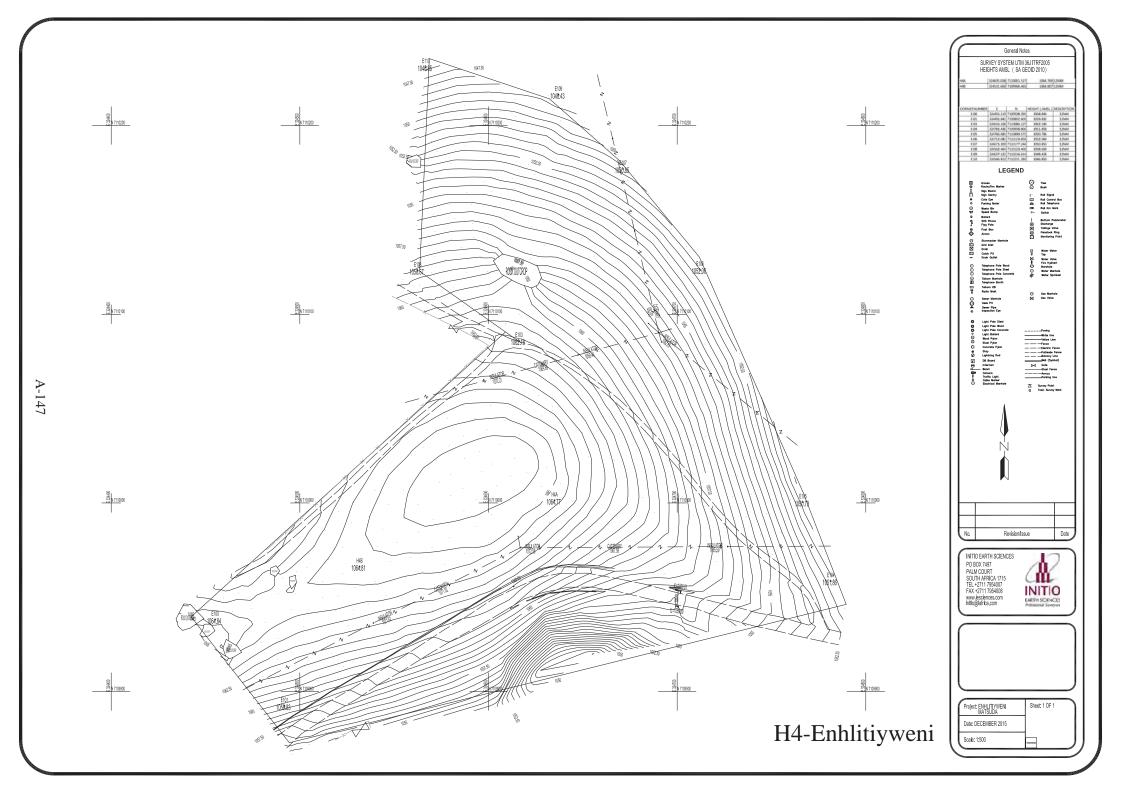
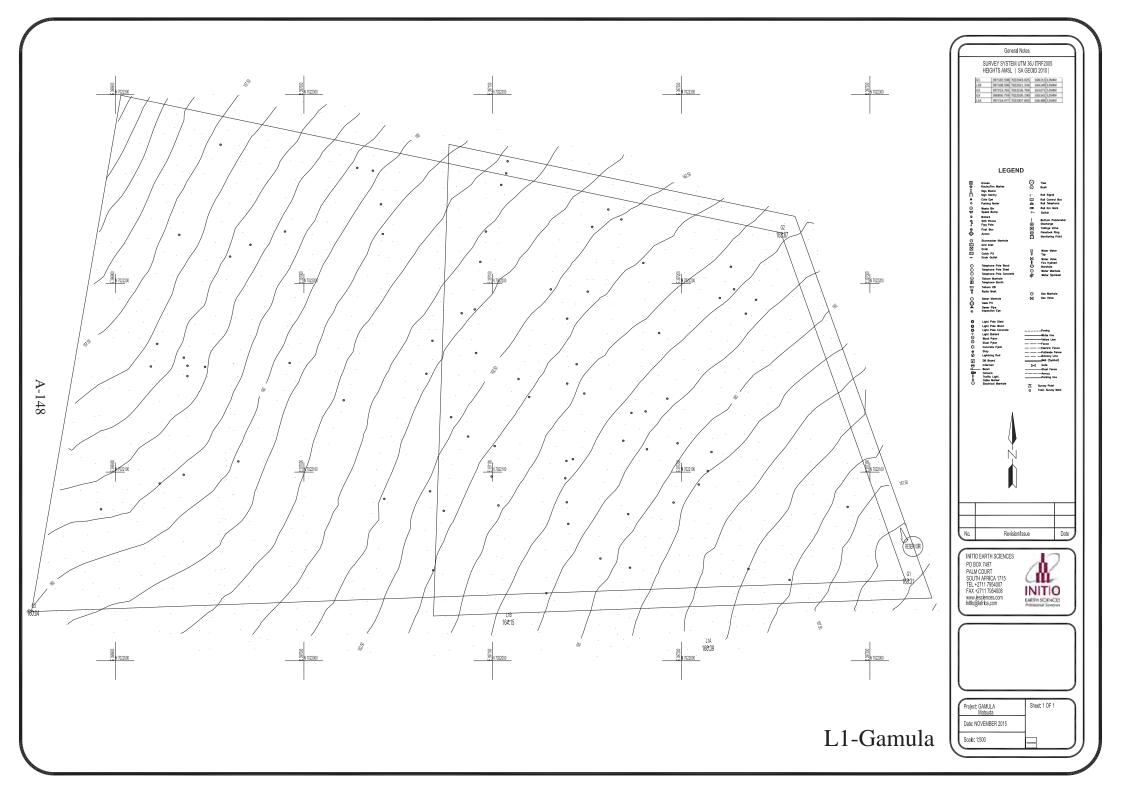

5. 参考資料


番号	資料名	形態	発行年	発行機関
1	National Development Strategy, Vision 2022	電子北ー	1997 年	Govt. of Swaziland
2	Smart Programme on Economic Empowerment and Development	電子北。-	2005年	Govt. of Swaziland
3	Poverty Reduction Strategy and Action Plan	電子北。-	2007 年	Govt. of Swaziland
4	Ministries' Action Plans to 2018 and 2022	電子北。-	_	Govt. of Swaziland
5	National Education and Training Improvement Programme	電子北。-	2011 年	MoET
6	Free Primary Education Act of 2010	電子北。-	2010年	MoET
7	The Swaziland Education and Training Sector Policy	電子北。-	2011 年	MoET
8	SEN Statistics 2015	電子北。-	2015 年	MoET
9	School guide regulation procedure	印刷物	1978年	MoET
10	International General Certificate of Secondary Education (IGCSE) Consultative document 2005	印刷物	2005年	MoET
11	SGCSE Design and Technology Syllabus 6902 November 2015 and November 2016 Examinations	電子北。-	2015年	MoET
12	Swaziland's curriculum for the 21th century Curriculum framework discussion document	印刷物	2014年	MoET
13	List of potential suppliers of school furniture	印刷物	2015 年	MoET
14	Tender Documents 192 of 2015/16 Invitation to tender for the supply and delivery of school furniture for selected primary and secondary schools throughout the country	印刷物	2015 年	MoET
15	Environment Management (Act No.5 of 2002)	電子パー	2002 年	SEA
16	Environmental Audit, Assessment and Review Regulations	電子北。-	2000年	SEA
17	Public Procurement Regulations	電子パー	2015年4月	SPPRA
18	Public Procurement Procedures	電子パー	2016年	SPPRA
19	The value added tax act, 2011 (Act No. 12 of 2011) The value added tax regulations, 2012	電子北。-	2012年	SRA
20	Swaziland National Standard Building construction – Accessibility and usability of the built environment (SZNS ISO 20154 :2011)	書籍	2015 年	Swaziland Standard Authority
21	Swaziland Schools 2010	地図	2010年	Surveyor General's Department
22	Establishment Circular Number1 of 2016 Implementation of the revised salary grading and pay structure for government established positions emanating from the salary review exercise 2016/17	印刷物	2016年7月	Ministry of Public Service
23	List of registered company	電子コピー	2015 年	CIC
24	Swaziland Protected Area Map	電子北。-	—	Swaziland National Trust Commission


- 6. その他の資料・情報
- 6-1 敷地測量図

A-146

6-2 地盤調査結果

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – BOYANE

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

CIVIL ENGINEERING LABORATORY

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

A-150

TABLE OF CONTENTS

GEOTECHNICAL REPORT - BOYANE
1.0 INTRODUCTION2
2.0 SCOPE OF WORK2
3.0 SITE DESCRIPTION2
Location and Topography2
Rainfall and Drainage2
Access
4.0 GENERAL GEOLOGY OF SITE
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING
Methods of Investigation and Testing3
6.0 INTERPRETIVE INFORMATION6
Site Stratigraphy6
Materials6
Engineering Geological Evaluation7
7.0 CONCLUSION AND RECOMMENDATIONSError! Bookmark not defined.
GENERAL NOTES ON THE REPORT10
APPENDIX A11
APPENDIX B15

GEOTECHNICAL REPORT - BOYANE

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Boyane, central Swaziland, where the proposed Boyane High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Boyane High School is to be built in a gentle sloping site facing north. The site is located at Boyane, an area past Ludzeludze, next to Boyane Primary School. Part of the area is the garden and football pitch of the primary school. The rest of the area lies outside the Boyane Primary School in an area currently used a grazing land. It is vegetated by indigenous grass cover and iron wood trees and some wattle trees.

Rainfall and Drainage

Boyane is an area located in the Middleveld climatic zone of the country. It has a 720m elevation with summer rainfall received between October and March. The average annual rainfall is 600mm with a temperate climate. Winters are generally harsh and known to experience frost.

The Boyane area has no watercourse way running through it. Off site there is a small stream that drains the area. Water supply in the area is through an established rural water scheme. Alternative water can be sourced through drilling for underground water.

Access

Boyane is easily accessible along the way from Manzini to Mbekelweni. The area is about 2km from the tar road after a turnoff at Soweto area. It is accessed through a dusty distributor road with no wearing course.

4.0 GENERAL GEOLOGY OF SITE

The proposed school site is underlain by granodiorite, a medium to coarse grained crystalline rock. Its composition varies from quartz diorite to hornblende granodiorite to biotite granodiorite. The granodiorite suite has been intruded by small fairly localized diabase dykes. They trend approximately north to south or east to west, which corresponds to the general tectonic trends of the region. The granodiorite suite can also be associated with the intrusion of quartz veins which often indicate the presence of tectonic faulting.

Depth to granodiorite bedrock can be highly variable and can be expected to be overlain by a weathered rock to soil derived from complete weathering of the bedrock. This soil profile can in itself be overlain by soils of colluvial origin, typically, gravity transported in the site.

A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 12 (2631 AD) published by the Swaziland Geological Survey Department

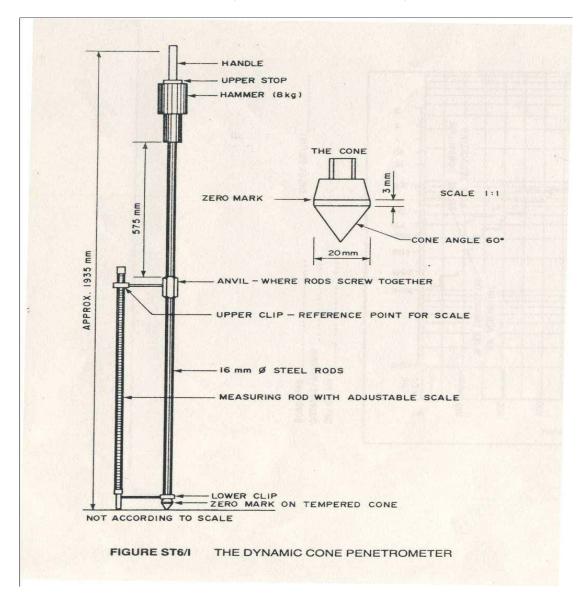
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits

Two Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.4m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.


All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded

and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

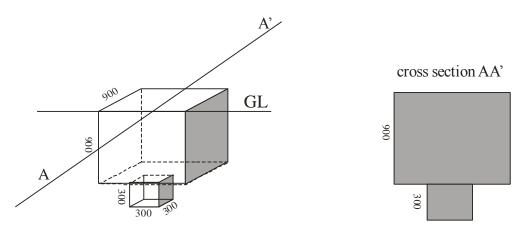
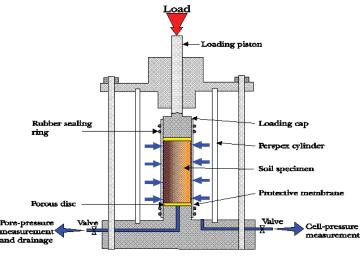


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed

or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

Triaxial apparatus

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

The stratigraphy of the Boyane High School site can be summarized as colluvial and residual soils.

Colluvial soils on the site generally consist of some 300mm thick layer of slightly moist slightly moist, dark brown soft to dense topsoil. In Trial Pit 453 some 1280mm colluvial layer was intercepted below the top soil and consists of moist, dark red, slightly dense, sandy clay. This layer lies directly above residual layer from the weathering of the granodiorite suite.

The residual soils are derived from complete in-situ weathering of the granodiorite suite expected underneath. In this site the granodiorite was not encountered. The soils are moist, soft and intact silt-clay. The dark red soil in profile shows colour variation from light yellowish orange/ dark red/ light reddish orange to light red/ light reddish brown/ dark yellow.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	ΡI	Shrinkage	Soil Class AASHTO
452	0.5-2.0	Residual granodiorite	16.3	46	10	4	A-7-5(7)
453	1.6-2.4	Residual granodiorite	14.0	48	16	7.5	A-7-5(10)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is expected that the groundwater table will occur at depth at the fresh rock soil interface.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Boyane High School site with unconsolidated undrained (UU) shear strength (c_u) of between 424kPa and 1100kPa display allowable bearing capacity of between an estimated 727kPa and 1886kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development. From the field Dynamic Cone Penetrometer (DCP) tests, for most of the tests positions, it reveals safe bearing capacities above 79kPa for single story buildings. For most of the test positions, at depths >1.2m, the bearing capacities of the soil drops below this threshold to some 52kPa and below. However, for test positions DCP 8 and 9 the low bearing capacities of 52kPa are reached at shallow depths (600mm). This has to be taken into consideration during designing the foundation.

Based on the above field test, the residual soil is relatively homogenous, save for the last three tests site and buildings can be founded at depths of 800 to 1000mm as it is below the colluvial soil.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.4m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits which further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Boyane is in central part of Swaziland and falls outside this area. The South African "loading" code, SABS 0160-4:2011, shows that Boyane is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is some 100 cm/sec².

The soil profile of the site can be described as slightly soft, intact, silt-clay with shear strength between 424 and 1100kPa c_u . The contrasting identified ground types in accordance with the consolidated undrained shear strength and soil profile, type 2 and 3 respectively, indicates that the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be taken as no water seepage was experienced in any of the Trial Pits and no problem of dampness is thus expected.
- The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The allowable bearing capacity of the sand clays is estimated at 727kPa and silt clays at 1886kPa. This is safe to establish a foundation on the site for any building structure.

Field and laboratory test recommend that foundations be placed on the residual soil, at depths of 800 to 100mm, on the weathered granodiorite.

From the other Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

• Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

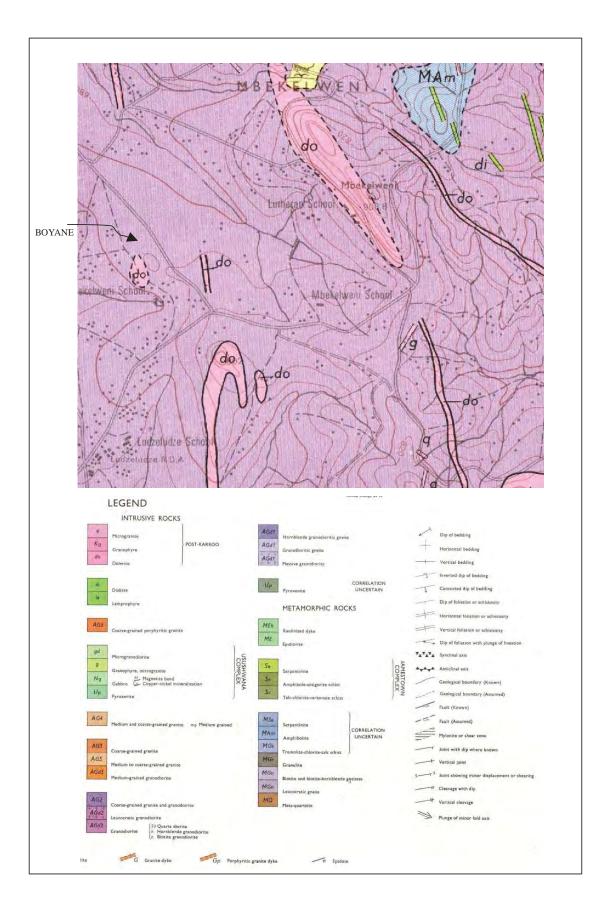
The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions

Noah Nhleko BSc (Biology & Chemistry); PhD Geology

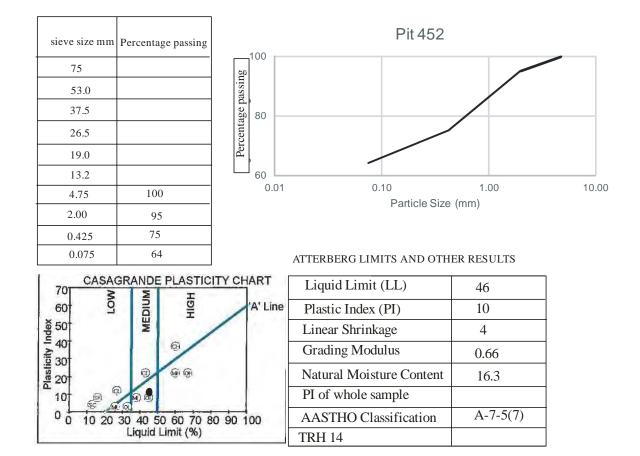
APPENDIX A


A) Tractor Loader Backhoe (TLB)

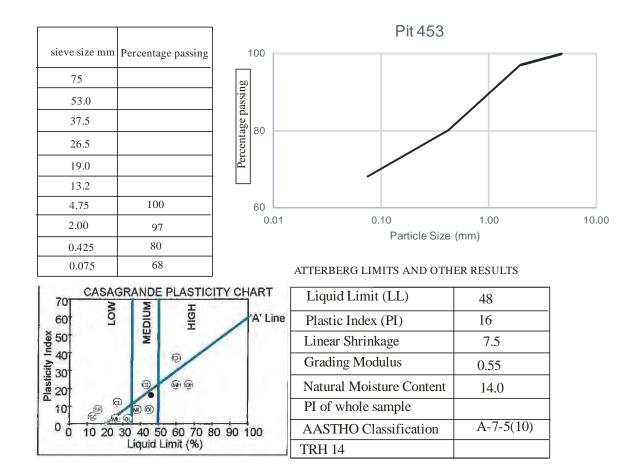
B) Typical Trial Pit

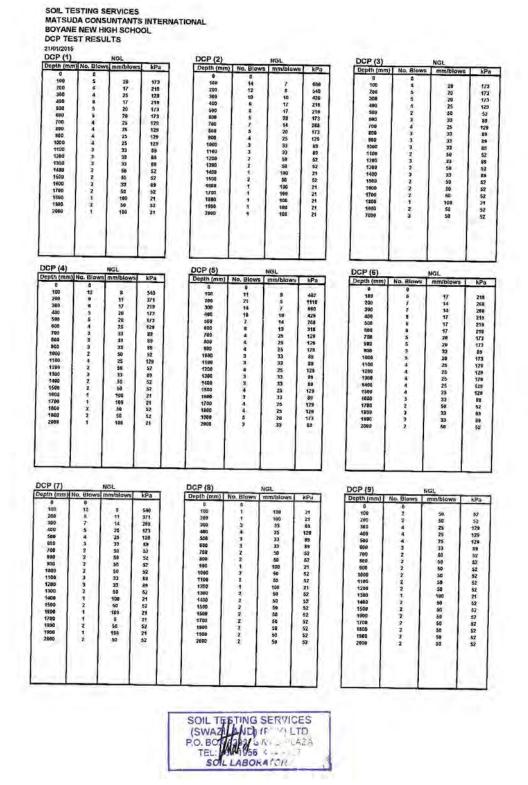
429	S26 26.278 E31 18.315	Reference of boundary point	Boundary Point	Latitude / Longitude	Note
431	S26 26.216 E31 18.313	Ditto	439	1000 00 000 000 000	Reference of boundary point
433	S26 26.056 E31 18.147	Ditto	441	526 26.285 E31 18.190	Ditto
435	S26 26.062 E31 18.135	Ditto			Ditto
437	S26 26.145 E31 18.137	Ditto	_		

A-163



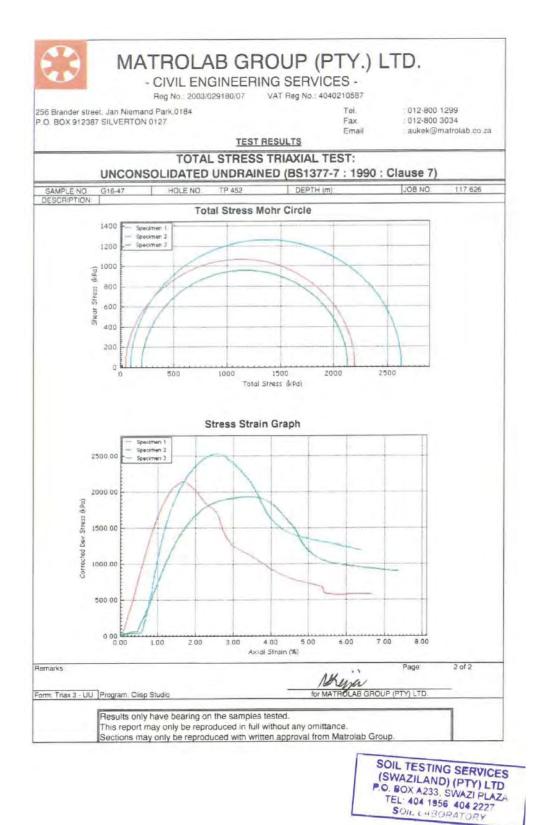
APPENDIX B


Projec		Trial Pi	t No.		Loca	ation		Date		
	consultants	TP 452	2		Boyane				04/12/2016	
Mater	ial and Soil	Description		I						
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture	
	Topsoil		520	0-520		dark browr			moist	
Soil Horizons	silt-clay, h Granodio	ighly weathered rite	1480	520-2000		dark red Inprofile, light red/ light reddish brown/ dark yellow.	slight	ly soft, intact	Moist	

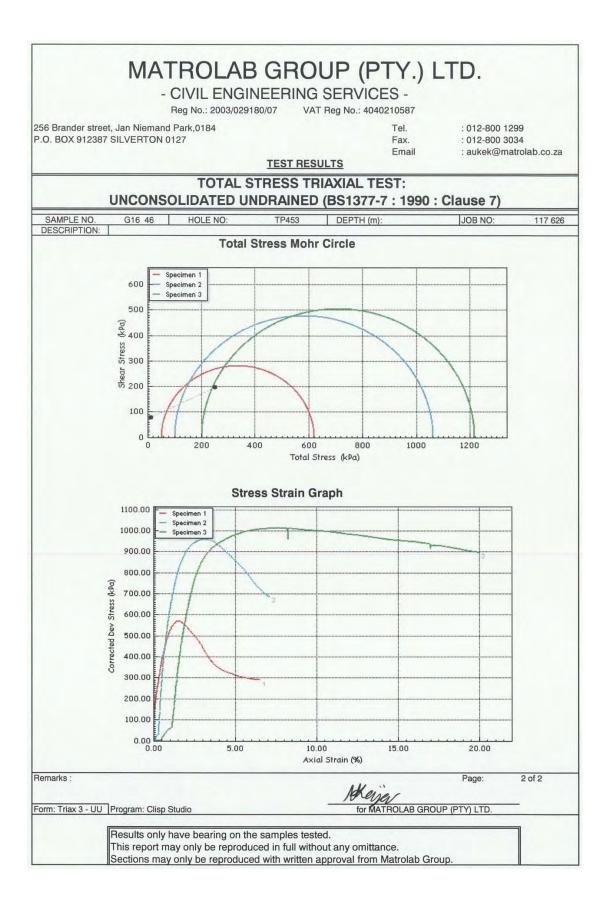

Projec		Trial Pi	t No.		Loca	ation		Date	
	consultants ional Ltd	TP 453	3		Boy	yane		016	
Mater	rial and Soil	Description		I					
Layer	Stratig	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		300	0-300		dark browr	L		slightly moist
Soil Horizons	sandy c	lay	1280	300-1580		dark red	sligh	tly dense	Moist
	silt-clay, highl Granodiorite	y weathered	820	1580-2400		dark red Inprofile, light yellowis orange/ dark red/ light reddish orang	sh	ly soft, intact	moist

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 452	Date		
Project	Boyane High School	Sample Depth		Client		

FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 453	Date	
Project	Boyane High School	Sample Depth		Client	



A-170


The hole was used for PERCOLATION investigation (2) The hole was used for PERCOLATION investigation	MATSUDA CONSULTANTS INTERNATIONAL BOYANE NEW HIGH SCHOOL BOYANE Id influence of running/standing/scosenal water ce of nussual land use(mining/fill) INOTES IN AND PREPARED BY A HAND SPADE was used to excited the hole, a hole was used for PERCOLATION meetigation And was used for PERCOLATION meetigation	HOLE 2 NOTES (1) A TLE AND PREPARED BY A HAND SPADE was user (2) The hole was used for PERCOLATION Investigation (3) The hole was preased the day before and seak for 25	
HOYAE: antial influence of running/scooonal water kence of nunxual land uceriming/fill) CF1 NOTES ATUR AND PREPARED BY A HAND SPADE was used to excinnile the trols. The hois was used for PERCOLATION investigation he how was prescribed the day before and a data for 24 HRS This hole has a very good seepage suilable for french drain HOLE 1 Presoaking Time (24hrs) HOLE 1 Presoaking Time (24hrs) HOLE 2 Presoaking Time (24hrs) HOLE 1 Presoaking Time (24hrs) HOLE 2 Presoaking Time (24hrs) HOLE 1 Presoaking Time (24hrs) HOLE 2 Presoaking Time (25hrs) HOLE 3 A 0 0 10.0 30 4.0 10.	SIDYARS:	HOLE 2 NOTES (1) A TLE AND PREPARED BY A HAND SPADE was user (2) The hole was used for PERCOLATION Investigation (3) The hole was preased the day before and seak for 25	
Instal influence of running /standing/seconal water Instal influence of running /standing/seconal water Instal influence of running /standing/seconal water Interview of running /standing	Lal influence of running /standing/scosenal water ce of nunsual land use(mining/fill) IN AND PREPARED BY A HAND SPADE was used to excinate the hole. a hole was used for PERCOLATION meetigation hole was used for PERCOLATION meetigation.	 A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 	
Initial influence of running /standing/seconal water ence of nunsual land used/mining/fill) HOLE 2 NOTES 1 NOTES (1) A 118 AND PREPARED BY A HAND SPADE was used to procurvate the hole. The hole was used for PRECOLATION Investigation the hole was presented for PRECOLATION Investigation ex Hole was presented the day before and and seak for 24 HRS his hole frame of the free COLATION Investigation (2) The hole was used for PRECOLATION Investigation (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day before and seak for 2 (2) The hole was presented the day befor	Lal influence of running /standing/scosenal water ce of nunsual land use(mining/fill) IN AND PREPARED BY A HAND SPADE was used to excinate the hole. a hole was used for PERCOLATION meetigation hole was used for PERCOLATION meetigation.	 A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 	
Dec of unusual land use(mining/hill) HOLE 2 NOTES F NOTES TITR AND PREPARED BY A HAND SPADE was used to exclusive the hole. (1) A T IB AND PREPARED BY A HAND SPADE was used for PERCOLATION Investigation TITR AND PREPARED BY A HAND SPADE was used for PERCOLATION investigation (2) The hole was used for PERCOLATION Investigation In ADLE 1 Presoaking Time (24hrs) (2) The hole was used or PERCOLATION Investigation DEPTH TIME SEEPAGE mm Minutes mm/min. 0 0,0 0,0 10 2,0 5,0 50 8,0 10,0 30 4,0 10,0 50 8,0 10,0 50 8,0 10,0 50 8,0 10,0 50 8,0 10,0 100 12,0 7,5 1100 16,0 12,0 1101 16,0 12,0 1102 12,0 7,5 1103 16,0 10,0 1104 16,0 10,0 1105 16,	cc of unusual land use(mining/fill) I NOTES IT AND PREPARED BY A HAND SPADE was used to extravate the hole. In boils was used for PERCOLATION investigation Nois was presolved the day before and and soak for 24 HRS	 A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 	
Description HOLE 2 NOTES F1 NOTES HOLE 2 NOTES TLT AND PREPARED BY A HAND SPADE was used to excinvite the hole. HOLE 2 NOTES TLT AND PREPARED BY A HAND SPADE was used to excinvite the hole. HOLE 2 NOTES TLT AND PREPARED BY A HAND SPADE was used to excinvite the hole. (2) The hole was used for PERCOLATION investigation. HOLE 1 Presoaking Time (24hrs) (2) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (3) the hole was used for PERCOLATION investigation. 10 2.0 5.0 (4) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (4) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (5) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (2) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (2) The hole was used for PERCOLATION investigation. 10 0.0 0.0 (2) The hole thas a good seepage suilable for french date 100 10.0 10.0 10.0 10.0 10 10.0 10.0 10.0 10.0 <td>cc of unusual land use(mining/fill) I NOTES IT AND PREPARED BY A HAND SPADE was used to extravate the hole. In boils was used for PERCOLATION investigation Nois was presolved the day before and and soak for 24 HRS</td> <td> A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 </td> <td></td>	cc of unusual land use(mining/fill) I NOTES IT AND PREPARED BY A HAND SPADE was used to extravate the hole. In boils was used for PERCOLATION investigation Nois was presolved the day before and and soak for 24 HRS	 A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 	
T.T.F. AND PREPARED BY A HAND SPADE was used to exercise the hole. (1) A T.F. AND PREPARED BY A HAND SPADE was used to PERCOLATION Investigation. he hole was used for PERCOLATION Investigation. (2) The hole was used for PERCOLATION Investigation. (2) The hole was used for PERCOLATION Investigation. this hole has a wary good seepage sublete for french drain (2) The hole was used for PERCOLATION Investigation. (2) The hole was used for PERCOLATION Investigation. HOLE 1 Presoaking Time (24hrs) HOLE 2 Presoaking Time (25hrs) DEPTH TIME SEEPAGE 0 0.0 10 2.0 5.0 3.0 4.0 10.0 30 4.0 10.0 30 4.0 5.0 30 4.0 10.0 30 4.0 5.0 30 4.0 10.0 30 4.0 5.0 100 12.0 7.5 70 10.0 10.0 101 16.0 5.0 110 16.0 7.5 100 12.0 7.5 10.0 10.0 10.0 100 12.0 7.5 10.	T.R. AND PREPARED BY A HAND SPADE was used to excavale the hole. a hole was used for PERCOLATION investigation Hole was pressiled the day before and and soak for 24 HRS	 A TLB AND PREPARED BY A HAND SPADE was used. The hole was used for PERCOLATION investigation. The Hole was preposed the day before and soak for 25 	
bib hole was used for PERCOLATION investigation is hole was used for PERCOLATION investigation. (2) The hole was used for PERCOLATION investigation. (3) The hole was presented the day before and seak for 24 HRS is hole has a very good seepage sailable for herech data (3) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (4) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (5) The hole was used for PERCOLATION investigation. (3) The hole was presented for PERCOLATION investigation. (5) The hole was used for PERCOLATION investigation. (3) The hole was used for PERCOLATION investigation. (6) The hole was used for PERCOLATION investigation. (3) The hole was presented for PERCOLATION investigation. (6) The hole was used for PERCOLATION investigation. (6) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation. (7) The hole was used for PERCOLATION investigation.	a hole was used for PERCOLATION investigation Hole was presosked the day before and and soak for 24 HRS	(2) The hole was used for PERCOLATION investigation (3) The Hole was preposed the day before and soak for 25	
(4)This hele trues a good seepage subletie for french dank HOLE 1 Presoaking Time (24hrs) MOLE 1 Presoaking Time (24hrs) MOLE 1 Presoaking Time (25hrs) DEPTH TIME SEEPAGE Imm TIME SEEPAGE			
HOLE 1 Presoaking Time (24hrs) HOLE 2 Presoaking Time (25hrs) DEPTH TIME SEEPAGE mem/min. Time (25hrs) 0 0.0 0 0 10 2.0 5.0 20 2.0 50 8.0 10.0 30 4.0 5.0 50 8.0 10.0 30 4.0 5.0 70 8.0 10.0 30 4.0 5.0 95 10.0 7.5 80 12.0 5.0 120 14.0 10.0 95 14.0 7.5 130 16.0 5.0 110 16.0 7.5 130 16.0 5.0 110 16.0 7.5 130 16.0 5.0 110 16.0 7.5 130 16.0 5.0 110 16.0 10.0 155 20.0 7.5 150 20.0 10.0 150 22.0 7.5 16	store use a very good seehade scrange to inerch drain		HRS
DEPTH mm TIME Minutes SEEPAGE mathin. DEPTH mathin. TIME mathin. SEEPAGE mathin. 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 20 2.0 10.0 30 4.0 5.0<		(a) mainternas a good seepage sunate for manch can	
DEPTH mm TIME Minutes SEEPAGE membra. DEPTH membra. TIME membra. SEEPAGE membra. 0 0.0 0 0 0.0 0 0.0 0 0 0 0.0 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0	HOLE 1 Presodeling Time (24hrs)	Presosking Time / 25hrs \	
0 0.0 0.0 0.0 0.0 10 2.0 5.0 2.0 2.0 10.0 30 4.0 10.0 30 4.0 5.0 5.0 50 8.0 10.0 40 5.0 5.0 5.0 80 10.0 50 8.0 5.0 5.0 5.0 85 10.0 7.5 70 10.0 10.0 10.0 100 12.0 7.5 80 12.0 5.0 5.0 130 14.0 10.0 95 14.0 7.5 10.0 10.0 165 20.0 7.5 150 28.0 10.0 10.0 165 20.0 7.5 150 22.0 10.0 10.0 160 22.0 7.5 160 22.0 10.0 10.0 215 26.0 7.5 200 26.0 10.0 23.0 5.0 23.0 5.0 23.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
30 4.0 10.0 30 4.0 5.0 50 6.0 10.0 40 8.0 5.0 70 8.0 10.0 50 8.0 5.0 85 10.0 7.5 70 10.0 10.0 100 12.0 7.5 70 10.0 10.0 120 14.0 10.0 35 14.0 7.5 130 16.0 5.0 110 16.0 7.5 130 16.0 10.0 130 18.0 7.5 150 16.0 10.0 130 18.0 10.0 165 20.0 7.5 150 22.0 10.0 160 22.0 7.5 150 22.0 10.0 200 24.0 10.0 100 24.0 10.0 215 28.0 10.0 210 28.0 5.0 220 30.0 7.5 220 30.0 5.0 <td></td> <td></td> <td></td>			
50 50 50 100 40 50 50 76 80 100 50 80 50 85 100 7.5 70 10.0 10.0 100 120 7.5 70 10.0 10.0 120 14.0 10.0 95 14.0 7.5 130 16.0 5.0 110 16.0 7.5 130 16.0 5.0 110 16.0 7.5 150 16.0 10.0 130 16.0 7.5 165 20.0 7.5 150 20.0 10.0 180 22.0 7.5 160 22.0 10.0 235 28.0 10.0 230 26.0 10.0 235 28.0 10.0 210 28.0 5.0 230 30.0 7.5 228 30.0 5.0 290 32.0 15.0 22.0 2.0			
95 100 75 70 100 100 100 120 75 80 120 5.0 120 140 10.0 95 14.0 7.5 130 160 5.0 110 16.0 7.5 130 16.0 5.0 110 16.0 7.5 150 16.0 10.0 130 18.0 10.0 165 20.0 7.5 150 20.0 10.0 160 22.0 7.5 160 22.0 5.0 200 22.0 7.5 160 22.0 10.0 215 26.0 7.5 200 26.0 10.0 215 26.0 7.5 22.0 30.0 5.0 220 32.0 7.5 22.0 30.0 5.0 250 30.0 7.5 22.0 30.0 5.0 290 34.0 5.0 24.0 34.0 5.0 <td>50 5.0 10.0</td> <td></td> <td></td>	50 5.0 10.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
120 140 100 95 140 7.5 150 16.6 5.0 110 18.0 7.5 150 16.0 10.0 130 18.0 7.5 165 20.0 7.5 150 20.0 10.0 180 22.0 7.5 150 22.0 5.0 200 24.0 10.0 180 24.0 10.0 215 28.0 7.5 200 26.0 10.0 225 28.0 10.4 210 28.0 5.0 250 30.0 7.5 220 30.0 5.0 290 34.0 5.0 240 34.0 5.0 290 34.0 5.0 240 34.0 5.0 300 36.6 5.0 250 38.0 5.0 290 34.0 5.0 250 38.0 5.0 290 36.6 5.0 250 38.0 5.			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
165 20.0 7.5 150 20.0 10.0 186 22.0 7.5 160 22.0 5.0 200 24.0 10.0 160 22.0 5.0 200 24.0 10.0 160 22.0 5.0 215 26.0 7.5 200 26.0 10.0 215 26.0 7.5 200 26.0 10.0 235 28.0 10.0 7.5 22.0 5.0 5.0 260 32.0 7.5 22.0 30.0 5.0 5.0 290 34.0 5.0 5.0 24.0 34.0 5.0 300 36.0 5.0 25.0 38.0 5.0 5.0 300 36.0 4.0 5.0 2.0 2.0 2.0 2.0 300 36.0 5.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <t< td=""><td></td><td></td><td></td></t<>			
180 220 7.5 160 22.0 5.0 200 24.0 10.0 180 24.0 10.0 215 26.0 7.5 200 28.0 10.0 235 28.0 10.6 210 28.0 5.0 250 30.0 7.5 220 30.0 5.0 290 32.0 15.0 230 32.0 5.0 290 32.0 15.0 240 32.0 5.0 290 34.0 5.0 240 34.0 5.0 300 36.0 5.0 250 38.0 5.0 290 36.0 5.0 250 38.0 5.0 290 36.0 5.0 260 36.0 2.0 290 50.0 200 50.0 2.0 200 50.0 2.0 300 35.0 2.0 300 55.0 2.0 2.0 2.0 2.0 2.0 <td< td=""><td></td><td></td><td></td></td<>			
200 240 100 190 240 100 215 260 7.5 200 26.0 10.0 225 28.0 10.0 216 28.0 5.0 250 30.0 7.5 220 30.0 5.0 290 32.0 15.0 220 32.0 5.0 290 34.0 5.0 240 34.0 5.0 300 36.0 5.0 240 34.0 5.0 300 36.7 40.8 5.0 250 38.0 5.0 200 22.0 15.0 250 38.0 5.0 300 36.6 5.0 250 38.0 5.0 290 36.0 2.0 200 200 200 200 300 55.0 2.0 200 200 200 200			
215 260 7.5 200 26.0 10.0 235 28.0 10.4 210 28.0 5.0 250 30.0 7.5 220 30.0 5.0 260 22.0 15.0 220 30.0 5.0 260 32.0 15.0 2240 32.0 5.0 290 32.0 5.0 240 34.0 5.0 300 36.0 5.0 250 36.0 5.0 300 36.0 5.0 250 36.0 5.0 290 32.0 15.0 250 36.0 5.0 300 36.0 5.0 250 36.0 5.0 290 35.0 2.0 290 45.0 2.0 300 5.0 2.0 290 55.0 2.0			
250 30.0 7.5 220 30.0 5.0 290 32.0 15.0 230 32.0 5.0 290 34.0 5.0 240 34.0 5.0 300 36.0 5.0 240 34.0 5.0 300 36.0 5.0 250 36.0 5.0 300 36.0 5.0 250 36.0 5.0 200 36.0 2.0 250 36.0 5.0 200 200 200 200 200 200 20			
290 32.0 15.0 230 32.0 5.0 290 34.0 5.0 240 34.0 5.0 300 36.0 5.0 250 38.0 5.0 300 36.0 5.0 250 38.0 5.0 290 290 5.0 250 38.0 5.0 290 290 50.0 2.0 2.0 2.0 290 290 50.0 2.0 2.0 2.0			
290 34.0 5.0 240 34.0 5.0 300 36.0 5.0 250 38.0 5.0 Average 8.3 270 40.0 5.0 290 50.0 290 50.0 2.0 300 55.0 2.0 200 50.0 2.0			
300 36.0 5.0 250 38.0 5.0 Average 8.3 270 40.0 5.0 280 50.0 200 300 50.0 300 55.0 2.0 200 300 55.0 2.0			
Average 2.3 270 40.0 5.0 280 45.0 2.0 290 50.0 2.0 300 55.0 2.0			
280 45,0 2,0 290 50,0 2,0 300 55,0 2,0		270 40.0 5.0	
300 55.0 2.0			
Avmige 0.3			
		Avange 8.5	
CONTENTING CEDU		SOIL TESTING SERVI	CES
(Style AD) (PTY)		111111/1-11.5	LIU

	M	- C		B GRO GINEERING		ES -	TD.	
256 Brander stre P D BOX 91238						Tel Fax. Email	012-800 125 012-800 303 aukek@mat	34
				TEST RES	ULTS			
GLIENT	Soil Testing	Servic	es SWD (PTY)	Lid		Project	Japanese Scho	ala
ADDRESS	P O Box A Swazi Plaza					Your Ret Our Ret	Boyane	
Attention	Thulani Vila	aicati.			1	Date Reported	12 February 20	16
	UNCON	NSO		STRESS TR			lause 7)	
SAMPLE NO	G16-47		HOLE NO	TP 452	DEPTH (m)		JOB NO	117 626
DESCRIPTION					1997			
Coordinan Detaile						1	2	3
Specimen Details	-						*	
Initial Sample Len	igth			40	(m/m)	103.2	102.3	102.1
Initial Sample Diar	meter			Dα	(mm)	51.1	51.2	50.2
Initial Sample Wei	ight			We	(gr)	397.9	397.8	397.8
Initial Bulk Density	y			P0 Pi	(Mg/m3)	1.88	1 89	1.97
nitial Conditions						1	2	3
Initial Call Dispirit				a 3	(kPa)	50	100	200
	re .			σ g 	(kPa) (mm/min)	50 0 ±0	100	200
Strain Rate					(mm/min)	0.10		
Strain Rate Membrane Thickn					(mm/min) (mm)		0.10	0.10
Strain Rate Membrane Thickn Initial Moisture	iess			. т.т. с т.	(mm/min)	0.10 0.30	0.10	0.10
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density	iess			۳۶. ۳۶ ۲۵	(mm/min) (mm) (%)	0 10 0.30 16	0.10 0.30 16	0.10 0.30 16
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Volds Ratio	9835			ті тр 11 і% р.10	(mm/min) (mm) (%)	0 10 0.30 16 1.62	0.10 0.30 16 1.62	0.10 0.30 16 1.69
Strain Rate Membrane Thickn Initial Moisture Initial Ory Density Initial Voids Ratio Initial Degree of S.	9835			ு ர ரு ந பர்கே ச ம ச ம	(mm/min) (mm) (%) (Mg/m3)	0.10 0.30 16 1.62 0.53	0.10 0.30 16 1.62 0.52	0.10 0.30 16 1.69 0.46
Strain Rate Membrane Thickn Initial Moisture Initial Ory Density Initial Voids Ratio Initial Degrée of S Final Conditions	itess aturation			е 3 п.р. 22 / Б Р. 40 е 0 S. 3	(mm/min) (mm) (%) (Mg/m3) (%)	0 10 0.30 16 1.62 0.53 76	0.10 0.30 16 1.62 0.52 77 2	0.10 0.30 1.69 0.46 88 3
Strain Rate Membrane Thickn Initial Moisture Initial Voids Ratio Initial Voids Ratio Initial Degree of Si Final Conditions Max Deviator Stre	aturation 55			0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm,min) (mm) (%) (Mg/m3) (%)	0 10 0.30 16 1.82 0.53 76 1 2144 22	0 10 0.30 16 162 0.52 77 2 2527 94	0.10 0.30 16 1.69 0.46 88 88 3 1930.18
Strain Rate Membrane Thickn Initial Moisture Initial Ory Density Initial Voide Ratio Initial Degree of S Final Conditions Max Deviator Stre Membrane Correc	aturation sss			е 1 п в д 1% р.на е о 5., (о 1- а 2) т с	(mm,min) (mm) (%) (Mg/m3) (%) (%)	0 10 0.30 16 1.62 0.53 76 1 2144 22 0.969	0 10 0.30 16 1 52 0 52 77 2 2 2527 94 0.934	0.10 0.30 16 1.69 0.46 88 3 1930.18 1.071
Strain Rate Membrane Thickn Initial Moisture Initial Ory Density Initial Voids Ratic Initial Degree of Si Final Conditions Max Deviator Stre Membrane Correc Strain At Max Stre	aturation sss			2 0	(mm,min) (mm) (%) (Mg/m3) (%) (%)	0 10 0.30 16 1.62 0.53 76 1 2144 22 0.969 1.68	0 10 0.30 16 1 62 0.52 77 2 2 527 94 0.954 2.59	0.10 0.30 16 1.69 0.46 88 3 1930.18 1.071 3.38
Strain Rate Membrane Thickn Initial Moisture Initial Org Density Initial Orgene of Si Final Conditions Max Deviator Stre Membrane Correct Shear Strength	aturation sss			е 1 п в д 1% р.на е о 5., (о 1- а 2) т с	(mm,min) (mm) (%) (Mg/m3) (%) (%) (kPa) (kPa)	0 10 0.30 16 1.62 0.53 76 1 2144 22 0.969	0 10 0.30 16 1 52 0 52 77 2 2 2527 94 0.934	0.10 0.30 16 1.69 0.46 88 3 1930.18 1.071
Strain Rate Membrane Thickn Initial Moisture Initial Voids Ratio Initial Opdree of S Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stre Shear Streigth Final Moisture	aturation sss			<pre></pre>	(mm,min) (mm) (%) (Mg/m3) (%) (%)	0 10 0.30 16 1.82 0.53 76 1 2144.22 0.969 1.68 1072.11	0 10 0.30 16 1 62 0.52 77 2 2 2527 94 0.954 2.59 1263 97	0.10 0.30 16 1.59 0.45 88 3 1930.18 1.071 3.38 965.09
Strain Rate Membrane Thickn Initial Moisture Initial Oppensity Initial Voids Ratio Initial Degree of Si Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stré Shear Strength Final Moisture Final Dry Density	aturation sss			0 1 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm,min) (mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%)	0 10 0.30 16 1.62 0.53 76 2144 22 0.969 1.68 1.072.11 19	0 10 0.30 16 1 52 0 52 77 2 2 52 77 2 2 52 77 2 52 77 12 53 97 12 63 97 19	0.10 0.30 16 1.69 0.46 88 88 1.930.18 1.071 3.38 965.09 20
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Org Pansity Initial Oegree of Si Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stré Shear Strength Final Moisture Final Moisture Final Opensity Final Voids Rate	ess aturation 65 tion			ст та ш1% р.на ео 5., (о1-а2) тс в.1% 2.0 щ1% р.на	(mm,min) (mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%)	0 10 0.30 16 1.62 0.53 76 1 2144 22 0.969 1.66 1072.11 19 1.56	0 10 0.30 16 1 52 0 52 77 2 2 527 94 0.934 2.59 1263.97 19 1.59	0.10 0.30 16 1.59 0.45 88 1.930.18 1.071 3.38 965.09 20 1.84
Initial Cell Pressur Strain Raté Membrane Thickin Initial Moisture Initial Org Density Initial Voids Ratio Initial Degree of Si Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stre Shear Strength Final Moisture Final Doy Density Final Voids Ratio Final Degree of Sa Remarks	ess aturation 65 tion			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm,min) (mm) (%) (Mg/m3) (%) (kPa) (%) (kPa) (%) (kPa) (%) (Mg/m3) (%)	0 10 0.30 16 1.62 0.53 76 1 2144 22 0.959 1.68 1072.11 19 1.58 0.56	0 10 0.30 16 1.52 0.52 77 2 2 527 94 0.954 2.59 1263 97 163 97 18 0.56 94.5 94.5	0.10 0.30 16 163 0.46 88 3 1930.18 1.071 3.38 965.09 20 1.64 0.51

		CIVIL ENGIN				υ.	
		Reg No.: 2003/02918	30/07 VAT F	Reg No.: 4040	210587		
	reet, Jan Niemand 87 SILVERTON 0				Tel. Fax.	: 012-800 129 : 012-800 303	34
			TEST RESUL	TS	Email	: aukek@mat	rolab.co.za
CLIENT:	Soil Tosting Son	vices SWD (PTY) Ltd	1201112001	1	Decised	Japanese Scho	ole
ADDRESS:	P.O. Box A233	ices SWD (111) Lu			Project	Boyane	
	Swazi Plaza				Your Ref		
Attention:	Thulani Vilakati				Our Ref Date Reported	117 626 14 March 2016	
		TOTAL	TRESS TRI	AVIAL TE	CT.		
	UNCONSO	DLIDATED UN				lause 7)	
SAMPLE NO.	G16 46	HOLE NO:	TP453	DEPTH (m):		JOB NO:	117 626
DESCRIPTION			11 100				
Specimen Details					1	2	3
specimen Detans	5				1	2	3
nitial Sample Ler	ngth		Lo	(mm)	101.8	101.4	100.9
nitial Sample Dia	imeter		Do	(mm)	50.3	50.3	50.2
nitial Sample We	aight		Wo	(gr)	393.0	393.1	393.5
nitial Bulk Densit	y .		po	(Mg/m3)	1.94	1.95	1.97
Particle Density			ρs	(Mg/m3)	2.58	2.58	2.58
Initial Conditions	i				1	2	3
Initial Cell Pressu	ire		σ3	(kPa)	50	100	200
Strain Rate			m s	(mm/min)	0.10000	0.10000	0.10000
Membrane Thick	ness		mь	(mm)	0.30	0.30	0.30
nitial Moisture			ω i%	(%)	14	14	14
nitial Dry Density	,		Ob 9	(Mg/m3)	1.70	1.71	1.73
nitial Voids Ratio	,		e 0		0.51	0.51	0.49
nitial Degree of S	Saturation		S o	(%)	70	71	73
Final Conditions					1	2	3
Max Deviator Stre	ess		(σ1-σ3)f	(kPa)	570.41	960.27	1014.58
Membrane Correc	ction		mc	(kPa)	0.970	1.040	2.258
Strain At Max Stre	ess		5 f%	(%)	1.56	3.14	8.33
Shear Strength			сu	(kPa)	285.21	480.13	507.29
Final Moisture			₩ f%	(%)	14	14	14
Final Dry Density			ρ dt	(Mg/m3)	1.70	1.71	1.73
Final Voids Ratio			ef	1	0.51	0.51	0.49
	aturation		Sf	(%)	70.1	71.3	72.7
					le	Page:	1 of 2
Final Degree of S							
Final Degree of S Remarks :				A	ligar		

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – QINISWENI

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UPGRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

CIVIL ENGINEERING LABORATORY

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

> **MARCH 2016** A-178

TABLE OF CONTENTS

GEOTECHNICAL REPORT - QINISWENI
1.0 INTRODUCTION
2.0 SCOPE OF WORK
3.0 SITE DESCRIPTION
Location and Topography2
Rainfall and Drainage3
Access
4.0 GENERAL GEOLOGY OF SITE
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING4
Methods of investigation and testing4
6.0 INTERPRETIVE INFORMATION7
Site Stratigraphy7
Materials8
Engineering Geological Evaluation8
7.0 CONCLUSION AND RECOMMENDATIONS Error! Bookmark not defined.
GENERAL NOTES ON THE REPORT8
APPENDIX A
APPENDIX B
APPENDIX C16

GEOTECHNICAL REPORT - QINISWENI

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Qinisweni, southern Swaziland, where the proposed Qinisweni High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Eqinisweni High School site lies in a topographically flat area, with a very gentle slope to the south.

Most of the site consists of an area currently used as a soccer field for the existing Qinisweni Primary School, about 10km from Nhlangano town. It is possibly also used for field and track events during school's athletic competitions. There is indigenous grass cover on the pitch. The remainder portion to the west is currently used for commercial tree farming with grown up eucalyptus forest.

Rainfall and Drainage

The area lies in the Highveld climatic condition of Swaziland. It has an elevation of 1020m above sea level, and like the rest of the country experiences summer rainfall. The area has warm summers and cold winters and receives an annual rainfall of 870mm. In winter the area experiences frost.

There is no stream draining this area besides a water spring to the west of the area. Water is sourced from a community water scheme, and can also be sourced by drilling a borehole.

Access

The site and the nearby primary school are situated along the Nhlangano-Lavumisa tarred road, in 20m proximity. Access to the site will be through opening a short road from the nearby paved road.

4.0 GENERAL GEOLOGY OF SITE

The Qinisweni site is underlain by the quartzo-feldspathic Nhlangano gneiss that is distinguishable by its distinctive pinkish-red weathered color. The rocks are cut by veins of quartz and feld-spar which produce a very obvious banding that is commonly folded. The Nhlangano gneiss has a granitoid appearance, but no unambiguous evidence of cross-cutting relationships with other formations is known. The formation is of metamorphic origin than igneous genesis. The outcrop pattern and the distribution of the fold plunge depressions indicate that the gneiss has been folded into a number of domes.

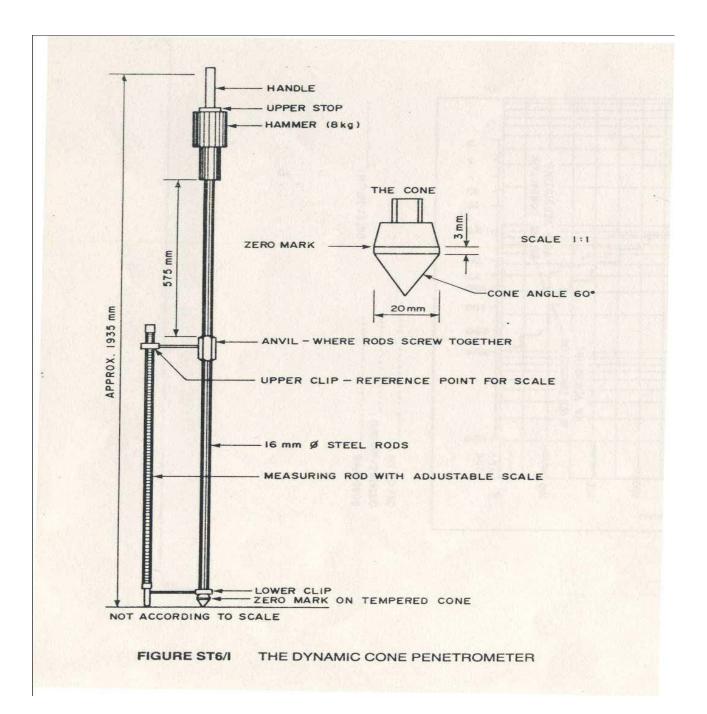
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 12 (2631 AD) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of investigation and testing

Field investigations, sampling and laboratory testing have been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.4m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

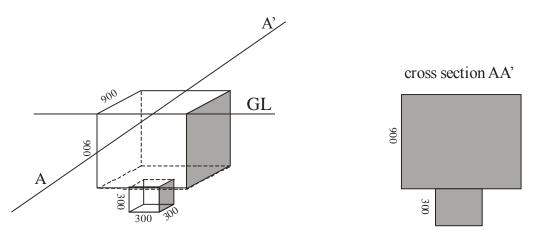
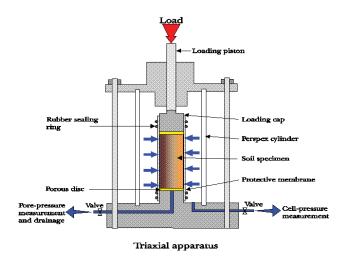


Figure 2. Cross section of percolation test pit

Laboratory Testing


Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.

The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)
- ·specific gravity tests

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

Stratigraphy of the Qinisweni High School site is defined by dark brown topsoil invariably underlain by a thin pebble marker. These soil horizons overly residual soils derived from the in place weathering of the Nhlangano gneiss rock that lies at depth below the existing ground level. In all the Trial Pits this rock unit was not encountered except for the occasional float on site.

The residual soil in this site lies at 600mm depth and consists of various materials mainly distinguishable by colour variation. They comprise of fine grained soils typically dark red, dark yellowish orange or dark reddish orange in color. These soils are mainly moist, slightly soft to slightly dense, silt clay materials.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B.

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	ΡI	Shrinkage	Soil Class AASHTO
329	0.6-2.2	Residual	9	34	14	3.5	A-7-6(12)
330	0.6-2.3	Residual	14.6	38	18	4.5	A-7-6(12)
331	0.6-2.4	residual	13	35	7	3.5	A-7-6(12)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is expected that the groundwater table will occur at depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions display good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Qinisweni High School site with unconsolidated undrained (UU) shear strength (c_u) of between 665kPa and 1109 kPa display allowable bearing ca-

pacity of between an estimated 1138kPa and 1900kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development.

The Dynamic Cone Penetrometer (DCP) tests confirm the observations made during soil profiling. It displays dense soil material of colluvial nature and relatively soft (slightly soft) for the residual material. The apparent refusal recorded at DCP position 6 can be explained by the possibility of a pebble blocking the cone penetration along the pebble marker horizon. The tests reveal safe bearing capacities notwithstanding the generally low values displayed for the residual soil.

Field tests of both DCP and soil profiling suggest that foundations can be of some 800 to 1000mm depths. This is generally beyond the colluvial and pebble marker layers situated at some 600mm depth.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.4m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits which further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Qinisweni area is located in southern Swaziland found in Zone 1 area.. The South African "loading" code, SABS 0160-4:2011, shows that Qinisweni is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is some 130 cm/sec²

The soil profile of the site can be described as slightly dense, silt-clay to slightly soft, silt-clay with an average between 665kPa and 1109 kPa c_u shear strength. Considering the undrained shear strength and soil profile this area can be tentatively classified as Ground Type 2. However, the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be paid as no water seepage was experienced in any of the Trial Pits and no problem of dampness is thus expected.

Building Foundations

Allowable bearing capacities of between 1138kPa and 1900kPa are safe to base the foundations of building structures in the sand clay soil.

Foundations are recommended to be placed on the residual soil, at depths of 800 to 100mm, to avoid the marked variability of the colluvial soil.

It is recommended that all foundations be placed on the residual soil below the Pebble Marker, but care should be taken to ensure foundations are located at less than 1m depths to avoid the low bearing capacities. This is to avoid the marked variability of the soil material's bearing capacity and ensure no differential settling of the structures/buildings.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site

NOTE:

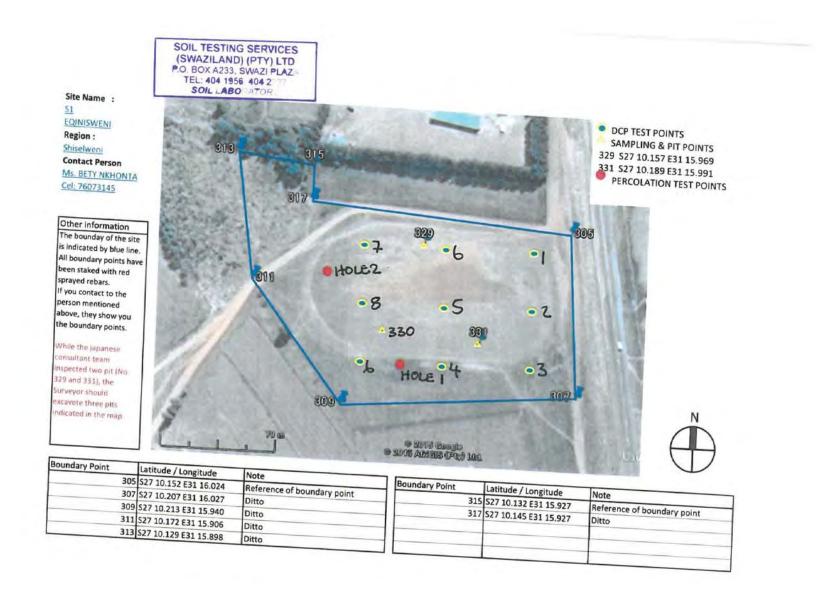
• Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

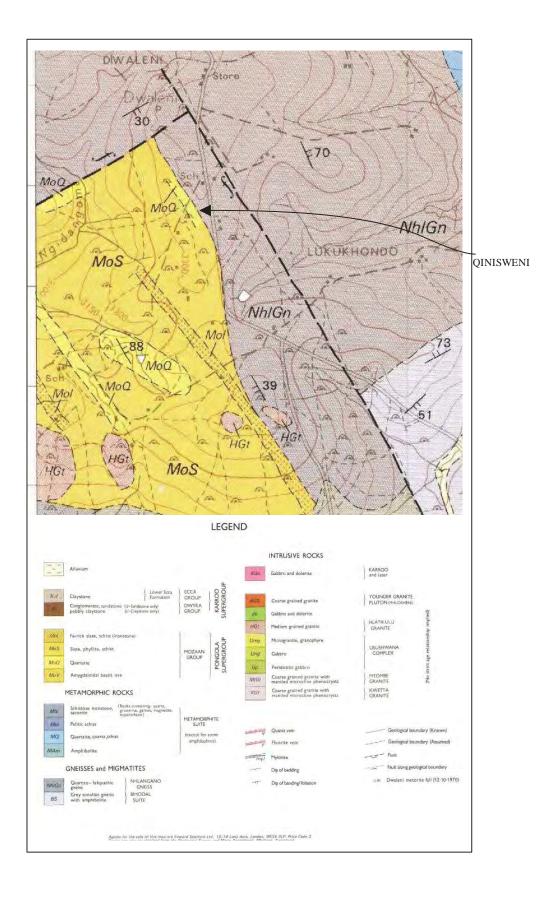
GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

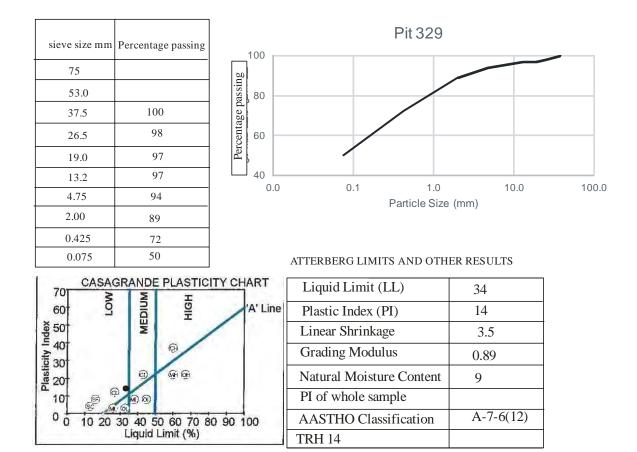
Prepared for Geo Solutions


Noah Nhleko BSc (Biology & Chemistry); PhD Geology

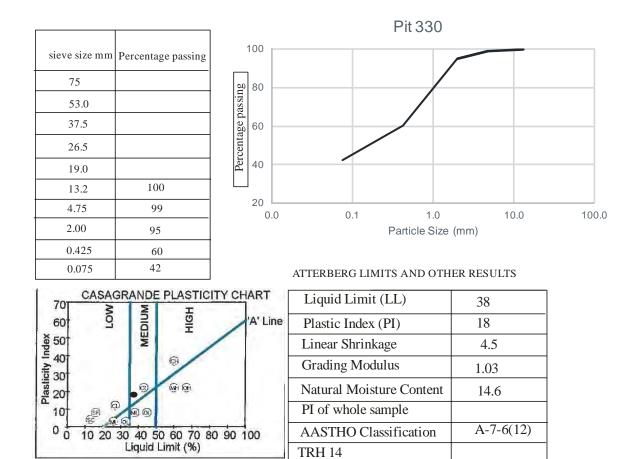

APPENDIX A

A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

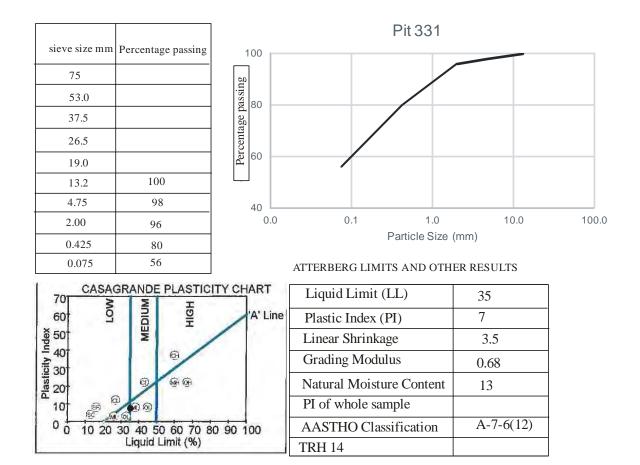

APPENDIX B

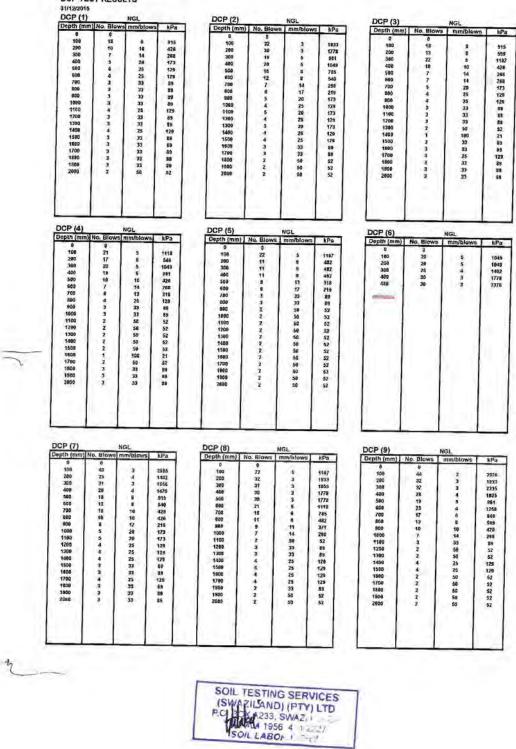
Projec	t	Trial Pi	it No.		Loca	ation		Date		
Matsud	a	TP 329	TP 329 Eqinisy			nisweni		01/12/2016		
Mate	rial and Soil	Description		I						
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture	
	Topsoil		380	0-380		dark reddisl brown	1		slightly dry	
	sandy clay (Pebble marker)	220	380-600		dark red	den	se	Moist	
Soil Horizon	silt-clay ((Residual soil)	1560	600-2160		dark yellowish orange	sligh	tly dense	Moist	


Projec	t	Trial Pi	t No.		Loca	ntion		Date			
Matsud		TP 330)		Eqinisweni				01/12/2016		
Mater	rial and Soil	Description		•							
Layer	Strati	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture			
	Topsoil		400	0-400		dark reddish brown			dry		
	sandy clay (P	ebble marker)	260	400-660		dark red	der	nse	Moist		
Soil Horizon	silt-clay	residual soil	1570	660-2230		dark reddish orange	sligh	ntly dense	Moist		

Projec	et	Trial Pi	t No.		Loca	ation		Date		
Matsud	a	TP 331	l		Eqi	nisweni		01/12/2016		
Mate	rial and Soil	Description		- 1						
Layer	Stratigraphy		Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture	
	Topsoil		400	0-400		dark brown			dry	
	sandy clay (F	ebble marker)	230	400-630		dark reddis red	n dei	ıse	slightly moist	
Soil Horizon	silt-clay (Residual soil)	1730	630-2400		dark red	sligh	tly soft	Moist	

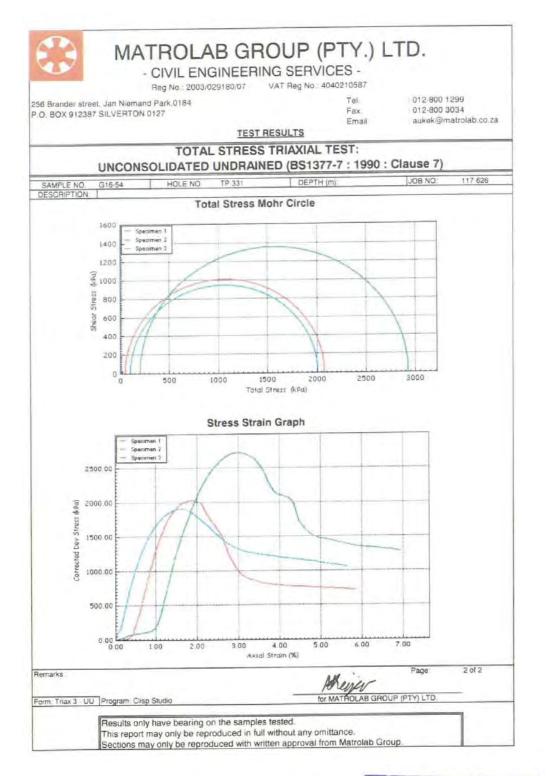
	FOUNDATIO	N INDICATO	OR RESULTS		
Client	Matsuda Consultants International	Sample no.	T.P. 329	Date	
Project	Qinisweni High School	Sample Depth		Client	




	FOUNDATIO	N INDICAT(OR RESULTS		
Client	Matsuda Consultants International	Sample no.	T.P. 330	Date	
Project	Qinisweni High School	Sample Depth		Client	

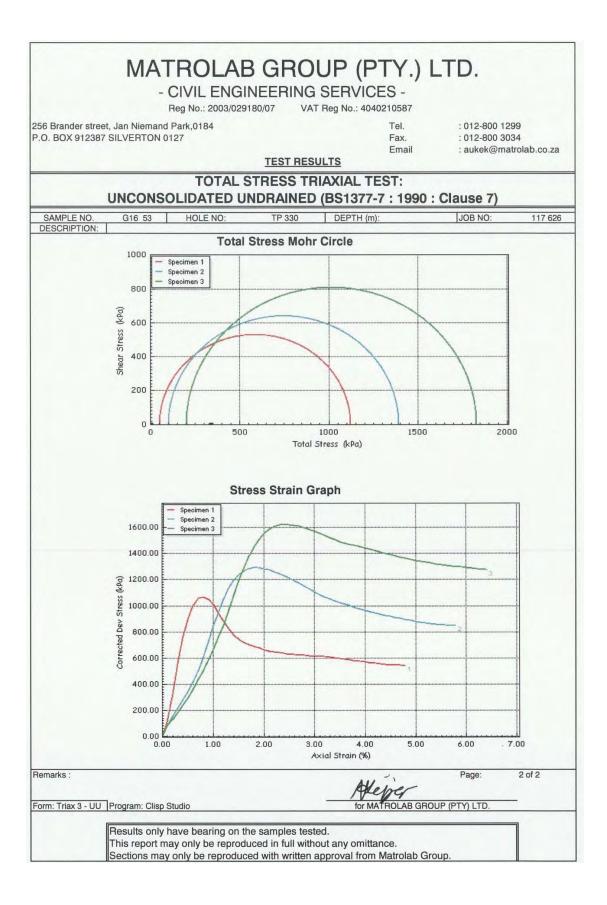
A-199

	FOUNDATIO	N INDICAT(OR RESULTS		
Client	Matsuda Consultants International	Sample no.	T.P. 331	Date	
Project	Qinisweni High School	Sample Depth		Client	



SOIL TESTING SERVICES MATSUDA CONSUNTANTS INTERNATIONAL EQINISWENI NEW HIGH SCHOOL DCP TEST RESULTS

				SOIL	TESTIN	G SE	RVI	CES			
	chnical Inve LATION MATSUDA CO										
Project	EQINISWENIN	EW HIGH SC	HOOL	-	Date	22/12/20	15				
Site	EQINISWENI				2010	141311					
ane	Eduesantu	-				_					
Evidence o	nfluence of run of unusual (and			l water	F	_					
(2) The ho (3The Hole	AND PREPAR	PERCOLAT d the day bei	ION Investi fore and ani	soak for 24 HR			(2) The hal (3)The Hol	AND PRE In was use In was pres	d for PERC	OLATION IN	i soak for 25 HRS
HOLE 1		Presoak	ing Time	(24hrs)		HOLE 2		Preson	king Tim	a (25hrs)	
DEPTH		TIME	T	SEEPAGE		DEPTH		TIME		SEEPAGE	
mm 0		Minutes 0.0		masimin.		mm 0	-	Minutes 0.0	1.1	mm/min.	
50		2.0		25.0		15	1.00	1.0	1	15.0	
80		4.0	1	15.0		25		2.0		t0.0	
110		6.0 8.0		15.0 5.0		30		3.0 4.0		5.0 20.0	
145		10.0		12.5		60		5,0		10.0	
155		12.0		5.0		75	1.1	6.0	1.7	15.0	
170		14.0		7.5		85		7.0		10.0	
175		16.0		2.5		85 100		8.0 9.0		10.0	
205		20.0		7.5		110		10.0		10.0	
210		22.0		2.5		130		15.0		4.0	
215 220		24.0		2.5		150		20.0		4.0	
220		26,0		5,0		160	1.04	30.0		1.0	
240		30.0		5.0		180	0.1.1	50.0		1.0	
260		32.0 34.0		10.0		200		80.0	1 0	2.0	
280		35.0		5.0		210 215		70.0	1.1	1.0	
300		38.0	1	5.0		220		90.0	1.00	0.5	
			Average	8.3		1.11		100	Average	6.9	
			1.000			1 1			1	1	
			1 53								
	11									1	
						10000	_	_			
							F	50	11 700		
								30	LIES	TING	BERVICES
								(3)	VAZIL	ANDY	PTYLITD
								F.U.	out the	283, SV	AZI PLAZA
						- 1	-		ELANA	UH96.	04 2227
_			_				lechnical sk	matory IT	THE PARTY OF THE P	VAID TORNA	COL-TESTING SERVICES
											and the second se


A-202

	- (CIVIL ENG	BGRO	SERVICE	- S		
		Reg No.: 2003/0	29180/07 VA	T Reg No.: 4040	Tel.	:012-800 129	q
256 Brander stre P.O. BOX 91238	eet, Jan Niemand 87 SILVERTON 0	Park,0184 127			Fax. Email	: 012-800 303 : aukek@matr	4
			TEST RES	ULTS	Lindi	. denone man	
					Project	Japanese Scho	ols
CLIENT	P.O Box A233	rices SWD (PTY)	Ltd		Fiolest	Eqinisweni	
ADDRESS:	Swazi Plaza				Your Ref		
	OWELTTIGLE				Our Ref	117 626	
Attention	Thulani Vilakati				Date Reported	12 February 20	16
	UNCONSO		UNDRAINED			ause 7)	
SAMPLE NO	G16-54	HOLE NO.	TP 331	DEPTH (m)		JOB NO:	117 626
DESCRIPTION	-						
					1	2	3
Specimen Details					1	-	-
Initial Sample Len	ath		Lo	(mm)	102.1	101.2	101.0
Initial Sample Dia			Do	(mm)	50.5	50.6	50.7
Initial Sample We			D W	(gr)	402.7	403.3	403.0
Initial Bulk Density			09	(Mg/m3)	1.97	1.98	1.98
Particle Density			рs	(Mg/m3)	2.49	2.49	2.49
Initial Conditions	L				1	2	3
Initial Cell Pressu	re		03	(kPa)	50	100	200
Strain Rate			ms	(mm/min)	0.10	0.10	0.10
Membrane Thickr	ness		m b	(mm)	0.30	0.30	0.30
Initial Moisture			63 %	(%)	13	13	13
Initial Dry Density			b 90	(Mg/m3)	1.74	1.75	1.75
Initial Voids Ratio			eo	1	0.43	0.42	0.42
Initial Degree of S	Saturation		So	(%)	75	77	70
Final Conditions					1	2	3
- nor conditions					States	1 3222-34	
Max Deviator Stre	ess		(0 1 - 0 3		2025.02	1906.17	2721.13
Membrane Correc			mc	(kPa)	0.881	0.852	1.008
Strain At Max Stre	ess		51%	(%)	1.87	1.65	2.94
Shear Strength			CU	(kPa)	1012.51	953.06	1360.56
Final Moisture			00 +%	(%) (Mg/m3)	1.73	1.75	1.74
Final Dry Density			P di B i	(Mg/ms)	0.44	0.43	0.43
Final Voids Ratio			St	(%)	78.0	78.9	78.6
Final Degree of S	Saturation			(10)	1 100	New Year	
Remarks :					Hlijer	Page:	1 of 2
					and the second	Internet of a series	
Form: Triax 3 - U	U Program: Clisp	Studio		for MA	ROLAB GROUP	(PTY) LID.	

	MATROLAE				υ.	
	- CIVIL ENGII Reg No.: 2003/0291		eq No.: 40402			
256 Brander et	reet, Jan Niemand Park,0184	180/07 VAT H	ey 110 40402	Tel.	: 012-800 129	0
	387 SILVERTON 0127			Fax.	: 012-800 303	
				Email	: aukek@matr	
		TEST RESUL	TS			
CLIENT:	Soil Testing Services SWD (PTY) Ltd			Project	Japanese Scho	ols
ADDRESS:	P.O. Box A233			110,000	Eqinisweni	
	Swazi Plaza			Your Ref		
				Our Ref	117 626	
Attention:	Thulani Vilakati			Date Reported	14 March 2016	
	TOTAL S UNCONSOLIDATED UI				lause 7)	-
SAMPLE NO.		TP 330	DEPTH (m):		JOB NO:	117 62
DESCRIPTION		1 000 1				
Specimen Detail	S			1	2	3
Initial Sample Le	nath	Lo	(mm)	99.7	99.6	99.6
Initial Sample Dia	<u>v</u>	Do	(mm)	49.8	49.9	49.9
Initial Sample We		Wo	(gr)	325.4	327.0	327.7
Initial Bulk Densi		po	(Mg/m3)	1.68	1.68	1.68
Particle Density	<i>.</i> ,	ρs	(Mg/m3)	2.59	2.59	2.59
Initial Condition	5			1	2	3
Initial Cell Pressu	Jre	σ3	(kPa)	50	100	200
Strain Rate		ms	(mm/min)	0.10000	0.10000	0.1000
Membrane Thick	ness	m b w 1%	(mm)	0.30	0.30	0.30
Initial Moisture			(%)	15	15	15
Initial Dry Density		0 P d0	(Mg/m3)	1.46	1.46	1.46
Initial Voids Ratio		So	. (%)	0.78	0.77	0.77
initial Degree of a	Saturation		(70)	50	50	51
Final Conditions				1	2	3
Max Doviator Otr	2000	(4	(kDa)	1070.07	1000 70	1005 5
Max Deviator Str Membrane Corre	Not 100	((kPa) (kPa)	1070.87 0.752	0.883	1625.5 0.959
Strain At Max Str		π C ε f%	(%)	0.752	1.80	2.40
Shear Strength		cu	(kPa)	535.43	646.36	812.78
Final Moisture		ω f %	(%)	16	15	15
Final Dry Density	/	P df	(Mg/m3)	1.44	1.46	1.46
i mai biy benaity		ef		0.80	0.77	0.77
Final Voids Ratio	Saturation	Sf	(%)	52.6	49.5	50.6
Final Voids Ratio					Page:	1 of 2
Final Voids Ratio Final Degree of S Remarks :	-		Aller	re		
Final Voids Ratio Final Degree of S Remarks :	JU Program: Clisp Studio		for MAR	NGU ROLAB GROUP		

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of
rocks and soil materials

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – ENHLITIYWENI

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

CIVIL ENGINEERING LABORATORY

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

A-209

TABLE OF CONTENTS

GEOTECHNICAL REPORT - ENHLITIYWENI	.2
1.0 INTRODUCTION	.2
2.0 SCOPE OF WORK	.2
3.0 SITE DESCRIPTION	.2
Location and Topography	.2
Rainfall and Drainage	.2
Access	.3
4.0 GENERAL GEOLOGY OF SITE	.3
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING	.3
Methods of Investigation and Testing	.3
6.0 INTERPRETIVE INFORMATION	.6
Site Stratigraphy	.6
Materials	.7
Engineering Geological Evaluation	.7
7.0 CONCLUSION AND RECOMMENDATIONS	.9
GENERAL NOTES ON THE REPORT1	LO
APPENDIX A1	1
APPENDIX B	15

GEOTECHNICAL REPORT - ENHLITIYWENI

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at KaNcesi, northern Swaziland, where the proposed Enhlitiyweni High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

(1) Field works on each site

- Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
- Soil Sampling
- Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Enhlitiyweni High School site is located at KaNcesi in the Hhohho Region. This area is partially flat and sloping on the northern boundary.

The site is grass covered and part of it is a sport field. Although the land is not arable it is not necessarily used as a pasture as it is within homesteads, and cattle can only graze freely in winter.

Rainfall and Drainage

This area has a 1060m elevation and is designated as the Highveld climatic region of the country. The area has warm summers and cold winters. In winter the area experiences frost.

There area is drained by a number of small streams downslope. There are no scour surfaces on the site itself.

Access

The school site can be accessed through a distributor gravel road to Eluvinjelweni. The road leads from the tarred road to Maguga Dam to the north of this area. It is well maintained and has a wearing course.

4.0 GENERAL GEOLOGY OF SITE

The KaNcesi area has a young granite pluton, Mswati granite, as its bedrock. The granite is typically coarse grained and contains megacrysts of microcline and orthoclase. The granite is unfoliated and contains a few aplites and pegmatites. They are sharply cross-cutting and contain apparent xenoliths of earlier granite and mafic bodies. Veins of this granite lie to the south of the area and are disposed roughly concentrically around the Mbabane pluton to the south. The granite is well jointed in rectilinear patterns.

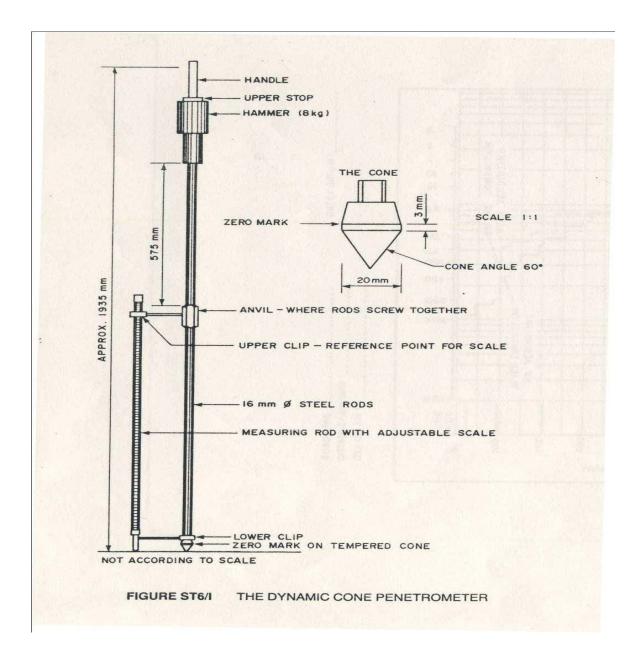
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 5 (2630 BB) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

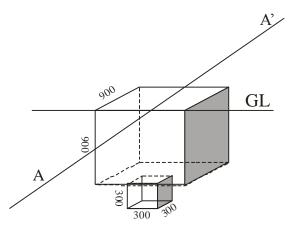
Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.1m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)


Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 900x900x900mm deep at the centre 300x300x300mm deep see figure 2 hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

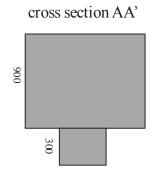
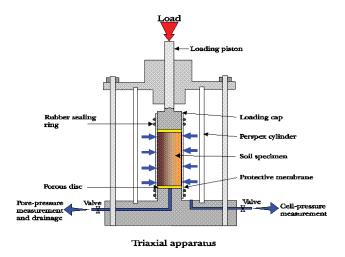


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The

cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

The stratigraphy of the Enhlitiyweni High School site can be summarized as colluvial and residual soils.

Colluvial soils on the site generally consists some 300mm thick layer of dry dark brown to dark reddish brown topsoil. This is gravity transported soil.

The lower layer of colluvial soils averages about 900mm, except for TP20 where it was not encountered, and consists of moist, slightly dense, sandy clay. It is gravity transported and dark red in colour and represents the lower limit of colluvial soils and directly lies above residual soils.

Residual soils derived from the complete in-situ weathering of the underlying Mswati granite, the underlying rock. This soil lies at depth ranging from 1100mm to 1200mm, and is moist to slightly moist, slightly soft, fissured or intact, silt-clay. At TP20, however, it lies at 230mm depth and very shallow. The residual soil display lateral material variation discernible by their colour variation. They consist of pale red to light red material.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	ΡI	Shrinkage	Soil Class AASHTO
18	1.1-2.1	Residual granite	14.4	50	21	6.5	A-7-6(5)
19	1.2-2120	Residual granite	8.8	47	30	5.5	A-7-6(4)
20	0.23-1.5	Residual granite	11.6	45	16	6.0	A-7-6(4)

Engineering Geological Evaluation

Groundwater

No groundwater inflow was encountered in any of the excavated test pits. It is, however, expected that the groundwater table will occur at depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "medium" to "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the site with unconsolidated undrained (UU) shear strength (c_u) of between 952kPa and 1290kPa display allowable bearing capacity of between an estimated 1631kPa and 2210kPa. The correlation chart in Appendix C of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for any building development.

Field Dynamic Cone Penetrometer (DCP) tests display higher bearing capacities for the upper 1m soils and relatively low bearing capacities at greater depths (>1m). This is in effect result in softer material at depth and slightly dense material near surface. Test positions DCP 8 and 9 display low bearing capacities of 52kPa at shallow depths (300mm). DCP Test no. 5 displays a layered nature of the residual soil.

the field and laboratory tests above indicates that residual soil from the weathered granite is relatively homogenous, and buildings can be founded at depths of 800 to 1000mm on the site.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.1m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits that further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. KaNcesi area is on the northern part of the country outside the Zone 1 area. The South African "loading" code, SABS 0160-4:2011, shows that Ka Ncesi area is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is just less than 100 cm/sec²

The soil profile of the site can be described as slightly soft, intact, silt-clay with an average shear strength between 952kPa and 1290kPa c_u . The contrasting identified ground types in accordance with the consolidated undrained shear strength and soil profile, type 2 and 3 respectively, indicates that the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and of boulder nature as can be seen in the outcrops nearby.
- No special precaution with regards to water seepage and dampness has to be paid as no water seepage was experienced in any of the Trial Pits.
- The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The allowable bearing capacity of the sandy clays in the site reveals values between 1631kPa and 2210kPa in the new school site. This indicates that the site is relatively homogenous in strength and no major differential settling is expected.

It is recommended that foundations be placed on the residual soil, at depths of 800 to 100mm, to avoid the colluvial soil material.

From the other Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

- Fluctuations in the level of groundwater can occur due to variations in the rainfall, landsaping, and other factors that may not been evident prior to the start of construction, so the depth of groundwater should be verified to allow for modification of the design, if required.
- Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions

Noah Nhleko BSc (Biology & Chemistry); PhD Geology

APPENDIX A

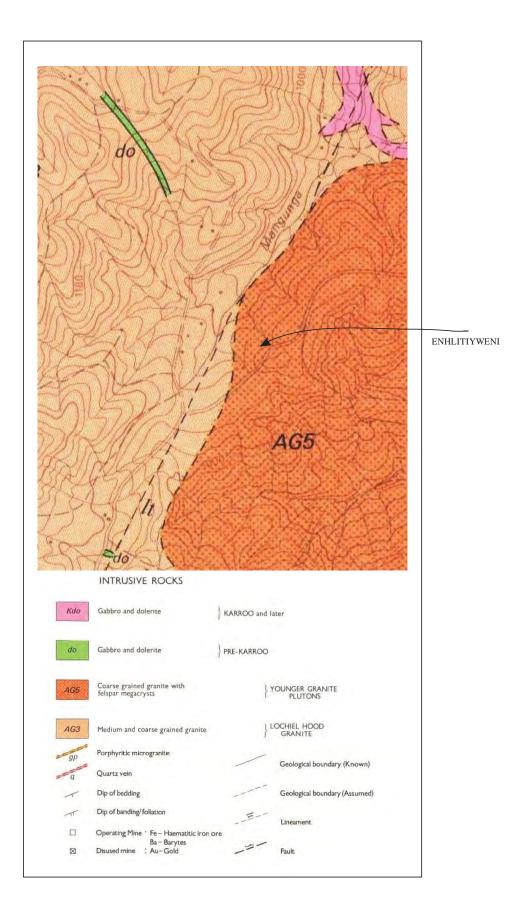
A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZ/ TEL: 404 1956 404 2227 SOIL LABORATOR

Site Name : H4 ENHLITIYWENI Region : Hhohho Contact Person Mr. SAKHI DLAMINI Cel: 7617 7079

Other information The bounday of the site is indicated by blue line. All boundary points have been staked with red sprayed rebars. If you contact to the person mentioned above, they show you the boundary points.

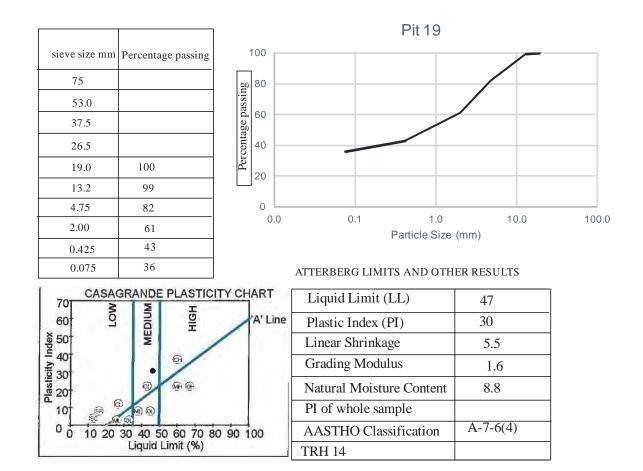

The Surveyor should excavete <u>three pits</u> in total indicated in the map.

DCP TEST POINTS SAMPLING & PIT POINTS PERCOLATION TEST POINTS

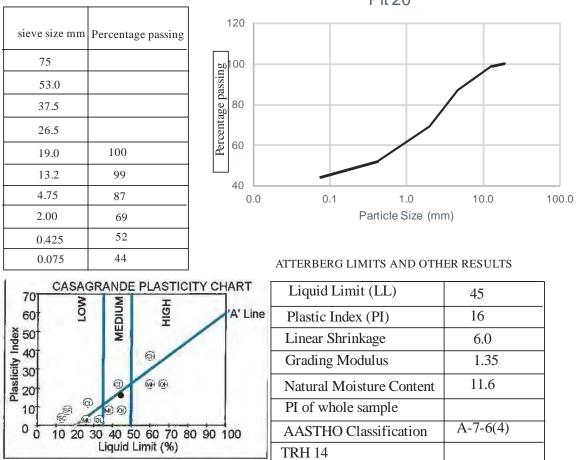
Boundary Point	Latitude / Longitude	Note	Boundary Point	Latitude / Longitude	Note
006	S26 07.136 E31 14.855	Reference of boundary point	012	S26 06.988 E31 14.729	Reference of boundary point
007	S26 07.114 E31 14.846	Ditto	013	S26 07.049 E31 14.725	Ditto
008	S26 07.046 E31 14.814	Ditto	014	S26 07.070 E31 14.757	Ditto
009	S26 07.018 E31 14.789	Ditto	015	S26 07.148 E31 14.659	Ditto
011	S26 07.000 E31 14.767	Ditto	017	S26 07.173 E31 14.680	Ditto

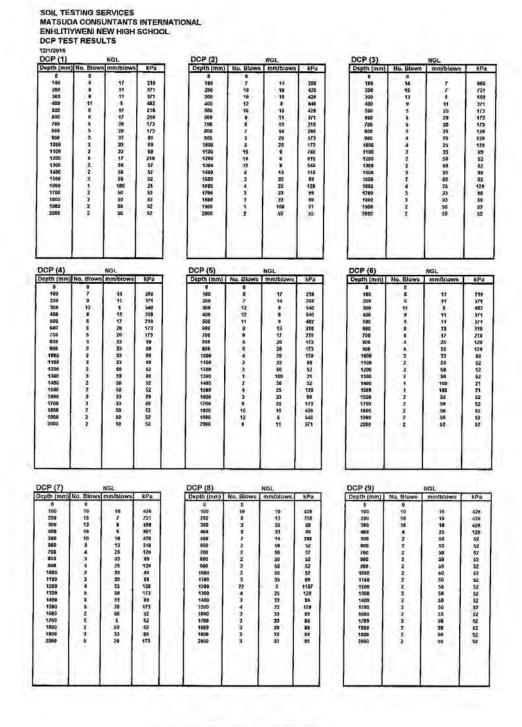

APPENDIX B

Projec Matsuda	et a consultants	Trial Pi	t No.		Loca KaNo		Date	
Internat	ional Ltd	TP 18 Description		(9/12/20	9/12/2015		
Layer		graphy	Thickness mm	Depth mm	Layer scheme	Color	Consistency	Moisture
	Topsoil		250	0-250		dark browr		moist
	sandy cl transpor		810	250-1100		dark red	slightly dense	moist
Soil Horizons								
	silt-clay, higl Mswati grani	ily weathered te	1000	1100-2100		ight red Inprofile, ight yellowis prange/ pale red/ ight brown	slightly soft, intact	Moist

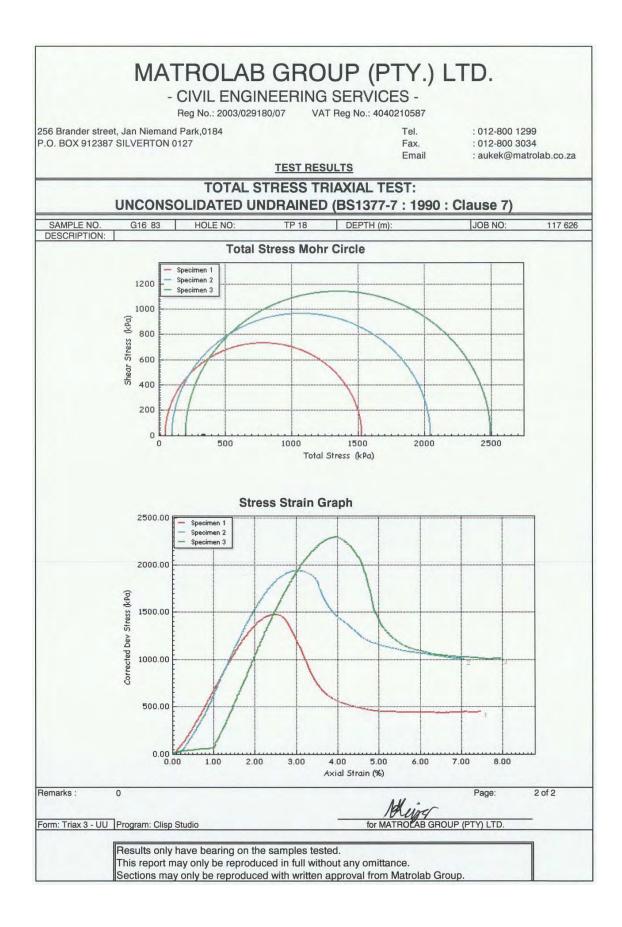

Projec		Trial Pi	t No.		Loca			Date	
Internat	a consultants ional Ltd	TP 19		(KaNc Enhlitiy			9/12/2	2015
Mate	rial and Soil	Description		•					
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		330	0-330		dark reddish brown			moist
Soil Horizons	sandy cl transpor		870	330-1200		dark red	slig	ghtly dense	moist
	silt-clay, higl Mswati grani	nly weathered ite	920	1200-2120		pale red Inprofile, light yellowis orange/light reddish brow	h	ly soft, fissure	_{2d} Moist

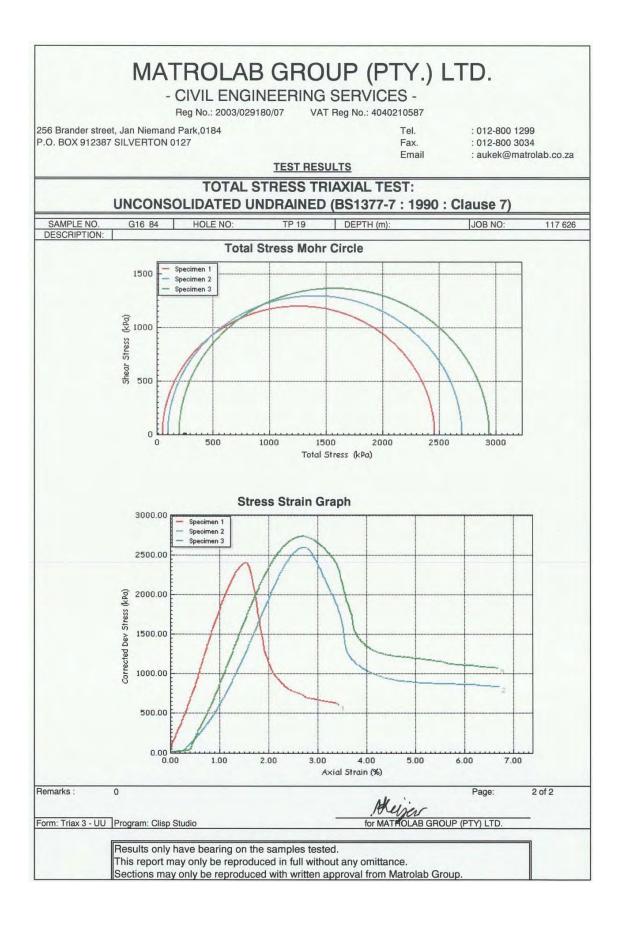
Projec		Trial Pi	t No.		Loca			Date	
Internat	a consultants ional Ltd	TP 20		(KaNc Enhlitiy			9/12/20	015
Mate	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		230	0-230		dark brown			moist
Soil Horizons	silt-clay, high Mswati grani	ly weathered te	1270	230-1500		light red Inprofile, dark red/ light reddisl orange/ pale red	1	y dense, intact	moist


	FOUNDATION INDICATOR RESULTS							
Client	Matsuda Consultants International	Sample no.	T.P. 18	Date				
Project	Enhlitiyweni High School	Sample Depth		Client				

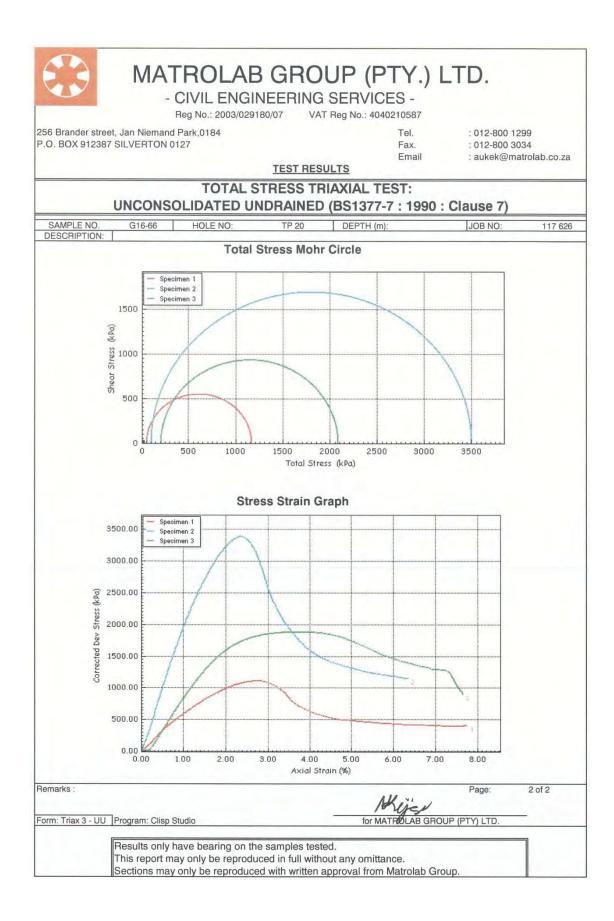

	FOUNDATION INDICATOR RESULTS							
Client	Matsuda Consultants International	Sample no.	T.P. 19	Date				
Project	Enhlitiyweni High School	Sample Depth		Client				

	FOUNDATION INDICATOR RESULTS							
Client	Matsuda Consultants International	Sample no.	T.P. 20	Date				
Project	Enhlitiyweni High School	Sample Depth		Client				


Pit 20


SOI (SV P.O.	L TERTING SERVICES NATUAND) (PTY) LTD BCUMB03, SWAZI PLAT EL 404 1956, 404 2227
1	SOIL LABORATOR
	SO'S BROOMMON

e <u>EHLITYWENI NEV</u> e <u>EHLITYWENI NEV</u> e <u>EHLITYWENI</u> tential influence of running dence of unusual land use to a norse A TLB AND PREPARED The hole was sneed for PE he hole was pressoled fr	g /standing/seosonal wate (mining/fill) BY A HAND SPADE was RCOLATION investigation day before and and soak	ised to excavate the hole.	HOLE 2 NOTES			
e <u>BILITYWENI</u> tential influence of runnin dence of running and use UE 1 NOTES A TLB AND PREPARED The hole was presorted th This hole has a very good HOLE 1	g /standing/seosonal wate (mining/fill) BY A HAND SPADE was RCOLATION investigation day before and and soak	ised to excavate the hole.	HOLE 2 NOTES			
tential influence of runnin dence of unusual land use LE 1 NOTES A TLB AND PREPARED The hole was presorted to The hole was presorted th This hole has a very good HOLE 1	(mining/fill) BY A HAND SPADE was i RCOLATION investigation e day before and and sock	ised to excavate the hole.				
dence of unusual land use LE 1 NOTES A TLB AND PREPARED The hole was used for PE he Hole was presosked th This hole has a very good HOLE 1	(mining/fill) BY A HAND SPADE was i RCOLATION investigation e day before and and sock	ised to excavate the hole.				
A TLB AND PREPARED The hole was used for PE The Hole was presosked for This hole has a very good HOLE 1	(mining/fill) BY A HAND SPADE was i RCOLATION investigation e day before and and sock	ised to excavate the hole.				
DLE 1 NOTES) A TLB AND PREPARED) The hole was used for PE The Hole was presosked in)This hole has a very good HOLE 1	BY A HAND SPADE was a RCOLATION investigation a day before and and sost					
A TLB AND PREPARED The hole was used for PE The Hole was presosked for This hole has a very good HOLE 1	RCOLATION Investigation e day before and and sosk					
) The hole was used for PE The Hole was presosked th)This hole has a very good HOLE 1	RCOLATION Investigation e day before and and sosk			REPARED BY A HAND	SPADE was used to ex	cavate the hol
The Hole was presosked th This hole has a very good HOLE 1	e day before and and sosk	the DALIDA		used for PERCOLATION		
This hole has a very good HOLE 1		TOT 24 TING		presosked the day before		
	and the second state		(4)This hole has a	very good seepage su	table for french drain	
	Same	a damento	A COLOR		Comments of	
		Time (24hrs)	HOLE 2	Presoaking T		
	TIME	SEEPAGE	DEPTH	TIME	SEEPAGE	
mai	Minutes	mitt/miri.	min	Minutes	mm/min.	
0	0.0		0	2.0	15.0	
40	2.0	20.0	30 50	3.0	20.0	
60	3.0		70	4.0	20.0	
80	4.0	20.0	90	5.0	20.0	
100	5.0	20.0			20.0	
110	5.0	10.0	110	6.0		
120	7.0	10.0	125	7.0	15.0	
135	8.0	15,0	135	8,0	10.0	
145	9.0	10.0	150	9.0	15.0	
155	10.0	10.0	160	10.0	10.0	
170	11.0	15.0	180	11.0	20.0	
170	12.0	5.0	190	12.0	10707	
185	13.0	10.0	200	13.0	10,0	
190	14.0	5.0	210	14.0	10.0	
200	15.0	10.0	215	15.0	5.0	
205	16.0	5.0	225	16.0		
210	17.0	5.0	235	17.0	10.0	
215	18.0	5,0	260	18.0	5.0	
225	19.0	10.0	265		5.0	
235	20.0	10.0	270	20.0	5.0	
240	21.0	5.0	280	22.0	5.0	
245	1 (mark)	5.0	280	23.0	5.0	
250	23.0	5.0	290	24.0	5.0	
255	24.0	5.0	300	25.0	10.0	
		5.0		Avora		
265	26.0			Avora	11.0	
270	27.0	5.0				
300	32.0					
and the second second	Ave	age 9.5		-		
· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S	OIL TESTING	2 CECONIE	-
				SWAZILAND	SERVICES	
				SWAZILAND	(PTY) ITO	
			I P.	D. BOX APSB.	NAT	1
				TEL	WAR PLAZA	81
					100 2000	
				SAUMEN	404 5221	
				SOM ALS	ATOR	


	- (CIVIL ENGIN Reg No.: 2003/0291	NEERING S		ES -	ID.	
	eet, Jan Niemand 87 SILVERTON 0	Park,0184			Tel. Fax.	: 012-800 129 : 012-800 303	34
			TEST RESUL	TC	Email	: aukek@mat	trolab.co.za
			ILSI NESUL	15		Income Cal	
CLIENT: ADDRESS:	P.O. Box A233	vices SWD (PTY) Ltd			Project	Japanese Sch ENHLITIWENI	
ADDRESS.	Swazi Plaza				Your Ref	Entrentient	
					Our Ref	117 626	
Attention:	Thulani Vilakati				Date Reported	14 March 2016	3
		TOTAL S	TRESS TRIA	XIAL TE	ST:		
	UNCONSO	DLIDATED UN	IDRAINED (BS1377-7	': 1990 : C	lause 7)	
SAMPLE NO.	G16_83	HOLE NO:	TP 18	DEPTH (m):		JOB NO:	117 62
DESCRIPTION	r l						
Specimen Details					1	2	3
			Lo				
Initial Sample Len Initial Sample Dia	U		Do	(mm)	101.4	99.0	95.2
			Wo	(mm)	50.0 390.1	50.2 392.1	51.2 392.6
nitial Sample We nitial Bulk Density			90	(gr) (Mg/m3)	1.96	2.00	2.00
Particle Density	y		ps	(Mg/m3)	2.65	2.65	2.00
Initial Conditions					1	2	3
	re		σ3	(kPa)	50	100	200
			mc				200
Strain Rate			m s	(mm/min)	0.10000	0.10000	0.1000
Strain Rate Membrane Thickn			mь	(mm)	0.30	0.30	0.1000
Strain Rate Membrane Thickn Initial Moisture	ness		m b @ i%	(mm) (%)	0.30	0.30 14	0.1000 0.30 14
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density	ness		mь	(mm)	0.30 14 1.71	0.30 14 1.75	0.1000 0.30 14 1.75
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio	iess		ть со ì% Р d0	(mm) (%)	0.30	0.30 14	0.1000 0.30 14
Initial Cell Pressui Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S	iess		m b	(mm) (%) (Mg/m3)	0.30 14 1.71 0.55	0.30 14 1.75 0.51	0.1000 0.30 14 1.75 0.51
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S	iess		m b	(mm) (%) (Mg/m3)	0.30 14 1.71 0.55	0.30 14 1.75 0.51	0.1000 0.30 14 1.75 0.51
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions	ness Saturation		m b	(mm) (%) (Mg/m3)	0.30 14 1.71 0.55 70	0.30 14 1.75 0.51 74	0.1000 0.30 14 1.75 0.51 74 3
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correct	ess Saturation		m b α 1% Ρ d0 ε 0 S ο	(mm) (%) (Mg/m3) (%) (%) (kPa)	0.30 14 1.71 0.55 70 1	0.30 14 1.75 0.51 74 2	0.1000 0.30 14 1.75 0.51 74 3 2294.1
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correct Strain At Max Stree	ess Saturation		m b α 1% Ρ d0 ε 0 S o (σ 1- σ 3) f	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correct Strain At Max Stree Shear Strength	ess Saturation		m b α 1% P d0 ε 0 S o (σ 1-σ 3) f m C ε f% C U	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stree Shear Strength Final Moisture	ess Saturation		m b α 1% P d0 ε 0 S o (σ 1-σ 3) f m C ε f% C U ω f%	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa) (%)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stree Shear Strength Final Moisture Final Dry Density	ess Saturation		m b α 1% P d0 ε 0 S o (σ 1-σ 3) f m C & f% C U ω f% P df	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14 1.72	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14 1.76	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13 1.77
Strain Rate Membrane Thickm nitial Moisture nitial Dry Density nitial Voids Ratio nitial Degree of S Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stree Shear Strength Final Moisture Final Dry Density Final Voids Ratio	ess saturation ess stion ess		m b α 1% P d0 e 0 S o (σ 1-σ 3) f m C E f% C U ω f% P df e f	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa) (%) (kPa)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14 1.72 0.54	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14 1.76 0.51	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13 1.77 0.50
Strain Rate Membrane Thickm Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stree Membrane Correc Strain At Max Stree Shear Strength Final Moisture Final Dry Density Final Voids Ratio	ess saturation ess stion ess		m b α 1% P d0 ε 0 S o (σ 1-σ 3) f m C & f% C U ω f% P df	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa) (%)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14 1.72	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14 1.76	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13 1.77
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio	ess saturation ess stion ess		m b α 1% P d0 e 0 S o (σ 1-σ 3) f m C E f% C U ω f% P df e f	(mm) (%) (Mg/m3) (%) (%) (kPa) (kPa) (%) (kPa) (%) (kPa)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14 1.72 0.54	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14 1.76 0.51	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13 1.77 0.50
Strain Rate Membrane Thickn Initial Moisture Initial Dry Density Initial Voids Ratio Initial Degree of S Final Conditions Max Deviator Stre Membrane Correc Strain At Max Stre Shear Strength Final Moisture Final Dry Density Final Voids Ratio Final Degree of S Remarks :	ess saturation ess stion ess		m b α 1% P d0 e 0 S o (σ 1-σ 3) f m C E f% C U ω f% P df e f	(mm) (%) (Mg/m3) (%) (%) (kPa) (%) (kPa) (%) (kPa) (%) (kPa) (%)	0.30 14 1.71 0.55 70 1 1477.09 1.088 2.49 738.54 14 1.72 0.54	0.30 14 1.75 0.51 74 2 1940.30 1.035 3.07 970.15 14 1.76 0.51 71.7 Page:	0.1000 0.30 14 1.75 0.51 74 3 2294.1 1.116 3.97 1147.0 13 1.77 0.50 71.2

	MATROLAE	3 GRO	UP (P	ΓΥ.) L٦	ΓD.	
	- CIVIL ENGI	NEERING	SERVICE	S -		
	Reg No.: 2003/0291	180/07 VAT	T Reg No.: 4040	210587		
	treet, Jan Niemand Park,0184			Tel.	: 012-800 129	-
P.O. BOX 912	387 SILVERTON 0127			Fax. Email	: 012-800 3034 : aukek@matrolab.co.z	
		TEST RES	ULTS	Email	. aukek@mat	IDIAD.CO.ZA
OLIENT.	Only Testing Operations ONID (DTM 144	10011100		-	Japanasa Saha	
OLIENT: ADDRESS:	Soil Testing Services SWD (PTY) Ltd P.O. Box A233			Project	Japanese Scho ENHLITIWENI	OIS
ADDITEOU.	Swazi Plaza			Your Ref		
				Our Ref	117 626	
Attention:	Thulani Vilakati			Date Reported	14 March 2016	
	TOTAL S	TRESS TR	IAXIAL TE	ST:		
_	UNCONSOLIDATED UI	NDRAINED	(BS1377-7	': 1990 : C	lause 7)	
SAMPLE NO		TP 19	DEPTH (m):		JOB NO:	117 626
DESCRIPTIO	N:					
Specimen Detai	ls			1	2	3
Initial Sample Le	angth	Lo	(mm)	101.1	103.4	103.3
nitial Sample Di		Do	(mm)	49.7	50.4	50.5
nitial Sample W		Wo	(gr)	394.2	395.7	396.4
nitial Bulk Dens	ity	po	(Mg/m3)	2.01	1.92	1.92
Particle Density		ρs	(Mg/m3)	2.55	2.55	2.55
nitial Condition	IS			1	2	3
Initial Cell Press	ure	σ3	(kPa)	50	100	200
Strain Rate		m s	(mm/min)	0.10000	0.10000	0.1000
Membrane Thick	kness	mь	(mm)	0.30	0.30	0.30
Initial Moisture		ω i%	(%)	8.80	8.80	8.80
nitial Dry Densit		Ob 9	(Mg/m3)	1.85	1.76	1.76
nitial Voids Ration		eo So		0.38	0.44	0.45
nitial Degree of	Saturation		(%)	59	50	50
Final Conditions				1	2	3
Max Deviator Str	2017	(σ1-σ3)		2405.33	2596.40	2736.2
Membrane Corre Strain At Max St	56/250	m c	(kPa)	0.559	0.987	0.982
Strain At Max St Shear Strength	1622	6 f %	(%) (kPo)	1.54	2.71	2.69
Final Moisture		CU © f%	(kPa) (%)	1202.66	1298.20	1368.1
Final Dry Density	V	P df	(%) (Mg/m3)	1.80	1.72	1.70
Final Voids Ratio		81	(ingrino)	0.42	0.48	0.49
Final Degree of S		Sf	(%)	71.4	62.3	64.0
Remarks :		-			Page:	1 of 2
	JU Program: Clisp Studio		AK	MOLAB GROUP		
Torm: Trian 0				MARINE (2011) D /	PIVIII)	
Form: Triax 3 - L			IOI IVIAT	HOLAB GHOUP		

	-	CIVIL ENGIN Reg No.: 2003/02918	NEERING S		S -	ID.		
256 Brander street, Jan Niemand Park,0184					Tel.	: 012-800 1299		
P.O. BOX 912387 SILVERTON 0127		1127			Fax.	: 012-800 3034		
			TEST RESUL	TS	Email	: aukek@mat	rolab.co.za	
CLIENT:	Onil Trating One		TEOTTEOOL		25.55	Internet Cabo	ala.	
ADDRESS:	Soil Testing Services SWD (PTY) Ltd P.O. Box A233				Project	Japanese Schools Enhilitiyweni		
	Swazi Plaza			Your Ref				
					Our Ref	117 626		
Attention:	tention: Thulani Vilakati				Date Reported	12 February 2016		
		TOTAL ST	TRESS TRIA		ST			
	UNCONS	OLIDATED UN				ause 7)		
					. 1000.0			
SAMPLE NO. DESCRIPTION:	G16-66	HOLE NO:	TP 20	DEPTH (m):		JOB NO:	117 626	
DESCRIPTION.								
Specimen Details					1	2	3	
specificit becans					1	2	3	
Initial Sample Len	gth		Lo	(mm)	102.9	101.6	102.9	
Initial Sample Diar	meter		Do	(mm)	50.2	50.2	50.2	
Initial Sample Wei	ight		Wo	(gr)	419.3	419.5	419.9	
Initial Bulk Density			pg	(Mg/m3)	2.06	2.08	2.06	
Particle Density			рs	(Mg/m3)	2.58	2.58	2.58	
Initial Conditions					1	2	3	
Initial Cell Pressur	~		σ3	(1/D=)	50	100	000	
Strain Rate	6		ms	(kPa) (mm/min)	50 0.10	0.10	200	
Membrane Thickn	ess		mь	(mm)	0.30	0.30	0.30	
nitial Moisture			w i%	(%)	11	11	11	
Initial Dry Density			Ob Q	(Mg/m3)	1.86	1.88	1.86	
Initial Voids Ratio			eo		0.39	0.37	0.39	
Initial Degree of Sa	aturation		So	(%)	72	75	73	
Final Conditions					1	2	3	
Max Deviator Stre								
	2 A		(σ1-σ3)f	(kPa)	1112.30	3393.46	1884.24	
embrane Correction rain At Max Stress			m c 5 f%	(kPa) (%)	1.113	0.948	1.102	
Shear Strength			100 NO		2.75 556.15	2.36	3.65	
9			© f%	(kPa) (%)	10	1696.73 10	942.12	
Final Moisture			P df (Mg/m			1.89	11	
			ef .		0.38	0.37	0.39	
Final Dry Density	Final Degree of Saturation			(%)	70.2	73.4	73.8	
Final Dry Density Final Voids Ratio					1			
Final Dry Density Final Voids Ratio								
Remarks :	Program: Clisp S				Kinger ROLAB GROUP	Page:	1 of 2	

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Presumed bearing value kPa		
Non-cohesive soils	Dense gravel or dense sand and gravel	>600		
	Medium dense gravel, or medium dense sand and gravel	<200 to 600		
	Loose gravel, or loose sand and gravel	<200		
	Compact sand	>300		
	Medium dense sand	100 to 300		
	Loose sand	<100 depends on degree of looseness		
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600		
	Stiff clays	150 to 300		
	Firm clay	75 to 150		
	Soft clays and silts	< 75		
	Very soft clay	Not applicable		
Peat		Not applicable		
Made ground		Not applicable		

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – GAMULA

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

A-241

TABLE OF CONTENTS

GEOTECHNICAL REPORT	2
1.0 INTRODUCTION	2
2.0 SCOPE OF WORK	2
3.0 SITE DESCRIPTION	2
Location and Topography	2
Rainfall and Drainage	2
Access	3
4.0 GENERAL GEOLOGY OF SITE	3
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING	4
Methods of Investigation and Testing	4
6.0 INTERPRETIVE INFORMATION	7
Site stratigraphy	7
Materials	7
7.0 CONCLUSION AND RECOMMENDATIONS	9
GENERAL NOTES ON THE REPORT	11
APPENDIX A	12
APPENDIX B	16

GEOTECHNICAL REPORT – GAMULA

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Gamula, southeastern Swaziland, where the proposed Gamula High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

(1) Field works on each site

- Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
- Soil Sampling
- Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new school site is located in an area a bit remote of the residential areas of Gamula a few kilometers from Big Bend. The area is currently used as grazing land for the community. During the site investigation there was no grass cover and the main vegetation is thorny shrubs and dry land vegetation.

The topography of the school site is generally defined by a gentle hill slope facing to the west.

Rainfall and Drainage

Gamula receives lies in the Lowveld climatic zone of the country on the leeward side of the Lubombo escarpment. It lies about 170m above sea level and it is a summer rainfall area with rainfall falling between October and March. It experiences least rainfall in Swaziland with an annual average of 400 mm. It is thus semi-arid with dry climate conditions and temperatures range between 15 to more than 40 degrees Celsius in summer.

The hill slope has no scour surface or stream bed. The only water course is to the west beyond the western boundary. This is expected to carry flood water and serves as an ephemeral stream. Source of water is a community water scheme.

Access

The main road running close to the area is the MR8 running between Lavumisa and Big Bend, about 6km from Matata junction. A community road leads from MR8 through the residential areas into a motorable track with no wearing course that serves the community water reservoir. It is expected to offer some challenges during the rainy season with the clayey soil found along the track.

4.0 GENERAL GEOLOGY OF SITE

The site at Gamula is underlain by rhyolitic/rhyodacitic rocks that are interlayered with basalts. No clear *in situ* rocks could be found but the boulders common in the area are pale maroon-brown in colour, but on fresh surfaces are pale reddish or drab green. Randomly oriented insets, usually composed of oligoclase-andesine and orthoclase, are a common feature in the rock. Further, there is augite, titaniferous magnetite and quartz present as coarse-grains set in fine-grained matrix.

The basalt is composed of laths of feldspar and ragged grains of amphibole in which the cores of pyroxene are sometimes present. They may be defined by drab, olive green basalt with small, pealike amygdales of the Karoo Supergroup. Magnetite is usually abundant and areas of pale green, devitrified basaltic glass are common.

The general structural dip of the Karoo Supergoup is eastwards, and the rocks commonly dip between 25^o and 35^o. The area within the boundary is unaffected by faulting. However, the western limit of the area suggests a zone of weakness as manifest by the valley.

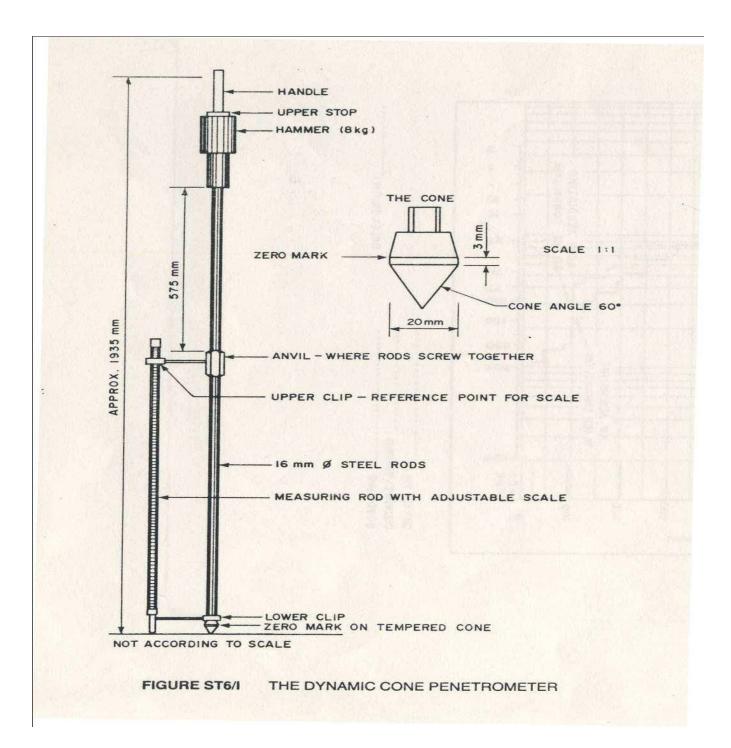
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 26 (2531 DD) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 1.7m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

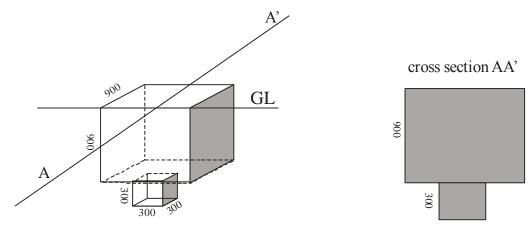
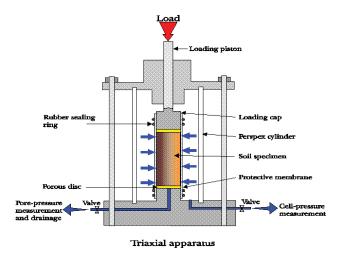


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The

cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

6.0 INTERPRETIVE INFORMATION

Site stratigraphy

The stratigraphy of the Gamula High School site can be summarized as colluvial and residual soils. Colluvial soils on the site generally consist of about 500mm thick layer of very dry dark brown topsoil. This is gravity transported soil. At TP 162 another layer of about 600mm defines the lower limit of colluvial soils, and consists of very dry, very dense, sandy clay. It is pale red in colour.

Colluvial soils directly overly residual soils that are derived from moderately weathered rhyolitic/rhyodacitic rock. This soil is dry, very dense, course gravel and the material displays lateral variation in colour from dark reddish brown to light brown.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	ΡI	Shrinkage	Soil Class AASHTO
162	1.2-1.7	Residual rhyolite	12.6	42	17	4.5	A-2-7(0)
163	1.0-1.5	Residual rhyolite	8.1	21	10	0.0	A-2-7(0)
164	0.5-1.6	Residual rhyolite	9.8	45	20	6.0	A-2-7(0)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is, generally, not expected to find groundwater at shallow levels on rhyolites as they are not good aquifers. Water strikes are known at great depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" to "medium" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Boyane High School site with unconsolidated undrained (UU) shear strength (c_u) of between 987kPa and 1389kPa display allowable bearing capacity of between an estimated 1691kPa and 2380kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development.

From the field Dynamic Cone Penetrometer (DCP) tests, for most of the tests it, also, reveals safe bearing capacities by the very course gravel, well above the 79kPa for single story buildings. No certain precautions need to be taken during designing the foundation.

The residual soil is relatively homogenous, and is marked by coarse gravel at variable depths. There buildings will have to be founded at depths of 800 to 1000mm and the common shallow refusals at this area suggest that excavations have to be performed mechanically.

Excavatibility

Trial Pit 163 experienced excavation refusal whereas the other two did not. DCP on the other hand experienced refusals at ca.400mm. This indicates that during excavations for foundations it could be difficult to achieve depths beyond 500mm by hand digging. No instabilities were recorded during the excavation of the test pits which further suggests that excavations may safely be conducted without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Gamula area is to the east-central part of Swaziland and as such falls outside this area. The South African "loading" code, SABS 0160-4:2011, shows that Gamula is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is just less than 100 cm/sec².

The soil profile of the site can be described as very dense, course to very course gravel with average shear strength between 987kPa and 1389kPa c_u . The area can be identified as Ground Type2. A v_s profile at the site is, however, "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites", and is lacking to conclusively predicts the ground seismicity.

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be taken with regards to dampness as no water seepage was experienced in any of the Trial Pits.

• The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The sandy clay in the site has a far more safe allowable bearing capacity and can support any building development of 2380kPa whereas the gravels are at 1691kPa.

It is recommended that foundations be placed on the residual soil, at depths of 800 to 100mm, to avoid the colluvial soil material.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" to "medium" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur, and it is recommended that foundations be placed on the residual soil at any desirable depth.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking and roadways can easily be stabilized and paved. It can be used for subgrade material as well as in the formation (fill) required for roads. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

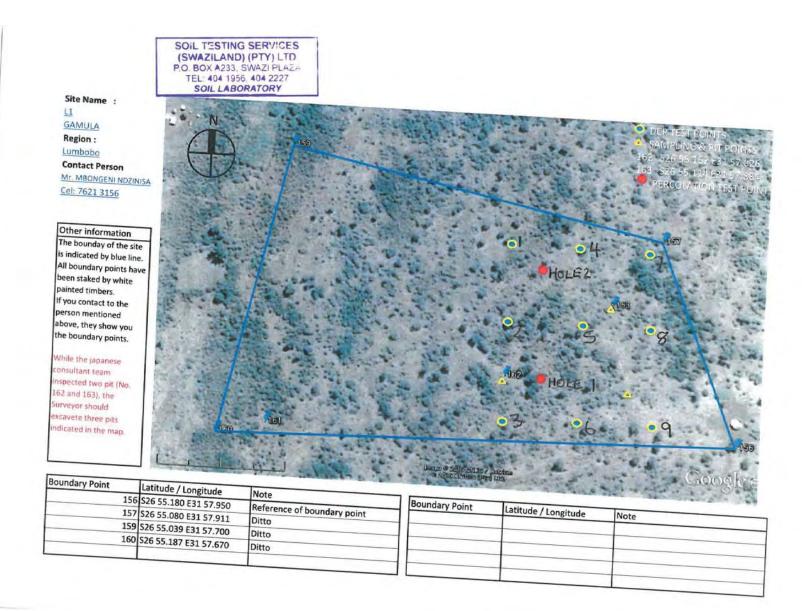
• Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

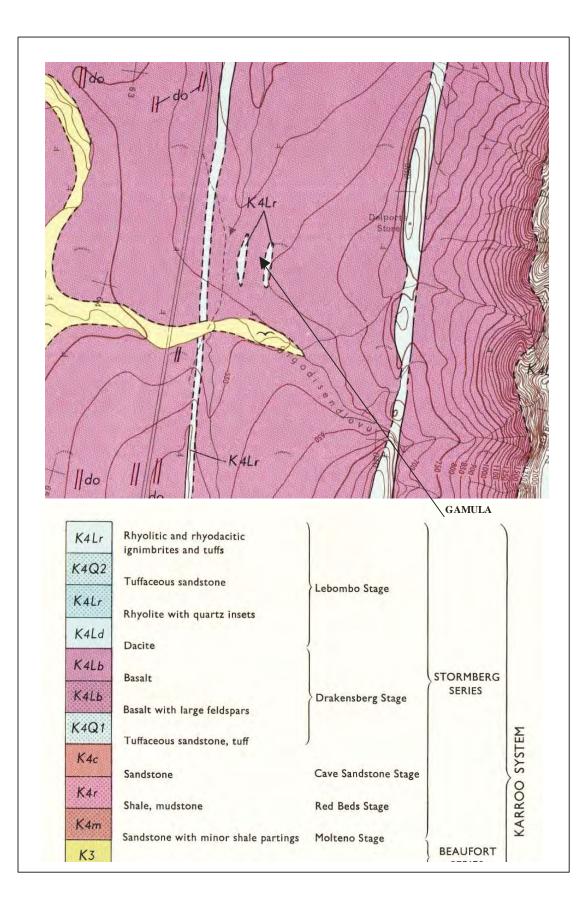
The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions


NOAH NHLEKO BSc (Biology & Chemistry); PhD Geology

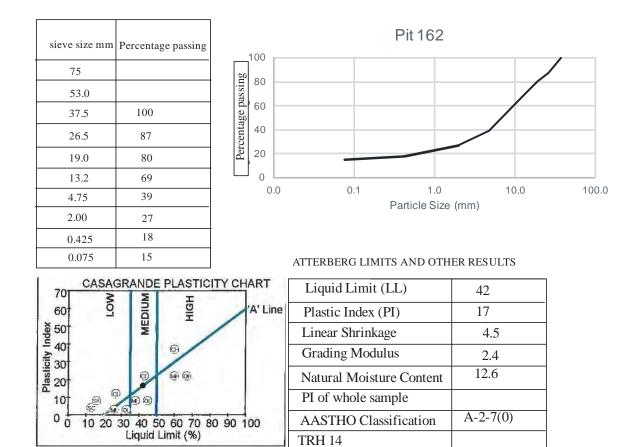
APPENDIX A



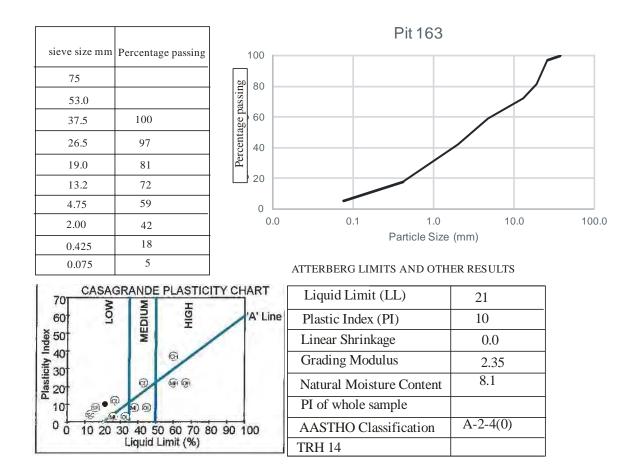
A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

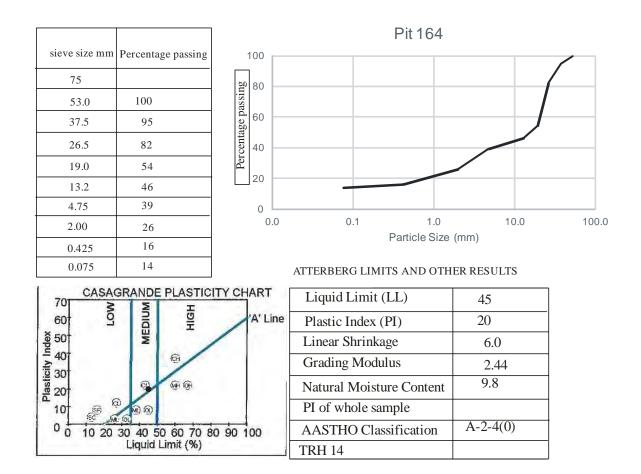
A-255

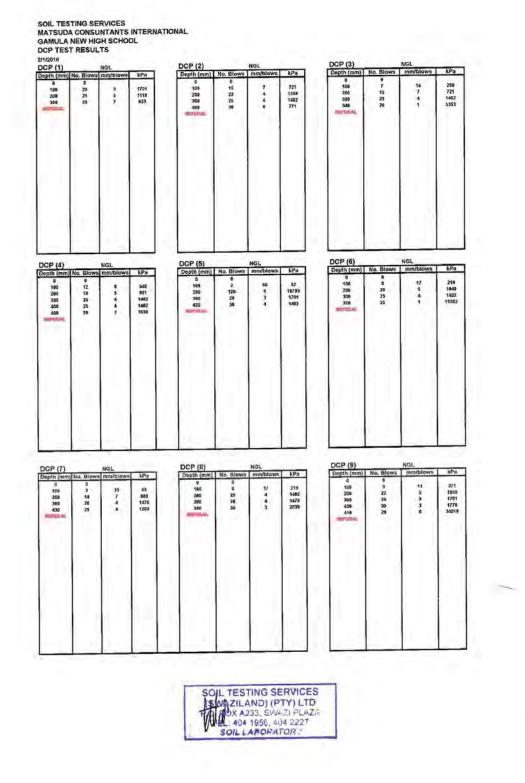

APPENDIX B

Projec	t	Trial Pi	t No.		Location			Date	
Matsud	a	TP 162	2		Gamula 30		30/11/2	015	
Mater	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		540	0-540		dark brown			very dry
Soil Horizon	sandy clay	y	630	540-1170		pale red	ver	y dense	Very dry
	coarse gravel, Moderately we rhyodaciti/rhy	eathered rock,	530	1170-1700		light brown	ver	y dense	Very dry

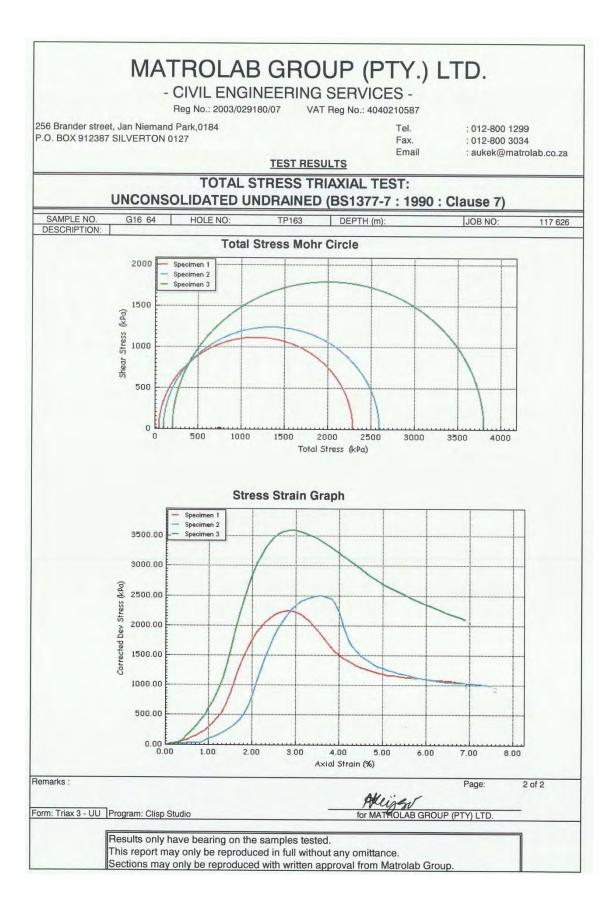

Projec	rt	Trial Pi	t No.		Loca	ation		Date	
Matsud	a	TP 163	3		Ga	mula		30/11/2	015
Mater	rial and Soil	Description		I					
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	nsistency	Moisture
	Topsoil		500	0-500		dark brown			very dry
Soil Horizon	very course Moderately rhyodacitic REFUSAL	gravel, weathered rock, /rhyolitic rock	530	500-1030		dark reddish brown			Dry

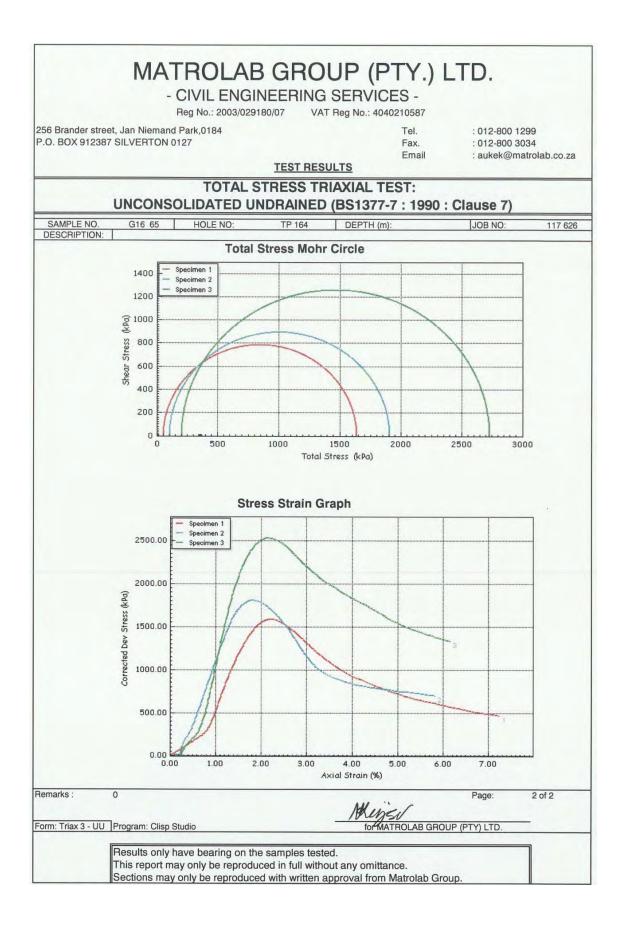
Projec	et	Trial Pi	t No.		Loca	ation		Date	
Matsuda Co. Ltd	a Consultant	TP 164	ŀ		Gamula			30/11/2015	
Material and Soil Description									
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Tops	oil	440	0-440		dark brown			very dry
Soil Horizon	very coarse g Moderately w rhyodaciti/rh	eathered rock,	760	440-1600		dark reddish brown	ver	y dense	Very dry


FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 162	Date	
Project	Gamula High School	Sample Depth		Client	



FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 163	Date	
Project	Gamula High School	Sample Depth		Client	


FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 164	Date	
Project	Gamula High School	Sample Depth		Client	



A-264

		LAB GRO					
		ENGINEERING					
056 Brander et	•		Reg No.: 40402				
	reet, Jan Niemand Park,0184 387 SILVERTON 0127			Tel. Fax.	: 012-800 129		
				Email	: aukek@mat		
		TEST RES	ULTS				
CLIENT:	Soil Testing Services SWD (PTY) Ltd	٦	Project	Japanese Scho	ols	
ADDRESS:	P.O. Box A233			, rojour	Gamula		
	Swazi Plaza			Your Ref			
				Our Ref	117 626		
Attention:	Thulani Vilakati			Date Reported	15 March 2016		
	TO	TAL STRESS TR		27.		_	
	UNCONSOLIDAT		the second state of the second		lause 7)		
SAMPLE NO.			DEPTH (m):		JOB NO:	117 626	
DESCRIPTION	J:						
Specimen Detail	s			1	2	3	
Initial Operate La		1.0	1		1		
Initial Sample Le		Lo Do	(mm)	100.6	98.9	100.5	
Initial Sample Dia Initial Sample We		Wo	(mm)	49.7	50.0	49.9	
Initial Bulk Densit		09	(gr) (Mg/m3)	379.5 1.94	379.5	380.1	
Particle Density	.,	Ps	(Mg/m3)	2.48	2.48	1.93 2.48	
Initial Conditions	5			1	2	3	
Initial Cell Pressu	ire	σ3	(kPa)	50	100	200	
Strain Rate		m s	(mm/min)	0.07500	0.07500	0.07500	
Membrane Thick	ness	m b	(mm)	0.30	0.30	0.30	
Initial Moisture		00 1%	(%)	9.00	9.00	9.00	
Initial Dry Density Initial Voids Ratio		9 d0 e 0	(Mg/m3)	1.78	1.79	1.77	
Initial Degree of S		So	(0/)	0.39	0.38	0.40	
initial Degree of e			(%)	57	58	56	
Final Conditions			_				
				1	2	3	
Max Deviator Stre	187	(01-03)	(kPa)	2244.08	2491.46	3600.38	
Membrane Correc		mc	(kPa)	1.012	1.089	1.020	
Strain At Max Stre	ess	5 f%	(%)	2.80	3.51	2.90	
Shear Strength		cu	(kPa)	1122.04	1245.73	1800.19	
Final Moisture Final Dry Density		00 f%	(%)	9.10	8.98	9.09	
Final Voids Ratio		Pdf ef	(Mg/m3)	1.78 0.39	1.79	1.77	
Final Degree of S		Sf	(%)	57.6	0.38	0.40	
indi Bogroo or o		51	(70)	57.6	50.1	56.4	
Remarks :			t	Keijar	Page:	1 of 2	
				0			
Form: Triax 3 - Ul	U Program: Clisp Studio		for MATE	ROLAB GROUP (PTY) LTD.		

- CIVIL ENG Reg No.: 2003/028 IN Niemand Park,0184 VERTON 0127 Testing Services SWD (PTY) Ltd . Box A233 azi Plaza lani Vilakati TOTAL S CONSOLIDATED U G16_65 HOLE NO:	TEST RESU STRESS TR	Reg No.: 40402	10587 Tel. Fax. Email Project Your Ref Our Ref Date Reported	: 012-800 12: : 012-800 30: : aukek@ma Japanese Sch Gamula 117 626 14 March 2016 ause 7) JOB NO: 2	34 trolab.co.za ools
In Niemand Park,0184 VERTON 0127 Testing Services SWD (PTY) Ltd . Box A233 azi Plaza lani Vilakati TOTAL S ICONSOLIDATED U	TEST RESU STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Tel. Fax. Email Project Your Ref Our Ref Date Reported ST: : 1990 : Cl	: 012-800 30. : aukek@ma Japanese Sch Gamula 117 626 14 March 2016 ause 7) JOB NO:	34 trolab.co.za ools 5 117 620
VERTON 0127 Testing Services SWD (PTY) Ltd Box A233 azi Plaza lani Vilakati TOTAL S ICONSOLIDATED U	STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Fax. Email Project Your Ref Our Ref Date Reported 5T: : 1990 : Cl	: 012-800 30. : aukek@ma Japanese Sch Gamula 117 626 14 March 2016 ause 7) JOB NO:	34 trolab.co.za ools 5 117 620
Testing Services SWD (PTY) Ltc . Box A233 azi Plaza lani Vilakati TOTAL S ICONSOLIDATED U	STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Email Project Your Ref Our Ref Date Reported T: : 1990 : Cl	: aukek@ma Japanese Sch Gamula 117 626 14 March 2016 ause 7) JOB NO:	trolab.co.za ools 3 117 620
. Box A233 azi Plaza lani Vilakati TOTAL S NCONSOLIDATED U	STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Project Your Ref Our Ref Date Reported T: : 1990 : Cl	Japanese Sch Gamula 117 626 14 March 2016 ause 7) JOB NO:	ools 3 117 624
. Box A233 azi Plaza lani Vilakati TOTAL S NCONSOLIDATED U	STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Your Ref Our Ref Date Reported	Gamula 117 626 14 March 2016 ause 7) JOB NO:	117 620
. Box A233 azi Plaza lani Vilakati TOTAL S NCONSOLIDATED U	STRESS TR INDRAINED TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Your Ref Our Ref Date Reported	Gamula 117 626 14 March 2016 ause 7) JOB NO:	117 62
azi Plaza Iani Vilakati TOTAL S ICONSOLIDATED U	TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Our Ref Date Reported	117 626 14 March 2016 ause 7) JOB NO:	117 62
Iani Vilakati TOTAL S ICONSOLIDATED U	TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Our Ref Date Reported	14 March 2016 ause 7)	117 62
TOTAL S	TP 164	IAXIAL TES (BS1377-7 DEPTH (m):	Date Reported	14 March 2016 ause 7)	117 62
TOTAL S	TP 164	(BS1377-7 DEPTH (m):	ST: : 1990 : Cl	JOB NO:	117 62
CONSOLIDATED U	TP 164	(BS1377-7 DEPTH (m):	: 1990 : Cl	JOB NO:	
CONSOLIDATED U	TP 164	(BS1377-7 DEPTH (m):	: 1990 : Cl	JOB NO:	
G16_65 HOLE NO:	Lo Do		1		
	Do	(mm)	1	2	1
	Do	(mm)	1	2	1 2
	Do	(mm)			5
	Do	(mm)		1	
			101.1	100.9	100.8
		(mm)	50.3	50.1	50.3
	040	(gr)	433.1	434.3	434.6
	PS	(Mg/m3) (Mg/m3)	2.16 2.58	2.18	2.17
			10.		
			1	2	3
	α3	(kPa)	50	100	200
	ms	(mm/min)	0.10000	0.10000	0.1000
	171 b 60 i%	(mm)	0.30	0.30	0.30
		(%)	9.80	9.80	9.80
		(Mg/m3)			1.98
			all		0.31
		(70)	01	60	83
			1	2	3
	1	(LDc)	1500.00	1000.00	0.500
					2528.1
					0.923
					1264.0
					9.94
					1.97
	er				0.31
n	Sf	(%)	81.0	86.7	83.6
		NH vi		Page:	1 of 2
man Olion Chudi-		1thepe	n and a second		_
gram: Clisp Studio		for MATR	OLAB GROUP (F	PTY) LTD.	
	s report may only be reprod	((σ 1- σ 3) f m c ε f% c u ω f% p df e f n S f gram: Clisp Studio sults only have bearing on the samples teste s report may only be reproduced in full witho	P 40 (Mg/m3) e 0	p d0 (Mg/m3) 1.96 e 0 . 0.31 on S o (%) 81 (σ 1- σ 3) f (kPa) 1586.62 m c (kPa) 1.053 ϵ f% (%) 2.25 c u (kPa) 793.31 ω f% (%) 9.90 p df (Mg/m3) 1.96 e f . 0.32 n S f (%) 81.0	P d0 (Mg/m3) 1.96 1.99 e 0 . 0.31 0.30 S a (%) 81 85 Image: Clip Studio (σ 1-σ 3) f (kPa) 1586.62 1806.30 m c (kPa) 1586.62 1806.30 m c (kPa) 1.053 0.884 z f% (%) 2.25 1.83 c u (kPa) 793.31 903.15 ω f% (%) 9.90 10 P df (Mg/m3) 1.96 1.98 e f . 0.32 0.30 n S f (%) 81.0 86.7

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable