5.3 Current Discharge Capacity Analysis

5.3.1 Setting of the Conditions for the Analysis

The current discharge capacity of the Nadi River, including those of the Namosi, Nawaka and Malakua Rivers, was estimated with the non-uniform flow calculation.

The conditions used in the calculation are mentioned below.

(1) Setting of the Dike Heights for the Calculation

The dike heights to be used in the calculation of the discharge capacities were set by drawing the cross-sections of the river created from the surveying data (surveying cross-sections) and LiDAR data (LiDAR cross-sections) on the same diagrams.

Figure 5.3-1 to Figure 5.3-4 show the typical examples of the overlaid surveying and LiDAR cross-sections. As it is impossible to measure the elevation of water-covered areas with LiDAR, all those areas are shown with horizontal straight lines on the LiDAR cross-sections to maintain the continuity of the cross-sections.

As seen in those figures, there are approx. Im differences between the dike heights on the surveying cross-sections and LiDAR cross-sections. It is assumed that the LiDAR data gave elevation values somewhat higher than the actual values because the dense growth of weeds and sugar cane along the rivers interfered with the filtering of trees, a function of LiDAR. Meanwhile, as shown in Table 5.3-1, the use of a ground level of a protected area on a LiDAR cross-section as the dike height for the calculation was considered where the ground level of the protected area was not measured in the surveying, with the land use in the area taken into consideration.

As there is no significant difference observed in the shapes of the two types of the cross-sections, it was concluded that the surveying results were appropriate to be used for the hydraulic analyses. Field surveys were conducted to confirm the cross-sections at the locations where significant localized difference in the dike heights was observed when the cross-sections at the locations were compared with those just upstream or downstream of the locations and at the confluences of tributaries and channels.

Figure 5.3-1 Example of Overlaid Cross-sections (Nadi River)

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO., LTD./CTI ENGINEERING INTERNATIONAL CO., LTD. JV

Figure 5.3-2 Example of Overlaid Cross-sections (Namosi River)

Figure 5.3-3 Example of Overlaid Cross-sections (Nawaka River)

Figure 5.3-4 Example of Overlaid Cross-sections (Malakua River)

Table 5.3-1 Examples of Dike Height Evaluation of Surveying Data and LiDAR Data

(2) Setting of the Water Level at the Downstream End

The water level at the estuary of the Nadi River (0.0km) was used as the water level at the downstream end of the water level calculation. The average maximum sea level in the five-year period between 2010 and 2014 was used as the water level at the estuary. However, as the sea level has been measured only at the two stations at Lautoka and Suva in Fiji, the data of the sea level observed with the tide gauge installed closest to the project area, *i.e.* the gauge at the Lautoka Station, were used as the base data and corrected with the reference data obtained with the pressure water level gauge installed near the estuary of the Nadi River (on the left bank approx. 1.3km from the estuary) in this project. As the data of the observed water level near the estuary of the Nadi River is being analyzed, the average maximum sea level in the five-year period between 2010 and 2014 was used as the primary water level at the estuary in the following.

As the datum (zero elevation) of the river surveying was established at "MSL at Lautoka = 1.1538m," the water level at the downstream end at the estuary of the Nadi River was set at "1.188m (= water level at the estuary: 2.342m – 1.1538m)."

	,					(m)	
Month	Year	Gaps	Good	Minimum Sea Level	Maximum Sea Level	Mean Sea Level	St Devn
1	2010	0	7440	0.169	2.437	1.335	0.498
2	2010	0	6720	0.184	2.421	1.307	0.474
3	2010	0	7440	0.237	2.419	1.258	0.492
4	2010	0	7200	0.259	2.391	1.266	0.471
5	2010	0	7440	0.283	2.154	1.237	0.469
6	2010	0	7200	0.199	2.127	1.226	0.471
/	2010	1840	5600	0.149	2.104	1.203	0.44/
8	2010	0	/440	0.066	2.200	1.191	0.476
	2010	0	7200	0.135	2.291	1.211	0.475
11	2010	2126	7440	0.201	2.348	1.209	0.475
12	2010	2120	7440	0.221	2.243	1.250	0.432
1	2010	0	7440	0.240	2.203	1.230	0.488
2	2011	0	6720	0 184	2 3 3 5	1 295	0 494
3	2011	0	7440	0.253	2.388	1.312	0.487
4	2011	0	7200	0.218	2.398	1.293	0.483
5	2011	0	7440	0.263	2.364	1.319	0.469
6	2011	519	6681	0.295	2.271	1.307	0.466
7	2011	0	7440	0.330	2.273	1.319	0.488
8	2011	0	7440	0.317	2.358	1.323	0.506
9	2011	0	7200	0.313	2.478	1.333	0.506
10	2011	0	7440	0.243	2.479	1.357	0.500
11	2011	0	7200	0.179	2.364	1.320	0.484
12	2011	0	7440	0.266	2.415	1.317	0.478
1	2012	0	7440	0.322	2.324	1.359	0.471
2	2012	0	6960	0.338	2.235	1.341	0.486
31	2012	0	/440	0.390	2.393	1.42/	0.4//
4	2012	0	7200	0.348	2.494	1.413	0.487
	2012	0	7440	0.275	2.487	1.348	0.491
	2012	0	7200	0.195	2.343	1.319	0.489
- /	2012	0	7440	0.207	2.414	1.370	0.490
Q	2012	0	7200	0.313	2.337	1 373	0.503
10	2012	0	7440	0.400	2.040	1 359	0.001
11	2012	0	7200	0.184	2.414	1.346	0.491
12	2012	0	7440	0.241	2.529	1.376	0.492
1	2013	0	7440	0.225	2.515	1.383	0.500
2	2013	0	6720	0.198	2.303	1.307	0.499
3	2013	0	7440	0.365	2.256	1.293	0.492
4	2013	0	7200	0.280	2.337	1.305	0.495
5	2013	0	7440	0.186	2.387	1.277	0.498
6	2013	0	7200	0.079	2.318	1.270	0.498
7	2013	0	7440	0.096	2.308	1.241	0.487
8	2013	0	7440	0.193	2.315	1.236	0.484
9	2013	0	7200	0.310	2.272	1.279	0.488
10)	2013	0	/440	0.375	2.227	1.299	0.483
11	2013	0	/200	0.276	2.272	1.336	0.489
12	2013	0	7440	0.239	2.403	1.353	0.498
	2014	0	6720	0.138	2.322	1.307	0.514
2	2014	1	7420	0.192	2.423	1.340	0.490
	2014		7200	0.209	2.377	1 320	0.014
	2014	0 03	7380	0.329	2.233	1.520	0.495
10 a	2014	00	7200	0.293	2.2/4	1.230	0.492
7	2014	0	7440	0.151	2.277	1.256	0.494
8	2014	524	6916	0.079	2,308	1,206	0.492
9	2014	0	7200	0.135	2.309	1.235	0.500
10	2014	0	7440	0.254	2.346	1,256	0.495
11	2014	0	7200	0.276	2 262	1 238	0 496

Fable 5.3-2 Observed Sea 1	Levels in Five-vear	· Period and Set	Water Level at	Downstream End
	Bevens in 11ve year	I cilou unu see	The second second	Downser cam Lina

FIJI

	2.342m
	Datum (zero elevation) of the river
	surveying
	1.1538m
	Water level at the downstream end
	<u>1.188m</u>
(Lautoka) Iber 2000	Datum Reference (in metres)
	4.3960

5-year average maximum sea level

Relationship between the surveying datum and MSL

[Source: Pacific Country Report pp.19-20, 2002, National Tidal Facility Australia]

[Source: http://www.bom.gov.au/oceanography/projects/spslcmp/data/monthly.shtml#table]

Table 5.3-3 shows the tropical cyclones (which are supposed to have had influence on the western Viti Levu Island) for which the sea level observation data is available.

The tropical cyclone (T/C) Gavin which affected Fiji in 1997 is supposed to have had caused a storm surge as the highest water level in the period between 1992 and 2014 was recorded. The fact that March 9th was the day of the new moon, as well as the low pressure caused by the cyclone, is considered to have caused the surge. Meanwhile, as the T/C Gene made landfall on Fiji on a day which was not close to either the new moon or full moon, it is assumed that the cyclone did not cause a storm surge exceeding the maximum sea level. The T/C Mick approached Nadi in 2009 days after the full moon (around December 2nd) and the T/C Evan reached the point closest to the western Viti Levu Island around December 17th, 2012, days after the new moon (around December 13th). Therefore, it is assumed that neither of them caused a storm surge exceeding the water level higher than the maximum sea level.

The discussion mentioned above indicates that storm surges had little influence on the maximum sea level in the five-year period between 2010 and 2014.

Date (Formed - Dissipated)	Name of T/C	Maximum Sea Level on the hour during T/C (m)	Maximum Sea Level in Month (m)
Mar 7 th , 1997 (Mar 2 nd – 11 th)	T/C Gavin	2.777	2.777 (Mar 8 th 5:42) *Maximum recorded level
Jan 28 th , 2008 (Jan 25 th – Feb 9 th)	T/C Gene	2.114	2.266 (Jan 22 nd) 2.263 (Feb 20 th)
Dec 14^{th} , 2009 (Dec $3^{rd} - 15^{th}$)	T/C Mick	2.277	2.309 (Dec 3 rd)
Dec 17^{th} , 2012 (Dec $9^{\text{th}} - 27^{\text{th}}$)	T/C Evan	2.521	2.529 (Dec 13 th)

Table 5.3-3 Major Tropical Cyclones and Maximum Sea Levels Recorded

Figure 5.3-5 Paths of Cyclones (the lines in yellow and light blue) in Past (between 1948 and 2008)

[[]Source: GIS data provided by SOPAC, PCRAFI/Component_1-Hazards/Historical Events]

Figure 5.3-6 Paths of Cyclones in Past (between 2008 and 2015)

 $[Source: http://en.wikipedia.org/wiki/2009\%E2\%80\%9310_South_Pacific_cyclone_season\#, etc.]$

(3) Characteristics of the River Channels (Segmentation)

It is important to understand various characteristics of existing river channels in the river channel planning. In this project, the channels in the Nadi River were classified into segments, or "parts with shared channel characteristics." The segments are defined as mentioned in the box below (p.60, Handbook for the Study for River Channel Planning, Japan Institute of Country-ology and Engineering, ed.). In principle, longitudinal gradient of riverbed and composition of riverbed material are used as the criteria for the classification. Accordingly, the channels in the Nadi River and its tributaries were classified into the segments mentioned in Table 5.3-5 by longitudinal gradient of the riverbed and composition of the riverbed material.

Segment

A longitudinal section of a river, including its part in a mountainous area, can be regarded as being composed of several sections, each of which has an almost uniform gradient. Similarity in various characteristics is observed in the riverbed material and river channels throughout each section with an almost identical gradient. Such a section is called a segment.

A segment means a section of river channel with similar characteristics. In principle, the entire channel of a river is divided into segments by longitudinal gradient of riverbed and composition of riverbed material. The division of a river channel into section with similar river channel characteristics is referred to as "segmentation." The use of segments as spatial units in a study and analysis of river channel characteristics is referred to as "the segment-based approach."

In Japan, a section of a river in a mountainous area where rocks are found on the riverbed and riverbanks and gravel is provided from collapsing slopes to the river channel is classified as Segment M. A river channel coming out of a mountainous area and heading to the sea is generally classified into three sections, which are called Segment 1 (channel in an alluvial fan), Segment 2 (channel in the intermediate area, a natural dike zone, etc.) and Segment 3 (channel in a delta) from upstream to downstream. Segment 2 is further divided into Segment 2-1 in the upstream and Segment 2-2 in the downstream by composition of the riverbed material and occurrence of sand waves.

	Sormont M	Someont 1	Segn	ent 2	Samont 2		
	Segment W	Segment 1	2-1		Segment 5		
	$<^{Mountainous area}$	< Alluvial fan >	Valley plain				
Classification by	Natural Javaa zona						
topography				<pre>vee zone ></pre>	Delta >		
Representative grain size of riverbed	Varies widely	2cm and above	3cm – 1cm	1 cm – 0.3 mm	0.3mm and below		
Riverbank composite materials	Rocks exposed on the riverbed and riverbanks at many locations	Same as the riverbed material with occasional thin layer of sand and silt on the surface	M ixture of fine sand, silt and clay With the same material as the riverbed material at the bottom		Silt and clay		
Standard range of the gradient	Varies widely	1/60 - 1/400	1/400	1/5,000 - level			
Meander	Varies widely	Few meanders	Many sharp meanders: formation of braided channels and bars where the depth ratio is large		Both large and small meanders		
Erosion on the riverbanks	Very severe	Very severe	Moderate (the larger the riverbed material, the more frequently channels change routes)		Little (Most of the channels do not change routes.)		
Average depth of the low-water channel	Varies widely	0.5m – 3m	2m – 8m		3m - 8m		
Corresponding sections in the Nadi River and its tributaries	-	Upper reaches of the Nadi River	Nadi River: 25.25k – (28.75k) Nawaka and Namosi Rivers	Nadi River: 4.00k – 25.25k (downstream of the confluence of the Namosi River Malakua River	Nadi River: 0.00k – 4.00k (Dense growth of Mangrove)		

Table 5.3-4 Segmentation and Characteristics in Each Segment

(1) Segmentation by Longitudinal Gradient of Riverbed

Figure 5.3-15 and Figure 5.3-16 show the longitudinal sections of the rivers. The longitudinal gradient of the mean riverbed elevation changes at 17.0km and 25.25km in the calculation section of the Nadi River (0.0 km - 28.75 km). These points were assumed as the boundaries of the river channel sections. Meanwhile, although the riverbed gradient in the most downstream section appeared almost the same throughout its length, the condition of the river banks of the area near the estuary (0.0 km - 4.0 km) in particular (the dense growth of mangrove) differed from that of the rest of the section and the composition of the riverbed material was expected to be different from that of the rest of the section. Therefore, this section was divided into the segments as shown in the table below. The three tributaries, the Malakua, Nawaka and Namosi Rivers in the calculation section, were classified into the same segment as there was no point at which riverbed gradient changes clearly in their channels.

Section	Gradient of the mean riverbed elevation	Segment
Nadi River: Estuary – 17.0km	1/4,200	2 - 3
Nadi River: 17.0km – confluence of the Namosi River	1/1,350	2
Nadi River: Confluence of the Namosi River – the upstream end of the calculation section	1/630	2
Nadi River: Upper reaches of the Nadi River, *: outside the calculation section	_	1
Malakua River: 0.0km – 7.0km	1/780	2
Nawaka River: 0.0km – 10.0km	1/860	2
Namosi River: 0.0km – 5.0km	1/480	2

Table 5.3-5 Segmentation of Nadi River by Longitudinal Gradient of Riverbed

(2) Segmentation by Representative Grain Size

Before the segmentation of the river channels by representative grain size, a representative grain size was set for each segment with the method mentioned below, which was provided in pp.57 - 60 of the Handbook for the Study for River Channel Planning, Japan Institute of Country-ology and Engineering, ed.

Although grain size distribution of riverbed material is believed to follow a logarithmic normal distribution closely, it usually consists of three or more groups of components with different characteristics in reality. In the sedimentology, a group of particles which forms the main mode of riverbed material is called Group A and groups of the finer and coarser particles are called Groups B and C, respectively, as shown in the conceptual diagram in Figure 5.3-7. The grain sizes at the points on the grain size accumulation curve where the gradient of the curve changed sharply were used as the boundaries between different groups as shown in Figure 5.3-7.

Percentage passing (%)

Classification by grain size group on various grain size distributions

Figure 5.3-7 Classification of River Bed Material by Grain Size Group

The riverbed material below the surface layer in alluvial fans consists of particles with mixed grain sizes including large-sized and small-sized particles. Among them, the small-sized particles contribute little to the riverbed variation. Mainly the particles in Groups C and A' contribute to riverbed variation and they also define the mobility of the riverbed material.

When the percentage of the particles in Group A" and those with smaller grain sizes account for 20% or less of the riverbed material, the mean grain size, d_m , or the 60% passing grain size, d_{60} , is not significantly different from the representative grain size of Groups C and A' (mean grain size of the particles in Groups C and A'). However, when the percentage of the smaller particles increases to approx. 30%, the difference between d_m or d_{60} and the representative grain size of Groups C and A' becomes too large for the latter to be an appropriate indicator of the mobility. Therefore, in such a case, the mean grain size or 60% passing grain size obtained from the grain size distribution of the riverbed material consisting only of the particles of Group C and A' is used as the representative grain size, d_R , which influences the mobility of the riverbed and riverbed variation.

It was decided to use the 60% passing grain size, d_{60} , as the representative grain size in this calculation. Table 5.3-6 shows the method of setting the representative grain sizes.

d ₆₀ of the riverbed material	Representative grain size, d _R
1cm or below	Use d_{60} as d_{R} .
	If the percentage of the particles in Group A" and those of the smaller sizes account for 30% or less of the riverbed material, use d_{60} as d_R .
1cm or above	If the percentage of the particles in Group A' and those of the smaller sizes account for 30% or more of the riverbed material, draw a new grain size distribution curve only with the particles in Groups A' and C and use d_{60} obtained from this new curve as d_R .

Table 5.3-6 Setting of Representative Grain Sizes

The result of the riverbed material survey conducted in this project (Figure 5.3-8) was used for drawing the grain size accumulation curves (Figure 5.3.0 and Figure 5.3.10) which were used for setting the

Figure 5.3-8 Sampling Sites of Riverbed Material Survey

Table 5.3-7 Scenes in Riverbed Material Survey

(Blue letters: Use d_{60} as the representative grain size, red letters: Create a new grain size distribution)

Final Report, Volume II Main Report, Part I: Master Plan Study

When the range of grain sizes is so wide that it is difficult to find the points where the gradient of the accumulation curve changes, the procedures to set the boundary grain sizes between the groups mentioned below were used.

- ① Draw a grain size accumulation curve of riverbed material of each segment.
- ② The boundary between a group of large grain particles, Group C, and the major component of the riverbed material, Group A', usually appear on a grain size accumulation curve as a point where the gradient of the curve changes sharply. Use the grain size at this point as the boundary grain sizes.
- ③ Regard the sand component as Group B. If a point where the gradient changes sharply is found on a grain size accumulation curve, use the grain size at the point as the boundary grain size of Group B. Such a point is usually found in the range of grain size between 1.0mm and 2.0mm. If a point where the gradient of the curve changes sharply is not found, use 2.0mm as the boundary grain size.
- ④ The boundary grain size between Groups A' and A'' often appears as a point on a grain size accumulation curve where the gradient of the curve changes sharply. If such a point is not found on the curve, use the grain size approx. one-eighth of the boundary grain size between Groups C and A' as the boundary grain size between Groups A' and A'' because a mixed-grain-size riverbed material is transported as a group of particles with the same grain size, when it is composed of coarse sand and the larger particles and the ratio of the largest particles to the smallest particles in the material is around 7 or 8.
- (5) If the ratio of the boundary grain size between Groups A' and A'' to the size of the largest particles in Group B is around 8 to 10, the particles with the grain sizes between the two are considered to belong to Group A''. If this ratio is larger than 15, particles with the grain size between the boundary grain size between Groups A' and A'' and the largest grain size in Group B are to be divided into groups so that the ratio between the largest and smallest particles within each group is approx. 8 and the groups thus formed are named Groups A'', A''', A'''', etc. in the descending order in the grain size.

The analysis of the riverbed materials sampled at ND-B-4, 5 and 6 (Nadi), NW-B-1 (Nawaka) and NM-B-1 (Namosi) revealed that the 60% passing grain sizes of these materials were 1 cm or above and the proportion of the material belonging to Groups A" to B accounted for more than 30% of the material. Therefore, new grain size accumulation curves shown in Figure 5.3-10 were drawn using the materials belonging to Group A' and C and d_{60} 's obtained from the new curves were used as the representative grain sizes in accordance with the procedures mentioned above.

Figure 5.3-10 Grain Size Accumulation Curves of Materials Belonging to Group A

From the above-mentioned analysis, the representative grain sizes mentioned in the table below were obtained.

Table 5.3-8 Representative Grain Sizes at Survey Points in Nadi River and its Tributaries

Survey point	Representative grain size (mm)	Segment
ND-B-1 (at the estuary of the Nadi River)	0.02	3
ND-B-2 (near 7.0k on the Nadi River)	2.0	2-2
ND-B-3 (near 17.0k on the Nadi River)	2.7	2-2
ND-B-4 (Upstream of the confluence of the Namosi River)	45.0	2-1
ND-B-5 (Upstream of the confluence of the Namosi River)	31.0	2-1
ND-B-6 (Upper reaches of the Nadi River)	38.0	1
ML-B-1	2.2	2-2
NW-B-1	40.0	2-1
NM-B-1	44.0	2-1

Table 5.3-9 summarizes the segmentation of the Nadi River and its tributaries based on the results obtained in (1) and (2) above.

Section	Mean riverbed gradient	Representative grain size (mm)	Segment
Nadi River - River channel section 1 (Estuary – 4.0km)	1/4,200	0.02	3
Nadi River - River channel section 2 (4.0km – confluence of the Namosi River, 25.25km)	1/4,200, 1/1,350	2.0, 2.7	2-2
Nadi River - River channel section 3 (25.25km – upstream end of the calculation section, 28.75km)	1/630	45.0, 31.0	2-1
Nadi River (Upper reaches of the Nadi River) *Outside the calculation section	_	38.0	1
Malakua River (0.0km – 7.0km)	1/780	2.2	2-2
Nawaka River (0.0km – 10.0km)	1/860	40.0	2-1
Namosi River (0.0km – 5.0km)	1/480	44.0	2-1

Table 5.3-9 Segmentation of Nadi River and its Tributaries

(4) Estimation of the Roughness Coefficients

It was decided to estimate roughness coefficients in each segment section mentioned above in this study. The roughness coefficients of low-water channel and high-water channel were estimated from the roughness of the riverbed and riverbanks (growth of vegetation), respectively, on the representative cross-section of each segment.

1) Roughness Coefficients of Low-water Channel

The flowchart provided in the Handbook for the Study for River Channel Planning (p.109) (Figure 5.3-12) was used for the estimation of the roughness coefficient of low-water channel in Segment 3. As the representative grain size (d_R) of Segment 3 in this study was smaller than 0.1mm, the smallest coefficient in the chart, 0.015, was used for the estimation.

Figure 5.3-11 Flowchart for Estimation of Standard Roughness Coefficient of Low-water Channel in Segment 3

The flowchart shown below (Handbook for the Study for River Channel Planning, p.106) was used for the estimation of the roughness coefficients of low-water channel in Segment 2-2.

Figure 5.3-12 Flowchart for Estimation of Standard Roughness Coefficients of Low-water Channel in Segment 2-2

As the representative grain size in the Segment 2-2 sections was between 2.0mm and 2.7mm ($d_R = 2.0$ mm – 2.7mm), the path marked in red in the above-mentioned estimation flowchart was used.

Coefficients of velocity, φ_1 (initial value) and φ_2 , were estimated using the dimensionless tractive force, τ_* , and depth/grain-size ratio, H/d_R, obtained under the condition of water up to the design high-water level. Then the coefficients of velocity thus obtained were used to estimate the roughness coefficients of low-water channel (Table 5.3-10).

Table 5.3-10 Hydraulic Quantities and Roughness Coefficients of Low-water Channel in
Segment 2-2 under Condition of Water up to Design High-water Level

River channel section	Mean water depth	Friction velocity <i>u</i> * (m/s)	Representative grain size d _R (mm)	Depth/grain size ratio H/d	Dimensionless tractive force, $ au_*$	Coefficient of velocity φ_1	Coefficient of velocity φ_2	Roughness coefficient of low-water channel
Nadi River, River channel section 2 4.00km – 25.25km	9.18	0.18	2.4 (2.0, 2.7)	3,905	0.84	19.91*	_	0.023
Malakua River 0.0km – 7.0km	5.33	0.16	2.2	2,421	0.76	18.84*	—	0.022

* The value obtained by multiplying the ϕ value for the flat riverbed by 0.9

The flowchart shown below (p.104, Handbook for the Study for River Channel Planning) was used for the estimation of roughness coefficients of low-water channel in Segment 2-1.

Flowchart for the estimation of the standard roughness coefficients of low-water channel

Relationship between τ_* and φ_I (when d is 0.4 cm or above)

Figure 5.3-13 Flowchart for Estimation of Standard Roughness Coefficients of Low-water Channels in Segment 2-1

As the representative grain size of the riverbed material in Segment 2-1 sections was between 31mm and 45mm ($d_R = 31mm - 45mm$), the path on the left side of the flowchart shown in the figure above was used in the estimation.

As in Segment 2-2, the coefficients of velocity, φ_1 (initial value) and φ_2 , were estimated using the dimensionless tractive force, τ_* , and the depth/grain-size ratio, H/d_R. Then the roughness coefficients were estimated using those hydraulic quantities (Table 5.3-11).

Table 5.3-11 Hydraulic Quantities and Roughness Coefficients of Low-water Channel in
Segment 2-1 under Condition of Water up to Design High Water Level

River channel section	Mean water depth	Friction velocity <i>u</i> * (m/s)	Representative grain size d _R (mm)	Depth/ grain size ratio H/d	Dimensionless tractive force, <i>t</i> *	Coefficient of velocity φ_1	Coefficient of velocity φ_2	Roughness coefficient of low-water channel
Nadi River River channel section 3 25.25km – 28.75km	8.71	0.20	45	194	0.05	_	16.86	0.027
Nawaka River 0.0km – 10.0km	5.13	0.10	40	128	0.01	_	15.83	0.026
Namosi River 0.0km – 5.0km	6.19	0.11	44	141	0.02	_	16.07	0.027

2) Roughness Coefficients of High-Water Channel

The roughness coefficients of high-water channel (riverbanks) were estimated from the results of the field study on the growth of vegetation and with the Handbook for the Study for River Channel Planning (Japan Institute of Country-ology and Engineering, 2002) used as reference.

Table 5.3-12 Vegetation in High-water Channels

Figure 5.3-14, which gave the relationships between the roughness coefficient of vegetation and the ratio of the expected water depths of herbaceous plants during the design flood to their heights for three different plant postures.

Figure 5.3-14 Relationship between Condition of Water Depth to Vegetation in High-water Channel and Roughness Coefficient (h: grass height, h_v:water depth)

<Thick growth of hard grass>

Hard grass means grass with a one- to three-meter-tall, erect and hard stalk, including reeds, silver grass and Canada goldenrods. The table below gives the friction velocities in flowing water, u*, of the hard grass in different postures.

Erect	Bending	Lodged
$u^* \le 12 cm/s$	$12 \text{cm/s} \le u^* \le 22 \text{cm/s}$	22 cm/s < u*

< Thick growth of soft grass>

Soft grass means grass with many leaves near the ground surface and a relatively flexible stalk, including green foxtails, barnyard grass and annual ryegrass. The table below gives the friction velocities in flowing water, u*, of the soft grass in different postures.

Erect	Bending	Lodged
$u^* \leq 7 cm/s$	$7 \text{cm/s} \le u^* \le 15 \text{cm/s}$	$15 \text{ cm/s} \le u^*$

The cross-sections of the Namosi River and the Nadi River near 18.50k were selected as the representative cross-sections of Segments 2-1 and 2-2, respectively, for the estimation of the roughness coefficients. The table below shows the roughness coefficients of the high-water channel at the two locations estimated from the existing vegetation. Roughness coefficient in Segment 3 was not estimated, because, practically, there is no plant other than mangrove in the high-water channel in the segment.

Table 5.3-13	Vegetation and	l Roughness	Coefficients in	High-water	Channel
Table 3.5-15	vegetation and	a Roughness	Coefficients in	Ingn-water	Channel

	USUGI	icht 2-1. Manio	si kivei, seg	ment 2-2. near 1	0.30K 01	the Maul Kiver)		
Predominant plants	Grass height hv (cm)	Hard/soft grass	Flow rate (m ³ /s)	Water depth h (cm)	h/hv	Friction velocity u* (cm/s)	Posture	Roughness coefficient n
Grass family plants (Segment 2-1)	150	Hard grass	63	Approx. 200	1.3	Approx. 15	Bending	0.060
Grass family plants (Segment 2-2)	250	Hard grass	540	Approx. 350	1.4	Approx. 20	Bending	0.060

(Segment 2-1: Namosi River, Segment 2-2: near 18.50k on the Nadi River)

Table 5.3-14 the roughness coefficients in each river channel section estimated as mentioned above.

Section (Segmentation)	Roughness coefficient [Low-water channel]	Roughness coefficient [High-water channel]
Nadi River, River channel section 1 (0.00km – 4.00km, Segment 3)	0.015	- (Thick growth of only mangrove [dead water zone]))
Nadi River, River channel section 2 (4.00km – 25.25km, Segment 2-2)	0.023	0.060
Nadi River, River channel section 3 (25.25km –, Segment 2-1)	0.027	0.060
Malakua River (0.0km – 7.0km, Segment 2-2)	0.022	0.060
Nawaka River (0.0km – 10.0km, Segment 2-1)	0.026	0.060
Namosi River (0.0km – 5.0km, Segment 2-1)	0.027	0.060

Tabla 5 2 14	Estimated	Doughnoss	Coofficients
Table 5.5-14	Estimateu	Roughness	Coefficients

5.3.2 Result of the Study

The longitudinal sections and the tables and diagrams of the estimated discharge capacities of the Nadi River and its tributaries are shown in Figure 5.3-15~Figure 5.3-20 and Table 5.3-16 and Table 5.3-17. The flow rates and the water levels at the downstream end used in the estimation of the discharge capacities are described in Table 5.3-15. The discharge capacities estimated with the dike heights obtained from the results of the river surveying partly supplemented by LiDAR data are shown in Table 5.3-16 and Table 5.3-17.

Table 5.3-15 Flow Rate and Water Level at Downstream End Used in Estimation of Discharge Capacities

N				d i		Mala	kua	(Nawaka		Namosi			
Flow rate used in the estimation		Water level at the	Estimated flow rate (m ³ /s)			Water level at the	Estimated flow rate (m ³ /s)	Water level at the downstream end	Estimated flo	ow rate (m³/s)	Water level at the downstream end	Estimated flow rate (m ³ /s)		
	white used in the estimation	downstream end	- 8.00k	– 25.25k	25.50k –	Nawaka 1.50k Estimated water level	- 7.75k	Nadi 8.00k Estimated water level	0.00 – 1.50k	1.75 – 10.00k	Nadi 25.25k Estimated water level	- 5.00k		
1	6×0.05	1.188	105.0	90.0	75.0	1.611	6.5	1.586	15.5	9.0	8.754	10.5		
2	(6)×0.10	1.188	210.0	180.0	150.0	2.309	13.0	2.275	31.0	18.0	10.283	21.0		
3	6×0.30	1.188	630.0	540.0	450.0	4.537	39.0	4.504	93.0	54.0	14.296	63.0		
(4)	(6)×0.50	1.188	1,050.0	900.0	750.0	6.235	65.0	6.208	155.0	90.0	16.817	105.0		
(5)	6×0.70	1.188	1,470.0	1,260.0	1,050.0	7.408	91.0	7.379	217.0	126.0	18.735	147.0		
6	Equivalent to the 20 year return period flood obtained in the study in 1998	1.188	2,100.0	1,800.0	1,500.0	8.848	130.0	8.817	310.0	180.0	21.237	210.0		
\bigcirc	6×0.90	1.188	1,890.0	1,620.0	1,350.0	8.395	117.0	8.365	279.0	162.0	20.438	189.0		
(8)	(6)×0.95	1.188	1.995.0	1.710.0	1.425.0	8.625	123.5	8.594	294.5	171.0	20.841	199.5		

The smallest discharge capacities in the Nadi River, those between $200m^3/s - 300m^3/s$, were observed on the left bank at 1.75k and 7.00k and on the right bank at 8.00k. The discharge capacities in the lower reaches of the Nawaka and Malakua Rivers were particularly small: The minimum capacities observed in these tributaries were between $20m^3/s$ and $30m^3/s$. In Namosi River the river channel is narrowed by hillside slopes at some places so that the minimum discharge capacity in this tributary was $70m^3/s$.

Figure 5.3-15 Longitudinal Profile (1/2) (Above: Nadi River[~8.00k: 2,100m³/s, ~25.25k: 1,800m³/s, 25.50k~: 1,500m³/s and so on], Below: Nawaka River)

Final Report, Volume II Main Report, Part I: Master Plan Study

Figure 5.3-17 Discharge Capacity (Nadi River)

Figure 5.3-18 Discharge Capacity (Nawaka River)

Figure 5.3-19 Discharge Capacity (Malakua River)

Figure 5.3-20 Discharge Capacity (Namosi River)

Table 5.3-16 List of Discharge Capacity (Nadi River)

Nadi River				: LiDAR sur : LiDAR sur	vey data is us vev data is us	ed for Bank he ed for River cl	eight <u>nannel (No Rive</u>	er survey data)				
Cross Section	Remarks	Interval	Cumulative Distance	①Bank	Height Bight Bank	Land @ 50-100m f	IUse from the bank Bight Bank	Discharge Ca Bank Heig Left Bank	apacity at (ht ① Right Bank	H-Q Fo Q=a×(I	rmula h+b) ² b	Cross Section
0.00 0.25		0 250	0 250	0.28 1.66	0.27 1.86	Sea Mangrove	Sea Mangrove	9999 10085	9999 18149	0.00 29399.41	0.00	0.00 0.25
0.50 0.75		250 250	500 750	1.55 1.58	1.70 1.54	Mangrove Mangrove	Mangrove Mangrove	759 603	988 564	671.05 400.08	-0.49 -0.35	0.50 0.75
1.00		250 250	1000 1250	2.30 3.33	1.86	Mangrove Resident	Mangrove Mangrove	1408 2013	851 460	359.94 194.49	-0.32	1.00
1.50		250	1500	2.00	1.59	Empty/Crop Empty Land	Mangrove Mangrove	580 309	3/3 484	137.65	-0.05	1.50
2.00		250	2000	5.74 5.96	2.61	Empty Land Empty Land	Mangrove Mangrove	4408	496	119.23	0.00	2.00
2.75		250	2300	4.91	1.99	Empty Land	Empty Land	2577	480	97.66	0.07	2.75
3.25		250	3250	7.20	2.35	Empty Land	Empty Land	5743	668	106.01	0.16	3.25
3.75		250	3750	3.08	2.44	Empty Land Empty/Crop	Empty Land Empty Land Crop	1086	700	103.29	0.16	3.75
4.25		250	4250	3.20 3.80	3.57	Empty/Crop Crop	Empty/Crop Empty/Crop	1011 1295	1238 2361	83.58	0.28	4.25
4.75		250 250	4750 5000	3.52 4.46	<u>3.97</u> 4.36	Crop Crop	Empty/Crop Empty/Crop	961 1294	1195 1242	63.14 54.09	0.38	4.75
5.25 5.50		250 250	5250 5500	3.75 3.71	4.44 3.59	Crop Crop	Empty Land Empty Land	887 806	1201 759	49.88 43.47	0.47 0.59	5.25 5.50
5.75 6.00		250 250	5750 6000	2.85 3.91	5.23 5.48	Crop Empty/Crop	Empty Land Empty Land	466 805	1338 1473	39.70 40.66	0.58 0.54	5.75 6.00
6.25 6.50		250 250	6250 6500	3.97 3.72	3.78 4.12	Empty/Crop Empty/Crop	Empty/Resident Empty/Resident	737 627	678 747	34.73 33.55	0.64 0.60	6.25 6.50
6.75 7.00		250 250	6750 7000	3.24 4.09	6.20 3.87	Empty Land Empty Land	Empty/Resident Empty/Crop	443 603	1367 548	28.89 26.63	0.68 0.67	6.75 7.00
7.25 7.50		250 250	7250 7500	3.13 4.62	4.70 3.61	Empty Land Crop	Empty/Crop Empty Land	359 691	719 448	25.12 25.65	0.65 0.57	7.25 7.50
7.75 8.00	Confluence	250 250	7750 8000	3.64 4.53	5.08 2.62	Crop Malakua+Nawaka	Empty Land Empty/Resident	435 618	780 245	24.12 23.39	0.61 0.61	7.75 8.00
8.25 8.50		250 250	8250 8500	4.42 5.74	5.16 6.01	Empty/Old river Empty/Old river	Empty/Resident Resident	519 833	683 908	20.87 21.98	0.56 0.41	8.25 8.50
8.75 9.00		250 250	8750 9000	5.84 4.05	6.48 6.15	Empty/Old river Empty/Old river	Resident Resident	788 368	957 781	19.81 17.41	0.47 0.55	8.75 9.00
9.25 9.50		250 250	9250 9500	5.75 6.06	4.22 6.17	Empty/Old river Town	Empty/Crop Empty/Crop	633 664	360 687	16.36 16.54	0.47	9.25 9.50
9.75 9.83	Nadi Town Bridge / WL	250 80	9750 9830	6.36 5.30	6.29 5.30	Town Town T	Crop/Resident Crop/Resident	695 481	681 481	15.76 15.26	0.28	9.75 9.83
10.00 10.25		170 250	10000 10250	<u>6.31</u> 6.63	7.02	Town Empty/Town	Resident Resident	688 730	844 695	15.81 15.03	0.28	<u>10.00</u> 10.25
10.50 10.75		250 250	10500 10750	6.99 5.85	7.21	Empty/Town Empty/Town	Empty/Resident Empty/Resident	636 441	676 578	12.21 11.85	0.23	10.50 10.75
11.00 11.25		250 250	11000 11250	9.31 17.83	6.63 6.95	Town Town	Empty/Crop Empty/Crop	1058 3745	546 594	11.67 11.46	0.21 0.25	<u>11.00</u> 11.25
11.50 11.75		250 250	11500 11750	<u>5.82</u> 6.35	7.09 6.90	Resident Crop/Resident	Empty/Crop Empty/Crop	407 476	595 559	11.03 11.16	0.26	<u>11.50</u> 11.75
12.00 12.25		250 250	12000 12250	6.72 8.25	9.19 6.10	Crop/Resident Empty/Crop	Empty/Crop Empty/Crop	514 754	949 419	10.83 10.56	0.17 0.20	12.00 12.25
12.50 12.75		250 250	12500 12750	8.95 8.72	8.51 8.00	Empty/Resident Empty/Resident	Empty/Crop Empty	873 810	791 685	10.47 10.17	0.18	12.50 12.75
13.00 13.25		250 250	13000	8.42 6.77	7.90 9.62	Empty/Crop Empty/Crop	Empty Resident	/64 473	6/4 942	10.37 9.82	0.16	13.00 13.25
13.50 13.75		250 250	13500 13750	5.32	7.78	Crop Crop	Empty Crop	290 525	612 743	9.80 9.49	0.12	13.50 13.75
14.00		250	14000	5.04 6.51	7.88 8.51	Crop Crop	Crop Crop/Resident	378	580 649	9.13	-0.04	14.00
14.50		250	14500	<u>9.88</u> <u>6.55</u>	9.92 8.82	Crop	Crop	360	873 660	8.97	-0.05	14.50
15.25		250	15250	8.29	11.19	Empty/Grop Empty/Crop	Crop Crop	554	948 1029	8.90	-0.24	15.00
15.50		250	15500	10.38	11.23	Crop Crop	Resident	962 821	333 966	8.39	-0.30	15.50
16.25		250	16250	11.30	7.91	Resident Resident	Empty	929	424 428 476	8.35	-0.75	16.25
16.75	Namotomoto? Bridge	250	16750	5.20	5.20	Resident	Resident	148	148	7.85	-0.85	16.75
17.25		250	17250	8.77	11.79	Crop	Crop	464	892 795	7.58	-0.94	17.25
17.75		250	17750	9.22	12.54	Crop	Resident	487	961 801	7.24	-1.01	17.75
18.25		250	18250	9.34	6.59 7.92	Crop/Resident Empty/Crop	Empty/Crop	484	213	7.22	-1.15	18.25
18.75	Back Road Bridge	250	18750	14.24	14.24	Crop Crop	Crop Resident	1184 523	1184	7.28	-1.48	18.75
19.25		250	19250	9.71 10.98	9.90	Crop Crop	Empty/Resident Crop/Resident	460	482	7.24	-1.74	19.25 19.50
19.75		250 250	19750	<u>12.89</u> 11.30	13.24	Crop Crop	Crop <u>Cr</u> op	825 546	881	7.69	-2.54	19.75
20.25 20.50		250 250	20250 20500	10.94 10.28	9.53 12.00	Crop Crop	Empty/Crop Empty/Crop	476 391	326 591	7.08 6.96	-2.74 -2.79	20.25 20.50
20.75 21.00		250 250	20750 21000	13.91 13.77	12.71 14.42	Crop/Resident Crop/Resident	Empty/Crop Empty/Crop	844 798	670 897	7.00 6.81	-2.92 -2.95	20.75 21.00
21.25 21.50		250 250	21250 21500	14.50 14.69	13.61 12.80	Crop/Resident Crop/Resident	Crop Crop	902 915	768 644	6.75 6.68	-2.94 -2.98	21.25 21.50
21.75 22.00		250 250	21750 22000	17.04 11.51	12.95 10.25	Resident Resident	Crop Crop	1303 455	649 327	6.74 6.70	-3.13 -3.26	21.75 22.00
22.25 22.50		250 250	22250 22500	12.39 13.27	15.76 14.55	Empty/Resident Empty/Resident	Crop Crop	546 653	1027 833	6.62 6.65	-3.31 -3.36	22.25 22.50
22.75 23.00		250 250	22750 23000	15.93 12.60	13.12 14.08	Empty/Crop Empty/Crop	Crop Crop	1015 527	599 722	6.91 6.94	-3.81 -3.88	22.75 23.00
23.25 23.50		250 250	23250 23500	14.23 13.17	12.24 17.84	Empty/Crop Empty	Crop/Resident Resident	722 563	469 1299	6.86 6.96	-3.97 -4.18	23.25 23.50
23.75 24.00		250 250	23750 24000	14.56 12.92	12.35	Empty Empty/Resident	Crop Crop	724 506	444 530	6.94 7.15	-4.35 -4.51	23.75 24.00
24.25 24.50		250 250	24250 24500	15.85 12.75	19.04 16.24	Crop Crop	Crop Crop/Resident	858 436	1420 908	6.93 7.05	-4.73 -4.89	24.25
24.75 25.00		250 250	24750 25000	18.60 30.76	16.03 16.36	Crop/Resident Hill	Crop Crop/Resident	1278 4673	834 883	7.13	-5.22	24.75 25.00
25.25 25.50	Contluence	250 250	25250	15.40 19.00	13.42	Namosi Crop	Crop/Resident Crop/Resident	715	462	7.01	-5.30	25.25
25.75 26.00		250 250	25750	14.82	27.19	Crop Crop	Resident	945 9502	2/39 2792	5.86 5.89	-5.57	25.75 26.00
26.25		250	26250	26.45	18.85	Crop	Crop Crop	1011	988 790	6.14	-6.20 -6.38	26.25
26./5	Votueleur M!	250	26/50	20.23	25.28	Crop/Resident	Empty/Resident	339	1338	6.42	-6.53 -6.89	26./5
27.06	votualevu WL	60 190	27060	32.84	20.77	Crop/Resident	Crop/Resident	4243	1097	6.44	-0.94	27.06
27.50		250	27500	23./1 25.66	21.22	Crop/Resident	Crop/Resident	2197	49/	6.98	-7.99	27.50
28.00		250	28000	33.57	22.18	Crop Crop	Empty/Crop	4622	876 1380	7.33	-8.45	28.00
28.50 28.75		250	28500	25.62	30.30	Empty Land	Crop/Resident	2055	3366	7.35	-8.90	28.50

Final Report, Volume II Main Report, Part I: Master Plan Study

Table 5.3-17 List of Discharge Capacity (Nawaka River, Malakua River, and Namosi River) LiDAR survey data is used for Bank height LiDAR survey data is used for River channel (No River survey data)

				. LIDAN Sur	vev data is us	ed for River Cr		er survey data)			1
Cross Section	Remarks	Interval	Cumulative Distance	(1)Bank	Height	Land @ 50-100m f	l Use from the bank	Discharge Bank He	Capacity at eight ①	H−Q F Q=a×	ormula (h+b) ²	Cross Section
		(m)	(m)	Left Bank	Right Bank	Left Bank	Right Bank	Left Bank	Right Bank	а	b	
Nawaka Rive	er				1							
0.00		0	0	4.57	4.52	Empty Land	Empty Land	93	9999	3.45	0.61	0.00
0.25		250	250	4.55	3.73	Crop	Empty Land	92	9999	3.46	0.61	0.25
0.50		250	500	4.05	5.19	Crop	Empty Land	75	9999	3.45	0.60	0.50
0.75		250	750	3.68	5.37	Crop	Resident	63	122	3.48	0.56	0.75
1.00	Navu Bridge	250	1000	4.22	4.22	Crop	Empty Land	79	79	3.45	0.57	1.00
1.25		250	1250	7.35	4.35	Resident	Empty Land	216	83	3.45	0.56	1.25
1.50	Confluence	250	1500	4.30	3.76	Empty Land	Empty Land	80	63	3.45	0.53	1.50
1.75		250	1750	4.69	5.00	Empty/Crop	Empty Land	54	60	1.99	0.50	1.75
2.00	Qeleloa Bridge	250	2000	5.34	5.34	Resident	Resident	68	68	1.98	0.50	2.00
2.25		250	2250	6.41	5.56	Empty Land	Resident	94	72	1.98	0.49	2.25
2.50		250	2500	7 65	4 07	Empty Land	Empty Land	130	40	1 99	0.43	2 50
2.75		250	2750	6.59	7.85	Empty Land	Crop	97	135	2.06	0.26	2.75
3.00		250	3000	4.98	5 10	Cron	Empty/Crop	51	53	2 42	-0.39	3.00
3 25		250	3250	6.96	7 33	Crop	Resident	100	113	2.12	-1.08	3 25
3.50		250	3500	7.51	7.00	Crop	Crop	110	117	2.01	-1.10	3 50
2.75		250	2750	7.01	7.40	Crop	Empty/Crop	109	117	2.00	-1.11	2.75
4.00		250	4000	0.00	7.45	Crop	Crop	100	0.9	2.03	_1.22	4.00
4.00		250	4000	3.03	7.00	Basidant	Pasidant	110	210	3.03	-1.60	4.00
4.20		200	4200	10.00	9.80			119	210 166	3.20 2.20	_1.60	4.20
4.00		200	4000	10.20	0.79		Crop/Resident	242	201	3.20 3.30	_1.00	4.50
4./0		200	4/30	10.37	9.08	Crop	Decident	244	201	3.30	-1.0/	4./0
5.00		200	5000	9./8	10.38	Orop	Resident	208	242	3.49	-2.00	5.00
5.25		250	5250	11.18	13.15	Grop	Resident	285	423	3.51	-2.16	5.25
5.50		250	5500	11.8/	11.15	Grop	Grop	340	288	4.16	-2.83	5.50
5.75		250	5750	11.01	11.11	Crop	Grop	295	303	5.52	-3.70	5.75
6.00		250	6000	11.66	12.87	Empty/Crop	Empty/Crop	339	452	5.56	-3.86	6.00
6.25		250	6250	12.55	10.52	Empty/Crop	Resident	412	237	5.82	-4.14	6.25
6.50		250	6500	12.29	12.48	Empty/Crop	Resident	401	421	6./6	-4.58	6.50
6.75	6.70k Retention Dam	250	6750	13.46	13.38	Empty/Crop	Empty/Crop	527	517	7.49	-5.07	6.75
7.00		250	7000	12.82	13.18	Empty/Crop	Resident	447	491	8.13	-5.41	7.00
7.25		250	7250	15.52	14.31	Empty/Crop	Resident	790	608	8.08	-5.63	7.25
7.50		250	7500	16.22	15.35	Empty/Crop	Resident	892	752	7.99	-5.65	7.50
7.75		250	7750	16.85	19.98	Empty/Crop	Empty/Crop	968	1585	7.72	-5.65	7.75
8.00		250	8000	13.73	16.23	Crop	Empty Land	460	792	7.18	-5.73	8.00
8.25		250	8250	15.92	15.85	Empty/Crop	Resident	837	825	9.11	-6.33	8.25
8.50		250	8500	13.15	18.80	Empty/Crop	Resident	474	1771	12.91	-7.09	8.50
9.00		500	9000	11.31	15.61	Empty/Crop	Empty/Crop	9999	1405	26.36	-8.31	9.00
9.50		500	9500	17.92	24.54	Empty/Crop	Empty/Crop	1433	4248	17.03	-8.75	9.50
10.00		500	10000	19.33	35.68	Empty/Crop	Empty/Crop	1513	9861	13.65	-8.80	10.00
										17.49	-9.95	
<u>Malakua Riv</u>	er						-					
0.00		0	0	3.67	3.07	Crop	Empty Land	26	19	1.45	0.58	0.00
0.25		250	250	4.88	6.22	Empty Land	Crop	43	67	1.46	0.56	0.25
0.50		250	500	4.14	5.23	Empty/Crop	Empty/Crop	32	48	1.47	0.49	0.50
0.75		250	750	6.11	4.98	Resident	Empty/Crop	63	43	1.48	0.45	0.75
1.00		250	1000	5.05	5.75	Crop	Empty/Crop	44	56	1.47	0.42	1.00
1.25		250	1250	5.86	5.44	Crop	Crop	57	50	1.46	0.40	1.25
1.50		250	1500	5.55	5.92	Empty/Crop	Crop	51	58	1.49	0.31	1.50
1.75		250	1750	7.51	7.34	Crop	Crop	90	86	1.53	0.16	1.75
2.00		250	2000	8.16	7.54	Resident	Cron	105	90	1.57	0.01	2.00
2.25		250	2250	7.73	7.03	Empty/Cron	Empty/Cron	92	75	1.66	-0.28	2.25
2.50		250	2500	7.58	5.97	Crop/Resident	Crop/Resident	86	52	1.67	-0.39	2.50
2.75		250	2750	13.36	5.96	Resident	Emptv/Cron	286	50	1.77	-0.65	2.75
3.00		250	3000	4.75	5.53	Empty/Cron	Empty/Resident	27	39	1.87	-0.95	3.00
3.25		250	3250	8.14	7.95	Cron	Empty/Resident	94	89	2.07	-1.38	3.25
3 50		250	3500	5 21	6.29	Empty/Cron	Empty/Crop	25	45	2.6	-2 00	3 50
3 75	3.87k Vunavasi Bridge	250	3750	6.33	6.33	Cron	Empty/Crop	43	43	2.13	-2.00	3 75
4 00		250	4000	7 75	7.55	Cron	Resident	74	69	2.60	-2 45	4 00
4.00		250	4050	0.3/	9.00 8.21	Crop	Cron	110	25 25	2.07	-2.40	4.00
1 50		250	4500	779	0.01	Crop	Crop	65	112	2.01	-2.53	4.50
4.30		250	4000	0.25	0.30	Empty/Oron	Grop	102	100	2.72	_2.04	4.50
5.00		250	5000	10.00	7.00	Cron/Resident	Crop	164	109	/ 10	_/ 72	5.00
5.00		200	5000	0.46	10.50	Crop/Resident	Crop/Posidart	104	4Z	4.13	4.73	5.00
5.25		200	5200	9.40	10.58			80	134	4.27	-4.98 F 00	0.20
5.50		250	5500	9.8/	9.37	Grop	Grop	8/	155	4.20	-5.32	5.50
5.75		250	5/50	10.37	11.36	orop/ Resident	Grop	104	155	5.16	-5.88	5./5
6.00		250	6000	10.95	19.50	Crop	Grop/Resident	127	1023	5.88	-6.31	6.00
6.25		250	6250	13.15	11.11	Grop/Resident	Empty/Grop	252	121	5./4	-6.52	6.25
6.50		250	6500	10.65	11.9/	Empty Land	Empty Land	81	142	4.99	-6.63	6.50
6.75		250	6750	18.97	12.14	Empty Land	Empty Land	724	142	4.80	-6.69	6.75
7.00		250	7000	12.23	12.36	Empty Land	Empty/Crop	136	142	4.59	-6.79	7.00
7.25		250	7250	12.25	13.42	Resident	Empty/Crop	123	184	4.46	-6.99	7.25
7.50		250	7500	17.28	27.15	Resident	Empty/Crop	445	1784	4.59	-7.44	7.50
7.75		250	7750	18.15	14.30	Empty/Crop	Empty/Crop	535	202	5.37	-8.16	7.75
8.00		250	8000	22.10	27.66	Empty Land	Empty Land	953	1886	5.11	-8.44	8.00

Namosi River												
0.00		0	0	17.13	14.67	Empty/Crop	Crop	114	72	0.82	-5.30	0.00
0.25		250	250	16.31	16.72	Crop	Crop	99	107	0.82	-5.30	0.25
0.50	Bridge	250	500	17.10	15.43	Crop	Crop	114	84	0.82	-5.31	0.50
0.75		250	750	35.58	16.08	Resident	Crop	751	95	0.82	-5.33	0.75
1.00		250	1000	14.35	15.38	Crop/Resident	Crop	63	80	0.89	-5.92	1.00
1.25		250	1250	26.10	18.21	Hill	Crop	376	133	0.99	-6.61	1.25
1.50		250	1500	17.16	14.14	Crop/Resident	Empty/Crop	9999	55	1.01	-6.76	1.50
1.75		250	1750	18.40	33.73	Crop	Hill	135	9999	1.17	-7.67	1.75
2.00		250	2000	17.81	19.84	Crop	Hill	113	9999	1.63	-9.49	2.00
2.25		250	2250	30.89	38.56	Resident	Empty/Crop	795	1494	1.85	-10.18	2.25
2.26	Mulomulo WL	10	2260	22.41	18.30	Resident	Empty/Crop	277	122	1.85	-10.17	2.26
2.50		240	2500	21.13	17.38	Crop	Crop	230	86	2.48	-11.51	2.50
2.75		250	2750	27.35	20.65	Crop	Crop	643	205	2.72	-11.96	2.75
3.00		250	3000	19.26	23.87	Crop	Crop	139	390	3.00	-12.46	3.00
3.25		250	3250	23.49	28.27	Crop	Crop	363	751	3.06	-12.59	3.25
3.50		250	3500	24.43	19.92	Crop	Crop	423	160	3.10	-12.74	3.50
3.75		250	3750	22.51	26.44	Crop	Resident	294	583	3.16	-12.85	3.75
4.00		250	4000	28.26	19.46	Crop/Resident	Resident	807	129	3.76	-13.61	4.00
4.50		500	4500	29.89	25.58	Crop	Empty Land	1685	768	9.57	-16.62	4.50
5.00		500	5000	28.75	24.32	Crop/Resident	Empty Land	1739	577	15.93	-18.30	5.00

Final Report, Volume II Main Report, Part I: Master Plan Study

5.4 Setting of Design Scale

5.4.1 Setting of Design Scale

(1) Basic Concept

Design scale determines the magnitude of safety against flood in the area. Based on the degree of importance of the rivers, it is preferable to secure the balance between upstream and downstream, and main river and tributaries. Also, it should be maintained in the same quality in the national level.

Importance of a river shall be set based on the purpose of protection plan, size of basin, social and economic importance of basin, envisioned disaster damages in magnitude and quality, historical record of disaster and so on.

Especially in an area experienced severe damage in the past, it is not recommendable to set a design scale without consideration of historical flood event conditions. In generally, the design scale should be determined basically to prevent from disaster of which scale is equal to the experienced disaster.

The basic concept is indicated above, but in Fiji, there is no experience of flood control project with adequate design scale determination. Therefore, setting of design scale in this Project is to be based on the evaluation of historical flood scale.

(2) Occurrence Probability of Past Flood

Table 5.4-1 shows occurrence probability at the Nadi Town Bridge point of top five (5) floods. The occurrence probability of these floods is approximately 1/20 to 1/50 (meaning once in 20 years to 50 years)

The occurrence probability of the biggest flood which occurred in March, 2012 is approximately 1/50. The occurrence probability of second largest flood which occurred in January, 2009 is 1/30.

Date	Rainfall Depth	Return Period
2012/3/29	483 mm/2day	approximately 1/50
2009/1/9	442 mm/2day	approximately 1/30
1972/10/23	405 mm/2day	approximately 1/20
1999/1/18	404 mm/2day	approximately 1/20
1993/2/26	400 mm/2day	approximately 1/20

Table 5.4-1 Occurrence Probability of Major Flood (at Upstream of Nadi Town Bridge)

(3) Setting of Design Scale

It is important for the public security to set the flood in March, 2012 which caused historical maximum damage to the basin as target flood. Therefore, the design scale for the Master Plan is to be set to the flood scale equivalent to historical maximum flood. The scale is approximate 1/50 in occurrence probability, equivalent to the flood in March, 2012.

(4) Comparison with the Design Scale in 1998 Study

1) Comparison with the Evaluation Indicator in 1998 Study

In the JICA Study in 1998, catchment area, inundation area, and population, residential area, value of property in potential inundation area, are set to be indicators for evaluation of the importance of basin. In the study in 1998, design scale for long term plan was decided as 1/50 (refer to Table 5.4-2).

		Nadi				
	Item	Index				
		Value				
Catchment A	516					
Inundation .	3,050					
	Residential Area (ha)	120				
Inundation	Population (1,000 persons)	11.1				
Area	*Property (10 ³)	59				
	*Industrial Product (10 ³)	3.5				
Return Peric	d of Determined Design Flood	1/50				

Table 5.4-2 Design Scale in the 1998 Study

*Value devided by GDP per capita

The indicators of the importance of basin for 2014 are as shown in Table 5.4-3. According to the Table, population become four (4) times, residential area become 5.5 times in the potential inundation area compared to the value in 1998.

From the point of view of the importance of basin decided in 1998, it is desirable to secure more than 1/50 in design scale even at present.

		Nadi	(1998)	Nadi (2014)		
	Item	Index	Return	Index	Return	
		Value	Period	Value	Period	
Catchmen	t Area (km2)	516	1/70	516	1/70	
**Inunda	ation Area (ha) 3,050		1/70	4,550	1/70	
	Residential Area (ha)	120	1/50	660	1/50	
Inundatio	Population (1,000 persons)	11.1	1/30	41.2	1/50	
n Area	*Property (10 ³)	59	1/50	324	1/70	
	*Industrial Product (10 ³)	3.5	1/30	19.2	1/50	

 Table 5.4-3 Evaluation Indicators in Nadi River Basin

*Value devided by GDP per capita

**Based on the record of flood in March, 2012

Value converted based on the residential area ratio between 1998 and 2014

5.4.2 Setting of Design Control Point

(1) Basic Concept

Design control point is the point to determine the design scale which the most important indicator for flood protection plan. It should be set at the place which can obtain enough hydro meteorological records and which is to be the base point in consideration of hydro meteorological analysis.

The design control point is suitable at points such as "Upstream of flood protection area such as urban area near a river mouth", "a point or branch river which have water level gauge for a basis of the plan" and "a point of flood control facilities such as dam". In case of set a design control point in a tributary, it is require to select a point of without influence from back water of Main River.

In the integrated planning of flood control in the basin, it is desirable to select important points in planning besides design control point.

1 Design Control Point

Design Control Point is a point of determining a design scale for the most important flood protection area. In the basin, one (1) design flood control point is to be determined considering distribution of population and property, topographic characteristics and inundation condition. It is desirable to be selected at just upstream or near from flood protection area such as important urban area. Also, it is required to be selected at the point where enough records of water level and discharge can be obtained.

2 Important Point

Important Point is suitable point for development of distribution of design high-water discharge. Also, it is to be a point of confluence of tributaries or a point of change in discharge distribution for diversion.

In a plan for main river, a dam point is treated as same as important point. However in case of the dam, the point is treated as design control point.

Figure 5.4-1 Setting of Design Control Point and Important Point

(2) Setting of Design Control Point

1) Candidate Control Point and its Evaluation

a) Target area of flood protection

The following areas are designated as flood protection area in the potential inundation area

- Nadi Town where the center for sightseeing and commerce

- Nadi Airport and its access roads which are important facilities

The Nadi Town Council has a plan to expand the area of Nadi Town. In the future, the Nadi Town will

develop more.

Figure 5.4-2 Expansion Plan of Nadi Town

2) Candidate control point

The following four (4) points are considered as candidates for the design control points of Nadi River.

a) Criteria of control point

- A point at upstream of short distance from or near flood protection area.
- A point or tributary with water level gauge for basis of the planning
- A point for main area of hydro meteorological analysis

a) Candidate control point

·Nadi Town Bridge: the point at water level station

- ·Back Road Bridge: the point at the bridge, the downstream of confluence of Namosi River
- •Votualevu: the point at water level station, the upstream of confluence of Namosi River
- ·Namulomulo: the point at water level station, in Namosi River

The Nawaka tributary meets Nadi River at the downstream of Nadi Town; therefore, the point in the Nawaka River is excluded from the candidate control point of main stream.

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO., LTD./CTI ENGINEERING INTERNATIONAL CO., LTD. JV

Figure 5.4-3 Flood Protection Area and Candidate site of Design Control Point

b) Evaluation of candidate point

The candidate sites of design control point are evaluated based on the relationship among topographic characteristics, inundation characteristics and flood protection area, and accumulation of records of water level and discharge. And also adequacy of the measurement point of water level and discharge, and future continuity of observation are evaluated.

The result of evaluation is shown in Table 5.4-4.

For the design control pint, the point of Back Road Bridge is suitable, however the accumulation of water level records is not enough, and therefore the Nadi Town Bridge point is to be selected as design control point in the Project, because of enough records of water level.

It is desirable to install the water level station and accumulate the water level record at the Back Road Bridge point which will be changed to the design control point in the future.

Design Control Point: Nadi Town Bridge, water level station

Important Point: Back Road Bridge

Votualevu: water level station, upstream of Namosi River confluence

Namulomulo water level station, Namosi River

Candidate point	Nadi town Bridge	Back road Bridge	Votualevu	Namulomulo
Name of River	Nadi River	Nadi River	Nadi River	Namosi River
Watershed Area	316	290	184	92
Percentage of own catchment area in the Nadi River Basin	61%	56%	36%	18%
	Low-lying land	Low-lying land	Hilly area	Hilly area
Physical feature	This point is located downstream of the confluence of Namosi River and the percentage of own catchment area is approximately 60%	This point is located downstream of the confluence of Namosi River and the percentage of own catchment area is approximately 60%	This point is located upstream of the confluence of Namosi River and the percentage of own catchment area is approximately 30%	This point is located upstream of the confluence of Nadi River and the percentage of own catchment area is approximately 20%
	0	0	Δ	Δ
	Flow along the river / Wide spread	Flow along the river	Flow along the river	Flow along the river
Flood feature	Impact of flood occurred in upstream is relatively high than the candidate point at Back Road Bridge	Impact of flood occurred in upstream is relatively high than the candidate point at Votualevu	Impact of flood occurred in upstream will be along the river and an affected area will be narrow	Impact of flood occurred in upstream will be along the river and an affected area will be narrow
	Δ	Δ	0	0
Upstream or near the target	Upstream of Nadi Town and downstream of the Nadi Airport	Upstream of the Nadi Town and the Nadi Airport	Upstream of the Nadi Town and the Nadi Airport	Upstream of the Nadi Town and the Nadi Airport
protection area	0	Ø	Ø	٥
Compiled hydrological data	There are compiled water level data approximately for 11 years since 1997	No existing water level data Water level is now observed with simplified water level gauge	There are compiled water level data approximately for 25 years since 1978	There are compiled water level data approximately for 4 years since 2011
	0	Δ	0	Δ
Appropriateness of the observation station for water level and flow discharge	Appropriate flow discharge cannot be observed since this point is located in the tidal area Flow discharge survey is possible at a bridge using rotameter		 This point is located upstream of tidal area Contactless flowmeter such as ultrasonic flowmeter is preferable since flow discharge survey using rotameter is unsuitable 	 This point is located upstream of tidal area Contactless flowmeter such as ultrasonic flowmeter is preferable since flow discharge survey using rotameter is unsuitable
	×	0	Δ	Δ
Sustainability of observation	Sustainability is secured since this point is used as a control point of issuing of flood warning. Temporal relocation is required if river improvement is implemented.	Sustainability of observation is secured since there is no plan for reconstruction of bridge. Even though, installation of new equipment is required.	Sustainability is secured since this point is used as a control point of issuing of flood warning. Temporal relocation is required if river improvement is implemented.	Sustainability is secured. Temporal relocation is required if river improvement is implemented.
	0	0	0	0
Control point of issuing of flood	Yes	No	Yes	No
warning	0	△ Location is considered as preferable since its location is upstream of tidal area and downstream of the Namosi River	0	Δ
Evaluation	 Hy drological data has been accumulated for long term It is located near or upstream of target protection area Its catchment area is approximately 60% Considering above conditions, this point is considered as a 	 Hydrological observation has not been observed It is located upstream of tidal area and target protection area Its catchment area is approximately 60% Considering above conditions, this point is considered as an "Important Point". This point can be preferable for control 	Hydrological data has been accumulated for long term It is located far upstream of target protection area Its catchment area is approximately 30% Considering above conditions, this point is not preferable for	Hydrological data has been accumulated for 4 years It is located far upstream of target protection area Its catchment area is approximately 20% Considering above conditions, this point is not preferable for
	"Design Control Point".	point in the future after the accumulation of hydrological data for long term.	control point but considered as an "Important Point".	control point but considered as an "Important Point".

Table 5.4-4 Comparison of Design Control Point

 \bigcirc : Preferable, \bigcirc : Good, \triangle : Fair, \times : Not preferable

3) Setting of Design Control Point

Location of the Design Control Point of Nadi River Basin is "the point of Nadi Town Bridge (Nadi Town Bridge Water Level Station" in Nadi Main River. The reasons of selection are shown below.

The point is located in the tidal area, so that it is better to reconsider the handling of this point after accumulation of hydrological data in the upper points.

- 0 The point locates upstream of urban area (Nadi Town) where is the area with concentration of population and property in inundation area.
- 1 The point locates near the important facility(Nadi International Airport)
- 2 The point is control point for flood fighting warnings.
- 3 The point has enough hydrological records and secured the future observation continuity
- 4 The basin area at Nadi Town Bridge is approximate 316km², 60 % of the Nadi River Basin.

Figure 5.4-4 Locations of Design Control Point and Important Point

5.5 Setting of Design Hyetograph

The design hydrograph is selected from hydrographs which are stretched from actual rainfall to design rainfall. At the selection of hydrograph, the too much extended cases in short term rainfall (focus on the extended rate) and local distribution of rainfall are rejected.

The groups of design hydrographs are selected as follows.

5.5.1 Primary Selection of Group of Design Hyetograph

As to the primary selection for design hydrograph, major 26 floods with enough hourly rainfall data after 1991 are selected (refer to Table 5.5-5).

5.5.2 Secondary Selection of Group of Design Hyetograph

From the two (2) points of view, secondary selection had been conducted to select design hyetograph.

Rejection Criteria 1: Rejection by stretch rate to the design scale

The scale of the deign flood is determined as same as the historical maximum flood in March, 2012 of which occurrence probability is approximately 1/50, and the hyetographs of which stretch rate is more than two times of design rainfall which is 483.1mm of two (2) days rainfall are rejected.

Rejection Criteria 2: Rejection by local distribution of rainfall

In case that the rainfall during design continuity of two (2) days extends the Jackknife upper limit after stretching, the hyetographs is rejected. Jackknife upper limit and estimated value are as shown below.

	Design	р [.]	A 1 / 1	Jackknife estimated values (mn			
Basin	scale of occurrence probability	Design rainfall duration	Adopted probability distribution	① Estimated	2 Margin of error	①+② Upper Limit	
Nadi River Basin (upstream of Namosi River Confluence)	1/50	2days	GEV	582.6	45.1	627.7	
Namosi River Basin	1/50	2days	LP3Rs	501.0	41.5	542.7	

Table 5.5-4 Jackknife Upper Limit and Estimated Value

Rejection Criteria

5.5.3 Selection of Design Hyetograph

According to the rejection criteria shown above, six (6) floods 7th March, 1997, 18th January, 1999, 9th January, 2009, 13th January, 2009, 23rd January, 2012, 29th March, 2012 were selected.

The result of selection of design hyetograph is shown in Table 5.5-5, the design hyetographs are shown in Figure 5.5-1.

		Reje	ction Criteria 1		Rejection Criteria 2						
Date time (dd/mmm/yy)	Cause	Precipitation in 2 days @ Catchment of Nadi Town Bridge	Stretch Rate	Evaluation	Precipitation in 2 days @ Catchment of Confluence of the Nawaka River	Precipitation after stretch	Evaluation	Precipitation in 2 days @ Catchment of the Namosi River	Precipitation after stretch	Evaluation	Final Evaluation
24-Jan-97	T.C Evan	137.9	3.504	Rejection	108.1	379.0		186.5	653.6	Rejection	
30-Jan-97	T.D	123.3	3.920	Rejection	112.4	440.5		135.1	529.4		
7-Mar-97	T.C Gavin	373.8	1.292		479.0	619.0		181.9	235.1		0
18-Jan-99	T.D	404.2	1.195		373.6	446.5		435.2	520.1		0
3-May-00	L.P	77.9	6.204	Rejection	58.2	361.3		108.1	670.5	Rejection	
6-Dec-00	T.D	140.8	3.430	Rejection	166.3	570.4		110.4	378.8		
11-Dec-00	T.D	140.9	3.430	Rejection	147.9	507.4		122.3	419.4		
14-Mar-01	N/R	117.1	4.124	Rejection	121.7	502.0		131.5	542.3		
21-Oct-01	L.P	166.7	2.898	Rejection	158.7	460.0		169.0	489.8		
23-Feb-02	T.D	209.4	2.307	Rejection	248.3	572.8		151.0	348.3		
11-Mar-03	T.C Eseta	217.9	2.217	Rejection	246.0	545.4		187.2	415.1		
18-Apr-05	L.P-Monsoonal Trough	202.2	2.389	Rejection	199.1	475.5		226.6	541.2		
11-Feb-07	L.P	191.5	2.522	Rejection	155.4	391.9		294.0	741.6	Rejection	
24-Mar-07	T.D	183.8	2.628	Rejection	233.7	614.1		126.7	333.0		
28-Jan-08	T.C Gene	343.7	1.406		465.9	654.9	Rejection	162.1	227.9		
24-Feb-08	SPCZ	70.0	6.898	Rejection	20.7	142.7		147.5	1017.8	Rejection	
28-Mar-08	N/R	69.0	7.003	Rejection	60.3	422.4		79.3	555.4	Rejection	
28-Nov-08	L.P	119.1	4.057	Rejection	132.9	539.2		111.3	451.3		
9-Jan-09	T.D	442.0	1.093		460.5	503.4		429.9	469.8		0
13-Jan-09	T.D	245.9	1.965		266.9	524.4		222.9	438.0		0
18-Feb-11	N/R	157.5	3.068	Rejection	151.6	465.2		157.7	483.8		
5-Jan-12	N/R	136.1	3.549	Rejection	107.5	381.4		182.8	648.9	Rejection	
23-Jan-12	T.D	309.6	1.560		330.2	515.2		222.5	347.1		0
29-Mar-12	TD	483.1	1.000		481.6	481.7		512.9	512.9		0
29-Jan-14	L.P	191.1	2.528	Rejection	180.4	456.1		205.7	520.1		

 Table 5.5-5
 List of Design Hydrograph

Figure 5.5-1 Hyetographs of Design Rainfalls

Final Report, Volume II Main Report, Part I: Master Plan Study

5.5.4 Estimation of Probable Rainfall Considering the Effect of Climate Change

(1) Valuation of Precipitation by Climate Change

Intergovernmental Panel on Climate Change (IPCC) evaluates the climate changes form scientific and social economic aspects and issues Assessment Report every 5-7 years. In 2014, 5th Assessment Report (AR5) have been approved and published.

In the AR5, island countries including Fiji, visions and challenges for adaptation against major risks are described as follows;

- ✓ The interaction between mean sea level rising and high water phenomenon in the 21 century intimidates lowland area along sea shore. (high in certainty)
- ✓ If a coastal area is large compared with inland area, measures for adaptation are major issues in financial and resources aspects for island countries.
- ✓ Alternatives for adaptation, maintain and recreation of coastal topography and ecosystem, improvement of fresh water resources, and appropriate building standards and pattern for habitat, are selectable.

Official opinions and documents based on AR5 are not issued form Fiji and its organizations. The results of climate change variation in AR4 are shown in Table 5.5-6, Figure 5.5-2 and Figure 5.5-3. According to the results, it is predicted that the occurrence probability of more than 200mm/day precipitation is increasing and occurrence of sea level rise is decreasing. Regarding annual rainfall, it is predicted that will be increasing 21% by 2055 and decreasing 16% by 2090.

By 2030	The most likely projected change for Fiji is for warmer temperatures and little change in rainfall with
	annual mean temperature increases of 0.7°C and negligible (-1%) change in mean annual rainfall, which is
	predicted by 69% of the models. Warmer and drier change in projected climate is predicted by 6% of the
	models with annual mean air temperature increases of 0.6°C and annual mean rainfall decreases of 6%.
	Warmer and wetter conditions are represented by 13% of the models with annual mean air temperature
	increases of 0.8°C and annual mean rainfall increases of7%.
By 2055	The majority of the models (569.) project hotter temperatures and little change in rain fall, with annual
	mean air temperature increases of 1.9°C and annual mean rainfall decreases of 1%. The other likely high
	impact projected climate is for hotter and much drier conditions, which is predicted by 6% of the models,
	with annual mean air temperature increases of 1.8°C and annual mean rainfall decreases of 16%. Hotter and
	much wetter conditions are predicted by 13% of the models, with annual mean air temperature increases of
	2.3° C and annual mean rainfall increases of 21%.
By 2090	Nine out of 16 models project hotter temperatures and little change in rainfall with annual mean air
	temperature increases of 1.9°C and annual mean rainfall decreases of 1%. The other likely high impact
	projected climate is for hotter and much drier conditions, which is predicted by 6% of the models, with
	annual mean air temperature increases of 1.8°C and annual mean rainfall decreases of 16%. Hotter and
	much wetter conditions are predicted by two out of 18 models, with annual mean air temperature increases
	of2.3 Cand annual mean rainfall increases of 21%.
By 2100	The sea level projections are based on the fourth IPCC assessment report that global sea level changes are
	expected to be ranging from 0.21 to 0.48 meters by end of the century (IPCC 2007a). However, there is
	significant uncertainty surrounding ice-sheet contributions to sea level rise and a larger rise than that
	projected cannot be excluded.

Table 5.5-6Climate Projections (Global Climate Models)

出典: Republic of Fiji, National Climate Change Policy 2012

Maximum rainfall

The maximum daily rainfall of 200 mm is projected to become less frequent by 2100 at various locations in Fiji (Figure A1-7).

Source: Data source: Fiji Meteorological Services 2011, Republic of Fiji, and and National Climate Change Policy 2012

Figure 5.5-2 Projections for Daily Maximum Rainfall of200 mm in Fiji Projected to 2100

Maximum sea levels

Maximum sea level currently observed at Lautoka and Suva tide gauges are expected to become more frequent by at least by 2050 and become a normal occurrence by 2100 (Figure A1-11).

Figure 5.5-3 Climate Risk of Maximum Sea Level at Various Locations in Fiji Projected to 2100

(2) Changes of Design Scale by Climate Change

Based on the prediction of climate change from 4th Assessment Report (AR4), changes of design scale are exanimated with the case of 21% increasing and 16% decreasing of precipitation.

The results of examinations are shown in Table 5.5-7. In case of 21% increasing of precipitation, current design scale changes from approximate 1/50 to 1/15. On the other hand, in case of 16% decreasing of precipitation, the design scale changes into approximate 1/200.

Basin	Rainfall	Present		Future (Rainfall increases of 21%)		Future (Rainfall decreases of 16%)	
		Probability	Model	Probability	Model	Probability	Model
Nadi town Bridge Basin	483.1 mm/2 days	Approx. 1/50	IshiTaka	Approx. 1/15	IshiTaka	Approx. 1/200	IshiTaka

Table 5.5-7 Changes of Design Scale by Climate Change

Table 5.5-8 Maximum Annual Rainfall by Climate Change

	Catchment of Nadi Town Bridge							
			Precipitati	on during design continuous rain ir	1 2 days			
Hye	drological Year	Dete	Decent	Future	Future			
-	-	Date	Present	(rainfall increases of 21%)	(rainfall decreases of 16%)			
1	1967	20-Mar-68	136.09	164.67	114.32			
2	1968	01-Feb-69	146.24	176.95	122.84			
3	1969	12-Feb-70	217.67	263.38	182.84			
4	1970	06-Mar-71	155.03	187.59	130.23			
5	1971	19-Jan-72	155.15	187.74	130.33			
6	1972	23-Oct-72	404.82	489.83	340.05			
7	1973	24-Apr-74	319.41	386.49	268.31			
8	1974	08-Dec-74	144.94	175.38	121.75			
9	1975	28-Oct-75	190.11	230.03	159.69			
10	1976	04-Sep-76	192.41	232.82	161.63			
11	1977	24-Jan-78	91.11	110.25	76.53			
12	1978	27-Mar-79	230.16	278.49	193.34			
13	1979	26-Jan-80	108.78	131.63	91.38			
14	1980	27-Jan-81	249.17	301.49	209.30			
15	1981	29-Jan-82	239.08	289.29	200.83			
16	1982	28-Feb-83	394.38	477.19	331.28			
17	1983	17-Mar-84	298.03	360.61	250.34			
18	1984	04-Mar-85	261.95	316.96	220.04			
19	1985	09-Apr-86	275.33	333.15	231.27			
20	1986	05-Feb-87	77.07	93.25	64.74			
21	1987	03-Mar-88	93.95	113.68	78.92			
22	1988	10-Feb-89	238.61	288.72	200.43			
23	1989	20-Mar-90	294.56	356.41	247.43			
24	1990	27-Nov-90	210.10	254.22	176.48			
25	1991	13-Sep-91	82.95	100.37	69.68			
26	1992	26-Feb-93	400.24	484.29	336.20			
27	1993	03-Jun-94	108.07	130.76	90.78			
28	1994	16-Mar-95	96.14	116.33	80.76			
29	1995	08-Mar-96	140.09	169.51	117.68			
30	1996	07-Mar-97	373.78	452.28	313.98			
31	1997	06-Aug-97	93.39	113.00	78.45			
32	1998	18-Jan-99	404.23	489.12	339.56			
33	1999	24-Jan-00	184.92	223.76	155.33			
34	2000	11-Dec-00	140.86	170.44	118.32			
35	2001	23-Feb-02	209.43	253.41	175.92			
36	2002	11-Mar-03	217.91	263.68	183.05			
37	2003	13-Feb-04	139.69	169.03	117.34			
38	2004	18-Apr-05	202.25	244.72	169.89			
39	2005	29-Jan-06	132.57	160.41	111.36			
40	2006	11-Feb-07	191.53	231.75	160.89			
41	2007	28-Jan-08	343.66	415.82	288.67			
42	2008	09-Jan-09	441.99	534.80	371.27			
43	2009	14-Dec-09	268.78	325.22	225.77			
44	2010	18-Feb-11	157.47	190.53	132.27			
45	2011	29-Mar-12	483.08	584.52	405.78			
46	2012	16-Dec-12	134.79	163.10	113.22			
47	2013	29-Jan-14	191.06	231.19	160.49			

Final Report, Volume II Main Report, Part I: Master Plan Study

5.6 Examination of Design Flood before Regulation

The design flood is calculated by the run-off and inundation model inputting data of group of design hyetograph determined in 5.4.

Calculation conditions of run-off and inundation model are shown below;

River mouth water level: Mean sea level of spring tide 1.188m

(Actual tide level at the flood in March, 2012)

Effect of storage along the river: 2 cases (with inundation and without inundation)

5.6.1 Design Flood before Regulation

Peak discharges at the Nadi Town Bridge Point from design hyetograph are shown in Table 5.6-9. The hydrographs are also shown in Figure 5.6-2 to Figure 5.6-7. And peak discharges at important points are shown in Table 5.6-10 and Table 5.6-11.

As a result, the flood which records maximum discharge at Nadi Town Bridge point is the No.25 type occurred in March, 2012 flood in the both case of with and without inundation.

Therefore, design flood before regulation is to be determined by using No.25 type which occurred in March, 2012 flood. The discharge distribution diagram of design flood before regulation is as shown in Figure 5.6-1.

The gap between with and without inundation at the Nadi Town Bridge Point, is 1000m³/s less, the former is less than the latter.

	Flood	Nadi Town Bridge				
		Without Inundation	With Inundation			
No.3	1997/3/7	1,530	1,135			
No.4	1999/1/18	1,651	1,224			
No.20	2009/1/9	1,548	1,202			
No.21	2009/1/13	1,622	1,024			
No.24	2012/1/23	1,534	1,135			
No.25	2012/3/29	2,432	1,473			

Table 5.6-9 Peak Discharge at Nadi Town Bridge Point

No.25, May, 2012 type flood

Figure 5.6-2 Hydrograph of No3 flood in March, 2007

Figure 5.6-3 Hydrograph of No4 flood in January, 1999

Figure 5.6-4 Hydrograph of No20 flood in 9th January, 2009

Figure 5.6-5 Hydrograph of No21 flood in 13th January, 2009

Figure 5.6-6 Hydrograph of No24 flood in January, 2012

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO., LTD./CTI ENGINEERING INTERNATIONAL CO., LTD. JV

Figure 5.6-7 Hydrograph of No25 flood in March, 2012

River	Distance	Point	No.3	No.4	No.20	No.21	No.24	No.25
	(km)		1997/3/7	1999/1/18	2009/1/9	2009/1/13	2012/1/23	2012/3/29
Nadi	0.00	Estuary	1,772	2,688	2,128	2,034	2,415	3,651
Nadi	8.00	After Nawaka confluence	1,774	2,695	2,144	2,072	2,430	3,656
Nadi	8.25	Before Nawaka confluence	1,524	1,645	1,550	1,612	1,534	2,423
Nadi	9.75	Nadi town Br.	1,530	1,651	1,548	1,622	1,534	2,432
Nadi	18.75	Back road Br.	1,546	1,606	1,561	1,681	1,505	2,429
Nadi	25.00	After Namosi confluence	1,556	1,571	1,597	1,754	1,477	2,440
Nadi	25.50	Before Namosi confluence	1,202	1,499	1,208	1,445	1,109	1,727
Nadi	27.00	Votualevu	1,209	1,506	1,223	1,472	1,152	1,762
Namosi	0.50	Before Nadi confluence	377	453	482	456	498	900
Namosi	2.26	Namulomulo	396	457	488	467	504	869
Nawaka	0.00	Before Nadi confluence	400	1,342	789	665	905	1,456
Nawaka	2.00	Qeleloa Br.	278	741	551	507	656	1,020
Nawaka	4.00	Nawka 4.0k	217	402	446	413	507	775
Malakua	0.00	Before Nawaka confluence	119	584	260	183	253	421
Malakua	4.00	Upstream of Vunayasi Br.	120	578	265	208	263	407

Table 5.6-10 Peak Discharge of Important Point by Design Hyetograph (without inundation)

Table 5.6-11	Peak Discharge of In	portant Point by Desi	gn Hyetograph	(with inundation)
				· · · · · · · · · · · · · · · · · · ·

River	Distance	Point	No.3	No.4	No.20	No.21	No.24	No.25
	(km)		1997/3/7	1999/1/18	2009/1/9	2009/1/13	2012/1/23	2012/3/29
Nadi	0.00	Estuary	657	788	712	650	723	905
Nadi	8.00	After Nawaka confluence	1,278	1,816	1,503	1,287	1,533	2,132
Nadi	8.25	Before Nawaka confluence	790	906	839	743	819	1,070
Nadi	9.75	Nadi town Br.	1,135	1,224	1,202	1,024	1,135	1,473
Nadi	18.75	Back road Br.	1,273	1,310	1,277	1,305	1,273	1,524
Nadi	25.00	After Namosi confluence	1,487	1,493	1,505	1,618	1,451	2,079
Nadi	25.50	Before Namosi confluence	1,173	1,450	1,187	1,394	1,118	1,466
Nadi	27.00	Votualevu	1,199	1,476	1,207	1,461	1,148	1,620
Namosi	0.50	Before Nadi confluence	320	453	472	401	407	720
Namosi	2.26	Namulomulo	410	457	491	474	509	860
Nawaka	0.00	Before Nadi confluence	489	911	724	615	747	1,063
Nawaka	2.00	Qeleloa Br.	232	303	325	320	309	362
Nawaka	4.00	Nawka 4.0k	215	339	403	388	408	486
Malakua	0.00	Before Nawaka confluence	63	255	160	123	169	289
Malakua	4.00	Upstream of Vunayasi Br.	107	293	138	135	141	215

5.6.2 Flow Discharge by Occurrence Probability

The peak discharges at important point by each return period are calculated by using No.25 flood in March, 2012. Table 5.6-125 shows peak discharges by return period at Nadi Town Bridge.Figure 5.6-8 to Figure 5.6-14 show hydrographs. Also in Table 5.6-13 and Table 5.6-13, the peak discharges by return period in the important point are shown.

Return Period	(A)Probable Rainfall	Ratio	Peak Discharge at Nadi Town Bridge(m ³ /s)	
	(mm/2days)	(A)/(B)	Without Inundation	With Inundation
2-year	204.3	0.423	701	611
3-year	250.7	0.519	971	792
5-year	300.3	0.622	1,268	931
10-year	359.6	0.744	1,647	1,176
20-year	414.1	0.857	1,991	1,357
30-year	444.5	0.920	2,184	1,414
Design scale (approx. 50-year)	483.1	1.000	2,432	1,473

 Table 5.6-12
 Peak Discharge by Return Period at Nadi Town Bridge Point

Note; Target Flood: No.25 2012/3/29 ((B) =2 days average rainfall depth: 483.1mm)

Table 5.6-13	Peak Discharge at Important Point by Return Periods (No.25 flood in March,	2012,						
without inundation)								

	-								Unit:m3/s
River	Distance	Points			Probable Dis	cherge for Ea	ch Return Pe	riod	
			2−year	3-year	5-year	10-year	20−year	30-year	Design scale (approx.50-year)
	(km)		Without Inundation						
Nadi	0.00	Estuary	1,196	1,589	2,042	2,564	3,038	3,307	3,651
Nadi	8.00	After Nawaka confluence	1,210	1,597	2,045	2,576	3,046	3,312	3,656
Nadi	8.25	Before Nawaka confluence	702	964	1,259	1,636	1,982	2,174	2,423
Nadi	9.75	Nadi town Br.	701	971	1,268	1,647	1,991	2,184	2,432
Nadi	18.75	Back road Br.	707	985	1,283	1,659	1,996	2,184	2,429
Nadi	25.00	After Namosi confluence	710	990	1,303	1,682	2,008	2,192	2,440
Nadi	25.50	25.50 Before Namosi confluence		633	892	1,159	1,414	1,547	1,727
Nadi	27.00	Votualevu	418	656	922	1,195	1,450	1,583	1,762
Namosi	0.75	Before Nadi confluence	331	429	527	647	755	818	891
Namosi	2.26	Namulomulo	332	429	521	636	738	798	869
Nawaka	0.00	Before Nadi confluence	514	657	850	1,034	1,216	1,328	1,456
Nawaka	2.00	Qeleloa Br.	371	466	593	725	847	924	1,020
Nawaka	4.00	Nawka 4.0k	291	363	457	551	646	700	775
Malakua	0.00	Before Nawaka confluence	147	194	251	298	356	389	421
Malakua	4.00	Upstream of Vunayasi Br.	159	199	248	289	345	376	407

Notice: second peak discharge of 1/2 and 1/3 probability discharge are bigger than first peak, but only the first peak discharge which is target of stretch is shown in the table.

Table 5.6-14 Peak Discharge at Important Point by Return Periods (No.25 flood in March, 2012,
with inundation)

									Unit:m3/s
River	Distance	Points	Probable Discherge for Each Return Period						
			2−year	3-year	5-year	10-year	20-year	30-year	Design scale (approx.50-year)
	(km)		With Inundation	With Inundation	With Inundation	With Inundation	With Inundation	With Inundation	With Inundation
Nadi	0.00	Estuary	600	658	717	785	841	868	905
Nadi	8.00	After Nawaka confluence	1,020	1,216	1,441	1,703	1,904	2,006	2,132
Nadi	8.25	Before Nawaka confluence	550	626	725	868	975	1,017	1,070
Nadi	9.75	Nadi town Br.	611	792	931	1,176	1,357	1,414	1,473
Nadi	18.75	Back road Br.	673	884	1,137	1,330	1,424	1,462	1,524
Nadi	25.00	After Namosi confluence	711	999	1,299	1,568	1,750	1,872	2,079
Nadi	25.50	25.50 Before Namosi confluence		646	914	1,123	1,322	1,373	1,466
Nadi	27.00	Votualevu	420	663	936	1,168	1,433	1,500	1,620
Namosi	0.75	Before Nadi confluence	330	431	513	547	594	656	720
Namosi	2.26	Namulomulo	332	430	520	628	715	789	860
Nawaka	0.00	Before Nadi confluence	478	597	726	837	930	990	1,063
Nawaka	2.00	Qeleloa Br.	288	301	327	336	354	345	362
Nawaka	4.00	Nawka 4.0k	279	333	393	416	438	453	486
Malakua	0.00	Before Nawaka confluence	83	117	162	195	231	253	289
Malakua	4.00	Upstream of Vunayasi Br.	116	130	134	150	177	198	215

Notice: second peak discharge of 1/2 and 1/3 probability discharge are bigger than first peak, but only the first peak discharge which is target of stretch is shown in the table.

Final Report, Volume II Main Report, Part I: Master Plan Study

Distance

km

ower: With inundation

(With Inland water)

River

Nadi

Nadi

Nadi

Nadi

Nadi

Nadi

Nadi

Nadi

Nawaka

Namosi

Discharge Distribution

Maximum inundation Map

Final Report, Volume II Main Report, Part I: Master Plan Study

Final Report, Volume II Main Report, Part I: Master Plan Study

Final Report, Volume II Main Report, Part I: Master Plan Study

Final Report, Volume II Main Report, Part I: Master Plan Study

Final Report, Volume II Main Report, Part I: Master Plan Study

Final Report, Volume II Main Report, Part I: Master Plan Study

Chapter 6 Consideration for Flood Control Measures

6.1 Basic Policy of Preliminary Flood Control Plan

6.1.1 Basic Consideration

The basic policy of preliminary flood control plan is established in the examination of combination of flood control measures as follows:

- ① The assets protected with top priority in planning flood control measures are to be "Nadi Town", "Nadi Airport" and "Queens Road" (refer to Figure 6-4). The plan should be examined not to cause the inundation damage to such assets.
- ⁽²⁾ The rebuilding of Nadi Town Bridge and Back Road Bridge would be avoided as much as possible since these bridges are in main traffic route. However Nadi Town Bridge under which the discharge capacity of river channel is extremely low, will be examined to be rebuilt in case that the rebuilding is economical in cost and so on. Old Queens Road Bridge is to be rebuilt since it is too old to use hereafter.

6.1.2 Determination of Target Flood Discharge

Back Road Bridge and Nadi Town Bridge, between which the assets are concentrated, are established as control points.

The discharge capacity at Back Road Bridge and Nadi Town Bridge are as shown in Figure 6-1 and Figure 6-2 respectively in case that the river channel normalization is carried out in the present river.

The target discharge is determined as shown below depending on the possibility of large scale setting back of embankment and rebuilding of Nadi Town Bridge (refer to Figure 6-3).

In case of large scale setting back of embankment in the town area:

At Back Road Bridge: 1,400m3/s

At Nadi Town Bridge: 1,400m3/s

In case of normalization of present river channel in the town area:

At Back Road Bridge: 1,400m3/s

At Nadi Town Bridge: 700m3/s

The reasons are as follows:

At Back Road Bridge the possible discharge is 1,400m3/s even if the maximum flood control is carried out by flood control facilities such as dam and retarding basin and the improved discharge capacity is approximately 1,400 m3/s after river channel normalization.

At Nadi Town Bridge, the discharge capacity is 1,400m3/s in case that setting back of embankment and rebuilding of the bridge is possible in the town area; if not the discharge capacity is approximately 700m3/s after river channel normalization.

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO.,LTD./CTI ENGINEERING INTERNATIONAL CO.,LTD. JV

Figure 6-1 Cross Section before and after River Channel Normalization at Back Road Bridge

Figure 6-2 Cross Section before and after River Channel Normalization at Nadi Town Bridge

No.25 Flood in March, 2015

Figure 6-3 Determination of Target Discharge

Figure 6-4 Priority Area to be Protected and Present Condition of Bridges

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO.,LTD./CTI ENGINEERING INTERNATIONAL CO.,LTD. JV

Final Report, Volume II Main Report, Part I: Master Plan Study

6.1.3 Division of River Section for Flood Control Plan

Nadi river is divided into three sections from view point of flood control planning regarding the middle stream section as the most important (refer to Figure 6-5). The combination of various flood control measures is studied based on the policy of each section.

① Middle Stream Section : 5.75km~Back Road Bridge

The middle stream section is defined from Back Road Bridge to approximately 6.0km in distance along river which is concentrated the town area. The flood control measures in the middle stream section are planned so that the design discharge at the Bridge is to be $1,400\text{m}^3$ /s and the design discharge at Nadi Town Bridge is to be $1,400\text{m}^3$ /s with rebuilding of Nadi Town Bridge or 700 m³/s without rebuilding.

Flood control measures to be studied are as follows:

- •Diversion channel
- •River improvement
- 2 Downstream Section: River mouth~5.75km

In the downstream section there is a mangrove forest widely spread and less assets compared with the middle stream section and upstream section, however the area development is planned in the right bank of river mouth. The flood control measures in the downstream section are planned so that the influence to the development is minimized and water level rising caused by joining of Nawaka river dose not affect the upstream.

Flood control measures to be studied are as follows:

- •Retarding basin
- Diversion Channel

3 Upstream Section: Back Road Bridge~Upstream

In the upstream section the flood control measures are planned so that the flood discharge is controlled to 1,400m3 $\mbox{/s}$

Flood control measures to be studied are as follows:

- Retarding basin
- Diversion channel
- River improvement
- Dam
- Flood control measures in Namosi river

6.1.4 First Selection of Flood Control Measures in each Section

The first selection of possible flood control measures is carried out in each section as shown in Table 6-1.

Figure 6-5 Division of River Section for Flood Control Plan

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO., LTD./CTI ENGINEERING INTERNATIONAL CO., LTD. JV

Final Report, Volume II Main Report, Part I: Master Plan Study

Flood Control Measures		Contents	Middle Stream Section		Downstream Section		Upper Stream Section	
		Contents	Selection Result Conclusion		Selection Result	Conclusion	Selection Result	Conclusion
Α	Dam	• Construction of new dam to reserve a part of flood discharge	• Dam scheme isn't considered in middle section because there is no candidate site for dam construction.	Not Selected	•Dam scheme isn't considered in downstream section because there is no candidate site for dam construction.	Not Selected	•Dam scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected
В	Retarding Basin	• Storage of a part of flood discharge in the retarding basin constructed along river channel.	• Retarding Basin scheme isn't considered in middle section because there is no candidate site for retarding basin.	Not Selected	•Retarding Basin scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected	•Retarding Basin scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected
С	Diversion Channel	• Excavation of new channel on upper stream of protection area and discharge toward the sea.	• Diversion Channel scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected	• Diversion Channel scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected	• Diversion Channel scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected
D	River Improvement	 Channel Excavation: Discharge capacity improvement by expanding sectional area Backward Displacement of Dyke: Discharge capacity improvement by constructing new dyke in landside Dyke: Discharge capacity improvement by constructing dyke. 	•River Improvement scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected	•River Improvement scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected	• River Improvement scheme is selected because there is need of consideration, feasibility and prospect for comfortable flood control effect.	Selected
E	Ring Dike	• Inundation prevention by surrounding specific area locally	• River Dike scheme isn't selected because surrounding all protected area by bank isn't realistic	Not Selected	• River Dike scheme is selected to protect dotted communities.	Selected	• River Dike scheme isn't selected because there is no protected area.	Not Selected

Table 6-1 Result of First Selection of Flood Control Measure

The Project for the Planning of the Nadi River Flood Control Structures in the Republic of Fiji YACHIYO ENGINEERING CO., LTD./CTI ENGINEERING INTERNATIONAL CO., LTD. JV