Republic of India

Chennai Metropolitan Water Supply and Sewerage Board

Republic of India Preparatory Survey on Chennai Seawater Desalination Plant Project

Final Report Appendices

February 2017

Japan International Cooperation Agency (JICA)

Nippon Koei Co., Ltd. INGÉROSEC Corporation Nippon Koei India Pvt. Ltd.

Republic of India

Chennai Metropolitan Water Supply and Sewerage Board

Republic of India Preparatory Survey on Chennai Seawater Desalination Plant Project

Final Report Appendices

February 2017

Japan International Cooperation Agency (JICA)

Nippon Koei Co., Ltd. INGÉROSEC Corporation Nippon Koei India Pvt. Ltd.

Republic of India

Preparatory Survey for Chennai Seawater Desalination Plant Project

Final Report

List of Appendices

APPENDIX 2

- 2.1 Map of CMA with Administrative Boundaries and CMWSSB's Administration Area & Water Distribution Zone Boundaries
- 2.2 List of Wards, Depots, Urban Local Bodies (ULBs) in Channai Metropolitan Area (CMA)
- 2.3 Social Conditions in the Study Area
- 2.4 Natural Conditions in the Study Area
- 2.5 Infrastructure Development in the Study Area

APPENDIX 3

- 3.1 Summary of Water Supply Services by Administration Area
- 3.2 Estimated Domestic LPCD Map by CMWSSB
- 3.3 Raw Water Transmission Mains of CMWSSB
- 3.4 O&M Conditions of the Existing Water Treatment Plants of CMWSSB
- 3.5 Existing Water Transmission Mains of CMWSSB
- 3.6 Water Distribution Network Maps for the Water Distribution Zones
- 3.7 Technical and Management Problems in the Service Connections and Water Meters in the Service Area of CMWSSB
- 3.8 Indian Drinking Water Standard
- 3.9 Contents and Coverage of the UFW Program in the Chennai City Assisted by the World Bank
- 3.10 General Descriptions of Seawater Desalination Process by Reverse Osmosis Technology (SWRO)
- 3.11 Present Conditions of the Exiting DSPs
- 3.12 Present Conditions of Water Recycling by CMWSSB

APPENDIX 4

- 4.1 Population Forecast in the Master Plan
- 4.2 Water Transmission and Distribution Plans in the Master Plan
- 4.3 Sewerage System Development Plan in the Master Plan
- 4.4 Investment Plan for Water Supply and Sewerage Systems in the Master Plan

APPENDIX 5

- 5.1 Water Demand Foreast in the Study
- 5.2 Water Production Projection for the perur DSP

- 5.3 Water Allocation Plan for the Years 2025, 2035 and 2050
- 5.4 Vacant Lands that Can Contain the 400 MLD Plant but Not Considered as the Candidate Site
- 5.5 EPANET Data for Examination of the Existing Water Transmission Network
- 5.5 Analysis on the data base from the field book 2003 for old pipe replacement
- 5.6 Preliminary hydraulic analysis on the existing water distribution networks in the Chennai core city

APPENDIX 6

- 6.1 Geotechnical Survey Results in the DPR
- 6.2 Seawater Quality Survey in the Study
- 6.3 Geotechnical Survey in the Study
- 6.3 Layout Plan of the Perur DSP
- 6.5 Instrumentation List for the Perur DSP
- 6.6 Equipment List for the Perur DSP
- 6.7 Conceptual diagrams of direct and indirect seawater intake methods and types
- 6.8 Alternative study on direct intake type
- 6.9 Conceptual diagrams of direct and indirect discharge systems and types
- 6.10 Alternative study on direct discharge type
- 6.11 Study on current situation of Nemmeli DSP by water analysis
- 6.12 Methodology for the Brine Diffusion Simulation
- 6.13 Alternative study on number of lines and material of the intake pipe
- 6.14 Study on surging in the intake pit
- 6.15 Alternative study on number of lines and materials of the discharge pipe
- 6.16 Present Situation and the Existing Plan of Power Receiving System
- 6.17 Determination of the Power Receiving Plan of the Perur DSP
- 6.18 Single Line Diagram of 230/33 kV and 33/11 kV Substations
- 6.19 Cost Breakdown for Alternative Study on Product Water Transmission System
- 6.20 Preliminary Hydraulic Assessment Residual Pressures in Core City (2035 and 2050)
- 6.21 Storage Requirement of UGT and ESR
- 6.22 Layout Plan of the DMAs in Chennai Core City
- 6.23 Preliminary Assessment of distribution and storage requirement for OC-15 & OC-16

APPENDIX 7

- 7.1 Environmental and Social Conditions Relevant to the Project
- 7.2 International Treaty on Environment
- 7.3 Environmental Impact Assessment (EIA) System in India
- 7.4 Land Acquisition and Resettlement Systems in India
- 7.5 Environmental and Social Conditions around the Transmission Pipeline Routes
- 7.6 Response from CMWSSB to TNCZMA on Sea Turtles
- 7.7 Meeting Minutes for the 1st Stakeholders Meeting

- 7.8 Participant List for the 1st Stakeholders Meeting
- 7.9 Meeting Minutes for the 2nd Stakeholders Meeting
- 7.10 Participant List for the 2nd Stakeholders Meeting
- 7.11 Monitoring Form (Draft)
- 7.12 Proposed and Recommended Environmental Monitoring Plans
- 7.13 Implementation Mechanism of EMP and Monitoring (Draft)
- 7.14 Environmental Checklist

APPENDIX 9

- 9.1 Organization structure of CMWSSB
- 9.2 Decision Making
- 9.3 CMWSSB Procurement Process
- 9.4 Project Implementation Procedures and Decision Making Process
- 9.5 Organizational Strengthening Plan

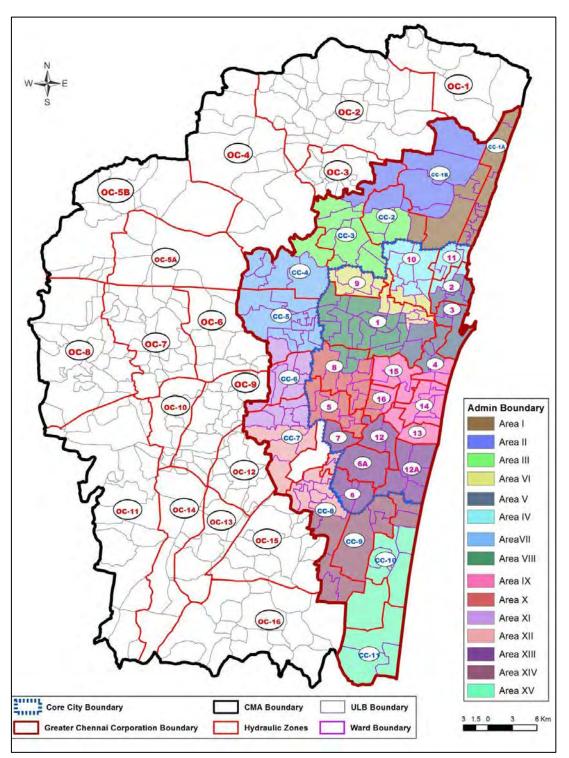
APPENDIX 10

- 10.1 Project Cost Estimated in the DPR
- 10.2 Comparison of the Project Cost in the DPR and the Study
- 10.3 Details of the Project Cost
- 10.4 Operation and Maintenance Cost in Case of Operation Rate of 75% (Production: 300 MLD)
- 10.5 Production Cost including Depreciation Cost in Case of Operation Rate of 75% (Production: 300 MLD)

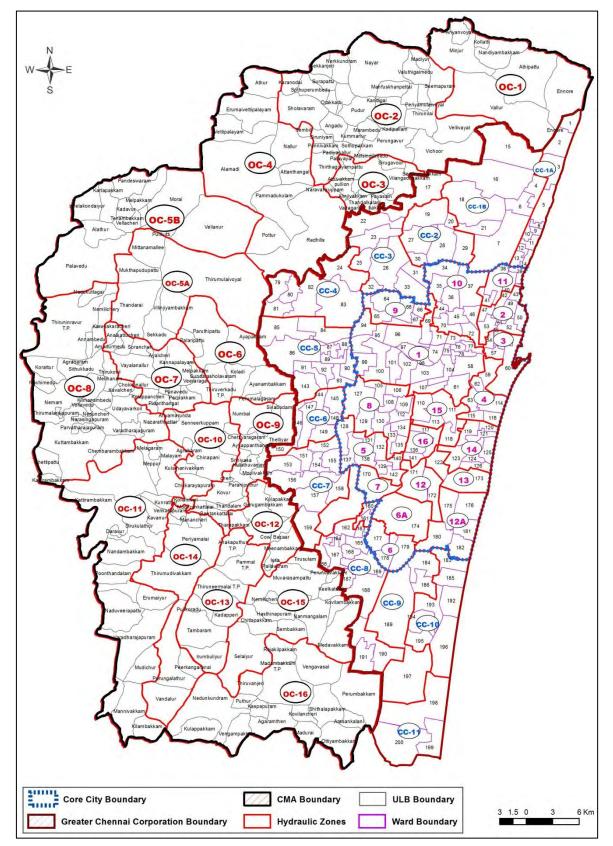
APPENDIX 11

11.1 Terms of reference (TOR) of the consultancy services

APPENDIX 12


- 12.1 Conditions and Methodologies for Financial and Economic Analyses
- 12.2 Financial Cost and Benefit
- 12.3 Financial Analysis Results
- 12.4 Financial Sensitivity Analysis
- 12.5 Economic Cost and Benefit
- 12.6 Economic Analysis Results
- 12.7 Economic Sensitivity Analysis Results

APPENDIX 13


13.1 Risk management framework for the project

Appendix 2.1Map of CMA with Administrative Boundaries and CMWSSB'sAdministration Area & Water Distribution Zone (WDZ) Boundaries

A2.1.1 Administrative Boundaries of Wards and ULBs, Administrative Boundaries and WDZs of CMWSSB

Note 1:Administration Area: Zoning by CMWSSB for administration purposesNote 2:Water Distribution Zones: Zoning by CMWSSB, each of which has a water distribution centreSource: JICA Study Team

A2.1.2 Administrative Boundaries with Ward Numbers and ULB Names with Boundaries of WDZs of CMWSSB

Note: See Appendix 2.2 for general information on the wards and ULBs Source: JICA Study Team

Appendix 2.2 List of Wards, Depots, Urban Local Bodies (ULBs) in the Chennai Metropolitan Area (CMA)

CHENNAI	CORE CITY	1		N					
Ward/ Depot Number	Water Distribution Zone (Existing) /Hydraulic Zone	Adm in Area	Name of the Locality		Total Area (ha)	Populati on in Thousan ds as per 2001 Census	Population in Thousands as per 2011 Census	Annual population growth in 2001-2011 (%)	Population density by area (persons /ha)
61	1	5	Royapuram	-	17,617.7	4,344.000	4,647.000	0.68%	264
69	1	6	Thiruvi-Ka-Nagar	_					
71	1	6	Thiruvi-Ka-Nagar	_					
73	1	6	Thiruvi-Ka-Nagar	_					
76	1	6	Thiruvi-Ka-Nagar	_					
77	1	6	Thiruvi-Ka-Nagar	-					
78	1	6	Thiruvi-Ka-Nagar	_					
74	1	8	Thiruvi-Ka-Nagar	-					
75	1	8	Thiruvi-Ka-Nagar	-					
94	1	8	Anna Nagar	-					
95	1	8	Anna Nagar	-					
96	1	8	Anna Nagar	-					
97	1	8	Anna Nagar	-					
98	1	8	Anna Nagar	-					
99	1	8	Anna Nagar	-					
100	1	8	Anna Nagar	-					
101	1	8	Anna Nagar	_					
102	1	8	Anna Nagar	-					
103	1	8	Anna Nagar	-					
104	1	8	Anna Nagar	_					
42	2	4	Tondiarpet	_					
43	2	4	Tondiarpet	_					
47	2	4	Tondiarpet	_					
48	2	4	Tondiarpet	_					
49	2	5	Royapuram	_					
50	2	5	Royapuram	_					
51	2	5	Royapuram	_					
52	2	5	Royapuram	_					
53	2	5	Royapuram	_					
54	3	5	Royapuram	_					
55	3	5	Royapuram	_					
56	3	5	Royapuram	_					
57	3	5	Royapuram	_					
58	3	5	Royapuram	_					
60	3	5	Royapuram						
59	4	5	Royapuram	_					
62	4	5	Royapuram	_					
62	4	5	Royapuram	_					
114	4	5 9	Teynampet	-					
114		9		_					
	4	9	Teynampet						
116	4 5	-	Teynampet	-					
128		10	Kodambakkam	-					
131	5	10	Kodambakkam	-					
132	5	10	Kodambakkam	-					
137	5	10	Kodambakkam	-					
138	5	10	Kodambakkam	-					
139	5	10	Kodambakkam	-					
140	5	10	Kodambakkam	-					
142	5	10	Kodambakkam	-					

177 178 179 170 105 106 107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		6	13	Adyar	-
179 170 105 106 107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176	+	6	13	Adyar	_
170 105 106 107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		6	13	Adyar	_
105 106 107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		7	13	Adyar	_
106 107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	8	Anna Nagar	-
107 108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	8	Anna Nagar	-
108 109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	8	Anna Nagar	_
109 112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	8	Anna Nagar	_
112 127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	9	Teynampet	_
127 129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	9	Teynampet	
129 130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	
130 133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	
133 134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	
134 135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	
135 64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	_
64 66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176	_				
66 68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		8	10	Kodambakkam	-
68 65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		9	6	Thiruvi-Ka-Nagar	-
65 67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		9	6	Thiruvi-Ka-Nagar	-
67 34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		9	6	Thiruvi-Ka-Nagar	-
34 35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		9	8	Thiruvi-Ka-Nagar	-
35 36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		9	8	Thiruvi-Ka-Nagar	-
36 37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	-
37 44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	-
44 45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	_
45 46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	-
46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	-
46 70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	_
70 72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	4	Tondiarpet	-
72 38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	6	Thiruvi-Ka-Nagar	_
38 39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		10	6	Thiruvi-Ka-Nagar	_
39 40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176	-	11	4	Tondiarpet	_
40 41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		11	4	Tondiarpet	_
41 171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		11	4	Tondiarpet	_
171 172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		11	4		_
172 122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176				Tondiarpet	
122 173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176	_	12	13	Adyar	-
173 119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		12	13	Adyar	-
119 120 121 123 124 125 126 110 111 113 118 117 136 141 175 176	_	13	9	Teynampet	_
120 121 123 124 125 126 110 111 113 118 117 136 141 175 176		13	9	Adyar	-
121 123 124 125 126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
123 124 125 126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
124 125 126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
125 126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
125 126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
126 110 111 113 118 117 136 141 175 176		14	9	Teynampet	-
110 111 113 118 117 136 141 175 176	╈	14	9	Teynampet	-
111 113 118 117 136 141 175 176		15	9	Teynampet	-
113 118 117 136 141 175 176	+	15	9	Teynampet	_
118 117 136 141 175 176	╉	15	9	Teynampet	_
117 136 141 175 176	+	15	9	Teynampet	_
136 141 175 176	+	15	9	Teynampet	_
141 175 176	+				
175 176	+	16	10	Kodambakkam	-
176	+	16	10	Kodambakkam	-
		12A	13	Adyar	-
100		12A	13	Adyar	-
180		12A	13	Adyar	-
181		12A	13	Adyar	_
182		12A	13	Adyar	-
174		6A	13	Adyar	-
		SUB-T	OTAL		

CHENNAI CORPORATION (EXPANDED AREA)

CHENNAI	CORPORATIO	IN (EAFF	ANDED AKEA)						
Ward/ Depot Number	Water Distribution Zone (Planned)/Hy draulic Zone		Name of the Locality (Former name as ULB)	ULB Classification by 2011 (M: Municipality, T: Town Panchayat, V: Village Panchayat)	Total Area (ha)	Populati on in Thousan ds as per 2001 Census	Population in Thousands as per 2011 Census	Annual population growth in 2001-2011 (%)	Population density by area (persons/ha)
		-	Kathivakkam	М	475.1	32.590	36.620	1.17%	77
1 TO 14	CC1-A	-	Thiruvottiyur	М	2,135.5	212.280	249.450	1.63%	117
18-P		-	Manali	М	374.3	14.300	17.625	2.11%	47
15		-	Edayanchavadi	V	842.9	9.128	12.119	2.87%	14
16	CC1-B	-	Sadayankuppam	V	695.0	1.940	5.348	10.67%	8
16, 17		-	Kadapakkam	V	310.7	2.659	2.941	1.01%	9
21		-	Chinnasekkadu	Т	83.3	4.870	6.200	2.44%	74
18-P		-	Manali	М	374.3	14.300	17.625	2.11%	47
17		-	Thiyambakkam	V	64.3	0.132	0.153	1.49%	2
19,20		-	Mathur	V	297.7	7.541	27.674	13.88%	93
17,26,27, 30,31,32, 33	CC2	-	Madhavaram	М	1,741.3	76.090	119.110	4.58%	68
28,29		-	Chinnasekkadu	Т	83.3	4.870	6.200	2.44%	74
17	CC3	-	Vadaperumbakka m	V	173.9	1.213	1.682	3.32%	10
25	ces	-	Kathirvedu	V	159.0	4.870	7.580	4.52%	48
22,23		-	Puzhal	Т	673.7	20.640	31.670	4.37%	47
24		-	Soorapattu	V	278.5	5.557	10.444	6.51%	38
83	CC4	-	Puthagaram	V	192.8	6.451	10.263	4.75%	53
79,80,81, 82		-	Ambattur	М	1,888.5	155.485	233.100	4.13%	123
84,85,86, 87,88,89, 90,91,92, 93	CC5	-	Ambattur	М	1,888.5	155.485	233.100	4.13%	123
143		-	Nolambur	V	256.6	8.594	21.973	9.84%	86
148,149,1 52		-	Valasarawakkam	М	297.1	30.980	47.380	4.34%	159
144,146,1 47	CC6	-	Maduravoyal	М	478.0	43.610	86.200	7.05%	180
145		-	Nerkunram	V	265.0	39.826	59.790	4.15%	226
150		-	Karambakkam	Т	106.7	14.950	21.376	3.64%	200
151,153		-	Porur	T	371.8	28.920	46.690	4.91%	126
154,155		-	Ramapuram Manapakkam	V V	269.2	27.895	52.295	6.49% 4.48%	194
157 158		-	Nandambakkam	V T	412.0 261.0	8.605 9.340	13.344 11.240	4.48%	32 43
158	CC7	-	Meenambakkam	T	302.7	3.610	4.290	1.74%	14
155		-	Mugalivakkam	V	186.9	9.154	25.117	10.62%	134
160,161,1 62		-	Alandur	M	403.8	73.145	82.215	1.18%	204
163,164,1 65,166,16 7,168		-	Alandur	М	403.8	73.145	82.215	1.18%	204
169	CC8	-	Ullagaram-Puzhud hivakkam	М	364.4	30.420	53.320	5.77%	146
187,188		-	Madippakkam	V	340.1	15.548	35.752	8.68%	105
191		-	Jalladianpet	V	228.0	7.240	19.100	10.19%	84
184,186	CC9	-	Perungudi	Т	464.3	23.580	43.110	6.22%	93
189,190		-	Pallikkaranai	Т	1,742.7	22.070	43.490	7.02%	25
183		-	Kottivakkam	V	247.0	13.884	20.217	3.83%	82
185	CC10	-	Palavakkam	V	207.2	14.361	26.766	6.42%	129
192,193		-	Neelankarai	V	280.5	15.637	28.458	6.17%	101

196		-	Injambakkam	V	518.6	10.117	21.158	7.66%	41
197		-	Karapakkam	V	244.4	3.795	8.958	8.97%	37
194,195		-	Oggiam Thuraipakkam	V	603.1	25.952	76.600	11.43%	127
197,198		-	Sholinganallur	Т	1,535.1	15.560	26.640	5.52%	17
200	CC11	-	Semmanjeri	V	701.4	3.744	29.751	23.03%	42
199		-	Uthandi	V	340.8	2.497	5.037	7.27%	15
	SUB -TOTAL				24,564.5	1,306.580	2,021.386	4.46%	82

REST OF CMA

REST OF C	JMA								
	Water Distribution Zone (Planned)/Hy draulic Zone		ULB	ULB Classification (M: Municipality, T: Town Panchayat, Name: Village Panchayat (Union Name)	Total Area (ha)	Populati on in Thousan ds as per 2001 Census	Population in Thousands as per 2011 Census	Annual population growth in 2001-2011 (%)	Population density by area (persons/ha)
-	OC1	-	Athipattu	Minjur	914.50	8.513	11.030	2.62%	12
-	OC1	-	Ennore	Minjur	677.20	0.660	0.930	3.49%	1
-	OC1	-	Nandiambakkam	Minjur	415.62	3.531	6.268	5.91%	15
-	OC1	-	Vallur	Minjur	997.41	5.662	5.965	0.52%	6
-	OC2	-	Vallur	Minjur	997.41	5.662	5.965	0.52%	6
-	OC2	-	Angadu	Sholavaram	232.39	0.839	0.703	-1.75%	3
-	OC2	-	Arumandai	Sholavaram	176.17	1.189	1.699	3.63%	10
-	OC2	-	Chinnamullaivoya l	Sholavaram	81.31	0.060	0.070	1.55%	1
-	OC2	-	Girudalapuram	Sholavaram	147.91	0.000	0.000	#DIV/0!	0
-	OC2	-	Kandigai	Sholavaram	32.37	0.240	1.146	16.92%	35
-	OC2	-	Karanodai	Sholavaram	136.43	2.991	3.779	2.37%	28
-	OC2	-	Kodipallam	Sholavaram	52.70	0.495	0.591	1.79%	11
-	OC2	-	Kummanur	Sholavaram	136.93	1.603	1.807	1.21%	13
-	OC2	-	Madiyur	Sholavaram	94.43	0.333	0.313	-0.62%	3
-	OC2	-	Mafuskhanpet	Sholavaram	168.44	0.967	1.018	0.52%	6
-	OC2	-	Marambedu	Sholavaram	152.26	0.626	0.668	0.65%	4
-	OC2	-	Melsingilimedu	Sholavaram	52.76	0.000	0.000	#DIV/0!	0
-	OC2	-	Nayur	Sholavaram	1,031.73	2.935	4.516	4.40%	4
-	OC2	-	Nerkundram	Sholavaram	211.10	0.474	0.714	4.18%	3
-	OC2	-	Orakkadu	Sholavaram	115.81	1.698	1.610	-0.53%	14
-	OC2	-	Padianallur	Sholavaram	358.66	20.938	23.819	1.30%	66
-	OC2	-	Pannivakkam	Sholavaram	93.94	0.000	0.000	#DIV/0!	0
-	OC2	-	Periyamullaivoyal	Sholavaram	185.26	0.953	0.977	0.25%	5
-	OC2	-	Perungavoor	Sholavaram	607.12	2.014	2.270	1.20%	4
-	OC2	-	Pudupakkam	Sholavaram	126.46	0.544	0.386	-3.37%	3
-	OC2	-	Budur	Sholavaram	332.44	0.000	0.000	#DIV/0!	0
-	OC2	-	Seemapuram	Sholavaram	365.66	1.604	1.870	1.55%	5
-	OC2	-	Sekkanjeri	Sholavaram	123.85	0.410	0.740	6.08%	6
-	OC2	-	Sembilivaram	Sholavaram	92.09	1.400	1.240	-1.21%	13
-	OC2	-	Sholavaram	Sholavaram	598.72	6.760	9.397	3.35%	16
-	OC2	-	Siruniam	Sholavaram	105.45	0.843	1.300	4.43%	12
-	OC2	-	Soorapattu	Sholavaram	117.04	5.550	10.440	6.52%	89
-	OC2 OC2	-	Sothupakkam Sothuperumbedu	Sholavaram	125.02	0.000	0.000	#DIV/0!	0
-		-	Thirunilai	Sholavaram	223.90	1.305	1.670	2.50%	7
-	OC2 OC2	-	Valuthigaimedu	Sholavaram Sholavaram	315.17 221.14	1.225 1.486	0.957	-2.44%	3
-	OC2 OC2	-			539.49	3.230			7
-	OC2 OC2	-	Vellivoyal Vichoor	Sholavaram Sholavaram	895.32	4.399	3.511 5.765	0.84%	6
-	0C2 0C4	-	Alamathi	Sholavaram	1,747.86	5.812	7.420	2.74%	4
-	OC4 OC4	-	Athur	Sholavaram	378.08	2.917	3.866	2.47%	4
-	OC4 OC4	-	Attanthangal	Sholavaram	258.50	9.982	14.830	4.04%	57
			Erumaivettipalaya						2
-	OC4	-	Erumarvetupataya	Sholavaram	662.09	1.790	1.654	-0.79%	2

n n 486.32 2.299 19.595 23.90% - OC4 - Nalur Sholavaram 486.32 2.299 19.595 23.90% - OC4 - Eumavettipalaya Sholavaram 486.32 0.904 1.456 4.88% - OC4 - Vijayanallur Sholavaram 62.95 0.624 1.040 5.24% - OC3 - Atinjiyakkam Puzhal 126.58 0.000 0.000 #DIV/01 - OC3 - Atinjiyakkam Puzhal 123.15 1.754 2.693 4.38% - OC3 - Chettimedu Puzhal 58.21 0.274 0.200 -3.10% - OC3 - Elanthacheri Puzhal 28.21 0.274 0.200 -3.10% - OC3 - Kosappur Puzhal 28.46 0.000 0.000 #DIV/01 - OC3 - Javaya	40 3 17 24 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 17 24
OC4 - Erumaivettipalaya Sholavaram 469.53 0.904 1.456 4.88% - OC3 - Alinjiyakkam Puzhal 53.98 1.203 1.305 0.82% - OC3 - Anulavoyal Puzhal 126.58 0.000 0.000 #DIV/01 - OC3 - Arhivakkam Puzhal 126.58 0.000 0.000 #DIV/01 - OC3 - Arhivakkam Puzhal 126.58 0.023 4.38% - OC3 - Chettimedu Puzhal 58.21 0.274 0.200 3.16% - OC3 - Chettimedu Puzhal 25.22 0.803 0.685 -1.58% - OC3 - Kosappur Puzhal 24.04 0.000 0.000 #DIV/01 - OC3 - Manjambakkam Puzhal 24.04 0.045 0.39% -3.19% - OC3 -<	17 24
- OC4 - Vijayanallur Sholavaram 62.95 0.624 1.040 5.24% - OC3 - Alinjivakkam Puzhal 53.98 1.203 1.305 0.82% - OC3 - Ariyalur Puzhal 126.58 0.000 0.000 #DIV/01 - OC3 - Ariyalur Puzhal 132.15 1.754 2.693 4.38% - OC3 - Chettimedu Puzhal 58.21 0.274 0.200 -3.19% - OC3 - Grant Lyon Puzhal 252.2 0.803 0.685 -1.58% - OC3 - Grant Lyon Puzhal 238.46 0.000 0.000 #DIV/01 - OC3 - Lyon Puzhal 289.40 1.526 1.840 1.89% - OC3 - Palavoyal Puzhal 86.82 0.526 0.430 -1.99% - <t< td=""><td>24</td></t<>	24
OC3 - Amulavoyal Puzhal 126.58 0.000 #DIV/01 - OC3 - Ariyalur Puzhal 132.15 1.754 2.693 4.38% - OC3 - Athivakkam Puzhal 70.49 1.013 3.560 13.39% - OC3 - Chettimedu Puzhal 70.49 1.013 3.560 13.39% - OC3 - Chettimedu Puzhal 25.22 0.803 0.685 -1.58% - OC3 - Grant Lyon Puzhal 238.46 0.000 0.000 #DIV/01 - OC3 - Lyon Puzhal 284.68 0.526 0.330 -3.31% - OC3 - Palavoyal Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Sitragavur Puzhal 110.98 3.649 6.150 5.36% - OC3 - Tha	
- OC3 - Ariyalar Puzhal 132.15 1.754 2.693 4.38% - OC3 - Athiyakkam Puzhal 70.49 1.013 3.560 13.39% - OC3 - Chettimedu Puzhal 58.21 0.2074 0.200 -3.10% - OC3 - Elanthancheri Puzhal 25.22 0.803 0.685 -1.58% - OC3 - Grant Lyon Puzhal 238.46 0.000 0.000 #DIV/01 - OC3 - Lyon Puzhal 238.46 0.000 0.000 #DIV/01 - OC3 - Majambakkam Puzhal 88.40 0.526 0.430 -1.99% - OC3 - Payasambakkam Puzhal 166.56 0.137 1.097 23.13% - OC3 - Thandakkami Puzhal 17.46 0.045 0.099 8.20% -	0
- OC3 - Athivakkam Puzhal 70.49 1.013 3.560 13.39% - OC3 - Chettimedu Puzhal 58.21 0.274 0.200 -3.10% - OC3 - Elanthancheri Puzhal 25.22 0.803 0.685 -1.58% - OC3 - Kosappur Puzhal 238.46 0.000 0.000 #DIV/0! - OC3 - Lyon Puzhal 204.08 0.546 0.390 -3.31% - OC3 - Majambakkam Puzhal 89.40 1.526 1.840 1.89% - OC3 - Palavoyal Puzhal 66.56 0.137 1.097 23.13% - OC3 - Strugavur Puzhal 110.98 3.649 6.150 5.36% - OC3 - Thandalkalani Puzhal 71.74 3.328 5.412 4.98% - <td< td=""><td></td></td<>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20
- OC3 - Elanthancheri Puzhal 25.22 0.803 0.685 -1.58% - OC3 - Grant Lyon Puzhal 176.01 3.198 3.074 -0.39% - OC3 - Kosappur Puzhal 238.46 0.000 0.000 #DIV/0! - OC3 - Lyon Puzhal 204.08 0.546 0.390 -3.31% - OC3 - Majambakkam Puzhal 89.40 1.526 1.840 1.89% - OC3 - Pajasambakkam Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Sendrambakkam Puzhal 110.98 3.649 6.150 5.36% - OC3 - Thearthakiani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Thearthakiani Puzhal 71.74 3.328 5.412 4.98% -	51
- OC3 - Grant Lyon Puzhal 176.01 3.198 3.074 -0.39% - OC3 - Kosappur Puzhal 238.46 0.000 0.000 #DIV/01 - OC3 - Lyon Puzhal 204.98 0.546 0.390 -3.31% - OC3 - Palavojal Puzhal 89.40 1.526 1.840 1.89% - OC3 - Palavojal Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Payasambakkam Puzhal 10.98 3.649 6.150 5.36% - OC3 - Strugavur Puzhal 71.0 0.70 0.640 -1.83% - OC3 - Thandalkalani Puzhal 71.74 3.328 5.412 4.98% - OC3 - Valagarai Puzhal 179.91 0.000 0.000 #DIV/01 - OC	3
- OC3 - Kosappur Puzhal 238.46 0.000 #DIV/01 - OC3 - Lyon Puzhal 204.08 0.546 0.390 -3.31% - OC3 - Manjambakkam Puzhal 89.40 1.526 1.840 1.89% - OC3 - Pajasambakkam Puzhal 66.56 0.137 1.097 23.13% - OC3 - Sirugavur Puzhal 110.98 3.649 6.150 5.36% - OC3 - Thandalkalani Puzhal 71.74 3.328 5.412 4.98% - OC3 - Theerthakiriyampa Puzhal 71.74 3.328 5.412 4.98% - OC3 - Valagarai Puzhal 71.74 3.328 5.412 4.98% - OC3 - Valagarai Puzhal 179.91 0.000 0.000 #DIV/01 - OC3	27
- OC3 - Lyon Puzhal 204.08 0.546 0.390 -3.31% - OC3 - Manjambakkam Puzhal 89.40 1.526 1.840 1.89% - OC3 - Palavoyal Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Sendrambakkam Puzhal 10.98 3.649 6.150 5.36% - OC3 - Sendrambakkam Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Valagarai Puzhal 17.91 0.000 0.000 #DIV/0! - OC3 - Vilakupattu Puzhal 159.00 4.244 5.668 2.94% <t< td=""><td>17</td></t<>	17
- OC3 - Manjambakkam Puzhal 89.40 1.526 1.840 1.89% - OC3 - Palavoyal Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Payasambakkam Puzhal 66.56 0.137 1.097 23.13% - OC3 - Sendrambakkam Puzhal 10.98 3.649 6.150 5.36% - OC3 - Thandalkalani Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theorthakiriyampa Puzhal 71.74 3.328 5.412 4.98% - OC3 - Valagarai Puzhal 179.91 0.000 0.000 #DIV/01 - OC3 - Vilakudu Puzhal 55.00 4.244 5.668 2.94% -	0
- OC3 - Palavoyal Puzhal 86.82 0.526 0.430 -1.99% - OC3 - Payasambakkam Puzhal 66.56 0.137 1.097 23.13% - OC3 - Sendrambakkam Puzhal 110.98 3.649 6.150 5.36% - OC3 - Sendrambakkam Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vilakkadu Puzhal 149.28 2.470 2.662 0.494% - OC3 - Vilakkadu Puzhal 159.00 4.244 5.668 2.94% <t< td=""><td>2</td></t<>	2
- OC3 - Payasambakkam Puzhal 66.56 0.137 1.097 23.13% - OC3 - Sendrambakkam Puzhal 110.98 3.649 6.150 5.36% - OC3 - Sirugavur Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 149.28 2.470 2.672 0.79% - OC3 - Vilakkupattu Puzhal 148.0 0.000 0.000 #DIV/0! - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% <tr< td=""><td>21</td></tr<>	21
- OC3 - Sendrambakkam Puzhal 110.98 3.649 6.150 5.36% - OC3 - Sirugavur Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vilakupattu Puzhal 14.80 0.000 0.000 #DIV/0! - OC3 - Vilakupattu Puzhal 159.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 65.50 1.240 1.480 1.79%	5
- OC3 - Sirugavur Puzhal 128.46 0.045 0.099 8.20% - OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa tu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vaikkadu Puzhal 179.91 0.000 0.000 #DIV/0! - OC3 - Vilakkupattu Puzhal 14.80 0.000 #DIV/0! - OC3 - Vilagadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayapakkam Villivakkam 64.85 0.000 0.000 #DIV/0! -	16
- OC3 - Thandalkalani Puzhal 73.10 0.770 0.640 -1.83% - OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vaikkadu Puzhal 179.91 0.000 0.000 #DIV/0! - OC3 - Vilakkupattu Puzhal 14.80 0.000 0.000 #DIV/0! - OC3 - Vilangadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79%	55
- OC3 - Theerthakiriyampa ttu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vaikkadu Puzhal 179.91 0.000 0.000 #DIV/0! - OC3 - Vilakkupattu Puzhal 14.80 0.000 0.000 #DIV/0! - OC3 - Vilangadupakkam Puzhal 14.80 0.000 0.000 #DIV/0! - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26%	1
- OC3 - tu Puzhal 71.74 3.328 5.412 4.98% - OC3 - Vadagarai Puzhal 49.28 2.470 2.672 0.79% - OC3 - Vaikkadu Puzhal 179.91 0.000 0.000 #DIV/0! - OC3 - Vilakkupatu Puzhal 14.80 0.000 0.000 #DIV/0! - OC3 - Vilagadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Adayalampattu Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 280.94 8.526 19.208 8.46%	9
- OC3 - Vaikkadu Puzhal 179.91 0.000 0.000 #DIV/01 - OC3 - Vilakkupattu Puzhal 14.80 0.000 0.000 #DIV/01 - OC3 - Vilangadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47%	75
- OC3 - Vilakkupattu Puzhal 14.80 0.000 0.000 #DIV/0! - OC3 - Vilangadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47%	54
- OC3 - Vilangadupakkam Puzhal 559.00 4.244 5.668 2.94% - OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Chettiyaragaram Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 338.24 2.939 3.636 2.	0
- OC6 - Adayalampattu Villivakkam 115.21 1.735 1.874 0.77% - OC6 - Ayappakkam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Thandalam Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Alathur Villivakkam 182.14 1.405 1.402 -0.02% <td>0</td>	0
- OC6 - Ayappakam Villivakkam 421.52 6.440 29.500 16.44% - OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Atakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% <td>10</td>	10
- OC9 - Chettiyaragaram Villivakkam 64.85 0.000 0.000 #DIV/0! - OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Alathur Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% </td <td>16</td>	16
- OC9 - Sivabudham Villivakkam 65.50 1.240 1.480 1.79% - OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 464.12 1.272 2.739 7.97% - OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72%	70
- OC9 - Thandalam Villivakkam 88.22 1.275 1.594 2.26% - OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 464.12 1.272 2.739 7.97% - OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% <td>0</td>	0
- OC9 - Vanagaram Villivakkam 280.94 8.526 19.208 8.46% - OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 464.12 1.272 2.739 7.97% - OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31% <td>23</td>	23
- OC4 - Pammadukulam Villivakkam 792.09 6.594 9.271 3.47% - OC4 - Pothur Villivakkam 464.12 1.272 2.739 7.97% - OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	18
- OC4 - Pothur Villivakkam 464.12 1.272 2.739 7.97% - OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	68
- OC5B - Alathur Villivakkam 338.24 2.939 3.636 2.15% - OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	12
- OC5B - Arakkambakkam Villivakkam 182.14 1.405 1.402 -0.02% - OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	6
- OC5B - Kadavur Villivakkam 108.69 0.490 0.800 5.02% - OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	11
- OC5B - Karlapakkam Villivakkam 265.84 3.464 4.110 1.72% - OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	8
- OC5B - Kilakondaiyur Villivakkam 335.33 3.570 2.525 -3.40% - OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	7
- OC5B - Melpakkam Villivakkam 94.30 0.455 0.518 1.31%	15
	8
- OC5B - Morai Villivakkam 1,154.31 3.373 10.873 12.42%	5
	9
- OC5B - Palavedu Villivakkam 565.82 5.657 7.944 3.45%	14
- OC5B - Pandeswaram Villivakkam 360.95 1.956 2.310 1.68%	6
- OC5B - Pulikutti Villivakkam 70.56 15.349 19.925 2.64%	282
- OC5B - Tenambakkam Villivakkam 54.30 6.600 8.950 3.09% OC5D Vollashari Villivakkam 127.08 0.501 0.200 2.25%	165
- OC5B - Vellacheri Villivakkam 127.08 0.501 0.399 -2.25% - OC5B - Vellanur Villivakkam 1,605.22 6.889 11.668 5.41%	3
- OC5B - Vellanur Villivakkam 1,605.22 6.889 11.668 5.41% - OC5B - Pakkam Thiruvallur 1,138.51 8.719 17.342 7.12%	15
- OC5B - Pakkam minuvanui 1,158.51 8.719 17.542 7.12% - OC5B - Nadukuthagai Poonamallee 167.88 6.283 9.251 3.94%	55
- OC6 - Senneerkuppam Poonamallee 87.36 2.234 5.412 9.25%	62
- OC7 - Amudurmedu Poonamallee 74.99 0.741 1.041 3.46%	14
- OC7 - Anaikattucheri Poonamallee 120.87 6.050 14.210 8.91%	118
- OC7 - Ayalcheri Poonamallee 126.14 0.390 0.527 3.06%	4
- OC7 - Chokkanallur Poonamallee 114.71 0.000 0.000 #DIV/0!	0
- OC7 - Kannapalaiyam Poonamallee 556.94 2.776 3.950 3.59%	7
- OC7 - Karunakaracheri Poonamallee 118.76 0.565 0.875 4.47%	7
- OC7 - Kolappancheri Poonamallee 126.24 1.186 1.240 0.45%	10
- OC7 - Melpakkam Poonamallee 78.17 0.455 0.518 1.31%	7
- OC7 - Panaveduthottam Poonamallee 54.23 0.000 0.000 #DIV/0!	0

-	OC7	-	Parivakkam	Poonamallee	210.50	3.017	3.911	2.63%	19
-	OC7	-	Pidarithangal	Poonamallee	94.61	1.249	0.882	-3.42%	9
-	OC7	-	Soranjeri	Poonamallee	122.00	2.798	4.161	4.05%	34
-	OC7	-	Voyalanallur	Poonamallee	404.22	4.813	6.525	3.09%	16
-	OC7	-	Senneerkuppam	Poonamallee	87.36	2.234	5.412	9.25%	62
-	OC8	-	Agraharam	Poonamallee	66.97	0.668	3.056	16.42%	46
-	OC8	-	Annambedu	Poonamallee	156.55	0.000	0.000	#DIV/0!	0
-	OC8	_	Ariyapancheri	Poonamallee	34.37	0.000	0.000	#DIV/0!	0
-	OC8		Kavalacheri	Poonamallee	129.26	0.000	0.000	#DIV/0!	0
_	OC8		Kilmanambedu	Poonamallee	109.69	0.862	1.845	7.91%	17
_	OC8	1.	Korattur	Poonamallee	228.60	2.754	6.528	9.01%	29
-	0C8	-	Kuthambakkam	Poonamallee	748.94	3.953	5.407	3.18%	
-	OC8	-	Melmanambedu	Poonamallee	194.55	0.000	0.000	#DIV/0!	0
-	0C8	-	Mothirambedu	Poonamallee	44.59	0.000	0.000	#DIV/0!	0
-	0C8	-			44.39	0.000	0.000	#DIV/0! 2.45%	21
-		-	Narasingapuram	Poonamallee					
-	OC8	-	Neman	Poonamallee	526.77	1.662	3.434	7.53%	7
-	OC8	-	Nemilicheri	Poonamallee	172.05	4.831	5.743	1.74%	33
-	OC8	-	Nochimedu	Poonamallee	104.40	0.884	0.398	-7.67%	4
-	OC8	-	Parvatharajapuram	Poonamallee	88.84	0.460	0.789	5.54%	9
-	OC8	-	Sithukadu	Poonamallee	367.17	0.000	0.000	#DIV/0!	0
-	OC8	-	Thirukovilpattu	Poonamallee	47.99	0.000	0.000	#DIV/0!	0
-	OC8	-	Thirumalarajapura m	Poonamallee	27.02	0.000	0.000	#DIV/0!	0
-	OC8	-	Thirumanam	Poonamallee	121.25	0.000	0.000	#DIV/0!	0
-	OC8	-	Varadharajapuram	Poonamallee	197.73	2.931	4.540	4.47%	23
-	OC8	-	Vellavedu	Poonamallee	50.23	1.298	1.868	3.71%	37
-	OC9	-	Goparasanallur	Poonamallee	73.05	0.000	0.000	#DIV/0!	0
-	OC9	-	Kattupakkam	Poonamallee	191.64	4.015	23.914	19.54%	125
-	OC10	-	Senneerkuppam	Poonamallee	87.36	2.234	5.412	9.25%	62
_	OC11	-	Agaramel	Poonamallee	80.23	2.992	4.609	4.42%	57
-	OC11	-	Chembarambakka	Poonamallee	481.32	0.000	0.000	#DIV/0!	0
	OC11	-	m Meppur	Poonamallee	173.56	2.521	3.493	3.31%	20
-	0C11 0C11	-		Poonamallee		5.157	8.660		
-	OC11 OC11	-	Nazarethpettai		121.58			5.32%	<u>71</u> 0
-	0C11	-	Palanjur Chembarambakka	Poonamallee	331.17	0.000	0.000	#DIV/0!	0
-	OC11	-	m (pt) Tank	Srierumpudur	997.98	0.000	0.000	#DIV/0!	0
-	OC11	-	Daravur	Srierumpudur	27.34	0.080	0.020	-12.94%	1
			Kattirambakkam	-					
-	OC11	-	Tank portion	Srierumpudur	861.52	1.453	2.157	4.03%	3
-	OC8	-	Chettipattu	Srierumpudur	130.10	0.673	0.749	1.08%	6
-	OC9	-	Ayyappanthangal	Kundrathur	139.88	7.066	23.808	12.92%	170
-	OC9	-	Chinnapanicheri	Kundrathur	28.38	0.000	0.000	#DIV/0!	0
-	OC9	-	Kolathuvancheri	Kundrathur	100.08	0.000	0.000	#DIV/0!	0
-	OC9	-	Kovur	Kundrathur	290.92	5.948	10.961	6.30%	38
-	OC9	-	Paraniputhur	Kundrathur	72.04	3.009	15.225	17.60%	211
-	OC9	-	Rendamkattalai	Kundrathur	150.95	0.000	0.000	#DIV/0!	0
-	OC9	-	Srinivasapuram	Kundrathur	70.25	0.000	0.000	#DIV/0!	0
-	OC9	-	Thelliaragaram	Kundrathur	73.54	0.520	0.380	-3.09%	5
-	OC10	-	Chikkarayapuram	Kundrathur	123.66	0.000	0.000	#DIV/0!	0
-	OC14	-	Thirumudivakkam	Kundrathur	473.23	3.027	4.083	3.04%	9
-	OC12	-	Gerugambakkam	Kundrathur	393.93	5.478	11.551	7.75%	29
-	OC12	-	Kolapakkam	Kundrathur	315.36	2.594	7.970	11.88%	25
-	OC12	-	Madanandapuram	Kundrathur	129.68	1.564	5.340	13.07%	41
-	OC12	-	Periyapanicheri	Kundrathur	58.92	0.993	2.379	9.13%	40
-	OC12	-	Tharapakkam	Kundrathur	125.60	1.861	2.232	1.83%	18
	OC12	-	Mowlivakkam	Kundrathur	46.87	1.080	4.647	15.71%	99
-									
-	OC12	-	Thandalam	Kundrathur	53.57	1.824	2.680	3.92%	50

i _	OC11	۱.	Kavanur	Kundrathur	223.06	2.104	1.586	-2.79%	7
-	OC11	-	Malayambakkam	Kundrathur	513.46	5.025	8.250	5.08%	16
-	OC11	-	Naduveerapattu	Kundrathur	573.59	4.517	6.291	3.37%	11
-	OC11	-	Nandambakkam	Kundrathur	458.57	5.454	12.560	8.70%	27
-	OC11	-	Palanthandalam	Kundrathur	529.73	0.000	0.000	#DIV/0!	0
-	OC11	-	Poonthandalam	Kundrathur	359.33	1.009	3.117	11.94%	9
-	OC11	-	Sirukalathur	Kundrathur	529.81	3.629	6.117	5.36%	12
-	OC11	-	Varadharajapuram	Kundrathur	911.03	1.973	5.846	11.47%	6
-	OC10	-	Kollaicheri	Kundrathur	60.05	2.089	3.793	6.15%	63
-	OC10	-	Kozhumanivakka m	Kundrathur	89.59	1.649	2.729	5.17%	30
-	OC9	-	Mowlivakkam	Kundrathur	46.87	1.080	4.647	15.71%	99
-	OC9	-	Thandalam	Kundrathur	53.57	1.824	2.680	3.92%	50
-	OC9	-	Chikkarayapuram	Kundrathur	123.66	0.000	0.000	#DIV/0!	0
-	OC11	-	Mudichur	St. Thomas Mount	172.50	1.837	7.719	15.44%	45
-	OC12	-	Cowl Bazaar	St. Thomas Mount	122.68	1.270	2.784	8.16%	23
-	OC12	-	Polichalur	St. Thomas Mount	247.70	14.760	21.906	4.03%	88
-	OC14	-	Mudichur	St. Thomas Mount	172.50	1.837	7.719	15.44%	45
-	OC15	-	Koilambakkam	St. Thomas Mount	147.53	9.277	27.374	11.43%	186
-	OC15	-	Kulathur	St. Thomas Mount	188.84	9.395	6.279	-3.95%	33
-	OC15	-	Medavakkam	St. Thomas Mount	509.05	8.444	29.710	13.41%	58
-	OC15	-	Moovarasampettai	St. Thomas Mount	61.69	6.162	9.672	4.61%	157
-	OC15	-	Nanmangalam	St. Thomas Mount	394.76	3.323	18.567	18.77%	47
-	OC15	-	Perundavakkam	St. Thomas Mount	19.92	0.000	0.000	#DIV/0!	0
-	OC15	-	Tirusulam	St. Thomas Mount	241.80	5.972	14.086	8.96%	58
-	OC16	-	Agaramthen	St. Thomas Mount	382.19	1.222	4.172	13.06%	11
-	OC16	-	Arasankalani	St. Thomas Mount	128.45	0.527	1.092	7.56%	9
-	OC16	-	Kasbapuram	St. Thomas Mount	121.28	0.603	2.606	15.76%	21
-	OC16	-	Kovilancheri	St. Thomas Mount	121.80	0.572	1.253	8.16%	10
-	OC16	-	Maduraipakkam	St. Thomas Mount	131.24	0.727	1.021	3.45%	8
-	OC16	-	Meppedu	St. Thomas Mount	191.69	0.000	0.000	#DIV/0!	0
-	OC16	-	Mulacheri	St. Thomas Mount	40.80	0.770	0.148	-15.20%	4
-	OC16	-	Ottiyambakkam	St. Thomas Mount	428.17	0.811	2.129	10.13%	5
-	OC16	-	Perumbakkam	St. Thomas Mount	831.86	2.630	24.625	25.07%	30
-	OC16	-	Sithalapakkam	St. Thomas Mount	459.91	3.298	13.542	15.17%	29
-	OC16	-	Thiruvancheri	St. Thomas Mount	216.33	0.638	3.379	18.14%	16
-	OC16	-	Vengaivasal	St. Thomas Mount	528.84	8.892	13.671	4.40%	26
-	OC16	-	Vengapakkam	St. Thomas Mount	266.60	1.142	2.758	9.22%	10
-	OC16	-	Kolapakkam	Kattankulathu r	326.49	5.419	7.970	3.93%	24
-	OC16	-	Nedungundram	Kattankulathu r	1,077.06	6.870	14.390	7.67%	13

CHENNAI CORE CITY CHENNAI CORPORATION					176.18	43.44	46.47	0.68%	264
		50 D -1	UTAL		70,755.94	1,412.037	2,505.009	5.0170	50
- OC5A - Avadi M SUB-TOTAL					76,733.94	1,412.837	2,303.069	5.01%	<u> </u>
-	OC6 OC5A	-	Avadi Avadi	M M	2,052.25	76.467 76.467	115.333 115.333	4.20%	<u> </u>
-	0C6	-	Thiruverkadu	M	620.93 2,052.25	10.733	20.940	6.91%	34
-	0C7	-	Thiruverkadu	M	620.93	10.733	20.940	6.91%	34
-	0C7	-	Avadi Thimworkedu	M	2,052.25	76.467	115.333	4.20%	56
-	OC7	-	Poonamallee	M	327.31	21.300	28.610	2.99%	87
-	OC15	-	Tambaram	M	518.00	34.483	43.698	2.40%	84
-	OC15	-	Pallavaram	M	804.55	72.310	107.710	4.07%	134
-	OC16	-	Tambaram	M	518.00	34.483	43.698	2.40%	84
-	OC14	-	Tambaram	M	518.00	34.483	43.698	2.40%	84
-	OC13	-	Pallavaram	M	804.55	72.310	107.710	4.07%	134
-	OC13	-	Tambaram	M	518.00	34.483	43.698	2.40%	84
-	OC13	-	Anakaputhur	M	149.23	15.960	24.025	4.17%	16
-	OC13	-	Pammal	M	520.05	50.000	75.870	4.26%	140
-	OC12	-	Anakaputhur	M	149.23	15.960	24.025	4.17%	161
-	OC10	-	Poonamallee	M	327.31	21.300	28.610	2.99%	87
-	0C9	-	Thiruverkadu	M	620.93	10.733	20.940	6.91%	34
-	OC5B	-	Thirunindravur	Т	727.82	14.665	18.550	2.38%	2
-	OC8	-	Thirunindravur	Т	727.82	14.665	18.550	2.38%	2:
-	OC8	-	Thirumazhisai		725.23	16.290	19.730	1.93%	2
-	OC14	-	Peerkankaranai		88.03	8.755	12.935	3.98%	14
-	OC14	-	Thiruneermalai		293.64	9.615	15.350	4.79%	52
-	OC14	-	Kundrathur	Т	304.09	6.268	10.533	5.33%	3
-	OC16	-	Madambakkam	Т	791.82	17.000	31.680	6.42%	4
-	OC16	-	Peerkankaranai	Т	88.03	8.755	12.935	3.98%	14
-	OC3	-	Naravarikuppam	Т	2,075.64	18.330	20.950	1.34%	1
-	OC1	-	Minjur	Т	862.71	23.740	28.340	1.79%	3
-	OC15	-	Sembakkam	Т	635.13	21.500	45.360	7.75%	7
-	OC15	-	Chitlapakkam	Т	290.30	25.310	37.960	4.14%	13
-	OC14	-	Perungalathur.	Т	703.54	19.590	37.340	6.66%	5.
-	OC13	-	Thiruneermalai	Т	293.64	9.615	15.350	4.79%	52
-	OC11	-	Kundrathur	Т	304.09	6.268	10.533	5.33%	3:
-	OC10	-	Kundrathur	Т	304.09	6.268	10.533	5.33%	3:
-	OC10	-	Mangadu	Т	281.52	9.710	19.090	6.99%	6
-	OC9	-	Kundrathur	Т	304.09	6.268	10.533	5.33%	3:
-	OC9	-	Mangadu	Т	281.52	9.710	19.090	6.99%	6
-	OC11	-	Mannivakkam	Kattankulathu r	510.63	6.382	13.308	7.63%	2
-	OC14	-	Vandalur	Kattankulathu r	279.53	6.688	8.426	2.34%	3
-	OC16	-	Vandalur	Kattankulathu r	279.53	6.688	8.426	2.34%	3
-	OC16	-	Kilambakkam	Kattankulathu r	243.54	2.765	5.189	6.50%	2
	OC16	-	Puthur	Kattankulathu r	109.24	1.243	2.700	8.07%	2

CHENNAI CORPORATI
REST OF CMA
TOTAL OF CMA AREA

LEGEND

Influence area of the Perur DSP in 2025 and 2035 (Directly fed from the transmission main from Perur DSP) Influence area of the Perur DSP in 2025 and 2035 (Fed through the Porur WDS)

14.13

70.63

23.03

89.71

5.01%

2.42%

30

75

767.34

1,189

Source: JICA Study Team

Influence area of the Perur DSP in 2025 but not in 2035

Appendix 2.3 Social Conditions in the Study Area

A2.3.1 Politics

The Indian politics has evolved based on the framework of the Indian Constitution. The President of India is the Head of the State and Supreme Commander of the armed forces, who is elected for a five-year period by the elected members of both Houses of Parliament and the Legislative Assemblies of the State and Union Territories (New Delhi and Puducherry) of India. The President of India appoints the Prime Minister of India from a political party or coalition that secures the highest number of seats in the Lok Sabha (lower house of the Parliament, which represents the people of India).

There are two types of political parties, i.e., national parties and regional/state parties. It has been estimated that there are more than 200 political parties at both the national and state levels, in India post- independence. In general, the state and central governments of the country are formed through the general elections conducted by the Election Commission at every five-year period. The state governments are represented by the Chief Ministers from the parties having the majority of seats in the State Legislative Assembly whereas the Prime Minister serves as the senior member of cabinet in the executive branch of the government. Politics plays a major role in the economic growth of India. The introduction of certain infrastructure development-oriented policy decisions by the Indian government seek to attract investors in various sectors of the global market.

A2.3.2 Economy

(1) India

According to a recent report published by the World Bank, India is one of the world's fastest-growing major economies. The improvement in India's economic fundamentals has accelerated with the combined impact of the strong government reforms, the Reserve Bank of India (RBI's) inflation focus further supported by the benign global commodity prices.

The size of the Indian economy was at INR 129.57 trillion (USD 2.01 trillion) for the year 2014. The service sector has the major contribution to the Indian GDP, followed by the Industry sector and Agriculture sector that stands in the third position in terms of contribution to the GDP.

As shown in Table A2.3.1, the annual GDP growth in 2015 was estimated at 7.6% and the similar rates of growth are also expected in 2016 and 2017. According to the International Monetary Foundation (IMF) World Economic Outlook April 2015, India ranks seventh globally in terms of Gross Domestic Product (GDP) at current prices.

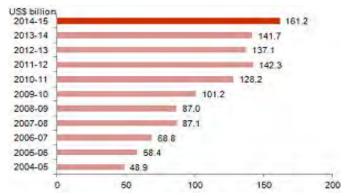

Selected Econ	omic Indicators	-	Performance		Estimation	Fore	ecast
(%)	- India	2012	2013	2014	2015	2016	2017
GDP G	rowth (%)	5.1	6.9	7.3	7.6	7.4	7.8
GDP share	Agriculture	18.7	18.6	17.8	-	-	-
by sector	Industry	31.7	30.5	30.1	-	-	-
(%)	Services	49.6	50.9	52.1	-	-	-

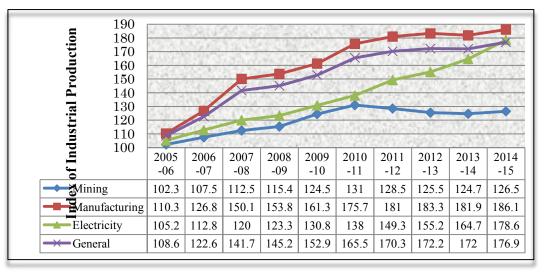
Table A2.3.1 Economic Growth of India

Source: World Bank

(2) Tamil Nadu

As per the document 'Vision Tamil Nadu 2023', it is estimated that the state will increase its per capita income (at current prices) by six times from INR 73,278 (USD 1,628) in 2010-11 to INR 450,000 (USD 10,000) in 2023, which is in line with the per capita income of Upper Middle Income (UMI) countries. The state targets that its factor endowments along with the combination of its strengths and opportunities will lead to increase its Gross State Domestic Production (GSDP) at 11% or more per annum. This estimated growth rate is about 20% more than the expected growth rate of India's GDP during 2012 to 2023. The GSDP of the Tamil Nadu State is USD 161.2 billion as shown in Figure A2.3.1.

Source: Directorate of Economics & Statistics of Tamil Nadu


Figure A2.3.1 GSDP of the Tamil Nadu State from 2004-15

A2.3.3 Industry

(1) India

The contribution of the Industry sector to the total GDP in India in 2014 was 30.1% and this value is constant since 2012. This shows that the industry sector has been continuously contributing to the recent rapid growth of the Indian economy.

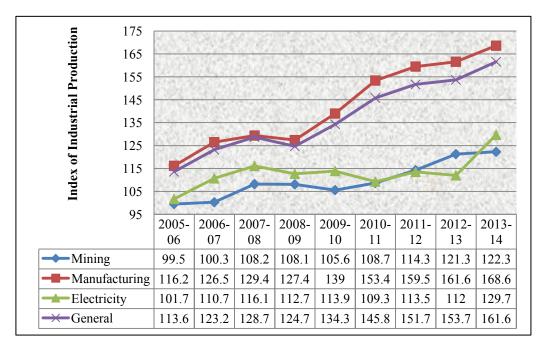
The Index of Industrial Production (IIP) of India for the past 10 years (2005 to 2014) based on the average annual values is presented in Figure A2.3.2. The IIP of manufacturing sector indicates a continuous growth from the year 2005 to 2014 and has achieved 68.7% increase over the year 2005 (186.1 / 110.3 = 1.687).

Source: Annual Report, Year (2015-16) Ministry of Statistics and Programme Implementation, GOI Figure A2.3.2 Index of Industrial Production of India (2005-2014)

The "Make in India" initiative is based on four pillars, which have been identified to give a boost to entrepreneurship in India, not only in the manufacturing sector but also other sectors. An Investor Facilitation Cell (IFC) comprising of eight committee members was formed in September 2014for the promotion of Make in India program. The Make in India program supports and facilitates the fast track investments from Japan through the Japan Plus Team, which was set up by the Department of Industrial Policy & Promotion (DIPP) and was operationalized from October 8, 2014.

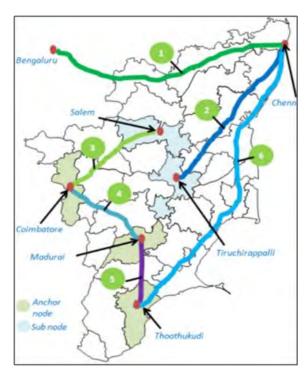
The Government of India is building a pentagon of corridors across the country to boost the manufacturing activities and to project India as a global manufacturing destination of the world. The following corridors have been proposed.

- Delhi Mumbai Industrial Corridor (DMIC)
- Chennai Bangalore Industrial Corridor (CBIC)
- Bengaluru Mumbai Economic Corridor (BMEC)
- Amritsar Kolkata Industrial Corridor (AMIC)
- Vizag Chennai Industrial Corridor (VCIC)


The target project of the Study, the construction of the Perur DSP, is one of the priority projects expected to support the development of CBIC by providing reliable domestic, commercial and industrial water to Chennai Metropolitan Area (CMA).

(2) Tamil Nadu

Tamil Nadu is the fourth largest state in India. The state contributed 7.9% to India's overall GDP in 2014-15. It ranks first among the states in terms of number of factories and industrial workers. The manufacturing sector in this state is diversified and the major leaders are automobiles and auto components, engineering, pharmaceuticals, garments, textile products, leather products, chemicals, plastics, etc.


The Tamil Nadu State has a well-developed infrastructure with an excellent road and rail network, three major ports, 23 minor ports, and seven airports across the state providing excellent connectivity. In line with Vision 2023, it aims to establish infrastructure investment from 4 to 5% of GSDP currently to 10% by 2015 and 11.5% by 2019.

Tamil Nadu is at the second place ahead of Uttar Pradesh with a GSDP at INR 976,703 as of 2014-15. The IIP for the period 2005 to 2013 is shown in Figure A2.3.3. The IIP of manufacturing sector indicates a continuous growth from the year 2005 to 2013, which achieved 45.1% increase over the year 2005 (168.6 / 116.2 = 1.451).

Source: State Industrial Profile of Tamil Nadu, Year (2014-15) Ministry of Micro, Small and Medium Enterprises, GoI Figure A2.3.3 Index of Industrial Production of Tamil Nadu (2005-2013)

The Planned Industrial Corridors in Tamil Nadu State are (1) Chennai Bengaluru Industrial Corridor (CBIC), (2) Chennai Tiruchirappalli Industrial Corridor (CTIC), (3) Coimbatore Salem Industrial Corridor (CSIC), (4) Coimbatore Madurai Industrial Corridor (CMIC), (5) Madurai Thoothukudi Industrial Corridor (MTIC) and (6) Chennai Thoothukudi Industrial Corridor (CTIIC) as shown in Figure A2.3.4.

Source: Tamil Nadu Vision Document 2023 Figure A2.3.4 Planned Industrial Corridors in Tamil Nadu

A2.3.4 Public Health

The infant mortality rate (IMR) in 2013 was 21 per 1,000 live births, and the maternal mortality rate (MMR) in 2010-2012 was 90 in the Tamil Nadu State. Mortality rate, in the state all inclusive of the total mortality rate, which was 1.7 in 2012, is found to be much better than the overall India, excluding crude death rate, as shown in Table A2.3.2. Public health in the state is evaluated as much superior to the average level in the country.

The development status of the health infrastructures and the deficiencies are presented in Table A2.3.3. Although the public health conditions in the state are more advanced than the national average, there still exists the need for the development of health centers and human resources in the public health sector.

Indicator*	Tamil Nadu	India
Infant Mortality Rate (2013)	21	40
Maternal Mortality Rate (2010-12)	90	178
Total Fertility Rate (2012)	1.7	2.4
Crude Birth Rate (2013)	15.6	21.4
Crude Death Rate (2013)	7.3	7.0

Table A2.3.2 Mortality Rates in India and the Tamil Nadu State

* All rates are per 1,000 live births.

Source: National Health Mission, Ministry of Health & Family Welfare, GOI

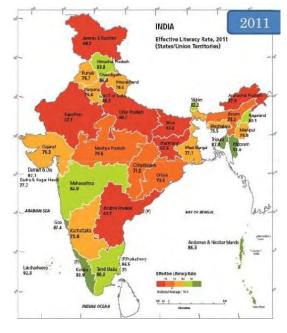

Nadu State					
Particulars	Required	Existing	Shortfall		
Sub-Center	7,555	8,706	-		
Primary Health Center (PHC)	1,254	1,227	27		
Community Health Center (CHC)	313	385	-		
Health worker (Female)/Auxiliary Nurse Midwife (ANM) at Sub Centers & PHCs	9,933	9,253	680		
Health Worker (Male) at Sub Centers	8,706	1,266	7,440		
Health Assistant (Female)/Lady Health Worker (LHV) at PHCs	1,227	1,027	200		
Health Assistant (Male) at PHCs	1,227	2,393	-		
Doctor at PHCs	1,227	2,271	-		
Obstetricians & Gynecologists at CHCs	385	0	385		
Pediatricians at CHCs	385	0	385		
Total specialists at CHCs	1,540	0	1,540		
Radiographers at CHCs	385	151	234		
Pharmacist at PHCs & CHCs	1,612	1,412	200		
Laboratory Technicians at PHCs & CHCs	1,612	1,073	539		
Nursing Staff at PHCs & CHCs	3,922	7,046	-		

Table A2.3.3 Development Status of Health Infrastructures and Human Resources in the Tamil Nadu State

Source: National Health Mission, Ministry of Health & Family Welfare, GOI

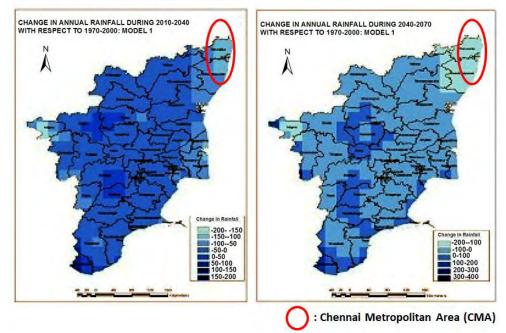
A2.3.5 Education

Tamil Nadu is one of the most literate states in India. The overall literacy rate of the state was 80.33% in 2011 as shown in A2.3.5. The state had recorded 73.45% literacy in the year 2001. A survey conducted by the Industry Body, Associated Chambers of Commerce and Industry of India (ASSOCHAM) places the Tamil Nadu State at the top most rank among the other Indian states with about 100% Gross Enrollment Ratio (GER) in primary and upper primary education.

Source: Census of India, 2011 Figure A2.3.5 Literacy Rate in India for 2011

Appendix 2.4 Natural Conditions in the Study Area

A2.4.1 Weather, Climate and Climate Change

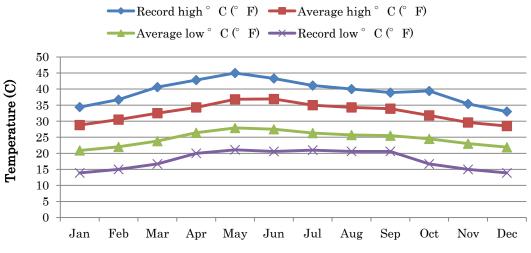

(1) Tamil Nadu

The climate of Tamil Nadu is tropical with fairly hot temperatures over the year except for the few months of monsoon. The summer season sets in from April in the state until the mid of June with May being the hottest month. The velocity of hot winds during April and May ranges from 8-16 km/hour.

In Tamil Nadu, winters arrive in the month of November and last till mid of March. The state receives rainfall in two distinct phases of monsoon. One is the southwest monsoon that starts from June till September with strong southwest winds, and the other is the northeast monsoon starting from October till December with dominant northeast winds.

The average annual rainfall of the state is 945 mm, out of which 48% is predominantly through the northeast monsoon and 32% through the southwest monsoon. Tamil Nadu majorly depends on rainfall for agriculture, drinking water, power, and other minor purposes, and failing monsoons result in moderate or severe drought effects and water scarcity.

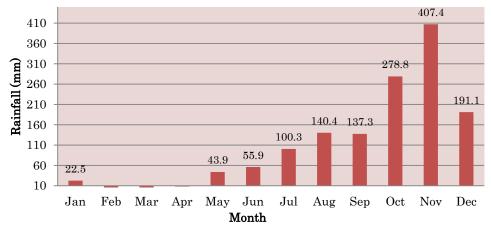
As per the Tamil Nadu State Action Plan for Climate Change, the annual rainfall projection made for the period 2010-2040 with reference to 1970-2000 does not indicate any significant decrease in the overall rainfall rate in the state, but exceptionally CMA will face a decrease by 100 to 150 mm as shown in Figure A2.4.1. The same projection for 2040-2070 indicates that the rainfall in CMA will also be lower than that in 1970-2000 by 100 to 200 mm. Most of the other areas in the state will also face a decrease in rainfall by 0 to 100 mm.

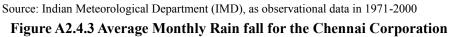


Source: Tamil Nadu State Climate Change Action Plan Figure A2.4.1 Projection of Rainfall for Tamil Nadu

From the above climate change simulations, it is evident that CMA is likely to suffer from decrease in rainfall resulting in lower limit of water availability from the reservoirs whose catchment area includes the regions in and around Chennai. Water resources outside the CMA may maintain the current and future water availability until 2040, but the availability may deteriorate during 2040-2070.

(2) Chennai

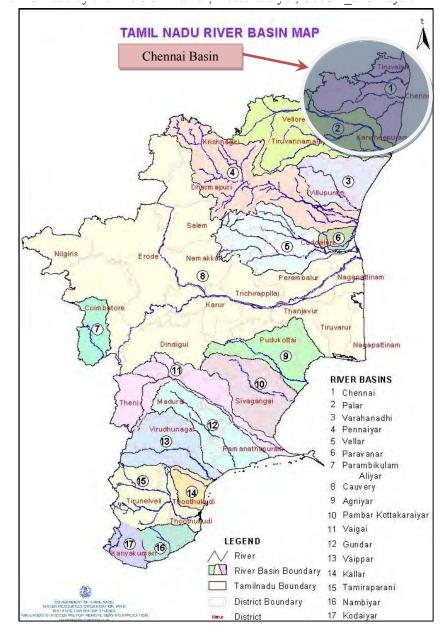

Chennai has a tropical wet and dry climate. The summers arrive in between late March and early June with maximum temperature reaching at 45°C in the month of May. The coolest part of the year is in the month of January, with average low temperature about 20 °C. Based on the data obtained from Indian Meteorological Department (IMD), the average and the recorded (maximum and minimum) temperature values are presented in Figure A2.4.2.



Source: Indian Meteorological Department (IMD), as observational data in 1971-2000

Figure A2.4.2 Variation of Temperature for Chennai

Chennai is highly dependent on the annual rainfall during the monsoons to replenish the water reservoirs, as there are no major water resources or perennial rivers to serve the city. The average annual rainfall of the city is 1,400 mm with around 60 rainy days in a year, most of which is the seasonal rainfall received from the north-east monsoon (from mid-October to mid-December). Cyclones often hit Chennai during the monsoons. The highest annual rainfall is 2,570 mm, which was recorded in 2005. During the recent floods in the city in the year 2015, highest rainfall of 539 mm in December was recorded against a monthly average of 191 mm, which is almost three times as the normal rainfall in December. The average monthly trend in rainfall for Chennai is shown in Figure A2.4.3.

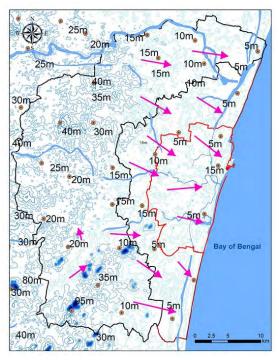


A2.4.2 Topography and Geology

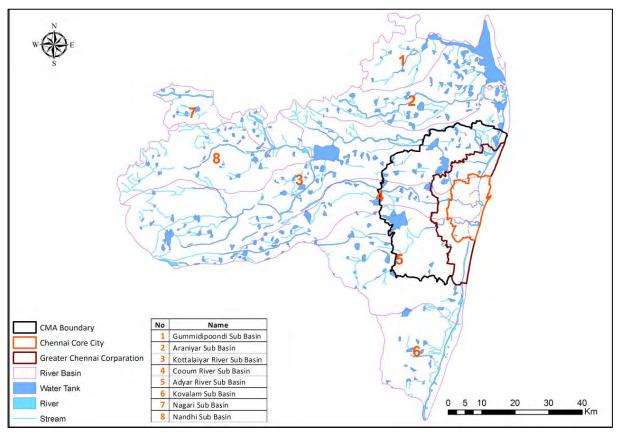
(1) Topography and Geology of Tamil Nadu

The Tamil Nadu State lies between N 8 00' and N 13 30' latitudes, and E 76 16' and E 80 18' longitudes. The state is bounded by the Andhra Pradesh and Karnataka on the northern side and Kerala on the western side.

The topography of Tamil Nadu comprises coastal plains in the east and uplands, hills, and plains in the west. The latter covers more than 50% area of the state. The state encompasses 17 river basins as shown in Figure A2.4.4. CMA is located in the Chennai Basin, which is made by the rivers of Araniar, Kosathalaiyar, Cooum, and Adyar.

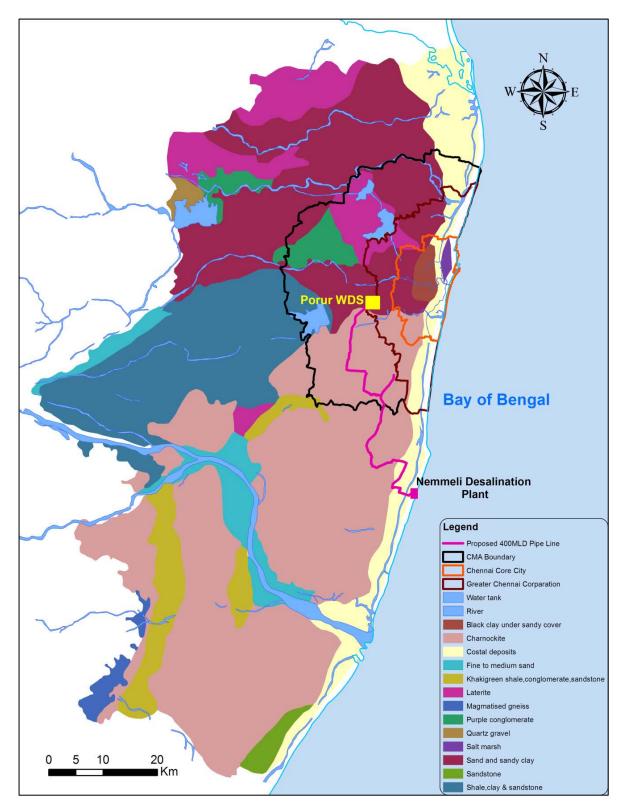

Source: Water Resources Department, TN State Figure A2.4.4 River Basins in Tamil Nadu

Tamil Nadu represents a high-grade metamorphic terrain of global importance, and geologically, the state has been divided into three zones, i.e., northern region, southern region, and central region. CMA falls on to the Northern Region. The state is rich in varied mineral sources like Quartz, Limestone, Lignite, Feldspar, Magnesite, Bauxite, Graphite, Garnet, Clay, and Granite. It is also occupied by the amphibolite facies terrain, which is the southern extension of Dharwar craton.


The notable geological formation found in Tamil Nadu is the Cuddalore formation belonging to the Tertiary age, which contains plant fossils. Besides this, Upper Gondwana rock formations have also been noticed near Sriperumbudur (close to Chennai) and Satyavedu (A.P state). These are composed mainly of white to pink clays, shale, and felspathic sandstone.

(2) Topography and Geology of Chennai

The topography of Chennai is very gentle and varies from 1/5,000 to 1/10,000. It is a low laying area and resembles a pancake. The elevation of the city away from the core area increases with the increase in the distance from seashore up to 7 m above the mean sea level (MSL). Moreover, many localities situated at the MSL affect the drainage system that causes inundation within the city. The general topography of the city is shown in Figure A2.4.5, and Figure A2.4.6 shows the demarcation of the project area in Chennai River Basin.


Source: JICA Study Team Figure A2.4.5 Topographical Map of CMA

Source: Water Resources Department, TN State

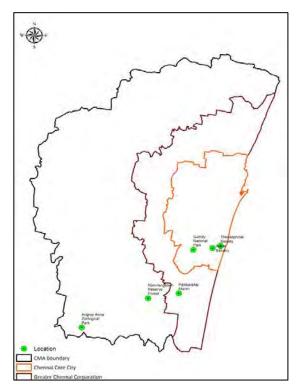
The geology of Chennai also comprises clay, shale, and sandstone. The Chennai Corporation is classified into three regions based on its geological features, i.e., sandy, clayey, and hard-rocks areas. Sandy areas are found along the river banks and coasts, whereas the clayey regions cover most of the city area. Hard rock areas are Guindy, Velachery, Adambakkam, and a part of Saidapet. Rainwater run-off percolates very quickly in sandy areas such as Tiruvanmayur, Adyar, Kottivakkam, Santhome, George Town, Tondiarpet, and the rest of the coastal areas of Chennai. Though the rainwater percolates slowly in the clayey and hard rock areas, it is held by the soil for a longer time. T.Nagar, West Mambalam, Anna Nagar, Perambur and Virugambakkam are enlisted under the clayey areas. The geology of the planned 400 MLD DSP at Perur is located in the coastal deposits. As for the construction site of the transmission main in the Project, covering the coastal deposits of the state near the plant, the geology is Charnockite deposits towards its northern side where it meets with sand & sandy clay near Porur Head Works, as shown in Figure A2.4.7.

Source: JICA Study Team

A2.4.3 Flora and Fauna

(1) Tamil Nadu

The wild plant diversity of Tamil Nadu includes a vast number of Bryophytes, Lichens, Fungi, Algae, and Bacteria. There are 1,559 medicinal species found in Tamil Nadu, of which about 533 are identified as endemic, 260 as wild relatives of cultivated plants, and 230 as red-listed species.


In Tamil Nadu, several species of mammals are found of which the endangered ones are the Slender Loris, Lion Tailed Macaque, Indian Pangolin, Jackal, Indian Fox, Indian Wild Dog, Sloth Bear Ratel, Striped Hyena, Jungle Cat, Leopard, Tiger, Mouse Deer, Gaur, Blackbuck, Nilgiri Tahr, Grizzled Grey Squirrel, Common Dolphin and Dugong. The tiger population in Tamil Nadu increased from 76 in 2006 to 163 in 2010. The estimated population of the wild elephants in Tamil Nadu escalated up to 3,867 in 2007-08, which were only 3,052 in 2002. The faunal diversity of Tamil Nadu includes 165 identified fresh water fishes, 76 amphibians, 127 reptiles, 545 birds, and 187 mammals¹.

(2) Chennai

The Flora and Fauna of Chennai are mainly found in the Guindy National Park, the Theosophical Society, Adyar Estuary, Pallikaranai Marsh, Nanmangalam Reserve Forest, Arignar Anna Zoological Park, and along the southern stretches of the beach in Chennai as shown in Figure A2.4.8. These national parks are not influenced by the construction works of the Project, including the DSP and the transmission lines.

In flora, more than 350 species of plants have been found in the national parks, including trees, shrubs, climbers, herbs, grasses, and exotic plant species.

The faunal diversity found in these places are endangered Eurasian Eagle Owl (Bubo bubo), Chital, Blackbuck, toddy cat, civets, jungle cat, pangolin, and hedgehog, snakes, certain species of tortoise and turtles, lizards, geckos, chameleons, the

Source: JICA Study Team Figure A2.4.8 Locations of Fauna

common Indian monitor lizard, and endangered Olive Ridley turtles. Madras Crocodile Bank Trust, situated towards the south of the city along the East Coast Road, hosts several fresh-water and salt-water crocodiles, alligators, gharials, turtles and snakes².

¹Source: Centre of Excellence in Environmental Economics, January 2016

²Source: Madras Naturalists' Society, NGO

Appendix 2.5 Infrastructure Development in the Study Area

A2.5.1 Transportation

(1) Airports

There are eight airports in Tamil Nadu that include six operational airports (Chennai, Tiruchirapalli, Coimbatore, Salem, Madurai and Tuticorin) and two non-operational airports (Vellore and Thanjavur) that are currently not being used due to poor patronage.

Chennai has both international and domestic airports. In the year 2014-2015, it had 122,377 international and domestic aircraft movements and handled 14,299,200 international and domestic passengers and 303,904 t of international and domestic freight¹. The Chennai airport is connected to other airports in South Asia, South East Asia, Middle East, Europe and North America through various international carriers.

(2) Seaports

There are two major seaports and 15 notified minor and intermediate seaports in Tamil Nadu. Chennai Corporation has two ports, namely Chennai and Ennore (Kamarajar Port Limited), and they have collectively handled 82.79 million tons of cargo during the year 2014-2015². Besides, a seaport named "Kattupalli International Container Terminal (KICT)" has started its operation from the year 2014, north of Ennore Port near Kattupalli village in Thiruvallur district near Chennai. This port has been developed and maintained by L&T Shipbuilding Limited (LTSB), a joint venture of Larsen & Toubro (L&T) and Tamil Nadu Industrial Development Corporation Ltd (TIDCO), a state-owned company.

(3) Roads

Tamil Nadu has an extensive roadwork coverage of 153 km per 100 km² area with a road length of 199,040 km as of March 2010. As of March 2016, the total length of roads maintained by the Chennai Corporation in the Chennai city is 6,010 km, of which 387 km are bus route roads, and the remaining 5,623 km are interior roads³.

(4) Railways

As of October 2015, the Southern Railways of Government of India in the state of Tamil Nadu had 3,846 km of route length (3,452 km of broad gauge (BG) and 394 km of meter gauge (MG)) and 4,943 km of running track length (4,548 km of BG and 395 km of MG)⁴.

The rail infrastructure in CMA basically comprises of three sections of railway that are treated as suburban sections viz., (I) North line towards Gummidipoondi (Chennai Central – Gummidipoondi, BG line, 48 km, 16 stations); (II) West line towards Arakkonam (Chennai Central to Arakkonam, BG line, 69 km, 29 stations); and (III) Southern line towards Chengalpattu (Chennai Beach to Tambaram,

¹ Source: www.aai.aero

² Source: www.ipa.nic.in

³ Source: www.chennaicorporation.gov.in

⁴ Source: www.sr.indianrailways.gov.in

BG line, 30 km, 18 stations). Apart from the above, there is also a Rapid Transit System (RTS) on the north-south corridor along the Buckingham Canal alignment from Chennai Beach to Velachery (BG line) with a route length of 20 km. The extension from Velachery to St. Thomas mount is under execution.

The Chennai Metro Rail (CMRL) system at a total estimated cost of Rs 147,500 million (having JICA loan amount is Rs 85,900 million) is a rapid transit with Phase I of the project consisting of two corridors viz., Corridor - 1 from Thiruvottiyur to Chennai Airport, of length 23.085 km (14.300 km is underground, 8.785 km is elevated) with 18 stations and Corridor - 2 from Chennai Central to St Thomas Mount, of length 21.961 km (partly underground, partly elevated) with 15 stations of which 10 km stretch with 7 stations has been operating from June 2015 onwards⁵.

(5) **Bus Transportation**

The State Transport Corporation of Tamil Nadu, a state-owned company, has a fleet strength of 22,474 buses and operates 9 million km per day with scheduled services of 20,684 in Tamil Nadu including 3,531 bus services in the Chennai Corporation, as of March 2015⁶.

A2.5.2 Sewerage

(1)Responsible organization

By the Act 28 of 1978, CMWSSB is responsible for the provision of sewerage services in CMA. The CMWSSB conducts the development and operation and maintenance (O&M) of the sewerage system in the Chennai Corporation including the core city and the Expanded Area. However, the works in the Rest of CMA are carried out by urban local bodies (ULBs). Sometimes, CMWSSB carries out sewerage development projects, but it needs to be paid by the ULB. The O&M of such facilities are done by the ULB.

(2)Present situations and future plan

Table A2.5.1 is a list of Sewage Treatment Plants (STPs) of CMWSSB in the Chennai Corporation as of 2015. The STPs in the table covers the entire core city and a part of the Expanded Area. As not all the STPs have a flow meter, the operation rates of the STPs are unknown. In the core city, the sewerage network has covered 98% of the city area., while the coverage in the Expanded Area is unknown.

The total capacity of the STPs is sufficient against the estimated current water consumption (652 MLD) among the water supplied by CMWSSB, but the total consumption including groundwater extracted by private wells may be greater than the STP capacity.

⁵ Source: http://chennaimetrorail.gov.in/pdf/project_brief_updated_aug08(1).pdf
⁶ Source: cms.tn.gov.in

Location of	Treatment Capacity	Length of sewer	Sewer	Sewage Pumping
Treatment Plant	(MLD)	network in km	connections in	Stations in
			number	number
Nesapakkam	117			
Kodungaiyur	270			
Koyambedu	214			
Perungudi	151			
Villivakkam	5			
Alandur	12			
Total	769	3,994	778,488	228

Source: Policy Note 2015 – 2016 of Municipal Administration and Water Supply Department of Government of Tamil Nadu

In the Expanded Area, which consists of 42 ULBs⁷, 16 ULBs are currently constructing new sewerage systems, and 22 ULBs have construction plans as shown in Table A2.5.2.

Table A2.5.2 Stages of Underground Sewerage Schemes in the Expanded Area

Works	Works	Works to be taken up	
Completed	In progress	DPRs	DPRs under
		Completed	preparation
4	16	10	12
			Completed In progress DPRs

Source: Policy Note 2015 – 2016 of Municipal Administration and Water Supply Department of Government of Tamil Nadu.

The outlines of the existing STPs under the corporation are shown in Table A2.5.3 (Alandur and Villivakkam STPs are excluded from the descriptions below because of their tiny capacities):

• Kodungaiyur STP system

As per the Master Plan, the existing plant at Zone-I and II are currently operating at half the capacity. Thus, there is a requirement to replace the equipment and perform major repairs to STPs as the existing plants are approximately 25 years old. Another 110 MLD plant of about 10 years old may need minor repairs in the future.

Koyambedu STP system

The Master Plan indicates that the commissioning of 120 MLD plant in this location will create a surplus capacity to the extent of 9.0 MLD. The existing 34 MLD STP is about 40 years old, and the plant is neither space efficient nor energy efficient. Subsequently, the Master Plan recommends replacing the existing plants with new ones. Additionally, a 25 MLD plant may be necessary to meet the 2020 requirement, and an 80 MLD capacity addition is proposed for meeting the 2035 requirement. An additional treatment capacity of 100 MLD is suggested for the target year of 2050. At present, the sewage generated is lower than the installed capacities due to the insufficient water supply status in the city.

• Nesapakkam STP system

⁷ Although the ULBs in the Expanded Area were disestablished after the mergence in 2011, sewerage systems are developed by grouping the Expanded Area by the former administrative boundaries of the ULBs.

Due to the recent commissioning of 54 MLD STP, the existing 23 MLD plant can be de-commissioned in the near future. Additionally, a 15 MLD treatment capacity will be necessary to meet the requirement of 2035, and a 35 MLD capacity will be necessary to meet the requirement of 2050.

• Perungudi STP system

At present, 79 MLD and 72 MLD capacity STPs are operating at lower operating capacities at 45 and 48 MLD, respectively; the reason being a shortage of sewage due to constraints in the pumping system. Additionally, 70 MLD treatment capacity will be necessary for the immediate phase, 50 MLD treatment capacity will be required to meet the sewage generation in 2035, and 60 MLD treatment capacity will be required for 2050.

• Sholinganallur STP system

The Master Plan recommends the addition of a treatment capacity of 15 MLD for the immediate phase. Additionally, 60 MLD treatment capacity will be necessary to meet the requirement of 2035 and 100 MLD treatment capacity will be required to meet the treatment requirement of 2050.

• Thiruvottiyur STP system:

The existing STP of 31 MLD capacity (likely to be commissioned in 2016) will be suitable for the immediate requirement. Additionally, a treatment capacity of 25 MLD STP will be required for the year 2035, and 12.5 MLD will be required to be added in the year 2050.

Locations	STP's Name	Capacity of Existing STP (MLD)	Capacity of planned STP (MLD)	Service Area
Core City	Kodungaiyur	270	-	Zone-I & II
Core City	Koyembedu	214	-	Zone-III
Core City	Nesapakkam	117	-	Zone-IV
Core City	Perungudi	151	-	Zone-V
Expanded Area	Alandur	12	12	
Expanded Area	Villivakkam	5	-	
Expanded Area	Thiruvottiyur	-	31*	
Expanded Area	Sholinganalur	-	18*	

Table A2.5.3 Details of Existing and Under-Construction STPs in Chennai Corporation

* Under construction

Source: Master Plan for Water supply and Sewerage sections in Chennai Corporation and Rest of CMA

For the Rest of CMA, the Tamil Nadu State has a plan to expand the coverage of sewerage system to the entire CMA. The "Master Plan for Water supply and Sewerage sections in Chennai Corporation and Rest of CMA" has developed a development plan of sewerage systems to cover the CMA.

A2.5.3 Drainage

(1) Present situations

In Tamil Nadu, storm water drains are built and maintained by the respective corporations and local bodies. For the Chennai Corporation area, the storm water drains are not under the control of CMWSSB but are under the Greater Chennai Corporation authority. For the Rest of CMA, the

respective local bodies like municipalities, town panchayats, and village panchayats construct maintain the storm water drains.

The Chennai Corporation maintains 7,351 numbers of storm water drains of a total length of 1,894.82 km and 30 numbers of canals for a total length of 48.803 km. Under the Jawaharlal Nehru National Urban Renewal Mission (JnNURM) funding of Government of India, a 329.05 km network of storm water drains at a cost of INR 5,216.4 million has been constructed in the last four years. Subsequently, the number of flood prone areas in the Chennai Corporation has reduced to below 100 from about 300 earlier.

In order to improve drainage conditions, the Chennai Corporation has prepared a DPR for Kosasthalaiyaru, Cooum, Adayar, and Kovalam Basin of integrated storm water drain networks for a total length of 1,069.40 km at a project cost of INR 40,343 million. It is proposed to execute the first phase of the work under the Tamil Nadu Sustainable Urban Infrastructure Development Project (TNSUDP) in Zones-7 (Ambathur), 11 (Valasaravakkam) and 12 (Alandur), covering an area of 53.79 km² of the corporation in Cooum and Adayar basin for a length of 270 km. The project cost is estimated to be INR 11014.3 million and will be funded by the World Bank.

(2) Flood in and around the Chennai Corporation in October to December 2015

In 2015, the unprecedented northeast monsoon resulted in heavy rains in four phases between October and December, which caused large-scaled destruction including the killing of 470 people and about 100,000 livestock and damaging of crops in about 383,000 hectares of land in Chennai, Kancheepuram, Tiruvallore, Cuddalore, Tuticorin and Tirunelveli districts of Tamil Nadu. Reportedly, a total of about 3,042,000 families had suffered partial or complete damage to their dwelling units, including huts.

Heavy rains in the monsoon season are common in Chennai. However, the monthly rainfall in December 2015 was the record highest of 539 mm against a monthly average of 191 mm. The rainfall in December is more than one-third of the annual rainfall in Chennai (1,400 mm). Some areas of Chennai had more than 250 mm rainfall in just 24 hours. This extreme rainfall volume over a short duration caused floods over an area of 55,175 ha and disrupted critical infrastructures.

According to Sigma Swiss Re report, a global insurance research firm, the total losses due to Chennai floods between 28th November 2015 and 4th December 2015 were estimated to be at least INR 133 billion (USD 2 billion). Insured losses were INR 50 billion (USD 0.755 billion), making the floods the second costliest insurance event in India on sigma records with 289 people dead and 1000 people injured. A large part of the losses originated from commercial lines as Chennai is home to several manufacturing companies, particularly in the automobile and automotive parts industry.

The disastrous flood caused a serious loss to the Japanese firms, who operate in and around the corporation. According to a questionnaire survey conducted by the Japanese Chamber of Commerce and Industry, Chennai (JCCIC), the flood incurred various losses to 36 firms out of 84 responders, and

their total loss amounted to INR 3.4 billion. JCCIC reported the Government of Tamil Nadu regarding the damages and losses suffered by the Japanese firms. In addition, the JCCIC proposed a technical action plan for flood control to the government.

For recovery from the serious disaster, the Government of Tamil Nadu demanded a central assistance of INR 259,124.5 million from the Government of India for the relief and restoration works.

A2.5.4 Solid Waste Management

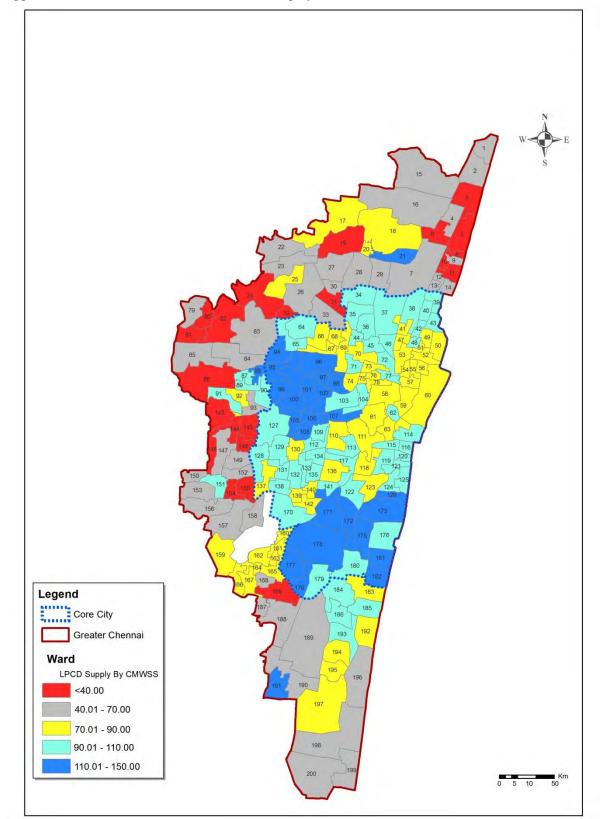
(1) Tamil Nadu

In the Tamil Nadu State, about 7,597 t of municipal solid waste is generated daily in 11 Corporations (other than the Chennai Corporation) and 124 municipalities. Besides 1,967 t of municipal solid waste is generated daily in 528 town panchayats. At present, bio and vermi composting of solid waste are being done successfully at 461 and 132 town panchayats, respectively, in a month that has resulted in a production of 493.73 t of bio compost and 47.14 t of vermi compost, respectively. During the year 2013-14, comprehensive solid waste management projects at a total cost of INR 437.28 million under the Special Solid Waste Management fund have been taken up in 77 town panchayats.

To strengthen the primary collection and transportation of municipal solid waste, 56,065 vehicles and equipment of 12 different types at a total cost of INR 1,435.2 million have been procured under IUDM and Special Sold Waste Management fund. The Integrated Solid Waste Management (ISWM) projects have been taken up at a cost of INR 990 million for 6 ULBs, and the trial run of the Refuse Derived Fuel (RDF) Plant is in progress. DPRs have been prepared for 5 clusters covering 29 ULBs at an estimated cost of INR 6,310 million, and a financial tie-up is being arranged. Special Solid Waste Management (SWM) Fund has been constituted with a sum of INR 1,000 million per year for financing the projects to weaker ULBs for implementation of ISWM projects. Under this project, 263 works have been taken up at an estimated cost of INR 2,111.8 million.

Under the Urban Infrastructure and Governance (UIG) of Jawaharlal Nehru National Urban Renewal Mission (JnNURM) of Government of India, solid waste management works DPRs at a total cost of INR 2150.1 million have been prepared for 4 ULBs. The works taken up in 3 ULBs have been completed in 2 ULBs and are in progress in 1 ULB.

Under the Urban Infrastructure Development Scheme for Small and Medium Towns (UIDSSMT) of Jawaharlal Nehru National Urban Renewal Mission (JnNURM) of Government of India, solid waste management work for 1 ULB at a total cost of INR 35.8 million has been taken up and completed (p 64 to 91 of Policy note 2015-2016 of MAWS department of Govt. of Tamil Nadu).


Under the Government of India - Urban Infrastructure Development Scheme for Satellite Town (UIDSST) Fund, solid waste management work for Sriperumbudur Town Panchayat at a total cost of INR 44.4 million has been taken up and completed.

(2) Chennai Corporation

The generation of municipal solid waste in the Chennai Corporation area is 5,200 t per day (Garbage 4,500 t and building debris 700 t). At present, the primary and secondary collections of solid waste are managed using 17026 conservancy workers by deploying 7,632 vehicles of 7 different types. At present, for Greater Chennai Corporation, two dumping grounds, viz. 1) Kodungaiyur (area 0.8 km² and in existence for past 30 years) and 2) Perungudi (area 0.8 km² and in existence for past 25 years), are being used wherein open dumping and partly covering with debris are being carried out. For remediation of the existing landfill or scientific closure, the International Expression of Interest was called, and the developers were short-listed, and the Request for Proposal is under preparation. During the years 2011-14, under Chennai Mega City Development Fund, 250 numbers of vehicles at a cost of INR 442.6 million have been purchased.

			General Information	ormation			Domestic		Z	Non-Domestic	ić	Tota	Total Connections	suo	Served population by connection	tation by tion
S. No.	Administratio n Area	Number of Houses	Population	Area (km ²)	Total Assesses	Meter	Flat	Total Domestic	Meter	Flat	Total Non- Domestic	Meter	Flat	Total	Served population 6 by connection	Connection rate
S. No.	I	59,830	317,463	26.09	44,472	79	6,812	6,909	15	2	17	112	6,814	6,926	58,727	18.5%
2	II	21,304	131,932	70.53	23,356	24	7,063	7,087	6	103	112	33	7,166	7,199	60,240	45.7%
3	III	59,426	286,449	40.55	52,361	264	6,288	6,552	19	25	44	283	6,313	6,596	55,692	19.4%
4	ΛI	99,368	662,669	21.03	75,284	560	50,519	51,079	1,148	6,638	7,786	1,708	57,157	58,865	434,172	65.5%
5	Λ	58,370	862,820	19.88	69,902	1,978	21,635	23,613	7,594	13,755	21,349	9,572	35,390	44,962	200,711	23.3%
9	IΛ	93,536	925,488	25.57	83,635	888	59,010	59,898	879	7,481	8,360	1,767	66,491	68,258	509,133	55.0%
7	IIA	79,764	417,813	40.37	97,245	1,467	21,660	23,127	260	1,257	1,517	1,727	22,917	24,644	196,580	47.0%
8	IIIA	116,022	1,002,139	35.03	108,800	832	72,084	72,916	1,320	9,519	10,839	2,152	81,603	83,755	619,786	61.8%
6	XI	88,289	809,427	42.54	114,435	1,507	75,090	76,597	2,652	14,713	17,365	4,159	89,803	93,962	651,075	80.4%
10	Х	138,375	963,091	34.05	140,404	343	96,208	96,551	1,112	11,624	12,736	1,455	107,832	109,287	820,684	85.2%
11	IX	78,951	461,349	29.02	90,921	690	25,498	26,188	65	144	209	755	25,642	26,397	222,598	48.2%
12	IIX	50,915	259,110	39.10	65,467	304	37,425	37,729	82	3	85	386	37,428	37,814	320,697	123.8%
13	IIIX	128,233	810,049	54.25	119,844	875	77,262	78,137	930	6,708	7,638	1,805	83,970	85,775	664,165	82.0%
14	XIV	74,911	339,156	32.00	79,629	75	10,694	10,769	3	196	199	78	10,890	10,968	91,537	27.0%
15	ΛX	64,178	380,517	38.57	51,869	259	7,645	7,904	18	6	27	277	7,654	7,931	67,184	17.7%
Subtotal (Core City)	Core City)	722,193	6,035,683	232	712,304	6,983	451,808	458,791	15,635	70,438	86,073	22,618	522,246	544,864	3,899,724	64.6%
Subtotal (F	Subtotal (Expanded Area)	489,279	2,593,789	316	505,320	3,180	123,085	126,265	471	1,739	2,210	3,651	124,824	128,475	1,073,253	41.4%
Total (Corporation)	poration)	1,211,472	8,629,472	549	1,217,624	10,163	574,893	585,056	16,106	72,177	88,283	26,269	647,070	673,339	4,972,976	57.6%
Core City Share	Share	59.6%	69.9%	42.4%	58.5%	68.7%	78.6%	78.4%	97.1%	97.6%	97.5%	86.1%	80.7%	80.9%	78.4%	112.1%

Appendix 3.1 Summary of water supply services by administration area

Appendix 3.2Estimated domestic LPCD map by CMWSSB

Non-domestic consumptions and water loss in the water distribution networks have not been counted. Source: JICA Study Team based on estimated LPCD by CMWSSB

Name of WTP	Kilpauk WTP	Surapet WTP	Redhills (Puzhal) WTP	Chembarambakkam WTP	Vadakuthu WTP
Intake Point	Redhills	Redhills	Redhills/Poondi	Chembarambakkam	Veeranam
Year of Construction	1959/1969/1983	1965	1996	2007	2004
Intake Type	Tower Intake	Intake Wall	Tower Intake	Tower Intake	Tower Intake
Type of Supply	Gravity	Gravity	Pump	Pump	Pump
Length	11km x 3nos.	Next to the Reservoir	2km x 45km	3 km x 2 nos.	20 km
Diameter Material	Masonry arch conduits	800 mm, CI	1,200 mm, PSC 1,000 mm, DI	1,500 mm, MS	1800 mm, MS
Condition	1 conduit damaged 2 conduits deteriorated	Fair	Fair	Fair	Fair
Quality of Raw Water	High turbidity	Meet with standard	Meet with standard	Meet with standard	Meet with standard
O/M by	CMWSSB	CMWSSB	VATECH WABAC	Degremont	IVRCL
O/M TOR	All O/M	All O/M	All O/M except major repairing of the facility and electricity cost		All O/M except electricity cost

Appendix 3.3	Raw Water Transmission Mains of	CMWSSB
--------------	---------------------------------	--------

Sources: JICA Study Team

Appendix 3.4 O&M Conditions of the Existing Water Treatment Plants of CMWSSB

Descriptions of the O&M conditions of the existing water treatment plants (WTPs) of CMWSSB are given below and the notable issues are presented in Table A3.4.1.

(1) Kilpauk Water Treatment Plant

Kilpauk WTP is the first WTP of Chennai equipped with slow sand filters commissioned in the year 1914. Subsequently, the expansion of the WTP was done in three stages in the year 1959, 1969 and 1983 due to increase of the water demand. The usage of slow sand filter was abandoned in the year 2000. At present, three water treatment plants are working in Kilpauk WTP, which employ same water treatment methods.

According to the result of water quality analysis, the treated water meets with WHO water quality standard except for turbidity. Turbidity of the water sample at the test tap was often found to be above the permissible level of 5 NTU, this was due to the contamination of raw water caused by deterioration of the masonry conduits and WTP. This WTP especially for capacity of 45 MLD WTP is rapidly deteriorating and will need to be entirely replaced in the near future and other WTPs also need rehabilitations for efficient water supply.

(2) Surapet Water Treatment Plant

The Surapet WTP was taken over by CMWSSB from Tamilnadu Water Supply and Drainage Board (TWAD) Board in August, 2009 for operation and maintenance. The treatment method is conventional treatment process with the capacity of 14 MLD constructed in the year 1965. However, current water production capacity is about 5 MLD due to malfunctioned clarifloculators. Treated water is exclusively supplied to the heavy vehicle factory of Ministry of Defence. All of the facilities are deteriorating and need to be replaced by new facilities.

(3) Puzhal (Redhills) Water Treatment Plant

Puzhal WTP was commissioned in the year1996 based on conventional water treatment process with a capacity of 300 MLD. Operation and maintenance of the WTP is being done by an O&M contracting company. However major repairing works are out of their scope of contract as the facility is old and it is difficult to evaluate in advance the major repairing cost as the O&M cost. The rehabilitation of the facility is not properly scheduled and carried out by the CMWSSB, thereby causing rapid deterioration of the facility.

(4) Vadakuthu Water Treatment Plant

Vadakuthu WTP was commissioned in the year 2004. It adopts the conventional water treatment process with a capacity of 180 MLD and utilizes some civil structures of an old WTP constructed in 1974 at the same place, which was decommissioned prior to the construction of Vadakuthu WTP. The O&M of the facility including the WTP, raw water pumping station (RWPS) and bore wells are being

carried out by an O&M contracting company with 190 staff members (36 for RWPS, 79 for WTP and 75 for bore wells).

(5) Chembarambakkam Water Treatment Plant

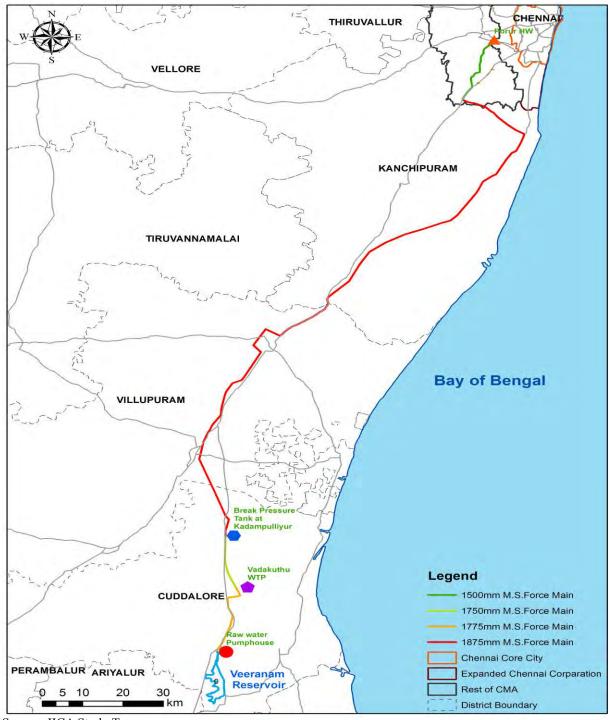
Chembarambakkam WTP is most advanced WTP of the CMWSSB with a capacity of 530 MLD commissioned in the year 2007. Due to present availability of single 2,000 mm diameter water transmission main instead of originally designed twin line and also non availability of sufficient raw water, current water treatment capacity does not exceed 260 MLD as on date. This WTP is only equipped with a filter backwash water recovery system which reduces the water loss in the WTP to less than 1%. O&M of Chembarambakkam WTP is fairly done except for back washing.

Table A3.4.1 Notable Issues in the Operation and Maintenance of the Existing WTPs of CMWSSB

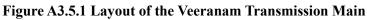
Name of WTP	Pictures	Descriptions
Kilpauk WTP		<u>Floating of the foreign materials in the clarifloculator</u> This is due to the improper screening, thereby causing the inefficient operation and maintenance.
Surapet WTP		Improper management of the intake well During the time of site visiting, it was observed that people were swimming in the intake well as there is no protection fence for the intake well. This is a very dangerous situation and not recommendable in terms of water quality.
Surapet WTP		Deterioration of clarifloculators Two flocculaters are totally damaged due to old facility and inadequate operation and maintenance.
Redhills WTP		Direct use of chlorine gas cylinders along the road margin For additional chlorination before filtration, chlorine gas cylinders along the road margin are being used without any protection and measurement of dosing. This type of direct use should be avoided and must be used only after following all safety procedures in order to avoid any accident and proper dosing amount.
Redhills WTP	100 m	Non uniform air scouring during the back washing of filter Half of the left side of cell has no air scouring, while right side has. This is due to the clogging of air scouring holes or unbalanced air supply.

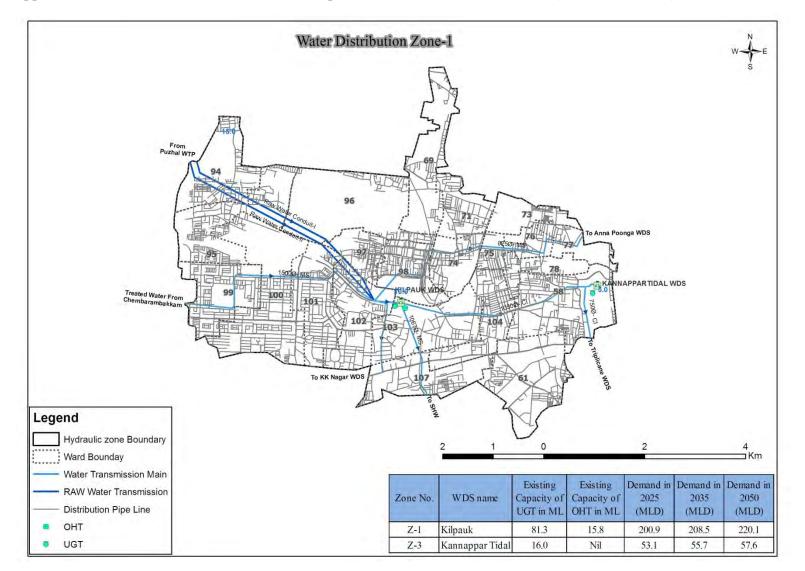
Redhills WTP		Unbalanced water level in the filter
		Right side compartment has full water depth whereas left side
		compartment is dry and has no retaining water. This may be either due
		to the seepage from the side wall of adjacent filter to the right side
		compartment or seepage through bottom slab of left side
		compartment due to poor construction.
Redhills WTP		Muddy filter
		It seems that flocculation is not properly functioning due to improper
		alum dosing.
		Ŭ
	7	
Vadakuthu WTP		<u>Muddy filter</u>
	A star	It seems that flocculation is not properly functioned due to improper
		alum dosing.
	And I	
Vadakuthu WTP	STORE OF STREET, STORE	Filter in extremely deteriorated condition
	The second secon	Concrete trough is broken. This is due to the old facilities and poor
	All Constants	construction quality. Deterioration of the facilities is accelerated by non
	Manual Providence of the local division of t	lime dosing.
	A similar mark	
<u>Chamber 1 11 11 11 11 11 11 11 11 11 11 11 11 </u>		Unbalanced back washing
Chembarambakkam		Right side compartment of the cell is overflowing while left side is not.
WTP		This is due to the unbalanced back wash water volume and rate, also air
		scouring of the left side compartment is not uniform because of
		blockage and/or broken of the nozzles.
		-
Chembarambakkam		Unbalanced surface media pattern observed in an empty filter
WTP		This is the evidence of unbalanced air scouring during back washing of filters.

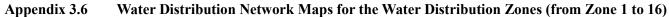
Source: JICA Study Team

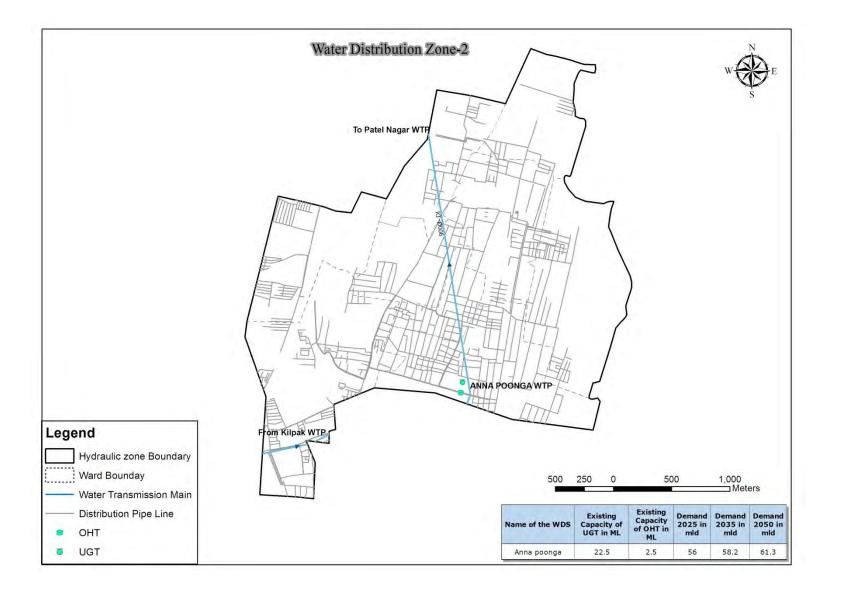

Appendix 3.5 Existing Water Transmission Mains of CMWSSB

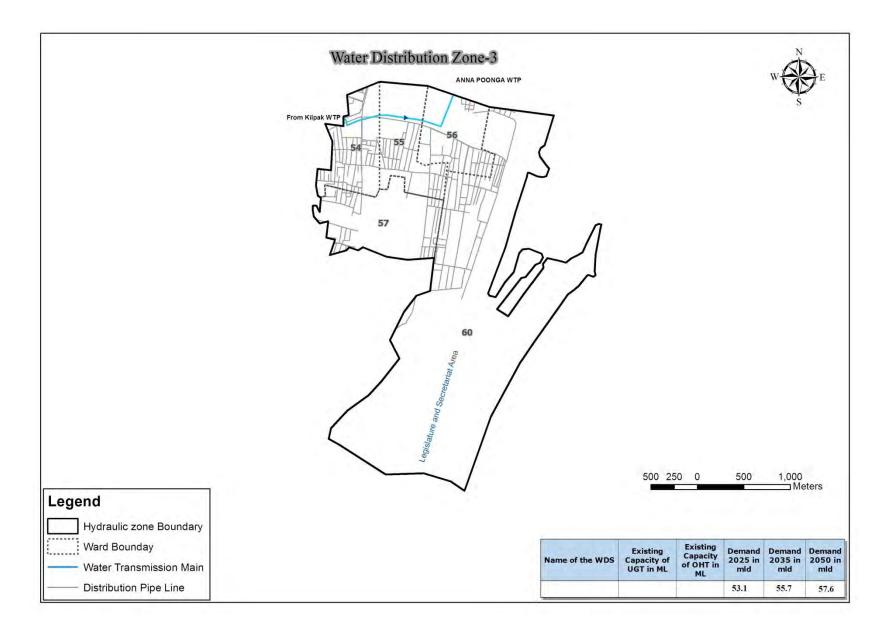
Name of Pipeline	From	То	Year	Diameter (mm)	Material
North Chennai Main	Puzhal WTP	Vysarpadi/Anna Poonga WDS	1996	1,200	MS/PSC
Central Chennai Main	Puzhal WTP Kolathur/Choolaimedu/ Southern Headworks WDS 1996		1996	1,200	MS/PSC
South Chennai Main	Puzhal WTP	KK Nagar/Ekkatuthangal WDS	1999	1,200/400	PSC/DI
K 1 Main	Kilpauk WTP/WDS	Southern Headworks WDS	1914	1,067 (42")	MS
K 2 Main	Kilpauk WTP/WDS	Triplicane WDS	1948	1,067 (42")	CI
K 2 Main Branch	K 2 Main	Kannaparthidal WDS	1948	762 (30")	CI
K 3 Main	Kilpauk WTP/WDS	Anna Poonga WDS	1948	838 (33")	CI
K 4 Main	Kilpauk WTP/WDS	KK Nagar WDS	KK Nagar WDS 1985		CI
K5 Main	K5 Main Kilpauk WTP/WDS Government Hospital/ Railways 194		1948	228 (9")	CI
K6 Main			1948	355 (14")	CI
Chembarampakkam WTP water used	Chembarampakkam WTP Saveetha		2007	2,000	MS
Chembarampakkam WTP water used	Saveetha College Junction 2007		2007	1,900	MS
Chembarampakkam WTP water used	Saveetha College Junction 20		2007/2004	2,000/1,500	MS
Chembarampakkam WTP water used	Kathipara Junction	Pallipattu ToP after passing Vellacheri ToP	2004	1,300	MS
Chembarampakkam WTP water used	Kathipara Junction	Alandur WDS	2004	400	DI
Chembarampakkam WTP water used	Vellacheri TOP	Vellacheri WDS	2004	800	MS
Chembarampakkam WTP water used	Pallipattu TOP	Pallipattu WDS	2004	800	MS
Chembarampakkam WTP water used	Pallipattu TOP	Mylapore/ Nandanam WDS	2004	1,300/1,100	MS
Veeranam Pumping Main	Vadakuthu WTP	Kadampuliyur BPT	2004	1,750	MS
Convey Veeranam Water Main	Kadampuliyur BPT	Porur WDS with a tapping to Kelampakkam WDS	2004	1,875	MS
-	Minjur Desalination Plant	Madhavaram booster station and Puzhal WTP	2010	1,000/900	DI
-	Nemmeli Desalination Plant	Thiruvanmiyur, Kelampakkam Pallipattu WDS	2013	1,000/700	DI

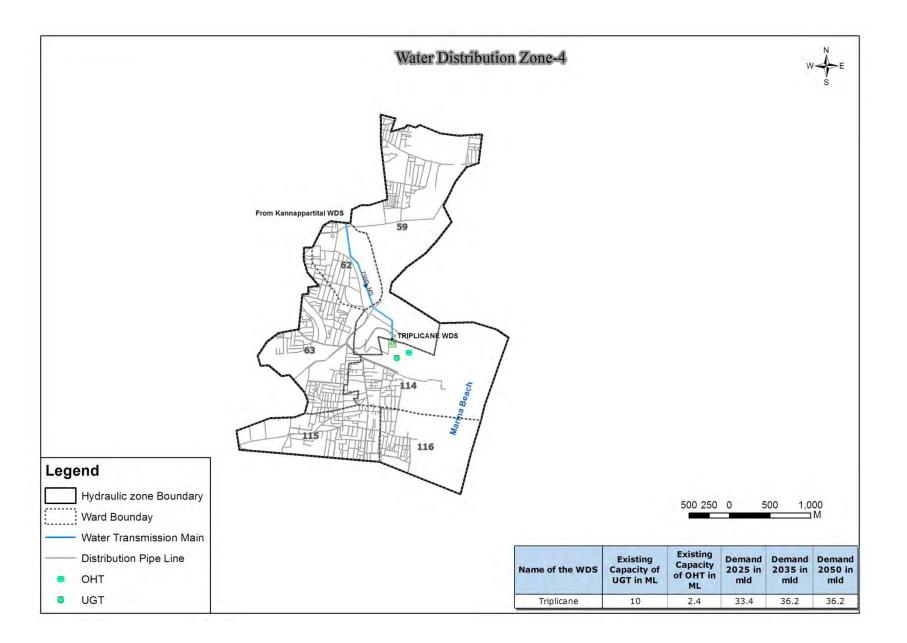

Table A 3.5.1 Characteristics of the Existing Water Transmission Mains of CMWSSB

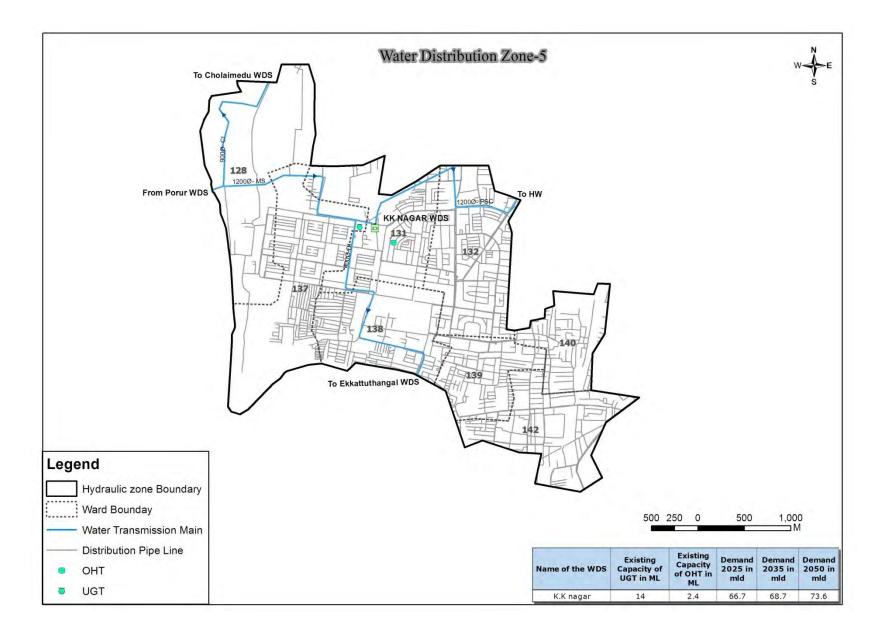

Notes: MS: Mild Steel, PSC: Pre-Stressed Concrete, DI: Ductile Iron, CI: Cast Iron, TOP: Take off Point, BPT: Break Pressure Tank

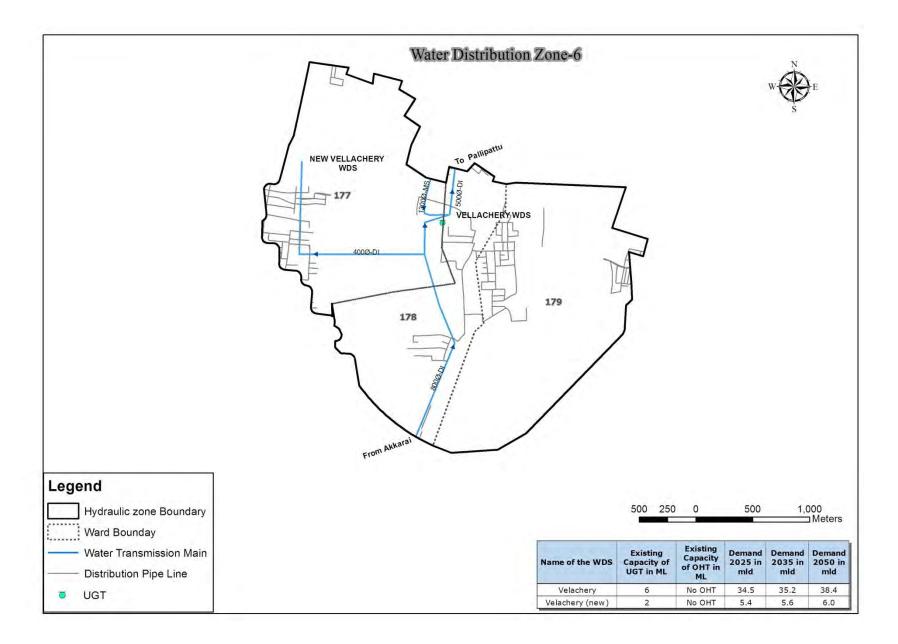

Sources: JICA Study Team based on Information from CMWSSB

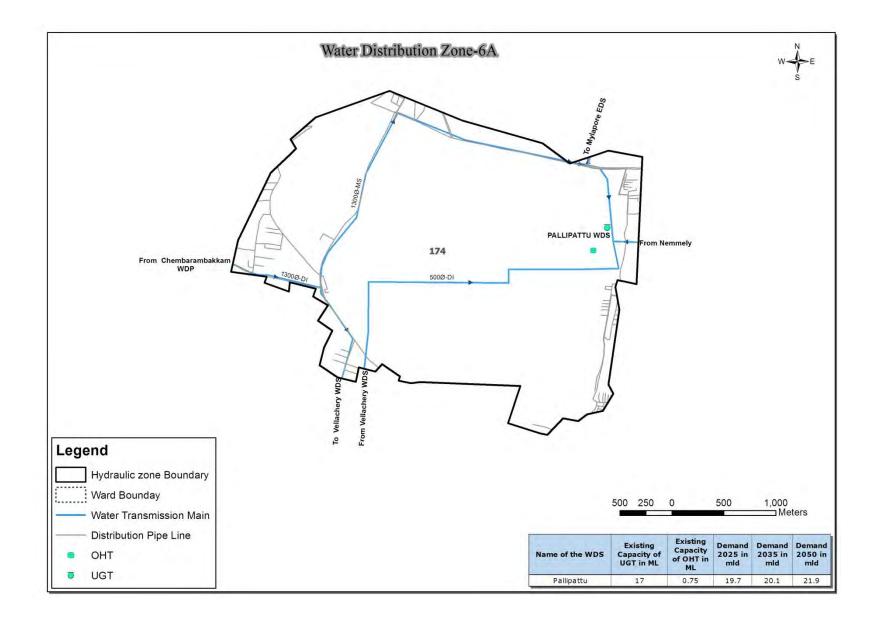


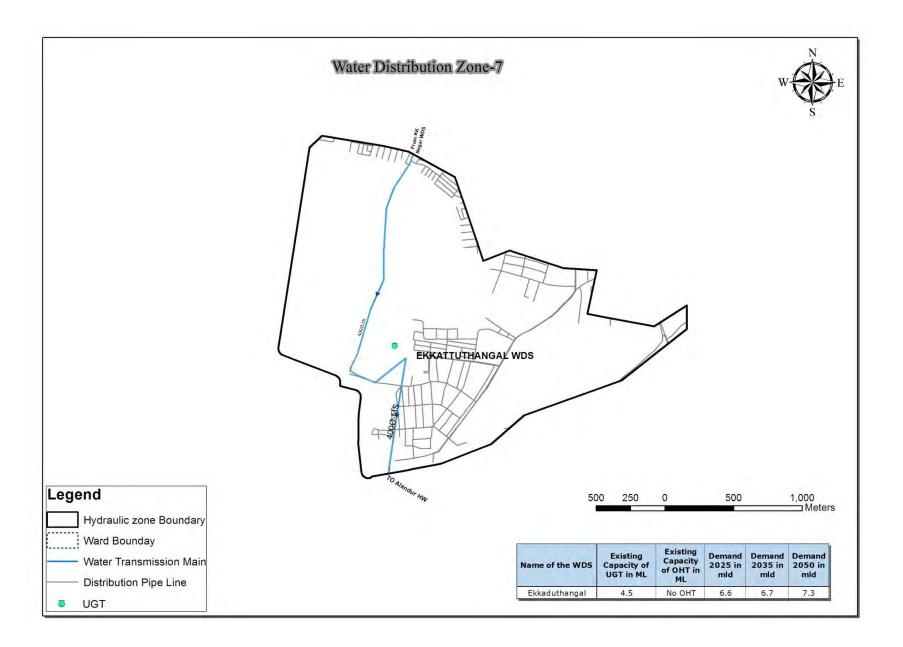

Source: JICA Study Team Source: JICA Study Team based on Information from CMWSSB

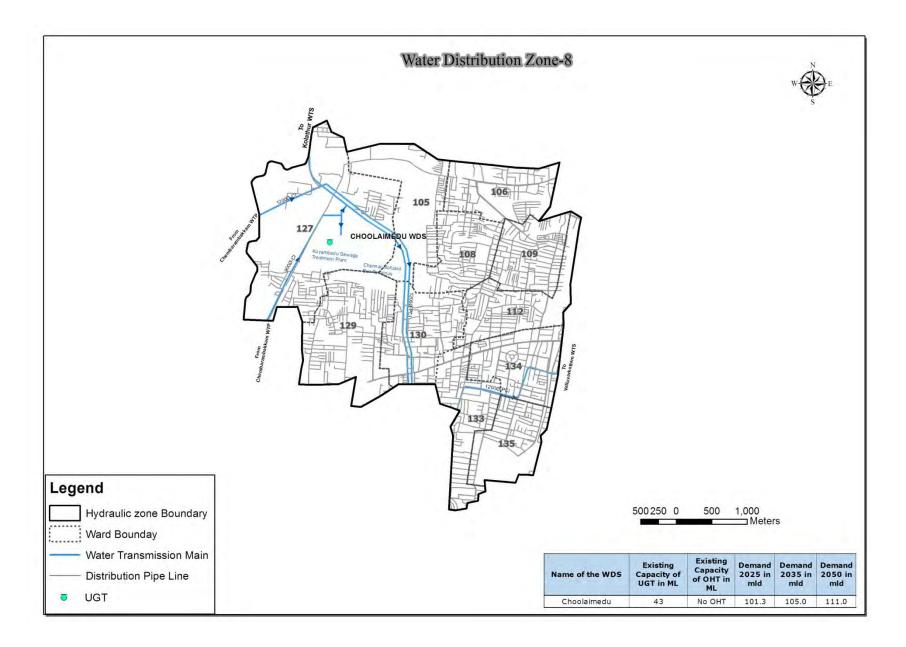


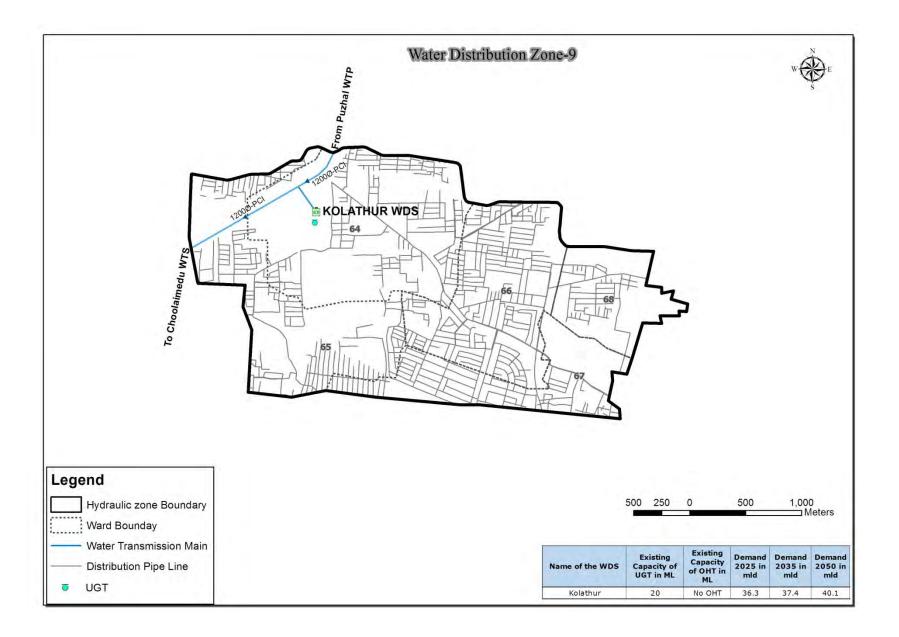


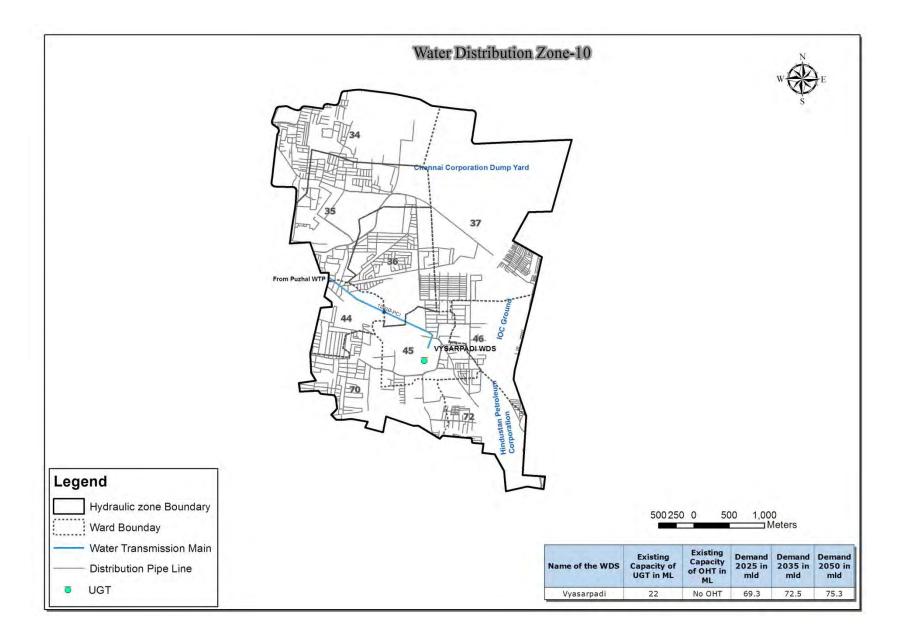


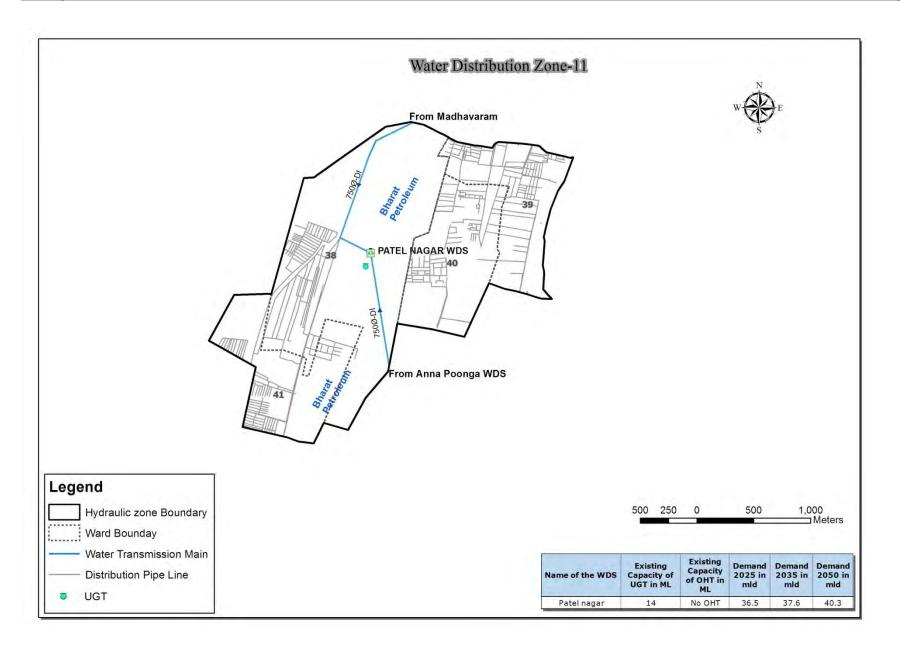


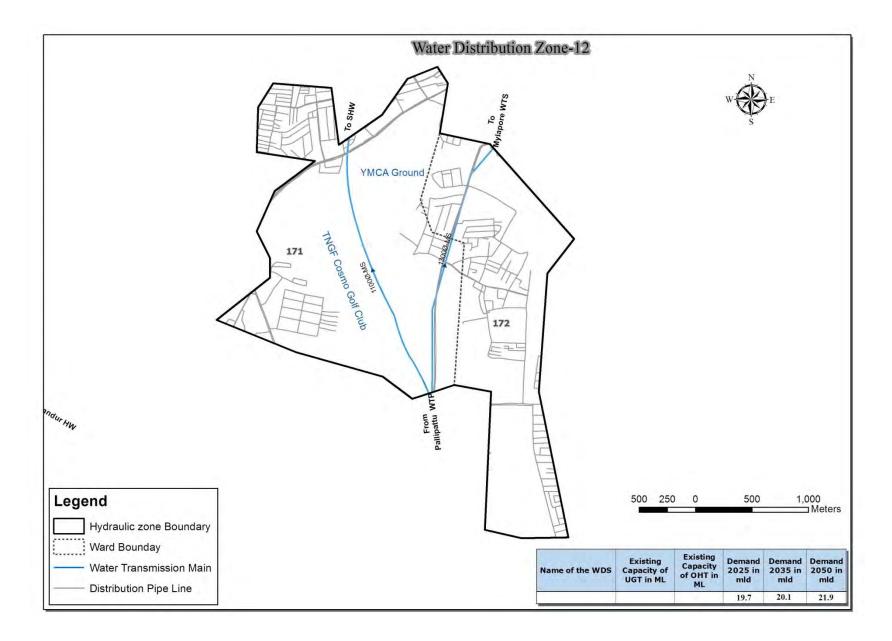


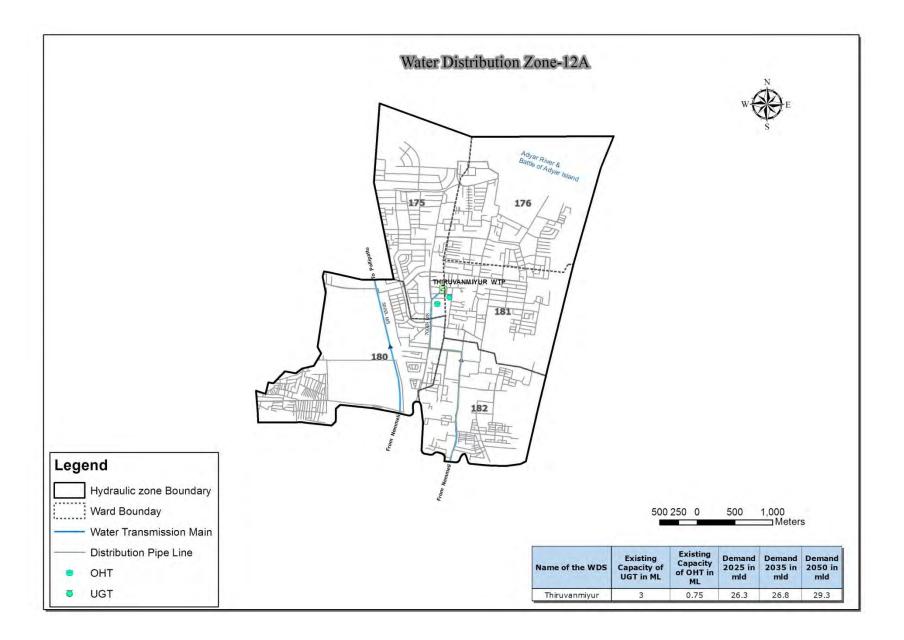


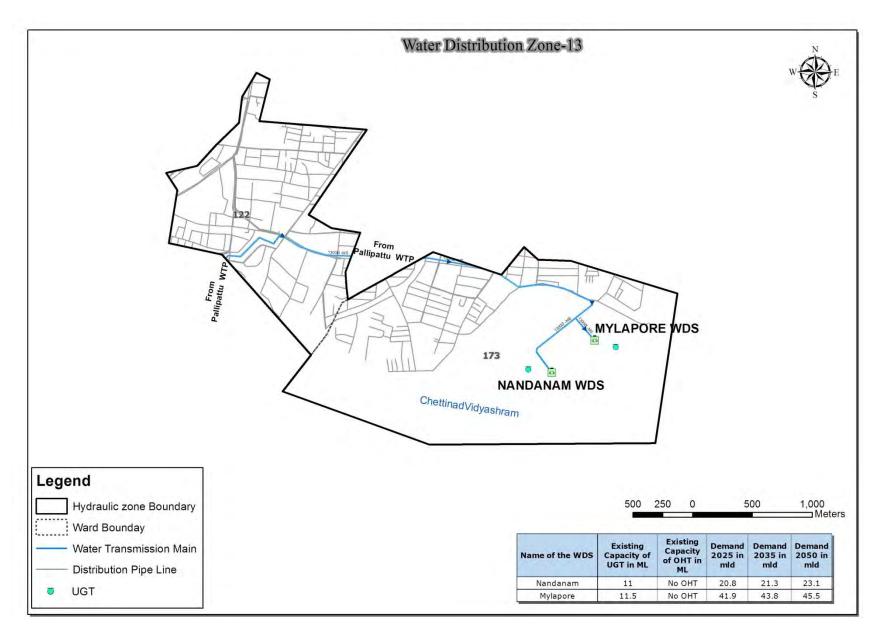


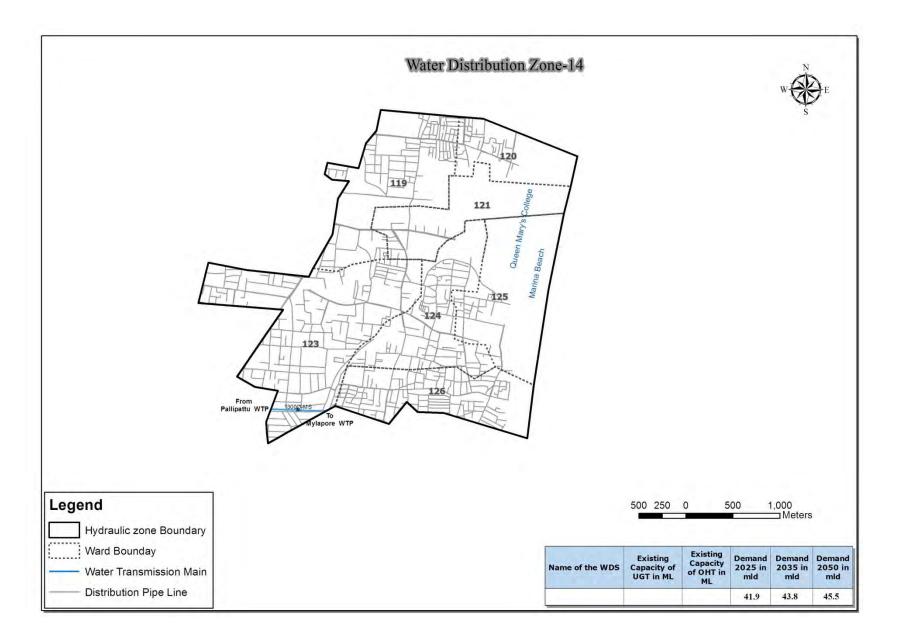


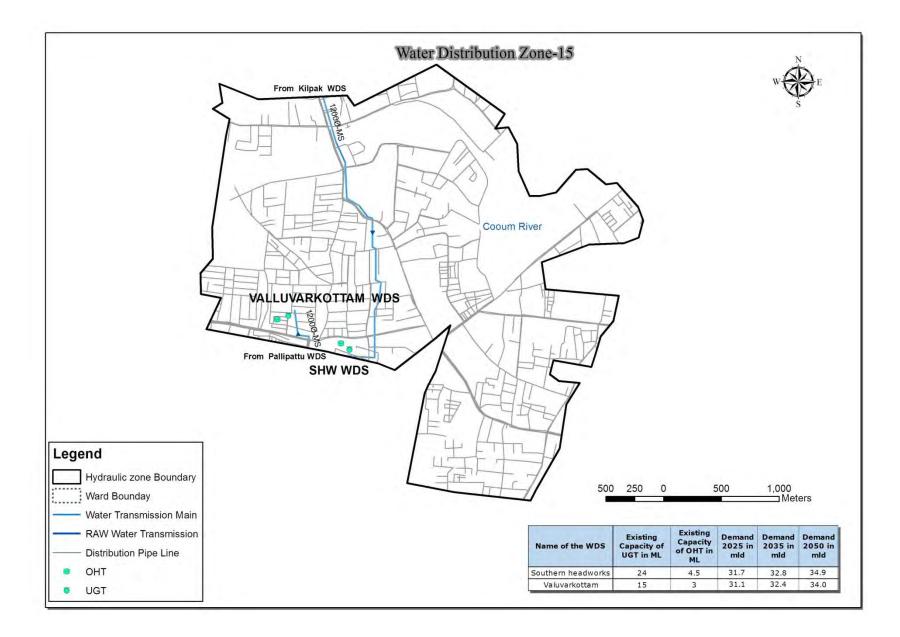


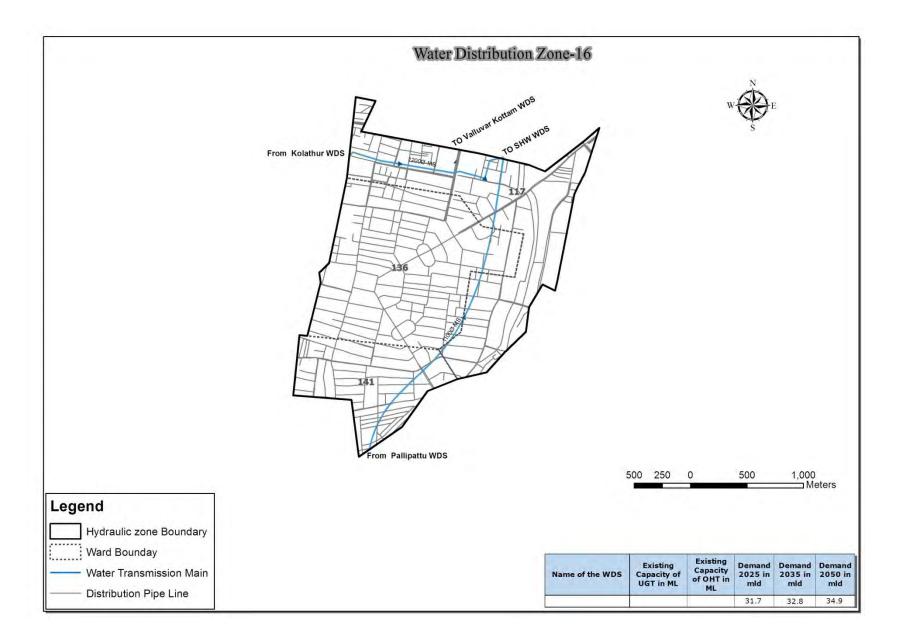










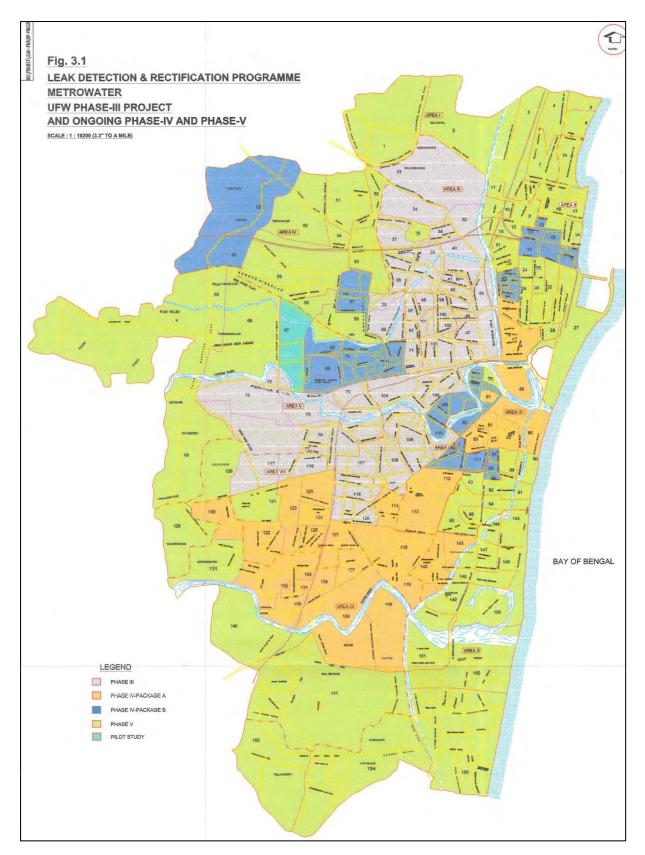


Appendix 3.7Technical and Management Problems in the Service Connections and
Water Meters in the Service Area of CMWSSB

- (1) Technical problems
 - Due to the limited water supply hours, water pressure in the distribution pipes is often low or negative. It causes the contamination of the treated water.
 - The intermittent water supply also allows entrance of air into the distribution pipes. In that situation, fluctuation of the water surface in the pipes pushes the entrapped air and causes movement in the water meter even without any water flow, which results in inaccurate metering.
 - Due to low water pressure, water consumers have to operate hand held pumps in wide areas to lift water from their private water tanks.
 - It is observed that service connections are installed poorly and such connections are leaking at their pipe joints.
 - Service pipes in the service connection sometimes cross the storm water drains. It is often damaged and/or disconnected during the maintenance works carried out by the storm water drainage management agency. Also, the service connections are sometimes damaged by various construction works carried out by the various public and private bodies. A proper development method needs to be devised so that the house pipes are not affected.
- (2) Management and O&M problems
 - CMWSSB is responsible for installation of the service connection only up to the boundary of a private house, and it is the responsibility of the water consumers to install the pipes inside their premises and fittings and other necessary equipment such as check valves and stop valves to prevent any water contamination. However, the water consumers often fail to do it properly. This is one of the reasons for leakages and contamination of the treated water.
 - Short availability of water supply has brought about doubts in people's mind on the reliability of water supply, so during the supply hours most water consumers store water in all sorts of vessels to enable continuous water use. This is giving excessive load to the water distribution network.
 - Due to the excessive load to the water distribution network, water does not reach the water consumers far from the WDSs.
 - As water supply charges are not metered but only charged on a flat rate, the water consumers always keep taps of both public stand posts and service connections open leading to wastage of water whenever the supply is resumed.
 - Inventory of the service connections are not available. It needs to be prepared and updated for handy reference and smooth operation and maintenance.

Appendix 3.8 Indian Drinking Water Standard

S. No.	Characteristic	Unit	Requirement (Acceptable Limit)	Permissible Limit in the absenceof alternate source
1	Total Dissolved Solids(TDS)	mg/l	500	2,000
2	Colour	Hazen unit	5	15
3	Turbidity	NTU	1	5
4	Total Hardness	mg/l	200	600
5	Ammonia	mg/l	0.5	0.5
6	FreeResidualChlorine	mg/l	0.2	1.0
7	pH		6.5-8.5	6.5-8.5
8	Chloride	mg/l	250	1,000
9	Fluoride	mg/l	1.0	1.5
10	Arsenic	mg/l	0.01	0.05
11	Iron	mg/l	0.3	0.3
12	Nitrate	mg/l	45	45
13	Sulphate	mg/l	200	400
14	Selenium	mg/l	0.01	0.01
15	Zinc	mg/l	5.0	15.0
16	Mercury	mg/l	0.001	0.001
17	Lead	mg/l	0.01	0.01
18	Cyanide	mg/l	0.05	0.05
19	Copper	mg/l	0.05	1.5
20	Chromium	mg/l	0.05	0.05
21	Nickel	mg/l	0.02	0.02
22	Cadmium	mg/l	0.003	0.003
23	E-ColiorThermotolerant coliforms	Number/ 100 ml	NIL	NIL


Bureauof Indian Standards Drinking Water Specifications for the Key Parameters in IS 10500 – 2012 (Second Revision)

Appendix 3.9 Contents and Coverage of the UFW Program in the Chennai City Assisted by the World Bank

The Unaccounted for Water (UFW) reduction program in Chennai core city has been carried out and most of the distribution pipeline and 205,000 service connections have been replaced by the program to evaluate and reduce the water losses from the distribution pipeline and service connection in five phases from 1989 to 2001 under World Bank fund. The project's completion report evaluated that water leakage ratio in the target area of the project was reduced to 11%

The contents of the program phase by phase are described below, and the program's coverage is shown in Figure A3.9.1.

- Phase-I: The study has been carried out in the year 1989 to 1991 covering 14,600 service connections. Important conclusion from the study disclosed that 70% of the leaks occurred at ferrule points. Therefore, replacement of service connection point with proper materials is recommended.
- Phase-II: The study has been carried out during 1994 to 1995 covering 14,600 service connections, which have been examined in Phase-I. The study in Phase-II has been carried out duly replacing all defective ferrules identified in Phase-I and repairing the leakage points in the distribution pipes. The leak levels have been identified in the range of 265 to 391 liter/service connection / hr at 10 m working head.
- Phase-III: The study has been carried out during the 1996 to 1999 period, covering a total area of 36.65 km², for a pipe length of 258 km/ Material of pipes used are uPVC and DI. The 34,800 nos. of service connections have been replaced. The leakage levels achieved in this study is 4.73 liter/capita/hr.
- Phase-IV, V: This phase includes the implementation of the replacement of the distribution pipe and service connection, and was completed in 2001.

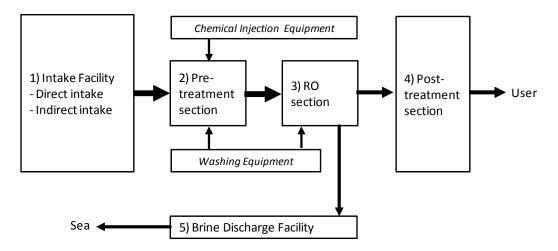

Source: Report on reduction in UFW in Chennai city (Phase-III)

Figure A3.9.1 Coverage of the Unaccounted for Water Program in Chennai Core City Assisted by the World Bank

Appendix 3.10 General Descriptions of Seawater Desalination Process by Reverse Osmosis Technology (SWRO)

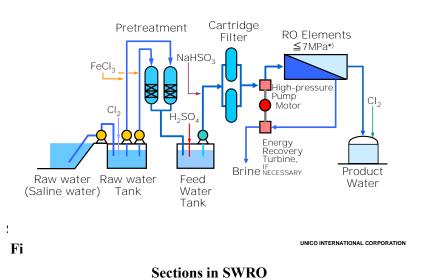
(1) Components

SWRO mainly consists of five components and their accessories, excluding the power receiving facility, buildings, warehouses, and offices as shown in Figure A3.10.1.

Source: JICA Study Team

Figure A3.10.1 General Configuration of SWRO

- (2) Outlines of each component
 - 1) Intake facility


The function of intake facility is to take seawater and transport the seawater to the on-shore plant. There are two major methods in the intake type:

- Direct Intake: Direct intake is to take seawater by off-shore intake facility or construct an open channel on the shore. Usually, chlorine is used at the off-shore intake point to avoid clogging of the intake pipe by shellfish and seaweed inside the pipeline.
- Indirect Intake: The typical method for the indirect intake is a beach well, which intakes seawater by tube-wells to be installed along the shore. The other type in the indirect intake is seabed intake method, which intakes water from the seabed.
- 2) Pre-treatment section

Pre-treatment as well as RO sections are illustrated in Figure A3.10.2. Pre-treatment section functions with the accessory equipment of chemical injection facility and backwashing equipment.

The objective of the pre-treatment is to treat the raw seawater to avoid any damage on the succeeding

RO membrane by unwanted particles or aggressive contents in the seawater. Typical pre-treatment is sand filtration process. In recent pre-treatment years, by membranes such as Microfiltration (MF) membrane or Ultrafiltration (UF) membrane is often employed.

Chemical injection facility is an equipment to give

necessary dose of chemicals for pre-treatment. Chemicals which are commonly used for pre-treatment are as follows:

- Sodium hypochlorite (NaClO) for disinfection, to prevent bacteria growth
- Ferric chloride (FeCl₃) as flocculant before sand filtration
- Sulphuric acid (H₂SO₄) or hydrochloric acid (HCl) for pH adjustment, for protecting the membrane and preventing scale production that causes clogging on the membrane surface
- Sodium bisulfite (NaHSO₃ or Sodium Bisulfit (SBS)) as reductant for reneutralization of chloride, which is injected for disinfection, to protect RO membrane (Polyamide composite membrane is dominantly used but this RO type does not have high durability against chloride)

The particles of sand and plankton caught in the pre-treatment unit, especially the sand filter, are to be washed out. In order to do so, washing equipment is necessary. Membranes are also washed several times a year. Thus, the equipment for preparation of washing chemicals is to be installed.

3) RO section

RO section consists of RO membrane units, high pressure pumps and energy recovery equipment. High pressure pumps are the equipment to give sufficient pressure to the seawater for filtration by RO. Energy recovery equipment is used to utilize the high energy held by the rejected brine from the RO to save the energy consumption in SWRO.

4) Post-treatment Facility

For drinking water, the addition of hardness such as calcium or pH adjustment is required to meet the drinking water standard. A disinfectant (e.g. chlorine) is injected in order to prevent the generation of bacteria at reservoirs and pipes.

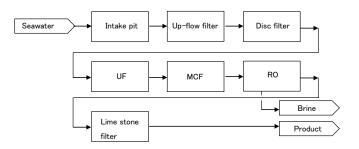
5) Brine Effluent Facility

Besides clean water a membrane process also produces concentrated seawater, or brine. This brine is returned to the sea at the off-shore point by brine discharge facility, which consists of brine discharge pipe and discharge head. Discharge point will be determined so that the brine will not have adverse impact on the marine ecosystem. The discharge facility is also designed so that the brine will not affect the raw seawater to be taken at the intake point.

6) Chemical Injection Equipment (ClA, FeCl₃, NaHSO₃, etc.)

Chemical injection equipment injects various chemicals to pre-treatment and RO sections and other points when the design needs it. Chemical storages, solution tanks and injection pumps are the major equipment.

- 7) Washing Equipment
- 8) The sand particles and planktons caught at the pre-treatment units, especially in the sand filters, is washed out, for which washing equipment is necessary. Membranes also need to be washed several times in a year. Thus, the equipment for preparation of washing chemicals is to be installed. Product Water Storage Facility


The product water storage facility is installed in order to store water for on-site use, and for emergency use during a power failure or malfunction of the plant. When the product water is distributed by pump, the product water storage will facilitate the pump operation.

Appendix 3.11 Present Conditions of the Exiting DSPs

A3.11.1 Nemmeli DSP

- (1) Treatment process
 - 1) General

The treatment process of the Nemmeli DSP is illustrated in Figure A3.11.1. The plant takes seawater from the Bay of Bengal and treats the seawater by RO technology.

Source: JICA Study Team based on CMWSSB's information Figure A3.11.1 Block flow sheet of Nemmeli DSP

2) Intake facility

The seawater inlet pipe is 1,600 mm in diameter and has a length of about 1,200 m. At the intake, Sodium hypochlorite is added to raw seawater to avoid clogging of the intake pipe by organisms such as clams and seaweeds. The raw seawater is filled into an on-shore intake pit by gravity. Here hypochlorite is added to the pumped seawater, and it is then pumped to the pre-treatment section.

3) Pre-treatment and RO sections

Pre-treatment section comprises of the up-flow filter, disc filter and UF membrane. The up-flow filter is 14 m deep and contains pebbles at a height of 1.7m. Seawater flows to the bottom of the filter, and then flows upward through the pebble layers. While flowing through the pebble layers the suspended solids in the raw seawater is reduced.

Effluent from the up-flow filter flows into the raw seawater tank. This seawater is then pumped to the disc filter which is followed by UF membrane filtration.

Disc filters are installed to protect UF membrane from unexpected particles that may come out from the up-flow filter. Four disc filters are grouped as one set, and one set of disc filters is installed in each UF unit. Therefore, a total of 120 disc filters is used in 30 UF units present in the plant. In the respective sets of four filters, one filter is in the backwashing stage in rotation, and the other three are in service. The designed suspended solids (SS) in the effluent from the disc filters is 50 mg/l. The designed coagulant, to be injected before UF, is FeCl₃. Usually, the chemical is not injected as the effluent from the disc filters is better than expected.

The unit of UF membranes is known as "skids" and each skid contains 4 rows x 30 modules (= 120 modules per skid). Therefore, a total of 3,600 modules is installed in the plant. Chemicals used for UF backwashing are NaOCl, NaOH, and H_2SO_4 .

Effluent from UF is stored in the UF product water tank which is then pumped to the RO unit after passing it through the micron cartridge filters (MCF). Before the effluent is passed through MCF, chemicals such as NaOH for pH adjustment, SBS for reductant and antiscalant are added to it.

A total of 12 units of RO are installed in a single stage in the plant¹. The recovery ratio is 45%. In each RO unit, one high-pressure pump (HPP), one recycle booster pump (RBP), one permeate pump and a unit of energy recovery equipment of pressure exchangers (PX) are arranged. HPP and RBP motors are provided with variable frequency devices (VFD) to enable flexible adjustment of pressure.

After recovery of energy from brine by the energy recovery equipment, the brine is sent from RO unit to a brine tank with a capacity of $4,000 \text{ m}^3$.

4) Post-treatment section

RO permeate is sent to post-treatment section consisting of a CO_2 injection system, limestone filters, a degassing tower and the associated facilities such as blowers CO_2 storage, NaOH dosing system, and disinfection dosing system.

Treated water from the post-treatment section is delivered to the Chennai Corporation. In case of suspension of the plant operation, product water is sent to two tanks, each of which has a capacity of 14,000 m^3 .

5) Brine discharge facility

Brine discharge pumps present in the plant, discharge the brine from RO unit into the sea. However the pumps are not used, because it has been found that the 1,200 mm discharge pipe can discharge the brine by gravity flow. Length of the discharge pipe is 500 m.

Source: JICA Study Team Picture A3.11.1 Up-flow filter in the Nemmeli DSP

Source: JICA Study Team Picture A3.11.2 UF racks in the Nemmeli DSP

Source: JICA Study Team Picture A3.11.3 RO racks in the Nemmeli DSP

¹Some SWRO plants have multiple stage RO. It is mostly aimed at removing boron to satisfy the old WHO guidelines, which were stricter than the present guidelines.

(2) SWRO Equipment

Equipments used in the Nemmeli DSP are listed in Table A3.11.1.

During site visit to the plant, it is evaluated that the equipments are functioning with no critical problems. Some leakages were observed around the pumps and the plumbing but they were of acceptable level. Paintings on equipment are generally well maintained. PX of the pressure exchanger was controlled; it was made silent by using soundproof cover.

Source: JICA Study Team

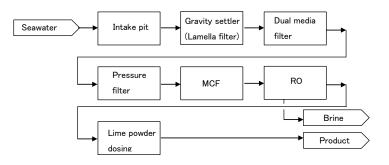
Picture A3.11.4 Monitoring Panel in the Nemmeli DSP

		Capacity	Head		Number		Input			Other condition
No	Equipment	(m3/h)	(m)	Duty	Standby	Total	(kW)	Manufacture	Country	
Pun	ıp									
1	Seawater Pump	5,530	25	2	2	4	530	KIROSKAR	INDIA	
2	Raw Water Transfer Pump	5,475	60	2	2	4	950	KIROSKAR	INDIA	
3	Dirty Water Transfer Pump	300	50	1	1	2	55	FLOWSERVE	USA	
4	High Pressure Pump	360	700	12	3	15	900	FLOWSERVE	USA	
5	Cartridge Filter Feed Pump	4,628	25	2	2	4	400	FLOWSERVE	USA	
6	UF Back Wash Pump	600	20	2	2	4	45	FLOWSERVE	USA	
7	Disc Filter Back Wash Pump	240	40	1	1	2	30	FLOWSERVE	USA	
8	Reject Water Transfer Pump	3,430	50	2	2	4	650	FLOWSERVE	USA	
9	RO Membrain Cleaning Pump	300	50	1	1	2	55	FLOWSERVE	USA	
10	Permeate Transfer Pump	350	25	12	3	15	30	FLOWSERVE	USA	
11	Recorbonation Tower Feed Pump	2,100	20	2	2	4	160	FLOWSERVE	USA	
12	Absorber Feed Booster Pump	680	40	2	1	3	90	FLOWSERVE	USA	
13	Lime Stone Recharging Booster Pump	135	80	1	1	2	37	FLOWSERVE	USA	
14	Treated Water Transfar Pump	1,085	100	4	1	5	400	WPIL limited	INDIA	
Filt	ration									
	Disk Filter			120	0	120			ISRAEL	
	UF			30	0			Norit	Holland	Total modules: $30 \times 4 \times 30 = 3,600$ modules
3	Cartridge filter			2	0	2				15micron
4	Cartridge filter for			1	0	1				15micron
	chemical cleaning									
	Limestone Filter			4	1	5				Gravel+Limestone
	RO train			12	0	12		NITTO DENKO	JAPAN	8,400m3/d/unit, Menbrane Model:SWC5Max
Ene	rgy recovery system									
1	Pressure Exchanger(PX)			110	5	115		Energy Recovery	USA	Eficiency:98.0%
L										
Che	mical dosing									
1	Sodium hypochlorite for intake	0.4	40	1	1	2		MILTON ROY	USA	
2	Sodium hypochlorite for UF back	2.6	40	1	1	2		MILTON ROY	USA	
3	Sulphuric acid	0.85	25	1	1	2		MILTON ROY	USA	
4	Ferric chloride for UF CEB	0.15	40	1	1	2		MILTON ROY	USA	
	Sodium bisulfite	0.45	60	1	1	2		MILTON ROY	USA	
	Antiscalant	0.45	60	1	1	2		MILTON ROY	USA	1
7	Caustic soda for UF CEB	0.2	40	1	1	2		MILTON ROY	USA	
	Caustic soda	0.02	27	2	1	3		MILTON ROY	USA	
- 9	Sodium hypochlorite for potable water	0.03	27	1	1	2		MILTON ROY	USA	

 Table A3.11.1 Major Equipment in the Nemmeli DSP

Source: CMWSSB compiled by JICA Study Team

A3.11.2 Minjur DSP


(1) Treatment process

1) General

2)

The treatment process of the Minjur DSP is illustrated in Figure A3.11.2. Similar to the Nemmeli DSP, the Minjur DSP also takes seawater from the Bay of Bengal and treats the seawater by RO technology.

Intake facility

Source: JICA Study Team based on CMWSSB's information

Figure A3.11.2 Block flow sheet of Minjur DSP

The seawater inlet pipe is 1,600 mm in diameter and has a length of about 640 m. As the plant operator was not allowed by the Pollution Control Board (PCB) to inject the chemical at the intake point, so sodium hypochlorite was injected only at the on-shore intake pit. The plant operator informed the study team there was no reported case of clogging in the seawater intake pipe. The frequency of cleaning inside the pipe is about three times a year. The raw seawater, introduced into the on-shore intake pit by gravity, is pumped to the pre-treatment section.

3) Pre-treatment and RO sections

Pre-treatment section comprises of the gravity settler (or lamella filter), which is after the flocculation basin and dual media filter (DMF). Chemicals to be injected in the flocculation basin are H₂SO4 for pH adjustment, FeCl₃ and polyelectrolyte for coagulation.

The lamella filter, which has four rows, removes most of the suspended solids in the raw seawater. Designed removal ratio is from 92% to 98%. According to the plant operator, the gravity settler is generally cleaned twice a year, which are before and after the monsoon season.

Effluent from the lamella filter is sent to the gravity-type dual media filter (DMF). The DMF consists of four rows, each of which has 10 cells. Therefore, the total number of the filter cells is 40. The output of the DMF is collected in the filtered water storage tank and pumped to the RO section.

Once a week backwashing of the DMF is done using brine from the RO. According to the plant operator, backwashing procedure consists of air scouring for 10-15 minutes, backwashing for 40-45 minutes, and rinsing for 45-60 minutes. Duration of the main backwashing (40-45 minutes) is much longer than in general cases.

The pumped filtered water is first sent to the pressure filters (PF) for further filtration, then to micron cartridge filters (MCF) which is safety filter and then to the RO membrane. It is noted by the operation representative of the Minjur DSP that PF may not be required as the effluent from the DMF is already in the acceptable range of RO membrane.

The RO unit consists of a high-pressure pump (HPP), an energy recovery equipment of pressure exchanges (PX), a recycle booster pump (RBP), and an RO membrane. Five RO units are installed. The recovery ratio is 45%.

Similar to Nemmeli DSP, HPP and RBP motors are provided with variable frequency devices (VFD) to enable flexible adjustment of pressure.

4) Post-treatment section

The permeate water from RO is treated with CO_2 and lime powder solution injection for drinking water application, and sodium hypochlorite injection for

disinfection, and then sent to Chennai city.

5) Brine discharge facility

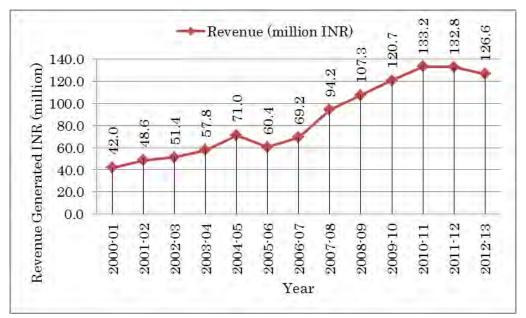
Brine from RO is discharged to the sea by gravity. No discharge pumps are engaged, as in the case of Nemmeli DSP. Brine discharge pipe is 1,600 mm in diameter and 840 m in length.

(2) SWRO equipment

Equipments used in the Minjur DSP are listed in Table A3.11.2.

During the site visit to the plant, it is evaluated that the equipments are functioning with no critical problems. However, lack of standby RO unit sometimes causes less production during maintenance

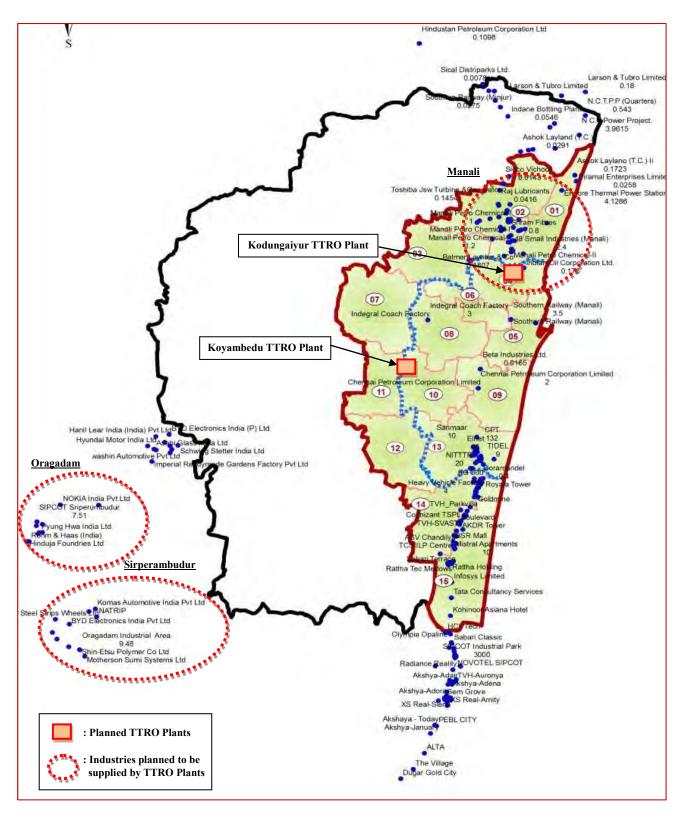
Source: JICA Study Team Picture A3.11.7 Monitoring Panel in the Minjur DSP



Source: JICA Study Team Picture A3.11.6 Gravity Settler in the Minjur DSP

work. PX of the Pressure Exchanger was noisier than the Nemmeli DSP, as the PX in the Minjur DSP was not covered.

No	Equipment	Capacity	Head		Number		Input	Manufacture	Country	Other condition
INO	Equipment	(m3/h)	(m)	Duty	Standby	Total	(kW)	Manufacture	Country	
Pun	ıp									
1	Seawater Pump	4,960	14.7	2	1	3	360	SULZER	SPAIN	
2	Intermediate Pump	1,944	60	5	1	6	400	SULZER	SPAIN	
3	High Pressure Pump	896.5	671	5	0	5	2,200	FLOWSERVE	USA	
4	Booster Pump	1,048.9	50	5	0	5	200	SULZER	SPAIN	
5	Chemical cleaning and flushing pump	992	55	2	1	3	200	SULZER	SPAIN	
Filtı	ration									
	Pressure filter	608		16	0	16		HIDUSTAN DORR-OLIVER	INDIA	φ3.6m×11m(40m2),15.2m/h(0.253m/min) 16.2m/h(0.27m/min)
2	Cartridge filter			10	0	10				15micron,13.65m/h(0.23m/min)
3	Cartridge filter for chemical cleaning			1	0	1				13.6m/h(0.23m/min)
Rev	erse osmosis									
1	RO train			5		5		NITTO DENKO	JAPAN	20,000m3/d/unit, Menbrane Model:SWC4+
Ene	rgy recovery system									
1	Pressure Exchanger(PX)			110	5	115		Energy Recovery	USA	Eficiency:93.02%
Che	mical dosing									
1	Sodium hypochlorite in seawater			2	1	3		GRUNDFOS	DENMARK	Storage tank: ϕ 3.2m×2m(10m3)×2
2	Sodium hypochlorite in pretreatment			2	1	3		GRUNDFOS	DENMARK	Storage tank: ϕ 3.2m×2m(10m3)×2
3	Sulphuric acid			5	1	6		GRUNDFOS	DENMARK	Storage tank: φ 3.0m×9m(60m3)×2
4	Ferric chloride			2	1	3		GRUNDFOS	DENMARK	Storage tank: φ 3.0m×4.5m(30m3)×2
5	Calcium hydroxide in pretreatment			2	1	3		GRUNDFOS	DENMARK	Silo:60m3×1
6	Polyelectrolyte			2	1	3		GRUNDFOS	DENMARK	
7	Sodium metabisulphite			5	1	6		GRUNDFOS		Storage tank: ϕ 1.0m×2.0m(1.6m3)×2
-	Antiscalant			5	1	6		GRUNDFOS		Storage tank: ϕ 1.4m×2.0m(3.0m3)×2
9	Carbon dioxide			2	1	3		GRUNDFOS	DENMARK	Storage tank: ϕ 3.0m×10m(70m3)×2
10	Calcium hydroxide in post treatment			2	1	3		GRUNDFOS	DENMARK	Storage tank: ϕ 3.0m×11.3m(80m3)×2 Dilution tank: ϕ 2.0m×1.3m(4m3)×2
11	Sodium hypochlorite in post treatment			2	1	3		GRUNDFOS	DENMARK	Storage tank: ϕ 3.0m×5m(35m3)×2


Table A3.11.2 Major Equipment in the Minjur DSP

Appendix 3.12 Present Conditions of Water Recycling by CMWSSB

Source: CMWSSB Annual Report (2012-13) compiled by JICA Study Team

Figure A.3.12.1 Revenue Generation from Sales of Secondary Treated Sewage by CMWSSB

Note: Values in the figure are projected water demand of the industries for 2025 in the study report below.

Source: JICA Study Team based on Demand Assessment Study Report on the supply of TTRO water to the industrial units located in North Chennai prepared by ITCOT Consultancy and Services

Figure A. 3.12.2 Locations of the Existing and Planned Industries Planned to be Catered by CMWSSB and the Coverage of the Planned TTRO Plants

Appendix 4.1 Population forecast in the Master Plan

A4.1.1 Methodologies of the Forecast

The previous population forecast for CMA was conducted in "Second Master Plan for Chennai Metropolitan Area, 2026" (hereinafter, "CMDA-MP"), which was prepared by the Chennai Metropolitan Development Authority in 2008. CMDA-MP is the latest city planning document for the entire CMA.

Population forecast in M/P began with its evaluation in CMDA-MP. By comparing the forecast population for 2011 in CMDA-MP with the result of a census in 2011, M/P pointed out that the forecast in CMDA-MP was an overestimation for the corporation. The average annual population growth between 2001 and 2011 in CMDA-MP forecast and that from census results were 1.31% and 0.68%, which generated a difference of 300 thousand in population. From this evaluation, the M/P declared that the population forecast needs to be updated to incorporate the latest trend found in the censuses 2011.

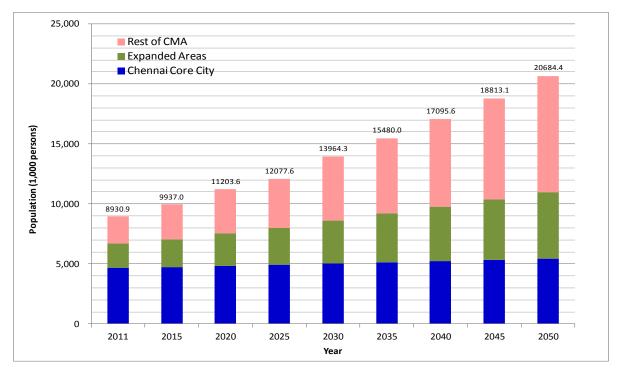
M/P carried out population projections by seven methods, which were suggested in the manual of the Central Public Health and Environmental Engineering Organization (CPHEEO). These methods were 1) Arithmetic Increase Method, 2) Incremental Increase Method, 3) Geometrical Progression Method, 4) Line of Best Fit Method, 5) Exponential Method, 6) Semilog Graphical Method, and 7) Density Method. The basic population in the projections was the result of the census 2011, and the past populations found by the census 1971, 1981, 1991 and 2001 were referred to forecast the future growth trend.

The projections were conducted for the respective wards (in the corporation), municipalities, towns, and villages. M/P compared the projections with those in CDMA-MP. If the census 2011 and the projected population for 2026 in a municipality/town/village by a method almost matched with the forecasts for the same years in CMDA-MP, the method was adopted. Otherwise M/P adopted density method, where the population densities for the target years were determined based on the trend in the population density and on the socio-economic factors. The socio-economic factors considered in the forecast were the current physical maturity of the residential areas, possible development or decline of the local industries, development level of public utilities, etc.

The M/P presented typical population densities in residential areas, instead of total area, by status and locations of the areas as shown in Table A4.1.1.

	Target area	Population density	Remarks
Chennai	Core City	500 - 650 persons/hectare	Population
Corporation	Expanded area	500 - 800 persons/hectare	density based on
Rest of	Municipalities/Towns/Villages adjacent to the corporation	450 - 600 persons/hectare	residential area
CMA	Municipalities/Towns far from the corporation	200 - 350 persons/hectare	for 2050
	Villages far from the corporation	150 - 250 persons/hectare	

 Table A4.1.1 Criteria of Population Density by Residential Area in the M/P

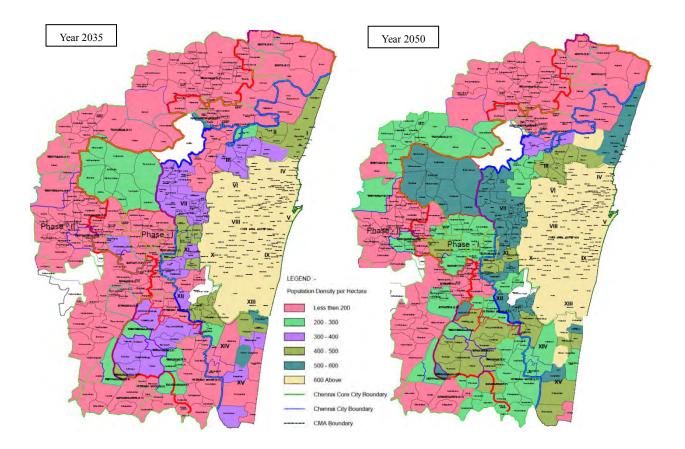

Source: Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

A4.1.2 Results of the Forecast

The results of the population in the M/P are shown in Figure A4.1.1. Figures 4.1.2 present the forecast population densities in 2035 and 2050.

The forecast population expresses that the general trends in the Chennai Core City will involve only little growth potential and that the population growth will happen in the outskirts of the Core City.

As for the population density in 2050, the population densities in wide areas are much lower than the typical density ranges presented in Table A4.1.1. For example, the population densities in the expanded area are in the range of 400 - 500 persons/hectare in the highest areas while the typical density presented in Table A4.1.1 is 500 - 800 persons/hectare.



Area					Population				
	2011	2015	2020	2025	2030	2035	2040	2045	2050
Rest of	2,264.3	2,883.2	3,646.3	4,104.2	5,345.6	6,299.9	7,337.2	8,468.8	9,711.8
CMA	(-)	(6.23%)	(4.81%)	(2.39%)	(5.43%)	(3.34%)	(3.10%)	(2.91%)	(2.78%)
Expanded	2,019.6	2,326.1	2,727.0	3,034.9	3,585.2	4,042.4	4,519.2	5,016.7	5,535.7
Area	(-)	(3.60%)	(3.23%)	(2.16%)	(3.39%)	(2.43%)	(2.25%)	(2.11%)	(1.99%)
Chennai	4,647.0	4,727.7	4,830.2	4,938.6	5,033.4	5,137.7	5,239.3	5,327.6	5,436.9
Core City	(-)	(0.43%)	(0.43%)	(0.44%)	(0.38%)	(0.41%)	(0.39%)	(0.33%)	(0.41%)
СМА	8,930.9	9,937.0	11,203.6	12,077.6	13,964.3	15,480.0	17,095.6	18,813.1	20,684.4
Total	(-)	(2.70%)	(2.43%)	(1.51%)	(2.95%)	(2.08%)	(2.01%)	(1.93%)	(1.91%)

*: Values in the brackets are annual population growth in % from the previous population

Source: JICA Study Team based on Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

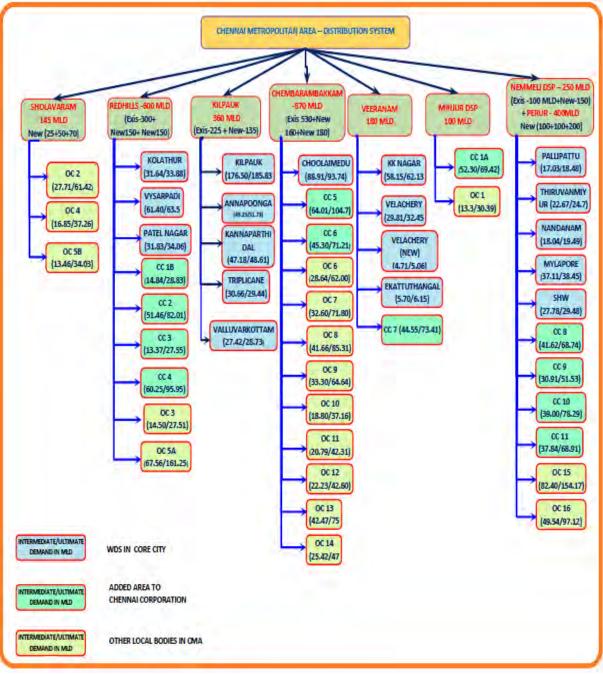
Figure A4.1.1 Population Forecast in the M/P

Source: Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015 Figure A4.1.2 Forecast Population Density by Residential Area in the M/P

Appendix 4.2 Water transmission and Distribution Plans in the Master Plan

A4.2.1 Specifications of the Water Transmission Pipelines in the M/P

Water Supply	Transmis		Ι	Pipe Line Length	(km)		Pipe Diameter
System	sion Main	Total	Existing	Replacement	Strengthening	New	Range (mm)
Nemmeli DSP	TM-1	32.16	32.16	-	9.64	-	700-1000
Nemmeli DSP	TM-2	32.73	27.18	2.03	26.53	3.52	800-1600
Nemmeli DSP	TM-3	18.50	13.30	-	13.30	5.20	500-900
Nemmeli DSP	TM-4	32.70	0.00	-	-	32.70	900-1900
Veeranam WSS	TM-5A	9.33	4.98	4.35	-	-	400-1200
Veeranam WSS	TM-5B	16.21	8.95	5.38	-	1.88	300-2000
Chembarambakka m WSS	TM-6	18.58	11.28	7.30	-	-	1200-2000
Chembarambakka m WSS	TM-7	21.28	5.48	0.00	0.00	15.80	700-2000
Chembarambakka m WSS	TM-8	32.15	-	-	-	32.15	500-2000
Redhills WSS	TM-9	24.17	12.55	11.62	-	-	750-1500
Redhills WSS	TM-10	16.78	10.33	0.00	10.33	6.45	900-1500
Redhills WSS (Soorapattu lake)	TM-11	2.00	-	2.00	-	-	600-600
Cholavaram WSS	TM-12	19.51	19.51	-	9.80	-	900-1000
Cholavaram WSS	TM-13A	0.10	-	-	-	0.10	800-800
Cholavaram WSS	TM-13B	22.00	-	-	-	22.00	700-1300
Minjur DSP	TM-14	33.49	23.48	-	-	10.01	500-1100
Kilpauk WSS	TM-15	7.30	7.30	-	-	-	700-850
Redhills WSS	TM-16	5.71	5.71	-	-	-	700-1200
Cholavaram WSS	TM-17	9.86	8.05	1.81	-	-	800-1200
Redhills WSS	TM-18A	0.20	0.20	0.00	-	-	1200
Redhills WSS	TM-18B	0.10	0.10	-	-	-	1400
	Total	354.86	190.56	34.49	69.60	129.81	


Table A4.2.1 Length and Diameters of the Planned Transmission Mains in the M/P

WSS – Water Supply System

Source: JICA Study Team based on Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

	-			
Pipe Material	Existing Pipe	Replacement Pipe	Strengthening	New Pipe
r ipe material	(Km)	(Km)	(Km)	(Km)
Mild Steel (MS)	43.06	-	69.60	129.81
Ductile Iron (DI)	123.04	-	-	-
Cast Iron (CI)	24.45	-	-	-
Pre-Stressed Concrete(PSC)	34.49	34.49	-	-
TOTAL	225.04	34.49	69.60	129.81

Source: JICA Study Team based on Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

A4.2.2 Configuration of the Water Distribution System for CMA Planned in the M/P

Appendix 4.2

Source: JICA Study Team based on Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

Appendix 4.3 Sewerage System Development Plan in the Master Plan

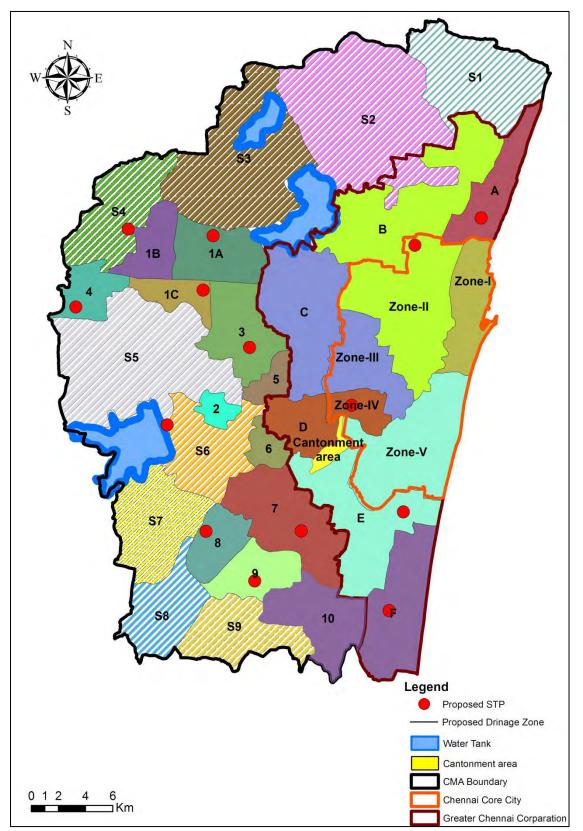
Sewerage segment of the M/P described that the current sewerage system for the Core City has five zones that are being served with four STPs. In addition, the M/P proposed that the Expanded Area would be covered by six sewerage zones. Additionally, the M/P proposed new ten sewerage zones for the Rest of CMA as shown in Figure A4.3.1. The locations of the existing and planned STPS are shown in Figure A4.3.2.

The M/P targeted to cover 100% of Chennai corporation area by 2035. It was considered that 85% of water supplied would be sewage generation, out of which 80% would be direct sewage contribution and 5% would be infiltration.

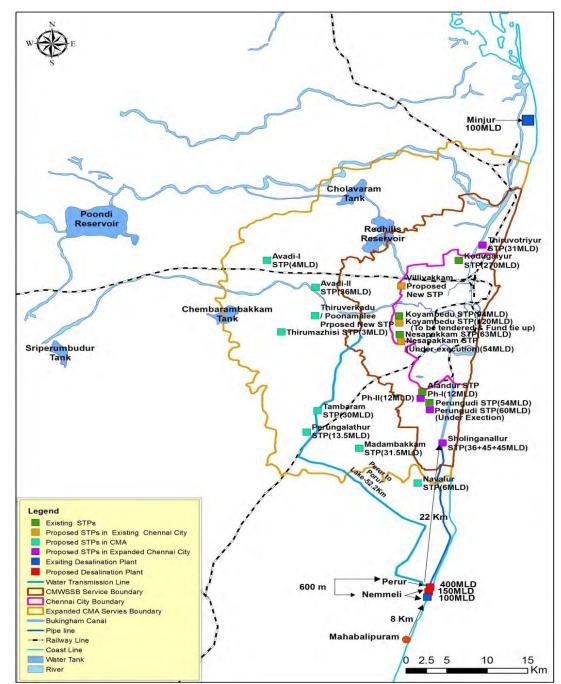
The M/P proposed to develop additional STPs near the existing STP locations for a total capacity of 1,117.5 MLD and 598 MLD at new locations. Overall, the M/P proposed a total STP capacity of 1,715.50 MLD based on the demand-supply gap as shown in Table A4.3.1. The M/P utilized the existing total STP capacity of 750 MLD in Chennai Corporation and 854 MLD in CMA.

According to the M/P, the existing sewer collection network is in a dilapidated condition, and thus, it proposes to replace the sewer network below 200 mm diameter with Cast Iron (CI) or High Density Poly Ethylene (HDPE) pipes. It was assessed that 30% of the existing sewer network of the Core City would need to be replaced; however, the exact volume to be replaced would be decided during Detailed Project Report (DPR) stage. The summary of planned sewer collection network in the Core City, Expanded Area, and Rest of CMA is shown in Table A4.3.2.

S.No	Aroo	Total plan	ned capacity of STI	Ps (MLD)	Total Capacity
5.INO	Area	2020	2035	2050	(MLD)
1	Near Existing STP Locations	430.0	300.0	387.5	1,117.5
2	New Locations	161.5	170.5	266.0	598.0
	Total	591.5	470.5	653.5	1,715.5


 Table A4.3.1 Summary of Planned Capacities of STPs

Source: Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015


Table A4.3.2 Summary of Sewer Collection Network

Sl.No	Area	Sewe	Sewer Collection Network (Km)						
51.100	Alca	Existing	Replacement	New	(mm)				
1	Core city	1,765.10	529.53	1,023.43	200-1100				
2	Expanded Area	-	-	1,460.99	200-1000				
3	Rest of CMA	-	-	4,850.00	200-1000				
		529.53	7,334.42						

Source: Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

Source: Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015 Figure A4.3.1 Planned Sewerage Systems for CMA in the M/P

Source: JICA Study Team based on Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015

Figure A4.3.2 Existing and Planned Sewerage Zones for CMA in the M/P

Appendix 4.4 Investment Plan for Water Supply and Sewerage Systems in the Master Plan

The below tables indicate investment plan for water supply and sewerage systems in CMA prepared by Master Plan for Water Supply and Sewerage Sectors in Chennai Corporation and Rest of CMA, 2015.

(1) For water supply

S.		-	Amount	Phasing of Project i	n Millions		
No	Description	Qty	m Millions	Immediate (Phase I)	Phase II (2020-30)	Phase III (2030- 40)	Phase IV (2040-50)
1	Source Augmentation		1				
1a)	Surface Water - To bring Mettur water to Chennaï (As per separate estimate)	700 Mld	57580.00		30000.00	27580.00	
1c)	Construction of Additional Desalination Plants at Nemmeli	550 Mld	41250.00	11250.00	15000.00	15000.00	
1d)	Telugu Ganga conveyance of water through closed conduit (2 rows of pipeline) from kandelaru to poondi		46671.00		46671.00		
1e)	Provision for Rainwater Harvesting / Strom Water Harvesting	L.S	500.00	500.00			
1f)	Augmentation of Chennai City water supply- drawal of sub-surface water from Cauvery River and conveyed up to Vadakuthu during deeletion of Veeranam Lake 2025-30		6810.00		6810.00		
1g)	Interconnection between exisitng mains to from Ring Main	L.S	100.00	100.00		1	
2)	WATER TREATMENT PLANT- Construction of proposed WTPs including all electro-mechanical components	920 Mld	3220.00	560.00	700.00	560.00	1400.00
3	Pumping Plants including cost of pumpsets, construction of pumphouse, electrical & mechanical works etc. for WTPs, Conveying Mains and Feeder Mains (Details as per Annexure 12.6.)						

S.			Amount	Phasing of Project i	n Millions		
No	Description	Qty	m Millions	Immediate (Phase I)	Phase II (2020-30)	Phase III (2030- 40)	Phase IV (2040-50)
3a)	Replacement of exising Raw water Pumps in WTPs including electrical accessories complete		1180.80		1180.80		
3b)	Replacement of exising Treated water Pumps in WTPs including electrical accessories etc complete		476.19		476.19		_
3c)	New Raw Water Pumps at Proposed WTPs including electrical accessories, pump room etc complete		489.99		183.06	306.93	
3d)	New Treated Water Pumps at Proposed WTPs including electrical accessories, pump room etc complete		506.09		177.53	328.57	
3e)	Replacement of exising pumps in WDSs including electrical accessories etc complete		832.33		832.33		
3f)	Replacement of existing pumps in Booster stations & sub-WDSs in core area including electrical accessories complete		40.00		40.00		
3g)	New pumps at Group sumps in CMA including electrical accessories, pump room etc complete		1242.93		1242.93		
3h)	Rehabilitation of pump rooms in the exisitng Redhills and Kilpuak WTPs	•	9.00	9.00			-
3i)	Rehabilitation of pump rooms in the exisitng WDS's		27.00	27.00			-
3j)	Water Audit for Chennai Core area including forming DMA, 100% metering etc complete		785.00		523.33	261.67	
3k)	Water Audit for 42 local bodies added to Chennai city including forming DMA, 100% metering etc complete		537.00		358.00	179.00	1.

S.				Amount	Phasing of Project i	n Millions		
No	Description	Qty		in Millions	Immediate (Phase I)	Phase II (2020-30)	Phase III (2030- 40)	Phase IV (2040-50)
3l)	Instrumentation, SCADA			180.00		30.00	150.00	
4	Supplying, laying, jointing and testing of Conveying Mains, Feeder Mains & Branch Mains including the cost of Fittings, Fixtures, Appurtenances and other accessories							
4a)	Conveying Mains using MS Pipes (Qty as per Annexure 5.20)							
	Diameter of pipes ranging from 800mm to 2200mm	42500	m	1294.35		592.11	702.24	
4b)	Feeder Mains using MS pipes (Qty as per Annexure 5.23)							
	Diameter of pipes ranging from 300mm to 2000mm	233895	m	7426.57		4258.72	3167.84	
4c)	Branch Mains (Qty as per Annexure 5.24)							
	i) DI Pipes		-					
	Diameter of pipes ranging from 200mm to 400mm	62000	m	296.99	118.80	178.20		
	ii) MS Pipes							
	Diameter of pipes ranging from 500mm to 1300mm	89380	m	1201.20	480.48	720.72		
5	Construction of Sump using RCC M30 grade of Concrete including the cost of reinforcement, cantering, shuttering etc. (Details as per Annexure 5.10)	930	LL	464.75		464.75		
6	Construction of Service Reservoirs using RCC M30 grade of Concrete including the cost of reinforcement, cantering, shuttering etc.	537	LL	988.08		988.08		

S.				Amount	Phasing of Project	in Millions		
No	Description	Qty		in Millions	Immediate (Phase I)	Phase II (2020-30)	Phase III (2030- 40)	Phase IV (2040-50)
7	Supplying, laying, jointing and testing of Distribution Mains including the cost of Fittings, Fixtures, Appurtenances and other accessories (upto 200mm dia HDPE Pipe and above 200mm dia DI pipes)			1				
7a)	Core Area Existing Distribution Mains	1860883	m					-
	Optimization of Distribution Mains including Replacement/Rehabilitation of Existing length of mains Diameter of pipes ranging from 150mm to 400mm	558266	m	1107.46	1107.46			
	Proposed Distribution Mains for the leftout length Diameter of pipes ranging from 150mm to 400mm	980994	m	1692.21		1692.21		
7b)	Added Area Existing Pipeline	2270358	m					
	Optimization of Distribution Mains including Replacement/Rehabilitation of Existing length of mains Diameter of pipes ranging from 150mm to 350mm	681107	m	1155.33	1155.33			
	Proposed Distribution Mains for the leftout length Diameter of pipes ranging from 150mm to 350mm	733632	m	1082.11		1082.11		
7c)	Rest of CMA Area	4850000	m					

S.	and and		Amount	Phasing of Project i	in Millions		
No	Description	Qty	in Millions	Immediate (Phase I)	Phase II (2020-30)	Phase III (2030- 40)	Phase IV (2040-50)
	Proposed Distribution Mains for rest of CMA area Diameter of pipes ranging from 150mm to 350mm	4850000 m	7153.75		7153.75		
8	Pilot Project for use of Recycle water for Non-Domestic purpose	L.S	1000.00		1000.00		
9	Improvements to the Catchment Areas of Existing reservoirs via removing the encroachments if any, strengthening the water ways		1000.00	1000.00			
10	Water Management Plan	L.S	500,00			500.00	
	Sub Total		188800.15	16308.07	122355.83	48736.25	1400.00
11	Price Contingencies @10%		18880.02	1630.81	12235.58	4873.63	140.00
12	Physical Contingencies @ 3%		5664.00	489.24	3670.68	1462.09	42.00
13	Supervision Charges @ 5%		9440.01	815.40	6117.79	2436.81	70.00
	Total Cost in Millions		222784.18	19243.52	144379.8	57508.78	1652.00
	Total Cost in Crores		22278.00	1924.00	14438.00	5751.00	165.00

Incremental Cost per year @ 16% of Base year cost

(2) For sewerage

SI.	Description	0		Amount in	P	hasing of Proje	ect in Millions	
No	Description	Qty		Millions	Immediate Phase I	Phase II	Phase III	Phase IV
1	Supplying, laying, jointing and testing of Sewer Mains includiing the cost of jointing materials and other accessories	-				-		
1a)	Core Area Existing Sewer Mains	1765100.00	m				_	1
	Replacement/Rehabilitation Required @30% of Existing length of mains Diameter of pipes ranging from 200mm to 1100mm	529530	m	2866.35	2866.35			1
	Proposed Sewer Mains for the leftout length Diameter of pipes ranging from 200mm to 1100mm	1023429	m	5539.82		5539.82		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
1b)	Proposed Sewer Mains for the leftout length of Added Area Diameter of pipes ranging from 200mm to 1000mm	1460990	m	6533.55		6533.55		1
1c)	Proposed Sewer Mains for the Rest of CMA area Diameter of pipes ranging from 200mm to 1000mm	4850000	m	16766.45			16766.45	
1d)	Add 30% cost for construction of Manholes	the second sec		9511.85	859.90	3622.01	5029.94	
1e)	Add 25% cost for laying of mains in different depths			7926.54	716.59	3018.34	4191.61	
2	Supplying, laying, jointing and testing of Transmission Mains & Gravity Trunk Mains includiing the cost of jointing materials and other accessories	37800	m	10				
	Replacement/Rehabilitation Required @30% of Existing length of mains Diameter of pipes ranging from 200mm to 900mm	11340	m	140.92	140.92			
3	Rehabilitation of existing Sub Pumping Stations	226	Nos	678.00	678.00			

S1.	Description	Qty		Amount in	P	hasing of Proje	ect in Millions	
No	Description	Qıy		Millions	Immediate Phase I	Phase II	Phase III	Phase IV
4	Construction of Proposed Sub Pumping Stations including the cost of pumping machinery, electrical and mechanical components etc.							
	For Added Area	150	Nos	825.00		825,00	1	
	For Rest of CMA Area	85	Nos	467.50			467.50	
5	Supplying, laying, jointing and testing of Pumping Mains using DI K9 pipes including the cost of Fittings, Fixtures, Appurtenances and other accessories Diameter of pipes ranging from 250mm to 900mm	750000	m	9635.25			9635.25	
6	Pumping Plants including cost of pumpsets, construction of pumphouse, electrical & mechanical works etc. for Sub Pumping Stations							
6a)	Replacing existing sewage pumps including electrical accessories under Category-I			4305.69	3.00	2870.46	1432.23	
6b)	Replacing existing sewage pumps including electrical accessories under Category-II			3286.21		1643.11	1643.11	
бс)	Replacing existing sewage pumps including electrical accessories under Category-III			2760.64		2760.64		
6d)	Providing grit pumps with accessories in all SPSs			147.50	147.50			
6e)	providing/replacing sluice gates & Screens at inlet in SPSs			86.60	86.60			
6f)	Refurbishing the civil structures in all SPSs			112.20	74.80	37,40		

SI.	Description	0		Amount in	Phasing of Pro	ject in Million	5	
No	Description	Qty		Millions	Immediate Phase I	Phase II	Phase III	Phase IV
7	Construction of proposed STPs including all electro-mechanical components. (Details vide separate sheet)							
	Expansion in exisitng STP	1118	mld	5981.78		2116.81	1623.65	2241.3248
-	New STP	598	mld	3416.71		986.22	941.75	1488.7378
8	Construction of proposed Tertiary Treatment Plant including all electro-mechanical components	650	mld	1702.00		476.66	557.69	667.645
9	Miscellaneous items like Sewer Cleaning equipment, safety equipment, minor tool kits and other major equipment		L.S	500.00		250.00	500.00	
10	Construction of Tank within tank in selected Water Bodies		L.S	1000.00		1000.00	100	
11	Provision of Dual Water Supply System		L.S	1000.00		1000.00	1	
	Sub Total	1	_	85190.56	5573.66	32680.02	42789.18	4397.71
12	Price Contingencies @10%			8519.06	557.37	3268.00	4278.92	439.77
13	Physical Contingencies @ 3%			2555.72	167.21	980.40	1283.68	131.93
14	Supervision Charges @ 5%			4259.53	278.68	1634.00	2139.46	219.89
-	Total Cost in Millions		-	100524.86	6576.92	38562.42	50491.23	5189.29
	Total Cost in Crores			10052.00	658.00	3856.00	5049.00	519.00

Incremental Cost per year @ 16% of Base year cost

Stud
the
and
МР
Ē
lation
Popu

Appendix 5.1	Water	r Demand Forecast in the Study		
Appendix 5.11 5000 2001 2011 2012 2013 2014 2014 2014 2014 2014 2014 2014 2014	2039 2041 2043 2043 2043 2045 2044 2045 2045 2049 2039 5.201 5.203 5.304 5.304 5.304 5.304 5.304 5.304 5.305 5.404 5.304 5.301 5.305 5.404 5.304 5.404 5.404 5.404 5.405 5.406 5.405	2003 2041 2041 2043 2044 2045 2044 2044 2045 2043 2044 <th< th=""><th></th></th<>		
2030 2031 2032 2033 2034 2035 2036 2037 2038 20 5.023 5.054 5.075 5.096 5.117 5.138 5.138 5.198 5.199 5. 3.565 3.677 3.768 3.860 3.951 4.0.2 4.138 4.23 4.328 4.328 4. 5.346 5.578 5.728 3.860 3.951 6.109 5.00 5.00 115 5.22 7. 5.548 5.738 8.433 8.955 6.109 6.300 5.00 115 5.013 5.22 7. 1.3964 14.567 14.571 14.874 15.177 15.490 15.800 16.126 16.449 16.	2030 2031 2032 2033 2035 2035 2035 2035 2035 2035 2038 2038 2038 2038 2038 2038 2038 2038 2038 2038 2038 2038 2038 2038 5,198 5,198 5,198 5,198 5,198 5,198 5,198 5,198 5,138 1,144 7,184 7,18 1,444 1,5,178 1,5,048 1,5,378 1,5,384 1,5,712 1,6,045 16,771 1,1 <th>X30 Z031 Z032 Z034 X035 Z035 Z037 Z038 Z582 Z173 Z441 4,861 4,801 4,900 4,993 4,900 Z583 Z333 Z344 S583 Z344 S583 Z344 S503 S544 S504 S604 S</th> <th></th>	X30 Z031 Z032 Z034 X035 Z035 Z037 Z038 Z582 Z173 Z441 4,861 4,801 4,900 4,993 4,900 Z583 Z333 Z344 S583 Z344 S583 Z344 S503 S544 S504 S604 S		
2017 2019 2020 2021 2023 2024 2025 2026 2027 2028 2029 2029 2029 2029 2029 2029 2029 2029 2029 2014 <th< th=""><th>2020 2021 2023 2024 2025 2026 2027 2028 2028 2024 4,830 4,885 4,917 4,936 4,917 4,936 5,014 2,727 2,789 2,867 2,917 2,938 3,456 5,014 1,207 2,789 2,817 2,893 4,364 4,395 5,014 1,207 2,789 2,817 2,935 3,145 3,255 3,45 3,415 1,203 1,640 7,734 7,800 7,813 8,102 8,103 5,255 3,555 3,515 3,516 3,416 7,546 7,546 7,724 7,800 2,511 2,446 7,734 4,939 5,521 3,545 3,555 3,515 3,516 3,526 3,515 3,516 3,526 3,516 3,516 3,526 3,516 3,526 3,516 3,540 3,517 3,466 7,744 7,744 7,744 7,744 7,744 7,744 7,744 7,744<!--</th--><th>2020 2021 2022 2023 2024 2025 2026 2028 2029 2018 <th< th=""><th></th></th<></th></th></th<>	2020 2021 2023 2024 2025 2026 2027 2028 2028 2024 4,830 4,885 4,917 4,936 4,917 4,936 5,014 2,727 2,789 2,867 2,917 2,938 3,456 5,014 1,207 2,789 2,817 2,893 4,364 4,395 5,014 1,207 2,789 2,817 2,935 3,145 3,255 3,45 3,415 1,203 1,640 7,734 7,800 7,813 8,102 8,103 5,255 3,555 3,515 3,516 3,416 7,546 7,546 7,724 7,800 2,511 2,446 7,734 4,939 5,521 3,545 3,555 3,515 3,516 3,526 3,515 3,516 3,526 3,516 3,516 3,526 3,516 3,526 3,516 3,540 3,517 3,466 7,744 7,744 7,744 7,744 7,744 7,744 7,744 7,744 </th <th>2020 2021 2022 2023 2024 2025 2026 2028 2029 2018 <th< th=""><th></th></th<></th>	2020 2021 2022 2023 2024 2025 2026 2028 2029 2018 <th< th=""><th></th></th<>		
and the Study) 2011 Gensus 2015 2016 4.647 4.728 4.748 2.020 2.336 2.405 2.264 7.034 3.150 6.667 7.034 7.154 8.937 10,190	Served Population 2015 2016 2017 2018 2019 2011 2010 2011 <td>Served Population by service connection Solife 2015 2015 2015 S016 S019 <th colspa="</td"><td></td></th></td>	Served Population by service connection Solife 2015 2015 2015 S016 S019 S019 <th colspa="</td"><td></td></th>	<td></td>	

1

	2015	2016	2017	2018 2	2019 20	2020 20	2021 20	2022 20	2023 20	2024 20	2025 202	2026 2027	27 2028	28 2029	2030	30 2031	31 2032	32 2033	3 2034	4 2035	5 2036	3 2037	7 2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	
Core City	009	626	651	676	701	727	756 7	785 8	814	843	872 8	875 87	878 81	882 88	885 88	888 85	891 89	895 89	898 902	2 905	5 909	9 912	2 915	5 919	922	225	928	931	934	937	941	944	948	952	955	-J
Expanded Area	177	187	198	208	218	229	256 2	283 3	310	338		396 42	427 45	459 49	490 52	521 54	549 57	577 60	606 634	M 662	32 677	7 693	3 708	8 723	3 739	9 755	0//	786	802	818	835	852	868	885	902	
Rest of CMA	88	26	106	115	123	132	180 2	227	275 3	323	371 4	410 4/	449 48	489 52	528 56	567 63	633 69	698 76	764 830	0 895	15 899	6 903	3 907	7 910	014	1 945	975	1,006	1,037	1,067	1,131	1,194	1,258	1,321	1,385	
Corporation	111	813	848	884	920	955 1,	1,012 1,0	1,068 1,	,124 1,	181 1,	1,237 1,2	1,271 1,306	06 1,340	40 1,374	74 1,409	09 1,441	41 1,472	72 1,504	04 1,536	6 1,567	37 1,586	6 1,605	5 1,623	3 1,642	2 1,661	1,680	1,699	1,718	1,737	1,755	1,776	1,796	1,816	1,837	1,857	
CMA Total	865	910	954	998 1,	,043 1,	1,087 1;	1,191 1,2	1,295 1,4	,400 1,	504 1,	1,608 1,6	,681 1,755	55 1,829	29 1,902	02 1,976	76 2,073	73 2,171	71 2,268	68 2,365	55 2,463	3 2,485	5 2,508	8 2,530	0 2,552	2,575	5 2,624	2,674	2,724	2,773	2,823	2,907	2,990	3,074	3,158	3,242	
Water Supply per Capita (LPCD)																																				
	2015 2	2016	2017 2	2018 2	2019 20	2020 20	2021 20	2022 20	2023 20	724 20	2025 2026	26 2027	27 2028	28 2029	29 2030	30 2031	31 2032	32 2033	3 2034	4 2035	5 2036	5 2037	7 2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	
Core City	127	132	136	141	146	150	156 1	161 .	166	171	177 1	177 17	177 1	176 17	176 17	176 17	176 17	176 17	176 176	6 176	6 176	6 176	6 176	6 176	5 176	3 176	176	176	176	176	176	176	176	176	176	
Expanded Area	92	78	62	81	82	84	92	. 66	107	114	120 1	126 13	131 13	136 14	141 14	145 14	149 15	153 15	157 160	00 164	164	4 164	4 164	4 163	3 163	3 163	163	163	163	163	163	163	163	163	163	
Rest of CMA	31	32	33	34	35	36	48	59	70	80	06	94 9	98 1(101 10	104 10	106 11	114 12	122 12	129 13	136 142	138	8 134	4 131	1 128	3 125	5 125	125	125	126	126	130	133	137	140	143	
Corporation	110	114	117	120	123	126	132 1	138 '	144	150		157 1	159 1(160 16	162 16	163 16	165 16	166 16	168 16	169 171	171 171	171 171	1 170	0 170	0 170	170	170	170	170	170	170	170	169	169	169	
CMA Total	87	89	91	93	95	. 26	105 1	112	119	126	133 1	135 13	137 13	138 14	140 14	141 14	145 14	149 15	152 156	6 159	9 157	7 155	5 154	4 152	2 151	150	150	150	150	150	151	153	154	155	157	

6	176	63	37	169	154
7 2048		1			-
2047	5 176	3 163	0 133	0 170	1 153
2046	176	163	3 130	170	151
2045	176	163	126	170	150
2044	176	163	126	170	150
2043	176	163	125	170	150
2042	176	163	125	170	150
2041	176	163	125	170	150
2040	176	163	125	170	151
2039	176	163	128	170	152
2038	176	164	131	170	154
2037	176	164	134	171	155
2036	176	164	138	171	157
2035	176	164	142	171	159
2034	176	160	136	169	156
2033	176	157	129	168	152
2032	176	153	122	166	149
2031	176	149	114	165	145
2030	176	145	106	163	141
2029	176	141	104	162	140
2028	176	136	101	160	138
2027	177	131	86	159	137
2026	177	126	94	157	135
2025	177	120	06	155	133
2024	171	114	80	150	126
2023	166	107	20	144	119
2022	161	66	59	138	112
2021	156	92	48	132	105
2020	150	84	36	126	97
2019	146	82	35	123	95
2018	141	81	34	120	93
2017	136	62	33	117	91
2016	132	78	32	114	89
2015	127	9/	31	110	87
	Core City	Expanded Area	Rest of CMA	Corporation	CMA Total

Area		-														
2020 202E 2020 202E 2040 204E	2015		2020		2025		2030		20	2035		2040	2	2045	2050	0
2010 2020 2020 2030 2030 2040 2049 2040	Service OI connection OI	Others	Service Oth connection Oth	Others Se conr	Service connection	Others	Service connection	Others	Service connection	Others	Service connection	Others	Service connection	Others	Service connection	Others
4647.0 4727.7 4830.2 4938.6 5033.4 5137.7 5239.3 5327.6 5436.9	65% 3073.0 35%	1654.7	80% 3864.2 20%	966.0 95%	4691.7	5% 246.9	95% 4781.7	5% 251.7	95%	5%	95%	3 5% 262.0	0 95% 5061.2	5%	95% 5165.1	5% 271.
4647.0 4727.7 4830.2 4938.6 5033.4 5137.7 529.3 5327.6 5436.9 4647.0 4727.7 4830.2 4938.6 5033.4 5137.7 529.3 5327.6 5436.9	3073.0 3073.0	1654.7 1654.7	3864.2 3864.2	966.0 966.0	4691.7 4691.7	246.9 246.9	4781.7 4781.7	251.7		256.9	9 4977.3 9 4977.3		0 5061.2 0 5061.2		5165.1 5165.1	271
Domestic Demand by service connections / Standposts and lorries Total Domestic Demand	120 368.8 40	0 66.2 434.9	135 521.7 40	38.6 150 560.3	703.8	40 9.9 713.6	150 717.3	40 10.1 727.3	150	40 10.3 742.4	150	40	150	40	150 774.8	40 10
Industrial Demand @ 10% of Domestic Demand in 2015 and constant		43.5		43.5		43.5		43.5		43.5		43.5		43.5		43
COMMERCIAL DEMAND @ 5% OF LOMESTIC DEMAND		500.2		28.U 631.8		35.7 792.8		30.4 807.2		37.1		3/.3 838.4		30.5 851.8		388 868
(Served population)		4727.7		4830.2		4938.6		5033.4		5137.7		5239.5		5327.6		5436
(Service connection rate)		65%		80%		95%		95%		95%	9.	95	9	95%		б т
(Combined LPC)		32 106		131		161		160		160		160		160		
Water loss in the transmission and distribution systems	20%	100.0	15%	94.8	10%	79.3	10%	80.7	10%	82.3	3 105	% 83.	8 10%	85.2	10%	8
TOTAL REQUIREMENT (in the Core Chennai City) (Combined LPC including water loss by the total nonulation)		600.2 127		726.6 150		872.1		887.9		905.3 176		922. 176	8.4	937.0 176		95
SENT CORPORATION			H				H		H			-			Н	
36.6 38.6 41.1 43.7 46.2 48.7 51.3 53.8 56.4	% 17.4	% 21.2	% 24.7	16.4 75%	32.7 25	5% 10.9	80% 37.0	20% 9.2	90% 43.9	10% 4.5	9 90% 46.2	2 10% 5.	1 90% 48.5	10% 5.4	90% 50.8	10%
249.5 266.1 286.9 307.8 328.6 349.4 370.2 391.1 411.9 35.3 38.3 42.5 47.2 52.4 58.5 64.6 71.7 70.6	45% 119.7 55% 45% 17.9 55%	% 146.4 \	50% 172.2 40%	114.8 75%	230.8 2	5% 76.9	80% 262.9 80% 41.0	20% 65.7	90% 314.5 an% 52.4	10% 34.9	9 90% 333.2 8 00% 58.3	2 10% 37.0 2 10% 6F	5 00% 352.0	10% 39.1	90% 370.7 on% 71.7	10% 4
.1 151.2 191.3 231.4 271.5 311.6 3	% 68.0	% 83.2 E	0% 114.8 40%	76.5 75%	173.5 25	5% 57.8	%	20% 54.3	28	10% 31.2	2 90% 3	5 10% 35.2	2 90% 3	10% 39.2	90% 388.7	10% 4
3.2 516.0 584.6 660.2 742.8 832.4 929.0 1032.6 1143.2	45% 232.2 559	% 283.8 t	0% 350.8 40%	233.9 75%	6 495.2 2	5% 165.1	80% 594.3	20% 148.6	90% 749.2	10% 83.2	2 90% 836.	1 10% 92.	929.4	10% 103.3	90% 1028.9	10% 11
2 99.1 115.2 131.3 147.5 1	9.0	% 54.5 (0% 69.1 40%	46.1 75%	98.5	5% 32.8	80% 118.0	20% 29.5	90% 147.2	10% 16.4	4 90% 161.	7 10% 18.	0 90% 176.2	10% 19.6	90% 190.8	10% 2
4/.4 32.9 00./ 03.3 /3.3 30.1 101.3 114./ 126.3 64.4 177.1 192.9 208.7 224.5 240.3 256.1 277.9 287.7	45% 79.7 559	% 23.4 6	0% 115.7 40%	77.2 75%	156.5 25	52.2	80% 179.6	20% 44.9	90% 216.3	10% 24.0	0 90% 230.5	5 10% 25.6	5 90% 244.7	10% 27.2	90% 258.9	10% 2
3 60.2 70.2 81.6 94.6 109.0	-	33.1	60% 42.1 40%	28.1 75%	61.2	25% 20.4	80% 75.6	20% 18.9	90% 98.1	10% 10.9	9 90% 112.5	5 10% 12.5		10% 14.2	%06	10% 16.
1399.5 1585.5 1781.4 1987.3 2203.3 2429.5 2665.9	629.8	769.7	951.3		1336.0		1		÷							
	80 50.4 40	0 30.8	100 95.1 40	25.4 135	5 180.4	40 17.8	150 238.5	40 15.9	150 297.5	40 8.8	8 150	40	7 150	40 10.7	150 393.2	40 11
Total Domestic Demand (In Municipalities in the Corporation)		81.2	_	120.5		198.2		254.4		306.3		337.7	2	370.6		404.
Industrial Demand @ 10% of Domestic Demand @ 5% of Domestic Demand		4.1		6.1 6.0		0 0		12.7		15.5	- 00	16 (- 0	18.5		200
Total Demand		93.3		134.6		216.2		275.2		329.7	7	362.	2	397.2		433
(Served population)		1399.5		1585.5		1781.4		1987.3		2203.2	0	2429.	- Q	2665.9		2912
(Service connection rate)		45%		60%		75%		80%		90%	9	902	9	90%		б -
(Combined LPC)		20		85		121		138		150		149		149		
Water loss in the transmission and distribution systems	0.3	28.0	0.1	13.5	0.1	21.6	0.1	27.5	0.1	33.0	0 0.	1 36.	3 0.1	39.7	0.1	43
TOTAL REQUIREMENT (in Municipalities in the Corporation)		121.3		148.1		237.8		302.7		362.7	7	399.0		436.9		476.
		0/		33		40		70		20	0	10		104		
4 13.9 16.0 18.3 20.9 23.7 26.8 30.1 33.7	2	% 7.6 E	9	6.4 75%	6 13.7 2!	5% 4.6	%	20% 4.2	90% 21.3	10% 2.4	4 90% 24.	1 10% 2.	7 90% 27.7	10% 3.0	90% 30.3	10%
7 36.7	45% 16.5 55%	% 20.2 t	0% 26.4 40%	17.6 75%	39.7 2	5% 13.2	80% 50.8	20% 12.7	90% 68.7	10% 7.£	6 90% 82.	5 10% 9.	2 90% 99.1	10% 11.0	90% 119.0	10% 1
51.0 56.4 61.8 67.2	% 23.0	% 28.1 L	0% 33.8 40%	22.6 75%	46.3 25	5% 15.4	80% 53.7	20% 13.4	90% 65.3	10% 7.	3 90% 70.	2 10% 7.	8 90% 75.0	10% 8.3	90% 79.9	10%
11.2 13.5 10.3 19.1 21.9 24.1 21.4 30.2 33.0 4.9 4.5 E.0 E.E E.0 E.E 71 77 0.4	40.0 1.0 %CH	7.4	0% 9.8 40%	%C/ C'O	14.3 2.4	0.% 4.0	G. / 1 %/08	20% 4.4	90% ZZ.Z	10% 27	2 30% 24.	10% 2.	7 20% 21.7	10% 3.0	90% 73°/	10%
43.1 55.2 70.4 85.6 100.7 115.0 131.0 146.2 161.3	0 74 0	30.4 6	0% 42.2 40%	28.2 75%	- E4 0	214	80% R0.6	20.% 20.1	90 % J04 3	10% 116	5 00% 117 C	9 10% 13	131.6 131.6	10% 14.6	90.% 145.7	10%
5 49.5 58.5 69.3 81.8 96.1 112.1	45% 22.3 559	% 27.2 E	0% 35.1 40%	23.4 75%	51.9 2	5% 17.3	80% 65.4	20% 16.4	2.2%	10% 9.6	5 90% 100	9 10% 11.	2 90% 116.9	10% 13.0	90% 134.4	10%
57.7 96.5 135.2 174.0 212.8 251.6	45% 26.0 55%	% 31.7 t	0% 57.9 40%	38.6 75%	5 101.4 23	5% 33.8	80% 139.2	20% 34.8	90% 191.5	10% 21.2	3 90% 226.	4 10% 25.	2 90% 261.3	10% 29.0	90% 296.2	10% 3.
219.5 282.0 363.0 447.5 535.9 628.4 725.6 827.9 935.9	126.9	155.1	217.8	145.2	335.6	111.9	428.7	107.2	565.6	62.8	8 653.	0 72.	6 745.	82.8	842.3	6
Domestic Demand by service connections / Standposts and lorries	40 5.075658 40	0 6.2	70 15.2 40	5.8 100	33.6	40 4.5	135 57.9	40 4.3	150 84.8	40 2.	5 150 98.	40 2.5	9 150 111.8	40 3.3	150 126.3	40
10tal Domestic Demand (In Municipalities in the Corporation)		6.11 1 1		11.12		30.0		11		10	4 -	100.		1.611		2
Commercial Demand @ 5% of Domestic Demand		0.6				. 6		31		44	- +	221		5.8		
Total Demand		13.0		23.2		41.1		66.4		92.6		107.0		122.0		137
(Served population)		282.0		363.0		447.5		535.9		628.4	4	725.4	9	827.9		93
(Service connection rate)		45%		80%		75%		80%		%06		%06	9	%06		6
(Domestic LPC)		40		58		85		116		135		135		139		
Water loss in the transmission and distribution systems	3002	3.0	01	23	0	32	0	124 6.6	0.1	940	0	10.1	0	1.7 0	0.1	
TOTAL REQUIREMENT (in Towns in the Corporation)	0/00	16.9	>	25.6	5		5				5		>	7.7		1
						2.04		13.01		102.7		./11	2	34.		CL

Population Projection in thousands	_					-						
	2015	20.20	2025		2030		2035		2040	2045	20	2050
Service connection	Others Service connection	ce Others tion	Service (Others Service connection	ice Others	s Service connection	ce Others	ers Service connection	Others	Service Others connection	srs Service connection	Others
		14.0 40% 0.3	75% 18 5 25	07 B 004	20 N 20%	7 3 DU%	38.3 10%	4.3 Q0% A3	0 10% 40	00% 40.6 10%	5.5 Q0% 55.2	10% R 1
11.1		8.7 40% 5.8	75% 11.6 25	5% 3.9 80%	19.6 20%	4.9 90%	26.5 10%	2.9 90% 31.	0 10% 3.4	90% 35.5 10%	3.9 90% 40.0	10% 4.4
2.7	55% 3.3	5.8 40% 3.9	75% 7.9 25	5% 2.6 80%	13.7 20%	3.4 90%	18.8 10%	2.1 90% 22.	1 10% 2.5	90% 25.5 10%	2.8 90% 28.8	10% 3.2
	0 55% 0.7 60%	7.7 40% 1.1 20.1 40% 13.4	75% 2.4 25 75% 25.6 25	5% 0.8 80%	4.6 20%	8.0 00%	38.0 10%	0.7 90% 7. 4.3 90% 41	9 10% 0.9 0 10% A 7	90% 9.3 10% 00% AA.R 10%	5.0 90% 10.6	10% 1.2
200	55% 2.2	0	75% 5.4 25	5% 1.8 80%	9.9 20%	2.5 90%	13.6 10%		2 10% 1.8	2 %	2.1 90% 21.2	10% 2.4
8	%	9.6 40% 6.4	75% 12.5 25	% 4.2 80%	17.9 20%	4.5 90%	22.9 10%	2.5 90% 25.	6 10% 2.8	90% 28.4 10%	3.2 90% 31.2	10% 3.5
ဘူဇ	%	6.2 40% 4.2	75% 8.1 25	5% 2.7 80%	11.9 20%	3.0 90%	15.9 10%	1.8 90% 19.	0 10% 2.1	90% 22.7 10%	2.5 90% 27.0	10% 3.0
510	2 31	28.8 40% 19.2	75% 38.1 25	70 4.3 GU /0	A1 A 20%	3.U 3U/0	82 2 10%	9.1 90% 95	0 10% J0.6	20% 33.3 10%	12.0 30% 1213	10% 13.5
8	55% 12.0 60%	13.5 40% 9.0	75% 17.0 25	% 5.7 80%	19.0 20%	4.8 90%	22.0 10%	2.4 90% 22.	5 10% 2.5	90% 23.1 10%	2.6 90% 23.7	10% 2.6
29.4	35	43.3 40% 28.9	75% 55.2 25	5% 18.4 80%	68.8 20%	17.2 90%	83.6 10%	9.3 90% 89.	9 10% 10.0	90% 96.1 10%	10.7 90% 102.3	10% 11.4
œ,	3.	38.1 40% 25.4	75% 48.6 25	6.2 80%	60.7 20%	15.2 90%	73.9 10%	8.2 90% 79.	5 10% 8.8	90% 85.1 10%	9.5 90% 90.7	10% 10.1
20	% %	20.7 40% 13.8	15% 26.9 25	5% 9.0 80%	39.9 20%	10.0 90%	53.5 10%	5.9 90% 63	2 10% /.0	90% /4.2 10%	8.2 90% 86.2	10% 9.6
0	0 70	15.4 A0% 10.2	75% 10.8 25	00.00 0.00 00.00	20.3 20.%	0.0 30.%	33.0 10%	3.8 00% 38	0 10 % 4.0	00% A2.8 10%	4.0 30/0 40.1 A 8 00% A7 0	10% 5.3
	5% 14.5 60%	17.6 40% 11.8	75% 22.5 25	7.5 80%	28.5 20%	7.1 90%	34.9 10%	3.9 90% 37	7 10% 4.2	90% 40.5 10%	4.5 90% 43.3	10% 4.8
14.6 55	% 17.8 60%	22.4 40% 14.9	75% 28.7 25	9.6 80%	37.7 20%	9.4 90%	46.8 10%	5.2 90% 51.	2 10% 5.7	90% 55.6 10%	6.2 90% 60.0	10% 6.7
L	60%	-	75% 22.1 25	5% 7.4 80%	31.9 20%	8.0 90%	42.2 10%	4.7 90% 49.	3 10% 5.5	90% 57.1 10%	6.3 90% 65.8	10% 7.3
4.6 55%	5.6 60%	7.2 40% 4.8	75% 9.4 25	3.1 80%	13.4 20%	3.4 90%	17.7 10%	2.0 90% 20.	6 10% 2.3	90% 23.8 10%	2.6 90% 27.3	10% 3.0
42.8 55%	6 52.3 60%	70.9 40% 47.3	75% 92.2 25%	30.7 80%	131.6 20%	32.9 90%	168.8 10%	18.8 90% 189.5	5 10% 21.1	90% 210.3 10%	23.4 90% 231.1	10% 25.7
	2.00	1001			-	/000	1001 0 02	/000		101 0	1000	1001
0.4 550		23.2 40% 13.5 13.0 40% 0.3	75% 31.3 25 75% 17.8 25	7% 12.0 80%	20.14 ZU%	13.9 90% 5.6 00%	77 1 10%	3.0 00% 20	- +	90% 101.0 10%	3.5 00% 33.7	10% 13.0
	C. 1 C	2 40%	75% 38.3 25	% 10.8	20.02 1.22 M	14.1 Q0%	73.1 10%		A 10% 0.2	202 E	10.3 00% 102.1	10.% 11.3
0 55%	%09	40%		% 2.3 80%	20%		14.1 10%		, -	% 18.0		10% 2.2
		467.2 311.4	604.5	201.5		212.4 10	1089.6	÷.		1370.7	152.3 1518.6	168.7
1046.8		1636.2 1090.8	2276.1	758.7	2868.2	0	3638.1	404.2 4067.3	3 451.9	4515.1	501.7 4982.2	553.6
			6967.8	9		-	3519.0	1		-	-	825.4
11.60352 40		32.7 40 12.5	100 60.4 2	40 8.1 135	114.7 40	8.5 150	163.4 40	4.8 150 184.	2 40 5.5	150 205.6 40	6.1 150 227.8	40 6.7
	25.88 ع	40.2 9 c		5.80		23.2		168.3 2.6	189.6		211./	234.5 2.6
L	1.3	2.3		3.4		6.2		8.4	9.5		10.6	11.7
┝	29.7	50.0		74.5		131.9		179.3	201.7		224.9	248.8
	644.6	778.6		806.0	10	762.0		1210.6	1364.1		1523.0	1687.3
	45%	60%		75%		80%		80%	%06		90%	80%
	40	58		85		116		139	139		139	139
0	46	64	1001	92	1001	124	1001	148	148	1001	148	147
20		10% 5.0	10%	7.5	10%	13.2	10%	17.9 10	20.2	10%	22.5 10%	24.9
	C.85	20.0		82.0	-	1.04		19/.2	8.122		241.4	2/3./
	118.2	186.7		304.7		130 7		561 0	628.2		102 607 3	760 5
	11.8	11.8		11.8		11.8		11.8	11.8		11.8	11.8
	5.9	9.3		15.2		22.0		28.1	31.4		34.9	38.5
	136.0	207.9		331.8		473.5		601.8	671.4		744.0	819.8
	2326.1	2727.0		3034.9	Ř	585.2		4042.4	4519.2		5016.7	5535.7
	40.74	00.70		94.07		00.76		3076	30.%		3076	3076
	58	76		109		132		149	149		148	148
	40.8	20.8		33.2		47.4		60.2	67.1		74.4	82.0
	176.8	228.7		365.0		520.9		662.0	738.5		818.4	901.7
	76	84		120		145		164	163		163	163
	553.2	747.0		1018.4	1	167.1		1304.3	1385.2		1467.2	1555.1
	55.3	55.3		55.3		55.3		55.3	55.3		55.3	55.3
	27.7	37.4		50.9		58.4		65.2	69.3		73.4	77.8
	636.2	839.7		1124.6	÷.	1280.7		1424.8	1509.8		1595.8	1688.2
	/053.8	7:/QQ/		C.2/3.2	ž	8018.0		9180.1	C.8C/6		10344.3	107/201
	9/.0C	00		07.70		037/0 135		33.70	3376		33.%	327
	06	111		141		149		155	155		154	154
	140.8	115.6		112.5		128.1		142.5	151.0		159.6	168.8
	0.777	955.2										1957 D
				1237.0	-	1408.8		1567.3	1660.8		1755.4	1001.10

Π		Others	П	% 171.9 % 18.1	% 24.2 % 50.0	% 16.1	% 12.1 % 49.1	341.4	474.6	94.9 23.7	593.2	3414.3 90%	139	1/4	652.6	191	8.8	% 25.5	% 30.3	% 12.3	% 14.0 %	% 19.5	% 5.4	% 11.6 ×	% 14.1	× 23.2	0 6.9	216.7	43.3	10.8	1727.1	80%	126	157	298.0	173	% 28.6	% 109.8	% 24.4	% 43.2	% 6.6	% 67.7	% 77.8	-		% 79.0	% 19.2	Ŭ	1441.8	5 125.2	289.8	14.5	398.2	5041.0	57	79	36.2 434.4	07
	2050			7 10	7 10	2 10	2 6 10°	6	† 8					8	2		4 10	7 10	4 10°	10,	0	6 10	0 10	10,10	2 10	2 10	92 4		_					2	ę		10	.0 10%	5 10	5 10%	1 10	.2 10%	9 10%		8.D 10%	.6 10%	7 10%		9.9	5 13					\downarrow		8	
		Service connection		% 1546 % 162	% 217 % 449	% 145	% 109 % 441	3072	00 400.	Ц			Ц	ę	2		62 %	% 229	% 272	% 110	70 42	% 175	% 49	% 104 %	% 127	% 209	35 209.8411							ç	2		% 257	% 988.0	% 219	% 388.5	% 59	% 609.2	% 699.9			% 710.6	% 172.7		8740	164.	+			Ц	╞		1	_
	_	S D		06 <u>6</u> . 90	2 90	6.0	6 6 6	200.0	2 4	2	9	1 %	2 9	~ 4	×-	33	06 0	8.	8.	7.00	0 0 0	.6 90	.1 90	90 06 00	 90 90	90	1 10	.7	c; e		<u>ي</u> د	%	3	6	4	2	.3 90	.4 90%	.7 90	8. 90%	.5 90	8. 90%	8. 90%		0.3 30	.2 90%	.5 90%			×.	9.0	ru o	.0	5	2%	e	1.	7
		Others		% 139 % 15	% % 45	% 14	% 83 43	289	11. 363.	72.	454.	2898. 90	12	4F 15	500.	17	%	% 22	% 26	× 10	% 13	% 17	% 2	% %	% 12	% 18 4 E 2	10 6	156	31	7 7	1521	60	10	12	215	14	% 25	% 97.4	% 21	% 37.8	% 5	% 60.8	% 69.8			% 68.2	% 17.5		1204	10 83	229	11 5	323	4406.	5	2	351	*
	2045			10 10 10	10 10	10	7. 10 10		-			_	\square	20	2		10	10	.2 10	10	01	10	.3 10	10	10	.0 10	541							10	8		.3 10	10%	.6 10	10%	.5 10	.1 10%	10%		01. 67	10%	.5 10%		ي م	1	_				+		%	
		Service connection		1255 140 140	% 183 % 406	133	% 386 % 386	2608	200 000	\parallel		_	\square	1	2	_	% 72	% 20E	% 241	% 96 %	70 4C	158	% 46	% %	% 113	167	10 150.604			_	_				2		% 227	90% 876.9	195	90% 340.6	46	90% 547.1	% 628.5			90% 613.8	157.5		7621.9	40 145	+			H	+		2	
	_	w <u>8</u>		8.9 90 8.5 90	7.1 90	90	06 7.7 06 7.7		- -	ωj u	4	0.	90	2 9	20	3	1.5	0.1 90	6.6 90	8.5 90	8 q d	.3 90	90 20	6.7 90	06 0.0	90 90	1.6	0.7	3.4	6.9	6.0	%0	88	0	e.t	1	90 90		3.1 90	06 0.99	9.2 90		8.7 90%		ne 91.1		31.6 90%		0.0	1.0	2.5	9.6	0. 9	5	90	6	.6 2.2	9
		Others		0% 113 0% 13	17 17 17	13% 13	37 5	246	309	61	386	2463 or	302	10	425	17	14	9% 40	9% 46	% 18 %	% %	31 31	3 %(0% 10	22 %	20%	40 10	117	23	4.7	1329	80	ω	11	160	12	43	20% 170.2	36	20% 66	3%	20% 107.8	20% 123.			20% 116.9	20% 31		1503	00 99	212	58	301	3826	84)		326	r
	2040			5.5 10	11 10	2.8	7.1 10 3.9 10	2.2	?	╞	+	_	$\left \right $	766	2		3.0 20	0.4 20	5.6 2(3.9 20	5.5 2(5.3 20	3.7 20	20 20	3.1 20	3.4 2(5.4				_			10	2		5.7 20		2.6 2(5.8 2(0.3 21				2.0.0	3.4 1	+			$\left \right $	+		%	_
		Service connection	++	0% 1025 0% 121	15/ 15/ 367	122	338	2216	RR7 CC	┞		_	\square	40		_	58	160%	186	SZ %	% %	125	38	0% 01 0%	% [%]	118	00 106		_	_	_			4	-		175	80% 680.7	152	80% 263.9	36	80% 431.0	80% 494.8	one/		80% 467.6	80% 126.4		6116	40 113	+			⊢	+		Ĭ	_
	_	- 8 - 8		90 1.6 90	6.7 90	5.5	96 00	9.6	4, 89,	× 2	o 89	9.	33	5 4	3	81	9.6	0.0	9.5 80	8.8	0. A 9 9	2 80	3.6 8(8.4 80	5.4 8(8.8	5.2	12		•. ~	%(5	94	0.1	8	6.2 80		9.2 80	85.8	.5 8(Z.1 00		42.3 80	•		3.3	8.0	80.0	0.7		%0	33	- 7	3
		Others	++	0% 92 0% 11	7 %	12	30%	206	40 0	43	269	2095 of	s,⊂:	7U 7U	310	71	19	0% 57	56	% %	- 20	0% 4'	3 %	0% 2,	28	36 %(40 15	8	12	7	1149	2		010101	12/	1(56	30% 218.2	46	30% 85	1.	30% 140.9	30% 160.9	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		30% 149.1	30% 42	÷	1702	90 103	295	22	× 40	3286	20,	1	199 190	
usands	2035			5.0 1(9.6	2.3	7.4 1(5.9 1(0.0	ņ	$\left \right $	-	_	$\left \right $	705	2		5.7 3(1.3 30	3.9 3(5.6 3(30 31	5.2 3(1.7 3(30	5.2 3(2.7 3(896			_	_			707	2		12 3(1.9 3(5.9 3(4.4		98.8		71.0	2.4	+		+	$\left \right $	+		%0	_
el in tho		Service connection		0% 83; 0% 10.	0% 129 0% 33(0% 11:	0% 29(1881	202		+	+	H	-		_	0%	0% 12	0% 138	0%	2 2	0% 96	0% 3.	0% 14	0% 6	8.	90 72.436		_	_	-			-	-		0% 13	70% 509.2	0% 11/	70% 200.2	0% 2(70% 328.8	70% 375.5	700/		70% 347.8	20% 9	¢	482	90 192	+		-	\parallel	╇		2	_
rvice lev	_	8		5.1 9	0.3	8.4	9.0 2.3 9	6.2	0. 2.	0.3 F	.0	5%	85	90	.6	28	9.3 7	3.0	1.9 7	4.0	2 9.6	9.1 7	1.1 7	1.0	9.5 7	7.1 7	9.6	3.9	0.8	2.7	4.0	%0	55	69	0.8	83	7.6 7		8.8 7		6.1 7				3.1		62.1 7		9.9	8.2	6.5	7.4	1.6	1.2	54	81	8.7	48
on by sei		Others		5% 18 5% 2	5% 8	5% 21	5% 1	44	151	30	189	1784		31 1	227	÷-	0%	2 %0	0% 8	9% %	91 W	0% 56	0% 2	1%	3%	0% 4	40 19	5	÷.		670	99			8	~	7 %0	50% 302.0	0% 0	50% 123.4	0% 10	50% 200.3	50% 227.5			50% 209.7	50% 6	•	238	40 5	4		22.2	2744	ñ~'	~	37	
opulation	2030			5.2 23	0.9 2:	5.3 2	7.1 2; 5.8 2;	8.6	2	\parallel		_	$\left \right $	76(~	_	9.3 5(3.0 5(1.9 50	4.0 50	2 2 2	9.1 50	1.1 50	1.0 50	9.5 50	7.1 5(741		_	_	-			/00/	0		7.6 50	302.0 50	8.8 50	123.4 50	6.1 50	200.3 5(227.5 50		3.1 0		62.1 50		#-0 0.0	0.3	+		-		+		8	
		Service connection		5% 56	5% 24	5% 8	5% 5 5% 21	133	130		+	+	╢	0	4	_	0%	2 %0	0% 8	0% •	12%	0% 5	0% 2	1%	3.0%	0% 4	70 34.29			_	+			¢	7		7 %0	50% 30:	9%0	50% 12	0% 1	50% 20	50% 22			50% 209.7	50% 6.	÷	311	6 0/	╀		+		+		2	_
-	_	8	++	6.1 7 4.6 7	7 9.0	1.2 7	4.4 7	6.2	5.1	1.2	2.6	5.5	20	88	5.8	60	9.4 5	9.0	6.7 5	3.5	2 7 7	4.3 5	9.4 5	8.3	7.6 5	6.4 5	4.6	2.7	6.5	1.6	3.5	5%	40	50	1.2	63	1.6 5	286.2 5	7.3 5	141.1 5	7.5 5	2	234.1 5		5.0 0	228.8 5	70.3 5		1.4	7.7	5.1	3.8	0.2	3.8	5% 40	69	3.7	31
		Others		0% 24	0% 11	0% 4	0% 20%	09	40	2,	132	1515 A			165	-	5% 3	5% 8	5% 9	5% 4	2%2	5% 7	5% 2	5% 3	5% 4	5% 5	40 2	3	_	-	815	2	-	1000	2		5% 7	75% 28	5% 6	75% 14	5% 1	75% 207.	75% 23			75% 22	75% 7	÷	2661.	40 5			<u>ع</u>	1883	4		15	
	2025		++	9.1 4 1.9 4	12 4	1.8 4	6.6 1.9 4	9.3	0	╞┼	+	_	$\left \right $	20%	~		3.1 7	9.7 7	2.2 7	4.5 7	0.4 /	4.8 7	9.8 7	2.8 7	5.9 7	8.8 7	8.2		_	_	+	-		201	2		3.9 7	95.4 7	2.4 7	47.0 7	5.8 7	69.1 7	78.0 7		/ 71	76.3 7	23.4 7	_	556.5	1.7	+		+	╞┼	+		2%	
		Service connection	++	0% 36 0% 5	0% 6	9 %0	0% 15	6	8	╟	+	_	H	ŕ	-	_	5%	5% 2	5% 3	5%	5%	5% 2	5%	5%	5% 1	5% 1	40 40		_	_	+	-		¢	7		5% 2	25% 9	5% 2	25% 4	5%	25% 6	25% 7			25% 7	25% 2		155	40 1	+		+	$\left \right $	+		.7	
	_	5	++	5.3 6	0.0	2.5	7.6 6	4.6	9.1	1.8	3.9	9.1 5%	57	1/	6.0	74	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	%0	i0//	10/	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 2		7 0.0	0.0	0.0		4.6	0.0	0.0	0.0	0.0	0.0	%,0	10//	0.0 6.0	Q
		Others	++	5% 17 5% 2	5% 3	5% 3	5% 2	42	40	÷	22	103		5	6	_	%0	%0	%0	0%0	%L0	0%0	%0	0%0	%0	%0	40		_	_	-	-	\IQ#	NQ#	+		0%	%0	%0	%0	0%	%0	%0		0.2%	%0	%0		45	40	+	ſ	<u> </u>		VIC#	NO#		_
	2020	-	++	5.4 3 3.6 3	8.5 3	1.8 3	6.8 3.9 3.0	4.5	<u>г</u> .	╟	+	_	H	%U	~ ~	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		_	_	-	-		/00/	2		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		4.5	0.0	+		+	$\left \right $	╇		%	_
		Service connection		5% 22 5% 3	5% 3 5% 11	5% 4	5% 2 5% 9	20	9 7	╟	+	+	H		, 	_	%0	%0	%0	%0	0%D	0%	%0	0%	%0	%0	40			_	+			۰ ۲	2		%0	%0	%0	%0	0%	%0	%0		°20	%0	%0		28	40	╈		+	⊢	+		~	_
	_	5	++	2.5 4	5.2 4	9.1	8.5 4	8.5	2.2	6.4 6.4	0.2	6.1 5%	48	90	2.3	47	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	%0	i0//	10/	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0		8.5	0.0	0.0	0.0	0.0	0.0	%,0	10//	0.0 40	17
		Others		5% 14	5% 2	5% 2	5% 0	38	3.3		4	99		÷	2	_	%0	%0	%0	0%	%U	0%	%0	0%0	%0	%0	40			-	-		ND#	lQ#			0%	0%	%0	%0	%0	%0	%0		0.2%	%0	%0		38	40	╈		., .,		UD#	lQ#		_
	2015	5	+	6.1	8.0	0.8	3.2	7.5	/.	╟		_	+	%U	~ ~		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		_		+			700	00%		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0		277.5	0.0	+		+	+	+		%0	_
		Service connection	++	25% 10	5%	5%	5% 2	277.	8	╟	+	-	H	-		_	%0	%0	%0	%0	%D	0%	%0	۵% ۵%	%0	%0	40		-	-	+			-	, 		0%	0%	0%	0%	0%	%0	%0		0%D	%0	%0		2	40	+		+	$\left \right $	+			_
$\left \right $	2050		++	30.8	11.9	51.3	21.4	14.3	MA)	and	and	ion) ata)	PC)	() H	(A)	(uoi	38.3	55.2	02.7	22.8	17.7	95.1	54.5	16.3	11.4	32.5	ries	MA)	and	and		ate)	LPC)	PC)	(A)	(uoi	35.7	1097.8	13.9	431.7	35.7	676.9	7.77.7	90	9.0	789.6	191.9	104	11.8	ries	MA) and	and	and	(ion)	ate) PC)	PC)	MA)	(III)
lŀ	2045 20		++	99.5 17 56.0 1	52.1 4	48.6	29.9 4	2463.0 2898.1 341	s and lor lest of C	stic Dem	otal Dem	(Served popula:	omestic LPC	moined L	es in the Rest of CMA	al popula	80.1 88		68.0 3	06.9 1	33.5	75.9 1	51.4	98.7	25.8 1	85.5 2	s and lor	est of C	stic Dem	stic Dem	erved population)	nection	mestic L	mbined L	(in Towns in the Rest o CM/	al popula	52.6 2	974.3 10	17.3 2.	378.4 4	55.0	607.9 6	698.3 7		8.8	682.0 7	174.9	40 4 45	68.8 97	s and lor	lest of C stic Dem	stic Dem	Total Demand	d popular	vice connection rate) (Domestic LPC)	mbined L	Rest o C	al popula
s	2040 20			139.5 13 134.6 1	71.2 2	36.5 1	96.8 1 76.6 4	63.0 28	in the F	of Dome	T	(Serve	D)	d distrihi	in the F	y the tota	72.5		33.2 2	92.4 1	19.4 1	56.7 1	48.4	83.7 22.5	10.2 1	48.0 1	andpost	in the F	of Dome	of Dome	(Serve	(Service cor	<u>a</u>	(Co	s in the l	y the tota	19.6 2	850.9	90.7 2	329.8 3	46.0	538.8	618.4 6		1.9	584.4 6	158.0 1	44 6 40	37.2 84	andpost	of Dome	of Dome		(Serve	NICE CUI	0	s in the l	y the tou
iousand	20.35		CMA	-	44.0 1 66.9 4	24.8 1	329.9 3	95.6 24	ons/su cipaities	1 @ 20%	ero mon	aS)		ission an	Dalitio		HIN CMA		98.5 2	79.5	05.3 1	37.5 1	45.3	71.0	94.6 1	18.1 1	ons / Sta	n Towns	1 @ 20%	nd @ 5%		S)		an animi	in Town	ter loss b	87.5 2		64.1 1	285.9 3	38.5	469.7 5	536.4 6		۲. <i>۱</i>	496.9 5		546 25	99.9 73	ons / Sti	I Vilages	nd @ 5%	Iacieu us	·0)	8		n Vilage	IBI 1055 U
tion in th	2030 20		IIN CMA ND WITHIN	55.5 9 00.2 1	21.2 1.2	13.7 1	76.2	84.9 20	<u>connecti</u> (In Muni	Deman				e transm	(in Municip	guipr	58.7		63.7 1	68.0	1 1 1	18.3 1	42.3	20.0	19.0	94.3 1	connecti	emand (I	Deman	al Demai				the manual of	EMENT (uding wa	55.1 1	603.9 7	37.6 1	246.8 2	32.2	400.6 4	455.0 5		0.1	419.4	124.2	0 2 0 2 0	45.6 62	connecti	Demano Demano	al Demai					MENT (IOIIIG wa
n Projeci	2025 20		WITHIN EA AND	15.1 7 86.5 1	01.9 1	03.0	61.1 53.2 2	15.5 17	Service (Industria				oss in th	EMENT (LPC indu	52.5	18.6 1	29.0 1	58.1	20.1	99.1 1	39.2	51.1	63.4	75.2	service (nestic De	Industria	ommerci				and in the	REQUIRE	LPC indu	95.5 1	381.7 6	89.7 1:	188.1 2	23.3	276.3 4	312.1 4		φ.4	305.1 4	93.7 1	70.2 25	04.2 53	service	estic Del Industria	ommerci						LPU II KAR
opulation Projection in thou	2020 20		RATION AREA AND WITHIN CMA CORPORATION AREA AND WITHIN CMA	74.6	85.8 1 53.4 25	92.9	48.1 52.8 59.6 61.1 76.2 174.8 194.3 221.8 253.2 289.0	98.9 15	Uomestic Demand by service connections / Standposts and iorries Total Domestic Demand (In Municipatities in the Rest of CMA)					Water	REQUIR	mbined.	46.9	91.3 1	94.2 1.	49.6	30.3 67.8	79.9	36.2	43.3	47.8	47.9 60.0 75.2 94.3 118.1 148.0 185.5 232	nand by	Total Domestic Demand (In Towns in the Rest of CMA)	0	0				Motor	TOTAL REQUIREMENT (in 1	undined	001 SIDE CORPORATION AREA AND WITHIN CMP 30.2 56.3 89.0 95.5 155.1 187.5	356.9 31	84.3	182.5 11	22.5	262.5 21	296.0 3		¢.4	294.4 30	90.4	82.0 47	2264.3 2883.2 3646.3 4104.2 5345.6 6299.9 7337.2 8468.8 9711.8	nand by	otal Dom	0	opecilic wate				TOTAL REQUIREMENT (in Vilages in the Rest o CMA)	Officieu
ď-	2015 20		ATION AR CORPORA	407.8 50 64.4	72.1 8	83.2	52.8 94.3 2.	10.1 12	Total Do						TOTAL	<u>o</u>	41.7 46.9	64.0	59.5	42.7	18.7	50.7	33.1	36.7	32.2	47.9	stic Derr	Ĺ) (C	56.3	233.1 33	57.4	157.4 18	18.8	193.6 26	215.6 29			247.0 29	73.7	56.6 16	93.2 36	stic Den	Ĭ	č	ope					5
╎┝			<u>IRPORA</u> SIDE CO	46.0 4 57.2 (62.8 15.4 2:	75.9	74.8 1	80.2 11	Dome							00.000	38.0 L	42.1		38.2		45.4 6		28.3	19.7	37.1 4	Domestic										30.2 (131.8 23	32.4	129.8 15	17.3	123.9 19	147.8 2'		77	213.0 24	60.4	28 8 1 7	64.3 28	Dome								
μ	a 2011		SIDE CORPOR OUT SIDE (57 3.	- K			Ш									290 38.0	16	92	83	0 2	35		863	25											E LIC	00 00	15 1;	15		39																	
H	Area	Hec	0UT (1863	2	20:	13174								ATO.	2	12	7	τά F	Ē	ġ.	ù	8 00	7,7	1456	2									SNO	40	12315	(S) 25	7555	11,	7544	7437	+-	_	t 6128	2826	_	al 76734									
	Description	Iondu	F CMA	allee	kadu		puthur aram									A LOUA	DWN PANCHAYA	Inc	akkam		karanai 'athur	cam.	malai	1000	zhisai	dravur								1		VATIN	Miniur (4 villages)	am (40	Puzhal (20 villages)	am (21	Thiruvallur (1	allee (42	'n	(28villages) Sriperumbudur (4	-	as Moun:	lathur (6		Rest of CMA Total									
			REST OF CMA MUNICIPALITIES	Avadi Poonamallee	Thiruverkadu Pallavaram		Anakaputh. Tambaram									TOWN	-10	Kundratt	Madamb		Perkankarana Peringahur	Sembakkam	Thirunes	Minjur	Thirumazhisai												Minjur (4	Sholavaram (40 Villages)	Puzhal (Thiruvall		ł	Sriperumbu	villages)	St Thom 123 Viilar	Kattankulathur (6	2	Rest of C									
Ш	SI.	No.	\square	11.	13.	15.	16.	I									26.	27.	28. N	83	36	32.	33.	5	8	37.	Γ				ſ	Γ	1	T	Γ		38.	39.	40.	41.	42.	43.	44.	4	ę.	46.	47.	ſ	Γ	IT	Γ	IT	Γ	ΙĪ		11	П	1

		ş	981.1	196.2	49.1	1262.4	0182.4	%06	96	124	122.6	385.0	143		2267.2	536.2	251.5	126.8	36.0	2950.6	1155.0	91%	120	139	291.5	242.0	157
	2050	Others					1									2				2	2.					,	
	2	Service connection													18887.8												
			750.0	150.0	37.5	973.5	8825.9	%06	85	110	93.8	1067.3	126		1972.0	2217.2	205.3	110.9	36.0	2569.3	19170.2	91%	116	134	253.3	2822.7	150
	2045	Others													2												
		Service connection							$\left \right $						17198.2											$\left \right $	
		Others	638.6	127.7	31.9	834.3	7619.0	83%	84	109	79.8	914.1	125		2216.9	2023.9	183.0	101.2	36.0	2344.1	17377.5	89%	116	135	230.8	2574.9	454
	2040														50.6												
		Service connection							-						15160.6												
		Others	597.8	119.6	29.9	783.3	6531.7	%11	92	120	112.1	895.4	142		2363.8	1902.1	174.9	95.1	36.0	2208.1	15711.8	86%	121	141	254.6	2462.7	150
ousands	2035														13348.0												
Population by service level in thousands		Service connection													133											F	
n by servic		Others	354.1	70.8	17.7	478.6	5509.0	58%	64	87	88.5	567.1	106		3358.7	1521.1	126.1	76.1	36.0	1759.3	14127.6	%11	108	125	216.6	1975.9	111
Populatio	2030														10768.9												
		Service connectior																									
		Others	214.2	42.8	10.7	303.7	4217.8	38%	51	72	66.9	370.7	6		3667.0	1232.5	98.2	61.6	36.0	1428.3	12191.3	71%	101	117	179.4	1607.7	100
	2025	ce tion							╞						8524.3			_			_					┝	
		Service connectior	-			6	-	9			2	0				1		3	0	9	4	9			2		
		Others	59.1	11.8	3.0	109.9	1039.1	16%	57	106	22.2	132.	36		2511.5	806.1	67.	40.	36.(949.6	8596.4	549	94	110	137.	1087.3	20
	2020	vice action							-						6084.9												
		Service connectior	2.2	5.4	1.6	6.2	5.1	%(8	14	2.1	3.3	31		2.6	5.4	1.8	9.3	6.0	2.4	9.9	%1	76	92	2.9	5.3	27
		Others	32	Ű	Ì	36	666.1	10	7	1	1	8			3322.6	585	.9	20	36	142	51-11-1	44		<i>.</i> ,	152	865.3	
	2015	Service connection													4397.3												
_	5	Sel Conn	(AN	and	and	and	(ion)	ate)	PC)	PC)	ems	ENT	(uoi)		###.	(AM)	hand	and	(inai)	and	(ion)	ate)	PC)	PC)	ems	ENT	(oo)
		C1040	Total Domestic Demand (Rest of CMA)	Industrial Demand @ 20% of Domestic Demand	Commercial Demand @ 5% of Domestic Demand	Total Demand	(Served population)	(Service connection rate)	(Domestic LPC)	(Combined LPC)	Water loss in the transmission and distribution systems	FOTAL REQUIREMENT	(Combined LPC including water loss by the total population)	_	#######################################	otal Domestic Demand (ENITIRE CMA)	Industrial Demanc	Commercial Demand	Specific water demand in contracted user (Onehub Chennai)	Total Demanc	Served population	(Service connection rate)	(Domestic LPC	Combined LPC	Nater loss in the transmission and distribution systems	OTAL REQUIREMENT	(Combined 1 DC including water loss by the total population)
spu		2040	Demand	0% of Dor	5% of Dor		(Sen	(Service c		2	and distri	TOTAL R	's by the to		# #####	Demand (pul	Comm	1 user (On		(Sen	(Service c		9	and distri	TOTAL R	o hu tho to
in thousa		C202	Domestic	nand @ 2	amand @						nsmission		water los		* ######	omestic L			contracted						nsmission		notor loc
Population Projection in thousands		2030	Total L	istrial Der	nercial De						in the trai		including		######	Total D			amand in						in the trai		indian
lation Pr.		CZ02		npul	Comn						ater loss.		ined LPC		######				water de						ater loss		OC POOL
Popu		7070									×		(Comb		8930.9 9937.0 #####				Specific						×		/U omb
		¢102													9 9937.0												
	a 2011	census																									
_	Area in	Hect.													118916												
		Description													ALL CMA												
-	SI.	No.		F	F				F	F	F	F	F	-	Ā			F			F		F	F	F	F	ŀ

Appendix 5.2 Water production projection for the Perur DSP

					Wa	ter proc	luction	in avera	ge watei	: deman	nd case			
							Seawa	ater desa	lination			Recycle d water		
Year	Daily peak factor	Peak Water Demand (MLD)	Surfa ce water	Groun dwater	Nemmeli (Existing)	Nemmeli (Expansion)	Minjur	Perur	Operation rate against 400MLD	Others	Seawater Desalination Total	TTRO	Total	Bala nce
2015	1.00	865	535	150	80	0	90	-	-	0	170	0	855	-11
2016	1.00	910	535	150	80	0	90	-	-	0	170	0	855	-55
2017	1.00	954	604	150	80	0	90	-	-	0	170	0	924	-30
2018 2019	1.00 1.00	999 1,043	604 604	150 150	80 80	0 0	90 90	-	-	$\begin{array}{c} 0\\ 0\end{array}$	170 170	65 66	989 990	-10
2019	1.00	1,043	636	150	52	92	90 90	-	-	0	234	67	990 1,087	-53 0
2020	1.00	1,191	722	150	56	100	90	-	-	0	246	73	1,191	0
2022	1.00	1,295	722	150	80	143	90	_	_	0	313	80	1,265	-31
2023	1.00	1,400	722	150	47	83	90	222	55%	0	442	86	1,400	0
2024	1.00	1,504	722	150	60	107	90	284	71%	0	541	90	1,504	0
2025	1.00	1,608	754	150	68	122	90	325	81%	0	605	98	1,608	0
2026	1.00	1,681	823	150	71	120	95	318	80%	0	604	104	1,681	0
2027	1.00	1,755	823	150	61	102	95	271	68%	143	672	109	1,755	0
2028	1.00	1,829	823	150	68	114	95	303	76%	160	740	115	1,829	0
2029 2030	1.00	1,902 1,976	1,025	150 150	54 61	91 103	95 95	241 273	60% 68%	127 144	607 675	121 126	1,902 1,976	0
2030	1.00	2,073	1,025	150	62	105	95 95	275	70%	144	688	120	2,073	0 0
2031	1.00	2,075	1,101	150	71	120	95	320	80%	168	774	135	2,073	0
2032	1.00	2,268	1,302	150	60	100	95	266	67%	140	661	155	2,268	0
2034	1.00	2,365	1,302	150	69	116	95	307	77%	162	748	165	2,365	0
2035	1.00	2,463	1,302	150	59	100	95	265	66%	316	836	175	2,463	0
2036	1.00	2,485	1,323	150	59	100	95	266	66%	316	836	177	2,485	0
2037	1.00	2,508	1,323	150	61	103	95	273	68%	325	857	178	2,508	0
2038	1.00	2,530	1,323	150	63	106	95	281	70%	335	879	179	2,530	0
2039 2040	1.00	2,552 2,575	1,323 1,340	150 150	65 65	109 109	95 95	288 290	72% 73%	344 346	900 905	180 180	2,552 2,575	0
2040	1.00	2,573	1,340	150	68	115	95 95	305	76%	364	903	180	2,624	0 0
2041 2042	1.00	2,674	1,340	150	72	121	95 95	303	80%	383	947 992	192	2,674	0
2042	1.00	2,724	1,340	150	57	96	95	254	64%	535	1,037	196	2,724	0
2044	1.00	2,773	1,340	150	60	100	95	267	67%	561	1,083	201	2,773	0
2045	1.00	2,823	1,357	150	61	103	95	274	69%	577	1,110	205	2,823	0
2046	1.00	2,907	1,357	150	66	111	95	294	74%	619	1,185	215	2,907	0
2047	1.00	2,990	1,357	150	70	118	95	314	79%	662	1,260	224	2,990	0
2048	1.00	3,074	1,357	150	66	110	95	293	73%	771	1,334	233	3,074	0
2049	1.00	3,158	1,357	150	69	117	95	310	78%	817	1,409	242	3,158	0
2050	1.00	3,242	1,357	150	73	123	95	328	82%	863	1,483	252	3,242	0

(1) Case 1 (Surface water availability: <u>Average availability</u>)

(2) Case 2 (Surface water availability: <u>Good availability</u>)

					Wa	ter pro	duction	<mark>in avera</mark>	i <mark>ge wate</mark> i	r demar	nd case			
							Seawa	ater desa	lination					
Year	Daily peak factor	Peak Water Demand (MLD)	Surfa ce water	Groun dwater	Nemmeli (Existing)	Nemmeli (Expansion)	Minjur	Perur	Operation rate against 400MLD	Others	Seawater Desalination Total	Recycle d water	Total	Bala nce
2015	1.00	865	651	150	-26	0	90	-	-	0	64	0	865	0
2016	1.00	910	651	150	19	0	90	-	-	0	109	0	910	0
2017	1.00	954	735	150	-21	0	90	-	-	0	69	0	954	0
2018	1.00	999	735	150	-41	0	90	-	-	0	49	65	999	0
2019 2020	1.00	1,043 1,087	735 774	150 150	2 2	0	90 90	-	-	0	92 96	66 67	1,043 1,087	0
2020	1.00	1,191	879	150	0	-1	90 90	-	-	0	90 89	73	1,087	0
2021	1.00	1,295	879	150	35	62	90	_	_	0	187	80	1,295	0
2023	1.00	1,400	879	150	26	46	90	123	31%	ů 0	285	86	1,400	0 0
2024	1.00	1,504	879	150	39	70	90	186	46%	Ō	384	90	1,504	0
2025	1.00	1,608	918	150	47	83	90	221	55%	0	441	98	1,608	0
2026	1.00	1,681	1,002	150	46	78	95	206	52%	0	425	104	1,681	0
2027	1.00	1,755	1,002	150	42	70	95	187	47%	99	493	109	1,755	0
2028	1.00	1,829	1,002	150	49	83	95	219	55%	115	561	115	1,829	0
2029	1.00	1,902	1,247	150	30	51	95	136	34%	72	384	121	1,902	0
2030	1.00	1,976	1,247	150	38	63	95	168	42%	88	452	126	1,976	0
2031 2032	1.00 1.00	2,073	1,340 1,340	150 150	37 46	63 78	95 95	166 207	42% 52%	87 109	448 535	135 146	2,073 2,171	0
2032	1.00	2,171 2,268	1,540	150	40 30	78 50	95 95	133	32%	70	353 378	140	2,171 2,268	0
2033	1.00	2,200	1,585	150	39	66	95	174	44%	92	465	165	2,200	0
2035	1.00	2,463	1,585	150	37	62	95	164	41%	195	553	175	2,463	0
2036	1.00	2,485	1,610	150	36	61	95	163	41%	194	549	177	2,485	0
2037	1.00	2,508	1,610	150	38	64	95	170	43%	203	570	178	2,508	0
2038	1.00	2,530	1,610	150	40	67	95	178	44%	212	591	179	2,530	0
2039	1.00	2,552	1,610	150	41	70	95	185	46%	221	613	180	2,552	0
2040	1.00	2,575	1,631	150	42	70	95	186	46%	221	614	180	2,575	0
2041	1.00	2,624	1,631	150	45	76	95 05	201	50%	239	656	187	2,624	0
2042 2043	1.00	2,674	1,631	150 150	49 39	82	95 05	217 176	54% 44%	259 370	701 746	192 196	2,674 2,724	0
2043	1.00 1.00	2,724 2,773	1,631 1,631	150	39 42	66 71	95 95	170	44% 47%	396	740 791	201	2,724 2,773	0
2044	1.00	2,773	1,651	150	42	73	95 95	188	47%	409	815	201	2,773	0
2045	1.00	2,907	1,652	150	48	81	95	215	54%	452	890	205	2,907	0
2047	1.00	2,990	1,652	150	52	88	95	235	59%	494	965	224	2,990	ů 0
2048	1.00	3,074	1,652	150	50	84	95	223	56%	587	1,039	233	3,074	0
2049	1.00	3,158	1,652	150	54	91	95	241	60%	634	1,114	242	3,158	0
2050	1.00	3,242	1,652	150	58	97	95	258	65%	680	1,188	252	3,242	0

(3) Case 3 (Surface water availability: <u>Moderate drought</u>)

					Wa	ter pro	duction	in ave	rage wate	r demar	nd case			
									salination					
Year	Daily peak factor	Peak Water Demand (MLD)	Surfa ce water	Groun dwater	Nemmeli (Existing)	Nemneli (Expansion)	Minjur	Perur	Operation rate of the Perur against 400MLD	Others	Seawater Desalination Total	Recycle d water	Total	Bala nce
2015	1.00	865	465	150	80	0	90	-	-	0	170	0	785	-80
2016	1.00	910	465	150	80	0	90	-	-	0	170	0	785	-125
2017	1.00	954	525	150	80	0	90	-	-	0	170	0	845	-109
2018	1.00	999	525	190	80	0	90	-	-	0	170	65	950	-49
2019	1.00	1,043	525	190	80	0	90	-	-	0	170	66	951	-92
2020	1.00	1,087	553 628	190 190	<mark>67</mark> 75	120	<mark>90</mark> 90	-	-	0 0	277 300	67 73	1,087	0
2021 2022	1.00 1.00	1,191	628 628	190	80	135 143	90 90	-	-		313	80	1,191	-85
2022 2023	1.00	1,295 1,400	628	190	80 54	145 96	90 90	256	- 64%	0 0	496	80 86	1,211 1,400	-85
2023	1.00	1,400	628	190	67	120	90	319	80%	0	490 596	90	1,400	0
2024	1.00	1,608	656	190	76	136	90	361	90%	0	664	98	1,608	0
2025	1.00	1,681	716	190	81	136	95	360	90%	0	672	104	1,681	0
2027	1.00	1,755	716	190	68	114	95	303	76%	160	740	109	1,755	0
2028	1.00	1,829	716	190	75	126	95	335	84%	176	808	115	1,829	0
2029	1.00	1,902	891	190	64	107	95	285	71%	150	701	121	1,902	0
2030	1.00	1,976	891	190	71	119	95	317	79%	167	769	126	1,976	0
2031	1.00	2,073	957	190	73	123	95	327	82%	172	791	135	2,073	0
2032	1.00	2,171	957	190	82	139	95	368	92%	194	878	146	2,171	0
2033	1.00	2,268	1,132	190	73	123	95	327	82%	172	791	155	2,268	0
2034	1.00	2,365	1,132	190	82	139	95	368	92%	194	878	165	2,365	0
2035	1.00	2,463	1,132	190	70	117	95	312	78%	372	966	175	2,463	0
2036 2037	1.00 1.00	2,485	1,150 1,150	190 190	70 72	118 121	95 95	313 321	78% 80%	373 382	969 990	177 178	2,485	0
2037	1.00	2,508 2,530	1,150	190	72	121	95 95	321 328	80% 82%	382 391	1,011	178	2,508 2,530	0
2038	1.00	2,550	1,150	190	75	124	95 95	326 336	84%	400	1,011	180	2,550	0
2039	1.00	2,575	1,165	190	76	120	95	339	85%	403	1,035	180	2,575	0
2041	1.00	2,624	1,165	190	79	133	95	354	88%	421	1,082	187	2,624	0
2042	1.00	2,674	1,165	190	83	139	95	370	92%	440	1,127	192	2,674	0
2043	1.00	2,724	1,165	190	65	109	95	291	73%	612	1,172	196	2,724	0
2044	1.00	2,773	1,165	190	68	114	95	303	76%	638	1,217	201	2,773	0
2045	1.00	2,823	1,180	190	70	117	95	311	78%	655	1,247	205	2,823	0
2046	1.00	2,907	1,180	190	74	125	95	331	83%	697	1,322	215	2,907	0
2047	1.00	2,990	1,180	190	79	132	95	351	88%	740	1,397	224	2,990	0
2048	1.00	3,074	1,180	190	73	122	95	325	81%	856	1,471	233	3,074	0
2049	1.00	3,158	1,180	190	77	129	95	343	86%	902	1,546	242	3,158	0
2050	1.00	3,242	1,180	190	81	136	95	360	90%	949	1,620	252	3,242	0

(4) Case 4 (Surface water availability: <u>Severe drought</u>)

					Wa	ter proc	luction	in aver	rage wate	r demand	l case			
									salination					
Year	Daily peak factor	Peak Water Demand (MLD)	Surfa ce water	Groun dwater	Nemmeli (Existing)	Nemmeli (Expansion)	Minjur	Perur	Operation rate of the Perur against 400MLD	Others	Seawater Desalination Total	Recycl ed water	Total	Bala nce
2015	1.00	865	326	150	80	0	90	-	-	0	170	0	646	-220
2016 2017 2018 2019	1.00 1.00 1.00 1.00	910 954 999 1,043	326 368 368 368	150 150 190 190	80 80 80 80	0 0 0 0	90 90 90 90	- - -	- - -	0 0 0 0	170 170 170 170	0 0 65 66	646 688 792 794	-264 -267 -206 -249
2020	1.00	1,087	387	190	80	150	90	-	-	0	313	67	957	-130
2021 2022 2023 2024	1.00 1.00 1.00 1.00	1,191 1,295 1,400 1,504	440 440 440 440	190 190 190 190	80 80 79 80	150 150 150 150	90 90 90 90	- 374 380	- 94% 95%	0 0 0 0	313 313 684 693	73 80 86 90	1,016 1,022 1,400 1,413	-175 -273 0 -91
2025	1.00	1,608	459	190	80	150	90	380	95%	0	693	98	1,440	-167
2026 2027 2028 2029	1.00 1.00 1.00 1.00	1,681 1,755 1,829 1,902	501 501 501 624	190 190 190 190	85 85 85 85	150 143 143 143	95 95 95 95	380 380 380 380 380	95% 95% 95% 95%	0 200 200 200	703 903 903 903	104 109 115 121	1,498 1,704 1,709 1,837	-183 -51 -119 -65
2030	1.00	1,976	624	190	85	143	95	380	95%	200	903	126	1,843	-133
2031 2032 2033 2034	1.00 1.00 1.00 1.00	2,073 2,171 2,268 2,365	670 670 792 792	190 190 190 190	85 85 85 85	143 143 143 143	95 95 95 95	380 380 380 380 380	95% 95% 95% 95%	200 200 200 200	903 903 903 903	135 146 155 165	1,898 1,909 2,041 2,051	-175 -262 -227 -315
2035	1.00	2,463	792	190	85	143	95	380	95%	453	1,156	175	2,313	-150
2036 2037 2038 2039	1.00 1.00 1.00 1.00	2,485 2,508 2,530 2,552	805 805 805 805	190 190 190 190	85 85 85 85	143 143 143 143	95 95 95 95	380 380 380 380 380	95% 95% 95% 95%	453 453 453 453	1,156 1,156 1,156 1,156	177 178 179 180	2,327 2,328 2,329 2,330	-158 -179 -201 -222
2040	1.00	2,575	816	190	85	143	95	380	95%	453	1,156	180	2,341	-234
2041 2042 2043 2044	1.00 1.00 1.00 1.00	2,624 2,674 2,724 2,773	816 816 816 816	190 190 190 190	85 85 85 85	143 143 143 143	95 95 95 95	380 380 380 380	95% 95% 95% 95%	453 453 800 800	1,156 1,156 1,503 1,503	187 192 196 201	2,349 2,353 2,705 2,709	-276 -321 -19 -64
2045	1.00	2,823	826	190	85	143	95	380	95%	800	1,503	205	2,724	-98
2046 2047 2048 2049 2050	1.00 1.00 1.00 1.00 1.00	2,907 2,990 3,074 3,158 3,242	826 826 826 826 826	190 190 190 190 190	85 85 85 85 85	143 143 143 143 143	95 95 95 95 95	380 380 380 380 380 380	95% 95% 95% 95%	800 800 1,000 1,000 1,000	1,503 1,503 1,703 1,703 1,703	215 224 233 242 252	2,734 2,743 2,952 2,961 2,971	-173 -248 -122 -197 -271

Appendix 5.3 Water Allocation Plan for the Years 2025, 2035 and 2050

Name of the Zone	Demand 2025	Red Hills (314E)	Chembarambakkam (530E)	Kilpauk (270E)	Veeranam (180E)	Minjur (100 E)	Nemmeli (100E)	Nemmeli (150 P))	Perur (400 P)	Ground Water (North& South and Rest of CMA)	TTRO (135P)	Total Water Supply
Installed Capacity		314 MLD	530 MLD	270 MLD	180 MLD	100 MLD	100 MLD	150 MLD	400 MLD		135 MLD	Tot
Available Water i 1647	in MLD	150	150	176	180	90	80	153	380	190	98	
1	200.9	35.80		95.10	28.80				19.50	1.00	20.70	200.9
2	56.0	4.90		51.10								56.0
3	53.1			21.10	32.00							53.1
4	33.4			8.40	10.00						15.00	33.4
5	66.7							40.00	66.70			66.7
6	34.5							10.00	24.50			34.5
6 A 7	5.4 6.6							5.40	6.60			5.4 6.6
8	101.3				88.00				13.30			101.3
9	36.3	30.80			00.00				15.50	5.17		36.0
10	69.3	11.40								21.80	30.00	63.2
11	36.5	36.50										36.5
12	19.7							19.70				19.7
12 A	26.3						26.30			1.00		27.3
13	20.8								20.80			20.8
14	41.9		1.60						41.90	10.00		41.9
15 16	31.1 31.7		4.60						16.10 15.60	10.20 1.00		30.9 31.7
Sub Total of Core												
Area	871.6	119.4	19.7	175.7	158.8	0.0	26.3	35.1	225.0	40.2	65.7	865.9
CC1-A	46.5					46.50						46.5
CC1-B	13.3					13.30						13.3
CC2	34.4	21.40				5.90				4.11		31.4
CC3 CC4	7.2	3.20 3.00								3.46 0.50		6.7 3.5
CC4 CC5	92.5	5.00	55.00							29.70		84.7
CC6	36.4		5.40		18.70					12.30		36.4
CC7	49.0				2.50				42.00	4.23		48.7
CC8	15.9							15.90				15.9
CC9	20.2						15.30	4.90				20.2
CC10	28.4						16.10			11.56		27.7
CC11	22.3						22.25					22.3
Sub Total of Expanded Area	369.7	27.6	60.4	0.0	21.2	65.7	53.7	20.8	42.0	65.9	0.0	357.2
OC1	6.9					5.90				0.90		6.8
OC2	12.9					11.90				0.90		12.8
0C3	7.5					6.50				1.00		7.5
004	8.0	2.00								7.52	20.00	7.5
OC5A OC5R	41.5 8.0	3.00								5.11	30.00	38.1 7.5
OC5B OC6	8.0 17.8		16.80							7.52 1.00		17.8
000	17.8		17.50							1.79		17.8
OC8	23.1		7.10							6.98		14.1
0C9	18.5		17.50							1.00		18.5
OC10	11.8		11.00							1.00		12.0
OC11	11.0									10.34		10.3
OC12	12.4							10.40		6.00		16.4
OC13	31.2							29.20		7.00		36.2
0C14	16.0							27.5	10.07	15.09		15.1
OC15	55.5							37.50	10.00	8.00		55.5 29.1
OC16 Sub Total of Rest of CMA	29.3 330.7	3.0	69.9	0.0	0.0	24.3	0.0	77.1	26.30 36.3	2.82 84.0	30.0	29.1 324.6
OI CMA Peripheral of CMA	36.0								36.0			36.0
Grnad Total	1,608.0	150.0	150.0	175.7	180.0	90.0	80.0	133.0	339.3	190.0	95.7	1583.7

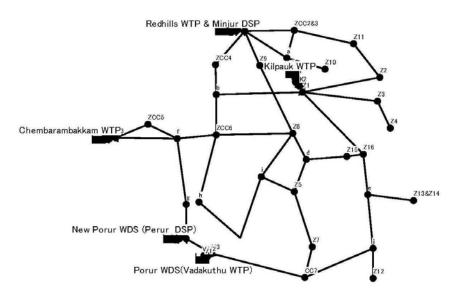
WATER ALLOCATION PLAN FOR CHENNAI METROPOLITAN AREA (2025)

Name of the Zone	Demand 2035	Red Hills (314E)	Chembarambakkam (530E + 70P)	Kilpauk (270E)	Sholavaram (50 P)	Veeranam (180E)	Minjur (100 E)	Nemmeli (100E)	Nemmeli (150 P))	Perur (400 P)	Ground Water (North& South and Rest of CMA)	TTRO (180P)	Additional SWRO (370P)	Total Water Supply
Installed Capacity		314 MLD	600 MLD	270 MLD	50 MLD	180 MLD	100 MLD	100 MLD	150 MLD	400 MLD		180 MLD	430 MLD	To
Available Water i	n MLD	150	506	266	30	180	90	80	153	380	190	175	430	
2630	200.5				50	100	20	00	155	300			430	200.50
1 2	208.5 58.2	18.70	36.00	130.90 58.20							1.00	21.90		208.50 58.20
3	55.7			55.70										55.70
4	36.2			21.20								15.00		36.20
5	68.7					50.00				18.70				68.70
6	35.2									35.20				35.20
6 A 7	5.6 6.7					5.70				5.60				5.60 6.70
8	105.0		60.00			20.00				25.00				105.00
9	37.4	2.00	30.00								5.38			37.38
10	72.5	14.00	25.00								3.50	30.00		72.50
11	37.6	37.60												37.60
12	20.1							2		20.10				20.10
12 A	26.8					(20		26.80		15.00	1.00			27.80
13 14	21.3 43.8					6.30 18.85				15.00 25.00				21.30 43.85
15	32.4		13.50			10.05				25.00	10.20			23.70
16	32.8					6.80				25.00	1.00			32.80
Sub Total of Core Area	904.8	72.3	164.5	266.0	0.0	107.7	0.0	26.8	0.0	170.6	22.1	66.9	0.0	896.8
CC1-A	65.0						65.00							65.00
CC1-B	30.6						4.60						26.00	30.60
CC2	61.2	46.00									4.00		11.16	61.16
CC3 CC4	17.8 8.9	14.00 8.20									3.83 0.70			17.83 8.90
CC5	150.9	0.20	123.00								27.61			150.61
CC6	60.6		30.00			12.80					17.80			60.60
CC7	85.5					59.54				9.60	16.40			85.54
CC8	31.2									31.20				31.20
CC9	39.5								39.50					39.50
CC10 CC11	62.5 50.6							31.20 22.00	19.00 28.60		12.30			62.50 50.60
Sub Total of														
Expanded Area	664.4	68.2	153.0	0.0	0.0	72.3	69.6	53.2	87.1	40.8	82.6	0.0	37.2	664.0
OC1	22.4						5.00				0.90		17.40	23.30
0C2	44.5						10.40				0.90		34.10	45.40
0C3 0C4	24.2 27.8				7.80		5.00				1.00 4.00		19.24 16.05	25.24 27.85
OC5A	105.6	9.50			14.20						4.50	30.00	47.43	105.63
OC5B	22.6				8.00						5.00		9.65	22.65
OC6	43.9		9.94								1.00		33.00	43.94
OC7	50.0		15.00								1.79		33.21	50.00
0C8	63.9		16.03								11.00		36.87	63.90
0C9	51.1 28.8		51.06 19.00								1.00 9.80			52.06 28.80
OC10 OC11	28.8		6.88								9.80	14.00		28.80 31.88
0C12	34.1		7.56						19.10		6.00			32.66
OC13	65.1		24.04						24.40		15.00			63.44
OC14	39.0		38.99								1.00			39.99
OC15	126.4								22.40	95.60	8.39			126.39
OC16 Sub Total of Rest	76.0									73.00	3.00			76.00
of CMA Peripheral of CMA	857.5 36.0	9.5	188.5	0.0	30.0	0.0	20.4	0.0	65.9	168.6	85.3	44.0	247.0	859.1 36.00
Grnad Total	2,462.7	150.0	506.0	266.0	30.0	180.0	90.0	80.0	153.0	380.0	190.0	110.9	36.0 320.1	2456.0
Griau Iotai	2,402.7	1.0.0	200.0	200.0	50.0	100.0	20.0	00.0	155.0	200.0	1.0.0	110.7	520.1	24.50.0

WATER ALLOCATION PLAN FOR CHENNAI METROPOLITAN AREA (2035)

Name of the Zone	Demand 2050	Red Hills (314E)	Chembarambakkam (530E + 70P)	Kilpauk (270E)	Sholavaram (50 P)	Veeranam (180E)	Minjur (100 E)	Nemmeli (100E)	Nemmeli (150 P))	Perur (400 P)	Ground Water (North & South and Rest of CMA)	Harvesting Rain Water	TTRO (180P+90P)	Additional SWRO (370P+470P)	Total Water Supply
Installed Capacity		580 MLD	600 MLD	270 MLD	50 MLD	180 MLD	100 MLD	100 MLD	150 MLD	400 MLD			270 MLD	950 MLD	To
Available Water i	in MLD	150	515	266	39	180	90	80	153	380	190	30	252	950	
3275			515		39	100	90	00	155	300		30		950	
1 2	220.1 61.3	55.70		130.90 58.20							13.50	3.08	20.00		220.10 61.28
3	57.6			55.70								1.88			57.58
4	36.2			21.20								1.00	15.00		36.20
5	73.6					55.00				13.70		4.90			73.60
6	38.4									35.20		3.24			38.44
6 A	6.0									5.60		0.39			5.99
7	7.3									6.70		0.58			7.28
8	111.0		24.90			55.10				25.00		6.04			111.04
9	40.1	8.00	24.00								8.13		20.0-		40.13
10 11	75.3 40.3	16.00 37.60	6.00								23.25	2.75	30.00		75.25 40.35
11 12	21.9	57.00								20.10		2.75			21.89
12 A	29.3							26.80		20.10	2.48	1.77			29.28
13	23.1					6.30				15.00		1.79			23.09
14	45.5					18.85				25.00		1.70			45.55
15	34.0		32.50								1.53				34.03
16	34.9					7.80				25.00	2.12				34.92
Sub Total of Core	956.1	117.3	87.4	266.0	0.0	143.1	0.0	26.8	0.0	171.3	51.0	28.1	65.0	0.0	956.0
Area CC1-A	77.1						30.00							47.14	77.14
CC1-B	42.8						4.60							38.24	42.84
CC2	82.8	5.00					25.00				5.00			47.75	82.75
CC3	30.2	18.00					10.00				2.22				30.22
CC4	12.3	8.20									4.09				12.29
CC5	207.8		159.10								16.90		31.81		207.81
CC6	78.1		35.00			20.60					5.00		17.50		78.10
CC7	110.6					16.35				9.60	4.60		23.05	57.00	110.60
CC8 CC9	49.3 58.5								39.50	31.20				18.14 19.03	49.34 58.53
CC10	87.9							31.20	19.00		12.30			25.39	87.89
CC11	77.6							22.00	28.60		12.50	1.86		25.13	77.59
Sub Total of	915.1	31.2	194.1	0.0	0.0	37.0	69.6	53.2	87.1	40.8	50.1	1.9	72.4	277.8	915.1
Expanded Area		31.2	194.1	0.0	0.0	37.0		33.2	87.1	40.8		1.9	72.4		
0C1	37.4						10.00				0.90			27.37	38.27
0C2	73.5				0.00		10.40				0.90			63.08	74.38
0C3 0C4	34.0 45.4				9.00 7.80						1.00 4.00			24.02 33.56	34.02 45.36
OC4 OC5A	189.7	1.50			14.20						4.00		30.00	139.96	189.66
OC5B	41.6				8.00						4.00		20.00	29.61	41.61
OC6	74.2		21.90								1.00			51.26	74.16
OC7	85.6		21.00								4.00		32.91	27.64	85.55
OC8	101.3		24.67								7.44		10.51	58.66	101.28
0C9	75.2		51.00								4.00		20.22		75.22
OC10	43.2		19.00								24.24				43.24
OC11	49.2		22.23								13.20		14.00		49.43
OC12	49.6		15.00						12.00		2.00			20.58	49.58
OC13 OC14	87.7 55.1		12.60 46.10						12.00		2.00 9.00			61.10	87.70 55.10
0C14 0C15	179.4		40.10						41.90	94.90	9.00 4.20			38.42	179.42
OC15 OC16	113.0								41.90	73.00	3.00			37.03	113.03
Sub Total of Rest	1335.0	1.5	233.5	0.0	39.0	0.0	20.4	0.0	65.9	167.9	88.9	0.0	107.6	612.3	1337.0
of CMA Peripheral of CMA	36.0	1.3	233.3	0.0	59.0	0.0	20.4	0.0	03.9	107.9	00.7	0.0	107.0	36.0	36.00
Grnad Total	3242.2	150.0	515.0	266.0	39.0	180.0	90.0	80.0	153.0	380.0	190.0	30.0	245.0	926.1	3244.1

WATER ALLOCATION PLAN FOR CHENNAI METROPOLITAN AREA (2050)


Appendix 5.4 Vacant Lands Along the Coast Line between the Nemmeli DSP and the City Centre of Chennai

Appendix 5.5 EPANET Data for Examination of the Exiting Water Transmission Network

EPANET DATA (2025)

Network Model

Zone	Redhills & Minjur DSP	Chembara mbakkam	Kilpauk	Vadakuth ur	Perur DSP	Total Demand (MLD)	Total Demand (LPS)
1	36.80		95.10	28.80	19.50	180.20	2,086
2	4.90		51.10			56.00	648
3			21.10	32.00		53.10	615
4			8.40	10.00		18.40	213
5					66.70	66.70	772
7					6.60	6.60	76
8				88.00	13.30	101.30	1,172
9	35.97					35.97	416
10	33.20					33.20	384
11	36.50					36.50	422
13					20.80	20.80	241
14					41.90	41.90	485
15	10.20	4.60			16.10	30.90	358
16	1.00	15.10			15.60	31.70	367
CC2	31.41					31.41	364
CC3	6.66					6.66	77
CC4	3.50					3.50	41
CC5	29.70	55.00				84.70	980
CC6	12.30	5.40		18.70		36.40	421
CC7	4.23			2.50	42.00	48.73	565
Total Supply (MLD)	246.37	80.10	175.70	180.00	242.50	924.67	
Total Supply (LPS)	2,852	927	2,034	2,083	2,807		10,703

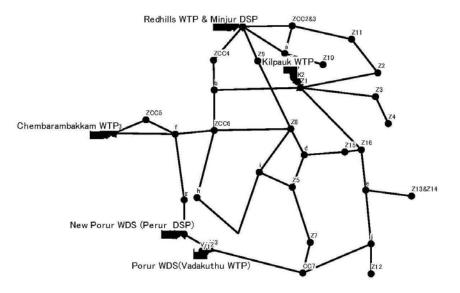
Water Demand and Supply (2025)

Input / Output Data (2025)

Node ID	Elevation m	Demand LPS	Head m	Pressure m
June R1	20	0.00	20.00	0.00
June R2	20	0.00	48.00	28.00
June R3	20	0.00	38.91	18.91
June ZCC2&3	7	441.00	33.69	26.69
June Z11	4	422.00	13.21	9.21
June Z2	7	648.00	12.13	5.13
Junc a	8	0.00	35.51	27,51
June Z10	6	384.00	35.13	29,13
June ZCC4	30	41.00	36.52	6.52
Junc b	17	0.00	35,43	18.43
June Z1	9	2086.00	23.51	14.51
June K1	9	0.00	9,00	0.00
June K2	9	0.00	32.00	23.00
June ZCC6	16	421.00	35,61	19.61
June Z8	13	1172.00	33,54	20.54
June Z9	9	416.00	35.22	26.22
June Z3	6	615.00	18.02	12.02
June Z4	8	213.00	15.79	7.79
June d	14	0.00	30.31	16.31
June Z15	11	358.00	27.64	16.64
June Z16	12	367.00	27.47	15.47
Junc e	10	0.00	28,18	18.18
June Z13&Z14	6	726.00	25.62	19.62
Junc i	14	0.00	33.38	19.38
June Z5	12	772.00	30.04	18.04
Junc h	17	0.00	35.02	18.02
June g	17	0.00	39.67	22.67
June P3	17	0.00	39.99	22,99
June V3	15	0.00	40.00	25.00
June CC7	13	565.00	34.26	21.26
June Z7	11	76.00	31.17	20.17
Juncj	12	0.00	30.05	18.05
June Z12	11	0.00	30.05	19.05
June f	19	0.00	37.58	18.58
June ZCC5	21	980.00	37.57	16.57
June C3	25	0.00	37.68	12.68
June C1	25	0.00	25,00	0.00
June C2	25	0.00	51.00	26.00

Network Table - Nodes at 0:00 Hrs

Node ID	Elevation	Demand LPS	Head m	Pressure m
Junc P2	17	0.00	42.00	25.00
Junc P1	17	0.00	17.00	0.00
June V2	15	0.00	40.00	25.00
June V1	15	0.00	15.00	0.00
Resvr R	20	-2852.00	20.00	0.00
Resvr K	9	-2034.00	9.00	0.00
Resvr C	25	-927.00	25.00	0.00
Resvr P	17	-2807.00	17,00	0.00
Resvr V	15	-2083.00	15.00	0.00


Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s
Pipe R	0.1	2000	100	2852.00	0.91
Pipe 1	7740	1050	100	614.63	0.71
Pipe 2	6880	750	100	565.19	1.28
Pipe 3	4640	750	100	143.19	0.32
Pipe 4	6290	1200	100	775.56	0.69
Pipe 5	4890	1000	100	391.56	0.50
Pipe 6	2570	1200	100	384.00	0.34
Pipe 7	7900	1200	100	567.11	0.50
Pipe 8	4100	1200	100	526.11	0.47
Pipe K	0.1	2000	100	2034.00	0.65
Pipe 9	9690	1000	100	747.65	0.95
Pipe 10	7500	825	100	504.81	0,94
Pipe 11	5230	1200	100	894.70	0.79
Pipe 12	7600	1200	100	478.70	0.42
Pipe 13	3410	1200	100	-221.54	0.20
Pipe 14	6650	1900	100	1929.89	0.68
Pipe 15	4680	1050	100	828.00	0.96
Pipe 16	3260	700	100	213.00	0.55
Pipe 17	2920	1200	100	1139.18	1.0
Pipe 18	3100	1200	100	996.89	0.88
Pipe 19	440	1200	100	638.89	0.56
Pipe 20	5490	1050	100	-637.16	0.74
Pipe 21	3460	1100	100	-365.27	0.38
Pipe 22	3500	1100	100	726.00	0.76
Pipe C	0.1	2000	100	927.00	0.30
Pipe 24	5700	2000	100	499.38	0,10
Pipe 25	940	2000	100	-480.62	0.15
Pipe 26	3410	2000	100	3075.95	0.98
Pipe 27	6430	2000	100	427.62	0.14
Pipe 28	3500	2000	100	-3128.95	1.00
Pipe 29	2430	1200	100	503.52	0.45
Pipe 30	6750	1200	100	503.52	0.45
Pipe 31	540	2000	100	-3128.95	1.00
Pipe 33	3310	900	100	-97.42	0.15
Pipe 34	1370	800	100	600.94	1.20
Pipe 35	1580	800	100	-142.29	0.28
Pipe 36	4420	400	100	-28.78	0.23
Pipe 37	1100	400	100	-104.78	0.83

Network Table - Links at 0:00 Hrs

Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s
Pipe 38	1000	2000	100	-321.95	0.10
Pipe 39	6880	1500	100	1761.05	1.00
Pipe 40	6100	1300	100	1091.27	0.82
Pipe 41	680	700	100	0.00	0.00
Pipe 42	2700	1300	100	1091.27	0.82
Pipe P	0.1	2000	100	2807.00	0.89
Pipe V	0.1	2000	100	2083.00	0.66
Pump RP	#N/A	#N/A	#N/A	2852.00	0.00
Pump KP	#N/A	#N/A	#N/A	2034.00	0.00
Pump CP	#N/A	#N/A	#N/A	927.00	0.00
Pump PP	#N/A	#N/A	#N/A	2807.00	0.00
Pump VP	#N/A	#N/A	#N/A	2083.00	0.00
Valve RV	#N/A	2000	#N/A	2852.00	0.91
Valve KV	#N/A	2000	#N/A	2034.00	0.65
Valve CV	#N/A	2000	#N/A	927.00	0.30
Valve PV	#N/A	2000	#N/A	2807.00	0.89
Valve VV	#N/A	2000	#N/A	2083.00	0.66

EPANET DATA (2035)

Network Model

Water Demand and Supply (2035)

Zone	Redhills & Minjur DSP	Chembara mbakkam	Kilpauk	Vadakuth ur	Perur DSP	Total Demand (MLD)	Total Demand (LPS)
1	19.70	36.00	130.90			186.60	2,160
2			58.20			58.20	674
3			55.70			55.70	645
4			21.20			21.20	245
5				50.00	18.70	68.70	795
7				5.70	1.00	6.70	78
8		60.00		20.00	25.00	105.00	1,215
9	7.38	30.00				37.38	433
10	17.50	25.00				42.50	492
11	37.60					37.60	435
12					20.10	20.10	233
13				6.30	15.00	21.30	247
14				18.85	25.00	43.85	508
15	10.20	13.50				23.70	274
16	1.00			6.80	25.00	32.80	380
CC2	50.00					50.00	579
CC3	17.83					17.83	206
CC4	8.90					8.90	103
CC5	27.61	123.00				150.61	1,741
CC6	17.80	30.00		12.80		60.60	701
CC7	16.40			59.54	9.60	85.54	990
Total Supply (MLD)	231.92	317.50	266.00	179.99	139.40	1134.81	
Total Supply (LPS)	2,684	3,675	3,079	2,083	1,613		13,134

Input / Output Data (2035)

Node ID	Elevation m	Demand LPS	Head m	Pressure m
June R1	20	0.00	20.00	0.00
June R2	20	0.00	48.00	28.00
June R3	20	0.00	37.94	17.94
June ZCC2&3	7	785.00	29.88	22.88
June Z11	4	435.00	14.54	10.54
June Z2	7	674.00	14.40	7.40
Junc a	8	0.00	32.65	24.65
June Z10	6	492.00	32.05	26.05
June ZCC4	30	103.00	37.37	7.37
Junc b	17	0.00	37.25	20.25
Juna Z1	9	2160.00	31.32	22.32
June K1	9	0.00	9,00	0.00
June K2	9	0.00	31.32	22.32
June ZCC6	16	701.00	37.68	21.68
June Z8	13	1215.00	35,42	22.42
June Z9	9	433.00	35.84	26.84
Junc Z3	6	645.00	25.05	19.05
June Z4	8	245.00	22.16	14.16
Junc d	14	0.00	32.98	18.98
June Z15	11	274.00	31.39	20.39
June Z16	12	380.00	31.29	19.29
Junc e	10	0.00	31.15	21.15
Junc Z13&Z14	6	755.00	28.39	22.39
Junc i	14	0.00	35.36	21.36
June Z5	12	795.00	32.37	20.37
Junc h	17	0.00	37.06	20.06
Junc g	17	0.00	40.93	23.93
June P3	17	0.00	41.03	24.03
June V3	15	0.00	41.03	26.03
June CC7	13	990.00	34.36	21.36
June Z7	11	78.00	32.40	21.40
Juncj	12	0.00	31.78	19.78
June Z12	11	233.00	31.23	20.23
June f	19	0.00	40.29	21.29
June ZCC5	21	1741.00	40.30	19.30
June C3	25	0.00	41.64	16.64
June C1	25	0.00	25,00	0.00
June C2	25	0.00	51.00	26.00

Network Table - Nodes at 0:00 Hrs

Node ID	Elevation	Demand LPS	Head	Pressure m
June P2	17	0.00	42.00	25.00
Junc P1	17	0.00	17.00	0.00
June V2	15	0.00	41.03	26.03
June V1	15	0.00	15.00	0.00
Resvr R	20	-2684.00	20.00	0.00
Resvr K	9	-3212.29	9.00	0.00
Resvr C	25	-3675.00	25.00	0.00
Resvr P	17	-1613.00	17,00	0.00
Resvr V	15	-1949.71	15.00	0.00

Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s
Pipe R	0.1	2000	100	2684.00	0.85
Pipe 1	7740	1050	100	776.88	0.90
Pipe 2	6880	750	100	483.57	1.09
Pipe 3	4640	750	100	48.57	0.11
Pipe 4	6290	1200	100	983.69	0.87
Pipe 5	4890	1000	100	491.69	0.63
Pipe 6	2570	1200	100	492.00	0.44
Pipe 7	7900	1200	100	262.93	0.23
Pipe 8	4100	1200	100	159.93	0.14
Pipe K	0.1	2000	100	3212.29	1.02
Pipe 9	9690	1000	100	512.55	0.65
Pipe 10	7500	825	100	625.43	1.17
Pipe 11	5230	1200	100	660.49	0.58
Pipe 12	7600	1200	100	227.49	0.20
Pipe 13	3410	1200	100	-352.61	0.3
Pipe 14	6650	1900	100	2019.95	0.7
Pipe 15	4680	1050	100	890.00	1.03
Pipe 16	3260	700	100	245.00	0.64
Pipe 17	2920	1200	100	978.35	0.8
Pipe 18	3100	1200	100	754.64	0.6
Pipe 19	440	1200	100	480.64	0.43
Pipe 20	5490	1050	100	49.41	0.06
Pipe 21	3460	1100	100	150.05	0.16
Pipe 22	3500	1100	100	755.00	0.79
Pipe C	0.1	2000	100	3675.00	1.13
Pipe 24	5700	2000	100	1896.47	0.60
Pipe 25	940	2000	100	155.47	0.08
Pipe 26	3410	2000	100	3586.68	1.14
Pipe 27	6430	2000	100	1778.53	0.57
Pipe 28	3500	2000	100	-1652.68	0.53
Pipe 29	2430	1200	100	513.12	0.45
Pipe 30	6750	1200	100	513.12	0.45
Pipe 31	540	2000	100	-1652.68	0.5;
Pipe 33	3310	900	100	-54.09	0.0
Pipe 34	1370	800	100	567.21	1.13
Pipe 35	1580	800	100	-223.70	0.45
Pipe 36	4420	400	100	-4.08	0.03
Pipe 37	1100	400	100	-82.08	0.65

Network Table - Links at 0:00 Hrs

Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s
Pipe 38	1000	2000	100	-39.68	0.01
Pipe 39	6880	1500	100	1910.03	1.08
Pipe 40	6100	1300	100	837.95	0.63
Pipe 41	680	700	100	233.00	0.61
Pipe 42	2700	1300	100	604.95	0.46
Pipe P	0.1	2000	100	1613.00	0.51
Pipe V	0.1	2000	100	1949.71	0.62
Pump RP	#N/A	#N/A	#N/A	2684.00	0.00
Pump KP	#N/A	#N/A	#N/A	3212.29	0.00
Pump CP	#N/A	#N/A	#N/A	3675.00	0.00
Pump PP	#N/A	#N/A	#N/A	1613.00	0.00
Pump VP	#N/A	#N/A	#N/A	1949.71	0.00
Valve RV	#N/A	2000	#N/A	2684.00	0.85
Valve KV	#N/A	2000	#N/A	3212.29	1.02
Valve CV	#N/A	2000	#N/A	3675.00	1.17
Valve PV	#N/A	2000	#N/A	1613.00	0.51
Valve VV	#N/A	2000	#N/A	1949.71	0.62

Appendix 5.6 Preliminary hydraulic analysis on the existing water distribution networks in the Chennai core city

							Prelimina	rv Hydraulic	Assessme	nt (2035)							
7	Water Distribution	Demand 2035	HGL	Avg.GL @ WDS	Residual Head	Residual Head	Population	Population/	Popualtion	Discharge	Critical distributio		Equivalent Diameter of	Hazen- Williams	Head Loss	Residual Pressure @	Check
Zone	Station	(MLD)	(m)	(m)	(designed)	(Ferrule)	in 2035	unit length	in Pipe	in pipe (m3/hr)	Distance from WDS (m)	Elevation (m)	Pipe (mm)	"C" value	(m)	Critical point (m)	Спеск
1	Kilpauk	208.5	27.00	7.00	10.00	7.00	1176633	1.78	13148.18	82.18	7402	10.00	350	100	2.37	14.6	OK
2	Anna Poonga	58.2	23.58	3.58	10.00	7.00	328313	2.79	4857.03	30.36	1740	5.00	275	100	0.28	18.3	OK
3	Kannapathidal	55.7	25.26	5.60	10.00	7.00	314527	4.69	10585.64	66.16	2257	5.00	200	100	7.37	12.9	OK
4	Triplicane	36.2	23.00	3.00	10.00	7.00	204380	1.52	2914.82	18.22	1917	10.00	200	100	0.57	12.4	OK
5	K.K.Nagar	68.7	29.00	9.00	10.00	7.00	387640	1.46	10407.54	65.05	7112	9.00	225	100	12.69	7.3	Expected Low Pressure
6	Velachery	40.8	26.80	6.00	10.00	7.00	230120	6.02	12008.96	75.06	1996	5.00	200	100	8.24	13.6	OK
7	Ekkatuthangal	6.7	30.05	7.00	10.00	7.00	37987	1.04	2194.37	13.71	2113	7.00	150	100	1.52	21.5	OK
8	Choolaimedu	105.0	29.00	9.00	10.00	7.00	592753	4.80	28325.24	177.03	5901	9.00	325	100	11.21	8.8	Expected Low Pressure
9	Kulathur	37.4	27.00	10.50	10.00	7.00	210907	1.45	4165.68	26.04	2866	7.00	243	100	0.64	19.4	OK
10	Vysarpadi	72.5	25.00	4.00	10.00	7.00	409347	1.86	5307.43	33.17	2855	5.00	150	100	10.54	9.5	Expected Low Pressure
11	Patel Nagar	37.6	24.00	3.00	10.00	7.00	212227	0.89	2704.79	16.90	3054	5.00	228	100	0.42	18.6	OK
12	Pallipattu	46.9	27.50	5.00	10.00	7.00	264660	3.14	7200.59	45.00	2291	6.00	150	100	14.88	6.6	Expected Low Pressure
13	Mylapore	21.3	22.50	2.50	10.00	7.00	120267	1.38	5585.04	34.91	4047	3.00	165	100	10.33	9.2	Low Pressure
14	Nandanam	43.8	22.50	2.50	10.00	7.00	247427	1.47	1912.01	11.95	1303	3.00	223	100	0.10	19.4	OK
15	Valluvarkottam	32.4	26.50	4.00	10.00	7.00	182820	1.02	6637.82	41.49	6513	6.00	253	100	2.87	17.6	OK
16	Southem Head works	32.8	25.50	7.00	10.00	7.00	185167	1.46	13908.61	86.93	9548	9.00	300	100	7.18	9.3	Expected Low Pressure
	Assumptions:																
	1.Hydraulic Design details b	y Kirloskar Consulta	ints HGL at	WDS, Residua	al Presssure etc a	are considered											
	2. Discharge in each pipe is	a Population / Unit L	ength in dist	ribution zone	x Target Pipe Le	ength under co	nsideration										
	3. Equivalen pipe diameter h			-	s by weighted av	verage											
	4. Critical Point is considered																
	5. Haze-Williams "C" Value	for existing pipe con-	sidered as "1	00"													

Table A5.6.1 Preliminary Hydraulic Assessment Residual Pressures in Core City (2035)

Source: JICA Study Team

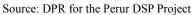
						P	reliminary	y Hydraulic As	ssessment (2050)							
Zone	Water Distribution	Demand 2050	HGL	Avg.GL @ WDS	Residual Head	Residual Head	Population	Population/	Popualtion	Discharge	Critical j distribution	•	Equivalent Diameter of	Hazen- Williams	Head Loss	Residual Pressure @	Check
Zone	Station	(MLD)	(m)	(m)	(designed)	(Ferrule)	in 2050	unit length	in Pipe	(m3/hr)	Distance from WDS (m)	Elevation (m)	Pipe (mm)	"C" value	(m)	Critical point (m)	Check
1	Kilpauk	220.1	27.00	7.00	10.00	7.00	1238893	1.87	13843.90	86.52	7402	10.00	350	100	2.60	14.4	ОК
2	Anna Poonga	61.3	23.58	3.58	10.00	7.00	344887	2.93	5102.21	31.89	1740	5.00	275	100	0.31	18.3	OK
3	Kannapathidal	57.6	25.26	5.60	10.00	7.00	324060	4.83	10906.49	68.17	2257	5.00	200	100	7.79	12.5	OK
4	Triplicane	36.2	23.00	3.00	10.00	7.00	196240	1.46	2798.73	17.49	1917	10.00	200	100	0.53	12.5	OK
5	K.K.Nagar	73.6	29.00	9.00	10.00	7.00	414187	1.56	11120.28	69.50	7112	9.00	225	100	14.34	5.7	Expected Low Pressure
6	Velachery	44.4	25.80	6.00	10.00	7.00	250067	6.54	13049.88	81.56	1996	5.00	200	100	9.61	11.2	OK
7	Ekkatuthangal	7.3	30.05	7.00	10.00	7.00	40993	1.12	2368.06	14.80	2113	7.00	150	100	1.75	21.3	OK
8	Choolaimedu	111.0	29.00	9.00	10.00	7.00	624947	5.06	29863.62	186.65	5901	9.00	325	100	12.37	7.6	Expected Low Pressure
9	Kulathur	40.1	27.00	10.50	10.00	7.00	225867	1.56	4461.16	27.88	2866	7.00	243	100	0.73	19.3	OK
10	Vysarpadi	75.3	25.00	4.00	10.00	7.00	423500	1.92	5490.94	34.32	2855	5.00	150	100	11.23	8.8	Expected Low Pressure
11	Patel Nagar	40.3	24.00	3.00	10.00	7.00	227040	0.95	2893.58	18.08	3054	5.00	228	100	0.48	18.5	OK
12	Pallipattu	51.2	27.50	5.00	10.00	7.00	287980	3.42	7835.06	48.97	2291	6.00	150	100	17.40	4.1	Expected Low Pressure
13	Mylapore	23.1	22.50	2.50	10.00	7.00	129947	1.49	6034.57	37.72	4047	3.00	165	100	11.92	7.6	Expected Low Pressure
14	Nandanam	45.5	22.50	2.50	10.00	7.00	256300	1.52	1980.58	12.38	1303	3.00	223	100	0.11	19.4	OK
15	Valluvarkottam	34.0	26.50	4.00	10.00	7.00	191547	1.07	6954.67	43.47	6513	6.00	253	100	3.13	17.4	OK
16	Southern Head works	34.9	25.50	7.00	10.00	7.00	196533	1.55	14762.40	92.27	9548	9.00	300	100	8.01	8.5	Expected Low Pressure
	Assumptions:																
	1.Hydraulic Design details by	Kirloskar Consulta	nts HGL at '	WDS, Residua	l Presssure etc a	re considered											
	2. Discharge in each pipe is a		0		0.	0	nsideration										
	3. Equivalen pipe diameter has been considered for computing friction losses by weighted average																
	4. Critical Point is considered																
	5. Haze-Williams "C" Value	for existing pipe con	sidered as "1	00"													

Table A5.6.2 Preliminary Hydraulic Assessment Residual Pressures in Core City (2050)

Appendix 6.1 Geotechnical Survey Results in the DPR

A6.1.1 Scope of the Survey

In order to identify the soil condition in the site of the New Perur DSP, a geotechnical survey was conducted in the DPR. Five borehole locations were selected according to the layout of the plant facilities (Figure A6.1.1).


A6.1.2 Results of the Survey

According to the columnar sections attached to the DPR (Figure A6.1.2), the major soil layers at the new Perur DSP site and their approximate depths are as follows:

- Grayish silty fine sand: from -0.0 m to -10.0 m (SPT N value = 10 to 64)
- Brownish silty stiff clay: from -10.0 m to -13.0 m/-15.0 m (SPT N value = 7 to 9)
- Soft disintegrated rock: from -13.0/-15.0 m to -19.0 m (SPT N value ≥ 100)
- Hard granite rock: from -17.0 m to -23.0 m

(STP: Standard Penetration Test)

	PROJECT : Proposed Construction	of Desalin	ation Plan	it at Perur,	ECK	03.11-2010		_	PROJECT : Propos
BH NO	1		OF STAR			04.11.2014	BH NO		2
SITE	Perur		OF COMP			1.60 m	SITE		Perur
DIA OF BORING	150 mm		JND WATE	RLEVEL		1.00 m	DIA OF BO		150 mm
TYPE OF BORING	Rotary (Calyx)	RL					TYPE OF	BORING	Rotary (Calyx)
Depth below EGL (m) Soil / Rock Profile	Description / Classification of Soil / Rock	Stand 15		ration Test ore Drilling 45		Relative Density/ Consistency	Depth below EGL (m)	Soil / Rock Profile	Descrij Classification
1.00	X Brown Sand	3	3 5	6	11	Medium Dense	1.00	00000	Brown Sand
2.00	Brown Sand	6	7	11	18	Medium Dense	2.00	-	Brown Sand
3.00	Brown Sand	10	10	18	28	Medium Dense	3.00		Brown Sand
4.00	Brown Sand	9	10	14	24	Medium Dense	4.00		Brown Sand
5.00	Brown Sand	10	12	15	27	Medium Dense	5.00		Brown Sand
6.00	Brown Sand	12	18	18	36	Medium Dense	6.00		Brown Sand
7.50	Brown Sand	9	7	7	14	Medium Dense	7.50		Brown Sand
9.00	Brown Sand	31	13	15	28	Medium Dense	9.00		Brown Sand
10.5	Brown Sand	8	10	11	21	Medium Dense	10.5		Gravish Brown Claye
12.0	Grayish Silty Sand	9	11	12	23	Medium Dense		-11111	
13.5	Grayish Clayey Sand	8	12	12	24	Medium Dense	12.0		Grayish Brown Claye
15.0	Brown Silty Clay	11	18	20	38	Hard	13.5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Grayish Silty Clay
16.5	Grayish Brown Clayey Sand	21	55 (13 cm)	Rebound	> 100	Hard	15.0		Grayish Silty Clay
18.0	Grayish Brown Weathered Rock	54 (2)	_{am)} Hamme	Rebound	> 100	Hard	16.5	(((())))	Grayish Brown Claye
19.5	Grayish Brown Weathered Rock	54 (1)	om) Hamme	Rebound	> 100	Hard	17.9		Grayish Brown Weath
20-21.5	Pinkish Gray Granite Rock	CR	= 60%, RC	D = 20%	> 100	Hard		4	Borehole Termina

HNO		2	DATE	OF STAR	Г		01.11.2014	
ITE		Perur		OF COMP			02.11.2014	
A OF B	ORING	150 mm	GROU	ND WATE	RLEVEL		1.70 m	
	BORING	Rotary (Calyx)	RL					
Depth below EGL (m)	Soil / Rock Profile	Description / Classification of Soil / Rock	Stand		ration Tesl ore Drilling 45		Relative Density/ Consistency	
ã			10	50	40	-	-	
1.00		Brown Sand	4	6	ß	12	Medium Dense	
2.00		Brown Sand	6	8	10	18	Medium Dense	
3.00		Brown Sand	3	6	6	12	Medium Dense	
4.00		Brown Sand	6	15	18	33	Dense	
5.00		Brown Sand	15	18	18	36	Dense	
6.00		Brown Sand	17	18	22	40	Dense	
7.50	****	Brown Sand	13	15	18	33	Dense	
9.00	33333	Brown Sand	11	1Ī	13	24	Medium Dense	
10.5	11111	Grayish Brown Clayey Sand	12	13	14	27	Medium Dense	
12.0		Grayish Brown Clayey Sand	9	10	11	21	Medium Dense	
13.5		Grayish Silty Clay	10	11	11	22	Very Stiff	
15.0		Grayish Silty Clay	9	18	18	36	Very Stiff	
16.5		Grayish Brown Clayey Sand	11	15	23	38	Dense	
17.9		Grayish Brown Weathered Rock	54 (2 on) Hammer Rebound >			> 100	Hard	

Borehole 1

		PROJECT : Proposed Construction	DATE	OF STAR	r.		05.11.2014	
BH NO	-	3 Perur		OF COMP			05.11.2014	
SITE	0000	150 mm		ND WATE			1.54 m	
DIA OF BO		Rotary (Calyx)	RL	no marc	11 lots 7 lots		-	
Depth below EGL (m)	Soil / Rock Profile	Description / Classification of Soil / Rock	Stand	Standard Penetration Test (SPT) / UDS / Core Drilling				
Del			15	30	45	N	Relative Density/ Consistency	
1.00		Brown Sand	2	5	6	11	Medium Dense	
2.00		Brown Sand	3	6	6	12	Medium Dense	
3.00		Brown Sand	4	7	8	15	Medium Dense	
4.00		Brown Sand	5	8	10	18	Medium Dense	
5.00		Brown Sand	6	8	10	18	Medium Dense	
6.00		Brown Sand	11	15	19	34	Dense	
7.50	11111	Grayish Brown Sand	7	7	В	15	Medium Dense	
9.00		Grayish Brown Clayey Sand	7	11	11	22	Medium Dense	
10.5		Grayish Silty Clay	7	11	12	23	Very Stiff	
12.0		Grayish Silty Clay	8	10	12	22	Very Stiff	
13.5		Grayish Brown Clayey Sand	9	10	17	27	Medium Dense	
15.0	/////	Grayish Brown Clayey Sand	11	18	24	42	Dense	
16.5		Grayish Brown Weathered Rock	57 (8 cm	Hammer	Rebound	> 100	Hard	
17.0		Grayish Brown Weathered Rock	55 (3 cm	Hammer	Rebound	> 100	Hard	
18.5	11111	Grayish Granite Rock	CR	= 25%, RC	D = 7%	> 100	Hard	

Borehole 2

		PROJECT : Proposed Construct	DATE	OF STAR	T		30.10.2014
HNO				OF COMP			31.10.2014
ITE		Perur		IND WATE		-	1.65 m
IA OF BO		150 mm	RL	NAD AAVIT	IL LEVEL		1,00 11
YPE OF	BORING	Rotary (Calyx)	156		_		-
Depth below EGL (m)	Soil / Rock Profile	Description / Classification of Soil / Roc	2.400		tration Test ore Drilling 45		Relative Density Consistency
0							
1.00		Brown Sand	5	5	7	12	Medium Dense
2.00		Brown Sand	6	9	9	18	Medium Dense
3.00		Brown Sand	4	6	6	12	Medium Dense
4.00		Brown Sand	6	7	8	15	Medium Dense
5.00	11111	Grayish Brown Sand	8	12	21	33	Medium Dense
6.00		Grayish Brown Sand	9	16	20	36	Dense
7.50		Grayish Brown Sand	6	8	10	18	Medium Dense
9.00		Grayish Brown Clayey Sand	8	11	13	24	Medium Dense
10.5		Grayish Brown Clayey Sand	9	12	12	24	Very Stiff
12.0		Gravish Brown Clayey Sand	10	12	16	28	Very Stiff
13.5		Grayish Brown Clayey Sand	16	25	33	58	Very Dense
15.0		Gravish Brown Clayey Sand	17	33	34	67	Very Dense
16.5	_	Grayish Brown Weathered Rock	.55 (5 z	ni Hammei	Rebound	> 100	Hard
17.0		Gravish Brown Weathered Rock	53 (2.2	mi Hammer	Rebound	> 100	Hard
18.5		Grayish Granite Rock	CR	CR = 20%, RQD = 7% > 1			Hard

Borehole 3

Borehole 4

		PROJECT : Proposed Construction	TOT Desain	ation rian	it at reruit,	LUK	00 10 0011		
BH NO		5		OF STAR			28.10.2014		
SITE		Perur		OF COMP			30.10.2014		
DIA OF BO		150 mm		ND WATE	RLEVEL		1.72 m		
TYPE OF	BORING	Rotary (Calyx)	RL				-		
Depth below EGL (m) Soil / Rock Profile		Description / Classification of Soil / Rock	Stand	Standard Penetration Test (SPT) / UDS / Core Drilling					
1.00	XXXXX	Brown Sand	4	7	7	14	Medium Dens		
2.00		Brown Sand	5	8	10	18	Medium Dens		
3.00		Brown Sand	10	14	21	35	Dense		
4.00		Brown Sand	11	15	18	33	Dense		
5.00	*****	Brown Sand	12	18	18	36	Dense		
6.00		Brown Sand	12	15	20	35	Dense		
7.50		Brown Sand	6	10	10	20	Medium Dens		
9.00		Brown Clayey Sand	9	12	15	27	Medium Dens		
10.5		Brown Clayey Sand	8	10	12	22	Medium Dens		
12.0		Grayish Brown Silty Sand	18	23	31	54	Very Dense		
13.5		Grayish Brown Silty Sand	20	30	42	72	Very Dense		
15.0	1111	Grayish Brown Clayey Sand	21	30	33	63	Very Dense		
16.5		Grayish Brown Weathered Rock	54 (t on	Hammer	Rebound	> 100	Hard		
18.0		Grayish Brown Weathered Rock	58 (t.or	Hammer	Rebound	> 100	Hard		
19.6	-	Grayish Brown Weathered Rock	54 (0 cm	Hammer	Rebound	> 100	Hard		
9.6 - 21.1	11111	Grayish Granite Rock	CR	= 20%, RC	ND = 0%	> 100	Hard		

Borehole 5

Source: DPR for the Perur DSP Project

Figure A6.1.2 Columnar Section

A6.1.3 Foundation System

One of the important criteria to determine any foundation is a settlement of the soil layer. If the foundation is laid on a clay layer, the state of clay, such as moisture content and consolidation, should be carefully examined because the clay layer is expected to undergo consolidation over a period due to sustained loading.

As per the geotechnical report mentioned above, the width of the shallow foundation is assumed as 2.5 $m \times 2.5 m$ to determine the safe bearing capacity for varying depths of foundation shown in following Table A6.1.1.

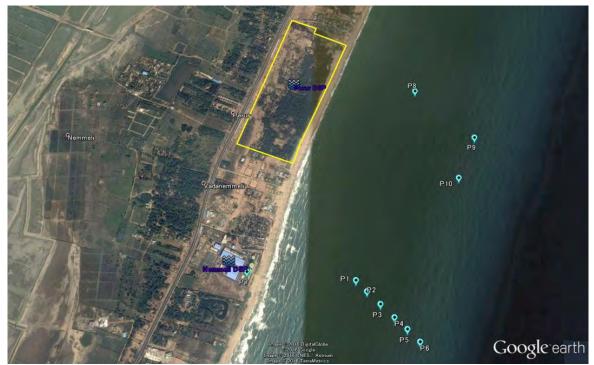
Size of Foundation	Depth of Foundation (m)	Safe Bearing Capacity (kN/m ²⁾	Settlement (mm)
	2.0	158	17.99
2.5 m × 2.5 m	2.5	209	20.99
	3.0	274	26.62

 Table A6.1.1 Settlement Values with the Safe Bearing Capacity

Source: DPR

As an alternative to the shallow foundation, bored cast in-situ pile with the diameters of the pile as 400 mm, 500 mm, 600 mm and 750 mm, and the length of the pile as 17 m to 20 m on the hard granite rock layer are also recommended in the DPR apart from the shallow foundation.

Appendix 6.2 Seawater Quality Survey in the Study


A6.2.1 Scope and Objectives of the Survey

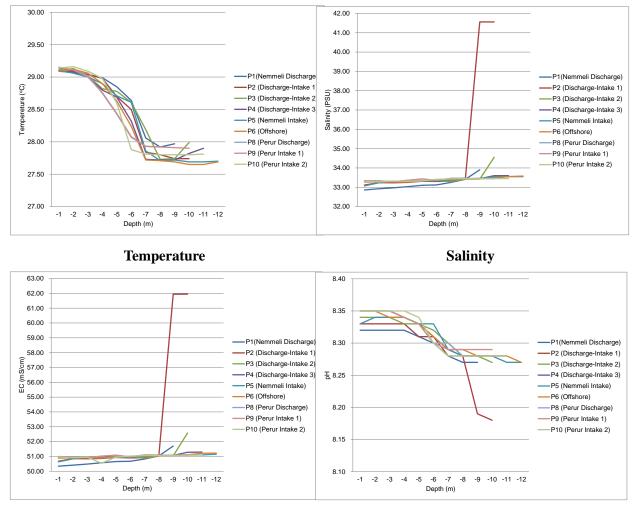
The JICA Study Team conducted a seawater quality survey at the end of February 2016. During the survey, an in-situ test was conducted at each point (every 1 m from the surface to the bottom of the sea) to confirm the influences from brine of the Nemmeli DSP to the sea. The sampling points are shown in Table A6.2.1 and Figure A6.2.1.

Compling point	Leastion	Coordina	ate (UTM)
Sampling point	Location	Х	Y
Nemmeli DSP			
P1	Discharge	416699	1404348
P2	Discharge -Intake 1	416767	1404285
P3	Discharge -Intake 2	416849	1404214
P4	Discharge -Intake 3	416933	1404141
P5	Intake	417010	1404077
P6	Offshore	417085	1404008
P7	Intake chamber	—	—
Proposed Perur DS	SP		
P8	Discharge	417066	1405582
P9	Intake 1	417447	1405280
P10	Intake 2	417339	1405010

Table A6.2.1 Coordinates of the Sampling Points for the Seawater Quality Survey in the Study

Source: JICA Study Team

Source: JICA Study Team


Figure A6.2.1 Location of the Sampling Points for the Seawater Quality Survey in the Study

A6.2.2 Results of the In-Situ Test

The results of the in-situ test are shown in Table A6.2.2 and Figure A6.2.2.

	рН	EC (mS/cm)	TDS	Salinity (PSU)	Temperature (°C)
P1					
Average	8.3	50.84	25.42	33.25	28.58
Minimum	8.32	51.70	25.87	33.95	29.14
Maximum	8.26	50.34	25.17	32.86	27.92
P2					
Average	8.28	53.89	26.95	35.63	28.48
Minimum	8.18	50.67	25.34	33.11	27.74
Maximum	8.33	61.95	30.99	41.57	29.11
P3					
Average	8.31	51.25	25.63	33.55	28.47
Minimum	8.27	50.88	25.44	33.27	27.73
Maximum	8.34	52.59	26.31	34.55	29.13
P4					
Average	8.31	51.05	25.53	33.41	28.32
Minimum	8.23	50.90	25.45	33.28	27.72
Maximum	8.35	51.29	25.65	33.61	29.09
P5					
Average	8.3	50.99	25.51	33.39	28.27
Minimum	8.26	50.63	25.32	.33.07	27.69
Maximum	8.34	51.19	25.63	33.59	29.10
P6					
Average	8.31	51.03	25.52	33.41	28.23
Minimum	8.27	50.81	25.45	33.27	27.65
Maximum	8.35	51.25	25.63	33.67	29.12
P7					
Average	8.22	50.57	25.29	33.07	28.04
Minimum	8.21	50.54	25.27	33.05	28.04
Maximum	8.22	50.60	25.31	33.09	28.04
P8		<u>.</u>			
Average	8.31	51.03	25.46	33.39	28.49
Minimum	8.20	50.92	25.00	33.29	27.92
Maximum	8.35	51.10	25.55	33.48	29.15
P9		<u>.</u>			
Average	8.31	51.03	23.43	33.40	28.39
Minimum	8.28	50.92	25.54	33.29	27.90
Maximum	8.35	51.10	25.56	33.46	29.15
P10					
Average	8.31	50.98	25.51	33.39	28.31
Minimum	8.27	50.54	25.46	33.28	27.80
Maximum	8.35	51.10	25.55	33.46	29.16

Table A6.2.2 Results of the In-situ Test

Electrical Conductivity

pН

Source: JICA Study Team

Figure 6.2.2 Seawater Quality Survey Results in the Study

The distance between the sampling points P1 to P6 related to the existing Nemmeli DSP is 100 m. The brine coming from the existing Nemmeli DSP is discharged at P1, approximately -5.0 m from the surface of the sea.

The above figures clearly show that the brine influences the seawater quality around the area within 200 m from P1, especially on the seawater quality at the bottom layer ($-8.0 \text{ m} \sim -10.0 \text{ m}$) of the points P2 and P3. It shows that the high-concentration salt water has accumulated at the bottom of the sea in the vicinity of the drain outlet.

On the other hand, when the points move away approximately 300 m from the drain outlet (P4 \sim P6), including the intake point of the Nemmeli DSP (P5), the influences of the brine are almost invisible. These results show that the layout of the intake point and discharge point of the existing Nemmeli DSP is generally reasonable, and the proposed new Perur DSP shall also be planned according to this layout.

A6.2.3 Result of the Laboratory Test

In addition to the in-situ test mentioned above, the laboratory test was conducted at the proposed intake points (P9 and P10), particularly, in order to identify the intake facilities and configuration for the new DSP.

The results of the seawater quality test at a laboratory in India with samples collected at the proposed intake points of the new Perur DSP (P9 and P10) are shown in Table A6.2.3.

												•							
Sampling	Lover	Turbidity	DO	TSS	E. Conductivity	TDS	Ca ²⁺	Mg ²⁺	Na ⁺	SO42-	Cl	Mn	Cu	Fe	HCO3.	в	Si	$\rm SiO_2$	SiO ₃
Point	Layer	NTU	mg/l	mg/l	mS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
P9	Surface Layer (-1.0 m)	0.10	5.00	143	50,290	40,309	1,178	4,052	12,603	536.0	21,440	0.006	0.06	0.120	6,124.4	3.10	0.09	0.20	0.54
Intake Point (1)	Intake Level (-5.0 m)	0.10	4.70	123	50,830	40,856	786	2,622	14,533	475.0	21,440	0.006	0.06	0.130	4,593.0	2.80	0.09	0.21	0.56
P10	Surface Layer (-1.0 m)	0.10	4.50	189	51,400	41,489	393	2,622	13,503	478.0	23,993	0.005	0.07	0.059	4,593.0	2.90	0.11	0.24	0.65
Intake Point (2)	Intake Level (-5.0 m)	0.10	4.80	116	50,400	40,048	393	3,098	12,603	472.5	23,482	0.001	0.02	0.090	4,593.0	3.20	0.25	0.11	0.67

Table A6.2..3 Result of the Laboratory Test

Source: JICA Study Team

A6.2.4 Result of the Seawater Quality Test by Japanese Laboratory

TDS and Boron (B) are the most important parameters for designing of the RO plant; therefore, the same samples were also tested in a Japanese laboratory. The results are shown in Table A6.2.4.

Every value is lower than the value provided from the laboratory in India. The reason is supposed that the results from the Indian laboratory may contain some suspended solids even after the filtration process of the test.

Sampling point	TDS	В
Sampling point	mg/l	mg/l
P9: Intake Point (1)	27 200	4.1
Intake Level (-5 m)	37,300	4.1
P10: Intake Point (2)	28,400	4.2
Intake Level (-5 m)	38,100	4.3

Table A6.2.4 Result of the Seawater Quality Test by Japanese Laboratory

Appendix 6.3 Geotechnical Survey in the Study

A6.3.1 Construction Site for the Pipeline by Trenchless Method

(1) Scope of the survey

The JICA Study Team conducted a geotechnical survey during May 2016. The objectives of the survey are to examine the geotechnical characteristic of the soil at the proposed Trenchless pipe working site.

The survey consists of 1) Boring test, 2) Standard Penetration Test (SPT), 3) Core sampling, 4) Laboratory test, and 5) Collection of Geological map including site area.

The laboratory test was conducted at the laboratory accredited to the Notional Accreditation Board for Laboratories (NABL) in India.

The items of the laboratory test includes a) Grain Size Distribution (sieve analysis), b) Moisture Content, c) Density, d) Specific gravity, e) Atterberg limits (Liquid Limit and Plastic Limit), f) Internal friction angle, g) Consolidation test, and h) Uniaxial compression test.

Figure A6.3.1 shows proposed pipeline route and boring locations at the proposed Trenchless pipe construction site (P-A1: 404,153.00 m E, 1,428,837.00 m N, 34.327 m AMSL) near the Tambaram railway station.

Source: JICA Study Team Figure A6.3.1 Site Location of the Trenchless Pipe construction at Tambaram

(2) Results of the survey

The formation consisted of filling soil until -1 m, followed by traces of clay up to -3 m from the ground level. Below -3 m, the soil consists of weathered igneous rock up to -8 m and hard massive rock laid after -8 m. The SPT N value varied from 33 to 105 at -2 m to -3 m in dense soil. After -3 m, the SPT N value in weathered rock exceeded 50 blows with rebound indicating dense rock. The safe bearing capacity varied from 11.43 tons/square meter at -2 m to 104.33 tons/square meter at -8 m. The water table was not encountered.

Project : Construction of Trenchless Pipeline 2m dia Borehole No: 1 Type of Boring: Calyx Work Order No: 1320

Date of commencement:29.05.2016. Date of Completion : 29.05.2016 G.W.L. :NIL

Depth below	Soil Profile		Description of Soil	Thickness of layer	Depth of which samples are collected		Standard Penetration Test			
G.L. M	1		М	D.S. M	U.D.S. M	Depth at which test is conducted	N- Value	Relative density consistency		
	11 - 11	Filling Soil	5			-				
1.0			1.0			1 m 1	14 J. 1			
		Silty sand With traces of				2.0	81	DENSE		
3.0		Clay	2.0			3.0	29	MEDIUM		
		Weathered				4.0	50/10cm			
		Rock				5.0	50/0 Penetration			
						6.0	50/0 Penetration			
						7.0	*			
8.0			5.0			8.0	-			
		Hard Rock								

Remarks: Soil classification is subject to confirmation by laboratory tests. Source: JICA Study Team

Figure A6.3.2 Columnar Section (P-A1)

Depth in 'm'	Layer	Wn %		G	ain Size	Distributi	Density Test		Direct Shear Test		
1.00			Clay %	Silt %	Sand %	Gravel %	Sp.Gravity	rb gm/cc	rd gm/cc	C g/cm ²	Degree
BOR	EHOLE – 1					-					
1.0-3.0	Silty sand with traces of clay	15.52	10	30	60	0	2.526	1.824	1.579	4	26°00'
3.0-8.0	Weathered Rock	1.82	0	20	55	25	2.535	1.840	1.807	-	29°30'

Table A6.3.1 Result of the Laboratory Test

Depth in 'm'	1	IMITS	FREE SWELL%	
	LL%	PL%	PI%	
BOREHOLE NO:	:1			
1.0-3.0	20.11	11.58	8.53	10.00
3.0-8.0	NIL	NIL	NIL	NIL

Source: JICA Study Team

A6.3.2 Construction Site for the New Reservoir and Pumping Station

(1) Scope of the survey

The objectives of the survey are to examine the geotechnical characteristic of the soil and the bearing capacity at the proposed new reservoir and pumping station site. The survey locations (P-B1: 407,631.00 m E, 1,441,786.00 m N, 16.559 m AMSL and P-B2: 407,705.00 m E, 1,441,786.00 m N, 16.829 m AMSL) are detailed in Figure A6.3.3.

Source: JICA Study Team

(2) Results of the survey

As per the geological map, the Porur area falls under sedimentary terrain and is made of Flood Plain Deposits belonging to Quaternary formations. The soil mainly consists of sands, clays, and gravels.

• Borehole: PB-1

The formation was silty sand up to -8 m from the ground level with silt comprising of 49%, sand 38% ,and clay 10%. The liquid limit of silty sand is 15%, plastic limit 5%, plasticity index is 10%, and the free swell index is 8%. The SPT N value varied from 2 to 11, indicating mainly loose quality soil.

The above layer is followed by silty sand with clay up to -18 m and comprises of silt 45%, sand 40% and clay 15% with liquid limit 20%, plastic limit 10%, plasticity index 10%, and free swell index 10%. The SPT N value varied from 6 to 28, indicating loose to medium quality soil.

Below -18 m up to -20 m, the formation is silty sand with 49% silt, 40% sand, clay 11%, liquid limit 15%, plastic limit 6%, plasticity index 9% and free swell index 7%, and the SPT N value varied from 40 to 46, indicating medium quality soil.

The safe bearing capacity at shallow depths from 0 m to -5 m is within the range from 6 to 20 tons/square meter. The water table was encountered at -3 m from the ground level.

• Borehole: PB-2

The formation was silty sand up to -4 m from the ground level with silt comprising of 49%, sand 42%, and clay 9%. The liquid limit of silty sand is 15%, plastic limit 7%, plasticity index is 8%, and free swell index is 8%. The SPT N value varied from 2 to 14, indicating mainly loose quality soil.

The above layer is followed by silty sand with clay up to -19 m and comprises of silt 46%, sand 40% and clay 14% with liquid limit 25%, plastic limit 13%, plasticity index 12% and free swell index 11%. The SPT N value varied from 5 to 24, indicating loose to medium quality soil.

Below -19 m to -20 m, the formation is silty sand having 48% silt, 41% sand, clay 11%, liquid limit 12%, plastic limit 8%, plasticity index 5%, and free swell index 7%. The SPT N value varied from 34 to 38 indicating medium quality soil.

The safe bearing capacity at shallow depths from 0 m to -5 m is within the range from 6 to 20 tons /square meter, as same as the borehole PB-1.

Project : Water Storage Tank Borehole No: 1 Type of Boring: Calyx Work Order No: 1312 Date of commencement:06.05.2016. Date of Completion : 07.05.2016 G.W.L. :3.0m

Depth below G.L. M	Soil Profile	Description of Soil	Thickness of layer	w sam	pth of /hich ples are lected			ntion Test	Ground Water Ievel
			м	D.S. M	U.D.S. M	Depth at which test is conducted	N- Value	Relative density consistency	
		1.0		i i i		1.0	6	LOOSE	
		Citerrad				2.0	4	LOOSE	
		Silty sand with traces of				3.0	3	LOOSE	<u> </u>
		clay				4.0	2	LOOSE	3
						5.0	7	LOOSE	
						6.0	8	LOOSE	
						7.0	11	LOOSE	
8.0			8.0			8.0	5	LOOSE	
			11.			9.0	6	LOOSE	
						10.0	7	LOOSE	
		Cites and				11.0	5	LOOSE	
		Silty sand				12.0	8	LOOSE	
		With clay				13.0	10	LOOSE	
						14.0	12	LOOSE	
						15.0	15	LOOSE	
						16.0	10	LOOSE	
						17.0	12	LOOSE	
	52 53 52 53		10.0			18.0	28	MEDIUM	
18.0		Silty sand with traces of				19.0	40	MEDIUM	
		clay	2.0			20.0	46	MEDIUM	
20.0	11	1	117	-		· · · · · · · · · · · · · · · · · · ·	1		

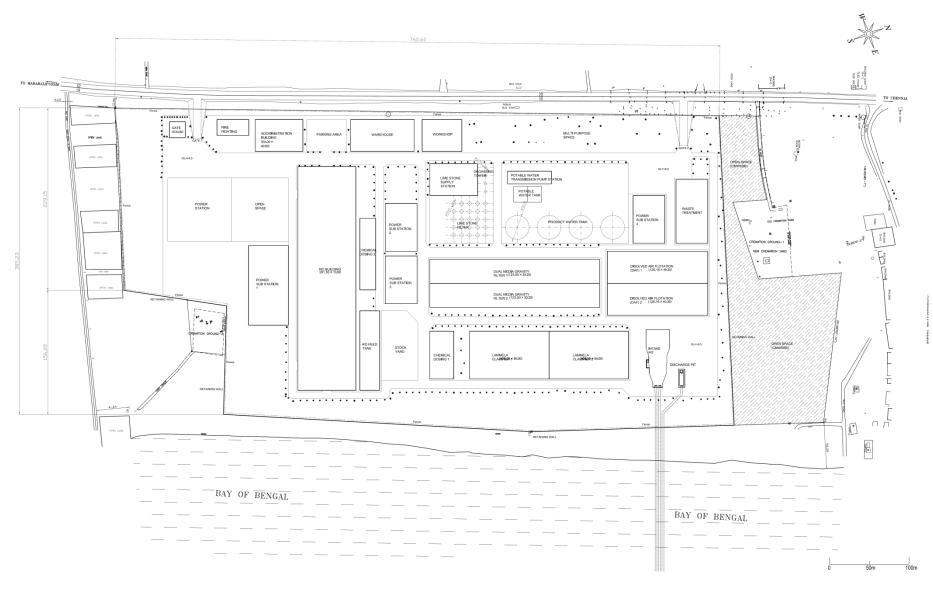
Remarks: Soil classification is subject to confirmation by laboratory tests. Source: JICA Study Team

Figure A6.3.4 Columnar Section (P-B1)

Project : Wat	er Storage Tank
Borehole No:	2

Type of Boring: Calyx Work Order No: 1312 Date of commencement:07.05.2016. Date of Completion : 08.05.2016 G.W.L. :3.0m

Depth below	Soil Profile	Description of Soil	Thickness of layer	w samj	pth of hich ples are lected			ation Test	Ground Water
G.L. M			М	D.S. M	U.D.S. M	Depth at which test is conducted	N- Value	Relative density consistency	Level
		-				1.0	4	LOOSE	
		Silty sand With traces				2.0	4	LOOSE	
		ofclay				3.0	2	LOOSE	<u> </u>
			10			4.0	2	LOOSE	- Se
4.0			4.0			5.0	5	LOOSE	
		1.5				6.0	6	LOOSE	
		Silty sand				7.0	7	LOOSE	
		With clay				8.0	5	LOOSE	
		100				9.0	6	LOOSE	
						10.0	6	LOOSE	
						11.0	6	LOOSE	
						12.0	8	LOOSE	
						13.0	7	LOOSE	
						14.0	10	LOOSE	
						15.0	11	LOOSE	
						16.0	14	LOOSE	
						17.0	17	LOOSE	
						18.0	24	MEDIUM	
19.0		Silty sand with traces	15.0			19.0	34	MEDIUM	
		of clay	1.0			20.0	38	MEDIUM	
20.0	it in a								


Remarks: Soil classification is subject to confirmation by laboratory tests.

Depth in 'm'	Layer	Wn %		G	ain Size	Distributi	Dens	ity Test	Direct Shear Test		
			Clay %	Silt %	Sand %	Gravel %	Sp.Gravity	rb gm/cc	rd gm/cc	C g/cm ²	Degree
BORI	EHOLE – 1	-									
1.0-8.0	Silty sand with traces of clay	10.15	10	52	38	0	2,560	1.798	1.632	-	25°25'
8.0-18.0	Silty sand with clay	12.25	15	45	40	0	2.565	1.799	1.603	1	25°48'
18.0- 20.0	Silty sand with traces of clay	11.08	11	49	40	0	2.550	1.800	1.618	-	25°55'

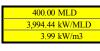
Depth in 'm'	Layer	Wn %		G	ain Size	Distributi	Dens	ity Test	Direct Shear Test		
101			Clay %	Silt %	Sand %	Gravel %	Sp.Gravity	rb gm/cc	rd gm/cc	C g/cm ²	Degree
BORI	EHOLE – 2										-
1.0-4.0	Silty sand with traces of clay	11.15	9	49	42	0	2.580	1,799	1.619	-	25°22'
4.0-19.0	Silty sand with clay	12.58	14	46	40	0	2.575	1.800	1.599	7	25°48'
19.0- 20.0	Silty sand with traces of clay	9.06	-11	48	41	0	2,560	1.801	1.651		25°53'

Depth in 'm'	1	FREE SWELL%		
	LL%	PL%	PI%	
BOREHOLE NO:	1			
1.0-8.0	15.26	5.03	10.23	8.00
8.0-18.0	20.22	10.07	10.15	10.00
18.0-20.0	14.83	5.57	9.26	7.00
BOREHOLE NO:	2			
1.0-4.0	15.22	6.96	8.26	8.00
4.0-19.0	25.22	12.79	12.43	11.00
19.0-20.0	12.43	7.84	4.59	7.00

1

Appendix 6.5 Instrumentation List for the Perur DSP

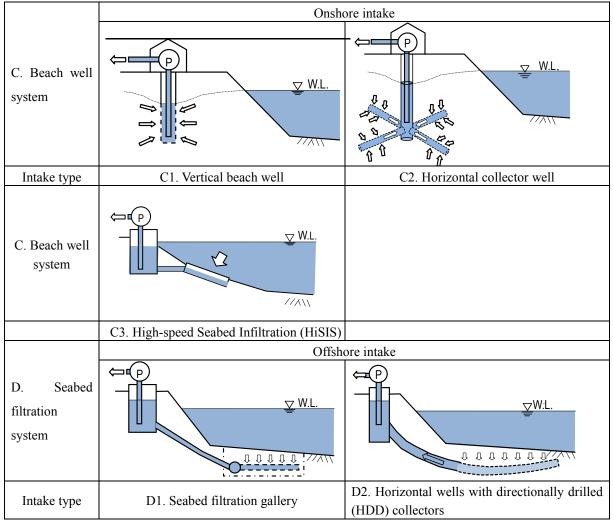
No.	mical Dosing										
	Equipment name	Range	Units	Range(select)	Units	Alarm	Control	Duty	Number Standby	Total	Model
1	Dosing Tank (NaClO) Level (Ultrasonic)	0 - 8,950	mm	0 - 8,950	mm	H,L	H,M,L	Duty 8	Standby		Level sensor
	Dosing Tank (NaClO) Level (Gauge)	0 - 7,200	mm	0 - 7,200	mm	H,L	H,M,L	8			Level Gauge (Diaphragm)
3	Dosing Tank (H ₂ SO ₄) Level (Ultrasonic)	0 - 11,000	mm	0 - 11,000	mm	H,L	H,M,L	3	-	3	Level sensor
	Dosing Tank (H ₂ SO ₄) Level (Gauge)	0 - 9,000	mm	0 - 9,000	mm	H,L	H,M,L	3			Level Gauge (Diaphragm)
5	Dosing Tank (FeCl3) Level (Ultrasonic) Dosing Tank (FeCl3) Level (Gauge)	0 - 11,000 0 - 9,000	mm	0 - 11,000 0 - 9,000	mm	H,L H,L	H,M,L H,M,L	10			Level sensor
	Dosing Tank (FeCIS) Level (Gauge) Dosing Tank (NaOH) Level (Ultrasonic)	0 - 9,000	mm	0 - 9,000	mm	H,L H,L	H,M,L H,M,L	2		10	Level Gauge (Diaphragm) Level sensor
	Dosing Tank (NaOH) Level (Gauge)	0 - 5,300	mm	0 - 5,300	mm	H,L	H,M,L	2	-		Level Gauge (Diaphragm)
9	(NaClO)Shock Dosing Pump discharge (Flow)	100 - 5,000	L/h	100 - 5,000	L/h			2	2	4	Rotameter
10	(NaClO)Shock Dosing Pump (Pressure)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			1	1		Diaphragm
11	(NaClO)Dosing Pump discharge (Flow) (NaClO)Dosing Pump (Pressure)	100 - 800 0 - 10	L/h	100 - 800 0 - 10	L/h			4	2		Rotameter Diaphragm
12	(H ₂ SO ₄)Dosing Pump discharge (Flow)	100 - 400	kg/cm ² L/h	100 - 400	kg/cm ² L/h			4	4		Rotameter
14		0 - 10	kg/cm ²	0 - 10	kg/cm ²			2	2		Diaphragm
15	(FeCl ₃)Dosing Pump discharge (Flow)(For Lamella)	50 - 200	L/h	50 - 200	L/h			24	12		Rotameter
16	(FeCl ₃)Dosing Pump (Pressure)(For Lamella)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			12	6		Diaphragm
17	(FeCl ₃)Dosing Pump discharge (Flow)(For DAF) (FeCl ₃)Dosing Pump (Pressure)(For DAF)	0 - 100	L/h	0 - 100 0 - 10	L/h			32	16		Rotameter Diaphragm
18	(NaOH)Dosing Pump (Pressure)(For DAF) (NaOH)Dosing Pump discharge (Flow)	0 - 10 50 - 200	kg/cm ² L/h	50 - 200	kg/cm ² L/h			16	4		Rotameter
20	(NaOH)Dosing Pump (Pressure)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			2	2		Diaphragm
21	Dosing Tank (Anti Scalant) Level (Ultrasonic)	0 - 3,870	mm	0 - 3,870	mm		H,M1,M2,M3,L	16	9	25	Level sensor
22	Dosing Tank (Anti Scalant) Level (Gauge)	0 - 3,770	mm	0 - 3,770	mm	H,L	H,M1,M2,M3,L	8	5		Level Gauge (Diaphragm)
23	(Anti Scalant)Dosing Pump discharge (Flow)	0 - 5	L/h	0-5	L/h			16	9		Rotameter
24	(Anti Scalant)Dosing Pump (Pressure) Dosing Tank (SBS) Level (Ultrasonic)	0 - 10 0 - 11,000	kg/cm ² mm	0 - 10 0 - 11,000	kg/cm ² mm	нт	H,M1,M2,M3,L	8			Diaphragm Level sensor
26	Dosing Tank (SBS) Level (Gauge)	0 - 9,000	mm	0 - 9,000	mm		H,M1,M2,M3,L	8			Level Gauge (Diaphragm)
27	(SBS)Dosing Pump discharge (Flow)	0 - 5	L/h	0 - 5	L/h			16	9	25	Rotameter
28	(SBS)Dosing Pump (Pressure)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			8	5		Diaphragm
	Dosing Tank (POLY) Level (Ultrasonic) Dosing Tank (POLY) Level (Gauge)	0 - 11,000	mm	0 - 11,000	mm		H,M1,M2,M3,L H,M1,M2,M3,L	5			Level sensor
	Dosing Tank (POLY) Level (Gauge) (Poly)Dosing Pump discharge (Flow)(For Lamella)	0 - 9,000 150 - 900	mm L/h	0 - 9,000 150 - 900	mm L/h	H,L	11,W11,W12,W13,L	24	12		Level Gauge (Diaphragm) Rotameter
32	(Poly)Dosing Pump (Pressure)(For Lamella)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			32	12		Diaphragm
33	(Poly)Dosing Pump discharge (Flow)(For DAF)	150 - 900	L/h	150 - 900	L/h			24	12	36	Rotameter
34	(Poly)Dosing Pump (Pressure)(For DAF)	0 - 10	kg/cm ²	0 - 10	kg/cm ²			32	16		Diaphragm
35	Carbon dioxide Storage Tank Level (Ultrasonic)	0 - 6,000	mm	0 - 6,000	mm		-	2		2	Level sensor
I PRI	ETREATMENT SYSTEM	· · · · · · · · · · · · · · · · · · ·		1			1				1
No.	Equipment name	Range	Units	Range(select)	Units	Alarm	Control		Number		Model
	Intake pump discharge header(TOC)	0 - 100		0 - 100		Haim		Duty	Standby	Total	TOC measurement
2	Intake pump discharge header(IOC) Intake pump discharge header(DOC)	0 - 100	ppm ppm	0 - 100	ppm ppm	H		1		1	DOC measurement
	Intake pump discharge header (Turbidity)	0 - 200	NTU	0 - 200	NTU	Н		1	-	1	Turbidity measurement
4	Intake pump discharge header (Ultrasonic)	0 - 1,200	mm	0 - 1,200	mm	Н		1			Level sensor
	Intake pump discharge header (Oil Analyzer) Lamella Clarifier Outlet header	0 - 50 0 - 100	ppm NTU	0 - 50 0 - 100	ppm NTU	H		2			Oil Analyzer Turbidity measurement
	DAF Outlet (Turbidity)	0 - 100	NTU	0 - 100	NTU	Н		2			Turbidity measurement
	DAF header (oil analyzer)	0 - 10	ppm	0 - 10	ppm	Н		2	-		Oil Analyzer
	Dual Media Gravity Filter Level(Ultrasonic)	0 - 930	mm	0 - 930	mm	Н		40	-		Level sensor
	Dual Media Gravity Filter Level(Ultrasonic)	0 - 3,100	mm	0 - 3,100	mm	Н		40	-		Level sensor
111	Dual Media Gravity Filter Outlet(Chlorine)	0 - 5	ppm	0 - 5	ppm	Н		2	-	2	Chlorine measurement
		0 100	nnm	0 100	0000	п		2		2	TOC manufament
12	Dual Media Gravity Filter (TOC) Dual Media Gravity Filter (DOC)	0 - 100 0 - 100	ppm ppm	0 - 100 0 - 100	ppm	H		2	-		TOC measurement DOC measurement
12 13	Dual Media Gravity Filter (TOC) Dual Media Gravity Filter (DOC) Dual Media Gravity Filter (Turbidity)	0 - 100 0 - 100 0 - 5	ppm ppm NTU	0 - 100 0 - 100 0 - 5	ppm ppm NTU					2	TOC measurement DOC measurement Turbidity measurement
12 13 14 15	Dual Media Gravity Filter (DOC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Silt Density)	0 - 100 0 - 5 0 - 20	ppm NTU SDI	0 - 100 0 - 5 0 - 20	ppm NTU SDI	Н		2 2 2 2	-	2 2 2	DOC measurement Turbidity measurement Silt Density Monitoring
12 13 14 15 16	Dual Media Gravity Filter (DOC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Silt Density) Backwash Pump (Flow)	0 - 100 0 - 5 0 - 20 0 - 10,000	ppm NTU SDI m ³ /hr	0 - 100 0 - 5 0 - 20 0 - 10,000	ppm NTU SDI m ³ /hr	H H H		2 2 2 1	-	2 2 2 1	DOC measurement Turbidity measurement Silt Density Monitoring Electromagnetic Flow meter
12 13 14 15 16 17	Dual Media Gravity Filter (DOC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Silt Density) Backwash Pump (Flow) Backwash Pump (Pressure)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6	ppm NTU SDI m ³ /hr kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6	ppm NTU SDI m ³ /hr kg/cm ²	н Н Н		2 2 2 1 2	-	2 2 2 1 2 2	DOC measurement Turbidity measurement Silt Density Monitoring Electromagnetic Flow meter Diaphragm
12 13 14 15 16 17 18	Dual Media Gravity Filter (DOC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Silt Density) Backwash Pump (Flow)	0 - 100 0 - 5 0 - 20 0 - 10,000	ppm NTU SDI m ³ /hr kg/cm ² mm	0 - 100 0 - 5 0 - 20 0 - 10,000	ppm NTU SDI m ³ /hr kg/cm ² mm	H H H	H,M,L	2 2 2 1	-	2 2 2 1 1 2 1	DOC measurement Turbidity measurement Silt Density Monitoring Electromagnetic Flow meter
12 13 14 15 16 17 18 19	Dual Media Gravity Filter (ODC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Sil Density) Backwash Pump (Flow) Backwash Pump (Pressure) Backwash holding tank (Ulrasonic) Backwash Bolwer (Pressure)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000	ppm NTU SDI m ³ /hr kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000	ppm NTU SDI m ³ /hr kg/cm ²	H H H H	H,M,L	2 2 2 1 2 1 2 1	-	2 2 2 1 1 2 1	DOC measurement Turbidity measurement Silt Density Monitoring Electromagnetic Flow meter Diaphragm Level sensor
12 13 14 15 16 17 18 19 19	Dual Media Gravity Filter (ODC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Sil Density) Backwash Pump (Pessure) Backwash Pump (Pessure) Backwash Blower (Pressure) Backwash Blower (Pressure) FIRSE OSMOSIS PLANT	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6	ppm NTU SDI m ³ /hr kg/cm ² mm kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6	ppm NTU SDI m ³ /hr kg/cm ² kg/cm ²	H H H H,L H	H,M,L	2 2 2 1 2 1 2 1	- - - - - -	2 2 2 1 1 2 1	DOC measurement Turbidly measurement Sik Density Monitoring Electromagnetic Flow meter Disphragm Level sensor Bourdon
12 13 14 15 16 17 18 19	Dual Media Gravity Filter (ODC) Dual Media Gravity Filter (Turbidity) Dual Media Gravity Filter (Sil Density) Backwash Pump (Flow) Backwash Pump (Pressure) Backwash holding tank (Ulrasonic) Backwash Bolwer (Pressure)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range	ppm NTU SDI m ³ /hr kg/cm ² mm	0 - 100 0 - 5 0 - 200 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range(select)	ppm NTU SDI m ³ /hr kg/cm ² Mm kg/cm ²	H H H H	H,M,L	2 2 2 1 2 1 2 1	-	2 2 2 1 2 1 2 2 1 2 2 7 7 7 7 7 7 7 7 7	DOC measurement Turbidly measurement Sik Density Monicoring Electromagnetic Flow meter Diaphragm Level sensor Bourdon Model
12 13 14 15 16 17 18 19 10 II REV No.	Daal Media Gravky Filer (DOC) Daal Media Gravky Filer (Tubdity) Daal Media Gravky Filer (Sil Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash holding tank (Uirsnonic) Backwash holding tank (Uirsnonic) Backwash holding tank (Uirsnonic) Parsee DSMOSIS PLANT Equipment name Cartrigge Filer Outlet (Conductivity)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range 0 - 10,000	ppm NTU SDI m ³ /hr kg/cm ² kg/cm ² Units mS/cm	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range(select) 0 - 10,000	ppm NTU SDI m ³ /hr kg/cm ² units Units	H H H H,L H Alarm	H,M,L Control	2 2 2 1 2 1 2 2 1 2 2 0 1 2 2 0 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 1 2 2 1	- - - - - - - - - -	2 2 2 1 2 1 2 2 1 2 2 1 7 2 1 7 7 17 17	DOC measurement Turbidly measurement Sib Density Monitoring Electromagnetic Flow meter Disphragm Level sensor Bourdon Model Conductivity measurement
12 13 14 15 16 17 18 19 Mo. 1 2	Daul Media Gravity Filter (OUC) Daul Media Gravity Filter (Turbidity) Daul Media Gravity Filter (Sil Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Ibung (Pressure) Backwash Blower (Pressure) FERSE OSMOSIS PLANT Equipment name Cartridge Filter Outlet (Conductivity) Cartridge Filter Outlet (ORP)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6 0 - 6,000 0 - 6 0 - 10,000 - 1,500 - 1,500	ppm NTU SDI m ³ /hr kg/cm ² kg/cm ² Units	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range(select) 0-10,000 -1,500 - 1,500	ppm NTU SDI m ³ /hr kg/cm ² Mm kg/cm ²	H H H H H H Alarm H	H,M,L Control	2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1	- - - - - - - - - -	2 2 2 1 1 2 2 1 1 2 2 1 7 7 7 7 7 7 7	DOC messrement Turbidiy measurement Ski Densiy Menkoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity measurement OkP measurement
12 13 14 15 16 17 18 19 10 II REV No.	Daal Media Gravky Filter (OUCC) Daal Media Gravky Filter (Turbidiy) Daal Media Gravky Filter (Silt Density) Backwash Pump (Fews) Backwash Pump (Fews) Backwash holding tank (Unrsonic) Backwash Blower (Pressure) Cartridge Filter Outlet (Conductivity) Cartridge Filter Outlet (Conductivity) Cartridge Filter Outlet (DRP)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range 0 - 10,000 -1,500 - 1,500 0 - 1,500	ppm NTU SDI m ³ /hr kg/cm ² kg/cm ² Units mS/cm mV	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 Range(select) 0 - 10,000 0 - 1500 0 - 1500	ppm NTU SDI m ³ /hr kg/cm ² mm kg/cm ² Units mS/cm mV	H H H H,L H Alarm	H,M,L Control	2 2 2 1 2 1 2 2 1 2 2 0 1 2 2 0 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 1 2 2 1	- - - - - - - - - -	22 22 1 1 22 1 1 2 2 1 1 2 2 1 7 7 7 7 7	DOC messurement Turbiding messurement Sit Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement ORP messurement
12 13 14 15 16 17 18 19 Mo. 1 2 3	Daul Media Gravity Filter (OUC) Daul Media Gravity Filter (Turbidity) Daul Media Gravity Filter (Sil Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Ibung (Pressure) Backwash Blower (Pressure) FERSE OSMOSIS PLANT Equipment name Cartridge Filter Outlet (Conductivity) Cartridge Filter Outlet (ORP)	0 - 100 0 - 5 0 - 20 0 - 0.000 0 - 6,000 0 - 6,000 0 - 6 0 - 6,000 0 - 6 0 - 0.000 0 - 16 0 - 14 0 - 14 0 - 18	ppm NTU SDI m ³ /hr kg/cm ² kg/cm ² Units mS/cm	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 10,000 0 - 6,000 0 - 6,000 0 - 10,000 0 - 10,0000 0 - 10,0000 0 - 10,000000000000000000000000000000000	ppm NTU SDI m ³ /hr kg/cm ² units Units	H H H H L H H H H H H H H H H H H H H H	H,M,L Control	2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 1 1 6 16 16 16 16 16 16 16		22 22 1 1 22 1 1 22 1 1 2 2 1 7 7 7 7 7	DOC messrement Turbidiy measurement Ski Density Mentoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity measurement OkP measurement
12 13 14 15 16 17 18 19 10 No. 1 2 3 4 5 6	Daul Media Gravky Fiker (DOC) Daul Media Gravky Fiker (Tubdity) Daul Media Gravky Fiker (Sih Density) Backwash Pump (Flew) Backwash Pump (Flew) Backwash buding tank (Utrasonic) Backwash bloking tank (Utrasonic) Erster Sostosis PLANT Explored the (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Orensure) Cartridge Filer Outlet (Trensure)	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 - 1,500 - 1,500 0 - 14 0 - 6 0 - 14 0 - 6 0 - 18 0 - 40	ppm NTU SDI m ² /tar kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² deg C	0 - 100 0 - 5 0 - 20 0 - 10000 0 - 6 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 0 - 10,000 0 - 0 - 6 0 - 18 0 - 6 0 - 18 0 - 40	ppm NTU SDI m ² /hr kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² dcg C	H H H H H H Alarm H H H H H H H H H H H H H H	H,M,L Control	2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 6 16 6 16		2 2 2 1 1 2 2 1 1 2 2 1 7 7 7 7 7 7 7 7	DOC messurement Turbiday messurement Sia Denety Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement of Me messurement Diaphragm Daphragm Temperature sensor
12 13 14 15 16 17 18 19 10 No. 1 2 3 4 5 6 7	Daal Media Gravky Fiker (ODC) Daal Media Gravky Fiker (Rurbidity) Daal Media Gravky Fiker (Sih Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Buloy (Pressure) Backwash Blower (Pressure) TERSE OSMOSIS PLANT Equipment name Cartridge Fiker Oukt (Conductivity) Cartridge Fiker Oukt (CoRP) Cartridge Fiker Oukt (ORP) Cartridge Fiker Oukt (ORP) Cartridge Fiker Oukt (Coresure) Cartridge Fiker Oukt (Temperature)	0 - 100 0 - 5 0 - 20 0 - 0,00 0 - 6 0 - 6,000 0 - 6 0 - 6 0 - 10,000 - 1,500 - 1,500 0 - 1,500 - 0,500 - 0,500 - 1	ppm NTU SDI m²/tar kg/cm² Units mS/cm mV kg/cm² kg/cm² deg C deg C	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 0 - 6 0 - 6,000 0 - 1,000 - 1,000 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 6 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 0 - 6 0 - 7 0 - 6 0 - 7 0	ppm NTU SDI m'/hr kg/cm ² Units mS/cm mV kg/cm ² dcg C dcg C	H H H H H H H H H H H H H H H H H H H	H,M,L Control	2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1		22 22 1 1 22 1 1 22 1 1 2 2 1 7 7 7 7 7	DOC messrement Turbidy messrement 8k Density Mentoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messarement ORP messarement pll messarement pll messarement Daphragm Daphragm
12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10	Daal Media Gravky Fiker (DOC) Daal Media Gravky Fiker (Tubdity) Daal Media Gravky Fiker (Sil Density) Backwash Pump (Few) Backwash Pump (Few) Backwash buding tank (Uirsnonic) Backwash bolding tank (Uirsnonic) Cartridge Fiker Outlet (Conductivity) Cartridge Fiker Outlet (Conductivity) Cartridge Fiker Outlet (Conductivity) Cartridge Fiker Outlet (Conductivity) Cartridge Fiker Outlet (ORP) Cartridge Fiker Outlet (Pressure) Cartridge Fiker Outlet (Temperature) Cartridge Fiker Outlet (Temperature) Cartridge Fiker Outlet (Temperature)	0 - 100 0 - 20 0 - 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 150 0 - 158 0 - 40 0 - 6 0 - 6 0 - 6 0 - 6 0 - 10,000 0 - 6 0 - 20 0 - 0 - 20 0 - 0 - 6 0 - 0 - 0 - 6 0 - 0 - 6 0 - 0 - 6 0 - 0 - 0 - 0 0 - 0 - 6 0 - 0 - 6 0 - 0 - 0 - 0 0 - 0 - 6 0 - 0 - 0 - 0 - 0 0 - 10,000 - 1,500 - 1,500 0 - 14 0 - 14 0 - 0 - 15 0 - 15 0 - 0 - 16 0 - 0 - 16 0 - 0 - 18 0 - 0 - 6 0 - 0 - 18 0 - 0 - 6 0 - 0 - 6 0 - 0 - 18 0 - 0 - 6 0 - 0 - 6 0 - 0 - 6 0 - 0 - 18 0 - 0 - 6 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ppm NTU SDI m²/hr kg/cm² mm kg/cm² Units mS/cm wV kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm²	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0,000 0 - 6 0 - 6 0 - 0,000 - 1,500 -	ppm NTU SDI m²/hr kg/cm² Units mS/cm mV kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm²	H H H H H H H H H H H H H H H H H H H	H,MJ.	2 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1	Number Standby 1 1 1 1 1 1 1 1 1 1 1 1 1	22 22 11 22 11 22 7 7 7 7 7 7 7 7 7 7 7	DOC messurement Turbidiy measurement Ski Density Mentoring Ekectromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity measurement of MP measurement pl measurement Daphragm Diaphragm Temperature sensor Temperature sensor
I2 I3 I3 I4 I5 I6 I7 I8 I9 I I 2 3 4 5 6 6 7 8 9	Daal Media Gravky Fiker (DOC) Daal Media Gravky Fiker (Turbidiy) Daal Media Gravky Fiker (Sih Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Pump (Pressure) Backwash Blower (Pressure) ERSE OSMOSIS PLANT Equipment name Cartridge Fiker Outel (Ondentidy) Cartridge Fiker Outel (Ondentidy) Cartridge Fiker Outel (ORP) Cartridge Fiker Outel (ORP) Cartridge Fiker Outel (ORP) Cartridge Fiker Outel (Pressure) Cartridge Fiker Outel (Temperature) Cartridge Fiker Outel (Temperature)	0 - 100 0 - 5 0 - 20 0 - 0,00 0 - 6 0 - 6,000 0 - 6 0 - 6 0 - 10,000 - 1,500 - 1,500 0 - 1,500 - 0,500 - 0,500 - 1	ppm NTU SDI m²/hr kg/cm² Units mS/cm mV kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6 0 - 6 0 - 6 0 - 15,00 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18	ppm NTU SDI w ² /hr kg/cm ² Units mS/cm mV kg/cm ² dcg C dcg C dcg C kg/cm ²	H H H H H H H H H H H H H H H H H H H	H,M,L Control	2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1	Number Standby 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 1 1 2 2 1 1 2 2 17 17 17 17 17 17 17 17 17 17 17 17	DOC messurement Turbidity measurement Ski Density Monkoring Eketromagnetic Flow meter Daphnagm Level sensor Bourdon Model Conductivity measurement ORP measurement ORP measurement Daphnagm Daphnagm Temperature sensor Temperature sensor
I2 I3 I4 I5 I6 I7 I7 I8 I9 I I 2 3 4 5 6 7 8 9 10 11 11	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Flew) Backwash Pump (Flew) Backwash buling (Tenssure) Backwash buling tank (Utrasonic) Backwash buling tank (Utrasonic) Backwash buling tank (Utrasonic) Backwash buling tank (Utrasonic) Backwash buling tank (Utrasonic) ERSE OSMOSIS PLANT Expipment name Castridge Filer Outel (Conductivity) Castridge Filer Outel (Conductivity) Castridge Filer Outel (Conductivity) Castridge Filer Outel (Congenetation) Castridge Filer Outel (Tressure) Castridge Filer Outel (Tressure) Castridge Filer Outel (Tenserator) Castridge Filer Outel (Consult) Castridge Filer Outel (Consult) Castridge Filer Outel (Consult)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 18 0 - 6 0 - 18 0 - 6 0 - 18 0 - 6 0 - 18 0 - 1 0 - 6 0 - 7 0 - 6 0 - 7 0 - 6 0 - 7 0 - 6 0 - 7 0	ppm NTU SDI m²/hr kg/cm² mm kg/cm² Units mS/cm wV kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,600 0 - 6,600 - 1,500 - 1500 - 15,00 - 1500 - 15,00 - 1500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 0 - 6 0 - 18 0 - 1 0 - 10,000 - 1,500 - 1 0 - 10,000 - 1,500 - 1 0 - 10,000 - 1,500 - 1 0 - 10,000 - 0 - 6,500 - 0 - 2,000 - 0 - 6,500 - 0 - 10,000 - 0 - 6,500 - 0 - 2,000 - 0 - 6,500 - 0 - 10,000 - 0 - 6,000 - 0 - 10,000 - 0 - 6,000 - 0 - 10,000 - 0 - 10,000	ppm NTU SDI m ³ /hr kg/cm ² wm kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ²	H H H H H H H H H H H H H H H H H H H	H.M.L.	2 2 2 2 1 1 2 2 1 2 2 1 2 2 1 1 2 2 1 6 16 16 16 16 16 16 16 16 16 16 16 16 16	Number Standby 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 22 11 22 11 22 17 17 17 17 17 17 17 17 17 17 17 17 17	DOC messurement Turbidiy measurement Sia Density Mentoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity measurement ORP measurement Daphragm Temperature sensor Temperature sensor
12 13 14 15 16 17 18 19 II REV No. 1 2 3 4 5 6 7 8 9 10 11 12	Daal Media Gravky Fiker (ODC) Daal Media Gravky Fiker (Rurbidity) Daal Media Gravky Fiker (Sih Density) Backwash Pump (Fisou) Backwash Pump (Fisou) Backwash Pump (Pressure) Backwash Blower (Pressure) Backwash Blower (Pressure) TERSE OSMOSIS PLANT Equipment name Cartridge Fiker Ouklet (Conductivity) Cartridge Fiker Ouklet (Conductivity) Cartridge Fiker Ouklet (ORP) Cartridge Fiker Ouklet (ORP) Cartridge Fiker Ouklet (ORP) Cartridge Fiker Ouklet (Conductivity) Cartridge Fiker Ouklet (Consure) Cartridge Fiker Ouklet (Consure) Cartridge Fiker Ouklet (Temperature) Cartridge Fiker Ouklet (Temperature) Cartridge Fiker Iouklet (Temperatur	0 - 100 0 - 5 0 - 20 0 - 0 - 00 0 - 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 10,000 - 1,500 - 1,500 - 1,500 - 1,500 0 - 1,500 - 1,500 - 1,500 0 - 1,500 0 - 6 0 - 1,8 0 - 40 0 - 6 0 - 1,8 0 - 40 0 - 6 0 - 1,8 0 - 40 0 - 6 0 - 1,8 0 - 10 0 - 1 0 - 1 0 - 1 0 - 2,1500	ppm NTU SDI m ³ /tr kg/cm ² kg/cm ² Units Units Units Units MS/cm mV kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² m ³ /h	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 10,000 0 - 1,500 0 - 1,500 0 - 1,500 0 - 10,000 0 - 1,500 0 - 1,500 0 - 1,500 0 - 1,500 0 - 1,500 0 - 1,500 0 - 1,000 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -	ppm NTU SDI m²/hr kg/cm² Units mS/cm mV kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm² kg/cm²	H H H H H H H H H H H H H H H H H H H	H,M,L Control	2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		22 22 1 1 22 1 2 2 1 1 2 2 1 7 17 17 17 17 17 17 17 17 17 17 17 17	DOC messurement Turbiday measurement Ska Densky Menkoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductively measurement ORP measurement ORP measurement Pall measurement Daphragm Deaphragm Deaphragm Temperature sensor Temperature transmitter Daphragm Transmitter(Daphragm) Transmitter(Daphragm)
I2 13 14 15 16 17 18 19 II REF No. 12 3 4 5 6 7 8 9 10 11 12 13	Daal Media Gravky Fiker (DOC) Daal Media Gravky Fiker (Turbidity) Daal Media Gravky Fiker (Sih Density) Backwash Pump (Flew) Backwash Pump (Flew) Backwash buling (Flessure) Backwash buling tank (Uirsnonic) Backwash boling tank (Uirsnonic) Backwash boling tank (Uirsnonic) Backwash boling tank (Uirsnonic) Backwash boling tank (Uirsnonic) FERE OSMOSIS PLANT Eugipment name Cartridge Filer Outel (Conductivity) Cartridge Filer Outel (Congenities) Cartridge Filer Outel (Congenities) Cartridge Filer Outel (Trensure) Cartridge Filer Indel (Pressure) Cartridge Filer Indel (Pressure) AcrossidSea Water) Cartridge Filer (Pressure) High Pressure Pump Saction (Fressure)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 60 0 - 6 0 - 6 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 6 0 - 18 0 - 6 0 - 18 0 - 10,000 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 21,500 0 - 18	ppm NTU SDI m'/tr kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² deg C deg C kg/cm ² kg/cm ² kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 - 0 - 6 0 - 6 0 - 10,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 6 0 - 18 0 - 0 - 1 0 - 0 0 - 6 0 - 1 0 - 6 0 - 6 0 - 6 0 - 6 0 - 1 0 - 6 0 - 6 0 - 1 0 - 6 0 - 6 0 - 1 0 - 10,000 0 - 1 0 - 10,000 0 - 10,000 0 - 1,000 0 - 1,0000 0 - 1,0000 0 - 1,0000 0 - 6 0 - 10,000 0 - 1,0000 0 - 1,500 - 1,500 0 - 1,0000 0 - 1,000 0 - 1,0000 0 - 1,0000 0 - 1,00000 0 - 1,0000000000000000000000000000000000	ppm NTU SDI m ³ /hr kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ²	H H H H H H H H H H H H H H H H H H H	H.M.L.	2 2 2 2 1 1 2 2 1 2 2 2 1 1 2 2 1 1 1 6 16 16 16 16 16 16 16 16 16 16 16 16 16	Number Standby 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 22 1 1 22 1 1 22 1 1 7 7 7 7 7 7 7 7	DOC messurement Turbidity messurement Ski Density Mentoring Ekectromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement of MP messurement pla messurement Daphragm Temperature sensor Temperature
I2 13 14 15 16 17 18 19 III REE 10 12 3 4 5 6 7 8 9 10 11 12 13 14	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Bulorer (Pressure) Backwash Blower (Pressure) ERSE OSMOSIS PLANT Equipment name Cartridge Filer Oralet (ORP) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Temperature) Cartridge Filer Oralet (Temperature) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Pressure) Across(sciWenci) Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 60 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 1 0 - 1 0 - 21500 0 - 55	ppm NTU SD1 m²/tr kg/cm² Units mV wV wV dcg C dcg C dcg C kg/cm²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 21,500 0 - 1550	ppm NTU SDI m'/hr kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ²	н н н н н н н н н н н н н н	H,ML Control	2 2 2 2 1 1 2 2 1 2 2 1 1 2 2 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		22 22 11 12 22 11 17 17 17 17 17 17 17 17 17 17 17 17	DOC messurement Turbidity messurement Sa Density Monkoring Electromagnetic Flow meter Daphragm Level sensor Boardon Model Conductivity messurement ORP measurement ORP measurement Daphragm Daphragm Temperature sensor Temperature sensor
I2 13 14 15 16 17 18 19 19 11 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15	Daal Media Gravky Filer (DOC) Daal Media Gravky Filer (Turbdity) Daal Media Gravky Filer (Turbdity) Daal Media Gravky Filer (Sil Density) Backwash Pump (Few) Backwash Pump (Fews) Backwash baling tank (Unrsonic) Backwash baling tank (Unrsonic) Backwash baling tank (Unrsonic) Backwash baling tank (Unrsonic) Backwash Blower (Pressure) Castridge Filer Outlet (Conductivity) Castridge Filer Outlet (Tensure) Castridge Filer Outlet (Tensure) Castridge Filer Outlet (Tensure) Castridge Filer Outlet (Pressure) Castridge Filer Intel (Pressure) Across(Gewattsc) Castridge Filer (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure)	0 - 100 0 - 21 0 - 20 0 - 20 0 - 20 0 - 20 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 15 0 - 15 0 - 14 0 - 6 0 - 18 0 - 0 - 6 0 - 18 0 - 1 0 - 1	ppm NTU SD1 m²/hr kg/cm² Units mV kg/cm²	0 - 100 0 - 20 0 - 6 0 - 6 0 - 6 0 - 6 0 - 10,000 - 1,500 - 1,500 0 - 14 0 - 6 0 - 14 0 - 6 0 - 18 0 - 10,000 0 - 18 0 - 10,000 0 - 18 0 - 10,000 0 - 18 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 - 1,500 - 15,000 0 - 10,000 0	ppm NTU SDI m ³ /hr kg/cm ² Units Units Units Kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ²	H H H H H H H H H H H H H H H H H H H	H.M.L.	2 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		22 22 11 22 11 22 17 17 17 17 17 17 17 17 17 17 17 17 17	DOC messurement Turbiday measurement Sa Density Montoring Electromagnetic Flow meter Daphragm Level sersor Bourdeon Model Conductivity measurement ORP measurement pl measurement pl measurement Daphragm Temperature transmiter Daphragm Daphragm Daphragm Tansmiter(Daphragm) Tansmiter(Daphragm) Electromagnetic Flow meter Daphragm
I2 13 14 15 6 17 18 19 9 11 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 16	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Bulorer (Pressure) Backwash Blower (Pressure) ERSE OSMOSIS PLANT Equipment name Cartridge Filer Oralet (ORP) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Temperature) Cartridge Filer Oralet (Temperature) Cartridge Filer Oralet (Pressure) Cartridge Filer Oralet (Pressure) Across(sciWenci) Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 60 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 1 0 - 1 0 - 21500 0 - 55	ppm NTU SD1 m²/tr kg/cm² Units mV kg/cm²	0 - 100 0 - 20 0 - 6 0 - 6 0 - 14 0 - 6 0 - 14 0 - 6 0 - 14 0 - 6 0 - 16 0 - 10 0 - 0 0 - 10 0 - 0 0 - 6 0 - 10,000 - 1,000 - 15 0 - 10,000 0 - 10,000 - 1,000 - 15 0 - 10,000 0 - 10,000 - 1,000 - 15 0 - 10,000 0 - 10,000 - 1,000 - 15 0 - 10,000 - 1,000 - 15 0 - 10,000 - 1,000 - 15 0 - 10,000 0 - 10,000 - 1,000 - 15 0 - 14 0 - 10 0 - 14 0 - 18 0 - 5 0 - 15 0 - 15 - 1	ppm NTU SDI m'/hr kg/cm ² mm kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ² kg/cm ²	н н н н н н н н н н н н н н	Control	2 2 2 2 1 1 2 2 1 2 2 1 1 2 2 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		22 22 1 1 22 2 2 2 1 1 2 2 2 1 1 7 7 7 7	DOC messurement Turbidity messurement Sita Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Conductivity messurement ORP messurement pli messurement pli messurement pli messurement Daphragm Temperature transmitter Daphragm Daphragm Electromagnetic Flow meter Daphragm Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm)
I2 13 14 14 15 16 17 18 19 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Daul Media Gravky Filer (DOC) Daul Media Gravky Filer (Turbidity) Daul Media Gravky Filer (Sith Density) Backwash Pump (Frews) Backwash Pump (Fressure) Backwash hufting tank (Utrasonici) Backwash bloking tank (Utrasonici) Backwash bloking tank (Utrasonici) Backwash bloking tank (Utrasonici) ERSE OSMOSIS PLANT Expipment name Castridge Filer Otalet (Orden (Conductivity) Castridge Filer Otalet (Orden (Conductivity) Castridge Filer Otalet (Orden (Conductivity) Castridge Filer Otalet (Pressure) Castridge Filer Otalet (Pressure) Methy Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 18 0 - 14 0 - 6 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 6 0 - 6 0 - 1 0 - 6 0 - 1 0 - 6 0 - 6 0 - 1 0 - 6 0 - 6 0 - 1 0 - 1 0 - 6 0 - 1 0 -	ppm NTU SD1 SD1 m ³ /tr kg/cm ² units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 1 0 - 1 0 - 2,1500 0 - 1 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	ppm NTU SDI m²/m kg(cm² umis Unis mS/cm wV kg(cm²	H H H H H H H H H H H H H H H H H H H	Control	2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2		2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	DOC messurement Turbiday messurement Ska Densky Mentoring Eketromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement of Me messurement of Me nessurement of Me nessurement Diaphragm Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature transmitter Diaphragm Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Daphragm
I2 13 14 14 15 16 177 18 19 11 2 3 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 14 15 16 17 18 19	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Bulorer (Pressure) Backwash Blower (Pressure) ERSE OSMOSIS PLANT Equipment name Cartridge Filer Outelt (ORAP) Cartridge Filer Outelt (Pressure) Cartridge Filer Outelt (Pressure) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Pressure) Across(sci Cartridge Filer (Pressure) Across(sci Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Gischarge (Pressure) High Pressure Pump Gischarge (Pressure) High Pressure Pump Gischarge (Pressure) ERD Booster Pump (Perssure) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer (Chrossone) High Pressure Pump Gischarge (Pressure) ERD Booster Pump (Gesare) Cartridge (Pressure) Cartridge Filer Outer) Cartridge F	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 60 0 - 6,000 0 - 6 0 - 6 0 - 6 0 - 18 0 - 10,000 -1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 21,500 0 - 15 0 - 55 0 - 15 0 - 10,000 0 - 10,0000 0 - 10,000 0 - 10,0000 0 - 10,000000000000000000000000000000000	ppm NTU SDI SDI kg/cm ² Units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 21,500 0 - 15 0 - 18 0 - 55 0 - 18 0 - 55 0 - 15 0 - 10,000 0 - 5 0 - 10,000 0 - 1,500 - 1,500 0 - 1,500 - 1,500 - 1,500 0 - 1,500	ppm NTU SDI w/hr kg/cm ² mm kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/c	H H H H H H H H H H H H H H H H H H H	H.M.L.	2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1		2 2 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 7 1 7	DOC messurement Turbiding messurement Sit Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Conductivity messurement ORP messurement Jil messurement Diaphragm Temperature sensor Temperature sensor Daphragm Daphragm Daphragm
12 13 14 15 16 17 18 19 0 11 12 12 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 16 17 18 19 10 12	Daal Media Gravky Filer (DOC) Daal Media Gravky Filer (Turbdity) Daal Media Gravky Filer (Sil Density) Backwash Pump (Few) Backwash Pump (Few) Backwash buling (Fressure) Backwash holding tank (Ursnonic) Backwash holding tank (Ursnonic) Backwash holding tank (Ursnonic) FERE OSMOSIS PLANT Equipment name Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (Ressure) Cartridge Filer Intel (Pressure) Across(Gaustic) Cartridge Filer (Pressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) High Dressure Pump Gicharge (Pressure) ERD Booster Pump (Ressure) CIP Tank Level (Ursnonic) CIP Tank Level (Ursnonic)	0 - 100 0 - 21 0 - 20 0 - 6 0 - 6 0 - 15 0 - 14 0 - 6 0 - 18 0 - 10,000 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 21,500 0 - 18 0 - 21,500 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 6,000 0 - 10 0 - 18 0 - 55 0 - 18 0 - 25 0 - 18 0 - 25 0 - 18 0 - 25 0 - 18 0 - 25 0 - 18 0 - 20 0 - 10 0	ppm NTU SD1 SD1 m ³ /tr kg/cm ² units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10000 0 - 6,000 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 21,500 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 600 0 - 18 0 - 21,500 0 - 18 0 - 21,500 0 - 18 0 - 10 0	ppm NTU SDI m²/m kg(cm² umis Unis mS/cm wV kg(cm²	H H H H H H H H H H H H H H H H H H H	Control	2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1		2 2 2 2 2 2 2 1 1 2 2 1 2 2 1 1 2 1 2 1	DOC messurement Turbiday measurement Ska Densky Mentoring Ekectromagnetic Flow meter Daphragm Level sersor Boardon Model Conductivity measurement OKP measurement planesurement Daphragm Diaphragm Temperature sensor Temperature sensor Temperature sensor Temperature transmiter Daphragm Tansmiter(Daphragm) Transmiter(Daphragm) Transmiter(Daphragm) Transmiter(Daphragm) Daphragm Transmiter(Daphragm) Daphragm Tansmiter(Daphragm) Daphragm Tansmiter(Daphragm) Daphragm Tansmiter(Daphragm) Daphragm Tansmiter(Daphragm) Daphragm Level Gauge (Diaphragm) Level Gauge (Diaphragm)
I2 I2 13 14 14 15 16 17 17 18 19 19 II 2 3 4 5 6 6 7 8 9 10 11 12 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 19 20 21	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Pump (Flow) Backwash Bulorer (Pressure) Backwash Blower (Pressure) ERSE OSMOSIS PLANT Equipment name Cartridge Filer Outelt (ORAP) Cartridge Filer Outelt (Pressure) Cartridge Filer Outelt (Pressure) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Temperature) Cartridge Filer Outelt (Pressure) Across(sci Cartridge Filer (Pressure) Across(sci Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Gischarge (Pressure) High Pressure Pump Gischarge (Pressure) High Pressure Pump Gischarge (Pressure) ERD Booster Pump (Perssure) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer) Cartridge Filer Outer (Chrossone) High Pressure Pump Gischarge (Pressure) ERD Booster Pump (Gesare) Cartridge (Pressure) Cartridge Filer Outer) Cartridge F	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 60 0 - 6,000 0 - 6 0 - 6 0 - 6 0 - 18 0 - 10,000 -1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 21,500 0 - 15 0 - 55 0 - 15 0 - 10,000 0 - 10,0000 0 - 10,000 0 - 10,0000 0 - 10,0000 0 - 10,000000000000000000000000000000000	ppm NTU SD1 SD1 kg/cm ² units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 0 - 18 0 - 1 0 - 21,500 0 - 15 0 - 18 0 - 5 5 0 - 15 0 - 10,000 0 - 5 0 - 10,000 0 - 1,500 - 1,500 0 - 1,500 - 1,500 - 1,500 0 - 1,500 -	ppm NTU SDI w/hr kg/cm ² mm kg/cm ² units mS/cm mV kg/cm ² kg/cm ² kg/c	H H H H H H H H H H H H H H H H H H H	H_ML Control	2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 1		2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1 2 2 1 2 2 1 2 2 1 1 2 1	DOC messurement Turbiding messurement Sit Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Conductivity messurement ORP messurement Jil messurement Diaphragm Temperature sensor Temperature sensor Daphragm Daphragm Daphragm
I2 13 14 15 16 17 18 19 II 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 10 111 12 13 14 15 16 17 18 19 20 21 22 23	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Frews) Backwash Pump (Fressure) Backwash hufting tank (Utrasonic) Backwash bloing tank (Utrasonic) ERSE OSMOSIS PLANT Expipment name Cartridge Filer Outel (Conductivity) Cartridge Filer Outel (Conductivity) Cartridge Filer Outel (Pressure) Cartridge Filer Outel (Tenserature) Cartridge Filer Outel (Pressure) High Pressure Pump Saction (Pressure) CH Tank Level (Utrasonic) CH Tank Level (Utrasonic) CH Pump discharge (Pressure) CH Pump discharge (Pressure) CH Pump discharge (Pressure)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 18 0 - 10,000 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 0 - 6 0 - 18 0 - 40 0 - 0 - 11 0 - 21,500 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 18 0 - 55 0 - 15 0 - 18 0 - 19 0 - 18 0 - 19 0 - 19 0 - 19 0 - 19 0 - 10,000 0 - 15,000 - 15,000 0 - 10,000 0 - 15,000 - 15,000 0 - 15,000 - 15,000 - 15,000 0 - 15,000 - 15	ppm NTU SDI SDI kg/cm ² Units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,600 0 - 6,600 0 - 6,600 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 1 0 - 1 0 - 21,500 0 - 155 0 - 155 0 - 155 0 - 155 0 - 15 0 - 18 0 - 6,000 0 - 6,000 0 - 6,000 0 - 6,000 0 - 10,000 0 - 10,0000 0 - 10,0000 0 - 10,0000 0 - 10,0000 0 - 10,00000 0 - 10,0000000000000000000000000	ppm NTU SDI w/hr kg/cm ² mm kg/cm ² Units mS/cm mV kg/cm ² kg/cm ² kg/c	H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M.L H.M.I.M.Z.L H.M.I.M.Z.L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2		2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 1 2 2 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1	DOC mesurement Turbiday messurement Sia Deneixy Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement ORP messurement of Messurement Daphragm Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature tomber Daphragm Transmitter(Daphragm) Electromagnetic Flow meter Daphragm Tansmitter(Daphragm) Daphragm Tansmitter(Daphragm) Daphragm Daphragm Daphragm Level sensor Level sensor
I2 I3 I I I	Daal Media Garaky Filer (DOC) Daal Media Garaky Filer (Turbidiy) Daal Media Garaky Filer (Turbidiy) Daal Media Garaky Filer (Sil Density) Backwash Pump (Pessure) Backwash hulfing (Pessure) Backwash hulfing tank (Unrsonic) Backwash holding tank (Unrsonic) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (ORP) Cartridge Filer Outlet (Pressure) Cartridge Filer Outlet (Pressure) Cartridge Filer Outlet (Temperature) Cartridge Filer Intet (Pressure) Across(Gavatus) (Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Gacharge (Pressure) High Pressure Pump Gacharge (Pressure) CIP Tank Level (Gauge) CIP Tank Level (Gauge) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure)	0 - 100 0 - 20 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 15 0 - 18 0 - 18 0 - 0 0 - 6 0 - 18 0 - 0 0 - 18 0 - 19 0 - 10 0 - 0 0 - 10 0 - 0 0 - 18 0 - 5 0 - 18 0 - 5 0 - 18 0 - 5 0 - 18 0 - 5 0 - 18 0 - 25 0 - 15 0 - 18 0 - 5 0 - 18 0 - 25 0 - 15 0 - 10 0 - 18 0 - 5 0 - 15 0 - 15 0 - 15 0 - 15 0 - 15 0 - 10 0 - 25 0 - 25 0 - 25 0 - 10 0 - 10 0 - 10 0 - 25 0 - 25 0 - 2 0 - 25 0 - 2 0 - 2	ppm SDI SDI SDI whrtu kg/cm ² units mS/cm mV Units mS/cm mV kg/cm ² kg/cm	0 - 100 0 - 20 0 - 60 0 - 60 0 - 14 0 - 60 0 - 14 0 - 60 0 - 14 0 - 60 0 - 14 0 - 60 0 - 15 0 - 15 0 - 15 0 - 15 0 - 15 0 - 25 0 - 2 0 - 40 0 - 60 0 - 10 0 - 11 0 - 15 0 - 18 0 - 500 0 - 0 - 10 0 - 25 0	ppm NTU SD1 SD1 sD1 kg(cm ² mm kg(cm ² unis mS/cm mV kg(cm ² dcg C dcg C dcg C dcg C dcg C dcg C dcg C kg(cm ² kg(cm ² kg(cm ²) kg(cm ²) kg	H H H H H H H H H H H H H H H H H H H	H.M.L Control	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 2		2 2 2 2 2 2 1 1 2 2 2 1 1 2 1 2 1 2 2 1 1 1 7 7 7 7 7 7 7	DOC messarement Turbiding messarement Sita Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Conductivity messarement ORP messarement Jit messarement Daphragm Temperature transmitter Daphragm Temperature sensor Temperature sensor Daphragm Daphragm Heasarement Daphragm
I2 I3 14 14 15 16 16 17 18 19 19 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 16 177 18 19 200 21 22 23 24 25	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Turbidiy) Backwash Pump (Fress) Backwash Pump (Fressure) Backwash buling tank (Urasonic) Backwash boling tank (Urasonic) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (Rensure) Cartridge Filer Outlet (Rensure) Cartridge Filer Outlet (Rensure) Cartridge Filer Intel (Pressure) Cartridge Filer Intel (Pressure) Cartridge Filer Intel (Pressure) High Pressure Pump Saction (Ressure) IRP Tank Level (Urasonic) CIP Tank Level (Urasonic) CIP Pump discharge (Pressure) RD Booster Pump (Ressure) RD Booster Pump Ressure) RD Booster Pu	0 - 100 0 - 5 0 - 20 0 - 6 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 2150 0 - 15 0 - 18 0 - 6 0 - 18 0 - 2150 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10 0 - 14 0 - 22 0 - 10 0 - 10 0 - 10 0 - 10 0 - 14 0 - 22 0 - 10 0 - 10 0 - 10 0 - 10 0 - 14 0 - 22 0 - 14 0 - 25 0 - 15 0 - 18 0 - 10 0 - 10 0 - 10 0 - 10 0 - 14 0 - 22 0 - 10 0 - 14 0 - 22 0 - 10 0 - 21 0 - 10 0 - 21 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10 0 - 21 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10 0 - 10 0 - 21 0 - 10 0 - 10 0 - 10 0 - 21 0 - 21 0 - 10 0 - 10 0 - 10 0 - 21 0 - 21	ppm NTU SD1 SD1 kg/cm ² um kg/cm ² unis mS/cm mV kg/cm ² kg/cm	0 - 100 0 - 5 0 - 20 0 - 10000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 6 0 - 14 0 - 6 0 - 18 0 - 21,500 0 - 6 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 21,500 0 - 40 0 - 40 0 - 6 0 - 18 0 - 21,500 0 - 100 0 - 14 0 - 2,500 0 - 21,500 0 -	ppm NTU SDI spin w/m² mm kg/cm² Units mS/cm w kg/cm²	H H H H H H H H H H H H H H H H H H H	H.M.I. Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2		2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1	DOC messurement Turbiday messurement Ski Densky Mentoring Eketromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement ORP messurement Diaphragm Diaphragm Temperature sensor Temperature the sensor Temperature sensor Temperature the sensor Temperature the sensor Temperature the sensor Teammiter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Level Gauge (Diaphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm
12 13 13 14 15 16 16 17 17 18 19 19 19 19 11 2 3 4 5 6 7 7 8 9 10 12 13 14 15 16 17 18 18 15 16 17 18 9 100 21 22 22 24 25	Daul Media Garviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Fress) Backwash Pump (Fress) Backwash Pump (Fressure) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Castridge Filer Outelt (Conductivity) Cartridge Filer Outelt (Congenerative) Cartridge Filer Outelt (Congenerative) Cartridge Filer Outelt (Pressure) Cartridge Cartridge Filer (P	0 - 100 0 - 5 0 - 20 0 - 20 0 - 0 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 15 0 - 15 0 - 15 0 - 16 0 - 4 0 - 6 0 - 6 0 - 18 0 - 4 0 - 0 0 - 6 0 - 18 0 - 4 0 - 0 0 - 1 0 - 1 0 - 21500 0 - 15 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 21500 0 - 14 0 - 25 0 - 25 0 - 24 0 - 25 0	ppm NTU SD1 SD1 kg/cm ² wm kg/cm ² units mS/cm mV kg/cm ² kg/cm	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,600 0 - 6,600 0 - 6,600 0 - 6,600 0 - 1500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 60 0 - 60 0 - 60 0 - 60 0 - 18 0 - 21,500 0 - 6,000 0 - 6,000 0 - 6,000 0 - 6,000 0 - 14 0 - 15 0 - 18 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 6,000 0 - 6,000 0 - 0,000 0 - 1,000 0 - 2,000 0 - 2	ppm NTU SDI m²/m kg/cm² mm kg/cm² units mSlcm mV kg/cm²	H H H H H H H H H H H H H H H H H H H	HML Control	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1		2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 1 2 1 1 1 1 1 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	DOC messurement Turbidty messurement Sia Density Monitoring Electromagnetic Flow meter Daphragm Level sensor Boardon Model Conductivity measurement ORP messurement pl measurement Daphragm Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature tansmitter Daphragm Transmitter(Daphragm) Electromagnetic Flow meter Daphragm Tansmitter(Daphragm) Elevisor Daphragm Level sensor Level sensor Level sensor Level sensor Hereissenson Daphragm H measurement Daphragm H measurement Daphragm H measurement Daphragm J masmitter(Daphragm) Diaphragm
12 13 13 14 15 16 17 18 18 17 18 16 17 18 18 17 18 16 17 18 18 12 3 4 5 6 6 7 7 8 9 0 101 12 13 14 15 16 16 177 18 19 200 21 22 23 24 25 26 26	Daul Media Gravky Filer (DOC) Daul Media Gravky Filer (Turbidiy) Daul Media Gravky Filer (Sil Density) Backwash Pump (Few) Backwash Pump (Few) Backwash buling (Fressure) Backwash boling tark (Ursnonic) Backwash boling tark (Ursnonic) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (Ressure) Cartridge Filer Intet (Pressure) Across(Sca Matc) Cartridge Filer (Pressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) CIP Tark Level (Ursnonic) CIP Tark Level (Ursnonic) CIP Tark Level (Ursnonic) CIP Pump discharge (Pressure) RD Booster Pump (Ressure) CIP Pump discharge (Ressure) RD Booster Pump discharge (Ressure)	0 - 100 0 - 20 0 - 6 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 14 0 - 5 0 - 15 0 - 18 0 - 5 0 - 18 0 - 5 0 - 15 0 - 18 0 - 5 0 - 10 0 - 14 0 - 5 0 - 21,500 0 - 10 0 - 21,500 0 - 10 0 - 14 0 - 5 0 - 21,500 0 - 10 0 - 21,500 0 - 2	ppm SD1 SD1 sD1 kg/cm ² kg/cm ² units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 20 0 - 60 0 - 60 0 - 60 0 - 10 0 - 14 0 - 6 0 - 18 0 - 10 0 - 0 - 18 0 - 10 0 - 0 - 18 0 - 10 0 - 0 - 18 0 - 10 0 - 11 0 - 15 0 - 18 0 - 55 0 - 21500 0 - 21500	ppm NTU SD1 SD1 SD1 scalar mm kg(cm² units mS/cm wV kg(cm²	H H H H H H H H H H H H H H H	H,M,L Control H,M1,M2,L H,M1,M2,L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 1 1 2 2 1 2 2 1 1 6 16 16 16 16 16 16 16 16 16 16 16		2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1	DOC messurement Turbidiy measurement Sa Denty Montoring Electromagnetic Flow meter Daphragm Level sensor Boardon Model Conductively measurement ORP measurement pl measurement pl measurement Daphragm Temperature transmiter Daphragm Daphragm Transmiter(Daphragm) Transmiter(Daphragm) Transmiter(Daphragm) Daphragm Transmiter(Daphragm) Daphragm Level Gauge (Diaphragm) Daphragm Transmiter(Daphragm) Daphragm Level Gauge (Diaphragm) Electromagnetic (Diaphragm) Daphragm Transmiter(Daphragm) Daphragm Electromagnetic (Diaphragm) Diaphragm Electromagnetic (Diaphragm) Diaphragm Electromagnetic (Diaphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Electromagnetic Flow meter Daphragm
12 13 13 14 15 16 16 17 18 19 19 19 11 12 3 4 5 6 7 7 8 9 10 11 12 3 3 14 15 16 16 7 10 11 12 23 24 26 26 26 26 26 27 27 28 28	Daul Media Garviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sit Density) Backwash Pump (Fress) Backwash Pump (Fress) Backwash Pump (Fressure) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Backwash buding tank (Urasonic) Castridge Filer Outelt (Conductivity) Cartridge Filer Outelt (Congenerative) Cartridge Filer Outelt (Congenerative) Cartridge Filer Outelt (Pressure) Cartridge Cartridge Filer (P	0 - 100 0 - 5 0 - 20 0 - 20 0 - 0 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 15 0 - 15 0 - 15 0 - 15 0 - 16 0 - 4 0 - 6 0 - 6 0 - 18 0 - 4 0 - 0 0 - 6 0 - 18 0 - 4 0 - 0 0 - 1 0 - 1 0 - 21500 0 - 15 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 21500 0 - 14 0 - 25 0 - 25 0 - 24 0 - 25 0	ppm NTU SD1 SD1 kg/cm ² wm kg/cm ² units mS/cm mV kg/cm ² kg/cm	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,600 0 - 6,600 0 - 6,600 0 - 6,600 0 - 1500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 60 0 - 60 0 - 60 0 - 60 0 - 18 0 - 21,500 0 - 6,000 0 - 6,000 0 - 6,000 0 - 6,000 0 - 14 0 - 15 0 - 18 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 6,000 0 - 6,000 0 - 0,000 0 - 1,000 0 - 2,000 0 - 2	ppm NTU SDI m²/m kg/cm² mm kg/cm² units mSlcm mV kg/cm²	H H H H H H H H H H H H H H H H H H H	H,MJ.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1		2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2	DOC messurement Turbidty messurement Sia Density Monitoring Electromagnetic Flow meter Daphragm Level sensor Boardon Model Conductivity measurement ORP messurement pl measurement Daphragm Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature tansmitter Daphragm Transmitter(Daphragm) Electromagnetic Flow meter Daphragm Tansmitter(Daphragm) Elevisor Daphragm Level sensor Level sensor Level sensor Level sensor Hereissenson Daphragm H measurement Daphragm H measurement Daphragm H measurement Daphragm J masmitter(Daphragm) Diaphragm
12 13 13 14 15 16 16 17 18 1 19 1 2 3 4 5 6 7 7 8 9 10 111 12 13 4 15 16 10 11 12 13 14 15 15 16 16 17 18 10 111 12 13 14 15 16 16 17 17 18 20 21 22 23 24 25 26 27 28 29 20 30	Daul Media Gravky Filer (DOC) Daul Media Gravky Filer (Turbidiy) Daul Media Gravky Filer (Sith Density) Backwash Pump (Fress) Backwash Pump (Fressure) Backwash buling tank (Ursnonic) Backwash buling tank (Ursnonic) FRSE OSMOSIS PLANT Farger Start Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Pressure) Cartridge Filer Intel (Pressure) Cartridge Filer Intel (Pressure) Acrossides Mater) Cartridge Filer (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Gacharge (Pressure) CIP Tank Level (Ultrasonic) CIP Tank Level (Ultrasonic) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure) RO Booster Pump (Pressure) RO Booster Pump (Pressure) RO Panhaing Pump discharge (Pressure)	0 - 100 0 - 5 0 - 20 0 - 6 0 - 14 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 10000 0 - 10 0 - 11 0 - 21500 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 55 0 - 18 0 - 20 0 0 0 - 100 0 - 0 0 - 14 0 - 25 0 - 4 0 - 25 0 - 15 0 - 18 0 - 5 0 - 18 0 - 20 0 - 100 0 - 0 0 - 100 0 - 14 0 - 25 0 - 4 0 - 25 0 - 14 0 - 25 0 - 4 0 - 20 0 - 14 0 - 25 0 - 4 0 - 20 0 - 14 0 - 25 0 - 4 0 - 14 0 - 25 0 - 4 0 - 14 0 - 25 0 - 4 0 - 100 0 - 100 0 - 100 0 - 14 0 - 25 0 - 14 0 - 100 0 - 2 - 5 0 - 100 0 - 2 - 15 0 - 100 0 - 2 - 100 0 - 100	ppm NTU SD1 SD1 kg/cm ² units mS/cm mV kg/cm ² kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 0 - 14 0 - 14 0 - 6 0 - 18 0 - 14 0 - 6 0 - 18 0 - 1 0 - 2 0 - 0 0 - 1 0 - 2 0 - 0 0 - 0 0 - 1 0 - 1 0 - 1 0 - 2 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 1 0 - 1 0 - 2 0 - 0 0 -	ppm NTU SDI m²/m kg/cm² mm kg/cm² mV Units mS/cm kg/cm² kg/cm² <	H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 2 1 2		2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2	DOC messurement Turbidty messurement Ski Densky Montoring Eketromagnetic Flow meter Daphragm Level sersor Boardon Model Conductivity messurement of Messurement Diaphragm Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Eketromagnetic Flow meter Daphragm Eketromagnetic Flow meter Daphragm Eketromagnetic Flow meter Daphragm Eketromagnetic Flow meter Daphragm Transmitter(Daphragm) Daphragm Diaphragm Transmitter(Daphragm) Diaphragm Diaphragm Transmitter(Daphragm) Daphragm Diaphragm Diaphragm Transmitter(Daphragm) Daphragm
12 13 14 15 16 17 18 10 17 18 18 1 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 14 15 16 17 10 11 12 2 3 4 4 5 6 6 7 7 8 9 10 11 12 22 23 24 25 26 27 28 30 31	Daal Media Garaky Filer (DOC) Daal Media Garaky Filer (Turbidiy) Daal Media Garaky Filer (Turbidiy) Daal Media Garaky Filer (Turbidiy) Backwash Pump (Pessure) Backwash Pump (Pessure) Backwash holding tank (Unrsonic) Backwash holding tank (Unrsonic) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Tensure) Cartridge Filer Outlet (Tensure) Cartridge Filer Outlet (Tensure) Cartridge Filer Outlet (Tensure) Cartridge Filer Intet (Pressure) Across(Sei Water) (Cartridge Filer (Pressure) Hagh Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) High Pressure Pump Saction (Pressure) Tensure Pump Saction (Pressure) Tensure Pump Gherange (Pressure) CIP Tank Level (Gauge) CIP Tank Level (Gauge) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure) RO Panhing Pump discharge (Pressure) RO Panneite Water Pump (Pressare) RO Panneite Water Pump (Pressare) RO Panneite Water Pump (Pressare) RO Panneite Undet (Idi) RO Permente Undet (Idi)	0 - 100 0 - 20 0 - 20 0 - 20 0 - 20 0 - 20 0 - 20 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 16 0 - 18 0 - 40 0 - 6 0 - 18 0 - 15 0 - 14 0 - 25 0 - 25 0 - 25 0 - 21,500 0 - 22,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 22,500 0 - 21,500 0 - 21,500 0 - 21,500 0 - 21,500 0 - 21,500 0 - 21,500 0 - 22,500 0 - 22	ppm SDI SDI SDI kg/cm ² units Units Units Units Kg/cm ² kg/cm ²	0 - 100 0 - 10,000 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 -1,200 - 1,500 0 - 140 0 - 141 0 - 6 0 - 141 0 - 6 0 - 141 0 - 6 0 - 181 0 - 160 0 - 6 0 - 181 0 - 15 0 - 15 0 - 141 0 - 25 0 - 2,1500 0 - 2,1500 0 - 11,000 0 - 12,500 0 - 2,1500 0 - 10,000 0 - 12,500 0 - 2,1500 0 - 10,000 0 - 12,500 0 - 2,1500 0 - 10,000 0 - 10,000 0 - 2,1500 0 - 11,0000 0 - 11,0000 0 - 12,1500 0 - 10,0000 0 - 10,0000 0 - 2,1500 0 - 11,0000 0 - 11,0000 0 - 12,000 0 - 12,000 0 - 12,000 0 - 12,000 0 - 2,000 0 - 2,0000 0 - 2,00000 0 - 2,00000 0 - 2,00000 0 - 2,00000 0 - 2,00000 0 - 2,0000	ppm NTU SD1 SD1 sD1 sD1 w?km² kg/cm² wm mS/cm² ww kg/cm² k	H H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1		2 2 2 2 2 2 1 1 2 2 1 2 1 2 1 2 1 2 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	DOC messurement Turbidity measurement Sita Density Montoring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity measurement of measurement pli measurement pli measurement pli measurement Daphragm Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Transmiter Daphragm) Daphragm Transmiter Daphragm) Daphragm Transmiter Daphragm) Daphragm Transmiter Daphragm) Daphragm Transmiter Daphragm) Daphragm Transmiter Daphragm) Daphragm H measurement Daphragm Transmiter Daphragm) Electoromagnetic Flow meter Daphragm Transmiter Daphragm) Electoromagnetic Flow meter Daphragm Transmiter (Daphragm) Daphragm
12 13 13 14 15 16 14 15 16 17 18 19 19 1 2 3 4 5 6 7 7 8 9 10 11 12 12 3 14 15 16 7 17 18 19 20 21 14 15 16 16 17 17 18 19 20 21 12 22 23 24 25 26 26 27 28 30 31 31 32	Daul Media Gravky Filer (DOC) Daul Media Gravky Filer (Turbidiy) Daul Media Gravky Filer (Sil Density) Backwash Pump (Few) Backwash Pump (Few) Backwash buling (Fressure) Backwash boling tark (Ursnonic) Backwash Barver (Pressure) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (Ressure) Cartridge Filer Intel (Pressure) Cartridge Filer Outlet (Ressure) Cartridge Filer Outlet (Ressure) Across(Gacutacie) Cartridge Filer (Pressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) CIP Tark Level (Urassori) CIP Tark Level (Urassori) CIP Pump discharge (Ressure) CIP Pump discharge (Ressure) CIP Pump discharge (Ressure) RO Bonker Pump (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity)	$\begin{array}{c} 0 & -100\\ 0 & -5\\ 0 & -20\\ 0 & -$	ppm NTU SD1 SD1 sC1 m"/m" kg(cm2 mW Units mV kg(cm2 kg(cm2 <	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 21,500 0 - 14 0 - 55 0 - 12 0 - 21,500 0 - 21,5	ppm NTU SDI spin m²/nr kg(cm²) units mS/cm mV kg(cm²)	H H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1	DOC messurement Turbidiy messurement Ski Densky Montoring Eketromagnetic Flow meter Daphragm Level sersor Boardon Model Conductivity messurement of messurement planessurement planepargm Daphragm Temperature sensor Temperature flag Daphragm Transmitter(Daphragm) Daphragm Exettomagnetic Flow meter Daphragm Transmitter(Daphragm) Disphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm Transmitter(Daphragm) Daphragm
12 12 13 13 14 15 16 16 17 18 19 2 3 4 5 6 6 6 6 6 6 6 7 7 8 9 10 11 12 13 14 15 16 16 17 18 199 21 22 23 24 26 26 26 27 28 299 31 32 33	Daul Media Graviy Filer (DOC) Daul Media Graviy Filer (Turbidiy) Daul Media Graviy Filer (Sh Density) Backwash Pump (Fress) Backwash Pump (Fressure) Backwash buling tank (Urasonic) Backwash buling tank (Urasonic) ERSE OSMOSIS PLANT Expipment name Cartridge Filer Outel (Conductivity) Cartridge Filer Outel (Conductivity) Cartridge Filer Outel (Pressure) Cartridge Filer Outel (Pressure) Earb Booster Pump Saction (Pressure) High Pressare Pump Saction (Pressure) High Pressare Pump Gacharge (Pressure) CIP Tank Level (Urasonic) CIP Tank Level (Urasonic) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure) CIP Pump discharge (Pressure) RO Booster Pump (Pressure) RO Booster Pump (Pressure) RO Flashing Pump discharge (Pressure) RO Pressure Valler (Pum) RO Flashing Pump discharge (Pressure) RO Panhing Pump d	0 - 100 0 - 5 0 - 20 0 - 20 0 - 0 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 16 0 - 16 0 - 16 0 - 14 0 - 6 0 - 18 0 - 40 0 - 0 - 6 0 - 18 0 - 21,500 0 - 15 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 20,500 0 - 100 0 - 0 0 - 20,500 0 - 100 0 - 0 0 - 14 0 - 25 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 20,500 0 - 100 0 - 0 0 - 100 0 - 14 0 - 22,500 0 - 4 0 - 2,55 0 - 14 0 - 21,500 0 - 100 0 - 14 0 - 25 0 - 14 0 - 25 0 - 14 0 - 25 0 - 1000 0 - 14 0 - 25 0 - 14 0 - 25 0 - 15 0 - 18 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 18 0 - 55 0 - 15 0 - 1000 0 - 0 - 10 0 - 2,55 0 - 14 0 - 14 0 - 2,55 0 - 14 0 - 15 0 - 14 0 - 15 0 - 14 0 - 15 0 - 15 0 - 14 0 - 2,55 0 - 14 0 - 15 0 - 1	ppm NTU SD1 SD1 SD1 SD1 mn kg/cm ² mm Units mS/cm mV kg/cm ²	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6,000 0 - 6,000 0 - 6,000 - 1,500 - 1500 0 - 10,000 0 - 14 0 - 6 0 - 18 0 - 40 0 - 0 - 14 0 - 6 0 - 14 0 - 6 0 - 18 0 - 10 0 - 0 - 15 0 - 11 0 - 21,500 0 - 6 0 - 18 0 - 55 0 - 15 0 - 18 0 - 6 0 - 18 0 - 20,500 0 - 20,500 0 - 20,500 0 - 21,500 0 - 25,500 0 - 21,500 0 - 14 0 - 25,50 0 - 21,500 0 - 21,500	ppm NTU SDI m²/ar kg/cm² mm kg/cm² mW Units mSlcm mV kg/cm²	H H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1	DOC messurement Turbiday messurement Sia Denity Menioring Electromagnetic Flow meter Daphragm Level sensor Bourdon Model Conductivity messurement ORP messurement Daphragm Temperature sensor Temperature s
12 13 13 13 14 15 16 16 17 18 19 19 11 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 6 7 7 10 10 11 12 12 3 13 14 15 16 16 17 17 18 18 19 19 10 20 21 23 24 25 26 26 29 30 33 33 33	Daul Media Gravky Filer (DOC) Daul Media Gravky Filer (Turbidiy) Daul Media Gravky Filer (Sil Density) Backwash Pump (Few) Backwash Pump (Few) Backwash buling (Fressure) Backwash boling tark (Ursnonic) Backwash Barver (Pressure) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (Conductivity) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (RPP) Cartridge Filer Outlet (Ressure) Cartridge Filer Intel (Pressure) Cartridge Filer Outlet (Ressure) Cartridge Filer Outlet (Ressure) Across(Gacutacie) Cartridge Filer (Pressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) High Pressure Pump Saction (Ressure) CIP Tark Level (Urassori) CIP Tark Level (Urassori) CIP Pump discharge (Ressure) CIP Pump discharge (Ressure) CIP Pump discharge (Ressure) RO Bonker Pump (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Flanking Pump discharge (Ressure) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity) RO Pernnete Outlet (Conductivity)	0 - 100 0 - 20 0 - 21 0 - 12 0 - 21 0 -	ppm NTU SD1 SD1 sC1 m"/m" kg(cm2 mW Units mV kg(cm2 kg(cm2 <	0 - 100 0 - 5 0 - 20 0 - 10,000 0 - 6 0 - 6,000 0 - 6 0 - 6,000 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 - 1,500 0 - 6 0 - 18 0 - 40 0 - 6 0 - 18 0 - 21,500 0 - 14 0 - 55 0 - 12 0 - 21,500 0 - 21,5	ppm NTU SDI m²/hr kg/cm² mm kg/cm² mm kg/cm² mN b kg/cm² m²/h	H H H H H H H H H H H H H H H H H H H H	H.M.L Control H.M.I.M2L H.M.I.M2L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 1 7 1 7 7 7 7 7 7 7 7 7 7 7	DOC messurement Turbiday messurement Ski Densky Mentoring Electromagnetic Flow meter Daphragm Level sersor Boardon Model Conductivity messurement of messurement planepargm Diaphragm Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature sensor Temperature transmiter Daphragm Transmiter(Daphragm) Transmiter(Daphragm) Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Electromagnetic Flow meter Daphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Electromagnetic Flow meter Daphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm) Diaphragm Transmiter(Daphragm)


W	POS	T TREATNENT										
	No.	E-viewent annua	Range	Units	Range(select)	Units	Alarm	Control		Number		Model
	INO.	Equipment name	Range	Units	Range(select)	Units	Alarm	Control	Duty	Standby	Total	Model
	1	Lime Filter Outlet (pH)	0 - 14		0 - 14		H,L		2	-	2	pH measurement
	2	Lime Filter Inlet (Flow)	0 - 500	m ³ /h	0 - 500	m ³ /h			2	-	2	Electromagnetic Flow meter
	3	Lime Filter Backwash Water (Flow)	0 - 10	m ³ /min	0 - 10	m ³ /min	H		2	-	2	Electromagnetic Flow meter
	4	Lime Filter Backwash Blower (Pressure)	0 - 6	kg/cm ²	0 - 6	kg/cm ²	Н		4	-	4	Bourdon
	5	Backwash (Pressure)	0 - 6	kg/cm ²	0 - 6	kg/cm ²	Н		4	-	4	Diaphragm
	6	Instrument Air System (Temperature)	0 - 60	deg C	0 - 60	deg C	Н		2	-	2	Temperature Gauge
	7	Instrument Air System (Pressure)	0 - 10	kg/cm ²	0 - 10	kg/cm ²	Н		2	-	2	Bourdon
	8	Instrument Air System (Pressure)	0 - 7.5	kg/cm ²	0 - 7.5	kg/cm ²	Н		2	-	2	Pressure switch
v	WA	FER STRAGE AND TRANSFER										
	No.	Equipment name	Range	Units	Range(select)	Units	Alarm	Control		Number		Model
			ě	0.1110		0.1110			Duty	Standby	Total	
	1	Portable Water Tank (Ultrasonic)	0 - 5,000	mm	0 - 5,000	mm	H,L	H,M,L	2	-	2	Level sensor
	2	Portable Water Tank (Float)	0 - 5,000	mm	0 - 5,000	mm	H,L	H,M,L	2	-	2	Level sensor
	3	Product Water Tank (Ultrasonic)	0 - 20,000	mm	0 - 20,000	mm	H	H,M,L	2	-	2	Level sensor
	4	Product Water Tank (Float)	0 - 20,000	mm	0 - 20,000	mm	Н	H,M,L	2	-	2	Level sensor
	5	Portable Water Tank (PH)	0 - 14		0 - 14		H,L		2	-	2	pH measurement

Appendix 6.6 Equipment List for the Perur DSP

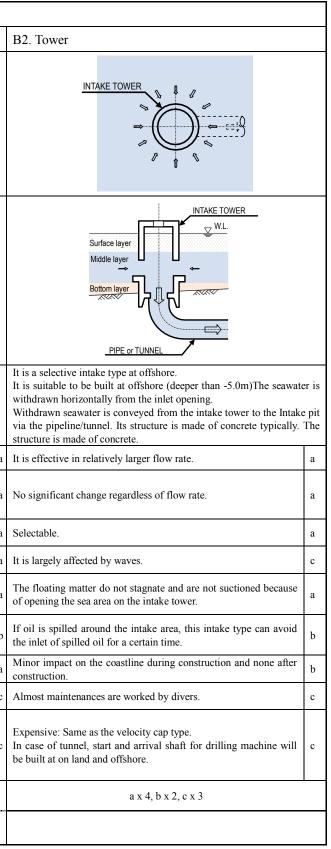
SEA WATER INTAKE	1,080	MLD	1								T	4 9 1 91	D	n	1		
No. Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Numl Duty Stand		Service Power kW	Travelling Time	Loading Factor	Availability Factor	Erectricity Consumed kW/d	Erectricity Usage kW	Model	Specification	Material/Oth
1 Intake terminal	1,080	MLD	22,500	m ³ /hr	-	-	2		2				a triva				
2 Intake Pipe	1,080	MLD	1.38	m/s			2		2						HDPE Pipe,6.4ba	r ϕ 2,400(I.D), ϕ 2,500(O.D) × 2lines	HDPE PE-100 6.4
3 Stop log for intake pipe inlet	1,080	MLD	2,500	m ³ /hr	1		18	1	8				1		Split type	Split type	CS+TarEpoxy
4 Trash rack	1,080	MLD	11,250	m ³ /hr	1	1.5	4		4 6	24	4 85%	100%	122.40	5.10	Bar Screen	Bar Screen+rake	SUS316L Ti
5 Trash rack garbage machine					1	1.5	4		4 6	12	2 85%	100%	61.20	5.10)		SUS316L Ti
6 Travelling Band Screen	1,080	MLD	11,250	m ³ /hr	-	5.5	4		4 22	24	4 85%	100%	448.80	18.70	Band Screen	Mesh : 3mm, Wash Water : 15-20L/s each, 2in-1out	SUS316L Ti + Ny
7 Screen Back Wash Pump			0.45	m ³ /min	10	15	1	1	2 15			100%	153.00	12.75	Centrifuge Pump		Super Duplex
8 Intake Pump	1,080	MLD	11,250	m ³ /hr	25	1000	4	2	6 4,000	24	4 92%	100%	88,275.86	3,678.16	Virtical Turbin Pum	p	GFRPP
9 Shock Dosing Pump (NaClO)	3.8	m3/d	1,900.0	L/hr	30	3.7	2	1	3 7	1	1 85%	100%	6.29	6.29	Chemical Pump	Dose rate:10mg/l	Ti
													89,067.55	3,726.10)		
CHEMICAL DOSING SYSTEM	1,077 1	MLD															
No. Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Numl Duty Stand		Service Power kW	Travelling Time	Loading Factor	Availability Factor	Erectricity Consumed kW/d	Erectricity Usage kW	Model	Specification	Material/Ot
1 Dosing Tank (H ₂ SO ₄)	292.7	m ³	100	m ³	-	-	3		3							14days each Concentration:98%	FRP
2 Dosing Pump (H ₂ SO ₄)	20,905	L/d	217.8	L/hr	30	0.4	4	4	8 2	24	4 85%	100%	32.64	1.36	Chemical Pump	Dose rate:35mg/l	SUS316
3 Dosing Tank (NaOH)	106	m ³	60	m ³	-	-	2		2							14days.Concentration:50%	SUS316
4 Dosing Pump (NaOH)	7,582	L/d	79.0	L/hr	30	0.4	-	4	8 2	20	85%	100%	27.20	1 36	Chemical Pump	Coagulation/Flocculation pH:6.8,Concentration:50%	SUS316
5 Dosing Tank (FeCl ₃)	922.70	m ³	100		-	-	10	1	0				20			14days,Concentration:40%	FRP
6 Dosing Pump (FeCl ₃)(For Lamella)	47,072	L/d	82.0	L/hr	30	0.4	24	12 3	6 10	24	4 85%	100%	195.84	8 16	Chemical Pump	Dose rate:Max25mg/LConcentration:40%	SUS316
7 Dosing Pump (FeCl ₃)(For DAF)	18,829	L/d	25.0	L/hr	30	0.4		16 4	+				261.12		Chemical Pump	Dose rate:Max10mg/l,Concentration:40%	SUS316
8 Dosing System (Polymer)(For Lamella)	269,250	L/d	468	L/hr	30			12 3	+			100%	5,385.60	224.40	1	Dose rate:0.1-0.5mg/LConcentration:0.2%	SUS316
9 Dosing System (Polymer)(For DAF)	161,550	L/d	210	L/hr	30	7.5		16 4	+			100%	4.896.00	204.00		Dose rate:0.1-0.3mg/l,Concentration:0.2%	SUS316
10 Dosing Tank (SBS)	787.7	m ³	100	m ³			8	10 1	8	21	1 0570	10070	1,050.00	201.00	, 	14Days, Concentration:40%	FRP
11 Dosing Tank Mixer (SBS)	150		100-150	-1 -1	-	15	8		8 120	12	2 85%	100%	1,224.00	102.00	Agitator	50Hz	SUS316
12 Dosing Pump (SBS)	60.3	L/d	0.2	L/hr	30	0.4		9 2	5 6	24					Chemical Pump	50Hz	SUS316
13 Dosing Tank (Anti Scalant)	36.6	m ³	20	3		0.1	2		2	21	1 0570	10070	150.50	5.11		14days,Dose rate:1.0mg/LConcentration:35%	FRP
14 Dosing Tank Mixer (Anti Scalant)	150		100-150		-	5.5	2	-	2 11	12	2 85%	100%	112.20	9 35	Agitator	50Hz	SUS316
15 Dosing Pump (Anti Scalant)	2.6	L/d	0.1	s L/hr	30	0.4		9 2	5 6	24	-				Chemical Pump	Dose rate:0.7mg/l	SUS316
16 Dosing Tank (NaClO)	616	m ³	80			0.1	8		8	21	1 0570	10070	150.50	5.11		14days,Sodium hypochlorite,Concentration:10%	FRP+PVC
17 Dosing Pump (NaClO)	44.6		464.6	L/hr	10	0.4	4	2	6 2	24	4 85%	100%	32.64	1 36	Chemical Pump	Dose rateMax4.:5mg/l	Ti
	11.0	iiib/ d	101.0	L/10	10	0.1			2		0570	10070	52.01	1.50			
													12.395.72	572.39	1		
PRETREATMENT SYSTEM	1,077	MLD	1		1		I		1		1						1
No. Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Numl Duty Stand		Service Power kW	Travelling Time	Loading Factor	Availability Factor	Erectricity Consumed kW/d	Erectricity Usage kW	Model	Specification	Material/O
1 Coagulation Tank	12.00	m ²	12.25	m ²			4		4							3.5m×3.5m×7.0m	Concreat+epoxy
2 Flash Mixer(Coagulation)/Rapid Mixer	1,500	s ⁻¹	Minimum 700	s ⁻¹	-	37	4		4 148	24	4 90%	100%	3,196.80	133.20)	25sec, Velocity Gradient:600,0.00103N.s/m2	SUS316L+HRL
3 Flocculator	12.00	m ²	12.78	m ²	-	-	96	9	6							Detention time:10minuts(minimum),3.5m×3.65m×7.0m	Concreat+epoxy
4 Stage-1 Mixer	100	s ⁻¹	70-100	s ⁻¹	-	2.2	48	4	8 106	24	4 90%	100%	2,280.96	95.04	Agitator:88.7m3	Velocity Gradient:70,0.00103N.s/m2	SUS316L+HRL
5 Stage-2 Mixer	50	s ⁻¹	30-50	s ⁻¹	-	3.7		4	8 178	24	4 90%	100%	3,836.16		Agitator:88.7m3	Velocity Gradient:30,0.00103N.s/m2	SUS316L+HRL
6 Lamella Clarifier(Gravity settler)	1,077	MLD	1,870	m ³ /hr	1		24	2	4							Area required/unit:1,514.17m2,18m×7.8m×24	Concreat+epoxy
7 Sludge Scraper(for Lamella filter)	,,,,,			111 / 111	-	3.7			4 89	24	4 90%	100%	1,918.08	79.92	2	Circumferetial verocity 3m/min(Max)	SUS316
8 Sludge Mixer					1	5.5			4 22					19.80			SUS316L+HRL
9 Dissolved Air Flotation(DAF) System					1										1	15m×6.7m×6.5m	Concreat+epoxy
10 Flash Mixer for DAF	36.74	m ²	38.44	m ²	1	37	8		8 296	24	4 90%	100%	6,393.60	266.40		30sec,6.2m×6.2m×5.0m	Concreat+epox
11 Flocculatar for DAF	45.92	m ²	48.24	m ²	1		128	12					.,		1	10min,7.2m×6.7m×5.0m	Concreat+epoxy
12 Stage-1 Mixer	70	s ⁻¹	70-100	s ⁻¹		11		6		24	4 90%	100%	15,206.40	633.60	Agitator:153.6m3	Velocity Gradient:70,0.00103N.s/m2	SUS316L+HRL
13 Stage-2 Mixer	50	s ⁻¹	30-50	s ⁻¹		15		6	+						Agitator:153.6m3	Velocity Gradient:30,0.00103N.s/m2	SUS316L+HRI
14 DAF	1,058	MLD	502.5		-	-	32		2				.,			Area:100.5m ² ,Loading:15.0m/hr	Concreat+epox
	126.96		165.4	m ³ /hr	30	22			4 704	24	4 93%	100%	15,769.60	657.07	7	12%Recycle	Super Duplex
15 DAF Recirculation Pump	120.90		6.96	l/min		22	4	2	6 88				1,795.20	74.80			
1			0.50		-	11		3	2 352					299.20		Circumferetial verocity 3m/min(Max)	SUS316
16 Air Compressor			132.6	m ²	-	-	40	4	0	21	0.2.70	100/0	,,100.00	277.20		Verocity:8m/hr, Filler:Sand-Anthracite,16.2m×8.5m×	Concreat+epox
16 Air Compressor 17 Sludge Scraper(for DAF)	37	MED				-			n .		1					13min	Concreat+epox
 Air Compressor Sludge Scraper(for DAF) Dual Media Gravity Filters 	37	MLD		3			2								1		concreat + epox
 Air Compressor Sludge Scraper(for DAF) Dual Media Gravity Filters Backwash tank 			1,300	m ³	Q	100	2	1	2 220	15	5 050/-	100%	0/17 84	200 52	Centrifuge Pump	+	Super Dupley
16 Air Compressor 17 Sludge Scraper(for DAF) 18 Dual Media Gravity Filters 19 Backwash tank 20 Backwash Pump	6,000	m ³ /hr	1,300 100.0	m ³ m ³ /min	8	190		1	2 220 4 560			-	942.86		Centrifuge Pump	40m/h,10min	Super Duplex FC250
16 Air Compressor 17 Sludge Scraper(for DAF) 18 Dual Media Gravity Filters 19 Backwash tank 20 Backwash Pump 21 Air scouring Blower	6,000 9,280	m ³ /hr Nm ³ /hr	1,300 100.0 154.7	m ³ m ³ /min Nm ³ /min	8	190 280		1	2 220 4 560			-	942.86 2,142.00		Centrifuge Pump Rotary twin	+	FC250
15 DAF Recirculation Pump 16 Air Compressor 17 Sludge Scraper(for DAF) 18 Dual Media Gravity Filters 19 Backwash tank 20 Backwash Pump 21 Air scouring Blower 22 Waste water tank 23 Waste Disposed Pump	6,000 9,280 4,550	m ³ /hr Nm ³ /hr m ³	1,300 100.0 154.7 4,550	m ³ m ³ /min Nm ³ /min m ³	8	280	2		4 560 2	4.5	5 85%	100%	2,142.00	476.00	Rotary twin	40m/h,10min	FC250 Concreat+epox
16 Air Compressor 17 Sludge Scraper(for DAF) 18 Dual Media Gravity Filters 19 Backwash tank 20 Backwash Pump 21 Air scouring Blower	6,000 9,280	m ³ /hr Nm ³ /hr m ³	1,300 100.0 154.7	m ³ m ³ /min Nm ³ /min	8 6 20	280	2			4.5	5 85%	100%	2,142.00	476.00	e 1	40m/h,10min	FC250

									Number		Service	Travelling	Loading A	Availability	Erectricity	Erectricity			
0.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power kW	Time	Factor	Factor	Consumed kW/d	Usage kW	Model	Specification	Material/O
1 F	Filtered seawater Storage Tank	6,039	m ³	3,000	m ³	-	-	2	2	2								10min	
_	RO Filtered Water Pump	400		1,042	m ³ /hr	150	620	16	6 1	17	9,920	24	88%	100%	208,320.00	8.680.00	Centrifuge Pump	Inverter Motor	Super Duplex
	ERD Filtered Water Pump	470		1,223	m ³ /hr	50	230		6 1	17		24	92%	100%	81,213.79		Centrifuge Pump	Inverter Motor	Super Duplex
	ERD Recycle Booster Pump	470		1,223		50	230		6 1	17	,	24	92%	100%	81,213.79			Inverter Motor	Super Duplex
	Cartridge Filter(For HPP)	400	MLD	277		-	-	32	2 2	34							<u> </u>		ERP,PP
6 C	Cartridge Filter(for ERD)	470	MLD	326		-	-	32	2 2	34									ERP,PP
7 R	RO High Pressure Pump	400	MLD	1,042		560	2,150	16	6 1	17	34,400	24	93%	100%	768,000.00	32,000.00	HPP	Fixed Motor	
8 S	Seawater Reverse Osmosis(SWRO)	25	MLD/train	13.5	l/m2/h	-	-	16	6 1	17							8 inch spiral	Flax:13.51/m2/h,2,128membranes(133membranes/train)	
9 E	Energy Recovery System(ERD) In case of DeROs	474	MLD	29.625	MLD	-	-	16	6 1	17								1uits/system	Piston type
0 0	Crane	15	ton	15	ton		7.5	2	2	2	15	1	85%	100%	12.75	12.75			
1 R	RO CIP Pump	1,250	m ³ /hr	1,250	m ³ /hr	60	260	4	5 1	6	1,300	12	91%	100%	14,181.82	1,181.82	Centrifuge Pump		SUS316
2 0	CIP Cartridge Filter	900				-	-	2	2	2									ERP,PP
3 F	Flushing tank	800		800	m ³			1	1	1									Concreat+epox
4 F	Flushing Pump	1,063		17.7		30	120	2	2 2	4	240	2	94%	100%	451.76	225.88	Centrifuge Pump		SUS316
5 C	Chemical Cleaning Tank	60		60	m ³	-	-	2	2	2									FRP
5 C	Chemical Cleaning Tank Mixer	60		60	m ³	-	15	2	2	2	30	1	80%	100%	24.00	24.00			SUS316
	Chemical Cleaning Pump	1,800		1,800	m ³ /hr	45	290	1	1 1	2	290	2	93%	100%	539.53		Chemical Pump		
_	Plant Air Compressor	330		330	Nm3/hr	70	180	3	3 1	4	540	8	90%	100%	3,888.00				
_	Air Tank	11		11		-	-	3	3	3		-							
	Air prefilter,dryer,filter	330		330	Nm3/hr	1 1	3.7	3	3 1	4	11	8	85%	100%	75.48	9.44			
	Cooling water tank	34	m ³	34	m ³	+ +		2	2	2									
	Cooling water pump	200		200	m3/hr	40	37	2	2 1	3	74	1	85%	100%	62.90	62.90	İ		
_	Cooling tower	1	MMcl/h	1	MMcl/h		5.5	2	2 1	3							İ		FRP
_	Pressurized Service Water System					-	30	12	2 6	18	360	12	85%	100%	3,672.00	306.00	İ		
_	Permeat Water Pump	25,008	m ³ /d	1,042	m ³ /hr	25	100			10		24	86%	100%	33,185.19		Centrifuge Pump		SUS316
Ť	······ r		/u	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111 / 111					1,	-,					,			
															1.194.841.01	51,409,10			
)ST	Г TREATMENT	400	MLD															1	1
									Number		Service	Travelling	Loading A	Availability	Erectricity	Erectricity			
0.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power kW	Time	Factor	Factor	Consumed kW/d	Usage kW	Model	Specification	Material
Ι	Lime Stone Filter Feed Pump	120,000	m ³ /d	625	m ³ /hr	25	60	8	8 2	10	480	24	98%	100%	11,239.02	468.29	Centrifuge Pump		SUS316
2 L	Lime Stone Filter	120,000	m ³ /day	5,000	m ³ /hr	-		16	6 4	20								LV=25m/hr, ϕ 4.4m(15.2m2)×4.9mH (4.3m)	SUS316
Γ	Degassing Air Blower	4,188	111 / elet y	69.8		228mmAq	5.5	2	2 2	4	11	0.2	85%	100%	1.87	9.35	Rotary twin		FC250
_	Degassing Tower	1,360		80	m ³	1 1		4	4	4								¢ 3.7m(10.7m2)×7.5mH,Air:1,094m3/hr,Water:2,094m3/hr	SUS316
	Air scouring Blower	911		15.2		5500mmAg	22	4	4 2	6	88	24	85%	100%	1,795.20	74.80	Rotary twin		FC250
_	Lime Stone unloading system	150		150	111 / 111111	-	15		1	1	15		85%	100%	306.00		Screw Pump		SUS316
	Lime Stone Recharging system	135		135	m ³ /hr	80	45	2	2	2	90	24	85%	100%	1,836.00		Screw Conveyor		SUS316
_	Backwash Waste tunk	190		190	m ³			1	1	1					-,				CS+epoxy coa
_	Waste Disposal Pump	190		190	m ³ /hr	15	15	1	1 1	2	15	24	85%	100%	306.00	12.75	Screw Pump		SUS316
_	Process Water Pump	50		50	m ³ /hr	40	11	1	1 1	2		24	91%	100%	240.00		Centrifuge Pump		SUS316
_	Carbon Dioxide Plant	18,000	111 / 111	750			30		- I 2	2	60	24	85%	100%	1,224.00	51.00	0 1	Dose rate:Max:90mg/L Ava:60mg/L	555510
		· · · ·							2		00	24	83%	100%	1,224.00	51.00		Dose rate:Max:90mg/L,Ave:60mg/L Number of Vessels:10	
_	Carbon Dioxide Storage	300	<u> </u>	11			-	2	2	2									
	Chlorine Gas flow	255	kg/day	11		-	-		1									Dose rate:Maximam:5mg/L,Average:2mg/L	
_	Chlorine Container			900			-		1	I									
_	Chlorine Gus Drum	900	kg	300	kg		-	4	4	4				1000				Strage Period:20days	
_	Chlorine Crane						75		4	4	500		90%	100%	270.00				
_	Chlorine Evaporator						22	7	/	7	154	24	90%	100%	3,326.40	138.60			
_	Carbon Dioxide absorber	750		750		-	-	2	2	2							-	Number of Vessels:10	
PR	Recorbonation Tower Feed Pump	2,100	m ³ /hr	2,100	m ³ /hr	20	160		6 2	8	960	24	88%	100%	20,160.00	840.00	Centrifuge Pump		SUS316
+						+													
 ate:	r Storage and Transfer	400	MLD												40,704.49	1,964.04		1	
									Number		Service	Travelling	Loading A	Availability	Erectricity	Erectricity			
o.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power	Time	Factor	Factor	Consumed	Usage	Model	Specification	Material
								Duty	Standby	Total	kW				kW/d	kW			
	Potable Water Tank	3,000	m ³	1,500		-	-	2	2	2								10min	Concreat+epo:
P	Product Water Tank	36,000	m ³	9,000	m ³	1 1		4	4	4								2hr	CS+epoxy coa
_		400		4,167		77.8	1200	4	4 2	6	4,800	24	88%	100%	100,800.00	4 200 00	Centrifuge Pump		SUS316
P	Potable Water Delivery Pump	100		10	ton	,,	5.5		2	2	-,000	1	80%	100%	· · · · ·				500510
P P	Potable Water Delivery Pump	10	ton											100/0	0.00	0.00	1		1
P P C	Crane	10					5.5		2	2			0070					14days Sodium hypochlorite Concentration 10%	FRP+PVC
P P C	Crane Dosing Tank (NaClO)	69.5	m ³	40.0	m ³	- 20		2	2 2	2		24		100%	65.28	2 72	Chemical Pump	14days,Sodium hypochlorite,Concentration:10%	FRP+PVC Ti
P P C	Crane		m ³		m ³	- 20	0.4	2	2 8 2	2		24	85%	100%	65.28	2.72	Chemical Pump	14days,Sodium hypochlorite,Concentration:10% Dose rate:Max1.5mg/1	FRP+PVC Ti


VII S	SeaWat	er Outfall	680.0 M	1LD																
										Number		Service	Travelling	Loading	Availability	Erectricity	Erectricity			
]	No.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power kW	Time	Factor	Factor	Consumed kW/d	Usage kW	Model	Specification	Material/Other
	1 Dis	scharge Pipe	680	MLD	1.74	m/s	-	-	1		1							HDPE Pipe,6.4bar	φ 2,400(I.D), φ 2,500(O.D)×1lines	HDPE PE-100 6.4bar
	2 Dis	scharge Tower	680	MLD					1		1									
	3 Car	rtodic protection							1		1	5.5	24	85%	100%	112.20	4.68			
																112.20	4.68			
VIII I	Facility	Power	400.0 M	ILD																
										Number		Service	Travelling	0	Availability	Erectricity	Erectricity			
1	No.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power kW	Time	Factor	Factor	Consumed kW/d	Usage kW	Model	Specification	Material/Other
	1 Fac	sility							1		1	700	24	80%	100%	13,440.00	560.00			
	2 Lig	hting, Other Item							1		1	500	24	75%	100%	9,000.00	375.00			
																22,440.00	935.00			
XI	Margin		400.0 M	1LD																
										Number		Service	Travelling	Loading	Availability	Erectricity	Erectricity			
1	No.	Equipment name	Capacity(need)	Units	Capacity(select)	Units	Head(m)	Input(kW)	Duty	Standby	Total	Power kW	Time	Factor	Factor	Consumed kW/d	Usage kW	Model	Specification	Material/Other
	1 Ma	Irgin														46,537.17	6,716.33			
		-															.,			
																46,537.17	6,716.33			
		Total					1									1,597,776.11	73,879.64		•	•

400.00 MLD	
3,742.26 kW/MLD	Out of Transfer facility
3.74 kW/m3	

	Onsh	ore intake
A. Surface water intake system		
Intake type	A1. Onshore direct	A2. Onshore selective
	Offst	nore intake
B. Deep water intake system		
Intake type	B1.Velocity cap	B2. Tower


Appendix 6.7 Conceptual Diagrams of Direct and Indirect Seawater Intake Methods and Types

Appendix 6.8 Alternative Study on Direct intake type

Sys	stems	A. Surface water intake	B. Deep water intake					
Ty	pes	A1. Onshore direct		A2. Onshore selective		B1. Velocity cap		
Schematic illustration	Plan	Offshore	Offshore → → → → → → → → → → → → → → → → → → →	VELOCITY CAP				
	Profile	SCREEN Surface layer Middle layer Bottom layer		CURTAIN WALL PILE		WL. Surface layer Middle layer LOWER DECK PIPE or TUNNEL		
De	scription	It is the simplest type in the direct intake system. It is suitable to be built at the shore where the water depth is comparatively deeper in front of the shore. Its structure is made of marine concrete.		It is a selective intake type, which is the onshore direct type with the curt wall. It is suitable to be built at the shore where the water depth is comparativ deeper in front of the shore line. Its structure is made of piles such H-shaped steels and/or steel pipes are driven on the seabed in front of sh line, and the panels are set up like a curtain.	It is suitable to be built at the offshore (deeper than -5.0m) The seawater is withdrawn horizontally through the screen between the velocity cap and lower deck. Withdrawn seawater is conveyed from the			
Chai	Applicable flow rate	Regardless of the flow rate.	a	Regardless of the flow rate.	a	Regardless of the flow rate	a	
Characteristics	Footprint of the construction area	Larger in proportion to the flow rate.	b	Larger in proportion to the flow rate.	b	No significant change regardless of flow rate	a	
S	Selective intake	No selectable: The inflow of the surface and bottom water cannot be avoided.	с	The inflow of the bottom water cannot be avoided.	b	Selectable	a	
	Wave protection	Necessary because of high wave height in Indian ocean which makes impact on the structure.	c	Unnecessary Unless the curtain wall has adequate strength by wave.	b	It is unnecessary.	a	
	Floating matter	The floating matter stagnate around and frontage of the screen. Most floating matter will be removed by screen.	b	The floating matter stagnate around and frontage of the curtain wall. Floating matter through the curtain wall will be removed by screen in the intake pit.	b	The floating matters do not stagnate and are not suctioned because of opening the sea area on the intake head.	a	
	Spilled oil	If oil is spilled around the intake area, this intake type cannot avoid the inlet of spilled oil. It is necessary to set the oil fence in front of the screen quickly.	с	If oil is spilled around the intake area, this intake type can avoid the inlet of spilled oil for a certain time. It is necessary to set the oil fence in front of the curtain wall.		If oil is spilled around the intake area, this intake type can avoid the inlet of spilled oil for a certain time.	b	
	Environmental impact	Major impact on natural coastline.	c			Minor impact on the coastline during construction and none after construction.	a	
	Maintainability	Almost maintenance can be worked on land.	a	Almost maintenance can be worked on land. The curtain wall in water will be maintained by divers.		Almost maintenances are worked by divers.	c	
	Construction cost	The cost will become expensive due to dredging work because the depth in front of this project site is shallow. The cost will become expensive because intake requires protection against waves and turbidity.	с	Almost same as "A1. Onshore direct" type. The construction cost of curtain wall will become expensive.	Almost work are worked at offshore (Crane on barge, barges, divers, etc.). In case of buried pipeline, temporary cofferdam will be built at around shoreline for connection between on land and offshore pipeline.	c		
C -1	action	a x 2, b x 2, c x 5		a x 1, b x 6, c x 2		a x 6, b x 1, c x 2		
Sel	ection					Recommended		

Source; JICA Study Team a="Excellent," b="Good", c="Fair"

C1. Deep well ex-filtration

	Onshore discharge	Offshore discharge				
		Offshore discharge				
A. Surface water discharge system		₩. Z				
Discharge type	A1. Onshore direct	B1. Single-nozzle				
	Offshore discharge	-				
B. Deep water discharge system						
Discharge type	B2. Multi-nozzle	B3. Port raiser				
Туре	Onshor	e discharge				
C. Deep	D. Po	nd				

Discharge

type

Evaporation ponds

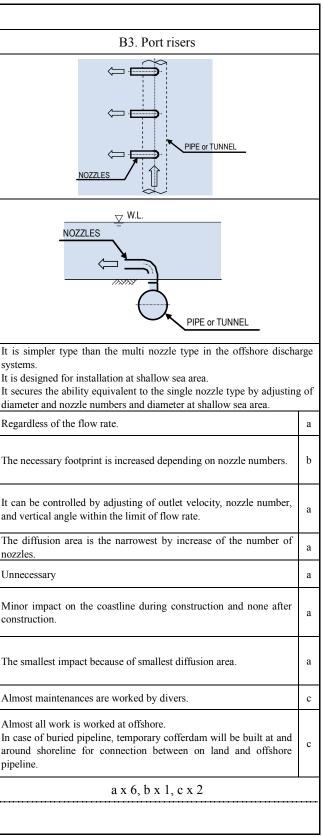
D1. Evaporation ponds

Appendix 6.9 Conceptual Diagrams of Direct and Indirect Discharge Systems and Types

Source; JICA Study Team

Discharge

type


•

3

Appendix 6.10 Alternative study on direct discharge type

S	ystems	A. Surface water discharge		B. Deep water discharge					
	Types	A1. Onshore direct (Open channel)		B1. Single-nozzle		B2. Multi-nozzles			
Schematic illustration	Schematic illustration		FRAME PIPE or TUNNEL	NOZZLES HEAD TANK PIPE or TUNNEL					
	Profile	WL. OPEN CHANNEL		W.L. NOZZLE		NOZZLES HEAD TANK PIPE or TUNNEL			
D	escription	It is the simplest type in the direct discharge systems. It is suitable to be built at the shore where the water depth is comparatively deeper in front of the shore. Its structure is made of concrete which uses shore.		It is the simplest type in the offshore discharge systems. Its structure is made of steel, concrete, HDPE or GRP.		It is the most compact type in the offshore discharge systems. It The diffusion efficiency is better than the single nozzle type in case enough water depth is secured. It It It <			
Char	Applicable flow rate	Regardless of the flow rate.	a	Regardless of the flow rate.	a	Regardless of the flow rate.	a	Re	
Characteristics	Footprint of the construction area	Larger in proportion to flow rate.	b	Regardless of the flow rate and almost settled. (A nozzle diameter can change by the flow rate).	а	Regardless of the flow rate and almost settled. (It is an almost fixed size and the smallest)	a	Th	
S	Control of surface velocity	Uncontrollable. Surface velocity is same as outlet velocity.	c	It can be controlled by adjusting of outlet velocity and vertical angle within the limit of flow rate.	It can be controlled by adjusting of outlet velocity, nozzle number and vertical angle.	a	It o and		
	Diffusion area	The diffusion range is the largest in discharge systems due to the lowest capacity of initial mixing.		A larger area than other deep water discharge types. b		The diffusion area is the narrowest by increase of number of nozzle.	a	Th no:	
	Wave protection	Necessary because of high wave height in Indian ocean which makes impact on the structure.		Unnecessary. a		Unnecessary	a	Un	
	Environmental impact	Major impact on natural coastline.		Minor impact on the coastline during construction and none after construction.	a	Minor impact on the coastline during construction and none after construction.	a	Mi	
	Impact on marine organisms	The largest impact due to the largest diffusion range.		Larger impact than other deep water discharge system.	b	The smallest impact because of smallest diffusion area	a	Th	
	Maintainability	Almost maintenance can be worked on land.	a	Almost maintenances are worked by divers.	с	Almost maintenances are worked by divers.	с	Al	
	Construction cost	The cost will become expensive due to dredging work because the depth in front of this project site is shallow. The cost will become expensive because intake requires protection against waves and turbidity.		Almost work are worked at offshore. In case of buried pipeline, temporary cofferdam will be built at around shoreline for connection between on land and offshore pipeline	c	Almost work are worked at offshore. In case of buried pipeline, temporary cofferdam will be built at and around shoreline for connection between on land and offshore pipeline.		Ali In arc pip	
C.	election	a x 2, b x 3, c x 4		a x 4, b x 3, c x 2	a x 7, b x 0, c x 2				
0						Recommended			

Source; JICA Study Team a="Excellent," b="Good", c="Fair"

Appendix 6.11 Study on current situation of Nemmeli DSP by water analysis

The current situation of the brine at the Nemmeli DSP is evaluated in accordance with the results of the seawater water quality survey mentioned in Chapter 6.2.1. The sampling points are shown below:

Generaline meint	I	Coordinate (UTM)				
Sampling point	Location	Х	Y			
Nemmeli DSP						
P1	Discharge	416699	1404348			
P2	Discharge -Intake 1	416767	1404285			
P3	Discharge -Intake 2	416849	1404214			
P4	P4 Discharge -Intake 3		1404141			
P5	Intake	417010	1404077			
P6	Offshore	417085	1404008			
P7 Intake chamber		—	—			
	Proposed Perur DSP					
P8 Discharge		417066	1405582			
Р9	P9 Intake 1		1405280			
P10 Intake 2		417339	1405010			

Table A6.11.1 Sampling Points

Source: JICA Study Team

Source: JICA Study Team using Google Earth Pro

The salinity values from P1 to P6, which are measurement points for the existing Nemmeli DSP and from P8 to P10 for the Perur DSP are shown in Table A6.11.2. As for P1 to P6, the distance between each point is approximately 100 m.

Depth (m)	P1	P2	P3	P4	P5	P6	P8	P9	P10
1	32.86	33.11	33.28	33.28	33.07	33.27	33.34	33.34	33.31
2	32.92	33.24	33.27	33.28	33.23	33.28	33.33	33.33	33.28
3	32.97	33.23	33.29	33.28	33.29	33.27	33.29	33.29	33.32
4	33.03	33.25	33.32	33.33	33.29	33.27	33.36	33.36	33.31
5	33.10	33.31	33.32	33.32	33.33	33.33	33.43	33.43	33.33
6	33.12	33.30	33.35	33.37	33.33	33.38	33.36	33.36	33.41
7	33.25	33.32	33.29	33.40	33.40	33.42	33.46	33.46	33.43
8	33.41	33.42	33.42	33.44	33.44	33.43	33.47	33.45	33.44
9	33.95	41.56	33.42	33.44	33.46	33.44	33.48	33.45	33.44
10		41.57	34.55	33.60	33.54	33.47		33.46	33.45
11				33.61	33.55	33.55			33.46
					33.59	33.61			
Source: IICA	ource: IICA Study Team								

Table A6.11.2 Salinity Values at Each Measurement Point

Source: JICA Study Team

Pure Seawater Seawater with brine

According to the values of P8 to P10 where the impact on the brine from the Nemmeli DPS is not affected, the salinity values in this area are less than 33.5 g/L, but the values at bottom layer of P1 to P6 shows higher than others. Therefore, above table clearly indicates that the brine discharged at P1 at about 5.0 m depth flows to offing side along the sea bottom.

Regarding brine recirculation, comparing P5 where the seawater is drawn with P8 to P10 which have no impact by the brine from the Nemmeli DPS, the table shows same salinity values per depth except the values at bottom. The intake head of the Nemmeli DSP is withdrawing seawater at 7 m depth of P5 where the pure seawater is not mixed with the brine. Therefore, the recirculation of the brine has not happened at the Nemmeli DSP.

into Near-field

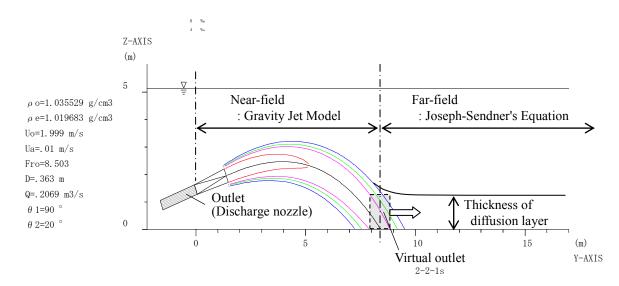
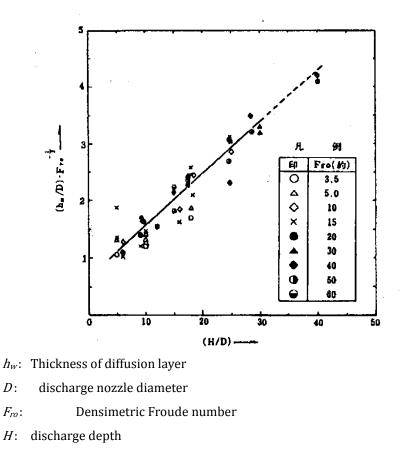


Figure A6.12.1 Cross-sectional view and distribution of discharged brine (Section distribution of brine discharge)

(1) Near-field


Near-field includes the area from the discharge outlet to the point where the discharged brine reaches the seabed.

The diffusion phenomenon in this area is dominant to entrainment and mixing of the brine due to the momentum.

The diffusion prediction in Near-field is implemented by Gravity Jet Model. This model can obtain the distribution data of salinity and velocity based on the conditions of the brine discharge and density.

It is prepared based on the results of hydraulic model test which cannot take into account the effects of boundaries of the surface or bottom. Therefore this model is applicable for the area, where approximately 3 times of the discharge nozzle diameter is far from the seabed. In addition, the Gravity Jet Model cannot consider interference of the brine from each nozzle. Hence, the prediction is performed for the brine from one nozzle without considering interference of the brine.

In order to decide the thickness of diffusion layer, the research results of the reference study shown in Figure A6.12.2 are referred.

Source: Naoaki Katano and Hiromi Kawamura, "Study on effect of reduction of water temperature in the sea by a single submerged jet for warmed cooling water", Research Report 376012(1977), Central Research Institute of Electric Power Industry in JAPAN

Figure A6.12.2 Thickness of diffusion layer

(2) Far-field

Far-field is defined as the outside area of Near-field. The diffusion in this area is dominant to the horizontal diffusion by current or turbulence (Note: tidal current is not taken into account for this simulation).

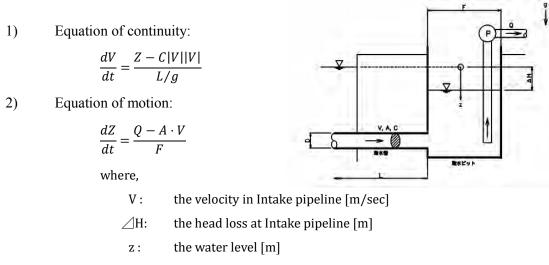
The Joseph-Sendner's equation is applied for this area to analyze the horizontal brine diffusion. The results of the forecast in Near-field (flow rate, salinity, thickness of the diffusion layer, etc.) are used as the input data at virtual outlet for the analysis on the horizontal brine diffusion in Far-field.

Intake Pipe		No.1	No.2	No.3	No.4
Diagrams		Р	Р	Р	Р
Steel pi	pe	T	Π	T	Ш
HDPE	nine				
 Intake ł 				JL I	JIL
Line		2 lines	3 lines	2 lines	3 lines
Material		Steel	Steel	HDPE	HDPE
Diameter (ID)		2300 mm (2100mm)	1600 mm	2300 mm (2100mm)	1600 mm
Length (tentative	;)	1,140 m	1,140 m	1,140 m	1,140 m
Acceptable Head Loss		3 m	3 m	3 m	3 m
Head Loss (aging) (m)		Less than 3 m	More than 6 m	Less than 3 m	More than 6 m
Water Production in operational difficulty of one intake facility		More than 200 MLD		More than 200 MLD	
Cost					
Installation	1 m	16,480 (USD/m)		15,980 (USD/m)	
and material ofpipe		(for 2 pipes)		(for 2 pipes)	\backslash
of pipe including civil work for 1,140 m installation of discharge pipe		18,780,000 (USD)		18,220,000 (USD)	
Installation and	material	2,050,000 (USD)		2,050,000 (USD)	
of intake head		(for 2 intake heads)		(for 2 intake heads)	\backslash
Total		20,830,000 (USD)		20,270,000 (USD)	
Evaluation			NG	Recommended	NG

Appendix 6.13 Alternative Study	on Number of Lines and Material of the Intake Pipe
---------------------------------	--

Appendix 6.14 Study on surging in the intake pit

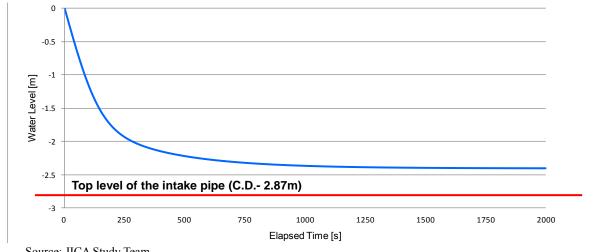
When the operation of pump is started or urgently stopped, the water level in the intake pit will be drastically decreased (called as "down-surge") or increased (called as "up-surge"). In these cases, the water level should not be reduced to the top level of intake pipe or should not exceed the level of top slab. Based on the parameters shown in Table A6.14.1, the study on the up-surge and down-surge is carried out.


(3) Design Condition

Category	Parameter	
Water volume	Volume for operation	12.50m ³ /sec
	Volume after emergency stop	0 m ³ /sec
	Volume after start of operation	12.50m ³ /sec
Water levels	LWL (for down-surge)	CD+0.04m
	HWL (for up-surge)	CD+1.57m
Intake facility	Inner diameter of intake pipe	$2.83m(=2.0^2 \times \pi/4 \times 2)$
	Length of intake pipe	1110m
	Head loss of intake pipeline	3.3m
	Open area in intake pit	800m ²

Table A6.14.1 Design Condition for the Study on Surging

(4) Calculation methodology


The following formula is applied to the surging analysis. Calculation is made by inputting initial value to the above mentioned basic equation (the simultaneous differentiation equation) and performing a numerical integration by the Runge-Kutta-Gill Method.

- g: the acceleration due to gravity [m/sec2]
- L: the length of Intake pipeline [m]
- A: the sectional area of Intake pipe [m²]
- F: the water surface area of Intake basin [m²]

- Q: the flow rate [m³/sec]
- C: the loss coefficient $C = \Delta H / V^2$
- (5) Results of the Calculation
 - 1) Down-surge (after the start of the pump operation)

The water level in the intake pit should be kept beyond the top level of the intake pipe in order to prevent the exposure of the intake pipe from seawater. According to Figure A6.14.1, the water level in the intake pit gradually decreases and reaches C.D. -2.365 m, and the level is higher than the top level of the intake pipe. Therefore, the result shows that the problem, resulting from the lowering of the water level, does not occur.

Source: JICA Study Team

2) Up-surge (After the stop of pump operation)

The water level in the intake pit should be kept below the level of top slab in order to prevent the overflow of the seawater from the intake pit. Figure A6.13.2 shows that the water level quickly increases and fluctuates after the stop of the pump operation. However, the water level does not exceed C.D. 6.87 m, which is the level of the top slab. Therefore, the stop of the pump operation does not result in the overflow of the seawater from the intake pit.

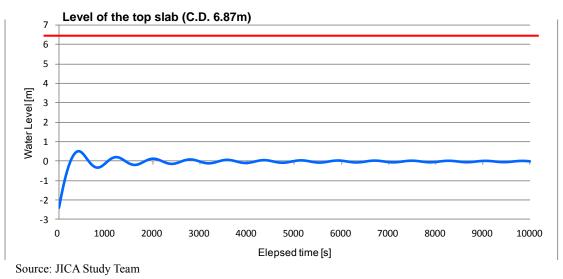
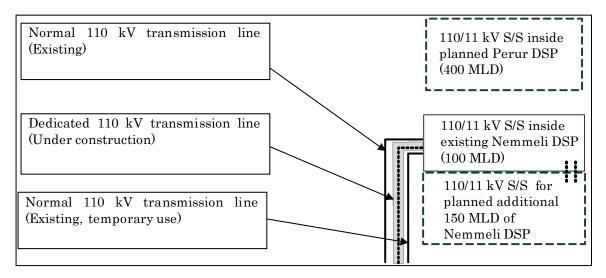


Figure A6.14.2 Water Level in the Intake Pit after Start of the Operation

Therefore, as shown in the above results, the hydraulic validity of the design of the intake pit was verified.

Discharge Pipe	No.1	No.2	No.3	No.4
Diagrams Steel pipe HDPE pipe Discharge head				
Line	1 line	2 line	1 line	2 lines
Material	Steel	Steel	HDPE	HDPE
Diameter	2500 mm	1600 mm	2500 mm	1600 mm
Length (from intake head)	550 m	550 m	550 m	550 m
Acceptable Head Loss(m)	¹ 3 m	3 m	3 m	3 m
Head Loss (aging) (m)	Less than 3 m	More than 3 m	Less than 3 m	More than 3 m
Cost Installation and material of pipe 1 m 550 m	9,770 (USD/m) (for 1 pipe) 5,370,000		9,600 (USD/m) (for 1 pipe) 5,270,000	
Installation and materia of intake head Total	940,000 (USD) (for 1 intake head) 6,310,000		940,000 (USD) (for 1 intake head) 6,220,000	
		NG	Recommended	NG


Source; JICA Study Team

Appendix 6.16 Present Situation and the Existing Plan of Power Receiving System

A6.16.1 Current Situation of the Existing Power Receiving system

The planned Perur DSP will be located 600 m north from the existing Nemmeli DSP with a capacity of 100 MLD. The existing plant has a 150 MLD expansion plan.

Figure A6.16.1 shows the existing and planned transmission lines for the Nemmeli DSP. At present, two lines of 110 kV are connected to the Nemmeli DSP. These power lines are shared with other consumers, viz. they are not dedicated lines. Currently, a dedicated power line for the DSP is under construction. One of the two existing power lines is a temporary line, which will not be used by the DSP after completion of the ongoing construction project on a dedicated line.

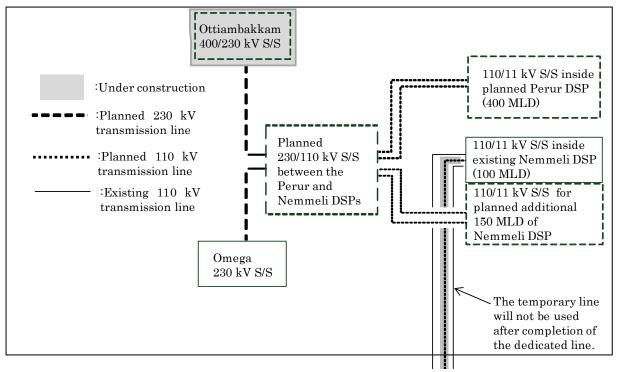

Source: JICA Study Team

Figure A6.16.1 Existing and Planned Transmission Lines for the Nemmeli DSP

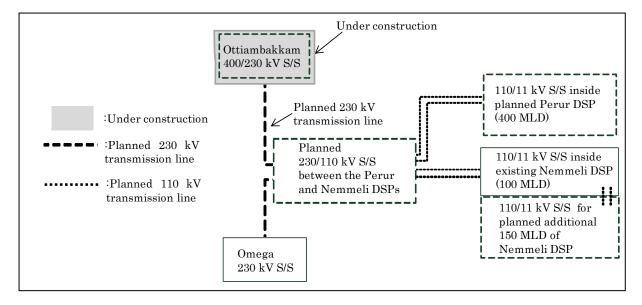
A6.16.2 Original and Revised Power Receiving Plans of the DSPs including the Perur DSP

(1) Original power receiving plan:

In 2013, CMWSSB requested TNEB to provide an uninterrupted power supply of 110 MVA to the Perur DSP and the additional 150 MLD of the Nemmeli DSP. Corresponding to the request from CMWSSB, TNEB proposed a power transmission plan, where it aimed at supplying power to the two plants through two transmission lines of 230 kV including a dedicated line as shown in Figure A6.16.2.

Source: JICA Study Team

Figure A6.16.2 Original Power Receiving Plan of the Perur and Nemmeli DSPs


In the plan, the two DSPs, including the additional 150 MLD of the Nemmel DSP, are to receive power supply through a new 230/110 kV S/S, which would be located between the Nemmeli and Perur DSPs. The land for the substation was planned to be about 32,000 m². The Perur DSP was to be connected with the new substation with two lines of 110 kV. The 230/110 kV substation was planned to have two receiving lines of 230 kV. One line would come from Omega substation, but it would not be a dedicated line. The other line would be a dedicated line, which would come from Ottiambakkam substation.

(2) Revised power receiving plan:

In 2015, CMWSSB revised the power receiving plan to integrate the power transmission system of the existing Nemmeli DSP with that of the other two plants as shown in Figure A6.16.3. The revised points are as follows:

- Increased capacity of 230/110 kV S/S to supply power to the existing 100 MLD of Nemmeli DSP.
- Utilization of the 110 kV transmission line under construction as a 230 kV transmission line.

Regarding the second point mentioned above, although the dedicated 110 kV transmission line has been under construction, CMWSSB intended to utilize the transmission line as the 230 kV to reduce the construction cost of the 230 kV transmission line as much as possible. CMWSSB requested TNEB to change two points of the construction plan as described above but has not yet received any reply.

Source: JICA Study Team

Figure A6.16.3 Revised Power Receiving Plan for the Perur and Nemmeli DSPs

Appendix 6.17 Determination of the Power Receiving Plan of the Perur DSP

In the power receiving plan, the JICA Study Team proposes another alternative (Alternative C) to the original and revised plans (Alternatives A and B) as shown in Figure A6.17.1. The Alternative C does not require the 230/110 kV substation proposed by the Alternatives A and B and assumes that the two 230 kV transmission lines will be directly connected to 230/11 kV S/S in the Perur DSP.

Table A6.17.1 shows the comparison of the three alternatives mentioned above. All alternatives have advantages and disadvantages, but the Study Team recommends Alternative A as the original one. The ideal plan for CMWSSB is to integrate the power receiving system for the three DSPs as planned in Alternative B. However, as a result of the interview with TNEB by the JICA Study Team, the transmission line under construction is available only for 110 kV line because the tower for 110 kV transmission line is not available for 230 kV transmission line. Thus, it is better for CMWSSB to maintain the original plan, where the 110 kV transmission line under construction will be utilized to avoid wasting of the investment that has been done so far. Besides, as TNEB has already accepted the Alternative A, the project will be implemented more smoothly by maintaining the original plan than changing the plan to the Alternative B or C.

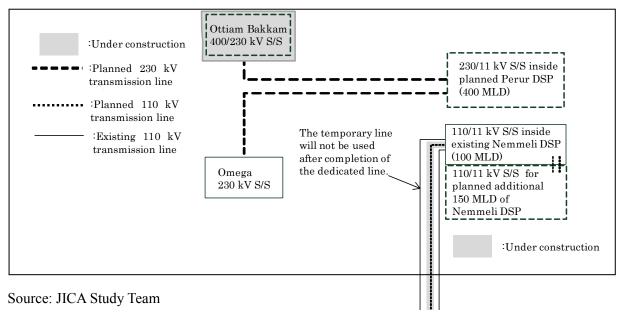
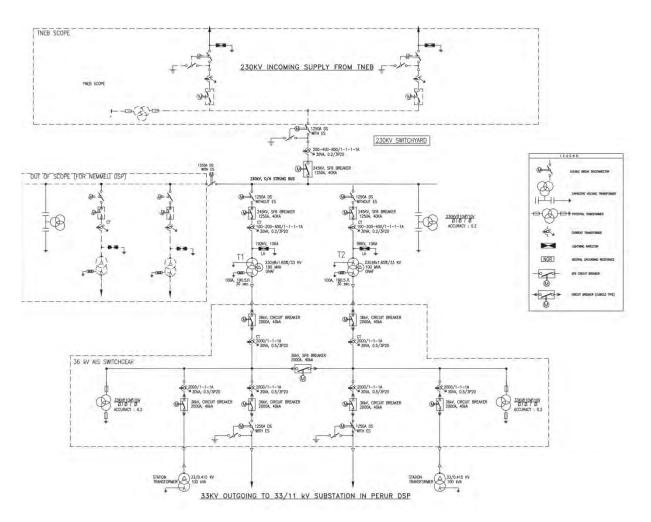



Figure A6.17.1 Proposed Power Receiving Plan by JICA Study Team

	Alternative A	Alternative B	Alternative C
Plan	(Original plan)	(Revised plan)	(Additional plan suggestion by the
Р	(Original plan)	(Revised plan)	JICA study team)
System	Ottiambakkam 400/230 kV S/S Planned 230/110 kV S/S between the Perur and Nemmeli DSPs 230 kV S/S	Ottiambakkan 100230 kV S/S Planned 230/110 kV S/S between the Perur and Nemmeli DSP 230 kV S/S Omega 230 kV S/S	Otiam Bakam 400230 kV S/S 000230 kV S/S 000 MLD 000 MLD 10/11 kV S/S inside existing Nemmeli DSP (100 MLD) 10/11 kV S/S for planaed additional 150 kU S/S 10/11 kV S/S for planaed additional 150 kU S/S 10/11 kV S/S for planaed additional 150 kU S/S 150 k
Features	 The 230/110 kV S/S will be built. The Perur DSP and the additional 150 MLD of Nemmeli DSP will be connected to the 230/110 kV S/S. The Perur DSP will have 110/11 kV S/S. 	 The 230/110 kV S/S will be built. Both the Perur and the Nemmeli DSPs will be connected to the 230/110 kV S/S. The Perur DSP will have 110/11 kV S/S. Power receiving point of the DSPs will be integrated to one S/S. 	 The 230/110 kV S/S will NOT be built. The Perur DSP will be connected to the new 230 kV transmission lines. The Perur DSP will have 230/11 kV S/S. The Nemmeli DSP will utilize the existing and under-construction 110 kV transmission lines.
Project Implementation	• <u>TNEB has accepted this plan.</u> Thus, the project will be implemented more smoothly by proceeding with this plan without any further changes.	 CMWSSB requested to utilize some towers of 110 kV line as towers of 230 kV line, but they cannot be utilized. <u>TNEB has not yet accepted</u> this power receiving system. 	 The receiving point will be changed. Thus, <u>CMWSSB needs to inform</u> <u>TNEB of the change in the plan</u> <u>and request TNEB to change the</u> <u>transmission line plan accordingly</u>. The additional 150 MLD of Nemmeli DSP needs to receive power through the existing transmission lines. However, it is unclear whether the transmission lines or the connected TNEB's substation can bear the load or not.
Economic Performance	 The construction cost and the maintenance cost for the 230/110 kV S/S is required. The additional 150 MLD of Nemmeli DSP may be built earlier than the 230/110 kV S/S. Thus, the shift of the power source of the DSP requires more capital cost. The existing 110 kV transmission lines to the Nemmeli DSP will be available. 	 The construction cost and the maintenance cost for the 230/110 kV S/S are required. The shift of the power source of the existing and the additional DSPs require more capital cost. The existing 110 kV transmission lines to the Nemmeli DSP should be demolished. It is wastage of the investment made so far. 	 It will be the most cost effective plan if the cost and the land for the 230/110 kV S/S are reduced. The existing 110 kV transmission lines to the Nemmeli DSP will be available.
Others	• The existing 110 kV transmission lines to the Nemmeli DSP will be continuously available.	• Only two transmission lines of 230 kV will be connected to TNEB's substations. Thus, the towers and conductors for the transmission lines will be fewer than that of the Alternative A and C plans.	 The cost and the land for the 230/110 kV S/S are reduced. The existing 110 kV transmission lines to the Nemmeli DSP will be continuously available.
Evaluat ion	Recommended (Already an agreed plan by TNEB and cost effective than Alternative B)	-	-

Source: JICA Study Team

Appendix 6.18 Single Line Diagram of 230/33 kV and 33/11 kV Substations

Source: JICA Study Team

Appendix 6.19 Cost Breakdown for Alternative Study on Product Water Transmission System

1. Required Pump Head and Pipeline Cost

Case-1-1: Direct Pumping (D1900)

Required Pump Head (m)

Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Kennarks
0					2.50	at PS (assumed)
	380	1900	1.55	30.28		
34						
	308	1600	1.77	6.97		
39						
	235	1500	1.54	3.47		
42					2.04	5% of Friction loss
				40.73	4.54	
				Total loss	45.27	
				Gross head	44.00	=47-3.0
				Total head	89.27	

Design Pump head

90

Pipeline Cost (INR)

Pipeline	Cost (INK)			
Dia	Length	Unit Cost	Pipeline Cost	Pipe Grade
(mm)	(m)	(INR/m)	(INR)	i ipe Grade
1900	34,000	70,000	2,380,000,000	Class A
1600	5,000	50,000	250,000,000	Class A
1500	3,000	44,000	132,000,000	Class A
		Total	2 762 000 000	

Total 2,762,000,000

Case-1-2: Direct Pumping (D2000)

Required Pump Head (m)							
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks	
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks	
0					2.50	at PS (assumed)	
	380	2000	1.40	23.59			
34							
	308	1800	1.40	3.93			
39							
	235	1600	1.35	2.54			
42					1.50	5% of Friction loss	
				30.05	4.00		
				Total loss	34.06		
				Gross head	44.00	=47-3.0	
	Total head 78.06						
			De	sign Pump head	78		

Pipeline	Cost (INR)			
Dia	Length	Unit Cost	Pipeline Cost	Pipe Grade
(mm)	(m)	(INR/m)	(INR)	r ipe Grade
2000	34,000	77,000	2,618,000,000	Class A
1800	5,000	64,000	320,000,000	Class A
1600	3,000	50,000	150,000,000	Class A
		T (1	2 000 000 000	

Total 3,088,000,000

Case-1-3: Direct Pumping (D2200)

Required Pump Head (m)							
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks	
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Kennarks	
0					2.50	at PS (assumed)	
	380	2200	1.16	14.83			
34							
	308	1900	1.26	3.02			
39							
	235	1800	1.07	1.43			
42					0.96	5% of Friction loss	
				19.28	3.46		
				Total loss	22.74		
				Gross head	44.00	=47-3.0	
	Total head 66.74						
			De	sign Pump head	67		

Pipeline	Cost	(INR)

тирсшие	Cost (INK)			
Dia	Length	Unit Cost	Pipeline Cost	Pipe Grade
(mm)	(m)	(INR/m)	(INR)	r ipe Grade
2200	34,000	98,000	3,332,000,000	Class A
1900	5,000	70,000	350,000,000	Class A
1800	3,000	57,000	171,000,000	Class B

Total 3,853,000,000

Case-2-1: Two Step Pumping (D1900)

DSP Pump Station

Required Pump Head (m)							
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks	
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks	
0					2.50	at PS (assumed)	
	380	1900	1.55	30.28			
34					1.51	5% of Friction loss	
	30.28		4.01				
			34.30				
Gross head					17.00	=20-3.0	
Total head				51.30			
Design Pump head				52.00			

Рi	neline	Cost	(INR)
гі	penne	COSt	(IINK)

	()				
Dia	Length	Unit Cost	Pipeline Cost	Remarks	
(mm)	(m)	(INR/m)	(INR)	Remarks	
1900	34000	70,000	2,380,000,000	Class A	
		Total	2,380,000,000		

Design Pump head Booster Pump Station (For Porur WDS)

Required Pump Head (m)							
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks	
(km)	(MLD)	(mm)	(m/s)	(m)	(m)		
34					2.50	at PS (assumed)	
	308	1600	1.77	6.97			
39							
	235	1500	1.54	3.47			
42					0.52	5% of Friction loss	
				10.45	3.02		
				Total loss	13.47		
				Gross head	37.00	=47-10	
				Total head	50.47		

Pipeline Cost (INR)

Dia (mm)	Length (m)	Unit Cost (INR/m)	Pipeline Cost (INR)	Remarks
1600	5000	50,000	250,000,000	Class A
1500	3000	44,000	132,000,000	Class A

382,000,000 Total

Design Pump head Booster Pump Station (For No.6, No.6A&CC-8) Required Pump Head (m)

Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
0					2.50	at PS (assumed)
	72	1000	1.06	4.67		
5						
	31.2	800	0.72	6.49		
16					0.56	5% of Friction loss
	Sub-total			11.16	3.06	

11.16	3.06	
Total loss	14.22	
Terminal head	5.00	
Total head	19.22	

51.00

Design Pump head 20.00

Case-2-2: Two Step Pumping (D2000)

DSP Pump Station

Required Pump Head (m)								
Chainage	Flow	Pipe Dia	a Velocity Friction Loss Other los		Other loss	Remarks		
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks		
0					2.50	at PS (assumed)		
	380	2000	1.40	23.59				
34					1.18	5% of Friction loss		
23.59		3.68						
				Total loss	27.27			
				Gross head	17.00	=20-3.0		
Total head			44.27					
Design Pump head					45.00			

Pipeline	Cost	(INR)
1 ipcmic	CUSU	(11 11)

Tipemie					
Dia	Length	Unit Cost	Pipeline Cost	Remarks	
(mm)	(m)	(INR/m)	(INR)	Remarks	
2000	34000	70,000	2,380,000,000	Class B	
		Total	2,380,000,000		

Design Pump head Booster Pump Station (For Porur WDS)

Required	Pump Hea	d (m)				
Chainage	Flow	Pipe Dia	Velocity	Velocity Friction Loss (Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
34					2.50	at PS (assumed)
	308	1800	1.40	3.93		
39						
	235	1600	1.35	2.54		
42					0.32	5% of Friction loss
	6.47					
				Total loss	9.29	
				Gross head	37.00	=47-10
				Total head	46.29	
			47.00			

Pipeline Cost (INR)

Dia (mm)	Length (m)	Unit Cost (INR/m)	Pipeline Cost (INR)	Remarks
1800	5000	64,000	320,000,000	Class A
1600	3000	50,000	150,000,000	Class A

470,000,000 Total

Booster Pump Station (For No.6, No.6A&CC-8) Required Pump Head (m)

Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	ſ		
(km)	(MLD)	(mm)	(m/s)	(m)	(m)			
-						г		

Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
0					2.50	at PS (assumed)
	72	1000	1.06	4.67		
5						
	31.2	800	0.72	6.49		
16					0.56	5% of Friction loss
	Sub-total			11.16	3.06	
				Total loss	14.22	
				Terminal head	5.00	
				Total head	19.22	
			D	·	20.00	

Design Pump head 20.00

Case-2-3: Two Step Pumping (D2200)

DSP Pump Station

Required Pump Head (m)						
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
0					2.50	at PS (assumed)
	380	2200	1.16	14.83		
34					0.74	5% of Friction loss
	14.83		3.24			
	Total loss		18.07			
				Gross head	17.00	=20-3.0
	Total head		35.07			
			Design Pump head			

Рi	neline	Cost	(INR)
гі	penne	COSt	(IINK)

Dia	Length	Unit Cost	Pipeline Cost	Remarks
(mm)	(m)	(INR/m)	(INR)	Kennarks
2200	34000	85,000	2,890,000,000	Class B
		Total	2,890,000,000	

Design Pump head Booster Pump Station (For Porur WDS)

Required Pump Head (m)						
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
34					2.50	at PS (assumed)
	308	1900	1.26	3.02		
39						
	235	1800	1.07	1.43		
42					0.22	5% of Friction loss
				4.45	2.72	
				Total loss	7.17	
				Gross head	37.00	=47-10
				Total head	44.17	

Pipeline Cost (INR)

Dia (mm)	Length (m)	Unit Cost (INR/m)	Pipeline Cost (INR)	Remarks
1900	5000	70,000	350,000,000	Class A
1800	3000	57,000	171,000,000	Class B

521,000,000 Total

Design Pump head Booster Pump Station (For No.6, No.6A&CC-8) Required Pump Head (m)

Required Pump Head (m)						
Chainage	Flow	Pipe Dia	Velocity	Friction Loss	Other loss	Remarks
(km)	(MLD)	(mm)	(m/s)	(m)	(m)	Remarks
0					2.50	at PS (assumed)
	72	1000	1.06	4.67		
5						
	31.2	800	0.72	6.49		
16					0.56	5% of Friction loss
	Sub-total			11.16	3.06	
				Total loss	14.22	
				Terminal head	5.00	
			Total head	19.22		
			D	ini Dunu haad	20.00	

Design Pump head 20.00

44.00

2. Cost Comparison

Case 1-1 : Direct Pumping (D1900)

Feature of Pump Station at DSP

Design Flow (Q)	380 MLD
Design Flow (Q)	4.40 m3/s
Design Head (H)	90 m

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost					
Pump Station at DSP					
Civil cost (Pump house)	395.8	QxH (m3/s x m)	321,000	127,062,500	Derived from cost estimate in DPR
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
E&M cost	395.8	QxH (m3/s x m)	332,000	131,416,667	Derived from cost estimate in DPR
Pipeline cost (up to 42km)				2,762,000,000	Refer to 1.
Tota	l of Construction	n Cost		3,051,279,167	
OM Cost					
Annual OM Cost (Electricity)	395.8	QxH (m3/s x m)	651,000	257,687,500	
Annual Maintenance (M&E)				2,628,333	
Annual Maintenance (Pipeline)				27,620,000	
OM	cost for 30years	3,501,299,733	Discount rate: 8%/year		
Life Cyc	le Cost for 30ye	6,552,578,900			

Case 1-2 : Direct Pumping (D2000)

Feature of Pump Station at DSP	
Design Flow (Q)	380 MLD
Design Flow (Q)	4.40 m3/s
Design Head (H)	78 m

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost					
Pump Station at DSP					
Civil cost (Pump house)	343.1	QxH (m3/s x m)	321,000	110,120,833	Derived from cost estimate in DPR
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
E&M cost	343.1	QxH (m3/s x m)	332,000	113,894,444	Derived from cost estimate in DPR
Pipeline cost (DSP to Porur WDS)				3,088,000,000	Refer to 1.
Total o	of Construction	n Cost		3,342,815,278	
OM Cost					
Annual OM Cost (Electricity)	343.1	QxH (m3/s x m)	651,000	223,329,167	
Annual Maintenance (M&E)				2,277,889	
Annual Maintenance (Pipeline)				30,880,000	
OM co	st for 30years	3,118,882,596	Discount rate: 8%/year		
Life Cycle	Cost for 30ye	6,461,697,873			

Case 1-3 : Direct Pumping (D2200)

Feature of Pump Station at DSP	
Design Flow (Q)	380 MLD
Design Flow (Q)	4.40 m3/s
Design Head (H)	67 m

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost					
Pump Station at DSP					
Civil cost (Pump house)	294.7	QxH (m3/s x m)	321,000	94,590,972	Derived from cost estimate in DPR
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
E&M cost	294.7	QxH (m3/s x m)	332,000	97,832,407	Derived from cost estimate in DPR
Pipeline cost (DSP to Porur WDS)				3,853,000,000	Refer to 1.
Total o	of Construction	n Cost		4,076,223,380	
OM Cost					
Annual OM Cost (Electricity)	294.7	QxH (m3/s x m)	651,000	191,834,028	
Annual Maintenance (M&E)				1,956,648	
Annual Maintenance (Pipeline)				38,530,000	
OM co	st for 30years	(NPV)		2,825,019,419	Discount rate: 8%/year
Life Cycle	Cost for 30ye	ars (NPV)		6,901,242,799	

Case 2-1 : Two Step Pumping (D1900)

Feature of Pump Station at DSP	
Design Flow (Q)	380 MLD
Design Flow (Q)	4.40 m3/s
Design Head (H)	52 m

Feature of Booster Pump Station	to Porur	to	to <u>CC-8</u> , No.6&6A						
Design Flow (Q)	287.9	MLD	72	MLD					
Design Flow (Q)	3.33	m3/s	0.83	m3/s					
Design Head (H)	51	m	20	m					

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost					
Pump Station at DSP					
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
Civil cost (Pump house)	228.7	QxH (m3/s x m)	401,250	91,767,361	Derived from cost estimate in DPR
E&M cost	228.7	QxH (m3/s x m)	415,000	94,912,037	Derived from cost estimate in DPR
Pipeline cost (DSP to Booster PS)				2,380,000,000	Refer to 1.
Booster Pump Station (for Porur WI	DS)				
Civi cost (Receiving tank)	2,700	m3	11,000	29,700,000	Derived from cost estimate in DPR
Civil cost (Pump house)	186.6	QxH (m3/s x m)	521,625	97,339,210	Derived from cost estimate in DPR
E&M cost	186.6	QxH (m3/s x m)	539,500	100,674,821	Derived from cost estimate in DPR
Pipeline cost (Booster PS to Porur)				382,000,000	Refer to 1.
Total	of Construction	n Cost		3,207,193,429	
OM Cost					
Annual OM Cost (Electricity)	415.3	QxH (m3/s x m)	651,000	270,367,684	
Annual Maintenance (M&E)				3,911,737	
Annual Maintenance (Pipeline)				27,620,000	
OM co	st for 30years		3,671,096,962	Discount rate: 8%/year	
Life Cycle	Cost for 30ye	6,878,290,391			

Case 2-2 : Two Step Pumping (D2000)

Feature of Pump Station at DSP

Design Flow (Q)	380	MLD
Design Flow (Q)	4.40	m3/s
Design Head (H)	45	m

Feature of Booster Pump Station	to Porur	to CC-8, No.6&6A
Design Flow (Q)	287.9 MLD	72 MLD
Design Flow (Q)	3.33 m3/s	0.83 m3/s
Design Head (H)	47 m	20 m

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost			· · · ·		
Pump Station at DSP					
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
Civil cost (Pump house)	197.9	QxH (m3/s x m)	401,250	79,414,063	Derived from cost estimate in DPR
E&M cost	197.9	QxH (m3/s x m)	415,000	82,135,417	Derived from cost estimate in DPR
Pipeline cost (DSP to Booster PS)				2,380,000,000	Refer to 1.
Booster Pump Station (for Porur WI	DS)				
Civi cost (Receiving tank)	2,700	m3	11,000	29,700,000	Derived from cost estimate in DPR
Civil cost (Pump house)	173.3	QxH (m3/s x m)	521,625	90,386,625	Derived from cost estimate in DPR
E&M cost	173.3	QxH (m3/s x m)	539,500	93,483,986	Derived from cost estimate in DPR
Pipeline cost (Booster PS to Porur)				470,000,000	Refer to 1.
Total o	of Construction	n Cost		3,255,920,089	
OM Cost					
Annual OM Cost (Electricity)	371.2	QxH (m3/s x m)	651,000	241,648,337	
Annual Maintenance (M&E)				3,512,388	
Annual Maintenance (Pipeline)				28,500,000	
OM co	st for 30years		3,327,714,414	Discount rate: 8%/year	
Life Cycle	Cost for 30ye	ars (NPV)		6,583,634,503	

Case 2-3 : Two Step Pumping (D2200)

Feature of Pump Station at DSP

Design Flow (Q)	380 MLD
Design Flow (Q)	4.40 m3/s
Design Head (H)	35 m

Feature of Booster Pump Station	to Porur	to	CC-8, No.6&6A	_
Design Flow (Q)	287.9	MLD	72	MLD
Design Flow (Q)	3.33	m3/s	0.83	m3/s
Design Head (H)	44	m	20	m

Life Cycle Cost

Item	Capacity/Size	Unit	Unit Cost (INR)	Cost (INR)	Remarks
Construction Cost					
Pump Station at DSP					
Civi cost (Resrvior)	2,800	m3	11,000	30,800,000	Derived from cost estimate in DPR
Civil cost (Pump house)	153.9	QxH (m3/s x m)	401,250	61,766,493	Derived from cost estimate in DPR
E&M cost	153.9	QxH (m3/s x m)	415,000	63,883,102	Derived from cost estimate in DPR
Pipeline cost (DSP to Booster PS)				2,890,000,000	Refer to 1.
Booster Pump Station (for Porur WI	OS)				
Civi cost (Receiving tank)	2,700	m3	11,000	29,700,000	Derived from cost estimate in DPR
Civil cost (Pump house)	163.3	QxH (m3/s x m)	521,625	85,172,186	Derived from cost estimate in DPR
E&M cost	163.3	QxH (m3/s x m)	539,500	88,090,859	Derived from cost estimate in DPR
Pipeline cost (Booster PS to Porur)				521,000,000	Refer to 1.
Total o	of Construction	n Cost		3,770,412,639	
OM Cost					
Annual OM Cost (Electricity)	317.2	QxH (m3/s x m)	651,000	206,508,653	
Annual Maintenance (M&E)				3,039,479	
Annual Maintenance (Pipeline)				34,110,000	
OM co	st for 30years	(NPV)		2,962,882,885	Discount rate: 8%/year
Life Cycle	Cost for 30ye	ars (NPV)		6,733,295,524	

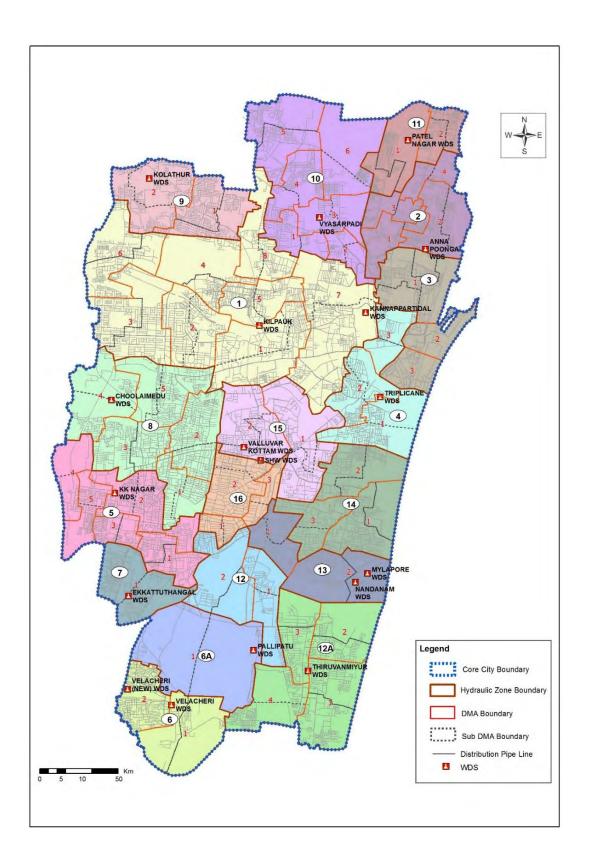
Appendix 6.20 Preliminary Hydraulic Assessment Residual Pressures in Core City (2035 and 2050)

						Prelimin	ary Hyd	raulic Asses	sment (203	5)						
	Water Distribution	Demand 2035	HGL	Avg.GL @ WDS	Residual Head	Residual Head	Populati	Population/	Discharge	Critical distribution		Equivalent Diameter	Hazen-	Head Loss	Residual Pressure	
Zone	Station	(MLD)	(m)	(m)	(designed)	(Ferrule)	on in 2035	unit length	in pipe (m3/hr)	Distance from WDS (m)	Elevation (m)	of Pipe (mm)	Williams ''C'' value	(m)	@ Critical point (m)	Check
1	Kilpauk	208.5	27.00	7.00	10.00	7.00	1176633	1.78	82.18	7402	10.00	350	100	2.37	14.6	OK
2	Anna Poonga	58.2	23.58	3.58	10.00	7.00	328313	2.79	30.36	1740	5.00	275	100	0.28	18.3	OK
3	Kannapathidal	55.7	25.26	5.60	10.00	7.00	314527	4.69	66.16	2257	5.00	200	100	7.37	12.9	OK
4	Triplicane	36.2	23.00	3.00	10.00	7.00	204380	1.52	18.22	1917	10.00	200	100	0.57	12.4	OK Expected Lov
5	K.K.Nagar	68.7	29.00	9.00	10.00	7.00	387640	1.46	65.05	7112	9.00	225	100	12.69	7.3	Pressure
6 7	Velachery	40.8	26.80 30.05	6.00 7.00	10.00	7.00	230120	6.02	75.06	1996 2113	5.00	200 150	100	8.24	13.6 21.5	OK OK
	Ekkatuthangal	6.7			10.00	7.00	37987	1.04	13.71				100	1.52		Expected Lov
8	Choolaimedu	105.0	29.00	9.00	10.00	7.00	592753	4.80	177.03	5901	9.00	325	100	11.21	8.8	Pressure
9	Kulathur	37.4	27.00	10.50	10.00	7.00	210907	1.45	26.04	2866	7.00	243	100	0.64	19.4	OK Expected Low
10	Vysarpadi	72.5	25.00	4.00	10.00	7.00	409347	1.86	33.17	2855	5.00	150	100	10.54	9.5	Pressure
11	Patel Nagar	37.6	24.00	3.00	10.00	7.00	212227	0.89	16.90	3054	5.00	228	100	0.42	18.6	OK
12	Pallipattu	46.9	27.50	5.00	10.00	7.00	264660	3.14	45.00	2291	6.00	150	100	14.88	6.6	Expected Lov Pressure
13	Mylapore	21.3	22.50	2.50	10.00	7.00	120267	1.38	34.91	4047	3.00	165	100	10.33	9.2	Expected Lov Pressure
14	Nandanam	43.8	22.50	2.50	10.00	7.00	247427	1.47	11.95	1303	3.00	223	100	0.10	19.4	OK
15	Valluvarkottam	32.4	26.50	4.00	10.00	7.00	182820	1.02	41.49	6513	6.00	253	100	2.87	17.6	OK
16	Southern Head works	32.8	25.50	7.00	10.00	7.00	185167	1.46	86.93	9548	9.00	300	100	7.18	9.3	Expected Low Pressure
	•	•				Prelimin	arv Hvd	raulic Asses	sment (205	50)		·			·	
	Water Distribution			Avg.GL	Residual	Residual	T		ĺ ĺ	Critical point in				Head	Residua	
Zone		Demand 2050	HGL	@ WDS	Head	Head	Populati	Population/	Discharge	distributio		Equivalent Diameter	Hazen-	Loss	Pressure	
	Station	(MLD)	(m)	(m)	(designed)	(Ferrule)	on in 2050	unit length	(m3/hr)	Distance from WDS	Elevation (m)	. f D!	Williams ''C'' value	(m)	@ Critical point (m	
1	Kilpauk	220.1	27.00	7.00	10.00	7.00	1238893	1.87	86.52	(m) 7402	10.00	350	100	2.60	14.4	OK
2	Anna Poonga	61.3	23.58	3.58	10.00	7.00	344887	2.93	31.89	1740	5.00	275	100	0.31	18.3	OK
3	Kannapathidal	57.6	25.26	5.60	10.00	7.00	324060	4.83	68.17	2257	5.00	200	100	7.79	12.5	OK
	Triplicane	36.2	23.00	3.00	10.00	7.00	196240	1.46	17.49	1917	10.00	200	100	0.53	12.5	OK
5	K.K.Nagar	73.6	29.00	9.00	10.00	7.00	414187	1.56	69.50	7112	9.00	225	100	14.34		Expected Lo
	Velachery	44.4	25.80	6.00	10.00	7.00	250067	6.54	81.56	1996	5.00	200	100	9.61	11.2	Pressure OK
	Ekkatuthangal	7.3	30.05	7.00	10.00	7.00	40993	1.12	14.80	2113	7.00	150	100	1.75	21.3	OK
8	Choolaimedu	111.0	29.00	9.00	10.00	7.00	624947	5.06	186.65	5901	9.00	325	100	12.37	7.6	Expected Lo
	Kulathur	40.1	27.00	10.50	10.00	7.00	225867	1.56	27.88	2866	7.00	243	100	0.73	19.3	Pressure OK
10	Vysarpadi	75.3	25.00	4.00	10.00	7.00	423500	1.92	34.32	2855	5.00	150	100	11.23		Expected Lo Pressure
11	Patel Nagar	40.3	24.00	3.00	10.00	7.00	227040	0.95	18.08	3054	5.00	228	100	0.48	18.5	OK
12	Pallipattu	51.2	27.50	5.00	10.00	7.00	287980	3.42	48.97	2291	6.00	150	100	17.40	4.1	Expected Lo Pressure
13	Mylapore	23.1	22.50	2.50	10.00	7.00	129947	1.49	37.72	4047	3.00	165	100	11.92	7.6	Expected Lo Pressure
14	Nandanam	45.5	22.50	2.50	10.00	7.00	256300	1.52	12.38	1303	3.00	223	100	0.11	19.4	OK
	Valluvarkottam	34.0	26.50	4.00	10.00	7.00	191547	1.07	43.47	6513	6.00	253	100	3.13	17.4	OK
16	Southern Head works	34.9	25.50	7.00	10.00	7.00	196533	1.55	92.27	9548	9.00	300	100	8.01	8.5	Expected Lo Pressure
	Assumptions:															
	1.Hydraulic Design deta	2							- 41 A	- 1.1						
	 Discharge in each pip Equivalen pipe diamet 							arget Pipe Len	gth under con	sideration						
	 Equivalen pipe diamet Critical Point is consid 					, sy neigille	auverage							-		
	5. Haze-Williams "C" Va						1	1		1		1		-		1

Source: JICA Study Team

						Storag	e rate	Storag	e Require	ment in 2	035	Storag	e Requirer	ment in 20	50							Propose	ed Scope	e in the
WE	DZ	Existing Storage			against t dem		Water	Storage	e Require	ment	Water	Storag	e Require	ment	Defici	ency in 2	035	Defic	iency in	2050		Project ^{*4}		
		Total	UGT	ESR	ESR/Total	2035	2050	demand	Total ^{*1}	UGT	ESR ^{*2}	demand	Total ^{*3}	UGT	ESR ^{*2}	Total	UGT	ESR	Total	UGT	ESR	Total	UGT	ESR
		ML	ML	ML	%	Hours	Hours	MLD	ML	ML	ML	MLD	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML
1 Kilpauk	ık	97.12	81.32	15.80	16.3%	11.2	10.6	208.50	52.13	34.75	17.38	220.10	73.37	55.03	18.34	1.58	0.00	1.58	2.54	0.00	2.54	2.54	0.00	2.54
2 Annapo	oonga	25.00	22.50	2.50	10.0%	10.3	9.8	58.20	14.55	9.70	4.85	61.30	20.43	15.33	5.11	2.35	0.00	2.35	2.61	0.00	2.61	2.61	0.00	2.61
3 Kannap	appar Tidal	16.00	16.00		0.0%	6.9	6.7	55.70	13.93	9.28	4.64	57.60	19.20	14.40	4.80	4.64	0.00	4.64	4.80	0.00	4.80	4.80	0.00	4.80
4 Triplica	ane	12.40	10.00	2.40	19.4%	8.2	8.2	36.20	9.05	6.03	3.02	36.20	12.07	9.05	3.02	0.62	0.00	0.62	0.62	0.00	0.62	0.62	0.00	0.62
5 K.K.Na	agar	16.40	14.00	2.40	14.6%	5.7	5.3	68.70	17.18	11.45	5.73	73.60	24.53	18.40	6.13	3.33	0.00	3.33	8.13	4.40	3.73	3.73	0.00	3.73
6 Velach	hery	6.00	6.00		0.0%	4.1	3.8	35.20	8.80	5.87	2.93	38.40	12.80	9.60	3.20	2.93	0.00	2.93	6.80	3.60	3.20	3.20	0.00	3.20
6A Velach	hery New	2.00	2.00		0.0%	8.6	8.0	5.60	1.40	0.93	0.47	6.00	2.00	1.50	0.50	0.47	0.00	0.47	0.50	0.00	0.50	0.50	0.00	0.50
7 Ekkadu	lu Thangal	4.50	4.50		0.0%	16.1	14.8	6.70	1.68	1.12	0.56	7.30	2.43	1.83	0.61	0.56	0.00	0.56	0.61	0.00	0.61	0.61	0.00	0.61
8 Choola	ai Medu	43.00	43.00		0.0%	9.8	9.3	105.00	26.25	17.50	8.75	111.00	37.00	27.75	9.25	8.75	0.00	8.75	9.25	0.00	9.25	9.25	0.00	9.25
9 Kolathu	iur	20.00	20.00		0.0%	12.8	12.0	37.40	9.35	6.23	3.12	40.10	13.37	10.03	3.34	3.12	0.00	3.12	3.34	0.00	3.34	3.34	0.00	3.34
10 Vyasar	irpadi	22.00	22.00		0.0%	7.3	7.0	72.50	18.13	12.08	6.04	75.30	25.10	18.83	6.28	6.04	0.00	6.04	6.28	0.00	6.28	6.28	0.00	6.28
11 Patel N	Nagar	14.00	14.00		0.0%	8.9	8.3	37.60	9.40	6.27	3.13	40.30	13.43	10.08	3.36	3.13	0.00	3.13	3.36	0.00	3.36	3.36	0.00	3.36
12 Pallipat	attu	17.75	17.00	0.75	4.2%	21.2	19.5	20.10	5.03	3.35	1.68	21.90	7.30	5.48	1.83	0.93	0.00	0.93	1.08	0.00	1.08	1.08	0.00	1.08
12A Thiruva	ranmiyur	3.75	3.00	0.75	20.0%	3.4	3.1	26.80	6.70	4.47	2.23	29.30	9.77	7.33	2.44	2.95	1.47	1.48	6.02	4.33	1.69	6.02	4.33	1.69
13 Nandar	anam	11.00	11.00		0.0%	12.4	11.4	21.30	5.33	3.55	1.78	23.10	7.70	5.78	1.93	1.78	0.00	1.78	1.93	0.00	1.93	1.93	0.00	1.93
14 Mylapu	ur	11.50	11.50		0.0%	6.3	6.1	43.80	10.95	7.30	3.65	45.50	15.17	11.38	3.79	3.65	0.00	3.65	3.79	0.00	3.79	3.79	0.00	3.79
15 Valluva	ar Kottam	28.50	24.00	4.50	15.8%	20.9	19.8	32.80	8.20	5.47	2.73	34.50	11.50	8.63	2.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16 Southe Works	ern Head	18.00	15.00	3.00	16.7%	13.0	12.8	33.20	8.30	5.53	2.77	33.70	11.23	8.43	2.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tot	otal	368.92	336.82	32.10	8.7%	9.8	9.3	905.30	226.33	150.88	75.44	955.20	318.40	238.80	79.60	46.81	1.47	45.34	61.64	12.33	49.32	53.64	4.33	49.32

Appendix 6.21 Quantification of the Required Water Storage Volume in the Project


*1: Six hours volume of the water demand

*2: Two hours volume of the water demand

*3: Eight hours volume of the water demand

*4: Target WDZs are those whose storage volume are not sufficient for 2035. Additional storage by the Project is determined by the requirement for 2050

Source: JICA Study Team

Appendix 6.22 Layout plan of the DMAs in Chennai Core City

Summary of Water Distribution, Storage and Metering Requirement (OC-15)									
Sl.No	Zone	Name of ULB	Length of Pipeline (km)			Total Storage Capacity			Meter
						Required (ML)			Requirement
			Distribution	Transmission	Total	UGT	OHT	Total	(2025)
1		Koilambakkam	21.94	4.39	26.33	2.8	1.4	4.2	7720
2		Kulathur	46.16	9.23	55.4	0.64	0.32	0.96	1780
3		Medavakkam	32.47	6.49	38.96	3.04	1.52	4.56	8380
4		Moovarasampettai	28.14	5.63	33.77	0.99	0.49	1.48	2740
5		Nanmangalam	42.44	8.49	50.93	1.9	0.95	2.85	5240
6	OC15	Tirusulam	16.67	3.33	20	1.44	0.72	2.16	3980
7		Chitlapakkam	38.19	7.64	45.83	3.88	1.94	5.82	10500
8		Sembakkam	71.5	14.3	85.8	4.64	2.32	6.96	19820
9		Pallavaram-Part	45.46	9.09	54.55	22.02	11.01	33.03	29470
10		Tambaram-Part	25.68	5.14	30.82	17.87	8.93	26.8	12660
11		Nemmelicheri	69.49	13.9	83.39	0.59	0.29	0.88	2300
		Sub-Total	438.14	87.63	525.77	59.80	29.90	89.70	104590

Appendix 6.23 Preliminary Assessment of distribution and storage requirement for OC-15 & OC-16

Summary of Water Distribution, Storage and Metering Requirement (OC-16)									
Sl.No	Zone	Name of ULB	Length of Pipeline (km)			Total Storage Capacity Required (ML)			Meter Requirement
			Distribution	Transmission	Total	UGT	OHT	Total	(2025)
1		Agaramthen	16.39	3.28	19.67	0.67	0.33	1	1180
2		Arasankalani	10.83	2.17	13	0.18	0.09	0.26	300
3		Kasbapuram	22.33	4.47	26.8	0.42	0.21	0.63	740
4		Kovilancheri	10.06	2.01	12.08	0.2	0.1	0.3	360
5		Maduraipakkam	7.85	1.57	9.42	0.16	0.08	0.25	280
6		Mulacheri	1.5	0.3	1.8	0.02	0.01	0.04	40
7	OC16	Ottiyambakkam	24.19	4.84	29.03	0.34	0.17	0.51	600
8	-	Perumbakkam	66.08	13.22	79.3	3.95	1.98	5.93	6960
9		Sithalapakkam	48.04	9.61	57.65	2.17	1.09	3.26	3820
10		Thiruvancheri	23.06	4.61	27.68	0.54	0.27	0.81	960
11		Vengaivasal	46.66	9.33	55.99	2.19	1.1	3.29	3860
12		Vengapakkam	18.94	3.79	22.73	0.44	0.22	0.66	780
13		Kolapakkam	26.89	5.38	32.26	1.28	0.64	1.92	2480

Summary of Water Distribution, Storage and Metering Requirement (OC-16)									
Sl.No	Zone	Name of ULB	Length of Pipeline (km)			Total Storage Capacity Required (ML)			Meter Requirement
51.110			Distribution	Transmission	Total	UGT	OHT	Total	(2025)
14		Nedungundram	28.53	5.71	34.23	2.31	1.15	3.46	4460
15		Puthur	15.12	3.02	18.15	0.43	0.22	0.65	840
16		Kilambakkam	12.14	2.43	14.57	0.83	0.42	1.25	1620
17		Vandalur-Part	9.9	1.98	11.88	1.35	0.68	2.03	2610
18		Peerkankaranai-Part	18.11	3.62	21.74	2.08	1.04	3.11	3370
19		Madambakkam	80.71	16.14	96.85	5.08	2.54	7.63	25800
20		Tambaram-Part	70.31	14.06	84.37	7.01	3.51	10.52	12660
21		Perugulathur	14.28	2.86	17.14	5.99	3	8.99	15400
		Sub-Total	571.94	114.39	686.33	37.67	18.83	56.50	89120

Source: JICA Study Team