Chapter 5 EXAMINATION OF ALIGNMENT AND SUITABLE CROSSING ALTERNATIVES FOR THE CAM RIVER

5.1 Review of Road Alignment

5.1.1 Suitable crossing alternative for Nguyen Trai Bridge

Structural crossing alternatives, including tunnels, for the Cam River are examined in this Section. To the extent possible, quantitative estimates and assumptions were used for the comparison, and economy, constructability, and environmental impact were considered in order to select the best from the many crossing alternatives.

This comparison focuses on the route selection for the approach road on the south side of Nguyen Trai Bridge since this area requires widening the road and new construction in the existing densely populated residential area. The following factors were taken into account when making the comparison:

- Ensuring safe and comfortable ride quality on the urban road over Nguyen Trai Bridge
- Ensuring good connectivity between the main urban areas along the train line and the urban road network
- Consideration of an alignment, structural direction and width which minimizes the relocation of residents to the extent possible
- Minimizing environmental and socio-economic impact during construction

The alternatives shown in Table 5.1-2, including the "zero option" alternative of constructing no new crossing (in case the project is not implemented), were considered in the comparison. The Cam River is a physical barrier which restricts traffic, and if the "zero option" is adopted and a crossing is not constructed, the section will likely become a significant bottleneck for the urban transport network. The crossing is also needed in light of the future socio-economic development and urban planning of Hai Phong City. From the traffic demand analysis, if the "zero option" is adopted, the traffic capacity of Binh Bridge will be exceed in 2021.

Based on the comparison results, the bridge is recommended as the best alternative in comprehensive view of its impact on the natural environment and the buildings along the existing Nguyen Trai Street, as well as economy, constructability, and environmental impact. From the discussions with HPPC and VSIP about the alternatives and alignment including the bridge type, the Arch bridge and the alignment which connects to the Nguyen Trai Street are decided. Table 5.1-2 shows the details of the comparison and evaluation of alternatives. Conditions for each structure type are shown below.

Figure 5.1-1 Alternative Closing Method of Nguyen Trai Bridge

	Bridge	Shield tunnel	Immersed Tube Tunnel
Structure Length	1,350m	2,176m	1,256m
River and Navigation	Navigation clearance h x w;	River depth -8.4m	River depth -8.4m
Clearance	25m x 80m		
Road Conditions	Gradient 4% (80km/h)	Gradient 4% (80km/h)	Gradient 4% (80km/h)
	Width/Direction	Width/Direction	Width/Direction
	2 lane x $3.75m + 1$ bikeway	2 lane x $3.75m + 1$ bikeway	2 lane x $3.75m + 1$ bikeway x
	x 3.0m(/direction)	x 3.0m(/direction)	3.0m(/direction)
Other Conditions	Cable stayed bridge	Earth cover 1.5 x D*	Earth cover 3.0m
	Center span 280m	*Diameter of tunnel	

Figure 5.1-2 Typical Cross Section of Structure

Evalu	uation 🔘 : Best alterna	tive, \bigcirc : Second-best alternative, \triangle	: Possible if no other alternative, \times	: Unsuitable alternative
Alternative	Alternative 0: No structure	Alternative 1: Bridge	Alternative 2: Shield tunnel	Alternative 3: Immersed tube tunnel
Summary and aim	Status quo, no construction (no environmental or social impact).	Alternative 1 involves the construction of a new bridge over the Cam River to cope with increased traffic associated with the development of new residential and industrial areas on the north river side and the opening of Lach Huyen Port. (Main structure: 600m bridge)	Alternative 2 involves the construction of a shield tunnel under the Cam River to cope with increased traffic associated with the development of new residential and industrial areas on the north river side and the opening of Lach Huyen Port.	Alternative 3 involves the construction of an immersed tube tunnel under the Cam River to cope with increased traffic associated with the development of new residential and industrial areas on the north river side and the opening of Lach Huyen Port.
	0	0	×	Δ
Social impact	No relocation of residents or houses, and no new land acquisition required.	The total length of the proposed bridge with access roads is approximately 1,350m. This requires the relocation of around 160 houses and the acquisition of around 1,360m ² of land on the south river side. On the north river side, no houses have to be relocated, but the acquisition of around 5,000m ² of land including aquaculture facilities and agricultural land is needed. Alternative 1 requires the least land acquisition and relocation, and has a social impact similar to Alternative 3 and less than Alternative 2.	The total length of the proposed shield tunnel with access roads is approximately 2,180m which is the longest of all alternatives. The land acquisition and relocation needs on both river sides are expected more than 8,400m ² which is higher than for Alternative 1 and Alternative 3. Dozens of houses along the extended access roads and around the excavation sites and tunnel openings are expected to be affected. On some sections, the use of underground areas requires surface rights to be considered. However, the present functions of the port can be kept unchanged.	The total length of the proposed immersed tube with access roads is approximately 1,260m. This requires the relocation of around 160 houses on the south river side, as well as the acquisition of around 8,400m ² of land including aquaculture facilities and agricultural land on both river sides. The social impact is less than for Alternative 2 and similar to that for Alternative 1. On some sections, the use of underground areas requires surface rights to be considered. However, the present functions of the port can be kept unchanged.

5-3

Chapter 5 Examination of Suitable Crossing Alternatives for the Cam River

Table 5.1- 2

Comparison and Evaluation of Alternatives for Nguyen Trai Bridge

Alternative	Alternative 0: No structure	Alternative 1:Bridge	Alternative 2: Shield tunnel	Alternative 3: Immersed tube tunnel
Impact on mangrove forests and wetlands	© Status quo, no impact.	Since the bridge structure will be "transparent" after completion, the impact on surface currents and groundwater flow which may affect the wetlands and mangrove forests on the north side of Cam river is expected insignificant.	After completion, a 250m area around the tunnel opening and the adjoining earthwork section will obstruct the surface currents and groundwater flow, which negatively affects the wetlands and mangrove forests.	After completion, a 250m area around the tunnel opening and the adjoining earthwork section will obstruct the surface currents and groundwater flow, which negatively affects the wetlands and mangrove forests.
Impact on living environme nt / pollution	× Worsened traffic congestion leads to reduced average travel speed and increased stop-start traffic even with current traffic volume. This in turn results in increased fuel consumption and air pollutant emissions. Houses along the roadside will also suffer from more noise pollution.	○ Although more regional traffic is expected to increase roadside air pollution, noise and vibration, such emissions and noise are diffused and the impact on the living environment is therefore less than for Alternative 2 and Alternative 3.	Since a ventilation tower with a concentrated ventilation system will be employed, it is unlikely that there will be high concentrations of emissions in the areas near the tunnel openings. Regarding noise around the tunnel openings, a noise absorption system should be employed to satisfy Vietnamese noise regulations. However, the noise level at the tunnel openings will be higher compared with Alternative1: Bridge.	Since a ventilation tower with a concentrated ventilation system will be employed, it is unlikely that there will be high concentrations of emissions in the areas near the tunnel openings. Regarding noise around the tunnel openings, a noise absorption system should be employed to satisfy Vietnamese noise regulations. However, the noise level at the tunnel openings will be higher compared with Alternative1: Bridge.

Socialist Republic of Vietnam Preparatory Survey on Hai Phong Arterial Road Construction Project

FINAL REPORT

5-4

Alternative	Alternative 0: No structure	Alternative 1: Bridge	Alternative 2: Shield tunnel	Alternative 3: Immersed tube tunnel
Impact on socio- economic activity and racional	× Decreased traffic flow and safety negatively affects socio- economic activity, which limits the development of the entire	Smooth and safe traffic promotes socio- economic activity and regional development. More employment opportunities for local workers and	© Smooth and safe traffic promotes socio- economic activity and regional development. More employment opportunities for local workers and	Smooth and safe traffic promotes socio-economic activity and regional development. More employment opportunities for local workers and
developme nt	Hai Filong area.	eonstitution during the construction period will also lead to increased regional income. Limits on navigational clearance will negatively impact river traffic depending on ship height. Construction of bridge piers will occupy much of the busy river area, temporarily affecting river traffic.	period will also lead to increased regional income.	period will also lead to increased regional income. Construction will occupy much of the busy river area, affecting river traffic for a long time.
Project	0	0	×	
cost	No land acquisition or construction costs.	The project cost is lower than for Alternatives 2 and Alternative 3.	The project cost is 2.0 times higher than for Alternative 1, and the highest of all alternatives.	The project cost is 1.3 times higher than for Alternative 1.
Maintenan	<u> </u>	0		
ce costs	No maintenance costs.	Although bridges have many structures such as slope protection facilities which require maintenance, the maintenance costs are only 1/5 of those for Alternative 3.	Tunnel facilities include lighting, ventilation, surveillance and fire protection equipment, all of which require maintenance. Maintenance costs are therefore expected to be about 5 times higher than for Alternative 1.	Tunnel facilities include lighting, ventilation, surveillance and fire protection equipment, all of which require maintenance. Maintenance costs are therefore expected to be about 5 times higher than for Alternative 1

Alternative	Alternative 0: No structure	Alternative 1: Bridge	Alternative 2 : Shield tunnel	Alternative 3: Immersed tube tunnel
Overall	×	0	0	Δ
evaluation		Alternative 1 is expected to improve the living environment, road transportation system, and socio-economic activity. Since the social impact and project cost are lower than for Alternative 2, and the impact on the natural environment and project cost are lower than for Alternative		
		3, the bridge is recommended as the best alternative.		

FINAL REPORT

5.1.2 Location of Nguyen Trai Bridge

Nguyen Trai Bridge is planned as a connection between the existing old part and the planned new part of the city. For this purpose, the crossing point was examined in the "Amendment of Hai Phong City Master Plan to 2025, Vision for 2050" which includes plans for two bridges (Nguyen Trai Bridge and Hoang Van Thu Bridge). Except for the Master Plan, according to the Urban construction and development PMU, the future urban area plan includes Tuyen Dai Trung Tam Tunnel between the 2 bridges. The bridge sites in the Hai Phong City Master Plan are shown in Figure 5.1-3.

The planned location of Hoang Van Thu Bridge is about 1km upstream of Nguyen Trai Bridge. Of these 2 bridges, the Hai Phong City urban area plan gives higher priority to Nguyen Trai Bridge (interviewed by JICA mission in September 2015). The reason for the higher priority is the urgency and importance of constructing a route to connect Cat Bi Airport and the center of the VSIP area. About the construction plan of Hoang Van Thu Bridge and influence of the bridge is shown in Appendix A2.

In the view of connection road to the bridge, the road has already been widened in accordance with the Master Plan until a point 100m from the south end of the Nguyen Trai bridge (Figure 5.1-4), and the bridge will be a road which connects it to Nguyen Trai Street. Since construction is not progressing on the roads connected to the south of Hoang Van Thu Bridge and there are no connection road to main roads, the benefits of construction of the bridge are considered to be low at present.

As for the north side of Nguyen Trai Bridge, there are mangrove trees along the north side of the Cam River. And it is necessary to cut down part of the mangrove forests on the north bank when the Nguyen Trai Bridge will be constructed. Also, the north side of Nguyen Trai Bridge is basically not residential area, so there is no protection targets, residents or houses, from CO2 emission and other pollutant.

Based on the above planning in the Master Plan, progress of connection road, and the impact on the environment, the Nguyen Trai Street line extension will be used as the crossing point in accordance with the urban area plan.

The bridge location is written based on HPPC Master Plan by study team.

Figure 5.1-3 Planned Bridge Crossings over the Cam River

Source: Study team

Figure 5.1-4 Completed Widening Section of Nguyen Trai Street

5.1.3 Suitable crossing alternative for Vu Yen Bridge

The developing company Vin Group is planning to build a golf course as well as a residential and recreational area on Vu Yen Island where the approach road on the north side of Vu Yen Bridge is to be located. The Hai An Port container yard and oil storage facilities are located close to where the south side approach road is to be built, and the construction of a tunnel crossing is also considered instead of the bridge alternative. The following factors were taken into account when making the comparison:

- Main logistics line for the connection between VSIP and the newly planned port facility
- Ensuring good connectivity between the main urban areas along the train line and the urban road network
- Consideration of an alignment and structural direction which avoids the relocation of residents and facilities to the extent possible
- Minimizing environmental and socio-economic impact during construction

The alternatives shown in Table 5.1-4, including the "zero option" alternative of constructing no new crossing (in case the project is not implemented), were considered in the comparison. The Cam River is a physical barrier which restricts traffic, and if the "zero option" is adopted and a crossing is not constructed, the section will likely become a significant bottleneck for the urban transport network. The crossing is also needed in light of the future socio-economic development and urban planning of Hai Phong City. From the traffic demand analysis, if the "zero option" is adopted, the traffic capacity of Binh Bridge will be exceed in 2023 and Nguyen Trai Bridge will exceeded in 2024.

Based on the comparison results, the bridge is recommended as the best alternative in comprehensive view of its impact on the natural and socio-economic environment during construction, its characteristic as the logistics road, as well as economy, constructability, and environmental impact. From the discussions with HPPC and relevant organizations such as PETEC, Hai An Port, and Vin Group about the alternatives and the alignment including the bridge type, the Cable stayed bridge and the alignment which minimizes the impact on the existing port are chosen as the optimal plan. Table 5.1-4 shows the details of the comparison and evaluation of alternatives.

FINAL REPORT

Figure 5.1-5 Alternative Closing Method of Vu Yen Bridge

	Bridge	Shield tunnel	Immersed Tube Tunnel	
Structure Length	2,520m	2,176m	1,256m	
River and Navigation	Navigation clearance h x w;	River depth -8.0m	River depth -8.0m	
Clearance	45m x 80m			
Road Conditions	Gradient 4% (80km/h)	Gradient 4% (80km/h)	Gradient 4% (80km/h)	
	Width/Direction	Width/Direction	Width/Direction	
	2lane x 3.75m + 1 bikeway x	2lane x 3.75m + 1 bikeway x	2lane x 3.75m + 1 bikeway x	
	3.0m(/direction)	3.0m(/direction)	3.0m(/direction)	
Other Conditions	Cable stayed bridge	Earth cover 1.5 x D*	Earth cover 3.0m	
	Center span 340m, approach	*Diameter of tunnel		
	length 920m per side			

Table 5.1- 3	Assumed Condition	for Comparison	of Vu Yen Bridge
	1155unica Condition	for comparison	or varion briage

Figure 5.1-6 Typical Cross Section of Structure

Alternative	Alternative 0: No structure	Alternative 1:Bridge	Alternative 2: Shield tunnel	Alternative 3: Immersed tube tunnel
Summary and aim	Status quo, no construction (no environmental or social impact).	Alternative 1 involves the construction of a new bridge over the Cam River to cope with increased traffic and improved logistics associated with the opening of Lach Huyen Port. (Main structure: 600m bridge)	Alternative 2 involves the construction of a shield tunnel under the Cam River to cope with increased traffic and improved logistics associated with the opening of Lach Huyen Port.	Alternative 3 involves the construction of an immersed tube tunnel under the Cam River to cope with increased traffic and improved logistics associated with the opening of Lach Huyen Port.
Social impact	0		0	0
	No land acquisition (existing or new) required.	Bridge construction does not require the relocation of houses, but land acquisition including some aquaculture facilities and agricultural land is needed. The total length of the proposed bridge with access roads is approximately 2,520m which is the longest of all alternatives. Land acquisition of 50,000m ² on the north river side and of 30,000m ² on the south river side is required, and the social impact is therefore larger than for all the other alternatives.	Areas around the tunnel openings require land acquisition including some aquaculture facilities and agricultural land. However Vu yen Tunnel will not affect the oil storage base near construction site. The total length of the proposed shield tunnel with access roads is approximately 2,180m. Land acquisition of more than 12,000m2 is required, the social impact is less than for Alternative 1 but larger than for Alternative 3.	Areas around the tunnel openings require land acquisition including some aquaculture facilities and agricultura land. However Vu yen Tunnel will no affect the oil storage base near construction site. The total length of the proposed shield tunnel with access roads is approximately 1,260m which is the shortest of all alternatives. Land acquisition of 12,000m ² is required, and the social impact is therefore less than for Alternative 1 and Alternative 2.
Impact on	0	0	\bigtriangleup	\bigtriangleup
mangrove forests and wetlands	Status quo, no impact.	Since the bridge structure will be "transparent" after completion, the impact on surface currents and groundwater flow which affect the wetlands and mangrove forests on the north side of the Cam River is limited.	After completion, a 250m area around the tunnel opening and the adjoining earthwork section will obstruct the surface currents and groundwater flow, which negatively affects the wetlands and mangrove forests on Vu Yen Island.	After completion, a 250m area around the tunnel opening and the adjoining earthwork section will obstruct the surface currents and groundwater flow which negatively affects the wetlands and mangrove forests on Vu Yen Island

Alternative	Alternative 0: No structure	Alternative 1: Bridge	Alternative 2: Shield tunnel	Alternative 3: Immersed tube tunnel
Impact on living environment / pollution	× Future increases in traffic volume will most likely lead to more traffic congestion on the south side of the Cam River. Traffic congestion leads to reduced average travel speed and increased stop-start traffic even with current traffic volume. This in turn results in increased fuel consumption and air pollutant emissions. Houses along the roadside will also suffer from more noise pollution		Since a ventilation tower with a concentrated ventilation system will be employed, it is unlikely that there will be high concentrations of emissions in the areas near the tunnel openings. Regarding noise around the tunnel openings, a noise absorption system should be employed to satisfy Vietnamese noise regulations. However, the noise level at the tunnel openings will be higher compared with Alternative1: Bridge	Since a ventilation tower with a concentrated ventilation system will be employed, it is unlikely that there will be high concentrations of emissions in the areas near the tunnel openings. Regarding noise around the tunnel openings, a noise absorption system should be employed to satisfy Vietnamese noise regulations. However, the noise level at the tunnel openings will be higher compared with Alternative1: Bridge.
Impact on water environment during construction phase	Status quo, no impact.	The steel pipe sheet pile methods which is environmental friendly method will be used as a pier foundation. A working area and construction period is suppressed to the minimum, and an amount of discharged soil is small. The earth retaining wall has also high water-tightness, and the impact on the water environment containing a water quality, an ecosystem, a flood, etc. is very small. And the bridge structure will be "transparent" after completion, the impact on surface currents and groundwater flow which affect the wetlands and mangrove forests is limited.	Basically there is no impact on the surface currents, but the groundwater flow will be impacted.	× Since immersed tunnel is required large-scale excavation and longtime construction in the river, the impact on the water environment such as the water quality or river ecosystem will be large.

5-12

A 14		Alternative 1. Duiles		
Alternative	Alternative 0: No structure	Alternative 1: Bridge	Alternative 2: Smeld tunnel	Alternative 3: Immersed tube tunnel
Road transport	×	0	0	0
system	Increased traffic volume leads	Sufficient traffic capacity ensures traffic	Sufficient traffic capacity ensures	Sufficient traffic capacity ensures traffic
	to congestion with a resulting	flow and safety. Not only cars but also	traffic flow and safety, but there are	flow and safety, but there are several
	drop in traffic flow and safety.	pedestrians can use the bridge.	several negative impacts on	negative impacts on pedestrians and
			pedestrians and bicycle/motorbike	bicycle/motorbike traffic such as the
			traffic such as the concentration of	concentration of car emissions in the
			car emissions in the tunnel, high	tunnel, high oppressive feeling, and etc.
			oppressive feeling, and etc.	
Impact on	×	Δ	<u> </u>	0
socio-economic	Decreased traffic flow and	Smooth and safe traffic promotes socio-	Smooth and safe traffic promotes	Smooth and safe traffic promotes socio-
activity and	safety negatively affects socio-	economic activity and regional	socio-economic activity and	economic activity and regional
regional	economic activity, which limits	development. More employment	regional development. More	development. More employment
development	the development of the entire	opportunities for local workers and	employment opportunities for local	opportunities for local workers and
	Hai Phong area.	consumption during the construction	workers and consumption during the	consumption during the construction
		period will also lead to increased	construction period will also lead to	period will also lead to increased
		regional income. Construction of bridge	increased regional income.	regional income. Construction will
		piers will occupy much of the busy river		occupy much of the busy river area,
D. I. I. I.		area, temporarily affecting river traffic.		affecting river traffic for a long time.
Project cost				
	No land acquisition or	The project cost is lower than for	The project cost is 1.7 times higher	The project cost is 1.1 times higher than
	construction costs.	Alternative 2, and roughly the same as	than for Alternative I, and the	for Alternative 1.
		for Alternative 3.	nignest of all alternatives.	
Maintenance	<u> </u>	<u> </u>	Δ	$ \qquad \qquad $
costs	No maintenance costs.	Although bridges have many structures	Tunnel facilities include lighting,	Tunnel facilities include lighting,
		such as slope protection facilities which	ventilation, surveillance and fire	ventilation, surveillance and fire
		require maintenance, the maintenance	protection equipment, all of which	protection equipment, all of which
		costs are only 1/5 of those for	require maintenance. Maintenance	require maintenance. Maintenance costs
		Alternative 2 and Alternative 3.	costs are therefore expected to be	are therefore expected to be about 2.6
			about 2.6 times higher than for	times higher than for Alternative 1.
			Alternative 1.	
1				

5-13

Alternative	Alternative 0: No structure	Alternative 1:Bridge	Alternative 2 : Shield tunnel	Alternative 3: Immersed tube tunnel
Overall	×	0	0	\triangle
evaluation		Alternative 1 is expected to improve the		
		living environment, road transportation		
		system, and socio-economic activity.		
		Since the impact on the living		
		environment and project cost are lower		
		than for Alternative 2, and the impact on		
		the natural environment and project cost		
		are lower than for Alternative 3, the		
		bridge is recommended as the best		
		alternative.		

5.1.4 Location of Vu Yen Bridge

Three alternatives were compared for the location of Vu Yen Bridge. The conditions used for the comparison are as follows.

- Impact of bridge construction on existing port facilities.
- > Safety of nearby petroleum facilities.
- > Consideration of the nearby ecological system, especially mangrove forests.
- Impact on bridge structure and trafficability.

To ensure the safety of the nearby petroleum facilities and minimize the impact on the existing port facilities, Alternative 2 was chosen.

Base image from Google Earth, 2015

Figure 5.1-7 Alternative Crossing Route of Vu Yen Bridge

	Alternative Route 1	Alternative Route 2	Alternative Route 3
Concept	Shortest route	300m safety distance	Impact on existing
concept	Shortest route.	from petroleum facilities	container vard can be
		(PETEC) can be ensured.	minimized.
Safety of oil	It's necessary to relocate	A 300m safety distance,	A 300m safety distance,
facilities	the petroleum facilities	defined by Decree	defined by Decree
	(PETEC) since a 300m	No.13/2011/ND-CP, can	No.13/2011/ND-CP, can
	safety distance, distance	be ensured.	be ensured.
	by Decree		
	No.13/2011/ND-CP		
	cannot be ensured.		
	×	0	\bigcirc
Safety of ship	Safe since the piers will	Safe since the piers will	Safe since the piers will
navigation	be constructed on land.	be constructed inside of	be constructed on land.
		water's edge.	
	0	0	0
Road	Shortest route with good	Although there is an S-	Although there is a big S-
serviceability	trafficability.	shaped curve on the south	shaped curve on the south
		side, trafficability is no	side, trafficability is no
		road standard	road standard
Difficulty	The main bridge has a	The main bridge has a	Δ
Difficulty 01	straight alignment so	straight alignment so	Since the main bridge is
construction	construction is no	construction is no	a cable-stayed bridge
	problem	problem	a cable-stayed blidge.
			~
	(())	11 11	v
Social impact	U Two port facilities (VINA	VINA LINE is not	VINA LINE is not
Social impact	Two port facilities (VINA LINE Hai An Port) are	VINA LINE is not	× VINA LINE is not affected Hai An Port has
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities	VINA LINE is not affected. It's necessary to relocate the wharf	VINA LINE is not affected. Hai An Port has to be closed since the
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact Pollution impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact Pollution impact including CO ₂ ,	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents However	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility.
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. △ Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected
Social impact Pollution impact including CO ₂ , etc.	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. △ Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. △
Social impact Pollution impact including CO ₂ , etc. Environmental	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle It is necessary to cut	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. There is basically no need	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need
Social impact Pollution impact including CO2, etc. Environmental impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle It is necessary to cut down part of the	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. \bigcirc Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. There is basically no need to cut down the mangrove
Social impact Pollution impact including CO2, etc. Environmental impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. \bigcirc Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove forests.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove forests.
Social impact Pollution impact including CO2, etc. Environmental impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. \bigcirc Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove forests.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove forests.
Social impact Pollution impact including CO2, etc. Environmental impact	Two port facilities (VINA LINE, Hai An Port) are affected. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected.	VINA LINE is not affected. It's necessary to relocate the wharf facilities of Hai An Port about 50m downstream. The facilities can be used also after completion of construction except around the pier location. Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. There is basically no need to cut down the mangrove forests.	VINA LINE is not affected. Hai An Port has to be closed since the route goes through above ship approaching facility. \triangle Because there are not residential area in both side of the bank, there is basically no impact for the residents. However workers of two port facilities on the south bank are slightly affected. \triangle There is basically no need to cut down the mangrove forests.

Table 5.1-5	Comparison and Evaluation of Alternatives for Vu Yen B	Bridge Route
-------------	--	--------------

Evaluation \bigcirc : Best, \bigcirc : Second-best, \triangle : Possible if no other, \times : Unsuitable

5.1.5 Ring Road 3

Haiphong RR3 serves as a main road connecting Cat Bi airport, VSIP industrial area, new administrative area, and QL10, and there are many households, rice fields, and culture pond over the planning site of the RR3. Since the construction of RR3 involves widening and newly construction in a dense residential area, the following factors were taken into account when making the comparison:

- Ensuring safe and comfortable ride quality as the urban road.
- Ensuring good connectivity between main urban areas and the urban road network.
- Consideration of an alignment and structural direction which avoids the relocation of residents and facilities to the extent possible.
- Minimizing the environmental and socio-economic impact during construction.

The alternatives shown in Table 5.1-6, including the "zero option" alternative of constructing no new road (in case the project is not implemented), were considered in the comparison. Alternative 1: the route minimizing the land acquisition and relocation, Alternative 2: the route by shortest cut, and Alternative 3: the route effectively utilizing the current road.

The road connecting between Vu Yen Island and Thuy Nguyen district is important and necessary for the development plan of Haiphong city according to the construction of the Vu Yen Bridge, and if the "zero option" is adopted and the RR3 is not constructed, the section will likely become a significant bottleneck for the urban transport network.

Based on the comparison results, the route which is minimize the land acquisition and relocation is recommended as the best alternative in comprehensive view of its impact on the housing and the buildings along the existing rural road and distribution of the rice field and culture pond, as well as economy, constructability, and environmental impact. F/S of this section has been done by HEZA. From the discussion with the PMU about the road alignment, the route which is not pass the high residential density area is preferred and consented. Table 5.1-6 shows the details of the comparison and evaluation of alternatives.

FINAL REPORT

Figure 5.1-8 Route Alternatives with Respective Merits

Evaluation	\odot : Best alternative, \bigcirc : Secon	u-best alternative, \triangle . Possible if i	to other alternative, \land . Onsuitable	ancinative
Alternative	Alternative 0 : No structure	Alternative 1: Route minimizing relocation and land acquisition	Alternative 2: Shortest route	Alternative 3: Route effectively utilizing the existing road
Summary and	Status quo, no construction (no	Minimize the number of relocation	Connect the starting point (Vu Yen	Use and widen the existing road to the
aim	environmental or social impact).	households without road alignment	Island) and ending point (QL10) using	extent possible.
		and loss of network function.	the shortest route.	Road length: 13.5km
		Road length: 13km	Road length: 11.6km	
Social impact	0	0	×	×
	No land acquisition (existing or new) required.	Relocation of 500 households and land acquisition of 650,000m ² is required, but the social impact is the smallest of all the other alternatives (except the zero-option). The possibility of small-scale community segmentation since the road hinders pedestrian traffic between residential areas, agricultural areas and public facilities.	Relocation of 100 households more than Alternative 1 and land acquisition of 580,000m ² are required. The possibility of small-scale community segmentation since the road hinders pedestrian traffic between residential areas, agricultural areas and public facilities.	Since this route widens the exiting road and takes a roundabout route, the road becomes long (1~2km). Also houses are densely packed along the existing road and number of relocation will be100 households more than Alternative 1. Furthermore, the land acquisition of 675,000m ² which is the largest area of all alternatives is required. The possibility of small-scale community segmentation since the road hinders pedestrian traffic between residential areas, agricultural areas and public facilities.
Impact on	0	0	0	0
natural	Status quo, no impact.	8.650m^2 of the mangrove forests and	8.650m^2 of the mangrove forests and	8.650m^2 of the mangrove forests and
environment	1, F	part of the wetlands are affected by	part of the wetlands are affected by	part of the wetlands are affected by
(mangrove		excavation or construction during the	excavation or construction during the	excavation or construction during the
forests)		construction period.	construction period.	construction period.

Evaluation \bigcirc : Best alternative, \bigcirc : Second-best alternative, \triangle : Possible if no other alternative, \times : Unsuitable alternative

Alternative	Alternative 0 : No structure	Alternative 1: Route minimizing relocation and land acquisition	Alternative 2: Shortest route	Alternative 3: Route effectively utilizing the existing road		
Impact on living	×	©	©	0		
environment /	There is no effect on the planned site,	Although more regional traffic is	Although more regional traffic is	Although more regional traffic is		
pollution	but for Hai Phong City, worsened	expected to increase roadside air	expected to increase roadside air	expected to increase roadside air		
	traffic congestion leads to reduced	pollution, noise and vibration, such	pollution, noise and vibration, such	pollution, noise and vibration, such		
	average travel speed and increased	emissions and noise are diffused.	emissions and noise are diffused.	emissions and noise are diffused.		
	stop-start traffic even with current			This route is planned to pass existing		
	traffic volume. This in turn results in			settlements, and the impact on the		
	increased fuel consumption and air			living environment is therefore more		
	pollutant emissions in Hai Phong City.			than for Alternative 1 and Alternative		
				2.		
Road transport	×	0	\odot	Δ		
system	Since there is no traffic connection	Sufficient traffic capacity ensures	Sufficient traffic capacity ensures	Sufficient traffic capacity ensures		
	between Vu Yen Island and Thuy	traffic flow.	traffic flow. Especially the linear road	traffic flow, but the route along the		
	Nguyen district, the traffic flow from		alignment has better traffic functions.	existing road alignment may cause		
	Vu Yen Island to the south side of the			traffic congestion.		
	Cam River is cut off.					
Road safety	0	0	0	Δ		
during	Status quo, no impact.	Capable of causing traffic accidents	Capable of causing traffic accidents by	Capable of causing traffic accidents		
construction		by traveling vehicles on the newly-	traveling vehicles on the newly-built	due to widening of the existing road.		
		built road.	road.	Safety measures need to be develop in		
				a built-up area.		
Impact on socio-	X	©	©	0		
economic	Decreased traffic flow and safety	Smooth and safe traffic promotes	Smooth and safe traffic promotes socio-	Smooth and safe traffic promotes		
activity and	negatively affects socio-economic	socio-economic activity and regional	economic activity and regional	socio-economic activity and regional		
development	activity, which limits the development	development. More employment	development. More employment	development. More employment		
development	of the entire Hai Phong area.	opportunities for local workers and	opportunities for local workers and	opportunities for local workers and		
		period will also lead to increased	period will also lead to increased	period will also lead to increased		
		regional income	regional income	regional income		
		regional moome.	regional moone.	regionar moonie.		

5-20

Alternative	Alternative 0 : No structure	Alternative 1: Route minimizing relocation and land acquisition	Alternative 2: Shortest route	Alternative 3: Route effectively utilizing the existing road
Project cost	0	\bigtriangleup	0	\bigtriangleup
	No land acquisition or construction	The resettlement cost is the smallest,	The land acquisition cost is the	By widening the existing road, land
	costs.	but land acquisition costs are larger	smallest, but resettlement costs are	acquisition costs are reduced. But the
		than for Alternative 3. Since the road	larger than for Alternative 1 (but still	resettlement cost is larger than for
		length is longer than for Alternative 2,	smaller than for Alternative 3). Since	Alternative 1 and 2.
		the construction cost is also higher	the road length is the shortest, the	Since the road length is the longest,
		than for Alternative 2.	construction cost is lower than for	the construction cost is the highest of
			Alternative 1.	all alternatives.
Maintenance		0	0	0
costs	No maintenance costs.	The whole length is paved with	The whole length is paved with asphalt,	The whole length is paved with
		asphalt, and structures such a bridges	and structures such a bridges and slope	asphalt, and structures such a bridges
		and slope protection systems are	protection systems are relatively small.	and slope protection systems are
		relatively small. Maintenance costs	Maintenance costs are relatively low	relatively small. Maintenance costs
		are relatively low compared with the	compared with the other alternatives.	are relatively low compared with the
		other alternatives.		other atternatives.
Overall	×	0	0	Δ
evaluation		Alternative 1 is expected to improve		
		the living environment, road		
		transportation system, and socio-		
		economic activity. Since the impact		
		on the living environment is the		
		lowest of all alternatives, the route		
		which minimizes relocation is		
		recommended as the best alternative.		

5.2 Preliminary Design for Bridge Crossing

5.2.1 Study of Main Span Length

(1) Location of Substructure for Nguyen Trai Bridge

1) Available Area for Substructure Construction and Main Span Length

On the south side of the Cam River on the Nguyen Trai Bridge section, there are currently operational container terminals and a shipbuilding yard. According to DOT, the port facilities will be relocated to another location, and the timing of the relocation and the construction of Nguyen Trai Bridge will therefore likely overlap. For this reason, the location of a newly constructed pier (main bridge tower) should not affect the navigation channel closer to port terminal for safety of construction and navigation. Therefore, no pier (tower) should be constructed in the Cam River between the south bank and the existing navigation channel, whereas the area between the north bank and the navigation channel has no restrictions on the use of the water surface. In addition to these conditions for the determination of the main span length of Nguyen Trai Bridge, the space required for pier construction should be considered. Figure 5.2-1 shows the current navigation channel and alternative location of pylon.

The main span length alternatives can be compared using the plans listed below.

PLAN 1 : Span length L =280m (minimum span length, which has same navigation space with Binh Bridge located at 3km upstream)

PLAN 2 : Span length L=420m (a tower on land.)

Figure 5.2-1 Available Area for Substructure Construction and Main Span Length

Figure 5.2-2 Substructure of Nguyen Trai Bridge – Cross Section

2) Comparison Study of Pier Location: In-river vs. On-land

The 280m span length which has the same navigation space as Binh Bridge is considered the minimum span length. This span length was accepted by the Marine Administrator of Hai Phong and the Vietnam Maritime Safety-North in related hearings.

PLAN 1 aims to achieve the shortest center span for Nguyen Trai Bridge. Because of this, the plan requires the construction of a pier (main bridge tower) in the Cam River. The pier needs to be designed against the vessel collision impact force of a 7,000 DWT vessel because of the h=25.0m navigation clearance of Nguyen Trai Bridge. As a result of stability analysis of the pier foundation, it is confirmed that vessel collision impact is not the dominant factor for determination of foundation dimensions in contrast to Vu Yen Bridge which requires a 50,000 DWT design vessel in water.

PLAN 2, on the other hand, uses an on-land pier. The superstructure reaction force on the pier is larger than that of PLAN 1 because of the difference in span length. Therefore, it is clear that the pier construction cost of PLAN 1 is the lowest since it has the smallest superstructure reaction force.

Figure 5.2-3 Minimum Dimensions of In-river Pier (Superstructure: Arch Bridge)

3) Influence to river flow

As natural condition study in Chapter 3, maximum water flow speed is 0.95m/sec.

In case that pier set in water, effect to river flow and scour is considered. According to guideline for structure for river administration facilities in Japan, target ratio of structure area to river area is less than 5% to not disturb to river flow. The ratio of Nguyen Trai Bridge is 3.5% which is smaller than target ratio.

{(18.491 x 5.0m)+(4.95 x 4.0m)} /3,203m2 =3.5%

(Area of main bridge + Area of approach bridge)/River area

And the center span length is smaller than Binh Bridge (260m) which is located at 3km upstream. It is considered that influence by pier to the river flow is small.

Local scour calculated in Chapter 3 shall be considered in structure design.

(2) Location of Substructure for Vu Yen Bridge

1) Available Area for Substructure Construction and Main Span Length

On the south side of the Cam River on the Vu Yen Bridge section, there are currently operational oil terminals and container terminals, which will also be in use after the construction of Vu Yen Bridge. For this reason, the location of a newly constructed pier (main bridge tower) should not affect the navigation channel closer to port terminal for safety of construction and navigation. Therefore, no pier (tower) should be constructed in the Cam River between the south bank and the existing navigation channel, whereas the area between the north bank and the navigation

channel has no restrictions on the use of the water surface. In addition to these conditions for the determination of the main span length of Vu Yen Bridge, the space required for pier construction should be considered. Vietnamese regulations require a clearance of 30m between the navigation channel and any nearby structures. Figure 5.2-4 shows the current navigation channel and alternative location of pylon..

The main span length alternatives can be compared using the plans listed below.

PLAN 1 : Span length L = 280m (Tower in the river and shortest span length.)

PLAN 2: Span length L = 340m (Tower on land and shortest span without vessel collision.)

Figure 5.2-4 Available Area for Substructure Construction and Main Span Length

Figure 5.2-5 Vu Yen Bridge - Cross Section

2) Comparison Study of Pier Location: In-river vs. On-land

PLAN 1 aims to achieve the shortest center span for Vu Yen Bridge. Because of this, the plan requires the construction of a pier (main bridge tower) in the Cam River. The pier needs to be designed against the vessel collision impact force of a 50,000 DWT vessel based on the accumulated record of vessel traffic on the Cam River. As a result of stability analysis of the pier foundation, it is confirmed that vessel collision impact is the dominant factor for determination of the foundation dimensions.

PLAN 2, on the other hand, uses an on-land pier which does not require consideration of vessel collision impact, and the superstructure reaction force on the pier foundation is therefore dominant in this regard.

Table 5.2-1 shows the results of the stability analysis and the rough construction costs. The results indicate that the application of collision impact force (50,000 DWT) requires significantly larger foundation dimensions compared to a foundation with increased superstructure reaction force due to the extension of the center span from 280m to 340m.

Regarding the construction cost, it is confirmed that the direct cost of the in-river tower (PLAN 1) is 680 million Japanese yen (approx. 123 billion Vietnamese dong) more expensive than the on-land tower (PLAN 2) according to a rough cost estimate made by the JICA Study Team.

In view of impact to river condition, since both pier is located inside of riverbank, PLAN 2 does not affect to river flow.

 Table 5.2-1
 Comparison Study: In-river Tower vs. On-land Tower for Vu Yen Bridge

 \bigcirc : High applicability, \triangle : applicable, \times : low applicability

3) Location of North Pylon

Considering navigational safety and the huge cost of constructing the substructure on water, PLAN 2 with the 340m main span length is recommended. Hearings conducted with the Navigation Authority and Marine Safety also indicate that this span length has been accepted. The exact position of the north pylon will be determined based on total construction cost and environmental considerations such as protection of nearby mangrove forests.

5.3 Policy of Road Basic Design

5.3.1 Scope of the Project

An outline of the road design for the Project is shown in Table 5.3-1.

Table 5.3-1 Outline of Project Road Design							
Length/Location Number of lanes Note:							
Ring Road No.3	L=16.8km	4 lanes	Including Vu Yen Bridge				
Vu Yen Bridge	L=3.2km across Cam River	4 lanes	Main Bridge + Approaches				
Nguyen Trai Bridge	L=1.81km across Cam River	4 lanes	Main Bridge + Approaches				

A location map of the Project is shown in Figure 5.3-1.

Figure 5.3-1 Location Map of the Project

5.3.2 Design Criteria

The road design was carried out based on Vietnamese design criteria, which are shown in Table 5.3-2. However, Japanese design criteria were also taken into consideration for the road design following confirmation with HPPC.

Table	e 5.3-2 Vietnamese Design Criteria
TCXDVN 104-2007	Urban Road – Specifications for Design
TCVN4054-2005	Highway - Specifications for Design

The design criteria for each road were determined according to each type of road classification shown in Table 5.3-3 to Table 5.3-4.

(1) Nguyen Trai Bridge, Ring Road No.3 Urban Areas

Road terrain conditions	Urban Area
Design criteria	TCXDVN 104-2007
Urban category	Special urban, Class I Main urban road – Primary
Road type	Main urban road – Primary
Design speed	80km/h

Table 5.3-3Design Criteria (1/2)

(2) Vu Yen Bridge, Ring Road No.3 Non-Urban Areas

Table 5.3-4Design Criteria (2/2)

Road terrain conditions	Non-Urban Area and Farm Area
Design criteria	TCVN4054-2005
Urban category	Special urban, Class I Main urban road – Primary
Road type	Grade III (Provincial road)
Design speed	80km/h

The classification of each route is shown in Figure 5.3-2.

Figure 5.3-2 Road Classification

5.3.3 Basic Design for Road Classification

(1) Design Speed

1) Nguyen Trai Bridge and Ring Road No.3 Urban Areas

Urban	Category	Category Special urban, Class II, II		II, III	Clas	s IV	Class V		
Тороз	graphy (*)	Flat	Mountain	Flat	Mountain	Flat	Flat Mountain		Mountain
Urban expressway		100, 80	70, 60	-	-	-	-	-	-
Main	Primary	<u>80</u> ,70	70,60	80,70	70,60	-	-	-	-
urban road	Secondary	70,60	60,50	70,60	60,50	70,60	60,50	-	-
Access urban road		60,50	50,40	60,50	50,40	60,50	50,40	60,50	50,40
Inter	nal road	40,30,20	30,20	40,30,20	30,20	40,30,20	30,20	40,30,20	30,20

Table 5.3-5 List of Road Classifications and Design Speed

Source: TCXDVN 104-2007

2) Vu Yen Bridge, Ring Road No.3 Non-Urban Areas

 Table 5.3-6
 List of Road Classifications

Design category	Design traffic volume (PCU/day)	Major functions of highway				
Expressway	> 25.000	Arterial road, in compliance with TCVN 5729:1997				
Ι	> 15.000	Arterial road, connecting large national economic, political and cultural centers National highway				
II	> 6.000	Arterial road, connecting large national economic, political and cultural centers National highway				
Ш	> 3.000	Arterial road, connecting large national and regional economic, political and cultural centers National highway or Provincial road				
IV	> 500	Highway connecting regional centers, depots and residential areas National highway, Provincial road, District road				
V	> 200	Road serving local traffic. Provincial road, district road, communal road				
VI	< 200	District road, communal road				
 These values are Selection of values 	for reference.	uld be based on wood function and tannoin type				

• <u>Selection of road classification should be based on road function and terrain type.</u>

Source: TCVN4054-2005

FINAL REPORT

Design category	Ι	Π		III		IV		V		VI	
Topography	flat	flat	flat	mountain	flat	mountain	flat	mountain	flat	mountain	
Design speed, V _{tk} (km/h)	120	100	80	60	60	40	40	30	30	20	

Table 5.3-7List of Design Speeds

Source: TCVN4054-2005

(2) Road Width Configuration

The road width configuration of each route is proposed based on Vietnamese design criteria. The proposed road width configuration is shown in Figure 5.3-3 to Figure 5.3-5.

1) Urban Areas (Refer to: TCXDVN 104-2007)

<u>Ring Road No.3</u>

Figure 5.3-3 Road Width Configuration without Frontage Road

Figure 5.3-4 Road Width Configuration with Frontage Road

<u>Nguyen Trai Bridge</u>

Figure 5.3-5 Road Width Configuration of Nguyen Trai Bridge

2) Non-Urban Areas

The road width configuration is normally decided based on the conditions of each road. However, the road length in non-urban areas on this project is only 5km. Since this road section is important to ensure continuity of the front and rear sections, the JICA study team proposed to adopt the same road width configuration as for the front and rear sections based on TCXDVN 104-2007 (proposed total width is 22.5m).

<u>Vu Yen Bridge</u>

Road width configuration based on TCVN4054-2005

RingRoad No.3 Urban Area - Non Access Control Section

Proposed road width configuration based on TCXDVN 104-2007

Figure 5.3-7 Proposed Road Width Configuration for Ring Road No.3 Non-Urban Areas without Frontage Roads

(3) Design Criteria

1) TCXDVN 104-2007

	Design speed, km/h								Mnimum	Expected		
Type of road		100	80	70	60	50	40	30	20	number	lanes	
Urban exp	ressway		3,75	5	3,50					4	6-10	
Main Urban	Primary		3,7	'5	3,50					6	8-10	
Road	Secondary				3,50					4	6-8	
Fontage road					3,5	0	3,25			2	4-6	
Internal road							3,25	3,0(2,75)	1	2-4	

 Table 5.3-8
 Lane Width and Minimum Number of Lanes

Note

1. Lane width 2,75m is advised to apply to internal roads.

 If internal roads in functional areas only have one lane, minimum width of lane should be 4.0m, excluding drainage.

 Minimum lanes are advised to apply in advantageous cases or invesment phasing; in ordinary case expected lanes are suggested; in special case, calculations on economic and technical should be considered.

 Table 5.3-9
 Minimum Shoulder Width and Safe Line

Technical classification, km/h	100	80	70	60	50	40	30	20
Shoulder width, m	2,5 ÷3	2,0 ÷ 3	2 ÷2,5	1,5÷2,5	0,75÷1	0,5	0,5	0,3
Safe line width if:								
- Construction condition I	1,00	0,75	0,75	0,50	0,25	-	-	-
-Construction condition II, III	0,75	0,50	0,50	0,25	. =	₩S	-	-

Table 5.3-10	Minimum	Width	and Type	of Separator
--------------	---------	-------	----------	--------------

		Minimum width and type of separator (m)						
Type of road		Const	Type of					
		I	Ш	III	line			
Urban expre	essway	4,00 (12,00)	3,50 (9,00)	3,00 (6,00)	a2, a3, b2, b3			
	Primary	3,00 (9,00)	2,50 (6,50)	2,00 (4, <mark>00</mark>)	a2, a3, b2, b3			
Main urban road	Secondary	2,50 (7,50)	2,00 (5,00)	1,50 (3, <mark>0</mark> 0)	a1,a2, a3, b1			
Regional	Regional road		1,50 (4,00)	1,00 (2,00)	a1, a2, b1			
Internal st	treet	-	2	62. ¹	<u>8</u>			

Design speed, km/h	100	80	70	60	50	40	30	20
Maximum longitudinal slope, %	4	5	5	6	6	7	8	9

 Table 5.3-11
 Maximum Longitudinal Slope

2) TCVN4054-2005

Table 5.3-12 Minimum Width of Cross-Sectional Elements

Design categories	Ι	п	III	IV	V	VI
Design speed, (Km/h)	120	100	80	60	40	30
Minimum number of lanes for motorized vehicle, (nos)	6	4	2 *1	2	2	1
Width of a lane, (m)	3.75	3.75	3.5	3.5	2.75	3.5
Width of traveled way for motorized vehicle, (m)	2×11.25	2×7.50	7.00	7.00	5.50	3.50
Width of median separator ¹⁾ , (m)	3.00	1.50	⁰ *2	0	0	0
Width of shoulder and stabilized part of shoulder ²⁾ , (m)	3.50 (3.00)	3.00 (2.50)	2.50 (2.00)	1.00 (0.50)	1.00 (0.50)	1.50
Width of roadbed, (m)	32.5	22.5	12.00	9.00	7.50	6.50

applied for Flat Rolling Terrain

 Width of median separator for each structure is defined in Article 4.4 and Figure 1. The minimum value is applied for separator made of pre-cast concrete or curb stone with cover and without constructing piers (poles) on separated bands. In other cases, separator width must comply with provisions in Article 4.4.

2) Number in the bracket is the minimum width of stabilized part of shoulder. If possible, it suggests to stabilize the whole shoulder width, especially when the highway without side lane for non-motorized vehicles.

*1: The number of lanes is 4. *2: Refer as below.

The structure of separator	Separated part (m)	Safety part (stabilized) (m)	Minimum width of a median (m)	
Pre-cast concrete, curb stones with covers; no constructing piers (poles) on separator	0.50	2 × 0.50	1.50	For Bridge
Curb stones, with covers, piers (poles) on separator	1.50	2 × 0.50	2.50	For Ground
Without covers	3.00	2×0.50	4.00	

Table 5.3-13 Minimum Median Dimensions

5.3.4 Road Design Policy

The outline alignment of Ring Road No.3 is defined in the master plan established by HPPC. A detailed alignment study has been carried out by the JICA Study Team based on the HPPC master plan in this project. The JICA Study Team proposed the road plan to HPPC in consideration of the major intersection plan, route conditions and impact on residential land.

Figure 5.3-8 Map of Road Master Plan by HPPC

(1) Alignment Design of Ring Road No.3

1) Ring Road No.3

The outline alignment of Ring Road No.3 is planned in the Hai Phong City master plan. The road design proposed by the JICA Study Team is based on the Vietnamese design criteria used on this project, and it is considered consistent with the master plan of land development projects.

Figure 5.3-9 Outline Alignment Plan of Ring Road No.3

The VSIP Industrial Maintenance and Vu Yen Island Redevelopment Plan are carried out as part of the Haiphong City master plan. In this project, the JICA Study Team discussed and shared information on these plans with HPPC.

2) Section of Vu Yen Bridge

The proposed location for Vu Yen Bridge was chosen to ensure there is sufficient distance between one of the oil facilities in close proximity and the bridge.

At the same time, the continuity with the front and rear sections was also considered. The alignment of Vu Yen Bridge proposed by the JICA Study Team was prepared so as to ensure

sufficient distance (300m) to HPPC.

Figure 5.3-10 Map of the Vu Yen Bridge Area

3) Section from Vu Yen Bridge to L356 Intersection

The intersection of Ring Road No.3 and L356 is being designed by HPPC, and the design by the JICA Study Team on this project should therefore be consistent with HPPC's road design. As a result of various studies, the location of the intersection in the original plan should be replaced by that in the new plan. The JICA Study Team discussed with HPPC about the new plan and during these discussions, HPPC agreed to change the design based on the alignment plan prepared by the JICA Study Team. HPPC's intersection design and the proposed alignment by the JICA Study Team are shown in Figure 5.3-11.

Figure 5.3-11 HPPC's Intersection Plan

(2) Major Intersections on Ring Road No.3

There are five (5) major intersections on Ring Road No.3. The JICA Study Team studied and proposed intersections for each type to HPPC. The location of major intersections is shown below:

Figure 5.3-12 Location of Major Intersections

1) No.1 Intersection

Figure 5.3-13 No.1 Intersection

2) No.2 Intersection

3) No.3 Intersection

Figure 5.3-15 No.3 Intersection

4) Vu Yen Island IC

The redevelopment plan for Vu Yen Island has been implemented by the Vin Group. Therefore, it is necessary to be consistent with this redevelopment plan on the connection plan to Ring Road No.3 in this project. The JICA Study Team discussed with the Vin Group about the direction of each plan.

Figure 5.3-16 Vu Yen Island

(3) Nguyen Trai South IC

In order to avoid traffic congestion at the roundabout at the south end of the project, an interchange which distributes the traffic flow to Le Thanh Tong Street is designed south of Nguyen Trai Bridge. The effect of distributing the traffic flow is confirmed in Chapter 4. The Study Team studied the type and connection method to the street (location of connecting ramp way, with or without signals) based on discussions with PMU, DOT and DOC.

A further advantage is that the road can be partially opened for traffic if the construction of approach roads or IC ramp ways is delayed due to unexpected factors such as delayed resettlement or delayed relocation of the port facilities.

Chapter 5 Examination of Suitable Crossing Alternatives for the Cam River

Figure 5.3-17 Nguyen Trai South IC

5.4 Evaluation of Main Bridge Structure

5.4.1 Bridge Type for Nguyen Trai Bridge

(1) Selection of Main Bridge Type

Table 5.4-1 shows the bridge types applicable for the 260-350m required span length. When choosing the best bridge alternative, economy has to be considered along with the soil conditions at the bridge site, constructability in Vietnam, aesthetics, and available maintenance technology.

Of the 6 bridge types in Table 5.4-1, extradosed bridges and PC box girder bridges will not be considered because their maximum span length is less than span length required for Nguyen Trai Bridge, and truss bridges will not be included in the evaluation because of economic considerations and the available inspection technology in Vietnam. A detailed evaluation will therefore be made of cable-stayed bridges, suspension bridges, and arch bridges.

	Cable-stayed Bridge	Extradosed Bridge	Suspension Bridge	Arch Bridge	Truss Bridge	PC Box Girder Bridge
Sample Photo		4				
	Source: Wikipedia	Source: Kajima Corporation	Source: City of Osaka	Source: Wikipedia	Source: Wikipedia	Source: Wikipedia
Applicable Span Length	130-900m	100-275m	150-2,000m	80-300m	60-510m	60-250m
Suitability for Soft Soil	Yes	Yes	Yes, if self-anchored	Yes, if tied-arch	Yes	Yes
Maximum Span Length (in Japan)	890m (Tatara Bridge)	275m (Kiso River Bridge)	300m (self-anchored: Konohana)	305m (Shin-Kizugawa Ohashi)	440m (Tokyo Gate Bridge)	250m (Ejima Ohashi)
Maximum Span Length (in Vietnam)	550m (Can Tho Bridge)	N/A	N/A	200m (Rong Bridge)	130m (Long Bien Bridge)	150m (Ham Luong Bridge)

 Table 5.4-1
 Examples of Bridge Types Applicable for the Cam River Crossing

The following points were considered in the comparison:

- Steel pipe sheet pile foundations are adopted in view of the constructability of the tower foundations.
- Since the bridge cannot be placed at a 90 degree angle to the river, a circular structure was adopted for the main tower foundation in the river to prevent the disruption of river flow.

A comparison study of the following three bridge types is shown in bellow.

Case 1: Cable-Stayed Bridge

Case 2: Arch Bridge

Case 3: Self-Anchored Suspension Bridge

Table 5.4-2 Comparison Study of Nguyen Trai Bridge (1/2)

Table 5.4-3 Comparison Study of Nguyen Trai Bridge(2/2)

Study of Bridge Type of Nguyen Trai Bridge (2/2)

		Evaluation	
	Overview	 Employs concrete towers and PC girders. Same type as Binh Bridge and Kien Bridge. Single-plane cable arrangement. Different variations such as composite girders are possible. 	
dge	Construction cost	Main bridge superstructure (girders, cables, towers): 4.23 billion Main bridge substructure (piers, foundation): 2.80 billion Approach bridge 28m: 0.22 billion	0
d brid	Maintenance	 The cable anchorages require periodic re-painting. Special technique for inspection and additional monitoring equipment is required. 	0
-staye	Design innovation	 Not innovative since there are already many bridges of the same type over the Cam River and elsewhere in Vietnam. Would be the first cable-stayed bridge with wide side spans in Vietnam. 	\bigtriangleup
able-	Aesthetics	• The high bridge towers can be designed so that the bridge stands out as a landmark.	0
А. С	Widening at south side approach	Widening possible, but many structural limitations compared to the arch bridge alternative.	0
Plan	Constructability, Construction period	 Cantilever erection method is suitable for construction of superstructure. Use of slip form for RC towers enables reduction of construction period. Approximately 40 months. 	0
	Impact on navigation	•Satisfy the navigation width 80m and minimum space for construction 30m.	0
	Overall evaluation	•Tentative AHP result 0.347 (2nd rank)	0
	Overview	 Since the soil is soft, the bridge is self-anchored and does not employ anchorages. Single steel box girders with a polarized hexagonal cross-section are employed to counteract the axial force on the stiffening 	girders.
ge	Construction cost	Main bridge superstructure (girders, cables, towers): 7.34 billion Main bridge substructure (piers, foundation): 2.39 billion Approach bridge 96m: 0.51 billion	\bigtriangleup
brid	Maintenance	 The stiffening girders and cable anchorages are made of steel and thus require periodic re-painting. Special technique for inspection and additional monitoring equipment is required. 	0
ension	Design innovation	 The suspension bridge with the longest span in Southeast Asia employs this design. Self-anchored suspension bridge would be the first of its type in Vietnam. 	O
Suspe	Aesthetics	 The bridge has an attractive design since the curved cables make it look wide in the horizontal direction. The bridge towers can be designed so that the bridge stands out as a landmark. 	0
un B.	Widening at south side approach	• It is not easy to widenen at south side approach.	\bigtriangleup
Ple	Constructability, Construction period	 The navigation channel has to be closed for a long time due to the girder support for all length of suspension bridge needed between construction phases. Approximately 40 months. 	×
	Impact on navigation	•Satisfy the navigation width 80m and minimum space for construction 30m.	O
	Overall evaluation	•Tentative AHP result 0.240 (3rd rank)	\triangle
	Overview	•As a measure for soft soil, balanced arch type bridge which reduced the horizontal force to foundation is selected. •In order to reduce the cost of construction, PC slab and large block erection can be applied.	
	Construction cost	Main bridge superstructure (girders, cables): 6.17 billion Main bridge substructure (piers, foundation): 1.47 billion Approach bridge 133m: 0.69 billion	0
idge	Maintenance	 The stiffening girders and arch members are made of steel and thus require periodic inspection and re-painting. Area of steel surface is larger than other type. Re-paint cost is higher. 	0
rch bı	Design innovation	Would be the longest-span arch bridge in Southeast Asia. Would be the first balanced arch bridge in Vietnam.	0
C. A	Aesthetics	 The elegant arch structure makes the bridge stand out as a landmark. Has symbolic value as the shape is very different from other bridges over Cam River. 	0
Plan	Widening at south side approach	Since it is possible to widen the side spans, this type is easiest to deal with.	0
	Constructability, Construction period	 The navigational channel only has to be closed once since batch erection with jacks can be used. Arch members are pre-fabricated so the substructure can be constructed simultaneously with superstructure fabrication. The construction period is approximately 34 months. 	Ô
	Impact on navigation	Satisfy the navigation width 80m and minimum space for construction 30m.The height limit is little lower than other plan at North pier.	0
	Overall evaluation	•Tentative AHP result 0.413 (1st rank)	0

Evaluation \bigcirc : Best, \bigcirc : Second-best, \triangle : Possible if no other, \times : Unsuitable

(2) Evaluation by AHP method

The alternatives were evaluated using the AHP (Analytic Hierarchy Process) method.

1) Attributes for Bridge Type Selection

The following attributes were selected for bridge type evaluation by AHP. This selection of bridge type is comparison of bridge with same center span length and same foundation type, and there are no superiority or inferiority about environmental and social impact. For this reason, bridge type is mainly compared about characteristic of structure.

- a) Construction Cost
- b) Maintenance
- c) Design Innovation
- d) Aesthetics
- e) Widening at south side approach
- f) Construction Period
- g) Impact on Navigation

Evaluation for each attributes is commented in Table 5.4-3

2) Scale of Relative Importance

The scale of relative importance used in the AHP is shown in Table 5.4-4.

Table 3.4-4 Scale of Relative Importance
--

1	A is equal to B
3	A is moderately more important or favorable than B
5	A is strongly more important or favorable than B
7	A is very strongly more important or favorable than B
9	A is extremely strongly more important or favorable than B
2,4,6,8	Intermediate intensities between the above values

3) Weight of Attributes

The weights of the attributes were determined as follows.

Table 5.4-5Weights of Attributes

Attribute	Construction Cost	Maintenance	Innovative Design	Aesthetic	Widening at south side approach	Construction Period	Impact on navigation	Eigen Vector	Weight
Construction Cost	1.000	7.000	3.000	3.000	5.000	3.000	5.000	1.830	0.249
Maintenance	0.143	1.000	0.500	0.500	0.500	0.500	0.500	0.679	0.092
Innovative Design	0.333	2.000	1.000	1.000	3.000	1.000	3.000	1.137	0.154
Aesthetic	0.333	2.000	1.000	1.000	3.000	1.000	3.000	1.137	0.154
Widening at south side approach	0.200	2.000	0.333	0.333	1.000	1.000	3.000	0.866	0.118
Construction Period	0.333	2.000	1.000	1.000	1.000	1.000	1.000	0.971	0.132
Impact on navigation	0.200	2.000	0.333	0.333	0.333	1.000	1.000	0.740	0.101
								7.360	1.000

4) Pairwise Matrix between Bridge Type and Attributes Construction Cost

As an estimate for construction costs, an absolute measurement method based on band of cost

was used. As shown in Table 5.4-6, it is divided into 7 ranges normalized by the lowest construction cost, that of a cable-stayed bridge.

Lusice S Dunu of Cost								
	From	То						
1	1.00	1.07						
2	1.07	1.14						
3	1.14	1.21						
4	1.21	1.29						
5	1.29	1.36						
6	1.36	1.43						
7	1.43	1.50						

Table 5.4-6Band of Cost

Note: These values are normalized by the cost of a cable-stayed bridge.

The pairwise matrix for Construction Cost based on the above estimate is as follows.

Table 5.4-7Pairwise Matrix for Construction Cost

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	6.000	3.000	2.621	0.655
Suspension Br.	0.167	1.000	0.333	0.382	0.095
Arch	0.333	3.000	1.000	1.000	0.250
				4.002	1.000

Maintenance

The pairwise matrix for Maintenance is as follows.

Fable 5.4-8	Pairwise Matrix for Maintenance
1 abic 3.4-0	

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	2.000	1.260	0.400
Suspension Br.	1.000	1.000	2.000	1.260	0.400
Arch	0.500	0.500	1.000	0.630	0.200
				3.150	1.000

Design Innovation

The pairwise matrix for Design Innovation is as follows.

Table 5.4-9	Pairwise Matrix for Design Innovatio	n
-------------	--------------------------------------	---

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	0.200	0.200	0.342	0.091
Suspension Br.	5.000	1.000	1.000	1.710	0.455
Arch	5.000	1.000	1.000	1.710	0.455
				3.762	1.000

Aesthetics

The pairwise matrix for Aesthetics is as follows.

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	0.333	0.693	0.200
Suspension Br.	1.000	1.000	0.333	0.693	0.200
Arch	3.000	3.000	1.000	2.080	0.600
				3.466	1.000

 Table 5.4-10
 Pairwise Matrix for Aesthetics

Widening at South Side Approach

The pairwise matrix for Widening at South Side Approach is as follows.

Table 5.4-11	Pairwise	Matrix for	Widening at	South	Side App	roach
				~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	5.000	0.333	1.186	0.279
Suspension Br.	0.200	1.000	0.143	0.306	0.072
Arch	3.000	7.000	1.000	2.759	0.649
				4.250	1.000

#### **Construction Period**

The pairwise matrix for Construction Period is as follows.

 Table 5.4-12
 Pairwise Matrix for Construction Period

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	0.333	0.693	0.200
Suspension Br.	1.000	1.000	0.333	0.693	0.200
Arch	3.000	3.000	1.000	2.080	0.600
				3.467	1.000

#### Impact on Navigation

The pairwise matrix for Impact on Navigation is as follows.

 Table 5.4-13
 Pairwise Matrix for Impact on Navigation

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	3.000	1.442	0.429
Suspension Br.	1.000	1.000	3.000	1.442	0.429
Arch	0.333	0.333	1.000	0.481	0.143
				3.365	1.000

#### 5) Conclusions of AHP

Table 5.4-14 shows the conclusions of the AHP. The arch bridge and cable-stayed bridge alternatives have the highest priority. Based on the results and focusing on these 2 bridge types, the Study Team will confirm the opinions of the Vietnamese side regarding aesthetics, innovative design features, etc. As a result of hearing, arch bridge is preferred by Hai Phong side (1126/SGTVT-TDXD by Hai Phong DOT, 1210/SXD-QLQH by Hai Phong DOC).

	Attribute for Evaluation								Rank
Structure Type	Construction Cost	Maintenance	Innovative Design	Aesthetic	Widening at south side approach	Constructio n Period	Impact on navigation		
	0.249	0.092	0.154	0.154	0.118	0.132	0.101		
Cable Stay Br.	0.655	0.400	0.091	0.200	0.279	0.200	0.429	0.347	2
Suspension Br.	0.095	0.400	0.455	0.200	0.072	0.200	0.429	0.240	3
Arch	0.250	0.200	0.455	0.600	0.649	0.600	0.143	0.413	1

Table 5.4-14Estimation of Priority

# 5.4.2 Bridge Type for Vu Yen Bridge

### (1) Selection of Main Bridge Type

A comparison study of the following three bridge types for Vu Yen Bridge is shown in bellow.

Case 1: Cable-Stayed Bridge

Case 2: Arch Bridge

Case 3: Self-Anchored Suspension Bridge

#### Table 5.4-15Comparison Study of Vu Yen Bridge (1/2)



Study of Bridge Type of Vu Yen Bridge (1/2)

### Table 5.4-16 Comparison Study of Vu Yen Bridge (2/2)

#### Study of Bridge Type of Vu Yen Bridge (2/2)

	Evaluation								
	Overview	<ul> <li>Employs concrete towers and PC girders. Same type as Binh Bridge and Kien Bridge.</li> <li>Single-plane cable arrangement. Different variations such as composite girders are possible.</li> </ul>							
ge	Construction cost	Main bridge superstructure (girders, cables, towers):       5.63 billion         Main bridge substructure (piers, foundation):       2.28 billion         Approach bridge       0m:       0.00 billion	Ø						
d brid	Maintenance	The steel girders and cable anchorages require periodic re-painting. Special technique for inspection and additional monitoring equipment is required.							
-staye	Design innovation	• Not very innovative since there are already many bridges of the same type over the Cam River and elsewhere in Vietnam.							
ble-	Aesthetics	• The high bridge towers can be designed so that the bridge stands out as a landmark.	0						
ın A. Ca	Aviation clearance	It is possible to design the bridge securing aviation clearance. Pylon height is low compared with similar Cable stayed ridge. Pylon height is 100m							
Pla	Constructability, Construction period	Cantilever erection method is suitable for construction of superstructure. Use of slip form for RC towers enables reduction of construction period. Construction period is approximately 42 months.							
	Impact on navigation	Satisfy the navigation width 80m and minimum space for construction 30m. Foundation is located at riverbank for safety to 50,000DWT vessel.							
	Overall evaluation	•Tentative AHP result 0.403 (1st rank)	0						
	Overview	<ul> <li>Since the soil is soft, the bridge is self-anchored and does not employ anchorages.</li> <li>Single steel box girders with a polarized hexagonal cross-section are employed to counteract the axial force on the stiffer</li> </ul>	ening girders.						
dge	Construction cost	Main bridge superstructure (girders, cables, towers):       9.17 billion         Main bridge substructure (piers, foundation):       2.41 billion         Approach bridge       116m:       0.71 billion							
on bri	Maintenance	<ul> <li>The stiffening girders and cable anchorages are made of steel and thus require periodic re-painting.</li> <li>Special technique for inspection and additional monitoring equipment is required.</li> </ul>							
spensi	Design innovation	<ul> <li>The suspension bridge with the longest span in Southeast Asia employs this design.</li> <li>Self-anchored suspension bridge would be the first of its type in Vietnam.</li> </ul>							
3. Sus	Aesthetics	<ul> <li>The stiffening girders and cable anchorages are made of steel and thus require periodic re-painting.</li> <li>Special technique for inspection and additional monitoring equipment is required.</li> </ul>							
an l	Aviation clearance	•Structure height is low and it is possible to secure aviation clearance easily.	0						
ΡI	Constructability, Construction period	The navigation channel has to be closed for a long time due to the girder support for all length of suspension bridge needed between construction phases.     Construction period is approximately 42 months.							
	Impact on navigation	Satisfy the navigation width 80m and minimum space for construction 30m.     Foundation is located at riverbank for safety to 50,000DWT vessel.							
	Overall evaluation	•Tentative AHP result 0.304 (2rd rank)	$\bigtriangleup$						
	Overview	<ul> <li>As a measure for soft soil, balanced arch type bridge which reduced the horizontal force to foundation is selected.</li> <li>In order to reduce the cost of construction, PC slab and large block erection can be applied.</li> </ul>							
	Construction cost	Main bridge superstructure (girders, cables, towers):       8.29 billion         Main bridge substructure (piers, foundation):       2.01 billion         Approach bridge       198m:       1.22 billion	$\bigtriangleup$						
ridge	Maintenance	<ul> <li>The stiffening girders and arch members are made of steel and thus require periodic inspection and re-painting.</li> <li>Area of steel surface is larger than other type. Re-paint cost is higher.</li> </ul>							
Arch b	Design innovation	<ul> <li>Would be the longest-span arch bridge in Southeast Asia. However, the length is over experience in Japan also.</li> <li>Would be the first balanced arch bridge in Vietnam.</li> </ul>							
1 C. ⊬	Aesthetics	<ul> <li>The elegant arch structure makes the bridge stand out as a landmark.</li> <li>Has symbolic value as the shape is very different from other bridges over Cam River.</li> </ul>	O						
Plar	Aviation clearance	•Structure height is low and it is possible to secure aviation clearance easily.							
	Constructability, Construction period	Difficulty of construction is high     There are no construction experience applying large block erection for this span length. Construction period will be     long.	×						
	Impact on navigation	<ul> <li>Satisfy the navigation width 80m and minimum space for construction 30m.</li> <li>Foundation is located at riverbank for safety to 50,000DWT vessel.</li> <li>The height limit is little lower than other plan at pier.</li> </ul>	0						
	Overall evaluation	•Tentative AHP result 0.293 (3nd rank)	$\wedge$						

Evaluation  $\bigcirc$  : Best,  $\bigcirc$  : Second-best,  $\triangle$  : Possible if no other,  $\times$  : Unsuitable

### (2) Evaluation by AHP method

The alternatives were evaluated using the AHP (Analytic Hierarchy Process) method.

(Refer to Appendix 5: Priority Ordering Method for Bridge Type Selection)

### 1) Attributes for Bride Type Selection

The following attributes were selected for bridge type evaluation by AHP. This selection of bridge type is comparison of bridge with same center span length and same foundation type, and there are no superiority or inferiority about environmental and social impact. For this reason, bridge type is mainly compared about characteristic of structure.

- a) Construction Cost
- b) Maintenance
- c) Design Innovation
- d) Aesthetics
- e) Aviation Clearance
- f) Construction Period
- g) Impact on Navigation

Evaluation for each attributes is commented in Table 5.4-16.

### 2) Scale of Relative Importance

The scale of relative importance used in the AHP is shown in Table 5.4-17.

<b>Fable 5.4-17</b>	Scale of Relative	Importance

1	A is equal to B
3	A is moderately more important or favorable than B
5	A is strongly more important or favorable than B
7	A is very strongly more important or favorable than B
9	A is extremely strongly more important or favorable than B
2,4,6,8	Intermediate intensities between the above values

### 3) Weight of Attributes

The weights of the attributes were determined as follows.

Table 5.4-18Weights of Attributes

Attribute	Construction Cost	Maintenance	Innovative Design	Aesthetic	Aviation clearance	Construction Period	Impact on navigation	Eigen Vector	Weight
Construction Cost	1.000	7.000	5.000	3.000	5.000	3.000	5.000	1.898	0.257
Maintenance	0.143	1.000	0.500	0.500	0.500	0.500	0.500	0.679	0.092
Innovative Design	0.200	2.000	1.000	0.500	1.000	0.500	1.000	0.848	0.115
Aesthetic	0.333	2.000	2.000	1.000	3.000	1.000	3.000	1.194	0.162
Aviation clearance	0.200	2.000	1.000	0.333	1.000	1.000	3.000	0.937	0.127
Construction Period	0.333	2.000	2.000	1.000	1.000	1.000	1.000	1.021	0.138
Impact on navigation	0.200	2.000	1.000	0.333	0.333	1.000	1.000	0.801	0.109
								7 3 7 9	1 000

# *4) Pairwise Matrix between Bridge Type and Attributes* Construction Cost

As an estimate for construction costs, an absolute measurement method based on band of cost

was used. As shown in Table 5.4-19, it is divided into 7 ranges normalized by lowest construction cost, that of a cable-stayed bridge.

Lubic Col 17 Dand Of Cost							
	From	То					
1	1.00	1.08					
2	1.08	1.16					
3	1.16	1.24					
4	1.24	1.31					
5	1.31	1.39					
6	1.39	1.47					
7	1.47	1.55					

#### Table 5.4-19Band of Cost

Note: These values are normalized by the cost of a cable-stayed bridge.

The pairwise matrix for Construction Cost based on the above estimate is as follows.

Table 5.4-20Pairwise Matrix for Construction Cost

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	7.000	6.000	3.476	0.764
Suspension Br.	0.143	1.000	1.000	0.523	0.115
Arch	0.167	1.000	1.000	0.550	0.121
				4.549	1.000

#### Maintenance

The pairwise matrix for Maintenance is as follows.

Table 5.4-21Pairwise Matrix for Maintenance

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	2.000	1.260	0.400
Suspension Br.	1.000	1.000	2.000	1.260	0.400
Arch	0.500	0.500	1.000	0.630	0.200
				3.150	1.000

#### **Design Innovation**

The pairwise matrix for Design Innovation is as follows.

 Table 5.4-22
 Pairwise Matrix for Design Innovation

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	0.200	0.200	0.342	0.091
Suspension Br.	5.000	1.000	1.000	1.710	0.455
Arch	5.000	1.000	1.000	1.710	0.455
				3.762	1.000

### Aesthetics

The pairwise matrix for Aesthetics is as follows.

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	0.333	0.693	0.200
Suspension Br.	1.000	1.000	0.333	0.693	0.200
Arch	3.003	3.003	1.000	2.081	0.600
				3.468	1.000

 Table 5.4-23
 Pairwise Matrix for Aesthetics

#### **Aviation Clearance**

The pairwise matrix for Aviation Clearance is as follows.

 Table 5.4-24
 Pairwise Matrix for Aviation Clearance

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	0.500	0.500	0.630	0.200
Suspension Br.	2.000	1.000	1.000	1.260	0.400
Arch	2.000	1.000	1.000	1.260	0.400
				3.150	1.000

#### **Construction Period**

The pairwise matrix for Construction Period is as follows.

 Table 5.4-25
 Pairwise Matrix for Construction Period

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	2.000	1.260	0.400
Suspension Br.	1.000	1.000	2.000	1.260	0.400
Arch	0.500	0.500	1.000	0.630	0.200
				3.150	1.000

#### **Impact on Navigation**

The pairwise matrix for Impact on Navigation is as follows.

 Table 5.4-26
 Pairwise Matrix for Impact on Navigation

Structure Type	Cable Stay	Susp.	Arch	Eigen Vector	Weight
Cable Stay Br.	1.000	1.000	3.000	1.442	0.429
Suspension Br.	1.000	1.000	3.000	1.442	0.429
Arch	0.333	0.333	1.000	0.481	0.143
				3.365	1.000

### 5) Conclusions of AHP

Table 5.4-27 shows the conclusions of the AHP. The cable-stayed bridge alternative has the highest priority. The Study Team confirmed the opinions of the Vietnamese side regarding aesthetics, innovative design features, etc. As a result of hearing, cable-stayed bridge is preferred by Hai Phong side (1126/SGTVT-TDXD by Hai Phong DOT, 1210/SXD-QLQH by Hai Phong DOC).

		Attribute for Evaluation										
Structure Type	Construction Cost	Struction Maintenance Innovative Design		Aesthetic	Aviation Clearance	Constructio n Period	Impact on navigation					
	0.257	0.092	0.115	0.162	0.127	0.138	0.109					
Cable Stay Br.	0.764	0.400	0.091	0.200	0.200	0.400	0.429	0.403	1			
Suspension Br.	0.115	0.400	0.455	0.200	0.400	0.400	0.429	0.304	3			
Arch	0.121	0.200	0.455	0.600	0.400	0.200	0.143	0.293	2			

Table 5.4-27Estimation of Priority

# 5.5 Comparison of Approach Bridge Types

### 5.5.1 Selection of Superstructure Type

The type of Super-T girder proposed as the superstructure for the approach bridges is the most popular and economical structural solution for this type of viaduct in Vietnam. The assumed span arrangement is based on a 40m span length which is the maximum span length of this girder type.

# (1) Comparison of Approach Bridge Types

In order to demonstrate the economical superiority of precast Super-T girders, the cost of cast-inplace PC box girders (which use fewer piers and foundations due to their greater 60m span length) is compared to that of Super-T girders.

Table 5.5-1 shows the comparison table for Nguyen Trai Bridge (similar results can be obtained also for Vu Yen Bridge).



 Table 5.5-1
 Comparison Table for Approach Bridge

Evaluation  $\bigcirc$ : Best,  $\bigcirc$ : Second-best,  $\triangle$ : Possible if no other,  $\times$ : Unsuitable

# (2) Comparison of Approach Bridge Types over Railway Station

By the discussion with railway administrator and PMU, it is requested to minimize affect to the railway station as much as possible. 80m span bridge is planed based on the condition that a pier is not installed in the site of a railway station. As a result of comparison of steel box girder type and PC-box girder type for 80m bridge, Steel box girder bridge shall be applied for overpass from the viewpoint of influence to railway operation during construction.

	Case 1 (Steel girder)		Case 2 (PC-Box girder)			
Structure	22.500 200 3.000 7.500 1.500 7.500 3.000 5 STEELCONFORTE SLAP H20mm	23,500 11,750 11,750 1,500 2@3,500-7,500 1,500 2@3,500-7,500 1,500 2@3,500-7,500 1,500 2@3,500-7,500 3,000 C C C C C C C C C C C C C	500			
	Steel box girder with composite slab Span = 40m:SuperT + 80m + 40m:Super-T, Sir span is applicable	Concrete box girder Span = $50m + 70m + 40m$ , 3-span continuous gi is applied for cantilever construction method	rder			
Cost	Superstructure = $678$ Substructure = $319$ Total = $997$ *million JPY, only direct cost $(1.02)$	$\triangle$	Superstructure =525Substructure =451Total =977*million JPY, only direct cost $(1.00)$	0		
Construction	<ul> <li>Launching erection method which will not affect to railway use can be applied.</li> <li>Construction period over railway is short.</li> <li>There are many adoption in Japan for the bridge over railway from the view of public responsibility and importance of railway.</li> </ul>	0	<ul> <li>Cantilever construction method which will not affect to railway operation can be applied.</li> <li>Construction use above railway during construction and the period over railway is long. Careful management to safety of railway operation is required.</li> </ul>			
Technology transfer	<ul> <li>Composite slab is the first application in Vietnam.</li> <li>Composite slab can reduce construction period and has durability equivalent to PC slab.</li> <li>80-m is the longest as box-girder bridge in Vietnam.</li> </ul>	0	- It is a common bridge type in Vietnam.	0		
Appearance	- Structure has a smooth shape, in case reducing bolt connection and using composite slab.	0	- Structure has a smooth shape.	0		
Maintenance	- Steel structures require periodical inspection and re-painting.	0	- Concrete members require periodical inspection.	0		
Evaluation	<ul> <li>No influence to operation of railway during construction using Launching erection method.</li> <li>Construction cost is almost same with Case-2.</li> </ul>	0	<ul> <li>Construction period over railway is long.</li> <li>Construction cost is almost same with Case-1</li> </ul>	0		



Evaluation  $\bigcirc$ : Best,  $\bigcirc$ : Second-best,  $\triangle$ : Possible if no other,  $\times$ : Unsuitable

# 5.6 Selection of Substructure and Foundation Type

# 5.6.1 Foundation Structural Type of Main Bridge

The structural type for the foundations is selected by taking into account geological conditions, procurement (experience) conditions, work conditions, etc. Comparative studies are conducted for using in-river and on-land towers, respectively.

### (1) Applicable Foundation Types

The bearing layer for the main bridge towers should be the basement rock layer located around EL-45.0m considering the capability of the bearing layer to absorb a magnitude of reaction forces.

Applicable foundation types which satisfy the depth and procurement requirements and which have been used in Vietnam in the past include Cast-In-Place (CIP) pile and Steel Pipe Sheet Pile (SPSP) foundations. There are two major construction methods for CIP piles, namely the earth drill method and the reverse circulation drilling method. The reverse circulation drilling method is more suitable than the earth drill method from the point of view of working efficiency and costs. SPSP foundations are getting more common in Vietnam since being used on the Nhat Tan Bridge project, Lach Huyen Project, etc.

$\overline{\ }$	S         Driven Pile         Inner Excavation Pile Foundation         ≅ 5         C         Cast-n-Race Pile         S         Caisson				5	5																	
				dati	F	oundati	ion	PH	c∙sc	Pile	Stee	el Pipe	Pile	rid pi	ndati	Fe	oundatio	n	dati	Foun	dation	ndati	dati
Foundation Type Conditions		Spread Footing Four	PHC Pile & SC Pile	Percussion Method Steel	Vbro-hammer Pipe Pile method	Final driving method	Pile tip grouting method	Pile tip concrete casting method	Final driving method	Pile tip grouting method	Pile tip concrete casting method	Steel pipe & soil cement Hybr Four	Pre-boring Pile Four	All casing	Reverse circulation	Earth drill method	Steel Screw Pipe Pile Four	Pneumatic caisson method	Open caisson method	Steel Sheet Pipe Pile Four	CIP diaphragm Wall Four		
		Existence of	of extremely weak layer		0	0	0	0	0	0	0	0	0	0	0	×	0	0	0	0	Δ	0	0
	e	Existence of	of extremely hard layer	$\sim$	Δ			0	0	0	0	0	0	0	0		0	×	0	0		Δ	0
	edia:	e ce	Dia. ≦ 5cm	$\sim$	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	a) la	isten of Jrave	5cm <dia≦10cm< th=""><th></th><th>Δ</th><th>$\triangle$</th><th>0</th><th>Δ</th><th>$\triangle$</th><th>$\triangle$</th><th>$\triangle$</th><th>Δ</th><th>Δ</th><th>0</th><th>0</th><th>$\triangle$</th><th>×</th><th>0</th><th>0</th><th>0</th><th>0</th><th>Δ</th><th>$\triangle$</th></dia≦10cm<>		Δ	$\triangle$	0	Δ	$\triangle$	$\triangle$	$\triangle$	Δ	Δ	0	0	$\triangle$	×	0	0	0	0	Δ	$\triangle$
	ے _ا	Ĕ	10cm <dia≦50cm< th=""><th></th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>$\triangle$</th><th>×</th><th>×</th><th>×</th><th>0</th><th>$\triangle$</th><th>×</th><th>$\triangle$</th></dia≦50cm<>		×	×	×	×	×	×	×	×	×	×	×	$\triangle$	×	×	×	0	$\triangle$	×	$\triangle$
		Existence of	of liquefaction layer	$\square$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	th of Stratum	_	5m <	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
		atum	5~15m	$\triangle$	0	0	0	0	0	0	0	0	0	0	0	0	Δ	0	0	0	0	$\triangle$	$\triangle$
۶		Stra	15~25m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dition	Deparing	25~40m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	$\triangle$	0	0	0	0	0	
Con	Be I I I I	ВĞ	40~60m	×		0	0			$\square$	0	0	0	0	0	$\triangle$	0	×	0	$\triangle$	0	0	0
Soil	Seari		≦ 60m	×	×	$\triangle$		×	×	×	×	×	×	$\triangle$	$\triangle$	×	Δ	×	0	×	$\triangle$	$\triangle$	
	ш ()		Sand/Sand gravel (30≦N)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Soil	Cohesive soil (20≦N)	0	0	0	0	0		×	0	$\triangle$	×		$\triangle$	0	0	0	$\triangle$	$\triangle$	$\square$	0	0
		туре	Soft rock	0	×	0		0		×	0		×			0	0	0	Δ	0	0	0	0
			Hard rock	0	×	×	×	×	×	×	×	×	×	×	×	$\triangle$	Δ	Δ	×	$\triangle$	×	×	$\triangle$
		Inclined, un	eveness, depth changes	$\triangle$	$\triangle$		$\triangle$	$\triangle$	$\triangle$		$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	0	0	0	0	$\triangle$	×	0	0
	a te	Ground water	level close to ground level	Δ	0	$ \circ $	0	0	0	0	0	0	0	0	0		Δ	Δ	0	0	0	0	
	ditio	Large amou	int of spring water	Δ	0	0	0	0	0	0	0	0	0	0	$\triangle$	$\triangle$	Δ	$\triangle$	0	0	0	0	$\triangle$
		Confined gr	ound water pressure ≥ 2m	×	0	$ \circ $	0	×	×	×	×	×	×	×	×	×	×	×	0			0	×
	L	Flow rate m	ore than 3m/min	×	0		0	0	×	×	0	×	×	×	×	×	×	×	0	0			×
B	earing	Bearing Pile	3		0	$\left  \begin{array}{c} 0 \\ 0 \end{array} \right $	0	0	0	0	0	0	0	0	0	0	0	0	0	$ \sim$			
	Type	Friction Pile	) 	<u> </u>	0	$\overline{0}$	0	×	×	×	×	×	×	0	×	0	0	0	×	<u> </u>	K.		<u> </u>
suc	On water construction	Water dept	n is less than 5m	0	0									×	×	×	×	×	0			0	×
ditio	Norrowword	vvater depti	n is om or deeper	×		$\overline{0}$	0					$\triangle$		×	×	×	×	×	<u> </u>			0	×
Cor	S Narrow working space														Δ		Δ				×,		
ction	Dessibility	er pries						×	×	<u>×</u>	×	×	<u>×</u>	×	×	×	×	×	0	<u> </u>	K		<u> </u>
stru	r ossibility (	Low vibratio					U O	L U			L O					$\cup$	0	0	0	×	L Û	0	0
Col	impact to neighbor	Low impact		0	×	<b>×</b>						$  \bigcirc$				$\bigcirc$	0	0	0				
		Low impact	to aujacent structures	0	^								U			nh arr		tv A					
									Pofe	oronco.	SPEC					yn ap⊧ ∕∆∨ Bl		(y ∆: S / Pa	rt IV (	lanan	Road (	applic	ability
									INGIE	sicilice.	OF EC	JII ICA	10143	1 OR I	in Grinni		NDGE	U / Pa	11 IV (-	oapall	wau A	133001	acion)

 Table 5.6-1
 Foundation Types and Conditions

### 1) Comparison Study Results (Foundation Type for Towers)

Based on the above considerations, the options for the comparison study are as follows:

- In-river pier / On-land pier (tower)

Option 1: CIP (2.5m diameter) with SPSP cofferdam

Option 2: SPSP foundation (1.0m diameter) cum cofferdam

· Bentonite fluid is not used. Amount of excavated

soil to be treatment as industrial waste is small.

Water depth is one of the key issues affecting working conditions, and temporary cofferdams should be considered for both the in-river and on-land towers. The water is relatively deep and reaches a depth of approximately 10m.

14	Die 5.0-2 Comparison Study of In-river 10					
	Cast in Place Pile	Steel Pipe Sheet Pile				
	φ 2.5m	Steel Pile				
Structural Drawing		-16. 500				
Structural feature	<ul> <li>An elastic foundation of which vertical and horizontal stabilities are secured by a vertical bearing resistance (sum of pile tip resistance and skin friction) and a stiffness of piles.</li> <li>A steel pipe sheet pile (SPSP), as a temporary cofferdam, is demanded for a dry construction of pile cap in river because of a relatively higher water pressure (water head difference).</li> </ul>	<ul> <li>An elastic foundation of which vertical and horizontal stabilities are secured by a vertical bearing resistance and stiffness of piles although the foundation looks like a caisson foundation type.</li> <li>A steel pipe piles use in the SPSP-foundation can be extended to upward and be used as cofferdam. A steel pipe sheet pile (SPSP), as a temporary cofferdam, is demanded for a dry construction of pile cap in river because of a relatively higher water pressure (water head difference).</li> <li>Foundation is located in the rivers, but considering the economic efficiency and workability, a round planar shape foundation occupies water surface.</li> </ul>				
Construction period	• SPSP-cofferdam, of which construction procedure is same as SPSP-foundation, shall be established in advance of the construction of CIP pile and its pile cap. Accordingly, the total construction period become longer than the other alternative.	• Construction period is shorter because the SPSP- foundation enables to omit a construction of temporary cofferdam which required in the case of CIP foundation on left.				
Constructability	<ul> <li>A specialized foundation company shall be hired for construction of the SPSP cofferdam, and quality and construction schedule of SPSP is maintained.</li> <li>Construction experience of large diameter (d=2.5m) bored pile is uncommon, and it may increase an already-difficult quality control of bored pile. As a result, a risk for delay of the construction is concerned.</li> </ul>	<ul> <li>A specialized foundation company shall be hired for construction of SPSP foundation, and quality and construction schedule of SPSP is maintained.</li> <li>Whole of work from coffering to construction of SPSP is carried out by an experienced contractor as one sequence. As a result, a risk for delay of the construction is concerned.</li> </ul>				
Quality Control	• QC item is too many such as controls of materials, a borehole excavation, a slim treatment, a concrete mixing, casting, etc. and a difference in quality is vary widely depending on a contractor's skill	<ul> <li>QC is relatively easy thanks to use of prefabricated steel pile.</li> <li>A confirmation of a bearing layer can done through a hammering of each steel pine piles.</li> </ul>				

### In-river Pier (Tower) at Nguyen Trai

#### Table 5 6_2 Comparison Study of In-river Tower of Main Bridge

· A confirmation of a bearing layer can be assumed

· Treatment facilities of bentonite fluid is necessary,

and amount of excavated soil to be treatment as

from an excavated material only.

industrial waste is large.

Environmental

Chapter 5 Exar	nination of Suitable	e Crossing Alternati	ives for the C	Cam River
----------------	----------------------	----------------------	----------------	-----------

Social Impact	• Level of noise and vibration due to construction of SPSP-cofferdam are same degree to the other option.	• Level of noise and vibration due to construction of SPSP-foundation are same degree to the other option.			
Construction Cost(ratio)	1.15	1.00			
Evaluation	<ul> <li>QC of this option is more complicated that the other option.</li> <li>Risk on the construction delay is higher than SPSP.</li> <li>Environmental protection is required.</li> <li>Slightly expensive than the other option.</li> </ul>	<ul> <li>QC of this option is easier than the other option.</li> <li>Risk on the construction delay is smaller the CIP pile.</li> <li>Environmental protection is not required in general.</li> <li>A slight advantage in cost is confirmed.</li> </ul>			
	Δ	O			

### **On-land Pier (Tower) at Nguyen Trai**



	Cast in Place Pile	Steel Pipe Sheet Pile
	φ2.5m	Steel Pile <b>\$ 1.0m</b>
Structural Drawing		v13.000 v13.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v14.000 v1
Construction Cost(ratio)	1.03	1.00
Evaluation	• QC of this option is more complicated that the other option.	<ul> <li>QC of this option is easier than the other option.</li> <li>Risk on the construction delay is smaller the CIP</li> </ul>
	• Risk on the construction delay is higher than SPSP.	<ul><li>Pile.</li><li>Environmental protection is not required in general.</li></ul>
	• Environmental protection is required.	• A slight advantage in cost is confirmed.
	• Slightly expensive than the other option. $\Delta$	

 $\mbox{Evaluation} \quad @: \mbox{Best}, \ \bigcirc: \mbox{Second-best}, \ \bigtriangleup: \mbox{Possible if no other}, \ \times: \mbox{Unsuitable}$ 



#### **On-land Pier (Tower) at Vu Yen**

Evaluation  $\bigcirc$  : Best,  $\bigcirc$  : Second-best,  $\triangle$  : Possible if no other,  $\times$  : Unsuitable

### (2) Foundation Structural Type of Approach Bridge

The structural type for the foundations is selected by taking into account geological conditions, procurement (experience) conditions, work conditions, etc.

### 1) Applicable Foundation Types

The bearing layer for the approach bridges should be the basement rock layer located around EL-45.0m as a typical case and for comparative study of foundation type of approach bridge.

Applicable foundation types which satisfy the depth and procurement requirements and which have been used in Vietnam in the past include Cast-In-Place (CIP) piles. There are two major construction methods for CIP piles, namely the earth drill method and the reverse circulation drilling method. The reverse circulation drilling method is more suitable than the earth drill method from the point of view of working efficiency and costs.

Considering the scale of the approach bridges, Steel Pipe Sheet Pile (SPSP) foundations which are getting more common in Vietnam since being used on the Nhat Tan Bridge project and Lach Huyen Project, cannot be economical although the basic technique of steel pipe pile driving is useful. Steel pipe pile foundations have therefore been included in the comparison study of foundation types.

Based on the above considerations, the options for the comparison study are as follows:

Comparison study 1: Approach bridge foundation type Option 1: Cast-In-Place pile (Dia. 1.2m, 1.5m) Option 2: Steel pipe pile (Dia. 0.8m, 0.9m, 1.1m)

Regarding the construction period, construction of one steel pipe pile takes 0.6 days whereas a construction of one CIP pile takes 1.6 days.

With respect to quality control of the construction, CIP pile requires bunch of on-site inspections to which very skilled QC manager is required such as a borehole excavation including a bentonite fluid treatment, a concrete quality test before and after casting, etc. On the other hand, less efforts are required for the quality control of steel pipe pile foundation construction thanks to a prefabrication of steel pipe piles.

Moreover, an advantage of steel pipe pile foundation in terms of cost aspect is confirmed through the comparison study. Quantities and unit price of cost elements (concrete, foundation piles, lean concrete, excavation and cofferdam) are displayed in Appendix A5 for reference.

As above, it has been confirmed through the comparison study 1 that the most appropriate foundation type for the approach bridge is the steel pipe pile with Dia. 0.9m in all aspects such as cost, quality control, and construction period.

The Study Team also performed the comparison study 2. In this study an influence of negative skin friction (a down drag) is studied using the most economical pile type of the approach bridge as selected foregoing, namely a steel pipe pile (Dia. 0.9m). Pile options shown below were applied for the comparison.

Comparison study 2: Approach bridge foundation type with Down Drag load

Option 1-DD: Steel pipe pile (Dia. 0.9m)

Option 2-DD: Steel pipe pile (Dia. 0.9m) with slip layer *(called "SL pile")* *Note: The purpose of the slip layer applied to the steel pipe surface is to reduce a down drag load to be act on the steel pipe piles.

- Objected piers:

Based on the investigation of the JICA Study Team, Piers of P8 through P12 in Nguyen Trai Bridge and Piers P57 through P63 and A2 Abutment of Vu Yen Bridge will be a target for examination of negative friction influence because of the change of Ground elevation in future.

	1401	e 3.0-3	Change of Ground Elevan	0II
Bridge	Structure	Nos	Current GL	Future GL
Name	No.			
Nguyen Trai	A1 - P7	8	EL+2.30m	EL+2.30m
	P8 - P12	5	EL-1.50 ~ EL 0.00m	EL +2.30m
	2P	1	In-river	No-change
	3P- A2	14	EL+2.30m	EL +2.30m
Vu Yen	A1 - P31	32	EL+0.5~EL+1.00m	EL+0.5~EL+1.00m
	2P	1	In-river	No-change
	3P	1	In-river	No-change
	P32 - P55	24	EL+2.50	EL+2.50
	P56	1	In-channel	No-change
	P57 - 63, A2	8	EL+0.4m	EL+2.50m
Total number of structure 95		-	-	

- Objected soil layer:

The objected soil layer is the alluvial cohesive soil layer (Ac) and the thickness of the layer from which negative skin friction is assumed to be occur is around 14.0m according to a consolidation settlement analysis performed by the Study Team.

In case of use of SL pile, the number of piles for one pier can be reduced up to around a half of the one employs normal steel pipe piles according to the study. Although a unit price of SL pile is higher than that of normal steel pile, total construction cost of a foundation become small if the SL pile is employed. Above all, use of the Steel Pipe Pile (Dia. 0.9m) with Slip Layer (SL Pile) is recommended where negative skin friction is expected. Comparison result is shown in Appendix A5.

				ы	С	Driven F	vile	Inne	er Exca	avatior	n Pile F	ounda	tion	ile on	Б	Cast-	In-Plac	e Pile	ы	Cais	son	Б	Б
			I	idati	F	oundat	ion	PH	c∙sc	Pile	Stee	el Pipe	Pile	id pi idati	ndati	Fc	oundati	ion	ndati	Found	dation	idati	ndati
	Foundation Type Conditions		undation Type	read Footing Four	C Pile & SC Pile	d Steel	r d	I driving method	grouting method	rete casting method	I driving method	grouting method	rete casting method	& soil cement Hyb Four	e-boring Pile Four	All casing	verse circulation	arth drill method	ew Pipe Pile Four	caisson method	caisson method	eet Pipe Pile Four	phragm Wall Four
				sb	ЭНА	Percussion	Vibro-hamme metho	Fine	Pile tip	Pile tip conci	Fine	Pile tip	Pile tip conci	Steel pipe	Ā		Re	Ű	Steel Scr	Pneumatic	Open	Steel She	CIP dia
· ·		Existence	of extremely weak layer		0	0	<u>[</u> 0		<u> </u>	0	0	0	0	0	0	×	0	0	<u> </u>	0		0	<u>[</u> 0
1	ate	Existence	of extremely hard layer			$\triangle$		0	<u>[</u> 0	0	0	0	0	0	0		0	×	<u> </u>	0		$\bigtriangleup$	<u> </u>
1	nedik yer	el nce	Dia. ≦ 5cm	$\square$		0	0	0	0	0	0	0	0	0	0	$\left[ \circ \right]$	0	0	<u> </u>	0	0	0	<u> </u>
ľ	la	ciste of grav	5cm <dia≦10cm< th=""><th>$\square$</th><th></th><th>$\triangle$</th><th>0</th><th>$\triangle$</th><th>$\triangle$</th><th>$\triangle$</th><th>$\triangle$</th><th>$\triangle$</th><th>$\triangle$</th><th>0</th><th>0</th><th></th><th>×</th><th>0</th><th>0</th><th>0</th><th>0</th><th>$\triangle$</th><th>$\triangle$</th></dia≦10cm<>	$\square$		$\triangle$	0	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	0	0		×	0	0	0	0	$\triangle$	$\triangle$
ľ		Ě.	10cm <dia≦50cm< th=""><th></th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th></th><th>×</th><th>×</th><th>×</th><th>0</th><th>$\triangle$</th><th>×</th><th></th></dia≦50cm<>		×	×	×	×	×	×	×	×	×	×	×		×	×	×	0	$\triangle$	×	
ľ		Existence	of liquefaction layer		$\bigcirc$	0	0	0	0	0	0	0	0	0	0	$\circ$	0	0	0	0	0	0	0
P			5m <	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
P		f	5~15m	$\triangle$	0	0	0	0	0	0	0	0	0	0	0	0	$\triangle$	0	0	0	0	$\triangle$	
s S		th o Stra	15~25m	×	0	0	0	0	0	0	0	0	0	0	0	$] \circ$	0	$\left[ \circ \right]$	<u> </u>	0	0	0	0
ditior		Dep aring	25~40m	×	0	0	<u> </u>	0		0	$\Box$	0	0	0	0	$\Box$	0		0			0	0
Duc	pg	40~60m		×	$\triangle$	$\left[ \circ \right]$	0	$\triangle$	$\bigtriangleup$	$\triangle$	0	0	0	0	0		0	×	0	$\square$	0	0	0
Soil (	earii tratu		≦ 60m	×	×	$\triangle$	$\Box$	×	×	×	×	×	×	$\square$	$\triangle$	×	$\bigtriangleup$	×	<u> </u>	×		$\bigtriangleup$	$\Box$
0,	ВN		Sand/Sand gravel (30≦N)	0	$\bigcirc$	0	0	0	0	0	0	0	0	0	0	$ \circ $	0	0	0	0	0	0	$ \circ $
ľ		Soil	Cohesive soil (20≦N)	0	$\boxed{\bigcirc}$	0	0	0	$\bigtriangleup$	×	0		×		$\triangle$	$\left[ \circ \right]$	0	0				0	0
ľ		Туре	Soft rock	0	×	0		0	$\triangle$	×	0	$\triangle$	×	$\triangle$	Δ	0	0	0	$\triangle$	0	0	0	0
P			Hard rock	0	×	×	×	×	×	×	×	×	×	×	×		$\triangle$	$\triangle$	×		×	×	
ľ		Inclined, ur	neveness, depth changes			$\triangle$	$\triangle$	$\triangle$	$\triangle$				$\triangle$		$\triangle$	0	0	0	0		×	0	0
1	je j	Ground wate	r level close to ground level	$\triangle$	0	0	0	0	0	0	0	0	0	0	0		$\triangle$	$\square$	0	0	0	0	$\triangle$
P	dwat	Large amou	unt of spring water	$\triangle$	0	0	0	0	0	0	0	0	0	0	Δ		$\triangle$	$\triangle$	0	0	0	0	$\Box$
P	gung	Confined gr	$\overline{\text{ound water pressure}} \ge 2m$	×	0	0	0	×	×	×	×	×	×	×	×	×	×	×	0			0	×
	6	Flow rate m	nore than 3m/min	×	$\boxed{\bigcirc}$	0	0	0	×	×	0	×	×	×	×	×	×	×	0	0		0	×
E	Bearing	Bearing Pil-	e		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		$\square$	$\geq$	
	Туре	Friction Pile	e		0	0	0	×	×	×	×	×	×	0	×	0	0	0	×		$\square$		
s	On water	Water dept	h is less than 5m	0	0	0	0	$\triangle$	$\triangle$	$\triangle$		$\triangle$		×	×	×	×	×	0	$\triangle$	$\triangle$	0	×
litio	construction	Water dept	h is 5m or deeper	×	$\triangle$	0	0	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	×	×	×	×	×	0		$\triangle$	0	×
JOD	Narrow worl	king space		0		$\triangle$			$\square$					$\triangle$	$\triangle$		$\triangle$	$\triangle$		$\square$		×	
on (	Use of batte	er piles			0	0	0	×	×	×	×	×	×	×	×	×	×	×	0		$\leq$	$\leq$	
truct	Possibility	of noxious fur	me		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	×	0	0	0
onst	impact to	Low vibratic	on and noise	0	×	×	$\triangle$		0	0		0	0	0	0	0	0	0	0	$\triangle$	$\triangle$	$\triangle$	0
0	neighbor	Low impact	t to adjacent structures	0	×		$\triangle$	$\triangle$	0	0	$\triangle$	0	0	0	0	0	0	0	0	$\triangle$	$\triangle$	$\triangle$	0
															○:H	igh app	licabili	ity 🛆 :	: Applic	cable	×:Low	applic	ability
									Refe	rence	SPEC		TIONS	FOR	HIGHV	VAYB	RIDGE	S / Pa	art IV (	Japan	Road /	Assoc ⁱ	iation)

Table 5.6-6Foundation Types and Conditions

### 2) Comparison Study Results (Foundation Type for Approach Bridges)

Comparison study result of foundation type of Approach Bridge is shown in Table 5.6-7. Comparison of cost estimation of each foundation type is shown in Appendix A5-2.

	Cast in Place Pile	Steel Pipe Pile			
	ф1.2m	φ= <b>0.9</b> m			
Structural Drawing		$ \begin{array}{c} 18,500\\ \hline 0\\ $			
Structural feature	<ul> <li>An elastic foundation of which vertical and horizontal stabilities are secured by a vertical bearing resisntance (sum of pile tip resistance and skin friction) and a stiffness of piles.</li> <li>A steel sheet pile, as a temporary cofferdam, can be hired for a dry construction of pile cap in town area and swamp land.</li> </ul>	<ul> <li>An elastic foundation of which vertical and horizontal stabilities are secured by a vertical bearing resistance (sum of pile tip resistance and skin friction) and a stiffness of piles.</li> <li>A steel sheet pile, as a temporary cofferdam, can be hired for a dry construction of pile cap in two area and swamp land.</li> </ul>			
Construction period	<ul> <li>The construction period is long comparatively.</li> <li>About 4.0 day/pile.</li> </ul>	<ul> <li>Construction period is short comparatively.</li> <li>About 1.3 day/pile.</li> </ul>			
Constructability	• Construction experience of ordinal diameter (d=1.2m) bored pile is many. However, a certain degree of number of piles are found defective and needed to be remededed due to difficulty of QC in general. As a result, a risk for delay of the construction is concerned.	• Construction experience of steel pipe piles is not many in Vietnam. But Lach Huyen port construction project employed a steel pipe pile foundation.			
Quality Control	<ul> <li>QC item is too many such as controls of materials, a borehole excavation, a slim treatment, a concrete mixing, casting, etc. and a difference in quality is vary widely depending on a contractor's skill.</li> <li>A comfirmation of a bearing layer can be assumed from an excavated material only.</li> </ul>	<ul> <li>QC is relatively easy thanks to use of prefabricated steel pile.</li> <li>A confirmation of a bearing layer can done through a hammering of each steel pipe piles.</li> </ul>			
Environmental	• Treatment facilities of bentnite fluid is necessary, and amount of excavated soil to be treatment as industrial waste is large.	• Bentnite fluid is not used. Amount of excavated soil to be treatment as industrial waste is small.			
Social Impact	• Level of noise and vibration due to construction of the piles are lesser than that of the other option. But 24 hours construction is normally required until completing of concrete casting.	• Level of noise and vibration due to pile driving is relatively larger than that of the other option. But night time construction is not required.			
Evaluation	<ul> <li>QC of this option is more complicated that the other option.</li> <li>Risk on the construction delay is higher than steel pipe pile foundation.</li> <li>Environmental protection is required.</li> <li>Slighty expensive than the other option.</li> </ul>	<ul> <li>QC of this option is easier than the other option.</li> <li>Risk on the construction delay is smaller tha CIP pile.</li> <li>Environmental protection is not required in general.</li> <li>A slight advantage in cost is confirmed.</li> </ul>			
	$\square$	U U			

<b>Table 5.6-7</b>	Summary of Ge	neral feature of S	Steel Pipe Pile and	d CIP pile
--------------------	---------------	--------------------	---------------------	------------

Evaluation  $\bigcirc$  : Best.  $\bigcirc$  : Second-best.  $\triangle$  : Possible if no other.  $\times$  : Unsuitable

Preliminary Design for Tunnel Crossing

Immersed tube tunnel and Shield tunnel are examined as alternatives for a tunnel crossing under the Cam River. Detailed study result is attached in Appendix A5.

# 5.6.2 Criteria for the Preliminary Design of Tunnel Planning

### (1) Geological and Hydrological Conditions

River width and depth at each site are shown in Figure 5.6-1.

### (2) Geological Conditions

According to the soil investigation results, the subsoil consists of soft alluvial layers and marine clay deposit layers with a thickness of about 30m in both the Nguyen Trai and Vu Yen area. Some of the upper layers where the proposed tunnel is planned to be located consist of softer ground with an SPT value of less than 5 and the total thickness of the softer clay layer is about 20m.

### (3) Navigational Conditions

According to information from Maritime Safety North, the conditions of the navigation channel are as follows.

- Navigation channel: One way navigation for vessels accessing the port of Hai Phong and Vat Cach. The navigation channel of the Cam River has a design width of 80m.
- Tonnage allowed on channel: Song Cam channel is designed for vessels up to 20,000GWT entering Chua Ve Port and 10,000GWT entering Hai Phong Port. However, 50,000GWT vessels of suitable draft, in other words 50,000GWT vessels which are not fully loaded, can enter Hai Phong Port.



b) Vu Yen Tunnel

Figure 5.6-1 Comparison of Immersed Tube Tunnel and Shield Tunnel

# 5.6.3 Selection of Tunnel Type for Cam River Crossing

# (1) Selection of Tunneling Method

Table 5.6-8 shows a comparison between the immersed tube tunneling method and the shield tunneling method.

Item		Immersed Tube Tunneling	Comparison	Shield Tunneling	
XX7 1.1	Under river	31.3m	_ 1)	42.3m	
Width	On land	31.7m		42.3m	
T .1	Nguyen Trai	<u>1,262m</u>	<b>&gt;</b> ²⁾	2,224m	
Length	Vu Yen	<u>1,256m</u>	>	2,176m	
Impact on Navigation		Some works impact navigation but can be controlled	< 3)	<u>No impact</u>	
Social impact		small	>	Large (Because the length of tunnels longer)	
Impact on natural environment		Necessary countermeasure	<	No large-scale excavation inside the river	
Construction Period		<u>Shorter_</u> ( <u>50 to 55 month)</u>	>	60 to 65 months	
Construction Cost		<u>Cheaper</u>	^	Around 1.5 times of immersed tube tunnel	
Experience in Vietnam		<u>Saigon River Tunnel</u> (opened in Nov. 2011)	^	No experience in Vietnam	
Construction Yard		Dry dock for fabrication of tunnel elements is required as an additional yard.	<	<u>Not required</u>	
Maintenance		Cheaper	>	Tunnel length is longer	

<b>Table 5.6-8</b>	Comparison of	[•] Immersed T	uhe Tunneling ar	nd Shield Tunneli	ing Methods
14010 3.0 0	Comparison of	Inninci scu i	ube runnening ar	lu Sinciu Tunnen	ing micinous

Notes: 1) = Both methods equal or equivalent.

2) > Immersed tube tunneling method is superior to shield tunneling method.

3) < Immersed tube tunneling method is inferior to shield tunneling method.

According to our analysis on Table 5.6-8, the immersed tube tunneling method is superior to the shield tunneling method in regard to construction cost and construction period. It is also advantageous as there is past experience in Vietnam of using the method for the Saigon River Tunnel in Ho Chi Minh City which was opened to traffic in 2011.

### 5.6.4 Preliminary Design for Immersed Tunnel

The overall tunnel structure therefore consists of the following parts:

a) Immersed tube tunnel

- b) End section constructed with the bottom-up method which connects the immersed tunnel and the cut and cover tunnel constructed with the top-down method
- c) Cut and cover tunnel constructed with the top-down method
- d) U-shaped structure with diaphragm wall
- e) U-shaped retaining wall

A summary of the preliminary design of the tunnel structure for both Nguyen Trai Tunnel and Vu Yen Tunnel are shown below.

Item	Structure Type, Dimensions and Length
Immersed tunnel	<ul> <li>Cross section: 8.8m(H)x31.3m(W)</li> <li>Length L=87+89+89=265m (3 elements)</li> </ul>
End Section	<ul> <li>Between the immersed tube tunnel and the cut and cover tunnel</li> <li>Constructed with the bottom-up method with steel pipe pile cofferdams</li> <li>Each length L=20mx2=40m</li> </ul>
Cut and Cover Tunnel	<ul> <li>Old city side L=262m, VSIP side L=177m (total L=460m)</li> <li>RC diaphragm wall: t=1.2m, L=40m</li> <li>Top-down method</li> </ul>
U-shaped Structure with Diaphragm Wall	<ul> <li>Old city side L=41m, VSIP side L=105m (total L=125m)</li> <li>RC diaphragm wall: t=1.0m, L=40m</li> <li>Top-down method</li> </ul>
Box Culvert	<ul> <li>To pass under Le Thanh Tong Street</li> <li>RC box culvert (L=40m)</li> </ul>
U-shaped Retaining Wall	<ul> <li>Old city side L=162m, VSIP side L=100m (total L=282m)</li> <li>Nguyen Trai Street in VSIP area</li> </ul>

 Table 5.6-9
 Outline of Preliminary Design for Nguyen Trai Tunnel



Figure 5.6-1 Cross Section of Nguyen Trai Tunnel

			-	
Table 5.6-10	Outline of Preliminary	/ Design	for Vu	Ven Tunnel
	outline of Frenhundi	DUSISH	101	I'm I'umnei

Item	Structure Type, Dimensions and Length		
Immersed tunnel-Cross section: 8.9m(H)x31.3m(W)-Length L=110+105x3=425m (4 elements)			
End Section	<ul> <li>Between the immersed tube tunnel and the cut and cover tunnel.</li> <li>Constructed with the bottom-up method with steel pipe pile cofferdams</li> <li>Each length L=30mx2=60m</li> </ul>		
Cut and Cover Tunnel	<ul> <li>Hai Phong side L=123m, VY Island side L=140m (total L=263m)</li> <li>RC diaphragm wall: t=1.2m, L=40m</li> <li>Top-down method</li> </ul>		

U-shaped Structure	-	Hai Phong side L=91m, VY Island side L=118m (total L=209m)
with Diaphragm	-	RC diaphragm wall: t=1.0m, L=40m
Wall	-	Top-down method
U-shaped Retaining Wall	-	Hai Phong side L=149m, VY Island side L=110m (total L=220m) Nguyen Trai Street in VSIP area

### 5.6.5 Construction / Maintenance Cost

The Construction cost and maintenance is estimated as shown below.

Table 5.6-11	Cost for Construction of Nguyen Trai Tunnel (1 JPY=202.84VND)	
--------------	---------------------------------------------------------------	--

Item	Description/Quantity	Equivalent JPY	Equivalent VND (Million VND)
General	7% of Total	1,030,000,000	208,925
Immersed tunnel (RC structure)	8.8m(H)x31.3(W)x3 units L=87+89+89=265m	5,468,000,000	1,109,129
Approach Tunnel	Old city side L=567m VSIP side L=432m	6,459,000,000	1,310,144
Finishing work	L=1,234m	236,000,000	47,870
E&M	L=744m	2,552,000,000	517,648
Total		15,745,000,000	3,193,716

### Table 5.6-12 Cost for Construction of Vu Yen Tunnel (1 JPY=202.84VND)

Item	Description/Quantity	Equivalent JPY	Equivalent VND (Million VND)
General	7% of Total	1,182,000,000	239,757
Immersed tunnel (RC structure)	8.9m(H)x31.3(W)x4units L=110+105x3=425m	7,933,000,000	1,609,130
Approach Tunnel	HP side L=393m VY island side L=438m	6,171,000,000	1,251,726
Finishing work	L=1,256m	244,000,000	49,493
E&M	L=748m (Tunnel Section)	2,536,000,000	514,402
Highway	W=35.5m, L=924m	492,000,000	99,797
Total	Total length L=2,180m	18,558,000,000	3,764,305

#### Table 5.6-13 Cost for Tunnel Operation and Maintenance

Itom	Cost	Equivalent JPY		
Item	(million VND)	(1 JPY=202.84VND)		
Operation include electricity cost	10,750	53,000,000		
Cost for replacement of E&M facility or its parts	11,562	57,000,000 *1)		
Maintenance of Tunnel include cleaning	8,114	40,000,000		
Total	30,426	150,000,000		
Note 1): Cost for replacement of E&M facility or its parts depending on the condition of the tunnel, such as traffic volume,				
this table is the annual average of expenditure for the replacement of E&M facility or its parts.				