Results from Group Works（1）

Comparison Table between NVS－appraised values and Current Values

Type of Property：LAND

Parcel \＃	SV	Area Size	NAW	Appraised Values $(1:$ NVS $)$	Appraised Values $(2:$ current $)$	Ratio $(1 / 2)$
23	250	705	1.08	$190,350^{* 1}$	$4,230(2010)$	45.0
9	250	669	0.892	$149,253.9^{* 2}$	4,014	37.2
18	350	716	1.165	$292,036.7^{* 3}$	$5,012(2010)^{* 4}$	58.3

Type of Property：Building

Parcel \＃	SV	Area Size	NAW	Appraised Values （NVS）	Appraised Values （current）	Ratio $(1 / 2)$
12	20	$130^{* 5}$	1.20	$3,129.6$	375	8.3
29	20	$180^{* 6}$	0.98	$3,522.6$	250	14.1
18	30	$300^{* 7}$	1.22	$10,936.6$	17,500	0.6
40	30	$150^{* 8}$	1.15	$5,175.0$	750	6.9

＊1：Results of Group 1 and 2 on the first day were taken．
＊2：Results of Group 1 and 2 on the last day were taken．
＊3：Results of four individual participants on the last day were taken．
＊4：When the building on parcel \＃18 was appraised in 2014，the land was not subject to valuation because of its area size with less than 1.7 dunums．Thus，value appraised in 2010 when land was vacant was extracted from P－TAX for the comparison purpose．
＊5：Though $120{ }^{\mathrm{m} 2}$ was given through the estimation by GIS，some groups have adopted 130 m 2 for valuation during the field exercise．
＊6：An area－size with $180{ }^{\mathrm{m} 2}$ ，which one participant estimated by using a measuring tape taking into considerations the inclusion of balcony into the area，was taken for this paper．It is noted herewith that a lots of arguments can be made whether or not a balcony should be included．In reference to definitions of building stated in the Technical Manual，a balcony should not be included in the property subject to valuation．
＊7： $156{ }^{\mathrm{m} 2}$ as an estimated area size by GIS was given，but $300{ }^{\mathrm{m} 2}$ was adopted by participants through their field observation．This difference in estimation of flat area size by GIS may be assumed to incur concerning on how to delineate a building by GIS without field investigation on a building which connects with adjacent next buildings．
＊8：Even though GIS－estimated figure with 60 m 2 was given，participants took 150 m 2 as flat－area size．Reasons behind remain unknown since no discussion on this particular issue was made during the session．

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Type	Group	SV	x	Area Size	x	VIF 1 Road Width	x	VIF 2 Location	x	VIF 3 Topograpgy	x	VIF 4 Shape	\times	VIF 5 Frontage	$=$	Appraisaed Value (NVS)	Values appraised before
23	Land	Group 1	250	\times	705	x	1.00	x	1.08	x	1.00	x	1.00	x	1.00	$=$	190,350.00	4,230
		Group 2	250	x	705	x	1.00	x	1.08	x	1.00	x	1.00	x	1.00	$=$	190,350.00	4,230
		Group 3	250	x	705	x	1.08	x	1.08	x	1.00	x	1.00	x	1.03	$=$	211,745.34	4,230
9	Land	Group 1	250	x	669	x	0.92	x	1.08	x	1.00	x	1.00	x	0.97	$=$	161,194.21	4,014
		Group 2	250	x	669	x	0.92	x	1.00	x	1.00	x	1.00	x	0.97	$=$	149,253.90	4,014
		Group 3	250	x	669	x	0.92	x		x	1.00	x	1.00	x	0.97	$=$	0.00	4,014
18 (L)	Land	Group 1	350	x	716	x	1.08	x	1.08	x	1.00	x	1.00	x	1.03	$=$	301,068.84	5,012
		Group 2	350	x	716	x	1.08	x	1.08	x	1.00	x	1.00	x	1.03	$=$	301,068.84	5,012
		Group 3	350	\times	716	x	1.08	x	1.08	x	1.00	x	0.97	x	1.03	$=$	292,036.77	5,012

* Standard: 1 Inferior: See VIF; Superior: See VIF
** Net Adjustment Weight: VIF $1 \times$ VIF $2 \times$ VIF $3 \times$ VIF $4 \times$ VIF $5=$ NAW

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Group \#	SV	x	Area Size	x	(1) Road Width	x	(2) Location	x	(3) Topography	x	(4) Shape of Parcel	x	(5) Fondatge	$=$	Appraisaed Value (NVS)	Values appraised before
9	Group 1	250	x	669	x	0.92	x	1	x	1	x	1	x	0.97	$=$	149,253.9	4,014
	Group 2	250	x	669	x	0.92	x	1	x	1	x	1	x	0.97	$=$	149,253.9	4,014

* Standard: 1 Inferior: See VIF; Superior: See VIF
** Net Adjustment Weight: VIF $1 \times$ VIF $2 \times$ VIF $3 \times$ VIF $4 \times$ VIF $5=$ NAW

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Valuator	SV	x	Area Size	x	(1) Road Width	x	(2) Location	x	(3) Topograph y	x	(4) Shape of Parcel	x	(5) Fondatge	$=$	Appraisaed Value (NVS)	Values appraised before
18 Land	A	350	x	716	x	1.08	x	1.08	x	1	x	0.97	x	1.03	$=$	292,036.8	5,012
	B	350	x	716	x	1.08	x	1.08	x	1	x	0.97	x	1	$=$	283,530.8	
	C	350	x	716	x	1.08	x	1.08	x	1	x	1	x	1.03	$=$	301,068.8	
	D	350	x	716	x	1.08	x	1.08	x	1	x	0.97	x	1.03	$=$	292,036.8	5,012
	E	350	x	716	x	1.08	x	1.08	x	1	x	0.97	x	1.03	$=$	292,036.8	5,012
	F	350	x	716	\times	1.08	x	1.08	x	1	x	0.97	x	1.03	$=$	292,036.8	5,012

* Standard: 1 Inferior: See VIF; Superior: See VIF
** Net Adjustment Weight: VIF $1 \times$ VIF $2 \times$ VIF $3 \times$ VIF $4 \times$ VIF $5=$ NAW A29-10

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Type	Group	SV	x	Area Size	\times	VIF 1 Quality and Conditions	x	VIF 2 Localtion	x	VIF 3 Services	x		x	VIF 5 Building Age	$=$	Appraisaed Value (NVS)	Values appraised before
12	Building	Group 1	20	x	130	x	1.00	x	1.06	x	1.05	x	1.03	x	1.05	$=$	3,129.64	375
		Group 2	20	x	130	x	1.00	x	1.06	x	1.05	x	1.03	x	1.05	$=$	3,129.64	375
		Group 3	20	\times	120	\times	1.00	\times	1.06	\times	1.05	x	1.03	\times	1.05	$=$	2,888.90	

* Standard: 1 Inferior: See VIF; Superior: See VIF
** Net Adjustment Weight: VIF $1 \times$ VIF $2 \times$ VIF $3 \times$ VIF $4 \times$ VIF $5=$ NAW

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Group \#	SV	x	Area Size	\times	(1) Qiality \& Condition2	x	(2) Location	x	(3) Services	x	Floor Location	x	(5) Building Age	$=$	Appraisaed Value (NVS)	Values appraised before
29	Group 1	20	x	150	x	1	x	1	x	1	x	1.03	x	0.95	$=$	2,935.5	250
	Group 2	20	x	180	x	1	\times	1	x	1	x	1.03	x	0.95	$=$	3,522.6	250

* Standard: 1 Inferior: See VIF; Superior: See VIF

Training in Field Trial Application: Data Processing Sheet of Group Work (For Internal use for trainers and GDPT officials only)

Parcel \#	Valuator	SV	x	Area Size	\times	(1) Condition	x	(2) Location	x	(3) Services	x		x	(5) Building Age	$=$	Appraisaed Value (NVS)	Values appraised before
18 Building	A	30	\times	300	x	1.06	x	1.06	x	1.05	x	1.03	x	1.05	$=$	11,483.4	
	B	30	\times	300	x	1	\times	1	x	0.95	x	1.03	x	1.05	$=$	9,246.8	
	C	30	\times	310	x	1.06	x	1.06	x	1.05	x	1.03	x	1.05	$=$	11,866.2	
	D	30	\times	270	x	1	x	1.06	x	1	x	1.03	x	1.05	$=$	9,285.8	
	E	30	x	300	x	1.06	x	1.06	x	1.05	x	1.03	x	1.05	$=$	11,483.4	
	F	30	\times	300	x	1.06	x	1.06	x	1	x	1.03	\times	1.05	$=$	10,936.6	17,500

* Standard: 1 Inferior: See VIF; Superior: See VIF
** Net Adjustment Weight: VIF $1 \times$ VIF $2 \times$ VIF $3 \times$ VIF $4 \times$ VIF $5=$ NAW

Created 玸DTpiqi Nereivork

General System Design of P－TAX Modification to Operationalize the New Valuation Standards

SETUP-2 Property type

SETUP-3 Matrix Factor

A33-5

SETUP-5 Standard Point Value

Quarter	Property Category	Type of Property	Type of building	Standard value (JD/sq.m.)	
01	Land	Commercial		9.0	
		Residential		8.0	
		Industrial		7.0	
Update history		Tourism		9.0	
	Building	Commercial		8.0	
		Residential	Apartment	10.0	
			non Apartment	11.0	
		Industrial		9.0	
		Tourism		8.0	

\qquad

SETUP-6 Type of Valuation

code		Property type
\triangle	1	New valuation
	2	Re valuation
	3	objection
	4	Etc_1
	5	Etc_2
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	

Land valuation

'New VS' programs run independent. 'Old VS' programs will not be changed !! 'New VS' and 'Old VS' run parallel.

Display Data

Valuation data entry
First Category city
Residential Property
Land

Width	Standard	(Wide	Narrow	
Linkage	Standard	Dead End		
Pavement	Paved	Unpaved		
Access to the Center of Municipality	Standard	Osuperior	Inferior	
Access to the Main Street/Road	Standard	Osuperior	Inferior	
Availability of Public Transportation	Ores	Ono		
Proximity to Retail Stores	Standard	Osuperior	Inferior	
Water, Electricity, etc.	Standard	Superior	Inferior	
Residential Environment	Standard	Superior	Inferior	
Frontage	Onferior Lot	Comer Lot	2 Frontages	3 or 4 Frontages
Shape	Otandard	Slightly Odd-shaped	Odd-shaped	Extremely Odd-shaped
Area	Ostandard	Not Standard		
Topography	Standard	Not Standard		

\qquad

Land valuation

Department	6	Ramallah
	60001	Ramallah
City	6000	First Category city

	Block
	10
Quarter	0
Parcel	106

Year
2016

106

1Print format is the same as 'Land'.

Valuation data entry
First Category city
Residential Property
Building

Building	Building Age	Standard(2000-)	- old	Extremely Old			
	Quality of construction	Standard	Superior	Inferior			
	Floor Location	Ground Floor(0)	-1 or Below	- 1	O2	3 or above	Roof
	Upkeep and Maintenance	Otandard	Superior	Inferior			
	Building Area	Standard	Not Standard				
	Elevators	- Available	Not Available				
	Parking space	- Available	Not Available				
	Location of the Building on the Site	Standard	OGood	O Bad			

END

GDPT J－PVP＇s Action Plan for＇Initializing GIS ${ }^{1}$ for GDPT＇			
Purpose	To enhance technical capacity of valuators on GIS through initializing GIS in valuation activities of GDPT		
Specifications	a）Parameters：necessary data for valuation and other information（to be determined）． b）Map data including shapefiles of buildings，parcels，blocks／quarters，physical plan（if available）and others． c）Raster data including aerial photography and block maps（if not digitalized）． d）Visualization and retrieval of a）to c）．		
Target Area	Beitounia municipality．		
Organizational arrangement	a）Management Unit：GIS Working Group in GDPT TDMMU Head：Director General Member：Head of IT Dept．，Valuation Dept．，and GDPT GIS team as below． b）Production Unit：GDPT GIS team Head：GIS Engineer assisted by Valuation Standards Facilitator（J－PVP） Member：GIS Assistant（J－PVP），Database Assistant（J－PVP）and Valuators． c）Support Unit： IT Department，Valuation Department，and others．		
Development partners	MoLG 2 ，PLA，Municipalities，Notary public，Electric company，relevant organizations and individuals．		
Work place（s）	GDPT（base station），MoLG，Municipalities．		
Tentative	At least 36 weeks in total		
Timeframe	a）Planning Stage 1 week		
	b）Preparation Stage	3 weeks	
	c）Digital Imaging Creation Stage	12 weeks	
	d）GeoDatabase Integration Stage	12 weeks	
	e）Examination Stage	2 weeks	
	f）Modification Stage	2 weeks	
	g）Pilot Action Compilation Stage	4 weeks	
Inputs	GDPT	JICA	
	（1）Letter of Intent	（1）Human resources	
	An official note to be issued by GDPT	JICA Expert	1
	addressing to JICA with cc to JICA Project Office which outlines basic	GIS Engineer ${ }^{3}$	1
		GIS Assistant	2
	institutional arrangements including organizational and budgetary	（2）Equipment	
		Desktop PC with 2 monitors	6^{4}
	setting－up to be required for the	External Hard Disk	6
	establishment，operation and management of a GIS unit or	ArcGIS	6
		AutoCAD	6
	equivalent entity within organizational structure．	MS Office	6
		Adobe CS	6
	（2）Human resources	Laser Measure	
	Valuators with basic operation skills to use PC and Ms－office		
	（3）Office space for production unit．		

[^0]
Main Procedures

a) Planning Stage:

1) Evaluation and finalization of this action plan.
2) Specification/Needs determination and finalization.
3) Monitoring of proceedings.
4) Other decision-makings.
b) Preparation Stage:
5) Set up working environment.
6) Acquire existing physical plan, existing GIS data, block maps and others.
7) Digitalize 2) if not digitalized.
8) Place 2) with geophysical coordinates.
c) Digital Imaging creation:
9) Creation of base map.
10) Creation of block / quarter shape-files.
11) Creation of parcel shapefiles.
12) Creation of building shaplefiles.
13) Creation of other necessary shapefiles.
14) Examination of basemap and shapefiles.
d) GeoDatabase creation:
15) Creation of serial ID code for GeoDatabase attribute table.
16) Transfer and examination of attributes from GDPT database.
17) Extraction of building area readings.
18) Creation of analyses tools.
19) Examination of GeoDatabase.
e) Examination Stage:
20) Error checks, faults extraction and correction.
21) Operation manual drafting.
22) Presentation to Management Unit.
23) Acquire demand for modification.
f) Modification Stage:
24) Modification of the system according to e 4).
g) Pilot Action Compilation Stage:
25) Training for Valuators.
26) GIS Operation manual finalization.
27) Preparation of technical recommendations for planning an action for dissemination

GDPT/JICA Project for Improvement of Local Finance System in Palestine (J-PVP) Working Paper

Illustrated Diagram of a Scope of Work for 'Initializaing GIS for GDPT' in the Operationalization of Valuation Standards

Working Framework for GIS Pilot Activity

Parcel Valuation Process

Multiply by Tax Percent（ 10% ？？）

Ministry of Finance
General Directorate of Property Tax
GDPT

The Incorporation of GIS\GPS Techniques
Within the Framework of the

Enhanced Property Valuation System in Palestine

Diagnostic Report

Jamal NUMAN

Contents

1 Introduction 3
2 GeoPTAX 4
3 Taxation formula: PTAX and J-PVP 4
3.1 Example 1 8
3.2 Example 2 10
3.3 Example 3 11
3.4 Example 4 14
4 How the S and R values are determined? 18
5 Enhancing the S and R values available in the PTAX 19
6 The effect of "zone use" and "unit use" in estimating S and R values 19
7 JPVP values for S and R: are they per block or at a point? 21
8 Valuation base committee work 21
9 GIS, Statistical\Artificial approach to derive S and R values, 22
10 What is the difference between the GIS and JPVP approaches? 23
11 The VNG approach 23
12 At which stage parcels become non-taxed? 25

1 Introduction

For the purpose of the JICA-Palestine Valuation Project (J-PVP) addressed to the General Directorate for Property Tax (GDPT) that aims at improving the current financial system, Betonia, within the boundary of the approved urban master plan, is selected as pilot area as shown in Figure 1.

Figure 1: Pilot area
The entire area of Betonia lands is about 23 km where the area of its urban master plan is about $4 \mathrm{~km}^{2}$. Table 1 includes important information about its cadaster and improvements structure

Item	Total	Inside Urban Master Plan	Outside Urban Master Plan
Number of blocks	37	19	
Number of parcels	3,061	3,640	
Number of buildings	1800	323	
Number of units (flats)	14,000	4,208	
Number of parcel owners	8,708	2,203	
Number of buildings owners		4,637	
Number of units (flats) owners	12,431		

Table 1: Cadaster structure, improvements and owners in Betonia.
In the same context, it should be kept in mind that the findings of JPVP in Betonia are intended to be disseminated at the national level. The table below gives some idea about the data size at the level of West Bank.

Item	Number of Records in PTAX
Parcels	810,803

Parcels' Owners	473,772
Parcels' Tax Payers	353,676
Estimated Parcels	262,692
Units (Estimated) in PTAX	262,656
Buildings	179,814
Units' Owners (the owner is also the tax payer)	129,293
Table 2: Cadaster structure, improvements and owners in West Bank.	

2 GeoPTAX

Within the scope of J-PVP, it is aimed to develop the GeoPTAX application in order to bridge the gap between the spatial and tabular data and thus to better understand patterns about property valuation and taxation data including all its relevancies. At the present, efforts are exerted to achieve the following:

1. Empowering valuers with visual spatial context regarding the data (parcels \backslash buildings) traditionally accommodated in tabular fashion with no locational dimension (Beta version of GeoPTAX is available by now). The direct advantages are:
a. The spatial component provides mature insight and portrays patterns that are hidden within the table format
b. The GIS\GPS integration delivers proper tool for the valuers to better identify locations of properties while working in the field (3 G is assumed to be available by next July)
c. Marking the buildingslunits that are under construction to give them priority for visit in the next year. GeoPTAX can highlight these buildingslunits and propose plan for visit.
2. Developing the PTAX database to better respond to the JPVP approach to estimate sale and rent values by adding new fields and relations.
3. The GeoPTAX enables displaying the sale 1 rent values obtained from the PTAX database and JPVP in terms of maps and thus saleไrent values are linked with their features in the ground that provides an exceptional opportunity to double check the estimated values for lands and buildings.
4. The GeoPTAX offers a good way to identify lands \buildings that are physically existing on the reality but have no records in the PTAX database. On other words, GeoPTAX guarantees that there are no missing taxable entities, and thus tax cannot be avoided. However, this depends on the availability of recent orthophoto with high resolution $(10 \mathrm{~cm})$
5. In addition to the JPVP approach to estimate the sale rent values, the two methods below can be considered to avoid heavy data entry particularly when it comes to lands
a. GIS with Statistical method such as Multiple Regression Analysis (MRA)
b. GIS with Artificial method such as Neural Network (ANN)

3 Taxation formula: PTAX and J-PVP

In this section, it is intended to compare between the taxation formulas applied in the PTAX and J-PVP. However, the difference refers to methods by which the sale\rent values are estimated but not the taxation formula itself.

According to the PTAX, taxation equation for lands is written as below:

$$
\begin{equation*}
T_{p}=10 \% * 6 \% * S * A \tag{1}
\end{equation*}
$$

Where T_{p} is the taxation value for a parcel (p) in JD, 10% is the taxation percent out of the rent value of the land, 6% is the percent that is multiplied by the sale value of land (JD/m2) to produce the net rent value (Net Rent value for a parcel $=6 \% * S$), S is the sale (market) value of the land in $\mathrm{JD} / \mathrm{m}^{2}$ and A is the area of the land.

In return, the PTAX taxation equation for buildings is expressed as below:

$$
\begin{equation*}
T_{u}=17 \% * 80 \% * E * R \tag{2}
\end{equation*}
$$

Where T_{u} is the taxation value for a unit (u) in a building in JD, 17% is the taxation percent out of the net rent value of a unit, 80% is a percent multiplied by the rent value to obtain the net rent value $(20 \%$ is deducted for maintenance), E is a factor that takes care of the occupants of unit (u); if the unit is occupied by the owner, then $\mathrm{E}=50 \%$, if u is rented, then $\mathrm{E}=100 \%$, if the unit is vacant, then $\mathrm{E}=70 \%$, R is the rent value for the unit in JD/year.

According to JPVP approach, the land taxation equation is formulated as below

$$
\begin{equation*}
T_{p}=10 \% * 6 \% * K * M * S * A \tag{3}
\end{equation*}
$$

Where T_{p} is the taxation value for a parcel (P) in JD, 10% the taxation percent out of the rent value of the land, 6% is the percent that is multiplied by the sale value of land (JD/m2) to obtain the rent value (Rent value for a parcel $=6 \% * S$), K is a coefficient that accounts for parcel characteristics (location, utilities, etc.) and can be obtained by multiplying the k coefficient of each variable ($\mathrm{K}=\mathrm{k} 1^{*} \mathrm{k} 2 * \ldots \mathrm{k}_{\mathrm{n}}$) as shown in Table 3 (the values of K for residential areas ranges from 0.45 to 1.2), M is a constant that considers the classification of the municipality: if the classification of the municipality is grade 1 , then $\mathrm{M}=30$, if the classification is grade 2 then $\mathrm{M}=20$, if the classification is Grade 3 or 4 then $\mathrm{M}=10, \mathrm{~S}$ is the trim average of the sale values stored in PTax of all parcels of similar land use contained within the same blocklquarter in $\mathrm{JD} / \mathrm{m}^{2}$ and A is the area of the land. Mathematically, S can be expressed as below:

$$
\begin{equation*}
S=\frac{\sum_{l=1}^{n} s_{l i j}}{n} \tag{4}
\end{equation*}
$$

Where $\mathrm{slij}_{\mathrm{ij}}$ is the sale value (stored in the PTAX database) for the $1^{\text {th }}$ parcel with $\mathrm{i}^{\text {th }}$ land use in the $\mathrm{j}^{\text {th }}$ block (or quarter if any), and n is the number of parcels in the $\mathrm{j}^{\text {th }}$ block (or quarter if any) with same land use.

Initially, it should be indicated that M value has calculated by converting the sale values stored in the ledger of GDPT to their actual values in the real market. Mathematically, it can be expressed as follows:

$$
\begin{equation*}
M=\frac{\sum_{l=1}^{n}\left(\frac{S_{a i}}{s_{r i}}\right)}{n} \tag{5}
\end{equation*}
$$

Where, Sai is the actual sale value of ith parcel, Sri is its corresponding sale value stored in the registered

Category	Variable	Class	Residential	Coefficient (k) Commercial	Industrial	Tourism	
Road	1	Width (k1)	Standard	1	1	1	
			Wide	1.02	1.02	1.02	
			Narrow	0.98	1.02		
	2	Linkage (k2)	Standard	1	0.98	0.98	0.98
		Dead End	0.95	1	0.9	0.95	0.95
	3	Pavement (k3)		1	1	1	

Table 3: K-coefficient that takes care of parcel characteristics such as location, topography and utilities.

Factors Land	Options	Category 1				Category 2				Category 3				Category 4			
		Residentia	Conmercia	Industrial	Tourism	Residentia	Commercia	Industrial	Tourism	Residential	Commercial	Industrial	Tourism	Residential	Conmercia	ndustrial	Tourism
Road width	Standard	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Wide Nanow	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.02	1.01	1.01	1.01	1.01
		0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99
Frontage	Interior Lot Comer Lot Two Frontages More than three Fiontages	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.02	1.02	1.02	1.01	1.02
		1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
		1.03	1.03	1.03	1.03	1.02	1.03	1.02	1.03	1.02	1.03	1.01	1.03	1.02	1.03	1.01	1.03
Location	Standard Superior Inferior	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
		0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Shape of Parcel	Standard Not Standard	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0.85	0.85	0.85	0.85	0.90	0.90	0.90	0.90	0.90	0.90	0.95	0.90	0.90	0.90	0.95	0.90
Topography	Standard Not Standard	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0.90	0.90	0.90	0.90	0.92	0.92	0.95	0.92	0.95	0.95	0.97	0.95	0.95	0.95	0.97	0.95

In return, the taxation equation is written as below:

$$
\begin{equation*}
T_{u}=17 \% * 80 \% * E * K * R * A \tag{6}
\end{equation*}
$$

Where T_{u} is the taxation value for a unit (\mathbf{u}) in a building in JD, 17% is the taxation percent out of the net rent value of a unit, 80% is a percent multiplied by the rent value to obtain the net rent value (20% is deducted for maintenance), E is a factor that takes care of the occupants of unit (u); if the unit is occupied by the owner, then $\mathrm{E}=50 \%$, if u is rented, then $\mathrm{E}=100 \%$, if the unit is vacant, then $\mathrm{E}=70 \%, \mathrm{~K}$ is a coefficient that accounts for building characteristics (location, condition,
utilities, etc.) and can be obtained by multiplying the k coefficient for each variable ($\mathrm{K}=\mathrm{k} 1 * \mathrm{k} 2 * \ldots \mathrm{k}_{\mathrm{n}}$) as shown in Table 4, R is the trim average of the rent values (stored in PTAX) of all units of similar land use in same block\quarter in $\mathrm{JD} / \mathrm{m}^{2}, \mathrm{~A}$ is the area of the unit. Mathematically, R can be expressed as below:

$$
\begin{equation*}
R=\frac{\sum_{u=1}^{n} r_{u i j}}{n} \tag{7}
\end{equation*}
$$

Where $\mathrm{r}_{\mathrm{uij}}$ is the rent value (stored in the PTAX database) for the $\mathrm{u}^{\text {th }}$ unit with $\mathrm{i}^{\text {th }}$ use in the $\mathrm{j}^{\text {th }}$ block (or quarter if any), and n is the number of units in the $\mathrm{j}^{\text {th }}$ block (or quarter if any) with same land use.

	Variable	Class	Coefficient (k) Residential	Commercial	Industrial	Tourism
1	Building Age (k1)	Standard	1	1	1	1
		Old	0.9	0.9	0.9	0.9
		Extremely Old	0.8	0.8	0.8	0.8
2	Quality of Construction (k2)	Standard	1	1	1	1
		Superior	1.05	1.05	1.05	1.05
		Inferior	0.95	0.95	0.95	0.95
3	Floor level (k3)	Ground Floor (0)	1	1		1
		-1 or below	0.95	0.95		0.8
		1	0.95	1		0.9
		2	0.95	1		0.8
		3 or above	1.05	1.05		0.7
4	Upkeep and Maintenance (k4)	Standard	1	1	1	1
		Superior	1.02	1.02	1.02	1.02
		Inferior	0.98	0.98	0.98	0.98
5	Building Area (k5)	Standard	1.1	1	1	1
		Not Standard	1	0.9	0.9	0.9
6	Elevator (k6)	Available	1.1	1.1	1.1	1.1
		No Available	1	1	1	1
7	Parking Space (k7)	Available	1	1	1	1
		No Available	0.95	0.9	0.9	0.9
8	Location of the Building on the Site (k8)	Standard	1	1	1	1
		Good	1.05	1.05	1.05	1.05
		Bad	0.95	0.95	0.95	0.95
9	Celling Height (k9)	Standard		1	1	1
		High		1.05	1.05	1.05
		Low		0.95	0.95	0.95

Table 4: K-coefficient that takes care of building characteristics such as location, condition and utilities.

Factors	Options	Category 1				Category 2				Category 3				Category 4				
		ResidentialConmercial Industrial			Tourism	Residentia	Commercia	\| Industria		Tourism	Residentia\|	Commercial	Industrial	Tourism	Residentia	Conmercial	\|ndustrial	Tourism
Building	Options																	
Building Age	Standard Old Extremely Old	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
Quality and Condition	Standand Superior Inferior	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Floor Location	$\begin{aligned} & \hline 0 \\ & - \text { 1or below } \\ & 1 \\ & 2 \\ & 3 \text { or above } \\ & \text { Roof } \\ & \hline \end{aligned}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		0.95	0.80	1.00	0.80	0.95	0.90	1.00	0.90	0.97	0.90	1.00	0.90	0.97	0.90	1.00	0.90	
		1.00	0.90	1.00	0.90	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	
		1.00	0.80	1.00	0.80	1.00	0.90	1.00	0.90	1.00	0.90	1.00	0.90	1.00	0.90	1.00	0.90	
		1.05	0.70	1.00	0.70	1.03	0.80	1.00	0.80	1.02	0.85	1.00	0.85	1.02	0.85	1.00	0.85	
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Services	Standard Superior Inferior	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	
		0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	
\#evator	Available Not Available	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

Apparently, the current PTAX database need to be enhanced to include information about unit area and unit use.

3.1 Example 1

Calculate the taxation value levied on parcel\#10, block \# 1 Betonia shown in Figure 2 according to the current approach.

Figure 2: location of parcel number 10, block number 1 in Betonia.

Solution

The area of the parcel \#10 (Figure 3): is $\mathbf{6 5 4} \mathrm{m}^{2}$
The sale value is $\underline{\mathbf{6}} \mathrm{JD} / \mathrm{m}^{2}$
The total sale price of the parcel $=6 \times 654=\mathbf{3 , 9 2 4} \mathrm{JD}$
The rent value of the parcel $=6 \% x 3924=\mathbf{2 3 5} \mathbf{~ J D}$
The taxation value of the parcel $=10 \% \times 235=\underline{\mathbf{2 3}} \mathrm{JD}$

Figure 3: Sale value and estimated valuation for parcel number 10, block number 1 in Betonia in 2010.
As the parcel is owned by three, then the taxation value is divided by three
Taxation per owner $=23 / 3=\underline{\mathbf{7 . 8}} \mathbf{~ J D}$

Figure 4: Taxation values imposed on parcel number 10 block number 1 in Betonia in 2010 and other years. The tax is equally distributed on three owners.

3.2 Example 2

Calculate the taxation value levied on parcel\#10, block \# 1, Betonia shown in Figure 6 according to the JPVP approach.

Figure 5: The land use in block one according to the urban master plan of Betonia

Table 6 below shows how the data of parcels is tabulated in the Oracle database

PARCEL_NO	BLOCK_NO	CommunityName	EST_YEAR	EST_AREA	EST_METER_PRICE	EST_PARCEL_VALUE
1	1	Beituniya	2010	1768	7	12376
7	1	Beituniya	2010	1135	7	7945
8	1	Beituniya	2010	998	7	6986
9	1	Beituniya	2010	669	6	4014
10	1	Beituniya	2010	654	6	3924
11	1	Beituniya	2010	642	6	3852
14	1	Beituniya	2010	776	6	4656
15	1	Beituniya	2010	730	6	4380
17	1	Beituniya	2010	2617	6	15702
19	1	Beituniya	2010	2435	7	17045
23	1	Beituniya	2010	705	6	4230
24	1	Beituniya	2010	790	6	4740
26	1	Beituniya	2010	1277	6	7662
30	1	Beituniya	2010	921	6	5526
31	1	Beituniya	2010	1010	6	6060
32	1	Beituniya	2010	885	6	5310
35	1	Beituniya	2010	2749	7	19243
36	1	Beituniya	2010	1183	6	7098
Jamal Numan			-			Tuesday, Augus

38	1	Beituniya	2010	568	6	3408
41	1	Beituniya	2015	2383	6	14298
43	1	Beituniya	2010	2000	7	14000
47	1	Beituniya	2010	790	6	4740
53	1	Beituniya	2010	562	6	3372
58	1	Beituniya	2010	976	6	5856
62	1	Beituniya	2015	938	6	5628
63	1	Beituniya	2015	1919	6	11514
65	1	Beituniya	2015	815	7	5705
66	1	Beituniya	2010	1000	6	6000
67	1	Beituniya	2010	3602	5	18010
68	1	Beituniya	2010	409	6	2454
71	1	Beituniya	2010	1000	6	6000
72	1	Beituniya	2013	8000	7	56000
78	1	Beituniya	2012	3661	6	21966
79	1	Beituniya	2010	816	6	4896
80	1	Beituniya	2013	1201	6	7206
81	1	Beituniya	2010	3947	6	23682
82	1	Beituniya	2010	1134	6	6804
83	1	Beituniya	2010	1231	6	7386
89	1	Beituniya	2015	1743	7	12201
96	1	Beituniya	2010	744	6	4464
98	1	Beituniya	2010	956	6	5736
99	1	Beituniya	2010	6000	6	36000
109	1	Beituniya	2010	1326	6	7956
115	1	Beituniya	2015	1014	6	6084
121	1	Beituniya	2013	707	7	4949
122	1	Beituniya	2013	707	7	4949

Table 5: Tabular data for parcels in block number 1 in Betonia

3.3 Example 3

Calculate the taxation value levied on building\#0, parcel\#13, block \# 1 Betonia shown in Figure 6 according to the PTAX approach.

Figure 6: location of building \#zero constructed in parcel number 13, block number 1 in Betonia
The building\#0 has two floors
The ground floor has two units (each unit has unique ID)
The first floor has one unit
The rent value of unit with ID 75637 is $\mathbf{5 0 0}$ JD/year
The rent value of unit with ID 75638 is $\mathbf{5 0 0} \mathrm{JD} /$ year
The rent value of unit with ID 75639 is $75 \mathrm{JD} /$ year
The reduced rent value for the unit with ID $75637=80 \% \times 500=400 \mathrm{JD} /$ year
The reduced rent value for the unit with ID $75638=80 \% \times 500=\mathbf{4 0 0} \mathrm{JD} /$ year
The reduced rent value for the unit ID 75639 is $500 \mathrm{JD} / \mathrm{year}=80 \% \mathrm{x} 75=\mathbf{6 0} \mathrm{JD} /$ year

Figure 7: The rent values in 2010 for units contained in building number zero constructed in parcel number 13, block number 1 in Betonia

The taxation value for the unit with ID $75637=17 \% * 400=68 \mathrm{JD} /$ year The taxation value for the unit with ID $75638=17 \% * 400=\mathbf{6 8} \mathrm{JD} /$ year The taxation value for the unit with ID $75639=17 \% * 60=\mathbf{1 0 . 2} \mathrm{JD} /$ year The Taxation value for the gross building $=68+68+10.2=\mathbf{1 4 6 . 2} \mathrm{JD}$

Figure 8: The taxation values in 2010 for units contained in building number zero constructed in parcel number 13, block number 1 in Betonia

3.4 Example 4

Calculate the taxation value levied on building\#0, parcel\#13, block \# 1 Betonia according to the JPVP approach.

Table 6 below shows how the data of units (flats) is tabulated in the database

FLT_SEQ	PARCEL	BLOCK	Community	$\begin{aligned} & \text { BLD_ } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { EST_- }_{-} \end{aligned}$	$\begin{aligned} & \text { EST_FLAT_ } \\ & \text { RENT } \end{aligned}$	$\begin{aligned} & \text { FLAT_- } \\ & \text { NO } \end{aligned}$	ROOM	$\begin{aligned} & \text { EST_FLAT_ } \\ & \text { RENT1 } \end{aligned}$	$\begin{aligned} & \text { RENT_VALUE_ } \\ & \text { USED } \end{aligned}$
75582	2	1	Beituniya	0	2010	400	0	3		400
75583	2	1	Beituniya	0	2010	500	0	4		500
75584	2	1	Beituniya	0	2010	500	0	4		500
75589	3	1	Beituniya	0	2010	25000	0	2	25000	25000
75594	4	1	Beituniya	0	2010	2500	0	3		2500
75602	5	1	Beituniya	0	2010	750	0		750	750
75603	5	1	Beituniya	0	2010	550	0		550	550
75604	5	1	Beituniya	0	2010	250	0	3	250	250
75605	5	1	Beituniya	0	2010	375	0	4	375	375
75610	6	1	Beituniya	1	2010	375	0	4	375	375
75618	6	1	Beituniya	2	2010	100	0		100	100
75612	6	1	Beituniya	1	2010	375	0	4	375	375
75617	6	1	Beituniya	1	2010	250	0	2	250	250
75632	12	1	Beituniya	0	2013	375	0	4	375	375
75633	12	1	Beituniya	0	2013	375	0	4	375	375
75634	12	1	Beituniya	0	2013	375	0	4	375	375
75635	12	1	Beituniya	0	2013	375	0	4	375	375
75636	12	1	Beituniya	0	2013	375	0	4	375	375
75637	13	1	Beituniya	0	2010	500	0	5	500	500
75638	13	1	Beituniya	0	2010	500	0	5	500	500
75639	13	1	Beituniya	0	2010	75	0	2	75	75
75640	16	1	Beituniya	0	2010	200	0	2		200
Jamal Nun					14				Tues	y, August 23, 2016

Diagnostic Report_Property Valuation System in Palestine_JICA_GDPT_Jamal NUMAN_11.docx

75641	16	1	Beituniya	0	2010	400	0	4		400
156768	18	1	Beituniya	0	2014	16800	0		16800	16800
156769	18	1	Beituniya	0	2014	500	0	4		500
217221	18	1	Beituniya	0	2014	2000	0	4		2000
75654	20	1	Beituniya	1	2013	2250	0	4		2250
75655	20	1	Beituniya	1	2013	2250	0	4		2250
75666	20	1	Beituniya	2	2013	500	0	1		500
75656	20	1	Beituniya	1	2013	2250	0	4		2250
75657	20	1	Beituniya	1	2013	2250	0	4		2250
75658	20	1	Beituniya	1	2013	2250	0	4		2250
75659	20	1	Beituniya	1	2013	2250	0	4		2250
75660	20	1	Beituniya	1	2013	2250	0	4		2250
75661	20	1	Beituniya	1	2013	2250	0	4		2250
75662	20	1	Beituniya	1	2013	2700	0	4		2700
75663	20	1	Beituniya	1	2013	2250	0	4		2250
75664	20	1	Beituniya	1	2013	3500	0	4		3500
75665	20	1	Beituniya	1	2013	1000	0	4		1000
75667	21	1	Beituniya	0	2010	250	0	2	300	250
75668	21	1	Beituniya	0	2010	300	0	3	375	300
75669	21	1	Beituniya	0	2010	300	0	3	375	300
75670	21	1	Beituniya	0	2010	300	0	3	375	300
75671	21	1	Beituniya	0	2010	250	0	2	300	250
217193	22	1	Beituniya	1	2015	600	1			600
217194	22	1	Beituniya	1	2015	600	2			600
217195	22	1	Beituniya	1	2015	700	1			700

Table 6: Sample of tabular data for building units constructed in block \#1 in Betonia.

Figure 9: The content of hard copy records regarding net sale value of lands and net rent value for buildings.

No 0007 \%											
					4				边		
Sush	二ix		1010	-		,	\%*				
	\%		\%	\%		\%	Wex				
								c.ia			
						7.					su.
						7.					[
						70°					\& in

Figure 10: The content of hard copy records regarding the net rent values of units for particular building.

4 How the S and R values are determined?

Apparently, the critical challenge in the valuation process is to estimate the sale value (S) for land and rent value (R) for a unit in a building. Traditionally, the sale value is assessed by three methods: comparison method, cost method, and income method. In all these three methods, valuer's experience still plays a major component in estimating the sale value for a certain land. However, in the local context of Palestine, the sale value can be obtained from sources such as:

1. Palestine Capital Market Authority (PCMA)
2. Palestine Land Authority (PLA)
3. Real Estate Agencies (Private Sector)

With respect to the rent value (R), it can be obtained from contract that is agreed by both renter and rentee and thus the actual rent value can be directly entered in the database.

In this regards, huge efforts have been put into developing models in order to come up with the best estimation for the S and R values to achieve the maximum degree of fairness. At present, the approaches below can be considered as good source for S and R values:

1. The PTAX database
2. The JPVP approach
3. The Valuation Base Committee (BC)
4. The VNG approach
5. The GIS approach
6. Standard value method

For example, parcel \# 122 in block number 1 in Betonia has a sale value of $7 \mathrm{JD} / \mathrm{m}^{2}$ according the PTAX database while its actual sale value reaches $350 \mathrm{JD} / \mathrm{m}^{2}$ according base committee. In the same manner, the average rent value for building \# zero contained in parcel \# 73, block \# 1 in Betonia is $2 \mathrm{JD} / \mathrm{m}^{2}$ while its actual rent value might reach $20 \mathrm{JD} / \mathrm{m}^{2}$ according base committee.

Figure 11: Comparison between sale and rent values according PTAX data and base committee.

5 Enhancing the S and R values available in the PTAX

It is acknowledged that the S and R values stored in the PTAX don't reflect the actual values due to the fact that valuers tend to reduce these values themselves (or by internal regulation a the level of GDPT) in order to take into account the local economy in Palestine and the financial resources of taxpayers. However, in all cases, it is recommended to include the actual sale\rent value in the PTAX instead of the discounted ones. For this reason, a factor (C) can be integrated in the PTAX formula to represent the percentage of the discount. Therefore, the PTAX taxation equations can be re-w*ritten as below:

For Parcels:

$$
\begin{equation*}
T_{p}=10 \% * 6 \% * B * S * A \tag{8}
\end{equation*}
$$

For Buildings

$$
\begin{equation*}
T_{u}=17 \% * 80 \% * B * E * R \tag{9}
\end{equation*}
$$

Where B is a discount factor that is multiplied by the actual saleไrent value to take care of local economy in Palestine and the financial resources of taxpayers.

For example, if it is agreed to consider the discount factor to be 1% then in case the actual sale value of a particular parcel is $700 \mathrm{JD} / \mathrm{m}^{2}$ then multiplying it with 1% will generate a sale value of $7 \mathrm{JD} / \mathrm{m} 2$.

6 The effect of "zone use" and "unit use" in estimating S and R values

Generally, there is a good match between the unit (building) use and zone use that is assigned in the urban master plan shown in Figure 12. In general, the fields below needs to be integrated into the PTAX database in order to be able to determine K value according JPVP approach.

- Unit Area (m^{2})
- Unit Height (m)
- Unit Use
- Zone Use
- Location Class (to be derived later from proximity to facilities, road characteristics, neighborhood attribute, Noise condition, etc.)
- Construction Date
- Construction Material
- Construction Condition
- Availability of Elevator
- Availability of Parking
- Availability of Utilities (Electricity, Water, Telephone, etc.)

Figure 12: Urban master plan of Betonia
However, PTAX database must be enhanced to in terms of start entering values in the "unit use" field shown in the screenshot below

Figure 13:

7 JPVP values for S and R: are they per block or at a point?

According to the JPVP approach, S and R values will be derived from the PTAX by multiplying them by K and M coefficients. K accounts for property characteristics (location, condition, quality, style, utilities, etc.) where M considers municipality class.

There is an idea to represent S and R values as points within blocks such that values for S and R at other locations can be obtained by interpolation. In this regard, three challenges arise:

1. Where to locate these points (point distribution) within the same block?
2. How many points should be taken (number of points)
3. The radius of interpolation (number of points $\backslash m i n i m u m$ distance that will participate in the interpolation)
Figure 5 shows the land use within block one in Betonia according to the urban master plan approved in 2008.

8 Valuation base committee work

The result of the work of the base committee is represented in assigning S and R value for each block according to the land use (residential, commercial, industrial and tourism). In this case, The S and R values corresponds to the actual sale and rent values in the reality and are not derived based on the PTAX database. The map below shows the proposed sale 1 rent values for a number of blocks in Betonia.

Figure 14:

9 GIS, Statistical\Artificial approach to derive S and R values,

On the whole, the issue when specifying S and R values is how to justify and defend them. Due to the fact that S and R values available in PTAX are not defensible, other approaches are suggested to overcome this challenge. For this purpose, it is aimed at applying the GIS to create valuation raster for land value such that classes are interpreted to sale values $\left(\mathrm{JD} / \mathrm{m}^{2}\right)$ and thus the S value at each location is obtained. Furthermore, the valuation raster can be fed into MRA or ANN as a variable (location class variable) in order to estimate the R value of all units of buildings. This approach is being tested and performed at the moment.

Mathematically, valuation raster can be derived based on the equation below

$$
\begin{equation*}
\text { Land Value }=\sum_{i=1}^{n} W_{i} F_{i} \tag{10}
\end{equation*}
$$

Where n number of variable considered, W_{i} is the weight of the $i^{\text {th }}$ factor, F_{i} is the $i^{\text {th }}$ factor.
Numerically, the valuation can have any value from 1 to 100 and then classified into five groups. next, the classes are labelled with their sale values according to the valuer's experience. Having the sale value at the level of pixel paves the way to assign these values to parcels and thus mass valuation for all parcels can be implemented.
As the valuation raster provides information regarding lands of high \backslash low values depending on set of variables, this raster itself can be considered as a single variable that can be fed into the MRA equation to apply the mass valuation for buildings.

$$
\begin{equation*}
V_{u}=C_{1} V_{1}+C_{2} V_{2}+\cdots+C_{n} V_{n} \tag{11}
\end{equation*}
$$

Where Vu is the estimated value for the $\mathrm{u}^{\text {th }}$ unit, C 1 is a coefficient multiplied by the $1^{\text {st }}$ variable, V1 is the $1^{\text {st }}$ variable, C 2 is a coefficient multiplied by the $2^{\text {nd }}$ variable, V 2 is the second variable, C_{n} is the $\mathrm{n}^{\text {th }}$ coefficient multiplied by the $\mathrm{n}^{\text {th }}$ variable, V_{n} is the n th variable.

It remains to precisely identify the variables based on which parcels and buildings are valuated.

10 What is the difference between the GIS and JPVP approaches?

Despite the fact that the GIS (with MAR or ANN) and JPVP approaches are planned to apply the same set of variables, they can be distinguished by highlighting that the JPVP approach is considered a single property valuation technique while the GIS can achieve mass valuation. The JPVP approach requires collecting data for each single parcel 1 building in order to be able to determine the K coefficient. Having the massive data size for properties in mind, this sounds to be not practical and thus why revaluation in five years (in accordance with laws) fails to be approached.

In return, in case the GIS approach is implemented, a massive spatial analysis is applied that ends up by assigning saleไrent values.

11 The VNG approach

This approach introduces methods to predict sale values for lands and buildings. In case of land, this approach depends on identifying boundaries for areas within a particular local authority that have same characteristics in terms of social and economic factors, buildings style, services, and people income. Having the boundaries identified, valuation experts can assign sale value for these areas based on experience, knowledge and transactions available. These areas are called value areas. However, the boundaries of value areas are recommended to be demarcated in coincidence with cadaster blocks, where possible.

For buildings, the sale value is determined by the cost method. According to this approach, a gallery photo is developed to indicate the cost of a wide range of buildings types in $\mathrm{JD} / \mathrm{m}^{2}$

Mathematically, the taxation for vacant land can be written as:

$$
\begin{equation*}
T_{p}=10 \% * S_{p} * A_{p} \tag{12}
\end{equation*}
$$

Where T is the taxation value for a parcel (P) in $\mathrm{JD}, 10 \%$ the taxation percent, S_{p} is the sale value in $\mathrm{JD} / \mathrm{m}^{2}$ assigned to zone that contains the land, A_{p} is the geometric area of land

Taxation for land with building constructed on it can be written as:

$$
\begin{equation*}
T_{u}=10 \% *\left(\frac{f}{5} * \frac{A_{u}}{A_{B}} * S_{p} * A_{p} *+\frac{Z_{i}}{Z} * S_{u} * A_{u)}\right) \tag{13}
\end{equation*}
$$

Where Tu is the taxation value for a parcel (P) in JD and unit $(\mathrm{u}), 10 \%$ the taxation percent, f is the number of floors of the building constructed on the land (f is considered to be 5 in case the number of floors is less than or equal 5 , this includes the case when no buildings is constructed on the land), S_{p} is the sale value in $\mathrm{JD} / \mathrm{m}^{2}$ assigned to zone that contains the land, A_{p} is the geometric area of land, Zi the sale value of the $\mathrm{i}^{\text {th }}$ zone in $\mathrm{JD} / \mathrm{m}^{2}, \mathrm{Z}$ is the average sale value of all zones
$(\mathrm{k}=\mathrm{k} 1+\mathrm{k} 2+\mathrm{k} 3+\ldots+\mathrm{kn} / \mathrm{n}), \mathrm{S}_{\mathrm{u}}$ is the cost of unit area in a building (this is obtained by comparison between the building in question and photo gallery table), A_{u} is the area of the unit and A_{B} is the total area of the building

However, in case the geometric area of the unit (flat) is not given, the formula below can be implemented

$$
\begin{equation*}
T_{u}=10 \% *\left(\frac{f}{5} * \frac{S_{p} * A_{p}}{n} *+\frac{Z_{i}}{Z} * S_{u} * A_{u)}\right) \tag{14}
\end{equation*}
$$

Where Tu is the taxation value for a parcel (P) in JD and unit $(\mathrm{u}), 10 \%$ the taxation percent, f is the number of floors of the building constructed on the land (n is considered to be 5 in case the number of floors is less than or equal 5 , this includes the case when no buildings is constructed on the land), S_{p} is the sale value in $\mathrm{JD} / \mathrm{m}^{2}$ assigned to zone that contains the land, A_{p} is the geometric area of land, n is the number of units, Z_{i} the sale value of the $\mathrm{i}^{\text {th }}$ zone in $\mathrm{JD} / \mathrm{m}^{2}, \mathrm{Z}$ is the average sale value of all zones ($\mathrm{k}=\mathrm{k} 1+\mathrm{k} 2+\mathrm{k} 3+\ldots+\mathrm{kn} / \mathrm{n}$), S_{u} is the cost of unit area in a building (this is obtained by comparison between the building in question and photo gallery table),

Example:
Calculate the taxation value for a flat of $\mathbf{1 5 0} \mathrm{m}^{2}$ that is located in the fourth floor with a construction cost of $\$ 650 / \mathrm{m}^{2}$ knowing that the geometric area of the land is $\mathbf{9 0 0} \mathrm{m}^{2}$, the land sale price is $\$ \mathbf{9 5 0} / \mathrm{m}^{2}$, and average land sale price is $\mathbf{8 5 0}$?
$\mathrm{Tu}=10 \%((950 * 150 / 900)+650 / 850 * 650 * 150))$
$=10 \%((950 * 0.15)+(0.76 * 97500)=10 \%(142+74,100)=? ? ?$

What is interesting here is that the taxation percent can be derived from the amount of money the government needs in each particular year divided by the total amount of valuation of buildings and lands. Mathematically, the taxation percent can be written as follows:

$$
\begin{equation*}
P_{u}=\frac{V_{g}}{V_{p}} \tag{15}
\end{equation*}
$$

Where P_{u} is the taxation percent, Vg , the amount of money the government needs in a particular year and V_{p} the total amount of property valuation for buildings and lands.

12 Standard value method

A committee a combination of GDPT and private sector that has members different from those official valuers is entitled to assign the market valueไrent value in $\mathrm{JD} / \mathrm{m} 2$ at particular points such that these points as considered as reference (base) to apply the equations below:

For Land:

$$
\begin{equation*}
T_{u}=6 \% * 10 \% * K * S * A \tag{16}
\end{equation*}
$$

Where K is the coefficient value that differentiate between a parcel and another, S is the market value of land at particular location that will be set by GDPT and private sector and applied by valuers to appraise other parcels in the same area

For buildings

$$
\begin{equation*}
T_{u}=17 \% * 80 \% * K * R * A \tag{17}
\end{equation*}
$$

Where K is the coefficient value that differentiate between a unit (flat) and another, R is the rent value of a unit (flat) at particular building that will be set by GDPT and private sector and applied by valuers to appraise other units (flat) in the same area

13 At which stage parcels become non-taxed?

Any parcel of area less than $1700 \mathrm{~m}^{2}$ and contains a building is exempted from property tax. In this case, the tax is transferred to the building. The map below shows which parcels are taxed and not taxed in block number 1 in Betonia.

MINUTES OF MEETING
 BETWEEN
 THE JICA MONITORING MISSION TEAM AND
 THE MINISTRY OF FINANCE OF PALESTINE ON
 THE PROJECT FOR IMPROVEMENT OF LOCAL FINANCE SYSTEM IN PALESTINE

The JICA Monitoring Mission Team（hereinafter referred to as＂the Team＂）， organized by the Japan International Cooperation Agency（hereinafter referred to as＂JICA＂）headed by Mr．Haruyuki SHIMADA，visited Palestine from 6th to 10th of December 2015 and had a series of discussion and exchanged opinions with General Directorate of Property Tax（hereinafter referred to as＂GDPT＂）on matters concerning the Project for Improvement of Local Finance System in Palestine（hereinafter referred to as＂the Project＂）．

The results of the discussions are recorded as a Minutes of Meetings （M／M）and signed by GDPT and the Team as attached．

Ramallah，
10 December 2015

Horryndi

Mr．Haruyuki SHIMADA
Acting Director，
Public Governance and Financial
Management Team，Governance Group， Industrial Development and Public Policy Dep． JICA

Mr．Mahmoud NOFAL
Director General of the Property Tax
General Directorate of the Property Tax
Ministry of Finance
Palestinian Authority

Minutes of Meetings of Discussions
 between GDPT and the JICA Monitoring Mission Team

【Items Agreed】

1. The purpose of the mission

The Team visited and made discussions with GDPT of Palestinian Authority to clarify the outcomes of the Project so far and the tasks needed to be done during the remaining project period (up to end of September 2016) ${ }^{1}$. The results of discussions are recorded as a Minutes of Meetings (M/M) and signed by GDPT and The Team. As a result of discussions, both GDPT and the Team also agreed to make every effort to conduct the project activities in accordance with attached monitoring sheet with a view to end the Project as scheduled at the end of September 2016.

2. Employment of additional local engineers

The Team expressed that GDPT's request of employing additional local engineers is unacceptable because they are non-permanent (contract-basis) staff. As defined in the Record of Discussions(R/D) of the Project, the concept of JICA's technical cooperation is to transfer skills and knowledge to counterpart personnel who are expected to remain in their positions so that they continue to conduct their duties even after the termination of the Project. The Team determines that the requested personnel are not considered as appropriate for technical transfer.
As a result of discussion, both GDPT and JICA agreed that GDPT will hire engineers from a municipality or Palestinian Authority.

3. Training

The Team accepted to conduct a training program in Japan in late May 2016 and strongly requested GDPT to select qualified and appropriate staff for participation to the program. It would be the last of the second and third country trainings. In addition, the both sides agreed that the training in Palestine shall be also taken place during the period from April to July in 2016.

4. Public Awareness Campaign (PAC)

[^1]The both sides agreed to provide necessary budget for conducting PAC with the same contents that JICA supported last year, and an SMS service for PAC will be conducted by GDPT by itself.

5.TDMMU

The Team acknowledged and reconfirmed in accordance with the R/D that GDPT is solely responsible for organizing and restructuring TDMMU. In this respect, the project will continue monitoring Master Plan Matrix if necessary.

6. Employment of a staff of Ministry of Local Governance (MOLG)

The Team requested GDPT to provide JICA with the evidence materials that justify the payment of an "incentive" to a governmental officer (in this case, an officer from MoLG) for an off duty job. Without the evidence, JICA's regulation does not allow such payment. The Team agreed to pay for an incentive only and after such evidence is presented. Nevertheless, the Team is of the view that the pilot project for GIS should be completed even without further involvement of a MoLG officer.
As a result of discussion, GDPT pledged to obtain the requested evidence from Ministry of Finance and MOLG.

7. New Valuation Standard (VS)

JICA has conducted the technical cooperation project for supporting designing new valuation standard and its application to Palestine. Both sides re-confirmed that the Project is conducted in line with the agreed valuation standard. The formula has been adopted ($9^{\text {th }}$ and $20^{\text {th }}$ September 2015 as attached) and refinement processes are as follows; simplification of value influence factors, verification of market ratio (multiplier) and verification of standard point value.

In the discussion, GDPT insisted the Project Team has not achieved anything (VS Fomula, Manual etc.), though GDPT confirmed that the draft VS formula was officially adopted in principle. The Team explained that VS Formula draft was approved on September $9^{\text {th }}$ and $20^{\text {th }} 2015$, and VS Formula as well as the manual is in process for completion.

8. Assignment of valuation standard experts

The Team stated that JICA has made its best efforts to attain the project purpose and upon request from GDPT, has allocated available resources including Dr. Ayoub from Jordan and GIS pilot project. In addition, the Team mentioned that if GDPT wishes to
request further input from JICA, GDPT has to submit TOR immediately which was requested by JICA Palestine Office on $16^{\text {th }}$ of November 2015. However, JICA thinks that the current staffing is sufficient for implementing the rest of the project activities. Furthermore, JICA is not able to input the third country experts in terms of allocated budget and time.
In the discussion, GDPT requested Japanese experts to stay longer period for the project. However, in terms of contract, JICA explained Japanese experts cannot be stationed in Palestine longer than planned period.

【Items Not Agreed】

1. PDA

The Team explained that JICA cannot provide PDA due to budget constraints.
In the discussion, GDPT insisted to introduce PDA and related systems. JICA, however, repeatedly responded that JICA cannot approve the request due to the budget constraints and lack of time.

Other Points Discussed

- Workshop

GDPT requested JICA to provide necessary fund to take place two to three days retreat or workshop. Although JICA is supportive to hold such events by GDPT, JICA cannot give financial assistance.

- Equipment

The Team mentioned the results of JICA's appraisal on additionally-requested equipment which is either approved or not-approved. The table below shows the JICA's appraisal results.

Equipment	
PDA	Not approved by JICA
GPS	Not approved by JICA
Laser	Deducting the number from 5 to 2
Digital Camera	Not approved by JICA
Monitors-5	Procurement in process
Workstations-5	Procurement in process
Laptops-2	Procurement in process
Computers for evaluators	Not approved by JICA

- VNG

VNG will be assigned as a second-opinion adviser to GDPT.

END

[^0]: 1 ＇Initializing GIS＇can be defined as a module which is created to start developing GDPT－GIS focusing on a field of valuation activity with a wishful intention of expanding it little by little in the future for Palestine．
 2 Relevant works related to exchange of data with MoLG and PLA is of significant importance for attaining the purpose．Such works involve exchange of views on data for elaborating data for the purpose set as above．
 3 GIS Engineer shall be assisted by the Valuation Standards Facilitator（VSF）．Yet VSF is not listed in the above item ＇Human Resources＇as VSF will work as overall facilitation．
 4 A total quantity with 6 is accounted for 1 for VSF， 1 for GIS engineer， 2 for GIS assistants and 2 for valuators，while the number of laser measure is 5 excluding one for VSF．

[^1]: 1 The project will be completed at the end of September 2016. But activities by Japanese experts in Palestine will be finished by the beginning of September 2016.

