Appendix C Results of Intersection Analysis

Peak Hour Traffic at Shukhinthar Intersection (2025) (Traffic Demand Forecast)

Source: JICA Study Team

Appendix C-1: Case of Existing Condition at Shukhinthar Intersection in 2025

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

		Case: 2025 Existing Condition									
Entry		Thanly	/in to TKT	YZN te	o CBD	TKT to	Thanlyin	C	BD to YZ	N	
Direction		LT	TH + RT	LT	TH + RT	LT	TH + RT	LT	TH	RT	
Number of Lane: a		1	1	1	1	1	1	1	1	1	
Basic value of saturation		1,800	2,000	1,800	2,000	1,800	2,000	1,800	2,000	1,800	
Reduction coefficient: c		1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	
Reduction coofficient: d		(3.23)	(3.23)	(3.23)	(3.23)	(3.23)	(3.25)	(3.23)	(3.23)	(3.23)	
(Gradiont: %)		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
(Gradient: 76)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	
(Chara of large vehicle) ()			1.000	1.000		1.000	1.000	1.000	1.000	1.000	
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	
Reduction coefficient: f			0.986		0.996		0.988				
(Share of right turn : %)			(12.8)		(3.7)		(11.2)				
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition tir	ne	2(72)		2(72)		2(72)		2(72)			
(nos./cycle)): h		-(/-/		L (<i>i</i> L)		-(/-)		-(1-)			
Saturation flow ratio:		1 800	1 972	1 800	1 992	1 800	1 976	1 800	2 000	1 800	
i=a*b*c*d*e*f*g		1,000	1,072	1,000	1,002	1,000	1,070	1,000	2,000	1,000	
Traffic volume (ncu/hr): V		1,310	1,330	200	540	60	1,070	220	900	980	
			(170+1160)		(20+520)		(120+950)				
Traffic volume with compensa	tion	1 2 3 8		128		Δ		1/18			
of left turn (pcu/hr): V'=V-h		1,200		120		0		140			
Flow ratio: j=V/i or j=V'/i		0.688	0.674	0.071	0.271	0.000	0.541	0.082	0.450	0.544	
Current cycle length (sec): k						100					
	1φ		0.674				0.541				
Dhase ratio	2φ	0.688				0.000					
Fliase lano	3φ				0.271				0.450	0.544	
	4φ			0.071				0.082			
Demand ratio of intersection *					•	1.988					
	1φ		30				30				
	2φ	29				29					
Current green time (sec): I	30				24				24	24	
	40			5				5			
Capacity (pcu/hr): C=i*l/k or											
$C=i^{1/k}+h^{3}600/k$		594	592	162	478	594	593	162	480	432	
Degree of Saturation: V/C **		2.205	2.247	1.235	1.130	0.101	1.804	1.358	1.875	2.269	
Check		NG	NG	NG	NG	OK	NG	NG	NG	NG	
						.		•••			

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary.

Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Peak Hour Traffic at Shukhinthar Intersection (2025) (Traffic Demand Forecast)

The Supplemental Survey for the Project for Construction of Bago River Bridge

Appendix C-2: Case of Improvement with Widening of Intersection at Shukhinthar Intersection in 2025

C-3

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

					Case	: 2025 Impro	ovement v	vith Wider	ning of Int	ersection
Entry		Tha	anlyin to T	KT	YZN	to CBD	TKT to	Thanlyin	CBD	to YZN
Direction		LT	TH	RT	LT	TH +RT	LT	TH	LT	TH
Number of Lane: a		2	2	1	1	1	1	2	1	2
Basic value of saturation flow rate (PCU/hr): b		1,800	2,000	1,800	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f (Share of right turn : %)						0.996 (3.7)				
Reduction coefficient: g (Share of left turn: %) (No. of left turn for transition til (nos./cycle)): h	me	2(72)			2(72)		2(72)		2(72)	
nos./cycle)): h Saturation flow ratio: =a*b*c*d*e*f*g		3,600	4,000	1,800	1,800	1,992	1,800	4,000	1,800	4,000
Traffic volume (pcu/hr): V		1,310	1,160	170	200	540 (20+520)	60	950	220	900
Traffic volume with compensa of left turn (pcu/hr): V'=V-h	ition	1,238			128		0		148	
Flow ratio: j=V/i or j=V'/i		0.344	0.290	0.094	0.071	0.271	0.000	0.237	0.082	0.225
Current cycle length (sec): k						100				
	1φ		0.290	0.094				0.237		
Phase ratio	2φ	0.344					0.000			
	3φ					0.271				0.225
	4φ				0.071				0.082	
Demand ratio of intersection *						0.987				
	1φ		26	26				26		
Current green time (sec): I	2φ	31					31			
Current green time (sec).						24				24
	4φ				7				7	
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		1,188	1,040	468	198	478	630	1,040	198	960
Degree of Saturation: V/C **		1.103	1.115	0.363	1.010	1.130	0.095	0.913	1.111	0.938
Check		NG	NG	OK	NG	NG	OK	OK	NG	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Peak Hour Traffic at Shukhinthar Intersection (2025)

Source: JICA Study Team

Appendix C-3: Case of Improvement with Left-turn Flyover at Shukhinthar Intersection in 2025

Influence on signal control for descriptive purposes

eignai i naee							
1φ To/Fi YZN	rom I	2φ	To/From YZN	3φ	To/From YZN	4φ	To/From YZN
To/From TK <u>T</u>		To/From TKT	F	+	To/From Thanlyin	.	To/From Thanlyin
1	To/From Thanlyin	3	To/From Thanlyin	To/From TKT	न	To/From TKT	•
	To/From CBD		To/From CBD	To/From CBD	-	To/From CBD	-

Signal Phase

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

					Case: 2	2025 Impr	ovement v	vith Left-tu	rn Flyover
Entry		Thanlyir	n to TKT	YZN	to CBD	TKT to	Thanlyin	CBD t	o YZN
Direction		TH	RT	LT	TH+RT	LT	TH	LT	TH
Number of Lane: a		2	1	1	1	1	2	1	2
Basic value of saturation flow rate (PCU/hr): b		2,000	1,800	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f					0.996				
(Share of right turn : %)					(3.7)				
Reduction coefficient: g									
(Share of left turn: %)									
(No. of left turn for transition tir	ne			2(72)		2(72)		2(72)	
(nos./cycle)): h				2(12)		2(12)		2(12)	
Saturation flow ratio:		1 000	1 800	1 800	1 002	1 800	1 000	1 800	4 000
i=a*b*c*d*e*f*g		4,000	1,000	1,000	1,992	1,000	4,000	1,000	4,000
Traffic volume (pcu/hr): V		1,160	170	200	540 (20+520)	60	950	220	900
Traffic volume with compensa	tion			100		0		140	
of left turn (pcu/hr): V'=V-h				120		0		140	
Flow ratio: j=V/i or j=V'/i		0.290	0.094	0.071	0.271	0.000	0.237	0.082	0.225
Current cycle length (sec): k					100)			
	1φ	0.290	0.094				0.237		
Phase ratio	2φ					0.000			
	3φ				0.271				0.225
	4φ			0.071				0.082	
Demand ratio of intersection *	0				0.64	.3		1	
	1φ	37	37				37		
Current green time (sec). I	2φ					5			
Surrent green time (sec). 1 3					34				34
	4φ			12				12	
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		1,480	666	288	677	162	1,480	288	1,360
Degree of Saturation: V/C **		0.784	0.255	0.694	0.798	0.370	0.642	0.764	0.662
Check		OK	OK	OK	OK	OK	OK	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Appendix C-4: Case of Improvement with Straight Flyover at Shukhinthar Intersection in 2025

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

	Case: 2025 Improvement with Straight Flyover											
Entry		Thanlyir	n to TKT	YZN	to CBD	TKT to Thanlyin	CBD t	o YZN				
Direction		LT	RT	LT	TH+RT	LT	LT	TH				
Number of Lane: a		2	1	1	1	2	1	2				
Basic value of saturation flow rate (PCU/hr); b		1,800	1,800	1,800	2,000	1,800	1,800	2,000				
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000				
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)				
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000				
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)				
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000				
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)				
Reduction coefficient: f					0.996							
(Share of right turn : %)					(3.7)							
Reduction coefficient: g												
(Share of left turn: %)												
(No. of left turn for transition tin	me			2(72)			2(72)					
(nos./cycle)): h				2(72)			2(72)					
Saturation flow ratio:		3 600	1 900	1 900	1 002	3 600	1 900	4 000				
i=a*b*c*d*e*f*g		3,000	1,000	1,000	1,992	3,000	1,000	4,000				
Traffic volume (pcu/hr): V		1,310	170	200	540 (20+520)	60	220	900				
Traffic volume with compensa of left turn (pcu/hr): V'=V-h	tion			128			148					
Flow ratio: j=V/i or j=V'/i		0.364	0.094	0.071	0.271	0.017	0.082	0.225				
Current cycle length (sec): k					100)						
	1φ	0.364	0.094			0.017						
Phase ratio	2φ				0.271			0.225				
	3φ			0.071			0.082					
Demand ratio of intersection *					0.71	7						
	1φ	45	45			45						
Current green time (sec): I					34			34				
	3φ			11			11					
Capacity (pcu/hr): C=i*l/k or i*l/k+h*3600/k		1,620	810	270	677	1,620	270	1,360				
Degree of Saturation: V/C **		0.809	0.210	0.741	0.798	0.037	0.815	0.662				
Check		OK	OK	OK	OK	OK	OK	OK				

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Influence on signal control

Peak Hour Traffic at Shukhinthar Intersection (2025)

Appendix C-5: Case of Improvement with Straight Flyover and Left-turn Flyover at Shukhinthar

Intersection in 2025

C-9

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

Case: 2025 Improvement with Straight and Left-turn Flyover											
Entry		Thanlyir	n to TKT	YZN t	o CBD	TKT to	Thanlyin	CBD t	o YZN		
Direction		TH	RT	LT	TH+RT	LT	TH	LT	TH		
Number of Lane: a		1	1	1	1	1	1	1	2		
Basic value of saturation		2 000	1 800	1 800	2 000	1 800	2 000	1 800	2 000		
flow rate (PCU/hr): b		2,000	1,000	1,000	2,000	1,000	2,000	1,000	2,000		
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)		
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)		
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		
Reduction coefficient: f					0.996						
(Share of right turn : %)					(3.7)						
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition tir	ne			2(72)				2(72)			
(nos./cycle)): h				2(12)				2(12)			
Saturation flow ratio:		2 000	1 800	1 800	1 002	1 800	2 000	1 800	4 000		
i=a*b*c*d*e*f*g		2,000	1,000	1,000	1,992	1,000	2,000	1,000	4,000		
Traffic volume (pcu/hr): V		0	170	200	540 (20+520)	60	0	220	900		
Traffic volume with compensa	tion			100				140			
of left turn (pcu/hr): V'=V-h				120				140			
Flow ratio: j=V/i or j=V'/i		0.000	0.094	0.071	0.271	0.033	0.000	0.082	0.225		
Current cycle length (sec): k					10	0					
	1φ	0.000	0.094			0.033	0.000				
Phase ratio	2φ				0.271				0.225		
	3φ			0.071				0.082			
Demand ratio of intersection *					0.4	47					
	1φ	18	18			18	18				
Current green time (sec): I	2φ				52				52		
	3φ			20				20			
Capacity (pcu/hr): C=i*l/k or i*l/k+h*3600/k		360	324	432	1,036	324	360	432	2,080		
Degree of Saturation: V/C **		0.000	0.525	0.463	0.521	0.185	0.000	0.509	0.433		
Check		OK	OK	OK	OK	OK	OK	OK	OK		

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Appendix C-6: Case of Existing Condition at Yadanar Intersection in 2025

eignai i naee		1					
1φ To/F YZN	rom I	2φ To/F YZN	rom	3φ	To/From YZN	4φ	To/From YZN
To/From TKT	+	To/From TKT	ſ	+	To/From Thanlyin	Ļ	To/From Thanlyin
+	To/From Thanlyin	2	To/From Thanlyin	To/From TKT	+	To/From TKT	1
	To/From CBD		To/From CBD	To/From CBD	_	To/From CBD	

Signal Phase

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Yadanar Intersection

		Case: 2025 Ex								25 Existing	g Condition
Entry		Th	anlyin to T	ΤK	YZN	to CBD	TK	T to Than	lyin	CBD	to YZN
Direction		LT	TH	TH+RT	LT	TH+RT	LT	TH	TH+RT	LT	TH+RT
Number of Lane: a		1	1	1	1	1	1	1	1	1	1
Basic value of saturation		1 000	0.000	2 000	1 000	2,000	1 000	0.000	2 000	1 000	2 000
flow rate (PCU/hr): b		1,800	2,000	2,000	1,800	2,000	1,800	2,000	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f				0.980		0.960			0.971		0.993
(Share of right turn : %)				(18.5)		(37.4)			(27.4)		(6.8)
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition til	me	2(72)			2(72)		2(72)			2(72)	
(nos./cycle)): h		2(72)			2(72)		2(72)			2(72)	
Saturation flow ratio:		1 000	2 000	1 000	1 000	1.000	1 000	2 000	1 0 4 0	1 000	1.000
i=a*b*c*d*e*f*g		1,800	2,000	1,960	1,800	1,920	1,800	2,000	1,942	1,800	1,986
Traffia valuma (pau/br): V		50	1,3	300	50	1,550	520	1,2	240	140	730
Traine volume (peu/iir). v			(120+1180)			(580+970)		(170+1070)			(50+680)
Traffic volume with compensa	tion	0			0		110			69	
of left turn (pcu/hr): V'=V-h		0			0		440			00	
Flow ratio: j=V/i or j=V'/i		0.000	0.3	328	0.000	0.807	0.249	0.3	315	0.038	0.368
Current cycle length (sec): k						10	0				
	1φ		0.3	328				0.3	315		
Phase ratio	2φ	0.000					0.249				
r hase ratio	3φ					0.807					0.368
	4φ				0.000					0.038	
Demand ratio of intersection *						1.43	22				
	1φ		2	20				2	20		
Current green time (sec):	2φ	14					14				
Current green time (sec).	3φ					49					49
	4φ				5					5	
Capacity (pcu/hr): C=i*I/k or		324	70	<u>.</u>	162	0/1	324	79	88	162	073
C=i*l/k+h*3600/k		524		52	102	341	524			102	915
Degree of Saturation: V/C **		0.154	1.6	641	0.309	1.647	1.605	1.5	574	0.864	0.750
Check		OK	N	IG	OK	NG	NG	N	IG	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

The Supplemental Survey for the Project for Construction of Bago River Bridge

Sufficiency (Saturation) Analysis of Yadanar Intersection

Case: 2025 Improvement with Straight Flyover									
Entry		Thanly	in to TKT	YZN	to CBD	TKT to	Thanlyin	CBD	to YZN
Direction		LT	TH+RT	TH+LT	TH+RT	LT	TH+RT	TH+LT	TH+RT
Number of Lane: a		1	1	1	1	1	1	1	1
Basic value of saturation		1 800	2 000	2 000	2 000	1 800	2 000	2 000	2 000
flow rate (PCU/hr): b		1,000	2,000	2,000	2,000	1,000	2,000	2,000	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f			0.950		0.926		0.925		0.988
(Share of right turn : %)			(48.0)		(72.5)		(73.9)		(11.5)
Reduction coefficient: g			, ,	0.917				0.542	
Share of left turn: %)				(6.3)				(32.2)	
No. of left turn for transition time		0(70)		0(70)		0(70)		0(70)	
(nos./cycle)): h		2(72)		2(72)		2(72)		2(72)	
Saturation flow ratio:		1 000	1 000	1 0 0 4	1.050	1 000	1 050	1 0 0 1	1.076
i=a*b*c*d*e*f*g		1,000	1,900	1,034	1,002	1,000	1,000	1,004	1,970
Traffia voluma (nou/br): \/		50	250	1	,600	520	230	8	70
			(120+130)	(50+5	80+970)		(170+60)	(140+	50+680)
Traffic volume with compensa	tion	0				440			
of left turn (pcu/hr): V'=V-h		0				440			
Flow ratio: j=V/i or j=V'/i		0.000	0.132	0	.434	0.249	0.124	0.3	284
Current cycle length (sec): k					100)			
	1φ		0.132				0.124		
Phase ratio	2φ	0.000				0.249			
	3φ			0	.434			0.1	284
	4φ								
Demand ratio of intersection *					0.81	5			
	1φ		16				16		
Current green time (sec): I	2φ	23				23			
	3φ				41			4	1 1
	4φ								
Capacity (pcu/hr): C=i*l/k or		486	304	1	511	486	296	1 '	255
C=i*l/k+h*3600/k		400	507	1	,011	-00	230	1,255	200
Degree of Saturation: V/C **		0.103	0.822	1.	.059	1.070	0.777	0.693	
Check		OK	OK		NG	NG	OK	(ЭК

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Parenthetic numbers are not considered in intersection enalysis because of having noinfluence on signal control for descriptive purposes

Sufficiency (Saturation) Analysis of Thaketa Intersection

Sumclency (Saturation) Analys	515 01 1		ecuon				Case: 20	25 Improveme	ent with Signal
Entry		Dagon to In	ner Ring Rd	New Tu to Ba	wunna Br Igo Br	Inner Ring F	Rd to Dagon	Bago New Tuy	Br to wunna Br
Direction		LT	TH	LT	ТН	LT	TH	LT	TH
Number of Lane: a		1	1	1	1	1	1	2	2
Basic value of saturation flow rate (PCU/hr); b		1,800	2,000	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.00)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f (Share of right turn : %)									
Reduction coefficient: g									
(Share of left turn: %)									
(No. of left turn for transition til	me	0(70)		0(70)		0(70)		0(70)	
(nos./cycle)): h		2(72)		2(72)		2(72)		2(72)	
Saturation flow ratio:		1 000	2 000	1 800	2 000	1 000	2 000	2 600	4 000
i=a*b*c*d*e*f*g		1,600	2,000	1,800	2,000	1,800	2,000	3,600	4,000
Traffic volume (pcu/hr): V		480	360	378	756	124	620	450	600
Traffic volume with compensat	ation	408		306		52		378	
Flow ratio: i=V/i or i=V'/i		0 227	0 180	0 170	0.378	0.029	0.310	0 105	0 150
Current cycle length (sec): k		0.221	0.100	01110	10	00	0.0.0	0.100	0.100
	1σ		0.180				0.310		
Bharran (b)	2φ	0.227				0.029			
Phase ratio	3φ				0.378				0.150
	4φ			0.170				0.105	
Demand ratio of intersection *				•	1.0	85			•
	1φ		26				26		
Current groop time (app): I	2φ	18				18			
Current green time (sec). I	3φ				31				31
	4φ			13				13	
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		396	520	306	620	396	520	540	1,240
Degree of Saturation: V/C **		1.212	0.692	1.235	1.219	0.313	1.192	0.833	0.484
Check		NG	OK	NG	NG	OK	NG	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control for descriptive purposes

Sufficiency (Saturation) Analysis of Thaketa Intersection

				Case: 202	5 Improveme	nt with Signal a	and Straight Flyover
Entry		Dagon to In	ner Ring Rd	New Tuwunna	Inner Ring F	Pd to Dagon	Bago Br to New
		Dayon to m		Br to Bago Br	The Ring I	tu to Dagon	Tuwunna Br
Direction		LT	TH	LT	LT	TH	LT
Number of Lane: a		1	1	2	1	1	2
Basic value of saturation		1 900	2 000	1 900	1 900	2 000	1 900
flow rate (PCU/hr): b		1,000	2,000	1,000	1,000	2,000	1,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f							
(Share of right turn : %)							
Reduction coefficient: g							
(Share of left turn: %)							
(No. of left turn for transition til	me	2(72)			2(72)		
(nos./cycle)): h		2(72)			2(72)		
Saturation flow ratio:		1 900	2 000	2 600	1 900	2 000	2 600
i=a*b*c*d*e*f*g		1,800	2,000	3,000	1,800	2,000	3,600
Traffic volume (pcu/hr): V		480	360	378	124	620	450
Traffic volume with compensa	ation	400			-0		
of left turn (pcu/hr): V'=V-h		408			52		
Flow ratio: j=V/i or j=V'/i		0.227	0.180	0.105	0.029	0.310	0.125
Current cycle length (sec): k			•	•	100	•	•
	1φ		0.180			0.310	
Phase ratio	2φ	0.227			0.029		
	3φ			0.105			0.125
Demand ratio of intersection *				(0.662		•
	1φ		42			42	
Current green time (sec): I	2φ	32			32		
	3φ			16			16
Capacity (pcu/hr): C=i*l/k or		649	840	576	649	940	576
C=i*l/k+h*3600/k		040	040	570	040	040	570
Degree of Saturation: V/C **		0.741	0.429	0.656	0.191	0.738	0.781
Check		OK	OK	OK	OK	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

To/From: Residential Area

Appendix C-10: Case of Existing Condition at Thilawa Intersection in 2025

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

	Case: 2025 Existing Condition											
Entry		Thilawa te	o Yangon	From Resid	dential Area	Yangon t	o Thilawa					
Direction		LT	TH	LT	RT	TH	RT					
Number of Lane: a		1	1	1	1	1	1					
Basic value of saturation		1 900	2 000	1 900	1 900	2 000	1 800					
flow rate (PCU/hr): b		1,000	2,000	1,000	1,000	2,000	1,000					
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000					
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)					
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000					
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)					
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000					
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)					
Reduction coefficient: f												
(Share of right turn : %)												
Reduction coefficient: g												
(Share of left turn: %)												
(No. of left turn for transition til	me											
(nos./cycle)): h												
Saturation flow ratio:		1 900	2 000	1 900	1 900	2 000	1 800					
i=a*b*c*d*e*f*g		1,000	2,000	1,800	1,800	2,000	1,000					
Traffic volume (pcu/hr): V		582	1,706	1,268	684	1,602	945					
Traffic volume with compensa	ition											
of left turn (pcu/hr): V'=V-h												
Flow ratio: j=V/i or j=V'/i		0.323	0.853	0.704	0.380	0.801	0.525					
Current cycle length (sec): k				10	00							
	1φ		0.801			0.801	0.525					
Phase ratio	2φ	0.323	0.052		0.323		0.000					
	3φ			0.704	0.057		0.000					
Demand ratio of intersection *				1.8	328							
	1φ		38			38	38					
Current green time (sec): I		16	16		16		16					
	3φ			34	34		34					
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		288	1,080	612	900	760	1,584					
Degree of Saturation: V/C **		2.021	1.580	2.072	0.760	2.108	0.597					
Check		NG	NG	NG	OK	NG	OK					

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

To/From: Residential Area

The Supplemental Survey for the Project for Construction of Bago River Bridge

Appendix C-11: Case of Improvement with Widening of Intersection at Thilawa Intersection in 2025

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

Case: 2025 Improvement with Widening of Inters											
Entry		Thilawa t	o Yangon	From Resi	dential Area	Yangon t	o Thilawa				
Direction		LT	TH	LT	RT	TH	RT				
Number of Lane: a		1	2	2	1	2	1				
Basic value of saturation		1 900	2 000	1 900	1 900	2 000	1 900				
flow rate (PCU/hr): b		1,000	2,000	1,000	1,000	2,000	1,000				
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000					
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)				
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000				
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)				
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000				
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)				
Reduction coefficient: f											
(Share of right turn : %)											
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition til	me										
(nos./cycle)): h											
Saturation flow ratio:		1 900	4.000	2 600	1 900	4 000	1 900				
i=a*b*c*d*e*f*g		1,000	4,000	3,000	1,000	4,000	1,000				
Traffic volume (pcu/hr): V		582	1,706	1,268	684	1,602	945				
Traffic volume with compensa	tion										
of left turn (pcu/hr): V'=V-h											
Flow ratio: j=V/i or j=V'/i		0.323	0.426	0.352	0.380	0.400	0.525				
Current cycle length (sec): k				. 10	00	•	•				
	1φ		0.400			0.400	0.400				
Phase ratio	2φ	0.323	0.026		0.323		0.125				
	3φ			0.352	0.057		0.000				
Demand ratio of intersection *			•	1.(075	•					
	1φ		32			32	32				
Current green time (sec): I	2φ	27	27		27		27				
	3φ			29	29		29				
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		486	2,360	1,044	1,008	1,280	1,584				
Degree of Saturation: V/C **		1.198	0.723	1.215	0.679	1.252	0.597				
Check		NG	OK	NG	OK	NG	OK				

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

C-23

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Case: 2025 Improvement with Straight Flyo											
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Entry		Thilawa t	o Yangon	From Resi	dential Area	Yangon t	o Thilawa				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Direction		LT	TH	LT	RT	TH	TH+RT				
Basic value of saturation flow rate (PCU/hr): b 1,800 2,000 1,800 1,800 2,000 2,000 Reduction coefficient: c (Gradient' %) 1,000	Number of Lane: a		1	1	2	1	1	1				
flow rate (PCU/hr): b 1.000	Basic value of saturation		1 800	2 000	1 800	1 800	2 000	2 000				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	flow rate (PCU/hr): b		.,	_,	.,	.,	_,	_,				
$\begin{array}{ c $	Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000				
Reduction coefficient: f 0.901 Reduction coefficient: g 0.901 Reduction coefficient: g 0.901 (Share of left turn ?%) 1.800 2.000 3.600 1.800 2.000 1.800 Saturation flow ratio: 1.800 2.000 3.600 1.800 2.000 1.802 i=a*b*c*d*e*f*g 1.800 2.000 3.600 1.800 2.000 1.802 Traffic volume (pcu/hr): V 582 206 1.268 684 1.147 Traffic volume with compensation of left turn (pcu/hr): V'=V-h 0.323 0.103 0.352 0.380 0.302 Current cycle length (sec): k 1 0.103 0.352 0.007 0.302 Phase ratio 1 0.103 0.352 0.057 0.302 Demand ratio of intersection * 0.0103 0.352 0.057 0.977 Current green time (sec): I 1 27 27 27 27 Qurrent green time (sec): I 1.20 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k or C=i*I/k or C=i*I/k+h*360/k 522	(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reduction coefficient: f							0.901				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Share of right turn : %)											
	Reduction coefficient: g											
	(Share of left turn: %)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(No. of left turn for transition tir	me										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(nos./cycle)): h											
$\begin{array}{c c c c c c c c c } i=a^*b^*c^*d^*e^{*f^*g} & 1,800 & 2,000 & 3,600 & 1,800 & 2,000 & 1,802 & 1,80$	Saturation flow ratio:		1 000	2 000	2 000	1 000	2 000	1 000				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i=a*b*c*d*e*f*g		1,800	2,000	3,600	1,800	2,000	1,002				
Traffic volume with compensation of left turn (pcu/hr): V'=V-h 0.323 0.103 0.352 0.380 0.302 Flow ratio: j=V/i or j=V'/i 0.323 0.103 0.352 0.380 0.302 Current cycle length (sec): k 100 100 0.302 Phase ratio 2φ 0.323 0.000 0.323 3φ 0.302 0.057 0.302 Demand ratio of intersection * 0.977 27 27 Current green time (sec): I 1φ 27 27 27 3φ 3q 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Traffic volume (pcu/hr): V		582	206	1,268	684	1,1 (945-	47 +202)				
of left turn (pcu/hr): V'=V-h 0.323 0.103 0.352 0.380 0.302 Flow ratio: j=V/i or j=V'i 0.323 0.103 0.352 0.380 0.302 Current cycle length (sec): k 100 100 0.302 Phase ratio 1♀ 0.103 0.352 0.002 2♀ 0.323 0.000 0.323 0.007 Demand ratio of intersection * 0.977 27 27 Current green time (sec): I 1♀ 2♀ 29 29 3♀ 3♀ 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Traffic volume with compensa	tion						,				
Flow ratio: j=V/i or j=V/i 0.323 0.103 0.352 0.380 0.302 Current cycle length (sec): k 100 Phase ratio 1q 0.103 0.352 0.380 0.302 Phase ratio 1q 0.103 0.323 0.000 0.323 Operation 1q 0.103 0.352 0.380 0.302 Demand ratio of intersection * 0.323 0.000 0.323 0.007 Demand ratio of intersection * 0.977 27 27 27 Current green time (sec): I 1q 2q 29 29 29 29 3q 3q 32 33 33 33 33	of left turn (pcu/hr): V'=V-h											
Current cycle length (sec): k 100 Phase ratio 1 ϕ 0.103 0.302 2ϕ 0.323 0.000 0.323 3ϕ 0.352 0.057 Demand ratio of intersection * 0.977 Current green time (sec): I 2ϕ 29 29 3ϕ 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k +h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Flow ratio: j=V/i or j=V'/i		0.323	0.103	0.352	0.380	0.3	802				
Image: boot of the section intersection interse	Current cycle length (sec): k				. 10	0	•					
Phase ratio 2φ 0.323 0.000 0.323 3φ 0.352 0.057 0.057 Demand ratio of intersection * 0.977 27 27 Current green time (sec): I 2φ 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		1φ		0.103			0.3	802				
3φ 0.352 0.057 Demand ratio of intersection * 0.977 1φ 27 27 2φ 29 29 3φ 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Phase ratio	2φ	0.323	0.000		0.323						
Demand ratio of intersection * 0.977 Current green time (sec): I 10 27 27 27 20 29 29 29 29 30 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		3φ			0.352	0.057						
1φ 27 27 Current green time (sec): I 2φ 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Demand ratio of intersection *				0.9	977						
Current green time (sec): I 2φ 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		1φ		27			2	7				
3φ 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Current green time (sec): I	2φ	29	29		29						
Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		3φ			32	32						
Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		522	1,120	1,152	1,098	1,0	027				
Check NG OK NG OK NG	Degree of Saturation: V/C **		1.115	0.184	1.101	0.623	1.1	17				
	Check		NG	OK	NG	OK	N	G				

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

To/From: Residential Area

The Supplemental Survey for the Project for Construction of Bago River Bridge

Appendix C-13: Case of Improvement with On-ramp at Thilawa Intersection in 2025

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

Case: 2025 Improvement with C												
Entry		Thilawa t	o Yangon	From Resi	dential Area	Yangon t	o Thilawa					
Direction		LT	TH	LT	RT	TH	RT					
Number of Lane: a		1	2	1	1	2	1					
Basic value of saturation		1 800	2 000	1 800	1 800	2 000	1 800					
flow rate (PCU/hr): b		1,000	2,000	1,000	1,000	2,000	1,000					
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000					
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)) (3.25) (3						
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000					
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)					
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000					
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)					
Reduction coefficient: f												
(Share of right turn : %)												
Reduction coefficient: g												
(Share of left turn: %)												
(No. of left turn for transition til	me											
(nos./cycle)): h												
Saturation flow ratio:		1 000	4.000	1 000	1 000	4.000	1 000					
i=a*b*c*d*e*f*g		1,000	4,000	1,000	1,000	4,000	1,000					
Traffic volume (pcu/hr): V		582	1,706	6	684	1,602	945					
Traffic volume with compensa	tion											
of left turn (pcu/hr): V'=V-h												
Flow ratio: j=V/i or j=V'/i		0.323	0.426	0.003	0.380	0.400	0.525					
Current cycle length (sec): k				. 10	02		•					
	1φ		0.400			0.400	0.400					
Phase ratio	2φ	0.323	0.026		0.323		0.125					
	3φ			0.003	0.057		0.000					
Demand ratio of intersection *			•	0.7	780							
	1φ		46			46	46					
Current green time (sec): I	2φ	37	37		37		37					
	3φ			7	7		7					
Capacity (pcu/hr): C=i*l/k or		653	3,255	124	776	1,804	1,588					
Degree of Saturation: V/C **		0.891	0.524	0.048	0.881	0.888	0.595					
Check		OK	0K	OK	OK	OK	OK					
Oneon												

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Appendix D Cost Data

Pre-Conditions for Cost Estimation

1. General Conditions

Defect Liablity Period

12 months

Cost Breakdown for Package

USD	=JPY	109.9
USD	=JPY	109.9

	Local	Total
item	USD	JPY
Land Acquisition	296, 592	32, 595, 461

Right Bank Side(Package 2)

Right Bank Side(Package	100						
			Unit P	rice	Co	ost	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	TOLAI
			JPY	USD	JPY	USD	JPY
Substructure (Reverse T- shaped Abutment A1)	L. S.	1			20,838,029	401,616	64,975,628
Substructure (Pier on land P1- P2)	L. S.	1			34,989,962	679,481	109,664,924
Substructure (Pier on river P3- P13)	L. S.	1			1,862,407,821	7,809,382	2,720,658,903
Steel box girder bridge (Superstructure)	L. S.	1			3,825,178,631	4,453,300	4,314,596,301
PC Precast Box Girder (Superstructure A1-P6)	L. S.	1			819,649,037	4,207,377	1,282,039,769
Access Road	L. S.	1			95,058,005	1,431,450	252,374,360
Miscellaneous work	L. S.	1			803,163,267	13,683,952	2,307,029,592
Dispute Board					70,226,100		70,226,100
Total	\square				7,531,510,852	32,666,558	11,121,565,576

Left Bank Side(Packege 3	100						
			Unit P	rice	Co	st	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	TOLA
			JPY	USD	JPY	USD	JPY
Substructure (Reverse T- shaped Abutment A2)	L. S.	1			20,501,186	396,524	64,079,173
Substructure (Pier on land P21-P23)	L. S.	1			52,813,544	1,024,773	165,436,097
Substructure (Pier on river P14-P20)	L. S.	1			1,606,897,905	6,945,090	2,370,163,296
Steel cable stayed bridge (Superstructure)	L. S.	1			4,509,197,330	5,230,192	5,083,995,431
PC Precast Box Girder (Superstructure P16-A2)	L. S.	1			931,383,487	4,839,891	1,463,287,508
Approach Road	L. S.	1			242,280,045	3,652,050	643,640,340
Miscellaneous work	L. S.	1			539,118,406	6,581,584	1,262,434,488
Flyover at Thanlyin side	L. S.	1			167,541,451	1,346,355	315,505,866
Dispute Board	L. S.	1			70,226,100		70,226,100
Total		\nearrow			8,139,959,454	30,016,459	11,438,768,298

Flyover at Yangon side(P	gon side(Package 1) Loan Coverage Ratio										
			Unit P	rice	C	ost	Total				
item	unit	Quantity	Foreign	Local	Foreign	Local	TOLA				
			JPY	USD	JPY	USD	JPY				
Flyover at Yangon side	L. S.	1			1,265,165,613	7,566,349	2,096,707,368				
Dispute Board	L. S.	1			15,990,450		15,990,450				
Total	\checkmark				1,281,156,063	7,566,349	2,112,697,818				

6-lane widening(Packa	ackage 1) Loan Coverage Ratio												
			Unit P	rice	Co	ost	Total						
item	unit	Quantity	Foreign	Local	Foreign	Local	Total						
			JPY	USD	JPY	USD	JPY						
6-lane widening	L. S.	1			0	1,582,600	173,927,740						
Total					0	1,582,600	173,927,740						
Utility relocation					L	oan Coverage Ratio							

			Unit P	rice	C	ost	Total	
item	unit	Quantity	Foreign	Local	Foreign	Local	JPY	
			JPY	USD	JPY	USD		
Utility relocation	L. S.	1				663,402	72,907,880	
Total	\checkmark				0	663,402	72,907,880	

Implementation Schedule

			2016				2017			2018			2019				2020					2021				Mo	onth					
	4	4 5 (678	9 10 1	1 12	1 2 3	4 5	678	9 10 1	1 12 1	2 3	4 5 E	78	9 10 11	12 1	2 3 4	5 6	789	10 11	12 1	2 3	4 5 6	78	9 10 1	1 12 1	2 3	4 5 6	789	9 10 11	12 1 2	3	
	_		\Box																										++++		-	0
Pledge																											+++				_	0
Signing of Loan Agreement	_								11																		111		\downarrow			0
	_																										\square					0
Consulting Services	_																															0
(1) Selection of Consulting Firm (3months) : By JICA			1 1	1																												3
																																0
(2) Detailed Design (12months) : JICA Grant				1	1 1	1 1 1	1 1	1 1 1	1																		111				-	12
Detailed Design & Preparation of Tender Documents(10months)				1	1 1	1 1 1	1 1	1 1		111															111		+++		+++			10
Report(2months)								1	1																		++		\square			2
																											++	\square	+++			-
(2) Selection of Consultant(42months)				1 1	 	1 1 1	1 1	1 1	11							1					1		11	11		1	+++		$\pm\pm$			10
																											+		+++		1 1	12
																											\pm		$\pm\pm\pm$			0
(4) Selection of Contractors for Construction										1 1 1																	$\pm \pm$	===	\pm			12
Review of Tender Documents and JICA Approval (2.5months)									1 0.5																			#			_	3
Tender Period (2months)									0.5	10.5																	+++	\pm	+++		_	2
Evaluation of Bids and JICA Approval (3.5months)										0.5 1	1 1																++					4
Approval of Contract / JICA Review (1month)	_							111				1											11	11			\downarrow \downarrow		+++			1
Review by Government of Myanmar (1.5months)	_											1 0.5																				2
Issurance of Notice of Award in the form of Letter of Acceptance (1month)		İİ.	11		İİ.	11		111		111		0.5	0.5			1	İİ.		İİ.		1	111	11	11	111	11	111					1
Signing of Contract / JICA's Concurrence to Contract (0.5months)		11		11			11	111		111			0.5											11	111		111		$\pm\pm\pm$			1
																											+++		+++			0
(5) Construction Supervision (32months)										111	1		1	1 1 1	1 1	1 1 1	1 1	1 1 1	1 1	1 1	1 1	1 1 1	1 1	1 1	1 1 1	1 1	++		+++			32
										111																	++		+++		- `	0
																										- Y.				1 1 1	1	10
(6) Delect Liability Period (12montris)		i i	i i	11	11	111	11	111	11	111	11			11		1	11		11		11	111	11	11	111		111					12
																											\pm	#	\pm		-	0
																											$\pm\pm$	===			_	0
																												\pm			_	0
																!											+++		+++			0
Land Acquisition				0					12					5					0					0					0		- 1	17
	_	+	+	++	+					1 1			1	++-	\vdash	++-	+	\vdash	+	+++		+	++	++	+		+++	++-	+++	+++	-	
				0	-11		1 1		0		-			8			11	1	2					12					0		3	32
Right Bank Side(Package 2)									11				1	1 1 1	1 1	1 1 1	1 1	1 1 1	1 1	1 1	1 1	1 1 1	1 1	1 1	1 1 1	1 1	Def	ect Notif	ication P	eriod		
Left Park Side (Parkage 2)			: :	0			1.1	: : :	0			1 1		8				1	2		1 1	4 4 4	4 4	12	ام ام ام	4 4			0		3	32
Leit Bank Side(Packege 3)		!!	! !	0	!!	!!		111	0	1 1 1			<u>i</u> [¹]	8 8	i i i	1 I I	ו וי ו	ر ار ار ا	<u>ן דין</u> 7	إدادا	i i	زر ار ار	n i	0	it it i		Def	ect Notif	ication P 0	eriod	1	15
Flyover at Yangon side(Package 1)				ĬI					Ĩ I				1	1 1 1	1 1	1 1 1	1 1	1 1 1	1		-i			ĩ i	;;;		Def	fect Notif	fication P	eriod		
· · · · ·				0					0					8					7					0		.			0		1	15
6-lane widening(Package 1)									12				1	1 1 1	1 1	1 1 1	1 1	1 1 1	1				11									47
I Itility relocation		11	1.1	U	1.1	11	1 1	1 1 1	1Z	1. 1. 1.	1 1	1 1 1	1 1	э 					U 			1 1 1	1.1	U I I			111			111		17

Cost Breakdown for the Consulting Services

					USD	= JPY	109.9
					USD	= JPY	109.9
							Combined
		1	Foreign	Portion	Local P	ortion	Total
		i i	(JP)	Y)	US	D	
	Unit	Qty.	Rate	Amount	Rate	Amount	('000)
				('000)		('000)	JPY
A Remuneration							
1 Professional (A)	M/M	314	3, 073, 000	964, 922	0	0	964, 922
2 Professional (B)	M/M	46/	0	0	2,800	1, 308	143, 705
3 Supporting Staffs	M/M	222	0	0	830	184	20, 250
Subtotal of A				964, 922		1, 492	1, 128, 877
B Direct Cost							
1 International Airfare	no	34	200, 000	6, 800		0	6, 800
2 Domestic Airfare	no	215		0	250	54	5, 907
3 Domestic Travel	no	34	30, 000	1, 020		0	1,020
3 Accommodation Allowance	Month	314	300, 000	94, 200		0	94, 200
4 Vehicle Rental	Month	96		0	3, 750	360	39, 564
5 International Communications	Month	51	30, 000	1, 530		0	1, 530
 Domestic Communications 		0		0	020	Q	010
o (pre-construction)	Month	J		U	920	U	910
7 Domestic Communications		2		0	1 310	3	288
(construction-supervision)	Month	-			1, 010		200
8 Office Supply	Month	51		0	480	24	2,690
9 Office Furniture and Equipment	L.S			U	81, 150	81	8, 918
10 Field Allowance	Month	467		0	100	47	5, 132
Field Allowance	Month						,
11 Field Allowalice	Month	222		0	70	16	1, 708
12 Technology Transfer(O,IT)	LS	1	10 156 409	10 156		0	10 156
Technology Transfer	2.0			10, 100			10, 100
13 (Operaiton Trainning in Japan)	L.S		15, 000, 000	15, 000		U	15,000
Subtotal of B				128, 706		593	193, 824
Total				1, 093, 628		2, 084	1, 322, 702

Manning Schedule for the Consulting Services

Г		Position	Billing Rate	2016	2017	2018	2019	2020	2021	
F	_		F/C JPY LC/ USI	0 4 5 6 7 8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12 1 2 3	Total
L L	_								<u></u>	
_		Colorities of Contraction	0		▋╎╎╎╎╎╎╎╎╎╎		[+ + + + + + + + + + + + + + + + + + +	▋┤┼┼┼┼┼┼┼┼┤		0
		Selection of Contractor	0							0
	23	Project Manager	3,073,000							
	24	Cost Estimator/Construction Planner	3,073,000							0
	25	Document Specialist	3,073,000						<u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</u>	
,	1 20	Social Considerations Specialist	3,073,000		▋┼┼┼┞╬╬┼┼┼┼┼				▲ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼	
-	10	Doputy Broject Manager	0 280						▲ \ \ \ \ \ \ \ \ \ \ \ \ \	12
	2 20	Oughtity Support Cost Estimator 1	0 2,00						▲ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ──	6
-	20	Document Specialist	0 2,00							12
	2 21	Posial Canaidarationa Export	0 2,00						▲ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ┼ ──	12
-	> 22	Social Considerations Expert	0 2,00		▋┼┼┼╀╩╩┼┼┼┼┼┤					
-		Construction Suparvision	0		▋┼┼┼┼┼┼┼┼┼					
7	27	Project Manager	3 073 000		▋╎╎╎╎╎╎╎╎╎			1 1 1 1 1 1 1 1 1 1 1 1 1		34
7	21	Sonior Bridge Engineer 1	3,073,000		▋┼┼┼┼┼┼┼┼┼				▞╬╶╁╌┟╶┟╶┟╶┟╶┟╴┟╴╄╴┻╸╴	32
	20	Senior Bridge Engineer 1	3,073,000		▋╎╎╎╎╎╎╎╎╎					32
/	29	Serior bridge Engineer 2	3,073,000		▋╎╎╎╎╎╎╎╎╎					32
7	30	Resident Engineer 7	3,073,000		▋┼┼┼┼┼┼┼┼┼┼		1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		32
	32	Sonior Highway Engineer	3,073,000		▋┤╎╎╎╎╎╎╎╎			1 1 1 1 1 1 1 1 1 1 1 1 1	<u>_ </u>	20
- 7	32	Contract Specialist	3,073,000		▋┼┼┼┼┼┼┼┼┼		1 1 1 1 1 1 1 1 1 1 1 1 1			20
- 7	34	Sofoty Engineer	3,073,000		▋┼┼┼┼┼┼┼┼┼					32
- 7	34	Electrical Engineer	3,073,000		▋┼┼┼┼┼┼┼┼┼					5
- 7	30	Contechnical/Soft Ground Specialist	3,073,000		▋┼┼┼┼┼┼┼┼┼					
7	30	Environmental Specialist	3,073,000		▋┼┼┼┼┼┼┼┼┼					
7	30	Social Considerations Specialist	3,073,000		▋┼┼┼┼┼┼┼┼┼					
7	30	Litility Engineer	3,073,000		▋┼┼┼┼┼┼┼┼┼					6
7	40	O&M Specialist	3,073,000		▋┼┼┼┼┼┼┼┼┼┼					6
<i></i>	40		3,073,000		▋┼┼┼┼┼┼┼┼┼┼					0
F	23	Deputy Project Manager/Structural Engineer	0 28		▋┼┼┼┼┼┼┼┼┼┤					35
Ē	20	Assistant Resident Engineer	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					15
Ē	27	Road Engineer 1	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					32
Ē	20	Road Engineer 2	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					15
Ē	20	Strucutral Engineer (Elvover)	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					15
i	21	Document Specialist	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					32
	20	Quantity Surveyor/Cost Estimator 1	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					32
T, E	3 30	Quantity Surveyor/Cost Estimator 2	0 2,00		▋┼┼┼┼┼┼┼┼┼┼				_ 	32
	2 31	Quantity Surveyor/Cost Estimator 3	0 2,80		▋▝▎▘▘▘▝					15
	2 22	Environmental Expert	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					10
	2 32	Social Cosiderations Export	0 2,00		▋┼┼┼┼┼┼┼┼┼┼					16
Ē	34	Site Supervisor 1	0 2,00		▋┤┼┼┼┼┼┼┼┼┼┼					34
Ē	35	Site Supervisor 2	0 2,00		▋┤┼┼┼┼┼┼┼┼┼					32
Ē	3 36	Site Supervisor 3	0 2,00		▋┼┼┼┼┼┼┼┼┼┼				_ 	32
Ē	3 37	Site Supervisor 4	0 2,80		▋┤┼┼┼┼┼┼┼┼┼					32
Ē	38	Site Supervisor 5	0 2,80		▋┤┼┼┼┼┼┼┼┼┼					15
Ē	3 39	Site Supervisor 6	0 2.80		▋┤╎╎╎╎╎╎╎╎╎					15
Ē	3 40	Site Supervisor 7	0 2.80		▋┤╎╎╎╎╎╎╎╎╎					15
		[Total of Pro-A]		0	13	77	107	113	4	314
		[Total of Pro-B]	1	0	20	94	139	206	8	467
-		[Total of Pro-A+Pro-B]		ō	33	171	246	319	12	781
		Total Cost of EC for Each Month(Pro-A)		0	39,949,000	236.621.000	328.811.000	347,249,000	12.292.000	964,922,000
		Total Cost of FC for Each Month(Pro-B)		0	0	0	0	0	0	0
		Total Cost of LC for Each Month(Pro-A)		0	0	0	0	0	0	0
		Total Cost of LC for Each Month(Pro-B)		0	56,000	263,200	389,200	576,800	22,400	1,307,600
			0	0						0
		Pre-Construction & Construction Supervision	r 0	0	▋▎▏▎▎▎▎					0
C	2 1	CAD Operator 1	0 83	30						32
C	2	CAD Operator 2	0 83	30						32
C	3	CAD Operator 3	0 83	30				1 1 1 1 1 1 1 1 1 1 1 1 1		15
C	2 4	CAD Operator 4	0 83	30						15
Ċ	5	CAD Operator 3	0 83	30						0
C	6	CAD Operator 4	0 83	30	$[\ \]$					0
C	2 7	CAD Operator 5	0 83	30	$[\ \ \ \ \ \ \ \ \ \ $					0
C	2 8	CAD Operator 6	0 83	30	$[\ \ \ \ \ \ \ \ \ \ $					0
C) 9	Secretary	0 83	30	$[\ \ \ \ \ \ \ \ \ \ $		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		32
C	10	Accountant	0 83	30			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		32
C	11	Translator 1	0 83	30			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		32
C	2 12	Translator 2	0 83	30			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1		32
		[Total of Supporting Staff]		0	0	48	78	96	0	222
		Total Cost of LC for Each Month(SS)		0	0	39,840	64,740	79,680	0	184,260
		Grand Total		0	33	219	324	415	12	1 003

Annual Distribution of Cost

Iter	n		Total			2016			2017			2018			2019			2020			2021			2022			2023			2024	
		FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total	FC	LC	Total
Right Bank Side(I	Package 2)	100%	100%	0%	0%	0%		0%	0%		39%	39%		28%	28%		28%	28%		5%	5%		0%	0%		0%	0%		0%	0%	
Left Bank Side(Pa	ackege 3)	100%	100%	0%	0%	0%		0%	0%		39%	39%		28%	28%		28%	28%		5%	5%		0%	0%		0%	0%		0%	0%	
Flyover at Yango	n side(Package 1)	100%	100%	0%	0%	0%		0%	0%		60%	60%		35%	35%		5%	5%		0%	0%		0%	0%		0%	0%		0%	0%	
6-lane widening(F	Package 1)	100%	100%	0%	0%	0%		0%	0%		60%	60%		35%	35%		5%	5%		0%	0%		0%	0%		0%	0%		0%	0%	
Utility relocation		100%	100%	0%	0%	0%		73%	73%		22%	22%		5%	5%		0%	0%		0%	0%		0%	0%		0%	0%		0%	0%	
Land Acquisition						0%			71%			29%			0%			0%			0%			0%			0%			0%	
Consultant		100%	100%	30%	0%	0%	0%	33%	33%	30%	17%	15%	0%	24%	22%	0%	26%	30%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Advanced Payment	0.2
Retention Money	0
RM-Completion	0.05
AP-Consultant Servises	0.3
RM-Consultant Servises	0
RM-After12M later	0

0.2 0

> 0 0

					201	6			2017			20	18			2019			20	020			20	021		2	022			2023	3		202	24	
	開始年	終了年	過1年	判定	数式1	数	式2 判知	包数	式1	数式2	判定	数式	1 数3	式2 判2	Ê 1	数式1	数式2	判定	数式	弐1 💈	数式2	判定	数式	ť1 数	(式2 判)	2 数 3	ť1	数式2 半	『定	数式1	数式	2 判定	数式	1 数	式2
Right Bank Side(Package 2)	2018	2020	2021	1	0	0	0.75	0	0	0.75	5	1	0.2	0.75	2	0	0.7	75	3	0	0.75		4	0.05	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Left Bank Side(Packege 3)	2018	2020	2021	1	0	0	0.75	0	0	0.75	5	1	0.2	0.75	2	0	0.7	75	3	0	0.75		4	0.05	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Flyover at Yangon side(Package 1)	2018	2019	2020	0	0	0	0.75	0	0	0.75	5	1	0.2	0.75	3	0	0.7	75	4	0.05	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Package4	1900	1900	1901	1	0	0	0.75	0	0	0.75	5	0	0	0.75	0	0	0.7	75	0	0	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Package5	1900	1900	1901	1	0	0	0.75	0	0	0.75	5	0	0	0.75	0	0	0.7	75	0	0	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
6-lane widening(Package 1)	2018	2019	2020	0	0	0	0.75	0	0	0.75	5	1	0.2	0.75	3	0	0.7	75	4	0.05	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Utility relocation	2017	2018	2019	Э	0	0	0.75	1	0.2	0.75	5	3	0	0.75	4	0.05	0.7	75	0	0	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Non Eligible3	1900	1900	1901	1	0	0	0.75	0	0	0.75	5	0	0	0.75	0	0	0.7	75	0	0	0.75		0	0	0.75	0	0	0.75		0	0	0.75	0	0	0.75
Consultant	2017	2021	2022	2	0	0	0.7	1	0.3	0.7	7	2	0	0.7	2	0	0).7	2	0	0.7		3	0	0.7	4	0	0.7		0	0	0.7	0	0	0.7

Annual Fund Requirement

	Base Year for Cost Estimation:	5, 2	2016				FC & Tota	I: million	JPY										
	Exchange Rates	USD =	= JPY	109.9			LC :	million L	ISD										
	Price Escalation:	FC:	1.6%	LC:	5.8%														
	Physical Contingency for Constrution	10%																	
	Physical Contingency for Consultant	5%																	
	Item	0,0	Total			2016			2017			2018	1		2019			2020	
		FC	1 C	Total	FC		Total	FC	1 C	Total	FC	1 C	Total	FC		Total	FC		Total
	A. FLIGIBLE PORTION			10101			. otai			. otal			rotai			. otai			. otal
	I) Procurement / Construction	19.545	91	29.579	0	0	0	0	0	0	7,768	35	11.669	5.602	26	8,505	5.241	25	7.969
	Right Bank Side(Package 2)	7,532	33	11,122	0	0	0	0	0	0	2,918	13	4,310	2,118	9	3,128	2,118	9	3,128
	Left Bank Side(Packege 3)	8,140	30	11,439	0	0	0	0	0	0	3,154	12	4,433	2,289	8	3,217	2,289	8	3,217
	Flyover at Yangon side(Package 1)	1,281	8	2,113	0	0	0	0	0	0	769	5	1,268	448	3	739	64	0	106
	Base cost for JICA financing	16,953	70	24,673	0	0	0	0	0	0	6,841	29	10,010	4,856	20	7,085	4,472	18	6,451
	Price escalation	815	13	2,217	0	0	0	0	0	0	221	3	599	237	4	648	293	5	794
	Physical contingency	1,777	8	2,689	0	0	0	0	0	0	706	3	1,061	509	2	773	476	2	724
	II) Consulting services	1,194	3	1,472	0	0	0	384	1	467	201	0	240	285	1	346	313	1	404
	Base cost	1,094	2	1,323	0	0	0	360	1	435	185	0	219	259	0	308	280	1	349
	Price escalation	44	0	79	0	0	0	6	0	10	6	0	10	13	0	22	18	0	36
	Physical contingency	57	0	70	0	0	0	18	0	22	10	0	11	14	0	16	15	0	19
	Total (I + II)	20,739	94	31,051	0	0	0	384	1	467	7,969	36	11,910	5,887	27	8,851	5,554	26	8,373
	B. NON ELIGIBLE PORTION																		
	a Procurement / Construction	0	3	306	0	0	0	0	1	62	0	1	148	0	1	84	0	0	12
	6-lane widening(Package 1)	0	2	174	0	0	0	0	0	0	0	1	104	0	1	61	0	0	9
	Utility relocation	0	1	73	0	0	0	0	0	53	0	0	16	0	0	4	0	0	0
	Base cost for JICA financing	0	2	247	0	0	0	0	0	53	0	1	120	0	1	65	0	0	9
	Price escalation	0	0	32	0	0	0	0	0	3	0	0	14	0	0	12	0	0	2
	Physical contingency	0	0	28	0	0	0	0	0	6	0	0	13	0	0	8	0	0	1
	b Land Acquisition	0	0	39	0	0	0	0	0	27	0	0	12	0	0	0	0	0	0
	Base cost	0	0	33	0	0	0	0	0	23	0	0	10	0	0	0	0	0	0
	Price escalation	0	0	2	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Ō	Physical contingency	0	0	4	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0
6	c Administration cost	0	14	1,570	0	0	0	0	0	28	0	5	603	0	4	447	0	4	419
-	d VAI	0	14	1,568	0	0	0	0	0	26	0	5	603	0	4	447	0	4	419
	e Import I ax	0	9	977	0	0	0	0	0	0	0	4	388	0	3	280	0	2	262
	Total (a+b+c+d+e)	0	41	4,460	0	0	0 0	0	1	143	0	16	1,755	0	11	1,258	0	10	1,113
	TOTAL (A+B)	20,739	134	35,511	0	0	0	384	2	610	7,969	52	13,664	5,887	38	10,109	5,554	36	9,486
	C. Interact during Construction	0	0	0		0		0		0		0		0	0	0	0		0
	C. Interest during Construction	9	0	9	0	0	0	0	0	0	1	0	1	2	0	2	3	0	3
	Interest during Construction (Const.)	9	0	9	0	0	0	0	0	0	1	0	1	2	0	2	3	0	3
	D Front End Eco		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		20.749	124	25 520	0	0	0	204		610	7 070	50 50	12 666	5 990	20	10 111	5 557	26	0 490
		20,746	134	33,520	0	0	0	304	2	010	7,970	52	13,000	0,009	30	10,111	3,557	30	9,409
	E JICA finance portion (A)	20 730	0/	31.051	0	0	0	384	1	467	7 960	36	11 910	5 887	27	8 851	5 554	96	8 373
		20,100	34	01,001	0	0		304		407	7,303	50	11,310	3,007	27	3,031	3,334	201	3,373

LC

Total

1,435

1,128 177

15

1,450

73

1,645

1,450

192 1,642

FC

Administration Cost = VAT=

5% 5% of the expenditure in local currency of the eligible portion

Import Tax=

5%

Breakdown of Cost	Foreign (n	Currency nillion JP	Portion Y)	Local C (n	Currency	Portion Y)	(n	Total nillion JP	Y)
	Total	JICA Portion	Others	Total	JICA Portion	Others	Total	JICA Portion	Others
Civil Works	16,953	16,953	0	7,967	7,720	247	24,920	24,673	247
Right Bank Side(Package 2)	7,532	7,532	0	3,590	3,590	0	11,122	11,122	0
Left Bank Side(Packege 3)	8,140	8,140	0	3,299	3,299	0	11,439	11,439	0
Flyover at Yangon side(Package 1)	1,281	1,281	0	832	832	0	2,113	2,113	0
6-lane widening(Package 1)	0	0	0	174	0	174	174	0	174
Utility relocation	0	0	0	73	0	73	73	0	73
Price Escalation(Construction)	815	815	0	1,433	1,402	32	2,249	2,217	32
Physical Contingency(Construction)	1,777	1,777	0	940	912	28	2,717	2,689	28
Consulting Services	1,194	1,194	0	278	278	0	1,472	1,472	0
Base cost	1,094	1,094	0	229	229	0	1,323	1,323	0
Price escalation	44	44	0	36	36	0	79	79	0
Physical contingency	57	57	0	13	13	0	70	70	0
Land Acquisition	0	0	0	39	0	39	39	0	39
Administration Cost	0	0	0	1,570	0	1,570	1,570	0	1,570
VAT	0	0	0	1,568	0	1,568	1,568	0	1,568
Import Tax	0	0	0	977	0	977	977	0	977
Interest during construction	9	0	9	0	0	0	9	0	9
Front End Fee	0	0	0	0	0	0	0	0	0
Total	20,748	20,739	9	14,772	10,312	4,460	35,520	31,051	4,469

Breakdown of Cost	Foreign (r	Currency nillion JP	Portion Y)	Local ((r	Currency nillon US	Portion D)	(n	Total nillion JP	Y)
	Total	JICA Portion	Others	Total	JICA Portion	Others	Total	JICA Portion	Others
Civil Works	16,953	16,953	0	72	70	2	24,920	24,673	247
Right Bank Side(Package 2)	7,532	7,532	0	33	33	0	11,122	11,122	0
Left Bank Side(Packege 3)	8,140	8,140	0	30	30	0	11,439	11,439	0
Flyover at Yangon side(Package 1)	1,281	1,281	0	8	8	0	2,113	2,113	0
6-lane widening(Package 1)	0	0	0	2	0	2	174	0	174
Utility relocation	0	0	0	1	0	1	73	0	73
Price Escalation(Construction)	815	815	0	13	13	0	2,249	2,217	32
Physical Contingency(Construction)	1,777	1,777	0	9	8	0	2,717	2,689	28
Consulting Services	1,194	1,194	0	3	3	0	1,472	1,472	0
Base cost	1,094	1,094	0	2	2	0	1,323	1,323	0
Price escalation	44	44	0	0	0	0	79	79	0
Physical contingency	57	57	0	0	0	0	70	70	0
Land Acquisition	0	0	0	0	0	0	39	0	39
Administration Cost	0	0	0	14	0	14	1,570	0	1,570
VAT	0	0	0	14	0	14	1,568	0	1,568
Import Tax	0	0	0	9	0	9	977	0	977
Interest during construction	9	0	9	0	0	0	9	0	9
Front End Fee	0	0	0	0	0	0	0	0	0
Total	20,748	20,739	9	134	94	41	35,520	31,051	4,469

Breakdow n of Cost	Total	JICA Portion	Others
2016	0	0	0
2017	610	467	143
2018	13,666	11,910	1,756
2019	10,111	8,851	1,260
2020	9,489	8,373	1,116
2021	1,645	1,450	195
2022	0	0	0
2023	0	0	0
2024	0	0	0
Total	35,520	31,051	4,469

Comparison of Project Cost

	in	March 201	16		Lat	test		(Comparisor	ı
	(r	nillion JPY	7)	()	nillion JPY	()	%	1)	nillion JPY	7)
	Total	JICA Portion	Others	Total	JICA Portion	Others	Shere (Total)	Total	JICA Portion	Others
Right Bank Side(Package 2)				11, 122	11, 122	0	31.3%			
Left Bank Side(Package3)				11, 439	11, 439	0	32. 2%			
Flyover at Yangon side (Package 1) 6-lane widening(Package 1)	25, 486	25, 486	0	2, 113	2, 113	0	5.9%	-638	-812	174
6-lane widening(Package 1)				174	0	174	0. 5%			
Price Escalation	1, 914	1, 914	0	2, 249	2, 217	32	6.3%	335	303	32
Physical Contingency	2, 740	2, 740	0	2, 717	2, 689	28	7.6%	-23	-51	28
Consulting Services	1, 833	1, 833	0	1, 472	1, 472	0	4.1%	-361	-361	0
Land Acquisition	45	0	45	39	0	39	0.1%	67	0	67
Utility relocation	40	U	40	73	0	73	0. 2%	07	0	07
Administration Cost	1, 601	0	1, 601	1, 570	0	1, 570	4.4%	-31	0	-31
VAT	1, 599	0	1, 599	1, 568	0	1, 568	4.4%	-31	0	-31
Import Tax	1, 036	0	1, 036	977	0	977	2.8%	-59	0	-59
Interest during construction	10	0	10	9	0	9	0.0%	-1	0	-1
Total	36, 263	31, 972	4, 290	35, 520	31, 051	4, 469	100.0%	-743	-921	179
Shere(Total)	100%	88%	12%	100%	87%	13%	_	_	-	_

	in	March 201	16		Lat	test		(Compariso	1
	(r	nillion USE))	(r	nillion USE	D)	%	(r	nillion USE))
	Total	JICA Portion	Others	Total	JICA Portion	Others	Shere (Total)	Total	JICA Portion	Others
Right Bank Side(Package 2)				101	101	0	31.3%			
Left Bank Side(Package3)	o / 5	0.45		104	104	0	32. 2%			
Flyover at Yangon side (Package 1)	215	215	0	19	19	0	5.9%	11	9	2
6-lane widening(Package 1)				2	0	2	0.6%			
Price Escalation	16	16	0	20	20	0	6. 2%	4	4	0
Physical Contingency	23	23	0	25	24	0	7.7%	2	1	0
Consulting Services	15	15	0	13	13	0	4.0%	-2	-2	0
Land Acquisition	0	0	0	0	0	0	0.0%	1	0	1
Utility relocation	0	0	0	1	0	1	0.3%	I	0	I
Administration Cost	14	0	14	14	0	14	4.3%	0	0	0
VAT	14	0	14	14	0	14	4.3%	0	0	0
Import Tax	9	0	9	9	0	9	2.8%	0	0	0
Interest during construction	0	0	0	0	0	0	0.0%	0	0	0
Total	307	270	36	323	283	41	100.0%	16	13	5
Shere(Total)	100%	88%	12%	100%	88%	13%	_	-	-	-

Exchange Rate	US\$ 1 =	118.3	YEN	US\$ 1 =	109.9	YEN
Price Escalation	FC=	1.8	%	FC=	1.6	%
	LC=	3.9	%	LC=	5.8	%

Appendix E Comparison for Width of Brdge between Bago River Bridge and Dala Bridge

E.1. Introduction

JICA Study Team compared width of bridge between Bago River Bridge and Dala Bridge and confirmed relevance of bridge plan for reference.

The conditions of Dala Bridge were refered to the Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project".

E.2. Design Conditions for Width of Bago River Bridge

The design conditions for width of Bago River Bridge are shown below.

ltem	AASHTO	ASEAN Highway Standards	Japanese Road Design Standard	Recommendation for this study	Remarks
Road Classification	Urban Arterials	Class I	Class 4 (Urban Arterials)	Urban Arterials	
Width of Lane (m)	3.3 ~ 3.6	3.5	3.25	3.5	
Width of Right Shoulder (m)	0.3 ~ 3.6	3.0	0.5	0.5	
Width of Left Shoulder (m)	-	-	0.5	0.5	
Width of Median (m)	1.2 ~ 24.0	3.0	1.0	2.5 ~ 4.2	Include width of left shoulder
Width of Sidewalk (m)	1.2 ~ 2.4	-	2.0 or more	2.0	

Table E.1 Design Conditions for Width of Bago River Bridge

Source: JICA Study Team

The typical cross sections of bridge are shown in the figure below.

Source: JICA Study Team

Figure E.1 Typical Cross Section of Bridge (Steel Cable Stayed Bridge)

E.3. Design Conditions of Dala Bridge

The design conditions for width of Dala Bridge are shown below.

Table E.2 Design Conditions for Width of Dala Bridge

.

J

	Item	Earthwork	Bridge
	Main roads	3.0 ~ 3.6	3.3
Lane	Connection roads Longer than 5.0 pavement in shoulder		3.3
	Median Strip	1.2 ~ 24.0	1.2
	Main roads	0.3 ~ 3.6	1.2
Shoulder	Right side of connection roads	1.8 ~ 3.6	1.8
	Left side of connection roads	1.2 ~ 3.0	1.2
	Sidewalk	Longer than 1.2	1.2

Source: Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project"

The typical cross sections of bridge are shown below.

Source: Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project" Figure E.3 Typical Cross Section of Bridge (Cable-stay Bridge)

E.4. Comparison for Width of Bago River Bridge and Dala Bridge

The following table shows the comparison for width of Bago River Bridge and Dala Bridge.

Item	Condition of Bago River Bridge	Dala Bridge	Remarks
Road Classification	Urban Arterials	Urban Arterials	
Width of Lane (m)	3.5	3.3	
Width of Right Shoulder (m)	0.5	1.2	
Width of Left Shoulder (m)	0.5	1.2	
Width of Median (m)	2.5 ~ 4.2	6.8	Include width of left shoulder
Width of Sidewalk (m)	2.0	1.2	
Total Width (m)	22.3 ~ 24.0	26.5	Include width of guard rail

Table E.3 Comparison fo	r Width of Bago River I	Bridge and Dala Bridge
	i filiaal ol Bago latol i	Bridge and Bala Bridge

Source: JICA Study Team

The width of Bago Bridge and Dala Bridge are pursuant to relevant standards.

For assessing the relevance of the bridge width, an economical efficiency and a safety are considered.

Bago Bridge is much better at the economical efficiency than Dala Bridge because the width of Bago Bridge is narrower than Dala Bridge.

It should be considered in safety of vehicle and pedestrian at assessing the safety.

Considering the vehicular safety, the width of Bago Bridge is enough for emergency passing as shown in the figure below.

Considering the pedestrian safety, the width of Dala Bridge, 1.2m, is narrow for passing each other.

The width of sidewalk is necessary at least 2.0m in accordance with the Japanese Road Design Standards and the width of the existing sidewalk of Thanlyin chin Kat Road and Shukhinthar Road is 2.0m.

Therefore, the width of Bago Bridge is appropriate at the economical efficiency and the safety.

Source: JICA Study Team

Figure E.4 Cross Section of Bago River Bridge in Emergency Case

Appendix F Structural comparison of Bago River Bridge and Dala Bridge

In order to justify the validity of the cost estimate of the Project, the estimated cost was compared with that of a similar project.

Source: JICA Study Team

Figure F-1 Profile of Bago River Bridge

ltem	Span	Superstructure type	Length (m)	Width (m)
A1-P6	6	PC box girder (span-by-span erection)	300m	11.0 x 2
P6-P13	7	Steel box girder with steel deck slab	776m	11.0 x 2
P13-P16	3	Steel cable stayed girder	448m	22.4
P16-A2	8	PC box girder (span-by-span erection)	404m	11.0 x2
		Total length	1 928m	

Table F-1 Brief description of Bago River Bridge

Source: JICA Study Team

1.1.1 Outlines of the similar project

Yangon-Dala Bridge Construction Project funded by South Korean loan is ongoing similar bridge project to connect two lands split by the wide river as Bago River Bridge.

Source: http://myanmarcs.focuscoregroup.com/loan-approved-for-construction-of-yangon-dala-bridge/

Figure F-2 Rendering perspective of Yangon-Dala Bridge

According to the F/S report, outline of Yangon-Dala Bridge is;

- Soft Loan of USD 137.8 million from South Korea, and total project cost amounts USD 168.2 million (approximately JPY 2.02 billion)
- Payment period of 40years including grace period of initial 15years
- Low interest (0.01%)
- 5years of construction period
- Total bridge length 6,144 feet (approximately 1,872meter)
- linking Phone Gyi Road, Landmadaw Township in Yangon CBD to Bo Min Yaung Road in Dala Township over Yangon River

The proportion of the each span are shown in Table F-2.

ltem	Description	Length (m)	Width (m)
Approach Bridge 1	19-span PC Beam	665	20.9
Main Bridge	3-span PC cable stayed	590	26.5
Approach Bridge 2 2-span steel box+16-span PC beam		540	14.3
Т	otal of Main Bridge	1,872	-
Ramp A	3-span steel box+12-span PC beam	525	7.1
Ramp B	3-span steel box+11-span PC beam	490	7.1

Table F-2 Bridge length and width of Yangon-Dala Bridge

Source: Feasibility Study for Korea-Myanmar Friendship Bridge Project

1.1.2 Conditions for comparison

Though Yangon-Dala Bridge and Bago River Bridge have similar bridge length shown in Figure F-3, two bridges have different proportions because of the difference in the widths of these rivers, 720m and 1,900m, respectively. The length of Main Bridge of Yangon-Dala Bridge is 590m, while that of Bago River Bridge is 1,224m.

Yangon-Dala B	bridge L=1,872.5m
---------------	-------------------

Source: JICA Study Team

Figure F-3 Profiles of Bridges (Main Bridge)

1.1.3 Results of cost comparison

(1) Project cost comparison per river width

If the most important function of the river bridge is "crossing the river", it can be said that the index of "project cost per bridge width" makes sense, because the wider the river is, the more challenging the bridge construction is.

The comparison result of Yangon-Dala Bridge (across Yangon River) and Bago River Bridge (across Bago River) is shown in Table F-3.

Bridge Name	Project cost (Eligible portion, USD)	River width (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	137.8	720	0.19	1.36
Bago River Bridge	266,8	1900	0.14	1.00

Table F-3 Comparison of total project cost per river width

Source: JICA Study Team

Even though the eligible portion of project cost of Bago River Bridge is as twice as that of Yangon-Dala Bridge, the cost per river width of Bago River Bridge is cheaper.

(2) Cost comparison by Construction cost per Bridge length

Focused on the main bridge, the result of the comparative study is shown in Table F-4.

Table F-4 Co	mparison	of main spa	an (on the	e river)
		0		

Bridge Name	Construction cost (USD)	Length (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	65,757,524	590	111,453	1.08
Bago River Bridge	126,264,000	1,224	103,156	1.00

Source: JICA Study Team

Even though the construction cost of main bridge of Bago River Bridge is as twice as that of Yangon-Dala Bridge, the unit cost, the costs per bridge length, are similar and Bago River Bridge is slightly lower.

In a part of Main Bridge, there is Steel Cable Stayed Bridge in Bago Bridge as shown in Figure F-4. On the other hand, the main bridge of Yangon-Dala Bridge is PC cable stayed bridge. The following table shows the comparison specifically between PC Cable Stayed Bridge in Yangon-Dala Bridge and Steel Cable Stayed Bridge in Bago River Bridge.

Figure F-4 Profiles of Bridges (Superstructure Types)

Table F-5 Comparison of cable stayed bridge sec	tion
---	------

Bridge Name	Construction cost (USD)	Length (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	65,757,524	590	111,453	0.78
Bago River Bridge	63,825,000	448	142,467	1.00

Source: JICA Study Team

It is found that the unit cost (cost-per-bridge area value of the span of Steel Cable-stayed Bridge in Bago River Bridge (224m) is relatively higher than that of PC Cable-stayed Bridge in Yangon-Dala Bridge. One of the major reasons for the difference in unit cost is that the main span length of Bago River Bridge is controlled by that of Thanlyin Bridge and the resultant span length is not in the range of economical span.

Mentioned about the other portion, in other words on-land portion, they also are in different situations for bridge design. At the location of Yangon-Dala Bridge, Yangon River and the land are distinctively separated by the revetment. Therefore, the approach bridge are designed with no consideration of effective river flow but economic spanning.

On the other hand, at the location of Bago River Bridge, there is no definitive revetment but very narrow slope and natural dump area on the both sides of the river where the large flood water or storm surge comes at intervals. So the spans of the approach bridge are planned 50m to secure the smooth river flow.

Appendix G Case Study on Toll Fee covering Construction Cost

G.1. Objectives and Methodology

The construction of Bago River Bridge is planned to be financed by Japan's ODA loan. The loan amount is estimated at about USD 282.5 million and national government is required to repay the loan and pay the interest every year over a long period of time. In this appendix, financial analysis is conducted to ascertain whether toll revenue covers the principal and interest payment by calculating net cash flow during the loan period. This analysis takes operation and maintenance cost into account as expenditure in addition to the principal and interest payment and does not consider payback of investment cost to ascertain financial viability. When cumulative net cash flow during the loan period is positive, the project is regarded as financially viable.

The financial analysis is conducted for two cases: (1) Do Nothing + Bago Bridge case as a base case and (2) YUTRA Master Plan case (YUTRA MP case) as an alternative case in the same way as economic analysis in chapter 7.

G.2. Assumptions

Financial analysis of this Project was conducted based on the following assumptions and standardization.

(1) Period of Analysis

Period of analysis is 37 years that includes the period of construction funded by Japan's ODA loan from 2018 to 2021 and the operation period from 2022 to 2055 when the debt is paid off.

(2) Loan Conditions

Interest Rate: 0.1% Repayment Period: 40 years including Grace Period Grace Period: 10 years Repayment method: capital equal system repayment

(3) Traffic Assignment

Traffic assignment of two cases was conducted for the year of 2020, 2025, 2030 and 2035, the economic benefits were estimated for the four years and an interpolation was done for intermediate years. The economic benefits have been calculated from the results of traffic assignment. After 2035, the traffic volume was assumed to keep the same amount.

(4) Toll

On the assumption that toll is collected from car, taxi, van, passenger truck and small bus and truck, toll by mode of transport was set based on the current toll of Thanlyin Bridge. Assumed toll by mode of transport is summarized below.

Transport mode	Car, Taxi	Van	Pass Truck & Small Bus	Small truck	Truck (2 axels)	Truck (3 axels)	truck (4 axels)
Toll (USD)	0.2	0.2	0.7	0.3	0.4	1.1	1.5

Table G.1 Assumed Toll Fee

Source: JICA Study Team

(5) Social Discount Rate:

12% per annum was assumed as the social discount rate.

(6) Annual Maintenance Cost

0.5% of construction cost of the project was assumed.

(7) Exchange Rate

The following exchange rate on March 2016 was applied. US 1.00 = MKK 1,218US 1.00 = JPY 109.9MMK1.00 = JPY 0.0902

G.3. Loan Plan and Expenditure

(1) Loan Disbursement

Estimated construction cost of Bago River Bridge is USD282.5 million, all of that is funded by Japan's ODA loan. Loan disbursement is divided into three times from 2018 to 2020. Disbursement schedule and amount of each disbursement are as follows.

Table G.2 Loan Disbursement						
	2018	2019	2020			

Total

282.5

89.4

Loan amount (mill. USD)	112.6	80.5

Source: JICA Study Team

Year

(2) Repayment Schedule

As stated above, repayment period is 40 years including 10 years of grace period since loan agreement which is scheduled to be signed in 2016. Thus, repayment will start in 2026 and continue until 2055. Interest payment will begin when the loan disbursement is made, namely it will start in 2018 for the first disbursement followed by the second in 2019 and the final in 2020. Capital and interest payment schedule is shown in Table G.3.

Table G.3 Principal and Interest Payment Schedule

	1st					2n	d		3rd			total					
Year	Disburse ment	Balance	Principal payment	Interest payment	Disburseme nt	Balance	Principal payment	Interest payment	Disbursem ent	Balance	Principal payment	Interest payment	Disbursem ent	Balance	Principal payment	Interest payment	Debt Service
2013																	
2014																	
2015																	
2016																	
2017													4.3	4.3		0.000	0.00
2018	112.6	112.6		0.005									108.4	113		0.006	0.01
2019		112.6		0.011	80.5	80.5		0.004					80.5	193		0.015	0.02
2020		112.6		0.011		80.5		0.008	89.4	89.4		0.004	76.2	269		0.023	0.02
2021		112.6		0.011		80.5		0.008		89.4		0.009	13.2	283		0.028	0.03
2022		112.6		0.011		80.5		0.008		89.4		0.009		283		0.028	0.03
2023		112.6		0.011		80.5		0.008		89.4		0.009		283		0.028	0.03
2024		112.0		0.011		C.U0		0.008		09.4		0.009		203		0.020	0.03
2023		102.0	2 75	0.011		77.0	2.69	0.008		05.4	2.09	0.009		203	0.42	0.020	0.03
2020		105.5	2.75	0.000		75.2	2.00	0.008		00.4	2.50	0.009		213	9.42	0.027	9.40
2027		103.1	2.75	0.000		73.2	2.00	0.008		90.4	2.50	0.000		204	9.42	0.020	9.44
2020		97.6	3.75	0.007		69.8	2.00	0.007		77.5	2.90	0.008		2/5	9.42	0.023	9.44
2020		93.8	3.75	0.007		67.1	2.00	0.007		74.5	2.30	0.000		235	9.42	0.024	9.44
2031		90.1	3.75	0.006		64.4	2.68	0.006		71.5	2.00	0.007		226	9.42	0.023	9.44
2032		86.3	3.75	0.006		61.7	2.68	0.006		68.5	2.98	0.007		217	9.42	0.022	9.44
2033		82.6	3.75	0.006		59.1	2.68	0.006		65.5	2.98	0.007		207	9.42	0.021	9,44
2034		79	3.75	0.007		56	2.68	0.005		63	2.98	0.006		198	9.42	0.020	9,44
2035		75	3.75	0.007		54	2.68	0.005		60	2.98	0.006		188	9.42	0.019	9,44
2036		71	3.75	0.007		51	2.68	0.005		57	2.98	0.006		179	9.42	0.018	9.44
2037		68	3.75	0.006		48	2.68	0.005		54	2.98	0.005		170	9.42	0.017	9.43
2038		64	3.75	0.006		46	2.68	0.004		51	2.98	0.005		160	9.42	0.016	9.43
2039		60	3.75	0.005		43	2.68	0.004		48	2.98	0.005		151	9.42	0.015	9.43
2040		56	3.75	0.005		40	2.68	0.004		45	2.98	0.004		141	9.42	0.014	9.43
2041		53	3.75	0.005		38	2.68	0.003		42	2.98	0.004		132	9.42	0.013	9.43
2042		49	3.75	0.004		35	2.68	0.003		39	2.98	0.004		122	9.42	0.012	9.43
2043		45	3.75	0.004		32	2.68	0.003		36	2.98	0.004		113	9.42	0.011	9.43
2044		41	3.75	0.004		30	2.68	0.003		33	2.98	0.003		104	9.42	0.010	9.43
2045		38	3.75	0.003		27	2.68	0.002		30	2.98	0.003		94	9.42	0.009	9.43
2046		34	3.75	0.003		24	2.68	0.002		27	2.98	0.003		85	9.42	0.008	9.43
2047		30	3.75	0.003		21	2.68	0.002		24	2.98	0.002		75	9.42	0.008	9.43
2048		26	3.75	0.002		19	2.68	0.002		21	2.98	0.002		66	9.42	0.007	9.42
2049		23	3.75	0.002		16	2.68	0.001		18	2.98	0.002		57	9.42	0.006	9.42
2050		19	3.75	0.001		13	2.68	0.001		15	2.98	0.001		47	9.42	0.005	9.42
2051		15	3.75	0.001		11	2.68	0.001		12	2.98	0.001		38	9.42	0.004	9.42
2052		11	3.75	0.001		8	2.68	0.001		9	2.98	0.001		28	9.42	0.003	9.42
2053		8	3.75	0.000		5	2.68	0.000		6	2.98	0.001		19	9.42	0.002	9.42
2054		4	3.75	0.000		3	2.68	0.000		3	2.98	0.000		9	9.42	0.001	9.42
2055		-0	3.75	-0.000		0	2.68	0.000		-0	2.98	0.000		-0	9.42	0.000	9.42

Unit: Million USD

Source: JICA Study Team

(3) Operation and Maintenance (O&M) Cost

Annual O&M cost is estimated at 0.5% of construction cost including detail design and construction. Total construction cost is USD 215 million and thus annual O&M cost is about USD 1.1million.

G.4. Revenue

As described in Chapter 8, only toll revenue is considered and the total toll revenue is estimated by multiplying the forecasted traffic volume by the toll amount taking into account different toll rates by vehicle type. Revenue was estimated for two cases with the forecasted traffic demand and the unit price of toll.

(4) Traffic Demand

Estimated traffic volume by mode of transport was summarized in Tables G.4 and G.5.

Table G.4 Traffic Demand in Do Nothing + Bago Bridge Case in Benchmark Years

Unit: trip/day

Year	Car & Taxi	Van	Pass Truck & Small Bus	Small Truck	Truck (2 axles)	Truck (3 axles)	Truck (4- axles) & Trailer
2020	16,945	3,285	2,817	842	191	257	57
2025	34,328	7,206	7,851	1,785	989	792	255
2030	37,780	7,920	8,130	2,230	1,232	987	318
2035	45,039	9,457	9,956	2,518	1,389	1,114	359

Table G.5 Traffic Demand in YUTRA MP Case in Benchmark Years

Year	Car & Taxi	Van	Pass Truck & Small Bus	Small Truck	Truck (2 axles)	Truck (3 axles)	Truck (4- axles) & Trailer
2020	15,014	3,141	6,990	827	451	364	117
2025	20,046	4,197	6,800	1,026	559	451	145
2030	25,149	5,282	2,447	1,266	690	557	179
2035	30,247	6,360	2,715	1,504	820	661	212

Source: JICA Study Team

(5) Revenue

Estimated revenue in benchmark years is summarized in the following table.

Table G.6 Revenue in Do Nothing + Bago Bridge and YUTRA MP Case

Unit: Million USD

Year	Do Nothing + Bago Bridge Case	YUTRA MP Case		
2022	2.0	47		
(opening)	3.0	4.7		
2025	7.7	6.0		
2030	11.0	6.5		
2035	16.6	9.9		
2035	16.6	9.9		

G.5. Evaluation Result

(6) Do Nothing + Bago Bridge Case

As Table G.7 and Figure G.1 and Figure G.2 show, net cash flow and cumulative net cash flow are turned positive in 2022 when operation starts. The net cash flow and cumulative cash balance keep positive values in the period of analysis except from 2026 when the repayment begins to 2029. The table shows that the cumulative net cash flow reaches USD 309 million in 2055 when the final repayment is done and the toll revenue will cover the repayment cost which is composed of principal and interest payment as well as O&M cost in the whole loan period. Thus, considering only O&M cost and repayment, the project is financially viable as long as toll is collected.

Table G.7 Net Cash Flow

	Net cash flow			
Year	excl.	Cumulative net		
	construction cost	cash balance		
2017	-0.0	-0.0		
2018	-0.0	-0.0		
2019	-0.0	-0.0		
2020	-0.0	-0.0		
2021	-0.0	-0.1		
2022	2.6	2.6		
2023	3.6	6.2		
2024	4.9	11.1		
2025	6.6	17.7		
2026	-2.3	15.4		
2027	-1.7	13.7		
2028	-1.0	12.7		
2029	-0.3	12.3		
2030	0.4	12.7		
2031	1.4	14.1		
2032	2.4	16.5		
2033	3.5	20.0		
2034	4.7	24.7		
2035	6.0	30.7		
2036	6.9	37.6		
2037	7.7	45.3		
2038	8.7	54.0		
2039	9.6	63.6		
2040	10.6	74.2		
2041	11.7	85.9		
2042	12.8	98.7		
2043	14.0	112.7		
2044	15.2	127.9		
2045	16.5	144.4		
2046	16.5	160.9		
2047	16.5	177.3		
2048	16.5	193.8		
2049	16.5	210.3		
2050	16.5	226.8		
2051	16.5	243.3		
2052	16.5	259.8		
2053	16.5	276.3		
2054	16.5	292.8		
2055	16.5	309.3		

Source: JICA Study Team

Figure G.1 Net Cash Flow in Do Nothing +Bago Bridge Case

Figure G.2 Cumulative Net Cash Flow in Do Nothing +Bago Bridge Case

(7) YUTRA Master Plan Case (YUTRA MP Case)

Net cash flow in YUTRA MP case and cumulative net cash flow are shown in Table G.8 and Figures G.3 and G.4. Before starting operation, net cash flow is negative and it will increase after opening. From 2026 when the repayment starts, net cash flow keeps negative for ten years in a row because the traffic demand is lower than Do Nothing + Bago Bridge case. However, the total amount of negative value is small compared with positive value from the perspective of whole loan period. Thus, cumulative net cash flow in 2055 is USD 64 million which shows that toll revenue is large enough to cover the repayment, interest payment and O&M cost. Even in YUTRA MP case, the project is financially viable if toll is collected.

Table G.8 Net Cash Flow

	Net cash flow	
	excl	Cumulative net
Year	construction	cash balance
	cost	cash balance
2017	-0.0	-0.0
2018	-0.0	-0.0
2019	-0.0	-0.0
2020	-0.0	-0.0
2021	-0.0	-0.1
2022	3.5	3.5
2023	3.9	7.4
2024	4.4	11.8
2025	4.9	16.7
2026	-4.6	12.1
2027	-4.6	7.5
2028	-4.5	3.0
2029	-4.3	-1.3
2030	-4.0	-5.3
2031	-3.5	-8.8
2032	-2.9	-11.6
2033	-2.2	-13.8
2034	-1.5	-15.3
2035	-0.7	-16.0
2036	-0.2	-16.2
2037	0.3	-15.9
2038	0.9	-15.0
2039	1.4	-13.6
2040	2.0	-11.6
2041	2.7	-8.9
2042	3.3	-5.6
2043	4.0	-1.5
2044	4.8	3.2
2045	5.5	8.7
2046	5.5	14.3
2047	5.5	19.8
2048	5.5	25.3
2049	5.5	30.8
2050	5.5	36.3
2051	5.5	41.9
2052	5.5	47.4
2053	5.5	52.9
2054	5.5	58.5
2055	5.5	64.0

Source: JICA Study Team

Figure G.3 Net Cash Flow in YUTRA MP Case

Source: JICA Study Team

Source: JICA Study Team

Figure G.4 Cumulative Net Cash Flow in YUTRA MP Case

Appendix H Construction Plan of Flyover on Yangon Side

The Flyover on Yangon side was constructed as following steps.

Source: JICA Study Team

The conditions of construction plan were set as below.

- Minimum width of carriage way is adopted 3.0m in consideration of the maximum width of design vehicle (trailer: 2.6m) mentioned in AASHTO and lateral margin.
- Width between carriage way and construction area is kept over 1.0m. It is assumed 0.5m for shoulder and 0.5m for space of temporary safety measure (fence and etc.).
- Width of sidewalk is adopted 2.0m in accordance with minimum width mentioned in Japanese Road Design Standars.

The drawings of construction steps are shown in the figures bolow.

Final report

Appendix I Area for Construction Yards

(1) Introduction

In this chapter, necessary areas for construction yards are estimated and compare with the available vacant land for clarify whether temporary land acquisition will be necessary or not.

(2) Estimated Areas of Construction Yards

The following table shows the preliminary estimation of necessary areas of construction yards for the bridge and flyover construction.

ltem	Bride	Flyover		
IICI II	Taketa Side	Thanlyin Side	Section	
Concrete & Asphalt Plant	8,000	8,000	3,000	
Precast Segment	9,000	12,000		
Stockyard for Reinforcement Bar, Form Work	13,000	15,000	5,000	
Material & Equipment	30,000*	30,000*	8,000	
Office, Dormitory, Car Parking, Shed	3,000	3,000	2,000	
Total Area (m ²)	63,000	68,000	18,000	

Table I.1 Preliminary Estimation of Necessary Areas of Construction Yards

Note*: ROW can be utilized.

Source: Study Team

(3) Construction Yard on Thanlyin Side

As stated in FS Report of 2014, Construction Yard on Thanlyin Side is expected to be located in the Compound of Myanmar Railway which is large enough as shown in the following figure.

Source: F/S Final Report

(4) Construction Yard on Thaketa Side

On Thaketa side, Construction yards is expected to be located in the compound of MOC and Myanmar Railway.

However, the compound of MOC is now occupied by a factory and remaining available area is estimated as 63,000m², which is equal to estimated necessary area for construction yard. Further occupation may need additional land acquisition.

Source: F/S Final Report, added by Study Team

Figure I.2 Available Land for Constructtion Yard on Thaketa Side

(5) Construction Yard for Flyover

For Flyover, possible construction yard is as shown in the slide.

It is considered that the area of $19,280m^2$ (= $5,625m^2 + 13,655m^2$, Myanmar Railway Compound) is available, which is more than the estimated necessary area for construction yard.

Source: Study Team

Appendix J Study of Toll Gate for Bago Bridge

The Toll Gate for Bago Bridge was studied based on the Design Standard of NEXCO (Nippon Expressway Company).

(1) Number of Toll Booth

The number of toll booth was calculated by using following formula in accordance with the Design Standard of NEXCO.

$$U = \frac{B \text{ x DHV}}{3600 \text{ x S}} < 1.0$$

Where:

U: Unit Strength of Traffic per 1 lane (veh)

B: Time of Service (sec); Generally, the time of service is 8 second.

DHV: Design Hourly Volume (veh/hr)

S: Number of Toll Booth (nos)

The results of caluculation for number of toll booth is shown in the table below.

Direction	DHV		В	S	U	Remarks
Direction	(pcu/hr)	(veh/hr)	(sec)	(nos)	(veh)	Remarks
Flyover to Bago Bridge	950	798		3	0.591	
Bago Bridge to Flyover	1,160	974		3	0.721	
Bago Bridge to Shukhinthar Intersection	1,480	1,243	8	3	0.921	
Shukhinthar Intersection to Bago Bridge	1,180	991		3	0.734	

Source: JICA Study Team

As a result, the number of toll booth is adopted 3 numbers per lane.

(2) Layout of Toll Gate

The layout of toll gate was planned as following conditions in accordance with the Design Standard of NEXCO.

- Ratio of lateral transition (W / L) was adopted 1 / 3 and over (W: width of lateral transition, L: length of transition section).
- > Length of toll gate park was adopted 30m.
- > Length of toll island was adopted 22.4m and width of it was adopted 2.2m.
- Width of lane at toll gate was adopted 3.0m. However, width of most right lane was adopted 3.5m in consideration of large vehicle passing.

The plan of toll gate is shown in the figure below.

Figure J.1 Plan of Toll Gates and Layout of Toll Booths