資料-9 地質調査に関する 再委託業者からの報告書

1. ブロバ変電所の試験結果概要

表1-1 標準貫入試験から算出した地耐力(BH01:132 kV 送電ルート上)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearing Capacity
						Cu	Q_{ult}	Q _{all}
	(m)		N	C _N	N 60	(kPa)	(kPa)	(kPa)
	0.00							
	1.00		5	0.59	3	63	325	108
	2.00	CLAYEY SAND	8	0.59	5	89	456	152
	3.00	7	13	0.59	8	126	647	216
	4.00	7	17	0.67	11	167	859	286
	5.00	SILT	18	0.67	12	174	895	298
	6.00	CLAY	18	0.75	13	189	969	323
Г	7.00	SILTY SANDY	29	0.75	22	266	1366	455
Г	8.00	- SILIT SANDT	30	0.75	22	272	1400	467
-03256131	9.00	CLAY	33	0.75	25	292	1500	500
BH01	10.00	SILT	46	0.75	34	371	1905	635
	11.00	CLAY	29	0.79	23	276	1418	473
	12.00	SILT	53	0.79	42	426	2188	729
	13.00		79	0.79	62	568	2917	972
	14.00	7	44	0.79	35	372	1914	638
Г	15.00	CLAY	70	0.79	55	520	2674	891
Г	16.00	7	47	0.79	37	390	2007	669
	17.00	7	40	0.79	32	348	1787	596
	18.00	SILT	22	0.79	17	226	1162	387
	19.00	CLAY	81	0.79	64	578	2970	990
	20.00	T CLAY	64	0.79	50	488	2507	836

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu Qall=Qult/3

表 1 - 2 標準貫入試験から算出した地耐力 (BH02:変電所内北側)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C _u	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		N	C _N	N 60	(kPa)	(kPa)	(kPa)
	0.00	CLAY		2.1.1110	0	0	0	0
	1.00	CLAYEY GRAVEL	14	0.59	8	133	682	227
	2.00		42	0.59	25	293	1505	502
	3.00	1	36	0.59	21	262	1347	449
	4.00	SILT	24	0.67	16	214	1101	367
	5.00		22	0.67	15	201	1034	345
	6.00	i	15	0.75	11	165	850	283
	7.00	SILTY GRAVEL	19	0.75	14	196	1008	336
	8.00		22	0.75	16	218	1120	373
9.00	9.00		24	0.75	18	232	1192	397
	10.00	SILT	31	0.75	23	279	1434	478
	11.00		25	0.79	20	248	1274	425
	12.00	CLAY	20	0.79	16	211	1085	362
	13.00	VIIVA	36	0.79	28	322	1657	552
BH02	14.00		29	0.79	23	276	1418	473
	15.00		22	0.79	17	226	1162	387
	16.00	1	21	0.79	17	219	1124	375
	17.00	1	26	0.79	20	255	1311	437
	18.00	1	35	0.79	28	316	1623	541
	19.00	1	43	0.79	34	366	1883	628
	20.00		44	0.79	35	372	1914	638
	21.00	SILT	36	0.79	28	322	1657	552
	22.00	1	44	0.79	35	372	1914	638
	23.00	1	46	0.79	36	384	1976	659
	24.00	1	22	0.79	17	226	1162	387
	25.00	1	32	0.79	25	296	1522	507
	26.00	1	75	0.79	59	547	2810	937
	27.00	1	73	0.79	57	536	2756	919
	28.00	1	73	0.79	57	536	2756	919

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu Qall=Qult/3

表 1-3 標準貫入試験から算出した地耐力 (BH03:220 kV 送電ルート上)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion Cu	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
-	0.00	CLAYEY SAND			110.50			Vocasia V
	1.00		4	0.59	2	54	277	92
	2.00		15	0.59	9	139	717	239
<u> </u>	3.00	CLAY	13	0.59	8	126	647	216
	4.00	07-00070000	14	0.67	9	145	747	249
	5.00		12	0.67	8	130	668	223
	6.00		18	0.75	13	189	969	323
	7.00	SILT	15	0.75	11	165	850	283
	8.00	-	28	0.75	21	259	1332	444
9.00 10.00	CLAY SAND	34	0.75	25	298	1532	511	
	10.00	01437	43	0.75	32	353	1814	605
	11.00	CLAY	20	0.79	16	211	1085	362
	12.00	1	26	0.79	20	255	1311	437
	13.00		35	0.79	28	316	1623	541
- Luca	14.00		30	0.79	24	283	1453	484
ВН03	15.00		37	0.79	29	329	1690	563
	16.00		34	0.79	27	309	1590	530
	17.00		39	0.79	31	341	1755	585
	18.00		37	0.79	29	329	1690	563
	19.00		27	0.79	21	262	1347	449
	20.00	SILT	38	0.79	30	335	1722	574
	21.00	J SILI	44	0.79	35	372	1914	638
	22.00		43	0.79	34	366	1883	628
	23.00		37	0.79	29	329	1690	563
	24.00	1	47	0.79	37	390	2007	669
25.00	7	Refusal	0.79		>450	>2300	>750	
	26.00	1	45	0.79	35	378	1945	648
	27.00		77	0.79	61	557	2864	955
	28.00		74	0.79	58	541	2783	928
	29.00		54	0.79	43	432	2218	739

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu Qall=Qult/3

表1-4 標準貫入試験から算出した地耐力 (BH04:変電所内南側)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C ₁	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		Ň	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00							
	1.00	CLAY	10	0.59	6	104	535	178
	2.00	1,704	8	0.59	5	89	456	152
	3.00		8	0.59	5	89	456	152
	4.00	SILT	10	0.67	7	114	586	195
	5.00	_	17	0.67	11	167	859	286
	6.00	01414	20	0.75	15	203	1046	349
	7.00	CLAY	20	0.75	15	203	1046	349
	8.00 9.00	4	18 13	0.75 0.75	13 10	189 149	969 767	323 256
_	10.00		28	0.75	21	259	1332	∠56 444
	11.00	SILT	18	0.79	14	196	1006	335
-	12.00	-	35	0.79	28	316	1623	541
_	13.00	SILTY SAND	22	0.79	17	226	1162	387
-	14.00	OIETT SAND	31	0.79	24	289	1487	496
	15.00		29	0.79	23	276	1418	473
BH04	16.00	1	26	0.79	20	255	1311	437
- I	17.00	1	29	0.79	23	276	1418	473
	18.00	1	40	0.79	32	348	1787	596
	19.00	1	34	0.79	27	309	1590	530
	20.00	1	37	0.79	29	329	1690	563
	21.00	1	23	0.79	18	233	1200	400
	22.00	SILT	27	0.79	21	262	1347	449
	23.00		30	0.79	24	283	1453	484
	24.00	1	31	0.79	24	289	1487	496
	25.00	7	42	0.79	33	360	1851	617
	26.00	1	53	0.79	42	426	2188	729
1 10	27.00	1	49	0.79	39	402	2068	689
	28.00	1	56	0.79	44	443	2277	759
	29.00	1	75	0.79	59	547	2810	937
	30.00	1	77	0.79	61	557	2864	955

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu

Qall=Qult/3

表 1 - 5 含水量 (Natural Moisture Content)

_	· • □//\=	E (Macara)		,	
試験方法		ASTM D4959)		
			含水量	走 (%)	
ボーリ	ング孔	BH1	BH2	BH3	BH4
深さ (m)	5.5 - 6.0	23.0	34.5	25.8	19.2
	10.5 - 11.0	24.5	37.3	31.0	22.1
	15.5 – 16.0	26.5	35.9	30.9	24.4
	20.5 - 21.0	28.9	29.5	29.2	29.7
	25.5 - 26.0	-	28.3	26.5	27.1
	28.5 - 29.0	-	22.6	-	-
	29.5 - 30.0	-	-	25.9	-
	30.5 – 31.0	-	-	-	22.7

表 1 - 6 液性限界・塑性限界 (Liquid Limit and Plastic Limit)

試験方法		ASTM D4318			
110大ノノイム		ASTW1 D4310	S#- Lil	.70 🖽	
			/ / / / / / / / / / / / / / / / / / /	限界	T
ボーリング孔		BH1	BH2	BH3	BH4
深さ (m)	5.5 - 6.0	47.4	65.6	64.9	53.9
	10.5 - 11.0	44.7	68	41.2	61.9
	15.5 - 16.0	44.8	61.3	59.9	66
	20.5 - 21.0	49.9	65.1	56.5	59.9
	25.5 - 26.0	-	62.6	57.7	54.8
	28.5 - 29.0	-	59.7	-	-
	29.5 - 30.0	-	-	61.3	-
	30.5 – 31.0	-	-	-	54.3
試験方法		ASTM D4318			
			塑性	限界	
ボーリング孔		BH1	BH2	BH3	BH4
深さ (m)	5.5 - 6.0	24.4	44.6	39.8	20.1
	10.5 – 11.0	28.8	38.6	22.6	34.1
	15.5 – 16.0	28	42.6	33.7	32
	20.5 – 21.0	28.8	44	40.1	40.4
	25.5 - 26.0	-	41.7	36.6	33.9
	28.5 – 29.0	-	36.5	-	-
	29.5 – 30.0	-	-	36.3	-
	30.5 – 31.0	-	-	-	34.6

表 1 - 7 比重 (Specific Gravity)

試験方法		ASTM D854							
		平均比重							
ボーリング孔		BH1	BH2	ВН3	BH4				
深さ (m)	5.5 - 6.0	2.595	2.732	2.650	2.795				
	10.5 - 11.0	2.636	2.744	2.649	2.639				
	15.5 – 16.0	2.599	2.713	2.637	2.694				
	20.5 - 21.0	2.749	2.662	2.684	2.716				
	25.5 - 26.0	-	2.691	2.693	2.682				
	28.5 - 29.0	-	2.721	-	-				
	29.5 - 30.0	-	-	2.592	-				
	30.5 – 31.0	-	-	-	2.638				

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 1 - 8 湿潤密度 (Bulk Density)

	<u></u>		2 (Barry Borlor)	- 3 7						
試験方法		ASTM D2937								
			湿潤密度(Mg/m³)							
ボーリング孔	ı	BH1	BH2	BH3	BH4					
深さ (m)	5.5 - 6.0	1.89	1.80	1.92	1.97					
	10.5 - 11.0	2.00	1.70	1.83	2.01					
	15.5 - 16.0	1.86	1.74	1.86	1.81					
	20.5 - 21.0	1.94	1.82	1.88	1.79					
	25.5 - 26.0	-	1.86	1.93	1.86					
	28.5 - 29.0	-	1.71	-	-					
	29.5 - 30.0	-	-	1.93	-					
	30.5 - 31.0	-	-	-	1.93					

表 1 - 9 一軸圧縮試験 (Unconfined Compressive Strength)

試験方法		ASTM D2166			
			粘着力	Cu (kPa)	
ボーリング孔		BH1	BH2	BH3	BH4
深さ (m)	1.5 - 2.0	-	-	44	70
	3.0 - 4.0	-	33	-	-
	5.5 - 6.0	23.4	23	-	-
	7.5 - 8.0	-	-	35	-
	10.5 - 11.0	14	20	-	38
	11.5 – 12.0	-	-	-	20
	15.5 – 16.0	26	30	-	-
	18.5 – 19.0	-	-	31	-
	19.5 - 20.0	-	-	-	25
	23.5 - 24.0	-	-	-	37
	24.5 – 25.0	-	41	-	-
	25.5 – 26.0	-	-	44	-
	28.5 – 29.0	-	46	-	-
	29.5 – 30.0	-	-	24	-
	30.5 – 31.0	-	-	-	19

表1-10 三軸圧縮試験 (Unconsolidated Undrained Triaxial Test)

試験方法		ASTM D2850 and D4767							
		粘着力 Cu (kPa)							
ボーリング孔		BH1	BH2	BH3	BH4				
深さ (m)	5.5 - 6.0	68	60	118	133				
	10.5 – 11.0	28	40	73	34				
	15.5 – 16.0	31	36	55	84				
	20.5 - 21.0	74	29	51	31				
	25.5 – 26.0	-	100	-	86				
	28.5 - 29.0	-	66	-	-				
	29.5 – 30.0	-	-	-	-				
	30.5 – 31.0	-	-	-	60				

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 1 - 1 1 圧密試験 (Consolidation Test)

Borehole No.:	Depth (m)	Pre- Consolidatio	Overburd en	Compres sion		icient of Vo		The second second	ent of Cons C _V (cm ² /sec		Perme	ability, k (r x10 ⁻⁹	n/s)
		n pressure (kN/m²)	Pressure (kN/m²)	Index, C _c	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	5.5-6.0	200.0	101.9231	0.106	0.054	0.218	0.122	0.005	0.01	0.009	0.260	2.111	1.184
BH 01	10.5-11.0	210.0	206.4796	0.123	0.048	0.428	0.211	0.004	0.01	0.006	0.309	1.888	1.190
BH 01	15.5-16.0	282.11	282.1073	0.077	0.018	0.334	0.150	0.002	0.020	0.013	0.035	6.712	2.547
	20.5-21.0	390.6	390.6	0.153	0.056	0.123	0.079	0.001	0.003	0.002	0.108	0.225	0.169
	5.5-6.0	320.0	96.9883	0.469	0.085	0.395	0.165	0.003	0.010	0.006	0.257	1.493	0.85
	10.5-11.0	250.0	175.2315	0.108	0.036	0.200	0.123	0.012	0.018	0.015	0.410	3.172	1.899
BH 02	15.5-16.0	265.1	265.1	0.032	0.012	0.066	0.039	0.001	0.006	0.003	0.016	0.225	0.099
BH 02	20.5-21.0	366.4	366.3702	0.114	0.026	0.249	0.120	0.008	0.014	0.011	0.248	1.855	1.24
	25.5-26.0	465.5	465.5	0.108	0.039	0.239	0.133	0.009	0.016	0.012	0.329	3.855	1.78
	28.5-29.0	477.1	477.1	0.158	0.040	0.184	0.098	0.003	0.015	0.008	0.118	9 3.855 8 2.636	1.02
	5.5-6.0	200.0	103.484	0.075	0.036	0.095	0.060	0.0012	0.0015	0.0014	0.050	0.137	0.08
	10.5-11.0	205.0	188.0236	0.077	0.028	0.186	0.098	0.009	0.022	0.017	0.238	4.018	1.91
BH 03	15.5-16.0	283.3	283.3	0.103	0.042	0.306	9 0.133 0.009 0.016 0.012 0.329 3.855 1 4 0.098 0.003 0.015 0.008 0.118 2.636 1 5 0.060 0.0012 0.0015 0.0014 0.050 0.137 0 6 0.098 0.009 0.022 0.017 0.238 4.018 1 6 0.145 0.016 0.021 0.017 0.852 4.730 2	2.30					
BH 03	20.5-21.0	377.7	377.7	0.159	0.056	0.356	0.173	0.012	0.020	0.016	0.638	5.764	2.74
	25.5-26.0	483.1	483.1	0.212	0.079	0.251	0.135	0.004	0.007	0.006	0.490	0.913	0.67
	29.5-30.0	558.5	558.5	0.114	0.055	0.092	0.075	0.006	0.016	0.010	0.422	Max 2.111 1.888 6.712 0.225 1.493 3.172 0.225 1.855 3.855 2.636 0.137 4.018 4.730 5.764	0.73
	5.5-6.0	260.0	106.4684	0.059	0.025	0.064	0.040	0.002	0.006	0.003	0.048	0.162	0.10
	10.5-11.0	260.0	206.5851	0.077	0.041	0.128	0.079	0.001	0.004	0.002	0.040	0.486	0.17
DULGA	15.5-16.0	274.8	274.8	0.138	0.062	0.217	0.147	0.003	0.007	0.005	0.382	0.816	0.60
BH 04	20.5-21.0	359.2	359.2	0.237	0.085	0.334	0.211	0.003	0.010	0.005	0.546	0.864	0.72
	25.5-26.0	464.2	464.2	0.182	0.095	0.537	0.287	0.002	0.003	0.002	0.268	1.143	0.62
	30.5-31.0	578.7	578.7	0.105	0.055	0.194	0.126	0.005	0.007	0.006	0.360	1.111	0.72

2. カワラ変電所

表2-1 標準貫入試験から算出した地耐力 (BH01:変電所内北側)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearing Capacity
	(m)		N	СN	N_{60}	(kPa)	Qult (kPa)	Q _{all} (kPa)
	0.00	Moderate Reddish	0	0.00	0	0	0	0
	1.50	Brown imported fill Sandy Fat Gravel	5	0.59	3	63	325	108
	2.50		3	0.59	2	44	225	75
	3.50		6	0.59	4	72	371	124
	4.50	Ī	5	0.67	3	69	356	119
	5.50	Reddish Brown Sandy	7	0.67	5	88	453	151
	6.50		7	0.75	5	96	491	164
	7.50	Fat Clay	6	0.75	4	85	439	146
	8.50		12	0.75	9	141	724	241
	9.50		13	0.75	10	149	767	256
	10.50		17	0.75	13	181	930	310
	11.50		12	0.79	9	146	751	250
	12.50	Yellowish Orange coars e grained Clayey Sandy	26	0.79	20	255	1311	437
	13.50		14	0.79	11	163	839	280
	14.50		33	0.79	26	303	1556	519
BH01	15.50		25	0.79	20	248	1274	425
	16.50		28	0.79	22	269	1382	461
	17.50		35	0.79	28	316	1623	541
	18.50		36	0.79	28	322	1657	552
	19.50		29	0.79	23	276	1418	473
	20.50	77.11 . 1 0 . 0 . 1	37	0.79	29	329	1690	563
	21.50	Yellowish Orange Sandy	18	0.79	14	196	1006	335
	22.50	Silt	42	0.79	33	360	1851	617
	23.50	T T	Refusal	0.79		>450	>2300	>750
	24.50		42	0.79	33	360	1851	617
	25.50		43	0.79	34	366	1883	628
	26.50		45	0.79	35	378	1945	648
	27.50		53	0.79	42	426	2188	729
	28.50	Sandy Clay highly	56	0.79	44	443	2277	759
	29.50	weathered Pink Greenish	46	0.79	36	384	1976	659
	30.50	Grey weak rock	Refusal	0.79		>450	>2300	>750

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 · Cu Qall=Qult/3

表 2 - 2 含水量 (Natural Moisture Content)

×	D/1.3 (
試験方法		ASTM D4959
		含水量 (%)
ボーリング孔		BH1
深さ (m)	3.0	26.2
	5.0	22
	6.0	22.7
	10.0	19
	11.0	21.5
	12.0	10.9
	15.0	19.3
	16.0	25.8
	18.0	24.2
	20.0	25.8
	24.0	22.6
	25.0	20.7
	27.0	22
	30.0	17.6

表 2 - 3 液性限界・塑性**限界** (Liquid Limit and Plastic Limit)

試験方法		ASTM	ASTM D4318			
		液性限界(%)	塑性限界 (%)			
ボーリング孔		BH1	BH1			
深さ (m)	5.0	53.9	26.4			
	10.0	57.7	31.6			
	11.0	57.5	29.6			
	15.0	53.2	31.3			
	20.0	57.1	35.9			
	30.0	42.1	24.1			

表 2 - 4 比重 (Specific Gravity)

試験方法		ASTM D854	
		平均比重	
ボーリング孔		BH1	
深さ (m)	5.0	2.45	
	10.0	2.48	
	11.0	2.65	
	15.0	2.61	
	20.0	2.62	
	30.0	2.55	

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表2-5 湿潤密度 (Bulk Density)

		······································
試験方法		ASTM D2937
		湿潤密度 (kg/m³)
ボーリング孔		BH1
深さ (m)	5.0	1903.0
	10.0	1903.0
	11.0	1969.6
	15.0	1972.7
	20.0	1856.9

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 2 - 6 一軸圧縮試験 (Unconfined Compressive Strength)

_ ,		'
試験方法		ASTM D2166
		粘着力 Cu (kPa)
ボーリング孔	_	BH1
深さ (m)	5.0	24
	10.0	10
	11.0	54
	15.0	42.7
	20.0	33

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 2 - 7 三軸圧縮試験 (Unconsolidated Undrained Triaxial Test)

試験方法		ASTM D2850 and D4767
		粘着力 Cu (kPa)
ボーリング孔		BH1
深さ (m)	5.0	53
	10.0	76
	15.0	14
	20.0	8
	25.0	22
	30.0	25

表2-8 圧密試験 (Consolidation Test)

Sample Depth Source (m)		(m) ation		Consolid ation pressure	Consolid ation pressure	Overburd en Pressure (kN/m²)	Compressi on Index, C _c	Coefficie Compre	ent of ssibility my	Volume (m²/MN)	Coeffici C _V (cm ² /		nsolidation	Permeability x10*	, k (m/s)	
				Min	Max	Ave	Min	Max	Ave	Min	Max	Ave				
	5	150	92.2	0.195	0.072	4.057	0.8934	0.0010	0.0036	0.0018	7E-11	1.5E-09	2.83E-09			
	10	180	172.1	0.201	0.070	1.846	0.502	0.0011	0.0042	0.0028	7.6E-11	6.5E-09	1.67E-09			
BH 1	15		276.6	0.036	0.020	0.16	0.074	0.0032	0.0154	0.0083	1.12E-09	2.25E-09	9.25E-10			
	20		368.8	0.029	0.016	0.16	0.07	0.0026	0.0081	0.0049	4.2E-09	1.12E-09	4.88E-10			
	30		553.2	0.037	0.030	0.098	0.053	0.0020	0.0055	0.0035	8.76E-11	1.97E-10	1.5E-10			

3. 新ムコノ変電所の地質調査の結果

表3-1 標準貫入試験から算出した地耐力 (BH01:変電所内)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion Cu	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		N	CN	N 60	(kPa)	(kPa)	(kPa)
	0.00	Inorganic Sandy Lean						
	1.50	CLAY	6	0.59	4	72	371	124
	3.00	Inorganic Sandy SILT	7	0.59	4	81	414	138
	4.50	Inorganic Sandy Elastic SILT	5	0.59	3	63	325	108
	6.00	Ingressia Cond. Cll T	10	0.67	7	114	586	195
	7.50	Inorganic Sandy SILT	41	0.67	27	315	1618	539
	9.00	Poorly Graded SAND with Clay and Gravel	17	0.75	13	181	930	310
31	10.50	Silty SAND with Gravel	70	0.75	52	501	2577	859
4400000	12.00	Poorly Graded SAND with Silt and Gravel	30	0.75	22	272	1400	467
BH01	13.50	Poorly Graded SAND with Clay and Gravel	40	0.75	30	335	1722	574
	15.00	Silty SAND with	9	0.75	7	114	588	196
	16.50	Gravel	17	0.79	13	188	965	322
	18.00		19	0.79	15	203	1046	349
	19.50		Refusal	0.79		>500	>2500	>850
	21.00		Refusal	0.79		>500	>2500	>850
4	22.50	1200	Refusal	0.79		>500	>2500	>850
189	24.00	Silty SAND	Refusal	0.79		>500	>2500	>850
	25.50	Ph.	Refusal	0.79		>500	>2500	>850
	27.00		Refusal	0.79		>500	>2500	>850
12	28.50		Refusal	0.79		>500	>2500	>850

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu

Qall=Qult/3

表 3 - 2 含水量 (Natural Moisture Content)

	± (nacara)	morocaro concorre,
試験方法		ASTM D4959
		含水量 (%)
ボーリング孔		BH1
深さ (m)	1.5	27.7
	3.0	26.8
	4.5	30.7
	6.0	30.9
	7.5	13.2
	9.0	15.5
	10.5	22.4
	12.0	5.5
	13.5	11.3
	15.0	9.3
	16.5	16.1
	18.0	9.4
	19.5	17.9
	27.0	19.5
	28.5	22.2

表3-3 液性限界・塑性限界 (Liquid Limit and Plastic Limit)

試験方法		ASTM D4318			
		液性限界(%)	塑性限界 (%)		
ボーリング孔		BH1	BH1		
深さ (m)	4.5	51.8	30.3		
	6.0	45.8	28.3		
	10.5	41.2	30.5		
	28.5	35.3	25.7		

表3-4 比重 (Specific Gravity)

試験方法		ASTM D854
		平均比重
ボーリング孔		BH1
深さ (m)	4.5	2.573
	6.0	2.571
	10.5	2.704
	28.5	2.722

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 3 - 5 湿潤密度 (Bulk Density)

		` ,
試験方法		ASTM D2937
		湿潤密度 (kg/m³)
ボーリング孔	ング孔 BH	
深さ (m)	4.5	1900
	6.0	1867
	10.5	1698
	28.5	1929

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表3-6 一軸圧縮試験 (Unconfined Compressive Strength)

	12-1122	,		
試験方法		ASTM D2166		
		粘着力 Cu(kPa)		
ボーリング孔		BH1		
深さ (m)	4.5	19		
	6.0	7		
	10.5	40		

[出所] 再委託業者からの地質調査報告書(添付資料-8)

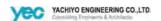
表3-7 三軸圧縮試験 (Unconsolidated Undrained Triaxial Test)

		•
試験方法		ASTM D2850 and D4767
		粘着力 Cu (kPa)
ボーリング孔		BH1
深さ (m) 4.5		43
	6.0	54
	10.5	71

表3-8 圧密試験 (Consolidation Test)

Borehole No.: Depth (m) Pre-Consolidation pressure (kN/m²)	Consolidatio	olidatio en sio	Compres			Coefficient of Consolidation $C_{V}\left(cm^{2}/sec\right)$		Permeability, k (m/s) x10 ⁻⁹					
	Pressure (kN/m²) Index, C	Index, C _c	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave		
	4.5	140.0	83.86	0.197	0.070	0.3219	0.1617	0.0001	0.0003	0.0001	0.007	0.041	0.020
BUOA	6.0	200.0	109.90	0.104	0.053	0.179	0.099	0.001	0.002	0.001	0.091	0.185	0.120
BH 01	10.5	220.00	174.94	0.137	0.062	0.297	0.162	0.001	0.002	0.002	0.105	0.396	0.241
	28.5	539.4	539.4	0.061	0.031	0.135	0.085	0.003	0.006	0.004	0.096	0.403	0.281

ntended for


Uganda Electricity Transmission Company Limited (UETCL)

Document type
Geotechnical report

April, 2016

GREATER KAMPALA TRANSMISSION NETWORK PROJECT IN THE REPUBLIC OF UGANDA

BULOBA SUBSTATION DETAIL GEOTECHNICAL REPORT

BULOBA SUBSTATION DETAIL GEOTECHNICAL REPORT

Revision 00
Date 13.04.2016
Prepared by DA/DS
Checked by LN
Approved by DA

Yachiyo Engineering Co. Ltd, 5-20-8 Asakusabashi, Taito-ku Tokyo 111-8648, Japan NEWPLAN Limited

Crusader House Plot 3 Portal Avenue P.O. Box 7544, Kampala Uganda T +256 414 340 243/4/5

Detailed Geotechnical Report

Detailed Geotechnical Report

EXECUTIVE SUMMARY

This report mainly deals with the geological and geotechnical investigation findings of Buloba Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed between December 2015 and January 2016. In addition, relevant non-geotechnical parameters are outlined. The evaluation of the field and laboratory investigations is included in this report.

Buloba substation is located in Mawokota, Mpigi district with coordinates 36 N 432115 UTM 28405 and approximately 29km west from Kampala city centre. The site is accessible via the Masaka to Kampala highway. The project area incorporated within the site boundary is approximately 113,000m².

The project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. Additionally, the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

Published geology indicates that the site is underlain by rocks from the Buganda group which are rocks predominantly composed of shale, slate and phyllite of complex formation comprising sedimentary, metamorphic and volcanic rocks.

The soil investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The conducted geotechnical investigation consists of field investigation and laboratory tests on samples recovered from the borehole.

The geology of the site was variable and generally consisted of lateritic gravel underlain by interbedded layers of sand and clay overlying silt. Northwest of the site (BH03), sand was encountered from ground level up to 1mBGL underlain by 1m-10mBGL sandy clay, underlain by 10m-11mBGL clayey sand and 11m-29mBGL sandy silt. North of the site (BH02), black organic soil was encountered from ground level up to 1mBGL overlying 1m-5.5mBGL clayey gravel and 5.5m-28m silt. Southeast of the site (BH01), clayey sand was encountered from ground level up to 2.5mBGL overlying 2.5m-4mBGL gravelly clay, 4m-5mBGL clayey sand, 5m-12mBGL sandy silt, 12m-13mBGL clayey sand, 13m-18mBGL sandy silt and 18m-20mBGL silty clay. South of

the site (BH04), clayey gravel was encountered from ground level up to 4mBGL underlain by 4m-5.5mBGL clay, 5.5m-6.5mBGL clayey sand, 6.5m-9mBGL clay, 9m-25mBGL sandy silt and 25m-30mBGL gravelly silt.

н

CONTENTS

EXECUTIVE SUMMARY	III
1 INTRODUCTION	1
1.1 About report	1
1.2 Background	1
1.3 The Consultant	1
1.4 Scope of services	2
2 SITE DESCRIPTION	3
2.1 Location	3
2.2 Topography	4
2.3 Climate	4
2.4 Published Geology	4
2.5 Geohazards	5
3 GEOTECHNICAL INVESTIGATION	7
3.1 Methodology	7
3.2 Field Investigations	7
3.2.1 Borehole	8
3.2.2 Soil profile	8
3.2.3 Ground water	9
3.2.4 The Standard Penetration Test (SPT)	10
3.3 Laboratory Investigations	16
3.3.1 Moisture content	16
3.3.2 Atterberg Limits	17
3.3.3 Particle size distribution	18
3.3.4 Specific Gravity	23
3.3.5 Bulk density	24
3.3.6 Corrosivity of soils	24
3.3.7 Unconsolidated undrained triaxial tests	25
3.3.8 Unconfined Compressive Strength	26
3.3.9 Consolidation	27
4 CONCLUSIONS AND RECOMMENDATIONS	30
4.1 Conclusions	30
4.2 Recommendations	32
5 REFERENCES	33
6 APPENDIX	35

Detailed Geotechnical Report

LIST OF FIGURES	
Figure 2. 1: Site location	
Figure 2. 2: Extract of geological map of the project site	
Figure 2. 3: Seismicity of Uganda for the period 1900-2013 showing project site	(
Figure 3- 1: Trend of Natural Moisture Content	
Figure 3- 2: Particle distribution curve for BH1	
Figure 3- 3: Particle distribution curve for BH2	
Figure 3- 4: Particle distribution curve for BH3	21
Figure 3- 5: Particle distribution curve for BH4	22
LIST OF TABLES Table 3- 1: Borehole location coordinates	
Table 3-2: Standard penetration test result for BH1	
Table 3-3: Standard penetration test result for BH2	
Table 3- 4: Standard penetration test result for BH3	
Table 3-5: Standard penetration test result for BH4	
Table 3- 6: Specific gravity summary	
Table 3-7: Summary of chemical test results	
Table 3- 8: Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test	
Table 3- 9: Summary of Unconfined Compressive Strength Test Results	
Table 3- 10: The summary of Oedometer test result	
Table 5° 10. The summary of Oedoffieter test result	2
Appendix 1: Borehole logs	31
Appendix 2: Drilling pictorial logs	4
Appendix 3: Borehole layout	6
Appendix 4: Soil Profile	6
Appendix 5: Standard Penetration test result	
Appendix 6: Natural Moisture Content	7
Appendix 7: Summary of Texture Classification	8
Appendix 8: Specific Gravity	9
Appendix 9: Chemical Test	10
Appendix 10: One-Dimensional Consolidation (Oedometer test)	10
Appendix 11: Atterbeg Test Results	12
Appendix 12: Bulk Density	13
Appendix 13: Unconsolidated undrained triaxial tests result	
Appendix 14: Unconfined Compressive Strength	15

vi

Detailed Geotechnical Report

LIST OF ABBREVIATIONS

American Society for Testing and Materials
Below Ground Level
Borehole
Department of Geological Survey and Mines
Japan International Cooperation Agency
Kilometer
Meter
Above Mean Sea Level
Standard Penetration Test
Universal Transverse Mercator
Yachiyo Engineering Company Ltd
Degrees Celsius

Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding for Buloba substation. It discusses the index and engineering properties of soil based on the geotechnical field investigation which was conducted during the period December 2015 to January 2016 and laboratory test conducted in January 2016. Relevant non-geotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Yachiyo Engineering Company Ltd (YEC) were commissioned by the Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Ltd (Universal Transverse Mercator) plans to construct a new substation and associated infrastructure at the proposed site. Geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Bulooba substation and transmission line, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited was appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 10th December 2015 and the assignment commenced on 11th December, 2015.

١

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on 14th December, 2015. Following that, detailed investigations commenced on 15th December, 2015. The field and laboratory tests were conducted by Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Buloba substation Topographic surveying and Geotechnical investigations contract.

1.4 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was performed. Newplan limited conducted the geotechnical investigations as per the general guidance proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below:

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles;
- 3. Carrying out standard penetration tests:
- Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), consolidation tests and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

Detailed Geotechnical Report

2 SITE DESCRIPTION

2.1 Location

The proposed site is located in Mawokota, Mpigi district with coordinates 36 N 432115 UTM 28405 and approximately 29km west from Kampala city center. The site is accessible via the Masaka to Kampala highway (see Figure 2.1).

The project area incorporated within the site boundary is approximately 113,000m². It is mainly marshy land which is sparsely populated with a few habited settlements.

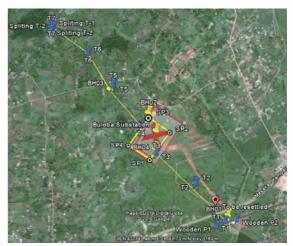


Figure 2. 1: Site location

2

Detailed Geotechnical Report

2.2 Topography

A detailed topographic survey was carried out by Newplan in December 2015. This indicated the topography of the site is undulating with the elevation of the project area varying between 1163 to 1196masl.

2.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 °C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

2.4 Regional Geology

According to DGSM 1:100 000 sheet 70 for Entebbe, the regional geology is composed of sedimentary, volcanic and metamorphic complexes. The main rocks in the region include shale, slate and phyllite (see Figure 2.2). These are metamorphic rocks with shale being the parent rock and produces a sequence of metamorphic rocks that goes through slate, then through phyllite, schist and gneiss. These rocks are underlain by other rocks such as quartzite and granatoids or granitic rocks. These rocks belong the Buganda group which is in the lower Proterozoic series.

Detailed Geotechnical Report

Figure 2. 2: Extract of geological map of the project site

2.5 Site Geology

Based on the drilled holes and visual observations, the site geology is dominated by rocks that have undergone some weathering to produce an overburden that typically grades from completely decomposed rocks (residual soil) to highly weathered rock with depth. Generally the overburden is deep at most of the site area and no rock was encountered in all the drilled boreholes. The formation that was encountered in top 20m BGL was variable and generally consisted of lateritic gravel underlain by interbedded layers of sand and clay overlying silt. Predominant structural trends could not easily be ascertained due to a general lack of rock exposures in the area

2.6 Geohazards

The project area of Buloba substation has not experienced any earthquakes historically and lies in zone 3 which is the least seismically active zone in Uganda. The seismicity map of Uganda (Figure 2.3) indicates that there are no epicenters close to the project site. Therefore the risk of damage by earthquakes is low. An overview of the geological

4

;

conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

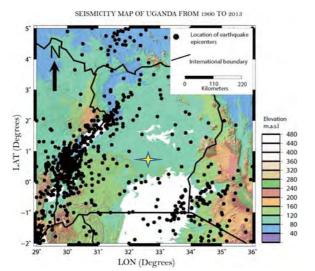


Figure 2. 3: Seismicity of Uganda for the period 1900-2013 showing project site

Detailed Geotechnical Report

3 GEOTECHNICAL INVESTIGATION

3.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation.

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in December, 2015. This investigation was limited to detail geotechnical investigation mainly for preliminary design stage investigation.

This preliminary design detailed geotechnical investigation typically includes four borings and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation.
- Laboratory tests on samples recovered from borehole.

3.2 Field Investigations

The site work was executed on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following;

· Rotary drilling of 4 boreholes to a maximum depth of 30m;

7

Detailed Geotechnical Report

- Collecting disturbed and undisturbed samples;
- In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.0m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760 nm;
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- Counting the number of blows to drive the sampler each 75 mm increment of a total of 450 mm penetration. The blow count for the first 150 mm increment was discarded and the sum of the blow counts for the second and the third 150 mm increment was recorded as the SPT 'N' value.

3.2.1 Borehole

Four boreholes were drilled as per ASTM D 5783 and terminated at depths between 20m and 30.5mBGL. The location of each borehole GPS coordinates is summarized in below Table 3.1 (Arc 1960 Geographic coordinate system). The drilled borehole logs were prepared for each borehole as per ASTM D 2488. The exploratory borehole records and logs are included in Appendix 1 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring.

Table 3- 1: Borehole location coordinates

Borehole	Х	Υ
Borehole 1 (BH1)	432635	28061
Borehole 2 (BH2)	432010	28859
Borehole 3 (BH3)	431710	29043
Borehole 4 (BH4)	432066	28579

3.2.2 Soil profile

Northwest of the site (BH03), clayey sand was encountered from ground level up to 1mBGL, 1m-5mBGL sandy clay, 5m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-

Detailed Geotechnical Report

11mBGL clayey sand and 11m->29mBGL sandy silt. North of the site (BH02), sandy clay was encountered from ground level up to 1mBGL, 1m-2mBGL clayey gravel, 2m-6mBGL sandy silt, 6m-7mBGL silty gravel, 7m-11mBGL sandy silt, 11m-12mBGL sandy clay, 12m-24mBGL sandy silt, 24m-27mBGL sandy clay and sandy silt below 27m. Southeast of the site (BH01), clayey sand was encountered from ground level up to 4mBGL, 4m-5mBGL sandy silt, 5m-6mBGL sandy clay, 6m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-10mBGL sandy silt, 10m-11mBGL sandy clay, 11m-12mBGL sandy silt, 12m-17mBGL sandy clay, 17m-18mBGL sandy silt and sandy clay below 18m. South of the site (BH04), sandy clay was encountered from ground level up to 1mBGL, 1m-3mBGL clayey sand, 3m-4mBGL sandy silt, 4m-6mBGL sandy clay, 6m-9mBGL sandy clay, 9m-12mBGL sandy silt, 12m-13mBGL silty sand, 13m->30mBGL sandy silt (see Appendix 1 up to 4).

Generally, the soil layers were dipping towards the south of the site (see ground profile in Appendix 30 and the geological sequence at the site comprises of a clayey sand and clayey gravel from ground level to a depth of 2m, overlying clay up to a depth of 10m, underlain by silt up to a depth of 31m.

3.2.3 Ground water

To determine the elevation of the ground water table, observations were carried out during the drilling. These groundwater observations in the boreholes were conducted as per ASTM D 4750.

Groundwater was encountered in 3 out of 4 boreholes (BHs 01, 03 & 04) at depths ranging between 0.4m and 3.8mBGL with the gradient towards the south of the site. This implies that the groundwater table is relatively high and considerations have to be made for design and construction. It is obvious that ground water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, groundwater levels significantly higher than those encountered could be present. The Ground water observation result is presented in the borehole logs Appendix 1.

-

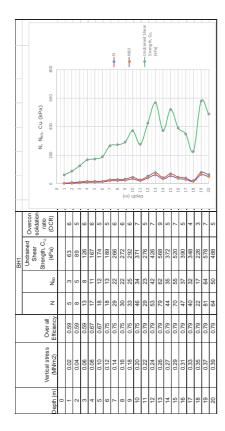
The presence of this ground water close to the foundation level can reduce the ability of soils to carry high foundation pressures, when the ground water level is above the lowest floor, water proofing and resistance against hydrostatic uplift become serious consideration. In addition, the construction below ground water level often presents difficulties. The upward flow of water into a foundation excavation can create a quick condition, construction is impossible without pre drainage. Due to the above mentioned point the effect of the ground water on foundation and way of construction should be taken into consideration during foundation design.

3.2.4 The Standard Penetration Test (SPT)

Standard penetration tests were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per ASTM D 1586. Four boreholes were drilled with depths varying from 20m and 30mBGL and SPTs carried out at 1m intervals as per the client's requirements.

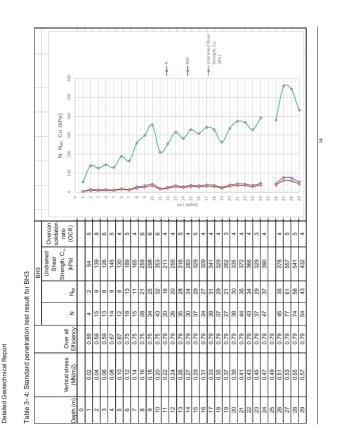
Information obtained from SPT combined with other geotechnical laboratory test results. on site topography and area climatic records, provides basic planning material essential to the logical and effective development of substation and other infrastructure.

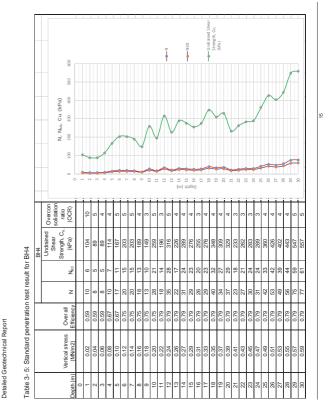
The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N_{60}) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed et al. (1985) and Skempton (1980). Furthermore, the undrained shear strength (cu) of the soil was determined using the corrected standard penetration values (N₆₀) as per Hara et al. (1971) and Peck et al. (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{ult}) and approximate allowable bearing capacity (Q_{all}) were computed using the derived undrained shear strength (c_u) of the soil. Overconsolidation (OCR) was determined using Mayne and Kemper (1988).


A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation

of allowable bearing capacity (Qall). Penetration refusal was achieved between depths varying from 20m to 30mBGL which implied presence of hard stratum. The hard stratum was confirmed at 20mBGL at BH01, 27mBGL at BH02, 29mBGL at BH03 and 30mBGL at BH04. Detailed bearing capacity results are attached as Appendix 5 and the summary of undrained shear strength (cu) given in Table 3.2, 3.3, 3.4, & 3.5.

Basing on the undrained shear strength derived from the SPT values, generally, the strength was directly proportional to the depth from ground level. BH01 was characterised by stiff soils from ground level up to 2mBGL underlain by very stiff cohesive soils from 2m to 7mBGL overlying hard cohesive soils. BH02 was characterised by very stiff soils from the surface up to 1mBGL overlying medium dense granular soils from 1m to 2mBGL underlain by very stiff cohesive soils from 2m up to 6mBGL overlying hard cohesive soils. BH03 was comprised of loose granular soils from the surface up to 1mBGL overlying very stiff soil from 1.5m to 7.5mBGL underlain by hard cohesive soils. BH04 was cohesive soils from ground level up to 4m overlying very stiff cohesive soils from 4m to 6.5mBGL, hard soils from 6.5m to 8mBGL interbedded with very stiff soil from 8m to 9.5mBGL and hard soils below 9.5mBGL.


Furthermore, the insitu soil is over consolidated as demonstrated by the insitu SPTs executed at all exploratory holes from BH01 to BH04 (see Table 3.2, 3.3, 3.4,& 3.5).


Detailed Geotechnical Report

Cu (kPa) result for BH2 test penetration Fable 3- 3: Standard

test result for BH1 Table 3- 2: Standard penetration

3.3 Laboratory Investigations

Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Comatlab limited. The following lab tests have been carried out on samples taken from the different boreholes:

- Moisture content
- Liquid limit
- Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)

3.3.1 Moisture content

Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on more than 22 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2216. The test result is presented in Figure 3.1 and Appendix 6 with respect to depth. Natural moisture content of the insitu soil varied between 19 and 37%.

The test result shows the moisture content in all borehole is increasing from ground surface up to 20m and finally decreases from 20m up to 30m. Such type of decrease in

Detailed Geotechnical Report

water content results in a decrease in cation layer thickness and an increase in the net attractive forces between particles. This means the soil strength below 20m is increasing with depth while compared with soil layer between ground surface and 20m.

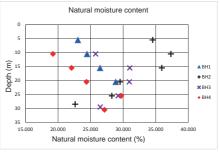


Figure 3- 1: Trend of Natural Moisture Content

3.3.2 Atterberg Limits

To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on samples collected from borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 214 atterberg limit tests were conducted. The test result is presented in Appendix 4. All the result obtained from atterberg laboratory tests were used for soil classification and the project area soil is predominantly silt of high plasticity, elastic silt up to 30m in all boreholes.

Shrinkage limit tests were also conducted on samples recovered from the boreholes as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in appendix 11. All Shrinkage limit test results were less than 15 percent, this indicates that Kaolinite clay

mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

3.3.3 Particle size distribution

To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 107 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test results are presented in Figure 3-11 up to 3-14 and Appendix 4.

From texture classification given in Appendix 7 and Figure 3-2 up to 3-5, the engineering characteristics such as permeability, strength, and swelling potential are evaluated as below;

The insitu soils at all boreholes are semipervious to impervious when compacted, fair to poor shearing strength when compacted and saturated, low to high compressibility when compacted and saturated. This implies poor workability as a construction material, and poor relative desirability for foundation.

Generally, the *insitu* material was composed of predominantly fine soils mixed with coarse soils. The fine soils were silt and clay while the coarse fraction was composed of gravel and sand. At BH01, the soil is predominantly composed of silt and clay (52%), sand (45%) and gravel (3%). The fine fraction increased at BH02 to silt and clay (78%) while sand was 19% and gravel 3%. Similarly, at BH03, silt and clay constituted 66%, sand 33% and gravel 1%. At BH04, silt and clay were at 65%, sand 35% and gravel 1%. This implies that the *insitu* soil has low permeability and high compressibility.

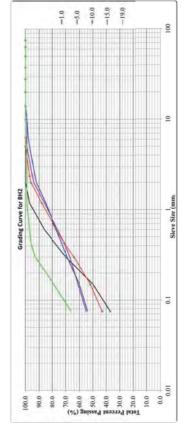


Figure 3-2: Particle distribution curve for BH1

18

Detailed Geotechnical Report

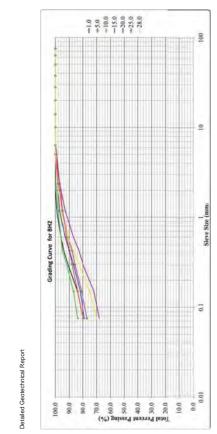
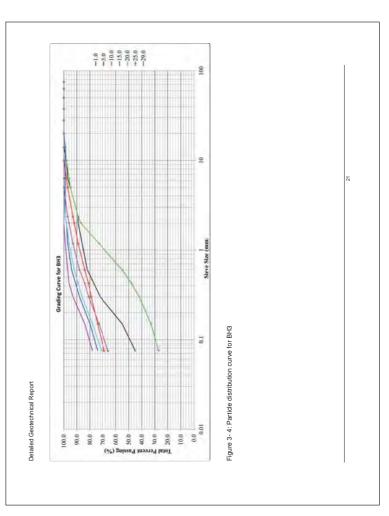



Figure 3- 3: Particle distribution curve for BH2

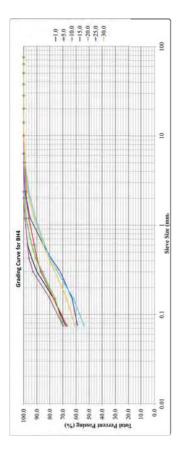


Figure 3-5: Particle distribution curve for BH4

Detailed Geotechnical Repor

3.3.4 Specific Gravity

To determine the specific gravity of the soil grains specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The specific gravity of the project area soil varies between 2.59 and 2.79 and the average specific gravity is 2.68. The test results are presented in appendix 8 and Table 3.7

Table 3- 6: Specific gravity summary

		SPECIFIC
BOREHOLE NO.	DEPTH (m)	GRAVITY (GS)
	5.5-6.0	2.595
	10.5-11.0	2.636
	15.5-16.0	2.599
1	20.5-21.0	2.749
	5.5-6.0	2.732
	10.5-11.0	2.744
	15.5-16.0	2.713
	20.5-21.0	2.662
	25.5-26.0	2.691
2	28.5-29	2.721
	5.5-6.0	2.650
	10.5-11.0	2.649
	15.5-16.0	2.637
	20.5-21.0	2.684
	25.5-26.0	2.693
3	29.5-30.0	2.592
	5.5-6.0	2.795
	10.5-11.0	2.639
	15.5-16.0	2.694
	20.5-21.0	2.716
4	25.5-26.0	2.682

23

Detailed Geotechnical Report

Detailed Geotechnical Report

30.0-30.50 2.638

3.3.5 Bulk density

Bulk density test was conducted to obtain overburden stresses within a soil mass required for evaluations of the unit weight or mass density of the various strata. Bulk density for the undisturbed samples were determined using drive tubes as per American Society for Testing and Materials (ASTM) D 2937. More than 22 bulk density tests were conducted. The unit bulk density of the insitu soil at all boreholes are almost the same except borehole 2. This shows as parental material, degree of consolidation and compaction, and degree of weathering are uniform between boreholes. The test result shows the bulk density for the project area varies between 1.71 and 2.0 1 Mg/m³. For any further use and design we recommend to consider bulk density at each soil layer and borehole presented in appendix 12.

3.3.6 Corrosivity of soils

To determine the aggressiveness and corrosivity of soils, pH, sulphate and chloride content of soils tests were conducted. A total of 15 aggressiveness and corrosivity tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) G 51 and D 4327. The test result is presented in table 3.7 and Appendix a

Sulphate and chloride ions lead to accelerated corrosion of steel reinforcement. Furthermore, high concentrations of sulphates are nocuous to concrete. Increased corrosion rates can also result from lowering of the soil pH to acidic generated by sulphate reducing bacteria whose indicators are sulphides in the soil (California Transport, 2012). The aggressiveness and corrosivity of soils test result is summarized as below:

- The PH was slightly acidic to neutral with a value between 5.8 and 7.1, this
 associated with insignificant corrosion rates.
- The chlorides content test result value varies between 520 and 8330 ppm, this
 associated with significant corrosion rates.
- The sulphate content test result value varies between 11390 and 42870 ppm, this
 associated with significant corrosion rates.

Detailed Geotechnical Report

Generally, Bulooba substation foundation soil is prone to corrosion. This tends to reduction in life time of the foundation structure if appropriate measures are not taken. In order to avoid this problem, it is recommended to use stainless steel for foundation reinforcement or provide appropriate concrete foundation cover to avoid the ingress of chlorides and sulphates. Stainless steel reinforcement does not rely on concrete for its corrosion protection and is a straightforward solution when concrete is subjected to the ingress of chlorides. Stainless rebar is also used for long design life structures and when equipment is sensitive to magnetic fields and needs non-magnetic reinforcement.

Table 3- 7: Summary of chemical test results

Borehole No.	Depth (m)	PH	Chlorides (%)	Sulphates (%)
	7.0 - 8.0	7.04	0.88	4.29
BH 1	17.0 - 18.0	6.66	0.80	2.74
	7.0 - 8.0	6.79	0.30	1.37
BH 2	18.0 - 19.0	6.73	0.35	2.45
	3.0 - 4.0	5.84	0.05	1.32
BH 3	17.0 - 18.0	6.88	0.27	2.54
	3.0 - 4.0	6.79	0.35	2.45
BH 4	20.0 - 21.0	7.09		1.18

3.3.7 Unconsolidated undrained triaxial tests

To determine the strength characteristics of soils including detailed information on the effects of lateral confinement, pore water pressure and drainage, unconsolidated undrained triaxial tests were conducted on undisturbed samples. The conducted triaxial tests further used to determine a friction angle of clays & silts and the stiffness (modulus).

A total of 22 triaxial tests were conducted as per as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2850, and D 4767. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 0 to 19°, the minimum cohesion is 28kPa with 2 degrees internal friction angle at 10mBGL depth of borehole 1, and the maximum cohesion is 133kPa with 0 degrees

internal friction angle at 5mBGL of borehole 4.

The computations of the Undrained triaxial test parameters (un-drained cohesion and angle of internal friction) are presented in Appendix 13. Table 3.8 below shows the summary of the undrained unconsolidated triaxial test results.

Table 3- 8: Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)

Borehole No	Depth (m)	Bulk density (kg/m³)	Dry density (kg/m³)	Angle of Internal Friction (degrees)	Cohesion (kPa)
	5.5-6.0	1830	1487.80	0	68
1	10.5-11.0	1840	1520.66	2	28
1	15.5-16.0	1850	1516.39	0	31
	20.5-21.0	1890	1512.00	0	74
	5.5-6.0	1720	1264.71	0	60
	10.5-11.0	1710	1230.22	6	40
2	15.5-16.0	1680	1183.10	3	36
	20.5-21.0	1830	1418.60	3	29
	25.5-26-0	1670	1336.00	1	100
	28.5-29.0	1720	1354.33	3	66
	5.5-6.0	1830	1464.00	4	118
3	10.5-11.0	1800	1395.35	0	73
3	15.5-16.0	1800	1395.35	13	55
	20.5-21.0	1830	1418.60	0	51
	5.5-6.0	1920	1454.55	0	133
	10.5-11.0	1740	1487.18	3	34
	15.5-16.0	1800	1451.61	19	84
4	20.5-21.0	1780	1401.57	3	31
	25.5-26-0	1800	1451.61	0	86
	30.5-31.0	1870	1496.00	2	60

3.3.8 Unconfined Compressive Strength

To determine the undrained shear strength of the insitu soil a total of 20 Unconfined Compressive Strength of Soils tests were conducted as pre Standard Test Methods for American Society for Testing and Materials (ASTM) D 2166 on remolded soil sample at natural moisture content.

The UCS ranged from 14 to 26kpa for Borehole 1, 20 to 46kpa for borehole 2, 24 to 44kpa for borehole 3, and 20 to 70kpa for borehole 4. The computations of the unconfined compressive strength test parameters are presented in Appendix 14. Table 3.9 shows the summary of the unconfined compressive strength test results

Table 3- 9: Summary of Unconfined Compressive Strength Test Results

Borehole No.	Test Depth (mm)	Unconfined compresive strength,qu (kpa)	Undrained cohesion,Cu (kpa)	Unit strain (%)
	5.5 - 6.0	47	23.4	14.3
1	10.5-11.0	32	14	7.9
	15.5-16.0	51	26	13.4
	3.0 - 4.0	66	33	4.7
	5.5 - 6.0	46	23	12.6
2	10.5 - 11.0	40	20	11.5
_	15.5- 16.0	61	30	10.6
	24.5 -25.0	83	41	12.9
	28.5 - 29.0	92	46	9.6
	1.5 - 2.0	87	44	13.2
	7.5 - 8.0	70	35	11.5
3	18.5 - 19.0	63	31	6.7
	25.5 - 26.0	87	44	8.3
	29.5 - 30.0	49	24	10.3
	1.5 - 2.0	140	70	8.8
	10.5 - 11.0	77	38	7.3
4	11.5 - 12.0	40	20	11.8
4	19.5 - 20.0	50	25	9.2
	23.5 - 24.0	74	37	7.8
	30.5 - 31.0	39	19	10.8

3.3.9 Consolidation

Compression properties of the project area soil were determined using laboratory test result. The result from this test was used to determine preconsolidation stress, compression characteristics, creep, stiffness, and flow rate properties of soils under loading.

Detailed Geotechnical Report

To determine those properties of the soil One-Dimensional Consolidation (Oedometer test) using incremental loading was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2435. A total of 22 representative One-Dimensional Consolidation (Oedometer test) were conducted.

The summary of Oedometer test result is given in Table 3.7 and Appendix 10. The test result shows the average compression index (Cc), coefficient of volume compressibility $(M_{\nu}),$ Coefficient of consolidation, and coefficient of permeability for the project area insitu soil is 0.15, 0.13MN/m², 0.008cm²/sec and 1.1E-9 m/sec respectively. For accurate settlement analysis we recommend to consider values mentioned in below Table 3.10 for each borehole and depth.

		Pre-	Overburd		Coeffic	Coefficient of Volume	lume	Coefficie	Coefficient of Consolidation	olidation	Permea	Permeability. k (m/s)	(s)
Borehole No.:	Depth (m)	Consolidatio	en	sion	Compress	Compressibility Mv (MN/m²)	MN/m²)	٥	C _v (cm²/se c)	_		×10.3	
		n pressure (kN/m²)	Pressure (kN/m²)	Index, C	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	5.5-6.0	200.0	101.9231	0.106	0.054	0.218	0.122	0.005	0.01	0.009	0.260	2.111	1.18
0	10.5-11.0	210.0	206.4796	0.123	0.048	0.428	0.211	0.004	0.01	0.006	0.309	1.888	1.15
TOUG	15.5-16.0	282.11	282.1073	0.077	0.018	0.334	0.150	0.002	0.020	0.013	0.035	6.712	2.54
	20.5-21.0	390.6	390.6	0.153	0.056	0.123	0.079	0.001	0.003	0.002	0.108	0.225	0.16
	5.5-6.0	320.0	96.9883	0.469	0.085	0.395	0.165	0.003	0.010	0.006	0.257	1.493	0.85
	10.5-11.0	250.0	175.2315	0.108	0.036	0.200	0.123	0.012	0.018	0.015	0.410	3.172	1.89
0	15.5-16.0	265.1	265.1	0.032	0.012	0.066	0.039	0.001	900:0	0.003	0.016	0.225	0.0
70 119	20.5-21.0	366.4	366.3702	0.114	0.026	0.249	0.120	0.008	0.014	0.011	0.248	1.855	1.24
	25.5-26.0	465.5	465.5	0.108	0.039	0.239	0.133	0.009	0.016	0.012	0.329	3.855	1.78
	28.5-29.0	477.1	477.1	0.158	0.040	0.184	0.098	0.003	0.015	0.008	0.118	2.636	1.02
	5.5-6.0	200.0	103.484	0.075	0.036	0.095	090.0	0.0012	0.0015	0.0014	0.050	0.137	0.0
	10.5-11.0	205.0	188.0236	0.077	0.028	0.186	0.098	0.009	0.022	0.017	0.238	4.018	1.91
00110	15.5-16.0	283.3	283.3	0.103	0.042	0.306	0.145	0.016	0.021	0.017	0.852	4.730	2.30
5000	20.5-21.0	377.7	377.7	0.159	0.056	0.356	0.173	0.012	0.020	0.016	0.638	5.764	2.74
	25.5-26.0	483.1	483.1	0.212	0.079	0.251	0.135	0.004	0.007	0.006	0.490	0.913	0.67
	29.5-30.0	558.5	558.5	0.114	0.055	0.092	0.075	0.006	0.016	0.010	0.422	1.064	0.73
	5.5-6.0	260.0	106.4684	0.059	0.025	0.064	0.040	0.002	0.006	0.003	0.048	0.162	0.10
	10.5-11.0	260.0	206.5851	0.077	0.041	0.128	0.079	0.001	0.004	0.002	0.040	0.486	0.17
0	15.5-16.0	274.8	274.8	0.138	0.062	0.217	0.147	0.003	0.007	0.005	0.382	0.816	0.60
+0 -	20.5-21.0	359.2	359.2	0.237	0.085	0.334	0.211	0.003	0.010	0.005	0.546	0.864	0.72
	25.5-26.0	464.2	464.2	0.182	0.095	0.537	0.287	0.002	0.003	0.002	0.268	1.143	0.62
	30.5-31.0	578.7	578.7	0.105	0.055	0.194	0.126	0.005	0.007	0.006	0.360	1.111	0.72

Detailed Geotechnical Report

10: The summary of Oedometer

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Geological and geotechnical assessment at the Buloba substation site was essential for obtaining fundamental information in terms of foundation conditions. This information was obtained from borehole drilling as well as onsite surveys and laboratory testing. All soil investigation test were conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The following conclusions were reached:

- 1. The project area of Buloba substation has not experienced any earthquakes over years. This project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An overview of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are identified in the area.
- The site is underlain by rocks of from the Buganda group which are rocks predominantly composed of shale, slate and phyllite of complex formation comprising sedimentary, metamorphic and volcanic rocks.
- 3. Groundwater was encountered in 3 out of 4 boreholes (BHs 01, 03 & 04) at depths ranging between 0.4m and 3.8mBGL with the gradient towards the south of the site. This implies that the groundwater table is relatively high and considerations have to be made for design and construction.
- 4. Basing on the undrained shear strength derived for SPTs, BH01 was characterized by stiff soils from ground level up to 2mBGL underlain by very stiff cohesive soils from 2m to 7mBGL overlying hard cohesive soils. BH02 was characterized by very stiff soils from the surface up to 1mBGL overlying medium dense granular soils from 1m to 2mBGL underlain by very stiff cohesive soils from 2m up to 6mBGL overlying hard cohesive soils. BH03 was comprised of stiff soil from the surface up to 1mBGL overlying very stiff soil from 1.5m to 7.5mBGL underlain by hard cohesive soils. BH04 was loose granular soils from ground level up to 4m overlying very stiff cohesive soils from 4m to 6.5mBGL.

hard soils from 6.5m to 8mBGL interbedded with very stiff soil from 8m to 9.5mBGL and hard soils below 9.5mBGL.

- 5. The laboratory investigation confirmed that the geological sequence at the site was comprised of the following; BH01 was characterised by grey clayey sand from ground level up to 4mBGL succeeded by grey sandy silt from 4m to 5mBGL, followed by grey sandy clay from 5m to 6mBGL, 6m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-10mBGL sandy silt, 10m-11mBGL sandy clay, 11m-12mBGL sandy silt, 12m-17mBGL sandy clay, 17m-18mBGL sandy silt and sandy clay below 18m. At BH02, sandy clay was encountered from ground level up to 1mBGL, 1m-2mBGL clayey gravel, 2m-6mBGL sandy silt, 6m-7mBGL silty gravel, 7m-11mBGL sandy silt, 11m-12mBGL sandy clay, 12m-24mBGL sandy silt, 24m-27mBGL sandy clay and sandy silt below 27m. BH03 was characterised by clayey sand from ground level up to 1mBGL, 1m-5mBGL sandy clay, 5m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-11mBGL clayey sand and 11m->29mBGL sandy silt. At BH04, sandy clay was encountered from ground level up to 1mBGL, 1m-3mBGL clayey sand, 3m-4mBGL sandy silt, 4m-6mBGL sandy clay, 6m-9mBGL sandy clay, 9m-12mBGL sandy silt, 12m-13mBGL silty sand, 13m->30mBGL sandy silt.
- 6. Natural moisture content of the insitu soil varied between 19 and 37%.
- All shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.
- 8. The specific gravity of the insitu soil varied from 2.59 to 2.79 which implied that it is comprised of a blend of clay, sand and silt.
- The insitu soil is prone to corrosion due to high chloride and sulphates concentrations
- 10. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 0 to 19°, the minimum cohesion is 28kPa with 2 degrees internal friction angle at 10mBGL depth of borehole 1, and the maximum cohesion is 133kPa with 0 degrees internal friction angle at 5mBGL of borehole 4.
- 11. Unconfined Compressive Strength of the insitu soil ranges from 14 to 26kpa for Borehole 1, 20 to 46kpa for borehole 2, 24 to 44kpa for borehole 3, and 20 to 70kpa for borehole 4.

-

Detailed Geotechnical Report

- 12. The insitu soil is compressible and poor to facilitate drainage. The test result shows the average compression index (Cc), coefficient of volume compressibility (M_v), Coefficient of consolidation, and coefficient of permeability is 0.15, 0.13MN/m², 0.008cm²/sec and 1.1E-9 m/sec respectively.
- 13. Basing on the index properties and its classification, the insitu soils have poor workability as a construction material, and poor relative desirability for foundation.

4.2 Recommendations

- The design of the proposed foundations shall take into account the poor ground conditions to ensure that the risk of failure is minimised.
- 2. To minimise corrosion, special corrosion protection considerations for steel are required. These include; stainless steel be used to provide reinforcement for foundation structure. Provision of appropriate concrete cover to the foundation to avoid the ingress of chlorides and sulphates. Application of corrosion resistant concrete mix designs and epoxy coated reinforcing steel.
- In order to avoid ground water related problem, effect of the ground water on foundation and way of construction should be taken into consideration during foundation design.
- For accurate settlement analysis during foundation design we recommend to consider values for each borehole location and depth.
- For preliminary foundation design we recommend to use undrained shear strength result from SPT and undrained unconsolidated triaxial test results instead of Unconfined Compressive Strength test result.

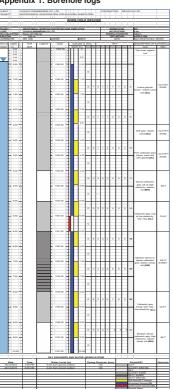
Detailed Geotechnical Report

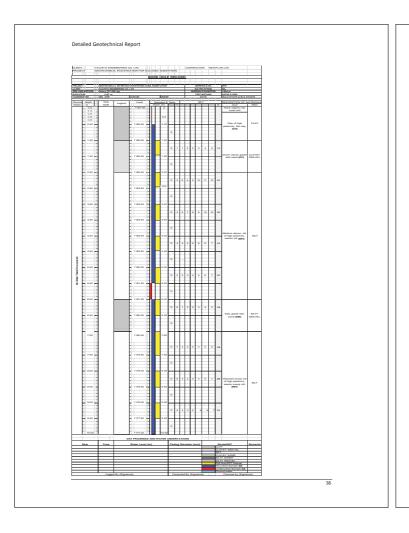
5 REFERENCES

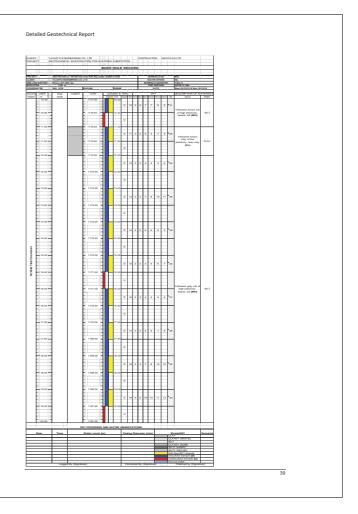
- AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes
- D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
 D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site
- Investigation
 D 2434 Standard Test Method for Permeability of Granular Soils (Constant
- Head)
 D 2435 Standard Test Methods for One-Dimensional Consolidation Properties
- D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System).
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of Soils
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

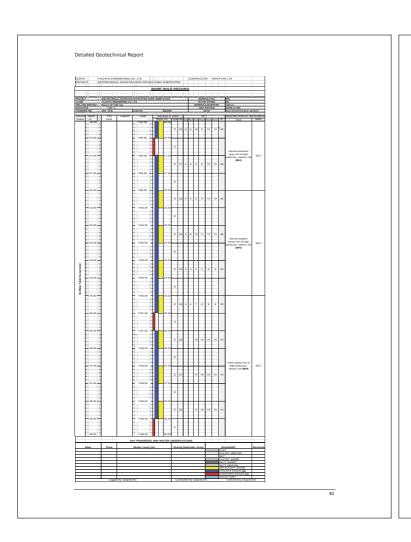
- D 4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)
- D 4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
- D 4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Method
- G 51 Test Method for pH of Soil for Use in Corrosion Testing
- Bowles Joseph E; Foundation Analysis and Design, Second Edition. McGraw Hill Companies, Tokyo, 1997.
- 3. California Department of Transportation, 2012. Corrosion Guidelines version 2.0.
- Department of Geological Surveys and Mines, 2012. Geological Map of Uganda sheet No 70.
- VICKERS, BRIAN (1978); Laboratory work in Civil Engineering Soil Mechanics. Granada Publishers, London.
- G.E Barney; Principles and Practice of Soil Mechanics, First Edition. Macmillan Press Ltd, London, 1995
- Department of US Army Corps of Engineers, CECW-EG Engineer Manual 1110-1-1904 Engineering and Design of SETTLEMENT ANALYSIS, Washington, DC 20314-1000, 1990.
- MJ Tomlinson; Foundation Design & Construction, Sixth Edition. Addison Wesley Longman Limited, Edinburgh Gate, Harlow Essex CM20 2JE, 1998.
- R.F.Craig. E & FN Spon, 2004. CRAIG'S SOIL MECHANICS. Seventh Edition, London.

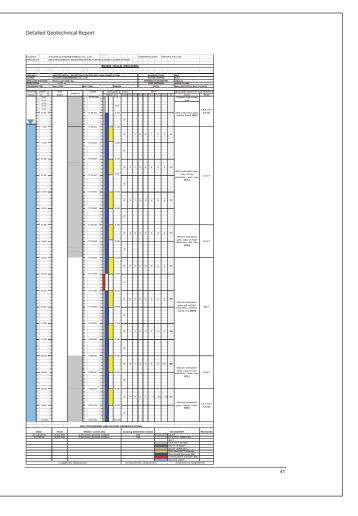
Detailed Geotechnical Report

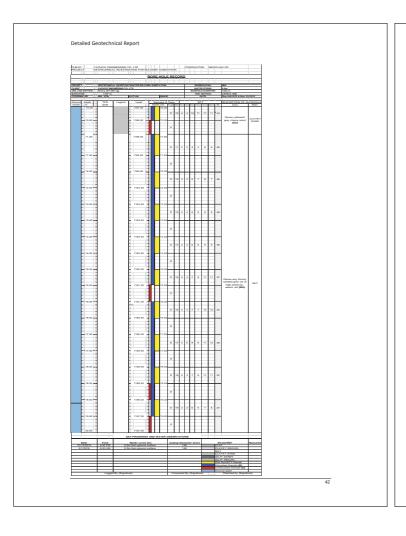

6 APPENDIX

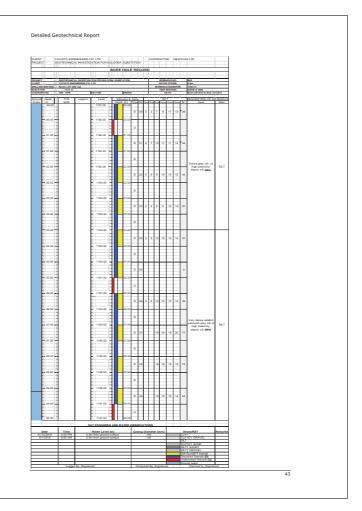

34

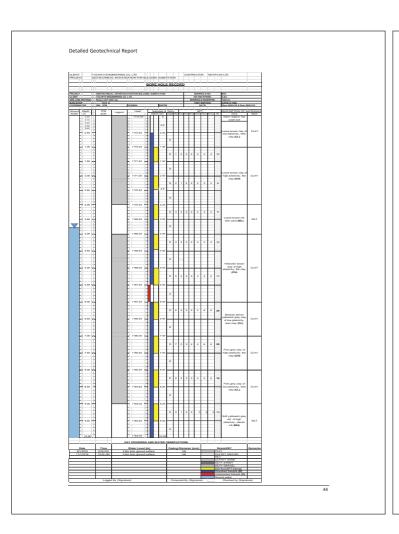

Detailed Geotechnical Report

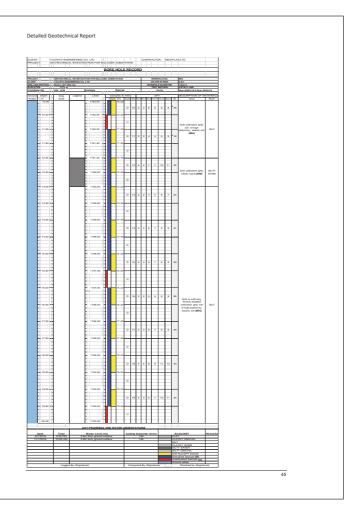

Detailed Geotechnical Report

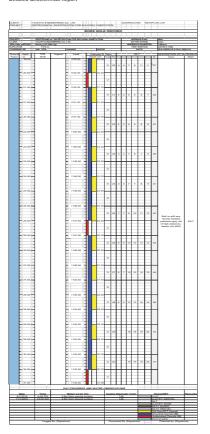

Appendix 1: Borehole logs











Detailed Geotechnical Report

Appendix 2: Drilling pictorial logs

SPT at 2m for BH1, moist greyish brogranular clayey sand soil

SPT at 4m for BH1, moist greyish yellow firm intact silt of high plasticity, elastic silt

SPT at 5m for BH1, moist greyish yellow firm intact clay of low plasticity, lean clay

SPT at 6m for BH1, moist greyish yellow medium dense granular elastic sandy silt

Detailed Geotechnical Report

Stratigraphy 11-15m for BH2

Detailed Geotechnical Report

Detailed Geotechnical Report

Stratigraphy 0-10m for BH2

SPT at 22m for BH2, moist mottled yellowish brown stiff intact silt of high plasticity, elastic silt

SPT at 23m for BH2, moist mottled yellowish brown stiff intact silt of high plasticity, elastic sil

SPT at 24m for BH2, moist mottled yellowish brown stiff intact sandy lean CLAY

SPT at 26m for BH2, moist mottled yello brown stiff intact sandy lean CLAY

SPT at 27m for BH2, moist mottled yellowish brown stiff intact silt of high plasticity, elastic silt

SPT at 28m for BH2, moist mottled yellowish brown stiff intact silt of high plasticity, elastic silt

Detailed Geotechnical Report

SPT at 1m for BH3, moist greyish brown loose granular clayey sand

SPT at 2m for BH3, moist greyish brown firm intact clay of low plasticity, lean clay

SPT at 3m for BH3, moist greyish brown firm intact clay of low plasticity, lean clay

SPT at 4m for BH3, moist mottled yellowish brown firm intact clay of high plasticity, flat clay

SPT at 5m for BH3, moist greyish yellow firm intact silt of high plasticity, elastic sandy silt

Detailed Geotechnical Report

SPT at 6m for BH3, moist greyish yellow firm intact silt of high plasticity, elastic sandy silt

SPT at 7m for BH3, moist greyish yellow firm intact silt of high plasticity, elastic sandy silt

SPT at 9m for BH3, moist yellowish brodense granular clayey sand

SPT at 10m for BH3, moist yellowish brown medium dense clayey sand

SPT at 11m for BH3, moist mottled brownish yellow firm intact silt of high plasticity, elastic silt

Stratigraphy from 0 to 10m for BH3

SPT at 12m for BH3, moist mottled brownish rellow firm intact silt of high plasticity, elastic sil

SPT at 15m for BH3, moist mottled brownish yellow firm intact silt of high plasticity, elastic silt

ellow firm intact silt of high plasticity, elastic silt

SPT at 17m for BH3, moist mottled browni yellow firm intact silt of high plasticity, elastic

SPT at 19m for BH3, moist mottled brownish yellow firm intact silt of high plasticity, elastic silt

SPT at 20m for BH3, moist yellowish grey stiff intact silt of high plasticity, elastic silt

SPT at 21m for BH3, moist yellowish grey stiff intact silt of high plasticity, elastic silt

SPT at 22m for BH3, moist yellowish grey stiff intact silt of high plasticity, elastic silt

Detailed Geotechnical Report

SPT at 23m for BH3, moist yellowish grey stiff intact silt of high plasticity, elastic silt

SPT at 24m for BH3, very dense reddish yellowish grey silt of high plasticity, elastic silt

SPT at 26m for BH3, very dense reddish rellowish grey silt of high plasticity, elastic silt

SPT at 29m for BH3, very dense reddish yellowish grey silt of high plasticity, elastic silt

Detailed Geotechnical Report

SPT at 1m for BH4, Moist reddish brown intact clay of high plasticity, flat clay

SPT at 2m for BH4, moist reddish brown soft intact clay of high plasticity, flat clay

SPT at 3m for BH4, moist reddish brown soft intact silt with

SPT at 4m for BH4, moist reddish brown firm intact clay of high plasticity, flat clay

SPT at 5m for BH4, moist reddish brown intact clay of high plasticity, flat clay

SPT at 6m for BH4, moist mottled yellowish brown firm intact clay of low plasticity, lean clay

SPT at 7m for BH4, moist mottled yellowish brown firm intact clay of high plasticity, flat clay

SPT at 8m for BH4, moist greyish bro

SPT at 9m for BH4, moist greyish yellow stiff intact silt of high plasticity, elastic silt

SPT at 11m for BH4, moist mottled yellowish brown firm intact silt of high plasticity, elastic silt

SPT at 12m for BH4, moist mottled greyish yellow medium dense siltilty sand

SPT at 13m for BH4, moist mottled greyish yellow stiff intact silt of high plasticity, elastic silt

SPT at 14m for BH4, moist mottled greyish yellow stiff intact silt of high plasticity, elastic silt

SPT at 15m for BH4, moist mottled greyish yellow stiff intact silt of high plasticity, elast

SPT at 16m for BH4, Moist mottled greyish ellow stiff intact silt of high plasticity, elastic silt

SPT at 17m for BH4, moist mottled greyish yellow stiff intact silt of high plasticity, elastic silt

Detailed Geotechnical Report

SPT at 18m for BH4, Moist mott low stiff intact silt of high plastic

SPT at 19m for BH4, moist mottled greyish yellow stiff intact silt of high plasticity, elast silt

SPT at 20m for 20m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

SPT at 21m for BH4, moist mottled greyish rown firm intact silt of high plasticity, elastic sil

SPT at 22m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

SPT at 23m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

Detailed Geotechnical Report

SPT at 24m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

SPT at 25m for BH4, moist mottled greyish rown firm intact silt of high plasticity, elastic sil

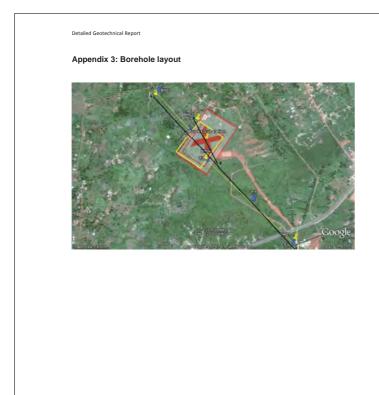
SPT at 26m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

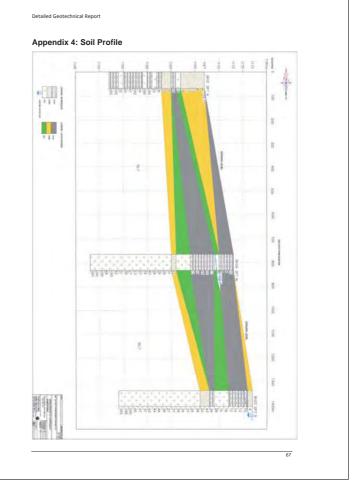
SPT at 27m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

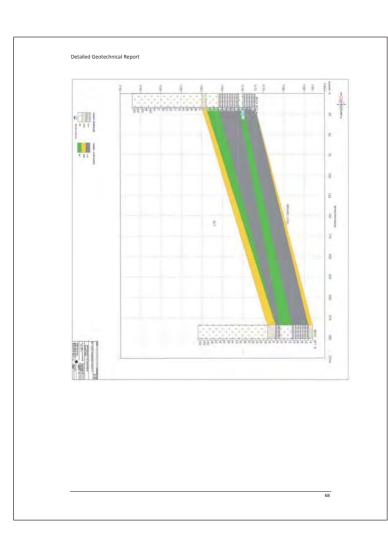
SPT at 28m for BH4, moist mottled greyish brown firm intact silt of high plasticity, elastic silt

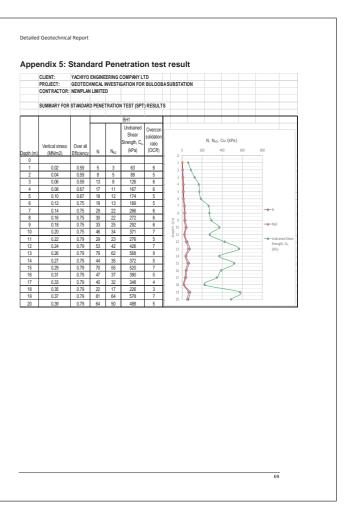
SPT at 29m for BH4, moist mottled greyish rown firm intact silt of high plasticity, elastic silt

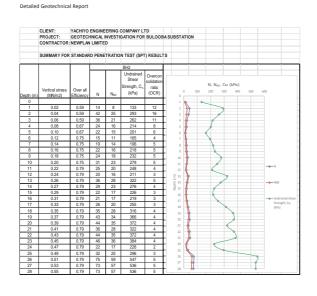
SPT at 30m for BH4, moist mottled greyish

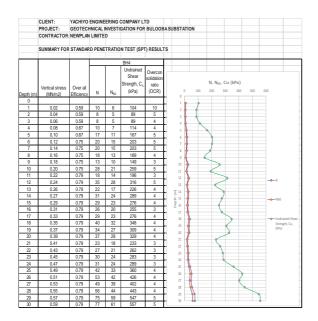

Stratigraphy 0-10m for BH4




Stratigraphy 10-20m for BH4




Stratigraphy 20-30m for BH4



CLIENT: YACHIYO ENGINEERING COMPANY LTD
PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION
CONTRACTOR: NEWPLAN LIMITED SUMMARY FOR STANDARD PENETRATION TEST (SPT) RESULTS Undrain Shear rength, C (kPa) Over al 0.79 44 35 372 0.79 37 37 29 329 0.79 47 37 390 0.79 47 37 390 0.79 45 35 378 0.79 77 61 557 0.79 74 58 541 0.79 54 43 432

Detailed Geotechnical Report

Detailed Geotechnical Report

Detailed Geotechnical Report

	CLIENT: PROJECT:	YACHIYO ENGINE GEOTECHNICAL II				SUBSTATI	ON	
	CONTRACTOR:	NEWPLAN LIMITED)					
	SUMMARY FOR	EVALUATION OF A	LLOWABLE	BEARING	CAPACITY	BASED O	N FIELD SPT	'N' VALUES
BH No.	Depth	Predominant Soil Fraction	Measured SPT'N' Value	Over all Correction	Corrected SPT 'N'	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearing Capacity
			V diue	IdClUI	Value	C _u	Qut	
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00							
	1.00		5	0.59	3	63	325	108
	2.00	CLAYEY SAND	8	0.59	5	89	456	152
	3.00		13	0.59	8	126	647	216
	4.00		17	0.67	11	167	859	286
	5.00	SILT	18	0.67	12	174	895	298
	6.00	CLAY	18	0.75	13	189	969	323
	7.00	SILTY SANDY	29	0.75	22	266	1366	455
	8.00	SILTT SAINDT	30	0.75	22	272	1400	467
	9.00	CLAY	33	0.75	25	292	1500	500
BH01	10.00	SILT	46	0.75	34	371	1905	635
	11.00	CLAY	29	0.79	23	276	1418	473
	12.00	SILT	53	0.79	42	426	2188	729
	13.00		79	0.79	62	568	2917	972
	14.00		44	0.79	35	372	1914	638
	15.00	CLAY	70	0.79	55	520	2674	891
	16.00		47	0.79	37	390	2007	669
	17.00		40	0.79	32	348	1787	596
	18.00	SILT	22	0.79	17	226	1162	387
	19.00	CLAY	81	0.79	64	578	2970	
	20.00	OLA I	64	0.79	50	488	2507	836

The undrained shear strength (xs) of the soil is determined using the corrected standard penetration values (N_{th}) as per Huse et al. (1971) and Peck at (1972) employing repetively, Cu = Pa*0.29*N60*0.72, where Pa is Amoupheric presure and quit = 5.14 x Cu. Qull is evaluated using a force of split of 3

CLIENT:	YACHIYO ENGINEE	ERING CO	MPANY LTI)			
PROJECT:	GEOTECHNICAL IN	VESTIGAT	ION FOR E	BULOOBA	SUBSTATI	ON	
CONTRACTOR:	NEWPLAN LIMITED)					
SUMMARY FOR	EVALUATION OF A	LLOWABLI	EBEARING	CAPACIT	Y BASED C	N FIELD SPT	'N' VALUES

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C _{ii}	Ultimate Bearing Capacity Q _{ift}	Allowable Bearing Capacity Q _{ol}
	(m)		N	CN	N ₆₀	(kPa)	(kPa)	(kPa)
	. ,		IN	UN		,	, ,	
	0.00	CLAY			0	0	0	0
	1.00	CLAYEY GRAVEL	14	0.59	8	133	682	227
	2.00		42	0.59	25	293	1505	502
	3.00		36	0.59	21	262	1347	449
	4.00	SILT	24	0.67	16	214	1101	367
	5.00		22	0.67	15	201	1034	345
	6.00		15	0.75	11	165	850	283
	7.00	SILTY GRAVEL	19	0.75	14	196	1008	336
	8.00		22	0.75	16	218	1120	373
	9.00	SILT	24	0.75	18	232	1192	397
	10.00	JIL!	31	0.75	23	279	1434	478
	11.00		25	0.79	20	248	1274	425
	12.00	CLAY	20	0.79	16	211	1085	362
	13.00		36	0.79	28	322	1657	552
BH02	14.00		29	0.79	23	276	1418	473
	15.00		22	0.79	17	226	1162	387
	16.00	1	21	0.79	17	219	1124	375
	17.00		26	0.79	20	255	1311	437
	18.00	1	35	0.79	28	316	1623	541
	19.00	1	43	0.79	34	366	1883	628
	20.00	SILT	44	0.79	35	372	1914	638
	21.00	SILI	36	0.79	28	322	1657	552
	22.00	1	44	0.79	35	372	1914	638
	23.00	1	46	0.79	36	384	1976	659
	24.00	1	22	0.79	17	226	1162	387
	25.00	1	32	0.79	25	296	1522	507
	26.00	1	75	0.79	59	547	2810	937
	27.00	1	73	0.79	57	536	2756	919
	28.00	1	73	0.79	57	536	2756	919

The undrained shear strength ((a) of the soil is determined using the corrected standard penetration values (N₆₀) as per Hara et al. (1971) and Peck al. (1974) empirical relationship respectively.Cu = Pa*0.29 *N60*0.72, where Pa is Atmospheric presure and quit = 5.14 x Cu. Qull is evaluated using a factor of sulry of 3 Detailed Geotechnical Report

CLIENT:	YACHIYO ENGINEI	ERING COM	//PANY LTI	D				
PROJECT:	GEOTECHNICAL IN	VESTIGAT	ION FOR E	BULOOBA	SUBSTATI	ON		
CONTRACTOR:	NEWPLAN LIMITED)						
SUMMARY FOR	EVALUATION OF A	LLOWABLE	BEARING	CAPACITY	BASED O	N FIELD SPT	'N' VALUES	3

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion Cu	Ultimate Bearing Capacity Qut	Allowable Bearing Capacity Q _{all}
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00	CLAYEY SAND						
	1.00		4	0.59	2	54	277	92
	2.00		15	0.59	9	139	717	239
	3.00	CLAY	13	0.59	8	126	647	216
	4.00		14	0.67	9	145	747	249
	5.00		12	0.67	8	130	668	223
	6.00		18	0.75	13	189	969	323
	7.00	SILT	15	0.75	11	165	850	283
	8.00		28	0.75	21	259	1332	444
	9.00	CLAY SAND	34	0.75	25	298	1532	511
	10.00	CLAY	43	0.75	32	353	1814	605
	11.00	CLAT	20	0.79	16	211	1085	362
	12.00		26	0.79	20	255	1311	437
	13.00		35	0.79	28	316	1623	541
BH03	14.00		30	0.79	24	283	1453	484
BH03	15.00		37	0.79	29	329	1690	563
	16.00		34	0.79	27	309	1590	530
	17.00		39	0.79	31	341	1755	585
	18.00		37	0.79	29	329	1690	563
	19.00		27	0.79	21	262	1347	449
	20.00	SILT	38	0.79	30	335	1722	574
	21.00	SILI	44	0.79	35	372	1914	638
	22.00		43	0.79	34	366	1883	628
	23.00		37	0.79	29	329	1690	563
	24.00		47	0.79	37	390	2007	669
	25.00		Refusal	0.79	-	>450	>2300	>750
	26.00		45	0.79	35	378	1945	648
	27.00		77	0.79	61	557	2864	955
	28.00	1	74	0.79	58	541	2783	928
	29.00	1	54	0.79	43	432	2218	739

The undrained shear strength (sa) of the soil is determined using the corrected standard penetration values (Na₀) as per Bara et al. (1971) and Peck et al. (1974) empirical relationship respectively. Cu = Pa*0.29*N60*0.72, where Pa is Atmospheric presure and qult = 5.14 x Cu. Qull is evaluated using a factor of safety of 3

74

Detailed Geotechnical Report

	CLIENT: PROJECT:	YACHIYO ENGINE				CUDETATI	ON	
				I ION FOR	BULOUBA	SUBSTALL	UN	
	CONTRACTOR:	NEWPLAN LIMITE	D					
	SUMMARY FOR	EVALUATION OF A	LLOWABLI	EBEARING	CAPACITY	BASED O	N FIELD SP	T 'N' VALUES
BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C.,	Ultimate Bearing Capacity Q _e	Allowable Bearing Capacity
	(m)		l N	C _N	Neo	(kPa)	(kPa)	(kPa)
	0.00		_			<u> </u>	- ' '	- ' '
	1.00	1	10	0.59	6	104	535	178
	2.00	CLAY	8	0.59	5	89	456	152
	3.00		8	0.59	5	89	456	152
	4.00	SILT	10	0.67	7	114	586	195
	5.00		17	0.67	11	167	859	286
	6.00		20	0.75	15	203	1046	349
	7.00 8.00	CLAY	20	0.75	15	203	1046	349 323
	9.00	-	13	0.75	10	149	767	256
	10.00		28	0.75	21	259	1332	444
	11.00	SIT	18	0.75	14	196	1006	335
	12.00		35	0.79	28	316	1623	541
	13.00	SILTY SAND	22	0.79	17	226	1162	387
	14.00		31	0.79	24	289	1487	496
	15.00	1	29	0.79	23	276	1418	473
RH04	16.00	1	26	0.79	20	255	1311	437
D1104	17.00	1	29	0.79	23	276	1418	473
	18.00	1	40	0.79	32	348	1787	596
	19.00	1	34	0.79	27	309	1590	530
	20.00	1	37	0.79	29	329	1690	563
	21.00	1	23	0.79	18	233	1200	400
	22.00	SILT	27	0.79	21	262	1347	449
	23.00	- SILI	30	0.79	24	283	1453	484
	24.00	1	31	0.79	24	289	1487	496
	25.00	1	42	0.79	33	360	1851	617
	26.00	-	53	0.79	42	426	2188	729
		-						1.00
	27.00		49	0.79	39	402	2068	689
	28.00		56	0.79	44	443	2277	759
	29.00		76	0.79	59	547	2810	937
	30.00	1	77	0.79	61	557	2864	955

The undrained shear strength (su) of the soil is determined using the corrected standard penetration values (N₆₀) as per Hara et al. (1971) and Peck al. (1974) empirical relationship respectively. Cu = Pa*0.29*N60*0.72, where Pa is Atmospheric presure and quit = 5.14 x Cu. Qull is evaluated using a factor of safety of 3

Detailed Geotechnical Report

Appendix 6: Natural Moisture Content

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD	
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BULOO	BASUBSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED		
MOISTURE CONTENT TEST	SUMMARY			
Test Method:	ASTM D 4959			
Borehole No.	1			
Depth (m)	5.5-6.0			
Sample no.				
Container no.	KNG			
Mass of wet soil + container (g)	195.4			
Mass of dry soil + container (g)	163.6			
Mass of container (g)	25.7			
Mass of moisture (g)	31.8			
Mass of dry soil (g)	137.9			
Moisture content (%)	23.0			
Average Moisture Content (%)	23.0			

CLIENT:	YACHIYO ENG	INEERING COMPAN	Y LTD	
PROJECT:	GEOTECHNIC	AL INVESTIGATION I	FOR BULOO	BA SUBSTATIO
CONTRACTOR:	NEWPLAN LIM	TED		
MOISTURE CONTENT	TEST SUMMARY			
Test Method:	ASTM D 4959			
Borehole No.	1			
Depth (m)	10.5-11.0			
Sample no.				
Container no.	81			
Mass of wet soil + contain	ner (g) 207.9			
Mass of dry soil + contain	er (g) 172.1			
Mass of container (g)	25.8			
Mass of moisture (g)	35.8			
Mass of dry soil (g)	146.4			
Moisture content (%)	24.5			
Average Moisture Conten	t (%) 24.5			

76

CLIENT:	YACHIYO ENGIN	IEERING COMPAN'	/ LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBASL	JBSTATI
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	1				
Depth (m)	15.5-16.0				
Sample no.					
Container no.	Q6				
Mass of wet soil + container (g)	205.2				
Mass of dry soil + container (g)	167.2				
Mass of container (g)	23.5				
Mass of moisture (g)	38.0				
Mass of dry soil (g)	143.6				
Moisture content (%)	26.5				
Average Moisture Content (%)	26.5	1			

CLIENT:	YACHIYO ENGI	NEERING COMPAI	NY LTD		
PROJECT:	GEOTECHNICA	L INVESTIGATION	FOR BUL	OOBA SUBS	TAT
CONTRACTOR:	NEWPLAN LIMI	ΓED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	1				
Depth (m)	20.5-21.0				
Sample no.		1			
Container no.	BA				
Mass of wet soil + container (g)	184.8				
Mass of dry soil + container (g)					
Mass of container (g)	29.6				
Mass of moisture (g)	34.7				
Mass of dry soil (g)	120.4				
Moisture content (%)	28.9				
Average Moisture Content (%)	28.9	7			

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGIN	IEERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICA	INVESTIGATION I	OR BUL	OOBA SU	BSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	2	ĺ			
Depth (m)	5.5-6.0				
Sample no.		i			
Container no.	XT				
Mass of wet soil + container (g)	248.5	ĺ			
Mass of dry soil + container (g)	202.7				
Mass of container (g)	70.1				
Mass of moisture (g)	45.8	i e			
Mass of dry soil (g)	132.6				
Moisture content (%)	34.5	ĺ			
Average Moisture Content (%)	34.5	i			

CLIENT:	YACHIYO ENGIN	YACHIYO ENGINEERING COMPANY LTD					
PROJECT:	GEOTECHNICA	L INVESTIGATION I	OR BUL	OOBASU	BSTA		
CONTRACTOR:	NEWPLAN LIMIT	ED					
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	2						
Depth (m)	10.5-11.0						
Sample no.							
Container no.	102						
Mass of wet soil + container (g)	225.2						
Mass of dry soil + container (g)	183.1						
Mass of container (g)	70.1						
Mass of moisture (g)	42.2						
Mass of dry soil (g)	113.0						
Moisture content (%)	37.3						
Average Moisture Content (%)	37.3						

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGIN	NEERING COMPAN'	Y LTD		
PROJECT:	GEOTECHNICAL	L INVESTIGATION F	OR BUL	OOBASU	BST/
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	2				
Depth (m)	15.5-16.0				
Sample no.					
Container no.	TY				
Mass of wet soil + container (g)	251.6				
Mass of dry soil + container (g)	204.0				
Mass of container (g)	71.5				
Mass of moisture (g)	47.6]			
Mass of dry soil (g)	132.5				
Moisture content (%)	35.9				
Average Moisture Content (%)	35.9				

CLIENT:	YACHIYO ENGIN	YACHIYO ENGINEERING COMPANY LTD					
PROJECT:	GEOTECHNICA	L INVESTIGATIO	N FOR BU	LOOBASUE	ST/		
CONTRACTOR:	NEWPLAN LIMIT						
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	2	1					
Depth (m)	20.5-21.0]					
Sample no.							
Container no.	RS						
Mass of wet soil + container (g)	218.7						
Mass of dry soil + container (g)	185.3	1					
Mass of container (g)	71.9	1					
Mass of moisture (g)	33.5						
Mass of dry soil (g)	113.3						
Moisture content (%)	29.5	1					
Average Moisture Content (%)	29.5	1					

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD				
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTA						
CONTRACTOR:	NEWPLAN LIMIT	ED					
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	2	f					
Depth (m)	25.5-26.0						
Sample no.							
Container no.	x8						
Mass of wet soil + container (g)	193.5						
Mass of dry soil + container (g)	164.6						
Mass of container (g)	62.2						
Mass of moisture (g)	28.9						
Mass of dry soil (g)	102.3						
	28.3						

CLIENT:		IEERING COMPAN			
PROJECT:	GEOTECHNICA	L INVESTIGATION I	FOR BUL	OOBASL	IBSTATION
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	2				
Depth (m)	28.5-29.0	İ			
Sample no.		1			
Container no.	ZH	1			
Mass of wet soil + container (g)	234.8				
Mass of dry soil + container (g)	203.4	i			
Mass of container (g)	64.6	ĺ			
Mass of moisture (g)	31.4				
Mass of dry soil (g)	138.8				
Moisture content (%)	22.6				
Average Moieture Content (%)	22.6				

CLIENT:	YACHIYO ENGIN	YACHIYO ENGINEERING COMPANY LTD					
PROJECT:	GEOTECHNICAL	INVESTIGATION	FOR BULOO	BASUBSTAT			
CONTRACTOR:	NEWPLAN LIMIT						
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	3						
Depth (m)	5.5-6.0						
Sample no.		ì					
Container no.	135						
Mass of wet soil + container (g)	158.8						
Mass of dry soil + container (g)	131.9						
Mass of container (g)	27.5						
Mass of moisture (g)	26.9						
Mass of dry soil (g)	104.4						
Moisture content (%)	25.8						

CLIENT:	YACHIYO ENGINEERING COMPANY LTD GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBST					
PROJECT:						
CONTRACTOR:	NEWPLAN LIMIT	ED				
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959					
Borehole No.	3					
Depth (m)	10.5-11.0					
Sample no.						
Container no.	SE					
Mass of wet soil + container (g)	177.8					
Mass of dry soil + container (g)	142.9					
Mass of container (g)	30.4					
Mass of moisture (g)	34.9					
Mass of dry soil (g)	112.5					
Moisture content (%)	31.0					
Average Moisture Content (%)	31.0					

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGINEERING COMPANY LTD						
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA						
CONTRACTOR:	NEWPLAN LIMIT	NEWPLAN LIMITED					
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	3						
Depth (m)	15.5-16.0						
Sample no.		Ì					
Container no.	'n						
Mass of wet soil + container (g)	171.4						
Mass of dry soil + container (g)	137.3						
Mass of container (g)	27.0						
Mass of moisture (g)	34.1						
Mass of dry soil (g)	110.3						
Moisture content (%)	30.9						
Average Moisture Content (%)	30.9						

CLIENT:	YACHIYO ENGIN	NEERING COMPANY	LTD			
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBAS					
CONTRACTOR:	NEWPLAN LIMIT	ED				
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959					
Borehole No.	3					
Depth (m)	20.5-21.0					
Sample no.						
Container no.	PRO					
Mass of wet soil + container (g)	154.3					
Mass of dry soil + container (g)	126.9					
Mass of container (g)	33.2					
Mass of moisture (g)	27.4					
Mass of dry soil (g)	93.7					
Moisture content (%)	29.2					
Average Moisture Content (%)	29.2					

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGINEERING COMPANY LTD					
PROJECT:	GEOTECHNICAL INVES	TIGATION FOR BU	LOOBA SUBSTA			
CONTRACTOR:	NEWPLAN LIMITED					
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959					
Borehole No.	3					
Depth (m)	25.5-26.0					
Sample no.						
Container no.	PAN					
Mass of wet soil + container (g)	264.0					
Mass of dry soil + container (g)	222.6					
Mass of container (g)	66.4					
Mass of moisture (g)	41.4					
Mass of dry soil (g)	156.2					
Moisture content (%)	26.5					
Average Moisture Content (%)	26.5					

CLIENT:	YACHIYO ENGINEERING COMPANY LTD						
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBST.						
CONTRACTOR:	NEWPLAN LIMITED						
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	3						
Depth (m)	29.5-30.0						
Sample no.							
Container no.	ZF						
Mass of wet soil + container (g)	192.7						
Mass of dry soil + container (g)	167.9						
Mass of container (g)	72.1						
Mass of moisture (g)	24.8						
Mass of dry soil (g)	95.8						
Moisture content (%)	25.9						

Detailed Geotechnical Report

CLIENT:	VACUIVO ENGIN	EEDING COMPAN	VITD				
	YACHIYO ENGINEERING COMPANY LTD						
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUB						
CONTRACTOR:	NEWPLAN LIMIT	ED					
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	4						
Depth (m)	5.5-6.0						
Sample no.							
Container no.	В						
Mass of wet soil + container (g)	222.5						
Mass of dry soil + container (g)							
Mass of container (g)	74.7						
Mass of moisture (g)	23.8						
Mass of dry soil (g)	123.9						
Moisture content (%)	19.2						
Average Moisture Content (%)	19.2						

CLIENT:	YACHIYO ENGIN	IEERING COM	PANY LTD	
PROJECT:	GEOTECHNICA	INVESTIGATI	ON FOR BU	LOOBASUB
CONTRACTOR:	NEWPLAN LIMITED			
MOISTURE CONTENT TEST	SUMMARY			
Test Method:	ASTM D 4959			
Borehole No.	4	1		
Depth (m)	10.5-11.0			
Sample no.				
Container no.	XF			
Mass of wet soil + container (g)	208.7			
Mass of dry soil + container (g)	184.0			
Mass of container (g)	72.3			
Mass of moisture (g)	24.7			
Mass of dry soil (g)	111.7			
Moisture content (%)	22.1			
Average Moisture Content (%)	22.1			

CLIENT:	YACHIYO ENGIN	IEERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION	FOR BUL	OOBASU	BSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4				
Depth (m)	15.5-16.0				
Sample no.		Ì			
Container no.	MI	1			
Mass of wet soil + container (g)	228.6				
Mass of dry soil + container (g)	197.8				
Mass of container (g)	71.2	ĺ			
Mass of moisture (g)	30.9				
Mass of dry soil (g)	126.6				
Moisture content (%)	24.4				
Average Moisture Content (%)	24.4				

CLIENT:	YACHIYO ENGII	NEERING COMPA	NY LTD	
PROJECT:	GEOTECHNICA	L INVESTIGATION	FOR BULO	OBA SUBSTA
CONTRACTOR:	NEWPLAN LIMIT			
MOISTURE CONTENT TEST	SUMMARY			
Test Method:	ASTM D 4959			
Borehole No.	4			
Depth (m)	20.5-21.0			
Sample no.				
Container no.	ZT			
Mass of wet soil + container (g)	229.7			
Mass of dry soil + container (g)	192.3			
Mass of container (g)	66.7			
Mass of moisture (g)	37.3			
Mass of dry soil (g)	125.7			
Moisture content (%)	29.7			
Average Moisture Content (%)	29.7			

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGI	NEERING COMPAN'	Y LTD		
PROJECT:	GEOTECHNICA	L INVESTIGATION F	OR BUL	OOBASUE	STA
CONTRACTOR:	NEWPLAN LIMI	rED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4				
Depth (m)	25.5-26.0				
Sample no.					
Container no.	Ж				
Mass of wet soil + container (g)	278.9	1			
Mass of dry soil + container (g)	233.1	1			
Mass of container (g)	64.3	1			
Mass of moisture (g)	45.8				
Mass of dry soil (g)	168.8	1			
Moisture content (%)	27.1	1			
Average Moisture Content (%)	27.1	1			

CLIENT:	YACHIYO ENGI	NEERING COMPA	NY LTD		
PROJECT:	GEOTECHNICA	L INVESTIGATION	FOR BUL	OOBASU	BSTA
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4	1			
Depth (m)	30.5-31.0				
Sample no.					
Container no.	S2				
Mass of wet soil + container (g)	265.3				
Mass of dry soil + container (g)	229.2				
Mass of container (g)	70.4				
Mass of moisture (g)	36.1				
Mass of dry soil (g)	158.8				
Moisture content (%)	22.7	1			
Average Moisture Content (%)	22.7				

*************** ancenticunefacueff I PERMINE NER . 12000110101101111 s . 5555555555555555555555 . 022242222222222222 . 9557155737194957374492 N R B S S 7 7 7 7 7 ************* \$1100055141513551355 § 1 presententententationes E | menengganbuyenengen 1 entreprintespering # meduateducedations I enconnectoronectoron Appendix 7: Summary of Texture Classification 2 | Harrison Communication |
2 | Harrison Communication |
3 | Harrison Communication |
4 | Harrison Communication |
5 | Harrison Communication |
6 | Harrison Communication |
7 | Harrison Com CATANA DAMENTA

il momentum • 6483644006685885866866668888 7777178 s destination construction of these B & moreocratici sandocerrenteres ----5 | contraviamentonescope come I | forcescensettestetestesteste 1 1 Exerciones essantistantes es es e * 1 2*2121*2202222222222222222 . | ********************* z 1 sected consensual consensual conse # 1 1 1 1 1 1 1 1 1 1 2 . SENSON SENSON < | HERITARESERENTERSTERRESERE POLICE POLICE DOPERCIA 1

|| >ccc/1116/911011111111111111111 [-munimummummin] 1-22011020550022220102222222222 ******************** · **************************** e Manigarringerandensanders Pronuentennanterenterenteren ::!?!!! [-1-111111000--110-11117777777 (perconnument) -----11111111111 1 i

35595535551838888888888888888888 *ERZESERGESEZEZEZEZEZEZEZEZEZE . ************************ · DREISTRERRETERSTERSTREETERSTER · ANARASIANAN ANARASANAN ANARASANAN ANARASAN ANA SEUTENDERDYSSONDERRESENDASSESE . · ANDRADEDSKUNDERDRANKENENKARE 1 accommunications 1291948 1 secretariosascinocticosascino | #Strateformanenteriousmettern | ************************ 1 356-04486048818844544598688484 . 1 388#5=8885#88888888=88888888 · | ******************** . | 955295552825210552582528253106 2 | ********************* . | 3882000000333333000000000000333333 . 1 ******************** · 1 spanospanosanapanoupasonospa 1211111111 GLEST SEASON CONTRACTOR 1 1

Detailed Geotechnical Report

Appendix 8: Specific Gravity

CLIENT:		ENGINEERING COMPAN				
PROJECT:		INICAL INVESTIGATION	FOR BULOC	BASUBSTATIO	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVI	TY TEST RE	PORT				
Site Location: Bul	ooba Substatio	on .				
Test Method: AST	TM D 854.					
Borehole No.: B	H01	Depth: 5.5-6.0m				
Specimen referen	nce			D-Sample	D-Sample	
Pyknometer label				NH	KB	
Mass of bottle +s	oil + water	m ₃	g	85.5	85.1	
Mass of bottle +s	oil	m ₂	g	37.3	37.0	
Mass of bottle full	of water	m ₄	g	79.3	78.9	
Mass of density b	ottle	m ₁	g	27.2	27.0	
Mass of soil samp	ple alone	M2-M1	g	10.0	10.0	
Mass of water in t	full bottle	m ₄ -m ₁	g	52.1	52.0	
Mass of water use	ed	m ₃ -m ₂	g	48.2	48.1	
Volume of soil pa	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.9	3.9	
Particle Density (gravity)	Specific	$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.584	2.606	Avera Speci gravi
		ρs	Mg/m ³	2.584	2.606	2.59
CLIENT: PROJECT:		ENGINEERING COMPAN HNICAL INVESTIGATION		RA SURSTATIO	N.	
CONTRACTOR:			TON BOLOC	BAGGBGTAIR		
SPECIFIC GRAVI	ITY TEST RE	PORT				
Site Location: Bu	Innha Suhetati	nn.				
Test Method: AS						
Borehole No.:	3H01	Depth: 10.5-11.0m				
Specimen refere	ince			D-Sample	D-Sample	
Pyknometer labe				OJ	NG	
Mass of bottle +s	soil + water	m ₃	g	83.0	85.0	
Mass of bottle +s	soil	m ₂	g	37.8	36.3	
		m ₄	g	76.9	78.7	
Mass of bottle ful	ll of water			+		
Mass of bottle ful Mass of density b		m ₁	g	27.8	26.3	
	bottle		g g	27.8 10.0	26.3 10.0	
Mass of density b	pottle ple alone	m ₁		2.10		
Mass of density b	pottle ple alone full bottle	m ₁ m ₂ -m ₁	g	10.0	10.0	
Mass of density by Mass of soil same Mass of water in	pottle iple alone full bottle	m ₁ m ₂ -m ₁ m ₄ -m ₁	g g	10.0	10.0 52.4	

2.600

Detailed Geotechnical Report

CLIENT: PROJECT:	GEOTEC	INICAL INVESTIGATION	FOR BUILDO	RA SUBSTATIO	N	
CONTRACTOR:			I OK BOLOO	DAGODGIANO	1	
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Buld	ooba Substatio	on				
Test Method: AST	M D 854.					
		B 4 455400				
Borehole No.: B	H01	Depth: 15.5-16.0m		l .		
Specimen referen	ice			D-Sample	D-Sample	
Pyknometer label				MA	EE	
Mass of bottle +so	oil + water	m ₃	g	87.5	86.4	
Mass of bottle +so	oil	m ₂	g	37.4	39.5	
Mass of bottle full	of water	m ₄	g	81.4	80.3	
Mass of density be	ottle	m ₁	g	27.3	29.5	
Mass of soil samp		m ₂ -m ₁	g	10.1	10.0	
Mass of water in fo		m ₄ -m ₁	g	54.0	50.7	
Mass of water use	ed	M3*M2	g	50.2	46.9	
Volume of soil par	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.9	3.8	
		, ,,,,,,,				
Particle Deneity (9	Specific	$\rho s = 1000x (m_2 + m_1)$	Mg/m ³	2.592	2.605	Average Specific
Particle Density (Specific						
gravity)	JP00III0	(m ₄ -m ₁)-(m ₃ -m ₂)	mg/m			
	YACHIYO	ρs ENGINEERING COMPANICAL INVESTIGATION	Mg/m ³	2.592 BASUBSTATIO	2.605	gravity 2.599
GRAVITY) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulk	YACHIYO GEOTECI NEWPLAN	ρs ENGINEERING COMPAN- HNICAL INVESTIGATION I LIMITED	Mg/m ³			gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buld Test Method: AST	YACHIYO GEOTECI NEWPLAN TYTEST RE	PS ENGINEERING COMPAN- INICAL INVESTIGATION I LIMITED PORT	Mg/m ³			gravity
GRAVITY) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulk	YACHIYO GEOTECI NEWPLAN TYTEST RE	ρs ENGINEERING COMPAN- HNICAL INVESTIGATION I LIMITED	Mg/m ³			gravity
GRAVITY) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Test Method: AST Borehole No.: Bl	YACHIYO GEOTECI NEWPLAN TYTEST RE Doba Substatio M D 854.	PS ENGINEERING COMPAN- INICAL INVESTIGATION I LIMITED PORT	Mg/m ³	BA SUBSTATIC	N STATE OF THE STA	gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buld Test Method: AST	YACHIYO GEOTECI NEWPLAN TY TEST RE Doba Substatio M D 854.	PS ENGINEERING COMPAN- INICAL INVESTIGATION I LIMITED PORT	Mg/m ³			gravity
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulc Test Method: AST Borehole No.: Bi Specimen referen	YACHIYO GEOTECI NEWPLAN TY TEST RE M D 854. H01	PS ENGINEERING COMPAN- INICAL INVESTIGATION I LIMITED PORT	Mg/m ³	BA SUBSTATIC	D-Sample	gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulc Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label	YACHIYO GEOTECI NEWPLAN TY TEST RE Doba Substation M D 854. H01 ICCE	ρs ENGINEERING COMPANIONICAL INVESTIGATION L LIMITED PORT Depth: 20.5-21.0m	Mg/m³ IY LTD FOR BULOO	BA SUBSTATIC	D-Sample	gravity
GLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVITI Site Location: Bulc Test Method: AST Borehole No.: Bi Specimen referen Mass of bottle +sc	YACHIYO GEOTECI NEWPLAN Y TEST RE boba Substatic M D 854. H01 ce	ρs ENGINEERING COMPAN INICAL INVESTIGATION LIMITED PORT Depth: 20.5-21.0m	Mg/m³ IY LTD FOR BULOO	BA SUBSTATIO	D-Sample LG 85.1	gravity
GLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulc Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc	YACHIYO GEOTECI NEWPLAN TY TEST RE Dobba Substation M D 854. H01 ICCE Dill + water Dill of water	ρs ENGINEERING COMPANIONICAL INVESTIGATION I LIMITED PORT Depth: 20.5-21.0m	Mg/m³ IY LTD FOR BULOO	D-Sample C 88.0 40.5	D-Sample LG 85.1 36.5	gravity
GLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVII Site Location: Bulk Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle su Mass of bottle full	YACHIYO GEOTECI NEWPLAN TY TEST RE Doba Substatic N D 854. H01 DCC Dill + water Dill of water ottle	ρs ENGINEERING COMPANIONICAL INVESTIGATION LIMITED PORT Depth: 20.5-21.0m m ₃ m ₂ m ₄	Mg/m³ IY LTD FOR BULOO	D-Sample C 88.0 40.5 81.6	D-Sample LG 85.1 36.5 78.7	gravity
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAWIT Site Location: Bulc Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle has Mass of bottle has Mass of bottle fall Mass of density bi	YACHIYO GEOTECI NEWPLAN TY TEST RE bobs Substation M D 854. HH01 CCe bill + water bill of water oftle ble alone	ρs ENGINEERING COMPANINICAL INVESTIGATION LIMITED PORT m m ₃ m ₂ m ₄ m ₁	Mg/m³ IY LTD FOR BULOO	D-Sample C 88.0 40.5 81.6 30.4	D-Sample LG 85.1 36.5 78.7 26.5	gravity
GLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: But Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle full Mass of density b Mass of density b Mass of soil samp	YACHIYO GEOTECI NEWPLAN Y TEST RE Doba Substatio M D 854. HH01 ICCE Dill + water Dill of water outle Die alone ull bottle	PS ENGINEERING COMPAN- INICAL INVESTIGATION LIMITED PORT Ma	Mg/m³ IY LTD FOR BULOO	D-Sample C 88.0 40.5 81.6 30.4 10.0	D-Sample LG 85.1 36.5 78.7 26.5	gravity
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRANTI Site Location: But Grantine:	YACHIYO GEOTECI NEWPLAN TY TEST RE Doba Substation M D 854. HI01 Dit + water Dit of water Ottle Did alone Ull bottle Did	ρs ENGINEERING COMPANIONAL INVESTIGATION ILIMITED PORT Depth: 20.5-21.0m m ₃ m ₂ m ₄ m ₁ m ₂ -m ₁ m ₂ -m ₁ m ₃ -m ₂	Mg/m³ IY LTD FOR BULOO 9 9 9 9 9 9	D-Sample C 88.0 40.5 81.6 30.4 10.0 51.2 47.5	D-Sample LG 85.1 36.5 78.7 26.5 10.1 52.2 48.5	gravity
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVII Site Location: But Test Method: AST Borehole No.: Bi Specimen referen Pykrometer label Mass of bottle 4:c Mass of bottle 4:c Mass of bottle 4:c Mass of bottle 3:d Mass of density b Mass of water in it	YACHIYO GEOTECI NEWPLAN TY TEST RE Doba Substation M D 854. HI01 Icce Dill + water Dill of water ottle Die alone ull bottle did did triticle	PS ENGINEERING COMPAN- INICAL INVESTIGATION LIMITED PORT Ma	Mg/m³ IY LTD FOR BULOO	D-Sample C 88.0 40.5 81.6 30.4 10.0 51.2	D-Sample LG 85.1 36.5 78.7 26.5 10.1	gravity

CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:	GEOTEC	HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	N	
CONTRACTOR:	NEWPLA	LIMITED				
SPECIFIC GRAVITY	TEST RI	PORT				
Site Location: Bulgot	oa Substati	on				
Test Method: ASTM	D 854.					
Borehole No.: BH)2	Depth: 5.5-6.0m				
Specimen reference)			D-Sample	D-Sample	
Pyknometer label				NG	OM	
Mass of bottle +soil	+ water	m ₃	g	85.0	86.6	
Mass of bottle +soil		m ₂	g	36.3	37.8	
Mass of bottle full of	water	m ₄	g	78.7	80.2	
Mass of density bot	tle	m ₁	g	26.3	27.7	
Mass of soil sample	alone	m ₂ -m ₁	g	10.0	10.1	
Mass of water in full	bottle	m ₄ -m ₁	g	52.4	52.5	
Mass of water used		m ₃ -m ₂	g	48.7	48.8	
Volume of soil partie	cle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.7	
Particle Density (Sp gravity)	ecific	$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.737	2.727	Average Specific gravity
		ρs	Mg/m ³	2.737	2.727	2.732

		ρs	Mg/m ³	2.737	2.727
	_				
CLIENT:	YACHIYO	ENGINEERING COMPA	NY LTD		
PROJECT:	GEOTEC	HNICAL INVESTIGATION	N FOR BULOO	BASUBSTATIO	N
CONTRACTOR:	NEWPLAN	LIMITED			
SPECIFIC GRAVIT	TY TEST RE	PORT			
Site Location: Bul	ooba Substati	on			
Test Method: AST	M D 854.				
Borehole No.: B	H02	Depth: 10.5-11.0m			
Specimen referer	nce			D-Sample	D-Sample
Pyknometer label				ND	TS
Mass of bottle +se	oil + water	m ₃	g	88.5	87.5
Mass of bottle +se	oil	m ₂	g	36.7	38.1
Mass of bottle full	of water	m ₄	g	82.1	81.1
Mass of density b	ottle	m ₁	g	26.6	28.0
Moss of soil some	olo olono			40.4	40.4

 Mass of bottle +soil
 m₂
 g
 36.7
 38.1

 Mass of bottle full of water
 m₂
 g
 82.1
 81.1

 Mass of destrij bottle
 m₁
 g
 26.6
 28.0

 Mass of soil sample alone
 m₂·m₁
 g
 10.1
 10.1

 Mass of vater in full bottle
 m₂·m₂
 g
 55.6
 53.0

 Mass of water used
 m₂·m₂
 g
 51.9
 49.4

 Volume of soil particle
 (m₂·m₁)·(m₂·m₂)
 ml
 3.7
 3.7

 Particle Density (Specific gravity)
 ρ s = 1000x (m₂·m₁) (m₂·m₂)
 Mg/m²
 2.738
 2.750
 Average Specific gravity

 ρ s
 Mg/m²
 2.738
 2.750
 2.744

94

Detailed Geotechnical Report

		FOR BULOO	D-Sample	D-Sample		
TEST RE a Substatio D 854.	PORT Depth: 15.5-16.0m			D-Sample		
a Substatio D 854.	Depth: 15.5-16.0m			D-Sample		
D 854.	Depth: 15.5-16.0m			D-Sample		
2				D-Sample		
				D-Sample		
				D-Sample		
	m- 1					
+ water	m.		NG	С		
		g	85.0	87.9		
	m ₂	g	36.4	40.5		
water	m ₄	g	78.7	81.6		
le	m ₁		26.3	30.5		
alone	m ₂ -m ₁	g	10.0	10.0	7	
bottle	m ₄ -m ₁	g	52.3	51.2		
	m ₃ -m ₂	g	48.6	47.4		
:le	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.7		
ecific	$\rho s = \frac{1000 \times (m_2 - m_1)}{(m_4 - m_1) - (m_3 - m_2)}$	Mg/m ³	2.725	2.702	Avera Spec grav	
	ρs	Mg/m ³	2.725	2.702	2.71	
ACHIYO	ENGINEERING COMPAN	IY LTD				
		FOR BULOO	BA SUBSTATIO	N		
NEWPLAN	LIMITED					
TEST RE	PORT					
	on .					
D 854.						
2	Depth: 20.5-21.0m					
	e alone bottle le ecific PACHIYO BEOTECHEWPLAN TEST RE a Substatio D 854.	0	0	0	0	

D-Sample NH 85.4 37.2 79.1 27.2 10.0 51.9 OJ 82.5 37.0 76.3 Pyknometer label

Mass of bottle +soil + water

Mass of bottle +soil

Mass of bottle full of water m₃ g m₂ g m₄
m₁
m₂-m₁
m₄-m₁ Mass of density bottle
Mass of soil sample alone
Mass of water in full bottle
Mass of water used
Volume of soil particle 26.9 10.0 49.4 g m₃-m₂ (m₄-m₁)-(m₃-m₂) 45.6 3.8 48.2 3.8 $\rho s = \frac{1000x \quad (m_2 - m_1)}{(m_4 - m_1) - (m_3 - m_2)}$ 2.674 Average Specific gravity
2.674 2.662 2.650 Particle Density (Specific Mg/m³ Mg/m³ 2.650 ρs

9

Detailed Geotechnical Report

CLIENT:	YACHIYO	ENGINEERING COMPAN	Y LTD			
PROJECT:	GEOTECH	INICAL INVESTIGATION	FOR BULOO	BASUBSTATIO	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	TY TEST RE	PORT				
Site Location: Buld	ooba Substatio	n				
Test Method: AST	M D 854.					
Borehole No.: B	H02	Depth: 25.5-26.0m				
Specimen referer	nce			D-Sample	D-Sample	
Pyknometer label				EE	KN	
Mass of bottle +so	oil + water	m ₃	g	86.6	85.0	
Mass of bottle +so	lic	m ₂	g	39.7	37.2	
Mass of bottle full	of water	m ₄	g	80.3	78.7	
Mass of density b	ottle	m ₁	g	29.7	27.1	
Mass of soil samp	ole alone	m ₂ -m ₁	g	10.0	10.1	
Mass of water in f	ull bottle	m ₄ -m ₁	g	50.6	51.6	
Mass of water use	ed	m ₃ -m ₂	g	46.9	47.8	
Volume of soil par	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.8	
Particle Density (Specific gravity)		$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.695	2.687	Average Specific gravity
		ρs	Mg/m ³	2.695	2.687	2.691

gravity)						gravity
		ρs	Mg/m ³	2.695	2.687	2.691
CLIENT:		ENGINEERING COMPAN				
PROJECT:		HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bulo	oba Substati	on				
Test Method: AST	M D 854.					
Borehole No.: B	H02	Depth: 28.5-29.0m				
Specimen referen	ce			D-Sample	D-Sample	
Pyknometer label				NM	KB	
Mass of bottle +so	il + water	m ₃	g	85.6	85.2	
Mass of bottle +so	il	m ₂	g	38.0	37.0	
Mass of bottle full	of water	m ₄	g	79.2	78.8	
Mass of density be	ottle	m ₁	g	28.0	27.0	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.0	10.0	
		m₄-m₁	g	51.2	51.9	
Mass of water in fo	ull bottle	1114-1114	9			
Mass of water in for Mass of water use		m ₃ -m ₂	g	47.6	48.2	
	d			47.6 3.7	48.2 3.7	
Mass of water use	id ticle	m ₃ -m ₂	g			Average Specific gravity

Detailed Geotechnical Report

CLIENT: PROJECT:		ENGINEERING COMPAN HNICAL INVESTIGATION		DA SUBSTATIO	N.	
CONTRACTOR:		N LIMITED	I OK BOLOO	DAGODGIANO		
SPECIFIC GRAVIT	Y TEST RI	EPORT				
Site Location: Buld		on				
Test Method: AST	M D 854.					
Borehole No.: B	H03	Depth: 5.5-6.0m				
Specimen referen	ice			D-Sample	D-Sample	
Pyknometer label				TS	KN	
Mass of bottle +so	oil + water	m ₃	g	87.5	85.0	
Mass of bottle +so	oil	m ₂	g	38.2	37.2	
Mass of bottle full	of water	m ₄	g	81.2	78.8	
Mass of density b	ottle	m ₁	g	28.1	27.2	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.0	10.1	
Mass of water in f	ull bottle	m ₄ -m ₁	g	53.1	51.6	
Mass of water use	ed	m ₃ -m ₂	g	49.3	47.8	
Volume of soil par	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.8	3.8	
	Specific	$\rho s = 1000 \times (m_2 - m_1)$ $(m_4 - m_1) - (m_3 - m_2)$	Mg/m ³	2.672	2.627	Avera
Particle Density (S gravity)						grav

CLIENT:	YACHIYO	ENGINEERING COMPA	NY LTD			
PROJECT:	GEOTECI	NICAL INVESTIGATION	FOR BULOOF	BASUBSTATIO	N	
CONTRACTOR:	NEWPLAN	NEWPLAN LIMITED				
SPECIFIC GRAVITY	TEST RE	PORT				
Site Location: Buloo	ba Substatio	in				
Test Method: ASTM	D 854.					
Borehole No.: BH	03	Depth: 10.5-11.0m				
Specimen reference	e			D-Sample	D-Sample	
Pyknometer label				LG	CF	
Mass of bottle +soil	+ water	m ₃	g	85.0	86.6	
Mass of bottle +soil	l	m ₂	g	36.5	39.3	
Mass of bottle full of	f water	m ₄	g	78.7	80.4	
Mass of density bot	ttle	m ₁	g	26.5	29.2	
Mass of soil sample	alone =	m ₂ -m ₁	g	10.1	10.1	
Mass of water in full	l bottle	m ₄ -m ₁	g	52.3	51.2	
Mass of water used	1	m ₃ -m ₂	g	48.5	47.3	
Volume of soil parti	cle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.8	3.8	
Particle Density (Sp gravity)	pecific	ρ s = 1000x (m_2-m_1) $(m_4-m_1)-(m_3-m_2)$	Mg/m ³	2.670	2.627	Average Specific gravity
I		ρs	Mg/m ³	2.670	2.627	2.649

CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:	GEOTECH	INICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bulo	oba Substatio	in				
Test Method: AST	/ D 854.					
Borehole No.: Bh	103	Depth: 15.5-16.0m				
Specimen referen	се			D-Sample	D-Sample	
Pyknometer label				С	OM	
Mass of bottle +soil + water		m ₃	g	87.9	86.6	
Mass of bottle +so	il	m ₂	g	40.5	37.7	
Mass of bottle full of	of water	m ₄	g	81.7	80.4	
Mass of density bo	ttle	m ₁	g	30.5	27.7	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.0	10.0	
Mass of water in fu	II bottle	m ₄ -m ₁	g	51.2	52.7	
Mass of water used		m ₃ -m ₂	g	47.4	48.8	
Volume of soil particle		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.8	3.8	
Particle Density (S gravity)	pecific	ρ s = 1000× $(m_2 - m_1)$ $(m_4 - m_1) - (m_3 - m_2)$	Mg/m ³	2.647	2.628	Average Specific gravity
			Mg/m ³	2.647	2.628	2.637

		ρs	Mg/m ³	2.647	2.628	2.637
CLIENT:		ENGINEERING COMPA				
PROJECT:		HNICAL INVESTIGATION	FOR BULOO	BA SUBSTATIO	ON	
CONTRACTOR:	NEWPLA	N LIMITED				
SPECIFIC GRAVIT	Y TEST RI	EPORT				
Site Location: Bulo	oba Substati	on				
Test Method: AST						
Borehole No.: B	H03	Depth: 20.5-21.0m				
Specimen referen	CR			D-Sample	D-Sample	
Pvknometer label				ND	NM	
Mass of bottle +so	il + water	m ₃	g	88.6	85.6	
Mass of bottle +so	il	m ₂	g	36.6	38.1	
Mass of bottle full	of water	m ₄	g	82.3	79.3	
Mass of density b	ottle	m ₁	g	26.6	28.0	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.0	10.0	
Mass of water in f	ull bottle	m ₄ -m ₁	g	55.7	51.3	
Mass of water used		m ₃ ·m ₂	g	52.0	47.5	
Volume of soil par	ticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.7	
Particle Density (S	Specific	ρ s = $\frac{1000 \times (m_2 - m_1)}{(m_4 - m_1) - (m_3 - m_2)}$	Mg/m ³	2.678	2.690	Averag Specifi gravity

91

Detailed Geotechnical Report

CLIENT:	V40111V0	ENGINEERING COMPAN	D/ LTD			
PROJECT:				DA OUDOTATIO		
CONTRACTOR:		HNICAL INVESTIGATION	FOR BULUU	BASUBSTALIC	N	
CONTRACTOR:	NEWFLA	A LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bulo	ooba Substati	on				
Test Method: AST	M D 854.					
Borehole No.: B	H03	Depth: 25.5-26.0m				
Specimen referen	ice			D-Sample	D-Sample	
Pyknometer label				EE	NM	
Mass of bottle +soil + water		m ₃	g	86.5	85.6	
Mass of bottle +soil		m ₂	g	39.6	38.1	ſ
Mass of bottle full of water		m ₄	g	80.2	79.3	ĺ
Mass of density bottle		m ₁	g	29.5	28.0	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.0	10.1	ĺ
Mass of water in fo	ull bottle	m ₄ -m ₁	g	50.7	51.2	İ
Mass of water used		m ₃ -m ₂	g	47.0	47.5	İ
Volume of soil particle		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.8	ĺ
Particle Density (Specific gravity)		ρ s = 1000× $(m_2 - m_1)$ $(m_4 - m_1) - (m_3 - m_2)$	Mg/m ³	2.705	2.680	Average Specific gravity
		ρs	Mg/m ³	2.705	2.680	2.693
CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:	GEOTEC	HNICAL INVESTIGATION	FOR BULOO	BA SUBSTATIO	N	
CONTRACTOR:	NEWPLA	NLIMITED				
SPECIFIC GRAVIT	TV TEAT D	FRORT				
SPECIFIC GRAVI	IT IESI KI	EFURI			-	

CLIENT:		ENGINEERING COMP			
PROJECT:	GEOTEC	HNICAL INVESTIGATION	ON FOR BULO	OBA SUBSTATIC	ON
CONTRACTOR:	NEWPLAN LIMITED				
SPECIFIC GRAVIT	Y TEST R	PORT			
Site Location: Bulo	oba Substati	on			
Test Method: ASTA	A D 854.				
Borehole No.: Bh	103	Depth: 29.5-30.0m		+	
		DOPHII. 20.0 00.0111			
		Dopan 2000 do.om		D-Sample	D-Sample
Specimen referen		populi 20.0 oc.om		D-Sample OJ	D-Sample KN
Specimen referen	Ce Ce	m ₃	g		
Specimen reference Pyknometer label Mass of bottle +so Mass of bottle +so	il + water		g g	OJ	KN

9

Detailed Geotechnical Report

PROJECT:		INICAL INVESTIGATION	FOR BULOO	BASUBSTATIC)N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bul	ooba Substatio	n .				
Test Method: AST	M D 854.					
Borehole No.: B	H04	Depth: 5.5-6.0m				
Specimen referer	ice			D-Sample	D-Sample	
Pyknometer label				LG	TS	
Mass of bottle +soil + water		m ₃	g	85.1	87.6	
Mass of bottle +so	oil	m ₂	g	36.6	38.1	
Mass of bottle full	of water	m ₄	g	78.7	81.2	
Mass of density b	ottle	m ₁	g	26.5	28.1	
Mass of soil samp	ole alone	m ₂ -m ₁	g	10.1	10.0	
Mass of water in f	ull bottle	m ₄ -m ₁	g	52.2	53.1	
Mass of water use	ed	m ₃ -m ₂	g	48.6	49.5	
Volume of soil particle		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.6	3.6	
volume of soil pa		ρs = 1000x (m ₂ -m ₁)	2	2.788	2.801	Averag
Particle Density (S	Specific	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.700	2.001	Specific

gravity)		(m ₄ -m ₁)-(m ₃ -m ₂)	Wg/III			gravity
		ρs	Mg/m ³	2.788	2.801	2.795
CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:	PROJECT: GEOTECHNICAL INVESTIGATION		FOR BULOO	BA SUBSTATIO	N	
CONTRACTOR: NEWPLAN LIMITED		LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bulo	oba Substatio	in				
Test Method: ASTA	I D 854.					
Borehole No.: Bh	104	Depth: 10.5-11.0m				
Specimen reference	ce ce			D-Sample	D-Sample	
Pyknometer label				CF	OM	
Mass of bottle +soil + water		m ₃	g	86.5	86.5	
Mass of bottle +so	il	m ₂	g	39.2	37.7	
Mass of bottle full of	of water	m ₄	g	80.3	80.3	
Mass of density bo	ittle	m ₁	g	29.2	27.7	
Mass of soil sample	le alone	m ₂ -m ₁	g	10.0	10.0	
Mass of water in fu	II bottle	m ₄ -m ₁	g	51.2	52.5	
Mass of water used		m ₃ -m ₂	g	47.4	48.7	
Volume of soil particle		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.8	3.8	
		1				Average
Particle Density (S gravity)	pecific	ρ s = 1000x $(m_2 \cdot m_1)$ $(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)$	Mg/m ³	2.637	2.641	Specific gravity

Detailed Geotechnical Report

CLIENT:	YACHIYO	ENGINEERING COMPA	NY LTD			
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOB			BASUBSTATIO	N	
CONTRACTOR:	NEWPLA	NEWPLAN LIMITED				
SPECIFIC GRAVIT	TY TEST RI	PORT				
Site Location: Bule	ooba Substati	on				
Test Method: AST	M D 854.					
Borehole No.: B	H04	Depth: 15.5-16.0m				
Specimen referer	ice			D-Sample	D-Sample	
Pyknometer label				NH	TS	
Mass of bottle +soil + water		m ₃	g	85.5	87.5	
Mass of bottle +soil		m ₂	g	37.3	38.1	
Mass of bottle full of water		m ₄	g	79.2	81.2	
Mass of density b	ottle	m ₁	g	27.3	28.1	
Mass of soil sample alone		m ₂ -m ₁	g	10.0	10.0	
Mass of water in f	ull bottle	m ₄ -m ₁	g	51.9	53.1	
Mass of water used		m ₃ -m ₂	g	48.2	49.4	
Volume of soil pa	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.7	
Particle Density (\$gravity)	Specific	ρ s = $\frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.680	2.708	Averag Specif
		ρs	Mg/m ³	2.680	2.708	2.694

		ρs	Mg/m ³	2.680	2.708	2.69
CLIENT:	YACHIYO	ENGINEERING COMPA	NY LTD			
PROJECT:	GEOTEC	HNICAL INVESTIGATION	FOR BULOOF	BASUBSTATIO	N	
CONTRACTOR:		LIMITED				
SPECIFIC GRAVI	TY TEST RE	PORT				
Site Location: Bul	ooba Substatio	on				
Test Method: AST	TM D 854.					
Borehole No.: B	H04	Depth: 20.5-21.0m				
Specimen referer	200			D-Sample	D-Sample	
Pvknometer label				KN	LG	
Mass of bottle +s		m ₃	g	85.1	85.0	
Mass of bottle +s	oil	m ₂	g	37.2	36.5	
Mass of bottle full	of water	m ₄	g	78.7	78.7	
Mass of density b	ottle	m ₁	g	27.2	26.5	
Mass of soil sample alone		m ₂ -m ₁	g	10.1	10.1	
Mass of water in full bottle		ma-m1	g	51.5	52.2	
Mass of water use	ed	m ₃ -m ₂	g	47.9	48.4	
Mass of water use Volume of soil pa		m ₃ -m ₂ (m ₄ -m ₁)-(m ₃ -m ₂)		47.9 3.6	48.4 3.8	
	rticle		g			Avera Spec grav

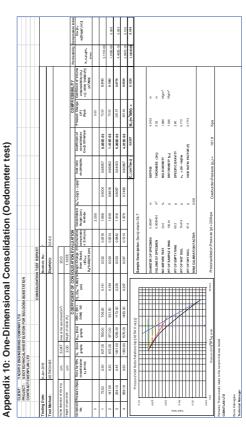
-

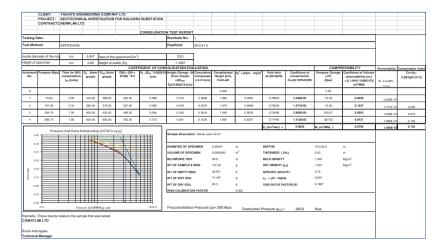
CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:	GEOTECI	HNICAL INVESTIGATION	FOR BULOO	BA SUBSTATIO	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Buloo	ba Substatio	on				
Test Method: ASTN	D 854.					
Borehole No.: BH	104	Depth: 25.5-26.0m				
Specimen reference	:e			D-Sample	D-Sample	
Pyknometer label				ND	KB	
Mass of bottle +soi	I + water	m ₃	g	88.5	85.2	
Mass of bottle +soi	I	m ₂	g	36.6	37.0	
Mass of bottle full o	f water	m ₄	g	82.2	78.9	
Mass of density bo	ttle	m ₁	g	26.6	27.0	
Mass of soil sampl	e alone	m ₂ -m ₁	g	10.0	10.0	
Mass of water in fu	ll bottle	m ₄ -m ₁	g	55.5	51.9	
Mass of water used	i	m ₃ -m ₂	g	51.8	48.1	
Volume of soil particle		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.8	
		ρs = 1000× (m ₂ -m ₁)	Mg/m ³	2.699	2.664	Average Specific
Particle Density (S gravity)	pecific	(m ₄ -m ₁)-(m ₃ -m ₂)				gravity

CLIENT:	YACHIYO	ENGINEERING COMPA	IY LTD			
PROJECT:		INICAL INVESTIGATION	FOR BULOO	BA SUBSTATIO	N	
CONTRACTOR:	NEWPLAN	LIMITED				
SPECIFIC GRAVIT	Y TEST RE	PORT				
Site Location: Bulo	ooba Substatio	on .				
Test Method: AST	M D 854.					
Borehole No.: Bl	H04	Depth: 30.5-31.0m				
Specimen referen	ice			D-Sample	D-Sample	
Pyknometer label				NH	С	
Mass of bottle +so	oil + water	m ₃	g	85.4	87.9	
Mass of bottle +so	oil	m ₂	g	37.3	40.5	
Mass of bottle full	of water	m ₄	g	79.2	81.6	
Mass of density be	ottle	m ₁	g	27.2	30.5	
Mass of soil samp	le alone	m ₂ -m ₁	g	10.1	10.0	
Mass of water in fo	ull bottle	m ₄ -m ₁	g	52.0	51.1	
Mass of water used		m ₃ -m ₂	g	48.1	47.4	
Volume of soil par	rticle	(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.9	3.8	
Particle Density (5 gravity)	Specific	ρ s = 1000× (m_2-m_1) $(m_4-m_1)-(m_3-m_2)$	Mg/m ³	2.617	2.659	Averag Specif
		ρs	Mg/m ³	2.617	2.659	2.638

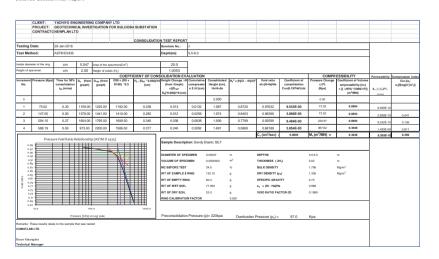
Detailed Geotechnical Report

Appendix 9: Chemical Test


CLIENT:	YACHIYO	ENGINEER	ING COMP	ANYITD	
PROJECT:					OBA SUBSTA
CONTRACTOR			LOTIOATIO	IN TOR BOLO	OBAGODOTA
CONTRACTOR	NEWPLAN	Limited			
SUMMARY FOR	SOIL PH	CONTENT	TEST RESU	LTS	
Site Location:	Bulooba Subst	ation			
Testing Date: 2	7 January 201	6			
Test Method: A	STM G 51				
BOREHOLE	DEPTH			AVERAGE	
NO.	(m)	TRIAL 01	TRIAL 02	PH VALUE	REMARKS
	7.0 - 8.0	7.03	7.04	7.04	Neutral
1	17.0 - 18.0	6.64	6.68	6.66	Neutral
	7.0 - 8.0	6.88	6.7	6.79	Neutral
2	18.0 - 19.0	6.71	6.74	6.73	Neutral
	3.0 - 4.0	5.84	5.84	5.84	Slightly Acidic
_	17.0 - 18.0	6.87	6.89	6.88	Neutral
3	117.0 - 10.0				
3	3.0 - 4.0	6.85	6.73	6.79	Neutral

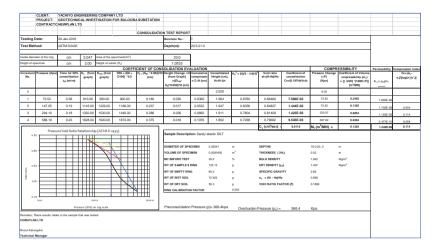

CLIENT:	YACHIYO E	NGINEERING	COMPANY L	.TD
PROJECT:	GEOTECHN	IICAL INVEST	IGATION FO	R BULOOBA SUBSTAT
CONTRACTOR:	NEWPLAN L	.imited		
SUMMARY FOR	SOIL CHLOF	RIDE CONTEN	IT TEST RES	BULTS
Site Location: B	ulooba Substatio	ın		
Testing Date: 27	January 2016			
Test Method: AS	STM D 4327			
BOREHOLE NO.:	DEPTH (m)	TEST 01 (%)	TEST 02 (%)	AVERAGE CHLORIDE CONTENT (%)
	DEPTH (m)	TEST 01 (%) 0.883	TEST 02 (%)	
BH - 01	` '	` '	TEST 02 (%) 0.795	CONTENT (%)
BH - 01	8	0.883	, ,	0.883
	8	0.883 0.803	, ,	0.883 0.799
BH - 01	8 18 8	0.883 0.803 0.295	0.795	0.883 0.799 0.295
	8 18 8 19	0.883 0.803 0.295 0.337	0.795	0.883 0.799 0.295 0.353

Detailed Geotechnical Report

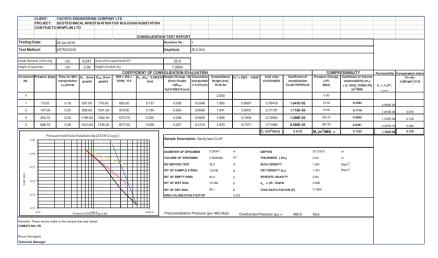

CLIENT:	YACHIYO EN	IGINEERING	COMPANY LTD	
PROJECT:	GEOTECHN	ICAL INVEST	IGATION FOR BULO	OBA SUBSTAT
CONTRACTOR:	NEWPLAN L	imited		
SUMMARY FOR	SOIL SULPH	ATE CONTE	NT TEST RESULTS	
Site Location: B	ulooba Substatio	n		
Testing Date: 27	January 2016			
Test Method: AS	STM D 4327			
BOREHOLE NO.:	DEPTH (m)	TEST 01 (%)	AVERAGE SULPHATE CONTENT (%)	
BH - 01	7.0 - 8.0	4.287	4.287	
BH - UI	17.0 - 18.0	2.744	2.744	
BH - 02	7.0 - 8.0	1.372	1.372	
BH - 02	18.0 - 19.0	2.45	2.45	
BH - 03	3.0 - 4.0	1.319	1.319	
BH = 03	17.0 - 18.0	2.541	2.541	
DIL 04	3.0 - 4.0	2.45	2.45	
BH - 04	20.0 - 21.0	1.183	1.183	1

Appendix 10: One-Dimensional Consolidation (Oedometer test)

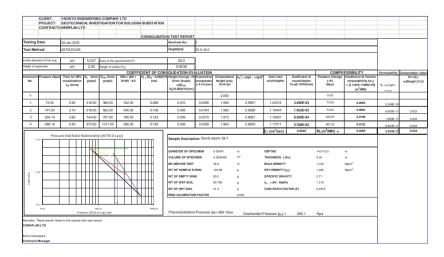
Detailed Geotechnical Report


Detailed Geotechnical Report

	CLIENT:	YACHIYO ENG	INEERIN	IG COMPAN	YY LTD											
	PROJECT:	GEOTECHNIC	AL INVES	STIGATION	FOR BULOOBA	SUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
estina		8-Jan-2016				CONDUCIONINO	Borehole No.:									
							_									
Test Met	hod:	ASTM D2435					Depth(m):	10.5-11.0								
			_	_				,								
	eter of the ring	om	5.047		specimen(Cm²)		20.0									
feight of s	recimen	om	2.00	Height of sol			1.1608									
nrrement	Pressure (Kps)	Time for 50%	D _e (from	Disc (from	COEFFII		SOLIDATION EVA		Consolidated	HL2 = 0HV2 - AHV40	Void ratio	Coefficient of	Pressure Change	ESSIBILITY Coefficient of Volume	Permeability	Compression in Con-fer-
No.		consolidation to (mins)	graph)	graph)	D100) *0.5	(cm)	(from Graph) =((D ₁₀₀ - D ₀)*0.002)/10 (cm)	compressio n X-M (cm)	Height (cm), НиМ-Ди	14 1 (92-1194)	efo(H-Hs)/Hs	consolidation Cvu(0.197Hd/)x50	(AP) (Kpa)	ompressibility (m _s) = [(\(\text{MH} \) '(1000(\(\text{P} \))] (m ² /MN)	k,,c,p,gm,	e'jijobjo,\a.
0									2.000				0.00			
1	73.52	0.65	365.00	670.00	517.50	0.104	0.061	0.0610	1.939	0.8904	0.67037	4.498E-03	73.52	0.4279	1.888E-09	
2	147.05	0.40	750.00	935.00	842.50	0.169	0.037	0.0980	1.902	0.8261	0.63849	6.781E-03	73.52	0.2646	1.760E-05	0.106
3	294.10	0.32	1020.00	1235.00	1127.50	0.226	0.043	0.1410	1.859	0.7623	0.60145	7.822E-03	220.57	0.1049	8.047E-10	0.123
4	588.19	0.35	1390.00	1550.00	1470.00	0.294	0.032	0.1730	1.827	0.7056	0.57388	6.619E-03	367.62	0.0476	3.094E-10	0.092
											C, (cm²/sec) :	0.0064	$M_r(m^2/MN) =$	0.2112	1.190E-05	0.123
0.1	Pressi	ure Void Ratio R	elationshi			m l	Sample Descript	ion: Sandy o	olastic SILT							
0.1	6					III I	DIAMETER OF SPE		0.05047	m.	DEPTHS		9.0-10.0	m		
	. =		-	7	-	 	VOLUME OF SPEC		0.0000400	m3	THICKNESS (2	H ₁)	0.02	m		
	`			-/-			MC BEFORE TEST		24.5	%	BULK DENSITY		2.005	Mg/m ³		
	. 🖃					Ⅲ Ⅰ	WT OF SAMPLE \$	RING	139.91	9	DRY DENSITY ()	to)	1.611	Mg/m ³		
7						IIII I	WT OF EMPTY RIN	iG	59.671	g	SPECIFIC GRAV	ITY	2.64			
9 0	. =	\rightarrow	₩			### I	WT OF WET SOIL		80.238	g	e. = (Hi - Ha)/H		0.723			
l		_	₩			### I	WT OF DRY SOIL		64.5	9	VOID RATIO FA	CTOR (F)	0.1723			
0.5		\rightarrow				 	RING CALIBRATIO	N FACTOR		0.002						
l																
0.5		\rightarrow	ш	=		₩										
	10.0	Pres	une (KPa)9	R Eog scale		1000.0	Preconsolidation	Pressure (p)= 210kpa	Overburden	Pressure (ρ _c) =	206.5	Kpa			
temarks: 1	hese results relai	te to the sample ti	nat was test	ted											1	
COMATLA																
Iruce Katu																
aborator	Manager														1	

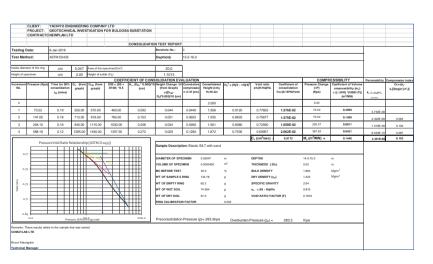

Detailed Geotechnical Report

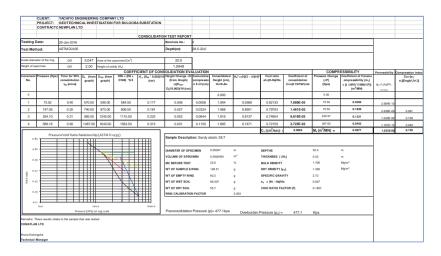
		YACHIYO ENG														
		GEOTECHNIC		STIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LT	ь													
						CONSOLIDATIO	N TEST REPORT									
Testing D	ate:						Borehole No.:	1								
Test Met	iod:	ASTM D2435					Depth(m):	15.5-16.0							l	
side diame	ter of the ring	om	5.047	Area of the s	specimen(Cm²)		20.0	T								
feight of sp	cimen	cm	2.00	Height of sol			1,1605	t								
		-			COEFFI	CIENT OF CONS	OLIDATION EV	ALUATION					COMPR	ESSIBILITY	Permeability	Compression is
No.	Pressure (Kpa)	Time for 50% consolidation t _m (mins)	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) '0.5	H _{j.} (D ₃₀ * 0.002)/10 (cm)	Height Change /M (from Graph) =((D ₁₀₀ - D ₀)*0.002)/10 (cm)	Cumulative compressio n X1H (cm)	Consolidated Height (cm), HeMi-ΔH	H ₄ ² = (Hj/2 - ∆Hj/4) ²	Void ratio efo(H-Hs)/Hs	Coefficient of consolidation Cvii(0.197Hd1)k50	Pressure Change (IP) (Kpa)	Coefficient of Volume ompressibility (m _n) = [(\text{\texit{\texitett{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\texititt{\text{\texit{\texit{\texit{\ti}\texititt{\texit{\texit{\texi\texit{\texi\tin\tinte\ta\texi{\texi\tiex{\texit{\texi{\texit{\texi{\texi{\texi{\texi{\texit	k,,c,p,gm,	Con-ţe _j - e _i lflog(a'/a'
0									2.000				0.00			
1	73.52	0.14	720.00	960.00	840.00	0.168	0.048	0.0480	1.952	0.8724	0.68200	2.046E-02	73.52	0.3345	6.712E-09	
2	147.05	0.19	1077.00	1212.00	1144.50	0.229	0.027	0.0750	1.925	0.8195	0.65873	1.416E-02	73.52	0.1908	2.650E-09	0.077
3	294.10	0.18	1380.00	1500.00	1440.00	0.288	0.024	0.0990	1.901	0.7718	0.63805	1.408E-02	220.57	0.0572	7.904E-10	0.069
4	588.19	1.20	1704.00	1766.00	1735.00	0.347	0.012	0.1114	1.889	0.7354	0.62737	2.012E-03	367.62	0.0179	3.525E-11	0.035
$\overline{}$											C, (cm²/sec) :	0.0127	$M_r(m^2/MN) =$	0.1501	2.547E-09	0.077
0.7		ure Void Ratio R	erationshi	p (ASIM D	435)	m n	Sample Descript	tion: Sandy L	ean CLAY							
0.64					-	#	DIAMETER OF SPEC		0.05047	m m³	DEPTHS THICKNESS (2	н.)	14.0-15.0			
			111		$\overline{}$	###	MC BEFORE TEST		26.5	%	BULK DENSITY		1.855	Mg/m ³		
2 0.64		=	ш			Ш I	WT OF SAMPLE \$			9	DRY DENSITY ()		1.467	Mg/m ²		
25						Ш I	WT OF EMPTY RIN			9	e _a = (Hi - Hs)/H		0.723			
۴.	\vdash		₩		+++	 	WT OF DRY SOIL		58.7	9	VOID RATIO FA		0.1723			
0.6		-	+++			 	RING CALIBRATIO	N FACTOR		0.002						
		-	##		117	##										
0.6	10.0	Press	ure (KPa)S	h Log scale		1000.0	Preconsolidation	Pressure (p)= 282.1kpa	Overburden I	Pressure (p _o) =	282.1	Kpa			
temarks: Ti		de to the sample th	hat was test	ted												
Iruce Katur	guka															
echnical f	tanager														1	


Detailed Geotechnical Report

Detailed Geotechnical Report

_	CLIENT:	YACHIYO EN	INICCOIN	0.00404	WITE			_								
					FOR BULOOB	GUIDOTATION										
		NEWPLAN LT		TIOATION	TOK DOLOGO	COUDSTATION										
						CONSOLIDATIO	N TEST REPORT									
Testing E	Date:	29-Jan-2016					Sorehole No.:	2								
Test Met	hod:	ASTM D2435					Depth(m):	10.5-11.0							1	
															Ī	
nside diam	eter of the ring	cm	5.047	Area of the s	pecimen(Cm ²)		20.0	1								
feight of sp	ecimen	cm	2.00	Height of sol	ids (HJ)		0.9251	1								
					COEFFI	CIENT OF CON	SOLIDATION EV	ALUATION					COMPR	ESSIBILITY	Permeability	Compression index
No.	Pressure (Kpa)	Time for 50% consolidation to (mins)	D _e (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _{j.} (D _{se} * 0.002)/10 (cm)	(from Graph) (from Graph) =((Diso- D ₀)*0.002)/10 (cm)	Cumulative compressio n IAH (cm)	Consolidated Height (cm), HeHi-Дн	H _a ² = (Hj/2 - ∆Hj/4) ²	Void ratio et»(H-Hs)/Hs	Coefficient of consolidation Cvs(0.197Hd/)x50	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m _n) = [[\(\text{AHH}\)] \(\text{*(1000/\text{AP})}\)] \(\(\text{m}^2/\text{MN}\)	k _{ri} c _r p _u gm _r	Ccs-[e _] -
0									2.000				0.00			
1	73.52	0.18	815.00	960.00	887.50	0.178	0.029	0.0290	1.971	0.8857	1.13050	1.616E-02	73.52	0.2001	3.172E-09	
2	147.05	0.18	1160.00	1292.00	1226.00	0.245	0.026	0.0554	1.945	0.8299	1.10196	1.514E-02	73.52	0.1846	2.742E-03	0.095
3	294.10	0.14	1535.00	1685.00	1610.00	0.322	0.030	0.0854	1.915	0.7688	1.06953	1.803E-02	220.57	0.0710	1.256E-09	0.108
4	588.19	0.20	2010.00	2135.00	2072.50	0.415	0.025	0.1104	1.890	0.7076	1.04251	1.162E-02	367.62	0.0360	4.101E-10	0.090
											C _v (cm²/sec) :	0.0152	$M_v(m^2/MN) =$	0.1229	1.895E-03	0.105
1.3			elacionichi 		1 1 1		Sample Descript	ion: Sandy I	Elastic SILT							
		-	1111)			нн г	DIAMETER OF SPE		0.05047	m	DEPTHS			m		
		=				 	VOLUME OF SPEC	IMEN	0.0000400	m ³	THICKNESS (2			m		
l						 	MC BEFORE TEST		37.3	%	BULK DENSITY		1.701	Mg/m ³		
1.0	° 🗀			$\overline{}$			WT OF SAMPLE \$	RING	128.30	g	DRY DENSITY (no)	1.239	Mg/m ³		
ratio G							WT OF EMPTY RIN	G	60.2	g	SPECIFIC GRAV	NTY	2.74			
9 1.0 2	"=						WT OF WET SOIL		68.095	g	e. = (Hi - Hs)/H		1.162			
1					- V	### I	WT OF DRY SOIL		49.6	g	VOID RATIO FA	CTOR (F)	0.2162			
1.0	· 🗀						RING CALIBRATIO	NEACTOR		0.002						
l			ш				IONG CALIBRATIO	ATACION							t	
1.0	10.0		101	-		1000.0										
		Pres	ure (KPa) o				Preconsolidation	Pressure (p)= 250kpa	Overburden	Pressure (p.) =	175.2	Kpa			
Institute Y	hann marile sale	te to the sample t													1	
COMATLA		e a une sample t	on mod 1601	***												
Bruce Katur																
Technical I	Manager															

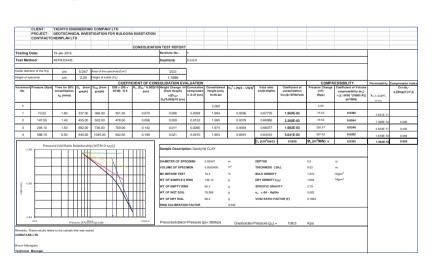

Detailed Geotechnical Report



	CLIENT:	YACHIYO ENG	INEERIN	IG COMPAN	NYLTD											
	PROJECT:	GEOTECHNIC	AL INVE		FOR BULOOBA	SUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
Testing D	Date:	8-Jan-2016					Borehole No.:	3								
Test Meth	nod:	ASTM D2435					Depth(m):	10.5-11.0								
			_					,							1	
	ster of the ring	cm	5.047		specimen(Cm²)		20.0	ļ								
feight of sp	ecimen	cm	2.00	Height of sol		CIENT OF CON	1.0203 SOLIDATION EV	AL ILATION					COMP	ESSIBILITY		Compression ind
ncrement	Pressure (Koa)	Time for 50%	D. from	D ₁₀₀ (from	D50 = (D0 +		Height Change /M		Consolidated	H ₂ = 0H/2 - AH/40 ²	Void ratio	Coefficient of	Pressure Change	Coefficient of Volume	Permeability	Compression ind
No.		consolidation t _{so} (mins)	graph)	graph)	D100) *0.5	(cm)	(from Graph) =((D ₁₀₀ - D ₀)*0.0029/10 (cm)	compressio n Σ\H (cm)	Height (cm), HuHi-ΔH		ets(H-Hs)/Hs	consolidation Cvii(0.197Hd*)rise	(LP) (Kpa)	ompressibility (m _e) = [(.1494) '(1000/AP)] (m ² /MN)	k,,c,p,gm,	e'l[jo8[o,\o,'j]
0									2.000				0.00			
1	73.52	0.14	290.00	425.00	357.50	0.072	0.027	0.0270	1.973	0.9382	0.93382	2.200E-02	73.52	0.1861	4.018E-09	
2	147.05	0.15	541.00	630.00	585.50	0.117	0.018	0.0448	1.955	0.8993	0.91638	1.969E-02	73.52	0.1238	2.391E-09	0.058
3	294.10	0.15	795.00	913.00	854.00	0.171	0.024	0.0684	1.932	0.8521	0.89324	1.865E-02	220.57	0.0554	1.014E-09	0.077
4	588.19	0.30	1155.00	1252.00	1203.50	0.241	0.019	0.0878	1.912	0.8027	0.87423	8.785E-03	367.62	0.0276	2.378E-10	0.063
											C, (cm²/sec) :	0.0173	$M_r(m^2/MN) =$	0.0982	1.9155-09	0.077
0.9		reVoid Ratio R	etationsn	p (ASIM D)	1435)	m l	Sample Descript	ion: Clayey	SAND							
	. =					₩ I	DIAMETER OF SPEC		0.05047	m m³	DEPTHS		9.0-10.0			
		-	ш			 	MC BEFORE TEST	IMEN	0.0000400		THICKNESS (2 BULK DENSITY	н.)	0.02			
			ш			ш	WT OF SAMPLES	BING	31.0	%	DRY DENSITY 6		1.825	Mg/m ³ Mg/m ³		
8 0.90	-	-	н	\vdash		 	WT OF EMPTY RIN		59.671	9	SPECIFIC GRAV		2.65			
28		=	###			IIII I	WT OF WET SOIL		73.066	9	e, = (Hi - Hs)/H		0.960			
0.81	. —	-	++++		 	 	WT OF DRY SOIL		55.8		VOID RATIO FA		0.1960			
0.00	•		Ш			IIII I	RING CALIBRATIO	N FACTOR		0.002						
	\vdash	-	++++			нн г									1	
0.50			Ш	\vdash		ш										
	10.0	Press	ure (KPa)S	R Log scale		1000.0	Preconsolidation	Pressure (p)= 205kpa	Overburden I	Pressure (p _c) =	188.0	Kpa			
temarks: Tr	hese results relat	e to the sample th	nat was tes	ted											1	
COMATLAB	LTD														1	
Sruce Katur															1	

Detailed Geotechnical Report

Detailed Geotechnical Report



Detailed Geotechnical Report

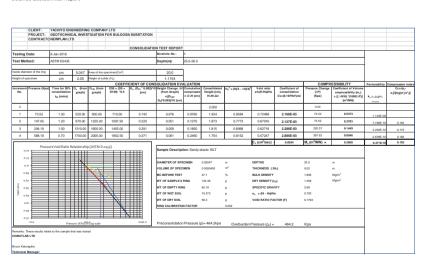
		YACHIYO ENG				ASUBSTATION										
	CONTRACTOR			STIGATION	FOR BULOOR	ASUBSTATION										
	CONTRACTOR	NEWPLANLII														
						CONSOLIDATIO	N TEST REPORT									
esting [late:	8-Jan-2016					Borehole No.:	3								
est Meti	od:	ASTM D2435					Depth(m):	5.5-6.0								
side dame	ter of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0	1								
sight of sp	ecimen	cm	2.00	Height of so			1.1308									
							OLIDATION EVA							ESSIBILITY	Permeability	Compression index
No.	Pressure (Kps)	Time for 50% consolidation t _{so} (mins)	D. (from graph)	Disc (from graph)	D50 = (D0 + D100) '0.5	H _I = (Dss * 0.002)/10 (cm)	Height Change AH (from Graph) s((D _{ist} - D _c)*0.002)/10 (cm)	compression I/M (cm)	Height (cm).	H ₄ 2 = (HJ/2 - AMJ/4)	Void ratio ef:(H-Hs)Hs	Coefficient of consolidation Cva(0.197Hd1)/ds	Pressure Change (1P) (Kps)	Coefficient of Volume ompressibility (m _v) = ((\(\Lambda \text{HH}) \(\gamma (1000/\Lambda P) \) \((m^2)MN)	k,,c,p,gm,	Cc=-[e;-
0				1					2.000				0.00			
1	73.52	2.70	215.00	259.00	237.00	0.047	0.009	0.0088	1.991	0.9678	0.76089	1.177E-03	73.52	0.0601	6.940E-11	
2	147.05	2.10	306.00	375.00	340.50	0.068	0.014	0.0226	1.977	0.9442	0.74868	1.476E-03	73.52	0.0949	1 375F-10	0.041
3	294.10	2.00	433.00	542.00	487.50	0.098	0.022	0.0444	1.956	0.9090	0.72941	1.492E-03	220.57	0.0505	7.399E-11	0.064
4	588.19	2.00	620.00	747.00	683.50	0.137	0.025	0.0698	1.930	0.8666	0.70694	1.423E-03	367.62	0.0358	4.996E-11	0.075
			_	_					•	•	C_(cm²/sec) =	0.0014	$M_{\nu}(m^2/MN) =$	0.0503	8,2706-11	0.075
0.7		e Void Ratio Rel	ationship	(ASIM D24	35)		Sample Descript		0.05047	m	DEPTHS		4.05.0	m		
0.7			- 13			ш 1	VOLUME OF SPEC	IMEN	0.0000400	m3	THICKNESS (2	H ₁)	0.02	m		
						ш I	MC BEFORE TEST WT OF SAMPLE S	nunc.	25.8 136.98	%	DRY DENSITY (v		1.918	Mg/m ³ Mg/m ³		
g 0.7		+++		\rightarrow	\overline{A}	 	WT OF EMPTY RIN		60.205	9	SPECIFIC GRAV		2.65	-		
Addr							WT OF WET SOIL	-	76.772	g	e, = (H - Hs)(H		0.769			
0.7					1/4	шШ	WT OF DRY SOIL		61.0	g	VOID RATIO FA		0.1769			
	-	+	ш		-		RING CALIBRATIO	NFACTOR		0.002						
			ш			ш ।										
0.7		\perp TT	ш			ш										
	10.0	Pressu	re (KPa) 88	Log scale		1000.0	Preconsolidation	Pressure (p)= 200kpa	Overburden	Pressure (ρ _o) =	103.5	Kpa			
marks: T	rese results relate	In the sample that	was tester													
OMATLA																

	CLIENT:	YACHIYO ENG	SINEERIN	G COMPAN	YLTD											
				TIGATION	FOR BULOOBA	SUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
Testing D	late:	8-Jan-2016					Borehole No.:	3								
Test Meth	nod:	ASTM D2435					Depth(m):	29.5-30.0							1	
															1	
Inside dame	ter of the ring	cm	5.047	Area of the s	pecimen(Cm²)		20.0									
Height of sp	ecimen	cm	2.00	Height of sol			1.1180									
							SOLIDATION EV							ESSIBILITY	Permeability	Compression index
No.	Pressure (Kpa)	Time for 50% consolidation too (mins)	D. (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _{j.} (D ₁₀ * 0.002)/10 (cm)	(from Graph) =([D ₁₀₀ - D ₀)*0.002)/10 (cm)	Compressio n X/H (cm)	Consolidated Height (cm), HsHs-Дн	H ₄ ² = (HJ/2 - \lambda HJ/4) ²	Void ratio ets(H-Hs)/Hs	Coefficient of consolidation Cve(0.197Hd1yt50	Pressure Change (1P) (Kps)	Coefficient of Volume ompressibility (m _s) = [(\text{\tiny}\text{\tiny{\text{\tikitext{\texi}\text{\text{\texi}\text{\texi\text{\text{\text{\text{\texit{\texi\texi{\text{\texit{\texitilex{\texit{\texi\tinte\tinte\tintet{\texi{\texi{\texi{\texi{\texi\	k _u c _u p _u gm _u	Cc=-[e _j -
0									2.000				0.00			
- 1	73.52	0.20	9.00	58.00	33.50	0.007	0.010	0.0098	1.990	0.9869	0.78016	1.620E-02	73.52	0.0570	1.054E-09	
2	147.05	0.50	170.00	237.00	203.50	0.041	0.013	0.0232	1.977	0.9569	0.76818	6.284E-03	73.52	0.0922	5.683E-10	0.040
3	294.10	0.28	330.00	510.00	420.00	0.084	0.036	0.0592	1.941	0.9014	0.73598	1.057E-02	220.57	0.0841	8.720E-10	0.107
4	588.19	0.35	660.00	852.00	756.00	0.151	0.038	0.0976	1.902	0.8343	0.70163	7.827E-03	367.62	0.0549	4.216E-10	0.114
				_							C, (cm²/sec) :	0.0102	$M_r(m^2/MN) =$	0.0745	7.3168-10	0.114
0.81			elationshi	p (ASIM D2		m l	Sample Descript	ion: Elastic	SILT with sand							
0.75	\perp					### I	DIAMETER OF SPE		0.05047	m	DEPTHS		29.0	m		
		-			_	### I	VOLUME OF SPEC	IMEN	0.0000400	m ²	THICKNESS (2	H-)	0.02	m		
0.75	=		###			##	MC BEFORE TEST		25.9	%	BULK DENSITY		1.930	Mg/m ³		
				- 1			WT OF SAMPLE \$	RING	137.45	g	DRY DENSITY (y	(a)	1.533	Mg/m ³		
9 an	-					 	WT OF EMPTY RIN	iG.	60.2	9	SPECIFIC GRAV	TTY	2.59			
Pg 0.71					X	 	WT OF WET SOIL		77.247	g	e. = (Hi - Hs)/H		0.789			
						 	WT OF DRY SOIL		61.4	9	VOID RATIO FA	CTOR (F)	0.1789			
0.7			ш		L N	⊞ Ⅰ	RING CALIBRATIO	N FACTOR		0.002					4	
						HHI I										
0.71	10.0		ш	_	* 111	1000.0	_									
$\overline{}$		Pres	sure (KPa)S	N Log scale			Preconsolidation	ressure (рј= 558.5kpa	Overburden I	Pressure (ρ _c) =	558.5	Kpa		1	
Remarks: Th COMATLAB		e to the sample ti	hat was test	red												
Bruce Katur	guka															
Technical I	fanager															

Detailed Geotechnical Report

Detailed Geotechnical Report

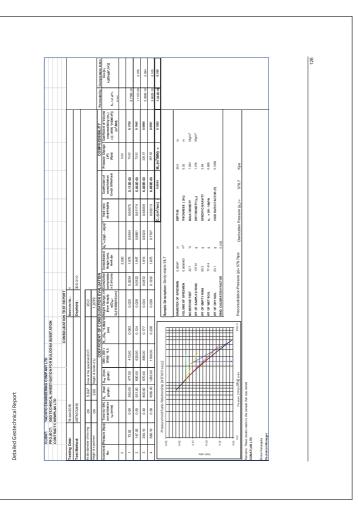
	CLIENT:	YACHIYO ENG														
				TIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LTI	D													
						CONSOLIDATIO	N TEST REPORT									
esting I	Date:	8-Jan-2016				CONSOCIONITO	Borehole No.:	3								
est Met	hod:	ASTM D2435					Depth(m):	20.5-21.0								
	eter of the ring	cm	5.047		pecimen(Cm ²)		20.0	l								
right of sp	pecimen	cm	2.00	Height of sol			1.0615									
							SOLIDATION EV							ESSIBILITY	Permeability	Compression inde
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mins)	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _{j =} (D ₁₀ * 0.002)/10 (cm)	(from Graph) =([D ₁₀₀ - D ₃)*0.002)*10 (cm)	Cumulative compressio n Z M (cm)	Height (cm), HeHi-&H	H _e ² = (HJ/2 - AHJ/4)	Void ratio et»(H-Hs)(Hs	Coefficient of consolidation Cvs(0.197Hd ⁴)450	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m _s) = ((\(\text{AHH} \)) "(1000\(\text{AP}) \)] \(\(\text{m}^2\)MN)	k _v ,c,ρ _u gm,	e:)(log(o'/o'.))
0									2.000				0.00			
1	73.52	0.18	335.00	590.00	462.50	0.093	0.051	0.0510	1.949	0.9051	0.83610	1.651E-02	73.52	0.3559	5.764E-09	
2	147.05	0.20	738.00	850.00	794.00	0.159	0.022	0.0734	1.927	0.8530	0.81500	1.400E-02	73.52	0.1581	2.172E-09	0.070
3	294.10	0.13	920.00	1174.00	1047.00	0.209	0.051	0.1242	1.876	0.7842	0.76714	1.981E-02	220.57	0.1228	2.386E-09	0.159
4	588.19	0.20	1415.00	1603.00	1509.00	0.302	0.038	0.1618	1.838	0.7117	0.73172	1.168E-02	367.62	0.0556	6.378E-10	0.118
											C _v (cm²/sec) :	0.0155	$M_r(m^2/MN) =$	0.1731	2.740E-09	0.159
0.8	· =	ureVoid Ratio R	ш				Sample Descript									
0.8	10		×	1			VOLUME OF SPEC		0.05047	m m³	DEPTHS THICKNESS (2		19.020.0	m		
0.8			₩		1		MC BEFORE TEST	IMEN	29.2	5	BULK DENSITY	n.)	1.878	m Molm ³		
0.3	,a					##	WT OF SAMPLE \$	RING	134.93	9	DRY DENSITY (s	·a)	1.453	Mg/m ³		
og o	, =		ш			### I	WT OF EMPTY RIN	G	59.763	9	SPECIFIC GRAV	TTY	2.68			
9 0,	. =				$\rightarrow N$		WT OF WET SOIL		75.171	9	e _a = (Hi - Hs)/H		0.884			
0.;	,,		₩			#	WT OF DRY SOIL		58.2	9	VOID RATIO FA	CTOR (F)	0.1884			
0.7	,,		ш				RING CALIBRATIO	N FACTOR		0.002						
0.6			Ш			 										
	10.0	Press	ure (KPaj®	l'Eog scale		1000.0	Preconsolidation	Pressure (p)= 377.7kpa	Overburden	Pressure (ρ _o) =	377.7	Kpa			
emarks: 1 OMATLA		te to the sample th	hat was best	ed												
ruce Katu	nguka															


Detailed Geotechnical Report

	CLIENT:	YACHIYO ENG	SINEERIN	IG COMPAN	NY LTD											
	PROJECT:	GEOTECHNIC	CAL INVES	STIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
Testing E	Date:	8-Jan-2016					Borehole No.:	В							1	
Fest Met	hod:	ASTM D2435					Depth(m):	25.5-26.0								
															1	
iside diam	eter of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0									
feight of sp	ecimen	cm	2.00	Height of sol	lids (H _e)		1.0994									
							SOLIDATION EV.							RESSIBILITY	Permeability	Compression i
No.	Pressure (Kpa)	Time for 50% consolidation	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	(cm)	(from Graph)	Cumulative	Consolidated Height (cm).	$H_d^2 = (Hi/2 - \Lambda Hi/4)^2$	Void ratio etulii-Halilta	Coefficient of consolidation	Pressure Change (AP)	Coefficient of Volume ompressibility (m.)		e'}[]od(o,\o,
		t _{so} (mins)	grapin	grapery		(Lin)	=((D ₁₀₀ - D ₀)*0.002)*10 (cm)	n XMH (cm)	HuHi-Au			Cvs (0.197Hd/5/150	(Kpa)	= [(\(\text{AH/H}\) \(\text{1000}(\text{AP}) \) \(\text{(m^2MN)} \)	k _e ,c _e ρ _e gm,	e/Modito Aq.
0									2.000				0.00			
- 1	73.52	0.50	277.00	335.00	306.00	0.061	0.012	0.0116	1.988	0.9582	0.80854	6.292E-03	73.52	0.0793	4.898E-10	
2	147.05	0.80	420.00	600.00	510.00	0.102	0.036	0.0476	1.952	0.9038	0.77580	3.709E-03	73.52	0.2508	9.1268-10	0.109
3	294.10	0.50	685.00	910.00	797.50	0.160	0.045	0.0926	1.907	0.8351	0.73487	5.484E-03	220.57	0.1070	5.754E-10	0.136
4	588.19	0.35	980.00	1330.00	1155.00	0.231	0.070	0.1626	1.837	0.7412	0.67120	6.953E-03	367.62	0.1036	7.069E-10	0.212
						$\overline{}$					C _v (cm²/sec) :	0.0056	$M_v(m^2/MN) =$	0.1352	6.712E-10	0.212
0.5	1	ure Void Ratio R	ielationshi				Sample Descript	ion: Sandy o	elastic SILT							
0.7			11 N				DIAMETER OF SPE		0.05047	m	DEPTHS		25.0	m		
0.7			₩				VOLUME OF SPEC		0.0000400	m ³	THICKNESS (2	H.)	0.02	m		
			₩	\rightarrow		###	MC BEFORE TEST		26.5	%	BULK DENSITY		1.931	Mg/m ³		
0.7	1		###		\sim	##	WT OF SAMPLE \$		137.51	9	DRY DENSITY (ro)	1.527	Mg/m ³		
E 0.7	,					₩	WT OF EMPTY RIN	iG	60.2	9	SPECIFIC GRAY	MTY	2.69			
3 67	.=					 	WT OF WET SOIL		77.309	9	$\alpha_a = (Hi - Ha)/H$	s .	0.819			
			ш		II NV		WT OF DRY SOIL		61.1	9	VOID RATIO FA	CTOR (F)	0.1819			
0.6	° ==					##	RING CALIBRATIO	N FACTOR		0.002						
0.6	,														1	
0.6						ш ।										
	10.0	Pres	sure (KPafS	Richago scale		1000.0	Preconsolidation	Pressure (o)= 483.1kpa	Oundurden	Pressure (p.) =	483.1	Koa			
															1	
ternarks: T		te to the sample t	hat was test	bed											1	
OMATLA	LID														1	
Iruce Katu	77.61														1	

	CLIENT:	YACHIYO ENG	UNICCOIN	0.00404	D/ LTD			_			_	_			_	
					FOR BULGOBA	SUBSTATION										
		NEWPLAN LT		/ IOAI IOI	TOK BULUUBA	COUDSTALLOR										
						CONSOLIDATIO	N TEST REPORT									
Testing D	Date:	19-Jan-2016					Borehole No.:	4								
Test Meth	hod:	ASTM D2435					Depth(m):	20.5-21.0								
								,								
Inside dame	ster of the ring	cm	5.047		pecimen(Cm²)		20.0	1								
Height of sp	ecimen	cm	2.00	Height of sol			1.0084									
							SOLIDATION EV							ESSIBILITY	Permeability	
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mins)	D _e (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _{j.} (D ₁₀ * 0.002)/10 (cm)	Height Change AM (from Graph) =((D ₁₀₀ - D ₀)*0.002)/10 (cm)	Compressio n Z1H (cm)	Consolidated Height (cm), HeHi-ΔH	H ₄ ² = (H)/2 + .1H)/4) ²	Void ratio ets(H-Hs)/Hs	Coefficient of consolidation Cve(0.197Hd*)rse	Pressure Change (1P) (Kps)	Coefficient of Volume ompressibility (m _s) = [(\(\lambda \text{NVH}\) '(1000/\(\lambda \text{P}\))] \(\(\mathref{m}^2 / \text{MN}\)	k,,c,p,gm,	Cc={e _j - e _i }[log(o'/o',]]
0									2.000				0.00			
1	73.52	1.30	315.00	555.00	435.00	0.087	0.048	0.0480	1.952	0.9955	0.93578	2.514E-03	73.52	0.3345	8.249E-10	
2	147.05	1.20	660.00	835.00	747.50	0.150	0.035	0.0830	1.917	0.9918	0.90107	2.714E-03	73.52	0.2483	6.610E-10	0.115
3	294.10	1.00	945.00	1305.00	1125.00	0.225	0.072	0.1550	1.845	0.9580	0.82967	3.145E-03	220.57	0.1769	5.459E-10	0.237
4	588.19	0.30	1384.00	1665.00	1524.50	0.305	0.056	0.2112	1.789	0.9421	0.77394	1.031E-02	367.62	0.0055	8.645E-10	0.185
											C, (cm²/sec) :	0.0047	$M_r(m^2/MN) =$	0.2113	7.241E-10	0.237
0.9	` =					m l	Sample Descript	ion: Sandy o	elastic SILT							
0.9			m			 	DIAMETER OF SPEC		0.05047	m m³	DEPTHS		20.0	-		
0.51						 			0.0000400		THICKNESS (2	-	0.02			
						### I	MC BEFORE TEST		29.7	%	BULK DENSITY		1.786	Mg/m ³		
0.8		-				 	WT OF SAMPLE \$	RING	131.69	g	DRY DENSITY ()	ra)	1.377	Mg/m ³		
8 0.50	,	=			\vee	шш І	WT OF EMPTY RIN	iG .	60.2	9	SPECIFIC GRAV	NTY	2.72			
90 × 0,0	. =		ш			 	WT OF WET SOIL		71.489	g	e. = (Hi - Hs)/H		0.983			
		=		=	-	##	WT OF DRY SOIL		55.1	9	VOID RATIO FA	CTOR (F)	0.1983			
0.8			###			### I	RING CALIBRATIO	N FACTOR		0.002						
0.79	0		ш			### I									1	
9.7			ш	-		ш										
	10.0	Pres	ure (KPa)S	H Log scale		1000.0	Preconsolidation	Pressure (p)= 359.2kpa	Overburden	Pressure (ρ _c) =	359.2	Кра			
Remarks: To		te to the sample t	at was test	ed											1	
Bruce Ketur	rouka															

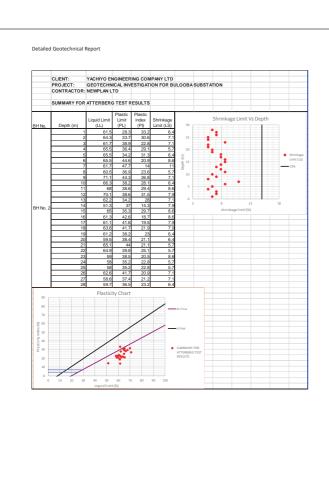
Detailed Geotechnical Report

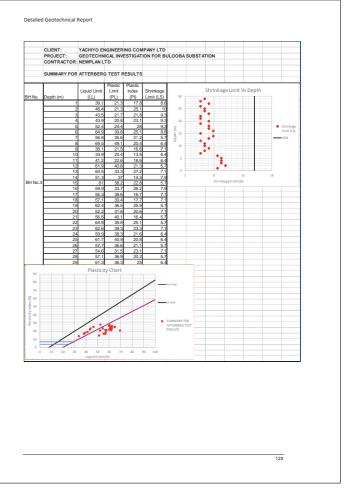

Detailed Geotechnical Report

	CLIENT:	YACHIYO ENG	NINE COIN	o count	IV LTD			_								
						ASUBSTATION										
		NEWPLAN LT		DIIGALION	FOR BULUUB	NOUBSTATION										
	COMMINACIO	THE REAL PROPERTY.														
						CONSOLIDATIO	N TEST REPORT									
esting E	late:	19-Jan-2016					Borehole No.:	4								
Test Met	nod:	ASTM D2436					Depth(m):	10.5-11.0								
															1	
side diame	ster of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0									
eight of sp	ecimen	cm	2.00	Height of sol	ids (H _e)		1.2516									
							SOLIDATION EV.							ESSIBILITY		Compression inde:
No.	Pressure (Kps)	Time for 50% consolidation t _{so} (mins)	D, (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _j (D ₁₀ * 0.002)/10 (cm)	Meight Change AH (from Graph) =([D ₁₀₀ - D ₃)*0.002)*10 (cm)	Cumulative compressio n X M (cm)	Consolidated Height (cm), HeHi-&H	H ₄ ² = (HI)2 - \(\text{H}\)4(1)	Void ratio efu(H-Hs))Hs	Coefficient of consolidation Cvs(0.197Hd*)\tso	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m _s) = [(\(\text{MH} \) \(\text{(1000/\(\text{AP})} \)] \(\(\text{(m^2/MN} \))		e')[jod(a,\a,')] Cc={e ¹ -
0									2.000				0.00			
1	73.52	0.80	327.00	420.00	373.50	0.075	0.019	0.0186	1.981	0.9448	0.58315	3.878E-03	73.52	0.1277	4.857E-10	
2	147.05	2.80	453.00	528.00	490.50	0.098	0.015	0.0336	1.966	0.9191	0.57116	1.078E-03	73.52	0.1038	1.097E-10	0.040
3	294.10	1.70	577.00	673.00	625.00	0.125	0.019	0.0528	1.947	0.8880	0.55582	1.715E-03	220.57	0.0447	7.5216-11	0.051
4	588.19	2.80	742.00	887.00	814.50	0.163	0.029	0.0818	1.918	0.8434	0.53265	9.890E-04	367.62	0.0411	3.990E-11	0.077
											C _v (cm²/sec) :	0.0019	$M_r(m^2/MN) =$	0.0793	1.776E-10	0.077
0.50		ureVoid Ratio R	elationshi	p (ASTM D2	1435)	IIIII I	Sample Descript	ion: Sandy	elastic SILT							
						Ш І	DIAMETER OF SPEC		0.05047	m m³	DEPTHS THICKNESS (2	w)	10.0	m m		
0.5	_				++	нн Т	MC REFORE TEST	· · · · · ·	22.1	5	BULK DENSITY	110	2.005	Mo/m³		
		-	++++		11 11	 	WT OF SAMPLES	RING	140.48		DRY DENSITY ((a)	1.643	Maim ³		
9					M	шш	WT OF EMPTY RIS	iG	60.2	9	SPECIFIC GRAY	VITY	2.64	-	1	
ğ .,	\Box		Π		$\perp N \downarrow$	ш	WT OF WET SOIL		80.279		e, = (Hi - Ha)(H		0.598			
			++++		11 1	шш 1	WT OF DRY SOIL		65.8		VOID RATIO FA	CTOR (F)	0.1598			
		\rightarrow					RING CALIBRATIO	M EACTOR		0.002						
		-	++++		\perp	шш І	IONG CALIBRATIO	M PACION		0.002					1	
0.5			Ш		+111	11111										
	10.0		10			1000.0										
		Pres	sure (KPa) o	in Log scale			Preconsolidation	Pressure (р)= 260кра	Overburden	Pressure (ρ _o) =	206.6	Kpa		J	
emarks: Ti		te to the sample t	hat was test	ted												
ruce Katur																
echnical f	Asnager														1	

Detailed Geotechnical Report

		YACHIYO ENG														
		GEOTECHNIC NEWPLAN LT		STIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LI														
						CONSOLIDATIO	N TEST REPORT									
esting [late:	19-Jan-2016					Borehole No.:	4								
Fest Met	nod:	ASTM D2435					Depth(m):	15.5-16.0							1	
	ter of the ring							1							1	
		cm	5.047		specimen(Cm ²)		20.0									
kight of sp	ecimen	cm	2.00	Height of sol			1.0562									
	Pressure (Kpa)	Time for 50%	D. (from	D ₁₀₀ (from	COEFFI D50 = (D0 +		SOLIDATION EV.		Consolidated	HL2 = 0H/2 - AH/40	Void ratio	Coefficient of	Pressure Change	ESSIBILITY Coefficient of Volume	Permeability	Compression in
No.	ricana (ripa)	consolidation t _{so} (mins)	graph)	graph)	D100) '0.5	(cm)	(from Graph) =([D ₁₀₀ - D ₀)*0.002)*10 (cm)	compressio n X-M (cm)	Height (cm), HuHi-da	n _e = (nyz- ny4)	efs(H-Ha)Hs	consolidation Cvu(0.197HdP)tso	(AP) (Kpa)	ompressibility (m _e) = [(\(\text{AHH}\)\) '(1000(\(\text{AP}\))] (m ²)MN)	k _i ,c,ρ _i gm,	e'Modia,\a,
0									2.000				0.00			
- 1	73.52	1.20	443.00	600.00	521.50	0.104	0.031	0.0314	1.969	0.9182	0.86378	2.512E-03	73.52	0.2169	5.347E-10	
2	147.05	0.70	710.00	856.00	783.00	0.157	0.029	0.0606	1.939	0.8659	0.83613	4.062E-03	73.52	0.2048	8.159E-10	0.092
3	294.10	0.40	965.00	1185.00	1075.00	0.215	0.044	0.1046	1.895	0.7991	0.79447	6.560E-03	220.57	0.1052	6.773E-10	0.138
4	588.19	0.38	1330.00	1540.00	1435.00	0.287	0.042	0.1466	1.853	0.7309	0.75471	6.316E-03	367.62	0.0516	3.819E-10	0.132
											C _v (cm²/sec) :	0.0049	$M_v(m^2/MN) =$	0.1472	6.024E-10	0.138
0.5	Pressi	ureVoid Ratio R	H	H	2435)	 	Sample Descript	ion: Sandy o	elastic SILT							
0.8						## I	DIAMETER OF SPEC		0.05047	m m ³	DEPTHS THICKNESS (2	н.)	15.0	m m		
0.5	=		ш			₩	MC BEFORE TEST		24.4	%	BULK DENSITY		1.807	Mg/m ³		
			₩			### I	WT OF SAMPLE \$		132.55	9	DRY DENSITY (1.453	Mg/m ³		
8 01			###			###	WT OF EMPTY RIN		50.2 72.35	9	SPECIFIC GRAY		0.894			
*		\rightarrow	###		1	###	WT OF DRY SOIL		72.35 58.2	9	e. = (HI - HayH VOID RATIO FA		0.894			
0.7	. 🗀				- 1/1	ш І	RING CALIBRATIO		56.2	0.002	YOU KATIO FA	LIOR (F)	U.1894			
		-	ш			ш .	RONG CALIBRATIO	N FACTOR		0.002					1	
0.7	\equiv	$\dashv \Pi$			$\rightarrow \lambda$	 										
0.7	10.0	Pres	sure (KPalS	Ricor scale		1000.0	Preconsolidation	Pressure (o)= 274.8kpa	Oundurden	Pressure (p.) =	274.8	Koa			
									,	Overburden	reason (p ₀) =	214.0	ripe		1	
emarks: T OMATLAI		te to the sample t	hat was test	ted												
UMATLAI	LID															
ruce Katur	nzuka															



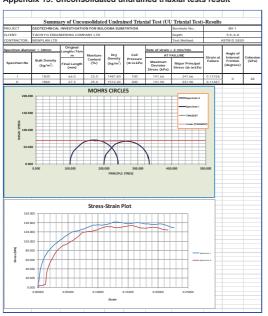

Appendix 11: Atterbeg Test Results

CLIENT: VACHIVO INGINEERING COMPANY LTD
PROJECT: GEOTECHNICAL INVESTIGATION FOR BULLOOBA SUBSTATION

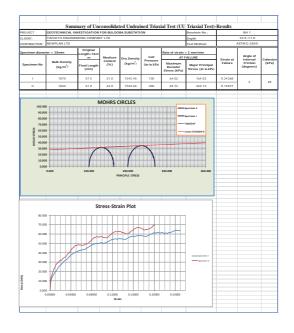
SUMMARY FOR ATTERBERG TEST RESULTS

BH No. Degth (m) Liquid Limit Plastic Limit (marked) (Limit Plastic) (Liquid Limit Plastic) (Liquid Liquid Liquid Liquid Liquid Liquid Liquid Liquid

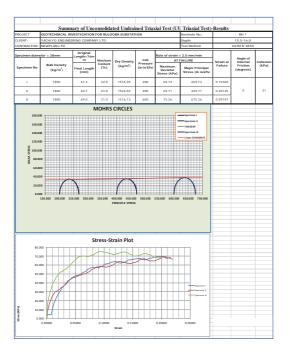
Detailed Geotechnical Report

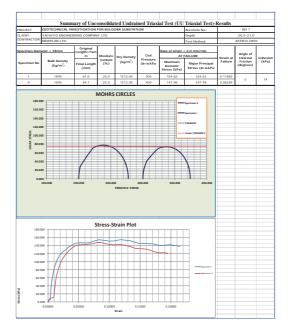

Appendix 12: Bulk Density

Borehole No.:	Depth (m)	Bulk Density (Mg/m³)
BH 01	5.5-6.0	1.89
	10.5-11.0	2.00
	15.5-16.0	1.86
	20.5-21.0	1.94
BH 02	5.5-6.0	1.80
	10.5-11.0	1.70
	15.5-16.0	1.74
	20.5-21.0	1.82
	25.5-26.0	1.86
	28.5-29.0	1.71
BH 03	5.5-6.0	1.92
	10.5-11.0	1.83
	15.5-16.0	1.86
	20.5-21.0	1.88
	25.5-26.0	1.93
	29.5-30.0	1.93
BH 04	5.5-6.0	1.97
	10.5-11.0	2.01
	15.5-16.0	1.81
	20.5-21.0	1.79
	25.5-26.0	1.86
	30.5-31.0	1.93

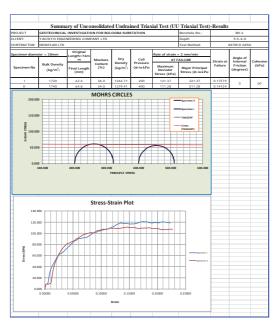

11

Detailed Geotechnical Report


Appendix 13: Unconsolidated undrained triaxial tests result

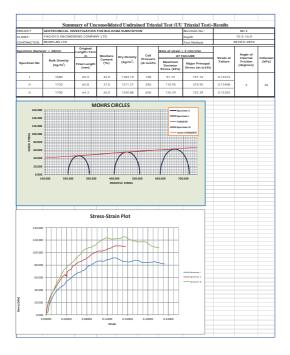

Detailed Geotechnical Report

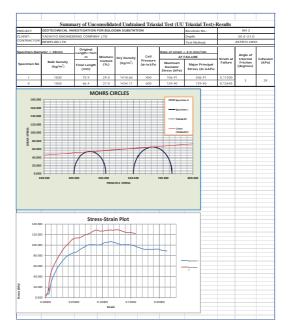
132



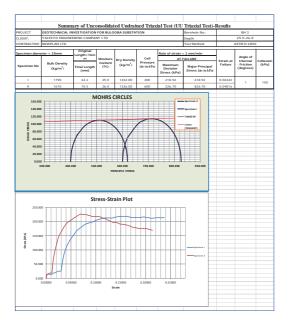
Detailed Geotechnical Report

11

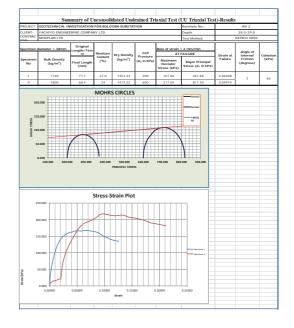

Detailed Geotechnical Report


Detailed Geotechnical Report

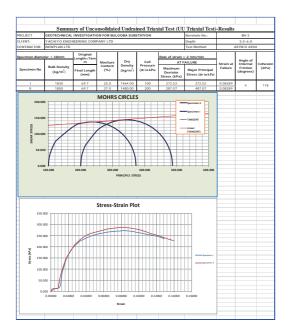
136

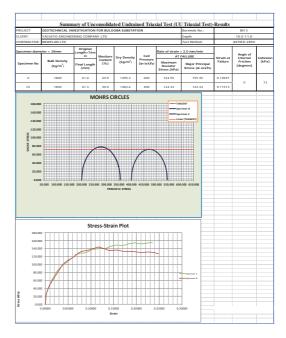


Detailed Geotechnical Report

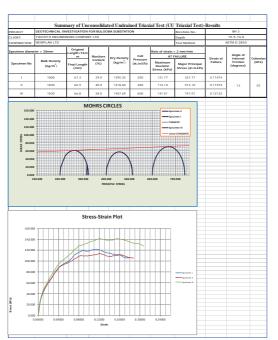


11

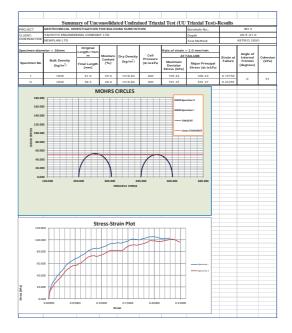

Detailed Geotechnical Report


Detailed Geotechnical Report

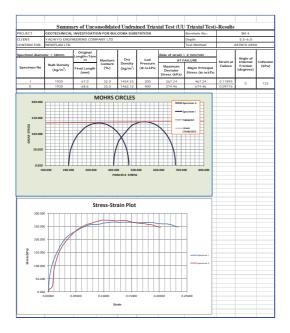
140

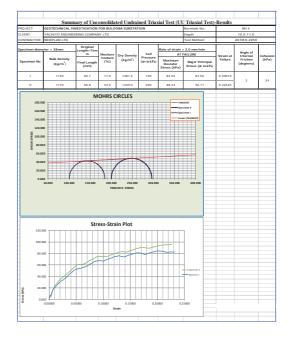


Detailed Geotechnical Report



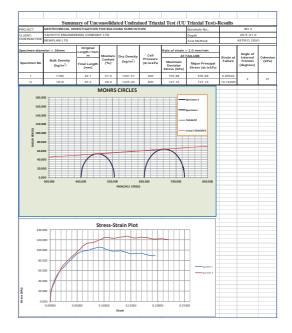
1/


Detailed Geotechnical Report


Detailed Geotechnical Report

144

Detailed Geotechnical Report



1/

Detailed Geotechnical Report

Detailed Geotechnical Report

148

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

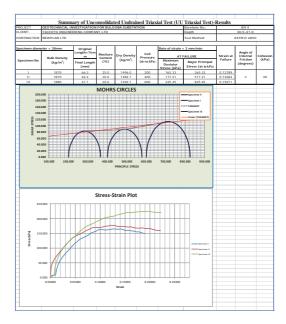
Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

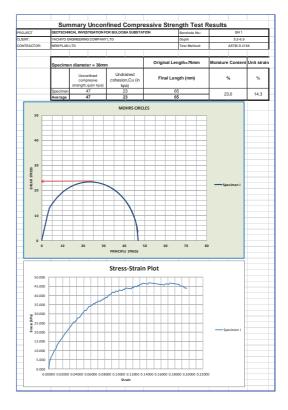

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

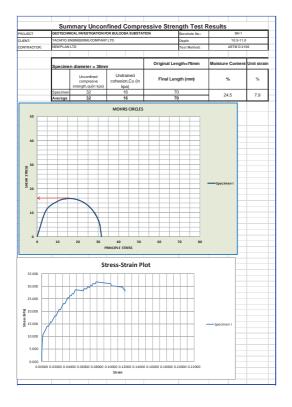
Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)-Results

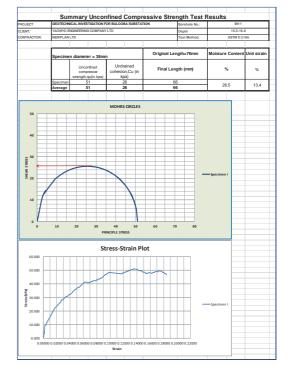
Summary of Unconso

Detailed Geotechnical Report

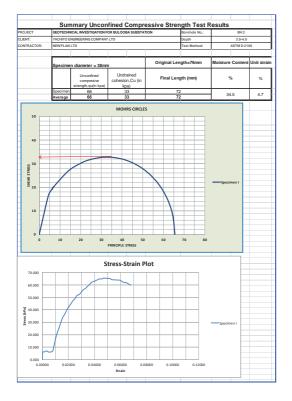



151

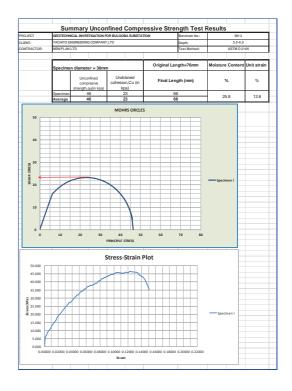
Detailed Geotechnical Report

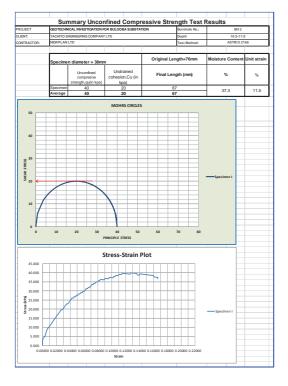

Appendix 14: Unconfined Compressive Strength

Detailed Geotechnical Report

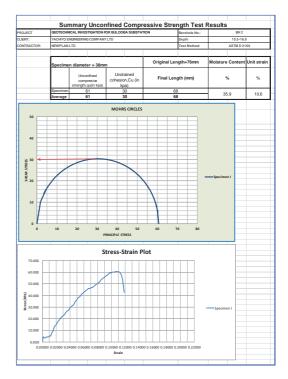


Detailed Geotechnical Report

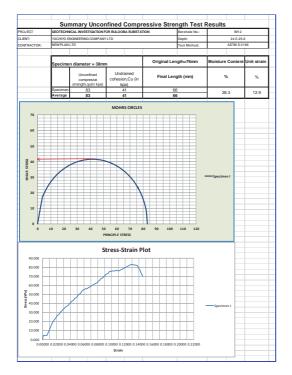



155

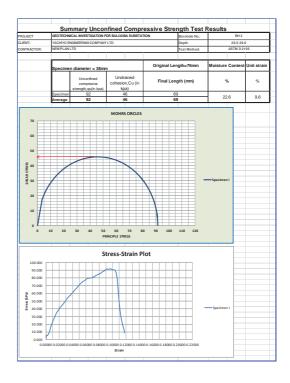
Detailed Geotechnical Report

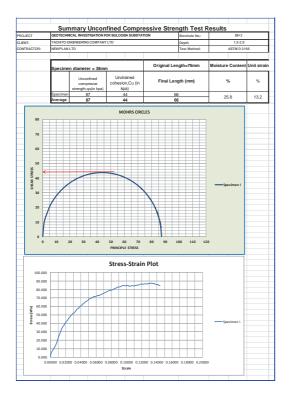


Detailed Geotechnical Report

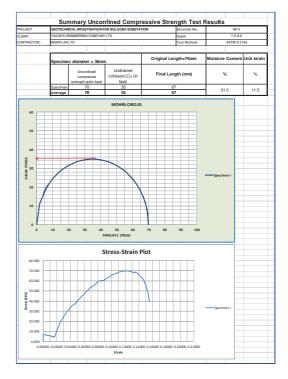


Detailed Geotechnical Report

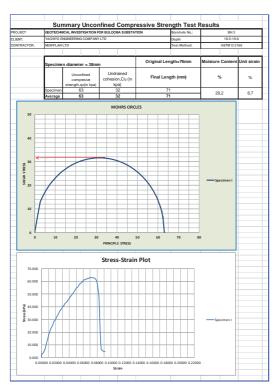



150

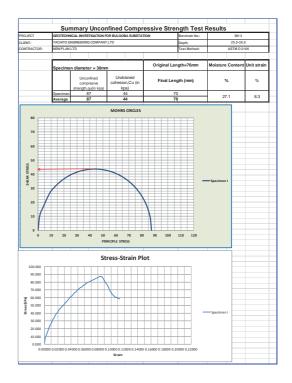
Detailed Geotechnical Report



Detailed Geotechnical Report



Detailed Geotechnical Report



161

Detailed Geotechnical Report

Detailed Geotechnical Report

				TION			
			rLTD				
ONTRACTOR:	NEWPLAN	TD			Test Method:	ASTM D 2	166
	Specimen	diameter = 38mr	n	Original Le	ngth=76mm	Moisture Conten	t Unit strain
Specimen diameter = 38mm	01						
				Final Ler	ngth (mm)	%	%
		49				25.0	10.3
	Average	49	24	6	18	20.0	10.0
			MOHRS CIRCLES				
50							
40							
40							
	-						
Specimen diameter = 38mm Unconfined Compense Co							
10			1				
/							
/	\rightarrow						
0	10 20			70 80	90 100		
		Р	RINCIPLE STRESS				
		51	tress-Strain P	lot			
60,000							
50.000				\perp			
							-
40.000		-					
2						-	
30.000	\perp	+		+			
e z						Specimen I	
20,000	/					.,	
	/						
40.000							
10.000							
0.000	0.0000000000000000000000000000000000000	00.0.00000.0.00000	40000 0 43000 C : : : :	0.045000.040555	20000 0 2200		
0.0000	0.02000 0.040	O 0.009000 0.08000 0	0.10000 0.12000 0.1400	U U.15000 U.18000 O	.20000 0.22000		
			Strain				

Intended for

Uganda Electricity Transmission Company Limited (UETCL)

Document type
Geotechnical report

January, 2016

GREATER KAMPALA TRANSMISSION NETWORK PROJECT IN THE REPUBLIC OF UGANDA

KAWAALA SUBSTATION DETAIL GEOTECHNICAL REPORT

 Revision
 00

 Date
 29.12.2015

 Made by
 DA/DS

 Checked by
 DS

Approved by **DA**

Final Detailed Geotechnical Report

weathered rock which is in form of residual clay.

orange sandy silt up to a depth of 27.5m which is underlain by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the soil is a product of completely

Final Detailed Geotechnical Report

EVECUTIVE SUMMADA

This report mainly deals with the geological and geotechnical investigation findings of Kawaala Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed between November and December 2015. In addition, relevant non-geotechnical parameters are outlined. The analysis and calculation results are given as part of this report (i.e. bearing capacity, stability and settlements).

Kawaala substation is located in Namungoona, a local town suburb located in Kawempe division. It is located approximately 6km North West of Kampala city centre accessible via Nakibinge road off Hoima road. The approximate centroid of the project area coordinates is 36 N 448650 UTM 37400. The project area incorporated within the site boundary is approximately 14,000m². The elevation of the project area varies between 1181 to 1195amsl. The entire project area is covered by levelled gravelly fill embankment of approximately 1.5m thick.

The project area of Kawaala substation has not experienced any earthquakes over years. It lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An over view of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are identified in the area.

Kampala is found in the Buganda region underlain by Porphyroblastic Phyllite (P_1BNamp_1 , Shale, Slate Phyllite (P_1BNamp_1 , Shale, Slate Phyllite (P_1BNamp_1 , Shale, Slate Phyllite (P_1BNamp_1 , Shale, Slate Phyllite (P_1BNamp_1), The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A_3KAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks.

The soil investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The conducted geotechnical investigation consists of field investigation and laboratory tests on samples recovered from the borehole.

The site investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from the ground surface to a depth of 2m, overlying homogenous reddish brown sandy fat clay up to a depth of 11m, underlain by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, overlying homogenous yellowish

ii

Final Detailed Geotechnical Report

CONTENTS

EXECUTIVE SUMMARY	II
1 INTRODUCTION	1
1.1 About report	1
1.2 Background	1
1.3 The Consultant	1
1.4 Site Description	2
1.4.1 Location	2
1.4.2 Topography	2
1.4.3 1.4.3 Climate	2
1.4.4 Geohazards	2
1.4.5 Published Geology	2
1.5 Scope of services	3
2 GEOTECHNICAL INVESTIGATION	4
2.1 Methodology	4
2.2 Field Investigations	4
2.2.1 Borehole	5
2.2.2 Soil profile	5
2.2.3 Ground water	5
2.2.4 The Standard Penetration Test (SPT)	6
2.3 Bulk density	8
2.4 Laboratory Investigations	9
2.5 Index Properties	9
2.5.1 Moisture content	9
2.5.2 Atterberg Limits	10
2.5.3 Particle density /Specific Gravity	11
2.5.4 Particle size distribution	12
2.5.5 Corrosivity of soils	16
2.6 Strength Tests	16
2.6.1 Triaxial Strength	16
2.6.2 Unconfined Compressive Strength	17
2.6.3 Consolidation	18
2.6.4 Settlement analysis	20
3 CONCLUSIONS AND RECOMMENDATIONS	23
3.1 Conclusions	23
3.2 Recommendations	24
4 REFERENCES	25
5 APPENDIX	27

LIST OF FIGURES

Figure 1. 1: Extract of geological map showing project site
Figure 2. 1: Natural Moisture Content vs Depth10
Figure 2. 2: Plasticity Chart
Figure 2. 3: Shrinkage limit vs Depth
Figure 2. 4: Specific gravity vs depth
Figure 2. 5: Particle Size Distribution curve 16-30m14
Figure 2. 6: Particle Size Distribution curve 16-30m15
Figure 2. 7: Vertical settlement due to vertical stress increase22

LIST OF TABLES

Table 2. 1: Standard Penetration Test value (N), N60, and undrained shear strength	n
cu (kN/m2) with respect to depth	
Table 2. 2: Aggressiveness and corrosivity test result	1
Table 2. 3: Summary of the undrained triaxial test results	1
Table 2. 4: Summary of the unconfined compressive triaxial test results	1
Table 2. 5: Consolidation test result summary	. 1
LIST OF APPENDIX	
A div. 1. CDT lk	_

ppendix 1: 5P1 result
ppendix 2: Borehole record2
ppendix 3: Drilling pictorial Logs
ppendix 4: Summary of texture classification4
ppendix 5: Chemical Test4
ppendix 6: Specific Gravity4
ppendix 7: Natural moisture content
ppendix 8: One-Dimensional Consolidation (Oedometer test)4
ppendix 9: Undrained Triaxial Results5
pendix 10: Unconfined compressive Results

•

Final Detailed Geotechnical Report

LIST OF ABBREVIATIONS

ASTM American Society for Testing and Materials
BGL Below Ground Level

mas! Above Mean Sea Level

SPT Standard Penetration Test

vi

Final Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding of Kawaala. This report discusses index and engineering properties of soil based on the geotechnical field investigation which was conducted in November 2015 and laboratory test conducted between November and December, 2015. Relevant non-geotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Yachiyo Engineering Company Ltd (YEC) were commissioned by Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Limitedplan to upgrade the substation which was constructed in the period 2008-2012 known as Kawaala substation in Namungoona. This will involve construction of a substation and associated infrastructure. In order to upgrade the existing substation, geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Kawaala substation in Namungoona, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation in Namungoona, Kampala district.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited were appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 10th November 2015 and the assignment commenced on 16th November, 2015.

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on November 20th, 2015. Following that, detailed investigations commenced on November 23td, 2015. Field and laboratory tests were conducted by Tec lab limited and Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Kawaala substation Topographic surveying and Geotechnical investigation contract.

Final Detailed Geotechnical Report

1.4 Site Description

1.4.1 Location

Kawaala substation is located in Namungoona, a local town suburb located in Kawempe division. It is located approximately 6km North West of Kampala city centre accessible via Nakibinge road off Hoima road. The approximate centroid of the project area coordinates is 36 N 448650 UTM 37400. It is neighbouring a residential area generally consisting of one storey high buildings in the North, West and South with an access road east of the site.

It is an existing substation with developments on the site. The project area incorporated within the site boundary is approximately 14,000m². The entire project area is covered by levelled gravelly fill embankment of approximately 1.5m thick.

1.4.2 Topography

The elevation of the project area varies between 1181 to 1195masl.

1.4.3 1.4.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 °C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

1.4.4 Geohazards

The project area of Kawaala substation has not experienced any earthquakes historically and lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An over view of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

1.4.5 Published Geology

Kampala is found in the Buganda region underlain by Porphyroblastic Phyllite (P₁BNamp), Shale, Slate Phyllite (P₁BNsh), and granitoids, orthogneiss (A₁KAgr). The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A₁KAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks (see Figure 1-1)

Figure 1. 1: Extract of geological map showing project site

A.K.A. Kampala granitoids, orthogness

1.5 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles
- 3. Carrying out standard penetration tests;
- 4. Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), Consolidation Tests, and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

2 GEOTECHNICAL INVESTIGATION 2.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in November 20th, 2015. This investigation is limited to

This preliminary preliminary design detailed geotechnical investigation typically includes one boring and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation
- Laboratory tests on samples recovered from borehole

The site work was carried out in month of November 2015 on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following;

- Rotary drilling of 1 borehole to a maximum depth of 30m;
- Collecting disturbed and undisturbed samples;

Final Detailed Geotechnical Report

- . In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.0m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760mm;
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- . Counting the number of blows to drive the sampler each 75 mm increment of a total of 450 mm penetration. The blow count for the first 150 mm increment was discarded and the sum of the blow counts for the second and the third 150 mm increment was recorded as the SPT 'N' value.

The boreholes were drilled as per ASTM D 5783. The drilled borehole logs were prepared for each borehole as per American Society for Testing and Materials (ASTM) D 2488.

The exploratory borehole records and logs are included in Appendix 2 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring. The photographs of the boreholes are attached as Appendix

2.2.2 Soil profile

The site investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from ground level to a depth of 2m, overlying homogenous reddish brown sandy fat clay up to a depth of 11m, underlain by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, overlying homogenous yellowish orange sandy silt up to a depth of 27.5m underlain by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the insitu soil is a product of completely weathered rock which is in form of residual clay. The log descriptions consistently indicate blotched colours as shown in Appendix 2

2.2.3 Ground water

To determine the elevation of the ground water table a borehole observation was conducted during borehole drilling. This groundwater observations in borehole was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4750.

Final Detailed Geotechnical Report

The ground water table was not encountered within a depth of 30m depth. This indicates the ground water table is deep far from the lowest foundation footing and free from hydrostatic uplift. Ground water observation result is presented in a borehole log Appendix 2.

2.2.4 The Standard Penetration Test (SPT)

The standard penetration test (SPT) were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials (ASTM) D 1586. One borehole was drilled and 30 standard penetration tests over 30.5m depth of borehole were conducted. The location of this borehole coordinates is 36 N 448664 UTM 37368.

Information obtained from SPT combined with other geotechnical laboratory test results, on site topography and area climatic records, provides basic planning material essential to the logical and effective development of substation and other infrastructure.

The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N₆₀) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed et al. (1985) and Skempton (1980). Furthermore, the undrained shear strength (c_u) of the soil was determined using the corrected standard penetration values (N₆₀) as per Hara et al. (1971) and Peck et al. (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{ult}) and approximate allowable bearing capacity (Q_{all}) were computed using the derived undrained shear strength (c_u) of the soil. Overconsolidation (OCR) was determined using Mayne and Kemper (1988).

A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation of allowable bearing capacity (Qail). Detailed bearing capacity results are attached as Appendix 1 and the summary of undrained shear strength (cu) given in table 2.1.

Depending on the standard penetration value (N₆₀) and unconfined shear strength result, the insitu soil

comprises of soft to medium consistency clay soil from the ground surface to a depth of 6m, underlain by stiff consistency clay soil up to a depth of 10m, overlying very stiff consistency clay soil up to a depth of 22m, underlain by hard consistency clay soil up to a depth of 30m. Furthermore, the insitu soil is over consolidated.

Final Detailed Geotechnical Report

Table 2. 1: Standard Penetration Test value (N), N60, and undrained shear strength cu (kN/m2) with respect to depth

					BH1								
	Vertical stress	Overall			Undrained Shear Strength, C _u (kPa)	Overcons olidation ratio (OCR)		0	100	N, N ₆₀ , C	u (kPa)	400	500
Depth (m)	(MN/m2)	Efficiency	N	N ₆₀	(KFd)	(UCN)	0					-	
0							1						
1.5	0.03	0.59	5	3	63	5	2	I Z					
2.5	0.05	0.59	3	2	44	2	3						
3.5	0.07	0.59	6	4	72	3	4						
4.5	0.09	0.67	5	3	69	2	5	i '	\ —				
5.5	0.11	0.67	7	5	88	3	6	Ī	١				
6.5	0.13	0.75	7	5	96	2	7	Ī	1				
7.5	0.15	0.75	6	4	85	2	8	\	`				
8.5	0.17	0.75	12	9	141	3	9	1					
9.5	0.19	0.75	13	10	149	3	10	1					
10.5	0.21	0.75	17	13	181	3	11	1		<i>></i>			
11.5	0.23	0.79	12	9	146	3	12	١		$\overline{}$			 N
12.5	0.25	0.79	26	20	255	4	13)					
13.5	0.26	0.79	14	11	163	3		< −					
14.5	0.28	0.79	33	26	303	4	(m) 15 15 16	*			\supset		→ N60
15.5	0.30	0.79	25	20	248	3	∯ 16	#		-			
16.5	0.32	0.79	28	22	269	4	ă 10 17	1			1		
17.5	0.34	0.79	35	28	316	4	18	*			- 9		-0- Undrained
18.5	0.36	0.79	36	28	322	4	19	#			- 1		Strength, (kPa)
19.5	0.38	0.79	29	23	276	3		*					
20.5	0.40	0.79	37	29	329	4	20	*					
21.5	0.42	0.79	18	14	196	2	21	(<			
22.5	0.44	0.79	42	33	360	4	22	-			\rightarrow	-0	
23.5	0.46	0.79					23						
24.5	0.48	0.79	42	33	360	4	24	-					
25.5	0.50	0.79	43	34	366	4	25	1					
26.5	0.52	0.79	45	35	378	4	26	4				la la	
27.5	0.54	0.79	53	42	426	4	27	- #				1	
28.5	0.56	0.79	56	44	443	4	28						
29.5	0.58	0.79	46	36	384	3	29	- <i>U</i>					
30.5	0.60	0.79					30						

2.3 Bulk density

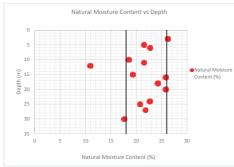
Bulk density test was conducted to obtain overburden stresses within a soil mass required for evaluations of the unit weight or mass density of the various strata. Bulk density for the undisturbed samples were determined using drive tubes as per American Society for Testing and Materials (ASTM) D 2937 at 6 point on boreholes between ground surface and 30m depth. The unit bulk density of this project area soil is varies between 1.81 and 2.01 Mg/m³. This shows the insitu soil is highly compacted due to the previous construction.

Final Detailed Geotechnical Report

2.4 Laboratory Investigations

Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Tec lab limited and Comat lab limited. The following lab tests have been carried out on samples taken from the different boreholes and test pits:

- Moisture content
- Liquid limit
- Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)


2.5 Index Properties

2.5.1 Moisture content

Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on 15 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4959. The test result is presented in Figure 2.1 and Appendix 7 with respect to depth. The water content test result shows the natural water content of the insitu soil is almost uniform along the depth of borehole. Generally, the natural moisture content of the insitu soil varied between 18 and 26 % from 30mBGL to ground level respectively.

Final Detailed Geotechnical Report

Figure 2. 1: Natural Moisture Content vs Depth

2.5.2 Atterberg Limits

To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on a borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 30 atterberg limit tests were conducted (i.e. 15 liquid limit and 15 plastic limit). The test result is presented in Figure 2.2 and Appendix 4. As indicated in Figure 2.2 most of the insitu soil from ground surface up to 11m delineated above A-line and there plastic index is greater than 15%. This implies that this layer comprises of soil stiff clay soil. Most plasticity chart value for depth between 11 and 30m is delineated below A-line and this implies that the insitu soil between depth of 11 and 30m is silt.

In addition to the above mentioned Atterberg limit tests a shrinkage limit tests were conducted on 3 samples collected from borehole between a depth of 0 and 10m. Those shrinkage limit tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in Figure 2.3 and appendix 4. All Shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

Figure 2. 2: Plasticity Chart

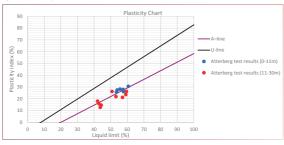
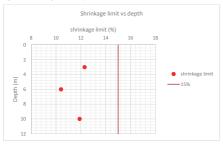
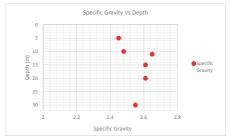



Figure 2. 3: Shrinkage limit vs Depth

2.5.3 Particle density /Specific Gravity

To determine the specific gravity of the soil grains a total of six specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The test result from specific gravity test summarized as below:

The specific gravity of the top layer soil from ground surface up to a depth of 10m is almost
constant and varies between 2.45 and 2.48. This implies that the insitu soil parent material and


Final Detailed Geotechnical Report

degree of weathering is the same. In addition, it indicates that the parent material of the insitu soil is loose material.

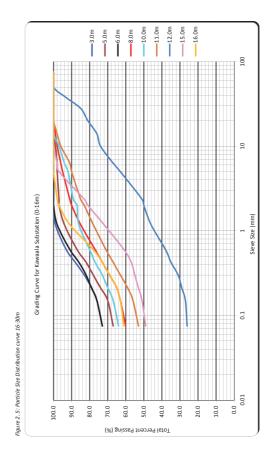
- The specific gravity of the top layer soil from ground surface up to a depth of 10m is almost the same and varies between 2.55 and 2.65. This shows as the insitu soil parent material and degree of weathering is the same. In addition, it shows as the parent material of the insitu soil is loose material. The average specific gravity for the second layer between 10 and 30m is 2.60.
- The difference in specific gravity of the above mentioned two layer happens due to degree of weathering in parent material.

The test result are presented in Figure 2.4 and Appendix 6.

Figure 2. 4: Specific gravity vs depth

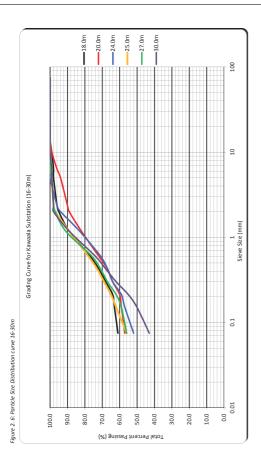
2.5.4 Particle size distribution

To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 15 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test result presented on appendix 4 and Figure 2.5 & 2.6.


From texture classification given in Appendix 4 and Figure 2.5 & 2.6, the engineering characteristics such

12

Final Detailed Geotechnical Report


as permeability, strength, and swelling potential are evaluated as below;

- The first layer from ground surface up to a depth of 11m is impervious when compacted, poor shearing strength when compacted and saturated, high compressibility when compacted and saturated. This implies poor workability as a construction material, and poor relative desirability for foundation.
- The second layer from 11 up to a depth of 15m is impervious when compacted, fair shearing strength when compacted and saturated, low compressibility when compacted and saturated. It implies good workability as a construction material, and good relative desirability for foundation.
- The third layer from 15 up to a depth of 20m is semipervious when compacted, fair shearing strength when compacted and saturated, high compressibility when compacted and saturated.
 This implies poor workability as a construction material and poor relative desirability for foundation.
- The fourth layer from 20 up to a depth of 25m is semipervious when compacted, fair shearing strength when compacted and saturated, medium compressibility when compacted and saturated. This implies fair workability as a construction material, and fair relative desirability for foundation.
- The fifth layer from 27 up to a depth of 30m is impervious when compacted, fair shearing strength
 when compacted and saturated, low compressibility when compacted and saturated. This implies
 good workability as a construction material, and good relative desirability for foundation.

Detailed Geotechnical Report

inal

2.5.5 Corrosivity of soils

To determine the aggressiveness and corrosivity of soils, pH, sulphate and chloride content of soils tests were conducted. A total of 15 aggressiveness and corrosivity tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) G 51 and D 4327. The test result is presented in table 2.2 and Appendix 5. The aggressiveness and corrosivity of soils test result is summarized as below:

- The PH is slightly acidic with a value between 6.6 and 6.9, this associated with insignificant corrosion rates and using metallic reinforcements is possible.
- The chlorides content test result value varies between 440 and 730 ppm, this associated with significant corrosion rates.
- The sulphate content test result value varies between 6100 and 21400 ppm, this associated with significant corrosion rates.

Generally, Kawaala substation foundation soil is prone to corrosion. This tends to reduction in life time of the foundation structure. In order to avoid this problem, it is recommended that stainless steel be used to provide reinforcement for foundation structure or provide appropriate foundation cover to avoid the ingress of chlorides and sulphates. Stainless steel reinforcement does not rely on concrete for its corrosion protection and is a straightforward solution when concrete is subject to the ingress of chlorides. Stainless rebar is also used for long design life structures and when equipment is sensitive to magnetic fields and needs non-magnetic reinforcement.

Table 2. 2: Aggressiveness and corrosivity test result

Borehole	Depth	PH	Chlorides (%)	Sulphates (%)
No.	(m)			
	5	6.6	0.073	0.61
BH 1	10	6.8	0.061	1.32
	15	6.9	0.061	1.77
	20	6.9	0.044	2.14

2.6 Strength Tests

2.6.1 Triaxial Strength

To determine the strength characteristics of soils including detailed information on the effects of lateral confinement, pore water pressure and drainage, unconsolidated undrained triaxial tests were conducted on undisturbed samples. The conducted triaxial tests further used to determine a friction angle of clays &

16

Final Detailed Geotechnical Report

inal Detailed Geotechnical Report

silts and the stiffness (modulus).

A total of 6 triaxial tests were conducted as per as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2850, and D 4767. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 9 to 19°, the minimum cohesion is 8kPa at 20m depth, and the maximum cohesion is 76kPa at 10mBGL.

The computations of the Undrained triaxial test parameters (un-drained cohesion and angle of internal friction) are presented in Appendix 9. Table 2.3 below shows the summary of the undrained unconsolidated triaxial test results.

Table 2. 3: Summary of the undrained triaxial test results

Bore Hole No.	Bulk Density (Kg/m³)	Cohesion (C) (kPa)	Angle of Internal Friction (Φ) (deg)
BH01 (5.0m)	1903	53	19
BH01 (10.0m)	1980	76	11
BH01 (15.0m)	1810	14	8.9
BH01 (20.0m)	1841	8	14.2
BH01 (25.0m)	1851	22	13.1
BH01 (30.0m)	1893	25	12.6

Furthermore, the undrained shear strength (su) and the undrained elastic moduli (Eu) are obtained from a UU test. The calculated value shows the average undrained elastic moduli (Eu) is $40MPa^{-1}$ from ground surface up to 5m depth and $70MPa^{-1}$ for depth below 5m.

2.6.2 Unconfined Compressive Strength

To determine the undrained shear strength of the insitu soil a total of 5 Unconfined Compressive Strength of Soils tests were conducted as pre Standard Test Methods for American Society for Testing and Materials (ASTM) D 2166.

The UCS ranged from 21 to 108kPa. The computations of the unconfined compressive strength test parameters are presented in Appendix 10. Table 2.4 shows the summary of the unconfined compressive strength test results.

Final Detailed Geotechnical Report

Table 2. 4: Summary of the unconfined compressive triaxial test results

Bore Hole No.	Bulk Density (Kg/m³)	Unconfined compressive strength (kpa)	Undrained cohesion (kpa)
BH01 (5.0m)	1903.0	47	24
BH01 (10.0m)	1903.0	21	10
BH01 (11.0m)	1969.6	108	54
BH01 (15.0m)	1972.7	85.3	42.7
BH01 (20.0m)	1856.9	65	33

2.6.3 Consolidation

Compression properties of the project area soil were determined using laboratory test result. The result from this test was used to determine preconsolidation stress, compression characteristics, creep, stiffness, and flow rate properties of soils under loading.

To determine those properties of the soil One-Dimensional Consolidation (Oedometer test) using incremental loading was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2435. A total of 6 representative One-Dimensional Consolidation (Oedometer test) were conducted.

The summary of Oedometer test result is given in Table 2.5 and Appendix 8. The test result shows the average compression index (Cc), coefficient of volume compressibility (M_{ν}), and Coefficient of consolidation is 0.20, 0.89MN/ m^2 , and 6.36 m^3 /year respectively from ground surface up to 5m and 0.2, 0.5 MN/ m^2 , and 9.1 m^3 /year respectively for depth below 5 up to 11m. From 11m up to 30m the insitu soil was not subjected to consolidation settlement.

Source	Depth(m)	Pre- Consolida tion pressure (kN/m²)	Overburde n Pressure (kN/m²)	Compression Index, C.		Coefficient of V Compressibility mv (MNV/m. ³)	Volume m²)	Co ef ficien (m²/yr)	Volume Coefficient of Consolidation Cv (m²/yr)	idation Cv	Permeability, k (m/s)	(\$/4	×10°
					Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	2	150	92.2	0.195	0.072	4.057	0.8934	3.148 11.496	11.496	6.36	7E-11	1.5E-09	2.83E-09
	10	180	172.1	0.201	0.070	1.846	0.502	3.536	13.5	9.04	7.6E-11	6.5E-09	1.67E-09
BH 1	15		276.6	0.036	0.020	0.16	0.074	10.18	48.71	26.37	1.12E-09	2.25E-09	9.25E-10
	20		368.8	0.029	0.016	0.16	0.07	8.440	25.58	15.59	4.2E-09	1.12E-09	4.88E-10
	9		553.3	0.037	0000		0.053	000	0.052 6.430 17.49 11.07 8.26E.11	11.07		1 975-10	1 55.10

2.6.4 Settlement analysis

Soils have a tendency to settle under loads, causing subsidence of structures founded on or within them. If the settlement is not kept to a tolerable limit, the desired use of the structure may be impaired and the design life of the structure may be reduced. Taking into account the above principle, uniform and nonuniform (differential) settlement are among the important parameters to be determined during settlement analysis.

For this specific project, results of the One-Dimensional Consolidation (Oedometer test) tests were considered as uniform over the project area. This means effect of nonuniform (differential) consolidation or settlement is insignificant for this specific project.

Settlement analysis is governed by composition of immediate or elastic compression, primary consolidation, and secondary compression. Settlement analysis included in this report includes all the above mentioned types of settlement (i.e. Immediate or elastic compression settlement, primary consolidation settlement, and secondary consolidation settlement).

The calculated immediate or elastic compression and primary consolidation settlement in this report considers a constant interval vertical stress due to superstructure (i.e. 20 kPa interval vertical stress increase from 20 to 200kPa). The exact settlement due to vertical stress increase from the building and other structures over the embankment fill or insitu soil is calculated or determined simultaneously with the foundation design. This is because, the settlement due to those additional vertical stress over fill embankment or insitu soil is affected by type, shape, size, and depth of embedment of the foundation, and soil stiffness. This settlement analysis result is for general guide.

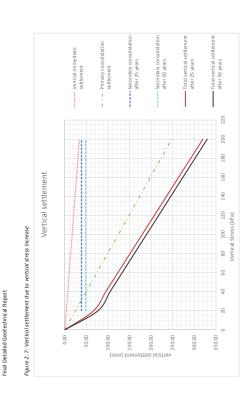
All the settlement analysis parameters determined or calculated from One-Dimensional Consolidation (Oedometer test) test result are summarized in Table 2.5. The immediate or elastic compression settlement result was calculated using elastic displacement theory. Primary consolidation and secondary compression results are calculated using one dimensional consolidation settlement analysis. The total settlement for long term is the summation of immediate or elastic, primary consolidation, and secondary compression. Finally the total result is compared with Serviceability Limit States. The calculated settlement analysis for immediate or elastic compression settlement, primary consolidation settlement, secondary consolidation settlement, and total vertical settlement is given in Figure 2.7.

20

Final Detailed Geotechnical Report

inal Detailed Geotechnical Report

During settlement analyses, a constant average undrained elastic moduli (Eu), average coefficient of volume compressibility (m_v), and average secondary compression index are used for the entire depth of the soil profile. A total of 11m thick clay layer is considered for the analysis. From one dimensional consolidation analysis, the primary consolidation settlement takes place in the first one year and nine months (21 months). Secondary consolidation settlement take places after primary consolidation settlement. During secondary settlement analysis two scenarios are considered:


- The first scenario is the project design period is 25 years
- The second scenario is the project design period is 50 years.

Parameters used for analyses from One-Dimensional Consolidation (Oedometer test) test result are summarized as below:

- Average undrained elastic moduli is 40000kPa;
- Average coefficient of volume compressibility (m_v) is 0.25 MN/m²;
- Average secondary compression index is 0.006;
- Average compression index (Cc) is 0.20;
- Average Coefficient of Consolidation 7.6m²/year;and
- Total thickness of clay layer is 11m.

Results from the analysis are summarized as below:

- Primary consolidation settlement take place in the first one years and nine months after embankment fill is constructed;
- Primary consolidation settlement at 200kpa is approximately 247.5mm;
- Immediate or elastic compression at 200kpa is approximately 34mm;
- Secondary consolidation settlement at 200kPa, if the project design period is 25 years is approximately 38.5mm;
- Secondary consolidation settlement at 200kPa, if the project design period is 50 years is approximately 48.5mm:
- Total vertical settlement at 200kPa, if the project design period is 25 years is approximately 320mm;and
- Total vertical settlement at 200kPa, if the project design period is 50 years is approximately 330mm.

2

3 CONCLUSIONS AND RECOMMENDATIONS

Geological and geotechnical assessment at the Kawaala substation site was essential for obtaining fundamental information in terms of foundation conditions. This information was obtained from a borehole drilling as well as onsite surveys and laboratory testing. All soil investigation test were conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The following conclusions were reached:

- 1. The project area of Kawaala substation has not experienced any earthquakes over years. This project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An overview of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are identified in the area.
- 2. The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A₃KAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks.
- 3. Basing on the standard penetration value (N_{60}) and unconfined shear strength result, the insitu soil comprises of soft to medium consistency clay soil from groundlevel to a depth of 6m, underlain by stiff consistency clay soil up to a depth of 10m, overlying very stiff consistency clay soil up to a depth of 22m, underlain by hard consistency clay soil up to a depth of 30m.
- 4. Groundwater was not encountered during the field investigations
- 5. The laboratory investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from the ground surface to a depth of 2m, followed by homogenous reddish brown sandy fat clay up to a depth of 11m, followed by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, followed by homogenous yellowish orange sandy silt up to a depth of 27.5m, and followed by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the soil is a product of completely weathered rock which is in form of residual clay.
- Generally, the natural moisture content of the insitu soil varied between 18 and 26 % from 30mBGL to ground level respectively.
- 7. All shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

Draft Detailed Geotechnical Report

- 8. The unit bulk density of the insitu soil varies between 1.81 and 2.01 Mg/m³. This shows the insitu soil is highly compacted due to the previous construction.
- 9. Generally, Kawaala substation foundation soil is prone to corrosion
- 10. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 9 to 19° on the otherhand, the cohesion ranged between 8 to 76kPa.
- 11. Undrained elastic moduli (Eu) are obtained from a UU test. The calculated value shows the average undrained elastic moduli (Eu) is 40MPa⁻¹ from ground surface up to 5m depth and 70MPa⁻¹ for depth below 5m
- 12. The unconfined compressive strength ranged from 21 to 108kPa
- 13. The insitu soil is highly compressible and poor to facilitate drainage. The test result shows the average compression index (Cc), coefficient of volume compressibility (M_{ν}), and Coefficient of consolidation is 0.20, 0.89MN/m², and 6.36m³/year respectively from ground surface up to 5m and 0.2, 0.5 MN/m², and 9.1m³/year respectively for depth below 5 up to 11m. From 11m up to 30m the insitu soil is not subjected to consolidation settlement.
- 14. Basing on the index properties and its classification, the insitu soil is rated from poor to good desirability for foundation, the quality improvement is directly proportional to the depth from ground level. This observation is consistent with the engineering properties of the soil.

3.2 Recommendations

- 1. The design of the proposed foundations shall take into account the poor ground conditions to ensure that the risk of failure is minimised
- 2. Stainless steel be used to provide reinforcement for foundation structure or provide appropriate concrete cover to the foundation to avoid the ingress of chlorides and sulphates.

Draft Detailed Geotechnical Report

4 REFERENCES

- 1. AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purnoses
- D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
- D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigat D 2434 Standard Test Method for Permeability of Granular Soils (Constant Head)
- D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System)
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- D 4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)
- D 4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for
- D 4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Meth
- G 51 Test Method for pH of Soil for Use in Corrosion Testing
- 2. VICKERS, BRIAN (1978); Laboratory work in Civil Engineering Soil Mechanics. Gra Publishers, London.

Draft Detailed Geotechnical Report

- 3. Bowles Joseph E; Foundation Analysis and Design, Second Edition. McGraw Hill Companies, Tokvo, 1997.
- 4. G.E Barney; Principles and Practice of Soil Mechanics, First Edition. Macmillan Press Ltd, London 1995
- 5. Department of US Army Corps of Engineers, CECW-EG Engineer Manual 1110-1-1904 Engineering and Design of SETTLEMENT ANALYSIS, Washington, DC 20314-1000, 1990.
- 6. MJ Tomlinson; Foundation Design & Construction, Sixth Edition. Addison Wesley Longman Limited, Edinburgh Gate, Harlow Essex CM20 2JE, 1998
- 7. Simplified geological map of Uganda (Extracts from the Africa Mining Journal Ltd 2000) 8. R.F.Craig. E & FN Spon, 2004. CRAIG'S SOIL MECHANICS. Seventh Edition, London.

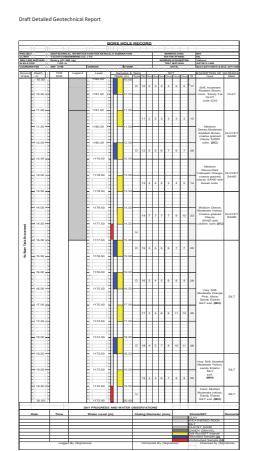
5 APPENDIX

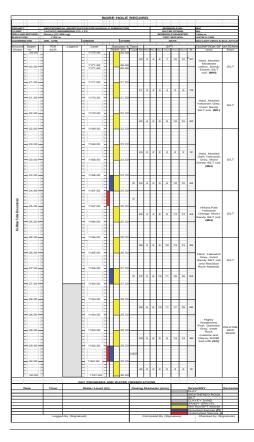
Draft Detailed Geotechnical Report

Appendix 1: SPT result

		EVALUATION OF ALL	OWABLEBE	ARING CAP	ACITY BASE	O ON FIELD S	PT 'N' VALUES	-
BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT'N' Value	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearin Capacity
	(-)			Cv.		C _u (kPa)	Quit (kPa)	Q _{sl1} (kPa)
	(m)		N		N 60			_ ` ′
	0.00	Moderate Reddish	0	0.00	0	0	0	0
	1.50	Brown imported fill Sandy Fat Gravel	5	0.59	3	63	325	108
	2.50		3	0.59	2	44	225	75
	3.50		6	0.59	4	72	371	124
	4.50		5	0.67	3	69	356	119
	5.50	Reddish Brown Sandy	7	0.67	5	88	453	151
	6.50	Fat Clay	7	0.75	5	96	491	164
	7.50	rat Clay	6	0.75	4	85	439	146
	8.50		12	0.75	9	141	724	241
	9.50		13	0.75	10	149	767	256
	10.50		17	0.75	13	181	930	310
	11.50		12	0.79	9	146	751	250
	12.50	Yellowish Orange coarse	26	0.79	20	255	1311	437
	13.50	grained Clayey Sandy	14	0.79	11	163	839	280
BH01	14.50		33	0.79	26	303	1556	519
BIIOI	15.50		25	0.79	20	248	1274	425
	16.50		28	0.79	22	269	1382	461
	17.50		35	0.79	28	316	1623	541
	18.50		36	0.79	28	322	1657	552
	19.50		29	0.79	23	276	1418	473
	20.50	Vellowich Orange Sandy	37	0.79	29	329	1690	563
	21 50 Yellowish Orange Sandy	Sile	18	0.79	14	196	1006	335
	22.50	LARE	42	0.79	33	360	1851	617
	23.50		Refusal	0.79		>450	>2300	>750
	24.50		42	0.79	33	360	1851	617
	25.50		43	0.79	34	366	1883	628
	26.50		45	0.79	35	378	1945	648
	27.50		53	0.79	42	426	2188	729
	28.50	Sandy Clay highly	56	0.79	44	443	2277	759
	29.50	weathered Pink Greenish	46	0.79	36	384	1976	659
	30.50	Grey weak rock	Refusal	0.79	_	>450	>2300	>750

The undmined theoretize g(x) of the will is determined using the corrected standard penetration values (N_{co}) as per Hara et al. (1971) and Peck et al. (1974) empirical relationship respectively. Cu = $Pa^{+}0.29^{+}N60^{+}0.72$, where Pa is Amospheric presure and qult S_{co} $S_$


2


Draft Detailed Geotechnical Report

Appendix 2: Borehole record

Draft Detailed Geotechnical Report

_			_		В	ORE	HOLE	RE	co	RD	_	$\overline{}$	_	_	_	_		_
**************************************		another war	AL BACKSTON	THOM SERVICE CO.	111		THE RESERVE				_			CO. C.	-		8941	
LIBNT	G METHOD	YACHYO INC	INSERNO CO.	LTD	,,,,,,	A SU	BESTATION	_				=	WATE	HOLE:	NO.		NEL.	
					_	_			_	_	Н	BOF		E DIAM	OD:	ε.	ARTM D 1586	
COOPER		DEN UTM		ASSESSIN		_	37368		_	=		=		ATE	_	_	Sec 1/23/11/2015 & B	
around	Depth	TCR	Legend	Level	7	- 5	amples é				=	_	SP	T	_	-	ESCRIPTION OF	MATERI
v acer	0.00	SUK		1192.00		П	opth (m)	Тур	No	Bin	Bin		rbore	/Sum	/Sur	N	Detail	Main
	0.15				Ш	Н	0.2	Н			Н	Н						1
	0.50			1191.50	Н	Н	0.50											
	0.50			1191.50	П	Н	0.50	Ε	П								1	
					Ц	Ш											Medium Dense Moderate	
	1.00			1191.00	ш	Ш	1.00										Reddish Brown	SAND' GRAVE
					Н	Н			Н	Н	Н	Н		-	-		Reddish Brown Sandy Gravel - Imported Fill Layer.	GRAVE
	- 9				19	Н			1	1	1	1	1	1	2	5	Layer.	
	1.50			1190.50	Н	Н	1.50	\vdash	Н			Н		-	-	\vdash		
						н												
					Ц	Ш												
	2.00			1190.00	Н	Н	2.00	Н		Н		Н			Н			
					Н	Н			2	0	0	0	1	1	1	а		
	2.50			1189.50	19	Н	2.5		Н			Н						
	2.50				Я	П	-	Е	Г	П	Ε	П		Ε	Г			
				P .	H	Н												1
	3.00			1189.00	-	ш	3.00		⊢	ш		ш		\vdash	⊢	_	1	
					Ш	Ш												
						Ш		D	а	1	1	1	1	2	2	6	Medium Stiff, Moderate	
	3.50			1188.50	щ	Н	3.50	\vdash	Н	-	-	Н			Н		Reddish Brown, Moist, Sandy Fat CLAY soils (CH)	CLAY
					14	Н	_										CLAY soils (CH)	
	400				Щ	Н												
	4.00			1188.00	Н	н	4.00										i	
						Н			4	1	1	2	1	1	1	5		
	4.50			1187.50	19	Н	4.50		Н		-	Н						
Vo Water Table Encountered	- 4.50 F			1107.00	н	Н	4.00		Е	П	Е			Е	П		1	
5					Н	н		U										
š	5.00			1187.00	Щ		5.00		┖						_			
至					ш	Н			5							7		
ž						Н			5	2	1	1	2	2	2	7		
8	5.50			1186.50		H	5.50	\vdash	⊢	Н	Н	Н	_	\vdash	⊢		1	
					П	П												
					П	н											Stiff, Moderate	
	6.00			1186.00	т	н	6.00	_	-		_	=			-		yellowish Brown, moist Sandy Fat CLAY (CH)	CLAY
					Ш	Ш		D	6	2	1	1	2	2	2	7	CERT (CH)	
	9.50			1185.50	-	Ш	6.50											
	F1 F7			F	H	П	_	Е	П								1	
					П	Н										1		
	7.00			1185.00	Щ	П	7.00											
				1185.00	ш	Н			7	1	2	1	2	2	1			
	1 18				Ш	Н			ľ	1	2	1	2	ı.	ľ			
	7.50			1184.50	Н	Н	7.50	H	H	Н	Н	Н				Н		
					П	Н		D				Н					1	
	0.00			1194.00	H	П		Ė	Г			П						
	8.00			1184.00	П	П	8.00		Г	П							1	1
					Ш	Н			8	2	а	а	2	а	4	12	Stiff, moderate	
	8.50			1183.50	Щ	Н	8.50	L	L			Ш		L	L	L	Reddish Brown, moist, Sandy Fat CLAY soils (CH)	CLAY
					П	П	8.50	Г	Г	П	Г	П					CLAY	- LIAT
	- 14				H	П			Г			П					SOIS (CH)	
	9.00			1183.00	Щ	П	9.00	⊢	F			ш		\vdash	_			
					Ш	Н			9	2	а	а				13		
	11				Ш	Н		Ш	9	2	3	а	_2	L 4	L	13		
	9.50			1182.50	Н	П	9.50	Н	Н	Н	F	н	н	Н	Н	\vdash	1	1
	- 1				П	П		u	Н									
	10.00			1182.00	H	П	10.00											
	10.00					-			_	_	_	ш		\vdash	_			
_	_		_ D	AY PROGRE			WATER					-	_	_	_	_		_
	Date	Time	_	Water Leve	ol (m)		Ca	sing	Dia	mes	er (n	nen)	-			SM/KEY	Remark
=								F					=	П		WE.	ATHERED ROCK	
_								F								CLA	YEY SAND DY GRAVEL	
			_		_	_		-	_	_	_	_	_					
		Logge	d By (Siignati					E	Ξ	Ξ			nabun			Distri	abed Sample (D) sturbed Sample (U Checked by (Sign	

Draft Detailed Geotechnical Report

Appendix 3: Drilling pictorial Logs

Draft Detailed Geotechnical Report

Moist reddish yellowish brown soft homogeneous silty sandy CLAY drilled from BH1 at a depth of 5.0-5.5 m

Moist reddish yellowish brown soft homogeneous silty sandy CLAY drilled from BH1 at a depth of 6.0-6.5 m

Moist reddish yellowish brown soft homogeneous silty sandy CLAY drilled from BH1 at a depth of 7.0-7.5 m

Moist reddish yellowish brown soft homogeneous silty sandy CLAY drilled from BH1 at a depth of 8.0-8.5 m

Moist reddish brown stiff homogeneous silty sandy CLAN drilled from BH1 at a depth of 9.0-9.5 m

Moist reddish brown stiff homogeneous silty sandy CLAY drilled from RH1 at a depth of 10.0-10.5 m

Stiff, Moderate Reddish Brown, moist, Sandy Fat CLAY drilled from BH1 at a depth of 11-11.5 m

Medium Dense, Moderate Reddish Brown, coarse graine clayey SAND soils drilled from BH1 at a depth of 12-12.5 r

Draft Detailed Geotechnical Report

Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils drilled from BH1 at a depth of 14-14.5 m

Very Stiff, Moderate Orange Pink, moist, Sandy Elastic SILT soil drilled from BH1 at a depth of 15.0-15.5 m

Very Stiff, Mottled Moderate Yellow, sandy Elastic SIL' soils drilled from BH1 at a depth of 19-19.5 m

Hard, Moderate Yellow, moist, Sandy Elastic SILT soils drilled from BH1 at a depth of 20-20.5 m

35

Draft Detailed Geotechnical Report

Hard, Mottled Yellowish Grey, moist Sandy SILT soils drilled from BH1 at a depth of 22-22.5 m

Hard, Mottled Dark Yellowish Grey, Moist Sandy SILT soil drilled from BH1 at a depth of 24.0-24.5 m

Hard, Yellowish Grey, moist Sandy SILT soil and Residua Rock Materialdrilled from BH1 at a depth of 26-26.5 m

Hard, Yellowish Grey, moist Sandy SILT and Residual Rock material drilled from BH1 at a depth of 27-27.5 m

Draft Detailed Geotechnical Report

Highly weathered, Pink, Greenish Grey, Coarse grained Weak Rock drilled from BH1 at a depth of 28-28.5 m

Highly weathered, layered, Pink, Greenish Grey, Weak ROCK and Clayey SAND infill soil drilled from BH1 at a depth of 29.0-29.5 m

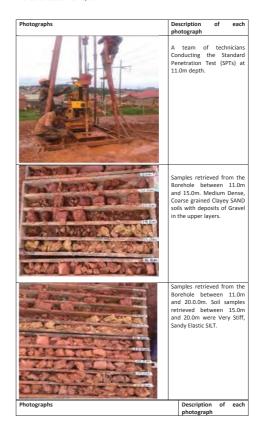
Packed and sealed Un disturbed soil samples retrieved at 15.0m depth for the Triaxial and consolidation tests from BH1 at a depth of 15-15.5 m

Retrieved Soil samples between 1.0m depth and 6.0m depth. Imported soil layers between 1.0m and 2.5m depth was of Moderate Reddish Brown Clayey SAND soils with Gravel.

photograph A team of technicians using the GY
– 200 drilling Rig for Boring of
Borehole BH -1 on the southern
side of the site near the existing
Switch yard.

each

Description



Retrieved Soil samples between 1.0m depth and 6.0m depth. Imported soil layers between 1.0m and 2.5m depth was of Moderate Reddish Brown Clayey SAND soils with Gravel.

The natural Ground encountered between 2.0m and 11.0m depth has soil layers of medium stiff to Stiff, Moderate Reddish Brown, moist, Sandy Fat CLAY soils

Draft Detailed Geotechnical Report

Draft Detailed Geotechnical Report

Samples retrieved from the Borehole between 21.0m and 26.0.0m. Soil samples were Hard, moist Sandy SILT.

Samples retrieved from the Borehole between 24.0m and 30.0m. Soil samples retrieved between 27 and 30.0m depth were Highly weathered, Pink, Greenish Grey, weak ROCK and Clayey SAND infill soil

Drilling of the Borehole ongoing up to 30.0m depth.

SH N BH No.1

Summary

Appendix 5: Chemical Test

			SOIL PH C	ONTENT RESI	JLTS REPORT	
Project:	Kawaala Su	ubstation				
Samplin	Date: 01/	12/2015 to 03	/12/2015			
Site Loca	tion: Kawa	aala Substation	ı			
Testing I	Date: 15 De	ecember, 2015				
Test Me	thod: ASTN	И G 51				
					1	1
TE ST NO	DEPTH (m)	TRIAL 01	TRIAL 02	AVERAGE PH VALUE	SAMPLE DESCRIPTION	REMARKS
BH01	5	6.6	6.6	6.6	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Slightly Acidic
	10	6.86	6.7	6.8	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Slightly Acidic
	15	6.94	6.91	6.9	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	Slightly Acidic
	20	6.86	6.86	6.9	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Slightly Acidic

Draft Detailed Geotechnical Report

CHLORIDE CO	ONTENT RI	ESULTS REPORT		
Project: Kawa	aala Subst	ation	·	
Sampling Dat	te: 01/12/	2015 to 03/12/201	.5	
Site Location	: Kawaala	Substation		
Testing Date	: 15 Decen	nber, 2015		
Ref. Test Me	thod: ASTI	M D 512		
				,
BOREHOLE NO.:	DEPTH (M)	CHLORIDE CONTENT (%)	VISUAL SAMPLE DESCRIPTION	REMARKS
	5	0.073	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Mild Concentrations of Chlorides
	10	0.061	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Mild Concentrations of Chlorides
BH - 01	15	0.061	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	Mild Concentrations of Chlorides
	20	0.044	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Mild Concentrations of Chlorides

Draft Detailed Geotechnical Report

SULPHATE CONTE	NT DESILITS D	PEDORT		
Project: Kawaala		LI OKI		
Sampling Date: 0:		03/12/2015		
Site Location: Kay		• •		
Testing Date: 15 [December, 201	15		
Ref. Test Method		-		
			I .	<u> </u>
BOREHOLE NO.:	DEPTH (m)	SULPHATE CONTENT (%)	VISUAL SAMPLE DESCRIPTION	REMARKS
	5	0.61	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Moderate Concentrations
	10	1.32	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Severe Concentrations
BH - 01	15	1.77	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	
	20	2.14	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Very Severe Concentrations

Draft Detailed Geotechnical Report

Appendix 6: Specific Gravity

Specific Gravity Tes	t Report										
Project: Kawaala Su	bstation										
Date: 20/12/2015											
Location: Kawaala S	ubstation										
Test Method: ASTM	D 854										
Depth (m)		5	10	11		15		20		30	
Pyknometer label		1	2	TS	KB	MA	KN	AK	NM	TS	LG
Mass of bottle +Soil + Water (g)	m ₃	185.1	196.1	87.4	85.1	87.5	84.8	86.3	85.4	87.7	84.8
Mass of bottle +Soil + Water (g)	m ₂	95.7	102.4	38.0	36.9	37.3	37.1	35.3	38.1	40.4	36.5
Mass of bottle full of water (g)	m ₄	159.8	171.4	81.2	78.9	81.3	78.7	80.1	79.3	81.6	78.7
Mass of density bottle (g)	m1	52.9	61.0	28.0	27.0	27.3	27.1	25.2	28.1	30.4	26.4
Mass of soil sample alone (g)	m ₂ -m ₁	42.8	41.4	10.0	9.9	10.0	10.0	10.1	10.0	10.0	10.0
Mass of water in full bottle (g)	m ₄ -m ₁	106.9	110.4	53.2	51.9	54.0	51.6	54.9	51.2	51.2	52.3
Mass of water used (g)	m ₃ -m ₂	89.4	93.7	49.4	48.2	50.2	47.7	51.0	47.4	47.3	48.3
Volume of soil particle(g)	(m ₄ -m ₁)- (m ₃ -m ₂)	17.5	16.7	3.8	3.7	3.8	3.9	3.9	3.8	3.9	3.9
Particle Density (specific Gravity)	GS=[(m ₂ - m ₁)]/[(m ₄ - m ₁)-(m ₃ - m ₂)]	2.45	2.48	2.63	2.68	2.63	2.59	2.61	2.62	2.55	2.55
Average Particle Density (specific Gravity)		2.45	2.48	2.65		2.61		2.62		2.55	

45

Appendix 7: Natural moisture content

Depth (m)	3	5	6	10	11	12	15	16	18	20	24	25	27	30
Natural Moisture Content (%)	26.2	22	22.7	19	21.5	10.9	19.3	25.8	24.2	25.8	22.6	20.7	22	17.6

Draft Detailed Geotechnical Report

Appendix 8: One-Dimensional Consolidation (Oedometer test)

Project :	Kawaala	Substation					Job ref.			
,							Borehol	e No	BH01	$\overline{}$
Soil descr	intion :						Sample		1	
							Depth		5m	
							Date		10/12/2015	$\overline{}$
				Test method:		ASTM D 24:				
Machine r	10.			en diameter: "	75 m	m Height H.		20 mm		
Cell no.3			Height o	of solids H.		12.19674	141			
Ring no.3				oids ratio e.		0.639782	244			
/OIDS RA	TIO				COMPRESS			COEFFICIEN	IT OF	
	_				Increment	al				
	Pressure P	Cumulative compression	Consolidated							Permeabilit
	kPa		height				m, =			Permeanuit
ncremen	kPa	(DH) mm	H=H o-(DH)	$e = \frac{H - H_{\perp}}{H_{\perp}}$			$\delta H = 1000$		$c_{r} = \frac{0.111\overline{H}^{2}}{}$	
t no.	-	m		н.	111.1111	Pressure	H . δP	t .	I 100	I
	1	1		l	Height change	change	11 01	$\overline{H} = \frac{H_1 + H_2}{}$	l	I
				1	dH	dP	1	n =	1	k, c,ρ,grr
				Voids ratio	mm	kPa	m ² /MN	-	m²/year	m/sec
0	0	0	20	0.640	0	0	111 ///219		iii/yeai	
1	20	0.874	19.126	0.568	0.874	20	2.285	19.563	-	_
2	40	1.501	18,499	0.517	1.501	20	4.057	18.8125	11.50	1.4513E-0
3	80	1.839	18.161	0.489	0.338	40	0.465	18.3300	5.57	8.0618E-1
4	160	2.402	17.598	0.443	0.563	80	0.400	17.8795	8.95	1.1134E-0
5	320	3.025	16.975	0.392	0.623	160	0.229	17.2865	5.35	3.8175E-1
6	640	3.736	16.264	0.333	0.711	320	0.137	16.6195	3.68	1.5639E-1
7	1280	4.456	15.544	0.274	0.720	640	0.072	15.9040	3.15	7.0919E-1
	1200	4.430	10.044	0.274	0.720	040	0.072	13.7040	3.13	1.00100
0.6 0.9 0.4 0.3 0.3 0.3	100	One-dim	ensional settler	ment respor	- -	Set tlement response line				
0.0	00									
	1	10	100	1000	10000					

Draft Detailed Geotechnical Report

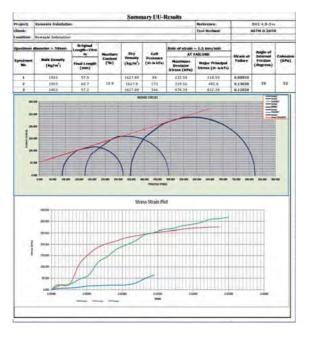
				Consolic	lation test -	- calculations				
Project:	Kawaala	Substation					Job ref			
							Boreho		BH01	
ioil descrip	otion :						Sample	e No.	1	
							Depth		10m	
							Date		10/12/2015	
Test metho Machine no		ASIM	D 2435							_
).			en diameter: 7	75 m			20 mm	1	
Cell no.3				of solids H.		0.70284				_
Ring no.3			Initial v	oids ratio e _o		0.70284	1323			
								1		
/OIDS RAT	10				COMPRESS			COEFFICIEN	IT OF	
	L				Increment	al				
	Pressure P	Cumulative compression	Consolidated							Permeability
			height				m . =			Permeabut
	kPa	(DH)	H=Ho-(DH)	$e = \frac{H - H_s}{H}$			SW 1000		$c_v = \frac{0.11 \ \overline{H}^{-2}}{}$	
Increment		mm		Н,			$\frac{\delta H}{H}$, $\frac{1000}{\delta P}$	1	C _V =	I
no.				1	Height	Pressure	H . 8P		I_{90}	I
				-	change	change	-	$\overline{H} = \frac{H_1 + H_2}{2}$	l	I
				1	dH	dP	1	2		$k_{v_n}c_v\rho_n g r$
				Voids ratio	mm	kPa	m²/MN		m²/year	m/sec
0	0	0	20	0.703	0	0		-	-	
1	20	0.301	19.699	0.677	0.301	20	0.764	19.8495	-	
2	40	0.712	19.288	0.642	0.712	20	1.846	19.4935	11.97	6.87257E-0
3	80	1.052	18.948	0.613	0.340	40	0.449	19.1180	10.23	1.42756E-0
4	160	1.543	18.457	0.571	0.491	80	0.333	18.7025	5.80	5.99958E-
5	320	2.092	17.908	0.525	0.549	160	0.192	18.1825	9.26	5.51923E-
6	640	2.775	17.225	0.467	0.683	320	0.124	17.5665	13.50	5.20382E-
7	1280	3.510	16.490	0.404	0.735	640	0.070	16.8575	3.54	7.66924E-
0.80		One-dime	nsional settlen	nent respon:	se					
0.70										
0.70										
0.60			\sim				-			
© 050							-			
© 0.50	·			\			-			
E 0.40						Settlement				
						response line				
B 0.30										
0.20	1									
0.10										
							-			
0.00							-			
	1	10	100	1000	10000		-			
			fective stress (lo							

Draft Detailed Geotechnical Report

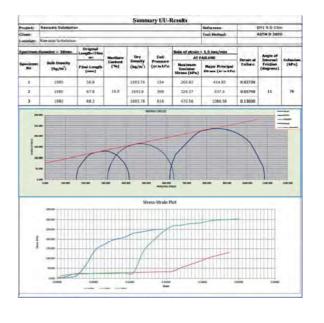
rojec	ct: K	awaala	Substation							Job ref.			
•										Boreho	le No	BH01	
oil de:	scriptio	in:								Sample	No.	1	
										Depth		15m	
										Date		10-20/12/2015	
	ethod:		ASTM	D 2435									
lachin						en diameter: 5	0.47	Height			20 mr	n	
ell no						of solids H,		10.590					
ing no).				Initial v	oids ratio e _o		0.8885	67294				_
OIDS	RAIIU						COMPRES Incremen		_		COEFFICIE	NI OF	_
	Pr	ressure	Cumulative	Consolio			incremen	tai					Permeability
	- 1-	kPa	(DH)	H=H		H - H	1			, =	1	$0.197 \overline{H}^2$	· concaolity
ncrem	ent	ni u	mm	11-11-11	2011)	$e = \frac{H - H_s}{H}$				H 1000	n . n	C _v =	
no.	- 1					1 '	Height	Pressure	Н	, δP	$H = \frac{H_1 + H_2}{H_2}$	*50	
						l	change	change			4		
							dH	dP					k _v "c _v ρ"gm,
	_					Voids ratio	mm	kPa	_	m²/MN		m²/year	m/sec
0		0.00	0	20		0.889	0	0	_			-	
- 1		73.52	0.136	19.8		0.876	0.136	73.52	_	0.093	9.966	64.2751895	1.86197E-0
2		147.05	0.242	19.7		0.866	0.242	73.53	_	0.167	9.9395	48.71148439	2.52407E-0
3		294.10	0.344	19.6		0.856	0.102	147.05	_	0.035	9.914	10.1769915	1.11718E-1
4	5	88.19	0.472	19.5	28	0.844	0.128	294.09		0.022	9.882	20.22279957	1.40209E-1
			One-dimen	sional se	ttleme	ent response			+	-	0.079		
	0.890												
	0.870												
9	0.850							-Settlement					
0	U.85U						· -	response line					
ratio	0.830												
	0.030												
/old	0.810												
	0.790								-	-			
										-			
	0.770								-				
	1.0	00	10.00		100	0.00	1000.00		+	+			

4

Soil descrip Test metho Machine no Cell no.	otion :	Substation					Job ref.			
est methi Machine ni Cell no.										
est methi Machine ni Cell no.							Boreho		BH01	
Machine no Cell no.	wi.						Sample	No.	1	
Machine no Cell no.	ud:						Depth		20m	
Machine no Cell no.	od:						Date		10-20/12/2015	
Cell no.		ASTM	D 2435							
).			en diameter: 5	0.47	Height F		20 mr	n	
			Height o	of solids H.		10.9655				
ling no.			Initial v	oids ratio e.		0.82389	9371			
OIDS RAT	10				COMPRES			COEFFICIEN	II OF	_
	Pressure	Cumulative	Consolidated		Increment	aı				
	P	compression	height							Permeshility
	kPa	(DH)	H=H (DH)	H _ H	l		м , =	1	$0.197 \ \overline{H}^2$	- containing
Increment	Nr d	mm (DIII)	11-11 ₀ *(LN1)	$e = \frac{H - H_s}{H_s}$	l		δH 1000	_ H ± H	C/ =	
no.				1 ",	Height	Pressure	H , δP	$\overline{H} = \frac{H_1 + H_2}{I}$	I 50	
	l	1 1		1	change	change	1	4	I	
				1	dH	dP	1	1	1	k _v "c _v ρ _u gm
				Voids ratio	mm	kPa	m²/MN	1	m²/year	m/sec
0	0.00	0	20	0.824	0	0	-	-	-	
1	73.52	0.114	19.886	0.814	0.114	73.52	0.078	9.9715	128.692306	3.12153E-0
2	147.05	0.234	19.766	0.803	0.234	73.53	0.161	9.9415	25.58382202	1.28133E-0
3	294.10	0.336	19.664	0.793	0.102	147.05	0.035	9.916	12.72637253	1.39647E-1
4	588.19	0.428	19.572	0.785	0.092	294.09	0.016	9.893	8.444935848	4.19886E-1
0.850 0.840 0.830 0 0.820 0 0.810 12 0.800 12 0.790 0.790		One-dime	ensional settlem	nent respon:	se _	—Settlement response line				
0.770 0.760 0.750		10.00) 10	0.00	1000.00					

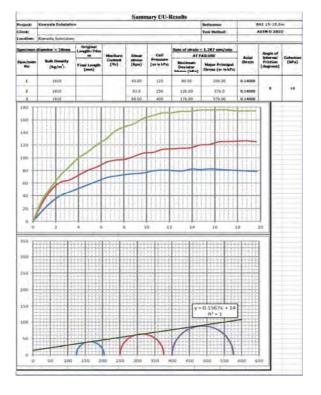

Draft Detailed Geotechnical Report

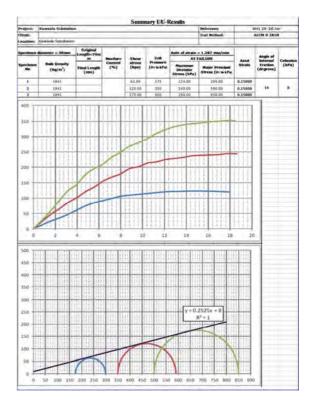
Signethol No. SH01	Desired	V	C. batatle.		CUITSUIL	minii test -	- calculations	Job ref.		1	
Sample No. 1 1 1 1 1 1 1 1 1	Project:	ĸawaala	oudstation						- N-	DUOS	_
ASTM D 2435 Specimen diameter 50.47 Septim 10-20/12/2015 Sections no Septim 10-20/12/2015 Sections no Septim 10-20/12/2015 Sections no Septim 10-20/12/2015 Septim 1		_					_				
Set method: ASTM D 2435 Septemen diameter: \$0.47 Height H. 20 mm	out descrip	JUDA:							NU.		_
Section ASTM D 2435 Sect											_
Machine no. Specimen alimeter 50.47 Healph 1 20 mm		_	1071	0.0105				Date		10-20/12/2015	
Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Pressure Cumulative Consolidated Cons			ASIM	U Z435		0.48					
Initial series ratio).				0.47			20 mr	n	
Compression Compression											_
Pressure Pressure	Ring no.			Initial vi	oids ratio e		0.690414	1508			
Pressure Pressure									I		
Pressure Cumulative Comoldated Pressure Pressure Cumulative Pressure Pre	VOIDS RAT	10							COEFFICIE	NT OF	
Voids ratio	Increment	P	compression (DH)	height	$c = \frac{H - H_s}{H_s}$	Increment	al	δH 1000	- H.+H.	$C_v = \frac{0.197 \overline{H}^2}{r}$	Permeability
0 000 0 20 0.990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	no.					change dH	change dP		$H = \frac{-1}{4}$		k _v "c _v ρ _a gm,
1 73.5.7 0.062 19.938 0.685 0.062 73.5.7 0.002 9.8945 9.49213281 3.89027-2 2 1410.6 0.144 19.855 0.678 0.144 73.5 0.099 9.945 6.42913281 3.89027-3 3 294.10 0.232 19.88 0.671 0.088 147.05 0.030 9.942 9.30413395 8.7818E-1 4 588.19 0.408 19.592 0.656 0.176 294.09 0.031 9.898 17.4899459 1.5818E-1 One-dimensional settlement response				0.0		_			_	m ^r /year	m/sec
2 147.05 0.144 19.855 0.278 0.144 73.53 0.099 99.64 6.2429343 1971254 3 294.10 0.232 19.786 0.271 0.089 147.05 0.030 0.942 3.0413258 8781854 4 588.19 0.408 19.592 0.656 0.176 294.09 0.031 9.898 17.48994279 1.861954 One-dimensional settlement response											0.000075.4
3 294.10 0.232 19.88 0.671 0.088 147.05 0.030 9.942 9.30414395 8.RHSE1 4 588.19 0.468 19.592 0.656 0.176 294.09 0.031 9.898 17.4899459 1.8RHSE1 One-dimensional settlement response											
4 \$88.19 0.408 19.592 0.556 0.176 294.09 0.031 9.898 17.48994/9 1.6919E-1											
One-dimensional settlement response 0.700 0.700 0.600 0.600 0.600 1.00											
0.750	4	588.19	0.408	19.592	0.656	0.176	294.09	0.031	9.898	17.48994679	1.6619E-10
	void ratio (e)	1.500				_					
vertical effective stress (log scale)		1.00	10.	00 10	10.00	1000.00		_	-		
			vertical	effective stress (log	scale)						

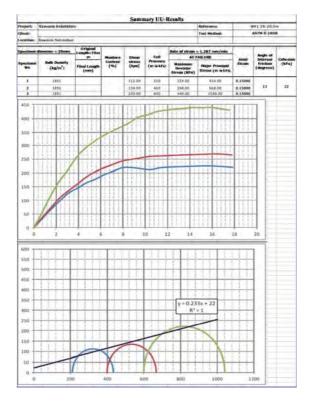

.

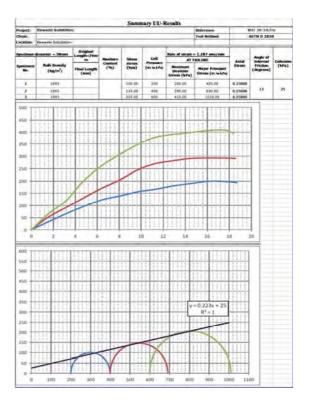
Draft Detailed Geotechnical Report

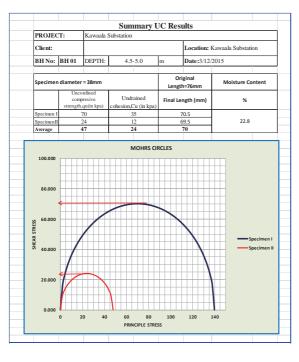
Appendix 9: Undrained Triaxial Results



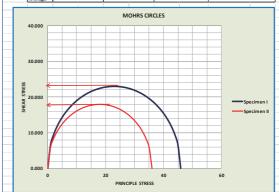

Draft Detailed Geotechnical Report


53




Draft Detailed Geotechnical Report

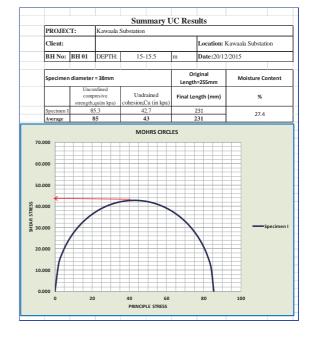
Draft Detailed Geotechnical Report


Appendix 10: Unconfined compressive Results

Draft Detailed Geotechnical Report

			Summar	y UC R	esults	
PROJECT: Kawaala Substation						
Client:					Location: Ka	waala Substation
	BH 01	DEPTH:	9.5-10	m	Date:3/12/20	-

Specimen	diameter = 38mm		Original Length=76mm	Moisture Content	
	Unconfined compresive strength,qu(in kpa)	Undrained cohesion,Cu (in kpa)	Final Length (mm)	%	
Specimen I	23	12	73.6		
SpecimenII	18	9	72.8	18.7	
Average	21	11	73		



61

Draft Detailed Geotechnical Report

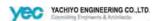
					nmary U	JC Resi	ults		
	PROJECT: Kawaala Substation				i				
	Client:						Location: K	awaala Substation	
	BH No:	BH 01	DEPTH:	11-	11.5	m	Date:20/12/	2015	
	Specimer	diameter					iginal n=192mm	Moisture Content	
		comp strength,	nfined resive qu(in kpa)	cohesion,	rained Cu (in kpa)		ngth (mm)	%	
	Specimen I Average		08 08		54 54		80.45 180	20.4	
70.0									
60.0	000								
50.0	000		$\overline{}$			$\overline{}$			
â									
SIKES 40.0	000							Specime	
30.0								Specime	

60 PRINCIPLE STRESS Draft Detailed Geotechnical Report

61

					ıary (JC Res	ults		
	PROJECT: Kawaala Substation						,		
	Client:							Location: Kawaala Substation	
	BH No:	BH 01	DEPTH:	20-20.5		m	Date:20/12/	2015	
	Specimen	diameter	= 38mm	= 38mm			iginal n=195mm	Moisture Content	
		comp	nfined res ive qu(in kpa)	Undrain cohesion,Cu		Final Le	ngth (mm)	%	
	Specimen I		5.0 55	32.5 33		177		28.5	
	Average	,	05	33			177		
SHEAR STRESS	000		_					Specimen	
0.	000		20	40 PRINCIPLE	CTRECC	6	0	80	

ntended for


Uganda Electricity Transmission Company Limited (UETCL)

Document type
Geotechnical report

April, 2016

GREATER KAMPALA TRANSMISSION NETWORK PROJECT IN THE REPUBLIC OF UGANDA

MUKONO SUBSTATION DRAFT DETAIL GEOTECHNICAL REPORT

MUKONO SUBSTATION DRAFT DETAIL GEOTECHNICAL REPORT

 Revision
 00

 Date
 21.04.2016

 Prepared by DA/LN
 LN

 Approved by DA

Yachiyo Engineering Co. Ltd, 5-20-8 Asakusabashi, Taito-ku Tokyo 111-8648, Japan

Crusader House Plot 3 Portal Avenue P.O. Box 7544, Kampala Uganda

Draft Detailed Geotechnical Report

EXECUTIVE SUMMARY

This report mainly deals with the geological and geotechnical investigation findings of Mukono Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed in March, 2016. In addition, relevant non-geotechnical parameters are outlined. The evaluation of the field and laboratory investigations is included in this report.

Mukono substation is located in Mukono district, Central Uganda that encircles Kampala, Uganda's capital city. It is located approximately 26km by road from the capital centre, Kampala. The approximate centroid of the project area coordinates is UTM WGS 84 36N 480723.000mE 42566.000mN. The elevation of the project area varies between 1170 to 1100amsl.

Mukono substation is a non-existing substation without developments on the site. The project area incorporated within the site boundary is approximately 397,128.44m². The site investigation confirmed that the geological sequence at the site generally comprises of a inorganic Sandy Lean CLAY from ground level to a depth of 1.5m, overlying inorganic Sandy SILT up to a depth of 7.5m, underlain by Poorly Graded SAND with Clay and Gravel up to a depth of 13.5m, overlying Silty SAND with Gravel up to a depth of 16.5m underlain by Silty SAND up to a depth of 28.5m.

Draft Detailed Geotechnical Report

CONTENTS

EXECUTIVE SUMMARY	III
1 INTRODUCTION	1
1.1 About report	1
1.2 Background	1
1.3 The Consultant	1
1.4 Scope of services	2
2 SITE DESCRIPTION	3
2.1 Location	3
2.2 Topography	3
2.3 Climate	4
3 GEOTECHNICAL INVESTIGATION	5
3.1 Methodology	5
3.2 Field Investigations	6
3.2.1 Borehole	6
3.2.2 Soil profile	7
3.2.3 Ground water	7
3.2.4 The Standard Penetration Test (SPT)	7
3.3 Laboratory Investigations	10
3.3.1 Moisture content	10
3.3.2 Atterberg Limits	11
3.3.3 Particle size distribution	12
3.3.4 Specific Gravity	14
4 CONCLUSIONS AND RECOMMENDATIONS	15
4.1 Conclusions	15
4.2 Recommendations	15
5 REFERENCES	16
6 APPENDIX	18

.

iv

LIST OF FIGURES Figure 2. 1: Site location	***
Figure 3- 1: Trend of Natural Moisture Content	
LIST OF TABLES Table 3- 1: Borehole location coordinates Table 3- 2: Standard penetration test result for BH1	
Appendix 1: Borehole logs	
Appendix 2: Drilling pictorial logs	10
Appendix 3: Borehole layout	1
Appendix 4: Soil Profile	2
Appendix 5: Standard Penetration test result	1
Appendix 6: Natural Moisture Content	1
Appendix 7: Summary of Texture Classification	16
Appendix 8: Specific Gravity	7
Appendix 9: Chemical Test	7
Appendix 10: One-Dimensional Consolidation (Oedometer test)	3
Appendix 11: Atterbeg Test Results	
Appendix 12: Bulk Density	
Appendix 13: Unconsolidated undrained triaxial tests result	
ppendix 14: Unconfined Compressive Strength	

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
BGL	Below Ground Level
ВН	Borehole
DGSM	Department of Geological Survey and Mines
JICA	Japan International Cooperation Agency
km	Kilometer
m	Meter
masl	Above Mean Sea Level
SPT	Standard Penetration Test
UTM	Universal Transverse Mercator
YEC	Yachiyo Engineering Company Ltd
°C	Degrees Celsius

Draft Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding for Mukono substation. It discusses the index and engineering properties of soil based on the geotechnical field investigation and laboratory which was conducted in March, 2016. Relevant non-geotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Yachiyo Engineering Company Ltd (YEC) were commissioned by the Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Ltd plans to construct a new substation and associated infrastructure at the proposed site. Geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Mukono substation and transmission line, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited was appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 11th March 2016 and the assignment commenced on 12th March, 2016.

Draft Detailed Geotechnical Report

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on 14th March, 2016. Following that, detailed investigations commenced on 16th March, 2016. The field and laboratory tests were conducted by Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Mukono substation Topographic surveying and Geotechnical investigations contract.

1.4 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was performed. Newplan limited conducted the geotechnical investigations as per the general guidance proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below:

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles;
- 3. Carrying out standard penetration tests;
- Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), consolidation tests and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

Draft Detailed Geotechnical Report

2 SITE DESCRIPTION

2.1 Location

The proposed Mukono substation is located in Mukono district, Central Uganda that encircles Kampala, Uganda's capital city. It is located approximately 26km by road from the capital centre, Kampala. The approximate centroid of the project area coordinates is UTM WGS 84 36N 480723.000mE 42566.000mN.

The project area incorporated within the site boundary is approximately 397,128.44m². It is mainly farm land and forest which is sparsely populated with a few habited settlements.

Figure 2. 1: Site location

2.2 Topography

A detailed topographic survey was carried out by Newplan in March 2016. This indicated the topography of the site is undulating with the elevation of the project area varying between 1170 and 1100amsl.

2.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 °C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

Draft Detailed Geotechnical Report

3 GEOTECHNICAL INVESTIGATION

3.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation.

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in March, 2016. This investigation was limited to detail geotechnical investigation mainly for preliminary design stage investigation.

This preliminary design detailed geotechnical investigation typically includes four borings and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation.
- Laboratory tests on samples recovered from borehole.

5

Draft Detailed Geotechnical Report

3.2 Field Investigations

The site work was executed on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following:

- Rotary drilling of one boreholes to a maximum depth of 30m;
- Collecting disturbed and undisturbed samples;
- In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.5m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760mm:
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- Counting the number of blows to drive the sampler each 75 mm increment of a
 total of 450 mm penetration. The blow count for the first 150 mm increment was
 discarded and the sum of the blow counts for the second and the third 150 mm
 increment was recorded as the SPT 'N' value.

3.2.1 Borehole

One borehole were drilled as per ASTM D 5783 and terminated to depths 30mBGL. Location of the borehole GPS coordinate is summarized in below Table 3.1 (WGS84 Geographic coordinate system). The drilled borehole log were prepared as per ASTM D 2488. The exploratory borehole records and log is included in Appendix 1 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring.

Table 3- 1: Borehole location coordinates

Borehole	Х	у
Borehole 1 (BH1)	480723.000mE	42566.000mN

Draft Detailed Geotechnical Report

3.2.2 Soil profile

The site investigation confirmed that the geological sequence at the site generally comprises of a inorganic Sandy Lean CLAY from ground level to a depth of 1.5m, overlying inorganic Sandy SILT up to a depth of 7.5m, underlain by Poorly Graded SAND with Clay and Gravel up to a depth of 13.5m, overlying Silty SAND with Gravel up to a depth of 16.5m underlain by Silty SAND up to a depth of 28.5m. (See Appendix 1 up to 4).

3.2.3 Ground water

To determine the elevation of the ground water table, observations were carried out during the drilling. These groundwater observations in the boreholes were conducted as per ASTM D 4750.

The ground water table was not encountered within a depth of 28.5m depth from ground surface. This indicates the ground water table is deep far from the lowest foundation footing and free from hydrostatic uplift. The Ground water observation result is presented in the borehole logs Appendix 1.

3.2.4 The Standard Penetration Test (SPT)

The standard penetration test (SPT) were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials (ASTM) D 1586. One borehole was drilled and 19 standard penetration tests over 28.5m depth of borehole were conducted. SPTs test were carried out at 1.5m intervals.

Information obtained from SPT combined with other geotechnical laboratory test results, on site topography and area climatic records, provides basic planning material essential

to the logical and effective development of substation and other infrastructure.

The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N_{60}) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed *et al.* (1985) and Skempton (1980). Furthermore, the undrained shear strength (c_{u}) of the soil was determined using the corrected standard penetration values (N_{60}) as per Hara *et al.* (1971) and Peck *et al.* (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{ut}) and approximate allowable bearing capacity (Q_{ut}) were computed using the derived undrained shear strength (c_{u}) of the soil. Overconsolidation (OCR) was determined using Mayne and Kemper (1988).

A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation of allowable bearing capacity (Q_{all}). Detailed bearing capacity results are attached as Appendix 1 and the summary of undrained shear strength (c_{ul}) given in Table 3.2.

Depending on the standard penetration value (N_{60}) and unconfined shear strength result, the insitu soil comprises of soft to loose consistency Sandy Lean CLAY soil from the ground surface to a depth of 7.5m, underlain by denes to very stiff consistency Clayey SAND soil up to a depth of 10.5m, overlying by firm to loose consistency Clayey SAND with Gravel up to a depth of 18m, underlain by hard weathered rock up to a depth of 28.5m. Furthermore, the insitu soil is over consolidated.

Draft Detailed Geotechnical Report

BH1

result for E

Standard penetration test

Draft Detailed Geotechnical Report

3.3 Laboratory Investigations

Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Comatlab limited. The following lab tests have been carried out on samples taken from the different boreholes:

- Moisture content
- Liquid limit
- Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)

3.3.1 Moisture content

Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on more than 19 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2216. The test result is presented in Figure 3.1 and Appendix 6 with respect to depth. Natural moisture content of the insitu soil varied between 5.5 and 31%.

Draft Detailed Geotechnical Report

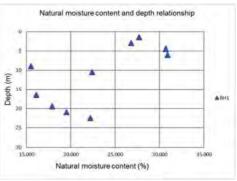


Figure 3- 1: Trend of Natural Moisture Content

3.3.2 Atterberg Limits

To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on samples collected from borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 19 atterberg limit tests were conducted. The test result is presented in Appendix 11. All the result obtained from atterberg laboratory tests were used for soil classificatio.

Shrinkage limit tests were also conducted on samples recovered from the boreholes as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in appendix 11. All Shrinkage limit test results were less than 15 percent, this indicates that Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

3 3 9 Particle size distribution

To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 19 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test results are presented in Figure 3-2 and Appendix 4.

| Particle | Particle

Figure 3-2: Particle distribution curve for BH1

Detailed Geotechnical Report

3.3.4 Specific Gravity

To determine the specific gravity of the soil grains specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The specific gravity of the project area soil varies between 2.59 and 2.79 and the average specific gravity is 2.68.

Detailed Geotechnical Report

Draft Detailed Geotechnical Report

4 CONCLUSIONS AND RECOMMENDATIONS

- 4.1 Conclusions
- 4.2 Recommendations

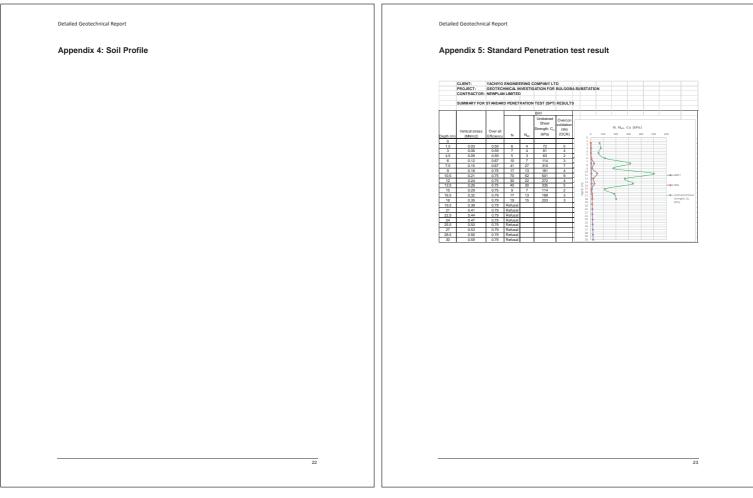
14

5 REFERENCES

- AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes
- D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
- D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation
- D 2434 Standard Test Method for Permeability of Granular Soils (Constant Head)
- D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System).
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of Soils
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Detailed Geotechnical Report

- D 4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)
- D 4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
- D 4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Method
- G 51 Test Method for pH of Soil for Use in Corrosion Testing
- Bowles Joseph E; Foundation Analysis and Design, Second Edition. McGraw Hill Companies, Tokyo, 1997.
- California Department of Transportation, 2012. Corrosion Guidelines version 2.0.
- Department of Geological Surveys and Mines, 2012. Geological Map of Uganda sheet No 70.
- VICKERS, BRIAN (1978); Laboratory work in Civil Engineering Soil Mechanics. Granada Publishers, London.
- 6. G.E Barney; Principles and Practice of Soil Mechanics, First Edition. Macmillan
- Department of US Army Corps of Engineers, CECW-EG Engineer Manual 1110-1-1904 Engineering and Design of SETTLEMENT ANALYSIS, Washington, DC 20314-1000, 1990.
- MJ Tomlinson; Foundation Design & Construction, Sixth Edition. Addison Wesley Longman Limited, Edinburgh Gate, Harlow Essex CM20 2JE, 1998.
- R.F.Craig. E & FN Spon, 2004. CRAIG'S SOIL MECHANICS. Seventh Edition, London.


Detailed Geotechnical Report

6 APPENDIX

Detailed Geotechnical Report

Appendix 1: Borehole logs

Detailed Geotechnical Report	Detailed Geotechnical Report
Appendix 2: Drilling pictorial logs	
	Appendix 3: Borehole layout
20	21
Detailed Geotechnical Report	Detailed Geotechnical Report
Appendix 4: Soil Profile	Appendix 5: Standard Penetration test result
	CLIENT: YACHYO ENGNEERING COMPANY LTD PROJECT: GEOTECHNICA, INVESTIGATION FOR BULODBA SUBSTATION CONTRACTION: INVESTIGATION FOR BULODBA SUBSTATION
	SHIMMADY FOR STANDARD DENETRATION TEST (SDT) DESHI TE

CLIENT: YACHIYO ENGINEERING COMPANY LTD
PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION
CONTRACTOR: NEWPLAN LIMITED

SUMMARY FOR EVALUATION OF ALLOWABLE BEARING CAPACITY BASED ON FIELD SPT 'N' VALUES

BH No.	Depth (m)	Predominant Soil Fraction	Measured SPT N' Value N	Over all Correction factor C _N	Corrected SPT W Value N ₆₀	Undrained Cohesion C _u (kPa)	Ultimate Bearing Capacity Q _{ult} (kPa)	Allowable Bearing Capacity Q _{all} (kPa)
	0.00							
	1.00		6	0.59	4	72	371	124
	2.00	1	7	0.59	4	81	414	138
	3.00	1	5	0.59	3	63	325	108
	4.00		10	0.67	7	114	586	195
	5.00		41	0.67	27	315	1618	539
	6.00		17	0.75	13	181	930	310
	7.00		70	0.75	52	501	2577	859
	8.00		30	0.75	22	272	1400	467
	9.00		40	0.75	30	335	1722	574
BH01	10.00		9	0.75	7	114	588	196
	11.00		17	0.79	13	188	965	322
	12.00		19	0.79	15	203	1046	349
	13.00		Refusal	0.79				
	14.00		Refusal	0.79				
	15.00		Refusal	0.79				
	16.00	1	Refusal	0.79				
	17.00		Refusal	0.79				
	18.00		Refusal	0.79				
	19.00		Refusal	0.79				
	20.00	L	Refusal	0.79				

The undrained shear strength (w) of the soil is determined using the corrected standard penetration values (N₀₀) as per Hara et al. (1971) and Peci al. (1974) empirical relationship respectively. Cu = Pa*0.29*N60*0.72, where Pa is Atmospheric pressure and qult = 5.14 x Cu. Qull is evaluated unitare actors of actor of 3

Detailed Geotechnical Report

Appendix 6: Natural Moisture Content

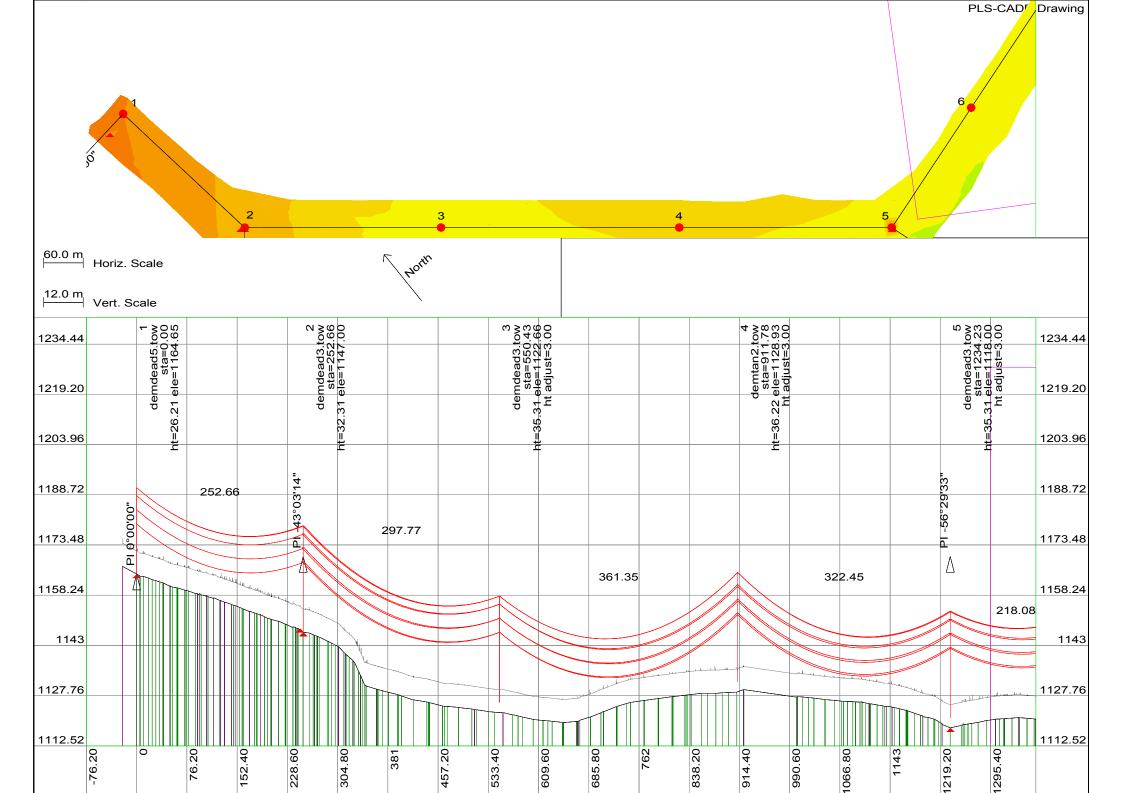
| No. 10 | N

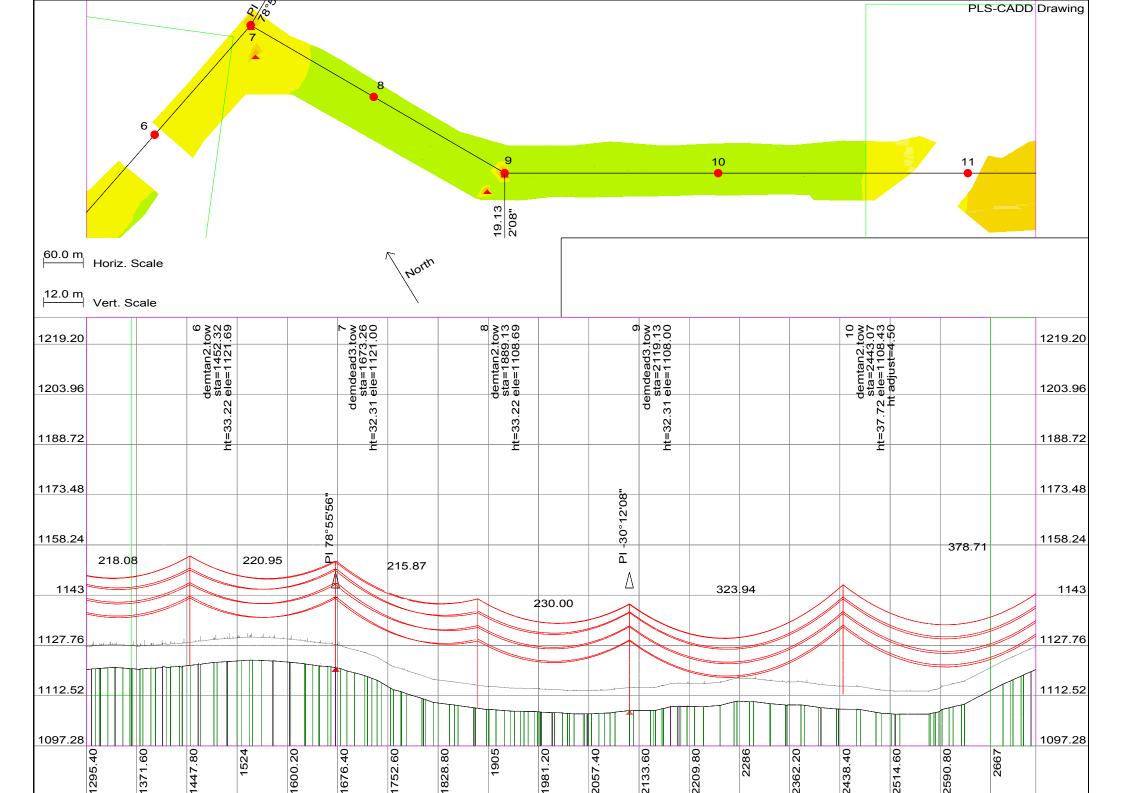
Appendix 7: Summary of Texture Classification

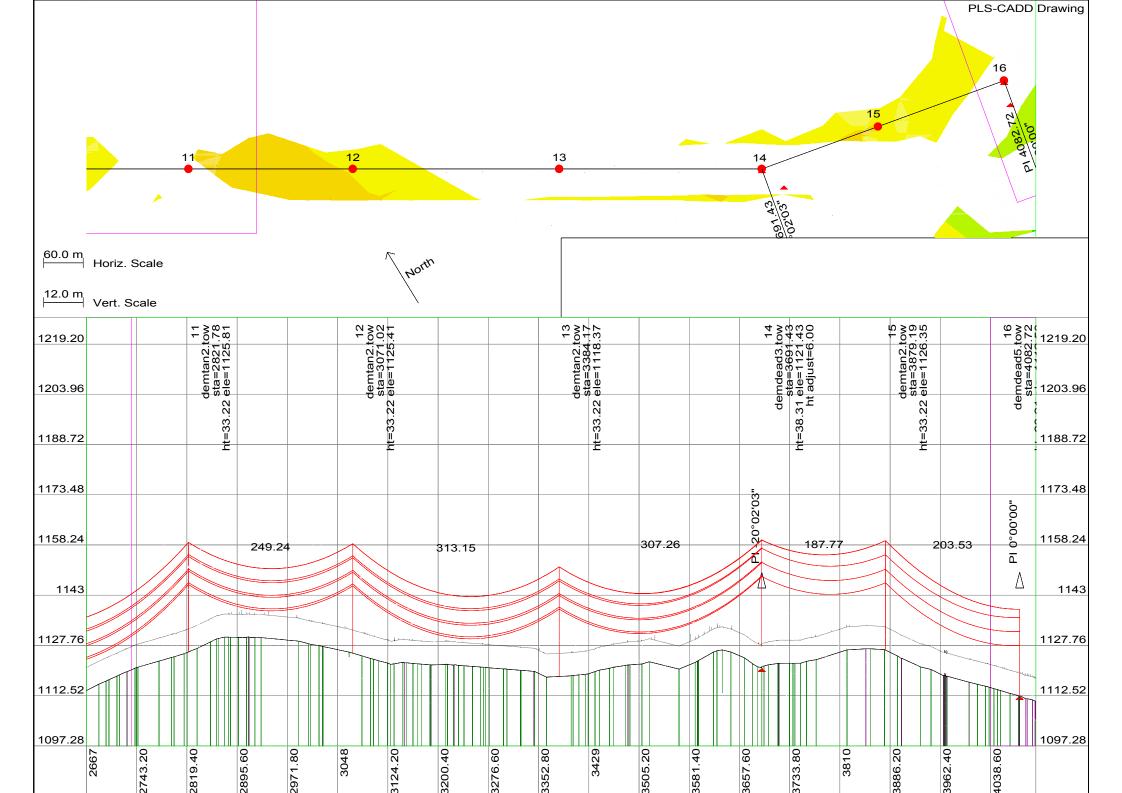
Depth (m) Detailed Geotechnical Report

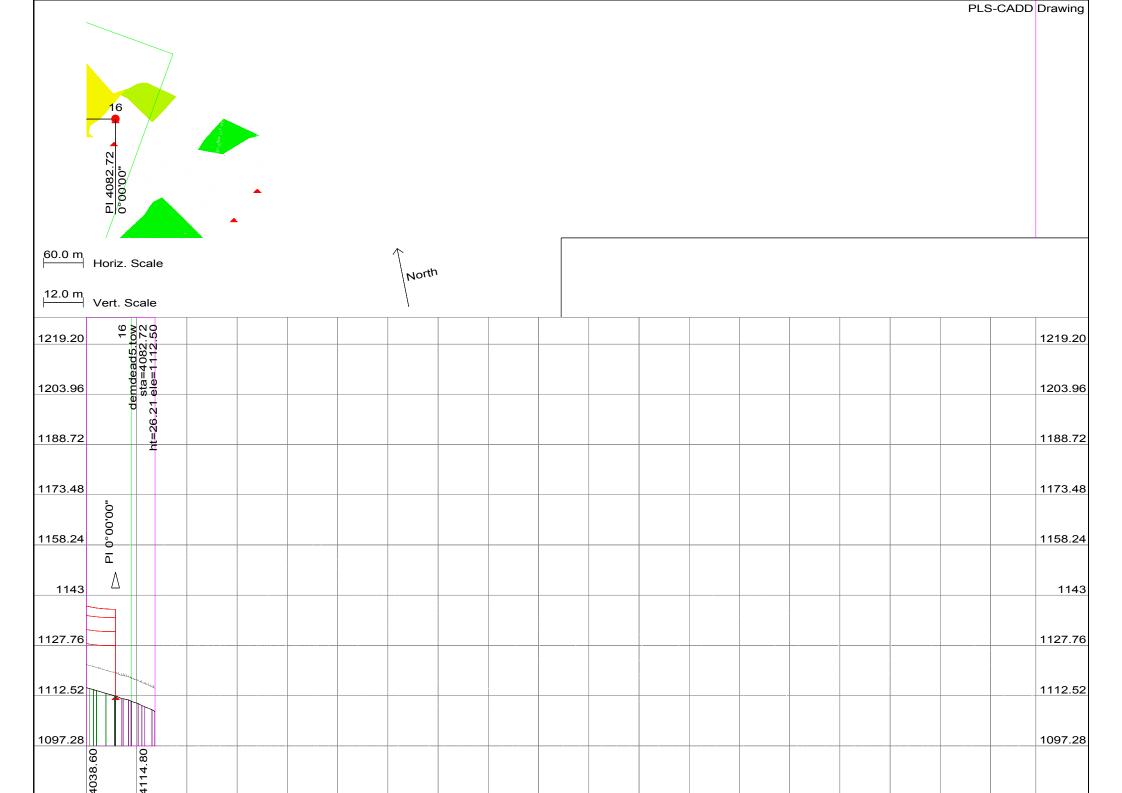
Appendix 8: Specific Gravity

Appendix 9: Chemical Test


Appendix 11: Atterbeg Test Results Depth (m) Sample Description NMC 1.5 Inorganic Sandy Lean CLAY 49.8 28.0 21.8 27.7 Inorganic Sandy SILT 47.1 29.0 18.2 26.8 30.7 4.5 30.3 21.5 Appendix 10: One-Dimensional Consolidation (Oedometer test) Inorganic Sandy SILT 28.3 Inorganic Sandy SILT 17.8 27.3 13.2 7.5 45.0 Poorly Graded **SAND** with Clay and Gravel 15.5 41.2 30.5 6.4 22.4 Poorly Graded **SAND** with Silt and Gravel Poorly Graded **SAND** with Clay and Gravel 5-5 21.3 8.2 11.3 13.5 29.5 4.3 Silty SAND with Gravel 15.0 30.1 22.6 7.5 4-3 9.3 16.5 Silty **SAND** with Gravel 28.4 7.9 16.1 18.0 Silty SAND 32.6 3.6 9.4 25.4 7.2 Clayey SAND 17.9 Silty SAND 41.0 30.8 27.0 10.2 4-3 19.5 Silty SAND 25.7 9.6 28.5 35-3 6.4 22.2 Detailed Geotechnical Report Detailed Geotechnical Report Appendix 12: Bulk Density Appendix 13: Unconsolidated undrained triaxial tests result


Detailed Geotechnical Report


31


Appendix 14: Unconfined Compressive Strength

資料-10 220 kV 送電線縦断図 (新ムコノ変電所)

資料-11 他ドナー支援事業の遅延による本事業 の影響について

11. 他ドナー支援事業の遅延による本事業の影響について

他ドナーが融資する事業のうち本事業と関連のあるものは、現時点では本事業の運用開始より もかなり前に運用開始している予定である。しかし、可能性は低いものの想定外の事由によりこ れらの運用開始が本事業の完工よりも遅延することも考えられる。したがって、その場合の影響 について負のリスク管理の一環としてまとめた。

1. 中国輸出入銀行が融資する事業 (ムコノ変電所新設工事) が遅延した場合の影響

ムコノ変電所はナマンベ南変電所およびルジラ変電所の新設と同一契約対象であるため、遅延する場合は次の2ケースが考えられる。しかしながら、両ケースとも運用上の問題は生じない。

(ケース1) ムコノ変電所だけが遅延する

新ムコノ変電所がナルバレ変電所~ナマンベ変電所間の 132kV 送電線に接続できないことから、ナルバレ発電所~ナマンベ変電所間の 132kV 送電線の系統構成が本事業のコンポーネントが適用されない現在の系統構成とほぼ同じ状態になるため、2022 年断面では、通常時は問題ないが、ナルバレ変電所~ムコノ変電所間の 132kV 送電線の N-1 故障時にカンパラ北変電所~ルゴゴ変電所間の 132kV 送電線が 125%、カワラ変電所~ムトゥンドゥエ変電所間の 132kV 送電線が 121%の過負荷となる。しかし、これら過負荷となる送電線の電線は本事業で HTLS 電線に増強されるため、実際には過負荷は生じないものと考えられる。

(ケース2) ムコノ変電所と他の変電所も同時に遅延する

ムコノ変電所, ナマンベ南変電所およびルジラ変電所は主に周辺の工業団地への供給用に新設されるが, 変電所新設遅延に伴い工業団地も新設が遅延することとなり, 負荷が軽減されるため, ケース1よりも潮流条件は緩和される。

【まとめ】

系統運用面:

2022年断面までは、過負荷等の運用上の問題は発生しない。

本事業(JICA)で実施する工事:

・新ムコノ変電所(132kV 母線)からムコノ変電所(132kV 母線)間の接続ケーブルおよび保護リレーおよび通信線の据付

11. 他ドナー支援事業の遅延による本事業の影響について

・新ムコノ変電所(132kV 母線) からナマンベ南変電所用 132kV フィーダー間の接続ケーブルおよび保護リレーおよび通信線の据付

中国輸出入銀行の融資で実施する工事:

- ・上記の JICA の融資で実施する工事に関するケーブルの接続と保護リレーの調整。
- 2. 世界銀行が融資する事業(カワンダ変電所~マサカ変電所 220kV 送電線新設工事)が遅延した場合の影響

ブロバ変電所は 220kV 設備が利用できないため、132kV 1 回線送電線(110MVA)によりカブラソケ変電所とともにムトゥンドゥエ変電所から供給を受ける配電用変電所(132/33kV、40MVA*2)としてのみ利用可能となる。

【まとめ】

系統運用面:

2022年断面までは、過負荷等の運用上の問題は発生しない。

本事業(JICA)で実施する工事:

・ブロバ変電所から 220kV 分岐用鉄塔までの鉄塔,電線および OPGW の設置。

世界銀行の融資で実施する工事:

- ・電線および OPGW を 220kV 分岐用鉄塔で接続。
- ・保護リレーの設定変更など運用開始に向け必要な作業の実施。

以 上

資料-12 UETCLとNFA間の協議議事録

THE REPUBLIC OF UGANDA

MEMORANDUM OF UNDERSTANDING

BETWEEN

UGANDA ELECTRICITY TRANSMISSION COMPANY (UETCL)

AND

NATIONAL FORESTRY AUTHORITY

FOR THE ESTABLISHMENT OF A TRANSMISSION LINE IN A CENTRAL FOREST RESERVE UNDER THE KAMPALA METROPOLITAN TRANSMISSION PROJECT

Drawn By: UETCL Legal Office P.O.Box 7625 Kampala

THE REPUBLIC OF UGANDA

	MEMOR	RANDUM	OF UN	DERSTA	INDING
--	-------	--------	-------	--------	--------

WHEREAS: -

- A. The Authority is statutorily charged with the management of Central Forest Reserves and is duly entitled to regulate activities in forest reserves and to receive compensation towards mitigation measures for any activities in the Forest Reserve.
- B. The Licensee is the owner and developer of a proposed high voltage electricity transmission line under the Kampala Metropolitan Transmission Project that will traverse the Central Forest Reserves Listed in Clause 2 of this Memorandum of Understanding.
- C. The Project will traverse the Acreage to be determined during a joint inventory/survey and assessment of the affected forest reserve by the Authority and the Licensee (Appendix 1).
- D. The Authority shall grant a License to the Licensee to develop a high voltage electricity transmission line to traverse the central forest reserve referred to in **Appendix 1** of this Memorandum of Understanding after the Licensee meeting all conditions set by the Authority and after obtaining all requisite approvals and clearances incidental to the project.
- E. The Parties have reached an understanding in respect of their mutual obligations and responsibilities in relation to the management of and compensation for the impacts of the aforesaid Electricity Transmission Line on the Forest Reserves Listed in Clause 2 and Appendix 1 herein.
- F. UETCL is the authorized Licensee for purposes of making all due payments and coordinating all necessary activities for and on behalf of the Licensee;

THE PARTIES HAVE AGREED AS FOLLOWS:

- In consideration of Paying to the Authority the sum that will be agreed and computed as
 compensation for "The Benefit Stream Foregone", upon detailed forest biomass and
 biodiversity survey and valuation, the Licensee shall have the concession and right to
 establish a high voltage electricity transmission line through the Listed Reserves and shall
 dispose of the growing Stock in the Listed Forest Reserves in accordance with License that
 will be issued by the Authority.
- 2. The Forest Reserve affected by the Kampala Metropolitan Transmission Project that is subject of this Memorandum of Understanding herein Referred to as the "Listed Reserve" is: Nandagi Central Forest Reserves (Appendix 1).

The

股

- 3. The Benefit Stream Foregone for purposes of Computation of the consideration payable to the Authority will be determined and attached hereto and shall be the Biodiversity and Economic Valuation of Compensation to the Authority for Way-leaves and Line Construction in the Listed Reserves. The sum specified shall be the Agreed Total Compensation due to the Authority is full and final compensation to the Authority for the Benefit Stream Foregone and shall exclude license holders.
- 4. The Licensee shall compensate the private tree farmers and license holders found in the path of the way leave separately from and independent of the Authority.
- 5. Upon Signing of this Memorandum of Understanding the Authority shall grant the Licensee and any of its agents and contractors leave to traverse the affected forest area and land to carry out preliminary investigations.
- 6. The Licensee shall exercise the various rights that shall be stipulated in the license conditions to be issued by the Authority upon compensation for the Benefit Stream Foregone.
- 7. The Authority shall provide technical assistance to the Licensee for purposes of carrying out the necessary Forest Clearance activities and disposing of growing stock in the Affected Areas.
- 8. The licensee warrants that acquisition of rights to set up the electricity Transmission Installations in the Listed Reserves and other use and occupancy rights shall be subject to the license.
- 9. This Memorandum shall not apply to Private Tree Farmers or private forests in any other location along the proposed line route. The Licensee agrees and understands that compensation for growing stock to private tree farmers with Licenses from the Authority shall be negotiated and concluded directly with such Private Tree Farmers.
- 10. All Appendices hereto shall be read as one and fully binding as part of this Memorandum of Understanding.
- 11. The Licensee shall before possession of the land obtain an Environmental Impact Assessment Certificate and/or approval from the National Environment Management Authority and all other requisite approvals and clearances incidental to the project.
- 12. Both parties shall carry out a joint biomass and biodiversity assessment and ground survey of the substation and associated transmission corridors at the cost of the Licensee.

K

In the presence of:

Managing Director/CEO

Managing Director/CEO

Managing Director/CEO

ADVOCATE

COMMISSIONER FOR MANAGER

The Common Seal of the NATIONAL FORESTRY AUTHORITY was affixed hereto.

Executive Director

CYCLING DIRECTOR

LEGAL MANAGER

APPENDIX 1

LISTED CENTRAL FOREST RESERVES

S.No	Forest Reserve	Substation Site (Acres)	Transmission Line (Acres)	Total Area affected in Acres
1	Nandagi	TBV	TBV	TBV
	TOTAL	TBV	TBV	TBV

TBV: To Be Verified during a joint biomass and biodiversity inventory and survey in the affected forest reserve

資料-13 環境モニタリングフォーム

Environmental Monitoring Form

1. Pre-construction phase

(1) Comments from the public and NEMA regarding the EIA

Monitoring item	Comments	Response of UETCL
Contents of formal comments from		
the public on the EIA		
Contents of formal comments from		
NEMA on the EIA		

(2) Nandagi Forest Reserve

Monitoring item	Status
Progress of compensation measures	
Replantation progress of endangered flora (e.g.	
Jacaranda mimosifolia)	

2. Construction phase

(1) Noise (L_{Aeq})

Location	Results (LAeq)	Reference standard*	Compliance status	Measures implemented in case of non-compliance
		75 dB (day)		
		50 dB (night)		

^{*:} Maximum Permissible Noise Levels for Construction Site (commercial area), Part IV of Firste Schedule of National Environment (Noise Standards And Control) Regulations, 2003

(2) Air quality $(PM_{10}, PM_{2.5})$

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance
		PM10: 50 μg/m ³ (24hr average)		
		PM2.5: 20 μg/m ³ (24hr average)		

^{*:} WHO Air Quality Guideline

(3) Water quality (pH, DO, COD, SS, turbidity, T-N, T-P, oil and grease)

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance
_				

^{*:} Baseline data

(4) Soil pollution

Location	Record of soil pollution	Action taken

(5) Waste

Location	Record of inappropriate waste management	Action taken

(6) Occupational safety

Location Record of occupational accidents		Action taken		

(7) Ecosystem

Location	Satus	Actions taken
	Describe if any adverse impacts occurred due to construction activities such as accidental animal kills, incidents of poaching, destruction of habitats outside project area, finding of endangered species, intrusion of invasive species	

3. Operation phase

(1) Water quality (SS, turbidity)

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance	

^{*:} Baseline data

(2) Waste

Location	Record of inappropriate waste management	Action taken	

(3) Ecosystem

Location	Satus	Actions taken	
	Describe if any adverse impacts occurred such as bird kills, intrusion of invasive species		

資料-14 ステークホルダーミーティング議事録

1. Meeting with National Forest Authority (NFA)

Week			11		Meeti	ing date	16 March 2016
					Recor	ded by	ВА
Meeting	g/subje	ect	Meeting with National Fo Consultation on GKM. Improvement Project	• • • • •	Total _l	pages	2
Present	Apology	Сору	Name	Organisation		Designation	on
\boxtimes			List attached	NFA			
\boxtimes			Denis Mutaryebwa	NFA		Coordinat	tor Plantations
\boxtimes			Takeshi Sato	JICA Study Team		ESIA Spec	ialist
\boxtimes			Kazu Nogami	JICA Study Team			
\boxtimes			Dr. Isa Kabenge	JICA Study Team		Engineer	
\boxtimes			Brenda Amanda (BA)	JICA Study Team		Engineer	
Item		Upd	ate				
1.		The	oduction e JICA study team was we introductions made. A presenta				
			 Project Location Project and activities com The ESIA process Potential Environmental at Mitigation Measures for its Resettlement Action Process, gr 	and Social Impacts (const dentified impacts (constr lan (land survey and	ructio d va	n and ope luation s	ration phase) survey procedures,
2.		Que	stion and Answer Session	<u> </u>			
2	2.1.	so th	nment: Nandagi is located outsine land belongs to NFA, but the e it is government land, an offet.	trees belong to individua	ıl farm	ners. It is a	lso managed by NFA.
2	2.2.		nment: Biodiversity evaluation ugh Mabira, UETCL got a consu	•		•	the transmission line
2	2.3.	Com	nment: Purpose of the forest re	serve is mostly as a catchr	nent a	area where	e streams pass.
2	2.4.	Gau	nment: Uncoordinated planning ge Railway and Oil Pipeline. rves are lost.				•
2	2.5.	goin The deal	nment: Minimal impact would g through the plantation and in 16 acres obtained for the subing with the transmission line this 16 acres was sufficient for	stead through the forest restation were already acqueridor for the new properties.	eserv uired	e. by UETCL	. This project is only

- **2.6. Comment:** A 'no-objection' letter about the Chinese Project was obtained by UETCL. NFA does not have an official confirmation about this. NFA will follow-up the matter with UETCL.
- **2.7. Comment:** Booklet on management of forest reserves regarding activities acceptable within the reserves is available and can be shared with the Consultant.
- 2.8. **Recommendation:** Send kmz file of Project area to NFA John Diisa (Coordinator GIS) and Tom Rukundo so that extent of Project area within forest reserves is known.

	HATIONAL PORCEIRS	ANTHORITS	(NEA)	
	Scoping		ESIA	V
Purpose of consultation (lick appropriate box):	Sensitisation		RAP	lu lu
	Environmental Audit		Other (specify)	
Date: 15" Milarch 2016				
Project name: PREPARATORY SURVEY FOR T		OLITAN AREA TRA	ANSMISSION SYSTEM IMPRO	VEMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPAN	Y LTD.			
Name of person/ official met:	Designation		Contact (Tel/email)	Sign/ Initia
1	固人情報のたる	め非公開	謂	
1	固人情報のたる	め非公開	用	
ſ	固人情報のため	め非公開	用	
1	固人情報のたる	め非公園	用	
1	固人情報のため	め非公開	用	
1	固人情報のため	め非公開	用	

Artificiani Social side

the reservice

2. Meeting with National Forest Authority (NFA)

Weel	k		13		Meet	ing date	5 April 2016
						ded by	BA
Meeti	ing/sul	oject	Meeting National Fo Consultation on GKM/ Improvement Project	restry Authority - A Transmission Line	Total	pages	2
Present	Apology	Сору	Name	Organisation		Designation	on
\boxtimes			List attached	NFA			
\boxtimes			Paul Okiror	UETCL		Safeguard	l Officer
\boxtimes			Takeshi Sato	JICA Study Team		ESIA Spec	ialist
\boxtimes			Dr. Isa Kabenge	Air Water Earth		Engineer	
\boxtimes			Brenda Amanda (BA)	Air Water Earth		Engineer	
Item		Upd	ate				
1.		Intro	oduction				
2.		deta The	JICA study team was welcome ils was made by the JICA study presentation included: Project Background Project Location Project and activities com The ESIA process Potential Environmental a Mitigation Measures for in Resettlement Action P compensation process, gr	team. ponents ind Social Impacts (constite dentified impacts (constite and survey and	ructio ructio	on and ope n and ope uation su	eration phase) ration phase) urvey procedures,
۷.		Que	Stion and Answer Session				
2	2.1.		ment: First project-Electrification in the substations connecting le	•	arks p	oroject.	
2	2.2.		ment: The Mukono industrial iderations include social, environs		_		-
2	2.3.		ment: Negotiations are still tation sites are not yet confirm		the t	ransmissior	n line corridor and
2	2.4.	That	Iment: The Chinese require 30rd is a total of 105m. The substate the substation. Access road is	ition is 3 acres, 6 ha as a			•
2	2.5.		iment: NFA needs to see the o st reserve area was selected.	ption selection reports sh	owin	g the alterr	natives and why the
2	2.6.		stion: What distance was left nstream.	for the river protection	? Rive	er Kasala v	vhich joins Sezibwa
2	2.7.	othe Stan	stion: Standard gauge railway er projects that are planned for dard gauge railway to be 2m er government projects e.g. Rail	the near future within the from the ground. This pr	proje	ect area?	·

Comment: NFA needs to know that UETCL has confirmed that there are no projects planned or existing that can share a wayleave with the UETCL projects.
 Concern: UETCL needs to own the projects, as opposed to pseudo names like Chinese substation or Japanese substation.
 Comment: Bujagali substation will be intended to increase switch from 132kV (existing) to 220kV, although without need for more land requirement.
 Comment: Another meeting will be held in which the documents submitted by UETCL will be arranged. A field visit of the area will then be held.

2.12. Concern: The width of the corridor is wide and yet it is a protected area.

STAKEHOLDER CONSULTATION RECORD

Name of agency/stakeholder/community: Property And Park (PPA)
Scoping ESIA Parpose of consultation (tick appropriate bary: Senatification Environmental Audit Other (specify)

Date: サルゴーン Content PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT

Proponent: YACHYO ENGINEERING COMPANY LTD.

Name of person of official met: Designation Centact (Tellemall) Sign/ initial

(個人情報のため非公開

50th Service (600)

Purpose of consultation (tick appropriate box) Sensitisation Environmental Audit Other (specify) Date: 51		NATIONAL PORESYRY A	LITHORITY (NEW)	
Date: 61th April 2015 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation Contact (Tellemall) Sign/ initial				
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person' official met: Designation Contact (Tellemail) Sign/ initial	Purpose of consultation (fick appropriate box).	Sensitisation	RAP	12
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/official met: Designation Contact (Tel/email) Sign/initial		Environmental Audit	Other (specify)	
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proposent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation Contact (Tellemall) Sign/ initial	Figure Selection			
lame of person/ official met: Designation Contact (Tellemail) Sign/ initial	Project name: PREPARATORY SURVEY FOR TO	HE GREATER KAMPALA METROPOLITA	N AREA TRANSMISSION SYSTEM IMPROVES	MENT PROJECT
Name of person/ official met: Designation Contact (Tellemail) Sign/ initial				
Sept man	Proponent: YACHIYO ENGINEERING COMPAN	LTD.		
	Name of person/ official met:	Designation	Contact (Tel/email)	Sign/initial
個人情報のため非公開				
	1	固人情報のため	非公開	
	1	固人情報のため	非公開	
	ſ	固人情報のため	非公開	
	ſ	固人情報のため	非公開	
	ſ	固人情報のため	非公開	

5

Mukono Project Area

1. Meeting with National Forestry Authority (NFA) private foresters

We	eek			11		Me	eting date	10 May 2016
						Red	corded by	IKK
Me	eeting	/subj	ject	_	Forestry Authority (NFA) Insultation on GKMA Imment Project	Tot	al pages	2
Prese	Apol ogy	Copy	Nan	ne	Organization		Designation	
\boxtimes			List	attached	NFA Foresters			
\boxtimes			Mer	cy Nampurira	NFA		Nandagi For	est Supervisor
\boxtimes			lan l	Kakuru Kahigi (IKK)	Air Water Earth Ltd		Valuation Su	ırveyor
\boxtimes			Edw	ard Okot Omoya (EOO)	Air Water Earth Ltd		Ecologist	
1.		Intro	duct	tion				
		the s Intro A pro Area regis The	duct esensit Trai Trai Trai Frai tization meeting. tions of the Consultant team tation of the 'ESIA and RAP for the series of the resters, their manage of the series of the	present for the meeting wer for The Preparatory Survey for ment Project' was made to ers and a few unregistered s Social Impacts (construction ntified impacts (construction (land survey and valuation im, and disturbance allowance	or the thare	ade. e Greater Ka e PAPs prese croppers. d operation p	mpala Metropolitan ent who comprised chase)	
2.		Que	stion	and Answer Session				
		Resp altho	onse ough	e: The project duration is not surveying and valuation is e	n and when is it expected to certain at the moment, sind expected to commence as soc	e th	is is still at th possible.	
	2.2.				should be included on the gill be better able to assist in ac			
	2.3.	com	muni onse	ity e.g health centre, drug stoe: The consultant is not pri	to provide certain addition ore? Vy to that information but v			_

2.4. **Question:** Will share croppers who are planting their crops in the forest be compensated for their loss of livelihood?

Response: According to the NFA forest supervisor, no croppers are permitted within the forest reserve and therefore any croppers therein are operating illegally. On this basis, no croppers will be compensated.

STAKEHOLDER CONSULTATION RECORD

Purpose of consultation (fick appropriate box): Sensitisation Environmental Audit Other (specify) Pate: 10/05/2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD.		Scoping		ESIA	7
Environmental Audit. Other (specify) Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Same Village/Parish Contact (Telephone) Sign/ Initial	Purpose of consultation (fick appropriate box):	Sensitisation	17		-
Date: 10/05/2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Sign/ Initial Willage/Parish Contact (Telephone) Sign/ Initial		Environmental Audit	V	1,000	
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Village/Parish	Date: 10/05/2016		1.	anni (openi)	
Proponent: YACHIYO ENGINEERING COMPANY LTD. Village/Parish Contact (Telephone) Sign/ initial	Project name: PREPARATORY SURVEY FOR TH	HE GREATER KAMPALA MET	ROPOLITAN ARE	A TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
lame Village/Parish Contact (Telephone) Sign/ Initial	The second secon				200000000
	Name			Contact (Telephone)	Ciant labia
個人情報のため非公開					
		個人情報の	ため非な	公開	
		個人情報の	ため非な	公開	
		個人情報の	ため非な	公開	
		個人情報の	ため非な	公開	
		個人情報の	ため非な	公開	

Air Waler Earth www.aver-engineers.com S09001-2008

Stirry Dog No AWE/DIA

	Scoping		1 I FRUM	
			ESIA	V
rurpose of consultation (tick appropriate box):	Sensitisation	1	RAP	V
	Environmental Audit	V	Other (specify)	
Jate: 10105/2016				
roject name: PREPARATORY SURVEY FOR 1	HE GREATER KAMPALA ME	TROPOLITAN ARE	A TRANSMISSION SYSTEM IMPROVEN	MENT PROJECT
roponent: YACHIYO ENGINEERING COMPAN	Y LTD.			
lame	Village/Parish		Contact (Telephone)	Sign/ initial
	個人情報の			

508001:2008

Table 355 Vo AWEASE

STAKEHOLDER CONSULTATION RECORD

Purpose of consultation (tick appropriate box): Scoping	Name of agency/stakeholder/community: NA)	UDAGI FOREST	FARMED	hal	
Purpose of consultation (tick appropriate box): Sensitisation Environmental Audit Other (specify) Date: 10/05/2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial					102
Date: 10/05/2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Purpose of consultation (tick appropriate box):	Sensitisation	W	RAP	
Date: 10[05] 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial		Environmental Audit		Other (specify)	- IVI
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Date: 10/05/2016		LVI		
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA ME	TROPOLITAN ARE	A TRANSMISSION SYSTEM IMPROVEM	MENT PROJECT
Vinegeration Contact (Telephone) Sign/ Initial	Control of the contro				200700-27
	Name	Village/Parish		Contact (Telephone)	Sign/ Initial
個人情報のため非公開					
		個人情報の	つためま	上公開	
		個人情報の)ため非	丰公開	
		個人情報の)ためま	上公開	

A1 Water Earth www.awe.engineed.com 509001/2008

Riturd Doc No. AWE/032

Purpose of consultation (lick appropriate box): Sensitisation RAP Environmental Audit Other (specify) Date: 10 00 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Purpose of consultation (tick appropriate box) Sensitisation RAP Environmental Audit Other (specify) Date: 10 [0 5 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Purpose of consultation (tick appropriate box) Sensitisation RAP Environmental Audit Other (specify) Date: \(\log \log \log \log \log \log \log \log	Purpose of consultation (tick appropriate box): Sensitisation RAP Environmental Audit Other (specify) Date: 10 [0 5 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial		Scoping		ESIA	
Date: 10 (05 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 (05 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 (05 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 (05 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Purpose of consultation (tick appropriate box):	Sensitisation		RAP	
Date: 10 [0.5] 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 [0.5] 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 [0.5] 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10 [0.5] 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial		Environmental Audit	Ť.	Other (specify)	-
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Date: 10/05/2016		14	125-0 665-041	
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA MET	ROPOLITAN AREA	A TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
Name Village/Parish Contact (Telephone) Sign/ initial	Name Village/Parish Contact (Telephone) Sign/ initial	Name Village/Parish Contact (Telephone) Sign/ initial	Name Village/Parish Contact (Telephone) Sign/ initial				Water Carried	Charles a september 2
							Contact (Talanhana)	Classic Nation
個人情報のため非公開	個人情報のため非公開	個人情報のため非公開	個人情報のため非公開	1100110	rinegerarian		Contact (Telephone)	Sign/ initial
					個人情報の	ため非	公開	
					個人情報の	ため非	公開	

Ar Wider Each INW# INC Engineers com 'S06701-2008

Sand Ont Vo. AWE/034

2. Meeting with Community in Mukono Project Area - Nama II, Buyuki and Luwunga villages

Wee	·k			11		Mee	ting date	30 April 2016
							orded by	IKK
Меє	ting/	subje	ct	Meeting with Communities Buyuki and Luwunga villa GKMA Transmission Line Im	ages - Consultation on	Tota	l pages	2
Proj Prop	ect onen	it		UETCL				
Prese nt	Apol ogy	Сору	Na	me	Organisation		Designation	on
\boxtimes			Lis	t attached	Nama II, Buyuki and Luwu	nga	Project Aff	fected Persons
\boxtimes			Lis	t attached	Nama II, Buyuki and Luwu	nga	Chairperso	ons
\boxtimes			lan	ı Kakuru Kahigi (IKK)	Air Water Earth Ltd		Valuation	Surveyor
\boxtimes			Isa	Kabenge	Air Water Earth Ltd		Engineer	
1.		Intro	du	rtion				
1.								
		ine	LCI	Chairman of Luwunga zone w	reicomed the team.			
		Intro	duo	ctions of the consultant team	and chairpersons present fo	or the	meeting w	ere made.
				entation of the 'ESIA and	-	-	-	-
			-	olitan Area Transmission Sys s present, including but not li	-	was	made to tr	ie chairpersons and a
				_				
		-		sentation included:				
			•	Project Background Project Location				
			•	Project and activities compo	nents			
			•	The ESIA process				
		,	•	Potential Environmental and			-	-
			•	Mitigation Measures for ider Resettlement Action Plan			-	•
				process, grievance mechanis			, proce	aa.cs, compensation
2.		Que	stio	n and Answer Session				
2	2.1.			nt: Projects take place but on hold a		_		this affects the PAPs
	2.2.	shou capa Resp	pen Id k city	nt: L.C1s are a vital part of sated for their time and effor the given consideration so that to be. See: The LCs will be facilitated it is and Valuers.	t yet they are fully involved t they may be enlisted on p	in the	e project fro t implemer	om start to finish. This ntation teams in some

2.3. Concern: If assessment has been done but compensation is eventually not done and the project is aborted. How would the PAPs be compensated after sacrificing their properties and not undertaking any developments as a result? Response: The principle in Uganda is to compensate for affected properties. Therefore, no injury or damage is realised if the project is aborted and hence no compensation payment can be advanced. 2.4. **Question:** Who constitutes the grievance committee? Response: The grievance committee constitutes a member of the Local Council, a member of the project proponent organisation and an identified NGO from the project area. 2.5. Concern: In some instances, PAPs' structures get old and collapse before compensation is done. How will these be handled if re-assessment is done subsequently? Response: In the event that a PAP's structure collapses before compensation, the PAP will get the compensation due him as his property information will have already been captured. 2.6. Question: Will PAPs be permitted to use the land after the project has been implemented? Response: The project proponent intends to fully compensate and acquire the project area and therefore no work or developments by PAPs will be allowed subsequent to project implementation. 2.7. Concern: How will kibanja holders and title owners be compensated? Response: Kibanja owners and title holders will be equitably compensated in their individual holding capacities on pro rata basis. 2.8. Concern: Wives may not receive any money and the husbands claim it all and squander it. How will their interests be put into consideration? Response: Wives especially those who are legally or traditionally married will be put into consideration by having their information captured during the payment exercise and as much as possible, husbands will be encouraged to present joint accounts for payment. This will be done with the help of the L.C1 to identify such risk prone relationships.

	Namatt, Buyuki f	Luwun	39	Leave	
	Scoping		e)	ESIA	4
Purpose of consultation (tick appropriate box):	Sensitisation	4		RAP	· ·
	Environmental Audit			Other (specify)	
Date: 30/04/2016					
Project name: PREPARATORY SURVEY FOR TH	HE GREATER KAMPALA MET	ROPOLITAN	AREA TRA	ANSMISSION SYSTEM IMPROVEM	MENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.				
Name	Village/Parish			Contact (Telephone)	Sign/ initial
,			JL /\		
1	固人情報の	ためヨ	非公	〉開	
1	固人情報の	ため	非公	〉開	
1	固人情報の	ため	非公	〉開	
ſ	固人情報の	ため	非公	常	
ſ	固人情報の	ため	非公	〉開	
ſ	固人情報の	ため	非公	〉開	
1	固人情報の	ため	非公	〉開	
1	固人情報の	ため	非公	〉開	
1	固人情報の	ため	非公	注	
1	固人情報の	ため	非公	冷	

STAKEHOLDER CONSULTATION RECORD

Av Water Earth www.awa-engineers.com (ICIDO1: 2008

Stand Docke AWEKIN

Stand Doc No. AWENSA

1	Scoping Sugaki.	10000000	Lean	
A CONTRACTOR OF THE PARTY OF TH			ESIA	14
Purpose of consultation (tick appropriate box):	Sensitisation	14	RAP	
	Environmental Audit		Other (specify)	
Date: 35/0+/16				
Project name: PREPARATORY SURVEY FOR TH	HE GREATER KAMPALA ME	TROPOLITAN A	REA TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
lame	Village/Parish			
	Timeger arisi		Contact (Telephone)	Sign/ initial
	個人情報の	ハため	非心問	
	個人情報の	りため	非公開	

Air Waler Earth white Swid-engineers com III.010001 2008

Skind 200 Vo. AWE/G34

3. Meeting with Community in Mukono Project Area - Wanjeyo, Kivuvu and Bwefulumya villages

We	eek			11			Me	eting date	30 April 2016
							Red	orded by	IKK
Me	eting	/subj	ect	Meeting with Communitie Kivuvu and Bwefulumya GKMA Transmission Line I	villages - Cons	sultation on	Tot	al pages	2
	oject opone	nt		UETCL					
Prese	Apol ogy	Copy			Organisation			Designation	
\boxtimes			List	attached	Wanjeyo, Bwefulumya	Kivuvu	and	Project Affe	cted Persons
			List	attached	Wanjeyo, Bwefulumya	Kivuvu	and	Chairperson	ns
\boxtimes			lan	Kakuru Kahigi (IKK)	Air Water Ear	th Ltd		Valuation Su	urveyor
\boxtimes			Isa I	Kabenge	Air Water Ear	th Ltd		Engineer	
1.		Intro	duc	tion					
1.				Chairman of Bwefulumya zor	no wolcomod tl	no toam			
		A p Met few	reser ropo PAPs prese	cions of the consultant team Intation of the 'ESIA and Iitan Area Transmission Sys present, including but not li Intation included: Project Background Project Location Project and activities compo The ESIA process Potential Environmental and Mitigation Measures for ideal Resettlement Action Plan process, grievance mechanis	RAP for THE tem Improver mited to: nents Social Impacts tified impacts (land survey	E Preparator nent Project ^a s (construction (construction and valuation	y Su was n and n and	rvey for the made to the made	ne Greater Kampala e chairpersons and a ohase) hase)
2.		Que	stion	and Answer Session					
		Ques Resp trans dow com	stion onse smiss nhill merc	: Where exactly is the project: The project route is outlesten lines will commence for up to Bwefulumya where the cial foresters in Nandagi Foresters. It has been said that co	ined in the go rom the inters ney meet the s st reserve	oogle earth i section with substation. Th	mage the ne sul	on the pre chinese line ostation will	s in Nama, Luwunga predominantly affect
				oject works. That will be a go	•				. ,

- 2.3. Question: Are the power lines going to be connected from existing lines to the new sub-station? Response: Yes, there will be a 132 kV line connecting from the substation to the existing transmission lines along the highway.
- 2.4. Question: Will power supply from the new lines and sub-stations be able to connect for community domestic use?

Response: Yes, from the 132 kV connection to existing transmission lines but not directly to the high voltage lines or the substation.

- 2.5. Concern: Can the local leaders write to project so that any projects being implemented within this community give job opportunities especially labourers to community members first? Response: As a principle, project contractors are encouraged to utilise community members of the project community for some lay jobs to help raise the economic status of the project community. This is done in conjunction with the local leaders. However, the local leaders are at liberty to write to the project contractors to request for such job opportunities for their community.
- 2.6. Question: If the corridor to be acquired borders with someone's house, would that person's house be affected and can they be compensated for that house? Response: In such an event, the person would not be compensated unless if he suffered injurious affection as a result of project works.
- 2.7. Question: Since a sub-station is to be constructed within the community, can UMEME and UETCL make some effort to increase the density of power supply and connections in this area? Response: It is not within the mandate of the consultant to advise UMEME or UETCL on how to distribute power resources but the consultant shall present the concerns of the community for their discretionary review.

Name of agency/stakeholder/community:	Namouro polo West	Vacana Bud	evulu un	
	Scoping //	100	ESIA	
Purpose of consultation (tick appropriate box):	Sensitisation	1	RAP	4
	Environmental Audit		Other (specify)	
Date: 30/04/16				
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA METR	OPOLITAN AREA	TRANSMISSION SYSTEM IMPROV	EMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name	Village/Parish		Contact (Telephone)	Sign/ initial
46	五人桂起の1	゚゠ゕ゚゠゚゠	小問	
1	固人情報の1	こめ非	公開	
1	固人情報の <i>1</i>	こめ非	公開	

Stand Doc Vo WWEIt36

Date: 30/04/16 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD.	Purpose of consultation (tick appropriate box): Sensitisation Environmental Audit Other (specify) Date: 300000000000000000000000000000000000	ESIA RAP Other (specify) EA TRANSMISSION SYSTEM IMPROVEMI Contact (Telephone)	
Environmental Audit Other (specify) Date: 3-1-16 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Environmental Audit Other (specify) Date: 3000000000000000000000000000000000000	Other (specify) EA TRANSMISSION SYSTEM IMPROVEMI Contact (Telephone)	
Date: 300 416 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Date: 3 0 0 1 16 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	EA TRANSMISSION SYSTEM IMPROVEMI Contact (Telephone)	
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ Initial	Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Village/Parish Contact (Telephone) Sign/ Initial	Contact (Telephone)	
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Proponent: YACHIYO ENGINEERING COMPANY LTD. Name Village/Parish Contact (Telephone) Sign/ initial	Contact (Telephone)	
Name Village/Parish Contact (Telephone) Sign/ Initial	Name Village/Parish Contact (Telephone) Sign/ Initial		Sign/ initial
Velleger artist Contact (Leaphone) Sign/Initial	Vindyer order Contact (Leephone) Sign/ Initial		Sign/ initial
			argo serious
個人情報のため非公開	個人情報のため非公開	├ 八 88	
		F公用	

Air Water Farth www.awe-ongoneers.com S09001-2008

State Doc Vo AWERDA

Buloba Project Area

4. Meeting with Community in Buloba Project Area - Kaggaba, Mabuye and Nsujjwe villages

Week	Meeting date 27 January 2016 Recorded by RA							
					Re	corded by	ВА	
Meeting/	subjec	ct	_	sidents (Kaggaba, Mabuye Consultation on GKMA ement Project	То	tal pages	2	
Prese nt Apol	Copy	Nam	e	Village		Designation		
		List a	attached	Buloba residents				
		Ian K	Kakuru	Air Water Earth Ltd.	Valuer			
		Bren	da Amanda	Air Water Earth Ltd.		Engineer		
1	Intro	oducti	ion					
1.				If inter-denting			b - Duningt datail	
			the AWE team.	self-introductions made. A p	ores	entation of ti	ne Project details was	
	 The presentation included: Project Background Project Location Project and activities components The ESIA process Potential Environmental and Social Impacts (construction and operation phase) Mitigation Measures for identified impacts (construction and operation phase) Resettlement Action Plan (land survey and valuation survey procedures, compensation procegrievance mechanism, and disturbance allowance) 							
2.	Que	stion	and Answer Session					
2.1.			: Is the 15 acres mentioned on the control of the 15 acres mentioned is	only for the substation, or for for for the substation area.	the	entire Projec	ct area?	
2.2.	Resp	onse	: The compensation for suc	rs and title holders be catered th an area is split such that t der receives 30% of the comp	he	kibanja holde	er receives 70% of the	
2.3.	compensation sum while the title holder receives 30% of the compensation sum. Comment: Sometimes the Valuers don't give the right amount e.g. someone who deserves more mone gets less, and vice versa. Response: The valuation process will be conducted in line with the laws of Uganda and the JIC Guidelines for Social and Environmental Considerations. In accordance with the Ugandan laws, the Valuation report will be submitted to the Chief Government Valuer for approval of the compensation values to be used for the Project.							
2.4.	Resp II. As lead offic	oonse side fr er, as e, or	: The Grievance Committee rom the local chairpersons, well as a representative fro another location that the	mmittee be selected and whe will be composed of the area the Committee will also inclo om UETCL. The Committee's PAPs agree upon as being g the RAP issues that arise fro	a loo ude offi the	cal chairperso an elder on t ce shall be at most conver	ons such as LC I and LC the village, an opinion t the LC Chairperson's nient. UETCL also has	

2.5. Question: If a young fruit tree has been valued, will the future prospects be catered for e.g. the jack fruit trees or oranges that would have been reaped from the fruit tree? Response: No, valuations are done on as as-is basis. Projections are not done during the valuation exercise. Suggestion: Both the kibanja holder and title holder should be present during the Valuation exercise. 2.6. **Response:** All PAPs will be notified when the fieldwork for surveying and valuation is taking place. 2.7. Comment: Sometimes the cut-off date is announced but the Project takes long to start, yet the people have been asked to hold off on developments. Response: If a Project takes more than 2 years after the cut-off date, a re-evaluation is done to take into consideration any changes. 2.8. Complaint: Towards the end of last year (2015), a team doing geo-technical surveys was in the area. The team ate fruits from community members' trees and also parked their vehicles in peoples' compounds without asking for permission. Response: It is regrettable that community members' property was not respected. All the Consultants involved will be informed to ensure that all field staff respect community members' property and make requests to use or purchase any individual or community resources. 2.9. Question: The Graveyard for the Grail Sisters is within the Project area. Will these graves be relocated? Response: The Project route will try as much as possible not to affect any physical and cultural resources. However, the affected areas will be more accurately identified after the surveyors have started with field work and marked out the substation and corridor extents. Question: Some landowners do not live in the area and have to travel from far. Will facilitation be 2.10. provided for this? Response: No, facilitation is not provided for the community members to attend meetings.

STAKEHOLDER CONSULTATION RECORD

	Scoping Scoping		VILLAGES, MPIGI DE	STRICT.
Purpose of consultation (tick appropriate box):	Sensitisation	V	RAP	
7	Environmental Audit		Other (specify)	121
Date: 27th January 2016				
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA MET	TROPOLITAN AREA	TRANSMISSION SYSTEM IMPROV	EMENT PROJECT
		(A) in disper	The state of the s	CHICAT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name of person/ official met:	Designation	(Village)	Contact (Tel/email)	61-11-11-1
				Sign/ initial
佢	固人情報の			Sign/ initial
ſ				Sign/ initial
佢				Sign/ initial
ſ				Sign/ Initial
ſ				Sign/ Initial
ſ				Sign/ Initial

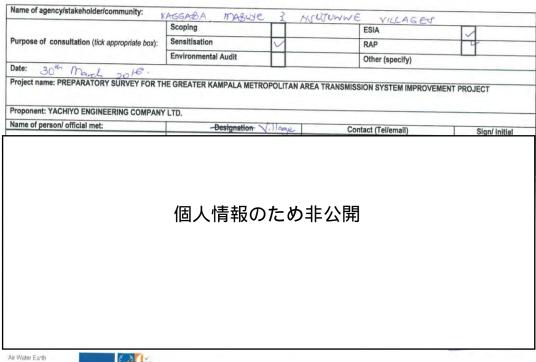
18

Stand Dycko AWERSA

	Scoping		ILLAGES, MPIGI DISTAL	101
urpose of consultation (fick appropriate box):	Sensitisation			-
expose or consentation (not appropriate box).			RAP	1
NATION AND ADDRESS OF THE PARTY	Environmental Audit		Other (specify)	
late: 27th January 2016				
Project name: PREPARATORY SURVEY FOR THE	HE GREATER KAMPALA ME	TROPOLITAN AREA	TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
				- Accident
roponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name of person/ official met:	Designation	(Milace)	Contact (Tel/email)	1 80-00-00
		This is a second		
		~ /	- mong carenary	Sign/ initial
	引人情報の	ため非么		_ j Signi initial
	人情報の	ため非么		Signi initial
	人情報の	ため非么		Signi initial
	人情報の	ため非么		Signi initial
	人情報の	ため非么		Signi initial
	人情報の	ため非么		Signi initial
	人情報の	ため非么		Signi initial

All Water Egyth Were later engineers cons (SOECO) 2029

State: Too No. AWE/E34


5. Meeting with Community in Buloba Project Area - Kaggaba, Mabuye and Nsujjwe villages

Wee	ek	Meeting date 30 March 2016								
						Re	corded by	ВА		
Mee	eting/s	subje	ct		sidents (Kaggaba, Mabuye Consultation on GKMA ement Project	To	tal pages	2		
Prese nt	Apol ogy	Copy	Nam	e	Village		Designation			
\boxtimes			List a	ittached	Buloba residents					
\boxtimes			Ian K	akuru	Air Water Earth Ltd.		Valuer			
\boxtimes			Isa K	abenge	Air Water Earth Ltd.		Engineer			
\boxtimes			Bren	da Amanda	Air Water Earth Ltd.		Engineer			
\boxtimes			Sato	Takeshi	JICA Study Team		ESIA Speciali	st		
1.		Intro	ducti	on						
			PPPTPNRg	Aitigation Measures for ider lesettlement Action Plan (la rievance mechanism, and d	Social Impacts (construction ntified impacts (construction nd survey and valuation surv	and	operation ph	nase)		
2.		Que	stion	and Answer Session						
2	2.1.				nly those who are directly affor for the meeting will not lose I					
2	2.2.	too much time. Some people invited for the meeting will not lose land to the project. Question: Can't the surveyors and valuers come soon so that the affected people are identified? The most important thing is for the project area to be clearly marked. Response: The Surveyors and Valuers will start field work after they are informed that community sensitization meetings such as this one have been held.								
2	2.3.	Resp	onse and t	: The Project's Grievance M hat has wrangles. If the ma	to a standstill if there were la echanism makes it possible t atters cannot be easily resolv he possibility of a hold-up in t	o ha ed,	ve dialogue v and no feasik	with the ownership of ole alternative can be		
2	2.4.	Expr	ess hi	ghway?	ct route to change if it intera be changed at this point if m					
2	2.5.	offic	e nun	nbers.	the Consultants should be be provided, in addition to t			_		

2.6. Question: When will the project start?
Response: Towards the end of this year 2016, Government of Uganda and Japanese government are expected to sign an agreement. Project implementation will then probably take about two years.

2.7. Comment: The time lag between the Surveyors and Valuers should not be long as this could result in people continuing to develop their land, sometimes dubiously.
2.8. Concern: People's property should be adequately compensated.

STAKEHOLDER CONSULTATION RECORD

Air Water Earth www.awe-engineers.co SO9001:2008

Stand, Dod No. AWE/034

Kawaala Project Area

6. Meeting with Community in Kawaala Project Area - Namungoona residents

Weel	k			13		Me	eting date	29 March 2016
						Re	corded by	ВА
Meet	ting/s	ubjed	ct	Meeting with Namungoon on GKMA Transmission Lin	na residents- Consultation le Improvement Project	Tot	al pages	2
Prese nt	Apol	Copy	Nam	ne	Village		Designation	
\boxtimes			List	attached	Namungoona residents			
\boxtimes			☐ Isa Kabenge Air Water Earth Ltd. Engineer					
\boxtimes			Brer	nda Amanda	Air Water Earth Ltd.	Engineer		
4		lasta.						
1.			oduct		If the second se			
				the AWE team.	self-introductions made. A p	ores	entation of t	he Project details was
		 The presentation included: Project Background Project Location Project and activities components The ESIA process Potential Environmental and Social Impacts (construction and operation phase) Mitigation Measures for identified impacts (construction and operation phase) Resettlement Action Plan (land survey and valuation survey procedures, compensate process, grievance mechanism, and disturbance allowance) 						hase)
2.		Que	stion	and Answer Session				
2	2.1.	Resp	onse	e: Yes, as long as the informa	neir property such as roof or ation has been captured by the re not considered during cor	he \	/aluer. All add	
2	2.2.	be c Res p	ompe onse	ensated?	s passing through land that be compensated for their los		•	
2	2.3.	Question: It is possible that the trench will affect some people even though it is not necessarily goin through their land? Can such people volunteer to be compensated for relocation if they are uncomfortable having the cable so close to them? Response: No, one cannot volunteer to be affected by the Project. However, any damage to one? property during the course of the Project implementation can be compensated. The reporting of successes would be done through the Local leaders and the Grievance Committee.						
2	2.4.	part Resp peop	icipar onse	nts who was not compensate :: This Project will be implen hose land will be acquired	current substation is located. Will the remaining land a nented in line with JICA Guide will be compensated for both	lso k eline	oe taken with es and Ugand	out compensation? an laws. Therefore, all

2.5. **Question:** Will the project give time for the brick making to be completed before the project can commence?

Response: Yes, because notice to relocate will be given when the compensation money is paid. This notice period is always given, because it also has an impact on the amount of compensation given since the disturbance allowance is calculated based on the notice period.

2.6. **Question:** Who gets compensated? The landowner or tenant?

Response: Both the land owner and kibanja holder receive compensation. An example in this area that is on Kabaka's land is that on Kabaka's land, the Buganda Land Board receives 30% of the calculated compensation amount while the Kibanja holder will receive 70% of the compensation amount. A tenant occupying a house will not receive any part of the compensation sum because ample notice will be given and none can always move to another location.

2.7. **Comment:** The entire compensation process should involve the LC chairman.

Response: Noted. Chairpersons are always involved in the compensation process.

STAKEHOLDER CONSULTATION RECORD

Name of agency/stakeholder/community:	AMUNGOONA LC	1			
	Scoping	3 8 11	ESIA	V	
Purpose of consultation (tick appropriate box):	Sensitisation	V	RAP	14	
	Environmental Audit		Other (specify)		
Date: 29th March 2016			1,550,050,000		
Project name: PREPARATORY SURVEY FOR TO	HE GREATER KAMPALA MET	ROPOLITAN ARE	A TRANSMISSION SYSTEM IMPROVE	MENT PROJECT	
Proponent: YACHIYO ENGINEERING COMPANY	LTD.				
Name of person/ official met:	-Designation	V11000	Contact (Tel/email)	Sign/ initial	
1	固人情報の	ため非	:公閏		
1	固人情報の	ため非	公開		

	AMUNGOONA			
	Scoping	5C/	ESIA	V
Purpose of consultation (tick appropriate box):	Sensitisation	V	RAP	
	Environmental Audit		Other (specify)	
Date: 29th March 2016				
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA MET	TROPOLITAN AREA T	TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
			10.15	MENT PRODECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name of person/ official met:	Designation	Villago	Contact (Tel/email)	Si-di-wis
		1. Judge	Contact (Tevernall)	Sign/ Initial
1	固人情報の	ため非な	公開	

Air Water Earth www.awm.onglobers.com SOSCO1-2808

State Section AWE/036

資料-15 RAP モニタリングフォーム

 Table 1
 Progress of land acquisition, compensation and resettlement

					,	-	· o/			
Resettlement activities	Planned total	Unit	Pro Previous Quarter	gress in quan Current Quarter	Remainin g	Progres Previous Quarter	Current Quarter	Expected completion date	Responsible organization	Note
Progress of land acquisition	50	ha	10	25	25	25	50	2016/12	UETCL	
Progress of land compensation (in cash)	10	No. of HHs	5	7	3	50	70	2016/12	UETCL	
Progress of land compensation (land for land)		No. of HHs								
Progress of asset compensation (in cash)		No. of HHs								
Progress of asset compensation (by replacement structure)		No. of HHs								
Progress of crop compensation		No. of HHs								
Progress of resettlement		No. of HHs								
Others										

 Table 2
 Grievance report

	Date received	Contents of grievance	Actions taken and status
1			
2			

資料-16 外部モニタリングの TOR 案

TERMS OF REFERENCE FOR AN EXTERNAL MONITORING AGENCY FOR GREATER KAMAPALA METROPLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT

A. Project Background

The Republic of Uganda has been experiencing high economic growth and approximately 7% annual economic growth has been recorded over the past years. In line with this growth trend, the power demand has also been increasing rapidly at 9.7% on average per year from 2007 to 2012. The Project aims to increase the capacity of power supply through the upgrade of transmission and substation system in Kampala Metropolitan Area.

To implement the Project, land acquisition will be required at Buloba, New Mukono and Kawaala components. People affected by the land acquisition will be compensated and rehabilitated by UETCL in accordance to the Resettlement Action Plan (RAP). UETCL seeks to engage an independent External Monitoring Agency (EMA) to undertake monitoring and evaluation of the RAP implementation process.

B. Key Objective of External Monitoring

Monitoring is an integral part of the resettlement process. The External Monitoring Agency (EMA) will review implementation process as per set policies and criterias in the RAPs report, assess the achievement of resettlement objectives, the changes in living standards and livelihoods, restoration of the economic and social base of the project affected people, the effectiveness, impact and sustainability of entitlements, the need for further mitigation measures if any, and to learn strategic lessons for future policy formulation and planning.

C. Scope of Work

The scope of work of the External Monitoring Agency (EMA) will include the following activities:-

- 1. To develop specific monitoring indicators for undertaking monitoring of the Resettlement Action Plan (RAP).
- 2. To review and verify the progress in land acquisition/resettlement implementation of the Project.
- 3. Identify the strengths and weaknesses of the land acquisition/resettlement objectives and approaches as well as implementation strategies.
- 4. Evaluate and assess the adequacy of compensation given to the APs and the livelihood opportunities and incomes as well as the quality of life of APs of project-induced changes.
- 5. Identification of the categories of impacts and evaluation of the quality and timeliness of delivering entitlements (compensation and rehabilitation measures) for each category

- and how the entitlements were used and their impacts and adequacy to meet the specified objectives of the Plans. The quality and timeliness of delivering entitlements, and the sufficiency of entitlements as per approved entitlement matrix.
- 6. Provide a summary of whether involuntary resettlement was implemented (a) in accordance with the RAPs, and (b) in accordance with the stated policy.
- 7. To review the quality and suitability of the relocation sites from the perspective of the both affected and host communities.
- 8. Verify expenditure & adequacy of budget for resettlement activities.
- 9. To analyze the pre-and post-project socio-economic conditions of the affected people. The methodology for assessment should be very explicit, noting any qualifications.
- 10. Review results of internal monitoring and verify claims through sampling check at the field level to assess whether land acquisition/resettlement objectives have been generally met. Involve the affected people and community groups in assessing the impacts of land acquisitionfor monitoring and evaluation purposes.
- 11. To monitor and assess the adequacy and effectiveness of the consultative process with affected people, particularly those vulnerable, including the adequacy and effectiveness ofgrievance procedures and legal redress available to the affected parties, and dissemination of information about these.
- 12. Identify, quantify, and qualify the types of conflicts and grievances reported and resolved andthe consultation and participation procedures.
- 13. Describe any outstanding actions that are required to bring the resettlement activities in line with the policy. Describe further mitigation measures needed to meet the needs of any affected person or families judged and/or perceiving themselves to be worse off as aresult of the Project. Provide a timetable and define budget requirements for these supplementary mitigation measures.
- 14. Describe any lessons learned that might be useful in developing the new national resettlement policy and legal/institutional framework for involuntary resettlement.
- 15. Verifying internal reports by field-checking delivery of compensation to PAPs, including the levels and timing of the compensation; readjustment of land; preparation and adequacy of resettlement sites; construction of houses; provision of employment, the adequacy of the employment, and income levels; training; special assistance for vulnerable groups; repair, relocation, or replacement of infrastructure; relocation of enterprises, compensation, and adequacy of the compensation; and transition allowances;
- 16. Interviewing a random sample of PAPs in open-ended discussions, to assess their knowledge and concerns about the resettlement process, their entitlements, and the rehabilitation measures;
- 17. Observing the functioning of the resettlement operation at all levels, to assess its effectiveness and compliance with the RAP;

- 18. Checking the type of grievance issues and the functioning of grievance redress mechanisms by reviewing the processing of appeals at all levels and interviewing aggrieved PAPs:
- 19. Advising TANROADS regarding possible improvements in the implementation of the RAP.

D. Methodology and Approach

The general approach to be used is to monitor activities and evaluate impacts ensuring participation of all stakeholders especially women and vulnerable groups. Monitoring tools should include both quantitative and qualitative methods. The external monitor should reach out to cover:

- PAPs who had property, assets, incomes and activities severely affected by Project works and had to relocate either to resettlement sites or who chose to self-relocate, or whosesource of income was severely affected.
- PAPss who had property, assets, incomes and activities marginally affected by Project works and did not have to relocate;
- PAPs by off-site project activities by contractors and sub-contractors, including employment, use of land for contractor's camps, pollution, public health etc.;

Supplemented by Focused Group Discussions (FGD) which would allow the monitors to consult arange of stakeholders (local government, resettlement field staff, NGOs, community leaders, and,most importantly, APs), community public meetings: Open public meetings at resettlement sites toelicit information about performance of various resettlement activities.

E. Other Stakeholders and their Responsibility

1. Responsibility of the executing Agencies (EAs)

The EAs through their Project Implementation Unit (PIU) will ensure timely supply of background references, data and other necessary information to the EMA and provide access to project sites and relevant places to let the EMA implement external monitoring activity.

2. Responsibility of the Implementing organization(s)

Organizations that will assist EAs in implementing land acquisition and resettlement activities will provide information required by the EMA at site and at their Project Offices. It will on behalf of EAs ensure free access to project sites and related areas and the database on land acquisition and resettlement activities.

F. Team Composition of the External Monitoring Agency

The EMA should focus on, data collection, processing and analysis to pin point problem areas and weaknesses, and to light on deserving measures to achieve the objectives on schedule are the

special interest of the subject. Thus, there is a need for a dedicated monitoring team with adequate gender representation. Further, it is essential that the central team or field level coordinators responsible for monitoring, are skilled and trained in data base management, interview technique, and social and economic/finance. Keeping in mind these criteria, the team should ideally include:

Position/expertise	Qualification and experience	
1. Team Leader/	Master in social science with 10-year working experience in social	
Implementation	impact assessment including census and socioeconomic surveys,	
stakeholders' consultation, and analyzing social impacts to iden mitigation measures in compliance with social safeguard policies of international development financing institutions and natic legislations. Experience of preparing resettlement framework and act plans and implementation of plans for externally financed project essential.		
2. Social Impact Master in social science with 5-year working experience in		
Specialist	impact assessment including census and socioeconomic surveys, stakeholders' consultation, and analyzing social impacts to identify mitigation measures in compliance with social safeguard policies of the international development financing institutions and national legislations. Experience of preparing resettlement framework and action plans and implementation of plans for externally financed projects is essential.	
3. Data Analyst	Graduate with working experience and knowledge of software such as SPSS (Statistical Package for the Social Sciences)	

G.Time Frame and Reporting

The EMA will be employed over a period of 3 years with intermittent inputs from the professionalteam to continue 2 years after completion of the RAP implementation.

Quarterly and annual monitoring reports should be submitted to UETCL with copies to JICA. An evaluation report at the end of the project should be submitted to UETCL and concerned parties with critical analysis of the achievement of the program and performance of EAs and implementingorganizations.

The external monitors will provide monitoring and evaluation report covering the following aspects:

• Whether the resettlement activities have been completed as planned and budgeted;

- The extent to which the specific objectives and the expected outcomes/results have been achieved and the factors affecting their achievement or non achievement;
- The extent to which the overall objective of the Resettlement Plan, pre project orimproved social and economic status, livelihood status, have been achieved and thereasons for achievement / non achievement;
- Major areas of improvement and key risk factors;
- Major lessons learnt; and
- Recommendations.

Formats for collection and presentation of monitoring data will be designed in consultation with EAs.

H. Qualification of the External Monitoring Agency

The EMA will have at least 10 years of experience in resettlement policy analysis and implementation of resettlement plans. Further, work experience and familiarity with all aspects of resettlement operations would be desirable. NGOs, Consulting Firms or University Departments (consultant organization) having requisite capacity and experience on the same can qualify for services

Interested agencies should submit a proposal to UETCL with a brief statement of the approach, methodology, and relevant information concerning previous experience on monitoring offresettlement implementation and preparation of reports.

The profile of its agency, along with full signed CVs of the team to be engaged, must be submitted along with the technical proposal.

I. Budget and Logistics

The budget should include all expenses such as staff salary, office accommodation, training, computer/software, transport, field expenses and other logistics necessary for field activities, data collection, processing and analysis for monitoring and evaluation work. Additional expense claims whatsoever outside the proposed and negotiated budget will not be entertained. VAT, Income Tax and other charges admissible will be deducted at source as per Government laws.

資料-17 環境チェックリスト

Environmental check list: Power transmission and distribution lines

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
1 Permits and Explanation	(1) EIA and Environmental Permits	(a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government?	(a) Y (b) N (c) N (d) N	 (a) The EIA report is planned to be submitted to National Environment Management Authority (NEMA) around end of June 2016. (b) EIA approval is expected to be obtained from NEMA by mid-September 2016. (c) EIA not approved yet. (d) Since some sections of the Mukono component are located inside Nandagi Forest Reserve, a license must be acquired from National Forest Authority (NFA) as per the National Forestry and Tree Planting Act, 8/2003. The license is expected to be obtained by the end of September 2016. Other environment-related permits that may be required prior to construction are: Traffic Management Permit from Uganda National Roads Authority (UNRA) Wetland resource use permit from NEMA (if resource extraction from wetland is required) Waste transport and storage license from NEMA
	(2) Explanation to the Local Stakeholders	(a) Have contents of the project and the potential impacts been adequately explained to the local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design?	(a) Y (b) Y	(a) The Project has consulted relevant government agencies (e.g. NFA) and local communities (Mukono, Buloba and Kawaala) as per the EIA Regulation, 1998. NFA requested UETCL to compensate for the forest biomass and biodiversity that will be lost through land acquisition in Nandagi Forest Reserve in relation to the Mukono component. No objections on the project have been raised so far by the local communities. (b) So far, there have been no comments that will entail significant changes to the project design.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental	(a) Y	(a) An alternative analysis was conducted for the new substation sites (Buloba and Mukono), taking into

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		considerations?		account social and environmental impacts.
2 Pollution Control	(1) Water Quality	(a) Is there any possibility that soil runoff from the bare lands resulting from earthmoving activities, such as cutting and filling will cause water quality degradation in downstream water areas? If the water quality degradation is anticipated, are adequate measures considered?	(a) Y	 (a) Soil runoff from the new substation and transmission line sites (Buloba and Mukono) could affect nearby surface water. Following are planned mitigation measures to minimize impacts: Avoid removing short vegetation and grass along the transmission line corridor as far as it does not hinder construction and maintenance works. Implementation of temporary erosion control measures (e.g. silt fence, erosion mats) especially where construction sites are near surface water. Revegetation of exposed slopes immediately after construction is completed. Construction of retaining walls for exposed slope protection if necessary. Construction of runoff drainage channel. Stockpiles and temporarily removed topsoil to be stored in a location and manner to prevent soil runoff
3 Natural	(1) Protected Areas	(a) Is the project site located in protected areas	(a) Y	into surface waters. (a) The Mukono substation and part of the associated
5 Natural Environment	(1) Protected Areas	designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a) I	transmission lines are located inside Nandagi Forest Reserve established under the National Forestry and Tree Planting Act, 8/2003. Around 15 ha of forest area will need to be cleared to secure the 220 kV transmission line corridor. UETCL will compensate for the forest biomass and biodiversity that will be lost based on the "Forest Biomass and Biodiversity Valuation" undertaken by National Forest Authority (NFA). The existing 132 kV Mukono branch point — Kampala North Substation transmission line, subject to reconductoring works, passes through Namyoya and Luvunya Forest Reserves. Impact on these forest reserves are expected to be

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				negligible as the reconductoring works will be conducted within the existing transmission line corridor, hence no requirement for new forest clearance. Reconductoring works will also be short term and will not entail any activities that may have any adverse impacts to the forest.
	(2) Ecosystem	(a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Are adequate measures taken to prevent disruption of migration routes and habitat fragmentation of wildlife and livestock? (e) Is there any possibility that the project will cause the negative impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of ecosystem due to introduction of exotic (non-native invasive) species and pests? Are adequate measures for preventing such impacts considered? (f) In cases where the project site is located in undeveloped areas, is there any possibility that the new development will result in extensive loss of natural environments?	(a) Y (b) Y (c) Y (d) Y (e) Y (f) Y	 (a) Part of the Mukono transmission line (around 2 km) will traverse through a natural/semi-natural forest inside Nandagi Forest Reserve. (b) A two-day ecological survey was conducted in Buloba and Mukono in April and May 2016 respectively. The following two bird species and one tree species were identified inside Nandagi Forest Reserve, which are classified as threatened under IUCN Red List. Grey crowned crane (<i>Balearica regulorum</i>): EN Grey parrot (<i>Psittacus erithacus</i>): VU Jacaranda mimosifolia: VU In addition, the following three butterfly species were identified inside Nandagi Forest Reserve, which are classified as threatened under Uganda Red List prepared by Wildlife Conservation Society (WCS). Euphaedra rex (VU) Neptis trigonophora (VU) Caenides dacena (EN) (c) The following measures will be implemented to minimize ecological impacts taking into account the identified threatened species. Compensation of lost forest area in Nandagi Forest Reserve through reforestation works to be undertaken by UETCL and NFA. Replantation of Jacaranda mimosifolia seedling. Implementation of strict construction pollution control

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				 measures to minimize impacts on surrounding habitats. Installation of bird flight diverters on the transmission lines to minimize bird collision. Implementation of ecological monitoring during construction and operation phases. In case important nesting sites of the threatened bird species are found during the ensuring stages, additional measures will be considered in consultation with experts (e.g. creation of artificial nesting area). (d) Measures described above should minimize disruption of migration routes and habitat fragmentation. (e) Introduction of invasive species will be prevented or minimized through the following measures: Revegetation of exposed surfaces (e.g. cutting and filling slopes) to be done by native plant species only, and immediately after works is completed to minimize chance of colonization by invasive species. Removal of invasive species if observed along the revegetation sites. (f) Around 15 ha of semi-natural and natural forest will be lost in Nandagi Forest Reserve. The loss of forest will be compensated through reforestation works to be undertaken by UETCL and NFA.
	(3) Topography and Geology	 (a) Is there any soft ground on the route of power transmission and distribution lines that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed? (b) Is there any possibility that civil works, such as cutting and filling will cause slope failures or landslides? Are adequate measures considered to 	(a) U (b) Y (c) Y	 (a) A detailed geological survey will be conducted in the D/D stage. If necessary, adequate measures (e.g. revegetation, retaining walls) will be considered to prevent slope failures or landslides. (b) Cutting and filling works may be required for constructing the Buloba and Mukono substation. If necessary, adequate measures for preventing slope failures or landslides (e.g. revegetation, construction of

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		prevent slope failures or landslides?		retaining walls) will be considered in the D/D stage.
		(c) Is there a possibility that soil runoff will		(c) Soil runoff from cut and fill areas is a possibility. If
		result from cut and fill areas, waste soil disposal		necessary, appropriate soil-runoff prevention measures
		sites, and borrow sites? Are adequate measures		(e.g. revegetation, retaining walls, silt fence, erosion
		taken to prevent soil runoff?		mats) will be implemented.
	(4) Hydrology	(a) Is there a possibility that alteration of	(a) Y	(a) The Mukono access road will cross over two
		topographic features and installation of		tributaries inside Nandagi Forest Reserve. Culverts will
		structures, such as tunnels will adversely affect		be installed at these location to avoid disturbance to their
		surface water and groundwater flows?		flow.
4 Social	(1) Resettlement	(a) Is involuntary resettlement caused by project	(a) U	(a) The Project has made every effort to minimize land
Environment		implementation? If involuntary resettlement is	(b) Y	acquisition through corridor sharing of the transmission
		caused, are efforts made to minimize the impacts	(c) Y	lines. Nevertheless, land acquisition will be required at
		caused by the resettlement?	(d) Y	Buloba (approx. 14 ha), Mukono (approx. 35 ha) and
		(b) Is adequate explanation on compensation and		Kawaala (approx. 0.05 ha) sites.
		resettlement assistance given to affected people		Buloba:
		prior to resettlement?	(g) Y	According to the ongoing RAP study, the following 6
		(c) Is the resettlement plan, including		structures lie within the land acquisition area:
		compensation with full replacement costs,		· Residential structure: 1
		restoration of livelihoods and living standards	(j) Y	· Incomplete structure: 3
		developed based on socioeconomic studies on		· Pit latrine: 1
		resettlement?		• Water tank: 1
		(d) Are the compensations going to be paid prior		Involuntary resettlement of the residential owner is
		to the resettlement?		unlikely to be required as there is sufficient land to
		(e) Are the compensation policies prepared in		rebuild the existing residential structure within his land
		document?		boundary and no request for resettlement has been raised
		(f) Does the resettlement plan pay particular		so far. Note that the owners of the incomplete structures
		attention to vulnerable groups or people,		currently live elsewhere so will not be subject to
		including women, children, the elderly, people		resettlement.
		below the poverty line, ethnic minorities, and		Mukono:
		indigenous peoples?		According to the ongoing RAP study, the following 4
		(g) Are agreements with the affected people		structures lie within the land acquisition area:
		obtained prior to resettlement?		· Residential structure: 1

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		(h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established?	Unknown: U	• Incomplete structure: 1 • Pit latrine: 2 Involuntary resettlement of the residential owner is unlikely to be required as there is sufficient land to rebuild the existing residential structure within his land boundary and no request for resettlement has been raised so far. Note that the owners of the incomplete structures currently live elsewhere so will not be subject to resettlement. Kawaala: According to the ongoing RAP study, only 1 pit latrine lie within the land acquisition area. No resettlement will hence be required. (b) The Project held consultation meetings with the communities in Buloba (2 times), Mukono (2 times) and Kawaala (once), and explained about the project and compensation policies. All affected landowners were also consulted during the land and asset valuation surveys. No objections were raised by the community or landowners. (c) The ARAP will be developed based on the ongoing socioeconomic studies. Compensation will be made at full replacement costs. Livelihood restoration programs will be developed based on the ongoing socioeconomic studies. Possible livelihood restoration programs may include among others provision of employment opportunities (e.g. construction labor) and other alternative income generating sources (e.g. poultry) depending on the interests of the affected communities. (d) Compensation and necessary assistance will be provided prior to resettlement in accordance to Section 42(7)(b) of the Land Act.
				(e) The Project's compensation policies were developed

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				in accordance to Ugandan laws and JICA requirements. The policies are described in the Inception report of the ARAP study, which has been submitted to the Office of the Chief Government Valuer on April 1 st , 2016. (f) The Project will conform to the requirements of WB OP 4.12 and best practices in regards to the needs of the vulnerable groups if any (e.g. women, orphans, people with physical disabilities). These may include for example provision of resettlement houses and giving priority for livelihood restoration assistance. (g) If resettlement is required, UETCL will provide necessary assistance (e.g. transport allowance, support to find new location) depending on needs of the PAPs. (h) UETCL will establish RAP unit to handle all RAP-related activities of the Project. The RAP unit will consists of 7 expert staffs of UETCL. Budget will be secured after cost estimation made through ARAP study. (i) Internal and external monitoring will be implemented throughout the RAP implementation period and until assistance for livelihood restoration are no more required. (j) A Grievance Resolution Committee (GRC) will be established to resolve issues quickly so as to expedite receipt of entitlements and smooth resettlement without resorting to expensive and time-consuming legal action. GRC will consist of UTECL staff, local leaders and third party representatives. If the grievance procedure fails to provide a settlement, complainants can still seek legal redress.
	(2) Living and Livelihood	(a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered	(a) Y (b) Y (c) N	(a) According to the ongoing RAP study, seven and twenty landowners will lose part of their farmland in Buloba and Mukono respectively due to land acquisition.

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		to reduce the impacts, if necessary? (b) Is there a possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary? (c) Is there any possibility that installation of structures, such as power line towers will cause radio interference? If any significant radio interference is anticipated, are adequate measures considered? (d) Are the compensations for transmission wires given in accordance with the domestic law?	(d) Y	Owners of these farmland will be compensated for their growing crops in accordance to the District Compensation Rates plus 30% disturbance allowance. They will also be provided necessary assistance (e.g. transition support, livelihood restoration program) depending on their interests. There are also some private farmers operating under NFA lease in Nandagi Forest Reserve, which will lose part or fully their leased land due to land acquisition. These private farmers grow mainly commercial trees and will be compensated for their growing trees in accordance to the District Compensation Rates plus 30% disturbance allowance. They will also be provided necessary assistance (e.g. transition support, livelihood restoration program) depending on their interests. (b) The risk of infectious diseases spreading is considered low as most workers will be employed locally. Nevertheless, the project will hold awareness programs (e.g. HIV/AIDS prevention program) and prepare a Code of Conduct to be strictly followed by the workers. (c) Radio interference is unlikely as the new transmission lines traverse through open land. (d) All landowners under the new transmission line corridor will be compensated in accordance to Ugandan Law.
	(3) Heritage	(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a) N	(a) There are no heritages in the project affected areas.
	(4) Landscape	(a) Is there a possibility that the project will	(a) Y	(a) There will be slight changes to current landscape at

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		adversely affect the local landscape? Are necessary measures taken?		the new substation sites (Buloba, Mukono) and associated transmission lines. To minimize landscape impacts, the construction sites will be restored as close as possible to the original landscape (e.g. through revegetation) and green belt created, if necessary.
	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?	(a) N (b) N	(a) & (b) There are no ethnic minorities and indigenous peoples in the project affected areas.
	(6) Working Conditions	(a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents?	(a) N (b) Y (c) Y (d) Y	 (a) Working conditions will be managed in accordance to Ugandan labor laws (e.g. The Employment Act, 2006). (b) Safety of workers will be managed in accordance to: UETCL's Safety Health and Environmental Policy The Workman's Compensation Act, 2000 The Occupational Safety and Health Act, 2006 The Electricity (Safety Code) Regulations 2003 JICA's "The Guidance for the Management of Safety for Construction Works in Japanese ODA Projects" Safety measure among other will include: Implementation of safety training programs for all workers. Assignment of safety officer Provision of Personal Protective Equipment (PPE). Holding of regular tool box meeting to discuss safety. Lock out-tag out procedures to be clearly displayed on site and followed. The construction contractor will be required to submit an Occupational Health and Safety Plan (OHSP) to UETCL and other necessary organizations for approval.

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				(c) See (b). (d) Security guards will be required to strictly follow the Code of Conduct.
5 Others	(1) Impacts during Construction	(a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts?	(a) Y (b) Y (c) Y	 (a) An Environment and Social Management Plan (ESMP) is developed to minimize impacts (e.g. noise, air pollution, water pollution, wastes) during construction. (b) The following measures are planned to minimize impacts on the natural environment in particular for Buloba and Mukono: Revegetation of exposed surfaces (e.g. cut and fill slopes) to be done by native plant species only, and immediately after works are completed to minimize chance of colonization by invasive species. Implementation of environmental awareness programs for the construction workers, with special focus on threatened species. Strictly prohibit hunting and poaching of wild life and cutting of trees. Prevention and minimization of pollution (e.g. noise, water) through strict implementation of planned pollution control measures. (c) Construction activities may cause temporary power outage and traffic disruption and accidents. Adequate measures are planned in the ESMP to minimize impacts/risks of power outage and traffic disruption and accidents.
	(2) Monitoring	(a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts?(b) What are the items, methods and frequencies of the monitoring program?(c) Does the proponent establish an adequate	(a) Y (b) (c) Y (d) Y	 (a) An Environment and Social Monitoring Plan (ESMoP) has been developed covering both construction and operation stages. (b) The ESMoP includes internal and external monitoring of PAPs, field measurements (air, noise, water), ecosystem monitoring, progress of offset programs for

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities?		Nandagi Forest Reserve, regular site inspection and so on. See ESMoP for more details. (c) The monitoring responsibility and cost are outlined in the ESMoP. The monitoring cost will be incorporated into the Project budget. During the construction stage, the construction contractor and supervisor will be required to assign an Environment, Health and Safety officer to implement and oversee the monitoring requirements. The environmental department of UETCL will be responsible for implementing their monitoring requirements. (d) Monitoring report will be submitted to NEMA in accordance to their requirements. The monitoring results will also be reported to JICA on a regular basis.
	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Road checklist should also be checked (e.g., projects including installation of electric transmission lines and/or electric distribution facilities).	(a) Y	(a) Road checklist (Hydrology) was referred for the access road construction.
	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed, (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a) N	(a) There are no transboundary impacts.