

Figura 2-72: Mapa de diferencia en el nivel del agua de 15 a 20 años

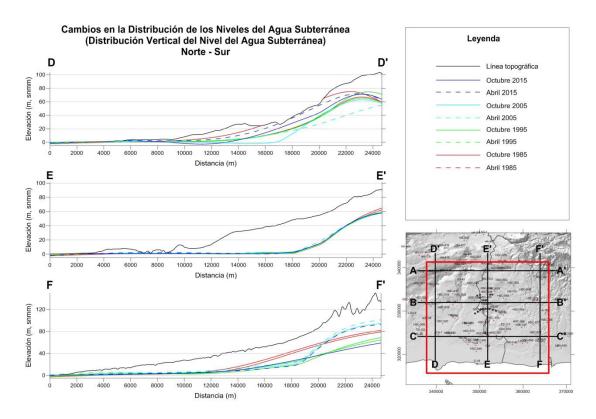


Figura 2-73: Cambios en la distribución de los niveles del agua subterránea (Distribución vertival del nivel del agua subterránea) Norte-Sur

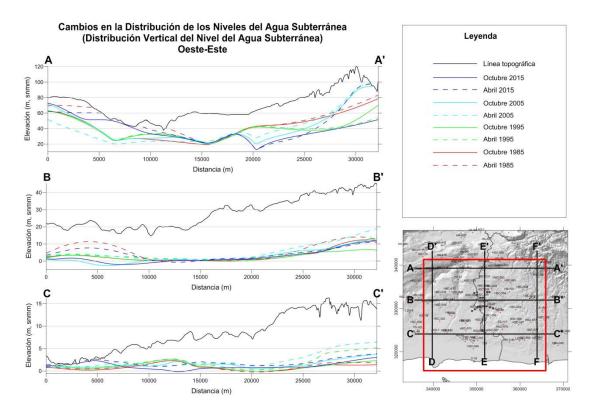


Figura 2-74: Cambios en la distribución de los niveles del agua subterránea (Distribución vertival del nivel del agua subterránea) Oeste-Este

2.5 Calidad del Agua Subterránea

La calidad del agua subterránea en las fuentes estudiadas de las provincias Artemisa y Mayabeque se ha analizado por el siguiente esquema:

La calidad del agua se encuentra influenciada por:

- La disolución de las rocas en el área de captación del acuífero.
- La influencia del mar es primordial porque de ella dependerá el nivel de sales presentes fundamentalmente sodio (Na) y cloro (Cl).

La calidad del agua está influenciada por la acción antrópica, interviniendo:

- La actividad agrícola, la cual se manifiesta en las concentraciones de fertilizantes que se disponen en el suelo para lograr los cultivos, sus excedentes se infiltran a través de los diferentes estratos y además son partes fundamentales en las aguas de escorrentía que fluyen hacia las aguas superficiales y que también recargan el manto a través de ríos y arroyos subterráneos.
- Las actividades domésticas, en las que el aporte diario de hombre se basa en materia orgánica, detergentes (aportes de nitrógeno (N) y fósforo (P)) y otros elementos que en altos volúmenes y concentraciones influyen de forma negativa en la calidad del agua.
- Las actividades industriales, en este caso el aporte se concentra en materia orgánica en altos volúmenes y concentraciones, así como se incrementan los niveles de metales pesados que perjudican la salud.

El acueducto Cuenca Sur fue construido en la década de los años 50 del pasado siglo y está constituido por 20 pozos de explotación, de una profundidad entre 25 y 90 m, con un gasto total de extracción de 3.02 m³/s. En este acueducto se obtuvo información a partir del año 1976 de los controles periódicos de mineralización, explotación y niveles dinámicos, donde se observa que más de la mitad bombean por debajo del nivel medio del mar (2 a 6 m) y solamente 4 presentan una elevación de los cloruros de 50 a 100 mg/l a partir del año 1985. El resto de los pozos bombean con niveles dinámicos por encima del nivel medio del mar y la mitad de estos presentan elevación de los cloruros a partir del año 1985.

Las Empresas Agropecuarias de Güira de Melena, Quivicán, Alquízar, Batabanó y San Antonio de los Baños son los consumidores del agua subterránea para riego, la extracción total es de 2 m³/s.

El resto de los usuarios, entre los que se encuentran los pequeños acueductos, tienen un gasto de extracción de 1.9 m³/s.

a. Intrusión salina

Las condiciones hidroquímicas, en la mayor parte del área, son homogéneas en general. Por su composición química predominan las aguas bicarbonatada-cálcicas con mineralización de 0.5 a 0.7 g L⁻¹. De una forma brusca existen cambios del medio hidroquímico hacia la parte litoral del territorio.

En toda la zona costera las aguas subterráneas, con mineralización total de hasta 1 g L^{-1} , yacen sobre las aguas salinizadas de composición cloruro-sódicas con residuo seco hasta 40 g L^{-1} .

Las aguas dulces en el área se encuentran estrechamente relacionadas con las aguas altamente mineralizadas. El carácter de esta relación se ha estudiado, a grandes rasgos, de acuerdo con los resultados del monitoreo sistemático de la salinidad en los pozos de la red de observación. Según las observaciones obtenidas en los pozos, con una serie hiperanual en las mediciones de salinidad, fueron construidos los gráficos de dependencia de la profundidad de yacencia de

la mineralización total de las aguas subterráneas y su variación en el tiempo.

Por el análisis de estas observaciones es posible señalar las siguientes particularidades en el comportamiento de la frontera entre las aguas dulces y saladas:

- Existencia de una zona donde, prácticamente, no se observa la presencia de aguas dulces, que coincide con la zona pantanosa y se extiende como una franja paralela a la costa, con un ancho máximo de 7 km y un área de 83 km². El límite de la zona está determinado por la isohipsa con valor de salinidad igual a 1 g L¹ con la elevación igual a cero.
- La superficie de contacto entre las aguas dulces y saladas ha sido establecida por la mineralización de 1 g L⁻¹, la superficie se profundiza hacia el norte de la cuenca con una pendiente suave.
- Las observaciones hiperanuales del período comprendido del año 1973 al 2015 nos muestran el equilibrio existente en la zona con mineralización desde 20 hasta 30 g L⁻¹, independientemente de la magnitud de las precipitaciones y del volumen de la extracción.
- El espesor de la zona de difusión o transición, con una mineralización de 1 a 30 g L⁻¹, varía de 10 a 15 m.
- De manera cualitativa puede observarse la elevación de la zona de difusión, solamente en la región donde se encuentra ubicada la fuente de abasto Cuenca Sur. Sin embargo, esta elevación tiene un carácter local y solamente ha sido determinada en los pozos HSC-542 y HSC-541.
- En general, no se observa una variación regional de la zona de difusión en el tiempo. Se supone que, en algunos casos, la presencia de conductos cársicos verticales facilita el surgimiento de flujos ascendentes que, conjuntamente con la extracción, produce la succión local de las aguas saladas sin alterar el equilibrio de la interfaz en el área de influencia de la fuente. Para mantener constante el volumen total de extracción en esos casos, es posible el sellado de los pozos en los que se observa un aumento de la mineralización o su sustitución por nuevos.

Figura 2-75: Comportamiento temporal de la salinidad (1 g L⁻¹) en el pozo HSC-542.

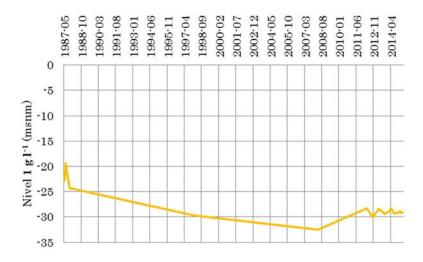


Figura 2-76: Comportamiento temporal de la salinidad (1 g L⁻¹) en el pozo HSC-541

Figura 2-77: Comportamiento temporal de la salinidad (1 g L⁻¹) en el pozo HSC-540

- Donde la zona de difusión tiene un espesor de algunas decenas de metros y la mineralización varía de 1 a 3 g L⁻¹, el equilibrio dinámico es menos estable y es posible su desplazamiento bajo la influencia de la alimentación y la descarga.
- La superficie de la zona de difusión se extiende desde la elevación 0, cerca de la franja costera, hasta las elevaciones absolutas de -30 a -40 msnm en la parte central, en forma de una anomalía que penetra 14 km dentro del área. Hacia los extremos la zona de difusión puede sobrepasar la altitud -140 msnm como, por ejemplo, cerca del límite hidrodinámico con el tramo Batabanó.

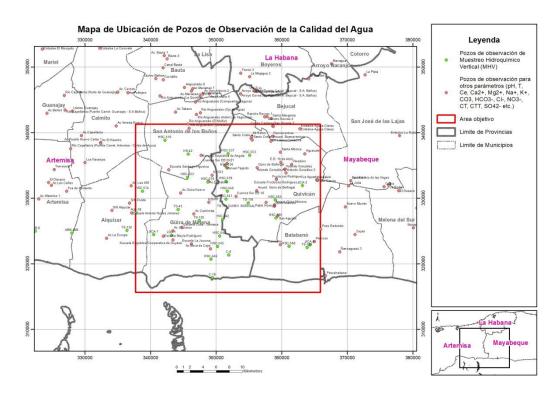


Figura 2-78: Mapa de ubicación de pozos de observación de la calidad del agua

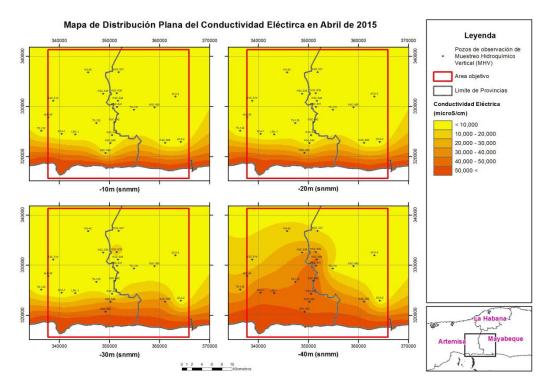


Figura 2-79: Mapa de distribución plana del conductividad eléctirca en Abril de 2015

Figura 2-80: Mapa de distribución plana de la conductividad eléctrica en Octubre de 2015

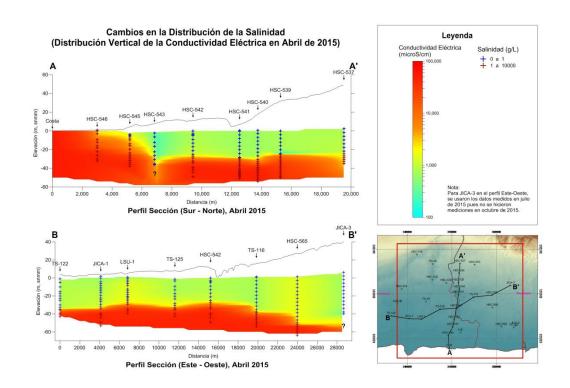


Figura 2-81: Cambios en la distribución de la salinidad (Distrbución vertical de la conductividad eléctrica en Abril de 2015)

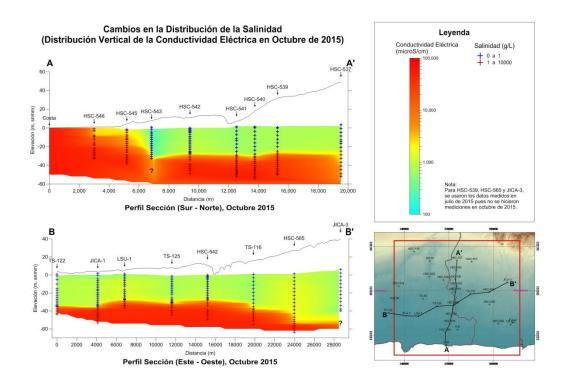


Figura 2-82: Cambios en la distribución de la salinidad (Distrbución vertical de la conductividad eléctrica en Octubre de 2015)

b. REDCAL

b.1 Elementos encontrados en estudios anteriores de calidad del agua subterránea

Según la Norma Cubana, se han medido en el agua subterránea la temperatura del agua, pH, nitrato de iónico (NO₃⁻), cloro de iónico (Cl⁻), sulfuro de iónico (SO₄²⁻), calcio de iónico (Ca²⁺), magnesio de iónico (Mg²⁺), sodio de iónico (Na⁺), potasio de iónico (K⁺), disueltos totales de de sólido (SDT), totales de los coliformes (CT), termotolerantes de Coliformes (CTT). Además, también se han observado la conductividad eléctrica (CE) y el ión carbónico (HCO₃⁻) como parámetros importantes reflejados en la salinidad y las condiciones geológicas. Igualmente, se monitorean la demanda de oxígeno químico (DQO) y la demanda de oxígeno biológico (DBO) como indicadores de contaminantes industriales.

b.2 Condición actual estimada del agua subterránea en el área

Las provincias involucradas en el Proyecto JICA son Artemisa y Mayabeque, en las cuales fueron seleccionadas varias fuentes subterráneas que permitieran desarrollar los estudios y análisis propuestos por los expertos japoneses, cada provincia realizó su selección de las cuales se muestran los principales parámetros obtenidos para el trabajo realizado (Tabla 2-11 y Tabla 2-12 para Artemisa y Mayabeque respectivamente).

Tabla 2-10: Pozos de la red hidrogeológica a monitorear en el área del proyecto JICA.

Cuenca	Sigla	Sigla	Nombre	x	y	Cota	Red Mensual	Red Semestral	Red MHV	Diámetro	Profundidad	Estado
HS-3	A-19A		La Sonora	365200	329600	32,69	Sí	No	No	2	33	Bueno
HS-3	HS-102		Rosario	357900	334150	44,81	No	Sí	No	1,5	55	Bueno
HS-3	HS-87		San José	353450	330400	18,93	No	Sí	No	1,5	19	Bueno
HS-3	HS-90		La Caridad	355450	329050	17,51	No	Sí	No	1,5	17	Bueno
HS-3	HSC-536	TS-13	Soria	351700	335100	39,72	No	Sí	Sí	0,4	70	Bueno
HS-3	HSC-537	TS-6	Albertina	351850	336800	49,58	No	Sí	Sí	0,4	94	Bueno
HS-3	HSC-538	TS-14	Resecadora	351700	333850	35,26	No	Sí	No	0,3	70	Malo
HS-3	HSC-539	TS-3	Fajardo	351600	332750	32,18	No	Sí	Sí	0,3	86	Bueno
HS-3	HSC-540	TS-E2	El Punto	351800	331100	18,09	No	Sí	Sí	0,2	89	Bueno
HS-3	HSC-541	TS-7	Buffón	351500	329800	7,01	Sí	No	Sí	0,3	51	Bueno
HS-3	HSC-551		La Salud	353650	339250	58,04	No	Sí	No	0,3	38	Bueno
HS-3	HSC-552		El Cafetal	356025	339400	63,23	No	Sí	No	0,3	70	Bueno
HS-3	HSC-553		San Pantaleón	354900	336750	57,54	No	Sí	No	0,3	65	Bueno
HS-3	HSC-554		Güiro Boñingal	355550	332750	35,72	No	Sí	No	0,3	65	Bueno
HS-3	HSC-556		Rosario	353250	327850	14,90	No	Sí	No	0,3	22	Bueno
HS-3	HSC-557		Las Nieves	353750	324500	9,65	No	Sí	No	0,3	20	Bueno
HS-3	HSC-563		19 de Abril	357800	335800	51,99	Sí	No	No	0,3	61	Bueno
HS-3	HSC-565	TS-42	Güiro Marrero	359000	329700	27,57	No	Sí	Sí	0,3	100	Bueno
HS-3	HSC-566	TS-43	San Agustín	359400	327350	23,25	No	Sí	Sí	0,3	43	Malo
HS-3	HSC-567		Mortuorio	359650	326200	20,23	No	Sí	No	0,3	24	Bueno
HS-3	HSC-568	TS-44	Camacho	361160	322740	9,46	No	Sí	Sí	0,4	63	Malo
HS-3	HSC-576		La María	362150	332350	42,45	No	Sí	No	0,3	49	Bueno
HS-3	HSC-577		Covarrubias	362550	326750	21,28	No	Sí	No	0,3	20	Bueno
HS-3	HSC-578		Santa Lucía	363060	334350	16,49	No	Sí	No	0,3	0	Bueno
HS-3	HSC-579		Cuba 9	355900	325200	8,69	No	Sí	No	0,3	22	Malo
HS-3	HSC-581		Penal Quivicán	364350	337200	70,20	No	Sí	No	0,3	56	Bueno
HS-4	HSC-586		Apeadero	365750	326800	26,47	Sí	No	No	0,3	31	Bueno
HS-3	HSC-608		Los Dátiles	360600	334400	51,55	No	Sí	No	0,3	50	Bueno
HS-3	HSC-609		La Capa	353600	334700	42,81	No	Sí	No	0,3	51	Bueno
HS-3	LSU-3		La Salud	351480	338890	56,66	Sí	No	No	0,5	46	Malo
HS-3	LSU-8		Camacho	359900	322550	8,55	Sí	No	No	0,5	21	Bueno
HS-3	TS-116	TS-116	Güiro Boñingal	354900	329300	16,52	No	Sí	Sí	0,4	72	Bueno
HS-3	TS-117	TS-117	Pablo Noriega	356000	326300	15,64	No	Sí	Sí	0,3	0	Malo
HS-4	TS-120	TS-120	Pedroso	363800	322200	9,76	No	Sí	Sí	0,11	8	Malo

Tabla 2-11: Fuentes subterráneas que intervienen directamente en el Proyecto JICA, provincia Artemisa

			Listados de	estaciones	del Proy	ecto JIC	A de la REI	DCAL - AI	RTEMISA		
No.	Provincia	Cuenca Subterrànea	Nombre de la estación	Municpio	X	Y	Tipo de agua	Tipo de estación	Frecuencia de muestreo	Uso	Determinaciones
1	Artemisa	HS-3	Ac. Waterioo 1	Artemisa	322950	329900	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, Co ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
2	Artemisa	HS-3	Ac. Las 400	Alquizar	337050	331900	Subterránea	Vigilancia	Semestral	Fuente para riego agricola	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄ , DBO ₅ , DQO
3	Artemisa	HS-3	Ac. La Europa	Alquizar	333300	323900	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄

4	Artemisa	HS-3	S/N Pulido	Alquizar	336800	329250	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
5	Artemisa	HS-2	Ac. El pilar	Artemisa	320170	334250	Subterránea	Básica	Semestral	Fuente para abasto industrial	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
6	Artemisa	HS-2	Ac. La Matilde	Artemisa	319380	332110	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
7	Artemisa	HS-3	Ac. El Favorito	Artemisa	321900	332900	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
8	Artemisa	HS-3	Ac. Güira Nuevo	Guira de Melena	344600	330800	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
9	Artemisa	HS-3	Ac. Cachimba	Güira de Melena	346600	327600	Subterránea	Vigilancia	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
10	Artemisa	HS-3	Ac. Boca de Cajio	Güira de Melena	349150	322300	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
11	Artemisa	HS-3	Ac. Vereda Nueva	Caimito	334770	341050	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
12	Artemisa	HS-3	Ac. Pueblo Nuevo Ceiba 1	Caimito	332400	338500	Subterránea	Básica	Semestral	Fuente para riego agricola	pH, T, CE, Na, Ca, Mg, CO ₃ , HCO ₃
13	Artemisa	HS-3	K26W7	Güira de Melena	348900	329400	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
14	Artemisa	HS-3	K23G3	Güira de Melena	349375	333525	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
15	Artemisa	HS-3	Ac. El Gabriel	Güira de Melena	348800	332600	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
16	Artemisa	HS-3	Escuela La Jocuma	Güira de Melena	346250	323050	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
17	Artemisa	HS-3	El Donque	Artemisa	324450	332400	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄

Tabla 2-12: Fuentes subterráneas que intervienen directamente en el Proyecto JICA, provincia Mayabeque. (Monitoreo-Horizontal)

			Listados de es	staciones d	el Proye	cto JICA	de la REDO	CAL - MA	YABEQUE		
No.	Provincia	Cuenca Subterrànea	Nombre de la estación	Municpio	X	Y	Tipo de agua	Tipo de estación	Frecuencia de muestreo	Uso	Determinaciones
1	Mayabeque	HS-3	Aguacate	Quivicán	363530	336780	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, Co ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
2	Mayabeque	HAV-1	Arroyo Govea (Puente Carret, Bejucal –S.A. Baños)	Bejucal	353700	345925	Subterránea	Vigilancia	Semestral	Fuente para riego agricola	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄ , DBO ₅ , DQO
3	Mayabeque	HS-3	Buenaventura	Bejucal	358568	339470	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
4	Mayabeque	HS-3	Camacho	Batabanó	359800	322940	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
5	Mayabeque	HAV-1	CN Biopreparados	Bejucal	355854	346322	Subterránea	Básica	Semestral	Fuente para abasto industrial	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
6	Mayabeque	HS-3	Cuatro Caminos	Quivicán	358724	340972	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
7	Mayabeque	HS-3	Cuenca Sur EB 18	Quivicán	353039	330307	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
8	Mayabeque	HS-3	Cuenca Sur EB 2	Quivicán	351670	335320	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
9	Mayabeque	HS-3	Fructuoso Rodriguez	Quivicán	359187	332863	Subterránea	Vigilancia	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
10	Mayabeque	HS-3	Güiro de Boñingal	Quivicán	356243	334688	Subterránea	Básica	Semestral	Fuente para consumo humano	pH, T, Ca, Mg, Na, K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄

										Fuente para	pH, T, Ca, Mg, Na,
11	Mayabeque	HS-3	Güiro Marrero	Quivicán	358912	328813	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
			IIH Liliana							Fuente para	pH, T, CE, Na, Ca,
12	Mayabeque	HS-3	Dimitrova	Quivicán	358368	338721	Subterránea	Básica	Semestral	riego	Mg, CO ₃ , HCO ₃
			Dimitiova							agricola	1416, CO3, 11CO3
										Fuente para	pH, T, Ca, Mg, Na,
13	Mayabeque	HAV-1	Lily	Bejucal	356058	346322	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
			Manuel							Fuente para	pH, T, Ca, Mg, Na,
14	Mayabeque	HS-3	Fajardo	Quivicán	351355	334976	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
			Tujardo							humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
15	Mayabeque	HS-3	Mi Retiro	Quivicán	355440	339466	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
			_							Fuente para	pH, T, Ca, Mg, Na,
16	Mayabeque	HS-3	Ñancaguasú 3	Batabanó	368850	321830	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
17	Mayabeque	HS-3	Pablo Noriega	Quivicán	357618	329362	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
									l	Fuente para	pH, T, Ca, Mg, Na,
18	Mayabeque	HS-3	Paradero	Quivicán	361506	335170	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
									l	Fuente para	pH, T, Ca, Mg, Na,
19	Mayabeque	HS-4	Pedroso	Batabanó	365000	323400	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
20	Mayabeque	HS-4	Pescahbana	Batabanó	366650	318160	Subterránea	Básica	Semestral	abasto	K, CO ₃ , HCO ₃ , Cl,
										industrial	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
21	Mayabeque	HS-4	Pozo Redondo	Batabanó	365950	325300	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
		****	Rancho Recreo		255112			n.,		Fuente para	pH, T, Ca, Mg, Na,
22	Mayabeque	HS-3	1	Bejucal	357413	342425	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
22	,, ,	77.437.1	Rancho Recreo	D : 1	257751	242465	0.1.	D/ :		Fuente para	pH, T, Ca, Mg, Na,
23	Mayabeque	HAV-1	2	Bejucal	357751	342465	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
										humano	NO ₃ , CT, CTT, SO ₄
24	Mariahaana	HS-3	Davil Camaia	Ominina	265 126	332855	Cuhtaménaa	Dásias	Compostual	Fuente para	pH, T, Ca, Mg, Na,
24	Mayabeque	пъ-э	Raúl Garcia	Quivicán	365436	332633	Subterránea	Básica	Semestral	consumo humano	K, CO ₃ , HCO ₃ , Cl, NO ₃ , CT, CTT, SO ₄
											pH, T, Ca, Mg, Na,
25	Mayabeque	HS-3	San Agustin	Quivicán	359418	327325	Subterránea	Básica	Semestral	Fuente para consumo	K, CO ₃ , HCO ₃ , Cl,
23	Mayabeque	113-3	San Agusun	Quivican	337410	321323	Subterranea	Dasica	Semesuai	humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
26	Mayabeque	HS-4	San Vicente 2	Batabanó	358655	340985	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
-0		11.5 4	Jan . Zenie z	Damouno	220033	3.0703	Succession	Dusica	Jemesuu	humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
27	Mayabeque	HS-3	Santa	Bejucal	358408	342172	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
~		1133	Margarita	Dejacui	223400	3.21,2	Succession	Dusica	Jemesuu	humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
28	Mayabeque	HS-3	Santa Mónica	Quivicán	359786	337012	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
				~						humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
29	Mayabeque	HS-3	Santa Cristo	Quivicán	355497	338893	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
1	Jocquo			~						humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
30	Mayabeque	HS-3	Yolando	Quivicán	360640	333874	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
50		1133	González 1	Z 10mi	2000-10	333074	Succession	Dusica	Jemesuu	humano	NO ₃ , CT, CTT, SO ₄
										Fuente para	pH, T, Ca, Mg, Na,
31	Mayabeque	HS-3	Yolando	Quivicán	360521	334467	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
"		1133	González	Z 10mi	300321	33.407	Succession	Dusica	Jemesuu	humano	NO ₃ , CT, CTT, SO ₄
									1	Fuente para	pH, T, Ca, Mg, Na,
32	Mayabeque	HS-4	Zayas	Batabanó	371177	324473	Subterránea	Básica	Semestral	consumo	K, CO ₃ , HCO ₃ , Cl,
32	, abeque	11.5 4	2	Damouno	3,117,	52.475	Sactorianed	Dusion	Semestra	humano	NO ₃ , CT, CTT, SO ₄
			1	<u> </u>			·	L	·		-,,, -11,004

b.3 Características de la calidad del agua subterránea en el área de estudio

En la información obtenida de las estaciones de la RED-CAL que son parte del Proyecto JICA se analizaron los datos de laboratorio de las muestras pertenecientes a los años anteriores al desarrollo del Proyecto y se incluyeron los resultados de los años 2013 al 2015, con los resultados se analizaron los estadígrafos más significativos, Media, Desviación Estándar, Mediana, Valor Mínimo y Valor Máximo, de ellos en cada estación pueden considerarse como valores objetivos de conservación aquellos obtenidos mediante el valor de la mediana.

Determinando por ejemplo: con los valores máximos registrados en los elementos cloro (Cl) y sodio (Na) donde se encuentra la alerta de intrusión salina, pudiendo estar involucrado el cambio climático con su avance en el tiempo y/o una sobre-explotación de los pozos involucrados en un acuífero determinado. También es importante incluir en este tipo de análisis los valores extremos de la conductividad eléctrica (mS/m).

b.4 Distribución de la concentración de cada elemento estudiado en la calidad del agua (horizontal).

Artemisa

En la distribución de los elementos analizados se ha observado que en la mayoría de las estaciones correspondiendo con la naturaleza cársica de la zona los aniones y cationes se comportan en el siguiente orden: bicarbonato (HCO₃) como elemento prioritario, compartido con el calcio (Ca), aunque hay estaciones como es el caso de la Escuela Jocuma que muestra incremento en el cloruro (Cl) y sulfato (SO₄) al parecer en épocas del año donde los huracanes se han manifestado con mayor intensidad elevando por ende la intrusión marina en la zona costera o sus cercanías.

Mayabeque

Al igual que en Artemisa la naturaleza cársica se impone denotando la prevalencia del bicarbonato (HCO₃) y el calcio (Ca) con menor alteración producto de los iones cloro (Cl) y sodio (Na), y las estaciones involucradas son: Camacho, Cuenca Sur UB-18, Fructuoso Rodríguez, Güiro Boñigal, Güiro Marrero, Pesca Habana, Pozo Redondo y San Agustín. En el caso de esta provincia y los pozos utilizados para el Proyecto JICA se ha observado que existe una mayor cantidad de estos pozos que están afectados en alguna medida en determinada épocas del año, que pudieran coincidir con periodos de huracanes y/o aumento de las concentraciones producto de sobre-explotaciones de las aguas de los acuíferos y haber rebasado el nivel crítico donde la intrusión salina se hace más evidente y provoca mayor afectación en la calidad del agua.

Tabla 2-13: Distribución de la concentración de los elementos en las estaciones subterráneas estudiadas, provincia Artemisa, Calidad del Agua (Monitoreo-Horizontal)

Estaciones	Estadigrafo	Period	T	CE	pН	NO_3^{-1}	CO3 ⁻²	HCO ₃ -1	Cl ⁻¹	SO_4^{-1}	Ca ⁺²	Mg^{+2}	Na ⁺¹	K ⁺¹	SDT
Estaciones	Estatigrato	Años	(°C)	ms/m	U	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹
	Media		23,3	75,3	7,37	12	0	343	52	24	116	10	34	2,0	590
	Desv-Est	2006-	1,3	3,7	0,32	6	0	17	9	6	4	2	6	0,2	15
Waterloo-1	Mediana	2005	23,2	76,0	7,29	13	0	342	53	25	116	10	34	2,0	593
	Minimo	2013	20,8	66,0	7,08	1	0	305	32	12	110	5	28	1,8	560
	Máximo		26,1	80,2	8,40	19	0	366	69	31	124	13	43	2,4	609
	Media		23,3	66,1	7,25	30	0	305	31	22	108	8	18	2,8	520
Ac. Las 400	Desv-Est	2006-	2,1	2,0	0,15	8	0	10	7	3	6	2	2	0,3	24
(HS-3)	Mediana	2014	23,1	66,0	7,23	30	0	304	34	22	108	8	19	2,9	521
(113-3)	Minimo	2014	20,5	63,6	7,05	21	0	293	21	18	100	6	15	2,4	470
	Máximo		26,0	69,0	7,55	42	0	323	39	25	120	12	20	3,0	554
	Media		22,5	67,0	7,35	27	0	0	97	0	0	0	63	0,0	
Ac. La	Desv-Est	2006-	0,7		0,16	11	0	0	31	0	0	0	0	0,0	
Europa	Mediana	2005	22,5	67,0	7,35	27	0	0	113	0	0	0	63	0,0	
(HS-3)	Minimo	2013	22,0	67,0	7,23	19	0	0	61	0	0	0	63	0,0	
	Máximo		23,0	67,0	7,46	35	0	0	117	0	0	0	63	0,0	
	Media		23,9	65,7	7,52	35	0	226	36	0	98	8	18	2,4	431
S/N Pulido	Desv-Est		0,1	3,3	0,10	1	0	0	15	0	0	0	4	0,0	1
(HS-3)	Mediana	2015	23,9	65,7	7,52	35	0	226	36	0	98	8	18	2,4	431
(113-3)	Minimo		23,8	63,3	7,45	34	0	226	25	0	98	8	15	2,4	431
	Máximo		24,0	68,0	7,59	36	0	226	46	0	98	8	21	2,4	431
	Media		24,5	66,8	7,31	41	0	0	30	32	0	0	0	0,0	
Ac. El Pilar	Desv-Est	2006-	1,3	2,8	0,28	4	0	0	2	0	0	0	0	0,0	
(HS-2)	Mediana	2005-	24,5	66,5	7,24	41	0	0	32	32	0	0	0	0,0	
(113-2)	Minimo	2013	23,6	64,0	7,02	35	0	0	28	32	0	0	0	0,0	
	Máximo		25,4	70,0	7,71	45	0	0	32	32	0	0	0	0,0	

Mariable Medican 2006 13 5.9 0,10 9 0 0 15 7 6 20 22 6 14		Media		23,8	78,7	7,15	30	0	380	38	27	123	11	25	4,7	629
Maritable Modelman 2015 201 2010	Ac. La		2006													89
Company Comp		Mediana	1												5,2	669
Ac. Fill Developed 1	(HS-2)		2013													449
Act Dev Ist Provided Prov																697
Powerloom Medican 2006 22.8 63.0 7.38 15 0 329 25 0 110 6 17 3.0	An El															501 0
Company Comp			I													501
Missimo			2015													501
Ac. Guillar Desv-Eat 2006 22 64 0.15 11 0 55 16 7 13 5 6 82	, ,						21	0			0	110	6	17	3,0	501
Nervo Medium 2006 22,8 79,2 73,3 38 0 311 59 35 116 10 31 3.8		Media		23,1	77,4	7,35	37	0	298	58		111	11	32	5,3	574
Netron Methans Olis 2015 2026 932 733 88 0 316 89 35 102 103 103 138			2006-													92
Maisumo			I													606
Medius	(HS-3)															315 710
Acceptable Acc																584
Chemical Median 2015 12-5 83-3 75 40 0 2-5 87 7 48 10-5 10 16 3-3 3-3	Ac.		2006													105
(HS-S) Minimo	Cachimba	Mediana	1		85,5	7,39	40	0	295				16	45	3,9	611
Ac. Boca de Capital Ca	(HS-3)		2013													267
Ac. Boca of Cajio (IRS-3) Meditan Meditan 2006 24,8 1500 7.32 40 0 258 340 75 110 22 146 60 Ac. Poca of Marimo 2015 23,2 20,0 7.725 30 0 207 150 44 94 88 80 30 Ac. Veredia New Year Note of Capio (IRS-3) Note of Capio (IRS-																732
Ac. Bota Octobe Ac. Bota O																941 446
Marimo			1													941
Makimo	Cajio (HS-3)		2015													626
Ac. Proble Des-First Superage Supera							42		308	419	106	126	35	212	8,9	1257
Nueve Median 2005 22,3 75,2 7,16 44 0 342 22 20 130 5 11 5,9																612
Missimo			2006-													88
Media			2015													584 518
Ac. Pueblo Desv-Est Desv-Es	(113-3)												_			771
Ac. Pueblo Desv-Est 2006																572
Nuce Cerba Mediana 2015 19,5 64,0 7,00 5 0 2011 14 3 80 3 10 0.9	Ac. Pueblo		2006									16	4			93
1 (HS-3) Minimo		Mediana	1													594
Media Desv-Est D	1 (HS-3)		2013													387
Name																706
Media 2007 23,4 90,7 7,72 32 0 311 90 41 110 13 55 3,8 18 48 48 48 7,7 7,99 0 0 128 18 14 54 1 12 1,1 18 18 18 18 18 18 1																616 88
Minimo M			1										-			611
Media Desv-Est 2007	(HS-3)		2015									54				366
R23G3		Máximo		27,5	118,9	7,98	58	0	354	163	63	128	39	91	5,2	767
Rediana																588
Ches. Minimo Mi	K23G3		2007-													114 578
Máximo	(HS-3)		2015													365
Media																907
Gabriel Mediana 2015 24,0 103,7 7,39 34 0 296 128 42 110 16 76 3,2							34									656
Gabriel Mediana Minimo M	Ac. El	Desv-Est	2007-	2,0	18,2	0,10	11	0	70	53	9	14	4	28	0,3	99
Minimo			1													649
Escuela La Desv-Est 2007- 2,4 77,2 0,21 12 0 62 208 132 34 19 140 9,4	(HS-3)															525
Escuela La Desv-Est 2007- 2.4 77.2 0.21 12 0 62 208 132 34 19 140 9.4																834 987
Jocuma Mediana Mediana Minimo	Escuela La															420
HS-3 Minimo			1													1124
Hedia	(HS-3)	Minimo	2013			7,15										280
El Donque (HS-3)				- '	,-	.,		_							- ' / '	1720
Heliana Heli																441
HS-3 Minimo Máximo Minimo Máximo Minimo Mi	El Donque		I													33 439
Máximo	(HS-3)		2015													395
Media			<u> </u>													494
Vivero (HS-3) Mediana Minimo 2014- 2015 24,1 2015 61,7 21,8 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1				24,1	63,9	7,19		0	348	18	15	108	9	12		527
Vivero Mediana 2015 24,1 61,7 7,23 15 0 360 18 15 110 10 10 0,9 (HS-3) Minimo 2015 21,8 60,7 7,00 5 0 287 14 10 83 7 9 0,8 Maximo 26,1 81,0 7,32 34 0 372 39 30 116 12 28 4,9 Ac. Toledo Desv-Est 2014 1,4 7,3 0,16 6 0 44 2 2 14 3 3 3 0,2 Mediana 2015 23,9 62,4 7,21 8 0 336 18 15 102 12 11 0,9 Minimo Maximo 2015 21,8 40,3 7,05 1 0 232 14 11 66 8 5 0,9 Maximo Maximo 25,6 62,6 7,57 19 0 366 20 18 110 17 14 1,7 Ac. Desv-Est 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8 Quebrada Mediana 2014 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8			2014-													35
Minimo			1													536
Ac. Toledo (HS-3)	(HS-3)															440 575
Ac. Toledo (HS-3) Desv-Est Mediana (HS-3) 2014 (23,9) 62,4 (24,7,21) 8 (24,5) 0 (24,5) 336 (24,5) 15 (22,2) 14 (24,5) 3 (24,5) 336 (24,5) 15 (24,5) 102 (24,5) 12 (24,5) 11 (24,5) 12 (24,5) 14 (24,5)																486
Ac. Toledo (HS-3)			2011													64
Minimo M			I													499
Media 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8 Ac. Desv-Est 2,0 0,6 0,11 0 0 8 1 4 1 0 1 0,1 Quebrada Mediana 2014 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8	(HS-3)		2015		40,3							66				356
Ac. Desv-Est 2,0 0,6 0,11 0 0 8 1 4 1 0 1 0,1 Quebrada Mediana 2014 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8																554
Quebrada Mediana 2014 24,5 55,0 7,58 1 0 299 19 25 92 7 17 0,8	Α -															460
			2014	1												5 460
ן אוווווווייבן קב-בעבון בארט בארט בארט בארט בארט בארט בארט בארט	(HS-3)	Minimo	2014	23,1	54,5	7,50	1	0	299	18	23	91	7	16	0,8	457
Máximo 25,9 55,4 7,65 1 0 305 20 28 93 7 17 0,9																464

Tabla 2-14: Distribución de la concentración de los elementos en las estaciones subterráneas estudiadas, provincia Mayabeque, Calidad del Agua (Monitoreo-Horizontal)

1		Años	(°C)	CE ms/m	pH U	NO ₃ ⁻¹ mgL ⁻¹	CO ₃ ⁻² mgL ⁻¹	HCO ₃ -1 mgL ⁻¹	CI ¹ mgL ⁻¹	SO ₄ ⁻¹ mgL ⁻¹	Ca ⁺² mgL ⁻¹	Mg ⁺² mgL ⁻¹	Na ⁺¹ mgL ⁻¹	K ⁺¹ mgL ⁻¹	SDT mgL ⁻¹	CT NMP 100mL ⁻¹	NMP 100mL ⁻¹
	Media Desv-Est		24,3 0,9	71,0 2,1	7,23 0,14	9 5	0	365 41	26 5	21 12	83 17	32 6	16 7	1,2 0,4	571 56	12,3 20,5	2,0 0,0
Aguacate	Mediana	2014- 2015	24,4	71,2	7,20	11	0	385	26	19	81	32	18	1,0	580	2,0	2,0
	Minimo Máximo	2013	23,1 25,2	68,3 73,4	7,11 7,43	1 11	0	336 433	21 30	9 37	66 104	24 39	6 20	0,9 1,8	498 626	2,0 43,0	2,0 2,0
	Media		23,1	66,7	7,27	26	0	342	22	12	116	9	12	1,3	539	12,0	3,0
Buena	Desv-Est Mediana	2013-	2,7 23,7	6,3 68,7	0,25 7,21	18 35	0	21 348	6 25	5 11	15 124	3 8	6 13	0,4 1,1	57 567	13,9 2,0	2,0 2,0
Ventura	Minimo	2015	18,8	56,4	7,10	2	0	305	14	5	98	4	2	0,9	448	2,0	2,0
	Máximo Media		26,0 24,4	72,6 891,5	7,70 7,21	43 19	0	354 359	28 91	19 28	130 98	13 23	17 52	1,8 3,2	582 665	30,0	6,0 2,0
	Desv-Est	2014-	2,6	24,9	0,12	5	0	12	6	7	3	3	6	0,2	21	0,0	0,0
	Mediana Minimo	2014-	25,3 20,6	893,0 860,0	7,20 7,10	20 12	0	360 342	92 84	29 21	99 94	23 19	53 44	3,3 3,0	662 648	2,0 2,0	2,0 2,0
	Máximo		26,3	920,0	7,10	23	0	342 372	97	35	101	25	59	3,3	689	2,0	2,0
	Media Desv-Est		24,4 0,8	67,6 4,7	7,08 0,09	18 10	0	354 33	28 5	27 17	126 9	5 1	12 5	1,2 0,2	570 54	6,4 8,4	2,3 0,7
CN-	Mediana	2013- 2015	24,7	67,1	7,09	15	0	351	28	21	126	5	13	1,2	555	2,0	2,0
	Minimo Máximo	2013	23,2 25,1	63,1 73,9	6,97	8 31	0	305 397	21 35	14 60	116 140	3 7	3 17	0,9	518 644	2,0 23,0	2,0 3,6
	Máximo Media		23,7	61,0	7,18 7,05	18	0	334	17	20	111	5	8	1,4 1,1	515	2,3	2,3
Cuatro	Desv-Est	2013-	2,0	5,8	0,21	14	0	57 348	5	19	17	3 4	4 8	0,4	93 558	0,7	0,7
Caminos	Mediana Minimo	2015	23,9 20,7	58,5 56,6	7,16 6,70	17 1	0	238	15 14	10 5	117 82	2	2	0,9 0,9	367	2,0 2,0	2,0 2,0
	Máximo Madia		26,2	70,5	7,20	41	0	384	25	53	127	10	13	1,8	599	3,6	3,6
1	Media Desv-Est	2000	24,1 1,8	62,7 10,0	7,38 0,24	16 8	0	330 56	29 12	21 7	101 9	11 6	17 6	2,6 1,6	528 57	62,0 244,1	3,7 6,0
Uenca Sur	Mediana	2009- 2015	24,2	63,6	7,32	16	0	314	25	19	104	12	17	1,9	528	2,0	2,0
1	Minimo Máximo		20,2 27,8	6,6 85,8	6,93 7,85	1 42	0	220 636	16 69	4 38	76 118	1 42	6 40	0,3 5,1	377 832	2,0 1660,0	2,0 34,0
1	Media		23,8	63,9	7,27	15	0	323	30	18	99	13	19	1,5	519	744,4	89,8
Cuenca Sur	Desv-Est Mediana	2012-	1,9 23,7	11,7 65,9	0,16 7,23	7 14	0	62 354	21 20	7 17	8 101	6 13	10 16	0,6 1,4	64 540	3842,2 2,0	357,4 2,0
	Minimo	2015	20,0	6,7	6,99	1	0	37	15	11	74	2	5	0,3	231	2,0	2,0
	Máximo Media		27,6 23,4	87,6 67,5	7,69 7,35	38 16	0	390 326	110 28	51 23	112 103	36 10	55 18	3,3 2,0	589 526	24000,0 12,0	1600,0 4,0
Fructuoso	Desv-Est	2011-	2,3	5,7	0,19	10	0	42	18	16	10	5	11	1,3	70	15,6	3,5
Rguez	Mediana Minimo	2015	23,9 18,7	66,9 59,4	7,31 7,10	17	0	314 248	25 2	20 6	105 78	12	17 6	1,8 0,9	527 427	4,0 2,0	2,0 2,0
	Máximo		26,8	80,9	7,65	30	0	368	71	64	112	17	45	4,9	673	30,0	8,0
1	Media Desv-Est		23,2 2,2	64,2 8,7	7,30 0,37	21 11	0	288 64	39 20	24 22	92 13	13 12	18 16	1,8 0,8	497 103	9,4 13,4	5,8 8,5
Cilliro	Mediana	2013- 2015	23,1	63,0	7,33	16	0	299	34	15	90	8	11	1,8	489	2,0	2,0
	Minimo Máximo	2013	20,2 26,4	57,1 78,7	6,80 7,82	12 38	0	183 354	20 71	10 62	78 107	4 33	6 45	0,9 3,0	373 657	2,0 33,0	2,0 21,0
	Media		22,8	94,3	7,25	17	0	328	103	33	102	20	54	3,0	660	17,3	3,7
	Desv-Est Mediana	2013-	3,4 22,9	8,0 97,8	0.05 7,23	6 20	0	56 351	21 113	5 32	7 105	3 21	15 55	1,3 3,6	78 674	19,2 12,5	2,9 2,0
Marrero	Minimo	2015	18,5	82,4	7,20	8	0	244	71	29	92	16	38	1,0	567	2,0	2,0
	Máximo Media		26,7 24,3	99,2 53,2	7,32 7,29	22 0	0	366 317	113	39	106 111	22 7	70 11	3,9 3,8	725 450	42,0	7,0
	Desv-Est	2013-	1,2	27,2	0,26	0	0	49	0	0	22	8	4	5,7	71		
Dimitrova	Mediana Minimo	2015	24,1 22,5	60,1 0,0	7,21 7,00	0	0	333 226	0	0	120 84	4 2	12 3	1,4 1,1	473 318		
	Máximo		26,0	75,9	7,63	0	0	354	0	0	131	24	15	14,0	502		
	Media Docy Fet		24,4 0,9	66,1 2,7	7,02 0,22	20 8	0 0	325 45	23 4	0	121	5 2	11	1,0 0,1	505 58	2,9 2,1	2,0 0,0
	Desv-Est Mediana	2013-	24,2	65,6	7,13	19	0	345	21	0	6 121	4	5 11	0,1	525	2,1	2,0
	Minimo Máximo	2015	23,2 25,9	63,4 71,0	6,70 7,22	10 34	0	242 360	20 30	0	109 126	2 9	3 19	0,9 1,2	410 571	2,0 7,2	2,0 2,0
	Media		23,9	59,6	7,43	20	0	275	27	17	98	6	9	2,3	453	12,8	2,0
	Desv-Est Mediana	2013-	1,2 23,9	4,0 57,8	0,19 7,45	7 19	0	62 299	11 23	7 18	13 102	2 7	2 10	1,6 2,1	56 477	20,2 3,0	0,0 2,0
Fajardo	Minimo	2015	22,4	57,8 57,4	7,43	19	0	183	18	8	80	3	6	0,9	368	2,0	2,0
	Máximo Media		25,3 24,1	65,6 58,4	7,63 7,33	28 30	0	317 264	43 17	23 24	108 98	7	11 7	4,3 2,5	487 447	43,0 7,3	2,0 2,0
	Desv-Est	2013-	1,4	1,1	0,19	5	0	24	3	16	10	1	2	0,7	52	10,5	0,0
	Mediana Minimo	2013-	24,0 22,5	58,2 57.5	7,36	30 25	0	269 232	17	18 13	100	4	8	2,7	446	2,0	2,0
	Minimo Máximo		25,8	57,5 59,8	7,08 7,51	25 36	0	232 287	15 21	48	86 108	5	8	1,4 3,0	386 508	2,0 23,0	2,0 2,0
	Media Docy Fet		23,5	71,9	7,34	17	0	371	30	33	82	32	20	1,3	585	2,5	2,0
Nancaguasu	Desv-Est Mediana	2014-	2,1 23,9	2,5 71,6	0,12 7,35	8 16	0	17 369	7 31	9 37	8 83	2 32	6 20	0,4 1,1	36 580	1,0 2,0	0,0 2,0
-3	Minimo	2015	20,6	69,3	7,20	9	0	354	20	20	72	29	13	1,1	547	2,0	2,0
	Máximo Media		25,7 23,1	75,2 61,3	7,47 7,46	27	0	390 258	38 31	38 0	91 94	34 9	28 8	1,8	634 421	4,0 6012,5	2,0 7,3
Pablo	Desv-Est	2013-	2,9	7,9	0,22	9	0	72	22	0	17	7	4	1,1	62	11991,7	10,5
Noriega	Mediana Minimo	2015	22,7 20,0	57,7 56,8	7,47 7,18	18 14	0	287 153	20 18	0	100 70	7	10 3	0,9 0,0	449 329	24,0 2,0	2,0 2,0
1	Máximo		26,9	73,2	7,71	35	0	305	64	0	108	16	11	2,7	460	24000,0	23,0
	Media Desv-Est		23,8 0,6	60,5 3,1	7,20 0,08	10 8	0	331 61	18 5	22 22	100 8	11 6	9	1,1 0,2	501 85	117,0 228,7	116,5 229,0
Paradero	Mediana	2013- 2015	23,9	61,0	7,21	7	0	348	17	14	102	11	10	1,0	520	3,0	2,0
	Minimo Máximo	2013	23,0 24,5	56,8 63,2	7,10 7,27	4 21	0	250 378	14 25	8 54	89 108	5 16	3 11	0,9 1,4	384 579	2,0 460,0	2,0 460,0

	Media		24,1	69,8	7,34	16	0	371	29	24	96	25	20	2,1	576	6,5	2,4
	Desv-Est	2014	2,5	10,0	0,19	7	0	48	8	2	9	11	9	0,7	72	4,2	0,8
Pedroso	Mediana	2014- 2015	25,1	72,3	7,34	20	0	378	32	24	99	28	21	2,3	584	6,6	2,0
	Minimo	2013	20,5	55,7	7,11	5	0	305	18	22	82	9	9	1,1	482	2,0	2,0
	Máximo		25,8	78,9	7,56	20	0	421	35	25	102	35	28	2,7	652	11,0	3,6
	Media		24,3	87,7	7,35	16	0	376	71	36	92	29	50	2,3	672	2,0	2,0
Pesca	Desv-Est	2013-	1,9	24,5	0,14	12	0	16	62	17	8	11	36	1,2	127	0,0	0,0
	Mediana	1	24,9	78,8	7,34	14	0	381	38	33	93	27	37	1,8	624	2,0	2,0
Habana	Minimo	2015	20,8	64,5	7,17	3	0	348	21	18	80	15	17	1,1	542	2,0	2,0
	Máximo		25,8	120,4	7,55	34	0	390	158	59	101	45	94	3,9	835	2,0	2,0
	Media		24,2	78,6	7,26	7	0	395	43	39	91	31	30	1,8	630	11,6	2,0
	Desv-Est	2012	1,0	9,5	0,16	8	0	39	29	25	7	8	18	0,9	75	21,5	0,0
Pozo	Mediana	2013-	24,4	80,3	7,26	5	0	378	35	37	90	34	28	1,8	642	2,0	2,0
Redondo	Minimo	2015	22,5	68,7	7,07	1	0	354	20	14	82	18	14	0,8	516	2,0	2,0
	Máximo		25,3	89,1	7,51	21	0	445	94	67	100	37	59	3,3	702	50,0	2,0
	Media		24,5	68,2	7,04	20	0	360	19	21	124	5	9	4,1	556	4,0	2,0
	Desv-Est		1,0	2,7	0,02	11	0	37	6	5	6	1	3	3,2	23	2,9	0,0
Rancho	Mediana	2013-	24,1	67,0	7,05	21	0	375	17	23	126	5	10	2,6	566	3,0	2,0
Recreo-1	Minimo	2015	23,8	66,5	7,00	9	0	305	15	14	115	4	4	2,4	521	2,0	2,0
	Máximo		25,9	72,2	7,05	31	0	384	28	23	129	6	10	8,9	570	8,1	2,0
	Media		24,8	72,8	6,93	30	0	355	25	32	128	5	12	7,1	594	2,0	2,0
	Desv-Est		1,6	4,9	0,22	13	0	54	7	21	13	2	6	3,2	84	0,0	0,0
Rancho	Mediana	2013-	24,1	73,6	7,02	31	0	381	28	22	132	5	13	8,2	609	2,0	2,0
Recreo-2	Minimo	2015	23,8	66,4	6,60	13	0	275	15	21	110	4	4	2,4	487	2,0	2,0
	Máximo		27,1	77,6	7,09	45	0	384	30	63	138	7	17	9,6	671	2,0	2,0
	Media		24,0	68,8	7,24	20	0	363	27	35	89	25	19	7,1	576	2,0	2,0
	Desv-Est		1	7,3	0,23	4	0	73	6	28	21	8	11		131	0,0	0,0
Raul Garcia	Mediana	2013-	1,4 23,6	69,4	7,33	21	0	382	25	28 24	95	29	21	3,2 8,2	596	2,0	2,0
Kaui Gaicia		2015	1	ı			1	l			95 59						1
	Minimo Máximo		22,8 26,0	59,3 77,0	6,90 7,39	15 24	0	262 427	21 35	14 66	107	13 30	5 30	2,4 9,6	400 713	2,0 2,0	2,0 2,0
	Máximo																
	Media		22,7	99,0	7,26	14	0	357	168	43	97	28	89	4,5	800	53,3	9,0
San	Desv-Est	2013-	3,3	22,5	0,24	5	0	36	44	1	8	6	32	0,8	101	88,9	14,0
Agustín	Mediana	2015	22,9	106,9	7,35	14	0	369	162	43	95	31	89	4,8	787	2,0	2,0
	Minimo		18,5	67,0	6,90	9	0	305	121	41	90	20	52	3,3	695	2,0	2,0
	Máximo		26,6	115,3	7,43	20	0	384	227	44	107	32	126	5,2	929	156,0	30,0
	Media		24,3	74,2	7,30	14	0	376	36	35	91	27	29	2,9	610	7,7	3,8
	Desv-Est	2009-	1,3	6,2	0,13	6	0	35	8	16	10	10	8	1,3	48	14,0	2,4
San Vicente	Mediana	2015	24,8	74,3	7,28	16	0	384	39	31	87	30	32	3,0	622	2,0	3,0
	Minimo	2015	22,3	62,3	7,15	4	0	305	19	11	80	3	11	1,1	495	2,0	2.0
	Máximo		26,1	85,9	7,57	22	0	419	44	73	114	36	37	5,9	668	50,0	7.0
	Media		23,4	63,9	7,07	22	0	317	26	13	113	4	12	1,1	507	13,0	2,7
Santa	Desv-Est	2013-	2,4	9,4	0,32	14	0	61	8	3	22	2	8	0,2	113	12,7	1,2
Margarita	Mediana	2015	23,6	61,9	7,19	19	0	336	25	13	114	3	13	1,0	525	12,5	2,0
iviai garita	Minimo	2013	20,4	55,9	6,60	10	0	232	18	9	85	3	2	0,9	360	2,0	2,0
	Máximo		26,2	75,9	7,30	41	0	366	35	16	138	7	20	1,4	620	25,0	4,0
	Media		23,4	61,2	7,09	11	0	289	20	0	99	3	9	1,0	433	58,2	2,0
Santa	Desv-Est	2013-	1,6	5,8	0,18	5	0	53	5	0	16	2	3	0,4	68	103,1	0,0
Santa	Mediana	1	23,6	59,5	7,17	9	0	323	18	0	108	4	10	0,9	475	4,0	2,0
Mónica	Minimo	2015	20,8	57,7	6,80	8	0	220	15	0	80	1	5	0,7	352	2,0	2,0
	Máximo		25,0	71,5	7,24	19	0	336	25	0	115	5	14	1,8	491	240,0	2,0
	Media		24,3	58,7	7,37	30	0	283	19	65	103	6	10	4,8	519	592,2	413,5
g	Desv-Est	2000	1,4	5,4	0,17	11	0	61	2	149	7	5	5	6,8	167	773,4	684,8
Santo	Mediana	2009-	24,2	58,6	7,45	34	0	284	20	18	104	5	8	2,9	489	6,0	6,0
Cristo	Minimo	2015	22,5	51,1	7,09	2	0	159	15	14	86	2	3	1,4	345	2,0	2,0
	Máximo		26,1	68,9	7,56	38	0	362	21	488	110	19	17	24,0	955	1600,0	1600,0
	Media		22,5	61,2	7,24	12	0	319	20	190	92	13	10	1,1	658	6,0	2,0
	Desv-Est	2011	0,9	3,8	0,05	4	0	46	2	303	16	5	6	0,4	353	6,9	0,1
Yolando	Mediana	2014-	22,4	63,1	7,22	13	0	317	20	15	101	13	11	1,1	489	2,0	2,0
Glez-1	Minimo	2015	21,7	56,8	7,20	8	0	275	18	15	74	9	4	0,7	421	2,0	1,9
	Máximo		23,5	63,7	7,30	15	0	366	21	540	102	18	16	1,4	1064	14,0	2,0
	Media		23,3	58,5	7,42	14	0	315	21	14	96	11	14	0,9	486	236,1	2,0
	Desy-Est		2,0	4,5	0,25	4	0	27	4	4	9	3	2	0,2	39	601,6	0,0
Yolando	Mediana	2013-	22,5	58,0	7,41	15	0	311	21	12	92	10	14	0,8	486	2,0	2,0
Glaz-2	Minimo	2015	21,0	53,6	7,41	9	0	281	14	11	88	7	11	0,8	448	2,0	2,0
	Máximo		25,6	67,6	7,86	20	0	368	27	20	108	17	18	1,4	566	1600,0	2,0
	Media		24,1	71,2	7,34	18	0	362	31	32	91	24	22	1,7	582	3,0	2,0
	Desv-Est		1,3	5,1	0,16	10	0	302	8	15	12	11	10	1,7	49	2,0	0,0
Zavas	Desv-Est Mediana	2009-	1,3 24,1	69,8	7,31	10	0	366	29	15 29	90	29		1,5	572	2,0	2,0
Zayas	Minimo	2015	22,4	64,1	7,31	19	0	299	19	29 11	73	1	22 2	0,8	497	2,0	2,0
I			25,8	64,1 81,5	7,11	34	0	299 419	48	71		34	37	1	683	6,0	2,0
<u> </u>	Máximo										116			6,2			
l	Media		24,0	96,0	7,55	6	0	421	77	33	111	14	59	9,6	730	1,6E+08	2,9E+07
Arroyo	Desv-Est	2009-	1,1	23,3	0,22	4	0	88	42	12	19	8	30	3,9	166	5,6E+08	8,2E+07
Govea	Mediana	2015	24,3	96,0	7,55	9	0	437	66	33	119	12	50	9,6	709	2,0E+04	8,8E+03
(Superf)*	Minimo		21,5	46,1	7,20	1	0	226	25	18	69	5	23	1,0	386	2,3E+01	9,0E+00
	Máximo	1	25,3	135,1	7,88	10	0	555	156	55	132	38	108	15,2	980	3,0E+08	3,0E+08

Estaciones	Estadigrafo	DBO mgL ⁻¹	DQO mgL ⁻¹
	Media	52,8	120,9
Arroyo	Desv-Est	57,3	124,6
Govea	Mediana	27,0	72,5
(Superf)	Minimo	2,0	14,0
	Máximo	187.0	458.0

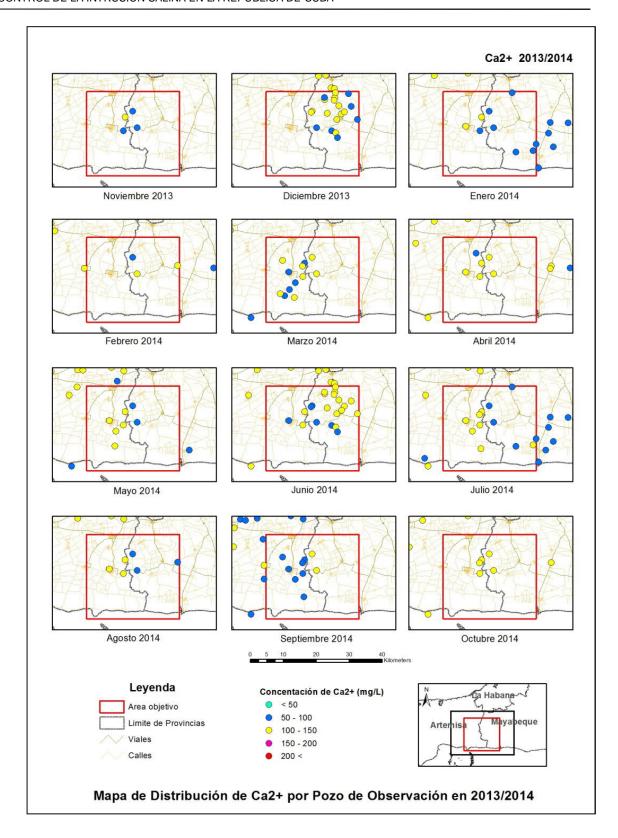


Figura 2-83: Mapa de distribución de Ca2+ por pozo de observación en 2013/2014

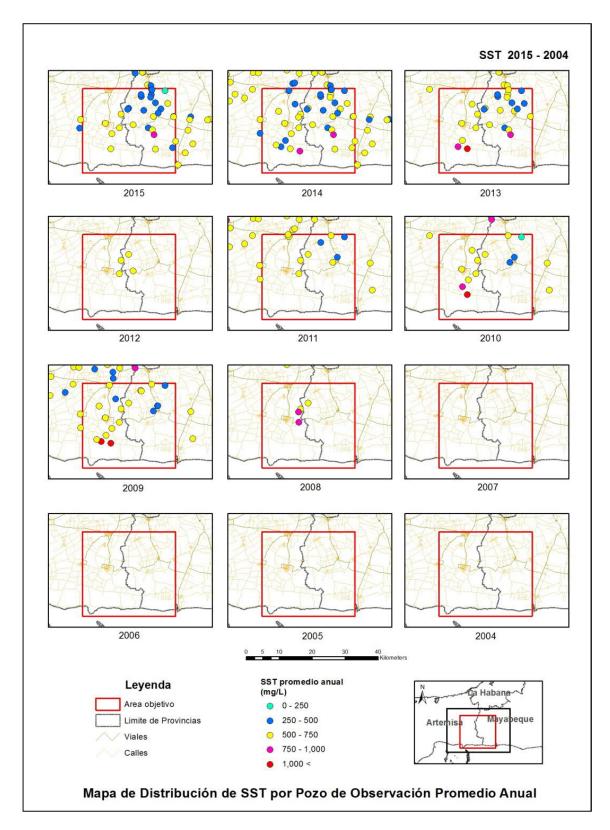


Figura 2-84: Mapa de distribución de SST por pozo de observación promedio anual

2.6 Balance del Agua Subterránea

El Balance de Agua, proceso que conduce y dirige el sistema INRH, es el principal instrumento para materializar la gestión integrada del agua en Cuba, en función de satisfacer las necesidades de la economía, sociedad y de la protección del medio ambiente. En el proceso de elaboración se manifiestan rasgos importantes de obligatorio reconocimiento tanto por la autoridad del agua, como por los usuarios respectivos. Entre ellas:

- 1. Que es un recurso natural renovable, a diferencia de muchos otros recursos que se planifican anualmente que son insumos del Plan de la Economía.
- 2. Que la única fuente renovable de agua en el país es la lluvia y que esta se distribuye de manera no uniforme en el espacio geográfico y el tiempo, existiendo 2 períodos bien diferenciados: el lluvioso y el menos lluviosos o seco.
- 3. Que la autoridad del agua ejerce su propia función reguladora dada por los instrumentos legales en el mismo momento de su elaboración, habida cuenta de las puntualizaciones que realiza sobre las disponibilidades anuales de agua en las cuencas superficiales y subterráneas.
- 4. Que el balance de agua, como expresión de la relación disponibilidad demanda, transita en ambos componentes por elementos tales como usos, racionalidad en su empleo, tecnologías a emplear, normas y regulaciones y otros también importantes

Su ejecución está regida por el Calendario que emite el Instituto Nacional de Recursos Hidráulicos anualmente con el fin de que su confección quede comprendida en el período de la elaboración de los planes anuales de las entidades económicas y sociales.

El Balance de Agua como instrumento de planificación mediante el cual se mida la eficiencia en el consumo estatal y privado, respecto a la disponibilidad del recurso, es un proceso de conciliación de intereses de todas las ramas de la economía y de la sociedad para acceder a las distintas fuentes de agua a las cuales están vinculadas.

Es un proceso de demandas, análisis de las disponibilidades y estado técnico de las fuentes suministradoras, discusión, fundamentación y asignación de volúmenes de agua para satisfacer las necesidades planteadas, sin violar las condiciones y restricciones de explotación de las fuentes. Estas disponibilidades dependen del comportamiento de las lluvias.

Las cuencas subterráneas Artemisa Quivicán (HS-3) y la (HS-4) son las principales fuentes de alimentación para el desrrollo en esta zona.

La formación de las aguas subterráneas se produce, fundamentalmente, por las precipitaciones atmosféricas y por las siguientes fuentes complementarias de alimentación:

- Pérdidas por filtración del Canal Pedroso-Güira.
- Infiltración del escurrimiento fluvial.
- Restituciones de las aguas de riego.

La infiltración de las aguas para el riego es un factor importante en el balance general de las aguas subterráneas. El volumen mayor de extracción para el riego, de acuerdo con los datos históricos fue en el año 1987 con una cifra de 250 x $10^6 \, \mathrm{m}^3$ /año. Con los métodos de riego existentes y el estado técnico de las obras las restituciones de las aguas de riego constituyen de un 35% del volumen de explotación teniendo en cuenta el tipo de rica existente.

La infiltración del escurrimiento fluvial es un elemento a considerar para la evaluación de los recursos de las aguas subterráneas. En la parte de las Alturas, donde se encuentran

propagadas las rocas anteriores al Neógeno, se produce la formación del escurrimiento superficial. En esta área la infiltración al acuífero es muy pequeña, descargándose un volumen del escurrimiento superficial en la llanura cársica del Neógeno.

En la cuenca la mayoría de los ríos y arroyos no llegan a la costa, el escurrimiento superficial se infiltra en la llanura cársica del Neógeno, alimentando las aguas subterráneas y una parte se evapora. En la zona prealturas parte del escurrimiento está regulado por la presa (Aguas Claras) y las micropresas (Vaquería 15, Reyner, Seibabo, San Juan y Añil) y la alimentación se produce por las pérdidas de filtración del embalse.

En la llanura la infiltración directa de las precipitaciones depende de la composición y espesor de los sedimentos de cobertura. En las zonas donde hay un amplio desarrollo del carso y no existen los depósitos de cobertura la infiltración puede ser del 80 al 90% del volumen de las precipitaciones.

En estas áreas, en general, está desarrollado un microrelieve, el que tiene la particularidad de que cada cuenca superficial finaliza en una dolina cársica, donde llega una parte del escurrimiento fluvial. Por esta razón, el espesor de la cobertura no influye en la magnitud de la alimentación.

Las pérdidas por los canales magistrales contribuyen a la alimentación del acuífero. Desde la toma de agua de la presa Derivadora Pedroso, hasta Güira de Melena, está construido un canal (Pedroso-Güira) de aproximadamente 61 km de longitud (60,833 Km). Las pérdidas totales varían según los volúmenes entregados estando en el orden del 40 %.

La descarga de las aguas subterráneas se produce en forma de escurrimiento, a través de las zonas intensamente carsificadas y fracturadas, por el flujo superficial de los canales que se encuentran en la zona cenagosa, por la evaporación de las aguas embalsadas por el dique sur y por la explotación de los pozos.

La extracción de las aguas subterráneas es de considerable magnitud, tanto por el gasto de las fuentes como por la concentración de la explotación. Los principales usuarios son los acueductos con un gasto de 3.2 m³/s y los sistemas de riego con un gasto de 3.5 m³/s.

El acueducto Cuenca Sur fue construido en la década de los años 50 del pasado siglo y está constituido por 20 pozos de explotación, de una profundidad entre 25 y 90 m, con un gasto total de extracción de 3.02 m³/s. Las Empresas Agropecuarias de Güira de Melena, 19 de Abril en Quivicán, Alquízar, Batabanó y San Antonio de los Baños son también grandes consumidores del agua subterránea para riego.

a. Diagrama conceptual del ciclo hidrológico

En el caso del área de estudio que abarca el Proyecto JICA (incluyendo su ampliación según el dominio del Modelo Matemático) se han tomado en cuenta todas las dos variables de la Ecuación de Continuidad, con un enfoque espacio temporal de la ocurrencia del ciclo hidrológico del agua en la zona, evaluando sus componentes a nivel de la cuenca subterránea ya que la llamada Cuenca JICA constituye el 52 % del área total de la cuenca HS-3 y el 80 % de la misma tomando el área del dominio del Modelo.

Se hará el balance superficial y subterráneo integrando ambos finalmente con un intervalo de tiempo mensual ya que la formación de las aguas subterráneas se produce, fundamentalmente por las precipitaciones atmosféricas.

Ecuación de Continuidad

$$\Delta V = E - S = dV/dt$$

b. Balance hídrico superficial

Según el escenario de nuestra área la Ecuación queda expresada de la siguiente forma:

$$\Delta V = (Esc) - (Et + In + Inter)$$

Donde

 ΛV Cambio de almacenamiento.

 V_{ll} Escurrimiento.

Et Evapotranspiración.

In Infiltración de la lluvia hacia las capas profundas del suelo.

Inter Intercepción de lluvia por la vegetación.

c. Componentes

 $\underline{V_{II}}$ (Escurrimiento de la lluvia): Se tomaron los valores de la precipitación media distribuida por meses

Tabla 2-15: Precipitación media distribuida por meses

Concepto	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Precipitación (mm)	45.9	45.5	47	65.2	138.4	227	172.1	190.4	221.8	131.4	55.6	34.3	1374.6

In (Infiltración de la lluvia hacia las capas profundas del suelo): Fueron determinados por el balance hídrico de suelos tomando en cuenta la capacidad de campo, el punto de marchitez, la humedad del suelo y la densidad aparente del mismo.

La infiltración del escurrimiento fluvial es un elemento a considerar para la evaluación de los recursos de las aguas subterráneas. En la parte de las Alturas, donde se encuentran propagadas las rocas anteriores al Neógeno, se produce la formación del escurrimiento superficial. En esta área la infiltración al acuífero es muy pequeña, descargándose un volumen del escurrimiento superficial en la llanura cársica del Neógeno.

En la llanura la infiltración directa de las precipitaciones depende de la composición y espesor de los sedimentos de cobertura. En las zonas donde hay un amplio desarrollo del carso y no existen los depósitos de cobertura la infiltración puede ser del 80 al 90% del volumen de las precipitaciones.

En estas áreas, en general, está desarrollado un microrelieve, el que tiene la particularidad de que cada cuenca superficial finaliza en una dolina cársica, donde llega una parte del escurrimiento fluvial. Por esta razón, el espesor de la cobertura no influye en la magnitud de la alimentación.

Inter (Intercepción de lluvia por la vegetación): Se tomaron los valores de determinados por el Balance anterior empleando los coeficientes de la metodología.

d. Metodología

En el caso de las componentes de Escurrimiento, Infiltración Evapotranspiración real y Recarga natural, fueron determinadas por la Metodología Schosinsky, 2006 el que utiliza el Balance Hídrico de suelos apoyado por la zonificación de Polígonos Biofísicos (Rodríguez, Álvarez, 2014). El procedimiento es el siguiente:

- Determine el valor de la evapotranspiración real
- Determine el valor de la relación entre la infiltración del agua en el suelo y la intensidad de la lluvia (factor Kfc)
- Determine el valor de la pendiente (factor Kp)
- Determine el valor de la cobertura vegetal (factor Kv)
- Determine el valor de retención de coberturas (techos, etc)
- Calcule el valor del coeficiente de infiltración Ci=Kfc+Kp+Kv
- Determine el valor de la precipitación efectiva Pef
- Calcula el balance hídrico de suelos

Según la pendiente, textura de suelo, cobertura vegetal se zonificaron 3 polígonos en los que se aplicaron las variables climáticas de precipitación, temperatura y radiación solar y otros parámetros como la capacidad de campo, el punto de marchitez, la humedad del suelo y la densidad aparente del mismo, obteniéndose el Balance Hídrico de suelos.

fc [mm/d]					600,00								
Kp [0.01%]					0,15								
Kv [0.01%]					0,20				por peso				
Kfc [0.01%]					0,89258				(%)	(mm)			
I [0.01%]					1			сс	37,00	325,60			
DS (g/cm³):				[1,10			РМ	30,00	264,00			1
PR (mm)					800,00			(CC-PM)	7,00	61,60			
HSi (mm)					325,60								
Nº de mes con qu	e inicia HSi;	1,2,312?			11								
Lluvia retenida [0.	01%] : Bosq	ues=0.2, ot	ros=0.12		0,12								
Concepto	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
P (mm)	45.90	45.50	47.00	65.20	138.40	227.00	172.10	190.40	221.80	131.40	55.60	34.30	1374.60
Ret [mm]	5.51	5.46	5.64	7.82	16.61	27.24	20.65	22.85	26.62	15.77	6.67	5.00	165.84
Pi (mm)	40.39	40.04	41.36	57.38	121.79	199.76	151.45	167.55	195.18	115.63	48.93	29.30	1208.76
ESC (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ETP (mm)	54.90	42.40	50.10	65.20	70.50	93.60	140.40	149.10	95.80	99.50	90.10	40.80	992.40
HSi (mm)	310.51	309.19	313.29	313.11	316.04	325.60	325.60	325.60	325.60	325.60	325.60	314.54	
C1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
C2	0.52	0.70	0.66	0.67	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.63	
HD (mm)	86.90	85.23	90.65	106.49	173.83	261.36	213.05	229.15	256.78	177.23	110.53	79.84	
ETR (mm)	41.71	35.94	41.54	54.45	70.50	93.60	140.40	149.10	95.80	99.50	59.99	33.33	915.86
HSf (mm)	309.19	313.29	313.11	316.04	325.60	325.60	325.60	325.60	325.60	325.60	314.54	310.51	
DCC (mm)	16.41	12.31	12.49	9.56	0.00	0.00	0.00	0.00	0.00	0.00	11.06	15.09	
Rp (mm)	0.00	0.00	0.00	0.00	41.73	106.16	11.05	18.45	99.38	16.13	0.00	0.00	292.90
NR (mm)	29.60	18.77	21.05	20.31	0.00	0.00	0.00	0.00	0.00	0.00	41.17	22.56	153.46

Figura 2-85: Zonificación para el balance hídrico de suelos

Tabla 2-16: Coeficientes por pendiente

Coeficiente por pendiente Cuenca Guara										
Clasificación	Pendiente	Kp								
Muy plana	0.002	0.30								
Plana	0.004	0.20								
Algo plana	0.014	0.15								

Tabla 2-17: Coeficientes por cobertura vegetal

No.	Cobertura vegetal	Kv
1	Cultivos varios	0,10
2	Pastos	0,18
3	Bosques secundarios, matorrales	0,20
4	Manglares	0.20
5	Herbazales de ciénaga	0.20

Tabla 2-18: Coeficientes en otras zonas

Otras zonas	Coef.		Lluvia promedio anual	Coef.
O trus Zorius	Kfc	Kv	Ela la promodio anaar	Kp
Embalses	0.10	0	según el área	según el área
Urbanas	0.10	0.18	según el área	0,20
Viales	0.10	0.18	según el área	0.20

Tabla 2-19: Profundidad de las raíces

Cultivo	Profundidad de las raíces (m). Modificado de Schosinsky
Pastos	Entre 1.40 y 1.60
Herbazal de ciénaga	1.00
Cultivos varios	Entre 0.70 y 0.50
Manglares	1.70
Bosques	2.00

Tabla 2-20: Coeficientes por tipo de suelo

		Porcentaje por peso de suelo seco								
No	Clasificación genética	PM	CC	DA	fc					
		(cm ³ /cm ³)	(cm ³ /cm ³)	(g/cm ³)	(mm/día)					
1	Pardo sialítico	34	42	1.31	700					
2	Fersialítico	28	34	1.04	800					
3	Fluvisol	30	37	1.11	1400					
4	Ferrálico	30	37	1.11	1900					
5	Hidromórfico	35	44	1.06	1800					
6	Húmico	30	40	1.19	600					
7	Hidromórfico -histosol	35	44	1.06	1800					
8	Ferralítico	30	37	1.11	600					

Tabla 2-21: Balance hídrico de suelos (2015)

Variables	Е	F	M	A	M	J	J	A	S	О	N	D	Anual
P (m3)	316710	313950	324300	449880	954960	1566300	1187490	1313760	1530420	906660	383640	236670	9484740
Ret (m3)	41657	41282	42643	59132	125582	205956	156134	172761	201262	119231	50434	36344	1252417
Pi (m3)	265683	263376	272062	377433	801121	1313996	996217	1102122	1283870	760600	321851	193526	7951863
ESC (m3)	9370	9292	9595	13311	28261	46348	35139	38877	45288	26829	11351	6800	280460
ETR (m3)	277487	236646	274435	360305	473867	629134	941717	1002083	643922	668791	411095	219638	6139122
Rp (m3)	0	0	0	0	242078	676609	61337	104922	632685	95133	0	0	1812737

Tabla 2-22: Componentes del balance hídrico

Precipitación	Infiltración	Escurrimiento	Evapotranspiración	Retención follaje	Recarga						
m³/año											
9.484	7.952	0.280	6.139	1.252	1.812						

Con estos valores se realiza el diagrama del ciclo hidrológico.

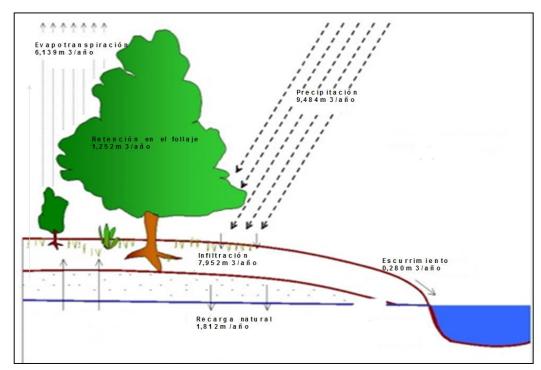


Figura 2-86: Diagrama del ciclo hidrológico

Como se observa de la lluvia caída el 66% infiltra llegando el 16% a convertirse en recarga natural y el 82 % es utilizado por las plantas, esto se evidencia ya que en el área abundan los cultivos varios y en la costa se extiende un ecosistema de manglar. El otro 19 % escurre fundamentalmente en los viales y áreas urbanas y el 15 % de la lluvia es interceptada por el follaje.

Evaluación de los Recursos

Para el cálculo del Recurso disponible, que está en dependencia del período hidrológico, período seco (noviembre-abril) y período húmedo (mayo-octubre), se utilizó la siguiente expresión:

Rdis = $\Delta H \mu$. F

Donde:

 μ . Es el coeficiente de almacenamiento (adimensional)

ΔH.- Es la recarga efectiva del acuífero en m.

F.- Es el área de la subcuenca en km².

La recarga efectiva se calcula mediante el gráfico de Control de Balance de las aguas subterráneas, GCBAS, para el cual se van introduciendo mensualmente los datos de lluvia (mm), niveles de las aguas (m) y explotación de las aguas subterráneas por los acueductos, en un software desarrollado al efecto (Pons, 1980) Este programa también permite resolver la recarga neta y el coeficiente de alimentación, entre otras variables.

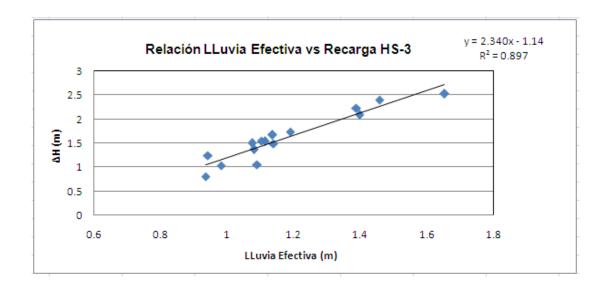


Figura 2-87: Estimación de la recarga total efectiva partiendo de la lluvia efectiva

$$\Delta H = 2.340 * LLe - 1.14$$

R²=0.897 (Coeficiente de Correlación)

Donde:

ΔH Recarga total Efectiva (m)

Lluvia Efectiva (m).Lluvia Acumulada periodo Húmedo. (Mayo -Octubre)

• Probabilidades de recarga con relación a la lluvia efectiva.

Se realizó el análisis estadístico a la serie de la lluvia efectiva del 1986-2014 aplicando pruebas de bondad de ajuste a distribuciones teóricas de probabilidades por el método de Smirnov-Kolmogorov, resultado que se utilizará para evaluar los recursos disponibles a diferentes probabilidades.

Procedimiento Para Evaluar los Recursos Disponibles al cierre del Periodo Húmedo

- A partir de la lluvia efectiva obtenida a diferentes probabilidades con auxilio del grafico de ΔH vs Lle y con su ecuación de regresión se determina el valor de ΔH a esa probabilidad.
- El volumen recargado (Vr) para la probabilidad media se calcula por la ecuación de balance Binderman (1) con el ΔH medio, a partir de los ΔH calculados anteriormente por regresión a las diferentes probabilidades, se sustituyen según las ecuaciones 2, 3 y 4:

$$Vr = \mu . \overline{\Delta H} F$$
 (1)

$$Vr = \mu . \Delta H_{25\%} F \quad (2)$$

$$Vr = \mu . \Delta H_{75\%} F$$
 (3)

$$Vr = \mu . \Delta H_{95\%} F$$
 (4)

 El valor de la alimentación del horizonte acuífero a diferentes probabilidades se determina usando el valor calculado del ΔH a diferentes probabilidades por la ecuación (7), que para ΔH medio, nos da W media

$$W = \mu . \Delta H_{25\%}$$
 (5)

$$W = \mu . \Delta H_{75\%} \quad (6)$$

$$W = \mu . \Delta H_{95\%} \quad (7)$$

$$W = \mu . \overline{\Delta H} \text{ media}$$
 (8)

 Los valores del coeficiente de alimentación (α) a diferentes probabilidades se obtienen por las siguientes relaciones:

$$\alpha = \frac{W_{25\%}}{Lle_{25\%}}$$
 al 25 % de probabilidad

$$\alpha = \frac{W_{75\%}}{Lle_{75\%}}$$
 al 75 % de probabilidad

$$\alpha = \frac{W_{95\%}}{Lle_{95\%}}$$
 al 95 % de probabilidad

$$\alpha = \frac{\overline{W}}{Lle}$$
 para la probabilidad media.

Tabla 2-23: Recurso disponible a diferentes probabilidades.

Probabilidades.	LLe (mm)	ΔH (m)	W (m)	Vr Recurso Disponible (H³/Año)	α (%)
25%	1259.1	1.81	0.307	297.24	0.244
75%	1013.9	1.23	0.210	202.82	0.207
95%	867.4	0.89	0.151	146.41	0.174
Media	1046.8	1.31	0.22	215.493	0.208

El procedimiento descrito se realiza al cierre de cada periodo húmedo, evaluándose el recurso disponible, que será el volumen recomendado de explotación para el próximo año hidrológico.

Tabla 2-24: Balance Interno del acuífero obtenido por la metodología del gráfico de control de balance

N	Año	Δh(m)	Δzh(m)	Δzs(m)	ΔH(m)	ΔZ(m)	Lle(mm)	α	W(m)	u	Мо	Vr (hm3)	Vexp(hm3)
1	1986	1.18	1.64	1.11	2.82	2.75	962	0.499	0.48	0.17	15.22	464.64	453.11
2	1987	0.87	0.17	1	1.04	1.17	981	0.1835	0.18	0.17	5.71	174.24	196.02
3	1988	1.23	0.14	1.11	1.37	1.25	1080	0.2222	0.24	0.18	7.61	232.32	211.97
4	1989	1.25	-0.19	1.24	1.06	1.05	1090	0.1651	0.18	0.17	5.71	174.24	172.60
5	1990	1.07	-0.11	0.99	0.96	0.88	1103	0.1451	0.16	0.17	5.07	154.88	141.97
6	1991	1.47	0.62	1.16	2.09	1.78	1397	0.2577	0.36	0.17	11.41	348.48	296.79
7	1992	2.05	0.72	1.1	2.77	1.82	1318	0.3642	0.48	0.17	15.22	464.64	305.29
8	1993	0.68	0.1	1	0.78	1.1	1163	0.1118	0.13	0.17	4.12	125.84	177.47
9	1994	1.01	-0.2	1.58	0.81	1.38	935	0.1497	0.14	0.17	4.44	135.52	230.89
10	1995	1.04	0.7	0.71	1.74	1.41	1189	0.2523	0.3	0.17	9.51	290.4	235.32
11	1996	1.11	0.43	1.17	1.54	1.6	1113	0.2336	0.26	0.17	8.24	251.68	261.49
12	1997	0.84	0.71	0.71	1.55	1.42	1102	0.245	0.27	0.17	8.56	261.36	239.44
13	1998	0.99	0.5	1.32	1.49	1.82	1139	0.2283	0.26	0.17	8.24	251.68	307.42
14	1999	2.05	1.19	1.67	3.24	2.86	1174	0.4685	0.55	0.17	17.44	532.4	469.96
15	2000	0.73	2.02	0.92	2.75	2.94	923	0.5092	0.47	0.17	14.90	454.96	486.39
16	2001	1.09	1.03	0.92	2.12	1.95	1087	0.3312	0.36	0.17	11.41	348.48	320.54
17	2002	1.59	0.64	0.69	2.23	1.33	1388	0.2738	0.38	0.17	12.05	367.84	219.38
18	2003	0.63	0.62	1.09	1.25	1.71	942	0.2229	0.21	0.17	6.66	203.28	278.09
19	2004	0.6	0.87	0.83	1.47	1.7	1117	0.2238	0.25	0.17	7.93	242	279.86
20	2005	1.84	0.69	1.39	2.53	2.08	1653	0.2601	0.43	0.17	13.63	416.24	342.21
21	2006	0.82	0.85	1.1	1.67	1.95	1136	0.2553	0.29	0.17	9.19	280.72	327.79
22	2007	0.68	0.79	0.87	1.47	1.66	1237	0.2021	0.25	0.17	7.93	242	273.28
23	2008	1.35	1.06	1.42	2.41	2.48	1458	0.2812	0.41	0.17	13.00	396.88	408.41
24	2009	0.27	1.28	0.51	1.55	1.79	916	0.2948	0.27	0.17	8.56	261.36	301.83
25	2010	0.44	0.3	0.63	0.74	0.93	1058	0.1229	0.13	0.18	4.12	125.84	158.15
26	2011	1.05	0.45	1.05	1.5	1.5	1074	0.2421	0.26	0.17	8.24	251.68	251.68
27	2012	1.51	1.29	1.51	2.8	2.8	1487	0.3228	0.48	0.17	15.22	464.64	464.64
28	2013	1.07	0.82	1.07	1.89	1.89	1141	0.2805	0.32	0.17	10.14	309.76	309.76
29	2014	0.29	1.18	0.29	1.47	1.47	823	0.3038	0.25	0.17	7.93	242	242.00
		5.25						3.0000		•			

- Δh: Recarga Neta (m) (Ascensos del nivel) para este cálculo se procede de la siguiente forma, se identifica dentro del año el menor valor del nivel (pico) y se le resta al mayor que le precede (depresión), si existe un solo pico; si existen 2 picos se calculan ambos de la misma manera y se suman; cuando la elevación del nivel trasciende (pico) en forma ascendente de un año a otro este valor se suma al año anterior.
- ΔZh : Descarga en el período húmedo (m) se determina calculando la tendencia al descenso en el período seco y multiplicando por los meses que transcurren para la recarga neta correspondiente a ese ΔZh o sea = $\frac{\Delta Zs}{t_{\text{sec }o}} *t_{\text{humedo}}$. También puede calcularse aplicando las propiedades de los triángulos internos.
- ΔZs, Descarga Neta (m) (Descensos del nivel) para este cálculo se procede de la siguiente forma, se identifica dentro del año el mayor valor del nivel (depresión) y se le resta el menor que le antecede, siempre que la tendencia sea a descender, si existe una sola depresión; si existen 2 se calculan ambas de igual forma y se suman. Este valor se incluirá siempre al año que corresponda el Δh que le antecede.

ΔH: Altura Total Aparente de la alimentación (m), se obtiene a partir de la suma de
 Δh y ΔZh, ubicándose en el año correspondiente. ΔH= Δh +ΔZh

1.

- ΔZ: Altura Total Aparente de la descarga (m); se obtiene a partir de la suma de ΔZs y
 ΔZh, ubicándose en el año correspondiente. ΔZ= ΔZs +ΔZh.
- Lle: Lluvia efectiva (mm) es la suma de todas las lluvias mensuales que dentro del año provoquen variación en la tendencia al descenso de los niveles.
- μ: Porosidad efectiva o Coeficiente de almacenamiento (Adim) se puede calcular por la ecuación siguiente: u= 0.17.
- W: Alimentación del acuífero (m); es el producto de μ y ΔH . O sea $W = \mu * \Delta H$
- α : Coeficiente de aprovechamiento del escurrimiento medio anual es la magnitud que se obtiene a partir de la división de la alimentación del acuífero (W) y la lluvia efectiva LLe, o sea $\alpha = \frac{W}{Ile}$

2.

- Vr: Volumen de Recarga (hm³) se obtiene por $Vr = \mu * \Delta H * F$
- Vexp: Volumen de Explotación(hm3) se obtiene por: Vexp= $\mu * \Delta Z * F$

3.

Donde F es el área de la Cuenca F= 968Km2

Obtención de los niveles de Aviso

- Nalerta: Nivel de Alerta (m), $Nalerta = NM \operatorname{Re} g \overline{\Delta h}$
- Nalarma: Nivel de Alarma (m) $Nalarma = NM \operatorname{Re} g \frac{\overline{\Delta h}}{2}$

e. Balance hídrico subterráneo

Adaptando la ecuación de continuidad al escenario hidrogeológico en el área

$$\Delta V = (In + R_t + V_{man} + f + \Delta h) - (Uc + A_b + E_x)$$

Donde

 ΔV Cambio de almacenamiento

Rt Retornos de agua desde los diversos usos (35% según tipo de roca)

 V_{man} Aportes de otras cuencas

In Infiltración de la lluvia hacia las capas profundas del suelo

Uc Usos (consuntivos o no) del agua, equivalente a la demanda

f Pérdidas por fugas, en los sistemas municipales. (20% según NC 973/2013)

 A_b Volumen de escurrimiento a la salida de la cuenca (Q = L i T)

Ex Exportaciones hacia cuencas vecinas

f. Componentes

Rt (**Retornos de agua desde los diversos usos**): Fueron determinadas las aportadas por los sistemas de riego y la de los canales magistrales

Restituciones de las aguas de riego

La infiltración de las aguas para el riego es un factor importante en el balance general de las aguas subterráneas. En los últimos 5 años estos valores han disminuido considerablemente ya que los volúmenes entregados a los usuarios no sobrepasan los 80 Hm³/año, pues además que la agricultura ha ganado veracidad en los volúmenes de agua que demanda, se han introducido técnicas de riego con mayor eficiencia como el sistema de Enrolladores cuya eficiencia es de un 85 % lo que hace que las restituciones de las aguas de riego estén entre un 15 y un 20 % del volumen de explotación en el período húmedo. No obstante se aplicó el 35 % del volumen consumido según el tipo de roca en la zona.

Pérdidas por filtración del Canal Pedroso-Güira

Las pérdidas por los canales magistrales contribuyen a la alimentación del acuífero. Desde la obra de toma de agua de la Derivadora Pedroso, hasta Güira de Melena, está construido un canal (Pedroso-Güira) de aproximadamente 61 km de longitud en el que las pérdidas por conducción constituyen recarga al acuífero. Los canales magistrales en el área de estudio alcanzan 26,575 km de ellos 23,885 km pertenecen al canal Pedroso-Güira (específicamente el Tramo III), el que atraviesa toda el área de estudio desde el río San Felipe hasta el Embalse Regulador Güira I en el poblado de El Gabriel ya en la provincia de Artemisa y 2,69 km al canal Aguas Claras el que da continuidad a un sifón que sale de la presa Aguas Claras hasta el Embalse Regulador Buenaventura en el poblado del mismo nombre.

Ambas obras hidráulicas están revestidas con losas de hormigón, y aportan volúmenes que constituyen recarga a las aguas subterráneas durante los 9 meses de explotación, el canal Pedroso Güira por su extensa longitud (desde la Derivadora Pedroso hasta Güira de Melena 60,883 km) fue divido en 3 tramos para el estudio de las pérdidas por conducción y precisamente en el área del proyecto coincide con el Tramo III el que por las condiciones inadecuadas que poseen las juntas de unión entre losas tiene un 60% de eficiencia, en el caso del canal Aguas Claras el recubrimiento que tiene el filtro bajo las losas con polietileno posee un eficiencia mayor aunque disminuidas en los últimos años a un 85 % por conflictos por el agua, este canal aunque mantiene menor longitud se ubica en la zona de recarga al acuífero.

A partir de las propiedades hidrofísicas de los suelos cubanos de (Hernández, et al, 1999) y el Mapa de Agrupamientos de suelos (ENPA, 2010) se observa que el tipo de suelo predominante es el ferralítico rojo típico y ferralítico rojo húmico, cuyos coeficientes de infiltración básica están en el orden de 1900 mm/día y 600 mm/día (Cid. et al, 2011).

IMTA, 2006 plantea que un método adicional para determinar los retornos agrícolas es considerar la diferencia de los volúmenes reales abastecidos desde la fuente y lo que consumió el cliente estimando los % de agua infiltrada según el tipo de suelo y la porosidad efectiva de la roca. En nuestro caso se toma la recarga efectiva del Gráfico de Control de Balance de las Aguas Subterráneas (GCBAS) 26% de la lluvia caída.

Figura 2-88: Recarga por pérdidas en canales

<u>V_{man}</u> (Aportes de otras cuencas): Al área llegan anualmente volúmenes de agua superficial de la cuenca vecina Mayabeque y volúmenes de agua subterráneo de la cuenca Ariguanabo además en el III Trimestre del año aporta también el gasto ecológico el río Quivicán a través del embalse Aguas Claras.

In (Infiltración de la lluvia hacia las capas profundas del suelo): Se tomaron los valores de recarga natural determinados por el Balance anterior.

Infiltración del escurrimiento fluvial

En la cuenca la mayoría de los ríos y arroyos no llegan a la costa, el escurrimiento superficial se infiltra en la llanura cársica del Neógeno, alimentando las aguas subterráneas y una parte se evapora. En la zona prealturas parte del escurrimiento está regulado por presa (Aguas Claras) y micropresas (Vaquería 15, Reyner, Seibabo, San Juan y Añil) y la alimentación se produce por las pérdidas de filtración del embalse.

Los coeficientes de infiltración, determinados en investigaciones anteriores, varían en un amplio rango, desde el 30% hasta el 70% lo que está acorde con el resultado obtenido.

La descarga de las aguas subterráneas se produce en forma de escurrimiento, a través de las zonas intensamente carsificadas y fracturadas, por el flujo superficial de los canales que se encuentran en la zona cenagosa, por la evaporación de las aguas embalsadas por el dique sur y por la explotación de los pozos.

<u>Uc Usos (consuntivos o no) del agua, equivalente a la demanda:</u> Tomados los valores de extracción de los usuarios del 2015.

La extracción de las aguas subterráneas es de considerable magnitud, tanto por el gasto de las fuentes como por la concentración de la explotación. El acueducto Cuenca Sur fue construido en la década de los años 50 del pasado siglo y está constituido por 20 pozos de explotación, de una profundidad entre 25 y 90 m, con un gasto total de extracción de 3.02 m³/s. En este acueducto se obtuvo información a partir del año 1976 de los controles periódicos de mineralización, explotación y niveles dinámicos, donde se observa que más de la mitad bombean por debajo del nivel medio del mar (2 a 6 m) y solamente 4 presentan una elevación de los cloruros de 50 a 100 mg/l a partir del año 1985. El resto de los pozos bombean con niveles dinámicos por encima del nivel medio del mar y la mitad de estos presentan elevación

de los cloruros a partir del año 1985.

f (Pérdidas por fugas, en los sistemas municipales): La norma NC 973/2013 expresa que en aquellos sistemas con instalaciones sanitarias con deterioro se toma un estimado del 20% de pérdidas.

<u>Ah (Volumen de recarga neta sondeado):</u> Se introducen los valores de recarga obtenidos por el Gráfico de Control de Balance de las Aguas Subterráneas ya que en esta componente se recogen los volúmenes de recarga artificial.

Ex (Exportaciones hacia cuencas vecinas): Por ser el mayor consumidor se tomaron los consumos del Acueducto Cuenca Sur los que son exportados hacia la cuenca Vento.

 $\underline{A_b}$ (Volumen de escurrimiento a la salida de la cuenca): Se propone ejecutar un sistema de control hidrométrico en los aliviaderos del Dique Sur los que constituyen sección de control para conocer el volumen e descarga del acuífero.

g. Balance hídrico integrado (superficial y subterráneo)

Una vez seleccionadas todas las variables se unifican para la ejecución del balance en el área de estudio con una distribución mensual, estas diferencias de volumen nos permitirán conocer si existe déficit en los consumos demandados por los clientes para los diferentes usos.

Se tuvo en cuenta además todo el recurso potencial de la cuenca HS-3 para el análisis y la explotación de todos los clientes tanto de la provincia Artemisa como de Mayabeque.

Con estas cifras se corre el software HIDROGES dándose a conocer los resultados de la disponibilidad hídrica a los usuarios.

El Libro de Balance se incluye como apéndice y contiene:

Tablas 1: Resumen por Organismos

Tablas 2: Resumen por tipos de agua

Tablas 4: Resumen por fuente y tipos de agua

Tablas 6: Resumen por Organismos y tipos de agua

Tablas 7: Resumen por cultivos

DH2: Control del Balance de Agua

Tabla 2-25: Balance de agua cuenca JICA (2015)

MESES	E	F	M	A	M	J	J	A	S	0	N	D	ANUAL
ΔV Cambio de almacenamiento	-13121577	-13095508	-13126330	-13220486	8468619	54279705	7389623	20990644	8075929	3540275	-110056	-13068213	37002625
V _{II} Volumen inicial del acuífero HS-3	316444000	303322423	290226915	277100584	263880098	272348717	326628422	334018046	355008690	363084619	366624894	366514838	353446625
Escurrimiento	9372	9290	9597	13313	28259	46349	35140	38876	45288	26830	11353	6798	280464
Im Importaciones desde cuencas vecinas	2451468	2451468	2451468	2451468	2461663	2461663	2797330	2797330	2797330	2452591	2452591	2452591	30478961
- Cuenca Ariguanabo caudal río	5357	5357	5357	5357	15552	15552	15552	15552	15552	6480	6480	6480	118628
- Cuenca Mayabeque	2446111	2446111	2446111	2446111	2446111	2446111	2446111	2446111	2446111	2446111	2446111	2446111	29353332
- Cuenca Quivicán	0	0	0	0	0	0	335667	335667	335667	0	0	0	1007001
Rt Retornos de agua riego y canal	13167088	13167088	13167088	13167088	13167088	13167088	12980310	12980310	12980310	13167088	13167088	13167088	157444722
- Retornos por canales magistrales	186778	186778	186778	186778	186778	186778	0	0	0	186778	186778	186778	1681002
- Retornos de agua sistemas de riego s	12980310	12980310	12980310	12980310	12980310	12980310	12980310	12980310	12980310	12980310	12980310	12980310	155763720
In (Infiltración natural)	47193	39561	43160	44753	231671	589382	64033	102442	551763	89562	45219	37108	1885848
Δh Recarga neta según GCBAS	0	0	0	0	21669000	66820000	11294000	12779000	0	17050000	13130000	0	142742000
f Pérdidas por fugas (20% Uso)	800000	800000	800000	800000	800000	800000	800000	800000	800000	800000	800000	800000	9600000
Uc Usos MAY y ART	21048000	21048000	21048000	21048000	21048000	21048000	0	0	0	21048000	21048000	21048000	189432000
Ex Exportaciones hacia cuencas vecinas (Ac Cuenca Sur)	8250000	8250000	8250000	8250000	8250000	8250000	8250000	8250000	8250000	8250000	8250000	8250000	99000000
Et Evapotranspiración	236667	203425	236125	310993	404022	536404	804606	854368	549012	570216	343166	187128	5236132
Inter Intercepción de lluvia por la vegetación	62031	61491	63518	88114	187040	306778	232583	257315	299750	177580	75140	46670	1858009
A_b Escurrimiento aguas abajo	0	0	0	0	0	0	0	0	0	0	0	0	0
V_{II} Volumen final del acuífero HS-3	303322423	290226915	277100584	263880098	272348717	326628422	334018046	355008690	363084619	366624894	366514838	353446625	
Situación	Descenso	Descenso	Descenso	Descenso	Ascenso	Ascenso	Ascenso	Ascenso	Ascenso	Ascenso	Descenso	Descenso	Ascenso

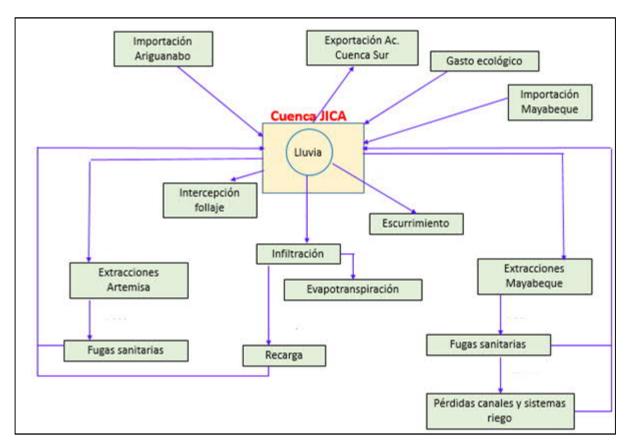


Figura 2-89: Diagrama del balance de agua superficial y subterráneo

2.7 Problemas del Agua Subterránea

a. Niveles del agua subterránea

No es posible realizar el análisis de la calidad del agua del agua subterránea sin hacer una incursión en el nivel de agua de los acuíferos involucrados en el estudio es por esto que hemos decidido adentrarnos en el tema.

Cuando una cuenca es explotada, esta es susceptible de afectarse principalmente por dos efectos negativos secundarios, como los referentes a descensos de niveles y los referentes a cambios de la composición hidroquímica y/o calidad del agua. Estos tendrán las siguientes manifestaciones propias:

- Descenso progresivo de los niveles subterráneos, lo que a su vez, ocasiona problemas secundarios en el bombeo (bombeo de aire, necesidad de aumentar la profundidad de los pozos, mayor abatimiento, agravamiento del costo, etc.).
- Pérdida parcial de las reservas hídricas almacenadas.
- Alteración de la calidad y/o composición hidroquímica de las aguas subterráneas por arrastres de sustancias contaminantes.
- En cuencas abiertas, aumento progresivo de la salinidad (por intrusión marina) cuando el bombeo excede las posibilidades de utilización de la cuenca.

Desde el punto de vista del aprovechamiento, se han presentado las siguientes situaciones en el área objeto de estudio:

- Disminución de los volúmenes almacenados de las reservas renovables y permanentes de la cuenca
- Descenso significativo de los niveles históricos promedios del acuífero.
- Excesos de salinidad en el suelo.
- Excesos de salinidad para los cultivos.
- Empleo directo de fuentes contaminadas por alta mineralización.
- Acción sobre la salud del hombre y los animales.
- Incremento de la intrusión marina por extracción excesiva de los recursos aprovechables.
- Arrastres orgánicos por vertimientos directos e indirectos en el acuífero.
- Aparición de grandes conos de bombeo por alta concentración de las extracciones.
- Efectos negativos producidos por la irrigación y el drenaje cuando estos no han sido correctamente diseñados y/o operados.

Se ha comprobado que el contorno freático de elevación 1.0 m se encuentra más alejado de la costa en la parte central que en los extremos, aproximadamente a 15 km de distancia.

b. Calidad del agua subterránea

Debido a la situación tan crítica en la cuenca Artemisa-Quivicán de la Costera Sur de La Habana, donde la intrusión penetró durante años debido a la intensa explotación agrícola y de abasto a la capital (Acueducto Cuenca Sur), al bajo % o déficit de las lluvias y también al efecto desestabilizador del régimen subterráneo, provocado por los canales que drenaban el acuífero, los valores de salinidad en las aguas de los pozos de bombeo aumentaron notablemente, peligrando la entrega garantizada de los volúmenes comprometidos, y lo que es peor, el deterioro irreversible de la calidad de los recursos hídricos subterráneos de esta cuenca.

Desde hace más de 50 años, se construyeron canales de drenaje en las zonas costeras, los que se realizaron sin estudios hidrogeológicos y con varios objetivos: de extraer maderas y carbón por los mismos, para mejoramiento de suelos y recuperación de algunas zonas, para obras marítimas de costa y como vías rápidas de traslado del personal que laboraba en esas áreas tan apartadas.

Al drenar el acuífero de esta forma, se alteró las condiciones naturales del mismo, (disminuyó la carga hidráulica y se aumentó el drenaje libre al mar), lo que propició o aceleró la mezcla de aguas dulces y saladas con la consiguiente penetración del agua de mar.

La inadecuada construcción de los pozos del acueducto Cuenca Sur e instalación de las bombas que, conjuntamente con la extracción y las características hidrogeológicas específicas del territorio, han influido en la parte superior de la zona de difusión, creándose problemas de salinidad que pueden ser considerados como locales y no de carácter regional.

b.1 Intrusión salina

En esta Llanura Sur Habana-Matanzas en la cual se encuentran involucradas las provincias Mayabeque y Artemisa fundamentalmente también influye la provincia La Habana con algunos de sus municipios limítrofes.

En el área de referencia prácticamente desde la fundación de la Republica posterior a la colonización por España, se procedió al desarrollo del incremento productivo de las tierras ricas en todos los elementos necesarios para los cultivos conocidos como menores tan

necesarios para el consumo del hombre.

Esto posibilito que algunos grandes y pequeños productores desarrollaran drenajes en la zona con el objetivo de obtener tierras fértiles para los cultivos de época sin considerar que estos canales posibilitarían el incremento de la salinidad en las aguas subterráneas que eran utilizadas para el riego. Con el triunfo revolucionario se incrementan los niveles productivos, por lo que se elevan los consumos de agua de los diferentes acuíferos hasta que finalmente se observan niveles de salinidad no esperados que ocasionan un desarrollo de estudios necesarios para conocer el estado del manto freático y se producen un conjunto de medidas que permiten atenuar el incremento de la salinidad.

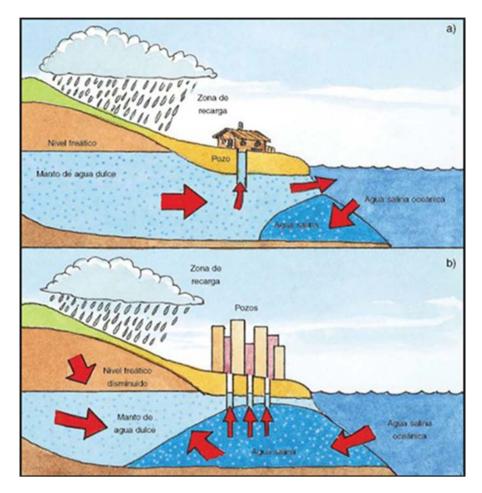


Figura 2-90: Esquema de intrusión salina

b.2 Efectos negativos de la intrusión salina

Los efectos negativos principales de la Intrusión salina son afectaciones sobre la calidad del agua, la cual no podría consumirse para los diferentes usos, el abasto y la agricultura debido a:

a)- El incremento de la intrusión salina por agudización del cambio climático, o sea, con la elevación del nivel del mar pronosticado y/o en determinados acuíferos cercanos a la costa por sobre-explotación incontrolada, ocasionaría que se eleven los niveles de elementos como el cloro y el sodio, los sulfatos posibilitando que:

- o Se haga insostenible en el tiempo el uso de las aguas para el abasto por daños a la salud debido al incremento de sales disueltas en el agua, incrementándose las enfermedades cardiacas, así como problemas con los riñones por retenciones de sales.
- Existirá una saturación de sales sobre el suelo, provocando la salinización de éstos e impidiendo su uso para los cultivos previstos, debiendo buscar alternativas productivas que permitan producciones sostenibles y necesarias para los consumos de las poblaciones.
- Los suelos en general que se encuentren cultivados no podrán producir y habrá grandes pérdidas económicas impredecibles.
- b)- Aspectos a tener en cuenta en el proceso de salinización de las aguas subterráneas producto de la intrusión salina en los acuíferos más cercanos a la costa:
 - o Es importante mantener un registro sobre los niveles de las precipitaciones en las áreas de influencia de cada acuífero.
 - Mantener un control estricto sobre las entregas y usos de las aguas aprobadas en el balance de agua, evitando de esta manera la sobre-explotación, que todavía persiste y asegurando que exista exigencia sobre la productividad del agua entregada para la agricultura, ya que son ellos los mayores consumidores.
 - O En el caso del uso del agua para abasto sea poblacional o industrial, es importante prever la existencia de pozos de reserva que permitan una mezcla de aguas que disminuyan las concentraciones de sales y de esta forma garanticen su uso y aseguren la salud de la población y las producciones industriales.
 - Cada vez es más importante la participación de todos los actores, comenzando por aquellos responsabilizados con las entregas de aguas, para los diferentes usos y así evitar salideros y derroches del líquido vital.
 - Mantener un control adecuado de los monitoreos de la calidad de las aguas en tiempo y espacio se hace cada vez más necesario e importante y los especialistas, técnicos y directivos deben exigir y lograr que se realicen y analicen con prontitud y calidad, ya que de estos resultados dependerá un futuro para otras generaciones.

b.3 Muestreo hidroquímico vertical en las provincias Artemisa y Mayabeque

En el periodo se muestrearon un total de 13 estaciones utilizando el equipo multi-paramétrico WQC-24 proveniente de Japón, para determinar los parámetros Temperatura, pH, Conductividad Eléctrica, Turbiedad, Salinidad y Oxígeno Disuelto.

Estas mediciones se realizaron después de la llegada de los equipos hasta abril de 2016, aunque en este caso solo aparecen los últimos valores registrados por ambas provincias.

En las páginas siguientes se muestran los resultados de las mediciones efectuadas en forma de tablas para cada uno de los pozos y los gráficos correspondientes destacando los niveles en los cuales el agua comienza a incrementar su salinidad, producto del contacto con el agua salada proveniente de la costa.

Por cada pozo existen dos gráficas, en la primera se muestra cómo se comporta la salinidad con respecto a la cota de monitoreo por debajo del nivel medio del mar. En la segunda se muestran las relaciones existentes entre la Conductividad Eléctrica (mS/m) y la Salinidad (%), obteniendo que en la mayoría existe una relación significativa entre ambas variables, excepto en el HSC-543 y en el se muestra que no se encuentra afectado por intrusión salina, lo cual permite una explotación mas controlada y eficiente para el uso de sus aguas.

Bauco BAgrica Beyona Boan Ansono de los Banos Ansono Boan Ansono de los Banos Ansono Boan Ansono de los Banos Boan Ansono Boan Anso

Orientación de los Perfiles. Muestreo Hidroquímico Vertical

Figura 2-91: Orientación de los perfiles, muestreo hidroquímico vertical

En la mayoría de los pozos estudiados se presentan valores entre 20 y 40 m por debajo del nivel medio del mar, cota en la cual estos pozos inician el aumento de la salinidad por contacto con el mar, o sea, se alcanza el g/L y más. A continuación se detallan los pozos que fueron medidos:

Tabla 2-26: Coordinaciónes de los pozos

Name	X	Y
JICA-1	340468	324456
LSU-1	343180	324370
HSC-545	350197	322645
HSC-546	349200	320700
TS-125	347400	326610
HSC-543	350541	324258
HSC-542	350997	326746
TS-116	354900	329300
HSC-565	359000	329700
HSC-568	361107	322665
HSC-541	351489	329864
HSC-537	351822	336804
HSC-540	351706	331069

Tabla 2-27: Resultados de la medición en JICA 1

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
JICA-1	340468	324456	28/04/2016	4,0	1,7	55,6	0,2
JICA-1	340468	324456	28/04/2016	6,0	-0,3	53,4	0,2
JICA-1	340468	324456	28/04/2016	10,0	-4,3	74,6	0,3
JICA-1	340468	324456	28/04/2016	12,0	-6,3	104	0,5
JICA-1	340468	324456	28/04/2016	14,0	-8,3	115	0,5
JICA-1	340468	324456	28/04/2016	16,0	-10,3	115	0,5
JICA-1	340468	324456	28/04/2016	18,0	-12,3	116	0,5
JICA-1	340468	324456	28/04/2016	20,0	-14,3	116	0,5
JICA-1	340468	324456	28/04/2016	22,0	-16,3	116	0,5
JICA-1	340468	324456	28/04/2016	25,0	-19,3	1116	0,5
JICA-1	340468	324456	28/04/2016	28,0	-22,3	116	0,5
JICA-1	340468	324456	28/04/2016	30,0	-24,3	116	0,5
JICA-1	340468	324456	28/04/2016	32,0	-26,3	116	0,5
JICA-1	340468	324456	28/04/2016	35,0	-29,3	117	0,5
JICA-1	340468	324456	28/04/2016	38,0	-32,3	117	0,5
JICA-1	340468	324456	28/04/2016	40,0	-34,3	130	0,6
JICA-1	340468	324456	28/04/2016	40,5	-34,8	215	1,1
JICA-1	340468	324456	28/04/2016	43,0	-37,3	2120	13,3
JICA-1	340468	324456	28/04/2016	45,0	-39,3	4250	27,6
JICA-1	340468	324456	28/04/2016	50,0	-44,3	4880	32,3
JICA-1	340468	324456	28/04/2016	52,0	-46,3	4920	32,4
JICA-1	340468	324456	28/04/2016	55,0	-49,3	4920	32,4
JICA-1	340468	324456	28/04/2016	59,0	-53,3	4940	32,8

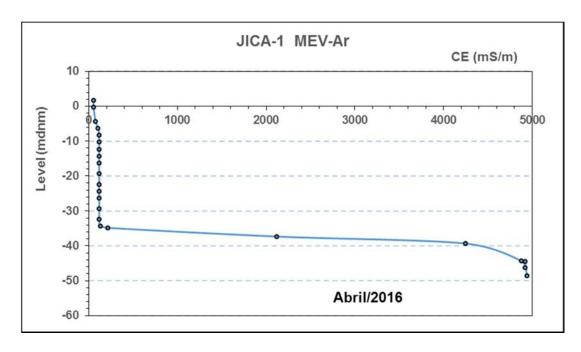


Figura 2-92: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo JICA-1

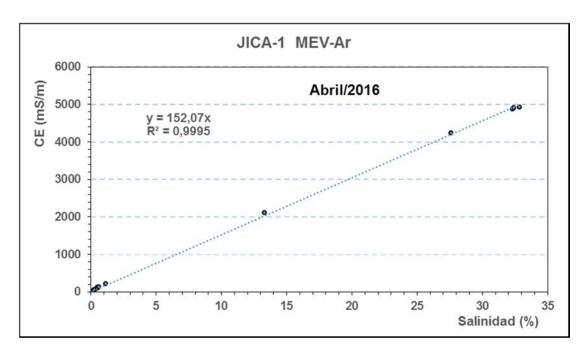


Figura 2-93: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) JICA-1

Tabla 2-28: Resultados de la medición en LSU-1

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
LSU-1	343180	324370	28/04/2016	4,5	1,0	85	0,4
LSU-1	343180	324370	28/04/2016	8,0	-2,5	85	0,4
LSU-1	343180	324370	28/04/2016	9,0	-3,5	89,8	0,4
LSU-1	343180	324370	28/04/2016	10,0	-4,5	92,1	0,4
LSU-1	343180	324370	28/04/2016	12,0	-6,5	128	0,6
LSU-1	343180	324370	28/04/2016	14,0	-8,5	135	0,6
LSU-1	343180	324370	28/04/2016	16,0	-10,5	135	0,6
LSU-1	343180	324370	28/04/2016	18,0	-12,5	135	0,6
LSU-1	343180	324370	28/04/2016	20,0	-14,5	135	0,6
LSU-1	343180	324370	28/04/2016	22,0	-16,5	135	0,6
LSU-1	343180	324370	28/04/2016	24,0	-18,5	135	0,6
LSU-1	343180	324370	28/04/2016	26,0	-20,5	145	0,7
LSU-1	343180	324370	28/04/2016	27,0	-21,5	151	0,7
LSU-1	343180	324370	28/04/2016	29,0	-23,5	157	0,7
LSU-1	343180	324370	28/04/2016	29,5	-24,0	163	0,8
LSU-1	343180	324370	28/04/2016	30,0	-24,5	164	0,8
LSU-1	343180	324370	28/04/2016	32,0	-26,5	167	0,8
LSU-1	343180	324370	28/04/2016	33,0	-27,5	200	1
LSU-1	343180	324370	28/04/2016	35,0	-29,5	676	3,4
LSU-1	343180	324370	28/04/2016	38,0	-32,5	2180	13,3
LSU-1	343180	324370	28/04/2016	40,0	-34,5	3460	21,7
LSU-1	343180	324370	28/04/2016	42,0	-36,5	4240	27,4

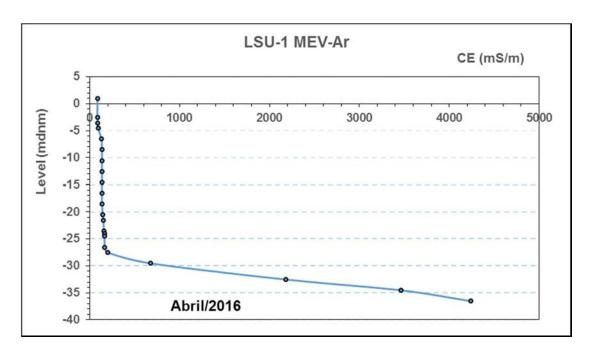


Figura 2-94: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo LSU-1

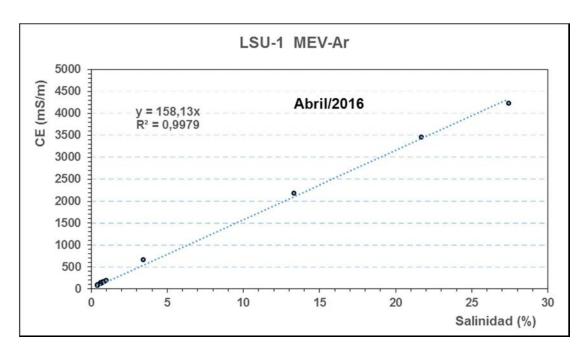


Figura 2-95: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) LSU-1

Tabla 2-29: Resultados de la medición en HSC-545

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-545	350917	322645	28/04/2016	6,0	-1,8	193	0,9
HSC-545	350917	322645	28/04/2016	7,0	-2,8	192	0,9
HSC-545	350917	322645	28/04/2016	9,0	-4,8	192	0,9
HSC-545	350917	322645	28/04/2016	12,0	-7,8	233	1,2
HSC-545	350917	322645	28/04/2016	14,0	-9,8	296	1,4
HSC-545	350917	322645	28/04/2016	16,0	-11,8	309	1,6
HSC-545	350917	322645	28/04/2016	17,0	-12,8	309	1,6
HSC-545	350917	322645	28/04/2016	19,0	-14,8	459	2,4
HSC-545	350917	322645	28/04/2016	20,0	-15,8	486	2,6
HSC-545	350917	322645	28/04/2016	22,0	-17,8	666	3,6
HSC-545	350917	322645	28/04/2016	25,0	-20,8	950	5,3
HSC-545	350917	322645	28/04/2016	27,0	-22,8	1190	6,9
HSC-545	350917	322645	28/04/2016	29,0	-24,8	1520	8,9
HSC-545	350917	322645	28/04/2016	32,0	-27,8	3000	18,7
HSC-545	350917	322645	28/04/2016	34,0	-29,8	3490	22,2
HSC-545	350917	322645	28/04/2016	36,0	-31,8	4000	25,7
HSC-545	350917	322645	28/04/2016	38,0	-33,8	4450	28,9
HSC-545	350917	322645	28/04/2016	40,0	-35,8	4690	30,6
HSC-545	350917	322645	28/04/2016	42,0	-37,8	4830	31,7

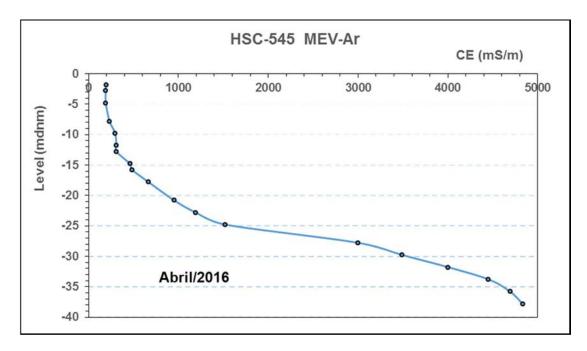


Figura 2-96: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-545

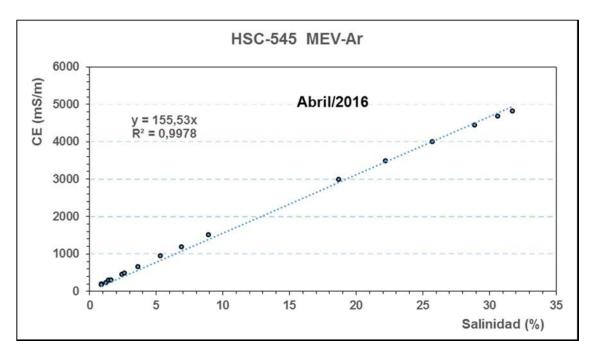


Figura 2-97: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-545

Tabla 2-30: Resultados de la medición en HSC-546

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-546	349200	320700	28/04/2016	1,5	0,4	269	1,4
HSC-546	349200	320700	28/04/2016	2,0	-0,1	269	1,4
HSC-546	349200	320700	28/04/2016	4,0	-2,1	269	1,4
HSC-546	349200	320700	28/04/2016	5,0	-3,1	269	1,4
HSC-546	349200	320700	28/04/2016	8,0	-6,1	269	1,4
HSC-546	349200	320700	28/04/2016	11,0	-9,1	649	3,6
HSC-546	349200	320700	28/04/2016	12,0	-10,1	977	5,5
HSC-546	349200	320700	28/04/2016	15,0	-13,1	1400	8,1
HSC-546	349200	320700	28/04/2016	18,0	-16,1	1640	9,7
HSC-546	349200	320700	28/04/2016	20,0	-18,1	1890	11,3
HSC-546	349200	320700	28/04/2016	23,0	-21,1	3290	20,9
HSC-546	349200	320700	28/04/2016	25,0	-23,1	4240	27,4
HSC-546	349200	320700	28/04/2016	30,0	-28,1	4620	30,2
HSC-546	349200	320700	28/04/2016	33,0	-31,1	4700	30,7
HSC-546	349200	320700	28/04/2016	34,0	-32,1	4700	30,8

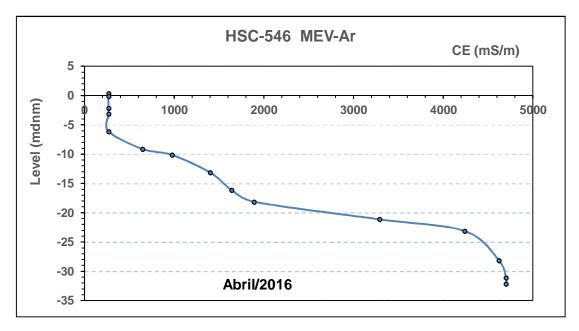


Figura 2-98: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-546

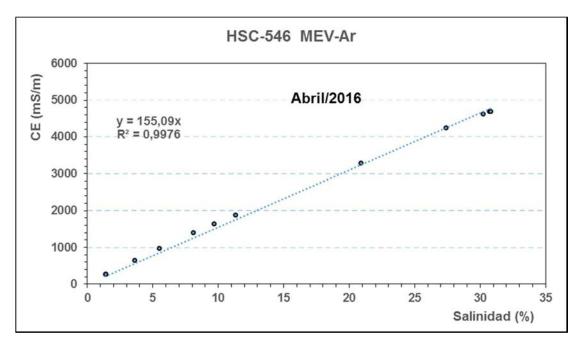


Figura 2-99: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-546

Tabla 2-31: Resultados de la medición en TS-125

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
TS-125	347400	326610	28/04/2016	10,0	-1,4	78,3	0,3
TS-125	347400	326610	28/04/2016	12,0	-3,4	78,3	0,3
TS-125	347400	326610	28/04/2016	15,0	-6,4	78,3	0,3
TS-125	347400	326610	28/04/2016	18,0	-9,4	78,3	0,3
TS-125	347400	326610	28/04/2016	20,0	-11,4	78,2	0,3
TS-125	347400	326610	28/04/2016	22,0	-13,4	78,4	0,3
TS-125	347400	326610	28/04/2016	24,0	-15,4	78,5	0,3
TS-125	347400	326610	28/04/2016	26,0	-17,4	78,8	0,3
TS-125	347400	326610	28/04/2016	29,0	-20,4	80,2	0,3
TS-125	347400	326610	28/04/2016	32,0	-23,4	96,5	0,4
TS-125	347400	326610	28/04/2016	33,0	-24,4	111	0,5
TS-125	347400	326610	28/04/2016	35,0	-26,4	162	0,5
TS-125	347400	326610	28/04/2016	36,0	-27,4	178	0,9
TS-125	347400	326610	28/04/2016	37,4	-28,8	178	0,9

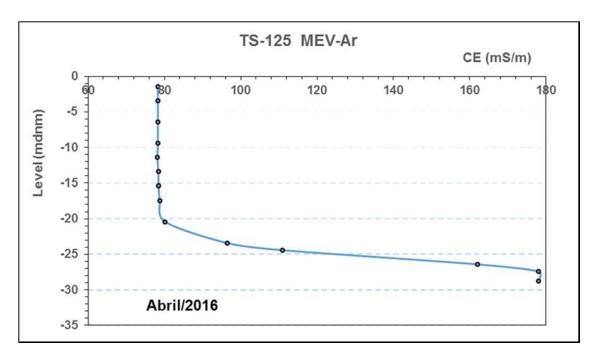


Figura 2-100: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo TS-125

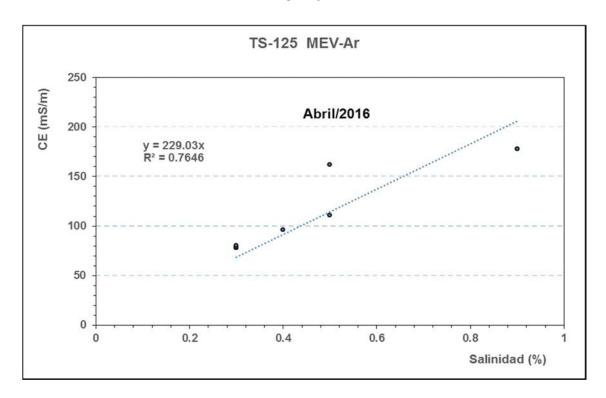


Figura 2-101: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) TS-125

Tabla 2-32: Resultados de la medición en HSC-543

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-543	350541	324258	28/04/2016	10,0	-2,5	25,1	0,1
HSC-543	350541	324258	28/04/2016	11,0	-3,5	24,9	0,1
HSC-543	350541	324258	28/04/2016	15,0	-7,5	24,4	0,1
HSC-543	350541	324258	28/04/2016	18,0	-10,5	24,3	0,1
HSC-543	350541	324258	28/04/2016	20,0	-12,5	24,4	0,1
HSC-543	350541	324258	28/04/2016	24,0	-16,5	24,5	0,1
HSC-543	350541	324258	28/04/2016	26,0	-18,5	24,4	0,1
HSC-543	350541	324258	28/04/2016	29,0	-21,5	24,1	0,1
HSC-543	350541	324258	28/04/2016	32,0	-24,5	23,9	0,1
HSC-543	350541	324258	28/04/2016	35,0	-27,5	23,5	0,1
HSC-543	350541	324258	28/04/2016	38,0	-30,5	23,7	0,1
HSC-543	350541	324258	28/04/2016	40,0	-32,5	23,7	0,1

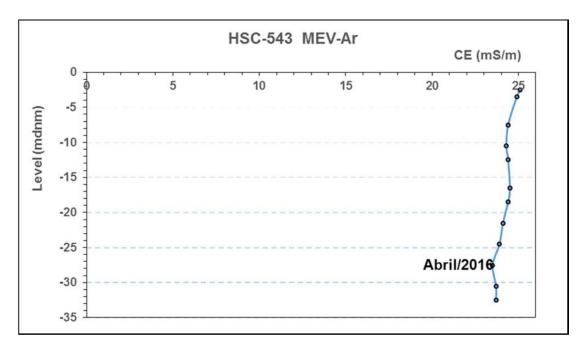


Figura 2-102: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-543

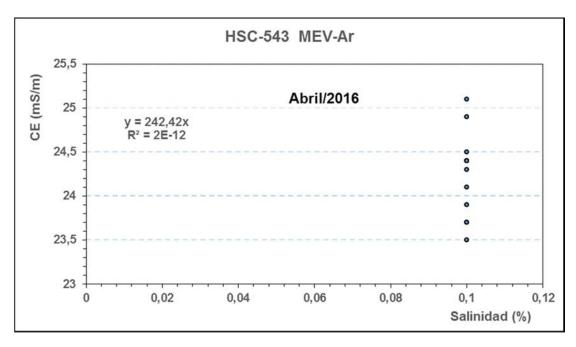


Figura 2-103: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-543

Tabla 2-33: Resultados de la medición en HSC-542

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-542	350997	326746	28/04/2016	11,0	-0,5	88,4	0,4
HSC-542	350997	326746	28/04/2016	12,0	-1,5	86,4	0,4
HSC-542	350997	326746	28/04/2016	13,0	-2,5	86,4	0,4
HSC-542	350997	326746	28/04/2016	14,0	-3,5	87,1	0,4
HSC-542	350997	326746	28/04/2016	15,0	-4,5	87,6	0,4
HSC-542	350997	326746	28/04/2016	16,0	-5,5	87,9	0,4
HSC-542	350997	326746	28/04/2016	18,0	-7,5	88,1	0,4
HSC-542	350997	326746	28/04/2016	20,0	-9,5	88,2	0,4
HSC-542	350997	326746	28/04/2016	22,0	-11,5	89,1	0,4
HSC-542	350997	326746	28/04/2016	24,0	-13,5	99,1	0,4
HSC-542	350997	326746	28/04/2016	26,0	-15,5	99,1	0,4
HSC-542	350997	326746	28/04/2016	28,0	-17,5	106	0,5
HSC-542	350997	326746	28/04/2016	30,0	-19,5	107	0,5
HSC-542	350997	326746	28/04/2016	32,0	-21,5	108	0,5
HSC-542	350997	326746	28/04/2016	34,0	-23,5	111	0,5
HSC-542	350997	326746	28/04/2016	36,0	-25,5	115	0,5
HSC-542	350997	326746	28/04/2016	36,5	-26,0	127	0,6
HSC-542	350997	326746	28/04/2016	37,0	-26,5	155	0,7
HSC-542	350997	326746	28/04/2016	37,1	26,6	187	0,9
HSC-542	350997	326746	28/04/2016	37,3	-26,8	209	1
HSC-542	350997	326746	28/04/2016	39,0	-28,5	437	2,3
HSC-542	350997	326746	28/04/2016	42,0	-31,5	1250	7,2
HSC-542	350997	326746	28/04/2016	44,0	-33,5	2250	13,7
HSC-542	350997	326746	28/04/2016	46,0	-35,5	4140	26,9
HSC-542	350997	326746	28/04/2016	48,0	-37,5	4560	29,8
HSC-542	350997	326746	28/04/2016	50,0	-39,5	4890	32,2
HSC-542	350997	326746	28/04/2016	52,0	-41,5	4900	32,3
HSC-542	350997	326746	28/04/2016	55,0	-44,5	4900	32,6
HSC-542	350997	326746	28/04/2016	60,0	-49,5	4900	32,8

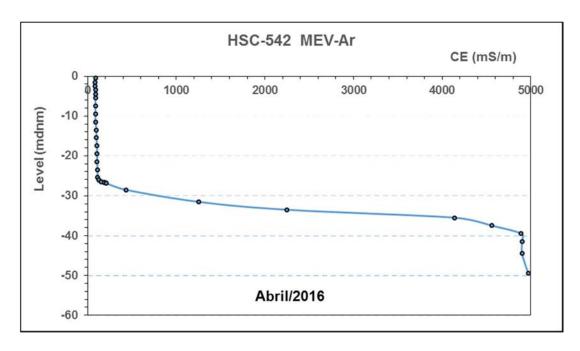


Figura 2-104: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-542

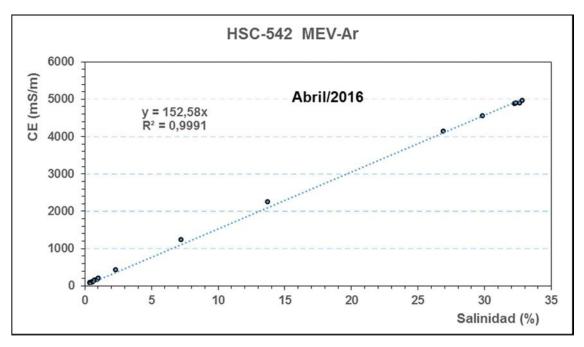


Figura 2-105: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-542

Tabla 2-34: Resultados de la medición en TS-116

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
TS-116	354900	329300	28/04/2016	15,8	0,9	71,6	0,3
TS-116	354900	329300	28/04/2016	19,8	-3,1	71,0	0,3
TS-116	354900	329300	28/04/2016	23,8	-7,1	70,8	0,3
TS-116	354900	329300	28/04/2016	27,8	-11,1	70,3	0,3
TS-116	354900	329300	28/04/2016	31,8	-15,1	69,9	0,3
TS-116	354900	329300	28/04/2016	35,8	-19,1	76,0	0,3
TS-116	354900	329300	28/04/2016	39,8	-23,1	76,5	0,3
TS-116	354900	329300	28/04/2016	43,8	-27,1	76,2	0,3
TS-116	354900	329300	28/04/2016	47,8	-31,1	76,1	0,3
TS-116	354900	329300	28/04/2016	51,0	-34,3	138	1
TS-116	354900	329300	28/04/2016	51,8	-35,1	664	3,6
TS-116	354900	329300	28/04/2016	53,8	-37,1	1350	7,9
TS-116	354900	329300	28/04/2016	55,8	-39,1	2260	13,9
TS-116	354900	329300	28/04/2016	57,8	-41,1	3410	21,6
TS-116	354900	329300	28/04/2016	59,8	-43,1	3800	24,3
TS-116	354900	329300	28/04/2016	61,8	-45,1	3990	25,7
TS-116	354900	329300	28/04/2016	63,8	-47,1	4320	29,6
TS-116	354900	329300	28/04/2016	64,8	-48,1	4710	30,9
TS-116	354900	329300	28/04/2016	65,8	-49,1	4850	31,9
TS-116	354900	329300	28/04/2016	66,8	-50,1	4910	32,4
TS-116	354900	329300	28/04/2016	67,8	-51,1	5030	33,5

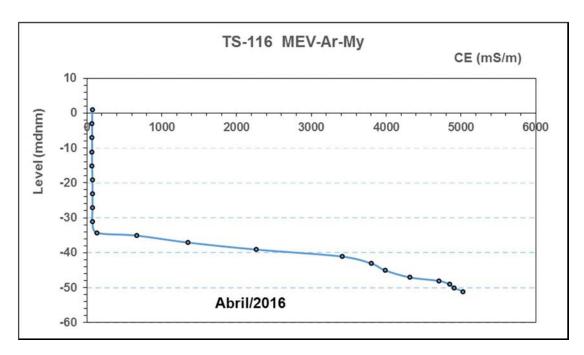


Figura 2-106: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo TS-116

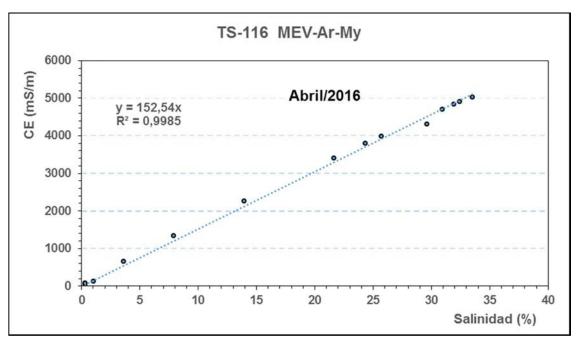


Figura 2-107: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%)TS-116

Tabla 2-35: Resultados de la medición en HSC-565

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-565	359000	329700	28/04/2016	25,7	2,2	116	0,6
HSC-565	359000	329700	28/04/2016	29,7	-1,8	116	0,6
HSC-565	359000	329700	28/04/2016	33,7	-5,8	180	0,6
HSC-565	359000	329700	28/04/2016	37,7	-9,8	150	0,6
HSC-565	359000	329700	28/04/2016	41,7	-13,8	156	0,6
HSC-565	359000	329700	28/04/2016	45,7	-17,8	160	0,7
HSC-565	359000	329700	28/04/2016	49,7	-21,8	155	0,7
HSC-565	359000	329700	28/04/2016	53,7	-25,8	180	0,9
HSC-565	359000	329700	28/04/2016	57,7	-29,8	185	0,9
HSC-565	359000	329700	28/04/2016	61,7	-33,8	190	0,8
HSC-565	359000	329700	28/04/2016	65,7	-37,8	178	0,8
HSC-565	359000	329700	28/04/2016	69,7	-41,8	175	0,9
HSC-565	359000	329700	28/04/2016	73,7	-45,8	171	0,9
HSC-565	359000	329700	28/04/2016	76,7	-48,9	230	1
HSC-565	359000	329700	28/04/2016	78,7	-50,8	250	1,6
HSC-565	359000	329700	28/04/2016	80,7	-52,8	280	22,6
HSC-565	359000	329700	28/04/2016	82,7	-54,8	3340	29
HSC-565	359000	329700	28/04/2016	84,7	-56,8	3390	29,8
HSC-565	359000	329700	28/04/2016	86,5	-58,6	4510	30,2
HSC-565	359000	329700	28/04/2016	88,7	-60,8	4580	30,6
HSC-565	359000	329700	28/04/2016	90,7	-62,8	4580	30,6

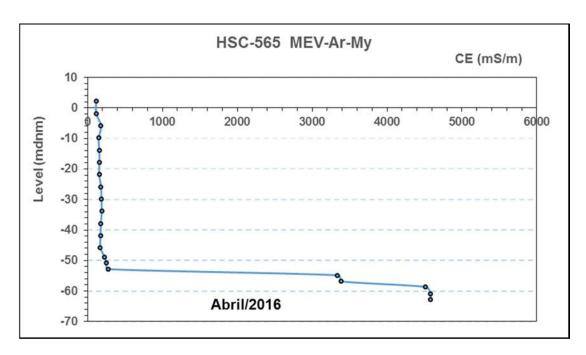


Figura 2-108: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-565

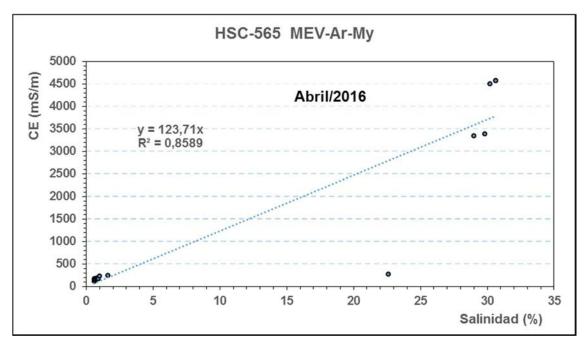


Figura 2-109: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-565

Tabla 2-36: Resultados de la medición en HSC-568

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-568	361107	322665	28/04/2016	8,9	0,0	167	0,6
HSC-568	361107	322665	28/04/2016	10,9	-2,0	167	0,8
HSC-568	361107	322665	28/04/2016	12,9	-4,0	176	0,9
HSC-568	361107	322665	28/04/2016	14,9	-6,0	187	0,9
HSC-568	361107	322665	28/04/2016	16,9	-8,0	198	1
HSC-568	361107	322665	28/04/2016	20,9	-12,0	197	1
HSC-568	361107	322665	28/04/2016	24,9	-16,0	174	0,9
HSC-568	361107	322665	28/04/2016	28,9	-20,0	160	0,8
HSC-568	361107	322665	28/04/2016	32,9	-24,0	209	1
HSC-568	361107	322665	28/04/2016	36,9	-28,0	508	2,6
HSC-568	361107	322665	28/04/2016	40,9	-32,0	1500	8,7
HSC-568	361107	322665	28/04/2016	44,9	-36,0	3010	18,8
HSC-568	361107	322665	28/04/2016	48,9	-40,0	3290	20,7
HSC-568	361107	322665	28/04/2016	52,9	-44,0	3310	20,9
HSC-568	361107	322665	28/04/2016	56,9	-48,0	3310	20,9
HSC-568	361107	322665	28/04/2016	60,9	-52,0	3310	20,5

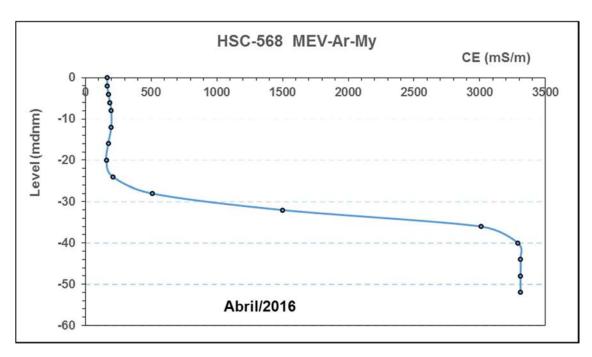


Figura 2-110: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-568



Figura 2-111: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-568

Tabla 2-37: Resultados de la medición en HSC-541

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-541	351489	329864	28/04/2016	6,0	0,7	63,9	0,3
HSC-541	351489	329864	28/04/2016	10,0	-3,3	68,5	0,3
HSC-541	351489	329864	28/04/2016	14,0	-7,3	68,0	0,3
HSC-541	351489	329864	28/04/2016	18,0	-11,3	67,5	0,3
HSC-541	351489	329864	28/04/2016	20,0	-13,3	65,5	0,3
HSC-541	351489	329864	28/04/2016	24,0	-17,3	67,9	0,3
HSC-541	351489	329864	28/04/2016	28,0	-21,3	71,0	0,3
HSC-541	351489	329864	28/04/2016	31,1	-24,4	309	1
HSC-541	351489	329864	28/04/2016	32,0	-25,3	663	3,5
HSC-541	351489	329864	28/04/2016	34,0	-27,3	1400	8,2
HSC-541	351489	329864	28/04/2016	36,0	-29,3	2180	13,2
HSC-541	351489	329864	28/04/2016	38,0	-31,3	3020	18
HSC-541	351489	329864	28/04/2016	40,0	-33,3	3750	23,9
HSC-541	351489	329864	28/04/2016	42,0	-35,3	4100	26,5
HSC-541	351489	329864	28/04/2016	44,0	-37,3	4630	30
HSC-541	351489	329864	28/04/2016	45,0	-38,3	4740	31
HSC-541	351489	329864	28/04/2016	46,0	-39,3	4820	31,6

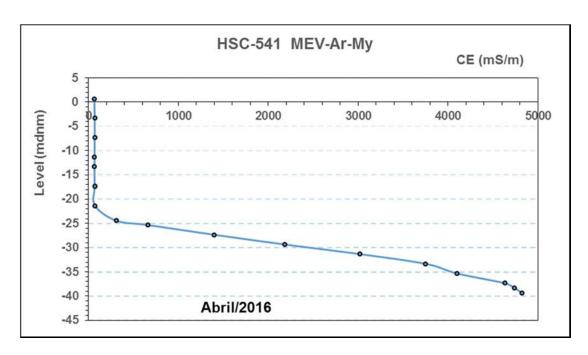


Figura 2-112: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-541

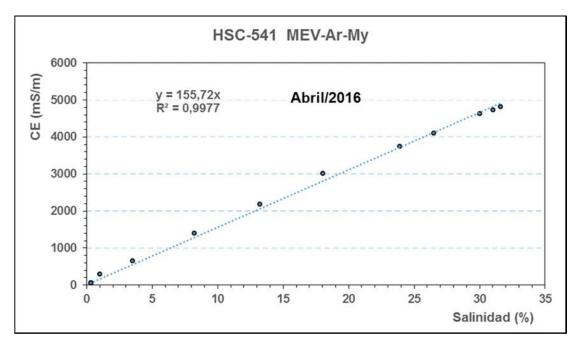


Figura 2-113: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-541

Tabla 2-38: Resultados de la medición en HSC-537

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-537	351822	336804	28/04/2016	47,7	1,1	73,3	0,3
HSC-537	351822	336804	28/04/2016	51,7	-2,9	72,6	0,3
HSC-537	351822	336804	28/04/2016	55,7	-6,9	72,5	0,3
HSC-537	351822	336804	28/04/2016	59,7	-10,9	72,8	0,3
HSC-537	351822	336804	28/04/2016	63,7	-14,9	73,8	0,3
HSC-537	351822	336804	28/04/2016	67,7	-18,9	73,8	0,3
HSC-537	351822	336804	28/04/2016	71,7	-22,9	81,2	0,4
HSC-537	351822	336804	28/04/2016	72,1	-23,4	160	1
HSC-537	351822	336804	28/04/2016	72,7	-23,9	283	1,4
HSC-537	351822	336804	28/04/2016	75,7	-26,9	292	1,5
HSC-537	351822	336804	28/04/2016	79,7	-30,9	304	1,5

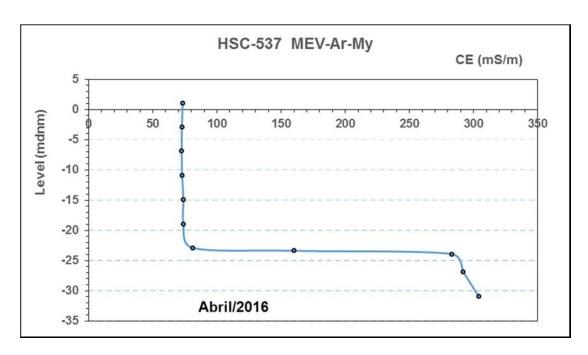


Figura 2-114: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-537

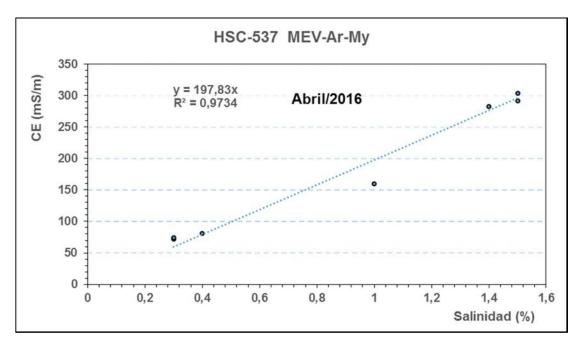


Figura 2-115: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-537

Tabla 2-39: Resultados de la medición en HSC-540

Descripcion	X	Y	FECHA	Prof.	Nivel	CE (mS/m)	Sal (%)
HSC-540	351706	331069	28/04/2016	17,7	0,0	64,4	0,3
HSC-540	351706	331069	28/04/2016	21,7	-4,0	63,6	0,3
HSC-540	351706	331069	28/04/2016	25,7	-8,0	64,5	0,3
HSC-540	351706	331069	28/04/2016	29,7	-12,0	68,3	0,3
HSC-540	351706	331069	28/04/2016	33,7	-16,0	69,1	0,3
HSC-540	351706	331069	28/04/2016	37,7	-20,0	71,7	0,3
HSC-540	351706	331069	28/04/2016	41,7	-24,0	72,9	0,3
HSC-540	351706	331069	28/04/2016	44,5	-26,8	197	1
HSC-540	351706	331069	28/04/2016	44,7	-27,0	234	1,2
HSC-540	351706	331069	28/04/2016	46,7	-29,0	363	1,9
HSC-540	351706	331069	28/04/2016	48,7	-31,0	795	4,5
HSC-540	351706	331069	28/04/2016	50,7	-33,0	2080	12,8
HSC-540	351706	331069	28/04/2016	52,7	-35,0	3050	19,1
HSC-540	351706	331069	28/04/2016	54,7	-37,0	4140	28,0
HSC-540	351706	331069	28/04/2016	56,7	-39,0	4800	31,5
HSC-540	351706	331069	28/04/2016	57,7	-40,0	4910	32,3

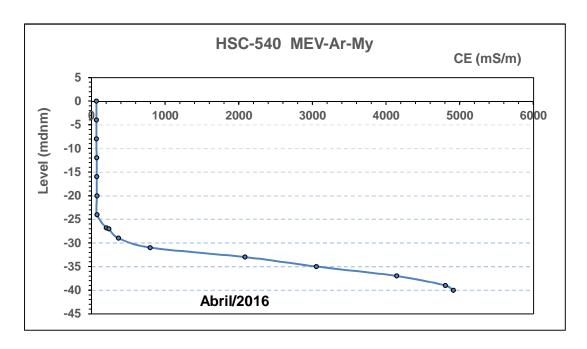


Figura 2-116: Relación entre la conductividad eléctrica (mS/m) y el nivel del pozo HSC-540

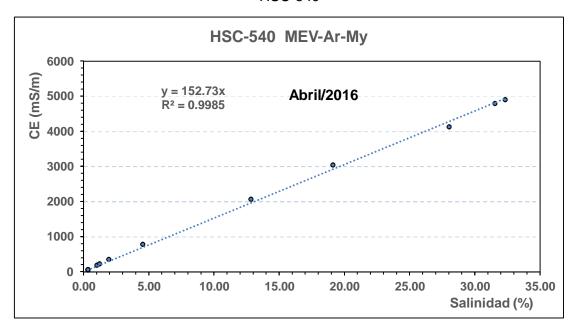


Figura 2-117: Relación entre la conductividad eléctrica (mS/m) y la salinidad (%) HSC-540

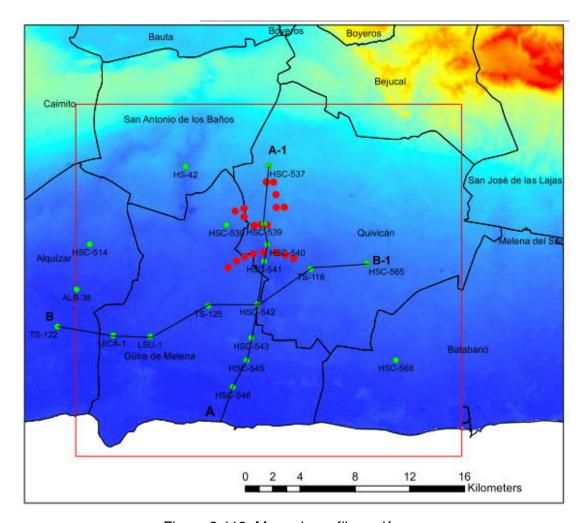


Figura 2-118: Mapa de perfil sección

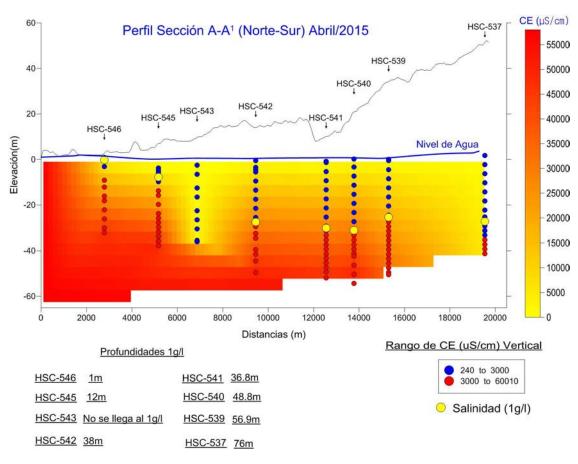


Figura 2-119: Perfil sección A-A1 (Norte-Sur) Abril 2015

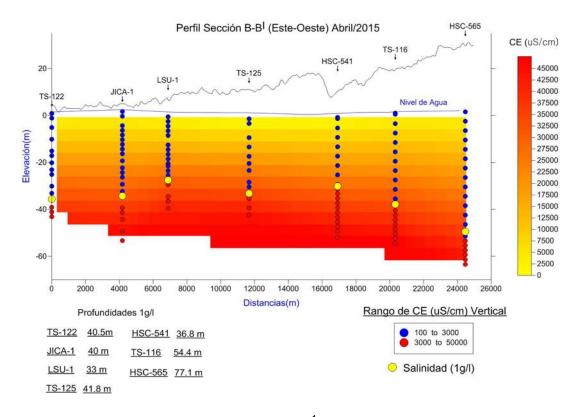


Figura 2-120: Perfil sección B-B1 (Este-Oeste) Abril 2015

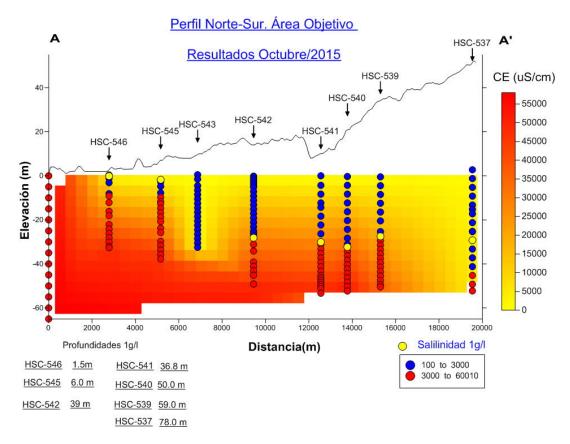


Figura 2-121: Perfil Norte-Sur, área objetivo Octubre 2015

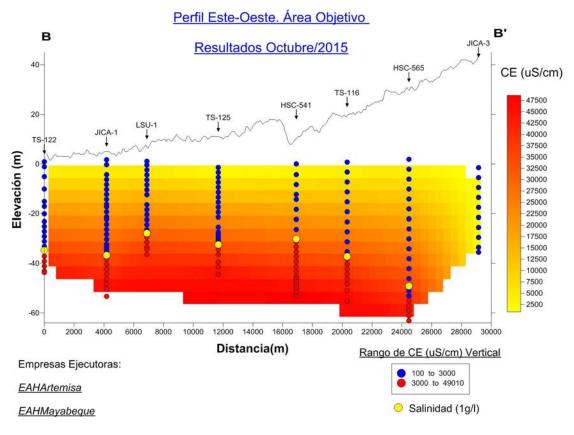


Figura 2-122: Perfil Este-Oeste, área objetivo Octubre 2015

Tabla 2-40: Elevación 1g/l perfil Este-Oeste San Cristòbal-Alquizar

Provincia	Sigla	Х	у	Elevación	EC_µS/cm	Salinidad	Distancia
Artemisa	PS-19.7	303300	315300	-15.42	2000	1	16730.4
Artemisa	ARB-9	308300	321150	-20.22	2140	1	24426
Artemisa	ARB-40B	328000	324700	-31.68	1980	1	44712.2
Artemisa	TS-122	336400	325100	-34.72	2720	1	53121.71

b.4 Problemas relacionados con otros temas de calidad del agua subterránea

En el análisis que se ha realizado con respecto a la calidad del agua subterránea, en los acuíferos y pozos comprometidos con el Proyecto JICA, se ha encontrado que uno de los problemas más importantes a tener en cuenta de inmediato son los niveles de nitrito y nitrato en estas aguas, independientemente que en la actualidad la agricultura utiliza pocos fertilizantes nitrogenados.

Los valores guías de la Organización Mundial de la Salud (OMS) y la Organización Panamericana de la Salud (OPS) han colocado estos valores, sobre todo los nitratos en concentraciones máximas de 45 mgL⁻¹ y existen muchas fuentes en esta Llanura Habana-Matanzas, donde se encuentran las provincias Artemisa y Mayabeque con estas afectaciones, las cuales provocan enfermedades a infantes fundamentalmente.

Además, también en las aguas superficiales que todavía fluyen por esta Llanura hay valores altos de nitrato disuelto en las aguas producto de contaminaciones orgánicas que por procesos bacterianos son transformadas en compuestos nitrogenados que finalmente son transformados en nitritos y nitratos.

Por estas situaciones es imperante que además de, la vigilancia sobre los aspectos concernientes a la intrusión salina de nuestros acuíferos, exista también la vigilancia sobre las concentraciones de nitritos y nitratos tanto en las aguas subterráneas como superficiales, estas últimas provocadas por afectaciones antrópicas contaminantes del medio a través de la disposición de materia orgánica.

b.5 Focos contaminantes en el área de estudio

Se conoce como fuentes contaminantes el lugar donde se produce el residual. En función del carácter del residual, las fuentes pueden ser domésticas, municipales, industriales y agropecuarias. Las tres primeras, en función del carácter espacial de la contaminación-origen, se clasifican como fuentes puntuales; mientras la gran mayoría de las actividades agrícolas y pecuarias (de tipo extensivo) entran en la categoría de fuentes difusas, cuyo campo espacial de acción es más difícil de definir en tanto la producción del residual acontece, no en forma concentrada, si no a lo largo de todo un frente o área. Por lo tanto el Foco Contaminante es donde se libera el residual, tratado o no, sobre la superficie natural de la cuenca de drenaje (ya sea sobre las laderas, los, los sumideros o aún sobre las propias superficies acuáticas).

En la zona de estudio existen un total de 82 fuentes contaminantes clasificadas según el tipo de residual como se aprecia en la siguiente tabla:

Tabla 2-41: Focos contaminantes o fuentes localizadas de contaminación

Municipio	Cuenca de drenaje	Nombre de la Fuente Contaminante	х	у	Pertenencia	Residual por Clases
San Antonio de los Baños	San Antonio de los Baños	Aeropuerto San Antonio de los Baños	343359	337521	MITRANS	Industrial
San Antonio de los Baños	Río Ariguanabo	Asent. San Antonio de los Baños	345865	340793	OLPP	Municipal
San Antonio de los Baños	Río Ariguanabo	Hospital Iván Portuondo	344950	341500	MINSAP	Municipal
Guira de Melena	Vertiente Sur	Escuela (emerg.) Luz Caballero(Cuba-Etiopía)	347200	328700	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Ciro Berrios (viven evacuados)	346960	323400	OLPP	Doméstico
Guira de Melena	Vertiente Sur	Escuela Comandancia de la Plata	347900	330700	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Cuba Jamaica	344800	326600	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Cuba Socialista	341600	337300	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Deportes Prov. Batalla de Ayacucho	349200	334400	INDER	Doméstico
Guira de Melena	Vertiente Sur	Escuela Esp. de conducta Sithón Comandant	349600	334760	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Inst de Arte 13 de Marzo	343200	335900	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela interna Héroes de Bolivia	346808	328950	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Internacional de Cine y TV	343900	341500	CE	Doméstico
Guira de Melena	Vertiente Sur	Escuela IPA Kin II Sung	342280	326360	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Juan Pablo Duarte	339740	325000	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Mártires de Humbolt 7	349900	343400	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Máximo Gómez Guira	350428	327000	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Mayia Rodríguez	342100	332100	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Niños Héroes de Chapultepec	346700	333300	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Provincial de Arte Eduardo Avela	344340	341345	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Rep. Cooperativa de Guyana	343500	323640	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	Escuela Rep. Popular de Angola	347850	336000	MINED	Doméstico
Guira de Melena	Vertiente Sur	Escuela Victoria del Uvero	343000	334700	MINED	Doméstico
San Antonio de los Baños	Río Ariguanabo	IPUEC Batalla del Jigüe	344600	341600	MINED	Doméstico
Guira de Melena	Vertiente Sur	Cochiquera militar Mederos (UAM) Nuevo	345760	331104	MINFAR	Agropecuario
Guira de Melena	Vertiente Sur	Porcino Camilo Ciénfuegos	347850	322600	MINAG	Agropecuario
San Antonio de los Baños	Río Ariguanabo	Hotel Las Yagrumas	347000	341500	MINTUR	Doméstico
Guira de Melena	Vertiente Sur	Cochiquera Aduana	345932	331278	MININT	Agropecuario
San Antonio de los Baños	Río Ariguanabo	Cochiquera Las Cuevas	346083	341065	MINFAR	Agropecuario
San Antonio de los Baños	Río Ariguanabo	Matadero de Aves San Antonio	347400	344100	MINAG	Municipal
San Antonio de los Baños	Ariguanabo	GE Cayo La Rosa	345645	340648	MINEM	Industrial
Guira de Melena	Vertiente Sur	GMI Los Moros (Güira)	343330	326610	MINFAR	Agropecuario
Guira de Melena	Vertiente Sur	GMI Sonrrisa d/l Vict (Güira)	345550	327860	MINFAR	Agropecuario
San Antonio de los Baños	Ariguanabo	CUBALUM (ensamb. Carpintería en Aluminio)	339788	341402	MINDUS	Industrial
San Antonio de los Baños	Ariguanabo	Parque Fluvial La Quintica, presa Muñíz	345608	341402	OLPP	Municipal
Batabanó	Vertiente Sur	Asent. Batabanó	366770	321485	OLPP	Municipal

Bejucal	Ariguanabo	Asent. Bejucal	357665	344940	OLPP	Municipal
Quivicán	Quivicán	Asent. Quivicán	360732	333296	OLPP	Municipal
Bejucal	Quivicán	Asent. Edificios Médicos Quivicán	360570	334095	OLPP	Doméstico
Quivicán	Vertiente Sur	Asent. La Salud	354460	339315	OLPP	Doméstico
Quivicán	Vertiente Sur	Asent. Manuel Fajardo	351406	333912	OLPP	Doméstico
Quivicán	Vertiente Sur	Asent. Pablo Noriega	357500	329200	OLPP	Doméstico
Quivicán	Quivicán	Asent. San Felipe	365338	332840	OLPP	Doméstico
Quivicán	Quivicán	Asent. Santa Mónica	358880	336620	OLPP	Doméstico
Batabanó	Vertiente Sur	Asent. Surgidero de Batabanó	367089	318018	OLPP	Doméstico
Quivicán	Quivicán	Grupo Electróg. Acdto. El Gabriel	351749	332503	INRH	Industrial
Quivicán	Vertiente Sur	Grupo Electrógeno Mangela	359831	335994	MINEM	Industrial
Batabanó	Vertiente Sur	Grupo Electrógeno Batabanó	366827	321227	MINEM	Industrial
Bejucal	Ariguanabo	Grupo Eléctrogeno Bejucal	355134	346397	MINEM	Industrial
Quivicán	ninguna	I. P. A. Fructuoso Rodríguez	359580	332880	MINED	Doméstico
Quivicán	ninguna	Fábrica de Conservas 19 de Abril	359070	334440	MINAGRI	industrial
Quivicán	ninguna	UEB Manuel Fajardo	351374	334228	AZCUBA	industrial
Quivicán	ninguna	Fábrica de Conservas Caribe	357385	330710	MINAL	industrial
Quivicán	ninguna	(IPUEC) Bernardo O'Higuins	359230	334220	MINED	Doméstico
Quivicán	ninguna	(IPUEC) Cuba Canadá	357620	336700	MINED	Doméstico
Quivicán	ninguna	(IPUEC) Gaspar García Galló	356600	337790	MINED	Doméstico
Quivicán	ninguna	(IPUEC) XX Aniversario	356900	334710	MINED	Doméstico
Quivicán	ninguna	Porcino Los Baez	355870	331420	MINAGRI	Agropecuario
Quivicán	ninguna	Bioprocesos Cuba 10	351700	333700	AZCUBA	industrial
Quivicán	ninguna	UEB Celulosa y Papel Cuba 9	357600	328900	AZCUBA	industrial
Quivicán	ninguna	Porcino Finca Caparrosa	353015	330890	BIOCUBA FARMA	Agropecuario
Quivicán	ninguna	Grupo electrógeno El Gabriel	351850	332195	MINEN	Industrial
Quivicán	Quivicán	Prisión Quivicán	364880	338430	MININT	Doméstico
Quivicán	ninguna	Grupo Electrógeno Mangela	359831	335994	MINEM	Industrial
Quivicán	ninguna	Asentamiento humano Quivicán Edificios, Zona desarrollo Médicos	360570	334095	INRH	Doméstico
Batabanó	ninguna	Porcino Inocencio	361500	326160	MINAGRI	Agropecuario
Batabanó	Quivicán	Empresa Industrial Pesquera Batabanó	366615	318040	INRH	Industrial
Batabanó	C/Sin nombre	(IPUEC) IV Congreso	363590	325560	MINED	Doméstico
Batabanó	C/Sin nombre	Fábrica de Conservas Batabanó	367090	321245	MINAL	Industrial
Batabanó	Quivicán	Escuela José Martí (Sta Rita)	365950	325000	MINED	Agropecuario
Batabanó	ninguna	(IPUEC) Martires de la Coubre	368980	330000	MINED	Doméstico
Batabanó	Quivicán	Porcino Hermanos Peňa	364700	326100	MINAGRI	Agropecuario
Batabanó	ninguna	Porcino Camacho	358756	325068	MINAGRI	Agropecuario
Batabanó	ninguna	Grupo Electrógeno Batabanó	366827	321227	MINEM	Industrial
Batabanó	Quivicán	Asentamiento humano Batabanó	367350	321460	INRH	Doméstico
Batabanó	Quivicán	Asentamiento humano Surgidero de Batabanó	367089	318018	INRH	Doméstico
Bejucal	Ariguanabo	Porcino de Comercio Bejucal	357500	345000	MINCIN	Agropecuario
Bejucal	Ariguanabo	Matadero "El Terry"	356130	343550	MINAGRI	Agropecuario
Bejucal	Ariguanabo	BioCen	357500	345500	BIOCUBA FARMA	Doméstico/Bio lógico
Bejucal	Ariguanabo	Grupo Eléctrogeno Bejucal	355134	346397	MINEM	Industrial
Bejucal	Ariguanabo	Asentamiento humano Bejucal	356900	345100	INRH	Municipal

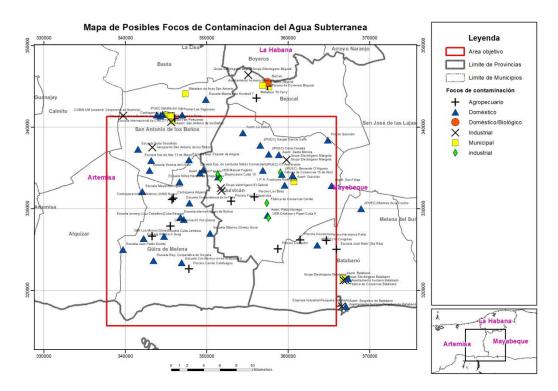


Figura 2-123: Mapa de fuentes contaminantes

c. Medidas que se han tomado en el pasado y sus efectos

En la década de los años 70 surge la necesidad de realizar determinadas acciones (cese de bombeo de pozos salinos, obras hidráulicas de protección, etc.) que permitieran mejorar la situación de la intrusión marina, por lo que se planeó desde entonces la construcción del Dique Sur; también y posteriormente, (en la década del 80), se proyectó el canal Pedroso-Mampostón-Guira, con el objetivo de trasvasar importantes volúmenes de agua a esta cuenca y mejorar así la situación del bombeo intensivo de pozos y, por tanto, la salinización del acuífero.

En la cuenca, se vienen explotando intensamente durante décadas el recurso agua del subsuelo como única fuente de suministro a la población, la industria y el riego.Por tales razones, surgió la necesidad impostergable de buscar alternativas para dar solución a los problemas de déficit hídrico, y por otra parte, atenuar el proceso de intrusión marina, ya manifiesto y agravado durante la década de los años 80. Así se argumentó la construcción de obras hidráulicas importantes, como el Dique Sur y el canal magistral Pedroso - Güira, para el trasvase de agua entre las cuencas.

Se ordenó, por otra parte, el cierre de canales y zanjas que drenan el acuífero hacia el mar y la construcción parcial de forma experimental de un tramo de 4,1 Km de dique de arcilla paralelo a la costa para elevar el nivel del agua en la zona cenagosa y hacer circular por debajo de la turba el agua subterránea que escapaba libremente al mar por los canales antes citados.

En el límite de la zona costera se construyó el Dique Sur, que tiene una longitud de 50 km y una elevación de 1.0 a 1.5 m y está atravesado en toda su extensión por 32 vertedores, con una elevación de 0.70 y 0.90 m. La finalidad principal de la obra es retener parte de las aguas subterráneas que se descargan por los canales en escurrimiento al Golfo de Batabanó,

restableciendo las líneas de flujo por debajo del humedal, con el objetivo de crear una barrera contra la intrusión superficial de las aguas del mar, incrementar los niveles de las aguas superficiales en la ciénaga, incrementar los recursos subterráneos, mejorar la calidad de las aguas subterráneas por el lavado de la franja costera y limitar la intrusión en el acuífero de las aguas saladas al aumentar la circulación subterránea delas aguas dulce al mar.

A partir del año 1989 se comenzaron, en forma regular, los aforos de los vertedores del Dique Sur, descargándose a través de ellos según los datos de las observaciones del año 1990, un volumen de 103 x 10⁶ m³/s. Como no existen suficientes mediciones ni antes ni después de la construcción del dique, no es posible determinar con una precisión adecuada la magnitud de la transformación del flujo superficial en subterráneo.

Existen opiniones divergentes en cuanto a la efectividad del Dique Sur y sus posibilidades de mejoramiento de las condiciones hidrogeológicas. Por otro lado algunos investigadores estiman que ha provocado un cambio ecológico en la región. Sin embargo, es necesario señalar que el equilibrio ecológico fue roto desde el preciso momento en que se construyeron los canales de drenaje de la zona pantanosa los que, en la actualidad posibilitan, de forma inmediata, la descarga de las aguas subterráneas. Por este motivo, desde el punto de vista hidrogeológico, no es correcto facilitar, de manera superficial, el drenaje de las aguas subterráneas, si este no existe de forma natural.

Alrededor de la obra, en la zona pantanosa, fueron construidas con anterioridad una serie de calas en las que, de forma sistemática, se realizaban las mediciones de hidroquímica vertical y resistivimetría. Según los resultados obtenidos en un corto período de tiempo, se ha podido observar una disminución evidente de la mineralización total en algunas calas, hasta llegar a variar de 35 g/L a menor de 1 g/L como, por ejemplo, en las calas DSC-7 y DSC-8 y, en otras, hasta 10 g/L, aumentando el espesor de las aguas dulces en esa área.

c.1 Dique Sur

La construcción del Dique Sur en el año 1985-1990 tuvo como objetivos;

- Dificultar el escurrimiento de las aguas superficiales hacia el mar.
- Interrumpir parcialmente el flujo subterráneo.
- Crear empantanamiento de la franja costera aguas arriba del dique.
- Impedir la penetración del mar y la salinización de las aguas subterráneas.

Estructura del "Dique Sur"

Esta obra consiste en la construcción de un terraplén de poca altura (1 m de altura absoluta) que alcanzará una longitud total de 51,7 km paralelo a unos 500 m a lo largo de la costa sur (Ver la Figura 4), desde el Surgidero de Batabanó hasta posterior a playa Majana así como unos 40,7 km de caminos de acceso perpendicular al dique. Cuenta además con unas 40 obras de fábricas de las cuales 32 son aliviaderos.

Con esto se provoca la elevación de los niveles de agua en la zona hasta alcanzar una cota aproximada de 0,70 y 0,9 m que coincida con la cota de vertimiento y a su vez el del NAN teniendo previsto un tirante en los vertedores de 0,20 m o sea el NAM será de 0,90 y 1,10 m. En los casos en que ocurran precipitaciones extraordinarias estos no rebasarán mucho más de la cota 1,00 m ya que el agua sobrepasaría el terraplén funcionando este como un enorme vertedor que será cortado por la propia agua en varios puntos.

La elevación de los niveles de agua en toda el área de la ciénaga hará el efecto de una barrera hidráulica contra la penetración de las aguas del mar, desplazando a estas tanto en la horizontal como en la vertical permitiendo que disminuyan las pendientes de las aguas subterráneas arriba de esta zona, reduciéndose con esto el flujo del agua hacia el mar y por tanto se logra una mayor retención del agua en la cuenca en general. Estos desplazamientos combinados son los de mayor importancia ya que de ellos depende el incremento de las reservas de agua dulce.

Tabla 2-42: Parámetros técnicos del Dique Sur y sus tramos

Parámetros	U/M	Tramo IV	Tramo I	Tramo II	Tramo V	Tramo III	Total
Nombre del tramo		Batabanó- Cardoso	Cardoso- Cajío	Cajío-Majana	Majana- Guanimar	Guanimar- Punta Cayamas	
Longitud del tramo	m	12.800	3.950	9.450	14.672	10.807	51.679
Longitud del acceso	m		1.727	5.700	10.500	9.077	27.004
Cantidad de aliviaderos	u	7	2	6	10	7	32
Tipo de aliviaderos	-	umbral ancho	umbral ancho	umbral ancho	umbral ancho	umbral ancho	
Capacidad de evacuación	m³/s	19,6	5,74	21,16	42,58	32,41	121,49
Nivel de aguas normales (N.A.N.)	msnm	0,7	0,7	0,7	0,9	0,9	0,7 - 0,9
Nivel de aguas máxima (N.A.M.)	msnm	0,9	0,9	0,9	1,2	1,2	0,9 - 1,2
Ancho de la corona	m	7	7	7	7	7	7
Cota de corona	m	1	1	1	1,5	1,5	1 - 1,5
Tipo de dique	-	Homogéneo de arcilla	Homogéneo de arcilla	Homogéneo de arcilla	Homogéneo de arcilla	Homogéneo de arcilla	
Volumen para (N.A.N.)	hm³	5,6	0,26	6,6	8,8	4,0	25,26

Se ha podido determinar que la influencia del ascenso de los niveles en la zona pantanosa se ha reflejado hasta puntos alejados a 16 km de la costa, donde las cotas del agua subterránea no superan los 2 m, así como un descenso del contenido salino de las aguas, tanto superficiales como subterráneas, de 4 g/L a poco más de 1 g/L. Aunque en puntos como el Acueducto del Cajío la reducción de la salinidad se manifiesta incluso para los usuarios del mismo.

Estos efectos beneficiosos de esta inversión repercuten en el campo de pozos del acueducto que abastecen a la Ciudad de La Habana con una reducción del cono depresivo al aumentar la alimentación del sur.

En los años transcurrido después de ejecutado los cierres de los canales no se observa afectaciones de las plantaciones de casuarina en las zonas pantanosas, por lo menos a simple vista aunque la elevación de los niveles de las aguas afecta a las labores de corte y extracción de la madera.

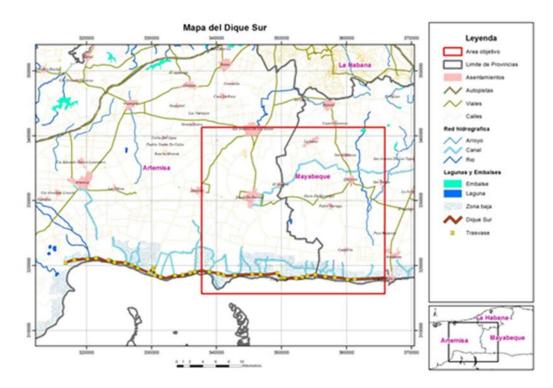


Figura 2-124: Mapa general del Dique Sur

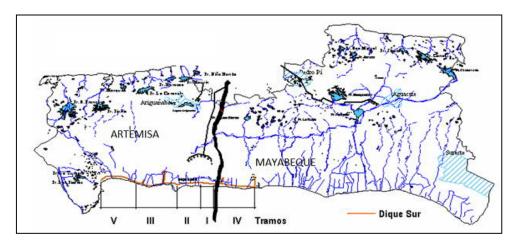


Figura 2-125: Tramos del Dique Sur, provincias de Artemisa y Mayabeque.

d. Resultados que ha tenido el "Balance de Agua" de GEARH en el manejo del agua subterránea

El Balance de Agua, proceso que conduce y dirige el GEARH a través del sistema del INRH, es el principal instrumento para materializar la gestión integrada del agua en Cuba, en función de satisfacer las necesidades de la economía, sociedad y de la protección del medio ambiente. Es el instrumento de planificación mediante el cual se mida la eficiencia en el consumo estatal y privado, respecto a la disponibilidad del recurso, es un proceso de conciliación de intereses de todas las ramas de la economía y de la sociedad para acceder a las distintas fuentes de agua a las cuales están vinculadas.

Es un proceso de demandas, análisis de las disponibilidades y estado técnico de las fuentes suministradoras, discusión, fundamentación y asignación de volúmenes de agua para satisfacer las necesidades planteadas, sin violar las condiciones y restricciones de explotación de las fuentes. Estas disponibilidades dependen del comportamiento de las lluvias. Por ejemplo para el año 2016 fueron asignados por el Balance de Agua 305.00 Hm³ de todo el recurso explotable de la cuenca subterránea que es de 375.00 Hm³, no existiendo déficit en cuanto al agua demanda por los clientes para las diferentes actividades como: el riego agrícola, el consumo humano y los otros usos.

También fueron balanceadas las pérdidas de explotación tanto las producidas por conducción en los canales magistrales, como las pérdidas en los sistemas de acueducto las que constituyen valores estimados de recarga al manto freático. En el gráfico siguiente se observa el cumplimiento del Balance de agua al cierre del I Trimestre.

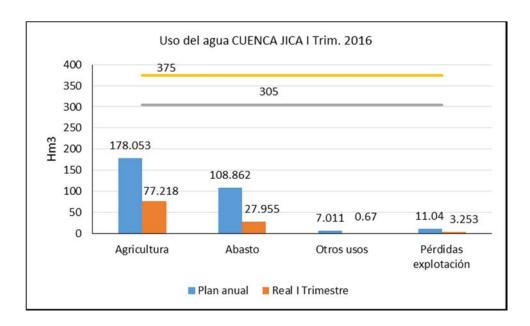


Figura 2-126: Uso del agua CUENCA JICA I Trim, 2016

Para las condiciones específicas en períodos de sequía por el que atraviesa cíclicamente el país se requiere de un trabajo minucioso que permita a partir de una distribución más racional del agua y con el mínimo posible de afectaciones comenzar un proceso recuperativo de estabilización de las entregas de las fuentes de abasto.

Como resultado del mismo se ha logrado mantener la sostenibilidad del recurso en el área de estudio los que se han mantenido pues las inversiones no han sido considerables.

Libro de Balance de Agua 2016 Artemisa (Tabla1.Resumen por Organismos del agua asignada por el Balance)

			RE	SUME	N DE LA	PROP	JEST.	A DE E	BALAN	CE											
BALANCE DE AGUA	Año: 2016																Та	bla #1	UN	V: hm³	
GRUPO EMPRESARIAL DI		MIENTO DE	LOSP	ECHIDS	os uno	ALILIA	ne.										Pá	gina:	1		
	EAFROVECHAI	WIENTO DE	LUSK	ECURS	OS HIDI	AULIU	03										lm	preso:	25/05/	16	
CUENCA JICA	EL VENEZE	****		NO			DE11111				Aut are			OI OH				DAT			
ORG/RAMA/ACT/EMP	FUENTE	TEC.	ACTIV	N.	RMA B.	TOTAL	DEMAND	IV-VI	VIHX	X-XII	NIVEL	TOTAL	ASIGNA	IV-VI	VII-IX	X-XII	TOTAL	DÉF	IV-VI	VII-IX	X-XII
		NGC.	ACTIV	I'AL	ο.	IOIAL	HIII	10-01	VIDA	A-All	Activ	TOTAL	Pili	10-01	VIPLA	A-All	TOTAL	Pall	10-01	VICIA	A-VII
Total						125.228	36.424	29.139	24.763	34,902		125,228	36.424	29.139	24.763	34.902	0.000	0.000	0.000	0.000	0.000
MINISTERIO DE LA AGRICULTURA						107.519	31.186	24.965	20.993	30.375		107.519	31.186	24.965	20.993	30.375	0.000	0.000	0.000	0.000	0.000
AGRICULTURA NO CAÑERA			11170,97			106,766	30.960	24.787	20.825	30.194	11170.975	106.766	30.960	24.787	20.825	30.194	0.000	0.000	0.000	0.000	0.000
ARROZ PRIMAVERA			42.575			0.544	0.136	0.134	0.138	0.136	42.575	0.544	0.136	0.134	0.138	0.136	0.000	0.000	0.000	0.000	0.000
CCS Frank Pals (Gülra)	HS-3	G	1.643	8944.000	12777.000	0.021	0.005	0.006	0.005	0.005	1.643	0.021	0.005	0.006	0.005	0.005	0.000	0.000	0.000	0.000	0.000
CPA Amistad Cuba Paises Nórdicos	HS-3	G	8.844	8944.000	12777,000	0.113	0.028	0.027	0.030	0.028	8.844	0.113	0.028	0.027	0.030	0.028	0.000	0.000	0.000	0.000	0.000
Emp Agrop Cultivos Varios (Gülra)	HS-3	G	14.557	8944.000	12777.000	0.186	0.047	0.045	0.047	0.047	14.557	0.186	0.047	0.045	0.047	0.047	0.000	0.000	0.000	0.000	0.000
UBPC Heroes Yaguajay (Gülra)	HS-3	G	17.531	8944.000	12777.000	0.224	0.056	0.056	0.056	0.056	17.531	0.224	0.056	0.056	0.056	0.056	0.000	0.000	0.000	0.000	0.000
CITRICOS Y FRUTALES			455.520			3.594	0.982	0.812	0.653	1.147	455.520	3.594	0.982	0.812	0.653	1.147	0.000	0.000	0.000	0.000	0.000
CCS fro de Mayo (G0lra)	HS-3	G	5.700	4400.000	8800.000	0.050	0.012	0.012	0.013	0.013	5.700	0.050	0.012	0.012	0.013	0.013	0.000	0.000	0.000	0.000	0.000
CCS Abel Santa Maria (Alq)	HS-3	G	4.140	4400.000	8800.000	0.036	0.011	0.008	0.005	0.012	4.140	0.036	0.011	0.008	0.005	0.012	0.000	0.000	0.000	0.000	0.000
CCS Alvaro Reinoso (Alq)	HS-3	G	9.000	4400.000	8800.000	0.079	0.024	0.018	0.012	0.025	9.000	0.079	0.024	0.018	0.012	0.025	0.000	0.000	0.000	0.000	0.000
CCS Antero Regalado (Gülra)	HS-3	G	4,400	4400.000	8800.000	0.039	0.009	0.010	0.010	0.010	4.400	0.039	0.009	0.010	0.010	0.010	0.000	0.000	0.000	0.000	0.000
CCS Camilio Clentuegos (Alq)	HS-3	٨	3.200	4400.000	5500.000	0.018	0.004	0.005	0.004	0.005	3.200	0.018	0.004	0.005	0.004	0.005	0.000	0.000	0.000	0.000	0.000
CCS Camilio Clenfuegos (Guira)	HS-3	G.	19.700	4400.000	8800.000	0.173	0.043	0.043	0.044	0.043	19.700	0.173	0.043	0.043	0.044	0.043	0.000	0.000	0.000	0.000	0.000
CCS Frank Pals (Alq)	HS-3	G	45.200	4400.000	8800.000	0.399	0,120	0.092	0.060	0.127	45.200	0.399	0.120	0.092	0.060	0.127	0.000	0.000	0.000	0.000	0.000
CCS Frank Pals (Gülra)	HS-3	G	14,800	4400.000	8800.000	0.130	0.032	0.032	0.033	0.033	14.800	0.130	0.032	0.032	0.033	0.033	0.000	0.000	0.000	0.000	0.000
CCS José A Echeverria (Alq)	HS-3	G	20.300	4400.000	8800.000	0.179	0.029	0.000	0.000	0.150	20.300	0.179	0.029	0.000	0.000	0.150	0.000	0.000	0.000	0.000	0.000
CCS Niceto Pérez (Güira)	HS-3	G	4,600	4400.000	8800.000	0.040	0.010	0.010	0.010	0.010	4.600	0.040	0.010	0.010	0.010	0.010	0.000	0.000	0.000	0.000	0.000
CCS Pedro R.Santana (Alq)	HS-3	G	20.100	4400.000	8800.000	0.178	0.053	0.041	0.027	0.057	20.100	0.178	0.053	0.041	0.027	0.057	0.000	0.000	0.000	0.000	0.000
CCS Raul Cepero Bonilla (Gülra)	HS-3	G	3.700	4400.000	8800.000	0.033	0.008	0.008	0.009	0.008	3.700	0.033	0.008	0.008	0.009	0.008	0.000	0.000	0.000	0.000	0.000
CCS Rubén Mtnez Villena (Alq)	HS-3	G	112.300	4400.000	8800.000	0.987	0.296	0.227	0.148	0.316	112.300	0.987	0.296	0.227	0.148	0.316	0.000	0.000	0.000	0.000	0.000

Libro de Balance de Agua 2016 Mayabeque (Tabla1. Resumen por Organismos del agua asignada por el Balance)

			RE	SUME	N DE LA	PROP	UEST	A DE E	BALAN	ICE											
BALANCE DE AGUA	Año: 2016																Ta	bla#1	UN	1: hm³	Ē.
GRUPO EMPRESARIAL DE		ITO DE	I ne p	ECHIDO	oe uini	DÁLILIA C	00										Pá	gina:	1		
	AFROVECHAMIEN	HODE	LUSIN	ECONO	OS HIDI	VAULIC	00										Im	preso:	6/07/16	3	
CUENCA JICA				110										01011							
ORG/RAMA/ACT/EMP	FUENTE	TEC. RGO.	ACTIV	NO.	RMA B.	TOTAL	DEMAND I-III	IV-VI	VII-IX	X-XII	NIVEL	TOTAL	ASIGNA I-III	IV-VI	VII-IX	X-XII	TOTAL	DÉF I-III	IV-VI	VII-IX	X-XI
		Noo.	70114	14.	0.	TOTAL	1-111	10-01	All-IV	N-AII	ACTIV	TOTAL		10-01	VIIIA	A-All	TOTAL		10-01	All-IV	N-A1
Total						86.220	27.475	21.070	13.583	24.092		86.220	27.475	21.070	13.583	24.092	0.000	0.000	0.000	0.000	0.000
MINISTERIO DE LA AGRICULTURA						55.884	17.447	13.063	8.936	16.438		55.884	17.447	13.063	8.936	16.438	0.000	0.000	0.000	0.000	0.00
AGRICULTURA NO CAÑERA			6492.980			52.923	16.706	12.324	8.206	15.687	6492.980	52.923	16.706	12.324	8.206	15.687	0.000	0.000	0.000	0.000	0.00
ARROZ PRIMAVERA			5.000			0.064	0.000	0.064	0.000	0.000	5.000	0.064	0.000	0.064	0.000	0.000	0.000	0.000	0.000	0.000	0.00
UBPC Ruben Marichal (Bat)	HS-4	G	5.000	8936.000	12766.000	0.064	0.000	0.064	0.000	0.000	5.000	0.064	0.000	0.064	0.000	0.000	0.000	0.000	0.000	0.000	0.00
CITRICOS Y FRUTALES			113.660			1.015	0.258	0.256	0.239	0.262	113.660	1.015	0.258	0.256	0.239	0.262	0.000	0.000	0.000	0.000	0.00
CCS 2da Declaración (Quivican)	HS-3	G	5.100	4400.000	8800.000	0.045	0.011	0.011	0.011	0.012	5.100	0.045	0.011	0.011	0.011	0.012	0.000	0.000	0.000	0.000	0.00
CCS Antonio Guiteras (Quiv)	HS-3	G	1.800	4400.000	8800.000	0.016	0.004	0.004	0.004	0.004	1.800	0.016	0.004	0.004	0.004	0.004	0.000	0.000	0.000	0.000	0.00
CCS Camilio Cienfuegos (Quiv)	HS-3	G	1.100	4400.000	8800.000	0.024	0.006	0.006	0.006	0.006	1.100	0.024	0.006	0.006	0.006	0.006	0.000	0.000	0.000	0.000	0.00
CCS Cuba Socialisa (Quivican)	HS-3	G	3.500	4400.000	8800.000	0.031	0.008	0.007	0.007	0.009	3.500	0.031	0.008	0.007	0.007	0.009	0.000	0.000	0.000	0.000	0.00
CCS Eduardo García (Quív)	HS-3	G	3,600	4400.000	8800.000	0.032	0.008	0.008	0.008	0.008	3.600	0.032	0.008	0.008	0.008	0.008	0.000	0.000	0.000	0.000	0.00
CCS José A. Echeverria (Quiv)	HS-3	G	4.300	4400.000	8800.000	0.038	0.010	0.010	0.009	0.009	4.300	0.038	0.010	0.010	0.009	0.009	0.000	0.000	0.000	0.000	0.00
CCS José Luis Tasende (Quiv)	HS-3	G	15.000	4400.000	8800.000	0.132	0.033	0.033	0.033	0.033	15,000	0.132	0.033	0.033	0.033	0.033	0.000	0.000	0.000	0.000	0.00
CCS Juan M Marquez (Quivican)	HS-3	G	2.400	4400.000	8800.000	0.021	0.005	0.005	0.005	0.006	2,400	0.021	0.005	0.005	0.005	0.006	0.000	0.000	0.000	0.000	0.00
CCS Julio Trigo (Quiv)	HS-3	G	3.100	4400.000	8800.000	0.027	0.007	0.007	0.006	0.007	3,100	0.027	0.007	0.007	0.006	0.007	0.000	0.000	0.000	0.000	0.00
CCS Martires de Barbados (Quivican)	HS-3	G	18.110	4400.000	8800.000	0.159	0.040	0.039	0.039	0.041	18.110	0.159	0.040	0.039	0.039	0.041	0.000	0.000	0.000	0.000	0.00
CCS Nicomedes Corvo (Quiv)	HS-3	G	27.000	4400.000	8800.000	0.238	0.060	0.059	0.059	0.060	27.000	0.238	0.060	0.059	0.059	0.060	0.000	0.000	0.000	0.000	0.00
CCS Nicomedes Corvo (Quiv)	Sist. Mamp-Ped-G/Canal	G	5.000	4400,000	8800.000	0.044	0.015	0.014	0.000	0.015	5.000	0.044	0.015	0.014	0.000	0.015	0.000	0.000	0.000	0.000	0.00
CPA Pedro Rguez Santana (Quiv)	HS-3	G	2.700	4400.000	8800.000	0.024	0.006	0.006	0.006	0.006	2.700	0.024	0.006	0.006	0.006	0.006	0.000	0.000	0.000	0.000	0.00
Gja Avicola L P V (Quivican)	HS-3	A	0.300	4400.000	5500.000	0.002	0.000	0.001	0.000	0.001	0.300	0.002	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.00
Gja Avicola La Soria (Quivican)	HS-3	G	0.300	4400.000	8800.000	0.003	0.000	0.001	0.001	0.001	0.300	0.003	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
Gja Avicola San Agustin (Quivican)	HS-3	G	0.150	4400.000	8800.000	0.001	0.000	0.001	0.000	0.000	0.150	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000

3 CAMBIOS EN LAS CIRCUNSTANCIAS QUE RODEAN EL AGUA SUBTERRÁNEA

3.1 Meteorología

En los siguientes gráficos se muestran las precipitaciones anuales y la probabilidad de lluvia (probabilidad de recurrencia, probabilidad de no recurrencia) obtenida mediante el método de Hazen en los principales puntos de observación de las precipitaciones.

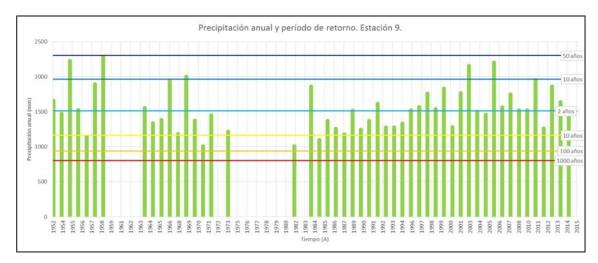


Figura 3-1: Estación 9

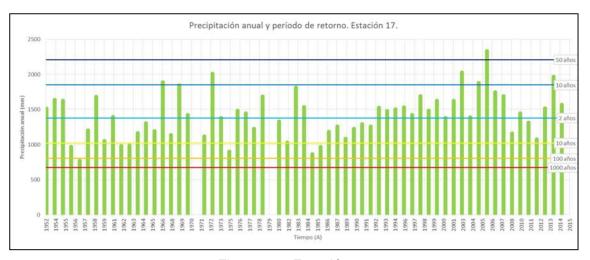


Figura 3-2: Estación 17

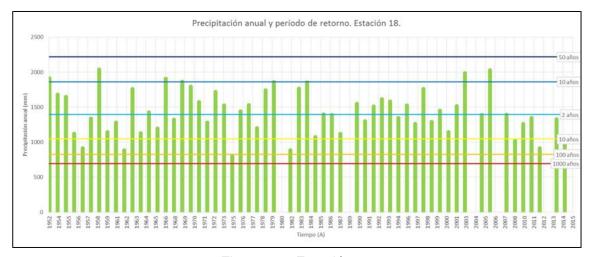


Figura 3-3: Estación 18

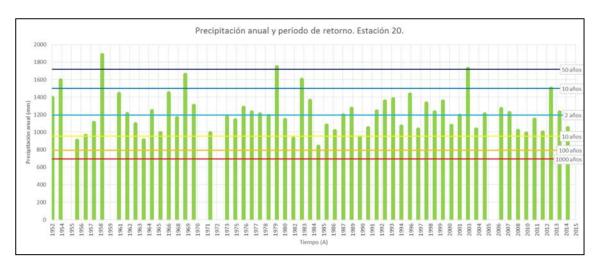


Figura 3-4: Estación 20

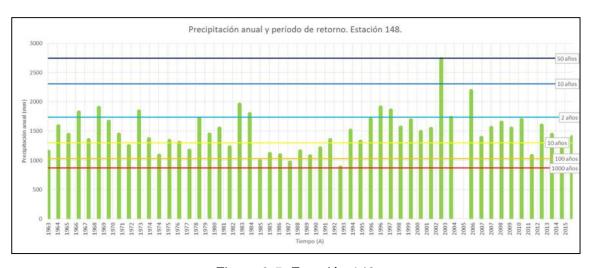


Figura 3-5: Estación 148

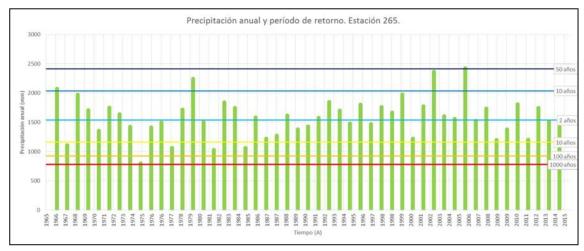


Figura 3-6: Estación 265

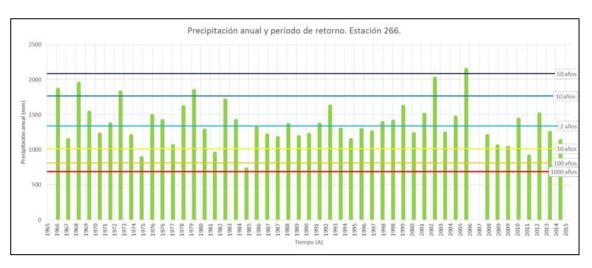


Figura 3-7: Estación 266

Figura 3-8: Estación 272

3.2 Recarga del Agua Subterránea

En una perspectiva a largo plazo, es posible que la cantidad de recarga de agua subterránea disminuya producto de la urbanización.

No existen planes a corto plazo de cambios territoriales que puedan afectar la recarga de agua subterránea.

3.3 Agua Salada y Agua Superficial

PREDICCIONES DE LOS CAMBIOS EN EL NIVEL MEDIO DEL MAR

Determinación de la tendencia del ascenso del nivel medio del mar y sus valores extremos, en el presente y en el futuro es el problema más complejo y actual con que se enfrenta la humanidad. El Cambio Climático no es un efecto provocado por hombre, pero si, su desarrollo acelerado en coto periodo de tiempo histórico. En la historia del Planeta han ocurrido en todas las eras Geológica un número mayor o menor de estos cambios, como los que se producen en la actualidad, se puede apreciar en él gráfico de niveles de fluctuación de NMM en el Cuaternario los movimientos de elevación y descenso del mismo

Son los países insulares, como Cuba, los que presentan más vulnerabilidad al cambio del nivel del mar. En Cuba se están realizando estudios y tomando mediad para la mitigación de los efectos del Cambio Climático y del ascenso del mar, la realización de estudios multidisciplinario de la franja costera y su influencia tierra firme, siendo el CITMA quien los rige y en el cual participan diversos organismo estatales y no estatales.

Una de las temáticas principales es el conocer cuál sería la cota de inundación que ocuparía la nueva línea de costa, para lo que se tomaron dos fechas de cálculo, el 2050 con un ascenso de nivel de las aguas de 0.27 m y el 2100 con 0,85 m como alturas inicial.

Se realizan monitoreo de toda la línea de costa y se clasifica la vulnerabilidad de la misma y la mediada de adaptación.

En área de estudio del proyecto todo el límite sur es una franja costera cenagosa y de baja altitud en dónde se pronosticó la regresión marina para estos dos escenarios (Figura 3-9).

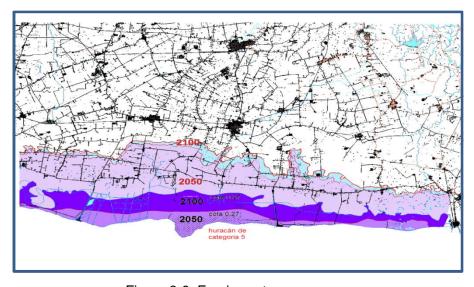


Figura 3-9: Franja costera cenagosa

Cambios en el nivel del mar pronosticado para los años 2050 y 20100 en colores lila y morado, así como la penetración de mar a consecuencia de grandes marejadas provocadas por un huracán de categoría cinco. (Enrique y Amaury, Macro Proyecto CC, 2008)

La realización de estudios con imágenes aéreas y cósmicas de diferentes años de la zona demostró que entre 1956 y 1997 en un área cercana los tramos HS IV, al Este del pueblo de Batabano, el mar ocupó 95 m tierra adentro desplazando la línea de costa y transformando el ecosistema marino y terrestre.

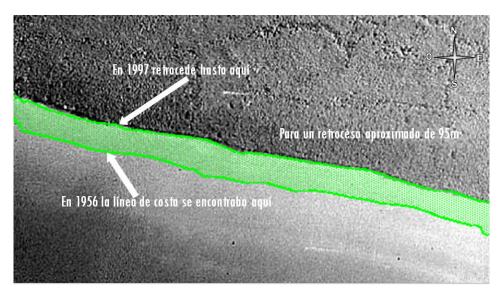


Figura 3-10: Desplazamiento que ha tenido la línea de costa desde 1956 hasta 1997 en un sector costero, entre Surgidero de Batabanó y Playa Mayabeque. (A. C. Hernández Zanuy, Instituto de Oceanología del CITMA)

De producirse estos dos escenarios se activaría la red de drenaje superficial en una franja terreno equivalente a las áreas inundadas periódicamente, activándose los paleo valles (Figura 3-11), al cambiar el nivel de base regional (línea de la costa). Este aumento del nivel del mar repercute en el acuífero con el desplazamiento de la cuña salina y acenso del nivel de las aguas subterráneas provocando que formas cársicas emergidas queden inundadas y las que ocupen una posición altimétrica baja funcionen como formas de descarga del acuífero.

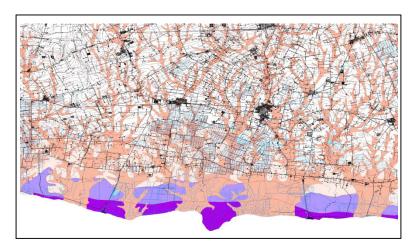


Figura 3-11: Mapa de la red de Paleo Valles y del pronóstico del acenso del nivel medio del mar en el sector del proyecto

3.4 Uso del Agua Subterránea

En la siguiente figura aparece el volumen mensual de consumo de agua subterránea durante los últimos cinco años.

Si bien no podemos establecer una simple comparación ya que se observa una mejoría en los últimos datos precisados, el volumen de consumo de agua subterránea muestra una tendencia a disminuir. En particular, se aprecia una reducción drástica de la cantidad de agua subterránea que se consume en el periodo seco.

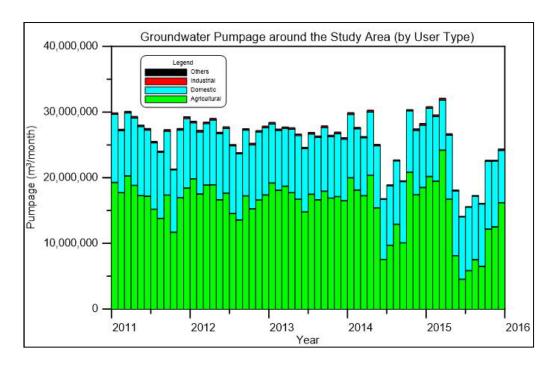


Figura 3-12: Cantidad mensual estimada del consumo de agua subterránea (2011-2015)

4 OBJETIVO DE CONSERVACIÓN DEL AGUA SUBTERRÁNEA

4.1 Conjunto de Objetivos de Conservación

- Conservación ambiental son las distintas formas de proteger y preservar el futuro de la naturaleza, o algunas de sus partes: los recursos hídricos, las distintas especies, los ecosistemas, los valores paisajísticos, entre otros.
- La especie humana, está destruyendo las pocas y últimas áreas naturales que quedan; está extinguiendo especies de plantas y animales; está contaminando el mar, el aire, el suelo y las aguas.
- De seguir este proceso, el ser humano no sólo está empobreciendo su entorno y a sí mismo, sino que está comprometiendo su propia supervivencia como especie.
- La sobreexplotación de las aguas subterráneas no es tan evidente como la de los lagos y los ríos. Hay menos pruebas visuales y los efectos de la extracción excesiva de agua subterránea tardan más en ser apreciables.
- En las últimas décadas se ha extraído mucha más agua de fuentes subterráneas que en el pasado, sin tener en cuenta la capacidad de recarga de los acuíferos.
- Las consecuencias negativas como reducción de los niveles de agua, contaminación y
 agotamiento de los recursos, pueden ser permanentes o tener una duración muy larga
 en el tiempo.

4.2 Valor Objetivo del Nivel del Agua Subterránea

a. Criterio de conservación manejado

Los recursos explotables pueden ser igual o menor a la recarga media hiperanual del acuífero, o sea, se recomienda extraer un volumen de agua que como máximo sea igual a lo que entra como promedio en muchos años, lo que no alteraría la condición de equilibrio dinámico del acuífero.

b. Determinación de los valores objetivo de conservación del nivel de agua subterránea

Como valor deseado a corto plazo se seleccionó el límite del Nivel Muy Desfavorable:

$$NMD = N_{crítico} + \frac{\Delta h}{2} \text{ (recarga neta media)}$$

• Como valor objetivo final se escogió el límite del Nivel Desfavorable:

NMD =
$$N_{crítico} + \Delta h$$
 (recarga neta media)

c. Valores objetivo de conservación (Nivel de agua subterránea)

A continuación se muestran dos niveles de agua subterránea establecidos mediante el método mencionado anteriormente.

Tabla 4-1: Valores de conservación objetivo (Nivel del agua subterránea)

Tramo hidrodinámico	Código	Nombre	Valor deseado corto plazo (msnm)	Valor objetivo final (msnm)
HS-3	HSC-523	Rancherita	0.47	0.92
HS-3	pozo HSC-541	Bufón	0.27	0.54
HS-3	HSC-543	Segui	1.01	1.30
HS-3	HSC-563	19 de Abril	7.04	8.15
HS-3	LSU-1	El Junco	0.83	1.11
HS-3	LSU-3	La Salud	13.07	13.97
HS-3	A-19A	La Sonora	3.40	4.55
HS-4	HSC-586	Apeadero	4.03	4.85
HS-3	LSU-8	Camacho	0.40	0.00
HS-3	HSC-516	Pequeña Cabaña	13.50	14.05
HS-3	HSC-542	Sotolongo	0.67	0.97
HS-3	HSC-530	Amaros	0.33	0.70
HS-3	TS-125	Liliana Dimítrova	0.70	1.17
HS-3	HSC-512	Delicias	0.99	1.29
HS-3	HS-42	Monte Ramos	5.52	6.75
HS-3	HSC-547	Porraspita	0.28	0.62
HS-3	HSC-549	Árbol del Pan	0.55	0.88
HS-3	HSC-534	La Cuchara	3.08	3.40

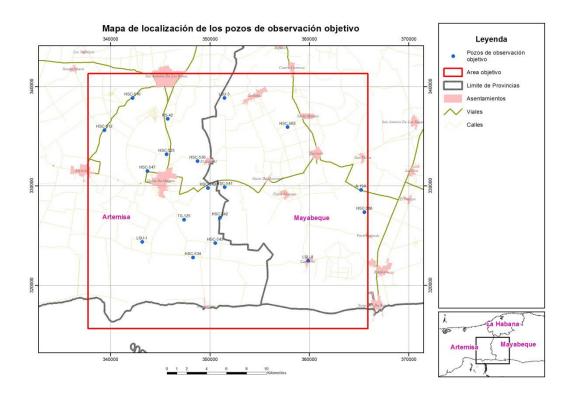


Figura 4-1: Mapa de localización de los pozos de observación objetivo



Figura 4-2: HSC-523

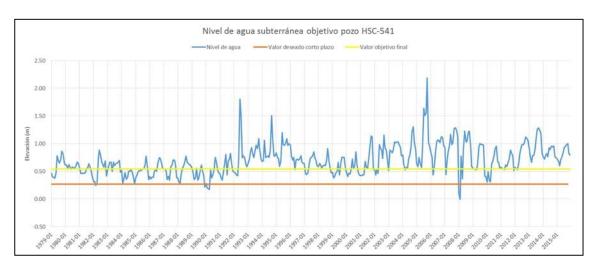


Figura 4-3: HSC-541

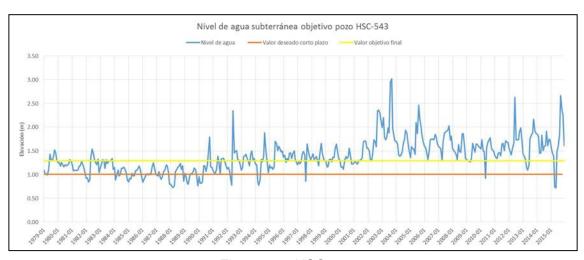


Figura 4-4: HSC-543

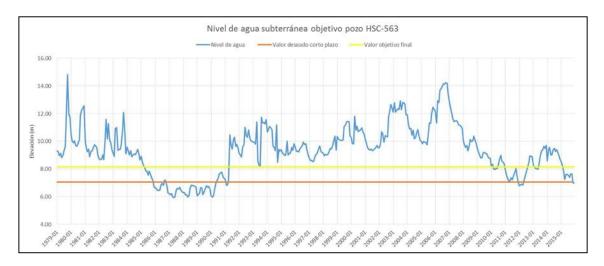


Figura 4-5: HSC-563

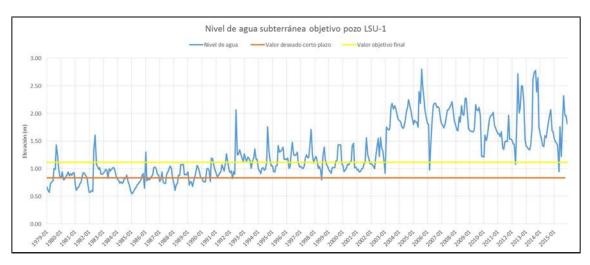


Figura 4-6: LSU-1

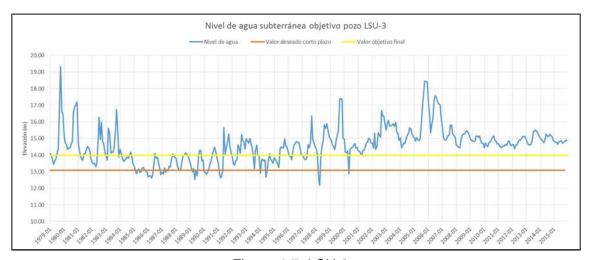


Figura 4-7: LSU-3

Figura 4-8: A-19A

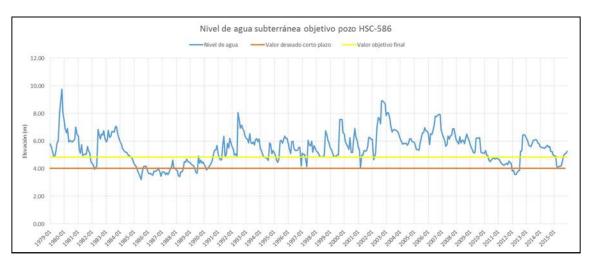


Figura 4-9: HSC-586

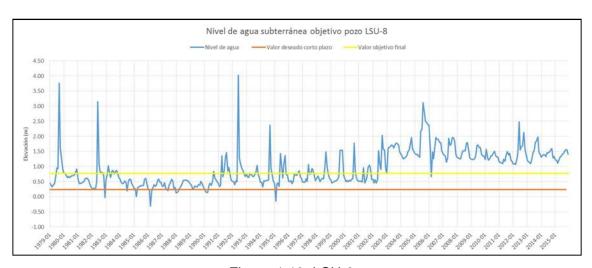


Figura 4-10: LSU-8

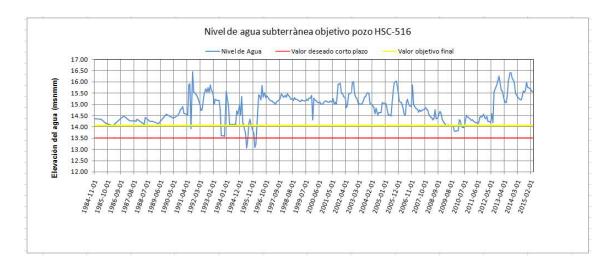


Figura 4-11: HSC-516

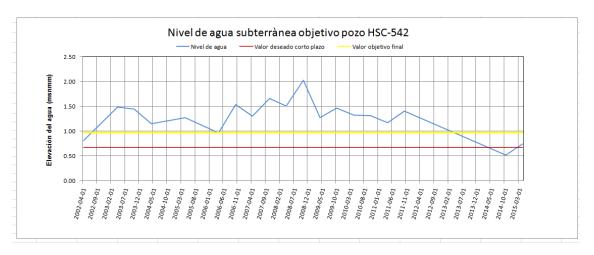


Figura 4-12: HSC-542

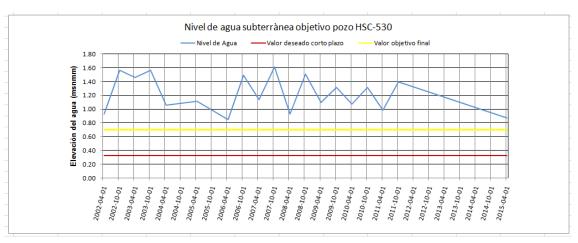


Figura 4-13: HSC-530

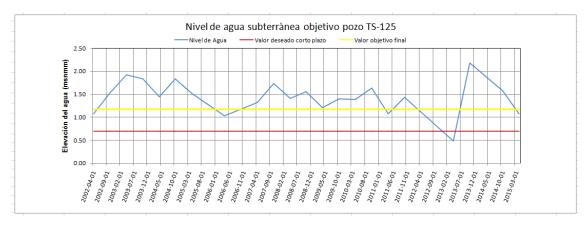


Figura 4-14: TS-125

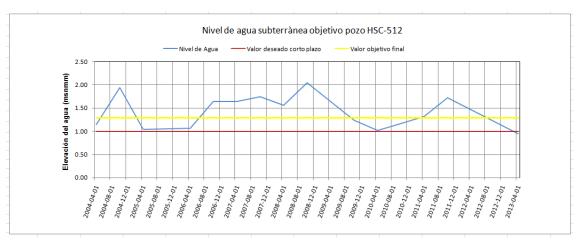


Figura 4-15: HSC-512

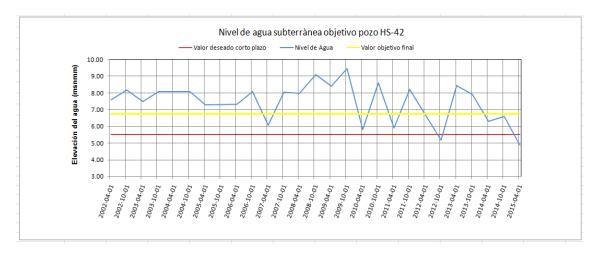


Figura 4-16: HS-42

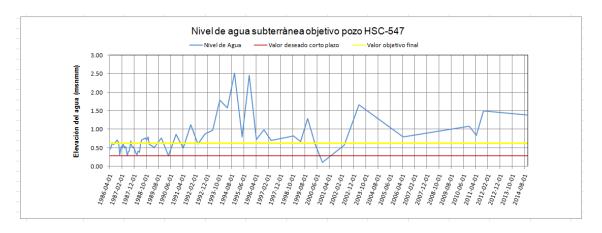


Figura 4-17: HSC-547

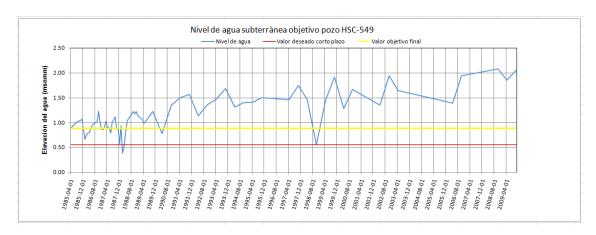


Figura 4-18: HSC-549

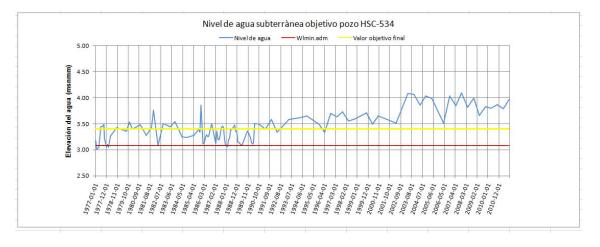


Figura 4-19: HSC-534

4.3 Valor Objetivo de Calidad del Agua Subterránea

El valor objetivo de la calidad brindará la posibilidad de establecer controles sobre la misma en todo momento para lo cual es importante lograr varios aspectos fundamentales entre los que se pueden destacar:

- a)- Dominio de la calidad del agua
- b)- Realizar un análisis exhaustivo de los datos
- c)- Detectar problemas técnicos y de contaminación a partir de los resultados, comprobando la certidumbre de la información del laboratorio.
- d)- Desarrollar y aplicar medidas de conservación para asegurar el buen estado de la calidad del agua y la salud de los usuarios.

a. Selección de los elementos de estudio

Los elementos que deben incorporarse para la continuidad del Proyecto, a partir de las enseñanzas y el fortalecimiento de las capacidades, una vez culminada las actividades correspondientes al 2016, se pueden determinar los siguientes:

Tabla 4-2: Elementos indicadores de la calidad del agua subterránea

рН	{U}	NO ₂ (Nitrito)	{mgL ⁻¹ }
SST (Solidoe Solubles Totales)	$\{mgL^{-1}\}$	NO ₃ (Nitrato)	$\{mgL^{-1}\}$
Cl (Cloruro)	$\{mgL^{-1}\}$	SO ₄ (Sulfato)	$\{mgL^{-1}\}$
Na (Sodio)	$\{mgL^{-1}\}$	Ca (Calcio)	$\{mgL^{-1}\}$

Selección de los pozos de estudio

El siguiente mapa muestra ubicaciones de pozos de monitoreo para la calidad del agua subterránea seleccionados. Los pozos tienen la acumulación de los últimos datos de monitoreo y muestran la condición típica del ambiente que los rodea. Además, debe actualizarse la selección de pozos de monitoreo y la elección se debe realizar en respuesta a propósito de monitoreo, la tendencia de calidad del agua subterránea, la contaminación antropogénica, etc.

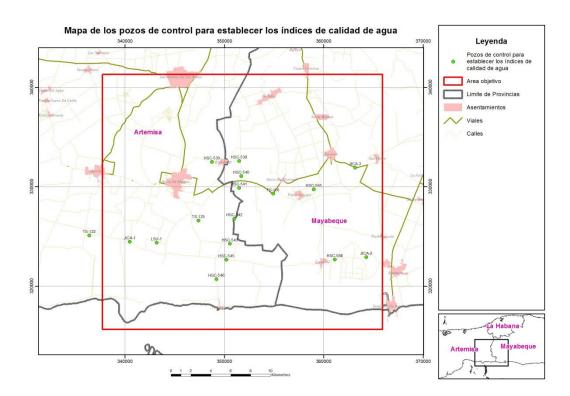


Figura 4-20: Mapa de los pozos de control para establecer los índices de calidad de agua

c. Establecimiento de un valor índice y un valor objetivo

c.1 Valor Índice

En este aspecto estará considerado el límite máximo posible a alcanzar, para lograr la calidad del agua y sobre todo poder establecer los controles necesarios para lograr el objetivo final que será preservar la salud y el bienestar público. Se elaboró a partir de los elementos normados por la norma NC 1021:2014.

Tabla 4-3: Valor Índice para el agua de consumo humano

pH	6,5 – 8,5	NO ₂ (Nitrito)	0,3
SST (Solidoe Solubles Totales)	1000	NO ₃ (Nitrato)	45
Cl (Cloruro)	250	SO ₄ (Sulfato)	400
Na (Sodio)	200	Ca (Calcio)	200

Tabla 4-4: Valor Índice para el riego

рН	6,5 – 8,5	NO ₂ (Nitrito)	0,3
SST (Solidoe Solubles Totales)	1000	NO ₃ (Nitrato)	45
Cl (Cloruro)	250	SO ₄ (Sulfato)	400
Na (Sodio)	200	Ca (Calcio)	200

c.2 Valores objetivo de conservación de la calidad del agua subterránea.

En las tablas 2-13 y 2-14 se muestran los cálculos estadísticos de los datos de las 49 estaciones en el periodo 2006-2015, entre los cuales se obtuvieron la media, desviación estándar, la mediana, el valor mínimo y máximo. De estos decidimos que los valores objetivo de conservación pueden utilizarse los valores de la mediana como mostramos en las Tabla 4-5 y Tabla 4-6.

Tabla 4-5: Valores objetivo de conservación para la calidad del agua del agua subterránea de la provincia Mayabeque

		Coord	enadas	T	Ce	pН	NO ₃ -1	CO ₃ -2	HCO ₃ -1	Cl ⁻¹	SO ₄ -1	Ca ⁺²	Mg^{+2}	Na ⁺¹	K ⁺¹	SDT	CT	CTT
Estación	Municipio	Х	Y	(°C)	mS/m	u	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	NMP 1000 ⁻¹	NMP 1000 ⁻¹
Aguacata	Quvicán	363530	336780	24,4	71,2	7,20	11	0	385	26	19	81	32	18	10	580	2,0	2,0
Arroyo Govea (Superficial)	Bejucal	353700	345925	24,3	96,0	7,55	9	0	437	66	33	119	12	50	9,6	709	2,0E+04	8,8E+04
Buena Ventura	Bejucal	358568	339470	23,7	68,7	7,21	35	0	348	25	11	124	8	13	1,1	567	2,0	2,0
Camacho	Batabanó	359800	322940	25,3	893,0	7,20	20	0	360	92	29	99	23	53	3,3	662	2,0	2,0
CN Biopreparados	Bejucal	355854	346322	24,7	67,1	7,09	15	0	351	28	21	126	5	13	1,2	555	2,0	2,0
Cuatro Caminos	Quvicán	358724	340972	23,9	58,5	7,16	17	0	348	15	10	117	4	8	0,9	558	2,0	2,0
Cuenca Sur UB-2	Quvicán	353039	330307	24,2	63,6	7,32	16	0	314	25	19	104	12	17	1,9	528	2,0	2,0
Cuenca Sur UB-18	Quvicán	361670	335320	23,7	65,9	7,23	14	0	354	20	17	101	13	16	1,4	540	2,0	2,0
Fructuoso Rodriguez	Quvicán	359187	332863	23,9	66,9	7,31	17	0	314	25	20	105	12	17	1,8	527	4,0	2,0
Güiro Boñigal	Quvicán	356243	334668	23,1	63,0	7,33	16	0	299	34	15	90	8	11	1,8	489	2,0	2,0
Gúiro Marrero	Quvicán	358912	328813	22,9	97,8	7,23	20	0	351	113	32	105	21	55	3,6	674	12,5	2,0
ITH Liliana Dimitrova	Quvicán	358368	338721	24,1	60,1	7,21	0	0	333	0	0	120	4	12	1,4	473		
Lily	Bejucal	356058	346322	24,2	65,6	7,13	19	0	345	21	0	121	4	11	0,9	525	2,0	2,0
Manuel Fajardo	Quvicán	351355	334976	23,9	57,8	7,45	19	0	299	23	18	102	7	10	2,1	477	3,0	2,0
Mi Retrio	Quvicán	355440	339466	24,0	58,2	7,36	30	0	269	17	18	100	4	8	2,7	446	2,0	2,0
Ñancaguasu 3	Batabanó	368850	321830	23,9	71,6	7,35	16	0	369	31	37	83	32	20	1,1	580	2,0	2,0
Pablo Noriega	Quvicán	357618	329369	22,7	57,7	7,47	18	0	287	20	0	100	7	10	0,9	449	24,0	2,0
Paradero	Quvicán	361506	335170	23,9	61,0	7,21	7	0	348	17	14	102	11	10	1,0	520	3,0	2,0
Pedrosa	Batabanó	365000	323400	25,1	72,3	7,34	20	0	378	32	24	99	28	21	2,3	584	6,6	2,0
Pesca Habana	Batabanó	366650	318160	24,9	78,8	7,34	14	0	381	38	33	93	27	37	1,8	624	2,0	2,0
Pozo Redondo	Batabanó	365950	325300	24,4	80,3	7,26	5	0	378	35	37	90	34	28	1,8	642	2,0	2,0
Rancho Recre0-1	Bejucal	357413	342425	24,1	67,0	7,05	21	0	375	17	23	126	5	10	2,6	566	3,0	2,0
Rancho Recreo-2	Bejucal	357751	342465	24,1	73,6	7,02	31	0	381	28	22	132	5	13	8,2	609	2,0	2,0
Raúl Garcia	Quvicán	365436	332855	23,6	69,4	7,33	21	0	382	25	24	95	29	21	8,2	596	2,0	2,0
San Agustín	Quvicán	359418	327325	22,9	106,9	7,35	14	0	369	162	43	95	31	89	4,8	787	2,0	2,0
San Vicente	Batabanó	358655	340985	24,8	74,3	7,28	16	0	384	39	31	87	30	32	3,0	622	2,0	2,0
Santa Margarita	Bejucal	358408	342172	23,6	61,9	7,19	19	0	336	25	13	114	3	13	1,0	525	12,5	2,0
Santa Mónica	Quvicán	359786	337012	23,6	59,5	7,17	9	0	323	18	0	108	4	10	0,9	475	4,0	2,0
Santo Cristo	Quvicán	355497	338893	24,2	58,6	7,45	34	0	284	20	18	104	5	8	2,9	489	6,0	6,0
Yolando González-1	Quvicán	360640	333874	22,4	63,1	7,22	13	0	317	20	15	101	13	11	1,1	489	2,0	2,0
Yolando González-2	Quvicán	360521	334467	22,5	58,0	7,41	15	0	311	21	12	92	10	14	0,8	486	2,0	2,0
Zayas	Batabanó	371177	324473	24,1	69,8	7,31	19	0	366	29	29	90	29	22	1,0	572	2,0	2,0

Tabla 4-6: Valores objetivo de conservación para la calidad del agua del agua subterránea de la provincia Artemisa

		Coord	enadas	T	Ce	pН	NO ₃ -1	CO ₃ -2	HCO ₃ -1	Cl ⁻¹	SO ₄ -1	Ca ⁺²	Mg ⁺²	Na ⁺¹	K ⁺¹	SDT	CT	CTT
Estación	Municipio	X	Y	(°C)	mS/m	u	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	mgL ⁻¹	NMP 1000 ⁻¹	NMP 1000 ⁻¹
AC. Waterloo 1	Artemisa	322950	329900	23,2	76,0	7,29	13	0	342	53	25	116	10	34	2,0	593		
AC. Las 400	Alquizar	337050	331900	23,1	66,0	7,23	30	0	304	34	22	108	8	19	2,9	521		
AC. La Europa	Alquizar	333300	323900	22,5	67,0	7,35	27	0	0	113	0	0	0	63	0,0			
S/N Pulido	Alquizar	336800	329250	23,9	65,7	7,52	35	0	226	36	0	98	8	18	2,4	431		
AC. El Pilar	Artemisa	320170	334250	24,5	66,5	7,24	41	0	0	32	32	0	0	0	0,0			
AC. La Matilde	Artemisa	319380	332110	23,7	80,0	7,12	33	0	403	39	27	131	10	27	5,2	669		
Ac. El Favorito	Artemisa	321900	332900	23,6	63,0	7,38	15	0	329	25	0	110	6	17	3,0	501		
Ac. Güira Nuevo	Güira de Melena	344600	330800	22,8	79,2	7,33	38	0	311	59	35	116	10	31	3,8	606		
Ac. Cachimba	Güira de Melena	346600	327600	22,6	85,5	7,39	40	0	295	74	48	103	16	45	3,9	611		
Ac. Boca de Cajio	Güira de Melena	349150	322300	24,8	150,0	7,32	40	0	258	340	75	110	22	146	6,0	941		
Ac. Vereda Nueva	Calimito	334770	341050	22,3	75,2	7,16	44	0	342	22	20	130	5	11	5,9	584		
Ac. Pueblo Nuevo Ceibal	Caimito	332400	338500	22,4	70,9	7,29	30	0	351	25	17	119	8	13	3,1	594		
K26W7	Güira de Melena	348900	329400	23,4	90,7	7,72	32	0	331	90	41	110	13	55	3,8	611		
K23G3	Güira de Melena	349375	333525	23,4	81,0	7,61	25	0	302	71	26	110	11	38	3,0	578		
Ac. El Gabriel	Güira de Melena	348800	332600	24,0	103,7	7,39	34	0	296	128	42	110	16	76	3,2	649		
Escuela La Jocuma	Güira de Melena	346250	323050	22,3	178,2	7,57	40	0	305	307	90	92	36	241	16,9	1124		
El Donque	Artemisa	324450	332400	23,1	58,4	7,56	29	0	258	25	14	100	5	10	2,4	439		
Ac. El Viviro (HS3)		317000	333100	24,1	61,7	7,23	15	0	360	18	15	110	10	10	0,9	536		
Ac. Toledo (HS3)		317000	333100	23,9	62,4	7,21	8	0	336	18	15	102	12	11	0,9	499		
Ac. Quebrada (HS3)				24,5	55,0	7,58	1	0	299	19	25	92	7	17	0,8	460		

d. Valor objetivo del uso del agua subterránea

Evaluación de la Calidad (Recomendaciones de Explotación):

Partiendo de los resultados del muestreo Hidroquímico vertical, y de los perfiles resultantes se recomienda las profundidades de explotación de las aguas subterráneas para diferentes distancias desde la costa.

Orientación de los Perfiles

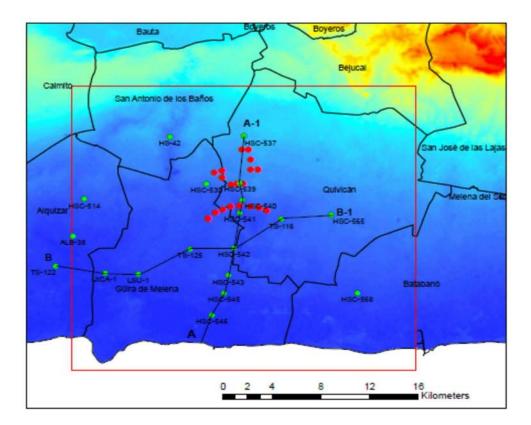


Figura 4-21: Orientación de perfiles

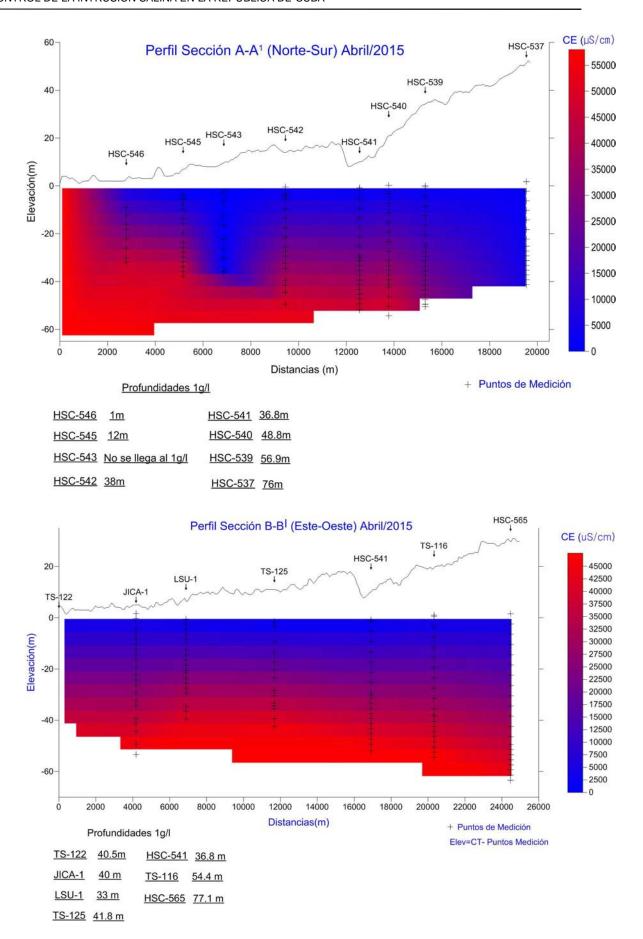


Figura 4-22: Perfil secciones

Partiendo de los resultados del perfil Norte-Sur se proponen las profundidades óptimas para realizar la explotación de las aguas subterráneas para los usos:

- Consumo Humano.
- Consumo Animal.
- Riego.

Rango de Profundidades Recomendadas para la Explotación de las Aguas Subterráneas Cuenca Sur (Dirección Norte-Sur)

Usos	Rango de Profundidad Recomendada para la Explotación (m).	Distancia desde la Costa (KM)	Observaciones
Consumo Humano	1m - 5m		
Consumo Animal	1m - 5m	3	
Riego	1m - 5m		
Consumo Humano	8m - 12m		
Consumo Animal	8m - 12m	5	
Riego	8m - 14m		
Consumo Humano	11m - 44m		
Consumo Animal	11m - 44m	7	
Riego	11m - 44m		
Consumo Humano	11m - 38m		Zona de Influencia
Consumo Animal	11m - 38m	9	Batería de Pozos
Riego	11m - 38m		Cuenca Sur
Consumo Humano	8m - 37m		Zona de Influencia
Consumo Animal	8m - 37m	13	Batería de Pozos
Riego	8m - 37m		Cuenca Sur
Consumo Humano	18m - 49m		
Consumo Animal	18m - 49m	14	
Riego	18m - 49m		
Consumo Humano	32m - 57m		
Consumo Animal	32m - 57m	15	
Riego	32m - 57m		
Consumo Humano	47m - 76m		
Consumo Animal	47m - 76m	20	
Riego	47m - 84m		

5 PREDICCIÓN FUTURA (PRONÓSTICO)

5.1 Descripción del Estudio de Caso

5.1.1 Esquema de la modelación de agua subterránea

a. Datos utilizados

La siguiente tabla presenta los ítems necesarios para establecer un modelo de agua subterránea y los datos utilizados en el presente Proyecto.

Tabla 5-1: Datos utilizados en el modelo de agua subterránea

	Ítem	Datos utilizados
Estructura l	hidrogeológica	Los datos se basaron en los resultados del análisis de la estructura hidrogeológica llevado a cabo por EIPH-La Habana. Se prestó especial atención a las características de la caliza que refleja el perfil estratigráfico existente empleada para estudiar la distribución de las facies en la caliza.
Constantes	hidrogeológicas	El valor inicial de las constantes hidrogeológicas (coeficiente de permeabilidad, coeficiente de almacenamiento de agua, y otras) se calculó a partir de una razón del estrato y empleando un valor general que puede estimarse sobre la base de las facies de caliza. La razón del coeficiente de permeabilidad para los ejes horizontal y vertical se tomó del informe del USGS (Servicio Geológico de los Estados Unidos, por sus siglas en inglés) sobre los acuíferos de la Florida donde el valor H/V es igual a 1.5.
Volumen d subterránea	e recarga de agua	Los datos empleados se basaron en el volumen de recarga de agua subterránea para el pozo HSC-541 ya que los resultados del análisis de dicho pozo son los más cercanos al valor real tras haber estimado mediante el modelo del tanque que dicho valor será de 5 puntos entre 1973 y 2015 (42 años). Más adelante se muestran los datos utilizados para efectuar el análisis a partir del método del modelo del tanque.
	Meteorología (Precipitaciones y temperatura)	Precipitación: Como datos a ingresar se tomaron los datos mensuales de precipitación obtenidos del punto de observación de las EAH-Mayabeque y EAH-Artemisa cercano al área de análisis. Temperatura: La temperatura promedio mensual en el periodo de 1973 a 2015 se tomó de la información de la Estación de Observación Meteorológica de Casa Blanca en La Habana que está disponible para el público.
	Datos de calibración	Como datos de calibración se tomaron los datos del nivel de agua subterránea que controlan y administran las EAH-Mayabeque y EAH-Artemisa.
Volumen d bombeado	e agua subterránea	Como valores a ingresar en el modelo se emplearon los datos del volumen de bombeo desde 2011 hasta 2015 que administran las EAH-Mayabeque y EAH-Artemisa.
Carga hidráulica inicial		Se efectuó un cálculo cuasi estacionario para un periodo de 36500 dí as y el valor obtenido el dí a 20440 (que es el número de dí as desde el comienzo del bombeo de agua subterránea en los pozos de Cuenca Sur hasta la actualidad) se empleó como carga inicial para la calibración al inicio del cálculo no estacionario.
Concentrac	ión de sal	La distribución de la concentración de sal se estimó a partir de la relación entre la CE (conductividad eléctrica) y la concentración de sal medida por las EAH-Mayabeque y EAH-Artemisa.
Datos de ca	dibración del modelo	Como datos de calibración se tomaron los datos del monitoreo del nivel de agua subterránea que controlan y administran las EAH-Mayabeque y EAH-Artemisa.

b. Estructura de modelo

b.1 Alcance del análisis y tamaño de la retícula (conjunto de cuadrículas)

Las cuadrículas planas del modelo tridimensional, tal como se indica en la Figura que aparece abajo, se extendieron más allá del área objetivo para minimizar la tolerancia del cálculo dentro de dicha área (especialmente en la zona de los límites). Cada cuadrícula mide 500 m x 500 m (Dirección X: 320000-378000 (116 cuadrículas), y Dirección Y: 305000-349000 (88 cuadrículas).

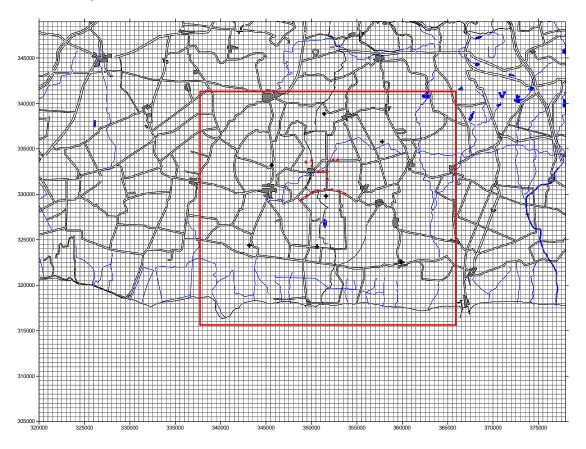


Figura 5-1: Alcance del análisis de modelo de agua subterránea

b.2 Estructura seccional

La estructura seccional del modelo tridimensional se desglosa en 40 estratos para que pueda plasmarse en relieve la penetración del agua salina hacia las zonas más profundas, para lo cual se ha asignado a cada estrato la altitud que se indica abajo. La altitud de la parte más alta del modelo es de 100 m y la más baja, -200 m.

- Altitud de 100 m ~ 50 m: 5 estratos (espesor de 10 m)
- Altitud de 50 m \sim -50 m: 20 estratos (espesor de 5 m)
- Altitud de -50 m ~ -200 m: 15 estratos (espesor de 10 m)

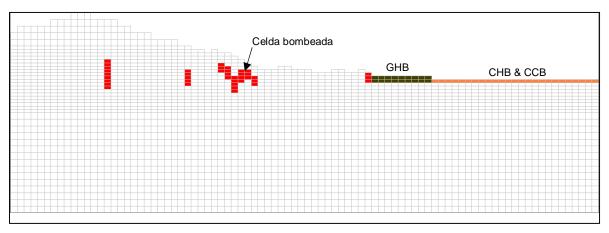


Figura 5-2: Ejemplo de la sección transversal del modelo tridimensional

c. Parámetros del modelo

c.1 Coeficiente de permeabilidad en dirección horizontal

El valor del coeficiente de permeabilidad en dirección horizontal se determinó a partir de la información de 449 perfiles estratigráficos divididos por facies (valor general) o por capas del modelo. El valor de los datos de distribución del coeficiente de permeabilidad en dirección horizontal por estratos del modelo se estableció de forma tal que pueda cambiarse y reproducirse durante la calibración aplicando las condiciones reales del agua subterránea.

c.2 Coeficiente de permeabilidad en dirección vertical

Básicamente el mismo método que se empleó en dirección horizontal se aplicó en dirección vertical. La razón de permeabilidad (valor H/V) en dirección horizontal y vertical se ha configurado para que cambie uniformemente. Tras analizar los niveles de agua calculados cambiando el valor H/V desde 20 hasta 1, se llegó a la conclusión de que HV=1.5 (tomado del informe del USGS sobre los acuíferos de la Florida) es el mejor valor para la reproducción del modelo.

c.3 Tasa de porosidad efectiva (EP) y Tasa de rendimiento específica (Sy)

Los valores de porosidad efectiva (EP) y rendimiento específica (Sy) se seleccionaron a partir del valor general derivado de las características de cada estrato y luego se crearon los datos de distribución espacial de EP y Sy. El mismo valor se aplicó tanto a la EP como a la Sy.

c.4 Tasa de almacenamiento específico (Ss)

El valor de almacenamiento específico (Ss) se seleccionó sobre la base del valor general y luego se crearon los datos de distribución espacial de Ss. El valor a ingresar para Ss se modificó por uno 10 veces mayor que el valor inicial pues el rango de fluctuación obtenido para el nivel de agua calculado fue mucho mayor que el esperado.



Figura 5-3: Ejemplo de distribución de coeficientes de permeabilidad en dirección horizontal

d. Cálculo estimado de volumen de recarga de agua subterránea

Se adoptó el método de análisis del efluente con la aplicación del modelo del tanque para estimar el volumen de recarga de agua subterránea, que es uno de los datos necesarios para el cálculo del modelo de agua subterránea. El análisis mediante el modelo del tanque se llevó a cabo en cinco puntos (periodo de calibración: de 1973 a 2015) aunque hubo algunos problemas tales como el aumento repentino del nivel real de agua subterránea en Dique Sur a partir de 1990, lo cual no estaba en correspondencia con el volumen de agua subterránea calculado. Por consiguiente, los cálculos del volumen de recarga de agua subterránea se realizaron sobre la base del resultado para el pozo HSC-541 (caso en el que los cálculos dieron como resultado el valor más cercano al nivel real de agua subterránea) y la distribución de las precipitaciones.

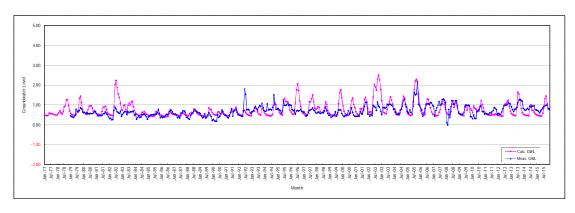


Figura 5-4: Ejemplo de resultados de la calibración del análisis de modelo de tanque (HSC-541)

e. Cálculo estimado de volumen de agua subterránea bombeado

El volumen de agua subterránea bombeado se estimó aplicando los datos de volumen de bombeo mensual correspondientes a 711 pozos desde 2011 hasta 2015 que son administrados por las EAH-Mayabeque y EAH-Artemisa. En cuanto a los datos a ingresar en el modelo de agua subterránea, la capa de toma se seleccionó de acuerdo a la profundidad de cada pozo y los volúmenes de bombeo se distribuyeron a partir del coeficiente de permeabilidad de la capa de toma calculado en c.1. Por otra parte, se asumió que el volumen bombeado entre 2005 y 2010 era igual al del 2011 pues no se contaba con datos para estos seis años del periodo de calibración.

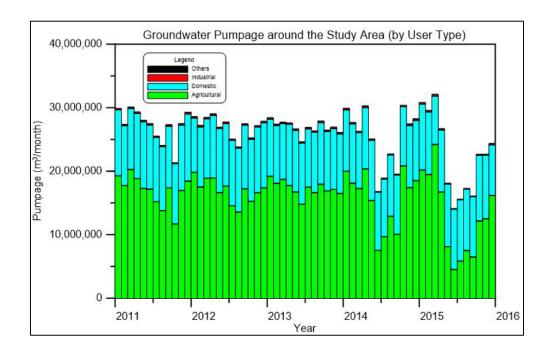


Figura 5-5: Cantidad mensual estimada del consumo de agua subterránea (2011-2015)

f. Carga hidráulica inicial

El cálculo cuasi estacionario se efectuó para un periodo de 100 años y en cada capa se tomó el valor de agua subterránea calculado en el año 56 (20440 días: estimado del volumen de agua subterránea utilizado en el área del modelo a partir de 1950) como la carga hidráulica inicial para el cálculo no estacionario en el periodo de 2005 a 2011.

g. Distribución de concentraciones de sal

La distribución espacial de las concentraciones de sal se determinó sobre la base de la distribución de la CE de acuerdo a la profundidad de cada pozo la cual se midió en abril de 2015 por las EAH-Mayabeque y EAH-Artemisa.

h. Examen de interpolación

Una vez ingresadas en cada una de las cuadrículas los parámetros de volumen de recarga de agua subterránea, volumen de agua subterránea bombeado y otros, se hizo un cálculo de

calibración entre 2005 y 2015 (11 años) utilizando MODFLOW. La unidad de cálculo es mensual (132 periodos de tensión) y el modelo fue calibrado comparando la variación del nivel de agua subterránea observado en pozos piloto y la variación del nivel de agua calculado. En la figura abajo se presenta un ejemplo de calibración.

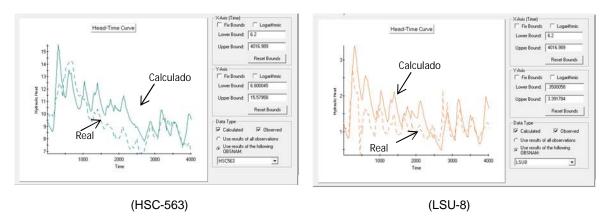


Figura 5-6: Ejemplo de comparación de la variación del nivel de agua subterránea medido con la variación de la carga hidráulica calculada

5.1.2 Cálculo de predicción

Los cálculos predictivos futuros se efectuaron a partir de 16 escenarios diseñados mediante la combinación de los siguientes factores: ① patrones de transición de los volúmenes de bombeo y recarga, ② aumento del nivel del mar e ③ instalación de nuevos pozos, como se muestra en la tabla siguiente:

RA0 RA1 RA2 RA3 RP0 RP1 RP2 RP3 Repetición Disminución Disminución isminución Disminución Se mantiene del hasta un hasta un un 110% en en un 100% hasta un hasta un un 110% en promedio 80% en 2035 90% en en 2035 mensual de 2035 2035 2035 2035 los últimos Repetición de los Q0 Q0-RA0 Q0-RA1 Q0-RA2 Q0-RA3 Q0-RP0 Q0-RP1 Q0-RP2 Q0-RP3 valores del 2015 Disminución Q1 Q1-RA0 Q1-RA3 90% en 2035 Aumento hasta un Q2 Q2-RA0 110% en Aumento hasta un Q3-RA0 Q3-RA1 Q3 120% en 2035 Aumento Q0-RA0 Nivel del mar -SR Cuenca Sur Q0-RA0 Desarrollo -CS de nuevos Cuenca Sur Q0-RA0 pozos y San Felipe -CS+SF

Tabla 5-2: Escenarios de Predicción Futura

Año de base: 2015

A: Promedio del periodo 1986-2015, repetición del valor promedio mensual

P: Valores pasados de recarga correspondientes al periodo 1996-2015, repetición cada diez años

Los cambios en la concentración de sal y los niveles de agua subterránea para los próximos 20 años (2016 ~ 2035) se estimaron sobre la base de los resultados de 2015 para cada escenario de predicción futura que se muestra a continuación.

5.2 Condiciones de Análisis de Cada Escenario

a. Escenario básico

Se tomaron dos casos para el modelo en los que se mantuvieron las condiciones actuales.

- ① Escenario Básico 1 (Modelo Q0-RA0)
 - Volumen de bombeo: Se mantiene el volumen de bombeo de 2015.
 - Volumen de recarga de agua subterránea: Se repite el volumen promedio mensual de recarga de agua subterránea de los últimos 30 años (1986-2015). (Ej: volumen promedio para enero desde 1986 hasta 2015 = volumen de recarga para enero de 2016, 2017,..., 2035).
- ② Escenario Básico 2 (Modelo Q0-RP0)
 - Volumen de bombeo: Se mantiene el volumen de bombeo de 2015.
 - Volumen de recarga de agua subterránea: Se repite la recarga de agua subterránea de los últimos 20 años (1996-2015) durante los próximos 20 años (2016-2035). (Ej: volumen de recarga de 1996 = volumen de recarga para 2016, volumen de recarga de 1997 = volumen de recarga para 2017,..., volumen de recarga de 2015 = volumen de recarga para 2035).

Los cambios en los niveles calculados de agua subterránea para ambos escenarios se muestran en la figura siguiente.

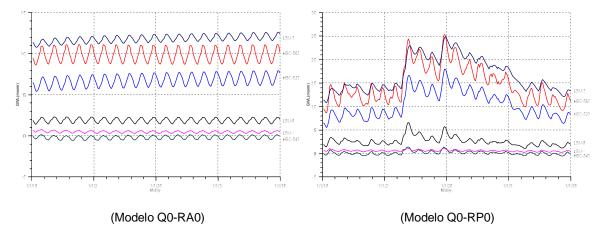


Figura 5-7: Fluctuación en los niveles calculados de agua subterránea ([Modelo Q0-RA0] y [Modelo Q0-RP0])

Escenario de fluctuación de la velocidad de recarga del agua subterránea

b.1 Caso del modelo básico 1 (Modelo Q0-RA0)

Se implementaron tres casos de predicción de los cambios en la recarga de agua subterránea

en los que el volumen de bombeo se mantiene igual al del 2015.

① Modelo Q0-RA1

• Volumen de recarga de agua subterránea: El volumen se fue reduciendo anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 80% del volumen de recarga del modelo Q0-RA0.

② Modelo Q0-RA2

 Volumen de recarga de agua subterránea: El volumen se fue reduciendo anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 90% del volumen de recarga del modelo Q0-RAO.

③ Modelo Q0-RA3

• Volumen de recarga de agua subterránea: El volumen se fue aumentando anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 110% del volumen de recarga del modelo Q0-RAO.

Los resultados de los cambios en los niveles calculados de agua subterránea del Modelo Básico 1 y los tres casos descritos aparecen en la siguiente figura.

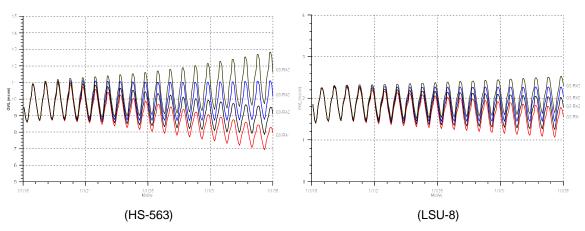
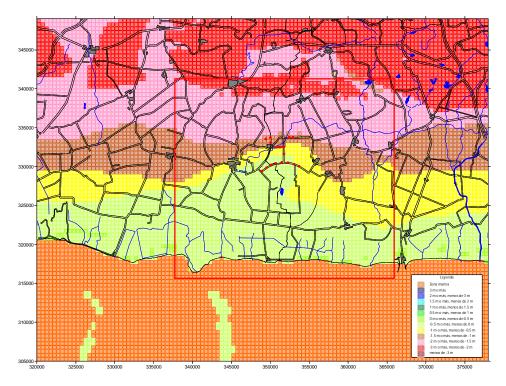
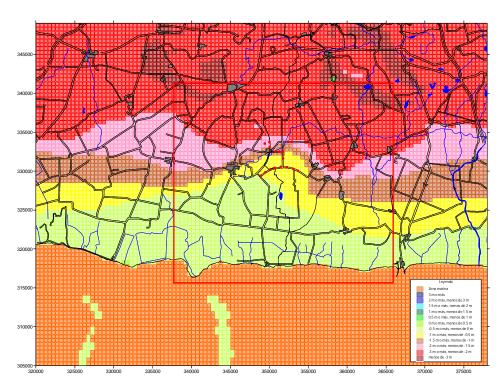
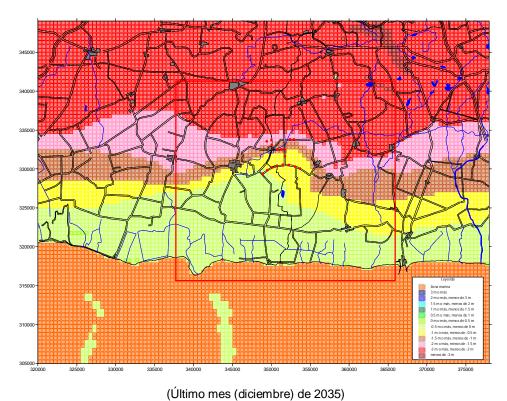
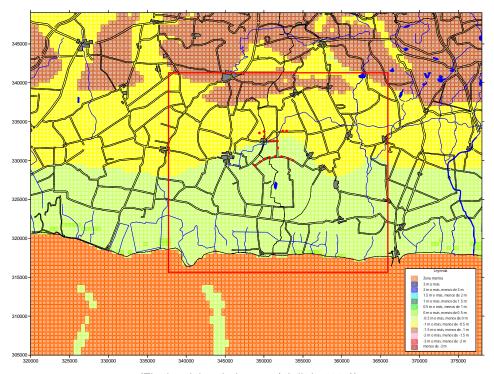




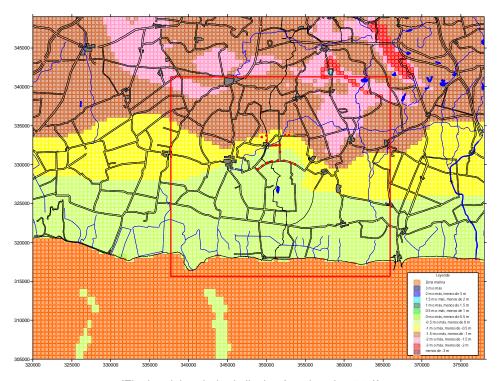
Figura 5-8: Fluctuación en los niveles calculados de agua subterránea ([Modelo Q0-RA0], [Modelo Q0-RA1], [Modelo Q0-RA2] y [Modelo Q0-RA3])


Debajo aparecen las figuras de comparación de la distribución de los niveles calculados de agua subterránea entre el Modelo Básico 1 y los tres casos descritos (capa 17). La comparación se estableció para los finales del periodo seco (abril de 2035), los finales del periodo de lluvias (octubre de 2035), y el último mes (diciembre) de 2035.

(Finales del periodo seco (abril de 2035))



(Finales del periodo de lluvias (octubre de 2035))



(Ollino mes (diciembre) de 2035)

Figura 5-9: Comparación de la distribución de los niveles calculados de agua subterránea (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA1]

(Finales del periodo seco (abril de 2035))

(Finales del periodo de lluvias (octubre de 2035))

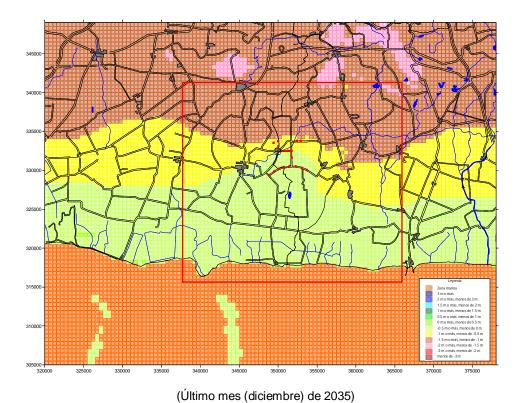
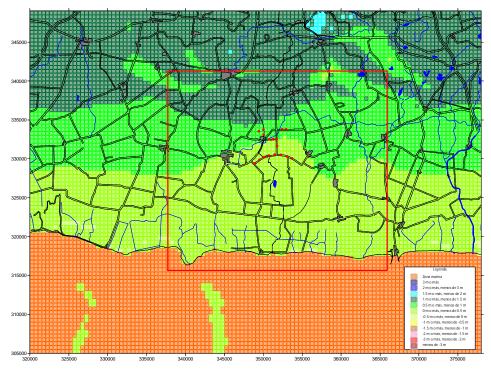
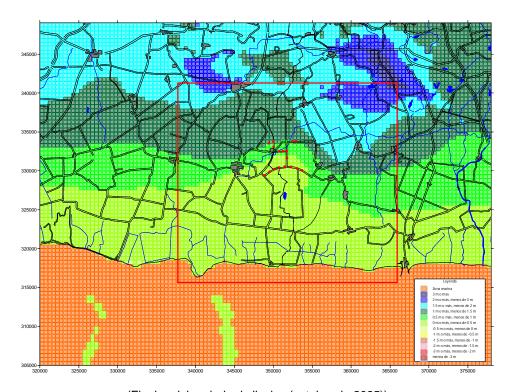




Figura 5-10: Comparación de la distribución de los niveles calculados de agua subterránea (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA2]

(Finales del periodo seco (abril de 2035))

(Finales del periodo de lluvias (octubre de 2035))

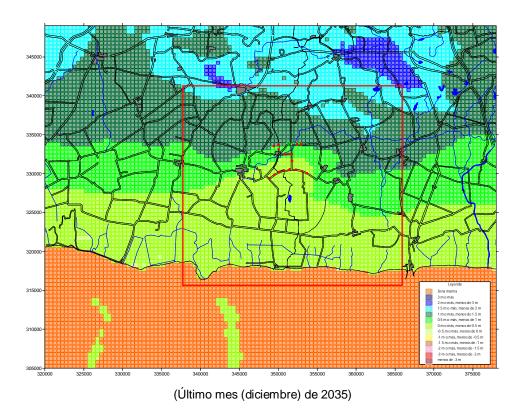
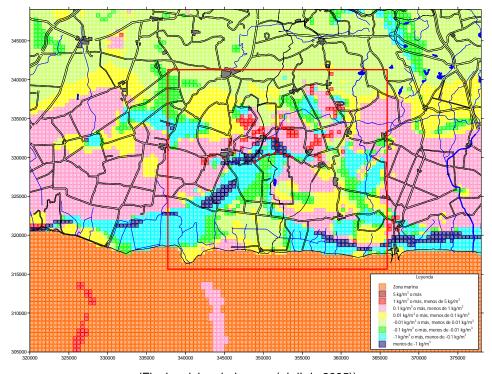
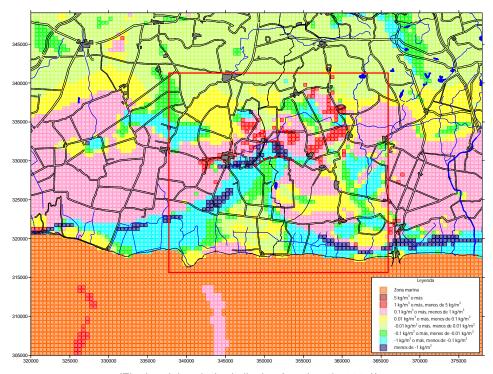




Figura 5-11: Comparación de la distribución de los niveles calculados de agua subterránea (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA3]

También se muestran a continuación las figuras de comparación de las concentraciones de sal calculadas (capa 17) entre el Modelo Básico 1 y los tres casos descritos. El periodo de comparación es el mismo que el de la distribución de los niveles de agua subterránea.

(Finales del periodo de lluvias (octubre de 2035))

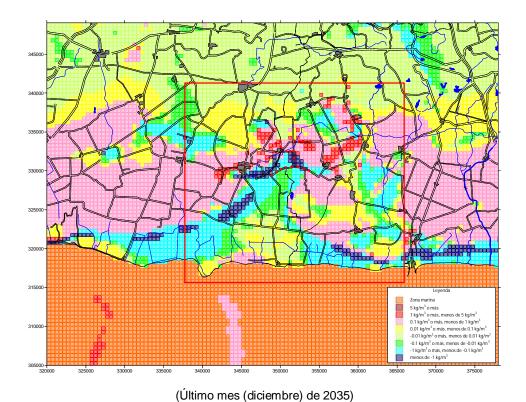
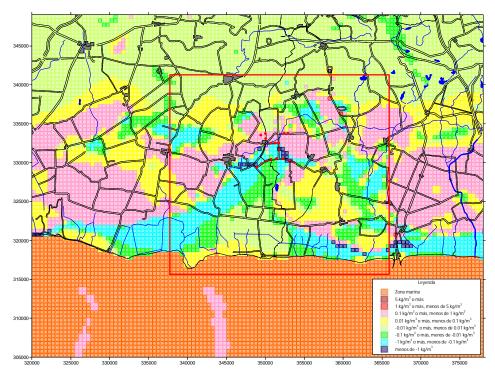
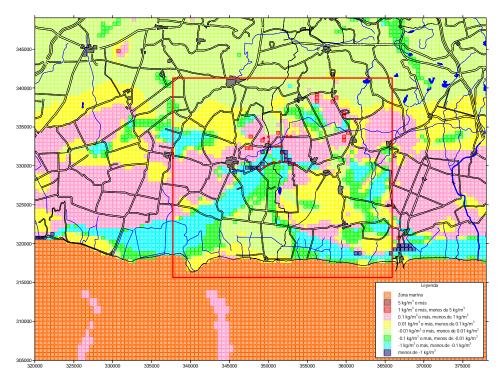




Figura 5-12: Comparación de la distribución de las concentraciones de sal calculadas (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA1]

(Finales del periodo seco (abril de 2035))

(Finales del periodo de lluvias (octubre de 2035))

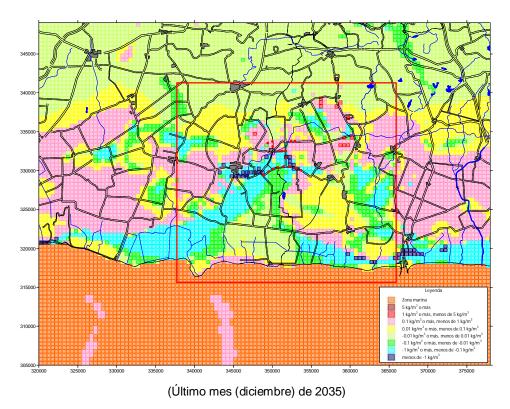
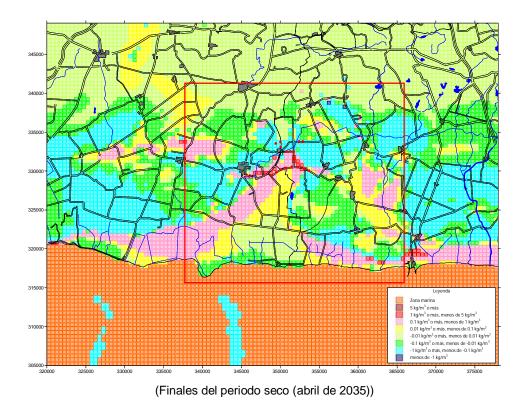
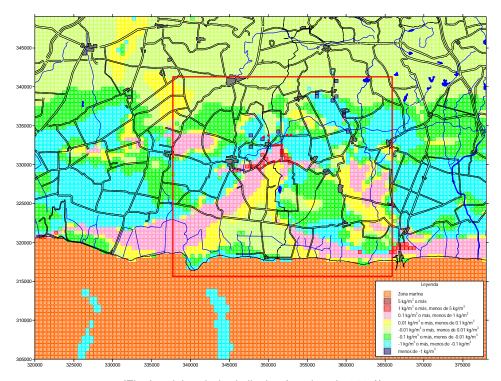




Figura 5-13: Comparación de la distribución de las concentraciones de sal calculadas (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA2]

(Finales del periodo de Iluvias (octubre de 2035))

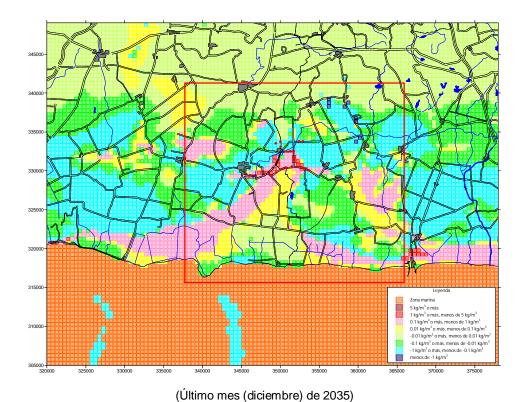


Figura 5-14: Comparación de la distribución de las concentraciones de sal calculadas (capa 17) del [Modelo Q0-RA0] y el [Modelo Q0-RA3]

b.2 Caso del modelo básico 2 (Modelo Q0-RP0)

Se implementaron tres casos de predicción de los cambios en la recarga de agua subterránea en los que el volumen de bombeo se mantiene igual al del 2015.

① Modelo Q0-RP1

• Volumen de recarga de agua subterránea: El volumen se fue reduciendo anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 80% del volumen de recarga del modelo Q0-RP0.

2 Modelo Q0-RP2

• Volumen de recarga de agua subterránea: El volumen se fue reduciendo anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 90% del volumen de recarga del modelo Q0-RP0.

③ Modelo Q0-RP3

• Volumen de recarga de agua subterránea: El volumen se fue aumentando anualmente en la misma proporción de forma tal que el volumen de recarga en 2035 constituya un 110% del volumen de recarga del modelo Q0-RP0.

Los resultados de los cambios en los niveles calculados de agua subterránea del Modelo Básico 2 y los tres casos descritos aparecen en la siguiente figura.

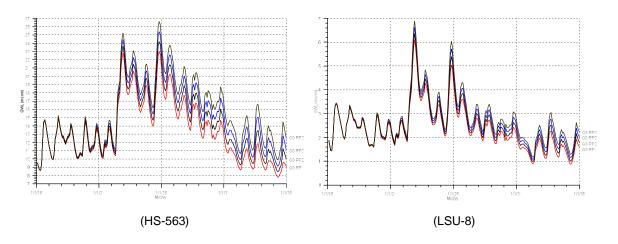
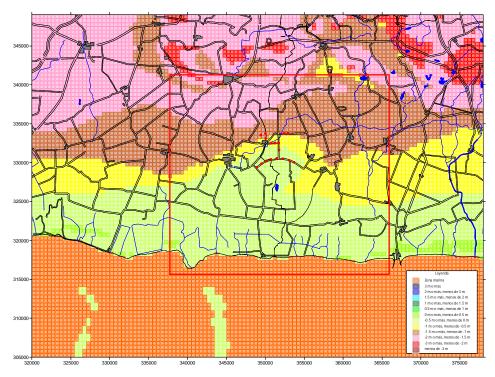
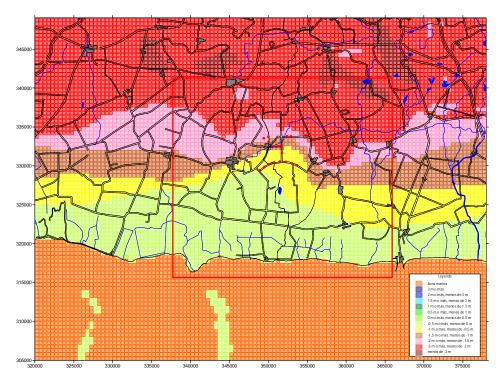




Figura 5-15: Fluctuación en los niveles calculados de agua subterránea ([Modelo Q0-RP0], [Modelo Q0-RP1], [Modelo Q0-RP2] y [Modelo Q0-RP3])

Debajo aparecen las figuras de comparación de la distribución de los niveles calculados de agua subterránea entre el Modelo básico 2 y los tres casos descritos (capa 17). El periodo de comparación es igual al del Modelo básico 1.

(Finales del periodo seco (abril de 2035))

(Finales del periodo de lluvias (octubre de 2035))

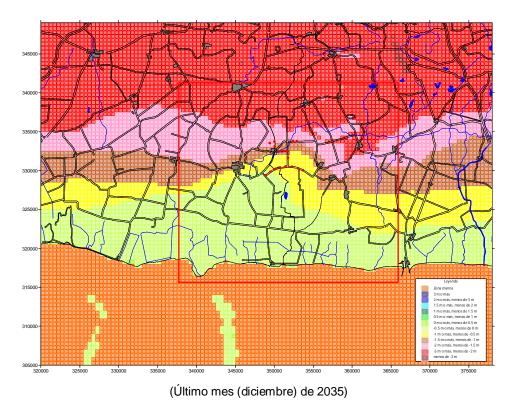
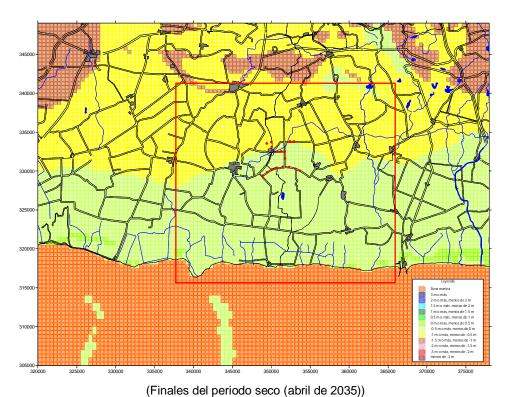
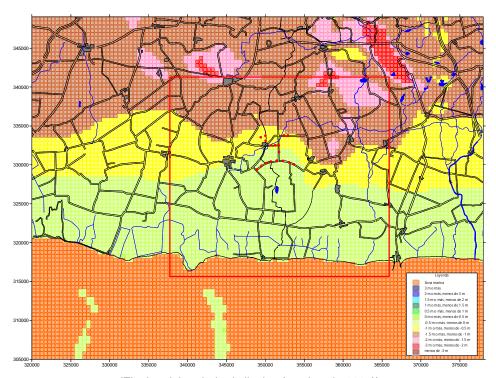




Figura 5-16: Comparación de la distribución de los niveles calculados de agua subterránea (capa 17) del [Modelo Q0-RP0] y el [Modelo Q0-RP1]

(Finales del periodo de lluvias (octubre de 2035))

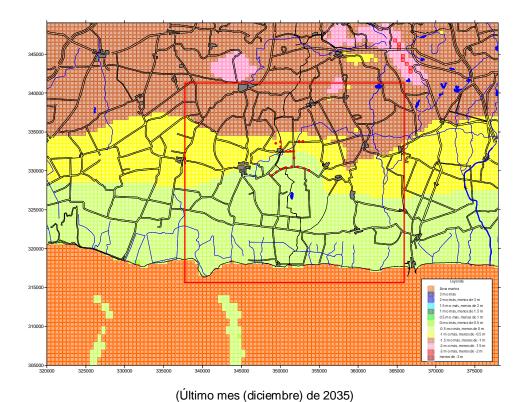
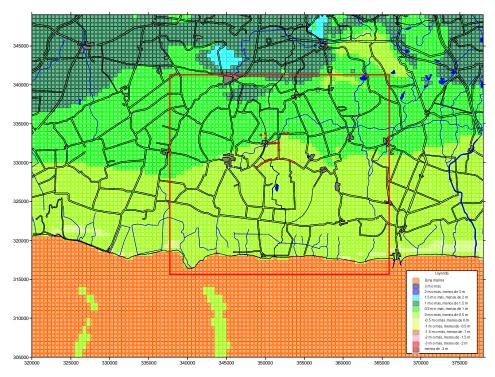
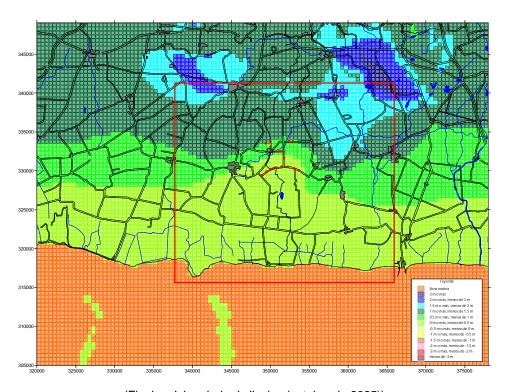




Figura 5-17: Comparación de la distribución de los niveles calculados de agua subterránea (capa 17) del [Modelo Q0-RP0] y el [Modelo Q0-RP2]

(Finales del periodo seco (abril de 2035))

(Finales del periodo de lluvias (octubre de 2035))