インド国
カルナタカ州バンガロール市及びバンガロール上下水道局

インド国
自動漏水音検知器を用いた
漏水検知システムの普及・実証事業
業務完了報告書

平成28年11月
（2016年）

独立行政法人
国際協力機構（JICA）

水道テクニカルサービス株式会社
目 次

巻頭写真 ... 1
略語表 ... 3
地圖 ... 4
図表番号 ... 5
案件概要 ... 8
要約 ... 9

1. 事業の背景 .. 13
 (1) 事業実施国における開発課題の現状及びニーズの確認 .. 13
 ① 対象国の政治・経済の概況 .. 13
 ② 対象国の対象分野における開発課題の現状 ... 17
 ③ 対象国の関連計画、政策（外資政策含む）および法制度 32
 ④ 対象国の対象分野のODA事業の事例分析および他ドナーの分析 35
 (2) 普及・実証を図る製品・技術の概要 ... 45

2. 普及・実証事業の概要 .. 46
 (1) 事業の目的 .. 46
 (2) 期待される成果 .. 46
 (3) 事業の実施方法・作業工程 ... 46
 (4) 投入（要員、機材、事業実施国側投入、その他） .. 46
 ① 資機材リスト ... 49
 ② 相手国政府関係機関側の投入 ... 49
 (5) 事業実施体制 ... 50
 (6) 相手国政府関係機関の概要 ... 50

3. 普及・実証事業の実績 ... 51
 (1) 活動項目毎の結果 ... 51
 ① L'sign の改良・実証 ... 51
 ② 技術の普及 ... 63
 ③ 現地職員の研修 ... 80
 ④ 訪日研修 .. 89
 (2) 事業目的の達成状況 ... 94
 ① 現地の給水環境に適合した機器を用いた漏水検知方法の確立（L'sign の改良・実証） 94
 ② BWSSB 職員の漏水検知技術の向上（L'sign を含めた漏水検知技術の普及） 94
 ③ 無収水削減策としての漏水検知器の普及展開案策定（展開計画の検討） 95
 (3) 開発課題解決の観点から見た貢献 .. 96
 (4) 日本国内の地方経済・地域活性化への貢献 ... 97
 (5) 事業後の事業実施国政府関係の自立的な活動継続について 98
 (6) 今後の課題と対応策 ... 98

4. 本事業実施後のビジネス展開計画 .. 99
 (1) 今後の対象国におけるビジネス展開の方針・予定 .. 99
 ① マーケット分析（競合製品及び代替製品の分析を含む） 99
巻頭写真

キックオフミーティング集合写真

パイロットテスト地区現場下見調査

現地 CP 譲与機材：給水管用 L-sign

パイロットテスト地区における L-sign 設置

パイロットテスト地区における L-sign 設置

漏水探知器による音聴調査実習
現地パートナー企業探索（面談風景）

現地パートナー企業探索（面談後記念撮影）

漏水調査技術トレーニング

L·sign 設置ワーカー用安全チョッキ（STS 製作・提供）

漏水調査技術トレーニング（仮設配管設置状況）
略語表

<table>
<thead>
<tr>
<th>略語</th>
<th>正式名称</th>
<th>日本語名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWSSB</td>
<td>Bangalore Water Supply and Sewage Board</td>
<td>バンガロール上下水道局</td>
</tr>
<tr>
<td>DMA</td>
<td>District Metered Areas</td>
<td>測定対象区域</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
<td>独立行政法人国際協力機構</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System of Mobile communications</td>
<td>GSM 通信</td>
</tr>
<tr>
<td>L&T</td>
<td>Larsen & Toubro Limited</td>
<td>L&T 社</td>
</tr>
<tr>
<td>MLD</td>
<td>Millions of Liters Day</td>
<td>百万 L／日</td>
</tr>
<tr>
<td>NRW</td>
<td>Non-Revenue Water</td>
<td>無収水</td>
</tr>
<tr>
<td>STS</td>
<td>Suido Technical Service Co. Ltd</td>
<td>水道テクニカルサービス株式会社</td>
</tr>
<tr>
<td>UFW</td>
<td>Unaccounted For Water</td>
<td>不明水</td>
</tr>
<tr>
<td>IWA</td>
<td>International Water Association</td>
<td>国際水道協会</td>
</tr>
</tbody>
</table>
地図

出所）上図：世界地図・SekaiChizu、http://www.sekaichizu.jp/
中図：バンガロール市給水エリア（JICA インド事務所提供資料、BWSSB 講演資料）
下図：East-1 Subdivision (以下 East-1エリア) 図（BWSSB 提供資料）
図表番号

図 1-1 BWSSB の組織図... 24
図 1-2 BWSSB の水供給量・需要量の見通し... 26
図 1-3 パンガロールにおける UFW 対策事業の内容詳細... 28
図 1-4 パンガロール市内で現在実施されている UFW 対策事業と対象エリア......................... 29
図 1-5 漏水削減量と費用回収額... 30
図 1-6 DMA における事業実施前後の水圧比較... 30
図 1-7 カルナタカ州の水系地図.. 33
図 1-8 インドに対する水・衛生分野の援助額.. 43
図 2-1 事業実施体制.. 50
図 2-2 BWSSB の組織体制図... 50
図 3-1 パイロット地域地図.. 51
図 3-2 DMA 遠隔メーターボックス（SUEZ 社）... 53
図 3-3 L&T 社の無収水対策事業のエリア（図中赤・橙部分）.. 53
図 3-4 無収水対策事業のフロー.. 54
図 3-5 L-SIGN 漏水検知サイクル... 55
図 3-6 L-SIGN による漏水有無判断... 56
図 3-7 L-SIGN 検知領域図... 57
図 3-8 L-SIGN 設置説明及び設置... 60
図 3-9 現地での感度再検証の様子... 61
図 3-10 給水時及び未給水時における波形分布... 62
図 3-11 第 2 回調査パイロットテスト地区.. 66
図 3-12 L-SIGN 設置箇所表（チェックシート）... 66
図 3-13 パイロットテスト実施状況.. 68
図 3-14 パイロットエリア図... 69
図 3-15 給水管用 L-SIGN 設置準備の様子.. 70
図 3-16 給水管用 L-SIGN 設置の様子.. 70
図 3-17 L-SIGN 設置箇所一覧表（サンプル）.. 70
図 3-18 配水管チャンバー... 77
図 3-19 漏水調査形態写真... 78
図 3-20 会議風景と展示ブース... 79
図 3-21 L-SIGN 設置手順動画（画面抜粋）.. 82
図 3-22 EAST-1 オフィス内テストヤード（左）、テストヤードにおける相関式研修（右）...... 83
図 3-23 音聴棒の実地研修... 83
図 3-24 漏水探知器の実地研修.. 84
図 3-25 相関式漏水探知器の実地研修... 84
図 3-26 オフィスでの座学 図 3-27 テストヤードの試験管路.. 86
図 3-28 L-SIGN の設置試験 図 3-29 音聴式漏水検査機器の利用.. 87
図 3-30 音聴棒の利用 図 3-31 漏水検査機器の利用... 87
図 3-32 相関式漏水検査機器の説明 図 3-33 現地漏水発見場所... 87
図 4-1 想定される発注構造... 100
表 3-14 漏水調査期間 .. 78
表 3-15 研修カリキュラム .. 81
表 3-16 研修プログラムの時間割 ... 86
表 3-17 漏水調査マニュアルの内容構成 ... 88
表 3-18 把握された現地環境と L-SIGN 改良項目 ... 94
表 3-19 防止効果及び経済効果予測 .. 96
表 4-1 無収水対策への取組 ... 99
表 4-2 現地元請企業の課題と提供可能な価値 .. 101
表 4-3 バンガロール UFW 対策事業において導入されている新技術 ... 104
表 4-4 想定される事業モデル ... 105
表 4-5 想定されるリスクと対応方針 ... 108
自動漏水音検知器を用いた漏水検知システムの普及・実証事業
水道テクニカルサービス株式会社（神奈川県）

インドの開発ニーズ

- 水道サービスにおける質・量・給水時間の確保
- 老朽化した水道管および施工不良に起因する漏水
- 未熟な漏水検知手法（地表面目視）

インド側に見込まれる成果

- 漏水防止の早期実現
- 無収水削減による収益増大、水道事業の健全化
- 水資源の有効活用による水道サービスの向上

普及・実証事業の内容

- 現地の給水環境（低水圧・輪番給水）に適した漏水検知機器の改良、パイロット地域での実証および普及活動
- バンガロール上下水道局（BWSSB）職員への漏水検知技術研修

日本企業側の成果

- 神奈川県内外の水道事業体を対象とした漏水調査の受注
- 横浜水ビジネス協議会における知見共有

現状

- L-Signを核とする漏水モニタリングシステムのインド国内での普及
- インド地元企業とのパートナリングによる他の漏水検知プロジェクトへの関与

H25補正

普及・実証事業

音聴式

相関式

漏水検知技術の組合せによる効率的な漏水特定

L-Signによる漏水管路の抽出により、音聴式・相関式による漏水箇所特定が容易となる。
要約

<table>
<thead>
<tr>
<th>I. 提案事業の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>案件名</td>
</tr>
<tr>
<td>（英文）</td>
</tr>
<tr>
<td>事業実施地</td>
</tr>
<tr>
<td>相手国</td>
</tr>
<tr>
<td>事業実施期間</td>
</tr>
<tr>
<td>契約金額</td>
</tr>
<tr>
<td>事業の目的</td>
</tr>
<tr>
<td>事業の実施方針</td>
</tr>
<tr>
<td>実績</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
て設定感度が高いと判断されたことから、感度を低めに調整し繰返し検証を行った結果、漏水に対する検知と環境への適合性（都市騒音に起因する誤作動の低減）が確認された。

CP とも結果を共有後、第 4 回現地調査より本格設置を行い、第 6 回現地調査までに 1430 器を設置した。以降、現地ワーカーが主体となり作業を継続的し、2016 年 2 月に 3000 器全ての設置完了が確認できた。

(2) 提案製品（L-sign）を使用した漏水検知システム構築と運用
パイロットテスト地域の水道敷設状況および現地の給水環境（低水圧・輪番給水スケジュール）を把握した上で現地輪番給水スケジュールに適した L-sign の運用方法を立案、第 6 回現地調査までにカウンターパートへの提示のうえ、第 7 回現地調査まで継続的に運用の指導を行った。

本格設置開始後、CP との設置箇所情報の共有と設置機器の管理を目的として、スマートフォン撮影による位置情報取得とグーグルマップへのアップ（設置箇所プロット）を行った。写真撮影と Web 上へのアップにより設置箇所の表示が可能となり、機器の管理がバンガロールと本邦双方で共有可能となった。

また、L-sign パトロール調査の効率化を目指し、スマートフォンを活用した入力システムの設計を行った。本格活用に至れば作業効率の大幅なアップが期待される。

(3) 漏水調査技術トレーニングの実施
第 4 回現地調査より、現地職員 3 名に対する漏水調査技術研修を実施、第 7 回現地調査まで継続して実施した。

第 6 回現地調査からは、漏水検知システムの運用をカウンターパート自身で行えるよう指導し、第 7 回調査時には、その結果を評価するスケジュール提案を行った。

トレーニングは、漏水音の捉え方から漏水箇所の特定方法までを 4 段階に分けて実施した。その結果、漏水有無の判別から、漏水箇所（ズレもあり）の指摘も可能となった。しかし、技術力の維持やレベルアップには、今後継続的にトレーニングをすることが課題である。

(4) トレーニング使用機材及び作成資料
➤ トレーニング使用機器
・漏水探知器 3 器　・音聴棒 3 本
・相関式漏水探知器 1 台
➤ トレーニング資料及び作成資料
・L-sign 設置マニュアル　・漏水研修テキスト
・漏水調査マニュアル
11

・英訳漏水修繕マニュアル（神奈川県横須賀市上下水道局様提供）

(5) 漏水確認実績（メーター2次側器具不良等による漏水は含まず）パイロットエリアでの提案製品（L-sign）の実証並びに技術トレーニング中に発見・確認された漏水は次のとおり。
配水管上漏水 9件、給水管上漏水 14件、バルブ漏水 4件
盗水 2件
合計 漏水件数：29件、推定漏水量：373L/M

2. ビジネス展開計画
(1) 知的財産確保等の関連情報収集
参入リスク分析を行った結果、インドでは、ほぼすべての商業セクターで模倣品・海賊版が横行しており、特許等の取得は有効でないことが明らかとなった（単に売り切りではないビジネスモデルが必要）。

(2) 無収水対策事業の情報収集
現在、無収水対策事業を実施している2社と面談、実施状況の概要を入手した。両社共にIWA仕様に従い実施しており、概要は、
①測定対象区域（DMA）構築②DMA内の施設状況を評価（改良）
③漏水調査等の実施によるUFW低減④アセスメントとなる。
BWSSBの成果目標はUFW16%に設定されている。
また、CPが抱える現状プロジェクトとの問題点等の情報を入手（プロジェクトの評価方法等）でき、今後のCPへの提案として有効な情報となった。

(3) ビジネス展開のためのパートナー探索
現地企業4者との面談を実施し、先方企業の情報分析、パートナー候補事業者の選定を行った。その中で、第7回現地調査時で
は、当社も好意的と感じた候補企業よりMOU・NDA締結の提案を受けたことから、今後のビジネス展開へ向けて具体的な協議を開始した。

(4) 将来的なビジネス展開検討
現地パートナー企業と連携したUFW対策事業への参入を目的として、4段階での事業展開を実施するモデルの検討を実施。
① パイロットプロジェクトの実施
② 人材育成サービス
③ CP漏水管理体制構築支援
④ UFW対策事業の実施

課題
1. L-sign漏水検知システムの継続と拡大
L-signの現地環境に適合した改良は概ね完了したことから、次
の段階として、現パイロットエリアでの調査完了後の L-sign 移設や、チャンバー設置による配水管への漏水監視方法の構築が必要。

2. 漏水調査の技術維持
漏水調査技術維持とレベルアップのためには、継続的なトレーニングまたは漏水調査の実施が必要となりが、現状体制での実施に不安が残る。

3. BWSSB の組織体制
本事業の実施により BWSSB 内においても漏水管理に関する認知が高まったが、継続的な漏水管理の実施のためには、組織全体での認知と基礎的なノウハウの蓄積は必須。BWSSB 側でも問題意識を有し、漏水管理のための新部局の設立も内部では検討されていることから、今後も取組が継続するよう働きかけが必要。

事業後の展開
【ビジネス展開計画】
1. パイロットプロジェクト
バンガロール市内の特定エリアを対象として、漏水調査のパイロットプロジェクトを実施。元請事業者と連携した実施。

2. 人材育成サービス
元請事業者を対象として、将来的な協業を前提とした漏水調査員の育成支援を行う。育成にあたっては STS 横浜本社にコア人材を招聘し育成を行う。

3. BWSSB 体制構築支援
最終顧客である BWSSB 向けに継続的な漏水管理体制構築の支援コンサルティングを実施。

4. 元請事業者と連携した UFW 対策事業実施
バンガロール上下水道事業フェーズ3における UFW 対策事業へ参画し元請事業者と連携して漏水調査部分を担当。

II. 提案企業の概要

<table>
<thead>
<tr>
<th>企業名</th>
<th>水道テクニカルサービス株式会社</th>
</tr>
</thead>
<tbody>
<tr>
<td>企業所在地</td>
<td>神奈川県横浜市旭区二俣川 1丁目 45-45 大高ビル 3F</td>
</tr>
<tr>
<td>設立年月日</td>
<td>2002 年 8 月 8 日</td>
</tr>
<tr>
<td>業種</td>
<td>サービス業</td>
</tr>
<tr>
<td>主要事業・製品</td>
<td>漏水調査受託業務、漏水監視装置 L-sign 等漏水調査機器の販売</td>
</tr>
<tr>
<td>資本金</td>
<td>4,000,000 円 (2015 年 12 月時点)</td>
</tr>
<tr>
<td>売上高</td>
<td>113,647,219 円</td>
</tr>
<tr>
<td>従業員数</td>
<td>10 名</td>
</tr>
</tbody>
</table>
1. 事業の背景

（1）事業実施国における開発課題の現状及びニーズの確認

経済発展、人口増加に対応するため、インド国政府は国内水供給に関し55年計画を策定しており、第12次55年計画（2012年4月〜2017年3月）では、2017年度までに都市部全人口への上水供給、24時間連続給水等が目標として含まれている。しかしながら、2011年時点で急速な都市化に伴う需給ギャップ拡大に伴い、都市部では水道へのアクセスできない人口が7,500万人程度存在しており（都市人口は3億7,710万人）、また、水道サービスを受けられる地域においても十分な水質・水量・給水時間が確保されていない。

本事業の対象都市であるバンガロールはカルナタカ州の州都であり、インド第3の人口を有する大都市である。急速な産業発展に伴い、バンガロール市における人口は、2012年には850万人に達しており、今なお人口流入が続いている。バンガロールにおける上下水道の整備および維持管理は上下水道局（Bangalore Water Supply and Sewage Board）（以下、BWSSB）が行っており、同社は2013年時点でバンガロール市内および郊外の約1,000万人に対して水供給を行っている。BWSSBによる一日あたりの給水量は1,470MLD（Millions of Liters Day）であるが、給水人口の需要水量2,000MLD（200L/人日）に比べ500〜600MLDが不足している状況にある。

現状、バンガロール市域（BWSSBの給水地域）における漏水を含めた無収水率は50％程度とされており、需要水量への対応としての漏水対策は、水源確保や浄水設備の増強とともに優先度が高い。一方で、バンガロールにおいては、BWSSBの漏水検査員5名が漏水対策にあたっているものの、地表面にて目視で確認される漏水が多く、埋設管までは対応ができていない。また、BWSSBは同都市圏（6地区）における給水対策として西南、中央の3地区において無収水対策事業をLarsen & Toubro Limited社（以下、L&T社という）等の外部事業者に委託して実施している。東地区においてはまだ取組がなされておらず、改善が急務である。

また、昨今では、違法接続（盗水）も大きな問題となっており、2015年10月に実施されたWest地区の調査では3,314件の違法接続が発見・報告されている。これにより、バンガロール都市圏では70,000件の違法接続が存在すると推定され、漏水と共に水供給の大きな損失として早急な対策が必要とされている。

① 対象国の政治・経済の概況

ア）人口構成・民族・言語

インドの人口は12億1,019万人（2011年）であり、首都デリーの人口は1,675万人（2011年）である。1民族としては、インド・アーリヤ族、ドラビダ族、モンゴロイ族等が生活をしている。連邦公用語はヒンディー語であるが、他に憲法で公認されている州の言語が21存在する。また、宗教としては、ヒンドゥー教徒80.5%、イスラム教徒13.4%、キリスト教徒2.3%、シーク教徒1.9%、仏教徒0.8%、ジャイナ教徒0.4%である（2001年国勢調査）2

1 JETROウェブサイト「インド基礎データ」 http://www.jetro.go.jp/world/asia/in/basic_01/センサスは10年ごとに発表
2 外務省ウェブサイト「インド」 http://www.mofa.go.jp/mofaj/area/india/data.html
イ）国土・気候
インドは南アジアのインド半島上に位置し、東はベンガル湾、西はアラビア海、南はインド洋に面しており、国土面積は328.7万km²である（パキスタン、中国との係争地を含む）。北はアフガニスタン、パキスタン、中国、ブータン、ネパールと、東はミャンマー、パングラデシュと国境を接している。またインド半島と海峡を隔ててスリランカが存在している。国土は山岳地帯、インダス・ガンジス平野、砂漠地帯、南半島部の4つの区分に分けられる。
インドの気候は乾季（11月～2月）・暑季（3月～6月）・雨季（6月下旬～10月）に分けられる。乾季が最も過ごしやすいとされ、暑季は日中最高気温が40℃を超える日が続く。雨季は、モンスーンの影響で雨が多く、蒸し暑い季節とされている。しかし、インドの気候は地域によってかなり異なり、例えば、デリーやジャイプール等、北インド内陸部の暑季は、連日40℃以上で、しかも空気がたいへん乾燥しているが、海に面した南インドのチェンナイでは、気温がデリーやジャイプールと同程度でも湿度が高く、同じ暑さでも印象がかなり異なる。

ウ）政治状況

- 政治体制
インドは連邦共和制であり、元首はプラナブ・ムカルジー（Prefab Kumar Mukherjee）大統領（2012年7月25日～任期5年）である。議会は二院制（上院・州会議（ラジャ・サバー）、定数245名、任期6年。下院・人民会議（ロク・サバー）定数545名、任期5年）である。
2004年の第14回下院議員総選挙の結果、コンGRESS党を中心とする連立政権として、統一進步同盟（UPA）政権（マンモハン・シン首相）が発足。2009年4月から5月に行われた続く第15回下院議員総選挙においても、与党コンGRESS党が大勝を収めUPAが過半数を確保し、第2次UPA政権となった。その後、シン政権は物価高騰や汚職、経済の停滞等の問題で守勢に立たされ、2014年4月から5月に行われた第16回下院議員総選挙では、インド人民党（BJP）が単独過半数を超えて大勝し、インド人民党（BJP）政権（ナレンドラ・モディ首相）が発足している。
モディ政権は、製造業振興やインフラ整備を重点分野としており、インドを一時の経済停滞から持続可能な成長軌道に戻すための方策に取り組んでいる。

- 外交
伝統的に非同盟、多極主義を志向しているが、近年、米国との関係を積極的に強化している。また、ロシアとの伝統的な友好関係を維持しており、中国との経済関係も急速に発展している。さらに、パキスタンとの関係改善を促進しており、東アジアとの関係を重視する「ルック・イースト」政策を推進している。

- 日本との関係
日インド両国は1952年に国交を樹立した。2000年8月の森総理（当時）訪印の際には「日印グローバル・パートナーシップ」構想に合意した。その後、2005年4月の小泉総理（当時）
訪印以降、毎年交互に首脳が相手国を訪問し、年次首脳会談を実施した。2011年12月には野田総理（当時）がインドを訪問し、国交樹立60周年を迎える日インド戦略的グローバル・パートナーシップの強化に向けたヴィジョン」と題する共同声明を発出した。2014年9月にはモディ首相が訪日し、「日インド特別戦略的グローバル・パートナーシップのための東京宣言」と題する共同声明を発出し、両国関係は「特別」戦略的グローバル・パートナーシップへ格上げされた。

そして2015年12月には、安倍総理のもと日印首脳会談が開催され「日印ヴィジョン2025特別戦略的グローバル・パートナーシップインド太平洋地域と世界の平和と繁栄のための協働」と題する共同声明が発表された。

エ）経済状況

インドは独立以来、輸入代替工業化政策を進めてきたが、1991年の外貨危機を契機として経済自由化路線に転換し、規制緩和、外資積極活用等を柱とした経済改革政策を断行した。その結果、経済危機を克服したのみならず、高い実質成長を達成した。2005年度-2007年度には3年連続で9%台の成長率を達成し、2008年度は世界的な景気後退の中でも6.7%の成長率を維持、2010-2011年度は8.4%まで回復したが、欧州債務危機及び高インフレに対応するための利上げ等の要因により、経済は減速した。2014年度に入り、経済重視の姿勢を掲げるモディ新政権への期待感から国内経済の展望に明るさが戻りつつあり、今後の政策及び政権運営が注目されている。

基礎的経済指標

インドは2006年度から2010年度のGDP成長率の平均が8.5%と、2008年の世界的経済・金融危機以降も比較的高い経済成長を維持してきた。しかしながら、欧州債務危機や物価高対策のための金融引き締め等の影響により、近年は減速傾向にあり、2011年度のGDP成長率は6.2%に落ち込んだ。2012年度のGDP成長率は、欧州債務危機による需要の減退、インフレ抑制のための高金利政策、ルピー安による輸入コストの増大が重なり、企業の設備投資や消費行動が衰えたことにより、実質GDP成長率は5.0%と、2003年度以降の10年間で最低となった。2013年度の実質GDP成長率は、製造業、鉱業、建設業などの不振により4.7%と、2年連続で5%を下回ったが、2014年度は製造業の好調により、7.3%となった。今後は、民間消費の一層の拡大が期待される。

インドの28州の一人当たり州内純生産（Net State Domestic Product：NSDP）を比較すると、デリー準州等都市部が中心の州は除外するとしても、最貧州ビハール州と比較的順調な経済成長をしてきたパンジャブ州、マハラシュトラ州等との間の格差は4～5倍にも達し、後述するように貧困等の社会開発にも格差が生じている。

● 産業構造

2013年度および2014年度におけるインドの産業部門別成長率は表1-1に示すとおりである。2014年度の総付加価値（GVA）6を業種別にみると、製造業が7.1%増を記録、また、サービス産業部門の成長率も総じて高く、なかでも金融・不動産・ビジネスサービスが11.5%増と経済をけん引した。一方、農林水産部門は、モンスーンの遅れによるカリフ作物の収穫

6「総付加価値（GVA）」とは、単一の産業分野または生産者によって生産された商品・サービスの価値から原材料費など生産費を引いたもの。GVAに租税を加算し、補助金を引いたものがGDP（国内総生産）である
量減少などを主因に 0.2%増の成長にとどまった。

表 1-1 インド産業部門別 成長率 （2011 年基準）

<p>| 産業部門 |</p>
<table>
<thead>
<tr>
<th>iability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013年度</td>
</tr>
<tr>
<td>2014年度</td>
</tr>
<tr>
<td>成長率</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>成長率</td>
</tr>
<tr>
<td>構成比</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>農林水産</td>
</tr>
<tr>
<td>3.7</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>16.1</td>
</tr>
<tr>
<td>鉱業・採掘</td>
</tr>
<tr>
<td>5.4</td>
</tr>
<tr>
<td>2.4</td>
</tr>
<tr>
<td>2.9</td>
</tr>
<tr>
<td>製造</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>18.1</td>
</tr>
<tr>
<td>電力・ガス・水道</td>
</tr>
<tr>
<td>4.8</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>2.3</td>
</tr>
<tr>
<td>建設業</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>4.8</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>貿易・ホテル・運送・通信</td>
</tr>
<tr>
<td>11.1</td>
</tr>
<tr>
<td>10.7</td>
</tr>
<tr>
<td>19.4</td>
</tr>
<tr>
<td>金融保険・不動産・ビジネスサービス</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>11.5</td>
</tr>
<tr>
<td>20.5</td>
</tr>
<tr>
<td>地域・社会・人的サービス</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>12.6</td>
</tr>
<tr>
<td>実質 GVA 成長率</td>
</tr>
<tr>
<td>6.6</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>100.0</td>
</tr>
</tbody>
</table>

出所）インド統計事業実施省 Ministry of Statistics and Programme Implementation 資料より三菱総合研究所 作成

カルナタカ州の経済概況

本普及・実証事業における対象都市であるバンガロールは、カルナタカ州の州都である。バンガロールは、海抜 920 メートルでデカン高原の南端に位置し、年間を通して比較的穏やかな気候である。ガーデンシティとも呼ばれ街路樹が市内に数多く植えられている。カルナタカ州の基本情報を表 1-2 に示す。

表 1-2 カルナタカ州の概要

<table>
<thead>
<tr>
<th>州都</th>
</tr>
</thead>
<tbody>
<tr>
<td>バンガロール</td>
</tr>
<tr>
<td>面積</td>
</tr>
<tr>
<td>19.2 万平方キロメートル</td>
</tr>
<tr>
<td>人口</td>
</tr>
<tr>
<td>6,110 万人（2011年）</td>
</tr>
<tr>
<td>識字率</td>
</tr>
<tr>
<td>75.6%（2011年）</td>
</tr>
<tr>
<td>州経済成長率</td>
</tr>
<tr>
<td>6.4%（2011年度）、8.2%（2010年度）、5.2%（2009年度）、3.7%（2008年度）、12.9%（2007年度）</td>
</tr>
<tr>
<td>一人当たりGDP</td>
</tr>
<tr>
<td>カルナタカ州 40,204ルピー（2010年度）</td>
</tr>
<tr>
<td>バンガロール 84,380ルピー（2008年度）</td>
</tr>
<tr>
<td>州総生産</td>
</tr>
<tr>
<td>41,540億ルピー（2011-2012年）</td>
</tr>
<tr>
<td>主な産業</td>
</tr>
<tr>
<td>自動車および自動車部品、IT・ITeS、設計、電子機器、鋼鉄</td>
</tr>
<tr>
<td>連結インフラ</td>
</tr>
<tr>
<td>国道15路線（総距離3,973 km）</td>
</tr>
<tr>
<td>鉄道ネットワーク（3,089km）</td>
</tr>
<tr>
<td>2国際空港（バンガロール、マンガロール）、5国内空港</td>
</tr>
<tr>
<td>大港湾1、小港湾10</td>
</tr>
<tr>
<td>電力</td>
</tr>
<tr>
<td>12,146.14 MW（2012年3月）</td>
</tr>
</tbody>
</table>

出所）経済産業省資料および JETRO バンガロール事務所提供資料をもとに作成

8 経済産業省 平成 24 年度内外一体の経済成長戦略構築にかかる国際経済調査事業 新興国における我が国企業の進出拠点の開発に関する調査・分析報告書
9 カルナタカ州概観
カルナタカ州はインド国内においては国防産業の街として発展を遂げ、今日では約2,200社のIT企業が存在しており、「インドのシリコンバレー」の名の通りのハイテク産業拠点となっている。州内には約500社のIT関連の外国企業が進出しているほか、自動車および自動車部品など幅広い産業基盤を有する。産業セクターを支えるエンジニア人材育成機関も豊富であり、産業が育成される土壌が整っている。カルナタカ州に進出している日系企業は、2011年11月現在で314社であり、そのほとんどがバンガロールに拠点を設けている。国内企業では、トヨタ自動車株式会社が1997年に事業拠点を設立し、カルナタカのBidadiにインド初の生産工場を整備した。

2008年度（会計年度）には2兆4,303億ルピーであった州総生産は、その後平均年率14%の成長を遂げ、2010年度には3兆559億ルピー、2012年度には4兆1543億円に達している。海外直接投資（Foreign Direct Investment, FDI）動向としては、IT/ITeS、インフラ、通信、自動車・自動車部品といった分野における増加が目立っている。

② 対象国の対象分野における開発課題の現状

概要
インド国内においては、都市を中心に、安全な飲料水の確保が喫緊かつ将来にわたる重要な課題となっている。具体的には、都市部だけでも水道へアクセスできない人口が7,500万人程度存在しているほか、急速な都市化に伴う需給ギャップ拡大に伴い、十分な水質・水量・給水時間が確保できないといった課題がある。また、下水処理能力を超過した汚水が排出されることによる河川水の汚濁や、地下水の過剰揚水による地下水位の低下、ヒ素、フッ素汚染などの取り込み等も顕在化している。ここでは、インドにおける上水整備・運用管理の現状と課題を整理する。

インドにおける上水整備・運用管理の現状
インドでは、安全な水へのアクセス率は、1990年に都市部90%、農村部で66%であったものが、2008年には都市部96%、農村部で84%へと改善しており、第11次5カ年計画（2007年4月～2012年3月）で掲げられている「インド全国での飲料水への持続的なアクセスの確立」という目標に向けて着実に改善が見られる。加えて、第12次5カ年計画（2012年4月～2017年3月）では、2017年3月までに都市部全人口への上水供給、24時間連続給水、均等給水の実現、水道事業体の独立採算経営（O&Mコストに対するコストリカバリーの実現）の達成が目標として盛り込まれている。
インド国内の都市における給水状況、ならびに漏水対策について次に記す。

インド国内の都市における給水状況
クラス1都市とよばれる人口10万人以上の都市における水供給状況を以下に示す。クラス10
都市における平均給水量は 179.0 百万 L/日 (MLD) となっている。他方、これらの都市の一人あたりの1日当たり水供給量は 79.9 MLD から 540 MLD まで大きな幅がある。

<table>
<thead>
<tr>
<th>州名</th>
<th>クラス1都市数</th>
<th>人口 (2008)</th>
<th>水供給 (MLD)</th>
<th>水供給量 (L/人日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andaman & Nicobar</td>
<td>1</td>
<td>107,200</td>
<td>15</td>
<td>140</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>47</td>
<td>20,143,050</td>
<td>2,205</td>
<td>109</td>
</tr>
<tr>
<td>Assam</td>
<td>5</td>
<td>1,417,820</td>
<td>428</td>
<td>302</td>
</tr>
<tr>
<td>Bihar</td>
<td>23</td>
<td>5,783,554</td>
<td>1,262</td>
<td>218</td>
</tr>
<tr>
<td>Chandigarh</td>
<td>1</td>
<td>994,820</td>
<td>537</td>
<td>540</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>7</td>
<td>2,515,100</td>
<td>438</td>
<td>174</td>
</tr>
<tr>
<td>Delhi</td>
<td>1</td>
<td>14,858,800</td>
<td>4,346</td>
<td>292</td>
</tr>
<tr>
<td>Goa</td>
<td>1</td>
<td>122,330</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Gujarat</td>
<td>28</td>
<td>14,678,240</td>
<td>2,101</td>
<td>143</td>
</tr>
<tr>
<td>Haryana</td>
<td>20</td>
<td>5,494,110</td>
<td>783</td>
<td>143</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>1</td>
<td>163,490</td>
<td>36</td>
<td>221</td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td>2</td>
<td>1,910,060</td>
<td>267</td>
<td>140</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>14</td>
<td>4,964,171</td>
<td>1,038</td>
<td>209</td>
</tr>
<tr>
<td>Karnataka</td>
<td>33</td>
<td>15,102,373</td>
<td>2,238</td>
<td>148</td>
</tr>
<tr>
<td>Kerala</td>
<td>8</td>
<td>3,778,516</td>
<td>719</td>
<td>190</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>25</td>
<td>10,795,000</td>
<td>1,561</td>
<td>145</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>50</td>
<td>40,255,170</td>
<td>12,483</td>
<td>310</td>
</tr>
<tr>
<td>Manipur</td>
<td>1</td>
<td>249,870</td>
<td>43</td>
<td>174</td>
</tr>
<tr>
<td>Meghalaya</td>
<td>1</td>
<td>186,030</td>
<td>26</td>
<td>140</td>
</tr>
<tr>
<td>Mizoram</td>
<td>1</td>
<td>282,550</td>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>Nagaland</td>
<td>1</td>
<td>171,810</td>
<td>24</td>
<td>140</td>
</tr>
<tr>
<td>Orissa</td>
<td>12</td>
<td>3,335,930</td>
<td>826</td>
<td>248</td>
</tr>
<tr>
<td>Pondicherry</td>
<td>2</td>
<td>504,130</td>
<td>71</td>
<td>140</td>
</tr>
<tr>
<td>Punjab</td>
<td>19</td>
<td>6,329,860</td>
<td>1,837</td>
<td>290</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>24</td>
<td>9,611,490</td>
<td>1,728</td>
<td>180</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>42</td>
<td>16,852,940</td>
<td>1,347</td>
<td>80</td>
</tr>
<tr>
<td>Tripura</td>
<td>1</td>
<td>214,327</td>
<td>30</td>
<td>140</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>61</td>
<td>25,762,280</td>
<td>4,383</td>
<td>170</td>
</tr>
<tr>
<td>Uttarakhand</td>
<td>6</td>
<td>1,249,380</td>
<td>221</td>
<td>177</td>
</tr>
<tr>
<td>West Bengal</td>
<td>60</td>
<td>19,818,471</td>
<td>3,728</td>
<td>188</td>
</tr>
<tr>
<td>TOTAL</td>
<td>498</td>
<td>1,430,830,804</td>
<td>44,769</td>
<td>179</td>
</tr>
</tbody>
</table>

出所）Status of Water Supply, Wastewater Generation and Treatment in Class-I Cities & Class-II Towns of
人口5〜10万人のクラス2都市における水供給状況は、クラス1都市よりも水供給量が低い状況にある。中央汚染規制局がクラス2レベルの都市に実施したアンケート調査結果では、クラス2都市の88%以上が組織的な上水供給サービスを享受できているものの、実質的には地下水へ過度に依存しているなど、クラス1都市に比べ脆弱な水供給状況にあることが想定される。

表1-4 州ごとのクラス2都市（人口5〜10万人）における水供給量

<table>
<thead>
<tr>
<th>州名</th>
<th>クラス2都市数</th>
<th>人口（2008）</th>
<th>水供給（MLD）</th>
<th>水供給量（L/人日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andaman & Nicobar</td>
<td>52</td>
<td>3,448,610</td>
<td>272</td>
<td>79</td>
</tr>
<tr>
<td>Assam</td>
<td>8</td>
<td>573,290</td>
<td>76</td>
<td>132</td>
</tr>
<tr>
<td>Bihar</td>
<td>14</td>
<td>1,113,800</td>
<td>134</td>
<td>121</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>7</td>
<td>566,080</td>
<td>51</td>
<td>90</td>
</tr>
<tr>
<td>Goa</td>
<td>2</td>
<td>172,850</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Gujarat</td>
<td>31</td>
<td>2,180,590</td>
<td>284</td>
<td>130</td>
</tr>
<tr>
<td>Haryana</td>
<td>7</td>
<td>544,040</td>
<td>50</td>
<td>91</td>
</tr>
<tr>
<td>Jammu & Kashmir</td>
<td>4</td>
<td>244,990</td>
<td>35</td>
<td>142</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>10</td>
<td>826,300</td>
<td>98</td>
<td>118</td>
</tr>
<tr>
<td>Karnataka</td>
<td>26</td>
<td>1,800,258</td>
<td>292</td>
<td>162</td>
</tr>
<tr>
<td>Kerala</td>
<td>26</td>
<td>1,686,660</td>
<td>164</td>
<td>97</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>23</td>
<td>1,745,050</td>
<td>164</td>
<td>94</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>34</td>
<td>2,503,080</td>
<td>267</td>
<td>107</td>
</tr>
<tr>
<td>Meghalaya</td>
<td>1</td>
<td>81,750</td>
<td>14</td>
<td>172</td>
</tr>
<tr>
<td>Nagaland</td>
<td>1</td>
<td>126,520</td>
<td>18</td>
<td>140</td>
</tr>
<tr>
<td>Orissa</td>
<td>12</td>
<td>904,510</td>
<td>98</td>
<td>108</td>
</tr>
<tr>
<td>Pondicherry</td>
<td>1</td>
<td>79,690</td>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>Punjab</td>
<td>14</td>
<td>1,109,670</td>
<td>197</td>
<td>177</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>21</td>
<td>1,599,260</td>
<td>185</td>
<td>116</td>
</tr>
<tr>
<td>Tamilnadu</td>
<td>42</td>
<td>3,254,950</td>
<td>231</td>
<td>71</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>46</td>
<td>3,382,520</td>
<td>432</td>
<td>128</td>
</tr>
<tr>
<td>Utrakhand</td>
<td>1</td>
<td>69,460</td>
<td>11</td>
<td>163</td>
</tr>
<tr>
<td>West Bengal</td>
<td>27</td>
<td>2,004,440</td>
<td>226</td>
<td>113</td>
</tr>
<tr>
<td>TOTAL</td>
<td>410</td>
<td>30,018,368</td>
<td>3,325</td>
<td>121</td>
</tr>
</tbody>
</table>

出所: Status of Water Supply, Wastewater Generation and Treatment in Class-I Cities & Class-II Towns of India-2009
なお、人口合計値（人）の値については原典のまま記載したが、表中の人口合計値、水供給量合計値より算出すると「117」となる。
クラス2都市の一部では地下水による給水に依存しているように、一部の都市と農村部では地下水が利用されている。また、インドの代表都市の1日平均給水時間は4.3時間であり、24時間連続給水を達成している大都市は存在しない15。

● 無収水、漏水対策
かつて英国が統治していた古い時代の水道管や下水管渠が、その耐用年数を超えて現在でも使用されているものがある。漏水の原因として管路の破損が考えられ、水資源の有効利用や水道事業のサービスレベル向上の面でも、早急な対応が求められる。漏水対策においては、漏水場所の検知→補修工事→適切な水圧での供給→施設管理を繰り返し行う必要があるが、まずは検知することが最優先とされる。一般的な検知方法としては、音聴による漏水音を検知する方法があるものの、通水しているときでないと検知できないため、時間給水制が取られているインドで実務的な漏水検知をするためには、機材の選定、チューニングに加え、給水されているブロックごとに調査を実施するなど、用意周到な計画が必要である。
インド国内においては、日本の資金援助だけでなく、他国の資金やインド自国資金を用いた漏水対策が実施されている。

表1-5 インド国内で実施されている無収水対策事業

<table>
<thead>
<tr>
<th>都市</th>
<th>実施主体</th>
<th>事業概要</th>
<th>資金調達方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>デリー</td>
<td>SPML（総合水資源開発企業）</td>
<td>2012年12月より事業開始。デリー市内に2箇所のパイロットエリアを設置し、パイロットエリア内のNRWを20%以下に削減することを目標としている。</td>
<td>Delhi Jal Board 100%出資</td>
</tr>
<tr>
<td>ディルヴァナンタプログラム</td>
<td>Kerala Water Authority</td>
<td>2004年より事業開始。ケララ州の州都ティルヴァナンタプラムとコジコードにおいて、JICAによる支援のもと、漏水検知の実証試験を実施。総延長36kmの管路において、複数の漏水探知手法の実証試験を実施。</td>
<td>JICA円借款ケララ州上水道整備計画</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・Smart ball</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・Mechanical listening stick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・Electronic listening stick</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・Ground microphone (Omikron)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・Leak noise correlator (ZetaCorr)</td>
<td></td>
</tr>
<tr>
<td>ゴア</td>
<td>ゴア州公共事業局（PWD）</td>
<td>2011年3月〜2014年2月の3年間にわられる、技術移転を目的とした実証事業。ゴア州内のパイロットエリアにおいて戸別の流量計測、音聴式及び漏水探知機による漏水検査を実施。この他、PWD内での組織的技術力の強化を目的として、活動のマニュアル化やパイロット区域外でのPWD独自の無収水削減活動を推進</td>
<td>JICA円借款、有償技術支援付帯プロジェクト</td>
</tr>
</tbody>
</table>

15アジア開発銀行（ADB）レポート（2007年）
インドにおける上水整備・運用管理の課題

インド国内では前項に記した水供給、漏水対策を実施しているものの、人口増加や経済発展に伴う水需要の増加の対策が追いついておらず、水量、水質、及び基礎インフラサービスの面で依然として数多くの問題を抱えている。このため、2006年からインド政府都市開発省主導のもと、サービスレベル・ベンチマーク（Service Level Benchmark：SLB）が設定され、サービス改善に関する取り組みが進められている。また同省により、以下の3点を模索するためのサービスレベル・ベンチマークに関するハンドブックが発刊された。

インド全土で共通認識・使用される上下水道分野でのサービス指標の最低要件の設定
これらのサービス指標のモニタリング・報告に関する最低限の共通フレームワークの定義
定義したフレームワークを段階的に運用する方法についてのガイドラインの設定

次に、上水道分野における、9のサービスレベル・ベンチマークを示す。16

<table>
<thead>
<tr>
<th>№</th>
<th>指針/指数</th>
<th>目標水準</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>顧客への給水率</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>1日1人あたりの供給水量</td>
<td>135Liter/人/日</td>
</tr>
<tr>
<td>3</td>
<td>水道メーターを介した水道供給率</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>無収水率</td>
<td>15%</td>
</tr>
<tr>
<td>5</td>
<td>1日の給水時間</td>
<td>24Hrs</td>
</tr>
<tr>
<td>6</td>
<td>苦情の解決率</td>
<td>80%</td>
</tr>
<tr>
<td>7</td>
<td>給水品質</td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>料金収入による組織運用率</td>
<td>100%</td>
</tr>
<tr>
<td>9</td>
<td>水道使用料金の回収率</td>
<td>90%</td>
</tr>
</tbody>
</table>

表1-6 上水道分野のサービスレベル・ベンチマーク（SLB）17

16 出所）厚生労働省健康局水道課「平成24年度水道産業国際間展開推進事業」報告書
17 出所）同上（出典）現地プレゼン資料，CPHEED,Ministry of Urban Development,GoI)
具体的な問題としては、①人口増加に対応する水源・水質の確保、②老朽化した水道管における漏水対策、③次なる課題としての24時間給水などのサービスレベルの向上、などが挙げられる。ここでは、供給能力の向上に向けた課題である①および②について詳述する。

■ 水需要拡大への供給能力整備
インド国内において、100万人を超える都市の数は1951年の12都市から2011年には53都市に急増している。現在、インドの人口の約31%は都市部に居住しており、都市人口の約42%は100万人都市に居住している。各都市において、水道に限らず基礎インフラ整備が急務の状況にある。特に、1人当たりの年間利用水量が、国際基準に当たる1,000m3以下の流域が国内に5地域（カーヴェリ、ペンネルー、サーバルマティ、クリシュナー流域）であり、インド南部に3流域、西部に2流域）存在しており18、これらの地域では早急な対策が求められている。当該地域では、下水処理能力を超えた汚水が排出されることによる河川水の汚濁や、地下水の過剰揚水による地下水位の低下や、ヒ素、フッ素汚染などの取り込みなどが顕在化しており、解決が急務である。

■ 漏水対策
インド国内に敷設された配水管で最も古いものは、英国植民地時代のものであり、敷設から100年以上が経過しているため、老朽化による管路の破損が漏水原因の一つとなっている。また、新設時および漏水修繕時の施工技術が未熟なことから、継手接続にゆがみが生じ漏水が発生している。さらには、通水、断水の繰り返しで常時加圧されていないため、継手部分の麻パッキンにゆがみが生じている。このような現状を受け、インド国内において無収水対策事業、漏水対策事業はいくつかの都市で行われており、ある程度の漏水率の削減に寄与しているものの、技術の成熟度については依然として多くの課題を抱えている。そのため、国内全体において漏水検知技術の向上や新たな技術の取り入れに対し強いニーズがある。日本国内における漏水検知手法にはいくつかの方法があり、音聴式が一般的な漏水検知方法である。インド国内においても適用可能性が高いものの、一部の交通量の多い道路に埋設された水道管の漏水検知にあたっては、激しい道路交通による騒音や振動により適用できない場合が考えられる。実際、1990年以降に世界銀行の支援で音聴式による漏水調査が実施されたものの、非効率であり、より効率的かつ経済的な手法が望まれている20。

音聴式以外の方法として、漏水の可能性のある箇所を挟む形でバルブにセンサーを設置し、漏水箇所から伝播する漏水音を検知し、箇所を特定する相関式という方法がある。人員面での効率化が図れること、検査員のトレーニング期間が短いこと等から音聴式に比べ効率化を図れる手法である。ただし、適切な検知のためには、管路素材、バルブ間長等に応じたパラメータを装置に設定する必要があり、インドでの適用について現地実証が必要と考えられる。この他、管路内にガスを圧送してガスの漏出を検知する「トレーサ式」がある。「トレーサ式」は断水していても検査できる方法であり、インドの不連続給水という実態に適合できる調査方法と推測される。実際にインド国内においては、マハラシュトラ州のPimpri-Chinchwad

18 インドの水問題、多田博一. 2005, p.33
19 「平成24年度政府開発援助海外経済協力事業委託費によるニーズ調査－排水・汚水処理システム改善のための日本の浄化－水処理関連製品・技術の活用」株式会社三菱総合研究所受託（2013.3）
20 インド都市開発省に対するヒアリングによる結果
において、フランスの国間基金を利用して、フランス企業のSuez社が州の公営企業（Pimpri-Chinchwad Municipal Corporation (PCMC)）とMOU契約を6,300万ルピーで締結して事業を行っている21。

ア）対象都市で課題となる上水整備・運用管理と課題

● 概要　急速な産業発展に伴い、バンガロールにおける人口は、2012年には850万人に達しており22、今なお人口流入が続いている。バンガロールにおける上下水道の整備および維持管理はバンガロール上下水道局Bangalore Water Supply and Sewage Board（以下、BWSSB）が行っている。同組織の組織図を図1-1に示す。

また、BWSSBにおける水運用状況等を、表1-7、表1-8に示す。

21 MiD Day（インド国内報道機関）の発表資料
図 1-1 BWSSB の組織図

出所) BWSSB ウェブサイト
BWSSB のサービスエリアはバンガロール郊外も含まれるため、2011年時点23で849.9万人に対して水供給を行っている。BWSSBにより一日あたりの給水量は950MLDであり、需要水量1,400MLD（165L/人日）に比べ450MLDが不足している状況にある。従って、上水道施設の整備による安定した水供給の実現は緊急の課題といえる。

BWSSBによる運用管理状況を表1-7に、人口変移予測と給水ギャップを表1-8、消費者別使用量及び収益比を表1-9に示す。

表1-7 BWSSBによる上水道運用管理状況

<table>
<thead>
<tr>
<th></th>
<th>1350 MLD (1,350,000㎥/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全供給量</td>
<td>1350 MLD (1,350,000㎥/日)</td>
</tr>
<tr>
<td>給水人口</td>
<td>8.5 Millions</td>
</tr>
<tr>
<td>給水エリア面積</td>
<td>570 sq. kms</td>
</tr>
<tr>
<td>給水戸数（メーター数）</td>
<td>8.65 lakhs (865,000戸)</td>
</tr>
<tr>
<td>管路延長</td>
<td>8,746 kms</td>
</tr>
<tr>
<td>配水管口径</td>
<td>100 to 1800 mm</td>
</tr>
<tr>
<td>配水タンク（地上式）</td>
<td>57 (885 ML)</td>
</tr>
<tr>
<td>配水タンク（高置式）</td>
<td>36 (33 ML)</td>
</tr>
<tr>
<td>加圧ポンプ場</td>
<td>62 nos</td>
</tr>
<tr>
<td>公共水栓（無料水栓）</td>
<td>7,477 nos</td>
</tr>
<tr>
<td>給水車</td>
<td>62 nos</td>
</tr>
<tr>
<td>1ヶ月あたり供給量</td>
<td>42,200 ML</td>
</tr>
<tr>
<td>1人/1日あたり使用量</td>
<td>65 L/day</td>
</tr>
<tr>
<td>1㎥あたり平均供給原価</td>
<td>28 Rs/kl (44.56円)</td>
</tr>
</tbody>
</table>

出所: 2016年BWSSBウェブサイト掲載（2012年資料）

表1-8 人口変移予測と給水ギャップ

<table>
<thead>
<tr>
<th>対象年</th>
<th>人口 (百万人)</th>
<th>需要量（予測）</th>
<th>供給量（予測）</th>
<th>供給不足量（予測）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>8.499</td>
<td>1,400</td>
<td>950</td>
<td>450</td>
</tr>
<tr>
<td>2021</td>
<td>10.581</td>
<td>2,100</td>
<td>1,450</td>
<td>650</td>
</tr>
<tr>
<td>2031</td>
<td>14.296</td>
<td>2,900</td>
<td>2,070</td>
<td>830</td>
</tr>
<tr>
<td>2041</td>
<td>17.085</td>
<td>3,400</td>
<td>2,070</td>
<td>1,330</td>
</tr>
<tr>
<td>2051</td>
<td>20.561</td>
<td>4,100</td>
<td>2,070</td>
<td>2,030</td>
</tr>
</tbody>
</table>

出所: 2016年BWSSBウェブサイト掲載

上記2021年時点での供給量24は1,450MLD、需要量は2,100MLDと推定されていることから、需要ギャップは650MLDとなる。漏水率が30%とすると2,100MLDに

23 2011年 census より
24 処水場又は配水タンクから送水される水の量
対し 630MLD が水道管等から漏出していることが想定され、需要ギャップとほぼ同量となる。一方、漏水調査を中心とした対策（管路の修繕、更新等含む）により漏水率の改善が見込まれ、漏水率が 10% に低減したと仮定すると、需給ギャップは 210MLD（2100 - 2100×0.9）まで抑えることができる。この様なことから、漏水調査は無収水対策において最も効果的な手段として位置付けられ、漏水率の高いバンガロールにおいては、第 2 の水源開発と位置付けても過言ではない。

図 1-2 BWSSB の水供給量・需要量の見通し

表 1-9 消費者別使用量及び収益比 （1 ヶ月あたり）

<table>
<thead>
<tr>
<th>消費の種類</th>
<th>接続数</th>
<th>消費量（ML）</th>
<th>占有率 %</th>
<th>請求額 Rs（×10万）</th>
<th>収益割合 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般家庭</td>
<td>740,000</td>
<td>16,992</td>
<td>44.67</td>
<td>4,718</td>
<td>53.98</td>
</tr>
<tr>
<td>商業用</td>
<td>42,100</td>
<td>1,623</td>
<td>3.84</td>
<td>1,961</td>
<td>22.44</td>
</tr>
<tr>
<td>家庭用＋商業用</td>
<td>36,300</td>
<td>2,194</td>
<td>5.20</td>
<td>1,291</td>
<td>14.78</td>
</tr>
<tr>
<td>工業・産業用</td>
<td>2641</td>
<td>618</td>
<td>1.56</td>
<td>715</td>
<td>8.18</td>
</tr>
<tr>
<td>下水接続</td>
<td>49,100</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0.62</td>
</tr>
<tr>
<td>検針量合計</td>
<td>8,70,141</td>
<td>21,427</td>
<td>50.75</td>
<td>8,740</td>
<td>100.00</td>
</tr>
<tr>
<td>配水量合計</td>
<td>42,223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>差水量</td>
<td>20,796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRW %</td>
<td>49.25</td>
<td>49.25</td>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

出所：2016 年 BWSSB ウェブサイト掲載
バンガロールにおける上水道施設の整備・運用状況

デカン高原に位置する標高 900m のバンガロール市の水源は、都市の南西約 100km に位置するカーヴェリ川である。河川水面の標高は 600m 程度であるため、標高差約 300m を揚水してバンガロールへ送水している。なお、カーヴェリ川の河川水量は上流に設けられた Gorur Hemavathi 岡水湖や Krishnaraja Segara 岡水湖等により調整されている。なお、バンガロール市外にカーヴェリ川の水が送水されたのは 1974 年以降であった。以降、1982 年、1995 年、2002 年、2012 年と 5 次に渡って供給能力の増強が図られており、1974 年当初に 135MLD であった送水量は、2012 年には 500 MLD に増強された。

しかしながら、バンガロール都市圏での生活用水の給水時間は現在も 1 日おきの 4 時間のみにとどまっている。この要因の一つが給配水管からの漏水である。

バンガロール市水道局の水道管は、最も古いもので敷設から 70 年が経過しており、老朽化による管路の破損が漏水原因の一つとなっている。また、敷設施工技術が不十分であるため水圧が逆流が生じ、漏水が発生しているといった要因も存在している。漏水は貴重な水資源の喪失（ひいては水道サービスの低下につながる）や水道事業の財政悪化をもたらすとの認識から、BWSSB ではパイロットプロジェクトを立ち上げるなどして、漏水対策を実施している。しかしながら、現地では地下漏水の調査が行われておらず、市民からの通報（出水不良）やパトロールによる目視（表出水の巡回）での検知が行われ、地表面で確認できる漏水のみが補修されている状況である。漏水検査員 5 名で約 130 箇所/月の検知実績があるものの 25，さらなる漏水対策が急務であるといえる。なお、現地調査では漏水補修は BWSSB が委託している地元の水道工事会社が行っていることが確認された。

BWSSB は同都市圏における給水対策として、表 1-10 に示す UFW（Unacounted Flow of Water、不明水）対策事業を外部事業者に委託して実施している。

<table>
<thead>
<tr>
<th>地区</th>
<th>区域面積</th>
<th>受託者</th>
<th>契約期間・現状</th>
</tr>
</thead>
<tbody>
<tr>
<td>South</td>
<td>52km²</td>
<td>L&T(Lean&Toubro Limited)</td>
<td>6年間・3年目が終了</td>
</tr>
<tr>
<td>West</td>
<td>54km²</td>
<td>L&T</td>
<td>7年間・1年目が終了</td>
</tr>
<tr>
<td>Central</td>
<td>26km²</td>
<td>Suez を筆頭とする JV</td>
<td>7年間・1年目が終了</td>
</tr>
</tbody>
</table>

バンガロールにおける UFW 対策事業案件の実施期間内の内容を表 1-11 に、内容詳細を L&T 社提供の図 1-3 に示す。
表 1-11 バンガロールにおける UFW 対策事業の実施期間内の内容

<table>
<thead>
<tr>
<th>年目</th>
<th>事業実施期間</th>
<th>予備年</th>
<th>アセスメント期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年目</td>
<td>2年目</td>
<td>3年目</td>
<td>4年目</td>
</tr>
</tbody>
</table>
※7年目についてはWest地区、South地区の案件のみ

図 1-3 バンガロールにおける UFW 対策事業の内容詳細

出所）L&T 社提供

JICA 円借款プロジェクトとして、バンガロール上下水道整備事業が2005年から2007年まで行われた。同プロジェクトでは、バンガロール都市圏に対するカーヴェリ川からの供給水量を増強するため、上水道施設の整備（給水能力50MLD の増強）を行った。この他、水道経営の包括的な改善に向けた取り組みとして、人材育成、30%を超える漏水率削減のための配管網の改修、自動料金支払機の普及、民間への業務委託を行うほか、バンガロール市民による水道業務への理解促進のための広報活動、及び節水等の重要性に関する消費者の啓発活動も行われた。

さらに、円借款プロジェクトと並行して漏水対策事業がBWSSBにより行われており、2003年から2005年にかけてパイロットプロジェクトが行われた。現在ではこのパイロットプロジェクト結果を受け、バンガロール上下水道整備事業のフェーズIIの枠組みの中でBWSSBによるサービスエリア全9エリアのうち、3エリアを対象とした漏水対策事業が実施されている。
図 1-4 バンガロール市内で現在実施されている UFW 対策事業と対象エリア
（出所）JICA インド事務所提供資料（BWSSB 講演資料）および現地ヒアリングにより作成

イ）漏水対策に係るパイロットプロジェクト —Unaccounted flow of water (UFW) & Water Distribution System Rehabilitation(WDSR) Project（26）—

プロジェクトにおけるパイロットエリアは、16 km²であり、エリア内には 35,000 コネクションがあった。プロジェクトは 2003 年 5 月から 2005 年 3 月まで実施された。プロジェクトコストは約 4 億 8 千万ルピーであった。
パイロットテストの結果、漏水量や、水道施設の状況（管路位置、バルブの埋設、メーター故障、給水管腐食等）が明らかとなった。プロジェクトによって、UFW は 64% から 38% まで削減され、漏水率は 56% から 30% まで削減された。プロジェクト期間内で累計して 1,846 ML の漏水量が削減され、推計費用回収額は 2,950 万ルピーと推計された（16,000 ルピー/ML×1,846ML = 29,536,000 ルピー）。

(26) JICA インド事務所提供資料（BWSSB 講演資料）
図 1-5 漏水削減量と費用回収額
出所）JICA インド事務所提供資料（出典：BWSSB2013 年講演資料「Issues of NRW-Bangalore City」）より作成。
また、パイロットエリアにおいて設置された測定対象区域（DMA）においては、水圧の上昇が見られ、事業実施前に比べ最大で 4.89 m、70%の水圧増加が見られた。

図 1-6 DMA における事業実施前後の水圧比較
出所）JICA インド事務所提供資料（出典：BWSSB2013 年講演資料「Issues of NRW-Bangalore City」）より作成。
ウ）漏水対策 —Distribution improvement and UFW reduction project—

このプロジェクトの目的は、Central、West、East、North、South-east、Southからなる6つのBWSSBの給水地区における配水管の改良と漏水率の低減である。現在、South、Central、Westの3地区におけるプロジェクトがJICA有償資金協力バンガロール上下水道整備事業フェーズIIの枠組の中で実施されている27。

対象地区は300km2（South地区を除く）、対象戸数60万戸（South地区を含む）、プロジェクトコストの総額は160億ルピーである。現在実施されているプロジェクトにより、少なくとも300MLDの漏水が削減されると見込まれている。プロジェクトは3年計画で実施され、受託者はUFW率の目標（16%）を達成する責務を負う。目標達成状況についてはアセスメント期間で検証され、この期間で数値が達成できない場合はペナルティが課される。

プロジェクトにおいて、受託者は測定対象区域（DMA：District Metered Areas）の計画・設計・施工を実施する。South地区では、52km2に対して85のDMAの設置が完了している。受託者はDMAの作成に必要となる資材（境界バルブやGSM通信に適用した電子メーター、需要家のメーター等）の調達・設計・設置・試運転も行う必要があり、地区1における接続戸数は150,000程度である。この他、漏水確認を目的とした最低流量調査（Minimum night flow test）を行い、この結果から、位置の特定を行うために音聴機器や相関式により詳細な漏水位置を特定する。South地区では、全85のDMAのうち31のDMAについてUFWアセスメントが終了し、漏水量が測定された。漏水箇所の特定は2013年10月頃より開始しており、現在、ノウハウを蓄積しながら進めているところであり、実際の掘削・補修は今後実施予定である29。

BWSSBは受注者が6年または7年間の事業実施期間を終了した段階で当該地区の運転管理を引き継ぐこととなるため、受注者は同事业期間において、平行してキャンティビルドイングを実施することが求められている。これまでにメーター検針員に対してのワークショップを実施しており、今後は研修、ワークショップを主体とした職員育成を中心に行う予定である。技術協力事業についてはTATAコンサルティングエンジニアリングを始めとする発注者側コンサルティング企業が中心となり外注先を活用して実施する予定である。

エ）バンガロールにおける上水道施設の整備・運用課題

BWSSBでは、地下漏水対策が重要課題の一つとなっている。地下漏水の検知に関しては、BWSSBがこれまでにスマートポール（配水管内を移動しながら、ポールに内蔵された音響センサー、記録装置で漏水箇所、エアーポケットなどを検知するシステム）27 JICA インド事務所提供資料（BWSSB講演資料）28 BWSSB/TATA コンサルティングエンジニアリングに対するヒアリング結果29 L&T(Lean & Toubro Limited)社に対するヒアリング結果
による位置特定を実施しているものの、ボールの直径 100mm に対して直径 50mm の管路が多いなどの理由で漏水位置を特定するに至っていない。また、現在実施されている漏水対策事業において、South 地区では L&T 社員が 3～4 名体制で漏水探知機と相関式検知器を用いた漏水調査工法を試験的に実施しているものの、水圧が低いことから良好な結果が得られていない。漏水調査のタイミングに合わせて給水するよう BWSSB に求めているものの、調査対象地域が広く調査に適した水圧が確保出来ていない状況である。

このように、先進諸国で実施されている音聴式、相関式といった調査手法をそのまま現地に適用することに様々な課題が生じている。今後は、課題の解決に向け、既存の技術を現地の状況、特に低水圧条件に合わせてチューニングした漏水検知技術と、それを可能にする技術的知見が求められている。

③ 対象国の関連計画、政策（外資政策含む）および法制度

ア) インドにおける関連計画

インドの基本的な開発政策は、インド政府計画委員会（Planning Commission）が策定する「5 カ年計画」に記されている。第 1 次 5 カ年計画が策定されたのは 1951 年であり、現在は第 12 次 5 カ年計画（2012 年確定、2012 年 4 月〜2017 年 3 月）に基づいた施策が実行されている。

第 11 次 5 カ年計画（2007 年 4 月〜2012 年 3 月）で掲げられている「インド全土での飲料水への持続的なアクセスの確立」という目標に向けて着実に改善が見られたものの、人口増加や経済発展に伴う上水需要の増加に依然として施設整備が追いついていない。加えて、第 12 次 5 カ年計画（2012 年 4 月〜2017 年 3 月）では、2017 年 3 月までに都市部全域への上水供給、24 時間連続給水、均等給水の実現、水道事業体の独立採算経営（O&M コストに対するコストリカバリーの実現）の達成が目標として含まれており、水量、水質、及びサービスの面で依然として数多くの問題を抱えている。

イ) インドにおける水資源政策

国内における水資源の量的不足と水質の劣化に対し、上水道インフラの整備を所管する都市開発省は、2009 年に「Service Level Benchmarking」という計画の中で、都市部の上水道整備に関し、普及率 100%、24 時間給水の達成、無収水率の 20%以下への削減等の目標値を設定し、地方政府による水道事業の改善に向けた取り組みを促している。1992 年の第 74 次憲法改正によって、上水道事業は州レベルから市あるいは町レベルの地方自治体に権限を移譲していく方針が示されているが、多くの地方自治体のキャパシティは法的・制度的にも、人材面からも十分ではなく、権限移譲の進捗は州によって異なる。
ウ）インドにおける水資源に係る法制度

● 法体系

インドでは、インド憲法第 246 条（国会及び州立法府の立法事項）第 3 項および第 7 附則第 2 表（州管轄事項表）第 17 項にもとづいて、州政府は第 1 表（連邦管轄事項表）第 56 項を条件として、「水、すなわち給水、灌漑および用水路、排水および築堤、貯水ならびに水力発電」に関する立法権限を与えられている。州際河川、州際流域については別途、憲法に基づき法が定められており、河川審議会について定めた河川審議会法（The River Boards Act, 1956）、州際河川の水紛争に関する取り決めを記載した州際水紛争法（The Inter-State Water Disputes Act, 1956）がある。

エ）カルナタカ州における水資源計画並びに法制度

● カルナタカ州における水資源計画

カルナタカ州における水資源計画は、水資源局（Department of Water Resources）により策定され、各関係主体により実行されている。カルナタカ州には 7 つの水系があり、水系の地図を図 1-7 に示す。Krishna 水系が州の面積のほとんどを占めている。バンガロールに水を供給している Cauvery 水系は州で 2 番目に大きい流域面積を有している。

![カルナタカ州の水系地図](image)

図 1-7 カルナタカ州の水系地図
出所）Department of Water Resources ウェブサイト
それぞれの水系について事業計画が立てられており、各水系における事業計画数を表1-12に示す。遂行中の大規模事業数の最も多い水系はKrishna水系である。

<table>
<thead>
<tr>
<th>水系</th>
<th>遂行中の事業数</th>
<th>新規事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krishna</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>Cauvery</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Godhavari</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

出所：Department of Water Resources ウェブサイト

Krishna水系で遂行されている事業のうち、最も利水量の大きい事業はUpper Krishna Project（Phase I, II）である。Narayanapur DamおよびAlmatti Damを建造する事業で、484万m³の利水量増をもたらす規模の事業である。Cauvery水系では、Kabini貯水湖の造成（利水量：182万m³）等が実施されている。

カルナタカ州における水資源に係る法制度

カルナタカ州政府において、水道事業に係る法制度としてカルナタカ州水利法The Karnataka Irrigation (Levy of Betterment Contribution and Water Rate) Act, 1957およびThe Karnataka Irrigation Act, 1965が施行されている。

The Karnataka Irrigation (Levy of Betterment Contribution and Water Rate) Act, 1957

州内の各地域においては建物毎、管理手法毎に水道に係る規制が適用されており、水道に係る様々な問題があった。カルナタカ州水利法はマイソール水利法（改善貢献へのための賦課金と水料金について定めた法律）を改訂して制定されたもので、1957年に州議会で承認され、利水に係る法律は全てこれに統合されている。本法では、水の利用に係る州政府の料金徴収権限、料金体系、支払義務について規定している。

本法で提示された水の利用に係る料金はカルナタカ州全土で適用されている（同州のKharab市については、耕作が難しいため除外されている）。水利用料金は、施設改良費（betterment contribution）と水料金（water rate）に分けて徴収することが規定されている。施設改良費は土地ごとを料金徴収対象としており、その徴収額は土地につき1500Rsまでと規定されている。水料金については、The

30 Department of Water Resources ウェブサイト
 Krishna Bhagya Jala Nigam 社が配水する地域においては同社が料金徴収を行うと規定されている。

The Karnataka Irrigation Act, 1965

1965年に制定された本法では、州政府は水道に係る組織（Irrigation officers）を作り、当該組織に対水道事業に係る調査、施工、維持等に関する権能を認可することが規定されている。Irrigation officers に対して当該用地への立入権限の認可や水道施設の安全性の保全について規定しているほか、用水路の建設・管理・維持の手続き、用地原所有者に対する用地取得に係る損害賠償請求権を付与することなどが規定されている。

④ 対象国の対象分野のODA事業の事例分析および他ドナーの分析

ア）対インドの日本のODA政策

1958年に最初の円借款をインドに供与して以来、円借款は日本でのインドに対する経済協力の中心となっている。1998年の核実験を受け、新規無償資金協力や新規円借款が凍結された時期もあったが、2003年から対インド経済協力が本格的に再開された。その後は、政策対話において確認された重点分野（経済インフラ、保健医療、農業・農村開発、環境保全）に沿って実施され、なかでも、対インドODAの95%以上を占める円借款による協力によって、電力、運輸等のインフラ整備に貢献してきた。経済成長を通じた貧困の削減に大きく寄与している。インドから見て日本は最大の二国間ドナーであり、また日本から見てインドは2003年以来円借款の最大級の受取国となっている。

現地ODAタスクフォースにおける議論やインド側との政策対話を踏まえ、2006年5月に策定された「対インド国別援助計画」では、(1)経済成長の促進、(2)貧困・環境問題の改善、(3)人材育成・人材交流の拡充が重点目標として掲げられており、環境問題への対処として、河川、土地、地下水の汚染を防止・改善し、住民の衛生環境を改善するため、上下水道セクターに対する支援を行えることが明記されている。支援の実施に当たっては、十分かつ安全な水資源の確保や安定的な水供給の観点を踏まえ、適切な維持管理体制を確保するための権限の地方への移譲、管理組織の能力強化、水資源の有効活用（節水、漏水対策）などの政策・制度改善への知的協力も積極的に行うことがとされている。

31 外務省ウェブサイト 国別データブック（インド）
32 外務省「対インド国別援助計画」（平成18年5月）
イ）対インド円借款事業

これまで実施されている案件

円借款による支援としては、ガンジス川浄化計画（Ganga Action Plan: GAP）やヤムナ川浄化計画（Yamuna Action Plan: YAP）に基づいて、これら河川の流域において下水道施設・公衆トイレ等の施設整備を実施しているほか、経済発展の著しい地方の大・中規模の都市を対象に、上・下水道施設の拡充・改良を目的とした事業を実施してきている。これまでの案件例を表1・13に示す。
主な案件の概要

表1-13に整理した案件のうち、バンガロールにおける上下水道に係る事業及び有償資金協力による無収水プロジェクトの概要を以下に示す。

借款事業（上下水道・衛生セクター）

<table>
<thead>
<tr>
<th>No</th>
<th>案件名</th>
<th>借款契約日</th>
<th>借款契約額（百万円）</th>
<th>事業実施者名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>グワハティ下水道整備事業</td>
<td>2015年2月27日</td>
<td>15,620</td>
<td>グワハティ水道公社</td>
</tr>
<tr>
<td>2</td>
<td>アグラ上水道整備事業（II）</td>
<td>2014年3月31日</td>
<td>16,279</td>
<td>ウッタル・プラデシュ州水道局</td>
</tr>
<tr>
<td>3</td>
<td>西ベンガル州上水道整備事業</td>
<td>2013年3月28日</td>
<td>14,225</td>
<td>西ベンガル州公衆衛生局</td>
</tr>
<tr>
<td>4</td>
<td>デリー上水道改善事業</td>
<td>2012年10月29日</td>
<td>28,975</td>
<td>デリー水道局</td>
</tr>
<tr>
<td>5</td>
<td>ラジャスタン州地方給水・フッ素症対策事業</td>
<td>2012年9月28日</td>
<td>37,598</td>
<td>ラジャスタン州公衆衛生局</td>
</tr>
<tr>
<td>6</td>
<td>ヤムナ川流域諸都市下水道整備事業（3）</td>
<td>2011年2月17日</td>
<td>32,571</td>
<td>デリー水道局</td>
</tr>
<tr>
<td>7</td>
<td>グワハティ上水道整備事業</td>
<td>2009年3月31日</td>
<td>29,453</td>
<td>グワハティ市都市開発局</td>
</tr>
<tr>
<td>8</td>
<td>タミルナドゥ州上水道整備事業</td>
<td>2009年3月31日</td>
<td>12,727</td>
<td>タミルナドゥ州上下水道公社</td>
</tr>
<tr>
<td>9</td>
<td>フッ素症対策事業</td>
<td>2009年3月31日</td>
<td>17,095</td>
<td>タミルナドゥ州上下水道公社</td>
</tr>
<tr>
<td>10</td>
<td>タミルナドゥ州都市インフラ整備事業</td>
<td>2008年3月31日</td>
<td>8,551</td>
<td>タミルナドゥ州上下水道公社</td>
</tr>
<tr>
<td>11</td>
<td>ヒンドゥーレーム都市開発事業</td>
<td>2008年3月31日</td>
<td>22,806</td>
<td>タミルナドゥ州上下水道公社</td>
</tr>
<tr>
<td>12</td>
<td>オリッサ州総合衛生改善事業</td>
<td>2007年9月14日</td>
<td>37,598</td>
<td>オリッサ州上下水道公社</td>
</tr>
<tr>
<td>13</td>
<td>ゴア州上下水道整備事業</td>
<td>2007年9月14日</td>
<td>28,358</td>
<td>ゴア州公共事業局</td>
</tr>
<tr>
<td>14</td>
<td>ケララ州上水道整備事業</td>
<td>2006年3月31日</td>
<td>3,584</td>
<td>ケララ州上下水道公社</td>
</tr>
<tr>
<td>15</td>
<td>タンジャル上水道整備事業</td>
<td>2006年3月31日</td>
<td>7,729</td>
<td>タンジャル上水道公社</td>
</tr>
<tr>
<td>16</td>
<td>ガンジス川流域都市衛生環境改善事業（バラシ）</td>
<td>2005年3月31日</td>
<td>11,184</td>
<td>ガンジス川流域都市衛生環境改善事業（バラシ）</td>
</tr>
<tr>
<td>17</td>
<td>ガンジス川流域都市衛生環境改善事業（III）</td>
<td>2005年3月31日</td>
<td>41,997</td>
<td>ガンジス川流域都市衛生環境改善事業（III）</td>
</tr>
<tr>
<td>18</td>
<td>ジャイプール上水道整備事業</td>
<td>2004年3月31日</td>
<td>8,881</td>
<td>ジャイプール市上下水道公社</td>
</tr>
<tr>
<td>19</td>
<td>ジャイプール上水道整備事業（II）</td>
<td>2003年3月31日</td>
<td>13,333</td>
<td>ジャイプール市上下水道公社</td>
</tr>
<tr>
<td>20</td>
<td>ケララ州上下水道整備事業</td>
<td>2003年3月31日</td>
<td>19,881</td>
<td>ケララ州上下水道公社</td>
</tr>
<tr>
<td>21</td>
<td>ゲータム川流域都市衛生環境改善事業（バラシ）</td>
<td>2002年3月31日</td>
<td>11,824</td>
<td>ゲータム川流域都市衛生環境改善事業（バラシ）</td>
</tr>
<tr>
<td>22</td>
<td>ゲータム川流域都市衛生環境改善事業（II）</td>
<td>2002年3月31日</td>
<td>41,997</td>
<td>ゲータム川流域都市衛生環境改善事業（II）</td>
</tr>
<tr>
<td>23</td>
<td>ケララ州下水道整備事業</td>
<td>2001年3月31日</td>
<td>8,881</td>
<td>ケララ州下水道整備事業</td>
</tr>
<tr>
<td>24</td>
<td>ケララ州下水道整備事業</td>
<td>2001年3月31日</td>
<td>13,333</td>
<td>ケララ州下水道整備事業</td>
</tr>
<tr>
<td>25</td>
<td>ケララ州下水道整備事業</td>
<td>2001年3月31日</td>
<td>37,598</td>
<td>ケララ州下水道整備事業</td>
</tr>
<tr>
<td>26</td>
<td>ケララ州上下水道整備事業</td>
<td>2000年3月31日</td>
<td>28,358</td>
<td>ケララ州上下水道整備事業</td>
</tr>
<tr>
<td>27</td>
<td>ケララ州上下水道整備事業</td>
<td>1999年3月31日</td>
<td>28,358</td>
<td>ケララ州上下水道整備事業</td>
</tr>
<tr>
<td>28</td>
<td>ケララ州上下水道整備事業</td>
<td>1998年3月31日</td>
<td>28,358</td>
<td>ケララ州上下水道整備事業</td>
</tr>
<tr>
<td>29</td>
<td>ケララ州上下水道整備事業</td>
<td>1997年3月31日</td>
<td>28,358</td>
<td>ケララ州上下水道整備事業</td>
</tr>
</tbody>
</table>

出所: JICA HP

- 上水道整備事業：バンガロール上下水道整備事業（II-1）及び（II-2）

バンガロールは、人口約850万人を擁する都市であり、インドにおけるIT、電子機器、機械部品等の産業拠点として急速な成長を遂げている。しかし、同市は
年間降水量が少なく、同市の上水供給量は急増する需要に対応できていない。特に、工業用水等は需要の3分の1が満たされるのみであり、不足分は地下水汲上等で補わなければならないことは、同市の産業立地上的課題となっている。今後とも、同市の人口増加に合わせた生活用水の需要増加や産業成長による工業用水の需要増加が見込まれていることから、同市における上水道整備が急務となっている。標記プロジェクトについて、概要を表1-14及び表1-15に示す。

表1-14 パンガロール上下水道整備事業(II-1)の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>国/案件名</td>
<td>インド/パンガロール上下水道整備事業（II-1）</td>
</tr>
<tr>
<td>目的</td>
<td>パンガロール都市圏を対象に、カーヴェリ川を水源とする上水道施設及び下水道施設の整備を行い、水需要に対する安定的な上下水道サービスの提供図り、衛生的な居住環境の整備及び産業の活性化に寄与する。</td>
</tr>
<tr>
<td>地域</td>
<td>カルナタカ州パンガロール都市圏</td>
</tr>
</tbody>
</table>
| 事業概要 | ① 上水道施設：導水路、浄水場（500MLD）、送水管、ポンプ施設、配水池の建設及び配水網の改修
② 下水道施設：下水管、ポンプ施設、下水処理場の建設（11箇所/合計403MLD）
③ 経営改善：研修、広報・啓蒙活動、上下水道制御システム（SCADA）整備、料金徴収体制改善
④ スラム開発：配水管・下水管整備
⑤ コンサルティング・サービス |
| 総事業費 | 81,207百万円（うち、本借換は、上水道施設の一部（導水路、浄水場、送水管及びポンプ施設）を対象とする41,997百万円） |
| 実施期間 | 2005年1月〜2013年3月を予定（計99ヶ月） |
| 実施体制 | ① 借入人：インド大統領（The president of India）
② 実施機関：パンガロール上下水道局（Bangalore Water Supply and Sewerage Board: BWSSB）
③ 運営・維持管理体制：②に同じ |

出所）パンガロール上下水道整備事業(II-1) 事前評価資料
表1-15 バンガロール上下水道整備事業(II-2)の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>国/案件名</td>
<td>インド/バンガロール上下水道整備事業 (II-2)</td>
</tr>
<tr>
<td>目的</td>
<td>バンガロール都市圏を対象に、カーヴェリ川を水源とする上水道施設及び下水道施設の整備を行い、水需要に対する安定的な上下水道サービスの供給及び衛生的な居住環境の整備及び産業の活性化に寄与する</td>
</tr>
<tr>
<td>地域</td>
<td>カルナタカ州バンガロール都市圏</td>
</tr>
<tr>
<td>事業概要</td>
<td>(今次円借款では、①配水池建設、配水管改修、②下水道施設建設が対象)</td>
</tr>
<tr>
<td>① 上水道施設：導水路、浄水場（500,000m³/日）、送水管、ポンプ施設、配水池の建設及び配水網の改修</td>
<td></td>
</tr>
<tr>
<td>② 下水道施設：下水管、ポンプ施設、下水処理場の建設（11箇所/合計403,000m³/日）</td>
<td></td>
</tr>
<tr>
<td>③ 経営改善：研修、広報・啓発活動、上下水道制御システム（SCADA）整備、料金徴収体制改善</td>
<td></td>
</tr>
<tr>
<td>④ シラム開発：配水管・下水管整備</td>
<td></td>
</tr>
<tr>
<td>⑤ コンサルティング・サービス</td>
<td></td>
</tr>
<tr>
<td>総事業費</td>
<td>84,172百万円（うち、円借款対象額：70,355百万円）</td>
</tr>
<tr>
<td>実施期間</td>
<td>2005年5月〜2013年3月（計95ヶ月）</td>
</tr>
<tr>
<td>実施体制</td>
<td>① 借入人：インド大統領（The president of India）</td>
</tr>
<tr>
<td>② 実施機関：バンガロール上下水道局（Bangalore Water Supply and Sewerage Board：BWSSB）</td>
<td></td>
</tr>
<tr>
<td>③ 運営・維持管理体制：②に同じ</td>
<td></td>
</tr>
</tbody>
</table>

出所）バンガロール上下水道整備事業(II-2) 事前評価資料

✓ 無収水対策

ゴア州無収水対策プロジェクト

ゴア州は、アラビア海に面するインド亜大陸西岸のほぼ中央に位置する人口140万人の州で、国内外から観光客を集めるインド有数の観光地である。近年、人口・観光客の増加と生活水準の上昇を背景として、上下水道施設の整備が急務となっているが、①需要に対する上水供給不足（平均給水時間：8時間/日、平均無収水率：約35%）、②既存設備の適切な維持管理体制の欠如、③下水道施設未整備による地下水や海水の汚染、といった課題が指摘されている。

こうした状況を改善するため、JICAはインド政府からの要請に基づき、2005年3月から2006年11月にかけて、開発調査「インド国ゴア州上下水道強化計画調査」を実施した。さらに同開発調査の成果を受け、2007年9月より円借款プロジェクト「ゴア州上下水道整備事業」を実施している。同プロジェクトでは、上水道施設の整備（浄水場拡張、送水管建設、上水ポンプ施設建設、配水網改修など）とともに下水道施設の整備（11箇所の下水処理場建設、下水管敷設、下水ポンプ施設建設など）を行うこととしているが、開発調査において指摘された高い無収水率（35%前後）を削減することを目的に、インド政府は2007年8月に円借款付帯プロジェクト「ゴア州無収水対策プロジェクト」を我が国に要請した。標記プロジェクトについて、概要を表1-16に示す。
表 1-16 ゴア州無収水対策プロジェクトの概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>国/案件名</td>
<td>インド/ゴア州無収水対策プロジェクト</td>
</tr>
<tr>
<td>目的</td>
<td>高い無収水率（35%前後）を削減する</td>
</tr>
<tr>
<td>地域</td>
<td>ゴア州</td>
</tr>
</tbody>
</table>
| 事業概要 | カウンターバート機関であるゴア州公共事業局（PWD）を対象として、無収水対策能力の強化を行う。
三的的には、ゴア州全体の無収水削減計画を策定したうえで、選定したパイロット区画において無収水削減活動の実地研修（OJT）を行う。さらに、活動のマニュアル化やパイロット区域外でのPWD独自の無収水削減活動の推進を通して、PWD内での組織的な技術力強化を進める。|
| 協力総額 | 約370百万円（日本側） |
| 実施期間 | 2010年10月〜2013年9月（36ヶ月） |
| 実施体制 | ① 協力相手先機関：ゴア州公共事業局（Public Works Department：PWD） |
| | ② 国内協力機関：厚生労働省 |
| 成果目標 | (1) 被益対象者及び規模、等
ターゲットグループは、一次的にはゴア州PWD内に設置するプロジェクトチーム（約56名）であり、二次的には無収水対策に関する全てのPWD職員である。さらに本案件終了時には、無収水削減パイロット区画内の住人（州内3地域の約6,000世帯）が有効水量の増大により間接的に被益することが見込まれている。
(2) 協力の目標
① 協力終了時の達成目標（プロジェクト目標）と指標・目標値
 ゴア州PWDの無収水対策能力が向上する指標
・パイロット区画における無収水率（20%以下）
・パイロット区画外で完了した無収水対策事業の数
② 協力終了後に達成が期待される目標（上位目標）と指標・目標値
 ゴア州における無収水削減される指標
・州平均無収水率（23%以下）|
| 外部要因（満たされるべき外部条件） | (1) 前提条件
技術移転の対象となるゴア州PWDのカウンターバートが配置される。
(2) 成果達成のための外部条件
・ゴア州PWDのカウンターバートが異動しない。
・パイロット事業に必要な資材がゴア州PWDにより円滑に投じられる。
(3) プロジェクト目標達成のための外部条件
・パイロット区画外での無収水削減活動に必要な資材がゴア州PWDにより円滑に導入される。
(4) 上位目標達成のための外部条件
・ゴア州PWD無収水削減に係る政策が変更されない。 |

出所）インド国ゴア州無収水対策プロジェクト事業事前評価表
「ゴア州無収水対策プロジェクト」を通じて把握した課題としては、以下の4点が挙げられる。

第1に、使用機材、機器等の故障によるプロジェクトの遅延である。プロジェクト3年次に調達された超音波流量計はインド国外製品であったが、その多くが使用中に故障したため、国外での交換・修理に長い期間を要し、パイロットプロジェクト地域の無収水削減計測の遅れの原因となっている。

第2に、管理職に対して技術移転の重要性を認識してもらえない場合、支援が得られない可能性があることである。ゴアでは、実際に漏水検知・修理を行うSub-Divisionのテクニカルアシスタントやジュニアエンジニアを技術移転対象者（直接的なC/Pの対象）としていたため、プロジェクト開始当初はシニアマネジメントおよび中間管理職が、プロジェクトに興味を示していなかった。このため、無収水削減活動を実施する際に、テクニカルアシスタントやジュニアエンジニアが直属の上司の理解や支援を得られず、プロジェクトを円滑に進めることができなかった。

第3に、無収水対策プロジェクトを実施する際には、漏水検知を行える現地人員の確保やそのための予算付けを行う必要があることである。無収水対策専門の部署等がない場合、これを設置し人員を確保するために、予算を確保する必要がある。

第4に、ゴアでは給水栓及び水道メーター回りでの漏水が多く発見されているが、これらの原因としては、給水接続や水道メーター設置に係る基礎的技術が不足していること、また設置基準図が未整備であることが挙げられる。このため、これらの技術指導を行うことにより、さらなる漏水の発生を防ぐ必要がある。

ジャイプール無収水対策プロジェクト

インド北西部に位置するラジャスタン州の州都ジャイプール市（人口約307万人、2011年）は、年間降水量約650mmの半乾燥地に位置しており、上水供給の大部分を地下水に依存していたため、降雨による涵養量を上回る地下水揚水により、一部地域では地下水の水位低下や枯渇が報告されていた。また、州政府の一部局である公衆衛生局（PHED）により運営される同市の水道サービスは、断続的な給水（1日平均1時間）、低いコスト回収率（水道料金収入は維持管理費の約30%）、漏水や水道メーターの不備による高い無収水率（PHEDによると約30%）等の課題を有していた。

これらの問題に対処するため、2004年3月より円借款プロジェクト「ジャイプール上水道整備事業」を実施し、ジャイプール市の地下水依存度は97%から25%前後と改善が図られているものの、高まる需要に対し水源が限られていることに
加え、高い無収水率(50%)による給水量の不足から、給水時間は平均1日2時間程度に限られる等、給水サービスの質は依然として低い状況にある。このような状況を踏まえ、PHEDは、給水サービスの改善に取り組んでおり、無収水対策においては、職員へのマニュアル配布や短期研修、小区画でのパイロット事業等を試行しているものの、技術・ノウハウの不足や実施体制が不十分であること等により効率的な無収水対策が望めない状況にある。このため、円借款の効果増大を目的として、2010年に円借款附帯プロジェクト「ジャイプール無収水対策プロジェクト」を我が国に要請した。標記プロジェクトについて、概要を表1-17に示す。

表1-17 ジャイプール無収水対策プロジェクトの概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>国/案件名</td>
<td>インド/ジャイプール無収水対策プロジェクト</td>
</tr>
<tr>
<td>目的</td>
<td>無収水対策をより本格的に全市に展開する必要があることなど、漏水探知、管補修、給水管接続、水道メーターの不備等による見かけの損失の削減等の無収水対策を強化し、給水時間の延長による水道サービスの向上や、料金収入の増加を図る。</td>
</tr>
<tr>
<td>地域</td>
<td>ラジャスタン州ジャイプール市</td>
</tr>
<tr>
<td>事業概要</td>
<td>PHED職員の無収水削減対処能力の向上を目的として、以下のプロジェクト活動をC/Pとともに行う。
（1）無収水削減マネジメントチームの無収水対策計画計算定能力の向上に関する活動を行う。
（2）無収水削減活動を実施するための技術と運営能力の向上に関する活動を行う。
（3）無収水対策技術の内部研修の実施に関する活動を行う。</td>
</tr>
<tr>
<td>総事業費</td>
<td>-</td>
</tr>
<tr>
<td>実施期間</td>
<td>2013年9月上旬〜2017年3月中旬（約42ヶ月）</td>
</tr>
<tr>
<td>実施体制</td>
<td>ラジャスタン州公衆衛生局（Public Health Engineering Department, Government of ajasthan：PHED）</td>
</tr>
<tr>
<td>成果目標</td>
<td>（1）上位目標：ジャイプール市の無収水率が削減される。
（2）プロジェクト目標：PHEDジャイプール支部職員の無収水対処能力が向上する。</td>
</tr>
</tbody>
</table>

出所）ジャイプール無収水対策プロジェクト事業事前評価表

「ジャイプール無収水対策プロジェクト」においては、以下の課題が指摘されている。

- 無収水対策技術に関する研修が実施されておらず、地下漏水を発見する手法が組織的に共有されていない。
- 特に旧市街地では配水管が老朽化しており、漏水の原因となっている。しかしながら、漏水修理は顧客の申請に基づき実施しているのみであり、定期的な検査や予防的観点からの老朽管の更新は行われていない。
- 近年ではMild Density Polyethylene（MDPE）管が給水管として採用されているが、既存の給水管であるGI管がいまだに多く残っており、
GI管の腐食や破損による漏水が多く発生していると考えられる。

ウ）海外ドナーの動向

我が国は、インドに対する水・衛生分野の最大の援助国である。以下の図に示すとおり、他の主な海外ドナーについては、国際開発機関（ADB、世界銀行を含む）、ドイツ、フランスの援助額が多い。

![グラフ1-8: インドに対する水・衛生分野の援助額（2012-2013 合計）（単位：100万 USD）](image1)

（出所）OECD-DAC

上記については、多くの場合インド政府が実施するプログラムへの資金拠出を行っている場合が多い。これまで、世銀とADBはJNNURM（ジャワーハルラール・ネルー国家都市再開発ミッション）への資金協力を実施している。JNNURMは、都市における社会基盤の整備、都市貧困地域の住民への基礎的サービス提供を目的として、対象事業のうち承認されたものに補助金を支給するものであり、この対象事業の中に、上下水道事業が含まれている。

また、ガンジス川浄化について、これまで環境森林省国家河川保全局（NRCD）のGanga Action Planなどの取り組みがされてきている。これまでのセクターごと、都市ごとの対応では十分効果が得られないとして、シン首相をヘッドに省庁横断的・流域管理のためのNational Ganga River Baisin Authority（NGRBA）が立ち上がっている。その後、ガンジス川の浄化を重要政策に据え政権交代したモディ首相は、NGRBAをさらに発展させる形で、水資源・河川開発・ガンジス川再生省を設置して3 億3400万ドルの予算により3年以内に浄化を成し遂げるとしている。

世界銀行、ADB、独GIZ、仏AFDを対象として、インドにおける無収水対策に関する事業の実施状況を確認したところ、2016年7月現在の情報として、ADBがデリーに
おいてプロジェクトの開始を検討している以外は、現時点で進行しているプロジェクトは確認されなかった。ADBではデリーにおける水道局であるDelhi JAL BoardによるDelhi Water Supply Improvement Investment Programについて準備調査を実施している。提案されているプログラム内容としては、デリーにおけるNRWの削減と水への公平なアクセスを実現するためのマスタープラン作成、必要なインフラ改修に係る資金拠出が予定されており、2017年の実施に向けて準備が行われている。

なお、上記についてはデリーにおける水道供給全体を改善するプロジェクトであり、無収水対策に特化したプロジェクトは、前述のJICAプロジェクト以外は認められなかった。
普及・実証を図る製品・技術の概要

普及・実証を図る製品・技術の概要を以下に示す。

表 1-18 普及・実証を図る製品・技術の概要

<table>
<thead>
<tr>
<th>名称</th>
<th>常設型自動漏水音検知器配水管用 L-sign</th>
<th>常設型自動漏水音検知器給水管用 L-sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>スペック（仕様）</td>
<td>電源：リチウム1次電池防水：JIS7等級合格漏水の通知方法：LEDの点滅</td>
<td>センサー：高感度受振センサー動作温度：-20℃ 〜 +70℃</td>
</tr>
<tr>
<td></td>
<td>防水: JIS 7 等級合格</td>
<td>漏水の通知方法: LED の点滅</td>
</tr>
<tr>
<td></td>
<td>LED の点滅</td>
<td>電源: リチウム1次電池</td>
</tr>
<tr>
<td></td>
<td>防水: JIS 7 等級合格</td>
<td>防水: JIS 7 等級合格</td>
</tr>
<tr>
<td></td>
<td>LED の点減</td>
<td>LED の点減</td>
</tr>
<tr>
<td>動作年数: 8 年</td>
<td>動作年数: 5 年</td>
<td></td>
</tr>
<tr>
<td>特徴</td>
<td>・内蔵リチウム電池により8年間連続動作</td>
<td>・パンガロール向けに検知時間をカスタマイズする事により、効果的な監視が可能</td>
</tr>
<tr>
<td></td>
<td>・漏水発生時はLEDが点減し、目視による現地確認が可能</td>
<td>・漏水発生時はLEDが点減し、目視による現地確認が可能</td>
</tr>
<tr>
<td></td>
<td>・液晶に漏水発生日を表示</td>
<td>・付属のボールチェーンにより簡単取り付け</td>
</tr>
<tr>
<td></td>
<td>・強力マグネットによりバルブ上に固定</td>
<td>・パトロールサイクルに合わせ自動リセット機能を内蔵</td>
</tr>
<tr>
<td></td>
<td>・バンガロール向けに検知時間をカスタマイズする事により、効果的な監視が可能</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・付属のボールチェーンにより簡単取り付け</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・パトロールサイクルに合わせ自動リセット機能を内蔵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>競合他社製品と比べた比較優位性</td>
<td>国内の L-signの競合製品と比較して、L-signは「1台あたりの価格が安い」、「検知時の誤作動が少ない」、「常時モニタリングによる漏水復元への対応が可能」、「目視確認により漏水検知後の解析が不要」「メーター検針作業との併用によりランニングコストを抑制できる」等、多くの優位性を持っている。特に、プログラミングや感度の調整など、現地の施設状況に併せたカスタマイズが可能であることから、輪番給水を余儀なくされる現地パンガロールの水道施設に対する適応度は高いと考えられる。</td>
<td></td>
</tr>
<tr>
<td>国内外の販売実績</td>
<td>国内：川崎市上下水道局、神戸市水道局、石巻広域水道企業団、秦野市水道局、郡山市水道ほか30事業体</td>
<td></td>
</tr>
<tr>
<td></td>
<td>海外：ベトナム国フエ省水道公社</td>
<td></td>
</tr>
<tr>
<td>サイズ</td>
<td>Φ74.0 ㎜ × 83.0 ㎜ 本体</td>
<td>66.0 ㎜〜47.0 ㎜ × 63.4 ㎜</td>
</tr>
<tr>
<td></td>
<td>Φ79.5 ㎜ × 45.0 ㎜ 保護蓋</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Φ79.5 ㎜ × 110.0 ㎜ 保護蓋装着時</td>
<td></td>
</tr>
<tr>
<td>設置場所</td>
<td>主に仕切弁（バルブ）</td>
<td>主にメーター付近の給水管</td>
</tr>
<tr>
<td>今回提案する機材の数量</td>
<td>20 器</td>
<td>3,000 器</td>
</tr>
</tbody>
</table>
2. 普及・実証事業の概要

（1）事業の目的
本事業は、インド国での漏水検知技術・サービスの普及を目標としており、現地事情に適した漏水検知技術・手法の確立、及び現地への普及を通して、漏水率の低減、それによる水道事業体の収益増大・事業効率化、更には水道事業サービス全体の向上が期待される。

（2）期待される成果
成果1：現地の給水環境に適合した機器を用いた漏水検知方法が確立される（L-signの改良・実証）
成果2：BWSSB職員の漏水検知技術が向上する（L-signを含めた漏水検知技術の普及）
成果3：インドにおける無収水削減策としての漏水検知器の普及展開案が策定される（展開計画の検討）

（3）事業の実施方法・作業工程
次頁表2-1に作業工程計画を示す。

（4）投入（要員、機材、事業実施国側投入、その他）
次頁表2-2に要員計画を示す。
表 2-1 作業工程計画

<table>
<thead>
<tr>
<th>業務項目</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 事業計画 (詳細)立案</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 人員配置計画</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. L-Signの改良・実証</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1 現地パイロットテスト地域の確認</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2 現地実施されている無収水対策事業に関する情報収集・分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-3 無収水対策事業の現況を踏まえたL-Signの改良・実証</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 技術の普及及び研修職員の研修</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1 現地パイロットテスト地域における漏水検知の実施及び普及活動</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2 現地職員に対する漏水検知手順の研修計画の策定及び実施</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 普及計画の構築及ビジネスモデルの構築</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1 実務者等の Meer編目情報収集、参入リスクの分析</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

国内作業	現地作業

2017年

作業実績

・パイロットテスト事前準備・地域選定

・パイロットテスト計画書作成・スケジュール編成

・パイロットテスト実施（L-Sign設置、現地状況調査、漏水箇所特定）

・パイロットテスト計画・調査結果分析資料作成

・研修対象者選定及び研修計画

・研修資料作成・運用調査

・研修成果・効果分析

・現地職員に対する漏水検知手順習得研修実施（手順理解、現地における実地研修）

・研修成果・効果分析

・研修成果・効果分析

・研修成果・効果分析

・研修成果・効果分析

・研修成果・効果分析

・研修成果・効果分析

・研修成果・効果分析
<table>
<thead>
<tr>
<th>組合関係</th>
<th>氏名</th>
<th>所属先</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>表</td>
<td>2-2</td>
<td>工程・要員計画表</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
① 資機材リスト

<table>
<thead>
<tr>
<th>機材名</th>
<th>型番</th>
<th>数量</th>
<th>納入年月</th>
<th>設置先</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水管用L-sign</td>
<td>8 時間計</td>
<td>300</td>
<td>2015年6月</td>
<td>給水住宅メーター</td>
</tr>
<tr>
<td></td>
<td>3 時間計</td>
<td>100</td>
<td>2015年6月</td>
<td>検知時間変更のため一時引揚げ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>恋所内給水管</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>バイロットエリア</td>
</tr>
<tr>
<td>漏水探知機</td>
<td>ノイズカット</td>
<td>3</td>
<td>2015年6月</td>
<td>East-1事務所</td>
</tr>
<tr>
<td>相関式漏水探知器</td>
<td>LC-2500</td>
<td>1</td>
<td>2015年6月</td>
<td>East-1事務所</td>
</tr>
<tr>
<td>音聴棒</td>
<td>1.5m</td>
<td>3</td>
<td>2015年6月</td>
<td>East-1事務所</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機材名</th>
<th>型番</th>
<th>数量</th>
<th>納入年月</th>
<th>設置先</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水管用L-sign</td>
<td>3 時間計</td>
<td>1,000</td>
<td>2015年8月</td>
<td>バイロットエリア</td>
</tr>
<tr>
<td>配水管用L-sign</td>
<td>3 時間計</td>
<td>20</td>
<td>2015年8月</td>
<td>配水管に付属する仕切りバルブ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機材名</th>
<th>型番</th>
<th>数量</th>
<th>納入年月</th>
<th>設置先</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水管用L-sign</td>
<td>3 時間計</td>
<td>1,000</td>
<td>2015年9月</td>
<td>バイロットエリア</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機材名</th>
<th>型番</th>
<th>数量</th>
<th>納入年月</th>
<th>設置先</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水管用L-sign</td>
<td>3 時間計</td>
<td>900</td>
<td>2015年12月</td>
<td>バイロットエリア</td>
</tr>
</tbody>
</table>

※2016年2月4日、3000器の給水管用L-signの設置を確認、カウンターパートより受渡証明書を受領する。

② 相手国政府関係機関側の投入

- 小規模バイロットテスト実施時のL-sign設置の人員
- L-sign設置後のモニタリング・記録のための人員
漏水特定箇所に関する修繕工事

(5) 事業実施体制

事業の実施体制は下図のとおりである。

図 2-1 事業実施体制

(6) 相手国政府関係機関の概要

機関名

バンガロール上下水道局（Bangalore Water Supply and Sewage Board, BWSSB）

機関基礎情報（所轄省庁等名、事業内容、体制の概要）

BWSSB はバンガロールにおける上下水道の整備および維持管理を行っており、2013年時点でバンガロール市内および郊外の約 1,000 万人に対して水供給を行っている。

BWSSB の組織体制図を以下に示す。

図 2-2 BWSSB の組織体制図
3. 普及・実証事業の実績

（1）活動項目毎の結果

① L-sign の改良・実証

ア）現地パイロットテスト地域の確認【2015年3月】

第1回現地調査（2015年3月）において、パイロットテスト地区の選定と輪番給水スケジュールについて情報収集を行った。

パイロットテスト地区選定はBWSSBと協議を行い、バンガロール都市圏9地域のうち上水道整備事業及び無収水対策事業未実施地域であるEastエリア内East-1地区の中で、L-signの設置予定個数である3,000戸、管路延長約50kmを確保でき、かつ調査対象として適切な地区の選定を行った。その結果、HRBR Layout及びKammanahalliの2地区が特定されたため、調査対象地区として決定した。

調査対象の選定にあたっては、給水環境や施設状況が違う地区においてL-signによる漏水捕捉状況を検証するため、性質の異なる2地区を選定した。地区の特徴としては、HRBR Layoutは、新興住宅街で水道施設も10年前後と比較的新しい地区である。

また、Kammanahalliは商業地域と旧住宅街が混在する地域で経年変化した水道施設も存在すると想定される。

BWSSBから提供を受けた給水スケジュール表によると、両地区への給水時間は8時間〜10時間程度である。但し、担当者に対して輪番給水の運用方法を確認したところ、実際には地区内において更に4〜5ブロックに分割した輪番給水が行われていることから、各戸への給水は週3回1日4時間程度となっている。

![GIS MAP SHOWING WATER LINE DETAILS OF EAST-1 SUB DIVISION](image)

図3-1 パイロット地域地図

出所：BWSSB提供地図を基に作成
表 3-1 BWSSB East-1 地区給水スケジュール表（赤枠部分が対象地域）

<table>
<thead>
<tr>
<th>S#</th>
<th>Weekdays</th>
<th>Source of water supply</th>
<th>Area to which water is distributed</th>
<th>Timings of supplying water</th>
<th>WardNo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monday</td>
<td>a) Twin Tank GLR</td>
<td>SRBR layout</td>
<td>7:00 AM - 5:00 AM</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kamnath Layout, Kachanhalkhali, Kommanthali</td>
<td>10:00 AM - 8:00 PM</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SRBR Layout 2nd & 3rd Block</td>
<td>3:00 PM - 10:00 AM</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) OMNR tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tuesday</td>
<td>a) Twin Tank GLR</td>
<td>Oil Millroad, ES Naja</td>
<td>10:00 AM - 6:00 PM</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OMNR Layout, Kasthani, Li Bablur Nagra, Champaundra, Dr. layout</td>
<td>1:00 AM - 11:00 PM</td>
<td>17, 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st Block SRBR Layout</td>
<td>8:00 PM - 10:00 AM</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Janakri Layout, Lingrapar, Sati Pya, KSF Layout</td>
<td>11:00 AM - 1:00 PM</td>
<td>28, 49</td>
</tr>
<tr>
<td>3</td>
<td>Wednesday</td>
<td>a) Twin Tank GLR</td>
<td>SRBR layout</td>
<td>7:00 AM - 5:00 AM</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ramnath Layout, Kachanhalkhali, Kammanthali</td>
<td>10:00 AM - 8:00 PM</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SRBR Layout 2nd & 3rd Block</td>
<td>3:00 PM - 10:00 AM</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) OMNR tank</td>
<td>Vijaya Bank Colony</td>
<td>6:00 AM - 11:00 AM</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Thursday</td>
<td>a) Twin Tank GLR</td>
<td>OMNR Layout, Kasthani</td>
<td>7:00 AM - 10:00 AM</td>
<td>17, 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st Block SRBR Layout</td>
<td>8:00 PM - 10:00 AM</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reliance pya, Chikka Bavasree, Li jain Nagra, Killappa circle, SPV Layout</td>
<td>10:00 AM - 1:00 PM</td>
<td>17, 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:00 AM - 6:00 PM</td>
<td>31, 34</td>
</tr>
<tr>
<td>5</td>
<td>Friday</td>
<td>a) Twin Tank GLR</td>
<td>SRBR layout</td>
<td>7:00 AM - 5:00 AM</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kamnath Layout, Kachanhalkhali, Kammanthali</td>
<td>10:00 AM - 8:00 PM</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SRBR Layout 2nd & 3rd Block</td>
<td>3:00 PM - 10:00 AM</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) OMNR tank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Saturday</td>
<td>a) Twin Tank GLR</td>
<td>Oil Millroad, ES Naja</td>
<td>10:00 AM - 6:00 PM</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OMNR Layout, Kasthani, Li Bablur Nagra, Champaundra, Dr. layout</td>
<td>1:00 AM - 11:00 PM</td>
<td>17, 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8:00 AM - 6:00 PM</td>
<td>31, 59</td>
</tr>
<tr>
<td>7</td>
<td>Sunday</td>
<td>a) Twin Tank GLR</td>
<td>Heinam C&C Areas</td>
<td>10:00 AM - 6:00 PM</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) 650mm X 455mm dia line supply</td>
<td>Reliance pya, Chikka Bavasree, Li jain Nagra, Killappa circle, SPV Layout</td>
<td>8:00 AM - 11:00 PM</td>
<td>27, 28, 50</td>
</tr>
</tbody>
</table>

出所) BWSSB 提供資料

イ）現在実施されている無収水対策事業に関する情報収集・分析【2015 年 8 月】

第 3 回現地調査（2015 年 8 月）において現在実施されている無収水対策事業に関する情報収集のため、L&T 社及び Suez 社を訪問し、ヒアリング等を行った。

Suez 社は現在 BWSSB において円借款による無収水対策のプロジェクトを実施中である。Suez 社に対するヒアリングにおいては、まずプロジェクト概要の説明を受け、その後実施中サイトを見学した。

Suez 社担当者によると、プロジェクトは次の 4 つのステージで構成されている。

① PJ エリア内現況調査 （DMA33 篇所予定）
② DMA 構築（DMA 内水圧調査等による施設評価、老朽管敷設替え等）
　○DMA の規模は、IWA の仕様を基準とする（1500 戸前後、L=20 km 前後）
　○注入口は 1 篇所、超音波流量計を使用。遠隔式により道路上にメーターボックス（図 3-2）を設置し管理している
③ 無収水対策（漏水調査 UFW の削減・修繕）
④ 全体評価・確認

52
Suez 社は、現在第 1 ステージが終了し第 2 ステージへ移行中とのことであった。また、BWSSB 以外のインド国内では、デリーとマイスールで同様のプロジェクトを実施中とのことである。

L&T 社は、Suez 社と同様に現在 BWSSB において円借款による無収水対策のプロジェクトを実施中であり、プロジェクト概要の説明を受けた。

L&T 社では、BWSSB 給水エリアの西部及び南部を対象としてこれまで事業を行っている。
調査の基本的流れとしては、まず第１ステップとしてその地域の詳細な調査を行い DMA の設定など、地理的情報を収集・設定する。第２ステップとして SCADA （Supervisory Control And Data Acquisition）システム（監視システム）等を利用して、第１ステップで規定したエリアの全般的な調査を行う。最後に第３ステップとして実際の漏水箇所の特定を行い、報告書を作成するという流れで実施される。

図 3-4 無収水対策事業のフロー
出典：L&T 社提供資料

両社とも真摯に事業に取り組む姿勢が伺えた。内容としては、具体的な漏水検知事業の進め方や調査実施状況（L&T 社）など参考となる部分もある反面、具体的な漏水ポイントを確定する技術は十分に有していない印象があった。

当社の L·sign の技術を活用して、有用な漏水技術を提案できる可能性が示唆された。
時間1回の検知動作を5日間に亘り行い、5日間で合計24回検知を行う設定としている。他方、BWSSBでは輪番給水のため人為的に給水開始作業が行われることから、給水開始時間に誤差が生じてしまい、検知の動作開始にタイマー方式を用いることができない。そこで、給水開始後に発生する流水音の捕捉を合図に検知を開始する「自動スタート方式」へ改良することにより輪番給水への対応を可能とした。

L-signによる漏水判定は、継続音を漏水と判定するプログラムを用いている。つまり、設定3時間内に行われる24回の検知動作全てにおいて流水音を検知した時、漏水有りと判定しLEDを点滅させるものである。従って、検知開始の合図に給水開始と同時に始まるサンプへの流入音を用いても、その後サンプが満水になり給水停止状態となった時、流水音が検知されなければ漏水有りの判定は行わず誤作動とはならない。

図3-5①は、漏水が発生した時の検知動作で、24回全てに音を検知(○)して漏水判定を行った状態を表すのに対し、②は、検知を開始するものの、サンプへの流入音を検知していたため、サンプへの流入が止まったところで音検知も止まり、再度の検知開始も輪番給水停止により漏水検知回数が24回に満たないため漏水判定とならず、LEDも点滅しない状態を表している。

次に、漏水検知感度の調整では、0.1M㎩前後の低水圧給水下で発生する低くて弱い漏水音でも検知可能とするため、本邦で製造する場合の基準となる検知周波数帯域「100Hzから1.5KHz帯」を、上限は1.5kHzそのままとし、周波数帯域下限を100Hzから50Hzへ下げる設定とした。

非公開
L-signによる漏水検知の原理

L-signは、漏水により生じた管内の乱流音や管より噴出する水の衝撃音が管体を伝播したところを管路付属設備に設置されたL-signが検知し、設定したプログラムに従い漏水有と判定する。しかし、短時間の検知動作で漏水判定を行うと、管路に伝わる漏水音以外の音（使用水音や車両走行音等の都市騒音）も検知し漏水有りとする誤作動判定も生じ易くなる。そこでL-signは、漏水により発生した継続音だけを漏水と判定する様、数時間または数日間にわたり複数回の検知動作を行うプログラムを取り入れた。これにより、使用水や都市騒音等の断続音と漏水による継続音との区別が可能となり、誤作動判定は最小限に抑えられる仕組みとなった。

次に示す図は、漏水検知動作中に1回でも音が途切れることがあった場合、継続音＝漏水と判定せず、次の検知機会まで待機状態となることを表したものである。
しかし、漏水が発生している時は、サンプへの流入が停止しても輪番給水中は漏水による音は消えず継続している。そこで、輪番給水時間に合わせた検知時間を設定し、設定時間内継続する音をL-signが感知した時、漏水有り判定となる様改良した。

L-sign漏水検知範囲
L-signは、捕捉した漏水振動音を独自の検知プログラムにより漏水の有無を判定する。

L-signによる漏水検知可否基準は、管種・口径及び漏水が発生した箇所(配水管、給水管、仕切弁等)に関らず、伝播する振動音を感知可能か否かにより決定される。

給水管用L-signは、給水管に発生する漏水に限り機能を有しているのではなく、配水管や弁栓類に発生した漏水であっても設置した箇所に漏水振動音が伝播すれば、検知しLEDを点滅させる。配水管用L-signも同様に、宅地内給水管に発生する漏水であっても捕捉することが可能となる。

次に示す図は、周波数帯域で見たL-signの検知範囲である。

図3-7
L-sign検知領域図

L-signは、設定した時間内に規定回数(24回)の漏水検知動作を繰返し、全てに漏水振動音を検知した時、漏水有りと判定するが、周波数帯域:下限50Hz上限1.5kHz(BWSSB供与機器仕様)を越えた音については漏水音と判断しない設定としている。

漏水による継続音が発生しL-signが検知動作を始めても、設定周波数帯域外の音が1回でも生じ検知が不可能となった場合、当該漏水判定結果は無となる。
エ）機器の輸送【2015年5月〜11月】

第1回現地調査後機器改良を実施したL-signを含め、BWSSBへ供与する漏水調査関連機器の輸送を実施した。これまでに輸送した機材は以下のとおりである。

<table>
<thead>
<tr>
<th>品名</th>
<th>仕様</th>
<th>数量</th>
<th>納品日</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-sign *1</td>
<td>給水管用8h計</td>
<td>300</td>
<td>2015年6月6日</td>
<td>輸送納品</td>
</tr>
<tr>
<td>L-sign</td>
<td>給水管用3h計</td>
<td>100</td>
<td>2015年6月29日</td>
<td>持参納品</td>
</tr>
<tr>
<td>漏水探知器</td>
<td>ノイズカット</td>
<td>3</td>
<td>2015年6月6日</td>
<td>輸送納品</td>
</tr>
<tr>
<td>音聴棒</td>
<td>1.5m</td>
<td>3本</td>
<td>2015年6月6日</td>
<td></td>
</tr>
<tr>
<td>相関式漏水探知器</td>
<td>LC-2500</td>
<td>1</td>
<td>2015年6月6日</td>
<td></td>
</tr>
<tr>
<td>L-sign</td>
<td>給水管用3h計</td>
<td>1,000</td>
<td>2015年8月3日</td>
<td></td>
</tr>
<tr>
<td>L-sign</td>
<td>配水管用3h計</td>
<td>20</td>
<td>2015年8月3日</td>
<td></td>
</tr>
<tr>
<td>L-sign</td>
<td>給水管用3h計</td>
<td>1,000</td>
<td>2015年9月16日</td>
<td></td>
</tr>
<tr>
<td>L-sign *2</td>
<td>給水管用3h計</td>
<td>900</td>
<td>2015年11月29日</td>
<td></td>
</tr>
</tbody>
</table>

*1：8時間計300器は3時間計に仕様変更のため本邦へ返送。
*2：*1の返送分300器含む。

第1回の機器輸送について、BWSSBより免税による機器輸入の申し出があり、免税措置を税関に依頼するために、STSとBWSSB間で本プロジェクトに係る覚書の締結を打診された。2015年6月の第2回現地調査前の荷物到着が必須の状況下、覚書の締結には時間を要することが想定されたことから、第1回機器輸送については、BWSSBを荷受人とせず、現地業者を荷受人とした。現地業者については、インド商務省の規定で必要とされる輸出入者コード（IECコード）を有する企業であることが必要とされるため、現地傭人を通じて日本からの輸入経験を有するGaruda Enterprises社の紹介を受け、同社を荷受人とし、BWSSBを輸送先とした。

第1回機器輸送は、日本発送後バンガロール空港までは予定どおり輸送されたが、通関・荷受手続き処理に時間を要した（当初4月15日発送 → 4月末バンガロール空港着 → 5月15日通関 → 5月20日BWSSB着予定が、結果は16日遅れの6月6日現地着）。遅延の主原因は、L-signがインド税関で通関検査の経験がない物品であったためである。最終的にはBWSSBからのサポートレター提出と、BWSSB職員の税関への直接折
衝により通関が認められ、6月6日 BWSSB：East-1事務所へ無事到着した。しかし、6月6日に通関及び現地事務所への配送が行われることが確定したのが前日の6月5日であったため、6月3日の時点で、当初6月8日から予定していた第2回現地調査の実施を延期した。これにより第2回現地調査の実施が、当初の予定より3週間程度遅れ、6月29日からとなった。

第1回機器輸送の経験を踏まえ、以後の輸送については以下の対応を行った。

● BWSSBを荷受人とする輸送

第2回機器輸送に際して、BWSSBより再びMOU締結による免税措置実施の打診があった。BWSSBと協議を行った結果、免税措置がなされるかについては不確実性が大きいことから確実な手段として免税措置の手続きを行わない形でのBWSSBを荷受人としての輸送を行うこととした。

なお、政府機関への日本からの直接の輸送にあたり、BWSSBが前述のIECコードを有していないことが課題となった。輸送会社側でも知見を有していなかったが、インド政府商工省商務局手続きハンドブック（JETRO和訳）33において、政府機関はIECコードの取得が免除されるとの記載があり、これをもとに再度輸送会社経由で税関に確認したところ、その旨確認が得られた。

また、輸送にあたってはBWSSBのアドバイスに従い、当社からBWSSBに対して通関円滑化に係る依頼レターを発出し、さらにBWSSBチェアマン名で税関に対する同様の依頼レターが発出された。

● 輸送業者の変更

第1回の輸送にあたっては、依頼した輸送業者の対応が不十分であったことが遅延要因の1つであったことから、第2回以降の輸送について、一般社団法人横浜インドセンターに相談を行った。相談の結果、インドへの通関手続き経験が豊富な日本企業の紹介を受け、同社に第2回以降の輸送を依頼することとした。

第2回以降は輸送業者の的確な対応に加えてBWSSBからの支援もあり、輸送遅延も無く円滑な輸送が可能となった。

● 輸送回数の変更

当初計画では全3回の輸送を計画していたが、第1回輸送時の通関手続きに大幅な遅れが生じ、事業スケジュールの変更が生じるために全4回の輸送を行うこととした。

● 輸送の完了

2015 年 11 月中に、資機材全ての輸送を完了した。

オ）漏水検知手順の検討及び適合性検証【2015 年 6 月〜9 月】

改良した L-sign は、第 2 回現地調査にてパイロットテスト地区内の各戸給水管に設置し、現地検証を行った。設置作業は漏水調査工法の習得を兼ねて BWSSB 職員が実施した。また、機器設置後、現地適合性検証・判定結果を翌日に行うため、調査団から BWSSB への依頼を基に機器設置と同時に給水が開始された。

改良した L-sign の現地施設に対する適合性検証は次の結果となった。

稼働状況〜設置後、通水音の捕捉による自動スタート機能は問題なく稼働
漏水検知状況〜漏水音以外の音を検知する箇所も見受けられたが、発生した漏水に対する反応は良好であり、低水圧下でも音の検知に問題なしと判断（詳細については、②-ウにて記述）

第 4 回現地調査（2015 年 9 月）において L-sign の点滅状況確認を行ったところ、漏水が発生していない箇所においても複数の点滅が確認された。原因究明を行った結果、降雨（豪雨）音に反応した可能性が高いと判断した。現地はメーターが露出状態で設置されており、外的な騒音の影響を受けやすい状態にある上、雨期（9 月から 11 月）の降雨は激しく、夕方から夜間にかけて 3 時間から 5 時間程度の豪雨が頻繁に発生する。この対策として L-sign の検知感度を低下させる再設定を行うこととした。

カ）適合性の検証結果を踏まえた機器調整【2015 年 10 月〜12 月】

第 4 回現地調査にて明らかとなった検知感度調整の必要性について、日本国内での再検証を実施した。感度設定にあたっては、環境騒音（設置場所周辺の雑音等）は検
知せずに水道管内の漏水音が検知可能な感度設定が必要なため、事前に決定した検知感度から検知幅を狭める設定を行うこととした。

L-sign の検知感度は感度 20 から感度 230 までの 22 段階に設定が可能である。感度 20 が最高感度であり、数値が増えるに従い感度は低くなる仕様である。工場出荷時の初期設定感度は 30 としている。

検証手法としては、感度 30 から感度 110 までの 9 段階に設定を行った L-sign を各 2 器・計 18 器用意し、小規模漏水（1.0L/M）に対する反応状況、中規模漏水（5.0L/M）に対する反応状況、環境騒音に対する反応状況を確認した。その結果、感度 40 から感度 80 までの 5 段の設定範囲が有効と判断された。

<table>
<thead>
<tr>
<th>想定する状況</th>
<th>感度</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>小規模漏水（1.0L/M）</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>中規模漏水（5.0L/M）</td>
<td>○</td>
</tr>
<tr>
<td>環境騒音</td>
<td>×</td>
</tr>
</tbody>
</table>

国内検証の結果を踏まえ、第 5 回現地調査（2015 年 11 月）において 4 段階に設定した機器を現地のパイロットエリアに設置し、現地の給水状態、環境騒音を踏まえた調整を行う事をとした。

感度 40 から感度 80 までの 5 段階に設定した機器を現地の給水管に設置し、漏水音、環境騒音に対する反応状況を検証した。この検証に際しては、蛇口から水を出して漏水音を擬似的に作り出し、検証を行った。蛇口の開度により擬似漏水音の大小を変えるためである。現地での感度検証では 1 種類の感度に対して 3 器ずつ用意し、計 15 器での検証を行った。検証は、L-sign が検知結果をリアルタイムで表示するモニターモードで実施した。

図 3-9 現地での感度再検証の様子
テストの結果、通水状態では感度 40～80 全てが反応し、無通水の環境騒音では感度 40～50 が反応、感度 60～80 は反応しないことが判った。これらの結果より、通水状態で反応、無通水状態では無反応となる感度 60 を新感度として設定することとした。また、この設定により検知感度を低下させた後も漏水音は正常に捕捉しており、感度低下による弊害は発生していない事も確認した。

なお、感度設定を 30 から 60 に変更する必要性が生じたため、未設置分は事前に設定変更してから設置する事とした。既設置分については新感度設定の L·sign と交換し、撤去した L·sign に対して設定変更を行った上で別箇所に設置する事とした。

第 4 回現地調査終了時点で既設置分は 1,100 器あり、第 5 回現地調査（2015 年 11 月）から交換作業を行う必要が生じた。

第 6 回現地調査では、現地施設環境下における通水音の波形データを収集・検証した。同検証は、検知感度の低下設定による漏水検知への影響の有無を確認するため実施した。

図 3-10 給水時及び未給水時における波形分布

波形データの収集は、サンプ（各戸の貯水槽）への給水時と未給水時に、HRBR Layout 地区よりランダムに抽出した複数のメーターにセンサーを設置し行った。給水の有無は、給水時を漏水発生時とし、未給水時を漏水無しと設定し測定した。

先ず、波形測定により給水時と未給水時の数値を確認、その後、検知感度を低下させた L·sign を設置し検知状況を確認した。

波形測定の結果、給水時は −90dB 以上の音圧領域に存在し、未給水時は −90dB 未満の領域であることが判明した。−90dB 未満は、音聴棒や漏水探知器等で音として捉える事の出来ない領域である。一方、給水時（≒漏水時）に測定された −90dB 以上の音圧は、L·sign の検知領域として設定されている。このことから、L·sign 設置箇所で
漏水が発生した場合、全て L·sign の検知領域として漏水の検知が可能であると想定できた。
次に、検知領域として想定された管路状態（給水時）で、低下設定した L·sign を設置し検知状況の確認を行った。その結果、LED の点滅が確認されたことから、感度の設定変更による漏水検知への弊害は無いことが検証できた。

② 技術の普及

ア）パイロットテストの事前調整・地域確定【2015年3月】

第1回現地調査時にパイロットテスト地域を決定。その後パイロットテスト実施に伴う作業内容の説明や役割分担等、事前調整を行う中で、次の事項を要望した。

✔ 機器設置責任者及び管理責任者の選定
✔ 機器設置人員の確保と予定期間内の設置
✔ GIS図面等各種資料の提供
✔ L·sign設置後における所定時間給水の実施

以上の要望に対し、BWSSB:East-1地区責任者より第2回現地調査前に協力了承を得ることができた。

イ）パイロットテスト計画策定・スケジュール検討【2015年3月〜毎回策定・更新】

第1回現地調査時にBWSSBより2016年の1月末までにL·signの設置と、L·signを活用した漏水検知に関して一定の成果を求めるとの要望があった。このため、スケジュール遅延の可能性を踏まえたうえで、2015年内にパイロットテストの実施が概ね完了するスケジュールを策定し、第2回現地調査時にBWSSBに提出した。

スケジュールについては、機器の輸送・通関の状況や作業の進捗状況に応じて適宜変更及びBWSSBへの共有を行うこととした。

バイロットテストの実施内容を示す計画書については、第1回及び第2回現地調査の協議及び、現地の施設や職員の状況、実施体制を確認した結果を踏まえ、バイロットテストを本格的に開始する第4回現地調査の前までに作成し、BWSSBに送付した。

第4回現地調査以降も、調査開始前に計画を策定しBWSSBに提出し、スケジュールの共有と必要な協力依頼を都度実施した。

また、機器設置時に作成する設置一覧表及び後に実施するパトロール調査結果表を作成し、第2回現地調査時に現場担当East-1に対し説明を行った。
<table>
<thead>
<tr>
<th>Date</th>
<th>Member</th>
<th>Team A</th>
<th>Team B</th>
<th>Kammanahalli</th>
<th>West</th>
<th>HRBR A, B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015/9/7</td>
<td>Mon</td>
<td>Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015/9/8</td>
<td>Tue</td>
<td>Team A (WSSSB Staff assigned for training (3 staffs))</td>
<td>Team B: Workers to Install L-sign (4 staffs)</td>
<td>Water Supply</td>
<td>East1 MTG</td>
<td>Lunch</td>
</tr>
<tr>
<td>2015/9/9</td>
<td>Wed</td>
<td>Team A</td>
<td>Team B</td>
<td>Kammanahalli</td>
<td>Water Supply</td>
<td>Kammanahalli</td>
</tr>
<tr>
<td>2015/9/10</td>
<td>Thu</td>
<td>Team A</td>
<td>Team B</td>
<td>Water Supply</td>
<td>HRBR</td>
<td></td>
</tr>
<tr>
<td>2015/9/11</td>
<td>Fri</td>
<td>Team A</td>
<td>Team B</td>
<td>Lunch</td>
<td>On-site training on Leak Detection</td>
<td>Lunch</td>
</tr>
<tr>
<td>2015/9/14</td>
<td>Mon</td>
<td>Team A</td>
<td>Team B</td>
<td>Kammanahalli</td>
<td>Water Supply</td>
<td>Kammanahalli</td>
</tr>
<tr>
<td>2015/9/15</td>
<td>Tue</td>
<td>Team A</td>
<td>Team B</td>
<td>Water Supply</td>
<td>HRBR</td>
<td></td>
</tr>
<tr>
<td>2015/9/16</td>
<td>Wed</td>
<td>Team A</td>
<td>Team B</td>
<td>Kammanahalli</td>
<td>Water Supply</td>
<td>Kammanahalli</td>
</tr>
<tr>
<td>2015/9/17</td>
<td>Thu</td>
<td>Team A</td>
<td>Team B</td>
<td>Water Supply</td>
<td>HRBR</td>
<td></td>
</tr>
<tr>
<td>2015/9/18</td>
<td>Fri</td>
<td>Work</td>
<td></td>
<td>East1 MTG</td>
<td>Lunch</td>
<td>Wrap UP MTG</td>
</tr>
</tbody>
</table>
ウ）パイロットテストの試行【2015年6月】

L·sign設置の開始

第2回現地調査においては、「現地の給水環境等に適合した漏水検知手順の確立及び適合性検証」の一環で、小規模での実施を試行した。試行では、インド用に改良された給水管用L·signをパイロットテスト地区へ設置した。設置に際し、BWSSB: East-Iに次の内容を説明し、理解を求めた。

✓ L·signの概要・仕様：検知の仕組み、検知時間、漏水判定方法
✓ 設置方法：設置手順、機器管理に伴う機器の撮影方法
✓ 運用上の注意事項：機器の故障防止、盗難防止

パイロットテスト地区での試行は、通常、各戸への給水時間が4時間であるところを10時間の連続給水としたうえで、図3-11に示したテスト地区内の水道メーター100箇所に対し8時間計と3時間計を併用設置した。

漏水検知状況確認

L·sign設置後、次の項目の確認により現地水道施設への適応性を検証した。

✓ 漏水検知状況
✓ サンプ（各戸の貯水槽）流入音への反応
✓ 都市騒音の検知による誤作動状況

なお、検知時間が3時間計と8時間計のもの2種を設置した理由は、検知時間を短時間とした場合に生じやすい誤作動状況を比較確認するためである。

＊参考資料：3時間計と8時間計の違いは、検知動作間隔の違いであり、3時間計（180分計）は、7分30秒に1回×24回の検知動作、8時間計（480分計）は、20分に1回×24回の検知動作を行う。本邦仕様5日間計は、前述のとおりスタートより5時間に1回の検知動作を5日間に亘り行い、5日間で合計24回検知を行う設定となっている。
図 3-11 第2回調査パイロットテスト地区

設置作業は、調査団員及びBWSSB職員が2チームに分かれ、3時間計100器、8時間計74器を取付けた。（併用設置が不可能な箇所は3時間計を優先的に設置）機器設置後、パトロール調査を行うと共に設置箇所を一覧表にまとめた。（図3-12参照）

L-sign設置箇所表（チェックシート）

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Model</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>701</td>
<td>6/30</td>
<td>603 2ND</td>
</tr>
<tr>
<td>02</td>
<td>702</td>
<td>6/30</td>
<td>411 2ND</td>
</tr>
<tr>
<td>03</td>
<td>703</td>
<td>6/30</td>
<td>412 2ND</td>
</tr>
<tr>
<td>04</td>
<td>704</td>
<td>6/30</td>
<td>701 2ND</td>
</tr>
<tr>
<td>05</td>
<td>705</td>
<td>6/30</td>
<td>704 2ND</td>
</tr>
<tr>
<td>06</td>
<td>706</td>
<td>6/30</td>
<td>801 2ND</td>
</tr>
<tr>
<td>07</td>
<td>707</td>
<td>6/30</td>
<td>802 2ND</td>
</tr>
<tr>
<td>08</td>
<td>708</td>
<td>6/30</td>
<td>803 2ND</td>
</tr>
<tr>
<td>09</td>
<td>709</td>
<td>6/30</td>
<td>804 2ND</td>
</tr>
<tr>
<td>10</td>
<td>710</td>
<td>6/30</td>
<td>1105 2ND</td>
</tr>
<tr>
<td>11</td>
<td>711</td>
<td>6/30</td>
<td>1107 2ND</td>
</tr>
<tr>
<td>12</td>
<td>712</td>
<td>6/30</td>
<td>1109 2ND</td>
</tr>
<tr>
<td>13</td>
<td>713</td>
<td>6/30</td>
<td>1111 2ND</td>
</tr>
<tr>
<td>14</td>
<td>714</td>
<td>6/30</td>
<td>1113 2ND</td>
</tr>
</tbody>
</table>

図 3-12 L-sign設置箇所表（チェックシート）

L-signを設置した翌日、設置箇所に対してパトロール調査を実施した結果、43箇所のLED点滅が確認された。LED点滅は、検知時間内全ての検知タイミングにおいて漏水音および漏水音以外（＝誤作動：車両通行等都市騒音）の継続音を検知した場合
に点滅する。

L-sign 設置後のパトロール調査により確認された点滅箇所に対し原因追究調査を行った結果、給水管上漏水2件（推定漏水量50ℓ/M、同10ℓ/M）を含む20箇所において漏水音が検知された。43件のLED点滅箇所の内訳は次のとおりである。

表 3-5 第2回現地調査時のL-sign設置結果

<table>
<thead>
<tr>
<th>設置箇所数</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>検知結果</td>
<td></td>
</tr>
<tr>
<td>漏水音検知数</td>
<td>43</td>
</tr>
<tr>
<td>漏水音未検知数</td>
<td>57</td>
</tr>
<tr>
<td>検知状況 分析結果</td>
<td></td>
</tr>
<tr>
<td>漏水音</td>
<td>34</td>
</tr>
<tr>
<td>その他騒音（※1）</td>
<td>9</td>
</tr>
<tr>
<td>実漏水音</td>
<td>20</td>
</tr>
<tr>
<td>サンプ内漏水（※2）</td>
<td>14</td>
</tr>
<tr>
<td>検知音未検知数</td>
<td>57</td>
</tr>
</tbody>
</table>

※1：L-sign は点滅しているが、漏水音、サンプ給水音共に確認されないもの
※2：サンプ内の器具不良により、給水が止まらないもの

LED の点滅状況（=漏水音等検知状況）を基に、パイロットテスト地域で試行された給水管用 L-sign を評価した。

漏水音検知状況においては、検知された漏水音の中には団員技術者による音聴調査でも僅かに聞き取れる程度の微小な漏水音も含まれ、漏水を防止する上で検知しなければならない漏水音は見逃しなく捕捉することができた。この結果に対して、バンガロールにおける低水圧給水下でも漏水検知性能に問題はないと評価した。

次に、誤作動反応状況は、当該地域の輪番による4時間給水と低水圧給水に対応するため、既存 L-sign の検知時間短縮と検知感度の調整を行った。この改良により誤作動検知が増えるのではと懸念があったが、結果は9箇所と（対設置総数比9%）、試行前に想定していた20%を下回る結果となった。

日本の都市部水道施設において L-sign を設置した場合の誤作動検知に対する許容値は、設置台数500器未満で10%未満と設定している。バンガロールでの試行結果は、本邦許容値内であることから、検知時間設定変更及び検知感度調整の影響は無いと評価した。

● 漏水箇所特定（第2回現地調査）

漏水音と確認されたLED点滅箇所に対し漏水確認・漏水位置特定調査を実施した。
調査に付随し、漏水調査トレーニングの本格実施は第4回現地調査からの予定であったが、BWSSB職員へ音聴棒や漏水探知器による音聴調査を試行的に経験する機会を
設けることとした。
漏水位置の特定は、漏水音が大きく複数の LED を点滅させた 2 つの漏水音箇所に対し、相関式漏水探知器と漏水探知器により漏水箇所の特定を行った。結果は、2 箇所の漏水箇所を特定、その後 BWSSB チェアマン立会いの下、修繕箇所状況を確認した。
エ）パイロットテストの実施（L-sign設置、漏水検知状況確認、漏水箇所特定）【2015年9月〜2016年7月】

- L-sign設置

第4回現地調査から、パイロットエリア内に2,900器の給水管用L-signの設置を開始した。そして、システムの本格運用を目指し、設置されたエリアから順に給水スケジュールに併せ検証を開始した。

第4回の本格設置以降、BWSSBとの設置箇所情報の共有と、設置機器の管理用手法として、スマートフォン撮影での位置情報取得によるグーグルマップへのアップを行った。写真撮影とWebへのアップにより場所の表示が可能となり、機器の設置管理が可能となった。

また、L-signパトロール調査の効率化を目的に、スマートフォンを活用した入力システムの設計を行った。当システムは、現時点では運用に課題が残るもの、本格活用に至れば、作業効率の大幅なアップが期待される。

![パイロットエリア図](image)

図3-14 パイロットエリア図

L-signの設置はBWSSB職員が2往4名体制で行うこととなり、1日当たり100器程度の設置が見込まれた。上記の小ブロック毎に作業を進め、設置に際しては事前に講習と現地指導を行った。

本格設置開始後、BWSSBの都合により10月、11月に設置作業が一時休止した時期があり、第6回現地調査（2015年12月）終了時点で約1,600器の設置完了に留まったため、East-1現場担当と協議の上、人員配置と設置スケジュールの見直しを行い、遅れを取り戻すため当方からも作業支援し進めた結果、2016年2月4日全機器の設置完了。
を確認することができた。

図 3-15 給水管用 L-sign 設置準備の様子

図 3-16 給水管用 L-sign 設置の様子

機器設置後は、撮影及び Web 上へのアップのほか、設置箇所住所と機器シリアル番号を一覧化した。

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Device No.</th>
<th>Road Name</th>
<th>Serial No.</th>
<th>Device No.</th>
<th>Road Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>181</td>
<td>James Road</td>
<td>401</td>
<td>9</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>402</td>
<td>17/1</td>
<td>Ohtsuka L/D 1st cross</td>
<td>402</td>
<td>13</td>
<td>Ind cross PMG L/D</td>
</tr>
<tr>
<td>403</td>
<td>17/1</td>
<td>2nd cross PMG L/D</td>
<td>403</td>
<td>616</td>
<td>Ind cross PMG L/D</td>
</tr>
<tr>
<td>404</td>
<td>48/1</td>
<td>5th A main road</td>
<td>404</td>
<td>104</td>
<td>Ind cross PMG L/D</td>
</tr>
<tr>
<td>405</td>
<td>131</td>
<td>6th A main road</td>
<td>405</td>
<td>87</td>
<td>Ind cross PMG L/D</td>
</tr>
<tr>
<td>406</td>
<td>50</td>
<td>1st cross PMG L/D</td>
<td>406</td>
<td>712</td>
<td>Ind cross paper/L.</td>
</tr>
<tr>
<td>407</td>
<td>30</td>
<td>Ohtsuka L/D 1st cross</td>
<td>407</td>
<td>34</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>408</td>
<td>103</td>
<td>Ind crossing PMG L/D</td>
<td>408</td>
<td>31749</td>
<td>Ind crossing PMG L/D</td>
</tr>
<tr>
<td>409</td>
<td>610</td>
<td>3rd crossing PMG L/D</td>
<td>409</td>
<td>37</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>410</td>
<td>35</td>
<td>3rd crossing PMG L/D</td>
<td>410</td>
<td>34</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>411</td>
<td>319/1</td>
<td>Ohnozawa L/D 1st cross</td>
<td>411</td>
<td>88</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>412</td>
<td>406</td>
<td>4th crossing PMG L/D</td>
<td>412</td>
<td>109</td>
<td>James Road</td>
</tr>
<tr>
<td>413</td>
<td>17</td>
<td>5th crossing Shinkle</td>
<td>413</td>
<td>18/3</td>
<td>KAGOSHIMA Station/L.</td>
</tr>
<tr>
<td>414</td>
<td>42</td>
<td>6th crossing PMG L/D</td>
<td>414</td>
<td>45</td>
<td>5th Street 5th Main</td>
</tr>
<tr>
<td>415</td>
<td>02</td>
<td>Ohnozawa L/D 1st cross</td>
<td>415</td>
<td>154</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>416</td>
<td>327/4</td>
<td>5th crossing PMG L/D</td>
<td>416</td>
<td>28</td>
<td>James Road</td>
</tr>
<tr>
<td>417</td>
<td>01</td>
<td>Ohnozawa L/D 1st cross</td>
<td>417</td>
<td>240</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>418</td>
<td>03</td>
<td>Ohtsuka L/D 1st cross</td>
<td>418</td>
<td>34</td>
<td>Kichijoji Station/L.</td>
</tr>
<tr>
<td>419</td>
<td>04</td>
<td>5th crossing PMG L/D</td>
<td>419</td>
<td>45</td>
<td>5th Street 5th Main</td>
</tr>
</tbody>
</table>

図 3-17 L-sign 設置箇所一覧表（サンプル）
漏水検知状況確認

パイロットテストでは、L-signが正しく漏水を検知していることを検証するため、音聴による漏水調査も平行して行った。その結果、漏水の発生箇所ではL-signは正しく検知していることが確認された。反面、漏水の発生していない箇所や、給水が行われていない箇所においてもL-signが点滅する箇所があり、これらの点滅原因について調査検討を行ったところ、結果として以下の可能性が考えられた。

下記の状況については、L-signの運用により解決が必要な事項であることから、BWSSBと協議の上、L-sign運用上の制約要因を整理した。

<table>
<thead>
<tr>
<th>想定される要因</th>
<th>状況</th>
<th>背景</th>
</tr>
</thead>
<tbody>
<tr>
<td>サンプへの通常給水</td>
<td>エリアへの給水開始から停止までサンプへの補給を行ってい場合</td>
<td>サンプ内の残水量が少ない場合は満水までの給水時間が長くなる</td>
</tr>
<tr>
<td>サンプへの過剰給水</td>
<td>サンプが満水になっても給水が止まらず、オーバーフローしている</td>
<td>サンプ内に給水を停止する装置が無い場合、または給水を停止する装置のは不良</td>
</tr>
<tr>
<td>降雨（豪雨）</td>
<td>雨音による影響音</td>
<td>L-signに降雨が直接当たる場合</td>
</tr>
<tr>
<td>盗水による影響音</td>
<td>給水管を意図的に分岐させ、メーターを通さずに給水させている</td>
<td>メーターは可動しないが、サンプへの給水音は発生している</td>
</tr>
</tbody>
</table>

検知精度の向上を目的に、運用方法の現地検証と結果に対する協議を行った結果、機器のリセットから給水までの期間が短い事が有効であると判断した。これを踏まえ、第6回現地調査からは、給水前日にリセット作業を実施した後、パトロール作業を実施した。その結果を表3-7に示す。

<table>
<thead>
<tr>
<th>総数</th>
<th>内訳</th>
<th>備考1</th>
<th>備考2</th>
</tr>
</thead>
<tbody>
<tr>
<td>点滅数</td>
<td>589箇所</td>
<td>漏水</td>
<td>27箇所</td>
</tr>
<tr>
<td></td>
<td></td>
<td>盗水</td>
<td>2箇所</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2次側漏水</td>
<td>6箇所</td>
</tr>
<tr>
<td>2次側漏水</td>
<td></td>
<td>メーター通過後の漏水</td>
<td>無収水に含まれない</td>
</tr>
<tr>
<td>サンプへの連続給水</td>
<td>456箇所</td>
<td>1. ボールタップ不良やボールタップが設置されていないため、サンプへの給水が止まらないもの（321箇所）</td>
<td></td>
</tr>
</tbody>
</table>
| | | 2. サンプへの供給量が少
ないため、長時間給水となっているもの（135箇所）

| 外部騒音 | 98箇所 | 漏水以外の音に反応しているもの（主原因：降雨（豪雨）） |

- 漏水箇所特定

漏水は、L-signによる検知、漏水調査研修時の音聴調査、BWSSBからの調査依頼等で第6回現地調査終了時点までに計18件が発見された。

発見した漏水はL-signによる検知ではないものや、発見した地域がパイロットエリア外のものも含まれる。これらを発見した経緯は、「漏水しているので場所を特定して欲しい」等でBWSSBからの要望に応えた場合と、貯水量不足によりパイロットエリア内には給水出来ないが、給水可能な近隣エリアにて研修や漏水調査を行った場合の2通りがある。予定外の作業であるものの、現地において複数の漏水を見る事はバンガロールで発生する漏水の特性を知る上で重要であり、漏水検知方法の確立にも役立つものと考え作業を行った。

第6回現地調査時の18件と、第7回現地調査以降で実施された漏水調査及びBWSSB職員により特定された1件を加え、今回のパイロットエリアでの漏水は、合計で29件、373.0Litter/Minutes（22.38m3/h）の発見に至った。

現地において複数の漏水を調査発見、検証したところ、漏水調査を行わなければ発見されない漏水が多数存在する事が確認された。

パイロットエリア内の一部埋設管では、埋設が浅い箇所もあり、中規模以上（20L/M以上）の漏水が発生すると路面に表出する可能性が高く、輪番給水によるバルブ操作時に発見される場合も多い。

しかし、通常は1.0mを超える埋設深度（本邦での埋設は概ね1.2m）となることから、発生した漏水は路面表出し難く、下水管や側溝に流入している場合も多い。本事業中に発見された漏水では、下水に流入している状態で大規模な漏水が発見されているケースが見られた。これらは、調査を実施しなければ発見が困難な漏水であることから、発生時に発見状況を経過する状況となり、結果、水の損失も大きいものとならない。このような潜在的漏水を放置した場合、漏水率の削減にも大きな影響を及ぼすことから、定期的な地下漏水の調査は必須の業務であることは言うまでもない。

第7回現地調査からは研修成果を見るため、BWSSB職員単独での漏水箇所特定調査を依頼した。結果は1件の発見だったが、独自で漏水箇所を特定した意義は大きく、今後も継続的に実施することで、漏水調査への関心と技術向上が見込まれる旨を伝えることができた。
漏水修理

漏水発見後、早期の修理による管路の正常化は、無収水対策には肝要である。

このため、本事業では漏水発見後の漏水修理をスムーズに実施する事を目的に、漏水発見箇所の住所、漏水の状態（漏水部位や漏水量）、漏水箇所の略図、現場写真により構成される「漏水調査箇所報告書」を作成し提出した。この報告書には、修理順位の目安となる漏水量を記述する項目を設け、漏水量の大きいものは優先的に修理することを指導した。

今回発見された漏水の修理立会い及び、修理の情報入手により漏水状況を分析したところ、継手部分からの漏水が多くを占めていることが分かった。配水管では、旧来の接合方法である印篭継手（ねじ込み式）のものが多く、管体への負荷やパッキンの劣化により漏水が発生していたと推測され、給水管では、異種材質の継手で漏水が発生していた。事例として、金属管と樹脂管の接合部での漏水となるが、本来は異種材質の接合、特に金属管を使用している場合は、腐食を増殖させることから好ましくないとされている。

上記2点については、漏水防止の観点からも今後の改良課題としてCPへ提案する事とする。

なお、本事業において発見された漏水：29件、373.0Litter/Minutes（22.38m³/h）に対する修理については、第9回現地調査時に全て完了していることを確認した。
パイロット地区における漏水防止効果

今回発見された漏水による効果を算出する。

表 3-8 防止量・防止金額換算表

<table>
<thead>
<tr>
<th>防止単位</th>
<th>漏水量 (Liter)</th>
<th>換算金額 (防止量×給水単価: 0.040Rs/1L)</th>
<th>円換算</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 分間</td>
<td>373</td>
<td>14.92</td>
<td>23.74</td>
<td></td>
</tr>
<tr>
<td>1 時間</td>
<td>22,380</td>
<td>895.2</td>
<td>1,424.88</td>
<td></td>
</tr>
<tr>
<td>4 時間</td>
<td>89,520</td>
<td>3,580.8</td>
<td>5,699.55</td>
<td>1 日の平均給水時間</td>
</tr>
<tr>
<td>1 ヶ月</td>
<td>895,200</td>
<td>35,808.0</td>
<td>56,995.59</td>
<td>月 10 回 = 40H の給水</td>
</tr>
<tr>
<td>1 年間</td>
<td>10,742,400</td>
<td>429,696.0</td>
<td>683,947.12</td>
<td>12 ヶ月 = 480H の給水</td>
</tr>
<tr>
<td>5 年間</td>
<td>53,712,000</td>
<td>2,148,480.0</td>
<td>3,419,735.61</td>
<td>5 年間未調査の場合</td>
</tr>
</tbody>
</table>

給水単価 0.040Rs は、次の表内数値より算出

給水単価算出 = Total 金額 2506 ÷ 62000L = 0.040Rs/1L

表 3-9 家庭用 φ15 mm 使用料金内訳表

<table>
<thead>
<tr>
<th>Number</th>
<th>Consumption in Litres</th>
<th>Water Amount</th>
<th>Sanitary Amount (25% of Water Amt)</th>
<th>Meter Charges</th>
<th>Sanitary for Bore Well</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-XXXX</td>
<td>62000</td>
<td>0-8000 Min Rs.56</td>
<td>8001-25000 (17KL x 11)</td>
<td>25001-50000 (25KL x 26)</td>
<td>>50000 (12 x 45)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650</td>
<td>650</td>
<td>540</td>
<td>1433</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>187</td>
<td>187</td>
<td>135</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>2506</td>
</tr>
</tbody>
</table>

- 漏水調査を実施せず漏水が放置されていた場合、1 年間で 429,696 ルピー/683,947 円の損失が生じていた計算となる。
- 他地区との比較や防止目標資料として、単位当たり（配水管 1 kmあたり）の実績数値を算出する。なお、BWSSB 施設全体の防止予測と経済効果については、(3) 開発課題解決の観点から見た貢献において記述する。
表 3-10 単位当たり防止実績

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 km 当りの漏水発生件数</td>
<td>28 件 / 28 km = 1.0 件 / km</td>
</tr>
<tr>
<td>1 日 4H/1 km 当り漏水量</td>
<td>89,520 L/D / 28 km = 3,197 L/D / km</td>
</tr>
<tr>
<td>1 日 4H/1 km 当り損失金額</td>
<td>Rs3,580.8 / D / 28 km = Rs127.8 / km</td>
</tr>
<tr>
<td>5,699.55 円 / D / 28 km = 203.55 円 / km</td>
<td></td>
</tr>
</tbody>
</table>

メーター 2 次側での漏水について

本事業中に UFW として発見された漏水のほか、サンプのオーバーフローによる水量も確認された。この水は供給者（BWSSB）から見ればメーターを通過した水、即ち料金水量となる。一方、個々の損失水量は少量でも合計水量では多量となる為、節水の観点から BWSSB に対して対策の必要性を説明した。

現地調査中に発見されたサンプ内の不良を以下に示す。

<table>
<thead>
<tr>
<th>状況</th>
<th>原因</th>
<th>件数</th>
<th>水損失の状況</th>
<th>対策案</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ボールタップ不良</td>
<td>ボールタップの不良により、満水になっても給水が止まらないもの</td>
<td>173</td>
<td>オーバーフローした場合はボールタップの修理、交換が必要</td>
</tr>
<tr>
<td>2</td>
<td>ボールタップ未設置</td>
<td>ボールタップが設置されておらず、常時給水されているもの</td>
<td>148</td>
<td>損失水量が発生するボールタップの設置が必要</td>
</tr>
</tbody>
</table>

表 3-11 メーター 2 次側の漏水

表 3-11 に示した件数の全てを確認してはいないが、調査時に目視した状況からオーバーフローを起こす可能性が高いと考えられる件数である。

321 件中 200 件に毎分 1 リットルのオーバーフローが発生していると想定した場合、以下の損失水量が見込まれる。

表 3-12 メーター 2 次側での漏水量概算

<table>
<thead>
<tr>
<th>損失水量</th>
<th>営業当たり換算損失水量 (liter)</th>
<th>防止金額 (防止量×給水単価: 0.040 Rs / 1L)</th>
<th>円換算 (1Rs=1.5917 円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 分間</td>
<td>200</td>
<td>8</td>
<td>12.73</td>
</tr>
<tr>
<td>1 時間</td>
<td>12,000</td>
<td>480</td>
<td>764.02</td>
</tr>
</tbody>
</table>
その他

BWSSB はバンガロールに適した漏水調査法の検討に強い関心を示しており、L-sign の活用にあたって以下の質問や意見が示された。

表 3-13 BWSSB からの質問とその対応

<table>
<thead>
<tr>
<th>BWSSB の質問・意見</th>
<th>調査団回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水管用 L-sign を配水管へ転用可能か検討してもらいたい。</td>
<td>配水管用 L-sign を活用してもらう。</td>
</tr>
<tr>
<td>給水管用 L-sign を移設し、別地域での監視に用いる場合、設置〜監視〜撤去〜移設サイクルの期間はどの程度とすればよいか。</td>
<td>本事業期間中は移設をしない。今後の L-sign の活用方策として、常設、移設、併用等の方法についてとりまとめた。</td>
</tr>
<tr>
<td>配水管用 L-sign により、配水装置に発生する漏水を的確に捕捉する効果的な方法を提案してほしい。</td>
<td>配水管にチャンバーの設置を提案。既設の仕切弁と併せて配水管用 L-sign を設置すればより綿密な検知が可能であり、漏水位置特定にも活用可能である。</td>
</tr>
</tbody>
</table>

上記のうち、早急に実施したいとの要望があった「チャンバー」について、第 5 回・第 6 回調査時に試作設置、具体的活用方法を提案した。

チャンバーは、配水管上に塩ビ管を設置して作成し、配水管用 L-sign と相関式漏水探知器を設置して、より効果的な漏水検知を行えるようにした。
また、事業終了後に供与した L-sign をはじめとした各調査機器を有効かつ効果的に運用するにあたり、漏水検知システムとして調査の周期と実施時期を提案した。

調査の概要は、BWSSB から L-sign を活用してより広範囲に漏水対策を行いたいとの要望も踏まえた結果、1 DMA を調査単位とすること、調査期間は 1 年単位とし、期間内に 2 回のパトロールと漏水位置特定を行うこと等を基本調査とした。また、バンガロールでは、8 月から 10 月にかけて雨期となることから、降雨（降雨音）による機器の誤作動が懸念されるため、当該時期は調査を実施しないことも提案した。

第 1 回目の調査では中～大規模漏水の発見が見込まれ、第 2 回調査では、1 回目の調査時点では小規模で発見できなかった漏水や、第 1 回調査以降に新たに発生した漏水の発見が見込まれる。

1 年にわたり綿密な調査を実施することで漏水率を安定的に低下に導くためには、バンガロールの現状に則した手法であると考える。

この方法を BWSSB 側に理解してもらうため、提案時には下記の工程を示し説明を行った。
表 3-14 漏水調査期間

<table>
<thead>
<tr>
<th>月</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査サイクル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>第1回調査</td>
<td></td>
<td></td>
<td>第2回調査</td>
<td></td>
<td></td>
</tr>
<tr>
<td>調査内容</td>
<td></td>
</tr>
<tr>
<td>漏水発見</td>
<td></td>
</tr>
<tr>
<td>漏水位置特定</td>
<td></td>
</tr>
<tr>
<td>漏水修繕</td>
<td></td>
</tr>
<tr>
<td>撤去</td>
<td></td>
</tr>
</tbody>
</table>

図 3-19 漏水調査形態写真
オ）現地展示会への出展

2016年2月1日から2月3日において、IWA Water Loss Conference2016がバンガロール市で開催された。当会議では、会場に併設した場所でインド国内外の水関係企業40団体により製品・システム等が展示され、当社でもブースを用意し、実施中の普及・実証事業の紹介と提案製品L-sign及びL-signを用いた漏水検知システムの展示・紹介を行った。

展示会開催中、当社ブースには63団体/延べ240名が訪れ、L-sign並びに漏水検知システムへの質疑応答やパンフレット等資料の配布、名刺交換が行われた。

主なブース来場者は、バンガロール市開発局長、BWSSBチェアマン及び幹部職員、インド国内の各水道事業者、国内外のコンサルタント会社、学会発表者となった。

会議には、現地パートナー候補企業も来場者として駆けつけたことから、ビジネス展開について話し合う場を設けることができた。

また、新たに複数の企業からL-signの代理店契約を結びたいという申し出もあり、一部の企業とは現在もコンタクトをとっている。その他の多くの来場者もL-signに関心を示し、新興国のみならず、カナダ、オーストラリアといった先進国でも低価格の自動漏水音検知器のニーズが高いことが判明した。

図3-20会議風景と展示ブース
③ 現地職員の研修

ア）研修対象者の選定

第2回現地調査時にEast-1責任者に対し、漏水調査技術研修に伴い次の3点を要望した。

☑ 研修者3名の確定
☑ 研修期間中の研修者変更が無いこと
☑ カリキュラムに従い実施

イ）研修プログラム・カリキュラムの作成

研修は次の4つのフェーズに分けたカリキュラムを作成し、これに則り実施した。

第1フェーズ「漏水に関する基礎知識の習得」では、漏水調査の基礎的知識や漏水の影響・原因、また漏水検知の重要性等について習得。

第2フェーズ「漏水検知の基礎技術の習得」では、漏水検知器の基本的な原理や使用方法を習得する。対象とする漏水検知機器は、音聴棒、漏水探知器、相関式漏水探知器の3種類となる。

第3フェーズ「漏水検知技術の習得」では、現場研修を行い、各種漏水検知器を使用して漏水音の聞き分けを習得する。現場研修を通じて、バンガロール特有の騒音やサンプ流入音等に如何に対応するかも併せて学習する。

第4フェーズ「L-signを活用した総合的漏水検知技術の習得」では、L-signの検知結果の解釈と、検知結果を基にどのように漏水箇所を特定するか等、漏水確認調査の技術を習得する。
<table>
<thead>
<tr>
<th>フェーズ</th>
<th>定義</th>
<th>知識</th>
<th>技術</th>
<th>実施スケジュール</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>漏水に関する基礎知識の習得（座学）</td>
<td>漏水の基礎知識</td>
<td>第4回現地調査
第5回現地調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>漏水の影響とその原因</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>漏水検知の重要性</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>一般的な漏水検知の方法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>漏水検知の基礎技術の習得（テストヤード）</td>
<td>漏水検知機器を利用した漏水検知方法</td>
<td>第5回現地調査
第6回現地調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>漏水検知機器の原理・使用方法</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>音聴棒</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>漏水探知器</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>相関式漏水探知機</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>漏水検知技術の習得（現場）</td>
<td>漏水検知機器の現場での使い方（複数の機器の使用順序など）</td>
<td>第5回現地調査
第6回現地調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>バングロール特有の漏水検知に与える影響（騒音、振動、水供給の間隔、サンプの影響など）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L-signを活用した総合的漏水検知技術の習得（現場・座学）</td>
<td>L-signを活用した漏水検知の方法</td>
<td>未定</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-signを活用した実地での漏水検知（L-sign検知結果の解釈、解釈を踏まえた漏水検知機器の使用、漏水箇所の特定）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ウ）漏水調査技術研修の実施

第1フェーズは、座学としてマニュアル及び設置手順動画を用いて指導した。動画の利用により職員の理解も進み、その後のパイロット地区における設置では、一部指導は行うものの全て現地職員により設置することができた。

また、設置箇所の管理方法である、スマートフォンによる撮影と設置箇所一覧表への記載等の指導も行った。

研修では、当方作成マニュアルのほか、次の既存マニュアルも活用した。

第2フェーズは、基本的な漏水検知機器の使用方法の研修を行った。音聴式として音聴棒と漏水検知器の使い方を、また相関式として相関式漏水検知器の使い方を研修した。本フェーズの学習においては、主にBWSSBのEast-1オフィス内に設営したテストヤード34を利用して行った。（次頁、図3-22 East-1オフィス内テストヤード（左）、テストヤードにおける相関式研修（右）参照）

研修は、音聴棒・漏水検知器を先に行い、その後、相関式漏水検知器について実施した。相関式漏水探知器は、センサーの設置・操作・人力の手順、結果の取得方法や解析が複雑であるため、テストヤードを利用して繰り返し学習することとした。

34テストヤード：BWSSB敷地内に複数の分岐及び給水管を接続させた配水管を設置し、給水管に取付けたの蛇口の開放により、擬似漏水音を発生させ、実現場と同じように漏水音を聴くことを可能した施設。
第3フェーズは、現場主体の研修を行った。第2フェーズで習得した内容を、現場で実践出来るよう、音聴棒・漏水探知器による音の聞き分けや、相関式漏水探知器のセンサー設置、解析について実践した。

音聴棒・漏水探知器の技術研修は、バンガロールでの外部騒音やサンプへの流入音など様々な音と実際の漏水音の違いについて繰り返し行った。相関式漏水探知器の研修では、漏水箇所特定のための操作方法と、音聴棒や漏水探知器と組み合わせて漏水を特定する方法を実践した。

第4フェーズは、L-signを活用した漏水検知システムの運用習得を目的に、L-sign検知結果の解釈から原因究明調査としての漏水検知機器の使用、そして、漏水箇所の特定までを実戦形式で研修を行った。

実施に当たっては、既にL-signが設置され、漏水箇所が特定されているEast-1 office裏BlockとKammanahalliエリアで、未修理の漏水（音）を利用して実践した。
図 3-24 漏水探知器の実地研修

図 3-25 相関式漏水探知器の実地研修

エ）研修成果・効果分析

研修対象者 3 名の成果としては、音聴棒、漏水探知器、相関式漏水探知器についてその使用方法を理解し、現場で適切に活用していることを、第 6 回現地調査時に確認できた。検知機材の扱いは容易ではあるが、漏水の判断には相当の経験と技術が必要であり、今後も修練が必要である。

3 名の中で習熟度に差が出ることもあったが、日本側技術者の不在時にも自主的に操作方法を教え合い、自習を行うことで知見を高めており、技術向上が認められた。

前述のとおり、第 7 回現地調査からは現地職員単独での漏水調査の実施を指示したところ、結果は 1 件の漏水を発見するに留まったが、漏水調査技術や漏水に対する知識が深まったと感じられた。今後も継続的に調査を実施することで、技術向上へ繋が
る旨を指導した。

本研修成果として、L-sign の活用も含めた総合的な漏水検知マニュアルを作成してほしいとの要望があり、これに対応する形でマニュアルの作成を行った。

完成したマニュアルは本研修で得た経験も踏まえて、BWSSB にとって使いやすい、必要な情報が記載された実務的なマニュアルとなったといえる。詳細は、P88 に記述する。

オ）集合研修の実施

(a) 研修の狙い・目的

集合研修は、BWSSB チェアマンからアシスタント・エンジニア（AE）向けの漏水調査研修をして欲しいという依頼があり開催したものである。プロジェクトチームによる漏水調査及び研修は、実証フィールドとしている BWSSB の East-1 地区を所管するオフィスの職員に対するものが通常であったが、事業の趣旨を踏まえ、当該オフィス以外の AE にも知識を普及させたいとの意向が示され、調査団員側で研修教材を準備し実施した。

(b) コンテンツ・タイムテーブル

研修内容は、座学と実技の二部構成とし、座学では、調査団員が作成した漏水調査マニュアルについて内容の解説をした。実技では、East-1 オフィス敷地内に設置したテストヤードにおいて漏水を再現し、検査機器（音聴棒、相関式漏水探知器）で漏水音を確認した。その後、以前の調査で発見した漏水箇所を訪れ現場確認を行った。

研修のプログラム時間割は以下の表に示すとおりである。
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>East-1 Office</td>
<td>Room Lecture on</td>
</tr>
<tr>
<td>-11:15</td>
<td>-</td>
<td>- Introduction of L-sign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Basics, impact, and causes of leakage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Needs and Importance of leak detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- General leak detection methodology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(manual listening stick, acoustic amplifier, leak noise correlator)</td>
</tr>
<tr>
<td>11:30</td>
<td>East-1 Office</td>
<td>Field workshop of</td>
</tr>
<tr>
<td>-12:30</td>
<td>Test yard</td>
<td>- Getting through basic leak detection methodology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Preparation for field test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Leak detection by using acoustic amplifier, leak noise correlator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Usage demo of L-sign</td>
</tr>
<tr>
<td>14:30</td>
<td>Leakage site</td>
<td>Field workshop of</td>
</tr>
<tr>
<td>-16:00</td>
<td></td>
<td>- Tour of inspection for leakage site (Maxwell School)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction of its leak detection process using L-sign</td>
</tr>
</tbody>
</table>

(c) 研修実施結果

研修参加者は15名程度である。研修の様子を以下に示す。
研修終了後、参加者および研修を要請した幹部から研修実施に対する感謝の声を多く聞いた。ただし、研修に参加した AE 達は、日常的に漏水調査に携わっているわけではないため、漏水調査の技術を身につけるためには、単発の研修ではなく継続的なトレーニングが不可欠と考えられる。
カ）漏水調査マニュアルの作成

(a) マニュアル作成の狙い

BWSSB 職員に対する研修にあたっては、座学による基本的知識の獲得及びフィールドでの知識の適用による実習など体系的な構成で実施したが、研修実施後の継続的な学習や周辺の関係職員の技術レベルの底上げを意図して、体系的な漏水調査マニュアルを作成した。

作成に当たっては、以下に示す既往文献を参考に活用した。
- Shozo Yamazaki, 2011, “Non-Revenue Water Management”

(b) マニュアルの構成

BWSSB の職員に漏水調査から管路修理までの全体の手順の理解（L-sign に限らない）、本プロジェクトが終わった後に、自立的な L-sign を活用した調査を実施出来るよう次の目次に示す内容構成とした。

1 章では、NRW（無収水）対策について、発生要因、管理の重要性、具体的な対応策、実施手順について概説的に述べている。

2 章では、NRW 対策の基本となる漏水調査について、その発生原因（管路損傷等）について紹介し、調査の基本となる DMA (District Meter Areas) 設定の考え方について解説している。

3 章では、実用的な漏水調査手法のうち、L-sign、音聴による方法等について測定原理を合わせ、適用方法について解説している。なお、L-sign 利用に関しては、パトロール結果（L-sign の点滅状況）を記録する手法として、スマートフォン上のアプリケーションを利用する仕組みを開発したことも含め、そのアプリケーションの利用方法についても記載している。

4 章では、発見した漏水箇所についての修復方法について解説している。管路素材により修復方法が異なるため、インドの実情に応じた素材を中心に解説している。

<table>
<thead>
<tr>
<th>3-17 漏水調査マニュアルの内容構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NRW Management</td>
</tr>
<tr>
<td>1.1 Definition of NRW</td>
</tr>
<tr>
<td>1.2 Components of NRW</td>
</tr>
<tr>
<td>1.3 NRW Reduction Measures and its Importance</td>
</tr>
<tr>
<td>1.4 NRW Reduction Measures</td>
</tr>
<tr>
<td>1.5 Procedures for NRW Reduction</td>
</tr>
</tbody>
</table>
2. Basic Concept of Leak Detection
 2.1 Components of physical losses
 2.2 Main Causes of Physical Losses
 2.3 Reduction Measures for Physical Losses

3. Leak Detection Techniques
 3.1 Utilizing DMA
 3.2 L-sign
 3.3 Sounding Survey

4. Repair of Leakage
 4.1 Introduction
 4.2 Repair of Cast Iron Pipe / Ductile Iron Pipe (CIP・DIP)
 4.3 Repair of High Intensity Chlorinated Polyvinyl Pipe (HIVP)
 4.4 Repair of Stainless Steel Pipes
 4.5 Repair of Polyethylene pipes
 4.6 Repair of water leakage caused by joints

(c) マニュアルへのフィードバックおよび今後の課題
作成したマニュアルは、ドラフト段階で BWSSB 関係者にもレビューを依頼したり、
マニュアルを活用した集合研修を実施したりした。内容構成については、先方関係者
の要望を含んでおり（特に、漏水調査全体のフローを説明して欲しいとの要望に対応
しており）、好感触を得ている。
一方で、漏水検知技術の習得には時間がかかることから、調査実績を積み重ね、ツ
ボを押さえたマニュアルにしていく必要がある。たとえば、インドの水道事情に応じ
た「頻度高く発生する漏水箇所やパターン」、「漏水調査上の典型的なトラブル」など
が想定される。

④ 訪日研修
今回の訪日研修は、業務計画書において位置づけることができなかったが CP の強い
要望により、来日に伴う渡航費及び滞在費は CP である BWSSB の自己負担、研修中に
係る諸経費については当社自己負担にて実施した。
ア）研修概要

(a) 訪日者氏名役職
- Dr Pavagada Matha Nagabhushanaiah Ravindra ：Executive Engineer
- Chowdappa Narayana Swamy ：Assistant Executive Engineer
- Chalapathi Narasimhaiah ：Assistant Executive Engineer

その他、当社現地勤人 Mallur Raju Srivatsa をアテンド役として同行、計4名にて来日した。

(b) 研修趣旨

本邦におけるL-signを用いた監視型漏水調査現場の視察、及び漏水調査業務の実施方法や業務管理方法、更には漏水修繕等、実務に携わる本邦水道職員との意見交換を通じて漏水調査に対する知見と実務の状況への理解を深める。また、上水道に関する技術見学として、横浜市水道局西谷浄水場及び管路施設の見学、管路メーカー㈱クボタ社工場での管路製造過程見学を研修として実施する。

イ）研修結果

訪日研修における旅程及び実施概要について次に示す。

<table>
<thead>
<tr>
<th>日時</th>
<th>実施概要</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>5月21日(木)</td>
<td>20:30 BWSSBメンバー成田空港到着</td>
<td></td>
</tr>
<tr>
<td>5月22日(金)</td>
<td>8:50-9:30 横浜市水道局長および幹部職員表敬訪問</td>
<td>横浜市水道局長表敬訪問</td>
</tr>
<tr>
<td></td>
<td>10:00-11:00 JICA横浜国際センター表敬訪問、ミーティング</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30-12:00 横浜市国際局表敬訪問</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:30-17:00 横浜市水道局西谷浄水場・横浜水道記念館視察</td>
<td>横浜市水道局様同行視察</td>
</tr>
</tbody>
</table>

横浜市水道局長表敬訪問 JICA横浜国際センター表敬訪問
5月25日(月) 終日
漏水調査研修＠南足柄市上下水道課
1. 経済部上下水道課長表敬訪問
 上水道課の厚意により現在実施している漏水調査の状況説明を受ける。
2. 現場での各業務実施状況を視察
 ①L-sign 設置状況
 南足柄市でのL-sign設置目的、効果等をリサーチ
 ②漏水探知による漏水箇所絞込み
 L-signが検知した箇所においての漏水探知器による漏水箇所絞込み
 ③音聴棒による漏水音聴音体験
 バルブに伝わる漏水擬似音の音聴体験
 ④ボーリング調査による漏水位置特定
 電動ドリル、ボーリングバーを用いた漏水確認調査の見学
 ⑤漏水修理状況見学
 特定された箇所の漏水修理状況を見学

横浜市国際局表敬訪問
横浜市水道局西谷浄水場視察
横浜市水道記念館へ蔵書進呈
横浜市水道記念館記念撮影
<table>
<thead>
<tr>
<th>5 月 26 日(火)</th>
<th>南足柄市における現場研修のまとめ @三菱総合研究所</th>
<th>南足柄市研修に対する感想、質疑応答・本邦漏水調査の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-14:00</td>
<td>配水管用 L·sign 設置状況視察</td>
<td>視察現場の状況説明</td>
</tr>
<tr>
<td></td>
<td>バルブ音聴調査：漏水音の聴音</td>
<td></td>
</tr>
<tr>
<td></td>
<td>漏水管路の掘削視察</td>
<td></td>
</tr>
<tr>
<td></td>
<td>南足柄市役所前記念撮影</td>
<td></td>
</tr>
<tr>
<td>5 月 27 日(水)</td>
<td>株式会社クボタ社 京葉工場視察</td>
<td>株式会社クボタ様協力によりダクトアイル製鉄管の製造過程を視察</td>
</tr>
<tr>
<td>8:00-13:30</td>
<td></td>
<td>•研修のまとめ、当該プロジェクトに対する意見交換等</td>
</tr>
<tr>
<td>15:00-17:30</td>
<td>ラップアップミーティング@MRI</td>
<td></td>
</tr>
</tbody>
</table>
ウ）本邦研修成果

研修全般を通じて、バンガロールでの活動では得られない BWSSB との親密且つ信頼関係を得ることができた有意義な研修となった。この結果は、今後のプロジェクトの進行・成果に対して大きな意味を持つと考える。

BWSSB からは、本事業において用いる L-sign が実際に活用されている状況が視察できた点、L-sign 以外にも漏水調査工法全体について日本で実施されている内容が視察できた点、水道以外の社会環境・文化に触れられた点について、特に感謝が示された。

また、今後も BWSSB 職員を積極的に日本に派遣したいという意向が示された。

なお、本訪日研修は、普及・実証事業契約業務外にも関らず、横浜市水道局、同市国際局、南足柄市上下水道課等のご協力を得、並びに民間企業より株式会社クボタ様、株式会社リグチ漏水調査様等のご支援ご協力により実施ができたことを心より感謝する次第である。

※クボタ社では、企業内情報漏洩防止の点から、工場内での写真撮影は禁止されているため、左記記念写真のみとなる。

ラップアップミーティングでは、研修全般にわたる感想や本邦水道施設維持管理に対する質問、BWSSBとの現状比較、今後のプロジェクト進行等、活発な意見交換が交わされた。

※ラップアップミーティングでは、研修全般にわたる感想や本邦水道施設維持管理に対する質問、BWSSBとの現状比較、今後のプロジェクト進行等、活発な意見交換が交わされた。
(2) 事業目的の達成状況

① 現地の給水環境に適合した機器を用いた漏水検知方法の確立（L-sign の改良・実証）

現地調査結果を踏まえ、漏水検知に使用する L-sign をバンガロール市の給水形態・環境に適合させるため改良を実施した。改良した項目は以下のとおりである。当初の計画では第 1 回、第 2 回の調査において把握した現地環境により改良を完了する予定であったが、第 4 回調査においてモンスーンによる降雨等の影響により、新たな現地環境の状況に直面したことから、感度調整を再度実施するなど追加的な改良が必要となった。

把握された現地環境と L-sign 改良項目

<table>
<thead>
<tr>
<th>把握された現地環境</th>
<th>改良した項目</th>
</tr>
</thead>
</table>
| 給水が 1 回あたり 4 時間程度であり、給水スケジュールに応じた L-sign の検知開始が必要（第 1、2 回現地調査で把握） | ・輪番給水開始時間に対応すべく検知開始を自動スタートとした
| | ・スタート 3 時間後に自動的に検知終了 |
| 低水圧給水により漏水音が低く弱い（第 1 回現地調査で把握） | ・本邦使用機器より、検知可能な周波数帯域を低く設定 |
| 降雨など環境音による影響（第 4 回現地調査で把握） | ・波形調査を行い現地での音データを収集、その結果を基に感度設定を変更する |

L-sign の改良後、次の段階として、インドにおける環境上の制約のもとでの L-sign を用いた漏水検知のための運用方法の検討が必要となった。そこで、検知方法の確立にあたっては、第 6 回及び第 7 回の現地調査において集中的な検証を実施し、パトロールの作業マニュアルを作成することが出来た。

② BWSSB 職員の漏水検知技術の向上（L-sign を含めた漏水検知技術の普及）

L-sign の普及

パイロットエリア内に全 3,000 器の L-sign の設置を行った。設置においては BWSSB の協力により 2016 年 2 月に全て設置が完了した。

設置あたっては、現地ワーカーが行うことから、現地ワーカーへの指導資料として、設置マニュアルを含む設置方法を取り込んだ動画を作成した。また、スマートフォンによる設置箇所の撮影により、設置箇所を GPS データで捕捉することも可能とした。

設置後の対応としては、スマートフォンを活用した検知結果の自動取り込みを可能とするシステム設計、及びシステムの実用化による作業効率化等、現地ニーズへの対応により新しいノウハウが生まれた。

これらの取組は、本事業実施過程において得られたものであり、BWSSB への新たな提案や、今後進められる現地パートナーとの事業展開にも十分応用可能であることか
ら、今後のL-sign普及に繋がる付加価値として期待したい。
また、漏水検知技術についても、本邦の調査技術（実務経験5年以上）レベルの技術を有していれば、BWSSB施設への対応は十分可能であることが解った。当該技術も、現在プロジェクトを実施している2社には無い技術であり、提案次第では、従来型の音聴技術も展開が見込めることが、今事業によって得ることが出来た。
なお、具体的普及計画については、第4章に記載する。

職員の研修
第4回現地調査（9月）からはL-signの設置も順次行われ、L-signの運用も含めた漏水検知技術の研修が実施できた。具体的には、漏水の基礎知識から、音聴棒、漏水探知器、相関式漏水探知機を中心とした漏水機器の使い方、またそれらを利用した実際の漏水箇所特定に至るまでをカリキュラムに従い学習した。
研修はBWSSB職員3名に対して行われ、一部習熟度に不揃いが生じたこともあったものの、BWSSB職員間で自主的に学習を行なうなど意欲的な姿勢も見られ、結果的には3名とも漏水検知機器の使い方を習得するレベルに達した。
2016年1月16日（2800器設置完了）以降は、L-signの設置も完了に近づき、また、並行して行われるパトロール調査により漏水箇所が多数特定されたエリア（East-1オフィス裏など）もある。フェーズ3からの研修は、このエリア利用した実践的な研修を中心に、L-signの活用も含めた総合的な漏水箇所特定の方法について実施することも出来た。
また、本研修の成果物として、L-signの活用も含めた総合的な漏水検知マニュアルを作成するように求められることで、本研修で得た経験も踏まえた、BWSSBにとって使いやすい、必要な情報が過不足なく記載された、実効的なマニュアルを作成することができた。

③ 無収水削減策としての漏水検知器の普及展開案策定（展開計画の検討）
事業展開についてはCPとの相談の結果、現状バンガロールで実施している無収水対策事業についての実態把握及び有望なパートナー探索について協力を得られた。検討結果については第4章に示す。
(3) 開発課題解決の観点から見た貢献

今回の現地調査において発見された漏水量を基に、BWSSB 水運用全体に対する防止効果予測及び経済効果予測を次に示す。

<table>
<thead>
<tr>
<th>№</th>
<th>項目</th>
<th>單位</th>
<th>数量</th>
<th>備考/関連資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>管路延長</td>
<td>km</td>
<td>8,746</td>
<td>表 1-7 BWSSB による上水道運用管理状況参照</td>
</tr>
<tr>
<td>2</td>
<td>供給量</td>
<td>MLD</td>
<td>1,350</td>
<td>表 1-7 BWSSB による上水道運用管理状況参照</td>
</tr>
<tr>
<td>3</td>
<td>NRW</td>
<td>%</td>
<td>49.25</td>
<td>表 1-9 消費者別使用量及び収益比参照</td>
</tr>
<tr>
<td>4</td>
<td>NRW</td>
<td>MLD</td>
<td>664.88</td>
<td>②×③</td>
</tr>
<tr>
<td>5</td>
<td>経済損失額</td>
<td>Rs/D</td>
<td>26,595,200</td>
<td>0.040Rs /1L×④</td>
</tr>
<tr>
<td></td>
<td>円/日</td>
<td></td>
<td>42,331,580</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td>6</td>
<td>漏水率（推定 25%）</td>
<td>MLD</td>
<td>337.5</td>
<td>②×0.25 不明水（UFW）</td>
</tr>
<tr>
<td>7</td>
<td>漏水量 25%に対する</td>
<td>Rs/D</td>
<td>13,500,000</td>
<td>0.040Rs /1L×⑥</td>
</tr>
<tr>
<td></td>
<td>経済損失額</td>
<td>円/日</td>
<td>21,487,950</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td>8</td>
<td>全体漏水量に対する</td>
<td>%</td>
<td>8.3</td>
<td>3,197LD（km当り実績値）</td>
</tr>
<tr>
<td></td>
<td>調査実績割合</td>
<td></td>
<td></td>
<td>⑥337.5MLD÷①8,746 km</td>
</tr>
<tr>
<td>9</td>
<td>防止効果予測</td>
<td>LD/4H</td>
<td>28,012,500</td>
<td>⑥×⑧</td>
</tr>
<tr>
<td></td>
<td>MLY</td>
<td></td>
<td>10,224.56</td>
<td>365D</td>
</tr>
<tr>
<td>10</td>
<td>経済効果予測</td>
<td>Rs/D</td>
<td>1,120,500</td>
<td>0.040Rs /1L×⑨</td>
</tr>
<tr>
<td></td>
<td>Rs/Y</td>
<td></td>
<td>408,982,500</td>
<td>365D</td>
</tr>
<tr>
<td></td>
<td>円/日</td>
<td></td>
<td>1,783,500</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td></td>
<td>円/年</td>
<td></td>
<td>650,977,450</td>
<td>365 日</td>
</tr>
</tbody>
</table>

上記表 3-19 より、発見された漏水量は年間 10,224.56ML の防止が予測され、損失が防止されることによる経済効果として、年間 Rs408,982,500、日本円換算約 650 百万円の経済効果が期待される。

効果予測の基礎とした今回のパイロットエリアの施設状況は、敷設後 10 年～15 年程度の管路が多く、街並みも比較的新し地区であることから、他のエリアと比較し漏水発生もと少ないと想定される。 （全体漏水量に対する調査実績割合も 8.3%）従って、当該エ

表 3-19 経済効果を得るための漏水防止コスト（調査費用及び修繕費用）は別途必要

<table>
<thead>
<tr>
<th>№</th>
<th>項目</th>
<th>単位</th>
<th>数量</th>
<th>備考/関連資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>管路延長</td>
<td>km</td>
<td>8,746</td>
<td>表 1-7 BWSSB による上水道運用管理状況参照</td>
</tr>
<tr>
<td>2</td>
<td>供給量</td>
<td>MLD</td>
<td>1,350</td>
<td>表 1-7 BWSSB による上水道運用管理状況参照</td>
</tr>
<tr>
<td>3</td>
<td>NRW</td>
<td>%</td>
<td>49.25</td>
<td>表 1-9 消費者別使用量及び収益比参照</td>
</tr>
<tr>
<td>4</td>
<td>NRW</td>
<td>MLD</td>
<td>664.88</td>
<td>②×③</td>
</tr>
<tr>
<td>5</td>
<td>経済損失額</td>
<td>Rs/D</td>
<td>26,595,200</td>
<td>0.040Rs /1L×④</td>
</tr>
<tr>
<td></td>
<td>円/日</td>
<td></td>
<td>42,331,580</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td>6</td>
<td>漏水率（推定 25%）</td>
<td>MLD</td>
<td>337.5</td>
<td>②×0.25 不明水（UFW）</td>
</tr>
<tr>
<td>7</td>
<td>漏水量 25%に対する</td>
<td>Rs/D</td>
<td>13,500,000</td>
<td>0.040Rs /1L×⑥</td>
</tr>
<tr>
<td></td>
<td>経済損失額</td>
<td>円/日</td>
<td>21,487,950</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td>8</td>
<td>全体漏水量に対する</td>
<td>%</td>
<td>8.3</td>
<td>3,197LD（km当り実績値）</td>
</tr>
<tr>
<td></td>
<td>調査実績割合</td>
<td></td>
<td></td>
<td>⑥337.5MLD÷①8,746 km</td>
</tr>
<tr>
<td>9</td>
<td>防止効果予測</td>
<td>LD/4H</td>
<td>28,012,500</td>
<td>⑥×⑧</td>
</tr>
<tr>
<td></td>
<td>MLY</td>
<td></td>
<td>10,224.56</td>
<td>365D</td>
</tr>
<tr>
<td>10</td>
<td>経済効果予測</td>
<td>Rs/D</td>
<td>1,120,500</td>
<td>0.040Rs /1L×⑨</td>
</tr>
<tr>
<td></td>
<td>Rs/Y</td>
<td></td>
<td>408,982,500</td>
<td>365D</td>
</tr>
<tr>
<td></td>
<td>円/日</td>
<td></td>
<td>1,783,500</td>
<td>1Rs=1.5917 円</td>
</tr>
<tr>
<td></td>
<td>円/年</td>
<td></td>
<td>650,977,450</td>
<td>365 日</td>
</tr>
</tbody>
</table>
リアの調査結果より予測される数値は、現実的に防止可能な数値として考えることがで
きる。
以上のことから、当社の保有する製品・技術供与を通じて、早期の漏水防止を実現し、
水資源の確保という課題に直面するバンガロール市の水道サービスの向上に、水供給と
経済面双方から貢献できるという点では、直接的な効果があるといえる。

(4) 日本国内の地方経済・地域活性化への貢献

地域企業体への波及効果

本事業は、平成24年度に行われたニーズ調査の際に、当社が会員企業として参加し
ている横浜水ビジネス協議会での活動を通じて、当社の技術シーズが、インド国バ
ンガロール市の現地ニーズと合致していることに始まり、今後海外展開に向けて更なる
取組を促進していくものである。このような取組は、横浜ビジネス協議会の設立目的
と合致しており、協議会の存在意義を強く証明するとともに、本事業の実施等、海外
事業展開への主体的な取組を、上記協議会を通じて他の企業と共有することにより、
中小規模を中心とした他企業の海外事業展開意欲の拡大、地域経済への貢献を果たす
ことができるものと想定している。

新規事業開拓効果・同業他社への波及効果

当社をはじめとする日本国内の漏水検知サービス会社は、これまで国内マーケット
においてのみ活動していたものの、現状、我が国水道の漏水率は世界的に見ても低い
水準で維持されている。そのため、水道インフラの老朽化は深刻な問題であるもの
の、経水量・給水人口が頭打ちとなる状況下では、漏水検知の国内市場に大きな拡大
は期待できない。本事業を通して、漏水検知サービスの海外展開への第一歩を踏み出
すことは、当社含め同業他社の事業範囲の可能性を大きく広げるものとなる。

地元経済・地域活性化への貢献

当社は中小企業であるものの、当社が提供する漏水検知サービスは、地元産業の
みならず市民および社会活動全般のベースとなる基礎インフラの安定運営を支えい
る重要な事業であると考える。国内市場の成長が限定的である状況下において、当社
が本事業の実施を通じて、成長の著しい途上国への事業拡大を実現出来れば、企業の
存続のみならず、売上増大による地元経済への還元は大きい。また、国内のみならず
海外を事業領域とすることで、雇用の拡大や、国際的なビジネスを手掛ける企業とし
て、将来の日本人材の活躍の場を提供できることとなる。
当面は本業である漏水検知調査での展開を目指すが、将来的には管路の維持管理、
補修等を担う地元企業との連携も視野に入れて、人材育成および技術開発を含めた、
ビジネス範囲の拡大も検討している。
(5) 事業後の事業実施国政府機関の自立的な活動継続について

本事業では、漏水探知機、音聴棒、相関式漏水発見器と合わせて、L-sign を 3,000 器使用した。これらの機材は、当社による水道管への設置をもってBWSSBに譲与することとなり、事業実施後も適切に機材を管理してもらうため、事業実施時には台帳管理の作成、運用方法を伝授した。また、継続して使用するための維持管理について研修にて教授した。機材の管理は難しくなく、費用もかからないため、適切に研修を実施すれば、継続した使用が可能である。

(6) 今後の課題と対応策

● L-signの改良・実証

L-sign の現地環境に適合した改良については概ね完了したことから、次の段階として、インドにおける環境上の制約のものとでの L-sign を用いた漏水検知方法についての検討が必要となった。検知方法の確立にあたっては、第 6 回及び第 7 回において集中的に実施し検証した結果、運用方法を工夫することで検知精度を向上させることができ可能と判断した。今後の指導及び実施については、運用方法改定版マニュアルを作成しBWSSBへ提供することで継続的な対応を望みたい。

● BWSSBの組織体制

本事業の実施によりBWSSB内においても漏水管理に関する認知が高まったが、現状ではUFW対策事業により民間業への発注による漏水対策が主流であり、BWSSB組織内にノウハウが蓄積していく状況にはない。

継続的な漏水管理の実施のためには、調査自体は民間事業への発注を前提とした場合でも、組織全体での認知と基礎的なノウハウの蓄積は必須である。BWSSB 側でも問題意識を有し、漏水管理のための新部局の設立も内部では検討されていることから、取組が継続する組織面での支援が必要である。本事業ではBWSSB内部での漏水管理の重要性の認識や、漏水調査の具体的な内容についての理解を促進するために、East-1以外の地区の職員やBWSSBの幹部レベルの職員に対して、East-1の取り組みの紹介や現地視察を第 7 回以降の現地調査において実施することを予定している。

組織体制の整備にあたっては、たとえば日本からの漏水管理専門家のBWSSBへの派遣など、継続的な支援が必要であり、JICAからのBWSSBへの働きかけも期待したい。
4. 本事業実施後のビジネス展開計画

（1）今後の対象国におけるビジネス展開の方針・予定

① マーケット分析（競合製品及び代替製品の分析を含む）

ア）市場概況

日本の水道事業体では、定期的に直営で漏水調査を実施するか、計画的に漏水調査専門業者に委託発注することにより漏水を早期発見し、発見された漏水箇所については管工事業会社等を通じて修理を行うことにより漏水率の低下に努めている。

インドではこのような定期的な漏水調査は実施されておらず、BWSSBでも漏水により地表流出した水道水を、検針員、バルブ操作員（ラインマン）が発見し修理を行う、対症療法的な対策が一般的であり、実質的な漏水率の低下には至っていない。

近年、無収水対策への取組がはじまっており、本調査を通して把握したもの在表 4-1 に示す。表に示した事業には水道事業体の自主事業、JICA 等ドナー資金による事業の2種類があるが、下記の他に民間企業自己資金によるパイロットの事業も存在する。各事業内容は、漏水調査に係る技術協力、漏水検知技術のデモンストレーション、漏水検知から管路修繕までの包括委託が実現していながら、実質的な漏水率の低下には至っていない。

これまで、インドにおける漏水調査に関する確固たる発注モデルは成立していない。現在のインドにおける水道事業体の状況を踏まえると、本邦自治体のような、自治体
側に無収水対策についての体系的ノウハウが求められる形式形態は現実的ではない。本調査のインド民間企業へのヒアリングにおいても、一定程度の民間企業への包括的な委託が今後の主流となるとの指摘がある36。このため、バンガロールで現在実施されている包括的な無収水対策事業37の発注が今後増加していく可能性が高く、最終的には包括的な事業に対しての漏水検知システム提供が、ビジネス展開上必要となる。

イ）顧客

発注構造

包括的なUFW対策プロジェクトへのビジネス展開を対象とした場合、一般的には以下に示す発注構造への参画が必要となる。バンガロールで現在実施されている事業では、水道事業体（BWSSB）と直接契約を交わしている元請事業者が7年間程度の契約期間の中で、管路状態の調査、DMA構築、漏水調査、管路修繕まで一貫して実施し、所定の無収水率の改善を指標とした成果報酬型の契約を結んでいる。現在遂行中の3プロジェクトでは、元請事業者はL&T社（2件）及びSuez社（1件）が担っており、いずれも大型の浄水場の建設及び運営の実績が豊富な事業者である。元請事業者の要件として、上述のプロジェクト範囲全体に関する一定の技術力やプロジェクトマネジメント能力及びリスク管理能力が求められる。STSは現状では元請事業者としての要件を満たしていないことから、必然的に元請事業者に対して漏水調査の専門事業者としての価値提供が求められる。

図4-1　想定される発注構造

36 現地企業のコメント。漏水調査に限らず浄水場の建設・運営においても同様である。
37 受注者が、管路調査、DMA設定、漏水調査、管路修繕、モニタリングを実施し、所定の無収水率改善のパフォーマンス達成を求められる形態の事業。詳細はP.27参照。
顧客課題（契約顧客）

元請事業者に対する価値提供の前提として、元請事業者が抱える課題の把握が必要である。本事業では上述の元請事業者 2 社と、将来的に UFW 対策事業への参入を目指すインド企業 2 社へのヒアリング調査を行い、現地元請事業者の課題把握と提供価値を検討した。元請事業者のニーズとして、漏水調査を実施するための人材ノウハウ（ソフト）を有しており、より優れた調査機器（ハード）を求めている場合（A 社、B 社）と、人材・ノウハウを有していないことから、機器の購入のみでは漏水調査を実施できず、ソフトとハード両面の技術移転ニーズを有している事業者（C 社、D 社）が存在する。

L-sign は現状では完全にパッケージ化された製品に至っていないため、前者 2 社に価値を提供するのは難しい一方、後者の 2 社に対しては、L-sign を活用した漏水調査に関するソフトノウハウの提供（価値提供）の可能性がある。

<table>
<thead>
<tr>
<th>企業名</th>
<th>課題の有無／ニーズ</th>
<th>ニーズ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>機器</td>
</tr>
<tr>
<td>A 社</td>
<td>漏水調査についてはノウハウを有しており、必要に応じてフランス本社からの技術提供が受けられる</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>漏水調査をただちに効率化可能な技術についてはニーズあり</td>
<td></td>
</tr>
<tr>
<td>B 社</td>
<td>漏水調査についてはここ数年で人材育成を行い、20名規模の調査チームを組織している</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>現状は音聴と漏水探知機が主力であり、他に効率化可能な調査手法にニーズあり。</td>
<td></td>
</tr>
<tr>
<td>C 社</td>
<td>インド市場における水道事業の包括受託を視野に UFW 対策事業にも参入を模索</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>漏水調査についての知見がなく、他社との連携を通じてノウハウを蓄積したい</td>
<td></td>
</tr>
<tr>
<td>D 社</td>
<td>大口径管（主に導水管）の漏水調査を中心に事業拡大を模索中</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>小口径の水道管についての漏水探知技術ニーズを有する</td>
<td></td>
</tr>
</tbody>
</table>

出所）各社ヒアリング結果を基に作成
※各社については具体的な提携交渉を今後行う可能性があるため社名は伏せる。
顧客課題（最終顧客）

上述のとおり、UFW 対策事業への参入にあたっては元請事業者との連携が必要である。一方 UFW 対策事業期間（約7年）終了後の民間企業の関与については現状明確な方向性が示されていない。UFW 対策事業の終了後は BWSSB の管理による直轄での漏水管理が実施される方向性と、管路管理の包括委託へと委託範囲を広げる方向性が考えられるが、いずれの場合においても BWSSB における漏水管理体制の大幅な拡充が必要である点では変わりない。BWSSB では 2015 年に Active Leak Management BEST PRACTICE GUIDE を刊行し、これまでの受動的ではない能動的な漏水管理に向けた取組を推進する方向性を示している。また同書の中では下記に示す BWSSB 内での体制整備についても言及している。このような最終顧客の体制整備については JICA 技術協力プロジェクト等における支援の可能性が考えられ、長期的な漏水管理体制の整備、ひいては長期的な事業基盤の構築につながるものである。

図 4-2 能動的な漏水管理に向けた組織体制案
出所）BWSSB(2015) Active Leak Management BEST PRACTICE GUIDE
第 7 回現地調査において把握した課題として、現行の UFW 対策プロジェクトについては、スキームとして成果保証型の形態をとっており、請負事業者は UFW 率 16%を達成しない場合、ペナルティを BWSSB に対して払う。BWSSB によると 2016 年 6 月現在で、現行のプロジェクトについては目標 UFW 率を達成することが困難との見通しを得ている。また、BWSSB のコメントとして、現行事業の請負事業者が漏水検知を行うのに十分な技術力に欠いていることがその要因であるとの指摘があった。一方で、プロジェクト開始段階において請負事業者の技術力は一定程度把握可能であると考えられることから、達成可能な目標として 16%がなぜ設定されたのかについて確認を行ったところ、これはインド国都市開発省公衆衛生・環境技術中央機構（CPHEEO）が定めたマニュアルに基づいて設定した目標であることが明らかになった。

BWSSB の評価では、現行の UFW 対策プロジェクトは効果的な漏水検知が実施されておらず、請負事業者が与えられた予算の中で可能な限り管路入替えを実施する、管路工事プロジェクトとなっている。このため、2016 年 6 月段階では、本普及・実証事業を開始した 2015 年 3 月段階より、漏水検知に対する重要性の認知が高まっている状況にある。

ウ）競合製品・代替製品

現地における導入技術

漏水調査実施の最も基礎的な方法は、音聴棒による戸別音聴と漏水探知器による路面音聴の組み合わせによる調査である。漏水調査員は調査対象地域における各戸の水道メーターや仕切弁から音聴棒を用いて漏水音の捕捉を試みるか、漏水探知機を用いて地中に敷設された水道管からの漏水音の補足を試みる。音の判別にあたり漏水調査員は熟練している必要があるとともに、調査対象地域の全エリアに足を運ぶ必要が生じる。このような戸別音聴・路面音聴の組み合わせはインドでも現在広く実施されている一方、漏水検知の効率性を向上させるための技術開発が実施されている。現在実用化されている新技術を大別すると、①調査対象地域から漏水発生エリアを絞り込むための技術（スクリーニング技術）、②絞り込まれたエリアの中で漏水箇所を特定する技術（箇所特定技術）、③上記両方に対応する技術の 3 種類に分けられる。事業者へのヒアリングの結果、バンガロールで実施中の UFW 対策事業においては、配水管（概ね 300mm 以下）・給水管を対象とした場合に以下の 3 種類の新技術が用いられていることが判明した。各技術の概要と特性を以下に示す。
表 4-3 バンガロール UFW 対策事業において導入されている新技術

<table>
<thead>
<tr>
<th>技術名</th>
<th>概要</th>
<th>技術の特徴・実用化状況</th>
<th>参考写真</th>
</tr>
</thead>
<tbody>
<tr>
<td>相関式漏水探知器（Leak Noise Correlation）</td>
<td>漏水箇所を挟む2地点にセンサーを配置し、漏水点から各センサーまで伝播する漏水音の時間差から位置を算出し特定</td>
<td>②漏水箇所特定技術
実用化○：管材種別・管路延長を正確に入力できれば正常に機能</td>
<td></td>
</tr>
<tr>
<td>漏水音ロガー（Noise Loggers）</td>
<td>漏水音を捕捉するセンサーを複数個所に設置し、一定エリアを対象に漏水を監視</td>
<td>①スクリーニング技術（相関式検知機能を有するものは②漏水箇所特定も可能）
実用化×：管路が満管状態である必要があり時間給水エリアには不適</td>
<td></td>
</tr>
<tr>
<td>ガス式（Gas Injection Method）</td>
<td>管路にヘリウム等のガスを注入し、ガスセンサーにより地表面に漏出するガスを捕捉</td>
<td>③スクリーニング・漏水箇所特定の両方に対応
実用化×：管路の気密性が不十分であり正常に機能しない</td>
<td></td>
</tr>
</tbody>
</table>

出所）L&T, Suez社へのヒアリングを基に作成

● 現地における導入システム・工法との比較

上述の通り、バンガロールでは、相関式漏水探知器以外の新技術は十分に活用されていないのが現状である。このため、従来型の戸別音聴調査と路面音聴調査の組み合わせによるスクリーニング調査を実施した上で、同様の方法でさらに漏水箇所の特定を行うか、利用可能な場所については相関式漏水探知器が活用されている状況にある。つまり現状では、スクリーニング調査について、バンガロールの給水環境（時間給水、低水圧）に対応した技術が存在しない。本事業において一定程度の L-sign の対応可能性が確認されていることから、スクリーニング調査において L-sign を活用し、当社の有するソフトノウハウにより技術の適合性を補完することで、従来型の工法と比較した効率化が可能となり、比較優位性が確保できる。

② ビジネス展開の仕組み

● 想定される事業モデル

インドにおける漏水検知システムの展開にあたっては、最終的には元請事業者との連携による UFW 対策事業への参入を想定する。しかしながら、現段階で直ちに参入するのは困難であることから、前段階として現地の連携先の獲得や STS が現地で漏水調
査業務を実施するための体制の構築（人材の獲得や事務所設立等）の準備を主眼とした事業展開を行い、本格参入におけるリスクを低減させる。具体的には以下のステップにより事業展開を実施する。

<table>
<thead>
<tr>
<th>事業モデル</th>
<th>内容</th>
<th>狙い</th>
</tr>
</thead>
<tbody>
<tr>
<td>①パイロットプロジェクト</td>
<td>バンガロール市内の特定エリアを対象として、漏水調査のパイロットプロジェクトを実施。元請事業者と連携した実施。</td>
<td>現状プロジェクト実施企業との漏水発見率のパフォーマンスの違いを明確に示すことで発注者の評価を得る。</td>
</tr>
<tr>
<td>②人材育成サービス</td>
<td>元請事業者を対象として、将来的な協業を前提とした漏水調査員の育成支援を行う。育成にあたってはSTS横浜本社にコア人材を招聘し育成を行う。</td>
<td>大規模エリアにおける漏水調査に対応しうる人材育成を実施。</td>
</tr>
<tr>
<td>③BWSSB体制構築支援</td>
<td>最終顧客であるBWSSB向けに継続的な漏水管理体制構築の支援コンサルティングを実施。</td>
<td>最終顧客の能力向上を行うことで、漏水調査に関する長期的な発注体制を整備し、漏水調査に関する予算の定常化。</td>
</tr>
<tr>
<td>④元請事業者と連携したUFW対策事業実施</td>
<td>バンガロール上下水道事業フェーズ3におけるUFW対策事業へ参画し元請事業者と連携して漏水調査部分を担当。</td>
<td>最終的な事業ゴールであり、本事業経験を通じてインド他都市への展開を狙う。</td>
</tr>
</tbody>
</table>

● 企業間連携

連携を行う元請事業者については、表4-2に示した4社のうち、STSとの連携意向のある2社を対象として第3回現地調査において企業訪問した。このうち1社とは、プロジェクトサイトの視察等を含めた情報交換を第4回現地調査以降継続し、第8回現地調査では、以下に示すパイロットプロジェクトについて共同でBWSSBへの働きかけ、事業化を行うことで概ね合意した。

● ①パイロットプロジェクト

第4回現地調査において、BWSSBよりL-sgnを活用した漏水調査に関するパイロットプロジェクトの打診があった。第6回現地調査において発注仕様案を提出し、第8回現地調査において協議を行った。当初の想定では、パイロットプロジェクトにおいて日本でSTSが実施している業務と同様に、一定の作業工数に対するBWSSBの支払いを想定していたが、BWSSB側より現行のUFW対策プロジェクトにおける課題点（漏水検知が十分にできていない）を踏まえ、漏水検知の結果に応じた支払いを行う

105
う新しいスキームの要望があった。つまり、通常日本で実施される漏水検知業務では、Xkmあたりの人件費や諸経費を合算した金額に関する契約を行うのに対して、漏水検知の数や漏水検知箇所からの漏水総量に応じて支払うスキームとするものである。

上記を踏まえ、本普及・実証事業の最終報告を行う第10回訪問においては、前述の現地企業とのスキームに関するすり合わせを十分に行い、実現可能な形で提案を行った。なお、完全な成果報酬型とすることは事業の採算性、リスク管理の観点から望ましくないため、一定水準までの固定金額の支払いと、一定水準以上についての成果報酬型の組み合わせのスキームの提案が適当であると考えられる。

以下のスキーム案では、BWSSBと提携企業が請負契約を締結する。請負契約の中で、漏水調査において発見した漏水量又は漏水箇所に対する支払い額と、一定以上の漏水発見による漏水防止量から算出されるボーナス報酬の額を規定する。また、STSは提携企業と別途請負契約を締結し、提携企業がBWSSBとの契約で提供するサービスに係る支援として、技術者派遣に関する直接経費と、BWSSB・提携企業間での成果報酬の一定金額を得ることを規定する。

図4-3 提携企業との連携によるスキーム案

上記スキームについて、提携企業との調整の上、早期にBWSSBに対して提案を行う。

● ②人材育成サービス

元請事業者とのパイロットプロジェクトを通じた連携と同時に、元請事業者のコア人材を対象とした人材育成サービスを実施する。具体的な内容については相手企業のニーズに応じて設計を行う。
③BWSSB体制構築支援

BWSSBにおける継続的な漏水管理の実施のためには、調査自体は民間企業への発注を前提とした場合でも、組織全体での認知と基礎的なノウハウの蓄積は必須である。組織体制の整備を行うための支援について、コンサルタントの立場で関わることを想定する。

なお、本業務実施にあたっては現地及び日系のコンサルタントとの連携を前提とする。

④UFW対策事業実施

①及び②の取組を実施し、現地企業との協業体制を構築したうえで、最終的に①への参入を試みる。今後準備が行われる有償資金協力バンガロール上下水道整備事業（フェーズ3）においてL-signを用いた漏水検知システムが用いられるよう、本事業成果及びパイロットプロジェクトの実施結果等を踏まえたJICA等関係機関との調整も継続的に実施する。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>①パイロットプロジェクト</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②人材育成サービス</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWSSB向けパイロット実施</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>元請事業者向けの実施</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtoB、BtoG調査人材育成事業の横展開</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③BWSSB体制構築支援</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWSSB課題把握・準備</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWSSB向けコンサルサービス提供</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④UFW対策事業実施</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>次期円借款組成に関する関係機関との連携</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFW対策事業の実施（〜2024年）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>企業間連携</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>提携交渉協力MOU締結・プロジェクト毎連携</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STS現地法人設立 or合弁企業設立</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図4-4 ビジネス展開計画・スケジュール（案）

③ビジネス展開可能性の評価

本普及・実証事業の結果を踏まえたビジネス展開について、事業終了後就直ちに事業化を行う見通しは立っていない。このため、現地提携企業との連携により、前述の①～④のステップを踏んで段階的な展開を進める必要がある。

市場環境からは、漏水対策に対する社会的な課題は大きく、水道局の漏水対策に対する期待が大きいものの、現段階では水道局側に定期的な漏水調査を行う体制・予算が整備されておらず、直ちに受注につながる状況にはなっていない。一方で、BWSSBの
実施している現行の UFW 対策事業の結果から、漏水調査の質の向上に対する必要性の認識は高まっている。このため、パイロットプロジェクトの実施を通じた働きかけにより、UFW 対策事業における漏水調査の重要性の認識を高めることで、数年後の展開可能性は十分に想定される。

(2) 想定されるリスクと対応

ビジネス展開上で認識しているリスクとその対応方策は以下の表のとおりである。

<table>
<thead>
<tr>
<th>リスク分類</th>
<th>リスク要因</th>
<th>対応方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>知財・法的リスク</td>
<td>・L-sign と同種製品の開発・販売</td>
<td>・L-sign について、我が国においては製品特許を取得している。インドにおいては未取得であるが、仮に取得したとしても権利侵害に対して有効な手立てを講じることは困難である。このため、L-sign のセンサー部分等、中核デバイスについて一層のブラックボックス化を図り、模倣されない対策を講じる。</td>
</tr>
<tr>
<td>事業採算</td>
<td>・想定ビジネスモデルに対して事業採算が合わない可能性</td>
<td>・入札体制の確認、当該製品・サービスの価格優位性、機材・資材の現地調達の可能性について確認する。・バンガロール市内において 3 つの無収水対策プロジェクトを実施する事業者への継続的な調査・提案を通じて支払意志額を確認し、当社としての海外事業の採算性を評価。</td>
</tr>
<tr>
<td>事業リスク</td>
<td>・常時給水でないことによる漏水調査時間の制約 ・バルブ間が長い、バルブからの漏水による漏水調査方法の制約</td>
<td>・水道事業体との連携により、漏水調査時間帯の調整を行う。・無収水対策プロジェクトと連携したバルブの改良。</td>
</tr>
</tbody>
</table>

(3) 普及・実証において検討した事業化による開発効果

普及・実証において検討した事業化が実現することにより、以下の開発効果が期待される。

① UFW 対策事業の効果向上

前述の通り、本普及・実証事業において検討した今後の事業化では、バンガロールで現在実施している形態の UFW 対策事業への参入を想定している。BWSSB によると、現状の UFW 対策事業では、コントラクターの漏水調査を実施する人スキルが不十分であると共に、人スキルの不足を補う技術が存在していないことから、漏水調査ではなく管路の入替に重点が置かれており、結果として所定の UFW 率を達成できていない。本普及・実証において検証された L-sign を活用した漏水監視及び検知の方法を現地企業との連携のもと実施することで、現地の事業者が発見できない漏水を特定できることが可能である。これにより、現行で実施しているプロジェクトの成果を上回る成果を得ることが可能となることから、バンガロールにおける UFW 対策事業の効果向上が期待できる。

また、UFW 対策事業の発注者である BWSSB の幹部及び現場レベルの双方に対して、漏水調査に関する基礎的な考え方及び技術について研修等を通して知識の移転を行った。
ことから、UFW対策における漏水調査の重要性についての認識が高まり、今後のUFW対策事業の効果向上も期待される。

② インドにおける漏水調査技術の普及
インドにおいては現在我が国と同等レベルの漏水調査を実施する民間企業が存在しない。事業化にあたっては、インド現地企業との提携を通じた技術移転が前提となることから、インド民間レベルでの漏水調査技術の向上につながる。発注者である水道局の意識向上とともに、調査の主たる担い手となる民間事業者の育成につながり、インドにおける漏水調査の実施能力の向上が期待される。

（4）本事業から得られた教訓と提言
① 事業設計
ア）研修の設計
本事業では、研修の対象者としてEast-1地区のAE（アシスタント・エンジニア）3名を対象者として設計したが、案件開始後のCPからの要望としてAEのみならずチェアマンを筆頭とした幹部への1日程度の短期間でのデモンストレーションや研修の実施を複数回求められた。背景として、CP担当者としてBWSSB内において漏水調査の必要性をより上位のレベルへ打ち込むことのニーズが存在したことから、研修の設計にあたっては漏水調査の実施に係る技術的な側面のみならず、幹部の意識向上に関する研修も範囲に入れることが適当であった。

② 事業実施
ア）機材
本事業では複数回に渡り漏水検知機材の輸送及び通関を実施したが、特に初回の輸送・通関にあたっては多くの時間と労力を要することとなった。CPの税関への働きかけにより大きなトラブルは回避されたが、インドへの輸送経験が豊富な運送会社の選定、CPからの事前の通関への調整等の重要性が明らかとなった。2回目以降の通関にあたってはこれらの留意点を踏まえたことによりスムーズな輸送及び通関が可能となった。スムーズな輸送及び通関は、事業スケジュールにあたって極めて重要であることから、本事業における経緯については他案件においても共有されることが望ましい。

38 主にP.58に記載
イ）技術の改良・実証
本事業では、2015年6月の現地訪問時に確認した作動状況を基にした機器設定により製造したL-signについて、2015年9月以降大規模に設置し実証を実施した。しかし、2015年9月及び11月の実証において、モンスーンによる雨の影響等、現地の状況が2015年6月時点で確認した内容と異なったことから、改めて感度の調整等が必要となり、スケジュールの遅延につながった。このため、機材の動作環境の事前確認については、スケジュール制約上限られた機会を活用する必要があるものの、実証の開始後の軌道修正についてより柔軟に対応できる体制を予め想定することが重要である。

ウ）現地職員の研修
本事業では、East-1地区においてAEクラスの現場職員3名に対して漏水調査に関する技術研修を実施した。3名は概ね意欲的に研修を受講したものので、通常業務と平行して研修を受講せざるを得なかったため、常時3名が同時に受講することは困難であった。CPに対しては研修実施期間中の専念を申し入れ、同意を得たものの、現場レベルまで調整は実施されず、受講したAEに大きな負担を強いることとなった。加えて、BWSSBの体制として、現状では漏水調査を専門で対応する部局が存在しないことから、研修を受講した職員が今後その知見・技術を継続的に活用する点で課題を残すものとなった。2016年7月には、STSよりBWSSBチェアマンに対してBWSSB内において漏水及び無収水を管轄する部局の設置を提言し、チェアマンは前向きな姿勢を示したことから、今後各方面から継続的な働きかけを行うことが望ましい。

③BWSSBの今後の方針・方向性
BWSSBはUFW対策の一環として、漏水対策部署の設置を決定した。現段階では部署責任者（EE）の選定を終えており、今後組織体制を構築していく予定である。

ア）UFW対策部署の体制整備
各Subdivisionに勤務している職員がUFW対策を行う事を想定し、本事業を進めてきたが、各Subdivisionに勤務しているAE/JEは既に多くの業務を抱えており、Subdivision毎に現有の職員が漏水検知を継続的に実施するのは難しい状況にある。そのことから、UFW対策を行う専門部署を設置する方針がBWSSBより示された。

イ）人材育成を目的とした研修の実施
BWSSBとしてはUFW対策部署のエンジニアに対する研修について、早い段階で実施したい意向があり、STSよりUFW対策部署についての部署構成や業務概要、構成人員の研修についてアドバイスが欲しいとの要望があった。これを踏まえて、EEに対しては業務

39 East-1地区における給水状況の管理、住民からの問い合わせ対応等
管理者としての幅広い見地での研修が必要なので、訪日研修を行う事が望ましいと考える。訪日研修を実施すれば、分野毎の専門家から直接的に講義を受けることが可能となるため、より詳細な研修が実施可能であると考える。AE/JE に対しては現地の状況に応じた漏水調査手法を学ぶことが重要であると考える。現地の低水圧下での漏水音、漏水が雨水管や汚水管に流入している場合等、現地特有の環境下で講習と現場研修を行う事が望ましいと考える。BWSSB は一定の自己予算を支出する用意もあるとの事であり、人材育成に対する関心は高いものと思われる。STS としては EE に対する訪日研修、現地における AE/JE に対する研修の双方についてカリキュラムを作成することが可能である。

ウ）漏水管理対策

BWSSB としては、管路環境に応じた 3 つの方向性があると考えている。

（1） 管路が古く状態が悪いエリアについては漏水調査ではなく、管路の取替えを中心とした施策

（2） 管路敷設からの経過年数が 20 年以内のエリアについては、漏水調査を実施

（3） 敷設からの経年が浅いエリアや UFW 対策プロジェクトが完了したエリアについては、予防的な施策

（2）及び（3）のエリアについては一旦対策を実施した後に漏水率を維持するための施策が極めて重要であり、BWSSB としては、（2）及び（3）のエリアについて STS の技術を活用したソリューションの提供に期待を示している。
添付資料

・給水管用 L-sign 設置マニュアル（L-sign_Installation_Manual）
・給水管用 L-sign モニタリングマニュアル（L-sign_Monitoring_Manual）
・漏水調査マニュアル（Leak Detection Manual）
・研修テキスト
Contenst

0. Preparation

1. Initialization

2. Installation

3. Documentation

In addition to this manual, see also the uploaded movie for the details

https://www.youtube.com/watch?v=i3cuXnnZM2Y
0. Preparation

0.1 Preparation of the L-sign and necessary equipment

- Check all the necessary equipment for the installation
- Put necessary No. of L-sign to the carry bag
 - Approx. 50 L-sign per day for one carry bag
1. Initialization

Reset and restart L-sign before installation.

1-0. Prepare the Restart Stick and L-sign

1-1. Touch the central part of L-sign with the restart stick for about 3 seconds

1-2. L-sign will start to blink rapidly, then remove the stick from the L-sign

1-3. L-sign will stop to bling and the LED will be off at the end, then initialization is finished
2. Installation

Install the L-sign to a water meter

2-0. Prepare L-sign, smartphone and a nipper.
2. Installation

Install the L-sign to a water meter

2-1. Take photo of the L-sign before installation

The serial number of the L-sign should be in the photo

Sample of the photograph
2. Installation

Install the L-sign to a water meter

2-2. Install the L-sign by using the chain

2-3. Cut the remaining part of the chain by using a nipper
2. Installation

Key Points on Installation

Good Example

![Good Example Image]

- L-sign is fastened tight
- L-sign is installed before the water meter

Bad Examples

- Unstable installation
- Contact area is not enough
2. Installation

Install the L-sign to a water meter

2-4. Take photo of the installed L-sign

Situation of the installed L-sign have to be confirmed from the photo.

Sample of the photograph
3. Documentation

3-1. Fill out the serial No, Road name, House No to the L-sing Installation Check Sheet.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Road name</th>
<th>House No</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Documentation

3-2. Take the photo of the list (automatically upload to the google drive)
L-sign Monitoring Manual
Agenda

1. Preparation

2. Patrol procedure
 A) Check of the L-sign
 B) Record of the result

3. Conduct detailed water leakage detection
1. Preperation

(1) Area Identification
Clarify the working area for each personnel to work simultaneously in two or more persons.

(2) Frequency and schedule of the patrol
The patrol of the L-sign should be conducted as frequently as every 7 days.

(3) Preparing check list paper
Check list,
(1) How to check the light
Check if the L-sign is blinking or not.
When bright in the circumference of the installation part, place a hand over the L-sign to check appropriately.
→See a video file for the state where L-sign is blinking.
2. Patrol procedure B) Record of the result

(1) Using check list to record the status of L-sign

I. When the L-sign blinks on and off:
Put a checkmark to the “Patrol” and “Blink” box in the check list, and write down the address L-sign installed.
In addition, water leakage detection and reset of the L-sign is required. →See “3. Conduct detailed water leakage detection”

II. When the L-sign does not blink on and off:
Put a checkmark to the “Patrol“ box in the check list.
3. Conduct detailed water leakage detection

(1) Conduct water leakage pin-pointing survey
→ See “water leakage investigation manual”

(2) Repair the water leaked supply pipe
→ See “repair manual”

(3) Reset the L-sign
After a part of water leakage is found by L-sign, it is required to reset the L-sign in order to turn off the blinking light. (When it detected sound of water leakage, it will start to blink on and off again.)
A magnet stick is used to reset L-sign.

I. Put the magnet stick on the center of L-sign for 5 seconds.

II. When L-sign blinks on and off, move the magnet stick away from the L-sign.
After turning on for 1 second, the L-sign will be operational again.
Leak Detection Manual

Suido Technical Service (STS)

Mitsubishi Research Institute, Inc.
Index

1. NRW Management .. 1
 1.1 Definition of NRW .. 1
 1.2 Components of NRW ... 1
 1.3 NRW Reduction Measures and its Importance .. 2
 1.4 NRW Reduction Measures .. 2
 1.5 Procedure for NRW Reduction ... 3

2. Basic Concept of Leak Detection .. 4
 2.1 Components of physical losses ... 4
 2.2 Main Causes of Physical Losses ... 6
 2.3 Reduction Measures for Physical Losses ... 6

3. Leak Detection Techniques ... 7
 3.1 Utilizing DMA .. 9
 3.2 L-sign .. 14
 3.3 Sounding Survey .. 27

4. Repair of Leakage ... 32
 4.1 Introduction .. 32
 4.2 Repair of Cast Iron Pipe · Ductile Iron Pipe (CIP · DIP) ... 33
 4.3 Repair of High Intensity Chlorinated Polyvinyl Pipe (HIVP) ... 36
 4.4 Repair of Stainless Steel Pipes ... 36
 4.5 Repair of Polyethylene pipe .. 37
 4.6 Repair of water leakage from joint .. 42
1. NRW Management

1.1 Definition of NRW

NRW (Non-Revenue Water) is defined as the amount of water which is not billed and does not earn revenue. This is the difference between the system input and billed authorized consumption in volume (m3).

\[
\text{NRW} = \text{System Input Volume} - \text{Billed Authorized Consumption}
\]

Where;
- System Input : The amount of water produced for distribution
- Billed Authorized Consumption : The amount of water billed to consumers

NRW ratio is the percentage of the amount of water not billed against the total amount of water produced for distribution.

\[
\text{NRW Ratio(\%)} = \frac{\text{System Input Volume} - \text{Billed Authorized Consumption}}{\text{Input Volume}} \times 100
\]

Note; the amount (in monetary term) that was billed but not collected should not be counted as NRW

1.2 Components of NRW

The volume of treated water that does not earn revenue is Non-Revenue Water. Components of NRW are described below:

- **Real Losses**: these are Physical Losses of water through leakages and bursts in distribution pipes and services pipes and overflow / leakages from water reservoirs;
- **Apparent Losses**: these are called “non-physical losses” or “Commercial Losses” of water due to illegal connections (or water theft), meter errors, meter reading inaccuracies and unmetered connections.
- **Unbilled authorized consumption**: This is water taken by registered customers for public and institutional uses and is not billed for. This includes water for fire-fighting, backwash and public fountains.
1.3 NRW Reduction Measures and its Importance

Non-Revenue Water (NRW) Management consist of knowing what is happening to water supplied and taking corrective measures to reduce the loss of water or revenue. NRW management offers the following benefits;

- Increased Revenue: By reducing causes of NRW such as water theft, meter inaccuracies and controlling leakages, water that was previously unbilled will be earning revenue.
- Sustains water supplies and increases the protection of potable water supply
- Reduces unauthorized usage.
- Reduces potential claim due to water damage
- Defers capital expenditure with respect to new water sources, treatment plans and distribution facilities.
- Reduces the cost of energy associated with water treatment, pumping, treatment and thus contribute to reducing global warming.
- By controlling NRW, precious water resources can be preserved.
- Improves public awareness of water value.

1.4 NRW Reduction Measures

In India, water is being lost through not only real losses (physical losses) but also apparent losses (commercial losses) such as water theft, meter error, meter reading error and unbilled authorized consumption.

Therefore NRW reduction measures in Bangalore should take into consideration all these additional factors besides leakage.
1.5 Procedure for NRW Reduction

Procedures for NRW reduction will vary depending on the existing conditions of each water service provider.

To begin implementing NRW reduction measures, each water service provider must first understand its existing position in regards to its NRW.

Table 1-1 shows the recommended NRW reduction measures by stages of NRW ratio. For each stage, the approximate NRW ratio is given with the prioritized NRW reduction measure required for that stage. This table will allow the water service provider to check what stage it is at, as regards to the Table, and plan for the prioritized measure.

In Bangalore, the measure listed in 1st ~ 3rd stage will be the target because NRW is allegedly at highest about 50%.

<table>
<thead>
<tr>
<th>Stage</th>
<th>NRW Ratio</th>
<th>Main Purpose of NRW Reduction Measure</th>
<th>Recommended NRW Reduction Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>More than 35%</td>
<td>To find out visible leakage (surface leakage)</td>
<td>Fundamental leak detection, pipe pressure control</td>
</tr>
<tr>
<td>2nd</td>
<td>35% - 25%</td>
<td>To find out non-visible leakage (underground leakage) and theft water</td>
<td>Training workers, correct mapping of pipe network</td>
</tr>
<tr>
<td>3rd</td>
<td>30% - 25% (overlapping 2nd)</td>
<td>To prevent reoccurrence of leakage</td>
<td>Replacement of aged pipes</td>
</tr>
<tr>
<td>4th</td>
<td>25% - 15%</td>
<td>To implement thorough NRW management</td>
<td>Acceleration of pipe replacement</td>
</tr>
<tr>
<td>5th</td>
<td>15% - 10%</td>
<td>To finish up NRW management</td>
<td>Completion of pipe replacement</td>
</tr>
<tr>
<td>6th</td>
<td>Less than 5%</td>
<td>To maintain minimum NRW ratio</td>
<td>Constant monitoring</td>
</tr>
</tbody>
</table>

Ref: Mr. Shozo Yamazaki, Non-Revenue Water Management, 2011
2. Basic Concept of Leak Detection

2.1 Components of physical losses

Physical Losses can be divided into visible leakage (surface leakage) and non-visible leakage (underground leakage). Surface leakages occur in areas with high water pressure, whereas underground leakages occur in areas with low water pressure and therefore difficult to detect. In general, there are more occurrences of leakages in service pipes compared to distribution pipes.
Generally, leakages start off as a small leak that develops into a medium to a large sized leak as time passes. Small sized leaks may remain undetected underground for a long time. In cases of medium sized leaks, some may stay undetected but others will surface to the ground. Most large sized leaks will be detected on the ground surface within a few days of the leak up to several months. Some leaks may remain underground for years or forever. This all depends on the surrounding conditions of the laid pipes such as the condition or type of soil, presence of underground structures, and pipe material used.

Repairing surface leakages alone cannot decrease leakage ratio when the leakage ratio is less than 30%. In order to decrease this ratio, underground leakages must be detected and repaired. Underground leakages can go without repair since they are difficult to detect, and underground leakages often overwhelmingly exceed the number of surface leakages by more than ten times. Thicker pavements on roads usually indicate a higher ground water level, which indicates lower water pressure in the buried pipes. Detection of underground leakages becomes more difficult as depth of buried pipes increases.

When leakages occur, extending the area of repair around the point of leakage will decrease recurring leakages around the same area. Planning for replacement of pipes must take into consideration the number of leakage repairs in the pipe and the age of pipes.
2.2 Main Causes of Physical Losses

Leaks can occur anywhere in the pipeline due to various factors such as age of pipes and traffic loads on the road. Table 2-1 shows the factors that can cause leakages (physical losses).

<table>
<thead>
<tr>
<th>Causes of Physical Losses</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poor Quality of pipe material</td>
</tr>
<tr>
<td></td>
<td>Technicality in pipe laying or poor workmanship</td>
</tr>
<tr>
<td></td>
<td>Poor Conditions</td>
</tr>
<tr>
<td></td>
<td>Environment of underground pipes</td>
</tr>
</tbody>
</table>

2.3 Reduction Measures for Physical Losses

Table 2-2 shows measures to reduce physical losses.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Work</td>
<td>Pipe Mapping</td>
</tr>
<tr>
<td></td>
<td>Zoning</td>
</tr>
<tr>
<td></td>
<td>Taking Measurements</td>
</tr>
<tr>
<td></td>
<td>Leak Detection</td>
</tr>
<tr>
<td></td>
<td>Leak Repair</td>
</tr>
<tr>
<td>Pipe Replacement</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
</tr>
<tr>
<td>Water Pressure Control</td>
<td>Pressure equalization (Refer to Chapter 9)</td>
</tr>
<tr>
<td></td>
<td>Setting up Pressure Control facilities</td>
</tr>
<tr>
<td></td>
<td>Pressure Control at pumping station</td>
</tr>
</tbody>
</table>
3. Leak Detection Techniques

This section describes the techniques for leak detection and location, and suggests a typical leak detection process in Bangalore.

There are a number of techniques to detect where leakage is taking place in the network, but in this section, we focused on 3 techniques which are the most general and important techniques applicable to Bangalore among other techniques.

- **Step 1, DMA (District Meter Areas)**
 - Leakage monitoring in zones or sectors

- **Step 2, L-sign**
 - Sound monitoring system developed by Suido Technical Service Co. Ltd

- **Step 3, Sounding surveys**
 - A basic listening stick, ground microphone, leak noise correlator

Other techniques, such as gas injection method, are not suitable to Bangalore because NRW ratio is so high that a tracer gas diffuse and leaks cannot be pinpointed by gas.

Figure 3-1 describes a typical leak detection flow utilizing abovementioned 3 techniques and Figure 3-2 suggest a typical detection process in line with the flow. Each process is specifically described in the next chapter.

<table>
<thead>
<tr>
<th>Step</th>
<th>Tool</th>
<th>Confirmation</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>DMA</td>
<td>Existence of leaks</td>
<td>- Establishing DMA boundary
- Step testing to confirm leakage</td>
</tr>
<tr>
<td>2</td>
<td>L-sign</td>
<td>Area of leaks</td>
<td>- Installation and monitoring of L-sign
- Narrowing down the suspected leakage area by L-sign</td>
</tr>
<tr>
<td>3</td>
<td>Sounding Equipment</td>
<td>Point of leaks</td>
<td>- Pinpoint the leakage by a basic listening stick, a ground microphone, a leak noise correlator</td>
</tr>
</tbody>
</table>

* Not essential
Figure 3-2 A Typical Leak Detection Procedure

1* Advance preparation

2

Day 1

Reset

Day 2

Water supply (>4hrs)

Day 3 *While supplying water

No Leakage

Patrol
Blinking of L-sign?

YES

Any sound through sounding stick? (With closing valves)

NO

Suspected leakage

YES

NO

DMA testing

3

Advance preparation

Post treatment

* Not essential

Repair leaking pipes

* Not essential
3.1 Utilizing DMA

3.1.1 DMA concept

The technique of leakage monitoring requires the installation of flowmeters at strategic points throughout the distribution system, each meter recording the flows into a discrete area with a defined and permanent boundary. Such an area is called a District Meter Area (DMA).

The design of a leakage monitoring system has two aims;
- To divide the distribution network into a number of zones or DMAs, each with a defined and permanent boundary, so that night flows into each district can be regularly monitored, enabling the presence of unreported bursts and leakage to be identified and located.
- To manage the pressure in each district or group of districts so that the network is operated at the optimum level of pressure.

It therefore follows that a leakage monitoring system will comprise a number of districts where flow is measured by permanently installed flowmeters. In some cases the flowmeter incorporates a pressure-reducing valve.

Depending on the characteristics of the network, a DMA will be;
- supplied via single or multiple feeds;
- a discrete area (i.e. with no flow into adjacent DMAs);
- an area which cascades into an adjacent DMA

Figure 3-3 shows a typical DMA design, including the monitoring hierarchy upstream and downstream of the DMA.

![Figure 3-3 Typical Metering hierarchy and DMA design options](image-url)
3.1.2 Step-testing

This technique has been used by the UK water industry for many years. It involves some advance work to design step test areas and to identify sections of pipework and valves. A flowmeter is installed on the input main to each area. The principle of the technique is to systematically reduce the size of the area by closing valves on each section of pipe in turn, at the same time noting changes in flow rate at the meter. A large drop in flow rate indicates a leak in the section of pipe which has just been closed.

There are two main types of step-test. The traditional technique is to progressively shut valves, working back towards the meter, and then returning to open valves when the test is completed. This technique is less popular now because of interruptions to supply and the possibility of dirty water problems. A more recent technique, helped by improvement of flowmeter and data logger technology, is to use a series of short steps, isolating sections of the DMA for a short time only. This technique requires a remote meter reading device, either a radio or mobile phone, positioned at the meter. Flow rates are transmitted to the site operators, enabling them to see the results of the valve closure immediately, speed up the operation, and reduce the time the valves are left open. One man operation is also feasible, within the limits of health and safety guidelines (i.e. always two men operation at night).

This step-test principle is illustrated in Figure 3-4.

![Figure 3-4 DMA valved for step-testing](image-url)
(1) Schematic Procedure of Overall Step-testing Measurement

The procedure for step-testing is as follows;
The leak survey block should be completely isolated from adjoining blocks, and the survey block
must be divided into sub-blocks using gate valves. There should only be one flow meter for the leak
survey block, and water should be allowed to flow into each sub-block, one by one, by utilizing gate
valves.

![Figure 3-5 Schematic Diagram of Leakage Monitoring Block](image)

The volume of water flow is measured by the flow meter as shown in Figure 3-5.

(a) Measure the volume of minimum flow for overall area “A”
(b) Close Gate Valve 02 and measure the volume of minimum flow for “B+C”
(c) The difference between volume “A” and “B+C” is minimum flow volume of D, \(D = A - (B+C)\)
(d) Similarly, close Valve 01and measure the volume of minimum flow for “C”.
(e) It can be determined that the difference between “B+C” and “C” indicates the volume of
minimum flow of “B” \(B = (B+C) - C\)
(f) Then, volume of minimum flow for all could be determined.
(g) All measurements are recorded and compared to previous volume of minimum flow records.
These comparison can be found the abnormal flow and can be verify leakage occurrence.
(2) Detailed Procedure

1) Establishing a step-test area

- Determine the number of properties in the area.
- Determine the number of metered customers who use water at night.
- Estimate the number of unmetered non-domestic customers, taking note of those likely to use water at night (e.g. pubs, hotels, residential homes—see Sections 7.3 and 7.4).
- Check the condition of valves to be operated during the test.
- Allocate numbers to the valves and note if they are closed clockwise or anti-clockwise.

2) Plans

Prepare a plan of the step-test area to show:

- road names and layout of pipes;
- meter installations and valves;
- boundary valves (closed to isolate the area from the DMA);
- circulating valves (closed to remove loops, to create a tree and branch network);
- step valves (operated during the step-test);
- all other valves, not used during the test, to avoid opening in error (e.g. DMA boundary valves);
- positions and details of commercial customers, with an estimate of their night use (to help later analysis of step-test data);
- valve numbers, status (closed or open), and direction of closing.

3) Preparation for the test

- Consider a flushing programme to reduce water quality problems.
- Close as many valves as possible during the day without disrupting the customers’ supply.
- Close the remaining valves at night before starting the test.
- Take the initial night flow reading.
- Where possible, turn off large night users or premises with tanks that fill overnight.
- Read the meters of those users, which cannot be turned off, and subtract from night flow (install data loggers if practicable).
- Check that at-risk customers and those with special needs are not disrupted.
4) Step-test procedure

a. Isolation method

In this method, the sections of the area downstream of the closed valve are without water during the test.

- Close the circulating valves.
- Starting with the step valve furthest from the meter, close the valves in succession so that less and less of the area is supplied via the meter.
- If any step valve is not drop tight, there will be no change to the flowrate until the next valve is closed.
- Follow the sequence of closing valves right up to the meter, when the flow should be zero.

b. Close and open method

In this method, the valves are closed at each step but re-opened once the meter reading has been noted. This overcomes the disadvantage of the isolation method, which can inconvenience night users. However, if a burst is identified on one of the steps, care should be taken when restoring the supply to avoid aerated or discolored water.

c. Backfeed method

This method uses the same sequence of closing as the isolation method, but each time a valve is closed, another is opened behind it, starting with the boundary valves. This allows the water to backfeed from another part of the network, maintaining supplies to the area. However, while this method may have been acceptable in the early days of “waste metering”, when step-test areas were closed in specifically for a test, it may not be acceptable now, when DMA boundary valves should be kept closed to maintain the accuracy of DMA flow data.
3.2 L-sign

3.2.1 Overview

L-sign is an advanced water leak detector designed to identify the noise generated by water escaping from underground water pipes under pressure. One of its advantages is its simple usage: the device detects water leakage automatically and its LED lights flashes enable the operator to recognize a leak. The detector is already introduced to municipalities (local governments) in Japan by STS as well as its group companies.

![L-sign overview](image)

Figure 3-6 L-sign overview

The two types of L-sign work in different sphere, namely water service pipes and distribution pipes. Combination of the two L-signs covers water networks, which helps to reduce water loss. See the below pictures for the details.

![L-sign for service pipe (or house meter) installation](image)

![L-sign for distribution pipe (valves) installation](image)

Figure 3-7 L-sign for service pipe and distribution pipe
Advantages to use L-sign for service pipes are as follows: 1) not only confirms a water leak but also check the water meter; 2) not only investigates a leak in service pipes but also a part of distribution pipes. These strong points of L-sign enable users to find a water leak in buried water pipes around houses earlier without requiring special skills. As a result, the detector can reduce water loss (no revenue water).

Table 3-1 Conventional methods vs L-sign

<table>
<thead>
<tr>
<th>Detection of Water Leaks</th>
<th>Skill Level</th>
<th>Advantages and Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter listening</td>
<td>Mid</td>
<td>- Need to learn the technology
- Constraints of the investigation time</td>
</tr>
<tr>
<td>Distribution pipe listening</td>
<td>High</td>
<td>- Need to learn the technics
- Constraints of the investigation time</td>
</tr>
<tr>
<td>L-sign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection of leaks in water service pipes</td>
<td>Low</td>
<td>- Expertise is not required
- Detects a water leak automatically during water supply time
- Detects if water leakage recurs
- Accuracy improves with a high density</td>
</tr>
<tr>
<td>Detection of leaks in water distribution pipes</td>
<td>Low</td>
<td>- Expertise is not required
- Detects a water leak automatically during water supply time
- Detects if water leakage recurs</td>
</tr>
</tbody>
</table>
Table 3-2 Features of L-sign

- Simple installation
 Attached ball chains are used to install L-sign to water service pipes.

- Customization
 L-sign can be adjustable in order to use it different conditions.

- Equipped with a high performance sensor
 The built-in sensor reliably detects a leak noise.

- Economical
 L-sign can work for 5 years or longer without maintenance.

- Repeatedly detects water leakage
 L-sign supports multiple leakage detection.

- No special skills
 An operator or user can identify a leak visually by confirming a LED blink. Therefore, neither special skills nor expertise are required.

Table 3-3 Specifications of L-sign

<table>
<thead>
<tr>
<th>Type of L-sign</th>
<th>L-sign for distribution pipe</th>
<th>L-sign for water supply pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>Battery: Lithium primary cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Proof: JIS7 class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notice of Leakage: Flash of the LED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor: High Sensitivity Geophone Sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating Temperature: -20 to 70 degrees Celsius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-year operating life</td>
<td>5-year operating life</td>
</tr>
<tr>
<td>Size</td>
<td>Φ74.0 mm x 83.0 mm Body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Φ79.5 mm x 45.0 mm Protection Lid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Φ79.5 mm x 110.0 mm Body with Protection Lid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.0 mm - 47.0 mm x 63.4 mm</td>
<td></td>
</tr>
<tr>
<td>Place to be installed</td>
<td>Mainly gate valves</td>
<td>Mainly a water pipe around meter</td>
</tr>
</tbody>
</table>
3.2.2 Detection Mechanism

L-sign will find the constant sound as leakage sound every 4 hours, and will blink.

Figure 3-9 L-sign detection mechanism (Without leakage)

Figure 3-10 L-sign detection mechanism (With leakage)
3.2.3 Installation

(1) L-sign for Supply Pipe

Figure 3-11 L-sign for supply pipe installation flow
1) Preparation

Preparation for L-sign’s initialization and necessary equipment are as follows:
Step 1: Check all the necessary equipment for the installation (see the below photo)
Step 2: Put necessary number of L-signs to the carry bag (approx. 50 L-sign per day for one carry bag)

![Image of preparation equipment]

Figure 3-12 Preparation for L-sign installation

2) Initialization

Step 1: Prepare the Restart Stick and L-sign
Step 2: Touch the central part of L-sign with the restart stick for about 3 seconds
Step 3: L-sign will start blinking rapidly, then remove the stick from the L-sign
Step 4: L-sign will stop blinking and the LED will be off at the end, then initialization is finished

![Image of initialization process]

Figure 3-13 Initialization of L-sign
3) Installation

Step 1: Take photos of the L-sign before installation

Step 2: The serial number of the L-sign should be in the photo

Step 3: Take photos of the installed L-sign

Step 4: Install the L-sign by using the chain
Step 5: Cut the remaining part of the chain by using a nipper

![Cut the remaining part of the chain]

Step 6: Take photos of the installed L-sign. Situation of the installed L-sign have to be confirmed from the photo.

![Take photo of the installed L-sign]
It should be kept in mind that L-sign must be fastened tightly when stabilizing L-sign (Step 4 and Step 5).

Figure 3-14 Good example of stabilizing L-sign

Figure 3-15 Bad examples of stabilizing L-sign
4) Documentation

Fill out the serial number, road name, house number to the L-sing Installation Check Sheet.

5) Notification to the customers

In order to notify customers (users) of L-sign installation, distribute a notice of equipment installation like the one on the right.

Announcement

Installation Work of the Water Leakage Monitoring Device
to the House Meters

- BWSSB is installing now small sensor devices to your house meter.
- Free of fee.
- The device automatically detects underground water leakage from the house connection pipe and water supply main pipe.
- **Please don’t remove the device!**
- The device is financed by JICA (Japan International Cooperation Agency) for the pilot project of Japanese Technology and provided to BWSSB.
- The installation is free of charge for the households.

Thank you very much for your understanding and cooperation!

BWSSB East1 Subdivision Office

Figure 3-16 Example of notification of installation
(2) L-sign for Distribution Pipe

When installing L-sign for distribution pipe, “a chamber” for protecting and immobilizing L-sign will be needed.

A tube box (dashed line frame) is utilized for attaching a sensor on distribution pipe. The materials of the tube are PVC or HDPE and the diameter ranges from 100mm to 150mm. the tube boxes are covered by lids to keep clean. The tube boxes should be constructed in appropriate distance each other.

A concrete cover prevents the L-Sign from vibrating by vehicles. Also, the cover protects the device from soil and dust.

Concrete cover
25×25×5cm (picture)

Figure 3-17 L-sign for distribution pipe installation

Figure 3-18 Picture of a chamber
3.2.4 Operation

(1) Preparation

Assign a team to a specific working area. Each team consists of two or more staff, and the area for installation should be determined.

![Figure 3-19 Example of area for installation](image)

(2) Check

The following is the way to check LED blinking.
Check if the L-sign is blinking or not. If it is hard to see whether the LED is blinking or not due to outside brightness, then place a hand over the L-sign to check appropriately like the photo below.

![Figure 3-20 Check before installation](image)
(3) Record of results

When L-sign blinks on and off, the following steps are carried out.
Step 1: Put a checkmark to the “Patrol” and “Blink” box in the check list, and write down the address L-sign installed.
Step 2: Water leakage detection and reset of the L-sign is required.

![Figure 3-21 Record of results (When L-sign blinking)](image)

When L-sign does not blink on and off, the following steps are conducted.
Step 1: Put a checkmark to the “Patrol” box in the check list.

![Figure 3-22 Record of results (When L-sign NOT blinking)](image)

(4) Reset

If L-sign identified a water leak, the detector needs to be reset in order to turn the LED light off. As the photos below illustrate, a magnet stick is used to reset L-sign: 1) put the magnet stick on the center of L-sign for 5 seconds; 2) make sure the LED light is not blinking.
3.3 Sounding Survey

Sounding is the systematic survey of a DMA, listening for leak noises on valves, hydrants, stop-taps or at the ground surface above the line of the pipe. A sounding survey can be carried out either as the follow-up stage to a leak detection exercise, or as a blanket survey of the whole DMA.

Although blanket sounding can be inefficient in terms of focusing on leaky areas, it does provide a systematic examination of the DMA, such as when a DMA is first commissioned. It also allows other non-leak faults to be identified.

Sounding surveys are carried out using various types of equipment, such as:
- a basic listening stick;
- a ground microphone;
- a leak noise correlator (survey mode).

Figure 3-23 Utilizing sounding equipment after L-sign testing
3.3.1 Manual Listening Stick

Listening Sticks have been used for many years to simply detect leaks and are the origin of the electronic leak detectors which are widely used at present. Its mechanism is very simple and consists of steel rod and a small circular vibration plate which is connected to the end of the bar at a right angle. It is a kind of stethoscope without an electronic amplifier.

The leak noises can be heard by putting the tip of the bar to a meter or a pipe fitting, followed by listening on the vibration plate set at the top of the bar. This method can only confirm the existence or non-existence of leakage near the listening stick but cannot locate the leak point. Listening Stick requires a lot of skill to distinguish the real leak noises from other similar noises. The equipment is still widely used.

This technique is best suited for use on metallic pipelines between 75 mm and 250 mm and with pressures above 10 m (15 psi). The material or pipe size does not prevent the listening stick from being able to pinpoint the leak from the surface, but what does affect this is the type of leak, ground backfill material, pressure of the water leaving the pipe, background noise and the ability of the engineer.

![Figure 3-24 Manual listening stick](image-url)
3.3.2 Electronic Leak Detector

An electronic leak detector consists for the main unit, a sensor (pick up), a headphone and a remote control unit. Leak noises are detected by placing the sensor on the ground surface. An amplifier is used to amplify the noise. The operator wears a headphone to listen to the amplified noise. The leak noise will become clearer and louder as the sensor nears the leak location. Using this device requires skill and experience. As with the listening stick, this device is used mainly at night when there is less surrounding noise. Electronic Leak Detectors can greatly improve the efficiency of leak detection work.

Since ‘leak detection’ began, operators have been ‘listening’ for this leak noise using mechanical devices. Traditional listening sticks for detecting water leaks rely on only one of the user’s senses – hearing - the experience and skill of the operator is paramount and, at best, users are only ever able to detect leaks that produce loud noises.

However, it must be noted that not all leaks produce a noise audible to the human ear. Contrary to common perception, it is not always the largest leaks which are the loudest; often a large split in a water pipe will produce a less clear noise than a small hole. This can be particularly true in PVC, PE and MDPE pipe materials. For this reason, amplifying the noise with an electroacoustic microphone is becoming increasingly important to finding leaks, particularly in networks where these materials are increasingly used.

Modern electronics therefore provide the benefits of advanced sensor technology amplification and filtering to undertake this operation more effectively.
3.3.3 Digital Noise Leak Correlator

Leak noise correlation works by comparing the noise detected at two different points in the pipeline. Assuming consistent pipe material and diameter, the noise travels from the leak in both directions at a constant velocity, so that if the leak is equidistant between two sensors then these sensors will detect the noise at the same time. Conversely, if the leak is not equidistant, then the sensors will detect the same noise at different times – this difference in arrival times is measured by the correlation process.

The following picture and diagram illustrates this principle.

![Figure 3-26 Components of Digital Noise Leak Correlator](image)

![Figure 3-27 Principle of correlation](image)
The sensors are located on valves A and B (convenient access points for underground pipes), and as shown, the leak position is closer to A.

By the time an instance of noise from the leak has reached A, the same noise heading towards B has only travelled as far as point X. The distance from X to B causes a time delay \(t \) before the noise arrives at B. The correlation processing detects the delay \(t \) between the arrival of the noise at A and its arrival at B. If the velocity of sound is \(V \) and the distance between the loggers is \(D \), then as the distance from X to B = \(V \times t \).

Then \(D = (2 \times L) + (V \times t) \).

This equation may be rearranged to give \(L \), the distance from the nearer logger to the leak site:

\[
L = \frac{D-(V\times t)}{2}
\]

Correlation measures the time delay \(t \). The distance between the sensors must be determined by accurate measurement.

The sound velocity depends upon pipe material, pipe diameter and, to a lesser extent, on surrounding soil. Often, theoretical values of sound velocity are used and this is fine for a first approximation of the leak position. However, the velocity will vary due to many factors, and significantly so if a repair section of a different pipe material exists. Sound velocity must therefore be measured or, alternatively, multiple correlations carried out.

With all correlation techniques, practitioners should be aware that any noise source can result in a correlation peak and all results should thus be treated as ‘points of interest’ until confirmed. Confirmation is usually done using a ground microphone.

It is important to note that the capability of correlators is dependent on the pressure and level of background noise within the network. Furthermore, correlation can become impossible, because it requires two monitoring points, one on each side of the leak and the attenuation often causes leak signals to disappear at one or both points.
4. Repair of Leakage

4.1 Introduction

There are two cases in repairing a water pipe. In the case of a large amount of water leakage, a water pipe will be repaired after the water supply is stopped. In the case of a small leakage, the water pipe will be repaired without stopping the water supply. This manual explains both of the two situations in various type of the pipe material.

Table 4-1 A list of outer diameter size of water pipe (mm)

<table>
<thead>
<tr>
<th>Caliber</th>
<th>DIP (mm)</th>
<th>CIP (inch)</th>
<th>SP</th>
<th>ACP</th>
<th>HIVP</th>
<th>SSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 50</td>
<td>60.5</td>
<td>60.5</td>
<td>70.0</td>
<td>60.0</td>
<td>60.5</td>
<td></td>
</tr>
<tr>
<td>φ 75</td>
<td>93.0</td>
<td>95.3</td>
<td>89.1</td>
<td>95.0</td>
<td>89.0</td>
<td>76.3</td>
</tr>
<tr>
<td>φ6.3</td>
<td>118.0</td>
<td>122.2</td>
<td>114.3</td>
<td>124.0</td>
<td>114.0</td>
<td>114.3</td>
</tr>
<tr>
<td>φ14.</td>
<td>169.0</td>
<td>175.4</td>
<td>165.2</td>
<td>182.0</td>
<td>165.2</td>
<td>165.2</td>
</tr>
<tr>
<td>φ65.</td>
<td>220.0</td>
<td>229.4</td>
<td>216.3</td>
<td>242.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ42.</td>
<td>271.6</td>
<td>282.6</td>
<td>267.4</td>
<td>302.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ02.</td>
<td>322.8</td>
<td>335.8</td>
<td>318.5</td>
<td>360.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2 Repair of Cast Iron Pipe / Ductile Iron Pipe (CIP • DIP)

Cast iron is made of a high quality pig iron or a mixture of it with steel. Ductile iron is made of a melted pig iron with magnesium and so on, in which its graphite becomes a spherical shape and has flexibility, ductility and shock resistance.

4.2.1 Repair under no water supply

(1) Water Leakage in CIP (repair using special swivel joint ring)

In Japan, the CIP is used in very old water supply main installed more than 50 to 70 years ago. On the other hand DIP water main is mainly used in the current water pipe installation. The CIP is designed in “Inch” standard and DIP in “mm” standard. Thus in case of water leakage in CIP water main, it is necessary to combine CIP and DIP by using special swivel joint ring to combine two different size of pipes. http://ejje.weblio.jp/content/swivel+joint+ring

1) Working drawing

![Figure 4-1 CIP](image)

2) Materials of a special swivel joint ring

- Special swivel joint ring : 1
- Special pressing ring (for millimeters pipe) : 1
- Special pressing ring (for inch pipe) : 1
- Rubber ring for joint(mm+inch) : 2
- T-bolt, nut : 2pair

*these material is in one set.
3) Attention in a construction

1. Clean a pipe of the repair point well to remove mud, rust and so on.
2. Fit pressing ring and a machine ring in a pipe joining part beforehand.
3. Set a swivel joint ring on both millimeters pipe and inch pipe correctly.
4. Move a swivel joint ring and fix both pipes temporary.
5. Keep a gap uniformly between a swivel joint ring and pipe
6. Move rubber rings to a swivel joint ring, push them by a handle of hammer and fasten them with a T-bolt evenly.
7. Fasten both pressing ring screws evenly.
8. In the case of a cutting repair, prepare two pair of special swivel joint rings.

(2) Water Leakage in DIP Swivel joint ring

1) Working drawing

![Figure 4-2 Swivel joint ring]

2) Materials of a special swivel joint ring

1. Swivel joint ring : 1
2. Mechanical pressing ring : 2
3. K-type ring : 2
4. T-bolt, nut : 2pair

3) Key point on installation

1. Clean a pipe of the repair point well to remove mud, rust and so on.
2. Make joint space of a T-bolt approximately 1.0cm to avoid one side fastening.
3. In the case of a cutting repair, prepare two pair of special swivel joint rings
4. Though T-type swivel joint ring is 2mm thinner compared to that of K-type and its breadth is 300mm(φ75~250), there is no problem to use a K-type swivel joint ring in repairing a T-type pipe.
4.2.2 Repair under water supply

(1) Repairing clamp (CP, SP, SSP, VP, AP) <Product of Romac Industries Inc. US.> [http://eije.weblio.jp/content/swivel+joint+ring]

1) Working drawing (For caliber between φ13~φ900)

![Figure 4-3 Clamp](image)

2) Key point on installation

1. Clean a pipe of the repair point well to remove mud, rust and so on.
2. It is easier to set materials near repair point beforehand in the case of a repair without stopping water supply. Make sure the gaskets are not broken and piled up at final fastening phase.
3. There are two types of clamps and use CP, SP, SSP, VP clamps. However, use an ACP clamp in the case of an inch pipe.
4. Tightening torque is approximately 500-600kg f/cm3.

3) Dimensions list of clamps

<table>
<thead>
<tr>
<th>Caliber</th>
<th>Breadth</th>
<th>Caliber</th>
<th>Breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>φre</td>
<td>100</td>
<td>φ300</td>
<td>200 • 250 • 300</td>
</tr>
<tr>
<td>φ75</td>
<td>150 • 200</td>
<td>φ400</td>
<td>400</td>
</tr>
<tr>
<td>φ100</td>
<td>200 • 300</td>
<td>φ450</td>
<td>500</td>
</tr>
<tr>
<td>φ150</td>
<td>200 • 300</td>
<td>φ500</td>
<td>500</td>
</tr>
<tr>
<td>φ200</td>
<td>200 • 300</td>
<td>φ600</td>
<td>600</td>
</tr>
<tr>
<td>φ250</td>
<td>200 • 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Repair of High Intensity Chlorinated Polyvinyl Pipe (HIVP)

Water pipe HIVP is manufactured by adding modifier to vinyl chloride. This has no scale adhesion and easy to install. The material is strong against acid, alkali, and alcohol but weak in pesticide, paint, creosote, insecticide for termite control and so on especially petroleum-base. Yokosuka City use HIVP and RR joint.

4.3.1 Repair under no water supply

(1) Junction between vinyl pipe and joint (TS)

Clean off especially oil and water well from the inner part of the socket and outer part of the spigot by waste cloth, paint quick-dry adhesive thinly by brush not to trickle down and put the pipes in rapid. Do not wrench but insert the pipe, and keep pushing more than 20 seconds for φ40 or smaller and more than 30 seconds for φ50 or larger.

![Figure 4-4 Junction between vinyl pipe and joint](image)

4.4 Repair of Stainless Steel Pipes

Stainless has resistance to rust, where its name literary shown that “Stain” meaning rust or dirty and “Less” meaning small amount. Stainless steel contains 12% or more chromium in iron (Fe) and has strong corrosion resistance, less rust and tuberculation, less red and blue water and hygienic. Light-weight and strong shock-resistant but the joint and divergence parts are often damaged because stainless pulls water pipe without breaking up in such a situation like excavation machine hocks under other constructions.
4.5 Repair of Polyethylene pipe

Polyethylene pipe for water pipe use has resistance to rust and less scale adherence, which is appropriate to be used as drinking water pipe by keeping the quality of water clean and hygienic. Moreover, it is found under Great Hanshin-Awaji Earthquake in January 1995 that the polyethylene pipe was scarcely damaged and demonstrated strong quake.

4.5.1 Overview of repair method

<table>
<thead>
<tr>
<th>Repair method</th>
<th>Members to be used</th>
<th>Classification of repairmen</th>
<th>Standard</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>JWHA K144</td>
<td>PWA 001</td>
</tr>
<tr>
<td>Cut off the damaged part and joint new short pipe (stop water supply needed)</td>
<td>1 EF joint, PE short pipe</td>
<td>Permanent repair</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>2 Dresser joint, PE short pipe</td>
<td>Permanent repair</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Reinforce damaged parts by repair parts</td>
<td>1 Joint for PE Supply Pipe</td>
<td>Permanent repair</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>2 Joint for PVC pipe</td>
<td>Tentative repair or protection of damaged area</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>3 Repair clamp</td>
<td>Tentative repair or protection of damaged area</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

* Tentative repair is needed to be repaired again by permanent way afterwards.
4.5.2 Repair by EF joint or Dresser joint

Close a sluice valve to stop water flow and repair permanently by using new short pipe and various joints after cut off the damaged area.

(1) Cut off the damaged area

1) In case of the pipe damage

Cut the pipe vertically by appropriate pipe cutter with additional length bigger than its external diameter at both end points of damaged area.

![Figure 4-5 Damaged pipe](image)

2) In case of joint damage

![Figure 4-6 Joint Damage](image)
(2) Repair of the damaged area

1) Repair with EF joint

Cut the pipe vertically by a

1. Prepare short pipe which is slightly longer than the damaged area and 2 EF sockets
2. Cut the short pipe to proper length to be insert to the damaged area.
3. Clear off the mud and dirty on pipe with clean waste cloths or paper towel.
4. Plane off both junctional end of the pipe and line at half-length away of the EF socket from the end of the pipe.
5. Remove a umbo (stopper) at the center inside EF socket by 管押込 and insert the EF socket to each pipe.
6. When to fusion bond one socket, put the other socket to the junctional area as well in order not to slide the short pipe.
7. After natural cooling of one socket, fusion bond the other socket in the same way.
8. After certain period of exposure time (more than 30 minutes for nominal diameter below one hundredth, more than 1 hour for normal diameter 150), get water flow inside.

Figure 4-7 EF joint
2) Repair with dresser joint

1. Prepare 2 set of short pipe which is slightly longer than the damaged area and the dresser joint.
2. Cut the short pipe to proper length to be insert to the damaged area.
3. Clear off the mud and dirty on pipe with clean waste cloths or paper towel.
4. Insert tightly inside the both end of the stiffener.
5. Insert the joint body to one side of the pipe.
6. Move the joint body to set evenly across the both pipes.
7. After temporary fix the joint body by a bolt and a nut, run down all the nuts to torque not to attach unevenly.
8. Connect the other side of dresser joint in the same manner.

![Figure 4-8 Dresser Joint](image)

4.5.3 Repair with split type repair joint (for PE pipe)

Under the Standard JWWA, Bag-type split type repair joint is available.
1. Remove the plug of split type repair joint
2. Paint lubricant on the packing of split type repair joint and on the surface of the pipe to be attached. Set it to the damaged area. (Utilize the antifriction specialized for water pipe)
 Note) Water stop function may not work if you do not paint lubricant.
 Note) To repair joint area, remove terminal pin of the EF joint and put it to damaged area.

![Figure 4-9 Split type repair joint](image)
1. Run down the nuts in order to close the space of flange face of split type repair joint uniformly. Note) Pay attention not to uneven run down of the nuts.

2. After running down the nuts, put the plug and check the water leak from flange face. If you find leak, remove plug, run down the nuts stronger and put the plug again. In case of large volume of water leak, set valves at the female screw for plug tightening and set valves. (The procedure is easily done if you discharge water during the work)

Note) Refer the standard procedure of catalog or working instruction by manufacturers

4.5.4 Temporary repair or protect damage by repair clamp

To emergent repair or damage protect of pipe body, put the repair clamp (manufactured by Nippo Valve etc.) to the damaged area. However, in case of emergent repair, you need permanent repair under no water flow by utilizing EF joint or dresser joint.

1. Loosen nuts and open clamp to wind to pipes.
2. Set robustly lifter to side bar.
3. Run down nuts to the designated torque

Note) Refer the standard procedure of catalog or working instruction by manufacturers

![Figure 4-10 Repair clamp](image-url)
4.6 Repair of water leakage from joint

4.6.1 Type of joint and how to repair

(1) Socket-and-spigot joint

This has comparatively more water leak among joint water leak due to lead caulking which cause lead dissolution under aging and shake because of increasing traffic. Generally, joint water leak has fewer case of emergent repair and tend to be dilatory to get fixed. Therefore this may affect to the street unexpectedly and cause traffic accident or stop water flow, it is recommended to repair as fast as possible.

First, stop water leak by hammering the leaking spot to repair. Note that do not hammer too strong as this triggers additional lead dissolution. Place swage from thin set and put gradually less thin set. Use hammer to swage. Put the set coherent to the surface of pipes.

Also polish the lead surface in order to make smooth attachment of robber part of leak prevention clasp. To ensure to fit the leak prevention clasp after swage. This procedure should be done by skilled plumber.

Figure 4-11 Socket-and-spigot joint
(2) Mechanical joint

Mechanical type has ordinal rubber ring position and scarce water leak as bolts are calmed by rule. However, water leak occurs sometimes because of inappropriate installment of uneven calming or rubber ring with extraneous materials. Moreover, corrosion of bolt sometimes leads water leak. In any case of repair, loosen bolts and put pipe and rubber in right position and keep attention not to rubber out. Replace bolts to corrosion resistance one and tight strongly. Replace bolts one by one. Pay strong attention for different diameter pipe etc as this cause lack of tightness. In this case, water leaks once stops but recur afterward, which requires cut off.

![Figure 4-12 Mechanical joint](image)

(3) T-type joint

The risk of water leak from T-Type joint is extremely low. Water leak sometimes occurs when pipes become exposed in case such as construction work of other companies and inadequate insert during installment. As T-type joint does not have bolts, it is difficult to tight up pipe joint directly and there is no other way than cutting off pipes to repair.

![Figure 4-13 T-type joint](image)
4.6.2 Repair material under water flow (Magicawrap-Tape(Mahotai))

This is used when the clamp repair is impossible but it is quite rare. Orihara Manufacturing Co., LTD. has patent of this product. This is a material to reinforce leaking part by special tape (oristape) which applied characteristics of rubber and wind fiberglass tape together. Take on different type for straight pipe or for step pipe depending on the position of leaking part. Refer manufacturers catalog as for installment procedures etc.

Target diameter, type of pipe
- Straight pipe: φ250mm or less
- Step pipe: φ150mm or less

Figure 4-14 Under water flow
1. Lecture of listening method

1) The importance of early detection of water leakage
 • Early detection and repairing can prevent loss water.
2) The necessity of keeping water leakage investigation
 • It is necessary to take measures not only existing leakage but also new water leakage.
3) Leaky point
 • The joint of pipe which are imposed a burden easily, makes a lot of water leakage
2. Water leakage investigating method
 - The technical expert detects water leakage sound by water leaking.
 - Listen to the meter which is transmitting on water leakage sound.

1) Listening method by Listening Stick
 - Detect water leakage on meter of service pipe.
 - Detect water leakage sound on valves.

If water supply to the sump, need to close the meter valve after that listen to the meter.

① In case of soundless, there is a possibility of water supply sound or some problems around the sump.
② In case of keeping the sound, there is a highly possibility of water leakage
2) Listening method by Leakage Detector

- Detect water leakage on distribution pipes

- It is impossible to find and identify water leakage point.

- Listen every 0.5 meters
3) The method of identifying water leakage point by Leak Noise Correlation

• Identify water leakage point which is found by listening works.

• Input the information of the pipe correctly, it shows a right measurement result.

• To make occurring differences by installation or input data, the prediction result is a rough guide of identifying water leakage point.
4) Identify water leakage by Leakage Detector

- If you find a “Large” volume point, there is some possibility of occurring larger sound point, you need to keep listening.

- “Large” volume point is not always the water leakage point. (Need to understand kind of sounds)