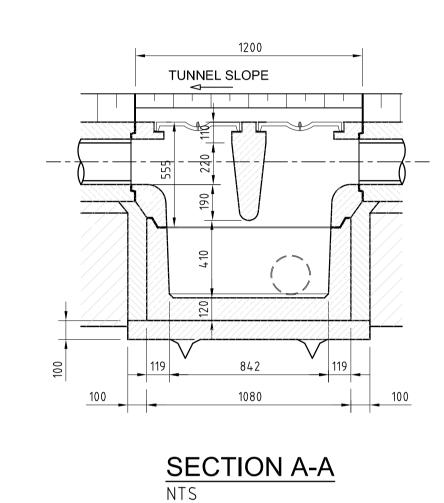

Technical Note on Compliance to JICA Draft Report communicated through Chief Engineer's Letter No. CNH/TA4/AE2/NH-48/ FS Tunnel/ Env Study/ 2015-16/ 4749 dated 15th February, 2016:


We would like to appraise you that the points mentioned by JICA would be addressed properly and it will be included in the EMP prepared by Environmental expert of Geoconsult. The Environment and Social team is carrying out environmental and social study. This would include the specific mitigation measures for all the environmental factors namely Air, Water, Ecological, Social, Noise, Land use, Flora and Fauna, wild life, labour, muck management, blasting and other relevant issues related to this project. The team is in touch with the mile stone studies of Gadgil and Kasturirangan committees report and taking full note of that.

Both the key points raised by the JICA team would be fully mitigated with measures included in the construction plan. The project team would also suggest the best practices in the sector.

- A. The Cut and fill section proposed at the eastern part of the alignment where no other possibilities workout economically and the area is fully under Private Land. The area is surveyed and no major flowing stream/ nala/ river occurs in proposed cut & fill area. Please refer annexure 1 where alignment has been superimposed on the contour map for better understanding of the topography of the area. The minor gulley's and drains shall be provided with cross drainage structures for effective flow which are there only during monsoon. The effect of construction road and construction would be mitigated through hard fencing at the stream side and identified habitat places for the wild life. The water quality would remain unchanged as no possibility of entrance of the project staff in the stream. Also any construction water may require to discharge at all directly to the stream/ Nala should undergo sedimentation process. The air borne dust could be controlled through effective water sprinkling at the work places.
- B. Yes, the blast could affect the behaviour of animals in the project cycle but this can be significantly reduced and controlled by controlled blasting technique available. Also there are technics like Presplitting by using chemical which is non pollutant and noiseless, which would help in fragmentation of hard rock and mechanical excavation can be carried out. The excavation procedure also suits the proposed tunnel construction methodology "NATM".
- C. Please refer Annexure-1, As advised the reserve forest boundaries, location of streams, existing road path in the forest area that is being used by the Railways for their network improvement, railway lines with existing structures and proposed bypass alignment is shown in the drawing.
- D. For unrestricted ground water flow path, suitable measures have already taken in the tunnel design. Please refer to attached annexure 2 which is also a part of our KD-6 submission. Suitable drainage measure with waterproofing system is already in place to mitigate the hazard.

NOTES:

1. ALL DIMENSIONS ARE IN mm UNLESS NOTED OTHERWISE.

REFERENCE DRAWINGS: SHGA-FS-LAY-1001 TO 1016 (16 SHEETS) SHGA-FS-LAY-1061 TO 1098 (38 SHEETS) LEGEND: LINING / INVERT CONCRETE PAVEMENT QUALITY CONCRETE (PQC)

DRY LEAN CONCRETE (DLC)

REVISION						QUALITY	ASSURA	NCE		DESIGN CONSULTANTS:				
						The responsibility of control, check and verification of accuracy, correctness, completeness, integration and full compliance of contract provisions in respect of design analysis and drawings rests with the design consultants and the contractor.			teness, integration rests with the	GEOCONSULT India Pvt. Ltd. Plot No. 473, Industrial Estate, Udyog Vihar, Phase V				
	E DEC 15	MINOR CORRECTIONS / RESUBMITTED (KD-6)	RMe	BRs	FKr							Gurgaon-122016, (India)		
	D DEC 15	SECTION WITH ARCH INVERT ADDED (KD-5)	RMe	BRs	FKr							PROJECT TITLE		
	C SEP 15	CP HEIGHT MODIFICATION & RESUBMISSION (KD-4)	PRa	BRs	FKr	Date (FIRST ISSUE)	22.07.15	22.07.15	22.07.15	22.07.15	22.07.15	CONSULTANCY SERVICES F TECHNICAL STUDY FOR BYF		
	B AUG 15	MINOR MODIFICATION	PRa	BRs	FKr	Name	RMe	RMe	BRs	FKr	FKr	FROM Km 238.00 TO 261.45 ON NH-48 IN THE STATE OF KARNATAKA- JOB NUMBER NH-48-KNT-2015-16-7		
	A JULY 15	FIRST DRAFT (INCEPTION STAGE)	RMe	BRs	FKr		Drawn	Drafting Chk	Designed	Design Chk	Approved	This document should not be relied on or used in circumstances		
	REV. DATE	PARTICULARS	Drawn	Checked	Approved	Originato	oгs					and for which Geoconsult was commissioned. Geoconsult accepts other than the person by whom it was commissioned.		

SCALE 1:50

	DESIGN CONSULTANTS:	
_	GEOCONSULT India Pvt. Ltd.	
	Plot No. 473, Industrial Estate,	
	Udyog Vihar, Phase V	GEOCONS
	Gurgaon-122016, (India)	

GEOCONSULT; PRa, R:\16000 Projects\16060-Shiradi Ghat\CURRENT\KD-6\SHGA-FS-GEN-012_E.dwg, 2015-12-18

GOVERNMENT OF KARNATAKA

DRAWING TITLE **MAIN TUNNEL** CONSULTANCY SERVICES FOR FEASIBILITY-CUM-GEO REGULAR CROSS SECTION TECHNICAL STUDY FOR BYPASS TO SHIRADI GHAT 2 DRIVING LANES+ 1 EMERGENCY LANE FROM Km 238.00 TO 261.45 ON NH-48 IN THE STATE OF KARNATAKA- JOB NUMBER NH-48-KNT-2015-16-780

DRAWING NUMBER							
SHGA-FS-C	SHGA-FS-GEN-012						
SCALE 1.FO	MONTH	DEC 15					

(Current Issue) DEC 15

PRELIMINARY

Government of Karnataka

(Public Works, Ports and Inland Water Transport Department)

No: CNH/TA4/AE2/NH48-Tunnel /2016-17

J454
Office of the Chief Engineer,
National Highways, KR Circle
Bangalore. Dated: 7 6 NOV Z016

To:

Mr. D.KIYOTO, M/S CTI Engineering International Co. Ltd TOKYO, JAPAN.

Sir,

Sub: Submitting details of Tunnel regarding.

Ref: 1.Report of Ecological Surveys between Sakaleshapura and Gundya region.

2. Data collection survey on Natural Environment of the western ghats in the republic of India. (Draft Final

Report)

The response from the Public Works Department to the above report is given in detail at Annexure-A. The litigation, observations, clarifications are given in the enclosure.

A brief note giving the details of necessity and viability of bypass to Shiradighat is enclosed as Annexure-B.

The necessity of the project is enlightened in Annexure-B. If the tunnel is considered, then the surface road from Maranahally to Gundya will be closed. This will have positive impact on of the environment. Hence, it is requested to consider all these points while recommending the report.

Yours faithfully,

Chief Engineer National Highways,

Bangalore

Copy to:

- 1. Chief Engineer, (P6), MORT&H, No 1 Parliament Street, Transport Bhavan, New Delhi for kind information.
- 2. Regional Officer, MORT&H, Bangalore for kind information.
- 3. Superintending Engineer, NH Circle, Bangalore for information
- 4. Executive Engineer, Shiradighat Tunnel Division, Sakaleshapura for information.

Japan International Cooperation Agency (JICA)

"DATA COLLECTION SURVEY ON NATURAL ENVIRONMENT OF THE WESTERN GHATS IN THE REPUBLIC OF INDIA"

DRAFT FINAL REPORT: November 2016

Submitted Report has been studied and reviewed with reference to under prepared "Detailed Project Report (KD7 & KD8)" by the Design Consultant "Geoconsult India Pvt Ltd.

Major Findings, Observations and Clarifications are as follows:

1. General:

Shiradi Ghats area in which the project is in the planning stage, is adjacent to the Western Ghats Mountains. This site is not yet designated as a UNESCO World Heritage site as brought out in the report. The collected literature indicates the inhabitation of many rare and endangered species, such as Elephant, Tiger, Wild dog, Doles and Macaque as mammals, various frogs as amphibians and some tropical trees as plants. No negative orientation was observed for the Shiradi Ghats Bypass Project. Several organizations consider the Project positive because the bypass could improve the discontinuity of Western Ghats Ecosystems disturbed by existing National Road No. 48. On the other hand, not a small number of organizations showed a negative orientation toward the Yethinahole Project mistrusting the submitted data for calculating possible intake from the region.

2. Shiradi Ghat Bypass Project

- ▶ Planned alignment is on the Southern side of existingNH-48 as describe as following figure. The alignment starts near Heggade Village (km 236.400) traverses through Greenfields, bypassing Heggade, Maranhally Kadagaravalli, Yedakumari and Gundya, villages and ends at Adda Hole (km263.400) of NH-48. The total length of alignment under this option is 23.579 km, and the route consists of 6 tunnels (length 12.631km varying from 1660 to 2960 m), 6 bridges, One RoB and One Viaduct (length 6.327km, varying from 50 to 3217m), and 4.621km long cut & fill sections.
- The route has low gradient (roads & bridges: 0 to 3.5%, tunnels: 3.0 to 3.5%) and gentle curves (R=500m to 2000m). The height of bridge piers in the deep valleys is restricted to 120m that makes the early implementation of the project possible. Also, tunnel lengths are limited to 3.0km that makes the scale of ventila 95% tion/emergency facilities ordinary in size. Only 4.621km out of total length of 23.579km is planned as "cut and fill" that requires deforestation of the construction area.
- ➤ Karnataka is regarded as one of the foremost and biggest habitats of the Asian elephant in India. Among the 2,855 forests in Karnataka, the elephant has been found in 972 forests. According to Dr. Raman Sukumar, professor of IISC, the elephant's habitat on the south side of the bypass project site is currently saturated, and it is a concern that the bypass may hinder the northward movement of the elephants.

- The project proposals comprise of tunnels and high level bridges for 95% of the total length. Due to that existing flora & fauna will not be disturbed to the maximum extent after construction of the project.
- ➤ 3.2.1 Preparations to Acquire Environmental Clearance: As per MoEF Norms EC is not required to obtain as length of the project is less than 30km and Elevation below 1000m. Only Forest Clearance is needed to obtain for construction.
- ➤ 3.2.3 Preparation of Budget for Land Acquisition: There is NIL Habitation along the road alignment and proposed 60m Road Corridor in Forest Area. Land Acquisition and re-habitation will be required in Private Land Area near Maranhally (km 0 to km 1 intermittently).
- ➤ 5.1.5 Considering Construction Roads: Logitudinal Grade will be flattened for carrying out heavy machineries & equipment wherever possible without felling of trees.
- > 5.1.6 Construction period of Construction Roads:
 - **2) Calculation of Construction Periods :** Construction Periods is between December to April five months only because incessant rain in Shiradi ghat in that season.

> 5.1.7 Possible Mitigation Measures:

- 1) **B) Measures for Intersections with Mountain Streams :** For intersection of construction roads and mountain streams cannot be disturbed and hence usage with temporary culverts using Hume pipe with proper Hydraulic calculations.
- C) Reduction of Slope Areas of Fill by Geo textile Walls and Gabion Mattress will be taken into Reinforced earth techniques and geogrids can also be used to minimize the Slope areas.
- 2) **B)** Controlled Blasting: Korian technology (Pulse plasma blasting technology)will be used for Blasting ,Eco Friendly Non Explosive Pulse Plasma Technology for Rock fragmentation technology is very useful for twin tunnel project in Shiradi Ghat Bypass project. Advantages of Pulse Plasma Technology in front of Sound & vibration velocity combine with low dust generation due to exothermic reaction between two metal powder under Plasma stage. also notice that rock excavation by Plasma Technology is carried out to a depth of 250 meter due to highly sensitive zone.
- > 5.1.9 Challenges in the Future: Detailed Study on Construction Roads: Already identified and collected details of various existing routes possible for utilization during construction. Same will be incorporated in KD7 & KD8.
- ➤ Possibility of Utilization of Existing Railway: Meetings and Presentations had been held with Top officals DMR Mysore office. They are highly positive & supportive professionally.
- ➤ Disposal Sites of Construction Generated Soil: Disposal sites have been identified beyond Forest Area near Sakleshpur & Hassan Railway Station and Near Subramanya Railway station.
- ➤ Management of Construction Roads after Construction: Existing roads shall be non-bituminious and maintained well during construction.

These same will be re-established as same as in prior of construction. Temporary CD structures will be dismantled and removed.

➤ Mitigation Measures Suggested (Page 45 & 46)

Following alterations to the existing habitats, however, this may not be exhaustive list:

- 1. Habitat modification (Conversion)
- 2. Habitat fragmentation
- 3. New Access Roads
- 4. Dumping yards
- 5. Stream degradation
- 6. Stream diversion
- 7. Heavy Vehicle traffic during construction
- 8. Increased frequency of vehicles
- 9. Human settlement (temporary vs. permanent)
- 10. Pre- and post-project impacts
- 1. Habitat modification or conversion is one among the major threats to endemic amphibians of the Western Ghats. Mitigation measures suggested for habitat modification or conversion is to maintain immediate surroundings of a converted habitat as a buffer zone with least use. This reduces edge effects on amphibians.

NOTED, will be recorded in the EMP report as mandatory action.

2. Habitat fragmentation or attrition that happens during the construction phase will lead to extinction of a frog population locally. The fragmentation must be to the least possible measure. To maintain the connectivity with the fragmented habitats native species of trees or with bridges and tunnels must be constructed to allow easy movement of amphibians.

NOTED, will be recorded in the EMP report as mandatory action.

3. Find alternative routes if the proposed alignment is going through intact forest patches. This might escalate financial burden on the proponents of the project; however, the damage to ecosystem by constructing through intact forests are much more than the financial equations. In the present study, areas on the right side of the highway (Kadumane estate) can be looked at as an alternative plan.

Alternate Alignment Studies already have been carried out and most optimum, economic and feasible alignment had been approved.

4. Construction activity must be carried out in the lean period of activity for amphibians.

Noted.

5. It would also be useful to limit the road construction adjacent to hill-streams particularly for fishes and amphibians.

Noted, Slope Protection measures are proposed towards valley and Nalla sides

6. Access roads and new roads that are not in use should be deactivated or abandoned after their stipulated usage. This should be carried out in a systematic manner (replanting, removal of asphalt, and so on) and without leaving any trace of construction mark.

Yes, unused roads will be abandoned after their stipulated usage time to time.

7. Tunnels (underpasses) and fencing, specifically designed for amphibians, must be installed to help in easy movement of amphibians across roads and streams. These structures should also be installed in known cross over regions along amphibian corridors (streams/wetlands); places of frequent roadkills and heavy traffic areas. Design culverts, underpasses, and overpasses to accommodate a variety of species.

Noted, All Cross Drainage Structures are high levels with sufficient span/openings & vertical clearances.

8. During construction, minimize the use of contaminants (e.g. salts, petrochemicals, and herbicides) and unnecessary spill overs. It is highly recommended to use materials that are biodegradable. There shall not be any dumping of muck and debris of construction materials in streams and forest valleys. Utmost care should be taken in construction activities near streams to minimize any damage to amphibians, in particular, and stream ecosystem in general.

NOTED, will be recorded in the EMP report as mandatory action. Railway Services will be utilized as much as possible

9. There must be a systematic and objective monitoring of activities during construction phase and operation phase. Monitoring should not be biased towards construction and it should be done to minimize damage to ecosystem.

NOTED, will be recorded in the EMP report as mandatory action.

10. Settlements for construction workers should be eco-friendly and must be dismantled immediately after stipulated use.

NOTED, will be recorded in the EMP report as mandatory action.

4. Environmental Study Related:

It is our responsibility to promote conservation of environment and preserve the endangered species and endemic species in its own habitat in a responsible manner.

ENVIRONMENTAL ATTRIBUTES IMPACTING THE FLORA AND FAUNA OF THE REGION	PROBABLE IMPACT	PROPOSED MITIGATION MEASURES
AIR	Air quality may affect the water quality and its aquatic fauna due to increased turbidity	No activity which can disturb the river course, its flow, and resources would not be allowed during construction and operation
NOISE	The increased noise level during construction phase can disturb the resident bird population	The construction sites would be away from the faunal habitation included the aquatic and amphibians habitations
WATER	Water resources may be depleted during construction	The water course and its tributaries would not be interrupted during construction and it has been taken into consideration during planning stage
EARTH	The filling material may be taken from its habitat	It has been ensured that no habitat would be disturbed whether land or aquatic.
HABITAT	Habitat of the Wild life in the region	The habitat of the flora and fauna would be taken care of during construction and operation.

The disturbance envelope for landside infrastructure and construction activities for the proposed Development has been developed to allow for flexibility in locating support infrastructure during construction. In the construction phase an Environmental Expert would be taking care of the biodiversity management plan and its implementation.

National Highways Zone
Bangalore

Cost Aspects

• Based on the alignment study, geotechnical investigations, structures, and bidding parameters for the brand-new, green-field Shiradi Ghat Bypass with tall bridges Rough cost works out to Rs 10000 crores.

Traffic Risk - Present Traffic Volume

- It is very important to evaluate the traffic risk for green-field, toll expressway projects. It is supposed to require at least more than 10.000 long-trip travels per day to make a PPP(80T) project feasible. According to the data available ADT at Gundiya on NH48 is approximately 8000 that is the total amount of traffic in both directions. The ADT of long-trip vehicles observed is about 800. Thus the traffic appears to be only short trip traffic on NH48. As a result, the traffic volume should be insufficient to adopt a project implementation mode of PPP(80T).
- The improvement of the East-West connectivity between Mangalore-8angalore Chennai should go ahead of the enhancement of Old and New Mangalore Ports and is likely to give a huge socio economic impact on the State and improve the feasibility / needs for the enhancement projects of Mangalore Ports
- The New Mangalore Port is owned and operated by the Central Government. The New Mangalore Port is one of the largest ports in the west coast of India and natural liquid

gas and fertilizer produced by chemical plants located near the Port are dealt with. New Mangalore Port, it regarded as a backup port of the JNPT Port in Mumbai. Maharashtra. According to the Port Trust, the destination of most goods unloaded at the new Mangalore Port were originally scheduled to be the JNPT Port in Mumbai. but they ended up coming to New Mangalore Port because of timings and availability of the JNPT Port. The railways and NH17 are directly connected to the New Mangalore Port that are connected to the Mumbai-Pune area.

Chief Engineer National Highways Bangelore

Compliance for the JICA team Observations

SL NO.	OBSERVATIONS	COMPLIANCE
1	Precipitation data which connects to Inflow	
	estimation.	Regarding the availability of Yield The National Institute of Hydrology (NIH), Belgaum, Govt. of
	The calculation of the inflow has been	India was entrusted to estimate the dependable yield of the proposed project. According to NIH,
	estimated by only one rainfall monitoring station	23.41 TMC of water is available at 50% dependability in the catchment area with annual rainfall
	owned by private plantation which has not been	of 4880 mm for the period 1993-2012.
	checked directly by WRD.	Three existing rain gauge stations at Hongadalla, Kadumanehalla and Kottanahalli were
	Besides, WRD did not utilized existing	considered while calculating the yield estimations. Therefore, the data used for yield calculation
	rainfall monitoring data of KSDMC: Karnataka State	is in order. Correlations with actual stream flow measurements by KPCL shows that the yield
	Disaster Monitoring Centre allocated to the area	calculations is conservative.
	close to the Project Site.	Further, Karnataka State Natural Disaster Monitoring Centre (KSNDMC) in their letter dated:
	There is huge discrepancy between above	12.02.2016 stated that "the weighted average rainfall for the entire Yettinahole catchment is
	precipitation amount, more than 6,000 mm/year to	5138 mm", detailed report is enclosed as Annexure-1. KSNDMC has only recently established
	that of KSDMC around 1,500 mm to 2,000	some telemetric rain gauge stations in the Yettinahole catchment, data for which are available
	mm/year. Immediate evaluation shall be	only for 2015, which is not sufficient.
	conducted regarding the validity of the utilized	Further, CWC under letter dated: 10-4-2015 stated that "The approach adopted by the project
	data while no evaluation has been made so far.	authorities for assessing the yield stress based on observed data of Bantwal G&D site
	Supporting data such as cross section with its	maintained by CWC and three G&D sites maintained by KPCL near weir sites appear to be in
	calibration record, flow rate, H-Q curbs and other	order".
	shall be evaluated too.	
2	Transportation Loss Open canals are proposed to transport water toward the destination for vast distance and the loss of the water calculated as 10% while no evaporation, infiltration, nor the possibility of	During the calculation for requirement of water, 5% losses for Transmission & storage and 5% losses for Treatment & Distribution was considered. Further, open canals are lined canals the infiltration rate is nil and in this canal water will flow only during the monsoon season during this period the evaporation loss is very meagre. This
	illegal utilization of water. Those shall be counted as evaluated for the feasibility of the project.	meagre evaporation quantum will be analysed in future while during the filling the tanks.

Baseline data without the Sampling term No information has been given regarding sampling term of baseline data such as existing species and water quality. At least two term samplings such as during monsoon and offmonsoon for aquatic life forma as well as water quality. Besides, not sufficient secondary information regarding fauna and flora has been given in the DPR. There is discrepancy regarding the confirmed species to the other conducted survey.

It is respectfully submitted that, the existing species and data on water quality pertaining to the project area (weir site) was collected and presented in Chapter 3 of the Environmental Management Plan. The extract of the same is enclosed as **Annexure-2**.

There are plenty of secondary details, published literature and reports available for the entire western ghats or pockets where different institutes or individuals conducted the research studies. However, the published secondary data for western ghats may not be the representative data for the project sites. Hence, data was collected pertaining to weir locations and wherever necessary secondary data pertaining to weir locations was incorporated in the report. Further, the experts involved in preparation of the EMP was well aware of the western ghats and conducted plenty of research works in the area. Also, published papers in peer reviewed journals on Western Ghats. Therefore, the comments of JICA are noted for further guidance if necessary.

The aquatic ecology studies was conducted by Shri. M F Rahman, Scientist (Retd.), Central Inland Fisheries Research Institute, Govt. of India who is renowned expert in the field of aquatic ecology and has got immense experience in the field. He was worked for many projects across India and also in Western Ghats since 40 years and involved with the Fisheries Dept., Govt. of Karnataka in identifying fish sanctuaries in Western Ghats as well as in Karnataka.

The biodiversity studies of the project was conducted by Dr. B C Nagaraj who is renowned expert in the field of ecology and biodiversity and obtained his post doctoral degree from Indian Institute of Science, Bangalore. He was worked with many infrastructure projects across Karnataka and also in Western Ghats since 20 years.

The publications of the above experts is enclosed under **Annexure-3**.

4 **Legal issues against the project**

Several legal actions against this project have been taken and no correct information has been reached to the study team. The team would like to ask the proponent to supply relevant information in a mutual way. Legal Note enclosed separately as **Annexure-4.**

COMMENTS ON JICA STUDY REPORT IN RESPECT OF YETTINAHOLE INTEGRATED DRINKING WATER SUPPLY PROJECT

- 1. The study report mainly focus on Shiradi Ghat by-pass and associated activities by and large.
- 2. Chapter 3, Pg 3-1, obtaining Environmental clearance shall only be restricted to Shiradi Ghat bypass specifically. Modification required to para "Therefore.... is as follows".
- 3. No mention on Forest Clearance already obtained for the project.
- 4. Table 3.2.1 Most of the scientific organisations expressed their neutrality in view sustainable development in respect of the project. However, certain organizations with meager information on project and those organizations which are having political motive showed negative response to the project.
- 5. Chapter 6 and 7 clubbed together to avoid confusions.
- 6. The baseline ecological status of the project is not specific to Yettinahole project and current report is not succeed in emphasizing whether diversion of water for drinking water leads to endemism in Western Ghats?
- 7. As per the conditions of Forest Clearance, various mitigation measures have been suggested by the Forest Dept., Chief Wildlife Warden, MoEF, Govt. of India, etc while granting approval for the project. All those mitigation measures will be implemented in the interest of project. Further, Govt. of Karnataka through a Govt. order constituted a high level monitoring committee under the Chairmanship of Additional Chief Secretary, Forest, Ecology and Environment, Govt. of Karnataka to monitor the effectiveness of implementation of the laid down conditions. Furthermore, KNNL entrusted the work of detailed ecological study of Yettinahole project including post project mitigation measures to EMPRI and IISc. The suggestions / mitigation measures from the study report will be incorporated and implemented.
- 8. The project also aims at fill up of MI tanks. The report doesn't emphasize on how this project helpful to restore tank ecosystem services in the semi-arid zone of Karnataka.

(t5ruan.3t5 ~rnJtdd t5oGJc)aJJ 'ClrnaJ ~odl.rcleG3e;, @saeoGJc)OO)e; ~aJJ~ ~O~)

Karnataka State Natural Disaster Monitoring Centre

(A Regd. Society and Autonomous Body, Affiliated to Dept. of Revenue, GoK)

KNNL Annex1

KSND M C/Tech/2/20 15-161 '9-6 t.

To, Office of the Chief Engineer, Karnataka Neeravari Nigam Limited, NNL, Upper Bhadra Project Zone, Chitradurga.

Ph No: 08194-230018

Email <u>ID:ubpchief@gmail.com</u>

Sir,

Sub: Regarding rain gauge details of Yettinahole Drinking Water Project.

Ref: No: CE/KNNLlUPBZ/CTA/TA-10/2015-16/12749 dated on 10.02.2016.

With reference to the above subject, please find herewith attached a detailed note on the rainfall pattern in Yettinahole Project catchment area, for your needful action.

Thanking you.

Yours sincerely

Dated: 12.02.2016

DIRECTOR KSNDMC

 $\label{eq:defi06} $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 \sim e:>ee; s6 erD < ZId.t5 efflov6 d\sim, @9 \sim dJe:le25lf.36 cE d, aJJe) cEOt5, a'lOr5 as adJ-560 064. $$ dJeffi06 cE d, aJJeffi06 cE d, aJJe$ Major Sandeep Unnikrishnan Road. Near Attur Lavout. Yalahanka RAnnrlh ını - !,)Rn nR.d.

Note on Rainfall Pattern over the Yettinahole Project Area

Rainfall pattern map given in Fig-1 is prepared by using Taluk Headquarters normal annual rainfall values (1951-2000) provided by India Meteorological Department (IMD).

Historical rainfall data in and around Yettinahole project is available for the following stations.

SI.No.	Name of the	Source	Availability of Data	Mean
Raingauge location		Source	(missing years)	Mean
1.	Hangal	DES	1993-2014 (1996,2002 & 09)	2624
2.	Hongadahalla	Irrigation Dept (collected from Planters)	1980-1991	6079
3.	Kadamane Estate	Irrigation Dept (collected from Planters)	1986-2000	6652
4.	M aranah ally	DES	1993-2014 (1996,2000)	4879
5.	Sakleshpura	DES	1951-2000	2220
6.	Sukravara santhe	DES	1993-2008 (1996)	2908
7.	HOSAKERE	DES	1993-210 (1996,2003,2004,2005,2007,2009)	5119
8.	Byrapura Estate	DES	1993-1999 (1996)	6565
9.	Kottanahalli	Irrigation Dept (collected from Planters)	1980-1991	6024
10.	Chandrapura Estate	DES	1993-1999 (1996)	2224
11.	Shiradi	DES	1993-2014 (1995,1996,1997,2002,2003,2004,2 005,2009	5061

*DES: Department of Economics and Statistics

Perusal of the above table indicates that long term historical rainfall data for Yettinahole project area is not available as most of the area forms the part of forest area or estate area. In the past, Raingauges established by WRDO are mostly in Taluka and Hobli Headquarters.

None of the hobli headquarters or taluk headquarters are falling in these project catchments and hence historical data is not available with DES.

However, whatever data available with DES records and the data provide by the Irrigation Department has been used in the generation of isohyetal map using GIS software (Fig-2). Map depicts the high variability of rainfall pattern in the area, which ranges from more than 6000 mm to 2500 mm. By using the isohyetal map, area and percentage falling under the different rainfall range with coefficients have been calculated. Weighted average rainfall under different rainfall range along with weighted average for the entire Yettinahole catchment was calculated.

	Yettinabloe Catchment									
	Weighted average Rainfall (mm)									
SI No.		Area in	of area	Co-	Wet. Avg.					
31.100.	Rainfall Range	Sq.Km	OI AICA	efficient	Rainfall					
1	<2500111m	5.1	2.9	0.0286	72					
2	2500-3000	10.3	5.8	0.0582	175					
3	3000-4000	31.6	17.9	0.1787	715					
4	4000-5000	52.3	29.6	0.2960	1480					
5	5000-6000	56.7	32.1	0.3207	1924					
6	>6000m111	20.8	11.8	0.1177	773					
	Total	176.7	100.0		5138					

Perusal of the above table indicates that the weighted average rainfall for the entire Yettinahole catchment is 5138 mm. The above table is prepared on the basis of isohyets drawn in Fig.2. It should be noted that isohyets in the eastern half of the catchment are likely to lead to underestimation of catchment rainfall since they use rainfall readings of stations like sakalshpur and shukravara santhe which are in the rain shadow area.

Existing Rainfall monitoring network at KSNDMC:

KSNDMC has established Solar powered GPRS enabled Telemetric Raingauges in the state under different phase commencing from 2009-10.

In I Phase - All the Taluk Headquarters and Hobli Headquarters (Total-747) during 2009-10.

In II Phase - Selected GP's (2000 nos.) - 2013-] 4

In III Phase - Remaining GP's (3131 nos.) - 2015-16

In the project area 1.e., Sakleshpura taluk under phase-l during 2009-10 four hobli head quarters stations viz., Belagodu, Hanbalu, Hetturu and Yasaluru and Sakleshpura- taluk head quarter have covered. Rainfall data of these five stations has given in Annexure-I.

In phase-II during 2015-16 all the 21 grampanchayaths in the taluk have been covered and the list of the stations is given in Annexure-H.

Reasons for variation in the rainfall pattern in the vicinity of the study area:

The Kadumane Estate and Byrapura Estate are highest rainfall locations in the study area, the both stations recorded above 6500mm of annual n01111al rainfall. Due to the orographic effect the amount of rainfall is very high. They are situated in windward side of the mountain having elevation of 1044 & 670 above mean sea level respectively.

Geographically, the continuous mountain range presents a greater banier to rain-beating winds, and where the slope is gradual. Hongadahalla and Kotanahalli stations received above 6000 mm of annual normal rainfall, which are also located in windward side of the Western Ghats. Due to the gradual slope, the air parcel will retain its energy and speed for a longer time and the resultant is having high amount of rainfall.

In Western Ghats in Karnataka State, due to the greater width of the mountains, the rain bearing winds have to necessarily travel a longer distance and have more time for the drops to coalesce and precipitate as rainfall, resulting in higher rainfall. The slope of the mountains has a direct bearing on the magnitude of precipitation.

As Shukravara Santhe and Sakleshpura are situated in leeward side of the mountains, the amount of rainfall is reduced to -3000 to 2000 mm respectively. Rainfall decreased about 3000 111m within 15 kms away from the highest rainfall (Kadumane Estate) location. However, the rainfall is considerably high, from the high point of the mountains. The precipitation amounts drop significantly on the leeward side. But, due to greater depth, the moisture in the clouds join together into big drops which finally reaches the ground and gives precipitation.

Conclusions:

- 3. As Western Ghat area is mostly covered with forest and coffee / tea estates, there are only a few rain gauge stations established by the departments and hence no historical rainfall data available.
- 4. Using the available data isohyetal map has been drawn and area under different ranges has been delineated.

- 3. The rainfall is highly variable and it varies from more than 6500 111m to 2500 mrn within east west distance of 15 kms.
- 4. The weighted average rainfall for the entire Yettinahole catchment area is found to be 5138 111m. This is likely to be an underestimate since rain gauges on the eastern side of the catchment are in rain shadow area.
- 5. KSNDMC has established Telemtric Rain Gauges (TRG) in the study area up to Grampanchayath level only during 2015, and hence not much data for the study is available.

Dr.GS Srinivasa Reddy

June 10

Director

Kamataka State Natural Disaster Monitoring Centre (KSNDMC)

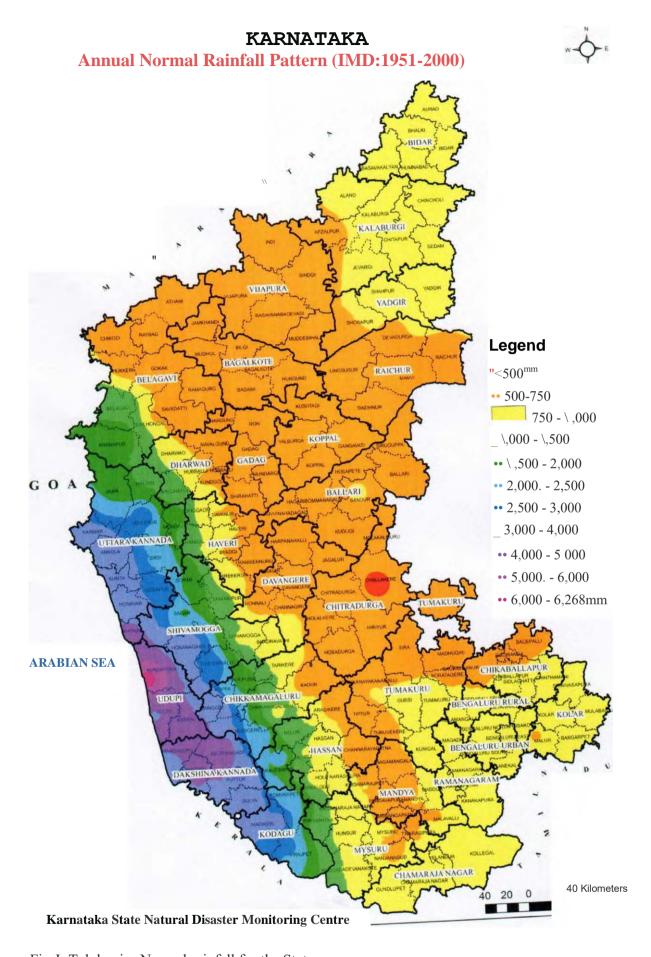


Fig-I: Taluk wise Normal rainfall for the State.

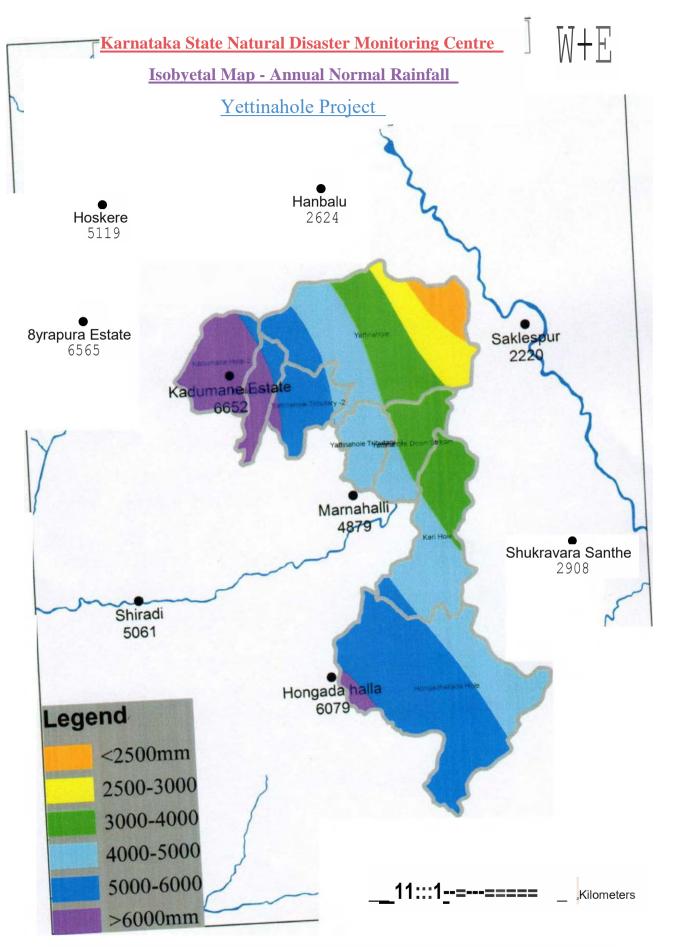


Fig-2: Isohyetal map for the project area

S	Sakaleshpura Taluk and Hobli wise Actual Annual Rainfall (mm)								
SI.No	HobJi	2010	'2011	2012	2013	2014	2015		
1	Sakaleshpura	2018	2261	2096	279]	2835	2222		
2	Hanbalu	2315	2303	2131	2393	3279	1889		
3	Hettur	2292	2656	2927	4311	3996	2475		
4	Yaslur	1618	2332	1901	2523	2566	1364		
5	Belagoud	Not Installed	1162	742	1608	1322	1224		

Table-L: Hobli wise rainfall data for last 5 years for Sakleshpura Taluk.

Annexure-II

Sl.No	Taluk	Hobli	GP	Year of Installed
1			Belgodu	2011
2			Baage	2015
3		Belgodu	Ballupete	2015
4			Kuniganahalli	2015
5			Udevara	2015
6			Hanbalu	2010
7		Hanbalu	Kaymanahalli	2015
8			Devalkere	2011
9		Hetturu	Hetturu	2009
10			Vanagur	2011
11	C'd	Hetturu	Hogadahal1a	2015
12	::I	Hottara	Kurubhattur	2015
13	0 c:		Valalahalli	2015
14	(!) ~		Sakaleshpura	2009
1.5	~		Kyanhalli	2011
16			Anemahal	2015
17		Sakaleshpura	Biradahalli	2015
18		Sakaiesiipura	Byakaravalli	2015
19			Halasulige	2015
20			Hebbasale	2015
21			Malali	2015
22			Yasaluru	2009
23			Hosur	2011
24		Yasaluru	Uchangi	2011
25			Changadihalli	20]5
26			Igoor	2015

Table-2: List of TRG stations installes in Sakleshpura Taluk.

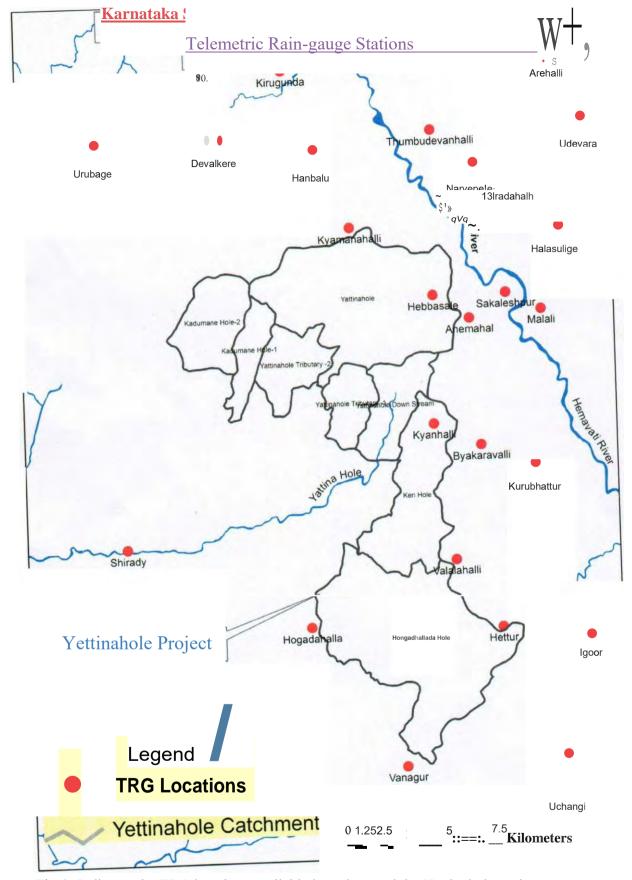


Fig-3: Indicates the TRG locations available in and around the Yettinahole project area.

3.1.9 Surface and Ground Water Quality

Ground and surface water quality in the study area were carried out. Ground water and surface water samples were collected at 6 and 2 locations respectively to assess the water quality parameters in and around the project vicinity.

Table 18 Details of Surface and Ground Water Locations

Sl.No	Name of the location	Geographica	Source	
		Latitude	Longitude	
1	Gundia	12°49'32.83"N	75°34'10.53"E	Surface Water
2	Hemavathy river	12°56'44.88"N	75°46'35.22"E	Surface Water
3	Yattinahole	12°54'29.50"N	75°44'11.03"E	Surface Water
4	Hongadahalla	12°47'34.66"N	75°41'46.46"E	Surface Water
5	Kempuhole Dam	12°50'32.93"N	75°40'37.40"E	Surface Water
6	Kerihole	12°50'4.30"N	75°43'2.69"E	Surface Water
7	Meghatavalli	12°59'13.39"N	75°53'31.64"E	Ground Water
8	Maranahalli	13°14'42.96"N;	76°13'30.28"E	Ground Water
9	Durgadahalli	13°23'14.95"N	77°12'1.69"E	Ground Water
10	Chelur	13°26'31.81"N	76°54'26.75"E	Ground Water
11	Doddaballapur	13°17'37.89"N	77°32'12.56"E	Ground Water
12	Hegdehalli	13°21'34.44"N	77°38'59.91"E	Ground Water
13	Devanahalli	13°14'55.99"N;	77°42'43.54"E	Ground Water

Composite surface and ground water samples were collected at each location by following CPCB guidelines. Climate influenced physical parameters such as Temperature, DO and pH were recorded at site itself. Surface water samples were collected from well-mixed section of the lake 30 cm below the water surface using a weighted bottle. Ground water samples from the production tube wells were collected after running the well for about 5 minutes. Adequate parameter wise preservatives were added to the samples and collected samples were brought to the laboratory by maintaining 4°C in the insulated ice boxes. Separate sterilised bottles were used for collection of water samples for microbial analysis. The results are as shown below.

The results of surface and ground water quality reveals that, all the samples analysed confirm to IS 10500 standards.

Table 19 Surface Water Quality Results -1

Sl. No	Parameters	Test Methods	Unit	Gundia River	Hemavati River	Yettinahole River(weir 1)
1.	pН	4500H+ B	-	7.10	7.10	8.06
2.	Temperature	2550 B	0C	26	26	26
3.	Dissolved Oxygen	4500-O- C	mg/L	6.2	6.2	6.4
4.	Total Suspended Solids	2540 D	mg/L	4	4	7.0
5.	Total Dissolved Solids	2540 C	mg/L	74	74	96
6.	Alkalinity	2320 B	mg/L	40	40	48
7.	Total Hardness	2340 C	mg/L	28	28	44
8.	BOD	5210 B	mg/L	Not Detectable	Not Detectable	Not Detectable
9.	COD	5220 B	mg/L	12	12	8.0
10.	Nitrate as NO3	4500-NO3 E	mg/L	0.41	0.41	0.9
11.	Phosphate	4500-P D	mg/L	< 0.02	< 0.02	< 0.02
12.	Chloride	4500-C1 B	mg/L	13.49	13.49	11.57
13.	Sulphate as SO4	4500-SO42-	mg/L	<1.0	<1.0	<1.0
14.	Sodium	3500-Na B	mg/L	5.6	5.6	6.4
15.	Potassium	3500-K	mg/L	1.4	1.4	1.2
16.	Calcium as Ca	3500-Ca	mg/L	6.4	6.4	9.6
17.	Magnesium as Mg	3500 Mg B	mg/L	2.91	2.91	4.86
18.	Fluoride as F	4500F D	mg/L	0.4	0.4	0.02
19.	Silica	4500-SiO2 C	mg/L	0.48	0.51	0.83
20.	Oil & Grease	5520 B	mg/L	<1.0	<1.0	<1.0
21.	Phenolic Compounds	5530 C	mg/L	< 0.001	< 0.001	< 0.02
22.	Turbidity	2130 B	NTU	0.11	0.49	0.25
23.	Residual Na2CO3,	IS 3025 (P 45)-1993	mg/L	< 0.5	< 0.5	< 0.5
24.	PAH*	GCMS Method	mg/L	BDL	BDL	BDL
25.	Pesticides*	GCMS Method	mg/L	Absent	Absent	Absent
26.	MPN Coliforms*	K R Aneja	CFU/100 ml	8	9	02
27.	Arsenic as As*	3114 B	μg/L	< 0.05	< 0.05	< 0.05
28.	Mercury as Hg*	3112 B	μg/L	< 0.06	< 0.06	< 0.06
29.	Lead as Pb*	3111 B	mg/L	< 0.013	< 0.013	< 0.01

Sl. No	Parameters	Test Methods	Unit	Gundia River	Hemavati River	Yettinahole River(weir 1)
30.	Cadmium as Cd*	3111 B	mg/L	< 0.0028	< 0.0028	< 0.0028
31.	Chromium Hexavalent	3500 Cr B	mg/L	< 0.02	< 0.02	< 0.02
32.	Total Chromium*	3111 C	mg/L	< 0.0054	< 0.0054	< 0.0054
33.	Copper as Cu*	3111 B	mg/L	< 0.0045	< 0.0045	< 0.0045
34.	Zinc as Zn*	3111 B	mg/L	< 0.0033	< 0.0033	< 0.0033
35.	Iron as Fe	3500-Fe B	mg/L	0.24	0.5703	0.37

Table 20 Surface Water Quality Results - 2

Sl. No	Parameters	Test Methods	Unit	Hongadahalla	Kemphole	Kerehole River
1.	pH	4500H+ B	-	7.02	7.84	7.25
2.	Temprature	2550 B	0C	26	26	25
3.	Dissolved Oxygen	4500-O- C	mg/L	6.7	6.5	5.7
4.	Total Suspended Solids	2540 D	mg/L	5	7	6
5.	Total Dissolved Solids	2540 C	mg/L	94	84	52
6.	Alkalinity	2320 B	mg/L	52	48	6
7.	Total Hardness	2340 C	mg/L	40	44	0.33
8.	BOD	5210 B	mg/L	Not Detectable	Not Detectable	Not Detectable
9.	COD	5220 B	mg/L	4	12	10
10.	Nitrate as NO3	4500-NO3 E	mg/L	0.7	0.8	0.59
11.	Phosphate	4500-P D	mg/L	< 0.02	< 0.02	0.09
12.	Chloride	4500-C1 B	mg/L	11.57	9.64	5.1
13.	Sulphate as SO4	4500-SO42-	mg/L	<1.0	<1.0	25.72
14.	Sodium	3500-Na B	mg/L	4.4	5.2	11.2
15.	Potassium	3500-K	mg/L	2.0	1.2	1.6
16.	Calcium as Ca	3500-Ca	mg/L	8.0	8.0	0.064
17.	Magnesium as Mg	3500 Mg B	mg/L	4.86	5.83	0.14
18.	Fluoride as F	4500F D	mg/L	0.17	0.09	0.261
19.	Silica	4500-SiO2 C	mg/L	0.41	0.57	0.84
20.	Oil & Grease	5520 B	mg/L	<1.0	<1.0	<1.0

Sl. No	Parameters	Test Methods	Unit	Hongadahalla	Kemphole	Kerehole River
21.	Phenolic Compounds	5530 C	mg/L	< 0.001	< 0.001	< 0.001
22.	Turbidity	2130 B	NTU	0.31	0.10	0.40
23.	Residual Na2CO3,	IS 3025 (P 45)-1993	mg/L	< 0.5	< 0.5	< 0.5
24.	PAH*	GCMS Method	mg/L	BDL	BDL	BD1
25.	Pesticides*	GCMS Method	mg/L	Absent	Absent	Absent
26.	MPN Coliforms*	K R Aneja	CFU/100 ml	03	07	03
27.	Arsenic as As*	3114 B	μg/L	< 0.05	< 0.05	< 0.05
28.	Mercury as Hg*	3112 B	μg/L	< 0.06	< 0.06	< 0.06
29.	Lead as Pb*	3111 B	mg/L	< 0.01	< 0.013	< 0.01
30.	Cadmium as Cd*	3111 B	mg/L	< 0.0028	< 0.0028	< 0.0028
31.	Chromium Hexavalent	3500 Cr B	mg/L	< 0.02	< 0.02	< 0.02
32.	Total Chromium*	3111 C	mg/L	< 0.0054	< 0.0054	< 0.0054
33.	Copper as Cu*	3111 B	mg/L	< 0.0045	< 0.0045	< 0.0045
34.	Zinc as Zn*	3111 B	mg/L	< 0.0033	< 0.0033	0.06
35.	Iron as Fe	3500-Fe B	mg/L	0.51	0.27	0.49

Table 21 Ground Water Quality Results

Sl.No	Parameters	Test Methods	Unit	Meghatavalli	Maranahalli	(Second	0500:2012 Revision)
1	рΗ	4500H ⁺ B	_	6.60	8.36	DL 6.5	PL 5-8.5
2.	Temperature	2550 B	⁰ C	26	26		
3.	Dissolved Oxygen	4500-O- C	mg/L	6.5	6.5		
4.	Turbidity	2130 B	NTU	0.13	0.11	1	5
5.	Total Dissolved Solids	2540 C	mg/L	512	56	500	2000
6.	Total Hardness	2340 C	mg/L	224	28	200	600
7.	Calcium as Ca	3500- Ca	mg/L	62.4	8	75	200
8.	Magnesium as Mg	3500 -Mg B	mg/L	16.52	1.94	30	100
9.	Sulphate as SO ₄	4500-SO ₄ ²⁻	mg/L	23.6	<1.0	200	400
10.	Fluoride as F	4500-F D	mg/L	0.5	0.04	1	1.5
11.	Nitrate as NO ₃	4500-NO ₃ E	mg/L	31.53	0.7	4	45
12.	Chloride as Cl	4500-C1 B	mg/L	113.7	9.64	250	1000

Sl.No	Parameters	Test Methods	Unit	Meghatavalli	Maranahalli	Std. IS 10 (Second	0500:2012 Revision)
						DL	PL
13.	Iron as Fe	3500-Fe B	mg/L	0.11	0.10	0	.3
14.	Total Suspended Solids	2540 D	mg/L	13	4	-	-
15.	Phenolic Compounds	5530 C	mg/L	< 0.001	< 0.001	0.0	001
16.	Chromium Hexavalent	3500-Cr B	mg/L	< 0.02	< 0.02	0.	05
17.	Alkalinity	2320 B	mg/L	128	44	200	600
18.	Sodium	3500-Na B	mg/L	41.2	3.6		
19.	Silica	4500-SiO ₂ C	mg/L	0.96	0.61		
20.	BOD	5210 B	mg/L	Not Detectable	Not Detectable		
21.	COD	5220 B	mg/L	20	12		
22.	PAH*	GCMS Method	mg/L	BDL	BDL	0.0	001
23.	Oil & Grease	5520 B	mg/L	<1.0	<1.0	-	-
24.	Mercury as Hg*	3112 B	μg/L	< 0.06	< 0.06	0.0	001
25.	Lead as Pb*	3111 B	mg/L	< 0.01	< 0.01	0.	01
26.	Cadmium as Cd*	3111 B	mg/L	< 0.0028	< 0.0028	0.0	003
27.	Residual Na ₂ CO ₃ ,	IS 3025 (P 45)-1993	mg/L	< 0.5	< 0.5	-	-
28.	Arsenic as As*	3112 B	μg/L	< 0.05	< 0.05	0.	01
29.	Total Chromium	3111 B	mg/L	< 0.005	< 0.005	0.	05
30.	Potassium	3111 B	mg/L	2.0	0.6	-	-
31.	Copper as Cu*	3111 B	mg/L	< 0.0045	< 0.0045	0.05	1.5
32.	Zinc as Zn*	3111 B	mg/L	< 0.0033	< 0.0033	5	15
33.	Pesticides*	GCMS Method	mg/L	Absent	Absent	Abs	sent
34.	Phosphate	4500- P D	mg/L	0.19	< 0.02	-	-
35.	MPN Coliform	K R Aneja	CFU/100ml	04	05	1	0
DL – De	sirable Limit, PL – Permiss	sible Limit, BDL - Belov	v Detectable Lim	it			

Table 22 Ground Water Quality Results (contd...)

Sl.No	Parameters	Test Methods	Unit	Durgadahalli	Chelur	Doddaballapura		0500:2012 Revision) PL
1.	рН	4500H ⁺ B	-	6.70	7.72	7.53	6.5	-8.5
2.	Temperature	2550 B	⁰ C	26	26	26		-
3.	Dissolved Oxygen	4500-O- C	mg/L	6.8	6.7	6.6		-
4.	Turbidity	2130 B	NTU	0.02	0.08	0.11	1	5

					1			
								0500:2012
Sl.No	Parameters	Test Methods	Unit	Durgadahalli	Chelur	Doddaballapura		Revision)
							DL	PL
5.	Total Dissolved	2540 C	mg/L	992	390	504	500	2000
	Solids							
6.	Total Hardness	2340 C	mg/L	472	184	208	200	600
7.	Calcium as Ca	3500- Ca	mg/L	115.2	38.4	65.6	75	200
8.	Magnesium as Mg	3500 –Mg B	mg/L	44.7	21.3	10.69	30	100
9.	Sulphate as SO ₄	4500-SO ₄ ²⁻	mg/L	51.1	15.1	18.9	200	400
10.		4500-F D	mg/L	0.42	< 0.02	0.53	1	1.5
11.	Nitrate as NO ₃	4500-NO ₃ E	mg/L	51.7	10.94	15.70	4	45
12.	Chloride as Cl	4500-C1 B	mg/L	168.7	53	81.9	250	1000
13.		3500-Fe B	mg/L	0.06	0.02	0.042	().3
14.	Total Suspended Solids	2540 D	mg/L	13	4.0	12		
15.	Phenolic Compounds	5530 C	mg/L	<0.001	< 0.001	<0.001	0.	001
16.		3500-Cr B	mg/L	<0.02	<0.02	<0.02	0	.05
17.	Alkalinity	2320 B	mg/L	320	156	220	200	600
18.		3500-Na B	mg/L	41.2	19.2	39.6		
19.	Silica	4500-SiO ₂ C	mg/L	1.9	1.5	1.2		
20.	BOD	5210 B	mg/L	Not Detectable	Not Detectable	Not Detectable		
21.	COD	5220 B	mg/L	Not Detectable	Not Detectable	Not Detectable		
22.	PAH*	GCMS Method	mg/L	BDL		BDL	0.0	0001
23.	Oil & Grease	5520 B	mg/L	<1.0	<1.0	<1.0		
24.	Mercury as Hg*	3112 B	μg/L	< 0.06	< 0.06	< 0.06	0.	001
25.	Lead as Pb*	3111 B	mg/L	< 0.013	< 0.013	< 0.013	0	.01
26.	Cadmium as Cd*	3111 B	mg/L	< 0.0028	< 0.0028	< 0.0028	0.	003
27.	Residual Na ₂ CO ₃ ,	IS 3025 (P 45)- 1993	mg/L	<0.5	<0.5	<0.5		
28.	Arsenic as As*	3112 B	μg/L	< 0.05	< 0.05	< 0.05	0	.01
29.	Total Chromium	3111 B	mg/L	0.03	0.0659	0.40	0	.05
30.	Potassium	3111 B	mg/L	< 0.0054	< 0.0054	< 0.0054		
31.	Copper as Cu*	3111 B	mg/L	3.4	10.4	3.8	0.05	1.5
32.	Zinc as Zn*	3111 B	mg/L	< 0.0045	< 0.0045	< 0.0045	5	15
33.	Pesticides*	GCMS Method	mg/L	Absent		Absent	Ab	sent

Sl.No	Parameters	Test Methods	Unit	Durgadahalli	Chelur	Doddaballapura	Std. IS 10500:2012 (Second Revision) DL PL
34.	Phosphate	4500- P D	mg/L	< 0.02	< 0.02	< 0.02	
35.	MPN Coliform	K R Aneja	CFU/100ml	07	13	03	10

Table 23 Ground Water Quality Results (contd...)

Sl.No	Parameters	Test Methods	Unit	Hegdehalli	Devanahalli	(Second	0500:2012 Revision)
1	pH	4500H ⁺ B		6.60	7.30	DL	PL 5-8.5
1.		2550 B	0C	26	7.30	0	3-8.3
	Temperature						
3.	Dissolved Oxygen	4500-O- C	mg/L	6.7	6.5 0.21	1	5
4.	Turbidity	2130 B	NTU	0.15	*	1	-
5.	Total Dissolved Solids	2540 C	mg/L	1260	317	500	2000
6.	Total Hardness	2340 C	mg/L	572	168	200	600
7.	Calcium as Ca	3500- Ca	mg/L	160	35.2	75	200
8.	Magnesium as Mg	3500 -Mg B	mg/L	41.7	19.4	30	100
9.	Sulphate as SO ₄	4500-SO ₄ ²⁻	mg/L	65.1	9.5	200	400
10.	Fluoride as F	4500-F D	mg/L	0.56	0.04	1	1.5
11.	Nitrate as NO ₃	4500-NO ₃ E	mg/L	82.45	1.16	45	
12.	Chloride as Cl	4500-C1 B	mg/L	260.3	33.74	250	1000
13.	Iron as Fe	3500-Fe B	mg/L	0.03	0.08		0.3
14.	Total Suspended Solids	2540 D	mg/L	8.0	10		
15.	Phenolic Compounds	5530 C	mg/L	<0.001	<0.001	0	.001
16.	Chromium Hexavalent	3500-Cr B	mg/L	<0.02	<0.02	(0.05
17.	Alkalinity	2320 B	mg/L	288	144	200	600
18.	Sodium	3500-Na B	mg/L	43.6	14.8		
19.	Silica	4500-SiO ₂ C	mg/L	0.64	0.58		
20.	BOD	5210 B	mg/L	Not Detectable	Not Detectable		
21.	COD	5220 B	mg/L	Not Detectable	8		
22.	PAH*	GCMS Method	mg/L	BDL	BDL	0.0001	

Sl.No	Parameters	Test Methods	Unit	Hegdehalli	Devanahalli		0500:2012 Revision) PL	
23.	Oil & Grease	5520 B	mg/L	<1.0	<1.0	DL		
24.	Mercury as Hg*	3112 B	μg/L	< 0.06	< 0.06	0.	001	
25.	Lead as Pb*	3111 B	mg/L	< 0.01	< 0.013	0	.01	
26.	Cadmium as Cd*	3111 B	mg/L	< 0.0028	< 0.0028	0.	003	
27.	Residual Na ₂ CO ₃ ,	IS 3025 (P 45)-	mg/L	< 0.5	< 0.5			
		1993						
28.	Arsenic as As*	3112 B	μg/L	< 0.05	< 0.05	0	.01	
29.	Total Chromium	3111 B	mg/L	0.04	0.09	0	.05	
30.	Potassium	3111 B	mg/L	< 0.0054	< 0.0054			
31.	Copper as Cu*	3111 B	mg/L	1.8	2.4	0.05	1.5	
32.	Zinc as Zn*	3111 B	mg/L	< 0.0045	< 0.0045	5	15	
33.	Pesticides*	GCMS Method	mg/L	Absent	Absent	Ab	sent	
34.	Phosphate	4500- P D	mg/L	< 0.02	< 0.02			
35.	MPN Coliform	K R Aneja	CFU/100ml	09	05	1	10	

3.2 Biological Environment

The Sakaleshpur region encompasses in the magnificent hills of the biodiversity hotspot, the Western Ghats, is surrounded with lofty green hills where cash crops such as coffee, cardamom, pepper and areca are being cultivated. These crops which contribute mainly to the economy of the region are grown in the surrounding areas are brought to Sakleshpur town of Hassan district of Karnataka State for marketing. The sub-tropical climate and heavy rains during the wet season create an environment where several unique plant and animal species flourish.

3.2.1 Types of forest and its importance

3.2.1.1 Flora in catechment region

The forests in the catchment area (Sakleshpur region) are broadly classified as south Indian tropical forests. According to the classification of Champion & Seth (1968), the forest area comprises of the following types.

- 1. Southern Tropical Wet Evergreen Forests IA/C4
- 2. Southern Tropical Semi-evergreen Forests 2A/C2
- 3. South Indian Tropical Moist Deciduous Forests 3B/C2
- 4. Southern Tropical Dry Deciduous Forests 5A/C2

The evergreen and semi-evergreen forests in Hassan Forest Division are concentrated in the Western Ghats region of Sakaleshpur Forest Range and are commonly known as Ghat forests. The proposed project locality falls in semi-evergreen and evergreen forests of Sakaleshpur forest ranges. There are four distinct canopy layers which consists of;

- 1. Hopea wightiana, Holigarna arnottiana, Holigarna grahmii, Mesua ferrea, Litsea wightiana, Bischofia javanica, Artocarpus hirsutus, Lagerstroemia lanceolata and several others.
- 2. Moderately large trees which will fill up the bulk of the bulk of the bulk of space within the forest with their abundance and individuals such as *Artocarpus lakoocha*, *Litsea sp, Garcinia cambogia*, *Syzygium cumini* and a host of others.
- 3. Under wood, consists of smaller trees. Among these are *Heynea trijuga*, *Glochidion sp. and Memecylon edule*.

4. The fourth layer is shrubby growth and generally covers the ground where there is some light through and in such places, shrubs like *Ixora nilgiricans*, *Psychotria trincata* etc. can be seen. Among the erect palms, *Caryota urense*, *Pinanga dicksonii* are common. The climbing palms are represented by *Calamus species*.

3.2.1.2 Flora in canal region

Forests of canal portion (Tumkur, Kolar, Chickballapur, Bangalore (Rural),etc) are compriding of decidous tree species topping with thorny undergrowth. According to Champion and Seth's classification, these fall under two sub-groups namely, 5A-Southern tropical dry deciduous forests and 6A-Southern tropical thorn forests.

Major tree species found in the region are Cassia fistula, Azadirachta indica, Euphorbia antiquorum, Anogeissus latifolia, Diospyros melanoxylon, Hardwickia binata, Cassia fistula, Terminalia alata, Chloroxylon swietenia, Santalum album, Acacia catechu, Diospyros montana, Acacia leucophloea, Albizzia amara, Dalbergia paniculata, Lantana camara, Opuntia dillenii, etc.

The National Forest Policy, 1988 has laid emphasis on conservation of biodiversity, restoration of ecological balance and meeting the demands of the local people. Accordingly the objects of management of the forests have been fixed. To achieve these objects, new approach has been adopted in the management of the forests. Conservation of ecologically sensitive and biodiversity rich forest area will be achieved by affording adequate protection and by carrying out habitat improvement works including soil and moisture conservation, fire protection etc. The Sakaleshpur region as well as canal portion does not have National Park or Wildlife Sanctuaries. Since wildlife is not confined to any particular area, forests of the region in general have to be managed in such a way as to conserve these as ideal habitats for wildlife. This will help in long run in mitigating the man-animal conflict so prevalent in the habitations adjoining forest areas.

3.2.2. Past forest management in the region

3.2.2.1 Flora in catechment region

The Sakaleshpur region has seen large scale land cover changes with the overexploitation of forest during the last two centuries. It was probably during the direct British rule of the district from 1831 to 1881 that several parts of Malnad was thrown open to the British planters often ex-army men who had changed over to civilian occupation at the end of the

Anglo-Mysore wars. Kadumane, Biccodu, Cognur, Karadi-betta, Barchinhullu, Matsagar are only few of the estates dating from this period. The early planters gradually cleared forest tracks and planted them with the shade loving coffee and cardamom, the tall areca and the bushy orange. Tea was introduced at Kadumane in the early twentieth century and now it constitutes one of the major produces in the area (Saldanha, *et al.* 1978).

Since 1945 there has been a spurt in the plantation industry so that the original vegetation had been greatly altered. There is scarcely any virgin forest in private hands. Major state forests have also been subjected to selective felling of hard structural timbers as well as soft woods for the plywood and matchstick industries. Large tracts of revenue lands with dense evergreen to semievergreen forests are being swiftly and completely logged to pave way for other land uses such as Acacia plantations (Gururaj *et al.* 2010).

3.2.2.2 Flora in canal region

Though the canal region pocess deciduos type of forests, many places of the forests are connected with mythology and histor viz-a-viz Devarayanadurga forests, Shivaganga hills, Savandurga forests, Kaivara hills, etc. During 1865 and 1900, forest produce were removed constantly. Further, lot of fire wood was supplied to Dept., of Railyways towards meeting the huge coal demand. During 1900 - 1920, heavy growth of Lantana occupoying major forest areas and supress the growth of trees. Later, Lantana were removed by adopting various silvicultural methods (KFD, Working Plans).

3.2.3 Biodiversity

The flora and fauna survey was conducted during pre-monsoon and post-monsoon along the tributaries of Yettinahole, Kerihole, Hongadahalla and Kadumane areas where up- and downstream areas of these tributaries were studied for vegetation and wildlife. Whereas, in canal areas qualitative surveys were also conducted at various places.

The forest represented by distinct formations of evergreen forest, semi evergreen forest, wet and dry deciduous forest overlapping with shola forest, dry deciduous forests, etc. The forests of the track correspond to the types of revised classification of Indian Forest types by Champion and Seth, 1968.

3.2.4 Flora in the proposed Project area (Sakleshpura region)

The total vegetation coverage of the catchment area in Sakleshpura region is represented by distinct formations of evergreen forest, semi- evergreen forest, wet and dry deciduous forest mingled with shola sub ecosystems. The plant species observed at various site locations are given below.

Table 24 Flora recorded in proposed site locations in Sakaleshpur region

Sl,No	Name of Species	Habit	IUCN Status 2014.1
1	Abrus precatorius L	Herb	Common
2	Aerides maculosa Lindl.	Epiphyte	Common
3	Alangium salvifolium	Tree	Common
4	Algaia barberi	Shrub	Common
5	Alteranthera sesilis (L.) R. Br. & DC.	Herb	Common
6	Ameranthus pungens H.B.K.	Herb	Common
7	Ammania baccifera (L.) Wt.	Herb	Common
8	Apama Siliquosa Lamk	Shrub	Common
9	Apodytes dimidata Meyer	Shrubs	Common
10	Aporosa lindleyana (wt.) Baill.	Shrubs	Common
11	Arenga Wightii Griff	Tree	Vulnerable
12	Ardisia solanacea Roxb.	Shrub	Common
13	Areca Catechu L	Tree	Common
14	Argemone mexicana L.	Herbs	Common
15	Artabotyrs zeylanicus Hook & Thoms	Shrub	Common
16	Artocarpus hirsutus Lam.	Tree	Rare, medicinal
17	Bergia ammanioides Roxb	Hydrophytes	Common
18	Bombax malabarium D. C.	Tree	Common
19	Borreria articularis (L.f) F.N.Willd.	Herbs	Common
20	Bridelia crenulata Roxb.	Shrubs	Common
21	Cadaba fruticosa L.	Shrub	Common
22	Caesalpinia coriaria wild	Shrub	Common
23	Calbergia Ianceolaria Linn.f.	Tree	Common
24	Callicarpa tomentosa (L.) Roxb.	Shrubs	Common
25	Calophyllum apetalum Willd	Tree	Common
26	Calycopteris floribunda (Roxb.) Poir.	Tree	Common
27	Caralia brachiata (Lour.) Merill.	Shrub	Common
28	Careya arborea Roxb	Tree	Common
29	Cassia fistula L.	Tree	Common
30	Cinnumomum camphora Nees	Tree	Common
31	Citrus decumana L	Shrub	Common
32	Crotalaria berteroana DC.	Shrubs	Common
33	Cynoglossum furcatum Wall.	Herbs	Common
34	Cyperus pillosus Vahi	Herbs	Common
35	Dalbergia latifolia L.	Tree	Common
36	Dalbergia volubilis Roxb	Tree	Common
37	Dedropthoe gibbosa (Talb) Razi	Semi parasite	Common

Sl,No	Name of Species	Habit	IUCN Status 2014.1
38	Dendrocalamus brandissi Kurz.	Bamboo	Common
	Dendrophthoe falcata (L.f) Etting	Parasitic	Common
39	(Epiphyte)	herb	
40	Derris scandens (Roxb.) Benth.	Climber	Common
41	Desmodium triquetrum (L.) D.C.	Herb	Common
42	Diclliptera cuneata Nees	Climber	Common
43	Dicraea stylosa Wt.	Herbs	Common
44	Dillenia pentagyna Roxb.	Tree	Common
45	Dioscorea pentaphylla L.	Climber	Common
46	Diosphyros angustifolia	Tree	Common
47	Diosphyros Candolleana Wt.	Tree	Common
48	Diospyros saldanhae Koster	Tree	Common
49	Diospyrous crumenata Thw.	Tree	Common
50	Dipterocarpus bourdillonii	Tree	Common
51	Dipterocarpus indicus Bedd.	Tree	Endangered
52	Elaeocarpus munronii (Wt.) Masters	Tree	Common
53	Elaeocarpus serratus L.	Herb	Common
54	Elephantopus scaber L.	Herb	Common
55	Elettaria cardamomum (L.) Maton	Herb	Common
56	Emblica officianalis Gartn.	Tree	Common
57	Haldina cordifolia (Roxb.) Ridsdale	Tree	Common
58	Hemidesmus indicus (L.) R. Br.	Herbs	Common /Medicinal
60	Hibiscus aculeatus (Roxb.)	Shrubs	Common
61	Hopea parviflora Bedd.	Tree	Endangered
62	Hoya retusa Dalz	Climber	Common
63	Hybanthus enneaspermus (L.) Muell	Shrub	Common
64	Hypericum japonicum Thunb. Ex.Murray	Shrub	Common
65	Hyptis suaveolens (L.) Poit.	Herbs	Common
66	Impatiens balsamina L.	Herb	Common
67	Ixora polyantha Wt.	Shrubs	Common
68	Juncus prismatocarpus R. Br.	Herbs	Common
69	Kingidiodendron pinnatum (D.C.) Harms	Tree	Threatened
70	Knema attenuate (Hook.f) Warb	Tree	Rare
71	Knoxia sumatrenenis (Retz) DL	Herbs	Common
72	Kydia calycina Roxb.	Tree	Common
73	Lagerstroemia paniculata Willd	Tree	Common
74	Lagerstromia parviflora Roxb.	Tree	Common
75	Lantana camara L.	Shrub	Common
76	Leea indica (Burm.f) Merr.	Shrub	Common
77	Lepianthes umbellate (L.) Raf.	Shrub	Common
78	Limnophila chinensis (Osb.) Merr.	Hydrophytes	Common
79	Limnophila heterophila Benth	Hydrophytes	Common

Sl,No	Name of Species	Habit	IUCN Status 2014.1
80	Limonia alata wt.	Shrub	Common
81	Lobelia alsinoides	Shrub	Common
82	Macaranga peltata (Roxb.) Muell	Tree	Common
83	Madhuca longifolia Bedd.	Tree	Common
84	Maesa indica (Roxb.) DC	Tree	Common
85	Mallova spicata	Tree	Common
86	Mangiferra indica Linn.	Tree	Common
87	Mastixia arborea Bedd	Tree	Common
88	Mimosa pudica L	Tree	Common
89	Mitragyna parvifolia (Roxb.) Korth.	Tree	Common
90	Murraya exotica L	Tree	Common
91	Murraya koenigii (L.) Sp.	Shrub	Common
92	Neolitisia foliosa	Tree	Common
93	Ochlandra scriptoria (Dennst.) Fisch.	Bamboo	Common
94	Oldenlandia caerulea (W & A) Royl.	Herbs	Common
95	Olea dioica Roxb.	Tree	Common
96	Oxalis corniculata L.	Herbs	Common
97	Pandanus canaranus Warbury	Tree	Common
98	Phoenix sylvestriea, Rox	Tree	Common
99	Pinanga dicksonii (Roxb.) Seheffer	Tree	Common
100	Pittospermum dasycaulon Miq	Tree	Common
101	Polygonum barbatum L.	Herbs	Common
102	Pongamia Pinnata (L) Pierre	Tree	Common
103	Portulaca oleracea L.	Herb	Common
104	Psychotria dalzelhi Hk.	Shrub	Common
105	Randia dumetonum	Shrubs	Common
106	Salix tetrasperma Roxb.	Tree	Common
107	Sapindus emarginatus	Tree	Common
108	Saraca asoca (Roxb.) de Wilde.	Tree	Common
109	Solanum torvum Sw.	Shrub	Common
110	Spondias mangifera Wild	Tree	Common
111	Sterculia guttata Roxb	Tree	Common
	Striga angustifolia (Don) Sald	Parasitic	Common
112		herb	
113	Symplocus racemosa Roxb.	Shrub	Common
114	Syzygium cumini (L.) Skeels	Tree	Common
115	Syzygium heyneanum Wall. Ex. Gamble	Tree	Common
116	Tephrosia candida (Roxb.) D.C.	Shrub	Common
117	Termanalia tomentosa Roxy.	Tree	Common
118	Terminalia arjuna (Roxb.) W & A	Tree	Common
119	Terminalia Chebula (Gaertn) Roxb.	Tree	Common
120	Terminalia paniculata Roth	Tree	Common

Sl,No	Name of Species	Habit	IUCN Status 2014.1
121	Themeda tremula (Steudl) Hackel	grass	Common
	Tinospora cardifolia (Willd). Hook f.	Climber	Common
122	&Thomas		
124	Torenia bicolor Dalz	Herb	Common
125	Trewia polycarpa Benth.	Tree	Common
126	Triumfetta rhomboidea Jacq.	Tree	Common
127	Utricularia caerulea L.	Moist riches	Common
128	Vateria indica L.	Tree	Critically Endangered
129	Vernocia indica CL.	Herb	Common
130	Withania somnifera (L.) Dunal	Shrubs	Common
131	Xylia xylocarpa (Roxb.) Taub.	Tree	Common
132	Ziziphus oenoplia (L.) Mill	Climber	Common
133	Ziziphus rugosa Lam.	Climber	Common

Table 25 Commercially Important species observed in Sakleshpur region

Sl.No	Name of Species	Habit	IUCN Status 2014.1
1	Lagerstromia perviflora	Tree	Common
2	Dalburgia latifolia	Tree	Common
3	Dendrocatamus brandini	Tree	Common
4	Tectona grandis L. f	Tree	Common
5	Vateria indica	Tree	Critically Endangered
6	Pongamia pinnata	Tree	Common
7	Gmelina arborea	Tree	Common
8	Ochlandra scriptoria (Dennst.) C.E.C.Fisch.	Tree	Common
9	Terminalia peniculata	Tree	Common
10	Garcinia gummi-gutta Garcinia gummi-gutta (L.) N. Robson	Tree	Common

Table 26 Important Medicinal Plants observed in Sakleshpur region

Sl No	Species	IUCN Status 2014.1
1	Abrus precatorius sensu BakerAbrus	Common
2	Anthocephalus kadamba	Common
3	Calotropis gigantea (L.) W. T. Aiton	Common
4	Calophyllum apetalum Willd.	Common
5	Caralia brachita	Common
6	Caryota urens	Common
7	Chukrasia tabularis	Common
8	Cinnamomum zeylanicum Bl	Common
9	Dalbargia latifolia	Common
10	Gmelina arborea Roxb.	Common

11	Hopea parviflora	Endangered
12	Centrosema macrocarpum	Common
13	Madhuca nerifolia	Common
14	Mangifera indica	Common
15	Mesua ferrea L.	Common
16	Ochlandra scriptoria (Dennst.) C.E.C.Fisch.	Common
17	Olea dioica Roxb	Common
18	Phyllanthus urinaria L.	Common
19	Piper nigrum L	Common
20	Santalum album	Vulnerable
21	Solanum torvum Sw.	Common
22	Terminalia arjuna (Roxb.) Wight & Arn.	Common
23	Tinospora cardifolia	Common
24	Vateria indica L	Critically Endangered
25	Vitex negundo L	Common
26	Xylia xylocapra	Common

3.2.5 Flora in the proposed Project area (Tumkur & Kolar region)

The total vegetation coverage of the distribution area (Tumkur & Kolar region) is represented by deciduous forests with thorny undergrowth. The plant species observed at various site locations are given below.

Table 27 Flora recorded in proposed site locations in Tumkur & Kolar region

Sl.No	Name of Species	Habit	IUCN Status 2014.1
1	Abutilon indicum	Shrub	Common
2	Acacia auriculiformis	Tree	Common
3	Acacia leucophloea	Tree	Common
4	Acacia nilotica	Tree	Common
5	Aegle marmelos	Tree	Common
6	Agave americana	Shrub	Common
7	Ailanthus excelsa	Tree	Common
8	Albizzia amara	Tree	Common
9	Albizzia odoratissima	Tree	Common
10	Alstonia scholaris	Tree	Common
11	Anogeissus latifolia	Tree	Common
12	Artocarpus integrifolia	Tree	Common
13	Azadirachta indica	Tree	Common
14	Bridelia retusa	Tree	Common
15	Buchnania latifolia	Tree	Common
16	Butea frondosa	Tree	Common
17	Calophyllum tomentosum	Tree	Vulnearable
18	Calotropis gigantean	Shrub	Common
19	Canthium parviflorum	Tree	Common
20	Carissa carandas	Tree	Common

Sl.No	Name of Species	Habit	IUCN Status 2014.1
21	Cassia auriculata	Shrub	Common
22	Cassia fistula	Tree	Common
23	Cassia siamia	Tree	Common
24	Chloroxylon swietenia	Tree	Vulnearable
25	Cissus quadrangularis	Shrub	Common
26	Crotalaria retusa	Herb	Common
27	Cymbopogon citrates	Herb	Common
28	Delonix regia	Tree	Common
29	Dendrocalamus strictus	Herb	Common
30	Diospyros montana	Tree	Common
31	Diospyros melanoxylon	Tree	Common
32	Dodonaea viscosa	Shrub	Common
33	Emblica officinalis	Tree	Common
34	Erythroxylon monogynum	Tree	Common
35	Eucalyptus hybrid	Tree	Common
36	Ferronea elephantum	Tree	Common
37	Ficus bengalensis	Tree	Common
38	Ficus glomerata	Tree	Common
39	Ficus infectoria	Tree	Common
40	Gliricidia maculata	Tree	Common
41	Gloriosa superba	Creeper	Common
42	Grevillea robusta	Tree	Common
43	Hardwickia binata	Tree	Common
44	Hibiscus rosa sinensis	Shrub	Common
45	Holoptelea intergrifolia	Tree	Common
46	Ixora arborea	Shrub	Common
47	Jacaranda mimosaefolia	Tree	Common
48	Lagerstroemia lanceolata	Tree	Common
49	Lagerstroemia parviflora	Tree	Common
50	Lantana camara	Shrub	Common
51	Leucaena leucocephala	Tree	Common
52	Mangifera indica	Tree	Common
53	Melia dubia	Tree	Common
54	Ocimum sanctum	Herb	Common
55	Passiflora foetida	Creeper	Common
56	Plumeria alba	Tree	Common
57	Polyalthia longifolia	Tree	Common
58	Pongamia pinnata	Tree	Common
59	Pterocarpus marsupium	Tree	Vulnearable
60	Pterolobium indicum	Tree	Common
61	Ricinus communis	Shrub	Common
62	Samanea saman	Tree	Common
63	Santalum album	Tree	Vulnearable
64	Sapindus trifoliatus	Tree	Common
65	Semicarpus anacardium	Tree	Common
66	Solanum indicum	Herb	Common

Sl.No	Name of Species	Habit	IUCN Status 2014.1
67	Syzygium cumini	Tree	Common
68	Tamarindus indica	Tree	Common
69	Tectona grandis	Tree	Common
70	Terminalia bellarica	Tree	Common
71	Terminalia chebula	Tree	Common
72	Terminalia paniculata	Tree	Common
73	Terminalia tomentosa	Tree	Common
74	Vitex altissima	Shrub	Common
75	Wrightia tinctoria	Tree	Common
76	Zizyphus jujuba	Tree	Common

Field studies along the upstream and rivulets in Sakleshpura region have been made to evaluate the status of ecosystems at species level. Most of the species found in the proposed project site belong to common category, which are found in the neighboring areas. Altogether 133 species were recorded, of which, 2 species are rare, 2 species are endangered, 1 threatened, vulnerable and critically endangred and others are common category. Further, 56 species are trees, 17 shrubs, 60 herbs, grasses, hydrophytes, epiphytes, sedges and climbers. Besides, 26 species are of medicinal and ethno-botanically importance and about 10 species are economically important. Main cultivated plants are paddy, coffee, citrus, mango, pineapple, coconut, arecanut, pomgranates, cardaomum, etc.

Field studies were also carried out for canal potion and 76 specied were recorded. Out of which most of them are common to the region and 4 vulnearable species were observed. Further, out of 76 species, 2 creepers, 5 herbacious species, 11 shrubs and 58 species of trees.

3.2.6 Fauna

The study on faunal aspects has been carried out, which are reported to be present in the evergreen, moist and dry- deciduous forests in the catchment and canal region and also a few in the proposed weir sites. The occurrence of animals and the avian fauna was observed / reported with the help of local people and available literature, journals and records of the Zoological Survey of India. Birds were identified with the help of the Handbook of Birds of India (Ali S. and Ripley S.D. 1967 -72). During the field visits following aniams! were observed;

Table 28 Mammals, reptiles and amphibians observed/reported for the study area

Sl. No.	Common name	Scientific name	Schedule
Mammals			
1	Elephant	Elephas maximus	Ι
2	Wild boar	Sus scrofa	III

3	Wild dog	Cuon alpinus	II
4	Porcupine	Hystrix indica	IV
5	Bonnet macaque	Macaca radiata	II
6	Striped squirrel	Funambulus palmarum	V
7	Common grey mongoose	Herpestes edwardsii	IV
8	Indian Hare	Lepus nigricollis	IV
9	Rat	Rattus rattus	V
10	Common leopard	Panthera pardus	I
11	Sloth bear	Melursus ursinus	I
12	Black buck	Antilope cervicapra	I
13	Spotted deer	Axis axis	III
	Ampl	nibians	
11	Common Indian toad	Duttaphrynus parietalis	
12	Bamboo tree frog	Polypedates leucomystax	
13	Common tree frog	Polypedates maculatus	
14	Indian bull frog	Hoplobatrachus tigerinus	
	Rep	otiles	
15	Indian Rock Python	Python molurus molurus	I
16	Indian rat Snake	Ptyas muscosa	II
17	Cobra	Naja naja	I
18	Common krait	Bungarus caeruleus (Schneider, 1801)	
19	Common Indian cat snake	Boiga trigonata	
20	Russell's Viper	Daboia russelii	
21	Bamboo Pit Viper	Trimeresurus gramineus	

Table 29 List of birds reported and observed for the region

Sl. No.	Common name	Scientific name	W(P)A schedule
1	Little Cormorant	Phalacrocorax niger	R/IV
2	Great Cormorant	Phalacrocorax carbo	M/IV
3	Darter	Anhinga melanogaster	RV/IV
4	Little Egret	Egretta garzetta	R/IV
5	Grey Heron	Ardea cinerea	RM/IV
6	Median Egret	Mesophoyx intermedia	M/IV
7	Cattle Egret	Bubulcus ibis	R/IV
8	Indian Pond-Heron	Ardeola grayii	R/IV
9	Chestnut Bittern	Ixobrychus cinnamomeus	M/IV
10	Oriental Honey-buzzard	Pernis ptilorhyncus	U/IV
11	Black Kite	Milvus migrans	R/IV
12	Shikra	Accipiter badius	R/IV
13	Indian Peafowl	Pavo cristatus	R/I
14	Yellow-wattled Lapwing	Vanellus malarbaricus	M/IV
15	Spotted Dove	Streptopelia chinensis	R/IV
16	Blue-winged Parakeet	Psittacula columboides	RE/IV
17	Indian Cuckoo	Cuculus micropterus	U/IV
18	Drongo Cuckoo	Surniculus lugubris	R/IV
19	Forest Eagle-Owl	Bubo nipalensis	U/IV

Sl. No.	Common name	Scientific name	W(P)A schedule
20	House Swift	Apus affinis	R
21	White-breasted Kingfisher	Halcyon smyrnensis	R/IV
22	Small Bee-eater	Merops orientalis	R
23	Blue-tailed Bee-eater	Merops philippinus	M
24	Chestnut-headed Bee-eater	Merops leschenaultia	R
25	Crimson-throated Barbet	Megalaima rubricapilla	R/IV
26	Yellow Wagtail	Motacilla flava	M/IV
27	Red-whiskered Bulbul	Pycnonotus jocosus	R/IV
28	Red-vented Bulbul	Pycnonotus cafer	R/IV
29	White-browed Bulbul	Pycnonotus luteolus	R/IV
30	Oriental Magpie-Robin	Copsychus saularis	R
31	Indian Robin	Saxicoloides fulicata	R
32	Spotted Babbler	Pellorneum ruficeps	R/IV
33	Jungle Babbler	Turdoides striatus	R/IV
34	Common Tailorbird	Orthotomus sutorius	R
35	House Sparrow	Passer domesticus	R
36	Common Myna	Acridotheres tristis	R/IV
37	Jungle Myna	Acridotheres fuscus	R/IV
38	Common Hill-Myna	Gracula religiosa	R/IV
39	Black Drongo	Dicrurus macrocercus	R/IV
40	Indian Tree pie	Dendrocitta vagabunda	R/IV
41	White-bellied Tree Pie	Dendrocitta leucogaster	U/IV
42	House Crow	Corvus splendens	R/IV
43	Jungle Crow	Corvus macrorhynchos	R/IV

Note: M - Migratory, R - Resident, U - unclear WPA Schedule -I - IV

Among the wild-life population in the catchment area, there are Elephants, Wild Boars, at inaccessible niches. Most of the animals rarely appear in the forest area during the day time. The overall status of wildlife in the catchment ranges from poor to fair. However the proposed water spread area would quench their thirst in times of need. In this context, it is safe to conclude that the catchment area would become a core area for their well being and the water spread area would be an excellent source for life supporting resources.

Wildlife population in canal portion are sparsely distributed and are common to the region. The overall status of wildlife in the canal portion is poor. However, filling up of minor irrigation tanks in the region will improve the wildlife populace and also meets the drinking water demands of wildlife during the summer season.

Sampling for birds was done by walking along the fixed transects. During every sampling survey, each one hectare 100 x 100 m² plot was uniformly covered in five transects. While walking along the transects, a range of 10 m on either side of the site was the zone of actual

counting and thus the entire hectare was covered without any overlap. Birds were identified (Ali and Riply, 1983) based on sitings, calls and overhead flights. Thus the sampling was done over the 5 hectares of each locality for 5 hours in the morning on three consecutive days, during the study.

In the catchment area, it appears that there is no evidence as to whether the proposed site is an important resting site for birds. The birds observed or reported, are found to build nests along the interior trees and most of the species do not rest or breed close to water bodies. In addition, also observed in the catchment area, especially in the semi evergreen forest, fairly rich avian fauna like Paradise Fly Catcher, Black Headed Orione, Hill Myna and Dove. The birds were observed in the vicinity of tree tops which are away from the proposed weir locations. Majority of them are of residential types commonly seen all over the catchment area and also in other parts of the Western Ghats. Whereas in canal area, most common birds were recorded and majority of them are local residents.

The animals found in the project area are of common category and also well represented in the catchment and canal area. The birds which have been identified in the project sites are found to be ubiquitous. Most of the birds in project area have their niches in the adjacent areas. The presence of animals and birds in the catchment and canal area will in no way be affected by the proposed scheme development as they are inhabited in the well forested niches of the catchment adjoining the project sites.

3.2.7 Aquatic Life

3.2.7.1 Biological Features (Biodiversity Aspects)

The diversity of aquatic communities, in terms of quality and quantity, is determined based on the productive potential of a given water body. The extent to which a biotope can support the aquatic life, in varied forms, depends on the available food spectrum and also by the turn-over of the nutrients by multiple actions and influences of factors/parameters operating in the environment. Aquatic communities, as a rule, are constituted by both floral and faunal species. These include all important constituents engaged in tophogenic, tropholytic and biotic activities in a given eco-system. Plankton, benthic/littoral faunal elements and the fish germplasm community. The nature and composition of flora and fauna depends on the source of the river and the land environment in their respective flow regime. Human activities and their needs, directly or otherwise, are responsible or the alterations in the nature of lotic water bodies. In evaluating the situation in the right perspective, the actual

and potential impacts on both the up and down stream stretches, as also on the impounded areas are to be considered for the safe-guarding the aquatic life inhabiting it.

The 'preliminary' study undertaken is to assess, depending on the data generated and evaluate the environmental impact on the commissioning of the weirs and stabilized continuous flow-regime systems across the Yettinahole, Kadumanehole, Kerihole and Hongadahalla streams/rivers located in the Sakaleshpur Taluk, Hassan District.

3.2.7.2 Scope of Study

Sampling stations for the collection of hydrobiological samples and fish and fisheries investigations were fixed considering the location where the weirs/flow-regimes, channels and related structures for plankton biomass, benthic/littoral fauna, Survey of streams/rivers located within the 'Project' site/s to record the aquatic life, fish in particular, present, 'rare, threatened or endangered' fish species and to assess the ecological impacts by commissioning weirs/connecting channels and related structures on the aquatic life- fish species, in particular present within its peripheral limits and suggest 'appropriate management measures' to protect the aquatic life, fish species in particular present in the habitat

3.2.7.3 Methodology

Plankton

For 'plankton' biomass samples, at each station, 100 lts stream/river water from different representative portions was strained through plankton net made of 21xxx nylobolt silk cloth. The samples, so obtained, were preserved in 5% formaldehyde solution. Biomass of the plankton sample was determined from each station, both qualitatively and quantitatively, by employing a Microscopic and Sedgewick-Rafter plankton counting cell.

Littoral Fauna

Littoral fauna were collected by operating a 'D' net at each station in the shallow marginal areas of each stream/river. The collections were sieved through a No.40 sieve and the faunal elements obtained were fixed in 5% formaldehyde solution and subjected to systematic analysis.

Fish Species

Fishing, by employing castnets, dragnet made of velon screen and scoop net were operated in different pockets of the stream/rivers. The fish specimens collected were systematically analysed. Additional data on the subject was obtained on local enquiries nd by studying the published records.

3.2.7.4 Observations

Plankton: The micro-biotic population in a given water body is composed of phyto and zoo plankton communities. The plankton, in turbulent and hill streams in particular, depends on local conditions, seasonal variations and incidence of discharge of water. The plankton, in general, forms food of scores of planktivorous fish species- be they minnows or the major food fishes.

Table 30 Biomass near the weir sites.

	Weir-1: Plan	akton Biomass of Yettinahole	
The Plankton in the riv	ver studies is inhe	erently 'poor' and appears to have little role to	play in the
		ecological niche	Г
PHYOPLANKTON			Nos/l
	Division	MYXOPHYCEAE	
	Family	OSCILLATORIACEAE	
	Genus	Oscillatoria Vaucher	
	1	Oscillatoria princeps Vaucher ex Gomont	3
	Division	Chlorophyta	
	Class	Chlorophyceae	
	Order	Zygnematales	
	Family	DESMIDIACEAE	
	Genus	Cosmarium Corda	
	2	Cosmarium granatum Brebbison	1
	Order	Ulotrichales	
	Family	ULOTRICHASCEAE	
	Genus	Ulothrix Kutzing	
	3	Ulothrix zonata (Web et Mohr) Kutzing	3
	Division	Chrysophyta	
	Class	Bacillariophyceae	
	Order	Baccilariales	
	Family	COSCINODISCACEAE	
	Genus	Melosira Kutzing	
	4	Melosira ambigua (Grun.) Mull.	1
	Suborder	Araphidineae	
	Family	FRAGILARIACEAE	
	Sub-Family	Fragilarioideae	
	Genus	Fragilaria Lyngb.	
	5	Flagilaria capucina Desmaziars	17

	Genus	Synedra Ehrenberg	
	6	Synedra ulna (Nitzch) Ehrenberg	1
	Suborder	Biraphidineae	
	Family	NAVICULACEAE	
	Subfamily	Naviculoideae	
	Genus	Navicula Bory	
	7	Navicula crucicula (W.Sm) Donkin	2
	Genus	Pinnularia Ehrenberg	
	8	Pinnularia major W.Sm	3
	Family	CYMBELLACEAE	
	Genus	Cymbella Ag.	
	9	Cymbella ventricosa Kutzing	2
	Family	SURIRELLACEAE	
	Subfamily	Surirelloideae	
	Genus	Surirela Temp.	
	10	Surirella novolis Smith	3
	Genus	Denticula Kutzing	
	11	Denticula thermalis Kutzing	3
ZOOPLANKTON			
	Class	Granulosa-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	12	Arcella mitrata Leidy	5
	Family	DIFFLUGIDAE	
	Genus	Difflugia Leclere	
	13	Difflugia coresa Wallich	2
	Order	Flosculariaceae	
	Family	TESTUDINELLIDAE	
	Genus	Brachionus Pallas	
	14	Brachionus rubens Ehrenberg	3
	Subclass	Branchiopeda	
	Order	Cladocera	
	Suborder	Eucladocera Eriksson	
	Family	DAPHNIDAE Straus	
	Genus	Daphnia O.F Muller	
	15	Daphnia carinata King	1
MISCELLANEOUS			
	16	Vegetative parts	4
	17	Insect remains	2

91

Weir	r-1: Systematic	e list of littoral fauna of Yettinahole	
INSECTS	- 1. Systematic		
11,02010	Order	Hemiptera	
	Family	GERRIDAE	
	1	Gerris spinolae Leth. & Sev.	
MOLLUSCS		com a spinious zem et sen	
	Class	Gastropoda	
	Order	Mesogastropoda	
	Family	THIARIDAE	
	Sub Family	Thiarinae s.str.	
	Genus	Thiara Roding	
	Sub-Genus	Thiara s.str.	
	2	Thiara (Thiara) scabra (Muller)	
		na is very 'poor' in its representation. Only G	.spinolae
		bra (Molluscs) represent each group.	
We	ir-1: Systemati	ic list of fish species of Yettinahole	
	Order	Cypriniformes	
	Family	CYPRINIDAE	
	Subfamily	Danioninae (= Rasborinae)	
	Tribe	Danionini	
	Genus	Danio Hamilton-Buchanan	
	1	Danio aequipinnatus (McClelland)	
	Genus	Rasbora Bleeker	
	2	Rasbora daniconius (Hamilton-Buchanan)	
	Subfamily	Oreininae	
	Genus	Garra Hamilton-Buchanan	
	3	Garra gotyla stenorhynchus (Jerdon)	
	t from ornamen	al and detritus feeding are the ones recorded. Ital considerations. However, the species vary ective representations.	
Weir-		omass of the tributary of Yettinahole	
		te of the stream s 'poor' in representation.	
P.w.		1	
PHYTOPLANKTON			
	Division	Myxophyceae	
	Family	RIVULARIACAE	
	Genus	Rivularia Agardh	
	1	Rivularia minutula (Kutzing) Bornat and Flahault	1

	Family	OSCILLATORIACEAE	
	Genus	Oscillatoria Vaucher	
	2	Oscillatoria obscura Bruhlt Biswas	48
	Division	Chlorophyta	
	Class	Chlorophyceae	
	Order	Zygnematales	
	Family	ZYGNEMATACEAE	
	Genus	Spirogyra Link	
	3	Spirogyra varians (hassall) Kutzing	37
	Order	Cladophorales	
	Family	CLADOPHORACEAE	
	Genus	Cladophora Kutzing	
	4	Cladophora glemerata (L.) Kutzing	5
	Class	Bacillariophyceae	
	Order	Bacillariales	
	Suborder	Araphidineae	
	Family	FRAGILARIACEAE	
	Subfamily	Fragilarioideae	
	Genus	Fragilaria Lyngby	
	5	Fragilaria capucina Desmazieres	62
	Genus	Synedra Ehrenberg	
	6	Synedra ulna (Nitzsch) Ehrenberg	7
	Suborder	Biraphidineae	
	Family	GOMOPHONEMACEAE	
	Subfamily	Gomophonemoideae	
	Genus	Gomophonema Hust.	
	7	Gomophonema germinatumB (Lyngb.)	3
	Family	SURIELLACEAE	
	Subfamily	Surirelloideae	
	Genus	Surirella Turp.	
	8	Surirella striatula Turp.	6
ZOOPLANKTON			
	Class	Granulo-reticulosa	
	Order	Amoebaea	
	Suborder	Amastigogenina	
	Family	HARTMANNELLIDAE	
	Genus	Acanthamoeba Vjedovsky	
	9	Astramoeba radiosa Ehrenberg	4
	Order	Centrohelidia	
	Suborder	Chalarothoraca	
	Genus	Acanthocystis Carter	

	10	Acanthosystis sptinibera Greef	2
	Order	Testacealabosa	
	Suborder	Amastigogenina	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	11	Arcella mitrata Leidy	6
	12	Vegetative parts	4
MISCELLANEOUS			
The total plankton co	ount ranged be	tween 1 and 62 u/l and is 'poor' in its representation	on.
Weir-2: Syst	ematic list of	Littoral fauna of Tributary of Yettinahole	
INSECTS			
	Order	Ephemeroptera	
	Family	BAETIDAE	
	1	Caenis spp.	
	2	Cloeon spp.	
	Order	Hemiptera	
	Family	GERRIDAE	
	3	Gerris spinolae Leth. And Sev.	
	Family	CORIXIDAE	
	4	Micronecta merope (Dist.)	
MOLLUSCS			
	Class	Gastropoda	
	Order	Mesogastropoda	
	Family	THIARIDAE	
	Subfamily	Thiarinae s.str.	
	Genus	Thiara Roding	
	Subgenus	Thiara s.str	
	5	Thiara (Thiara) scabra (Muller)	
	Subclass	Pulmonata	
	Order	Bessomarophora	
	Family	LYMNAEIDAE	
	Genus	Lymnaea Lamarck	
	6	Lymnaea (Pseudsuccina) luteola Lamarck	
AMPHIBIA			
	Phylum	Chordata	
	Class	Amphibia	
	Order	Salentia	
	Suborder	Phaneroglossa	
	Family	RANIIDAE	
	7	Rana cynophictes Schneider	
Weir-2: Sys	stematic list o	f Fish species of Tributary of Yettinahole	

Order	Cypriniformes
Family	CYPRINIDAE
Subfamily	Danioninae (= Rasborinae)
Tribe	Danioninae (= Rasborinae)
Genus	Danio Hamilton-Buchanan
1	Danio aequipinnatus (McCelland)
Genus	Rasbora Bleeker
2	Rasbora daniconius (Hamilton- Buchanan)
Family	BALITORIDAE
Subfamily	Nemacheilinae
Genus	Schistura McCelland
3	Schistura denisoni denisoni (Day)

The fish species collected comes under larvicidal and detritus feeding categories. The fish species composition is very poor in its representation

,	Weir-3: Plankt	on biomass of Kadumanehole-I	
PHYTOPLANKTON			
	Division	Myoxophhceae	
	Family	OSCILLATORIACEAE	
	Genus	Oscillatoria Vaucher	
	1	Oscillatoria princeps Vaucher ex Gomont	11
	Division	Chlorophyta	
	Class	Chlorophyceae	
	Order	Zygnematales	
	Family	ZYGNEMATACEAE	
	Genus	Spyrogyra Link	
	2	Spirogyra varians (hassall) Kutzing	228
	Order	Ulotrichales	
	Family	ULOTRICHASCEAE	
	Genus	Ulothrix Kutzing	
	3	Ulothrix zonata (Web et Mohr) Kuzing	13
	Order	Cladophorales	
	Family	CLADOPHORACEAE	
	Genus	Cladophora Kutzing	
	4	Cladophora glemerata (L.) Kutzing	16
	Class	Bacillariophyceae	
	Order	Bacillariales	
	Suborder	Araphidineae	
	Family	FRAGILARIACEAE	
	Subfamily	Fragilarioideae	
	Genus	Fragilaria Lyngb	
	5	Fragilaria capucina Desmazieres	103
	Genus	Synedra Ehrenberg	

	6	Synedra ulna (Nitzsch) Ehrenberg	475
	Suborder	Biraphidineae	
	Family	NAVICULACEAE	
	Subfamily	Naviculoideae	
	Genus	Gyrosigma Hass.	
	7	Gyrosigma kutzinghi (Grun.) Cl.	27
	Family	SURIELLACEAE	
	Subfamily	Surirelloideae	
	Genus	Surirella Turp.	
	8	Surirella striatula Turp.	2
ZOOPLANKTON			
	Class	Granulosa-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	9	Arcella mitrata Leidy	2
	Class	Monogononta	
	Order	Flosculariaceae	
	Family	TESTUDINELLIDAE	
	Genus	Brachionus Pallas	
	10	Brachionus rubens Ehrenberg	2
MISCELLANEOUS			
	11	Nematodes	1
	12	Chironomids	3

The total plankton concentrate ranged between 1 and 475 u/l. Phytoplankton was in dominant position compared to Zooplankton and the Miscellaneous groups. The plankton biomass, however, could be termed in 'poor' concentration in its representation.

Weir-3: Systematic list of Littoral fauna of Kadumanehole-I				
INSECTS				
	Order		Ephemeroptera	
	Family		BAETIDAE	
		1	Cloeon spp.	
	Order		Odonata	
	Suborder		Anispotera	
	Family		LIBELLULIDAE	
		2	Urothemis signata (Rambur)	
	Family		AESHNIDAE	
		3	Anax spp	
	Order		Hemiptera	
	Family		GERRIDAE	
		4	Gerris spinolae Leth. And sev.	
	Family		NOTONECTIDAE	

	5	Notonecta glauca Linnaeus
Fa	mily	CORIXIDAE
	6	Corixa hieroglyphica Dug.
	7	Micronecta merope dist
Or	der	Diptera
Fa	mily	CHIRONOMIDAE
	8	Chironomus spp
MOLLUSCS		
Cl	ass	Gastropoda
Or	der	Mesogastropoda
Fa	mily	THIARIDAE
Su	bfamily	Melanatriinae
Ge	enus	Sulcospira Troschel
		Thiara s.str
	9	Sulcospira heugeli (Philipi)
Su	bclass	Pulmonata
Or	der	Bessomarophora
Fa	mily	LYMNAEIDAE
Ge	enus	Lymnaea Lamarck
	10	Lymnaea (Pseudsuccina) acuminata Lamarck
	11	Lymnaea (Pseudsuccina) luteola Lamarck
AMPHIBIA		
Ph	ylum	Chordata
Cl	ass	Amphibia
Or	der	Salentia
Su	border	Phaneroglossa
Fa	mily	RANIIDAE
	12	Rana cynophlctes Schneider
Weir-3: Sy	stematic li	st of fish species in Kadumanehole- I
Or	der	Cypriniformes
	mily	CYPRINIDAE
	bfamily	Danioninae (=Rasborinae)
Tr	ibe	Oxygasterini
Ge	enus	Salmostoma Swainson
	1	Salmostoma acinaces (Valenciennes)
Tr	ibe	Danionini
Ge	enus	Rasbora Bleeker
	2	Rasbora daniconius (Hamilton- Buchanan)
	-4: Plankto	on Biomass of kadumanehole-II
PHYTOPLANKTON		
Di	vision	Myxophyceae

	Family	OSCILLATORIACEAE	
	Genus	Oscillatoria Vaucher	
	1	Oscillatoria obscura Brohlot Biswas	164
	Division	Chlorophyceae	
	Class	Chlorophyceae	
	Order	Zygnematales	
	Family	DESMIDIACEAE	
	Genus	Closterium Nitzch	
	2	Closterium leibleinii Kutzing	24
	3	Closterium venus (Kutz.) Brebisson	4
	Family	ZYGNMATACEAE	
	Genus	Spirogyra Link	
	4	Sspirogyra varians (hassal) Kutzing	536
	Order	Ulotrichales	
	Family	ULOTRICHASCEAE	
	Genus	Ulothrix Kutzing	
	5	Ulothrix zonata (web et Mohr) Kutzing	168
	Order	Cladophora	
	Family	CLADOPHORACEAE	
	Genus	Cladophora Kutzing	
	6	Cladophora glomerata (L.) Kutzing	192
	Class	Bacillariophyceae	
	Order	Bacillariales	
	Suborder	Araphidineae	
	Family	FRAGILARIACEAE	
	Subfamily	Fragilarioideae	
	Genus	Fragilaria Lyngb.	
	7	Fragilaria capucina Desmaziers	324
	Genus	Synedra Ehrenberg	
	8	Synedra Ulna (Nitzsch) Ehrenberg	8
ZOOPLANKTON			
	Class	Granulosa-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	9	Arcella mitrata Leidy	12
	Order	Actinophryia	
	Genus	Actinophrys Ehrenberg	
	10	Actinophrys sol Ehrenberg	4
	Subclass	Branchipoda	
· · · · · · · · · · · · · · · · · · ·		<u> </u>	

98

	Suborder Super- family Family Genus		Eucladocera Eriksson Sidoidea (=Ctenopoda Sars)	
	family Family		· ·	<u></u>
	Genus		DAPHNIDAE Straus	
			Daphnia O.F Muller	
	Subgenus	S	Daphnia sensu stricte	
		11	Daphnia carinata King	4
	Family		CYPRIDAE	
	Subfamil	у	Cyprinae	
	Genus		Cypris OF Muller	
		12	Cypris subglobosa Sowerby	3
	Family		DIAPTOMIDAE	
	Genus		Diaptomus	
	Subgenus	S	Aglaodiaptomus	
		13	Mesocyclops leuckart	12
MISCELLANEOUS				
		14	Vegetative parts	8
		15	Insect remains	8
Weir-4:	Systemati	c list	t of Littoral fauna of kadumanehole-II	
INSECTS				
	Order		Hemiptera	
	Family		GERRIDAE	
		1	Gerris spinolae Leth. & Sev.	
	Family		NEPIDAE	
	-	2	Laccotrophes maculatus Fabricius	
	Family		CORIXIDAE	
		3	Micronecta merope Dist	
	Order		Coloptera	
	Family		DYTISCIDAE	
		4	Dytiscus limbatus Fabricius	
Weir-4:	Systemat	tic li	st of Fish species of kadumanehole-II	
	Order		Cypriniformes	
	Family		CYPRINIDAE	
	Subfamil	y	Danioninae (=Rasborinae)	
	Tribe		Danionini	
	Genus		Danio Hamilton-Buchanan	
		1	Danio sequipinnatus (McClelland)	
	Genus		Rasbora Bleeker	
		2	Rasbora daniconius (Hamilton-	
	XXI A	To I	Buchanan) ankton biomass of Kerihole	

1	Division	Myxophyceae	
	Family	OSCILLOTORIACEAE	
	Genus	Oscillatoria Vaucher	
	Genus 1	Oscilloatoria princeps Vaucher ex gomont	1
	Division	Chlorophyta	
	Class	Chlorophyceae	
	Order	Chlorococcales	
	Family	SCENEDESMACEAE	
	Genus	Actinastrium Lagerheim	
	2	Actinastrium gracillimum GM Smith	1
	Order	Zygnematales	
	Family	DESMIDIACEAE	
	Genus	Closterium Nitzch	
	3	Closterium leibleinii Kutzing	2
	Family	ZYGNEMATACEAE	
	Genus	Spirogyra Link	
	4	Spirogyra varians (hassal) Kutzing	4
	Order	Ulotrochales	
	Family	ULOTRICHASCEAE	
	Genus	Ulothrix Kutzing	
	5	Ulothrix zonata (web et Mohr.) Kutzing	6
	Order	Cladophorales	
	Family	CLADOPHORACEAE	
	Genus	Cladophora Kutzing	
	6	Cladophora glomerataB (L.) Kutzing	9
	Class	Bacillariophyceae	
	Order	Bacillariales	
	Suborder	Discineae	
	Family	COSCINODISCACEAE	
	Subfamily	Melosiroidea	
	Genus	Melosira Kutzing	
	7	Melosira ambigua (Grun) Muller	2
	Suborder	Araphidineae	
	Family	FRAGILARIACEAE	
	Subfamily	Fragilarioideae	
	Genus	Fragilaria Lyngb	
	8	Fragilaria capucina Desmazieres	27
	Genus	Synedra Ehrenberg	
	9	Synedra ulna (Nitzsch) Ehrenberg	2
	Suborder	Rapidiodineae	
	Family	EUNOTIACEAE	
	Subfamily	Eunotioideae	

	Genus	Eunota Ehrenberg	
		Eunota praerupta var. bidens	
	10	(Ehre.)Grun	1
	Suborder	Biraphidineae	
	Family	NAVICULACEAE	
	Subfamily	Naviculoideae	
	Genus	Navicula Bory	
	11	Navicula radiosa Kutzing	3
	Genus	Pinnularia Ehrenberg	
	12	Pinnularia major Kutzing	1
	Family	NITZCHIACEAE	
	Subfamily	Nitzchlioideae	
	Genus	Nitzchia Hass	
	13	Nitzschia sigmoidea (Nitzsch) W.Sm.	1
	Family	SURIRELLACEAE	
	Subfamily	Surirelloideae	
	Genus	Surirella Turp.	
	14	Surirella striatula Turp.	1
ZOOPLANKTON			
	Class	Granulo-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	15	Arcella mitrata Leidy	5
	Family	DIFFLUGIIDAE	
	Genus	Difflugia Leclere	
	16	Difflugia corona Wallich	3
	Class	Monogononta	
	Order	Flosculariaceae	
	Fa-mily	TESTUDINELLIDAE	
	Genus	Keratella Bory de St.Vincent	
	17	Keratella tropica Apstein	1
	Genus	Brachionus Pallas	
	18	Brachionus ferficula Wierzeski	1
	Family	DAPHNIDAE straus	
	Genus	Ceriodaphnia Dana	
	19	Ceriodaphnia reticulata (Jurine)	3
	Family	DIAPTOMIDAE	
	Genus	Diaptomus	
	Subgenus	Agladiaptomus	
	20	Mesocyclops leuckart claus	2
		c list of Littoral Fauna of Kerihole	

INSECTS	I		ļ
	Order	Ephemeroptera	
	Family	BAETIDAE	
	1	Caenis spp.	
	2	Cloeon spp.	-
	Order	Odonata	
	Suborder	Anisoptera	
	Family	LIBELLULIDAE	
	3	Urothemis signata (Rambur)	
	Family	COENAGRIONIDAE	
	4	Enallagma spp	
	Order	Hemiptera	
	Family	GERRIDAE	
	5	Gerris spinolae Leth. & Sev.	
MOLLUSCS			
	Order	Mesogastropoda	
	Family	THIARIDAE	
	Subfamily	Melanatriinae	
	Genus	Sulcospira Treschel	
	6	Sulcospira heugeli (Philipi)	
AMPHIBIA			
	Phylum	Chordata	
	Class	Amphibia	
	Order	Salientia	
	Suborder	Phaneroglossa	
	Family	RANIDAE	
	7	Rana cynophlyctes Schneider	
	Weir-6: Systema	tic list of fish species of Kerihole	
	Order	Cypriniformes	
	Family	CYPRINIDAE	
	Subfamily	Danioninae (=Rasborinae)	
	Tribe	Danionini	
	Genus	Danio Hamilton-Buchanan	
	1	Danio aequipinnatus (McClelland)	
	Genus	Rasbora Bleeker	
	2	Rasbora daniconius (Hamilton-	
		Buchanan)	
	Subfamily	Cyprininae	
	Tribe	Systomini	
	Subtribe	Systomi Produce Produc	
	Genus	Puntius Hamilton- Buchanan	

	3	Puntius fasciatus fasciatus (Day)		
	4	Puntius puckelli (Day)		
	5	Puntius ticto (Hamilton-Buchanan)		_
	Family	BALITORIDAE		
	Subfamily	Nemacheilinae		
	Genus	Schistura McClelland		
	6	Schistura denisoni denisoni (Day)		
	Weir-6: Plank	kton biomass of Hongadahalla		
Systematic list		3	Nos/1	
PHYTOPLANKTON				
	Division	Myxophyceae		
	Genus	Oscillatoria Vaucher		
	1	Oscillatoria princeps Vaucher ex. Gomont		1
	Division	Chlorophyta		
	Class	Chlorophyceae		
	Order	Ulotrochales		
	Family	ULOTRICHASCEAE		
	Genus	Ulothrix Kutzing		
	2	Ulothrix zonata (web et Mohr.) Kutzing		5
	Order	Cladophorales		
	Family	CLADOPHORACEAE		
	Genus	Cladophora Kutzing		
	3	Cladophora glomerataB (L.) Kutzing		2
	Division	Chrysophyta		
	Class	Bacillariophyceae		
	Order	Bacillariales		
	Suborder	Araphidineae		
	Family	FRAGILARIACEAE		
	Subfamily	Fragilarioideae		
	Genus	Fragilaria Lyngb		
	4	Fragilaria capucina Desmazieres		6
	Suborder	Biraphidineae		
	Family	NAVICULACEAE		
	Subfamily	Naviculoideae		
	Genus	Navicula Bory		1
	5	Navicula radiosa Kutzing		
	Genus	Pinnularia Ehrenberg		
	6	Pinnularia nobilis Ehrenberg		1
	Family	SURIRELLACEAE		
	Subfamily	Surirelloideae		
	Genus	Surirella Turp.		
	7	Surirella novilis Smith.		2

ZOOPLANKTON			
Z o o i Z i i i i i i i i i i i i i i i	Class	Granulo-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	15	Arcella mitrata Leidy	2
	Superclass	Actinopoda	
	Class	Granulo-reticulosa	
	Order	Amoebaea	
	Suborder	Amastigogenina	
	Family	HARTMANNELLIDAE	
	Genus	Acanthamoeba Vejdovsky	
	9	Astramoeba radiosa Ehrenberg	1
	Order	Cladocera Calmon	
	Suborder	Eucladocera Eriksson	
	Family	DIAPTOMIDAE	
	Genus	Diaptomus	
	subgenus	Aglaodiaptomus	
	10	Mesocyclops leuckart Claus	5
MISCELLANEOUS			
	11	Insect appendages	4
Weir-	-7: Systematic li	ist of Littoral Fauna of Hongadahalla	
INSECTS			
	Order	Ephemeroptera	
	Family	BAETIDAE	
	1	Caenis spp.	
	Order	Odonata	
	Suborder	Anisoptera	
	Family	LIBELLULIDAE	
	2	Urothemis signata Rambur	
	Order	Hemiptera	
	Family	GERRIDAE	
	Family 3	GERRIDAE Gerris spinolae Leth. & Sev.	
MOLLUSCS			
MOLLUSCS			
MOLLUSCS	3	Gerris spinolae Leth. & Sev.	
MOLLUSCS	3 Order	Gerris spinolae Leth. & Sev. Mesogastropoda	
MOLLUSCS	Order Family	Gerris spinolae Leth. & Sev. Mesogastropoda BITHYNIDAE	
MOLLUSCS	Order Family Subfamily	Mesogastropoda BITHYNIDAE Bithyniinae s.str.	
MOLLUSCS	Order Family Subfamily Genus	Mesogastropoda BITHYNIDAE Bithyniinae s.str. Gabbia Tryon	

	Subgenus	Melanoides Olivier	
	5	Thiara (Thiara) scabra Muller	
	Subfamily	Melanatriinae	
	Genus	Sulcospira Treschel	
	6	Sulcospira heugeli philipi	
AMPHIBIA		1 0 1	
	Class	Emphibia	
	Order	Salientia	
	Suborder	Phaneroglossa	
	Family	RANIDAE	
	7	Rana cynophlyctes Schneider	
FISH			
	Order	Cypriniformes	
	Family	BALITORIDAE	
	Subfamily	Nemacheilinae	
	Genus	Schistura McClelland	
	8	Schistura denisoni denisoni (Day)	
Weir	-7: Systematic	list of fish species of Hongadahalla	
	Order	Cypriniformes	
	Family	CYPRINIDAE	
	Subfamily	Danioninae (=Rasborinae)	
	Tribe	Danionini	
	Genus	Rasbora Bleeker	
	1	Rasbora daniconius (Hamilton-Buchanan)	
	Subfamily	Cyprininae	
	Tribe	Systomini	
	Subtribe	Systomi	
	Genus	Puntius Hamilton- Buchanan	
	2	Puntius fasciatus fasciatus (Day)	
	3	Puntius ticto (Hamilton-Buchanan)	
	Subfamily	Oreininae	
	Genus	Garra Hamilton-Buchanan	
	4	Garra Gotyla stenorhnchus (Jerdon)	
	Family	BALITORIDAE	
	Subfamily	Nemacheilinae	
	Genus	Schistura McClelland	
	6	Schistura denisoni denisoni (Day)	
	Weir-6: Plan	nkton biomass of Yettinahole	
PHYTOPLANKTON			
	Division	Myxophyceae	
	Family	OSCILLOTORIACEAE	
	Genus	Oscillatoria Vaucher	

	1	Oscilloatoria princeps Vaucher ex gomont	4
Divisio	n	Chlorophyta	
Class		Chlorophyceae	
Order		Zygnematales	
Family		DESMIDIACEAE	
Genus		Closterium Nitzch	
	2	Closterium leibleinii Kutzing	3
Genus		Cosmarium Corda	
	3	Cosmarium granatum Brebisson	7
Family		ZYGNEMATACEAE	
Genus		Spirogyra Link	
	4	Spirogyra varians (hassal) Kutzing	22
Order		Ulotrichales	
Family		ULOTRICHASCEAE	
Genus		Ulothrix Kutzing	
	5	Ulothrix zonata (Weber et Mohr.) Kutzing	5
Order		Cladophorales	
Family		CLADOPHORACEAE	
Genus		Cladophora Kutzing	
	6	Cladophora glomerataB (L.) Kutzing	2
Class		Bacillariophyceae	
Order		Bacillariales	
Subord	er	Discineae	
Family		COSCINODISCACEAE	
Subfam	ily	Melosiroidea	
Genus		Melosira Kutzing	
	7	Melosira ambigua (Grun) Muller	1
Subord	er	Araphidineae	
Family		FRAGILARIACEAE	
Subfam	ily	Fragilarioideae	
Genus		Fragilaria Lyngb	
	8	Fragilaria capucina Desmazieres	11
Genus		Synedra Ehrenberg	
	9	Synedra ulna (Nitzsch) Ehrenberg	5
Subord	er	Biraphidineae	
Family		NAVICULACEAE	
Subfam	ily	Naviculoideae	
Genus		Gyrosigma Hass.	
	10	Gyrosigma kutzingii (Grun) Cl.	2
Genus		Navicula Bory	
	11	Navicula crucicula (W.Sm.) Donkin	1

	Genus	Pinnularia Ehrenberg	
	12	Pinnularia Major W.Sm.	8
	Family	CYMBELLACEAE	
	Subfamily	Cymbelloideae	
	Genus	Cymbella Ag.	
	13	Cymbella ventricosa Kutzing	1
	Family	NITZCHIACEAE	
	Subfamily	Nitzchlioideae	
	Genus	Nitzchia Hass	
	14	Nitzschia sigmoidea (Nitzsch) W.Sm.	3
	Family	SURIRELLACEAE	
	Subfamily	Surirelloideae	
	Genus	Surirella Turp.	
	15	Surirella striatula Turp.	1
ZOOPLANKTON		1	
	Class	Granulo-reticulosa	
	Order	Testacealobosa	
	Suborder	Reticulo-lobosa	
	Family	ARCELLIDAE	
	Genus	Arcella Ehrenberg	
	16	Arcella mitrata Leidy	5
	Order	Flosculariaceae	
	Family	TESTUDINELLIDAE	
	Genus	Keratella Bory de St.Vincent	
	17	Keratella tropica Apstein	2
	Genus	Asplanchna Gosse	
	18	Asplanchna priodonta Gosse	2
	Genus	Brachionus Pallas	
	19	Brachionus rubens Ehrenberg	1
	Order	Cladocera Calmon	
	Suborder	Eucladora Eriksson	
	Superfamily	Sidoidea (=Ctenopoda Sars)	
	Family	DIAPTOMIDAE	
	Genus	Diaptomus	
	Subgenus	Agladiaptomus	
	20	Mesocyclops leuckart Claus	1
Weir-	8: Systematic l	ist of Littoral Fauna of Hongadahalla	
INSECTS			
	Order	Ephemeroptera	
	Family	BAETIDAE	
	1		
	1	Caenis spp.	

	Order	Odonata	
	Suborder	Anisoptera	
	Family	LIBELLULIDAE	
	3	Urothemis signata (Rambur)	
	Family	AESHNIDAE	
	4	Anax spp.	
	Order	Hemiptera	
	Family	GERRIDAE	
	5	Gerris Spinolae Leth. & Sev.	
	Family	CORIXIDAE	
	6	Corixa hieroglyphica Duf.	
	7	Micronecta merope Dist.	
MOLLUSCS		_	
	Order	Mesogastropoda	
	Family	THIARIDAE	
	Subfamily	Thiarinae s. str.	
	Genus	Thiara Roding	
	Subgenus	Thiara s. str.	
	8	Thiara (Thiara) scabra (Muller)	
	Subfamily	Melanatriinae	
	Genus	Sulcospira Troschel	
	9	Sulcospira heugeli (Pjilipi)	
AMPHIBIA			
	Order	Salientia	
	Suborder	Phaneroglossa	
	Family	RANIDAE	
	10	Rana cynophlyctes Schneider	
CRUSTACEA			
	Class	Crustacea	
	Subclass	Malacostraca	
	Order	Decapoda	
	Family	PALAEMONIDAE	
	11	Macrobrachium spp.	
FISH			
	Order	Cypriniformes	
	Family	CYPRINIDAE	
	Subfamily	Danioninae (=Rasborinae)	
	Tribe	Danionini	
	Genus	Danio Hamilton-Buchanan	
	12	Danio aequipinnatus McClelland	
	Family	BALITORIDAE	
	Subfamily	Nemachelilinae	

Genus	Schistura McClelland		
13	Schistura denisoni denisoni (Day)		
Weir-8: Systemati	ic list of fish species of Yettinahole		
Order	Cypriniformes		
Family	CYPRINIDAE		
Subfamily	Danioninae (=Rasborinae)		
Tribe	Danionini		
Genus	Danio Hamilton-Buchanan		
1	Danio aequipinnatus McClelland		
Genus	Rasbora Bleeker		
2	Rasbora daniconius (Hamilton-Buchanan)		
Subfamily	Cyprininae		
Tribe	Systomini		
Subtribe	Systomi		
Genus	Puntius Hamilton- Buchanan		
3	Puntius ticto (Hamilton-Buchanan)		
Subfamily	Oreininae		
Genus	Garra Hamilton-Buchanan		
4	Garra Gotyla stenorhnchus (Jerdon)		
Family	BALITORIDAE		
Subfamily	Nemacheilinae		
Genus	Schistura McClelland		
5	Schistura denisoni denisoni (Day)		

KNNL Annexure-3

1) Publications of Shri. M. F Rahman, Scientist (Retd.), CIFRI, Govt. of India

- 1. Govind, B.V., <u>M.F.Rahman</u> and K.V.Rajagopal. 1978 Occurrence of levelers of <u>AnguillaNebulosa</u> (Gray & Hardw.) in Tunga river, Karnataka, Sci. & Cult., 44(7): 329-330.
- 2. Rao, N.G.S., <u>M.F.Rahman</u> and Salarjan. 1991. Ichthyofauna of Vanivilas Sagar reservoir, Karnataka. <u>Curr.res.</u>, 20: 15-16.
- 3. Rahman, M.F. and S.L.Raghavan. 1994. Ichthyofauna of tanks in Anekal taluk of Bangalore district, Karnataka.
- 4. Rahman, M.F. 1995. Scare-line fishing for Cobitids in river Tunga, Shimoga, Karnataka. Fish. Chimes., 50-51.
- 5. **Rahman, M.F.** 1998. Isolated occurrence of Balitora mysorensis Hora in Karnataka, Fish. Chimes., 18(3): 25.
- 6. Chandrasekharaiah, H.N. and H.N. and <u>M.F.Rahman</u>. 1998 Ornamental fish genetic resources of Karnataka. <u>Infoaquaria.</u>, 1(1): 5-8.
- 7. Chandrasekharaiah, H.N. and H.N. and M.F.Rahman and S.L.Ragavan.2000 Status of fish fauna in Karnataka. NBFGR., NATP., Pub.1:98-135.
- 8. Chandrasekharaiah, H.N. and H.N. and M.F.Rahman and S.L.Raghavan. 2000 Ichthyofauna of River Varahi, Dakshina Kannada, Karnataka. Fish. Chimes., 20(6): 35-37.
- 9. Chandrasekharaiah, H.N. and H.N. and M.F.Rahman and S.L.Raghavan. 2001 Ichthyofauna of river Bedthi/Gangavalli, Uttara Kannada, Karnataka. Fish.Chimes., 21(3): 23 25.
- 10. Chandrasekharaiah, H.N. and H.N. and S.L.Raghavanand <u>M.F.Rahman</u>. 2002.Biodiversity strategy and Action Plan for reservation of freshwater fishes in Karnataka. Comm. Paper., KBSAP., 1:143-178.
- 11. Chandrasekharaiah, H.N. and H.N. and S.L.Raghavanand <u>M.F.Rahman</u>. 2008. Fish germplasm inventory of Manjira and Karanja rivers(Godavary Basin), Bidar district, Karnataka. <u>Fish</u>. <u>Chimes</u>., 28(6): 24-26.
- 12. **Rahman, M.F.** 2010. Ichthyofauna biodiversity of Kabini reservoir, Karnataka. Fish. Chimes., 30(7): 61-63.
- 13. **Rahman, M.F.** On the occurrence of elver of Eel, Anguilla nebulosa nebulosa (Gray Hardw.) in Kalinadi, Uttara Kannada, Karnataka. Fish. Chimes.,(In Press).
- 14. **Rahman M.F.** and P. Basavaraj. On the Ichthyofauna of the Varada river, Haveri District, Karnataka. <u>Fish.</u> <u>Chimes.</u>, (In Press).
- 15. **Rahman M.F.** and S.L.Raghavan. Ichthyofauna of Linganamakki reservoir, Shimoga district, Karnataka. <u>Fish.</u> <u>Chimes.</u>, (In Press).
- 16. **Rahman, M.F.**, D.S.Krishna Rao and P.K.Sukumarana Ichthyofauna of Krishnaraja Sagar reservoir, Mandya district, Karnataka. J.Inland Fish.Soc.India. (In Press.).
- 17. **Rahman ,M.F.** Ichthyofauna of Kalinadi Hydro-Electict Project reservoirs, Uttara Kannada district, Karnataka. <u>J.Ecol.Fish.</u>(In Press.)
- 18. **Rahman, M.F.** and S.L.Raghavan. Ichthyofauna of tanks in Bangalore Urban and Rural district, Karnataka, Mysore agric.J.Sci., (in Press)

- 19. **Rahman, M.F.** and H.N.Chandrasekharaiah. Ichthyofauna of the river Sharavati, Uttara Kannada, Karnataka. Mysore J.agric. Sci. (In Press).
- 20. **Rahman ,M.F**. Fish diversity of streams and rivers of Western ghat region of Karnataka. Fish. Chimes. (In Press).

LIMNOLOGY:

- 1. Rao, N.G.S., A.David, S.L.Raghavan and **M.F.Rahaman.** 1982 Observation on the limnology of a peninsular tank, Mysore J. agric. Sci., 16(1): 75 84.
- 2. David, A., **M.F.Rahman**, S.L.raghavan, P.K. Sukumaran and G.S.Singit. Plankton production during experimental feeding of weed consuming carp, Puntiue pulchellue(day). Mysore J.agric. Sci., 18: 223-238.
- 3. Sukumaran, P.K., S.L.Raghavan and M.F.Rahman. 1984 Observation on the physico-chemical conditions of water and plankton of two tanks in Malnad region of Karnataka. J. Inland Fish. Soc. India., 16 (1 &2): 53-55.
- 4. Raghavan, S.L., N.G.S. Rao and **M.F Rahman**. 1986. Hydrobiological investigations in two perennial ponds of Anekal taluk, Bangalore district, Karnataka. J. Inland Fish. Soc. India., 18(2):52-59.

RIVERINE FISHERIES:

- 1. **Rahman M.F.** 1997. Enrichment of riverine fish fauna through transplantation of food and sport fishes. Fish. Chimes.,39-42.
- 2. Chandrashekharaiah, H.N., S.L Raghavan and <u>M.F.Rahman</u>. 2002. Fish Sanctuary- River Cauvery-Case Study-Ramanathapura, Arkalgud taluk, Hassan district, Karnataka. <u>KBSAP</u>., 2:386-411.
- 3. Chandrashekharaiah, H.N., <u>M.F.Rahman</u> and shyama Bhat Kolari. 2006. Status of riverine fish fauna in Karnataka. <u>Proc.workshop:Ichthyofauna biodiversity in Aquatic systems of Karnataka</u>, 18-24.
- 4. Chandrashekharaiah, H.N., <u>M.F.Rahman</u> and shyama Bhat Kolari and G.V.Kowtal. 2003-2004. Biodiversity studies of Fish Sanctuaris of Karnataka:
- 5. **M.F Rahman**, P. Basavaraj, 2013, On the occurrence of the Fresh Water Medusa, Limnocnida indica Annandale in Varada river, Haveri district, Karnataka, Science & Culture, Vol-79, 5-6, May-June 2013, Pg 259-260.
 - a) Krishna river drainage 4 nos.,
 - b) Cauvery river drainage 5 nos.
 - c) west-Flowing rivers drainage 4 nos.

CULTURE FISHERIES:

- 1. David, A. and <u>M.F.Rahman</u>. 1978. Criteria for seletion of cultivable species of fishes in India. <u>Madras</u> J.Fish.,8:27-40.
- 2. Govind, B.V., P.K.Sukumaran, S.L.Raghavan, <u>M.F.Rahman</u>, R.D.Chakrabarty and S.B.Singh.1978. A pilot study on culture of major carps in a tank in Bangalore, Karnataka. <u>Seminar: On the status of Fisheries Research</u> and development in Karnataka, U.A.S., Mangalore, Karnataka.
- 3. Govind, B.V., S.L.Raghavan, **M.F.Rahman** and P.K.Sukumaran. 1978. Tank Fisheries research, development, achievements, constraints and further scope in Karnataka. Seminar: 'on the ststus of Fisheries Research and Development in Karnataka . U.A.S., Mangalore, Karnataka'.

- 4. **Rahman, M.F.** 1978 . Puntius pulchellus (Day), an indigenous herbivorous major carp from Karnataka and its utility in culturable waters . C.I.F.E., Bombay. Dissertation Thesis.
- 5. Govind, B.V., P.K.Sukumaran, S.L.Raghavan and **M.F.Rahman** .1979. Low-cost composite fish culture in A S C tank in Bangalore . Abs.No.210., 66th session :Indian Sci.congr.
- 6. Govind, B.V., P.K.Sukumaran, S.L.Raghavan and **M.F.Rahman**. 1980. Recent experiments in composite fish culture in Karnataka. Seminar: 'Some aspects of Inland Aquaculture in Karnataka., UAS., Mangalore'.
- 7. Govind, B.V., P.K.Sukumaran, S.L.Raghavan and **M.F.Rahman**. 1980. scope of utilizing tanks in Karnataka for increasing fish production. Seminar: 'Some aspects of Inland Aquaculture in Karnataka'. UAS., Mangalore
- 8. Govind, B.V., P.K.Sukumaran, S.L.Raghavan and **M.F.Rahman**. 1982. Composite fish culture in Mangalore larger fresh water tanks in and around Bangalore . Proc.Seminar. 'On the Research Management in Fisheries Sciences'.
- 9. Govind, B.V., S.L.Raghavan and **M.F.Rahman**. 1982. Fisheries Development and fish production in particular in Hospet area, workshop on 'Hospet and its Environs-2001 A.D.'
- 10. Govind, B.V., S.L.Raghavan, S.Ayyappan and **M.F.Rahman**. 1983. Cage culture of Common carp and Silver carp in Sankey tank, Bangalore, Karnataka. Seminar: 'International Comference on Development and Management of Tropical Living Aquatic Resources, MALAYSIA.
- 11. Govind, B.V., P.K.Sukumaran, S.L.Raghavan and **M.F.Rahman**. 1983. composite fish culture in larger freshwater tanks in and around Bangalore. J.Inland Fish.Soc.India., 15(1&2): 54-60.
- 12. P.K.Sukumaran , S.L.Raghavan and **M.F.Rahman** , S. Ayyappan and S. Parmeshwaran . 1986. Cage culture of carp , catla catla (Hamilton) in a freshwater tank in Mangalore . Proc., Nat. Symp.Fish . & Envt., 125-129.
- 13. Sivakami, S., S. Ayyapan and **M.F.Rahman**. 1987. Cage culture of Silver carp, Hypophthalmichthya molitrix (Valenciennes) on different feeds. J.Inland Fish. Soc. India., 19(1): 37-44.
- 14. Govind, B.V S. Ayyappan S.L.Raghavan and **M.F.Rahman** . 1988. Culture of catla (catla catla) in floating net cages . Mysore J. agric. Sci., 22: 517-522.
- 15. **M.F.Rahman** S.L.Raghavan and P.K.Sukumaran . 1999. Growth of carps under composite fish culture in two tanks in Bangalore . Curr. Res., 20: 116-118.
- 16. Chandrashekharaiah , H.N., **M.F.Rahman** and S.L raghavan . 2002 . Wetland biodiversity case study sulekere (Shanti Sagar) , channagiri taluk , Davanagere district , Karnataka . KBSAP, 2:357-358.
- 17. **M.F.Rahman** . On the phenomenal growth of Brackish water Milkfish , Chanos Chanos (Forsskal) in Tattihalla reservoir, Karnataka Uttara Kannada , Karnataka . Fish. Chimes. (In Press).

CAPTURE FISHERIES:

- 1. David, A., N.G.S. Rao and . **M.F.Rahman** . 1969. Preliminary survey report on the hydrobiology and fisheries of Nagarjunasagar reservoir, Andhra Pradesh . Survey Report No. 5., Cent. Inl. Fish . Res. Instt., Barrackpore (WB): 1-36.
- M.F.Rahman 1978. Resevoir fisheries resources of Karnataka and their Development . Bull . Cent . Instt. Fish . Fdn., Bombay., 156-163
- 3. Govind B.V., D.S Krishna Rao, P.K Sukumaran and **M.F. Rahman**. 1988. Need for management: Krishnaraja sagar Reservoir a case study. National Seminar: Mgnt. Fish. Inl. Open Wr.Sys. India., 165-170
- 4. **M.F. Rahman** 1992. Development of fisheries in Supa, Bommanahalli and Tattihalla reservoirs, Uttara kannada, Karnataka. KPC News, 2(2): 1-2.
- 5. Rahman, M.F. 1993. Development of fisheries in Kalinadi Hydro-Electric Project reservoirs. Fish. Chimes., 5-6
- 6. **Rahman,M.F** 1995. Reservoirsfisheries resources in Karnataka their development and exploitation. <u>Ad.Fish.Res.</u>, <u>Fish.Collage.Bihar.</u>
- 7. Sukumaran, P.K. and **M.F.Rahman**. 1998. Prospects of reservoir fisheries development in Karnataka. Fish. Chimes., 18(8) 19.20.

FISHERIES BIOLOGY:

- 1. David, A., N.G.S.Rao and <u>M.F.Rahman</u>. 1970. A note on the herbivorous feeding of Puntius pulchellus(Day). <u>J.Inland.Fish.Soc.India.</u>, 2: 139-140.
- 2. David, A. and **M.F.Rahman**. 1978. Studies on some aspects of feeding and breeding of Puntius pulchellus(Day) and its utility in culturable waters. J.Inland Fish.7:225-238.
- 3. David, A. and **M.F.Rahman**. 1982. Experimental observations on Experimental observations on feeding of <u>Puntius Pulchellus</u> (Day) And utility of the species in possible eradication of aquatic plants. <u>Mysore</u>. <u>J agric. Sci.</u>, 16(1): 85-95.

POLLUTION:

- 1. Raghavan, S.L., <u>M.F.Rahman</u> and B.V.Govind. 1979. "Suspensoide": a factor for fish mortality. J.InlandFish.Soc.India., 11(2): 111-112.
- 2. Rahman, M.F. 2009. Fall in Oxygen levels led to fish mortality. www.dnaindia.com/epaper.dnaindia.com.

BIOCHEMISTRY:

- 1. David, A., A.Sundara Bai and **M.F.Rahman**. 1977. Occurrence of biotoxin in the overy of Puntius micropogon (Cuv. & Val.). Curr.Res., 6(10):166-168.
- 2. Sivakami, S., S.Ayyappan, **M.F.Rahman** and B.V.Govind. 1986. Biochemical composition of Cyprinus carpio (Linnaeus) cultured in cage in relation to maturity. Indian J.Fish., 33(2):180-187.

PATHOLOGY:

- 1. Govind, B.V., <u>M.F.Rahman</u> and S.L.Rahman and S.L.Raghavan. 1981. A case of hyperostosis in Common carp. <u>J.InlandFish.Soc.India.</u>, 13(1):87-88.
- 2. <u>Rahman,M.F.</u> 1989. An incidence of Cestode <u>Ligula intestinalis</u> (Linnaeus) in Puntius dorsalis (Jerdon). <u>J.InlandFish.Soc.India.</u>, 21(1):62-63.
- 3. <u>Rahman,M.F.</u> 1994. An incidence of <u>Ligula intestinalis</u> (Linnaeus) in Puntius amphibius (Valenciennes). <u>Sci.</u> &Cult., 69(1-6):49.
- 4. **Rahman, M.F** 1994. An incidence of <u>Ligula intestinalis</u>(Linnaeus) infection in <u>Labeo pangusia</u> (Hamilton). Fish.Chimes., 31.
- 5. <u>Rahman,M.F</u> 1995. Incidence of Cauliflower (<u>Stomatopapilloma</u>) disease in Puntius puckelli (Day). Curr.Res., 24:147-148.

MALFORMATIONS/ODDITIES:

- 1. **Rahman, M.F** and S.L.Raghavan, 1976. Record of a tailless <u>Clarias batrachus</u> (Linnaeus) from Hebbal tank. J.<u>Inland Fish.Soc.India.</u>,8:124
- 2. Govind, B.V., <u>M.F.Rahman</u> and S.L.Raghavan. 1980. On the presence of bifurcated barbels in <u>Heteropneustes fossilis</u> (Bloch) <u>Sci.</u> &Cult., 46(9): 328-329.
- 3. **Rahman,M.F.** and S.L.Raghavan. 1980. On the morphological irregularity in a common carp. <u>Sci</u>. &<u>Cult.</u>,46(9): 343-344.
- 4. Govind,B.V., <u>M.F.Rahman</u>, S.L.Raghavan and P.K.Sukumaran. 1980. On the gonadial abnormalities in Silver carp. <u>J.InlandFish</u>.Soc.India., 12(2):101-102.
- 5. **Rahman,M.F.** 1981. An interesting case of a rodent in the stomach of <u>Wallago attu</u> (Schneider). J. Inland Fish. Soc. India., 13(1):89.
- 6. <u>Rahman,M.F.</u>, B.V.Govind and S.L.Raghavan. 1987. Osteological malfoemation in Silver Carp. J.Inland Fish.Soc.India., 19(2): 67-68.
- 7. **Rahman, M.F.** 1988. Instances of forked barbels in Puntius <u>Pukelli</u> (Day) and <u>Mystus vittatus</u> (Bloch). Curr. Res., 17: 68.
- 8. **Rahman M.F.**, S.L.Raghavan, P.K. Sukumaran and S.Ayyappa digestive 1986. A freak digestive system in Cirrhinus mrigala (Hamilton). J. Inland Fish. Soc.India., 21(2): 52-53.
- 9. Rahman, M.F. 1993. Fish in relation to public health .K P C News Letter.
- 10. Rahman, M.F. 2000. Fish as fighters. Deccan Herald Science Column.
- 11. **Rahman, M.F.** 2000. Ornamental fishes in relation to Publi health. <u>Infoaquaria</u>. 3: 10 11.
- 12. **Rahman, M.F.** 2010. On the asymmetrical eyes in <u>Heteropneustes fossils</u> (Bloch). Fish. Chimes., 29(12): 66.
- 13. **Rahman.M.F.** 2010. Inland equatic resources of India, Their Conservation and utilization. http://wghis.ces.iisc.ernet:in/biodiversity/sahyadri-enews/newlette/issue 14/index.htm

ZOOLOGICAL NOTES:

- 1. **Rahman.M.**F and K.V.Rajagopal. 1976. Occurrence of <u>Inchthyophis beddomi</u> Peters in South Kanara, Karnataka. <u>Sci.</u> & <u>Cult.</u>, 44(4):187-188.
- 2. **Rahman,M.F.** 2011. On the occurrence of the fresh water Medusa, <u>Limnocnida indica</u> (Annandale in the Bhadra Reservoir, Chikmagalur, Karnataka. Fish.Chimes.,31(2):49 &52.
- 3. <u>Rahman, M.F.</u> and P.Basavaraj. 2013. On the occurrence of the fresh water Medusa, <u>Limnocnida indica</u> Annandale in the Varada river, Haveri district, Karnataka. Sci. &Cult.(In Press).

BOOK:

- 1. Kowtal, G.V., M.F.Rahman, H.N.Chandrasekharaiah and S.L.Raghavan. 2002. FRESHWATER AND MARINE FISHER OF KARNATAKA. Soc.Ad.Aquqcult.,Bangalore.
- 2. SCIENTIFIC PAPERS COMMUNICATED/ IN PRESS:
- 3. **Rahman , M.F.** on the occurrence of catla X Rohu hybrid specimen in Tattihalla reservoir , Uttara kannada, Karnataka . Asian J. Exptal. Sci.
- 4. Rahman ,M.F. and S.L Raghavan. Aquatic invertebrate fauna of Bangalore Urban and Rural districts . J.Zool.
- 5. **Rahman ,M.F.** and S.L Raghavan , on the distribution of aquatic vegetation in the Bangalore Urban and Rural districts <u>J. aqua . Biol</u> .
- 6. Rahman ,M.F. Freash water Molluscan fauna of Karnataka . J. Bombay nat. Hist.Soc.
- 7. **Rahman ,M.F.** Fish Ladders. Fish . chimes.
- 8. **Rahman ,M.F.** Utilisation of running water channels for fish production in Karnataka . MysoreJ. agric .sci.
- 9. Rahman ,M.F. Fish diversity of the river Dandavati, soraba taluk, shimoga district.
- 10. **Rahman ,M.F.** Ichthyofaunal diversity of the Anjanapur reservoir, shimoga district ,Karnataka . <u>MysoreJ.</u> agric .sci.
- 11. **Rahman ,M.F.** Distribution range of <u>Puntius puckelli</u> (Day) in Tattihalla reservoir (Uttara kannada) and Kerihole stream (Hassan) <u>Geobios.</u>
- 12. Rahman, M.F. on the taxonomy of puntius dorsalis (Jerdon) and puntius puckelli (Day).
- 13. **Rahman ,M.F** on the distribution of African catfish , <u>Clarias gariepinus</u> (Burchell) in Karnataka Waters (on going studies).
- 14. Rahman ,M.F Ichthyofauna of Markonahalli reservoir , Tumkur district , Karnataka . (Mysore J. agric . Sci.
- 15. **Rahman ,M.F** Effect of Hydel-power projects on the Fin-fish diversity of the river kali , Uttara Kannada , Karnataka .
- 16. Rahman ,M.F Fish and fisheries of Vanivilas Sagar Reservoir , chitradurga district , Karnataka.

2) Publications of Dr. B. C Nagaraj, Asst. Professor, Dept., of Environmental Science, Bangalore University, Bangalore, Karnataka.

- Usha Rao, Venkatesh Nayak S.V, Nagaraja B.C., K. A., Shylaja, Chandrasekhar U. M.& Ramachandra Swamy H., (2000) A contribution to flora of Chikmagalur district Karnataka. *Journal of Taxonomy and Economic Botany* 24 (2) 349-357.
- 2. Venkatesh Nayak S.V, Ramachandra Swamy H., **Nagaraja B.C**., Usha Rao & Chandrasekhar U.M. (2000) Farmer's attitude towards Sustainable management of Soppina Betta Forest in Sringeri area of the Western Ghats, South India. *Forest Ecology and Management* 132: 223-241.
- 3. **Nagaraja,B.C.**, Somashekar, R.K., and Ramachandraswamy, H (2002).Restoration of Indian rain forest: use of Australian *Acacia auriculiformis* as a nurse crop for establishing Indigenous trees in Sringeri area of the Western Ghats south India. *Forests, Trees and Livelihoods*. Vol.11, pp.368-371.
- 4. C. M. Shastri, D. M. Bhat, **B. C. Nagaraja**, K.S, Murali and N. H. Ravindranath. (2002) Tree species diversity in a village ecosystem of Uttara Kannada District, in Western Ghats Karnataka, *Current Science* vol.82, No.9, pp. 1080-1084.
- 5. **Nagaraja, B.C.**, Jagannatha Rao, Sudha., P and Ravindranath, N.H (2003). Participatory Silviculture for Joint forest Management. *Van Sahyog*, August- September pp 10-15.
- 6. Jagannatha Rao, R., Sudha, P., **Nagaraja, B.C.**, Bhat, P.R. and Ravindranath, N.H. 2003. Status of Joint Forest planning and management (JFPM) in Karnataka: A decade experience. *Myforest*, September, Vol. 39 (3) Pp 233-245.
- 7. **Nagaraja, B.C** and R.K. Somashekar, 2004. Changes in Soil Characteristics of Natural Forests upon replacement with Monoculture plantations in Sringeri area of the Western Ghats, South India. *Ecology, Environment and Conservation* 10(4) pp. 391-397.
- 8. **Nagaraja, B.C.,** R.K.Somashekar and M. Bunty Raj, (2005).Tree species Diversity and Composition in Logged and Unlogged Rainforest of Kudremukh National Park, South India. Environmental Biology 26(4) pp 230-241.
- 9. Sudha, P., Ramprasad, V., Bhat, P.R., Murthy, I.K., Jagannatha Rao, R., Hedge, G.T., **Nagaraja, B.C.,** Shastri, C.M., Nagendra, M.D.V., Khan, H., Shetty, D.M., Hegde, G.N., Murali, K.S. and Ravindranath, N.H. (2006) 'Forest protection and regeneration under joint forest planning and management in Eastern Plains and Western Ghats of Karnataka, India', International Journal of. Environment and Sustainable Development, Vol. 5, No. 1, pp.70–84.
- 10. Indu. K. Murthy, D.M. Bhat, G.T. Hedge, **B.C. Nagaraja**, K.S. Murali, G. Sangeetha, P.R. Bhat, C.M. Shastri, R. Rao Jagannatha and N.H. Ravindranath, (2006) Tree Diversity and Carbon Sinks: Role of Village Agro-ecosystems in the Western Ghats, Karnataka, India, International Journal of Agricultural Sustainability, Volume: 3, Number: 2, pp. 114–121.
- 11. Somashekar RK, **Nagaraja B.C**. and Kavya Urs (2008). Monitoring of forest fires in Bhadra Wildlife Sanctuary, Journal of Indian Society of. Remote Sensing, Vol. 36:99-104. Springer publishers.
- 12. Somashekar, R.K., P. Ravikumar . C.N. Mohan Kumar . K.L. Prakash . **B.C. Nagaraja** (2009) Burnt Area Mapping of Bandipur National Park, India using IRS 1C/1D LISS III data. Journal of Indian Society of Remote Sensing, 37:77–90. Springer publishers.

- 13. Sunil, C., Somashekar, RK., **Nagaraja, BC.** 2010. Riparian vegetation assessment of Cauvery River Basin of South India. Environment Monitoring and Assessment, 170: 545–553. DOI 10.1007/s10661-009-1256-3. Springer publisher.
- 14. **Nagaraja, B.C.**, Sunil. C and Kavitha. A. (2010) Payment for ecosystems services A new strategy for biodiversity conservation in India. Carmlight. 7:177-186.
- 15. **Nagaraja, B.C.**, Bunty Raj, M., Kavitha. A and Somashekar, R. K. (2011). Impact of rural community harvesting practices on plant biodiversity in Kudremukh National Park, India International Journal of Biodiversity Science, Ecosystem services & Management. Taylor & Francis publishers (in Press).
- 16. **Nagaraja, B.C.**, Somashekar, R.K., Niki Maskey & Sunil, C. (2011). Regeneration of native woody species under monoculture plantations of Kudremukh National Park, Western Ghats of South India International Journal of Biodiversity Science, Ecosystem services & Management. Taylor & Francis publishers (In press).
- 17. Sunil, C., Somashekar, RK., **Nagaraja, BC** (2011). Human distressed forest in Riparian areas of Cauvery Wildlife Sanctuary, Karnataka, India. International Journal of Biodiversity Science, Ecosystem services & Management. Taylor & Francis publishers. (Under review).
- 18. Sunil, C., Somashekar, RK., **Nagaraja**, **BC** (2011). Riparian vegetation dynamics across two different landscapes of river Cauvery in Kodagu region of Western Ghats. Journal of Mountain science. Springer publishers (under review).
- 19. **Nagaraja**, **B.C.** Chethana. C. Somashekar, R.K., (2011). Forest biodiversity of shoal ecosystem of Kudremukh National Park. Journal of Mountain science (under review).
- 20. **Nagaraja, B.C.** and Somashekar, R.K (2011) Role of Traditional Tribal Homestead Agro-ecosystems on Biodiversity Conservation A Case Study from Western Ghats, South India. International Journal of Biodiversity Science, Ecosystem services & Management. Taylor & Francis publishers. (Under review).
- 21. C.M. Shastri, D.M.Bhat, **B.C.Nagaraja**, K.S., Murali and N.H.Ravindranath (2001). Agroforestry in a humid tropical village ecosystem in Western Ghats: present status and future implications. Technical Report No. 89, Center for Ecological Science, Indian Institute of Science, Bangalore, India.
- 22. K.S. Murali, Indu K. Murthy, **B.C.Nagaraja** and N.H. Ravindranath (2003). A decade of JFM in India and its Ecological Impacts in Ed. V.K Bahuguna, Kinsuk Mitra, Doris Capistrano and Sushil Saigal "Root to Canopy Regenerating forests through community state partnerships, published by Commonwealth forestry Association India chapter and Winrock foundation, pp 275-296.
- 23. **Nagaraja. B.C.**, Somashekar, R.K and Bunty Ran. M. 2003. Impact of logging on Plant Biodiversity and Composition of the residual stand after twenty years of logging in Kudremukh national park, south India. In proceedings of Seminar pp. 8-13 on Eco-restoration, biodiversity Conservation and Sustainable Development, on June 3-5 2003, organized by Environmental research Academy, International, Visakhapatnam, India.
- 24. **Nagaraja, B.C** and Somahsekar, R.K. 2003. Role of Afforestation and Reforestation on Biodiversity Conservation and sustaining community Livelihood: a case from Southern Western Ghats, India. A paper presented in 5th International Science Conference on the Human Dimensions of Global Environmental Change Research community on 16-18 October 2003, Montreal, Canada. Paper is available on open meeting website at: http://sedac.ciesin.columbia.edu/openmeeting/
- 25. **Nagaraja**, **B** C, Somashekar, R K, Mahendra Kumar, M C and Bunty Raj, M, 2005. Tree Resource Mapping of Jnana Bharathi Campus, Bangalore University pp- 218-224. In Proceeding of Application of Remote Sensing in Environment Management edited by R. K. Somashekar and M.A.R Iyenger, Bangalore University.

- 26. **Nagaraja, B.C.**, Somashekar, R.K. and Bunty Raj, M. 2004. Medicinal plant species richness in tribal village a case from Central Western Ghats, India, pp. 136-138. In proceedings of National Seminar on Natural Resource Management for sustainable Development, organized by Bangalore University on 3-4 December 2004, Bangalore, Karnataka.
- 27. Shwetha M. Setty, R.K.Somashekar, **B. C. Nagaraja**, and Nageswara Rao, P. P, 2005. Study of Green cover of Bangalore City by using Remote Sensing and Geographical Information System, pp-170-175. In Proceeding of Application of Remote Sensing in Environment Management edited by R. K. Somashekar and M.A.R Iyenger, Bangalore University.
- 28. **Nagaraja, B. C.,** Somahsekar, R. K, and Kavitha. A 2009. Community Perception towards Sustainable Management of Farmer Forests of Western Ghats, South India. A paper presented in 2009 open meeting of the Human Dimensions of Global Environmental change of theme "Social Challenges of Global change" 26 30 Apri 2009, Bonn, Germany. Paper is available on open meeting website at: http://www.openmeeting2009.org.
- 29. Sudha P, Bhat P R, Jagannatha Rao R, **Nagaraja B C**, Hegde G T, Shastri C M, Hegde G N, Shetty D M, Murali K S, Bhat D M and Ravindranath N H (2004). Joint Forest planning and Management in Karnataka: its spread, performance and impact. In: Joint Forest Management in India Spread, Performance and Impact. (Eds) Ravindranath N H and Sudha P, Universities Press (India) Private Limited, Hydarbad, India.
- 30. Jagannatha Rao R, Sudha P, **Nagaraja B C** (2004). Joint forest Planning and Management in Eastern Plains, Karnataka: spread, Performance and impact. In: Joint Forest Planning and Management in Karnataka. (Eds) Sudha P, Bhat P R, Jagannatha Rao R, Indu K Murthy, and Ravindranath N H, Ecological and Economics Research Network, Centre for Ecological Sciences, Indian Institute of Sciences, Bangalore.
- 31. Jagannatha Rao R, Sudha P, Bhat P R, Hegde G T, **Nagaraja B C** and Ravindranath N H (2004). Awareness and Capacity building programmes under Joint Forest Planning and Management. In: Joint Forest Planning and Management in Karnataka. (Eds) Sudha P, Bhat P R, Jagannatha Rao R, Indu K Murthy, and Ravindranath N H, Ecological and Economics Research Network, Center for Ecological Sciences, Indian Institute of Sciences, Bangalore.
- 32. **Nagaraja B** C and Sudarshan H C (2004). Marketing of harvested forest products by village community in Baroor village, Bidar forest division, Karnataka. In: Joint Forest Planning and Management in Karnataka. (Eds) Sudha P, Bhat P R, Jagannatha Rao R, Indu K Murthy, and Ravindranath N H, Ecological and Economics Research Network, Center for Ecological Sciences, Indian Institute of Sciences, Bangalore.
- 33. **Nagaraja, B. C.,** Somahsekar, R. K, and Kavitha. A 2010. Impact of climate change on poor farmers of Karnataka. Paper presented in International conference on "Climate change and Security" organized by The Royal Norwegian Society of Sciences, which is to be held at Trondheim, Norway from 21 to 24.
- 34. **Nagaraja, B.C.,** Somashekar, R.K., and Ramachandraswamy, H (2002). An assessment of the performance of native forest species in the wastelands of Western Ghats, Karnataka, India. Forests, Trees and Livelihoods Vol. 11 pp. 364-367.
- 35. **Nagaraja**, **B.C** and R.K. Somashekar, 2004. Changes in Soil Characteristics of Natural Forests upon replacement with Monoculture plantations in Sringeri area of the Western Ghats, South India. Ecology, Environment and Conservation 10(4) pp. 391-397.
- 36. **B.C.Nagaraja**, R.K.Somashekar, H, Ramachandra Swamy (1998) Is Exotic Silviculture detrimental to Tropical Forest soils? Poster presentation in International conference on conservation of Tropical species communities and ecosystem. December 2-6, 1998 Trivandrum, Kerala, India.

- 37. **B.C.Nagaraja** and R.K. Somashkear 2001. Soil of Western Ghats An overview Paper presented in Second workshop cum peer review on soil, at institute of wood science and technology (Indian Council of Forestry Research and Education), Bangalore on 15th and 16th February 2001.
- 38. Murthy I K, Hegde G T, Ramprasad V Bhat P R, Jagannatha Rao R, **Nagaraja B C**, Shastri C M, Shetty D M, Hegde, G N, Nagendra M D V, Khan H, Sudarsan H C (2004). Ecological impacts of Joint Forest Management in Karnataka: In: Joint Forest Management in India Spread, Performance and Impact. (Eds) Ravindranath N H and Sudha P, Universities Press (India) Private Limited, Hydarbad, India.
- 39. **Nagaraja. B.C**. (2009). Land Use Change Implications on Forest and Agro-Ecosystems: Indian Perspective. Pp 125-129 In "Science and Technology Drivers for a Common Future" Proceedings of the 2nd German-Indian Conference on Research for Sustainability: Energy and Land Use Published by Federal Ministry of Education and Research (BMBF), Division 721: Basic Policy Issues: Cultural Science, Sustainability, Environmental Law 53175 Bonn, Germany.
- 40. Ashish Aggarwal, Mishra T K, **Nagaraja B C**, Bhat P R, Jagannatha Rao R, Maiti S K, Mandal D K, Ramprasad V, Nagendra M D V and Khan H (2004). Joint forest Management: Lessons from case studies. In: Joint Forest Management in India Spread, Performance and Impact. (Eds) Ravindranath N H and Sudha P, Universities Press (India) Private Limited, Hydarbad, India.
- 41. **Nagaraja, B.** C., Somashekar, R.K and Manamohan Rao (2000). Performance of native species in 33 month after introduction to wasteland of Sringeri area, Western Ghats, Karnataka. In Proceeding of seminar on Energy and Environment for Sustainable development, organized by Tirupathi University on March 2000. pp 52-62.
- 42. **Nagaraja, B.** C., R.Jagannatha Rao, K. S. Murali, D.M. Bhat and N.H.Ravindranath. 2002. Review of Silvicultral practices adopted in India: its implications on participatory forest management in India. Technical Report No.97, Center for Ecological Science, Indian Institute of Science, Bangalore, India.
- 43. **Nagaraja,B.C.**, Sudha., Jagannatha Rao and Ravindranath, N.H. 2003. Biodiversity conservation and Sustainable Management of Forests under JFM: A Community Perspective from Karnataka. In Proceeding of the INSEE's 3rd Biannial conference on "Biodiversity and Quality of Life" to be held during 18-20 December 2003 at Kolkata.
 - **44. Nagaraja, B.C** (2000). Polyculture Afforesataion using native species on Wastelands of Sringeri area of Western Ghats. Ph.D. Thesis submitted to Bangalore University.

Annexure-4

// Note //

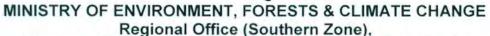
Four Applications challenging the implementation of the Yettinahole Project questioning certain environmental aspects have been filed before the National Green Tribunal [SZ], Chennai of which one application No.303/2014 has been dismissed as not maintainable. The issues raised against the project commonly in these applications are the following;

- Commencement of work in non-forest area of the project without obtaining clearance for diversion of forest land required by the project under the Forest (Conservation) Act, 1980 as being violative of the guidelines issued by the MOEF (Gol).
- ii. Doubts about availability of 24.01 TMC of water estimated for the project.
- iii. Since filling-up of 527 minor irrigation tanks using 8.967 TMC of water had been envisaged in the DPR, this had to be construed as an irrigation project requiring environmental impact assessment under the Environment (Protection) Act before commencement of the project.
- iv. The diminution in the water flow of the streams would impact the environment downstream.
- 2. The competent authority of the MOEF has, after detailed examination of the proposal and inspection of the project area, granted the first stage in-principle clearance for diversion of 13.93ha of forest land for the project subject to compliance with certain conditions for grant of final clearance. The first stage in-principle approval under the FC Act issued by the Central Government is to be treated as the working permission for commencement of work in the forest area if the required funds for compensatory afforestation, net present value, etc. and all such other compensatory levies specified

in the in-principle approval are realized from the user agency whereupon the competent authority in the State Government will issue an order for commencement of work in the forest area. KNNL is taking necessary steps in this regard. Therefore, the undertaking of work in non-forest area is now a non-issue. Moreover, the KNNL had been executing the work in the non-forest area prior to the first stage clearance based on the guidelines issued by the MOEF in respect of linear projects like construction of road, railway lines, canals, etc.,

3. The issues regarding water availability, filling-up of minor irrigation tanks and environmental impact downstream have been addressed by the MOEF while according in-principle approval for diversion of 13.93 ha of forest land after the opponents of the project who are also applicants before the NGT were heard by the Regional Empowered Committee[REC] of MOEF. The proceedings of the 7th & 8th meetings of the REC held on 18.12.2015 and 28.12.2015 respectively which deals with all these issues and the in-principle approval granted by the MOEF vide letter dated 6th January 2016 are **enclosed.** The following observations made by the REC at their 7th meeting held on 18.12.2015 may be taken note of with regard the sustainable improvement of the environment that this project will cater to.

"The project is being implemented by laying underground pipelines and also closed aquaducts in the valley portions in order to maintain the gradient. It is further observed that as stated in the project report, the Eastern part of Karnataka is frequently affected due to erratic rainfall and absence of any assured source of water for drinking purposes for the populace as well as livestock in the region, and the ground water table in these regions has reached alarming depths due to over exploitation, as a


consequence of which available ground water is contaminated with harmful salts like fluoride, nitrate, etc., in excess of permissible level. Implementation of the project will be beneficial for recharging of the ground water through which the dependant population and livestock will get portable water, thus overall health of the people is expected to improve and will also improve the ecosystem in the target area, which is much larger than the area being diverted for the project."

भारत सरकार

GOVERNMENT OF INDIA

Kendriya Sadan, IVth Floor, E& F Wings, 17th Main Road, IInd Block, Koramangala, Bangalore – 560 034,

Tel.No.080-25635905, E.Mail: rosz.bng-mef@nic.in

BY SPEED POST

F.No.4-KRC 1064/2015-BAN/ 7826 Dated the 6th January, 2016

To

The Additional Chief Secretary to Government of Karnataka, Forest, Ecology & Environment Department, M.S. Building, Dr. Ambedkar Veedhi, Bangalore – 560 001.

Subject:

Diversion of 13.93 ha. of forest land in various forest areas of Sakelespura taluk in Hassan District for implementation of Yettinahole project in favour of Executive Engineer, Karnataka Neeravari Nigam Limited (KNNL).

Sir.

I am directed to refer to the State Government's letter No.FEE 136 FLL 2014 dated 19/08/2015 on the above mentioned subject seeking prior approval of the Central Government under Section'2' of the Forest (Conservation) Act, 1980.

The proposal was examined by the Regional Empowered Committee constituted under sub-rule (1) of rule 4A of the Forest (Conservation) Rules, 2003 in its meeting held on 28/12/2015 and Committee approved the proposal subject to certain conditions.

After careful examination of the proposal of the State Government and on the basis of the approval of the Regional Empowered Committee, the Central Government hereby conveys the in-principle approval (Stage-I) for diversion of 13.93 ha. of forest land in various forest areas of Sakelespura taluk in Hassan District as given in the following table for implementation of Yettinahole project in favour of Executive Engineer, Karnataka Neeravari Nigam Limited (KNNL):-

SI.No.	Name of the Village & Survey No.	Legal status	Area (Ha)	Purpose
(1)	Doddanagara, Sy.No.45	Reserve Forest	0.96	Raising Main
(2)	Kadagarahalli Coffee Estate, Sy.No.1	Reserve Forest	0.89	Weir-6 & submergence
(3)	Aluvalli, Sy.No.47	Deemed Forest	0.75	Weir-6 & submergence
(4)	(4) Aluvalli, Sy.No.24		1.15	Weir-6 & submergence
(5)	Nadahalli, Sy.No.197	Sec-4 notified area	0.56	Raising Main from DC-2 to DC-3

161.

(6)	Kadumane, Sy.No.88	Deemed Forest	3.11	DC-2, Raising Main from DC-2 to DC-3, Raising Main from Weir-3 to DC-24, BPT to DC-2.
(7)	Kadumane, Sy.No.68	Sec-4 notifieda rea	2.72	Construction of Weir-3 & submergence, Electrical Substation & Pump House & Raising Main
(8)	Kadumane, Sy.No.76	Sec-4 notifieda rea	0.80	Raising Main
(9)	Heggadde, Sy.No.385	Sec-4 notifieda rea	2.17	Electrical Substation & Pump House.
(10)	Nadahalli, Sy.No.196	Deemed Forest	0.82	Raising Main from DC-2 to 3.
	TOTAL:		13.93	

This approval shall be subject to fulfillment of the following conditions:-

- The legal status of forest land shall remain unchanged.
- (2) Demarcation of the proposed forest area shall be carried out by erecting cement concrete pillars duly numbered at an interval of 20 mts. at the cost of user agency, before Stage-II clearance.
- (3) The identified non-forest land over an area of 13.93 ha. in Sy.No.343 of Varavu Kaval village, Nayakanahatti Hobli, Challakere taluk, Chitradurga district for Compensatory Afforestation shall be transferred and mutated in favour of Forest Department. The sketch of the non-forest area selected for CA shall also be furnished, before Stage-II clearance.
- (4) The cost of raising Compensatory Afforestation over 13.93 ha. of non forest land shall be deposited by the user agency.
- (5) Forest Department will realise the cost of raising Penal Compensatory Afforestation on 40 ha. of dumping area on either side of the raising main, both in the forest as well as non-forest area, which will be available on implementation of the project.
- (6) The State Government shall charge the Net Present Value of the forest land proposed for diversion of 13.93 ha. from the User Agency as per the orders of the Hon'ble Supreme Court dated 28.03.2008 and 09.05.2008 in IA Nos.826 in 566 with related IA's in Writ Petition (Civil) No.202/1995.

Jal.

- (7) Additional amount of the Net Present Value (NPV) of the diverted forest land if any, becoming due after revision of the same by the Hon'ble Supreme Court of India in future, shall be charged by the State Government from the User Agency. The User Agency shall furnish an undertaking to this effect.
- (8) The User Agency shall make online payment of the cost of CA, Penal CA and NPV with Adhoc- CAMPA through e-payment module of Forest Clearance portal-forestclearance.nic.in.
- (9) User Agency shall provide an undertaking on commencing the pumping operation from 15th June for facilitating ecological flow in the streams for free movement of aquatic fauna during the beginning of the monsoon and closing the pumping operation by October 31st.
- (10) An undertaking from User Agency for maintaining minimum continuous daily average flow of 15 cusecs from all the weirs be ensured during non-flooding days by adjusting the pumping capacity.
- (11) Flow of water through the weirs and quantity of water pumped out from each weir be continuously measured for a period of 2 years from the date of commissioning of the project. Conditions on maintaining the flow and drawal of water in the streams may be revisited after analyzing the data.
- (12) A study on ecological impact of the project on the down stream ecosystem may be initiated through a reputed scientific institution simultaneously, so as to make any course correction on the conditions to be imposed, in future.
- (13) No trees standing on the forest land earmarked for dumping shall be cut.
- (14) The User Agency shall give an undertaking to plant up the land below the power line and along the rising main pipe with soil binding grass with necessary civil structures for the entire length of 78 kms. to protect from soil erosion, at the project cost.
- (15) An undertaking be given by the User agency for planting a minimum of 10,000 plants of tree species which are helpful to bird & bee population as per the advice of the Forest Department all along the pipeline and service road.
- (16) All pending dues under Forest (Conservation) Act, 1980 from the User Agency in respect of all earlier approved projects, if any, shall be realised before issue of Stage-II clearance.
- (17) While executing the project in forest area, the movement of men, vehicles and machinery should be limited to day-time and night camping in forest based worksites should not be permitted. Care should be taken against igniting and spread of fire to the forest vegetation in the project area.
- (18) The project construction works in forest area should be carried out between sunrise and sunset only.

168.

- (19) Blasting works inside forests should be limited to the barest minimum and carried out only during daytime.
- (20) No collection of sand from streambeds inside the forests for construction work shall be permitted.
- (21) Care should be taken to suitably dispose off the free excavated soil/ debris generated at work-sites, outside the river and its banks so as to avoid siltation of the river or its streams.
- (22) Water flow should be ensured downstream of all the weir locations during the period of water harvesting from June to October. Beyond this period the natural flows remain undisturbed as no water is to be pumped out.
- (23) During execution of project elements, for practical reasons, if such project elements become obstructive to the movement of animals, appropriate passage structure should be provided.
- (24) The power lines in the entire project area should be drawn as per the guidelines for drawing power lines in elephant habitats issued by the Ministry of Environment, Forests and Climate Change and other statutory authorities. Minimum height at the null point must be maintained according to these statutory provisions and court orders.
- (25) Automatic weather stations linked to the ICT Center of the Karnataka Forest Department at Bangalore may be established by the user agency at their cost at different locations preferably near existing facilities such as Protection Camps.
- (26) In order to benchmark the present status of ecology in the project area and particularly at the project work-sites survey and videography based study may be instituted at the cost of user agency. This will facilitate monitoring of project sites and decision-making in future.
- (27) Study proposed at condition No.(12) shall also include periodic assessment of cumulative impact of multiple projects in a forested landscape by the regulatory authority. It allows an adaptive management in the landscape and an opportunity to evaluate and re-align the mitigation strategies.
- (28) In view of the mitigation measures suggested, a mitigation plan for minimizing the impact of project on Eco-system, wildlife and its habitat should be prepared by the user agency with the help of scientific institutions having expertise in the matter. Such mitigation plan should be got approved by competent authority in the Forest Department within one year from the date of Stage-II approval to be implemented and enforced through the Forest Department.
- (29) The project authorities are also required to obtain all necessary approvals required under the law governing the project.
- (30) The total forest area utilized for the project shall not exceed 13.93 ha.

161.

- (31) Any other condition that the Additional Principal Chief Conservator of Forests (Central), Regional Office, Bangalore may impose from time to time for protection, improvement of flora and fauna in the forest area and public convenience, shall also be applicable.
- (32) The State Government will constitute a Committee headed by an officer, not below the rank of Chief Secretary to Government, for monitoring the compliance of conditions imposed in this clearance. This Committee shall also ensure that drinking and irrigation water requirement of the downstream population is not affected due to this diversion of water from the Netravati river basin.
- (33) Violation of any of the conditions shall invite penal action, as deemed fit by the Additional Principal Chief Conservator of Forests (Central), Regional Office, Bangalore.

After receipt of the compliance report on the fulfillment of the above conditions from the State Government, formal approval will be considered in this regard under Section-2 of the Forest (Conservation) Act, 1980. This in-principle approval shall be valid for a period of five years. In the event of non-compliance of the above conditions, this in-principle approval shall automatically stand revoked after five years.

Yours faithfully,

S M Somashaki

(S.M. Somashekar) Chief Conservator of Forests (Central)

Copy to:-

- (1) The Director General of Forests & Special Secretary to Govt. of India, Ministry of Environment, Forests and Climate Change, Indira Paryavaran Bhavan, Agni Wing, Aliganj, Jor Bagh Road, New Delhi – 110 003.
- (2) The Principal Chief Conservator of Forests (HoFF), Forests Department, Govt. of Karnataka, Aranya Bhavan, 18th Cross, Malleswaram, Bangalore – 560 003.
- (3) The Additional Principal Chief Conservator of Forests/Nodal Officer (FCA), Office of the Principal Chief Conservator of Forests, Forests Department, Govt. of Karnataka, Aranya Bhavan, 18th Cross, Malleswaram, Bangalore – 560 003.
 - (4) The Executive Engineer, Karnataka Neeravari Nigam Ltd., Yettinahole Project Division No.1, Sakaleshpur, Hassan District (Karnataka)

(5) Guard file.

(S.M. Somashekar)

Aal.

Chief Conservator of Forests (Central)

% A 1116