資料-9 地質調査に関する 再委託業者からの報告書

1. ブロバ変電所の試験結果概要

表1-1 標準貫入試験から算出した地耐力(BH01:132 kV 送電ルート上)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion Cu	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00							
	1.00	1	5	0.59	3	63	325	108
	2.00	CLAYEY SAND	8	0.59	5	89	456	152
_	3.00	-	13	0.59	8	126	647	216
_	4.00	-	17	0.67	11	167	859	286
	5.00	SILT	18	0.67	12	174	895	298
	6.00	CLAY	18	0.75	13	189	969	323
	7.00	SILTY SANDY	29	0.75	22	266	1366	455
	8.00	SILTY SANDY	30	0.75	22	272	1400	467
	9.00	CLAY	33	0.75	25	292	1500	500
BH01	10.00	SILT	46	0.75	34	371	1905	635
	11.00	CLAY	29	0.79	23	276	1418	473
	12.00	SILT	53	0.79	42	426	2188	729
	13.00		79	0.79	62	568	2917	972
	14.00	7	44	0.79	35	372	1914	638
Ē	15.00	CLAY	70	0.79	55	520	2674	891
	16.00		47	0.79	37	390	2007	669
	17.00		40	0.79	32	348	1787	596
	18.00	SILT	22	0.79	17	226	1162	387
	19.00	CLAY	81	0.79	64	578	2970	990
	20.00	ULAT	64	0.79	50	488	2507	836

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 · Cu

Qall=Qult/3

表1-2 標準貫入試験から算出した地耐力(BH02:変電所内北側)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C _u	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		N	C _N	N 60	(kPa)	(kPa)	(kPa)
	0.00	CLAY			0	0	0	0
	1.00	CLAYEY GRAVEL	14	0.59	8	133	682	227
	2.00		42	0.59	25	293	1505	502
	3.00		36	0.59	21	262	1347	449
	4.00	SILT	24	0.67	16	214	1101	367
	5.00		22	0.67	15	201	1034	345
	6.00		15	0.75	11	165	850	283
	7.00	SILTY GRAVEL	19	0.75	14	196	1008	336
	8.00		22	0.75	16	218	1120	373
	9.00	SILT	24	0.75	18	232	1192	397
	10.00		31	0.75	23	279	1434	478
	11.00		25	0.79	20	248	1274	425
	12.00	CLAY	20	0.79	16	211	1085	362
	13.00		36	0.79	28	322	1657	552
BH02	14.00	1	29	0.79	23	276	1418	473
	15.00		22	0.79	17	226	1162	387
	16.00		21	0.79	17	219	1124	375
	17.00		26	0.79	20	255	1311	437
	18.00		35	0.79	28	316	1623	541
	19.00		43	0.79	34	366	1883	628
	20.00	SILT	44	0.79	35	372	1914	638
	21.00		36	0.79	28	322	1657	552
	22.00		44	0.79	35	372	1914	638
F	23.00		46	0.79	36	384	1976	659
	24.00]	22	0.79	17	226	1162	387
	25.00	1	32	0.79	25	296	1522	507
	26.00	1	75	0.79	59	547	2810	937
	27.00	1	73	0.79	57	536	2756	919
	28.00	1	73	0.79	57	536	2756	919

[出所] 再委託業者からの地質調査報告書(添付資料-8) Cu=Pa・0.29・N60[^]0.72; Pa=100 kPa

Qult=5.14 · Cu Qall=Qult/3

表1-3 標準貫入試験から算出した地耐力(BH03:220 kV 送電ルート上)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearing Capacity
			value	lactor	Value	Cu	Q _{ult}	Q _{all}
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00	CLAYEY SAND						
	1.00		4	0.59	2	54	277	92
	2.00		15	0.59	9	139	717	239
	3.00	CLAY	13	0.59	8	126	647	216
	4.00		14	0.67	9	145	747	249
	5.00		12	0.67	8	130	668	223
	6.00		18	0.75	13	189	969	323
	7.00	SILT	15	0.75	11	165	850	283
8.00 9.00	8.00		28	0.75	21	259	1332	444
	9.00	CLAY SAND	34	0.75	25	298	1532	511
	10.00	01474	43	0.75	32	353	1814	605
	11.00	CLAY	20	0.79	16	211	1085	362
	12.00		26	0.79	20	255	1311	437
	13.00		35	0.79	28	316	1623	541
	14.00	1	30	0.79	24	283	1453	484
BH03	15.00		37	0.79	29	329	1690	563
	16.00	1	34	0.79	27	309	1590	530
	17.00	1	39	0.79	31	341	1755	585
	18.00	1	37	0.79	29	329	1690	563
	19.00	1	27	0.79	21	262	1347	449
	20.00	SILT	38	0.79	30	335	1722	574
	21.00	SILT	44	0.79	35	372	1914	638
	22.00	1	43	0.79	34	366	1883	628
	23.00		37	0.79	29	329	1690	563
	24.00		47	0.79	37	390	2007	669
	25.00	1	Refusal	0.79		>450	>2300	>750
	26.00	1	45	0.79	35	378	1945	648
	27.00	1	77	0.79	61	557	2864	955
	28.00	1	74	0.79	58	541	2783	928
	29.00	1	54	0.79	43	432	2218	739

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa Qult=5.14 • Cu

Qall=Qult/3

表1-4 標準貫入試験から算出した地耐力(BH04:変電所内南側)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C _u	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00							
	1.00		10	0.59	6	104	535	178
	2.00		8	0.59	5	89	456	152
	3.00		8	0.59	5	89	456	152
	4.00	SILT	10	0.67	7	114	586	195
	5.00		17	0.67	11	167	859	286
	6.00		20	0.75	15	203	1046	349
	7.00	CLAY	20	0.75	15	203	1046	349
_	8.00		18	0.75	13	189	969	323
	9.00		13	0.75	10	149	767	256
	10.00		28	0.75	21	259	1332	444
	11.00	SILT	18	0.79	14	196	1006	335
	12.00		35	0.79	28	316	1623	541
_	13.00 14.00	SILTY SAND	22 31	0.79 0.79	17 24	226 289	1162 1487	387
-	14.00		29	0.79	24	289	148/	496 473
	and a second sec	_	2 Contraction of the second		11.11.11.11.11.11.11.11.11.11.11.11.11.		0000000000	a second produce
BH04	16.00		26	0.79	20	255	1311	437
	17.00		29	0.79	23	276	1418	473
	18.00		40	0.79	32	348	1787	596
	19.00		34	0.79	27	309	1590	530
	20.00	7	37	0.79	29	329	1690	563
	21.00	-	23	0.79	18	233	1200	400
	22.00	SILT	27	0.79	21	262	1347	449
	23.00		30	0.79	24	283	1453	484
	24.00	-	31	0.79	24	289	1487	496
	25.00	-	42	0.79	33	360	1851	617
	26.00	-	53	0.79	42	426	2188	729
	27.00	-	49	0.79	39	420	2068	689
	10000	-	0.05	0.79	100	Card Store	1000000	759
	28.00	_	56	Strate Base	44	443	2277	1000000000
	29.00		75	0.79	59	547	2810	937
	30.00		77	0.79	61	557	2864	955

[出所] 再委託業者からの地質調査報告書(添付資料-8) Cu=Pa・0.29・N60^0.72; Pa=100 kPa

Qult=5.14 · Cu

Qall=Qult/3

		1							
試験方法		ASTM D4959	ASTM D4959						
			含水量	赴 (%)					
ボーリ	ング孔	BH1	BH2	BH3	BH4				
深さ (m)	5.5 - 6.0	23.0	34.5	25.8	19.2				
	10.5 - 11.0	24.5	37.3	31.0	22.1				
	15.5 - 16.0	26.5	35.9	30.9	24.4				
	20.5 - 21.0	28.9	29.5	29.2	29.7				
	25.5 - 26.0	-	28.3	26.5	27.1				
	28.5 - 29.0	-	22.6	-	-				
	29.5 - 30.0	-	-	25.9	-				
	30.5 - 31.0	-	-	-	22.7				

表1-5 含水量 (Natural Moisture Content)

試験方法		ASTM D4318						
H VOUS IN			液性	限界				
ボーリング孔		BH1	BH2	BH3	BH4			
深さ (m)	5.5 - 6.0	47.4	65.6	64.9	53.9			
	10.5 - 11.0	44.7	68	41.2	61.9			
	15.5 - 16.0	44.8	61.3	59.9	66			
	20.5 - 21.0	49.9	65.1	56.5	59.9			
	25.5 - 26.0	-	62.6	57.7	54.8			
	28.5 - 29.0	-	59.7	-	-			
	29.5 - 30.0	-	-	61.3	-			
	30.5 - 31.0	-	-	-	54.3			
試験方法		ASTM D4318						
		塑性限界						
ボーリング孔		BH1	BH2	BH3	BH4			
深さ (m)	5.5 - 6.0	24.4	44.6	39.8	20.1			
	10.5 - 11.0	28.8	38.6	22.6	34.1			
	15.5 - 16.0	28	42.6	33.7	32			
	20.5 - 21.0	28.8	44	40.1	40.4			
	25.5 - 26.0	-	41.7	36.6	33.9			
	28.5 - 29.0	-	36.5	-	-			
	29.5 - 30.0	-	-	36.3	-			
	30.5 - 31.0	-	-	-	34.6			

表1-6 液性限界・塑性限界 (Liquid Limit and Plastic Limit)

表1-7 比重 (Specific Gravity)

試験方法		ASTM D854								
			平均比重							
ボーリング孔		BH1	BH2	BH3	BH4					
深さ (m)	5.5 - 6.0	2.595	2.732	2.650	2.795					
	10.5 - 11.0	2.636	2.744	2.649	2.639					
	15.5 - 16.0	2.599	2.713	2.637	2.694					
	20.5 - 21.0	2.749	2.662	2.684	2.716					
	25.5 - 26.0	-	2.691	2.693	2.682					
	28.5 - 29.0	-	2.721	-	-					
	29.5 - 30.0	-	-	2.592	-					
	30.5 - 31.0	-	-	-	2.638					

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表1-8 湿潤密度 (Bulk Density)

試験方法		ASTM D2937								
			湿潤密度(Mg/m³)							
ボーリング孔		BH1	BH2	BH3	BH4					
深さ (m)	5.5 - 6.0	1.89	1.80	1.92	1.97					
	10.5 - 11.0	2.00	1.70	1.83	2.01					
	15.5 - 16.0	1.86	1.74	1.86	1.81					
	20.5 - 21.0	1.94	1.82	1.88	1.79					
	25.5 - 26.0	-	1.86	1.93	1.86					
	28.5 - 29.0	-	1.71	-	-					
	29.5 - 30.0	-	-	1.93	-					
	30.5 - 31.0	-	-	-	1.93					

試験方法		ASTM D2166							
		粘着力 Cu (kPa)							
ボーリング孔		BH1	BH2	BH3	BH4				
深さ (m)	1.5 - 2.0	-	-	44	70				
	3.0 - 4.0	-	33	-	-				
	5.5 - 6.0	23.4	23	-	-				
	7.5 - 8.0	-	-	35	-				
	10.5 - 11.0	14	20	-	38				
	11.5 - 12.0	-	-	-	20				
	15.5 - 16.0	26	30	-	-				
	18.5 - 19.0	-	-	31	-				
	19.5 - 20.0	-	-	-	25				
	23.5 - 24.0	-	-	-	37				
	24.5 - 25.0	-	41	-	-				
	25.5 - 26.0	-	-	44	-				
	28.5 - 29.0	-	46	-	-				
	29.5 - 30.0	-	-	24	-				
	30.5 - 31.0	-	-	-	19				

表1-9 一軸圧縮試験(Unconfined Compressive Strength)

表1-10 三軸圧縮試験(Unconsolidated Undrained Triaxial Test)

試験方法		ASTM D2850 and	ASTM D2850 and D4767						
			粘着力 Cu(kPa)						
ボーリング孔		BH1	BH2	BH3	BH4				
深さ (m)	5.5 - 6.0	68	60	118	133				
	10.5 - 11.0	28	40	73	34				
	15.5 - 16.0	31	36	55	84				
	20.5 - 21.0	74	29	51	31				
	25.5 - 26.0	-	100	-	86				
	28.5 - 29.0	-	66	-	-				
	29.5 - 30.0	-	-	-	-				
	30.5 - 31.0	-	-	-	60				

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Borehole No.:	Depth (m)	Pre- Consolidatio	Overburd en	Compres sion		icient of V sibility Mv			ent of Cons C _v (cm²/sec		Perme	ability, k (r x10 ⁻⁹	n/s)
		(kN/m ²)	Pressure (kN/m ²)	Index, C _c	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	5.5-6.0	200.0	101.9231	0.106	0.054	0.218	0.122	0.005	0.01	0.009	0.260	2.111	1.184
BULOA	10.5-11.0	210.0	206.4796	0.123	0.048	0.428	0.211	0.004	0.01	0.006	0.309	1.888	1.190
BH 01	15.5-16.0	282.11	282.1073	0.077	0.018	0.334	0.150	0.002	0.020	0.013	0.035	6.712	2.54
	20.5-21.0	390.6	390.6	0.153	0.056	0.123	0.079	0.001	0.003	0.002	0.108	0.225	0.169
	5.5-6.0	320.0	96.9883	0.469	0.085	0.395	0.165	0.003	0.010	0.006	0.257	1.493	0.85
	10.5-11.0	250.0	175.2315	0.108	0.036	0.200	0.123	0.012	0.018	0.015	0.410	3.172	1.89
BH 02	15.5-16.0	265.1	265.1	0.032	0.012	0.066	0.039	0.001	0.006	0.003	0.016	0.225	0.09
BH UZ	20.5-21.0	366.4	366.3702	0.114	0.026	0.249	0.120	0.008	0.014	0.011	0.248	1.855	1.24
	25.5-26.0	465.5	465.5	0.108	0.039	0.239	0.133	0.009	0.016	0.012	0.329	3.855	1.78
	28.5-29.0	477.1	477.1	0.158	0.040	0.184	0.098	0.003	0.015	0.008	0.118	2.636	1.02
	5.5-6.0	200.0	103.484	0.075	0.036	0.095	0.060	0.0012	0.0015	0.0014	0.050	0.137	0.08
	10.5-11.0	205.0	188.0236	0.077	0.028	0.186	0.098	0.009	0.022	0.017	0.238	4.018	1.91
BU 02	15.5-16.0	283.3	283.3	0.103	0.042	0.306	0.145	0.016	0.021	0.017	0.852	4.730	2.30
BH 03	20.5-21.0	377.7	377.7	0.159	0.056	0.356	0.173	0.012	0.020	0.016	0.638	5.764	2.74
	25.5-26.0	483.1	483.1	0.212	0.079	0.251	0.135	0.004	0.007	0.006	0.490	0.913	0.67
	29.5-30.0	558.5	558.5	0.114	0.055	0.092	0.075	0.006	0.016	0.010	0.422	1.064	0.73
	5.5-6.0	260.0	106.4684	0.059	0.025	0.064	0.040	0.002	0.006	0.003	0.048	0.162	0.10
BH 04	10.5-11.0	260.0	206.5851	0.077	0.041	0.128	0.079	0.001	0.004	0.002	0.040	0.486	0.17
	15.5-16.0	274.8	274.8	0.138	0.062	0.217	0.147	0.003	0.007	0.005	0.382	0.816	0.60
	20.5-21.0	359.2	359.2	0.237	0.085	0.334	0.211	0.003	0.010	0.005	0.546	0.864	0.72
	25.5-26.0	464.2	464.2	0.182	0.095	0.537	0.287	0.002	0.003	0.002	0.268	1.143	0.62
	30.5-31.0	578.7	578.7	0.105	0.055	0.194	0.126	0.005	0.007	0.006	0.360	1.111	0.72

表1-11 圧密試験(Consolidation Test)

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion Cu	Ultimate Bearing Capacity	A llowable Bearing Capacity
	(m)		N	CN	N_{60}	(kPa)	Quit (kPa)	Qall (kPa)
	<u>``</u>	N. 1	N	and a second second				
	0.00	Moderate Reddish	0	0.00	0	0	0	0
	1.50	Brown imported fill Sandy Fat Gravel	5	0.59	3	63	325	108
	2.50		3	0.59	2	44	225	75
	3.50		6	0.59	4	72	371	124
	4.50		5	0.67	3	69	356	119
	5.50	Reddish Brown Sandy	7	0.67	5	88	453	151
	6.50	Fat Clay	7	0.75	5	96	491	164
	7.50	rat Clay	6	0.75	4	85	439	146
	8.50		12	0.75	9	141	724	241
	9.50		13	0.75	10	149	767	256
	10.50		17	0.75	13	181	930	310
	11.50		12	0.79	9	146	751	250
	12.50	Yellowish Orange coarse	26	0.79	20	255	1311	437
	13.50	grained Clayey Sandy	14	0.79	11	163	839	280
BH01	14.50		33	0.79	26	303	1556	519
BH01	15.50		25	0.79	20	248	1274	425
	16.50		28	0.79	22	269	1382	461
	17.50		35	0.79	28	316	1623	541
	18.50		36	0.79	28	322	1657	552
	19.50		29	0.79	23	276	1418	473
	20.50	William interconcernent	37	0.79	29	329	1690	563
	21.50	Yellowish Orange Sandy Silt	18	0.79	14	196	1006	335
	22.50	511	42	0.79	33	360	1851	617
	23.50		Refusal	0.79		>450	>2300	>750
	24.50		42	0.79	33	360	1851	617
	25.50		43	0.79	34	366	1883	628
	26.50		45	0.79	35	378	1945	648
	27.50		53	0.79	42	426	2188	729
	28.50	Sandy Clay highly	56	0.79	44	443	2277	759
		weathered Pink Greenish	46	0.79	36	384	1976	659
	30.50	Grev weak rock	Refusal	0.79		>450	>2300	>750

表2-1 標準貫入試験から算出した地耐力(BH01:変電所内北側)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu Qall=Qult/3

12 2		
試験方法		ASTM D4959
		含水量 (%)
ボーリング孔		BH1
深さ (m)	3.0	26.2
	5.0	22
	6.0	22.7
	10.0	19
	11.0	21.5
	12.0	10.9
	15.0	19.3
	16.0	25.8
	18.0	24.2
	20.0	25.8
	24.0	22.6
	25.0	20.7
	27.0	22
	30.0	17.6

表 2 一 2 含水量 (Natural Moisture Content)

表2-3 液性限界・塑性限界 (Liquid Limit and Plastic Limit)

試験方法		ASTM D4318			
		液性限界(%)	塑性限界 (%)		
ボーリング孔		BH1	BH1		
深さ (m)	5.0	53.9	26.4		
	10.0	57.7	31.6		
	11.0	57.5	29.6		
	15.0	53.2	31.3		
	20.0	57.1	35.9		
	30.0	42.1	24.1		

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表 2 一 4 比重 (Specific Gravity)

試験方法		ASTM D854	
		平均比重	
ボーリング孔		BH1	
深さ (m)	5.0	2.45	
	10.0	2.48	
	11.0	2.65	
	15.0	2.61	
	20.0	2.62	
	30.0	2.55	

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表	2-5 湿	潤密度(Bulk Density)
試験方法		ASTM D2937
		湿潤密度 (kg/m³)
ボーリング孔		BH1
深さ (m)	5.0	1903.0
	10.0	1903.0
	11.0	1969.6

[出所] 再委託業者からの地質調査報告書(添付資料-8)

15.0

20.0

表2-6 一軸圧縮試験(Unconfined Compressive Stre	rength)
---	---------

1972.7

1856.9

試験方法		ASTM D2166	
		粘着力 Cu(kPa)	
ボーリング孔		BH1	
深さ (m)	5.0	24	
	10.0	10	
	11.0	54	
	15.0	42.7	
	20.0	33	

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表2-7 三軸圧縮試験(Unconsolidated Undrained Triaxial Test)

試験方法		ASTM D2850 and D4767	
		粘着力 Cu(kPa)	
ボーリング孔		BH1	
深さ (m)	5.0	53	
	10.0	76	
	15.0	14	
	20.0	8	
	25.0	22	
	30.0	25	

表 2 - 8 圧密試験 (Consolidation Test)

Sample Source	Depth (m)	Pre- Consolid ation pressure (kN/m ²)	Overburd en Pressure (kN/m ²)	Compressi on Index, C _c				Coefficient of Consolidation C _v (cm²/sec)		Permeability, k (m/s) x10*			
		Min	Max	Ave	Min	Max	Ave	Min	Max	Ave			
	5	150	92.2	0.195	0.072	4.057	0.8934	0.0010	0.0036	0.0018	7E-11	1.5E-09	2.83E-09
	10	180	172.1	0.201	0.070	1.846	0.502	0.0011	0.0042	0.0028	7.6E-11	6.5E-09	1.67E-09
BH 1	15		276.6	0.036	0.020	0.16	0.074	0.0032	0.0154	0.0083	1.12E-09	2.25E-09	9.25E-10
	20		368.8	0.029	0.016	0.16	0.07	0.0026	0.0081	0.0049	4.2E-09	1.12E-09	4.88E-10
	30		553.2	0.037	0.030	0.098	0.053	0.0020	0.0055	0.0035	8.76E-11	1.97E-10	1.5E-10

3. 新ムコノ変電所の地質調査の結果

BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction factor	Corrected SPT 'N' Value	Undrained Cohesion C _u	Ultimate Bearing Capacity Q _{ult}	Allowable Bearing Capacity Q _{all}
	(m)		Ν	C _N	N 60	(kPa)	(kPa)	(kPa)
	0.00	Inorganic Sandy Lean						
	1.50	CLAY	6	0.59	4	72	371	124
	3.00	Inorganic Sandy SILT	7	0.59	4	81	414	138
	4.50	Inorganic Sandy Elastic SILT	5	0.59	3	63	325	108
	6.00	- Inorganic Sandy SILT -	10	0.67	7	114	586	195
	7.50		41	0.67	27	315	1618	539
		Poorly Graded SAND with Clay and Gravel	17	0.75	13	181	930	310
10.50 G G 12.00 P	10.50	Silty SAND with Gravel	70	0.75	52	501	2577	859
	Poorly Graded SAND with Silt and Gravel	30	0.75	22	272	1400	467	
BH01	13.50	Poorly Graded SAND with Clay and Gravel	40	0.75	30	335	1722	574
	15.00	Silty SAND with	9	0.75	7	114	588	196
	16.50	Gravel	17	0.79	13	188	965	322
	18.00		19	0.79	15	203	1046	349
	19.50		Refusal	0.79		>500	>2500	>850
	21.00		Refusal	0.79	1	>500	>2500	>850
	22.50		Refusal	0.79		>500	>2500	>850
	24.00	Silty SAND	Refusal	0.79		>500	>2500	>850
	25.50	10	Refusal	0.79		>500	>2500	>850
	27.00		Refusal	0.79		>500	>2500	>850
	28.50		Refusal	0.79		>500	>2500	>850

表3-1 標準貫入試験から算出した地耐力(BH01:変電所内)

[出所] 再委託業者からの地質調査報告書(添付資料-8)

Cu=Pa • 0.29 • N60^0.72 ; Pa=100 kPa

Qult=5.14 • Cu Qall=Qult/3

試験方法		ASTM D4959
		含水量 (%)
ボーリング孔		BH1
深さ (m)	1.5	27.7
	3.0	26.8
	4.5	30.7
	6.0	30.9
	7.5	13.2
	9.0	15.5
	10.5	22.4
	12.0	5.5
	13.5	11.3
	15.0	9.3
	16.5	16.1
	18.0	9.4
	19.5	17.9
	27.0	19.5
	28.5	22.2

表3-2 含水量 (Natural Moisture Content)

表 3 一 3	液性限界·	塑性限界	(Liquid	Limit	and	Plastic	Limit)
---------	-------	------	---------	-------	-----	---------	--------

試験方法		ASTM D4318			
		液性限界(%)	塑性限界 (%)		
ボーリング孔		BH1	BH1		
深さ (m)	4.5	51.8	30.3		
	6.0	45.8	28.3		
	10.5	41.2	30.5		
	28.5	35.3	25.7		

表3-4 比重 (Specific Gravity)

試験方法		ASTM D854	
		平均比重	
ボーリング孔		BH1	
深さ (m)	4.5	2.573	
	6.0	2.571	
10.5		2.704	
	28.5	2.722	

[出所] 再委託業者からの地質調査報告書(添付資料-8)

試験方法		ASTM D2937
		湿潤密度 (kg/m³)
ボーリング孔		BH1
深さ (m)	4.5	1900
	6.0	1867
10.5		1698
	28.5	1929

表3-5 湿潤密度(Bulk Density)

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表3-6 一軸圧縮試験(Unconfined Compressive Strength)

試験方法		ASTM D2166	
		粘着力 Cu(kPa)	
ボーリング孔		BH1	
深さ (m)	4.5	19	
	6.0	7	
	10.5	40	

[出所] 再委託業者からの地質調査報告書(添付資料-8)

表3-7	三軸圧縮試験	(Unconsolidated	Undrained	Triaxial	Test)
------	--------	-----------------	-----------	----------	-------

試験方法		ASTM D2850 and D4767
		粘着力 Cu(kPa)
ボーリング孔		BH1
深さ (m)	4.5	43
6.0		54
	10.5	71

表3-8 圧密試験(Consolidation Test)

Borehole No.:	Depth (m)	Consolidatio		Compres sion		icient of Vo sibility Mv			ent of Cons C _v (cm²/sec		Perme	ability, k (n x10 ⁻⁹	n/s)
		n pressure (kN/m ²)	Pressure (kN/m ²)	Index, C _c	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	4.5	140.0	83.86	0.197	0.070	0.3219	0.1617	0.0001	0.0003	0.0001	0.007	0.041	0.020
BH 01	6.0	200.0	109.90	0.104	0.053	0.179	0.099	0.001	0.002	0.001	0.091	0.185	0.120
BHUI	10.5	220.00	174.94	0.137	0.062	0.297	0.162	0.001	0.002	0.002	0.105	0.396	0.241
	28.5	539.4	539.4	0.061	0.031	0.135	0.085	0.003	0.006	0.004	0.096	0.403	0.281

Uganda Electricity Transmission Company Limited (UETCL)

Geotechnical report

April, 2016

GREATER KAMPALA TRANSMISSION NETWORK PROJECT IN THE REPUBLIC OF UGANDA

BULOBA SUBSTATION DETAIL GEOTECHNICAL

REPORT

BULOBA SUBSTATION DETAIL GEOTECHNICAL REPORT

Revision 00 Date 13.04.2016 Prepared by DA/DS Checked by LN Approved by DA

VEC YACHIYO ENGINEERING CO., LTD.

Detailed Geotechnical Report

EXECUTIVE SUMMARY

This report mainly deals with the geological and geotechnical investigation findings of Buloba Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed between December 2015 and January 2016. In addition, relevant non-geotechnical parameters are outlined. The evaluation of the field and laboratory investigations is included in this report.

Buloba substation is located in Mawokota, Mpigi district with coordinates 36 N 432115 UTM 28405 and approximately 29km west from Kampala city centre. The site is accessible via the Masaka to Kampala highway. The project area incorporated within the site boundary is approximately 113,000m².

The project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. Additionally, the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

Published geology indicates that the site is underlain by rocks from the Buganda group which are rocks predominantly composed of shale, slate and phyllite of complex formation comprising sedimentary, metamorphic and volcanic rocks.

The soil investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The conducted geotechnical investigation consists of field investigation and laboratory tests on samples recovered from the borehole

The geology of the site was variable and generally consisted of lateritic gravel underlain by interbedded layers of sand and clay overlying silt. Northwest of the site (BH03), sand was encountered from ground level up to 1mBGL underlain by 1m-10mBGL sandy clay, underlain by 10m-11mBGL clayey sand and 11m-29mBGL sandy silt. North of the site (BH02), black organic soil was encountered from ground level up to 1mBGL overlying 1m-5.5mBGL clayey gravel and 5.5m-28m silt. Southeast of the site (BH01), clayey sand was encountered from ground level up to 2.5mBGL overlying 2.5m-4mBGL gravelly clay, 4m-5mBGL clayey sand, 5m-12mBGL sandy silt, 12m-13mBGL clayey sand, 13m-18mBGL sandy silt and 18m-20mBGL silty clay. South of

.....

Detailed Geotechnical Report

the site (BH04), clayey gravel was encountered from ground level up to 4mBGL underlain by 4m-5.5mBGL clay, 5.5m-6.5mBGL clayey sand, 6.5m-9mBGL clay, 9m-25mBGL sandy silt and 25m-30mBGL gravelly silt.

iv

CONTENTS		LIST OF FIGURES
		Figure 2. 1: Site location
		Figure 2. 2: Extract of geological map of the project site
EXECUTIVE SUMMARY		Figure 2. 3: Seismicity of Uganda for the period 1900-2013 showing project site 6
INTRODUCTION	1	
.1 About report	1	Figure 3- 1: Trend of Natural Moisture Content
		Figure 3- 2: Particle distribution curve for BH1
.2 Background	1	Figure 3- 3: Particle distribution curve for BH2
.3 The Consultant	1	Figure 3- 4: Particle distribution curve for BH3
.4 Scope of services	2	Figure 3- 5: Particle distribution curve for BH3
SITE DESCRIPTION	3	Figure 5' 5. Faituce distribution curve for Brit
.1 Location	3	
.2 Topography	4	LIST OF TABLES
.3 Climate	4	Table 3- 1: Borehole location coordinates
.4 Published Geology	4	Table 3- 2: Standard penetration test result for BH1
	-	Table 3- 3: Standard penetration test result for BH2
.5 Geohazards	5	Table 3- 4: Standard penetration test result for BH3
GEOTECHNICAL INVESTIGATION	7	Table 3- 5: Standard penetration test result for BH4
.1 Methodology	7	Table 3- 6: Specific gravity summary
.2 Field Investigations	7	Table 3- 7: Summary of chemical test results
.2.1 Borehole	8	Table 3- 8: Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test) 26
.2.2 Soil profile	8	Table 3- 9: Summary of Unconfined Compressive Strength Test Results
.2.3 Ground water	9	Table 3- 31 Commany of Oledometer test result
	10	Table 3* 10. The summary of Oedonieter test result
2.4 The Standard Penetration Test (SPT)	-	
.3 Laboratory Investigations	16	Appendix 1: Borehole logs
.3.1 Moisture content	16	Appendix 2: Drilling pictorial logs
.3.2 Atterberg Limits	17	Appendix 3: Borehole layout
.3.3 Particle size distribution	18	Appendix 4: Soil Profile
.3.4 Specific Gravity	23	Appendix 5: Standard Penetration test result
.3.5 Bulk density	24	Appendix 6: Natural Moisture Content
	24	Appendix 7: Summary of Texture Classification
		Appendix 8: Specific Gravity
.3.7 Unconsolidated undrained triaxial tests	25	Appendix 9: Chemical Test
.3.8 Unconfined Compressive Strength	26	Appendix 10: One-Dimensional Consolidation (Oedometer test)
.3.9 Consolidation	27	Appendix 11: Atterbeg Test Results
CONCLUSIONS AND RECOMMENDATIONS	30	Appendix 12: Bulk Density
.1 Conclusions	30	Appendix 13: Unconsolidated undrained triaxial tests result
.2 Recommendations	32	Appendix 14: Unconfined Compressive Strength
REFERENCES	33	reportant in choosing compressive chorganization and a second sec
APPENDIX	35	
AFFENDIA	35	
v		vi

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
BGL	Below Ground Level
ВН	Borehole
DGSM	Department of Geological Survey and Mines
JICA	Japan International Cooperation Agency
km	Kilometer
m	Meter
masl	Above Mean Sea Level
SPT	Standard Penetration Test
UTM	Universal Transverse Mercator
YEC	Yachiyo Engineering Company Ltd
0 ⁰	Degrees Celsius

vii

Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding for Buloba substation. It discusses the index and engineering properties of soil based on the geotechnical field investigation which was conducted during the period December 2015 to January 2016 and laboratory test conducted in January 2016. Relevant non-geotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Yachiyo Engineering Company Ltd (YEC) were commissioned by the Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Ltd (Universal Transverse Mercator) plans to construct a new substation and associated infrastructure at the proposed site. Geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Bulooba substation and transmission line, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited was appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 10th December 2015 and the assignment commenced on 11th December, 2015.

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on 14th December, 2015. Following that, detailed investigations commenced on 15th December, 2015. The field and laboratory tests were conducted by Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Buloba substation Topographic surveying and Geotechnical investigations contract.

1.4 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was performed. Newplan limited conducted the geotechnical investigations as per the general guidance proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below:

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles;
- 3. Carrying out standard penetration tests;
- Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), consolidation tests and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

Detailed Geotechnical Report

2 SITE DESCRIPTION

2.1 Location

The proposed site is located in Mawokota, Mpigi district with coordinates 36 N 432115 UTM 28405 and approximately 29km west from Kampala city center. The site is accessible via the Masaka to Kampala highway (see Figure 2.1).

The project area incorporated within the site boundary is approximately 113,000m². It is mainly marshy land which is sparsely populated with a few habited settlements.

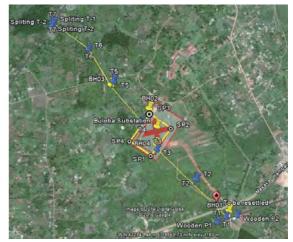


Figure 2. 1: Site location

Detailed Geotechnical Report

2.2 Topography

A detailed topographic survey was carried out by Newplan in December 2015. This indicated the topography of the site is undulating with the elevation of the project area varying between 1163 to 1196masl.

2.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 $^{\circ}$ C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

2.4 Regional Geology

According to DGSM 1:100 000 sheet 70 for Entebbe, the regional geology is composed of sedimentary, volcanic and metamorphic complexes. The main rocks in the region include shale, slate and phyllite (see Figure 2.2). These are metamorphic rocks with shale being the parent rock and produces a sequence of metamorphic rocks that goes through slate, then through phyllite, schist and gneiss. These rocks are underlain by other rocks such as quartzite and granatoids or granitic rocks. These rocks belong the Buganda group which is in the lower Proterozoic series.

Detailed Geotechnical Report

Figure 2. 2: Extract of geological map of the project site

2.5 Site Geology

Based on the drilled holes and visual observations, the site geology is dominated by rocks that have undergone some weathering to produce an overburden that typically grades from completely decomposed rocks (residual soil) to highly weathered rock with depth. Generally the overburden is deep at most of the site area and no rock was encountered in all the drilled boreholes. The formation that was encountered in top 20m BGL was variable and generally consisted of lateritic gravel underlain by interbedded layers of sand and clay overlying silt. Predominant structural trends could not easily be ascertained due to a general lack of rock exposures in the area

2.6 Geohazards

The project area of Buloba substation has not experienced any earthquakes historically and lies in zone 3 which is the least seismically active zone in Uganda. The seismicity map of Uganda (Figure 2.3) indicates that there are no epicenters close to the project site. Therefore the risk of damage by earthquakes is low. An overview of the geological

conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

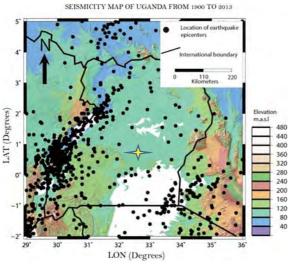


Figure 2. 3: Seismicity of Uganda for the period 1900-2013 showing project site

Detailed Geotechnical Report

3 GEOTECHNICAL INVESTIGATION

3.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation.

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in December, 2015. This investigation was limited to detail geotechnical investigation mainly for preliminary design stage investigation.

This preliminary design detailed geotechnical investigation typically includes four borings and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation.
- · Laboratory tests on samples recovered from borehole.

3.2 Field Investigations

The site work was executed on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following; • Rotary drilling of 4 boreholes to a maximum depth of 30m;

Detailed Geotechnical Report

- Collecting disturbed and undisturbed samples;
- In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.0m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760mm;
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- Counting the number of blows to drive the sampler each 75 mm increment of a total of 450 mm penetration. The blow count for the first 150 mm increment was discarded and the sum of the blow counts for the second and the third 150 mm increment was recorded as the SPT 'N' value.

3.2.1 Borehole

Four boreholes were drilled as per ASTM D 5783 and terminated at depths between 20m and 30.5mBGL. The location of each borehole GPS coordinates is summarized in below Table 3.1 (Arc 1960 Geographic coordinate system). The drilled borehole logs were prepared for each borehole as per ASTM D 2488. The exploratory borehole records and logs are included in Appendix 1 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring.

Table 3- 1: Borehole location coordinates

Borehole	х	Y
Borehole 1 (BH1)	432635	28061
Borehole 2 (BH2)	432010	28859
Borehole 3 (BH3)	431710	29043
Borehole 4 (BH4)	432066	28579

3.2.2 Soil profile

Northwest of the site (BH03), clayey sand was encountered from ground level up to 1mBGL, 1m-5mBGL sandy clay, 5m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-

Detailed Geotechnical Report

11mBGL clayey sand and 11m->29mBGL sandy silt. North of the site (BH02), sandy clay was encountered from ground level up to 1mBGL, 1m-2mBGL clayey gravel, 2m-6mBGL sandy silt, 6m-7mBGL silty gravel, 7m-11mBGL sandy silt, 11m-12mBGL sandy clay, 12m-24mBGL sandy silt, 24m-27mBGL sandy clay and sandy silt below 27m. Southeast of the site (BH01), clayey sand was encountered from ground level up to 4mBGL, 4m-5mBGL sandy silt, 10m-11mBGL sandy clay, 6m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-10mBGL sandy clay, 17m-18mBGL sandy clay, 17m-18mBGL sandy clay, 17m-17mBGL sandy clay, 17m-18mBGL sandy clay, 17m-18mBGL sandy clay, 17m-18mBGL sandy clay, 9m-10mBGL sandy clay, 17m-18mBGL sandy silt, 10m-11mBGL sandy clay below 18m. South of the site (BH04), sandy clay was encountered from ground level up to 1mBGL, 1m-3mBGL clayey sand, 3m-4mBGL sandy silt, 4m-6mBGL sandy clay, 6m-9mBGL sandy clay, 9m-12mBGL sandy silt, 12m-13mBGL silty sand, 13m->30mBGL sandy silt (see Appendix 1 up to 4).

Generally, the soil layers were dipping towards the south of the site (see ground profile in Appendix 30 and the geological sequence at the site comprises of a clayey sand and clayey gravel from ground level to a depth of 2m, overlying clay up to a depth of 10m, underlain by silt up to a depth of 31m.

3.2.3 Ground water

To determine the elevation of the ground water table, observations were carried out during the drilling. These groundwater observations in the boreholes were conducted as per ASTM D 4750.

Groundwater was encountered in 3 out of 4 boreholes (BHs 01, 03 & 04) at depths ranging between 0.4m and 3.8mBGL with the gradient towards the south of the site. This implies that the groundwater table is relatively high and considerations have to be made for design and construction. It is obvious that ground water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, groundwater levels significantly higher than those encountered could be present. The Ground water observation result is presented in the borehole logs Appendix 1.

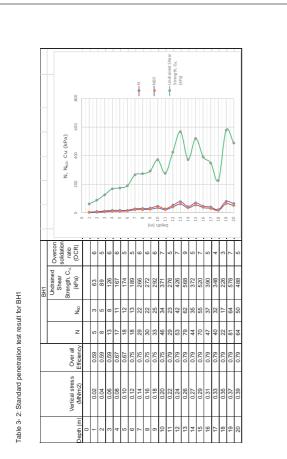
The presence of this ground water close to the foundation level can reduce the ability of soils to carry high foundation pressures, when the ground water level is above the lowest floor, water proofing and resistance against hydrostatic uplift become serious consideration. In addition, the construction below ground water level often presents difficulties. The upward flow of water into a foundation excavation can create a quick condition, construction is impossible without pre drainage. Due to the above mentioned point the effect of the ground water on foundation and way of construction should be taken into consideration during foundation design.

3.2.4 The Standard Penetration Test (SPT)

Standard penetration tests were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per ASTM D 1586. Four boreholes were drilled with depths varying from 20m and 30mBGL and SPTs carried out at 1m intervals as per the client's requirements.

Information obtained from SPT combined with other geotechnical laboratory test results, on site topography and area climatic records, provides basic planning material essential to the logical and effective development of substation and other infrastructure.

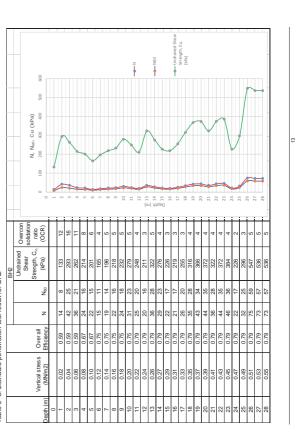
The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N₆₀) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed *et al.* (1985) and Skempton (1980). Furthermore, the undrained shear strength (c_u) of the soil was determined using the corrected standard penetration values (N₆₀) as per Hara *et al.* (1971) and Peck *et al.* (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{uill}) and approximate allowable bearing capacity (Q_{uill}) and strength (c_u) of the soil. OVER of the soil. OVER of the soil. OVER of the soil.

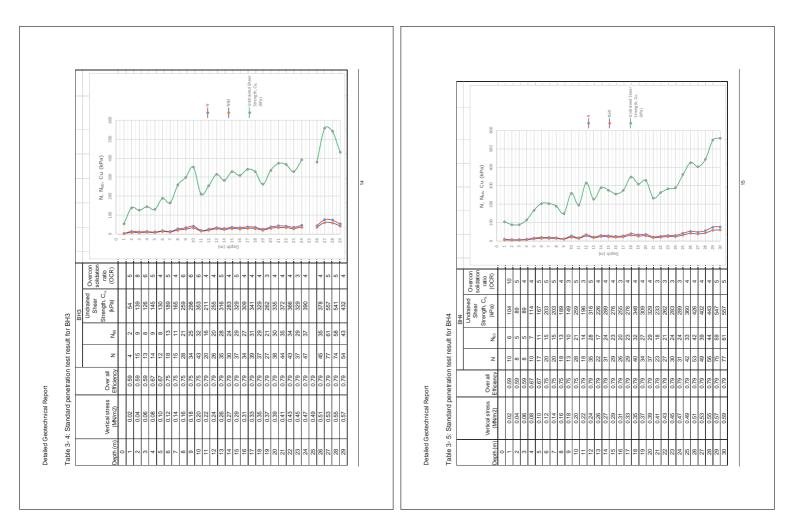

A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation

Detailed Geotechnical Report

of allowable bearing capacity (Q_{all}). Penetration refusal was achieved between depths varying from 20m to 30mBGL which implied presence of hard stratum. The hard stratum was confirmed at 20mBGL at BH01, 27mBGL at BH02, 29mBGL at BH03 and 30mBGL at BH04. Detailed bearing capacity results are attached as Appendix 5 and the summary of undrained shear strength (c_u) given in Table 3.2, 3.3, 3.4, & 3.5.

Basing on the undrained shear strength derived from the SPT values, generally, the strength was directly proportional to the depth from ground level. BH01 was characterised by stiff soils from ground level up to 2mBGL underlain by very stiff cohesive soils from 2m to 7mBGL overlying hard cohesive soils. BH02 was characterised by very stiff soils from the surface up to 1mBGL overlying medium dense granular soils from 1m to 2mBGL underlain by very stiff cohesive soils from 2m up to 6mBGL overlying hard cohesive soils. BH03 was comprised of loose granular soils from the surface up to 1mBGL overlying very stiff soil from 1.5m to 7.5mBGL underlain by hard cohesive soils. BH04 was cohesive soils from ground level up to 4m overlying very stiff cohesive soils from 4m to 6.5mBGL, hard soils from 6.5m to 8mBGL.


Furthermore, the insitu soil is over consolidated as demonstrated by the insitu SPTs executed at all exploratory holes from BH01 to BH04 (see Table 3.2, 3.3, 3.4,& 3.5).



Detailed Geotechnical Report

Detailed Geotechnical Report

3.3 Laboratory Investigations

Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Comatlab limited. The following lab tests have been carried out on samples taken from the different boreholes:

- Moisture content
- Liquid limit
- Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- · Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)

3.3.1 Moisture content

Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on more than 22 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2216. The test result is presented in Figure 3.1 and Appendix 6 with respect to depth. Natural moisture content of the insitu soil varied between 19 and 37%.

The test result shows the moisture content in all borehole is increasing from ground surface up to 20m and finally decreases from 20m up to 30m. Such type of decrease in

16

Detailed Geotechnical Report

water content results in a decrease in cation layer thickness and an increase in the net attractive forces between particles. This means the soil strength below 20m is increasing with depth while compared with soil layer between ground surface and 20m.

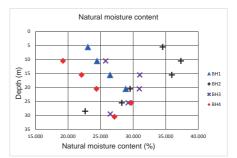


Figure 3- 1: Trend of Natural Moisture Content

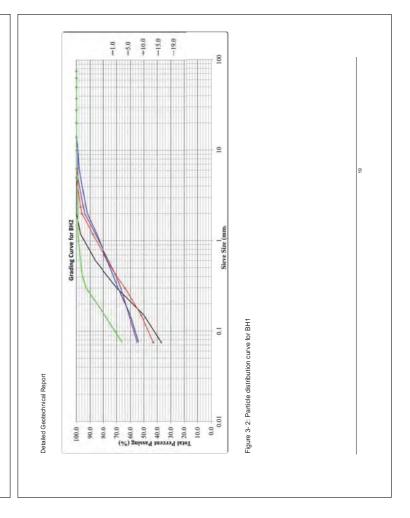
3.3.2 Atterberg Limits

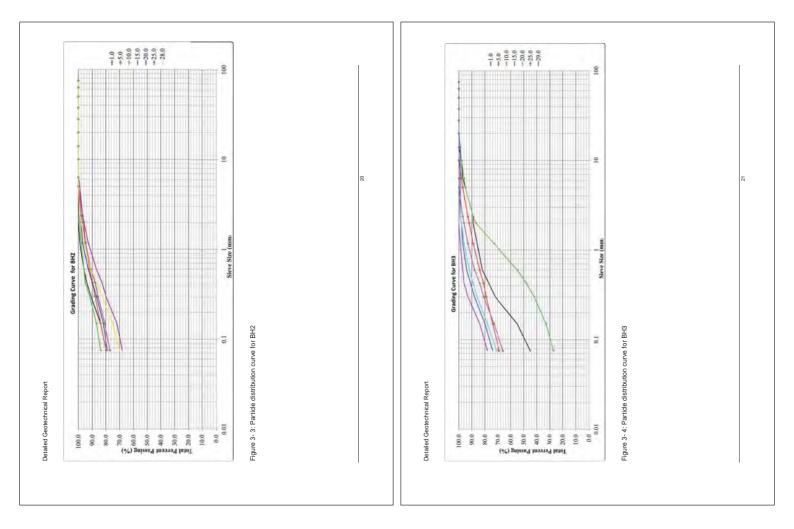
To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on samples collected from borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 214 atterberg limit tests were conducted. The test result is presented in Appendix 4. All the result obtained from atterberg laboratory tests were used for soil classification and the project area soil is predominantly silt of high plasticity, elastic silt up to 30m in all boreholes.

Shrinkage limit tests were also conducted on samples recovered from the boreholes as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in appendix 11. All Shrinkage limit test results were less than 15 percent, this indicates that Kaolinite clay

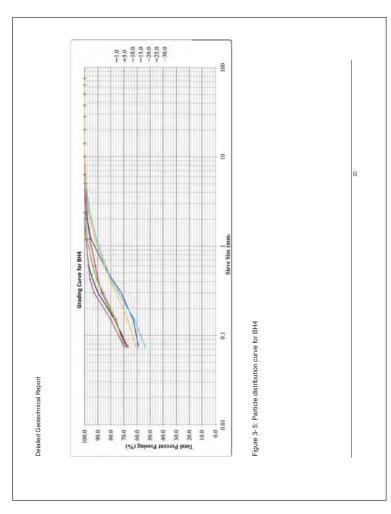
17

mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.


3.3.3 Particle size distribution


To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 107 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test results are presented in Figure 3-11 up to 3-14 and Appendix 4.

From texture classification given in Appendix 7 and Figure 3-2 up to 3-5, the engineering characteristics such as permeability, strength, and swelling potential are evaluated as below;


The insitu soils at all boreholes are semipervious to impervious when compacted, fair to poor shearing strength when compacted and saturated, low to high compressibility when compacted and saturated. This implies poor workability as a construction material, and poor relative desirability for foundation.

Generally, the *insitu* material was composed of predominantly fine soils mixed with coarse soils. The fine soils were silt and clay while the coarse fraction was composed of gravel and sand. At BH01, the soil is predominantly composed of silt and clay (52%), sand (45%) and gravel (3%). The fine fraction increased at BH02 to silt and clay (78%) while sand was 19% and gravel 3%. Similarly, at BH03, silt and clay constituted 66%, sand 33% and gravel 1%. At BH04, silt and clay were at 65%, sand 35% and gravel 1%. This implies that the *insitu* soil has low permeability and high compressibility.

1.8

3.3.4 Specific Gravity

To determine the specific gravity of the soil grains specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The specific gravity of the project area soil varies between 2.59 and 2.79 and the average specific gravity is 2.68. The test results are presented in appendix 8 and Table 3.7.

Table	3-6-	Spocific	arovity	summary

	DEDTU()	SPECIFIC
BOREHOLE NO.	DEPTH (m)	GRAVITY (GS)
	5.5-6.0	2.595
	10.5-11.0	2.636
	15.5-16.0	2.599
1	20.5-21.0	2.749
	5.5-6.0	2.732
	10.5-11.0	2.744
	15.5-16.0	2.713
	20.5-21.0	2.662
	25.5-26.0	2.691
2	28.5-29	2.721
	5.5-6.0	2.650
	10.5-11.0	2.649
	15.5-16.0	2.637
	20.5-21.0	2.684
	25.5-26.0	2.693
3	29.5-30.0	2.592
	5.5-6.0	2.795
	10.5-11.0	2.639
	15.5-16.0	2.694
	20.5-21.0	2.716
4	25.5-26.0	2.682

Detailed Geotechnical Report

Generally, Bulooba substation foundation soil is prone to corrosion. This tends to reduction in life time of the foundation structure if appropriate measures are not taken. In order to avoid this problem, it is recommended to use stainless steel for foundation reinforcement or provide appropriate concrete foundation cover to avoid the ingress of chlorides and sulphates. Stainless steel reinforcement does not rely on concrete for its corrosion protection and is a straightforward solution when concrete is subjected to the ingress of chlorides. Stainless rebar is also used for long design life structures and when equipment is sensitive to magnetic fields and needs non-magnetic reinforcement.

23

25

Borehole No.	Depth (m)	РН	Chlorides (%)	Sulphates (%)
	7.0 - 8.0	7.04	0.88	4.29
BH 1	17.0 - 18.0	6.66	0.80	2.74
	7.0 - 8.0	6.79	0.30	1.37
BH 2	18.0 - 19.0	6.73	0.35	2.45
	3.0 - 4.0	5.84	0.05	1.32
BH 3	17.0 - 18.0	6.88	0.27	2.54
	3.0 - 4.0	6.79	0.35	2.45
BH 4	20.0 - 21.0	7.09		1.18

3.3.7 Unconsolidated undrained triaxial tests

To determine the strength characteristics of soils including detailed information on the effects of lateral confinement, pore water pressure and drainage, unconsolidated undrained triaxial tests were conducted on undisturbed samples. The conducted triaxial

A total of 22 triaxial tests were conducted as per as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2850, and D 4767. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 0 to 19°, the minimum cohesion is 28kPa with 2 degrees internal friction angle at 10mBGL depth of borehole 1, and the maximum cohesion is 133kPa with 0 degrees

tests further used to determine a friction angle of clays & silts and the stiffness (modulus).

Detailed Geotechnical Report

30.0-30.50

3.3.5 Bulk density

Bulk density test was conducted to obtain overburden stresses within a soil mass required for evaluations of the unit weight or mass density of the various strata. Bulk density for the undisturbed samples were determined using drive tubes as per American Society for Testing and Materials (ASTM) D 2937. More than 22 bulk density tests were conducted. The unit bulk density of the insitu soil at all boreholes are almost the same except borehole 2. This shows as parental material, degree of consolidation and compaction, and degree of weathering are uniform between boreholes. The test result shows the bulk density for the project area varies between 1.71 and 2.0 1 Mg/m³. For any further use and design we recommend to consider bulk density at each soil layer and borehole presented in appendix 12.

2.638

3.3.6 Corrosivity of soils

To determine the aggressiveness and corrosivity of soils, pH, sulphate and chloride content of soils tests were conducted. A total of 15 aggressiveness and corrosivity tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) G 51 and D 4327. The test result is presented in table 3.7 and Appendix 9.

Sulphate and chloride ions lead to accelerated corrosion of steel reinforcement. Furthermore, high concentrations of sulphates are nocuous to concrete. Increased corrosion rates can also result from lowering of the soil pH to acidic generated by sulphate reducing bacteria whose indicators are sulphides in the soil (California Transport, 2012). The aggressiveness and corrosivity of soils test result is summarized as below:

- The PH was slightly acidic to neutral with a value between 5.8 and 7.1, this associated with insignificant corrosion rates.
- The chlorides content test result value varies between 520 and 8330 ppm, this associated with significant corrosion rates.
- The sulphate content test result value varies between 11390 and 42870 ppm, this
 associated with significant corrosion rates.

24

internal friction angle at 5mBGL of borehole 4.

The computations of the Undrained triaxial test parameters (un-drained cohesion and angle of internal friction) are presented in Appendix 13. Table 3.8 below shows the summary of the undrained unconsolidated triaxial test results.

Table 3- 8: Summary of Unconsolidated Undrained Triaxial Test (UU Triaxial Test)

Borehole No	Depth (m)	Bulk density (kg/m³)	Dry density (kg/m³)	Angle of Internal Friction (degrees)	Cohesion (kPa)
	5.5-6.0	1830	1487.80	0	68
1	10.5-11.0	1840	1520.66	2	28
1	15.5-16.0	1850	1516.39	0	31
	20.5-21.0	1890	1512.00	0	74
	5.5-6.0	1720	1264.71	0	60
	10.5-11.0	1710	1230.22	6	40
2	15.5-16.0	1680	1183.10	3	36
2	20.5-21.0	1830	1418.60	3	29
	25.5-26-0	1670	1336.00	1	100
	28.5-29.0	1720	1354.33	3	66
	5.5-6.0	1830	1464.00	4	118
3	10.5-11.0	1800	1395.35	0	73
3	15.5-16.0	1800	1395.35	13	55
	20.5-21.0	1830	1418.60	0	51
	5.5-6.0	1920	1454.55	0	133
	10.5-11.0	1740	1487.18	3	34
4	15.5-16.0	1800	1451.61	19	84
4	20.5-21.0	1780	1401.57	3	31
	25.5-26-0	1800	1451.61	0	86
	30.5-31.0	1870	1496.00	2	60

3.3.8 Unconfined Compressive Strength

To determine the undrained shear strength of the insitu soil a total of 20 Unconfined Compressive Strength of Soils tests were conducted as pre Standard Test Methods for American Society for Testing and Materials (ASTM) D 2166 on remolded soil sample at natural moisture content.

Detailed Geotechnical Report

The UCS ranged from 14 to 26kpa for Borehole 1, 20 to 46kpa for borehole 2, 24 to 44kpa for borehole 3, and 20 to 70kpa for borehole 4. The computations of the unconfined compressive strength test parameters are presented in Appendix 14. Table 3.9 shows the summary of the unconfined compressive strength test results

	-		-	
Borehole No.	Test Depth (mm)	Unconfined compresive strength,qu (kpa)	Undrained cohesion,Cu (kpa)	Unit strain (%)
	5.5 - 6.0	47	23.4	14.3
1	10.5-11.0	32	14	7.9
	15.5-16.0	51	26	13.4
	3.0 - 4.0	66	33	4.7
	5.5 - 6.0	46	23	12.6
2	10.5 - 11.0	40	20	11.5
2	15.5- 16.0	61	30	10.6
	24.5 -25.0	83	41	12.9
	28.5 - 29.0	92	46	9.6
	1.5 - 2.0	87	44	13.2
	7.5 - 8.0	70	35	11.5
3	18.5 - 19.0	63	31	6.7
	25.5 - 26.0	87	44	8.3
	29.5 - 30.0	49	24	10.3
	1.5 - 2.0	140	70	8.8
	10.5 - 11.0	77	38	7.3
4	11.5 - 12.0	40	20	11.8
4	19.5 - 20.0	50	25	9.2
	23.5 - 24.0	74	37	7.8
	30.5 - 31.0	39	19	10.8

3.3.9 Consolidation

26

Compression properties of the project area soil were determined using laboratory test result. The result from this test was used to determine preconsolidation stress, compression characteristics, creep, stiffness, and flow rate properties of soils under loading.

27

Detailed Geotechnical Report

To determine those properties of the soil One-Dimensional Consolidation (Oedometer test) using incremental loading was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2435. A total of 22 representative One-Dimensional Consolidation (Oedometer test) were conducted.

The summary of Oedometer test result is given in Table 3.7 and Appendix 10. The test result shows the average compression index (Cc), coefficient of volume compressibility (M_v), Coefficient of consolidation, and coefficient of permeability for the project area insitu soil is 0.15, 0.13MN/m², 0.008cm²/sec and 1.1E-9 m/sec respectively. For accurate settlement analysis we recommend to consider values mentioned in below Table 3.10 for each borehole and depth.

Detailed Geotechnical Report

28

		Pre-	Overburd	Compres	Coeffi	Coefficient of Volume	olume	Coefficie	Coefficient of Consolidation	olidation	Perme	Permeability, k (m/s)	(s/u
Borehole No.:	Depth (m)	Consol idatio		sion	Compress	Compressibility Mv (MN/m ²	(MN/m^2)	5	Cv (cm ² /se c)	0		x10 ⁻⁹	
		n pressure (kN/m ²)	Pressure (kN/m ²)	Index, C _c	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
	5.5-6.0	200.0	101.9231	0.106	0.054	0.218	0.122	0.005	0.01	0.009	0.260	2.111	1.184
1010	10.5-11.0	210.0	206.4796	0.123	0.048	0.428	0.211	0.004	0.01	0.006	0.309	1.888	1.190
TOUR	15.5-16.0	282.11	282.1073	0.077	0.018	0.334	0.150	0.002	0.020	0.013	0.035	6.712	2.547
	20.5-21.0	390.6	390.6	0.153	0.056	0.123	0.079	0.001	0.003	0.002	0.108	0.225	0.169
	5.5-6.0	320.0	96.9883	0.469	0.085	0.395	0.165	0.003	0.010	0.006	0.257	1.493	0.857
	10.5-11.0	250.0	175.2315	0.108	0.036	0.200	0.123	0.012	0.018	0.015	0.410	3.172	1.895
	15.5-16.0	265.1	265.1	0.032	0.012	0.066	0.039	0.001	0.006	0.003	0.016	0.225	0.099
70110	20.5-21.0	366.4	366.3702	0.114	0.026	0.249	0.120	0.008	0.014	0.011	0.248	1.855	1.249
	25.5-26.0	465.5	465.5	0.108	0.039	0.239	0.133	0.009	0.016	0.012	0.329	3.855	1.783
	28.5-29.0	477.1	477.1	0.158	0.040	0.184	0.098	0.003	0.015	0.008	0.118	2.636	1.023
	5.5-6.0	200.0	103.484	0.075	0.036	0.095	0.060	0.0012	0.0015	0.0014	0.050	0.137	0.083
	10.5-11.0	205.0	188.0236	0.077	0.028	0.186	0.098	0.009	0.022	0.017	0.238	4.018	1.915
0 1 0 3	15.5-16.0	283.3	283.3	0.103	0.042	0.306	0.145	0.016	0.021	0.017	0.852	4.730	2.301
2010	20.5-21.0	377.7	377.7	0.159	0.056	0.356	0.173	0.012	0.020	0.016	0.638	5.764	2.740
	25.5-26.0	483.1	483.1	0.212	0.079	0.251	0.135	0.004	0.007	0.006	0.490	0.913	0.671
	29.5-30.0	558.5	558.5	0.114	0.055	0.092	0.075	0.006	0.016	0.010	0.422	1.064	0.732
	5.5-6.0	260.0	106.4684	0.059	0.025	0.064	0.040	0.002	0.006	0.003	0.048	0.162	0.106
	10.5-11.0	260.0	206.5851	0.077	0.041	0.128	0.079	0.001	0.004	0.002	0.040	0.486	0.178
1010	15.5-16.0	274.8	274.8	0.138	0.062	0.217	0.147	0.003	0.007	0.005	0.382	0.816	0.602
*0 L Q	20.5-21.0	359.2	359.2	0.237	0.085	0.334	0.211	0.003	0.010	0.005	0.546	0.864	0.724
	25.5-26.0	464.2	464.2	0.182	0.095	0.537	0.287	0.002	0.003	0.002	0.268	1.143	0.627
	30.5-31.0	578.7	578.7	0.105	0.055	0.194	0.126	0.005	0.007	0.006	0.360	1.111	0722

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Geological and geotechnical assessment at the Buloba substation site was essential for obtaining fundamental information in terms of foundation conditions. This information was obtained from borehole drilling as well as onsite surveys and laboratory testing. All soil investigation test were conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The following conclusions were reached;

- The project area of Buloba substation has not experienced any earthquakes over years. This project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An overview of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are identified in the area.
- The site is underlain by rocks of from the Buganda group which are rocks predominantly composed of shale, slate and phyllite of complex formation comprising sedimentary, metamorphic and volcanic rocks.
- 3. Groundwater was encountered in 3 out of 4 boreholes (BHs 01, 03 & 04) at depths ranging between 0.4m and 3.8mBGL with the gradient towards the south of the site. This implies that the groundwater table is relatively high and considerations have to be made for design and construction.
- 4. Basing on the undrained shear strength derived for SPTs, BH01 was characterized by stiff soils from ground level up to 2mBGL underlain by very stiff cohesive soils from 2m to 7mBGL overlying hard cohesive soils. BH02 was characterized by very stiff soils from the surface up to 1mBGL overlying medium dense granular soils from 1m to 2mBGL underlain by very stiff cohesive soils from 2m up to 6mBGL overlying hard cohesive soils. BH03 was comprised of stiff soil from the surface up to 1mBGL overlying very stiff soil from 1.5m to 7.5mBGL underlain by hard cohesive soils. BH04 was loose granular soils from ground level up to 4m overlying very stiff cohesive soils from 4m to 6.5mBGL.

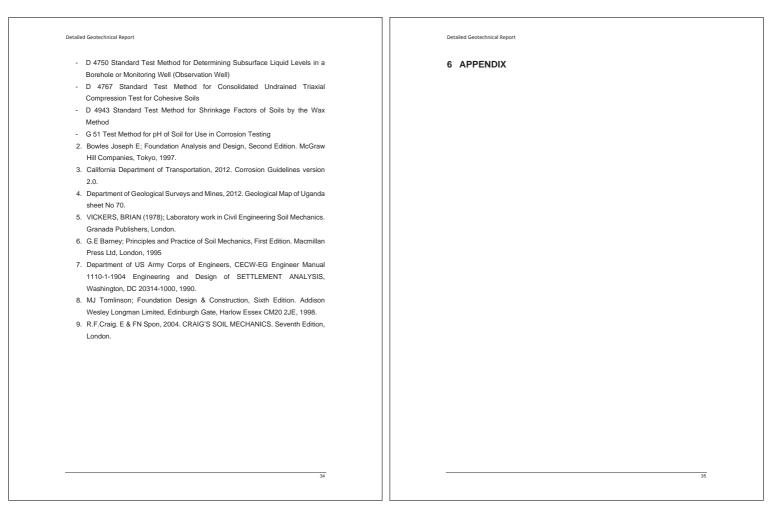
Detailed Geotechnical Report

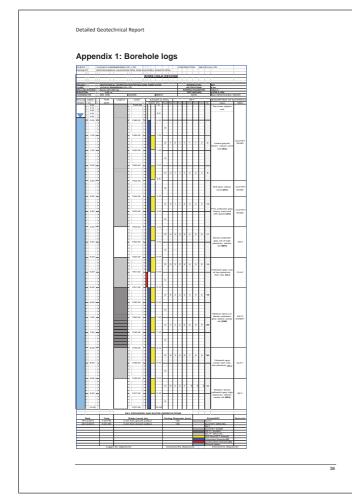
hard soils from 6.5m to 8mBGL interbedded with very stiff soil from 8m to 9.5mBGL and hard soils below 9.5mBGL.

- 5. The laboratory investigation confirmed that the geological sequence at the site was comprised of the following; BH01 was characterised by grey clayey sand from ground level up to 4mBGL succeeded by grey sandy silt from 4m to 5mBGL, followed by grey sandy clay from 5m to 6mBGL, 6m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-10mBGL sandy silt, 10m-11mBGL sandy clay, 11m-12mBGL sandy silt, 12m-17mBGL sandy clay, 17m-18mBGL sandy silt and sandy clay below 18m. At BH02, sandy clay was encountered from ground level up to 1mBGL, 1m-2mBGL clayey gravel, 2m-6mBGL sandy silt, 6m-7mBGL silty gravel, 7m-11mBGL sandy silt, 11m-12mBGL sandy clay, 12m-24mBGL sandy silt, 24m-27mBGL sandy clay and sandy silt below 27m. BH03 was characterised by clayey sand from ground level up to 1mBGL, 1m-5mBGL sandy clay, 5m-8mBGL silty sand, 8m-9mBGL sandy clay, 9m-11mBGL clayey sand and 11m->29mBGL sandy silt. At BH04, sandy clay was encountered from ground level up to 1mBGL, 1m-3mBGL clayey sand, 3m-4mBGL sandy silt, 4m-6mBGL sandy clay, 6m-9mBGL sandy clay, 9m-12mBGL sandy silt, 12m-13mBGL silty sand, 13m->30mBGL sandy silt.
- 6. Natural moisture content of the insitu soil varied between 19 and 37%.
- All shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.
- The specific gravity of the insitu soil varied from 2.59 to 2.79 which implied that it is comprised of a blend of clay, sand and silt.
- The insitu soil is prone to corrosion due to high chloride and sulphates concentrations.
- 10. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 0 to 19°, the minimum cohesion is 28kPa with 2 degrees internal friction angle at 10mBGL depth of borehole 1, and the maximum cohesion is 133kPa with 0 degrees internal friction angle at 5mBGL of borehole 4.
- 11. Unconfined Compressive Strength of the insitu soil ranges from 14 to 26kpa for Borehole 1, 20 to 46kpa for borehole 2, 24 to 44kpa for borehole 3, and 20 to 70kpa for borehole 4.

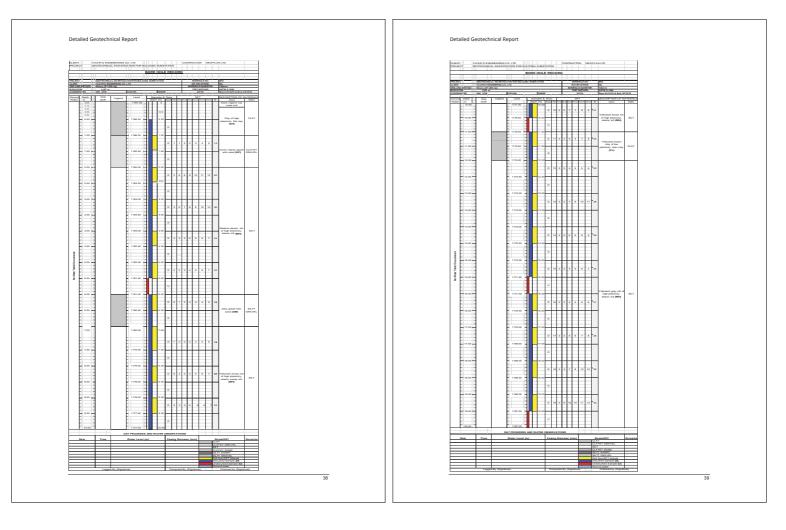
Detailed Geotechnical Report

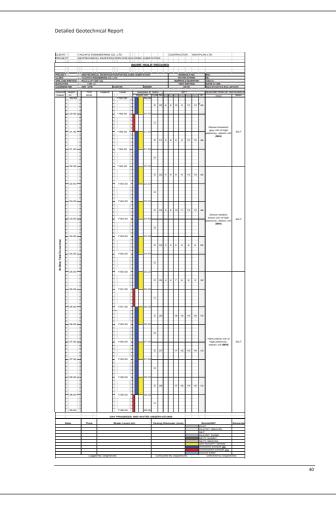
- 12. The insitu soil is compressible and poor to facilitate drainage. The test result shows the average compression index (Cc), coefficient of volume compressibility (M_v), Coefficient of consolidation, and coefficient of permeability is 0.15, 0.13MN/m², 0.008cm²/sec and 1.1E-9 m/sec respectively.
- 13. Basing on the index properties and its classification, the insitu soils have poor workability as a construction material, and poor relative desirability for foundation.

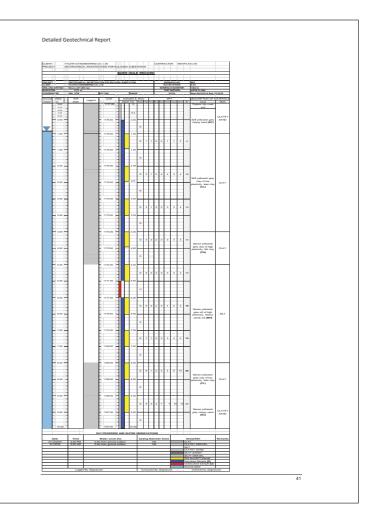

4.2 Recommendations

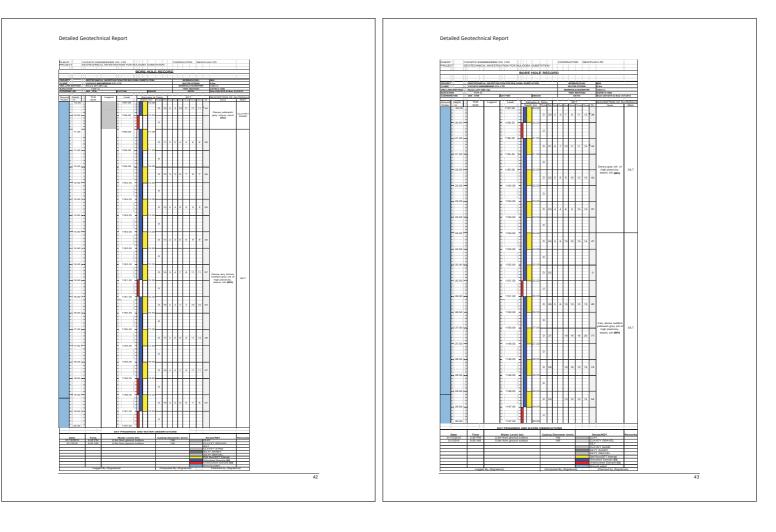

- The design of the proposed foundations shall take into account the poor ground conditions to ensure that the risk of failure is minimised.
- 2. To minimise corrosion, special corrosion protection considerations for steel are required. These include; stainless steel be used to provide reinforcement for foundation structure. Provision of appropriate concrete cover to the foundation to avoid the ingress of chlorides and sulphates. Application of corrosion resistant concrete mix designs and epoxy coated reinforcing steel.
- In order to avoid ground water related problem, effect of the ground water on foundation and way of construction should be taken into consideration during foundation design.
- For accurate settlement analysis during foundation design we recommend to consider values for each borehole location and depth.
- For preliminary foundation design we recommend to use undrained shear strength result from SPT and undrained unconsolidated triaxial test results instead of Unconfined Compressive Strength test result.

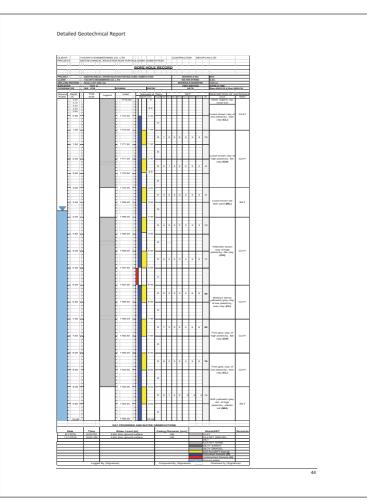
Detailed Geotechnical Report

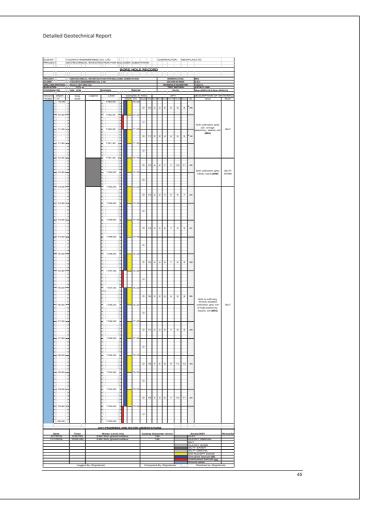

5 REFERENCES

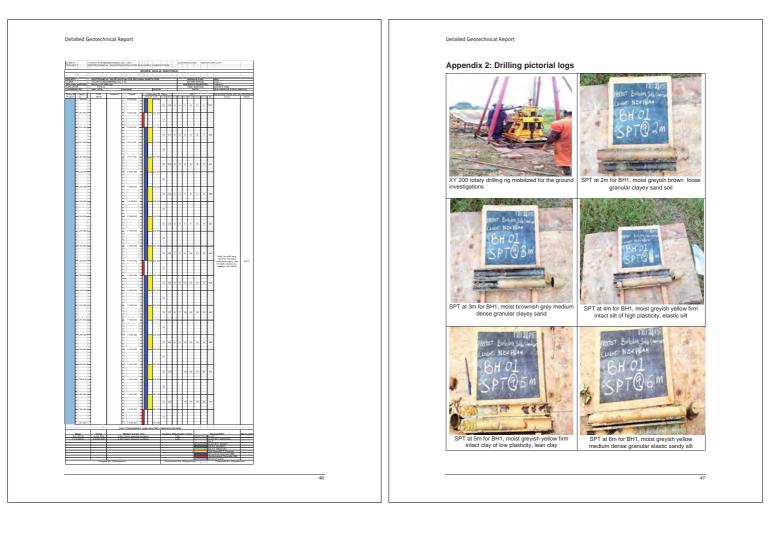

- AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes
- D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
- D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site
- Investigation
- D 2434 Standard Test Method for Permeability of Granular Soils (Constant Head)
- D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System).
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of Soils
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

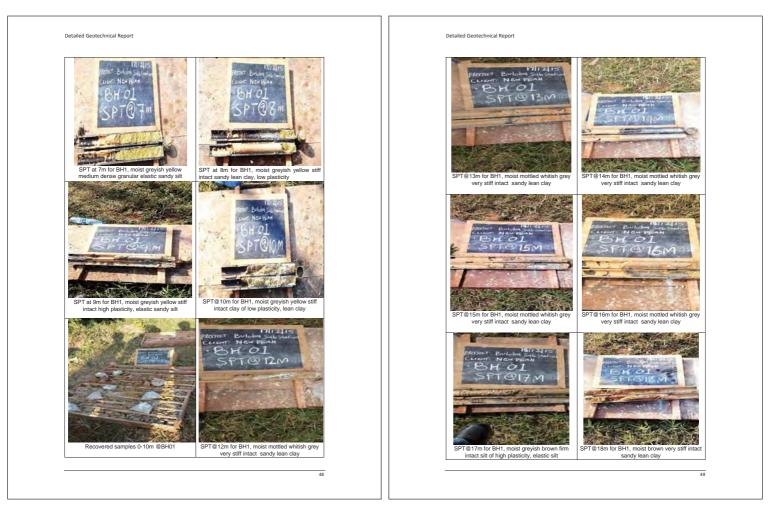


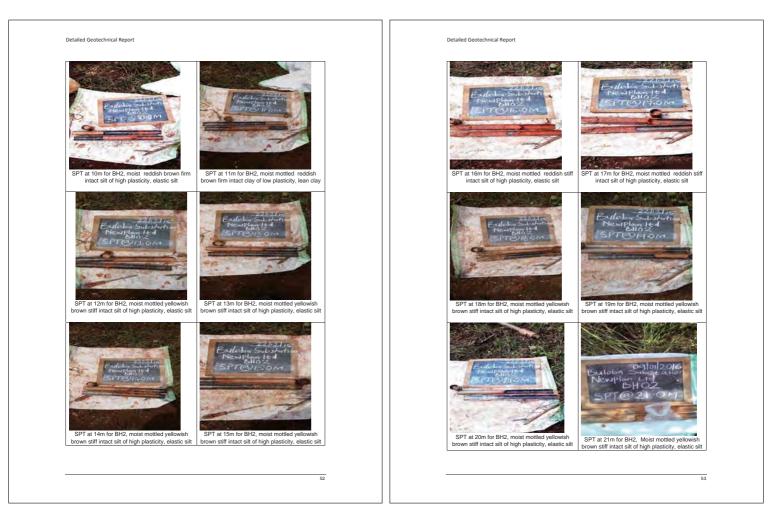


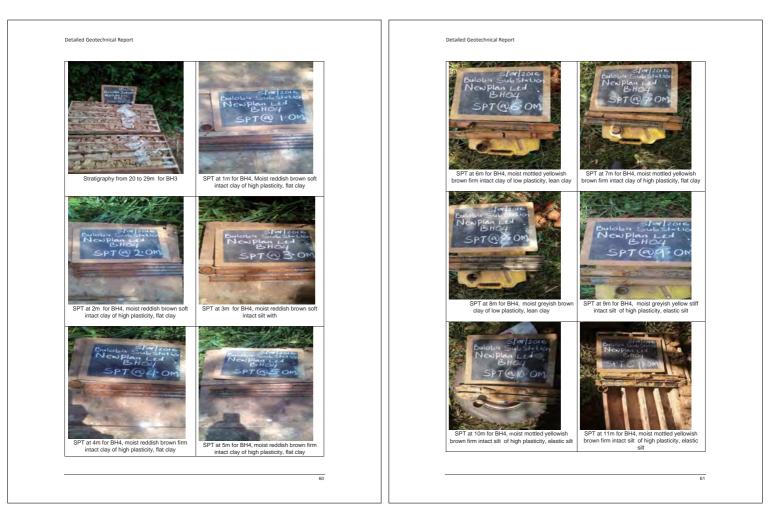


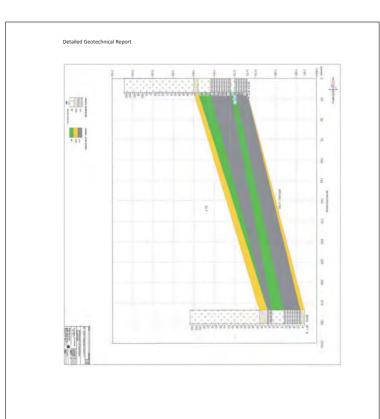


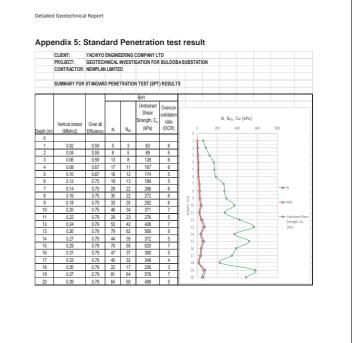


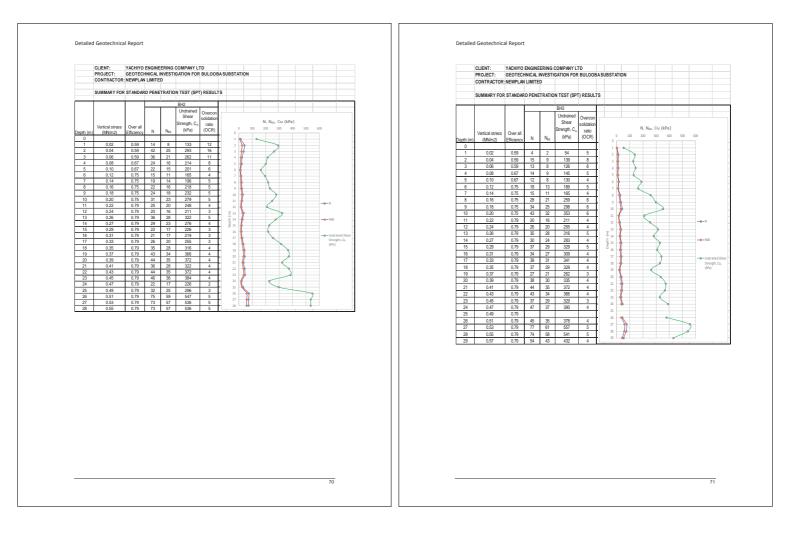












	CLIENT:	YACHIYO	ENGINE	ERING	COMPANY L	TD				
	PROJECT:	GEOTECH	INICAL	NVEST	GATION FOR	BULOOBA	SUBSTAT	TION		
	CONTRACTOR	NEWPLAN	LIMITE	D						
	SUMMARY FOR	STANDAR	D PENE	TRATIC	N TEST (SP	T) RESULTS				
					BH4		-			
Depth (m)	Vertical stress (MN/m2)	Over all Efficiency	N	N ₆₀	Undrained Shear Strength, C _u (kPa)	Overcon solidation ratio (OCR)	0	100	N, N ₆₀ , Cu (kPa) 200 300 400	500 600
0	(1			
1	0.02	0.59	10	6	104	10	2			
2	0.04	0.59	8	5	89	5	3			
3	0.06	0.59	8	5	89	4	4			
4	0.08	0.67	10	7	114	4	5			
5	0.10	0.67	17	11	167	5	6			
6	0.12	0.75	20	15	203	5	7			
7	0.14	0.75	20	15	203	5	8			
8	0.16	0.75	18	13	189	4	9		6	
9	0.18	0.75	13	10	149	3	10			
10	0.20	0.75	28 18	21	259 196	5	11		$\langle $	
12	0.22	0.79	35	28	316	3	12)		- - N
12	0.24	0.79	22	17	226	4	13	€	<	
13	0.28	0.79	31	24	220	4	E 14		7	
15	0.29	0.79	29	23	205	4	15 16 16	1	1	
16	0.31	0.79	26	20	255	3		1	1	
17	0.33	0.79	29	23	276	4	17	1		
18	0.35	0.79	40	32	348	4	18	1	2	Undrained She Strength, Cu,
19	0.37	0.79	34	27	309	4	19	1	5	(kPa)
20	0.39	0.79	37	29	329	4	20 -	1		
21	0.41	0.79	23	18	233	3	22		<u> </u>	
22	0.43	0.79	27	21	262	3	23			
23	0.45	0.79	30	24	283	3	23		I.	
24	0.47	0.79	31	24	289	3	25			
25	0.49	0.79	42	33	360	4	26	1		
26	0.51	0.79	53	42	426	4	27	1		7
27	0.53	0.79	49	39	402	4	28	1		
28	0.55	0.79	56	44	443	4	29	-		
29	0.57	0.79	75	59	547	5	30			
30	0.59	0.79	77	61	557	5				

Detailed Geotechnical Report

	PROJECT:	GEOTECHNICAL I NEWPLAN LIMITE		ION FOR I	SOLOOBA	SUBSTATI	JN	
	CONTRACTOR:	NEWPLAN LINITE						
		EVALUATION OF A			CADACITY			
	SUMMARTFUR	EVALUATION OF A		DEARING	CAPACIT	I BASED UI	I FIELD SP	I IN VALUES
BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N' Value	Over all Correction	Corrected SPT 1V Value	Undrained Cohesion	Ultimate Bearing Capacity	Allowable Bearing Capacity
			Value			Cu	Qut	Qal
	(m)		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00							
	1.00		5	0.59	3	63	325	108
	2.00	CLAYEY SAND	8	0.59	5	89	456	152
	3.00		13	0.59	8	126	647	216
	4.00		17	0.67	11	167	859	286
	5.00	SILT	18	0.67	12	174	895	298
	6.00	CLAY	18	0.75	13	189	969	323
	7.00	SILTY SANDY	29	0.75	22	266	1366	455
	8.00		30	0.75	22	272	1400	467
BH01	9.00	CLAY	33	0.75	25	292	1500	500
BHUI	10.00	SILT	46	0.75	34	371	1905	635
	11.00	CLAY	29	0.79	23	276	1418	473
	12.00	SILT	53	0.79	42	426	2188	729
	13.00		79	0.79	62	568	2917	972
	14.00		44	0.79	35	372	1914	638
	15.00	CLAY	70	0.79	55	520	2674	891
	16.00		47	0.79	37	390	2007	669
	17.00		40	0.79	32	348	1787	596
	18.00	SILT	22	0.79	17	226	1162	387
	19.00	CLAY	81	0.79	64	578	2970	990
	20.00	ULA I	64	0.79	50	488	2507	836

	CLIENT: PROJECT:	YACHIYO ENGINE GEOTECHNICAL I				SUBSTATI	ON	
		R: NEWPLAN LIMITE				00001741		
	SUMMARY F	OR EVALUATION OF A	ALLOWABL	E BEARING	CAPACIT	Y BASED C	N FIELD SP	T 'N' VALUES
			-			Undrained	Ultimate	Allowable
BH No.	Depth	Predominant Soil Fraction	Measured SPT 'N'	Over all Correction	Corrected SPT 'N'	Cohesion	Bearing Capacity	Bearing Capacit
		Fraction	Value	factor	Value	C _u	Q _{ut}	Qal
	(m)		N	CN	N ₆₀	(kPa)	(kPa)	(kPa)
	0.00	CLAY			0	0	0	0
	1.00	CLAYEY GRAVEL	14	0.59	8	133	682	227
	2.00		42	0.59	25	293	1505	502
	3.00	SILT	36	0.59	21	262	1347	449
	4.00	SILI	24	0.67	16	214 201	1101	367
	6.00	-	15	0.87	15	165	850	283
	7.00	SILTY GRAVEL	19	0.75	14	196	1008	336
	8.00		22	0.75	16	218	1120	373
	9.00	SILT	24	0.75	18	232	1192	397
	10.00		31	0.75	23	279 248	1434	478
	11.00	CLAY	25	0.79	20	248	1274	425
	13.00	CERT	36	0.79	28	322	1657	552
BH02	14.00		29	0.79	23	276	1418	473
	15.00		22	0.79	17	226	1162	387
	16.00		21	0.79	17	219	1124	375
	17.00		26	0.79	20	255 316	1311	437
	18.00	SILT	43	0.79	28	316	1623	628
	20.00		43	0.79	35	372	1914	638
	21.00		36	0.79	28	322	1657	552
	22.00		44	0.79	35	372	1914	638
	23.00		46	0.79	36	384	1976	659
	24.00	_	22 32	0.79	17 25	226 296	1162 1522	387
	25.00	-	32	0.79	25	296	2810	937
	27.00		73	0.79	57	536	2756	919
	28.00	-	73	0.79	57	536	2756	919
al. (1974		h (cu) of the soil is determin. 1ship respectively.Cu = Pa*C						

76

	PROJECT:		ERING CO	MPANY LTI	D			
		GEOTECHNICAL I	NVESTIGA	TION FOR I	BULOOBA	SUBSTATI	ON	
	CONTRACTOR:	NEWPLAN LIMITE	D					
	SUMMARY FOR	EVALUATION OF A	LLOWABLI	BEARING	CAPACITY	BASED O	N FIELD SPT	'N' VALUES
	-			Over all		Undrained	Ultimate	Allowable
BH No.	Depth	Predominant Soil	Measured SPT 'N'	Over all Correction	Corrected SPT 'N'	Cohesion	Bearing	Allowable Bearing Capacity
		Fraction	Value	factor	Value	CONESION	Capacity	bearing capacity
			value	lactor	value	Cu	Qut	Qat
	(m)		N	CN	Neo	(kPa)	(kPa)	(kPa)
	0.00	CLAYEY SAND					,	,
	1.00		4	0.59	2	54	277	92
	2.00	1	15	0.59	9	139	717	239
	3.00	CLAY	13	0.59	8	126	647	216
	4.00		14	0.67	9	145	747	249
	5.00		12	0.67	8	130	668	223
	6.00		18	0.75	13	189	969	323
	7.00	SILT	15	0.75	11	165	850	283
	8.00	0111/01110	28	0.75	21	259	1332	444
	9.00	CLAY SAND	34 43	0.75	25 32	298 353	1532	511 605
	10.00	CLAY	43	0.75	32	211	1814	362
	11.00		20	0.79	20	211 255	1085	362
	13.00		35	0.79	20	316	1623	437
	14.00		30	0.79	20	283	1453	484
BH03	15.00		37	0.79	29	329	1690	563
	16.00		34	0.79	27	309	1590	530
	17.00		39	0.79	31	341	1755	585
	18.00		37	0.79	29	329	1690	563
	19.00		27	0.79	21	262	1347	449
	20.00	SIIT	38	0.79	30	335	1722	574
	21.00	SILI	44	0.79	35	372	1914	638
	22.00		43	0.79	34	366	1883	628
	23.00		37	0.79	29	329	1690	563
	24.00		47	0.79	37	390	2007	669
	25.00		Refusal	0.79	-	>450	>2300	>750
	26.00		45	0.79	35	378	1945	648
	27.00		77	0.79	61	557	2864	955
	28.00		74	0.79	58	541	2783	928
	29.00		54	0.79	43	432	2218	739

75

77

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTOR: NEWPLAN LIMITED SUMMARY FOR EVALUATION OF ALLOWABLE BEARING CAPACITY BASED ON FIELD SPT 'N' VALUES Over all Correction factor Ultimate Bearing Capacity Q_{ut} (kPa) Allowable aring Capac Corrected SPT 'W Value Measured SPT 'N' Value Undrained Cohesion BH N Depth Predominant Soil Fraction C_u (kPa) Q_{all} (kPa) N $C_{\rm N}$ Nso (A1 6) 535 456 586 586 859 1046 1046 969 767 1332 1006 0.00 1.00 1.00 2.00 3.00 4.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00 13.00 11.00 12.00 13.00 14.00 15.00 16.00 16.00 17.00 12.00 22.00 23.00 24.00 25.00 26.00 26.00 27.00 28.00 28.00 28.00 29.00 20.00 178 152 152 195 CLAY SILT CLAY SILT SILTY SAND BH04 SILT 30.00 955 ined shear strength (u) of the soil is determined using the corrected standard penetration values (N_{sol} as per Hara et al. (1971) and Peck empirical relationship respectively.Cu = Pa*0.29*N60*0.72, where Pa is Atmospheric presure and quit = 5.14 x. Cu. Guil is evaluated or of udgety 3 e undi (1974

Detailed Geotechnical Report

Appendix 6: Natural Moisture Content

CLIENT:		IEERING COMPAN			
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBA SU	BSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	1				
Depth (m)	5.5-6.0				
Sample no.					
Container no.	KNG				
Mass of wet soil + container (g)	195.4				
Mass of dry soil + container (g)	163.6				
Mass of container (g)	25.7				
Mass of moisture (g)	31.8				
Mass of dry soil (g)	137.9				
Moisture content (%)	23.0				
Average Moisture Content (%)	23.0				

CLIENT:	YACHIYO ENGI	EERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICA	LINVESTIGATION F	OR BUL	OOBA SUE	BS
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	1				
Depth (m)	10.5-11.0				
Sample no.		1			
Container no.	81				
Mass of wet soil + container (g)	207.9	1			
Mass of dry soil + container (g)	172.1	1			
Mass of container (g)	25.8				
Mass of moisture (g)	35.8				
Mass of dry soil (g)	146.4				
Moisture content (%)	24.5				
Average Moisture Content (%)	24.5				

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBA SU	BSTATION
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959	1			
Borehole No.	1				
Depth (m)	15.5-16.0				
Sample no.					
Container no.	Q6				
Mass of wet soil + container (g)	205.2				
Mass of dry soil + container (g)	167.2				
Mass of container (g)	23.5				
Mass of moisture (g)	38.0				
Mass of dry soil (g)	143.6				
Moisture content (%)	26.5				
Average Moisture Content (%)	26.5				

CLIENT: PROJECT:		EERING COMPAN			DOTA
			FOR BUL	JUBA SU	BSIA
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	1	1			
Depth (m)	20.5-21.0	1			
Sample no.		1			
Container no.	BA				
Mass of wet soil + container (g)					
Mass of dry soil + container (g)					
Mass of container (g)	29.6				
Mass of moisture (g)	34.7				
Mass of dry soil (g)	120.4				
Moisture content (%)	28.9				
Average Moisture Content (%)	28.9				

78

80

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGI	NEERING COMPAN	Y LTD			
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTA					
CONTRACTOR:	NEWPLAN LIMITED					
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959	1				
Borehole No.	2	1				
Depth (m)	5.5-6.0]				
Sample no.						
Container no.	XT					
Mass of wet soil + container (g)	248.5					
Mass of dry soil + container (g)	202.7	1				
Mass of container (g)	70.1	1				
Mass of moisture (g)	45.8					
Mass of dry soil (g)	132.6	1				
Moisture content (%)	34.5					
Average Moisture Content (%)	34.5	1				

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD					
PROJECT:	GEOTECHNICAL	EOTECHNICAL INVESTIGATION FOR BULOOBA SUBS						
CONTRACTOR:	NEWPLAN LIMIT							
MOISTURE CONTENT TEST	SUMMARY							
Test Method:	ASTM D 4959							
Borehole No.	2							
Depth (m)	10.5-11.0							
Sample no.								
Container no.	102							
Mass of wet soil + container (g)	225.2							
Mass of dry soil + container (g)	183.1							
Mass of container (g)	70.1							
Mass of moisture (g)	42.2							
Mass of dry soil (g)	113.0							
Moisture content (%)	37.3							
Average Moisture Content (%)	37.3	ĺ						

79

81

CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTOR: NEWPLAN LIMITED MOISTURE CONTENT TEST SUMMARY Image: Content Test Summary Test Method: ASTM D 4859 Borehole No. 2 Depth (m) 15.5-16.0 Sample no. TY Container no. TY Mass of vet soil + container (g) 251.6 Mass of onsiture (g) 47.6 Mass of dy soil + container (g) 71.5 Mass of dy soil (g) 132.5 Motisture content (%) 35.9 Average Moisture Content (%) 35.9

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBASU	BSTATIC
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	2	ĺ			
Depth (m)	20.5-21.0	J			
Sample no.					
Container no.	RS				
Mass of wet soil + container (g)	218.7				
Mass of dry soil + container (g)	185.3				
Mass of container (g)	71.9				
Mass of moisture (g)	33.5				
Mass of dry soil (g)	113.3				
Moisture content (%)	29.5				
Average Moisture Content (%)	29.5				

Detailed Geotechnical Report

CLIENT:	YACHIYO ENG	NEERING COMPAN	YLTD					
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATIO							
CONTRACTOR:	NEWPLAN LIMITED							
MOISTURE CONTENT TEST	SUMMARY							
Test Method:	ASTM D 4959							
Borehole No.	2	1						
Depth (m)	25.5-26.0]						
Sample no.								
Container no.	x8							
Mass of wet soil + container (g)	193.5							
Mass of dry soil + container (g)	164.6							
Mass of container (g)	62.2							
Mass of moisture (g)	28.9							
Mass of dry soil (g)	102.3							
Moisture content (%)	28.3							

CLIENT:		NEERING COMPAN					
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTA						
CONTRACTOR:	NEWPLAN LIMI						
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	2						
Depth (m)	28.5-29.0						
Sample no.		1					
Container no.	ZH						
Mass of wet soil + container (g)	234.8						
Mass of dry soil + container (g)	203.4	1					
Mass of container (g)	64.6						
Mass of moisture (g)	31.4	1					
Mass of dry soil (g)	138.8	1					
Moisture content (%)	22.6						

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD			
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTA					
CONTRACTOR:	NEWPLAN LIMIT	ED				
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959					
Borehole No.	3					
Depth (m)	5.5-6.0					
Sample no.		1				
Container no.	135	1				
Mass of wet soil + container (g)	158.8	1				
Mass of dry soil + container (g)	131.9					
Mass of container (g)	27.5	1				
Mass of moisture (g)	26.9	1				
Mass of dry soil (g)	104.4					
Moisture content (%)	25.8					
Average Moisture Content (%)	25.8					

PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBST						
CONTRACTOR:	NEWPLAN LIMITED						
MOISTURE CONTENT TEST	SUMMARY						
Test Method:	ASTM D 4959						
Borehole No.	3						
Depth (m)	10.5-11.0						
Sample no.							
Container no.	SE						
Mass of wet soil + container (g)							
Mass of dry soil + container (g)	142.9						
Mass of container (g)	30.4						
Mass of moisture (g)	34.9						
Mass of dry soil (g)	112.5						
Moisture content (%)	31.0						
Average Moisture Content (%)	31.0						

82

84

Detailed Geotechnical Report

-

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD	
PROJECT:	GEOTECHNICAL	INVESTIGATION	OR BULO	OBASUBSTA
CONTRACTOR:	NEWPLAN LIMIT	ED		
MOISTURE CONTENT TEST	SUMMARY			
Test Method:	ASTM D 4959			
Borehole No.	3			
Depth (m)	15.5-16.0			
Sample no.				
Container no.	JJ			
Mass of wet soil + container (g)	171.4			
Mass of dry soil + container (g)	137.3			
Mass of container (g)	27.0			
Mass of moisture (g)	34.1			
Mass of dry soil (g)	110.3			
Moisture content (%)	30.9			
Average Moisture Content (%)	30.9			

CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD	
PROJECT:	GEOTECHNICA	L INVESTIGATION F	OR BUL	OOBA SUBST
CONTRACTOR:	NEWPLAN LIMIT	ED		
MOISTURE CONTENT TEST	SUMMARY			
Test Method:	ASTM D 4959	1		
Borehole No.	3			
Depth (m)	20.5-21.0			
Sample no.		1		
Container no.	PRO			
Mass of wet soil + container (g)	154.3	1		
Mass of dry soil + container (g)				
Mass of container (g)	33.2	1		
Mass of moisture (g)	27.4			
Mass of dry soil (g)	93.7			
Moisture content (%)	29.2			
Average Moisture Content (%)	29.2			

83

85

Detailed Geotechnical Report

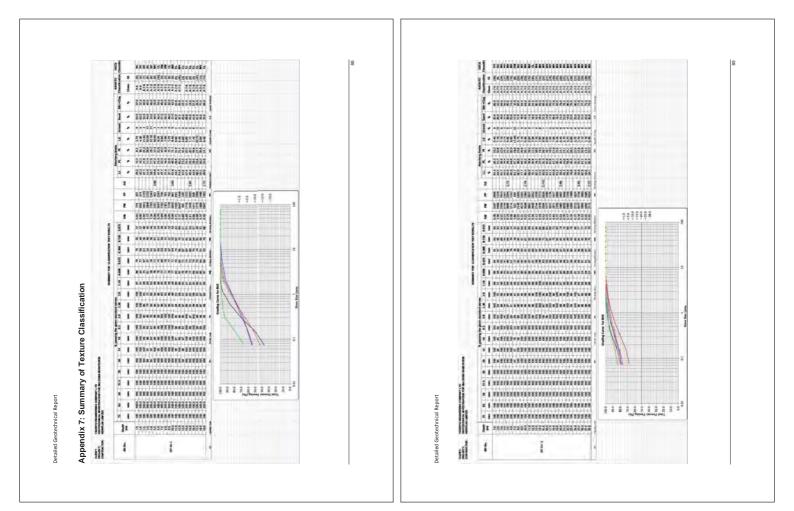
CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD					
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	DOBASU	BSTAT			
CONTRACTOR:	NEWPLAN LIMIT	NEWPLAN LIMITED						
MOISTURE CONTENT TEST	SUMMARY							
Test Method:	ASTM D 4959							
Borehole No.	3							
Depth (m)	25.5-26.0							
Sample no.								
Container no.	PAN							
Mass of wet soil + container (g)	264.0							
Mass of dry soil + container (g)	222.6							
Mass of container (g)	66.4							
Mass of moisture (g)	41.4							
	156.2							
Mass of dry soil (g)	100.2							

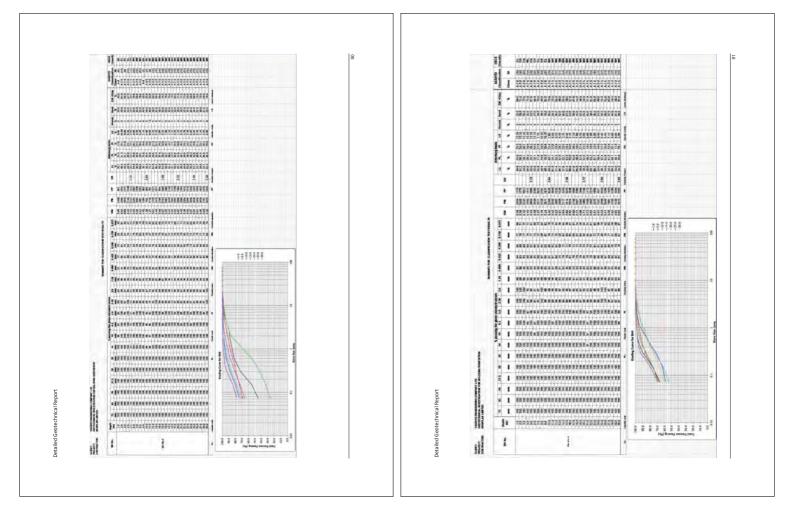
CLIENT:	YACHIYO ENGI	NEERING COMPAN	Y LTD			
PROJECT:	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBS					
CONTRACTOR:	NEWPLAN LIMI	FED				
MOISTURE CONTENT TEST	SUMMARY					
Test Method:	ASTM D 4959	1				
Borehole No.	3					
Depth (m)	29.5-30.0					
Sample no.						
Container no.	ZF					
Mass of wet soil + container (g)	192.7					
Mass of dry soil + container (g)	167.9					
Mass of container (g)	72.1					
Mass of moisture (g)	24.8					
Mass of dry soil (g)	95.8					
Moisture content (%)	25.9					
Average Moisture Content (%)	25.9					

Detailed Geotechnical Report

YACHIYO ENGI	IEERING COMPA	NY LTD					
GEOTECHNICA	EOTECHNICAL INVESTIGATION FOR BULOOBA SUBST						
IEWPLAN LIMITED							
SUMMARY							
ASTM D 4959	1						
4	1						
5.5-6.0]						
	1						
В							
222.5							
198.7							
74.7							
23.8							
123.9							
19.2	1						
	GEOTECHNICA NEWPLAN LIMIT SUMMARY ASTM D 4959 4 5.5-6.0 B 222.5 198.7 74.7 2.3.8 123.9	BEOTECHNICAL INVESTIGATION NEWPLAN LIMITED SUMMARY ASTM D 4959 4 5.5-6.0 B 222.5 198.7 198.7 74.7 23.8 123.9	NEWPLAN LIMITED SUMMARY ASTM D 4959 4 5.5-6.0	GEOTECHNICAL INVESTIGATION FOR BULOOBA SUB NEWPLAN LIMITED SUMMARY ASTM D 4959 4 5.5-6.0 8 222.5 198.7 74.7 23.8 123.9			

CLIENT:	YACHIYO ENGINEERING COMPANY LTD GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTA				
PROJECT:					
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4				
Depth (m)	10.5-11.0				
Sample no.					
Container no.	XF	1			
Mass of wet soil + container (g)	208.7	1			
Mass of dry soil + container (g)	184.0				
Mass of container (g)	72.3				
Mass of moisture (g)	24.7				
Mass of dry soil (g)	111.7				
Moisture content (%)	22.1]			
Average Moisture Content (%)	22.1				


CLIENT:	YACHIYO ENGIN	EERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBA SU	BSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4				
Depth (m)	15.5-16.0				
Sample no.					
Container no.	MI				
Mass of wet soil + container (g)	228.6				
Mass of dry soil + container (g)	197.8				
Mass of container (g)	71.2				
Mass of moisture (g)	30.9				
Mass of dry soil (g)	126.6				
Moisture content (%)	24.4				
Average Moisture Content (%)	24.4				


CLIENT:		EERING COMPAN			
PROJECT:		INVESTIGATION F	OR BUL	OOBASU	BSTATION
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4				
Depth (m)	20.5-21.0				
Sample no.					
Container no.	ZT				
Mass of wet soil + container (g)	229.7				
Mass of dry soil + container (g)	192.3				
Mass of container (g)	66.7				
Mass of moisture (g)	37.3				
Mass of dry soil (g)	125.7				
Moisture content (%)	29.7				
Average Moisture Content (%)	29.7				

Detailed Geotechnical Report

CLIENT:	YACHIYO ENGIN	IEERING COMPAN	Y LTD		
PROJECT:	GEOTECHNICAL	INVESTIGATION F	OR BUL	OOBASU	BSTAT
CONTRACTOR:	NEWPLAN LIMIT	ED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4	1			
Depth (m)	25.5-26.0				
Sample no.		1			
Container no.	XK				
Mass of wet soil + container (g)	278.9				
Mass of dry soil + container (g)	233.1				
Mass of container (g)	64.3				
Mass of moisture (g)	45.8				
Mass of dry soil (g)	168.8				
Moisture content (%)	27.1				
Average Moisture Content (%)	27.1				

CLIENT:	YACHIYO ENGI	NEERING COMPA	NY LTD		
PROJECT:	GEOTECHNICA	L INVESTIGATION	FOR BUL	OOBA SU	BST
CONTRACTOR:	NEWPLAN LIMI	FED			
MOISTURE CONTENT TEST	SUMMARY				
Test Method:	ASTM D 4959				
Borehole No.	4	1			
Depth (m)	30.5-31.0]			
Sample no.		1			
Container no.	S2				
Mass of wet soil + container (g)	265.3	1			
Mass of dry soil + container (g)	229.2				
Mass of container (g)	70.4]			
Mass of moisture (g)	36.1]			
Mass of dry soil (g)	158.8]			
Moisture content (%)	22.7]			
Average Moisture Content (%)	22.7				

nnendix 8	· Sne	cific Gravity				
uppendix o	. ope	cine Gravity				
CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:		HNICAL INVESTIGATION		BASUBSTATIC	N	
CONTRACTOR:	NEWPLA	N LIMITED				
SPECIFIC GRAVIT	Y TEST RI	EPORT				
Site Location: Bulo Test Method: AST		on				
Test Method: ASTA	1 D 854.					
Borehole No.: BH	101	Depth: 5.5-6.0m				
Specimen referen	20			D-Sample	D-Sample	
Pyknometer label	28			NH	KB	
Mass of bottle +so	il + water	m3	g	85.5	85.1	
Mass of bottle +so	il	m2	g	37.3	37.0	
Mass of bottle full of		m ₄	g	79.3	78.9	
Mass of density bo		m ₁	g	27.2	27.0	
Mass of soil samp		m ₂ -m ₁	g	10.0	10.0	
Mass of water in fu		m ₄ -m ₁	g	52.1	52.0	
Mass of water use		m3-m2	g	48.2	48.1	
Volume of soil part		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.9	3.9	
Volume of boil put	1010	(114 111) (113 112)		0.0	0.0	
Particle Density (S gravity)	pecific	$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.584	2.606	Average Specific gravity
		ρs	Mg/m ³	2.584	2.606	2.595
	-					
CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:		HNICAL INVESTIGATION	FOR BULOC	BASUBSTATIC	N	
CONTRACTOR:	NEWPLA	N LIMITED		-		
SPECIFIC GRAVIT	Y TEST R	EPORT				
Site Location: Buk Test Method: AST		ion				
Test Method: AST	M D 004.					
Borehole No.: Bl	H01	Depth: 10.5-11.0m			<u>`</u>	
Specimen referen				D-Sample	D-Sample	
Pyknometer label	Ce			OJ	NG	
Mass of bottle +so	il + water	m ₃	g	83.0	85.0	
Mass of bottle +so	bil	m ₂	g	37.8	36.3	
Mass of bottle full	of water	m4	g	76.9	78.7	
Mass of density b		m ₁	g	27.8	26.3	
Mass of soil samp		m ₂ -m ₁	g	10.0	10.0	
Mass of water in fr		m4-m1	g	49.1	52.4	
Mass of water use		ma=m2	g	45.2	48.6	
Volume of soil par		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.9	3.7	
				1		
		$\rho s = 1000 \times (m_2 - m_1)$	Mg/m ³	2.600	2.673	Average Specific
Particle Density (S gravity)	specific	(m4-m1)-(m3-m2)				gravity

		$\rho s = 1000 \times (m_2 \cdot m_1)$				Average
Volume of soil pa	rticle	(m4-m1)-(m3-m2)	ml	3.6	3.7	
Mass of water use	ed	m3-m2	g	47.5	48.5	
Mass of water in f		m4-m1	g	51.2	52.2	
Mass of soil samp		m _{2*} m ₁	g	10.0	10.1	
Mass of density b		m1	g	30.4	26.5	
Mass of bottle full		m4	g	81.6	78.7	
Mass of bottle +so		m ₂	g	40.5	36.5	
Mass of bottle +so		m ₃	g	88.0	85.1	
Pyknometer label				С	LG	
Specimen referer	ice			D-Sample	D-Sample	
D		1				
Borehole No.: B	H01	Depth: 20.5-21.0m				
Test Method: AST	M D 854.					
Site Location: Bul		on				
S. LOI IS GRAVII	LOIR					
SPECIFIC GRAVIT	Y TEST P	PORT		-		
CONTRACTOR:	NEWPLA	N LIMITED				
PROJECT:		HNICAL INVESTIGATION		BASUBSTATIO	N	
CLIENT:	YACHIYO	ENGINEERING COMPAN	Y LTD			
	_			_		
		ρs	Mg/m ³	2.592	2.605	2.599
gravity)		(m4+m1)+(m3+m2)	-			gravity
Particle Density (Specific	$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_2 \cdot m_2)}$	Mg/m ³	2.592	2.605	Average Specific
		0.0. 1000				Average
Volume of soil pa	rticle	(m4-m1)-(m3-m2)	ml	3.9	3.8	
Mass of water use	ed	m3+m2	g	50.2	46.9	
Mass of water in f	ull bottle	m4-m1	g	54.0	50.7	
Mass of soil samp		m2*m1	g	10.1	10.0	
Mass of density b		m1	g	27.3	29.5	
Mass of bottle full		m4	g	81.4	80.3	
Mass of bottle +so		m ₂	g	37.4	39.5	
Mass of bottle +so		m3	g	87.5	86.4	
Pyknometer label		,		MA	EE	
Specimen referer				D-Sample	D-Sample	
Borehole No.: B	H01	Depth: 15.5-16.0m				
Test Method: AST	m D 854.					
Site Location: Bulk		on				
SPECIFIC GRAVIT	Y TEST R	PORT				
CONTRACTOR:	NEWPLA	N LIMITED		-		
		HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIO	N	
PROJECT:		ENGINEERING COMPAN				

INICAL INVESTIGATION FOR BULO ummred pont pont Depth: 5.5-6.0m ma g ma g	DOBA SUBSTATI			PROJECT: CONTRACTOR: SPECIFIC GRANT Site Location: Bud Test Method: ASIT	oba Substation		FOR BULOOF	3A SUBSTATIC		
m Depth: 5.5-6.0m m ₃ g				Site Location: Bulo	oba Substation					
Depth: 5.5-6.0m										
m ₃ g				Test Method: AST	M D 854.					
m ₃ g										
· · · · · ·				Borehole No.: Bi	H02 Depth: 1	15.5-16.0m				
· · · · · ·		D Compl	la	Specimen referen	~~			D-Sample	D-Sample	
· · · · · ·		OM	ne	Pyknometer label	CB			NG	C	+
· · · · · ·	85.0	86.6		Mass of bottle +so	il + water	m ₃	g	85.0	87.9	1
	36.3	37.8		Mass of bottle +so		m ₂	g	36.4	40.5	1
m4 g	78.7	80.2	-	Mass of bottle full		m4	g	78.7	81.6	1
m1 g	26.3	27.7	-	Mass of density bo		m1	g	26.3	30.5	1
m ₂ -m ₁ g	10.0	10.1	-				•	10.0	10.0	1
m ₄ -m ₁ g	52.4	52.5	-					52.3	51.2	1
	48.7	48.8	-					48.6	47.4	1
	3.7	3.7		Volume of soil par			ml	3.7	3.7	1
$\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)} Mg/m^3$	2.737	2.727	Spe	c Particle Density (S	ρs = 100	000× (m ₂ -m ₁)	Mg/m ³	2.725	2.702	Average Specific
0.8 Ma/m ³	2 737	2 7 2 7					Mar / 113	2.725	2.702	gravity
ENGINEERING COMPANY LTD HNICAL INVESTIGATION FOR BULO	OBASUBSTATI	ION		CLIENT: PROJECT: CONTRACTOR:	YACHIYO ENGINEE	VESTIGATION				2.713
)OBA SUBSTATI			PROJECT:	YACHIYO ENGINEEI GEOTECHNICALIN NEWPLAN LIMITED Y TEST REPORT	ERING COMPAN				2.713
HNICAL INVESTIGATION FOR BULO	DOBA SUBSTAT			PROJECT: CONTACTOR: SPECIFIC GRAVT Site Logation: Bud	YACHIYO ENGINEEI GEOTECHNICAL INI NEWPLAN LIMITED Y TEST REPORT oba Substation M D 854.	ERING COMPAN				2.713
HNICAL INVESTIGATION FOR BULO	DOBA SUBSTATI			PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: B40 Test Method: AST	YACHIYO ENGINEEI GEOTECHNICAL INI NEWPLAN LIMITED Y TEST REPORT obs Substation 402 Depth: 2	ERING COMPAN NVESTIGATION				
HNICAL INVESTIGATION FOR BULO	D-Sample ND	D-Sampl TS		PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: B40 Test Method: A5T Borehole No.: B1 Specimen referen Pykorometra	YACHIYO ENGINEEI GEOTECHNICAL INITED Y TEST REPORT obe Substation M D 854. H02 Depth: 2 Ce	ERING COMPAN NVESTIGATION		BA SUBSTATIC	D-Sample NH	
INICAL INVESTIGATION FOR BULO	D-Sample ND 88.5	D-Sampl TS 87.5		PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: Bid/ Test Method: AST Borehole No.: Bi Specimen Inform Pyknometer labor Mass of bolies	YACHIYO ENGINEE GEOTECHNICAL IN NEWPLAN LIMITED Y TEST REPORT obs Substation M D 854. H02 Depth: 2 Ce ce	ERING COMPAN VVESTIGATION 20.5-21.0m	Y LTD FOR BULOOP	BA SUBSTATIC D-Sample OJ 82.5	D-Sample NH 85.4	
INICAL INVESTIGATION FOR BULO UMITED 20 21 Depth: 10.5-11.0m m3 9 m2 9	D-Sample ND 88.5 36.7	D-Sampi TS 87.5 38.1		PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: 946 Test Method: AST Borehole No.: Bi Specimen referen P-Monmeter table- Mass of botte -sco Mass of botte -sco	YACHIYO ENGINEEI GEOTECHNICAL INI MEWPLAN LIMITED Y TEST REPORT oba Substation M 0 854. H02 Depth: 2 Ce iil + water iil	ERING COMPAN VVESTIGATION 20.5-21.0m	Y LTD FOR BULOOP	BA SUBSTATIC D-Sample OJ 82.5 37.0	D-Sample NH 85.4 37.2	
INICAL INVESTIGATION FOR BULO UMPTED on Depth: 10.5-11.0m m39 m29 m29 m49	D-Sample ND 88.5 36.7 82.1	D-Sampi TS 87.5 38.1 81.1		PROJECT: CONTRACTOR: SPECIFIC GRANT Site Location: Bud Test Method: AST Borehole No.: BI Specimen referen Pykoneter label Mass of bottle -so Mass of bottle -so Mass of bottle -so	YACHIYO ENGINEEI GEOTECHNICAL INI NEWPLAN LIMITED Y TEST REPORT dob Subdiation M D 854. H02 Depth: 2 Ce Ce dil + water dil of water	ERING COMPAN VVESTIGATION 20.5-21.0m m ₃ m ₂ m ₄	IY LTD FOR BULOOI 9 9 9	D-Sample OJ 82.5 37.0 76.3	D-Sample NH 85.4 37.2 79.1	
mix2, Investigation For Bullo umred m Depth: 10.5-11.0m m2 9 m4 9 m7 9	D-Sample ND 88.5 36.7 82.1 26.6	D-Sampl TS 87.5 38.1 81.1 28.0		PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: Bido Test Method: AST Borehole No.: Bi Specimen relaten P-jAcormeter Labo Mass of bottle +so Mass of bottle +so Mass of bottle +so	YACHYO & RIGINEEI GEOTECHNICAL INITED Y TEST REPORT obs Substation H0 2 Depth: 2 Ccc iii + water iii Of water Ottle Dtepth: 2	ERING COMPAN VVESTIGATION 20.5-21.0m	IY LTD FOR BULOON 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9	D-Sample NH 85.4 37.2 79.1 27.2	
INICAL INVESTIGATION FOR BULO UMITED port m g m2 9 m4 9 m4 9 m5 9 m6 9	D-Sample ND 88.5 36.7 82.1 26.6 10.1	D-Sampi TS 87.5 38.1 81.1 28.0 10.1		PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: Buo Test Method: AST Borehole No.: B Specimen referen Pykonmeter label Mass of bothe so Mass of bothe so Mass of bothe ful Mass of denis bothes Mass of denis app	YaChiYo ENGINEEI GeoTEC-INICAL INI NEWPLAN LIMITED Y TEST REPORT oba Substation M D 854. 102 Depth; 2 Ce III + water II Of water Ute ke alone	ERING COMPAN VVESTIGATION 20.5-21.0m m ₃ m ₂ m ₄ m ₁ m ₂ -m ₁	IY LTD FOR BULOOI 9 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9 10.0	D-Sample NH 85.4 37.2 79.1 27.2 10.0	
INICAL INVESTIGATION FOR BULO UMITED on	D-Sample ND 88.5 36.7 82.1 26.6 10.1 55.6	D-Sampi TS 87.5 38.1 81.1 28.0 10.1 53.0		PROJECT: CONTRACTOR: SPECIFIC GRANT Site Location: Bid Test Method: AST Borehole No: Bi Spacimen referen Psycometer label Mass of bottle +30 Mass of bottle +30 Mass of bottle +30 Mass of bottle 40 Mass of bottle full Mass of dottle full Mass of value in full Mass of value	YACHIYO RUGINEE GEOTECHNICAL INI NEWPLAN LIMITED Y TEST REPORT dob Substation HO 20 Depth: 2 Ce ce iii + water iii 0 bis4. HO 20 Depth: 2 Ce ce ce ce ce ce ce ce ce ce ce ce ce ce	ERING COMPAN VVESTIGATION 20.5-21.0m	Y LTD FOR BULOOI 9 9 9 9 9 9 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9 10.0 49.4	D-Sample NH 85.4 37.2 79.1 27.2 10.0 51.9	
mix2A, INVESTIGATION FOR BULO UMITED 0 Depth: 10.5-11.0m m3 9 m2 9 m4 9 m7 9	D-Sample ND 88.5 36.7 82.1 26.6 10.1 55.6 51.9	D-Sampi TS 87.5 38.1 81.1 28.0 10.1 15.3 49.4		PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: Bido Test Method: AST Borehole No.: Bi Specimen relaten Pjkrometer Jabo Mass of botte 4:0 Mass of valer 1:0	YACHIYO ENGINEEI GEOTECHIXCAL INI NEWPLAN LIMITED Y TEST REPORT obs Substation M 0 854. M02 Depth: 2 Ce iii 4 water iii 6 0 0 f water title le alone n mil bottle n f	Ring COMPANY VestInation 20.5-21.0m m3 m2 m4 m5 m4 m5 m4 m5 m6 m6	Y LTD FOR BULOOI 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9 10.0 49.4 45.6	D-Sample NH 85.4 37.2 79.1 27.2 10.0 51.9 48.2	
INICAL INVESTIGATION FOR BULO UMITED on	D-Sample ND 88.5 36.7 82.1 26.6 10.1 55.6	D-Sampi TS 87.5 38.1 81.1 28.0 10.1 53.0		PROJECT: CONTRACTOR: SPECIFIC GRANT Site Location: Bud Test Method: AST Borehole No: Bi Spacimen referen Psycometer label Mass of bottle +30 Mass of bottle +30 Mass of bottle 40 Mass of bottle 40 Mass of bottle ful Mass of dottle ful Mass of value in ful	YACHIYO ENGINEEI GEOTECHIXCAL INI NEWPLAN LIMITED Y TEST REPORT obs Substation M 0 854. M02 Depth: 2 Ce iii 4 water iii 6 0 0 f water title le alone n mil bottle n f	RING COMPANY VESTIGATION 20.5-21.0m m3 m2 m4 m4 m4 m4 m4 m4 m4	Y LTD FOR BULOOI 9 9 9 9 9 9 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9 10.0 49.4	D-Sample NH 85.4 37.2 79.1 27.2 10.0 51.9	
mix2A, INVESTIGATION FOR BULO UMITED 0 Depth: 10.5-11.0m m3 9 m2 9 m4 9 m7 9	D-Sample ND 88.5 36.7 82.1 26.6 10.1 55.6 51.9	D-Sampi TS 87.5 38.1 81.1 28.0 10.1 15.3 49.4		PROJECT: CONTRACTOR: CONTRACTOR: SPECIFIC GRAVT Site Location: Bido Test Method: AST Borehole No.: Bi Specimen referen Pjenometer label Mass of hotler +so Mass of hotler +so Mass of hotler +so Mass of hotler +so Mass of value -so Mass of value -so Volume of soil part Particle Density (S	Yachiyo engineeii geotrechinca, inv geotrechinca, inv NewPLAN LIMITED Y TEST REPORT oba Subataion H0 20 Depth: 2 C0 III + water III of water Jubotte II botte rticle mice mice p s = 100 p s = 100	Ring COMPANY VestInation 20.5-21.0m m3 m2 m4 m5 m4 m5 m4 m5 m6 m6	Y LTD FOR BULOOI 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	D-Sample OJ 82.5 37.0 76.3 26.9 10.0 49.4 45.6	D-Sample NH 85.4 37.2 79.1 27.2 10.0 51.9 48.2	
	$\begin{array}{c c} m_2 \cdot m_1 & g \\ m_4 \cdot m_1 & g \\ m_3 \cdot m_2 & g \\ (m_4 \cdot m_1) \cdot (m_3 \cdot m_2) & m_1 \\ \rho s = 1000 x & (m_2 \cdot m_1) \\ M_{10} \cdot m_3^{-1} & M_{10} \cdot m_3^{-1} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\label{eq:marginal} \begin{array}{ c c c c c c } \hline m_{2}{}\cdot m_{1} & g & 10.0 & 10.1 \\ \hline m_{4}{}\cdot m_{1} & g & 52.4 & 62.5 \\ \hline m_{5}{}\cdot m_{5}{}\cdot m_{5} & g & 48.8 \\ \hline (m_{4}{}\cdot m_{1}{}\cdot m_{5}{}\cdot m_{5}{}) & mi & 3.7 & 3.7 \\ \hline \rho s = 1000 x & (m_{2}{}\cdot m_{1}) \\ \hline (m_{4}{}\cdot m_{1}{}) \cdot (m_{5}{}\cdot m_{2}{}) & Mg/m^{3} & 2.737 & 2.727 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mg-m1 g 10.0 10.1 mg-m1 g 10.0 10.1 mg-m2 g 62.4 52.5 (mg-m1) g 48.8 (mg-m2) g (mg-m1) ml 3.7 3.7 Ps = 1000x (mg-m1) Moing3 2.737 2.777	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mc-m1 g 10.0 10.1 mc-m1 g 62.4 52.5 mc-m2 g 48.8 (mc-m1)(mg-m2) Mass of valuer in full toothe mc-m1 Mass of valuer used m2 3.7 3.7 Average Specific	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

CLIENT:		ENGINEERING COMPAN				
PROJECT:		HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	DN	
CONTRACTOR:	NEWPLA	NLIMITED				
SPECIFIC GRAVI	TY TEST R	FPORT				
Site Location: Bul		on				
Test Method: AST	M D 854.					
Borehole No.: B	H02	Depth: 25.5-26.0m				
Specimen referen				D-Sample	D-Sample	
Pyknometer label Mass of bottle +s			-	EE 86.6	KN 85.0	
Mass of bottle +s		m3	g			
Mass of bottle +s		m ₂	g	39.7	37.2	
		m4	g	80.3	78.7	
Mass of density b		m1	g	29.7	27.1	
Mass of soil sam		m2-m1	g	10.0	10.1	
Mass of water in I		m4-m1	g	50.6	51.6	
Mass of water us		m3-m2	g	46.9	47.8	
		(m ₄ -m ₁)-(m ₃ -m ₂)	ml	3.7	3.8	
Volume of soil pa	IUCIE	(+		
Particle Density ($\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	Mg/m ³	2.695	2.687	Average Specific
Volume of soil pa Particle Density (gravity) CLIENT: PROJECT:	Specific	$\rho s = 1000x (m_2 \cdot m_1)$ $(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)$ ρs ENGINEERING COMPAN	Mg/m ³	2.695	2.687	
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR:	Specific YACHIYO GEOTEO NEWPLA	$\rho s = \frac{1000x}{(m_4 - m_1) - (m_3 - m_2)}$ ρs ENGINEERING COMPAN HNICAL INVESTIGATION	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI	Specific YACHIYO GEOTEO NEWPLA TY TEST R	$\rho s = 1000x (m_2 \cdot m_1) \\ (m_4 \cdot m_1) \cdot (m_3 \cdot m_2) \\ \rho s$ ENGINEERING COMPAN HNICAL INVESTIGATION IN LIMITED	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT:	Specific YACHIYO GEOTEO NEWPLA TY TEST R	$\rho s = 1000x (m_2 \cdot m_1) \\ (m_4 \cdot m_1) \cdot (m_3 \cdot m_2) \\ \rho s$ ENGINEERING COMPAN HNICAL INVESTIGATION IN LIMITED	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: But Test Method: AS1	Specific YACHIYC GEOTEC NEWPLA IY TEST R Dooba Substat M D 854.	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ s ENGINEERING COMPAN HNICAL INVESTIGATION I HNICAL INVESTIGATION I UMITED	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Bul	Specific YACHIYC GEOTEC NEWPLA IY TEST R Dooba Substat M D 854.	$\rho s = 1000x (m_2 \cdot m_1) \\ (m_4 \cdot m_1) \cdot (m_3 \cdot m_2) \\ \rho s$ ENGINEERING COMPAN HNICAL INVESTIGATION IN LIMITED	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Buil Test Method: AS1 Borehole No.: B	Specific YACHIYC GEOTEC NEWPLA IY TEST R M D 854. H02	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ s ENGINEERING COMPAN HNICAL INVESTIGATION I HNICAL INVESTIGATION I UMITED	Mg/m ³	2.695 BA SUBSTATIC	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: But Test Method: AS1	Specific YACHIYC GEOTEC NEWPLA FY TEST R M D 854. H02	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ s ENGINEERING COMPAN HNICAL INVESTIGATION I HNICAL INVESTIGATION I UMITED	Mg/m ³	2.695	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVT Site Location: Bul Test Method: AST Borehole No.: B Specimen referei Pyknometer label	Specific YACHIYC GEOTEC NEWPLA FY TEST R M D 854. H02 hce	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ s ENGINEERING COMPAN HNICAL INVESTIGATION I HNICAL INVESTIGATION I UMITED	Mg/m ³	2.695 BA SUBSTATIC	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: But Eorehole No.: B Specimen referee Pyknometer label Mass of bottle +5	Specific YACHIYC GEOTEC NEWPLA FY TEST R M D 854. H02 hce bil + water	$\label{eq:response} \begin{split} \rho & s = 1000 x (m_{2} \cdot m_{1}) \\ (m_{4} \cdot m_{1}) \cdot (m_{3} \cdot m_{2}) \\ \hline \rho & s \\ \hline \\ encineEering COMPAN \\ HNICAL INVESTIGATION I \\ HNICAL INVESTIGATION I \\ HNICAL INVESTIGATION I \\ On \\ \hline \\ Depth: 28.5-29.0m \\ \hline \\ \hline \\ m_{3} \\ \hline \end{split}$	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIC	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Bud Test Method: AST Borehole No.: B Specimen referer Pyknometer lable +5 Mass of bottle +5 Mass of bottle +5	Specific YACHIYC GEOTEC NEWPLA TY TEST R H02 H02 bil + water bil	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ s ENGINEERING COMPAN HNICAL INVESTIGATION I NIMITED EPORT on	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIO	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Bul Specimen reference Pykrometer table Mass of bottle + 5 Mass of bottle + 5	Specific YACHIYC GEOTEC NEWPLA YY TEST R M D 854. H02 Dill + water Dill of water	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₃ -m ₂) ρ ρ s engineERING COMPANIENT NO HNICAL INVESTIGATION IN HINCAL INVESTIGATION IN COMPANIENT constraints g s engineERING COMPANIENT main main m ₂	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIC D-Sample NM 85.6 38.0	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAV Site Location: bits Elso Location: bits Elso Location: bits Elso Location: bits Elso Location: bits Borehole No.: El Specimen reference Pylorometer label Mass of bottle + a Mass of bottle + a Mass of bottle + a	Specific YACHIYC GEOTEC NEWPLA TY TEST R M D 854. H02 hce bil + water oil of water ottle	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ ρ s ensineEring ComPan HNICAL INVESTIGATION IN ummtrix point on mag mag mag mag mag mag mag mag	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIC D-Sample NM 85.6 38.0 79.2	2.687	Specific gravity
Particle Density (gravity) CLIENT: CROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Bul Secondor No.: E Borehole No.: E Borehole No.: E Borehole No.: E Spacimen referen- Pyrometer Labortie + st Mass of bottle + st Mass of bottle + st Mass of bottle + st	Specific YACHIYC GEOTEC NEWPLA INEW	$\label{eq:rescaled_rescale} \begin{array}{c} \rho \text{s} = 1000 \text{x} & (m_2 \cdot m_1) \\ (m_4 \cdot m_1) \cdot (m_3 \cdot m_2) \\ \hline \rho \text{s} \\ \end{array}$	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIC D-Sample NM 85.6 38.0 79.2 28.0	2.687	Specific gravity
Particle Density (Particle Density (CLIENT: PROJECT: CONTRACTOR: SPECIFIC CARN: Site Location: Bul Test Method: AST Borehole No.: B Specimen references Mass of bottle +9 Mass of bottle +9 Mass of bottle +1 Mass of density th Mass of density th Mass of density th Mass of data i samp	Specific YACHIYC GEOTEC NEWPLA FY TEST R H02 H02 Dil + water Dil + water Dil + water Dil of water ottle De alone ull bottle	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ ρ s ENGINEERING COMPAN HNICAL INVESTIGATION IN UMITED CPORT on m ₂ m ₄ m ₂ m ₄ m ₂ ·m ₁ m ₂ ·m ₁	Mg/m ³ Y LTD FOR BULOO	2.695 BA SUBSTATIC D-Sample NM 88.0 79.2 28.0 10.0	2.687	Specific gravity
Particle Density (gravity) CLIENT: CCLENT: COURTACTOR: SPECIFIC GRAVI Site Location: Bull Sector Contractors: SPECIFIC GRAVI Site Location: Bull Bonechole No.: B Bonechole No.	Specific YACHIYC GEOTEL NEWPLA TY TEST R M D 854 H02 Dil + water of water of water of water ottle ble alone ull bottle ad	$\label{eq:rescaled_rescale} \begin{split} \rho & s = 1000x \ (m_{2} \cdot m_{1}) \\ (m_{4} \cdot m_{1}) \cdot (m_{3} \cdot m_{2}) \\ \hline \rho & s \\ \hline \\ end{tabular}$	Mg/m ³ Y LTD FOR BULOC	2.695 BASUBSTATIC D-Sample NM 86.6 38.0 79.2 28.0 10.5 1.2	2.687	Specific gravity
Particle Density (gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Build Test Method: AS1 Borehole No.: B Specimen referen	Specific YACHIYC GEOTEC NEWPLA TY TEST R M D 854. H02 bil + water bil + water bil + water bil + water bil + water bil bottle be alone ull bottle add tricle	ρ s = 1000x (m ₂ ·m ₁) (m ₄ ·m ₁)-(m ₂ ·m ₂) ρ ρ s ENGINEERING COMPAN HNICAL INVESTIGATION IN UMITED CPORT on m ₂ m ₄ m ₂ m ₄ m ₂ ·m ₁ m ₂ ·m ₁	Mg/m ³ Y LTD FOR BULOC	2.695 BA SUBSTATIC D-Sample NM 85.6 38.0 79.2 28.0 10.0 51.2 47.6	2.687	Specific gravity

			ρs	Ma/m ³	2.670	2.627	2.649
	Particle Density (gravity)	Specific	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.670	2.627	Specific gravity
-			ρs = 1000x (m ₂ -m ₁)				Average
1	Volume of soil pa	rticle	(m4+m1)-(m3+m2)	ml	3.8	3.8	
ļ	Mass of water use	ed	m3+m2	g	48.5	47.3	
l	Mass of water in f	full bottle	m4-m1	g	52.3	51.2	
ļ	Mass of soil sam	ple alone	m2+m1	g	10.1	10.1	
l	Mass of density b	ottle	m ₁	g	26.5	29.2	
ļ	Mass of bottle full	of water	m4	g	78.7	80.4	
l	Mass of bottle +s	oil	m ₂	g	36.5	39.3	
1	Mass of bottle +s	oil + water	m ₃	g	85.0	86.6	
	Pyknometer label				LG	CF CF	
I	Specimen referer	200			D-Sample	D-Sample	
I	Borehole No.: B	H03	Depth: 10.5-11.0m		1		
1							
	Test Method: AST						
	Site Location: Bul	onha Suhetoti	00				
	SPECIFIC GRAVIT	TY TEST R	EPORT				
	CONTRACTOR:	AC WELA	LIMITED				
	PROJECT: CONTRACTOR:		HNICAL INVESTIGATION	FOR BULOC	BASUBSTATIC	N	
	CLIENT:		ENGINEERING COMPA		D 4 01/007 (
]							
L			ρs	Mg/m ³	2.672	2.627	2.650
ľ	gravity)				0.070	0.007	gravity
	Particle Density (S gravity)	pecific	(m4+m1)-(m3+m2)	Mg/m ²	2.072	2.027	Specific
	Dortiolo Donoitu /S	Pageifia	$\rho s = 1000 \times (m_2 m_1)$	Ma/m ³	2.672	2.627	Average
1	Volume of soil par	ucié	(m4-m1)-(m3-m2)	mi	3.8	3.8	
			m ₃ -m ₂	g			
-	Mass of water in it Mass of water use				49.3	51.6 47.8	
	Mass of soil samp Mass of water in fu		m ₂ -m ₁ m ₄ -m ₁	g	53.1	51.6	
_	Mass of soil samp		m ₂ -m ₁		10.0	10.1	
_	Mass of density bo		m4	g	28.1	27.2	· .
2	Mass of bottle full		m2 m4	g	81.2	78.8	· .
I	Mass of bottle +so	pil	m2	g	38.2	37.2	·
	Mass of bottle +so	oil + water	M3	g	87.5	85.0	
	Specimen reieren Pvknometer label	CB.			D-Sample TS	D-Sample KN	·
4	Specimen referen				D-Sample	D Comple	
I	Borehole No.: Bi	H03	Depth: 5.5-6.0m				
	Site Location: Bulo Fest Method: AST		in .				
\$	SPECIFIC GRAVIT	Y TEST RE	PORT				
9	CONTRACTOR:	NEWPLAN	LIMITED				
	PROJECT:		INICAL INVESTIGATION	FOR BULOO	BASUBSTATIO	N	
	CLIENT:		ENGINEERING COMPAN				

Detailed Geotechnical Report

	ENGINEERING COMPA					CLIENT:		ENGINEERING COMPA				
	HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	DN		PROJECT: CONTRACTOR:		HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIC	N	
SPECIFIC GRAVITY TEST R	EPORT					SPECIFIC GRAV	ITY TEST R	EPORT				
Site Location: Bulooba Substa	ion					Site Location: Bu	ulooba Substat	ion				
Test Method: ASTM D 854.						Test Method: AS	STM D 854.					
Borehole No.: BH03	Depth: 15.5-16.0m					Borehole No.:	BH03	Depth: 25.5-26.0m				
Specimen reference					1	Specimen refere				D-Sample	D-Sample	
Pyknometer label			D-Sample C	D-Sample OM	2	Pyknometer labe				EE	NM	+
Mass of bottle +soil + water	m ₃	q	87.9	86.6	1	Mass of bottle +		m ₃	g	86.5	85.6	1
Mass of bottle +soil	m ₂	g	40.5	37.7		Mass of bottle +:	soil	m ₂	g	39.6	38.1	1
Mass of bottle full of water	m4	g	81.7	80.4	1	Mass of bottle fu	Il of water	m4	g	80.2	79.3	1
Mass of density bottle	m1	g	30.5	27.7	1	Mass of density	bottle	m1	g	29.5	28.0]
Mass of soil sample alone	m2-m1	g	10.0	10.0		Mass of soil san	nple alone	m2*m1	g	10.0	10.1	1
Mass of water in full bottle	m4-m1	g	51.2	52.7		Mass of water in		m4-m1	g	50.7	51.2	1
Mass of water used	m3*m2	g	47.4	48.8		Mass of water us		m3*m2	g	47.0	47.5	1
Volume of soil particle	(m4+m1)+(m3+m2)	ml	3.8	3.8		Volume of soil p	article	(m4-m1)-(m3-m2)	ml	3.7	3.8	
Particle Density (Specific	$(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)$ $\rho s = \frac{1000 \times (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	ml Mg/m ³	3.8 2.647	3.8 2.628	Average Specific	Particle Density gravity)		$\frac{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$ $\frac{\rho s = 1000 x (m_2 \cdot m_1)}{(m_4 \cdot m_1) \cdot (m_3 \cdot m_2)}$	ml Mg/m ³	3.7 2.705	3.8 2.680	Specific
article Density (Specific ravity) CLIENT: YACHIY PROJECT: GEOTE	$\rho s = 1000 \times (m_2 \cdot m_1)$	Mg/m ³ Mg/m ³	2.647 2.647	2.628		Particle Density	(Specific YACHIYO GEOTEO	$\rho s = 1000 x (m_{2}m_{1})$	Mg/m ³ Mg/m ³	2.705	2.680 2.680	Average Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST	$eq:rescaled_$	Mg/m ³ Mg/m ³	2.647 2.647	2.628	Specific gravity	Particle Density gravity) CLIENT: PROJECT:	(Specific YACHIYO GEOTEC : NEWPLA	ρs=1000x (m ₂ ·m ₁) (m _e ·m ₁)/(m ₃ ·m ₂) ρs ρs	Mg/m ³ Mg/m ³	2.705	2.680 2.680	Specific gravity
Particle Density (Specific gravity) CLIENT: YACHIY PROJECT: GEOTE CONTRACTOR: NEWPL	$eq:rescaled_$	Mg/m ³ Mg/m ³	2.647 2.647	2.628	Specific gravity	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAV	(Specific YACHIY(GEOTE(: NEWPLA MTY TEST R	ρs=1000x (m ₂ ·m ₁) (m _e ·m ₁)/(m ₃ ·m ₂) ρs ρs	Mg/m ³ Mg/m ³	2.705	2.680 2.680	Specific gravity
Particle Density (Specific gravity) CLIENT: YACHIT PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Buloda Subst	$eq:rescaled_$	Mg/m ³ Mg/m ³	2.647 2.647	2.628	Specific gravity	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRA. Site Location: 8	(Specific YACHIYO GEOTEC : NEWPLA MTY TEST R MODEA Substa STM D 854.	ρs=1000x (m ₂ ·m ₁) (m _e ·m ₁)/(m ₃ ·m ₂) ρs ρs	Mg/m ³ Mg/m ³	2.705	2.680 2.680	Specific gravity
Particle Density (Specific gravity) CLIENT: YACHIT PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Buicka Subst Test Method: ASTM D 854. Borehole No.: BH03	$\label{eq:response} \begin{split} \rho & s = 1000 \times (m_2 - m_1) \\ (m_4 - m_1) - (m_3 - m_2) \\ \hline \rho & s \\ \hline o & engineering compared (m_3 - m_2) \\ end & compared (m_3 - m_2) \\ end & compared (m_3 - m_3) \\ $	Mg/m ³ Mg/m ³	2.647 2.647	2.628 2.628 DN	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Method: A! Borehole No.:	(Specific YACHIY(GEOTE(NEWPLA MTY TEST R Ucoba Substa STM D 854. BH03	ρ s = 1000x (m _x ·m ₁) (m _t ·m ₁)-(m ₃ ·m ₂) ρ s ρ s Program Philock Investigation N LIMITED EPORT Ion	Mg/m ³ Mg/m ³	2.705 2.705 BA SUBSTATIC	2.680	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIT PROJECT: GEOTT CONTRACTOR: NEWPL SPECIFIC GRANTY TEST Site Location: Endocka Subst Test Method: ASTM D 854.	$\label{eq:response} \begin{split} \rho & s = 1000 x (m_2 - m_1) \\ (m_4 - m_1) - (m_3 - m_2) \\ \hline \rho & s \\ \hline o & engineering compa \\ chinic AL investigation \\ chinic AL investigation \\ an Limited \\ REPORT \\ ston \end{split}$	Mg/m ³ Mg/m ³	2.647 2.647	2.628 2.628 DN	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Method: A3	(Specific YACHIYI GEOTEC : NEWPLA WTY TEST R dooba Substa STM D 854. BH03 ence	ρ s = 1000x (m _x ·m ₁) (m _t ·m ₁)-(m ₃ ·m ₂) ρ s ρ s Program Philock Investigation N LIMITED EPORT Ion	Mg/m ³ Mg/m ³	2.705	2.680 2.680	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVTY EN Site Location: Buloode Subat Test Method: ASTM D 854. Borehole No: BH03 Specimen reference	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ s ο ENGINEERING COMPACTION COMPACTION ALLINYESTIGATION NUMITED REPORT ation Depth: 20.5-21.0m D	Mg/m ³ Mg/m ³	2.647 2.647 BA SUBSTATION	2.628 2.628 DN	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAM Site Location: B Test Method: A: Borehole No.: Specimen refer	(Specific YACHIYI GEOTEC : NEWPL F WTY TEST B BH03 ence el	ρ s = 1000x (m _x ·m ₁) (m _t ·m ₁)-(m ₃ ·m ₂) ρ s ρ s Program Philock Investigation N LIMITED EPORT Ion	Mg/m ³ Mg/m ³	2.705 2.705 BA SUBSTATIC	2.680	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIY PROJECT: GEOT CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Buloda Subat Test Method: ASTM DSA. Borehole No.: BH03 Specimen reference Pyknometer label Mass of bottle +soil + wale	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ s ο ENGINEERING COMPACTION COMPACTION ALIMITED NUMETIGATION REPORT ation Depth: 20.5-21.0m D	Mg/m ³ Mg/m ³ WY LTD NFOR BULOC	2.647 2.647 BA SUBSTATION D-Sample ND 88.6 36.6	2.628 2.628 DN D-Sample NM 85.6 38.1	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRA Site Locations i Boreholmon edion Specimen redion Pyknometer lab Mass of botth + Mass of botth +	(Specific YACHIYI GEOTEC NEWPLA WTY TEST R NEWPLA BH03 ence el el soli + water soli	ρ s = 1000x (m _x -m ₁) ρ s ρ s ρ s ρ s P surgine Erring ComParison Non-Stranger	Mg/m ³ Mg/m ³ YY LTD FOR BULOO	2.705 2.705 BA SUBSTATIO	2.680 2.680 N D-Sample KN 84.9 37.2	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOTE CONTRACTOR: NEWPL Site Location: Buicoba Subat Test Method: ASTM D 55. Borchole No.: BH03 Specimen reference Pyknometer tabel Mass of bottle +soil + wali Mass of bottle +soil Mass of bottle +soil	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₃ -m ₂) ρ s ρ s ο ENGINEERING COMPACTIONS MULTIPERING COMPACTIONS AND LIMITED REPORT diano p s o EngineERING COMPACTIONS MULTIPED Report diano m ₃	Mg/m ³ Mg/m ³ WY LTD V FOR BULOC	2.647 2.647 BA SUBSTATION D-Sample ND 88.6 36.6 36.6 36.6 36.6 36.2,3	2.628 2.628 D-Sample NM 85.6 79.3	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: 6 Test Method: A Borehole No: Spacimen refer Pyknometr lab Mass of bottle + Mass of bottle + Mass of bottle +	(Specific YACHIYI GEOTEC NEWPL/ MTY TEST R HOODE Substa STM D 854. BHO3 ence el soil + water soil + water soil di water	ρ s = 1000x (m ₂ ·m.) (m ₂ ·m ₁)(m ₃ ·m ₂) ρ s D ENGINEERING COMPARIAN STREAM P s D ENGINEERING COMPARIANS NUMETED EPORT Ion Depth: 29.5-30.0m	Mg/m ³ Mg/m ³ YY LTD FOR BULOO 9	2.705 2.705 BA SUBST ATIC D-Sample OJ 82.8 37.9 76.7	2.680 2.680 N Sample KN 84.9 37.2 78.7	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIY PROJECT: GEOTT CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Biotob Solar Test Method: ASTM 0 854. Borehole No.: BH03 Specimen reference Pykonneter label Mass of bottle 4xoli water Mass of bottle 4xoli water Mass of bottle 4xoli water	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₃ -m ₂) ρ s ρ s ο ENGINEERING COMPACTING- σ(m ₃) ρ s ο ENGINEERING COMPACTING- σ(m ₃) σ(m ₃) σ(m ₁) σ(m ₁)	Mg/m ³ Mg/m ³ WY LTD FOR BULOC	2.647 2.647 BBA SUBSTATION D-Sample ND 88.6 36.6 82.3 26.6	2.628 2.628 DN D-Sample NM 85.6 38.1 79.3 28.0	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Method: Al Borehole No.: Specimen refer Pyknometar lab Mass of bottle 4 Mass of bottle 4 Mass of bottle 4 Mass of bottle 4	(Specific GEOTEC INEWPLA MOREAR BH03 BH03 BH03 BH03 IN D 854. BH03 BH03 IN D 854. IN D	ρ s = 1000x (m ₂ ·m ₁) (m ₂ ·m ₁)(m ₃ ·m ₂) ρ s D ENGINEERING COMPARIAN STREAM P s D ENGINEERING COMPARIANS P s D ENGINEERING COMPARIANS D ENGINEERING COMPARIANS	Mg/m ³ Mg/m ³ YY LTD FOR BULOO 9 9 9 9	2.705 2.705 BA SUBST ATIC D-Sample OJ 82.8 37.9 7.6 27.8	2.680 2.680 N D-Sample KN 84.9 37.2 78.7 27.1	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOT CONTRACTOR: NEWPL SPECIFIC GRANTY TEST Site Location: Buldoba Subst Test Method: ASTM D 84. Borehole No.: BH03 Specimen reference Fykrometer label Mass of bottle 4-soil + wate Mass of bottle 4-soil Mass of bottle 4-soil Mass of bottle 4-soil Mass of bottle alone	ρ s = 1000x (m ₂ -m ₁) μ s = 1000x (m ₂ -m ₁) μ s ρ s ο ENGINEERING COMPACTION REPORT ation Depth: 20.5-21.0m ma ma ma ma ma ma ma ma ma ma	Mg/m ³ Mg/m ³ NY LTD FOR BULOC	2.647 2.647 BA SUBSTATION D-Sample ND 88.6 36.6 82.3 26.6 10.0	2.628 2.628 DN D-Sample NM 85.6 38.1 79.3 28.0 10.0	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Methol: A: Borehole No: Specimen refer Psychometraba Mass of bottle + Mass of bottle + Mass of bottle +	(Specific GEOTEC NEWPLA WITY TEST R WOODA Substa STM D 854. BH03 ence el soil + water -soil all of water -bottle mple alone	$\label{eq:response} \begin{array}{c} \rho \text{s} = 1000 \text{x} \ (m_{2}\text{-m}_{1}) \\ (m_{4}\text{-m}_{1}) \ (m_{3}\text{-m}_{2}) \\ \hline \rho \text{s} \\ \end{array}$	Mg/m ³ Mg/m ³ YY LTD FOR BULOO 9 9 9 9	2.705 2.705 BA SUBSTATIC OJ OJ 8.28 8.28 3.7.9 76.7 2.7.8 10.1	2.680 2.680 N N S N S S S S S S S S S S S S S S S	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOTT CONTRACTOR: NEWPL CONTRACTOR: NEWPL SPECIFIC GRANTY TEST Site Location: Electors Subst Test Method: ASTM D 854. Borehole No.: BH03 Specimen reference Pythometer tabel Mass of bottle +soil + wate Mass of bottle +soil + wate Mass of bottle +soil + wate Mass of density bottle Mass of density bottle Mass of density bottle	\$\rho_{5} = 1000x (m_{2}-m_{1}) \$\rho_{5} = 000x \$\rho_{5}-m_{1}\$ \$\rho_{5} = 000x \$\rho_{5}-8\$ \$\rho_{6}-000x \$\rho_{6}-000x	Mg/m ³ Mg/m ² WY LTD FOR BULOC	2.647 2.647 BA SUBSTATH D-Sample ND 88.6 36.6 82.3 26.6 36.6 55.7	2.628 2.628 DN D-Sample NM 85.6 38.1 79.3 28.0 10.0 51.3	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Method: A Borehole No.: Specimen refen Pyhonmetr fab Mass of bottle + Mass of bottle + Mass of bottle + Mass of density Mass of density	(Specific YACHIY GEOTE : NEWPLA WTY TEST R Uotoba Substa STM D 854. BH03 ence el soil + water soil + water soil - water bottle mple alone n full bottle	ρ s = 1000x (m _c -m ₁) ρ s ρ s P s P s	Mg/m ³ Mg/m ³ VY LTD FOR BULOO 9 9 9 9 9 9	2.705 2.705 8A SUBSTATIC OJ 82.8 37.9 76.7 27.8 10.1 48.9	2.680 2.680 N N B-Sample KN 84.9 37.2 78.7 27.1 15.5	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIY PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Biddos Status Borehole No.: BH03 Specimen reference Pyknometer label Mass of bottle +soil Mass of bottle +soil Mass of bottle +soil Mass of bottle +soil Mass of soil sample abree Mass of soil sample abree	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ s ρ s ο O ENGINEERING COMPACTION NUMTED AN LIMITED REPORT ation	Mg/m ³ Mg/m ³ WY LTD N FOR BULOC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.647 2.647 BA SUBSTATIO BA SUBSTATIO BA SUBSTATIO ND 88.6 88.6 88.6 82.3 26.6 10.0 55.7	2.628 2.628 0N D-Sample NM 85.6 38.1 79.3 28.0 10.0 51.3 47.5	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRATOR: SPECIFIC GRAN Site Locations : Gorehole No:: Specimen refer Pytrometer libb Mass of bottle + Mass of bottle + Mass of bottle Mass of orientia Mass of orientia Mass of varier i Mass of varier i	(Specific GEOTE GEOTE NEWPLA INTY TEST R NEWPLA MTY TEST R BH03 ence el soli + water soli al of water bottle mple alone n ful bottle sed	$\label{eq:response} \begin{array}{c} \rho \text{s} = 1000 \text{x} \ (m_{\text{c}}\text{m}_1) \cdot (m_{\text{s}}\text{m}_2) \\ \hline \rho \text{s} \end{array}$	Mg/m ³ Mg/m ³ 41 LTD FOR BULOO 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.705 2.705 BA SUBST ATIC OJ 82.8 37.9 76.7 27.8 10.1 48.9 45.0	2.680 2.680 N N SN 2.680 SN SN SN SN SN SN SN SN SN SN SN SN SN	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIN PROJECT: GEOTT CONTRACTOR: NEWPL CONTRACTOR: NEWPL SPECIFIC GRANTY TEST Site Location: Electors Subst Test Method: ASTM D 854. Borehole No.: BH03 Specimen reference Pythometer tabel Mass of bottle +soil + wate Mass of bottle +soil + wate Mass of bottle +soil + wate Mass of density bottle Mass of density bottle Mass of density bottle	\$\rho_{5} = 1000x (m_{2}-m_{1}) \$\rho_{5} = 000x \$\rho_{5}-m_{1}\$ \$\rho_{5} = 000x \$\rho_{5}-8\$ \$\rho_{6}-000x \$\rho_{6}-000x	Mg/m ³ Mg/m ² WY LTD FOR BULOC	2.647 2.647 BA SUBSTATH D-Sample ND 88.6 36.6 82.3 26.6 36.6 55.7	2.628 2.628 DN D-Sample NM 85.6 38.1 79.3 28.0 10.0 51.3	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAN Site Location: B Test Method: A Borehole No.: Specimen refen Pyhonmetr fab Mass of bottle + Mass of bottle + Mass of bottle + Mass of density Mass of density	(Specific GEOTE GEOTE NEWPLA INTY TEST R NEWPLA MTY TEST R BH03 ence el soli + water soli al of water bottle mple alone n ful bottle sed	ρ s = 1000x (m _c -m ₁) ρ s ρ s P s P s	Mg/m ³ Mg/m ³ VY LTD FOR BULOO 9 9 9 9 9 9	2.705 2.705 8A SUBSTATIC OJ 82.8 37.9 76.7 27.8 10.1 48.9	2.680 2.680 N N B-Sample KN 84.9 37.2 78.7 27.1 15.5	Specific gravity 2.693
Particle Density (Specific gravity) CLIENT: YACHIY PROJECT: GEOTE CONTRACTOR: NEWPL SPECIFIC GRAVITY TEST Site Location: Biddos Soft Borehole No.: BH03 Specimen reference Pykrometer label Mass of bottle +soil + wate Mass of bottle +soil Mass of bottle +soil Mass of bottle +soil Mass of bottle +soil Mass of soil sample above Mass of soil sample above Mass of soil sample above Mass of soil sample above	ρ s = 1000x (m ₂ -m ₁) (m ₄ -m ₁)-(m ₂ -m ₂) ρ s ρ s ο O ENGINEERING COMPACTION NUMTED AN LIMITED REPORT ation	Mg/m ³ Mg/m ³ WY LTD N FOR BULOC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.647 2.647 BA SUBSTATIO BA SUBSTATIO BA SUBSTATIO ND 88.6 88.6 88.6 82.3 26.6 10.0 55.7	2.628 2.628 0N D-Sample NM 85.6 38.1 79.3 28.0 10.0 51.3 47.5	Specific gravity 2.637	Particle Density gravity) CLIENT: PROJECT: CONTRATOR: SPECIFIC GRAN Site Locations : Gorehole No:: Specimen refer Pytrometer libb Mass of bottle + Mass of bottle + Mass of bottle Mass of orientia Mass of orientia Mass of varier i Mass of varier i	(Specific GEOTE GEOTE ENEWPL/ Utoba Subata STM D 854. BH03 ence el BH03 ence el JI of water soil + water soil - water soil - water and butte field butte sed article	$\label{eq:response} \begin{array}{c} \rho \text{s} = 1000 \text{x} \ (m_{\text{c}}\text{m}_1) \cdot (m_{\text{s}}\text{m}_2) \\ \hline \rho \text{s} \end{array}$	Mg/m ³ Mg/m ³ 41 LTD FOR BULOO 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.705 2.705 BA SUBST ATIC OJ 82.8 37.9 76.7 27.8 10.1 48.9 45.0	2.680 2.680 N N SN 2.680 SN SN SN SN SN SN SN SN SN SN SN SN SN	Specific gravity 2.693

CLIENT:	YACHIYO	ENGINEERING COMPAN	Y LTD			
PROJECT:	GEOTEC	HNICAL INVESTIGATION I		BA SUBSTATIC	DN .	
CONTRACTOR:	NEWPLA	N LIMITED				
SPECIFIC GRAVIT	Y TEST R	PORT				
Site Location: Bul		on				
Test Method: AST	M D 854.					
Borehole No.: B	H04	Depth: 5.5-6.0m				
0						
Specimen referer Pyknometer label				D-Sample LG	D-Sample TS	
Mass of bottle +so		m ₃	g	85.1	87.6	
Mass of bottle +se		m ₂	g	36.6	38.1	
Mass of bottle full		m ₂	g	78.7	81.2	
Mass of density b		m4 m1	g	26.5	28.1	
Mass of soil same		m ₂ -m ₁	g	10.1	10.0	
Mass of water in f		m4-m1	g	52.2	53.1	
Mass of water use		M3*M2	g	48.6	49.5	
Volume of soil pa		(m4+m1)+(m3+m2)	ml	3.6	3.6	
Particle Density (Specific	$\rho s = 1000 \times (m_2 - m_1)$	Ma/m ³	2,788	2.801	Average
Particle Density (gravity)	Specific	$\rho s = \frac{1000 \times (m_2 - m_1)}{(m_4 - m_1) - (m_3 - m_2)}$	Mg/m ³	2.788	2.801	Specific
• <i></i>		(m ₄ ·m ₁)-(m ₃ ·m ₂) ρs	Mg/m ³	2.788	2.801	
	YACHIYO GEOTEC	(m4+m1)+(m3+m2)	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR:	YACHIYO GEOTEC NEWPLA	(m ₄ -m ₁)-(m ₃ -m ₂) ps ENGINEERING COMPAN HNICAL INVESTIGATION F LIMITED	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR:	YACHIYO GEOTEC NEWPLA	(m ₄ -m ₁)-(m ₃ -m ₂) ps ENGINEERING COMPAN HNICAL INVESTIGATION F LIMITED	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT	YACHIYO GEOTEC NEWPLA	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buk	YACHIYO GEOTEC NEWPLAI	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST	YACHIYO GEOTEC NEWPLAI Y TEST RI xoba Substati M D 854.	(memi;)-(ms-ms) ps ENGINEERING COMPAN HNICAL INVESTIGATION F N LIMITED EPORT	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buk	YACHIYO GEOTEC NEWPLAI Y TEST RI xoba Substati M D 854.	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST	YACHIYO GEOTEC NEWPLAI Y TEST RI moba Substati M D 854. H04	(memi;)-(ms-ms) ps ENGINEERING COMPAN HNICAL INVESTIGATION F N LIMITED EPORT	Mg/m ³	2.788	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label	YACHIYO GEOTEC NEWPLAI Y TEST RI MD 854. H04 C0	(memi;)-(ms-ms) ps ENGINEERING COMPAN HNICAL INVESTIGATION F N LIMITED EPORT	Mg/m ³	2.788 BA SUBSTATIC	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buil Test Method: AST Borehole No.: BI Specime referen Pyknometer label Mass of bottle +sc	YACHIYO GEOTEC NEWPLAI Y TEST RI ooba Substatii M D 854. H04 CCe	(memi;)-(ms-ms) ps ENGINEERING COMPAN HNICAL INVESTIGATION F N LIMITED EPORT	Mg/m ³	2.788 BA SUBSTATIC D-Sample CF 86.5	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulc Grest Method: AST Borehole No.: Bi Specimen referen PyKnometer label Mass of bottle +sc Mass of bottle +sc	YACHIYO GEOTEC NEWPLAI Y TEST RI woba Substati M D 854. H04 cce	(m_cm_1)-(m_s-m_2) ps ENGINEERING COMPAN HNICAL INVESTIGATION I UIMITED PORT on Depth: 10.5-11.0m	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buldon: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of hottle +sc Mass of hottle +sc Mass of hottle full	YACHIYO GEOTEC NEWPLAI Y TEST RI woba Substati M D 854. H04 Cce ce bil + water bil of water	(m_cm_1)-(m_3-m_2)	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Built Test Method: AST Borehole No.: Bi Specimen referen Pychometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle sc Mass of bottle fait	YACHIYO GEOTEC NEWPLAI Y TEST RI V T	(m_em_i)-(m_3-m_2)	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3 29.2	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: A ^{SUI} Borehole No.: BI Specimen referen Pyknometer label Mass of hottle +sc Mass of hottle +sc Mass of bottle full Mass of bottle full Mass of bottle full	YACHIYO GEOTEC NEWPLAY Y TEST RI ND 854. H04 ce ce bil + water bil of water bttle vie alone	(m_cm_1)-(m_3-m_2)	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF S 39.2 80.3 29.2 10.0	2.801	Specific gravity
gravity) CLLENT: COUTRACTOR: COUTRACTOR: SPECIFIC GRAVIT Site Location: Bulden Second Coutractors: Borehold: Association Second Mass of bottle 4: Mass of bottle 4: Mass of bottle 4: Mass of bottle 4: Mass of donsity by Mass of donsity by Mass of donsity by	YACHIYO GEOTEC NEWPLAI Y TEST RI 00ba Substati M D 854. H04 Cce Oil + water oil of water ottle we alone ull bottle	(m_rm_i)-(m_3-m_2) ps ensineEring company initial investigations is united ensineEring company initial investigations is united ensite in the second	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3 29.2 80.3 29.2 10.5 1.2	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT SRE Location: Bul- Barehole No., BI Barehole No., BI Barehole No., BI Specimen referent Pykrometer label Mass of bottle +sc Mass o	YACHIYO GEOTEC NEWPLAI Y TEST RI moba Substati M D 854. H04 cce iii + water iii + water iii of water of water of water ottle alone ull bottle id	(mem.)-(mg-mg) ps ENGINEERING COMPANIENT (INVESTIGATION FORT) INICAL INVESTIGATION FORT	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3 29.2 10.0 51.2 47.4	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT SRE Location: Bul- Barehole No., BI Barehole No., BI Barehole No., BI Specimen referent Pykrometer label Mass of bottle +sc Mass o	YACHIYO GEOTEC NEWPLAI Y TEST RI moba Substati M D 854. H04 cce iii + water iii + water iii of water of water of water ottle alone ull bottle id	(mem;)-(m ₂ -m ₂) ps ENGINEERING COMPANINGLA, INVESTIGATION F UMITED PORT on magnetic companies	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3 29.2 80.3 29.2 10.5 1.2	2.801	Specific gravity
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulk Location: Bulk Test Method: AST Borehole No.: Bi Specimen referen	YACHIYO GEOTEC NEWPLAI Y TEST RI VT TEST RI	(mem.)-(mg-mg) ps ENGINEERING COMPANIENT (INVESTIGATION FORT) INICAL INVESTIGATION FORT	Mg/m ³ Y LTD FOR BULOO	2.788 BA SUBSTATIC D-Sample CF 86.5 39.2 80.3 29.2 10.0 51.2 47.4	2.801	Specific gravity

CLIENT:	VACHINO	ENGINEERING COMPAN				
PROJECT:		HNICAL INVESTIGATION		BASUBSTATIO	N	
CONTRACTOR:		LIMITED				
SPECIFIC GRAVIT	Y TEST RI	PORT				
Site Location: Bulo	ah a Casharan					
Test Method: ASTA		on				
Borehole No.: BH	104	Depth: 15.5-16.0m				
Specimen reference	ce			D-Sample	D-Sample	
Pyknometer label				NH	TS	
Mass of bottle +so	il + water	m ₃	g	85.5	87.5	
Mass of bottle +so	il	m ₂	g	37.3	38.1	
Mass of bottle full of	of water	m4	g	79.2	81.2	
Mass of density bo	ottle	m1	g	27.3	28.1	
Mass of soil sampl	le alone	m ₂ -m ₁	g	10.0	10.0	
Mass of water in fu	il bottle	m4-m1	g	51.9	53.1	
Mass of water use	d	m3-m2	g	48.2	49.4	
Volume of soil part	ticle	(m4-m1)-(m3-m2)	ml	3.7	3.7	
Particle Density (S gravity)	ipecific	$\rho s = \frac{1000x}{(m_4 - m_1) - (m_3 - m_2)}$	Mg/m ³	2.680	2.708	Average Specific gravity
		ρs	Mg/m ³	2.680	2.708	2.694
CLIENT:			N/ I TD			
	YACHIYC	ENGINEERING COMPAN	IT LID			
PROJECT:	GEOTEC	HNICAL INVESTIGATION		BASUBSTATIO	N	
PROJECT:	GEOTEC			BASUBSTATIO	N	
PROJECT: CONTRACTOR:	GEOTEC	HNICAL INVESTIGATION		3A SUBSTATIO	N	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT	GEOTEC NEWPLA Y TEST R	HNICAL INVESTIGATION N LIMITED EPORT		3A SUBSTATIO	N	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo	GEOTEC NEWPLA Y TEST R	HNICAL INVESTIGATION N LIMITED EPORT		3A SUBSTATIO	N	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bullo Test Method: AST	GEOTEC NEWPLA Y TEST R oba Substat M D 854.	HNICAL INVESTIGATION N LIMITED PORT		BA SUBSTATIO	N	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST	GEOTEC NEWPLA Y TEST R oba Substat M D 854.	HNICAL INVESTIGATION N LIMITED EPORT		BA SUBSTATIO	N	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bi	GEOTEC NEWPLA Y TEST R oba Substat M D 854.	HNICAL INVESTIGATION N LIMITED PORT		BA SUBSTATIO	N D-Sample	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label	GEOTEC NEWPLA Y TEST R oba Substat M D 854. H04 C0	HNICAL INVESTIGATION N LIMITED PORT				
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label	GEOTEC NEWPLA Y TEST R oba Substat M D 854. H04 C0	HNICAL INVESTIGATION N LIMITED PORT		D-Sample	D-Sample	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST Borehole No.: Bil Specimen referen Pyknometer label Mass of bottle +so	GEOTEC NEWPLA Y TEST R ooba Substati M D 854. H04 ce	HNICAL INVESTIGATION LIMITED EPORT On Depth: 20.5-21.0m	FOR BULOOE	D-Sample KN	D-Sample LG	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +so Mass of bottle +so	GEOTEC NEWPLA Y TEST R M D 854. H04 ce vil + water	HNICAL INVESTIGATION N LIMITED PORT on Depth: 20.5-21.0m	FOR BULOOE	D-Sample KN 85.1	D-Sample LG 85.0	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: ASTI Borehole No.: Bil Specimen referen Pyknometer label Mass of bottle +so Mass of bottle +so	GEOTEC NEWPLA Y TEST R boba Substat M D 854. H04 cce iii + water iii = water of water	HNICAL INVESTIGATION LIMITED EPORT on Depth: 20.5-21.0m m ₃ m ₂	FOR BULOOP	D-Sample KN 85.1 37.2	D-Sample LG 85.0 36.5	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +so Mass of bottle +so Mass of bottle so	GEOTEC NEWPLA Y TEST R hoba Substati M D 854. H04 cce iii + water iii + water of water ottle	HNICAL INVESTIGATION N LIMITED EPORT on Depth: 20.5-21.0m m ₃ m ₂ m ₄	FOR BULOOD g g g g	D-Sample KN 85.1 37.2 78.7	D-Sample LG 85.0 36.5 78.7	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Builo Test Method: AST Borehole No.: BI Specimen referen Pyknometer label Mass of bottle 4:sc Mass of bottle 4:sc Mass of bottle 4:sc Mass of bottle 4:sc Mass of bottle 4:sc	GEOTEC NEWPLA Y TEST R ooba Substat M D 854. H04 Cce oil + water oil of water ottle de alone	HNICAL INVESTIGATION UMITED EPORT on Depth: 20.5-21.0m m ₃ m ₂ m ₄ m ₁	FOR BULOOD g g g g g	D-Sample KN 85.1 37.2 78.7 27.2	D-Sample LG 85.0 36.5 78.7 26.5	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bullo Test Method: AST Borehole No.: Bi Specimen referem Pyknometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle full Mass of dottle full	GEOTEC NEWPLA Y TEST R ooba Substat M D 854. H04 Cce of water of water of water ottle ele alone ull bottle	HNICAL INVESTIGATION UMITED FORT on Depth: 20.5-21.0m m ₃ m ₂ m ₄ m ₁ m ₇₂ m ₁	FOR BULOOE g g g g g g g g g g g g g g g g	D-Sample KN 85.1 37.2 78.7 27.2 10.1	D-Sample LG 85.0 36.5 78.7 26.5 10.1	
PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulo Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of hottle +sc Mass of hottle +sc Mass of bottle sc Mass of density bu Mass of density bu	GEOTEC NEWPLA Y TEST R HO4 Substation HO4 CCC CCC Still + water Still + water Still Of water Stille He alone all bottle ed	HNICAL INVESTIGATION UMITED PORT on Depth: 20.5-21.0m m ₂ m ₄ m ₇ m ₆ m ₇ m ₇ m ₇ m ₈	FOR BULOOD 9 9 9 9 9 9 9 9 9 9 9	D-Sample KN 85.1 37.2 78.7 27.2 10.1 51.5	D-Sample LG 85.0 36.5 78.7 26.5 10.1 52.2	
PROJECT: CONTRACTOR: SPECIFIC GRANT Stel Location: Build Test Method: AST Borehole No.: Bi Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle sc Mass of bottle sc Mass of bottle sc Mass of soil samp Mass of soil samp Mass of soil samp	GEOTEC NEWPLA Y TEST R H04 H04 ce ce of water bil of water bil of water bil di lb ottle id alone id lb ticle	HNCAL INVESTIGATION UMITED EPORT on Depth: 20.5-21.0m m ₃ m ₂ m ₄ m ₁ m ₂ -m ₁ m ₂ ·m ₂	FOR BULCOE g g g g g g g g g g g g g g g g g g g	D-Sample KN 85.1 37.2 78.7 27.2 10.1 51.5 47.9	D-Sample LG 85.0 36.5 78.7 26.5 10.1 52.2 48.4	Average Specific gravity

CLIENT:	YACHIYO	ENGINEERING COMPAN	IY LTD			
PROJECT:		HNICAL INVESTIGATION	FOR BULOO	BASUBSTATIO	N	
CONTRACTOR:	NEWPLA	NLIMITED				
SPECIFIC GRAVIT	Y TEST RI	EPORT				
Site Location: Bulo	ba Substati	on				
Test Method: ASTN	1 D 854.					
Borehole No.: BH	104	Depth: 25.5-26.0m				
Specimen reference	`0			D-Sample	D-Sample	
Pyknometer label				ND	KB	
Mass of bottle +soi	il + water	m3	g	88.5	85.2	
Mass of bottle +soi	i	m ₂	g	36.6	37.0	
Mass of bottle full of		m4	g	82.2	78.9	
Mass of density bo		m1	g	26.6	27.0	
Mass of soil sampl		m1 m2-m1		26.6	10.0	
Mass of water in fu			g	55.5	51.9	
		m4-m1	g		0.10	
Mass of water used		m3-m2	g	51.8	48.1	
Volume of soil part	ICIE	(m4+m1)+(m3+m2)	ml	3.7	3.8	
		ρs = 1000x (m ₂ -m ₁)	-			Avera
				2.699	2.664	
	pecific	$(m_4 - m_1) - (m_2 - m_2)$	Mg/m ³			Speci
	pecific	(m4-m1)-(m3-m2)	-			gravi
	YACHIYO	(m ₄ -m ₁)-(m ₃ -m ₂)	Mg/m ³	2.699	2.664	gravi
PROJECT:	YACHIYO GEOTEO NEWPLA	ρs DENGINEERING COMPAI HNICAL INVESTIGATION IN LIMITED	Mg/m ³	2.699	2.664	gravi
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT	YACHIYO GEOTEO NEWPLA	ρs D ENGINEERING COMPA HNICAL INVESTIGATION N LIMITED EPORT	Mg/m ³	2.699	2.664	gravi
gravity) CLIENT: PROJECT: CONTRACTOR:	YACHIYO GEOTEO NEWPLA	ρs D ENGINEERING COMPA HNICAL INVESTIGATION N LIMITED EPORT	Mg/m ³	2.699	2.664	gravi
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bulk Test Method: AST	YACHIYO GEOTEO NEWPLA TY TEST R poba Substal M D 854.	ρs DENGINEERING COMPA HNICAL INVESTIGATION N LIMITED EPORT	Mg/m ³	2.699	2.664	gravi
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buk	YACHIYO GEOTEO NEWPLA TY TEST R poba Substal M D 854.	ρs D ENGINEERING COMPA HNICAL INVESTIGATION N LIMITED EPORT	Mg/m ³	2.699	2.664	gravi
gravity) CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buk Test Method: AST Borehole No.: Bi Specimen referen	YACHIYO GEOTEC NEWPLA TY TEST R Noba Substat M D 854.	ρs DENGINEERING COMPA HNICAL INVESTIGATION N LIMITED EPORT	Mg/m ³	2.699 BA SUBSTATIC	2.664	Specific gravit 2.68:
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bil Specimen referen Pyknometer label	YACHIYO GEOTEC NEWPLA IY TEST R Noba Substa M D 854. H04	ps Engineering compare HinicaL Investigation N LIMITED EPORT Ion Depth: 30.5-31.0m	Mg/m ³ NY LTD FOR BULOC	2.699 BA SUBSTATIC	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Built Test Method: AST Borehole No.: Bil Specimen referen Pyknometer label Mass of bottle +sc	YACHIYO GEOTEC NEWPLA TY TEST R M D 854. H04 cce	PS PNGINEERING COMPAR HINICAL INVESTIGATION N LIMITED EPORT Ion Depth: 30.5-31.0m m ₃	Mg/m ³ YY LTD FOR BULOC	2.699 BA SUBSTATIC	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVI Site Location: Bulc Test Method: AST Borehole No.: Bil Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc	YACHIYO GEOTEC NEWPLA TY TEST R boba Substa M D 854. H04 CC0 Dil + water Dil	Ps Ps Indiversing compare Invical Investigation N LIMITED EPORT EPORT Depth: 30.5-31.0m m3 m2	Mg/m ³ YY LTD FOR BULOC 9 9	2.699 BA SUBSTATIC D-Sample NH 85.4 37.3	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bl Specimen referen Pyknometer label Mass of bottle 4 Mass of bottle 4 Mass of bottle 4	YACHIYO GEOTEC NEWPLA Y TEST R M D 854. H04 cce bil + water bil of water	ps DENGINEERING COMPARENT DENGINEERING	Mg/m ³ YY LTD FOR BULOC 9 9 9	2.699 BA SUBSTATIC D-Sample NH 85.4 37.3 79.2	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Build Test Method: AST Borehole No.: Bi Specimen referee Mass of bottle +sc Mass of bottle +sc Mass of bottle +sc Mass of bottle +sc	YACHIYO GEOTEC NEWPLA Y TEST R hoba Substa M D 854. HO4 ice coli + water bil of water ottle	ps P since. Investigation NLIMITED EPORT Ion IDepth: 30.5-31.0m ma	Mg/m ³ VY LTD FOR BULOC	2.699 BA SUBSTATIC D-Sample NH 85.4 37.3 79.2 27.2	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Bud Test Method: AST Borehole No.: Bl Specimen referen Pykrometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle full Mass of bottle full	YACHIY GEOTEC NEWPLA IY TEST R Doba Substal M D 854. HO4 cce Dil + water Dil of water ottle Die alone	ps D ENGINEERING COMPARENT HINICAL INVESTIGATION N LIMITED EPORT Ion Depth: 30.5-31.0m m3 m2 m4 m1 m2	Mg/m ³ YY LTD FOR BULOC 9 9 9 9 9 9	2.699 BA SUBSTATIC D-Sample NH 37.3 79.2 27.2 10.1	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buid Test Method: AST Borehole No.: BI Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle +sc Mass of obttle full Mass of dentify bi Mass of dentify bi Mass of valie army Mass of valie army	YACHIY GEOTEC NEWPLA YY TEST R M D 854. H04 cce bill + water bill of water ottle ble alone ull bottle	ps ENGINEERING COMPARATION HINICAL INVESTIGATION EPORT Ion Depth: 30.5-31.0m ma	Mg/m ³ YY LTD FOR BULOC 9 9 9 9 9 9 9 9 9	2.699 BA SUBSTATIC D-Sample NH 86.4 37.3 79.2 27.2 27.2 27.2 10.5 2.0	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRANT Site Location: Buid Test Method: AST Borehole No.: BI Specimen referen Pyknometer label Mass of botte ful Mass of botte sc Mass of botte sc Mass of botte ful Mass of solit samp Mass of solit samp Mass of solit samp	YACHIYO GEOTEC NEWPLA YY TEST R MD 854. H04 ice bil + water bil of water ottle of water ottle all bottle add	ps P solice Ring ComPatient Princal Investigation N LIMITED EPORT Ion Depth: 30.5-31.0m ma	Mg/m ³ YY LTD FOR BULOC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.699 BA SUBSTATIC D-Sample NH 85.4 37.3 79.2 27.2 10.1 52.0 48.1	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buid Test Method: AST Borehole No.: BI Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle +sc Mass of obttle full Mass of dentify bi Mass of dentify bi Mass of valie army Mass of valie army	YACHIYO GEOTEC NEWPLA YY TEST R MD 854. H04 ice bil + water bil of water ottle of water ottle all bottle add	ps ENGINEERING COMPARATION HINICAL INVESTIGATION EPORT Ion Depth: 30.5-31.0m ma	Mg/m ³ YY LTD FOR BULOC 9 9 9 9 9 9 9 9 9	2.699 BA SUBSTATIC D-Sample NH 86.4 37.3 79.2 27.2 27.2 27.2 10.5 2.0	2.664	gravi
CLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buid: Test Method: AST Borehole No.: BI Specimen referen Pyknometer label Mass of bottle 4sc Mass of soil samp Mass of water inf	YACHIYO GEOTEC NEWPLA TY TEST R boba Substat M D 854. H04 H04 H04 H04 H04 H04 H04 H04 H04 H04	ps P solice Ring ComPatient Princal Investigation N LIMITED EPORT Ion Depth: 30.5-31.0m ma	Mg/m ³ YY LTD FOR BULOC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.699 BA SUBSTATIC D-Sample NH 85.4 37.3 79.2 27.2 10.1 52.0 48.1	2.664	gravi
cLIENT: PROJECT: CONTRACTOR: SPECIFIC GRAVIT Site Location: Buč Test Method: AST Borehole No.: Bl Specimen referen Pyknometer label Mass of bottle +sc Mass of bottle +sc Mass of bottle sc Mass of soil samp Mass of water inf Volume of soil part Particle Density (5	YACHIYO GEOTEC NEWPLA TY TEST R boba Substat M D 854. H04 H04 H04 H04 H04 H04 H04 H04 H04 H04	ρs DengineEning COMPAP PHNICAL INVESTIGATION NUMPED EPORT Bon Depth: 30.5-31.0m ma pa pa pa pa pa pa pa pa pa pa <	Mg/m ² YY LTD FOR BULOC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.699 BA SUBST ATIC D-Sample NH 85.4 37.3 79.2 27.2 10.1 52.0 48.1 3.9	2.664	gravi 2.68

Detailed Geotechnical Report

Appendix 9: Chemical Test

A1 15117	VIOLINIA				
CLIENT:			ING COMP.		
PROJECT:			ESTIGATIO	N FOR BULO	OBASUBSTA
CONTRACTO	R: NEWPLAN	Limited			
SUMMARY FO	R SOIL PH C	CONTENT	TEST RESU	LTS	
Site Location:	Bulooba Subst	ation			
Testing Date:	27 January 201	6			
Test Method:	ASTM G 51				
BOREHOLE	1				
DURENULE	DEPTH			AVERAGE	
NO.	DEPTH (m)	TRIAL 01	TRIAL 02	AVERAGE PH VALUE	REMARKS
		TRIAL 01 7.03		PH VALUE	REMARKS Neutral
	(m)	7.03	7.04	PH VALUE 7.04	-
NO.	(m) 7.0 - 8.0	7.03	7.04 6.68	PH VALUE 7.04 6.66	Neutral
NO.	(m) 7.0 - 8.0 17.0 - 18.0	7.03 6.64 6.88	7.04 6.68 6.7	PH VALUE 7.04 6.66 6.79	Neutral Neutral
NO.	(m) 7.0 - 8.0 17.0 - 18.0 7.0 - 8.0	7.03 6.64 6.88	7.04 6.68 6.7 6.74	PH VALUE 7.04 6.66 6.79 6.73	Neutral Neutral Neutral
NO.	(m) 7.0 - 8.0 17.0 - 18.0 7.0 - 8.0 18.0 - 19.0	7.03 6.64 6.88 6.71 5.84	7.04 6.68 6.7 6.74 5.84	PH VALUE 7.04 6.66 6.79 6.73 5.84	Neutral Neutral Neutral Neutral
NO. 1 2	(m) 7.0 - 8.0 17.0 - 18.0 7.0 - 8.0 18.0 - 19.0 3.0 - 4.0	7.03 6.64 6.88 6.71 5.84	7.04 6.68 6.7 6.74 5.84 6.89	PH VALUE 7.04 6.66 6.79 6.73 5.84 6.88	Neutral Neutral Neutral Neutral Slightly Acidic

CLIENT:		NGINEERING			
PROJECT:	GEOTECHN	IICAL INVEST	IGATION FO	R BULOOBA SUBST	ATIO
CONTRACTOR:	NEWPLAN L	imited			
SUMMARY FOR	SOIL CHLOR		IT TEST RES	SULTS	
Site Location: B	ulooba Substatio	n			
Testing Date: 27	January 2016				
Test Method: AS	STM D 4327				
BOREHOLE NO .:	DEPTH (m)	TEST 01 (%)	TEST 02 (%)	AVERAGE CHLORIDE CONTENT (%)	
BH - 01	8	0.883		0.883	
BH - 01	18	0.803	0.795	0.799	
BH - 02	8	0.295		0.295	
BH - 02	19	0.337	0.369	0.353	
BH - 03	4	0.052		0.052	
511-03	18	0.258	0.28	0.269	
BH - 04	21	0.345		0.345	

103

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTOR: NEWPLAN Limited SUMMARY FOR SOIL SULPHATE CONTENT TEST RESULTS Site Location: Bulooba Substation Testing Date: 27 January 2016 Test Method: ASTM D 4327 TEST 01 (%) AVERAGE SULPHATE CONTENT (%) BOREHOLE NO .: DEPTH (m) 7.0 - 8.0 4.287 4.287 7.0 - 8.0 17.0 - 18.0 7.0 - 8.0 18.0 - 19.0 3.0 - 4.0 17.0 - 18.0 3.0 - 4.0 20.0 - 21.0 BH - 01 4.287 2.744 1.372 2.45 1.319 2.541 2.45 1.183 2.744 1.372 2.45 BH - 02 1.319 2.541 2.45 1.183 BH - 03 BH - 04

Detailed Geotechnical Report

104

1 Ë Ĉ ţ vibue

	CLENT: YACHIYO ENGI PROJECT: GEOTECHNICA	Y ACHIYO ENG NEERING COMPANY LTD 0 EOT ECHNICAL INVESTIG ATION FOR BI	G COMPA IT IS ATION	4Y LTD FOR BULOOE	Y ACHIYO ENGINE ERING COMPANY LTD O EOT ECHNICAL INVESTIG ATION FOR BULOOBA SUBSTATION										
CONIKACI					CONSCIENTS	TOMED THE THE TOTAL									
esting Date:	8-Jan-2016					Borehole No.:				1					
'est Method:	AS TMD2435					Depth(m):	5.5-6.0								
traids diameter of the Engl	œ	5.047	Area of the s	Area of the spacimen(Orr)		20.0									
teight of specimen	cu	200	Height of solids ()-U	10:00	ICIENT OF COM	1.1678 501 ID ATION EV	ALLIATION					COMPD	COMPRESSION RV	Concernent of Allow	
increm ent Pro sur e (Kpa) Na	Time for 50% consolidation k, (mins)	D, from graph)	D, from D ₄₄ from graph) graph)		H, (b _H 1002)1 (cm)	200 = 000, 100 (mm) and (mm	Ourrutative compressio n ZAH(orr)	Consolidated Height (cm) Heiff &	Consolidated Hu ⁴ = (NY2 - AHJ4) ⁴ HatHistore	Vold ratio of=()HHs)/Hs	Coefficient of consolidation Over 0.1971H87450	6.	(AP) (AP) (AP) (AP) (AP) (AP) (AP) (AP)	k.c.p.gn.	Compression note Confer e3/hoge//o/]
0								2.000				0.00			
1 73.52	0.30	627.00	785.00	706.00	0.141	0.022	0.0316	1.968	03004	0.68557	9.855E-03	2312	0.2163	2.111E-09	
2 347.05	0.20	872.00			181:0	0020	0.0514	1.949	0.86%	0.66862	1.414E-02	23.152	0.1382	1.916E-00	0.056
3 294.10	0.45	1091.00	1256.00	1173.00	0.235	0.033	0.08.42	1.916	0.8067	0.64053	5.900E-03	220.67	0.07%	4.4006-10	
4 588.19	0.50	1390.00	1390.00 1576.00	5483.00	0.297	0.037	0.234	1.879	0.7485	0.60667	4.915E-03	387.62	0.0539	2.607E-10	
					ſ					Cv (cm ² /se c) =	100 010	= (NW/, m) ^W	0.1220	1.1845-00	
a.po	Pressure Void Ratio Rations Hip (April 2435)	d attoms m	0 (AS1m U.	M35)	Ħ	Sample Description: Sandy elastic SLT	tion: Sandy el	as tic SLT							
0.68		1	ł	Ħ	Ī	DIMITER OF SPECIMEN			-	\$HL430		4.0-5.0	E		
			X			VOLUME OF SPECIMEN		0.0000000	m' T	THOORESS (2H)	2	0.02	E		
		Ī	P	1		MC BBF ORE TEST		210 %	~	BULK DENSITY		1.000	Mg'm ²		
						WT OF SAMPLE \$ RMG		135.81 9		DRY DENSITY (Lo)	2	1.535	Mg/m ²		
0,142		f				WT OF EMPTY RING		60.2 0	••	SPECIFIC GRANTY	*	2.60			
0.64				2		WT OF WET SOIL		75.614 0	•	o. = 04 - Horts		0.713			
		Ī	Ι	1	Ī	WT OF DRY SOIL	-	61.5 0	,	YOD RATIO FACTOR (I)	TOR (II)	0.1713			
0.62					Ŧ	RING CALERATION FACTOR			0.002						
					/										
ogo		I			Ŧ										
10.0	Press.	Pressure (KPs/P0h flog scale	1 Rog scale		10 00 0	Preconsolidation Pressure (p)=200kpa	n Pressure (p	i=200kpa	Overburden Pressure (p.) =	= (°0) eurose.	101.9	Kpa			
benetics: Three is suits relate to the samp is that was tested	ice to the sample th	of wild field	5												
Bu os Kaking ka															
fechnical Manager															

108

		YACHIYO ENG														
		GEOTECHNIC NEWPLAN LT		STIGATION	FOR BULOOB	ASUBSTATION										
			ī													
						CONSOLIDATIO	IN TEST REPORT									
Testing [29-Jan-2016					Borehole No.:	2								
Test Met	hod:	ASTM D2435					Depth(m):	5.5-6.0							l.	
inside dam	iter of the ring	cm	5.047	Arrest of the s	specimen(Cm ²)		20.0	1								
Height of ap		cm	2.00	Height of sol			1.0053	1								
						CIENT OF CON	SOLIDATION EV	ALUATION					COMPR	RESSIBILITY	Permeshility	Compression is
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mina)	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) 10.5	H _j " (D ₁₀ * 0.002)/10 (cm)	Height Change .14 (from Graph) =((D ₁₀₀ - D ₀)10.002)/10 (cm)	compressio n Σ/\H (cm)	Consolidated Height (cm), НеМі-Дн	H ₄ ² = (Hj/2 - //Hj/4) ²	Void ratio et=(H-Ha)Ha	Coefficient of consolidation Cvs(0.197Hd?)t50	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m-) = [(.1HH) ^(1000(1P)] (m ² /MN)	k,_c,p_gm, (mine)	Ccs-(e _j - e,)/(log(o'/o')
0									2.000				0.00			
1	73.52	0.30	1159.00	1225.00	1192.00	0.238	0.013	0.0132	1.987	0.8720	0.97632	9.543E-03	73.52	0.0904	8.460E-10	
2	147.05	0.90	1379.00	1441.00	1410.00	0.282	0.012	0.0256	1.974	0.8403	0.96399	3.066E-03	73.52	0.0854	2.569E-10	0.041
3	294.10	0.27	1604.00	1795.00	1699.50	0.340	0.038	0.0638	1.936	0.7799	0.92599	9.484E-03	220.57	0.0594	8.322E-10	0.125
4	588.19	0.50	973.00	2200.00	1586.50	0.317	0.245	0.3092	1.691	0.5869	0.68189	3.854E-03	367.62	0.2948	1.493E-09	0.811
											C _v (cm ² /sec) :	0.0065	$M_{v}(m^{2}/MN) =$	0.3948	8.569E-10	0.469
0.9	; 📃						Sample Descript	tion: Sandy I	Elastic SILT							
0.9							DIAMETER OF SPE	CIMEN	0.05047	m	DEPTHS		4.0-5.0	m		
0.5							VOLUME OF SPEC	IMEN	0.0000400	m ³	THICKNESS (2	н.)	0.02	m		
0.5	;						MC BEFORE TEST		34.5	%	BULK DENSITY		1.798	Mg/m ³		
0.5							WT OF SAMPLE \$	RING	132.15	9	DRY DENSITY (Ya)	1.336	Mg/m ³		
2 a.					N.		WT OF EMPTY RIN	ic .	60.2	9	SPECIFIC GRAV	VITY	2.73			
1 0.7 0.7	7				N N		WT OF WET SOIL		71.953	9	e. = (Hi - Haj/H	ta .	0.989			
0.7							WT OF DRY SOIL		53.5	9	VOID RATIO FA	CTOR (F)	0.1989			
0.3							RING CALIBRATIO	N FACTOR		0.002						
0.6			1111													
	10.0	Deer	10 IUTE (KPa) o			1000.0	Preconsolidation	Proteino	o)= 220koz							
							r reconsolidador		рј– ококра	Overburden	Pressure (ρ _o) =	97.0	Kpa		-	
Remarka: T COMATLAI		te to the sample t	hat was tes	ted												
CONAILA																
Bruce Katur	iguka															
Technical I	Manager														1	

Report

Detailed Geotechnical Report

Detailed	Geotechnical	Report

Dotailod	Contochnical	Doport	

										C, (cm ² /sec) =	0.0024	M _v (m ² /MN) =	0.0794	1.685E-10	0.1
0.81	ure Void Ratio	Relationshi	p (ASTM D 2	4435)		Sample Description	an: Sandy Lea	in CLAY							
0.79					### I	DIAMETER OF SP	ECIMEN	0.05047	m	DEPTHS		19.0-20.0	m		
0.77						VOLUME OF SPEC	CIMEN	0.0000400	m ²	THICKNESS (2	нэ	0.02	m		
0.75						MC BEFORE TEST		28.9	%	BULK DENSITY		1.942	Mg/m ³		
9 0.75						WT OF SAMPLE S	RING	137.42	9	DRY DENSITY (ra)	1.507	Mg/m ³		
d ratio						WT OF EMPTY RI	vG	59.671	9	SPECIFIC GRAV	//TY	2.75			
\$ 0.71						WT OF WET SOIL		77.747	9	e, = (Hi - Haj/H		0.807			
0.69						WT OF DRY SOIL		60.3	9	VOID RATIO FA	CTOR (F)	0.1807			
0.67						RING CALIBRATIC	IN FACTOR		0.002						
					### I										
10.0	Dre	sure (KPaP2	WEne scale.		1000.0	Preconsolidatio	o Pressure i	(o)= 390 6kpa		Pressure (p ₂) =	390.6	Кра			
-									Overbarden	Pressure (p ₀) =	300.6	кра			
temarks: These results	relate to the sa	npie that wa	as tested												
sruce Katunguka															

		YACHIYO ENG			FOR BULOOB											
		DEDTECHNIC		STIGATION	FOR BULOOBS	SUBSTATION										
	CONTRACTO	NEWPLANEI	,													
						CONSOLIDATIO	N TEST REPORT									
esting D	ate:						Borehole No.:	1								
est Met	iod:	ASTMD2435					Depth(m):	20.5-21.0								
rside diar	neter of the ring	cm	5.047	Area of the	specimen(Cm ²)		20.0	1								
leight of s	pecimen	cm	2.00	Height of so	olids (H _i)		1.1067	1								
				·			SOLIDATION EVA							RESSIBILITY	Permeability	Compression in
No.	Pressure (Kpa)	Time for 50% consolidation t ₀₀ (mina)	D, (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) 10.5	H _j " (D ₁₀ * 0.002)/10 (cm)	Height Change .1H (from Graph) =((D ₁₀₀ - D ₀)*0.002)/10 (cm)	Compressio n XAH (cm)	Consolidated Height (cm), HeHi-AH	H ₄ ² = (Hj/2 - AHj/4) ²	Void ratio ef::(H-Hs)Hs	Coefficient of consolidation Cvs(0.197Hd')/t50	Pressure Change (:\P) (Kpa)	Coefficient of Volume ompressibility (m.) = [[\LHH] "(1000(\LP)] (m ² /MN)	k, c, p,gm,	Ccs-{e _i }/(log(o'/o')
0									2.000				0.00			
1	73.52	0.90	318.00	355.00	342.00	0.058	0.010	0.0096	1.990	0.9567	0.79543	3.4905-03	73.52	0.0556	2.246E-10	
2	147.05	2.10	283.00	372.00	327.50	0.055	0.015	0.0274	1.973	0.9408	0.78234	1.4718-03	73.52	0.1227	1.771E-10	0.053
3	294.10	1.00	409.00	530.00	469.50	0.094	0.024	0.0516	1.948	0.9039	0.76048	2.9685-03	220.57	0.0563	1.639E-10	0.073
4	588.19	1.80	635.00	890.00	762.50	0.153	0.051	0.1026	1.897	0.8291	0.71440	1.5128-03	367.62	0.0731	1.085E-10	0.153
					•						C, (cm ² /sec) =	0.0024	M _v (m ² /MN) =	0.0794	1.6855-10	0.153
o.1		are Void Ratio R	lationshi				Sample Descriptio	et: Sandy Lear	I CLAY							
0.0	° 💻						DIAMETER OF SPE	CIMEN	0.05047	m	DEPTHS		19.0-20.0	m		
0.3	7			1	\sim		VOLUME OF SPEC	IMEN	0.0000400	m ³	THICKNESS (2	н.)	0.02	m		
0.7							MC BEFORE TEST		28.9	%	BULK DENSITY		1.942	Mg/m ³		
							WT OF SAMPLE \$	RING	137.42	9	DRY DENSITY ((a)	1.507	Mg/m ³		
8 e.;	3				N		WT OF EMPTY RIN	ic .	59.671	9	SPECIFIC GRAV	ITY	2.75			
							WT OF WET SOIL		77.747	9	e., = (Hi - Hoj/H		0.807			
Noki rz																
word ra							WT OF DRY SOIL		60.3	9	VOID RATIO FA	CTOR (F)	0.1807			

Detailed Geotechnical Report

		YACHIYO EN				ASUBSTATION										
		NEWPLAN LT		STIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLANEI														
						CONSOLIDATIO	N TEST REPORT									
Testing I	Date:	8-Jan-2016					Sorehole No.:	1								
Test Met	hod:	ASTM D2435					Depth(m):	10.5-11.0							1	
-							•								1	
side dam	eter of the ring	cm	5.047	Area of the s	ipecimen(Cm ²)		20.0									
feight of sp	ecimen	cm	2.00	Height of so	ids (H ₄)		1.1608									
						ICIENT OF CONS								ESSIBILITY	Permeability	Compression index
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mina)	D+ (from graph)	graph)	D50 = (D0 + D100) '0.5	H _l = (Dec * 0.002)/10 (cm)	Height Change AH (from Graph) =([D ₁₀₀ - D ₀)*0.002)/10 (cm)	Cumulative compressio n X NH (cm)	Consolidated Height (cm), НиНі-дн	H ₄ ² = (Hj/2 - AHj/4) ²	Void ratio ef=(H-Hs)/Hs	Coefficient of consolidation Cvs(0.197Hd)h50	(AP) (Kpa)	Coefficient of Volume ompressibility (m,) = [(\LANH) "(1000(\LP)] (m ² /MN)	k, c, p,gm,	Cc=-{e;- e;)(log(o';/o';))
0									2.000				0.00			
1	73.52	0.65	365.00	670.00	517.50	0.104	0.061	0.0610	1.939	0.8904	0.67037	4.498E-03	73.52	0.4279	1.888E-05	
2	147.05	0.40	750.00	935.00	842.50	0.169	0.037	0.0980	1.902	0.8261	0.63849	6.781E-03	73.52	0.2646	1.760E-05	0.105
3	294.10	0.32	1020.00	1235.00	1127.50	0.226	0.043	0.1410	1.859	0.7623	0.60145	7.822E-03	220.57	0.1049	8.047E-10	0.123
4	588.19	0.35	1390.00	1550.00	1470.00	0.294	0.032	0.1730	1.827	0.7056	0.57388	6.619E-03	367.62	0.0475	3.094E-10	0.092
											C, (cm ² /sec) :	0.0064	M _v (m ² /MN) =	0.2112	1.190E-05	0.123
0.6		are Void Ratio R	elationsh				Sample Descript	ion: Sandy	elastic SILT							
0.6	د -						DIAMETER OF SPEC		0.05047	m m	DEPTHS THICKNESS (2		9.0-10.0	m		
0.6		_					MC REFORE TEST	INCN	24.5	5	BULK DENSITY	24.0	2.005	m Mgim ³		
							WT OF SAMPLES	RING.	139.91		DRY DENSITY (1.611	Maim ³		
유 0.6						+++++	WT OF EMPTY RIP		59.671		SPECIFIC GRAV		2.64			
8							WT OF WET SOIL		80.238	9	e. = (Hi - Hai)H		0.723			
5 0.6							WT OF DRY SOIL		54.5		VOID RATIO FA		0.1723			
							RING CALIBRATIO	N FACTOR	04.5	0.002	TOD NATIO TA	(r)	0.1723			
0.5															1	
• ° °	10.0		ure (KPalls			1000.0	Preconsolidation	Pressure (o)= 210kpa	Ounthurden	Pressure (p.) =	206.5	Кра			
									,, u u	Chalbaidell	(interesting (b ²) =	100.0	rights.		1	
		te to the sample t	hat was tee	ted												
COMATLA																
Bruce Katur	nguka															
Laboratory																

106

		YACHIYO ENG				ASUBSTATION										
		NEWPLAN LT		TIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLANLI														
						CONSOLIDATIO	N TEST REPORT									
Testing [Date:						Borehole No.:	1								
Test Met	hod:	ASTM D2435					Depth(m):	15.5-16.0								
	eter of the ring	cm	5.047		specimen(Cm ²)		20.0	1								
Height of sp	recimen	cm	2.00	Height of sol			1.1605									
							SOLIDATION EV							ESSIBILITY	Permeability	Compression inde
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mina)	D_ (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) '0.5	H _{1 -} (D ₁₀ * 0.002)/1 (cm)	Height Change ./H (from Graph) =)(D ₁₀₀ - D ₀)*0.002)/10 (cm)	Completive compression n X1H (cm)	Height (cm),	H ₄ ² = (Hj/2 - AHj/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.137Hd1)t50	Pressure Change (JP) (Kpa)	Coefficient of Volume ompressibility (m _s) = [(.14/H) '(1000/./P)] (m ² /MN)	k,.c,p,gm,	Cc=-[e ₁ - e ₁](log(o' ₁ /o' ₁))
0									2.000				0.00			
1	73.52	0.14	720.00	960.00	840.00	0.168	0.048	0.0480	1.952	0.8724	0.68200	2.046E-02	73.52	0.3345	6.712E-09	
2	147.05	0.19	1077.00	1212.00	1144.50	0.229	0.027	0.0750	1.925	0.8195	0.65873	1.416E-02	73.52	0.1908	2.650E-09	0.077
3	294.10	0.18	1380.00	1500.00	1440.00	0.288	0.024	0.0990	1.901	0.7718	0.63805	1.408E-02	220.57	0.0572	7.904E-10	0.069
4	588.19	1.20	1704.00	1766.00	1735.00	0.347	0.012	0.1114	1.889	0.7354	0.62737	2.012E-03	357.62	0.0179	3.525E-11	0.035
											C, (cm²/sec)	0.0127	$M_{e}(m^{2}/MN) =$	0.1501	2.547E-09	0.077
0.7		are Void Ratio R	eationshi	p (ASIM D	435)	IIII	Sample Descript									
0.6					-		DIAMETER OF SPE		0.05047	m m ³	DEPTHS		14.0-15.0	m		
							VOLUME OF SPEC		0.0000400	m' %	THICKNESS (3 BULK DENSITY		0.02	m Ma/m ³		
							WT OF SAMPLE S		134.46	74 0	DRY DENSITY (1.407	Mg/m ²		
g 0.6	6						WT OF EMPTY RIN	4G	60.2	8	SPECIFIC GRA	aty	2.60	-		
PRA L						++++	WT OF WET SOIL		74.2534	9	e = (Hi - Ha)/P	h	0.723			
0.6							WT OF DRY SOIL		58.7	a	VOID RATIO FA	CTOR (F)	0.1723			
							RING CALIBRATIO	N FACTOR		0.002						
0.6																
	10.0		ure (KPai8			1000.0			(p)= 282.1kpa							

Inside diam	eter of the ring	cm	5.047	Area of the a	ipecimen(Cm ²)		20.0									
Height of sp	recimen	cm	2.00	Height of sol			1.0954									
							SOLIDATION EVA							ESSIBILITY	Permeability	Compression in
Increment No.	Pressure (Kps)	Time for 50% consolidation t _{so} (mins)	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _j ., (D ₁₀ * 0.002)/10 (cm)	Height Change ./H (from Graph) =((D ₁₀₀ - D ₂)10.002)/10 (cm)	Compressio n X-M (cm)	Consolidated Height (cm), НиНі-Дн	H ₄ ² = (Hj/2 - \\Hj/4) ²	Void ratio ef=(H-Ha)Ha	Coefficient of consolidation Cvs(0.197Hd9)t50	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m,) = [(\LMH) *(1000(\LP)] (m ² /MN)	k, , C, P _a gm, (n)m)	Cc=-{e _j - e,}/jlog(o'/o',
0									2.000				0.00			
1	73.52	0.18	597.00	770.00	683.50	0.137	0.035	0.0346	1.965	0.8997	0.79418	1.641E-02	73.52	0.2394	3.855E-09	
2	147.05	0.25	909.00	1031.00	970.00	0.194	0.024	0.0590	1.941	0.8501	0.77191	1.116E-02	73.52	0.1710	1.873E-09	0.074
3	294.10	0.20	1185.00	1362.50	1273.75	0.255	0.036	0.0945	1.906	0.7904	0.73950	1.298E-02	220.57	0.0845	1.075E-09	0.108
4	588.19	0.28	1610.00	1745.00	1677.50	0.336	0.027	0.1215	1.879	0.7317	0.71485	8.580E-03	367.62	0.0391	3.291E-10	0.082
											C _v (cm ² /sec)	0.0123	$M_v(m^2/MN) =$	0.1335	1.7838-09	0.108
			TIII				Sample Descript									
0.3	·>						DIAMETER OF SPEC		0.05047	m m ³	DEPTHS THICKNESS (2		25.0-26.0	m m		
							MC BEFORE TEST		28.3	5	BULK DENSITY		1.861	Malm ³		
0.;	7						WT OF SAMPLE \$	RING	134.68	9	DRY DENSITY ((a)	1.451	Mg/m ³		
ratio							WT OF EMPTY RIN	G	60.2	9	SPECIFIC GRA	ITY	2.69			
v oid	5						WT OF WET SOIL		74.483	9	e_ = (Hi - Ha)/P		0.826			
							WT OF DRY SOIL		58.1	9	VOID RATIO FA	CTOR (F)	0.1826			
0.;	3						RING CALIBRATIO	NFACTOR		0.002						
0.	10.0	Pres	ure (KPa)S	htog scale		1000.0	Preconsolidation	Pressure (p)= 465.5kpa	Overburden	Pressure (p.) =	465.5	Кра			
Bernardan 7	have an other series	te to the sample t	had some firms								(44)					
COMATLA		te to the sample o														
Bruce Katu Technical																

29-Jan-2016

ASTM D2435

Testing Date: Test Method:

Remain COM Tech

CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTO NEWPLAN LTD

CONSOLIDATION TEST REPORT

le No.:

pth(m):

CLIENT:	YACHIYO EN														
			TIGATION	FOR BULOOB	SUBSTATION										
CONTRACT	NEWPLAN LT	D													
					CONSOLIDATIO	N TEST REPORT									
esting Date:	29-Jan-2016					Borehole No.:	2								
est Method:	ASTM D2435					Depth(m):	20.5-21.0							1	
														1	
side dameter of the ring	cm	5.047		pecimen(Cm ²)		20.0									
eight of specimen	cm	2.00	Height of sol			1.0533									
crement Pressure (Kos	Time for 50%	D, (from	D ₁₀₀ (from	COEFF1 D50 = (D0 +		SOLIDATION EV	Cumulative	Consolidated	H ₂ ² = (H)/2 - AH(/4) ²	Void ratio	Coefficient of	COMPR Pressure Change	ESSIBILITY Coefficient of Volume	Permeability	Compression i Cc=-{e_
No.	consolidation t _{es} (mins)	graph)	graph)	D100) 10.5	(cm)	(from Graph) =((D ₁₀₀ - D ₈)*0.002)/10 (cm)	compressio n Z 1.H (cm)	Height (cm), HeMi-ΔH	n ₄ = (nj/2/nj/4)	ef=(HHa)Ha	consolidation Cvs(0.197Hd/)t50	(LP) (Kpa)	ompressibility (m,) = [(149H) "(1000(.1.P)] (m ² /MN)	k _e ,c,ρ _a gm,	e'lljoðja, la
0								2.000				0.00			
1 73.52	0.38	810.00	990.00	900.00	0.180	0.036	0.0360	1.964	0.8780	0.86460	7.586E-03	73.52	0.2493	1.8558-05	
2 147.05	0.19	1143.00	1229.00	1186.00	0.237	0.017	0.0532	1.947	0.8356	0.84827	1.444E-02	73.52	0.1202	1.702E-05	0.054
3 294.10	0.18	1350.00	1530.00	1440.00	0.288	0.036	0.0892	1.911	0.7804	0.81409	1.423E-02	220.57	0.0854	1.193E-05	0.114
4 588.19	0.25	1828.00	1920.00	1874.00	0.375	0.018	0.1076	1.892	0.7268	0.79662 C. (cm ² /sec) :	9.545E-03	367.62 M _e (m ² /MN) =	0.0264	2.477E-10	0.055
ady ady ady ady ady ady ady ady ady ady	Pres	10 aure (K9) o	2.0 n log sale		100.0	Sample Descript DIAMETER OF SPEC VOLUME OF SPEC WT OF SAMPLE 5 WT OF SAMPLE 5 WT OF SAMPLE 5 WT OF DESCRIPTION WT OF DRY SOLL RING CALIBRATIO	CIMEN IMEN BING G	0.02047 0.0000400 29.5 133.12 60.2 72.922 56.3	m m ² 9 9 9 9 9 9 9 9 0.002 Overburden	DEPTHS THCKNESS (2 BULK DENSITY () SPECIFIC GRAV $e_u = pHI - HigHVOID RATIO FA$	na) //TY ba CTOR (P)	19.0-20.0 0.02 1.822 1.407 2.66 0.899 0.1899 Kpa	m m Mgim ³ Mgim ³		

Detailed Geotechnical Report

CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTONEWPLAN LTD TEST REPOR sting Date: 29-Jan-2016 ole No.: Depth(m): 10.5.44 est Method: ASTM D2435 20.0 cm 5.047 cm 2.00 Height of solids (COEFFICIENT OF CO COMPRESSIBILIT ssure Change (AP) (Kpa) = [(AHH) compression inde: Cc={er ime for 50% D₁₀₀ (from graph) Consolidated Height (cm), HeHi-Au Coefficient of consolidation (from Graph) (from Graph) s((Dros-D₂)/0.002)/10 (cm efficient of Volume mpressibility (m,) [[\1H/H] "(1000[\1P)] (m²/MN) onsolidatio to (mins) 2.000 0.00 815.00 960.00 887.50 73.52 0.18 0.178 0.029 1.971 0.8857 1.616E-02 73.52 0.2001 3.172E-01
 Outcol
 Control
 <thControl</th>
 <thControl</th>
 <thCo
 0.18
 1160.00
 1292.00
 1226.00
 0.245

 0.14
 1535.00
 1685.00
 1610.00
 0.322

 0.20
 2010.00
 2135.00
 2072.50
 0.415
 0.1846 147.05 2.742E-09 0.095 294.10 220.57 3 1.256E-09 0.105 4 588.19 367.62 0.0360 4.101E-10 0.090 C_e (cm²/sec) = 0.0152 M_e (m²/MN) = 0.1229 1.855-03 0.105 Presurved Factor Matching (ATM 0 2,5) ple Description: Sandy Elastic SILT DEPTHS THICKNESS (2H) BULK DENSITY DRY DENSITY (Yo) METER OF SPECIMEN 0.05047 9.0-10.0 0.02 1.701 1.239 m VOLUME OF SPECIMEN MC BEFORE TEST WT OF SAMPLE \$ RING 37.3 ~ Mg/m³ Mg/m³ 128.30 9 WT OF EMPTY RING 60.2 68.025 49.6 SPECIFIC GRAVITY 2.74 WT OF WET SOIL WT OF DRY SOIL 9 e_a = (H - Ha)/Ha VOID RATIO FACTOR (F) 1 162 0.2162 g RING CALIBRATION FACTOR Preconsolidation Pressure (p)= 250kpa Overburden Pressure (p_o) = 175.2 Kpa arks: These results

Detailed Geotechnical Report

Technical Manag

est Method:

113

ASTM D2435

Pressure (KPa) narks: These results relate to the sample that was tested MATLAB LTD

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTO NEWPLAN LTD CONSOLIDATION TEST REPORT

Mgim³ Mgim³

14.0-15.0

0.02

1.743 1.283

2.71

1.215

THICKNESS (2H)

BULK DENSITY DRY DENSITY (Ya)

SPECIFIC GRAVITY

e_a = (Hi - Hs)/Hs

VOID RATIO FACTOR (F)

Inside diam	neter of the ring	cm	5.047	Area of the s	specimen(Om ²)		20.0	1								
Height of s	pecimen	cm	2.00	Height of so	lida (H ₄)		0.9030	1								
			·				SOLIDATION EV.							ESSIBILITY	Permeability	Compression index
Incremen No.	t Pressure (Kpa)	Time for 50% consolidation t _{so} (mina)	D _e (from graph)		D50 = (D0 + D100) "0.5	H _j _ (D ₃₀ * 0.002)/10 (cm)	Height Change AH (from Graph) =(D ₁₀₀ - D ₀)*0.002)/10 (cm)	compressio n Σ1M (cm)	Consolidated Height (cm), НаНі-Дн	H _d ² = (Hj/2 - AHj/4) ²	Void ratio et:(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hd)/s50	Pressure Change (JP) (Kpa)	Coefficient of Volume ompressibility (m,) = [(.1494) *(1000/.17)] (m ² /MN)	k _{ev} c _e ρ _a gm _e	Cc=-[e ₁ - e ₁](log(o'/o' ₁)]
0									2.000				0.00			
1	73.52	0.90	318.00	366.00	342.00	0.068	0.010	0.0096	1.990	0.9567	1.20418	3.490E-03	73.52	0.0555	2.246E-10	
2	147.05	2.10	518.00	562.00	540.00	0.108	0.009	0.0184	1.982	0.9289	1.19444	1.452E-03	73.52	0.0504	8.605E-11	0.032
3	294.10	3.60	744.00	787.00	765.50	0.153	0.009	0.0270	1.973	0.8991	1.18491	8.200E-04	220.57	0.0195	1.590E-11	0.032
4	588.19	0.50	973.00	1017.00	995.00	0.199	0.009	0.0358	1.964	0.8693	1.17517	5.708E-03	367.62	0.0122	6.824E-11	0.032
											C, (cm²/sec) :	0.0029	$M_{r}(m^{2}/MN) =$	0.0395	9.870E-11	0.032
	Pressu	are Void Ratio P	elationshi	ip (ASTM D :	2435)		Sample Descript	tion: Sandy (alastic SILT							
			N				DIAMETER OF SPE		0.05047	m	DEPTHS		14.0-15.0	m		

VOLUME OF SPECIMEN

MC BEFORE TEST WT OF SAMPLE \$ RING

WT OF EMPTY RING

WT OF WET SOIL

WT OF DRY SOIL

RING CALIBRATION F

0.0000400

35.9 129.98 %

60.2 69.783 51.3

g

9 9

 $\label{eq:preconsolidation} \mbox{Pressure} \ (p) = 265.1 \mbox{ kpa} \mbox{Overburden Pressure} \ (p_0) = 265.1 \mbox{ Kpa}$

Detail	ed Geot	echnical	Report
--------	---------	----------	--------

	CLIENT:	YACHIYO EN	SINEERIN	IG COMPAN	NY LTD											
				STIGATION	FOR BULOOB	SUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT	-								
esting D	late:	8-Jan-2016					Borehole No.:	3								
est Meth	od:	ASTM D2435					Depth(m):	10.5-11.0								
															1	
side dame	ter of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0]								
eight of sp	ecimen	cm	2.00	Height of sol	lids (H ₄)		1.0203									
						CIENT OF CON	SOLIDATION EV							ESSIBILITY	Permeability	Compression inc
No.	Pressure (Kpa)	Time for 50% consolidation t ₁₀ (mins)	D, (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _j _* (D ₃₀ * 0.002)/1((cm)	Height Change .// (from Graph) =((D ₁₀₀ - D _b)*0.002(/10 (cm)	Compressio n X1H (cm)		H ₄ ³ = (Hj/2 - AHj/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hd*)t50	Pressure Change (\P) (Kpa)	Coefficient of Volume ompressibility (m,) = [(.1MH) "(1000/\/P)] (m ² /MN)	k, c, p,gm,	Cc={e _/ - e,)/[log o'/o',)
0			1	1					2.000				0.00			
1	73.52	0.14	290.00	425.00	357.50	0.072	0.027	0.0270	1.973	0.9382	0.93382	2.200E-02	73.52	0.1851	4.018E-09	
2	147.05	0.15	541.00	630.00	585.50	0.117	0.018	0.0448	1.955	0.8993	0.91638	1.969E-02	73.52	0.1238	2.391E-09	0.058
3	294.10	0.15	795.00	913.00	854.00	0.171	0.024	0.0684	1.932	0.8521	0.89324	1.865E-02	220.57	0.0554	1.014E-09	0.077
4	588.19	0.30	1155.00	1252.00	1203.50	0.241	0.019	0.0878	1.912	0.8027	0.87423	8.785E-03	367.62	0.0276	2.378E-10	0.053
											C, (cm²/sec) :	0.0173	M, (m ² /MN) =	0.0982	1.9158-09	0.077
0.9		ureVoid Ratio R			(435)	I IIII	Sample Descrip								-	
0.9							DIAMETER OF SPEC		0.05047 0.0000400	m m ³	DEPTHS THICKNESS (2	на	9.0-10.0 0.02			
							MC BEFORE TEST		31.0	% a	BULK DENSITY	(n)	1.825	Mgim ³ Mgim ³		
8 0.9	-				\times		WT OF EMPTY RP	4G	59.671	9	SPECIFIC GRAV	TTY	2.65			
/ old ra						+++++	WT OF WET SOIL		73.055	9	e_ = (Hi - Ha)/H		0.960			
- 0.5							WT OF DRY SOIL		55.8	9	VOID RATIO FA	CTOR (F)	0.1960			
							RING CALIBRATIC	N FACTOR		0.002						
c. 51																
	10.0	Pres	sure (KPa)S	h Log scale		1000.0	Preconsolidation	n Pressure (p)= 205kpa	Overburden	Pressure (p _o) =	188.0	Кра			
imarka: Th		te to the sample t	hat was tes	ted												
															1	
inuce Katur	guka															

	CLIENT:	YACHIYO ENG		O COMPA	IVI TO											
	PROJECT:	GEOTECHNIC	CAL INVES			ASUBSTATION										
	CONTRACT	O NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
Testing	Date:	8-Jan-2016					Borehole No.:	3								
Test Met	hod:	ASTM D2435					Depth(m):	15.5-16.0								
		1	-					1								
riside dam feight of s	eter of the ring	cm	5.047 2.00	Area of the : Height of ag	specimen(Cm ²)		20.0	-								
neight of st	pecimen	cm	2.00	riegra or so		CIENT OF CON	1.1013 SOLIDATION EV	AL LIATION					COMPR	ESSIBILITY	Barmashilita	Compression index
No.	Pressure (Kpa) Time for 50% consolidation t _{so} (mins)	D, (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) '0.5		(from Graph) =([D ₁₀₀ - D ₁)*0.002//10 (cm)			H ₄ ² = (Hj/2 - ∆Hj/4) ²	Void ratio ets(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hd1)i50	Pressure Change (JP) (Kpa)	Coefficient of Volume ompressibility (m.) = [(.1MH) *(1000/\JP)] (m ² /MN)	k,.c.p.gm,	Cc=-[e ₁ - e_[J][og(o'/o',]]
0		+					-ur mody to femp		2.000				0.00		(m/sec)	
1	73.52	0.19	350.00	570.00	460.00	0.092	0.044	0.0440	1.956	0.9120	0.77602	1.576E-02	73.52	0.3050		
2	147.05	0.18	712.00	818.00	765.00	0.153	0.021	0.0652	1.935	0.8633	0.75677	1.575E-02	73.52	0.1490	4.730E-09	
3	294.10	0.16	945.00	1115.00	1030.00	0.206	0.034	0.0992	1.901	0.8080	0.72590	1.575E-02	220.57	0.0011	2.302E-09	0.054
_			0.00.00	-									220.57	0.0421	1.319E-09	0.103
4	588.19	0.12	1285.00	1430.00	1357.50	0.272	0.029	0.1282	1.872	0.7535	0.69957 C. (cm²/sec)	2.062E-02 0.0172	367.62 M. (m ² /MN) =	0.1445	8.523E-10	0.087
	Press	ureVoid Ratio R	elationshi	o (ASTM D:	(435)						C, (cm ⁻ /sec)	0.0172	M ₂ (m ² /MN) =	0.1445	2.301E-09	0.103
			INT				Sample Descrip	tion: Elastic	SILT with sand							
0.3					-+++		DIAMETER OF SPI		0.05047	m	DEPTHS		14.0-15.0			
							VOLUME OF SPEC		0.000400		THICKNESS (2		0.02			
0.							MC BEFORE TEST		30.0	5	BULK DENSITY	10		Mgim ³		
							WT OF SAMPLE S		134.78		DRY DENSITY 6	-	1.423	Mgim ³		
ŝ.							WT OF EMPTY RP		60.2		SPECIFIC GRAV		2.64			
- poy		$++\mp$				+++++1	WT OF WET SOIL		74.584		e. = (Hi - Ha)/H		0.816			
							WT OF DRY SOIL		57.0		VOID RATIO FA		0.1816			
0.	71						RING CALIBRATIC	N FACTOR		0.002						
0.1	10.0															
	10.0	Ptes	sure (KPa)S	h Log scale		1000.0	Preconsolidation	n Pressure (p)= 283.3kpa	Overburden I	Pressure (p _o) =	283.3	Кра			
		ate to the sample th	hat was test	ed												
COMATLA	8 LTD															
Sruce Katu	rauka															

Detailed Geotechnical Report

		YACHIYO ENG			NY LTD I FOR BULOOBA	CUDOT ATION										
		NEWPLAN LT		STIGATION	FOR BULOOBA	ASUBSTATION										
	CONTRACTO	NEWPLANLI														
						CONSOLIDATIO	N TEST REPORT									
Festing D	ate:	29-Jan-2016			¢		Borehole No.:	2								
Fest Meth		ASTM D2435					Depth(m):	28.5-29.0							1	
Cat mee	00.						and bardening.								1	
uside diame	ter of the ring	cm	5.047	loss of the	apecimen(Cm ²)		20.0	1								
height of app	cimen	cm	2.00	Height of sol			1 0949	1								
						CIENT OF CON	SOLIDATION EV	ALLIATION					COMPR	RESSIBILITY	Permeability	Compression in
	Pressure (Kpa)		D _a (from		D50 = (D0 +	H _j , (D ₁₀ * 0.002)/1	Height Change AH	Cumulative	Consolidated	$H_{d}^{2} = (H)/2 - \Delta H/4$		Coefficient of	Pressure Change	Coefficient of Volume	/ transitionity	Cc=-{e_r
No.		consolidation t ₀₀ (mina)	graph)	graph)	D100) '0.5	(cm)	(from Graph) =([D ₁₀₀ -	compressio n Σ.\H (cm)	Height (cm), HuHi-AH		ef=(H-Ha)Hs	consolidation Over(0.197Hd%tSp	(AP) (Kpa)	ompressibility (m.)		e'}[]o3(a,\a,']
		t _{eo} (mina)					D ₁ /0.0023/10 (cm)		nin-ax			Cville 19780-950	(Apa)	= [(\(\MH) "(1000(\)P)] (m ² /MN)	k.,c.p.gm,	
0									2.000				0.00		pering	
1	73.52	0.40	570.00	599.00	584.50	0.117	0.006	0.0058	1,994	0.9368	0.82133	7.689E-03	73.52	0.0795	2.984E-10	
2	147.05	0.20	740.00	873.00	806.50	0.161	0.027	0.0324	1.968	0.8901	0.79703	1.461E-02	73.52	0.1839		
3	294.10	0.31	985.00	1245.00	1115.00	0.223	0.052	0.0844	1.916	0.8137	0.74954	8.618E-03	220.57	0.1231	2.638E-09	0.051
4	588.19	0.90	1487.00	1640.00	1563.50	0.313	0.031	0.1150	1.885	0.7471	0.72159	2.725E-03	367.62	0.0442	1.040E-09	0.155
-	500.19	0.90	1467.00	1040.00	1563.50	0.313	0.031	0.1150	1.005	0.7471	C _v (cm ² /sec)	2.7252-03	$M_{\rm c}(m^2/MN) =$	0.0977	1.151E-10 1.023E-09	0.093
0.85		ireVoid Ratio R	TRI			IIII	Sample Descript	tion: Sandy							-	
0.8							DIAMETER OF SPI	ECIMEN	0.05047	m	DEPTHS		30.0	m		
0.75							VOLUME OF SPEC	IMEN	0.0000400	m ³	THICKNESS (BH,)	0.02	m		
							MC BEFORE TEST		22.6	%	BULK DENSITY		1.706	Mg/m ³		
9.77							WT OF SAMPLE \$	RING	128.51	9	DRY DENSITY (Ya)	1.392	Mg/m ³		
ratio.							WT OF EMPTY RIN	4G	60.2	9	SPECIFIC GRA	VITY	2.72			
P 0.75							WT OF WET SOIL		68.307	9	e. = (H - Ha)P	la l	0.827			
							WT OF DRY SOIL		55.7		VOID RATIO FA	CTOR (F)	0.1827			
0.75							RING CALIBRATIO	IN FACTOR		0.002						
															1	
			10			1000.0										
0.7	10.0							Deserves	ol= 477 1koa			477.1			1	
	10.0	Press	ure (KPa) o	n Log scale			Preconsolidation									
			ure (KPa) o	~			Preconsolidation	ressure	ру= 411.1Кра	Overburden	Pressure (p _o) =	4//.1	Кра			
	ese results rela	Press te to the sample th	ure (KPa) o	~			Preconsolidation	ressure	рл= 477.16ра	Overburden	Pressure (p _o) =	4/7.1	кра		1	

Detailed Geotechnical Report

						CONSOLIDATIO	N TEST REPORT									
Testing D	late:	8-Jan-2016					Borehole No.:	3								
Fest Meth	nod:	ASTM D2435					Depth(m):	5.5-6.0							1	
															1	
	ter of the ring	cm	5.047		pecimen(Cm ²)		20.0									
leight of sp	ecimen	cm	2.00	Height of sol			1.1308 OLIDATION EVA							ESSIBILITY		
No.	Pressure (Kps)	Time for 50% consolidation t _{so} (mina)	D _a (from graph)	Diss (from graph)	D50 = (D0 + D100) '0.5		Height Change .1H (from Graph) =((D ₁₀₇ - D ₀)*0.002)/10 (cm)		Consolidated Height (cm), НиМі-дн	H ₄ ² = (Hj/21.Hj/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.1979bd1jida	Pressure Change (JP) (Kpa)	Coefficient of Volume ompressibility (m,) = ((AHH) *(1000/AP)) (m*7MN)	k, c, p,gm,	Compression ind Ccs-(e)- e,)10g(o*/o*,))
0									2.000				0.00			
1	73.52	2.70	215.00	259.00	237.00	0.047	0.009	0.0088	1.991	0.9678	0.76089	1.177E-03	73.52	0.0501	6.940E-11	
2	147.05	2.10	306.00	375.00	340.50	0.068	0.014	0.0226	1.977	0.9442	0.74868	1.476E-03	73.52	0.0949	1.375E-10	0.041
3	294.10	2.00	433.00	542.00	487.50	0.098	0.022	0.0444	1.956	0.9090	0.72941	1.492E-03	220.57	0.0505	7.399E-11	0.054
4	588.19	2.00	620.00	747.00	683.50	0.137	0.025	0.0698	1.930	0.8666	0.70694	1.423E-03	367.62	0.0358	4.995E-11	0.075
		e Void Ratio Rel									C _v (cm ² /sec) :	0.0014	M, (m ² /MN) =	0.0503	8.270E-11	0.075
0.7 0.7 0.7 0.7 0.7 0.7			re (KPa/88	<u> </u>		100.0	Sample Descript DIAMETER OF SPIC VOLUME OF SPEC MC BEFORE TEST WT OF SAMPLE S WT OF CALERATIO WT OF DRY SOIL RING CALERATIO Preconsolidation	ICIMEN IMEN RING IG N FACTOR	0.02047 0.0000400 25.8 136.98 60.205 76.772 61.0	m m ³ 5 9 9 9 9 9 0.002 Overburden	DEPTHS THICKNESS (2 BULK DENSITY () BYDENSITY () SPECIFIC GRAI $e_{\alpha} = p = h (H) H$ VOID RATIO FA	na) //TY % CTOR (P)	4.05.0 0.02 1.918 1.525 2.85 0.769 0.1769	m m Mgim ³ Mgim ³	-	
uce Katur Ichnical I																

Detail	ed Geot	echnical	Report
--------	---------	----------	--------

	CLIENT:	YACHIYO ENG														
		DEDTECHNIC		STIGATION	FOR BULOOBA	SUBSTATION										
	CONTRACTO		Ĭ													
						CONSOLIDATIO	IN TEST REPORT									
esting I	Date:	8-Jan-2016					Borehole No.:	3								
est Met	hod:	ASTM D2435					Depth(m):	29.5-30.0							1	
side dam	ster of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0]								
eight of sp	ecimen	cm	2.00	Height of sol	lids (H ₄)		1.1180									
							SOLIDATION EV							ESSIBILITY	Permeability	Compression inde
No.	Pressure (Kpa)	Time for 50% consolidation t _{to} (mins)	D。 (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) *0.5	H _j , (D ₃₀ * 0.002)/1((cm)	Height Change ./# (from Graph) =([D ₁₀₀ - D ₂)*0.002//10 (cm)	Cumulative compressio n X1H (cm)	Consolidated Height (cm), HeMi-ΔH	H ₄ ² = (Hj/2 - \\Hj/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hd*)t50	Pressure Change (1P) (Kpa)	Coefficient of Volume ompressibility (m,) = [(.1MH) "(1000/\/P)] (m ² /MN)	k.,c.p.gm,	Cc=-[e ₁ - e.]/[log(0'/0',]]
0									2.000				0.00			
1	73.52	0.20	9.00	58.00	33.50	0.007	0.010	0.0098	1.990	0.9869	0.78016	1.620E-02	73.52	0.0570	1.054E-09	
2	147.05	0.50	170.00	237.00	203.50	0.041	0.013	0.0232	1.977	0.9569	0.76818	6.284E-03	73.52	0.0922	5.653E-10	0.040
3	294.10	0.28	330.00	510.00	420.00	0.084	0.036	0.0592	1.941	0.9014	0.73598	1.057E-02	220.57	0.0541	8.720E-10	0.107
4	588.19	0.35	660.00	852.00	756.00	0.151	0.038	0.0976	1.902	0.8343	0.70163	7.827E-03	367.62	0.0549	4.216E-10	0.114
			ure (153)	RLog scale		1000.0	Sample Descrip ICAMETER OF SPIC VOLUME OF SPIC WE DEFORE TEST WT OF SAMPLE S WT OF SAMPLE S WT OF DATY SOIL WT OF VET SOIL RING CALIBRATIC Preconsolidation	ICIMEN IMEN RING IG N FACTOR	0.03547 0.0000400 25.9 137.45 60.2 77.247 61.4	m m ³ 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DEPTHS THICKNESS (2 BULK DENSITY DRY DENSITY () SPECIFIC GRAN $e_u = (H - Ne)H$ VOID RATIO FA	ro) /ITY la /CTOR (F)	22.0 0.02 1.530 1.533 2.59 0.7789 0.1789 Kpa	m Mgim ³ Mgim ³		
MATLA																
DMATLAI																

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTO NEWPLAN LTD CONSOLIDATION TEST REPORT Borehole No.: Testing Date: 19-Jan-2016 Test Method: ASTM D2435 Depth(m): 5.5-6.0 dameter of the ring cm 5.047 Assa of the specie of specimen cm 2.00 Height of solids (t 20.0 1.1886 LIDATION EVAL eight Change ./H Cr (from Graph) cc =((D₁₀₀- n h₀)*0.002)/10 (cm) COEFFI D50 = (D0 + D100) '0.5 CIENT OF CO H₁ (D₁₀ * 0.002 (cm) COMPRESSIBIL bility Compression inc Cc={e, e,j/[log(o'/o'.) Time for 50% D_a (from D₁₀₀ (from graph) Height (cm) HeHi-ΔH (1.P) (Kpa) ompressibility (m.) = [(.1H/H) *(1000/.1P) (m²/MN) ton (mina) compres 2.000 0.00
 73.52
 1.60
 337.00
 368.00
 351.50

 147.05
 1.40
 455.00
 502.00
 478.50

 0.006
 0.0058
 1.994
 0.9595
 0.67776
 1.969E-03

 0.009
 0.0152
 1.985
 0.3379
 0.66986
 2.200E-03
 73.52 0.0395 7.641E-11 0.096 0.0544 1.390E-10 0.025
 3
 294.10
 1.50
 682.00
 736.00
 709.00

 4
 588.19
 0.50
 940.00
 1045.00
 992.50

 0.142
 0.011
 0.0260
 1.574
 0.9054
 0.66077
 1.382E-03

 0.199
 0.021
 0.0470
 1.953
 0.8591
 0.64310
 5.841E-03
 0.0245 4.823E-11 0.030 0.0292 1.619E-10 0.059 C, (cm²/sec) = 0.0029 M, (m²/MN) = 0.0395 1.0545-10 0.059 d Potio Relationship (ASTM Day Sample Description: Sandy fat CLAY X DIAMETER OF SPECIMEN VOLUME OF SPECIMEN DEPTHS THICKNESS (2H) 5.0 0.02 0.0000400 BULK DENSITY DRY DENSITY (y₀) SPECIFIC GRAVITY 19.2 MC BEFORE TEST WT OF SAMPLE \$ RING 1.973 Mgim³ Mgim³ 139.19 60.2 1.655 WT OF SAMPLE \$ RIN WT OF EMPTY RING WT OF WET SOIL 2.79 78.985 e., = (Hi - Ha)/Ha VT OF DRY SOIL 65.2 VOID RATIO FACTOR (F) 0.1683 RING CALIBRATION FACTOR 0.002 consolidation Pressure (p)= 260kpa Overburden Pressure (p_0) = 106.5 Kpa hnical Mana

Detailed Geotechnical Report

				TIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LTI	D													
						CONSOLIDATIO	N TEST REPORT									
esting l	Date:	8-Jan-2016					Borehole No.:	3								
ost Mot	hod:	ASTM D2435					Depth(m):	20.5-21.0							1	
side diam	eter of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0	1								
kight of sp	ecimen	cm	2.00	Height of sol	lids (H ₄)		1.0615	1								
				•		CIENT OF CON	SOLIDATION EV.							ESSIBILITY	Permeability	Compression ind
No.	Pressure (Kpa)	Time for 50% consolidation t _{so} (mina)	D _a (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) '0.5	H _j , (D ₁₀ * 0.002)/10 (cm)	Height Change AH (from Graph) =([D ₁₀₀ - D ₀)/0.002)/10 (cm)	Cumulative compressio n X 1.H (cm)	Consolidated Height (cm), HeHi-&H	H ₄ ² = (HJ/2 - \lambda HJ/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hd/)/t50	Pressure Change (\\P) (Kpa)	Coefficient of Volume ompressibility (m,) = ((\(\Delta H)) '(1000(\(\Delta P))) (m ²)MN)	kc.ρ.gm,	Cc={e ₁ - e ₁ }[log(o'/o',]]
0									2.000				0.00			
1	73.52	0.18	335.00	590.00	462.50	0.093	0.051	0.0510	1.949	0.9051	0.83610	1.651E-02	73.52	0.3559	5.764E-09	
2	147.05	0.20	738.00	850.00	794.00	0.159	0.022	0.0734	1.927	0.8530	0.81500	1.400E-02	73.52	0.1581	2.172E-09	0.070
3	294.10	0.13	920.00	1174.00	1047.00	0.209	0.051	0.1242	1.876	0.7842	0.76714	1.981E-02	220.57	0.1225	2.3868-09	0.159
4	588.19	0.20	1415.00	1603.00	1509.00	0.302	0.038	0.1618	1.838	0.7117	0.73172	1.168E-02	367.62	0.0556	6.378E-10	0.115
						· · · · · · · · · · · · · · · · · · ·					C _v (cm ² /sec)	0.0155	$M_{\star}(m^2/MN) =$	0.1731	2,7405-09	0.159
o.1 o.1							Sample Descript								1	
0.5							DIAMETER OF SPI		0.05047	m	DEPTHS		19.0-20.0	m		
				\sim			VOLUME OF SPEC	IMEN	0.0000400	m ³	THICKNESS (2	н.)	0.02	m		
0.8	°						MC BEFORE TEST		29.2	%	BULK DENSITY		1.878	Mg/m ³		
0.3	3						WT OF SAMPLE \$	RING	134.93	9	DRY DENSITY ((a)	1.453	Mp/m ³		
2 6.7	6						WT OF EMPTY RIN	iG .	59.763	9	SPECIFIC GRAV	ITY	2.68			
ž .,							WT OF WET SOIL		75.171	9	$a_{\pm} = (Hi - Ha)/H$		0.884			
							WT OF DRY SOIL		58.2	9	VOID RATIO FA	CTOR (F)	0.1884			
0.3	° 📃						RING CALIBRATIO	N FACTOR		0.002						
0.3																
			ure (KPalS			1000.0	Deserved defer	Procruma	o)= 377.7kpa		Pressure (p ₁) =	377.7	Кра		1	
0.6	10.0	Press	ure (KPa) 3	NLog scale			Pieconsolidation	in reasone (ру- от гляра							

Bruce Katunguka Technical Manager

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTC NEWPLAN LTD CONSOLIDATION TEST REPORT asting Date: 8-Jan-2016 Borehole No.: Depth(m): 25.5-26.0 st Method: ASTM D2435 ng cm 5.047 Area of the specie cm 2.00 Height of solids (h 20.0 1.0994 COEFFICIENT OF 0 D50 = (D0 + H_j , (D₁₀ * 0.0 D100) *0.5 (cm) COMPR Cc:-{e,-e,}[log(o'/o',]] ime for 50% D_a (from D₁₀₀ (from graph) graph) leight Change //i (from Graph) =([D₁₀₀-D₀)/0.002)/10 (cm) Consolidated Height (cm), HeiHi-ΔH (AP) (Kpa) consolidation t_{so} (mina) consolidation ompressibility (m,) = ((\\H/H) "(1000/\\P) (m²)MN) 2.000 0.00
 73.52
 0.50
 277.00
 335.00
 306.00
 0.061

 147.05
 0.80
 420.00
 600.00
 510.00
 0.102

 294.10
 0.50
 685.00
 910.00
 797.50
 0.160

 588.19
 0.35
 980.00
 1330.00
 1155.00
 0.231
 0.012 0.0116 1.988 0.9582 1.952 0.9038 0.80854 6.292E-03 0.77580 3.709E-03 73.52 0.0793 4.896E-1 73.52 0.036 0.2508 0.0476 9.126E-10 0.109 0.045 1.907 0.8351 0.73487 5.484E-03 220.57 0.1070 5.754E-10 0.135 0.1626 588.19 0.070 1.837 0.7412 6.953E-03 0.1035 7.055E-10 0.212 C_v (cm²/sec) = 0.0056 M_v (m²/MN) = 0.1352 6.7125-10 0.212 chin (ASTM Davar) Sample Description: Sandy elastic SILT DIAMETER OF SPECIMEN VOLUME OF SPECIMEN DEPTHS THICKNESS (2H) 0.05047 25.0 0.02 m 0.0000400 DRY DENSITY (Yo) SPECIFIC GRAVITY MC BEFORE TEST WT OF SAMPLE \$ RING 26.5 137.51 ~ 1.931 1.527 Mg/m³ Mg/m³ WT OF EMPTY RING 60.2 2.69 g 77.309 WT OF WET SOIL e., = (Hi - Ha)/Hs 0.819

Bruce Katunguka

120

119

Detaile	d Geotec	hnical	Report
---------	----------	--------	--------

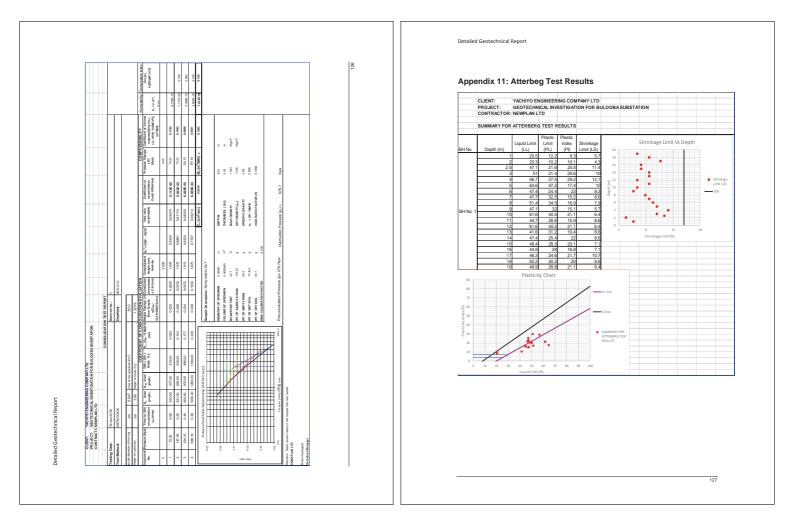
		YACHIYO ENG														
		GEOTECHNIC NEWPLAN LT		TIGATION	FOR BULOOB	SUBSTATION										
	CONTRACTO	NEWPLANEI														
						CONSOLIDATIO	N TEST REPORT									
Festing I	Date:	19-Jan-2016					Borehole No.:	4								
Fest Met	hod:	ASTM D2435					Depth(m):	20.5-21.0								
	eter of the ring		5.047				20.0	1								
teade clam		cm		Area of the s Height of sol	(pecimen(Cm ²)			-								
eigni or sp	secimen	cm	2.00	negra a sa			1.0084 SOLIDATION EV	AL LLATION					00100	RESSIBILITY	Permeability	Compression inc
No.	Pressure (Kps)	Time for 50% consolidation t ₁₀ (mins)	D, (from graph)	D ₁₀₀ (from graph)	D50 = (D0 + D100) '0.5		Height Change ./M (from Graph) =((D ₁₀₀ - D ₀)*0.002)/10 (cm)		Consolidated Height (cm), НаМі-Дн	H ₄ ² = (Hi/2 + .1Hi/4) ²	Void ratio ets(H-Ha)/Hs	Coefficient of consolidation Cvs/0.197Hd1/HS0	Pressure Change (1P) (Kps)	Coefficient of Volume ompressibility (m.) = [(.14HH) '(1000/1/P)] (m ² /MN)	k,.c.p.gm,	Compression inc Cc=-{e _/ - e _i /J]log(o'/o'.)
0									2.000				0.00			
1	73.52	1.30	315.00	555.00	435.00	0.087	0.048	0.0480	1.952	0.9955	0.93578	2.514E-03	73.52	0.3345	8.249E-10	
2	147.05	1.20	660.00	835.00	747.50	0.150	0.035	0.0830	1.917	0.9918	0.90107	2.714E-03	73.52	0.2483	6.610E-10	0.115
3	294.10	1.00	945.00	1305.00	1125.00	0.225	0.072	0.1550	1.845	0.9580	0.82967	3.145E-03	220.57	0.1769	5.459E-10	0.237
4	588.19	0.30	1384.00	1665.00	1524.50	0.305	0.056	0.2112	1.789	0.9421	0.77394	1.031E-02	367.62	0.0855	8.645E-10	0.185
0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			Steel use test	Allog scale			DAMETER OF SPE VOLUME OF SPEC NC BEFORE FEST WT OF SAMPLE \$ WT OF EMPTY RB WT OF MY SOL WT OF DRY SOL RING CALIBRATIO	RING NG N FACTOR	0.05047 0.0000400 29.7 131.69 60.2 71.459 55.1	m m ² 9 9 9 9 9 9 0.002 Overburden	DEPTHS THICKNESS (2 BULK DENSITY DRY DENSITY DRY DENSITY SPECIFIC GRAN VOID RATIO FA	го) ЛТҮ Ж	20.0 0.02 1.785 1.377 2.72 0.983 0.1983	m m Mg/m ³ Mg/m ³		
Inuce Katu Technical																

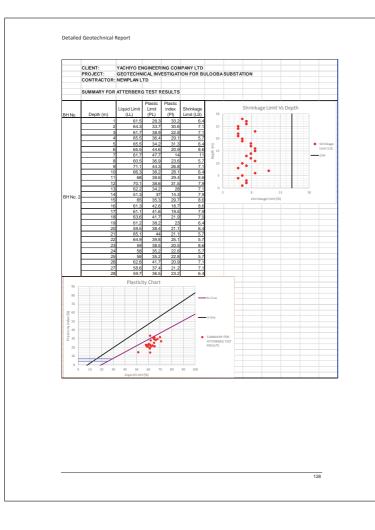
Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTO NEWPLAN LTD CONSOLIDATION TEST REPORT Borehole No.: 4 Testing Date: 8-Jan-2016 Depth(m): 25.5-26.0 Test Method: ASTM D2435 Inside diameter of the ring Cm 5.047 Area of the specim Height of specimen Cm 2.00 Height of solids (H, 20.0 1.1154 FFICIENT OF COM H₁ (D₁₀ * 0.002)* (cm) EliphtChange M Cu (from Graph) cor =((D₁₀₀- n 2 D₀)*0.002(/10 (cm) bility Compression ind Cc={e_j-e_j/[log(o'/o',]] COEFF8 D50 = (D0 + D100) '0.5 COMPRESSIBILIT aure (Kpa) Time for 50% D_a (from D₁₀₀ (from consolidation graph) graph) (LP) (Kpa) consolidation t_{so} (mina) Height (cm), HeHi-ΔH ompressibility (m.) = [(.149H) "(1000/AP)] (m²/MN) 2.000 0.00
 0
 1.00
 0.000
 70.00
 6.42
 0.001
 1.000
 6.684
 0.001
 6.844
 0.664
 0.664
 2.664
 2.0664
 2.0664
 2.0664
 2.0664
 2.0664
 2.0674
 2.0674
 2.0674
 2.0674
 2.0664
 2.0664
 0.574
 0.6764
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0674
 2.0 73.52 0.5373 1.143E-09 0.3703 7.726E-10 0.152 220.57 0.1469 3.252E-10 0.173 367.62 0.0945 2.678E-10 0.182 C, (cm²/sec) = 0.0024 M, (m²/MN) = 0.2855 6.2715-10 0.182 Preserved Refits hatdrandsp (XTM D 213) Sample Description: Sandy elastic SILT CLAMETER OF SPECIMEN VOLUME OF SPECIMEN MC BEFORE TEST WT OF SAMPLES RING WT OF EMPTY RING WT OF EMPTY RING WT OF EMPTY SOLL RING CALIBRATION FACTOR 25.0 0.02 1.855 1.459 2.65 0.793 0.1793 0.03047 0.0000400 27.1 134.46 60.19 74.273 DEPTHS THICKNESS (2H₂) BULK DENSITY DRY DENSITY (Y_P) SPECIFIC GRAVITY . Mgim³ Mgim³ 5 g e., = (Hi - Ha)/Ha 58.4 VOID RATIO FACTOR (F) 0.002 0.17 Preconsolidation Pressure (p)= 464.2kpa Overburden Pressure (p_o)= 464.2 Kpa rks: These n Katunguka -

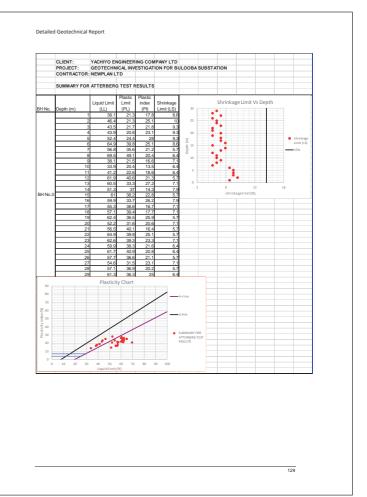
Detailed Geotechnical Report

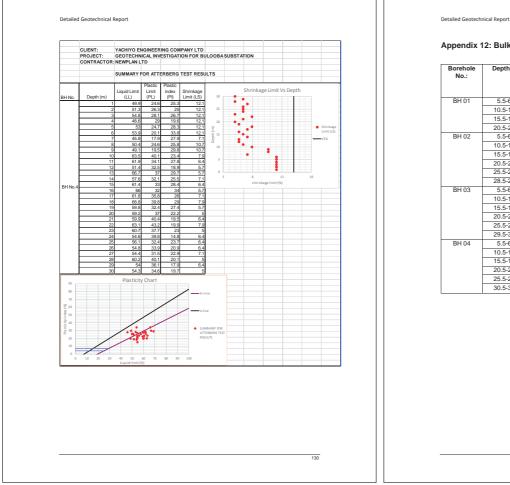
				STIGATION	FOR BULOOB	ASUBSTATION										
	CONTRACTO	NEWPLAN LT	D													
						CONSOLIDATIO	N TEST REPORT									
Festina I	Date:	19-Jan-2016					Borehole No.:	4								
Fest Met	hod:	ASTM D2435					Depth(m):	10.5-11.0							1	
naide diam	eter of the ring	cm	5.047	Area of the s	specimen(Cm ²)		20.0									
feight of sp	ecimen	cm	2.00	Height of sol			1.2516									
							SOLIDATION EV.							ESSIBILITY	Permeability	Compression in
No.	Pressure (Kps)	Time for 50% consolidation t _{so} (mina)	D, (from graph)	graph)	D50 = (D0 + D100) '0.5	H _j (D ₁₀ * 0.002)/11 (cm)	0 Height Change AH (from Graph) =([D ₁₀₀ - D ₃)*0.002)/10 (cm)	Cumulative compressio n X.M (cm)	Consolidated Height (cm), HeHi-&H	H ₄ ² = (HJ/2 - \lambda HJ/4) ²	Void ratio ef=(H-Ha)/Ha	Coefficient of consolidation Cvs(0.197Hdf)h50	Pressure Change (AP) (Kpa)	Coefficient of Volume ompressibility (m,) = ((\(\Delta H)) '(1000(\(\Delta P))) (m ²)MN)	k _e ,c,ρ _a gm,	Cc=-{e - e _i }{log(o'/o',)
0									2.000				0.00			
1	73.52	0.80	327.00	420.00	373.50	0.075	0.019	0.0186	1.981	0.9448	0.58315	3.878E-03	73.52	0.1277	4.857E-10	
2	147.05	2.80	453.00	528.00	490.50	0.098	0.015	0.0336	1.966	0.9191	0.57116	1.078E-03	73.52	0.1035	1.097E-10	0.040
3	294.10	1.70	577.00	673.00	625.00	0.125	0.019	0.0528	1.947	0.8880	0.55582	1.715E-03	220.57	0.0447	7.521E-11	0.051
4	588.19	2.80	742.00	887.00	814.50	0.163	0.029	0.0818	1.918	0.8434	0.53265	9.890E-04	367.62	0.0411	3.990E-11	0.077
											C _v (cm ² /sec) :	0.0019	$M_{v}(m^{2}/MN) =$	0.0723	1.776E-10	0.077
•.1		ure Void Ratio R	elationsh	p (ASTM D	2435)		Sample Descript		elastic SILT		DEPTHS		10.0	m		
						++++	VOLUME OF SPEC		0.0000400	m ³	THICKNESS (2	н.)	0.02	m		
0.5			++++				MC BEFORE TEST		22.1	5	BULK DENSITY		2.005	Mg/m ³		
							WT OF SAMPLE \$	RING	140.48	9	DRY DENSITY (ra)	1.643	Mp/m ³		
ratio							WT OF EMPTY RIN	iG	60.2	9	SPECIFIC GRAV	ИТY	2.64			
pio es							WT OF WET SOIL		80.279	9	e. = (Hi - Ha)/H		0.598			
			++++			+++++	WT OF DRY SOIL		65.8	9	VOID RATIO FA	CTOR (F)	0.1598			
			++++				RING CALIBRATIO	N FACTOR		0.002						
	10.0		10 sure (KPa) c	0.0		1000.0	Preconsolidation	Deserves	-) 250		Pressure (p ₂) =	206.6	Кра			

Bruce Katunguka Technical Manager

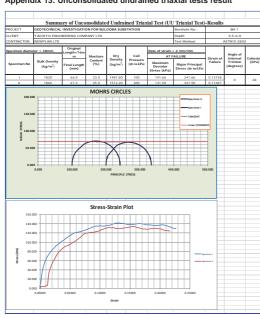

Detailed Geotechnical Report CLIENT: YACHIYO ENGINEERING COMPANY LTD PROJECT: GEOTECHNICAL INVESTIGATION FOR BULOOBA SUBSTATION CONTRACTC NEWPLAN LTD CONSOLIDATION TEST REPORT Borehole No.: Testing Date: 19-Jan-2016 Depth(m): 15.5-16.0 est Method: ASTM D2435 diameter of the ring cm 5.047 Area of the specimen(Cm²) t of specimen cm 2.00 Height of solids (H₄) 20.0 1.0562 COMPRE saure Change (AP) (Kpa) SOLDATION EVALUATION Philiphi Change M Cumulative (from Graph) compressio (el[Day: n Z.M (cm) Height (cm), el[Day: n Z.M (cm) Height (cm), SSIBILITY Coefficient of Volume empressibility (m.) = ((...VM)('(000)UP)) k₁, c, p₁gm, (m?)MN) (column) FICIENT OF COI H_j (D₁₀ * 0.002)⁽ (cm) Cc={e_/ e_i}[log(o'/o',]]
 sure (Kpa)
 Time for 50%
 Da. (sconsolidation stor (mina)
 (them)
 Dage (graph)
 D30 (c) (CPF K D100)
 COEFFK D100)
 TO 00 (CPF K D100)
 COEFFK D100) Coefficient of consolidation Cvs(0.197Hd?)t50 AHj/4j² Void ratio efs(H-Haj)Ha

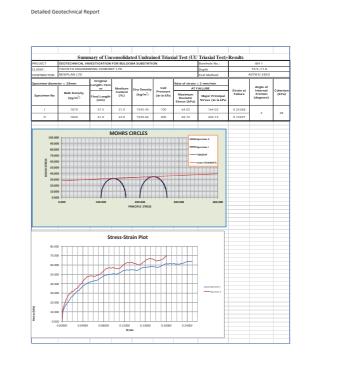

122

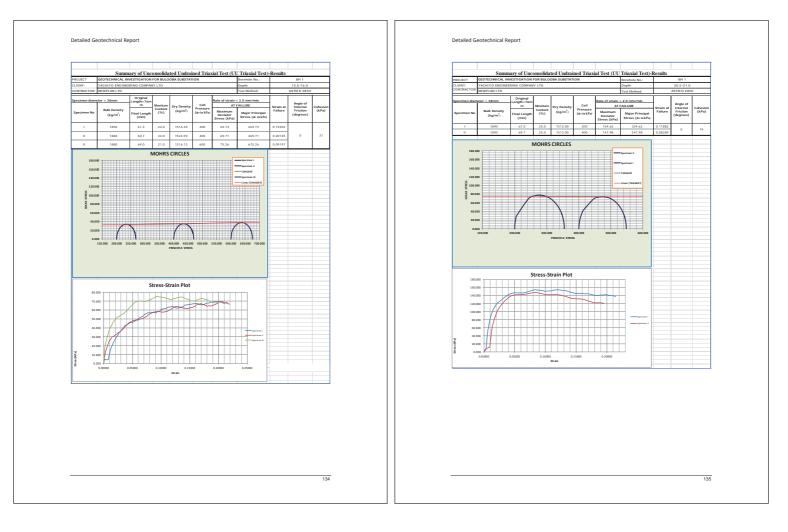

123

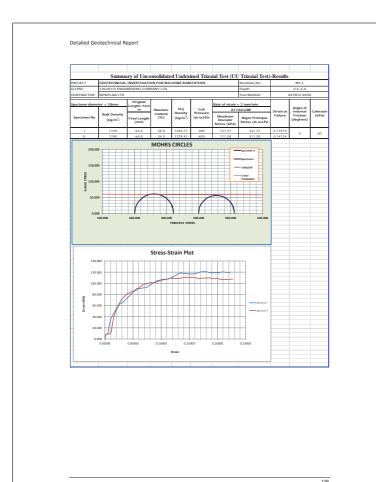

0									2.000				0.00			
1	73.52	1.20	443.00	600.00	521.50	0.104	0.031	0.0314	1.969	0.9182	0.86378	2.512E-03	73.52	0.2169	5.347E-10	
2	147.05	0.70	710.00	856.00	783.00	0.157	0.029	0.0606	1.939	0.8659	0.83613	4.062E-03	73.52	0.2048	8.159E-10	0.092
3	294.10	0.40	965.00	1185.00	1075.00	0.215	0.044	0.1046	1.895	0.7991	0.79447	6.560E-03	220.57	0.1052	6.773E-10	0.138
4	588.19	0.38	1330.00	1540.00	1435.00	0.287	0.042	0.1466	1.853	0.7309	0.75471	6.316E-03	367.62	0.0515	3.819E-10	0.132
						1					C _v (cm ² /sec)	0.0049	M _v (m ² /MN) =	0.1472	6.024E-10	0.138
0.1		are Void Ratio R	ielationshi	_		IIIII	Sample Descript	ion: Sandy	elastic SILT							
0.1	·						DIAMETER OF SPEC		0.05047 0.0000400	m m ³	DEPTHS THICKNESS (2	н.)	15.0 0.02	m m		
. e.t	,						MC BEFORE TEST WT OF SAMPLE \$		24.4 132.55	9.	BULK DENSITY DRY DENSITY (1.807	Mpim ³ Mpim ³		
Void ratio							WT OF EMPTY RIN WT OF WET SOIL	10	60.2 72.35	9 9	SPECIFIC GRAV		2.69 0.894			
0.3	,						WT OF DRY SOIL RING CALIBRATIO	N FACTOR	58.2	9 0.002	VOID RATIO FA	CTOR (F)	0.1894			
e.;	7		sure (KPajS			1000.0	Preconsolidation	Pressure	(p)= 274.8kpa	Overburden	Pressure (p ₁) =	274.8	Кра			
Remarks: 1 COMATLA		te to the sample f	hat was test	bed												

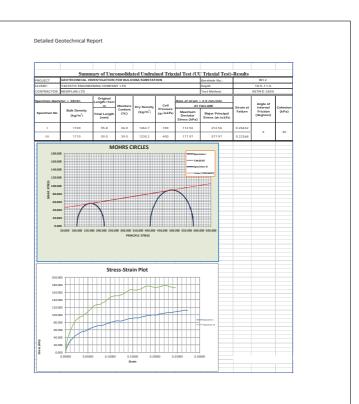
Bruce Katunguka

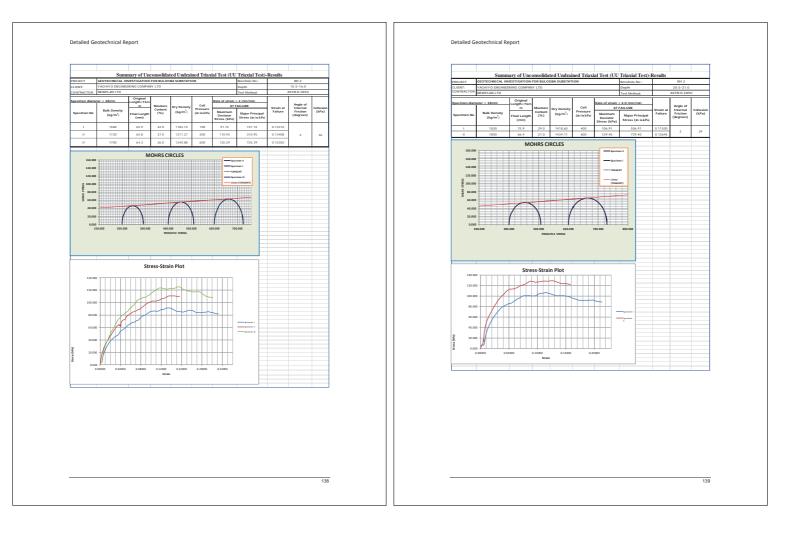


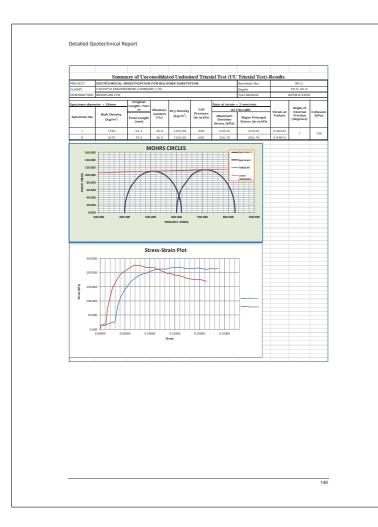

Appendix 12: Bulk Density

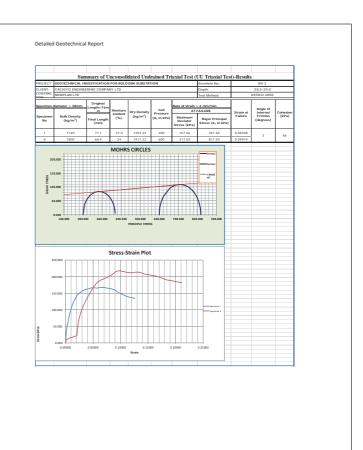

Borehole No.:	Depth (m)	Bulk Density (Mg/m ³)
BH 01	5.5-6.0	1.89
-	10.5-11.0	2.00
	15.5-16.0	1.86
	20.5-21.0	1.94
BH 02	5.5-6.0	1.80
	10.5-11.0	1.70
	15.5-16.0	1.74
	20.5-21.0	1.82
	25.5-26.0	1.86
	28.5-29.0	1.71
BH 03	5.5-6.0	1.92
	10.5-11.0	1.83
	15.5-16.0	1.86
	20.5-21.0	1.88
	25.5-26.0	1.93
	29.5-30.0	1.93
BH 04	5.5-6.0	1.97
	10.5-11.0	2.01
	15.5-16.0	1.81
	20.5-21.0	1.79
	25.5-26.0	1.86
	30.5-31.0	1.93

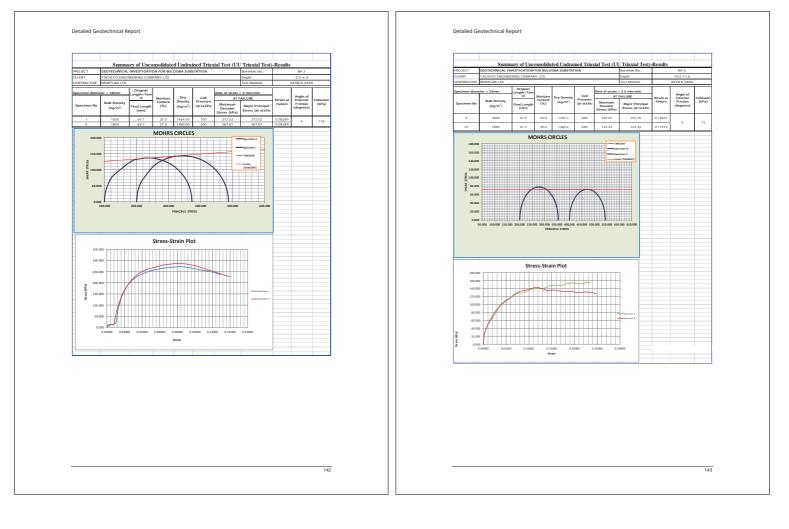


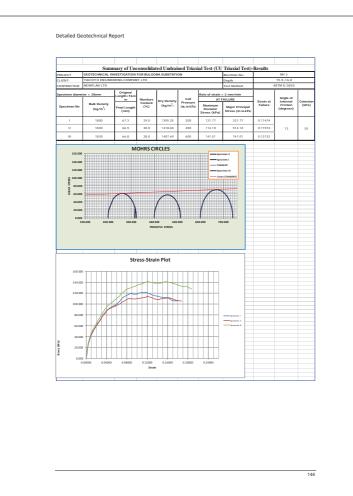

Appendix 13: Unconsolidated undrained triaxial tests result

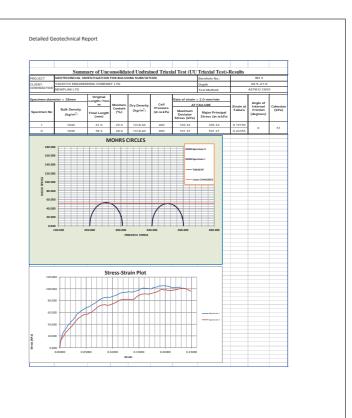


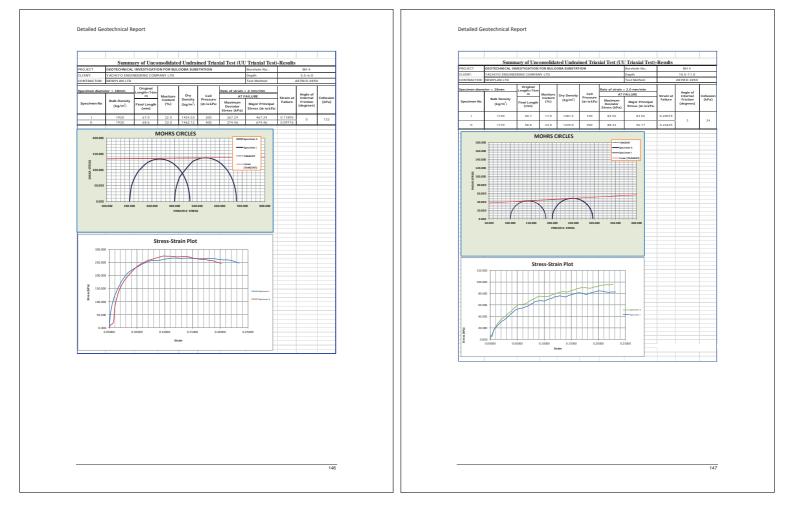


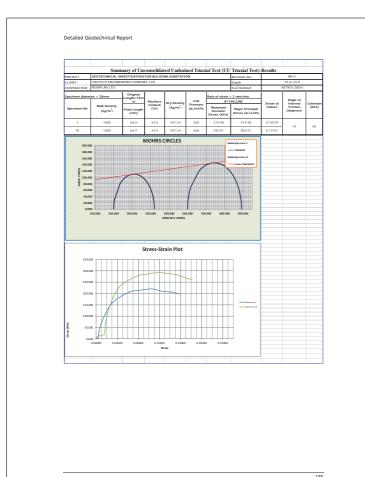


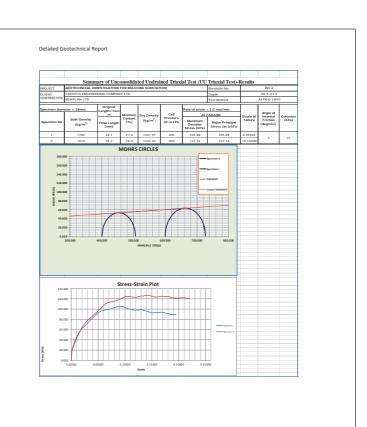


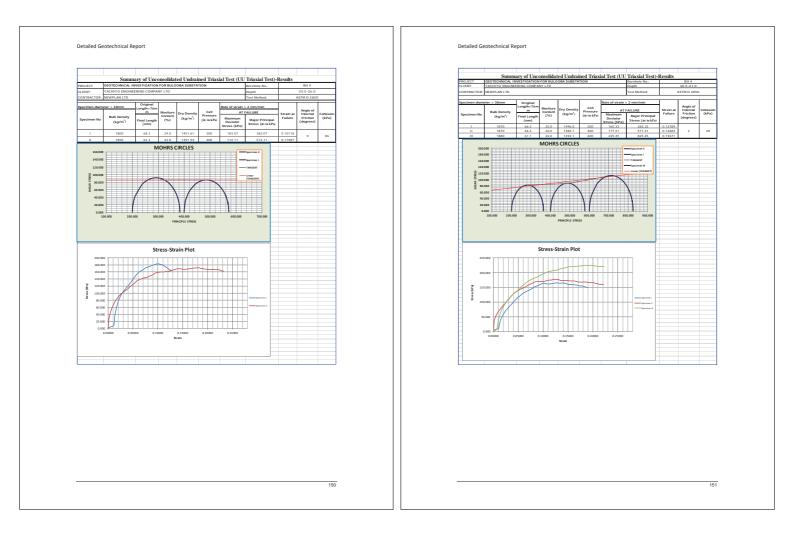


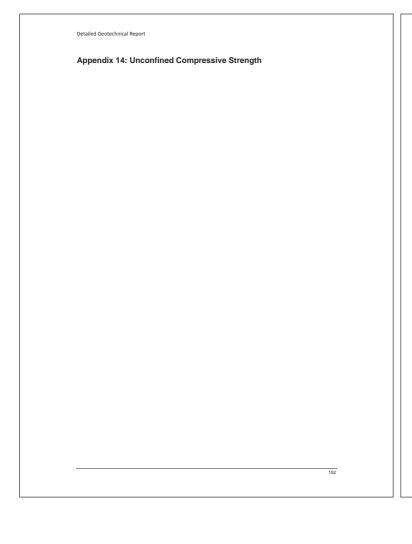


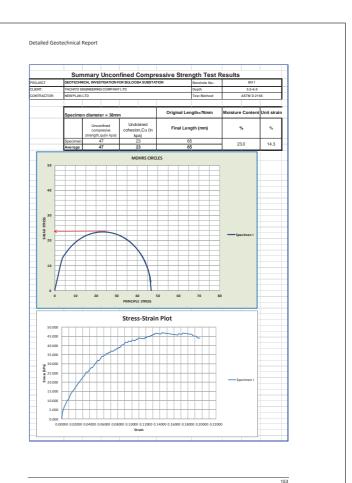


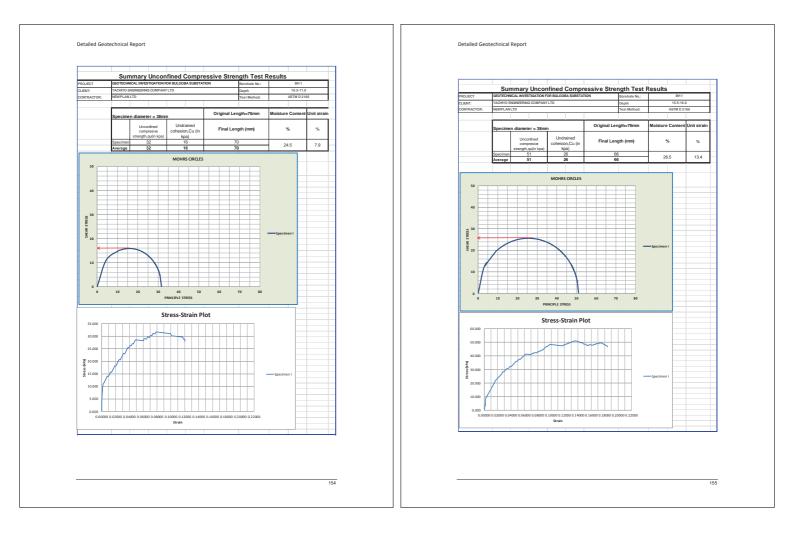


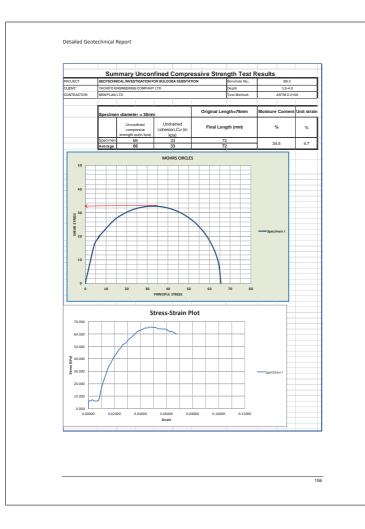


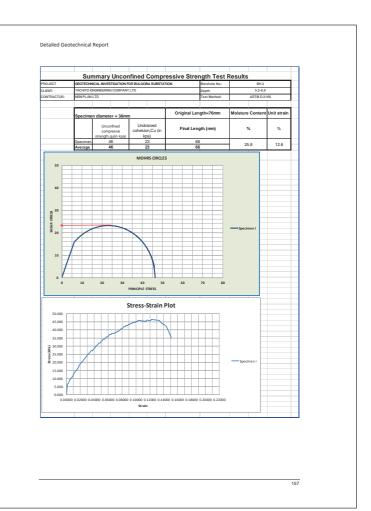


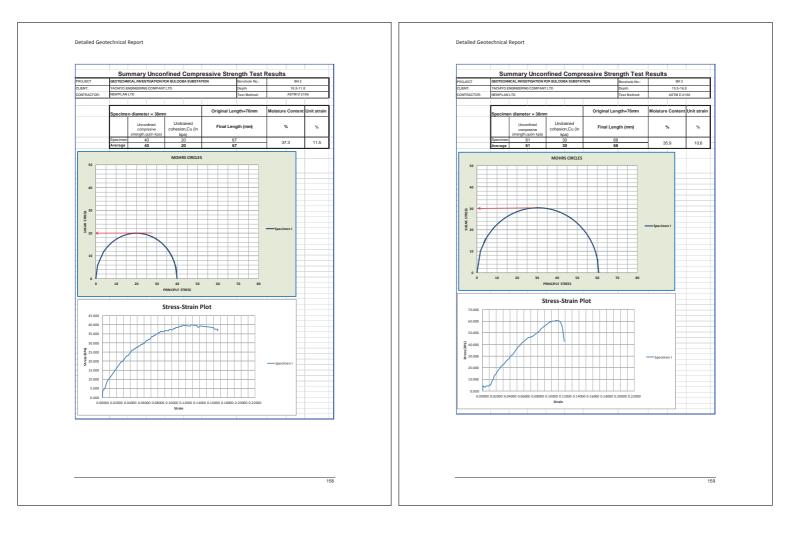


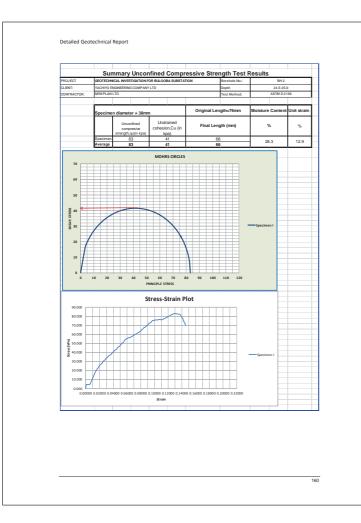


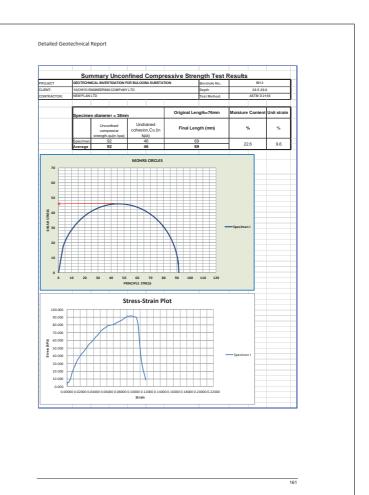


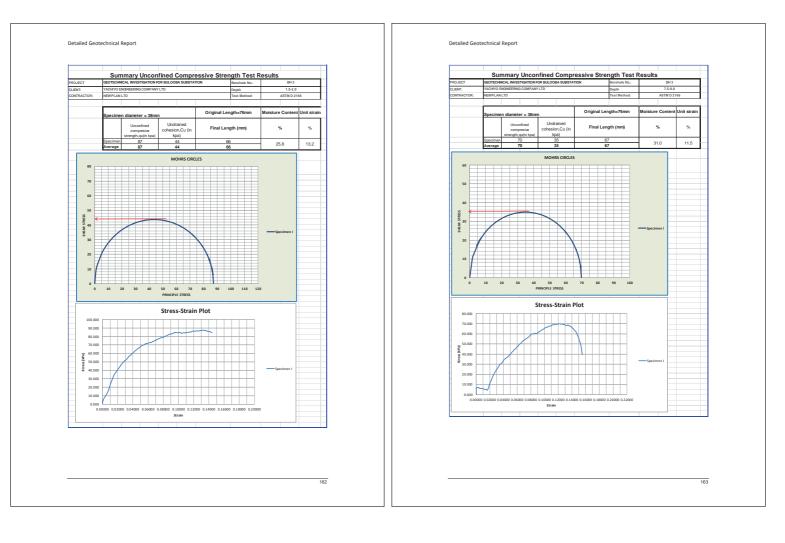


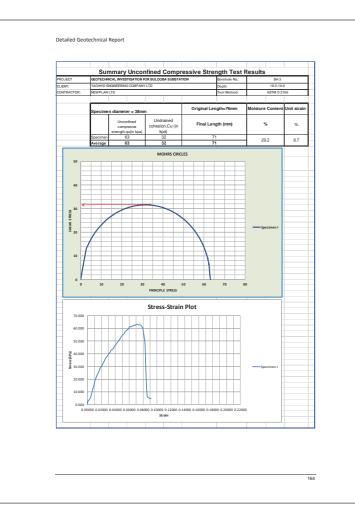


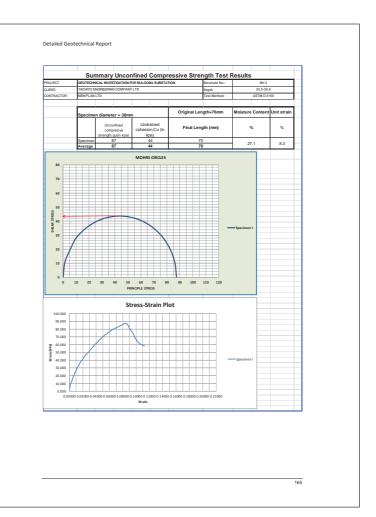


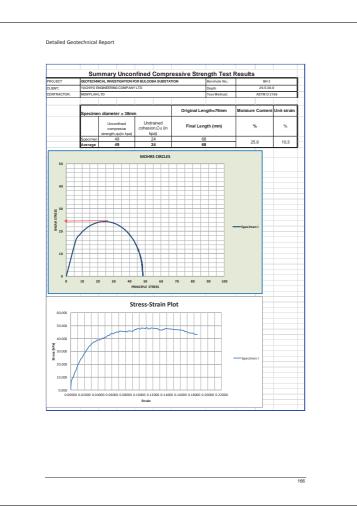












Uganda Electricity Transmission Company Limited (UETCL)

Document type Geotechnical report

January, 2016

GREATER KAMPALA TRANSMISSION NETWORK **PROJECT IN THE REPUBLIC OF UGANDA**

KAWAALA SUBSTATION DETAIL GEOTECHNICAL REPORT

Revision 00 Date 29.12.2015 Made by DA/DS Checked by DS Approved by DA

YACHIYO ENGINEERING CO., LTD. YEC

Final Detailed Geotechnical Report

EXECUTIVE SUMMARY

This report mainly deals with the geological and geotechnical investigation findings of Kawaala Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed between November and December 2015. In addition, relevant non-geotechnical parameters are outlined. The analysis and calculation results are given as part of this report (i.e. bearing capacity, stability and settlements).

Kawaala substation is located in Namungoona, a local town suburb located in Kawempe division. It is located approximately 6km North West of Kampala city centre accessible via Nakibinge road off Hoima road. The approximate centroid of the project area coordinates is 36 N 448650 UTM 37400. The project area incorporated within the site boundary is approximately 14,000m². The elevation of the project area varies between 1181 to 1195amsl. The entire project area is covered by levelled gravelly fill embankment of approximately 1.5m thick.

The project area of Kawaala substation has not experienced any earthquakes over years. It lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An over view of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are identified in the area

Kampala is found in the Buganda region underlain by Porphyroblastic Phyllite (P1BNamp), Shale, Slate Phyllite (P₁BNsh), granitoids and orthogneiss (A₃KAgr). The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A_3KAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks.

The soil investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The conducted geotechnical investigation consists of field investigation and laboratory tests on samples recovered from the borehole.

The site investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from the ground surface to a depth of 2m, overlying homogenous reddish brown sandy fat clay up to a depth of 11m, underlain by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, overlying homogenous yellowish

10

11 12

25 27

ii

Einal Detailed Geotechnical Report

orange sandy silt up to a depth of 27.5m which is underlain by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the soil is a product of completely weathered rock which is in form of residual clay.

.....

Final Detailed Geotechnical Report

CONTENTS

EXECUTIVE SUMMARY 1 INTRODUCTION 1.1 About report

- 1.2 Background 1.3 The Consultant
- 1.4 Site Description
- 1.4.1Location1.4.2Topography1.4.31.4.3 Climate1.4.4Geohazards
- 1.4.5 Published Geology
- 1.5 Scope of servi
- 2 GEOTECHNICAL INVESTIGATION 2.1 Methodology 2.2 Field Investigations
- 2.2.1 Borehole
- 2.2.2 Soil profile
- 2.2.3 Ground water 2.2.4 The Standard Penetration Test (SPT)
- 2.3 Bulk density 2.4 Laboratory Investigations
- 2.5 Index Properties
- 2.5.1 Moisture content 2.5.2 Atterberg Limits
- 2.5.3 Particle density /Specific Gravity 2.5.4 Particle size distribution
- 2.5.5 Corrosivity of soils 2.6 Strength Tests 2.6.1 Triaxial Strength
- 2.6.2 Unconfined Compressive Strength
- 2.6.2
 Unconfined Compressive Strength

 2.6.3
 Consolidation

 2.6.4
 Settlement analysis

 3
 CONCLUSIONS AND RECOMMENDATIONS

 3.1
 Conclusions

 3.2
 Recommendations

iv

- 4 REFERENCES 5 APPENDIX

LIST OF FIGURES

Figure 1, 1: Extract of geological ma	p showing project site3

Figure 2. 1: Natural Moisture Content vs Depth	10
Figure 2. 2: Plasticity Chart	11
Figure 2. 3: Shrinkage limit vs Depth	11
Figure 2. 4: Specific gravity vs depth	12
Figure 2. 5: Particle Size Distribution curve 16-30m	14
Figure 2. 6: Particle Size Distribution curve 16-30m	15
Figure 2. 7: Vertical settlement due to vertical stress increase	22

LIST OF TABLES

Table 2. 1: Standard Penetration Test value (N), N60, and undrained shear strength
cu (kN/m2) with respect to depth8
Table 2. 2: Aggressiveness and corrosivity test result
Table 2. 3: Summary of the undrained triaxial test results
Table 2. 4: Summary of the unconfined compressive triaxial test results
Table 2. 5: Consolidation test result summary

LIST OF APPENDIX

Appendix 1: SPT result	
Appendix 2: Borehole record	
Appendix 3: Drilling pictorial Logs	
Appendix 4: Summary of texture classification	
Appendix 5: Chemical Test	
Appendix 6: Specific Gravity	
Appendix 7: Natural moisture content	
Appendix 8: One-Dimensional Consolidation (Oedometer test)	
Appendix 9: Undrained Triaxial Results	
Appendix 10: Unconfined compressive Results	

v

Final Detailed Geotechnical Report

LIST OF ABBREVIATIONS ASTM

 BGL
 Below Ground Level

 masl
 Above Mean Sea Level

 SPT
 Standard Penetration Test

American Society for Testing and Materials

Final Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding of Kawaala. This report discusses index and engineering properties of soil based on the geotechnical field investigation which was conducted in November 2015 and laboratory test conducted between November and December, 2015. Relevant nongeotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Vachiyo Engineering Company Ltd (YEC) were commissioned by Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Limitedplan to upgrade the substation which was constructed in the period 2008-2012 known as Kawaala substation in Namungoona. This will involve construction of a substation and associated infrastructure. In order to upgrade the existing substation, geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Kawaala substation in Namungoona, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation in Namungoona, Kampala district.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited were appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 10th November 2015 and the assignment commenced on 16th November, 2015.

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on November 20th, 2015. Following that, detailed investigations commenced on November 23^{td}, 2015. Field and laboratory tests were conducted by Tec lab limited and Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Kawaala substation Topographic surveying and Geotechnical investigation contract.

Final Detailed Geotechnical Report

1.4 Site Description

1.4.1 Location

Kawaala substation is located in Namungoona, a local town suburb located in Kawempe division. It is located approximately 6km North West of Kampala city centre accessible via Nakibinge road off Hoima road. The approximate centroid of the project area coordinates is 36 N 448650 UTM 37400. It is neighbouring a residential area generally consisting of one storey high buildings in the North, West and South with an access road east of the site.

vi

It is an existing substation with developments on the site. The project area incorporated within the site boundary is approximately 14,000m². The entire project area is covered by levelled gravelly fill embankment of approximately 1.5m thick.

1.4.2 Topography

The elevation of the project area varies between 1181 to 1195masl.

1.4.3 1.4.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 °C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

1.4.4 Geohazards

The project area of Kawaala substation has not experienced any earthquakes historically and lies in zone 3 which is the least seismically active zone in Uganda. Therefore the risk of damage by earthquakes is low. An over view of the geological conditions indicate that apart from the regional seismicity, no major geological hazards and constraints such as unstable slopes, thick deposits of weak soils, land ground subsidence and collapse were identified in the area.

1.4.5 Published Geology

Kampala is found in the Buganda region underlain by Porphyroblastic Phyllite (P₁BNamp), Shale, Slate Phyllite (P₁BNsh), and granitoids, orthogneiss (A₁KAgr). The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A₁KAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks (see Figure 1-1)

Figure 1. 1: Extract of geological map showing project site

ARAS Kampala granitoids, orthogness

1.5 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was performed. Newplan limited conducted the geotechnical investigations as per the general guidance proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below:

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles
- 3. Carrying out standard penetration tests;
- Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), Consolidation Tests, and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

Final Detailed Geotechnical Report

2 GEOTECHNICAL INVESTIGATION

2.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in November 20th, 2015. This investigation is limited to detail geotechnical investigation mainly for preliminary design stage investigation.

This preliminary preliminary design detailed geotechnical investigation typically includes one boring and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation
- · Laboratory tests on samples recovered from borehole

2.2 Field Investigations

The site work was carried out in month of November 2015 on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following;

- Rotary drilling of 1 borehole to a maximum depth of 30m;
- Collecting disturbed and undisturbed samples;

Final Detailed Geotechnical Report

- In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.0m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760mm;
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- Counting the number of blows to drive the sampler each 75 mm increment of a total of 450 mm penetration. The blow count for the first 150 mm increment was discarded and the sum of the blow counts for the second and the third 150 mm increment was recorded as the SPT 'N' value.

2.2.1 Borehole

The boreholes were drilled as per ASTM D 5783. The drilled borehole logs were prepared for each borehole as per American Society for Testing and Materials (ASTM) D 2488.

The exploratory borehole records and logs are included in Appendix 2 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring. The photographs of the boreholes are attached as Appendix 3.

2.2.2 Soil profile

The site investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from ground level to a depth of 2m, overlying homogenous reddish brown sandy fat clay up to a depth of 11m, underlain by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, overlying homogenous yellowish orange sandy silt up to a depth of 27.5m underlain by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the insitu soil is a product of completely weathered rock which is in form of residual clay. The log descriptions consistently indicate blotched colours as shown in Appendix 2.

2.2.3 Ground water

To determine the elevation of the ground water table a borehole observation was conducted during borehole drilling. This groundwater observations in borehole was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4750. Final Detailed Geotechnical Report

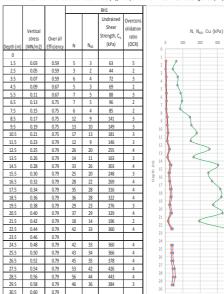
The ground water table was not encountered within a depth of 30m depth. This indicates the ground water table is deep far from the lowest foundation footing and free from hydrostatic uplift. Ground water observation result is presented in a borehole log Appendix 2.

2.2.4 The Standard Penetration Test (SPT)

The standard penetration test (SPT) were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials (ASTM) D 1586. One borehole was drilled and 30 standard penetration tests over 30.5m depth of borehole were conducted. The location of this borehole coordinates is 36 N 448664 UTM 37368.

Information obtained from SPT combined with other geotechnical laboratory test results, on site topography and area climatic records, provides basic planning material essential to the logical and effective development of substation and other infrastructure.

The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N_{eol}) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed *et al.* (1985) and Skempton (1980). Furthermore, the undrained shear strength (c_u) of the soil was determined using the corrected standard penetration values (N_{eol}) as per Hara *et al.* (1971) and Peck *et al.* (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{urbl}) and approximate allowable bearing capacity (Q_{urbl}) and approximate allowable bearing capacity (Q_{urbl}) were computed using the derived undrained shear strength (c_u) of the soil. Overconsolidation (OCR) was determined using Mayne and Kemper (1988).


A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation of allowable bearing capacity (Q_ai). Detailed bearing capacity results are attached as Appendix 1 and the summary of undrained shear strength (c_a) given in table 2.1.

Depending on the standard penetration value (N_{60}) and unconfined shear strength result, the insitu soil

comprises of soft to medium consistency clay soil from the ground surface to a depth of 6m, underlain by stiff consistency clay soil up to a depth of 10m, overlying very stiff consistency clay soil up to a depth of 22m, underlain by hard consistency clay soil up to a depth of 30m. Furthermore, the insitu soil is over consolidated.

Final Detailed Geotechnical Report

Table 2. 1: Standard Penetration Test value (N), N60, and undrained shear strength cu (kN/m2) with respect to depth

2.3 Bulk density

Bulk density test was conducted to obtain overburden stresses within a soil mass required for evaluations of the unit weight or mass density of the various strata. Bulk density for the undisturbed samples were determined using drive tubes as per American Society for Testing and Materials (ASTM) D 2937 at 6 point on boreholes between ground surface and 30m depth. The unit bulk density of this project area soil is varies between 1.81 and 2.01 Mg/m¹. This shows the insitu soil is highly compacted due to the previous construction.

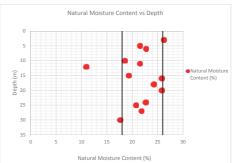
Strength, Cu,

Final Detailed Geotechnical Report

2.4 Laboratory Investigations

Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Tec lab limited and Comat lab limited. The following lab tests have been carried out on samples taken from the different boreholes and test pits:

- Moisture content
- Liquid limit
- Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)


2.5 Index Properties

2.5.1 Moisture content

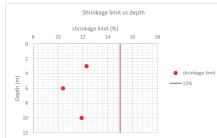
Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on 15 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4959. The test result is presented in Figure 2.1 and Appendix 7 with respect to depth. The water content test result shows the natural water content of the insitu soil is almost uniform along the depth of borehole. Generally, the natural moisture content of the insitu soil varied between 18 and 26 % from 30mBGL to ground level respectively.

Final Detailed Geotechnical Report

Figure 2. 1: Natural Moisture Content vs Depth



2.5.2 Atterberg Limits


To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on a borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 30 atterberg limit tests were conducted (i.e. 15 liquid limit and 15 plastic limit). The test result is presented in Figure 2.2 and Appendix 4. As indicated in Figure 2.2 most of the insitu soil from ground surface up to 11m delineated above A-line and there plastic index is greater than 15%. This implies that this layer comprises of soil stiff clay soil. Most plasticity chart value for depth between 11 and 30m is delineated below A-line and this implies that the insitu soil between depth of 11 and 30m is silt.

In addition to the above mentioned Atterberg limit tests a shrinkage limit tests were conducted on 3 samples collected from borehole between a depth of 0 and 10m. Those shrinkage limit tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in Figure 2.3 and appendix 4. All Shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

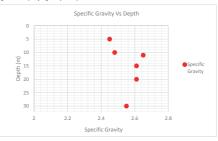
Figure 2. 2: Plasticity Chart

Figure 2. 3: Shrinkage limit vs Depth

2.5.3 Particle density /Specific Gravity

To determine the specific gravity of the soil grains a total of six specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The test result from specific gravity test summarized as below:

The specific gravity of the top layer soil from ground surface up to a depth of 10m is almost
constant and varies between 2.45 and 2.48. This implies that the insitu soil parent material and


Final Detailed Geotechnical Report

degree of weathering is the same. In addition, it indicates that the parent material of the insitu soil is loose material.

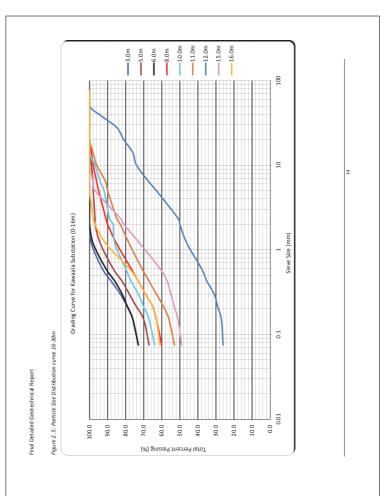
- The specific gravity of the top layer soil from ground surface up to a depth of 10m is almost the same and varies between 2.55 and 2.65. This shows as the insitu soil parent material and degree of weathering is the same. In addition, it shows as the parent material of the insitu soil is loose material. The average specific gravity for the second layer between 10 and 30m is 2.60.
- The difference in specific gravity of the above mentioned two layer happens due to degree of weathering in parent material.

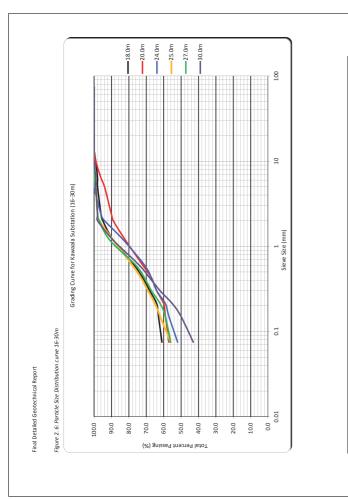
The test result are presented in Figure 2.4 and Appendix 6.

Figure 2. 4: Specific gravity vs depth

2.5.4 Particle size distribution

To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 15 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test result presented on appendix 4 and Figure 2.5 & 2.6.


From texture classification given in Appendix 4 and Figure 2.5 & 2.6, the engineering characteristics such


12

Final Detailed Geotechnical Report

as permeability, strength, and swelling potential are evaluated as below;

- The first layer from ground surface up to a depth of 11m is impervious when compacted, poor shearing strength when compacted and saturated, high compressibility when compacted and saturated. This implies poor workability as a construction material, and poor relative desirability for foundation.
- The second layer from 11 up to a depth of 15m is impervious when compacted, fair shearing strength when compacted and saturated, low compressibility when compacted and saturated. It implies good workability as a construction material, and good relative desirability for foundation.
- The third layer from 15 up to a depth of 20m is semipervious when compacted, fair shearing strength when compacted and saturated, high compressibility when compacted and saturated. This implies poor workability as a construction material and poor relative desirability for foundation.
- The fourth layer from 20 up to a depth of 25m is semipervious when compacted, fair shearing
 strength when compacted and saturated, medium compressibility when compacted and
 saturated. This implies fair workability as a construction material, and fair relative desirability for
 foundation.
- The fifth layer from 27 up to a depth of 30m is impervious when compacted, fair shearing strength
 when compacted and saturated, low compressibility when compacted and saturated. This implies
 good workability as a construction material, and good relative desirability for foundation.

2.5.5 Corrosivity of soils

To determine the aggressiveness and corrosivity of soils, pH, sulphate and chloride content of soils tests were conducted. A total of 15 aggressiveness and corrosivity tests were conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) G 51 and D 4327. The test result is presented in table 2.2 and Appendix 5. The aggressiveness and corrosivity of soils test result is summarized as below:

- The PH is slightly acidic with a value between 6.6 and 6.9, this associated with insignificant corrosion rates and using metallic reinforcements is possible.
- The chlorides content test result value varies between 440 and 730 ppm, this associated with significant corrosion rates
- The sulphate content test result value varies between 6100 and 21400 ppm, this associated with significant corrosion rates.

Generally, Kawaala substation foundation soil is prone to corrosion. This tends to reduction in life time of the foundation structure. In order to avoid this problem, it is recommended that stainless steel be used to provide reinforcement for foundation structure or provide appropriate foundation cover to avoid the ingress of chlorides and sulphates. Stainless steel reinforcement does not rely on concrete for its corrosion protection and is a straightforward solution when concrete is subject to the ingress of chlorides. Stainless rebar is also used for long design life structures and when equipment is sensitive to magnetic fields and needs non-magnetic reinforcement.

Table 2. 2: Aggressiveness and corrosivity test result

Borehole No.	Depth (m)	РН	Chlorides (%)	Sulphates (%)
	5	6.6	0.073	0.61
BH 1	10	6.8	0.061	1.32
	15	6.9	0.061	1.77
	20	6.9	0.044	2.14

2.6 Strength Tests 2.6.1 Triaxial Strength

To determine the strength characteristics of soils including detailed information on the effects of lateral confinement, pore water pressure and drainage, unconsolidated undrained triaxial tests were conducted on undisturbed samples. The conducted triaxial tests further used to determine a friction angle of clays &

Final Detailed Geotechnical Report

silts and the stiffness (modulus)

A total of 6 triaxial tests were conducted as per as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2850, and D 4767. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 9 to 19°, the minimum cohesion is 8kPa at 20m depth, and the maximum cohesion is 76kPa at 10mBGL.

The computations of the Undrained triaxial test parameters (un-drained cohesion and angle of internal friction) are presented in Appendix 9. Table 2.3 below shows the summary of the undrained unconsolidated triaxial test results.

Table 2. 3: Summary of the undrained triaxial test results

Bore Hole No.	Bulk Density (Kg/m ³)	Cohesion (C) (kPa)	Angle of Internal Friction (Φ) (deg)
BH01 (5.0m)	1903	53	19
BH01 (10.0m)	1980	76	11
BH01 (15.0m)	1810	14	8.9
BH01 (20.0m)	1841	8	14.2
BH01 (25.0m)	1851	22	13.1
BH01 (30.0m)	1893	25	12.6

Furthermore, the undrained shear strength (su) and the undrained elastic moduli (Eu) are obtained from a UU test. The calculated value shows the average undrained elastic moduli (Eu) is 40MPa⁻¹ from ground surface up to 5m depth and 70MPa⁻¹ for depth below 5m.

2.6.2 Unconfined Compressive Strength

To determine the undrained shear strength of the insitu soil a total of 5 Unconfined Compressive Strength of Soils tests were conducted as pre Standard Test Methods for American Society for Testing and Materials (ASTM) D 2166.

The UCS ranged from 21 to 108kPa. The computations of the unconfined compressive strength test parameters are presented in Appendix 10. Table 2.4 shows the summary of the unconfined compressive strength test results.

17

Final Detailed Geotechnical Report

Table 2. 4: Summary of the unconfined compressive triaxial test results

Bore Hole No.	Bulk Density (Kg/m³)	Unconfined compressive strength (kpa)	Undrained cohesion (kpa)		
BH01 (5.0m)	1903.0	47	24		
BH01 (10.0m)	1903.0	21	10		
BH01 (11.0m)	1969.6	108	54		
BH01 (15.0m)	1972.7	85.3	42.7		
BH01 (20.0m)	1856.9	65	33		

2.6.3 Consolidation

Compression properties of the project area soil were determined using laboratory test result. The result from this test was used to determine preconsolidation stress, compression characteristics, creep, stiffness, and flow rate properties of soils under loading.

To determine those properties of the soil One-Dimensional Consolidation (Oedometer test) using incremental loading was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2435. A total of 6 representative One-Dimensional Consolidation (Oedometer test) were conducted.

The summary of Oedometer test result is given in Table 2.5 and Appendix 8. The test result shows the average compression index (Cc), coefficient of volume compressibility (M,,), and Coefficient of consolidation is 0.20, 0.89MN/m², and 6.36m³/year respectively from ground surface up to 5m and 0.2, 0.5 MN/m³, and 9.1m³/year respectively for depth below 5 up to 11m. From 11m up to 30m the insitu soil was not subjected to consolidation settlement.

18

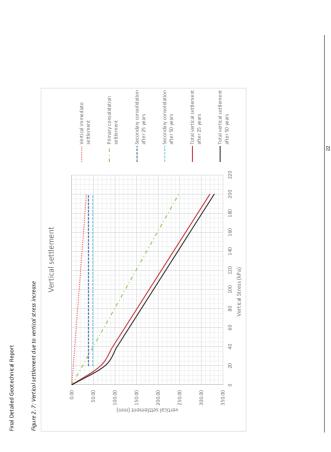
				Final Detailed Geotechnical Report
	x10° Ave 2.83E-09 1.67E-09	9.25E-10 4.88E-10 1.5E-10		2.6.4 Settlement analysis Soils have a tendency to settle under loads, causing subsidence of structures founded on or within them. If the settlement is not kept to a tolerable limit, the desired use of the structure may be impaired and the
	ability, k (m/s) Mox 1.5E09 1 6.5E09	2.25E-09 1.12E-09 1.97E-10		design life of the structure may be reduced. Taking into account the above principle, uniform and nonuniform (differential) settlement are among the important parameters to be determined during settlement analysis.
	idation Cv Permeabilit Ave Min 5.36 75-11 9.04 7.65-11	26.37 1.12E-09 15.59 4.2E-09 11.07 8.76E-11	ĝ.	For this specific project, results of the One-Dimensional Consolidation (Oedometer test) tests were considered as uniform over the project area. This means effect of nonuniform (differential) consolidation or settlement is insignificant for this specific project.
	Coefficient of Consoli (m ² /yr) Min Max 3.148 11.196 3.556 13.5	10.18 48.71 8.440 25.58 6.420 17.49		Settlement analysis is governed by composition of immediate or elastic compression, primary consolidation, and secondary compression. Settlement analysis included in this report includes all the above mentioned types of settlement (i.e. Immediate or elastic compression settlement, primary consolidation settlement, and secondary consolidation settlement).
	Coefficient of Volume Compressibility mv (NeW/ m ³) Min Max Ave Min 1.846 0.502 0.070 1.846 0.502	0.16 0.074 0.16 0.07 0.098 0.053		The calculated immediate or elastic compression and primary consolidation settlement in this report considers a constant interval vertical stress due to superstructure (i.e. 20 kPa interval vertical stress increase from 20 to 200kPa). The exact settlement due to vertical stress increase from the building and
	Coefficient Compressibilit Min 1 0.072 2			other structures over the embankment fill or insitu soil is calculated or determined simultaneously with the foundation design. This is because, the settlement due to those additional vertical stress over fill
nary	 Compression Index, Cc 0.195 0.201 	0.036 0.029 0.037		embankment or insitu soil is affected by type, shape, size, and depth of embedment of the foundation, and soil stiffness. This settlement analysis result is for general guide.
il Report set result sum	da Overburde e (kN/m ¹) 92.2 172.1	276.6 368.8 553.2		All the settlement analysis parameters determined or calculated from One-Dimensional Consolidation (Oedometer test) test result are summarized in Table 2.5. The immediate or elastic compression settlement result was calculated using elastic displacement theory. Primary consolidation and secondary
Final Detailed Geotechnical Report Table 2. 5: Consolidation test result summary	Depth(Pre- consolida m) pressure (ev/m ³) 5 150 10 180			compression results are calculated using one dimensional consolidation settlement analysis. The total settlement for long term is the summation of immediate or elastic, primary consolidation, and secondary compression. Finally the total result is compared with Serviceability Limit States. The calculated
Final Detail <i>Table 2.5</i> :	Source	BH 1		settlement analysis for immediate or elastic compression settlement, primary consolidation settlement, secondary consolidation settlement, and total vertical settlement is given in Figure 2.7.
				20

ור

Final Detailed Geotechnical Report

During settlement analyses, a constant average undrained elastic moduli (Eu), average coefficient of volume compressibility (m,), and average secondary compression index are used for the entire depth of the soil profile. A total of 11m thick clay layer is considered for the analysis. From one dimensional consolidation analysis, the primary consolidation settlement takes place in the first one year and nine months (21 months). Secondary consolidation settlement take places after primary consolidation settlement. During secondary settlement analysis two scenarios are considered:

- 1. The first scenario is the project design period is 25 years
- 2. The second scenario is the project design period is 50 years.


Parameters used for analyses from One-Dimensional Consolidation (Oedometer test) test result are summarized as below:

- Average undrained elastic moduli is 40000kPa;
- Average coefficient of volume compressibility (m_v) is 0.25 ${\rm MN}/{\rm m}^2;$
- Average secondary compression index is 0.006;
- Average compression index (Cc) is 0.20;
- Average Coefficient of Consolidation 7.6m²/year;and
- Total thickness of clay layer is 11m.

Results from the analysis are summarized as below:

- Primary consolidation settlement take place in the first one years and nine months after embankment fill is constructed;
- Primary consolidation settlement at 200kpa is approximately 247.5mm;
- Immediate or elastic compression at 200kpa is approximately 34mm;
- Secondary consolidation settlement at 200kPa, if the project design period is 25 years is approximately 38.5mm;
- Secondary consolidation settlement at 200kPa, if the project design period is 50 years is approximately 48.5mm;
- Total vertical settlement at 200kPa, if the project design period is 25 years is approximately 320mm;and
- Total vertical settlement at 200kPa, if the project design period is 50 years is approximately 330mm.

21

Draft Detailed Geotechnical Report

3 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions Geological and geotechnical assessment at the Kawaala substation site was essential for obtaining fundamental information in terms of foundation conditions. This information was obtained from a borehole drilling as well as onsite surveys and laboratory testing. All soil investigation test were conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The following conclusions were reached;

- The project area of Kawaala substation has not experienced any earthquakes over years. This
 project area lies in zone 3 which is the least seismically active zone in Uganda. Therefore the
 risk of damage by earthquakes is low. An overview of the geological conditions indicate that
 apart from the regional seismicity, no major geological hazards and constraints such as
 unstable slopes, thick deposits of weak soils, land ground subsidence and collapse are
 identified in the area.
- The site is underlain by rocks composed of Kampala granitoids which are rocks predominantly composed of feldspar and quartz and orthogneiss (A_bKAgr) of complex formation comprising sedimentary, metamorphic and volcanic rocks.
- 3. Basing on the standard penetration value (N₆₀) and unconfined shear strength result, the insitu soil comprises of soft to medium consistency clay soil from groundlevel to a depth of 6m, underlain by stiff consistency clay soil up to a depth of 10m, overlying very stiff consistency clay soil up to a depth of 22m, underlain by hard consistency clay soil up to a depth of 30m.
- 4. Groundwater was not encountered during the field investigations
- 5. The laboratory investigation confirmed that the geological sequence at the site generally comprises of a moderate reddish brown imported fill sandy fat gravel from the ground surface to a depth of 2m, followed by homogenous reddish brown sandy fat clay up to a depth of 11m, followed by homogenous yellowish orange coarse grained clayey sand up to a depth of 15m, followed by homogenous yellowish orange sandy silt up to a depth of 27.5m, and followed by highly weathered pink greenish grey weak rock up to a depth of 30.5m. The stratigraphy indicates that the soil is a product of completely weathered rock which is in form of residual clay.
- Generally, the natural moisture content of the insitu soil varied between 18 and 26 % from 30mBGL to ground level respectively.
- All shrinkage limit test results are less than 15 percent, this indicates as the Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

Draft Detailed Geotechnical Report

- The unit bulk density of the insitu soil varies between 1.81 and 2.01 Mg/m³. This shows the insitu soil is highly compacted due to the previous construction.
- 9. Generally, Kawaala substation foundation soil is prone to corrosion
- 10. The undrained shear strength parameter angle of internal friction (degrees) for this specific project varies between 9 to 19* on the otherhand, the cohesion ranged between 8 to 76kPa.
- 11. Undrained elastic moduli (Eu) are obtained from a UU test. The calculated value shows the average undrained elastic moduli (Eu) is 40MPa⁻¹ from ground surface up to 5m depth and 70MPa⁻¹ for depth below 5m.
- 12. The unconfined compressive strength ranged from 21 to 108kPa
- 13. The insitu soil is highly compressible and poor to facilitate drainage. The test result shows the average compression index (Cc), coefficient of volume compressibility (M₂), and Coefficient of consolidation is 0.20, 0.89MN/m², and 6.36m³/year respectively from ground surface up to 5m and 0.2, 0.5 MN/m², and 9.1m³/year respectively for depth below 5 up to 11m. From 11m up to 30m the insitu soil is not subjected to consolidation settlement.
- 14. Basing on the index properties and its classification, the insitu soil is rated from poor to good desirability for foundation, the quality improvement is directly proportional to the depth from ground level. This observation is consistent with the engineering properties of the soil.

3.2 Recommendations

- The design of the proposed foundations shall take into account the poor ground conditions to ensure that the risk of failure is minimised.
- Stainless steel be used to provide reinforcement for foundation structure or provide appropriate concrete cover to the foundation to avoid the ingress of chlorides and sulphates.

Draft Detailed Geotechnical Report

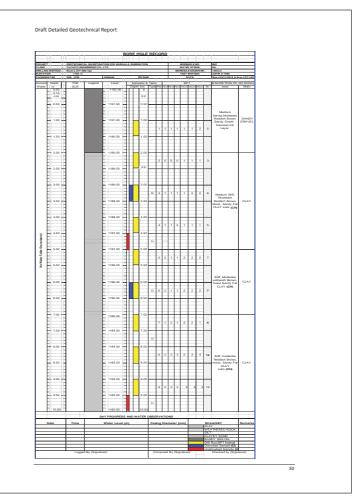
- Bowles Joseph E; Foundation Analysis and Design, Second Edition. McGraw Hill Companies, Tokyo, 1997.
- G.E Barney; Principles and Practice of Soil Mechanics, First Edition. Macmillan Press Ltd, London, 1995
- Department of US Army Corps of Engineers, CECW-EG Engineer Manual 1110-1-1904 Engineering and Design of SETTLEMENT ANALYSIS, Washington, DC 20314-1000, 1990.
- MJ Tomlinson; Foundation Design & Construction, Sixth Edition. Addison Wesley Longman Limited, Edinburgh Gate, Harlow Essex CM20 2JE, 1998.
- 7. Simplified geological map of Uganda (Extracts from the Africa Mining Journal Ltd 2000)
- 8. R.F.Craig. E & FN Spon, 2004. CRAIG'S SOIL MECHANICS. Seventh Edition, London.

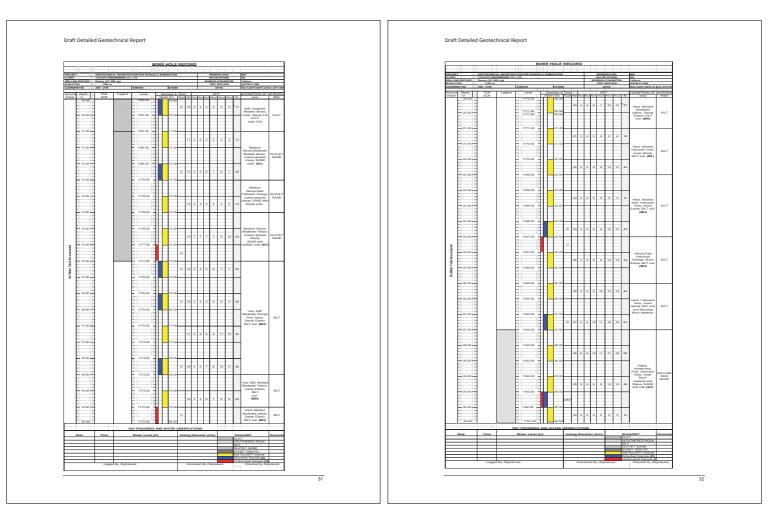
Draft Detailed Geotechnical Report

4 REFERENCES

- AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes
 D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and
- Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
- D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigat
- D 2434 Standard Test Method for Permeability of Granular Soils (Constant Head)
 D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using
- Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System).
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of Soils
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- D 4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)
- D 4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
- D 4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Metho
- G 51 Test Method for pH of Soil for Use in Corrosion Testing
- VICKERS, BRIAN (1978); Laboratory work in Civil Engineering Soil Mechanics. Granada Publishers, London.

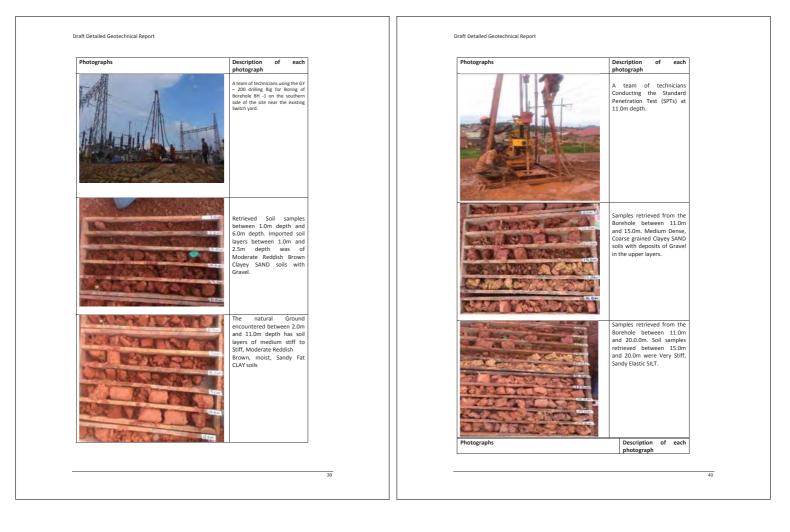
Draft Detailed Geotechnical Report

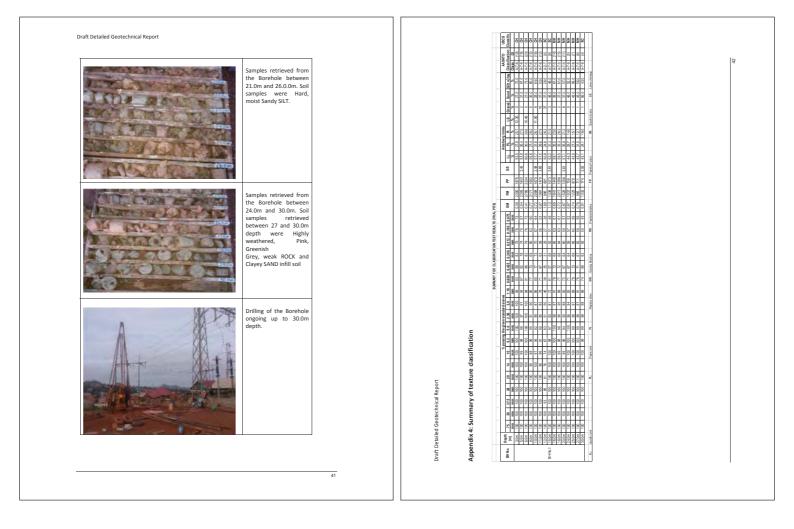

5 APPENDIX


Draft Detailed Geotechnical Report

Appendix 1: SPT result

BH No.	Depth	Predominant Soil	Measured SPT 'N'	Over all Correction	Corrected SPT 'N'	Undrained Cohesion	Ultimate Bearing	Allowable Bea Capacity
(m)		Fraction	Value	factor	Value	C,	Capacity Quit	Qall
	(m)		N	CN	N 60	(kPa)	(kPa)	(kPa)
	0.00	Moderate Reddish	0	0.00	0	0	0	0
	1.50	Brown imported fill	5	0.59	3	63	325	108
	2.50	Sandy Fat Gravel	3	0.59	2	44	225	75
(1971) an	3.50	i i	6	0.59	4	44 72	371	124
	4.50	i i	5	0.67	3	69	356	119
	5.50	Reddish Brown Sandy	7	0.67	5	88	453	151
	6.50	Fat Clay	7	0.75	5	96	491	164
	7.50	raccay	6	0.75	4	85	439	146
	8.50 9.50	i i	12	0.75	9 10	141 149	724	241 256
	9.50	i i	13	0.75	10	149	767 930	310
BH01	11.50		17	0.75	9	146	751	250
	12.50	Yellowish Orange coarse	26	0.79	20	255	1311	437
	13.50	grained Clayey Sandy	14	0.79	11	163	839	280
	14.50		33	0.79	26	303	1556	519
	15.50	4	25	0.79	20	248	1274	425
	16.50	i i	28	0.79	22 28	269 316	1382	461 541
	18.50	i i	35	0.79	28	310	1623	552
	19.50	i i	29	0.79	23	276	1418	473
	20.50	Yellowish Orange Sandy	37	0.79	29	329	1690	563
	21.50	Silt	18	0.79	14	196	1006	335
	22.50	Link	42	0.79	33	360	1851	617
	23.50	i i	Refusal 42	0.79	33	>450 360	>2300	>750
	25.50	i i	42	0.79	33	366	1851	628
l I	26.50	i i	45	0.79	35	378	1945	648
1	27.50	i i	53	0.79	42	426	2188	729
1	28.50	Sandy Clay highly	56	0.79	44	443	2277	759
					36			
	30.50	Grey weak rock	Refusal	0.79	-	>450	>2300	>750
(1971) a	27.50 28.50 29.50 30.50 ained sh	Sandy Clay highly weathered Pink Greenish Grey weak rock ear strength (cu) of the so et al. (1974) empirical rela evaluated using a factor o	53 56 46 Refusal il is determine ationship resp	0.79 0.79 0.79 0.79 0.79	42 44 36 – prrected stand	426 443 384 >450 and penetration	2188 2277 1976 >2300	729 759 659 >750





Draft Detailed Geotechnical Report

Appendix 5: Chemical Test

			SOIL PH C	ONTENT RES	JLTS REPORT	
Project:	Kawaala Si	ubstation				
Samplin	g Date: 01,	/12/2015 to 03	/12/2015			
Site Loca	ation: Kawa	aala Substation	I			
Testing [Date: 15 De	ecember, 2015				
Test Met	thod: ASTN	/I G 51				
					1	1
TE	DEPTH	TRIAL 01	TRIAL 02	AVERAGE	SAMPLE DESCRIPTION	REMARKS
ST NO	(m)			PH VALUE		
BH01	5	6.6	6.6	6.6	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Slightly Acidic
	10	6.86	6.7	6.8	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Slightly Acidic
	15	6.94	6.91	6.9	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	Slightly Acidic
	20	6.86	6.86	6.9	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Slightly Acidic

Draft Detailed Geotechnical Report

Project: Kaw	aala Subst	ation					
Sampling Da	te: 01/12/	2015 to 03/12/20	15				
Site Location	1: Kawaala	Substation					
Testing Date	: 15 Decen	nber, 2015					
Ref. Test Me	thod: AST	M D 512					
BOREHOLE NO.:	DEPTH (M)	CHLORIDE CONTENT (%)	VISUAL SAMPLE DESCRIPTION	REMARKS			
	5	0.073	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Mild Concentrations of Chlorides			
	10	0.061	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Mild Concentrations o Chlorides			
BH - 01	15	0.061	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	Mild Concentrations o Chlorides			
	20	0.044	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Mild Concentrations of Chlorides			

43

45

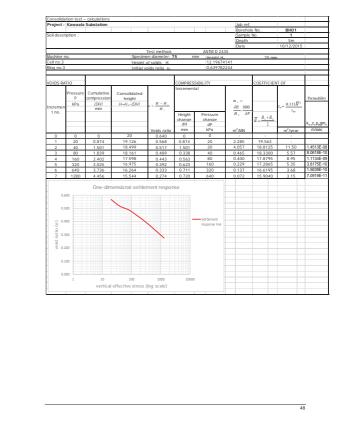
SULPHATE CONTI	ENT RESULTS F	REPORT			
Project: Kawaala	Substation				
Sampling Date: 0	1/12/2015 to (03/12/2015			
Site Location: Kay	waala Substatio	on			
Testing Date: 15	December, 201	15			
Ref. Test Method	: ASTM D 516				
BOREHOLE NO .:	DEPTH (m)	SULPHATE CONTENT (%)	VISUAL SAMPLE DESCRIPTION	REMARKS	
	5	0.61	Stiff, Moderate yellowish Brown, moist Sandy Fat CLAY	Moderate Concentrations	
	10	1.32	Stiff, moderate Reddish Brown, moist, Sandy Fat CLAY soils	Severe Concentrations	
BH - 01	15	1.77	Medium Dense, Moderate Yellow, Coarse grained Clayey SAND with cobbles soils	Severe Concentrations	
	20	2.14	Hard, Mottled Moderate yellow, Sandy Elastic SILT soil.	Very Severe Concentrations	

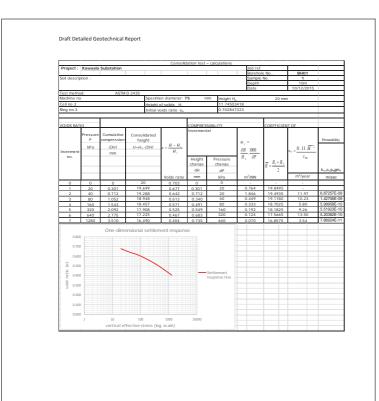
Draft Detailed Geotechnical Report

Appendix 6: Specific Gravity

Specific Gravity Tes	t Report										
Project: Kawaala Su	bstation										
Date: 20/12/2015											
Location: Kawaala S	ubstation										
Test Method: ASTM	I D 854										
Depth (m)		5	10	11		15		20		30	
Pyknometer label		1	2	TS	KB	MA	KN	AK	NM	TS	LG
Mass of bottle +Soil + Water (g)	m ₃	185.1	196.1	87.4	85.1	87.5	84.8	86.3	85.4	87.7	84.8
Mass of bottle +Soil + Water (g)	m ₂	95.7	102.4	38.0	36.9	37.3	37.1	35.3	38.1	40.4	36.5
Mass of bottle full of water (g)	m4	159.8	171.4	81.2	78.9	81.3	78.7	80.1	79.3	81.6	78.7
Mass of density bottle (g)	m1	52.9	61.0	28.0	27.0	27.3	27.1	25.2	28.1	30.4	26.4
Mass of soil sample alone (g)	m ₂ -m ₁	42.8	41.4	10.0	9.9	10.0	10.0	10.1	10.0	10.0	10.0
Mass of water in full bottle (g)	m4-m1	106.9	110.4	53.2	51.9	54.0	51.6	54.9	51.2	51.2	52.3
Mass of water used (g)	m3-m2	89.4	93.7	49.4	48.2	50.2	47.7	51.0	47.4	47.3	48.3
Volume of soil particle(g)	(m ₄ -m ₁)- (m ₃ -m ₂)	17.5	16.7	3.8	3.7	3.8	3.9	3.9	3.8	3.9	3.9
Particle Density (specific Gravity)	GS=[(m ₂ - m ₁)]/[(m ₄ - m ₁)-(m ₃ - m ₂)]	2.45	2.48	2.63	2.68	2.63	2.59	2.61	2.62	2.55	2.55
Average Particle Density (specific Gravity)		2.45	2.48	2.65		2.61		2.62		2.55	

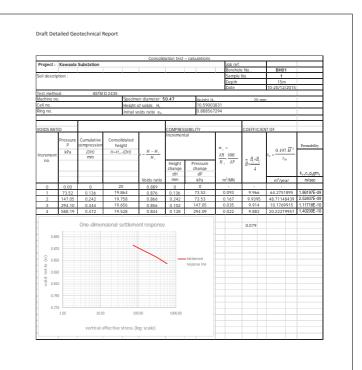
44

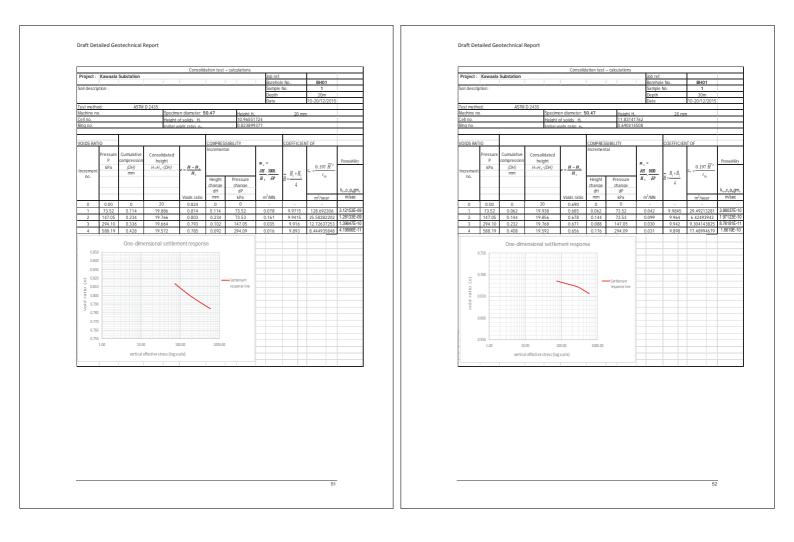

Draft Detailed Geotechnical Report

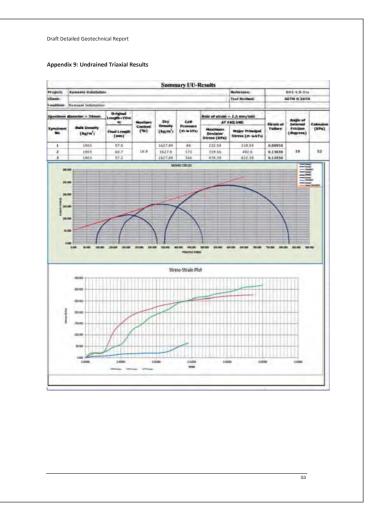

Appendix 7: Natural moisture content

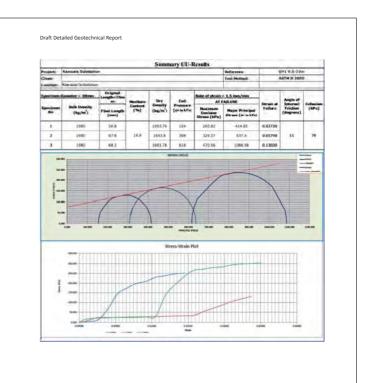
Depth (m)	3	5	6	10	11	12	15	16	18	20	24	25	27	30
Natural Moisture Content (%)	26.2	22	22.7	19	21.5	10.9	19.3	25.8	24.2	25.8	22.6	20.7	22	17.6

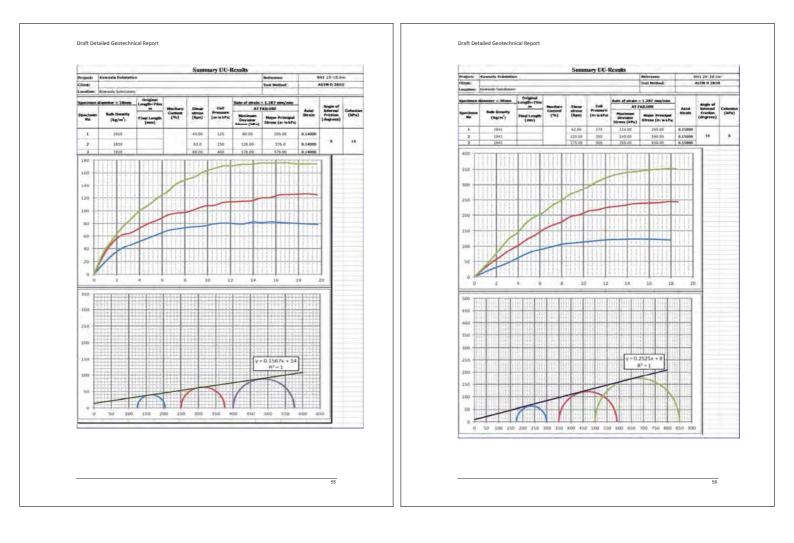
Draft Detailed Geotechnical Report

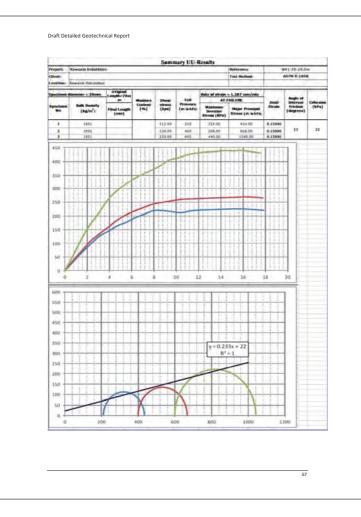

Appendix 8: One-Dimensional Consolidation (Oedometer test)

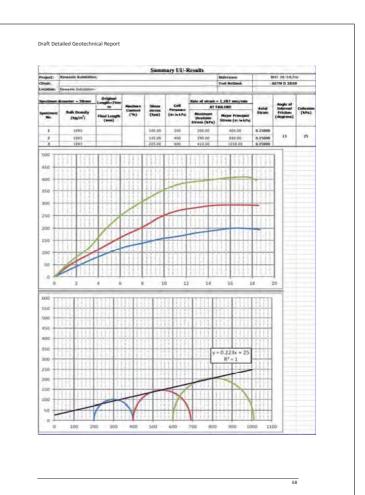


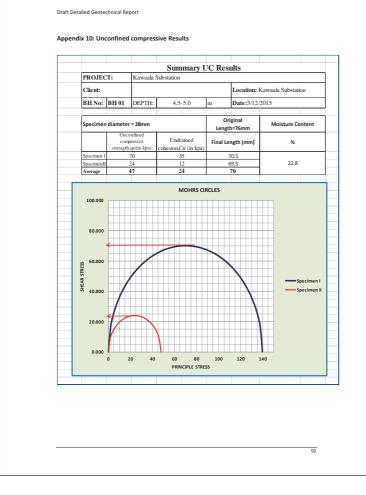


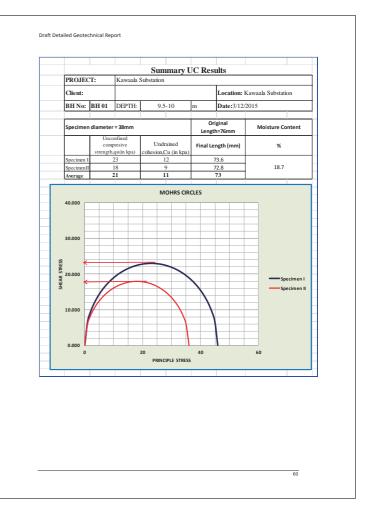

47

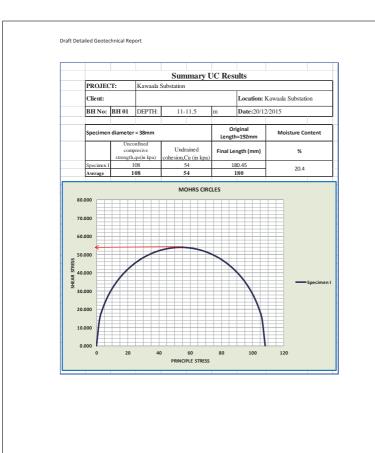

49

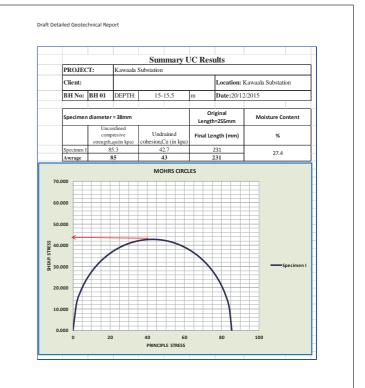


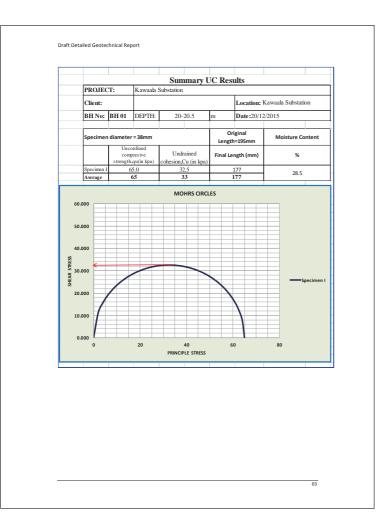












Uganda Electricity Transmission Company Limited (UETCL)

Document type Geotechnical report

April, 2016

GREATER KAMPALA TRANSMISSION NETWORK PROJECT IN THE REPUBLIC OF UGANDA

MUKONO SUBSTATION DRAFT DETAIL

GEOTECHNICAL REPORT

MUKONO SUBSTATION DRAFT DETAIL GEOTECHNICAL REPORT

Revision 00 Date 21.04.2016 Prepared by DA/LN Checked by LN Approved by DA

WPLAN Limited 3 Portal Aven Box 7544, Ka 414 340 243/4/

Yachiyo Engineering Co. Ltd, 5-20-8 Asakusabashi, Taito-ku Tokyo 111-8648, Japan

Draft Detailed Geotechnical Report

EXECUTIVE SUMMARY

This report mainly deals with the geological and geotechnical investigation findings of Mukono Substation. In this report the governing soil properties are considered based on the geological and geotechnical site investigation which was executed in March, 2016. In addition, relevant non-geotechnical parameters are outlined. The evaluation of the field and laboratory investigations is included in this report.

Mukono substation is located in Mukono district, Central Uganda that encircles Kampala, Uganda's capital city. It is located approximately 26km by road from the capital centre, Kampala. The approximate centroid of the project area coordinates is UTM WGS 84 36N 480723.000mE 42566.000mN. The elevation of the project area varies between 1170 to 1100amsl.

Mukono substation is a non-existing substation without developments on the site. The project area incorporated within the site boundary is approximately 397,128.44m². The site investigation confirmed that the geological sequence at the site generally comprises of a inorganic Sandy Lean CLAY from ground level to a depth of 1.5m, overlying inorganic Sandy SILT up to a depth of 7.5m, underlain by Poorly Graded SAND with Clay and Gravel up to a depth of 13.5m, overlying Silty SAND with Gravel up to a depth of 16.5m underlain by Silty SAND up to a depth of 28.5m.

.....

Draft Detailed Geotechnical Report

CONTENTS

EXECUTIVE SUMMARY
1 INTRODUCTION
1.1 About report
1.2 Background
1.3 The Consultant
1.4 Scope of services
2 SITE DESCRIPTION
2.1 Location
2.2 Topography
2.3 Climate
3 GEOTECHNICAL INVESTIGATION
3.1 Methodology
3.2 Field Investigations
3.2.1 Borehole
3.2.2 Soil profile
3.2.3 Ground water
3.2.4 The Standard Penetration Test (SPT)
3.3 Laboratory Investigations
3.3.1 Moisture content
3.3.2 Atterberg Limits
3.3.3 Particle size distribution
3.3.4 Specific Gravity
4 CONCLUSIONS AND RECOMMENDATIONS
4.1 Conclusions
4.2 Recommendations

iv

ш 1

> 3 3

5 5

6

5 REFERENCES 6 APPENDIX

LIST OF FIGURES 3 Figure 2. 1: Site location 3 Figure 3. 1: Trend of Natural Moisture Content 11 LIST OF TABLES 7 Table 3. 1: Borehole location coordinates 6 Table 3. 2: Standard penetration test result for BH1 9 Appendix 1: Borehole logs 10 Appendix 2: Sorehole layout 21 Appendix 4: Soil Profile 22 Appendix 5: Standard Penetration test result 23 Appendix 6: Natural Moisture Content 24 Appendix 6: Summary of Texture Classification 25 Appendix 7: Comexil Test 27 Appendix 8: Specific Gravity 27 Appendix 8: Commary of Texture Classification 26 Appendix 1: Autrehog Test Results 29 Appendix 1: Laterbag Test Results 29 Appendix 1: Louronfined Compressive Strength 31 Appendix 1: Louronfined Compressive Strength 31

LIST OF ABBREVIATIONS

ASTM	American Society for Testing and Materials
BGL	Below Ground Level
BH	Borehole
DGSM	Department of Geological Survey and Mines
JICA	Japan International Cooperation Agency
km	Kilometer
m	Meter
masl	Above Mean Sea Level
SPT	Standard Penetration Test
UTM	Universal Transverse Mercator
YEC	Yachiyo Engineering Company Ltd
0C	Degrees Celsius

v

Draft Detailed Geotechnical Report

1 INTRODUCTION

1.1 About report

This report mainly deals with the geotechnical investigation finding for Mukono substation. It discusses the index and engineering properties of soil based on the geotechnical field investigation and laboratory which was conducted in March, 2016. Relevant nongeotechnical parameters are outlined including the analysis and calculation results are given as part of this report (i.e. bearing capacity and settlements). Finally, recommendations were made for design and construction of the proposed development foundation.

1.2 Background

Yachiyo Engineering Company Ltd (YEC) were commissioned by the Japan International Cooperation Agency (JICA) to carry out a preparatory survey for the improvement of the greater Kampala metropolitan area transmission system in the republic of Uganda. Yachiyo Engineering Company Ltd plans to construct a new substation and associated infrastructure at the proposed site. Geotechnical investigations were required to determine the suitability of the site for the proposed developments and to guide the design of the proposed infrastructure.

Following decision of conducting Geotechnical investigation at Mukono substation and transmission line, Newplan limited have been contracted by Yachiyo Engineering Company Ltd to carry out a Topographic surveying and Geotechnical investigation.

1.3 The Consultant

Following a competitive bidding procedure Newplan Limited was appointed by Yachiyo Engineering Company Ltd to carry out topographic surveying and geotechnical investigation for the proposed site. The Contract was signed on 11th March 2016 and the assignment commenced on 12th March, 2016.

Draft Detailed Geotechnical Report

The study was carried out in two phases i.e.: initial geotechnical investigation and detailed investigation study. The initial geotechnical investigation was concluded on 14th March, 2016. Following that, detailed investigations commenced on 16th March, 2016. The field and laboratory tests were conducted by Comat lab limited. This report together with the Topographic report are deliverables that signify the conclusion of the Mukono substation Topographic surveying and Geotechnical investigations contract.

1.4 Scope of services

In order to facilitate the substation foundation design, a detailed geotechnical investigation was performed. Newplan limited conducted the geotechnical investigations as per the general guidance proposed in the American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. The scope of the services was as summarized below:

- 1. Drilling exploratory holes and recovering soil samples;
- 2. Determination of subsurface soil profile or logging borehole for strata profiles;
- 3. Carrying out standard penetration tests;
- Conducting relevant laboratory tests on the recovered samples (i.e. Moisture Content, Particle Size Distribution, Atterberg limits (Consistency), consolidation tests and Triaxial tests for undisturbed samples);
- 5. Monitoring ground water occurrence (depth of water table);
- 6. Propose recommendations for foundation design; and
- 7. Preparation of a geotechnical interpretative report.

Draft Detailed Geotechnical Report

2 SITE DESCRIPTION

2.1 Location

The proposed Mukono substation is located in Mukono district, Central Uganda that encircles Kampala, Uganda's capital city. It is located approximately 26km by road from the capital centre, Kampala. The approximate centroid of the project area coordinates is UTM WGS 84 36N 480723.000mE 42566.000mN.

The project area incorporated within the site boundary is approximately 397,128.44m². It is mainly farm land and forest which is sparsely populated with a few habited settlements.

Figure 2. 1: Site location

2.2 Topography

A detailed topographic survey was carried out by Newplan in March 2016. This indicated the topography of the site is undulating with the elevation of the project area varying between 1170 and 1100amsl.

2.3 Climate

The project area is classified under tropical climate with temperatures ranging from 15 to 29 $^{\circ}$ C. The project area receives rain in in two different season, March to May and in August to December. The mean annual rainfall is between 1125 and 1350mm.

Draft Detailed Geotechnical Report

3 GEOTECHNICAL INVESTIGATION

3.1 Methodology

Geotechnical investigation were conducted in two main phases of investigation.

- 1. Initial geotechnical investigation
 - Desk study (Reviewing useful sources of geological, historical and topographic information)
 - Site reconnaissance (Sampling, description and visual field identification)
- 2. Detailed geotechnical investigation
 - Preliminary design stage investigation
 - Final design stage or phase investigation

Initial geotechnical investigation was concluded in March, 2016. This investigation was limited to detail geotechnical investigation mainly for preliminary design stage investigation.

This preliminary design detailed geotechnical investigation typically includes four borings and relevant soil testing for defining the general stratigraphy, soil and rock characteristics, groundwater conditions, and other existing features important to foundation design. Further final design stage investigation stages can be considered if there are significant design changes or if local subsurface anomalies warrant further study.

The investigation was conducted in accordance with American Society for Testing and Materials (ASTM) D 420 - Standard Guide to Site Characterization for Engineering Design and Construction Purposes. It consists of the following components:

- Field Investigations; these were intrusive and included drilling exploratory holes, SPTs and groundwater observation.
- Laboratory tests on samples recovered from borehole.

Draft Detailed Geotechnical Report

3.2 Field Investigations

The site work was executed on the basis of ASTM D 420 recommendation (i.e. ASTM D 1586, ASTM D 1587, ASTM D 2488, and ASTM D 5783). The field work comprised of the following:

- Rotary drilling of one boreholes to a maximum depth of 30m;
- Collecting disturbed and undisturbed samples;
- In-situ Standard Penetration Testing (SPT) within the boreholes. These were undertaken at 1.5m intervals. SPTs were based on a 65kg driving hammer falling 'free' from a height of 760mm;
- Driving the standard split-barrel sampler of internal and external diameters 35mm and 50mm respectively to reach a distance of 450 mm into the soil at the bottom of the boring after the chosen interval.
- Counting the number of blows to drive the sampler each 75 mm increment of a total of 450 mm penetration. The blow count for the first 150 mm increment was discarded and the sum of the blow counts for the second and the third 150 mm increment was recorded as the SPT 'N' value.

3.2.1 Borehole

One borehole were drilled as per ASTM D 5783 and terminated to depths 30mBGL. Location of the borehole GPS coordinate is summarized in below Table 3.1 (WGS84 Geographic coordinate system). The drilled borehole log were prepared as per ASTM D 2488. The exploratory borehole records and log is included in Appendix 1 and should be read in conjunction with the accompanying general notes therein. The records also give details of the samples taken together with the observations made during boring.

Table 3- 1: Borehole location coordinates

Borehole	le X			
Borehole 1 (BH1)	480723.000mE	42566.000mN		

Draft Detailed Geotechnical Report

3.2.2 Soil profile

The site investigation confirmed that the geological sequence at the site generally comprises of a inorganic Sandy Lean CLAY from ground level to a depth of 1.5m, overlying inorganic Sandy SILT up to a depth of 7.5m, underlain by Poorly Graded SAND with Clay and Gravel up to a depth of 13.5m, overlying Silty SAND with Gravel up to a depth of 16.5m underlain by Silty SAND up to a depth of 28.5m. (See Appendix 1 up to 4).

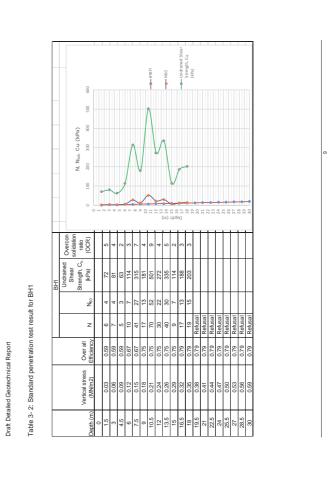
3.2.3 Ground water

To determine the elevation of the ground water table, observations were carried out during the drilling. These groundwater observations in the boreholes were conducted as per ASTM D 4750.

The ground water table was not encountered within a depth of 28.5m depth from ground surface. This indicates the ground water table is deep far from the lowest foundation footing and free from hydrostatic uplift. The Ground water observation result is presented in the borehole logs Appendix 1.

3.2.4 The Standard Penetration Test (SPT)

The standard penetration test (SPT) were performed during the advancement of a soil boring to obtain an approximate measure of the dynamic soil resistance, as well as a disturbed drive sample (split barrel type) to determine the arrangement of different layers of the soil with relation to the proposed foundation elevation. The test was conducted as per Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials (ASTM) D 1586. One borehole was drilled and 19 standard penetration tests over 28.5m depth of borehole were conducted. SPTs test were carried out at 1.5m intervals.


Information obtained from SPT combined with other geotechnical laboratory test results, on site topography and area climatic records, provides basic planning material essential

to the logical and effective development of substation and other infrastructure

The observed field standard penetration values (N) were corrected to the average energy ratio of 60% (N₆₀) on basis of field observation as function of the input driving energy and its dissipation around the sampler into the surrounding soil. SPT correction were applied as per Seed *et al.* (1985) and Skempton (1980). Furthermore, the undrained shear strength (c_u) of the soil was determined using the corrected standard penetration values (N₆₀) as per Hara *et al.* (1971) and Peck *et al.* (1974) empirical relationship respectively. Finally, the approximate ultimate bearing capacity (Q_{uni}) were computed using the derived undrained shear strength (c_u) of the soil. OVerconsolidation (OCR) was determined using Mayne and Kemper (1988).

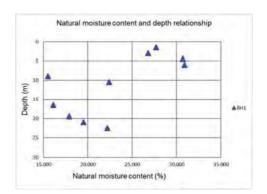
A factor of Safety (FoS) of 3.0 was used irrespective of the site conditions for computation of allowable bearing capacity (Q_{all}). Detailed bearing capacity results are attached as Appendix 1 and the summary of undrained shear strength (c_u) given in Table 3.2.

Depending on the standard penetration value (N_{60}) and unconfined shear strength result, the insitu soil comprises of soft to loose consistency Sandy Lean CLAY soil from the ground surface to a depth of 7.5m, underlain by denes to very stiff consistency Clayey SAND soil up to a depth of 10.5m, overlying by firm to loose consistency Clayey SAND with Gravel up to a depth of 18m, underlain by hard weathered rock up to a depth of 28.5m. Furthermore, the insitu soil is over consolidated.

Draft Detailed Geotechnical Report

3.3 Laboratory Investigations

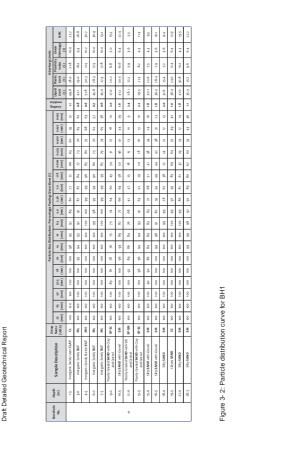
Samples from the exploration works were labelled, protected and taken to the laboratory with the aim of carrying out tests as per American Society for Testing and Materials (ASTM) D 4220. All undisturbed samples were collected as per Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (ASTM) D 1587. The testing was scheduled by Comatlab limited. The following lab tests have been carried out on samples taken from the different boreholes:


- Moisture content
- Liquid limit
- · Plastic limit & plasticity index
- Linear shrinkage
- Particle density determination/Specific Gravity Test
- · Particle size distribution
- Unconfined compression
- Consolidation test-Oedometer/Undisturbed
- Triaxial test/Undisturbed (i.e. Unconsolidated Undrained (UU) Test)
- pH value
- Chemical test (sulphates and chlorides)

3.3.1 Moisture content

Moisture content test was conducted to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test was conducted on more than 19 samples collected from borehole (i.e. both disturbed and undisturbed) as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 2216. The test result is presented in Figure 3.1 and Appendix 6 with respect to depth. Natural moisture content of the insitu soil varied between 5.5 and 31%.

10


3.3.2 Atterberg Limits

To describe the consistency and plasticity of fine-grained soils with varying degrees of moisture, liquid limit and plastic limit tests were conducted on samples collected from borehole as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 4318. A total of 19 atterberg limit tests were conducted. The test result is presented in Appendix 11. All the result obtained from atterberg laboratory tests were used for soil classificatio.

Shrinkage limit tests were also conducted on samples recovered from the boreholes as per Standard Test Methods for American Society for Testing and Materials (ASTM D) 427 and D 4943. The test result for shrinkage limit tests is presented in appendix 11. All Shrinkage limit test results were less than 15 percent, this indicates that Kaolinite clay mineral is dominant or high in insitu soil and the project area is not prone to swelling or expansive soil.

3.3.3 Particle size distribution

To determine the percentage of various grain sizes, sieve analysis tests were conducted. Results from grain size distribution were used to determine the textural classification of soils (i.e. gravel, sand, silt, and clay) which in turn is useful in evaluating the engineering characteristics such as permeability, strength, and swelling potential. A total of 19 sieve analysis tests were conducted as per Standard Test Methods for American Society for Testing and Materials per (ASTM) D 422. The test results are presented in Figure 3-2 and Appendix 4.

Detailed Geotechnical Report

3.3.4 Specific Gravity

To determine the specific gravity of the soil grains specific gravity test was conducted as per Standard Test Methods for American Society for Testing and Materials (ASTM) D 854. The specific gravity of the project area soil varies between 2.59 and 2.79 and the average specific gravity is 2.68.

Detailed Geotechnical Report

4 CONCLUSIONS AND RECOMMENDATIONS

- 4.1 Conclusions
- 4.2 Recommendations

5 REFERENCES

- AMERICAN SOCIETY FOR TESTING AND MATERIALS: Annual Book of ASTM international Standards. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
- D 420 Standard Guide to Site Characterization for Engineering Design and Construction Purposes
- D 421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants
- D 427 Standard Test Method for Shrinkage Factors of Soils by the Mercury Method
- D 422 Test Method for Particle-Size Analysis of Soils
- D 512 Standard Test Methods for Chloride Ion In Water
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1586 Test Method for Penetration Test and Split-Barre Sampling of Soils
 D 2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site
- Investigation - D 2434 Standard Test Method for Permeability of Granular Soils (Constant
- Head)
- D 2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- D 2487 Classification of Soils for Engineering Purposes
- D 2216 Test Method for Laboratory Determination of Water Moisture) Content of Soil and Rock (Unified Soil Classification System).
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D 2850 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils
- D 3740 Practice for Minimum Requirements of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction Plasticity Index of Soils
- D 4220 Practices for Preserving and Transporting Soil Samples
- D 4318 Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

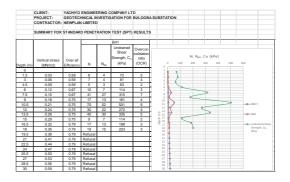
Detailed Geotechnical Report

- D 4750 Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)
- D 4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils
- D 4943 Standard Test Method for Shrinkage Factors of Soils by the Wax Method
- G 51 Test Method for pH of Soil for Use in Corrosion Testing
- Bowles Joseph E; Foundation Analysis and Design, Second Edition. McGraw Hill Companies, Tokyo, 1997.
- 3. California Department of Transportation, 2012. Corrosion Guidelines version 2.0.
- Department of Geological Surveys and Mines, 2012. Geological Map of Uganda sheet No 70.
- VICKERS, BRIAN (1978); Laboratory work in Civil Engineering Soil Mechanics. Granada Publishers, London.
- G.E.Barney; Principles and Practice of Soil Mechanics, First Edition. Macmillan Press Ltd, London, 1995
- Department of US Army Corps of Engineers, CECW-EG Engineer Manual 1110-1-1904 Engineering and Design of SETTLEMENT ANALYSIS, Washington, DC 20314-1000, 1990.
- MJ Tomlinson; Foundation Design & Construction, Sixth Edition. Addison Wesley Longman Limited, Edinburgh Gate, Harlow Essex CM20 2JE, 1998.
- R.F.Craig. E & FN Spon, 2004. CRAIG'S SOIL MECHANICS. Seventh Edition, London.

10

Detailed Geotechnical Report

Appendix 1: Borehole logs

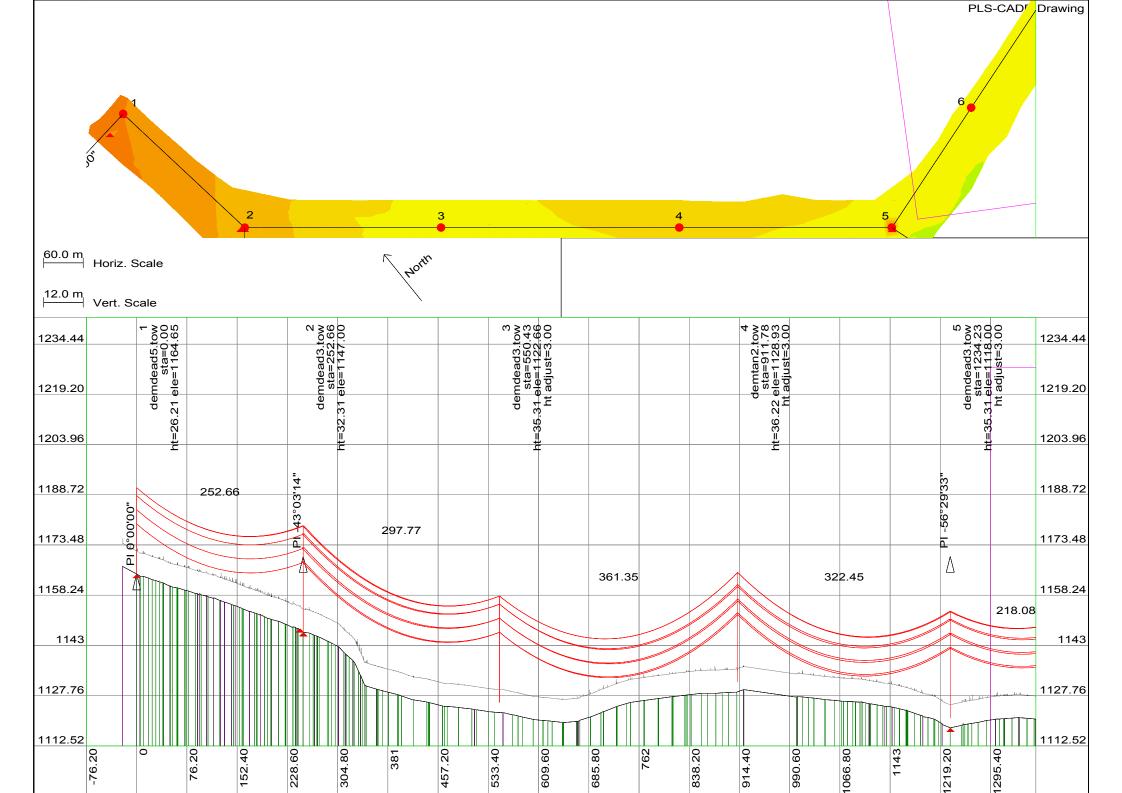

Detailed Geotechnical Report

6 APPENDIX

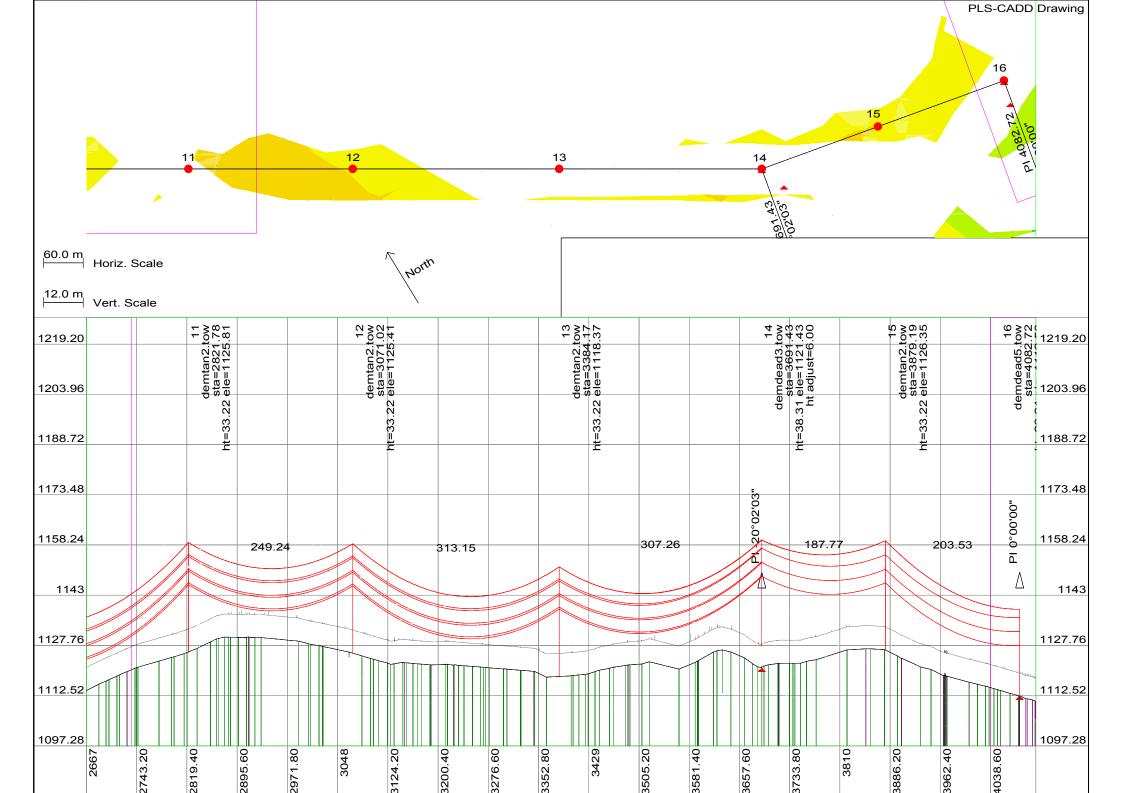
Detailed Geotechnical Report	Detailed Geotechnical Report
Appendix 2: Drilling pictorial logs	
	Appendix 3: Borehole layout
20	21

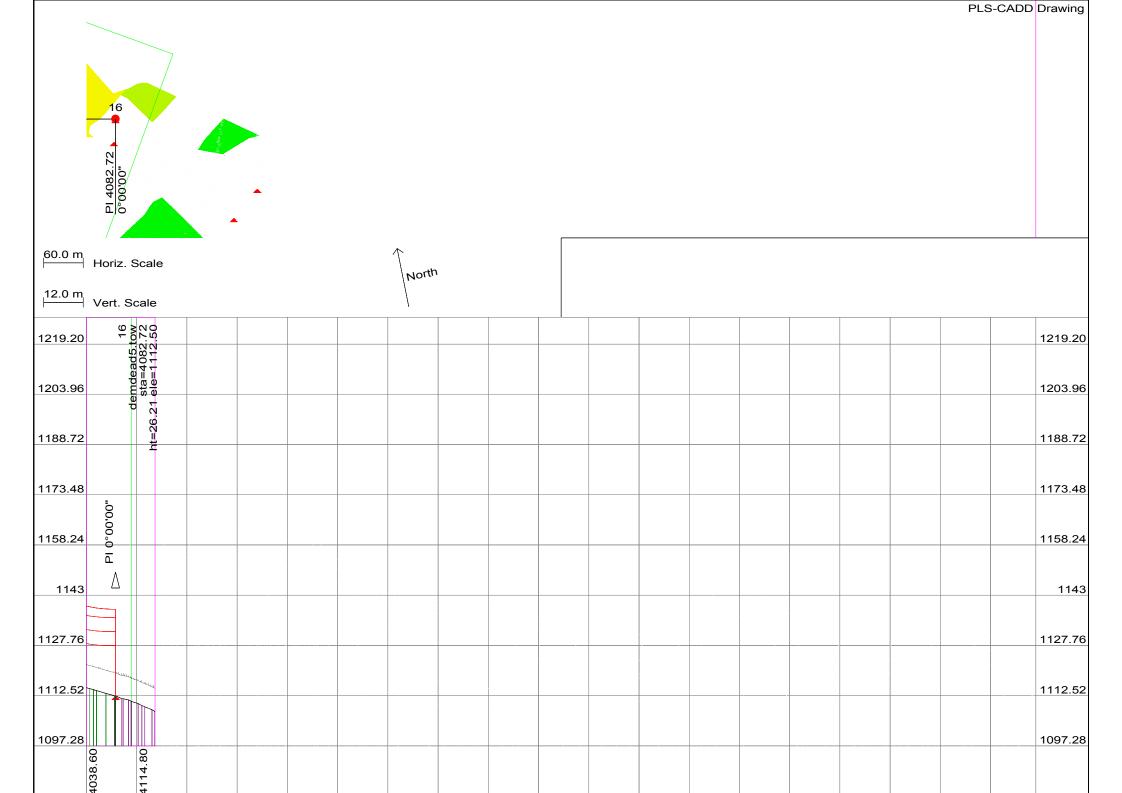
Appendix 4: Soil Profile		
	22	

Appendix 5: Standard Penetration test result


Detaile	d Geotechnical	Report							Detailed Geotechnical Report
									Appendix 6: Natural Moisture Content
	CLIENT: PROJECT:	YACHIYO ENGINE GEOTECHNICAL I				SUBSTATI	DN		
	CONTRACTO	R: NEWPLAN LIMITE	D						
	SUMMARY FO	R EVALUATION OF A	LLOWABL	EBEARING	G CAPACIT	Y BASED O	N FIELD SP	I 'N' VALUES	
BH No.	Depth	Predominant Soil Fraction	Measured SPT N' Value	Over all Correction factor	Corrected SPT W Value	Undrained Cohesion C _u	Ultimate Bearing Capacity Q _{ut}	Allowable Bearing Capacity Q _{all}	
	(m) 0.00		N	C _N	N ₆₀	(kPa)	(kPa)	(kPa)	
	1.00		6	0.59	4	72	371	124	
	2.00 3.00	-	5	0.59 0.59 0.67	4 3	81 63	414 325	138 108	
	4.00 5.00 6.00		41	0.67	27	114 315 181	586 1618 930	195 539 310	
	7.00	-	70	0.75	52	501 272	2577 1400	859 467	
BH01	9.00	_	40	0.75	30	335	1722	574	
	11.00		17 19	0.79	13 15	188 203	965 1046	322 349	
	13.00		Refusal Refusal	0.79					
	15.00 16.00	_	Refusal Refusal	0.79					
	17.00 18.00 19.00		Refusal Refusal	0.79					
	20.00		Refusal Refusal	0.79					
		,	1						

	Detailed Geotechnical Report
	Detailed Geotechnical Report
Detailed Geotednical Report	


	Detailed Geot	echnical Rep	ort					
	Appendi	x 11: At	terbeg Test Results					
				Atterberg Limits				
	Borehole No.	Depth (m)	Sample Description	Liquid Limit (%)		Plasticity Index (%)	Linear Shrinkage (%)	NMC
		1.5	Inorganic Sandy Lean CLAY	49.8	28.0	21.8	10.0	27.7
		3.0	Inorganic Sandy SILT	47.1	29.0	18.2	9.3	26.8
		4.5	Inorganic Sandy Elastic SILT	51.8	30.3	21.5	10.7	30.7
st)		6.0	Inorganic Sandy SILT	45.8	28.3	17.5	10.0	30.9
- te		7.5	Inorganic Sandy SILT	45.0	27.3	17.8	10.0	13.2
nete		9.0	Poorly Graded SAND with Clay and Gravel	27.0	20.2	6.8	5.0	15.5
	01	10.5	Silty SAND with Gravel Poorly Graded SAND with Silt	41.2 28.1	30.5 22.2	10.6 5.9	6.4 3.6	22.4 5.5
0) u	01	13.5	and Gravel Poorly Graded SAND with Clay	29.5	21.3	8.2	4.3	11.3
tio		15.0	and Gravel Silty SAND with Gravel	30.1	22.6	7.5	4.3	9.3
		16.5	Silty SAND with Gravel	36.3	28.4	7.9	3.6	16.1
osi		18.0	Silty SAND	32.6	25.4	7.2	3.6	9.4
۲ C		19.5	Clayey SAND	36.4	24.0	12.4	6.4	17.9
		27.0	Silty SAND	41.0	30.8	10.2	4-3	19.5
		28.5	Silty SAND	35-3	25.7	9.6	6.4	22.2
Appendix 10: One-Dimensional Consolidation (Oedometer test)								29


Detailed Geotechnical Report	Detailed Geotechnical Report
Appendix 12: Bulk Density	
Appendix 13: Unconsolidated undrained triaxial tests result	
	Appendix 14: Unconfined Compressive Strength
	31

資料-10 220 kV 送電線縦断図(新ムコノ変電所)

資料-11 他ドナー支援事業の遅延による本事業の影響について

11. 他ドナー支援事業の遅延による本事業の影響について

他ドナーが融資する事業のうち本事業と関連のあるものは、現時点では本事業の運用開始より もかなり前に運用開始している予定である。しかし、可能性は低いものの想定外の事由によりこ れらの運用開始が本事業の完工よりも遅延することも考えられる。したがって、その場合の影響 について負のリスク管理の一環としてまとめた。

1. 中国輸出入銀行が融資する事業(ムコノ変電所新設工事)が遅延した場合の影響

ムコノ変電所はナマンベ南変電所およびルジラ変電所の新設と同一契約対象であるため,遅 延する場合は次の2ケースが考えられる。しかしながら,両ケースとも運用上の問題は生じない。

(ケース1) ムコノ変電所だけが遅延する

新ムコノ変電所がナルバレ変電所〜ナマンベ変電所間の 132kV 送電線に接続できない ことから、ナルバレ発電所〜ナマンベ変電所間の 132kV 送電線の系統構成が本事業のコン ポーネントが適用されない現在の系統構成とほぼ同じ状態になるため、2022 年断面では、 通常時は問題ないが、ナルバレ変電所〜ムコノ変電所間の 132kV 送電線の N-1 故障時にカ ンパラ北変電所〜ルゴゴ変電所間の 132kV 送電線が 125%、カワラ変電所〜ムトゥンドゥ エ変電所間の 132kV 送電線が 121%の過負荷となる。しかし、これら過負荷となる送電線 の電線は本事業で HTLS 電線に増強されるため、実際には過負荷は生じないものと考えら れる。

(ケース2) ムコノ変電所と他の変電所も同時に遅延する

ムコノ変電所,ナマンベ南変電所およびルジラ変電所は主に周辺の工業団地への供給用 に新設されるが,変電所新設遅延に伴い工業団地も新設が遅延することとなり,負荷が軽 減されるため,ケース1よりも潮流条件は緩和される。

【まとめ】

系統運用面:

2022年断面までは、過負荷等の運用上の問題は発生しない。

本事業(JICA)で実施する工事:

・新ムコノ変電所(132kV 母線)からムコノ変電所(132kV 母線)間の接続ケーブルおよび保護リレーおよび通信線の据付

11. 他ドナー支援事業の遅延による本事業の影響について

・新ムコノ変電所(132kV 母線)からナマンベ南変電所用 132kV フィーダー間の接続ケ ーブルおよび保護リレーおよび通信線の据付

中国輸出入銀行の融資で実施する工事:

- ・上記の JICA の融資で実施する工事に関するケーブルの接続と保護リレーの調整。
- 2. 世界銀行が融資する事業(カワンダ変電所~マサカ変電所 220kV 送電線新設工事)が遅延し た場合の影響

ブロバ変電所は 220kV 設備が利用できないため、132kV1回線送電線(110MVA)によりカ ブラソケ変電所とともにムトゥンドゥエ変電所から供給を受ける配電用変電所(132/33kV, 40MVA*2)としてのみ利用可能となる。

【まとめ】

系統運用面:

2022 年断面までは、過負荷等の運用上の問題は発生しない。

本事業(JICA)で実施する工事:

・ブロバ変電所から 220kV 分岐用鉄塔までの鉄塔,電線および OPGW の設置。 世界銀行の融資で実施する工事:

- ・電線および OPGW を 220kV 分岐用鉄塔で接続。
- ・保護リレーの設定変更など運用開始に向け必要な作業の実施。

以 上

資料-12 UETCL と NFA 間の協議議事録

THE REPUBLIC OF UGANDA

MEMORANDUM OF UNDERSTANDING

BETWEEN

UGANDA ELECTRICITY TRANSMISSION COMPANY (UETCL)

AND

NATIONAL FORESTRY AUTHORITY

FOR THE ESTABLISHMENT OF A TRANSMISSION LINE IN A CENTRAL FOREST RESERVE UNDER THE KAMPALA METROPOLITAN TRANSMISSION PROJECT

<u>Drawn By:</u> UETCL Legal Office P.O.Box 7625 Kampala

THE REPUBLIC OF UGANDA

MEMORANDUM OF UNDERSTANDING

THIS MEMORANDUM OF UNDERSTANDING is made this day of 2016 By And Between THE UGANDA ELECTRICITY TRANSMISSION COMPANY LIMITED (UETCL) of P. O. Box 7625 Kampala (hereinafter referred to as "the Licensee" and shall where the context so admits include its successors and assignees) of the one part, And NATIONAL FORESTRY AUTHORITY of P. O. Box 70863 Kampala a Statutory Corporation duly established under the laws of Uganda (hereinafter referred to as "the Authority") and shall where the context so admits, include its successors and assignees) both collectively referred to as "the parties"

WHEREAS: -

- A. The Authority is statutorily charged with the management of Central Forest Reserves and is duly entitled to regulate activities in forest reserves and to receive compensation towards mitigation measures for any activities in the Forest Reserve.
- B. The Licensee is the owner and developer of a proposed high voltage electricity transmission line under the Kampala Metropolitan Transmission Project that will traverse the Central Forest Reserves Listed in Clause 2 of this Memorandum of Understanding.
- C. The Project will traverse the Acreage to be determined during a joint inventory/survey and assessment of the affected forest reserve by the Authority and the Licensee (Appendix 1).
- D. The Authority shall grant a License to the Licensee to develop a high voltage electricity transmission line to traverse the central forest reserve referred to in Appendix 1 of this Memorandum of Understanding after the Licensee meeting all conditions set by the Authority and after obtaining all requisite approvals and clearances incidental to the project.
- E. The Parties have reached an understanding in respect of their mutual obligations and responsibilities in relation to the management of and compensation for the impacts of the aforesaid Electricity Transmission Line on the Forest Reserves Listed in Clause 2 and Appendix 1 herein.
- F. UETCL is the authorized Licensee for purposes of making all due payments and coordinating all necessary activities for and on behalf of the Licensee;

THE PARTIES HAVE AGREED AS FOLLOWS:

- 1. In consideration of Paying to the Authority the sum that will be agreed and computed as compensation for "The Benefit Stream Foregone", upon detailed forest biomass and biodiversity survey and valuation, the Licensee shall have the concession and right to establish a high voltage electricity transmission line through the Listed Reserves and shall dispose of the growing Stock in the Listed Forest Reserves in accordance with License that will be issued by the Authority.
- 2. The Forest Reserve affected by the Kampala Metropolitan Transmission Project that is subject of this Memorandum of Understanding herein Referred to as the "Listed Reserve" is: Nandagi Central Forest Reserves (Appendix 1).

R

- 3. The Benefit Stream Foregone for purposes of Computation of the consideration payable to the Authority will be determined and attached hereto and shall be the Biodiversity and Economic Valuation of Compensation to the Authority for Way-leaves and Line Construction in the Listed Reserves. The sum specified shall be the Agreed Total Compensation due to the Authority is full and final compensation to the Authority for the Benefit Stream Foregone and shall exclude license holders.
- 4. The Licensee shall compensate the private tree farmers and license holders found in the path of the way leave separately from and independent of the Authority.
- 5. Upon Signing of this Memorandum of Understanding the Authority shall grant the Licensee and any of its agents and contractors leave to traverse the affected forest area and land to carry out preliminary investigations.
- 6. The Licensee shall exercise the various rights that shall be stipulated in the license conditions to be issued by the Authority upon compensation for the Benefit Stream Foregone.
- 7. The Authority shall provide technical assistance to the Licensee for purposes of carrying out the necessary Forest Clearance activities and disposing of growing stock in the Affected Areas.
- 8. The licensee warrants that acquisition of rights to set up the electricity Transmission Installations in the Listed Reserves and other use and occupancy rights shall be subject to the license.
- 9. This Memorandum shall not apply to Private Tree Farmers or private forests in any other location along the proposed line route. The Licensee agrees and understands that compensation for growing stock to private tree farmers with Licenses from the Authority shall be negotiated and concluded directly with such Private Tree Farmers.
- 10. All Appendices hereto shall be read as one and fully binding as part of this Memorandum of Understanding.
- 11. The Licensee shall before possession of the land obtain an Environmental Impact Assessment Certificate and/or approval from the National Environment Management Authority and all other requisite approvals and clearances incidental to the project.
- 12. Both parties shall carry out a joint biomass and biodiversity assessment and ground survey of the substation and associated transmission corridors at the cost of the Licensee.

In the presence of:

10-5-

Managing Director/CEO

In the presence of:	In the presenc	e of:	*
---------------------	----------------	-------	---

1

DENNIS L. WAMA	
ADVOCATE	(Junin)
P. O. BOX 7026, KAMPA	HAN SECRETARY
BOX 7026, KAMPA	

The Common Seal of the NATIONAL FORESTRY AUTHORITY was affixed hereto ESTR

In the presence of:

In the presence of:

LEGAL MANAGER

X

Executive Director

EXECUTIVE DIRECTOR,

*

APPENDIX 1

11

11

LISTED CENTRAL FOREST RESERVES

S.No	Forest Reserve	Substation Site (Acres)	Transmission Line (Acres)	Total Area affected in Acres		
1	Nandagi	TBV	TBV	TBV		
1. A.	TOTAL	TBV	TBV	TBV		

TBV: To Be Verified during a joint biomass and biodiversity inventory and survey in the affected forest reserve

資料-13 環境モニタリングフォーム

Environmental Monitoring Form

1. Pre-construction phase

(1) Comments from the public and NEMA regarding the EIA

Monitoring item	Comments	Response of UETCL
Contents of formal comments from		
the public on the EIA		
Contents of formal comments from		
NEMA on the EIA		

(2) Nandagi Forest Reserve

Monitoring item	Status
Progress of compensation measures	
Replantation progress of endangered flora (e.g.	
Jacaranda mimosifolia)	

2. Construction phase

(1) Noise (L_{Aeq})

Location	Results (LAeq)	Reference standard*	Compliance status	Measures implemented in case of non-compliance
		75 dB (day)		
		50 dB (night)		

*: Maximum Permissible Noise Levels for Construction Site (commercial area), Part IV of Firste Schedule of National Environment (Noise Standards And Control) Regulations, 2003

(2) Air quality $(PM_{10}, PM_{2.5})$

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance
		PM10: 50 μ g/m ³ (24hr average)		
		PM2.5: 20 μ g/m ³ (24hr average)		

*: WHO Air Quality Guideline

(3) Water quality (pH, DO, COD, SS, turbidity, T-N, T-P, oil and grease)

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance

*: Baseline data

(4) Soil pollution

Location	Record of soil pollution	Action taken

(5) Waste

Location	Record of inappropriate waste management	Action taken

(6) Occupational safety

Location	Record of occupational accidents	Action taken

(7) Ecosystem

Location	Satus	Actions taken
	Describe if any adverse impacts occurred due to construction activities such as accidental animal kills, incidents of poaching, destruction of habitats outside project area, finding of endangered species, intrusion of invasive species	

3. Operation phase

(1) Water quality (SS, turbidity)

Location	Results	Reference standard*	Compliance status	Measures implemented in case of non-compliance

*: Baseline data

(2) Waste

Location	Record of inappropriate waste management	Action taken

(3) Ecosystem

Location	Satus	Actions taken
	Describe if any adverse impacts occurred such as bird kills, intrusion of invasive species	

資料-14 ステークホルダーミーティング議事録

1. Meeting with National Forest Authority (NFA)

Week				11			Meet	ing date	16 March 2016
							Recor	ded by	BA
Meetin	g/subje	ect		Meeting with National For Consultation on GKM/ Improvement Project	• • • • •	FA) - Line	Total	pages	2
Present	Apology	Сору	Na	ame	Organisation			Designatio	on
\boxtimes			Lis	st attached	NFA				
\boxtimes			De	enis Mutaryebwa	NFA			Coordinat	or Plantations
\boxtimes			Та	keshi Sato	JICA Study Team			ESIA Spec	ialist
\boxtimes			Ка	izu Nogami	JICA Study Team				
\boxtimes			Dr	: Isa Kabenge	JICA Study Team			Engineer	
\boxtimes			Br	enda Amanda (BA)	JICA Study Team			Engineer	
Item		Upd	ate	9					
1.		Intro	odu	uction					
2.			• • •	Project and activities com The ESIA process Potential Environmental a Mitigation Measures for id Resettlement Action P compensation process, gr	nd Social Impacts (dentified impacts (lan (land survey	consti and	ructio d va	n and ope luation s	ration phase) survey procedures,
2.		Que	Jun						
ź	2.1.	so th	ne l e it	ent: Nandagi is located outsion land belongs to NFA, but the t is government land, an of	trees belong to ind	ividua	al farn	ners. It is a	lso managed by NFA.
2	2.2.			ent: Biodiversity evaluation h Mabira, UETCL got a consul	•			•	he transmission line
2	2.3.	Com	me	ent: Purpose of the forest res	serve is mostly as a c	catchr	nent a	area where	e streams pass.
ź	2.4.	Gau	ge	ent: Uncoordinated planning Railway and Oil Pipeline. es are lost.					
2	2.5.	goin The deal	g tl 16 ing	ent: Minimal impact would I hrough the plantation and in acres obtained for the sub with the transmission line is 16 acres was sufficient for	stead through the for station were alread corridor for the new	orest i y acq	reserv uired	e. by UETCL	. This project is only

2.6.	Comment: A 'no-objection' letter about the Chinese Project was obtained by UETCL. NFA does not have an official confirmation about this. NFA will follow-up the matter with UETCL.
2.7.	Comment: Booklet on management of forest reserves regarding activities acceptable within the reserves is available and can be shared with the Consultant.
2.8.	Recommendation: Send kmz file of Project area to NFA John Diisa (Coordinator GIS) and Tom

2.8.	Recommendation: Send kmz file of Project area to NFA John Disa (Coordinator GIS) and Tor
	Rukundo so that extent of Project area within forest reserves is known.

	ATIONAL FORETRS		TY ENFA)	- 1	1
Purpose of consultation (lick appropriate box):	Sensitiaation		RAP	-	2
	Environmental Audit		Other (specify)	-	
Date: 15" March 2015					
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA METROP	OLITAN AREA T	RANSMISSION SYSTEM IMPRO	VEMENT P	ROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.				
Name of person/ official met:	Designation		Contact (Tel/email)	- 1	Sign/ Initial
4	田人桂起のた	みまい	問		
With Law	固人情報のた	め非公	開		
	固人情報のた	め非公	·開		

2. Meeting with National Forest Authority (NFA)

Wee	k		13		Meeti	ng date	5 April 2016
					Recor	ded by	BA
Meet	ing/sul	bject	Meeting National Fo Consultation on GKM Improvement Project	restry Authority - A Transmission Line	Total p	oages	2
Present	Apology	Сору	Name	Organisation		Designatio	on
\boxtimes			List attached	NFA			
\boxtimes			Paul Okiror	UETCL		Safeguard	l Officer
\boxtimes			Takeshi Sato	JICA Study Team		ESIA Spec	ialist
\boxtimes			Dr. Isa Kabenge	Air Water Earth		Engineer	
\boxtimes			Brenda Amanda (BA)	Air Water Earth		Engineer	
Item		Upd	ate				
1.		Intro	oduction				
			 Project Background Project Location Project and activities com The ESIA process Potential Environmental a Mitigation Measures for in Resettlement Action P compensation process, gr 	nd Social Impacts (const dentified impacts (constr lan (land survey and	uctio val	n and ope uation su	ration phase) urvey procedures,
2.		Que	stion and Answer Session				-
2	2.1.		ment: First project-Electrificati te two substations connecting l		arks p	project.	
2	2.2.		ment: The Mukono industrial siderations include social, enviro				
2	2.3.		ment: Negotiations are still station sites are not yet confirm	on-going with NFA so ted.	the tr	ransmissio	n line corridor and
2	2.4.	That	ment: The Chinese require 30r t is a total of 105m. The substa de the substation. Access road is	tion is 3 acres, 6 ha as a			
2	2.5.		iment: NFA needs to see the o st reserve area was selected.	ption selection reports sh	owing	g the alteri	natives and why the
2	2.6.		stion: What distance was left mstream.	for the river protection	? Rive	er Kasala v	which joins Sezibwa
2	2.7.	othe Stan	stion: Standard gauge railway er projects that are planned for dard gauge railway to be 2m er government projects e.g. Rail	the near future within the from the ground. This pro	e proje	ect area?	-

2.8.	Comment: NFA needs to know that UETCL has confirmed that there are no projects planned or existing that can share a wayleave with the UETCL projects.
2.9.	Concern: UETCL needs to own the projects, as opposed to pseudo names like Chinese substation or Japanese substation.
2.10.	Comment: Bujagali substation will be intended to increase switch from 132kV (existing) to 220kV, although without need for more land requirement.
2.11.	Comment: Another meeting will be held in which the documents submitted by UETCL will be arranged. A field visit of the area will then be held.
2.12.	Concern: The width of the corridor is wide and yet it is a protected area.

Name of agency/stakeholder/community:	MINHAE BORESTING A	THORITS (MPA)	
and the second se	Scoping	ESIA	~
Purpose of consultation (lick appropriate bar):	Sensitisation	RAP	2
Date: 5th April 2016	Environmental Audit	Other (specify)	
Project name: PREPARATORY SURVEY FOR TH		AREA TRANSMISSION SYSTEM IMPROV	EMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.		
Name of person/ official met:	Designation	Contact (Tel/email)	I Auronau
{[Sign/ initia
ſ	固人情報のため		i Sign/ initial
{[I Sign/ initial

		THORITY (NER)	
	Scoping	ESIA	1
Purpose of consultation (fick appropriate box).	Sensitisation	RAP	2
	Environmental Audit	Other (specify)	
Date: 51-1 April 2016 Project name: PREPARATORY SURVEY FOR TH		AREA TRANSMISSION SYSTEM IMPROVEN	MENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY			
Name of person/ official met:	Designation	Contact (Tel/email)	Sign/ initial
1	固人情報のため	非公開	
ſ	固人情報のため	非公開	

Mukono Project Area

1. Meeting with National Forestry Authority (NFA) private foresters

We	eek			11		Me	eting date	10 May 2016
						Re	corded by	ІКК
Me	eeting	;/subj	ject	-	l Forestry Authority (NFA) Consultation on GKMA ovement Project	Tot	al pages	2
Prese nt	Apol ogy	Сору	Nam	ne	Organization		Designation	
\boxtimes			List	attached	NFA Foresters			
\boxtimes			Mer	rcy Nampurira	NFA		Nandagi For	est Supervisor
\boxtimes			lan l	Kakuru Kahigi (IKK)	Air Water Earth Ltd		Valuation Su	irveyor
\boxtimes			Edw	vard Okot Omoya (EOO)	Air Water Earth Ltd		Ecologist	
1.		Intro	oduct	tion				
		the s Intro A pro Area regis The	sensit oduct esent Tran terec prese • F • F	tization meeting. ions of the Consultant tea tation of the 'ESIA and RA nsmission System Impro	r welcomed the team and the im present for the meeting we P for The Preparatory Survey f vement Project' was made to agers and a few unregistered s	re m or th o th	ade. e Greater Ka e PAPs prese	mpala Metropolitan
			• [• [Mitigation Measures for i Resettlement Action Pla	nd Social Impacts (construction dentified impacts (construction n (land survey and valuation nism, and disturbance allowan	า and า su	operation pl	hase)
2.		Que	stion	and Answer Session				
	2.1.	Resp	onse	e: The project duration is	tion and when is it expected to not certain at the moment, sing s expected to commence as soo	ce th	is is still at th	e preparatory stage,
	2.2.				or should be included on the g uld be better able to assist in a			
	2.3.	com Resp	muni	ity e.g health centre, drug e: The consultant is not	ole to provide certain additio store? privy to that information but			

2.4. **Question:** Will share croppers who are planting their crops in the forest be compensated for their loss of livelihood?

Response: According to the NFA forest supervisor, no croppers are permitted within the forest reserve and therefore any croppers therein are operating illegally. On this basis, no croppers will be compensated.

STAKEHOLDER CONSULTATION RECORD

Name of agency/stakeholder/community: MA	Scoping	FARMY	- 10	ESIA		_
Purpose of consultation (fick appropriate box).	Sensitisation				1	
Purpose or consultation (not appropriate box):	Concrete and	V		RAP	V	
	Environmental Audit	V		Other (specify)		
Date: 10/05/2016						-
Project name: PREPARATORY SURVEY FOR TH	HE GREATER KAMPALA METR	OPOLITAN	AREA TRANSMIS	SION SYSTEM IMPROVE	MENT PROJECT	
Proponent: YACHIYO ENGINEERING COMPANY	Y LTD.					
Name	Village/Parish	-	Con	tact (Telephone)	Cia	al tablet
			001	eace (reseptione)	olgi	n/ initial
	個人情報のな	בא∃	ミン開			
	個人情報のな	こめま	⊧公開			

scroot 2008

STIPML DOG NO AWE/234

Name of agency/stakeholder/community: $\sum \lambda_{h}$		FRAMER	the second se	
	Scoping		ESIA	V
Purpose of consultation (tick appropriate box):	Sensitisation	1	RAP	V
	Environmental Audit	V	Other (specify)	
Date:10/05/2016				
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA ME	TROPOLITAN ARE	A TRANSMISSION SYSTEM IMPROVE	EMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY				
Name	Village/Parish	1	Contact (Telephone)	Sign/ initial
	個人情報の	りため非	⊑公開	
	個人情報の	りため割	⊧公開	

STAKEHOLDER CONSULTATION RECORD

Name of agency/stakeholder/community: NA)	DAGI FORENT	FARMER.	2	
	Scoping		ESIA	V
Purpose of consultation (lick appropriate box):	Sensitisation	V	RAP	V
	Environmental Audit		Other (specify)	
Date: 10/05/2016		1.0		
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA ME	TROPOLITAN AREA	TRANSMISSION SYSTEM IMPROVEN	MENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY				
Name	Village/Parish		Contact (Telephone)	Sign/ Initial
			outract (relephone)	Sign/ initial
	個人情報の	つため非	公開	
	個人情報 <i>0</i>	つため非	公開	

Riturd Dec No. AWE/03:

Think Job Vo AMERISA

Name of agency/stakeholder/community: NA/		FARMENS		
	Scoping		ESIA	4
Purpose of consultation (tick appropriate box):	Sensitisation		RAP	1
	Environmental Audit		Other (specify)	121
Date: 10/05/2016				
Project name: PREPARATORY SURVEY FOR TO	HE GREATER KAMPALA MET	ROPOLITAN AREA	A TRANSMISSION SYSTEM IMPRO	VEMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name	Village/Parish		Contact (Telephone)	Sign/ initial
	個人情報の	ため非	公開	
	個人情報の	ため非	公開	

Stand Cot Vis. AWE/034

2. Meeting with Community in Mukono Project Area - Nama II, Buyuki and Luwunga villages

Wee	k			11		Mee	ting date	30 April 2016
						Reco	orded by	ІКК
Mee	ting/	subje	ct	Meeting with Communities Buyuki and Luwunga villa GKMA Transmission Line Im	ages - Consultation on	Tota	l pages	2
Proje Prop	ect oonen	t		UETCL				
Prese nt	Apol ogy	Copy	Na	me	Organisation		Designatio	n
\boxtimes			List	t attached	Nama II, Buyuki and Luwu	nga	Project Aff	fected Persons
\boxtimes			List	t attached	Nama II, Buyuki and Luwu	nga	Chairperso	ons
\boxtimes			lan	Kakuru Kahigi (IKK)	Air Water Earth Ltd		Valuation S	Surveyor
\boxtimes			lsa	Kabenge	Air Water Earth Ltd		Engineer	
		· · · ·						
1.		Intro	du	ction				
		A pr Metr few F The p	ese op PAP	ctions of the consultant team entation of the 'ESIA and plitan Area Transmission Sys is present, including but not li sentation included: Project Background Project Location Project and activities compo The ESIA process Potential Environmental and Mitigation Measures for ider Resettlement Action Plan process, grievance mechanis	RAP for The Preparator tem Improvement Project mited to: nents Social Impacts (construction ntified impacts (construction (land survey and valuation)	y Sui 'was on and on and on su	vey for tl made to th d operation operation	he Greater Kampala ne chairpersons and a phase) phase)
2.		Ques	stio	n and Answer Session	·	,		
2	2.1.			nt: Projects take place but o their plans are put on hold a		-		this affects the PAPs
2	2.2.	comp shou capa Resp	oen Id k city ons	nt: L.C1s are a vital part of sated for their time and effor be given consideration so that se: The LCs will be facilitated to rs and Valuers.	t yet they are fully involved t they may be enlisted on p	l in the projec	e project fro t implemer	om start to finish. This ntation teams in some

2.3.	Concern: If assessment has been done but compensation is eventually not done and the project is aborted. How would the PAPs be compensated after sacrificing their properties and not undertaking any developments as a result? Response: The principle in Uganda is to compensate for affected properties. Therefore, no injury or damage is realised if the project is aborted and hence no compensation payment can be advanced.
2.4.	Question: Who constitutes the grievance committee? Response: The grievance committee constitutes a member of the Local Council, a member of the project proponent organisation and an identified NGO from the project area.
2.5.	Concern: In some instances, PAPs' structures get old and collapse before compensation is done. How will these be handled if re-assessment is done subsequently? Response: In the event that a PAP's structure collapses before compensation, the PAP will get the compensation due him as his property information will have already been captured.
2.6.	Question: Will PAPs be permitted to use the land after the project has been implemented? Response: The project proponent intends to fully compensate and acquire the project area and therefore no work or developments by PAPs will be allowed subsequent to project implementation.
2.7.	Concern: How will kibanja holders and title owners be compensated? Response: Kibanja owners and title holders will be equitably compensated in their individual holding capacities on pro rata basis.
2.8.	Concern: Wives may not receive any money and the husbands claim it all and squander it. How will their interests be put into consideration? Response: Wives especially those who are legally or traditionally married will be put into consideration by having their information captured during the payment exercise and as much as possible, husbands will be encouraged to present joint accounts for payment. This will be done with the help of the L.C1 to identify such risk prone relationships.

100

		Luwie	22		
	Scoping	Π).	ESIA	T.
Purpose of consultation (tick appropriate box):	Sensitisation	4		RAP	1
	Environmental Audit			Other (specify)	
ate: 3004/2016 roject name: PREPARATORY SURVEY FOR TH roponent: YACHIYO ENGINEERING COMPANY		ROPOLITAN	AREA TRANSM	MISSION SYSTEM IMPROVE	MENT PROJECT
Name	Village/Parish		0	Contact (Telephone)	Sign/ initial
1	固人情報の	ため	非公伊	目	
In Water Each water Scott	STAKEHOLDER C			DRD	Stated Con No. AWEMSA
	Share OIL D V	1 8 64			
Name of agency/stakeholder/community:	Name IL, Buyuk	() - m	Miga	1.500	-
	Scoping		mga	ESIA	4
Purpose of consultation (fick appropriate box):	Scoping Sensitisation		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RAP	3
Purpose of consultation (fick appropriate box)	Scoping		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4
Purpose of consultation (fick appropriate box). Date: 30704 /16 Project name: PREPARATORY SURVEY FOR	Scoping Sensitisation Environmental Audit	v	-	RAP Other (specify)	VEMENT PROJECT
Purpose of consultation (fick appropriate box). Date: 30104 /16 Project name: PREPARATORY SURVEY FOR Proponent: YACHIYO ENGINEERING COMPAN	Scoping Sensitisation Environmental Audit THE GREATER KAMPALA ME NY LTD.	TROPOLITA	-	RAP Other (specify)	
Purpose of consultation (fick appropriate box). Date: 30704 /16 Project name: PREPARATORY SURVEY FOR	Scoping Sensitisation Environmental Audit	TROPOLITA	-	RAP Other (specify)	VEMENT PROJECT

Sland Doc No AWERGA

	Scoping Buyakil	Lawwanga	ESIA	
Purpose of consultation (tick appropriate box):	Sensitisation	1.	RAP	14
and the second second second second	Environmental Audit		Other (specify)	14
Date: 35/a+/16	and the state of t		Other (specify)	
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA METR	OPOLITAN AREA	TRANSMISSION SYSTEM IMPROVE	EMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY		(1. 2. 3. 4. March		0.000
Name	Village/Parish		Contact (Telephone)	Sign/ initial
	個人情報の	ため非	公開	
	個人情報の	ため非	公開	

3. Meeting with Community in Mukono Project Area - Wanjeyo, Kivuvu and Bwefulumya villages

We	eek			11			Me	eting date	30 April 2016
							Red	corded by	ІКК
Me	eeting	/subj	ect	Meeting with Communitie Kivuvu and Bwefulumya GKMA Transmission Line I	villages - Cons	sultation on	Tot	al pages	2
	oject opone	nt		UETCL					
Prese	Apol ogy	Сору	Nan	ne	Organisation			Designation	I.
			List	attached	Wanjeyo, Bwefulumya	Kivuvu	and	Project Affe	cted Persons
\boxtimes			List	attached	Wanjeyo, Bwefulumya	Kivuvu	and	Chairpersor	15
\boxtimes			lan l	Kakuru Kahigi (IKK)	Air Water Eart	h Ltd		Valuation Su	urveyor
\boxtimes			lsa k	Cabenge	Air Water Eart	h Ltd		Engineer	
1.		Intro	oduct	ion					
		The	LC1 C	Chairman of Bwefulumya zoi	ne welcomed th	ne team.			
		Ар Met	reser r opo l	ions of the consultant team Itation of the 'ESIA and Iitan Area Transmission Sys present, including but not li	RAP for THE stem Improver	Preparator	y Su	rvey for th	e Greater Kampala
		The	prese	entation included: Project Background Project Location Project and activities compo The ESIA process Potential Environmental and Mitigation Measures for ide Resettlement Action Plan process, grievance mechanis	onents d Social Impacts ntified impacts (land survey	(construction and valuation	า and on รเ	operation p	hase)
2.		Que	stion	and Answer Session					
	2.1.	Resp trans dow	onse smiss nhill	: Where exactly is the proje :: The project route is out ion lines will commence f up to Bwefulumya where t ial foresters in Nandagi Fore	lined in the go from the inters hey meet the s	ogle earth in section with	mage the	on the pre chinese line	s in Nama, Luwunga
	2.2.			t: It has been said that co oject works. That will be a g		nbers will be	give	n opportuni	ties for employment

- 2.3. Question: Are the power lines going to be connected from existing lines to the new sub-station?
 Response: Yes, there will be a 132 kV line connecting from the substation to the existing transmission lines along the highway.
- 2.4. **Question:** Will power supply from the new lines and sub-stations be able to connect for community domestic use?

Response: Yes, from the 132 kV connection to existing transmission lines but not directly to the high voltage lines or the substation.

- 2.5. Concern: Can the local leaders write to project so that any projects being implemented within this community give job opportunities especially labourers to community members first? Response: As a principle, project contractors are encouraged to utilise community members of the project community for some lay jobs to help raise the economic status of the project community. This is done in conjunction with the local leaders. However, the local leaders are at liberty to write to the project contractors to request for such job opportunities for their community.
- 2.6. Question: If the corridor to be acquired borders with someone's house, would that person's house be affected and can they be compensated for that house?
 Response: In such an event, the person would not be compensated unless if he suffered injurious affection as a result of project works.
- 2.7. Question: Since a sub-station is to be constructed within the community, can UMEME and UETCL make some effort to increase the density of power supply and connections in this area? Response: It is not within the mandate of the consultant to advise UMEME or UETCL on how to distribute power resources but the consultant shall present the concerns of the community for their discretionary review.

Name of agency/stakeholder/community:	Nongwoffolo West	Total total	CEGIA CEGIA	
termore of annualitation to be a set of the	Sensitisation		CON	4
urpose of consultation (tick appropriate box):		1	RAP	4
	Environmental Audit		Other (specify)	
Date: 30/04/16				
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA MET	ROPOLITAN ARE	TRANSMISSION SYSTEM IMPROV	EMENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY				
Name	Village/Parish		Contact (Telephone)	files () - NY - N
/			contact (relephone)	Sign/ initial
10	固人情報の	ため非	公開	
1	固人情報の	ため非	公開	

Name of agency/stakeholder/community: N	anavojjolo West, Kasenge	Bure fullinga	ESIA	1.12
Purpose of consultation (tick appropriate box):	Sensitisation	2	RAP	
corpore of consumation (non opticipate box).	Environmental Audit		Other (specify)	4
Date: 7-1-1-11			orner (specify)	
22104110				and a second second
Project name: PREPARATORY SURVEY FOR TH	HE GREATER KAMPALA METROPOLIT	AN AREA TRANSMIS	SION SYSTEM IMPROVE	MENT PROJECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name	Village/Parish	Cor	ntact (Telephone)	Sign/ Initial
			(and privately	Sigin hitte
1	固人情報のため	り非公開]	
1	固人情報のため	り非公開]	
Ar Water Fam www.awer-engineers.com	固人情報のため	り非公開]	Stant Dec Vor AWED

Buloba Project Area

4. Meeting with Community in Buloba Project Area - Kaggaba, Mabuye and Nsujjwe villages

Weel	k			05		Μ	eeting date	27 January 2016
						Re	corded by	BA
Meet	ting/s	ubjec	t		sidents (Kaggaba, Mabuye Consultation on GKMA ement Project	То	tal pages	2
Prese nt	Apol ogv	Сору	Nam	e	Village		Designation	
\boxtimes			List a	attached	Buloba residents			
\boxtimes			lan K	Kakuru	Air Water Earth Ltd.		Valuer	
\boxtimes			Bren	da Amanda	Air Water Earth Ltd.		Engineer	
_		linder	l					
1.			oducti					
				team was welcomed and the AWE team.	self-introductions made. A p	ores	entation of t	he Project details was
			 P P P T P R g 	Aitigation Measures for ider Resettlement Action Plan (la grievance mechanism, and d	Social Impacts (construction ntified impacts (construction nd survey and valuation surv	and	operation ph	nase)
2.		-		and Answer Session				
2	2.1.			: Is the 15 acres mentioned : The 15 acres mentioned is	only for the substation, or for for the substation area.	r the	e entire Projec	ct area?
á	2.2.	Resp	onse	: The compensation for suc	rs and title holders be catered h an area is split such that t der receives 30% of the comp	the	kibanja holde	er receives 70% of the
2	2.3.	gets Resp Guid Valu	less, a ponse lelines ation	and vice versa. : The valuation process w s for Social and Environm	on't give the right amount e.g ill be conducted in line wi ental Considerations. In acc o the Chief Government Val	th t	the laws of lance with th	Uganda and the JICA e Ugandan laws, the
	2.4.	Resp II. As lead offic	side fr er, as e, or	: The Grievance Committee rom the local chairpersons, well as a representative fr another location that the	mmittee be selected and whe will be composed of the are the Committee will also incl om UETCL. The Committee's PAPs agree upon as being g the RAP issues that arise fro	a lo ude offi the	cal chairperso an elder on t ice shall be a most conver	ons such as LC I and LC the village, an opinion t the LC Chairperson's nient. UETCL also has

2.5.	Question: If a young fruit tree has been valued, will the future prospects be catered for e.g. the jack fruit trees or oranges that would have been reaped from the fruit tree? Response: No, valuations are done on as as-is basis. Projections are not done during the valuation exercise.
2.6.	Suggestion: Both the kibanja holder and title holder should be present during the Valuation exercise. Response: All PAPs will be notified when the fieldwork for surveying and valuation is taking place.
2.7.	Comment: Sometimes the cut-off date is announced but the Project takes long to start, yet the people have been asked to hold off on developments. Response: If a Project takes more than 2 years after the cut-off date, a re-evaluation is done to take into consideration any changes.
2.8.	 Complaint: Towards the end of last year (2015), a team doing geo-technical surveys was in the area. The team ate fruits from community members' trees and also parked their vehicles in peoples' compounds without asking for permission. Response: It is regrettable that community members' property was not respected. All the Consultants involved will be informed to ensure that all field staff respect community members' property and make requests to use or purchase any individual or community resources.
2.9.	Question: The Graveyard for the Grail Sisters is within the Project area. Will these graves be relocated? Response: The Project route will try as much as possible not to affect any physical and cultural resources. However, the affected areas will be more accurately identified after the surveyors have started with field work and marked out the substation and corridor extents.
2.10.	Question: Some landowners do not live in the area and have to travel from far. Will facilitation be provided for this? Response: No, facilitation is not provided for the community members to attend meetings.

Purpose of consultation (Kick appropriate box): Sensitisation Environmental Audit Date: 21 January 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person' official met: Designation (\lage) Contact (Tel/email) Sign/ Initial		Scoping		ESIA	12
Date: 27 ⁴ Jonowy 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation (\(\nother \(\nother \nother \nother \(\nother \nother \noth	Purpose of consultation (tick appropriate box):	Sensitisation	~	RAP	
Date: 27 th January 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation (\\.1/49 \&) Contact (Tel/email) Sign/ initial		Environmental Audit		Other (specify)	12
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation (\(\lambda\)/a_g \(\ovee\)) Contact (Tel/email) Sign/ Initial Sign/ Initial	Date: 27th January 2016				
Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation (\\.1/4.9 \ow) Contact (Tel/email) Sign/ Initial	Project name: PREPARATORY SURVEY FOR T	HE GREATER KAMPALA ME	TROPOLITAN AREA TH	RANSMISSION SYSTEM IMPROVE	MENT PROJECT
Name of person/ official met: Designation (Y, I/400) Contact (Tel/email) Sign/ Initial					
Sign/initial Sign/initial	Proponent: YACHIYO ENGINEERING COMPAN	LTD.			
	Name of person/ official met:	Designation	(Village)	Contact (Tel/email)	Sign/ initial
個人情報のため非公開					seight initial
	ſ	固人情報の	ため非么	公開	
	ſ	固人情報の	ため非么	公開	
	ſ	固人情報の	ため非么	公開	

Purpose of consultation (fick appropriate box): Sensitisation Environmental Audit Date: 27th Junited 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD.		Scoping	anome	VILLAGES, MPIGI DISTAL	CT
Environmental Audit Other (specify) Date: 27th Other (specify) Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person' official met: Designation (\frac{1}{10}) Buildon 0	Purpose of consultation (fick appropriate box):	The second se			4
Date: 274 Junior 2016 Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person' official met: Designation (小)logを) Contact (Tel/email) Sign/ initia	and the second sec	Environmental Audit		1.0.0	4
Project name: PREPARATORY SURVEY FOR THE GREATER KAMPALA METROPOLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT Proponent: YACHIYO ENGINEERING COMPANY LTD. Name of person/ official met: Designation (\/j/loge.) Contact (Tel/email) Sign/ initial Reference of the second official met: Designation (\/j/loge.) Contact (Tel/email) Sign/ initial	Date: 27th Ton Ball			oniei (specity)	
Name of person/ official met: Designation (\frac{1}{loge}) Contact (Tel/email) Sign/ initial	Project name: PREPARATORY SURVEY FOR 1	HE GREATER KAMPALA MET	ROPOLITAN AREA	TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
Read of Congratori (Virtuge) Contact (Teireman) Sign/initial	Proponent: YACHIYO ENGINEERING COMPAN	Y LTD.			
	Name of person/ official met:	Designation	(Village)	Contact (Tel/email)	Cinet Initial
個人情報のため非公開					Sign/ initial
		0			<u> </u>
	佰	 国人情報の1	こめ非な	公開	
	16	」 国人情報の1	こめ非な	<u>公開</u>	34ğıvı mica

5. Meeting with Community in Buloba Project Area - Kaggaba, Mabuye and Nsujjwe villages

Week 13				13		Μ	eeting date	30 March 2016		
						Re	corded by	BA		
Mee	ting/	subje	ct	-	sidents (Kaggaba, Mabuye Consultation on GKMA ement Project	Total pages 2				
Prese nt	Apol ogy	Сору	Nam	e	Village		Designation			
\boxtimes			List a	ittached	Buloba residents					
\boxtimes			lan K	akuru	Air Water Earth Ltd.		Valuer			
\boxtimes			lsa K	abenge	Air Water Earth Ltd.		Engineer			
\boxtimes			Bren	da Amanda	Air Water Earth Ltd.		Engineer			
\boxtimes			Sato	Takeshi	JICA Study Team		ESIA Speciali	st		
1.		Intro	oducti	ion						
		 The presentation included: Project Background Project Location Project and activities components The ESIA process Potential Environmental and Social Impacts (construction and operation phase) Mitigation Measures for identified impacts (construction and operation phase) Resettlement Action Plan (land survey and valuation survey procedures, compensation proce grievance mechanism, and disturbance allowance) 						nase)		
2.		Que	stion	and Answer Session						
2	2.1.	Concern: It would be best to invite only those who are directly affected by the project so as not to wast too much time. Some people invited for the meeting will not lose land to the project.								
2	2.2.	Question: Can't the surveyors and valuers come soon so that the affected people are identified? The most important thing is for the project area to be clearly marked. Response: The Surveyors and Valuers will start field work after they are informed that community sensitization meetings such as this one have been held.								
2	2.3.	Question: Would the project come to a standstill if there were land wrangles within the project area? Response: The Project's Grievance Mechanism makes it possible to have dialogue with the ownership of the land that has wrangles. If the matters cannot be easily resolved, and no feasible alternative can be made to the Project design, there is the possibility of a hold-up in the Project progress.								
2	2.4.	Question: Is it possible for the project route to change if it interacts with many other projects e.g. the Express highway? Response: Yes, the Project design can be changed at this point if major obstacles are met or identified.								
2	2.5.	 Response: Yes, the Project design can be changed at this point if major obstacles are met or identified. Comment: The contacts provided by the Consultants should be those of individuals and not general office numbers. Noted: Individual phone numbers will be provided, in addition to the office phone number. 								

2.6.	Question: When will the project start?
	Response: Towards the end of this year 2016, Government of Uganda and Japanese government are
	expected to sign an agreement. Project implementation will then probably take about two years.
2.7.	Comment: The time lag between the Surveyors and Valuers should not be long as this could result in
	people continuing to develop their land, sometimes dubiously.
2.8.	Concern: People's property should be adequately compensated.

GGABA MABUS Scoping Sensitisation Environmental Audit GREATER KAMPALA MET TD. —Designation		JUWWE VILLAGES ESIA RAP Other (specify) TRANSMISSION SYSTEM IMPROVEM Contact (Tel/email)	MENT PROJECT
Environmental Audit GREATER KAMPALA MET TD.		Other (specify)	
GREATER KAMPALA MET TD.		TRANSMISSION SYSTEM IMPROVEN	
TD.		TRANSMISSION SYSTEM IMPROVEN	
TD.			
	Village	Contact (Tel/email)	Sign/ initial
		oonaol (Teveniali)	Sign/ Initial
	個人情報0	個人情報のため非	個人情報のため非公開

Kawaala Project Area

6. Meeting with Community in Kawaala Project Area - Namungoona residents

Week				13		Meeting date		29 March 2016	
						Red	corded by	BA	
Meet	ting/s	ubjeo	ct	Meeting with Namungoo on GKMA Transmission Lir	na residents- Consultation ne Improvement Project	Total pages 2			
Prese nt	Apol ogv	Сору	Nam	ne	Village		Designation		
\boxtimes			List	attached	Namungoona residents				
\boxtimes			lsa k	Kabenge	Air Water Earth Ltd.		Engineer		
\boxtimes			Brer	nda Amanda	Air Water Earth Ltd.		Engineer		
1.			oduct						
				E team was welcomed and the AWE team.	self-introductions made. A p	orese	entation of t	he Project details was	
		 The presentation included: Project Background Project Location Project and activities components The ESIA process Potential Environmental and Social Impacts (construction and operation phase) Mitigation Measures for identified impacts (construction and operation phase) Resettlement Action Plan (land survey and valuation survey procedures, compensa process, grievance mechanism, and disturbance allowance) 						hase)	
2.		Que	stion	and Answer Session					
	2.1.	Question: Can one remove some of their property such as roof or doors even after they have been paid Response: Yes, as long as the information has been captured by the Valuer. All additions or subtraction from property after the cut-off date are not considered during compensation.							
2	2.2.	Question: The cable, in some cases is passing through land that is undeveloped. Will such land owner be compensated? Response: Yes, all land owners will be compensated for their lost property. Developments on the la are also compensated for.							
	2.3.	Question: It is possible that the trench will affect some people even though it is not necessarily go through their land? Can such people volunteer to be compensated for relocation if they a uncomfortable having the cable so close to them? Response: No, one cannot volunteer to be affected by the Project. However, any damage to on property during the course of the Project implementation can be compensated. The reporting of su cases would be done through the Local leaders and the Grievance Committee.						elocation if they are any damage to one's	
	2.4.	Que part Resp peop	stion icipar oonse	: The land on which the nts who was not compensat e: This Project will be implen hose land will be acquired	current substation is locat ed. Will the remaining land a nented in line with JICA Guide will be compensated for bot	ed k Iso k eline	pelonged to be taken with s and Ugand	out compensation? an laws. Therefore, all	

2.5.	Question: Will the project give time for the brick making to be completed before the project can commence? Response: Yes, because notice to relocate will be given when the compensation money is paid. This notice period is always given, because it also has an impact on the amount of compensation given since the disturbance allowance is calculated based on the notice period.
2.6.	Question: Who gets compensated? The landowner or tenant? Response: Both the land owner and kibanja holder receive compensation. An example in this area that is on Kabaka's land is that on Kabaka's land, the Buganda Land Board receives 30% of the calculated compensation amount while the Kibanja holder will receive 70% of the compensation amount. A tenant occupying a house will not receive any part of the compensation sum because ample notice will be given and none can always move to another location.
2.7.	Comment: The entire compensation process should involve the LC chairman.

Response: Noted. Chairpersons are always involved in the compensation process.

Name of agency/stakeholder/community:		C1			-
	Scoping		ESIA	1	
Purpose of consultation (tick appropriate box):	Sensitisation	Y	RAP	1	-
	Environmental Audit		Other (specify)		
Date: 29th March 2016					
Project name: PREPARATORY SURVEY FOR TH		TROPOLITAN AREA	TRANSMISSION SYSTEM IMPROVE	EMENT PROJ	ECT
Proponent: YACHIYO ENGINEERING COMPANY					
Name of person/ official met:	-Designation	VILOGE.	Contact (Tel/email)		Sign/ initial
ſ	固人情報の	ため非な	公開		
1	固人情報の	ため非	公開		

	Scoping		ESIA	V
Purpose of consultation (lick appropriate box):	Sensitisation	V	RAP	~
	Environmental Audit	-	Other (specify)	
Date: 29th March 2016	the second second			
Project name: PREPARATORY SURVEY FOR TH	E GREATER KAMPALA METR	OPOLITAN AREA	TRANSMISSION SYSTEM IMPROVE	MENT PROJECT
				Inchi PRODECT
Proponent: YACHIYO ENGINEERING COMPANY	LTD.			
Name of person/ official met:	Designation	Y. age	Contact (Tel/email)	Pinettelt
and the second sec			a onitional () cordinally	Sign/ Initia
	田」作品の	<i>た</i> み北	小問	
1	固人情報の	ため非	公開	

資料-15 RAPモニタリングフォーム

	Dlannad		Pro	gress in quan	tity	Progres	ss in %	Expected	Dognongible	
Resettlement activities	Planned total	Unit	Previous Quarter	Current Quarter	Remainin g	Previous Quarter	Current Quarter	completion date	Responsible organization	Note
Progress of land acquisition	50	ha	10	25	25	25	50	2016/12	UETCL	
Progress of land compensation (in cash)	10	No. of HHs	5	7	3	50	70	2016/12	UETCL	
Progress of land compensation (land for land)		No. of HHs								
Progress of asset compensation (in cash)		No. of HHs								
Progressofassetcompensation(byreplacement structure)		No. of HHs								
Progress of crop compensation		No. of HHs								
Progress of resettlement		No. of HHs								
Others										

Table 1 Dragness of land acquisition company	
Table 1 Progress of land acquisition, compension	pensation and resettlement

Table 2Grievance report

	Date received	Contents of grievance	Actions taken and status
1			
2			

資料-16 外部モニタリングの TOR 案

TERMS OF REFERENCE FOR AN EXTERNAL MONITORING AGENCY FOR GREATER KAMAPALA METROPLITAN AREA TRANSMISSION SYSTEM IMPROVEMENT PROJECT

A. Project Background

The Republic of Uganda has been experiencing high economic growth and approximately 7% annual economic growth has been recorded over the past years. In line with this growth trend, the power demand has also been increasing rapidly at 9.7% on average per year from 2007 to 2012. The Project aims to increase the capacity of power supply through the upgrade of transmission and substation system in Kampala Metropolitan Area.

To implement the Project, land acquisition will be required at Buloba, New Mukono and Kawaala components. People affected by the land acquisition will be compensated and rehabilitated by UETCL in accordance to the Resettlement Action Plan (RAP). UETCL seeks to engage an independent External Monitoring Agency (EMA) to undertake monitoring and evaluation of the RAP implementation process.

B. Key Objective of External Monitoring

Monitoring is an integral part of the resettlement process. The External Monitoring Agency (EMA) will review implementation process as per set policies and criterias in the RAPs report, assess the achievement of resettlement objectives, the changes in living standards and livelihoods, restoration of the economic and social base of the project affected people, the effectiveness, impact and sustainability of entitlements, the need for further mitigation measures if any, and to learn strategic lessons for future policy formulation and planning.

C. Scope of Work

The scope of work of the External Monitoring Agency (EMA) will include the following activities:-

- 1. To develop specific monitoring indicators for undertaking monitoring of the Resettlement Action Plan (RAP).
- 2. To review and verify the progress in land acquisition/resettlement implementation of the Project.
- 3. Identify the strengths and weaknesses of the land acquisition/resettlement objectives and approaches as well as implementation strategies.
- 4. Evaluate and assess the adequacy of compensation given to the APs and the livelihood opportunities and incomes as well as the quality of life of APs of project-induced changes.
- 5. Identification of the categories of impacts and evaluation of the quality and timeliness of delivering entitlements (compensation and rehabilitation measures) for each category

and how the entitlements were used and their impacts and adequacy to meet the specified objectives of the Plans. The quality and timeliness of delivering entitlements, and the sufficiency of entitlements as per approved entitlement matrix.

- 6. Provide a summary of whether involuntary resettlement was implemented (a) in accordance with the RAPs, and (b) in accordance with the stated policy.
- 7. To review the quality and suitability of the relocation sites from the perspective of the both affected and host communities.
- 8. Verify expenditure & adequacy of budget for resettlement activities.
- 9. To analyze the pre-and post-project socio-economic conditions of the affected people. The methodology for assessment should be very explicit, noting any qualifications.
- 10. Review results of internal monitoring and verify claims through sampling check at the field level to assess whether land acquisition/resettlement objectives have been generally met.Involve the affected people and community groups in assessing the impacts of land acquisitionfor monitoring and evaluation purposes.
- 11. To monitor and assess the adequacy and effectiveness of the consultative process with affected people, particularly those vulnerable, including the adequacy and effectiveness ofgrievance procedures and legal redress available to the affected parties, and dissemination finformation about these.
- 12. Identify, quantify, and qualify the types of conflicts and grievances reported and resolved andthe consultation and participation procedures.
- 13. Describe any outstanding actions that are required to bring the resettlement activities in line with the policy. Describe further mitigation measures needed to meet the needs of any affected person or families judged and/or perceiving themselves to be worse off as aresult of the Project. Provide a timetable and define budget requirements for these supplementary mitigation measures.
- 14. Describe any lessons learned that might be useful in developing the new national resettlement policy and legal/institutional framework for involuntary resettlement.
- 15. Verifying internal reports by field-checking delivery of compensation to PAPs, including the levels and timing of the compensation; readjustment of land; preparation and adequacy of resettlement sites; construction of houses; provision of employment, the adequacy of the employment, and income levels; training; special assistance for vulnerable groups; repair, relocation, or replacement of infrastructure; relocation of enterprises, compensation, and adequacy of the compensation; and transition allowances;
- 16. Interviewing a random sample of PAPs in open-ended discussions, to assess their knowledge and concerns about the resettlement process, their entitlements, and the rehabilitation measures;
- 17. Observing the functioning of the resettlement operation at all levels, to assess its effectiveness and compliance with the RAP;

- 18. Checking the type of grievance issues and the functioning of grievance redress mechanisms by reviewing the processing of appeals at all levels and interviewing aggrieved PAPs:
- 19. Advising TANROADS regarding possible improvements in the implementation of the RAP.

D. Methodology and Approach

The general approach to be used is to monitor activities and evaluate impacts ensuring participation of all stakeholders especially women and vulnerable groups. Monitoring tools should include both quantitative and qualitative methods. The external monitor should reach out to cover:

- PAPs who had property, assets, incomes and activities severely affected by Project works and had to relocate either to resettlement sites or who chose to self-relocate, or whosesource of income was severely affected.
- PAPss who had property, assets, incomes and activities marginally affected by Project works and did not have to relocate;
- PAPs by off-site project activities by contractors and sub-contractors, including employment, use of land for contractor's camps, pollution, public health etc.;

Supplemented by Focused Group Discussions (FGD) which would allow the monitors to consult arange of stakeholders (local government, resettlement field staff, NGOs, community leaders, and,most importantly, APs), community public meetings: Open public meetings at resettlement sites toelicit information about performance of various resettlement activities.

E. Other Stakeholders and their Responsibility

1. Responsibility of the executing Agencies (EAs)

The EAs through their Project Implementation Unit (PIU) will ensure timely supply of background references, data and other necessary information to the EMA and provide access to project sites and relevant places to let the EMA implement external monitoring activity.

2. Responsibility of the Implementing organization(s)

Organizations that will assist EAs in implementing land acquisition and resettlement activities will provide information required by the EMA at site and at their Project Offices. It will on behalf of EAs ensure free access to project sites and related areas and the database on land acquisition and resettlement activities.

F. Team Composition of the External Monitoring Agency

The EMA should focus on, data collection, processing and analysis to pin point problem areas and weaknesses, and to light on deserving measures to achieve the objectives on schedule are the

special interest of the subject. Thus, there is a need for a dedicated monitoring team with adequate gender representation. Further, it is essential that the central team or field level coordinators responsible for monitoring, are skilled and trained in data base management, interview technique, and social and economic/finance. Keeping in mind these criteria, the team should ideally include:

Position/expertise	Qualification and experience
1. Team Leader/	Master in social science with 10-year working experience in social
Implementation	impact assessment including census and socioeconomic surveys,
Specialist	stakeholders' consultation, and analyzing social impacts to identify mitigation measures in compliance with social safeguard policies of the international development financing institutions and national legislations. Experience of preparing resettlement framework and action plans and implementation of plans for externally financed projects is essential.
2. Social Impact	Master in social science with 5-year working experience in social
Specialist	impact assessment including census and socioeconomic surveys, stakeholders' consultation, and analyzing social impacts to identify mitigation measures in compliance with social safeguard policies of the international development financing institutions and national legislations. Experience of preparing resettlement framework and action plans and implementation of plans for externally financed projects is essential.
3. Data Analyst	Graduate with working experience and knowledge of software such as SPSS (Statistical Package for the Social Sciences)

G.Time Frame and Reporting

The EMA will be employed over a period of 3 years with intermittent inputs from the professionalteam to continue 2 years after completion of the RAP implementation.

Quarterly and annual monitoring reports should be submitted to UETCL with copies to JICA. An evaluation report at the end of the project should be submitted to UETCL and concerned parties with critical analysis of the achievement of the program and performance of EAs and implementingorganizations.

The external monitors will provide monitoring and evaluation report covering the following aspects:

• Whether the resettlement activities have been completed as planned and budgeted;

- The extent to which the specific objectives and the expected outcomes/results havebeen achieved and the factors affecting their achievement or non achievement;
- The extent to which the overall objective of the Resettlement Plan, pre project orimproved social and economic status, livelihood status, have been achieved and thereasons for achievement / non achievement;
- Major areas of improvement and key risk factors;
- Major lessons learnt; and
- Recommendations.

Formats for collection and presentation of monitoring data will be designed in consultation with EAs.

H. Qualification of the External Monitoring Agency

The EMA will have at least 10 years of experience in resettlement policy analysis and implementation of resettlement plans. Further, work experience and familiarity with all aspects of resettlement operations would be desirable. NGOs, Consulting Firms or University Departments (consultant organization) having requisite capacity and experience on the same can qualify for services

Interested agencies should submit a proposal to UETCL with a brief statement of the approach, methodology, and relevant information concerning previous experience on monitoring of resettlement implementation and preparation of reports.

The profile of its agency, along with full signed CVs of the team to be engaged, must be submitted along with the technical proposal.

I. Budget and Logistics

The budget should include all expenses such as staff salary, office accommodation, training, computer/software, transport, field expenses and other logistics necessary for field activities, data collection, processing and analysis for monitoring and evaluation work. Additional expense claims whatsoever outside the proposed and negotiated budget will not be entertained. VAT, Income Tax and other charges admissible will be deducted at source as per Government laws.

資料-17 環境チェックリスト

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
1 Permits and Explanation	(1) EIA and Environmental Permits	 (a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government? 	(a) Y (b) N (c) N (d) N	 (a) The EIA report is planned to be submitted to National Environment Management Authority (NEMA) around end of June 2016. (b) EIA approval is expected to be obtained from NEMA by mid-September 2016. (c) EIA not approved yet. (d) Since some sections of the Mukono component are located inside Nandagi Forest Reserve, a license must be acquired from National Forest Authority (NFA) as per the National Forestry and Tree Planting Act, 8/2003. The license is expected to be obtained by the end of September 2016. Other environment-related permits that may be required prior to construction are: Traffic Management Permit from Uganda National Roads Authority (UNRA) Wetland resource use permit from NEMA (if resource extraction from wetland is required) Waste transport and storage license from NEMA
	(2) Explanation to the Local Stakeholders	 (a) Have contents of the project and the potential impacts been adequately explained to the local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design? 	(b) Y	 (a) The Project has consulted relevant government agencies (e.g. NFA) and local communities (Mukono, Buloba and Kawaala) as per the EIA Regulation, 1998. NFA requested UETCL to compensate for the forest biomass and biodiversity that will be lost through land acquisition in Nandagi Forest Reserve in relation to the Mukono component. No objections on the project have been raised so far by the local communities. (b) So far, there have been no comments that will entail significant changes to the project design.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental	(a) Y	(a) An alternative analysis was conducted for the new substation sites (Buloba and Mukono), taking into

Environmental check list: Power transmission and distribution lines

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		considerations?		account social and environmental impacts.
2 Pollution Control	(1) Water Quality	(a) Is there any possibility that soil runoff from the bare lands resulting from earthmoving activities, such as cutting and filling will cause water quality degradation in downstream water areas? If the water quality degradation is anticipated, are adequate measures considered?	(a) Y	 (a) Soil runoff from the new substation and transmission line sites (Buloba and Mukono) could affect nearby surface water. Following are planned mitigation measures to minimize impacts: Avoid removing short vegetation and grass along the transmission line corridor as far as it does not hinder construction and maintenance works. Implementation of temporary erosion control measures (e.g. silt fence, erosion mats) especially where construction sites are near surface water. Revegetation of exposed slopes immediately after construction is completed. Construction of retaining walls for exposed slope protection if necessary. Construction of runoff drainage channel. Stockpiles and temporarily removed topsoil to be stored in a location and manner to prevent soil runoff into surface waters.
3 Natural Environment	(1) Protected Areas	(a) Is the project site located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a) Y	(a) The Mukono substation and part of the associated transmission lines are located inside Nandagi Forest Reserve established under the National Forestry and Tree Planting Act, 8/2003. Around 15 ha of forest area will need to be cleared to secure the 220 kV transmission line corridor. UETCL will compensate for the forest biomass and biodiversity that will be lost based on the "Forest Biomass and Biodiversity Valuation" undertaken by National Forest Authority (NFA). The existing 132 kV Mukono branch point — Kampala North Substation transmission line, subject to reconductoring works, passes through Namyoya and Luvunya Forest Reserves. Impact on these forest reserves are expected to be

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	(2) Ecosystem	(a) Does the project site encompass primeval	(a) Y	negligible as the reconductoring works will be conducted within the existing transmission line corridor, hence no requirement for new forest clearance. Reconductoring works will also be short term and will not entail any activities that may have any adverse impacts to the forest. (a) Part of the Mukono transmission line (around 2 km)
		 forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Are adequate measures taken to prevent disruption of migration routes and habitat fragmentation of wildlife and livestock? (e) Is there any possibility that the project will cause the negative impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of ecosystem due to introduction of exotic (non-native invasive) 	(b) Y (c) Y (d) Y (e) Y	 will traverse through a natural/semi-natural forest inside Nandagi Forest Reserve. (b) A two-day ecological survey was conducted in Buloba and Mukono in April and May 2016 respectively. The following two bird species and one tree species were identified inside Nandagi Forest Reserve, which are classified as threatened under IUCN Red List. Grey crowned crane (<i>Balearica regulorum</i>): EN Grey parrot (<i>Psittacus erithacus</i>): VU <i>Jacaranda mimosifolia</i>: VU In addition, the following three butterfly species were identified inside Nandagi Forest Reserve, which are classified as threatened under Uganda Red List prepared by Wildlife Conservation Society (WCS). <i>Euphaedra rex</i> (VU) <i>Neptis trigonophora</i> (VU) <i>Caenides dacena</i> (EN) (c) The following measures will be implemented to
		species and pests? Are adequate measures for preventing such impacts considered?(f) In cases where the project site is located in undeveloped areas, is there any possibility that the new development will result in extensive loss of natural environments?		 minimize ecological impacts taking into account the identified threatened species. Compensation of lost forest area in Nandagi Forest Reserve through reforestation works to be undertaken by UETCL and NFA. Replantation of <i>Jacaranda mimosifolia</i> seedling. Implementation of strict construction pollution control

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				 measures to minimize impacts on surrounding habitats. Installation of bird flight diverters on the transmission lines to minimize bird collision. Implementation of ecological monitoring during construction and operation phases. In case important nesting sites of the threatened bird species are found during the ensuring stages, additional measures will be considered in consultation with experts (e.g. creation of artificial nesting area). (d) Measures described above should minimize disruption of migration routes and habitat fragmentation. (e) Introduction of exposed surfaces (e.g. cutting and filling slopes) to be done by native plant species only, and immediately after works is completed to minimize chance of colonization by invasive species. Removal of invasive species if observed along the revegetation sites. (f) Around 15 ha of semi-natural and natural forest will be compensated through reforestation works to be
	(3) Topography and Geology	 (a) Is there any soft ground on the route of power transmission and distribution lines that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed? (b) Is there any possibility that civil works, such as cutting and filling will cause slope failures or landslides? Are adequate measures considered to 	(a) U (b) Y (c) Y	 undertaken by UETCL and NFA. (a) A detailed geological survey will be conducted in the D/D stage. If necessary, adequate measures (e.g. revegetation, retaining walls) will be considered to prevent slope failures or landslides. (b) Cutting and filling works may be required for constructing the Buloba and Mukono substation. If necessary, adequate measures for preventing slope failures or landslides (e.g. revegetation, construction of

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	(4) Hydrology	 prevent slope failures or landslides? (c) Is there a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites? Are adequate measures taken to prevent soil runoff? (a) Is there a possibility that alteration of topographic features and installation of 	(a) Y	 retaining walls) will be considered in the D/D stage. (c) Soil runoff from cut and fill areas is a possibility. If necessary, appropriate soil-runoff prevention measures (e.g. revegetation, retaining walls, silt fence, erosion mats) will be implemented. (a) The Mukono access road will cross over two tributaries inside Nandagi Forest Reserve. Culverts will
		structures, such as tunnels will adversely affect surface water and groundwater flows?		be installed at these location to avoid disturbance to their flow.
4 Social Environment	(1) Resettlement	 (a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement? (b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Are the compensations going to be paid prior to the resettlement? (e) Are the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? 	(f) Y (g) Y (h) Y (i) Y	 (a) The Project has made every effort to minimize land acquisition through corridor sharing of the transmission lines. Nevertheless, land acquisition will be required at Buloba (approx. 14 ha), Mukono (approx. 35 ha) and Kawaala (approx. 0.05 ha) sites. Buloba: According to the ongoing RAP study, the following 6 structures lie within the land acquisition area: Residential structure: 1 Incomplete structure: 3 Pit latrine: 1 Water tank: 1 Involuntary resettlement of the residential owner is unlikely to be required as there is sufficient land to rebuild the existing residential structure within his land boundary and no request for resettlement has been raised so far. Note that the owners of the incomplete structures currently live elsewhere so will not be subject to resettlement. Mukono: According to the ongoing RAP study, the following 4 structures lie within the land acquisition area: Residential structure: 1

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	t c f (i i	 (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? 		 Incomplete structure: 1 Pit latrine: 2 Involuntary resettlement of the residential owner is unlikely to be required as there is sufficient land to rebuild the existing residential structure within his land boundary and no request for resettlement has been raised so far. Note that the owners of the incomplete structures currently live elsewhere so will not be subject to resettlement. Kawaala: According to the ongoing RAP study, only 1 pit latrine lie within the land acquisition area. No resettlement will hence be required. (b) The Project held consultation meetings with the communities in Buloba (2 times), Mukono (2 times) and Kawaala (once), and explained about the project and compensation policies. All affected landowners were also consulted during the land and asset valuation surveys. No objections were raised by the community or landowners. (c) The ARAP will be developed based on the ongoing socioeconomic studies. Compensation programs will be developed based on the ongoing socioeconomic studies. Possible livelihood restoration programs may include among others provision of employment opportunities (e.g. construction labor) and other alternative income generating sources (e.g. poultry) depending on the interests of the affected communities. (d) Compensation and necessary assistance will be provided prior to resettlement in accordance to Section 42(7)(b) of the Land Act.

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				in accordance to Ugandan laws and JICA requirements. The policies are described in the Inception report of the ARAP study, which has been submitted to the Office of the Chief Government Valuer on April 1 st , 2016. (f) The Project will conform to the requirements of WB OP 4.12 and best practices in regards to the needs of the vulnerable groups if any (e.g. women, orphans, people with physical disabilities). These may include for example provision of resettlement houses and giving priority for livelihood restoration assistance. (g) If resettlement is required, UETCL will provide necessary assistance (e.g. transport allowance, support to find new location) depending on needs of the PAPs. (h) UETCL will establish RAP unit to handle all RAP-related activities of the Project. The RAP unit will consists of 7 expert staffs of UETCL. Budget will be secured after cost estimation made through ARAP study. (i) Internal and external monitoring will be implemented throughout the RAP implementation period and until assistance for livelihood restoration are no more required. (j) A Grievance Resolution Committee (GRC) will be established to resolve issues quickly so as to expedite receipt of entitlements and smooth resettlement without resorting to expensive and time-consuming legal action. GRC will consist of UTECL staff, local leaders and third party representatives. If the grievance procedure fails to provide a settlement, complainants can still seek legal redress.
	(2) Living and Livelihood	(a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered	(b) Y	(a) According to the ongoing RAP study, seven and twenty landowners will lose part of their farmland in Buloba and Mukono respectively due to land acquisition.

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		to reduce the impacts, if necessary? (b) Is there a possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary? (c) Is there any possibility that installation of structures, such as power line towers will cause radio interference? If any significant radio interference is anticipated, are adequate measures considered? (d) Are the compensations for transmission wires given in accordance with the domestic law?	(d) Y	 Owners of these farmland will be compensated for their growing crops in accordance to the District Compensation Rates plus 30% disturbance allowance. They will also be provided necessary assistance (e.g. transition support, livelihood restoration program) depending on their interests. There are also some private farmers operating under NFA lease in Nandagi Forest Reserve, which will lose part or fully their leased land due to land acquisition. These private farmers grow mainly commercial trees and will be compensated for their growing trees in accordance to the District Compensation Rates plus 30% disturbance allowance. They will also be provided necessary assistance (e.g. transition support, livelihood restoration program) depending on their interests. (b) The risk of infectious diseases spreading is considered low as most workers will be employed locally. Nevertheless, the project will hold awareness programs (e.g. HIV/AIDS prevention program) and prepare a Code of Conduct to be strictly followed by the workers. (c) Radio interference is unlikely as the new transmission lines traverse through open land. (d) All landowners under the new transmission line corridor will be compensated in accordance to Ugandan Law.
	(3) Heritage	(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a) N	(a) There are no heritages in the project affected areas.
	(4) Landscape	(a) Is there a possibility that the project will	(a) Y	(a) There will be slight changes to current landscape at

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		adversely affect the local landscape? Are necessary measures taken?		the new substation sites (Buloba, Mukono) and associated transmission lines. To minimize landscape impacts, the construction sites will be restored as close as possible to the original landscape (e.g. through revegetation) and green belt created, if necessary.
	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?	(a) N (b) N	(a) & (b) There are no ethnic minorities and indigenous peoples in the project affected areas.
	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents? 	(a) N (b) Y (c) Y (d) Y	 (a) Working conditions will be managed in accordance to Ugandan labor laws (e.g. The Employment Act, 2006). (b) Safety of workers will be managed in accordance to: UETCL's Safety Health and Environmental Policy The Workman's Compensation Act, 2000 The Occupational Safety and Health Act, 2006 The Electricity (Safety Code) Regulations 2003 JICA's "The Guidance for the Management of Safety for Construction Works in Japanese ODA Projects" Safety measure among other will include: Implementation of safety training programs for all workers. Assignment of safety officer Provision of Personal Protective Equipment (PPE). Holding of regular tool box meeting to discuss safety. Lock out-tag out procedures to be clearly displayed on site and followed. The construction contractor will be required to submit an Occupational Health and Safety Plan (OHSP) to UETCL and other necessary organizations for approval.

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
				(c) See (b).(d) Security guards will be required to strictly follow the Code of Conduct.
5 Others	(1) Impacts during Construction	 (a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts? 	(a) Y (b) Y (c) Y	 (a) An Environment and Social Management Plan (ESMP) is developed to minimize impacts (e.g. noise, air pollution, water pollution, wastes) during construction. (b) The following measures are planned to minimize impacts on the natural environment in particular for Buloba and Mukono: Revegetation of exposed surfaces (e.g. cut and fill slopes) to be done by native plant species only, and immediately after works are completed to minimize chance of colonization by invasive species. Implementation of environmental awareness programs for the construction workers, with special focus on threatened species. Strictly prohibit hunting and poaching of wild life and cutting of trees. Prevention and minimization of pollution (e.g. noise, water) through strict implementation of planned pollution control measures. (c) Construction activities may cause temporary power outage and traffic disruption and accidents. Adequate measures are planned in the ESMP to minimize impacts/risks of power outage and traffic disruption and accidents.
	(2) Monitoring	(a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts?(b) What are the items, methods and frequencies of the monitoring program?(c) Does the proponent establish an adequate	(a) Y (b) (c) Y (d) Y	 (a) An Environment and Social Monitoring Plan (ESMoP) has been developed covering both construction and operation stages. (b) The ESMoP includes internal and external monitoring of PAPs, field measurements (air, noise, water), ecosystem monitoring, progress of offset programs for

Category	Item	Main Check Items	Yes: Y No: N Unknown: U	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)?(d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities?		 Nandagi Forest Reserve, regular site inspection and so on. See ESMoP for more details. (c) The monitoring responsibility and cost are outlined in the ESMoP. The monitoring cost will be incorporated into the Project budget. During the construction stage, the construction contractor and supervisor will be required to assign an Environment, Health and Safety officer to implement and oversee the monitoring requirements. The environmental department of UETCL will be responsible for implementing their monitoring requirements. (d) Monitoring report will be submitted to NEMA in accordance to their requirements. The monitoring results will also be reported to JICA on a regular basis.
	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Road checklist should also be checked (e.g., projects including installation of electric transmission lines and/or electric distribution facilities).	(a) Y	(a) Road checklist (Hydrology) was referred for the access road construction.
	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed, (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a) N	(a) There are no transboundary impacts.