Appendix C Results of Intersection Analysis

Peak Hour Traffic at Shukhinthar Intersection (2025)

Appendix C-1: Case of Existing Condition at Shukhinthar Intersection in 2025

C-1

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

							Ca	ase: 2025	Existing	Condition
Entry		Thanly	/in to TKT	YZN t	o CBD	TKT to	Thanlyin	С	BD to YZ	N
Direction		LT	TH + RT	LT	TH + RT	LT	TH + RT	LT	TH	RT
Number of Lane: a		1	1	1	1	1	1	1	1	1
Basic value of saturation		1,800	2,000	1,800	2,000	1,800	2,000	1,800	2,000	1,800
Reduction coofficient: o		1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000
(Long width: m)		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	(2.25)
(Lalle Width, III)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: a		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f			0.986		0.996		0.988			
(Share of right turn : %)			(12.8)		(3.7)		(11.2)			
Reduction coefficient: g										
(Share of left turn: %)										
(No. of left turn for transition tir	ne	2(72)		2(72)		2(72)		2(72)		
(nos./cycle)): h		2(72)		2(72)		2(72)		2(72)		
Saturation flow ratio:		1 000	1 070	1 000	1 000	1 000	1.076	1 000	2 000	1 000
i=a*b*c*d*e*f*g		1,800	1,972	1,000	1,992	1,000	1,976	1,600	2,000	1,000
		1,310	1,330	200	540	60	1,070	220	900	980
Tranc volume (pcu/m). v			(170 + 1160)		(20+520)		(120+950)			
Traffic volume with compensa	tion	4 000		400		0		4.40		
of left turn (pcu/hr): V'=V-h		1,238		128		0		148		
Flow ratio: j=V/i or j=V'/i		0.688	0.674	0.071	0.271	0.000	0.541	0.082	0.450	0.544
Current cycle length (sec): k						100				
	1φ		0.674				0.541			
	2φ	0.688				0.000				
Phase ratio	3φ				0.271				0.450	0.544
	4φ			0.071	-			0.082		
Demand ratio of intersection *						1.988				
	1σ		30				30			
	20	29				29				
Current green time (sec): I	30				24				24	24
	4φ			5				5		
Capacity (pcu/br): C=i*l/k or	· •			Ŭ				v		
$C=i^{1}/k+h^{3}600/k$		594	592	162	478	594	593	162	480	432
Degree of Saturation: V/C. **		2 205	2 247	1 235	1 1 3 0	0 101	1 804	1 358	1 875	2 269
Check		NG	NG	NG	NG	0.101	NG	NG	NG	NG
Onook			NO		NO		NG	NG		NO.

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary.

Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

C-3

Peak Hour Traffic at Shukhinthar Intersection (2025) (Traffic Demand Forecast)

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control for descriptive purposes

Appendix C-2: Case of Improvement with Widening of Intersection at Shukhinthar Intersection in 2025

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

					Case	: 2025 Impro	ovement v	vith Wider	ning of Int	ersection
Entry		Tha	anlyin to T	ΚT	YZN	to CBD	TKT to	Thanlyin	CBD	to YZN
Direction		LT	TH	RT	LT	TH +RT	LT	TH	LT	TH
Number of Lane: a		2	2	1	1	1	1	2	1	2
Basic value of saturation flow rate (PCU/hr); b		1,800	2,000	1,800	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f						0.996				
(Share of right turn : %)						(3.7)				
Reduction coefficient: g										
(Share of left turn: %)										
(No. of left turn for transition time		2(72)			2(72)		2(72)		2(72)	
(nos./cycle)): h		2(72)			2(72)		2(72)		2(72)	
Saturation flow ratio:		2 600	4 000	1 000	1 900	1 002	1 000	4 000	1 900	4 000
=a*b*c*d*e*f*g		3,000	4,000	1,000	1,000	1,992	1,800	4,000	1,000	4,000
Traffic volume (pcu/hr): V		1,310	1,160	170	200	540 (20+520)	60	950	220	900
Traffic volume with compensate	tion	1,238			128		0		148	
Elow ratio: $i=1/(i \text{ or } i=1)/(i$		0.244	0.200	0.004	0.071	0.271	0.000	0.027	0.002	0.225
Γ low ratio. $j=\sqrt{101} j=\sqrt{11}$		0.344	0.290	0.094	0.071	100	0.000	0.237	0.062	0.225
	10		0.200	0.004		100		0.227		
	20	0.344	0.290	0.094			0.000	0.237		
Phase ratio	30	0.344				0.271	0.000			0.225
	<u>4</u> ω				0.071	0.271			0.082	0.225
Demand ratio of intersection *	<u>ψ</u>				0.071	0.987			0.002	<u>i</u>
	10		26	26		0.007		26		
	20	31					31			
Current green time (sec): I						24				24
40					7				7	
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		1,188	1,040	468	198	478	630	1,040	198	960
Degree of Saturation: V/C **		1.103	1.115	0.363	1.010	1.130	0.095	0.913	1.111	0.938
Check		NG	NG	OK	NG	NG	OK	OK	NG	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

C-2

Peak Hour Traffic at Shukhinthar Intersection (2025)

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control for descriptive purposes

Appendix C-3: Case of Improvement with Left-turn Flyover at Shukhinthar Intersection in 2025

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

					Case: 1	2025 Impi	rovement v	vith Left-tu	rn Flyover
Entry		Thanlyir	n to TKT	YZN	to CBD	TKT to	Thanlyin	CBD t	to YZN
Direction		TH	RT	LT	TH+RT	LT	TH	LT	TH
Number of Lane: a		2	1	1	1	1	2	1	2
Basic value of saturation flow rate (PCU/hr): b		2,000	1,800	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f					0.996				
(Share of right turn : %)					(3.7)				
Reduction coefficient: g									
(Share of left turn: %)									
(No. of left turn for transition tir	ne			0(70)		0(70)		0(70)	
(nos./cycle)): h				2(72)		2(72)		2(72)	
Saturation flow ratio:		4 000	1 000	1 000	1 000	1 000	4 000	1 000	4 000
i=a*b*c*d*e*f*g		4,000	1,800	1,800	1,992	1,800	4,000	1,800	4,000
Traffic volume (pcu/hr): V		1,160	170	200	540 (20+520)	60	950	220	900
Traffic volume with compensa	tion			100		0		4.4.0	
of left turn (pcu/hr): V'=V-h				128		0		148	
Flow ratio: j=V/i or j=V'/i		0.290	0.094	0.071	0.271	0.000	0.237	0.082	0.225
Current cycle length (sec): k					100)			
	1φ	0.290	0.094				0.237		
Phase ratio	2φ					0.000			
	3φ				0.271				0.225
	4φ			0.071				0.082	
Demand ratio of intersection *			-	-	0.64	3			
	1φ	37	37				37		
Current green time (sec): I	2φ					5			
					34				34
4φ				12				12	
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		1,480	666	288	677	162	1,480	288	1,360
Degree of Saturation: V/C **		0.784	0.255	0.694	0.798	0.370	0.642	0.764	0.662
Check		OK	OK	OK	OK	OK	OK	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

C-7

Peak Hour Traffic at Shukhinthar Intersection (2025)

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control

Appendix C-4: Case of Improvement with Straight Flyover at Shukhinthar Intersection in 2025

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

	Case: 2025 Improvement with Straight Flyover												
Entry		Thanlyir	n to TKT	YZN	to CBD	TKT to Thanlyin	CBD t	o YZN					
Direction		LT	RT	LT	TH+RT	LT	LT	TH					
Number of Lane: a		2	1	1	1	2	1	2					
Basic value of saturation flow rate (PCU/hr): b		1,800	1,800	1,800	2,000	1,800	1,800	2,000					
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000					
(Lane width: m)		(3.00)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)					
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000					
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)					
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000					
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)					
Reduction coefficient: f					0.996								
(Share of right turn : %)					(3.7)								
Reduction coefficient: g													
(Share of left turn: %)													
(No. of left turn for transition til	me			2(72)			2(72)						
(nos./cycle)): h				2(72)			2(72)						
Saturation flow ratio:		2 600	1 900	1 900	1 002	2 600	1 900	4 000					
i=a*b*c*d*e*f*g		3,000	1,000	1,000	1,992	3,000	1,000	4,000					
Traffic volume (pcu/hr): V		1,310	170	200	540 (20+520)	60	220	900					
Traffic volume with compensation of left turn (pcu/hr): V'=V-h	tion			128			148						
Flow ratio: j=V/i or j=V'/i		0.364	0.094	0.071	0.271	0.017	0.082	0.225					
Current cycle length (sec): k					100)							
	1φ	0.364	0.094			0.017							
Phase ratio	2φ				0.271			0.225					
	3φ			0.071			0.082						
Demand ratio of intersection *					0.71	7							
	1φ	45	45			45							
Current green time (sec): I					34			34					
<u>3φ</u>				11			11						
Capacity (pcu/hr): C=i*l/k or i*l/k+h*3600/k		1,620	810	270	677	1,620	270	1,360					
Degree of Saturation: V/C **		0.809	0.210	0.741	0.798	0.037	0.815	0.662					
Check		OK	OK	OK	OK	OK	OK	OK					

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control

Appendix C-5: Case of Improvement with Straight Flyover and Left-turn Flyover at Shukhinthar

Intersection in 2025

C-9

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Shukhinthar Intersection

				Case: 2	025 Improv	ement with	n Straight a	and Left-tu	rn Flyover
Entry		Thanlyir	n to TKT	YZN 1	to CBD	TKT to	Thanlyin	CBD t	o YZN
Direction		TH	RT	LT	TH+RT	LT	TH	LT	TH
Number of Lane: a		1	1	1	1	1	1	1	2
Basic value of saturation flow rate (PCU/hr): b		2,000	1,800	1,800	2,000	1,800	2,000	1,800	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f		/	/	/	0.996	/			//
(Share of right turn : %)					(3.7)				
Reduction coefficient: g									
(Share of left turn: %)									
(No. of left turn for transition tir	ne			0(70)				0(70)	
(nos./cycle)): h				2(72)				2(72)	
Saturation flow ratio:		2 000	1 900	1 900	1 002	1 900	2 000	1 900	4 000
i=a*b*c*d*e*f*g		2,000	1,000	1,000	1,992	1,000	2,000	1,000	4,000
Traffic volume (pcu/hr): V		0	170	200	540 (20+520)	60	0	220	900
Traffic volume with compensation	tion			400				4.40	
of left turn (pcu/hr): V'=V-h				128				148	
Flow ratio: j=V/i or j=V'/i		0.000	0.094	0.071	0.271	0.033	0.000	0.082	0.225
Current cycle length (sec): k					10	0			
	1φ	0.000	0.094			0.033	0.000		
Phase ratio	2φ				0.271				0.225
	3φ			0.071				0.082	
Demand ratio of intersection *					0.4	47			
	1φ	18	18			18	18		
Current green time (sec): I 2φ					52				52
3φ				20				20	
Capacity (pcu/hr): C=i*l/k or i*l/k+h*3600/k		360	324	432	1,036	324	360	432	2,080
Degree of Saturation: V/C **		0.000	0.525	0.463	0.521	0.185	0.000	0.509	0.433
Check		OK	OK	OK	OK	OK	OK	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Sufficiency (Saturation) Analysis of Yadanar Intersection

									Case: 202	25 Existing	g Condition
Entry		Tha	anlyin to T	KT	YZN	to CBD	TK	T to Than	lyin	CBD	to YZN
Direction		LT	TH	TH+RT	LT	TH+RT	LT	TH	TH+RT	LT	TH+RT
Number of Lane: a		1	1	1	1	1	1	1	1	1	1
Basic value of saturation		1,800	2,000	2,000	1,800	2,000	1,800	2,000	2,000	1,800	2,000
Reduction coofficients of		1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000	1 000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f				0.980		0.960			0.971		0.993
(Share of right turn : %)				(18.5)		(37.4)			(27.4)		(6.8)
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition tir	ne	0(70)			0(70)		0(70)			0(70)	
nos./cycle)): h		2(72)			2(72)		2(72)			2(72)	
Saturation flow ratio:											
i=a*b*c*d*e*f*g		1,800	2,000	1,960	1,800	1,920	1,800	2,000	1,942	1,800	1,986
		50	1,3	00	50	1,550	520	1,2	240	140	730
Traffic volume (pcu/hr): v			(120+1180)			(580+970)		(170+	·1070)		(50+680)
Traffic volume with compensa	tion	0			0		4.40			00	
of left turn (pcu/hr): V'=V-h		0			0		448			68	
Flow ratio: j=V/i or j=V'/i		0.000	0.3	28	0.000	0.807	0.249	0.3	315	0.038	0.368
Current cycle length (sec): k						10	0				
	1φ		0.3	28				0.3	315		
	2φ	0.000					0.249				
Phase ratio	30					0.807					0.368
	40				0.000					0.038	
Demand ratio of intersection *	<u> </u>				0.000	1.42	22			0.000	
	1Φ		2	0				2	20		
	20	14		•			14		•		
Current green time (sec): I	30					49					49
	4ω				5	10				5	10
Capacity (pcu/br): C=i*l/k or	• 4				v					Ŭ	
$C = i^{1/k} + h^{3} = 600/k$		324	79	92	162	941	324	78	88	162	973
Degree of Saturation: V/C **		0.154	1.6	641	0.309	1.647	1.605	1.5	574	0.864	0.750
Check		OK	N	G	OK	NG	NG	N	IG	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Final report

Appendix C-7: Case of Improvement with Straight Flyover at Yadanar Intersection in 2025

Sufficiency (Saturation) Analysis of Yadanar Intersection

					Case	: 2025 Im	provement	with Straig	ght Flyover
Entry		Thanly	in to TKT	YZN	to CBD	TKT to	Thanlyin	CBD	to YZN
Direction		LT	TH+RT	TH+LT	TH+RT	LT	TH+RT	TH+LT	TH+RT
Number of Lane: a		1	1	1	1	1	1	1	1
Basic value of saturation		1 900	2 000	2 000	2 000	1 000	2 000	2 000	2 000
flow rate (PCU/hr): b		1,600	2,000	2,000	2,000	1,800	2,000	2,000	2,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f			0.950		0.926		0.925		0.988
(Share of right turn : %)			(48.0)		(72.5)		(73.9)		(11.5)
Reduction coefficient: g				0.917				0.542	
(Share of left turn: %)				(6.3)				(32.2)	
No. of left turn for transition time		0(70)		0(70)		0(70)		0(70)	
(nos./cycle)): h		2(72)		2(72)		2(72)		2(72)	
Saturation flow ratio:		1 000	1 000	1 0 0 1	4.050	1 000	4.050	1 00 1	1.070
i=a*b*c*d*e*f*g		1,000	1,900	1,034	1,002	1,000	1,000	1,004	1,976
		50	250	1	600	520	230	8	70
			(120+130)	(50+5	80+970)		(170+60)	(140+5	50+680)
Traffic volume with compensa	tion	0				440			
of left turn (pcu/hr): V'=V-h		0				440			
Flow ratio: j=V/i or j=V'/i		0.000	0.132	0	.434	0.249	0.124	0.2	284
Current cycle length (sec): k					100)			
	1φ		0.132				0.124		
Dhoop rotio	2φ	0.000				0.249			
Phase fallo	3φ			0	434			0.2	284
	4φ								
Demand ratio of intersection *					0.81	5			
	1φ		16				16		
Current groon time (acc)	2φ	23				23			
Current green time (sec): I 30					41			4	11
4φ									
Capacity (pcu/hr): C=i*l/k or		400	004	4	E 4 4	400	000		055
C=i*l/k+h*3600/k		486	304	1	511	486	296	1,2	200
Degree of Saturation: V/C **		0.103	0.822	1.	.059	1.070	0.777	0.693	
Check		OK	OK	NG NG OK		OK	OK		

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Parenthetic numbers are not considered in intersection analysis because of having noinfluence on signal control for descriptive purposes

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thaketa Intersection

Case: 2025 Improvement with Signa										
Entry		Dagon to In	ner Ring Rd	New Tuv to Ba	wunna Br Igo Br	Inner Ring F	Rd to Dagon	Bago New Tu	Br to wunna Br	
Direction		LT	TH	LT	ТН	LT	TH	LT	TH	
Number of Lane: a		1	1	1	1	1	1	2	2	
Basic value of saturation		1 800	2 000	1 800	2 000	1 800	2 000	1 800	2 000	
flow rate (PCU/hr): b		1,000	2,000	1,000	2,000	1,000	2,000	1,000	2,000	
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.00)	(3.25)	
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	
Reduction coefficient: f										
(Share of right turn : %)										
Reduction coefficient: g										
(Share of left turn: %)										
(No. of left turn for transition tir	ne	2(72)		2(72)		2(72)		2(72)		
(nos./cycle)): h		2(12)		2(12)		2(12)		2(12)		
Saturation flow ratio:		1 800	2 000	1 800	2 000	1 800	2 000	3 600	4 000	
i=a*b*c*d*e*f*g		1,000	2,000	1,000	2,000	1,000	2,000	0,000	1,000	
Traffic volume (pcu/hr): V		480	360	378	756	124	620	450	600	
Traffic volume with compensa	tion	409		306		52		279		
of left turn (pcu/hr): V'=V-h		400		300		52		370		
Flow ratio: j=V/i or j=V'/i		0.227	0.180	0.170	0.378	0.029	0.310	0.105	0.150	
Current cycle length (sec): k					10	00				
	1φ		0.180				0.310			
Phase ratio	2φ	0.227				0.029				
	3φ				0.378				0.150	
	4φ			0.170				0.105		
Demand ratio of intersection *					1.0)85		0	1	
	1φ		26				26			
Current green time (sec): I	2φ	18				18				
ourient green time (See).	3φ				31				31	
	4φ			13				13		
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		396	520	306	620	396	520	540	1,240	
Degree of Saturation: V/C **		1.212	0.692	1.235	1.219	0.313	1.192	0.833	0.484	
Check		NG	OK	NG	NG	OK	NG	OK	OK	

TH: Through LT: Left turn RT: Right turn Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary.

Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Final report

Sufficiency (Saturation) Analysis of Thaketa Intersection

	Case: 2025 Improvement with Signal and Straight Flyover										
Entry		Dagon to In	ner Ring Rd	New Tuwunna	Inner Ring F	2d to Dagon	Bago Br to New				
Linuy		Dayon to m		Br to Bago Br		tu to Dayon	Tuwunna Br				
Direction		LT	TH	LT	LT	TH	LT				
Number of Lane: a		1	1	2	1	1	2				
Basic value of saturation		1 900	2 000	1 900	1 900	2 000	1 900				
flow rate (PCU/hr): b		1,800	2,000	1,000	1,800	2,000	1,000				
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000				
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)				
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000				
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)				
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000				
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)				
Reduction coefficient: f											
(Share of right turn : %)											
Reduction coefficient: g											
(Share of left turn: %)											
(No. of left turn for transition tir	ne	0(70)			0(70)						
(nos./cycle)): h		2(72)			2(72)						
Saturation flow ratio:		1 000	2,000	2,000	1 000	2,000	2,000				
i=a*b*c*d*e*f*g		1,800	2,000	3,600	1,800	2,000	3,600				
Traffic volume (pcu/hr): V		480	360	378	124	620	450				
Traffic volume with compensa	tion	100									
of left turn (pcu/hr): V'=V-h		408			52						
Flow ratio: j=V/i or j=V'/i		0.227	0.180	0.105	0.029	0.310	0.125				
Current cycle length (sec): k				-	100						
	1φ		0.180			0.310					
Phase ratio	2φ	0.227			0.029						
	3φ			0.105			0.125				
Demand ratio of intersection *				(0.662						
	1φ		42			42					
Current green time (sec): I	2φ	32			32						
3φ				16			16				
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		648	840	576	648	840	576				
Degree of Saturation: V/C **		0.741	0.429	0.656	0.191	0.738	0.781				
Check		OK	OK	OK	OK	OK	OK				

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

To/From: Residential Area

The Supplemental Survey for the Project for Construction of Bago River Bridge

Appendix C-10: Case of Existing Condition at Thilawa Intersection in 2025

Sufficiency (Saturation) Analysis of Thilawa Intersection

				-	Ca	<u>se: 2025 Exis</u>	ting Condition
Entry		Thilawa to	o Yangon	From Resid	dential Area	Yangon t	o Thilawa
Direction		LT	TH	LT	RT	TH	RT
Number of Lane: a		1	1	1	1	1	1
Basic value of saturation		1 800	2 000	1 800	1 800	2 000	1 800
flow rate (PCU/hr): b		1,000	2,000	1,800	1,000	2,000	1,000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f							
(Share of right turn : %)							
Reduction coefficient: g							
(Share of left turn: %)							
(No. of left turn for transition til	me						
(nos./cycle)): h							
Saturation flow ratio:		1 900	2 000	1 900	1 800	2 000	1 800
i=a*b*c*d*e*f*g		1,000	2,000	1,600	1,800	2,000	1,800
Traffic volume (pcu/hr): V		582	1,706	1,268	684	1,602	945
Traffic volume with compensa	tion						
of left turn (pcu/hr): V'=V-h							
Flow ratio: j=V/i or j=V'/i		0.323	0.853	0.704	0.380	0.801	0.525
Current cycle length (sec): k				1(00	•	
	1φ		0.801			0.801	0.525
Phase ratio	2φ	0.323	0.052		0.323		0.000
	3φ			0.704	0.057		0.000
Demand ratio of intersection *				1.8	328		
	1φ		38			38	38
Current green time (sec): I 2φ		16	16		16		16
3φ				34	34		34
Capacity (pcu/hr): C=i*l/k or		288	1,080	612	900	760	1,584
Degree of Saturation: V/C **		2.021	1.580	2.072	0.760	2,108	0.597
Check		NG	NG	NG	OK	NG	OK
		-	-	-	-	-	-

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Peak Hour Traffic at Thilawa Intersection (2025) (Traffic Demand Forecast)

2 Lane 1,527

3,479

To/From: Residential Area

3 Lane 1,952

Source: JICA Study Team

C-21

The Supplemental Survey for the Project for Construction of Bago River Bridge

Inflow

2,547

1,952 2,288

6,787

3 Lane

2 Lane

4,574

Outflow

2,974

1,527

2,286

6,787

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

				Case: 202	5 Improvement	with Widening	of Intersection
Entry		Thilawa t	o Yangon	From Resi	dential Area	Yangon t	o Thilawa
Direction		LT	TH	LT	RT	TH	RT
Number of Lane: a		1	2	2	1	2	1
Basic value of saturation		1.800	2,000	1.800	1.800	2.000	1.800
flow rate (PCU/hr): b		.,	_,	.,000	.,	_,	.,
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f							
(Share of right turn : %)							
Reduction coefficient: g							
(Share of left turn: %)							
(No. of left turn for transition tir	ne						
(No. of left turn for transition time (nos./cycle)): h							
Saturation flow ratio:		4 000	1.000	0.000	4.000	4 000	4 000
i=a*b*c*d*e*f*g		1,800	4,000	3,600	1,800	4,000	1,800
Traffic volume (pcu/hr): V		582	1,706	1,268	684	1,602	945
Traffic volume with compensa	tion						
of left turn (pcu/hr): V'=V-h							
Flow ratio: j=V/i or j=V'/i		0.323	0.426	0.352	0.380	0.400	0.525
Current cycle length (sec): k	1			1	00		
	1φ		0.400			0.400	0.400
Phase ratio	2φ	0.323	0.026		0.323		0.125
	3φ			0.352	0.057		0.000
Demand ratio of intersection *				1.()75		
	1φ		32			32	32
Current green time (sec): I	2φ	27	27		27		27
3φ				29	29		29
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		486	2,360	1,044	1,008	1,280	1,584
Degree of Saturation: V/C **		1.198	0.723	1.215	0.679	1.252	0.597
Check		NG	OK	NG	OK	NG	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

To/From: Residential Area

Peak Hour Traffic at Thilawa Intersection (2025)

Appendix C-12: Case of Improvement with Straight Flyover at Thilawa Intersection in 2025

C-23

Sufficiency (Saturation) Analysis of Thilawa Intersection

Entry Thilawa to Yangon From Residential Area Yangon to Thilawa Direction LT TH LT RT TH TH </th <th></th> <th></th> <th></th> <th></th> <th>C</th> <th>ase: 2025 Impi</th> <th>ovement with S</th> <th>Straight Flyover</th>					C	ase: 2025 Impi	ovement with S	Straight Flyover
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Entry		Thilawa te	o Yangon	From Resid	dential Area	Yangon t	o Thilawa
Number of Lane: a 1 1 2 1 1 1 Basic value of saturation flow rate (PCU/hn): b 1,800 2,000 1,800 1,800 2,000 1,000	Direction		LT	TH	LT	RT	TH	TH+RT
Basic value of saturation flow rate (PCU/hr): b 1,800 2,000 1,800 1,800 2,000 1,000 1,	Number of Lane: a		1	1	2	1	1	1
flow rate (PCU/hr): b 1,000 1,000 1,000 1,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 1,000	Basic value of saturation		1 800	2 000	1 800	1 800	2 000	2 000
Reduction coefficient: c 1.000 1.	flow rate (PCU/hr): b		1,000	2,000	1,800	1,800	2,000	2,000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000
Reduction coefficient: d 1.000	(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reduction coefficient: d		1.000	1.000	1.000	1.000	1.000	1.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
(Share of large vehicle: %) (0.00) </td <td>Reduction coefficient: e</td> <td></td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td>	Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000
Reduction coefficient: f (Share of right turn : %)0.901Reduction coefficient: g (Share of left turn: %)0.901(No. of left turn for transition time (nos./cycle)): h1,8002,000Saturation flow ratio: 	(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
	Reduction coefficient: f							0.901
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Share of right turn : %)							
	Reduction coefficient: g							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Share of left turn: %)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(No. of left turn for transition tir	ne						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(nos./cycle)): h							
$\begin{array}{c c c c c c c c } i=a^*b^*c^*d^*e^*f^*g & 1,000 & 2,000 & 3,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & 2,000 & 1,000 & $	Saturation flow ratio:		1 900	2 000	2 600	1 800	2 000	1 902
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i=a*b*c*d*e*f*g		1,800	2,000	3,600	1,800	2,000	1,602
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Traffic volume (pcu/hr): V		582	206	1,268	684	1,1 (945-	47 ⊦202)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Traffic volume with compensa	tion					, ,	/
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	of left turn (pcu/hr): V'=V-h							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow ratio: j=V/i or j=V'/i		0.323	0.103	0.352	0.380	0.3	802
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Current cycle length (sec): k				10	0	•	
Phase ratio 2φ 0.323 0.000 0.323 3φ 0.352 0.057 Demand ratio of intersection * 0.977 Current green time (sec): I 1φ 27 27 2φ 29 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		1φ		0.103			0.3	802
3φ 0.352 0.057 Demand ratio of intersection * 0.977 Current green time (sec): I 1φ 27 27 2φ 29 29 29 3φ 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Phase ratio	2φ	0.323	0.000		0.323		
Demand ratio of intersection * 0.977 Current green time (sec): I 1φ 27 27 2φ 29 29 29 3φ 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		3φ			0.352	0.057		
1φ 27 27 Current green time (sec): I 2φ 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Demand ratio of intersection *				0.9	77		
Current green time (sec): I 2φ 29 29 29 3φ 32 32 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		1φ		27			2	7
3φ 32 32 Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Current green time (sec): I	2φ	29	29		29		
Capacity (pcu/hr): C=i*I/k or C=i*I/k+h*3600/k 522 1,120 1,152 1,098 1,027 Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG		3φ			32	32		
Degree of Saturation: V/C ** 1.115 0.184 1.101 0.623 1.117 Check NG OK NG OK NG	Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		522	1,120	1,152	1,098	1,0)27
Check NG OK NG OK NG	Degree of Saturation: V/C **		1.115	0.184	1.101	0.623	1.1	17
	Check		NG	OK	NG	OK	N	G

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Peak Hour Traffic at Thilawa Intersection (2025) (Traffic Demand Forecast)

Inflow/Outflow Case: Improvement with On-ramp To/From Inflow Outflow 2,547 690 1,712 1,527 Yangon o/From angon Residential Area To/Fr 2,286 2,288 ٦ Thilawa T Total (pcu/hr) 5,525 To/From To/Fro To/Fro 3 Lane 2 Lane 2,288 4,574 4,259 3 Lane 1,602 2,286 2 Lane 2.547 6 684 To/From: Yangon To/From: Thilawa 3 Lane 690 2 Lane 1,527 2,217 To/From: Residential Area

Signal Ph

o/Fron angon

Source: JICA Study Team

Sufficiency (Saturation) Analysis of Thilawa Intersection

	Case: 2025 Improvement with On-ramp						
Entry		Thilawa te	o Yangon	From Resid	dential Area	Yangon t	o Thilawa
Direction		LT	TH	LT	RT	TH	RT
Number of Lane: a		1	2	1	1	2	1
Basic value of saturation		1,800	2,000	1,800	1,800	2,000	1,800
flow rate (PCU/nr): b		1 000	4.000	4.000	1.000	4.000	1 000
Reduction coefficient: c		1.000	1.000	1.000	1.000	1.000	1.000
(Lane width: m)		(3.25)	(3.25)	(3.25)	(3.25)	(3.25)	(3.25)
Reduction coefficient: a		1.000	1.000	1.000	1.000	1.000	1.000
(Gradient: %)		(0.30)	(0.30)	(0.30)	(0.30)	(0.30)	(0.30)
Reduction coefficient: e		1.000	1.000	1.000	1.000	1.000	1.000
(Share of large vehicle: %)		(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Reduction coefficient: f							
(Share of right turn : %)							
Reduction coefficient: g							
(Share of left turn: %)							
(No. of left turn for transition tim	ne						
(nos./cycle)): h							
Saturation flow ratio:		1.800	4.000	1.800	1.800	4.000	1.800
i=a*b*c*d*e*f*g		1,000	.,	.,	.,	.,	.,000
Traffic volume (pcu/hr): V		582	1,706	6	684	1,602	945
Traffic volume with compensat	ion						
of left turn (pcu/hr): V'=V-h							
Flow ratio: j=V/i or j=V'/i		0.323	0.426	0.003	0.380	0.400	0.525
Current cycle length (sec): k				1()2		
	1φ		0.400			0.400	0.400
Phase ratio	2φ	0.323	0.026		0.323		0.125
	3φ			0.003	0.057		0.000
Demand ratio of intersection *				0.7	80		
	1φ		46			46	46
Current green time (sec): I	2φ	37	37		37		37
	3φ			7	7		7
Capacity (pcu/hr): C=i*l/k or C=i*l/k+h*3600/k		653	3,255	124	776	1,804	1,588
Degree of Saturation: V/C **		0.891	0.524	0.048	0.881	0.888	0.595
Check		OK	OK	OK	OK	OK	OK

TH: Through LT: Left turn RT: Right turn

Note(*): Evaluation of Demand Ratio of Intersection: Over 0.9 means that improvement of intersection is nesessary. Note(**): Evaluation of Degree of Saturation: Over 1.0 means that improvement of intersection is nesessary.

Appendix D Comparison for Width of Bridge between Bago River Bridge and Dala Bridge

D.1. Introduction

JICA Study Team compared width of bridge between Bago River Bridge and Dala Bridge and confirmed relevance of bridge plan for reference.

The conditions of Dala Bridge were refered to the Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project".

D.2. Design Conditions for Width of Bago River Bridge

The design conditions for width of Bago River Bridge are shown below.

ltem	AASHTO	ASEAN Highway Standards	Japanese Road Design Standard	Recommendation for this study	Remarks
Road Classification	Urban Arterials	Class I	Class 4 (Urban Arterials)	Urban Arterials	
Width of Lane (m)	3.3 ~ 3.6	3.5	3.25	3.5	
Width of Right Shoulder (m)	0.3 ~ 3.6	3.0	0.5	0.5	
Width of Left Shoulder (m)	-	-	0.5	0.5	
Width of Median (m)	1.2 ~ 24.0	3.0	1.0	2.5 ~ 4.2	Include width of left shoulder
Width of Sidewalk (m)	1.2 ~ 2.4	-	2.0 or more	2.0	

Table D.1 Design Conditions for Width of Bago River Bridge

Source: JICA Study Team

The typical cross sections of bridge are shown in the figure below.

Source: JICA Study Team

Figure D.1 Typical Cross Section of Bridge (Steel Cable Stayed Bridge)

Figure D.2 Typical Cross Section of Bridge (Precast PC Box Girder Bridge)

D.3. Design Conditions of Dala Bridge

The design conditions for width of Dala Bridge are shown below.

Table D.2 Design Conditions for Width of Dala Bridge

.

.

	Item	Earthwork	Bridge
	Main roads	3.0 ~ 3.6	3.3
Lane	Connection roads	Longer than 5.0 pavement including shoulder	3.3
	Median Strip	1.2 ~ 24.0	1.2
	Main roads	0.3 ~ 3.6	1.2
Shoulder Right side of connect Left side of connection	Right side of connection roads	1.8 ~ 3.6	1.8
	Left side of connection roads	1.2 ~ 3.0	1.2
	Sidewalk	Longer than 1.2	1.2

Source: Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project"

The typical cross sections of bridge are shown below.

Source: Final Report for "The Feasibility Study for Korea-Myanmar Friendship Bridge Project" Figure D.3 Typical Cross Section of Bridge (Cable-stay Bridge)

D.4. Comparison for Width of Bago River Bridge and Dala Bridge

The following table shows the comparison for width of Bago River Bridge and Dala Bridge.

Item	Condition of Bago River Bridge	Dala Bridge	Remarks
Road Classification	Urban Arterials	Urban Arterials	
Width of Lane (m)	3.5	3.3	
Width of Right Shoulder (m)	0.5	1.2	
Width of Left Shoulder (m)	0.5	1.2	
Width of Median (m)	2.5 ~ 4.2	6.8	Include width of left shoulder
Width of Sidewalk (m)	2.0	1.2	
Total Width (m)	22.3 ~ 24.0	26.5	Include width of guard rail

Table D.3 Comparison	for Width of Bago	River Bridge and Dala	Bridae
	ion what i bugo	The bridge and bala	Dhugo

Source: JICA Study Team

The width of Bago Bridge and Dala Bridge are pursuant to relevant standards.

For assessing the relevance of the bridge width, an economical efficiency and a safety are considered.

Bago Bridge is much better at the economical efficiency than Dala Bridge because the width of Bago Bridge is narrower than Dala Bridge.

It should be considered in safety of vehicle and pedestrian at assessing the safety.

Considering the vehicular safety, the width of Bago Bridge is enough for emergency passing as shown in the figure below.

Considering the pedestrian safety, the width of Dala Bridge, 1.2m, is narrow for passing each other.

The width of sidewalk is necessary at least 2.0m in accordance with the Japanese Road Design Standards and the width of the existing sidewalk of Thanlyin chin Kat Road and Shukhinthar Road is 2.0m.

Therefore, the width of Bago Bridge is appropriate at the economical efficiency and the safety.

Appendix E Structural comparison of Bago River Bridge and Dala Bridge

In order to justify the validity of the cost estimate of the Project, the estimated cost was compared with that of a similar project.

Source: JICA Study Team

Figure E-1 Profile of Bago River Bridge

Item	Span	Superstructure type	Length (m)	Width (m)
A1-P6	6	PC box girder (span-by-span erection)	300m	11.0 x 2
P6-P13	7	Steel box girder with steel deck slab	776m	11.0 x 2
P13-P16	3	Steel cable stayed girder	448m	22.4
P16-A2	8	PC box girder (span-by-span erection)	404m	11.0 x2
		Total length	1,928m	

Table E-1 Brief description of Bago River Bridge

Source: JICA Study Team

1.1.1 Outlines of the similar project

Yangon-Dala Bridge Construction Project funded by South Korean loan is ongoing similar bridge project to connect two lands split by the wide river as Bago River Bridge.

Source: http://myanmarcs.focuscoregroup.com/loan-approved-for-construction-of-yangon-dala-bridge/

Figure E-2 Rendering perspective of Yangon-Dala Bridge

According to the F/S report, outline of Yangon-Dala Bridge is;

- Soft Loan of USD 137.8 million from South Korea, and total project cost amounts USD 168.2 million (approximately JPY 2.02 billion)
- Payment period of 40years including grace period of initial 15years
- Low interest (0.01%)
- 5years of construction period
- Total bridge length 6,144 feet (approximately 1,872meter)
- linking Phone Gyi Road, Landmadaw Township in Yangon CBD to Bo Min Yaung Road in Dala Township over Yangon River

The proportion of each span are shown in Table E-2.

Item	Description	Length (m)	Width (m)
Approach Bridge 1	19-span PC Beam	665	20.9
Main Bridge	3-span PC cable stayed	590	26.5
Approach Bridge 2	2-span steel box+16-span PC beam	540	14.3
Total of Main Bridge		1,872	-
Ramp A	3-span steel box+12-span PC beam	525	7.1
Ramp B	3-span steel box+11-span PC beam	490	7.1

Table E-2 Bridge length and width of Yangon-Dala Bridge

Source: Feasibility Study for Korea-Myanmar Friendship Bridge Project

1.1.2 Conditions for comparison

Though Yangon-Dala Bridge and Bago River Bridge have similar bridge length shown in Figure E-3, two bridges have different proportions because of the difference in the widths of these rivers, 720m and 1,900m, respectively. The length of Main Bridge of Yangon-Dala Bridge is 590m, while that of Bago River Bridge is 1,224m.

Yangon-Dala B	ridge L=1,872.5m
---------------	------------------

Source: JICA Study Team

Figure E-3 Profiles of Bridges (Main Bridge)

1.1.3 Results of cost comparison

(1) Project cost comparison per river width

If the most important function of the river bridge is "crossing the river", it can be said that the index of "project cost per bridge width" makes sense, because the wider the river is, the more challenging the bridge construction is.

The comparison result of Yangon-Dala Bridge (across Yangon River) and Bago River Bridge (across Bago River) is shown in Table E-3.

Bridge Name	Project cost (Eligible portion, USD)	River width (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	137.8	720	0.19	1.36
Bago River Bridge	266,8	1900	0.14	1.00

Table E-3 Comparison of total project cost per river width

Source: JICA Study Team

Even though the eligible portion of project cost of Bago River Bridge is as twice as that of Yangon-Dala Bridge, the cost per river width of Bago River Bridge is cheaper.

(2) Cost comparison by Construction cost per Bridge length

Focused on the main bridge, the result of the comparative study is shown in Table E-4.

Bridge Name	Construction cost (USD)	Length (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	65,757,524	590	111,453	1.08
Bago River Bridge	126,264,000	1,224	103,156	1.00

Source: JICA Study Team

Even though the construction cost of main bridge of Bago River Bridge is as twice as that of Yangon-Dala Bridge, the unit cost, the costs per bridge length, are similar and Bago River Bridge is slightly lower.

In a part of Main Bridge, there is Steel Cable Stayed Bridge in Bago Bridge as shown in Figure E-4. On the other hand, the main bridge of Yangon-Dala Bridge is PC cable stayed bridge. The following table shows the comparison specifically between PC Cable Stayed Bridge in Yangon-Dala Bridge and Steel Cable Stayed Bridge in Bago River Bridge.

Figure E-4 Profiles of Bridges (Superstructure Types)

Table F-5 Com	parison of o	cable staved	bridge	section
	panson or c	Jable Slayeu	blidge	3601011

Bridge Name	Construction cost (USD)	Length (m)	Cost per bridge length (USD/m)	Rate
Yangon-Dala Bridge	65,757,524	590	111,453	0.78
Bago River Bridge	63,825,000	448	142,467	1.00

Source: JICA Study Team

It is found that the unit cost (cost-per-bridge area value of the span of Steel Cable-stayed Bridge in Bago River Bridge (224m) is relatively higher than that of PC Cable-stayed Bridge in Yangon-Dala Bridge. One of the major reasons for the difference in unit cost is that the main span length of Bago River Bridge is controlled by that of Thanlyin Bridge and the resultant span length is not in the range of economical span.

Mentioned about the other portion, in other words on-land portion, they also are in different situations for bridge design. At the location of Yangon-Dala Bridge, Yangon River and the land are distinctively separated by the revetment. Therefore, the approach bridges are designed with no consideration of effective river flow but economic spanning.

On the other hand, at the location of Bago River Bridge, there is no definitive revetment but very narrow slope and natural dump area on the both sides of the river where the large flood water or storm surge comes at intervals. So the spans of the approach bridge are planned 50m to secure the smooth river flow.

Appendix F Construction Plan of Flyover on Yangon Side

The Flyover on Yangon side was constructed as following steps.

Source: JICA Study Team

The conditions of construction plan were set as below.

- Minimum width of carriage way is adopted 3.0m in consideration of the maximum width of design vehicle (trailer: 2.6m) mentioned in AASHTO and lateral margin.
- Width between carriage way and construction area is kept over 1.0m. It is assumed 0.5m for shoulder and 0.5m for space of temporary safety measure (fence and etc.).
- Width of sidewalk is adopted 2.0m in accordance with minimum width mentioned in Japanese Road Design Standars.

The drawings of construction steps are shown in the figures bolow.

Interim report

Interim report

Appendix G Area for Construction Yards

(1) Introduction

In this chapter, necessary areas for construction yards are estimated and compare with the available vacant land for clarify whether temporary land acquisition will be necessary or not.

(2) Estimated Areas of Construction Yards

The following table shows the preliminary estimation of necessary areas of construction yards for the bridge and flyover construction.

ltem	Bride	Flyover		
	Taketa Side	Thanlyin Side	Section	
Concrete & Asphalt Plant	8,000	8,000	3,000	
Precast Segment	9,000	12,000		
Stockyard for Reinforcement Bar, Form Work	13,000	15,000	5,000	
Material & Equipment	30,000*	30,000*	8,000	
Office, Dormitory, Car Parking, Shed	3,000	3,000	2,000	
Total Area (m²)	63,000	68,000	18,000	

Table G.1 Preliminary Estimation of Necessary Areas of Construction Yards

Note*: ROW can be utilized.

Source: Study Team

(3) Construction Yard on Thanlyin Side

As stated in FS Report of 2014, Construction Yard on Thanlyin Side is expected to be located in the Compound of Myanmar Railway which is large enough as shown in the following figure.

Source: F/S Final Report

(4) Construction Yard on Thaketa Side

On Thaketa side, Construction yards is expected to be located in the compound of MOC and Myanmar Railway.

However, the compound of MOC is now occupied by a factory and remaining available area is estimated as 63,000m², which is equal to estimated necessary area for construction yard. Further occupation may need additional land acquisition.

Source: F/S Final Report, added by Study Team

Figure G.2 Available Land for Constructtion Yard on Thaketa Side

(5) Construction Yard for Flyover

For Flyover, possible construction yard is as shown in the slide.

It is considered that the area of $19,280m^2$ (= $5,625m^2 + 13,655m^2$, Myanmar Railway Compound) is available, which is more than the estimated necessary area for construction yard.

Source: Study Team

Appendix H Study of Toll Gate for Bago Bridge

The Toll Gate for Bago Bridge was studied based on the Design Standard of NEXCO (Nippon Expressway Company).

(1) Number of Toll Booth

The number of toll booth was calculated by using following formula in accordance with the Design Standard of NEXCO.

$$U = \frac{B \text{ x DHV}}{3600 \text{ x S}} < 1.0$$

Where:

U: Unit Strength of Traffic per 1 lane (veh)

B: Time of Service (sec); Generally, the time of service is 8 second.

DHV: Design Hourly Volume (veh/hr)

S: Number of Toll Booth (nos)

The results of caluculation for number of toll booth is shown in the table below.

Table H.1 Calculation of Necessary Number of Toll Booths
--

Direction	Dł	ΗV	В	S	U	Remarks
	(pcu/hr)	(veh/hr)	(sec)	(nos)	(veh)	Remarks
Flyover to Bago Bridge	950	798		3	0.591	
Bago Bridge to Flyover	1,160	974		3	0.721	
Bago Bridge to Shukhinthar Intersection	1,480	1,243	8	3	0.921	
Shukhinthar Intersection to Bago Bridge	1,180	991		3	0.734	

Source: JICA Study Team

As a result, the number of toll booth is adopted 3 numbers per lane.

(2) Layout of Toll Gate

The layout of toll gate was planned as following conditions in accordance with the Design Standard of NEXCO.

- Ratio of lateral transition (W/L) was adopted 1/3 and over (W: width of lateral transition, L: length of transition section).
- > Length of toll gate park was adopted 30m.
- > Length of toll island was adopted 22.4m and width of it was adopted 2.2m.
- Width of lane at toll gate was adopted 3.0m. However, width of most right lane was adopted 3.5m in consideration of large vehicle passing.

The plan of toll gate is shown in the figure below.

Figure H.1 Plan of Toll Gates and Layout of Toll Booths