>+</u> 5         |  |
| Calcium (mg/L)                                   | -                               | -                 | 30 <u>+</u> 1          | 50 <u>+</u> 1          |  |
| Magnesium (mg/L)                                 | -                               | -                 | 17 <u>+</u> 1          | 48 <u>+</u> 1          |  |
| Chloride (mg/L)                                  | < 250                           | 250               | 20 <u>+</u> 1          | 21 <u>+</u> 1          |  |
| Fluoride (mg/L)                                  | <u>≤</u> 1.5                    | 1.5               | 0.12 <u>+</u> 0.01     | 0.15 <u>+</u> 0.01     |  |
| Nitrate (mg/L)                                   | <u>&lt;</u> 50                  | 50                | 0.20 <u>+</u> 0.01     | 0.55 <u>+</u> 0.01     |  |
| Sulfate (mg/L)                                   | -                               | 250               | 62 <u>+</u> 1          | 85 <u>+</u> 1          |  |
| Arsenic (mg/l)                                   | <u>≤</u> 0.05                   | 0.01              | ND                     | ND                     |  |
| Cadmium (Cd)                                     | 0.01                            | 0.003             | 0.06 <u>+</u> 0.01     | 0.07 <u>+</u> 0.01     |  |
| Lead (Pb)                                        | <u>≤</u> 0.05                   | 0.01              | ND                     | ND                     |  |
| Nickel (Ni)                                      | <u>≤</u> 0.02                   | 0.02              | ND                     | ND                     |  |
| Iron (Fe)                                        | -                               | 0.3               | ND                     | ND                     |  |

Table 8.4.2 Water Quality Standards and Sample Results

The table has rows for national standards and WHO guideline values. Both samples exceed the standard value of cadmium. The reason for high cadmium is not clear. The survey team searched the literature, but could not find any document reported the pollution of cadmium in this area. It is difficult to conclude anything from only one testing because there is possibility of sample contamination or other technical problems. The sampled water has low suspended solid, and it seems to be clear water.

These three water sources have more than 1 km distance from the transmission line. Therefore, the water sources will not be contaminated directly from construction sites. In case of construction near seasonal rivers, the turbid water should be managed to prevent contamination.

There is no underground construction work, the ground water will not be affected.

#### 8.4.4 Waste

In Pakistan, the waste management is still in the developing stage. No sufficient waste collection system is functioning even in the urban area. Legislation on waste treatment is also weak. The waste management guidelines (The Solid Waste Management Guidelines) were drafted with the cooperation of JICA, but they have not been approved. It is mentioned that the general solid waste management is implemented as a part of the public services of the municipality in the SBNP Local Government Ordinance 2001.

The waste is disposed within or outside municipal limits into low lying areas like ponds etc., without any treatment except recyclable separation by scavengers. The land is also hired/leased on long-term basis for disposal. There are no garbage incineration facilities and open dumping is the most common practice throughout Pakistan, with dumpsites commonly being set alight to reduce the volumes of accumulating waste, hence adding to the air pollution caused by the uncovered dumped waste itself. The same practice is in use in the project area. The hygiene condition is not very good.

The practice of sanitary land filling is still in its infancy in Pakistan and the first site has yet to be developed. There is no particular guideline or legislation for construction waste.

It is pertinent to mention that proper waste management system along with sanitation and sewerage is available along the transmission line in the Islamabad area. Beyond the ISPR grid station, disposal/ treatment of waste system exists in the areas where housing societies are being developed. An adequate waste management system along with waste treatment is functioning in the area near Bahter Morr (Burhan, Taxila).

There is no guidelines and legislations that refer to waste management. The Project will treat the waste which is generated by the construction, workers daily activities, soil, etc. with regards guidance from the relevant authorities, such as EPA, local government. It is recommended that the metal waste generated by the tower reconstruction will be recycled as resources by the contract with waste collection company. No hazardous waste is generated by the Project.

## 8.4.5 Noise

Pakistan has a national standard for noise, but there is no monitoring system and monitoring result. EPA has carried out the project-base monitoring and response to complaint of resident. The very high noise level is reported in Islamabad, 47 dB (A) to 104.5 dB (A) (Pakistan

Environment Protection Agency, Position Paper for Environmental Quality Standards of Noise in Pakistan). The Tarbela-Burhan area is the countryside, and it is considered the relative low noise area.

Noise regulation is not present in Pakistan, only the emission noise regulation for cars in use is stated as 85dB (A) in Gazette SRO72 (KE), 2009.

The noise creating construction work is as follows. Attention to the residents near the site should be considered.

- 1) Removal of the towe
- 2) Rehabilitation of foundation of the tower
- 3) Construction of the new tower
- 4) Wiring of power lines

The work from 1), 2) and 3) is work that generates noise and vibrations. The work 4) creates noise and vibration only at the end of wire for winching work with generator. The main noise vibration sources in the work of 1) to 3) are vehicles, machinery, and generators. The effect is limited because the working period is several months per location, and the activity period is short. Only a few residents are recognised near the towers in the Tarbela-Burhan section. In case of the presence of residents near the construction site, noise reduction should be considered, e.g., use of sound insulation facility, if necessary.

#### 8.4.6 Ecosystem and Biota

#### (1) Floral Attributes of the Project Area

During June 2016, a vegetation survey was carried out in six sampling locations selected in various habitats of the project area. Sampling locations in the project area were selected at random intervals in order to identify the maximum number of species. During fieldwork of the study, 110 plant species belonging to 49 families and 96 genera were identified. Annex 8.4.6-1provides the complete list of floral species with their available local names, family name and life form. Poaceae was found to be the dominant family with 11 species followed by Asteraceae 8, Mimosaceae 6, Solanaceae, Moraceae and Lamiaceae each having 5, Amaranthaceae, Verbenaceae and Myrtaceae each having 4 species in the study area. Table 8.4.3 shows the number of floral species within the dominant families. Table 8.4.4 shows the life forms of all the 135 species that were observed during the field survey.

| Sr. No. | Family Name   | No. of Species |
|---------|---------------|----------------|
| 1       | Poaceae       | 11             |
| 2       | Asteraceae    | 8              |
| 3       | Mimosaceae    | 6              |
| 4       | Solanaceae    | 5              |
| 5       | Moraceae      | 5              |
| 6       | Lamiaceae     | 5              |
| 7       | Amaranthaceae | 4              |
| 8       | Verbenaceae   | 4              |
| 9       | Myrtaceae     | 4              |

 Table 8.4.3
 Status of Species Belonging to Dominant Families

| Sr. No. | Life Form | Number of Species |
|---------|-----------|-------------------|
| 1       | Herbs     | 43                |
| 2       | Shrubs    | 22                |
| 3       | Grasses   | 11                |
| 4       | Trees     | 28                |
| 6       | Sedges    | 02                |
| 7       | Creepers  | 02                |
| 8       | Climbers  | 02                |
|         | Total     | 110               |

Table8.4.4 Breakdown of Species by Life Form

(Source: JICA Survey Team)

A number of plant species having medicinal value were observed in the project area. Most of these are naturally grown and are used by local people for treatment of various ailments. Ficus benghalensis, Ficus religiosa, Ficus virgata, Withania somnifera, Adhatoda vesica, Withania somnifera and Riccinus communis are commonly used.

No endemic or rare species were recorded during the field visits. All species have a wide range of distribution in other ecological zones of the country, especially at other locations of Khyber Pakhtunkhwa and Punjab provinces and in the districts of Haripur and Attock in particular.

## (2) Fauna

## 1) Birds:

Field visits of study of the Tarbela, Burhan & ISPR transmission line were conducted during June 2016. A total of 32 species of birds were recorded in the project area. Since the field visit was conducted during the hot summer season, the number and diversity of avifauna were both quite low, as the majority of winter migrants have already left for their

breeding grounds in north. Only summer migrants and a few others were reported during the field visits. Most of the species were recorded in the vicinity of seasonal stream habitat and agricultural fields/orchards. Other productive habitat was agriculture fields away from human settlements.

The majority of the bird species recorded during current field visit are common in Pakistan and their presence in the project area is also good in numbers. Among the recorded birds, blue rock pigeon, black partridge and grey partridge are species of interest. Other common birds of the project include house crows, house sparrows, red-vented bulbul and white cheeked bulbul. Among the raptors, the common kestrel, black winged kites and black kites were reported.

Out of total 32 recorded bird species, only 3 are migratory and remaining 29 are resident in the project area. Among these, 13 are common, 14 abundant, 3 are less common and 2 are rare species. 1 species is protected under the Punjab Wildlife Protection Act 1974, none are on the IUCN red list, no species are listed under CMS (Conservation of Migratory Species of Wild Animals) and 3 are listed under CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) appendices due to their potential value in international trade. A complete list of bird species observed/reported in the project area can be seen in Table 8.4.6.

| List for wildlife projection   | Number of species | Common Name  |
|--------------------------------|-------------------|--------------|
| IUCN Red list                  | 0                 | _            |
| Punjab Wildlife Protection     | 1                 | Cattle Egret |
| Act 1974 Attachment            |                   |              |
| Convention on International    | 0                 | _            |
| Trade in Endangered Species of |                   |              |
| Wild Fauna and Flora           |                   |              |

Table 8.4.5 List of birds under protection

(Source: JICA Survey Team)

Table 8.4.6 shows the list of birds observed in the survey area

|     |                                         |                           | Sta       | itus     |        | Occur    | rence       | ;    | Listing |                      |              |                       |  |
|-----|-----------------------------------------|---------------------------|-----------|----------|--------|----------|-------------|------|---------|----------------------|--------------|-----------------------|--|
| No. | Common Name                             | Scientific Name           | Migratory | Resident | Common | Abundant | Less Common | Rare | WPO/Act | <b>IUCN Red List</b> | CMS Appendix | <b>CITES Appendix</b> |  |
| 1.  | Bank Myna                               | Acridotheres ginginianus  |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 2.  | Bay backed Shrike                       | Lanius vittatus           |           | x        | x      |          |             |      |         |                      |              |                       |  |
| 3.  | Black Drongo                            | Dicrurus macrocercus      |           | x        |        | x        |             |      |         |                      |              |                       |  |
| 4.  | Black Partridge/Francolin               | Francolinus francolinus   |           | x        |        |          | x           |      |         |                      |              |                       |  |
| 5.  | Blue cheeked Bee eater                  | Merops superciliosus      | x         |          | x      |          |             |      |         |                      |              |                       |  |
| 6.  | Blue Rock Pigeon                        | Columba livia             |           | x        |        |          | x           |      |         |                      |              | ш                     |  |
| 7.  | Cattle Egret                            | Bubulcus ibis             |           | x        |        | X        |             |      | x       |                      |              | ш                     |  |
| 8.  | Common/Indian Myna                      | Acridotheres tristis      |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 9.  | Common Quail                            | Coturnix coturnix         | x         |          |        |          | x           |      |         |                      |              |                       |  |
| 10. | Collared Dove                           | Streptopelia decaocto     |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 11. | Common Babbler                          | Turdoides caudatus        |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 12. | Coppersmith/Crimson-breas<br>ted Barbet | Megalaima haemacephala    |           | x        | x      |          |             |      |         |                      |              |                       |  |
| 13. | Crested lark                            | Galerida cristata         |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 14. | Greater Grey Shrike                     | Lanius excubitor          |           | x        | x      |          |             |      |         |                      |              |                       |  |
| 15. | Grey Partridge                          | Francolinus pondicerianus |           | x        | x      |          |             |      |         |                      |              |                       |  |
| 16. | Ноорое                                  | Upupa epops               |           | x        | x      |          |             |      |         |                      |              |                       |  |
| 17. | House Sparrow                           | Passer domesticus         |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 18. | House crow                              | Corvus splendens          |           | x        |        | X        |             |      |         |                      |              |                       |  |
| 19. | House Swift                             | Apus affinis              |           | x        |        | x        |             |      |         |                      |              |                       |  |

Table 8.4.6 List of birds observed in the survey area

|     |                                  |                           | Sta       | itus     |        | Occur    | rence       | !    | Listing |               |              |                       |
|-----|----------------------------------|---------------------------|-----------|----------|--------|----------|-------------|------|---------|---------------|--------------|-----------------------|
| No. | Common Name                      | Scientific Name           | Migratory | Resident | Common | Abundant | Less Common | Rare | WPO/Act | IUCN Red List | CMS Appendix | <b>CITES Appendix</b> |
| 20. | Hume's Wheatear                  | Oenanthe alboniger        |           | x        |        |          |             | X    |         |               |              |                       |
| 21. | Indian Robin                     | Saxicoloides fulicata     |           | x        | x      |          |             |      |         |               |              |                       |
| 22. | Indian Roller                    | Coracias benghalensis     |           | x        | x      |          |             |      |         |               |              |                       |
| 23. | Indian Tree-Pie                  | Dendrocitta vagabunda     |           | x        | x      |          |             |      |         |               |              |                       |
| 24. | Little Brown Dove                | Streptopelia senegalensis |           | x        |        | x        |             |      |         |               |              | ш                     |
| 25. | Little Green Bee-eater           | Merops orientalis         |           | x        |        | x        |             |      |         |               |              |                       |
| 26. | Purple Sunbird                   | Nectarinia asiatica       |           | x        | x      |          |             |      |         |               |              |                       |
| 27. | Red-vented Bulbul                | Pycnonotus cafer          |           | x        | x      |          |             |      |         |               |              |                       |
| 28. | Red wattled Lapwing              | Hoplopterus indicus       |           | x        |        | X        |             |      |         |               |              |                       |
| 29. | Small Yellow-naped<br>Woodpecker | Picus chlorolophus        | x         |          |        |          |             | X    |         |               |              |                       |
| 30. | White breasted Kingfisher        | Halcyon smyrnensis        |           | x        | x      |          |             |      |         |               |              |                       |
| 31. | White breasted Waterhen          | Amaurornis phoenicurus    |           | x        | x      |          |             |      |         |               |              |                       |
| 32. | White cheeked Bulbul             | Pycnonotus leucogenys     |           | x        |        | x        |             |      |         |               |              |                       |

## 2) Mammals:

A total of 11 mammalian species were observed /reported from the project area during the field visit conducted in June 2016. Out of these 11 reported /observed mammalian species, a majority of species (9) are commonly found in the area while two are less common. Carnivore species were also recorded from project area including the Asiatic jackal, the small Indian mongoose, and the common red fox. Other common mammals like wild boar and Indian crested porcupine are commonly observed in thick vegetation and in forests along seasonal streams. Small mammals/rodents were recorded in the project area through direct sightings and observation of their tracks and burrow systems. These include Indian bush rats, the house mouse, and house rat. No key species of mammals such as ungulates,
common leopards or striped hyenas could be recorded in the project area. Sighting or kills of common leopards are sometimes reported close to hilly terrain. It has concluded that the status and diversity of mammals in the project area are low. A complete list of the mammalian species observed/reported in the project area can be seen in Table 8.4.7.

|     |                             |                      |          | Occurrence |             |      |         | Listing       |                       |  |
|-----|-----------------------------|----------------------|----------|------------|-------------|------|---------|---------------|-----------------------|--|
| No. | Common Name                 | Scientific Name      | Abundant | Common     | Less Common | Rare | WPO/Act | IUCN Red list | <b>CITES Appendix</b> |  |
| 1.  | Asiatic jackal              | Canis aureus         |          | x          |             |      |         |               | III                   |  |
| 2.  | Common Red Fox              | Vulpes vulpes        |          |            | x           |      |         |               |                       |  |
| 3.  | Five stripped Palm Squirrel | Funambulus pennantii |          | x          |             |      |         |               |                       |  |
| 4.  | House Mouse                 | Mus musculus         |          | x          |             |      |         |               |                       |  |
| 5.  | Indian Bush Rat             | Golunda ellioti      |          |            | x           |      |         |               |                       |  |
| 6.  | Indian crested Porcupine    | Hystrix indica       |          | x          |             |      |         |               |                       |  |
| 7.  | Indian/Desert hare          | Lepus nigricollis    |          | x          |             |      |         |               |                       |  |
| 8.  | Little Indian Field Mouse   | Mus booduga          |          | x          |             |      |         |               |                       |  |
| 9.  | Roof/House Rat              | Rattus rattus        | x        |            |             |      |         |               |                       |  |
| 10. | Small Indian Mongoose       | Herpestes javanicus  |          |            |             |      |         |               |                       |  |
| 11. | Wild Boar                   | Sus scrofa           |          | x          |             |      |         |               |                       |  |

Table 8.4.7 List of mammals observed/reported in the project area

(Source: JICA Survey Team)

#### 3) Reptiles:

A total of 6 reptiles were observed /reported from the project area during the field visit of the Tarbela, Burhan and ISPR transmission lines. Most of the species are commonly observed in such habitats and even in close proximity of human settlements. The common reptiles of project area include the garden lizard and house (yellow bellied and spotted) geckos. The snakes observed/reported in project area are the indian cobra, saw-scaled viper and the Dhaman/common rat snake. The last species is non-poisonous and protected under the Punjab Wildlife Protection Act (PWPA) 1974 as being a farmer friendly species

controlling rodent/vermin population. Three out of total 6 reptiles are protected under the PWPA and 4 are listed on CITES appendices due to the potential demand for them on the international market. The Indian monitor, a CITES Appendix-I species is distributed widely in the streams/irrigated agriculture habitat. The desert monitor having the same status is distributed in dry and desert conditions including rain-fed agriculture areas and around seasonal streams. A complete list of the reptilian species observed/reported in the project area can be seen in Table 8.4.8.

|     |                            |                              | Listing |      |                   |  |  |
|-----|----------------------------|------------------------------|---------|------|-------------------|--|--|
| No. | Common Name                | Scientific Name              | WPO/Act | IUCN | CITES<br>Appendix |  |  |
| 1.  | Desert Monitor             | Varanus griseus koniecznyi   | X       |      | Ι                 |  |  |
| 2.  | Dhaman/Rat snake           | Ptyas mucosus                | X       |      | Π                 |  |  |
| 3.  | Garden Lizard              | Calotes versicolor           |         |      |                   |  |  |
| 4.  | Indian Cobra               | obra Naja naja naja          |         |      | Π                 |  |  |
| 5.  | Indian Monitor lizard      | Varanus bengalensis          | X       |      | Ι                 |  |  |
| 6.  | Spotted Indian house Gecko | Hemidactylus brookii brookii |         |      |                   |  |  |

Table 8.4.8 List of reptiles reported from study area

(Source: JICA Survey Team)

#### 4) Species of Concern/Species of Interest:

None of the wildlife species including birds, mammals and reptiles may be categorised as species of concern in the project area. The scope of the project is tower reconstruction and powerline replacement, so that the effect on habitat is also limited

However, the chances to encounter workers or vehicles will increase for wildlife during construction. Mitigation measures should be taken to reduce any problems.

#### 8.4.7 Land Acquisition and Resettlement

This project area is not so environmentally sensitive, and the project scope is not considered to create big impact because the expected cause of environmental impact is the reconstruction of towers. Therefore, the largest impact is associated with the impact on land use. NTDCL cannot acquire the land under transmission and space for towers due to the regulations of the Telegraph Act, and has no right on the ROW. In case of Japan, power supplying company makes contract with the landowner for limitation of land use under the line. There are no such measures in Pakistan, and the power supply company has no power to restrict the land use. NTDCL does not allow the construction of the buildings under the line but it cannot stop any construction activities. Such condition resulted in the development of housing within the ROW especially on the land near Islamabad. Table 9.4.9 is a summary of encroachments in the ROW. During this survey, NTDCL decided to implement the project in the Tarbela-Burhan (Circuit I & II) section with its own funds and the Burhan-ISPR section of Tarbela-Burhan-ISPR was placed out of scope due to low necessity. But there is possibility for NTDCL to implement such project and these data might be helpful.

| Route          |                  | House | Resident | School | Commercial | Others |
|----------------|------------------|-------|----------|--------|------------|--------|
| Tarbela-Burhan | (Circuit I & II) | 18    | 136      | 0      | 0          | 1      |
| Tarbela-Burha  | Tarbela-Burhan   | 11    | 81       | 1      | 0          | 0      |
| n- ISPR        | Burhan–ISPR      | 130   | 686      | 2      | 106        | 12     |
|                | Total            | 151   | 767      | 3      | 106        | 12     |

Table 8.4.9 Number of encroachments

(Source: JICA Survey Team)

The survey has been completed for almost all of the T/L route except for some restricted-access military areas. This report names Circuit I & II as Route 1, and Circuit III as Route 2 for convenience, and # means the tower number (NTDCL number).

#### [Tarbela-Burhan]

A forest area continues about 3km from the Tarbela dam. Except this area, almost all project area is covered by cultivated land and shrubs.

M-1 highway is located between #78 and #79 in Route 1, between # 79 and #80 of Route 2. A small river passes between #83 and #84 of Route 1, between # 84 and #85 of Route 2. The depth of river is about at the level of a man's knee in May. The distance from nearest tower is about 27 m. A NTDCL maintenance person told the survey team that the river has never had any impact on towers. There is one school which has 80 to 90 pupils between #66 and #67. The other buildings are one-story farmers' houses.

#### [Burhan – ISPR]

The 10 km distance on the Burhan side is an area of cultivated land and shrubs. However, residential areas become more frequent the closer it gets to Islamabad. NTDCL does not

allow the construction of buildings under the T/L but it has no power to stop it. This results in increased development pressure in urban areas because the land near the Islamabad is valuable. For example, in the area of #1 to #8 and area near #32, a housing company is developing houses on large scale without any consideration of the T/L. There is a shopping mall which consists of 50 shops near # 40 and one school with 400 pupils near # 42.

NTDCL regards the reinforcement of network as a kind of maintenance work, and it does not evict encroachments under the T/L. The construction will be done with appropriate protective measures. More of the encroachments are near Islamabad. The project implementation is difficult in the area of Burhan-ISPR. The number of towers which have households in the vicinity is 7 of a total of 91 towers in the Tarbela-Burhan section. The use of buildings is not clear because some houses seemed empty.

NTDCL should undertake following countermeasures in case the project is carried out in densely populated areas.

- Briefing meeting for local residents
- Preparation of a safety management plan and its implementation
- Monitoring of safety conditions

The tower type, construction procedure and exact location will be determined in the detailed design. Resettlement is preventable by the consideration of these conditions.

#### 8.4.8 Risk of infectious disease

The number of hospitals is relative high in Islamabad and Rawalpindi, but it is lower in rural areas. There is no hospital in the area near the T/L. The number of hospitals is listed in Table 8.4.10.

| District  | Division   | Tehsil      | Hospital |
|-----------|------------|-------------|----------|
|           | 7          |             |          |
|           | Rawalpindi |             | 13       |
| Durish    |            | Taxila      | 1        |
| Punjab    | Attock     |             | 8        |
|           |            | Hasan Abdal | 1        |
| <b>VD</b> | Haripur    |             | 5        |
| KP        |            | Ghazi       | 0        |

(Source: Punjab Bureau of Statistics)

The survey team conducted the hearing survey but could not obtain any information about infectious diseases in the project area. The Joint United Nations Programme on HIV/AIDS (UNAIDS) prepared a summary report of current condition of HIV/AIDS in Pakistan. It estimated the total number of HIV infected patients in 2015 to be 100,000, of which 2,500 patients were 14 years old and younger. UNAIDS estimated and forecasted the change of patients by use of model calculations. The patients were mainly sex workers (especially, homosexuals) and drug addicts, but the situation is changing and UNAIDS predicted that the infection would spread to the general population. This project causes the influx of construction workers into the site but the period and extent are limited. However, the training and education program for the workers is effective and should be prepared as a preventive action.

#### 8.4.9 Accidents

The survey team conducted hearings with NTDCL personnel about the history of accidents, but there is no record and report of any accidents during construction and operation work. NTDCL personnel said that they have enough safety measures and management so that no accident has happened. However, the presence of standard operating procedure (SOP) and/or guidelines for work were not assured. Nevertheless, residents near the line said that they never encountered any problems with safety or danger regarding the T/L.

The possible accidents are as follows.

- · Traffic accident at the access roads
- · Occupational accidents during construction
- · Accident such as falling objects from high positions
- (danger to the person under T/L)
- labour accident in service

The countermeasures envisioned for each incident are summarised in table 8.4.11.

| Period       | Accident         | Current condition and countermeasures                        |
|--------------|------------------|--------------------------------------------------------------|
| Construction | Traffic accident | Towers are located in the cultivated area in                 |
|              |                  | Tarbela-Burhan; the numbers of people living near the        |
|              |                  | access road are very few.                                    |
|              |                  | The accident is not encountered by human but animals and     |
|              |                  | livestock.                                                   |
|              |                  | Therefore, the training and awareness-raising program for    |
|              |                  | the drivers are effective.                                   |
|              | Occupational     | High place work is necessary, so the training and            |
|              | accident         | awareness raising for the occupational safety is important.  |
|              |                  | Electricity current is stopped during work and the risk of   |
|              |                  | electric shock does not exist.                               |
|              | Falling accident | The potential accident of falling materials on residents and |
|              |                  | people passing-by should be prevented by the use of          |
|              |                  | protection scaffolding. The public relation activity is      |
|              |                  | conducted if necessary.                                      |
| Operation    | Occupational     | NTDCL should continue the usual practice of occupational     |
|              | accident         | safety                                                       |

Table 8.4.11 Assumed accidents and countermeasures

There are some buildings under the line, so that preventive action such as construction of protective scaffolding should be taken against potential accidents during wiring.

The review of scoping result is shown in Table 8.4.12.

|           |   |                     | Evalua           | tion at   | Evaluati         | on after  |                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------|---|---------------------|------------------|-----------|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           |   | Items               | Scor             | oing      | Sur              | vey       | Reason                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           |   |                     | Before and Under | Operation | Before and Under | Operation |                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|           |   |                     | Construction     |           | Construction     | Operation |                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Pollution |   | Air<br>pollution    | В-               | D         | D                | D         | Construction : Air pollution such as exhaust fumes from<br>earthmoving equipment as well as construction vehicles are<br>considered for construction phase, but additional pollution<br>on current condition is not significant.                                                                                                                                                                      |  |  |
|           | 2 | Water<br>pollution  | B-               | B-        | B-               | D         | Construction : Construction work is possible to create turbid<br>water but it occurs near the construction site of towers and<br>the impact is not significant. Turbid water from earth and<br>rock should be controlled.                                                                                                                                                                             |  |  |
|           | 3 | Waste               | B-               | D         | B-               | D         | Construction : Construction waste, soil, litter of workers will<br>be generated. There is no special rule applicable for<br>construction waste. The project should create own rule with<br>the guidance from local authorities.                                                                                                                                                                       |  |  |
|           |   | Soil<br>pollution   | B-               | D         | B-               | D         | Construction : During the construction phase, soil pollution<br>by oil spill from construction vehicles or machinery may<br>occur.                                                                                                                                                                                                                                                                    |  |  |
|           |   | Noise and vibration | B-               | D         | B-               | D         | Construction : During the construction phase, noises and vibration associated with construction anticipated.                                                                                                                                                                                                                                                                                          |  |  |
| Natural   | 6 | Ecosystem           | В-               | D         | В-               | D         | Construction: There is no habitat of important species in<br>most of project area and its vicinity. The main land use is<br>cultivated area or shrubs, and it is the rehabilitation of<br>existing T/L so that the additional impact is not significant.<br>But area of Tarbela Dam vicinity is in forest area, this 3 km<br>distance should be taken care of deforestation and<br>construction work. |  |  |

# Table 8.4.12 Scoping and Survey Result

| Social | 7  | Resettlemen<br>t                                    | B- | B- | D  | D  | This project is to reconstruct the towers and replace<br>conductors. It is not expected the construction of new<br>towers. NTDCL has no power to remove the resident under<br>the existing line, and the construction will be done with<br>them as it is. Therefore, any resettlement does not occur. |
|--------|----|-----------------------------------------------------|----|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 8  | Poverty<br>group                                    | С  | B+ | B- | D  | The compensation will be done fairly.                                                                                                                                                                                                                                                                 |
|        | 9  | Land use<br>and<br>resources                        | B- | D  | B- | D  | Construction : Land for construction work and access road is<br>necessary. NTDCL should compensate the loss of crops for<br>temporal use.                                                                                                                                                             |
|        | 10 | Water use                                           | B- | D  | B- | D  | Construction: Impact on drinking water is not expected. It will be<br>compensated and measures will be taken in case.                                                                                                                                                                                 |
|        | 11 | Disturbance<br>to social<br>infrastructur<br>es and | B- | B+ | D  | B+ | Construction : Traffic congestion is possible to occur during<br>construction stage but most project area is located in rural<br>area and the impact is limited.                                                                                                                                      |
|        | 12 | Heritage                                            | С  | С  | D  | D  | There is no heritage near the project site.                                                                                                                                                                                                                                                           |
|        | 13 | Increase the<br>risk of<br>infectious<br>diseases   | B- | D  | B- | D  | Construction : Construction period is short and the impact is not significant.                                                                                                                                                                                                                        |
|        | 14 | working<br>conditions                               | B- | D  | B- | D  | Construction : Safety management will be undertaken as usual practice.                                                                                                                                                                                                                                |
| Others | 15 | Accident                                            | B- | B- | B- | B- | Construction : Access road will be constructed and the chance of traffic accident will increase for human, livestock and wildlife. Some buildings exist under T/L and the safety measures should be prepared and implemented.                                                                         |

# 8.5 Mitigation Measures and Its Cost

Table 8.5.1 shows the mitigation measures considered on the basis of the survey results.

|      | Items           | Environmental Management Plan                              | Implementation<br>party | Responsible party | Cost        |
|------|-----------------|------------------------------------------------------------|-------------------------|-------------------|-------------|
| Cons | truction        |                                                            |                         |                   |             |
| 1    | Water Pollution | Earth generated by the construction work is applied        | PIU                     | NTDCL/ESIC        | 0           |
|      |                 | cover to prevent the flow out. Temporally storage yard is  |                         |                   |             |
|      |                 | placed at location of least impact on water. When          |                         |                   |             |
|      |                 | construction site is close to the water source, a drainage |                         |                   |             |
|      |                 | pit is installed, to prevent the discharge flow into the   |                         |                   |             |
|      |                 | stream directly. The turbid water is introduced to the     |                         |                   |             |
|      |                 | drainage pit and let the turbid material settle. The       |                         |                   |             |
|      |                 | supernatant water can discharge.                           |                         |                   |             |
| 2    | Waste           | Construction waste, soil, litter of workers will be        | PIU                     | NTDCL/ESIC        | 0           |
|      |                 | generated should be managed to follow the instruction      |                         |                   |             |
|      |                 | of local government, CDA and EPA. Temporal dumping         |                         |                   |             |
|      |                 | yard is prepared and the waste is transferred to official  |                         |                   |             |
|      |                 | dumping site. The recyclable material should be            |                         |                   |             |
|      |                 | separated and reused.                                      |                         |                   |             |
| 3    | Soil Pollution  | There is a possibility of oil leakage by the vehicles so   | PIU                     | NTDCL/ESIC        | 0           |
|      |                 | that the storage is managed for leakage prevention.        |                         |                   |             |
| 4    | Noise and       | Construction vehicles are registered and maintained.       | PIU                     | NTDCL/ESIC        | 0           |
|      | Vibration       | Construction time is limited at the residential area and   |                         |                   |             |
|      |                 | noise will be monitored.                                   |                         |                   |             |
| 5    | Ecosystem       | Tree cutting at the site will be least in the forest area  | PIU                     | NTDCL/ESIC        | 0.1 million |
|      |                 | near Tarbela dam. Unnecessary uprooting is prohibited      |                         |                   | Rs          |
|      |                 | and minimizes the deforestation area. The space            |                         |                   |             |
|      |                 | required for storage or other purpose will be placed       |                         |                   |             |
|      |                 | outside of the forest area. The use of cable way should    |                         |                   |             |
|      |                 | be considered for forest area. Reforestation will be done  |                         |                   |             |
|      |                 | near the site for compensation.                            |                         |                   |             |
| 6    | Poverty         | Resettlement does not occur. Every POPs should receive     | PIU                     | NTDCL/ESIC        | Included    |
|      |                 | a fair compensation on the basis of project policy.        |                         |                   | in8         |

## Table 8.5.1 Mitigation Measures

| 7    | Land use and    | Land under T/L has owner. Any damage by the crops or         | PIU   | NTDCL/ESIC | 1.2     |
|------|-----------------|--------------------------------------------------------------|-------|------------|---------|
|      | resources       | property should be compensated with replacement price        |       |            | million |
|      |                 | on the rule of entitle matrix.                               |       |            | Rs      |
| 8    | Water use       | Impact on drinking water is not expected. It will be         | PIU   | NTDCL/ESIC | 0       |
|      |                 | compensated and measures will be taken in case.              |       |            |         |
| 9    | Disturbance to  | Possibility of traffic conjunction is very little but detour | PIU   | NTDCL/ESIC | 0       |
|      | social          | is installed at the village area and the advance notice is   |       |            |         |
|      | infrastructures | necessary. Road, canal or any infrastructure should be       |       |            |         |
|      | and services    | protected during construction.                               |       |            |         |
| 10   | Increase the    | Contractor will provides educational program of              | PIU   | NTDCL/ESIC | 0       |
|      | risk of         | infectious disease prevention for construction workers       |       |            |         |
|      | infectious      |                                                              |       |            |         |
|      | diseases        |                                                              |       |            |         |
| 11   | working         | Occupational safety plan is prepared. Training for safety    | PIU   | NTDCL      | 0       |
|      | conditions      | is implemented for management of safety. Safety              |       |            |         |
|      |                 | equipment is supplied to construction worker. Restricted     |       |            |         |
|      |                 | area will be created for the safety.                         |       |            |         |
| 12   | Accident        | Awareness-raising program for preventing accident is         | PIU   | NTDCL      | 0       |
|      |                 | given to workers. The safety management plan is              |       |            |         |
|      |                 | prepared and implemented with the consideration of the       |       |            |         |
|      |                 | livelihood and commercial activities under T/L.              |       |            |         |
| Oper | ation           | ·                                                            |       | ı          |         |
|      | Accident        | Safety of working environment in the high-voltage            | NTDCL | NTDCL      | 0       |
|      |                 | power lines and aerial work will be secured.                 |       |            |         |
|      |                 |                                                              |       |            |         |

(Source: JICA Survey Team)

#### 8.6 Monitoring Plan

The monitoring plan is prepared on the basis of survey results as shown in Table 8.6.1. Monitoring in the construction period is conducted by contractor and supervised by PMU/ESIC as responsible authority. The extent of the project is limited and the monitoring items are not many, so that NTDCL is able to do the supervision.

| Category              | Monitoring Item      | Monitoring point       | Frequency            | Method               |
|-----------------------|----------------------|------------------------|----------------------|----------------------|
| Noise                 | Noise                | Near construction site | Once a month         | Noise meter          |
|                       | Operation time       | Construction site      | Once a month         | Working record       |
| Water quality and     | Turbidity            | Discharge water and    | Once a month         | Turbidity meter      |
| water use             |                      | the point of inter to  | Every day for the    |                      |
|                       |                      | water body             | period of earth work |                      |
| Soil contamination    | Condition of oil     | Oil storage location   | Once a month         | Patrol by health and |
|                       | storage              | at the site            |                      | hygiene manager      |
| Waste                 | Separation and       | Dumping site of        | Once a month         | Patrol by health and |
|                       | collection of waste  | construction           |                      | hygiene manager      |
| Ecosystem             | Forestation          | Area of                | After cutting        | Number of cut trees  |
|                       |                      | deforestation and      |                      | and species          |
|                       |                      | afforestation          | After planning       | Number of planted    |
|                       |                      |                        |                      | trees and species    |
| Land use and          | Location of access   | Location of access     | Design stage         | Drawing              |
| resources             | road and working     | road and working       |                      |                      |
|                       | space for            | space for              |                      |                      |
|                       | construction         | construction           |                      |                      |
| Disturbance to social | Appropriate          | Resident under line    | Before construction, | Patrol by safety     |
| infrastructures and   | diversion road       | and living near the    | during construction  | manager              |
| services              | Explanation of       | construction site      |                      | Safety management    |
|                       | construction to      |                        |                      | plan                 |
|                       | public               |                        |                      |                      |
| Working safety and    | Educational          | Construction office    | Once a six-months    | Report of            |
| measures for          | activities           |                        |                      | educational          |
| infectious disease    |                      |                        |                      | activities           |
| Accident              | Condition of         | Affected land          | Before construction  | Patrol by safety     |
|                       | protection structure | owner, user local      | and under            | management officer   |
|                       | awareness-raising    | resident near and      | construction         | Report of the        |
|                       | and public relations | under T/L,             |                      | implementation       |
|                       | activities           |                        |                      | status of the safety |
|                       |                      |                        |                      | management plan      |

Table 8.6.1 Monitoring Plan

(Source: JICA Survey Team)

### 8.7 Stakeholder meetings

The stakeholder meetings were conducted with NTDCL, relevant authorities and interviews of local residents as well. It is summarised in the following table. Minutes of stakeholder meetings and records of resident interviews are attached in Annex 8.7.1-1.

| Key group       | Date and     | Participant  | Procedure    | Contents                                          |
|-----------------|--------------|--------------|--------------|---------------------------------------------------|
|                 | place        |              |              |                                                   |
| Pak EPA         | 2016/3/10    | DG-EIA       | Hearing      | The survey team confirmed the necessary           |
|                 | Pak-EPA,     |              |              | permission for T/L project.                       |
|                 | Islamabad    |              |              | The project for the existing T/L does not require |
|                 |              |              |              | EIA/IEE if it is in same ROW.                     |
| NTDCL,ESIC      | 2016/3/15    | Director,    | Meeting      | New project of T/L more than 11kV needs the       |
|                 | NTDCL,       | Assistant    |              | EIA but project for existing T/L is a kind of     |
|                 | Lahore       | director     |              | maintenance and any permission is not             |
|                 |              |              |              | necessary.                                        |
|                 |              |              |              | NTDCL has no right to acquire land for T/L and    |
|                 |              |              |              | towers. NTDCL compensates for the damage          |
|                 |              |              |              | except the construction of grid station.          |
| Residents under | 2016/4/19    | Residents in | Consultation | Some of the residents stated that they didn't     |
| T/L             | Project site | the project  | meeting      | receive any compensation appropriately. They      |
|                 | village      | site,        |              | requested the pre-explanation prior to            |
|                 |              | NTDCL        |              | implementation in order to prevent any accident,  |
|                 |              | officers     |              | and appropriate compensation based on the         |
|                 |              |              |              | market price.                                     |
| NTDCL           | 2016/6/26    | CE, Design   | Meeting      | NTDCL is not necessary to obtain EIA/IEE          |
|                 | NTDCL,       | ESIC         |              | approval and no any NOCs for the project of       |
|                 | Lahore       |              |              | existing line. The project for route 1 (Circuit I |
|                 |              |              |              | &II) has started without any permission. The      |
|                 |              |              |              | project area is not considerable for              |
|                 |              |              |              | environmental and social issues.                  |

Table 8.7.1 Stakeholder meetings

(Source: JICA Survey Team)

#### 8.8 Necessity of land acquisition, resettlement and its extent

Because the project is to reinforce the present T/L, the construction work including replacement of conductor is done at the original position of the T/L. Therefore, if there are

encroachments, they will not be a target of land acquisition and/or resettlement.

NTDCL has a guideline of necessary clearance from T/L for several type of structures. In case of 220kV, the necessary clearance is 7.01m (23feet) for the private property, buildings 6.10m (20feet) in vertical clearance and 7.62m (25feet) in horizontal clearance. Some encroachments were observed under the T/L but the clearance was kept for all buildings. Therefore, NTDCL is able to conduct construction work with the present building conditions. However, safety and protection measures should be taken such as construction of protective scaffolds to avoid a danger of hanging wires, falling material, etc.

The reconstruction of towers requires temporary use of land for an access road, stockyards, and workspace. The total number of towers is 91, and 52 towers are located in cultivated land. 34 towers are located in bare land and shrub area. 15 towers are in the sparse forest. The main product of crop is wheat and next is maize.

The distance from tower to the nearest road is read from satellite image, and the total length is estimated at about 5,000m. Assuming road of 6m width, the total area will be 3ha. The compensation amount is calculated by use of the market price of maize PKR 149,435/ha (2014 to 2015) which is higher than wheat per unit area. The affected period is considered two seasons.

The workspace including the stockyard is assumed to be 10m by 10m, totalling 100m<sup>2</sup>. The compensation is estimated for 91 towers for two seasons. The compensation will be PKR 1,170, 000.

| Use         | Area (ha) | Period    | Cost (thousand Rs) | Condition                  |
|-------------|-----------|-----------|--------------------|----------------------------|
| Access Road | 3         | 2 seasons | 900                | Width 6m Length 5km        |
| Workspace   | 0.9       | 2 seasons | 270                | 100 m <sup>2</sup> / Tower |
| Total       | 3.9       |           | 1,170              |                            |

Table 8.8.1 Land for Compensation

(Source: JICA Survey Team)

#### 8.9 Practical Measures of Compensation and Assistance

The temporary use of land for construction is conducted with compensation and resettlement is not required. Some of residents near the site complained about the compensation, so that the entitlement matrix is prepared as follows, i.e. all PAPs will receive market price compensation. Table 8.9.1 shows the draft of entitlement matrix

|   | Type of loss              | Entitled Persons<br>(Beneficiaries) | Entitlement<br>(Compensation<br>Package) | Implementation<br>issues/Guidelines | Responsible<br>Organization |
|---|---------------------------|-------------------------------------|------------------------------------------|-------------------------------------|-----------------------------|
| 1 | Arable Land               | Tenants /sharecropper/              | Compensation, in cash,                   | Full market price of                | PMU/ESIC                    |
|   | temporarily affected by   | Legal owner /grower /               | for all damaged crops                    | expected crops                      |                             |
|   | the                       | socially recognized owner /         | and trees                                |                                     |                             |
|   | construction/Installation | lessee/ unauthorized                |                                          |                                     |                             |
|   | of Towers/ or T/L         | occupant of land                    |                                          |                                     |                             |
| 5 | Unidentified              | All affected people                 | Follow the project policy                |                                     | PMU/ESIC/                   |
|   | Losses                    |                                     |                                          |                                     | NTDCL board                 |

Table 8.9.1 Entitlement Matrix

(Source: JICA Survey Team)

#### 8.10 Community Consultation

The location of access roads and spaces required for construction work will be determined at the detailed design stage. NTDCL will host a community consultation before making the decision and declare a cut-off date.

Expected participants are as follows

- Land owners of project area
- Holders and users of building under T/L
- Community representatives
- · Persons in charge of valuation in local government
- · Persons in charge of social consideration in community and/or local government
- ESIC, person in charge of design and construction from NTDCL

#### 8.11 Monitoring Form (Draft)

Table 8.11.1 shows a draft of the monitoring form.

|                      |        | -        | •  | -                  | •              |
|----------------------|--------|----------|----|--------------------|----------------|
| Monitoring Item      | Result | Measures | to | Reference          | Frequency      |
|                      |        | be taken |    | standard           |                |
| Noise                |        |          |    | NEQS               | Monthly        |
|                      |        |          |    | (Residential area) |                |
|                      |        |          |    | 55 dE              | 3              |
|                      |        |          |    | (6:00~22:00)       |                |
|                      |        |          |    | 45 dE              | 3              |
|                      |        |          |    | (22:00~6:00)       |                |
| Water Quality        |        |          |    | 200NTU*            | Monthly,       |
| (Turbidity)          |        |          |    |                    | Daily during   |
| •                    |        |          |    |                    | earthwork      |
| Oil Spill            |        |          |    |                    | Monthly        |
| Waste (Construction) |        |          |    |                    | Weekly         |
| Waste (Domestic)     |        |          |    |                    | Weekly         |
| Deforestation and    |        |          |    |                    | After deforest |
| Reforestation        |        |          |    |                    | After reforest |
| Accident             |        |          |    |                    | Before         |
|                      |        |          |    |                    | construction,  |
|                      |        |          |    |                    | Weekly during  |
|                      |        |          |    |                    | construction   |
| Claim and comment    |        |          |    |                    | Monthly        |

 Table 8.11.1
 Monitoring form (Construction Stage)

(Source: JICA Survey Team)

\* NEQS has TSS as the monitoring indicator for discharge. The project considers the ease of the monitoring and takes turbidity as the indicator of the discharge water quality because turbidity correlates with TSS. The reported correlation factor drops in the range of 0.3 - 1. The standard value of TSS for water discharged to inland waters is 200 mg/l. In order to be on the safe side, the project assumes the correlation factor to be 1 and set the monitoring management value of turbidity as 200NTU.

| Monitoring Item                               | Report |
|-----------------------------------------------|--------|
| Selection of route of access road and working |        |
| area                                          |        |
| Valuation of Land for compensation            |        |
| Payment                                       |        |

 Table 8.11.2
 Monitoring form (Compensation)

(Source: JICA Survey Team)

#### 8.12 Environmental Checklist

The environmental checklist is attached as Table 8.12.1.

| Category                        | Environmental<br>Item                           | Main Check Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes: Y<br>No: N              | Confirmation of Environmental Considerations<br>(Reasons, Mitigation Measures)                                                                                                                                                                                                         |
|---------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Permits<br>and<br>Explanation | (1) EIA and<br>Environmental<br>Permits         | <ul> <li>(a) Have EIA reports been already prepared in official process?</li> <li>(b) Have EIA reports been approved by authorities of the host country's government?</li> <li>(c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied?</li> <li>(d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government?</li> </ul> | (a)Y<br>(b)N<br>(c)N<br>(d)N | <ul><li>(a)EIA is required. IEE has been done and NTDCL will conduct the further study to meet the EIA requirement.</li><li>(b)It will be approved by EPA.</li><li>(c)NTDCL will take measures to obtain approval.</li><li>(d)Other permission is not required.</li></ul>              |
|                                 | (2) Explanation to<br>the Local<br>Stakeholders | <ul><li>(a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders?</li><li>(b) Have the comment from the stakeholders (such as local residents) been reflected to the project design?</li></ul>                                                                                                                                                |                              | (a)Consultation meeting was held.<br>(b)The entitle matrix is reviewed by the comment of local residents.                                                                                                                                                                              |
|                                 | (3) Examination of<br>Alternatives              | (a) Have alternative plans of the project been examined with social and environmental considerations?                                                                                                                                                                                                                                                                                                                                                                                                                        | (a)Y                         | (a)Alternatives are examined, such as replacement, double conductors, construction method to minimize environmental, social impact and cost.                                                                                                                                           |
| 2 Pollution<br>Control          | (1) Water Quality                               | (a) Is there any possibility that soil runoff from the bare lands resulting from<br>earthmoving activities, such as cutting and filling will cause water quality<br>degradation in downstream water areas? If the water quality degradation is<br>anticipated, are adequate measures considered?                                                                                                                                                                                                                             | (a)Y                         | <ul> <li>(a)Replacement of existing line is main part of the project and<br/>the effect on water quality is limited.</li> <li>The possible impact occurs only during reconstruction of<br/>towers. It is avoidable by covering and management of<br/>temporal storage yard.</li> </ul> |
| 3 Natural<br>Environmen<br>t    | (1) Protected Areas                             | (a) Is the project site located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?                                                                                                                                                                                                                                                                                                                      | (a)N                         | (a) There is no protected area in the project site.                                                                                                                                                                                                                                    |

## Table 8.12.1 Environmental Checklist

| (2) Ecosystem                 | <ul> <li>(a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)?</li> <li>(b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions?</li> <li>(c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem?</li> <li>(d) Are adequate measures taken to prevent disruption of migration routes and habitat fragmentation of wildlife and livestock?</li> <li>(e) Is there any possibility that the project will cause the negative impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of ecosystem due to introduction of exotic (non-native invasive) species and pests? Are adequate measures for preventing such impacts considered?</li> <li>(f) In cases where the project site is located in undeveloped areas, is there any possibility that the new development will result in extensive loss of natural environments?</li> </ul> | (a)N<br>(b)N<br>(c)N<br>(d)Y<br>(e)N<br>(f)N | <ul> <li>(a)Project site is developed area and not include environmentally vulnerable area.</li> <li>(b)There is no habitat of endangered species.</li> <li>(c)It is not significant.</li> <li>(d)During construction, migration pass could be affected by access road, but not significant. EMP shall include a preventive procedure against accident.</li> <li>(e)(f) This project is improvement of present T/L and the length is short, so further impact is not significant.</li> </ul> |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) Topography and<br>Geology | <ul><li>(a) Is there any soft ground on the route of power transmission and distribution lines that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed?</li><li>(b) Is there any possibility that civil works, such as cutting and filling will cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides?</li><li>(c) Is there a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites? Are adequate measures taken to prevent soil runoff?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)Y<br>(b)N<br>(c)N                         | <ul><li>(a)Erosion of basement of tower is observed. Tower will be protected by the structure.</li><li>(b),(c) Towers will be constructed at same place of existing ones. The negative impact on topography and geology is negligible.</li></ul>                                                                                                                                                                                                                                             |

|                             | (1) Resettlement                                   | <ul> <li>(a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement?</li> <li>(b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement?</li> <li>(c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement?</li> <li>(d) Are the compensations going to be paid prior to the resettlement?</li> <li>(e) Are the compensation policies prepared in document?</li> <li>(f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples?</li> <li>(g) Are agreements with the affected people obtained prior to resettlement?</li> <li>(h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan?</li> <li>(i) Are any plans developed to monitor the impacts of resettlement?</li> </ul> | (a)N<br>(b)NA<br>(c)NA<br>(d)NA<br>(e)NA<br>(f)NA<br>(b)NA<br>(i)NA<br>(j)NA | <ul><li>(a) Towers will be constructed at same site of existing ones and resettlement is not required. Some encroachments are observed under the line but the clearance is enough.</li><li>(b) to (j) are not applicable.</li></ul>                                                                                                                                                                                                                              |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Social<br>Environmen<br>t | (2) Living and<br>Livelihood                       | <ul> <li>(a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary?</li> <li>(b) Is there a possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary?</li> <li>(c) Is there any possibility that installation of structures, such as power line towers will cause a radio interference? If any significant radio interference is anticipated, are adequate measures considered?</li> <li>(d) Are the compensations for transmission wires given in accordance with the domestic law?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a)N<br>(b)Y<br>(c)N<br>(d)Y                                                 | <ul> <li>(a)It is enhancement of the existing T/L, and impact is limited. However, the encroachments under T/L should be taken care of the safety during construction stage.</li> <li>(b)Construction period is short and location is not populated area, so the impact is limited. EMP should have a part of hygiene education to workers.</li> <li>(c)Further interference will not be expected.</li> <li>(d)NTDCL follows LARF and project policy.</li> </ul> |
|                             | (3) Heritage                                       | (a) Is there a possibility that the project will damage the local archaeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)N                                                                         | (a) Project will not damage the local archaeological, historical, cultural, and religious heritage                                                                                                                                                                                                                                                                                                                                                               |
|                             | (4) Landscape                                      | (a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (a)N                                                                         | (a)T/L has been present and further adverse effect is not significant.                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | (5) Ethnic<br>Minorities and<br>Indigenous Peoples | <ul><li>(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?</li><li>(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a)NA<br>(b)NA                                                               | (a)(b)There are no ethnic minorities and indigenous people.                                                                                                                                                                                                                                                                                                                                                                                                      |

|          | (6) Working<br>Conditions          | <ul> <li>(a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project?</li> <li>(b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials?</li> <li>(c) Are intangible measures being planned and implemented for individuals involved in the program, and safety training (including traffic safety and public health) for workers etc.?</li> <li>(d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents?</li> </ul> | (a)Y<br>(b)Y<br>(c)Y<br>(d)Y | <ul> <li>(a) NTDCL obeys Pakistani labour law (Factories Act 1934,Hazardous Occupation Rules1978).</li> <li>(b) It is managed by EMP.</li> <li>(c) It is managed by EMP.</li> <li>(d) It is managed by EMP.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 Others | (1) Impacts during<br>Construction | <ul> <li>(a) Are adequate measures considered to reduce impacts during construction</li> <li>(e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)?</li> <li>(b) If construction activities adversely affect the natural environment</li> <li>(ecosystem), are adequate measures considered to reduce impacts?</li> <li>(c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts?</li> </ul>                                                                                                                                                                                                                                                                                                                             | (a)Y<br>(b)Y<br>(c)Y         | <ul> <li>(a)Current condition of water, air and noise in the project area does not meet the all requirement of NEQS. However, the discharge water, gas and noise from construction should be managed to prevent any further pollution. The management and mitigation measures of discharge water and gas, noise to meet the NEQS will be included in EMP.</li> <li>(b) There is T/L present and location of towers are mainly in cultivated land, so that further adverse impact on environment is not significant, but some activities of construction may cause impact, such as transportation of vehicle and noise. The mitigation measures will be prepared in EMP.</li> <li>(c)The access road for the project will increase the number of vehicles in the area. Mitigation measures such as information sharing to local community and setting of diversion can minimize the impact. The safety management to the building under T/L is very important. The information sharing activities will be conducted. The compensation for business loss of the shop under T/L will be paid by NTDCL.</li> </ul> |
|          | (2) Monitoring                     | <ul> <li>(a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts?</li> <li>(b) What are the items, methods and frequencies of the monitoring program?</li> <li>(c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)?</li> <li>(d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities?</li> </ul>                                                                                                                                                                                | (a)Y<br>(b)Y<br>(c)Y<br>(d)Y | <ul><li>(a)ESIC prepares EMP, contractor obeys the plan and ESIC supervises them.</li><li>(b)After preparation of draft EMP, validity will be examined.</li><li>(c)NTDCL establishes monitoring framework which is done by PMU, PIU and ESIC with the requirement of LARF.</li><li>(d)These will be a part of EMP.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|        | Reference to<br>Checklist of Other<br>Sectors | (a) Where necessary, pertinent items described in the Road checklist should<br>also be checked (e.g., projects including installation of electric transmission<br>lines and/or electric distribution facilities).                                       | (a) None |
|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 6 Note | Note on Using<br>Environmental<br>Checklist   | (a) If necessary, the impacts to transboundary or global issues should be confirmed, (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming). | (a)None  |

## ANNEX

- 2.2.2-1 Power Flow Analysis on the Candidate Project Scopes considered in the Course of Discussion with NTDCL
- 2.2.2-2 Power Flow Analysis Result (Year 2018 Summer Peak)
- 2.2.2-3 Power Flow Analysis Result (Year 2020)
- 2.2.4-1 Transienet Stability Analysis Results for 2018 Summer Peak Condition (Oscillation Waveform of Generator Rotor Phase Angle Difference)
- 3.1.3-1 Results of site survey of existing steel tower
- 3.1.5-1 1. Characteristics of Conductor 2. Estimation of Cost-efficiency
- 6.1.1-1 Estimate cost for existing line reinforcement (Confidential)
- 6.2.5-1 Terms of Refference (Confidential)
- 7.1.2-1 Financial Statement Analysis
- 8.4.6-1 Results of Plant Rurvey
- 8.7.1-1 Minutes of Meeing (Confidential)

# ANNEX 2.2.2-1 Power Flow Analysis on the Candidate Project Scopes considered in the Course of Discussion with NTDCL

Power flow analysis on the candidate project scopes considered in the course of discussion with NTDCL for 2018 summer peak condition were carried out. The candidate project scopes are shown in Table A1 and their system configuration are summarized in Figure A1.

|      | Table AT Candidate Transmission Line Reinforcement Project Scopes                                                                      |                                                                                                                                       |         |                                                   |        |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------|--------|--|--|
| Plan | Concept                                                                                                                                | Section                                                                                                                               | Circuit | Conductor Type                                    | Length |  |  |
| No.  | F-                                                                                                                                     |                                                                                                                                       |         |                                                   | 8      |  |  |
|      | Invar conductor is                                                                                                                     | Tarbela-Burhan                                                                                                                        | 1, 2    | ZTACIR 255                                        | 35.1km |  |  |
| 1    | applied to all of the                                                                                                                  | Tarbela-Burhan                                                                                                                        | 3       |                                                   | 35.4km |  |  |
| 1    | sections listed in the                                                                                                                 | Tarbela-ISPR                                                                                                                          | 1       | (Invar conductor,                                 | 62.5km |  |  |
|      | right column                                                                                                                           | Burhan-ISPR                                                                                                                           | 1       | single)                                           | 27.1km |  |  |
|      |                                                                                                                                        | Tarbela-Burhan                                                                                                                        | 1, 2    | ZTACIR 255                                        | 35.1km |  |  |
| 2    | Limit the number of sections to which invar                                                                                            | Tarbela-Burhan                                                                                                                        | 3       | (Invar conductor,<br>single)                      | 35.4km |  |  |
| 2    | conductor is applied.                                                                                                                  | Tarbela-ISPR                                                                                                                          | 1       | Single Rail<br>(existing)                         | 62.5km |  |  |
|      |                                                                                                                                        | Burhan-ISPR                                                                                                                           | 1       | Single Rail<br>(existing)                         | 27.1km |  |  |
|      |                                                                                                                                        | Tarbela-Burhan                                                                                                                        | 1, 2    | Single Rail<br>(existing)                         | 35.1km |  |  |
|      | Use existing conductor<br>as much as possible<br>and construct new line<br>from Tarbela to Burhan<br>applying to low loss<br>conductor | Tarbela-Burhan                                                                                                                        | 3       | Single Rail<br>(existing)                         | 35.4km |  |  |
|      |                                                                                                                                        | Tarbela-ISPR<br>(Connecting to Burhan)<br>Burhan-ISPR section is<br>disconnected at Burhan                                            | 1       | Single Rail<br>(existing)                         | 35.4km |  |  |
|      |                                                                                                                                        | Burhan-ISPR<br>(Disconnected at Burhan)                                                                                               | 1       | Single Rail<br>(existing)                         | 27.1km |  |  |
| 3    |                                                                                                                                        | Tarbela-Burhan (new<br>construction)<br>Connecting to existing<br>Burhan-ISPR at the tower<br>located near Burhan<br>substation       | 4       | LL-ACSR/AC 510<br>(Low loss<br>conductor, single) | 35.4km |  |  |
|      |                                                                                                                                        | Tarbela-Burhan (new<br>construction)<br>Connecting to existing<br>Tarbela-ISPR line at the<br>tower located near Burhan<br>substation | 5       | LL-ACSR/AC 510<br>(Low loss<br>conductor, single) | 35.4km |  |  |
| 4    | Gap conductor is                                                                                                                       | Tarbela-Burhan                                                                                                                        | 1, 2    | GTACSR 420                                        | 35.1km |  |  |

Table A1 Candidate Transmission Line Reinforcement Project Scopes

|   | applied to all of the                                                                                         | Tarbela-Burhan                                                                                                  | 3    | (Gap conductor,                                  | 35.4km |
|---|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------|--------|
|   | sections listed in the                                                                                        | Tarbela-ISPR                                                                                                    | 1    | single)                                          | 62.5km |
|   | right column                                                                                                  | Burhan-ISPR                                                                                                     | 1    |                                                  | 27.1km |
|   |                                                                                                               | Tarbela-Burhan                                                                                                  | 1, 2 | GTACSR 420                                       | 35.1km |
| 5 | Limit application of<br>Gap conductor as much<br>as possible without                                          | Tarbela-Burhan                                                                                                  | 3    | (Gap conductor, single)                          | 35.4km |
| 5 | changing system<br>configuration                                                                              | Tarbela-ISPR                                                                                                    | 1    | Single Rail<br>(existing)                        | 62.5km |
|   |                                                                                                               | Burhan-ISPR                                                                                                     | 1    | Single Rail<br>(existing)                        | 27.1km |
|   |                                                                                                               | Tarbela-Burhan                                                                                                  | 1, 2 |                                                  | 35.1km |
|   |                                                                                                               | Tarbela-Burhan                                                                                                  | 3    | GTACSR 420                                       | 35.4km |
| 6 | Limit application of<br>Gap conductor as much<br>as possible                                                  | Replace conductor<br>only Tarbela-Burhan<br>section of Tarbela-ISPR<br>line and connect to<br>Burhan substation | 1    | (Gap conductor,<br>single)                       | 35.4km |
|   |                                                                                                               | Disconnect Burhan-ISPR<br>section of Tarbela-ISPR<br>line at Burhan substation                                  | 1    | Single Rail<br>(existing)                        | 27.1km |
|   |                                                                                                               | Burhan-ISPR                                                                                                     | 1    | Single Rail<br>(existing)                        | 27.1km |
|   |                                                                                                               | Tarbela-Burhan                                                                                                  | 1, 2 | Rail (twin-bundle,<br>NTDCL own fund<br>project) | 35.1km |
| 7 | Application of low loss<br>conductor to all the<br>sections but that is<br>constructed by<br>NTDCL's own fund | Tarbela-Burhan                                                                                                  | 3    | LL-ACSR/AC 610<br>(twin-bundle)                  | 35.4km |
| 7 |                                                                                                               | Tarbela-ISPR                                                                                                    | 1    | LL-ACSR/AC 610<br>(twin-bundle)                  | 62.5km |
|   |                                                                                                               | Burhan-ISPR                                                                                                     | 1    | LL-ACSR/AC 610<br>(twin-bundle)                  | 27.1km |





Figure A1 System Configuration of Candidate Project Scopes (Year 2018)

[Power Flow Analysis Results (2018 Summer Peak Load Condition)]

Power Flow Analysis Results for the candidate project scopes are summarized in Table A2.

For Plans 1 and 2 (Invar conductor application cases), no overload occurred to the 220kV transmission lines and 220/132kV transformers in the project target system under both normal operation condition and N-1 contingency condition.

For Plan 3 (new construction of double circuit transmission lines in the section between Tarbela-Burhan with low loss conductor application), power flow through 2 units of 220/132kV transformers at Burhan substation reach 104% (520.2MVA) of the rated capacity (2 x 250MVA) under N-1 contingency condition (fault section: Tarbela-ISPR). Since the power flow up to 120% of the rated capacity of the facilities is allowed under emergency condition, it is not considered problematic. However, this system configuration was not adopted due to following concerns:

• Although this plan requires extension of line bays for 2 circuits in Tarbela hydropower station site, there is no available space in the existing site.

- Longer construction period is necessary.
- Securing the Right-of-way for the new double circuit lines may take long time.

For Plan 4 to 6 (Gap conductor application cases), no overloading occurs to transmission lines or 220/132kV transformers for Plan 4 and 5. However, For Plan 6 (replacing single Rail conductor with Gap conductor for only Tarbela-Burhan section of Tarbela-ISPR line, connecting the Tarbela-Burhan section to Burhan substation), 2 units of 220/132kV transformers at Burhan substation becomes overloaded with 101% (505MVA) loading of the rated capacity of the transformers even under normal operation condition. Although Plan 4 and 5 have no problem from the viewpoint of power flow under both normal operation condition and N-1 contingency condition, these plans were eliminated as the result of life cycle cost comparison among the candidate plans due to large accumulated transmission losses.

As for Plan 7, the project scope reflected the discussion results of the joint meeting among NTDCL, JICA headquarter, and JICA Survey Team held on March 17<sup>th</sup>, 2016. Tarbela-Burhan circuit No.1 and No.2 will be replaced with twin-bundle Rail conductor by NTDCL's own fund before completion of Tarbela hydropower station 4<sup>th</sup> extension project, which is expected to be completed in June 2017. Conductor replacement with low loss conductor (twin-bundle LL-ACSR/AC 610) of Tarbela-Burhan circuit No.3, Tarbela-ISPR, and Burhan-ISPR by external loan was assumed.

In 2018, 3 units of 220/132kV transformers at ISPR substation became overloaded with 104% loading of the rated capacity of transformers under normal operation condition. Also, 2 units of 220/132kV transformers at Burhan substation became overloaded in the case of single circuit fault of

the sections Tarbela-ISPR and Burhan-ISPR with 100.5% and 103% loading of the rated capacity, respectively. In 2020, however, the power flow of the transformers at Burhan and ISPR substations is expected to be decreased along with development of 500/220kV Islamabad West substation. According to Planning Power, NTDCL, from the viewpoint of system operation, this overload situation is regarded permissible since the extent of overloading is slight and this situation would occur in just a couple of years in summer peak hours.

|   |                                                                                                                                           |                                                                                               | N-1 Contingency                                            |                               |                                                                                              |                                                                                                                                                                                                                                                                                                          |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Plan                                                                                                                                      | Normal Operation                                                                              | Tarbela-Burhan<br>(circuit 1 or circuit 2)                 | Tarbela-Burhan<br>(circuit 3) | Tarbela-ISPR                                                                                 | Burhan-ISPR                                                                                                                                                                                                                                                                                              |  |  |
| 1 | Invar conductor is<br>applied to all of the<br>reinforcement<br>sections                                                                  | No overloading of<br>transmission lines or<br>transformers                                    | Same as on the left                                        | Same as on the left           | Same as on the left                                                                          | Same as on the left                                                                                                                                                                                                                                                                                      |  |  |
| 2 | Limit the number of<br>sections to which<br>invar conductor is<br>applied                                                                 | ditto                                                                                         | Same as on the left                                        | Same as on the left           | Same as on the left                                                                          | Same as on the left                                                                                                                                                                                                                                                                                      |  |  |
| 3 | Use existing<br>conductor as much<br>as possible and<br>construct new line<br>from Tarbela to<br>Burhan applying to<br>low loss conductor | ditto                                                                                         | Same as on the left                                        | Same as on the left           | Loading of two (2)<br>220/132kV transformers at<br>Burhan substation is 104%<br>(520.2MVA)   | Same as on the left                                                                                                                                                                                                                                                                                      |  |  |
| 4 | Gap conductor is<br>applied to all of the<br>reinforcement<br>sections                                                                    | ditto                                                                                         | Same as on the left                                        | Same as on the left           | Same as on the left                                                                          | Same as on the left                                                                                                                                                                                                                                                                                      |  |  |
| 5 | Limit application of<br>Gap conductor as<br>much as possible<br>without changing<br>system configuration                                  | ditto                                                                                         | Same as on the left                                        | Same as on the left           | Same as on the left                                                                          | Same as on the left                                                                                                                                                                                                                                                                                      |  |  |
| 6 | Limit application of<br>Gap conductor as<br>much as possible                                                                              | Loading of two (2)<br>220/132kV<br>transformers at<br>Burhan substation is<br>101% (505MVA)   | No overloading of<br>transmission lines or<br>transformers | Same as on the left           |                                                                                              | ·Loading of one (1)<br>500/220kV transformers at<br>Rewat New substation is<br>100.3% (752.4MVA)<br>·Loading of two (2)<br>220/132kV transformers at<br>Burhan substation is<br>111.8% (558.8MVA)<br>·Loading of other two (2)<br>220/132kV transformers at<br>Burhan substation is<br>107.1% (535.3MVA) |  |  |
| 7 | Application of low loss<br>conductor to all the<br>sections but that is<br>constructed by<br>NTDCL's own fund                             | Loading of three (3)<br>220/132kV<br>transformers at ISPR<br>substation is 104%<br>(502.5MVA) | Same as on the left                                        | Same as on the left           | Loading of two (2)<br>220/132kV transformers at<br>Burhan substation is<br>100.5% (502.6MVA) | Loading of two (2)<br>220/132kV transformers at<br>Burhan substation is 103%<br>(514.8MVA)                                                                                                                                                                                                               |  |  |

## Table A2 Power Flow Analysis Results for each Candidate Project Scope (2018 Summer Peak)





Figure 1. Power Flow Diagram (Normal Operation Condition)



Figure 2. Power Flow Diagram (N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #1)



Figure 3. Power Flow Diagram (N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #3)



Figure 4. Power Flow Diagram (N-1Contingency Condition, Fault Section: Tarbela – ISPR Circuit #1)



Figure 5. Power Flow Diagram (N-1Contingency Condition, Fault Section: Burhan – ISPR Circuit #1)





Figure 1. Power Flow Diagram (2020 Summer Peak, Normal Operation Condition)



Figure 2. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #1)



Figure 3. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #3)



Figure 4. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Tarbela – Kamra Circuit #1)


Figure 5. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Kamra – Islamabad West Circuit #1)



Figure 6. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Islamabad West – ISPR Circuit #1)



Figure 7. Power Flow Diagram (2020 Summer Peak, N-1Contingency Condition, Fault Section: Burhan – ISPR Circuit #1)



Figure 8. Power Flow Diagram (2020 Winter Off-peak, Normal Operation Condition)



Figure 9. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #1)



Figure 10. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Tarbela – Burhan Circuit #3)



Figure 11. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Tarbela – Kamra Circuit #1)



Figure 12. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Kamra – Islamabad West Circuit #1)



Figure 13. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Islamabad West – ISPR Circuit #1)



Figure 14. Power Flow Diagram (2020 Winter Off-peak, N-1Contingency Condition, Fault Section: Burhan – ISPR Circuit #1)

ANNEX2.2.4-1



Figure A1 (Normal Clearing, Fault Section: Tarbela – Burhan Circuit No.1)



Figure A2 (Normal Clearing, Fault Section: Burhan – ISPR Circuit No.3)



Figure A3 (Normal Clearing, Fault Section: Tarbela – ISPR)





Figure A4 (Normal Clearing, Fault Section: Burhan – ISPR)



Figure A5 (Stuck Breaker Condition, Fault Section: Tarbela – Burhan Circuit No.1)



Figure A6 (Stuck Breaker Condition, Fault Section: Tarbela – Burhan Circuit No.3)





Figure A7 (Stuck Breaker Condition, Fault Section: Tarbela – ISPR)



Figure A8 (Stuck Breaker Condition, Fault Section: Burhan – ISPR)

# ANNEX 3.1.3-1 Result of Site Survey of Existing Steel Towers

Some part of target area, ground had eroded due to stream flow. Therefore, there are problem about stability of tower. Result of site survey for these towers are mentioned below.

| Section        | Circuit             | Tower No. |  |
|----------------|---------------------|-----------|--|
|                | Tarbela-Burhan I&II | 33,41,42  |  |
| Tarbela-Burhan | Tarbela-Burhan III  | 52        |  |
|                | &Tarbela-ISPR       |           |  |
|                | Burhan-ISPR         |           |  |
| Burhan-ISPR    |                     | 34,34     |  |
|                | & Tarbela-ISPR      |           |  |

Table. 1 Towers should be replace/protect



Figure. 1 Tower Location (Tarbela-Burhan)



図 2 Tower Location (Burhan-ISPR)

| Route      | Tarbela – Burhan Circuit I&II | Tower No. | No.33 |
|------------|-------------------------------|-----------|-------|
| Photograph |                               |           |       |
|            |                               |           |       |
|            | Direction of Stream Flow      |           |       |

Table.2 Result of Site Survey of Tower (No.33-1)

Tower has placed on above of cliff where height difference is approximately 6m. Stream flow go thoriugh under the cliff after raining, maimum depth of stream flow is 2.5m. The cliff had eroded by stream flow. Strem flow had washed bottom side of cliff, it collupsing edge of cliff. The edge of cliff transit 1m toward tower in recent few years. Bank protection was constructed in years past, however bank protection had destroyed by the flood due to heavy rain. The cliff consist sand with gravel, cohesive soil and sand in alternate layers.

There is access road to settlement under the cliff. This road close to the edge of cliff. Therefore, road had be in danger of collupse due to stream flow. The cliff shall be protected at an early date.



Table.3 Result of Site Survey of Tower (No.33-2)

As a countermeasure, it is conceivable method of preventing the collapse of the cliff part by the retaining wall. Since cliff section is water colliding front, the base of the retaining wall at the time of the water takes a large embedment of the retaining wall from undergoing scouring, and to carry out the installation of the gabion mattress is desirable as scour protection.



Table.4 Result of Site Survey of Tower (No.41-1)

The ground around tower had eroded due to rain fall. Height difference is approximately 30m. The ground consist sandy soil, erosion had advancing due to rain fall. Stability of tower will be losed to advancing of erosion.



Table.5Result of Site Survey of Tower (No.42-1)

The ground around tower had eroded due to rain fall. Height difference is approximately 30m. The ground consist sandy soil, erosion had advancing due to rain fall. Stability of tower will be losed to advancing of erosion.



Table.6 Result of Site Survey of Tower (No41-2)



Table.7 Result of Site Survey of Tower (No.52-1)

In the vicinity of the tower has a cliff-like steps, and has a height difference is approximately about 4m. Soil of the cliff section, and is a relatively good condition has been mainly composed of mudstone and cohesive soil, Doroiwaso weathering is likely to progress in the mind, there is a possibility that muddy reduction due to rainfall occurs, is allowed to stand in this state steel tower which can result in the stable problems.



Table.8 Result of Site Survey of Tower (No52-2)



Table.9 Result of Site Survey of Tower (No.34-1)

Around the tower have been conducted construction is, the ground surface after the construction there is a height difference of roughly about  $3m \sim 8m$  than steel tower position. Although partly retaining wall is installed, for the portions that are not installed in the retaining wall, erosion due to rainfall is observed. Tower and the cliff part is very close, there is a possibility that the erosion is exposed is the basis by which to proceed.



Table.10 Result of Site Survey of Tower (No34-2)



Table.11 Result of Site Survey of Tower (No.36-1)

In the vicinity of the tower has a cliff-like steps, height difference is generally made about  $10m \sim 20m$ . Soil of the cliff section, and is a relatively good condition has been mainly composed of mudstone and cohesive soil, Doroiwaso weathering is likely to progress in the mind, there is a possibility that muddy reduction due to rainfall occurs, is allowed to stand in this state steel tower which can result in the stable problems. In addition, it is considered under the cliff has been carried out construction of residential areas, and caused the earth and sand collapse after the development of the developed land, since it is expected also damage to the developed land side, it is necessary to collapse prevention measures of the cliff section.



Table.12 Result of Site Survey of Tower (No36-2)

Cliff part is mainly composed of mudstone layer, vulnerable to weathering as a characteristic of the consolidated mud rock of what is the ground, and muddy by supply of moisture due to rain, because there is a fear that lead to weakening of the ground, of the cliff section collapse measures have to perform. There is also that the height difference is large, the measures in the retaining walls of Engineering, is difficult. Further, since it is highly self-supporting ground, thought can respond by performing weathering measures cliff portion surface, as the countermeasure method considered to glue frame factory are suitable.

ANNEX -3.1.5-1

## 1. Characteristics of Conductor

Example design of low loss conductor (LL-ACSR) has considered as secure current capacity and same diameter of conventional Rail conductor. Characteristics of conductor is shown in Table.1.

|                                  |        | ACSR                  | LL-ACSR               |
|----------------------------------|--------|-----------------------|-----------------------|
|                                  | Unit   | ASTM:Rail             | LL-ACSR/AS610         |
| Figure                           |        |                       |                       |
| construction                     |        | 45/3.7-Al             | 16/TW-AL              |
|                                  |        | 7/2.47-St             | 11/TW-AL              |
|                                  |        |                       | 8/TWA1                |
|                                  |        |                       | 7/2.1-14EAS           |
| Nominal Diameter                 | mm     | 29.61                 | 29.59                 |
| Min. Breaking Load               | kN     | 116.1                 | 126.5                 |
| Cross section area:Al            | mm2    | 483.8                 | 610.7                 |
| Core                             |        | 33.54                 | 24.25                 |
| Total                            |        | 517.3                 | 635.0                 |
| Nominal weight                   | kg/km  | 1600                  | 1867                  |
| DC Resistance at 20deg-C         | Ohm/km | 0.0597                | 0.0471                |
| Co-efficient of linear expansion | /deg-C | 20.9x10 <sup>-6</sup> | 21.9x10 <sup>-6</sup> |
| Current capacity                 | А      | 956                   | 1207                  |
|                                  |        | at 90 deg-C           | at 90 deg-c           |
| Sag (at 350m)                    | m      | 14.4                  | 15.2                  |
|                                  |        | at 90 deg-C           | at 90 deg-C           |

### 2. Estimation of Cost-efficiency

Cost-efficiency is shown in Figure.1. The different cost of existing line related to this project between Rail480 and LL-ACSR610 will become zero after 5.5 years. 15 years later, 250 mill. PKRs of cost efficiency will be expected in the case of adopt the LL-ACSR610 instead of Rail conductor planned in PC-1.



Figure.1 Cost-efficiency

## 2.1 Desctiption of Study

Cost-efficiency has evaluated inaccordance with following conditions.

(1) Pattern of Load

Transmission power capacity was obtained by power flow analysis. Transmission power capacity is shown in Table.2. For the reason of the existing line which will be completed in Mar. 2020, power flow analysis calculated in 2020 was adopted. Upper is in the case of PC-1 planning of Rail x 2, lower is in the case of this PJ of LL-610 x 2.

| Section (Rail x 2) |                                       | Transmission Capacity [MW] |        |
|--------------------|---------------------------------------|----------------------------|--------|
|                    |                                       | In the year 2020           |        |
| Existing T/L       | Tarbela-Burhan route 2 (1/2 cct)      | 294.22                     |        |
|                    | Tarbela-Burhan-ISPR route 2 (2/2 cct) | 268.36                     |        |
| New T/L            | In/out of Mansehra to ISBU            | 136.79                     | 128.49 |

Table.2 Transmission Capacity of Target Line

| Section (LL-610 x 2) |                                       | Transmission Capacity [MW] |        |
|----------------------|---------------------------------------|----------------------------|--------|
|                      |                                       | In the year 2020           |        |
| Existing T/L         | Tarbela-Burhan route 2 (1/2 cct)      | 289.96                     |        |
|                      | Tarbela-Burhan-ISPR route 2 (2/2 cct) | 269.79                     |        |
| New T/L              | In/out of Mansehra to ISBU            | 139.55                     | 129.56 |

Bases of these calculation, power flow pattern is assumed to continue as same as the 2020' value.

### (1) Calculation of Transmission Loss

Transmission Loss has calculated from formula (1).

Load Current(I)[A] = 
$$\frac{Transmission Capacity[MW]}{(\sqrt{3} \cdot 220kV \cdot \cos\theta)}$$
 (1)

Transmission Powe Loss(P) [kW/km] =  $3 \times l^2 \times R_{AC} \times N \times 10^{-6}$  (2)

Where:

 $R_{AC}$ : AC resistance of conductor [ $\Omega$ ]

N : Numbers of conductor

Calculation result is shown in Table3 and Table4.

| 2018 year                                            | Reinforcement existing line |                 | New construction line |
|------------------------------------------------------|-----------------------------|-----------------|-----------------------|
| Calculation condition                                | 2                           | 3-1             | 4                     |
| Section of the line                                  | T-B ルート2 1/2cct             | T-B ルート2 2/2cct | ISPR/Mansehra–ISBU    |
| nominal voltage(kV)                                  | 220                         | 220             | 220                   |
| Number of circuit (cct)                              | 1                           | 1               | 2                     |
| Line length (km)                                     | 35.1                        | 35.1            | 40                    |
| Carrying power flow (MW)                             | 311.8                       | 235.2           | 0                     |
| Circuit load current (A)                             | 818.3                       | 617.2           | 0                     |
|                                                      |                             |                 |                       |
| Kind of conductor                                    | Rail-480                    | Rail-480        | Rail-480              |
| Number of conductor (bundled)                        | 2                           | 2               | 2                     |
| conductor current (A)                                | 409.15                      | 308.6           | 0                     |
| DC resistance (Ω∕km:<br>at20℃)                       | 0.0597                      | 0.0597          | 0.0597                |
| Resistance temparature coeff.<br>( ∕℃)               | 0.004                       | 0.004           | 0.004                 |
| AC/DC resistance ratio (β)                           | 1.05                        | 1.05            | 1.05                  |
| Conductor temparature<br>mentioned on the above (°C) | 47                          | 44              | 41                    |
| Ambient temparature (°C)                             | 40                          | 40              | 40                    |
| Acresistance (Ω/km)                                  | 0.06945498                  | 0.06870276      | 0.06795054            |
| Power loss (MW)                                      | 2.45                        | 1.38            | 0                     |

# Table.3 Transmission Loss (PC-1)

| 2020 year                                            | Reinforcement existing line |                   | New construction line |
|------------------------------------------------------|-----------------------------|-------------------|-----------------------|
| Calculation condition                                | 2                           | 3–1               | 4                     |
| Section of the line                                  | T-B Route2 1/2cct           | T-B Route2 2/2cct | ISPR/Mansehra—ISBU    |
| nominal voltage(kV)                                  | 220                         | 220               | 220                   |
| Number of circuit (cct)                              | 1                           | 1                 | 2                     |
| Line length (km)                                     | 35.4                        | 35.4              | 40                    |
| Carrying power flow (MW)                             | 269.2                       | 246.9             | 141.7                 |
| Circuit load current (A)                             | 706.5                       | 647.9             | 371.9                 |
|                                                      |                             |                   |                       |
| Kind of conductor                                    | Rail-480                    | Rail-480          | Rail-480              |
| Number of conductor (bundled)                        | 2                           | 2                 | 2                     |
| conductor current (A)                                | 353.25                      | 323.95            | 185.95                |
| DC resistance (Ω/km:                                 | 0.0597                      | 0.0597            | 0.0597                |
| Resistance temparature coeff.<br>( ∕°C)              | 0.004                       | 0.004             | 0.004                 |
| AC/DC resistance ratio (β)                           | 1.05                        | 1.05              | 1.05                  |
| Conductor temparature<br>mentioned on the above (°C) | 45                          | 44                | 46                    |
| Ambient temparature (°C)                             | 40                          | 40                | 40                    |
| Acresistance (Ω/km)                                  | 0.0689535                   | 0.06870276        | 0.06920424            |
| Power loss (MW)                                      | 1.83                        | 1.53              | 0.57                  |

| 2018 year                                            | Reinforcemer      | nt existing line  | New construction line |
|------------------------------------------------------|-------------------|-------------------|-----------------------|
| Calculation condition                                | 2                 | 3-1               | 4                     |
| Section of the line                                  | T-B Route2 1/2cct | T-B Route2 2/2cct | ISPR/Mansehra—ISBU    |
| nominal voltage(kV)                                  | 220               | 220               | 220                   |
| Number of circuit (cct)                              | 1                 | 1                 | 2                     |
| Line length (km)                                     | 35.4              | 35.4              | 40                    |
| Carrying power flow (MW)                             | 311.8             | 235.2             | 0                     |
| Circuit load current (A)                             | 818.3             | 617.2             | 0                     |
|                                                      |                   |                   |                       |
| Kind of conductor                                    | LL-610            | LL-610            | LL-610                |
| Number of conductor (bundled)                        | 2                 | 2                 | 2                     |
| conductor current (A)                                | 409.15            | 308.6             | 0                     |
| DC resistance (Ω∕km:<br>at20℃)                       | 0.0471            | 0.0471            | 0.0471                |
| Resistance temparature coeff.<br>( ∕°C)              | 0.004             | 0.004             | 0.004                 |
| AC/DC resistance ratio ( $\beta$ )                   | 1.05              | 1.05              | 1.05                  |
| Conductor temparature<br>mentioned on the above (°C) | 47                | 56                | 41                    |
| Ambient temparature (°C)                             | 40                | 40                | 40                    |
| Acresistance (Ω/km)                                  | 0.05479614        | 0.05657652        | 0.05360922            |
| Power loss (MW)                                      | 1.95              | 1.14              | 0                     |

Table.4 Transmission Loss (with Project)

| 2020 year                                            | Reinforcement existing line |                   | New construction line |
|------------------------------------------------------|-----------------------------|-------------------|-----------------------|
| Calculation condition                                | 2                           | 3–1               | 4                     |
| Section of the line                                  | T-B Route2 1/2cct           | T-B Route2 2/2cct | ISPR/Mansehra-ISBU    |
| nominal voltage(kV)                                  | 220                         | 220               | 220                   |
| Number of circuit (cct)                              | 1                           | 1                 | 2                     |
| Line length (km)                                     | 35.4                        | 35.4              | 40                    |
| Carrying power flow (MW)                             | 269.2                       | 246.9             | 141.7                 |
| Circuit load current (A)                             | 706.5                       | 647.9             | 371.9                 |
|                                                      |                             |                   |                       |
| Kind of conductor                                    | LL-610                      | LL-610            | LL-610                |
| Number of conductor (bundled)                        | 2                           | 2                 | 2                     |
| conductor current (A)                                | 353.25                      | 323.95            | 185.95                |
| DC resistance (Ω/km:<br>at20°C)                      | 0.0471                      | 0.0471            | 0.0471                |
| Resistance temparature coeff.<br>( ∕°C)              | 0.004                       | 0.004             | 0.004                 |
| AC/DC resistance ratio (β)                           | 1.05                        | 1.05              | 1.05                  |
| Conductor temparature<br>mentioned on the above (°C) | 45                          | 44                | 46                    |
| Ambient temparature (°C)                             | 40                          | 40                | 40                    |
| Acresistance ( $\Omega$ / km)                        | 0.0544005                   | 0.05420268        | 0.05459832            |
| Power loss (MW)                                      | 1.44                        | 1.21              | 0.45                  |

(2) Calculation of Cost-efficiency

Cost-efficiency is calculate from conditions mentioned as following and transmission loss resulting from (2).

· Initial cost has taken as material cost of conductor.

Existing Transmission Line Rail: 181.11、LL-ACSR: 254.68 [mill. RP]

- New Transmission Line Rail: 234.76, LL-ACSR: 330.12 [mill. RP] (after year 2020)
- $\boldsymbol{\cdot}$  Cost of transmission loss is calculate from formula (3) and (4).

Power Loss 
$$\operatorname{Qy}\left[\frac{\mathrm{kWH}}{\mathrm{km}}\right] = P \times (0.3f + 0.7f^2) \times 8760$$
 (3)
Transmission Powe Loss Cost

$$= \sum_{y}^{n} \begin{bmatrix} C_1 \cdot Q_y \\ (1+i)^y \end{bmatrix}$$
(4)

• C1 is cost of generation, average cost of generation has taken as 14Rp/kWH.

f: Load factor (50%)

i: Interest rates (1%)

y : Numbers of year (50 years)

Power loss is calculate in accordance with formula advocated by Buller-Woodrow (Reference-1)

References-1 : F. H. Buller and C. A. Woodrow, "Load factor equivalent hours values compared -----", Electrical World, Jul. 1928" ANNEX-7.1.2-1 Financial Statement Analysis

#### 1. Financial Statements Analysis for the Accounts of June 2014 and June 2013

The analysis has been made for the financial statements both of June 2014 and June 2013, which are the latest financial statements attached to the audit reports provided by the financial department of NTDCL.

Figure ANNEX-8.1.1 is prepared to compare the major indexes of financial analysis both of Balance Sheets and Income Statements for the year of 2014 and 2013. The financial statements are listed at the end of this report.



#### **1.1 Special Notes**

- (1) The Accounts of June 2014
  - 1) The sales of 2014 amounted to Rs.1,016,965 million increased by Rs.122,042million (13.6%) compared with 2013. The increase was based on the revenue increase by the wheeling charge paid by DISCOs.
  - 2) Net income in 2014 was Rs.7,752 million reduced by Rs.47,461 million (86.0%) from 2013.By the way, operating income was Rs.7,154 million in 2014.
  - 3) The allowable reference value of Transmission Loss was 3% determined by NEPRA. The excess of the reference value is calculated in terms of amount of money to record as Transmission Loss expense. Transmission Loss expense in 2014 was Rs.1,003 million.
- (2) The Accounts of June 2013
  - Net income in 2013 was recorded as Rs.55,213 million. The net income in 2014 was Rs.7,752 million as described above. Net income of 2012 was Rs.202 million.
  - 2) Special note in 2013 was to cancel Rs.95,484 million of allowance for doubtful accounts (increase of profit). 42,875 million (increase of expense) was recorded by the corporate tax adjustment. Except those special figures, 2,607 million was the net profit in 2013. Operating income in 2013 was Rs.2,604 million.
  - 3) The allowable reference value of Transmission Loss in 2013 was determined as 2.5%. The excess cost of the reference value in 2013 was Rs.4,728 million.

#### **1.2 Financial Analysis Indicators**

(1) ROE (Return on Equity: Net income / Net assets): Profitability indicators

Shareholders have the funds invested, or earn a profit how efficiently, that is an indicator to show the efficiency of shareholders' equity.

The results in 2014 and 2013 were as follows;

- 1) 2014 : 8.5%
- 2) 2013:65.9%

If 5~10% of ROE is realized, it is fairly good. If it exceeds 10%, it is really good. Seeing the figure of 65.9%, unusual transaction might be recorded in 2013. In order to have the reasonable indicator of ROE, the operating income is taken as the index to output ROE of 2013 instead of net income, which included the unusual transaction recorded by the accounting and tax regulations. The corrected ROE are shown as below;

- 3) 2014 : 7.89%
- 4) 2013 : 2.46%

ROE in 2014, i.e. 7.89 in 2014, was fairly good. On the other hand, ROE, i.e. 2.46% in 2013,

was rather low.

(2) Total Capital Turnover (Sales / Total Capital): Profitability Indicators

This is the indicator to show the efficient operation of the capital, which is an index that indicates whether the business earns how big sales with less capital.

1) 2014 : 1.0 time

2) 2013 : 1.8 times

Total capital turnover rate is regarded as the higher the better, but the general target value is 'One', which is as the satisfactory level as an average. As a large amount of capital investment is required by NTDCL, 1.0 time in 2014 and 1.8 times in 2013 are satisfactory level as the capital efficiency.

(3) Net Profit Margin (net income / sales): Profitability Indicators

Net profit margin is an index to indicate how the capacity of the earning power is and how the profitability is. The index indicates the scale of profit compared with sales. Net profit margin of 2014 and 2013 were as follows;

- 1) 2014 : 0.8%
- 2) 2013 : 6.29%

Seeing the figure in 2013, the figure and transactions should be reconsidered to be adjusted in terms of special circumstances. Therefore, the index of net income should be replaced by the operating profit, which does not include special transactions based on the regulations of accounting and tax. Thus the adjusted Net Profit Margins are recalculated as follows;

- 3) 2014 : 0.70%
- 4) 2013 : 0.23%

Net profit margin in 2014 and 2013 were fairly low level. Considering the business of NTDCL as one of the typical public utility works, the level of wheeling charges can be assumed that has been kept to a certain degree to secure the necessary level of the profits to continue normal business operations. In other words, at the same time as the revenue is large and so is the cost, i.e. the profit level is not so large, what can be frequently seen in the industries requiring the large capital investment.

(4) Leverage Ratio (Interest-bearing Debt / Net Assets): Index of Safety

The three indexes, i.e. "ROE", "Total Capital Turnover" and "Net Profit Margin", referred in earlier, are all for examining the profitability. The leverage ratio is the only index to show the safety in this analysis. The index is to indicate the following; *The scale of loan* 

The capacity of self –owned capital to pay back loan The scale of loan to increase return in addition to the use of own capital

1) 2014 : 63.5%

2) 2013 : 64.3%

Interest-bearing Debt in 2014 was 63.5% of the equity capital. In 2013, the one in 2013 was 64.3%. It is possible to payback the loans by the own capital both year of 2014 and 2013 within the range of own equity. Even if the remaining debt is cleared by the full lump-sum repayment, more than 30% of the equity still remain. Thus, the stability is very high. However, focusing on the less use of borrowed capital, it comes to leverage effect is rather low.

#### 2. Financial Strength Rating

The loan conditions of the Asian Development Bank (ADB) for the NTDCL, the following two conditions are the key indexes:

(1) Debt Service Coverage Ratio (DSCR)

NTDC will maintain a Debt Service Coverage Ratio (DSCR) at least 1.2 from 2010 onward. (2) A Self-Financing Ratio

NTDC will maintain a Self-Financing Ratio of at least 20% from 2008 onward

The survey conducted by the latest visit in June 2016,

(1) Debt Service Coverage Ratio (DSCR) : There is no data and information available.

(2) Self-Financing Ratio<sup>19</sup> : The following data was provided by the Finance Department

Confirming the fact that both years clear 20% of the minimum requirement proposed by ADB, for (2) above, i.e. Self-Financing Ratio, 65.71% in 2014 and 36.34% in 2013 were identified and detailed as follows;

2014:65.71%
Own Source : Rs, 17,302,114,404
Total Expenditure : Rs, 26,332,163,333
A Self-Financing Ratio : Rs, 17,302,114,404 / Rs, 26,332,163,333 = 65.71%
2) 2013: 36.34%
Own Source : Rs, 4,699,236,907
Total Expenditure : Rs, 12,929,843,140
A Self-Financing Ratio : Rs, 4,699,236,907 / Rs, 12,929,843,140 = 36.34%

<sup>&</sup>lt;sup>19</sup> Obtained by the interview with the Finance Department of NTDCL provided by the Finance

|                                                                                                                                                                                                                                                                                         | sStatement                                                                                                                                                                         |                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As at 30 June 2014                                                                                                                                                                                                                                                                      | 2014                                                                                                                                                                               | 2013                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    | (restated)                                                                                                                                                                               |
| ASSETS                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                          |
| Current Assets                                                                                                                                                                                                                                                                          | [                                                                                                                                                                                  | ·                                                                                                                                                                                        |
| Cash and bank balances                                                                                                                                                                                                                                                                  | 25,499,459,033                                                                                                                                                                     | 17,232,470,579                                                                                                                                                                           |
| Trade debts                                                                                                                                                                                                                                                                             | 365,856,969,014                                                                                                                                                                    | 234,882,321,605                                                                                                                                                                          |
| Stores, spare parts and losse tools                                                                                                                                                                                                                                                     | 9,353,132,102                                                                                                                                                                      | 9,366,579,366                                                                                                                                                                            |
| Receivable from Gorvernment of Pakistan                                                                                                                                                                                                                                                 | 31,000,000,000                                                                                                                                                                     | 31,000,000,000                                                                                                                                                                           |
| Current portion of long term loans and advances                                                                                                                                                                                                                                         | 50,752,012                                                                                                                                                                         | 47,497,265                                                                                                                                                                               |
| advances                                                                                                                                                                                                                                                                                | 26,862,998,841                                                                                                                                                                     | 41,519,112,974                                                                                                                                                                           |
| Accrued Mark up                                                                                                                                                                                                                                                                         | 23,958,166                                                                                                                                                                         | 19,525,414                                                                                                                                                                               |
| Other receivables<br>Short term investments                                                                                                                                                                                                                                             | 74,493,087,038                                                                                                                                                                     | 44,191,909,025                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                         | 533,140,356,206                                                                                                                                                                    | 378,259,416,228                                                                                                                                                                          |
| Non-current Assets                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                          |
| Property,plant and equipment                                                                                                                                                                                                                                                            | 150,262,851,292                                                                                                                                                                    | 127,321,282,099                                                                                                                                                                          |
| Long term loans and advances                                                                                                                                                                                                                                                            | 1,254,108,907                                                                                                                                                                      | 1,225,830,385                                                                                                                                                                            |
| Long term deposits                                                                                                                                                                                                                                                                      | 7,466,823                                                                                                                                                                          | 7,466,823                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                         | 151,524,427,022                                                                                                                                                                    | 128,554,579,307                                                                                                                                                                          |
| Total Assets                                                                                                                                                                                                                                                                            | 684,664,783,228                                                                                                                                                                    | 506,813,995,535                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                          |
| Current Liabilities                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                          |
| Frade and other payables                                                                                                                                                                                                                                                                | 499,585,805,448                                                                                                                                                                    | 341,748,749,931                                                                                                                                                                          |
| Frade and other payables<br>Short term borrowings                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                          |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up                                                                                                                                                                                                                    | 7,558,222,392                                                                                                                                                                      | 4,414,657,115                                                                                                                                                                            |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans                                                                                                                                                                              | 7,558,222,392<br>26,817,388,172                                                                                                                                                    | 4,414,657,115<br>17,513,477,645                                                                                                                                                          |
| <u>Current Liabilities</u><br>Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation                                                                                                                      | 7,558,222,392<br>26,817,388,172<br>0                                                                                                                                               | 4,414,657,115<br>17,513,477,645<br>55,500,187                                                                                                                                            |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation                                                                                                                                                    | 7,558,222,392<br>26,817,388,172                                                                                                                                                    | 4,414,657,115<br>17,513,477,645<br>55,500,187                                                                                                                                            |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation                                                                                                                                                    | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012                                                                                                                            | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878                                                                                                                         |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans                                                                                               | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150                                                                                                          | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698                                                                                                       |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans                                                                                                                                                                              | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681                                                                                        | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000                                                                                     |
| Trade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities<br>leferred taxation                                                  | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469                                                                       | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130                                                                    |
| Trade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities<br>leferred taxation                                                  | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681                                                                                        | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130<br>54,696,874                                                      |
| Trade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities<br>leferred taxation<br>Deferred credit                               | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469<br>5,218,817,975                                                      | 4,414,657,115<br>17,513,477,645                                                                                                                                                          |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities                                                                       | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469<br>5,218,817,975<br>59,971,139,275                                    | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130<br>54,696,874<br>59,311,144,702                                    |
| Trade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities<br>leferred taxation<br>Deferred credit<br>Share Capital and Reserves | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469<br>5,218,817,975<br>59,971,139,275                                    | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130<br>54,696,874<br>59,311,144,702                                    |
| Frade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br><b>Non-Current Liabilities</b><br>Long term loans<br>Deferred liabilities<br>leferred taxation<br>Deferred credit<br>Share Capital and Reserves | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469<br>5,218,817,975<br>59,971,139,275                                    | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130<br>54,696,874<br>59,311,144,702<br>52,700,381,000<br>7,163,232,938 |
| Trade and other payables<br>Short term borrowings<br>Accrued Mark up<br>Current portion of long term loans<br>Provision for taxation<br>Non-Current Liabilities<br>Long term loans<br>Deferred liabilities<br>leferred taxation<br>Deferred credit<br>Share Capital and Reserves        | 7,558,222,392<br>26,817,388,172<br>0<br>533,961,416,012<br>32,094,679,150<br>16,557,461,681<br>6,100,180,469<br>5,218,817,975<br>59,971,139,275<br>52,700,381,000<br>7,163,232,938 | 4,414,657,115<br>17,513,477,645<br>55,500,187<br>363,732,384,878<br>37,603,952,698<br>15,609,095,000<br>6,043,400,130<br>54,696,874                                                      |

#### Profit and Loss Account

For the year ended 30 June

|                                                              | 2014                                   | 2013                                 |
|--------------------------------------------------------------|----------------------------------------|--------------------------------------|
| Sales-Net                                                    | 1,016,964,904,009<br>(997,128,569,006) | 894,922,559,635<br>(878,088,008,357) |
| Cost of electricity                                          | 19,836,335,003<br>7,153,811,174        | 16,834,551,278                       |
| Operating expences*1<br>Finance cost                         | 12,682,523,829<br>1,364,623,545        | 14,770,870,780<br>748,674,385        |
|                                                              | (14,047,147,374)                       | (15,519,545,165)                     |
| Other income*2                                               | 1,609,228,411                          | 96,859,704,195                       |
| Profit for the year                                          | 7,398,416,040                          | 98,174,710,308                       |
| Taxation                                                     |                                        | 2,690,710,647                        |
| -Current                                                     | 0                                      | (83,911,250)                         |
| -Deferred                                                    | (56,780,339)                           | (38,666,814,204)                     |
| (Loss)/profit for the year                                   | 7,341,635,701                          | 59,423,984,854                       |
| Other comprehensive income:                                  |                                        |                                      |
| Remeasurement of obligation of employees retirement benefits | 410,632,000                            | (4,211,148,000)                      |
| Total comprehensive income                                   | 7,752,267,701                          | 55,212,836,854                       |
| for the year                                                 |                                        |                                      |

## ANNEX 8.4.6-1 Resuts of plant survey

|     |                         |            |                | Life Form |       |       |      |       |         |         |
|-----|-------------------------|------------|----------------|-----------|-------|-------|------|-------|---------|---------|
| No. | Botanical Name          | Local Name | Family         | Herb      | Shrub | Grass | Tree | Sedge | Climber | Creeper |
| 25. | Broussonwsia papyrifera |            | Malvaceae      |           |       |       | х    |       |         |         |
| 26. | Bulboschoenus glaucus   |            | Cyperaceae     |           |       |       |      | Х     |         |         |
| 27. | Callistemon lanceolatus |            | Myrtaceae      |           |       |       | Х    |       |         |         |
| 28. | Calotropis procera      | Ak         | Asclepiadaceae |           | Х     |       |      |       |         |         |
| 29. | Canna indica            |            | Cannaceae      | х         |       |       |      |       |         |         |
| 30. | Cannabis sativus        |            | Cannabaceae    | Х         |       |       |      |       |         |         |
| 31. | Carthamus oxycantha     | Pohli      | Asteraceae     | Х         |       |       |      |       |         |         |
| 32. | Cenchrus ciliaris       | Dhamni     | Poaceae        |           |       | х     |      |       |         |         |
| 33. | Chenopodium album       | Bathu      | Chenopodiaceae | Х         |       |       |      |       |         |         |
| 34. | Chenopodium murale      |            | Chenopodiaceae | Х         |       |       |      |       |         |         |
| 35. | Cleome viscosa          |            | Tiliaceae      | Х         |       |       |      |       |         |         |
| 36. | Convolvulus arvensis    |            | Convolvulaceae |           |       |       |      |       |         | Х       |
| 37. | Conyza canadensis       |            | Asteraceae     | Х         |       |       |      |       |         |         |
| 38. | Corriandrum sativum     |            | Umbelliferae   | Х         |       |       |      |       |         |         |
| 39. | Cynodon dactylon        | Ghass      | Poaceae        |           |       | Х     |      |       |         |         |
| 40. | Cupressus sp.           | Sarroo     | Cuppressaceae  |           |       |       | X    |       |         |         |
| 41. | Cuscuta reflexa         | Akashbel   | Cuscutaceae    |           |       |       |      |       | Х       |         |
| 42. | Dalbergia sissoo        | Taali      | Papilionaceae  |           |       |       | X    |       |         |         |
| 43. | Datura innoxia          | Dhatura    | Solanaceae     | Х         |       |       |      |       |         |         |
| 44. | Desmostachya bipinnata  |            | Poacaee        |           |       | X     |      |       |         |         |
| 45. | Dicanthium annulatum    | -          | Poaceae        |           |       | Х     |      |       |         |         |
| 46. | Dodonaea viscosa        |            | Sapindaceae    |           | X     |       |      |       |         |         |
| 47. | Enneapogon schimperanus |            | Poaceae        |           |       | X     |      |       |         |         |
| 48. | Eucalyptus globulus     |            | Myrtaceae      |           |       |       | x    |       |         |         |

Life Form **Botanical Name** Family No. Local Name Sedge Creeper Herb Shrub Grass Tree Climber Myrtaceae 49. Eugenia jambolana х 50. *Chrozophora tinctoria* Euphorbiaceae х 51. Ficus benghalensis Moraceae Х 52. Ficus religiosa Peepal Moraceae х 53. Ficus virgata Phagwara Moraceae Х Fumaria indica 54. Fumariaceae Х Ipomoea carnea 55. Convolvulaceae Х Jasminum humile 56. Oleaceae Х 57. Lantana camara Verbenaceae Х 58. Leucaena leucocephala Mimosaceae Х 59. Malvastrum Malvaceae х coromendelianu 60. Maytenus royleanus Pattakh Celastraceae Х 61. *Melia azadirach* Dhrek Meliaceae х 62. *Melilotus parviflora* Papilionaceae Х Mentha longifolia Podina 63. Lamiaceae Х Mentha sylvestris Podina Lamiaceae 64. Х Moringa oleifera Sohanjna Moringaceae 65. Х 66. Morus alba Moraceae Toot siah х 67. Morus nigra Shahtoot Moraceae х Salix alba 68. Salicaceae Х Nerium oleander 69. Apocynaceae Х Nicotiana tobbacum Solanaceae 70. Tambakoo Х Olea ferruginea 71. Oleaceae х 72. Opuntia ficus-indica Cactaceae Х

| <b>N</b> 7 |                          | <b>T</b> 131 | <b>F</b> 1    | Life Form |       |       |      |       |         |         |
|------------|--------------------------|--------------|---------------|-----------|-------|-------|------|-------|---------|---------|
| No.        | Botanical Name           | Local Name   | Family        | Herb      | Shrub | Grass | Tree | Sedge | Climber | Creeper |
| 73.        | Peristrophe paniculata   |              | Acanthaceae   | Х         |       |       |      |       |         |         |
| 74.        | Pinus roxburghii         | Chir         | Pinaceae      |           |       |       | Х    |       |         |         |
| 75.        | Pongamia pinnata         | Sukhchain    | Papilionaceae |           |       |       | Х    |       |         |         |
| 76.        | Prosopis glandulosa      | Devi         | Mimosaceae    |           | Х     |       |      |       |         |         |
| 77.        | Prosopis juliflora       | Devi         | Mimosaceae    |           | Х     |       |      |       |         |         |
| 78.        | Psidium guava            | Amrud        | Myrtaceae     |           |       |       | х    |       |         |         |
| 79.        | Rhazya stricta           |              | Apocynaceae   |           | Х     |       |      |       |         |         |
| 80.        | Tamarix aphylla          |              | Tamaricaceae  |           |       |       | х    |       |         |         |
| 81.        | Taraxacum officinale     |              | Asteraceae    | Х         |       |       |      |       |         |         |
| 82.        | Thevetia peruviana       | Peeli kaner  | Apocynaceae   |           | X     |       |      |       |         |         |
| 83.        | Thuja orientalis         |              | Cupressaceae  |           | Х     |       |      |       |         |         |
| 84.        | Otostegia limbata        | Bui          | Lamiaceae     |           | X     |       |      |       |         |         |
| 85.        | Oxalis corniculata       |              | Oxalidaceae   | Х         |       |       |      |       |         |         |
| 86.        | Parthenium hysterophorus | Chitti Booti | Asteraceae    | Х         |       |       |      |       |         |         |
| 87.        | Phragmites karka         | Naro         | Poaceae       |           |       | Х     |      |       |         |         |
| 88.        | Phoenix sylvestris       | Khajoor      | Palmae        |           |       |       | х    |       |         |         |
| 89.        | Populus alba             |              | Salicaceae    |           |       |       | х    |       |         |         |
| 90.        | Punica granatum          |              | Punicaceae    |           | х     |       |      |       |         |         |
| 91.        | Riccinus communis        |              | Euphorbiaceae |           | X     |       |      |       |         |         |
| 92.        | Rosa alba                |              | Rosaceae      |           | X     |       |      |       |         |         |
| 93.        | Musa indica              | Kela         | Musaceae      |           |       |       | х    |       |         |         |
| 94.        | Saccharum benghalense    |              | Poaceae       |           |       | Х     |      |       |         |         |
| 95.        | Saccharum spontanaeum    |              | Poaceae       |           |       | X     |      |       |         |         |
| 96.        | Salvia moorcroftiana     |              | Lamiaceae     | X         |       |       |      |       |         |         |

Life Form **Botanical Name** Local Name Family No. Herb Shrub Tree Climber Grass Sedge Creeper Schoenoplectus littoralis Cyperaceae 97. Х 98. Solanum nigrum Mako Solanaceae Х 99. Solanum surattense Katari Solanaceae Х 100 Sonchus asper Dodhal Asteraceae Х 101 Sonchus oleraceous Dodhak Asteraceae х 102 Typha latifolia Pan Typhaceae Х 103 Withania somnifera Asgand Nagori Solanaceae Х Verbascum thapsus 104 Scrophulariaceae Х 105 Verbena tenuisecta Verbenaceae Х Verbena americanum 106 Verbenaceae Х 107 Vitex negundo Verbenaceae х 108 Xanthium strumarium Asteraceae Х 109 Ziziphus mauritiana Rhamnaceae х 110 Ziziphus nummularia Jangli Ber Rhamnaceae Х

## Pictorial view of the study area







Volume 3.

The Plan for Installation of New Transmission Line

# Contents –Vol.3–

| Chapter1 Objective of the Project and the Current Power Flow on the Target Grid System   | 1       |
|------------------------------------------------------------------------------------------|---------|
| 1.1 Objective of the Project                                                             | 1       |
| Chapter2 Current Situation of Power Flow and Voltage of the Target System of the Project | t2      |
| 2.1 Power System Analysis                                                                | 2       |
| 2.1.1 Study Phase                                                                        | 2       |
| 2.1.2 Target System for the Analysis                                                     | 2       |
| 2.1.3 Power System Analysis Model                                                        | 3       |
| 2.2 Power Flow Analysis                                                                  | 4       |
| 2.3 Short-circuit Fault Current Analysis                                                 | 8       |
| 2.4 Transient Stability Analysis                                                         | 9       |
| 2.4.1 Evaluation Criteria                                                                | 9       |
| 2.4.2 Study Cases                                                                        | 9       |
| 2.4.3 Analysis Results                                                                   | 10      |
| Chapter3 The Outline of Installation of New Transmission Line Facilities                 | 11      |
| 3.1 Transmission Line Facilities                                                         | 11      |
| 3.1.1 Specification of New Transmission Line Facilities                                  | 11      |
| 3.1.2 Selection of Conductor                                                             | 12      |
| 3.1.3 Outline Study of Transmission Line Facilities                                      | 13      |
| 3.2 Substation                                                                           | 19      |
| 3.2.1 Basic Concept of the Design                                                        | 19      |
| 3.2.2 The Selection of Optimum Plan and Outline Design (Results of stu                   | ıdy of  |
| specifications)                                                                          | 19      |
| 3.2.3 Layout of ISD. Univ substation                                                     | 21      |
| Chapter4 Construction Method                                                             | 23      |
| 4.1 Construction Method of Transmission Line Facilities                                  | 23      |
| 4.2 Construction of Substation                                                           | 24      |
| Chapter5 Implementation Schedule of this Project                                         | 25      |
| 5.1 Implementation Schedule for the New Transmission Line (Confidential)                 | 25      |
| 5.2 Implementation Schedule for the Substation (Confidential)                            | 25      |
| Chapter6 Estimated Construction Cost                                                     | 26      |
| 6.1 Estimated Construction Cost for the New Transmission Line (Confidential)             | 26      |
| 6.2 Budgetary Cost of the Substation (Confidential)                                      | 26      |
| 6.3 Schedule and Cost Estimation of the Consulting Service (Confidential)                | 26      |
| 6.4 Finance of Implementation Cost of the New Transmission Line Constr                   | ruction |

| 9.2.2 Issues and Recommendations on Power System Analysis | . 63 |
|-----------------------------------------------------------|------|
| 9.2.3 Issues of the Transmission Line                     | . 64 |
| 9.2.4 Issues of the Substation                            | . 64 |
| 9.2.5 Issues of Environmental and Social Considerations   | . 65 |

# Contents of Tables –Vol.3–

| Table 2.1.1   | Conductor Types assumed for the Power System Analysis Model          | . 3 |
|---------------|----------------------------------------------------------------------|-----|
| Table 2.1.2   | Conductor Types assumed for the Power System Analysis Model          | . 3 |
| Table 2.1.3   | Line Constants used for the Power System Analysis Model              | .4  |
| Table 2.2.1   | Fault Sections Assumed for N-1 Contingency Condition                 | .4  |
| Table 2.2.2   | Power Flow Analysis Results (2018 Summer Peak)                       | . 5 |
| Table 2.2.3 I | Power Flow Analysis Results (2020 Summer Peak and Winter Off-peak Lo | ad  |
| Condition     | ons)                                                                 | .7  |
| Table 2.3.1   | Three-phase Short-circuit Fault Current in 2018                      | . 8 |
| Table 2.3.2   | Three-phase Short-circuit Fault Current in 2020                      | . 8 |
| Table 2.4.1   | Fault Section                                                        | .9  |
| Table 2.4.2   | Fault Sequence                                                       | .9  |
| Table 2.4.3   | Transient Stability Analysis Results                                 | 10  |
| Table 3.1.1   | Suspension Tower Design Condition                                    | 15  |
| Table 3.1.2   | Specifications of Insulator                                          | 17  |
| Table 3.2.1   | Scope of the substation equipment and the associated works in the    |     |
| reinforc      | ement project                                                        | 19  |
| Table 3.2.2   | ISD. Univ Substation : Expansion Specification                       | 22  |
| Table 7.1.1   | Vegetation of MHNP                                                   | 30  |
| Table 7.1.2   | IUCN red list plants recorded around the project site                | 31  |
| Table 7.1.3   | Number of IUCN red list species around MHNP                          | 32  |
| Table 7.1.4   | Number and areas of the Protected areas                              | 33  |
| Table 7.1.5   | Five zones of ICT                                                    | 36  |
| Table 8.2.1   | Comparison of alternative route                                      | 45  |
| Table 8.3.1   | Results of the first alternative study                               | 49  |
| Table 8.3.2   | Results of the second alternative study                              | 51  |
| Table 8.3.3   | Opinions of the participants of the second SHM                       | 51  |
| Table 8.3.4   | Seven alternatives discussed at the second Stakeholder Meeting       | 52  |
| Table 9.1.2   | Plan View of Zero Point Substation                                   | 58  |

# Contents of Figures -Vol.3-

| Figure 1.1.1 | Outline of Grid System on Project Target Area1                                |
|--------------|-------------------------------------------------------------------------------|
| Figure 2.1.1 | System configuration of the New Construction Section and Target of Power      |
| Flow An      | alysis2                                                                       |
| e            | Power Flow Diagram (With Project: 2018 Summer Peak, Normal Operation)         |
|              | Power Flow Diagram (Without Project: Normal Operation Conditions) 6           |
| Figure 2.2.3 | System Configuration of the Project Target Area in 20207                      |
| Figure 3.1.2 | Comparison of each conductor sag (No wind and snow, 90 deg.C,                 |
| T=1,970      | kg/wire)                                                                      |
| Figure 3.1.3 | Standard Double Circuit Tower                                                 |
| Figure 3.1.4 | Outline Drawings of Spread Foundation17                                       |
| Figure 3.1.5 | Outline Drawings of Pile Foundation17                                         |
| Figure 3.1.6 | Outline diagram of OP-AC97sq                                                  |
| Figure 3.2.1 | Transmission Line and Line Bay for ISD.Univ Substation                        |
| Figure 3.2.2 | Layout of Expansion Area of ISD. Univ Substation                              |
| Figure 3.2.3 | Single Line Diagram of Expansion Area of ISD. Univ Substation                 |
| Figure 7.1.1 | Temperature and rainfall of Islamabad27                                       |
| Figure 7.1.2 | Geography around the project site                                             |
| Figure 7.1.3 | Land use around the project site                                              |
| Figure 7.1.4 | Landcover Map of MHNP                                                         |
| Figure 7.1.5 | Margalla Hills National Park area map                                         |
| Figure 7.1.6 | Administrative boundaries around the project site                             |
| Figure 7.1.7 | Zoning plan of ICT                                                            |
| Figure 7.1.8 | Infrastructure near the MHNP                                                  |
| Figure 8.1.1 | Overview of Transmission Line Route                                           |
| Figure 8.2.1 | NTDCL's Plan                                                                  |
| Figure 8.2.2 | Location of origin-destination of new transmission line and control point for |
| route stu    | dy                                                                            |
| Figure 8.2.3 | Acceptable vegetation height and tower height                                 |
| Figure 8.2.4 | Route Comparison                                                              |
| Figure 8.2.5 | NTDCL's Plan                                                                  |
| Figure 8.2.6 | Alternative-1                                                                 |
| Figure 8.2.7 | Alternative-2                                                                 |
| Figure 8.3.1 | Three alternatives discussed at the first Stakeholder Meeting                 |
|              |                                                                               |

| Figure 9.1.1 | Outline Diagram of Zero Point Substation Enhancement | . 56 |
|--------------|------------------------------------------------------|------|
| Figure 9.1.2 | Transmission Line Route of Alternative-3e            | . 61 |

# Contents of Photos –Vol.3–

| Photo 7.1.1 | Mountain view from the Zero Point in ICT                | . 38 |
|-------------|---------------------------------------------------------|------|
| Photo 7.1.2 | City view and Faisal Mosque from the view point in MHNP | . 38 |
| Photo 9.1.1 | Arterial location on transmission line route            | . 62 |

# Volume.3 The Plan for Installation of the New Transmission Line Chapter1 Objective of the Project and the Current Power Flow on the Target Grid System

#### 1.1 Objective of the Project

The Islamabad University substation provides power to the facilities of parliament, the office of the prime minister, and government offices in Islamabad. The Islamabad University substation is presently being fed from a single source from Tarbela Hydro Power House through the 500kV Rawat substation. In the case of fault at the 500kV Rawat substation, the supply to Islamabad University is interrupted. Therefore, an additional source of supply to Islamabad University has been proposed to improve the reliability of the power supply to the Islamabad Capital Territory.



Figure 1.1.1 Outline of Grid System on Project Target Area

## Chapter2 Current Situation of Power Flow and Voltage of the Target System of the Project

#### 2.1 Power System Analysis

#### 2.1.1 Study Phase

As the power flow and voltage analysis study years, 2018 (immediately after completion of the Tarbela hydropower station 4<sup>th</sup> extension project<sup>1</sup> (1,410MW)) and 2020 (expected completion year of the Tarbela hydropower station 5<sup>th</sup> extension project (1,410MW)) were selected. For 2018, the summer peak load condition was analyzed, and for 2020, both summer peak load and winter off-peak load conditions were analyzed.

#### 2.1.2 Target System for the Analysis

Power flow analysis for the new construction section (from the branch point to the Islamabad University substation at 220kV Mansehra-ISPR line to the Islamabad University substation) was carried out. The system configuration of the target system is shown in Figure 2.1.1.<sup>2</sup>



(Source: JICA Survey Team)

Figure 2.1.1 System configuration of the New Construction Section and Target of Power Flow Analysis

<sup>&</sup>lt;sup>1</sup> According to the information in the PC-1 prepared by NTDCL Planning Power in July 2014, the expected Tarbela 4<sup>th</sup> extension project completion year was 2017; however, based on the information obtained by the interview with the World Bank in December 2015, the expected commissioning year was 2018. Therefore, the updated information was taken into consideration.

<sup>&</sup>lt;sup>2</sup> LL-ACSR/AC (Low Electrical Power Loss Aluminum Conductor, Aluminum-Clad Steel) is a type of low loss conductor

#### 2.1.3 Power System Analysis Model

The power system analysis model which covered the overall NTDCL network for the year 2018 and 2020 was provided by NTDCL. The model was modified taking into account both with and without the project, namely, the replacement of conductors and construction of the new transmission line. As for the system configuration of the Tarbela-Burhan section, the following conductors were assumed:

1) Tarbela-Burhan circuit No.1 and 2: Twin-bundled Rail

2) Tarbela-Burhan circuit No.3: Twin-bundled LL-ACSR/AC 610

Tarbela-Burhan section of Tarbela-ISPR express line: Twin-bundled LL-ACSR/AC 610

The conductor types assumed for the "With Project" case are shown in Table 2.1.1, while the conductor types assumed for the "Without Project" case are shown in Table 2.1.2.

Table 2.1.1 Conductor Types assumed for the Power System Analysis Model("With Project" Case)

| Transmission Line            | Circuit | Conductor Type                | Length |
|------------------------------|---------|-------------------------------|--------|
|                              | No.     |                               |        |
| 220kV branch point (Mansehra | 1       | LL-ACSR/AC 610 (twin-bundle)  | 40km   |
| side) – Islamabad University | 1       | LL-ACSK/AC 010 (twin-buildle) | 40km   |
| 220kV Islamabad University – | 1       | LL-ACSR/AC 610 (twin-bundle)  | 40km   |
| branch point (ISPR side)     | 1       | LL-ACSR/AC 010 (twin-buildle) | 40KIII |

(Source: JICA Survey Team)

Table 2.1.2 Conductor Types assumed for the Power System Analysis Model ("Without Project" Case)

| Transmission Line     | Circuit No. | Conductor Type   | Length |  |  |  |
|-----------------------|-------------|------------------|--------|--|--|--|
| 220kV Mansehra - ISPR | 1, 2        | Twin-bundle Rail | 123km  |  |  |  |

(Source: JICA Survey Team)

The line constants used for power system analysis models are shown in Table 2.1.3.

|                | Circuit        | Number | Positive seq | uence impedan | ce (p.u./km) | Transmission<br>Capacity |
|----------------|----------------|--------|--------------|---------------|--------------|--------------------------|
| Conductor Type | No. of bundles | R      | Х            | В             | (MVA)        |                          |
| Rail           | 1              | 2      | 0.00007778   | 0.00058889    | 0.00192222   | 674                      |
| LL-ACSR/AC610  | 1              | 2      | 0.00005197   | 0.00054685    | 0.00193751   | 919.8                    |

Table 2.1.3 Line Constants used for the Power System Analysis Model

(Source: JICA Survey Team)

All networks are modeled and simulated with the Siemens PTI Power System Simulator for Engineering (PSS/E) ver.33, which NTDCL uses.

#### 2.2 Power Flow Analysis

Power flow analysis for both "With Project" and "Without Project" cases for the year 2018 (summer peak load condition) was carried out. As the N-1 contingency condition, single circuit fault of the following sections are assumed.

| No. Fault Section |                                               |  |  |  |  |
|-------------------|-----------------------------------------------|--|--|--|--|
| 1                 | Mansehra – ISPR ("Without Project" case only) |  |  |  |  |
| 2                 | Mansehra - Islamabad University               |  |  |  |  |
| 3                 | Islamabad University - ISPR                   |  |  |  |  |

Table 2.2.1 Fault Sections Assumed for N-1 Contingency Condition

(Source: JICA Survey Team)

#### a) With Project Case

[Power Flow Analysis Results (2018 Summer Peak Load Condition)]

The analysis result and power flow diagram is shown in Table 2.2.2 and Figure 2.2.1, respectively. As shown in the Table, no overload occurred to the relevant 220kV transmission lines and transformers of the 220kV system around the Islamabad University substation.

| Normal Operation                                     | N-1 Contingency     |                                 |                             |  |  |
|------------------------------------------------------|---------------------|---------------------------------|-----------------------------|--|--|
|                                                      | Mansehra - ISPR     | Mansehra - Islamabad University | Islamabad University - ISPR |  |  |
| No overloading of transmission lines or transformers | Same as on the left | Same as on the left             | Same as on the left         |  |  |

Table 2.2.2 Power Flow Analysis Results (2018 Summer Peak)

(Source: JICA Survey Team)



(Source: JICA Survey Team)

Figure 2.2.1 Power Flow Diagram (With Project: 2018 Summer Peak, Normal Operation)

#### b) Without Project Case

The loading of three (3) units of 220/132kV transformers at ISPR substation is 101.6% (487.6MVA) of the rated capacity of the transformers (160MVA x 3) even under normal operation conditions. No overload occurred to the 220kV transmission lines in the surrounding 220kV system under both normal operation conditions and the N-1 contingency condition (Mansehra-ISPR single circuit fault). The power flow diagram is shown in Figure 311-2. The transformer colored orange indicates that the transformer is loaded over 100% of its rated capacity.



(Source: JICA Survey Team)

Figure 2.2.2 Power Flow Diagram (Without Project: Normal Operation Conditions)

[Power Flow Analysis Results in 2020]

Power flow analysis was carried out for both summer peak and winter off-peak conditions in 2020.

Figure 2.2.3, and the power flow analysis result for the system in 2020 for both summer peak and winter off-peak load conditions are summarized in Table 2.2.3.



(Source: JICA Survey Team)

Figure 2.2.3 System Configuration of the Project Target Area in 2020

# Table 2.2.3 Power Flow Analysis Results (2020 Summer Peak and Winter Off-peakLoad Conditions)

|                 |                                                            | N-1 Contingency         |                               |                                         |  |  |
|-----------------|------------------------------------------------------------|-------------------------|-------------------------------|-----------------------------------------|--|--|
| Load Condition  | Normal Operation                                           | Mansehra-Islamabad West | Mansehra-Islamabad University | Islamabad University-<br>Islamabad West |  |  |
| Summer Peak     | No overloading of<br>transmission lines or<br>transformers | Same as on the left     | Same as on the left           | Same as on the left                     |  |  |
| Winter Off-peak | No overloading of<br>transmission lines or<br>transformers | Same as on the left     | Same as on the left           | Same as on the left                     |  |  |

(Source: JICA Survey Team)

As shown in Table 2.2.3, no overload occurred to the relevant transmission lines and transformers under normal operation and N-1 contingency conditions for both summer peak load and winter off-peak load conditions in 2020.

#### 2.3 Short-circuit Fault Current Analysis

The three-phase short-circuit fault current was calculated for the substation buses of the Islamabad-Burhan region and its peripheral system for the year 2018 and 2020.<sup>3</sup> For 2018, calculation was carried out for all of the eight (8) candidate plans in which different conductor replacement sections and types of conductors were taken into account (See Volume 2 Annex 2.2.2-1 Table 1). Plan 8 is the final proposal of the survey team. For 2020, calculation was carried out only for the Plan 8.

The three-phase short-circuit fault current for each of the substation buses in 2018 and 2020 is summarized in Table 2.3.1 and Table 2.3.2, respectively.

The three-phase short-circuit current value at the 220kV bus of the Islamabad University substations and ISPR substation, relevant to this project, were below the breaking capacity of the existing circuit breaker (40kA) in all cases. Therefore, it is not considered necessary to upgrade the breaking capacity of the circuit breakers of the substation in question.

Table 2.3.1 Three-phase Short-circuit Fault Current in 2018

| Due Neme             | Bus Voltage Three-phase Short-circuit Current (kA) |        |        |        |        |        |        |        |        |
|----------------------|----------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Bus Name             | (kV)                                               | Plan 1 | Plan 2 | Plan 3 | Plan 4 | Plan 5 | Plan 6 | Plan 7 | Plan 8 |
| ISPR                 | 220                                                | 25.9   | 26.4   | 24.9   | 26.6   | 26.5   | 24.6   | 28.1   | 26.8   |
| Islamabad University | 220                                                | 25.4   | 25.5   | 25.3   | 25.5   | 25.5   | 25.2   | 25.7   | 25.5   |

(Source: JICA Survey Team)

Table 2.3.2 Three-phase Short-circuit Fault Current in 2020

| Bus Name             | Bus Voltage<br>(kV) | Three-phase<br>Short-circuit<br>Current (kA)<br>Plan 8 |
|----------------------|---------------------|--------------------------------------------------------|
| ISPR                 | 220                 | 35.0                                                   |
| Islamabad University | 220                 | 29.4                                                   |

<sup>&</sup>lt;sup>3</sup> The rated breaking capacity of the circuit breakers to be installed in a substation is selected in order to break the maximum three phase short circuit current, which is the severest fault current of the short circuit fault.

#### 2.4 Transient Stability Analysis

Transient stability analysis was carried out for the year 2018 for the candidate plan 8, which is the final proposal of the survey team.<sup>4</sup>

#### 2.4.1 Evaluation Criteria

The system was considered stable if the amplitude of the oscillation waveform of the phase angle difference of the generator rotors of two primary power stations in the northern Pakistan area which is closed to the Islamabad and Burhan area is likely to converge under the N-1 contingency condition of the project target transmission lines for both of the following two cases stated in NEPRA Grid Code:

- i. Normal Clearing: Main Protection (5 cycles, 100msec)
- ii. Stuck Breaker Condition: Back-up Protection (9 cycles, 180msec)

#### 2.4.2 Study Cases

A "Single line three-phase short-circuit fault without reclosing" of the sections shown in Table 2.4.1was assumed for the analysis. The fault sequence is shown in Table 2.4.2.

| Case No. | Fault Section                   |
|----------|---------------------------------|
| 1        | Mansehra – Islamabad University |
| 2        | ISPR – Islamabad University     |

Table 2.4.1 Fault Section

(Source: JICA Survey Team)

| N        | ormal Clearing Condition                                   | Stuck Breaker Condition |                                                            |  |
|----------|------------------------------------------------------------|-------------------------|------------------------------------------------------------|--|
| Time     | Sequence                                                   | Time                    | Sequence                                                   |  |
| 0 msec   | Single circuit three-phase short-<br>circuit fault occurs. | 0 msec                  | Single circuit three-phase short-<br>circuit fault occurs. |  |
| 100 msec | Fault Cleared (Trip the faulted Line)                      | 180 msec                | Fault Cleared (Trip the faulted Line)                      |  |
| 10 sec   | End of Calculation                                         | 10 sec                  | End of Calculation                                         |  |

<sup>&</sup>lt;sup>4</sup> The transient stability analysis for 2020 summer peak and winter off-peak conditions was not carried out due to incomplete dynamic data (several tens of generator models were missing). Therefore, it is necessary to confirm the stability in detailed design stage.

The reference of the phase angle difference is set to the Muzaffargarh power station, which is also assumed by NTDCL Planning Power for their analysis practice. The following power stations located near the Islamabad and Burhan area in the northern system are considered for phase angle comparison:

- Tarbela (Hydro)
- Ghazi Barotha (Hydro)
- Mangla (Hydro)
- Allai Khwar (Hydro)
- Neelum Jehlum (Hydro)
- Chasnupp-1/ Chasnupp -2 (Nuclear)
- Chasnupp -3/ Chasnupp -4 (Nuclear)

#### 2.4.3 Analysis Results

The analysis results are summarized in Table 2.4.3. The results shows that the NTDCL power system in the Islamabad and Burhan area and the surrounding northern system remains stable in the case of single line fault of the project target transmission lines for both normal clearing and stuck breaker conditions.

|             |                       |         | , ,                                |                                |
|-------------|-----------------------|---------|------------------------------------|--------------------------------|
| Study Phase | Fault Sec<br>Case     | etion   | Mansehra<br>- Islamabad University | ISPR<br>- Islamabad University |
| 2018 Summer | Normal C<br>Condition | learing | Stable                             | Stable                         |
| Peak        | Stuck E<br>Condition  | Breaker | Stable                             | Stable                         |

Table 2.4.3 Transient Stability Analysis Results

## Chapter3 The Outline of Installation of New Transmission Line Facilities

#### 3.1 Transmission Line Facilities

#### 3.1.1 Specification of New Transmission Line Facilities

Specification of new transmission line facilities corresponds to the existing Mansehra-ISPR transmission line mentioned in PC-I. Specification of existing Mansehra-ISPR transmission line facilities is shown as follows.

| Se           | Section                |          |                                                       | Mansehra - ISPR (Sangjani)                           |  |  |  |
|--------------|------------------------|----------|-------------------------------------------------------|------------------------------------------------------|--|--|--|
| Name of Line |                        |          | 220kV Mansehra - ISPR(Sangjani) T/Line Circuit-I & II |                                                      |  |  |  |
| Co           | ompletion              |          |                                                       | 09.08.2011                                           |  |  |  |
| Le           | ngth of T/             | L        |                                                       | 100.48 km                                            |  |  |  |
| No           | os of Towe             | er       |                                                       | 356 ( 3.54 Nos/km)                                   |  |  |  |
| Nı           | umber of C             | Circuit  |                                                       | 2                                                    |  |  |  |
| Co           | onductor               |          |                                                       |                                                      |  |  |  |
|              | Bundle                 |          |                                                       | twin bundle                                          |  |  |  |
|              | ASTM Code              |          |                                                       | Rail                                                 |  |  |  |
|              | Overall D              | Diameter |                                                       | 29.1 mm                                              |  |  |  |
|              | Strand                 | Steel    |                                                       | $7 \times 2.45 (33.54 \text{ mm}^2)$                 |  |  |  |
|              |                        | Almini   | um                                                    | $45 \times 3.70 (483.8 \text{ mm}^2)$                |  |  |  |
|              |                        | Total    |                                                       | $(517.3 \text{ mm}^2)$                               |  |  |  |
| Str          | inging con             | dition   |                                                       | 19.58 kN                                             |  |  |  |
| Ki           | Kind of Ground Wire    |          |                                                       | Gulbanaized Steel Wire(Optical fiber installed/OPGW) |  |  |  |
| Ki           | Kind of Insulator Type |          | Туре                                                  | Porcelain, made by EMKO, 120kN                       |  |  |  |
|              | Nos                    |          | Nos                                                   | 14                                                   |  |  |  |
| Ar           | cing Horn              | Gap len  | gth                                                   | 6 feet                                               |  |  |  |

Table 3.1.1 Existing T/L facilities on Mansehra – ISPR

#### 3.1.2 Selection of Conductor

#### (1) Selection of Conductor to be Compared

The selection of a conductor to be applied for a new transmission line is based on comparative study between conventional Rail conductors and low loss conductors (LL-ACSR), which provide current capacity either equaling or surpassing Rail conductors and equivalent diameter to Rail conductors. Comparison of conductors is shown in following table.

|                        |        | ACSR                  | LL-ACSR               |
|------------------------|--------|-----------------------|-----------------------|
|                        |        | ASTM:Rail             | LL-ACSR610            |
| Figure                 |        |                       |                       |
| construction           |        | 45/3.7-Al             | 16/TW-AL              |
|                        |        | 7/2.47-St             | 11/TW-AL              |
|                        |        |                       | 8/TWA1                |
|                        |        |                       | 7/2.1-14EAS           |
| Nominal Diameter       | mm     | 29.61                 | 29.59                 |
| Min. Breaking Load     | kN     | 116.1                 | 126.5                 |
| Cross section area:Al  | mm2    | 483.8                 | 610.7                 |
| Core                   |        | 33.54                 | 24.25                 |
| Total                  |        | 517.3                 | 635.0                 |
| Nominal weight         | kg/km  | 1600                  | 1867                  |
| DC Resistance at       | Ohm/km | 0.0597                | 0.0471                |
| 20deg-C                |        |                       |                       |
| Co-efficient of linear | /deg-C | 20.9x10 <sup>-6</sup> | 21.9x10 <sup>-6</sup> |
| expansion              |        |                       |                       |
| Current capacity       | А      | 1075                  | 1207                  |
|                        |        | at 90 deg-C           | at 90 deg-c           |
| Sag (at 350m)          | m      | 14.4                  | 15.2                  |
|                        |        | at 90 deg-C           | at 90 deg-C           |

Table 3.1.2 Specification of Conductors

(2) Comparison of Conductors

Low loss conductors (LL-ACSR) apply to a new transmission line, which provide advantages for life-cycle cost through reduction of transmission loss. According to this comparison, LL-ACSR will be profitable in terms of life-cycle cost in 34 years after the beginning of operation when compared with conventional Rail. Life-cycle cost is reduced 20 mill. Rs in the 20 years after the beginning of operation through installation of LL-ACSR.

#### 3.1.3 Outline Study of Transmission Line Facilities

(1) Design Condition

Applicable standards for design of transmission line facilities are shown as follows:

- 1) Applicable Standard
- IEC60826 Design criteria of overhead transmission lines Third edition (2003-10)
- Building code of Pakistan (2007)
- WAPDA/NTDCL Specifications
- 2) Allowable Continuous Current Calculation Condition
  - Based on IEEE738
  - Wind velocity 3feet/s (Line Temperature 90°C)
  - Ambient Temperature  $(40^{\circ}C)$

Note: Line temperature under emergency shall be taken as  $100^{\circ}$ C. Ambient temperature shall be taken corresponding to the target area.

- Amount of Solar Radiation (0.5 W/m)
- 3) Insulating Distance
  - Conductor-Tower (Normal condition 2.1m, High wind condition 40m/secs 1.6m)
  - Conductor-Ground (8m, Line temperature 100°C)
- 4) Sag Calculation Condition
- Sag equivalent to Normal Tensile Force of ACSR Rail (17%UTS, Calm/No accretion of snow and ice, Ambient Temperature 25°C)
- Maximum Sag equivalent to Rail (Calm/No accretion of snow and ice, Line temperature 65°C)
- Space of conductor (457mm)
- Wind pressure (970Pa, No accretion of snow and ice, Temperature 25°C)
- Insulator String

:Single Rail (Porcelain 120kNx14nos, Length 2922mm, Gap length of arcing hone 6feet):Twin Bundle Rail (porcelain 120kNx14nos x2, Length 2922mm, Anti-fog,

Gap length of arcing hone 6feet)

#### 5) Earthquake

Seismic zone and seismic zone of target area are as described in Volume 1. Chapter 4. 4.3.

#### (2) Tower Shape

Towers shall be adopted as standard EA-Type suspension towers, EG-Type angle towers and JKD-Type tension towers for using the existing Mansehra-ISPR transmission line. The existing Mansehra-ISPR transmission line had been designed as a twin-bundle Rail. These standard towers are applicable to reinforcement of the existing transmission line for this project.

In the case of applying the LL-ACSR610, which is equivalent to the outer diameter of the Rail conductor, the horizontal load (wind load) is equal. Because the vertical load will be increased by the difference of unit weight (1.867-1.600=0.267kg/m), the foundation compression load also will be increased and uplift load will be decreased. These loads are estimated to be about 320kg/foot for a 400m loading span. Due to the approximately 1 % difference of foundation load, LL-ACSR610 shall be able to be applied to the new construction line.

On the other hand, the sag of LL-ACSR610 will be increased under the same tension stringing condition as the Rail conductor because of the increased unit weight. So, it is necessary to add to the tower height to keep the distance from the ground. The additional height of the tower will be about 2m average in the case of a 400m span. The different sag of each conductor is shown in Figure 3.1.2.





Figure 3.1.1 Comparison of each conductor sag (No wind and snow, 90 deg.C, T=1,970kg/wire)



Table 3.1.1 Suspension Tower Design Condition

(Source: JICA Survey Team)


#### DESIGN DATA

- DEFLECTION ANGLE SINGLE CONDUCTOR 0-2 DEGREE TWIN CONDUCTOR 0 DEGREE
- WIND SPAN (MAX.) SINGLE CONDUCTOR 400 m TWIN CONDUCTOR 370 m
- WEIGHT SPAN (MAX.)
  SINGLE CONDUCTOR 500 m
  TWIN CONDUCTOR 410 m

NOTE:-

- FOR TWIN CONDUCTOR CONFIGURATION NO BODY EXTENSION TO BE USED.
- TOWER WITH MAX, HEIGHT AND MAX.
  BASE WIDTH.

(Source: JICA Survey Team) Figure 3.1.2 Standard Double Circuit Tower

### (3) Foundation

The ground of the target area consists mainly of a rock formation within the Paleocene to the Eocene. This rock formation consists of shale, sandstone, marl, and limestone, which has enough bearing capacity except for the weathered rock on the surface. Therefore, the foundation type may be adopted as the standard inverted-T shaped foundation. However, the size of foundations may not be sufficient for counter weight because it is difficult to excavate if bedrock is fresh, and in that case a rock anchor shall be applied against the uplift force.





Figure 3.1.3 Outline Drawings of Spread Foundation



(Source: JICA Survey Team) Figure 3.1.4 Outline Drawings of Pile Foundation

# (4) Insulator

The specifications of the insulators shall be the same as that of the existing Mansehra-ISPR twin-bundled transmission line. Arcing hone shall be adopted to avoid corruption of insulator due to lightning strikes.

|                    | Type/Shape | Strength | Nos   | Length | Remarks     |
|--------------------|------------|----------|-------|--------|-------------|
|                    |            |          | (nos) | (mm)   |             |
| Single Strings for | Porcelein, | 120      | 14    | 2,922  | Twin-bundle |
| Suspension         | Anti-fog   |          |       |        |             |
| Double Strings for | Ditto      | 120x2kN  | Ditto | Ditto  | Ditto       |
| Tension            |            |          |       |        |             |

Table 3.1.2 Specifications of Insulator

(Source: JICA Survey Team)

(5) Ground wire

OPGW had been introduced to recent transmission lines. For the scope of work of this project, ground wire is planned to be adopted as OPGW. Therefore, OPGW has been adopted in all sections of this project. The size of the ground wire shall be adopted as OP-AC97sq corresponding to Rail 480sq. The cross-section of OP-AC97sq is shown in Figure 3.1.6.

The number of optical fibers is assumed to be the same number of 24nos as planned in PC-1. However, the number of optical fibers shall be decided by the detailed design.



(Source: JICA Survey Team) Figure 3.1.5 Outline diagram of OP-AC97sq

## 3.2 Substation

## 3.2.1 Basic Concept of the Design

The Substation which requires modifications and/or additions along with the installation of a new transmission line under this Reinforcement Project is the ISD. Univ substation only. The existing 220kV GIS and connecting busduct from the transmission line bay will need to be modified due to the addition of the power receiving transmission line from In/out Mansehra-ISPR line. Although the modification/addition of metering and protection relaying circuits and operation/control panels are required, the cost was estimated as the ancillary facility cost after the main equipment cost was calculated. Table 3.2.1 shows the scope of the substation equipment and the associated works in this reinforcement project.

Table 3.2.1 Scope of the substation equipment and the associated works in this reinforcement project

|   | Item of device, equipment, installation, and wiring work                            |  |  |  |
|---|-------------------------------------------------------------------------------------|--|--|--|
| 1 | Equipment for 220kV transmission line receiving bay:measuring/protection            |  |  |  |
|   | devices, line arrestors, and connecting busbar with 220kV switchgear                |  |  |  |
| 2 | 220kV switchgear equipment (circuit breaker, isolator, busbar, measurement,         |  |  |  |
|   | indicating circuits, insulation gas, and related devices) (those which are required |  |  |  |
|   | for expansion of transmission lines and modified equipment)                         |  |  |  |
| 3 | Measurement, protection, indicating, and control circuits for 220kV switchgear      |  |  |  |
|   | (including for modified existing circuits)                                          |  |  |  |
| 4 | Supply of drawings of foundation works for the above mentioned equipment            |  |  |  |
| 5 | Execution of the above foundation works                                             |  |  |  |
| 6 | Check of strength of steel structure for modification of AIS type substation        |  |  |  |
| 7 | Reinforcement work of the steel structure as result of the above check              |  |  |  |

3.2.2 The Selection of Optimum Plan and Outline Design (Results of study of specifications) 1) As the 220kV In/out Mansehra-ISPR transmission line accesses from the eastside of the ISD. Univ substation, the transmission line from 220kV Rawat-NEW will be shifted westward and connected to a new line bay to avoid crossing with the transmission line from Mansehra-ISPR. The power receiving line bay from the 220kV In/Out Mansehra-ISPR transmission line shall be placed at the position of the existing line bay from Rawat-New. (Refer to Figure 3.2.1)



Figure 3.2.1 Transmission Line and Line Bay for ISD. Univ Substation

2) Line bay for in/Out Mansehra—ISPR will be located at the position of the existing Rawat-New line bay and necessary equipment will be installed.

3) To meet the new arrangement of the transmission line and line bays, the 220kVGIS will be expanded westward to connect to the transmission line from the Rawat-New line. The 220kV GIS feeder circuit for the 220/132 kV transformer (T-3) will also be added. Refer to Figure 3.2.2 for the circuit after modification. However, in the detailed design by the manufacturer, some changes may be expected.

## 3.2.3 Layout of ISD. Univ substation











Figure 3.2.3 Single Line Diagram of Expansion Area of ISD. Univ Substation

| No.    | Item name and specification                     | Q'ty | Application                        |  |  |  |
|--------|-------------------------------------------------|------|------------------------------------|--|--|--|
| Part-1 | Circuit breaker, 3 phase,                       | 3    | 2 for Expansion line               |  |  |  |
|        | Rated voltage 245kV                             |      | 1 for Expansion Transformer feeder |  |  |  |
|        | Rated current 4,000A,                           |      |                                    |  |  |  |
|        | Rated short circuit current 50kA                |      |                                    |  |  |  |
| Part-2 | Disconnecting switch(LS), 3 phase:              | 6    | 4 for Expansion line               |  |  |  |
|        | Rated voltage 245kV, Rated current              |      | 2 for Expansion Transformer feeder |  |  |  |
|        | 4,000A,                                         |      |                                    |  |  |  |
|        | Rated short time withstand current 50kA         |      |                                    |  |  |  |
| Part-3 | Outdoor type disconnecting switch(LS), 3 phase: | 2    |                                    |  |  |  |
|        | Rated voltage 245kV, Rated current              |      |                                    |  |  |  |
|        | 4,000A,                                         |      |                                    |  |  |  |
|        | Rated short time withstand current(3s)          |      |                                    |  |  |  |
|        | 50kA                                            |      |                                    |  |  |  |
| Part-4 | Lightning arrester(LA), single phase type       | 6    | For Transformer                    |  |  |  |
|        | Impulse test voltage 750kV                      |      |                                    |  |  |  |
| Part-5 | Protection relay panel                          | 1    | Distance protection relays, over   |  |  |  |
|        |                                                 |      | current relays                     |  |  |  |
| Part-6 | Control and operation panel                     | 1    |                                    |  |  |  |

Table 3.2.2 ISD. Univ Substation : Expansion Specification

(Source: JICA Survey Team)

# **Chapter4** Construction Method

### 4.1 Construction Method of Transmission Line Facilities

## (1) Problems for the Grid System

In the summer peak period, it is necessary to make all of the existing lines usable in order to secure both freedom and transmission capacity of the power system as a whole. Threfore, connection works at the junction point of in/out of Mansehra-ISPR shall be avoided during this period, in which the impact of the power supply interruption accompanied by an electrical accident caused by construction work is enormous. However, foundation, tower erection, and line installation work can be done in a timely fashion except for the junction point

#### (2) Construction Method to be considered above

The normal method can be applied for all works. However, the status of load flow shall be taken into account for the work period.

### (3) Special Instructions for Specific Construction Methods

At the  $\pi$  junction, the horizontal force will be unbalanced during the installation work of the conductor at the existing tower. Moreover, the acting direction of horizontal forces will be changed after completion of the  $\pi$  junction construction work. Therefore, the strength of the existing tower must be validated as safe when considering the construction sequence. Moreover, safety should be secured during the connection work through the arrangement of temporary protection works, because connection work will be executed with the live line of one circuit of Mansehra-ISPR.

It is required to minimize the area of deforestation to protect the natural environment for the section through the national park. There should be consideration of excavated soil treatment for foundation work and of preclusion of damage to the forest during the tower erection and conductor installation work. Particularly an installation method will be required which is able to secure distance between the conductor and the trees.

### (4) Measures for safety on execution management

During the erection of the connection tower for in/out of Mansehra-ISPR to the ISD. Univ substation, the existing Mansehra-ISPR line will be a live line, so the erection work will be executed close to the live line. The work shall be executed under due attention, and it will be required for there to be a full time observer to ensure safety for the duration of the erection work.

### 4.2 Construction of Substation

(1) Issues/advice cautioned in construction of the Substation

- The modification of the above 220kV GIS is difficult for anyone other than Siemens, which is the manufacturer of existing GIS, because the extension of GIS is difficult to interface with the existing part due to its structure, and high-accuracy mechanical matching is necessary to compose the integrated gas insulated space. (In this case, modification of GIS may be exclusively ordered to the Siemens company.)
- 2) The modification work of the 220kV GIS will be supervised through the expertise of the manufacturer of GIS, the Siemens company. However, it is usual for NTDCL to prepare workmen to execute the modification work to save costs paid to the manufacturer. NTDCL is supposed to be capable of dispatching workmen/technicians to execute the work. NTDCL shall recognize that this modification work is an opportunity for NTDCL to study the technology for the maintenance of the facility from the manufacturer.

#### (2) Study of the Construction Method

Since this substation has the duty of supplying power to sensitive governmental facilities, the total shutdown of the 220kV circuit will not be allowed. Therefore, the elaborate plan of the place change work of the line bay and the modification work of the 220kV GIS shall be made utilizing the advantage of the two line power receiving and double busbar system of switchgear to avoid total shutdown of 220kV.

# **Chapter5** Implementation Schedule of this Project

- 5.1 Implementation Schedule for the New Transmission Line (Confidential)
- 5.2 Implementation Schedule for the Substation (Confidential)

# **Chapter6** Estimated Construction Cost

- 6.1 Estimated Construction Cost for the New Transmission Line (Confidential)
- 6.2 Budgetary Cost of the Substation (Confidential)
- 6.3 Schedule and Cost Estimation of the Consulting Service (Confidential)
- 6.4 Finance of Implementation Cost of the New Transmission Line Construction (Confidential)

# **Chapter7** Environmental and Social Considerations

# 7.1 Environmental and Social Baseline

The following section describes the natural and social baseline of the project area. Although more than nine alternatives are examined, only the original route is shown in the maps in this report.

# 7.1.1 Climate

The project location falls in a temperate climate and is categorized as Subtropical-Dry Winter (Cwa) by the Köppen climate classification. Four seasons are clearly observed and the precipitation amount is 1,247 mm per year. The temperature in June is the highest. On some days, the temperature reaches more than 40 °C. On the other hand, the minimum temperature in winter is less than 10 °C. At that time, the electricity demand for air conditioning is high.



(Source: Pakistan Meteorological Department (1981-2010)) Figure 7.1.1 Temperature and rainfall of Islamabad

### 7.1.2 Geography and geology

The elevation of the west end of the route is around 600m. The planned line goes to the east up to 1,000m in height. After turning right to the south, the line crosses mountains of 1,400m to 1,600m in height and down to the southern end at 600m.

Figure 7.1.2 shows a shaded-relief map of the target area. The red line indicates the original plan of the route and the green line indicates the boundary of the Margalla Hills National Park (MHNP). There are steep slopes more than 70% in MHNP.



(Source: JICA Survey Team)

Figure 7.1.2 Geography around the project site

The geologic system of Islamabad Capital Territory (ICT) area is mainly tertiary terrain with smaller areas of formations belonging to quartzite, calcareous shale, and limestone. The rocks are thinly developed, but outcrops are observed in the Margalla Hills slopes (Ahmed et al., 1979). The rocks are 40 million years old and contain fossils of sea animals, indicating that this was developed in the sea (Anwar 2001). The Main Boundary Thrust (MBT) can be seen north of Islamabad. Earthquakes of more than magnitude 6 have happened on four occasions since 2000.

The Margalla ridge is predominantly made up of limestone and shale with a very thin layer of top soil. In common with other highland areas, the Margalla Hills area is being affected by deforestation, with the effect that in periods of heavy rain the top soil flows into the stream on the low-lying areas and is slowly replaced by river-made deposits of red sandstone and

wind-borne deposits of fine sandy dust. These latter deposits are often heavily eroded leaving a sort of lunar landscape (Holmes 1990).

# 7.1.3 Land use

Land use around the project site is mainly for cropland. The part crossing the national park is Broadleaf Deciduous Forest, Broadleaf Evergreen Forest, Coniferous Forest, and sparse vegetation (See Figure 7.1.3).



<sup>(</sup>Source: GLCNMO 2013)

Figure 7.1.3 Land use around the project site

According to Higher Education Commission of Islamabad (2007)<sup>5</sup>, in the British regime, ownership in the National Park was allowed and adjacent land was given as collective property to the local people known as Shamlat. After the establishment of Islamabad, the government has started to buy land from the local people living inside the proposed park. The revenue department is responsible for keeping land ownership records.

<sup>&</sup>lt;sup>5</sup> Higher Education Commission (2007) Medicinal Plants of Margalla Hills National Park Islamabad

Four categories of the land can be found in the area:

- Malkiat: the land in personal ownership.
- Shamlat: Collective property of the village people; it is also called Guzara
- Qabza: the land illegally occupied or temporarily given to anybody who claimed ownership afterwards.
- CDA land: the land acquired by CDA.

The Park map provided by CDA (Figure 7.1.5) shows four areas, including the Army area, the Protected Forest, CDA land, and the City Park area. However, it does not show the above Malkiat, Shamlat, and Qabza.

# 7.1.4 Vegetation

The vegetation map by WWF (2009)<sup>6</sup> shows that 69.9% of the forest area consists of Chir pine/Shadow, Paper Mulberry, and Kao - Dodoneae spp.; 17.9% of the shrub area consists of Lantana spp. and Dodonea spp.; and 8.7% is the agriculture and residential area (see Table 7.1.1). Many invasive species such as Paper Mulberry and Lantana have already encroached.

| Name                                 | Description                                                                                                                                                                         | Area<br>(ha) | Rate (%) |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| Chir pine/Shadow                     | Chir pine are the needle like trees which mostly exist above 900 m.                                                                                                                 | 2,641        | 15.5     |
| Paper Mulberry                       | It is a fast growing and highly invasive species which distresses the natural ecosystem.                                                                                            | 1,990        | 11.7     |
| Paper Mulberry - Acacia Modesta      | Paper Mullberry and Acacia Modest are one of the dominating classes of the area.                                                                                                    | 4,676        | 27.5     |
| Acacia Modesta - Kao - Dodoneae spp. | The community is present on the slopes.                                                                                                                                             | 2,584        | 15.2     |
| Lantana spp.                         | Invasive species of shrub that generally grows best in open and unshaded situations.                                                                                                | 1,675        | 9.9      |
| Lantana spp./Dodonea spp./Grasses    | Dodoneae spp., being the dry subtropical species of shrubs, is mostly present at low altitudes.                                                                                     | 925          | 5.4      |
| Grasses                              | Classification of grasses is dependent upon the acquisition window (season/time) of the satellite imagery. Grass cover was about 443 ha (2.6%) at the time of acquisition of image. | 443          | 2.6      |
| Saccharum spp Typha spp.             | Saccharum spp and Typha spp are present in the peripheries of the Rawal Lake.                                                                                                       | 31           | 0.2      |
| Buildup Area/Bare Rocks              | Buildup area includes buildings, houses, roads and some barren patches of the rocks.                                                                                                | 1,259        | 7.4      |
| Water body                           | Rawal Lake and other feeding water channels                                                                                                                                         | 552          | 3.2      |
| Agriculture land                     | Paddy and vegetables                                                                                                                                                                | 219          | 1.3      |

Table 7.1.1 Vegetation of MHNP

(Source: JICA Survey Team)

<sup>6</sup> WWF (2009) Boundary Delineation of Margallah Hills National Park



(Source: WWF)

Figure 7.1.4 Landcover Map of MHNP

According to the list available in the IUCN office (Islamabad), 616 species (belonging to 465 genera and 104 families) of trees shrubs and vines are found in the park (IUCN 1991)<sup>7</sup>. In another study, 268 herbs (196 dicots and 72 monocots) belonging to 56 families and 199 genera have been collected and identified from MHNP (Akram 2005)<sup>8</sup>. IBAT (2017)<sup>9</sup> shows 1 Vulnerable (VU), 4 Least concern (LC), and 2 Data deficient (DD) from the total of seven species of the IUCN red list.

| Species             | Common name      | IUCN Red List<br>Category |
|---------------------|------------------|---------------------------|
| Anacyclus pyrethrum | Atlas Daisy      | VU                        |
| Medicago sativa     | Alfalfa          | LC                        |
| Pistacia eurycarpa  | Unknown          | LC                        |
| Pistacia khinjuk    | Unknown          | LC                        |
| Prunus bifrons      | Unknown          | DD                        |
| Prunus jaquemontii  | Flowering Almond | DD                        |
| Prunus mahaleb      | Mahaleb Cherry   | LC                        |

Table 7.1.2 IUCN red list plants recorded around the project site

(Source: IBAT)

<sup>&</sup>lt;sup>7</sup> IUCN (1991) Management Plan: Margalla Hills National Park

<sup>&</sup>lt;sup>8</sup> Akram H. (2005) Herbal Diversity of Margalla Hills National Park. M. Sc. Thesis, University of Arid Agriculture, Rawalpindi,

Pakistan. <sup>9</sup> IBAT for research and planning

# 7.1.5 Fauna

The park forests host 37 species of fish, at least 13 taxa of reptiles, 250 species of birds, 38 species of mammals, 55 species of butterflies, and numerous taxa of insects (Anwar 1986, 1989a, 1989b, 1991<sup>10</sup>). According to Masud (1979)<sup>11</sup>, the park was setup to provide refuge to the Gray Goral, Barking deer, and the Leopard. Rhesus monkeys, jackals (often heard cackling at night near the hills), wild boars, porcupines, mongoose, and the pangolin or scaly anteater exists in the area. IBAT (2017) shows 4 critically endangered (CR), 4 Endangered (EN), 12 Vulnerable (VU), and 20 Near threatened (NT) in and around the project area (See ANNEX 7.1.5-1).

| Туре          | Critically | Endangered | Vulnerable    | Near       | Least   | Data          | Total |
|---------------|------------|------------|---------------|------------|---------|---------------|-------|
|               | endangered | (EN)       | ( <b>VU</b> ) | threatened | concern | deficient     |       |
|               | (CR)       |            |               | (NT)       | (LC)    | ( <b>DD</b> ) |       |
| Mammals       |            |            | 2             | 1          | 55      |               | 58    |
| Birds         | 3          | 4          | 10            | 16         | 321     |               | 354   |
| Reptiles      | 1          |            |               |            | 6       | 2             | 9     |
| Amphibians    |            |            |               |            | 10      |               | 10    |
| Fishes        |            |            |               | 3          | 20      |               | 23    |
| Invertebrates |            |            |               |            | 35      |               | 35    |
| Total         | 4          | 4          | 12            | 20         | 447     | 2             | 489   |

Table 7.1.3 Number of IUCN red list species around MHNP

(Source: IBAT)

# 7.1.6 Protected area

There are 14 National parks of 12,000 ha, 54 Wildlife Sanctuaries of 19,000 ha, and 64 Game Reserves of 30,000 ha in Pakistan. Six of them are designated as Ramsar sites (See ANNEX 7.1.6-1).

<sup>&</sup>lt;sup>10</sup> Anwar, M. (1991) Mammals of Margalla Hills National Park: An Annotated List of Mammals

<sup>&</sup>lt;sup>11</sup> Masud, R.M. (1979). Master plan for Margallah Hills National Park, Islamabad, Pakistan. National Council for Conservation of Wildlife, Islamabad. 48 pp

| Туре               | Number | Area (ha) |
|--------------------|--------|-----------|
| National Park      | 14     | 11,692    |
| Wildlife Sanctuary | 54     | 19,175    |
| Game Reserve       | 64     | 29,936    |
| Nature Reserve     | 1      | 15,000    |
| Other Area         | 1      | 9         |
| Private Reserve    | 1      | 16        |
| Protected Area     | 1      | 0         |
| Sanctuary          | 1      | 7,506     |
| Grand Total        | 137    | 83,334    |

Table 7.1.4 Number and areas of the Protected areas

MHNP, with an area of 173 km<sup>2</sup>, was established formally in 1980. MHNP was managed by Capital Development Authority (CDA) on the basis of the Islamabad Wildlife (Protection, Preservation, Conservation and Management) Ordinance, 1979. However, the boundary had not been cleared until June 2009 by Notification of CDA. The Ordinance (1979) stipulates the purpose and prohibitions as follows.

- With a view to protecting and preserving scenery, flora, and fauna in a natural state, the Federal Government may, by notification in the official Gazette, declare any area to be a national park.
- 2) The national park shall be accessible to the public for recreation, education, and research, subject to such restrictions as the Federal Government may impose.
- 3) Provision for access roads to the national park, and construction of rest houses, hotels, and other buildings in the national park, along with amenities for the public, may be so made, the forest therein shall be so managed and forest produce so obtained as to not impair the object for which it is declared a national park.
- 4) Except as otherwise provided by this Ordinance and the rules, the following acts shall be prohibited in a national park, namely:
  - a. hunting, shooting, trapping, killing, or capturing of any wild animal within a radius of two kilometers of its boundaries;
  - b. firing any fire-arm or doing of any other act which may disturb any wild animal or interfere with its breeding place;
  - c. felling, tapping, burning, damaging, or destroying of, or taking, collecting, or removing therefrom, any plant or tree;
  - d. clearing or breaking up of any land for cultivation, mining, or for any other purposes; and
  - e. polluting water flowing in or through it.

Provided that the authorized officer may, for specific purposes, authorize the doing of any of any of the aforementioned acts.

According to the map provided by CDA, the park was classified as four area including Military Farms (red), Reserved forests (blue), CDA acquired land (yellow), and City park (green) (see Figure 7.1.5).



(Source: CDA)

Figure 7.1.5 Margalla Hills National Park area map

# 7.1.7 Administrative boundary

The proposed project is in the Haripur Division of Khyber Pakhtunkhwa Province and the Islamabad Capital Territory (See Figure 7.1.6).



(Source: JICA Survey Team)

Figure 7.1.6 Administrative boundaries around the project site

# 7.1.8 Population

Pakistan's estimated population in July 2009 is around 175 million. During 1950–2008, Pakistan's urban population expanded over sevenfold, while the total population increased by over fourfold. By the end of this decade, the population is expected to be nearly 180 million. In the past, the country's population had a relatively high growth rate that has, however, been moderated by declining fertility and birth rates (Ministry of Environment, 2009)<sup>12</sup>.

According to MDG status 2012-2013, the population in ICT is 1.15 million and in the Haripur Division of Khyber Pakhtunkhwa Province is 0.944 million. The project site is located in a relatively high-density area; the population growth rate of ICT from 2005 to 2015 is 73% and the estimated population in 2015 is 1.36 million (World Bank)

The human population in the park has been estimated as 5,749 (23 settlements) in 1991 (IUCN,

<sup>&</sup>lt;sup>12</sup> Ministry of Environment (2009) LAND USE ATLAS OF PAKISTAN

1991)  $^{13}$  and 92,342 (34 villages) in 2001 (HWNCS  $^{14}$ ). The ancestors of the present population have occupied the land of the park since the pre-British regime.

# 7.1.9 Zoning plan of ICT

Five zones are declared by the Islamabad Capital Territory (Zoning) Regulation, 1992. The following table and figure show the five zones.

| Zone | Area (km <sup>2</sup> ) | Description                                              | Legend in the map |
|------|-------------------------|----------------------------------------------------------|-------------------|
| Ι    | 222.4                   | City area (developed)                                    | Pink              |
| Π    | 39.7                    | City area (future plan)                                  | Cream             |
| III  | 203.9                   | Margalla Hills National Park, Rawal lake and forest area | Dark green        |
| IV   | 282.5                   | Islamabad Park and rural periphery wedged                | Light green       |
| V    | 157.9                   | South of Islamabad Park and extending                    | Orange            |

Table 7.1.5 Five zones of ICT

(Source: CDA)



(Source: CDA)

# Figure 7.1.7 Zoning plan of ICT

 <sup>&</sup>lt;sup>13</sup> IUCN (1991) Management Plan: Margalla Hills National Park
 <sup>14</sup> Human Welfare and Nature Conservation Society (2001) A Socio-Economic Survey of Margalla Hills National Park

### 7.1.10 Infrastructure

Some general roads are opened in the park and people can move by vehicles freely (See black double lines in Figure 7.1.8). National road No. 75 also passes through the MHNP at two parts. The non-electrified railways are located near the west side of the MHNP to Rawalpindi city (Green line in the map). The Rawalpindi-Islamabad Metrobus connects the two cities (Purple line in the map).

There are three Grid Stations, ISPR G/S, Islamabad University G/S, and Rawat New G/S. A 500kV transmission line is connected to Rawat New G/S. 132kV transmission lines exist in the ICT. Two parts of 220 kV T/L and four parts of 132 kV T/L pass through the MHNP. One of the 132kV T/L extends more than 1km in the southern part of the MHNP.



(Source: JICA Survey Team)

Figure 7.1.8 Infrastructure near the MHNP

## 7.1.11 Socio-economic conditions

The people are economically poor, but are now changing their professions for better earnings. Among the most important factors, fuel sources (fuelwood extraction and trade), dairy products, and trade in medicinal plants are notable. Agriculture in the park pertains to the growing of a few crops such as wheat, maize, and some vegetables (turnip, tomato, onion, potato, cucumber) utilizing a blend of traditional and modern techniques, pesticides, and natural and artificial fertilizers. The livestock of the park area includes goats, cows, buffaloes, donkeys, and camels. Milk production is around more than 1000 kg per day. The cattle freely graze in the surroundings of the villages. The fodder is obtained from the forests and from cultivated areas. Rural trade includes carpentering, lumbering, and miscellaneous goods retailers. Of the villagers, 10% are employed in public or private sectors, 25% are unemployed, and 57% are self-employed (Ahmad et al. 2005)<sup>15</sup>. Sheesham (Dalbergia sissoo) and Chir (Pinus roxburghii) are cultivated for timber wood in the park area. The cultivated fruits of the area are Almond, Apple, Apricot, Walnut, Banana, Papeeta, Lemon, Loquat, Mulberry, Peach, Sweet Lime, and Sweet Orange.

### 7.1.12 Landscape

MHNP is utilized as a landscape resource. The main viewpoints to MHNP are tourism facilities in ICT, three Restaurants in MHNP, and nature trails in the MHNP.



Photo 7.1.1 Mountain view from the Zero Point in ICT



Photo 7.1.2 City view and Faisal Mosque from the view point in MHNP

<sup>&</sup>lt;sup>15</sup> Ahmad, S.U., A. Akhter and I. Khan. 2005. A community based appraisal of the Anthropogenic pressures on Margalla Hills National Park. Sc. Tech. Dev. 24(1): 19-24. Pakistan Council for Science and Technology Pakistan

# 7.1.13 Cultural assets

There are six World Heritage sites registered to UNESCO as follows. The nearest one is Taxila west of the  $\pi$ connection of the proposed project.

- Archaeological Ruins at Mohenjo-daro (1980)
- Buddhist Ruins of Takht-i-Bahi and Neighboring City Remains at Sahr-i-Bahlol (1980)
- Fort and Shalamar Gardens in Lahore (1981)
- Historical Monuments at Makli, Thatta (1981)
- Rohtas Fort (1997)
- Taxila (1980)

According to Archeology department of Pakistan, there are 17 possible historic sites in ICT. Construction is prohibited on historic sites. However, the exact locations of these sites have not been determined yet.

# 7.1.14 Ethnicity, religion, and language

There are main six ethnic groups in Pakistan. The Punjab and Pashutun account more than half of the total population. The major and native cast of the area is Raja, having the sub-cast Abbasi. However, Gujar from Punjab and Chaudhri from Kashmir have also migrated to the MHNP. The main language spoken in MHNP is Potohari, which is a branch of Punjabi.<sup>16</sup>

<sup>&</sup>lt;sup>16</sup> Higher Education Commission (2007) Medicinal Plants of Margalla Hills National Park Islamabad

# **Chapter8** Alternative studies

## 8.1 Project Plan in the PC-1

The in/out of existing Mansehra-ISPR to the Islamabad University Substation has been planned in the PC-1. However, there is not an objectified route plan in the PC-1, and the length of the route is estimated to be approximately 40km in the request for a budget for this project.

As an argument for the budget request, a paper location study has been demonstrated by the PD EHV-1 Islamabad and Design Department. An overview of the transmission line route is shown below. In the route plan, the transmission line across the Margara Hill National Park is 33.5km in length.



(Source: Overview of Transmission Line Route, NTDCL) Figure 8.1.1 Overview of Transmission Line Route

During discussions with the Design Department of NTDCL, consideration is given to the feasibility of a detour route which goes around the National Park as follows:

- Islamabad is highly populated, so it will be difficult to acquire the ROW for a detour route to the southside of the National Park; therefore, it is not realistic.
- The project objective is to enhance the reliability of the power supply to government agencies;

it may not be a problem to have the transmission line across the National Park.

Land acquisition for the route plan which goes through Islamabad will be very problematic. Therefore, preservation of the environment of the National Park and reduction of the environmental impact due to construction work shall be taken into account in the transmission line route study, which is based on the overview of the transmission line route shown in Figure 8.1.1.

### 8.2 Study of the Route Plan

#### 8.2.1 Objective of the route study

The new transmission line is planned as an in/out of Mansehra-ISPR to the Islamabad University substation. The Islamabad University substation has a key role in supplying power to government agencies along with the Islamabad Capital Territory. Currently, the Rawat substation is feeding a single source to the Islamabad University substation. Therefore, the new transmission line is subject to enhance the reliability of the Islamabad University substation through an additional source from Allai Khwar to ICT.

There are restrictions on construction because the target area occupies mainly mountainous terrain. Materials shall be transported by a land route, and helicopters are not applicable to transportation in NTDCL projects. The line route plan shall be considered accessible to transport vehicles. Moreover, part of the line route crosses the reserved forest in Margala Hills National Park, so minimization of the environmental impact due to construction work will be required. Therefore, the route of the new transmission line shall be located along the existing road in the National Park.

#### 8.2.2 Issues of NTDCL's route plan

In the route plan by NTDCL, the new transmission line is connected in/out of Mansehra-ISPR to the Islamabad University substation used by the  $\pi$ -junction. The ISD Univ. substation exists east of Islamabad city and next to Quaid-Azam University, so the  $\pi$ -junction is planned in the vicinity of Kanpur Dam.

One of the issues of NTDCL's plan is the route across the intact forest inside of the national park, so the deforestation area is quite large and there will be a heavy environmental impact. NTDCL's route plan is shown as follows:



(Source: JICA Survey Team)

Figure 8.2.1 NTDCL's Plan

# 8.2.3 Issues of the alternative plan

This study proposed an alternative plan to NTDCL's plan. Issues to study in the alternative line route are as follows.

(1) Control point for study of route

- Islamabad City is a highly-populated area from the southern border of the national park to Rawalpindi, where it neighbors Islamabad. Therefore, it is difficult to acquire the Right of Way for the new transmission line.
- The National park is placed on the north side of Islamabad and mountainous terrain in the range of about 40km to the east and west, and about 10km north to south. Military reservations and reserved forests lie in the national park. Restrictions for development and reduction of environmental impact shall be taken into account for the route study.



(Source: JICA Survey Team)

Figure 8.2.2 Location of origin-destination of new transmission line and control point for route study

(2) Constrained condition for land use and natural environment

The proposed design of the T/L is the overhead style, and the right of way (ROW) should be kept 15m from the center line for one side, which means a width of 30m. Buildings, houses, and high trees are not allowed in the ROW, but land ownership, cultivation, and low trees are allowed. The allowed vegetation heights are different, from 6.5m to 25.7m, depending on the tower height and tower distance.



(Source: JICA Survey Team)

Figure 8.2.3 Acceptable vegetation height and tower height

8.2.4 Comparison of the alternative plans for the new transmission line

In addition to the plan proposed in PC-1 and the route plan which was considered by the NTDCL Design Department, two alternatives were extracted and compared and examined. Outline of the route plan and outline drawings are shown in following:

| NTDCL Plan | : It is a new transmission line connecting to the Islamabad University    |
|------------|---------------------------------------------------------------------------|
|            | Substation by the $\pi$ -Junction from the existing Mansehra substation - |
|            | ISPR substation line to the Islamabad University Substation               |
|            |                                                                           |

- Alternative 1 : It is a plan to go around the National Park; the length of the route is the longest compared with other plans. The South area of the National Park faces a populated area, therefore a buried transmission line is proposed under the existing road, partially because it is difficult to construct an overhead transmission line.
- Alternative 2 : It is a plan for a transmission line that goes along the existing road to reduce environmental impact with due respect for the NTDC Plan. It is almost the same line length compared with the NTDCL Plan. It is proposed to be an overhead transmission line.
- PC-1 : It is not an objectified route plan and NTDCL is still working on it; the route is not decided.

Details of the comparison table and proposals are shown as follows.



(Source: JICA Survey Team)

Figure 8.2.4 Route Comparison

|                        |            | NTDCL Plan                      | Alternative-1 | Alternative-2 | PC-1     |
|------------------------|------------|---------------------------------|---------------|---------------|----------|
| Length of              | routo      | 34.37km 49.35km 35.21km 40.00km |               |               |          |
| Length of              | route      | ( -5.63km )                     | ( 9.35km )    | (-4.79km)     | (0.00km) |
|                        | Suspension | 87                              | 113           | 86            | 95       |
| Nos of Tower           | Angle      | 21                              | 49            | 29            | 26       |
|                        | Total      | 108                             | 162           | 115           | 121      |
| Deforestation Area(ha) |            | 123.7                           | 133.1         | 126.2         |          |
| Constructi             | on cost    | 854.2                           | 1554.1        | 1003.8        | 945.5    |
| million                | Rs.        | ( 0.90 )                        | ( 1.64 )      | ( 1.06 )      | ( 1.00 ) |

| Table 8.2.1 C | omparison of | alternative route |
|---------------|--------------|-------------------|
|---------------|--------------|-------------------|

(Source: JICA Survey Team)

Alternative-2 is chosen as a proposal for the alternative although it is inferior economically to the NTDCL Plan. The transmission line passes through the vicinity of the existing road to secure accessibility during construction and to avoid disjunction of the natural forest. The deforestation area is larger than the NTDCL Plan; however, part of it crosses the National Park where rocks are outcrops and there are few trees. Therefore, actual deforestation will be less than the other alternatives and the impact on wildlife will be minimized.

# NTDCL PLAN



| Leng         | 34.4 km    |        |
|--------------|------------|--------|
| Nos of Tower | Suspension | 87     |
| Nos of Tower | Angle      | 21     |
| 1.15.1       | Min        | 580 m  |
| Altitude     | Average    | 889 m  |
|              | Max        | 1528 m |
| Slopa        | Max        | 49.2 % |
| Slope        | Average    | 10.5 % |

| Right of Way  |     | )3.1 ha |
|---------------|-----|---------|
|               | ( 1 | 7.1 ha) |
| Approach Road |     | 3.5 ha  |
|               | (   | 1.2 ha) |
| Total         | 12  | 23.7 ha |
| TOLAT         | ( 1 | 7.1 ha) |

( ):inside of National Park

#### Advantage:

-

- Shortest distance compare with other plan

Disadvantage:

- Across natural forest

- Route is not along to existing road

(Source: JICA Survey Team)

Figure 8.2.5 NTDCL's Plan

# Alternative-1



(Source: JICA Survey Team)

Figure 8.2.6 Alternative-1

# Alternative-2



## Alternative-2

| Leng         | 35.2 km    |        |
|--------------|------------|--------|
| Nos of Tower | Suspension | 86     |
|              | Angle      | 29     |
|              | Min        | 550 m  |
| Altitude     | Average    | 844 m  |
|              | Max        | 1498 m |
| Slope        | Max        | 72.2 % |
| siope        | Average    | 11.6%  |

| Deforestation A | rea         |
|-----------------|-------------|
| Right of Way    | 105.6 ha    |
| Night of May    | (17.7 ha)   |
| Approach Road   | 2.9 ha      |
| Approach Road   | ( 0.5 ha)   |
| Total           | 126. 2 ha   |
| TULAT           | ( 17.73 ha) |
| Note;           |             |

( ):inside of National Par

## Advantage:

- Environmental impact due to construction work would be minimized cause of route along
- to existing road
- Ease to construct
- Disadvantage:
- Across national park
- Steep slope
- Deforestation area is large

(Source: JICA Survey Team)

Figure 8.2.7 Alternative-2

# 8.3 Stakeholders meetings

Two stakeholder meetings were held to institute the route for the new transmission line. Alternative proposals are discussed in each round as follows.

# 8.3.1 First stakeholder meeting

(1) Alternatives discussed at the first stakeholder meeting

Three alternatives were examined at the 1<sup>st</sup> stakeholder meeting. Alternative 1 is the original proposed route which passes through the national park. Alternative 2 bypasses the National Park in the east and passes through the crowded housing area via underground cable. Alternative 3 bypasses the National Park to the south. The starting point is moved to the south and it passes through the ICT to the Islamabad highway by overhead lines. The lines go underground along the Islamabad highway to the Islamabad University G/S. Table 8.3.1 shows the three Alternatives.

# (2) Result of the 1<sup>st</sup> alternative study

The study team prepared two alternatives, the east bypass route and the south bypass route, other than NTDCL's original plan, and conducted a simple desk study based on literature and satellite images and prepared the study report (ANNEX8.3.1-1). The first SHM was held on 4<sup>th</sup> August 2016 at Islamabad based on the study report. Most of the participants supported Alternative 3 (the south bypass route), but NTDCL did not agree with Alternative 3. The record of the meeting was attached in ANNEX8.3.1-2 and ANNEX8.3.1-3

| Item                   | Alternative 1                | Alternative 2        | Alternative 3           |  |  |  |  |
|------------------------|------------------------------|----------------------|-------------------------|--|--|--|--|
| Length                 | 41 km                        | 51 km                | 35 km                   |  |  |  |  |
| Forest area in ROW     | 84.71 ha                     | 103.03 ha            | 10.59 ha                |  |  |  |  |
| Length in the National | 7.2 km                       |                      | -                       |  |  |  |  |
| Park                   | 7.2 KIII                     | -                    |                         |  |  |  |  |
| Houses/Buildings       | 133                          | 32 (Underground 349) | 24 (Underground 0)      |  |  |  |  |
| Farm land              | 20.04 ha                     | 17.21 ha             | 19.20 ha                |  |  |  |  |
| Cost                   | 1,637 mill. Rs               | 4,575 mill. Rs       | 11,413 mill. Rs         |  |  |  |  |
| NTDCL's experience     | Yes                          | No                   | No                      |  |  |  |  |
| Pros                   | Chappast                     |                      | No impact on MHNP       |  |  |  |  |
|                        | Cheapest<br>Technically easy | No impact on MHNP    | No impact on the forest |  |  |  |  |
|                        | Technically easy             |                      | of KPK                  |  |  |  |  |
| Cons                   |                              | Expensive            | Expensive               |  |  |  |  |
|                        | Passing through MHNP         | Technically          | Technically             |  |  |  |  |
|                        |                              | unacceptable         | unacceptable            |  |  |  |  |

Table 8.3.1 Results of the first alternative study

(Source: JICA Survey Team)



(Source: JICA Survey Team)

Figure 8.3.1 Three alternatives discussed at the first Stakeholder Meeting

# 8.3.2 Second stakeholder meeting

(1) Alternatives discussed at the second SHM

At the second SHM, the original route (Alternative 1a) and six other alternatives, including joint spanning with the existing 132 kV, were examined (See Table 8.3.2).

## (2) Result of the second alternative study

After the first SHM, the study team and NTDCL prepared six new alternatives and studied the original design. Based on the study results of the seven alternatives, the second SHM was held on 17<sup>th</sup> October 2016. All the participants supported Alternative 3e and agreed to select it. Alternative 3e is based on Alternative 3, which was selected as the proposal in the first SHM. In this proposal, the transmission line is changed from a buried line to an overhead line which joins with the existing 132kV transmission line. Table 8.3.3 shows the study results and Table 8.3.4 shows the preferences of the participants for each alternative.

| Item                          |                             | Alt. 1   | Alt. 1a | Alt.3b | Alt.       | Alt.3d     | New        | Alt.3e |
|-------------------------------|-----------------------------|----------|---------|--------|------------|------------|------------|--------|
| Item                          |                             | Alt. I   | Alt. Ia | AIL.JU | An.<br>3c  | An.Ju      | new        | All.Je |
| Length                        |                             | 41<br>km | 46 km   | 37 km  | 42 km      | 41 km      | 31 km      | 24 km  |
| High tower                    | High tower                  |          | 43.6    | 6.6 km | 7.4        | 6.6 km     | 0 km       | 0 km   |
|                               |                             | km       | km      |        | km         |            |            |        |
| Joint Spanning                | g                           | 0 km     | 0 km    | 22 km  | 0 km       | 6.6 km     | 0 km       | 11 km  |
| Affected fores                | and bush*                   | 3.5      | 5.0 ha  | 0.0 ha | 1.3 ha     | 0.0 ha     | 0.5 ha     | 0.0 ha |
|                               |                             | ha       |         |        |            |            |            |        |
| Length in the                 | Length in the National Park |          | 4.3 km  | 6.6 km | 7.4        | 6.6 km     | 0.0km      | 0.0km  |
| 2                             |                             | km       |         |        | km         |            |            |        |
| Potential impact on flora and |                             | Δ        | Х       | 0      | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0      |
| fauna*                        |                             |          |         |        |            |            |            |        |
| Houses/Buildi                 | ngs                         | 133      | 38      | 58     | 80         | 96         | 0          | 58     |
| Agriculture fields*           |                             | Δ        | 0       | Δ      | Δ          | Δ          | Δ          | Δ      |
| Construction                  | Monopole                    | 2,351    | 2,642   | 5,165  | 3,498      | 4,205      | 1,270      | 1,926  |
| cost (mil                     | 10%                         |          |         |        |            |            |            |        |
| Rs.)                          | Monopole                    | 2,351    | 2,642   | 7,611  | 5,155      | 6,196      | 1,270      | 3,615  |
|                               | 20%                         |          |         |        | -          |            |            |        |
|                               | Monopole                    | 2,351    | 2,642   | 10,057 | 6,812      | 8,188      | 1,270      | 4,459◊ |
|                               | 30%                         |          |         |        |            |            |            |        |
| Main issues                   | Main issues                 |          | Forest  | IESCO  | NP         | Cost       | Mosque,    | IESCO  |
|                               |                             |          |         |        |            | IESCO      | Army       |        |

Table 8.3.2 Results of the second alternative study

\* 576 m2 for one tower \*\*Preferences:  $\bigcirc$  (Better)  $\triangle$  (Good) x (Fair)  $^{\diamond}$ Not included G/S cost (Source: JICA Survey Team)

|                             | 1           | 1a | 3b  | 3c | 3d  | new  | 3e    |
|-----------------------------|-------------|----|-----|----|-----|------|-------|
| NTDCL                       | ****        | ** | **  | ** | **  | **   | ***** |
| IESCO                       | -           | -  | -   | -  | -   | -    | ***** |
| CDA                         | *           | *  | *** | *  | *** | *    | ***   |
| Pak-EPA                     | *           | *  | *   | *  | *   | **** | ***** |
| Punjab-EPA                  | *           | *  | *** | *  | *** | *    | ****  |
| Punjab Forest<br>Department | *           | *  | *** | *  | *** | **   | ***   |
| KPK Wildlife                | *           | *  | -   | ** | -   | -    | ****  |
| Quaid-e-Azam<br>University  | *           | *  | *   | *  | *   | *    | ****  |
| ****                        | Most prefer |    |     |    |     |      |       |
|                             | Prefer      |    |     |    |     |      |       |
| ***                         | Acceptable  |    |     |    |     |      |       |

Table 8.3.3 Opinions of the participants of the second SHM

UnacceptableNo opinion

Not recommended

\*\*

(Source: JICA Survey Team)


#### Table 8.3.4 Seven alternatives discussed at the second Stakeholder Meeting





Alternative 3e (Joint spanning along Kashmir Highway and terminate at Zero-Point G/S)

**Route**: Starting point is T-off from the existing Mansehra- ISPR 220 kV line. It follows the road area of the CDA's master plan and joint spanning with existing 132 kV along the Kashmir Highway. It will be terminated at the existing Zero-point grid station. GIS transformer will be installed in the Zero-point grid station.

# Chapter9 Outline, Agenda, and Recommendation for the New Selected Plan

#### 9.1 Outline of the Favorite Proposal

#### 9.1.1 Project Objective and Anticipated Efficacy

In the stakeholder meeting, Alternative-3e was selected as the best compared with other alternative plans. NTDCL has studied Alternative-3e to commercialize and prepare the Proforma PC-I (New PC-I<sup>17</sup>). The outline of the selected plan mentioned in the new PC-I, agenda, and recommendation for execution are summarized in this chapter.

#### 9.1.2 Project Objective and Anticipated Efficacy

The objectives of this project are to relieve the load on IESCO's grid and reduce the load of the existing 220kV/132kV grid system in the vicinity of Islamabad through the Zero Point substation upgrade of 132kV to 220kVand the new 220kV transmission line to the Zero Point substation. Efficacy of this project is shown as follows:

- Enhancement of power supply to the Zero Point Substation and its surroundings
- Improvement of the voltage profile of the 132kV substation in the vicinity of the Zero Point substation
- Enhancement of the power supply corresponding to load increments on IESCO's grid system in the future
- Reduction of power transmission loss
- Provide relief of electrical substation equipment at the Islamabad University Substation, ISPR Substation, and Burhan Substation

#### 9.1.3 Project Scope

The project scope is mentioned in the new PC-1 as follows. The outline diagram of the project is shown in Figure 9.1.1.

- The 220kV electrical substation equipment expands at the existing 132kV Zero Point substation
- The In/Out of the existing Mansehra-ISPR to Zero Point Substation (double circuit of twin-bundled Rail, 40km long)

<sup>&</sup>lt;sup>17</sup> Proforma PC-I 220kV Zero Point Grid Station at Islamabad, January 2017, Planning Power NTDC (ANNEX4.1.2-1)

• The In/Out of the existing 220kV Rawat-Islamabad University to Zero Point (double circuit of twin-bundled Rail, 20km long)



(Source : Proforma PC-I 220kV Zero Point Grid Station at Islamabad, January 2017, Planning Power NTDC)

Figure 9.1.1 Outline Diagram of Zero Point Substation Enhancement

#### 9.1.4 Estimated Project Cost (Confidential)

#### 9.1.5 Report of on-site inspection

An on-site inspection was performed for the plan selected during the stakeholder meeting discussions.

#### (1) Zero Point Substation

The existing Zero Point Substation is under IESCO control. Substation equipment is 132kV AIS (Air Insulated Switchgear). The report of the on-site inspection is shown as follows.

The overall substation yard is 16.2ha (360m x 450m) as shown in following figure. There is utilizable space numbered ③ to ⑤. However, in the case of the AIS apply to the 220kV substation equipment, the required area is quadruple of the 132kV switch yard. Therefore, in the case of no extension of premises, GIS shall be applied for the 220kV switch yard. For the arrangement of equipment, the existing 220kV Islamabad University substation has the same scale of equipment as the extension of the Zero Point substation, and the dimension of the building for GIS and the transformer fit into an area of 60m x 45m at the Islamabad University substation. Therefore, substation equipment is fit into the space numbered as ③.



(Source: JICA Survey Team) Table 9.1.1 Plan View of Zero Point Substation





Figure 9.1.1 220kV GIS Equipment (Islamabad University Substation)



Picture 9.1.1 Site Photograph (Zero Point Substation)

#### (2) In/Out of the Existing Mansehra-ISPR to Zero Point Substation

In NTDCL's plan, the transmission line has been placed on the green belt along the existing road, and part of the 132kV transmission line will be reconstructed as a 4-circuit tower which consists of 132kV and 220kV. The transmission line route through has been planned along with urban planning; however, part of the line route is not under the process of urban development, where the  $\pi$ junction of the existing Mansehra-ISPR transmission line to the existing 132kV transmission line is parallel to the Kashmir Highway. Therefore, the situation of the planned line route was not checked during the on-site inspection.

For the section along the Kashmir Highway, in principle, the transmission line exists inside of the green belt of the road. However, in part of this section, towers were placed on the service road of Kashmir Highway. Therefore, in this section, there will be a shift from the existing 132kV transmission line to outside of the road. Moreover, the intersections of Kashmir Highway and the principal road which extends north and south are mostly in the path and interchange. Therefore, there are possibly restrictions on places where towers can be installed, so a detailed site survey will be required prior to implementation of this project. Moreover, discussion with Capital Development Authority shall be required at route selection. The transmission line route also crosses a military facility, so it will be necessary to negotiate with the army.





Figure 9.1.2 Transmission Line Route of Alternative-3e



Photo 9.1.1 Arterial location on transmission line route

#### 9.2 Conclusion

#### 9.2.1 Issues and Recommendations

The initial objective is to target improved reliability of the power supply to the Islamabad Capital Territory through an additional power supply link to the 220kV Islamabad University Substation, which is currently being fed from a single source from the 500kV Rawat Substation. The new scope suggested at the stakeholder meetings is not suitable for the initial objective.

Moreover, the thinking of ways for a grid system expansion plan is different between the current plan and the existing plan of NTDCL and IESCO. The applicability of the new scope shall be validated as the view point of the grid system plan. NTDCL shall review the grid system plan prior to implementation of the project depending on the new scope. The availability of project implementation shall be evaluated after completing a review of the grid system plan. Moreover, the review of the grid system plan will take a long time depending on load flow analysis and consideration. Therefore in this project, this report points out problems of the new scope.

#### 9.2.2 Issues and Recommendations on Power System Analysis

The future load flow situation of the transmission lines in the project target area will change according to changes in the proposed project scope, namely, upgrading of the existing 132kV Zero Point substation to a 220kV one and development of new 220 kV transmission lines to be connected to the substation. Therefore, it is necessary to review the existing 5-year expansion plan and the grid development plan of the system for supplying power to the Islamabad area considering the changes; in other words:

- (1) No load flow analysis results are shown in the new PC-1, and it is unknown what kind of concrete examinations were done to show the validity of the project. It is necessary to confirm the effects (overloading of transmission lines and transformers, voltage anomaly, etc.) on the 220 kV and 132 kV systems under N-1 contingency condition and how the system reliability will be improved after the project.
- (2) There is no information on the location of the junction point of the 220kV new transmission line branching off from the 220kV 2cct Rawat-Islamabad University transmission line (20km) to be connected to the Zero Point substation or the route of the branch transmission line. It is necessary to specify the length of each transmission section for the power system analysis.
- (3) There is no information on the location of the junction point of the 220kV new transmission line branching off from the existing 220kV 2cct Mansehra-ISPR

transmission line (40km) to be connected to the Zero Point substation or the route of the branch transmission line. It is necessary to specify the length of each transmission section for the power system analysis.

(4) As upgrading and utilization of the Zero Point substation has become the new project scope, the related power system plan has also been drastically modified. From the viewpoint of power system planning, it is necessary to carry out a power system analysis in order to confirm the validity of the project scope.

#### 9.2.3 Issues of the Transmission Line

- (1) Since the route of Mansehra-ISPR to Zero Point Substation was proposed just before the day of the SHM, this route has not been examined in any detail. The conditions of new proposal are not mentioned in the PC-1, i.e. the constraint on construction in respect to level crossing with railways and roads, places where it is expected be difficult for land acquisition, etc. Therefore, it is required to study the feasibility thorough the survey along the proposed route in detail.
- (2) The existing 132kV transmission line crosses the interchange of Islamabad Highway and Kashmir Highway. It will be required that construction work happens during the night when there is less traffic. It is also required to study the detour and traffic regulations during construction work. In addition to the existing tower which is placed on the ROW of the road, traffic regulations during dismantling and reconstruction work are required, and countermeasures for workers' safety and third-party damage are also required. It is recommended that the towers which are placed on the road be reconstructed outside of the road.
- (3) On the proposed route, there are some important government agency facilities, so it is necessary to reach a consensus with concerned agencies. In case of accident incidents, i.e. a breakdown due to breakage of a conductor and insulator damage, etc., it will be difficult to respond to an emergency from the viewpoint of maintenance. Therefore, it is recommended to study detour routes for such areas.
- (4) Part of the section of the transmission line from Islamabad University Substation to the Rawat Substation goes through the National Park. It will be required to conduct mutual consultations with CDA, EPA, and other concerned agencies.

#### 9.2.4 Issues of the Substation

The scope of the substation construction was changed from extension of transmission line bay at Islamabad university substation to modification of the Zero point substation including voltage grade up. Therefore, securing of land for the substation and the design of the substation are to be considered sufficiently, as concretely shown below.

(1) The layout of equipment and the connection diagram (single line diagram) of the main circuit of the substation are not provided in new PC-1. Therefore, it is necessary to study them at time of the detail design of this substation.

(2) Based on the system analysis, the specification of the equipment (rated capacity, short-circuit capacity etc.,) and the connection of the main circuit of the substation, etc., are to be reviewed.

(3) The space at the Zero point substation for 4 transmission line bays and 3 transformers is secured. However, for the new PC-1 220 kV Zero point substation, the construction cost is estimated not only for 220 kV GIS but also for 132 kV GIS, although existing 132 kV facilities are AIS (Air Insulated Switch Gear) and existing 132 kV facilities are not necessary to be changed to GIS. The space of the expansion of 132 kV facilities for AIS is secured at the Zero point substation.

#### 9.2.5 Issues of Environmental and Social Considerations

(1) Power transmission route

Alternative 3e was selected after the two SHMs. But the detail design and route was not decided in 2016. NTDCL has to conduct detail design after topographical survey, geological survey, land use survey and housing survey under the discussion with CDA and IESCO. Some of the anxious issues are shown as follows.

- There are many houses and not acquired land at roads and utility areas planned by CDA. It should be decided whether the route will follow the CDA's city plan or just avoid the houses. If the route follow the city plan, it should be decided who will be responsible for the compensation to the resettlement, CDA or NTDCL.
- The part which is planned as joint spanning with 132 kV might have some issues such as towers in the middle of the road or houses under the ROW. These issues should be cleared by moving locations of the towers, using monopole towers, or resettlement, under the discussion with CDA and IESCO.
- There is possibility that the areas for new GIS grid station has not enough space. If it is not enough, moving the existing buildings must be considered.
- The T/L has to cross the railway and Islamabad highway. The locations and methods should be carefully selected.
- The location of military area is not clear. It might control the route of the T/L, so that it should be clarified.

#### (2) Project Category

Regarding the impact of the environment, this plan is based on the policy that does not go through Margalla Hills National Park. On the other hand, resettlement is considered to be inevitable. There is the possibility of that it is evaluated as category A in JICA guideline. (Over 200 resettlements)

#### (3) Environmental Impact

Though "Environmental Effect of the Project" is written in the section of 11.3 in the new PC-1, the contents are mentioned only typical topics. The contents is almost same as the former PC-1 written in the section of "220kV Transmission System Network Reinforcement in Islamabad and Burhan Area". There is no described contents regarding the inpact of this project. It cannot be read from the new PC-1.

### ANNEX

- ANNEX3.1.2-1 Characteristics of Conductor (Confidential)
- ANNEX 7.1.5-1 IUCN red list species recorded around the project site
- ANNEX 7.1.6-1 Protected area and IUCN category
- ANNEX 8.3.1-1 Alternative study report (Confidential)
- ANNEX 8.3.1-2 Record of the first SHM (Confidential)
- ANNEX 8.3.1-3 Record of the second SHM (Confidential)
- ANNEX 9.1.2-1 Proforma PC-I 220kV Zero Point Grid Station at Islamabad, January 2017, Planning Power NTDC (Confidential)

| Taxonomic<br>group | Species                                      | Common name                         | IUCN Red List<br>Category |  |
|--------------------|----------------------------------------------|-------------------------------------|---------------------------|--|
| Mammals            | Apodemus rusiges                             | Kashmir Field Mouse                 | LC                        |  |
| Mammals            | Bandicota bengalensis                        | Lesser Bandicoot Rat                | LC                        |  |
| Mammals            | Barbastella leucomelas                       | Eastern Barbastelle                 | LC                        |  |
| Mammals            | Canis aureus                                 | Golden Jackal                       | LC                        |  |
| Mammals            | Caracal caracal                              | Caracal                             | LC                        |  |
| Mammals            | Eoglaucomys fimbriatus                       | Small Kashmir Flying Squirrel       | LC                        |  |
| Mammals            | Eptesicus bottae                             | Botta's Serotine                    | LC                        |  |
| Mammals            | Eptesicus gobiensis                          | Gobi Big Brown Bat                  | LC                        |  |
| Mammals            | <i>Eptesicus serotinus</i>                   | Serotine                            | LC                        |  |
| Mammals            | Felis chaus                                  | Jungle Cat                          | LC                        |  |
| Mammals            | Funambulus pennantii                         | Five-striped Palm Squirrel          | LC                        |  |
| Mammals            | Golunda ellioti                              | Indian Bush-rat                     | LC                        |  |
| Mammals            | Herpestes auropunctatus                      | Small Indian Mongoose               | LC                        |  |
| Mammals            | Herpestes edwardsii                          | Indian Grey Mongoose                | LC                        |  |
| Mammals            | Hipposideros fulvus                          | Fulvus Leaf-nosed Bat               | LC                        |  |
| Mammals            | Hyaena hyaena                                | Striped Hyaena                      | NT                        |  |
| Mammals            | Hyperacrius wynnei                           | Murree Vole                         | LC                        |  |
| Mammals            | Hypsugo savii                                | Savi's Pipistrelle                  | LC                        |  |
| Mammals            | Hypsugo sava<br>Hypsugo sava<br>Hypsugo sava | Indian Crested Porcupine            | LC                        |  |
| Mammals            | Lepus capensis                               | Cape Hare                           | LC                        |  |
| Mammals            | 1 1                                          | Indian Hare                         | LC                        |  |
|                    | Lepus nigricollis                            |                                     |                           |  |
| Mammals            | Macaca mulatta                               | Rhesus Monkey                       | LC                        |  |
| Mammals            | Martes flavigula                             | Yellow-throated Marten              | LC                        |  |
| Mammals            | Megaderma lyra                               | Greater False Vampire               | LC                        |  |
| Mammals            | Murina huttoni                               | White-bellied Tube-nosed Bat        | LC                        |  |
| Mammals            | Murina tubinaris                             | Scully's Tube-nosed Bat             | LC                        |  |
| Mammals            | Mus musculus                                 | House Mouse                         | LC                        |  |
| Mammals            | Mustela erminea                              | Stoat                               | LC                        |  |
| Mammals            | Myotis blythii                               | Lesser Mouse-eared Myotis           | LC                        |  |
| Mammals            | Myotis muricola                              | Nepalese Whiskered Myotis           | LC                        |  |
| Mammals            | Myotis nipalensis                            | Nepal Myotis                        | LC                        |  |
| Mammals            | Niviventer fulvescens                        | Chestnut White-bellied Rat          | LC                        |  |
| Mammals            | Nyctalus leisleri                            | Lesser Noctule                      | LC                        |  |
| Mammals            | Ovis orientalis                              | Mouflon                             | VU                        |  |
| Mammals            | Panthera pardus                              | Leopard                             | VU                        |  |
| Mammals            | Petaurista petaurista                        | Red Giant Flying Squirrel           | LC                        |  |
| Mammals            | Pipistrellus coromandra                      | Coromandel Pipistrelle              | LC                        |  |
| Mammals            | Pipistrellus javanicus                       | Javan Pipistrelle                   | LC                        |  |
| Mammals            | Pipistrellus pipistrellus                    | Common Pipistrelle                  | LC                        |  |
| Mammals            | Pipistrellus tenuis                          | Least Pipistrelle                   | LC                        |  |
| Mammals            | Prionailurus bengalensis                     | Leopard Cat                         | LC                        |  |
| Mammals            | Pteropus giganteus                           | Indian Flying Fox                   | LC                        |  |
| Mammals            | Rattus pyctoris                              | Himalayan Rat                       | LC                        |  |
| Mammals            | Rattus rattus                                | House Rat                           | LC                        |  |
| Mammals            | Rattus tanezumi                              | Oriental House Rat                  | LC                        |  |
| Mammals            | Rhinolophus<br>ferrumequinum                 | Greater Horseshoe Bat               | LC                        |  |
| Mammals            | Rhinolophus lepidus                          | Blyth's Horseshoe Bat               | LC                        |  |
| Mammals            | Rhinolophus nacrotis                         | Big-eared Horseshoe Bat             | LC                        |  |
| Mammals            | Rhinopoma microphyllum                       | Greater Mouse-tailed Bat            | LC                        |  |
| Mammals            | Rousettus leschenaultii                      | Leschenault's Rousette              | LC                        |  |
| Mammals            | Scotophilus heathii                          | Greater Asiatic Yellow House<br>Bat | LC                        |  |
| Mammals            | Scotophilus kuhlii                           | Lesser Asiatic Yellow House<br>Bat  | LC                        |  |

## ANNEX 7.1.5-1 IUCN red list species recorded around the project site

| Taxonomic<br>group | Species                   | Common name                 | IUCN Red List<br>Category |
|--------------------|---------------------------|-----------------------------|---------------------------|
| Mammals            | Semnopithecus schistaceus | Nepal Gray Langur           | LC                        |
| Mammals            | Suncus etruscus           | Pygmy White-toothed Shrew   | LC                        |
| Mammals            | Suncus murinus            | House Shrew                 | LC                        |
| Mammals            | Sus scrofa                | Wild Boar                   | LC                        |
| Mammals            | Tatera indica             | Indian Gerbil               | LC                        |
| Mammals            | Vulpes vulpes             | Red Fox                     | LC                        |
| Birds              | Accipiter badius          | Shikra                      | LC                        |
| Birds              | Accipiter nisus           | Eurasian Sparrowhawk        | LC                        |
| Birds              | Acridotheres fuscus       | Jungle Myna                 | LC                        |
| Birds              | Acridotheres ginginianus  | Bank Myna                   | LC                        |
| Birds              | Acridotheres tristis      | Common Myna                 | LC                        |
| Birds              | Acrocephalus agricola     | Paddyfield Warbler          | LC                        |
| Birds              | Acrocephalus concinens    | Blunt-winged Warbler        | LC                        |
| Birds              | Acrocephalus dumetorum    | Blyth's Reed-warbler        | LC                        |
| Birds              | Acrocephalus              | Moustached Warbler          | LC                        |
|                    | melanopogon               |                             |                           |
| Birds              | Acrocephalus stentoreus   | Clamorous Reed-warbler      | LC                        |
| Birds              | Aegithalos iredalei       | Red-headed Bushtit          | LC                        |
| Birds              | Aegypius monachus         | Cinereous Vulture           | NT                        |
| Birds              | Alauda arvensis           | Eurasian Skylark            | LC                        |
| Birds              | Alauda gulgula            | Oriental Skylark            | LC                        |
| Birds              | Alaudala rufescens        | Lesser Short-toed Lark      | LC                        |
| Birds              | Alcedo atthis             | Common Kingfisher           | LC                        |
| Birds              | Alectoris chukar          | Chukar                      | LC                        |
| Birds              | Amandava amandava         | Red Avadavat                | LC                        |
| Birds              | Amaurornis phoenicurus    | White-breasted Waterhen     | LC                        |
| Birds              | Ammomanes deserti         | Desert Lark                 | LC                        |
| Birds              | Ammoperdix griseogularis  | See-see Partridge           | LC                        |
| Birds              | Anas acuta                | Northern Pintail            | LC                        |
| Birds              | Anas crecca               | Common Teal                 | LC                        |
| Birds              | Anas platyrhynchos        | Mallard                     | LC                        |
| Birds              | Anhinga melanogaster      | Oriental Darter             | NT                        |
| Birds              | Anser albifrons           | Greater White-fronted Goose | LC                        |
| Birds              | Anser anser               | Greylag Goose               | LC                        |
| Birds              | Anser indicus             | Bar-headed Goose            | LC                        |
| Birds              | Anthus richardi           | Richard's Pipit             | LC                        |
| Birds              | Anthus roseatus           | Rosy Pipit                  | LC                        |
| Birds              | Anthus rufulus            | Paddyfield Pipit            | LC                        |
| Birds              | Anthus similis            | Long-billed Pipit           | LC                        |
| Birds              | Anthus spinoletta         | Water Pipit                 | LC                        |
| Birds              | Anthus trivialis          | Tree Pipit                  | LC                        |
| Birds              | Apus affinis              | Little Swift                | LC                        |
| Birds              | Apus apus                 | Common Swift                | LC                        |
| Birds              | Aquila chrysaetos         | Golden Eagle                | LC                        |
| Birds              | Aquila fasciata           | Bonelli's Eagle             | LC                        |
| Birds              | Aquila heliaca            | Eastern Imperial Eagle      | VU                        |
| Birds              | Aquila nipalensis         | Steppe Eagle                | EN                        |
| Birds              | Aquila rapax              | Tawny Eagle                 | LC                        |
| Birds              | Ardea alba                | Great White Egret           | LC                        |
| Birds              | Ardea intermedia          | Intermediate Egret          | LC                        |
| Birds              | Ardea purpurea            | Purple Heron                | LC                        |
| Birds              | Ardeola grayii            | Indian Pond-heron           | LC                        |
| Birds              | Argya caudata             | Common Babbler              | LC                        |
| Birds              | Asio otus                 | Northern Long-eared Owl     | LC                        |
| Birds              | Aythya ferina             | Common Pochard              | VU                        |
| Birds              | Aythya fuligula           | Tufted Duck                 | LC                        |
| Birds              | Aythya nyroca             | Ferruginous Duck            | NT                        |
| Birds              | Botaurus stellaris        | Eurasian Bittern            | LC                        |

| Taxonomic<br>group | Species                  | Common name                    | IUCN Red List<br>Category |
|--------------------|--------------------------|--------------------------------|---------------------------|
| Birds              | Bubo bengalensis         | Rock Eagle-owl                 | LC                        |
| Birds              | Bubulcus ibis            | Cattle Egret                   | LC                        |
| Birds              | Butastur teesa           | White-eyed Buzzard             | LC                        |
| Birds              | Buteo japonicus          | Japanese Buzzard               | LC                        |
| Birds              | Buteo refectus           | Himalayan Buzzard              | LC                        |
| Birds              | Buteo rufinus            | Long-legged Buzzard            | LC                        |
| Birds              | Butorides striata        | Green-backed Heron             | LC                        |
| Birds              | Cacomantis passerinus    | Grey-bellied Cuckoo            | LC                        |
| Birds              | Calandrella acutirostris | Hume's Lark                    | LC                        |
| Birds              | Calidris alpina          | Dunlin                         | LC                        |
| Birds              | Calidris temminckii      | Temminck's Stint               | LC                        |
| Birds              | Callacanthis burtoni     | Spectacled Finch               | LC                        |
| Birds              | Calliope pectoralis      | Himalayan Rubythroat           | LC                        |
| Birds              | Caprimulgus affinis      | Savanna Nightjar               | LC                        |
| Birds              | Caprimulgus jotaka       | Grey Nightjar                  | LC                        |
| Birds              | Caprimulgus macrurus     | Large-tailed Nightjar          | LC                        |
| Birds              | Carduelis caniceps       | Eastern Goldfinch              | LC                        |
| Birds              | Carpodacus erythrinus    | Common Rosefinch               | LC                        |
| Birds              | Carpodacus rhodochlamys  | Red-mantled Rosefinch          | LC                        |
| Birds              | Catreus wallichii        | Cheer Pheasant                 | VU                        |
| Birds              | Cephalopyrus flammiceps  | Fire-capped Tit                | LC                        |
| Birds              | Certhia himalayana       | Bar-tailed Treecreeper         | LC                        |
| Birds              | Ceryle rudis             | Pied Kingfisher                | LC                        |
| Birds              | Cettia brunnifrons       | Grey-sided Bush-warbler        | LC                        |
| Birds              | Cettia cetti             | Cetti's Warbler                | LC                        |
| Birds              | Charadrius alexandrinus  | Kentish Plover                 | LC                        |
| Birds              | Charadrius dubius        | Little Ringed Plover           | LC                        |
| Birds              | Chlidonias hybrida       | Whiskered Tern                 | LC                        |
| Birds              | Chloris spinoides        | Yellow-breasted Greenfinch     | LC                        |
| Birds              | Chrysomma sinense        | Yellow-eyed Babbler            | LC                        |
| Birds              | Ciconia ciconia          | White Stork                    | LC                        |
| Birds              | Ciconia episcopus        | Asian Woollyneck               | VU                        |
| Birds              | Ciconia nigra            | Black Stork                    | LC                        |
| Birds              | Cinclus cinclus          | White-throated Dipper          | LC                        |
| Birds              | Cinclus pallasii         | Brown Dipper                   | LC                        |
| Birds              | Cinnyris asiaticus       | Purple Sunbird                 | LC                        |
| Birds              | Circaetus gallicus       | Short-toed Snake-eagle         | LC                        |
| Birds              | Circus cyaneus           | Hen Harrier                    | LC                        |
| Birds              | Circus macrourus         | Pallid Harrier                 | NT                        |
| Birds              | Cisticola juncidis       | Zitting Cisticola              | LC                        |
| Birds              | Clamator jacobinus       | Jacobin Cuckoo                 | LC                        |
| Birds              | Clanga clanga            | Greater Spotted Eagle          | VU                        |
| Birds              | Columba livia            | Rock Dove                      | LC                        |
| Birds              | Columba palumbus         | Common Woodpigeon              | LC                        |
| Birds              | Coracias benghalensis    | Indian Roller                  | LC                        |
| Birds              | Coracias garrulus        | European Roller                | LC                        |
| Birds              | Corvus corax             | Common Raven                   | LC                        |
| Birds              | Corvus frugilegus        | Rook                           | LC                        |
| Birds              | Corvus monedula          | Eurasian Jackdaw               | LC<br>LC                  |
| Birds<br>Birds     | Corvus splendens         | House Crow                     | LC                        |
|                    | Coturnix coturnix        | Common Quail                   |                           |
| Birds              | Cuculus canorus          | Common Cuckoo<br>Lesser Cuckoo | LC                        |
| Birds              | Cuculus poliocephalus    |                                | LC<br>LC                  |
| Birds              | Culicicapa ceylonensis   | Grey-headed Canary-flycatcher  |                           |
| Birds              | Cursorius coromandelicus | Indian Courser                 | LC<br>LC                  |
| Birds              | Cursorius cursor         | Cream-coloured Courser         |                           |
| Birds              | Delichon dasypus         | Asian House Martin             | LC                        |
| Birds              | Dendrocopos assimilis    | Sind Woodpecker                | LC                        |

| Taxonomic<br>group | Species                   | Common name                         | IUCN Red List<br>Category |
|--------------------|---------------------------|-------------------------------------|---------------------------|
| Birds              | Dicrurus macrocercus      | Black Drongo                        | LC                        |
| Birds              | Dinopium benghalense      | Black-rumped Flameback              | LC                        |
| Birds              | Egretta garzetta          | Little Egret                        | LC                        |
| Birds              | Elanus caeruleus          | Black-winged Kite                   | LC                        |
| Birds              | Emberiza cia              | Rock Bunting                        | LC                        |
| Birds              | Emberiza lathami          | Crested Bunting                     | LC                        |
| Birds              | Emberiza leucocephalos    | Pine Bunting                        | LC                        |
| Birds              | Emberiza schoeniclus      | Reed Bunting                        | LC                        |
| Birds              | Emberiza stewarti         | White-capped Bunting                | LC                        |
| Birds              | Emberiza striolata        | Striolated Bunting                  | LC                        |
| Birds              | Enicurus scouleri         | Little Forktail                     | LC                        |
| Birds              | Eremophila alpestris      | Horned Lark                         | LC                        |
| Birds              | Eremopterix griseus       | Ashy-crowned Sparrow-lark           | LC                        |
| Birds              | Erythrogenys erythrogenys | Rusty-cheeked<br>Scimitar-babbler   | LC                        |
| Birds              | Esacus recurvirostris     | Great Thick-knee                    | NT                        |
| Birds              | Eudynamys scolopaceus     | Western Koel                        | LC                        |
| Birds              | Eumyias thalassinus       | Verditer Flycatcher                 | LC                        |
| Birds              | Euodice malabarica        | Indian Silverbill                   | LC                        |
| Birds              | Falco cherrug             | Saker Falcon                        | EN                        |
| Birds              | Falco chicquera           | Red-headed Falcon                   | NT                        |
| Birds              | Falco columbarius         | Merlin                              | LC                        |
| Birds              | Falco jugger              | Laggar Falcon                       | NT                        |
| Birds              | Falco naumanni            | Lesser Kestrel                      | LC                        |
| Birds              | Falco peregrinus          | Peregrine Falcon                    | LC                        |
| Birds              | Falco subbuteo            | Eurasian Hobby                      | LC                        |
| Birds              | Falco tinnunculus         | Common Kestrel                      | LC                        |
| Birds              | Ficedula parva            | Red-breasted Flycatcher             | LC                        |
| Birds              | Ficedula ruficauda        | Rusty-tailed Flycatcher             | LC                        |
| Birds              | Ficedula superciliaris    | Ultramarine Flycatcher              | LC                        |
| Birds              | Ficedula tricolor         | Slaty-blue Flycatcher               | LC                        |
| Birds              | Francolinus francolinus   | Black Francolin                     | LC                        |
| Birds              | Francolinus pondicerianus | Grey Francolin                      | LC                        |
| Birds              | Fringilla coelebs         | Common Chaffinch                    | LC                        |
| Birds              | Fringilla montifringilla  | Brambling                           | LC                        |
| Birds              | Fulica atra               | Common Coot                         | LC                        |
| Birds              | Galerida cristata         | Crested Lark                        | LC                        |
| Birds              | Gallicrex cinerea         | Watercock                           | LC                        |
| Birds              | Gallinago gallinago       | Common Snipe                        | LC                        |
| Birds              | Gallinula chloropus       | Common Moorhen                      | LC                        |
| Birds              | Garrulax albogularis      | White-throated Laughingthrush       | LC                        |
| Birds              | Garrulax rufogularis      | Rufous-chinned<br>Laughingthrush    | LC                        |
| Birds              | Garrulus lanceolatus      | Black-headed Jay                    | LC                        |
| Birds              | Geokichla citrina         | Orange-headed Thrush                | LC                        |
| Birds              | Glareola lactea           | Little Pratincole                   | LC                        |
| Birds              | Glaucidium cuculoides     | Asian Barred Owlet                  | LC                        |
| Birds              | Gymnoris xanthocollis     | Chestnut-shouldered<br>Bush-sparrow | LC                        |
| Birds              | Gyps bengalensis          | White-rumped Vulture                | CR                        |
| Birds              | Gyps fulvus               | Griffon Vulture                     | LC                        |
| Birds              | Halcyon smyrnensis        | White-breasted Kingfisher           | LC                        |
| Birds              | Haliaeetus leucoryphus    | Pallas's Fish-eagle                 | VU                        |
| Birds              | Heterophasia capistrata   | Rufous Sibia                        | LC                        |
| Birds              | Hieraaetus pennatus       | Booted Eagle                        | LC                        |
| Birds              | Hierococcyx varius        | Common Hawk-cuckoo                  | LC                        |
| Birds              | Himantopus himantopus     | Black-winged Stilt                  | LC                        |
| Birds              | Hirundapus caudacutus     | White-throated Needletail           | LC                        |

| CategoryLCwLCwstartLCanaLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCtitNTerLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| wLCstartLCanaLCanaLCLCLCDreyguideNTLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCICLCICLCICLCICLCICLCItNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ana LC ana LC ana LC ana LC c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ana LC<br>LC<br>LC<br>LC<br>Delegation<br>Anterior of the second s |
| LCLCLCDneyguideNTLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LCLCLCDneyguideNTLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LCLConeyguideNTLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCLCNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LC       oneyguide     NT       LC     LC       LC     LC       LC     LC       LC     LC       LC     LC       C     LC       LC     LC       LC     LC       C     LC       LC     LC       C     LC       C     LC       IC     LC       IC     LC       IC     LC       IC     LC       IC     LC       IC     NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| neyguide NT<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>ed Gull<br>LC<br>ch<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>ed Gull<br>LC<br>C<br>d Gull<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>ed Gull<br>LC<br>C<br>ch<br>LC<br>LC<br>ch<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC<br>LC<br>LC<br>LC<br>LC<br>ed Gull<br>LC<br>Voodpecker<br>LC<br>ch<br>LC<br>LC<br>LC<br>LC<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LC<br>LC<br>LC<br>LC<br>ed Gull<br>LC<br>Voodpecker<br>LC<br>ch<br>LC<br>LC<br>th<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LC<br>LC<br>LC<br>ed Gull<br>Coodpecker<br>LC<br>ch<br>LC<br>LC<br>th<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LC<br>LC<br>ed Gull<br>/oodpecker<br>LC<br>ch<br>LC<br>LC<br>it<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LC<br>LC<br>ed Gull LC<br>/oodpecker LC<br>ch LC<br>it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ed Gull LC<br>Voodpecker LC<br>ch LC<br>it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ed Gull LC<br>Voodpecker LC<br>ch LC<br>it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Voodpecker LC<br>ch LC<br>it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ch LC<br>it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| it NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| er LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nia LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ater LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| eater LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ter LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| thrush LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| wfinch LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| gtail LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ttcher LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| her LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Grosbeak LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| beak LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ush LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| se LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tava LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tava LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tava LC<br>Igle LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tava LC<br>Igle LC<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tava LC<br>Igle LC<br>NT<br>ght Heron LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tava LC<br>gle LC<br>NT<br>ght Heron LC<br>ar LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tava LC<br>gle LC<br>NT<br>ght Heron LC<br>ar LC<br>LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tava LC<br>gle LC<br>NT<br>ght Heron LC<br>ar LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a<br>c<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Taxonomic<br>group | Species                                 | Common name                           | IUCN Red List<br>Category |
|--------------------|-----------------------------------------|---------------------------------------|---------------------------|
| Birds              | Oriolus kundoo                          | Indian Golden Oriole                  | LC                        |
| Birds              | Orthotomus sutorius                     | Common Tailorbird                     | LC                        |
| Birds              | Otus bakkamoena                         | Indian Scops-owl                      | LC                        |
| Birds              | Otus brucei                             | Pallid Scops-owl                      | LC                        |
| Birds              | Otus lettia                             | Collared Scops-owl                    | LC                        |
| Birds              | Otus sunia                              | Oriental Scops-owl                    | LC                        |
| Birds              | Oxyura leucocephala                     | White-headed Duck                     | EN                        |
| Birds              | Pandion haliaetus                       | Osprey                                | LC                        |
| Birds              | Parus major                             | Great Tit                             | LC                        |
| Birds              | Parus monticolus                        | Green-backed Tit                      | LC                        |
| Birds              | Passer domesticus                       | House Sparrow                         | LC                        |
| Birds              | Passer montanus                         | Eurasian Tree Sparrow                 | LC                        |
| Birds              | Pelecanus crispus                       | Dalmatian Pelican                     | VU                        |
| Birds              | Pericrocotus cinnamomeus                | Small Minivet                         | LC                        |
| Birds              | Pericrocotus ethologus                  | Long-tailed Minivet                   | LC                        |
| Birds              | Pericrocotus roseus                     | Rosy Minivet                          | LC                        |
| Birds              | Periparus ater                          | Coal Tit                              | LC                        |
| Birds              | Pernis ptilorhynchus                    | Oriental Honey-buzzard                | LC                        |
| Birds              | Petrochelidon fluvicola                 | Streak-throated Swallow               | LC                        |
| Birds              | Phoenicopterus roseus                   | Greater Flamingo                      | LC                        |
| Birds              | Phoenicurus                             | Blue-capped Redstart                  | LC                        |
|                    | coeruleocephala                         |                                       |                           |
| Birds              | Phoenicurus erythronotus                | Eversmann's Redstart                  | LC                        |
| Birds              | Phoenicurus fuliginosus                 | Plumbeous Water-redstart              | LC                        |
| Birds              | Phoenicurus ochruros                    | Black Redstart                        | LC                        |
| Birds              | Phylloscopus affinis                    | Tickell's Leaf-warbler                | LC                        |
| Birds              | Phylloscopus chloronotus                | Lemon-rumped Leaf-warbler             | LC                        |
| Birds              | Phylloscopus griseolus                  | Sulphur-bellied Warbler               | LC                        |
| Birds              | Phylloscopus humei                      | Hume's Leaf-warbler                   | LC                        |
| Birds              | Phylloscopus neglectus                  | Plain Leaf-warbler                    | LC                        |
| Birds              | Phylloscopus occipitalis                | Western Crowned Leaf-warbler          | LC                        |
| Birds              | Phylloscopus subviridis                 | Brooks's Leaf-warbler                 | LC                        |
| Birds              | Phylloscopus tristis                    | Siberian Chiffchaff                   | LC                        |
| Birds              | Phylloscopus trochiloides               | Greenish Warbler                      | LC                        |
| Birds              | Phylloscopus tytleri                    | Tytler's Leaf-warbler                 | NT                        |
| Birds              | Phylloscopus whistleri                  | Whistler's Warbler                    | LC                        |
| Birds              | Pica pica                               | Eurasian Magpie                       | LC                        |
| Birds              | Picumnus innominatus                    | Speckled Piculet                      | LC                        |
| Birds              | Picus guerini                           | Black-naped Woodpecker                | LC                        |
| Birds              | Picus squamatus                         | Scaly-bellied Woodpecker              | LC                        |
| Birds              | Pitta brachyura                         | Indian Pitta                          | LC                        |
| Birds              | Platalea leucorodia                     | Eurasian Spoonbill                    | LC                        |
| Birds              | Plegadis falcinellus                    | Glossy Ibis                           | LC                        |
| Birds              | Ploceus manyar                          | Streaked Weaver                       | LC                        |
| Birds              | Ploceus philippinus                     | Baya Weaver                           | LC                        |
| Birds              | Podiceps cristatus                      | Great Crested Grebe                   | LC                        |
| Birds              | Podiceps nigricollis                    | Black-necked Grebe                    | LC                        |
| Birds              | Porphyrio porphyrio                     | Purple Swamphen                       | LC                        |
| Birds              | Prinia buchanani                        | Rufous-fronted Prinia                 | LC                        |
| Birds              | Prinia crinigera                        | Striated Prinia                       |                           |
| Birds              | Prinia flaviventris                     | Yellow-bellied Prinia                 |                           |
| Birds              |                                         | Graceful Prinia                       |                           |
| Birds              | Prinia gracilis<br>Prinia hodgsonii     | Grey-breasted Prinia                  |                           |
|                    |                                         | · · · · · · · · · · · · · · · · · · · |                           |
| Birds              | Prinia inornata<br>Prinia socialis      | Plain Prinia                          | LC                        |
| Birds              | Prinia socialis<br>Prunella atrecularia | Ashy Prinia                           |                           |
| Birds              | Prunella atrogularis                    | Black-throated Accentor               | LC                        |
| Birds              | Psilopogon asiaticus                    | Blue-throated Barbet                  | LC                        |

| Taxonomic<br>group | Species                       | Common name                 | IUCN Red List<br>Category |  |
|--------------------|-------------------------------|-----------------------------|---------------------------|--|
| 8- 0 °F            | haemacephalus                 |                             | 0.00080-9                 |  |
| Birds              | Psilopogon virens             | Great Barbet                | LC                        |  |
| Birds              | Psittacula cyanocephala       | Plum-headed Parakeet        | LC                        |  |
| Birds              | Psittacula eupatria           | Alexandrine Parakeet        | NT                        |  |
| Birds              | Psittacula krameri            | Rose-ringed Parakeet        | LC                        |  |
| Birds              | Pterocles exustus             | Chestnut-bellied Sandgrouse | LC                        |  |
| Birds              | Pterocles orientalis          | Black-bellied Sandgrouse    | LC                        |  |
| Birds              | Pteruthius aeralatus          | White-browed Shrike-babbler | LC                        |  |
| Birds              | Ptyonoprogne obsoleta         | Pale Rock Martin            | LC                        |  |
| Birds              | Ptyonoprogne rupestris        | Eurasian Crag Martin        | LC                        |  |
| Birds              | Pycnonotus cafer              | Red-vented Bulbul           | LC                        |  |
| Birds              | Pycnonotus leucotis           | White-eared Bulbul          | LC                        |  |
| Birds              | Pyrrhula aurantiaca           | Orange Bullfinch            | LC                        |  |
| Birds              | Remiz coronatus               | White-crowned Penduline-tit | LC                        |  |
| Birds              | Rhipidura albicollis          | White-throated Fantail      | LC                        |  |
| Birds              | Rhipidura aureola             | White-browed Fantail        | LC                        |  |
| Birds              | Riparia chinensis             | Asian Plain Martin          | LC                        |  |
| Birds              | Riparia diluta                | Pale Sand Martin            | LC                        |  |
| Birds              | Rostratula benghalensis       | Greater Painted-snipe       | LC                        |  |
| Birds              | Rynchops albicollis           | Indian Skimmer              | VU                        |  |
| Birds              | Sarcogyps calvus              | Red-headed Vulture          | CR                        |  |
| Birds              | Saxicola caprata              | Pied Bushchat               | LC                        |  |
| Birds              | Saxicola ferreus              | Grey Bushchat               | LC                        |  |
| Birds              | Saxicola macrorhynchus        | White-browed Bushchat       | VU                        |  |
| Birds              | Saxicola torquatus            | Common Stonechat            | LC                        |  |
| Birds              | Saxicoloides fulicatus        | Indian Robin                | LC                        |  |
| Birds              | Scotocerca inquieta           | Streaked Scrub-warbler      | LC                        |  |
| Birds              | Spatula clypeata              | Northern Shoveler           | LC                        |  |
| Birds              | Spilopelia senegalensis       | Laughing Dove               | LC                        |  |
| Birds              | Spilopelia suratensis         | Western Spotted Dove        | LC                        |  |
| Birds              | Spilornis cheela              | Crested Serpent-eagle       | LC                        |  |
| Birds              | Sterna aurantia               | River Tern                  | NT                        |  |
| Birds              | Sternula albifrons            | Little Tern                 | LC                        |  |
| Birds              | Streptopelia decaocto         | Eurasian Collared-dove      | LC                        |  |
| Birds              | Streptopelia orientalis       | Oriental Turtle-dove        | LC                        |  |
| Birds              | Streptopelia tranquebarica    | Red Turtle-dove             | LC                        |  |
| Birds              | Strix aluco                   | Tawny Owl                   | LC                        |  |
| Birds              | Sturnia pagodarum             | Brahminy Starling           | LC                        |  |
| Birds              | Sturnus vulgaris              | Common Starling             | LC                        |  |
| Birds              | Sylvia curruca                | Lesser Whitethroat          | LC                        |  |
| Birds              | Sylvia nana                   | Asian Desert Warbler        | LC                        |  |
| Birds              | Tachybaptus ruficollis        | Little Grebe                | LC                        |  |
| Birds              | Tadorna ferruginea            | Ruddy Shelduck              | LC                        |  |
| Birds              | Tarsiger chrysaeus            | Golden Bush-robin           | LC                        |  |
| Birds              | Tarsiger cyanurus             | Orange-flanked Bush-robin   | LC                        |  |
| Birds              | Tarsiger rufilatus            | Himalayan Bush-robin        | LC                        |  |
| Birds              | Tephrodornis<br>pondicerianus | Common Wood-shrike          | LC                        |  |
| Birds              | Terpsiphone paradisi          | Indian Paradise-flycatcher  | LC                        |  |
| Birds              | Tetrax tetrax                 | Little Bustard              | NT                        |  |
| Birds              | Tichodroma muraria            | Wallcreeper                 | LC                        |  |
| Birds              | Tringa erythropus             | Spotted Redshank            | LC                        |  |
| Birds              | Tringa glareola               | Wood Sandpiper              | LC                        |  |
| Birds              | Tringa nebularia              | Common Greenshank           | LC                        |  |
| Birds              | Tringa totanus                | Common Redshank             | LC                        |  |
| Birds              | Trochalopteron lineatum       | Streaked Laughingthrush     | LC                        |  |
| Birds              | Trochalopteron                | Variegated Laughingthrush   | LC                        |  |
|                    | variegatum                    | 2 2 2                       |                           |  |

| Taxonomic<br>group | Species                       | Common name               | IUCN Red List<br>Category |
|--------------------|-------------------------------|---------------------------|---------------------------|
| Birds              |                               |                           | LC                        |
| Birds              | Turdoides striata             | Jungle Babbler            | LC                        |
| Birds              | Turdus atrogularis            | Black-throated Thrush     | LC                        |
| Birds              | Turdus boulboul               | Grey-winged Blackbird     | LC                        |
| Birds              | Turdus maximus                | Tibetan Blackbird         | LC                        |
| Birds              | Turdus rubrocanus             | Chestnut Thrush           | LC                        |
| Birds              | Turdus ruficollis             | Rufous-throated Thrush    | LC                        |
| Birds              | Turdus unicolor               | Tickell's Thrush          | LC                        |
| Birds              | Turdus viscivorus             | Mistle Thrush             | LC                        |
| Birds              | Turnix sylvaticus             | Common Buttonquail        | LC                        |
| Birds              | Turnix tanki                  | Yellow-legged Buttonquail | LC                        |
| Birds              | Tyto alba                     | Common Barn-owl           | LC                        |
| Birds              | Upupa epops                   | Common Hoopoe             | LC                        |
| Birds              | Vanellus gregarius            | Sociable Lapwing          | CR                        |
| Birds              | Vanellus indicus              | Red-wattled Lapwing       | LC                        |
| Birds              | Vanellus leucurus             | White-tailed Lapwing      | LC                        |
| Birds              | Vanellus vanellus             | Northern Lapwing          | NT                        |
| Birds              | Zapornia fusca                | Ruddy-breasted Crake      | LC                        |
| Birds              | Zapornia parva                | Little Crake              | LC                        |
| Birds              | Zoothera major                | Amami Thrush              | NT                        |
| Birds              | Zoothera mollissima           | Alpine Thrush             | LC                        |
| Birds              | Zosterops palpebrosus         | Oriental White-eye        | LC                        |
| Reptiles           | Boiga trigonata               | Indian Gamma Snake        | LC                        |
| Reptiles           | Calotes minor                 | Hardwicke's Bloodsucker   | DD                        |
| Reptiles           | Cyrtopodion potoharense       | Potwar Gecko              | LC                        |
| Reptiles           | Cyrtopodion scabrum           | Rough Bent-toed Gecko     | LC                        |
| Reptiles           | Gavialis gangeticus           | Gharial                   | CR                        |
| Reptiles           | Herpetoreas sieboldii         | Sikkim Keelback           | DD                        |
| Reptiles           | Lissemys punctata             | Indian Flapshell Turtle   | LR/lc                     |
| Reptiles           | Oligodon taeniolatus          | Streaked Kukri Snake      | LC                        |
| Reptiles           | Sitana ponticeriana           | Fan Throated Lizard       | LC                        |
| Reptiles           | Varanus bengalensis           | Common Indian Monitor     | LC                        |
| Amphibians         | Allopaa hazarensis            | Kashmir Paa Frog          | LC                        |
| Amphibians         | Duttaphrynus himalayanus      | Himalayan Toad            | LC                        |
| Amphibians         | Duttaphrynus<br>melanostictus | Black-spectacled Toad     | LC                        |
| Amphibians         | Duttaphrynus stomaticus       |                           | LC                        |
| Amphibians         | Euphlyctis cyanophlyctis      |                           | LC                        |
| Amphibians         | Fejervarya limnocharis        | Asian Grass Frog          | LC                        |
| Amphibians         | Hoplobatrachus tigerinus      | Indian Bullfrog           | LC                        |
| Amphibians         | Nanorana vicina               |                           | LC                        |
| Amphibians         | Sphaerotheca breviceps        |                           | LC                        |
| Amphibians         | Uperodon systoma              | Marbled Balloon Frog      | LC                        |
| Invertebrates      | Acisoma panorpoides           | Grizzled Pintail          | LC                        |
| Invertebrates      | Agriocnemis pygmaea           | Wandering Midget          | LC                        |
| Invertebrates      | Anax ephippiger               | Vagrant Emperor           | LC                        |
| Invertebrates      | Anax imperator                | Blue Emperor              | LC                        |
| Invertebrates      | Anax indicus                  |                           | LC                        |
| Invertebrates      | Bellamya bengalensis          |                           | LC                        |
| Invertebrates      | Bithynia cerameopoma          |                           | LC                        |
| Invertebrates      | Ceriagrion cerinorubellum     |                           | LC                        |
| Invertebrates      | Ceriagrion<br>coromandelianum |                           | LC                        |
| Invertebrates      | Clenchiella microscopica      |                           | LC                        |
| Invertebrates      | Clithon reticularis           |                           | LC                        |
| Invertebrates      | Corbicula regularis           |                           | LC                        |
| Invertebrates      | Corbicula striatella          |                           | LC                        |
| Invertebrates      | Crocothemis erythraea         | Broad Scarlet             | LC                        |

| Taxonomic<br>group | Species                     | Common name            | IUCN Red List<br>Category |
|--------------------|-----------------------------|------------------------|---------------------------|
| Invertebrates      | Diplacodes lefebvrii        | Black Percher          | LC                        |
| Invertebrates      | Dreissena polymorpha        | Zebra Mussel           | LC                        |
| Invertebrates      | Gabbia orcula               |                        | LC                        |
| Invertebrates      | <i>Gyraulus euphraticus</i> |                        | LC                        |
| Invertebrates      | Himalayapotamon             |                        | LC                        |
| in encontrol       | koolooense                  |                        | 20                        |
| Invertebrates      | Indoplanorbis exustus       |                        | LC                        |
| Invertebrates      | Ischnura forcipata          |                        | LC                        |
| Invertebrates      | Ischnura senegalensis       | Tropical Bluetail      | LC                        |
| Invertebrates      | Lestes thoracicus           |                        | LC                        |
| Invertebrates      | Lvmnaea acuminata           |                        | LC                        |
| Invertebrates      | Lymnaea luteola             |                        | LC                        |
| Invertebrates      | Melanoides pyramis          |                        | LC                        |
| Invertebrates      | Orthetrum japonicum         |                        | LC                        |
| Invertebrates      | Pantala flavescens          | Wandering Glider       | LC                        |
| Invertebrates      | Parrevsia caerulea          |                        | LC                        |
| Invertebrates      | Potamon gedrosianum         |                        | LC                        |
| Invertebrates      | Radix auricularia           |                        | LC                        |
| Invertebrates      | Sartoriana spinigera        |                        | LC                        |
| Invertebrates      | Tramea basilaris            | Keyhole Glider         | LC                        |
| Invertebrates      | Trithemis aurora            |                        | LC                        |
| Invertebrates      | Zygonyx torridus            | Ringed Cascader        | LC                        |
| Fishes             | Acanthocobitis botia        | Striped Loach          | LC                        |
| Fishes             | Anguilla bengalensis        | Indian Mottled Eel     | NT                        |
| Fishes             | Badis badis                 |                        | LC                        |
| Fishes             | Bangana ariza               | Ariza Labeo            | LC                        |
| Fishes             | Bangana diplostoma          |                        | LC                        |
| Fishes             | Channa gachua               | Dwarf Snakehead        | LC                        |
| Fishes             | Channa marulius             | Dividit Shutchedd      | LC                        |
| Fishes             | Cirrhinus reba              | Reba Carp              | LC                        |
| Fishes             | Esomus danrica              | Flying barb            | LC                        |
| Fishes             | Gibelion catla              | Catla                  | LC                        |
| Fishes             | Glossogobius giuris         | Bareye Goby            | LC                        |
| Fishes             | Heteropneustes fossilis     | Stinging catfish       | LC                        |
| Fishes             | Labeo angra                 | Angra Labeo            | LC                        |
| Fishes             | Labeo bata                  | Minor Carp             | LC                        |
| Fishes             | Labeo microphthalmus        | Murree labeo           | LC                        |
| Fishes             | Nangra nangra               | Kosi Nangra            | LC                        |
| Fishes             | Notopterus notopterus       |                        | LC                        |
| Fishes             | Ompok bimaculatus           |                        | NT                        |
| Fishes             | Rasbora daniconius          | Slender Barb           | LC                        |
| Fishes             | Silonia silondia            | Silong Catfish         | LC                        |
| Fishes             | Sperata aor                 | Long-whiskered Catfish | LC                        |
| Fishes             | Trichogaster lalius         |                        | LC                        |
| Fishes             | Wallago attu                |                        | NT                        |

| Туре               | Name                      | Area   | Year | IUCN Category | Ramsal |
|--------------------|---------------------------|--------|------|---------------|--------|
| National Park      | Lal Suhanra               | 874    | 1972 | V             |        |
| National Park      | Margalla Hills            | 174    | 1980 | V             |        |
| National Park      | Hazar Ganji-Chiltan       | 156    | 1980 | V             |        |
| National Park      | Ayubia                    | 17     | 1984 | V             |        |
| National Park      | Ayub                      | 9      | 0    | V             |        |
| National Park      | Shandur-Hundrup           | 1,640  | 0    | Not Reported  |        |
| National Park      | Central Karakoram         | 0      | 1993 | Not Reported  |        |
| National Park      | K2                        | 0      | 0    | Not Reported  |        |
| National Park      | Kirthar                   | 3,087  | 1974 | II            |        |
| National Park      | Khunjerab                 | 2,269  | 1975 | II            |        |
| National Park      | Dhrun                     | 1,677  | 1988 | II            |        |
| National Park      | Chitral Gol               | 78     | 1984 | II            |        |
| National Park      | Chinji                    | 61     | 1987 | II            |        |
| National Park      | Hingol                    | 1,650  | 1988 | II            |        |
| Nature Reserve     | Tashikuerganyeshengdongwu | 15,000 | 1984 | V             |        |
| Wildlife Sanctuary | Keti Bunder South         | 230    | 1977 | Not Reported  |        |
| Wildlife Sanctuary | Khurkhera                 | 183    | 1972 | Not Reported  |        |
| Wildlife Sanctuary | Chichawatni Plantation    | 47     | 1986 | Not Reported  |        |
| Wildlife Sanctuary | Kamalia Plantation        | 43     | 1971 | Not Reported  |        |
| Wildlife Sanctuary | Marho Kotri               | 310    | 1977 | Not Reported  |        |
| Wildlife Sanctuary | Runn of Kutch             | 3,205  | 1980 | IV            |        |
| Wildlife Sanctuary | Rasool Barrage            | 11     | 1974 | IV            |        |
| Wildlife Sanctuary | Taunsa Barrage            | 66     | 1972 | IV            | *      |
| Wildlife Sanctuary | Kharar Lake               | 2      | 1971 | IV            |        |
| Wildlife Sanctuary | Chumbi Surla              | 559    | 1978 | IV            |        |
| Wildlife Sanctuary | Nemal Lake                | 5      | 1970 | IV            |        |
| Wildlife Sanctuary | Chashma Lake              | 331    | 1974 | IV            |        |
| Wildlife Sanctuary | Takkar                    | 435    | 1968 | IV            |        |
| Wildlife Sanctuary | Kinjhar (Kalri) Lake      | 185    | 1977 | IV            | *      |
| Wildlife Sanctuary | Hadero Lake               | 13     | 1977 | IV            |        |
| Wildlife Sanctuary | Haleji Lake               | 17     | 1977 | IV            | *      |
| Wildlife Sanctuary | Drigh Lake                | 2      | 1972 | IV            | *      |
| Wildlife Sanctuary | Mahal Kohistan            | 706    | 1972 | IV            |        |
| Wildlife Sanctuary | Hab Dam                   | 272    | 1972 | IV            | *      |
| Wildlife Sanctuary | Dhoung Block              | 212    | 1977 | IV            |        |
| Wildlife Sanctuary |                           | 1      | 1977 | IV            |        |
| Wildlife Sanctuary | Bijoro Chach              | 1      | 1977 | IV            |        |
| Wildlife Sanctuary | Norange                   | 2      | 1977 | IV            |        |
| Wildlife Sanctuary | Cut Munarki Chach         | 4      | 1977 | IV            |        |
| Wildlife Sanctuary | Haleji                    | 3      | 1977 | IV            |        |
| Wildlife Sanctuary | Keti Bunder North         | 0      | 1977 | IV            |        |
| Wildlife Sanctuary | Sheikh Buddin             | 195    | 1977 | IV            |        |
| Wildlife Sanctuary | Manglot                   | 7      | 1976 | IV            |        |
| Wildlife Sanctuary | Borraka                   | 20     | 1976 | IV            |        |
| Wildlife Sanctuary | Manshi                    | 20     | 1977 | IV            |        |
| Wildlife Sanctuary | Maslakh                   | 466    | 1968 | IV            |        |
| Wildlife Sanctuary | Sasnamana                 | 66     | 1908 | IV            |        |
| Wildlife Sanctuary | Ziarat Juniper            | 372    | 1971 | IV            |        |
| Wildlife Sanctuary | Koh-e-Geish               | 244    | 1971 | IV            |        |
| Wildlife Sanctuary | Kachau                    | 244    | 1969 | IV<br>IV      |        |
| whome sanctuary    | Nacilau                   | 217    | 1972 | 1 V           |        |

## ANNEX 7.1.6-1 Protected area and IUCN category

| Туре               | Name                             | Area   | Year | IUCN Category | Ramsal |
|--------------------|----------------------------------|--------|------|---------------|--------|
| Wildlife Sanctuary | Shashan                          | 296    | 1972 | IV            |        |
| Wildlife Sanctuary | Chorani                          | 194    | 1972 | IV            |        |
| Wildlife Sanctuary | Dureji                           | 1,783  | 1972 | IV            |        |
| Wildlife Sanctuary | Raghai Rakhshan                  | 1,254  | 1971 | IV            |        |
| Wildlife Sanctuary | Kolwah Kap                       | 332    | 1972 | IV            |        |
| Wildlife Sanctuary | Buzi Makola                      | 1,451  | 1972 | IV            |        |
| Wildlife Sanctuary | Salkhala                         | 8      | 1982 | IV            |        |
| Wildlife Sanctuary | Naltar                           | 272    | 1975 | IV            |        |
| Wildlife Sanctuary | Kargah                           | 443    | 1975 | IV            |        |
| Wildlife Sanctuary | Astore                           | 415    | 1975 | IV            |        |
| Wildlife Sanctuary | Baltistan                        | 415    | 1975 | IV            |        |
| Wildlife Sanctuary | Sodhi                            | 54     | 1983 | IV            |        |
| Wildlife Sanctuary | Bajwat                           | 55     | 1964 | IV            |        |
| Wildlife Sanctuary | Daphar                           | 29     | 1904 | IV            |        |
|                    | *                                |        | 1978 | IV            |        |
| Wildlife Sanctuary | Agram Basti<br>Ras Koh           | 299    |      |               |        |
| Wildlife Sanctuary |                                  | 995    | 1962 | IV            |        |
| Wildlife Sanctuary | Salpara                          | 311    | 1975 | IV            |        |
| Wildlife Sanctuary | Islamabad                        | 70     | 1980 | IV            |        |
| Wildlife Sanctuary | Nara Desert                      | 2,236  | 1980 | IV            |        |
| Sanctuary          | Kachchh Desert                   | 7,506  | 1986 | IV            |        |
| Game Reserve       | Gogi                             | 78     | 1962 | VI            |        |
| Game Reserve       | Wam                              | 104    | 1962 | VI            |        |
| Game Reserve       | Indus River#1                    | 442    | 1974 | Not Reported  |        |
| Game Reserve       | Bilyamin                         | 40     | 1974 | Not Reported  |        |
| Game Reserve       | Bund Khush Dil Khan              | 13     | 1983 | Not Reported  |        |
| Game Reserve       | Khari Murat                      | 56     | 1964 | Not Reported  |        |
| Game Reserve       | Gat Wala                         | 59     | 1978 | Not Reported  |        |
| Game Reserve       | Kathar                           | 11     | 1978 | Not Reported  |        |
| Game Reserve       | Chaupalia                        | 99     | 1960 | Not Reported  |        |
| Game Reserve       | Rahri Bungalow                   | 55     | 1978 | Not Reported  |        |
| Game Reserve       | Bhono                            | 21     | 1955 | Not Reported  |        |
| Game Reserve       | Bhon Fazil                       | 27     | 1978 | Not Reported  |        |
| Game Reserve       | Head Qadirabad                   | 29     | 1978 | Not Reported  |        |
| Game Reserve       | Bahwaalpur Plantation            | 5      | 1978 | Not Reported  |        |
| Game Reserve       | Kot Zabzai                       | 101    | 1978 | Not Reported  |        |
| Game Reserve       | Head Islam/Chak Kotora           | 31     | 1978 | Not Reported  |        |
| Game Reserve       | Diljabba-Domeli                  | 1,181  | 1972 | Not Reported  |        |
| Game Reserve       | Cholistan                        | 20,327 | 1975 | Not Reported  |        |
| Game Reserve       | Abbasia                          | 101    | 1979 | Not Reported  |        |
| Game Reserve       | Daulana                          | 23     | 1965 | Not Reported  |        |
| Game Reserve       | Indo-Pak Border                  | 0      | 1982 | Not Reported  |        |
| Game Reserve       | Deh Sahib Saman                  | 3      | 1966 | Not Reported  |        |
| Game Reserve       | Deh Jangisar                     | 4      | 1965 | Not Reported  |        |
| Game Reserve       | Mirpur Sakro                     | 8      | 1965 | Not Reported  |        |
| Game Reserve       | Nara                             | 1,100  | 1962 | Not Reported  |        |
| Game Reserve       | Surjan, Sumbak, Eri and Hothiano | 406    | 1976 | Not Reported  |        |
| Game Reserve       | Mando Dero                       | 12     | 1972 | Not Reported  |        |
| Game Reserve       | Dosu Forest                      | 23     | 1973 | Not Reported  |        |
| Game Reserve       | Khipro                           | 39     | 0    | Not Reported  |        |
| Game Reserve       | Tando Mitha Khan                 | 53     | 0    | Not Reported  |        |
| Game Reserve       | Pai                              | 20     | 1976 | Not Reported  |        |
| Game Reserve       | Darosh Gol                       | 20     | 1979 | Not Reported  |        |
| Game Reserve       | Gehrait Gol                      | 48     | 1979 | Not Reported  |        |
| Game RESEIVE       | Guilan Gui                       | 40     | 17/7 | Not Reported  |        |

| Туре            | Name                  | Area  | Year | <b>IUCN Category</b> | Ramsal |
|-----------------|-----------------------|-------|------|----------------------|--------|
| Game Reserve    | Parit Gol/Ghinar Gol  | 64    | 1979 | Not Reported         |        |
| Game Reserve    | Totali                | 170   | 1984 | Not Reported         |        |
| Game Reserve    | Swegali               | 18    | 1984 | Not Reported         |        |
| Game Reserve    | Shina-Wari Chapri     | 10    | 1974 | Not Reported         |        |
| Game Reserve    | Resi                  | 51    | 1976 | Not Reported         |        |
| Game Reserve    | Thanadarwala          | 40    | 1976 | Not Reported         | *      |
| Game Reserve    | Nizampur              | 8     | 1976 | Not Reported         |        |
| Game Reserve    | Makhnial              | 41    | 1977 | Not Reported         |        |
| Game Reserve    | Zawarkhan             | 39    | 1963 | Not Reported         |        |
| Game Reserve    | Machiara              | 135   | 1982 | Not Reported         |        |
| Game Reserve    | Moji                  | 39    | 1982 | Not Reported         |        |
| Game Reserve    | Qazi Nag              | 48    | 1982 | Not Reported         |        |
| Game Reserve    | Killan                | 4     | 1982 | Not Reported         |        |
| Game Reserve    | Mori Said Ali         | 2     | 1982 | Not Reported         |        |
| Game Reserve    | Phala/Kuthnar         | 3     | 1982 | Not Reported         |        |
| Game Reserve    | Vatala                | 5     | 1982 | Not Reported         |        |
| Game Reserve    | Ghamot                | 273   | 1982 | Not Reported         |        |
| Game Reserve    | Danyor Nallah         | 443   | 1974 | Not Reported         |        |
| Game Reserve    | Sher Qillah           | 168   | 1975 | Not Reported         |        |
| Game Reserve    | Kilik/Mintaka         | 650   | 1975 | Not Reported         |        |
| Game Reserve    | Pakora                | 75    | 1975 | Not Reported         |        |
| Game Reserve    | Nazbar Nallah         | 334   | 1975 | Not Reported         |        |
| Game Reserve    | Chassi/Baushdar       | 371   | 1975 | Not Reported         |        |
| Game Reserve    | Tangir                | 143   | 1975 | Not Reported         |        |
| Game Reserve    | Askor Nallah          | 130   | 1987 | Not Reported         |        |
| Game Reserve    | Nar/Ghoro Nallah      | 73    | 1975 | Not Reported         |        |
| Game Reserve    | Zangi Nawar           | 11    | 1982 | Not Reported         |        |
| Game Reserve    | Thal                  | 713   | 1978 | Not Reported         |        |
| Game Reserve    | Goleen Gol            | 10    | 1965 | Not Reported         |        |
| Game Reserve    | Kala Chitta           | 1,326 | 1983 | Not Reported         |        |
| Game Reserve    | Kazinag               | 0     | 0    | Not Reported         |        |
| Other Area      | Ayub 'National Park'  | 9     | 0    | Not Reported         |        |
| Private Reserve | Kalabagh Game Reserve | 16    | 1966 | Not Reported         |        |
| Protected Area  | Gando                 | 0     | 0    | Not Reported         |        |