S13.3-24 WORKSHOP (HYDRAULIC ANALYSIS OF DMAS IN HONIARA)

Hydraulic Analysis of DMAs in Honiara

Purpose .

To Identify specific location which to Installed PRV Devices in Selected DMA with Pressure control and also to determine the sizes of the PRV.

Also to give raise to concerning about the existing pipe capacity which might give Negative Pressure to parts of the DMAs.

Process of idenitfy of pipe Network- for each DMA.

- * A tentative DMA is selected base on the Network configuration and polygon was drawing to identify it as one DMA.
- * The isolated DMA with its network was exported to water Gem with all its characteristics and Elevation (from Contours)Profile for Network Modelling.

Section of Supply Network

Polygon Boundary isolating a Supply Zone

Process of Acquiring of Consumption Data

- * All customers in each DMA have their co-ordinates been taken and can be feature in the GIS System.
- * Imported consumption data(1 year) from NCS and average taken for each customer meter in the DMA to provide bases for DMA water Demand projection
- * This can take a day to compile and pass it to Hydraulic Engineer for Analysis (for at least 2 DMA)

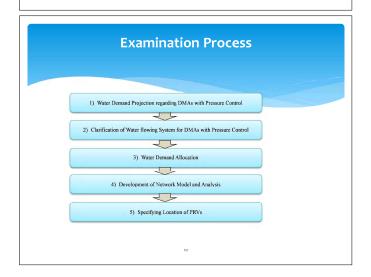
Customers within a Supply Zone

	the station year				Max	lefe brand i	10.4384	- Faid										1	00 0er#
🙈 Xos nos hi k z = =1	B. D. May Test	Test		1963	100	Name	-	Ord	50		Neutral				御:	* 10	Σ Autofam		
Balay a				Conditioned	in the second	I. TOTAL			v las		Links 1		AHM .			ielete Farmat	A 44 -	South First A	
Planettern 0 1 0 - 11 - D - L - EM	(E) (E) (E) Lifebrard Carder -	2.0	1.20.21	Nemating	549.8	- Berneter			7	G.	1.446.0		1000				de Chen	Filler * Select *	
Optound 5 Font 6	Algeners	s Not	br 5						204							Celts	6	laking	
AL TION A MALE																			
1																			
A ACCT ID CLUT MM	C D	1			н						N	0	P	9			- T	U V C 000#01 000#00	
ACCT D CLOT_MAI	CUST_TY VETEJO	STAPUS	0 0010,00	0010_00	0,000	0	COND_S	D CONG_DE	0010_00	cono os	0 0000	0010	E 0010_13 0	2040_11	NO_140	in cons_A	COND_NAM	U 101734-47	
a sumi-i Malayanaku	1 100,0000		113.0	10	11	2	0					24	10	14		22	10	A4 101201./1	
4 EDEL-2 KENDRICK SANSA	1 129002073		26.55	23	22	23	22		183	32	1	2		32		12	31	2003 600540.5	
5 EDRE-2 DICK TAMATA	1 154300954		1			0	0		-							12		0 601523.54	
6 EDED-3 RINO TEXTMU	1 134300797		1.1	1		0	8	1.1	- 1	1.1	0		1.1	1.		11	0	0 601911.09	
7 CODE DUMA LAUNCE	1 120001274	-	146.51		15	24			1.1	12	7	10.	10	13		13	13	427 101575.40	
8 DISEAL JOIN MINOR	1 128305454		1348.11	18	18	38	38	14	15	14	35	55	14			13	15	NOV 101270-25	
a man incounci	1 120041222		241.22	14	22	22	71	24	16	22		×	N	- 24		11	32	991 674985 59	
LC DUBOS HINTO	1 120011276		EN.M		15	82	60	44	14	41	28	- 0		11			- 10	1021 101271-07	
13 01000 MICOLD KARLA	1 109012002		242.42	17	15	er.	21	10	p	12	12	00	12	17		13	64	722 081200.73	
12 DUDRES DRACKNOWS	3 154000903		208.18	28	32	33	2.8	10	7	20	1	- 10	17	37		- 13	- 17	273 054100.00	
LA SSER-2 BOOK MANAGE	1 10000001		20.34	1	2	1	2	-2	12	22		1	10	14		22	1	227 100/0214.30	65
14 SORD-3 SHELLY FORM	1 134200723	D.	0			0	2	4			0					12	1	18 102020.37	
15 EDDE-4 RUMAE TRADPO	1 188.000714		81.85	2	2	- 6	7	13	11	22	1.1	4		12		13		208 601871.07	
18 EDBEF-06 STANLEY PONDE	1 130003753		55.84	7	7	11	27	-11	25	64	15	25	10	41		11	23	756 652355.96	6
17 EDBET-3 ALLISON ALMAN	1 12008755		-45	1.0		0	D			2	15	22	24	13		13		281 602175.33	
18 DODD,7 BUZARITH RAMON	1 128005837		125.28	13	11	11				2		54	28	4		53		264 601338.81	
16 INSTRA MODISMAITZES	10105		290.27	- 55	10	11	35	33	25	12	15	30	14	20		.12	27	071 600131 40	61.1
20 SLODE ROBERT LANS.	1 134 300923		112.02	12	82	17	22		#2	70		12		45		13		2284 401894.89	40
21 REPROPER INDREAM CNTCHPRISES	1 304265458		1279.43	124	120	52	52		5	15	32	23	22	34		53	-44	3432 011500.00	8
12 GUDDE-3 LEGINARD KN/7912	1 60+320900		320.27	14	20	27	44			1		- 20	22	24		23	24	200 004243.28	42
2) SUBS-3 SUDORYMUS	11000000		2114	18	44	2			2	15			14	42		22	44	277 0912221.82	u i
in fears DAUSTRUE	1 129099907		341.52	34	33	55	45	31	40	30	.25	42	- 10	45		13	77	1297 10199132	10
25 E0309-1 HELLEN T FELMER	1 120061190		72.8	3	2	5	6	2	4	23	4	7		12		13	6	234 602830.30	
28 (2000) PETTESON CLOPIA	1 129001196		1.522	15	15	35	22	22	37	58	15	25	25	42		12	25	816 601527.25	
27 00000-00 LIONELINEAN1	1 134300642	(b)			0	0	0				0	0	0			11	0	0.801537.32	36.8
20 DODI BEN MERANGAO	1 120053188		65.94	- 2	2	2	2	-4	-12	4	80	54	19	52		53	15	AR1 602935.69	
30 20233 MAKINI	1 120/21186		61.45	4.2	62	42	- 12	54	As	45	25	42	56	75		11	41	1814 801939.47	
10 REALS 1 BONA & LTRVEN BOBBY	1 120101187		77.8	2										3		13		141 001201.00	17.1
21 REARS FOLOV FLAMEURE	1 554,869,255		\$35.22	- 15	15	3.6	5.4	- 0	43	8.0		56	23	46		5.8	56	580 544700.83	
12 DURSE-1 ALICK KAMADI	3.0/\/VE		130.17	75	11	24	12	33	99	39	38	- 20	93	30		33.		390 001848-33	
33 READS VICKY P VENON	1 129003063		031.41	95	60	04	14	40	34	00	20	.44	30	40		23	32	3070 0115004.33	
SE REAL PATRICK TOM CHOICALDA	1 128003082		273.53	-40	-42	-29	38	27	1	34	2	8		12		13	-0	43 101503.85	
25 CORT-1 PATRICK HARCARA	1 129061064		137.7	15	15	15	24	14	21	24	13	20	17	15		23	17	553 600899.4	
31 KOR38 ASANETH TALO	1 134300942		371.55	43	42	45	44	32	42	40	34	38	52	60		22	41	1335 6CCE74.4	
37 DUDD-1 ANDREW KALIMA	1 138300941		\$152.8	12	11	32	- 54		13	28	6	12	12	28		- 53	13	642 664874.19	
20 E0828-3 DR GEORGE MANAMU	1 128300942		25.25	3	2	- 4	- A.	4	- 1	2	4	11		25		33	8	261 601874.32	
to know Haar (Bon All)	1 154.00598		101.82	7	2	11	54	13	15	14	4		13	12		- 11	11	161 SELDER 75	
IN REAL BENCHMAN OVER	1 134,900,000		253.39	22	36			- 94	- 75	29	- 58	36	- 94	99		53		151 APERIO M	
AL READ REALIZING	4 620065005		265.84	47	26	20 7	32	- 22	26	- 22	6.8	26	- 8	88		55	- 27	007 SEA30.35	16.4
I I Steen (F)										1.01									

Imported Data from NCS

NCS and GIS Data Combined

ACCUE	CUST_NM	CUST_IV METE_ID	STATUS CONS_01	CONS_02	CON5_03	CONS_04	CONS_05	CON5_06	CONS_07	CONS_08	CONS_09	0005_10	CONS_11	CONS_12	NO_MON	CONS AV CONS R
8003-1	ALLOK KAKASI	1 0/UNE	32	32	31	50	31	29	38	31	20	12	30	31	33	12
\$5042-62	ALTIN CADHTAR	1 \$1340628	34	34	37	36	35	28	24	25	10	15	20	30	23	12
00042-04	FREDSON FEMULA	1 \$19800133	4	4	. 3	3	4	6	5	17	15	4	1	0	0	12
00049-00	LAW RENCE KERA	1 129011137	47	42	45	10	45	54	29	25	24	z	22	25	z	12
\$6049-62	SCN4LD LALRU	1 04INE	32	32	31	30	31	29	38	31	18	15	30	30	23	12
20049-2	RCBU SAENA	1 DAINE	22	32	31	30	33	29	35	31	- 18	15	30	50	23	12
55049-6	ATHONY EMARAE	1 DUNE	32	32	31	30	31	29	33	31	15	15	20	31	34	12
20049-7	FRECA OKU	1 134000022	42	4	43	4	51	71	55	101	152	5	34	137	298	12
\$\$549-9	SAVESTER OLD	1 124005421	100	;03	:03	97	83	50	45	95	20	24	4	53	82	12
\$1050	IF MIFFER RARING	1 DONE	υ	υ	31		31	20	37	31	18	15	10	11	32	17
\$\$\$50-3	JCB TIRGKA	1 124004695	54	54	55	54		0	0	0	2	25	44	29	:5	12
56073-600	JAAFT ARROPO	1 096053453	11	15	12	12	1.5	15	12	15	11	13	12	15	20	52
01073-05	LESUE ATA	1 064021702	22	22	2	21	18	12	15	15	13	10	12	15	12	12
60073 05.1	JOVFOR4 KR2J	1 129030841	17	2	15	15	21	25	25	20	10	11	14	15	7	12
\$1073-06	DANTE TOURABLUCA	1 068940495	47	47	57	51	53	42	-44	82	70	34	21	39	64	12
00073-07	MALACHE HOU	1 \$13400571	42	42	43	45	53	65	50	73	14	20	30	53	33	- 12
20073-08	EETTY KUMA	1 5.34(CIS)	74	74	83	81	83	65	60	85	55	11	0	0	0	12
2007/5-09	HUR BURGLARD	1 USNE	S	s	51	24	54	36	52	54	64	21	30	0	- 27	24
50073-11	3225 5484512	1 054018891	85	88	107	90		93	45	50	30	15	17	26	82	32
8073-14	WUSCH54/WSL/MOD	1 0.5M	N	8	37	*	34	32	30	32	24	19	30	53	33	12
14072-15	AMERICISE SADE	1 1340109.4	125	125	20	126	:45	99	22	78	119	61	116	112	189	12
\$1073-18	DUDDLEY FAKS	1 \$19900215	20	20	21	21	22	22	25	35	18	0	0	0	0	12
66073-13	HANSELSAEN:	1 0/UNE	31	31	34	30	34	32	30	32	24	15	21	29	27	12
\$1073-191	CIVITHA MARTICOA	1 138029484	29	23		21	25	31	25	23	21	17	23	22	2	12
8(03-22	JCHNUSLRAMO	1 066942175	47	6	5	51	5	54	9	73	57	q	72	50	40	12
10(73-220	DIMINE WATCH	1 134000659	25	25	31	30	33	30	25	35	33	15	21	25	35	12
00073-201	DERICK SLIMAE	1 11400787	3	29	34	35	3	37	30	30	25	17	18	17	12	12
\$1073-25	JERTY MANUE	1 1240054.1	155	155	179	171						54	154	222		12
\$1073-27	ULV LOVULO	1 124005195	66	68	77	75	91	91	72		116	9	35	39	117	12
51(73-32	WESCHEIT	1 07-000169	1		- 1			10								13
64/72 12	GEORGE KARINESE	1 129366835	12	32	27	36	8 1	26	25	29	21	17	2	20	27	12

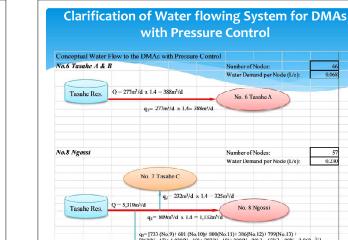

S13.3-24-1

Hydraulic Analysis of the existing distribution and Examination for PRV Specification

- * Examination Process
- * Water Demand Projection regarding DMAs with Pressure Control
- Clarification of Water flowing System for DMAs with Pressure Control

9

- Water Demand Allocation
- * Development of Network Model and Analysis
- * Specifying Location of PRVs
- * Summary of PRVs and Bulk Flow Meters to be installed in DMAs with Pressure Control



Water Demand Projection regarding DMAs with Pressure Control

- * The following are the design criteria for water demand projection:
 - * Estimating based on the billed water consumption in the past one
 - In addition to the above billed water consumption, considering the number of illegal connections based on experienced results of pilot project as this will affect the flow quantity and hence Available Heads(effective Pressure)
 - Applying growth rate of 3.1% based on Master Plan (2006) for water demand for the next five years.
 Applying 30% of NRW ratio based on overall goal shown in PDM.
 - Applying 30% of NRW ratio based on overall goal shown in PDM.
 Applying 0.6* and 1.4 of low and peak hourly factor respectively
 - * Factor of 0.6 was applied for verification of a flow range of PRVs.

Water Demand Projection regarding DMAs with Pressure Control

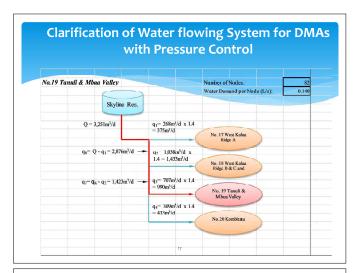
	Actual Average Customer Consumption in	Daily Water Consumptio	Ratio of Ilegal	Assumed Water Consumption of the Total existing	Predicted Water Consumption	NRW Ratio for	Predicted Water	Predicted Water		Flow Rate /hr)	Attachmen Remarks (Estimated Wate	
DMAs with Pressure Control	Oct. 2013 to Sep. 2014 (m ⁵ /month)	n Rate (LCD)	Connection (%)	Households (m ³ /month)	after Five Years ^{*1}	Puture (%)	Demand (m ³ /month)	Demand (m³/day)	Min. (x0.6)	Max (x1.4)	Demand (m ³ day based on Number Customers)	
	8)	-	b)	c)=a)/((100- b) 100)	d)=c)x (1-0.031)*5	e)	(100- e))/100	g)=f)/30	h)=g)x 0.6/24	i)=g)x 1.4/24	Customers)	
io.6 Tasahe A&B	3,991	172	20	4,985	5,812	30	8,303	277	6.9	16.2		
lo.8 Ngossi	13,118	193	10	14,576	16,980	- 30	24,257	809	20.2	47.2		
io. 9 Mbokona	12,548	191	5	13,208	15,386	30	21,980	733	18.3	42.8		
lo.11 Vavaca Ridge	12,981	192	10	14,423	16,802	30	24,003	800	20.0	46.7		
io.13 Mbokonavera	12,971	178	10	14,412	16,789	30	23,984	799	20.0	46.6		
lo 19 Tanuli & Mbua Valley	11.468	151	10	12,742	14,843	30	21,204	707	17.7	41.2		
io.22 Kombito Boaderline, akson Ridge & Bura	13,001	132	20	16,251	18,931	30	27.044	901	22.5	52.6		
Total	\$0,078	173		90,601	105,543		150,775	5,026	126	293	4,6	
io 22 Kombito Boaderline, akson Ridge & Bura	13,001	132		16,251	18,931	30	27,044	901	22.5	52.6		

q1 = 809m³/d x 1.4 = 1,152m³/d qr = [733 (No.9)¹ 601 (No.10)¹ 800(No.11)¹ 386(No.12)¹ 799(No.13)¹ [268(No.17)¹ 1.038(No.18)¹ 707(No.19)¹ 309(No.20) 1 x 65% System for DMAs with Pressure Control

lo.13 Mbokonavera	Number of Nodes:	96
	Water Demand per Node (L/s)	
		0.155
	= 601m ³ /d x 1.4 = l1m ³ /d No. 10 Lenggakiki	
45-733 (No. 9) x 1.4 + 800 (No.11)x 1.4 + 386 (No.12) x	q2= 733m ³ /d x 1- - 1,026m ³ /d No. 9 Mbokona	
1.4 + 759 (No.13) x 1.4 + [268 (No.17)+ 1,038 (No.18)+ 707 (No.19)+ 309 (No.20)] x 65% = \$,314m ³ /d	q ₃ - 800m ³ /d x 1.4 - 1,120m ³ /d No. 11 Vavaca Ridge	
q4=q<-q2 =4.288m ² /d	= 1,119m ³ /d No 13 Mbokonavera	
q ₇ =q ₆ -q ₃ = 3,168m ³ /d	No 12 Skyline	
	= 540m ³ /d	
Skyline Borcholes Skyline Res.		
35% of Water Demand for No. 17, 18, 19 and 20	No. 17 West K olso Ridge	
	No. 18 West Kelaa Ridge 15 & C and	
	No. 19 Tamili & Mbua Valley	

Water Demand Projection regarding DMAs

without Pressure Control


Clarification of Water flowing System for DMAs with Pressure Control

* In order to analyze distribution network of DMAs with pressure control, conceptual diagrams of water flowing system is illustrated in **Attachment-2**.

14

 Peak hourly factor of 1.4 is applied for hydraulic analysis of distribution network but not that of transmission lines.

S13.3-24-2

Water Demand Allocation

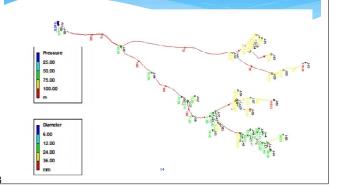
- Water demand is allocated at each node experientially. Water demand per node for all is constant in a particular DMA but water demand per node depends on water consumed in each DMA.
- Nodes are created by Water Gems as Network was imported from GIS and then Verified by the Hydraulic Engineer with Consultation with the Network Engineer

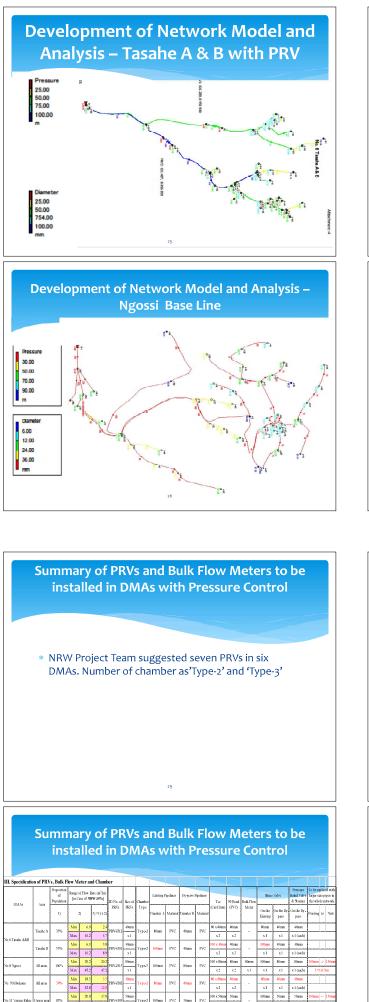
18

Development of Network Model and Analysis

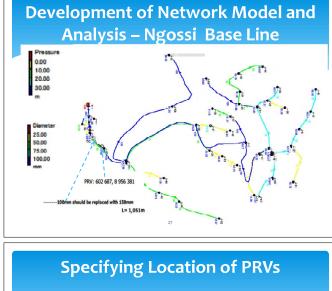
Water Demand Allocation

Water Demand Allocation

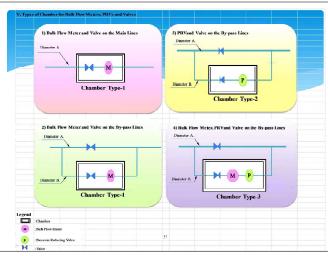

No. 6 Tasahe	A & B							
Network Tabl	e - Nodes							
	Elevation	Base Demand	Head	Effective Pressure	Static Pressure	Effective Pressure	Static Pressure	
Node ID	Ré	sult of analysis	by using ^v	WaterGEM	state ressure	With		
	m	LPS	m	m	m	m	m	
Junc J-1	55	0.068	114.4	59.28	97	42.28	60	
Junc J-2	55	0.068	114.58	59.47	97	42.47	60	
Junc J-3	50	0.068	114.55	64.42	102	47.42	65	
Junc J-4	50	0.068	114.56	64.43	102	47.43	65	
June J-5	72	0.068	148.86	76.70	80	27.7	28	
Junc J-6	72	0.0689	148.85	76.70	80	27.7	28	
Junc J-7	72	0.05	146.66	74.51	80	57.51	43	
Junc J-8	72	0.05	146.65	74.50	80	57.5	43	
Junc J-9	71	0.068	148.8	77.64	81	28.64	29	
Junc J-10	71	0.068	148.8	77.64	81	28.64	29	
Junc J-11	75	0.068	146.77	71.63	77	54.63	40	
Junc J-12	75	0.068	146.77	71.62	77	54.62	40	


The existing distribution network drawn in MapInfo is exported to Water GEM for hydraulic analysis. The following are design criteria for hydraulic analysis of the distribution network. Calculation Formula: Hazen-Williams Static head: 70m or less Velocity Coefficient (C) for Galvanized pipe & DI and PVC & polyethylene pipe: 100 and 110 respectively Minimum Residual Pressure: 0.1Mpa at each node (except particular node) In the light of reducing pressure with PRVs, some existing pipelines in No.8 Ngossi, No.11 Vavaea Ridge and No.19 Tanuli & Mbua Valley must be replaced with a larger size of pipes because of the encounter of negative pressure. 21 Development of Network Model and Analysis-Tasahe A & B No 6 Tasaho Day 1, 12:00 AM 25.00 50.00 75.00 <u>S13.3-24-3</u>

Development of Network Model and Analysis-Tasahe A & B

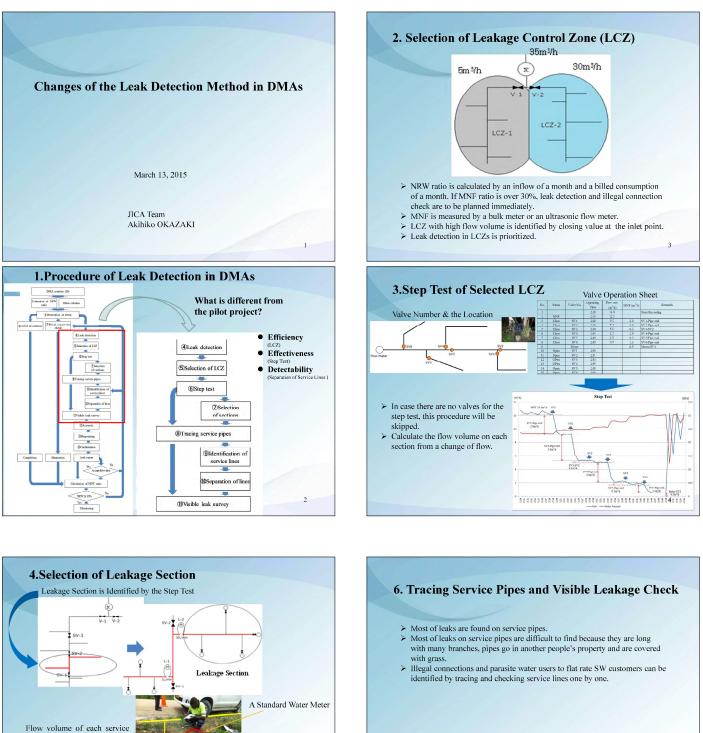

No. 6 Tas ahe A	&В				
Network Table -	Links				
Link ID	Length	Diameter	Flow	Velocity	Unit Headloss
LIIKID	m	mm	LPS	m/s	m/km
Pipe p - 57	2	20	-0.27	0.87	83.15
Pipe p-38	2	30	-0.14	0.19	3.2
Pipe p-30	3	75	0.75	0.17	0.87
Pipe p-47	3	30	0.1	0.14	1.81
Pipe p-35	3	50	-0.2	0.1	0.56
Pipe p-11	3	100	1.63	0.21	0.9
Pipe p-44	3	30	-0.2	0.29	6.77
Pipe p-41	3	30	0.14	0.19	3.19
Pipe p-43	4	30	0.14	0.19	3.19
Pipe p-26	3	100	1.56	0.2	0.83
Pipe p-48	6	30	-0.14	0.19	3.2
Pipe p-16	6	75	0.2	0.05	0.08
Pipe p=6	8	100	-0.34	0.04	0.05
Pipe p-7	6	100	-0.07	0.01	0
Pipe p-25	7	75	1.49	0.34	3.11
Pipe p-5	8	100	-0.54	0.07	0.12
Pipe p-32	8	50	-0.14	0.07	0.27
Pipe p-36	8	50	-0.14	0.07	0.27
Pipe p-21	8	75	1.16	0.26	1.94

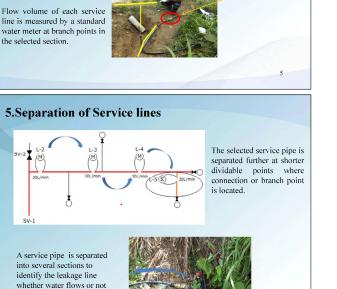
Development of Network Model and Analysis – Tasahe A & B Baseline



All areas 100% Western area

- After identifying location on the network model diagrams tentatively, NRW Action Team has the site reconnaissance to identify exact location of PRVs to be installed properly with GPS.
- * Location of PRVs with coordinates measured by using GPS was plotted on the diagrams.




		Re	sult						
DMAs	Area	Size of PRVs		Bulk Flow Meter	To be replaced with larger size pipes in the whole network				
					Existing	to	New		
	Tasahe A See the conceptual diagram	40mm shown in _X 4tachment-	Type-2	÷					
	Tasahe B	40mm X 1	Type-2						
		80mm	_	80mm	100mm	•	150mm		
	All areas	X 1	Туре-з	X 1		L=1,051m (PVC)			
	Eastern at upstream	40mm x 1	Type-2						
No.11 Vavaea Ridge		50mm			100mm	~	150mm		
Nom vavaea nidge	Upper area	X 1	Type-2	•		L=542m (PVC)			
No.13 Mbokonavera	All areas	8omm	Type-3	8omm					
nong moononavera	An al Eas	X 1	196.3	X 1					
No.19 Tanuli & Mbua Valley	Allareas	50mm	32 Type-3	50mm	25mm	*	50mm		
		X 1		X 1		L= 161m (PVC)			

S13.3-24-4

S13.3-25 FOLLOW-UP LECTURE ON THE LEAKAGE DETECTION METHOD IN DMAS

by a standard water meter.

Identify the leak point exactly

8

7. Leak Detection by Equipment

Acoustic Survey

Pinpoint Survey

Check a leak sound at water meter

Check a leak point from the ground

S13.3-25-1

8. Leakage Information Sheet Construction 24 36 36 36 36 36 36 37 36 38 36 39 36 30 37 30 36 31 36 32 36 33 36 34 36 35 36 37 36 36 36 37 36 36 36 37 36 38 36 38 36 38 36 36 Date of Nover. Date of Repair Name of DDLA Main Pipe 4. 1. CIP. 2 uPVC +0 mm 1. PE, 2 sP/C, 3. GP, 4. Das 5. Others() Diameter Service Pipe Leakage information should be recorded on the leakage record sheet when leaks are repaired. nn 9 (10) km (25n)danegg oftsat Oleren 2 Millen, 3 Senil, 4 Neurocher 7 stimmter (* 90 Depth Dis Leakage S for the second (Hefer) Information of leakage and pipes are to be updated on GIS system. C Ansards: Los Abri into a Dack Def Def Vendo 101 Def Vendo 102 10176 20170 103 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 20170 104 10176 10170 104 10176 10170 104 10176 10170 104 10176 10170 104 10176 10170 104 10176 10170 104 10170 10170 Information of Leak Repair

S13.3-26 MINI-WORKSHOP (PRESENTATION ON AGENDA OF 3RD JCC AND NRW STRATEGIC IMPLEMENTATION PLAN

PROJECT PROGRESS: 15 pilot projects and DMAs, AND Issues and Challenges.

3rd JCC Meeting Date: 19 March 2015 Venue: Solomon Water Conference Room

Contents

- Achievements of the Projects in the 15 pilot areas.
- DMA Progress
- Issues Encountered when Implementing the Non Revenue Water Measures.

Achievement of Project Purpose -

15 Pilot Areas

- Overall Goal: SW's Service level are improved and SWs Revenue is Increase.
- **Project Purpose**: SW is assisted to achieve its target of reducing the NRW ratio in Honiara to 30% by 2015
 - Indicator 1: The NRW ratio is reduced by 30 points in each pilot project area, selected DMAs and/or LCZs
 - Indicator 2 : Regarding the pilot project areas, selected DMAs, and/or LCZs where the NRW ratio before the implementation of NRW reduction measures are less than 30%, the NRW reduction measures are implemented in accordance with features of each area and/or zone, so that effectiveness of the NRW reduction measures are validated.
- All Pilot Areas achieved NRW reduction point of 30 points.
- Lengakiki and Tuvaruhu 1 went through additional countermeasure to achieve 30 points reduction.
- Mbaranamba Case: NRW ratio before countermeasure was already less then 30 points.
- NRW reduction measure was implemented to satisfied indicator 2.

Output 1 – Planning process of SW for NRW Reduction is Systemized

- Indicator 1-1: Annual Budget for NRW is secured in the pilot project areas and LCZs.
 - Total Cost incurred by NRW in the 15 Pilot Areas is SBD2.23 Million.
 - Equate to SBD 148,800 per pilot area, or
 - SBD 152,500 per 100 household
 - SBD 100,400 per km of pipe (total pipe length of pilot area approx. 22km)
 - If converted to whole Honiara City (total pipe length approx. 178km), the total estimated cost is SBD 17.87 M in today's value.

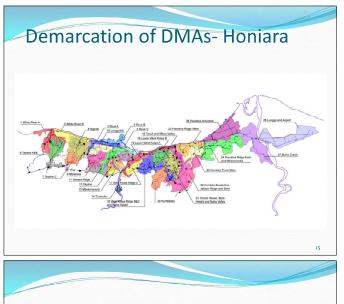
Increase in Revenue Water Volume as a result of NRW Reduction Activities in 15 Pilot Areas

- Total Revenue Water before NRW Reduction Activities is 1420.6 m3/day
- Total Revenue Water after NRW Reduction Activities has increased to 2,845.4 m3/day
- Daily increase of Revenue Water as a result of the Project is 1,424.8 m3/day
- Converting to Monetary Value
 - Honiara's unit water supply price (not tariff price) is SBD 16.89/m3
 - The total annual revenue by the NRW Reduction is SBD 8.78 M
 - Annual Benefit by the NRW reduction is SBD 6.55 M (Total annual Revenue Total cost incurred)

- Indicator 1-2: The strategic Implementation (rolling-out) plan for NRW reduction of approved by management of SW
- Based on the result of the 15 pilot project, the preparation of rolling-out plan has commenced.

Output 2- The procedure for NRW reduction is established through the pilot areas and LCZs

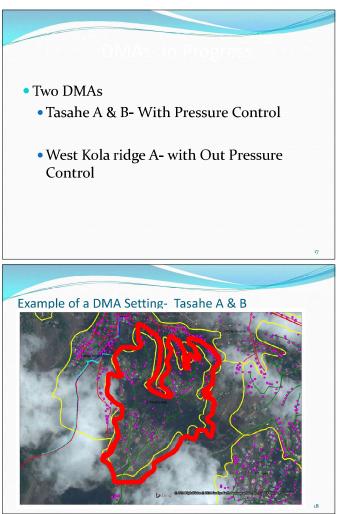
- Indicator 2-1: A manual for NRW reduction measures is prepared
 - This manual will consist of 3 components; NRW Reduction Measures; Leakage Detection Techniques; and Update of Database.
 - Manual will be prepared to include forms that are already in use during Phase 4 (Apr 2015-Oct 2015)

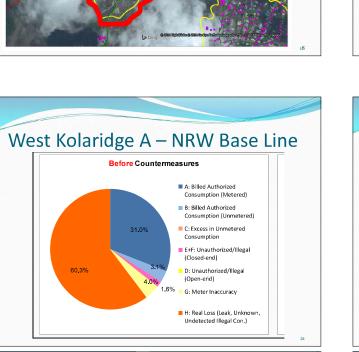

- Indicator 2-2: The number of authorizations and disconnections of illegal connections is increased **Installation of Customer Meters** in the pilot project areas and LCZs. (See Table 7) • 140 Illegal connection found in 15 pilot areas (See • The Project installed 974 brand new meters to Table 5). That is 9.6% of total HH. customers within Pilot areas from 1000 meters procured by JICA As a result of project, 38 illegals converted to valid • 378 meters to unmetered customers customers (27.1%). • 596 meters to replace faulty meters. • 102(**72.9%**) was disconnected. Output 3- NRW reduction is implemented in accordance with the procedure in pilot area and/or LCZ Indicator 2-3: The number of new service connections and replacement of malfunctioning customer meters Indicator 3-1: The number of pipe repairs is is increased in the pilot project areas and LCZs. increased in the pilot project areas and LCZs **Newly Connected Households** Total of 191 leaks detected in Pilot areas and all of Out of total HH (1464) in Pilot project area, 268 is them fixed. unconnected. (Not connected to SW service line) =18.3% Before Project, rate of leak repair is 46 per month for (See table 6)
 - As result of the Project, 31 HH (11.6%)connected to SW service. **88.4% remained unconnected**

Output 4- Water meter reading and billing process management are improved.

- Indicator 4-1: Standard operating procedures (SOP) and training materials are formulated.
 - Initial SOP for meter reading and billing system prepared in April 2013
 - This will be revised to include lessons learned through routine work.

District-Metered Area(DMA)

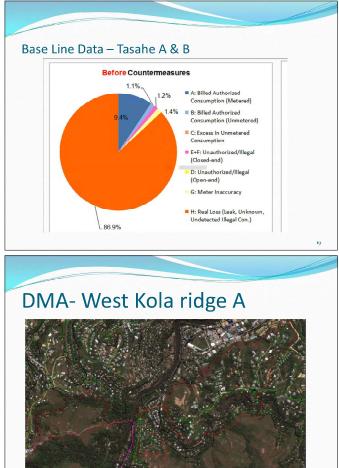

- Definition.
 - Its an isolated Metering Area where the Total flow into and out of the area is Monitored for DMA Management



Total No. Of DMA

whole Honiara (baseline).

- Twenty Eight(28) DMA
 - Six (6)DMA with Pressure Management.
 - Twenty two(22) DMA with out Pressure Management.


Issues & Challenges

Legalisation of Illegal Connections & New Services and Reconnection & Decrease in Customers – Pilot sites.

- Less customers legalised 27.1% legalised
- Only 11.6 % of 268 Create new accounts or Reconnected
 8.4% of the total customers were disconnected in the 15 Pilot.

Remedial.

- Awareness of water Tarrif frequent increase to customers
- Use of beneficiary pay principles.
- User pay policy(pay first before delivery of service)

Issues and Challenges- cont.

Leakages Detections and effective Use of Equipments.

• Most pilot projects & DMA leakages detected by Visual checks and hence pipe routes deep cover with vegetations and hilly terrains.

Remedial.

Effective use of Leakages Detection in areas in town DMAs.(Listening Acoustic Mechanical & electronic & Correlator)

Issues and Challenges- cont.

NRW Reduction in DMAs and DMA Management. We have 28 DMA for NRW Reductions

- Challenges is DMA Management
 - Monitoring
 - Maintenance
- Process was not completed and the gap need to be closed to maintain the NRW reduction- Sustainability.
- Remedial.
 - Reorganisation of the Operations &(Finances & Customer Service Team) to do Monitoring and Maintenance of DMA.
 - JICA /DFAT to continue the support for DMA Management