# The Capacity Development Project for Digital Topographic Mapping in the Federal Democratic Republic of Ethiopia

Final Report (Summary)

September 2016

PASCO Corporation Kokusai Kogyo Co., Ltd.

| EI     |  |
|--------|--|
| JR     |  |
| 16-150 |  |

Currency exchange rates Unit: Ethiopian Birr (ETB) 1 JPY = 4.825 ETB (interbank rate as of August 2016) 1 USD = 105.44 JPY (interbank rate as of August 2016)

# **Table of Contents**

| CHAP  | TER 1 | OUTLINE OF PROJECT                                                | 1   |
|-------|-------|-------------------------------------------------------------------|-----|
| 1-1.  | BACK  | GROUND AND HISTORY OF PROJECT                                     | 1   |
| 1-2.  | Proje | CT PURPOSE, OBJECTIVES AND PRIORITY ITEMS                         | 1   |
| 1-3.  | Prese | ENT STATUS OF EMA                                                 | 2   |
| 1-4.  | Proje | CT TARGET                                                         | 5   |
| 1-5.  | Entir | E SCHEDULE, CONTENTS, TECHNOLOGY TRANSFER AND OUTPUTS OF PROJECT. | 6   |
| CHAP' | TER 2 | EVALUATION AND RECOMMENDATION OF THE STUDY                        | 11  |
| 2-1.  | VERIF | ICATION OF THE ACHIEVEMENT                                        | 11  |
| 2-2.  | RESUI | T OF THE EVALUATION                                               | 13  |
| 2-3.  | CONC  | LUSION                                                            | 15  |
| 2-4.  | RECO  | MMENDATION                                                        | 15  |
| СНАР  | TER 3 | WORKS IN THE FIRST TERM                                           | 21  |
| CHAP' | TER 4 | WORK AND IMPLEMENTATION PLAN FOR THE SECOND TER                   | M29 |
| CHAP  | TER 5 | TECHNOLOGY TRANSFER                                               | 42  |
| 5-1.  | CONT  | ENT OF TECHNOLOGY TRANSFER                                        | 42  |
| 5-2.  | NECES | SSARY EQUIPMENT FOR TECHNOLOGY TRANSFER                           | 46  |
| 5-3.  | OUTPU | UTS OF EACH TECHNOLOGY TRANSFER                                   | 47  |
| 5-4.  | Levei | OF ACHIEVEMENT AND TOTAL EVALUATION OF TECHNOLOGY TRANSFER        | 67  |
| CHAP' | TER 6 | PROJECT IMPLEMENTATION SYSTEM                                     | 69  |
| 6-1.  | WORK  | ASSIGNMENTS OF STUDY TEAM MEMBERS                                 | 69  |
| 6-2.  | Proje | CT IMPLEMENTATION SYSTEM                                          | 70  |
| 6-3.  | Persc | NNNEL PLAN FOR THE STUDY TEAM                                     | 71  |

# List of Figures and Tables

| Figure 1 | EMA Organization Chart                                                                    |
|----------|-------------------------------------------------------------------------------------------|
| Figure 2 | Target Area for Topographic Map Data Creation    5                                        |
| Figure 3 | General Workflow Related to Geospatial Information                                        |
| Figure 4 | Procedure for Website Creation 30                                                         |
| Figure 5 | Conceptual Diagram of Web Environment                                                     |
| Figure 6 | Formulation of Operation Plan and Flow of Implementation/Evaluation                       |
| Figure 7 | EMA's Evaluation Results and Assumed Activities (draft)                                   |
| Figure 8 | Formulation of Operation Plan and Flow of Implementation/Evaluation                       |
|          |                                                                                           |
| Table 1  | Status of EMA and Goals of Each Subject at the Beginning of the Project                   |
| Table 2  | Entire Schedule                                                                           |
| Table 3  | Contents of Work to be Implemented                                                        |
| Table 4  | Technology Transfer Items and Quantities                                                  |
| Table 5  | Outputs etc                                                                               |
| Table 6  | Outcome of the Technology Transfer in Relation to the Project Purposes                    |
| Table 7  | Outcome of the Assistance for the Formulation of Organizational Structures for the        |
| Ach      | ievement of the Project Purposes                                                          |
| Table 8  | Technical Support Required by EMA in the Future 16                                        |
| Table 9  | Support Assumed to be Necessary for the Strengthening of Photogrammetry Technology . $17$ |
| Table 10 | Support Assumed to be Necessary for the Strengthening of Map Creation Technology $18$     |
| Table 11 | Support Assumed to be Necessary for the Strengthening of GIS Technology 18                |
| Table 12 | Support Assumed to be Necessary for the Strengthening of Leveling Technology (Draft) 19   |
| Table 13 | Support Assumed to be Necessary for the Strengthening of Geospatial Information           |
| Man      | agement and Operation                                                                     |
| Table 14 | Surveying Standards                                                                       |
| Table 15 | Discussion on the Work Specifications                                                     |
| Table 16 | Method of the Field Identification                                                        |
| Table 17 | Existing Website Survey Results                                                           |
| Table 18 | Issues for EMA Identified in the First Dispatch Survey                                    |
| Table 19 | Contents of the First Seminar                                                             |
| Table 20 | Results of JCC Discussions and Collected Information                                      |
| Table 21 | Current Work Related to Website Creation                                                  |
| Table 22 | Example of Road Map (Operation Plan)                                                      |
| Table 23 | Activities for Organizational Capacity Building in EMA                                    |
| Table 24 | Coordination with Related Agencies                                                        |
| Table 25 | Outcomes of the Discussion and Information Collected in the Second JCC Meeting 36         |

| Table 26 | Outcomes of the Discussion and Information Collected in the Third JCC Meeting $\ldots$ 37 |
|----------|-------------------------------------------------------------------------------------------|
| Table 27 | Outcomes of the Discussion and Information Collected in the Fourth JCC Meeting 38         |
| Table 28 | Contents of the Discussion and Information to be collected at the Fifth JCC Meeting 39    |
| Table 29 | Contents of the Final Seminar (tentative)                                                 |
| Table 30 | Overall Schedule of Technology Transfer                                                   |
| Table 31 | Concept of Technology Transfer Plan (Phase 1)                                             |
| Table 32 | Concept of Technology Transfer Plan (Phase 2)                                             |
| Table 33 | Equipment and Materials for Technology Transfer                                           |
| Table 34 | Impact and Problems of the Technology Transfer                                            |
| Table 35 | Details of the Technology Transfer in Supplementary Field Verification 48                 |
| Table 36 | Criteria for Evaluation in Supplementary Field Verification                               |
| Table 37 | Details in Installation of Aerial Signals and Photo Control Point Survey 49               |
| Table 38 | Evaluation in Installation of Aerial Signals and Photo Control Point Survey 49            |
| Table 39 | Impact and Problems in Aerial Triangulation/Aerial Photography Planning $\dots \dots 51$  |
| Table 40 | Schedule in Aerial Triangulation/Aerial Photography Planning                              |
| Table 41 | Evaluation in Aerial Triangulation/Aerial Photography Planning                            |
| Table 42 | Schedule of the Technology Transfer in Digital Plotting                                   |
| Table 43 | Evaluation and Issues of the Technology Transfer in Digital Plotting                      |
| Table 44 | Schedule of the Technology Transfer in Digital Editing                                    |
| Table 45 | Evaluation and Issues of the Technology Transfer in Digital Editing                       |
| Table 46 | Schedule of the Technology Transfer in Symbolization                                      |
| Table 47 | Evaluation and Issues of the Technology Transfer in Symbolization                         |
| Table 48 | Technology Transfer Items Related to GIS Structuration and Website Creation 63            |
| Table 49 | Schedule of the Technology Transfer in GIS Structuration and Website Creation 64          |
| Table 50 | Evaluation of the Technology Transfer in GIS Structuration and Website Creation 66        |
| Table 51 | Achievement Level of the Technology Transfer                                              |
| Table 52 | Work Assignments of Study Team Members                                                    |
| Table 53 | Personnel Plan                                                                            |

# Abbreviations

| AT        | Aerial Triangulation                                                |
|-----------|---------------------------------------------------------------------|
| CAD       | Computer Aided Design                                               |
| CODIST    | Committee on Development Information, Science and Technology        |
| DTM       | Digital Terrain Model                                               |
| DEM       | Digital Elevation Model                                             |
| EEPC      | Ethiopian Electric Power Corporation                                |
| EKI       | Ethiopia KAIZEN Institute                                           |
| EMA       | Ethiopian Mapping Agency                                            |
| ENSDI     | Ethiopian National Spatial Data Infrastructure                      |
| GIS       | Geographical Information System                                     |
| GNSS      | Global Navigation Satellite System                                  |
| GPS       | Global Positioning System                                           |
| GSDI      | Geospatial Data Infrastructure                                      |
| GTP       | Growth and Transformation Plan                                      |
| GUI       | Graphic User Interface                                              |
| INSA      | Information Security Agency                                         |
| JCC       | Joint Coordinating Committee                                        |
| NSDI      | National Spatial Data Infrastructure                                |
| M/M       | Minutes of Meeting                                                  |
| OJT       | On the Job Training                                                 |
| OSS       | Open Source Software                                                |
| РСМ       | Project Cycle Management                                            |
| PDM       | Project Design Matrix                                               |
| RCMRD     | Regional Centre for Mapping of Resource Development                 |
| TS        | Total Station                                                       |
| UNCE-GGIM | UN Committee of Experts on Global Geospatial Information Management |
| UNECA     | United Nations Economic Commission for Africa                       |
| USAID     | United States Agency for International Development                  |

# Chapter 1 Outline of Project

# 1-1. Background and History of Project

The Growth and Transformation Plan (GTP), a five-year development plan, was launched in Ethiopia in 2010, with a particular focus on agriculture, regional development, industry and infrastructure. Accurate and reliable topographic maps are indispensable for efficient and effective implementation of the projects in each sector and provision of topographic maps to meet demand from related agencies is required.

The Ethiopian Mapping Agency (EMA) in the Ministry of Finance and Economic Development, the organization responsible for creating national maps of Ethiopia, has been engaged in medium-scale topographic mapping of the entire country since the 1970s and has created topographic maps covering 85% of the country. However, 90% of the created maps have been created based on analog technology. Also, when the topographic maps were created, there were no written and organized work specifications or accuracy control standards nor was the quality of the topographic maps controlled, so no accurate and reliable digital topographic maps that reflect the latest data such as are needed by the related agencies have been created or are available.

Against the background described above, due to the heightened need for creation and upgrading of digital topographic maps, technical assistance was requested for (1) the establishment of work specifications for digital topographic mapping, (2) technology transfer in mapping, and (3) promotion of the utilization of digital topographic map data.

In response to this request, JICA dispatched a Detailed Planning Study Team in May 2013 and held discussions with EMA, the implementing organization of the Government of Ethiopia, on topographic mapping of the area around Mojo and Adama in the State of Oromia and the related technology transfer. The Record of Discussions (R/D) was signed on July 29, 2013. Cooperation will be provided for the Project based on the above-mentioned R/D.

# 1-2. Project Purpose, Objectives and Priority Items

# (1) **Project Purpose**

The overall goal of the Project and the project purpose are as described below.

# **Overall Goal**

To create an accurate and reliable national spatial database to promote sustainable development of the economic and social infrastructure

# **Project Purpose**

- (1) To develop 1/10,000 and 1/25,000 digital topographic map data of an area of approximately 1,140km<sup>2</sup> around Mojo and Adama in the Regional State of Oromia
- (2) To build the capacity of EMA itself to develop digital topographic maps through technology transfer, to attain a technical level at which it can perform digital topographic mapping independently based on an appropriate organizational framework, and to enable EMA to implement and manage topographic mapping projects

#### (2) **Project Objectives**

The objectives of the Project are as follows.

- To create topographic maps on a scale of 1/10,000 and topographic maps on a scale of 1/25,000 by generalization of an area of approximately 1,140km<sup>2</sup> around Mojo and Adama in the State of Oromia
- To enable EMA to appropriately implement and manage topographic mapping projects

## (3) **Project Priority Items**

Based on the background and purpose of the Project, the Study Team will implement the Project with priority given to the following items.

- To create "accurate and reliable" digital topographic map data based on "uniform standards"
- To strengthen "EMA's organizational structure" based on "improvement of the technical level of EMA staff" to enable EMA to implement and manage topographic mapping projects independently
- To provide assistance for formulation of an organizational structure that enables EMA to implement and manage utilization of geospatial information independently

# **1-3.** Present Status of EMA

# (1) Structure of EMA

The present status of EMA is as shown below.

The main departments of EMA related to technical aspects of the Project are the Mapping Directorate, Survey Directorate, GIS & Remote Sensing Directorate, IT Directorate and Quality & Standards Directorate. The Planning and Business Development Directorate is mainly engaged in providing support for the entire EMA organization.

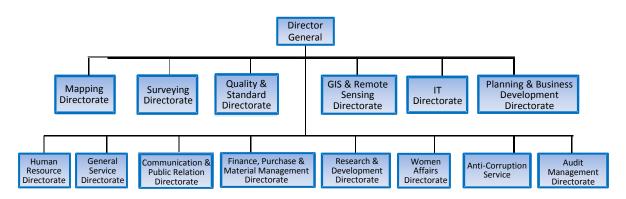



Figure 1 EMA Organization Chart

# (2) Status of EMA at the Beginning of the Project

The present status of EMA was summarized to clarify the problems in "achieving a technical level where digital topographic mapping can be performed independently by EMA" and "enabling EMA to implement and manage topographic mapping projects" as stated in the project purpose.

As a result, the means of attaining the goals to be implemented in the Project with the aim of resolving the issues of EMA were decided as follows.

|            |                                                                         | Item                                                          | Present Status                                                                                                                                                                              | Goal and Means of Achievement                                                                                                                                                                                                                                               |  |  |  |  |
|------------|-------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|            | urvey<br>nent                                                           | Transit<br>EDM /Total<br>station with<br>accessories          | EMA has a lot of equipment, but<br>maintenance is a problem due to the lack<br>of managers.                                                                                                 | Attainment of reliable, high-accuracy outputs<br>by provision of the latest GNSS receivers and                                                                                                                                                                              |  |  |  |  |
|            | Ground survey<br>equipment                                              | GPS<br>Receiver with<br>accessories<br>Level with             | EMA has 4 Ashtechs and 4 Leicas<br>(including analysis software), but they<br>are outdated and accuracy is low.<br>EMA has a lot of analog and digital                                      | analysis software for use in photo control<br>point survey                                                                                                                                                                                                                  |  |  |  |  |
| Equipment  |                                                                         | accessories<br>ogrammetric<br>pment                           | equipment.<br>EMA has 3 LPS, but functions and<br>maintenance contents are limited.                                                                                                         | Provision of digital photogrammetric system<br>to enable implementation of processes<br>involved in topographic mapping                                                                                                                                                     |  |  |  |  |
| Equi       | Plotting, editing,<br>symbolization and<br>structuralizing<br>equipment |                                                               | EMA has ArcInfo and CAD, but adequate environment is required.                                                                                                                              | Provision of the latest equipment and add-ons<br>to enable plotting, editing, symbolization and<br>structuration of topographic data, and<br>provision of the hardware to run the software<br>and improve office environment                                                |  |  |  |  |
|            | Web                                                                     | site                                                          | EMA has a website, but web distribution contents and environment maintenance are required.                                                                                                  | Creation of a website to enable distribution of topographic maps over the internet                                                                                                                                                                                          |  |  |  |  |
|            |                                                                         | printing<br>pment                                             | EMA has analog offset equipment. EMA<br>has 2 HP plotters, but for selling new<br>digital topographic maps, quality and<br>speed are required.                                              | Provision of A0 plotter to enable distribution<br>of high quality topographic maps                                                                                                                                                                                          |  |  |  |  |
|            | Com                                                                     | imon                                                          | Executives have a fair level of skill, but<br>improvement of workers' level is<br>required.                                                                                                 | Creation of manuals and diffusion of<br>technology for improvement of skills at<br>worker level                                                                                                                                                                             |  |  |  |  |
|            | Aeri<br>plan                                                            | al photography<br>ning                                        | EMA has attained a certain level, but<br>work management and accuracy control<br>are required.                                                                                              | Technology transfer in theory and software<br>operation aiming at aerial photography<br>planning using software                                                                                                                                                             |  |  |  |  |
|            | Insta<br>signa                                                          | Illation of aerial<br>als                                     | Operating experience corresponding to<br>the conditions of photo-scale and<br>installation location is required.                                                                            | Technology transfer in installation of aerial<br>signals according to work specifications to<br>enable work to be performed appropriately<br>under different conditions                                                                                                     |  |  |  |  |
| Technology | selec<br>man                                                            | o control point<br>ction, survey, data<br>agement             | EMA has a certain level of observation<br>technology, but skill in photo control<br>point surveys is required. Data<br>management is required for efficient<br>management of acquired data. | Technology transfer focused on photo control<br>point survey by enabling the staff to do<br>planning and accuracy control by themselves                                                                                                                                     |  |  |  |  |
|            | (DE                                                                     | al triangulation<br>M creation and<br>ng, orthophoto<br>tion) | EMA has a certain level of skill, but<br>work management and accuracy control<br>are required.                                                                                              | Technology transfer to improve work<br>efficiency by raising process management and<br>accuracy control knowledge and skill                                                                                                                                                 |  |  |  |  |
|            | Field                                                                   | lidentification                                               | Improvement in understanding of work<br>management and quality control from a<br>leadership position and review and<br>organization of the field identification<br>manual are required.     | The target is to implement the supplementary<br>field verification with leadership of EMA<br>engineers throughout the whole process as<br>much as possible. Quality and process control<br>will be implemented by progress management<br>and document checking at the time. |  |  |  |  |

 Table 1
 Status of EMA and Goals of Each Subject at the Beginning of the Project

|                        | Item                                | Present Status                                                                                                                                                                                                                                                     | Goal and Means of Achievement                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | Digital plotting<br>Digital editing | Work experience in digital stereo<br>environment is inadequate.<br>Experience in data creation using latest<br>CAD software is required.                                                                                                                           | Technology transfer classified by stages:<br>theory/basic skills acquisition period, practice<br>period, process control/efficiency<br>improvement period, and pilot period, to<br>achieve level that takes into account<br>process/quality control and work efficiency                                                                                                                  |  |  |  |  |
|                        | Supplementary field verification    | Work quality was inadequate due to the lack of practical experience in working independently.                                                                                                                                                                      | As work involves arranging for vehicles and<br>accommodation, etc. and expense burden is<br>high, technology transfer in the form of OJT<br>will be implemented focused on work<br>efficiency to improve cost effectiveness when<br>EMA does own work.                                                                                                                                   |  |  |  |  |
|                        | Symbolization                       | The level of digital technology is low at<br>the initial stage.<br>There is a lack of skills at worker level.                                                                                                                                                      | Technology transfer to enable understanding<br>of map symbol rules and creation of symbols<br>and symbolization based on map symbol rules<br>Technology transfer in pilot area                                                                                                                                                                                                           |  |  |  |  |
|                        | GIS structuration                   | Experience in data creation using latest GIS software is required.                                                                                                                                                                                                 | Technology transfer to enable structuration of<br>topographic map data and creation of GIS<br>model samples that will serve as utilization<br>tools<br>Technology transfer in pilot area                                                                                                                                                                                                 |  |  |  |  |
| station                | Promotion of<br>utilization         | Lack of management structure with<br>related agencies inside and outside<br>Ethiopia for utilization of topographic<br>maps.<br>Little need for analog topographic maps<br>and not much of a track record in their<br>sale.                                        | Establishment of JCC and holding of regular<br>meetings, collaboration with projects in<br>Ethiopia and abroad, advertising activities and<br>seminars<br>Study of needs for utilization of topographic<br>maps by considering collaboration with<br>related events as well as strengthening of<br>delivery and sales management systems<br>Technology transfer in website operation for |  |  |  |  |
| ent & Ope              | Process control                     | Skill in management of web distribution<br>is required.         Need for establishment of management<br>system for costs and schedule                                                                                                                              | the improvement of operation skills<br>Assistance for formulation of organizational<br>structure for work optimization                                                                                                                                                                                                                                                                   |  |  |  |  |
| Management & Operation | Quality control                     | EMA has materials containing quality<br>control standards, but needs to increase<br>universal use<br>Need for improvement of quality control<br>process                                                                                                            | Consideration of work specifications in<br>discussions<br>Inclusion of quality control in each<br>technology transfer item                                                                                                                                                                                                                                                               |  |  |  |  |
|                        | Topographic map<br>management       | Analog topographic maps are managed<br>and sold by inventory control, but<br>experience in digital distribution is<br>required.                                                                                                                                    | Assistance for formulation of organizational<br>structure to heighten needs by promotion of<br>utilization and improve distribution system<br>based on needs                                                                                                                                                                                                                             |  |  |  |  |
|                        | blishment of work<br>fications      | Digital aerial photography standards,<br>1/10,000 scale standards, 1/25,000 scale<br>standards and topographic map sheet<br>reference system standards have been<br>established, but classification and<br>definition of topography and features are<br>inadequate | Establishment of work specifications based on<br>existing materials for development of highly<br>versatile data and smooth project operation<br>and management                                                                                                                                                                                                                           |  |  |  |  |
| Finar                  | ncial aspect                        | Trend is toward growth, but percentage<br>accounted for by personnel expenses is<br>considerably high.<br>Significant allocation to policy expenses<br>and equipment purchase/replacement<br>costs is considered difficult.                                        | Assistance for improvement of environment<br>by provision of equipment<br>Assistance for cost and schedule management<br>system, and reduction of burden by improved<br>work efficiency through technology transfer<br>in each field                                                                                                                                                     |  |  |  |  |

# 1-4. Project Target

# (1) Target Area for Creation of Topographic Map Data

The target area for creating topographic map data in this Project is the range shown in the map below. It is an area of approximately 1,140km<sup>2</sup> (the country covers an area of approximately 1,130,000km<sup>2</sup>) around Mojo and Adama in the State of Oromia.

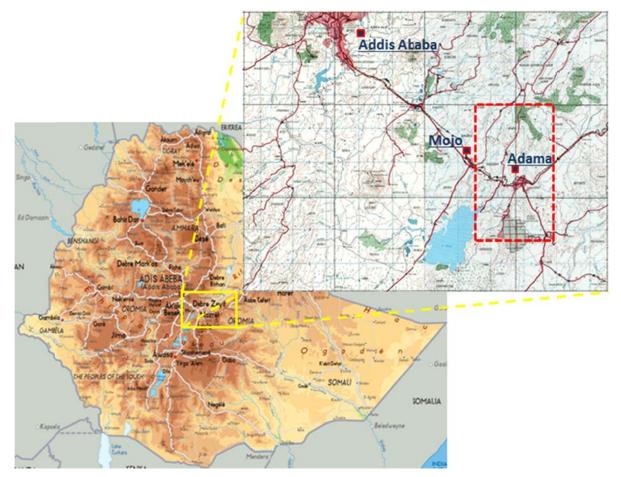



Figure 2 Target Area for Topographic Map Data Creation

# (2) Process of Target Area Selection

There has been a plan in the Government of Ethiopia to construct a new highway and railway connecting Addis Ababa (the capital of Ethiopia) and the country of Djibouti.

This project area has been selected from the following conditions: The city of Adama and Mojo is existing belong the construction area; a large scale plantation area along the way has been confirmed; regarding to the 5-year GTP, high potentials of agriculture, rural development and infrastructure development can be found.

# (3) Target of Technology Transfer

The figure below shows a simplified general workflow from creation to utilization of geospatial information. In view of the present status and problems of EMA described above, all the work except aerial photography is included in the technology transfer in this Project, taking into account the workflow of the entire project for topographic mapping.

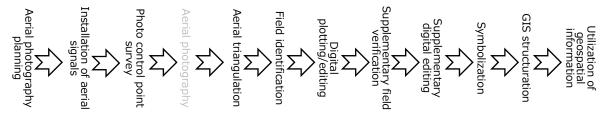



Figure 3 General Workflow Related to Geospatial Information

# 1-5. Entire Schedule, Contents, Technology Transfer and Outputs of Project

The entire process, outline and amount of each work together with the outputs of the Project are shown below.

## (1) Entire Schedule

The entire cooperation period is approximately five years from October 2013 to 2018, divided into three phases. The first term of the Project ends in May 2014 during Phase 1 and the second term starts in the following June.

|                     | This Project |   |    |    |       |   |   |   |           |           |    | After the Project |      |     |        |      |    |   |     |   |          |    |    |      |    |    |      |           |    |    |         |    |    |     |    |           |    |          |         |
|---------------------|--------------|---|----|----|-------|---|---|---|-----------|-----------|----|-------------------|------|-----|--------|------|----|---|-----|---|----------|----|----|------|----|----|------|-----------|----|----|---------|----|----|-----|----|-----------|----|----------|---------|
|                     |              |   |    |    |       |   |   |   |           |           |    |                   |      |     | Pha    | se 1 |    |   |     |   |          |    |    |      |    |    |      |           |    |    | Phase 2 |    |    |     |    |           |    |          | Phase 3 |
| Fiscal Year         |              |   |    | 20 | 13    |   |   |   |           |           |    |                   | 20   | )14 |        |      |    |   |     |   |          |    |    |      |    |    | 2015 | i         |    |    |         |    |    |     |    | 201       | 5  | ~ 2018   |         |
| Month               | 10           | 1 | .1 | 12 | 1     | 2 | 3 | 4 | 5         | 6         | 7  | 8                 | 9    | 10  | 11     | 12   | 1  | 2 | 2 3 | 3 | 4        | 5  | 6  | 7    | 8  | 9  | 10   | 11        | 12 | 1  | 2       | 3  | 4  | 5   | 6  | 7         | 8  | 9        | 10 ~    |
| WORT                | 1            |   | 2  | 3  | 4     | 5 | 6 | 7 | 8         | 9         | 10 | 11                | . 12 | 13  | 14     | 15   | 16 | 1 | 7 1 | 8 | 19       | 20 | 21 | 22   | 23 | 24 | 25   | 26        | 27 | 28 | 29      | 30 | 31 | 32  | 33 | 34        | 35 | 36       | 37 ~    |
| Term                |              |   |    | 1s | t tei | m |   |   |           |           |    |                   |      |     |        |      |    |   |     |   |          |    | 2n | d te | rm |    |      |           |    |    |         |    |    |     |    |           |    |          |         |
| Work in<br>Ethiopia | 1            |   |    |    |       | U |   |   |           |           |    |                   |      |     |        |      | ٠  |   |     |   |          |    |    |      |    |    | L    |           |    |    | C       |    |    | ) C |    |           |    |          |         |
| Work in<br>Japan    |              |   |    |    |       |   |   | 1 |           |           |    | 1                 | 1    |     | I<br>T |      |    | T | T   |   |          |    |    |      |    |    |      |           |    |    |         |    |    |     |    |           |    |          |         |
| Report              | IC/          |   |    |    |       |   |   | F | Ř<br>R/R1 | ▲<br>IC/R | 2  |                   |      |     |        |      |    |   |     | 1 | ▲<br>T/R |    |    |      |    |    |      | A<br>PR/F | 2  |    |         |    |    |     |    | ▲<br>DF/F |    | ▲<br>F/R |         |

Table 2Entire Schedule

| Term            | Implementation item                                                                                  | Qty.                 | Remarks                                                                                                                      |  |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                 | Creation of work specifications                                                                      | 1 set                | Work specifications, map symbol rules,<br>quality/accuracy control manual, specifications<br>of digital topographic map data |  |  |  |  |  |  |  |
| 1 <sup>st</sup> | Verification, preparation of images, etc.                                                            | 1 set                | Aerial triangulation, verification of orthophoto accuracy                                                                    |  |  |  |  |  |  |  |
| 1               | Field identification                                                                                 | 1,140km <sup>2</sup> | 1/10,000 54 map sheets                                                                                                       |  |  |  |  |  |  |  |
|                 | Website creation                                                                                     | 1 set                | Existing website survey                                                                                                      |  |  |  |  |  |  |  |
|                 | Assistance for implementation of organizational capacity building                                    | 1 set                | EMA organization management survey                                                                                           |  |  |  |  |  |  |  |
|                 | Promotion of utilization                                                                             | 1 each               | Opening seminar, 1 <sup>st</sup> JCC meeting                                                                                 |  |  |  |  |  |  |  |
|                 | Digital plotting/editing                                                                             | $1,140 \text{km}^2$  | 1/10,000 54 map sheets                                                                                                       |  |  |  |  |  |  |  |
|                 | Generalization                                                                                       | 1,140km <sup>2</sup> | 1/25,000 6 map sheets                                                                                                        |  |  |  |  |  |  |  |
|                 | Symbolization (1/10,000)                                                                             | $1,140 \text{km}^2$  | 54 map sheets                                                                                                                |  |  |  |  |  |  |  |
|                 | Symbolization (1/25,000)                                                                             | $1,140 \text{km}^2$  | 6 map sheets                                                                                                                 |  |  |  |  |  |  |  |
|                 | Digital data structuration (1/10,000)                                                                | 1,140km <sup>2</sup> | 54 map sheets                                                                                                                |  |  |  |  |  |  |  |
| $2^{nd}$        | Digital data structuration (1/25,000)                                                                | $1,140 \text{km}^2$  | 6 map sheets                                                                                                                 |  |  |  |  |  |  |  |
| 2               | Creation of data files                                                                               | 60 files             | 1/10,000 (54 map sheets), 1/25,000 (6 map sheets)                                                                            |  |  |  |  |  |  |  |
|                 | Website creation                                                                                     | 1 set                |                                                                                                                              |  |  |  |  |  |  |  |
|                 | Assistance for formulation of<br>organizational structure &<br>utilization of geospatial information | 1 set                |                                                                                                                              |  |  |  |  |  |  |  |

# (2) Contents of Project Implementation

 Table 3
 Contents of Work to be Implemented

# (3) Technology Transfer

 Table 4
 Technology Transfer Items and Quantities

# Phase 1

| Item                                        | Work Content                         | Outline of Technology Transfer                                                            | Implemented<br>Quantity |  |  |
|---------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                             | Creation of photography plan         | Formulation of photography plans according to photo-scale                                 | 5 practice areas        |  |  |
| Aerial photography planning/Installation of | Field reconnaissance point selection | Field reconnaissance to select installation points for aerial signals and installation of | A prestice points       |  |  |
| aerial signals                              | Installation of aerial signals       | aerial signals                                                                            | 4 practice points       |  |  |
|                                             | Accuracy control                     | Accuracy control of photography plan and aerial signals                                   | 1 set                   |  |  |
|                                             | GPS survey                           | S survey Calculation of coordinate values by                                              |                         |  |  |
|                                             | GPS analysis                         | measuring installed aerial signals using GNSS equipment and analysis of results           | 4 practice points       |  |  |
| Photo control point survey                  | Leveling                             | Theoretical accuracy training                                                             | 1 set                   |  |  |
|                                             | Accuracy control                     | Accuracy control of photo control point survey                                            | 1 set                   |  |  |
|                                             | Aerial triangulation                 | Understanding of theory of aerial                                                         | 2 blocks on scale       |  |  |
|                                             | by aerial photo                      | triangulation and implementation of actual                                                | of around 5 photo       |  |  |
| Aerial triangulation                        | images                               | observation and adjustment calculation                                                    | control points          |  |  |
| orthophotos/DTM                             | DTM                                  | Understanding of theory of DTM creation                                                   |                         |  |  |
| ormophotos/DTM                              | creation/editing                     | and ortho-creation and implementation of                                                  | Two 1/10,000            |  |  |
|                                             | Creation of                          | DTM creation and editing and orthoimage                                                   | sheets                  |  |  |
|                                             | orthoimages                          | creation                                                                                  |                         |  |  |

| Item                                                                                                | Work Content                                                            | Outline of Technology Transfer                                                                                                                                                                              | Implemented<br>Quantity                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
|                                                                                                     | Pre-interpretation                                                      | Understanding of map symbols, acquisition<br>items and acquisition standards<br>Pre-interpretation of target items of field<br>identification                                                               |                                                            |  |  |  |
| Field                                                                                               | Field identification                                                    | Field identification and gathering of required feature information                                                                                                                                          | OJT for EMA<br>technical staff (8                          |  |  |  |
| identification/Supplementary<br>field verification                                                  | Supplementary field verification                                        | Supplementary field verification at doubtful<br>points by plotting and editing processes, and<br>identification and verification in the field                                                               | teams/16 persons)<br>over 1,140km <sup>2</sup>             |  |  |  |
|                                                                                                     | Compilation of results                                                  | Compilation of identification and<br>supplementary verification results and<br>creation of materials                                                                                                        |                                                            |  |  |  |
| Digital plotting                                                                                    | Digital plotting using aerial photo images                              | Understanding of map symbols, acquisition<br>items and acquisition standards<br>Acquisition of position information of<br>features by digital plotter<br>Decipherment of feature type by digital<br>plotter | 15 1/10,000 map<br>sheets                                  |  |  |  |
|                                                                                                     | Accuracy control                                                        | Accuracy control of plotting results                                                                                                                                                                        | 1 set                                                      |  |  |  |
|                                                                                                     | Digital editing                                                         | Understanding of operation of CAD software<br>Addition of field identification and                                                                                                                          |                                                            |  |  |  |
| Digital editing/<br>Supplementary digital<br>editing/Generalization                                 | Supplementary digital editing                                           | supplementary field verification results to<br>plotting data and correction<br>Understanding of data error detection and<br>correction techniques                                                           | Two 1/10,000 map<br>sheets                                 |  |  |  |
|                                                                                                     | Generalization                                                          | Generalization according to procedures                                                                                                                                                                      | One 1/25,000 map sheet                                     |  |  |  |
|                                                                                                     | Accuracy control                                                        | Accuracy control of editing results                                                                                                                                                                         | 1 set                                                      |  |  |  |
| Symbolization                                                                                       | Allocation of<br>symbols to<br>topographic map<br>data                  | Understanding of theory of mapping and map<br>symbols<br>Symbolization according to procedures                                                                                                              | Two 1/10,000 map<br>sheets<br>One 1/25,000 map<br>sheet    |  |  |  |
| GIS structuration/<br>Website creation                                                              | Creation of GIS<br>database                                             | Understanding of conversion technique from<br>CAD to GIS format and implementation of<br>data conversion<br>Understanding of GIS software operation<br>Creation of number of GIS models                     | Two 1/10,000 map<br>sheets<br>One 1/25,000 map<br>sheet    |  |  |  |
|                                                                                                     | Website operation<br>and maintenance                                    | Understanding of skills required for website operation and maintenance                                                                                                                                      | To be negotiated<br>with EMA                               |  |  |  |
| Promotion of utilization                                                                            | Grasping of need for<br>use of topographic<br>maps                      | Establishment and running of JCC and liaison with related agencies                                                                                                                                          | JCC: 5 times<br>Individual<br>interview: as<br>appropriate |  |  |  |
| Technology transfer to<br>enable EMA to implement<br>topographic map creation<br>projects by itself | Accuracy control by<br>process<br>Creation of accuracy<br>control table | Implementation independently by EMA of<br>process control, quality control and manual<br>creation for each process                                                                                          | 1 set per<br>technology transfer                           |  |  |  |

| Item                               | Work Content                   | Outline of Technology Transfer                                                                                                 | Implemented<br>Quantity |  |  |  |  |  |
|------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Creation of project<br>management  | Creation of manual             | Creation of manual from project planning to implementation and evaluation                                                      | 1 set                   |  |  |  |  |  |
| manual                             | Updating of manual             | Update of manual by EMA itself as required                                                                                     |                         |  |  |  |  |  |
| Process control                    | Basics of process control      | Understanding of importance of process control<br>and creation of appropriate project process sheet                            | 1 set                   |  |  |  |  |  |
|                                    | Process control                | Process control based on created process sheet                                                                                 |                         |  |  |  |  |  |
| Quality control                    | Basics of quality control      | Understanding of importance of quality control,<br>quality standards, content and approach to<br>quality control               | 1 set                   |  |  |  |  |  |
|                                    | Process control                | Quality control in each process                                                                                                | -                       |  |  |  |  |  |
|                                    | Product management             | Quality control of products                                                                                                    |                         |  |  |  |  |  |
| Strengthening of topographic map   | Formulation of management plan | Establishment of manager, management method<br>and operational procedures for management of<br>map sheets and data             | 1 set                   |  |  |  |  |  |
| management system                  | Topographic map<br>management  |                                                                                                                                |                         |  |  |  |  |  |
| Strengthening of                   | Formulation of sales plan      | Establishment of prices of topographic maps, sales manager, sales outlet and terms of use                                      | 1                       |  |  |  |  |  |
| topographic map<br>sales structure | Sale of topographic maps       | 1 set                                                                                                                          |                         |  |  |  |  |  |
| Website creation                   | Operation of website           | Understanding of website operating procedures<br>Understanding of public data update method<br>Website operation by EMA itself | 1 set                   |  |  |  |  |  |
| Promotion of utilization           | Holding of seminars            | Planning and holding of seminars on initiative of EMA                                                                          | 1 set                   |  |  |  |  |  |

# Phase 2

# (4) **Products**

| Table 5 Outputs etc.   |                                                              |                                        |                                                                                           |
|------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|
|                        | Item                                                         | Quantity                               | Remarks                                                                                   |
|                        | Inception Report 1                                           | Japanese 5 copies<br>English 15 copies | First term<br>10 English copies to EMA<br>5 Japanese copies and 5 English copies to JICA  |
|                        | Progress Report 1                                            | Japanese 5 copies<br>English 15 copies | First term<br>10 English copies to EMA<br>5 Japanese copies and 5 English copies to JICA  |
|                        | Inception Report 2                                           | Japanese 5 copies<br>English 15 copies | Second term<br>10 English copies to EMA<br>5 Japanese copies and 5 English copies to JICA |
|                        | Interim Report                                               | Japanese 5 copies<br>English 15 copies | Second term<br>10 English copies to EMA<br>5 Japanese copies and 5 English copies to JICA |
| Study<br>report        | Progress Report 2                                            | Japanese 5 copies<br>English 15 copies | Second term<br>10 English copies to EMA<br>5 Japanese copies and 5 English copies to JICA |
|                        | Draft Final Report                                           |                                        | Second term                                                                               |
|                        | Main Report                                                  | English 15 copies                      | 10 English copies to EMA                                                                  |
|                        | Summary                                                      | English 15 copies                      | 5 Japanese (Summary) copies and 5 English                                                 |
|                        | Summary in Japanese                                          | Japanese 5 copies                      | copies to JICA                                                                            |
|                        | Final Report                                                 |                                        | Second term                                                                               |
|                        | Main Report                                                  | Japanese 5 copies                      | 10 English copies to EMA                                                                  |
|                        |                                                              | English 15 copies                      | 5 Japanese copies and 5 English copies to JICA                                            |
|                        | Summary                                                      | Japanese 10                            | 10 English copies to EMA                                                                  |
|                        |                                                              | copies                                 | 10 Japanese (Summary) copies and 5 English                                                |
|                        | Quality Control Report                                       | English 15 copies                      | copies to JICA                                                                            |
|                        | Field Survey Results                                         | 1 set                                  | 1 set to EMA                                                                              |
|                        | Digital Data Files                                           | 1 Set                                  |                                                                                           |
|                        | 1/10,000 and 1/25,000                                        | 2 sets                                 | 1 set to EMA, 1 set to JICA                                                               |
|                        | topographic map data                                         | 2 5005                                 |                                                                                           |
|                        | 1/10,000 and 1/25,000<br>GIS base data                       | 2 sets                                 | 1 set to EMA, 1 set to JICA                                                               |
|                        | 1/10,000 and 1/25,000<br>topographic map data,<br>PDF format | 3 sets                                 | 1 set to EMA, 2 sets to JICA                                                              |
| Outputs                | Orthophotos                                                  | 2 sets                                 | 1 set to EMA, 1 set to JICA                                                               |
| 1                      | Final Report                                                 | 1 set                                  |                                                                                           |
|                        | Quality Control Report                                       | 2 sets                                 | 1 set to EMA, 1 set to JICA                                                               |
|                        | Booklet                                                      |                                        |                                                                                           |
|                        | A3 size                                                      | 33 sets                                | 33 sets to related agencies                                                               |
|                        | Original size                                                | 6 sets                                 | 5 sets to EMA, 1 set to JICA                                                              |
|                        | Work Manual                                                  | 1 set                                  | 1 set to EMA                                                                              |
|                        | Others                                                       | 1 set                                  |                                                                                           |
|                        | Acquisition inventory<br>(survey equipment, etc.)            | 1 set                                  | Marshly (Calusities Lee HCA has 10 <sup>th</sup> af fallensing                            |
| Work report            |                                                              |                                        | Monthly (Submitted to JICA by 10 <sup>th</sup> of following month)                        |
| Collected<br>materials |                                                              | <b>2</b> 00 K t t                      | List sorted by category is attached                                                       |
| PR<br>materials        |                                                              | 200 digital copies<br>in English       | 150 copies to EMA, 50 copies to JICA                                                      |
| Digital files          |                                                              | 1 CD-R                                 | About 20 digital images (in JPEG format) and record table                                 |
|                        | M/M, etc.                                                    |                                        |                                                                                           |
| Others                 | Documents for/from the<br>Government of Ethiopia             |                                        |                                                                                           |

Table 5Outputs etc.

# **Chapter 2** Evaluation and Recommendation of the Study

# 2-1. Verification of the Achievement

### (1) Input

The contents of the input from the Japanese side to the project, *i.e.* the dispatch of experts, training in Japan and provision of equipment (including that for topographic mapping), were appropriate and the input was utilized effectively in the project.

# (2) Output

- 1) A work manual on digital topographic mapping has been created.
- 2) Digital topographic maps (of an area of 1,140km<sup>2</sup> at the scales of 1/10,000 and 1/25,000) have been created in Japan.
- 3) EMA has become able to plan, implement and manage digital topographic mapping and conduct trouble-shooting in it independently.
- 4) The digital topographic maps created in the project have been made available to the public and a system required for the provision of the maps to users has been established.
- 5) Technologies for digital topographic mapping have been accumulated and an organizational structure and a responsibility-sharing system required for implementing mapping projects systematically have been established in EMA.

Almost all the outputs have been achieved. It has been decided that the outputs of this project shall be made available to the public on the Geoportal of EMA free of charge.

The engineers who participated in the technology transfer in this project have become able to create 1/10,000 and 1/25,000 topographic maps at a steady pace. The technologies for the work scheduling and schedule management have been transferred to them in the project. Therefore, they are expected to be able to implement projects similar to this one in future in accordance with a pre-determined work schedule. In addition, because the training on the quality control in each stage in the mapping was provided to the staff members in the Quality and Standard Directorate of EMA as part of the technology transfer, systems responsible for both schedule management and quality control are considered to have been established.

#### (3) Progress in the Achievement of the Project Purposes

< Project Purpose >

- To develop 1/10,000 and 1/25,000 digital topographic map data of an area of approximately 1,140km2 around Mojo and Adama in the Regional State of Oromia
- 2) To build the capacity of EMA itself to develop digital topographic maps through technology

transfer, to attain a technical level at which it can perform digital topographic mapping independently based on an appropriate organizational framework, and to enable EMA to implement and manage topographic mapping projects

During the project period, 54 sheets of 1/10,000 digital topographic maps (of an area of 1,140km<sup>2</sup>) were created and six sheets of 1/25,000 digital topographic maps (of the same area) were created with the generalization of these 1/10,000 topographic maps.

The engineers who participated in the technology transfer have improved their technical capacity to the level at which they can at least create quality-controlled 1/10,000 and 1/25,000 topographic maps by themselves. They have become able to implement and manage topographic mapping projects of EMA through the experience in preparing the "Work Manual," "Product Specifications" and "Accuracy Control Manual" and compiling them into the "Project Management Manual."

| Item                                              | Outcome                                                                                                                         |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Aerial photography                                | Became able to formulate photography plans in according to the photography scale by using the software developed in this study. |  |
| planning/Installation<br>of aerial signals        | Became able to perform point selection according to the photography conditions and at clear locations on the aerial photograph. |  |
|                                                   | Became able to install aerial signals based on the work specifications.                                                         |  |
| Photo control point survey                        | Became able to use procured equipment (GPS receiver, analysis software) in practical work.                                      |  |
| Aerial triangulation/                             | Understood the theories of aerial triangulation and DTM.                                                                        |  |
| Orthophotos/DTM                                   | Understood the operation of digital photogrammetry system.                                                                      |  |
| Field identification/                             | Understood the operation of the equipment used.                                                                                 |  |
| Supplementary field                               | Understood the theory of field identification and became able to collect information which is                                   |  |
| verification difficult from photo interpretation. |                                                                                                                                 |  |
|                                                   | Understood map specifications, acquisition standards and acquisition procedures.                                                |  |
| D:=:+=1 =1=++:==                                  | Understood 3D interpretation.                                                                                                   |  |
| Digital plotting                                  | Reached the level capable of plotting on a scale of 1/10,000 and 1/25,000 by themselves and                                     |  |
|                                                   | application to other scales may be expected.                                                                                    |  |
| Digital editing/                                  | Understood the operation of CAD software.                                                                                       |  |
| Supplementary digital                             | Understood the methods of detecting and correcting errors in data and creating polygons.                                        |  |
| editing/Generalization                            |                                                                                                                                 |  |
| Symbolization                                     | Understood the theory of mapping.                                                                                               |  |
| bymbonzation                                      | Understood map symbols and 1/10,000 and 1/25,000 map symbolization.                                                             |  |
| GIS structuration                                 | Understood the conversion technique from CAD to GIS format.                                                                     |  |
|                                                   | Understood the operation of GIS software.                                                                                       |  |
| Website creation                                  | Understood the website operation technology.                                                                                    |  |

 Table 6
 Outcome of the Technology Transfer in Relation to the Project Purposes

| Target                                             | Item                                                                                                    | Outcome                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accurate and reliable map                          | Creation of work specifications                                                                         | Work specifications were created.                                                                                                                                                                                                                                                                                                                                                                               |
| creation by<br>EMA                                 | Acquisition of Basic<br>Technology                                                                      | All the operators who participated in the technology transfer acquired basic skills.                                                                                                                                                                                                                                                                                                                            |
|                                                    | Creation of wide use manuals                                                                            | Wide use manuals were created and utilized also in the technology transfer.                                                                                                                                                                                                                                                                                                                                     |
|                                                    | Implementation of pilot area operations                                                                 | Operators who participated in the technology transfer reached the level capable of implementing the operations by themselves.                                                                                                                                                                                                                                                                                   |
| Accurate and<br>reliable map<br>creation by<br>EMA | Efficient work implementation                                                                           | Joint operations across the directorates within EMA ("Planning and<br>Business Development Directorate", "Surveying Directorate",<br>"Mapping Directorate", "GIS & Remote Sensing Directorate", "IT<br>Directorate", "Quality & Standards Directorate") were carried out<br>through the technology transfers and creation of "Adama Tourist Map",<br>which clarified the roles and schemes of each directorate. |
| Development<br>of data<br>creation/update          | Implementation of process control                                                                       | Performance of different levels of operators was understood through<br>the technology transfer, which laid the foundation for independent<br>process planning by EMA.                                                                                                                                                                                                                                           |
| structure                                          | Implementation of quality control                                                                       | EMA became able to perform quality control in accordance with the quality control manual and accuracy control table by themselves based on an understanding of quality control method.                                                                                                                                                                                                                          |
|                                                    | Development of sustainable<br>management and operation<br>structure of topographic map<br>creation work | Utilization of the servers and viewers procured in this study laid the foundation for independent and sustainable management of topographic maps by EMA.                                                                                                                                                                                                                                                        |
|                                                    |                                                                                                         | Through the seminar and JCC, importance of national geographic<br>information management was shared and the roles of stakeholders and<br>each party were clarified.                                                                                                                                                                                                                                             |
|                                                    | Information exchange and coordination with related                                                      | Direction of the analysis and utilization of the outputs of this study<br>were shared, while the needs of potential users were grasped.                                                                                                                                                                                                                                                                         |
| Development<br>of easy to use<br>environment       | organizations centered on EMA                                                                           | International presence of EMA and the geographical information<br>managed by EMA was enhanced as the presentation by EMA at an<br>international conference was supported by the Study Team.                                                                                                                                                                                                                     |
| for digital<br>topographic<br>maps                 |                                                                                                         | At the meeting with "Djibouti City GIS Committee", relationship for<br>sharing information on GIS promotion was established.                                                                                                                                                                                                                                                                                    |
|                                                    | Specific proposals for utilization                                                                      | With respect to the creation of "Adama Tourist Map" utilizing the output of this study, the Study Team supported EMA and obtained an outcome during the study period.                                                                                                                                                                                                                                           |
|                                                    | Development, management<br>and operation of provision<br>method                                         | This study led to the creation of data that can be uploaded to and<br>downloaded from the existing geoportal and laid the foundation for<br>independent and sustainable sale of topographic maps by EMA.                                                                                                                                                                                                        |

# Table 7Outcome of the Assistance for the Formulation of Organizational Structures for the<br/>Achievement of the Project Purposes

# 2-2. Result of the Evaluation

# (1) Relevance

The project is considered to be highly relevant because of the reasons mentioned below.

The project was formulated in accordance with the "Country Assistance Policy" for Ethiopia, which stipulated the direction of Japan's assistance to Ethiopia.

Meanwhile, "agriculture development" and "infrastructure" development, which were expected to be the main areas of utilization of the outputs of this project, continued to be priority areas in the "Second Growth and Transformation Plan (2015/16 - 2019/20)" (draft as of September 2015). In addition, geospatial information is essential for the improvement of the "tax administration" and "land

administration," which are mentioned in the draft plan as issues to be addressed. For these reasons, this project is considered to be consistent with the policy of the Government of Ethiopia.

As the Government of Ethiopia announced that the Information Security Agency (INSA) should develop National Spatial Data Infrastructure during the project period, EMA and INSA will have to coordinate in the creation and management of geospatial data.

# (2) Effectiveness

This project is considered to have been highly effective for the following reason.

As mentioned in "2-1 Verification of Achievement, (3) Progress in the Achievement of the Project Purposes" above, the project purposes have been achieved with the achievement of the project outputs.

#### (3) Efficiency

This project is considered to have been highly efficient for the following reasons.

The quantity, quality and timing of the inputs in this project were appropriate. The project has managed to produce more outputs than planned in the assistance to the establishment of an organizational structure for the topographic mapping in the scales other than 1/10,000 or 1/25,000, the assistance in the creation of tourism maps of the project area as a way to utilize the topographic maps created in this project and the preparation of a recommendation on a viewer for the management and browsing of the data owned by EMA.

#### (4) Impact

No negative impact of this project has been observed so far. The three positive impacts mentioned below have emerged.

- 1) The equipment for the photo control point survey that has already been provided to EMA in response to a strong request of EMA is being utilized in the work of EMA.
- EMA received an order for work including aerial triangulation, creation and editing of DEMs and orthophoto creation during this project period. EMA is implementing the work using the technologies learned and equipment provided in this study.
- 3) EMA began its own project of creating 1/10,000 topographic maps of the area around the study area of this project in order to increase the area coverage of 1/10,000 topographic maps while this project was in progress.

#### (5) Sustainability

With regard to the sustainability of the technical capacity, EMA is fully utilizing the technologies and equipment provided in this project in a project for photogrammetry and topographic mapping ordered by the Government of Ethiopia during the project period. In addition, EMA is expected to continue utilizing the technologies and equipment in the similar projects.

Greater impact on the organizational sustainability of this project is expected from disseminating the outputs transferred to EMA in this project within EMA, particularly for the training of inexperienced young staff members.

Free provision of the outputs of this project on the Geoportal is expected to lead to continuous utilization of the topographic map data, which is expected to contribute to the sustenance of the data utilization system.

# 2-3. Conclusion

The results of the evaluation of the implementing processes of this project and the evaluation of the project on the five DAC criteria suggest that the project purposes were achieved within the project period.

# 2-4. Recommendation

Recommendations on the requirements for sustaining and extending the project outcome after the completion of the project for the achievement of the overall goal, "to create an accurate and reliable national spatial database to promote sustainable development of the economic and social infrastructure" are described in the following.

#### (1) Requirements for the sustenance and extension of the project outcome

It is considered necessary to provide the support as described in the following table in order for EMA to continuously create, update and manage geographical information data for accurate and reliable national spatial database and for such database to be utilized for "sustainable development of the economic and social infrastructure".

| Table 6 Technical Support Required by EMA in the Future                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Item                                                                                           | Theme                                                                                                                                                                                                                                                                                                   | Contribution to overall goal                                                                                                                                                                                                                                                                                                      |  |  |
| Strengthening of<br>photogrammetry<br>technology                                               | • Development of structure suitable for<br>large-scale operations<br>(aerial triangulation, DEM creation and<br>editing, orthoimage creation)                                                                                                                                                           | Establishment of this scheme will facilitate the creation of highly accurate and high-resolution ortho images that can be utilized for cadaster and city planning.                                                                                                                                                                |  |  |
| Strengthening of<br>topographic map creation<br>technology                                     | • Extension of technology to<br>inexperienced engineers within EMA<br>(digital plotting, digital editing,<br>symbolization)                                                                                                                                                                             | By improving the EMA's productivity in the creation of topographic maps, establishment of a structure enabling the creation of geographical information of the necessary regions and at the necessary level of accuracy at an adequate cost and within an appropriate time period can be expected.                                |  |  |
| Strengthening of GIS<br>technology of EMA and<br>user organizations                            | <ul> <li>Development of GIS engineers capable<br/>of training users<br/>(GIS data creation and analysis,<br/>application to practical work)</li> </ul>                                                                                                                                                  | Improvement of the technology for utilization of<br>national spatial database of users and<br>stakeholders involved in the economic and<br>social infrastructure can be expected.                                                                                                                                                 |  |  |
| Strengthening of leveling technology                                                           | <ul> <li>Technology transfer in determining<br/>elevation for utilization of continuously<br/>operating reference stations<br/>(Support to planning of leveling)</li> </ul>                                                                                                                             | Accuracy and reliability of the national spatial database in the aspect of "height" will be enhanced.                                                                                                                                                                                                                             |  |  |
| Establishment of structure<br>for the management and<br>operation of geospatial<br>information | <ul> <li>Formulation of topographic map update plans</li> <li>Strengthening of the data sharing system/promotion of data sharing</li> <li>Elimination of the duplication in aerial photography, survey and topographic mapping</li> <li>Training and permanent employment of human resources</li> </ul> | Provision of the latest and easy-to-use digital<br>data is made possible by equipping EMA with<br>operating capacity and organizational structure<br>required for the efficient and sustainable<br>creation of geospatial data and by enabling the<br>information sharing between EMA and other<br>survey/planning organizations. |  |  |

 Table 8
 Technical Support Required by EMA in the Future

### (2) Recommendations for Phase 3

In view of the results of this study, it was decided that specific initiatives should be strengthened in Phase 3 with respect to the following items.

1) Strengthening of photogrammetry technology

EMA has been receiving a growing number of requests for the creation of large-scale high-accuracy geospatial information from relevant agencies and it is considered that this work will continue to exist for a certain period to come. Accordingly, it is necessary to set up a production system to handle such requests. However, EMA does not have adequate skilled manpower and technology for large-scale high-accuracy photogrammetry.

As such, technology transfer should be implemented for the purpose of improving the creation technology and establishing the production system. Necessary equipment should be procured at the same time.

Major contents of the technology transfer are as follows.

| Item                        | Matters requiring<br>focus         | Contents                                                                                                                                                                                                                                                                             | Input (proposed)                                                                                      |
|-----------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Aerial<br>triangulation     | Work planning,<br>progress control | Accurate planning based on adequate inspection<br>of 4,000 to 5,000 images and understanding of<br>the degree of difficulty in performing the work                                                                                                                                   |                                                                                                       |
|                             | Improvement of work<br>efficiency  | Improvement of efficiency in designing<br>"description of control point" and photo control<br>point observation<br>Automatic setting of tie point observation<br>parameters in accordance with the topography<br>and image quality<br>Establishment of adjustment calculation method |                                                                                                       |
|                             | Quality control                    | by combining different software<br>Improvement of efficiency in error detection and<br>correction by combining different software<br>Strengthening of troubleshooting capability                                                                                                     | <japanese side=""><br/>Expert (1 person)</japanese>                                                   |
|                             | Work planning,<br>progress control | Clarification of work method to avoid over<br>specifications and standardization of quality<br>among operators                                                                                                                                                                       | DEM editing software<br>(2 sets)<br><ethiopian side=""><br/>Engineers<br/>(4 - 8 persons)</ethiopian> |
| DEM creation<br>and editing | Improvement of work<br>efficiency  | Division of work area in accordance with the<br>processing capabilities of PC and software as<br>well as topography                                                                                                                                                                  |                                                                                                       |
| 6                           | Quality control                    | Effective combination of editing tools<br>Division of work taking advantage of the<br>characteristics of different DEM editing software                                                                                                                                              |                                                                                                       |
|                             | Work planning,<br>progress control | Development of a system to avoid work bottlenecks                                                                                                                                                                                                                                    |                                                                                                       |
| Orthophoto<br>creation      | Improvement of work<br>efficiency  | Understanding of appropriate mosaic line<br>acquisition method<br>Removal of cloud and haze                                                                                                                                                                                          |                                                                                                       |
|                             | Quality control                    | Development of the line and feedback system<br>from ortho inspection to DEM modification                                                                                                                                                                                             |                                                                                                       |

# Table 9 Support Assumed to be Necessary for the Strengthening of Photogrammetry Technology Technology

2) Strengthening of topographic map creation technology

The staff who attended the technology transfer by the Study Team should act as the instructors for technology transfer to the EMA staff to achieve the widespread use of the technology. Support should be provided for the implementation of this technology transfer. Specific details are as follows.

persons)

| Item                | Matters requiring focus                                                | Contents                                                                                                                                                       | Input (proposed)                                    |
|---------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Digital<br>plotting | Training of beginner-class<br>engineers by skilled engineers<br>of EMA | Development of digital plotting operators<br>through practice in the areas with existing<br>aerial photographs of which 1/10,000 maps<br>have not been created |                                                     |
|                     | Acquisition of plotting technology for different scales                | Plotting of Addis Ababa 1/5,000<br>topographic map data                                                                                                        |                                                     |
|                     | Training of beginner-class<br>engineers by skilled engineers<br>of EMA | Development of digital editing operators<br>through practice in the areas with existing<br>aerial photographs of which 1/10,000 maps<br>have not been created  | <japanese side=""><br/>Expert (1 person)</japanese> |
| Digital editing     | Acquisition of editing<br>technology for different scales              | Editing of Addis Ababa 1/5,000<br>topographic map data                                                                                                         | <ethiopian side=""></ethiopian>                     |
|                     | Acquisition of generalization technology for different scales          | Generalization from 1/10,000 to 1/25,000<br>and to 1/50,000                                                                                                    | EMA instructors (5 –<br>7 persons)                  |
|                     | Training of beginner-class<br>engineers by skilled engineers<br>of EMA | Development of symbolization operators<br>through practice in the areas with existing<br>aerial photographs of which 1/10,000 maps<br>have not been created    | Engineers (10 – 15<br>persons)                      |
| Symbolization       | Acquisition of symbolization<br>technology for different scales        | Symbolization of Addis Ababa 1/5,000<br>topographic map data<br>Creation of 1/5,000 and 1/50,000 symbol<br>catalogs                                            |                                                     |
|                     | Conversion of symbols to other formats                                 | Conversion from MicroStation (dgn) to<br>ArcGIS (emf)                                                                                                          |                                                     |

 Table 10
 Support Assumed to be Necessary for the Strengthening of Map Creation Technology

#### 3) Strengthening of GIS technology of EMA and user organizations

Utilization of GIS is essential in promoting the use of topographic map data in different governmental organizations. However, engineers and technological level in this field are inadequate. As such, as the first step, technology transfer to the EMA engineers should be implemented. As the second step, the staff who received the training should carry out technology transfer to other organizations.

| Item              | Matters requiring focus | Content                                          | Input (proposed)                |
|-------------------|-------------------------|--------------------------------------------------|---------------------------------|
|                   | Development of EMA      | Creation of instructor development plan          | <japanese side=""></japanese>   |
|                   | instructors             | Creation of training curriculum and text         | Expert (1 person)               |
|                   |                         | <ul> <li>Practical training, practice</li> </ul> |                                 |
| GIS<br>technology | Expansion of GIS users  | • Introduction and promotion of the use of       | <ethiopian side=""></ethiopian> |
|                   | _                       | GIS to other organizations and technical         | EMA instructors (5              |
|                   |                         | training                                         | persons)                        |
|                   |                         | <ul> <li>Holding of GIS seminar</li> </ul>       | User organization               |
|                   |                         | • Consulting with users (needs survey, joint     | engineers (about 10             |

operation)

 Table 11
 Support Assumed to be Necessary for the Strengthening of GIS Technology

# 4) Strengthening of leveling technology

Currently, elevation data (benchmarks) in Ethiopia are significantly insufficient for the area of the country (approximately 1.13 million km<sup>2</sup>). The placement of benchmarks is skewed and the benchmarks are not evenly distributed. As such, sufficient accuracy cannot be ensured in aerial photography because of the lack of control points for elevation necessary for aerial triangulation. Also, it is impossible to assign elevation to continuously operating reference stations (CORS). Therefore, technology transfer in leveling should first be implemented. At the same time, necessary equipment should be procured.

# Table 12 Support Assumed to be Necessary for the Strengthening of Leveling Technology

| Item     | Matters<br>requiring focus | Contents                                               | Input (proposed)                |
|----------|----------------------------|--------------------------------------------------------|---------------------------------|
|          | Leveling theory and        | Development of managerial-level human resources        | <japanese side=""></japanese>   |
|          | observation                | with respect to the purpose and theory of "leveling",  | Expert (1 person)               |
|          | technology                 | specifications and management method of equipment      | Zero order Leveling             |
|          |                            | and installation and observation methods               | equipment (2 sets)              |
|          | Leveling planning          | Laying the foundation for planning to cater for        | Car hire (4WD: 3                |
|          |                            | large-scale operations                                 | vehicles)                       |
| Leveling | Quality control            | Implementation of error summation practice using       | Local workers (2 teams of       |
|          |                            | spreadsheet software and accuracy control practice in  | 4 workers)                      |
|          |                            | accordance with the "accuracy control and accuracy     |                                 |
|          |                            | control table creation manual"                         | <ethiopian side=""></ethiopian> |
|          | Observation                | Implementation of practice in the leveling between the | Managers (2 persons)            |
|          | practice                   | existing benchmarks and the zero-order control points  | Engineers (5 – 10               |
|          |                            | in the suburbs of Addis Ababa                          | persons)                        |

(Draft)

5) Strengthening of geospatial information management and operation Recommendation for the establishment of structure for development of geospatial information in Ethiopia

| Management and Operation                                                     |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Item                                                                         | Matters<br>requiring focus                                                                                                                                        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input<br>(proposed)                                                                                                         |
| Strengthening of<br>geospatial<br>information<br>management and<br>operation | Formulation of a<br>topographic map<br>update plan<br>Strengthening of the<br>data sharing system/<br>promotion of data<br>sharing                                | Decision on a policy on the formulation of a<br>medium- to long-term plan on topographic<br>mapping to be required in Ethiopia in future (a<br>work schedule, personnel assignment planning<br>and budget planning for them appropriate for the<br>productivity of EMA to be included in the<br>medium- to long-term plan)<br>Example: Topographic mapping of areas in which<br>national projects (for the construction of dams,<br>airports, roads and railways) are to be<br>implemented<br>Assistance in drafting a geospatial information<br>policy<br>EMASDI (discussion on and documentation of<br>the categorization of the data owned by EMA and<br>disclosure/non-disclosure of data and the rules on<br>data disclosure)<br>Assistance in the web and Geoportal operation<br>Development of a scheme in which an<br>organization that has conducted a survey shares<br>the survey results with EMA<br>A study on a scheme for a regular information<br>sharing for data sharing, update and distribution<br>among the major organizations (submission of<br>survey plans and results and update and | <japanese side=""><br/>Experts (2 persons)<br/><ethiopian side=""><br/>EMA managers (10<br/>persons)</ethiopian></japanese> |
|                                                                              | Elimination of the<br>duplication in aerial<br>photography, survey<br>and topographic<br>mapping<br>Training and<br>permanent<br>employment of<br>human resources | distribution of geospatial information)<br>Recommendations on the creation of a survey<br>plan form and a scheme in which surveying<br>organizations share their survey plans with EMA<br>Presentation of the actual outputs of aerial<br>photography, surveys and topographic mapping<br>Creation of a guideline on the career path for the<br>staff members<br>A study on the introduction of a qualification<br>system (making reference to the qualification<br>systems in neighboring countries)<br>Strengthening of the training center of EMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |

| Table 13 | 8 Support Assumed to be Necessary for the Strengthening of Geospatial Information |  |
|----------|-----------------------------------------------------------------------------------|--|
|          | Management and Operation                                                          |  |

# Chapter 3 Works in the First Term

#### [1] <u>Collection, Sorting and Analysis of Related Information and Materials (Work in Japan)</u>

The Terms of Reference, Detailed Planning Study Report and materials collected in Ethiopia have been sorted and analyzed.

#### [2] <u>Preparation of Inception Report 1 (Work in Japan)</u>

The policies for implementation of the Project, work schedule, implementation system and technology transfer plan have been compiled to prepare Inception Report 1. The contents are shown below:

- Survey target area
- Setting of survey work amount and issues, items and quantities of the products of the Project
- Basic policy of works
- Technology transfer plan
- Work schedule
- Table of man-months required for the survey

# [3] Explanation and Discussion of Inception Report 1 (Work in Ethiopia)

#### Explanation

The Inception Report was explained to EMA directorates at a management meeting. During the explanation, emphasis was placed on the schedule, the relevant departments for each work item, strengthening of the organization, etc.

#### Discussion

The work policy and content of the surveys, etc. described in Inception Report 1 were explained to EMA. The survey implementation system based on the implementation policy was discussed with EMA, and minutes of the meeting were prepared and agreed by both parties.

# [4] Discussions on Specifications (Work in Ethiopia)

#### **Discussions Regarding Surveying Standards**

Regarding the surveying standards, the Study Team proposed the following standards taking into consideration facilitation of data sharing with domestic and foreign organizations, aid agencies, etc., and after discussion with EMA, the standards were agreed by the two parties.

| Item                                                                                       | Standard                                                                     |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Reference ellipsoid                                                                        | Clarke 1880 mod a=6378249.1453 f=1/293.4663                                  |
| Projection method                                                                          | UTM (Universal Transverse Mercator) Zone 37                                  |
| Coordinate system                                                                          | Adindan                                                                      |
| Central meridian line Longitude east 39°                                                   |                                                                              |
| Correction factor                                                                          | 0.9996 (on central meridian line)                                            |
| Origin of coordinates Intersection of central meridian line and equator E=500,000.000m N=0 |                                                                              |
|                                                                                            | The following annotation will be displayed in the data files.                |
|                                                                                            | This digital map was prepared jointly by the Japan International Cooperation |
| Annotation                                                                                 | Agency (JICA) under the Japanese Government Technical Cooperation Program    |
|                                                                                            | and the Ethiopian Mapping Agency (EMA) of the Government of the Federal      |
|                                                                                            | Democratic Republic of Ethiopia.                                             |

#### Table 14Surveying Standards

# Discussion Regarding Topographic Map Symbol Regulations (1/10,000, 1/25,000 Topographic Maps)

In the first term survey, the Study Team held discussions mainly with the EMA Quality and Standard Directorate while referring to the relevant regulations of EMA, and prepared draft topographic map symbol regulations (map scale level 10,000 and 25,000).

#### [5] <u>Collection and Sorting of Existing Materials (Work in Ethiopia)</u>

Existing data that will serve as basic information or that can be utilized in the Project, such as topographic maps and future plans, etc. owned by related Ethiopian agencies or EMA were obtained through individual interviews with EMA staff related to the various works in this Project and EMA management meetings, seminars and JCCs, and the data were organized.

#### [6] <u>Preparation of Work Specifications on Digital Topographic Mapping (Work in Ethiopia)</u>

The Study Team held a discussion on the preparation of the work specifications with EMA. The table below shows the details of the discussion. The team described the outcome of the discussion in the work specifications.

| Item                             | Contents of the Survey and Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Preparation<br>method            | Existing work specifications of EMA<br>Work specifications required by EMA and the contents to be included<br>Procedures for the preparation of work specifications                                                                                                                                                                                                                                                                                                      |  |
| Quality control                  | Quality control in the topographic mapping practiced by EMA           Presentation of the quality control methods used in actual mapping known to the Study Team           DI         Explanation of actual use of the quality control methods presented above           Explanation of the concept and implementation of the quality evaluation provided in the ISG geographic information standards                                                                    |  |
| Accuracy control at each process | Practical method for accuracy control of the outputs of plotting and editing<br>Explanation of the accuracy control table and preparation of the accuracy control table (draft) for<br>1/10,000 topographic maps                                                                                                                                                                                                                                                         |  |
| Product<br>specifications        | Explanation of the outline of the concept, composition and contents of the product specifications<br>Explanation of the quality evaluation (including the concepts of the five data quality elements and 15<br>data quality sub-elements)<br>Explanation of the procedures for quality evaluation in accordance with the map symbol regulations<br>for 1/10,000 digital topographic maps and a trial partial data quality evaluation using the product<br>specifications |  |

 Table 15
 Discussion on the Work Specifications

# [7] Verification and Preparation of Images and Other Information 《Works in Ethiopia/ Japan》

Verification was made whether the aerial photographs owned by EMA (taken in May 2011) and the outputs of the aerial triangulation (conducted in May 2011) were accurate enough to satisfy the required specifications of the Project by inputting them in a digital photogrammetric system in Japan. Although some problems were found regarding a ground control point, it was concluded that the outputs of the aerial triangulation were accurate enough for their use in the subsequent processes including plotting.

# [8] Field Identification and Supplementary Field Verification (Work in Ethiopia)

# 1) Field Identification

The actual work was conducted by 18 engineers from the EMA organization under the instruction of members of the Study Team as a part of the technology transfer (in the form of OJT), with field identification maps sampled from the orthophotos owned by EMA.

# **Purposes**

The purposes of the field identification were to verify features/buildings, changes in the features over the years, annotations, etc., which are difficult to interpret on photographs in the subsequent plotting stage, in the field and to collect document-based data such as power transmission lines and administrative boundaries.

| Work items                                                               | Actual work                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Preparation of<br>Field<br>Identification<br>Map Sheets                  | The team created an orthophoto image on a scale equivalent to 1/10,000 of each map<br>sheet area in the plotting area and one for the additional area around Mojo mentioned<br>above, using the aerial photographs and orthophotos owned by EMA, and prepared field<br>identification map sheets using the orthoimages.                                                                             |  |
| Preparation of<br>Map Symbol<br>Rules for the<br>Field<br>Identification | Prior to the field identification, map symbol rules for the field identification we prepared based on the (draft) map symbol rules prepared in the Discussion Specifications with EMA. The preparation was conducted in Japan, by the engineers charge of the field identification who verified the identification items and unidentifilocations.                                                   |  |
| Composition of<br>the Field<br>Identification<br>Teams                   | Ten field identification teams, each with two members, were formed from a total or<br>engineers (two from the Study Team and 18 from EMA).<br>As the entire area had to be studied within a limited Project period, the study area<br>divided into ten small areas, each including urban and suburban areas, and each to<br>conducted the field identification in one of those small areas.         |  |
| Explanation of the<br>Outline of the<br>Work                             | Guidance was given on the details and method of the field identification to the engine<br>who were to participate in the work using the Field Identification Manual. The details<br>the map symbol rules prepared in the Discussion on Specifications were clarified and<br>items to be identified in the field identification and those to be identified with referen<br>materials were specified. |  |
| Pre-interpretation                                                       | Prior to the field identification, pre-interpretation was carried out using the existing topographic maps in the office. Each team identified the locations and data on mountains, rivers, roads, railway lines and names of places in its study area in advance using the existing 1/50,000 topographic maps.                                                                                      |  |
| Trial work                                                               | Acquisition of outputs of a standardized quality requires implementation of the identification work by all the engineers based on the same understanding. Therefore, tri work was conducted in two different environments, semi-urban and suburban areas, f standardization of the understanding of the identification work.                                                                        |  |

| Work items                                         | Actual work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Identification of<br>Topography and<br>Features    | Topography and features, the targets of the identification, were identified in the field. All the topography and features excluding those which the operators could interpret in the photo-interpretation and plotting, as classified in the map symbol rules, were identified in the field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                    | Digital cameras with GPS and/or handheld GPS devices were used for verification of unidentified locations and positioning in the field identification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                    | Findings in the identification were recorded on the field identification maps at any time with the description of the corresponding feature codes specified in the map symbol rules on the sheets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                    | The field identification teams held weekly meetings to monitor the progress of the work, verify unidentified locations and exchange information between the teams for work process control and quality control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Study on<br>annotations                            | The study of annotations was conducted for identification of names of buildings which could serve as landmarks. The topography and annotations of place names shown on the existing topographic maps were also reconfirmed in the field identification. The position of the annotation data obtained in the field identification and from the existing topographic maps and other reference materials were clearly marked on the field identification maps and the annotation data were sorted on the Annotation Table forms used by EMA. The annotation data sorted on the forms in the local language were translated into English and the data in English were digitized with the use of PCs. The digitized annotation data were inspected again by all the members of the field identification team for errors and omissions in data entry. |  |  |
| Compilation of<br>the Outputs of the<br>Field Work | After the completion of the field identification, office work was conducted in order to organize the annotation list and inspect the data for consistencies between different map extents and omissions in the identification. Since inconsistencies in the matching and omissions in the identification had been detected at several locations, the team conducted supplementary identification to complete the field identification.                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Outputs of the<br>Field<br>Identification          | In order to reduce the complication in handling of outputs, the field identification outputs were compiled in the identification maps and annotation data. These data and the other relevant reference materials were digitized for convenience of use in the subsequent stages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

# 2) Supplementary Field Verification

An overview of the supplementary field verification in 1,155km<sup>2</sup> including the area around Adama City and the entire urban area of Mojo City is given below.

#### **Purposes**

The supplementary field verification was aimed at re-verifying, adding and correcting the locations, details and codes of all the topography, features and annotations represented on the editing manuscripts with a focus on the unidentified topography, features, etc. including ambiguous features at 1,138 locations. Field verification was also conducted in areas where changes over the years in topography and features were observed. The work procedures used in the supplementary field verification were as follows:

• To prepare supplementary field verification sheets from the topographic map data created in the digital editing

- To bring the printed supplementary field verification sheets and handheld GPS receivers to the field and verify the locations where data ambiguity and questionable annotations were detected in the digital plotting and digital editing
- To compile what was verified in the field on the printed topographic maps for data correction in the subsequent supplementary digital editing

# [9] <u>Website Creation 《Work in Ethiopia / Japan》</u>

A system in which the existing data and newly created data will be disclosed to allow anyone to easily access the geospatial information will be built by the use of the Web Mapping System that will be newly developed in this Project.

# **Reports of study in the 1<sup>st</sup> term**

The following is a summary of the existing website survey results, explanation of the web system required for this Project (software, hardware), and details of the technology transfer.

| Item                                                  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operation                                             | Operation has been outsourced to Peer 1 Network Enterprises Limited of UK, but at present the contract has been cancelled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Server<br>hardware and<br>software<br>owned by<br>EMA | Dell PowerEdge Server R710 2 No, RAM (4GB), HDD capacity 14.4TB, Windows Server 2008, CPU (3.0MHz), maximum number of PCs that can be connected (200)<br>Dell PowerEdge Server R310 1 No, RAM (4GB), HDD capacity 9.6 TB、OS is Windows Server 2003, CPU (3.0MHz)<br>Dell PowerEdge T610, HDD: 0.5TB, RAM (8GB), CPU (3.0MHz), Windows Server 2008<br>Dell PowerEdge 2800, HDD: 1.0TB, RAM (4GB), CPU (3.0MHz), Windows Server 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Server<br>management<br>staff                         | Managing department: Information Communication Directorate<br>Database Administration: 5 persons<br>System Administration: 6 persons<br>Technical Instrument Maintenance: 5 persons<br>At present 3 teams are responsible for daily server operation, but there is no software for<br>operating and managing large scale data on the server side, therefore they have not<br>accumulated experience in management and operation of GIS data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Web<br>communication<br>speed                         | Only 2MBPS (theoretical value) both up and down, which makes operation of the website difficult.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Website                                               | From June 2013 EMA has commissioned the national Information Network Security Agency<br>(INSA) to produce the website, and the final report was submitted at the end of October.<br>The site is composed of 2 parts, the internet part and an intranet part.<br>The hardware and software from which the system is composed are not disclosed, but Oracle's<br>MySQL Database Server is scheduled to be used, and the development language is Java.<br>Regarding the GIS function, small size (1 page maximum 13MB) map images can be released,<br>but they do not have the function to release and download large size raster data such as<br>orthoimages, satellite images, map images, etc., or vector data such as points, lines, polygons,<br>and annotations. Some existing data contained military information, so INSA issued<br>instructions to suspend the EMA's website. Regarding to this issue, EMA is now planning to<br>request INSA to reopen the website under condition by excluding the military data. |  |  |

 Table 17
 Existing Website Survey Results

# [10] <u>Assistance for Formation of Organizational Capacity Building/Utilization of Geospatial</u> <u>Information 《Work in Ethiopia》</u>

The following issues became clear from the interviews at EMA during the first dispatch survey in November 2013. As a result of their evaluation, activities (draft) were extracted as per the figure below.

 Table 18
 Issues for EMA Identified in the First Dispatch Survey

| Current Issue                                                            | Factor                                                                          |                                                                                     | Expectations                                                                                                                                                                                 |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effectively<br>usable digital<br>topographic<br>maps are not<br>prepared | Quality and<br>applications are not<br>defined                                  | Preparation method is not<br>unified<br>Quality control method is<br>undefined      | Preparation of map symbol<br>regulations and specifications<br>Technology transfer of quality<br>control method                                                                              |
|                                                                          | Map creation and<br>updating system<br>have not been<br>developed               | Work management method<br>(process/cost management) is<br>undefined                 | Technology transfer of work<br>management method                                                                                                                                             |
|                                                                          |                                                                                 | Lack of manuals and turnover<br>make it harder to exchange<br>and spread technology | Technology transfer and<br>preparation of manuals for the<br>creation of topographic maps<br>Discuss with Planning and<br>Business Development<br>Directorate to improve work<br>environment |
|                                                                          | Environment for<br>easily using digital<br>topographic maps is<br>not developed | Mechanism to distribute<br>digital topographic maps has<br>not been developed       | Discussion in JCC (held twice)                                                                                                                                                               |
|                                                                          |                                                                                 | The preparation of hardware<br>for distribution has not been<br>developed           | Technology transfer of web server procurement and operation                                                                                                                                  |

The capacity building of the EMA organization was determined to be through the preparation of "Map Symbols" and "Specifications" and by technology transfer in digital topographic mapping work and manipulation of equipment, and capacity building in work management to be enforced by technology transfer with open source software.

Other issues identified consist of improvement of staff retention and development of a topographic map provision system easily accessible for many users.

These issues were addressed in the second term (see Chapter 4 [11]).

# [11] <u>Promotion of Utilization 《Work in Ethiopia》</u>

#### **Implementation of First Seminar**

A seminar was held on Thursday, November 21, 2013 and was attended by 54 persons from 20 organizations. The content of the seminar was as follows, and the Study Team gave presentations on "Outline of the Project", "Examples of Utilization", "System and Issues Concerning Utilization", etc., and EMA gave a presentation regarding the "Present Status of EMA".

The following table shows the seminar content, the effects and the issues identified through the seminar.

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 17 Contents of the First Seminar                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Objective                 | Explanation of Project outline and technical cooperation by JICA in the field of geographical information for smooth project implementation and effective utilization of the results from a better coordination with other organizations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Content                   | Outline of the Project (introduction of Study Team members, introduction of EMA, outline of<br>the work, training in Japan, outputs, technology transfer, etc.)<br>Present Status and Issues regarding Geographical Information in Ethiopia<br>Present Status of EMA<br>Introduction of Technical Cooperation on Geographical Information by JICA in Africa<br>Examples of Use of Geographical Information<br>Cooperation Items Requested for this Project (document collection, interview surveys, request<br>for participation in JCC, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Method of<br>Presentation | Extensive use of technical terminology was avoided, and images and graphics were used, so that the presentations could be understood by persons who were not geographical information specialists. The presentation on "Present Status and Issues regarding Geographical Information in Ethiopia" was presented by EMA staff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Q&A                       | <ol> <li>EMA's response to the issue of turnover of human resources:<br/>This is a common issue within other governmental organizations, due to the wage differential between agencies and ministries. The Government of Ethiopia is now on the move to solve this problem. EMA is trying to prevent turnovers by sending staff to university training as an incentive.</li> <li>Possibilities and structure for internet distribution of soft copies:<br/>This Project is target to upload and provide data view function. Distribution and the system for this will be discussed with EMA for the final results.</li> <li>Standard of open source GIS software and results of the Project:<br/>We have received few questions about open source GIS. The Study Team has explained the strong points and weak points by comparing with general GIS software. Also, there was question about the accuracy of the results; the Study Team has answered this by explaining the</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Effects                   | data formats and quality standards.Information about the Project outline, objectives and outputs was shared with at least ten<br>Ethiopian government agencies and regional agencies.From comments by the participating agencies, it was clear that there have been major changes<br>over time in many areas due to urban expansion, infrastructure development, etc.<br>accompanying development of the country, and the importance of updating the topographic<br>maps was shared anew.The interest of donor organizations (projects related to land management) in Europe and the<br>US was obtained.It was found that many agencies have knowledge of GIS data and software.It was found that there are many domestic agencies with common concerns and common<br>interest in strengthening the EMA organizational structure including turnover measures.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| For the<br>future         | Establishing<br>JCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To grasp user's needs related to geo-spatial information and distribution<br>method<br>Discuss and decide the rules and system for internet distribution.                                                                                                                                                                                                              |  |  |
|                           | Points for the final seminar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Define information (discrimination, range, quality, spatial definition, time<br>definition and distribution method) and reference method, so that many users<br>will be able to easily understand and use the results.<br>Add activities for improvement of the human resource turnover issue as a key<br>aspect in the formulation of the EMA organization structure. |  |  |

# **Results of First JCC**

As a result of the first Joint Coordinating Committee meeting held on March 3<sup>rd</sup>, 2014 which was attended by 14 persons from four organizations, the following information was obtained. Also, during the discussions an "Activity Plan (Draft)" for this Project was prepared and agreed by those involved.

| Item                                                    | Details                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Main topics                                             | Outline explanation of the Project, confirmation of the constituent members, distribution of data, activity plan, utilization                                                                                                                                                                                                                                                                                                 |  |  |
| Permanent<br>organizations                              | < At present (apart from EMA, Embassy of Japan in Ethiopia, JICA Ethiopia Office) ><br>Ministry of Urban Development & Construction<br>Ministry of Agriculture<br>Ethiopian Road Authority<br>Oromia Urban Development Office<br>< Planned to be added ><br>Ministry of Finance and Economy<br>Ministry of Transport<br>Information Network Security Agency<br>Geological Survey of Ethiopia                                  |  |  |
| Present status of<br>sharing of map<br>information data | Information is provided through the existing website and workshops, etc., but analog maps are only sold through the EMA sales office.<br>There is no experience of distribution of digital data.<br>EMA owns the copyright to most of geographic information within Ethiopia.                                                                                                                                                 |  |  |
| Issues regarding<br>sharing of map<br>information data  | It is necessary to prepare a distribution policy for the digital data produced in this Project,<br>and specific schemes for the methods, setting of the cost, etc. Also, it is necessary to have<br>specific measures for utilization of the digital map data produced.<br>Disclosure of the data possessed by each organization is entrusted to the judgment of each<br>organization.                                        |  |  |
| Directionality for utilization                          | The aim is for "Easy to Use" data that can be simply obtained by users.                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Agenda for the<br>next JCC                              | Anticipating future utilization not limited to the Project area but in the whole of Ethiopia, selection of the participants is discussed with EMA.<br>To improve the participants' understanding of the Project outputs and works for the Study, sample data is created and shared with them in the next JCC meeting.<br>The aim is to develop a utilization system through a tie-up with the Ethiopia KAIZEN Institute (EKI) |  |  |

 Table 20
 Results of JCC Discussions and Collected Information

# [12] Preparation of Progress Report 1 (Work in Japan)

Progress Report 1 was prepared, describing the results of the study conducted after the submission of the Inception Report and the progress in technology transfer and in topographic mapping.

# **Chapter 4 Work and Implementation Plan for the Second Term**

# [1] <u>Preparation and Discussion of Inception Report 2 (Work in Japan/Ethiopia)</u>

Based on the results of study in the first term, the policies for implementation of the Project in the second term, the work schedule, implementation system and technology transfer plan were summarized to prepare Inception Report 2 and the contents of the Report were discussed with EMA. The results of the discussions were recorded as the minutes of discussion, which were agreed upon by both parties.

# [2] Digital Plotting/Editing and Generalization 《Work in Japan/Ethiopia》

# **Digital plotting / Digital editing**

In accordance with the decisions reached in the discussions on specifications, digital plotting was completed using the data obtained from aerial triangulation and the results of the field identification. The digital editing work was also completed based on the decisions reached in the discussions on specifications. Data requiring supplementation (missing field identification results, data difficult to interpret in the aerial photographs, etc.) was noted on 56 supplementary field verification sheets as target items in the supplementary field verification and used in the supplementary field verification survey.

The digital plotting and digital editing of 1/10,000 topographic maps in Japan were entirely completed.

# **Digital supplementary editing / Generalization**

Any error data will be corrected or removed, and the data will be polygonized, and data such as administrative boundaries and annotations will be added to create the topographic map data. The created topographic map data will undergo generalization to create the 1/25,000 topographic mapping data. This work will be executed with the use of CAD software.

Supplementary digital plotting of 1/10,000 topographic maps and generalization to 1/25,000 mapping data have been 100% completed.

# [3] Symbolization of Topographic Maps (Work in Japan/Ethiopia)

The digitally edited data will undergo symbolization for 1/10,000 and 1/25,000 topographic maps in accordance with the map symbols as agreed upon through the discussions on specifications. To avoid complicated work, the symbolization will use the CAD software used for digital plotting/editing. In this case, consideration will be given to ensuring that the symbolized data is easy to see as a line map and can also be used as a printed output map. 100% of the symbolization work in Japan was completed.

# [4] Digital Data Structuration 《Work in Japan/Ethiopia》

The digitally edited data will be structured into data with phase relations in a format which is usable on GIS software. This work will be executed in accordance with the specifications agreed upon with EMA and other related agencies. The file division will not be in units of map sheets, but determined taking into consideration convenience of use. 100% of the digital data structuration work in Japan was completed.

# [5] <u>Creation of Data Files (Work in Japan/Ethiopia)</u>

The digital data and GIS data of the created topographic maps will be recorded in appropriate recording media in accordance with the specifications as discussed and agreed upon with EMA.

## [6] Preparation of Interim Report 《Work in Japan》

The results of the study and the progress of technology transfer and topographic mapping carried out after Inception Report 2 has been compiled to prepare the Interim Report.

## [7] Explanation and Discussion of Interim Report 《Work in Ethiopia》

The prepared Interim Report was submitted to EMA and the contents were explained and discussed with EMA. The results of the discussions were recorded as the minutes of discussion, which were agreed upon by both parties.

# [8] <u>Website Creation 《Work in Japan/Ethiopia》</u>

### Procedure for website creation

As a result of discussions on website creation with EMA, it was decided to maximize the existing materials and equipment and create the website according the following procedure.

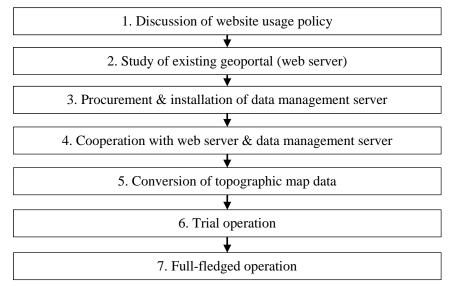



Figure 4 Procedure for Website Creation

| Period           | Work Content                                                                                                                                                          | Result                                                                                                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June<br>2014     | Discussions with EMA on<br>management of website (installation<br>of existing server, connection<br>environment, role of server)<br>Check of existing server capacity | As EMA had a geoportal procured from RCMRD in July 2014, as a result of discussions, it was decided to provide web services in cooperation with EMA's existing server (RCMRD).<br>The existing geoportal has a function for uploading shape files and geotif. |
| November<br>2014 | Procurement and installation of<br>server for data management<br>(database), installation of software                                                                 | The necessary SQL Server 2012 and ArcGIS Server 10.2.2 software<br>was installed in the server, and connection and cooperation with<br>ArcGIS Server and ArcGIS Desktop was performed.<br>Storing of sample data in the SQL database was completed.           |
| August<br>2015   | Connection and cooperation with<br>data management server and web<br>server, provision of sample data,<br>display test of sample data on web                          | Updating of the necessary software to the latest version was<br>completed. Data was stored in the data management server. Sample<br>data was provided and stored in EMA's web server and the web<br>display test was completed.                               |
| July<br>2016     | Uploading and disclosure of<br>topographic map data created in this<br>Project on the web                                                                             | The outputs of this survey in the PDF data format were uploaded to<br>the Geoportal of EMA and an environment in which they could be<br>downloaded free of charge was established.                                                                            |

The website-related work content to date is as shown below.

 Table 21
 Current Work Related to Website Creation

\*RCMRD = Regional Centre of Mapping for Resource Development

#### Image of Cooperation with Server Procured by RCMRD and Work Process

Besides the server provided in this Project, EMA procured a web server from RCMRD and installed it as the new web server. As a result, the initial plan was altered. The server provided in this study is functioning mainly in an intranet environment, sharing the roles of configuring linkable settings with the RCMRD server as the back-end server and providing web services with the IIS8 as the front-end web server.



Figure 5 Conceptual Diagram of Web Environment

## **Types of Data and Storage Method**

There are two types of data and data formats provided in this Project, File Geo-database and SQL Server Geo-database. Plotted/edited CAD data is converted to the two data formats by the Python tool and stored. The procured server has already been installed and is ready to be connected to EMA's network.

#### [9] Preparation of Progress Report 2 (Work in Japan)

The results of the study and technology transfer and the progress of topographic mapping conducted after preparation of the Interim Report has been compiled to prepare Progress Report 2.

## [10] Explanation and Discussion of Progress Report 2 《Work in Ethiopia》

The prepared Progress Report 2 has been submitted to EMA and the contents was explained and discussed with EMA. The results of the discussions were compiled as the minutes of discussion, which was agreed upon by both parties.

# [11] <u>Assistance for Implementation of Organizational Capacity Building/Utilization of</u> <u>Geospatial Information (Work in Ethiopia)</u>

In the second term, assistance for implementation of organizational capacity building and utilization of geospatial information was decided to be continually enforced using the PCM (Project Cycle Management) method as shown below.

Based on the issues that became clear from the interviews at EMA in the first term, it was decided that the Study Team would continuously hold consultations with EMA on creating an action plan to clarify the terms, targets and activities for organizational capacity building and would implement such activities in accordance with the plan.

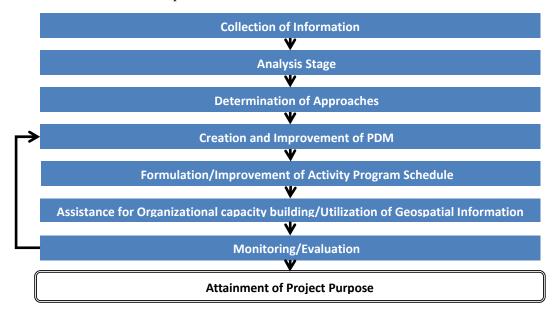



Figure 6 Formulation of Operation Plan and Flow of Implementation/Evaluation

|                                              |                                                                                           |           | Schedule |         |
|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------|----------|---------|
| Target                                       | Activities/output                                                                         | Phase 1   |          | Phase 2 |
|                                              |                                                                                           | 2013-2014 | 2015     | 2016    |
|                                              | Gather/analyze information                                                                |           |          |         |
|                                              | Create action plans                                                                       |           |          |         |
|                                              | Creation of work specifications                                                           |           |          |         |
| Accurate and                                 | Acquiring basic skills                                                                    |           |          |         |
| reliable map<br>creation by                  | Creation of wide use manual                                                               |           |          |         |
| EMA                                          | Individual work in pilot area                                                             |           |          |         |
|                                              | Efficient work flow                                                                       |           |          |         |
| Development<br>of data                       | Process management/Quality control                                                        |           |          |         |
| creation/update<br>structure                 | Management/operation<br>structure for continuous<br>mapping work                          |           |          |         |
| Development<br>of easy to use<br>environment | Organize and exchange<br>information with related<br>organizations centered around<br>EMA |           |          |         |
| for digital                                  | JCC meeting                                                                               | ♦ ♦       |          | •       |
| topographic                                  | Development and                                                                           |           |          |         |
| maps                                         | management of data distribution                                                           |           |          |         |
|                                              | Monitoring / evaluation                                                                   |           |          |         |

 Table 22
 Example of Road Map (Operation Plan)

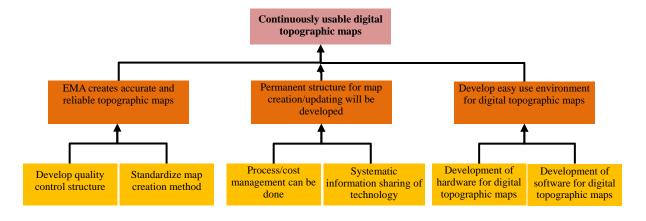



Figure 7 EMA's Evaluation Results and Assumed Activities (draft)

| Peri                                                                                        |                                    | Activity                                                                                                                                                                                                                                                                                                                                | Outcome                                                                                                                                                | Issue                                                                                                                    |
|---------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                    | Establishment of a network                                                                                                                                                                                                                                                                                                              | outcome                                                                                                                                                | issue                                                                                                                    |
| Develop quality control structure                                                           | November<br>2014 –<br>August 2016  | between the departments<br>responsible for mapping and<br>quality control in the<br>technology transfer<br>Transfer of technologies for<br>quality control in the<br>technology transfer in each<br>process (The C/Ps inspected<br>and corrected the data<br>plotted by the C/Ps in the<br>technology transfer in digital<br>plotting.) | The C/Ps was able<br>to understand the<br>quality<br>appropriate at the<br>scale of 1/10,000,<br>in particular.                                        | None in particular                                                                                                       |
| Standardize map<br>creation<br>methods                                                      | June 2014 –<br>November<br>2014    | Discussion and development<br>of topographic map symbols<br>and work specifications                                                                                                                                                                                                                                                     | Discussions are<br>being held in<br>EMA on strategies<br>for data updating<br>in future based on<br>the developed<br>map symbols and<br>specifications | None in particular                                                                                                       |
| Process and cost<br>management can<br>be carried out                                        | April 2016 –<br>August 2016        | Creation of work schedules<br>with spreadsheet software                                                                                                                                                                                                                                                                                 | The C/Ps became<br>able to formulate<br>work schedules<br>according to the<br>capability of the<br>operators.                                          | Work<br>implementation<br>based on the work<br>schedule and<br>improved reliability                                      |
| Systematic<br>sharing and<br>transfer of<br>technologies                                    | July 2014 –<br>August 2016         | Creation of manuals in the technology transfer                                                                                                                                                                                                                                                                                          | The C/Ps are<br>quick to<br>remember the<br>work that they did<br>previously and are<br>able to maintain<br>the equipment<br>unassisted.               | Unassisted revision<br>of the manuals by<br>the C/Ps and<br>transfer of<br>technologies to<br>unexperienced<br>operators |
| Development of<br>hardware for the<br>distribution of<br>digital<br>topographic map<br>data | November<br>2014 – August<br>2016  | Installation of a data server                                                                                                                                                                                                                                                                                                           | The preparations<br>for storing the<br>geospatial data to<br>be created in this<br>Project have been<br>completed.                                     | Establishment of<br>policies for data<br>transmission outside<br>EMA and data<br>sharing within EMA                      |
| Development of<br>software for the<br>distribution of<br>digital                            | September<br>2015 – August<br>2016 | Creation of "Adama Tourist<br>Map" utilizing the results of<br>this study and relevant<br>consultation<br>Holding of a ceremony<br>inviting relevant people                                                                                                                                                                             | The C/Ps acquired<br>know-how on<br>application<br>development and<br>sustainable<br>operation of<br>developed<br>applications.                        | Sustainable<br>operation and<br>expansion of<br>"tourist map<br>creation" to other<br>major areas                        |
| topographic map<br>data                                                                     | February 2016<br>– August 2016     | Development of "viewer<br>(proposed)" for the<br>management of geospatial<br>information owned by EMA                                                                                                                                                                                                                                   | Visualization of<br>geospatial<br>information<br>owned by EMA to<br>users can be<br>attempted.                                                         | Operation on<br>existing geoportal                                                                                       |

 Table 23
 Activities for Organizational Capacity Building in EMA

#### **Consultation for utilization of Adama Tourist Map**

Utilizing the results of this study, EMA started to create a tourist map of Adama District on their own around April 2015. The Study Team provided technical support with respect to the design and operation of the map. Also, in July 2015, on the sustainable operation of the tourist map was discussed by JICA tourism project experts of national parks in Ethiopia at the request of the Study Team. As a result, the first version was created in April 2016.

#### Meeting with the Djibouti City GIS Committee

A meeting attended by EMA, Djibouti City GIS Committee, JICA Ethiopia Office and the Study Team was held at EMA for two days on December 19 and 20, 2015.

EMA shared information on the development, updating and distribution of geographical information with the Djibouti City GIS Committee, which shared information on the issues of organization to promote the utilization of GIS with EMA. As a result of the meeting, it was decided to continue the sharing of information and study the system for technical supplementation among the parties.

#### **Results of the Training Course in Japan**

A training course has been implemented from September 28 to October 11, 2014 (Including moving days), to EMA managers. Details of the course are as follows:

. .....

. . .

| Trainees:            | Mr. Sultan Mohamed (Director General)                                 |
|----------------------|-----------------------------------------------------------------------|
|                      | Mr. Ayele Teka (Mapping Director)                                     |
|                      | Mr. Karlos Latebo (Quality Control Director)                          |
|                      | Mr. Girma Giorgis (Survey Director)                                   |
| Target:              | To acquire knowledge of NSDI, national geodetic frame work,           |
|                      | surveying and digital mapping activities                              |
| Items to accomplish: | 1. The theoretical method for the establishment and utilization of    |
|                      | NSDI                                                                  |
|                      | 2. The establishment method of national geodetic frame work           |
|                      | 3. The understanding of organization structure, activities, technical |
|                      | guidance, general duties of national surveying and mapping            |
|                      | organization                                                          |
|                      | 4. Overviewing government / private surveying mapping agencies        |
|                      | 5. Overviewing digital mapping work of the ongoing project            |

During the training course, the trainees were able to grasp the NSDI and CORS implementation status and the utilization method in Japan. Therefore this acquired knowledge will be highly useful for formulating NSDI in Ethiopia. Also the expectation in the formulation of national geodetic

frame work in Ethiopia is realizable with regarding the Japanese national geodetic frame work as a model.

#### [12] <u>Promotion of Utilization (Work in Ethiopia)</u>

#### **Coordination with and Assistance to Related Agencies**

Unless the visibility of geospatial information is enhanced by voluntary disclosure and proposals for its utilization are produced, the new information to be created will be kept within EMA and utilized by limited users. For the effective utilization of the project outputs, it was decided to enhance the efforts for holding JCC, participating in international conferences and coordinating with events concerning geospatial information.

| Term                |               | Content                                                                                                                                       |
|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2 <sup>nd</sup> JCC | July 2014     | Outline explanation of the Project and confirmation of the constituent<br>members<br>Distribution of data and utilization                     |
| 3 <sup>rd</sup> JCC | June 2015     | Discussion on data utilization management<br>Discussion on data policy, Decision on the utilization theme                                     |
| 4 <sup>th</sup> JCC | November 2015 | Data process and analysis, Utilization samples from Project outputs                                                                           |
| 5 <sup>th</sup> JCC | July 2016     | Introduction of final outputs, Future issues and proposal for the next step                                                                   |
| Final seminar       | July 2016     | Introduction of project implementation outline, outputs and details of the implementation of technology transfer, Future issues and proposals |
| RCMRD Conference    | November 2014 | Introduction of the work of EMA and the JICA project                                                                                          |
| UN-GGIMC Conference | April 2016    | Introduction of the work of EMA and the JICA project                                                                                          |

 Table 24
 Coordination with Related Agencies

#### **Results of the Second JCC Meeting**

The second Joint Coordinating Committee meeting was held on July 15, 2014 and was attended by 20 persons from five organizations. The committee was informed that a system will be created for storing the outputs of the Project in the server provided in this Study and disclosing them in a timely manner.

 Table 25
 Outcomes of the Discussion and Information Collected in the Second JCC Meeting

| Item                                                        | Content                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subjects                                               | The Project was outlined, the constituent members were confirmed, the status of website creation and data distribution, activity plans and utilization (cases of agricultural development using GIS and elevation data, infrastructure development, urban development, cases of data utilization in Japan) were described, and the selection of                                   |
|                                                             | appropriate pilot areas was discussed.                                                                                                                                                                                                                                                                                                                                            |
| Permanent<br>member<br>organizations                        | < At present (apart from EMA, Embassy of Japan in Ethiopia, JICA Ethiopia Office) ><br>Ministry of Urban Development & Construction, Ministry of Agriculture<br>Ethiopian Road Authority, Oromia Urban Development Office<br>Ministry of Finance and Economy, Ministry of Transport, Geological Survey of Ethiopia<br>< Plan to be added ><br>Information Network Security Agency |
| Current status of<br>the sharing of map<br>information data | The will to begin discussion of the rules on the distribution of digital data was seen when<br>the presentation of the website to be created in this project was made. However, the only<br>activity for data distribution at present is the sale of analog maps at EMA. Thus, there is<br>no facility for digital data distribution.                                             |

| Item                                                                    | Content                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Issues to be<br>addressed for the<br>sharing of map<br>information data | It is necessary to create a practical plan including the policy, method and fee setting for distribution of the digital data to be created in this Project. It is also necessary to propose a practical plan for utilization of the digital map data to be created.<br>Each organization which owns map information data is to make a decision on the disclosure of the data that it owns.                                  |
| General policy for data utilization                                     | To aim at creating "easy-to-use" data that are readily available to users                                                                                                                                                                                                                                                                                                                                                   |
| Matters to be<br>discussed in the<br>next meeting                       | The permanent member organizations shall discuss how to extend the cases of data utilization in this project to the entire country. As the number of organizations participating in JCC is small, efforts shall be made to make them understand the importance of the discussions at the JCC in order to facilitate the holding of JCC meetings, and to urge the members to participate in the meetings on a regular basis. |

## **Results of the Third JCC Meeting**

The third Joint Coordinating Committee meeting was held on June 9, 2015 and was attended by 23 persons from nine organizations.

| Item                                                                    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subjects                                                           | The Project outline and progress report, utilization (Adama sightseeing map using the Project data), status of website creation and data distribution were explained and discussed.                                                                                                                                                                                                                                                                                                                     |
| Permanent<br>member<br>organizations                                    | < At present (apart from EMA, Embassy of Japan in Ethiopia, JICA Ethiopia Office) ><br>Ministry of Urban Development & Construction<br>Ministry of Agriculture, Ethiopian Road Authority, Oromia Urban Development Office<br>Ministry of Finance and Economy, Ministry of Transport<br>Geological Survey of Ethiopia                                                                                                                                                                                    |
| Current status of<br>the sharing of map<br>information data             | From the fact that INSA has requested EMA to extract military facility image for security reasons and a new server was provided by RCMRD, efforts to create regulations pertaining digital data distribution policy are gradually observed.                                                                                                                                                                                                                                                             |
| Issues to be<br>addressed for the<br>sharing of map<br>information data | As it was found that INSA is responsible for NSDI framework, project based on further discussion the approach will be adopted of enabling approval of disclosure of the data created in the Project. However, this will be confined solely to the outputs of the Project and INSA will be in charge of policies for the whole of Ethiopia.                                                                                                                                                              |
| General policy for data utilization                                     | The aim is to make available to the public the outputs of the Project and create easy-to-get easy-to-use data.<br>The aim is to promote utilization of the technology by diffusing the skills acquired in the technology transfer to other organizations.                                                                                                                                                                                                                                               |
| Matters to be<br>discussed in the<br>next meeting                       | It is necessary to speed up the NSDI framework policy for data sharing, so that every stakeholder understands the digital data distribution policy and understanding of disclosure of the output data.<br>As the meeting will be held at the end of Phase 1, a report will be given on the results of the technology transfer and the tasks that EMA can perform independently.<br>As the sample output data will be ready, trial operation on the website will be carried out and the report reviewed. |

## **Results of the Fourth JCC Meeting**

The fourth Joint Coordinating Committee meeting was held on December 3, 2015 and was attended by 27 persons from nine organizations.

| Item                                                                                      | Content                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subjects                                                                             | Progress report of the project<br>Proposal of utilization examples of the outputs of this study<br>Development status of geospatial information owned by EMA and future plans<br>Actual situation of EMA                                                                                                             |
| Permanent member<br>organizations                                                         | < At present (apart from EMA, Embassy of Japan in Ethiopia, JICA Ethiopia<br>Office) ><br>Ministry of Urban Development & Construction<br>Ministry of Agriculture, National planning Commission<br>Ethiopian Road Authority, Oromia Urban Development Office<br>Ministry of Transport, Geological Survey of Ethiopia |
| Outcome of technology transfer in this study                                              | Technology transfer is necessary not only to the target participants but also to all the staff of EMA and other governmental agencies.                                                                                                                                                                               |
| Utilization example of the outputs of this study                                          | Creation of tourist map by EMA on their own                                                                                                                                                                                                                                                                          |
| Current status and direction<br>of the development of<br>geospatial information by<br>EMA | The outputs of this project will be released free of charge on the web portal.                                                                                                                                                                                                                                       |
| Matters to be discussed in the next meeting                                               | Specific proposals for utilization                                                                                                                                                                                                                                                                                   |

 Table 27
 Outcomes of the Discussion and Information Collected in the Fourth JCC Meeting

#### Interview to potential user organizations

In addition to collecting information at the JCC meetings, individual interviews were held with potential users to collect information on the specific details of their work, demonstrate concrete explanations and analysis examples concerning the outputs of this study and discuss specific methods of utilization after the completion of this study. At the interview to the Waterworks Design & Supervision Enterprise implemented on April 11, 2016, the Enterprise commented that 1/10,000 digital topographic maps are very useful to the feasibility design of irrigation facilities and plantations and EMA provided information about the areas where 1/10,000 topographic mapping data have been created. Also, a discussion was held on the scheme to utilize the data while sharing information with EMA when a new plan is formulated about irrigation facilities and plantations in such areas.

#### Holding of the Fifth JCC Meeting

The Fifth Joint Coordinating Committee is scheduled to be held on July 26, 2016. Questions on the conditions for the disclosure of the outputs of this study and a future plan of EMA for the creation of small-scale topographic maps from the large-scale ones were raised in the discussion at the JCC meeting.

| Item                                      | Content                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main subjects                             | Report of the project outputs<br>Introduction of the outputs of this study and proposal of utilization examples of the study outputs<br>(Adama Tourist Map, etc.)<br>Outcome of technology transfer and future geographical information development plan of EMA,<br>Future issues and proposals |
| Participated<br>organizations             | National Planning Commission<br>Ethiopian Road Authority<br>Oromia Rural Land Administration Bureau<br>Geological Survey of Ethiopia<br>Ethiopian Mapping Agency<br>Japan International Cooperation Agency<br>JICA Study Team                                                                   |
| Current status of<br>mapping data sharing | Data sharing in the intranet environment in EMA<br>A method to share the outputs of this study on the Geoportal of EMA<br>A method to share the geospatial information owned by EMA using the Geoportal of<br>EMA                                                                               |
| Issues of mapping data sharing            | Recommendation on the digital copy distribution<br>Recommendation on the operation of the organizations concerning geospatial data                                                                                                                                                              |
| Direction of utilization                  | The Director General of EMA announced that the outputs of this study should be available to the public free of charge.                                                                                                                                                                          |
| Issue                                     | Introduction of Phase 3 (follow-up phase)                                                                                                                                                                                                                                                       |

Table 28 Contents of the Discussion and Information to be collected at the Fifth JCC Meeting

#### **Final Seminar**

A seminar was held on July 28, 2016. It was intended to be an opportunity to make the outputs of the project known to and fully utilized by not only Ethiopian organizations interested in geospatial data but also international organizations and donors. Eighty-six people from 31 organizations participated in the seminar. Interest of many participants was on geospatial information to be disclosed by EMA, cooperation among the organizations creating and using geospatial information and the policy of EMA for the creation of geospatial information in future.

The results of the seminar were reported on TV and radio programs, the Internet and newspapers by the collaborating members of the press.

| Objective                 | Outputs of the Project and Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time                      | July 28, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Contents                  | Final report (Outline of the achievement of the Project and recommendations, outcome of the technology transfer and the methods for distribution of the outputs)<br>Reports on the subject-specific training course held in Japan by the course participants<br>Activities of the JCC and their outputs<br>Outline and utilization of the newly created website (for web-mapping)<br>Examples of definitions, quality and utilization of digital topographic maps<br>Recommendations for development of geospatial information in future<br>Capacity building activities for EMA organization and their effects |
| Method of<br>presentation | Presentations on the technologies and experience acquired by EMA engineers in the Project will be made by those engineers who have acquired them. Demonstration of the web-mapping site will be shown to map users who are interested in data distribution to introduce them to the newly configured web-mapping system. Differences between the new work specifications to be prepared in the Project for digital topographic mapping and existing EMA work specifications will be presented in an easy-to-understand way using a comparison between the two.                                                  |
| Documents<br>distributed  | Project outline, pamphlet, Adama tourist map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Location                  | Hilton hotel, Addis Ababa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Participants              | 86 attendances from 31 organizations, including Ministries, Agencies, international donor organizations, local government and media                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

 Table 29
 Contents of the Final Seminar (tentative)

On the date of the seminar, the team distributed documents outlining the Project (in English and Amharic) to TV stations and newspaper publishers to explain the details of the seminars and ask them to carry articles on them.

#### Tie-up with International Conferences and Events Related to Geospatial Information

Cooperation with international conferences in which a number of delegates from various countries were expected to gather was examined to widely disseminate information on the outputs of the Project. Consideration was also given to presenting such information positively to donors and conferences related to geospatial information.

As the events related to geospatial information described below were held in the city of Addis Ababa, participation in such events that offer the chance of presenting the outputs of the Project was discussed with EMA. The effects and costs of such participation (participation fees and cost of exhibition space) were examined and sorted, and the results of the examination were reported to JICA.

Africa GIS2013 and GSDI 14 (Global Spatial Data Infrastructure Association)

These events were held at UNECA headquarters in November 2013, and some EMA staff participated in the exhibition.

# Participation in the Regional Centre for Mapping of Resources for Development (RCMRD) Conference

The RCMRD Conference was held in Addis Ababa from November 10 to 18, 2014. The objectives of the conference were presentation of the annual activity report for the year 2013 to 2014, review of the overall activities carried out between 2011 and 2014 and discussion of the strategic plan of RCMRD between 2015 and 2018. A total of 52 people from 17 member countries, including UNECA, advisors, observers and the secretariat of the conference, participated in the conference.

\*RCMRD: RCMRD was established in 1975 for the development of geospatial information for sustainable development in Africa. It has 20 member countries. It is headquartered in Nairobi, Kenya.

 Participation in the Fourth High Level Forum on United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM)

Chaired by the Director General of EMA, this Forum was held in Addis Ababa from April 18 to 22, 2016. It is a global forum to facilitate joint and collective dialogues concerning the management of geospatial information with all the related governmental organizations, non-governmental organizations and private sector and was attended by about 300 persons from 57 countries around the world.

The Study Team attended the forum with the EMA staff to introduce the study in part of the EMA booth and exhibit the viewer of geospatial information owned by EMA, which was developed in this study.

## [13] <u>Preparation and Discussion of Draft Final Report</u> (Work in Japan/Ethiopia)

The works that have been done so far will be compiled as the Draft Final Report, which will be submitted to EMA for discussion of its contents. The results of the discussions will be recorded as the minutes of discussion, which will be submitted to EMA for agreement. In the Draft Final Report, the following items will be stated:

- Challenges in technology transfer and organizational system
- Potential for utilization of developed topographic maps
- Achievement level of the Project and remaining challenges after the end of the Project
- Technical sustainability after the end of the Project

## [14] <u>Preparation of Final Report 《Work in Japan》</u>

The Final Report will be prepared by making additions and corrections based on the comments made by EMA on the Draft Final Report and submitted to JICA.

Individual work manuals for creation of various types of data, operation and maintenance procedures, structured data, system operation and other necessary items will be prepared and attached to the Final Report. For the work processes and results of the quality control work, a separate report will be prepared.

## [15] Work Related to Technology Transfer (Work in Ethiopia)

In this Project, the transfer of topographic mapping technology in which emphasis was placed on EMA's capacity for independent development was conducted. The details are described in the next section.

# **Chapter 5 Technology Transfer**

## 5-1. Content of Technology Transfer

The technology transfer for creation of topographic mapping data will be implemented with emphasis placed on EMA's independent development as detailed below.

|                                                    | Phase 1   |           |         | J         | Phase 2   | 2         | Tongot Work |             |           |           |           |                                                                                                  |
|----------------------------------------------------|-----------|-----------|---------|-----------|-----------|-----------|-------------|-------------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------|
|                                                    | 2014      |           | 2015    |           | 2016      |           |             | Target Work |           |           |           |                                                                                                  |
| Month                                              | Jan – Mar | Apr – Jun | Jul-Sep | Oct – Dec | Jan – Mar | Apr – Jun | Jul – Sep   | Oct – Dec   | Jan – Mar | Apr – Jun | Jul – Sep |                                                                                                  |
| OJT                                                |           |           |         |           |           |           |             |             |           |           |           | Photo control point survey<br>Field identification/Supplementary<br>field verification           |
| (Stage 1)<br>Acquisition of<br>Basic<br>Technology |           |           |         |           |           |           |             |             |           |           |           | Aerial triangulation<br>Digital plotting, digital editing,<br>symbolization<br>GIS structuration |
| (Stage 2)<br>Independent<br>Work Execution         |           |           |         |           |           |           |             |             |           |           |           | Aerial triangulation<br>Digital plotting, digital editing,<br>symbolization                      |
| Implementation<br>of Pilot Work                    |           |           |         |           |           |           |             |             |           |           |           | GIS structuration<br>(including process control and quality<br>control)                          |
| Utilization                                        |           |           |         |           |           |           |             |             |           |           |           | Website creation                                                                                 |

 Table 30
 Overall Schedule of Technology Transfer

## Phase 1 (Stage 1: Acquisition of Basic Technology; Stage 2: Independent Work Execution

As the EMA staff members lack sufficient experience in digital topographic mapping, the technology transfer will be conducted by dividing Phase 1 into "Stage 1: Acquisition of Basic Technology" and "Stage 2: Independent Work Execution".

In Stage 1, the "technical level", "experience in target work", and "experience in operation of related equipment" of EMA staff will be studied to grasp the technical capability of each staff member of EMA. The Technology Transfer Plan is drawn up based on that concept.

In Stage 2, a training area for technology transfer will be set up within the scope of the Project to conduct technology transfer that allows EMA to reach the technical level for conducting pilot work independently. The EMA staff members will review the technology transferred in Stage 1 through the work at the individual level of the trainees in the training area, and process control and quality control technologies will also be transferred.

The results of the work in the training area will be quantitatively evaluated by work item to examine

the priority items to strengthen the capabilities of the trainees for the work in the pilot area in Phase 2.

| Phase 1 (Stage 1: Basic Technology)                                 |                                                                                                                                                 |                                                                         |                                                                                                                                                                                     |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                                                | Goal                                                                                                                                            | Means of<br>Attaining Goal                                              | Evaluation Method                                                                                                                                                                   |  |
| Aerial photography                                                  | Capable of drawing up plans to<br>meet the photographic scale<br>using software<br>Capable of doing photo control                               | Lectures and<br>exercises using<br>software                             | Evaluation of whether each<br>item of the work<br>specifications is satisfied                                                                                                       |  |
| planning/Installation<br>of aerial signals                          | Capable of along photo control<br>point selection work<br>Capable of installing aerial<br>signals in accordance with the<br>work specifications | Lectures and field work                                                 | Evaluation of selected photo<br>control points<br>Test of work specifications                                                                                                       |  |
| Photo control point selection and survey                            | Capable of operating digital equipment                                                                                                          | Field work and<br>exercises using<br>analytical<br>software             | Evaluation of GNSS analysis<br>and results of leveling<br>Evaluation of results of 3D<br>net adjustment analysis                                                                    |  |
| Aerial triangulation<br>orthophotos/DTM                             | Understanding of theories of<br>aerial triangulation and DTM<br>Understanding of operation of<br>digital photogrammetric system                 | Lectures and<br>exercises using<br>digital<br>photogrammetric<br>system | Position/ condition of<br>tie-point observation<br>Evaluation of speed and<br>accuracy of photo control<br>point observation<br>Evaluation of results of<br>adjustment calculations |  |
| Field identification/<br>Supplementary field<br>verification        | Understanding of operation of<br>equipment used<br>Understanding of theory of<br>field identification work                                      | Field<br>identification<br>(OJT)                                        | Evaluation of sorted results of field identification                                                                                                                                |  |
| Digital plotting                                                    | Understanding of map<br>specifications, acquisition<br>criteria and procedures<br>Understanding of basis of 3D<br>interpretation                | Exercises in stereo<br>plotting using<br>CAD                            | Evaluation of stereoscopy<br>Evaluation of plotting results<br>of 20km <sup>2</sup><br>(Data and printed maps)                                                                      |  |
| Digital editing/<br>Supplementary digital<br>editing/Generalization | Understanding of CAD<br>operation<br>Understanding of data error<br>detection and correction, and<br>polygon creation techniques                | Exercises using<br>CAD                                                  | Evaluation of results of editing of 20km <sup>2</sup> (Data)                                                                                                                        |  |
| Symbolization                                                       | Understanding of mapping<br>theory<br>Understanding of map symbols                                                                              | Creation of<br>marginal<br>information<br>Exercises using<br>CAD        | Evaluation of created<br>symbols (points, lines,<br>polygons)                                                                                                                       |  |
| GIS structuration/<br>Website creation                              | Understanding of CAD to GIS<br>format conversion method<br>Understanding of GIS software<br>operation                                           | Exercises using GIS and CAD                                             | Evaluation of results of created exercise data                                                                                                                                      |  |

 Table 31
 Concept of Technology Transfer Plan (Phase 1)

|                                                                                                     | Phase 1 (Stage 2: Independent Work Execution)                                                                |                                           |                                                                                                                                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Item                                                                                                | Goal                                                                                                         | Means of<br>Attaining Goal                | Evaluation Method                                                                                                                                                     |  |  |  |
| Aerial photography<br>planning/Installation of<br>aerial signals                                    | EMA can independently draw up<br>aerial photography plans<br>including photo control point<br>distribution.  | Execution of exercises                    | Evaluation of input<br>values and outputs<br>using photography<br>planning tools                                                                                      |  |  |  |
| Photo control point survey                                                                          | EMA can independently carry out photo control point surveys.                                                 | Testing                                   | Evaluation of GNSS<br>observation work<br>around EMA and<br>analysis practice, and<br>evaluation by<br>comprehension test<br>based on<br>correct/incorrect<br>answers |  |  |  |
| Aerial triangulation<br>orthophotos/DTM                                                             | EMA can independently perform<br>aerial triangulation, create and<br>compile DTMs and create<br>orthophotos. | Testing                                   | Evaluation of practice<br>results for 40 models<br>on three flight courses                                                                                            |  |  |  |
| Field<br>identification/Supplementary<br>field verification                                         | EMA can independently execute<br>the supplementary field<br>verification work.                               | TLO                                       | Evaluation of sorted<br>results of<br>supplementary field<br>verification                                                                                             |  |  |  |
| Digital plotting                                                                                    |                                                                                                              |                                           | Evaluation of results<br>of plotting practice in<br>approx. 15 map sheet<br>areas                                                                                     |  |  |  |
| Digital editing/<br>Supplementary digital<br>editing                                                | The works in the training area are completed                                                                 | Execution of<br>works in training<br>area | Evaluation of results<br>of practice in approx.<br>4 map sheet areas                                                                                                  |  |  |  |
| Generalization                                                                                      |                                                                                                              |                                           | Evaluation of results<br>of practice in approx.<br>one map sheet area                                                                                                 |  |  |  |
| Symbolization                                                                                       |                                                                                                              |                                           | Evaluation of results<br>of practice in approx.<br>2 - 4 map sheet areas                                                                                              |  |  |  |
| GIS structuration/<br>Website creation                                                              | The works in the training area<br>are completed.<br>Capable of creating several GIS<br>models                | Execution of<br>works in training<br>area | Evaluation of structuration data                                                                                                                                      |  |  |  |
| website creation                                                                                    | Understanding of website operation                                                                           | Lectures                                  | Execution of simple<br>test on related<br>operations                                                                                                                  |  |  |  |
| Promotion of utilization                                                                            | Able to set up and run JCC<br>Able to coordinate with related<br>agencies and organizations                  | Joint work by<br>EMA and Study<br>Team    | Evaluation by goal<br>attainment level at<br>initial stage of the<br>Project                                                                                          |  |  |  |
| Technology transfer to<br>enable EMA to implement<br>topographic map creation<br>projects by itself | Execution of technology transfer in<br>"Creation of Manuals" in the ment                                     |                                           |                                                                                                                                                                       |  |  |  |

## Phase 2 (Execution of Pilot Works and Utilization of Results)

In Phase 2, EMA will formulate a work schedule for the pilot area for which they will independently develop topographic maps, and will develop the topographic maps while implementing progress control and quality control under the work schedule. The pilot area will be an area with high utilization potential and within the range in which EMA can work independently and will finally be determined through discussions with EMA.

The strengthening of the EMA system including management and sale of topographic maps and tie-ups with other organizations will also be included in the technology transfer plan. The concept of the technology transfer plan in Phase 2 is shown below.

| There                                                          | Phase 2                                                                                                                                     |                                                                                        |                                                                                              |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Item                                                           | Goal                                                                                                                                        | Means of Attaining Goal                                                                | <b>Evaluation Method</b>                                                                     |  |  |
| Creation of<br>project<br>management<br>manual                 | Understanding of the Project<br>Management Manual                                                                                           | Creation of the "Project<br>Management Manual"<br>jointly by EMA and the<br>Study Team | Evaluation of the<br>"Project Management<br>Manual"                                          |  |  |
| Process<br>Control                                             | EMA can independently conduct process control and grasp the progress of works.                                                              | Formulation and updating of process sheet                                              | Evaluation of process sheet                                                                  |  |  |
| Quality<br>Control                                             | Understanding of quality control procedures                                                                                                 | Execution of quality<br>control under the work<br>specifications                       | Evaluation of level of<br>understanding of the<br>work specifications                        |  |  |
| Control                                                        | EMA can independently conduct quality control.                                                                                              | Preparation of accuracy control report                                                 | Evaluation of accuracy control report                                                        |  |  |
| Strengthening<br>of topographic<br>map<br>production<br>system | A system to allow EMA to<br>independently implement<br>sustainable topographic map<br>management is established.                            | Strengthening of the<br>system under the activity<br>schedule                          | Evaluation of "technical<br>aspect" and<br>"organizational aspect"<br>in accordance with PCM |  |  |
| Strengthening<br>of topographic<br>map sales<br>process        | A system to allow EMA to<br>independently carry out<br>sustainable sales of topographic<br>maps is established.                             | Strengthening of the system under the activity schedule                                | Evaluation of<br>"organizational aspect"<br>in accordance with PCM                           |  |  |
| Website creation                                               | Understanding of website operation technology                                                                                               | Technology transfer in website operation                                               | Evaluation of website<br>system maintenance<br>capacity                                      |  |  |
| Promotion of utilization                                       | EMA can independently set up<br>and coordinate JCC.<br>EMA can independently<br>coordinate with related agencies.<br>EMA can hold seminars. | Joint work by EMA and<br>the Study Team                                                | Evaluation by<br>goal-attainment level for<br>the goals set after the end<br>of Phase 1      |  |  |

Table 32Concept of Technology Transfer Plan (Phase 2)

# 5-2. Necessary Equipment for Technology Transfer

The following equipment required for the technology transfer has all been procured and installed and verification of operation has been completed.

| Table 35 Equipment and 1                                                            | l <sup>st</sup> Term |                                                       |
|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|
| Equipment                                                                           | Qty.                 | Target Work                                           |
| GNSS Survey Equipment Set                                                           | 4                    | Photo control point survey                            |
| Laptop and software for GNSS analysis                                               | 1                    | Photo control point survey                            |
| Digital Camera                                                                      | 8                    | Field identification/Supplementary field verification |
| Handheld GPS receiver                                                               | 8                    | Field identification/Supplementary field verification |
| Color Laser Printer                                                                 | 1                    | All                                                   |
| Aerial Triangulation/Plotting Integrated Software                                   | 1                    | Aerial triangulation, Digital plotting                |
| Plotting/Editing Linking Software                                                   | 1                    | Digital plotting                                      |
| Plotting/Editing CAD Software                                                       | 2                    | Digital plotting/editing/Compilation, Symbolization   |
| Map Editing Software                                                                | 1                    | Aerial triangulation, Digital plotting                |
| Workstation                                                                         | 1                    | All                                                   |
| USB Hardware Key                                                                    | 1                    |                                                       |
| Stereoscopic Display                                                                | 1                    | Aerial triangulation, Digital plotting                |
| Photogrammetry Mouse                                                                | 1                    | Aerial triangulation, Digital plotting                |
|                                                                                     | 1                    | Aerial triangulation, Digital plotting                |
| Desktop Computer for Editing/Structuration                                          | 2                    | Digital plotting/editing/Compilation, Symbolization   |
| Editing Monitor                                                                     | 3                    | Digital plotting/editing/Compilation, Symbolization   |
| Uninterruptible Power Supply (UPS)                                                  |                      | All                                                   |
| Anti-virus Software                                                                 | 2                    | All                                                   |
| Office 2010                                                                         | 2                    | All                                                   |
|                                                                                     | <sup>nd</sup> Term   |                                                       |
| Equipment                                                                           | Qty.                 | Target Work                                           |
| Project Management Software for<br>Photogrammetry                                   | 2                    | Aerial triangulation, Digital plotting                |
| Stereoscopy Software                                                                | 2                    | Aerial triangulation, Digital plotting                |
| Plotting/Editing Linking Software (Cooperation with stereo environment and CAD)     | 2                    | Aerial triangulation, Digital plotting                |
|                                                                                     | 1                    |                                                       |
| Plotting/Editing Software (DEM Creation)<br>Plotting/Editing Software (DEM Editing) | 1                    | Aerial triangulation                                  |
|                                                                                     |                      | Aerial triangulation                                  |
| Plotting/Editing CAD Software                                                       | 3                    | Digital plotting/editing/Compilation, Symbolization   |
| Map Editing Software<br>GIS Structuration Software                                  | 1                    | Digital editing/Generalization                        |
|                                                                                     | 1                    | GIS structuration/Website creation                    |
| GIS Utilization Software                                                            | 1                    | GIS structuration/Website creation                    |
| Workstation                                                                         | 2                    | Aerial triangulation, Digital plotting                |
| USB Hardware Key                                                                    | 2                    | Aerial triangulation, Digital plotting                |
| Stereoscopic Display                                                                | 2                    | Aerial triangulation, Digital plotting                |
| Photogrammetry Mouse                                                                | 2                    | Aerial triangulation, Digital plotting                |
| Desktop Computer for Editing/Structuration                                          | 2                    | Digital editing/Compilation, Symbolization            |
| Editing Monitor                                                                     | 4                    | Digital editing/Compilation, Symbolization            |
| Data Server (HDD capacity: 4TB or equivalent)                                       | 2                    | Website creation                                      |
| Map Output Printer                                                                  | 1                    | All                                                   |
| Uninterruptible Power Supply (UPS)                                                  | 7                    | All                                                   |
| LAN Cable                                                                           | 10                   | All                                                   |
| Switch Hub                                                                          | 2                    | All                                                   |
| Anti-virus Software                                                                 | 4                    | All                                                   |
| Office 2010                                                                         | 4                    | All                                                   |
|                                                                                     | 1                    | Wataita anatian                                       |
| Website Creation Hardware                                                           | 1                    | Website creation                                      |

 Table 33
 Equipment and Materials for Technology Transfer

## 5-3. Outputs of Each Technology Transfer

## (1) Technology Transfer in Field Identification

The technology transfer was implemented in the form of OJT in the series of work for "field identification" in the Work in Ethiopia between February and April 2014.

| Item                                                               | Contents                                                                                                              | Impact and Problems                                                                                                                                                                                                                                                                                                                                                | Countermeasure                                                                                                                                                                                                            |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Understanding<br>of the<br>purposes and<br>contents of the<br>work | Role in the entire<br>process, purposes and<br>methods of the work,<br>understanding of the<br>items to be identified | The team members were able to provide<br>practical technical explanations and<br>practices relevant to the actual work to the<br>trainees and the trainees were able to fully<br>understand the purposes and contents of the<br>work and practiced it.                                                                                                             | The quality of the work output<br>shows that the level of<br>understanding of the trainees of<br>the work is so high that they can<br>implement the work without<br>problems.                                             |
| Process<br>control                                                 | Implementation of the<br>work in conformity<br>with the work<br>schedule                                              | The trainees were able to carry out the work<br>aware of the deadline and work load and<br>prioritizing the work contents.<br>It is necessary for them to improve their<br>understanding of "work management" as<br>staff in a "leadership position."                                                                                                              | The goal of the supplementary<br>field verification will be for the<br>EMA engineers to take as much<br>initiative as possible in the entire<br>process from planning, through<br>preparation, field work and             |
| Quality<br>control                                                 | Implementation of the<br>work in conformity<br>with quality standards                                                 | The trainees were able to pay attention to<br>the work quality in the data sorting and<br>checking.<br>It is necessary for them to improve their<br>understanding of "quality control" as staff<br>in a "leadership position."                                                                                                                                     | verification to data sorting.<br>Each team is to execute the work<br>while implementing quality and<br>process control utilizing the<br>progress confirmation sheets and<br>check sheets.                                 |
| Level of<br>self-learning<br>in EMA                                | Understanding of the<br>work and revision of<br>the manuals                                                           | A new method different from the methods<br>which had been used in EMA was<br>presented. The trainees were able to review<br>the work anew and digest it by revising the<br>manual. EMA's immediate action in<br>planning individual topographic mapping<br>work using the new method shows us the<br>positive effects of the experience of<br>technology transfer. | The implementation of<br>supplementary field verification<br>is to be used as an opportunity to<br>use the experience mentioned on<br>the left to transfer the work to<br>independent implementation by<br>EMA engineers. |

#### **Evaluation of Technology Transfer**

- The trainees were able to recognize and solve the questions and problems concerning the work in the meetings and implement the work smoothly.
- The engineers who carried out the work with the Study Team members had improved their technical capacity to a level at which they could perform the work independently thanks to the direct guidance from the team members.
- The trainees were able to collect required reference materials from the relevant organizations in accordance with the map symbol rules.
- The trainees observed the work schedule and were able to complete the work within the specified period.
- The trainees were able to ensure data quality by conducting data sorting and inspection after the completion of the field work.
- The trainees were able to revise the manual with full understanding of the purposes and details of the work and experience acquired in the actual work.

## (2) Technology Transfer in Supplementary Field Verification

Supplementary field verification is the final field verification before the creation of topographic maps. It consists of field verification of the questions raised and ambiguities identified by the plotting operators, field verification of the plotted topographic maps and field surveys of other relevant information.

As 16 of the 18 participants in the work in Ethiopia between February and April 2014 were engineers involved in the field identification, the objective of the technology transfer was for them to use the experience gained in the field identification effectively to implement the supplementary field verification as independently as possible.

| Item                                            | Objective                                 | Form          |
|-------------------------------------------------|-------------------------------------------|---------------|
| General explanation                             | Understanding of the work                 | Lecture       |
| Trial work                                      | Understanding of the work, map            | Practice      |
|                                                 | interpretation, compilation of the survey |               |
|                                                 | results, operation of the equipment       |               |
| Supplementary field verification in the field   | Interpretation of maps, compilation of    | Practice,     |
|                                                 | the survey results, operation and         | meeting       |
|                                                 | maintenance of the equipment              |               |
| Data compilation in the office 1 (on inspection | Compilation and management of the         | Lecture,      |
| and accuracy control of the survey results)     | survey results                            | practice      |
| Data compilation in the office 2 (compilation   | Compilation of the survey results,        | Lecture,      |
| of the survey results and data entry)           | operation of the equipment                | practice      |
| Revision of the work manual                     | Manual                                    | Working group |

 Table 35
 Details of the Technology Transfer in Supplementary Field Verification

## **Evaluation of Technology Transfer**

The participants were able to understand the work procedures and implement the supplementary field verification smoothly by implementing daily time management, responding to questions and exchanging information in the OJT. Their technical level has reached a level at which they can utilize equipment such as handheld GPS receivers for acquisition of new information without problems. They still need to accumulate experience in activities concerning data quality, such as inspection and compilation of data, intensively to improve the quality of the actual work.

 Table 36
 Criteria for Evaluation in Supplementary Field Verification

| Item                  | Criteria                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------|
| Capacity to           | The participants are able to understand the contents of the instructions for               |
| understand and        | supplementary field verification (questions and requests given by plotting operators)      |
| answer questions      | and provide appropriate responses to the instructions on the basis of the results of the   |
|                       | field verification.                                                                        |
| Capacity to verify    | The participants are able to verify the locations, types and required information of the   |
| features in the field | subjects of supplementary field verification in the field.                                 |
| Capacity to           | The participants are able to implement the supplementary field verification with an        |
| understand the work   | understanding of its purposes and methods.                                                 |
| Data compilation      | The participants are able to describe the verification results correctly, sort and inspect |
| -                     | the collected data and digitize them.                                                      |
| Time management       | The participants are able to prepare a plan for the supplementary field verification in    |
|                       | order to implement and complete it within a limited time period.                           |

# (3) Technology Transfer in the Installation of Aerial Signals and Photo Control Point Survey

The photo control point survey consists of installation of photo control points on the ground and observation of these points to locate aerial photographs and satellite images with accurate coordinate values. An aerial signal is a marker installed at the location of a control point in the photo control point survey before the aerial photography is conducted.

The technologies for the installation of aerial signals and photo control point survey were transferred to a total of 12 EMA engineers of the Geodetic Survey Team in March 2015.

 Table 37
 Details in Installation of Aerial Signals and Photo Control Point Survey

| Item                                           | Outline                                     | Form     |
|------------------------------------------------|---------------------------------------------|----------|
| Outline (of the photo control point survey,    | Understanding of the work, specifications   | Lecture  |
| installation of aerial signals and pricking),  |                                             |          |
| specifications                                 |                                             |          |
| Introduction to GNSS surveying outline and the | Understanding of the work, specifications,  | Lecture, |
| equipment used                                 | operation of the equipment                  | practice |
| Practical work in GNSS surveying (planning and | Specifications, planning, operation of the  | Lecture, |
| observation)                                   | equipment                                   | practice |
| Practical work in GNSS surveying (analysis and | Specifications, operation of the equipment, | Lecture, |
| calculation)                                   | accuracy control                            | practice |
| Accuracy control                               | Specifications, accuracy control            | Lecture, |
|                                                |                                             | practice |
| Installation of aerial signals                 | Specifications, planning, operation of the  | Practice |
|                                                | equipment                                   |          |

#### Table 38 Evaluation in Installation of Aerial Signals and Photo Control Point Survey

| Content                                                                                                                                                                                                                                                                                                                                 | Evaluation method and result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture using the Photo Control Point Survey<br>Manual and draft work specifications<br>(hereinafter, work specifications) on the roles<br>of the photo control point survey, installation<br>of aerial signals and pricking in topographic<br>mapping and the methods provided and the<br>accuracy required in the work specifications | • The participants were able to improve their understanding<br>of the methods, inspection and accuracy control provided<br>in the specifications that they had not practiced in their<br>ordinary work.                                                                                                                                                                                                                                                                                                                                                                       |
| Lecture on the theories of GNSS surveying at<br>introductory level, types of GNSS surveys,<br>methods used in different types of surveys and<br>method to determine locations on the ground<br>using satellites                                                                                                                         | <ul> <li>The participants improved their understanding of the differences in accuracy of different observation methods.</li> <li>They improved their understanding of the necessity to determine distances from satellites which were investigated at the stage of analysis and calculation after the observation.</li> <li>They were able to understand that the basic composition of the new equipment was the same as that of the equipment that they had been using at EMA and they understood the new functions of the new equipment by actually operating it</li> </ul> |
| Lecture and practice in the planning of an<br>actual GNSS survey (reconnaissance, point<br>selection and observation planning) and<br>observation in the survey to follow up the                                                                                                                                                        | • The participants were able to recognize the differences<br>between the method described in the work specifications<br>and the plan actually adopted and understand the<br>"advantages and disadvantages" of the two.                                                                                                                                                                                                                                                                                                                                                        |

| lectures mentioned above                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>They were able to understand the necessity to develop an observation plan taking into consideration inspection and evaluation.</li> <li>They were able to develop a work schedule and personnel assignment schedule with limited personnel and equipment.</li> <li>They were able to respond to the problems that occurred in observation (including poor reception of satellite signals and erroneous settings) under the leadership of their leader and complete the observation.</li> </ul>                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The participants practiced input of GNSS<br>observation data in the PC for calculation and<br>analysis and calculation using the customized<br>software.<br>Their level of understanding of basic matters<br>was sufficient because of their experience in<br>ordinary work. However, as they had not<br>performed inspection and evaluation in the<br>calculation process, the focus of the practice<br>was put on inspection and evaluation. | <ul> <li>The participants were able to perform the inspection and evaluation required in observation planning and understood their importance.</li> <li>The young engineers, in particular, were able to understand the flow and procedures for analysis and calculation by repeated self-training.</li> <li>The participants were able to understand that the quality of the observation planning affects the quality of the inspection and evaluation and the final results of the analysis and calculation process.</li> </ul> |
| Lecture on various inspection methods and<br>accuracy control in the planning, observation<br>and calculation processes using the work<br>specifications and (draft) Accuracy Control<br>Manual                                                                                                                                                                                                                                                | • The participants were able to understand that<br>implementation of planning, observation, inspection and<br>calculation in compliance with the work specifications<br>ensured the quality of the results and kept the accuracy of<br>the results within the set limits.                                                                                                                                                                                                                                                         |
| The participants practiced installation of aerial<br>signals in the field. They created actual aerial<br>signals with the sizes and forms in compliance<br>with the work specifications and installed<br>them on existing control points.                                                                                                                                                                                                      | • The participants understood the need to change the sizes<br>of the aerial signals depending on the scales of the<br>topographic maps to be created.                                                                                                                                                                                                                                                                                                                                                                             |

#### **Evaluation of Technology Transfer**

The participants were able to perform basic works in the photo control point survey, GNSS survey and installation of aerial signals as they had performed them already in their work. However, they had not performed inspection, evaluation and accuracy control in either of these processes in their work. They understood that poor inspection and evaluation results required re-observation (implementation of new field observation at locations where the quality of the observation results was poor). They were also able to improve their understanding of the process of preparing an observation plan taking into consideration inspection and evaluation, performing inspection and evaluation at various stages and making a final decision on the observation using the final results which had passed such inspection and evaluation, instead of simply evaluating the observation only by the final calculation results.

The Study Team considers that the participants will have to apply the accuracy control learned in this technology transfer in their ordinary work on a daily basis to ensure the quality of the work.

## (4) Technology Transfer in Aerial Triangulation/Aerial Photography Planning

# 1<sup>st</sup> Term

Prior to the implementation of the technology transfer (in aerial photography planning, aerial triangulation, creation of orthophotos and creation and editing of DTMs) in the second term, the Study Team surveyed the current status concerning the above-described technology transfer items. The Study Team also implemented part of the technology transfer concerned in the first term.

| Item                              | Contents                                                                              | Impact and Problems                                                                                                                                                                   | Countermeasures                                                                                                                                                  |
|-----------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerial<br>triangulation           | Explanation of the<br>principles was partly<br>implemented in the<br>form of lectures | Technology transfer in the second term<br>will be implemented smoothly by<br>explaining the principles and examining<br>the level of knowledge of EMA staff at<br>the same time       | Improve the understanding of the<br>principles of aerial<br>photogrammetry of the trainees<br>by practice in practical work<br>using the system to be introduced |
| Aerial<br>photography<br>planning | Explanation of the<br>principles was partly<br>implemented in the<br>form of lectures | Technology transfer in the second term<br>will be implemented smoothly by<br>explaining the principles to EMA staff<br>and examining the level of their<br>knowledge at the same time | and train them to be able to<br>implement the work<br>independently by having them<br>master operation of the system at<br>the same time                         |

 Table 39
 Impact and Problems in Aerial Triangulation/Aerial Photography Planning

# 2<sup>nd</sup> Term

The table below shows the schedule of the technology transfer in aerial triangulation, aerial photography planning and creation of digital orthophotos (DTMs).

|                                                           | Table 40 Schedule in Aeriar Irlangulation/Aeriar Photography Phanning                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                           | eriod<br>2014)                                                                                                                                                                                                             | Content<br>(lecture and<br>practice)                   | Outcome                                                                                                                                                                                                                                                                                                                                              |  |
| (2 <sup>nd</sup> tec                                      | Week 1                                                                                                                                                                                                                     | Geometric principles of photogrammetry                 | The participants were able to diagram the geometric relationship when an aerial photograph is taken between the lens, camera and object (ground surface) and to understand the relationships between the focal length, elevation above the ground, image sensor, resolution at ground level, map sheet size, photo scale and photographed area, etc. |  |
| (2 <sup>nd</sup> technology transfer) July to August 2014 | Week 2                                                                                                                                                                                                                     | Coordinate systems for<br>analytical<br>photogrammetry | The participants were able to diagram the geometric relationship between<br>a pair of stereo images (left and right) and define multiple coordinate<br>systems (photograph, model and ground coordinate systems) linking a<br>monaural photograph, pair of stereo images and the object of<br>photography (ground surface)                           |  |
| er) July to A                                             | Week 3                                                                                                                                                                                                                     | Procedures for aerial triangulation                    | The participants were able to perform aerial triangulation of the area<br>covered by the forty models on three flight courses near Adama City<br>selected as the sample data for the practice on a trial basis and to<br>understand the procedures for aerial triangulation.                                                                         |  |
| August (                                                  | Week 4                                                                                                                                                                                                                     | Analysis procedures using the LPS System               | The participants were able to understand the procedures for creation of DTMs and orthophotos using the outputs of aerial triangulation.                                                                                                                                                                                                              |  |
| 2014                                                      | Week 5                                                                                                                                                                                                                     | Theories relevant to quality control                   | Regarding the outputs of aerial triangulation, the participants were able<br>to acquire the knowledge at introductory level of the "least-square<br>method," a method to estimate the true values from data containing<br>errors.                                                                                                                    |  |
|                                                           | EMA's own training course (sharing of the contents of the technology transfer within EMA and training in da exchange between the existing photogrammetry software and the photogrammetry software procured in the Project) |                                                        |                                                                                                                                                                                                                                                                                                                                                      |  |

 Table 40
 Schedule in Aerial Triangulation/Aerial Photography Planning

| (3 <sup>rd</sup> technology trai | Week 1 | Aerial triangulation<br>practice and quality<br>control      | The participants were able to perform aerial triangulation of the area<br>covered by the 40 models on three flight courses near Adama. They were<br>also able to evaluate the outputs based on the Quality Control Manual<br>and create an Accuracy Control Table.   |
|----------------------------------|--------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Week 2 | DEM creation and DEM editing                                 | DEM could be automatically created based on the results of aerial triangulation. The participants were able to create and edit DEM after attending a theoretical lecture on trends in automatically generated DEM errors and corrections and practicing DEM editing. |
| transfer) J<br>2015              | Week 3 | Orthophoto creation                                          | The participants were able to create orthophotos after creating<br>orthophotos using the results of aerial triangulation and edited DEM.                                                                                                                             |
| July to August                   | Week 4 | Orthophoto quality<br>control<br>ORIMA software<br>operation | The participants could evaluate the created orthoimages based on the<br>Quality Control Manual and create an Accuracy Control Table for the<br>corrected final results.                                                                                              |
|                                  | Week 5 | Evaluation of technology transfer                            | The level of understanding of the EMA trainees and the operations and quality were evaluated and the results compiled.                                                                                                                                               |

## **Evaluation of Technology Transfer**

Through the lectures and practice, the trainees understood the basic theory and could perform basic software operations at the same level (speed, accuracy) to a certain extent. They could also perform applied operations such as aerial triangulation of satellite images as well as aerial photographs, exchange of outputs with other software and correction of the quality control results.

|               | Item                                   | Objective Evaluation method and result                                                                      |                                                                                                                                                                                                                                                                                                                                  |
|---------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item          |                                        | Objective                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |
|               | Aerial photography planning            | The participants are<br>able to prepare a plan<br>appropriate for the<br>photo scale using the<br>software. | The participants were given the task of drawing a<br>photography plan map with given specifications<br>(including photo scale and ratios of overlapping and<br>side-lapping) in the lecture. They were able to improve<br>their understanding by correction of errors in the<br>elevation above the ground, etc.                 |
| Understanding | Aerial triangulation                   | The participants are<br>able to understand the<br>theories of aerial<br>triangulation.                      | After an explanation of the pattern of rotational<br>transformation of coordinates was provided in the<br>lecture, the participants were given the task of finding<br>another pattern of transformation. They reached the<br>correct answer while discussing the task among them.                                                |
| of theory     | Creation of<br>orthophotos and<br>DTMs | The participants are<br>able to understand the<br>theories for the<br>creation of DTMs and<br>orthophotos   | The participants were given the task of creating<br>orthophotos and DTMs in the practice with given<br>sample data after instruction in the procedures used in<br>the LPS System. Supplementary theoretical explanation<br>was given on the products of the task (both correct and<br>incorrect) to improve their understanding. |
|               | Application                            | The participants are<br>able to use data<br>between different<br>types of software.                         | In EMA's own training, the participants were given the<br>task of manipulating data between the photogrammetry<br>software used by EMA and the photogrammetry<br>software procured in this Project after which they were<br>able to perform the task themselves, so there will be no<br>third technology transfer for this item. |
| Performance   | Aerial triangulation                   | Improvement of processing skills                                                                            | In the second technology transfer, processing of 40 models on three flight courses took 35 hours by a fast operator, but in the third technology transfer processing by even the slowest operator took only 20 hours.                                                                                                            |
| i enominance  | Creation of<br>orthophotos and<br>DTMs | Improvement of<br>understanding and<br>practical skills in<br>orthophotos and                               | In the second technology transfer, creation of<br>orthophotos/DTMs of 10 aerial photos on two flight<br>courses required three days, but in the third technology<br>transfer, the participants were able to create                                                                                                               |

 Table 41
 Evaluation in Aerial Triangulation/Aerial Photography Planning

| Item    |                            | Objective                                             | Evaluation method and result                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                            | DTM processing                                        | orthophotos/DTMs of 40 aerial photos on three flight courses in two days.                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quality | Aerial triangulation       | Adjustment of<br>position of tie-point<br>observation | In the second technology transfer, as the participants did<br>not understand the ideal position of tie-point<br>observation and inappropriate observation locations<br>adversely affected the calculation results, a second<br>placement of all the tie-points was unavoidable. In the<br>third technology transfer, the participants built on their<br>experience in the second technology transfer and<br>succeeded in doing the calculations with the first<br>tie-point placements. |
|         | Creation of<br>orthophotos | Improvement of<br>quality control<br>capability       | The participants were able to do the work based on the<br>quality control manual. They were able to carry out<br>efficient checks taking into consideration DTMs and<br>seam lines and create an appropriate accuracy control<br>table.                                                                                                                                                                                                                                                 |

# (5) Technology Transfer in Digital Plotting

The table below shows the schedule of the technology transfer in digital plotting.

| Pe                                            | eriod  | Content                                                                                                                                                                                                                      | Outcome                                                                                                                                                    |  |
|-----------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1 <sup>st</sup> ) July to August 2014        | Week 1 | Installation of the equipment<br>Introduction to the technology transfer<br>Questionnaire and interview surveys<br>Basic operation of the CAD software<br>(MicroStation)<br>Practice in symbol creation for digital plotting | PowerPoint presentation on the outline of digital<br>plotting<br>Questionnaire<br>Manual for Basic Operation of the CAD Software<br>(MicroStation) (draft) |  |
| Augu                                          | Week 2 | Practice in symbol creation for digital plotting                                                                                                                                                                             | Manual for Symbol Creation for Digital Plotting                                                                                                            |  |
| st 20                                         | Week 3 | Practice in configuration of the stereo viewing software (PRO600)                                                                                                                                                            | PRO600 Configuration Manual                                                                                                                                |  |
| 4                                             | Week 4 | Practice in 3D digital plotting<br>Evaluation of the technology transfer                                                                                                                                                     |                                                                                                                                                            |  |
|                                               | Week 1 |                                                                                                                                                                                                                              | Software Installation Manual                                                                                                                               |  |
|                                               | Week 2 | Installation of the equipment                                                                                                                                                                                                | Software installation Manual                                                                                                                               |  |
| (2 <sup>nd</sup> ) Septe                      | Week 3 | Review of the outcome of the technology<br>transfer in the first term (symbol creation for<br>digital plotting and basic operation of the CAD<br>software)                                                                   | Manual for Basic Operation of the CAD Software (MicroStation)                                                                                              |  |
| (2 <sup>nd</sup> ) September to November 2014 | Week 4 | Understanding of the map symbols of 1/10,000<br>maps<br>Lecture on how to capture features at a scale of<br>1/10,000<br>Practice in capturing planimetric features                                                           | Digital Plotting Work Manual                                                                                                                               |  |
| /embe                                         | Week 5 | Practice in capturing spot elevations and contours                                                                                                                                                                           |                                                                                                                                                            |  |
| r 20                                          | Week 6 | Practice using the data of the training area                                                                                                                                                                                 | Digital plotting data of two map sheet areas                                                                                                               |  |
| 014                                           | Week 7 | Tractice using the data of the training area                                                                                                                                                                                 | Digital plotting data of two map sheet aleas                                                                                                               |  |
|                                               | Week 8 | Evaluation of the technology transfer                                                                                                                                                                                        |                                                                                                                                                            |  |
| (3 <sup>rr</sup>                              | Week 1 | Theory of contour mapping suitable for 1/10,000 maps                                                                                                                                                                         | Contour check maps of two map sheet areas                                                                                                                  |  |
| A(                                            | Week 2 | Correction of contours at a scale of 1/10,000                                                                                                                                                                                | Contour correction data of two map sheet areas                                                                                                             |  |
| (3 <sup>rd</sup> ) April to May<br>2015       | Week 3 | Planimetry suitable for 1/10,000 maps and correction of planimetric features                                                                                                                                                 | Planimetric feature check sheets of two map sheet areas                                                                                                    |  |
| Ma                                            | Week 4 | Practice in digital plotting at a scale of 1/10,000                                                                                                                                                                          | Start of practice in digital plotting with the southern and eastern areas of the plotting area as                                                          |  |
| y                                             | Week 5 | Tractice in digital protting at a scale of 1/10,000                                                                                                                                                                          | southern and eastern areas of the plotting area as the training area                                                                                       |  |

# Table 42 Schedule of the Technology Transfer in Digital Plotting

| EMA's Independent Practice Period (June – July 2015) |        |                                                                                                                                          |                                                                                                     |  |  |  |
|------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
|                                                      | Week 1 |                                                                                                                                          |                                                                                                     |  |  |  |
|                                                      | Week 2 | Practice in digital plotting at a scale of 1/10,000                                                                                      | Work in Ethiopia and digital plot sheets of the adjoining southern and eastern areas consisting of  |  |  |  |
| (4 <sup>th</sup>                                     | Week 3 |                                                                                                                                          | 16 map sheet areas                                                                                  |  |  |  |
| (4 <sup>th</sup> ) July to September 2015            | Week 4 | Digital plotting quality control and data<br>correction at a scale of 1/10,000<br>Digital plotting and joining at a scale of<br>1/10,000 | Check sheet of one map sheet area                                                                   |  |  |  |
| eptembe                                              | Week 5 | Digital plotting quality control and data<br>correction at a scale of 1/10,000<br>Discussion of specifications for other map scales      | Check sheets of two map sheet areas                                                                 |  |  |  |
| r 2015;                                              | Week 6 | Practice in correcting changes over time using<br>satellite images<br>Application to other map scales                                    | Correction of changes over time of one map sheet<br>area<br>1/5,000 topographic map symbols (draft) |  |  |  |
|                                                      | Week 7 | Outline of process control                                                                                                               | Samples of process control tools                                                                    |  |  |  |
|                                                      | Week 8 | Evaluation of the technology transfer                                                                                                    |                                                                                                     |  |  |  |
| (5 <sup>th</sup>                                     | Week 1 |                                                                                                                                          |                                                                                                     |  |  |  |
| ) Janu                                               | Week 2 | Practice in digital plotting at a scale of 1/10,000 (quality control)                                                                    | Digital plotting work for evaluation (one map sheet per operator)                                   |  |  |  |
| iary to                                              | Week 3 |                                                                                                                                          |                                                                                                     |  |  |  |
| (5 <sup>th</sup> ) January to February 2016          | Week 4 | Evaluation of digital plotting at a scale of 1/10,000                                                                                    |                                                                                                     |  |  |  |
| uary 2                                               | Week 5 | Lecture on specifications of digital plotting at a scale of 1/5,000 (Addis Ababa)                                                        | Work speed and quality were evaluated for two operators.                                            |  |  |  |
| 016                                                  | Week 6 | Practice in digital plotting at a scale of 1/5,000 (Addis Ababa)                                                                         | -                                                                                                   |  |  |  |
| $\sim$                                               | Week 1 |                                                                                                                                          |                                                                                                     |  |  |  |
| (6 <sup>th</sup> ) M                                 | Week 2 | Practice in digital plotting at a scale of 1/10,000 (quality control)                                                                    | Digital plotting work for evaluation (one map sheet per operator)                                   |  |  |  |
| farch 1                                              | Week 3 |                                                                                                                                          |                                                                                                     |  |  |  |
| (6 <sup>th</sup> ) March to April 2016               | Week 4 | Evaluation of digital plotting at a scale of 1/10,000                                                                                    | Work speed and quality were evaluated for three                                                     |  |  |  |
|                                                      | Week 5 | Practice in digital plotting at a scale of 1/5,000 (Addis Ababa)                                                                         | operators.                                                                                          |  |  |  |
|                                                      | Week 6 | Evaluation of the technology transfer                                                                                                    |                                                                                                     |  |  |  |

## **Evaluation of Technology Transfer**

An average of five operators participated in the technology transfer from May 2015 to April 2016. Three of them had experience in analog plotting and two had almost no experience.

As a result of training, the participants mostly understood necessary software operation and the work speed of all the five participants improved by the end of the training. With respect to quality, a reducing trend of errors was observed for the work of all the five participants (see tables below). In particular, it is considered that in addition to the elimination of obvious mistakes, such as "unconnected roads, rivers and contour lines" and "inconsistency between contour lines and rivers", reduction of inappropriate excessive acquisitions at a scale of 1/10,000 (both in terms of shape and size) led to the improvement of speed as well as quality.

As the subsequent training in digital editing helped the participants understand the content of errors that turn out to be logic errors in digital editing and which inhibit the creation of polygons, they became able to perform data acquisition in digital plotting based on the awareness of digital editing.

Also, in the latter half of this training, practice in digital plotting at 1/5,000 for Addis Ababa was started based on the newly procured satellite images. This enabled them to work while comparing the specifications and acquisition standards with those of the scale of 1/10,000 and promote the understanding of the difference in scales.

The final evaluation confirmed that digital plotting at 1/10,000 can be carried out at an average speed of 103km/day. Since the average total length of features generated on 1/10,000 map sheets is about 1,100km, the work can be completed in slightly more than 10 days, considering the time required for inputting symbols, etc.

As the average work speed of each operator was understood, practice in process control using bundled software (Microsoft Excel) was also implemented to enable progress control prior to the work.

| Table 45 Evaluation and issues of the rectiniously fransfer in Digital Forming |                                                                                                     |                                                                                                           |                                                                                                                                                                                                                                     |                                                                                            |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Item                                                                           | Objective                                                                                           | Content                                                                                                   | Evaluation method and result                                                                                                                                                                                                        | Issues for the<br>next term                                                                |
|                                                                                | To understand the<br>specifications for<br>1/10,000<br>topographic maps                             | Training in the<br>creation of the map<br>symbols described in<br>the specifications with<br>CAD software | The participants became able to create symbols at a scale of 1/10,000 without any problems.                                                                                                                                         | Self-training from<br>large scale to small<br>scale                                        |
| Understanding<br>of the purpose<br>and details of                              | To understand the<br>criteria for<br>capturing features<br>for 1/10,000 scale<br>digital plotting   | Provision of lecture<br>Practice using the<br>training area<br>consisting of two map<br>sheet areas       | Introduction of the inspection of<br>printed map sheets enabled the<br>participants to understand<br>excessive acquisitions<br>inappropriate for the scale of<br>1/10,000.                                                          | Nothing in<br>particular                                                                   |
| the work                                                                       | To understand the<br>procedures for<br>capturing features<br>for 1/10,000 scale<br>digital plotting | Provision of lecture<br>Practice using the<br>training area<br>consisting of 16 map<br>sheet areas        | The participants were able to reduce excessive acquisitions inappropriate for the scale of 1/10,000.                                                                                                                                | Extension of<br>technology to<br>untrained operators                                       |
|                                                                                | To understand the<br>basics of 3D<br>interpretation                                                 | Practice using the<br>training area<br>consisting of 16 map<br>sheet areas                                | Implementation of matching in<br>the digital editing training with<br>feedback enabled the operators to<br>work based on the awareness of<br>standardization.                                                                       | Continuation of<br>training for<br>standardization to<br>achieve higher work<br>efficiency |
| Performance                                                                    | Japanese Operator<br>level                                                                          | Aggregation of the<br>training area<br>consisting of 16 map<br>sheet areas                                | Although the work speed at this<br>point is about a half of the speed<br>of Japanese operators, it is<br>considered adequate in view of<br>the balance with quality.                                                                | Continuation of<br>training to increase<br>the speed and<br>overall<br>improvement         |
| Quality                                                                        | To implement<br>quality control<br>themselves                                                       | Results of inspection<br>of map sheet areas for<br>quality control                                        | Critical errors have almost been<br>eliminated and excessive<br>acquisitions also decreased. The<br>participants became able to<br>perform data acquisition in<br>consideration of the efficiency in<br>subsequent digital editing. | Overall<br>improvement to the<br>level of the operator<br>with fewest errors               |

 Table 43
 Evaluation and Issues of the Technology Transfer in Digital Plotting

# (6) Technology Transfer in Digital Editing

The table below shows the schedule of the technology transfer in digital Editing.

| Pe                                                                 | riod   | Content                                                                                                                  | Outcome                                                                                                                                                                                        |
|--------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1 <sup>st</sup> te                                                | Week 1 | General explanation of digital editing and<br>understanding of the basic operation and<br>functions of the CAD software  | Understanding of the details of digital editing<br>Acquisition of how to operate the software                                                                                                  |
| (1 <sup>st</sup> technology transfer) November to<br>December 2014 | Week 2 | Understanding of the map symbols and map editing functions                                                               | Understanding of the rules on data creation in<br>compliance with map symbol regulations<br>implemented separately<br>Mastering of the basic and advanced commands of<br>the editing functions |
| fer) Novem<br>r 2014                                               | Week 3 | Practical lesson on data cleaning and creation<br>of polygons (using sample data)<br>Acquisition of how to edit contours | Acquisition of how to display data by category and<br>detect and correct errors<br>Acquisition of how to edit contours, inspect contour<br>data for errors and correct errors                  |
| ber to                                                             | Week 4 | Review by individual participants<br>Practice in editing using actually plotted data                                     | Improvement of the level of understanding of<br>software operation and editing work through<br>repeated practice                                                                               |
| (2 <sup>nd</sup>                                                   | Week 1 | Correction of contours and review of data<br>cleaning process                                                            | Review of work content of technology transfer in first year of Project                                                                                                                         |
| technology                                                         | Week 2 | Confirmation of entire digital editing<br>workflow<br>Mastery of digital editing preparations                            | Understanding of entire digital editing workflow<br>Understanding of meaning of application of<br>common data settings for digital editing and mastery<br>of procedures                        |
| (2 <sup>nd</sup> technology transfer) August to October 2015       | Week 3 | Mastery of annotation input settings and work<br>procedures<br>Mastery of administrative boundary input<br>work          | Mastery of annotation input and administrative<br>boundary input work procedures                                                                                                               |
| ugust                                                              | Week 4 | Practice in digital editing processes using training area data                                                           | Understanding of flow of series of work using actual plotting data                                                                                                                             |
| to October 2                                                       | Week 5 | Mastery of data check procedures for each<br>data layer<br>Mastery of error data correction procedures                   | Mastery of data check procedures<br>Mastery of error correction procedures<br>Feedback to quality control of digital plotting work<br>based on understanding of error content                  |
| 015                                                                | Week 6 | Training in recovery work by themselves                                                                                  | Improvement of operation and understanding of work by repeated practice                                                                                                                        |
| (3rd<br>Nov                                                        | Week 1 | Review of the work schedule and procedures                                                                               |                                                                                                                                                                                                |
| (3rd technology transfer)<br>November to December<br>2016          | Week 2 |                                                                                                                          |                                                                                                                                                                                                |
| nology<br>er to D<br>2016                                          | Week 3 | Practice in digital editing                                                                                              | Map data for evaluation (4 sheets)                                                                                                                                                             |
| trans                                                              | Week 4 |                                                                                                                          |                                                                                                                                                                                                |
| fer)<br>ber                                                        | Week 5 | Evaluation of the practice in digital editing                                                                            | Evaluation of the speed and quality of the work of four operators                                                                                                                              |
| <b>(</b> 4                                                         | Week 1 | Practice in digital editing                                                                                              | Map data for evaluation (4 sheets)                                                                                                                                                             |
| th tec<br>May                                                      | Week 2 |                                                                                                                          | map data for evaluation (4 sheets)                                                                                                                                                             |
| (4th technology transfer)<br>May to June 2016                      | Week 3 | Accuracy control in digital editing                                                                                      | Explanation and practice of the method to evaluate quality of the edited data                                                                                                                  |
|                                                                    | Week 4 | Evaluation of the practice in digital editing                                                                            | Evaluation of the speed and quality of the work of four operators                                                                                                                              |

|                 |                        | Week 5 | Lecture on and practice in generalization                 | Thinning of contours<br>Thinning of plotting single points |
|-----------------|------------------------|--------|-----------------------------------------------------------|------------------------------------------------------------|
| (5th            | -                      | Week 1 | Lecture and review on generalization                      | List of processing methods by layer                        |
|                 | technology<br>August 2 | Week 2 | Desetion in concentration                                 |                                                            |
| ology<br>just 2 | ology<br>ust 20        | Week 3 | Practice in generalization                                | Understanding of the generalization methods                |
|                 | gy transfer)<br>2016   | Week 4 | Practice in generalization and evaluation of the practice | Improvement of the understanding of generalization work    |

#### Evaluation of the Technology Transfer and Tasks to be Performed

Approx. 10 operators participated in each of the five technology transfer sessions conducted between November 2014 and August 2016. After implementation of the first technology transfer, the participants understood basic CAD software operations and the data cleaning workflow. Through the second technology transfer, they understood data editing of each layer and the data cleaning procedures as well as understanding the entire digital editing workflow. In the third and fourth technology transfer, the participants understood the procedures used in the entire digital editing process and improved the work speed and accuracy with repeated practice. In the latter half of the fourth technology transfer and in the fifth technology transfer, the participants learned the generalization procedures.

None of the participants of the technology transfer had experience in using the editing software (MicroStation). However, as the participants used the same software they had used in the technology transfer in digital plotting and symbolization implemented concurrently, their technical capacity in operating the software improved significantly. The evaluation of the technology transfer revealed the improvement in the work speed of all the four evaluated participants. The quality of their work was also improved as the evaluation revealed a reduction in the numbers of errors. The repeated practice is believed to have been the cause of such improvement. Although the levels of understanding differed among the participants, they acquired general understanding of the setting of thresholds of the data cleaning tool, which had been a problem for them, and each of them became able to set a threshold appropriate for the data contents.

The focus of the technology transfer in generalization was on the understanding of the map specifications. The participants prepared a generalization manual while each of them considered how to edit each type of features in the generalization. They managed to conduct the generalization independently by following this manual.

57

| Item                                    | Objective                                                                                                                                                                                 | Content                                                                               | Evaluation method and result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Issues for the<br>next term                                                                                                                                             |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Understanding of<br>theory and<br>standards for<br>editing 1/10,000<br>topographic maps<br>Understanding of<br>acquisition<br>procedures for<br>digital editing at a<br>scale of 1/10,000 | Lecture<br>Practice using<br>sample data of<br>one map sheet<br>area                  | The results of qualitative evaluation of the<br>level of understanding showed that the<br>trainees who attended the technology transfer<br>in digital plotting had a good understanding of<br>the elements targeted for editing.<br>The trainees from the Mapping Directorate<br>who participated had a good understanding of<br>the quality required for the final outputs.<br>Significant progress was achieved based on<br>the results of the lecture and information<br>sharing by both parties.<br>The results of qualitative evaluation of the<br>level of understanding showed that the<br>trainees who attended the technology transfer<br>in digital plotting had a good understanding of<br>software editing operations. In addition, the<br>technology was appropriately communicated<br>to the participants from the Mapping | N/A                                                                                                                                                                     |
| Understanding<br>of the<br>purposes and | Understanding of<br>theory and<br>procedures for<br>polygon creation                                                                                                                      | Lecture<br>Practice using<br>sample data of<br>one map sheet<br>area                  | Directorate.<br>The results of qualitative evaluation of the<br>level of understanding showed that it was the<br>first time for all the trainees, therefore, in the<br>early stage of the technology transfer, the<br>Japanese experts explained the theory and<br>procedures and the participants tried to learn<br>them by imitating what the experts did. In the<br>later stages, their initiatives began to emerge<br>in the practice. For example, they gained a<br>better understanding of the thresholds by<br>processing data with different thresholds set<br>by themselves.                                                                                                                                                                                                                                                    |                                                                                                                                                                         |
| contents of the<br>work                 | Independent<br>execution of<br>digital editing at a<br>scale of 1/10,000                                                                                                                  | Practice in the<br>training area<br>consisting of<br>two map sheet<br>areas           | The results of qualitative evaluation of the<br>content of editing work and data being edited<br>showed that several of the trainees had a good<br>understanding of the theory of editing and the<br>work procedures. The other trainees<br>performed digital editing themselves while<br>checking the work procedures with trainees<br>with a higher level of understanding.<br>When a problem arises, increasingly the<br>trainees discuss it and solve it themselves.<br>Major progress was made towards performing<br>the work independently.                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                     |
|                                         | Understanding of<br>theory and<br>standards of<br>reduction (from<br>1/10,000 to<br>1/25,000 scale)                                                                                       | Lecture<br>Practice using<br>sample data of<br>one map sheet<br>area                  | The participants conducted a comparative<br>study of the map specifications for the two<br>types of topographic maps and completed the<br>compilation of the generalization manual<br>based on the results of the study<br>independently. The result of qualitative<br>evaluation revealed that they had understood<br>the theory of the generalization and become<br>able to implement it independently.                                                                                                                                                                                                                                                                                                                                                                                                                                | Further<br>improvement in the<br>work speed with<br>repeated practice<br>and actual work<br>experience                                                                  |
|                                         | Quality control                                                                                                                                                                           | Lecture<br>Practice with<br>data of two<br>map sheet<br>areas in the<br>training area | The participants have understood the theory<br>and procedures of the quality control and<br>become able to control the quality of edited<br>data mutually.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Improvement of<br>awareness to the<br>quality through the<br>implementation of<br>quality control and<br>further<br>improvement in the<br>quality of the work<br>itself |

 Table 45
 Evaluation and Issues of the Technology Transfer in Digital Editing

#### (7) Technology Transfer in Symbolization

The table below shows the schedule of the technology transfer in symbolization.

Practice data prepared by the Study Team were used in the training in the first technology transfer because the processing of data of the pilot area in the preceding stage had not been completed yet. Because the digital editing of data of a map sheet area in the pilot area had been completed, the data of the map sheet concerned were used in the training in the second technology transfer. Because the digital editing of data of multiple 1/10,000 map sheet areas had been completed, these edited data were used in the training in the third technology transfer. The 1/25,000 map data prepared by the Study Team for the practice were also used in the training.

| P                                                            | eriod  | Content                                                                                                                                                                                                                                       | Outcome                                                                                                                                                                         |
|--------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | Week 1 | Investigation of the engineers' level and formulation of the technology transfer plan                                                                                                                                                         | Grasp of experience and technical level of C/Ps                                                                                                                                 |
|                                                              | Week 2 | <ul> <li>Team 1</li> <li>Understanding of theory of symbolization</li> <li>Understanding of how to create map symbols</li> <li>Understanding of how to operate symbolization</li> <li>software</li> </ul>                                     | Understanding of theory of symbolization<br>Mastery of how to create map symbols<br>Mastery of how to operate symbolization<br>software                                         |
| (1 <sup>st</sup> techno)                                     | Week 3 | ○ Team 1<br>Understanding of theory and procedures of transfer<br>Understanding of how to adjust annotations<br>Understanding of how to adjust the positional relation<br>between features according to the priority level of the<br>features | Understanding of theory and procedures of<br>transfer<br>Mastery of how to adjust annotations<br>Mastery of how to adjust the positional<br>relation between features           |
| (1 <sup>st</sup> technology transfer) July to September 2015 | Week 4 | <ul> <li>Team 1</li> <li>Understanding of the theory and procedures of hidden<br/>line removal</li> <li>Understanding of how to remove hidden contours</li> <li>Understanding of how to remove duplicated hidden<br/>feature lines</li> </ul> | Understanding of the theory and procedures of<br>hidden line removal<br>Mastery of how to remove hidden contours<br>Mastery of how to remove duplicated hidden<br>feature lines |
|                                                              | Week 5 | <ul> <li>Team 2</li> <li>Understanding of the theory of symbolization</li> <li>Understanding of how to create map symbols</li> <li>Understanding of how to operate symbolization</li> <li>software</li> </ul>                                 | Understanding of the theory of symbolization<br>Mastery of how to create map symbols<br>Mastery of how to operate symbolization<br>software                                     |
|                                                              | Week 6 | C Team 2<br>Understanding of theory and procedures of transfer<br>Understanding of how to adjust annotations<br>Understanding of how to adjust the positional relation<br>between features according to the priority level of the<br>features | Understanding of theory and procedures of<br>transfer<br>Mastery of how to adjust annotations<br>Mastery of how to adjust the positional<br>relation between features           |
|                                                              | Week 7 | <ul> <li>Team 2</li> <li>Understanding of the theory and procedures of hidden<br/>line removal</li> <li>Understanding of how to remove hidden contours</li> <li>Understanding of how to remove duplicated hidden<br/>feature lines</li> </ul> | Understanding of the theory and procedures of<br>hidden line removal<br>Mastery of how to remove hidden contours<br>Mastery of how to remove duplicated hidden<br>feature lines |

 Table 46
 Schedule of the Technology Transfer in Symbolization

|                                                     | Week 8 | Evaluation of technology transfer                                                                                                                                                                                                                                                                       | Results of questionnaire on level of understanding                                                                                                                                                                                    |
|-----------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | Week 1 | <ul> <li>Team 1</li> <li>Refresher training on the training items in the previous training using the data of the pilot area</li> </ul>                                                                                                                                                                  | Reminding forgotten training items in the<br>previous training by practicing the training<br>items in the previous training again                                                                                                     |
| (2nd tech                                           | Week 2 | Team 1<br>Understanding of how to create polygon data<br>Understanding of the order of display of map symbols<br>Understanding of how to make a polygon transparent                                                                                                                                     | Mastery of how to create polygon data<br>Understanding of the order of display of<br>layers<br>Mastery of how to make a polygon transparent                                                                                           |
| (2nd technology transfer) November to December 2015 | Week 3 | <ul> <li>Team 1</li> <li>Understanding of how to create marginal information</li> <li>Understanding of how to create a map sheet to be</li> <li>printed</li> <li>Team 2</li> <li>Refresher training on the training items in the previous</li> <li>training using the data of the pilot area</li> </ul> | Mastery of how to create marginal<br>information<br>Mastery of how to create a map to be printed<br>Reminding forgotten training items in the<br>previous training by practicing the training<br>items in the previous training again |
| ember to De                                         | Week 4 | <ul> <li>Team 2</li> <li>Understanding of how to create polygon data</li> <li>Understanding of the order of display of map symbols</li> <li>Understanding of how to make a polygon transparent</li> </ul>                                                                                               | Mastery of how to create polygon data<br>Understanding of the order of display of<br>layers<br>Mastery of how to make a polygon transparent                                                                                           |
| cember 201                                          | Week 5 | <ul> <li>Team 2</li> <li>Understanding of how to create marginal information</li> <li>Understanding of how to create a map sheet to be</li> <li>printed</li> </ul>                                                                                                                                      | Mastery of how to create marginal<br>information<br>Mastery of how to create a map to be printed                                                                                                                                      |
| 0                                                   | Week 6 | <ul> <li>Teams 1 and 2</li> <li>Understanding of the quality control method</li> <li>Understanding of how to complete the accuracy control table</li> </ul>                                                                                                                                             | Mastery of the quality control method<br>Mastery of how to complete the accuracy<br>control table                                                                                                                                     |
| (3rd tec)                                           | Week 1 | Inspection of the data of the training area created by the counterparts                                                                                                                                                                                                                                 | Symbolized map sheets of the training area (3 sheets)                                                                                                                                                                                 |
| hnolog                                              | Week 2 | Correction of the data of the training area                                                                                                                                                                                                                                                             | Symbolized map sheets of the training area (3 sheets)                                                                                                                                                                                 |
| yy tran                                             | Week 3 | Correction of the data of the training area                                                                                                                                                                                                                                                             | Symbolized map sheets of the training area (3 sheets)                                                                                                                                                                                 |
| ısfer) M                                            | Week 4 | Evaluation of the outputs of the symbolization                                                                                                                                                                                                                                                          | Results of the evaluation of the speed and quality of the work of the three teams                                                                                                                                                     |
| ay to J                                             | Week 5 | Transfer of the technologies for the symbolization of 1/25,000 maps                                                                                                                                                                                                                                     | Understanding of the theory of and procedures for the symbolization of 1/25,000 maps                                                                                                                                                  |
| (3rd technology transfer) May to July 2016          | Week 6 | Transfer of the technologies for the symbolization of 1/25,000 maps                                                                                                                                                                                                                                     | Mastery of how to symbolize 1/25,000 topographic maps                                                                                                                                                                                 |

#### Evaluation of the Technology Transfer and Tasks to be Performed

The results of the questionnaire inquiries and quizzes conducted several times during the technology transfer have confirmed that most of the counterparts have understood "the theory of symbolization," "how to create map symbols," "the theory and method of the transfer processing," "the theory and method of processing hidden lines," "the theory on the order of display of map symbols," "how to create marginal information," "how to create map sheets to be printed" and "the quality control method."

The results of the inspection of the output of the initial training, the three map sheets of the training area symbolized by the counterparts independently and the three map sheets of the training area symbolized by the counterparts at the time of the measurement of the work efficiency were compared for the evaluation of the quality of the outputs. The number of errors identified on a map sheet, which was approximately 40 per sheet in the initial training (implemented between August and December 2015), was reduced to less than 20 and less than 15 at the time of the independent symbolization (between January and May 2016) and the evaluation of the work efficiency (in May and June 2016), respectively. This observation shows that the repeated practice reduced the numbers of errors. The difference in the number of errors between the teams does not relate to the difference in their capacities because the difference was mainly derived from the difference in the difficulty in symbolizing map sheets. (The difficulty increases as the number of features on a map sheet increases.) Because map sheets displayed on a computer screen and printed on paper look a little different, the inspection was conducted with the maps printed on paper as final outputs. Since no serious problem is expected to emerge from the existence of 15 errors per map sheet, the counterparts are considered to have conducted the quality evaluation appropriately.

| Item                                                               | Objective                                                                                               | Contents                                                          | Evaluation method and result                                                                                                                                                                                                                                                                                                                                           | Issues for<br>the next<br>term |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                    | Understanding of<br>the theory and<br>standards of<br>1/10,000 map<br>symbolization                     | Lecture                                                           | <ul> <li>As a result of qualitative evaluation, the trainees were judged to understand the basic theory of symbolization.</li> <li>Five of the trainees answered all ten questions in the test in the qualitative evaluation correctly and the remaining three trainees got nine answers right.</li> </ul>                                                             | N/A                            |
| Understanding<br>of the<br>purposes and<br>contents of the<br>work | Understanding of<br>procedures for<br>creating 1/10,000<br>map symbols                                  | Practice with a<br>number of sample<br>symbols                    | <ul> <li>As a result of qualitative evaluation,<br/>the trainees were judged to<br/>understand the basic method of<br/>creating map symbols.</li> <li>From the fact that they were able to<br/>complete the training practice within<br/>the assigned time, they were judged to<br/>understand the procedures.</li> </ul>                                              | N/A                            |
|                                                                    | Understanding of<br>theory of transfer<br>and hidden line<br>removal of<br>1/10,000<br>topographic maps | Lecture<br>Creation of<br>symbolization data<br>using sample data | <ul> <li>As a result of qualitative evaluation,<br/>the trainees were judged to<br/>understand the basic methods of<br/>transferring, removing hidden lines<br/>and creating map symbols.</li> <li>From the fact that they were able to<br/>complete the training practice within<br/>the assigned time, they were judged to<br/>understand the procedures.</li> </ul> | N/A                            |

 Table 47
 Evaluation and Issues of the Technology Transfer in Symbolization

| Item | Objective                                                                                                                        | Contents                                                                                                                                                 | Evaluation method and result                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Issues for<br>the next<br>term                                                                               |  |
|------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|      | Understanding of<br>display order of<br>map symbols Lecture<br>Practice using data of<br>(a map sheet area in)<br>the pilot area |                                                                                                                                                          | The trainees are considered to have<br>understood the procedures because they<br>managed to complete the practice in the<br>training in a given time period. It has<br>been concluded that they have<br>understood the importance of the<br>display order because they proposed a<br>way to improve the order presented by<br>the experts in the training.                                                                                                                                              | Dissemination<br>of the<br>technologies to<br>operators who<br>have not taken<br>the training                |  |
|      | Understanding of<br>procedures for<br>creation of<br>marginal<br>information                                                     | Lecture<br>Creation of marginal<br>information using<br>data of (a map sheet<br>area in) the pilot area                                                  | The trainees are considered to have<br>understood the procedures because they<br>managed to complete the practice in the<br>training in a given time period.<br>It has been concluded that they have<br>understood the procedures to create<br>marginal information because they<br>gained a better understanding of the<br>procedures by repeating the practice of<br>the procedures by themselves.                                                                                                    | Dissemination<br>of the<br>technologies to<br>operators who<br>have not taken<br>the training                |  |
|      | Understanding of<br>procedures for<br>creation of<br>printed map data                                                            | Lecture<br>Creation of a map<br>sheet to be printed<br>using data of (a map<br>sheet area in) the<br>pilot area                                          | It has been concluded from the result of<br>the qualitative evaluation that the<br>trainees have understood how to create<br>a map sheet to be printed.<br>The trainees are considered to have<br>understood the procedures because they<br>managed to complete the practice in the<br>training in a given time period.                                                                                                                                                                                 | Dissemination<br>of the<br>technologies to<br>operators who<br>have not taken<br>the training                |  |
|      | Understanding of<br>quality control<br>methods                                                                                   | Lecture<br>Quality control using<br>data of (a map sheet<br>area in) the pilot area                                                                      | It has been concluded from the result of<br>the qualitative evaluation that the<br>trainees have understood the quality<br>control method.<br>The trainees inspected the outputs<br>independently, compared the inspection<br>results and studied the difference in the<br>results. Because they managed to<br>correct errors identified in the<br>inspection and compile the results of<br>the correction in an accuracy control<br>table, they are considered to have<br>understood these procedures. | Quality control<br>of the work<br>conducted<br>independently<br>by EMA with<br>the data of the<br>pilot area |  |
|      | Understanding of<br>the theory of the<br>creation of<br>1/25,000 maps<br>and the map<br>symbols for these<br>maps                | Lecture                                                                                                                                                  | The procedures to create 1/25,000<br>topographic maps are almost the same<br>as those to create 1/10,000 maps.<br>Therefore, the trainees managed to<br>understand the procedures to create<br>1/25,000 maps only by providing<br>supplementary explanation on the<br>differences in the two procedures.                                                                                                                                                                                                | 1/25,000<br>topographic<br>mapping of the<br>pilot area to be<br>implemented<br>independently<br>by EMA      |  |
|      | Symbolization of<br>1/25,000 maps<br>following<br>predetermined<br>procedures                                                    | Practice of the<br>symbolization of a<br>combined map<br>created from the<br>generalized data of<br>the three map sheet<br>areas in the training<br>area | The trainees managed to practice the symbolization of 1/25,000 maps only with the provision of the explanation on the differences in the symbolization procedures for 1/10,000 and 1/25,000 maps and complete the symbolization in a given time period.                                                                                                                                                                                                                                                 | Symbolization<br>of maps of the<br>pilot area to be<br>implemented<br>independently<br>by EMA                |  |

| Item        | Objective                                                                                                                                                                                        | Contents                                                                       | Evaluation method and result                                                                                                                                                                                                       | Issues for<br>the next<br>term                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Performance | Two-fold<br>improvement in<br>the efficiency of<br>the symbolization<br>with the data of<br>the training area<br>compared with<br>the efficiency of<br>the work at the<br>time of the<br>lecture | Compilation of the<br>data of three map<br>sheet areas in the<br>training area | Comparison of the time required for the<br>trainees to perform the symbolization<br>confirmed that they were able to<br>symbolize maps approx. three times<br>more efficiently than they could have at<br>the time of the lecture. | Further<br>improvement of<br>the efficiency<br>with EMA's<br>own initiative                                     |
| Quality     | Capacity to<br>implement<br>quality control of<br>the outputs of the<br>control area<br>independently                                                                                            | Evaluation of the six<br>map sheets of the<br>training area                    | The counterparts managed to inspect<br>map sheets and complete an accuracy<br>control table by themselves. However,<br>errors created in the preceding process<br>were detected.                                                   | Strengthening<br>of the quality<br>control in each<br>stage of the<br>project<br>coordination<br>between stages |

## (8) Technology Transfer in GIS Structuration and Website Creation

A survey conducted in the first term revealed the need for technology transfer in the items listed below for realization of creation, structuration and distribution on the website of GIS data (raster and vector data).

| Item              | Contents                                                                        |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                   | Detailed design of the database                                                 |  |  |  |  |
|                   | Creation of schema of feature classes                                           |  |  |  |  |
|                   | Storage and structuration of vector data                                        |  |  |  |  |
|                   | Inspection of vector data for logical errors                                    |  |  |  |  |
|                   | Correction of the errors in vector data                                         |  |  |  |  |
|                   | Automatic creation of mesh data of map sheet areas in all the scales            |  |  |  |  |
|                   | Optimization of the vector data display                                         |  |  |  |  |
| GIS Structuration | Automatic vector data segmentation and integration by mesh of map sheet area    |  |  |  |  |
|                   | Data conversion between databases                                               |  |  |  |  |
|                   | Coordinate conversion of GIS data                                               |  |  |  |  |
|                   | Spatial analysis and spatial selection of vector data                           |  |  |  |  |
|                   | Creation, extraction, statistics and inspection for errors of attribute data    |  |  |  |  |
|                   | Utilization of the SQL language for database                                    |  |  |  |  |
|                   | Automatic image segmentation and integration by mesh of map sheet area          |  |  |  |  |
|                   | Automatic mapping                                                               |  |  |  |  |
|                   | Utilization of the SQL language for database                                    |  |  |  |  |
| Wata ita ana dian | Design of database structure for storage of images                              |  |  |  |  |
| Website creation  | Optimization of image display                                                   |  |  |  |  |
|                   | Coordinated operation of ArcGIS Catalog, ArcGIS Server and SQL Server databases |  |  |  |  |

 Table 48
 Technology Transfer Items Related to GIS Structuration and Website Creation

| Pe                                                                 | riod   | Content                                                                                                                                | Outcome                                                                                                                                                                                                         |
|--------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1 <sup>st</sup>                                                   | Week 1 | Automatic creation of mesh data by map sheet area at all mapping scales                                                                | Acquisition of technologies for automatic<br>processing of mesh data by map sheet area at each<br>standard mapping cashs in Ethiopia                                                                            |
| <sup>t</sup> technology transf<br>June to July 2014                | Week 2 | Automatic vector data segmentation and integration by mesh in map sheet area                                                           | standard mapping scale in Ethiopia<br>Acquisition of technologies for segmentation and<br>integration of the image data created above                                                                           |
| ology<br>July                                                      | Week 3 | Detailed database design<br>Creation of schema of feature classes                                                                      | Acquisition of knowledge of design, creation and management of databases in different data formats                                                                                                              |
| (1 <sup>st</sup> technology transfer)<br>June to July 2014         | Week 4 | Data conversion between databases                                                                                                      | Acquisition of knowledge for data conversion<br>between databases in different data formats with a<br>customized tool and improvement of the efficiency<br>of routine work                                      |
| z                                                                  | Week 1 | Storage and structuration of vector data<br>Inspection of vector data for logical errors                                               | Acquisition of skill in use of tools for the creation,<br>analysis and inspection of errors in vector data                                                                                                      |
| (2 <sup>nd</sup> techno<br>ovember to                              | Week 2 | Correction of erroneous vector data<br>Optimization of vector data display<br>Spatial analysis and spatial selection of vector<br>data | Acquisition of skill in use of tools for the creation,<br>analysis and inspection of errors in vector data                                                                                                      |
| (2 <sup>nd</sup> technology transfer)<br>November to December 2014 | Week 3 | Creation, extraction, statistics and inspection<br>of errors in attribute data<br>Automatic mapping                                    | Acquisition of skill in creation, processing and<br>inspection of attribute data associated with vector<br>data<br>Acquisition of knowledge of automatic processing<br>and creation of a large quantity of maps |
| 4                                                                  | Week 4 | Coordinated operation of ArcGIS Catalog,<br>ArcGIS Server and SQL Server databases                                                     | Use of the web server (SQL Server) for data management                                                                                                                                                          |
| (3 <sup>rd</sup>                                                   | Week 1 | Discussion of web management with IT<br>Directorate                                                                                    | Confirmation of technology content related to web management                                                                                                                                                    |
| techn<br>Se                                                        | Week 2 | How to convert sample CAD data to geodatabase and how to use tools                                                                     | Acquisition of skill in conversion to geodatabase<br>using ArcGIS and Python tools                                                                                                                              |
| (3 <sup>rd</sup> technology transfer) July to<br>September 2015    | Week 3 | Error check of GIS data and error output                                                                                               | Acquisition of skill in identification and output of errors in GIS data by topology rules                                                                                                                       |
| transf<br>ber 20                                                   | Week 4 | Definition, discussion and structuration method of GIS data structuration                                                              | Approval of definition of GIS data structuration<br>and acquisition of skill in sample data structuration                                                                                                       |
| er) Jul<br>15                                                      | Week 5 | How to store structured GIS data in SQL database                                                                                       | Acquisition of skill in storage of structured data in SQL database                                                                                                                                              |
| y to                                                               | Week 6 | How to provide and display GIS data on the web server                                                                                  | Acquisition of skill in provision and display of data on web server                                                                                                                                             |
|                                                                    | Week 1 | Discussion on the GIS data and web<br>management with EMA and confirmation of<br>the status of the networks and server<br>operation    | It was decided to disclose PDF files with Index on<br>the Geoportal of EMA. It was confirmed that the<br>EMA server was operating normally.                                                                     |
|                                                                    | Week 2 | Conversion of 1/10,000 and 1/25,000 CAD data to Geodatabase data and inspection of GIS data for error detection                        |                                                                                                                                                                                                                 |
| (4th te<br>July                                                    | Week 3 | Discussion on the method to provide GIS data<br>to the web server and supply of PDF map<br>data to the web server                      | The participants were able to convert data format<br>using the tool developed by the Study Team during<br>this study, understood the details of the errors                                                      |
| chnol<br>to Sep                                                    | Week 4 | Preparation for the JCC meeting and the Final Seminar                                                                                  | detected during the conversion and rectified the errors.                                                                                                                                                        |
| (4th technology transfer)<br>July to September 2016                | Week 5 | Conversion of 1/10,000 and 1/25,000 CAD data to Geodatabase data and inspection of GIS data for error detection                        |                                                                                                                                                                                                                 |
| fer)<br>016                                                        | Week 6 | Storage of the structured GIS data in a SQL database, management of the SQL database                                                   | The participants were able to store all the data created in this study in the SQL database correctly and manage the data.                                                                                       |
|                                                                    | Week 7 | Provision of GIS data and PDF map data to<br>the server and configuration and display of<br>the data                                   | The participants were able to upload all the data created in this study and share the data in EMA.                                                                                                              |
|                                                                    | Week 8 | Provision of PDF map data to EMA<br>Geoportal and configuration and display of<br>the data                                             | The participants were able to download all the PDF data created in this study on the Geoportal of EMA.                                                                                                          |

| Table 49 | Schedule of the Technology Transfer in GIS Structuration and Website Creation |
|----------|-------------------------------------------------------------------------------|
|----------|-------------------------------------------------------------------------------|

#### Evaluation of the Technology Transfer and Tasks to be Performed

An ArcGIS Python Script tool developed by the Study Team was used in the technology transfer in GIS structuration. The use of this tool made it possible to detect errors occurred in the structuration by examining log files as the rules on data input, output and definition written in the Python Script code were included in the tool and the tool had a function to record output results in a log file automatically.

The participants practiced in the conversion of the data format from dgn to Geodatabase and the examination of detected errors using sample data (in the dgn format) that had been digitally compiled after field completion.

Then they also practiced the storage of error-corrected final data in a SQL database.

The participants have fully understood the contents of the technology transfer and become able to perform the GIS structuration independently as the tool developed for the technology transfer has significantly simplified and automated the data conversion process for the GIS structuration including the error detection in the structuration.

In the technology transfer on WebGIS, the participants took a lecture on the rules for data storage in the existing Geoportal site of EMA and the website on the intranet of EMA established in this study and practiced the data storage in accordance with the rules and the display of the stored data on the Web.

A website on the intranet of EMA was designed with ArcGIS for Server and JavaScript in Japan and established by installing the design on the server.

It has become possible to share the final data stored on the existing Geoportal and the website on the intranet of EMA and display and download GIS data both within and outside EMA.

Because the IT engineers of EMA had the knowledge and technical capacity to store data in the Geoportal, they have fully understood the contents of the technology transfer concerning the data format developed in this study and become able to use the transferred technologies independently.

The table below shows the results of the evaluation of the technology transfer in GIS structuration and website creation.

| Item                                    | Objective                                                             | Contents                                                                                                                                 | Evaluation method and result                                                                                                                                                                                                                                                      | Issues for the<br>next term                                           |
|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                         | Understanding<br>of the GIS<br>data structure                         | Storage,<br>creation, editing<br>and updating of<br>databases                                                                            | The participants were able to record the<br>processes of data manipulation, analyze the<br>outputs of data creation and create data<br>consistent with the GIS data structure.                                                                                                    | N/A                                                                   |
|                                         | Data<br>conversion<br>(from CAD<br>format to<br>SHAPE<br>format       | Use of ArcGIS<br>conversion tool<br>Use of<br>customized<br>ModelBuilder<br>tool                                                         | The participants were able to convert data<br>from the CAD format to the Shape format<br>after repeatedly practicing conversion with<br>sample data and the customized<br>ModelBuilder tool. Improvement in work<br>efficiency by the use of automatic conversion<br>was observed | N/A                                                                   |
|                                         | Operation of<br>GIS software                                          | Assistance in<br>advanced<br>operation and<br>tool creation                                                                              | The participants were able to record the<br>progress of a series of complicated works and<br>perform automatic execution of the works<br>using customized tools created with<br>ModelBuilder.                                                                                     | N/A                                                                   |
|                                         | Operation of the server                                               | Creation and<br>management of<br>server users                                                                                            | The participants were able to use the server<br>tools to create and manage server users and<br>create, edit and delete data.                                                                                                                                                      | N/A                                                                   |
| Understanding<br>of the<br>purposes and | Conversion<br>from sample<br>dgn data to<br>GIS data                  | Conversion of<br>dgn data to<br>geodatabase by<br>ArcGIS and<br>Python tools                                                             | The participants were able to perform<br>conversion after practicing conversion of<br>sample dgn data to the geodatabase using<br>ArcGIS and Python tools.                                                                                                                        | N/A                                                                   |
| contents of the<br>work                 | Detection of<br>errors in GIS<br>data                                 | Output of GIS<br>data error<br>identification by<br>topology rules                                                                       | The participants were able to identify and<br>output errors in GIS data after repeatedly<br>practicing with sample data and the ArcGIS<br>tools. Improvement in work efficiency by the<br>use of customized tools was observed.                                                   | N/A                                                                   |
|                                         | Approval of<br>definition of<br>GIS data<br>structuration             | Approval of<br>geodatabase,<br>Feature Dataset,<br>Feature Class,<br>and Field<br>definitions                                            | The participants explained and discussed the definitions of geodatabase, Feature Dataset, Feature Class and Field. The definition of GIS data structuration was understood and approved after practicing using the structuration tool.                                            | N/A                                                                   |
|                                         | Storage in<br>SQL database                                            | Storage of<br>structured GIS<br>data in SQL<br>database                                                                                  | The participants were able to store the<br>structured GIS data in the SQL database after<br>practicing storing sample data in the SQL<br>database using the ArcGIS tools.                                                                                                         | N/A                                                                   |
|                                         | Establishment<br>of a website in<br>the intranet of<br>EMA            | Sharing, display<br>and<br>downloading of<br>structured GIS<br>data on a<br>website in the<br>intranet of EMA                            | The participants were able to share, display<br>and download data after practicing the<br>operation and management of a website using<br>a website on the intranet of EMA.                                                                                                        | Sustainable<br>operation and<br>management of the<br>intranet website |
|                                         | Display and<br>downloading<br>of the latest<br>data on the<br>website | Method to<br>upload the final<br>map data to the<br>existing<br>Geoportal site<br>of EMA and<br>management of<br>the data on the<br>site | The participants were able to upload and<br>manage the final map data after practicing the<br>uploading of multiple sets of the final map<br>data to the web server.                                                                                                              | N/A                                                                   |

# Table 50 Evaluation of the Technology Transfer in GIS Structuration and Website Creation

# 5-4. Level of Achievement and Total Evaluation of Technology Transfer

The Study Team has comprehensively evaluated the achievement level from the initial target in each technology transfer item.

|                                    |    |                                                                               |          | Poir      | nts by<br>hts dan |            | Score (point)/100 |     |
|------------------------------------|----|-------------------------------------------------------------------------------|----------|-----------|-------------------|------------|-------------------|-----|
| Technology                         |    | Goals                                                                         | 0~<br>24 | 25~<br>49 | 50~<br>74         | 75~<br>100 | by goal           | SUM |
| Field<br>Identification /          | 1  | Comprehension of "Theory" and<br>"Specification"                              | 0        | 3         | 6                 | 9          | 9                 |     |
| Field                              | 2  | Able to operate equipment properly                                            | 1        | 4         | 7                 | 10         | 10                |     |
| Verification                       | 3  | Work implementation in correct procedure                                      | 2        | 5         | 8                 | 11         | 11                |     |
|                                    | 4  | Work implementation with stable quality and speed                             | 3        | 6         | 9                 | 12         | 9                 |     |
|                                    | 5  | Control"                                                                      |          | 7         | 10                | 13         | 10                | 82  |
|                                    | 6  | Basic work implementation with "Work Management"                              | 5        | 8         | 11                | 14         | 11                |     |
|                                    | 7  | Independent implementation on similar work                                    | 6        | 9         | 12                | 15         | 12                |     |
|                                    | 8  | Independent work implementation of similar work with stable quality and speed | 7        | 10        | 13                | 16         | 10                |     |
| Installation of<br>Aerial Signals/ | 1  | Comprehension of "Theory" and<br>"Specification"                              | 0        | 3         | 6                 | 9          | 9                 |     |
| Photo Control                      | 2  | Able to operate equipment properly                                            | 1        | 4         | 7                 | 10         | 10                |     |
| Point Survey                       | 3  | Work implementation in correct procedure                                      | 2        | 5         | 8                 | 11         | 11                |     |
|                                    | 4  | Work implementation with stable quality and speed                             | 3        | 6         | 9                 | 12         | 12                |     |
|                                    | 5  | Basic work implementation with "Quality Control"                              | 4        | 7         | 10                | 13         | 13                | 94  |
|                                    | 6  | Basic work implementation with "Work Management"                              | 5        | 8         | 11                | 14         | 14                |     |
|                                    | 7  | Independent implementation on similar work                                    | 6        | 9         | 12                | 15         | 12                |     |
|                                    | 8  | Independent work implementation of similar work with stable quality and speed | 7        | 10        | 13                | 16         | 13                |     |
| Aerial<br>Triangulation/           | 1  | Comprehension of "Theory" and<br>"Specification"                              | 0        | 3         | 6                 | 9          | 9                 |     |
| Aerial                             | 2  | Able to operate equipment properly                                            | 1        | 4         | 7                 | 10         | 10                |     |
| Photography                        | 3  | Work implementation in correct procedure                                      | 2        | 5         | 8                 | 11         | 11                |     |
| Planning                           | 4  | Work implementation with stable quality and speed                             | 3        | 6         | 9                 | 12         | 9                 |     |
|                                    | 5  | Basic work implementation with "Quality Control"                              | 4        | 7         | 10                | 13         | 13                | 85  |
|                                    | 6  | Basic work implementation with "Work Management"                              | 5        | 8         | 11                | 14         | 11                |     |
|                                    | 7  | Independent implementation on similar work                                    | 6        | 9         | 12                | 15         | 12                |     |
|                                    | 8  | Independent work implementation of similar work with stable quality and speed | 7        | 10        | 13                | 16         | 10                |     |
| Digital<br>Plotting                | 1  | Comprehension of "Theory" and<br>"Specification"                              | 0        | 3         | 6                 | 9          | 9                 |     |
|                                    | 23 | Able to operate equipment properly                                            | 1        | 4         | 7                 | 10         | 10                |     |
|                                    |    | Work implementation in correct procedure                                      | 2        | 5         | 8                 | 11         | 11                |     |
|                                    | 4  | Work implementation with stable quality and speed                             | 3        | 6         | 9                 | 12         | 9                 |     |
|                                    | 5  | Basic work implementation with "Quality Control"                              | 4        | 7         | 10                | 13         | 10                | 79  |
|                                    | 6  | Basic work implementation with "Work Management"                              | 5        | 8         | 11                | 14         | 8                 |     |
|                                    | 7  | Independent implementation on similar work                                    | 6        | 9         | 12                | 15         | 12                |     |
|                                    | 8  | Independent work implementation of similar work with stable quality and speed | 7        | 10        | 13                | 16         | 10                |     |

 Table 51
 Achievement Level of the Technology Transfer

|                                         | Goals              |                                                                               |          | Points by<br>Achievers / Attendance (%) |           |            |         | Score<br>(point)/100 |  |
|-----------------------------------------|--------------------|-------------------------------------------------------------------------------|----------|-----------------------------------------|-----------|------------|---------|----------------------|--|
| Technology                              |                    | Goals                                                                         | 0~<br>24 | 25~<br>49                               | 50~<br>74 | 75~<br>100 | by goal | SUM                  |  |
| Digital<br>Editing                      | ng "Specification" |                                                                               | 0        | 3                                       | 6         | 9          | 9       |                      |  |
| /Digital                                | 2                  | Able to operate equipment properly                                            | 1        | 4                                       | 7         | 10         | 10      |                      |  |
| Compilation                             | 3                  | Work implementation in correct procedure                                      | 2        | 5                                       | 8         | 11         | 11      |                      |  |
|                                         | 4                  | Work implementation with stable quality and speed                             | 3        | 6                                       | 9         | 12         | 12      |                      |  |
|                                         | 5                  | Basic work implementation with "Quality Control"                              | 4        | 7                                       | 10        | 13         | 10      | 82                   |  |
|                                         | 6                  | Basic work implementation with "Work Management"                              | 5        | 8                                       | 11        | 14         | 8       |                      |  |
|                                         | 7                  | Independent implementation on similar work                                    | 6        | 9                                       | 12        | 15         | 12      |                      |  |
|                                         | 8                  | Independent work implementation of similar work with stable quality and speed | 7        | 10                                      | 13        | 16         | 10      |                      |  |
| Map<br>Symbolizatio <mark>n</mark>      | 1                  |                                                                               |          | 3                                       | 6         | 9          | 9       |                      |  |
|                                         | 2                  | Able to operate equipment properly                                            | 1        | 4                                       | 7         | 10         | 10      |                      |  |
|                                         | 3                  | Work implementation in correct procedure                                      | 2        | 5                                       | 8         | 11         | 11      |                      |  |
|                                         | 4                  | Work implementation with stable quality and speed                             | 3        | 6                                       | 9         | 12         | 12      |                      |  |
|                                         | 5                  | Basic work implementation with "Quality Control"                              | 4        | 7                                       | 10        | 13         | 10      | 79                   |  |
|                                         | 6                  | Basic work implementation with "Work Management"                              | 5        | 8                                       | 11        | 14         | 8       |                      |  |
|                                         | 7                  | Independent implementation on similar work                                    | 6        | 9                                       | 12        | 15         | 9       |                      |  |
|                                         | 8                  | Independent work implementation of similar work with stable quality and speed | 7        | 10                                      | 13        | 16         | 10      |                      |  |
| GIS<br>Structuration /                  | 1                  |                                                                               |          | 3                                       | 6         | 9          | 9       |                      |  |
| Website                                 | 2                  | Able to operate equipment properly                                            | 1        | 4                                       | 7         | 10         | 10      |                      |  |
| Creation 3 Work implementation in corre |                    | Work implementation in correct procedure                                      | 2        | 5                                       | 8         | 11         | 11      |                      |  |
|                                         | 4                  | Work implementation with stable quality and speed                             | 3        | 6                                       | 9         | 12         | 9       |                      |  |
|                                         | 5                  | Basic work implementation with "Quality Control"                              | 4        | 7                                       | 10        | 13         | 10      | 85                   |  |
|                                         | 6                  | Basic work implementation with "Work<br>Management"                           | 5        | 8                                       | 11        | 14         | 11      |                      |  |
|                                         | 7                  | Independent implementation on similar work                                    | 6        | 9                                       | 12        | 15         | 12      |                      |  |
|                                         | 8                  | Independent work implementation of similar work with stable quality and speed | 7        | 10                                      | 13        | 16         | 13      |                      |  |

# Chapter 6 Project Implementation System

# 6-1. Work Assignments of Study Team Members

The members of the Study Team and the work items assigned to them are shown below.

| Name      | Assignment                       | Work Items                                                                                                                      |
|-----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Akira     | Team Leader/ Planning of         | 2nd Term [1] Preparation and discussion of Inception Report 2                                                                   |
| Suzuki    | Digital Topographic Map          | 2nd Term [6] Preparation of Interim Report                                                                                      |
|           | Development Project              | 2nd Term [7] Explanation and discussion of Interim Report                                                                       |
|           |                                  | 2nd Term [9] Preparation of Progress Report 2                                                                                   |
|           |                                  | 2nd Term [10] Explanation and discussion of Progress Report 2                                                                   |
|           |                                  | 2nd Term [13] Preparation and discussion of Draft Final Report                                                                  |
|           |                                  | 2nd Term [14] Preparation of Final Report                                                                                       |
| Akira Ota | Deputy Team Leader/              | 2nd Term [1] Preparation and discussion of Inception Report 2                                                                   |
|           | Assistance for Formulation       | 2nd Term [6] Preparation of Interim Report                                                                                      |
|           | of Organizational Structure/     | 2nd Term [9] Preparation of Progress Report 2                                                                                   |
|           | Utilization of Geospatial        | 2nd Term [11] Assistance for formulation of organizational                                                                      |
|           | Information                      | structure/ utilization of geospatial information                                                                                |
|           |                                  | 2nd Term [12] Promotion of Utilization                                                                                          |
|           |                                  | 2nd Term [14] Preparation of Final Report                                                                                       |
|           |                                  | 2nd Term [15] Work related to technology transfer                                                                               |
| Akira     | Preparation of Work              | 2nd Term [15] Work related to technology transfer                                                                               |
| Nishimura | Specifications                   |                                                                                                                                 |
| Yoichi    | Digital Aerial Photography       | 2nd Term [15] Work related to technology transfer                                                                               |
| Oyama     | Planning/ Aerial                 |                                                                                                                                 |
|           | Triangulation /Orthophotos       |                                                                                                                                 |
|           | (DTM)                            |                                                                                                                                 |
| Satoru    | Installation of Aerial           | 2nd Term [15] Work related to technology transfer                                                                               |
| Nishio    | Signals/ Field Identification/   |                                                                                                                                 |
|           | Supplementary Field              |                                                                                                                                 |
|           | Verification                     |                                                                                                                                 |
| Takeo     | Photo Control Point Survey/      | 2nd Term [15] Work related to technology transfer                                                                               |
| Sugimoto  | Analytical Calculations/         |                                                                                                                                 |
|           | Field Identification/            |                                                                                                                                 |
|           | Supplementary Field              |                                                                                                                                 |
| Akira Ota | Verification<br>Digital Plotting | 2nd Term [2] Digital plotting/digital editing                                                                                   |
| Akila Ota | Digital Flotting                 | 2nd Term [5] Creation of data files                                                                                             |
|           |                                  | 2nd Term [15] Work related to technology transfer                                                                               |
| Ryusuke   | Digital Editing/                 | 2nd Term [2] Digital plotting/digital editing                                                                                   |
| Nakatani  | Generalization                   | 2nd Term [5] Creation of data files                                                                                             |
| I takatam | Generalization                   | 2nd Term [10] Explanation and discussion of Progress Report 2                                                                   |
|           |                                  | 2nd Term [13] Preparation and discussion of Progress Report 2<br>2nd Term [13] Preparation and discussion of Draft Final Report |
|           |                                  | 2nd Term [15] Work related to technology transfer                                                                               |
| XV        | CIC Characteria (Website         |                                                                                                                                 |
| Wentao    | GIS Structuration/ Website       | 2nd Term [4] Digital data structuration                                                                                         |
| Che       | Creation                         | 2nd Term [8] Website creation                                                                                                   |
|           |                                  | 2nd Term [13] Preparation and discussion of Draft Final Report                                                                  |
| IZ 1 '    |                                  | 2nd Term [15] Work related to technology transfer                                                                               |
| Kohei     | Symbolization                    | 2nd Term [3] Symbolization of topographic maps                                                                                  |
| Isobe     |                                  | 2nd Term [10] Explanation and discussion of Progress Report 2                                                                   |
| т         |                                  | 2nd Term [15] Work related to technology transfer                                                                               |
| James     | Work Coordination /              | 2nd Term [1] Preparation and discussion of Inception Report 2                                                                   |
| Kazumori  | Assistance for Utilization of    | 2nd Term [11] Assistance for formulation of organizational                                                                      |
| Watson    | Geospatial Information           | structure/ utilization of geospatial information                                                                                |
|           |                                  | 2nd Term [12] Promotion of utilization                                                                                          |
|           |                                  | 2nd Term [13] Preparation and discussion of Draft Final Report                                                                  |
| 1         |                                  | 2nd Term [14] Preparation of Final Report                                                                                       |

 Table 52
 Work Assignments of Study Team Members

#### 6-2. Project Implementation System

The system of the Study Team to implement this Project is shown below.

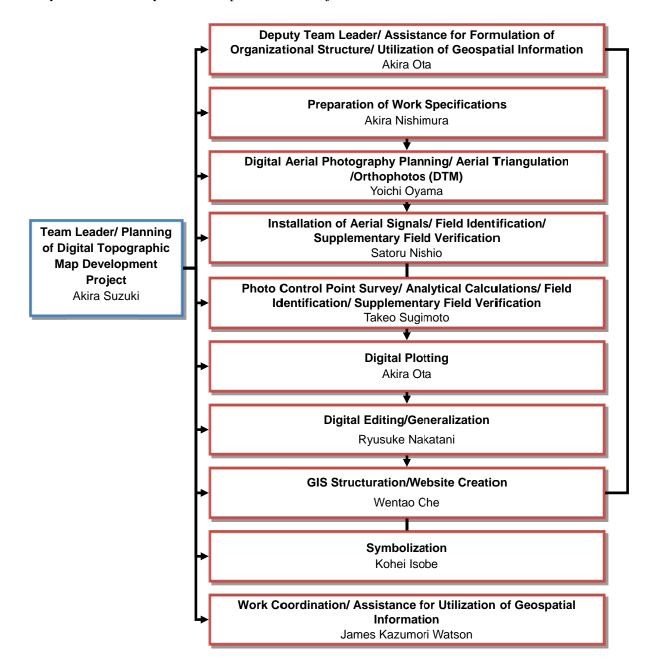



Figure 8 Formulation of Operation Plan and Flow of Implementation/Evaluation

# 6-3. Personnel Plan for the Study Team

The personnel plan for implementation of the Project is shown below.

|               |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       | Ta   | ble | 53 | Per  | sonr | nel P | lan    |    |    |      |            |    |   |    |   |    |      |      |         |        |
|---------------|-------------------------------------------------------------------------------------------------------------------|-------------------|------|-----|------|-----|------|----|---|------|-------|---|----|----|----|----|-----|-------|------|-----|----|------|------|-------|--------|----|----|------|------------|----|---|----|---|----|------|------|---------|--------|
|               |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    | Pha | ise 1 |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    | Phas | se 2 |         |        |
|               |                                                                                                                   |                   |      |     |      | 1st | term | ı  |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      | 2     | nd ter | m  |    |      |            |    |   |    |   |    |      |      |         |        |
|               |                                                                                                                   |                   |      |     | 13   |     |      |    |   |      | 2014  |   |    |    |    |    |     |       | 2015 |     |    |      |      |       |        |    |    | 2016 |            |    |   |    |   |    |      |      |         |        |
|               | Assignment                                                                                                        | Name              | 10   | ) 1 | 1 12 | 2   | 1    | 2  | 3 | 4    | 5     | 6 | 7  | 8  | 9  | 10 | 11  | 12    | 1    | 2   | 3  | 4    | 5    | 6     | 7      | 8  | 9  | 10   | 11         | 12 | 1 | 2  | 3 | 4  | 5    | 6    | 7       | 8      |
|               | Team Leader/Project Planning                                                                                      | Akira SUZUKI      |      |     | 30   |     |      | 21 |   |      |       |   | 21 |    |    |    | 15  |       |      |     |    | 15   |      | 14    |        |    |    |      | 24         |    |   |    |   | 25 |      |      |         | 30     |
|               | Deputy Team Leader/Organization<br>Formulation Assistance/Geospatial<br>Information Utilization                   | Akira OTA         |      |     | 30   |     |      |    |   |      |       |   |    |    |    |    | 15  |       |      |     |    |      |      |       |        |    |    |      | 38         |    |   |    |   |    |      |      |         | 22     |
|               | Preparation of Specifications                                                                                     | Akira NISHIMURA   |      | 45  |      |     |      | 60 |   |      |       |   | 30 |    | 30 |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         | L      |
|               | Digital Aerial Photography Planning/ Digital<br>Aerial Triangulation/ Digital Orthophoto<br>(DTM)                 | Yoichi OYAMA      |      |     | 20   |     |      |    |   |      |       |   |    | 35 |    |    |     |       |      |     |    |      |      |       |        | 35 |    |      |            |    |   |    |   |    |      |      |         |        |
| <             | Installation of Aerial Signals/<br>Field Identification/<br>Supplementary Field Verification                      | Satoru NISHIO     |      |     | -    |     |      | 45 |   |      |       |   |    |    |    |    |     |       |      | 60  |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         |        |
|               | Photo Control Point Survey/ Analytical<br>Calculations/ Field Identification/<br>Supplementary Field Verification | Takeo SUGIMOTO    |      |     |      |     |      | 60 |   |      |       |   |    |    |    |    |     |       |      | 60  |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         |        |
| hiopia        | Digital Plotting                                                                                                  | Akira OTA         |      |     |      |     |      |    |   |      |       |   |    | 30 |    | 60 |     |       |      |     |    | 40   |      |       |        | 60 |    |      |            |    |   | 40 |   | 40 |      |      |         |        |
|               | Digital Editing/ Generalization                                                                                   | Ryusuke NAKATANI  |      |     |      |     |      |    |   |      |       |   |    |    |    |    | 30  |       |      |     |    |      |      |       |        |    | 45 |      | 45         |    |   |    |   |    |      | 45   |         | 45     |
|               | GIS Structuration/ Website Creation                                                                               | Wentao CHE        |      | 3   | 0    |     |      |    |   |      |       |   | 30 |    |    |    | 30  |       |      |     |    |      |      |       |        | 60 |    |      |            |    |   |    |   |    |      |      |         | 60     |
|               | Symbolization                                                                                                     | Kohei ISOBE       |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        | 45 |    |      | <b>4</b> 5 |    |   |    |   |    | 45   |      |         |        |
|               | Work Coordination/ Geospatial<br>Information Utilization Assistance                                               | James K. WATSON   |      | 30  |      |     |      | 21 |   |      |       |   | 21 |    |    |    |     |       |      | 27  |    |      |      | 14    |        |    |    |      | 1          | 18 |   |    |   |    |      |      |         | 46     |
|               |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      | Tota | ıl work | in Et  |
|               | Team Leader/Project Planning                                                                                      | Akira SUZUKI      |      | 4   |      |     |      |    | 3 |      | 3     |   |    |    |    |    |     |       |      |     | 3  |      |      |       |        |    |    | 3    |            |    |   |    |   |    |      |      | 3       |        |
| Wo            |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         |        |
| Work in Japan |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      | Тс   | otal wo | ork in |
| pan           | Reports                                                                                                           | Submitting period | Δ    | 7   |      |     |      |    |   | Δ    | Δ     |   |    |    |    |    |     |       |      |     |    | Δ    |      |       |        |    |    |      | Δ          |    |   |    |   |    |      |      | Δ       |        |
|               |                                                                                                                   |                   | IC/R | R   |      |     |      |    |   | PR/R | IC/R2 |   |    |    |    |    |     |       |      |     |    | IT/R |      |       |        |    |    |      | PR/R       |    |   |    |   |    |      |      | DF/R    |        |
|               |                                                                                                                   |                   |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         |        |
|               | Legend:                                                                                                           | Work in Ethiopia  |      |     |      |     |      |    |   |      |       |   |    |    |    |    |     |       |      |     |    |      |      |       |        |    |    |      |            |    |   |    |   |    |      |      |         |        |

Work in Japan

|          | n      |      |                  |      |       |      |  |  |  |  |  |  |  |  |  |
|----------|--------|------|------------------|------|-------|------|--|--|--|--|--|--|--|--|--|
|          |        | M/M  |                  |      |       |      |  |  |  |  |  |  |  |  |  |
|          | 1st to | erm  | 2nd <sup>-</sup> | term | Total |      |  |  |  |  |  |  |  |  |  |
| 9        | ET     | JP   | ET               | JP   | ET    | JP   |  |  |  |  |  |  |  |  |  |
| 30       | 1.70   |      | 4.80             |      | 6.50  |      |  |  |  |  |  |  |  |  |  |
| 22       | 1.00   |      | 2.00             |      | 3.00  |      |  |  |  |  |  |  |  |  |  |
|          | 3.50   |      | 2.00             |      | 5.50  |      |  |  |  |  |  |  |  |  |  |
|          | 0.67   |      | 2.33             |      | 3.00  |      |  |  |  |  |  |  |  |  |  |
|          | 1.50   |      | 2.00             |      | 3.50  |      |  |  |  |  |  |  |  |  |  |
|          | 2.00   |      | 2.00             |      | 4.00  |      |  |  |  |  |  |  |  |  |  |
|          | 0.00   |      | 9.00             |      | 9.00  |      |  |  |  |  |  |  |  |  |  |
|          | 0.00   |      | 7.00             |      | 7.00  |      |  |  |  |  |  |  |  |  |  |
|          | 1.00   |      | 6.00             |      | 7.00  |      |  |  |  |  |  |  |  |  |  |
|          | 0.00   |      | 4.50             |      | 4.50  |      |  |  |  |  |  |  |  |  |  |
|          | 1.70   |      | 4.20             |      | 5.90  |      |  |  |  |  |  |  |  |  |  |
| thiopia  | 13.07  |      | 45.83            |      | 58.90 |      |  |  |  |  |  |  |  |  |  |
| 3        |        | 0.35 |                  | 0.75 |       | 1.10 |  |  |  |  |  |  |  |  |  |
|          |        |      |                  |      |       |      |  |  |  |  |  |  |  |  |  |
| n Japan  |        |      |                  |      |       |      |  |  |  |  |  |  |  |  |  |
| ∠<br>F/R |        |      |                  |      |       |      |  |  |  |  |  |  |  |  |  |
| Total    | 13.4   | 42   | 46.              | 58   | 60.   | 00   |  |  |  |  |  |  |  |  |  |