卷 末 資 料

4. スペクトル計測結果

1.0

0.9

0.8

0.7 0.6

0.5

巻 末 資 料

5. 各地熱地点の地化学解析図

アルス地点

温泉・水井戸・噴気の位置図 (GDC (2013) に加筆)

温泉水・井戸水の主要陰イオン三成分図

温泉水・井戸水の pH-C1/SO4 比関係図

水素·酸素同位体組成図

バリンゴ地点

温泉水・井戸水の主要陰イオン三成分図

温泉水・井戸水の pH-C1/SO4 比関係図

δ¹⁸O (‰)

水素・酸素同位体組成図

温泉水・井戸水の湧出温度-シリカ温度の関係図

温泉水・井戸水のシリカ温度-NaKCa 温度の関係図

噴気ガスの H₂S/H₂ 温度-CO₂/H₂ 温度の関係図

コロシーチェプチャク地点

δ¹⁸O (‰)

水素·酸素同位体組成図

井戸水の Na-K-Mg 三成分図

井戸水のシリカ温度-NaKCa 温度の関係図

噴気ガスの微量成分三成分図

噴気ガスの H₂S/H₂温度-CO₂/H₂温度の関係図(チェプチャク)

噴気の位置図 (Kipng'ok and Nyamongo, 2013)

井戸水の主要陰イオン三成分図

δ ¹⁸O (‰)

水素·酸素同位体組成図

噴気ガスの微量成分三成分図

噴気ガスの地化学温度比較図 (大カルデラ内)

噴気ガスの地化学温度比較図 (カルデラ北方)

噴気ガスのH₂S/H₂温度-CO₂/H₂温度の関係図

巻 末 資 料

6. MT 探査データ解析方法と結果

MT 探査データ解析方法と結果

今回の MT 探査データの解析に用いた方法(スタティックシフト補正、地形補正及び3次元比 抵抗構造インバージョン解析)及び得られる比抵抗構造の基本的な解釈方法(地熱地域における 比抵抗構造)に関して、以下に記述する。

1. MT 探查測点座標

コロシ,チェプチャク地域の MT 探査測点の UTM 座標系及びパカ地域の MT 探査測点の UTM 座標系をそれぞれ第 MT-01 表及び第 MT-02 表に示す。

第 MT-01 表 MT 探査測点位置一覧表 (コロシ地域-チェプチャク地域)

Station	Easting (UTM)	Northing (UTM)	Elevation (m)	Station	Easting (UTM)	Northing (UTM)	Elevation (m)
BARMT02	170432.2	78062.4	994	KOR48	181165.3	83733.6	1337
BarMT03	170583.2	81899.2	1002	kor49	182972.7	83972.2	1062
BARMT19	167361.7	77563.2	1012	KOR50	184095.8	83645.6	1037
BarMT31	168748.2	82214.0	1007	KOR51	185575.0	83666.2	1037
BARMT39	182273.1	78780.5	1081	KOR52	172056.5	82030.4	1089
BARMT41Ar	175427.9	79277.4	1026	KOR53	173189.0	81842.1	1070
KORMT03a	178496.4	94928.6	891	KOR54	176008.6	82156.9	1173
KORMT09a	188786.5	87555.7	1156	KOR55	179071.9	81549.2	1231
KORMT13a	168967.9	95003.6	916	KOR56	180124.5	82068.1	1308
KORMT14a	185390.0	89190.4	1026	kor57	183064.2	81915.6	1071
KorMT15a	186428.5	91857.9	1006	kOR59	171904.1	80908.3	1045
KORMT18A	192944.0	90181.1	1168	KOR60	173572.1	80768.9	1011
KORMT19a	183077.2	96096.4	970	kor61	175595.9	80503.2	1039
KORMT21a	167043.6	92216.1	962	kor62	177415.4	80240.7	1200
KORMT25B	186291.7	90960.4	1021	KOR64	182345.7	80947.7	1067
KORMT28A	168950.5	83957.1	988	KOR74R	170045.0	91049.0	914
KORMI29a	180485.1	93353.1	904	KOF78	176376.9	91155.0	972
KORMI31a	191616.1	84916.4	1132	KOR80	178982.5	91048.6	972
KORIVII 35a	1/2317.1	00999.2	1020		170216 5	91243.2	962
KORMT41A	103503.3	03508.0	1179	KOR80	17/115.0	82748.4	1008
KORMT42A	189287.6	77540.4	1125	KorMT01	189639.6	94984.9	1115
KORMT43A	187473.1	80584.8	1060	korMT02	187165.6	97015.5	1182
KORMT44a	165112.2	87504.7	1004	KorMT03	189978.1	92341.1	1180
KORMT100	174308.4	93600.6	902	KorMT04	177217.6	89651.1	995
KORMT101	176440.5	93479.1	893	KorMT04(2)	168125.6	85992.9	966
KORMT102a	178541.3	92792.0	930	KorMT05	174910.6	95979.7	884
KORMT103	169603.6	92586.5	908	KorMT06	173886.4	92076.1	917
kormt104	171694.8	95459.5	889	KorMT07	172181.6	88449.6	936
kormt105	185971.1	83582.9	1049	KorMT08	176886.2	89276.3	1023
KORMT106a	189591.6	83728.1	1119	KorMT09	171565.7	92569.7	901
KORMT106b	180076.6	79780.9	1183	KorMT10	169959.5	88445.0	950
KORMT107	187659.5	86588.2	1060	KorMT11	176884.3	86632.4	1121
KORMI108	167254.7	84188.8	997	KorM112(2)	174621.7	81499.9	1141
KORIVIT14	17/251.8	09990.0	1230	KorMT14	170504.8	80334.3	930
KorMT116	178421.7	85690.6	1343	KorMT15	177606.5	88267.4	1085
KORMT118	181104.1	84711.2	1181	KorMT15(2)	174006.6	87126.3	1022
KorMT119	177987.2	83803.7	1311	KorMT16	179227.9	88017.3	1192
KORMT120	179651.4	82692.5	1332	KorMT16(2)	167665.8	91988.5	941
KorMT121	181331.4	82095.0	1241	KorMT17	170042.3	82855.7	996
KORMT122	177558.3	81141.9	1304	kormt18	187590.1	84596.3	1055
KORMT123	180382.6	84106.1	1425	kormt19	187252.4	88531.2	1101
KORMTZL	191469.9	88476.1	1154	kormt20	184124.7	85213.4	1037
kor03	175100.9	89763.3	935	KORMT23	173207.9	86865.5	994
kor05	180476.2	89627.3	980	kormt26a	178264.9	87141.8	1175
KOR06	181708.1	89986.1	1000	KORMI28	1/3168.5	83505.3	1052
KOT/	182985.8	89573.2	1015	KORMT31	185540.3	87330.5	1020
kor14	176272.1	09040.9	921	kormt27	177/19 6	95022.4	1004
KOR17	180605.2	88240 7	1070	kormt46	178596.8	83713.8	1296
kor18	182403.0	88067.3	1068	KORMT58	185976.3	82184.2	1048
kor19	183281.8	88023.7	1023	KORMT66	185232.8	80835.2	1037
KOR20	184925.1	88163.9	1014	kormt76	173207.9	91092.8	912
KOR21	170249.1	86560.2	968	kormtE	187182.0	89690.2	1197
kor22	171555.2	86688.4	971	kormtH	188323.0	88472.1	1141
KOR24	178953.8	89828.2	1013	KorMTm	191396.6	89859.4	1168
kor25	176265.4	86654.4	1127	korMTn	191159.1	90984.6	1163
KOR27	180198.7	86722.4	1211	korMTs	190526.5	93425.8	1162
kor29	183268.6	86818.6	1062	korC	189566.7	92602.6	1190
KOR30a	184620.8	81896.1	1059	KORD	188854.2	91407.4	1324
KUR31R	185945.3	86709.2	1056	KURF	1885/4.3	89510.9	1234
KUR32	170149.3	85413.5 85151.2	9/8	kori	109991.5	894/6.1	1205
kor34	179767 1	84864 5	331 1053	KOPn	190210.0	00311.0	1162
KOR35	174766 7	85398.0	1125	KORU	190571.4	91270.9	1166
KOR36	176354 0	85031.1	1218	KORMT28n	184679 3	92498.6	984
KOR38	179089.7	85063.0	1313	pak28t	182458.8	94805.8	932
KOR39	180129.8	85415.9	1253	pak29	184194.6	94558.6	1029
kor40	182534.0	85039.2	1103	PAK31	187084.6	94279.8	1104
kor41	176303.7	83773.7	1148	PakMT27	180945.6	94868.4	888
KOR42	185566.6	84978.8	1042	PAKMT30	185568.5	94465.3	1071
KOR43	170129.5	83768.7	995	pakMT34	192982.6	94429.2	1166
kor44	171692.8	84274.9	1007	PAKAMT32	188545.6	94862.8	1068
KOR45	1/4799.9	84229.8	1138	pakamt33	191732.5	94368.6	1157
KOR47	179534.4	83602.5	1336				

第 MT-02 剥	表 MT 探查測点位置	一覧表 (パカ地域)	
77 IVI I-02 2	K MI 休且例示位但	. 見我 (ハス地域)	

Station	Easting (UTM)	Northing (UTM)	Elevation (m)	Station	Easting (UTM)	Northing (UTM)	Elevation (m)
PAK27	180758.2	95462.6	888	PakMT05	187907.7	101279.4	1659
pak28t	182271.4	95424.6	932	PakMT06	186268.2	101957.0	1518
pak29	184007.2	95165.0	1029	PakMT07	186362.4	103616.9	1429
PAK30	185381.0	95071.8	1071	PakMT09	188342.0	102693.1	1462
PAK31	186897.2	94874.0	1104	PakM112	196107.5	101457.5	1235
PAK32	188358.1	95463.1	1068	PakiMT14	182861.3	97963.3	984
PAK33	191544.9	94972.0	1157	Pakivi115 DokMT19	101002.0	107371.1	056
PAK34	192795.0	95041.8	1100	Pakivi To DokMT20	190267.6	106409.9	900
PAK36	194302.3	94690.0	022	Pakivi 120 PokMT21	180830.2	100528.7	900
nak37	183002.4	963/3.2	923	PakMT22	18/178 5	100326.7	116/
DAK39	184756.8	90343.2	1008	PakMT22	1850/2.1	06034.0	1117
PAK30	186038.4	96034.2	1154	Paki02	101/120 7	107043.3	077
PAR39	188405.3	96474.4	1090		1967/1 9	102106 /	1504
	189763.6	96350.4	1139	nkmt5/IR	183756.8	99579.6	1005
PAK42	191641.8	96299.9	1165	PAK13	192796 7	96233.7	1172
PAK43	194485.5	96439.2	1186	PAK34R	192894.4	94456.9	1163
PAK43A	181122.2	98023.1	928	PAK42	192226.7	95318.1	1172
PAK45	184746.0	98204 7	1147	PAK43R	193968.9	95618.0	1179
PAK46	185909.3	98004.0	1208	PAK50RR	193180.9	96986.5	1189
PAK47	188397.2	98051.3	1191	PAK55RR	186013.0	99072.9	1306
PAK48	189993 7	97924.1	1250	PAK60	181211 2	100097.3	960
PAK49	191639.9	97886.0	1165	Pak99a	187770.7	106959.5	1037
PAK51	194495.9	97945.4	1193	PAK100R	188318.0	106562.5	1050
PAK52	181067.5	99277.4	949	PAK107	187622.6	99729.5	1460
pak53	182420.0	99546.8	998	PAK108	186802.1	99093.9	1352
PAK55R	185774.3	99562.7	1300	PAK109	180198.6	99126.7	931
PAK56	189304.8	99394.0	1422	PAK110R	186926.6	96013.6	1157
PAK57	190477.4	99202.5	1327	PAK121	188101.1	98342.8	1259
PAK58	191910.1	99312.1	1322	PAK134	189867.2	97302.5	1217
PAK59	194178.3	99454.8	1209	PAK135	188219.7	99689.1	1469
PAK60	181167.7	100854.3	990	PAK145	187920.4	108447.2	950
PAK61	182421.2	101123.9	1065	PAK145B	189059.4	108732.1	941
PAK62	183671.2	100864.7	1160	PAK145C	188769.2	109593.0	933
PAK63	185688.8	100955.3	1430	PAK149A	179541.3	105207.9	887
PAK64	186115.7	100792.0	1420	PAK159	178091.8	103702.8	899
PAK65	189543.5	99888.7	1440	PAK162	177775.8	99408.3	893
PAK66	191017.1	100871.2	1483	PAK181	186966.1	110566.0	863
PAK67	192514.8	101039.1	1340	PAK189	186306.9	110391.3	859
PAK68	194210.5	101059.4	1297	PAK190C	186634.2	109597.9	891
PAK69	182521.4	102556.3	1006	PAK263	186301.2	107292.7	975
PAK70	183985.4	103040.9	1089	PAK400	180890.1	108403.9	872
PAK71	185646.7	102507.7	1466	PAK404	179781.9	104365.4	907
PAK72	191571.8	101937.5	1327	PAKA41R	189862.8	95522.7	1124
PAK73	192914.9	102293.0	1310	PAKC9	182849.2	108792.7	869
PAK74	194313.7	102504.0	1298	PAKCRT3	188647.7	100930.7	1560
PAK75	180808.1	103867.3	937	PAKE3	185423.2	108326.3	929
PAK76	182482.3	103973.5	1001	PAKMT03R	187230.9	97375.2	1201
PAK77	184131.9	104322.6	1110	PK47A	187707.1	96956.7	1154
PAK78	185765.6	104143.0	1362	PK101B	189002.1	106863.2	1050
PAK79R	186941.4	104169.7	1243	PK124	188839.2	100512.5	1655
PAK80	188785.6	104152.9	1333	PK125	189723.0	99005.6	1373
PAK81	189853.4	104527.1	1153	PK129	188299.6	98880.6	1316
PAK82	191913.4	103501.8	1217	PK138	188869.5	99636.4	1441
PAK83	193244.2	103921.9	1131	PK139	186436.5	98470.1	1273
PAK84	194379.8	104016.3	1228	PK140	186911.9	108/33.9	939
PAK85	180939.3	105388.9	910	PK154	1/8226.4	105528.7	888
PAK86	182393.8	105513.7	949	PK154A	1/7657.0	105541.5	876
PAK87	184164.0	105788.9	975	PK154C	177381.0	104877.7	881
PAK88	185454.2	105529.7	1150	PK155	181921.4	105///./	912
PAROOK	100000.9	105792 5	1000	PK 1028	100272.0	39219.1 101200 7	030
DAK01	180650 /	106021.0	1090		191704 4	109077 2	970
PAK02	105000.4	105561 6	1049		181/75 5	1000/7.3	010
PAK02	191494.2	106316.6	029		182106.3	108615.0	967
PAKOIR	1948/18 2	1054/2 2	1108	nkc4	182388.6	109414.0	870
PAK95	180804 6	107110 8	872	PK4	182105 5	107582 1	887
PAK95h	181940 0	106817.5	898	PKF4	186561.6	107931 9	971
PAK97	184366.2	107003.0	961	PKF6	186398 3	108685 1	933
PAK98	185728 0	107364 6	964	KorMT01R	189830.5	93632.2	1153
PAK99	187132.5	106985.4	1023	nk492	188450 5	101890.0	1528
PAK100	188518 7	106990.4	1046	nk493	189285.8	101701.8	1572
PAK101	189787 4	107093.8	1016	pk501	179638 7	99360.8	916
PAK103	193825.2	106930 7	1097	pk508	177391 0	97997 6	891
PAK104	194772 1	107022.2	1060	pk500	186366.0	99300.2	1324
PAK105R	182897.2	108037.2	886	pk540	187604.0	103519.9	1301
PAK106r	184194.2	108527.9	892	pk541	189289 5	102458.0	1475
PakMT01	181101 3	102883 3	961	pk543	186806.6	100800 0	1545
	107101.0	00454.0	1265	0.0.0			

2. 地形補正

地形の起伏が電磁場に影響を及ぼすことは一般的に知られており、このため、MT 探査の解析 精度にも影響を与えることが懸念される。この MT 探査データへの地形の影響を軽減するために、 今回、Paka 地域で取得された MT 探査データ及び既存の MT 探査データに対して、以下に示す地 形補正を施した。

- まず、地形を加味した 3 次元比抵抗ブロックモデルを構築して、3 次元フォワード計算に より見掛比抵抗値(Appxy-topo and Appyx-topo)及び位相値(Phsxy-topo and Phsyx-topo)を算出 する。なお、各 3 次元比抵抗ブロックの比抵抗値は、周波数 100 Hz ~0.01778 Hz 間で取得 された実測見掛比抵抗値の平均値とした。
- 次に、地形を考慮しない平坦な3次元比抵抗ブロックモデルを構築して、同様に3次元フォワード計算により見掛比抵抗値(Appxy-topo and Appyx-topo)及び位相値(Phsxy-topo and Phsyx-topo)を算出する。この際にも、各3次元比抵抗ブロックの比抵抗値は、周波数100Hz~0.01778Hz間で取得された実測見掛比抵抗値の平均値とした。
- 3) 上記の 1)及び 2)における 3 次元フォワード計算により得られた各測点における各周波数の 見掛比抵抗値及び位相値を用いて地形補正係数を算出し、以下に示す式を導入することに より、周波数 100 Hz ~0.01778 Hz 間の地形補正適用見掛比抵抗値及び位相値を算出した。

Appxy-corr = Appxy-obs * (Appxy-flat / Appxy-topo)

Appyx-corr = Appyx-obs * (Appyx-flat / Appxyxtopo)

Phsxy-corr = Phsxy-obs + (Phsxy-flat - Phsxy-topo)

Phsyx-corr = Phsyx-obs + (Phsyx-flat - Phsyx-topo)

但し、

Appxy-corr, Appyx-corr : 地形補正後の見掛比抵抗値(xy 方向及び yx 方向)

Phsxy-corr, Phsyx-corr: 地形補正後の位相値(xy 方向及び yx 方向)

Appxy-obs, Appyx-obs : 測定された見掛比抵抗値(xy 方向及び yx 方向)

Phsxy-obs, Phsyx-obs : 測定された位相値(xy 方向及び yx 方向)

Appxy-topo, Appyx-topo: 地形を考慮した比抵抗モデルを用いて3次元フォワード

計算により計算された位相値(xy方向及びyx方向)

Phsxy-topo, Phsyx-topo: 地形を考慮した比抵抗モデルを用いて3次元フォワード

計算により計算された見掛比抵抗値(xy 方向及び yx 方向)

Appxy-flat, Appyx-flat: 平坦な比抵抗モデルを用いて3次元フォワード計算

により計算された見掛比抵抗値(xy 方向及び yx 方向)

Phsxy-flat, Phsyx-flat: 平坦な比抵抗モデルを用いて3次元フォワード計算

により計算された位相値(xy 方向及び yx 方向)

3. スタティックシフト補正

電位電極を設置した場所周辺に局所的な地下浅部の比抵抗異常体が存在する場合、この比抵抗 異常が測定されたデータの全周波数成分に影響を及ぼし、見掛比抵抗曲線が上下にシフトするこ とがある。この影響はスタティックシフトと呼ばれるが、地下の比抵抗構造を解析する上ではこ の影響を取り除くことは重要である。スタティックシフトは、局所的な地下浅部の比抵抗異常の 影響であるため、この影響を受けた測点データは近くに存在するデータとの整合性に乏しく、こ のため高周波数域の見掛比抵抗分布において、その分布を乱す傾向を示すことが多い。 これに対して、TDEM のデータは二次磁場であるため、局所的な地下浅部の比抵抗異常体や地形の影響を受けにくいとされている(理論的には局所的な地下浅部の比抵抗異常体や地形の影響は主に電場に影響を与える)。また、一般的に TDEM 探査データは地表下 300 m 程度までの比抵抗情報を MT 探査データより詳細に把握することが可能である。このため、Paka 地熱地域で取得された MT 探査データのスタティックシフト補正に TDEM 探査データを用いた。

今回の解析においては、以下の方法により各測点におけるスタティックシフト補正を実施した。

- a) TDEM 探査データを用いた一次元層構造解析を実施して、比較的浅部(地表下 300 m 程 度まで)の比抵抗構造を解析した。
- b) a)により得られた比較的浅部の比抵抗構造を用いて、周波数 1,000Hz から 10Hz までの MT 見掛比抵抗値を算出した。
- c) b)により得られた MT 見掛比抵抗曲線と実際に測定された MT 探査データから計算した実 測見掛比抵抗曲線を重ねて表示し、MT 探査データから計算した実測見掛比抵抗曲線を b) により得られた TEM 探査データから計算された見掛比抵抗曲線に合うように上下にシフ トさせた。
- d) c)においてシフトさせた見掛比抵抗値と実測見掛比抵抗値との差異から静補正係数(スタ ティックシフト値)を算出した。

コロシ, チェプチャク地域の MT 探査データにより計算されたスタティックシフト補正値を第 MT-03 表に、また、パカ地域の MT 探査データにより計算されたスタティックシフト補正値を第 MT-04 表に示す。今回実施した 3 次元比抵抗インバージョン解析においては、地形補正及びスタ ティックシフト補正後のインピーダンス値(Zxy 及び Zyx)を入力データとして使用した。

Station	Static shift xy	Static shift yx	Station	Static shift xy	Static shift yx
BARMT02	1.188	1.138	KOR48	1.323	0.882
BarMT03	0.866	0.962	kor49	2.790	1.581
BARMT19	1.466	1.314	KOR50	2.634	1.646
BarMT31	1.166	1.115	KOR51	1.556	1.556
BARMT39	1.073	1.073	KOR52	0.674	0.898
BARMT41Ar	1.333	6.420	KOR53	4.433	6.915
KORMT03a	1.538	1.230	KOR54	1.324	0.916
KORMT09a	1.658	3.505	KOR55	1.937	1.259
KORMT13a	1.393	0.895	KOR56	0.831	0.748
KORMT14a	1.028	0.841	kor57	1.933	2.035
KorMT15a	1.150	1.150	kOR59	0.786	0.786
KORMT18A	0.909	0.808	KOR60	1.217	1.106
KORMT19a	1.175	0.784	kor61	1.186	3.235
KORMT21a	1.341	1.341	kor62	1.337	0.748
KORMT25B	0.732	1.172	KOR64	3.064	2.451
KORMT28A	0.814	1.424	KOR74R	1.001	1.041
KORMT29a	1.277	0.688	kor78	1.601	1.301
KORMT31a	1.097	1.447	KOR80	1.351	1.255
KORMT35a	0.745	1.242	KOR82	2.292	2.292
KorMT37	1.065	0.581	KOR88a	2.088	2.187
KORMT41A	1.011	1.685	KOR89	1.407	1.407
KORMT42A	1.041	1.249	KorMT01	2.154	2.997
KORMT43A	1.032	1.125	korMT02	2.341	1.658
KORMT44a	1.381	1.480	KorMT03	2.125	0.647
KORMT100	0.637	0.882	KorMT04	0.916	0.576
KORMT101	0.839	0.944	KorMT04(2)	3.018	1.107
KORMT102a	1.582	1.484	KorMT05	1.422	0.812
KORMT103	0.792	1.189	KorMT06	2.542	1.224
kormt104	1.295	0.896	KorMT07	1.181	0.885
kormt105	2.209	0.947	KorMT08	0.954	1.741
KORMT106a	1.792	1.095	KorMT09	1.383	1.284
KORMT106b	1.279	0.757	KorMT10	0.958	1.058
KORMT107	1.282	0.986	KorMT11	3.600	2.200
KorMT108	1.482	1.285	KorMT12(2)	6.499	2.315
KORMT114	0.808	0.856	KorMT13	1.012	1.114
KORMT115	1.052	1.263	KorMT14	0.860	0.765
KorMT116	1.072	0.643	KorMT15	1.363	1.635
KORMT118	1.639	0.883	KorMT15(2)	0.992	1.389
KorMT119	2.876	0.575	KorMT16	1.579	0.836
KORMT120	0.605	0.880	KorMT16(2)	1.304	1.195
KorMT121	2.346	4.692	KorMT17	1.019	1.019
KORMT122	3.537	4.653	kormt18	1.247	1.055
KORMT123	1.907	0.751	kormt19	1.067	1.334
KORMTZL	1.383	0.988	kormt20	2.355	0.631
kor03	1.210	0.943	KORMT23	1.626	1.219
kor05	0.739	1.866	kormt26a	1.241	1.448
KOR06	2.519	2.939	KORMT28	0.815	1.274
kor7	2.338	1.978	kormt31	0.793	1.990
kor11	1.213	1.011	KORMT34	0.951	0.951
kor14	1.487	0.683	kormt37	1.569	1.569
KOR17	1.680	1.867	kormt46	0.763	1.192
kor18	1.188	0.925	KORMT58	1.039	1.039
kor19	1.028	1.427	KORMT66	0.931	1.171
KOR20	0.863	0.953	kormt76	0.911	0.911
KOR21	1.369	1.369	kormtE	0.654	1.335
kor22	0.950	0.528	kormtH	1.367	1.998
KOR24	0.753	1.290	KorMTm	3.505	2.838
kor25	1.146	1.037	korMTn	1.671	1.018
KOR27	1.026	2.222	korMTs	0.962	0.642
kor29	1.931	1.931	korC	1.776	4.933
KOR30a	2.142	0.750	KORD	0.569	1.056
KOR31R	0.964	1.166	KORF	0.603	0.905
KOR32	1.314	1.142	kora	0.774	0.663
kor33	0.877	1.371	kori	0.596	0.476
kor34	1,139	1,139	KORp	0.860	0.968
KOR35	2,138	2.040	KORU	1.947	1.947
KOR36	3 597	1 609	KORMT28n	0.738	2 009
KOR38	0.482	1 446	nak28t	1 182	1 182
KOR39	0.457	1 980	nak20	1.398	1.102
kor40	1 225	0.970	DVD1	0.423	1.077
kor/1	1.333	2 300	PakMT27	2 558	2 712
KOR42	1.243	2.309		2.000	0.608
KOD12	1 /01	1 026	nakMT24	2 12/	1 800
kor44	0.720	1.020	μακινιτο4	1 000	1.000
	4 222	1.004	PANAIVI132	1.000	1.100
KOR 43	4.223	1.004	μακαπτ33	0.332	0.000
KUK47	2.298	2.941	1		

第 MT-03 表 スタティックシフト補正係数一覧表 (コロシ地域-チェプチャク地域)

Station	Static shift xy	Static shift yx	Station	Static shift xy	Static shift yx
PAK27	2.379	2.577	PakMT05	2.741	5.482
pak28t	2.079	2.079	PakMT06	1.185	1.137
pak29	1.587	1.904	PakMT07	1.455	1.662
PAK30	0.207	0.166	PakMT09	1.537	1.537
PAK31	0.604	1.509	PakMT12	0.827	0.786
PAK32	1.423	1.708	PakMT14	1.083	1.131
PAK33	0.549	0.998	Pakivi 115 PakMT18	2.087	1.134
PAK35	1 411	1.663	PakMT20	0.862	1.042
PAK36	1.624	1.147	PakMT21	1.026	1.077
pak37	0.363	0.311	PakMT22	1.270	1.752
PAK38	4.453	2.163	PakMT23	0.921	1.439
PAK39	1.841	1.595	Pak102	1.482	2.646
PAK40	3.259	4.345	PAKCRT1	0.820	1.383
PAK41	2.001	2.477	pkmt54R	3.118	1.559
PAK42	0.702	0.439	PAK13	0.497	0.994
	1.032	0.928		1.681	1.978
PAK45	0.979	1.720	PAK43R	0.809	1 163
PAK46	2.213	0.719	PAK50RR	0.710	1.466
PAK47	2.348	6.574	PAK55RR	1.843	1.570
PAK48	1.327	1.837	PAK60	1.086	0.802
PAK49	1.324	0.662	Pak99a	1.408	1.056
PAK51	0.734	0.596	PAK100R	2.311	2.512
PAK52	1.045	0.889	PAK107	1.093	0.519
pak53	1.949	3.118	PAK108	1.180	2.486
PAK55R	5.129	2.137	PAK109	0.537	0.831
PAK57	1.300	4.179	PAK121	0.000	0.000
PAK58	1 520	2.000	PAK134	1 0.37	1.320
PAK59	2.924	2.339	PAK135	1.115	1.540
PAK60	1.418	1.229	PAK145	1.309	1.164
PAK61	1.386	2.033	PAK145B	1.096	0.548
PAK62	1.971	1.689	PAK145C	2.680	1.787
PAK63	0.936	4.212	PAK149A	0.967	0.870
PAK64	3.695	0.924	PAK159	0.964	1.065
PAK65	1.589	1.873	PAK162	1.834	2.344
PAK66	1.733	0.476	PAK181	2.906	3.487
PAK68	2.073	1.625	PAK190C	2 102	2 417
PAK69	1.700	0.850	PAK263	1.135	1.014
PAK70	0.744	1.163	PAK400	0.859	1.050
PAK71	2.369	1.545	PAK404	0.832	1.300
PAK72	1.131	0.668	PAKA41R	2.072	2.072
PAK73	2.102	1.911	PAKC9	1.164	1.164
PAK74	1.575	0.788	PAKCRT3	3.158	5.024
PAK75	0.896	1.394	PAKE3	1.601	1.201
PAK76	1.066	1.357	PAKM103R	1.909	2.311
	1.594	5.517	PK47A	2.083	0.932
PAK79R	2.079	2 970	PK101B	3.646	0.938
PAK80	1.178	0.785	PK125	1.383	2.028
PAK81	1.603	1.106	PK129	1.117	3.033
PAK82	0.821	1.314	PK138	1.510	1.342
PAK83	1.491	2.621	PK139	1.295	1.657
PAK84	1.301	2.914	PK140	1.494	1.892
PAK85	1.234	1.646	PK154	0.846	0.935
PAK86	1.016	1.016	PK154A	1.196	1.196
PAK8/	0.725	1.315	PK1540	0.952	0.862
PAKROP	2 425	1.710	nk162a	2.017	2 402
PAK90	2.387	3,938	PK402	0.890	0.890
PAK91	4.324	3.075	PKA	1.796	1.524
PAK92	1.539	1.624	PKA2	1.957	1.957
PAK93	2.736	2.105	PKA4	1.656	1.405
PAK94R	0.660	0.508	pkc4	1.362	1.412
PAK95	0.867	1.020	PKd	0.796	0.885
PAK95b	0.759	1.366	PKE4	0.805	0.890
PAK97	0.924	1.017	PKE6	1.008	0.912
PAK98	2.338	2.542	KOTIVI 101K	1./16	2.080
PAK100	4 294	0.791	pk492 pk493	2.950	0.130
PAK101	1.411	7.589	pk501	1.492	1.492
PAK103	0.953	1.049	pk508	0.086	0.774
PAK104	0.705	1.258	pk512	0.939	1.490
PAK105B	0.680	1.569	pk540	0.936	1.498
PAK106r	3.088	0.655	pk541	2.395	1.916
PakMT01	0.863	0.911	pk543	4.903	2.302
PakMT03	1.890	1.155			1

第 MT-04 表 スタティックシフト補正係数一覧表 (パカ地域)

4. 3次元比抵抗構造解析

1) Concept of 3D Resistivity Modeling

1)3次元モデリング解析の概要

3次元比抵抗モデリングは第2図に示すようなキューブ状の比抵抗ブロックを用いた差分法に より電場及び磁場の計算を行い、3次元の比抵抗モデルから算出される各測点における南北方向 及び東西方向のインピーダンス値と実際の測定により得られた各測点の南北方向及び東西方向の インピーダンス値を数学的にマッチングさせることにより、地下の比抵抗構造を解析する方法で ある。この3次元比抵抗インバージョン解析により、1次元層構造解析や2次元比抵抗構造解析 から得られる比抵抗構造に比べて、より精度の高い地下比抵抗構造が把握できることが期待され る。

2) 3 次元フォワード計算

電磁場のフォワード計算においては、地下構造を多数の小さな比抵抗ブロックに分割すること によって計算精度を向上させる。

大地及び大気中の電磁場は、以下に示すマックスウェルの方程式で表現される。

$$abla \times E = i \omega \mu H$$
(1)

 $abla \times H = \sigma E$
(2)

但し、

 $\omega : 角周波数 (=2 \pi f)$

 $\mu : 大地の透磁率 (=4 \pi \times 10^{-7})$

 $\sigma : 大地の電気伝導率 (mho)$

但し、変位電流は無視できるものとしている。上式(1)及び(2)から

$$\nabla \times (\nabla \times H) = \nabla \times \sigma E = \sigma \times \nabla \times E = k^2 H$$
(3)

$$\nabla \times (\nabla \times E) = \nabla \times i\omega\mu H = i\omega\mu \times \nabla \times H = k^2 E$$
(4)

但し、

 $k^2 = i\omega\mu\sigma$

となる。ここで $k^2 = i\omega\mu\sigma$ である。H を直交座標系の成分 Hx, Hy, Hz に分解すれば、(3)式は以下のようになる。

$$\partial^{2}Hx/\partial y^{2} + \partial^{2}Hx/\partial z^{2} - \partial^{2}Hy/\partial x\partial y - \partial^{2}Hz/\partial x\partial z - k^{2}Hx = 0 \partial^{2}Hy/\partial x^{2} + \partial^{2}Hy/\partial z^{2} - \partial^{2}Hx/\partial y\partial x - \partial^{2}Hz/\partial y\partial z - k^{2}Hy = 0 \partial^{2}Hz/\partial x^{2} + \partial^{2}Hz/\partial y^{2} - \partial^{2}Hx/\partial z\partial x - \partial^{2}Hz/\partial z\partial y - k^{2}Hz = 0$$

$$(5)$$

$$\partial^{2} Ex / \partial y^{2} + \partial^{2} Ex / \partial z^{2} - \partial^{2} Ey / \partial x \partial y - \partial^{2} Ez / \partial x \partial z - k^{2} Ex = 0 \partial^{2} Ey / \partial x^{2} + \partial^{2} Ey / \partial z^{2} - \partial^{2} Ex / \partial y \partial x - \partial^{2} Ez / \partial y \partial z - k^{2} Ey = 0 \partial^{2} Ez / \partial x^{2} + \partial^{2} Ez / \partial y^{2} - \partial^{2} Ex / \partial z \partial x - \partial^{2} Ez / \partial z \partial y - k^{2} Ez = 0$$

$$(6)$$

スタッガード格子を用いた差分法(第2図参照)を利用して(6)式を解くと、各格子における電場成分(*Ex*, *Ey* 及び *Ez*)を計算することが可能となる。

上記、(6) 式に示す3つの式を同時に解くに当たって、3次元比抵抗モデルの境界における電場の値を設定する。設定にあたっては、一次元層構造比抵抗モデルにより解析的に求まる電場の値を利用した。すなわち、一次元層構造比抵抗モデルから解析的に求まる電場の値を3次元比抵抗モデルの側面境界に設定した。更に、地表から上空側に7層の空気層を設定し、この空気層は地表から離れるに連れて大きな層厚を有すように設定を行った。なお、この空気層には10⁶ ohm-mの比抵抗を与え、最上部には一次元層構造比抵抗モデルから解析的に求まる磁場の値を設定した。また、3次元比抵抗モデルの底面境界にも、同様に一次元層構造比抵抗モデルから解析的に求まる電場の値を設定した。今回の3次元比抵抗モデル計算においては、地形を考慮に入れていない比抵抗モデルを用いているが、入力データに前述した地形補正を施している。

上記(6)を解くことにより電場の値 (*Ex, Ey* 及び *Ez*) が算出されれば、(1) 式を用いることによって、磁場の値 (*Hx* 及び *Hy*) を求めることができる。ここで、二つの極性における電場及び磁場を それぞれ Ex1, Ey2, Hx1, Hy1 及び Ex2, Ey2, Hx2, Hy2 とすると、最終的に以下の式を用いること によって、インピーダンス値を算出することが可能となる。

Zxy = (Ex2 x Hx1 - Ex1 x Hx2) / (Hx1 x Hy2 - Hx2 x Hy1)Zyx = (Ey1 x Hy2 - Ey2 x Hy1) / (Hx1 x Hy2 - Hx2 x Hy1)(7)

第 MT-02 図 スタッガード格子の概念図(Sasaki, Y., 1999)

3) 3次元インバージョン解析

本解析で用いた3次元比抵抗インバージョン計算には、キューブ状の比抵抗ブロックの比抵抗 値を求めるパラメータとした平滑化制約付き最小二乗法を利用している。但し、3次元比抵抗イ ンバージョン計算においては、データスペース法を用いて解くべきパラメータ数を減少させるこ とにより、通常のモデルスペース法と比較して高速な計算を実施している。また、ヤコビアン行 列(比抵抗モデルパラメータを変化させた時のインピーダンス値の変化率を表わす)は反復計算 毎に求めている。

本インバージョン解析では、非線形最小自乗法を適用して以下に示す関数 W(m)を最小化する ことにより、各比抵抗ブロックの比抵抗値を求めた。

 $W(m) = (m - m_0)^T C_m^{-1} (m - m_0) + \lambda^{-1} ((d - F(m))^T C_d^{-1} (d - F(m)))$ (8)

ここで m は比抵抗ブロックの比抵抗値、 m_0 は比抵抗ブロックの初期比抵抗値、 C_m は比抵抗モ デル共分散行列、d は実測値(インピーダンス成分、Zxy, Zyx)、 C_d はデータ共分散行列、F(m)は各比抵抗ブロックの比抵抗値からインピーダンス成分を算出する非線形関数である。関数 W(m)の右辺第 2 項は実測データと計算データの差異を示し、右辺第 1 項は 3 次元比抵抗モデル と比抵抗モデル初期値との差異を示している。また、変数 λ はラグランジェ乗数と呼ばれ、右辺 第 1 項(3 次元比抵抗モデルと比抵抗モデル初期値との差異)と右辺第 2 項(実測データと計算 データの差異)の重みを変化させる係数である。大きな λ を用いれば、右辺第 1 項(3 次元比抵 抗モデルと比抵抗モデル初期値との差異)に大きな重みが与えられるため、滑らかな比抵抗モデ ルを得ることが可能となる。また、小さな λ を用いれば、右辺第 2 項(実測データと計算データ の差異)に大きな重みが与えられるため、実測データと計算データの差異は小さくなるが、しば しば比抵抗変化のでこぼこしたモデルが得られることになる。比抵抗モデル共分散行列 C_m は得 られる比抵抗モデルの滑らかさと関係する行列である。

MT データのインバージョン計算は非線形性が大きいため、最終解を得るためには、非線形関数である F(m)を以下に示すようにテーラー展開を行い、反復計算を実施することが必要である。

$$F(m_{i+1}) = F(m_i + \delta m) = F(m_i) + J_i \cdot (m_{i+1} - m_i)$$
(9)

ここで、i は反復回数を示し、Ji は反復回数 i 回目におけるヤコビアン行列(比抵抗モデルパ ラメータを変化させた時のインピーダンス値の変化率を表わす、行列のサイズはデータ数×比抵 抗モデル変数の数)を示す。上記(9)式を(8)式に代入し、データスペース法を適用すれば、反復回数 i+1 回目の各比抵抗モデル修正量は以下の式により求めることが可能である。

$$m_{i+1} - m_0 = C_m J_i^T C_d^{-1/2} [\lambda I + Cd_d^{-1/2} J_i C_m J_i^T C_d^{-1/2}]^{-1} x [d - F(m) + J_k(m_{i+1} - m_0)]$$
(10)

実測データ(インピーダンス成分)とスタッガードグリッドを用いた差分法により計算される 値(インピーダンス成分)の残差二乗和が十分小さくなるまで、(10)式の繰り返し計算を行えば、 3 次元比抵抗構造モデルの最終解(m_{i+1})を得ることができる。通常、比抵抗モデル変数の数は データ数と比較して多いため、本解析においては Siripunvaraporn (2005)に紹介されているデータ スペース法を用いることでコンピュータ上での計算速度を向上させている。なお、3 次元インバ ージョンにおける入力データにおいては、各比抵抗ブロックの初期値を均質(見掛比抵抗値の平 均値)とした。

5. 地熱地域における比抵抗構造

一般に電気探査や電磁探査によって得られる地熱地域の地下比抵抗構造は、下のような特徴を 示す。

- ▶ 顕著な比抵抗不連続示徴が存在し、この示徴がある方向性を持って連続する。また、比 抵抗不連続線周辺で比抵抗基盤域の隆起構造が認められる(このような高比抵抗基盤の 隆起構造は深部に存在する貫入岩体を反映することがある。また、この高比抵抗基盤の 隆起部の上部に顕著な低比抵抗域が分布する場合には、この高比抵抗基盤の隆起構造は 高温で形成される熱水変質帯を反映していることが多い)。このような比抵抗不連続構 造は断層や断層周辺に存在する破砕帯等の断裂構造を反映することが多い。
- ▶ 低比抵抗ゾーンの比抵抗値が、比抵抗不連続構造周辺で特に低い値を示す。この低比抵抗ゾーンは、スメクタイトや混合層粘土鉱物等の熱水変質帯を反映し、地熱貯留層の帽岩の役割を担っていることが多い(第 MT-03 図中のρ。で示す箇所である)。低比抵抗ゾーンの比抵抗値が、比抵抗不連続構造周辺で特に低い値を示す。この低比抵抗ゾーンは、スメクタイトや混合層粘土鉱物等の熱水変質帯を反映し、地熱貯留層の帽岩の役割を担っていることが多い(第 MT-03 図中のρ。で示す箇所である)。
- 多くの地熱地域では、深部の高温域は低比抵抗域の下部に位置する相対的な高比抵抗域内に存在する。また、この箇所(比抵抗基盤内)では、深部高比抵抗域の隆起構造が認められる。この高比抵抗域の隆起構造は、比較的浅部で生成するスメクタイトや混合層粘土鉱物等の変質帯よりも更に高温で生成するイライトや緑泥石等の変質帯の割合が高くなるために形成されるものと推定される。

第 MT-03 図 地熱貯留層周辺における比抵抗構造概念図

火山地帯における地熱貯留層は、一般的に断層あるいは断層に沿った破砕帯等に起因する断裂 系に沿って発達している場合が多く、この場合、地熱貯留層の熱水の一部が断裂沿いの破砕ソー ンを上昇し、地熱貯留層の上部にスメクタイトや混合層粘土鉱物等から成る熱水変質帯を形成す ることが多い。この熱水変質帯(スメクタイト、混合層粘土鉱物等)は概略 70℃から 200℃の温 度条件で生成することが多く、低い比抵抗値を示すため、地熱地帯で得られる低比抵抗ゾーンは 第 MT-03 図に示すように、地熱貯留層の上位に位置し、帽岩の役割を担う熱水変質帯を反映し ているものと考えられる。このため、地熱貯留層は断層周辺で、上位に低比抵抗ゾーンが分布し ている深部高比抵抗域の隆起部内に存在することが多い。

上記のことから、比抵抗構造から地熱開発のターゲット地点を選定する場合には、低比抵抗ゾ ーンの情報のみでなく、その他、断層等の断裂構造や地質構造、水理構造等を加味して検討する 必要がある。

6. 解析比抵抗平面分布図

3 次元比抵抗インバージョン解析の結果得られたコロシ、チェプチャク地域の深度毎の解析比 抵抗分布平面図を第 MT-04 図から第 MT-16 図に、また、パカ地域の深度毎の解析比抵抗分布平 面図を第 MT-17 図から第 MT-29 図に示す。

第 MT-04 図 解析比抵抗平面分布図(深度 100m, コロシ地域-チェプチャク地域)

第 MT-05 図 解析比抵抗平面分布図(深度 200m, コロシ地域-チェプチャク地域)

第 MT-07 図 解析比抵抗平面分布図(深度 500m, コロシ地域-チェプチャク地域)

第 MT-08 図 解析比抵抗平面分布図(深度 750m, コロシ地域-チェプチャク地域)

第 MT-11 図 解析比抵抗平面分布図(深度 1,500m, コロシ地域-チェプチャク地域)

第 MT-13 図 解析比抵抗平面分布図(深度 2,500m, コロシ地域-チェプチャク地域)

第 MT-15 図 解析比抵抗平面分布図(深度 4,000m, コロシ地域-チェプチャク地域)

第 MT-17 図 解析比抵抗平面分布図(深度 100m, パカ地域)

第 MT-23 図 解析比抵抗平面分布図(深度1,250m,パカ地域)

