12. Foundation Works for Regulator

12-1 Determining the foundation type

12-1-1 Concept and flow

Chapter 11, 'Stability and Structural Calculation', shows the results of the examination of foundation works. The ground reaction force (actual stress of foundation) Figures calculated for each case are available. Each layer's bearing capacity was also assessed. The examination was conducted according to the flow chart in Figure 12-1.2. The common foundation type is shown in Figure 12-1.1.

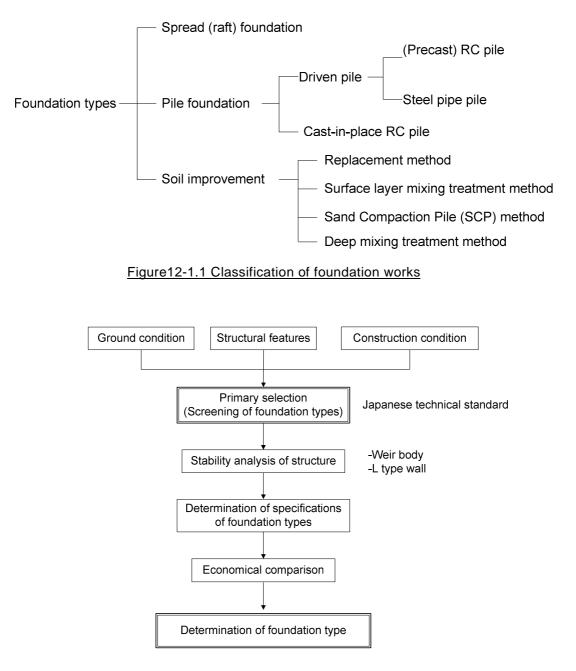


Figure12-1.2 Flowchart of foundation works

As for the bearing capacity of Terzaghi, the Egyptian code equation has a different applied co-efficient that gives a larger result than that of the Japanese equation. Under sand conditions, the results of the bearing capacity from the Egyptian code are almost seven times greater than the Japanese Figures. There is also a substantial difference in the general evaluation as a result of the difference in N value (refer to Appendix).

To overcome these great differences in results, the Egyptian consultant usually applies a settlement method in combination with the Terzaghi method stipulated in Egyptian code. The Bahr Yusef and Ibrahimia regulators bearing capacity results arrived at by the settlement method are almost the as those arrived at by the Japanese equation.

Accordingly, the bearing capacity should be evaluated by a combination of the Terzaghi formula in the Egyptian code and the settlement method, the latter being applied under sand layer conditions. This decision was approved by the expert panel meeting at the 19th TAC meeting.

12-1-2 Primary selection of foundation method

The bearing capacity of every regulator must be assessed using the ratio in Table 12-1.1.

(1) Bearing capacity

The equation for calculating bearing capacity should be consideration with eccentricity of acted load, which is in the basis of the modified Terzaghi method. The ultimate bearing capacity must take a safety ratio into account. Calculating bearing capacity takes the following into consideration:

Figure12-1.3 Locations of borehole for design

a) Allowable bearing capacity of foundation should be secured the following safety ratio against the ultimate bearing capacity considering the eccentricity of the load.

1.00	alely fallo for bea	anny capacity (Et	iyb
	Normal	Seismic	
	2.5	1.8	

Table12-1.1 Safety ratio for bearing capacity (Egyptian code)

b) Ultimate bearing capacity of the foundation using revised Terzaghi formula considering eccentricity of the load in the Egyptian code, is calculated as the followings:

 $qu = c \cdot Nc \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot Nq \cdot \lambda q \cdot iq + \gamma 2 \cdot Be \cdot Nr \cdot \lambda r \cdot ir$

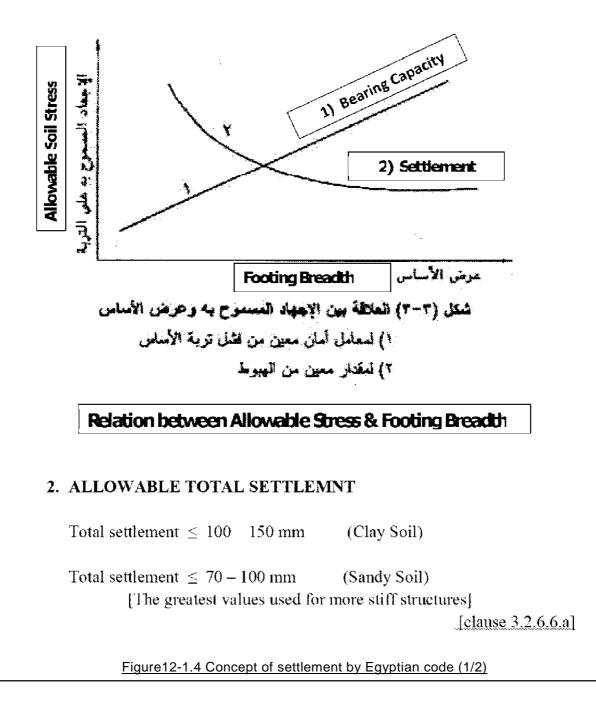
qa= 1/n∙qu

Where,

qu ; ultimate bearing capacity considering eccentricity of the load (kN/m²) qa ; allowable bearing capacity (kN/m²) n ; safety ratio (Table 12-1.2) Nc ; (Nq-1) / tan φ Nq ; $e^{\pi \cdot \tan \phi} \cdot \tan^2(45 + \phi/2)$ Nr ; (Nq-1)tan φ ic ; iq-(1-iq)/(Nq-1) iq ; {1-0.7 \cdot (H*Fb/(V*Fb+A \cdot c \cdot \cot \phi))}³ ir ; {1-(Hb/(Vb+A \cdot c \cdot \cot \phi))}³ γ 1, γ 2 ; unit weight of ground below foundation load surface (kN/m³)

*when foundation level is under groundwater level, apply submerged unit weight λc , λr , λq ; refer to Table 12-1.2

Table 12-1.2 Shape factor of the foundation (Egyptian code)												
Shape of	Belt type	Square or	Rectangle, ellipse,									
foundation		Circle	or oval									
λq, λc	1.0	1.3	1+0.3 · (Be/Le)									
λr	1.0	0.7	1-0.3 · (Be/Le)									


Table12-1.2 Shape factor of the foundation (Egyptian code)

Be ; width of foundation for the effective loading considering eccentricity (m) Be=B-2e

c) Allowable bearing capacity of foundation by the settlement method under the Egyptian code, explained as follows.

1. DESIGN REQUIREMENTS IN THE EGYPTIAN CODE OF SOIL MECHANICS AND FOUNDATION

- The design of shallow foundation according to the Egyptian code for soil mechanics requires the determination of allowable bearing capacity and the settlement of soil separately and takes the safe soil stress from the two conditions.
- Often, in large dimension foundation, the settlement is the governing condition in the design.
- The following Figure shows the relation between the allowable stress of soil and breadth of footing for the bearing capacity and the settlement (Figure 3.3 in the Egyptian code).

3. ALLOWABLE SOIL STRESS FOR BAHRYUSEF & IBRAHIMIA REGULATORS ACCORDING TO EGYPTIAN CODE

B. Total settlement (s)

[clause 3.4.5.4]

$$s = \sum \frac{\sigma}{E_s} \cdot h_s$$

where ,

- s the total settlement (mm)
- σ the stress at the mid-height of the layer (KN/m2)
- h_z layer thickness (m)
- E_s Modulus of elasticity (KN/m2)

[clause 3.4.3.3.b]

$$\sigma_z = \frac{q}{(1+z/B).(1+z/L)}$$

[clause 3.4.4.4.c.1]

Where B & L are the footing dimensions

Considering the <u>allowable settlement = 70 mm</u> and by applying the previous equations for settlement, the allowable soil stress will be:

Figure12-1.5 Concept of settlement by Egyptian code (2/2)

d) Result of the calculations

From the calculations, the bearing capacity of each regulator is shown in Table 12-1.3.

Regulator n structure	ame and related	By Revised Te Normal (kN/m ²)	rzaghi formula Seismic (kN/m²)	By Settlement method (normal) (kN/m ²)	Remarks
Bahr Yusef	Regulator foundation (Br.No.BH-N2D)	267.2 _(Dir. F.A) 269.2 _(Dir. W.A)	300.0 _(Dir. F.A) 306.2 _(Dir. W.A)	49.16 (applied)	Sand ground: N=6, φ=23°
regulator	L type wall (H-N2C)	19.3 (Dir. F.A) -(Dir. W.A) (ap)	24.6 (Dir. F.A) -(Dir. W.A) plied)	36.37	Sand ground: N=8, φ25°
Ibrahimia	Regulator foundation (Br.No.BH-N3')	511.5 _(Dir. F.A) 512.8 _(Dir. W.A)	573.1 _(Dir. F.A) 585.5 _(Dir. W.A)	91.48 (applied)	Sand ground: N=13, φ27°
regulator	L type wall (Br.No.BH-N3)	19.3 (Dir. F.A) - (Dir. W.A) (ap)	24.6 (Dir. F.A) -(Dir. W.A) plied)	80.69	Sand ground: N=9, φ25°
Badraman	Badraman canal (Br.No.BH-A1 B)	239.24 _(Dir. F.A) 487.07 _(Dir. W.A) (ap	317.39 _(Dir. F.A) 652.91 _(Dir. W.A) plied)	 (Clay layer)	Silty clay: N=18, φ0°
regulator	Diroutiah canal (Br.No.BH-A1 A)	191.36 _(Dir. F.A) 309.68 _(Dir. W.A) (ap	251.30 _(Dir. F.A) 417.04 _(Dir. W.A) plied)	 (Clay layer)	Silty clay: N=14, φ0°
Abo Gabal regulator	Both of Abo Gabal and Irad Delgaw canal (Br.No.BH-N5)	383.69 _(Dir. F.A) 415.24 _(Dir. W.A) (ap	513.37 _(Dir. F.A) 570.44 _(Dir. W.A) plied)	 (Clay layer)	Silty clay: N=25, φ0°
Sahelyia (Br.No.BH-N	regulator 6)	223.25 _(Dir. F.A) 317.02 _(Dir. W.A) (ap	286.60 _(Dir. F.A) 418.43 _(Dir. W.A) plied)	 (Clay layer)	Silty clay: N=16, φ0°

Table12-1.3 Summary	y of bearing capacity

Note1:Safety measures from landslides and eccentricity are by far more over than targeted range which is available to evaluate the numerical equation. Therefore, the direct foundation cannot apply to L type wall. Note2:"Dir. F. A." shows "Direction of Flow Axis", "Dir. W.A." shows "Direction of Wire Axis"

(2) Evaluation of bearing capacity

When compared with the ground reaction force (that is the result of examining the stability of the regulators in chapter 11 "Stability and Structural Calculation" and the calculated bearing capacity on Table 12-1.4 for each case), it seems that the large scale regulators of Bahr Yusef and Ibrahimia do not have adequate bearing capacity. Therefore, direct foundation cannot be used with the Bahr Yusef and Ibrahimia regulators.

Accordingly, the ground reaction force (actual stress of foundation) found by examining the stability

of the Bahr Yusef and Ibrahimia regulators is around 136kN/m^2 .In order to ensure a bearing capacity against 136kN/m^2 (by backward calculation method), the necessary bearing capacity should be N=18 calculated at141 kN/m²N=18 layers are observed as follows.

• Bahr Yusef : 10m below (EL27.5m) from the bottom of designed apron (EL37.5m)

• Ibrahimia : 4m below (EL33.5m) from the bottom of designed apron (EL37.5m)

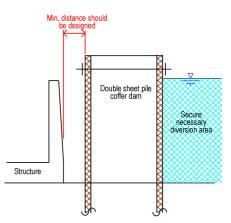


Figure12-1.6 Relation between double sheet pile and structure

The L type protection walls shortly downstream of Bahr Yusef and Ibrahimia regulator cannot use the direct foundation. These walls types are not designed with the footing slab behind the wall because of the marginal limitation of double sheet pile cofferdam (Figure 12-1.6). Therefore, the footing slab must be designed at the front of the wall, which means the resisted vertical force is by far smaller than the horizontal force due to earth and water pressure, so it overloads the landslide, eccentricity capacity, and bearing capacity. Accordingly, L-type protection walls cannot use direct foundation.

The small scale Badraman, Abo Gabal, and Sahelyia regulators have a clay layer around the bottom of the apron with a high N value, and sufficient bearing capacity. Hence **direct foundation should be applied to the small scale regulators.**

A comparison between the ground reaction force (actual stress of foundation) and the allowable bearing capacity is shown on Table 12-1.4.

		Geolog ical conditi ons	Max. actual stress by stability exam. (kN/m2)		Min. bearing capacity (kN/m2)	Judgment (OK or NG)	N value	Remarks
Bahr	Regulator	sand	144.84	٨	49.16	NG	6	
Yusef	L type wall	sand	68.53	٨	19.3	NG	8	
Ibrahimi	Regulator	sand	144.82	v	91.48	NG	13	
а	L type wall	sand	68.52	٨	19.3	NG	9	
Badram	Badraman regulator	clay	107.27	VII	239.24	ок	18	Raft foundation
an	Diroutiah. regulator	clay	101.56	VII	191.36	ок	14	Raft foundation
Abo Gabal	Regulator	clay	106.47	VII	383.69	ок	25	Raft foundation
Sahelyia	Regulator	clay	141.89	VII	223.25	ок	16	Raft foundation

Table12-1.4 Result of the examination of bearing capacity

Normal condition

Seismic condition

		Geolog ical conditi ons	Max. actual stress by stability exam. (kN/m2)		Min. bearing capacity (kN/m2)	Judgment (OK or NG)	N value	Remarks
Bahr	Regulator	sand	133.15	>	68.28 ^{note)}	NG	6	
Yusef	L type wall	sand	82.84	>	24.6	NG	8	
Ibrahimi	Regulator	sand	144.82	^	127.06 ^{note)}	NG	13	
а	L type wall	sand	82.84	>	24.6	NG	9	
Badram	Badraman regulator	clay	107.14	< I	317.39	ок	18	Raft foundation
an	Diroutiah regulator	clay	95.86	VII	251.30	ок	14	Raft foundation
Abo Gabal	Regulator	clay	111.44	VII	513.37	ок	25	Raft foundation
Sahelyia	Regulator	clay	153.67	VII	286.60	ок	16	Raft foundation

Note: Seismic bearing capacity is assumed by normal bearing capacity to be as follows: 68.28kN/m² = 49.16 kN/m² x 2.5/1.8, 127.06kN/m² = 91.48 kN/m² x 2.5/1.8

The D Project fo The Nev Ro Ne Arab	or Co v Din egula	out G ators	in uctio	n of o of				Bore Bore				ng	Re	eco	ord	Drillin Dime	g Ho ensio			5		Sany Con: Inc.	yu sulta	nts
DRILLII Drilling				/lisr R	ayı	moi	nd F.	Drilling Coordi				: 3	0503	160		Drille Bore				•	,			
Drilling	Met	hod	Rot	ary D	rilli	ng		Ground	d Eleva	tion: 3	9.3	d (mA	MSL	-)		тос	Elev	atior	:M.	Essa	m (m	AGL)	
τ		0				Τ										(2)	(BC		La	borat	ory T	est		a.
Drilling Method	Recovery (%)	R.L. (m AMSL)	Depth (m BGL)	Graphic Log	Fin	100 89		Field Description of Soil Material					- 0mn ເຼຣ	100	No. Blow	Permeability(cm/sec)	Elasity Modulus(MPa)	qu(kg/cm²)	Wn(%2)	Gs(kg/cm²)	Ov(m ¹ /y). Mv(m ² /MN), De	OU: C(kg/cm ³), p(³)	DS: C(kg/cm ³), φ([°]), γ	Borehole Studure
SPT	GW	-	0	•••	\square	T	Fine silty sand	i							Unl	-					6	0	0	
NCR	Depth		_	11		μĽ	0		trace -	A.5					2013	-			EL	37.	6	are era		
SPT		38 -		11			Coarse to me silt, trace of sh	nells, fractu	trace of red				F	-4	undat	on			$\overline{\nabla}$		∇	EL:	37.5	5
NCR SPT			-2		+	H	limestone			-	-		-	Ĭ	201									
NCR		-	_	11			Coarse to me																	
SPT			-	11	T	TL.	silt, trace of st bricks	icilis, trace	ofred	^A					2121th			I	I					
NCR			_4	11	1	Щ	Coarse to me silt, trace of re		trace of		13				5167									
SPT		-	-	44) 141			Coarse to me	01. 800500055	trace of	_					.0.									
UDS SPT		34 -	_	11	++	H	silt, trace of st bricks				A ¹⁶			-	61810		-			-				
NCR		04-	-	11			Medium to fin fractured lime				17				.0									
SPT			- 6	11		TL	brick	etorie, trace	or red		1				600	1.00			1.0			1.0 2.0		
NCR		-		××3		4	Clayey silt at a bottom	apper, silty	clay at		13			_	2011									
SPT NCR			-	~_^		lŀ	bottom			-1/					v									
SPT		-	-8		1	Ħ.	0.1			-					NON	1.10	-							
NCR		1	_			Contract of the local division of the local	Silty clay				11				SPAL									
SPT		30 -	-												Der.									
NCR			- 10	×××		H				-4	11		N=1		41510									
SPT NCR		-		xxx			Sandy silt				9	/14	sur	ne	<u>त</u>									
SPT		1	-	×××		H.				- E	$\boldsymbol{\prec}$	(/\3	Sul	٣	a) alars									
NCR			- 12	•••		ЦГ	Coarse to me	dium sand,	trace of			5			onin		menera				-			
SPT		1	-				silt, trace of si	ity clay		_	1											N=3(h	
NCR SPT		- 26 -	_		+	H	Coarse to me	dium sand,	trace of s	alt,	-	29	_	_	- wanto	10.00							100 AN AL AL	
NCR		20-	-	•••			Coarse to me	dium sand.	trace of			.42									E	EL26	5.2	
SPT			- 14			tL.	silt, trace of g	anule							.201725									
SPT			-			Ц	Medium sand	trace of si	lt			43			1 March									
NCR			-			lŀ	0	di second	here of	-							1							
NCR SPT		-	- 16			H.	Coarse to me silt, trace of g	dium sand, anule	trace of		-	4	60	-	7120124	-	-						uranan.	
NCR		1	<u> </u>	×			Silty cand					5	6											
SPT		22-	-	×		TL	Silty sand								1323153									
NCR		1	- 18		#	Н	Fine sand ,tra	ce of silt					61		1126155									
SPT NCR		-	-				Medium to fin	a cand trav	o of citty	_		44			1.								A.5(1.5)	
SPT				.0	++	H	clay, trace of		a or sirty			-44		\neg	15(2) ⁴ 9								0/29.	
NCR		-	- - 20	: .		₽	Medium to fine	e sand, trad	ce of silty			5			1524/30					ļ				
SPT			-	.0	IT		clay					T												
NCR		-	-	.0.9	-	H.	Modiumitof	a and to	o of o'll		-	61		_	1122129									
SPT NCR		18 -	-	· · · ·			Medium to fin clay, trace of	e sano, trac gravel	e of silty				7											
SPT		-	- 22	0.0		Ħ.						1		-	512132									
NCR				•••		Ц						A45			anales,									
SPT			-																					1,000
NCR SPT			-24	••	\parallel	H	Medium to fin	e sand, trad	ce of silt	-			64	-	19129195									
NCR		1		• •								_ <u>51</u>												
SPT		14-	-		11	TL.						A.			,6 ¹⁰¹²⁹									11
		-	26																					
							Graphic L	og								D	illing	Meth	od					
		Brick Conc Fill Grav	roto		lan	d(gr	l) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	lilt lilt(brick) lilt(fill) lilt(sand)	S 5	lity Clay lity Clay lity Clay lity Clay	(brl)		SPT	: S	on Core I landard F ndisturbe ore Drillin	Prilling enetrated Samp	ion Te	,	GR:		r Borin tools		r)	

Bahr Yusef Regulator

Figure12-1.7 Br No. BH-2D Bahr Yusef regulator

Bahr Yusef L type wall

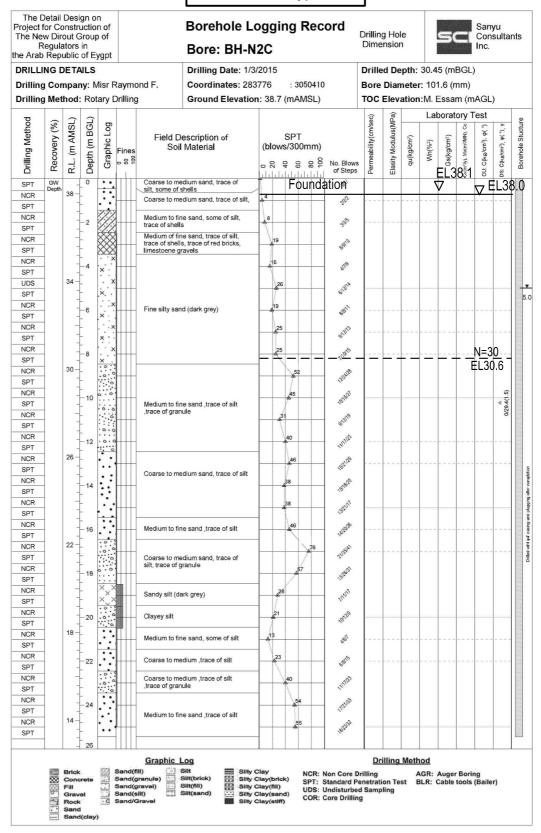


Figure12-1.8 Br No. BH-N2C Bahr Yusef regulator (L type wall)

Ibrahimia Regulator

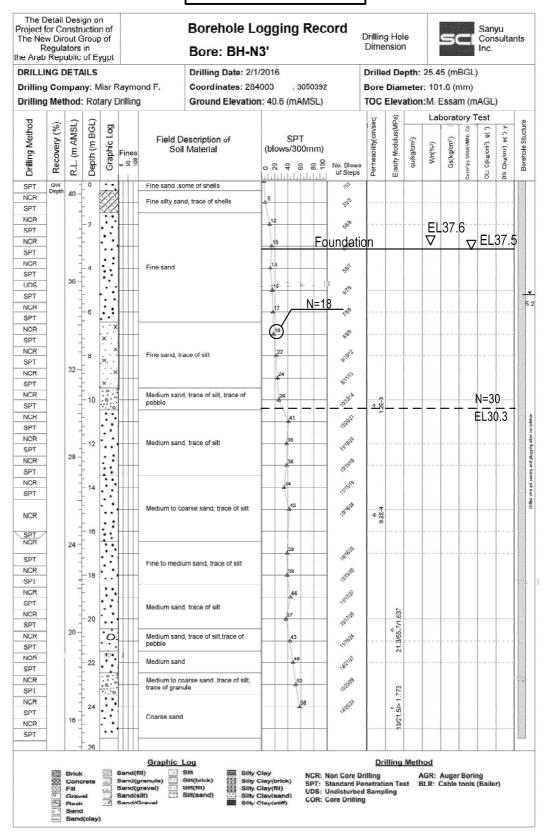


Figure12-1.9 Br No. BH-N3' Ibrahimia regulator

Ibrahimia L type wall

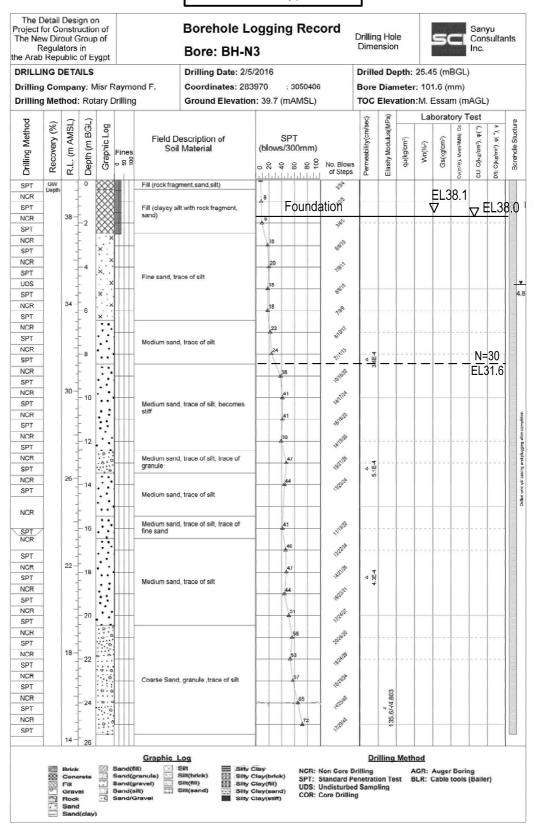


Figure12-1.10 Br No. BH-N3 Ibrahimia regulator (L type wall)

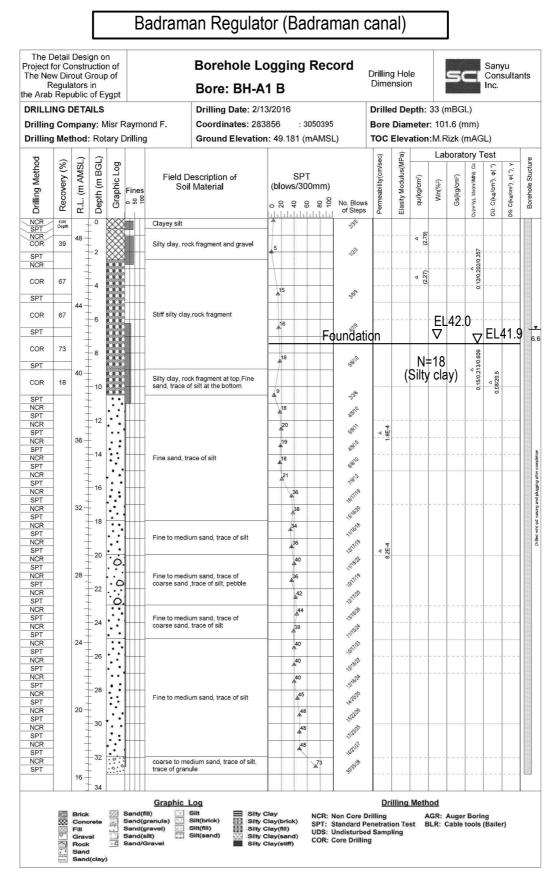


Figure12-1.11 Br No. BH-A1B Badraman regulator (Badraman canal)

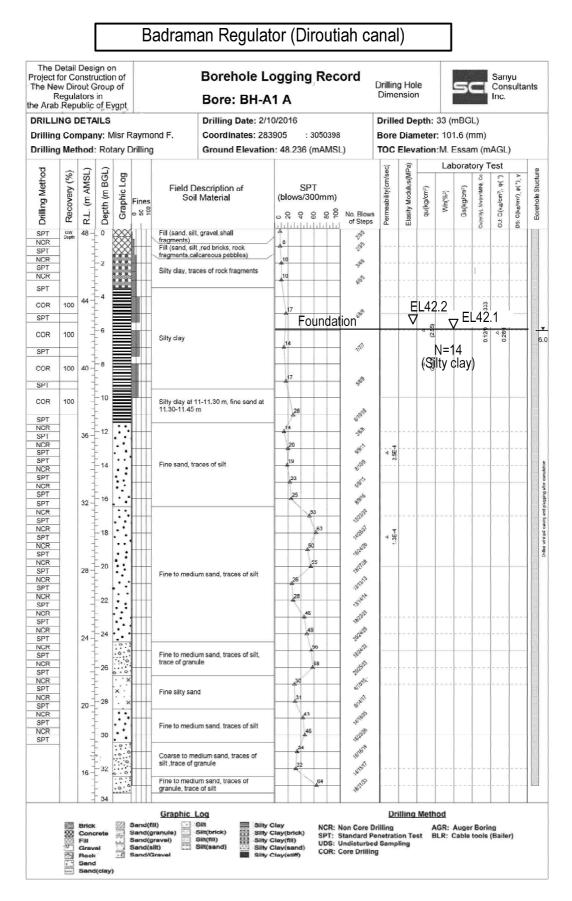


Figure12-1.12 Br No. BH-A1A Badraman regulator (Diroutiah canal)

The E roject The Ne R e Arab	for Co w Dir Regula	onstru out G ators	ictio Group in	n of o of			Borehole Lo Bore: BH-N		ng I	Rec	ord	Drilling Dime				5(San Con Inc.		nt
DRILLI	NG	DETA	ULS				Drilling Date: 12/	13/201	5			Drille	d De	pth:	27.4	5 (m	BGL)			
Drilling	g Cor	npar	ny: N	/lisr R	aym	ond F.	Coordinates: 283	8870.0	9 : 30	50163	.25	Bore	Dian	neter	: 101	1.6 (n	nm)			
Drilling	g Met	hod:	Ro	tary D	rilling	9	Ground Elevation	n: 43.5	58 (mA	MSL)		TOC	Eleva	ation	:M. E	Essai	m (m	AGL)	
p		Ξ	Ê	_								(ce)	(Pa)		Lak	oorat		est		
Drilling Method	Recovery (%)	R.L. (m AMSL)	Depth (m BGL)		Fines	Soil	escription of Material	20	SPT vs/300 9 8	80 100	No. Blows of Steps		Elasity Modulus(MPa)	qu(kg/cm²)	Wn(%²)	Gs(kg/cm ²)	Ov(m²/y). Mv(m²/MN), Co	сU: С(kg/cm ²), ф(°)	DS: C(kg/cm²), φ(°), γ	
SPT	GW Depth	-	0	×××		Clayey silt, ve	ery loose, fine, dark	1			141						-			
SPT NCR	-			XX		grey ,trace of from canal	iron oxides, sediments	A ³			100 1112			44	05		33			-
NOIN		42 -	2	506		Red bricks ,fr	actured calcareous			1	a 60.		ΕL	_41	25	-EL	Δ1 1 Δ	15		No.
COR		-	-			Concrete	/		Fou	Jaai	ion		V	4 0.68)	7	7	0.25/	-		-
BS				<u></u>		Stiff silty clay	(bulk sample)	A ²		-	4			Ű	<u></u>)E	0			
SPT			-				dium stiff, dark brown,				618147			(C:	N=2 Itv c	b lay				100000
COR	73		- - -			-do- (Core 1.								(0)	ity C	nay.				
SPT		38 -	- 6			Silty clay with	sand, medium stiff,				THOMS									
COR	100		-0			dark brown, t	races of rock fragments												∆ 0.01/27.5(1.4)	
SPT			-	• •		Fine silty san	d (dark grey)	\$			6102	3.7E-4			83 R.B				0.01/2	
NCR			- 8					17			ABIN								Ū	100000000000000000000000000000000000000
SPT			- 0	••			e sand, dense to e, light brown, trace													
NCR SPT				::		iron oxides, p	oorly graded	¹⁹		_	7/10/9									
NCR		34 -	-					19												100000000000000000000000000000000000000
SPT		_	- 10	•••							6/01/3									-
NCR		-	-			Coarse to me of silt	dium sand ,with some	<u> </u>	42	_	14/16/26									
SPT NCR		-						-	49											STOCK STOCK
SPT			- 12 -	•					A10		13/2/21	∆ 8 6E 4								-
NCR		-	-	••••		Coarse to me silt	dium sand ,traces of		59	6	14121132									
SPT NCR		30-				Silt														
SPT			- 14					- A ²	•	_	onno.									Salar Contractor
NCR]	-	-0	0.0			dium sand ,traces of		38		, 51523					6				
SPT NCR	-	1		. 0		silt, trace of g	ranule	-							40	∆ 2.65				
SPT		-	- 16			Coarse to me	dium sand	-	44		1418/26				nie mei					
NCR			-				m dense, traces of silt		38		21/121	*								
SPT		26 -		•••				_	/		1.	∆ 7.6E-								
NCR SPT	-		- 18	0	+++	Coarse to me silt, traces of	dium sand ,traces of pebble	4	30		131515									
NCR			-	::		Coarse to me	dium sand ,medium to	1	35		119									
SPT	1			•		granule, trace	as of silt				18/16/19									Constant of the local division of the local
NCR SPT	-		-20		$\left \right $	Coarse to me	dium sand ,some of silt		A36		14/16/20									
NCR	-					Upper part: c	oarse to medium sand	-	.53											-
SPT	1	-	-	••••		medium sand	Lower part: coarse to traces of silt, traces of		1		19124129							-		-
NCR	-	22 -	- 22				dium sand ,traces of		47		612021									100000000
SPT	-					silt	N N.A. Y	1			.4.	5.5E-4								100000
NCR		-		0.0		Coarse to me silt,traces of	dium sand ,traces of granule			70	19129141									
SPT			- 24	0.0				-			1912									
NCR			-				dium sand ,traces of		6	1	3									
SPT	1	-	-			silt			A°		18128133									E Transie
		18 -	26																	L
						Graphic L						Dri	lling	Meth	od					
		Brick			and(Silt Silty Silty	Clay Clay(bri			Non Core D	rilling enetratio		A	GR:	Auger Cable	Borin	ıg		

Figure12-1.13 Br No. BH-N5 Abo Gabal regulator

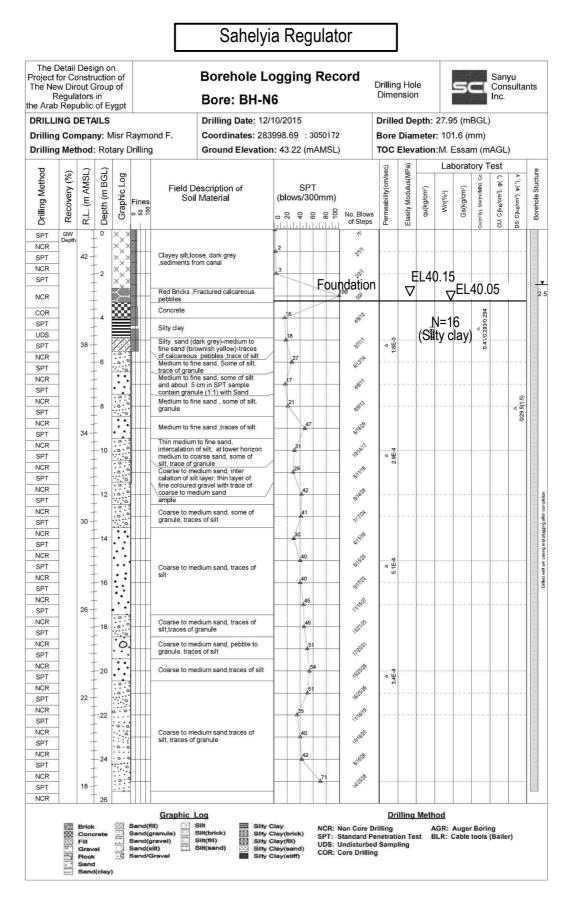


Figure12-1.14 Br No. BH-N6 Sahelyia regulator

(3) Results of primary selection of foundation

The large scale regulators of Bahr Yusef and Ibrahimia regulators which cannot take raft foundations must consider other foundation methods such as, soil improvement method, and pile foundation method. The conditions of the soil improvement method are shown in Table 12-1.5, and the evaluation of the available soil method is shown in Table 12-1.6. As a result of the evaluation, the soil improvement method selected for application is the 'deep mixing treatment method. The conditions of the pile foundation method are the steel pipe pile, and cast-in-place RC pile shown in Tables12-1.7 and 12-1.8.

However, the Egyptian side strongly requested that the pre-casting concrete pile method be considered, as it is one of typical pile method in Egypt. In the response to their request, the pre-casting RC pile should be included in the methods evaluated.

Accordingly, the selected pile foundation and soil improvement methods for the final consideration were shown as follows.

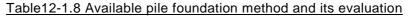
Targeted foundation method after primary selection

- ✓ Soil improvement method: Deep mixing treatment method
- ✓ Pile foundation method: Steel pipe pile, cast-in-place RC pile, pre-casting RC pile

<									
/	Target facility	Bahr-Yu	isef Reg.	Ibrahin	nia Reg.				
condit	ion for selection	Weir Body	Downstream Apron L-shaped Retaining Wall	Weir Body	Downstream Apron L-shaped Retaining Wall				
Ground condition	Soil property and layer thickness	Approx. 4.0m downward fr Medium to Coarse Sand Further 6.0m downward: Silty Clay (BH-N2D) *Those layers consist of the waste and canal deposit, whic property of the soil. Therefore significant difference in its d	mixture of the construction h makes a large variety in the re, bearing layer has	 Approx. 5.0m downward frc Fine sand and Silty Fine Sand 					
Ğ	Intermediate layer	Upper layer: Permeable Lower layer: Impermeable	Supposed to be the mixture of permeable and impermeable layers	Sand (Permeable) Layer					
	Bearing layer	Sand (Permeable) Layer		Sand (Permeable) Layer					
Impac	t on bank(e.g. differential settlement,etc.)	-	-	-	_				
	Construction depth		x. 11.0m		x. 7.0m				
dition	Construction period	It must be completed in the re short period)	estricted time (relatively	It must be completed in the reshort period)	estricted time (relatively				
con	Many past construction case examples	-	-	-	-				
Construction condition	Restricted work area	Double sheet pile method res construction	stricts the work space for the	Double sheet pile method res construction	stricts the work space for the				
Constr	Poor trafficability	Low Workability due to the s some area on the foundation	oft clay layer (N-value≦5) in level (such as BH-N2')	_	_				
Environmental condition	Low vibration, low noise	_	_	It is necessary to take measur considering the railway and b more than 10m height on the	ank protection work with				
ntal	Impact on groundwater	-	-	-	-				
vironme	Impact on adjacent structures	-	-	There is the railway and bank than 10m height on the right					
En'	Deformation prevention of surrounding ground	-	-	There is the railway and bank than 10m height on the right					
	Advantage of the method	To strengthen the bearing cap	bacity around the foundation	To strengthen the bearing cap	pacity around the foundation				
	Economy	Economic superior method is	ion Economic superior method is required for the selection						

Table12-1.5 Site conditions related to foundation treatment works

								L			Bahr-Yu	isef Reg							Bahr-Yu	sef Reg			
									Weir	body			L typ	e wall			Weir	body			L typ	e wall	
Select	ion condition	Soil ir	nprouvement method	Replacement method	Surface layer mixing treatment method	SCP method	Deep mixing treatment method	Replacement method	Surface layer mixing treatment method	SCP method	Deep mixing treatment method	Replacement method	Surface layer mixing treatment method	SCP method	Deep mixing treatment method	Replacement method	Surface layer mixing treatment method	SCP method	Deep mixing treatment method	Replacement method	Surface layer mixing treatment method	SCP method	Deep mixing treatment
	and ess	Sandy soil	10m or less	Δ	0	0	\triangle	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	(
	y ai nes	Sandy son	10m or more	×	×	0	\triangle																
_	per	Cohesive soil	10m or less	0	0	\triangle	0	1	1	0	1	1	1	0	1								
tion	Soil property and layer thickness		10m or more	×	×	\triangle	0																
Ground condition	Soil ₁ laye	Humus soil	3m or less	0	0	×	\triangle																_
ç			3m or more	×	×	\triangle	\triangle																
Ino.	Intermediate	Permeable layer		-	-	-	\triangle				0				0		<u> </u>		0				(
σ	layer	Impermeable lay		-	-	0	0			1	1			1	1								-
		Hard layer exists		-	-	\triangle	\triangle		-														_
	Bearing layer		d as permeable layer		-	-	0	0			1	0	_		1	0			1	0			
		d as impermeable layer	0	-	0	0										<u> </u>						-	
mpac	t on bank(e.g. diff	erential settlemer	it,etc.)	0		\triangle	\triangle																+
		3m or less		0	0	×	 ○						-			0	-2	0		-2	-2	0	-
-	Construction	3-10m 10-20m 20-30m 30m or more		×	×	 ○	0	-2	-2	1	1	-2	-	1	1	-2	-2	0	1	-2	-2	0	1
itio	depth			×	×		0	-2	-2	1	1	-2	-2	1	1				-				+
ond				×	×		0								-		-	-					+
on c		Sufficiently long		Ô	Ô		Δ						-									<u> </u>	+
Construction condition	Construction	Somewhat long		0	0	0																	+
ıstrı	period	Short		0	0	Δ	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	
8	Many past const	ruction case exam	nles	Ő	Δ		0		1	0			1		1	1	1	0					1
	Restricted work		pico	×	×		Δ	-2	-2	0	0	-2	-2	0	0	-2	-2	0	0	-2	-2	0	1
	Poor trafficabili			0	0			1	1	0	0	1	1	0	0	_	-			_	-		F
n 13	Low vibration, lo	ow noise		Õ	Õ	×										1	1	-2	0	1	1	-2	(
vironmen	Impact on groun	dwater		0	0	\triangle	\triangle																
Environments I condition	Impact on adjace	ent structures		0	0	×	0									1	1	-2	0	1	1	-2	(
i -	Deformation pre	evention of surrou	nding ground	0	0	\triangle	0									1	1	-2	0	1	1	-2	(
po	Settlement accel	leration		-	-	0	-																
Advantage of method	Settlement preve	ention		0	0	-	0																I
of n.	Strength enhance	ement		0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
ige (Embankment sta	bilization		0	0	0	0																
anta	Lateral flow pre-	vention			0	\triangle	0																
Adv	Liquefaction pre	evention		0	0	0	\triangle																
7	Reduced permea	ability		\triangle	0	×	\triangle																
Econo	my			0	0	\triangle	\triangle	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0


Table12-1.6 Available soil improvement method and its evaluation

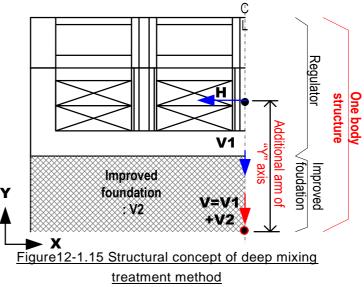
O: Fitted (1). ▲: Studies required (0). ×: Can be unfit (-2). -: Not applicable Note: SCP method stands for sand compaction pile method.

	Table12-1.7 S	Site conditions	related to p	pile foundation	works
--	---------------	-----------------	--------------	-----------------	-------

		Target facility	Bahr-Yu	isef Reg.	Ibrahin	nia Reg.
conditi	ion for selecti	on	Weir Body	Downstream Apron L-shaped Retaining Wall	Weir Body	Downstream Apron L-shaped Retaining Wall
	Condition to the bearing layer	Extremely soft layer exists in intermediate layer	Soft clay layer (N value ≤ 5) Foundation depth (BH-N2')	is distributed around the	_	_
	tion	Extremely stiff layer exists in intermediate layer	-	-	-	-
	ndi ear	Gravel exists in the intermediate layer	-	-	-	-
ion	്റ്	Liquefiable layer exists	-	-	-	-
dit	aye	Depth until bearing layer	Approx. 14.0m	Approx. 10.0m	Approx. 10.0m	Approx. 8.0m
cor	glg	Soil property	Sand	Layer	Sand	Layer
pu	arin	Large dip (30 degree or more)	-	-	-	-
Ground condition	Condition of bearing laye	Unevenness of bearing layer is severe	Bearing layer consists of the waste and canal deposit, whic property of the soil. Therefor significant difference in its d	h makes a large variety in the re, bearing layer has	_	_
	Condition of	ground water	-	-	-	-
Structural features	Scale of load		Vertical load is normal. Lateral load is smaller than vertical load.	Vertical load is small. Lateral load is smaller than vertical load.	Vertical load is normal. Lateral load is smaller than vertical load.	Vertical load is small. Lateral load is smaller than vertical load.
S +	Support style		Bearing Pile	Bearing Pile	Bearing Pile	Bearing Pile
	Underwater c	onstruction	-	-	_	-
ition	Narrow work	space	Double sheet pile method res construction	stricts the work space for the	Double sheet pile method res construction	tricts the work space for the
puc	Batter pile		-	-	_	-
n co	Impact of tox	ic gas	-	—	—	—
Construction condition	Countermeas	ures against vibration and noise	-	_	It is necessary to take measur considering the railway and b more than 10m height on the	ank protection work with
Ľ	Impact on adj	acent structures	_	_	There is the railway and bank than 10m height on the right b	•

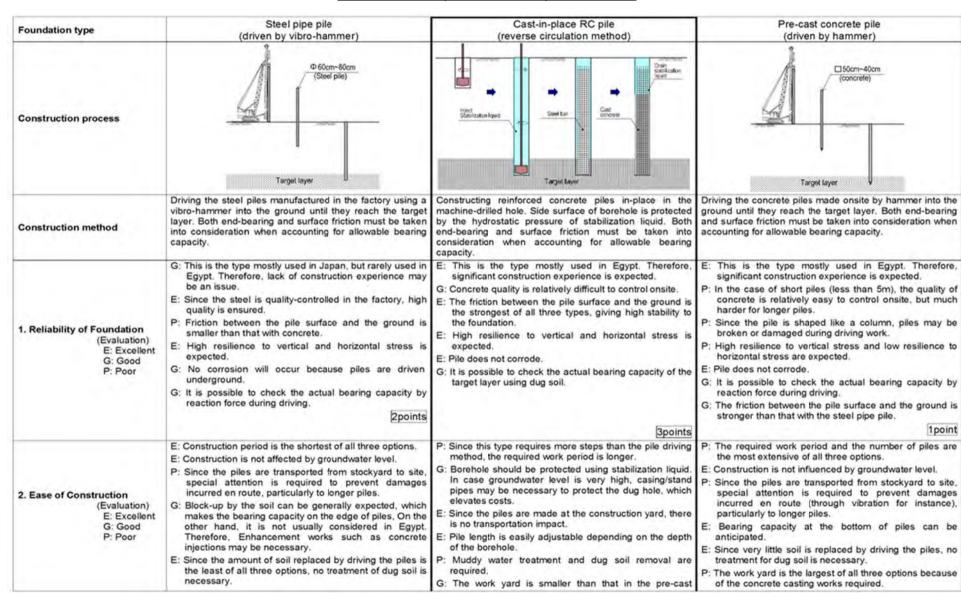
									Bahr-Yu	isef Reg.					Ibrahin	ia Reg.		
							,	Weir bod	ly	I	. type wa	11	1	Weir bod	у	I	. type wa	11
/				Drive	en pile	pile	Drive	en pile	pile	Drive	n pile	pile	Drive	n pile	pile	Drive	n pile	pile
Pile foundation method Selection condition			RCpile	Steel pipe pile	Cast-in-place RC pile	RCpile	Steel pipe pile	Cast-in-place RC pile	RCpile	Steel pipe pile	Cast-in-place RC pile	RCpile	Steel pipe pile	Cast-in-place RC pile	RCpile	Steel pipe pile	Cast-in-place RC pile	
	9	Extremely soft layer exists in intermediate layer		0	0	0	1	1	1	1	1	1						
	o th yer	Extremely stiff lay	yer exists in intermediate layer	×	\triangle	0												
	g la	Gravel exists in	Gravel diameter: 5cm or less	\triangle	0	0												
	Condition to the bearing layer	the intermediate	Gravel diameter: 5~10cm	×	\triangle	0												
	be	layer	Gravel diameter: 10~50cm	×	\times	×												
	Ű	Liquefiable layer exists		\triangle	0	0												
			less than 5m	×	×	×												
E	/er		5~15m	0	0	\triangle	1	1	0	1	1	0	1	1	0	1	1	0
litic	s lay	Depth until	15~25m	0	0	0												
ono	, iii	bearing layer	25~40m	\triangle	0	0												
Ground condition	bea		40~60m	×	0	0												
rou	ion of l		60m or more	×	\triangle	Δ												
0	Condition of bearing layer		Cohesive soil($20 \leq N$)	0	0	0												
	ipuo	Soil property	Sand & Gravel($30 \leq N$)	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Ŭ	Large dip (30 degree or more)		×	0	\triangle												
		Unevenness of bearing layer is severe		\triangle	0	0	0	1	1	0	1	1						
	of ter	Ground water level : close to ground surface		0	0	0												
	ion wa	Spring volume : ve	ery large	0	0	0												
	und		ater: more than 2m from the ground surface	0	0	×												
	Condition of ground water	Artesian groundwater: more than 2m from the ground surface Velocity of groundwater: 3m/min or more		Õ	Õ	×												
		Vertical load is small		0	0	0				1	1	1				1	1	1
res	oac	Vertical load is aw	erage		0	0	0	1	1		1		0	1	1			
eatu	Scale of load	Vertical load is lar	rge	×	0	0												
al f	cale		relatively small to vertical load	0	0	0	1	1	1				1	1	1			
ctur	Š	Horizontal load is relatively small to vertical load Horizontal load is relatively large to vertical load		×	0	0				-2	1	1				-2	1	1
Structural features				0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
-	Support style Friction pile			0	0	0												
uo	Underwater	Water depth : less than 5m		0	0	0							1					
Construction condition	construction	Water depth : mor	e than 5m		0	\triangle												
con	Narrow work sp	bace		\triangle	Δ	\triangle	0	0	0	0	0	0	0	0	0	0	0	0
ion	Batter pile			\triangle	0	×												
nct	Impact of toxic	gas		0	0	0												
nsti	Surrounding	Countermeasures	against vibration and noise	×	×	0							-2	-2	1	-2	-2	1
చి	circumstance	Impact on adjacent	-	×	Δ	0							-2	0	1	-2	0	1
							5	7	6	3	7	6	0	3	6	-2	3	6

O: Fitted (1). ▲: Studies required (0). ×: Can be unfit (-2).


12-1-3 Result of the examination of thefoundation method

The primary selection of steel pile, and in-place concrete-pile foundation types available were compared for workability of construction and economy to decide which foundation type to use for the Bahr Yusef, Ibrahimia, and L

type wall.


As for the deep mixing treatment method, the improved soil foundation method considered the regulator and improved soil foundation to be one body structure. Therefore, the bottom layer of improved soil needed a certain bearing capacity to ensure stability.

However, the one body structure caused a long moment arm of horizontal force because of the depth of the improved soil. It

increased moment by horizontal force. To ensure the long term stability of the bearing capacity of the bottom of the improved soil, a range of soil improvements should be considered. These are done not only through a theoretical equation, but by ensuring consecutive stable bearing layers observed from the actual borehole.

As a result of the evaluation, the cast-in-place RC pile was the foundation selected for the Bahr Yusef and Ibrahimia regulators, as well as the L type walls. These were approved at the 22nd TAC meeting, as they were deemed the most economically advantageous and have been successfully used before in Egypt. The same should be applied to the small, Badraman, Abo Gabal, and Sahelyia regulators.

Foundation type	2	(driven by vi	ipe pile bro-hammer)	(reverse circu	ice RC pile lation method)		oncrete pile / hammer)	
		E: The work yard is the small	est of all three options. 3points	concrete pile.	2point		1point	
3. Environment	al Aspect (Evaluation) E: Excellent G: Good P: Poor	when using cast-in-place concrete.		E: Noise and vibration are the E: Insignificant impact on adj		P: Noise and vibration are the highest of all three options. P: Impact on adjacent structures must be considered. 1point		
4. Economic As Construction foundation tre Japanese Ye	cost for atment (in	112,000,000 yen (ratio : 1.22) Note: materials in Egypt factored into above figure. 2points		92,000,000 yen (ratio : 1.00) Note: materials in Egypt factored into above figure. 3points		158,000,000 yen (ratio:1.72) Note: materials in Egypt factored into above figure. 1poin		
Name of Regula	tor	Bahr Yusef regulator	Ibrahimia regulator	Bahr Yusef regulator	Ibrahimia regulator	Bahr Yusef regulator	Ibrahimia regulator	
	regulator body	φ600mm L=14.0m n=108 piles	φ600mm L=10.5m n=96 piles	φ1000mm L=14.0m n=70 piles	φ1000mm L=10.5m n=70 piles	□500mm L=14.0m n=156 piles	□500mm L=10.5m n=144 piles	
Pile specifications	L-type wall	φ600mm L=8.5m n=84 piles (42 piles x2 locations)	φ600mm L=8.0m n=66 piles (33 piles x2 locations)	φ1000mm L=8.5m n=54 piles (27 piles x2 locations)	φ1000mm L=8.0m n=54 piles (27 piles x2 locations)	□500mm L=8.5m n=150 piles (75 piles x2 locations)	□500mm L=8.0m n=150 piles (75 piles x2 locations)	
Construction period with one machine		1.4 month	1.2 month	3.5 month	3.5 month	1.9 month	1.9 month	
		66,000,000	46,000,000	51,000,000	41,000,000	88,000,000	70,000,000	
Evaluation		cast-in-place RC pile in ter and economy.	Total points: 9 points dvantages but is inferior to the ms of reliability of foundation d in Egypt, therefore, lack of a disadvantage.	51,000,000 41,000,000 Total points: 11 points Excellent (recommended) ✓This type has many good advantages such as reliability of foundation, environmental impact, and economy. ✓In addition, this is the method generally used in Egypt, therefore, construction experience is an advantage.		88,000,000 70,000,000 Total points: 4 points Moderate ✓ Regardless of the advantages of this option, quality is less stable than in the other options.		

12-2 Specifications of piles

The pile diameters of the cast-in place RC piles available in Egypt are; 800mm, 900mm, 1,000mm, 1,100mm and 1,200mm. As the odd-numbered pile diameters 900mm and 1,100mm in size are difficult to find in Egypt, they are excluded from consideration. Accordingly, the available piles are 800mm, 1,000mm and 1,200mm in diameter.

The study of pile specifications takes both Egyptian and Japanese codes into consideration. The following tables shows the same basic loading condition as in the stability analysis and a comparison of both codes.

(1) Loading case

	Table 12 2.1 Edading condition for pile design sourced by stability analysis								
Case	Condition	Direction	Water level		Gate situation	Additional condition			
		Long.	U.S.	WL47.00m	HWL				
Case 1	Normal		D.S.	WL47.00m	HWL	<u>Open gate</u>	—		
a a	Normal	Long.	U.S.	WL46.55m	Max.WL	CI.	sedimentation		
Case 2		2	D.S.	WL39.50m	Low	Close gate	(0.3m depth)		
C 1	Normal	Long.	U.S.	—	No WL				
Case 3		C	D.S.	—	No WL	Open gate	—		
Case 4	Normal	Lateral.	U.S.	WL46.55m	Max.WL	Onen asta			
Case 4			D.S.	WL46.55m	Max.WL	<u>Open gate</u>			
Case 5	Normal	Lateral.	U.S.	WL46.55m	Max.WL	Close gate	sedimentation		
Case 5			D.S.	WL39.50m	Low	Close gate	(0.3m depth)		
Casa 6	Normal	Lateral.	U.S.	—	No WL	Onen gete			
Case 6			D.S.	—	No WL	Open gate	_		
Case 7	Seismic	Long.	U.S.	WL46.55m	Max.WL	Class acts	sedimentation		
Case /		-	D.S.	WL39.50m	Low	Close gate	(0.3m depth)		
C 9	Seismic	Long.	U.S.	—	No WL	On an anta			
Case 8		-	D.S.	—	No WL	Open gate	—		
Case 9	Seismic	Lateral.	U.S.	WL46.55m	Max.WL	Onen gete	-		
Case 9			D.S.	WL46.55m	Max.WL	<u>Open gate</u>			
Case 10	Seismic	Lateral.	U.S.	WL46.55m	Max.WL	Close gate	sedimentation		
Cuse 10			D.S.	WL39.50m	Low	Close gute	(0.3m depth)		
Case 11	Seismic	Lateral.	U.S.	_	No WL	Open gate	_		
Cuse II			D.S.	_	No WL	<u>open gate</u>			
Case 12	Seismic	Long.	U.S.	WL46.55m	Max.WL	Open gate	_		
Cube 12			D.S.	WL46.55m	Max.WL	<u>spon guio</u>			
G 10	Normal	Long.	U.S.	WL46.55m	Max.WL	Maintenance			
Case 13	(Maintenance)	Long.	D.S.	WL45.82, 45.13m	Low	gate	_		

Table12-2.1 Loading condition for pile design sourced by stability analysis

*Maximum operation water level at U.S. is same as head level of gate (WL46.30 + 0.25m=EL46.55) to ensure safety

*At fully closed gate situation, water level at D.S. is same as apron level (EL39.5) .

(2) Method of evaluation of vertical bearing capacity and pull-out strength

The safety ratio between the calculated vertical bearing capacity and pull-out strength is considered in the table below.

Table12-2.2 Safety ratio for vertical bearing capacity and pull-out strength

	Japane	se code	Egyptian co	de (applied)
Pile condition s	vertical bearing capacity	pull-out strength	vertical bearing capacity	pull-out strength
Normal	3	6	3	3
Seismic	2	3	2	2

i) Examination of vertical bearing capacity

The vertical bearing capacity for one pile is calculated using the following equation.

Japanese code

$$Ra = \frac{1}{n} (Ru - Ws) + Ws - W$$

Where,Ra: vertical allowable bearing capacity (downward) at pile head (kN/pile)
Ru: ultimate bearing capacity of pile determined by the foundation (kN/ pile)
Ws: effective mass of soil replaced by pile (kN)
W: effective mass of pile and soil inside of the pile (kN)
n: Safety ratio

a. Ru: Ultimate bearing capacity of pile determined by the foundation

Bearing capacity is estimated using the following formula.

 $Ru = qd \cdot A + U \cdot \Sigma Li \cdot fi$

Where,Ru: ultimate bearing capacity of pile determined by the foundation (kN/ pile)
A: area of pile tip (m²)
qd: ultimate bearing capacity of pile tip per unit area (kN/m²)
U: circumference of pile (m)
Li: penetration depth for surface friction layer (m)
fi: maximum surface friction per unit area for surface friction layer (kNm²)

Egyptian code (applied)

 $Ra = \frac{1}{n} (Ru - P)$

b. Estimation of ultimate bearing capacity per unit area of pile tip (qd)

Table12-2.3 Ultimate bearing capacity per unit area of pile tip (Unit: kN/m²)

	Japanese code	Egyptian code
Driven method Foundation type	In-placed con-pile	In-placed con-pile
Gravelly layer and sandy layer (N > 30)	3,000	90N (include safety ratio)
Sturdy gravelly layer (N > 50)	5,000	90N (include safety ratio)
Hard cohesive soil	3qu	9 C

qu: unconfined compressive strength (kN/m^2) N: N value (SPT)

c. Calculation of maximum surface friction per unit area (fi)

Table12-2.4 Surface friction per unit area (Unit: kN/m²)

	Japane	se code	Egyptia	an code
Driven method Foundation type	Driven pile	In-placed con-pile	Driven pile	In-placed con-pile
Sand	2N (≦100)	5N (≦200)	N (include safety ratio)	N (include safety ratio)
Clay	C or 10N (≤ 150)	C or 10N (≦150)	C (≦100)	0.4C (≦100)

Note: Due to inaccuracy, it is assumed that there is no surface friction under the soft layer condition (N \leq 2).

The vertical bearing capacity in the Egyptian code is between "soil failure" and "settlement of pile." The applied allowable displacement on the settlement of regulators is between 50mm to

60mm per pile and should be considered in pile design.

ii) Examination of pull-out direction

The pull-out direction per pile unit can be obtained by the formula below.

Japanese code

 $Pa = -\frac{1}{n} Pu + W$

Where

Pa: vertical allowable pull-out strength at pile head (kN/pile) n: safety ratio (refer Table 2-6-2.1) Pu: ultimate pull-out strength of pile determined by the foundation (kN/pile) W: effective mass of pile (kN/pile)

"Pa" must be less than the allowable tensile capacity in axis direction. "Pu" is calculated using the following equation (function of the maximum surface friction per unit area), according to the second paragraph of the equation for ultimate bearing capacity as follows.

 $Pu = U \cdot \Sigma Li \cdot fi$

Egyptian code (applied)

$$Pa = \frac{1}{n} Pu + P$$

iii) Allowable bearing capacity by pile type

Japanese code

	$P = \sigma \cdot A$					
Where	P: allowable bearing capacity by the type of pile (N) σ : allowable stress of pile itself (N/mm^2) A: sectional area of pile (mm^2)					
Egyptian code (applied: same as Japanese code)						
	$P = \sigma \cdot A$					

(3) Method of counterforce against pile and displacement of footing

Japanese code

This is calculated using the "displacement method" that assumes the following conditions.

- \checkmark Pile foundation is a two-dimensional structure.
- \checkmark Pile is linear elastic given any force such as pushing, pulling and bending. Vertical, horizontal, and rotational spring are constant values regardless of load at the pile head. A value accounting for the pushing and pull-out is applied to the spring constant.
- \checkmark Footing is the rigid body, and the center of rotation is the centroid of group piles.

Egyptian code (applied)

It is the same as Japanese code

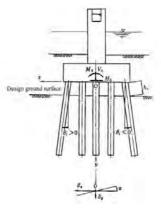


Figure 12-2.1 Model of displacement method

(4) Design of pile body and layout

The calculations arrived at by the displacement method provide the horizontal force and moment that act on the pile, and as such must be taken into consideration in pile body design.

Table 12-2.5: Allowable stress of pile
--

(Egyptian code)

Pile type	Normal	Seismic
In-placed	σc: 9.5N/mm ²	σc: 10.9N/mm ²
con-pile	σs: 200N/mm ²	σs: 230N/mm ²

The allowable stress of steel pile is applied to the Egyptian figures provided in the working group meeting, shown in Table 12-2.5. In addition, 15mm allowable horizontal displacement at pile head is applied. This figure is sourced from the Japanese standard since there is no figure provided in the Egyptian code.

(5) Pile layout

Layout should follow Japanese standards, as their underlying concept is to avoid the negative impact of the interaction of closely set piles. The minimum distance between piles is shown in Table 12-2.6.

Japanese code	Egyptian code
Not less than 1.25D Foundation line Pile D CS: C CS: C CS: C Foundation line Pile Foundation line Pile Foundation line Pile Foundation line CS: C CS: CS: C CS: CS: C CS: CS: C CS: CS: C CS: CS: CS: CS: CS: CS: CS: CS: CS: CS:	 ✓ Spacing between piles is no less than 2.5 D for bearing piles. (←our case) ✓ Spacing between piles is no less than 3.0 D for friction piles.

Table 12-2.6: Necessary distance between pil
--

12-3 Results of pile foundation design

The design method of the pile foundation in both the Egyptian and the Japanese codes applies the displacement method. Therefore, the number of piles should be in accordance with the Japanese code because the design method was consolidated according to the Egyptian code. After that, the number of piles arrived at by the Japanese code should be re-evaluated against the Egyptian code.

The pile foundation designs are shown in Table 12-3.1, and Figures 12-3.1, and 12-3.2. The comparison between piles is shown in Tables 12-3.2 and 12-3.3.

Structure	Nos. of piles	dia.	Length of piles	note
Bahr Yusef regulator	8x9=72	1,000mm	13.5m	Cast in-place concrete pile
Ibrahimia regulator	7x8=56	1,000mm	15.0m	Cast in-place concrete pile
Bahr Yusef L-type wall	2x8=16	1,000mm	7.5m	Cast in-place concrete pile
Ibrahimia L-type wall	2x8=16	1,000mm	7.0m	Cast in-place concrete pile

Table12-3.1 Specifications of pile design at Bahr Yusef and Ibrahimia regulators

Table12-3.2 Comparison table of economic pile specifications at Bahr Yusef and Ibrahimia

regulators

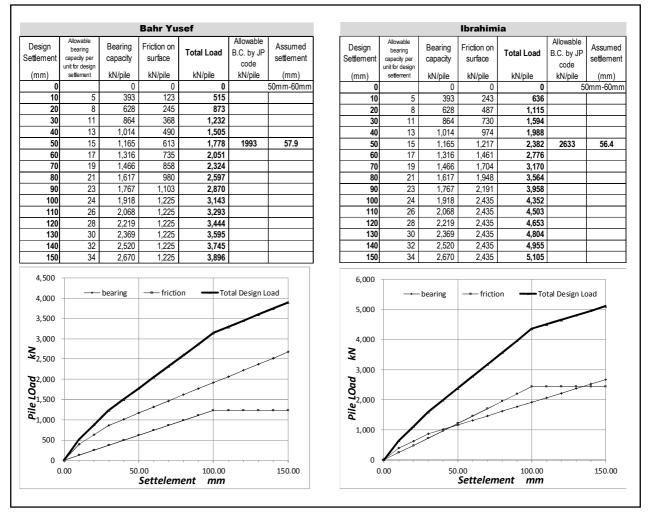
Dia pile	weir dir.	flow dir.	length	Compressive	(kN/p	oile) : normal	S	Stres	ss in pile body	(kN/mm2) : sei	smi	c	Dia. Steel	nos./pile	Cost(LE)
(mm)			(m)	Actual		Allowable	σc		σca	σs		σsa	(mm)		
800	10	9	14.0	1,587.25	<	1,598.97	10.15	<	10.93	108.48	<	230	φ32	17	3,758,629
1,000	8	7	16.5	2,540.21	<	2,601.60	10.17	<	10.93	122.35	<	230	φ32	20	3,460,204
1,000	9	8	13.5	1,981.25	<	1,993.31	10.67	<	10.93	174.29	<	230	φ25	14	2,855,727
1,000	10	9	12.0	1,587.37	<	1,706.45	9.58	<	10.93	175.87	<	230	φ33	11	3,372,756
1,200	7	6	17.5	3,378.20	<	3,474.82	10.69	<	10.93	158.83	<	230	φ32	16	3,105,815
1,200	8	7	14.5	2,539.51	<	2,749.67	10.51	<	10.93	219.82	<	230	φ22	15	2,922,933
1.200	9	8	12.0	1.978.99	<	2.179.94	8.31	<	10.93	169.55	<	230	φ22	14	3.107.958

Ibrahim	ia Reg														
Dia pile	weir dir.	flow dir.	length	Compressive	(kN/	pile) : normal	S	tres	ss in pile body	(kN/mm2) : se	ismi	C	Dia. Steel	nos./pile	Cost(LE)
(mm)			(m)	Actual		Allowable	σc		σca	σs		σsa	(mm)		
800	9	8	15.0	1,980.17	<	2,029.80	10.40	<	10.93	99.49	<	230	φ32	17	3,237,118
800	10	9	12.5	1,590.93	<	1,635.84	10.77	<	10.93	126.61	<	230	φ32	8	2,649,235
1,000	7	6	19.0	3,381.66	<	3,424.72	10.85	<	10.93	116.92	<	230	φ32	23	3,167,174
1,000	8	7	15.0	2,540.71	<	2,633.03	10.24	<	10.93	126.34	<	230	φ25	11	2,365,002
1,000	9	8	12.0	1,981.55	<	2,057.73	10.21	<	10.93	168.11	<	230	φ22	11	2,375,476
1,000	10	9	10.0	1,585.93	<	1,668.96	8.13	<	10.93	133.46	<	230	φ22	11	2,507,964
1,200	6	5	21.0	4,583.53	<	4,697.98	10.23	<	10.93	118.18	<	230	φ32	30	3,307,029
1,200	7	6	15.5	3,378.49	<	3,395.82	9.36	<	10.93	124.22	<	230	φ32	15	2,753,879
1,200	8	7	12.0	2,541.10	<	2,591.17	8.72	<	10.93	149.02	<	230	φ22	15	2,497,987
1,200	9	8	9.5	1,979.09	<	2,003.85	6.78	<	10.93	115.84	<	230	φ22	15	2,593,857

L type wall - Bahr Yusef

Dia pile	weir dir.	flow dir.	length	Compressive	(kN/	pile) : normal	:	Stre	ss in pile bod	y(kN/mm2) : no	rma	l	Dia. Steel	nos./pile	Cost(LE)
(mm)			(m)	Actual		Allowable	σc		σca	σs		σsa	(mm)		(2sets)
800	3	9	7.0	592.62	<	655.25	9.482	<	9.50	199.36	<	200	φ32	15	1,345,516
800	3	10	7.0	533.36	<	655.25	8.846	<	9.50	190.66	<	200	φ32	14	1,432,117
800	3	11	6.5	484.87	<	622.45	8.543	<	9.50	189.07	<	200	φ32	13	1,437,768
1,000	2	8	7.5	942.88	<	1,030.99	9.075	<	9.50	193.50	<	200	φ32	24	1,001,270
1,000	3	6	7.5	970.36	<	1,030.99	7.898	<	9.50	199.56	<	200	φ32	20	1,280,000
1,000	3	7	7.0	840.99	<	892.24	7.333	<	9.50	194.10	<	200	φ32	18	1,335,494
1,000	3	8	7.0	735.87	<	892.24	6.854	<	9.50	189.52	<	200	φ25	25	1,418,760
1,200	2	7	7.0	1,138.51	<	1,158.81	7.579	<	9.50	199.88	<	200	φ32	26	1,255,522
1,200	2	8	7.0	996.19	<	1,158.81	7.026	<	9.50	196.46	<	200	φ32	23	1,342,969
1,200	3	5	8.0	1,252.37	<	1,874.66	6.353	<	9.50	193.99	<	200	φ32	23	1,397,025
1,200	3	6	7.5	1,058.50	<	1,206.69	5.913	<	9.50	194.678	<	200	φ25	30	1,453,547
1,200	3	7	7.0	920.04	<	1,158.81	5.641	<	9.50	195.784	<	200	φ25	26	1,513,867
1,200	3	8	7.0	805.04	<	1,158.81	5.282	<	9.50	191.901	<	200	φ25	23	1,642,201

Dia pile	weir dir.	flow dir.	length	Compressive	(kN/	pile) : normal	;	Stre	ss in pile body	/(kN/mm2) : no	rma		Dia. Steel	nos./pile	Cost(LE)
(mm)			(m)	Actual		Allowable	σc		σca	σs		σsa	(mm)		(2sets)
800	3	9	6.5	568.17	<	684.15	9.424	<	9.50	185.316	<	200	φ32	17	1,341,216
800	3	10	6.5	511.35	<	684.15	9.327	<	9.50	197.787	<	200	φ32	14	1,362,997
800	3	11	6.5	464.87	<	684.15	8.809	<	9.50	191.898	<	200	φ32	13	1,437,768
					<			<			<				
1,000	2	8	7.0	827.66	<	1,480.96	7.675	<	9.50	199.042	<	200	φ32	24	939,146
1,000	3	6	7.0	936.20	<	1,480.96	8.064	<	9.50	190.875	<	200	φ32	22	1,264,796
1,000	3	7	7.0	802.46	<	1,480.96	7.563	<	9.50	196.156	<	200	φ32	18	1,335,494
1,000	3	8	6.0	712.16	<	726.90	7.459	<	9.50	197.304	<	200	φ32	17	1,318,850
					<			<			<				
1,200	2	7	6.5	1,121.57	<	1,329.64	8.004	<	9.50	198.258	<	200	φ32	28	1,226,587
1,200	2	8	6.0	997.83	<	1,069.70	7.772	<	9.50	199.189	<	200	φ32	27	1,278,857
1,200	3	5	7.0	1,251.10	<	1,905.13	6.664	<	9.50	191.900	<	200	φ32	25	1,309,795
1,200	3	6	6.5	1,073.20	<	1,329.64	6.270	<	9.50	192.222	<	200	φ32	22	1,386,235
1,200	3	7	6.0	953.49	<	1,069.70	6.180	<	9.50	196.646	<	200	φ25	31	1,429,321
1,200	3	8	6.0	834.31	<	1,069.70	5.839	<	9.50	195.440	<	200	φ25	27	1,536,095


Table12-3.3 Pile bearing capacity according to Egyptian code (Comparison between "soil failure" and "settlement of pile")

					EGY cod	le					
$\langle \rangle$					Qallo	owable accord	ding to soil fa	ilure			
	Dia	Length	Bearing	g capacity at	oile end		Pile frictio			Qallowable	Qallowable by settelement
			Bearing range	N	Qb-allowable	Friction range	N ave. F	safe factor	Qb-allowable	by soil failure	
	(mm)	(m)	(m)	ave. of Be. rabge	(kN)	(m)	ave. of Fr. rabge	for SPT	(kN)	(kN)	(50 - 60) mm (kN)
Bahr Yusef	1,000	13.5	4.00	40.0	2,827.4	8.5	13.6	1	363.2	3191	1778 - 2051 (applied)
Ibrahimia	1,000	15.0	4.00	40.0	2,827.4	10.0	26.2	1	823.1	3651	2382 - 2776 (applied)

Table12-3.4 Comparison between bearing capacity in Egyptian code and Japanese code

	Egyptian code Allowable bearing capacity by settlement (kN/pile)	Japanese code Allowable bearing capacity by soil failure (kN/pile)	Judgement
Bahr Yusef	less than 2051	1993.31(reg.), 1030.99(L type)	Allowable bearing capacities by Japanese code are less than "allowable by soil failure" by Egyptian code and allowable
Ibrahimia	less than 2776	2,633.03(reg.), 1480.96(L type)	one by Japanese are within the allowable one by settlement in Egyptian code. Therefore the pile arrangement by its designs are acceptable and complied with Egyptian code.

Table12-3.5 Bearing capacity for target settlement

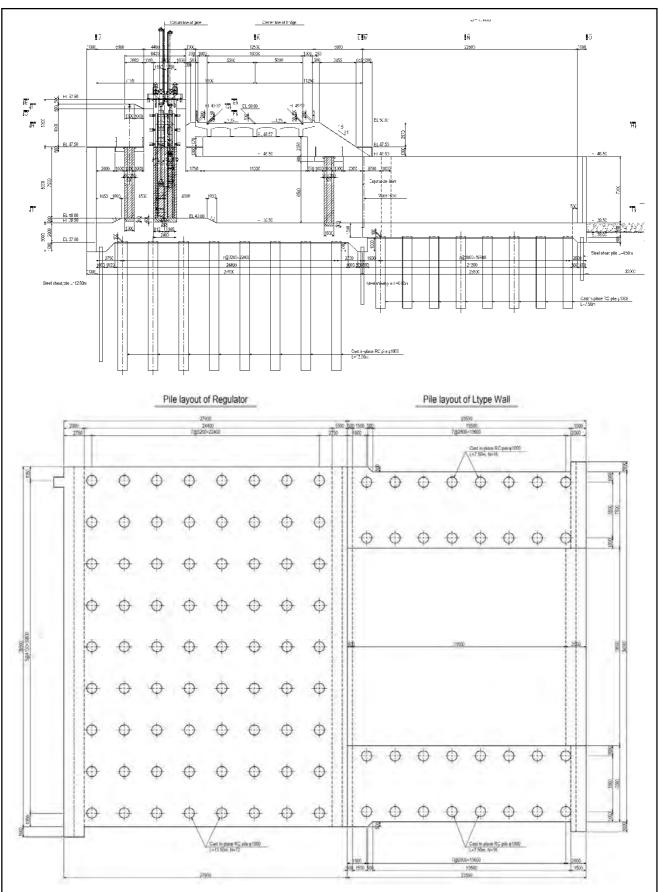


Figure12-3.1 Pile layout and design of Bahr Yusef regulator and L-type wall

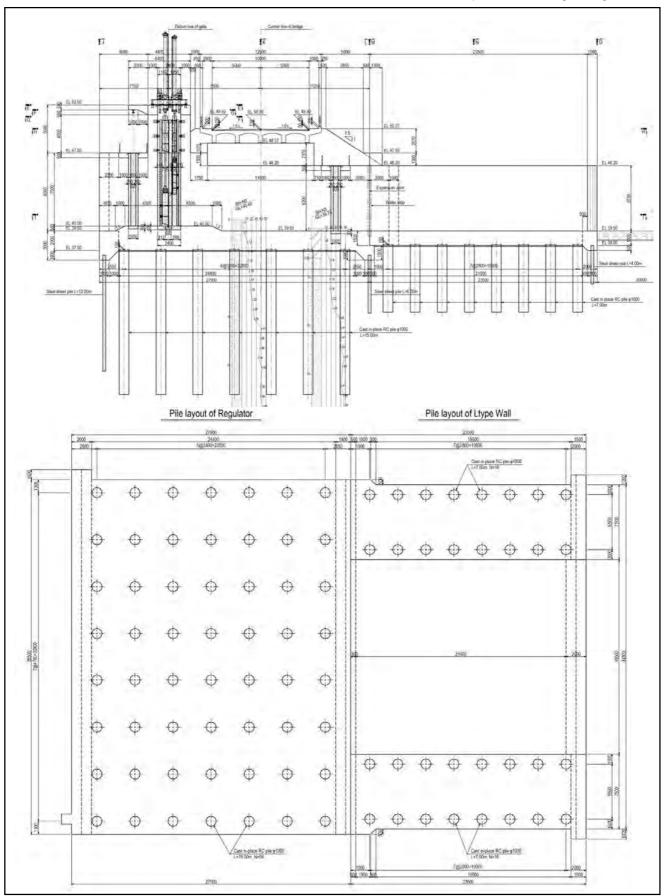


Figure12-3.2 Pile layout and design of Ibrahimia regulator and L-type wall

13. Design of Bank Protection Works

13-1 Selection of construction method

The bank protection principally depends on the surface conditions of the construction area. The steel sheet pile method is applied in the area where it is hard to work with cofferdam in dry conditions, whereas the stone pitching method is applied in the area where it is possible to work in dry conditions.

As the results of the 3D flow analysis and the hydraulic model study done by Egyptian side, it was confirmed that vortexes were generated on downstream left bank of the Bahr Yusef Regulator and on the downstream right bank of the Ibrahimia Regulator. Therefore, it was decided to shape the flow channels by embankments as a solution to minimize the vortexes. Through the comparative analysis regarding the engineering methods as described below, the gabion construction method was chosen for the bank protection method at these embankments.

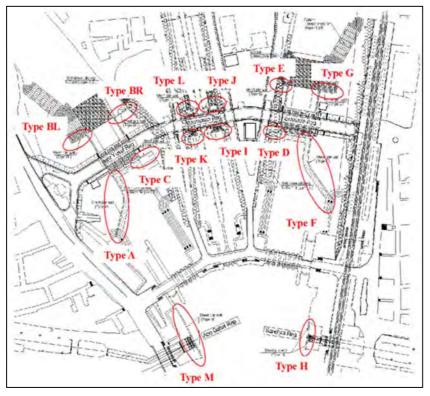
13-2 Design of steel sheet pile work

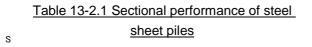
(1) Policy to select type of steel sheet pile work

Considering the shape of the structure, conditions of the foundation, workability and construction costs, the free-standing cantilever selected steel sheet pile method is best. From a safety perspective, tie-rod steel sheet pile method can be also selected in case the free-standing cantilever sheet pile does not have enough stability considering its structure.

(2) Cross-sectional map for steel sheet pile

There are thirteen types to be considered, all shown in Figure 13-2.1.




Figure13-2.1 Location map for each type of sheet pile

(3) Type and scale of the sheet pile method

① Steel materials in use

Upon the supply of the steel materials (e.g. steel sheet piles, steel channel and tie-rods) for the sheet pile construction work, tie-rods including attachment are procured from Japan based on the results of the study of materials procurement, and other materials supplied by the third party countries where Egypt has the procurement record thereof.

The steel sheet piles that were adopted were procured from ArcelorMittal, the world's largest steel manufacturer, having its main office in Luxemburg. The cross-sectional performance and the specifications of the steel sheet piles in use are shown in Table 13-2.1 and in Table 13-2.2 respectively.

	Туре	Width	Height	Thickness	Sectional area	Ma		Moment of inertia	Elastic section modulus
	туре		h	t	A	single pile	wall	T	Z
		w				1	2	1	
		mm	mm	mm	cm²/m	kg/m	kg/m²	cm ⁴ /m	cm³/m
Ð	PU12	600	180	9.8	140.0	66.1	110	21,600	1,200
et pile	PU18	600	215	11.2	163.0	76.9	128	38,650	1,800
Sheet	PU22	600	225	12.1	183.0	86.1	144	49,460	2,200
Steel	PU28	600	227	15.2	216.0	101.8	170	64,460	2,840
0	PU32	600	226	19.5	242.0	114.1	190	72,320	3,200
ece (SP-II w	600	130	10.3	131.2	61.8	103	13,000	1,000
Reference (Japan)	SP-Ⅲw	600	180	13.4	173.2	81.6	136	32,400	1,800
, Rei	SP-IVw	600	210	18.0	225.5	106.0	177	56,700	2,700

Table 13-2.2 Specifications of steel
materials

	Grade	Yield point	Tensile Strength	Allowable Stress
		N/mm ²	N/mm ²	N/mm ²
Ð	S270GP	270	410	165
Sheet pile	S320GP	320	440	195
	S355GP	355	480	215
Steel	S390GP	390	490	235
0	S430GP	430	510	260
Reference (Japan)	SY295	295	490	180
Refer (Jap	SY390	390	540	235

② Design method of steel sheet pile work

The design method of steel sheet pile work is different depending upon the structure types and many design methods have been proposed. In this design, the following design methods were used:

• The free-standing cantilever steel sheet pile method: Y. L. Chang's formula

• Tie-rod steel sheet pile method: Free earth support method

On the corrosion-resistant protection of the steel sheet piles, it was confirmed to use the "Corrosion-resistant Coating Method" that is widely used in Egypt through the discussions with the Design WG. Therefore, no corrosion allowance was considered in the design.

For the tie-rod steel sheet pile method, it is necessary to construct the embankments by installing the brace type steel sheet piles in the embankments in order to secure the structural safety of the tie-rod steel sheet pile work. The steps of the tie-rod type steel sheet pile work and embankment work are shown in Figure 13-2.2.

Therefore, the design of the tie-rod steel sheet pile work is conducted including the design of the completed form and the design in the conditions that the front steel sheet piles are in free-standing state during the construction and the primary embankment form is also set.

The results of examination of the steel sheet pile work are shown in Table 13-2.3 to Table 13-2.5 and Figure 13-2.3 to Figure 13-2.5.

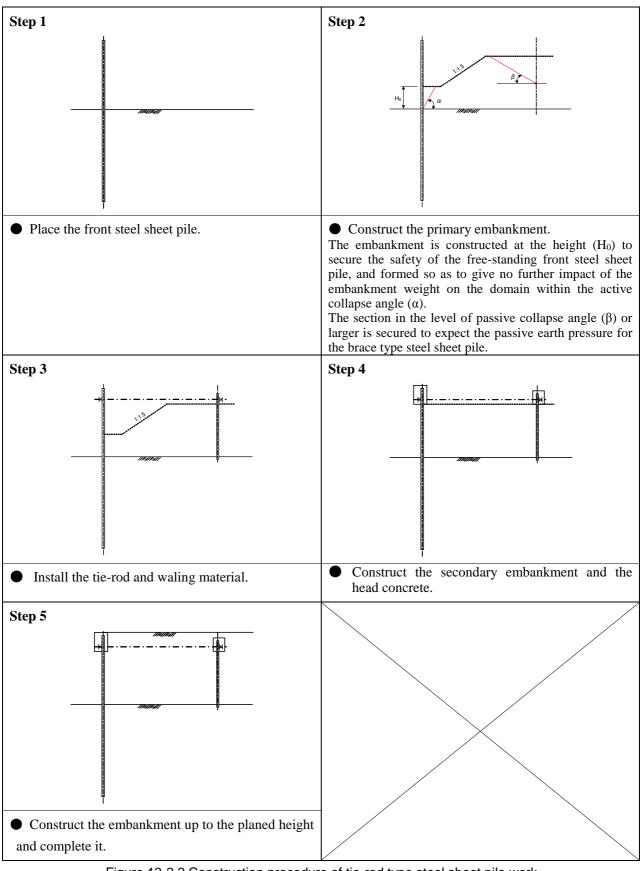
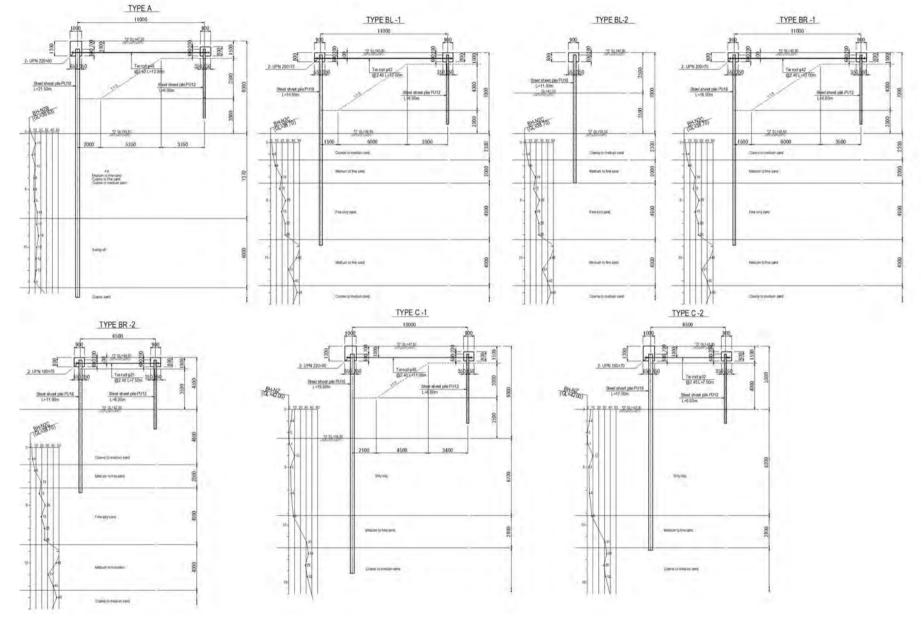


Figure 13-2.2 Construction procedure of tie-rod type steel sheet pile work

														<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	<u>- /</u>					
	Regul	ator Name									1	New Bahr Yı	usef Regulato	r								
		Туре		А			BL-1		BI	2		BR-1			BR-2			C-1			C-2	
	Constructi	on Length		66.60m			6.60m		6.6	0m		4.80m			9.00m			3.60m			9.00m	
	Sheet	Pile Type		Tie-Rod			Tie-Rod		Free-standir	ng cantilever		Tie-Rod			Tie-Rod			Tie-Rod			Tie-Rod	
			Long time	Sort time (Seismic)	During construction (H=3.00m)	Long time	Sort time (Seismic)	During construction (H=2.00m)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	During construction (H=2.00m)	Long time	Sort time (Seismic)	During construction (H=3.50m)	Long time	Sort time (Seismic)	During construction (H=3.50m)	Long time	Sort time (Seismic)	During construction (H=4.00m)
Front	Model			PU18			PU18		PU	18		PU18			PU18			PU18			PU18	
sheet pile	Length	m		21.50			16.50		11.	00		16.50			11.50			19.00			17.00	
	Stress	N/mm ²	157	86	35	114	60	40	78	60	114	61	40	25	17	63	157	86	48	41	36	67
			(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)
	Penetration	m		14.20			9.70		7.3	70		9.70			7.20			11.70			12.20	
	depth		(>14.14)	(>7.58)	(>7.29)	(>9.38)	(>5.51)	(>7.57)	(>7.47)	(>7.55)	(>9.38)	(>5.52)	(>7.57)	(>6.80)	(>5.49)	(>7.15)	(>11.58)	(>7.92)	(>6.87)	(>12.10)	(>11.31)	(>7.06)
	Horizontal	mm			29.48			32.72	35.12	27.70			32.72			32.38			39.04			40.56
	displacement				(<50.00)			(<50.00)	(<50.00)	(<75.00)			(<50.00)			(<50.00)			(<50.00)			(<50.00)
Bracing	Model			PU12			PU12					PU12			PU12			PU12			PU12	
sheet pile	Length	m		6.00			6.00					6.00			6.00			6.00			6.00	
	Stress	N/mm ²	57	37		42	26				42	26		17	13		57	37		27	25	
			(<165)	(<190)		(<165)	(<190)				(<165)	(<190)		(<165)	(<190)		(<165)	(<190)		(<165)	(<190)	
	Penetration	m		5.70			5.70					5.70			5.70			5.70			5.70	
	depth		(>5.43)	(>5.43)		(>5.43)	(>5.43)				(>5.43)	(>5.43)		(>5.43)	(>5.43)		(>5.43)	(>5.43)		(>5.43)	(>5.43)	
	Horizontal	mm	8.11	5.27		5.93	3.65				5.93	3.67		2.43	1.80		8.11	5.27		3.86	3.52	
	displacement		(<50.00)	(<75.00)		(<50.00)	(<75.00)				(<50.00)	(<75.00)		(<50.00)	(<75.00)		(<50.00)	(<75.00)		(<50.00)	(<75.00)	
Tie-Rod	Diameter o	p mm		Φ46			Φ42					Φ42			Φ25			Φ46			Φ32	
	Pitch (e) m		@2.40			@2.40					@2.40			@2.40			@2.40			@2.40	
	Stress	N/mm ²	170	111		150	92				150	92		173	128		170	111		168	153	
			(<176)	(<264)		(<176)	(<264)				(<176)	(<264)		(<176)	(<264)		(<176)	(<264)		(<176)	(<264)	
Wale	Specification		2	×UPN-220×8	30	2	×UPN-200×7	75			2	VUPN-200×	75	2	×UPN-180×7	70	2	×UPN-220×8	30	2	×UPN-180×7	0
	Stress	N/mm ²	139	90		130	80				130	80		68	50		139	90		108	98	
			(<140)	(<210)		(<140)	(<210)				(<140)	(<210)		(<140)	(<210)		(<140)	(<210)		(<140)	(<210)	
Location	of bracing	m		11.00			11.00					11.00			6.50			10.00			6.50	
sheet pile			(>7.33)	(>8.63)		(>7.04)	(>8.36)				(>7.04)	(>8.35)		(>5.59)	(>6.43)		(>7.33)	(>8.63)		(>5.88)	(>6.45)	


Table13-2.3 Result of the consideration for bank protection works (1/3)

						<u></u>		2.4 1.63		e consi						<u>5)</u>				
	Regula	ator Name									New Ibrahin	nia Regulator								
		Туре		D-1		D	-2		E-1		Е	-2		F			G-1		G	-2
	Constructi	on Length		3.60m		5.4	0m		3.00m		1.8	0 m		72.60m			6.60m		6.0	0m
	Sheet	Pile Type		Tie-Rod		Free-standir	ng cantilever		Tie-Rod		Free-standir	ng cantilever		Tie-Rod			Tie-Rod		Free-standin	ng cantilever
			Long time	Sort time (Seismic)	During construction (H=4.50m)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	During construction (H=4.50m)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	During construction (H=3.50m)	Long time	Sort time (Seismic)	During construction (H=3.50m)	Long time	Sort time (Seismic)
Front	Model			PU18		PU	12		PU12		PU	J 12		PU18			PU12		PU	J 12
sheet pile	Length	m		16.00		9.:	50		13.50		8.0	00		17.50			15.00		9.	50
	Stress	N/mm ²	157	86	79	106	99	135	74	38	31	34	157	86	43	135	75	62	88	78
			(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<165)	(<190)
	Penetration	m		8.70		6.	70		7.50		6.:	50		10.20			9.00		7.	00
	depth		(>8.55)	(>1.96)	(>7.44)	(>6.39)	(>6.59)	(>7.44)	(>1.25)	(>6.31)	(>6.06)	(>6.33)	(>9.90)	(>5.85)	(>6.71)	(>8.92)	(>4.97)	(>5.89)	(>6.17)	(>6.31)
	Horizontal	mm			36.67	48.11	46.60			12.26	9.57	10.92			33.22			43.37	36.83	33.51
	displacement				(<50.00)	(<50.00)	(<75.00)			(<50.00)	(<50.00)	(<75.00)			(<50.00)			(<50.00)	(<50.00)	(<75.00)
Bracing	Model			PU12					PU12					PU12		PU12				
sheet pile	Length	m		6.00					6.00					6.00			6.00			
	Stress	N/mm ²	57	37				42	28				57	37		42	28			
			(<165)	(<190)				(<165)	(<190)				(<165)	(<190)		(<165)	(<190)			
	Penetration	m		5.70					5.70					5.70			5.70			
	depth		(>5.43)	(>5.43)				(>5.43)	(>5.43)				(>5.43)	(>5.43)		(>5.43)	(>5.43)			
	Horizontal	mm	8.11	5.27				5.97	3.93				8.11	5.27		5.97	3.99			
	displacement		(<50.00)	(<75.00)				(<50.00)	(<75.00)				(<50.00)	(<75.00)		(<50.00)	(<75.00)			
Tie-Rod	Diameter q	p mm		$\Phi 46$					Φ42					Φ46			Φ42			
	Pitch @	2) m		@2.40					@2.40					@2.40			@2.40			
	Stress	N/mm ²	170	111				150	99				170	111		150	101			
			(<176)	(<264)				(<176)	(<264)				(<176)	(<264)		(<176)	(<264)			
Wale	Specification		2	×UPN-220×8	30			2	×UPN-200×3	75			2	×UPN-220×8	30	2×UPN-200×75				
	Stress	N/mm ²	139	90				131	86				139	90		131	88			
			(<140)	(<210)				(<140)	(<210)				(<140)	(<210)		(<140)	(<210)			
Location o	of bracing	m		9.00					8.00					10.50		9.00				
sheet pile			(>7.33)	(>8.63)				(>6.57)	(>7.60)				(>7.33)	(>8.63)		(>6.57)	(>7.65)			

Table13-2.4 Result of the consideration for bank protection works (2/3)

	Devel	N	N	6.1.1. ¹ . D.		N	D I D			N	D. I	and the Operation		N	LCLID	
	Kegu	lator Name	New	Sahelyia Reg	ulator		Badraman Re		,		Badraman Re		<i>,</i>	New A	bo Gabal Re	gulator
		Туре		н			I		1		K		L		М	
		ion Length		19.20m			0 m		0m		50m	3.6			45.00m	
	Shee	t Pile Type		Tie-Rod		Free-standi	ng cantilever	Free-standing	ng cantilever	Free-standi	ng cantilever	Free-standin	ng cantilever		Tie-Rod	
			Long time	Sort time (Seismic)	During construction (H=3.50m)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	Long time	Sort time (Seismic)	During construction (H=3.40m)
Front	Model			PU12		PU	J 12	PU	J 12	PU	J 18	PU	J 12		PU12	
sheet pile	Length	m		11.00		9.	00	8.	00	10	.00	8.	00		9.50	
	Stress	N/mm ²	93	52	49	104	71	45	28	87	59	58	36	49	28	46
			(<165)	(<190)	(<165)	(<165)	(<190)	(<165)	(<190)	(<165)	(<190)	(<165)	(<190)	(<165)	(<190)	(<165)
	Penetration	m		5.75		5.	50	5.	60	6.	20	5.	30		5.30	
	depth		(>5.29)	(>1.58)	(>5.36)	(>5.21)	(>5.21)	(>5.21)	(>5.21)	(>6.06)	(>6.06)	(>5.25)	(>5.25)	(>1.39)	(>0.86)	(>5.23)
	Horizontal	mm			31.29	39.00	26.84	12.81	7.93	35.12	23.83	18.13	11.16			23.16
	displacement				(<50.00)	(<50.00)	(<75.00)	(<50.00)	(<75.00)	(<50.00)	(<75.00)	(<50.00)	(<75.00)			(<50.00)
Bracing	Model			PU12											PU12	
sheet pile	Length	m		6.00											6.00	
	Stress	N/mm ²	35	24										25	18	
			(<165)	(<190)										(<165)	(<190)	
	Penetration	m		5.70									I		5.70	
	depth		(>5.43)	(>5.43)										(>5.43)	(>5.43)	
	Horizontal	mm	4.90	3.34										3.60	2.51	
	displacement	;	(<50.00)	(<75.00)										(<50.00)	(<75.00)	
Tie-Rod	-	φ mm	. ,	Φ42										× /	Φ32	
	Pitch (@ m		@2.40											@2.40	
	Stress	N/mm ²	151	103										156	109	
			(<176)	(<264)										(<176)	(<264)	
Wale	Specification			×UPN-180×7	70										×UPN-160×6	55
	Stress	N/mm ²	137	93										130	91	
		1 WIIIII	(<140)	(<210)										(<140)	(<210)	
Location o	f bracing	m	(7.50										(.170)	6.50	
sheet pile	1 of a change		(>6.14)	(>7.08)										(>5.54)	(>6.29)	
sneet pile			(~0.14)	(~7.08)										(~5.54)	(~0.29)	

Table13-2.5 Result of the consideration for bank protection works (3/3)

Detailed Design Study on the Project for Construction of the New Dirout Group of Regulators

Figure 13-2.3 Cross-sectional map of the sheet pile method for each case (case A - C) (1/3)

I -165

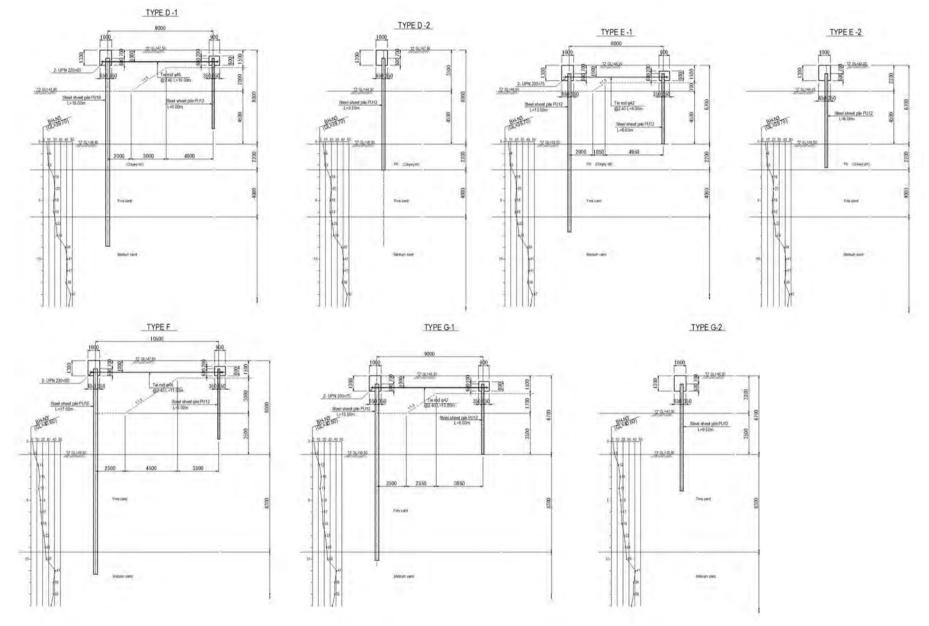


Figure 13-2.4 Cross-sectional map of the sheet pile method for each case (case D - G) (2/3)

I -166

Final Report Volume I Design of Regulators

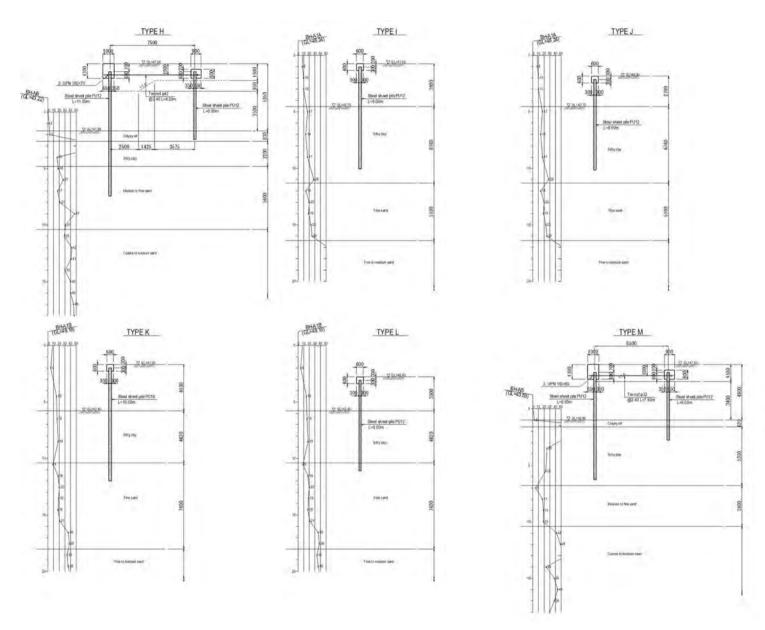


Figure 13-2.5 Cross-sectional map of the sheet pile method for each case (case H - M) (3/3)

13-3 Design of bank slope protection work

(1) Wet stone pitching

Wet stone pitching is used, which was also used in the construction of the Dahab regulator. A drainage hole and backfill material are employed to drop the residual water level. Stone for the protection work should be heavy enough so as not to be displaced naturally, and also to satisfy the value calculated by Hudson Formula below.

$$W = \frac{\gamma r \cdot H_D^3}{K_D (\gamma r / w_0 - 1)^3 \cot \alpha}$$

Where, W : Weight of the stone on the slope (kN)

- γ r : Unit weight of the stone γ r= 26 kN/m³
- w_0 : Unit weight of the water $W_0 = 10 \text{ kN/m}^3$
- α : Angle comprised by the slope and horizontal lines $\alpha = 33^{\circ}$ 41' (1 : 1.5)
- K_D : Constant determined by the stone type (K_D = 2 is applied in the study)
- H_D : Wave height on the front of slope (H_D = 0.50 m is applied in the study)
- \therefore W = 0.264 kN

Thus, the weight of stone for pitching should be W=0.30kN (rounded to safe side), which is around 30cm in average diameter.

The standard cross-sectional map is shown below.

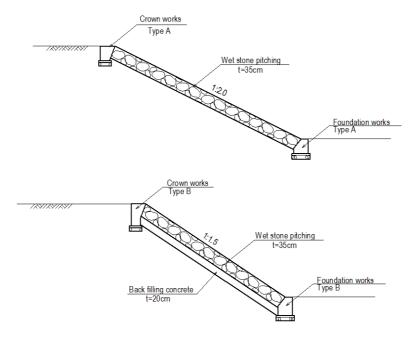


Figure 13-3.1 Standard cross-sectional map of wet stone pitching works

(2) Gabion

The flow channel shaping works are carried out for the purpose of preventing the vortexes generated in the dead water areas on the downstream left bank of the Bahr Yusef Regulator and on the downstream right bank of the Ibrahimia Regulator. The resulting embankment and bank protection works are done apart from the tentative cofferdam works to be executed in the main work. The runoff prevention measure is one of the construction conditions for the works.

Based on these, the comparative analyses were made among the steel sheet pile method, the wet stone pitching method and the gabion construction method (stacking type or pitching type). (Table 13-3.1 and 13-3.2.) As the result of repeated discussions with the Design WG, the pitching type (with the slope gradient 1:2.0) gabion construction method was decided on the prerequisite that the construction works should be done under the low water level condition during the winter closure period, and approved in the 25th TAC Meeting.

The standard cross-sectional map of the gabion construction method and the results of slope stability calculations (Fs = 1.648 > Fa = 1.5) are shown below.

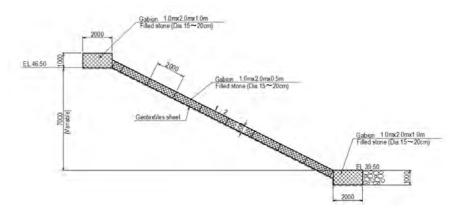
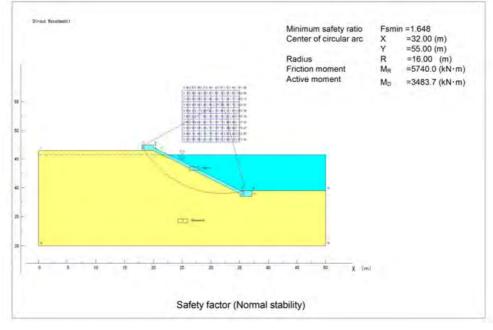
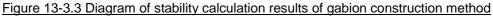
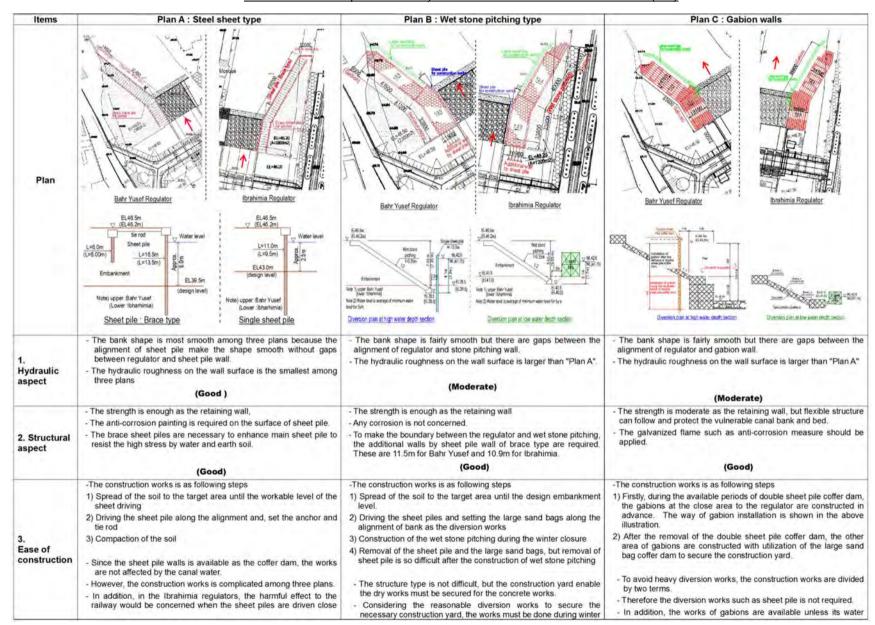





Figure 13-3.2 Standard sectional map of gabion construction method

Items	Plan A : Steel sheet type	Plan B : Wet stone pitching type	Plan C : Gabion walls
	the railway	closure.	depth is not so deep.
		 However, the gap between the base concrete level and canal water level will be approx. 4-3m near the regulator. Therefore, the sheet pile diversion should be applied in order to resist high water pressure. Its water level is identified in the record of water level for 5yrs during winter closure. 	 Compared to the wet stone pitching, the construction period is short.
		 While, the other area does not need the sheet pile diversion, but the sandbag diversion is available. 	
	(Not Good)	(Moderate)	(Good)
	Construction periods without embankment and concrete cap on sheet pile	Construction periods without embankment	Construction periods without embankment
4. construction	Bahr Yusef : approx. 0.8 month (approx. 95m)	Bahr Yusef : approx. 1.7 month (approx. 1,500m ²)	Bahr Yusef : 0.4 month (approx. 600nos)
periods	Ibrahimia : approx. 0.8 month (approx. 100m)	Ibrahimia : approx. 1.5 month (approx. 1,400m ²)	Ibrahimia : 0.6 month (approx. 790nos)
	(Good)	(Not good)	(Good)
	Ratio : 1.69	Ration : 1.05	Ration : 1.00
	(Total : USD 1.0 million)	(Total : USD 0.63 million)	(Total : USD 0.60 million)
5.	Items	Items	Items
Economical	1) Sheet pile and other works	1) wet stone pitching and other works	1) Gabions include stone and other works
aspect	2) Embankment works include transportation	2) Embankment works include transportation	2) Embankment works include transportation
	3) Diversion works for the construction	 Diversion works for the construction 	Diversion works for the construction
	(Not good : Expensive)	(Good)	(Very Good)
	Fairly Recommendable	Fairly Recommendable	Recommendable
	 The hydraulic function is very good and the structural durability is as well. 	The hydraulic function is good and structural durability is enough for	- The hydraulic function is good, and structural durability is fairly
	 However, the careful construction works is required because of the 	conditions, in addition, structure is typical as bank protection. - However, under the condition of canal water during the construction,	enough for corrosion, but flexible structure enable to follow and protect the vulnerable canal bank and bed.
Evaluation	complicated structure and necessity of careful driving sheet pile close the railway.	the expensive diversion works such as sheet pile cofferdam is required in order to prevent the canal water.	 The construction works are most speedy among three plans and its works is possible to finish during winter closure.
	- The construction cost is most expensive among three plans.	 In addition, construction period is longer than other plans, its period overrun for the available construction period of winter closure. 	 In addition, the construction works are available by simple diversion works such as sand bags.
		the case of the rest includes a state of 35, as in second restances	- The construction cost is not expensive compared to the other plan.

14. Design of Ancillary Road and Bridge

14-1 Design conditions

(1) Width of the ancillary road

Based on the discussion conclusions at the F/S stage, the effective width of ancillary road was designed at. However, in D/D stage, TAC decided at the14th TAC meeting, that the road plan should take future traffic into account. The road width at the three downstream regulators (new Bahr Yusef, Badraman, and Ibrahimia) should also consider the future increase in traffic in Dirout city.

According to the traffic survey study report, the required road width is approximately 25m. Based on this result, TAC and D/D consultant have agreed to apply 12.5m width (half of required road width) for the design, and the remaining 12.5m will be covered by the new bridges being planned as part of the city development plan. Regarding the two upstream small scale regulators (new Sahelyia and Abo Gabal), the width of the road was set at 6.5m to include maintenance usage.

The following is the breakdown of road for each width:

12.5m = 10.0m (for 2 carriage ways) + 2.0m (for 2 sidewalks) + 0.5m (for 2 handrails)

6.5m =6.0m (for carriage way) + 0.5m (for 2 handrail)

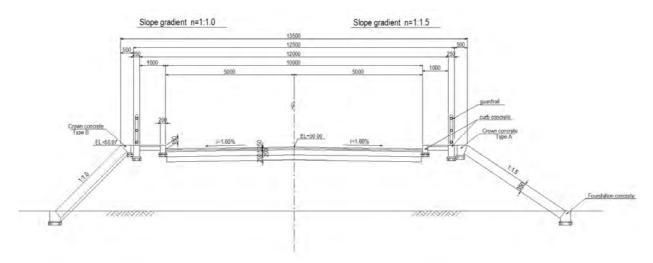


Figure14-1.1 Layout of ancillary road

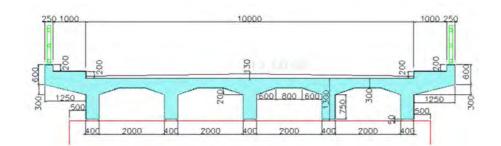


Figure14-1.2 Layout of bridge

(2) Design load

In order to determine the design load for the ancillary road and bridge, the following loads should be applied in order to comply with Egyptian code.

Point where the load acts	Concentrated lad (by the car) Q (kN)	Equal distribution load q (kN/m²)
Lane ①	300	9.0
Lane ②	200	2.5
Lane ③	100	2.5
The other lane	0	2.5
The other area (q)	0	2.5

Table14-1.1 Design load for the ancillary road and bridge

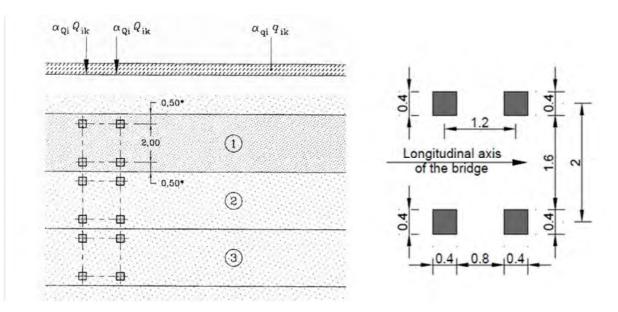


Figure14-1.3 Sketch of acting point of the design load

(3) Road alignment

Figure 14-1.4 shows the location of NDGRs and their ancillary roads.

The following two points were approved by TAC at the21st TAC meeting.

- Considering the heavy traffic on the existing national road along the Bahr Yusef canal, a traffic island will be constructed at the intersection between the road on the new Bahr Yusef regulator and the existing national road to avoid traffic jams.
- The design area of the study is until the slope for the railway, which is located along the right bank of Ibrahimia canal.

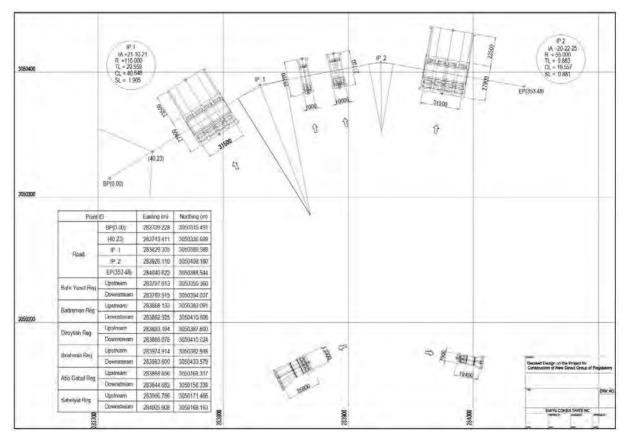


Figure 14-1.4 Drawing of the design road alignment

14-2 Structural design for the ancillary bridge

The structural design of the ancillary bridge was basically made in accordance with the Egyptian code, and the items that were not provided in the Egyptian code were in accordance with the Eurocode or AASHTO.

The calculations of cross sections were made for three bridges for the large-scale regulators (Bahr Yusef and Ibrahimia regulators), Badraman regulator (Diroutiah canal) and Badraman regulator (Badraman canal). The calculated cross sections are shown in Figure 14-2.1.

Further details are in structural calculations in the Appendix.

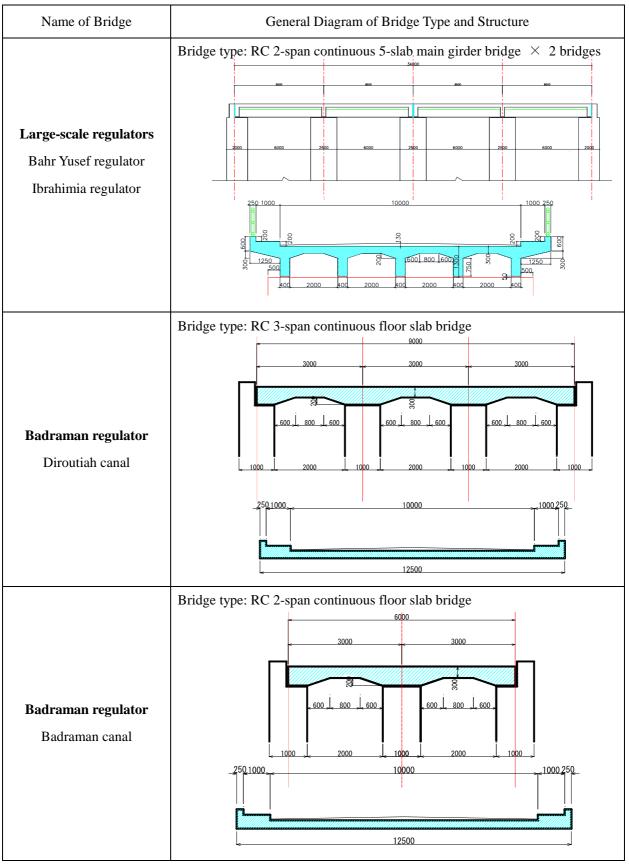


Figure 14-2.1 Schematic diagrams of ancillary bridges

15. Design of Gate Facilities

Gate facilities shall be designed in accordance with the following features.

- 1) Easy and reliable operation
- 2) Sufficient water tightness and high durability
- 3) Safety against predictable load
- 4) Easy and safe operation and maintenance

15-1 Design of gate leaf

15-1-1 Design conditions

The following table shows the design conditions of gate facilities agreed upon with the Egyptian government. Items to be noted are as follows.

1) The operating speed of the gate is usually taken to be 0.3 m/min, as it considers the effect of upstream and downstream water level fluctuations caused by water discharge. However, sometimes higher speed is applied when sudden closing is required, and slower speed is applied for highly accurate discharge control. As a result of discussions, operating speed is set at 0.3 m/min for all gate facilities.

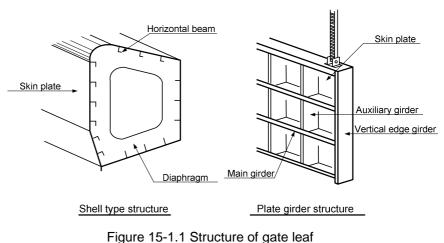
2) The major parts of the gate leaf are made of rolled steel, except the parts where maintenance and repair works are difficult, as well as the sliding surfaces such as the skin plate of the double leaf gate, the wheels, and the gate guide frames.

3) Beside the lateral and bottom side seal, a rubber seal is attached to the upper side of the lower leaf of the double leaf gate to secure water-tightness at the sliding surface.

4) Design water level is the same as the gate crest height (=Normal water level EL46.30m+Freeboard 25cm). Downstream water height is not considered in the design for safety reasons.

				Design condition	or gate raolitico			-
		Large re	egulators		Small re	gulators		Remarks
Name		Bahr Yusef	Ibrahimia	Badraman	Diroutiah	AboGabal	Sahelyia	Remains
Cate type		Double leaf	Double leaf	Single leaf	Single leaf	Single leaf	Single leaf	
Gate type		Fixed wheel gate	Fixed wheel gate	Slide gate	Slide gate	Slide gate	Slide gate	
Clear width of o	pening	6.00m	6.00m	2.00m	2.00m	2.00m	2.00m	
Total height		6.55m	6.55m	2.65m	2.35m	2.95m	3.55m	
Number of gate		4	4	2	3	4	2	
Gate crest elava	ation	EL46.55m	EL46.55m	EL46.55m	EL46.55m	EL46.55m	EL46.55m	Freeboard=0.25m
Gate sill elevation	n	EL40.00m	EL40.00m	EL43.90m	EL44.20m	EL43.60m	EL43.00m	
Design water le	vel(Upstream)	EL46.55m	EL46.55m	EL46.55m	EL46.55m	EL46.55m	EL46.55m	
Design water he	eight	6.55m	6.55m	2.65m	2.35m	2.95m	3.55m	
Bottom height w	hen lifted up	EL47.50m	EL47.50m	EL47.50m	EL47.50m	EL47.50m	EL47.50m	HHWL+0.5m
Lifting height		7.50m	7.50m	3.60m	3.30m	3.90m	4.50m	
Operating speed	b	0.3m/min	0.3m/min	0.3m/min	0.3m/min	0.3m/min	0.3m/min	
Control method		Remote/Local control	Remote/Local control	Remote/Local control	Remote/Local control	Remote/Local control	Remote/Local control	
Hoist type		Hydraulic cylinder	Hydraulic cylinder	Electric rack gear	Electric rack gear	Electric rack gear	Electric rack gear	
(Number of rod	per gate)			(2-rods)	(2-rods)	(2-rods)	(2-rods)	
Seal type		3-side rubber seal 1)	3-side rubber seal 1)	3-side rubber seal	3-side rubber seal	3-side rubber seal	3-side rubber seal	
	Skin plate	Stainless steel	Stainless steel	Rolled steel	Rolled steel	Rolled steel	Rolled steel	
	Main beam	Rolled steel	Rolled steel	Rolled steel	Rolled steel	Rolled steel	Rolled steel	
	Wheels	Stainless steel	Stainless steel	-	-	-	-	
Materials	Gate guide frame	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel	
	Bolt,Nut &Washer	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel	
	Hydraulic pipe	Stainless steel	Stainless steel	-	-	-	-	
Deflection	•	1/800	1/800	1/800	1/800	1/800	1/800	
Allowable stress	1		According to J	IS (Japanese Industria	al Srandards) or releva	ant standards		

Table 15-1.1 Design condition of gate facilities


Note: 1) Lower leaf has a upper side seal. (4-side seal)

15-1-2 Gate leaf structure

The gate leaf structure can be a 'shell' type or a 'plate girder' type. Which type is selected is determined by the width and height of the leaf or the control method; whether to discharge by overflow or not. With the girder type, the depth of the main girder supporting the horizontal load becomes large depending on the span width. Since higher vertical rigidity is required to keep the deflection caused by self-weight within the allowable range, the design of the structure becomes uneconomical. On the other hand, each

cross-sectional part of the shell type leaf can function well structurally and its shape is hydraulically desirable.

For these reasons, the ratio between height and width of the gate leaf is an index to select the structural type. Shell type is adopted when the ratio is less than 1/5 to 1/6, otherwise the girder type is selected.

The ratio of the leaves of large scale regulators is as follows.

Upper leaf: H/L=3.30m/6.0m=1/1.82

Lower leaf: H/L = 3.40m/6.0m = 1/1.76

Therefore the plate girder type is suitable for both upper and lower leaf structures. For the same reason, all the small scale regulators are plate girder type.

The height of the upper and lower leaves of double leaf gate was designed as shown in Figure 15-1.2. In order to avoid water from overflowing onto the lower leaf top, the upper leaf should be placed on the downstream side.

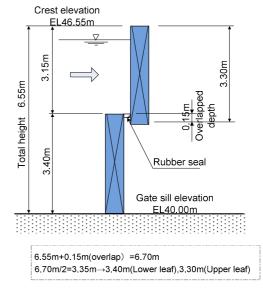


Figure 15-1.2 Height of double leaf gate

15-1-3 Design load

In designing a gate, the following loads and their combinations shall be taken into account: weight of the gate, hydrostatic pressure, sediment pressure, wave pressure, buoyancy, hydrodynamic pressure caused by earthquake, effects of temperature changes, and so on.

(1) Hydrostatic pressure

Hydrostatic pressure of the reservoir water acts on the contact face of a hydraulic gate at a square. Hydrostatic pressure is determined from the following formula.

P= Woho

Where, P: Hydrostatic pressure at a given point on the contact face (kN/m^2)

Wo: Weight of water per unit volume (kN/m^3)

ho: Head from water level just upstream of a gate plus wave height (m)

(2) Sediment pressure

The sediment pressure for the vertical force should be taken as the weight of the sedimentary silt in the water, and the horizontal force should be determined by the following formula.

Pe=CeW₁d

Where Pe: Horizontal force of sediment pressure at a given point on the contact face (kN/m^2)

Ce: Sediment pressure factor (Ce=0.3-0.6)

 W_1 : Unit weight of sedimentary silt in water (kN/m³)

d: Depth from deposit level of sediment to given point on contact face (m)

 $W_1 = W_{-} (1-v) W_{o}$

Where, W_1 : Apparent unit weight of sedimentary silt (kN/m³)

v: Void ratio of sedimentary silt (0.30- 0.45)

 W_o : Unit weight of water (kN/m³)

(3) Wave height by wind

Where the upstream face of a weir is almost vertical, the wave height should be determined by the S.M.B (Sverdrup-Munk- Bretschneider) method.

 $hw = 0.00086 V^{1.1} F^{0.45}$

Where, hw: Total wave height (one third maximum wave) (m)

F: Distance to opposite bank (m)

V: Wind velocity (average of 10 minutes) (m/s)

(4) Wave height by earthquake

Wave height by earthquake is calculated by the following formula.

$$he = \frac{k \cdot \tau}{2\pi} \sqrt{\mathbf{g} \cdot \mathbf{H}}$$

Where, he: Wave height (m)

k: Design seismic coefficient

 τ : Frequency of the earth quake (s)

g: Acceleration of gravity (=9.8m/sec2)

H: Design depth of water in the river (m)

(5) Hydrodynamic pressure caused by earthquake

Hydrodynamic pressure caused by earthquake is obtained by Westergard's formula.

 $(I lnit: N/mm^2)$

$$p_d = \frac{7}{8} Wok \sqrt{Hh}$$

Where, Pd : Dynamic water pressure (kN/m^2)

Wo: Unit weight of water (kN/m³)

k: Design seismic coefficient

H: Design depth of water in the river (m)

h: Calculation depth (m)

15-1-4 Allowable stress

Allowable stresses of JIS materials for leaf, guide frame, and fixed part are given in tables below. However, allowable stresses for stoplogs for maintenance, and the setting frames are corrected by multiplying the following values by 1.5. Allowable stresses of standardized materials other than JIS, such as BS, DIN, or ASTM, are examined respectively.

	1				(Unit: N	v/mm)
Steel	SS400,SM400,SMA	400	SM490		SMA490	
Stress	Thickness≤40mm	>40	Thickness < 40mm	>40	Thickness < 40mm	>40
1.Axial tensile stress (for net sectional area)	120		160		180	
 2.Axial compressive stress (for gross sectional area) Compressive member buckling length of member (mm) r: radius of gyration of area for the cross section of members (mm) 	$\frac{l}{r} \le 20: 120$ $20 < \frac{l}{r} \le 93:$ $120 - 0.75(\frac{l}{r} - 20)$ $93 < \frac{l}{r}: \frac{1,000,000}{6,700 + (\frac{l}{r})^2}$ 120		$\frac{l}{r} \le 15: 160$ $15 < \frac{l}{r} \le 80:$ $160 - 1.12(\frac{l}{r} - 15)$ $80 < \frac{l}{r}: \frac{1,000,000}{5,000 + (\frac{l}{r})^2}$ 160		$\frac{l}{r} \le 14: 180$ $14 < \frac{l}{r} \le 76:$ $180 - 1.33(\frac{l}{r} - 14)$ $76 < \frac{l}{r}: \frac{1,000,000}{4,500 + (\frac{l}{r})^2}$ 180	
Compressive splice plate						
 3. Bending stress girder's tensile side (for net sectional area) girder's compressive side (for gross sectional area) Aw: gross sectional area of web plate (mm²) Ac: gross sectional area of compressive flange (mm²) <i>l</i>: distance between fixed points of compressive flange (mm) b: width of compressive flange (mm) 	120 $\frac{l}{b} \le \frac{9}{K}: 120$ $\frac{9}{K} < \frac{l}{b} \le 30:$ $120 - 1.1(K\frac{l}{b} - 9)$ But, say $\frac{Aw}{Ac} < 2, K = 2 \text{ with}$ 120	0.92 times the left stress	160 $\frac{l}{b} \le \frac{8}{K}: 160$ $\frac{8}{K} < \frac{l}{b} \le 30:$ $160 - 1.6(K\frac{l}{b} - 8)$ But, say $\frac{Aw}{Ac} < 2, K = 2 \text{ with}$ 160	0.94 times the left stress	180 $\frac{l}{b} \leq \frac{7}{K}: 180$ $\frac{7}{K} < \frac{l}{b} \leq 27:$ $180 - 1.9(K\frac{l}{b} - 7)$ But, say $\frac{Aw}{Ac} < 2, K = 2 \text{ with}$ 180	0.95 times the left stress
$K = \sqrt{3 + \frac{Aw}{2Ac}}$ When directly fixed to the skin plate etc.						
4. Shearing stress	70	1	90	1	105	1
5. Bearing stress	180		240	1	270	1

Table 15-1.2 Allowable stress of structural steel

						(Unit: N/mm ²)
Type Type of steel		Axial tensile stress	Axial compressive stress	Bending stress	Shearing stress	Bearing stress
	SC450	110	110	110	65	165
Cast steel	SC480	120	120	120	70	180
	SCW410	120	120	120	70	180
	S20C	120	120	120	70	180
Carbon steel for machine	S25C	130	130	130	75	195
structural use	S35C	150	150	150	85	225
	S45C	170	170	170	95	255

Table 15-1.3 Allowable stress of cast steel and carbon steel

Table 15-1.4 Allowable stress of joint steel

				(Unit: N/mm²)	
Type of steel	SS40	0,SM400	SM490		
Туре	Thickness≤40mm	>40	Thickness≤40mm	>40	
Bolts	SS4	00,S20C	\$35C		
1. Shearing stress					
Finishing bolts	75	Same as at left	100	Same as at left	
Anchor bolts	50		65		
2. Bearing stress Finishing bolts	180	Multiply stress by 0.92 as mentioned on left	230	Multiply stress by 0.94 as mentioned on left	

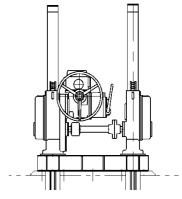
15-2 Design of hoisting equipment

15-2-1 Operating load

Operating load is calculated for a safe combination of the following factors.

1) Dead weight of movable parts of a leaf, 2) Friction at roller, 3) Friction of sealing rubber, 4) Friction by piled sand, 5) Floating load, 6) Vertical hydraulic forces, 7) Other.

The weight of hoisting shaft should be added to the dead weight of movable parts of a leaf as it is a load on the hoisting device. Once it is clear whether the gate can close by self-weight or not, the dead weight of leaf itself shall be considered.


15-2-2 Rack gear type hoist

Rack gear type hoist consists of rack shaft, stand (base frame), hoist, local control board and coupling of the shaft. Hoist is composed of power part, speed reducer, transmission, drive system, manual operation

device, opening meter and protection devices, and it is standardized as a unit in Japan.

Strength design tests on the rack shaft are conducted for tensile stress, compressive stress, and buckling stress because tensile force acts on the shaft when opening, and compressive force works on it when closing.

In addition to the rack gear type, the spindle type whose leaf and hoist are connected by screw spindle is also popular for small scale gate facilities. When the small gate facilities are procured from the local market or countries other than Japan, the spindle type is applicable as long as equipment specifications are satisfied.

.....

2.

Figure 15-2.1 Rack gear type hoist

15-2-3 Hydraulic hoisting equipment

Hydraulic hoisting equipment consists of hydraulic cylinder, hydraulic unit, local control board, opening meter, protection device, and other maintenance instruments. The hydraulic unit is integrated with the hydraulic pump, electric motor, control valve, and oil tank. It generates hydraulic pressure to drive the hydraulic cylinders properly and control them.

(1) Number of hydraulic units

More than one gate facility can share the same hydraulic unit. It is necessary for gate facilities, which function as flood control or disaster prevention, to have one hydraulic unit per gate in case a single hydraulic unit causes more than one gate to malfunction at the same time. The Dirout Group of Regulators is movable weirs along irrigation canals. Their importance as a disaster prevention facility is not high, since water discharge is controlled by the Ibrahimia head regulators. The upstream spillway facility can also work in case of an emergency. As a result of discussions, it was decided to install one hydraulic unit for four gates of one regulator. In addition, to secure reliable gate operation, a duplexed hydraulic circuit including standby hydraulic pumps, shall be built inside the hydraulic unit, as well as a power generator situated beside a commercial power source.

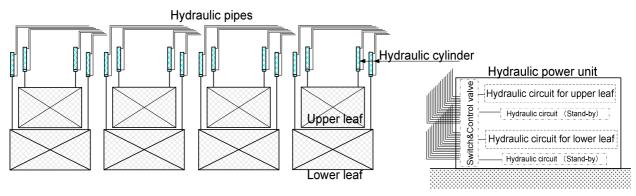


Figure 15-2.2 Layout of hydraulic unit

(2) Layout of hydraulic equipment

Three alternatives are examined for the layout of hydraulic equipment.

- Plan A: Hydraulic unit is placed in the remote control room where monitoring and operations are carried out.
- Plan B: Two hydraulic units are placed adjacent to the regulators making local and remote control possible.
- Plan C: Only the hydraulic power source is placed in the remote control room, and a switch and control valve are installed at each regulator.

An important between plan A and plan B is the number of hydraulic pipes running from the hydraulic unit to each gate facility. In plan C, hydraulic pipes for four gates are shared and diverted to each hydraulic cylinder at the regulator.

Discussions with the Egyptian government resulted in an agreement to adopt plan B, where the hydraulic unit is placed in the local control room constructed adjacent to the regulator to ensure local control. This system is the same as that of the existing Ibrahimia head regulator.

Table 15-2.1 Comparison between hydraulic hoisting systems

		Plan A	Plan B	Plan C
	Diagram	Plan A Power recovery 6 Impaion Power recover	Poer rocurs envir Engineering	Engineering Engin
	Control	1) Power receiving and distribution system	1) Power receiving and distribution system	1) Power receiving and distribution system
nts	house	2) Hydraulic unit(hydraulic pump, motor, oil tank, control valve)3) Remote control panel	2) Remote control panel	2) Hydraulic unit (hydraulic pump, motor, oil tank, control valve)
Components	Control house to regulators	Hydraulic pipes (32 pipes×2 lines)	Power cables & control cables	 Hydraulic pipes (2 pipes×2 lines) Power cables & control cables
Com	Regulators	 1) Hydraulic pipes 2) Hydraulic cylinders 	 Hydraulic unit (hydraulic pump, motor, oil tank, control valve) Local control panel Hydraulic pipes Hydraulic cylinders 	 1) Control valve 2) Local control panel 3) Hydraulic pipes 4) Hydraulic cylinders
Advantages		 Since most of the equipment is located in the remote control house, operation and maintenance is easy and security levels are superior. Since the hydraulic pipes are separately connected to a hydraulic power source and an actuator. The risk that all the gates fail to operate at the same time is low. 	 1) Small space needed in the remote control house for equipment. 2) Both remote and local control are possible. 3) Since the hydraulic pipes are separately connected to a hydraulic power source and an actuator. The risk that all the gates fail to operate at the same time is low. 	 Because the number of pipes laid along the road is small, construction is easier than in "Plan A." Smaller space than "Plan B" needed for equipment in the remote control house.
Disadvantages		 Because the number of pipes laid along the road is large, construction is not easy. Largest space needed for equipment in the remote control house. Local control is impossible. 	1) Since the hydraulic unit is located outdoors, measures against weather and security are required.	1) If troubles arise on the main pipes, there is a possibility that all gates cannot be operated.

15-3 Design of control equipment

15-3-1 Control system

The operation of the gate shall be equipped with local control devices capable of manual operation at the close distance of the hoisting equipment in all facilities, and remote control equipment shall be provided to carry out centralized management of multiple facilities.

The conceptual diagram of the operation control facility is shown in the figure below.

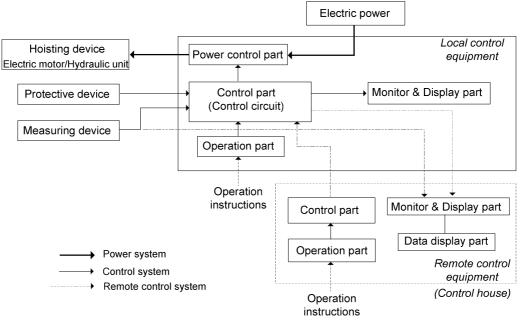


Figure 15-3.1 Conceptual diagram of control and operation

The operational mechanism of the gate is based on the local control, among which the manual operation is a mechanism that can give priority over the automatic control system. Since it is difficult to monitor the gate and hoisting equipment directly by visual observation from a distance, monitoring system to observe the information such as gate opening, status of gate performance and water level should be provided without depending on CCTV (Closed-Circuit Television) that Egyptian government does not want. In addition, the variable-value control method shall be adopted to maintain the set discharge and follow the flow rate or the amount of its change.

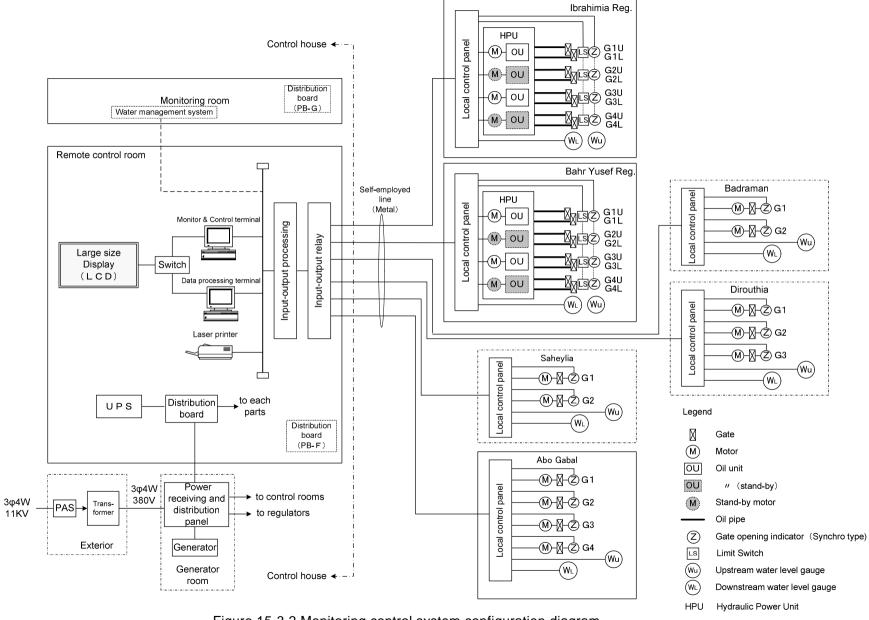


Figure 15-3.2 Monitoring control system configuration diagram

15-3-2 Local control equipment

The local control panel consists of an operation part for operating the gate, a display part for monitoring the operation state, a control part for controlling the operation, and a power supply part for receiving the power supply. The structure of the panel should make it possible to operate the gate precisely and easily, and malfunction does not occur. In order to prioritize the local control rather than the remote control, a switch of local and remote control is provided, and an emergency stop function that makes the gate surely stop by tripping the MCCB (Molded Case Circuit Breaker) for electric motor is provided.

The minimum required status indication items, fault indication and buzzer alarm are as shown in the table below. Also, data transfer between the remote place shall be as follows.

- 1) Control signal: Control signal such as open / close command from a distance
- 2) Emergency stop signal: Emergency stop signal from a distance
- 3) Condition monitoring signal: Operating state monitoring information of the gate from the local side
- 4) Measurement information: Measurement information such as degree of opening, current and oil pressure from the local side
- 5) Operating signal: Gate operating signal from local side

Indication	Status	Electric	Hydraulic	Remarks				
maleation	Olaldo	actuator	actuator	Romanio				
POWER SOURCE	Power source on	0	0					
LOCAL	Local control on	0	0					
REMOTE	Remote control on	0	0					
↑	Gate is working to open	0	\bigcirc					
\downarrow	Gate is working to close	0	\bigcirc					
UPPER	Gate is stopped at the upper	0	\bigcirc					
POSITION	position		\bigcirc					
LOWER POSITION	Gate is stopped at the lower	\bigcirc	0					
LOWER POSITION	position	0	0					
PUMP ON	Hydraulic pump is working		0					
OIL PRESSURE	oil pressure established		0					
ESTABLISHED	under pumping							

Table 15-3.1 Major status indication items

Table 15-3.2 Major fault indication items

Indication	Detection method	Electric actuator	Hydraulic actuator	Measure to deal with
EARTH LEAKAGE	Leakage relay	0	0	Cause investigation and recovery
3E MOTION	Three element relay(open- phase, phase-reversal and overload)	0	0	Cause investigation and reset
MCCB TRIP	Molded Case Circuit Breaker trips	0	0	Cause investigation
EMERGENCY UPPER POSITION	Limit switch	0		Investigation
OPENING OVER TORQUE	Limit switch	0		Closing the gate and investigation
CLOSING OVER TORQUE	Limit switch	0		Opening the gate and investigation
OVER OIL PRESSURE	Pressure switch		0	Restart after investigation

Detailed Design Study on the Project for Construction of the New Dirout Group of Regulators

OIL LEVEL DRAWDOWN	Float switch	0	fix the oil leakage, oil supply
OVER OIL TEMP	Temperature switch	0	Investigation, hydraulic oil cooling

15-3-3 Remote control equipment

In the remote control equipment, it is responsible for displaying the status of the gate, displaying abnormality and alarm, starting and stopping the operation, confirming and resetting the alarm. Switching between the local control and remote control is selected by the switch provided on the local control panel, but when switching to the local operation on the running of the remote operation, the opening and closing operation is immediately stopped. Even when the remote control system fails, the structure of the gate can be operated reliably with the local control panel.

Remote control equipment placed in the control room is composed of followings.

Name	Main function			
Data processing equipment	Data editing, calculation, filing, display / recording, alarm and control processing of each facility are performed.			
Monitor & control equipment	From the facility control screen of the personal computer, a remote operation of the gates is performed by the mouse operation.			
Printer In addition to creating various forms for daily reports, monthly reports a operation records and other forms, hard copy printing on the monitor screen carried out.				
Input-output(I/O) processing equipment	Transmission of measuring, monitoring and control signals between the I/O relay equipment and local control panel as well as measuring devices, smoothing of input signal, scaled conversion, data checking, processing to the gate are conducted			
Input-output(I/O) relay equipment	Transmission of measuring, monitoring and control signals between the local equipment such as control panel and measuring devices and the I/O processing equipment is carried out. Inductive surge absorption, signal insulation (analogue) to protect equipment from inductive lightning from outside line are performed.			
UPS (Uninterruptible Power Supply)	It absorbs various disturbances of the commercial power supply (instantaneous power failure, voltage fluctuation, frequency fluctuation, waveform distortion, high frequency noise, etc.), and supplies uninterrupted and stable power (constant voltage, constant frequency).			
Lightning protectionIt protects various electronic equipment constituting the system fr lightning (foreign surge) entering from the external lead-in power line				

Table 15-3.3	Components	s of remote	control equ	ipment

The remote operation equipment is placed in the regulators management room inside the control house. Considering the interval required for equipment maintenance and inspection, the minimum size shown in the figure below is necessary.

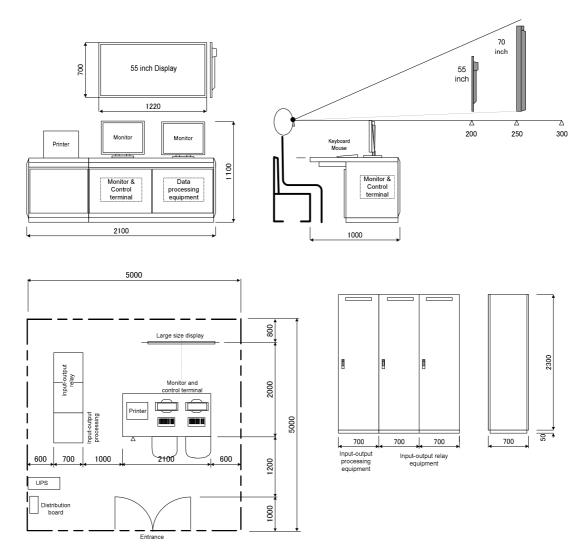


Figure 15-3.3 Minimum layout plan of regulator control room

15-3-4 Information processing equipment

The data processing equipment in the control room mounts and executes all software of the processing function. The control terminal device is equipped with software relating to operation and monitoring of the regulators, and when the data processing device is stopped, the operation terminal backs up basic functions such as data input, calculation, state monitoring, file processing and so on.

Main processing functions by software are as follows.

Item	Function						
System management	1.Program management (Activation/Stop/Transmission of operating						
	information)						
	2.Memory area management						
	3.RAS (Reliability Availability Serviceability)						
	4. Time and schedule management						
	5.Sequence management						
	6.Event (Alarm/Warning) processing						
	7.Duplexed management						
Calculation	1.Input data						
	(1)Water level (Upstream and downstream)						
	(2)Gate opening						
	(3)Gate status						
	2.Calculation						
	(1)Scale conversion						
	(2)Calculation of discharge (H-Z-Q table or formula)						
	(3)Trial calculation of gate opening (H-Z-Q table or formula)						
	3.Tabulation						
	(1)Daily summary (Water level, discharge)						
	(2)Monthly summary (Water level, discharge)						
Status monitoring and	1.Judgement of upper limit and lower limit (abnormal, alarm, warning,						
alarm processing	failure restoration)						
	2. Abnormal condition of devices (detection, alarm, failure restoration)						
Display processing	1.Menu						
	2. Table (value) indication : Latest data, history data, daily report • monthly						
	record, operation record						
	3. Trend graph indication : relation between water level and discharge						
	4.Schematic diagram display : Status of facilities						
	5.Configulation : Constant value, data modification, time, etc.						
	6.Remote control display						
Record	1.Daily report • monthly record						
100010	2.Operation record						
Filing	1.Master file						
· ······B	2.External record file						
	3.Data supplement						
Operation processing	1.Control output (On-Off, setup value, output form)						
	incontrol output (on only betup funder, output form)						
(Remote control of							

Table15-3.4 List of information processing function

15-4 Design of electric facilities

15-4-1 Power receiving equipment

In addition to securing the capacity for the power load of the gate facility, it is necessary for the power receiving equipment to secure a capacity capable of performing sufficient functions for the entire load equipment including the management load in the control house.

The construction site is in an urban area and it is possible to draw commercial power. The receiving voltage is 11 kV from the load capacity, the power voltage is three-phase four-wire type 380V class, the management voltage is single phase 220V or 100V class. The capacity of the transformer is 100kVA from the total load.

Load	Capacity	Number	Voltage	Efficiency	Phase factor	Load capacity	Remarks
	(kw)		(V)			(kVA)	
1.Three-phase							
Bahr Yusef	11.00	2	380	0.85	0.9	28.76	Oil pump
Ibrahimia	11.00	2	380	0.85	0.9	28.76	Oil pump
Badraman	0.65	2	380	0.85	0.9	1.70	Electric actuator
Diroutiah	0.65	3	380	0.85	0.9	2.55	Electric actuator
Abo Gabal	1.00	4	380	0.85	0.9	5.23	Electric actuator
Sahelyia	1.40	2	380	0.85	0.9	3.66	Electric actuator
sub-total						70.65	
2.Single-phase							
Lighting	0.40	6	210	1.00	0.9	2.67	Bahr Yusef& Ibrahimia
Local control panel							
Bahr Yusef	1.30	1	100	1.00	0.9	1.44	
Ibrahimia	1.30	1	100	1.00	0.9	1.44	
Badraman	0.80	1	100	1.00	0.9	0.89	
Diroutiah	1.05	1	100	1.00	0.9	1.17	
Abo Gabal	1.30	1	100	1.00	0.9	1.44	
Sahelyia	0.80	1	100	1.00	0.9	0.89	
Hydraulic unit	2.00	2	210	0.85	0.9	5.23	
[Control house]							
Control devices	5.00	1	100	1.00	0.9	5.56	
Air conditioners	2.00	1	210	0.85	0.9	2.61	
Indoor lighting	2.00	1	210	1.00	0.9	2.22	
sub-total						25.57	
Total						96.22	

Table 15-4.1 Calculation of load capacity

Load capacity(kVA) = Rated capacity(kW) / Efficiency / Phase factor

Power receiving equipment consists of followings.

Table15-4.2 Com	ponents of	power	receiving	equipment

Equipment	Function
Incoming transformer	It accommodates transformers and switches that receive 3-phase 4-wire 11 kV
panel	and step down to 3-phase 4-wire 380 V.
Power receiving and	It receives 3-phase 4-wire 380 V, supplies 3-phase 3-wire 380 V and
distribution panel	single-phase 380 V / 220 V / 110 V power. Also, at the time of a power outage,
	it switches from commercial to emergency power generator and supplies
	uninterruptible power to the load.
Air load switch	A switch provided on the high voltage lead-in line, which is used as a
	switchgear between the electric power company and the consumer side. Install
	on the pillar and perform manual opening / closing operation. It also has a
	ground fault protection function.

15-4-2 Emergency generator

The emergency generator has a structure in which the engine and the generator are integrated, and when the commercial power supply is cut off, it secures the power supply of the power equipment necessary for maintaining the basic function of the gate equipment and the ancillary management equipment. From the viewpoint of noise prevention, cubicle type is recommended, and fuel tank mounting type is recommended for space saving. It can be said that the necessity of securing the power capacity during outage to operate the entire gate facilities, namely five regulators with fifteen gates simultaneously is small considering the current manual operation frequency and the impact on the beneficiary area when the gate operation becomes impossible. Therefore, it is sufficient to secure a power source that can operate one gate of either Bahr Yusef or Ibrahimia regulator with large discharge amount and one gate at a small scale regulator. In addition, in order to be able to manage the operation in the control house even at night, the following calculation was made on condition that the interior lighting functions.

(1) Generator output power

Generator output shall be selected based on the maximum calculated value among PG-1 to PG-3 shown below.

- i) Capacity for steady state load (PG1)
- ii) Capacity for maximum voltage drop on transient event (PG2)
- iii) Capacity for maximum short time tolerance rate on transient event (PG3)
- iv) Capacity including harmonic load or single phase load (PG4)
- i) Capacity necessary for full load steady operation PG1

 $PG1 = \Sigma Po/ (\eta * \Phi) \times \alpha \times Sf (kVA)$

 Σ Po : Sum of total load output (kW)

- η : Efficiency (0.85)
- Φ : Phase factor (0.8)
- α : Overall demand factor (0.9)
- Sf: Coefficient of unbalanced load (When using Scott connection transformer,

Sf=1.0)

$$S f = 1 + 0.6 \times \Delta P / \Sigma P o$$

ii) Capacity required by allowable voltage drop PG2

 $PG2 = Pm \times \beta \times C \times Xd \times (1 - \Delta E) / \Delta E (kVA)$

Pm : Motor output when startup capacity is maximum (kW)

 β : Startup kVA per 1 kw on maximum capacity

C : Coefficient by startup method

Xd : Generator constant (0.25)

 ΔE : Allowable voltage drop (0.25)

```
iii)Capacity necessary for starting maximum capacity motor at the end PG3
```

PG3= $(fv1/\gamma g) \times \{(\Sigma Po-Pm) \times (\alpha/\eta \Phi) + Pm \times \beta \times C\}$

fv1 : Reduction coefficient on loading

 γ g : Tolerance rate against moment over load of generator (1.5)

 Σ Po : Sum of steady load output (kW)

Pm: Motor output when startup capacity is maximum (kW)

 α : Overall demand factor (0.9)

 η : Efficiency (0.85)

 Φ : Phase factor (0.8)

- β : Startup kVA per 1 kw on maximum capacity
- C: Coefficient by startup method

iv)Capacity required by allowable reversed phase current PG4

 $\begin{array}{lll} PG4= & (1/KG1) \ \times \ \{ (0.432R)^2 + \ (1.23 \, \Delta \, P)^2 x (\, 1 - 3U + 3U^2) \, \}^{-1/2} & (kVA) \\ & KG1: Coefficient by allowable reversed phase current of generator (0.15) \\ & R: Sum of harmonic load for generator (kW) , when no harmonic load R=0 \\ & U: Single-phase unbalanced load coefficient \\ & U= & (A-C) \ / \ (A+B-C) \ , \ A \geqq B \geqq C \\ & Single phase output value to each phase \ A,B,C & (kW) \\ & \Delta \, P = A + B - 2C \end{array}$

(2) Engine output power

Engine out put of generator must be more than the maximum capacity calculated by the following formulas.

i) Capacity necessary for full load steady operation PE1

 $PE1 = PG \times \Phi g / \eta g \times 1.36 \quad (PS)$

PG : Generator output(kVA)

 η g : Generator efficiency

 Φ g : Generating phase factor (0.8)

ii) Capacity necessary for starting maximum capacity motor at the end PE2

 $PE2 = fv2 \{ 0.75/\eta 'g) \times (\Sigma Po-Pm) \times (\alpha / \eta L) + Pm \times \beta \times C \times \Phi s/ (\varepsilon \times \eta 'g) \} \times 1.36$

fv2: Reduction coefficient on loading

 η 'g : Over load efficiency of generator (95% of commercial efficiency)

 Σ Po : Sum of steady load output (kW)

Pm : Motor output when startup capacity is maximum (kW)

 α : Overall demand factor (0.9)

 η L : Overall efficiency of base load (0.85)

 $\epsilon\;$: Allowable loading of engine on no load

 β : Startup kVA per 1 kw on maximum capacity

C : Coefficient by startup method

 Φ g : Motor startup phase factor when startup capacity is maximum

(Squirrel : 0.4, Wire-wound : 0.8)

iii)Capacity for moment over load tolerance rate PE3

 $PE3=fv3/(\eta'g \times \gamma) \times \{(\Sigma Po-Pm) \times (\alpha/\eta L) + Pm \times \beta \times C \times \Phi s\} \times 1.36$

fv3: Reduction coefficient on loading

 η 'g : Over load efficiency of generator (95% of commercial efficiency)

 γ : Tolerance rate against moment over load of generator (1.1)

 Σ Po : Sum of steady load output (kW)

Pm : Motor output when startup capacity is maximum (kW)

 α : Overall demand factor (0.9)

- η L : Overall efficiency of base load (0.85)
- β : Startup kVA per 1 kw on maximum capacity

C : Coefficient by startup method

 Φ g : Motor startup phase factor when startup capacity is maximum (Squirrel : 0.4、Wire-wound : 0.8)

	Conocity		Eme	gency gene	erator	
Load	Capacity	Number	Actual	Counted	Target	Remarks
		Number	capacity	number	capacity	Remarks
	(kw)		(kw)		(kw)	
1.Three-phase						
Bahr Yusef	11.00	2	11.00	2	22.00	Oil pump
Ibrahimia	11.00	2	11.00	2	22.00	Oil pump
Badraman	0.65	2	0.65			Electric actuator
Diroutiah	0.65	3	0.65			Electric actuator
Abo Gabal	1.00	4	1.00			Electric actuator
Sahelyia	1.40	2	1.40	1	1.40	Electric actuator
sub-total					23.40	
2.Single-phase						
Lighting	0.40	6	0.40			Bahr & Ibrahimia
Local control panel						
Bahr Yusef	1.30	1	1.30	1	1.30	
Ibrahimia	1.30	1	1.30	1	1.30	
Badraman	0.80	1	0.80			
Diroutiah	1.05	1	1.05			
Abo Gabal	1.30	1	1.30			
Sahelyia	0.80	1	0.80	1	0.80	
Hydraulic unit	2.00	2	2.00	2	4.00	
[Control house]						
Control devices	5.00	1	5.00	1	5.00	
Air conditioners	2.00	1	2.00			
Indoor lighting	2.00	1	2.00	1	2.00	
sub-total					14.40	
Total					37.80	

Table 15-4.3 Ob	jective load out	put for emerge	gency generator

Table 15-4.4 Calculation of the capacity of emergency generator Required capacity of generator

Classification		Coefficient and applied values							Capacity (kVA)	
PG1	ΣΡο	η	Φ	α	Sf					
FGI	37.8	0.85	0.8	0.8	1.000					44.5
PG2	Pm	β	С	Xd	ΔE					
F G2	11.0	7.2	1.0	0.25	0.25					59.4
PG3	fv1	γg	ΣΡο	Pm	α	η	Φ	β	С	
F03	1.0	1.5	37.8	11.0	0.8	0.85	0.8	7.2	1.0	73.8
PG4	KG1	R	ΔP	U						
F G 4	0.15	0	0	0						0.0

Required engine output power

Classification		Coefficient and applied values						Capacity (PS)			
PE1	PG	ηg	Φg								
FEI	75	0.857	0.8								95.2
PE2	fv2	ήg	ΣΡο	Pm	α	ηL	β	С	Φs	3	
F E Z	1	1.5	37.8	11	0.8	0.857	7.2	1	0.4	1.00	45.7
PE3	fv3	ήg	ΣΡ0	Pm	α	ηL	β	С	Φs	γ	
FEO	1	1.5	37.8	11	0.8	0.857	7.2	1	0.4	1.10	46.7

From the results of calculation sheets above, emergency generator shall be selected to meet the

required specification of 75kVA for generator capacity and 95.2PS (=71.7kw) for diesel engine.

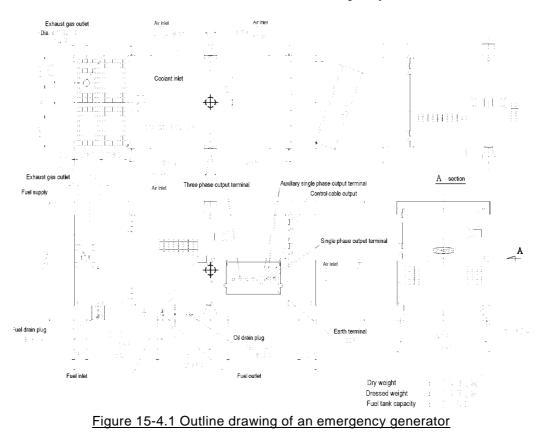
(3)Fuel tank capacity

Fuel consumption rate F is obtained by following equation.

 $F=b \times PS/r$

where , b: Fuel consumption rate $(=0.22 \text{kg/PS} \cdot \text{h})$

PS: Output of diesel engine (PS)


r: Specific gravity of fuel (Light oil=0.83)

Fuel	Engine	Specific	Fuel	Continuous	Required	
consumption	output	weight	consumption	run time	tank	Remarks
b	PS	Y	F	t	Т	I CEITIALKS
(kg/PS∙h)	(PS)		(L/hr)	(hour)	(litter)	
0.22	100	0.83	27	2	53	
0.22	100	0.83	27	6	159	
0.22	100	0.83	27	12	318	
0.22	100	0.83	27	24	636	

Table 15-4.5 Necessary	y fuel tank capacity

Generally, it is often planned to be able to operate for more than 2 hours in the case of a headwork facility, so a fuel tank of 53 liters or more is necessary according to the calculation results in the above table.

For reference, an example of a model of an emergency generator that satisfies the above conditions is shown below. This model has a built-in fuel tank and its capacity is 225 liters.

15-4-3 Specification of electric facilities

Minimum requirement of electric facilities are as follows.

I. Control equipment in the control house

- 1. Data processing equipment (Personal computer)
- 1) Personal computer body

a)Memory	2GB
b)HDD	500GBx2 (RAID1)
c)Optical drive	DVD drive or equivalent
d)I/O interface	RS-232C、USB、LAN port
e)RAS function	Included
2)LCD monitor	24 inch
3) Keyboard, mouse	Included
4) Operation system	Real-time OS(UNIX or Windows)
5) Power source	AC100V±10V
6) Structure	Tower type or rack mount
7) Placement	Mounted on a desk. Main body is under the desk, display is on the desk.

2. Monitor and control terminal(Personal computer)

 Personal computer body a)Memory b)HDD c)Optical drive d)I/O interface e)RAS function LCD monitor Keyboard, mouse Operation system Power source Structure Placement 	2GB 500GB×2 (RAID1) DVD drive or equivalent RS-232C, USB, LAN port Included 24 inch Included Real-time OS(UNIX or Windows) AC100V±10V Tower type or rack mount Mounted on a desk. Main body is under the desk, display is on the desk.
3. LBP(Laser Beam Printer)	
1)Recording type	Electrographic recording or semiconductor laser and xerographic type
2)Print color	24 bit full color
3)Paper	A3、B4、A4、B5、A5
4)Interface 5)Paper feeding unit	LAN port 2 sets (A4(B5), A3(B4))
6)Power source	AC100V±10V
4. I/O processing equipment	
1)Component	
a) Processing part b)Input-output part	Contact input-output, Digital input-output
b)mput-bulput part	Analogue input-output, Serial input-output
c)Network part	
d)Power source part	
2) I/O interfacea) I/O relay equipment	Contact, digital, analogue
b)Data processing equipmer	

3) Power source 4) Structure	AC100V±10V Indoor self-standing			
 5. I/O relay equipment 1) Component a) Monitoring input part Contact input part b) Measurement input part Analogue input part Isolator c) Surge Protective Device 	Non-voltage contact DC4~20mA I/O insulation for measurement for contact			
d)Control output part Contact output part e)Power source part 2)Transmission to external dev	Non-voltage/Voltage contact(Open/Close、Start /Stop, etc.)			
a)Monitoring signal b)Analogue signal c)Control output signal	Non-voltage contact(DC110V50mA) DC4~20mA on-voltage/Voltage contact(DC110V50mA)			
3)Power source 4)Structure	AC100V±10V Indoor self-standing			
6. Switching hub (OA-LAN)1)Structure2)Transmission speed3)Reference format	Desktop type 10Mbps/100Mbps/1000Mbps IEEE802.3 10BASE-T IEEE802.3u 100BASE-TX			
4)Port number 5)Power source	IEEE802.3ab 1000BASE-T 10BASE-T/100BASE-TX/1000BASE-T 8 ports AC100V±10V			
7. UPS(Uninterruptible Power Supply)1) Rating Continuous duty				
 Cooling system Driving type 	Natural air cooling or forced cooling Commercial power synchronizing inverter power supply (Hitless switching system)			
 4) Rated output 5) AC input a) Phase b) Voltage c) Frequency 	3kVA Single phase 2 wire 100V±10V or 200V±20V 50∕60Hz±5%			
 6) AC output a) Phase b) Voltage c) Voltage accuracy d) Frequency e) Battery type f) Back-up type 	Single phase 2 wire 100V less than ±3% 50Hz Small seal type lead battery 10 minutes or more			
 8Lightning protective transfor 1) Rating 2) Input power source a) Phase b) Voltage 	rmer Continuous Single phase 2 wire 100V or 200V			

Detailed Design Study on the Project for Construction of the New Dirout Group of Regulators

 3) Output power source a) Phase b) Voltage 4) Frequency 5) Ratio of transformation 6) Capacity a) Single phase 2wire 7) Cooling system 8) Ratio of voltage fluctuation 9) Surge breakdown voltage 10) Surge extraction rate 	Single phase 2 wire 100V or 200V 50Hz 1:1 or 2:1 5kVA Dry-type self cooled less than 3% (3kVA and more) 10kV 1.2/50µS Balance: less than -40dB, Unbalance: less than -20dB			
9. Distribution panel of devices1) Structure2) MCCB	Indoor wall-hung type 3P50AF×2 2P30AF×10			
II. Power receiving and tran 1. Incoming transformer panel (1) Panel	nsforming equipment			
1)Type	Outdoor self-standing(front and backside door)			
(2)Devices inside of panel				
1)Transformer	Dry molded type			
a)Category	Dry molded type 100kVA			
b)Capacity c) Phase	3 phase			
d) Voltage	Primary 11kV			
d) vonage	Secondary 380V-210V			
e) Frequency	50Hz			
f) Type	Indoor panel housed			
g)Cooling	Dial thermometer (with alarm contact)			
2)Disconnecting switch (DS)				
a) Rated voltage	11kV			
b) Rated current	200A			
c) Rated short-time withsta	nd current 12.5kA			
d) Operational method	by Hook bar			
3)MCCB	4P225AF 1pcs			
 Power receiving and distribution panel Panel 				
1)Type	Indoor self-standing(front door)			
(2)Devices of panel face				
1) AC Voltage meter	1 pcs			
2) AC current meter	10 pcs			
3) Voltage switch	1 pcs			
4) Current switch	10 pcs			
5) Signal lamp	1 set			
6) Switch	2pcs (Auto-manual, Commercial -generator)			
7) Push button	5 pcs(Start, Stop, Reset, Emergency stop, failure restoration)			
8) Others (3) Devices inside of panel	1set			
(3)Devices inside of parter 1)MCCB	4P225AF 2 pcs			
1711000				

2) MCCB 3) MCCB 4) MCCB 5) MCCB 6) MCCB 7) MCCB 8) Single phase transformer Capacity	4P50AF 4P30AF 3P75AF 3P50AF 3P30AF 2P30AF 1KVA 380V/100V	1 pcs 1 pcs 2 pcs 6 pcs 2 pcs 9 pcs 1 pcs
9) MC 10) Earth leakage relay 11) CT 12) Others	4 pole or equivalent	1 pcs 9 pcs 9 pcs
 3. Emergency generator (1)Generator Phase Frequency Output Voltage Power factor (2)Diesel engine Type Rated speed Fuel Fuel tank (on-board) Fuel consumption (3)Others Sound (1m) 	3 phase 4 wire 50Hz 80kV 200-400/220-440V 0.8 (lagging) Direct injection with supero 1500rpm Light diesel oil 225L 9.6/13.5L/h (50% load/75 70dB(A)	-
 4. Generator panel (1)Structure (2)Components AC voltage meter AC current meter Frequency meter Control part Automatic voltage controller DC power source (including battery) MCCB Others 	Indoor self-standing 2 pcs 1 pcs 1 pcs 1 set 1 set 1 set 1 set 1 set 1 set	
 5. Air load switch 1) Operation method 2) Rated voltage 3) Rated frequency 4) Rated current 5) Direction 6) Rated short-time withstand of 7) VT 8) Material of case 9) Salinity resistance 	Manual 11kVA 50Hz 400A yes/no current On-board Steel yes	12.5kA

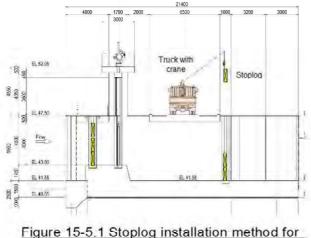
Detailed Design Study on the Project for Construction of the New Dirout Group of Regulators

Detailed Design Study on the Project for C	construction of the New Dirout Group	or Regulators	
10) Accessary	Ground relay, box		
11)Option	Over-current relay, main circuit cutoff		
	•		
III. Gate local equipment			
1. Local control panel for electr	ic motor gate		
(1)Facilities			
Gate type	Electric motor		
Number of gate(n)	Badraman	2 gates (0.65	kWx2) n=2
-	Diroutiah	•	kW×3) n=3
	Abo Gabal	4 gates (1.00	
	Sahelyia	2 gates (1.40	
(2)Panel			
1)Туре	Outdoor self-standing(from	t door)	
(3) Devices of panel face	.		
1) AC voltage meter	1 pcs		
2) AC current meter	n pcs		
3) Opening indicator	n pcs		
4) Indication lamp			
(common)	1set		
5) Indication lamp(each			
gate)	n set		
6) Push bottom	n×3 (stop)		
7) Push bottom	3 pcs (reset, emergency s	stop, failure re	storation)
(4) Devices inside of panel			
1) MCCB	3P50AF	1 pcs	
2) MCCB	3P30AF	n pcs	
3) MCCB	2P30AF	5 pcs	
,	1 pcs(1KVA 380V/200V)		
5) Single phase transformer	1 pcs(1KVA 380V/200V)		
6) Single phase transformer	1 pcs(0.5KVA 100V/100V)	7)	
7) MC	n set(Open, close)	/	
8) Earth leakage relay	2 pcs		
9) 3E relay	n pcs		
-	•		
10)CT 11)Condenser	n pcs		
	n pcs r	n noc	
12) Synchro current converte		n pcs	
13) Supplement relay	1 set		
14) Others	1 set		
2 Local control papel for hydro	ulic date		
 Local control panel for hydra Facilities 	une yale		
Gate type	Hydraulic cylinder type		
Number of gate	Bahr Yusef	4-I Inner leaf	(Hydraulic pump 11kW)
Number of gate			
	Ibrahimia		(Hydraulic pump 11kW)
	Indillilla		(Hydraulic pump 11kW) (Hydraulic pump 11kW)
(2)Panel			
1)Type	Indoor self-standing(front of	door)	
,			
(3) Devices of panel face	1 ncs		
1) AC voltage meter	1 pcs		
2) AC current meter	2 pcs		
3) Opening indicator	8 pcs		
4) Water level indicator	2 pcs		
5) Indication lamp(common)	1 set		

6)Indication lamp(each gate)	8 set			
7) Switch	3 pcs(auto-manual, upper/lower:active-reserve)			
8) Push bottom	4 pcs(upper/lower pump start-stop)			
9) Push bottom	8×3(gate:open -close-stop)			
10) Push bottom	3 pcs(reset, emergency stop, failure restoration)			
(4) Devices inside of panel				
1) MCCB	3P50AF	2 pcs		
2) MCCB	3P30AF	2 pcs		
3) MCCB	2P30AF	3 pcs		
 Single phase transformer 	1 pcs(1KVA 380V/200V)			
5) Single phase transformer	1 pcs(1KVA 380V/100V)			
6) Single phase transformer	1 pcs(0.5KVA 100V/100V)			
7) MC	4 pcs			
8) Earth leakage relay	3 pcs			
9)3E relay	4 pcs			
10) CT	4 pcs			
11) Condenser	4 pcs			
12)Synchro current converter	n pcs			
13) Supplement relay	1 set			
14) Others	1 set			
3. Distribution panel (Bahr Yusef and Ibrahimia Local control house)				

3. Distribution panel (Bahr Yusef and Ibrahimia Local control house)

1) Structure 2) MCCB


Indoor wall-hung type 2P50AFx1 2P30AF×5

15-5 Design of stoplogs

15-5-1 Installation method

Stoplog elements are stored in a warehouse near the control house, and transported from the warehouse to each regulator by truck. A truck crane of a certain capacity will place the stoplog elements into the gate grooves.

A semi-automatic lifting beam shall operate the stoplogs. The lifting beam must be capable of retraction after placing the stoplog elements. The lifting beam shall be equipped with guide rollers and lifting lugs to engage with the hoist.

small regulators

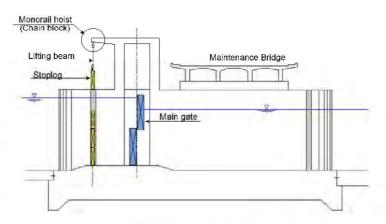
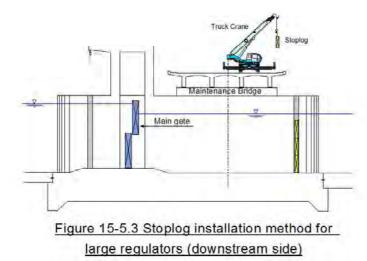



Figure 15-5.2 Stoplog installation method for large regulators (upstream side)

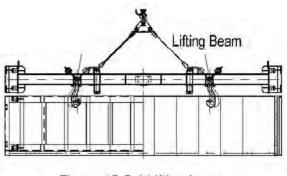
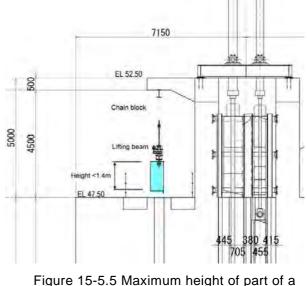


Figure 15-5.4 Lifting beam

15-5-2 Division number of stoplog

(1) Design principles

1) Two types of stoplog, for large regulators and for all small regulators are prepared.


2) Stoplogs are composed of small elements to make it possible to install them by truck crane.

3) Stoplog elements are identical and interchangeable and can be used both upstream and downstream.

4) The heights of elements are set using five 5cm units.

5) The height of any element for a large regulator should be less than 1.4m due to the limited space available to maneuver installation using the lifting beam.

Other basic conditions such as the necessary height of each regulator are shown on the next page.

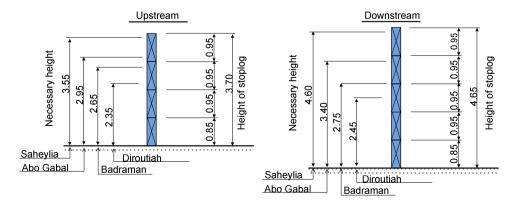
igure 15-5.5 Maximum height of part of a <u>stoplog for large regulators</u>

(2) Result of study

A case study was conducted based on the conditions mentioned above. Because the required height of stoplogs determined by design water level is different depending on the regulator, the necessary number of pieces which make up the stoplog is also different, especially in the case of the small scale regulators. As a result, some extra height necessarily arises, and the most economical manner by which this extra height is minimized is sought.

Table 15-5.2 and Table 15-5.3 show the results of comparison.

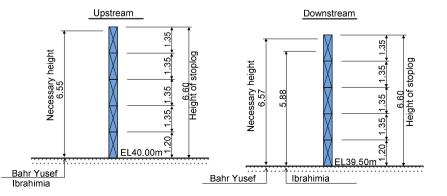
		Large re	egulators		Small re	egulators		Demorilie
Name		Bahr Yusef	Ibrahimia	Badraman	Diroutiah	AboGabal	Sahelyia	Remarks
Type of stoplog	S	Sliding	Sliding	Sliding	Sliding	Sliding	Sliding	
Number of stop	logs (sets) 1)	1	1			2		
Clear width of c		6.00m	6.00m	2.00m	2.00m	2.00m	2.00m	
Upstream	Design water level	EL46.30m	EL46.30m	EL46.30m	EL46.30m	EL46.30m	EL46.30m	NWL
(U/S)	Gate sill elevation	EL40.00m	EL40.00m	EL43.90m	EL44.20m	EL43.60m	EL43.00m	
	Necessary height	6.55m	6.55m	2.65m	2.35m	2.95m	3.55m	Freeboard=0.25m
Downstream	Design water level	EL45.82m	EL45.13m	EL45.90m	EL45.90m	EL45.90m	EL45.90m	
(D/S)	Gate sill elevation	EL39.50m	EL39.50m	EL43.40m	EL43.70m	EL42.75m	EL41.55m	
	Necessary height	6.57m	5.88m	2.75m	2.45m	3.40m	4.60m	Freeboard=0.25m
Lifting douico	Upstream	Manual chain block	Manual chain block	Truck crane	Truck crane	Truck crane	Truck crane	
Lifting device	Downstream	Truck crane						
Seal type		3-side rubber seal						
	Skin plate	Rolled steel						
	Main beam	Rolled steel						
Materials	Side roller	Stainless steel	Stainless steel	-	-	-	-	
	Gate guide frame	Stainless steel						
	Bolt,Nut &Washer	Stainless steel						
Deflection		1/600	1/600	1/600	1/600	1/600	1/600	
Allowable stress	lowable stress According to JIS (Japanese Industrial Srandards) or relevant standards							


Table 15-5.1 Design conditions of stoplogs

Note: 1) One set means a pair of a upstream stoplog and a downstream stoplog for a same vent.

Table 15-5.2 Comparison of the small scale stoplogs

				-							1
		Badı	aman	Diro	utiah	Abo	Gabal	Sah	elyia		
		Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Total	Аррох.
	Clear width				2.0	0m				Total	Weight
	Necessary height	2.65m	2.75m	2.35m	2.45m	2.95m	3.40m	3.55m	4.60m		
	Height of an element				1.5	5m					
Option 1	Number of elements	2	2	2	2	2	3	3	3	6	
Option-1	Total height	3.10m	3.10m	3.10m	3.10m	3.10m	4.65m	4.65m	4.65m		
	Extra height	0.45m	0.35m	0.75m	0.65m	0.15m	1.25m	1.10m	0.05m	4.75m	
	Height of an element				1.1	5m					
Option-2	Number of elements	3	3	3	3	3	3	4	4	8	
Option-2	Total height	3.45m	3.45m	3.45m	3.45m	3.45m	3.45m	4.60m	4.60m		
	Extra height	0.80m	0.70m	1.10m	1.00m	0.50m	0.05m	1.05m	0.00m	5.20m	
	Height of an element				0.9	5m					
Ontion 2	Number of elements	3	3	3	3	4	4	4	5	9	
Option-3	Total height	2.85m	2.85m	2.85m	2.85m	3.80m	3.80m	3.80m	4.75m		
	Extra height	0.20m	0.10m	0.50m	0.40m	0.85m	0.40m	0.25m	0.15m	2.85m	
	Height of an element				0.95m (0.85m)*					310(290)kg
Option 24	Number of elements	3	3	3	3	4	4	4	5	9	
Option-3A	Total height	2.75m	2.75m	2.75m	2.75m	3.70m	3.70m	3.70m	4.65m		
	Extra height	0.10m	0.00m	0.40m	0.30m	0.75m	0.30m	0.15m	0.05m	2.05m	


*The value in the parentheses shows the height of one irregular element. But this element is interchangeable with other elements.

		Bahr	Yusef	Ibra	himia		
		Upstream	Downstream	Upstream	Downstream	Total	Appox.
	Clear width		6.0	0m		TOtal	Weight
	Necessary height	6.55m	6.57m	6.55m	5.88m		
	Height of an element		1.3	5m			
Option-1	Number of elements	5	5	5	5	20	
Option-1	Total height	6.75m	6.75m	6.75m	6.75m		
	Extra height	0.20m	0.18m	0.20m	0.87m	1.45m	
	Height of an element	1.10m					
Option 2	Number of elements	6	6	6	6	24	
Option-2	Total height	6.60m	6.60m	6.60m	6.60m		
	Extra height	0.05m	0.03m	0.05m	0.72m	0.85m	
	Height of an element		0.9	5m			
Option 2	Number of elements	7	7	7	7	28	
Option-3	Total height	6.65m	6.65m	6.65m	6.65m		
	Extra height	0.10m	0.08m	0.10m	0.77m	1.05m	
	Height of an element		1.35m (1.20m)*	20m)*		2.2(2.1) ton
Option 1A	Number of elements	5	5	5	5	20	
Option-1A	Total height	6.60m	6.60m	6.60m	6.60m		
	Extra height	0.05m	0.03m	0.05m	0.72m	0.85m	

Table 15-5.3 Comparison of the large scale stoplogs

*The value in the parentheses shows the height of one irregular element. But this element is interchangeable with other elements.

16. Architectural Design

16-1 Design of control house

(1) Planned construction site

Construction site of the control house is near the current office and the mosque between the new Badraman regulator and the new Ibrahimia regulator. The area of about 2,500 m² on the north side and about 900 m² on the south side is secured across the newly constructed road, and the existing building is relocated and removed by the Egyptian government before the construction work begins.

Figure 16-1.1 Present situation of the construction site

(2) Layout plan

In addition to the control house, stoplogs storage house and parking lot are placed in the above construction site.

Since the building area of the control house is assumed to be approximately 200 m^2 , it can be placed on either the north side or the south side. However it is administratively advantageous to construct on the south side site that can be visually confirmed the gate facility and the water level condition of the new group of regulators, namely Bahr Yusef, Badraman and Ibrahimia regulator from the side. Meanwhile the

construction area of stoplogs storage house is assumed about only 150 m^2 , but it is difficult to place it in the south side area with the control house because a site for a crane or a large truck to enter for the purpose of carrying in and out of the stoplogs is necessary besides the building area.

Therefore, the stoplogs house is to be built in the north side site, and the remaining

Figure 16-1.2 Layout of control house

site is used as the passage and parking space of the vehicle.

(3) Room arrangement

The monitoring room for the integrated water management in addition to the control room of Dirout group of regulators shall be arranged in the control house, with no resident staff. The other rooms to be constructed are as shown below, the layout of them is decided from the characteristics and functions of each room. The control house shall be two stories taking account of the necessary room area for the site area and the points that it is used by two different organizations.

1) Electrical room

It is a room to install the power receiving and distribution equipment as well as emergency generator. Considering the convenience of lead-in of commercial power supply, refueling of the generator and maintenance of the equipment, this room should be placed on the ground floor south side.

2) Control room of regulators

This room is placed on the first floor so that the gate facilities of Bahr Yusef and Ibrahimia regulator and upstream water level can be visually monitored. In addition, a balcony is set around the room for the purpose of monitoring from the outdoors, too.

3) Water management monitoring room

Since the water management system etc. are arranged and monitored, it is located at the position adjacent to the ground floor office.

4) Office

The offices for the integrated water management and Dirout group of regulators management are located on the ground floor and first floor. It is a room where staff perform daily office work, so place it near the first floor entrance or the stairs.

5) Meeting room

It is used for the meeting or the explanations to the visitors. It is placed on the first floor from the relationship between the area required for the meeting and the layout of other rooms.

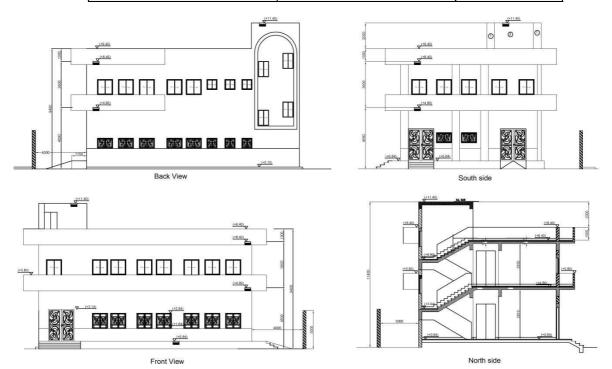
6) Toilet, washing room

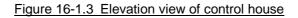
Considering the use of staff and visitors, they are separated by gender, and are set on the ground floor and the first floor respectively.

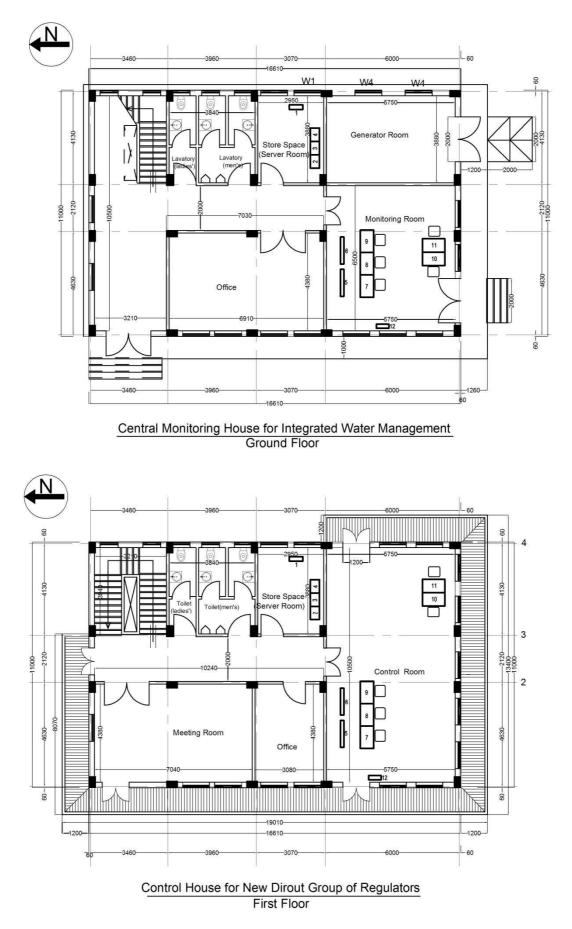
7) Warehouse

It is set up on each of the ground and first floor for storage of documents, furnishings, etc. and arrangement of servers.

In addition to the above, installation of locker rooms, hot-water supply rooms, reception and guard rooms, rest rooms, shower rooms, etc. were considered, however they were assumed unnecessary from the result of discussion..


(4) Area of rooms


The area of each room was decided to be as shown in the table below as a result of considering the


number of staff to be employed, the size and arrangement of the equipment to be installed, the width of the passage necessary for maintenance and inspection, and the layout of the whole floor.

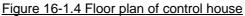

Rooms			Calculation		Rem	arks
Ground floor						
Monitoring room	5.75	×	6.50 =	37.38		
Power receiving/Generator room	5.75	x	3.90 =	22.43		
Office room	6.90	×	4.40 =	30.36		
Store room(Server room)	2.95	×	3.90 =	11.51		
Toilet/Washing room	3.85	×	3.90 =	15.02	Sub total	116.68
Corridor, Stairs, Hall	3.20	x	10.50 =	33.60		
11	7.00	×	2.00 =	14.00		
		ę	Sub total	164.3	m²	
First floor						
Control room	5.75	×	10.50 =	60.38		
Office room	3.10	×	4.40 =	13.64		
Meeting room	7.00	×	4.40 =	30.80		
Store room	2.95	×	3.90 =	11.51		
Toilet/Washing room	3.85	×	3.90 =	15.02	Sub total	131.34
Corridor, Stairs, Hall	10.25	×	2.00 =	20.50		
"	3.20	×	3.90 =	12.48		
			Sub total	164.3	m²	
			Total		0	
Traffic part				80.58		
Room area				248.02		

Table16-1.1	Approximate	area of	rooms

- (5) Disaster prevention equipment
- 1) Fire protection facility

Fire detector and alarm equipment shall be provided in each room, fire extinguish equipment shall be installed on each floor. Fire protection facilities are also provided in the local control rooms and the stop log house which are described in the following chapters.

2) Lightning protection system

Considering that the building height is about 10m and the frequency of occurrence of lightning strikes in the construction area, lightning protection facility shall not be provided.

16-2 Design of local control house

(1) Size of local control room

For the Bahr Yusef and the Ibrahimia regulator, a building that houses the hydraulic unit together with the local control panel is installed at a location adjacent to the regulator to protect the equipment from wind and rain, etc., and to ensure safe operation of the gate from within the operation room. The size of the operation room is decided in consideration of the arrangement of the hydraulic unit, local control panel and workability of them during operation, inspection, maintenance and replacement work.

The distance from the front of the hydraulic unit to the wall or other equipment is 100cm or more, and the three sides other than the front are separated by at least 60cm in consideration of tank cleaning, equipment inspection, etc. Even when inspection from the back side is unnecessary, a space of 60cm or more should be secured considering repainting work. Likewise, the local control panel secures a space of 100cm in front and 60cm or more around the panel except the front.

As a result of studying the arrangement based on the assumed size of hydraulic unit, the separately placed hydraulic tank, and the local control panel, it is decided that the interior dimension is $7.5m \times 6.5m$ as shown in the Figure 16-2.1.

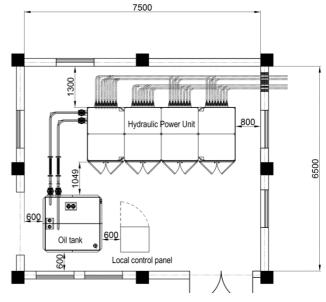
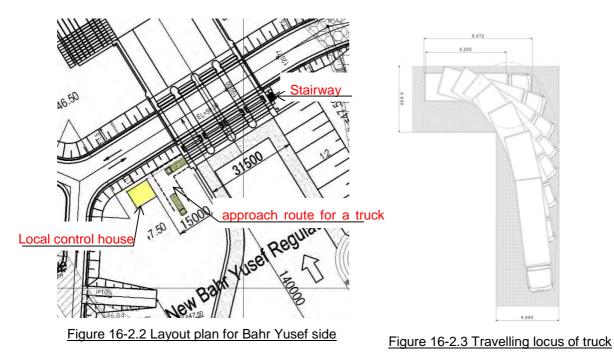
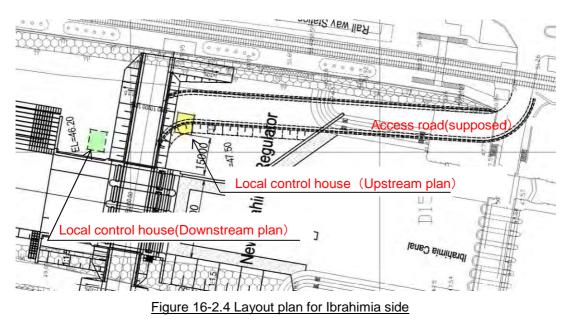



Figure 16-2.1 Layout of local control house

- (2) Determination of construction site
- 1) Bahr Yusef regulator

Construction site of the local control house shall be the upstream side of the regulator so that the length of hydraulic pipe from the operation room to the hydraulic cylinder can be made as short as possible and the operation can be carried out visually confirming the state of the gate.


On the upstream side of the Bahr Yusef regulator a wide flat site is created by the steel sheet pile wall on the left bank side, whereas the right bank side can not secure enough site to build the control house. Therefore, a local control house is constructed on the upstream left bank side. In addition, in the upstream part of the left bank, the truck with the maximum loading capacity of about 4 tons will enter to the vicinity of the side pier of the regulator for carrying in and out of the stoplogs. For this reason, the house shall be constructed at a position 15m away from the side of pier considering the traveling locus of the truck. In addition, the stairway leading to the top of pier where the gate hoists are installed is constructed on the right bank side opposite to the side on which the stoplogs are carried in and out.

2) Ibrahimia regulator

With the same concept as the Bahr Yusef regulator, it is desirable to construct the local control house on the right bank upstream side where large area is created and it is convenient for management. However, access roads route running parallel to national railway, which are planned to be designed by the Egyptian government in the future, is assumed as shown by the broken line in the figure below.

Therefore, the local control house may interrupt the planning road route if the house is constructed at the same position as the Bahr Yusef regulator in consideration of the track entry path for carrying in and out of stoplogs. In addition, since access routes from the road (road surface elevation is about 50.0m) to the left bank side site (EL 47.50m) are also required, installation of the local control house on the right bank also interferes the travelling of vehicles for maintenance work. As a result of discussion with the Egyptian government, the local control house of the Ibrahimia regulator was to be installed on the downstream side of the right bank.

16-3 Design of stoplogs storage house

(1) Storage equipment

The size of the stoplogs and the number of divisions were as follows as a result of the above examination. Although there is a method of keeping them outdoors without setting up a shed, it is desirable to keep the gates in a good condition for a long time and store it indoors so that it can be used without trouble at any time during main gate repair. In addition, workability is improved if a device is installed in the house that assists loading and unloading on the transportation vehicle.

	Small re	gulators	Large reg	Remarks	
	Type A	Туре В	Туре А	Туре В	
Clear span length	2.00m	2.00m	6.00m	6.00m	
Gate height	0.85m	0.95m	1.20m	1.35m	
Quantity	4	14	4	16	
Estimated weight					
per one gate leaf	291.4 kg	311.1 kg	2074.5 kg	2214.6 kg	
Lifting beam	252.	5 kg	911.7	′ kg	

Table 16-3.1 Size and quantity of stoplogs

(2) Method of carrying in and out

As a result of proposing the following two plans as a carrying in and out method of the stoplogs, plan B was adopted from the point of economy and difficulty in procurement of construction machine.

Item	Plan A	Plan B
Carrying method	Operate the manual traveling device installed on the truck to take out the carriage outdoors and load it onto a transport vehicle with a truck crane.	Lift a stoplog using a rail placed on the ceiling of the house and a manual chain block and load it on the transport vehicle in the warehouse.
Storage method	Fix some stoplogs on the storage stand for keeping them upright at regular intervals and store them with the carriage.	Secure and store some stoplogs on the storage stand for keeping them upright at regular intervals.
Building size	Since it can be a space only for the stoplogs storage, it is smaller than the plan-B and the height can be reduced. Approximate $15m \times 16m$	Space for vehicle entry is necessary, and the size and height are larger than the plan-A. Approximate $15m \times 20m$ (in case of single stack)
Economy	Including storage trucks and rail equipment for traveling is somewhat more expensive than plan-B.	Construction cost of the building itself is rather large, but it is inexpensive to include auxiliary equipment.
Other special instruction	Although the use of a truck crane of about 25t hanging is premised, its procurement is not easy in terms of cost.	Since the stoplogs are moved and loaded one by one, workability is inferior, but a large crane is unnecessary.

Table 16-3.2 Com	parison of	carrying	in/out method

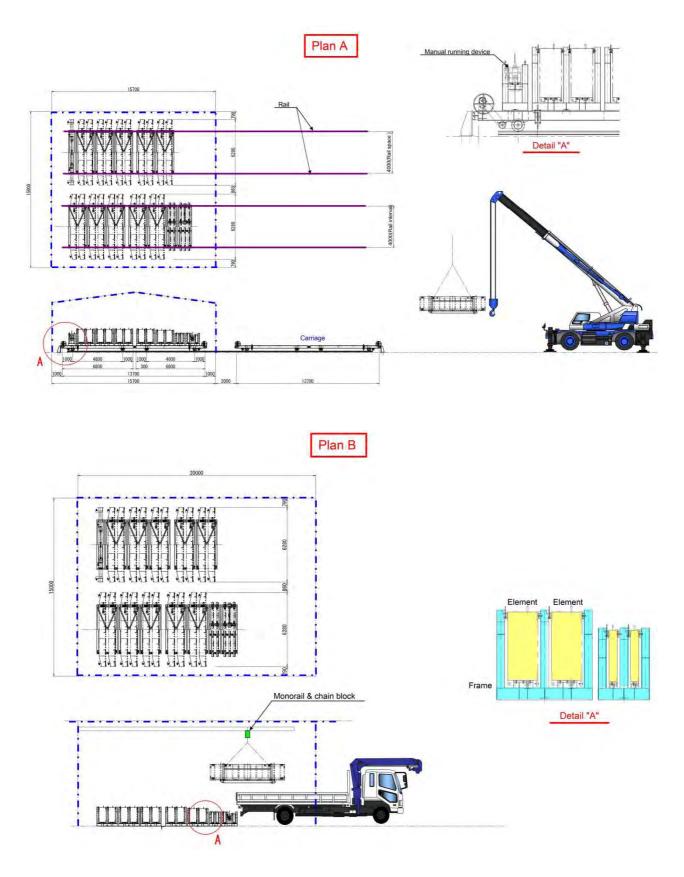
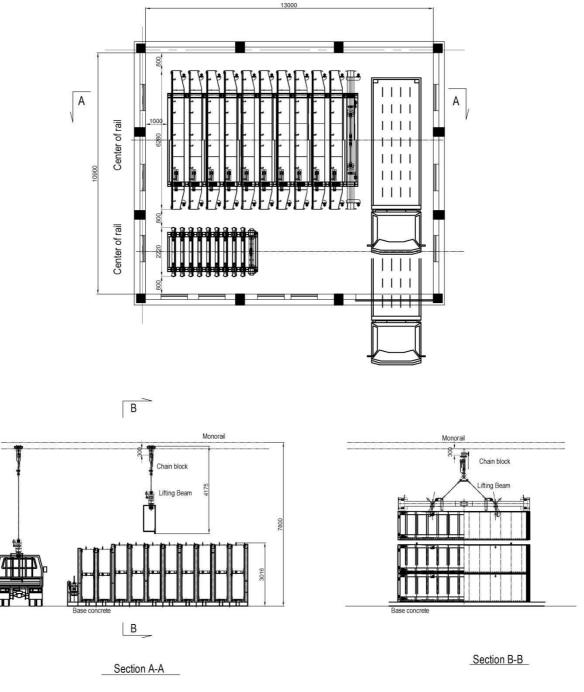
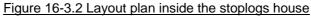




Figure 16-3.1 Study of carrying in and out method for stoplogs

(3) Study of construction area

As a result of examining the storage method to minimize the building area as much as possible, it was decided that the stoplogs for small scale regulators and large scale regulators are stacked in two layers as shown in the figure below. Considering the extra space for internal work, the size is $13.0m \times 10.9m = 141.7m^2$ in inner dimension. As mentioned above, it is built on the north side site on the opposite side across the road from the control house.

17. Design of Auxiliary Facilities

17-1 Instrumentation equipment

In order to manage flow discharge properly, water gauges are installed to NDGRs.

(1) Type selection

Although there are several types of water gauges from the aspect of the detection mechanism, pressure type is recommended in consideration of accuracy and easiness of installation.

(2) Places to be installed

In order to manage the water level and calculate the flow rate, it is necessary to grasp the upstream and downstream water level in addition to the gate opening degree. For this reason, the water level gauges are installed at a total of 13 places, two places in each of the regulators (waterways) . The location of installation shall be a place where there is no influence of water level due to intake water or inflow water from the upstream and of wind wave as well as a convenient place for management. The positons proposed are shown in the figure below. To avoid the influence against floating debris or muddy soil, protection pipes should be installed. Also, to check the water level record, staff gauge shall be provided.

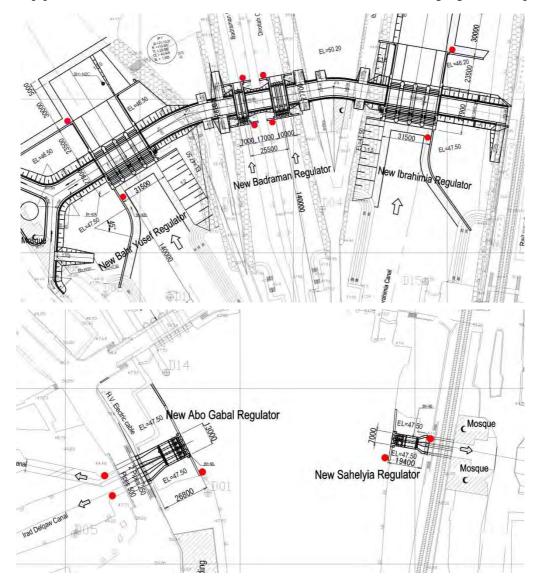
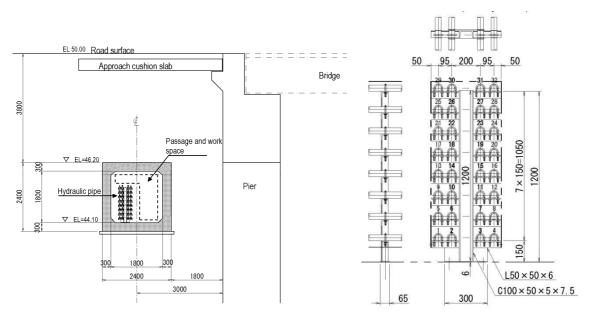


Figure17-1.1 Location of water gauges

		specifications of water gaug	<u>jcs</u>
Туре	Float type	Pressure type	Ultrasonic wave type
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(Crystal type)	
	Water level is measured by	The difference of water	Ultrasonic waves are shot
	the rotation angle of the	pressure measured by the	toward the water surface
Mechanism	pulley which is connected to	detector placed in the water	and the water level is
Meenanisin	the float fluctuated by the	is changed to electrical	shown through converting
	water level.	signal and converted to	the time measured until
		water level.	receiving the reflection.
Figure	Pulley Recorder Coverter Veight Float Float - - - - - - - - - - - - -	Pressure converter Recorder Signal output Protection pipe Detector	Transducer Thermometer
Measurement	±1cm (0-10m)	±0.01%xFull Scale	
range and	Shaft encoder type	(±1cm /0-100m)	±1cm (0-10m)
accuracy	Shalt encoder type	(±101170-100117	
Electric	Not necessary	Necessary	Necessary
source			
Temperature	-10 °C ∼40 °C	Detector: -10 °C~70 °C	Transducer: -20 °C~70 °C
condition		Converter: -10 °C~50 °C:	Converter: -10 °C~40 °C:
Output signal	Digital	Digital or Analog	Digital or Analog
S	1)Continuous measurement	1) Accuracy is high.	1)Continuous measurement
tic	is possible.	2)Continuous measurement	is possible.
Lis.	2)Inclined installation is	is possible.	2)Transducer should be
cte	impossible.	3) Protection pipe is	installed vertically toward
rac	3)Large observation well is	required but it is small.	the water surface.
Characteristics	necessary.	4)Inclined installation is	3) Initial cost is high.
Ö		possible.	

Table17-1.1 Types and specifications of water gauges


17-2 Road crossings

Since the local control house of Ibrahimia regulator was to be constructed on the downstream side of the regulator, the external hydraulic piping connecting the hydraulic cylinder and the hydraulic pressure generating device (hydraulic unit) installed inside the house must cross the road.

In principle, the hydraulic piping should be stored in the pit for maintenance and inspection and safety consideration except that it is underground piping in the case of traversing the riverbed. If an accident such as leakage of oil happens and obstructs the operation of the gate in the case of underground burial and direct burial in concrete, it is necessary to dig down the piping and restore it. This is undesirable considering the influence on traffic and a period required for recovery. Therefore, culvert structure shall be constructed under the road and the pipes shall be laid inside of it.

(1) Cross section of the culvert

The inner height of culvert shall be 1.8m or more for persons to enter for maintenance inspection. A total of 32 stainless steel pipes with a nominal diameter of 32A are to be placed inside the culvert, and they are fixed at certain intervals using supporting steel materials. Considering the area occupied by piping as shown below and the space for maintenance and inspection work, the culvert has a cross sectional shape of 1.8m in inner height and 1.8m in inner width and it is made of reinforced concrete.

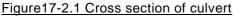
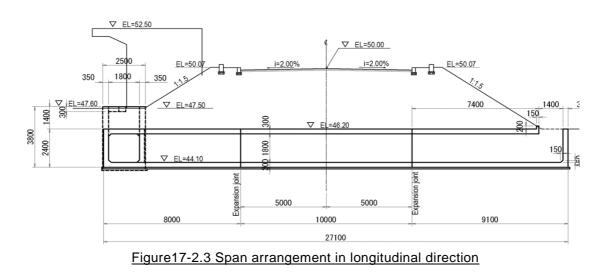
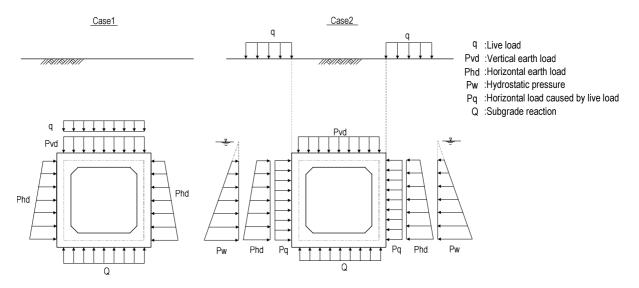



Figure17-2.2 Hydraulic piping inside the culvert

The top elevation of culvert shall be EL 46.20m in agreement with the ground altitude on the downstream side where the local control house is built. Although it is economically advantageous if the crossing position becomes closer to the regulator because the length of pipes also becomes shorter, the center of the culvert shall be 3.0m from the pier in consideration of necessary space for formwork and scaffolding during construction.


(2) Span arrangement

Since the culvert length in the longitudinal direction is close to 30m, it is divided by providing a joint for the purpose of preventing damage of the structure from the influence of drying shrinkage and unequal settlement after construction. The position of the joint shall be divided into three with a length of about 10m as shown in the figure avoiding the vicinity of the center of the road. An elastic material is used for the joint, and the dowel bar method is adopted to cope with the unequal settlement.

(3) Structural design

As load to be used for box culvert design, self weight, vertical earth pressure, horizontal earth pressure, live load, and water pressure are taken into consideration. Combinations of loads used for calculation of section force are calculated for the following two cases and the larger value of bending moment and shearing force at each point is considered.

Figure17-2.4 Combined load to the culvert

The result of structural calculation on assumed cross section is shown in following table.

				Side wall			Top slab		Bottom slab	
Check point			Center	Bottom end	Top end	Center	Side end	Center	Side end	Remarks
			Inside	Outside	Outside	Inside	Outside	Inside	Outside	
Bending moment	Μ	(kNm)	5.628	27.967	23.851	24.541	23.550	27.866	27.460	
Axial force	Ν	(kN)	88.083	94.882	81.101	42.081	42.081	52.419	52.419	
Shearing force	S	(kN)	-	41.231	35.989	-	58.887	-	67.746	
Height of member	h	(m)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Effective height	d	(m)	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Bar arrangement			D16@200	D16@200	D16@200	D16@200	D16@200	D16@200	D16@200	
Compressive stre	σc	(N/mm ²)	0.65	4.60	3.92	4.27	4.09	4.81	4.75	
(Allowable value)	σса	(N/mm ²)	9.5	9.5	9.5	9.5	9.5	9.5	9.5	
Tensile stress	σs	(N/mm ²)	1.87	91.89	78.26	103.12	98.01	110.40	112.43	
(Allowable value)	σsa	(N/mm ²)	200	200	200	200	200	200	200	
Shearing stress	τ	(N/mm ²)	-	0.21	0.18	-	0.29	-	0.34	
(Allowable value)	τa	(N/mm ²)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	
Judgement			OK	OK	OK	OK	OK	OK	OK	

18. Operation and Maintenance of Regulators

18-1 Water utilization management

It is desirable to conduct the water management of the group of regulator through developing an annual irrigation plan based on the farming plan of the beneficiary area such as the type of crops, acreage area and cropping time, closely cooperating with the administrators or related organizations.

Actual gate operation shall be controlled so that a predetermined flow rate is discharged according to the fluctuation of the water level in the upstream and downstream within the range of the design hydraulic condition of the regulators in the table below.

	-				
Name of regulator	Name of canal	Design max. discharge (m ³ /s)	Design U/S high water level(m)	Design U/S low water level(m)	Design D/S high water level(m)
Bahr Yusef		227.0	46.30	45.90	45.82
Ibrahimia		186.0	46.30	45.90	45.13
Badraman	Badraman	9.0	46.30	45.90	45.90
	Diroutiah	12.0	46.30	45.90	45.90
AboGabal	AboGabal	7.0	46.30	45.90	45.90
	Irad Delgaw	9.0	46.30	45.90	45.90
Sahelyia		5.0	46.30	45.90	45.90

Table 18-1.1 Operational condition of gates

As an example, when the upstream water level is constant, the gate opening degree (assumed to be operated at the same opening degree at all gates) necessary for discharging the design maximum flow rate due to the change of the downstream water level was calculated.

The gate operation in discharging should be careful not to cause significant water level fluctuation in the downstream channel as much as possible, and to prevent scouring of river bank or bed protection due to leaning of streamline to one side, opening order and opening degree by one operation should be noted.

Name	Discharge	Width	Qunatity	Gate sill elevation	U/S water level	U/S water height	D/S water level	D/S water height	Gate openings	Outflow form
	(m ³ /s)	(m)		(m)	(m)	(m)	(m)	(m)	(m)	<u></u>
							45.82	5.82	3.45	Submerged
- · · · · ·							45.60	5.60	2.99	Submerged
Bahr Yusef	227.0	6.00	4	40.00	46.30	6.30	45.40	5.40	2.71	Submerged
							45.20	5.20		<u> </u>
							45.00	5.00	2.30	Submerged
							45.13	5.13	2.09	Submerged
							44.80	4.80	1.86	Submerged
Ibrahimia	186.0	6.00	4	40.00	46.30	6.30	44.60	4.60	1.75	Submerged
							44.40	4.40	1.65	Submerged
							44.20	4.20	1.55	Submerged
							45.90	2.00	0.97	Submerged
Badraman	9.0	2.00	2	43.90	46.30	2.40	45.60	1.70	0.74	Submerged
							45.30	1.40	0.60	Free flow
Diroutiah	12.0	2.00	3	44.20	46.30	2.10	45.90	1.70	0.85	Submerged
Diroutian	12.0	2.00	3	44.20	40.30	2.10	45.30	1.10	0.57	Free flow
							45.90	2.30	0.84	Submerged
AboGabal	7.0	2.00	2	43.60	46.30	2.70	45.60	2.00	0.65	Submerged
							45.00	1.40	0.43	Free flow
							45.90	2.30	1.02	Submerged
Irad Delgaw	9.0	2.00	2	43.60	46.30	2.70	45.60	2.00	0.78	Submerged
_							45.00	1.40	0.56	Free flow
							45.90	2.90	0.66	Submerged
Sahelyia	5.0	2.00	2	43.00	46.30	3.30	45.60	2.60	0.51	Submerged
							45.00	2.00	0.37	Submerged

Table 18-1.2 Trial calculation result of gate openings at each downstream water level

18-2 Maintenance of civil engineering structures and buildings

In order to secure the function of the facility for the long term in the future, it is important to properly monitor and repair the condition. Recommended inspection content and frequency are shown below.

(1) Inspection

Periodic inspection is to monitor the presence of change in the state of the facility and the extent and transition of it if there is any change. It is desirable to conduct it once a month by visual observation or measurement using observation equipment. Inspection of apron which is always submerged is basically done during the annual winter closure period, the results of inspection should be recorded and kept to utilize it.

In general, changes often occur at the junction point of the structure, the change point of the section and the end of the revetment work, careful attention should be paid to the following events, especially.

1) Deformation

Settlement of pier ,weir body, base slab and apron

2) Abrasion

State of development of abrasion at the weir body, base slab and apron

3) Cracks on the concrete surface

Presence of cracks and their development at the weir body, base slab and apron

4) Leakage

Presence of water leakage and its amount changes from concrete joint and apron tip, etc.

5) Scouring

Presence of scouring and its development at the river bed protection and apron

6) Obstacles

Presence of sediments, driftwoods and other obstacles which disturb proper operation

(2) Maintenance

If some defects are found as a result of inspection, conduct detailed investigation as necessary to clarify the cause and the necessity of repair. When it is judged that repair is necessary, the repair work is carried out after studying the repair method and timing according to the damage degree of the structure.

18-3 Maintenance of equipment

Since equipment items such as observation equipment, mechanical equipment and electric equipment greatly influence the function and its maintenance of regulators combined with the civil engineering structure, it is necessary to implement appropriate management systematically. The flow of maintenance and management of gate facilities generally repeats the cycle of inspection, maintenance and actual operation. When aged deterioration advances, repair of equipment and updating of devices are carried out as necessary .

(1) Inspection

Inspection is a task of finding defects or damage of facilities, judging whether they function well

or not. It is necessary to conduct comprehensive inspection as a system as a whole facility including a remote operation systematically.

	<u> </u>	
Class	Cycle	Contents of inspection
Inspection on operation	Every operation time	It checks the presence of trouble at start of operation for discharge or intake, the situation such as presence of defects and change at the time of operation and the end of operation. In principle these are carried out every operation time.
Daily inspection	Everyday or less than one month	To maintain the equipment in a state to operate properly all the time, confirm the operation status of each equipment, breakage, looseness of bolts and nuts by visual inspection, touch examination and test hammer focusing on damage detection at the initial stage.
Periodic inspection	Every three or six months or every few years	Detailed inspection and measurement of each part is carried out by expert engineers, and slight maintenance such as refueling of each part and replacement of parts may also be carried out in some cases.

Table 18-3.1 Inspection classes and cycle

(2) Maintenance

Maintenance is a work such as parts replacement or repair to respond to failures, damage, fatigue, deterioration of facilities and equipment, to prevent these or to maintain the function of facilities based on the judgment result of inspection. Regular maintenance is mainly carried out using tools, machinery and equipment. Main maintenance contents and recommended cycle for large scale regulators (hydraulic cylinder type roller gate) and small scale regulators (electric rack type slide gate) are shown in the following table.

Cycle	Ite	ems	Contents of maintenance	
Cycle	Classification	Target facility	contents of maintenance	
Three	Hoist	Small regulators	Replace of grease for rack or spindle shaft	
years		All regulators	Replace of grease for shaft coupling	
	Gate leaf	Large regulators	Replace of grease for oil supply device and overhaul	
Five		Large	Overhaul and inspection of hydraulic unit components	
years	Hoist	regulators	Replacement of hydraulic oil and cleaning of oil tank	
		Small	Overhaul and inspection of hoisting equipment	
		regulators	Lubrication of reduction gear	
	Gate leaf	Large regulators	Overhaul and inspection of roller and sheave	
			Repainting (8 to 10 years interval)	
		All regulators	Replacement of seal rubber (10 to15 years interval)	
Ten		Large	Overhaul and inspection of hydraulic unit components	
years		regulators	Overhaul and inspection of hydraulic cylinder	
	Hoist	Small regulators	Overhaul and inspection of hoisting equipment	
		All regulators	Overhaul and inspection of shaft coupling, bearing and opening indicator	

Table 18-3.2 Contents and cycle of maintenance

Note) Ten years cycle maintenance is carried out including the contents of five years cycle maintenance work.

(3) Method to remove gate leaf

The upper part gate guide of small scale regulators can be removed so that replacement of seal rubber and inspection and maintenance of side part of gate leaf in the future can be carried out by taking out the gate.

Since the gate pier of large scale regulators consists of four separated columns, inspection and maintenance of the end part of the gate such as the main roller can be performed with the gate leaf lifted. When there is a necessity for equipment renewal or large-scale repair in the future, remove from the top slab using a large crane in the order of the hydraulic cylinder, base frame and the gate leaf.

Figure 18-3.1 Hanging method of gate (Small regulators)

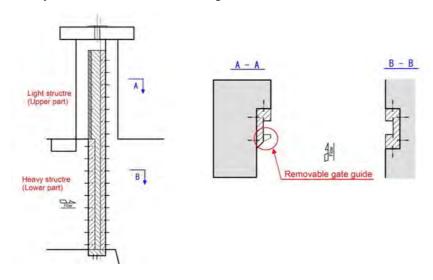


Figure 18-3.2 Structure of gate guide of small scale regulators

18-4 Record of maintenance

In order to inspect and maintain the equipment, it is necessary to understand the structural features, dimensions, specifications, handling method and judge the state. For that purpose, it is important to keep the completion documents and instruction manuals of equipment to utilize at any time. In addition, records of inspection and maintenance should be used not only as a record of them but also as materials for understanding the deterioration status with age and for long-term maintenance plan of the facility based on the future change prediction. Therefore, it is desirable to create a database and store the record using electronic media so that the history of inspection and maintenance can be utilized for a long time.

Item	Classification	Period	Remarks
Completion documents	New and renewal	Permanent	Specification, design calculation, drawing, construction management record, etc.
Construction photos		Permanent	During and completion of construction
	Daily inspection	1 year	
Inspection record	Inspection on operation	3 years	
	Periodic inspection	5 years	
Maintenance record	Maintenance record	Permanent	
Maintenance record	Periodic maintenance	5 years	
Operation record	Operation record	Permanent	Unusual state should be noted
Operation record	Failure record	Permanent	

Table 18-4.1 Recommended storage period of maintenance record

18-5 Management of target canal bed elevation

Around DGRs, the removal of sedimentation in the canal is carried out in January by stopping the intake from upstream, which is called "Winter Closure" period and usually takes several weeks in every January. After completion of the construction of NDGRs, fluctuations of the canal bed elevation due to sediment deposition and scouring are expected including the area between DGRs and NDGRs. Since the excessive change in the canal bed height may affect the stability of the regulators' body, the connecting bank protection works and the smooth gate operation as well, appropriate management is required. The basic management policy during the construction period and the future period is described below.

(1) During the construction of the NDGRs

The NDGRs is planned to be constructed in the temporary cofferdam using steel sheet piles. Since the cofferdam is designed to be stable under the current ground level condition based on the survey result, dredging works around the sheet pile area should be avoided. The design ground height of double steel sheet pile is designed as follows.

Location	Design bed level of double sheet pile works		
Bahr Yusef regulator	EL 39.00m		
Ibrahimia regulator	EL 39.00m		
Abo Gabal regulator	EL 43.00m		
Sahelyia regulator	EL 43.00m		

Table 18-5.1 Design bed elevation for cofferdam works

(2) Beginning of the first operation of NDGRs and their future maintenance

The sediment in front of the gates can be removed by gate operation if it is less than a certain amount, but the sediment remaining on the gate sill may have a negative impact to the gate closing operation. Therefore, it is desirable to grasp and manage the sedimentation condition once a year so that the bed height around the regulators is kept below the gate sill height. On the other hand, if the canal bed elevation becomes significantly lower due to excessive dredging, the stability of the regulators and the connecting bank protection works of steel sheet piles is badly affected. For this Detailed Design Study on the Project for Construction of the New Dirout Group of Regulators

reason, it is necessary to control the canal bed level within the range of elevation shown in the table below on the basis of the height of the regulators and the design bed elevation of the bank protection works.

					Managen	nent level
Location	EL.(A) (m)	EL.(B) (m)	EL.(C) (m)	EL.(D) (m)	Highest (m)	Lowest (m)
Ibrahimia regulator	40.00	39.50	36.50	39.50	40.00	39.50
Abo Gabal regulator	43.60	42.75	40.25	42.60	43.60	42.60
Sahelyia regulator	43.00	41.55	39.05	41.55	43.00	41.55

Table 18-5.2 Management of canal bed elevation after the construction of NDGRs

Note: EL.(A);Gate sill elevation

EL.(D); Design bed elevation of bank protection works

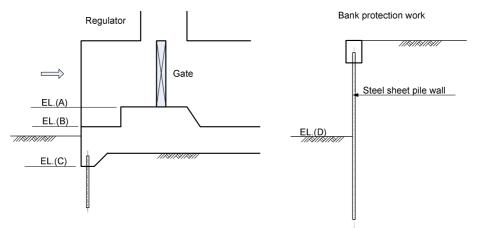
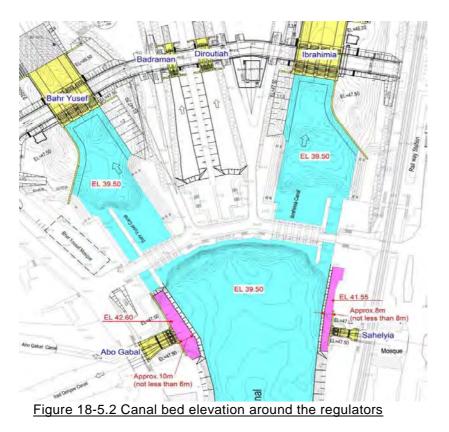



Figure 18-5.1 Explanatory drawings for EL.(A) to EL.(D)

19. Examination of the Preservation Measures for Existing DGRs

19-1 Prerequisites for examination of preservation measures

The existing DGRs is the irrigation water supply facility having been in use for 145 years since its construction in 1872. As shown in Table 19-1.1, its year of construction is a long time ago even in Egypt, but it is still in active operation while rehabilitation and partial renewal works have been made.

In the construction project for the DGRs that will be implemented for the purpose of sustainable acquisition and supply of water resources to enhance the agriculture in Upper Egypt, the function of the existing DGRs as the regulator will be removed.

However, given that the existing DGRs has been the long time, the Egyptian government has decided that they should be preserved as a historical monument with a function of bridge.

In this chapter, the necessary and reasonable works of the rehabilitation and reinforcement for the preservation of the existing DGRs are suggested based on the results of the past surveys.

As the prerequisites for the suggestions on the necessary and reasonable works, the following purposes were confirmed by the Design WG on 9th February, 2017:

2000

2010

2020

2001

2022

Maintenance of regulator

(Gates, Chains, etc.)

[NDGRs]

- To preserve the existing DGRs as a historical monument. >
- \geq To remove the practical functions of regulators by the removal of the gates or keeping the gates open completely.
- \geq To remain the bridge function with some traffic restrictions for large and heavy vehicles.

19-2 Survey results

(1) Survey results in the past years

The results of the survey on the existing DGRs were reported in the "Preparatory survey for the rehabilitation and implement of Dirout Group of Regulators, October 2010". The summary of the survey is shown in Table 19-2.1. The items of the surveys are as follows:

- Visual survey
- Diving survey (photography by waterproof camera)
- Unconfined compression test (regulator surface and in the body)
- Permeability test in regulator body
- · Boring survey in regulator body

1861:Delta Barrage 1870 1872 Construction of the regulators wa completed 1880 1881 Silt clear lance (Canal dredging) 1890 1900 1900 Remodeling work 902:Aswan Dam Asyut Brrage Zefta Brrage 1907 906:Esna Barrage 1912 1910 1910 Foundation Treatment 1911 (Cement grouting) 1920 1930 1930:Naga Hamr Abo Gabal intake regulator was 1935 Barrage constructed 1935:(Delta Barrage) 1940 1950 1960 1962 Improvement work Extension of apron of Ibrahimia Driven wooden sheet pile Protection of the canal bed 1970 1971:High Aswan Dam 1980 1994:(Esna Barrage) 1990 dredging

2008:(Naga Hammady

Barrage)

Canal

Table 19-1.1 History of rehabilitation and partial renewal of DGRs

Name of	Table 19-2.1 Results of past surveys (1/3)				
Survey	Survey Results	Remarks			
	 Chips of bricks and stones in a small range, and cracks of up to 2 mm in bricks were confirmed above the water surface. These deteriorations were not caused by the long-time stress impacts, but it is considered that they were the damage by temporary impacts and defects in the initial construction stage. (See Photo-1.) Below the water surface, it was found that bricks had 				
Visual Survey	fallen out from the sides of the Ibrahimia regulator directly under the gate. In particular, substantial wear of about 30 cm (eye-estimation) was visually checked on the side of the regulator on the right bank of the Ibrahimia Regulator. The bricks themselves may have been worn and deteriorated during aging degradation, but the mortar surrounding bricks worn first and lost; this caused missing fallen out bricks in large area and repeated afterwards. Therefore, it is of concern that the wearing will be accelerated and expand in future. (See Photo-2.)	Photo-1 Ibrahimia regulator			
	• The regulator piers on the upstream side of the Ibrahimia, Badraman and Bahr Yusef regulators are protected by stone materials, but the ancient mortar made by finely smashing limestones and kneading the fine sand with water was used, is different from the present-day mortar. It was found that these mortar parts had fallen out or washout. Especially, on around the water surface, the mortar is susceptible to the washout due to the up and down movements of the water surface. The peel-off depth is unclear, but there is concern that the peel-off of mortar parts may cause the collapse of the regulator piers. (See Photo-3.)	Photo-2 6 th gate from the right bank of the Ibrahimia regulator			
	The diving survey (underwater camera photography) was made in the 2^{nd} vent on the right bank of the Bahr Yusef regulator (Figure 1) and in the 5^{th} vent on the right bank of the Ibrahimia regulator (for the days of January 2 to 4, 2010).	(Side wall: above the water) Scouring and lost of brick are severe			
Diving Survey	• The mortar parts to join the bricks and stone materials eroded in the Bahr Yusef and the Ibrahimia regulators. There is concern that such loss of the mortar parts may weaken the integrity of the structure and expand the erosion of the bricks and stone materials.	(Surface of apron) Concrete has scoured, only the re-bars remain. (Surface of apron) Concrete has scoured, only the			
I	• Concrete was placed on the apron surfaces of the Bahr Yusef and Ibrahimia regulators in the rehabilitation work in 1962. The concrete parts were worn down and had been eroded away. In particular, it was found that only reinforcement bars remained in the Bahr Yusef regulator, having no rehabilitation effect at that time.	Figure 1. The result of diving survey on the Bahr Yusef regulator			

Table 19-2.1 Results of past surveys (1/3)

Nome of	Table 19-2.2 Results of past surveys (2/3)					
Name of Survey	Survey Results	Remarks				
Diving Survey	In the Ibrahimia regulator, the aggregates in the concrete were significantly exposed (10 cm to 20 cm) and the concrete thickness at the time of rehabilitation work was not kept. The placed concrete thickness of the aprons of the both regulators as checked in the drawing was about 25 cm in the Bahr Yusef canal and about 55 cm in the Ibrahimia canal. From the above survey results, it is supposed that the rehabilitation of the aprons at that time was the apron reinforcement/expansion work associated with the upstream water level raised in the DGRs. It is confirmed that the reinforcement work for the aprons directly under the gates has almost lost the initial thickness. Therefore, the future acceleration of wear is of concern.	(Sidewall: under the water) Mortar between the bricks has been lost (Surface of apron) Aggregates appear because of concrete abrasion Figure 2. The result of diving survey on the Ibrahimia regulator				
Unconfined compression Test	• Unconfined strength of regulator surface From the results of the unconfined compression strength test on the cores sampled from the depth of about 50 cm under the regulator surface, it was found that the cores were lower than the endurance strength of 70 kg/cm ² to 80 kg/cm ² required strength of brick in Egypt (<i>Egyptian</i> <i>Code for the Design and Implementation of brick and</i> <i>buildings ECP 204-2005</i>). Brick construction technology in Egypt had a long history and it is imagined that the construction technology similar to that of the present time was used in the past. Therefore, it is supposed that the regulator surface layer was under the weathering impact of the open air for a long period, resulting in the lower strength. This should be considered if the existing regulators are kept in continuous use by rehabilitation. The unconfined compression strength of each regulator is shown in Table 1. • Unconfined compression strength of regulator depth The unconfined compression strength tests of the foundation depths of the existing DGRs were conducted by the Water Research Center, Construction Research Institute at the time of this Study (2009) and in 2006. These unconfined test results are summarized in Table 2 and Table 3.	Table 1. Unconfined compression strength of regulator surface layersRegulatorTest Value (kg/cm²)Standard Value (kg/cm²)Bahr Yusef2170~80Bahr Yusef2470~80Badraman13,770~80Table 2. Unconfined compression strength of regulator pier depthsRegulatorAverage (kg/cm²)Bahr Yusef38.226.11006 in 2009 (kg/cm²)Bahr Yusef38.226.11006 in 2009 (kg/cm²)Bahr Yusef38.710.0700Table 3. Unconfined compression strength of regulator foundation depthsRegulatorAverage Test Value in 2006 (kg/cm²)Bahr Yusef40.7Bahr Anan39.672.3BahramanBahraman				

Table 19-2.2 Results of past surveys (2/3)

Name of SurveySurvey ResultsRemarksThe permeability test in the regulators was also conducted by the CRI, NWRC in 2006. These test results are summarized in Table 4. According to the existing literature, the permeability value of general bricks is 10° cm/sec is confirmed that the permeability values of the sepcially, the values of regulator piers are 1.2 too the tendency of the above permeability values, espcially, the values of regulator piers are 1.2 too that the regulator piers are susceptible to the discriming transes that the permeability increase the water absorption, servers in the regulator piers are deterioration of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern.The boring surveys in the regulators were made to ordinators. This mentality tests in the regulator piers and the reduction of adhesiveness of the mortar are of serious concern.The boring surveys in the regulators were made to ordinators (in December 2009).The ordination of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern.The lear traces of the ground too minim incruditors (in December 2009).The clear traces of the ground works which were done from 1900 to 1911 as reported cound and with N-value of 13 to 15 is identified und the foundations ground was weaker than the formation ground was weaker than than the formation ground was weaker than than the formation ground was weaker t		Table 19-2.3 Results of past	surveys (3/	<u>/3)</u>			
 conducted by the CRI, NWRC in 2006. These test results are summarized in Table-4. According to the existing literature, the permeability value of general bricks is 10⁶ cm/sec (b-0). In comparison with this value, it is confirmed that the permeability values of the existing DGRs are from 10 to 100 times higher. In the tendency of the above permeability values, especially, the values of regulator piers are 1.2 to 1.01E-04 to times higher than the foundations. This means that the rick materials with high permeability increase the water absorption, facilitating the deterioration of the regulator piers are deterioration of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The tendency of the ground rows were made tasses the detailed deterioration and the foundations row first on the regulators are shown in the regulators. In the regulators are shown in the regulators. In the regulators in the regulators are shown in the regulators. The clear traces of the ground was weaker than thin the Barh Yusef regulator. (See Figure 3 and Figure 4.) Figure 4. The result of the boring survey on the Bahr Yusef Regulator. Figure 4. The result of the boring survey on the Ibrahimia regulator. (See Figure 3 and Figure 4.) 		Survey Results		Re	emarks		
 According to the existing literature, the permeability value of general bricks is 10⁶ cm/sec (cm/s) value in 2009 (cm/s) val		conducted by the CRI, NWRC in 2006. These test	Table 4. Permeability test in regulators				
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	lators	According to the existing literature, the permeability value of general bricks is 10^{-6} cm/sec	Regulator	Position	Permeability Value in 2006	Permeability Value in 2009	
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	nbi		Bahr Yusef	Pier		1.01E-04	
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	Re				7.25E-05		
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	Je		Ibrahimia	Pier		1.13E-04	
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.)) th			Foundation		1.12E-04	
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	in						
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	est						
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	Ĕ						
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	lity						
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	lidi						
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	lea	1 2 1 7					
 The detrioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed detrioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 	rr						
Storger of serious concern. The deterioration of bricks of the regulator piers and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed deterioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) Figure 4. The result of the boring survey on the Bahr Yusef Regulator Figure 4. The result of the boring survey on the Ibrahimia	Ре						
 and the reduction of adhesiveness of the mortar are of serious concern. The boring surveys in the regulators were made to assess the detailed deterioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 							
 The boring surveys in the regulators were made to assess the detailed deterioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) 							
 assess the detailed deterioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that mediums and with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) 		of serious concern.					
 assess the detailed deterioration and the foundation conditions within the Bahr Yusef and the Ibrahimia regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that mediums and with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) 		The boring surveys in the regulators were made to		1.1	11		
 regulators (in December 2009). The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 			55	5	NOD BH	- 53	
 The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 		conditions within the Bahr Yusef and the Ibrahimia					
 The deterioration conditions in the regulators are shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) 		regulators (in December 2009).	45			40	
 shown in the results of unconfined compression and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) Figure 4. 		• The deterioration conditions in the regulators are	.36		Bott	EL.36.56m	
 and permeability tests in the regulators. The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that mediums and with N-value of 13 to 15 is identified under the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.) Figure 4.) Figure 4. 			30 (Neo)			sit)	
• The clear traces of the grouting works which were done from 1900 to 1911 as reported could not be identified. It was observed that medium sand with N-value of 13 to 15 is identified under the foundations of the Bahr Yusef regulator, and that the foundation ground was weaker than that in the Ibrahimia regulator. (See Figure 3 and Figure 4.)			.85			25	
Figure 4.)	ırs		20			-20	
Figure 4.)	ato					15	
Figure 4.)	nla		3			5 S	
Figure 4.)	eg			15 20 25 30 3	and some of the	68 70 75 80	
Figure 4.)	R		-				
Figure 4.)	the				the Bahr	Yusef	
Figure 4.)	i		Regu	ulator	1		
Figure 4. The result of the boring survey on the Ibrahimia			50 -	Indentation	ADD BH-2	50	
Figure 4. The result of the boring survey on the Ibrahimia	ž	Figure 4.)	45	- W W W		- 46	
Figure 4. The result of the boring survey on the Ibrahimia	Su		40 EL 36.56	5m		10	
Figure 4. The result of the boring survey on the Ibrahimia	b				1	35	
Figure 4. The result of the boring survey on the Ibrahimia	rin		8				
Figure 4. The result of the boring survey on the Ibrahimia	Bo			meo mile depos	INCO (Neo	E	
Figure 4. The result of the boring survey on the Ibrahimia			THE REAL PROPERTY IN THE REAL PROPERTY INTO THE R			AND BUSIC	
Figure 4. The result of the boring survey on the Ibrahimia						ADD INC.	
Figure 4. The result of the boring survey on the Ibrahimia			5				
boring survey on the Ibrahimia			and the second second second second	Figure 4	The result of	of the	
rogulator			501	-	-		
					- 3414.01		

Table 19-2.3 Results of past surveys (3/3)

(2) Available materials and works for the preservation

In order to the consider the prevailing works and methods for the preservation as historical monument in Egypt, the field survey on the Delta Barrage with the related agencies in RGBS was conducted. In the Study, the actual works and the applied materials for the preservation works were studied through the visual survey and the interview to the persons responsible at the site. The results of the field survey in the Delta Barrage are shown in Table 19-2.4, and the materials (photos) of the actual preservation measures are identified in Table 19-2.5 and Table 19-2.6.

Table 19-2.4 Field survey results in the Delta Barrage

The old Delta Barrage is under the rehabilitation work by Ministry of Antiquities at present. After the new Delta Barrage built in 1939, the function as a regulator was removed and the passage on of the regulator has been limited to pedestrians, bicycles and motorbikes. The staffs in charge of the regulator administration are stationed at the entrance of the regulator.

	Photos in Fie	
1		Entrance tower on the east side of the barrage The fences and stone blocks to prevent large size traffic are installed. The surface of the gate tower was restored.
2		Entrance tower on the west side of the barrage. The surface of structure has not been restored.
3		All the gates are kept fully open. The hoisting device remains at the site. The surfaces of the barrage piers are covered with mortar in the same color as the bricks.
4		Some damages were observed on the road of the bridge, which seems to be caused by the past passage of vehicles.
5		A part of mortar on the rehabilitated handrails was damaged and peeled off. According to the staff, about 10 years has passed since the latest rehabilitation. Such works were regularly done.

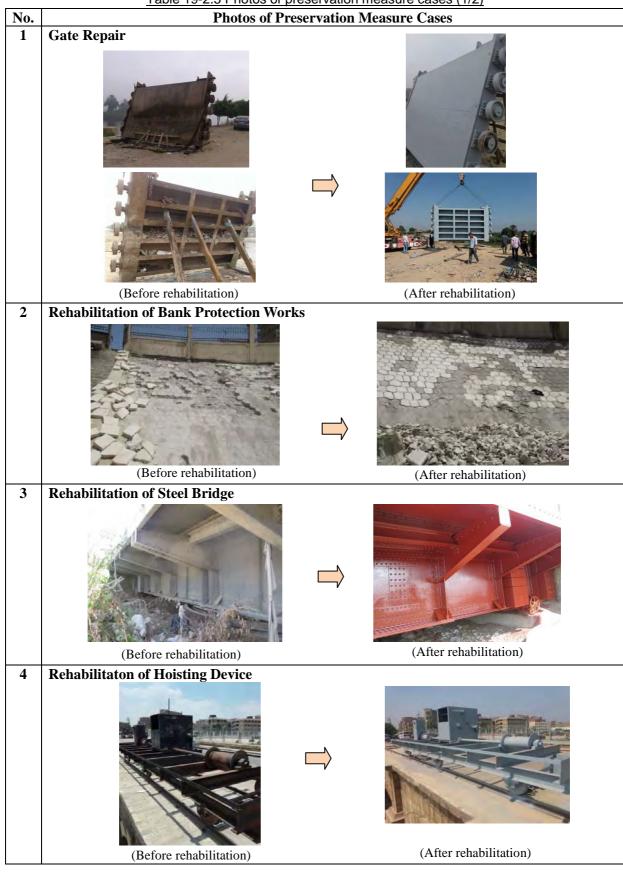
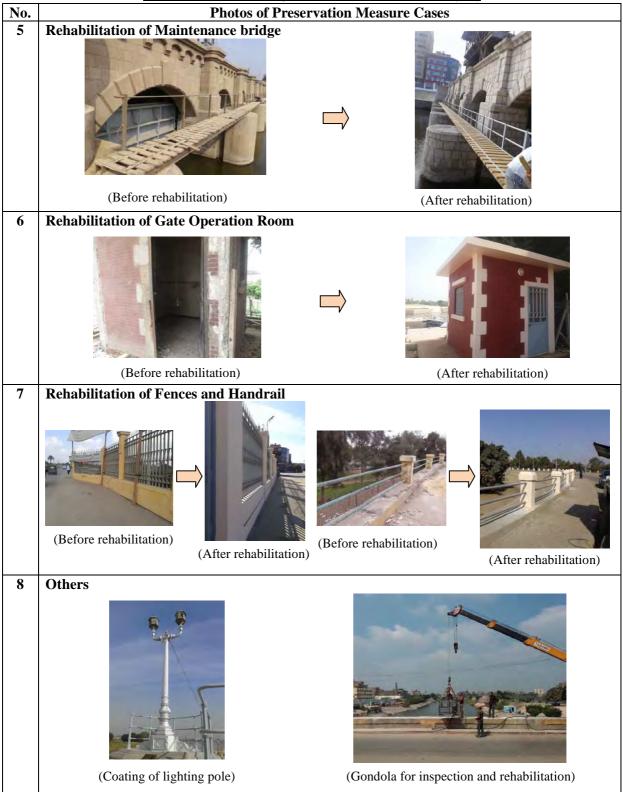



Table 19-2.5 Photos of preservation measure cases (1/2)

Table 19-2.6 Photos of preservation measure cases (2/2)

19-3 Recommendations for preservation measures

(1) Suggestion of evaluation method

In the preservation measures for the existing DGRs, it is recommended to make the examination in accordance with the following flow chart in considering the following points:

- 1. The function of the regulator is removed, that is, the gate operation for appropriate water distribution by the existing DGRs is never considered. Therefore, the up-lift pressure caused by the water level difference and the local impact of high flow velocity are substantially alleviated and the high-water level (Approx. WL.46.30 m) is kept even on the downstream side of the existing gates.
- 2. The traffic of large vehicles is limited on the ancillary bridge, which alleviates the traffic loads on the regulators.
- 3. The consideration for the landscape is required to preserve the DGRs as a historical monument

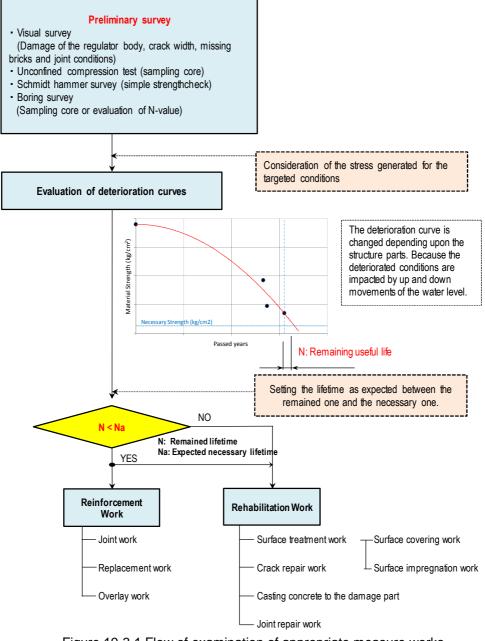


Figure 19-3.1 Flow of examination of appropriate measure works

Note : The deterioration curve is cited from the "*Preparatory survey for the rehabilitation and implement of Dirout Group of Regulators, October 2010*". The curves can be updated by the recent investigated data if the new survey is conducted.

In examining the preservation measures of the existing DGRs, the effective measures as shown in Table 19-3.1 are recommended based on the prerequisites as mentioned in the beginning and the past survey. For the appropriate preservation measures, it should be taken into consideration the economic aspects, constructability, reliability and sustainability of the measures based on the detailed survey and careful consideration.

Р	reservation works	Detailed contents of the works	Problems and Remarks
function	✓ Preservation of gates	The gate doors are fixed in the fully opened and preserved at the present positions. The same measures are applied to the hoists.	For the preservation, the study on the necessity of rehabilitation works (such as coating) should be required.
Change of function	✓ Traffic limitation of vehicles	 The traffic limited to the pedestrians, bicycles and motorbikes, which the same as the Delta Barrage. Therefore, the parking blocks (stones) are stationed on the exits and entrances on the left and right banks of the ancillary bridge. 	The measure will be implemented after the construction of the NDGRs.
Rehabilitation works	 ✓ Repair of cracks ✓ Repair of joints between the main parts 	 The deterioration of the bricks used in the regulators is caused by repeated drying and wetting of cracks and joints (mortar). In order to prevent the more deterioration, it is essential to repair the cracks and joints before the expanding width or the gaps. The materials for the repair of cracks and joints should have excellent property in adhesiveness, flexibility and abrasion resistance as well as weather resistance and visual matching. Primer Brick Joint Brick Joint Brick Joint Brick Joint Brick Lastic sealing compound, Flexible epoxy resin, Polymer cement mortar, etc. 	If there are many cracks and damaged joints, it can be also necessary to apply the surface treatment or surface impregnation method for the impact of the drying and wetting into the regulators body.
	 ✓ Casting concrete to the damaged part 	 The parts where bricks fallen out are repaired with the materials without the visual gaps The exposed iron bars of the aprons that were confirmed by the diving survey should be repaired by covering the concrete. After the construction of the NDGRs, the present high flow velocity will not be caused, but joint bars between the original aprons will be installed to secure the stable concrete casting. 	There is an idea to preserve the regulators as a historical monument including the present (decayed) state. Therefore, it is necessary to review before the rehabilitation of the damaged parts in this aspect.

Table 19-3.1 Recommendations for preservation measures for DGRs

Reinforcement works	✓ Replacing to the enhanced structure	 If any reinforcing and enhancing work is required to the structure, the following method is recommended. This work requires much time and cost. A reinforced concrete pier is constructed in the regulator body of 1.85 meter wide to concentrate the tensional load into the reinforced concrete pier. As a result, only the compressive load by bricks own weight acts to them. 	It is necessary to check the structural stress by the detailed analysis (such as 3D finite element method). In the construction work, it is necessary to examine the impacts (by such as vibrations) on the existing brick pieces.
		 If any void area are observed in the foundation by the boring survey, those void are filled and injected with grout materials. The reasonable number of the grout and the grouting pressure are subject to the foundation conditions and structure strength. 	The stress check is necessary to compare between the brick strength and the pressure stress by the grouting.
Othe	ers	(U.S) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	S)

(2) Recommendation

Based on the present available data (2010), the following survey and the essential works are recommendable.

Recommendable survey

- ✓ To study and check the exact present status of the existing DGRs, two boring survey for each pier should be conducted. The unconfined test and the permeability test should be conducted for the sample cores taken from the boreholes.
- \checkmark The investigated data should be compared to the past survey data. The data could be useful for

updating the deterioration curve to evaluate the structural life time remained.

✓ 3D finite element analysis could be useful for the entire evaluation of the present status of the existing DGRs. For the analysis, it is recommendable to take the support of organization that has the enough experience for the existing DGRs is recommendable (for example, CRI has the experience of the analysis for DGRs in 2006).

Our items	Table 19-3.2 Recommendable survey
Survey items Visual check to the	Contents
existing DGRs	• The visual survey should conduct during the winter closure which season is from December to January.
	• Especially, the invisible place i.g., the apron and the edge of pier due to the under the water, should be careful investigated.
Boring survey	• Two borehole in one pier are necessary. One hole is for the permeability test and coring, the other is for the SPT and the sampling for the laboratory test.
	• Inner diameter of borehole shall not be less than 86mm
	• The following picture is shown the boring plan
Boring v	I vorks Boring hole no.1 Boring hole no.2 for SPT for Permeability test and coring and sampling L=approx. 25m (D. S) (U. S)
Samples :	ty test in the regulator body Unconfined Compression test each samples in the laboratory
 1 Permeability Standard Pen Unconfined C 4Samples = 2 Laboratory Te Specific G Natural W Grain Size 	n 1 meter of borehole v test (sandy layer) etration Test at each 1 meter of borehole ompression, if find the clayey layer samples x 2 kinds (sandy and clayey) st (4 samples) Gravity vater Contents
Laboratory test	• The four samples from the borehole No.2 should be conducted as the following tests.
	 The four samples from the borehole No.2 should be conducted as the following tests. Unconfined test to the brick part designated on the picture above and the clay layer at foundation below if any,
	Specific Gravity,
	➢ Natural Water Contents,
	➢ Grain Size,
	> Atterberg Limits (Liquid limits and Plastic limits)
Structural analysis	• Finite element analysis should be done considering the brick strength evaluated by the unconfined test
	• The following cases on the structural analysis are assumed.
	• All gates completely opened + Present traffic conditions

Table 19-3.2 Recommendable survey

① All gates completely opened +Planned traffic conditions (Traffic limitation)
② All gates completely opened +Planned traffic conditions (Traffic limitation)+ Effect of structural enhancement by the enhancing works (If the enhancing works is implemented.)

Recommendable works for the preservation

- ✓ In order to reduce the burden load on the existing DGRs except for Abo Gabal and Sahelyia regulators, the passable traffic shall be restricted. The allowable traffic could be the pedestrian, small vehicle and motorcycle. Especially as to the small vehicle and motorcycle, the allowable velocity should be regulated.
- ✓ In addition, all the gates shall be opened completely to alleviate the up-lift pressure to the basement of the regulators because the gate operation of the existing DGRs will not be required. Furthermore, dredging works should be done before the gates make full open (refer to chapter "18-4 Management of target canal bed elevation").
- ✓ The significant damages investigated in 2010 such as eroded or fallen out bricks inside of the vents, and eroded apron at Bahr Yusef and Ibrahimia regulators should be rehabilitated. These works need the appropriate diversion works even in the winter closure season.
- ✓ The enhancement of the foundation and the regulator body should be implemented depending on the results of boring survey and/or the 3D finite element analysis.