10. Preliminary Design and Cost Estimate

10.1 Preliminary Design

10.1.1 Track Alignments

(1) Rerouting Alignment Overview

Plane Alignment

The basic policy for rerouting alignment was previously mentioned in Section 8.6. Transition curves shall be inserted into the rerouting line with consideration of the actual track configuration. The calculation method for transition curve length shall be in accordance with the Civil Engineering Manual. Moreover, parameters used for the calculation of transition curve length, including maximum train speed (=80 km/h), maximum cant (=100 mm), and maximum cant deficiency (=50 mm), shall be in accordance with the Civil Engineering Manual.

The rerouting alignment statement is in Appendix X. Additionally, the existing alignment statement is in Appendix W. However, in the existing alignment calculations, transition curves are not considered due to a lack of transition curve data on the existing line.

Curve Radius	Speed	Actual Cant	Cant Deficiency	0 .72 Ca	0.008CaV	0.008Cdv	Max (1-3)
R (m)	V (km/h)	Ca (mm)	Cd (mm)	1 (m)	2 (m)	3 (m)	TCL (m)
350	75	100	34	72.0	60.0	21.0	72.0
400	80	100	33	72.0	64.0	22.0	72.0
500	80	100	6	72.0	64.0	5.0	72.0
600	80	89	0	65.0	57.0	0.0	65.0
800	80	67	0	49.0	43.0	0.0	49.0
1000	80	53	0	39.0	34.0	0.0	39.0
1500	80	35	0	26.0	23.0	0.0	26.0
5000	80	11	0	8.0	8.0	0.0	20.0

 Table 10.1: Transition Curve Length

Source: JICA Study Team

Vertical Alignment

Formation Level (FL) is set as 60 cm below the Rail Level (RL). 60 cm is based on a rounding up from the total of rail height (80 lb/yd), sleeper height, and ballast thickness. For this project, vertical curves shall be inserted into the rerouting line with consideration of the actual track configuration. The minimum vertical curve radius shall be R=3,000 m in accordance with the Civil Engineering Manual. Moreover, the Civil Engineering Manual indicates recommended vertical curve lengths, for which the corresponding vertical curve radius figures are indicated in Table 10.2 and Table 10.3.

Table 10.2:	Vertical	Curve	Length	(Sag)
-------------	----------	-------	--------	-------

Gradient Difference	Radius
(Per-mille)	(m)
0.00 - 4.99	12,000
5.00 - 9.99	12,000
10.00 - 19.99	9,000
20.00 - 29.99	8,000
30.00 -	7,500

Source: JICA Study Team

Gradient Difference	Radius
(Per-mille)	(m)
0.00 - 4.99	12,000
5.00 - 9.99	12,000
10.00 - 19.99	6,000
20.00 - 29.99	6,000
30.00 -	4,500

Table 10.3: Vertical Curve Length (Summit)

Source: JICA Study Team

Gradients at the start and end points of the rerouting line shall be compatible with gradients of the existing line. Moreover, gradient alteration points shall be at locations where conflicts with transition curves and vertical curves can be avoided. Railway alignments for each Section shall be as indicated below (additionally, see Appendix V for alignment drawings of rerouting line).

(2) Plan of Section 1

Data

Rerouting Section: Km293.714 – Km295.518 Section Length (Before Rerouting): 1,804 m Section Length (After Rerouting): 1,860 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 294.1 – Km 294.5, which has been assessed to be significantly harmful to the railway. The start point of the rerouting line shall be at Km 293.6, located immediately after the crossing of the existing bridge. The rerouting line shall run parallel to the existing line, offset 100 m towards the mountain. Further offsetting towards the mountain is not feasible due to the excessive cut earth height near Km 0.6 (Rerouting) and Km 1.3 (Rerouting). The rerouting line shall connect back to the existing line scraping along the R=350 m curve at Km 295.3.

Vertical Alignment

From the rerouting line start point onwards, the gradient shall be set steep in order to keep the FL above the Required Dike Level. The reason to set the gradient at 0.9 % instead of 1.0 % is to fit the vertical curve within the IP2 circular curve section.

(3) Plan of Section 2

Data

Rerouting Section: Km 301.694 – Km 307.958 Section Length (Before Rerouting): 5,994 m Section Length (After Rerouting): 5,991 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 302.0 – Km 307.7, which has been assessed to be significantly harmful to the railway. The railway shall be relocated above the estimated high water level with consideration of the embankment height and cut earth height, such that they do not become excessive. However, since this area has considerable undulations, the rerouting line will be located below the estimated higher water level in swamp areas. In that case, embankments shall be provided to set the FL higher than the "Required Bank Level". At locations where adequate horizontal separation between the rerouting line and Bank Erosion Area cannot be provided, protection measures, such as the provision of revetments, shall be provided.

This section has existing bridges at two locations. Since both are lower than the "Design High Water Level", new bridges shall be provided.

Vertical Alignment

FL shall be located higher than the estimated high water level. Moreover, provisions shall be made to balance cut earth height and embankment height. At new bridge locations, pier cap height shall be located higher than the "Required Dike Level".

(4) Plan of Section 3

Data

Rerouting Section: Km 313.284 – Km 316.048 Section Length (Before Rerouting): 2,764 m Section Length (After Rerouting): 2,775 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 312.6 – Km 316.2, which has been assessed to be significantly harmful to the railway. However, in order to avoid the village near Km 313.0, the start point shall be located near Km 313.3. Moreover, to avoid the village near Km 316.3, the end point shall be located near Km 316.0. The railway shall be relocated above the estimated high water level with the consideration that embankment height and cut earth height, such that they do not become excessive. However, since this area has considerable undulations, the rerouting line will be located below the estimated higher water level at swamp and other low areas. At locations where adequate horizontal separation between the rerouting line and Bank Erosion Area cannot be provided, protection measures, such as the provision of revetments, shall be provided.

Vertical Alignment

FL shall be located higher than the estimated high water level. Moreover, provisions shall be made to balance cut earth height and embankment height.

(5) Plan of Section 5

Data

Rerouting Section: Km337.296 – Km 339.210 Section Length (Before Rerouting): 1,913 m Section Length (After Rerouting): 1,766 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 337.6 – Km 338.3 which has been assessed to be significantly harmful to the railway. Since the FL shall be higher than the "Required Bank Level" and the railway will be relocated to harder ground, the rerouting line shall be routed significantly toward the mountains compared to the existing line.

Vertical Alignment

From the rerouting line start point onwards, the gradient shall be set at maximum steepness (1.0 %) in order to reduce cut earth height.

(6) Plan of Section 7

Data

Rerouting Section: Km 346.243 – Km 348.004 Section Length (Before Rerouting): 1,760 m Section Length (After Rerouting): 1,862 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 346.6 - Km 347.2, which has been assessed to be significantly harmful to the railway. In order to avoid the village near Km 347.8, and in order to provide sufficient separation from the water collision point near Km 347.2, the rerouting line shall be routed significantly toward the mountains compared to the existing line.

Vertical Alignment

From the rerouting line start point onwards, the gradient shall be set at a maximum steepness of 1.0% in order to reduce cut earth height.

(7) Plan of Section 8

Data

Rerouting Section: Km 351.024 – Km 352.825 Section Length (Before Rerouting): 1,801 m Section Length (After Rerouting): 1,815 m

Plane Alignment

The railway shall be relocated to avoid the Bank Erosion Area near Km 351.7 – Km 352.4, which has been assessed to be significantly harmful to the railway, and to cross the rerouted waterway of the Maswala River. The railway shall have sufficient separation from the Bank Erosion Area at its closest point at Km 352.2, and the value of GL-FL at the river crossing point shall be maximized.

The rerouting line start point shall be located to maximize the GL-FL at the river crossing point (the existing line gradient is 1.0 % from this point to the base point).

Vertical Alignment

From the rerouting line start point onwards, the gradient shall be set at a maximum steepness of 1.0% in order maximize the GL-FL at the river crossing point. Onwards, embankments with height sufficient enough to provide box culverts shall be provided.

(8) Plan of Section 9

Data

Rerouting Section: Km 362.409 – Km 371.563 Section Length (Before Rerouting): 9,154 m Section Length (After Rerouting): 9,066 m

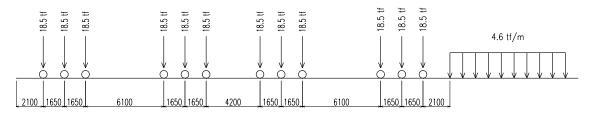
Plane Alignment

The railway shall be relocated to avoid water-bearing ground from near Km 363 to the Mzase River, and to cross the rerouted waterway of the Mzase River. The existing Gulwe Station is located immediately after the river crossing. Since the FL has been raised for the river crossing, the area in the vicinity of the existing station is on a gradient and is not appropriate for station building. The New Gulwe Station shall be located after the railroad crossing near Km 369.7, having the prescribed station length.

The rerouting line shall be located higher than the "Required Dike Level" at the section between the start point and the Mzase River. Near the existing Gulwe Station, the rerouting line shall be offset 30 m towards the mountain from the existing line.

Vertical Alignment

For the section between the rerouting line start point and the Mzase River, embankments with height sufficient enough to provide box culverts shall be provided. At river crossings, FL height shall be sufficient to provide deck girders. Near the station area, culverts shall be provided and FL shall be higher than the Required Dike Level. Moreover, the station area shall be on level ground.


10.1.2 Premise of Design for Railway structure

(1) Overview

Basically drawing from the Civil Engineering Manual 1998 in Tanzania, the preliminary design of railway structure was carried out. For items not specified in this manual, designs were carried out based on the Japanese standards.

1) Axle load

Based on the axle load and the arrangement of S2 Loading shown in Figure 10.1, the preliminary design of the railway structure is carried out. According to RAHCO, it is noted that 16 tons should be set in the case of upgrading/rehabilitation, while 18.5 tons should be set in the case of new construction. Therefore, 18.5 tons is adopted in the preliminary design.

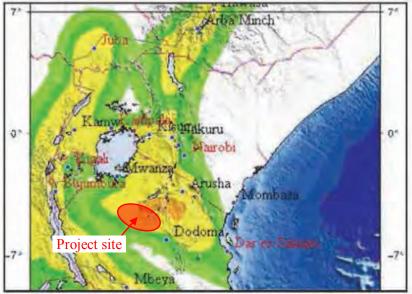

Source: Inspection and Capacity Rating of RAHCO Railway Bridges, Interim Report, December 2015, TIRP

Figure 10.1: Axle Load and Arrangement

2) Seismic design horizontal coefficient

Figure 10.2 shows the Peak Ground Acceleration of east Africa based on Global Seismic Hazard Assessment Program implemented by United Nations in the 1990s. The contours represent the ground surface acceleration at a certain location by predicting the maximum value of ground surface acceleration stochastically occurred over a period of 50 years. The Project site is contained within the range between 0.8 m/s^2 and 1.6 m/s^2 . Therefore, there will be a need for a seismic design horizontal coefficient of 0.2.¹

¹ The maximum value of Peak Ground Acceleration in project site is $1.6m/s^2$. Seismic design horizontal coefficient is produced by dividing by 9.8 m/s^2 (gravity). Therefore, the seismic design horizontal coefficient is 1.6/9.8=0.16 (0.2, as rounded up).

Source: Governments of Tanzania, Rwanda and Burundi, *Phase II of the Dar es Salaam–Isaka–Kigali/Keza– Musongati Railway Project Study*, Final Report, Volume 2A, March 2014.

Figure 10.2: Seismic Hazard Map of East Africa

10.1.3 Embankment and Cutting

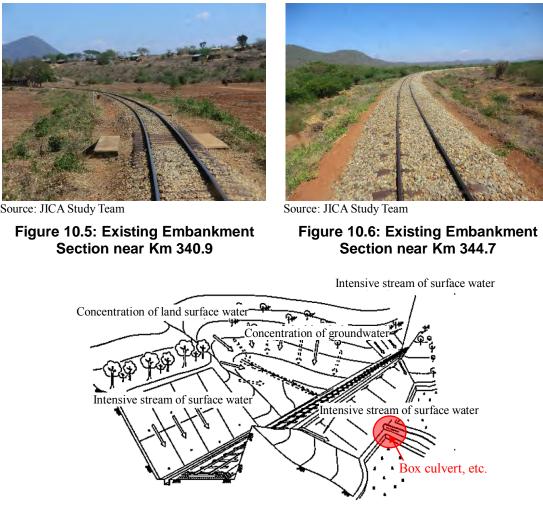
(1) Embankment

1) Overview

The preliminary design of soil structures is carried out considering the terrain and geological conditions. It is important whether or not there are landslides or terrain damaged by river erosion or water catchment at valley in embankment sections.

In the rerouting section, judging from site surveys and the result of the boring investigation carried out in the project site, since the section damaged by river erosion is rerouted, embankment structures or cutting can be adopted, except in locations where there is a bridge at present. In the preliminary design, bridge or box culverts are planned at valleys, depending on the catchment area.

Source: JICA Study Team



Source: JICA Study Team

Figure 10.4: Existing Embankment Section near Km 318.4

Final Report

Source: JICA Study Team

2) Condition of supporting ground under embankment

It is necessary that the supporting ground is able to support an embankment body safely and does not result in foundation failures nor cause large settlement. Table 10.4 shows an estimated index of supporting ground conditions under embankment for the performance rank 2 and 3 in Japanese standards. Here, the performance rank 2 is defined as "Earth structure that undergoes deformation that can be dealt with by regular maintenance in ordinary conditions, and does not reach devastating failure under Level-2 earthquake motion or extremely rare heavy rainfall. (For example, earth structure supporting a ballasted track in a very important railway line)" and the performance rank 3 is defined as "Earth structure that allows deformation in ordinary conditions, and does not fail under Level-1 earthquake motion or heavy rainfall that occurs several times a year. (For example, earth structure supporting a ballasted track in a normal railway line)".

Table 10.4: Estimated Index of Supporting Ground Condition under Embankment(Performance Rank 2 and 3)²

Classification		Subdivision	Condition with less problems as supporting ground	
Ro	ock bed	-	No problem	
		Gravel grained soil		
	Diluvium	Sandy soil	No problem	
	Diluvium	Fine soil		
		Volcanic cohesive soil	N value is 3 or more	
Soil	Cail	Gravel grained soil	No problem	
layer		Sandy soil	There is no layer with a risk of liquefaction during an earthquake*1	
	Alluvium Fine soil		 a) N value is over 4 b) Thickness of layer with N value from 2 to 4 is less than 3 m c) Thickness of layer with N value of less than 2 is less than 2 m*2 	

Note: *1: In case of loose sandy soil with N value of 20 or less, a judgment of liquefaction may be carried out. Note: *2: Check the stability of an embankment.

Source: Design Standards for Railway Structures and Commentary (Earth Structures)

When evaluating supporting ground conditions based on Table 10.4 and the result of the boring survey carried out in the project site, it can be judged as satisfactory. However, because this evaluation is by deemed-to-satisfy specifications, a circular slip calculation for supporting ground was carried out based on surface layer information of the boring data "BH09", which judged that the surface layer condition is poor. Here, the embankment height is assumed as 9 m, which is a maximum height in the preliminary design. Table 10.5 and Table 10.6 show the setting and contents of calculation slip calculation for supporting ground respectively, and then Table 10.7 shows the result.

Item		Contents			
Embankment height (m)		9.0	9.0		
Slope gradient		1:1.5	1:1.5		
Permanent design load		Embankment body,	ballasted track		
		$\gamma (kN/m^3)$	14		
Material data of embankment boo	ły	C (kN/m^2)	20 (10)		
	-	φ (degree)	25 (20)		
		$\gamma (kN/m^3)$	16		
	Surface	C (kN/m^2)	31.25		
		φ (degree)	0.0		
		$\gamma (kN/m^3)$	19		
Value of supporting ground	Second layer	C (kN/m^2)	0.0		
		φ (degree)	30.0		
		$\gamma (kN/m^3)$	20		
	Third layer	C (kN/m^2)	0.0		
		φ (degree)	42.0		

 Table 10.5: Setting of Circular Slip Calculation for Supporting Ground

Note: Figure in parentheses shows the value of embankment surface. Source: JICA Study Team

Table 10.6: Contents of Circular Slip Calculation for Supporting Ground

Required performance	Performance items	Combinations of actions
Safety	Stability of supporting ground	1.0*D
Note) D: Dead load		-

Source: JICA Study Team

 $^{^{2}}$ In the case that embankment height is less than 10 m and the supporting ground is not extremely tilted.

Required performance	Performance items	Response moment (kNm)	Resisting moment (kNm)	Structure factor	Safety Rate
Safety	Stability of supporting ground	7,888	13,676	1.0	0.58

Source: JICA Study Team

In the preliminary design, the safety on circular slip calculation for supporting ground has been confirmed even if the embankment height is 9 m. However, in the construction stage, when soft supporting ground is visible, it should be subjected to measures such as replacement or soil improvement.

3) Embankment materials

It is necessary to select embankment materials that are easy to compact and maintain their stability against external forces, such as rainfall, etc. In addition, they must not cause a harmful compression settlement.

Earth structures are not often evaluated by a calculation due to large variations in materials and construction compared with other structures. Soil has uncertainty due to a wide variety of soils, intensity that varies greatly depending on the density and confining pressure, and non-uniform, non-homogeneous, and adhesion factors which change by the degree of saturation.

Therefore, it is desirable that design values of embankment body are set according to the characteristics of the soil classification and construction management values by being carried out tri-axial compression test and test construction. In advance, it is necessary to collect the information such as unit volume weight, adhesive strength and the angle of internal friction on embankment materials available in the vicinity of the project site.

However, since the location of the borrow pit is unclear in this moment, some circular slip calculations for embankment body are carried out assuming different types of materials. Table 10.8 and Table 10.9 show the setting and contents of slip calculation for the embankment body respectively, and then Table 10.10 shows the results.

Item			Contents
Embankment height (m)			6.0
Slope gradie	Slope gradient		1:1.5
Axle load (tons)			18.5
	, , , , , , , , , , , , , , , , , , ,		$\gamma = 18 \text{ kN/m}^3$, c=6 (3) kN/m ² , $\varphi = 45$ (40) degree
Parameter	Material	-2	$\gamma = 17 \text{ kN/m}^3$, c=6 (3) kN/m ² , $\varphi = 40$ (35) degree
1 arameter	Wateria	-3	$\gamma = 16 \text{ kN/m}^3$, c=6 (3) kN/m ² , $\varphi = 35$ (30) degree
		-4	$\gamma = 14 \text{ kN/m}^3$, c=20 (10) kN/m ² , $\varphi = 25$ (20) degree

Table 10.8: Setting of Circular Slip Calculation for Embankment Body

Note: () in above table is the value on embankment surface. Source: JICA Study Team

Required performance	Performance items	Combinations of actions	
		$1.0*D_1+1.0*D_2$	
Safety	Stability of embankment body	1.1*D ₁ +1.2*D ₂ +1.1*L	
		$1.0*D_1+1.0*D_2+1.0*L+1.0*E_q$	

Note) D_1 : Fixed dead load, D_2 : Variable dead load, L: Train load, E_q : Seismic horizontal force Source: JICA Study Team

		Matarial		Non-	reinforceme	nt	Reinforcement by Geotext		
Case		Material Response Resisting		Safety Response		Resisting	Safety		
No.	γ (kN/m ³)	$\frac{C}{(kN/m^2)}$	φ (degree)	moment (kNm)	moment (kNm)	Safety Rate	moment (kNm)	moment (kNm)	Rate
1	18	6(3)	45 (40)	3084.4	3126.5	0.99	-	-	-
2	17	6 (3)	40 (35)	2961.2	2629.1	1.13	5196.2	6871.2	0.76
3	16	6 (3)	35 (30)	2837.9	2210.3	1.28	5732.9	6699.5	0.86
4	14	20 (10)	25 (20)	2591.4	3094.9	0.84	-	-	-

Note: () in above table is the value on embankment surface.

Source: JICA Study Team

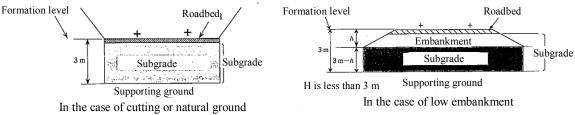
Before the construction stage, it is necessary that design values such as unit volume weight, adhesive strength, and angle of internal friction on embankment materials available in the vicinity of the project site are set according to the characteristics of the soil classification and construction management values, by using a tri-axial compression test and test construction.

Here, in the Civil Engineering Manual, the cross-sectional configurations, such as roadbed, subgrade, and embankment body as per Japanese standards are not classified. For reference, the cross-sectional configuration based on the Japanese standards is described below.

Cross-sectional configuration

It is necessary for the upper embankment to use materials such that an appropriate rigidity can be obtained and the accumulated deformation caused by cyclic loading of train is reduced. Here, the range of upper embankment is from the formation level largely impacted by train load to 3 m below.

a) Roadbed


The purpose of setting roadbed is a) supporting the track safety, b) distributing the train load to the subgrade, c) preventing the subgrade from weakening, and d) preventing the roadbed from harmful settlement and deformation. In the case of crushed stone roadbed, the thickness is 300 mm, drainage gradient is about 3%, and the material is crushed stone (such as crusher-run, etc.), or a high-quality soil generated by cutting. In addition, even if the roadbed material is used as same as the embankment material, the construction of roadbed shall be performed separately from the construction of the embankment.

b) Subgrade

The purpose of setting subgrade is a) supporting the track and roadbed safety and b) distributing the train load to below. Here, the range of subgrade is as follows:

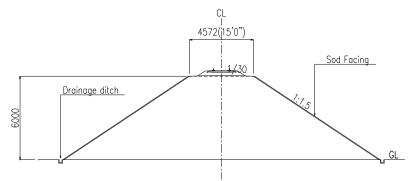
i) In the case of cutting and natural ground, the range is from formation level to 3 m below (except roadbed).

ii) In the case of low embankment, the range is from formation level to 3 m below (except embankment and roadbed).

Note: Range from formation level to 3 m below is generally impacted by train load. Source: Design Standards for Railway Structures and Commentary (Earth Structures)

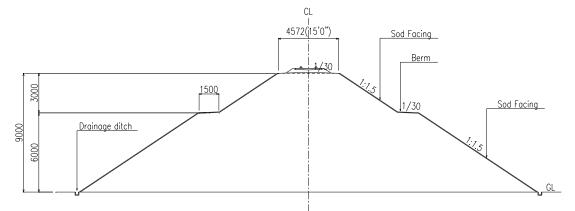
Figure 10.8: Standard Cross-Section of Subgrade

It is necessary that there is no soft layer of having an N value less than 4 in subgrade and that the coefficient subgrade reaction is over 70 MN/m^3 .


4) Standard cross-section for general section

According to the Civil Engineering Manual, the slope gradient for embankments is defined as 1:1.5. Following suit, the slope gradient for embankments shall be also defined as 1:1.5 in the preliminary design. For embankments higher than 6 m, berms shall be provided as per Japanese standards, as there is no existing standard for high embankments.

The standard cross-section of embankment for general section is planned to be classified as follows:


a) Type-1: Height is up to 6 m

b) Type-2: Height is from 6 m to 9 m

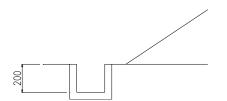
Source: JICA Study Team

Figure 10.9: Standard Cross-Section of Embankment for General Section (Type-1)

Source: JICA Study Team

Figure 10.10: Standard Cross-Section of Embankment for General Section (Type-2)

<u>Drainage</u>


The purpose of setting drainage is a) prevention of mud-pumping, b) securing strength of roadbed and subgrade, and c) preventing embankment collapse.

a) Drainage gradient

Drainage gradient of the transverse direction should be 1/30 at embankment crest and berm. b) Drainage blanket The purpose of setting the drainage blanket is the prevention of rising pore water pressure in the embankments due to rain. This is because the risk of slope collapse is increased if the internal water level in the embankment rising. The material should function such that the coefficient of permeability is over 1 cm/s, and it is necessary that surfaces in contact with embankment materials are covered by filter materials, such as non-woven fabric, for prevention of an outflow of embankment material to the drainage blanket as far as possible. In the preliminary design, drainage blanket is not considered at the slope toe of embankment. If necessary, it may be included in the design.

c) Drainage ditch

It was found that the drainage ditch was not set at the slope toe of existing embankment during the site surveys. However, in the preliminary design, a drainage ditch is considered in order to guide rainwaters to the end of water flow as shown in Figure 10.11

Source: JICA Study Team
Figure 10.11: Drainage Ditch

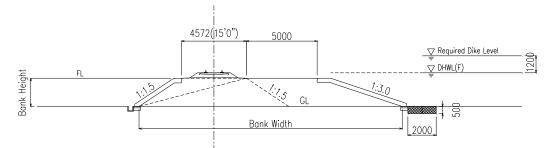
Slope protection

As a railway structure, it is necessary to set slope protections in order to prevent erosion of the surface layer from rain. For some examples in Japanese standards, there are zhang block, anti-weed sheet, lattice frame, rock seat zhang, and planting. It was found that slope protection was not set on the slope of existing embankment in the site surveys. However, in the preliminary design, sod facing as a form of slope protection is considered for the reason of it being relatively economical among them.

Berm

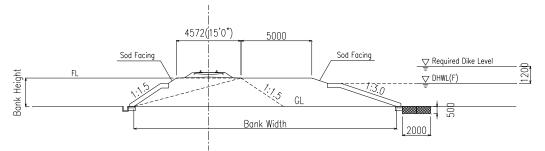
Long slopes causes slope erosion due to an increased flow speed and flow volume during rainfall. Berms must be set in order to reduce flow speed. Additionally, berms contribute to the improvement of the stability of the embankment body and become a passageway for slope maintenance. Berms should be applied to the areas with an embankment height of over 6 m.

Reinforcement material and layer thickness management material in embankment body


It is judged that reinforcement material, such as geotextiles, is not necessary so long as there is the use of appropriate embankment materials, based on the results of circular slip calculation for embankment body (even if the height of embankment is 9 m). In addition, layer thickness management material is not considered in the preliminary design. However, it may be set in order to manage the thickness per layer and the construction of embankment edge easily.

5) Standard cross-section for the section expected to be impacted by water flows during floods

Slope protection as a part of river structures shall be provided for locations that are expected to be impacted by water flows during floods, as shown in Figure 10.12, Figure 10.13, and Figure 10.14. The standard cross-section of embankment for the above purpose are classified as follows:


a) Type-1: Bank Height < DHWL (F)

- b) Type-2: Bank Height < Required Dike Level
- c) Type-3: Bank Height > Required Dike Level

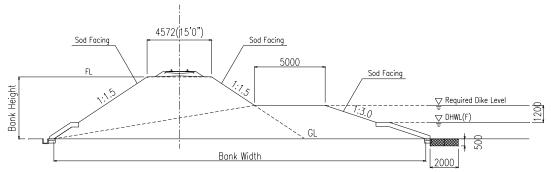

Source: JICA Study Team

Figure 10.12: Standard Cross-Section of Embankment for the Section Expected to be Impacted by Water Flows during Floods (Type-1)

Source: JICA Study Team

Figure 10.13: Standard Cross-Section of Embankment for the Section Expected to be Impacted by Water Flows during Floods (Type-2)

Note: The extent of a concrete protection at the mountain side will be examined in the detailed design stage. Source: JICA Study Team

Figure 10.14: Standard Cross-Section of Embankment for the Section Expected to be Impacted by Water Flows during Floods (Type-3)

6) List of embankment sections

Table 10.11 shows the length, volume, and maximum height of embankments by section.

Section No.	Length (m)	Volume (m ³)	Maximum height (m)
1	1,140	27,000	4.93
2	2,800	115,000	7.96
3	820	59,000	8.18
5	480	3,000	2.03
7	160	2,000	2.55
8	1,620	19,000	3.02
9	7,720	147,000	6.30
Total	14,740	372,000	-

Table 10.11: List of Embankment Section Planned in the Preliminary Design

Note: Maximum height indicates the height at the center line of the alignment. Source: JICA Study Team

(2) Cutting

1) Overview

It is important to evaluate the configuration and conditions of the geology and the lithology of the natural ground, because natural ground is generally heterogeneous. The slope surface of the existing cut earth along the existing line was non-treated, as shown in Figure 10.15 to Figure 10.18.

Source: JICA Study Team

Figure 10.15: Existing Cutting Section near Km 304.1

Source: JICA Study Team

Figure 10.16: Existing Cutting Section near Km 314.4

Source: JICA Study Team

Figure 10.17: Existing Cutting Section near Km 314.7

Source: JICA Study Team

Figure 10.18: Existing Cutting Section near Km 315.4

2) Conditions of supporting ground under cutting

It can be expected that the supporting ground under the cutting functions as a sufficient support, judging from existing cutting structures shown in the above figures.

3) Standard cross-section

According to the Civil Engineering Manual, the slope gradient for cut earth is defined as 1:1 for normal soil. However, the slope gradient is not defined for rock formations. In the study area, cut earth areas along the existing line all contain exposed rock formations, with the gradient being nearly vertical. Therefore, the gradient of cut earth shall be also defined as 1:0.35 in the preliminary design.

Standard cross section of cutting are classified depending on their height, as follows:

a) Type-1: Height is up to 10 m b) Type-2: Height is over 10 m

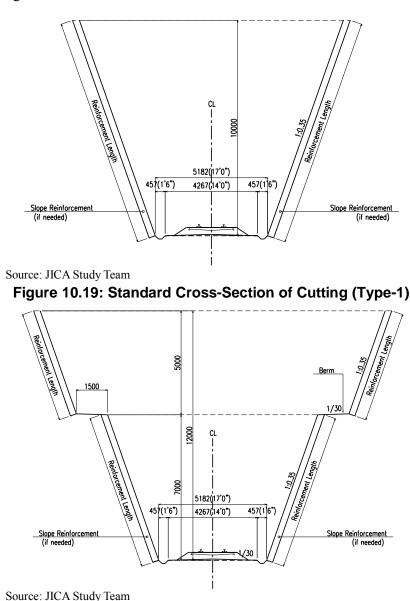


Figure 10.20: Standard Cross-Section of Cutting (Type-2)

Drainage

The purpose of setting drainage is a) prevention of mud-pumping, b) securing strength of roadbed and subgrade, and c) preventing slope surface erosion and collapse. In the preliminary design, depending to the Civil Engineering Manual, the drainage of cutting is planned as shown in Figure 10.21.

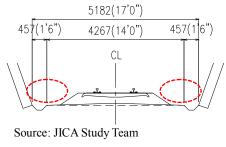


Figure 10.21: Drainage of Cutting

Slope protection

As for railway structures, it is necessary to set slope protection in order to prevent erosion of the surface layer from rain. In the preliminary design, sprayed concrete with a thickness of 200 mm is planned in consideration of safety, in order to prevent a halting train operation from rockfalls, even if the existing cutting slope is non-treated.

In the construction stage, structural changes of geology, soil and lithology, and also spring water conditions and upper cutting conditions should be observed and recorded. Depending on these conditions, it should be judged whether the slope gradient has changed or not, and if slope protection works are necessary.

Berm

Long slopes causes slope erosion due to an increased flow speed and flow volume during rainfall. Berms must be set in order to reduce flow speed. Additionally, berms contribute to the improvement of the stability for cutting body, and become a passageway for slope maintenance. Berms should be applied to the cutting height of over 10 m with each height set at 7 m. The width of a berm is 1.5 m. In addition, if necessary, berms may be set at the boundary of soil and rock or the boundary of a permeable layer and an impermeable layer.

4) List of cutting section

Table 10.12 shows the length, volume and maximum height of cutting per section.

Section No.	Length (m)	Volume (m ³)	Maximum height (m)
1	740	17,000	12.07
2	3,200	172,000	18.06
3	1,960	98,000	16.61
5	1,300	31,000	9.23
7	1,720	39,000	8.36
8	200	1,000	0.46
9	1,360	8,000	2.43
Total	10,480	366,000	-

Table 10 12: List of Cutting	Soction Plann	ad in the Prolimir	ary Decian
Table 10.12: List of Cutting	J Section Flanne		ary Design

Note: Maximum height indicates the height at the center line of the alignment. Source: JICA Study Team

10.1.4 Tracks

(1) Track Structures

The track rehabilitation for the Dar es Salaam – Isaka section is planned under TIRP. The TIRP package C21: Field Assessment and Preparation of Tender Documents for Track Works and Maintenance provides a set of tender documents, including technical specifications, and is planned to be completed in the end of June 2016. This package will establish technical specifications commonly applied for the section above, including the Kilosa – Gulwe section. Thus, track structures as shown in Table 10.13 are planned for the Project according to the Civil Engineering Manual, 1998, TRC. The details of track structures and execution of track rehabilitation works are described in Section 9.8.4.

Track structure		
Ballasted track		
Joint	Standard size	
Distribution of joints	Supported joint	
Joint supporting method	Parallel joint	
Track materials		
Rail	Rail type	80 lb/yd rail
	Length of rail	Standard size: 24.0 m or over
	Rail steel	Ordinary rail
Rail Fastening	Composition	Double elastic fastening
	Fastening spring	Wire spring, spring crip
	Fastening method	No-screw fastening
Sleeper	Sleeper type	Steel sleeper
	Sleeper interval	1477 Units/km, (33 Units/24 m)
		A=229mm, B=610mm, C=686mm, D=748mm
Ballast	Ballast	Crushed Stone
	Thickness of Ballast	250 mm
	Width of Ballast shoulder	250 mm
	Volume of Ballast	885.0 m ³ /km

Table 10.13: Track Structures

Source: TRC, Civil Engineering Manual, 1998

(2) Track Materials

Major track materials and track works for the Project are as shown in Table 10.14.

Table 10.14:	Track Materials and	Track Works
--------------	----------------------------	-------------

		Quantity			
Items	Unit	1	2	3	Total
Track Materials					
80lb/yd rails	ton	2,180	1,250	80	3,510
Fish plate and accessories	pcs	530	320	20	870
Thermit welding	pcs	1,580	950	-	2,530
Steel sleeper with fastenings	pcs	38,980	23,260	1,440	63,680
Turnout 1:12	sets	6	-	-	6
Buffer stop	sets	2	-	-	2
Ballast	m ³	24,330	13,940	22,670	60,940
Track Works					
Track construction (80lb/yd rails)	km	25.1	15.0	-	40.1
Thermit weldings	pcs	1,580	950	-	2,530
Installation of turnouts 1:12	sets	6	-	-	6
Buffer stop	sets	2	-	-	2
Earth works (Widen and strengthen embankment)	m ³	-	1,735	5,644	7,379

		Quantity			
Items	Unit	1	2	3	Total
Earth works (Re-profiling)	sites	-	5	15	20
Earth works (Drains)	sites	-	3	9	12
Refurbishment of 80lb/yd rails	km	-	-	9	9
Ballasting (300mm), lifting, tamping, distressing	km	-	-	12	12
Ballasting (100mm) lifting tamping distressing	km	-	-	17	17

1: Installation of track (25.1km)

2: Renewal of 60lb/yd rails by 80lb/yd rails (15.0km)

3: Refurbishment of 80lb/yd rails section (48.8km)

10.1.5 Bridges

(1) Overview

As described in Subsection 3.2.2 (3), steel truss bridges, steel deck girders and steel through girders were found as bridge types at the project site, and there were no concrete girders with long spans. In addition, these girders are all simple girders and none were continuous girders. Bridges were placed at locations of relatively wide river width. Figure 10.22, Figure 10.23, Figure 10.24, and Figure 10.25 show photos near the locations of bridges planned in this project.

Source: JICA Study Team

Figure 10.22: Existing Steel Deck Girder Bridge (Km 304.3)

Source: JICA Study Team

Figure 10.23: Existing Steel Deck Girder Bridge (Km 306.2)

Source: JICA Study Team

Figure 10.24: Present Status of Maswala River on 20th Nov. 2015 (Km 351.0)

Source: JICA Study Team

Figure 10.25: Present Status near Maswala River on 20th Nov. 2015 (Km 351.7)

Source: JICA Study Team

Figure 10.26: Present Status of Mzase River on 21st Nov. 2015 (Km 369.1)

In the preliminary design, at first, comparisons with superstructure type and substructure type are carried out respectively. Next, some basic calculations on main girder height of superstructure and pile diameter and the length of substructure are carried out. The detailed contents are described below.

1) Comparison between Metal girder and RC T girder

In consideration of several factors, such as cost ratio, transportability by freight wagon, etc., the comparison between Metal girder and RC T girder has been carried out as shown in Table 10.15. As an overall evaluation, metal girders have been recommended in the preliminary design.

Item	Metal girder	RC T girder
Span (m)	L=20	L=20
Girder height (m)	1.4 (Deck Girder)	2.4
Girder height / Span	1/14.3	1/8.3
Cost ratio	1.00	1.23
Fabrication method	Shop fabrication (import)	1) Fresh concrete (domestic)
		2) Reinforcement bar (import)
Construction method on site	Crane erection	Pipe support, wooden support
Transportability by freight	Available (materials) by high strength	Available (materials)
wagon	bolt joint on site	

 Table 10.15: Comparison between Metal Girder and RC T Girder

Item	Metal girder	RC T girder
Maintenance	 General steel: Repainting will be needed depending on the type of paint Weathering steel: Repainting will be not needed 	Checking neutralization and crack
Bridges of almost same span confirmed in project site	 Upper way plate girder bridge Lower way steel truss bridge 	Not be confirmed
Applicability in project site	Applicable	Applicable
Overall evaluation	Preferable	Unfavorable

Note: Size of freight wagon is width of 2.5 m and length of 12.5 m according to measured result during the site surveys.

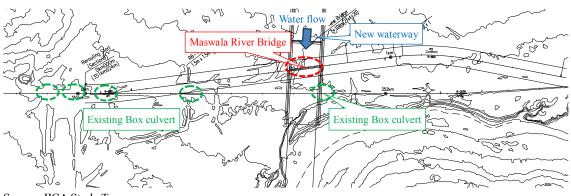
Source: JICA Study Team

2) Comparison between Cast-in-place pile and Ready-made pile

Considering the difficulty in purchasing materials, transportability of construction facilities, and the difficulty of changing the pile length at the project site, etc., the comparison between cast-in-place pile and ready-made pile has been carried out (Table 10.16). As an overall evaluation, cast-in-place has been recommended in the preliminary design.

Item	Cast-in-place pile	Ready-m	ade pile
		PHC pile	Steel pipe pile
Photo			
Applicable diameter	Minimum 0.8 m	0.3 m – 1.2 m	0.4 m – 2.5 m
Difficulty in	1) Fresh Concrete (domestic, a plant	Shop fabrication	Shop fabrication
purchasing materials	will be needed near project site)2) Reinforcement bar (import)	(import)	(import)
Construction method	All casing method, preventing	Driving	method
on site	collapse of a pore wall		
Transportability of construction facilities	Available	Difficult	Difficult
Applicability on pile length (m)	Up to approx. 30 m	Up to approx. 30 m	Over 45 m
Transportability by	Available (materials)	Available	Available
freight wagon		(materials)	(materials)
Difficulty of changing pile length on site	Easy	Difficult	Difficult
Applicability in project site	Applicable	Difficult	Difficult
Overall evaluation	Preferable	Unfavorable	Unfavorable

 Table 10.16: Comparison between Cast-in-place Pile and Ready-made Pile


Note: Size of freight wagon is width of 2.5 m and length of 12.5 m according to measured result during the site surveys.

Source: JICA Study Team

(2) Maswala RiverBridge

1) Characteristics

The Maswala River Bridge is a new one, accompanied by tributary refurbishment. The total length of this bridge is 104 m. Figure 10.27 shows the location of the Maswala River Bridge.

Source: JICA Study Team

Figure 10.27: Location of the Maswala River Bridge

2) Design concept

The superstructure is planned as a steel through girder due to the restriction of overhead clearance in the vertical alignment planning. The substructure is planned as cast-in-place pile. The span configuration is $4 \times 21 \text{ m} + 20 \text{ m} = 104 \text{ m}$.

3) Basic calculation

In the preliminary design, some basic calculations of main girder height and pile diameter and length are carried out as below.

a) Main girder height

Table 10.17 and Table 10.18 show the setting and contents of calculation for main girder height of the Maswala River Bridge, respectively, and then Table 10.19 shows the results.

Table 10.17: Setting of Ca	alculation for Main Girder
----------------------------	----------------------------

Span (m)	20.1
Girder height (m)	1.6
Axial load (tons)	18.5
Source: IICA Study Team	•

Source: JICA Study Team

Table 10.18: Contents of Calculation for Main Girder

Required performance	Performance items	Combinations of actions
Safety	Load-carrying capacity	1.0*D+1.1*L+1.1*I
Serviceability	Riding comfort	1.0*L+1.0*I

Note) D: Dead load, L: Train load, I: Impact of train load Source: JICA Study Team

Required performance	Items		Design response value	Design limit value	Structure factor	Safety rate
Safety	Vending moment (kNm)	Mid-span	7,680.0	22,094.4	1.2	0.42
Salety	Shear (kN)	End-span	1,737.9	6,783.1	1.2	0.31
Serviceability	Deflection (mm)	Mid-span	15.9	22.3	1.0	0.71

Table 10.19	: Results o	of Calculation	for	Main	Girder
-------------	-------------	----------------	-----	------	--------

Source: JICA Study Team

b) Pile diameter and the length

Table 10.20 and Table 10.21 show the setting and contents of calculations for pile of the bridge, respectively, and then Table 10.22 shows the results.

1.0
9.5
BH 19
1.0 (1.0*D)

Source: JICA Study Team

Table 10.21: Contents of Calculation for Pile

Required performance	Performance items	Combinations of actions
Safety (seismic)	Stability	1.0*D+1.0*L+1.0*E _q +1.0*W _p
Samiaaahilitu	Long-term support performance	1.0*D+1.0*W _p
Serviceability	Short-term support performance	1.0*D+1.0*L+1.0*I+1.0*W _p
Note) D. Deadlard I.	Frain load I: Impact of train load E : Saismis	having to be a with the second second

Note) D: Dead load, L: Train load, I: Impact of train load, Eq: Seismic horizontal force, Wp: buoyancy Source: JICA Study Team

Table 10.22: Results of C	Calculation for Pile
---------------------------	----------------------

Required performance	Performance items	Design response value	Design limit value	Structure factor	Safety rate
Safety (seismic)	Stability (kN)	2,149.9	5,781.5	1.0	0.37
Serviceability	Long-term support performance (kN)	960.9	1,981.2	1.0	0.49
Serviceability	Short-term support performance (kN)	1,436.0	2,611.4	1.0	0.55

Source: JICA Study Team

4) Preliminary design drawing

The preliminary design drawing of Maswala River Bridge is shown as below. Figure 10.28 shows the overall view and Figure 10.29 shows the superstructure, abutment, and pier.

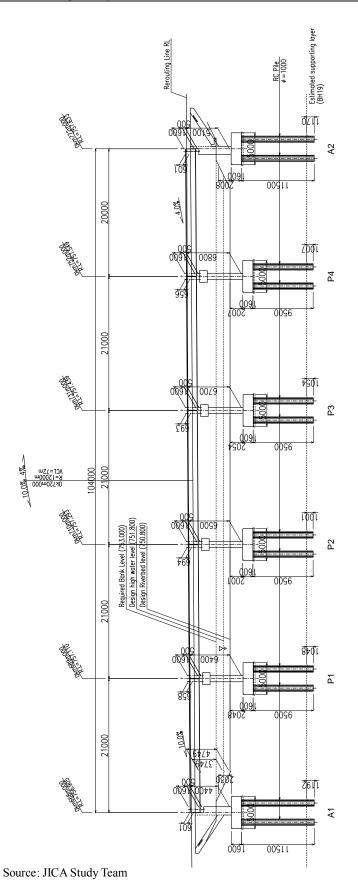


Figure 10.28: Overall View of the Maswala River Bridge



Figure 10.29: Superstructure, Abutment and Pier of the Maswala River Bridge

(3) Mzase River Bridge

1) Characteristics

The Mzase River Bridge is a new one accompanied with the tributary refurbishment (linearization of existing channel). The total length of this bridge is 61 m. Figure 10.30 shows the location of the Mzase River Bridge.

Source: JICA Study Team

Figure 10.30: Location of the Mzase River Bridge

2) Design concept

The superstructure is planned as a steel deck girder due to the non-restriction of overhead clearance on the vertical alignment planning. The substructure is planned as cast-in-place pile. The span configuration is 21 m + 2 x 20 m = 61 m.

3) Basic calculation

In the preliminary design, some basic calculations of main girder height and pile diameter and length are carried out as below.

a) Main girder height

Table 10.23 and Table 10.24 show the setting and contents of calculation for main girder height of the Mzase River Bridge, respectively, and then Table 10.25 shows the results.

Table 10.23: Setting of Calculation for Main Gir	der
--	-----

Span (m)	20.1
Girder height (m)	1.4
Axial load (tons)	18.5
Source: IIC & Study Team	

Source: JICA Study Team

Table 10.24: Contents of Calcu	lation for Main Girder
--------------------------------	------------------------

Required performance	Performance items	Combinations of actions	
Safety	Load-carrying capacity	1.0*D+1.1*L+1.1*I	
Serviceability	Riding comfort	1.0*L+1.0*I	
Note) D: Dood load I: Train load I: Impact of train load			

Note) D: Dead load, L: Train load, I: Impact of train load Source: JICA Study Team

Required performance	Items		Design response value	Design limit value	Structure factor	Safety rate
Safety	Vending moment (kNm)	Mid-span	7,690.5	20,141.7	1.2	0.46
Salety	Shear (kN)	End-span	1,740.0	5088.8	1.2	0.41
Serviceability	Deflection (mm)	Mid-span	18.5	22.3	1.0	0.83

Table 10.25: Results of Calculation for Main Girder

Source: JICA Study Team

b) Pile diameter & the length

Table 10.26 and Table 10.27 show the setting and contents of calculation for pile of the bridge respectively, and then Table 10.28 shows the results.

6.0
BH MZ-2
2.5 (2.5*D)

Source: JICA Study Team

Table 10.27: Contents of Calculation for Pile

Required performance	Performance items	Combinations of actions
Safety (seismic)	Stability	1.0*D+1.0*L+1.0*E _q +1.0*W _p
Comissability	Long-term support performance	1.0*D+1.0*W _p
Serviceability	Short-term support performance	1.0*D+1.0*L+1.0*I+1.0*W _p
Note) D. Dood load J. Train load J. Import of train load E. Sajamia harizantal farza W. huavanay		

Note) D: Dead load, L: Train load, I: Impact of train load, E_q: Seismic horizontal force, W_p: buoyancy Source: JICA Study Team

Table 10.28	Results of	Calculation	for Pile
-------------	------------	-------------	----------

Required performance	Performance items	Design response value	Design limit value	Structure factor	Safety rate
Safety (seismic)	Stability (kN)	2,069.1	4,623.6	1.0	0.45
Serviceability	Long-term support performance (kN)	845.5	1,068.5	1.0	0.79
Serviceability	Short-term support performance (kN)	1,322.5	1,646.4	1.0	0.80

Source: JICA Study Team

4) Preliminary design drawing

The preliminary design drawing of the Mzase River Bridge is shown as below. Figure 10.31 shows the overall view and Figure 10.32 shows the superstructure, abutment, and pier.

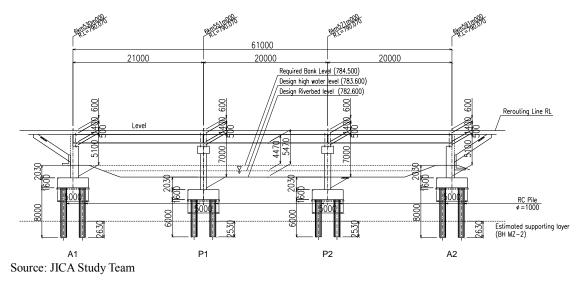


Figure 10.31: Overall View of the Mzase River Bridge

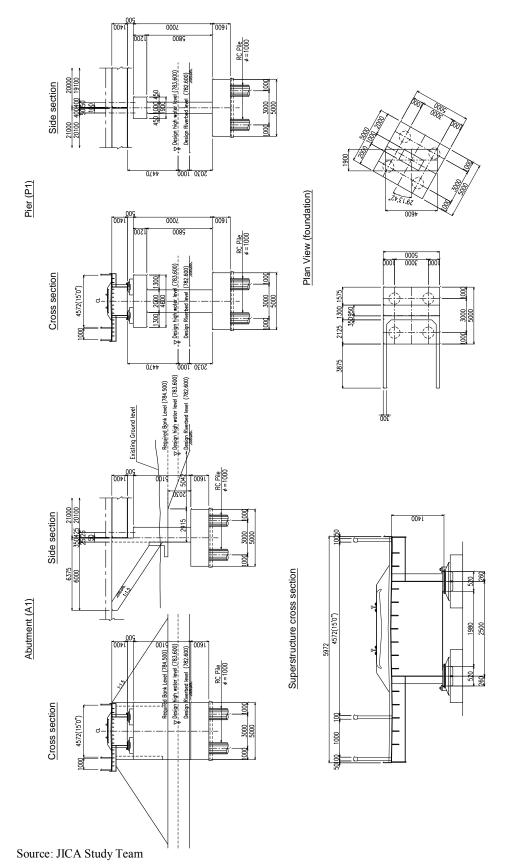


Figure 10.32: Superstructure, Abutment and Pier of the Mzase River Bridge

(4) New Bridges near Km 304 and Km 306 of the Existing Railway Line

1) Characteristics

Bridges near Km 304 and Km 306 of the existing railway line are new ones to be constructed in the rerouting section. The total lengths of the new bridges are 30 m and 60 m, respectively. Figure 10.33 and Figure 10.34 show the locations of the new bridges.

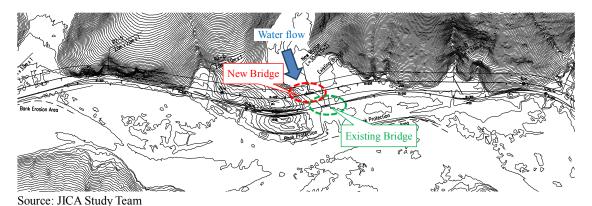
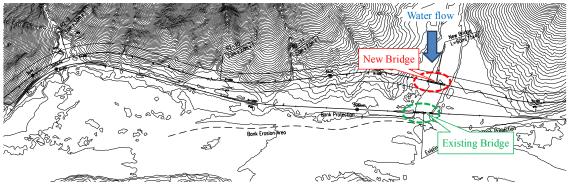



Figure 10.33: Location of New Bridge near Km 304 of the Existing Line

Source: JICA Study Team

Figure 10.34: Location of New Bridge near Km 306 of the Existing Line

2) Design concept

The superstructure is planned as a steel deck girder due to the non-restriction of overhead clearance on the vertical alignment planning. The substructure is planned as cast-in-place pile. The span configuration of new bridges near Km 304 and Km 306 is $2 \times 15 \text{ m} = 30 \text{ m}$ and $4 \times 15 \text{ m} = 60 \text{ m}$ respectively.

3) Basic calculation

In the preliminary design, some basic calculations of main girder height and pile diameter and length are carried out as below.

a) Main girder height

Table 10.29 and Table 10.30 show the setting and contents of calculation for main girder height of these new bridges, respectively and then Table 10.31 shows the results.

Table 10.29: Setting of Calculation for Main Girder of New Bridges

Span (m)	14.1
Girder height (m)	1.2
Axial load (tons)	18.5
Source: JICA Study Team	

Table 10.30: Contents of Calculation for Main Girder of New Bridges

Required performance	Performance items	Combinations of actions
Safety	Load-carrying capacity	1.0*D+1.1*L+1.1*I
Serviceability	Riding comfort	1.0*L+1.0*I

Note) D: Dead load, L: Train load, I: Impact of train load Source: JICA Study Team

Table 10.31: Results of Calculation for Main Girder of New Bridges

Required performance	Items		Design response value	Design limit value	Structure factor	Safety rate
Safety	Vending moment (kNm)	Mid-span	3,967.0	11994.5	1.2	0.40
Salety	Shear (kN)	End-span	1346.6	6018.5	1.2	0.27
Serviceability	Deflection (mm)	Mid-span	8.9	15.7	1.0	0.57

Source: JICA Study Team

b) Pile diameter and the length

Table 10.32, Table 10.33 and Table 10.34 show the setting and contents of calculation for pile of these new bridges and then Table 10.35 and Table 10.36 show the results respectively.

Table 10.32: Setting of Calculation for Pile of New Bridge near Km 304

Pile diameter (m)	0.8
Pile length (m)	9.0
Adopted boring No.	BH 13
Minimum embedment length (m)	0.8 (1.0*D)
Source: IICA Study Team	

Source: JICA Study Team

Table 10.33: Setting of Calculation for Pile of New Bridge near Km 306

Pile diameter (m)	0.8
Pile length (m)	18.7
Adopted boring No.	BH 15
Minimum embedment length (m)	0.8 (1.0*D)
C HCACL 1. T.	

Source: JICA Study Team

Table 10.34: Contents of Calculation for Pile of New Bridges

Performance items	Combinations of actions
Stability	1.0*D+1.0*L+1.0*E _q +1.0*W _p
Long-term support performance	1.0*D+1.0*W _p
Short-term support performance	1.0*D+1.0*L+1.0*I+1.0*Wp
	Stability Long-term support performance

Note) D: Dead load, L: Train load, I: Impact of train load, Eq: Seismic horizontal force, Wp: buoyancy Source: JICA Study Team

Required performance	Performance items	Design response value	Design limit value	Structure factor	Safety rate
Safety (seismic)	Stability (kN)	1327.2	2406.3	1.0	0.55
Serviceability	Long-term support performance (kN)	537.9	830.2	1.0	0.65
Serviceability	Short-term support performance (kN)	890.5	1079.1	1.0	0.83

Source: JICA Study Team

Table 10.36: Results of Calculation for Pile of New Bridge near Km 3	606
--	-----

Required performance	Performance items	Design response value	Design limit value	Structure factor	Safety rate
Safety (seismic)	Stability (kN)	1610.0	5832.5	1.0	0.28
Serviceability	Long-term support performance (kN)	567.8	2200.7	1.0	0.26
Serviceability	Short-term support performance (kN)	916.5	2785.1	1.0	0.33

Source: JICA Study Team

4) Preliminary design drawings

The preliminary design drawings of the new bridges near Km304 and Km306 of the existing railway line are shown as below. Figure 10.35 and Figure 10.37 show the overall view of two bridges, and also Figure 10.36 and Figure 10.38 show the superstructure, abutment and pier respectively.

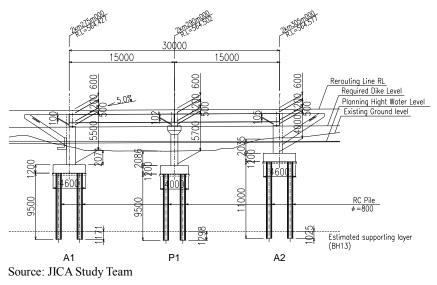


Figure 10.35: Overall View of New Bridge near Km 304

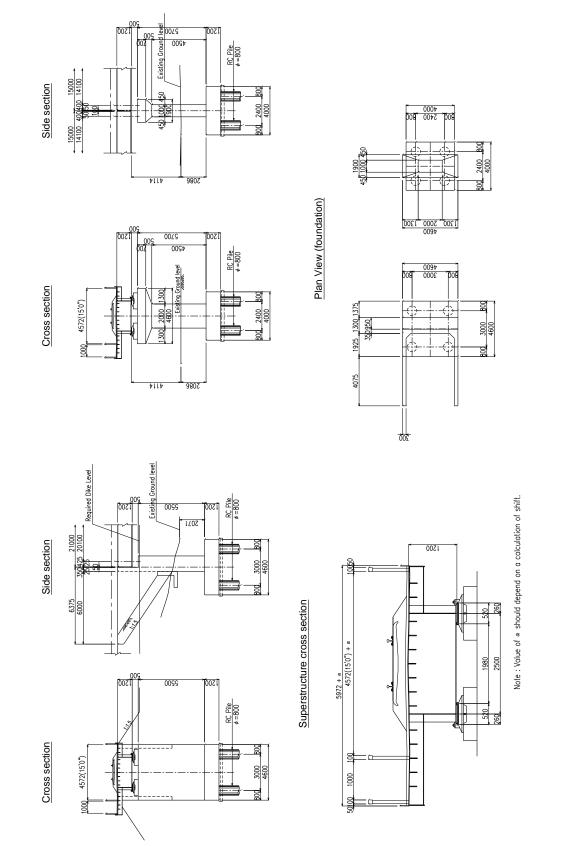


Figure 10.36: Superstructure, Abutment and Pier of New Bridge near Km 304

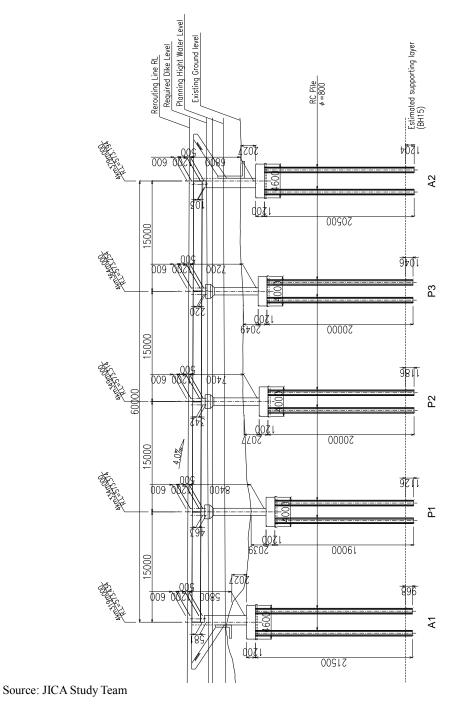


Figure 10.37: Overall View of New Bridge near Km306

Source: JICA Study Team

Figure 10.38: Superstructure, Abutment and Pier of New Bridge near Km 306

(5) List of Bridges

Table 10.37 shows a list of new bridges planned in the preliminary design.

No.	Bridge name	Kilometer post of rerouting line (per section)	Bridge type	Span configuration
1	Km 304	Km2.290 (Sec.2)	Steel deck girder	$2 \ge 15 \text{ m} = 30 \text{ m}$
2	Km 306	Km4.349 (Sec.2)	Steel deck girder	$4 \ge 15 \text{ m} = 60 \text{ m}$
3	Maswala River Bridge	Km0.720 (Sec.8)	Steel through girder	$4 \ge 21 \ m + 20 \ m = 104 \ m$
4	Mzase River Bridge	Km6.560 (Sec.9)	Steel deck girder	21 m + 2 x 20 m = 61 m

Table 10.37: List of New Bridges Planned in the Preliminary Design

Source: JICA Study Team

10.1.6 Device for Prevention of Bridge Collapse

(1) Overview

As described in 3.2.2 (3), the bridge near Km 293 has a possibility of being washed away when water levels rise due to the small clearance between the river water level and the soffit of the bridge girder, as shown in Figure 10.39. Because of this, an additional site survey and preliminary design based on the estimated high water level were carried out.

Source: JICA Study Team

Figure 10.39: Danger Point of Bridge Destruction near Km 293

(2) Additional Site Survey

An additional site survey of this existing bridge was carried out on 20th Nov. 2015. Some photos are shown from Figure 10.40 to Figure 10.44. Additionally, some basic information and dimensions of this bridge are as shown in Table 10.38.

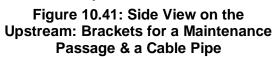


Figure 10.40: Steel Through Girder Bridge with a Maintenance Passage of 1.0 m Width on the Upstream

Source: JICA Study Team

Source: JICA Study Team

Figure 10.43: Condition near Shoe on the Upstream

Figure 10.42: Side View on the Downstream

Source: JICA Study Team

Figure 10.44: Condition near Shoe on the Downstream

No.	Items	Contents		
1	Span configuration	$3 \times 30 \text{ m} = 90 \text{ m}$		
2	Track type	Ballasted track		
3	Main girder	Girder height: 2.5 m, lower flange width: 710 mm and lower flange thickness: 60 mm		
4	Floor beam	Lower flange thickness: 30 mm		
5	Shoe	Bridge axis direction width: 450 mm, bridge axis perpendicular width: 710 mm and		
		the thickness : 75 mm		
6	Stopper	Diameter: 50 mm		

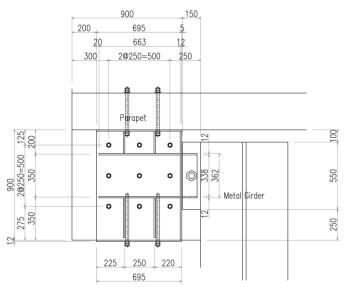
 Table 10.38: Basic Information of Existing River Bridge near Km 293

Source: JICA Study Team

(3) Design High Water Level

Relationships of the design high water level and girder height are shown in Table 10.39.

Table 10.39: Design High Water Level near Km 293 and Girder Height


Items	Value	Remarks
Design high water level (m)	521.769	Estimated value
Existing Rail level (m)	520.981	Estimated value
Main girder height (m)	2.50	Measured value
Gap between RL and underside of main girder (m)	1.00	Estimated value
Girder height influenced by high water level(m)	1.79	≒1.80

Source: JICA Study Team

(4) Calculation of Device for Prevention of Bridge Collapse

1) Design concept

Based on the design high water level as shown in Table 10.39, a value of flowing water force on the side of main girder is calculated. As a device for prevention of bridge collapse, a steel side block is planned in the preliminary design. The arrangement of the anchor rebar is as shown in Figure 10.45.

Source: JICA Study Team

Figure 10.45: Arrangement of the Anchor Rebar

2) Basic calculation

In the preliminary design, some basic calculations for prevention of bridge collapse are carried out as below. Table 10.40 shows the setting of calculation for anchor rebar.

Anchor rebar type	D25
Tensile yield strength (N/mm ²)	345
Effective cross-sectional area of threaded section (mm ²)	352.5
Design compressive strength of concrete (N/mm ²)	23.1
Source: JICA Study Team	

a) Safety against shear failure

As shown in Table 10.41, some calculations for checking safety against shear failure are carried out.

Required perfor- mance	Performance items	Design response value	Design limit value	Structure factor	Safety rate
	Safety against shear failure of anchor (N)	18,100	54,000	1.2	0.40
Safety	Safety of compressive stress of embedded base of anchor (N/mm ²)	8.0	23.1	1.0	0.35
	Safety against shear failure of concrete (N)	18,100	23,900	1.0	0.76

Table 10.41: Results of Safety against Shear Failure

Source: JICA Study Team

b) Safety against tensile force

As shown in Table 10.42, some calculations for checking safety against tensile force are carried out.

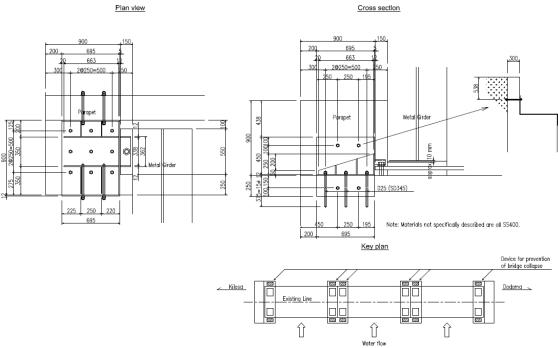

Required perfor-		Design response	Design limit	Structure	Safety
mance	Performance items	value	value	factor	rate
Safety	Safety against tensile failure of anchor (N)	47,000	63,200	1.2	0.89
Salety	Safety against tensile failure of concrete (N)	47,000	101,500	1.2	0.56

Table 10.42: Results of Safety against Tensile Force

Source: JICA Study Team

(5) Preliminary Design Drawing

The preliminary design drawing of the device for the prevention of bridge collapse due to flood is shown in Figure 10.46.

Source: JICA Study Team

10.1.7 Box Culverts

(1) Basic Concept of Preliminary Design

Following the preliminary study on box culverts which should accommodate the required flow areas (identified through hydraulic analysis in Chapter 6), the location and appropriate size of new box culverts are studied from a hydrological point of view in this sub-section. In principle, the target area requiring new box culverts for the preliminary design coincides with the re-routing railway sections, i.e., a total of 25 km in seven sections, as follows:

Re-routing No.	Start Point (m)	End Point (m)	Length to be relocated (m)	Length after re-routed (m)
1	293750.000	295481.600	1731.600	1822.019
2	302000.000	307958.014	5958.014	5957.469
3	313284.446	316048.057	2763.611	2777.164
5	337296.458	339209.541	1913.083	1765.704
7	346243.248	348003.696	1760.448	1862.533
8	351048.323	352800.000	1751.677	1766.087
9	362429.807	371553.379	9124.572	9038.674
	Total		25,003.005	24,989.650

Table 10.43: New Kilometerage Properties of Re-routing Sections

Source: JICA Study Team

In order to decide the location of new culverts, the following items were reviewed and revised based on newly-obtained information and design conditions:

- Topographic conditions along re-routing sections
 In principle, the culvert shall be placed at lowest elevation in the concerned area to
 enable drainage of internal water toward the river side. Therefore, topographic
 conditions along the planned re-routing sections were carefully reviewed.
- 2) Minimum embankment height along re-routing sections As for suitable setting of culvert at designated sites, minimum depth of compaction of overburden soil above upper slab of culvert and required thickness of ballast/height of rail were considered.
- 3) Size of drainage areas at designated location of culverts The drainage areas at the proposed culvert were measured on the topographic maps of 1:2,500 and the DEM created by satellite imagery (SPOT). The design scale of opening of culvert is set 30-year return period as recommended in the Interim Report.
- 4) Interval of neighboring culverts along re-routing sections The interval of culverts along the re-routing sections is maintained equivalent to the present conditions, which is approximately 300 m to 400 m, as far as topographical conditions and vertical formation of new track allow.

Taking consideration of the preliminary economic analysis and consensus with the Tanzanian side, it should be noted that only the culverts subject to the re-routing sections will be the target for preliminary design and be included in the component of Yen Loan Project with other civil works of re-routings. In seven re-routing sections of approximately 25 km in total, 65 sites of water crossing were identified.

(2) Database of existing culverts along existing track

The principal feature of the existing 233 box and pipe culverts, which were identified through the field reconnaissance of the Flood Risk Assessment and subsequent map study with high resolution DEM (5 m mesh data), are compiled in Table 10.44-Table 10.46. Further, detailed information of 135 structures, which were directly measured in the field in December 2014, were presented in the form of Inventory Sheets (Appendix F) and Straight Line Diagram (Appendix G) in the Progress Report (May 2015) of the current Study. Regarding the other 98 structures, supplemental field reconnaissance and map study conducted in June 2015 clarified properties as displayed in Table 10.44-Table 10.46.

Based on the abovementioned compiled information, the locations of existing culverts are plotted and information of kilometerage of the railway was updated in accordance with new system established in the flood hazard map, as attached in Appendix T.

1	Culvert (High Risk)							T			T																															T															Π		Π		Π
	Arch Culvert (Normal)																																															T													
	Culvert (High Risk)								-	-	-																			-							-	-	-					Ħ				t	Ħ												
	Pipe Culvert (Normal)					1							-		1	1	1	-	-	-	-		1			-				-									-	-			1												-		-		-	_	
	Culvert (High Risk)																	-								-	-				1			-			-																		-			-			
	Box Culvert (Normal)									1	-	-			-									-	-		-	-		-		1	-	-	-					-	1			Г	-									-			-	-			1
Jec. 2014)	D/S canal																																											ŀ	-	-							-			-					
sessment (I	e Drop Work																																																								_	_			
od Risk As: I	I II Bridge I) (Total)											1							-										_													-	-				-	+		-						-				\mid	
	Arch Culvert (Total)																													Fing N	9														20 L								_				_	_	$\left \right $	\vdash	
ng Status ba	Bridge (Field Mesurem't)																		-											Ra-routi														<u>Pa ronti</u>																-	-
	Arch (Field Mesurem't)																													RA															צ																
	Pipe Culvert (Field Mesurem't)	1				1			-	-	-		-		-	1	-	-	-	_			_			-				-							-	1		-			-												-				-	_	
	Box Culvert (Field Mesurem't)									-	-	-			-			-						-	-	-		_		-	-	1			-		-			-	1			-	-									-	-		-				-
	Lane No.	.9 1				2 1	1 1	0.9 2	.9 2	1 -	2	4	.2 3	1 6	5 1	1 0.0	.2 2	1 00	1	0.75 5	75 1	2 2/ 2/	75 4	1	. 3	1 0.45		3	0.6 1	2 06.0	2	1	15 1		- 1		4	17 3	1 0.0	1 2	1		.6 2	-	-									-	1 1	1 1	·		.9 2	75 2	
	(II) (II) (II) (II) (II) (II) (III) (IIII) (III) (III) (III) (IIII) (III) (III) (III) (III) (III) (III) (III	-	- 0						Ū	r,	0	4	1.2	26.0 F			_	m	10	0	o' (o o	0	2.5	31.8	o' C	1 61	90		5	101	2	-	0.92	0.93	1.93		1.			2	+		-	2 5	57		+						67	3.6	ő	-	00	1	4 U	1
Ц	H (ii) H		0.78		1.45					0.95	1.8	0.1	1.2	1 92	7.1			1.3	1.5					1.6	m	0	1.8	3.6	1	11	0.9	1.3	1	0.8	1	0.8	7.1				0.95			1.7	1 7	1.8		+						1.1	0	+	0.9	0.4			1.35
	r Waterway Culvert No.						14	ł		4	83 F	2	A4					A5	A6						A7					BI		B2				-	87 B4					B5		à	B6		B7 B8	Pa	, a	B9			B 10				B11	B12	1	D 12	2
	Sheet Number (Progress Report)	PCL 283.6	BCL 283.9 BCL 284.47		BCL 285.45 BCL 285.65		PCL 286.4	PCL 286.88	PCL 287.15	BCL 287.25	BCL 287.7 BCL 287.7	1.104 1001	PCL 288.35	BCL 289 1 BCL 289 1	PCL 289.3	PCL 289.6	PCL 289.9	BCL 290.4 PCI 200.6	BR 290.9	PCL 291.2	PCL 291.5	PCL 291.70	PCL 291.9		BCL 292.6	PUL 292.7	BCL 293	BCL 293.1	PCL 293.8	BCL 294.5	BCL 295.1	BCL 295.3	BCL 295.7	BCL 296.4	BCL 296.7	BCL 297.1	BCL 29/.0	PCL 299.7	PCL 300.1	PCL 300.5 BCL 300.5	BCL 300.6		PCL 302	BCL 302.2	BCI 303.3	BCL 303.4								BCL 308.1	BCL 308.3	PCL 308.4 PCL 308.9	BCL 309.4	BCL 309.9 BCL 310.5	PCL 310.8	PCL 311.2	BCL 312.2
	Confirmation Method	Field Survey	Field Survey Field Survey	Aerial Photo	Field Survey Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Aerial Photo	Field Survey	Field Survey	Aerial Photo Field Survey	Field Survey	Aerial Photo	Acrial Photo Acrial Photo	Aerial Photo	Aerial Photo Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	000	Field Survey
	Southing	4,582	9,244,877 9,245,173	5,894	6,036	6,703	9,246,967	7,387	7,690	7.0761	8.142	8,342	9,248,329	3,897	8.948	9,246	9,524	9,966	0,505	0,692	0,903	1.035	1,209	1,454	9,251,806	1261	2,061	2,086	2,227	2.442	2,797	3,043	9,251,574	4,000	4,097	9,254,150	024169	4,168	9,254,264	4,203	4,194	4,120	3,785	9,253,763	3,872	4,275	4,393	9,255,412	5,702	5,8/4 6.314	9,256,833	7,013	7,114	7,718	7,868	8 140	8,254	8,398	9,258,324	8,359	8,787
_	Sot	9,24	9,24	9,24	9,24	9,24	9,24	9,24	9,24	9,24	9.24	9,24	9,24	2,6		9,24	9,24	9,24	9,25	9,25	9,25	2,4	9,25	9,25	9,25	2,2	9,25	9,25	9,25	9,25	9,25	9,25	9,25	2,6	9,25	9,25	2,4	9,25	9,25	2,9	9,25	9,25	2,2	9,25	9,25	9,25	9,25	9,25	9,25	9.26	9,25	9,25	9.25	9,25	9,25	2,6	9,25	9,25	9,25	9,26	9,25
	Easting	276,465	276,253 275,857	275,549	275,431	275,347	275,366	275,146	275,034	274,994	274.752	274,472	274,159	2/5,430	273.367	273,379	273,393	273,231	272.974	272,758	272,545	41 C 2/2	272,286	272,134	272,048	7/61/7	271,764	271,618	270,908	270.170	269,902	269,891	269,867	269.454	269,171	268,785	CCC 990	266,326	265,873	265,564	265,392	265,155	264.062	263,864	263,404	262,715	262,483	261,676	261,578	261371	261,192	260,999	260,707 260,609	260,316	260,166	060'097	259,243	258,739 258,133	257,848	257,659	256,580
	Latitude	-6.8299	-6.8273 -6.8246	-6.8180	-6.8168	-6.8107	-6.8083	-6.8045	-6.8018	-6.8011	CU08:0-	-6.7959	-6.7960	-6.7454	-6.7903	-6.7876	-6.7851	-6.7811	-6.7763	-6.7746	-6.7726	-0.//25	-6.7699	-6.7676	-6.7645	-6.7620	-6.7621	-6.7619	-6.7606	-6.7586	-6.7554	-6.7532	-6.7665	-0.7475	-6.7436	-6.7431	-0./44/	-6.7429	-6.7420	-6.7422	-6.7426	-6.7433	-6.7463	-6.7464	-6.7454 -6.7426	-6.7418	-6.7407	-0./391	-6.7288	-6.7233	-6.7186	-6.7170	-6.7156	-6.7106	-6.7092	-6.7066	-0.7057	-6.7043 -6.7053	-6.7050	-6.7047	-6.7007
	Longiude	36.9773	36.9754 36.9718	36.9691	36.9680 36.9674	36.9673	36.9674 36.0665	36.9655	36.9645	36.9641	36.9619	36.9594	36.9566	36.9501	36.9494	36.9496	36.9497	36.9483 36.0475	36.9459	36.9440	36.9421	36.9410	36.9398	36.9384	36.9376	36.9369	36.9351	36.9337	36.9273	36.9207	36.9183	36.9182	36.9179	36.9143	36.9117	36.9082	36.896	36.8860	36.8819	36.8791	36.8775	36.8754	36.8655	36.8637	36.8595 36.8542	36.8533	36.8512 36.8479	36.8440	36.8431	36.8426	36.8397	36.8379	36.8353	36.8318	36.8304	36.8298	36.8221	36.8175 36.8121	36.8095	36.8078	36.7980
	Station Km (New System)	283.61	283.98 284.48	285.29	285.48 285.67	286.16	286.43 286.66	286.91	287.23	287.31	287.78	288.15	288.46	289.11	289.72	290.03	290.31	290.78	291.38	291.17	291.97	20.262	292.37	292.66	293.02	293.17	293.42	293.57	294.30	295.06	295.55	295.79	296.19	296.91	297.21	297.61	70.867 200 76	300.17	300.63	300.44	301.12	301.37	302.51	302.71	303.18 303.87	304.00	304.25	305.73	306.04	306.68	307.23	307.50	307.40	308.51	308.73	309.82	309.82	310.36	311.27	311.47	312.63
-	Station Km (Original System)	1 283.6	284.47	1 285.3	1 285.45 285.65	286.15	1 286.4	286.88	1 287.15	1 287.25	287.7	288	1 288.35	2891	289.3	289.6	1 289.9	290.4	290.9	291.2	1 291.5	20.172	291.9	1 292.2	1 292.6	1.242	293.0	293.1	293.8	294.5	295.1	295.3	1 295.7	296.4	296.7	Km 297.1	0.1/21	299.7	1 300.1	300.5	300.6	300.8	302.0	302.2	302.7	303.4	303.7	305.2	305.5	306.1	306.7	306.9	307.2	308.1	1 308.3	Km 308.4 Km 308.9	309.4	309.9	310.8	311.0	312.2
	N SN	1 Km	2 Km 283.9 3 Km 284.47	4 Km	5 Km 6 Km	7 Km	8 Km 9 Km	10 Km	11 Km	12 Km	13 Km 14 Km	15 Km	16 Km 288.3	17 Km 18 Km	19 Km	20 Km	21 Km	22 Km 23 Km	24 Km	25 Km	26 Km	2/ Km 28 Km	29 Km	30 Km	31 Km 292.6	32 Km	34 Km	35 Km	36 Km	38 Km	39 Km	40 Km	41 Km	42 Nm 43 Km	44 Km	45 Km	40 Km 47 Km	48 Km	49 Km	51 Km	52 Km	53 Km	55 Km	56 Km 302.2	57 Km 58 Km	59 Km	60 Km 61 Km	62 Km	63 Km	65 Km	66 Km 306.7	67 Km	68 Km 69 Km	70 Km	71 Km	73 Km	74 Km 309.4	75 Km 76 Km	77 Km	78 Km 79 Vm	80 Km

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

Arch Culvert (High Risk)	farmer																																																																			
t Arch Culvert (Normal)																																	-																																			
t Pipe (High Bisk)	(among					+							-				_	_					_	_				-									_	_									_								+					_	+					_	ļ	
tt Pipe Culvert (Normal)						-	- 1		_																						-											_								-												-	-					
rt Culvert al) Risk)	Summer I					+			_			+	+				+	+					_	+	-	+	-	-									_	+									-				-	- 1	-		+			-		+	+					_	H	
Box Culvert (Normal)	-	-	-	-		-		-									_						_									-																-	-					-		-	-	-		-		-				+		
Drop D/S Work canal			-	-				-				-													-							_						-																												+	H	
Bridge Dr (Total) We		-				No 3				_									_						-	_																-																						utine No.5		+	H	
Arch B. Culvert (T (Total)						tinp											-	_	_	-		-			-					1	1				-							-						T		+					+			T		+				ting	<u>م</u>	+	H	
		-				Re-roliting No																																																										Re-rou			H	
						R A			_			-	-												-																	_													-									Re		+	Ļ	
Arch (Field Mesurem't)																															-		-																																			
Pipe Culvert (Field Mesurem't)						-																						-																						-												-	-					
Box Culvert (Field Mesurem't)	1			-		-		-																								1															-	-	-		-	-	-	_		_	-			-		_						
Lane No.	1			0.9 2		- 1 9	9 1	1																				9 2	1 0		5 1.0	1	1	4													-	1.0	-	4 1	-	- 1	-	-	- (7	-			-			7					
(II) D (II) M	1	4.4	1	0	64 6	20.95	0.	2																				0	0		shape 2.	3	hana	share													61	5.0	6	shape	1.8	2	5	61	61 6	77	,	1 (1		61	61 0	-	-				╞	
H (III)	0.8	1.8	1.0		0 2 7	0.0		1.8																							archs	2.6	aroh	archs													0.4	3.1	2.1	archs	0.9	0.5	0.5	1.75	11	1.75	1 66	0.85		1.05	2.3	1.4					Ħ	
r Waterway Culvert No.				B14					B15				BIA	20	B17			0.0	PIO			B19				B20	0.90											ū							3			S	C4												S	U6	3					
Sheet Number (Progress Report)	BCL 312.3	BCL 312.4	BCL 3128 BCL 3129	BCL 313.3	BCL 313.4 BCI 214.1	PCL 314.4	PCL 314.5	BCL 314.9																				PCI: 3257	PCL 325.75		PCL 326.9	BCL 327.4	DCI 3270	PCL 321.3													BCL 333.1	BCL 333.6	BCL 334.1	PCL 334.3	BCL 334.7	BCL 334.8	BCL 335	BCL 335.1	BCL 335.3	BCL 335.5	D/L 3360	BCL 335.0 BCL 336.1		BCL 336.3	BCL 336.7	BCL 337 PCI 337	PUL 33/					
Confirmation Method	Field Survey		Field Survey					Field Survey	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo A seial Bhoto	Aerial Photo Aerial Photo	Aerial Photo		Aerial Photo A seial Bhoto	Aerial Photo Aerial Photo	Aerial Photo	Field Survey	Field Survey	Aerial Photo	Field Survey	Field Survey	Aerial Photo	Field Survey	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo Aerial Photo	Aerial Photo	Acrial Photo	Aerial Photo	Aerial Photo Aerial Photo	Acrial Photo Acrial Photo	Aerial Photo	Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey A arial Bhata	Aerial Photo	Field Survey	Aerial Photo	Field Survey	Field Survey	Field Survey	rteta survey Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo Aerial Photo	Aerial Photo	Aerial Photo									
	2					t	F				+		+					+							0 6			5 52	R		09							+									88	22	3	88		92	13							8						+	T	
Southing	9,258,822	9,258,8	9,258,8	9,258,984	9,258,9	9259.3	9,259,4	9,259,6	9,259,945	9,260,1	9,260,203	502060	0.002,6	9261.4	9,261,6	9,261,917	9,262,0	9,262,0	C C9C 0	9,262,639	9,262,9	9,263,0	9,263,244	9,263,2	7'507'6	25 290 0	9.264.0	9.264.7	9264,870	9,265,1	9,265,5	9,265,8	9,266,165	9.266.9	9,266,9	9,267,199	9,267,3	9,267,3	9,267,6	9.267.8	9,268,0	9,268,2	9,268,3	9.268.4	9,268,904	9,269,0	9,269,396	9,269,6	9,270,07	9,270,5	9270.31	9,270,6	9,270,913	9,270,986	9,271,0	9,271,2	0,11,4	9.271,690	9,271,7	9,271,796	9,271,9	9,272,1	92727	9,272,6	9,272,671	9,272,6	9,272,957	9,273,1
Easting	256,475	256,322	255,819	255,460	255,427	254,559	254,395	254,038	253,492	253,001	252,624	190150	251.404	251.262	250,785	250,608	250,143	249,729	249,221	249,180	249,010	248,673	248,344	248,096	247,940	247,090	246.454	246335	246.339	246,162	245,358	245,074	245,045	244.734	244,390	243,973	243,696	243,467	245,160 242,807	242,665	242,545	242,403	242,143	241,688	241,548	241,582	241,592	241,470	241,078	241,129	241.120	241,352	241,277	241,200	241,039	240,839	240,736	240,529	240,331	240,226	239,963	239,744	238.981	238,678	238,661	238,632 238,381	238,189	237,922
Latitude	-6.7004	6.7006	6.6999	-6.6989	6.6989	6.6956	6.6948	6.6928	1069.9-	6.6883	6.6878	07020	0.0848	6.6765	6.6747	6.6722	6.6708	6.6707	0.0/00	6.6656	6.6628	-6.6623	6.6601	6.6601	0.0004	0.0200	6 6529	6 6461	6.6453	-6.6425	6.6391	-6.6364	6.6330	6.6266	6.6264	-6.6242	6.6230	6.6224	66199	6.6181	6.6163	6.6148	6.6139	6.6125	6.6087	6.6071	6.6042	-6.6017	6.5981	6.5960	6.5959	-6.5925	6.5905	6.5898	6.5889	6.5876	0.0800	-6.5834	6.5830	6.5825	6.5814	-6.5795 -6.5795	6.5741	6.5745	-6.5745	-6.5745 -6.5733	-6.5719	-6.5704
						┢			+			╈					+	+					-	+	+												-						+							-	+				+	-				+	+		+		+	+		
Longitude	36.7971	36.75	36.79	36.7879	36.78	36.77	36.77	36.77	36.77	36.7t	36.74	30.75	36.75	36.75	36.74	36.74	36.74	36.75	36.73	36.7313	36.72	36.72	36.7238	36.72	26.71	36.70	36.70	36.70	36.7057	36.7041	36.69	36.69	36.65	30.00	36.68	36.6844	36.68	36.67	36.67	36.67	36.67	36.67	36.64	36.66	36.66	36.66	36.66	36.6611	36.65	36.65	36.65	36.66	36.66	36.65	36.65	36.65	30.05	36.6535	36.65	36.65	36.64	36.64	36.63	36.63	36.6366	36.63	36.6324	36.63
Station Km (New System)	312.74	312.89	313.41	313.80	313.83	314,81	314.97	315.42	316.04	316.63	317.03	0L 7.45	31.2.78	318.03	319.56	319.89	320.39	320.81	515	321.92	322.29	322.64	323.05	323.30	01.020	20.4-20	25.22	326.10	326.19	326.57	327.47	327.89	228.20	71 925	329.52	330.07	330.32	330.56	331.28	331.52	331.76	331.86	332.25	332.75	333.22	333.39	333.71	334.07	334.59	334.84	335.28	335.28	335.52	335.63	335.82	336.07	25.022	336.66	336.86	336.98	337.27	337.56	338.62	338.93	338.95	338.98 339.26	339.51	339.82
Station Km (Original System)	Km 312.3	Km 312.4	Km 312.8 Km 312.9	85 Km 313.3	Km 313.4 7m 214.1	Km 314.4	Km 314.5	Km 314.9	Km 315.5	Km 316.1	93 Km 316.5	Nm 310.9	Km 317.8	Km 318.5	Km 319.1	Km 319.4	Km 319.9	Km 320.3	Vm 321.4	4 Km 321.0	Km 321.8	Km 322.1	Km 322.6	Km 322.8	Nm 323.0	0.020 mJ	Km 324.8	Km 325.7	1 Km 325.8	115 Km 326.1	Km 326.9	Km 327.4	Km 327.8 7 m 227.0	Km 328.8	Km 329.1	122 Km 329.6	Km 329.9	Km 330.2	Km 330.9	Km 331.2	Km 331.4	Km 331.6	Km 331.9 7m 337.3	Km 332.4 Km 332.4	133 Km 333.0	Km 332.8	5 Km 333.1	Km 333.6 Km 333.6	Km 334.1	Km 334.3 Zm 334.6	Km 334.7	142 Km 334.8	Km 335.0	Km 335.1	Km 335.3	Km 335.5 7 m 335.0	Nm 335.8	149 Km 336.1	Km 336.3	Km 336.3	Km 336.7	8 Km 337.0 1 Km 337.0	Km 338.0	Km 338.4	Km 338.4	158 Km 338.4 159 Km 338.7	Km 338.9	Km 339.2
NN NN		82 K	83 I	85 1	86 1	88 k	89 F	4 06	1 16	92 1	93	1 44 1	2 Y Y	97 K	98 K	99 K	1001	101	103 k	104 K	105 k	106 1	107 1	108 K	1 601	111 1	112 K	113 k	114 k	115 k	116 1	117 1	110 1	120 k	121 k	122 k	123 1	124 1	126 k	127 k	128 F	129 1	130 1	132 k	133 k	134	135 1	137 k	138 1	139 1	141 k	142 F	143 F	144 F	145 1	146 1	14/1	149 k	150 k	151 1	152 1	153 K	155 k	156 F	157 1	158 I	160 1	161

Table 10.45: Master List of Existing Culverts (2/3)

Arch	Culvert (High Risk)		Π					Τ													T										T	T																					T									Arch	Culvert (High Picto	(HEL)
	Culvert C Culvert ((Normal) F																																							1								+				-					-		t		t		Culvert (Normal)	-
	Culvert (High Risk)	(+					_								+		$\left \right $	T				-			+	T																					+				-	-	\vdash		+		Culvert (High Dicts)	(MOX)
	Culvert Culvert (Normal)														-		-		1		_				_																																-						Culvert (Normal)	
	Culvert (High Risk)	(+					_								+		$\left \right $					_	1		_	-										-	_											_	-	-	-	-		1	-		Culvert (High Dicto	
	Box Culvert (Normal)												-		_		-				-			-		_	1											-		-													_	-	-		-		t		-		Culvert (Normal)	-
c. 2014)	D/S canal										-							-			-	-											-																								-						D/S canal	-
ssment (De	Drop Wark																																		1	-								1																6.0			Drop Wark	
Risk Asse	Bridge (Total)								-	-																											<u>8.0N</u>								-														:	g NG			Bridge (Total)	
	Arch Culvert (Total)																					20															ing	D																						outin		And	Culvert (Total)	
B	Bridge (Field Mesurem't)																				+102	De-Inutile No.															Re-routing No.8																							Re-routing No		Drides	(Field Mesurem't)	
Exis	Arch (Field Mesurem't)																					2															Ĩ																									Arah	(Field Mesurem't)	
	Pipe Culvert (Field Mesurem't)														-		-		1		-				-			1																													-	-				Dina Culvart	(Field Mesurem't)	
	Box Culvert (Field Mesurem't)												1	- 1	-		-				1			1		1	1		1		1	1						-				-	1													1	-	-		1		Box Colourt		
-	D Lane (m) No.							+					0.92 2		1 200	c 00	0.9 1		0.92 3	0.9 1	1 1	- 6		2	0.72 1	-	2	0.6 2	3	e .	-	-				+		0.9 1				-	-			+		-				_		-	-	-	08 3	0.0	-	-	- 5	-	Lane No.	_
	a (j)													00	N	chric					4	2.45		1 2	sycle	61	8 1.5		7 2	0 0	2	·	1 (1							4	1 0												10, 10		1 (1	3 5	1.95	2	3 4.65	5 2	5 4.65		a î	
	ert H (m)													122	2.4	IIIII					1.85	+	t	0.81	half c	1.13	0.8		5 1.5	0	2	00	1.7							1.6	0.95	~ ~ ~	0.0												0.55		0.64	0.66	1.1	1.6	0.35		H (II)	_
	s Culvert No.	C)		000	5			5	2	CIC	5		_		5	-			o C12			CI3	╞				CI5		B C16		m					ī	50	-	D3		D4	D5	2					ĩ	E			E3		5			E4						s Culvert No.	_
1	Sheet Number (Progress Report)												BCL 344	BCL	BCL	PCI 245.66	BCL		PCL	PCL		BCL		BCL	PCL 348.3	BCL	BCL	PCL 349.0B		BCL 349.5B		Da	BCL 349.8B					BCL 352.9		BCL 352.9B	BCL 355.6 BCL 355.6		BCL 356.1										BCL 360	BCL	BCL	BCL	BCL 362.1 PCI 362.5		BCL 363.3		BCL 364.2 BCL 364.4			
	Confirmation Method	Aerial Photo	Aerial Photo	Aerial Photo	Acrial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Aerial Photo	Field Survey	Cield Summur	Field Survey	Aerial Photo	Aerial Photo	Aerial Photo	Acrial Photo	Field Survey	Aerial Photo	Field Survey	Field Survey	Acrial Photo	Field Survey	Aerial Photo	Aerial Photo	Acrial Photo	Aerial Photo	Aerial Photo	Aerial Photo Aerial Photo		Aerial Photo	Aerial Photo	Field Survey	Field Survey	Field Survey	Field Survey	Field Survey Field Survey	Field Survey	Field Survey	Field Survey	Field Survey	LEM SUIVE	Confirmation Method								
	Southing	9,273,281	9,273,479	9,273,514	974315	9.274.672	9,274,735	9,274,891	9,2,14,956	9.75 566	9275.939	9,276,125	9,276,314	9,276,153	760'9/7'6	No record	9,276,170	9,276,149	9,276,127	9,276,088	9,2,76,000	9.276.244	9.276.399	9.276.505	9,276,505	9,276,841	9,277,162	9,277,528	9,277,757	9,277,808	9,277,873	570,074	9,278,074	9,278,290	9,278,336	9,278,478	0.79,400	No record	9,280,224	9,280,985	9,281,247	9281577	9,281,579	9,281,949	9,282,024	9.281.959	9,282,234	9,282,149	120,282,9	9,282,559	9,282,737	9,283,018	9,283,145	9.283,818	9.283.998	9,284,236	9,284,545 0.284,545	9.284.941	No record	9,285,310	9,285,622 0.785,737	101,0046		
	Easting	37,610	37,275	37,239	0601/2	36.548	236,477	36,237	36,131	35.481	234.939	34,782	34,361	34,134	233,0 /0	o record	233,147	(33,113	33,066	32,702	0/ 575	31 320	230.833	30,631	30,631	30,165	29,723	29,212	28,888	28,814	28,728	28,2.24	228,447	28,152	28,087	27,890	150,050	o record	25,519	24,744	23,870	23,486	23,480	222,449	22,238	21,423	20,737	20,313	19,547	66681	18,843	218,587	18,373	217,901	17.724	217,227	16,908	16.657	o record	115,711	215,218	C+0(CT)		_
-								+		+	+				+			\vdash		+	+	+	╞		-			_		-	+														-					-		-					_	-	+				e	-
	Latitude	-6.568	-6.567.	-6.566.	-6.502	-6.556	-6.5557	-6.554.	-6.553	-6.548	-6.544	-6.543	-6.541	-6.5428	-0.545	No mon	-6,5420	-6.542	-6.543	-6.543	-0.243	-6.5416	-6.540	-6.539	-6.539.	-6.536	-6.533.	-6.530.	-6.528.	-6.527	-6.527	C7C '0-	-0.3232	-6.523.	-6.522	-6.5216	-12.13	No reco	-6.505.	-6.498	-0.490	-6.493	-6.493	-6.4899	-6.489.	-6.489	-6.487.	-6.488	-0.48/	-6.484	-6.482.	-6.4801	-6.478	-0.4/2	-6.4712	-6.469	-6.466	-0:402	No rece	-6.459.	-6.4564	0.04-10-	Latitude	
	Longitude	36.6271	36.6241	36.6238	366305	36.6176	36.6170	36.6148	36.6139 36.6006	36,6080	36,6031	36.6017	36.5979	36.5959	26 5074	No racord	36,5869	36.5866	36.5862	36.5829	36.5318	36 5704	36.5660	36.5642	36.5642	36.5600	36.5560	36.5514	36.5485	36.5479	36.5471	30.3432 36 5446	36.5446	36.5419	36.5413	36.5395	365721	No record	36.5182	36.5112	36.5033	36,4999	36.4998	36.4905	36.4886	36.4813	36.4751	36.4712	36.4643	36.4594	36.4580	36.4557	36.4538	36.4488	36.4479	36.4434	36.4406 36.4384	36.4383	No record	36.4298	36.4254	0074-00	Longitude	
	Station Km (New System)	340.17	340.56	340.61	241 50	341.99	342.08	342.37	342.50	343.30	344.05	344.29	344.80	345.08	545.54 246.04	246.14	346.24	346.29	346.40	346.55	540.09 247 10	347.05	348.53	348.76	349.06	349.34	349.88	350.51	350.91	350.97	351.11	351.50	351.48	351.82	351.90	352.14 352.14	354.32	354.52	355.25	356.36	357.29	357.70	357.76	358.85	359.08	359.91	360.69	361.13	301.05	362.54	362.78	363.16	363.41	303.92	364.55	365.11	365.56 266.02	366.03	366.43	367.07	367.65 267.96	00.100		y Team
	Station Km (Original System)	m 339.6	Km 340.0	m 340.0	240.5 m	m 341.4	Km 341.5	m 341.8	m 341.9	Km 342.8	m 343.5	Km 343.7	m 344.8	m 344.8B	m 345.0	m 345.6A	180 Km 345.7A	m 345.8	m 345.8B	m 346.0	m 346.6B	an 347.5	Km 347.8	m 348.0	m 348.3	m 348.8	m 349.4	m 349.0B	m 349.4B	Km 349.5B	m 349.6B	m 349.8	19/ Km 349.8B	m 350.2	Km 350.3	m 350.5	1 352 T	m 352.9	Km 353.6	m 352.9B	m 355.6	209 Km 355.9	m 356.1	m 357.0	m 357.2	Km 358.1	215 Km 358.8	m 359+0.3	m 359+1.7	m 359+2.3	m 359+2.8	m 359+3.5	Km 360.0	0.00c m 360.9	m 361.1	m 361.9	m 362.1	m 362.9	m 363.3	m 363.7	2 Km 364.2 2 Km 364.4	Ctation Vrv	System)	Source: JICA Study Team
	N/S	162 K	163 Kı	164 K	166 K-	167 Kı	168 Kı	169 K	170 K	170 K	173 K	174 K	175 K	176 K	1// K	120 K	180 K	181 K.	182 K.	183 K	185 K	186 K1	187 K	188 K	189 Kı	190 K	191 Kı	192 K	193 K	194 Ki	195 K	2 190 2 12	198 K	199 K	200 K	201 Km 350.5	202 K	204 K	205 K	206 K	20/ K	209 K	210 K	211 Km 357.0	212 K	214 K	215 K.	216 K	21/ K	219 K	220 K	221 K	222 K	225 K	225 K	226 K	227 Ki	229 K	230 K	231 K	232 Ki		e N/S	_Sol

Table 10.46: Master List of Existing Culverts (3/3)

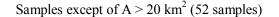
(3) Hydraulic Design of Proposed Box Culverts

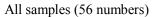
1) Standard types of box culvert

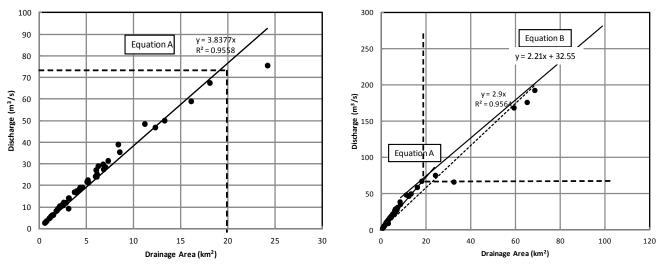
As discussed in Chapter 6, two standard types of box culvert (square), namely (i) 2.0 m (H) x 2.0 m (W), and (ii) 3.0 m (H) x 3.0 m (W) for opening dimensions, are recommended to apply considering the required flow capacity and existing culverts at the field. Theoretical numbers (barrels) to meet the design flood discharge (30-year return period) for the two types were examined. Pipe culvert was discarded, since many of them had been confirmed clogged and lost drainage function through the Flood Risk Assessment in December 2014 by the JICA Study Team and RAHCO staff. Further, in order to fit the formation of new track alignment, two more sizes, of 1.0 m (H) x 1.0 m (W) and 1.5 m (H) x 1.5 m (W), are to be applied for preliminary design.

2) Design discharge

In order to examine the design discharges corresponding to the size of drainage areas, the relationship between the discharges at waterway culverts versus drainage areas, which were identified at 56 sites on aerial photos (from Kilosa to Gulwe) as presented in Interim Report. The design discharges were determined by TRRL method as tabulated in Table 10.47 (30 year return period). The results are plotted in Figure 10.47 showing regression curves in the lower range and larger range of drainage areas derived from two kinds of sample groups in order to find better appropriateness.


		A > 20 (E	quation B)			A > 20 (E	quation B)
No.	Code No.	Area	Discharge	No.	Code No.	Area	Discharge
		(km ²)	(m ³ /s)			(km ²)	(m ³ /s)
1	A-1	1.94	9.37	30	C-3	6.07	24.14
2	A-2	0.66	3.17	31	C-4	3.95	17.55
3	A-3	16.07	59.07	32	C-5	2.42	11.16
4	A-4	0.77	3.70	33	C-6	59.24	168.61
5	A-5	1.03	4.88	34	C-7	1.47	6.49
6	A-6	2.54	11.43	35	C-8	1.36	6.37
7	A-7	7.28	31.52	36	C-9	13.25	50.13
8	B-1	5.19	21.45	37	C-10	4.30	18.99
9	B-2	0.57	2.79	38	C-11	2.81	12.07
10	B-3	5.13	22.58	39	C-12	12.27	46.97
11	B-4	6.23	29.05	40	C-13	5.94	24.30
12	B-5	11.16	48.58	41	C-14	7.00	28.53
13	B-6	3.08	9.40	42	C-15	2.50	10.89
14	B-7	18.05	67.59	43	C-16	1.30	6.11
15	B-8	2.57	12.23	44	D-1	6.80	27.61
16	B-9	68.54	192.71	45	D-2	4.56	19.20
17	B-10	2.14	10.48	46	D-3	3.08	14.23
18	B-11	1.22	5.82	47	D-4	1.83	8.46
19	B-12	2.19	10.54	48	D-5	6.10	25.30
20	B-13	2.35	10.92	49	E-1	3.71	17.00
21	B-14	6.02	27.22	50	E-2	2.43	11.16
22	B-15	65.12	176.17	51	E-3	6.74	29.88
23	B-16	4.23	18.42	52	E-4	5.04	21.81
24	B-17	1.11	5.17	53	E-5	4.31	19.16
25	B-18	8.50	35.55	54	E-6	3.13	14.24
26	B-19	1.77	8.25	55	E-7	3.93	16.78
27	B-20	24.16	75.64	56	F-1	32.43	66.47
28	C-1	6.00	27.21	Equation A	A: 52 sample	s except A	>30 km ²
29	C-2	8.35	39.09		R: 56 sample		


Table 10.47: Area-Discharge Data at Waterways*


<u>29</u> <u>C-2</u> <u>8.35</u> <u>39.09</u> Equation B: 56 samples Note: *, These 56 sites were identified and analyzed in the stage of the Interim Report.

Source: JICA Study Team

Final Report

Source: JICA Study Team

Figure 10.47: Discharge–Drainage Area Curve for Culvert Design

3) Appropriate size of culverts

In parallel with selection of appropriate opening sizes of new culverts accommodating the estimated design discharges of new culverts, minimum embankment height from the ground level depending on the opening sizes were examined to safely distribute the weight of the carriage to the ground, as illustrated in Figure 10.48:

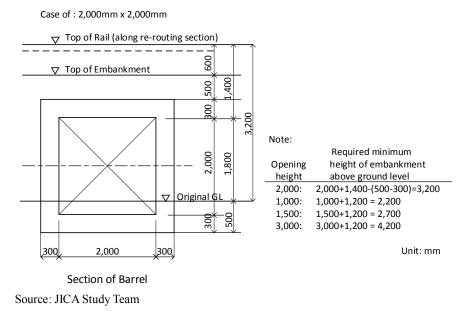


Figure 10.48: Minimum Height of Embankment for New Culverts

Using the regression equations as presented in the previous clause, the design discharges of the 65 sites of new culverts were estimated. Based on the results, the required size/numbers of barrels at designated 65 sites are tabulated in Table 10.48 together with the information of the embankment height, which is calculated from rail top elevation and existing ground elevation, as well.

		Drainage	0	Ground	Rail Top	Height of		Flow C	apacity		Requ	ired Nur	nber of l	Barrel	
	No.	Area (km2)	Q (m3/s)	Elevation (rail center) (EL.m)	Elevation (EL.m)	Embankm't H (m)	1.0m* 1.0m	1.5m* 1.5m	2.0m* 2.0m	3.0m* 3.0m	1.0m* 1.0m	1.5m* 1.5m	2.0m* 2.0m	3.0m* 3.0m	Site condition
		Minimu	m height of	e mbank me nt	(m) ⇒		2.2	2.7	3.2	4.2	-	-		-	
1	R1-1	0.15	0.58	518.84	520.98	2.14	0.6	2.1	4.3	13.1	1	1	1	1	0
2	R1-2	0.23	0.89	520.19	521.82	1.63	0.6	2.1	4.3	13.1	2	1	1	1	0
3	R1-3	0.17	0.64	522.00	524.34	2.34	0.6	2.1	4.3	13.1	2	1	1	1	0
4	R1-4	0.14	0.55	522.30	526.50	4.20	0.6	2.1	4.3	13.1	1	1	1	1	0
5	R1-5 R1-6	0.21 4.00	0.79	523.71 523.44	528.08 526.73	4.37	0.6	2.1	4.3	13.1	2 26	1 8	1 4	1	0
7	R2-1	0.26	13.37		554.77	2.21	0.6	2.1	4.3	13.1	20	0	4	1	0
8	R2-2	0.23	0.9		557.50	1.92	0.6	2.1	4.3	13.1	2	1	1	1	0
- 9	R2-3	0.26	1.0	553.88	557.18	3.30	0.6	2.1	4.3	13.1	2	1	1	1	0
10	R2-4	2.74	10.5	553.59	560.98	7.39	0.6	2.1	4.3	13.1	18	6	3	1	0
11	R2-5	0.06	0.2	559.63	563.25	3.62	0.6	2.1	4.3	13.1	1	1	1	1	0
12	R2-6 R2-7	0.09	0.4	559.35 560.20	562.57 564.72	3.22 4.52	0.6	2.1	4.3	13.1	1	1	-	-	© New bridge
- 13	R2-7	0.10	01.0	561.05	568.34	7.29	0.6	2.1	4.3	13.1	1	1	1	- 1	©
14	R2-9	1.43	5.5	565.04	571.94	6.90	0.6	2.1	4.3	13.1	10	3	2	1	0
15	R2-10	0.32	1.2	565.22	571.70	6.48	0.6	2.1	4.3	13.1	3	1	1	1	0
16	R2-11	0.09	0.3	570.76	573.02	2.26	0.6	2.1	4.3	13.1	1	1	1	1	0
-	R2-12	45.75	175.6	569.99	573.01	3.02	0.6	2.1	4.3	13.1	-	-	-	-	New bridge
17 18	R2-13 R2-14	0.11 0.21	0.4	572.14 571.61	574.37 575.65	2.23	0.6	2.1	4.3	13.1	1 2	1	1	1	0
18	R2-14 R2-15	0.21	0.8	572.29	576.05	4.04	0.6	2.1	4.3	13.1	1	1	1	1	0
20	R2-15 R2-16	0.02	0.1	574.83	576.18	1.35	0.6	2.1	4.3	13.1	2	1	1	1	0
21	R2-17	0.41	1.6	576.38	575.34	-1.04	0.6	2.1	4.3	13.1	3	1	1	1	Δ
22	R3-1	2.15	8.3	603.68	603.87	0.19	0.6	2.1	4.3	13.1	14	4	2	1	\triangle
23	R3-2	3.34	12.8	602.12	609.87	7.75	0.6	2.1	4.3	13.1	22	7	3	1	0
24	R3-3	0.42	1.6	602.89	611.67	8.78	0.6	2.1	4.3	13.1	3	1	1	1	0
25	R3-4	0.21	0.8	614.73	614.47	-0.26	0.6	2.1	4.3	13.1	2	1	1	1	Δ
26 27	R3-5 R3-6	0.10	0.4	610.92 611.13	617.07 617.03	6.15 5.90	0.6	2.1	4.3	13.1	1	1	1	1	0
27	R3-7	101.07	255.9	614.43	614.36	-0.07	0.6	2.1	4.3	13.1	427	122	60	20	
29	R5-1	0.16	0.6	694.32	696.95	2.63	0.6	2.1	4.3	13.1	1	1	1	1	0
30	R5-2	21.22	79.4	701.79	702.15	0.36	0.6	2.1	4.3	13.1	133	38	19	7	\triangle
31	R5-3	39.40	119.6	704.22	705.48	1.26	0.6	2.1	4.3	13.1	200	57	28	10	0
32	R5-4	0.07	0.3	701.54	703.80	2.26	0.6	2.1	4.3	13.1	1	1	1	1	0
33	R7-1	2.74	10.5	733.65	734.36	0.71	0.6	2.1	4.3	13.1	18	6	3	1	
34 35	R7-2 R7-3	13.92 8.66	53.4	739.21 736.17	742.36	3.15	0.6	2.1	4.3	13.1	90 56	26 16	8	5	0
36	R8-1	0.15	0.6	750.93	753.63	2.70	0.6	2.1	4.3	13.1	1	1	1	1	0
37	R8-2	0.03	0.1	754.41	756.83	2.42	0.6	2.1	4.3	13.1	1	1	1	1	0
38	R8-3	1.08	4.1	755.06	757.99	2.93	0.6	2.1	4.3	13.1	7	2	1	1	0
39	R8-4	0.12	0.5	756.86	758.91	2.05	0.6	2.1	4.3	13.1	1	1	1	1	0
40	R8-5	0.38	1.5	754.29	756.48	2.19	0.6	2.1	4.3	13.1	3	1	1	1	0
41	R9-1 R9-2	0.11	0.4	770.88 771.59	773.15	2.26	0.6	2.1	4.3	13.1	1	1	1	1	0
42	R9-2 R9-3	0.09	0.3	774.55	776.75	2.20	0.6	2.1	4.3	13.1	1	1	1	1	0
44	R9-4	1.61	6.2	775.48	778.95	3.47	0.6	2.1	4.3	13.1	11	3	2	1	0
45	R9-5	0.33	1.3	776.37	779.55	3.18	0.6	2.1	4.3	13.1	3	1	1	1	0
46	R9-6	0.81	3.1	776.54	781.49	4.95	0.6	2.1	4.3	13.1	6	2	1	1	0
47	R9-7	4.26	16.4		780.53	3.99	0.6	2.1	4.3	13.1	28	8	4	2	0
48 49	R9-8 R9-9	1.00	3.8	775.51 779.64	780.97 782.41	5.46	0.6	2.1	4.3	13.1	7 28	2 8	1 4	1 2	0
50	R9-10	0.52	2.0		782.03	6.90	0.6	2.1	4.3	13.1	4	1	4	1	0
51	R9-11	0.72	2.8	777.18	782.92	5.74	0.6	2.1	4.3	13.1	5	2	1	1	0
52	R9-12	3.39	13.0		786.01	2.62	0.6	2.1	4.3	13.1	22	7	4	1	0
53	R9-13	0.24	0.9		786.41	5.12	0.6	2.1	4.3	13.1	2	1	1	1	0
54	R9-14	0.07	0.3	788.28	791.48	3.20	0.6	2.1	4.3	13.1	1	1	1	1	0
55 56	R9-15 R9-16	0.33	0.2	788.67 789.22	793.71 790.58	5.04	0.6	2.1	4.3	13.1	3	1	1	1	0
50	R9-16 R9-17	2.75	10.6	789.22	790.58	4.42	0.6	2.1	4.3	13.1	1	6	3	1	0
58	R9-18	0.22	0.9	784.32	789.18	4.86	0.6	2.1	4.3	13.1	2	1	1	1	0
59	R9-19	5.05	19.4	784.63	790.07	5.44	0.6	2.1	4.3	13.1	33	10	5	2	0
60	R9-20	0.22	0.9	786.75	790.07	3.32	0.6	2.1	4.3	13.1	2	1	1	1	0
61	R9-21	0.19	0.7	785.33	789.76	4.43	0.6	2.1	4.3	13.1	2	1	1	1	0
62	R9-22	0.46	1.8	784.70	786.68	1.98	0.6	2.1	4.3	13.1	3	1	1	1	0
63 64	R9-23 R9-24	0.98	3.8 5.6	783.28 784.62	786.68 786.68	3.40	0.6	2.1	4.3	13.1	7 10	2 3	1 2	1	0
65	R9-24 R9-25	2.67	10.2	784.02	786.65	3.95	0.6	2.1	4.3	13.1	10	5	3	1	0
	emarks:		be fit in emb							f barrel	39	33	43	43	158
		○: Required	d minor adjus	stment of emba	nkment H> 1.0	Om			Nos	of site	28	17	12	8	65

Table 10.48: Appropriate Size of New Box Culverts (Rererouting Sections)

 \bigtriangleup : Need further arrangement of embankment $H \leq 1.0m$

 Nos of site
 28
 17
 12
 8
 65

 : Recommended size and numbers of barrel
 Source:JICA Study Team

Г

Premise of Preliminary Design for Railway Structure (4)

As described in the above hydraulic design for the preliminary design, types of box culvert are classified as shown in Table 10.49.

Inner	space
Height (m)	Width (m)
1.0	1.0
1.5	1.5
2.0	2.0
3.0	3.0
	Height (m) 1.0 1.5 2.0

Table 10.49: Types of Box Culvert

Source: JICA Study Team

Basic Calculation of Box Culvert for Railway Structure (5)

In the preliminary design, some basic calculations of floor slab and side wall are carried out as shown in Table 10.50 and Table 10.51, and Table 10.52 shows the results.

Table 10.50: Setting of Basic Calculation for Box Culvert

Embankment height (m)	9.0
Types of Box culvert	No.3 & No.4
Axial load (tons)	18.5
Source: JICA Study Team	

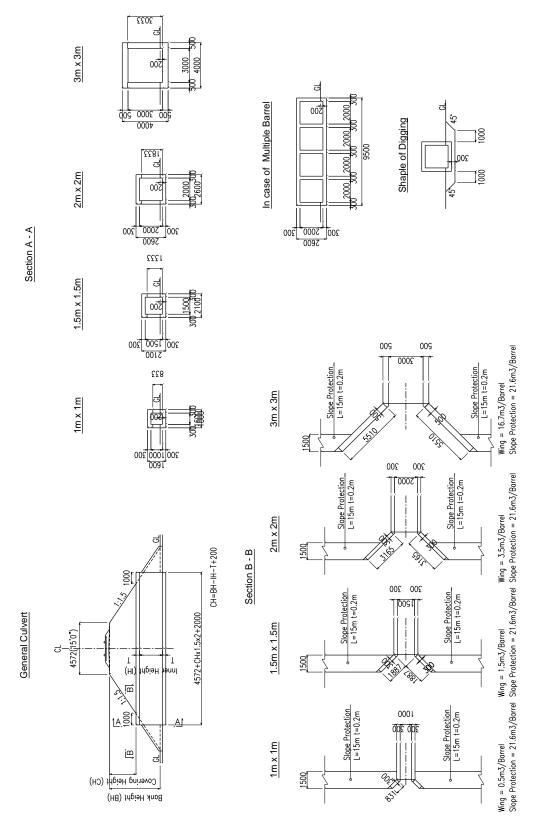
IJ

Table 10.51: Contents of Basic Calculation for Box Culvert

Required			
performance	Performance items		Combinations of actions
Safety	Safety for floor slab		$1.1*D+1.0*E_{Dv}+0.6*E_{Dh}+1.1*G_{L}$
Salety	Safety for side wall		$1.1*D+1.1*E_{Dv}+1.1*E_{Dh}+1.1*G_{L}$
	Long-term		$1.0*D+1.0*E_{Dv}+1.0*E_{Dh}$
Serviceability	Short-term	for floor slab	$1.0*D+1.0*E_{Dv}+0.7*E_{Dh}+1.0*G_{L}$
		for side wall	$1.0*D+1.0*E_{Dv}+1.0*E_{Dh}+1.0*G_{L}$

Note: D: Dead load of box culvert, E_{DV}: Vertical earth pressure as a permanent load (Embankment body, track and ballast), E_{Dh}: Horizontal earth pressure as a permanent load (Embankment body, track and ballast), G_L: Earth pressure as a variable load (Train load)

Source: JICA Study Team


Table 10.52: Results of Basic	Calculation for Box Culvert
-------------------------------	-----------------------------

Types of Box culvert		Member	Thickness (mm)	Main rebar arrangement
No 2	No. 3 2.0 m (H) x 2.0 m (W)	Floor slab	300	8 x D19 per m
INO. 5		Side wall	300	8 x D19 per m
No.4	No. 4 3.0 m (H) x 3.0 m (W)	Floor slab	500	8 x D19 per m
INO. 4		Side wall	500	8 x D19 per m

Source: JICA Study Team

Preliminary Design Drawing (6)

The preliminary design drawing of box culvert is shown as Figure 10.49.

Source: JICA Study Team

Figure 10.49: Preliminary Design Drawing of Box Culvert

10.1.8 New Gulwe Station

New Gulwe Station shall have two sidings carrying forward from the existing Gulwe Station configuration. The sidings shall have an effective length of 450 m. Trap points shall be provided at siding exits to the main line. Although the existing station does not have a platform, the relocated station shall have a platform (5.0 m width) for passenger embarkation and disembarkation (see Appendix Y).

The station building shall be an approximately 600 m^2 single-story structure. A station service room required for station operations, waiting room, ticket counter, and other facilities shall be provided for the station building. The quantity of the Gulwe Station is shown in Table 10.53.

Work Items	Quantity	Unit
Station office building	150	m ²
Station equipment building	225	m ²
Station staff rest building	150	m ²
Strage building	180	m ²
Wash building	64	m ²
Paved concourse	225	m ²
Paved station plaza	1,000	m ²
Platform	1,000	m ²
Generator base	1	LS
Water tank base and tower	1	LS
Generator	1	LS
Water tanks	1	LS
Relocation of the existing facilities	1	LS

Table 10.53: Quantity of Gulwe Station

Source: JICA Study Team

10.1.9 Riverbank Protection for Mainstream

(1) Basic Approach

Based on the concept design prepared in the Interim Report, the objective area and design criteria for the preliminary design for flood protection and sediment management measures are established.

Countermeasures for flood protection and sediment management are proposed in three locations, i.e., along the mainstream, and along the tributaries of Maswala and Mzase Rivers. In this sub-section, preliminary design of riverbank protection for the mainstream is described, and in the subsequent Sub-section 10.1.10, the preliminary design for the tributaries are described.

The accuracy of the design is a preliminarily level, which can be used for evaluation of the adequacy of the Yen Loan Project.

At first, preliminary design adopting the conventional construction methodology and item which have been used in the project sites is prepared as the basis of the design works. Secondary, application of imported technologies will be studied comparing with the conventional ones from the view point of possibility of reduction of construction cost and shortening of construction schedule. The study of imported technology is described in Section 10.4.

(2) Objective Area

The objective areas of riverbank protection works along the mainstream, which was initially proposed at 15 sections of 14.3 km in total in the Interim Report, are shown in Table 10.54.

No.	Section	Distance (km)	Note
1	297.40 - 298.15	0.75	
2	298.50 - 299.00	0.50	
3	300.20 - 300.45	0.25	
4	302.70 - 303.00	0.30	
5	303.10 - 303.45	0.35	
6	304.10 - 304.50	0.40	
7	306.00 - 306.50	0.50	
8	308.60 - 310.10	1.50	
9	310.20 - 314.30	4.10	
10	315.20 - 316.90	1.70	SSP for L=900 m between Km315.2-316.2
11	330.10 - 330.60	0.50	
12	339.70 - 340.20	0.50	
13	341.60 - 342.80	1.20	
14	343.20 - 344.70	1.50	
15	345.00 - 345.25	0.25	

 Table 10.54: Proposed Sections for Bank Protection Works in Interim Report

Source: JICA Study Team

(3) Design Criteria

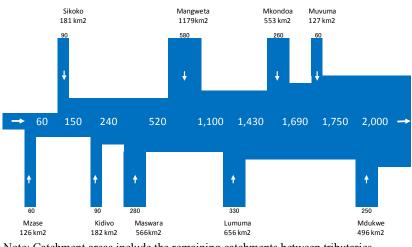
As of yet, the methodology of plan formulation of the river structure is not established, and the design criteria of, and guidelines for, these structures are thus not yet available. On the other hand, design criteria for the railway structures were recently proposed in a report prepared under the railway sector in March 2014.

In addition, Japanese design criteria and guidelines for the related structures are compared and studied for their potential to be adopted, considering the site conditions and purpose of the railway project. The proposed design criteria in the Study can be used for similar projects in the future.

1) Design Criteria and Guidelines for the Related Structures

Design Standard in Tanzania

- OVERSEAS ROAD NOTE 9, A Design Manual for Small Bridge", International Division, Transport Research Laboratory
- Relative reports :Consultancy Services in Relation to Design and Supervision of Bridge at KM349/350 AND Associated Works between Godegode and Gulwe Stations on the Central Railway Line, Gauf(2014)


Design Standard in Japan

- Government Ordinance for Structural Standard for River Administration Facilities,
- Technical Criteria for River Works: Practical Guide for Planning and Designing, The Japanese Ministry of Land, Infrastructure, Transport and Tourism
- Design Method of Riverbank Protection Work
- Guideline for Structural Design of Groundsill, Japan Institute of Country-ology and Engineering (1998)

2) Design Criteria for Flood Protection Measures

i) Design Discharge

As mentioned in Chapter 6, design discharge is estimated based on the flood marks along the mainstream. Design discharge distribution is presented in Figure 10.50 below.

Note: Catchment areas include the remaining catchments between tributaries. Source: JICA Study Team

Figure 10.50: Distribution of Design Flood Discharge between Kilosa and Gulwe

As for the design discharge for planning of river training works in the Maswala and Mzase Rivers, flood discharge with sediment concentration of 10% is applied, referring to the standard used in Japan.

ii) Safety Level against Flood

Target safety level against flood applied for the structural design is equivalent scale of the experienced maximum flood level between Kilosa and Gulwe. It is preliminary assessed with an approximately 30-year flood level based on the hydrological analysis.

For the design of structures in the tributaries where river training works will be implemented, the same safety level as the mainstream is applied, since the railway and bridge across the river training works need to be protected from floods of the same level.

iii) Design Water Level

Water surface profile in the objective stretch between Kilodsa and Gulwe is computed employing a non-uniform flow analysis model generated by the U.S. Army Corps of Engineers (HEC-RAS).

In the hydraulic analysis for the tributaries, the flood water level of mainstream at the confluence is adopted as a boundary condition in the downstream end, such that the backwater effect from the mainstream to the tributary can be considered.

Roughness parameter of Manning's n is applied as 0.033 for the low water channel and 0.060 for the high water channel.

- iv) Design Criteria for Dike
- a) Material of dike

Basically, the material of dike is uniform throughout, using suitable earth materials considering stability of dike and easiness for repair.

b) Freeboard

Freeboard of dike subject to magnitude of design flood discharge shall use the design standard in Tanzania, which are currently applied by TANROADS, as shown in Table 10.55 below. The Tanzanian standard of freeboard is stricter than that of Japan, as shown in Table 10.56, from the view point of the corresponding magnitude of discharge.

Minimum Vertical Clearance (m)
0.15 m
0.45 m
0.60 m
0.90 m
1.20 m

Source: TANROADS³

Table 10.56: Design Criteria for Freeboard and Crest Width in Japan

Discharge (m ³ /s)	Minimum Freeboard (m)	Minimum Crest Width (m)
<200	0.6	3
200 to 500	0.8	3
500 to 2,000	1.0	4
2,000 to 5,000	1.2	5
5,000 to 10,000	1.5	6
>10,000	2.0	7

Source: Government Ordinance for Structural Standard for River Administration Facilities in Japan

In addition to the above, taking into account the water level rising due to sediment depositions on the riverbed in the object river channel, the freeboard for structures is applied to the Study as per Table 10.57.

Item	Segment 1 Upstream of Lumuma Confluence Km 283 – 318	Segment 2 Downstream of Lumuma Confluence Km 318 – 366
(1) Freeboard subject to Design		
Discharge (Design Standard of	1.2 m	1.2 m
Tanzania, via TANROADS)	(Q=1,690–2,000 m ³ /s)	(Q=60–1,690 m ³ /s)
(2) Estimated rising of water level		
due to sediment deposition	1.1 m	1.5 m
Total Freeboard	2.3 m	2.7 m

Source: TANROADS for (1) and JICA Study Team for (2)

For flood protection works in tributaries in the Maswala and Mzase Rivers, freeboard of dike is applied based on the design standard in Tanzania. In addition, extra freeboard is applied at

³ Source: "OVERSEAS ROAD NOTE 9, A Design Manual for Small Bridge", International Division, Transport Research Laboratory

bridge sections since floating wood (trees, branches, etc.) has been observed in these rivers during flood events, as shown in Figure 10.51.

Item	Maswala River	Mzase River
(1) Freeboard of River Training	1.2 m	0.9 m
Works	$(Q=308 \text{ m}^3/\text{s})$	$(Q=66 \text{ m}^3/\text{s})$
(2) Freeboard at bridge section	2.0 m	2.0 m

 Table 10.58: Freeboard for Structures in Tributaries

Source: TANROADS for (1) and JICA Study Team for (2)

Source: Above photo is extracted from a video taken by TRL in March 2014.

Figure 10.51: Photo of Floating Woods during Flood in Mzase River

c) Crest width

The crest width of dike shall be designed referring to the design standards used in Japan, as presented in Table 10.55 above. Considering the accuracy of basic data for estimation on the design discharge, and usage of passageway for maintenance vehicles on the dike, the crest width is basically set as equal to the width of the passage plus 1.0 m.

Item	Mainstream Kilosa - Maswala Km 283–349	Mainstream Maswala - Gulwe Km 349–366	Tributary
Minimum Crest Width	5.0 m	4.0 m	4.0 m

Table 10.59: C	rest Width of Dike
----------------	--------------------

Source: JICA Study Team

d) Side slope of dike

Side slope of dikes shall be designed gentler than 1v:2.0h, referring to the design standard in Japan. For the dikes along mainstream, the design side slope is 1v:3.0h, considering the stability of dike. For the dikes in the river training works in tributary, the slope is 1v:2.0h, because height of dike is lower than that in mainstream, around 2.0 m.

e) Required seepage length

The width of the dike body shall be designed to secure required safety against piping. The safety level for seepage is assessed by adopting the following formula referring to Creep Ratio of bed materials, as shown in Table 10.60:

<u>Formula</u>

C : $(L1+L2/3+\Sigma Lh)/\Delta h$

where; C: Creep Ratio

L1: Length of bottom of dike (m)

L2: Length of contact surface between dike and structures (m)

 Σ Lh: seepage length in vertical direction (m)

 \triangle h: water head (m)

Table 10.60: Creep Ratio of Bed Materials

Creep Ratio
8.5
7.0
6.0
5.0
4.0
3.5
3.0
2.5

Source: Guideline for Structural Design of Groundsill

v) Design Criteria for Groundsill

Design criteria for groundsill and check dam are adopted from the Japanese design criteria, "Guideline for Structural Design of Groundsill, Japan Institute of Country-ology and Engineering (1998)".

(4) Basic Conditions for Preliminary Design of Flood Control Measures

The basic conditions and considerations adopted for the design of the flood protection works are described below:

1) Hydraulic Condition

Basic hydraulic conditions obtained in the course of the Study are listed below:

	Item	Source	Compiled Document
1.	Flood mark	Floor mark survey (2015)	Appendix 7 in IT/R
		by JICA Study Team	
2.	Flood damage and existing	rapid flood risk assessment	Recommendation on Urgent
	river and culvert conditions	(December 2014)	Protection Measures for Incoming
		by JICA Study Team	Rainy Season 2015 (Results of
			Flood Risk Assessment)
3.	Hydraulic parameter of water	hydraulic analysis adopting the	Chapter 3 in IT/R
	surface profile and velocity	cross section survey (2015)	
		by JICA Study Team	
4.	Riverbed material	riverbed material survey (2015)	Appendix 5 in IT/R
		by JICA Study Team	
5	Riverbed variation	comparison of historical change of	Chapter 6 in IT/R
5.	Kiverbed variation	cross-section by JICA Study Team	

Table 10.61: Hydraulic Conditions of Proposed Bank Protection Works

Source: JICA Study Team

2) Topographic Condition

Basic topographic conditions for the preliminary design are as below:

- Existing topographic map (S=1/50,000; created before 1977).
- New topographic map covering the area of 2 km wide along the existing railway from Kilosa to Dodoma (S=1/2,500) by LiDAR in the Study (January 2015).
- River profile and cross-sections from Kilosa to Gulwe in the Study.

Datum of the river profile and cross-section survey use National Bench Marks placed along or in the vicinity of the existing railway under Survey and Mapping in the Ministry of Lands, Housing and Human Settlements Development as listed Table 10.62 below:

Name of Bench Mark	Elevation
A4/6	518.925 m
A4/10	536.277 m
A4/25	642.707 m
A4/28	676.571 m
A4/42	739.996 m

Table 10.62: Bench Marks for River Survey

Source: JICA Study Team

The outlines of the river cross-section and longitudinal profile survey conducted under the Study between January and June 2015 are presented in Appendix R.

3) Geotechnical Condition

Basic geotechnical information and conditions obtained in the course of the Study are listed in Table 10.63:

	Item	Source	Compiled Document
1.	Geological maps	JICA Wami/Ruvu Basin	Chapter 4 in IT/R
		Study Report 2013	_
2.	Design Reports for Consultancy Services in Relation to Design and Supervision of Bridge at Km349/350 AND Associated Works between Godegode and Gulwe Stations on the Central Railway Line	Gauff (2014)	Recommendation on Urgent Protection Measures for Incoming Rainy Season 2015 (Results of Flood Risk Assessment)
3.	Geotechnical investigation in the Study	JICA Study Team (2015)	Contractor's report
4.	Additional geotechnical investigation in	JICA Study Team (2016)	Contractor's report
	the Study		
5.	Riverbed material	JICA Study Team (2015)	Appendix 5 in IT/R

Source: JICA Study Team

The results of geotechnical investigations carried out in this Study and Gauff's previous study of the bridge at Km 349/350 are referred to for setting the design properties of foundation ground at the proposed check dam in Maswalla River as below:

- Material: Silty Sand
- $C = 0 \text{ kN/m}^2, \phi 35^\circ$
- Bearing capacity 30 tf/m²

(5) Preliminary Design of Riverbank Protection for Mainstream

1) Layout Plan

The 15 sections requiring the riverbank protection have been identified in the concept design in the Interim Report. Among these, the layout plan of the proposed bank protection along the Kinyasungwe/Mkondoa Rivers are prepared considering the existing river course of the low water channel, distance from riverbank to the railway track, and existence of water-hit areas based on the 1/2500 topographic map and high-resolution aerial photos taken in 2015 and the results of site reconnaissance.

The alignments of the proposed riverbank protection works are basically designed along the existing riverbank in order to directly protect the riverbank from erosion.

The layout plan is presented in Figure 10.53.

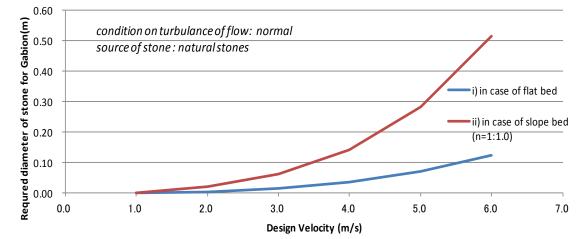
2) Cross-Sectional Plan

Crosse sectional plan of the riverbank protection is prepared based on the following conditions.

Protection height:	• Up to the level of existing dike crest/bank shoulder
Embedded depth:	• 1.0 m below the lowest river bed level. In case excavation deeper than around
	2m is required to construct the foundation of the bank, sheet pile is installed as supplemental foundation structure.
Slope of bank protection:	• 1v:1.0h considering the existing bank slope and stability of slope and
protection.	durability against flow velocity.
Toe protection:	• Bed protection work with 1.5 m in width is installed at the toe of the bank protection.
Shoulder protection:	• Bed protection work with 3.0 m in width is installed at the shoulder of the bank protection.
Side protection:	• Side protection of concrete wall with 0.3 m width is installed at both edges of the bank protection and every 50 m of the section.

Typical cross section of riverbank protection works for two types is presented in Figure 10.54.

Туре	Section	Slope protection	Bed protection
Type A	9,030 m, 13 sections(Section 1-1, 1-2, 2, 3, 6, 7, 8, 9-1, 11-3,12, 13, 14, 15)	Gabion	Gabion
Type B	6,080 m, 7 sections (Section 4, 5, 9-2, 10, 11-1,11-2,16)	Gabion with Steel Sheet Pile	Gabion


 Table 10.64: Bank Protection Works along Mainstream

Source: JICA Study Team

3) Structural Design

A standard design for the riverbank protection works for the Project is adopted using gabion, which have previously been used in the project area. A comparative study on types of riverbank protection works is carried out taking into account the application of imported technologies as mentioned in Section 10.4.

Required size of stone for the gabion can be determined depending on the design velocity, referring to the relation of design velocity and stone size of gabion as shown in the figure below. To stabilize the gabion against a flow velocity of 5.0 m/s, the required diameter is estimated around 30 cm.

Source: Prepared by JICA Study Team referring to Design Method of Riverbank Protection Work in Japan

Figure 10.52: Relation of Design Velocity and Stone Size of Gabion

Figure 10.53: Layout Plan of Riverbank Protection Works along the Mainstream

0

TYPICAL CROSS SECTION OF BANK PROTECTION WORKS

GABION MATTRESS SCALE; 1:200

10-58

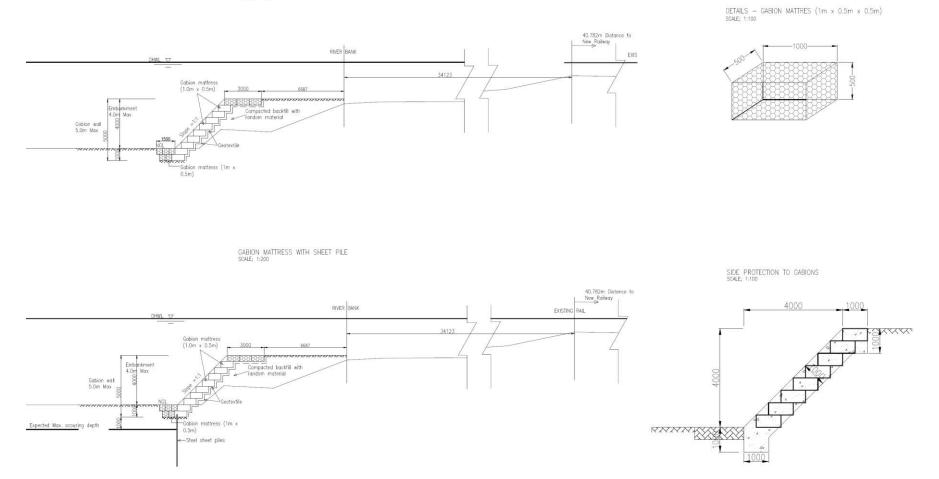


Figure 10.54: Typical Cross-Section of Riverbank Protection Works along the Mainstream

Based on the result of hydraulic analysis, the layout plan and cross-sectional plan, the basic properties of proposed riverbank protection works, such as section length, hydraulic parameters, design height, design river bed level, and design crest level, design velocity of bank protection works are summarized for each section in Table 10.65.

7) Quantity Calculation

A summary of the quantity calculation of bank protection works along the mainstream is presented in Table 10.66.

No.	ltem	Remarks	Section 1-1	Section 1-2	Section 2	Section 3	Section 4	Section 5	Section 6	Section 7	Section 8	Section 9-1 (IP311)	Section 9-2 (IP313)	Section 10	Section 11-1	Section 11-2	Section 11-3	Section 12	Section 13	Section 14	Section 15	Section 16
(1)	Station		Km289.38 - Km290.20	Km297.45 - Km298.11	Km298.42 - Km298.99	Km299.75 - Km300.45	Km300.88 - Km301.38	Km302.08 - Km303.48	Km304.14 - Km304.67	Km305.96 - Km306.60	Km308.96 - Km309.48	Km311.15 - Km311.71	Km312.60 - Km313.37	Km315.32 - Km317.04	Km328.29 - Km328.52	Km329.98 - Km331.03	Km331.62 - Km332.40	Km339.92 - Km340.32	Km341.43 - Km343.20	Km343.20 - Km343.88	Km344.92 - Km345.23	Km358.98 - Km358.76
(2)	Section Length (m)		830	710	450	700	550	1,380	500	650	570	580	770	1,720	330	1,100	830	420	1,760	800	230	230
(3)	Design Discharge (m3/s)	2,000 m ³ /s @ Kilosa return period (approx. 30-year)	1,750 - 2,000	1,690	1,690	1,690	1,690	1,690	1,690	1,690	1,690	1,690	1,690	1,690	1,100	1,100	1,100	1,100	1,100	1,100	1,100	1,100
(4)	Design High Water Level (El.m)	Enveloped line of flood marks	504.98 - 508.20	530.93- 535.56	535.56- 538.63	544.83- 548.32	544.83- 548.32	552.09- 556.48	560.81- 564.90	568.99- 573.03	576.85- 584.51	584.51- 594.32	594.32- 605.22	611.23- 616.25	661.92 -664.05	668.30- 670.87	670.87 -673.44	699.94- 701.25	704.66- 708.08	714.24- 720.41	726.58- 730.37	760.1 1-762.88
(5)	Freeboard of Dike (m)	d/s of Kidete 2.3 m u/s of Kidete 2.7 m	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
(6)	Riverbed Level at toe of bank (El.m)		503.92	528.76	532.70	540.15	545.32	553.51	556.75	564.45	577.54	587.14	596.061	604.25	657.72	667.56	669.31	699.58	707.65	711.93	723.00	759.25
(7)	Exiisting Bank Level (EL.m)		505.93	531.21	535.74	543.56	547.77	555.62	560.38	567.06	579.43	590.35	598.788	608.02	661.55	669.39	671.37	700.84	708.54	713.92	724.94	764.94
(8)	Existing Bank Height (EL.m)	(8)=(7)-(6)	2.01	2.45	3.03	3.41	2.45	2.11	3.63	2.61	1.89	3.20	2.73	3.77	3.82	1.83	2.05	1.26	0.89	1.99	1.95	5.69
(9)	Lowest Riverbed Level (EL.m)		502.93	528.49	532.58	539.91	544.246	552.46	556.52	563.99	577.54	586.816	594.41	604.19	657.071	664.623	668.847	699.58	707.51	711.81	722.98	758.3
(10)	Estimated Scouring Depth (m)	(10)=(6)-(9)+1.0m	1.99	1.27	1.13	1.24	2.08	2.05	1.23	1.46	1.00	1.33	2.65	1.06	1.65	3.94	1.47	1.00	1.14	1.12	1.02	1.95
(11)	Required Height of Bank Protection (m)	(11)=(8)+(10)	4.0	3.8	4.2	4.7	4.6	4.2	4.9	4.1	2.9	4.6	5.4	4.9	5.5	5.8	3.6	2.3	2.1	3.2	3.0	7.7
(12)	Design Height of Bank Protection (m)		4.0	4.0	5.0	5.0	4.0	4.0	5.0	5.0	3.0	5.0	5.0	5.0	5.0	5.0	4.0	3.0	3.0	4.0	3.0	4.0
(13)	Design Velocity (m/s)		2.7-3.6	3.3-4.1	4.1-4.2	2.2-3.9	2.2-3.9	3.7-4.5	3.6-3.7	2.9-4.0	2.7-4.0	2.5-3.7	2.6-3.5	3.4-3.5	1.7-4.7	2.0-4.1	2.0-3.9	1.5-2.5	2.1-3.0	3.2-3.7	2.5-3.2	1.1-3.2
(15)	Re-routing Section		no	no	no	no	no	re-routing 2	re-routing 2	re-routing 2	no	no	partially re- routing 3	partially re- routing 3	no							
(16)	Type of Bank Protection Works		gabion	gabion	gabion	gabion	gabion with SSP	gabion with SSP	gabion	gabion	gabion	gabion	gabion with SSP	gabion with SSP	gabion with SSP	gabion with SSP	gabion	gabion	gabion	gabion	gabion	gabion with SSP

Table 10.65: Basic Properties of Proposed Bank Protection Works

Source: JICA Study Team

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

No.	Item		Section											
			Section 1-1	Section 1-2	Section 2	Section 3	Section 4	Section 5	Section 6	Section 7	Section 8	Section 9-1	Section 9-2	Section 10
Sec	ction Length	m	830	710	450	700	550	1380	500	650	570	580	770	1720
Av	verage Bank Height	m	4.0	4.0	5.0	5.0	4.0	4.0	5.0	5.0	3.0	5.0	6.0	5.0
Gal Gal	abion (Main body)	m ³	4,150.0	3,550.0	2,700.0	4,200.0	2,750.0	6,900.0	3,000.0	3,900.0	2,280.0	3,480.0	4,620.0	10,320.0
Ga2 Gat	abion (Foot protection)	m ³	1,245.0	1,065.0	675.0	1,050.0	825.0	2,070.0	750.0	975.0	855.0	870.0	1,155.0	2,580.0
Gel Geo	eotextile	m ²	8,922.5	7,632.5	5,737.5	8,925.0	5,912.5	14,835.0	6,375.0	8,287.5	4,987.5	7,395.0	9,817.5	21,930.0
Ex1 Exc	cavation	m ³	3,494.3	2,989.1	1,327.5	2,240.0	2,486.0	6,237.6	1,685.0	3,731.0	1,590.3	3,590.2	4,096.4	8,221.6
Em1 Em	nbankment (Backfill)	m ³	5,262.2	4,501.4	9,126.0	7,938.0	3,624.5	9,094.2	3,485.0	3,919.5	5,346.6	7,835.8	8,292.9	23,787.6
S1 Ste	eel Sheet Pile	m ²	0.0	0.0	0.0	0.0	3,300.0	8,280.0	0.0	0.0	0.0	0.0	4,620.0	10,320.0
C1 Cor	oncrete Cap	m ³	0.0	0.0	0.0	0.0	137.5	345.0	0.0	0.0	0.0	0.0	192.5	430.0
C2 Side	le wall	m ³	41.0	34.2	22.8	34.2	27.4	66.1	25.1	31.9	27.4	29.6	36.5	79.8

 Table 10.66: Summary of Quantity Calculation of Bank Protection Works along Mainstream

No. Item			Quantity							
		Section 11-1 Section 11-2 Section 11-3 Section 12 Section 13 Section 14 Section 15 Section 16								
Section Length	m	330	1100	830	420	1760	800	230	230	Total
Average Bank Height	m	5.0	5.0	4.0	3.0	3.0	4.0	3.0	4.0	15,110.0 m
Gal Gabion (Main body)	m ³	1,980.0	6,600.0	4,150.0	1,680.0	7,040.0	4,000.0	920.0	1,150.0	
Ga2 Gabion (Foot protection)	m ³	495.0	1,650.0	1,245.0	630.0	2,640.0	1,200.0	345.0	345.0	79,370.0 m3
Ge1 Geotextile	m ²	4,207.5	14,025.0	8,922.5	3,675.0	15,400.0	8,600.0	2,012.5	2,484.0	22,665.0 m3
Ex1 Excavation	m ³	2,062.5	6,875.0	5,187.5	1,272.6	5,508.8	2,544.0	726.8	726.8	170,084.0 m2
Em1 Embankment (Backfill)	m ³	1,943.7	6,479.0	4,888.7	2,339.4	11,017.6	3,032.0	724.5	871.7	66,593.0 m3
S1 Steel Sheet Pile	m ²	1,980.0	6,600.0	0.0	0.0	0.0	0.0	0.0	1,380.0	123,510.3 m3
C1 Concrete Cap	m ³	82.5	275.0	0.0	0.0	0.0	0.0	0.0	57.5	36,480.0 m2
C2 Side wall	m ³	18.2	52.4	41.0	20.5	82.1	38.8	13.7	13.7	1,520.0 m3
										736.4 m3

Source: JICA Study Team

8) Summary (Scope of Works)

The Scope of Works for bank protection works along the Kinyasungwe/Mkondoa Rivers is summarized below:

Scope of Works for Bank Protection	Works along Kinyasingwe River
No. of sections	: 20 sections
Total length	: L=15,110 m
Bank protection height	: 3.0 – 5.0 m (Average: 4.3m)
Gabion	$: 102,035 \text{ m}^3$
Steel sheet pile	$: 36,480 \text{ m}^2$
Embankment	$:124,080 \text{ m}^3$
Excavation	: 66,593 m ³

10.1.10 Measures for Tributaries

(1) **Basic Approach**

The preliminary design for the flood protection and sediment management measures for the tributaries is prepared based on the concept design in Chapter 7. The accuracy of the design is a preliminarily level which can be used for evaluation of the Yen Loan Project.

Required clearance at the bridge sections across the tributaries of the Maswala and Mzase Rivers are determined in this section, and will be applied for the design of the longitudinal profile of the proposed rerouting section of the railway.

Objective Area and Structure (2)

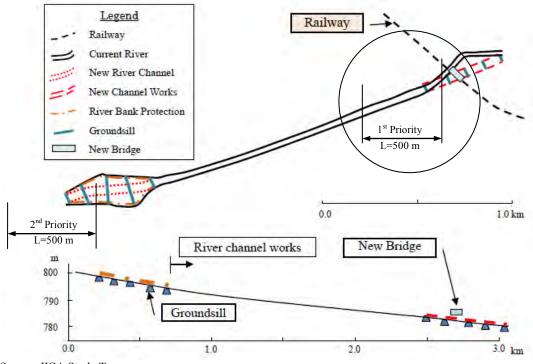
Among the proposed measures in the concept design, the areas identified as the highest priority areas are selected for the project area in the tributaries as below:

- Mzase River : Section of 1st Priority
- Maswala River : Section of 1st Priority •

The sections of priority 2, both in Maswala and Mzase Rivers and a entirety of the Kidivo River, are out of the project area and thus out of the scope of the preliminary design. They are expected to be implemented as second priority projects.

At the confluence of the Kidivo River, the existing riverbank protection works need to be restored. This restoration work is included in the scope of the works of the project proposed in the mainstream.

1) Mzase River


1st priority (in d/s)

- Excavation for New Channel: L=500 m, H-2.0 m, W=40 m
- -Bank Protection (gabion) : L=500 m, H=3.0 m x 2 nos. (right and left)
- Embankment -: none
- Groundsills in d/s : 5 nos. (average width 40 m), H=4.7 m

2nd priority (in u/s)

- Excavation for New Channel: none
- -Bank Protection (gabion) : L=500 m, H=3.0 m x 2 nos. (right and left)
- Embankment : none
- Groundsills in u/s : 5 nos. (average width 80 m), H=4.7 m

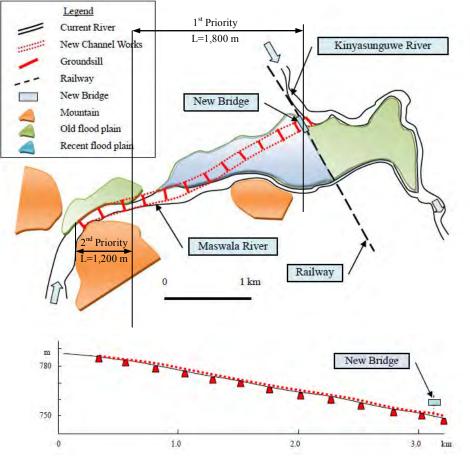
Layout Plan and Profile

Source: JICA Study Team

Figure 10.55: Proposed Countermeasures in Mzase River

2)	Maswala	River
4	iviaswala	NIVEL

<u>1st priority (in d/s)</u>


- Excavation for New Channel : L=1,500 m, H=2.0 m, W=150 m
- Bank Protection (gabion) : L=1,800 m, H=4.0 m x 2 nos (left & right)
- Embankment : L=1,800 m, H=3.0 m x 2 nos. (left & right)
- Groundsills in d/s : 10 nos. (average width 150 m), H=5.0 m

-

2nd priority (in u/s)

- Excavation for New Channel: L=40 m, H=2.0 m, W=150 m
- Bank Protection (gabion) : L=1,200 m, H=4.0 m x 2 nos. (left & right)
- Embankment : none
- Groundsills in u/s : 3 nos. (average width 150 m), H=5.0 m

Layout Plan and Profile

Source: JICA Study Team

Figure 10.56: Proposed Countermeasures in Maswala River

(3) Design Criteria and Basic Conditions

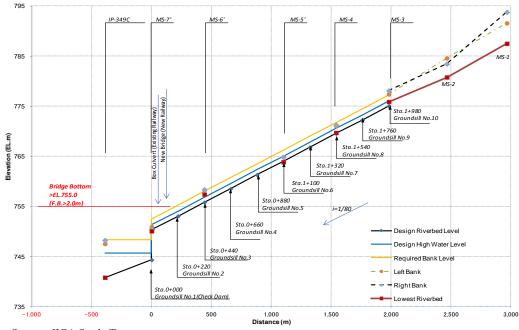
The design criteria and basic conditions mentioned in the previous Sub-section 10.1.9 are applied.

(4) Preliminary Design of Maswala Training Works

1) Present Issues and Purposed Works

The Maswala River is a natural river where no flood protection measure is installed. The river channel flowing over the alluvial fan is divided into several branched channels at around 2.5 km upstream of the confluence with the Kinyasungwe River. In the surrounding areas of the confluence of the Maswala River, the railway tracks and culverts have been frequently damaged by floods due to erosion and overflow of water drained from the mountain side.

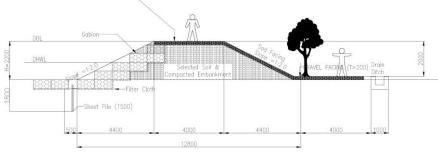
To cope with these issues, the following works are proposed:


- i) River training works to construct a new river channel with dike and excavated channel in order to bundle the existing branched rivers over the alluvial fan, and to fix the intersection point with the railway to one location.
- ii) Construction of a new bridge across the new river channel

- iii) Construction of series of groundsills together with the river training works to stabilize riverbed profile and to control direction of flow into the center of the channel
- iv) Construction of a check dam at the downstream end of the new channel to regulate a height difference of around 6 m between the existing ground and riverbed levels.
- 2) Design Conditions
 - i) Design Discharge (water) : 280 m³/s
 - ii) Design Discharge (water with sediments): 308 m³/s. (increased by 10% of the design discharge considering sediment flow)
- 3) Layout Plan

i) River Channel

- A new river channel with dike is constructed as a main structure of the river training works. It starts from 2.5 km upstream of the confluence with Maswala River to the confluence with the straight alignment. Total length of the river channel is 2,000 m.
- The downstream end of the channel is located at around 50 m downstream from the intersection point with the existing railway.
- A new bridge is constructed at around 80 m upstream of the downstream end of the river channel.
- ii) Groundsill
- Existing riverbed profile of the Maswala River in the downstream section is around 1/80. The river channel in this section which has faster flow velocity is sediment transported section with the meandering river course branched over the alluvial fan. In order to stabilize the streamline and riverbed slope in the proposed new river channel, nine groundsills are constructed with fixed interval of 220 m.
- iii) Check dam
- At the downstream of the new channel, construction of a check dam is proposed to regulate a height difference of around 6 m between the existing ground and riverbed levels.
- 4) Preliminary Design of River Channel
 - i) Longitudinal Profile
 - Longitudinal profile of the new channel is designed to fit to the existing ground level along the proposed alignment. Based on this condition, the design riverbed slope is adopted as uniform slope of 1/80 between the upstream end and the check dam.


The design longitudinal profile of the Maswala River is presented in Figure 10.57.

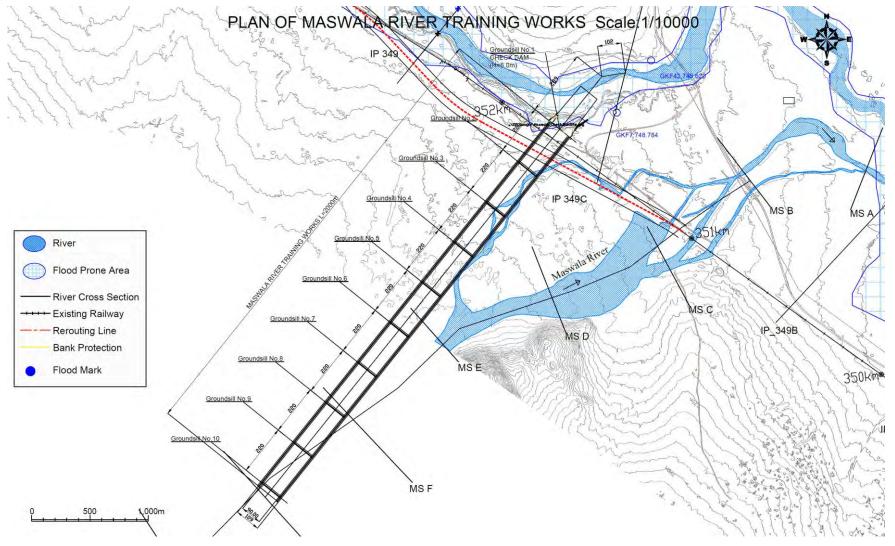
Source: JICA Study Team

Figure 10.57: Longitudinal Profile of Maswala River Training Works

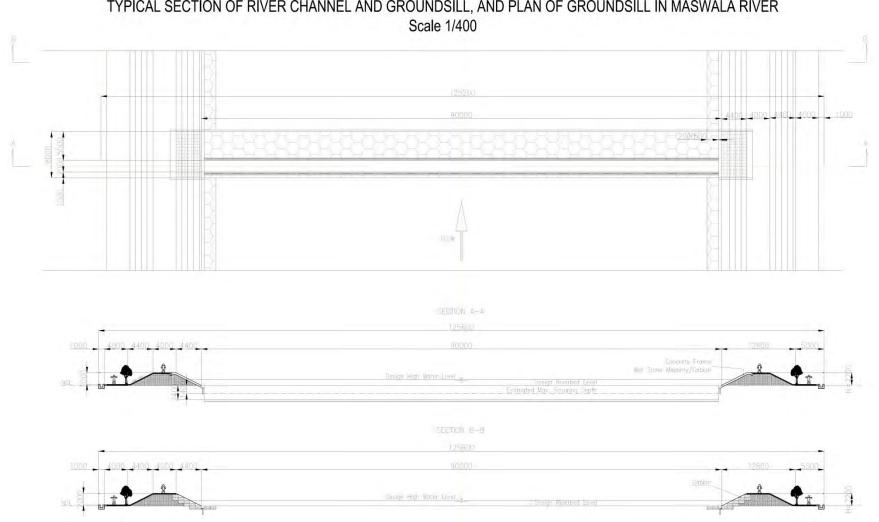
- ii) Cross-Sectional Plan
- The river channel is designed as trapezoid with riverbed width of 90 m, side slope of 1:2.0, the design water depth of 1.0 m and the freeboard of 1.2 m to secure required flow capacity for the design discharge based on the design criteria and design conditions.
- In the section where the design water level is higher than the natural ground level, a new dike is constructed along the riverbank. The new dike is designed with the crest width of 4.0 m and the side slope of 1:2.0.
- iii) Slope Protection Works
- The design velocity of the Maswala River is from 1.1-2.6 m/s, based on the hydraulic calculation. To protect from surface erosion of the dike, slope protection works with gabion are proposed.
- To protect from seepage failure, a cutoff wall of 1.5 m is installed at the toe of the slope protection works.

Source: JICA Study Team

Figure 10.58: Typical Section of Dike of Maswala River Training Works


- iv) Typical Section
- Basic properties of the Maswala River training works are presented in Table 10.67. The typical section of the Maswala River is presented in Figure 10.60

ID	Station	Location Name	Accutual Distance to next station	Accumulated Distance	Existing River Channel			Flood Record	Design River Channel						
					River Width	Left Bank	Right Bank	Lowest Riverbed	Maximu Flood Level	Design Discharge	Design Riverbed Level	Design High Water Level	Required Bank Level	Design Height of Dike	Computed Velocity
(-)	(-)	(-)	(m)	(m)	(m)	(El.m)	(El.m)	(El.m)	(El.m)	(m3/s)	(EL.m)	(El.m)	(m)	(m)	(m/s)
IP349C	Sta	Confluence Between Maswala and Main River (IP349C)	390.00	-390.00	179.72	747.53	748.23	740.80	745.62	308.00	740.80	745.62	748.32	7.52	0.00
	0.00	Groundsill No.MS-1(Check Dam) d/s	0.00	0.00						308.00	744.30	745.62	748.32	4.02	1.09
MS-C'	0.00	Groundsill No.MS-1(Check Dam) u/s	220.00	0.00	59.86	750.90	750.45	750.06		308.00	750.30	751.30	752.50	2.20	1.09
	220.00	Groundsill No.MS-2	220.00	220.00						308.00	753.05	754.05	755.25	2.20	2.48
MS-D'	440.00	Groundsill No.MS-3	220.00	440.00	145.20	758.26	758.35	757.39		308.00	755.80	756.80	758.00	2.20	1.75
	660.00	Groundsill No.MS-4	220.00	660.00						308.00	758.55	759.55	760.75	2.20	2.58
	880.00	Groundsill No.MS-5	220.00	880.00						308.00	761.30	762.30	763.50	2.20	1.83
MS-E'	1,100.00	Groundsill No.MS-6	220.00	1,100.00	92.95	764.89	764.82	763.86		308.00	764.05	765.05	766.25	2.20	1.93
	1,320.00	Groundsill No.MS-7	220.00	1,320.00						308.00	766.80	767.80	769.00	2.20	1.85
MS-F	1,540.00	Groundsill No.MS-8	220.00	1,540.00	104.39	771.08	771.28	769.72		308.00	769.55	770.55	771.75	2.20	2.34
	1,760.00	Groundsill No.MS-9	220.00	1,760.00						308.00	772.30	773.30	774.50	2.20	2.28
MS-G	1,980.00	Groundsill No.MS-10	484.62	1,980.00	111.21	777.40	778.10	775.89		308.00	775.05	776.05	777.25	2.20	1.85
MS-H	2,464.62		501.30	2,464.62	147.61	784.60	783.46	780.80							
MS-I	2,965.92			2,965.92	209.97	791.60	793.81	787.52							


Table 10.67: Basic Properties of Maswala River Training Works

Source: JICA Study Team

10-67

10-68

TYPICAL SECTION OF RIVER CHANNEL AND GROUNDSILL, AND PLAN OF GROUNDSILL IN MASWALA RIVER

Figure 10.60: Plan and Typical Section of Groundsill and Typical Section of River Channel in Maswala River Training Works

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

(5) Preliminary Design of Groundsills

The preliminary design of the nine proposed groundsills is prepared adopting a typical plan and cross-section, because of the similarity of design conditions, as per the specifications below:

i) Longitudinal profile

Proposed groundsill is designed as embedded under the design riverbed level.

ii) Main body Main body of the groundsills is designed as a free-standing structure with the crest width of 2.0 m and height of 2.4 m considering the interval of groundsill and the longitudinal

of 2.0 m and height of 2.4 m considering the interval of groundsill and the longitudinal profile of the new channel.

The upstream and downstream slope of main body is 1:0.2.

- iii) Overflow section
 Overflow section of the groundsills is designed to secure the same cross-section with the river channel, i.e., bed width of 90 m, height of 2.2 m, and side slope of 1:2.0.
- Riverbed protection works
 The riverbed protection works are provided to protect from local scouring at upstream and downstream of the groundsill. Length of the riverbed protection works is 1 m at upstream and 5 m at downstream.
- Riverbank protection at groundsill
 The riverbank protection works at groundsill section is designed as a ridged type of a concrete frame. The provided section of the protection works is 12.5 m long from 5 m upstream of the groundsill to the 5 m downstream of the ground sill.

(6) Preliminary Design of Check Dam

i) Longitudinal profile

The proposed check dam is designed with a drop height of 6.0 m, taking into account the longitudinal connection between the existing river bed and ground level at proposed check dam site.

The total dam height is as designed 8.5 m, in consideration of the embedded depth of the check dam of 2.5 m below the surface of the apron.

ii) Geological condition

Geological conditions at the construction site of the proposed check dam can be confirmed by referring to the previous geotechnical investigation report (Gauff, 2014).

The results of the investigation are summarized as below and shown in Table 10.68:

- The depth of solid rock is approximately 20 m from the surface of ground.
- Rock is composed of layers of quartzitic sand stone with an n-value of more than 50.
- Above the rock, alternating layers of sand and silt are deposited.
- The n-value of the foundation ground of the proposed check dam is estimated as being between 16-22, referring to the borehole data at the layer around 10 m below the surface of ground. This layer is mainly composed of silty sand and sandy clay. Based on the laboratory test taken nearby this layer shows.

Characteristic	BH1	BH2	BH3		
Depth of solid rock	21.8m	19m	19m		
Type ofdeposited materials above the rock	Alternating layers of	Alternating layers of	Alternating layers of		
	silt, clay and sand	silt, clay and sand	silt, clay and sand		
N-Value at foundation layer	22-28	18-20	17-24		
(10 m deep from surface of ground)					
Result of laboratory test	Silty Sand	Silty Sand	Sandy clay		
	$C=2tf/cm^2$,	C=42 tf/cm ² ,	C=12 tf/cm ² ,		
	φ=40 degree	φ=24.8 degree	ϕ =36.4 degree		

Source: Design Report for Design and Supervision of Bridge at Km349/350 and Associated Works between Godegode and Gulwe Stations on the Central Railway Line (Gauff, 2014)

Based on the above data, it is considered that the foundation ground of the check dam can be secured with the required bearing capacity of the structure without installation of foundation piles.

The basic design property of foundation soil is assumed as follows:

- Material : silty sand
- Cohesion : 0.0 tf/cm^2
- Friction angle ϕ :35°
- Allowable bearing capacity : 30 tf/m2

iii) Main body

The main body of the check dam is designed as a free-standing structure with a crest width of 2.5 m and height of 8.5 m.

The slope of the dam is determined as 1:0.7 for the upstream section, and 1:0.2 for the downstream section based on the stability analysis (see Appendix S for detail), with the downstream slope of main body set as 1:0.2.

iv) Overflow section

The overflow section of the check dam is designed at 80 m at bottom with side slope of 1:0.5 considering the cross sectional shape of the river channel and embedded depth of the side wall into the natural ground. The overflow depth is estimated at 1.8 m for the design discharge of $308m^3/s$. The height of the overflow section is designed as 3.0 m, including the freeboard of 1.2 m above the overflow depth.

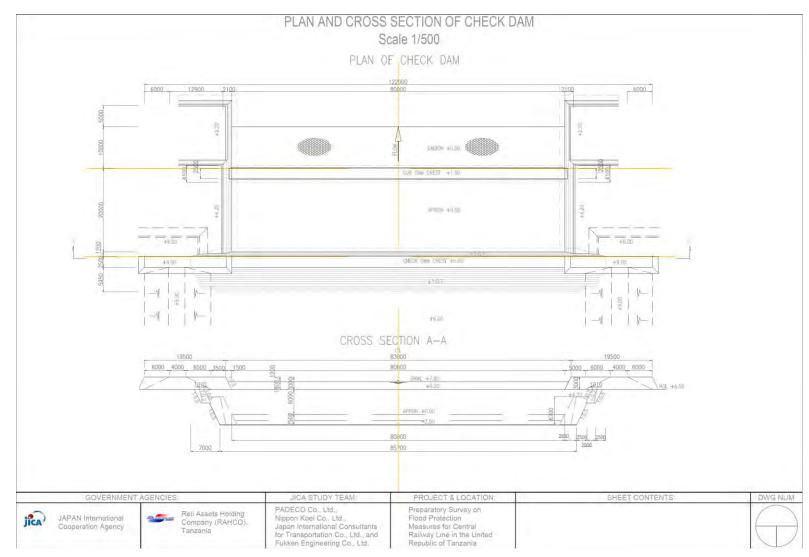
v) Apron and sub-dam

To dissipate the energy of overflow water from the check dam with a drop height of 6 m, an apron attached with a sub-dam is provided downstream of the check dam. The length of the apron is designed as 20 m to secure the required dissipation length based on the hydraulic computation.

The apron is concrete structure with 1.5 m in thickness to secure required durability against surface erosion and required stability against uplift.

The sub-dam constructed at the downstream end of the apron is designed at 4.0 m in height, including the embedded depth of 2.5 m, the same as the one in the main body. The overflow section of the sub-dam is designed as the same section of the check dam.

vi) Riverbed protection works


The riverbed protection works are provided to protect from local scouring at upstream and downstream of the check dam. The provided length of the riverbed protection works is 2 m upstream from the crest and 10 m downstream of the sub-dam.

vii) Riverbank protection

The riverbank protection works at the check dam is designed as a ridged type of a concrete retaining wall. The retailing wall along the apron is structurally separated from the apron to secure durability in case of damage. The structural type is a leaning retaining wall with the height of 6.7 m at the section along the apron.

The riverbank protection works downstream of the apron are designed with gabion, the same as that of the river channel. The extent of the riverbank protection of the gabion is up to 15 m downstream from the sub-dam.

The plan, design cross-section, and design profile of the check dam are presented in Figure 10.61 and Figure 10.62 below.

10-72

Figure 10.61: Plan and Typical Section of Check Dam in Maswala River Training Works

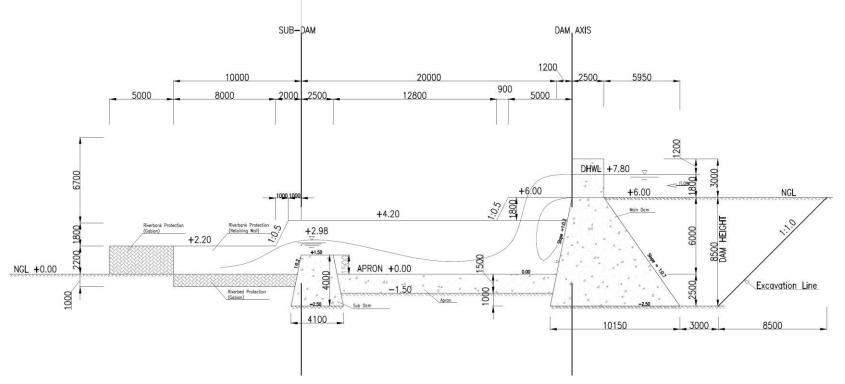


Figure 10.62: Profile of Check Dam in Maswala River Training Works

7) Quantity Calculation

No.	Item	Quantity	Y
1	Groundsill (9 nos.)		
	Concrete	Vc =	5,895.9 m ³
	Gabion (Foot protection)	Vg =	$4,860.0 \text{ m}^3$
	Geotextile	Af=	$4,860.0 \text{ m}^2$
2	Channel		
	Concrete	Vc =	$1,075.2 \text{ m}^3$
	Gabion (Main body)	Vg =	$5,970.0 \text{ m}^3$
	Gabion (Foot protection)	Vg =	$1,194.0 \text{ m}^3$
	Gravel Facing	Vgs =	$3,072.0 \text{ m}^3$
	Geotextile	Af=	$11,343.0 \text{ m}^2$
	Steel Sheet Pile	Ls =	4,800 m
	Embankment (Backfill)	Vem =	$20,071.8 \text{ m}^3$
	Sod Facing	As =	11,929.7 m ²
	Excavation	Vex =	$22,081.7 \text{ m}^3$
	Clearing	Ac =	19,661,1 m ²
3	Check Dam (1 nos.)		
	Concrete	Vc =	$8,542.0 \text{ m}^3$
	Gabion	Vg =	960.0 m ³
	Geotextile	Af=	960.0 m^2
	Embankment	Vem =	$1,238.0 \text{ m}^3$
	Excavation	Vex =	44,392.0 m ³

Table 10.69: Summary of Quantity

Source: JICA Study Team

8) Summary (Scope of Works)

The Scope of Works for river training works along the Maswala River is summarized below:

Scope of Works for river training works along Maswala River

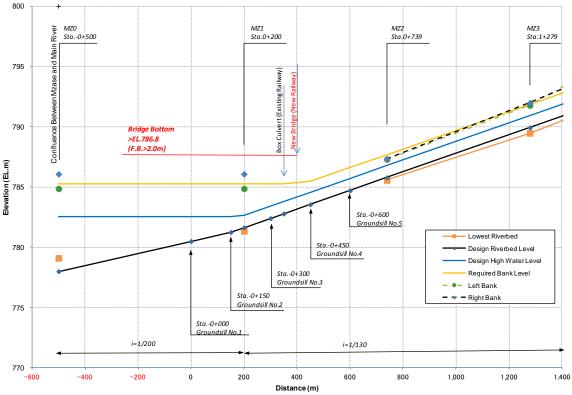
- Excavation for New Channel: L=2,000 m, W=89.2 m
- Bank Protection (gabion) : L=4,000 m (for right and left banks)
- Groundsill : 9 units, H=4.7 m
- Check dam : 1 unit, H=8.5 m
- Embankment $: 13,148 \text{ m}^3$
- Excavation $: 331,864 \text{ m}^3$
- Steel sheet pile : 14,850 m

(7) Preliminary Design of Mzase Training Works

1) Present Issues and Purposed Works

At the confluence of the Mzase River, a culvert is installed at the intersection with the railway. The opening of this culvert is almost clogged with sediment depositions at present. The railway at and within the general vicinity of the culvert have been frequently damaged by floods due to overflow and bank erosion.

It was observed at the site that the sediment derived from the upstream areas would not be deposited in the Mzase River because the flow velocity is fast, but rather, is likely deposited at the confluence because the slower velocity at that point. At present, the river channel in the confluence has accumulated a great deak of sediment deposition that is affecting the existing culvert. In addition, the existing river channel of the Mzase River is refracted at around 200 m


upstream of the existing culvert. It is considered that turbulence flow generated at this refraction makes flow velocity at the left side of the culvert slower, resulting in deceleration of much of the sediment depositions.

To cope with these issues, the following works are proposed:

- i) Replacement of the existing culvert with a new bridge.
- ii) River training works from about 0.7 km upstream of the confluence to the confluence with a straight alignment of the river channel.
- iii) Construction of series of groundsills to stabilize the riverbed profile and to control direction of flow into the center of the channel.
- 2) Design Conditions
 - i) Design Discharge (water) $: 60 \text{ m}^3/\text{s}$
 - ii) Design Discharge (water with sediments): 66 m³/s (increased by 10% of the design discharge considering sediment flow)
 - iii) Existing river channel

In the downstream areas of the Mzase River, river channeling works had been implemented previously. The existing channel is around 40 m wide with dikes.

- 3) Layout Plan
 - i) River Channel
 - A new river channel with dike is constructed as a main structure of the river training works. It starts from 200 m upstream of the refraction section and ends at the confluence with the mainstream.
 - The total length of the new river channel is 640 m. The refracted section is changed to the straight alignment.
 - It is assessed that the existing channel in the upstream section can be used without any improvements because it has been already improved to a straight channel having the required cross-sectional area to allow the flow of the design discharge.
 - A new bridge across the Mzase River is constructed at around 380 m upstream of the downstream end of the new river channel in order to secure a distance from the confluence as much as possible.
 - ii) Groundsill
 - The riverbed slope of the Mzase River in the downstream section is around 1/130. The river channel in this section is a sediment transport section where a streamline would be unstable under the natural conditions. In order to stabilize the fluctuated streamline and riverbed slope in the proposed new river channel, five groundsills are constructed with a fixed interval of 150 m.
- 4) Preliminary Design of River Channel
 - i) Longitudinal Profile
 - The longitudinal profile of the new channel is designed to fit to the profile of existing ground along the proposed alignment. Based on this condition, the design riverbed slope is adopted as uniform slope of 1/130 in the upstream of the groundsill No.2 and 1/200 in the downstream.
 - Since the existing dike crest level is higher than the required dike level, heightening is not necessary.

Source: JICA Study Team

Figure 10.63: Longitudinal Profile of Mzase River Training Works

- ii) Cross-Sectional Plan
 - The river channel is designed as a trapezoid with a riverbed width of 40 m, side slope of 1:2.0, design water depth of 1.0 m, and a freeboard of 0.9 m to secure the required flow capacity for the design discharge.
 - In the section where the design water level is higher than the natural ground level, a new dike is constructed along the riverbank. The new dike is designed with the crest width of 4.0 m and a side slope of 1:2.0.
- iii) Slope Protection Works
 - The design velocity of the Mzase River is 2.3 m/s, based on hydraulic calculations. To protect from surface erosion of the dike, slope protection works with gabion are provided.
 - To protect from seepage failure, a cutoff wall of 1.5 m is installed at the toe of the slope protection works.
- iv) Typical Section
 - The basic properties of the Mzase River training works are presented in Table 10.70. The typical section of the Mzase River is presented in Figure 10.64.
- 5) Preliminary Design of Groundsill The preliminary design of proposed five groundsills is prepared by adopting the typical plan and cross-section, due to the similarity of design conditions:
 - i) Longitudinal profile

The proposed groundsill is designed as embedded under the design riverbed level.

ii) Main body

The main body of the groundsills is designed as a free-standing structure with a crest width of 2.0 m and height of 2.0 m, in consideration of the interval between the groundsills and the longitudinal profile of the new channel.

The upstream and downstream slope of the main body is 1:0.2.

iii) Overflow section

The overflow section of the groundsills is designed to secure the same cross-section as the river channel, i.e., abed width of 40 m, height of 1.9 m, and side slope of 1:2.0.

iv) Riverbed protection works

The riverbed protection works are provided to protect from local scouring upstream and downstream of the groundsill. The length of the riverbed protection works is 2 m at upstream and 5 m at downstream areas.

v) Riverbank protection at groundsill

The riverbank protection works at groundsill section are designed as a ridged type with a concrete frame. The provided section of the protection works is 12.5 m long, stretching from 5 m upstream of the groundsill to 5 m downstream of each groundsill.

			Accutual			Existing Riv	er Channe	1	Flood Record		Design River Channel				
ID	Station	Location Name	Distance to next station	Accumulated Distance	River Width	Left Bank	Right Bank	Lowest Riverbed	Maximu Flood Level	Design Discharge	Design Riverbed Level	Design High Water Level	Required Bank Level	Design Height of Dike	Computed Velocity
(-)	(-)	(-)	(m)	(m)	(m)	(El.m)	(El.m)	(El.m)	(El.m)	(m3/s)	(EL.m)	(El.m)	(m)	(m)	(m/s)
MZ00	-Sta.0+500	Confluence Between Mzase and Main River	500.00	-500.00	0.00	784.87	786.08	779.10	782.55	66	778.00	782.55	785.25	7.25	5
	Sta.0+000	Grondsill No.1	150.00	0.00						66	780.50	782.55	785.25	4.75	5 2.26
	Sta.0+150	Grondsill No.2	50.00	150.00						66	781.25	782.55	785.25	4.00	2.26
MZ01	Sta.0+200		100.00	200.00	54.40	784.87	786.08	781.35		66	781.63	782.63	785.25	3.62	2 2.26
	Sta.0+300	Grondsill No.3	50.00	300.00						66	782.40	783.40	785.25	2.85	5 2.26
	Sta.0+350	Existing Culvert(railway)	100.00	350.00						66	782.79	783.79	785.25	2.46	6 2.26
	Sta.0+450	Grondsill No.4	150.00	450.00						66	783.56	784.56	785.46	1.90	2.26
	Sta.0+600	Grondsill No.5	139.43	600.00						66	784.71	785.71	786.61	1.90	2.26
MZ02	Sta.0+739		539.43	739.43	40.40	787.30	787.36	785.57		66	785.78	786.78	787.68	1.90	2.48
MZ03	Sta.1+279		494.45	1,278.86	55.50	791.78	791.99	789.48		66	789.93	790.93	791.83	1.90) 1.75
MZ04	Sta.1+773		556.86	1,773.31	49.60	797.83	796.59	793.70		66	793.74	794.74	795.64	1.90	2.58
MZ05	Sta.2+330		456.91	2,330.17	61.40	800.77	800.74	799.42		66	799.60	800.60	801.50	1.90	1.83
MZ06	Sta.2+787		517.39	2,787.08	86.60	807.76	806.99	805.05		66	804.41	805.41	806.31	1.90	0 1.93
MZ07	Sta.3+304		577.07	3,304.47	50.90	811.40	812.00	809.19		66	809.85	810.85	811.75	1.90	0 1.85
MZ08	Sta.3+882		518.19	3,881.54	92.40	819.93	819.38	814.95		66	815.93	816.93	817.83	1.90	2.34
MZ09	Sta.4+400		651.44	4,399.73	50.00	824.63	824.80	820.98		66	821.38	822.38	823.28	1.90) 2.28
MZ10	Sta.5+051		496.63	5,051.17	63.10	831.54	832.07	828.07		66	828.24	829.24	830.14	1.90) 2.07
MZ11	Sta.5+548			5,547.80	66.50	836.98	838.31	833.81		66	833.47	834.47	835.37	1.90) 2.14

Table 10.70: Basic Properties of Mzase River Training Works

Source: JICA Study Team

10-78

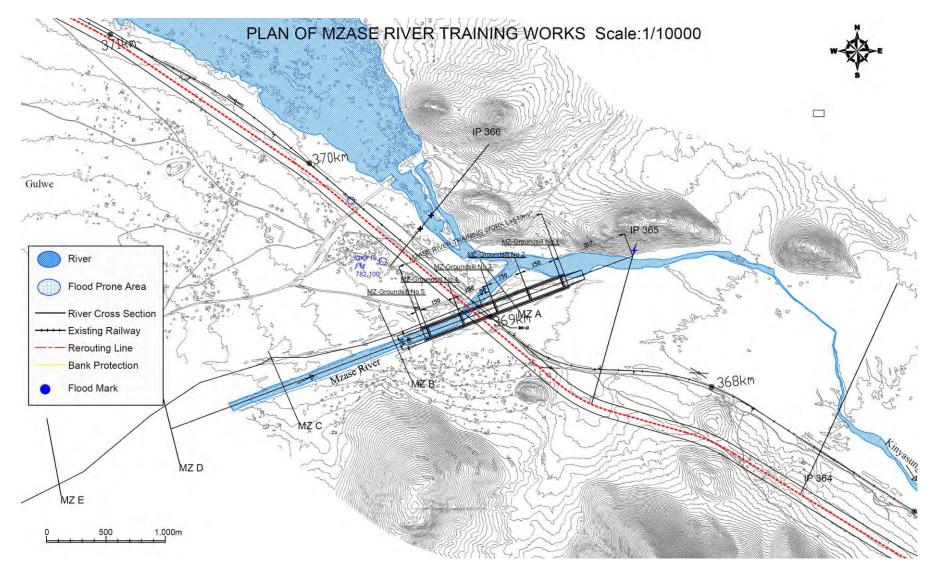
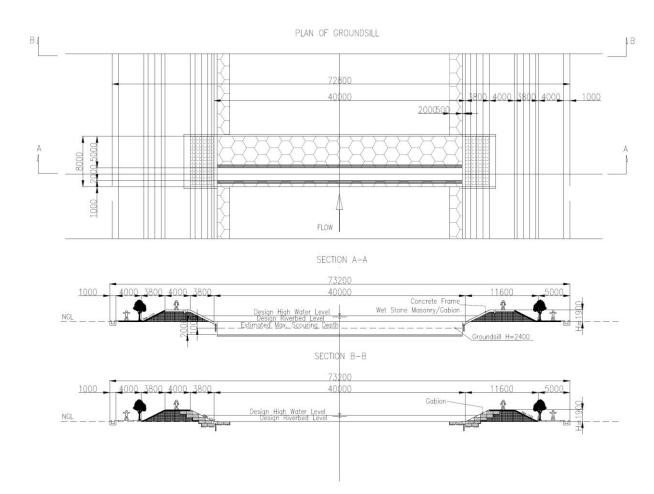



Figure 10.64: Layout Plan of Mzase River Training Works

PLAN AND TYPICAL SECTION OF RIVER CHANNEL, AND GROUNDSILL IN MZASE RIVER Scale 1/400

10-80

Figure 10.65: Plan and Cross-Section of Groundsill, and Typical Section of Mzase River Training Works

7) Quantity Calculation

		uantity
Groundsill (4 nos.)		
Concrete	Vc =	$1,046.4 \text{ m}^3$
Gabion (Foot protection)	Vg =	960.0 m ³
Geotextile	Af=	960.0 m^2
River Channel and Dike		
Concrete	Vc =	$1,075.2 \text{ m}^3$
Gabion (Main body)	Vg =	5,970.0 m ³
Gabion (Foot protection)	Vg =	$1,194.0 \text{ m}^3$
Gravel Facing	Vgs =	$3,072.0 \text{ m}^3$
Geotextile	Af=	$11,343.0 \text{ m}^2$
Steel Sheet Pile	Ls =	4,800 m
Embankment (Backfill)	Vem =	20,071.8 m ³
Sod Facing	As =	11,929.7 m ²
Excavation	Vex =	22,081.7 m ³
Clearing	Ac =	19,661,1 m ²
	Concrete Gabion (Foot protection) Geotextile River Channel and Dike Concrete Gabion (Main body) Gabion (Foot protection) Gravel Facing Geotextile Steel Sheet Pile Embankment (Backfill) Sod Facing Excavation Clearing	Concrete $Vc =$ Gabion (Foot protection) $Vg =$ Geotextile $Af =$ River Channel and Dike $Concrete$ Concrete $Vc =$ Gabion (Main body) $Vg =$ Gabion (Foot protection) $Vg =$ Gravel Facing $Vgs =$ Geotextile $Af =$ Steel Sheet Pile $Ls =$ Embankment (Backfill) $Vem =$ Sod Facing $As =$ Excavation $Vex =$

Source: JICA Study Team

8) Summary (Scope of Works)

-

-

The Scope of Works for river training works along the Mzase River are summarized below:

Scope of Works for river training works along Mzase River

- Excavation for New Channel: L=660 m, W=40 m
- Bank Protection (gabion) : L=1,320 m (for right and left banks)
- Groundsill : 4 units(average width 40 m), H=4.7 m
- Embankment : $20,072 \text{ m}^3$
 - Excavation : $22,081 \text{ m}^3$
- Steel sheet pile : 4,800 m

All preliminary design drawings of riverbank protections and protection measures in tributaries are compiled in Appendix S.

10.1.11 Flood Hazard Maps

Flood hazard maps are prepared to show the boundaries of design flood water levels along the Kinyasungwe/Mkondoa Rivers, which indicate the following information. Those are compiled in Appendix T.

- (1) Existing and proposed re-routing railway lines between Kilosa and Gulwe with the marks of every kilometer of the new kilometerage system.
- (2) Proposed locations of riverbank protection works along the mainstream and sediment control structures along the tributaries.
- (3) Survey lines of river cross-section survey conducted from January to June 2015.
- (3) Flood marks identified through the Flood Mark Survey conducted between January and April 2015.
- (4) Locations of flood damage incurred during past significant floods.
- (5) Location of staff gauges, including those installed by the current Study.

10.1.12 Improvement Plan for Igandu Area

(1) Improvement Plan

Although Igandu is an area outside of the project scope, the following measures are recommended to reduce flood damages. This is an area divided by railway embankments. Rivers (dry during the dry season) that flow through this area cross the railway, and culverts are provided at the crossing points. However, due to the culvert openings being too small, water is prone to stanching and is a factor in the frequent occurrence of flooding in this region. As a result of the hydraulic analysis, it has been determined that openings equivalent to 4 contiguous 3.0 m x 3.0 m box culverts are necessary at the railway-river crossing points. As a countermeasure for flood disasters, it is recommended that a rerouting line with the required FL height to provide the required box culverts be built alongside the existing line (refer to Appendix Y).

10.2 Preliminary Construction Plan

10.2.1 Location of Project

The location of the Project and the target structures are shown in Appendix-S. The current conditions for distribution of the structures are shown in Figure 10.66. The structural measures for the Feasibility Study consist of following working items:

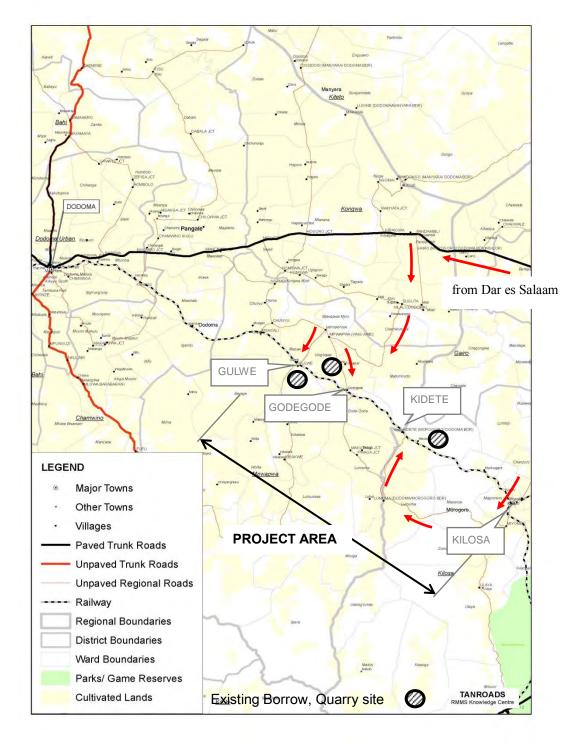
- a. Flood protection measures for railway and related facilities
- b. Track rehabilitation works
- c. Relocation of stations and related facilities
- d. Flood protection works at tributary

This chapter describes the preliminary construction plan for the Project. The main target area for "a", b", and "c" stretches from Kilosa (Km 283) to Gulwe (Km 366). The target area for "d", which involves the control of sediment discharge, is located at the three tributaries of the Maswala, Kidibo, and Mzase.

10.2.2 Construction of Structure

Main work items comprise of the proposed Project are shown in Table 10.72 and Table 10.73.

s) 25,000 m
s) 25,000 m
15,100 m
25,000 m
15,000 m
48,800 m
1. LS.
2,000 m
640 m


Table 10.72: Major Work Items

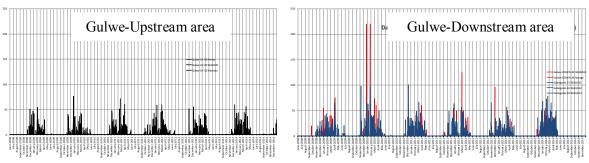
Source: JICA sturdy team

		a. Flood Pro railw			tisting tra litation w		ation of station	d. Flood P at tribu		
		a-1	a-2	b-1	b-1 b-2		atio sta	d-1	d-2	Total
Major Work it	ems	Railway route construction work	Bank protection for main stream	Installation of track	Renewal of rail	Refurbish ment of rails section	c. Relocation Gulwe statio	Maswala	Mzase	(Approx.)
Excavation	m ³	368,000	67,000	_	_	—		332,000	22,000	789,000
Embankment	m ³	431,000	124,000			_		13,000	20,000	588,000
Concrete	m ³	Culvert 65set	2,000	_	_	_		17,800	2,100	_
Steel Sheet Pile	m	—	91,250			_		14,800	4,800	110,850
Protection work	m ³	135,000	102,000	_	-	—		29,000	8,100	274,1000
80lb/yd rail	ton	—	_	2,180	1,250	80		_	_	3,510
Track works	m	—	—	25,000	15,000	48,800		_	_	88,800
Gulwe station m ²		_	_	_	_	—	990	_	_	990

Table 10.73: Quantity of Major Work

Source: JICA sturdy team

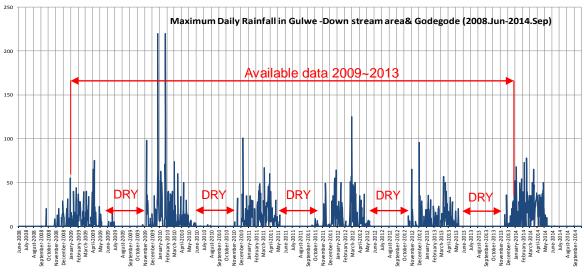
Source: JICA Study Team


Figure 10.66: Road Network around Kilosa-Dodoma Railway Section

10.2.3 Conditions Affecting Construction Plan

(1) Climate Condition

The daily rainfall observation data near the project site from Jun. 2008 to Sep. 2014 is available for estimation of workable days for construction of the project. The characteristic of daily rainfall data are as follows:


- The rainy season from November to April and the dry season from May to October (Figure 10.67).
- However, the rainfall amount in the Gulwe-Upstream area is less than that of Gulwe-Downstream area, which is nearby the construction site.
- Therefore, the Gulwe-Downstream data shall be applied for the workable days study.

Source: JICA Study Team

Figure 10.67: Comparison of Rainfall Gauging Stations between Gulwe-Upstream and Gulwe-Downstream

- The Gulwe-Downstream area has five rain gauging stations. These statiosn are close to Gulwe and Godegode railway stations.
- Considering the recent tendency of heavy rainfall and erring on the safe side for construction planning, it is recommended that the maximum railfall among the five stations shall be applied for the workable days study (Figure 10.68).

Source: JICA Study Team

Figure 10.68: Maximum Daily Rainfall in Gulwe-Downstream Area

Hence, in the construction plan, the wet season and the dry season are considered as follows:

Wet Season:from November to AprilDry Season:from May to October

(2) Workable Days

The issues for estimation of workable day are as follows:

- General number of working days per week
- National holidays
- Rainy days
- Work item

(1) General working days in week

Generally, the working days in a week are from Monday to Saturday in the Tanzania. Hence, the general number of working days per week is six (6).

(2) National holidays

The list of the national holiday, based on 2015, is as in Table 10.74. The number of the national holidays in 2015 was 16 days.

No.	Holiday	Date
1	New Year's Day	January 01
2	Prophets Birthday (Maulid Day)	January 03
3	Zanzibar Revolution Day	January 12
4	Good Friday	April 03
5	Easter Monday	April 06
6	Sheikh Abeid Aman Karume (Karume Day)	April 07
7	Union Day	April 26
8	Workers Day	May 01
9	Sabasaba	July 07
10	Eid UI Fitr	July 18
11	Nane Nane (Famer's Day)	August 08
12	Eid AI Adha	September 23
13	Nyerere Day	October 14
14	Republic Day (Independence Day)	December 09
15	Christmas Day	December 25
16	Boxing Day	December 26

Table 10.74: List of National Holiday in 2015

Source: http://www.egov.go.tz/home/pages/22

(3) Rainy Days and Estimated Work Suspension Days due to Rainfall

Table 10.75 shows the number of rainy days that has classified 8 ranges of precipitation per day observed at maximum railfall among Ibwaga and other four stations at Gulwe downstream area. from 2009 to 2013. It is assumed that all of the work items can be performed if the rainfall is less than ten millimeters (10 mm). If the rainfall is equal to or more than ten millimeters (10 mm), earth-related works such as excavation, embankment, backfill, topsoil furnishing, and road work are to be suspended until the next day.

If the rainfall is equal to or more than 20 mm, concrete-related works such as form, reinforcing bar, placing concrete, and masonry are to be suspended until the next day.

Rainfall	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
0mm	13.0	11.4	12.6	9.6	25.0	29.0	30.6	31.0	29.6	28.2	23.4	12.4	255.8
0 <p<2mm< td=""><td>0.8</td><td>1.4</td><td>0.6</td><td>2.4</td><td>1.0</td><td>0.2</td><td>0.2</td><td>0.0</td><td>0.4</td><td>1.4</td><td>0.6</td><td>1.4</td><td>10.4</td></p<2mm<>	0.8	1.4	0.6	2.4	1.0	0.2	0.2	0.0	0.4	1.4	0.6	1.4	10.4
$2 \leq p < 5mm$	1.2	2.0	2.6	4.8	2.4	0.2	0.2	0.0	0.0	0.6	1.2	3.0	18.2
$5 \leq p < 10 mm$	3.4	2.2	3.2	3.2	1.8	0.4	0.0	0.0	0.0	0.6	1.4	3.6	19.8
10≦p<20mm	6.6	5.0	4.8	5.6	0.6	0.0	0.0	0.0	0.0	0.2	0.6	3.0	26.4
20≦p<30mm	2.4	2.2	3.4	2.0	0.2	0.2	0.0	0.0	0.0	0.0	0.8	3.2	14.4
30≦p<50mm	2.2	3.6	2.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	1.6	2.6	13.8
over 50mm	1.4	0.4	1.8	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.4	1.8	6.4
Total	31.0	28.2	31.0	30.0	31.0	30.0	31.0	31.0	30.0	31.0	30.0	31.0	365.2

Table 10.75: Number of Rainy Days (Average 2009~2013)

Source: JICA Study Team

The estimated work suspension days due to rainfall is shown in Table 10.76 for earthwork and related works. Table 10.77 shows the suspension days of concrete and masonry works.

Table 10.76: Estimated Work Suspension Days due to Rainfall
(Earth and Related Works)

Criteria (Sus.d	ays)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
0mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 <p<2mm< td=""><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></p<2mm<>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2≦p<5mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5≦p<10mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10≦p<20mm	1.0	6.6	5.0	4.8	5.6	0.6	0.0	0.0	0.0	0.0	0.2	0.6	3.0	26.4
20≦p<30mm	1.0	2.4	2.2	3.4	2.0	0.2	0.2	0.0	0.0	0.0	0.0	0.8	3.2	14.4
30≦p<50mm	1.0	2.2	3.6	2.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	1.6	2.6	13.8
over 50mm	1.0	1.4	0.4	1.8	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.4	1.8	6.4
Total		12.6	11.2	12.0	10.0	0.8	0.2	0.0	0.0	0.0	0.2	3.4	10.6	61.0

Source: JICA Study Team

Table 10.77: Estimated Work Suspension Days due to Rainfall (Concrete and Related Works)

				•						'				
Criteria (Sus.d	ays)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
0mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 <p<2mm< td=""><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></p<2mm<>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2≦p<5mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5≦p<10mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10≦p<20mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20≦p<30mm	1.0	2.4	2.2	3.4	2.0	0.2	0.2	0.0	0.0	0.0	0.0	0.8	3.2	14.4
30≦p<50mm	1.0	2.2	3.6	2.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	1.6	2.6	13.8
over 50mm	1.0	1.4	0.4	1.8	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.4	1.8	6.4
Total		6.0	6.2	7.2	4.4	0.2	0.2	0.0	0.0	0.0	0.0	2.8	7.6	34.6
Company IICA	C4 1	T												

Source: JICA Study Team

The suspension days due to rainfall are summarized as follows:

• Earth and related works:

Number of the rainy days with 10 mm or more precipitation: 61.0 days Percentage of the year: 61.0 / 365 = 17%

67

18%

Concrete work and related work: • Number of the rainy days with 20 mm or more precipitation: 34.6 days Percentage of the year: 34.6 / 365 = 9%

(4) Workable Day for Each Work Item

The workable days for each work item in Table 10.79 and Table 10.80 are calculated by the following relative equations:

Rate of holidays (c = b/a):

Number of holidays and Sundays (b) / Number of calendar days (a)

- Overlapping work suspension days due to rainfall with holidays (e= d x c): Work suspension days due to rainfall (d) x Rate of holidays (c)
- Net work suspension days due to rainfall except for holidays (f= d e):
 - Work suspension days due to rainfall (d) Overlapping work suspension days due to rainfall with holidays(e)
 - Number of calendar days (a) Number of holidays and Sundays (b) Net work
 - suspension days due to rainfall except for holidays (f)
- Workable days (g = a b f):

23%

14%

16%

23%

				lable	; 10.70	. Null			filuai	Days	111 201	5 (011	n. uaj	y3)		
]	No.	Descrip	tion	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
C	aler	ıder day	vs													
	a.	Number	ofcal	endar d	ays in 2	015										
				31	28	31	30	31	30	31	31	30	31	30	31	365
	b.	Number	ofho	lidays a	nd Sund	lays in 2	2015 (*1)								
				7	4	5	7	6	4	6	6	5	5	5	7	67
	c.	Rate of h	nolida	ys (=b.	/a.)											

Table 10 78: Number of Calendar Days in 2015 (Unit: days)

Table 10.79: Estimated Workable Days for Earth and Related Works

13%

19%

19%

17%

16%

17%

23%

19%

1	No.	Description	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
	d.	Work suspens	sion day	s due to	o rainfal	l (*2)									
			12.6	11.2	12.0	10.0	0.8	0.2	0.0	0.0	0.0	0.2	3.4	10.6	61.0
	e.	Overlapping v	vork sus	pensior	n days d	ue to ra	infall wi	th holid	ays (= d	. x c.)					
			2.8	1.6	1.9	2.3	0.2	0.0	0.0	0.0	0.0	0.0	0.6	2.4	11.9
	f.	Net work susp	pension	days du	ie to rair	nfall exc	ept for l	nolidays	(= d e	e.)					
			9.8	9.6	10.1	7.7	0.6	0.2	0.0	0.0	0.0	0.2	2.8	8.2	49.1
	g.	Workable day	rs (= a	bf.), a	nd the r	ounded	off								
			14.2	14.4	15.9	15.3	24.4	25.8	25.0	25.0	25.0	25.8	22.2	15.8	248.9
			14	14	16	15	24	26	25	25	25	26	22	16	248

No.	Descript	ion	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
d.	Work sus	spens	ion day	s due to	o rainfal	l (*2)									
			6.0	6.2	7.2	4.4	0.2	0.2	0.0	0.0	0.0	0.0	2.8	7.6	34.6
e.	Overlapp	ing w	ork sus	pensior	n days d	ue to ra	in fall wi	th holid	ays (= d	l. x c.)					
			1.4	0.9	1.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.7	6.7
f.	Net work	susp	ension	days du	e to rai	nfall exc	ept for h	olidays	(= d e	e.)					
			4.6	5.3	6.0	3.4	0.2	0.2	0.0	0.0	0.0	0.0	2.3	5.9	27.9
g.	Workable	e days	s (= a	bf.), a	nd the r	ounded	off								
			19.4	18.7	20.0	19.6	24.8	25.8	25.0	25.0	25.0	26.0	22.7	18.1	270.1
			19	19	20	20	25	26	25	25	25	26	23	18	271

Source: JICA Study Team

Note: (*1): The number of days is counted in the calendar 2015.

The overlapping days of holiday and Sunday are already deducted.

(*2): The days are counted based on the precipitation records of Gulwe and Godegode, using the five

observation stations from a period of 5 years (2009-2013) (see

Table 10.79 and Table 10.80).

The estimated workable days, considering Sundays, national holiday, and rainy days are summarized as follows:

Earth works:

Structural excavation, embankment, backfill, roadwork, and related works

248 days in a year = 20.7 days in one month

Coefficient of non-working days 365/248=1.47

Concrete works:

Masonry, revetment, and related works

271 days in a year = 22.6 days in one month Coefficient of non-working day 365/271=1.35

(5) Working Hours

Considering the custom of working hours in Tanzania, the working hour in a day is set at eight (8) hours.

(6) Access Road

The project site is located around 50 km south of major road between Dar es Salaam and Dodoma. The bifurcated unpaved regional road (4-6 m width) connects Kilosa, Kidete, Godegode, and Gulwe Stations. Kidete Station is located in the middle of the construction site. Those roads are available for transportation of construction machinery, equipment, and materials (Figure 10.66).

Since most of the construction areas do not have roads along the mainstream, the main access roads along the mainstream from station to station, branch roads connecting to construction sites, and branch roads connecting from construction sites to tributaries are required. The access road shall be constructed from Kilosa, Kidete, Godegode, and Gulwe Stations, which are designed to be passing though the construction site along the mainstream.

The total length of access rod along rerouting railway section and river protection section is estimated around 100.1km. The typical section is shown in the following figure.

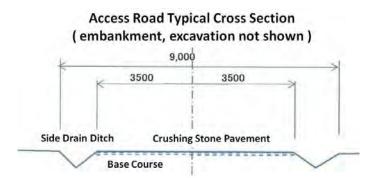


Figure 10.69: Access Road Typical Section

As of May 2016, there has been no discussion among the relevant stakeholders on how to use access (temporary) roads after completion of the Project. While a temporary road within ROW may be used for maintaining the railway and river structures, it may not be opened for the public because of safety issues.⁴ In fact, none of the temporary roads have been opened to the public after project completion. As to the access (temporary) road outside ROW, RAHCO has no right to determine its usage due to non mandate on those roads.

(7) Borrow Area, Quarry Site and Disposal Area

Existing deposit of quarries, such as at Km 314 (L), Km 356, and Km 361-Km 362 (L) will be potential borrow areas. Those are shown in the following pictures.

Figure 10.70: Left: Confluence with Kidivo, Right: Km314 Quarry

Figure 10.71: Transportation of Crushed Stone from Borrow Pit at Km 361 to Construction Site at Km 315

⁴ RAHCO has carried out the maintenance work by means of a railway.

However, the exact candidates of the borrow area(s) for the Project will be selected before construction. Riverbed sands may be also used for the fine aggregate of concrete and/or embankment materials after assuring their quality.

Materials for embankment shall have cohesion for imperviousness, shear strength, and workability. In order to obtain such materials, quality control of the material is important. Before the commencement of construction, laboratory test shall be done for approval of the material from the borrow areas though investigation of soil properties such as water contents, particle size analysis, plasticity indexes, etc. During the construction, visual inspection is recommended in order to remove undesired obstacles, and water content should be frequently checked and well controlled for smooth compaction.

Possible disposal areas have been selected as reference points near by the current study. Considering the soil conditions in construction areas, water content control will be required at the disposal area for smooth compaction. Disposal areas shall be defined by RAHCO before the commencement of construction.

According to the earthwork volume from this Study, the volume of borrow area, quarry site, and disposal area is estimated as per the following table. However, these volumes shall be confirmed before construction, following the results of investigations for the above areas during the detailed design stage.

- Borrow area $50 \times 1000 \text{ m}^3$
- Disposal area 90 x 1000 m³, 110 x 1000 m³
- Quarry site $350 \times 1000 \text{ m}^3$

Table 10.81: Estimated I	Earthwork Volume
--------------------------	------------------

		PAC	KAGE-1	PACK	KAGE-2	PA	PACKAGE-3		otal
Description		Rail=Sec.1+2		Rail=Sec.3+5+7		Rail=Sec.8+9			
		River=Sec.1-	+28	River=Sec.9	+15	River=Sec.1	6+Maswara+Mzase		
Earth Work (m3)		Excavation	Embankment	Excavation	Embankment	Excavation	Embankment	Excavation	Embankment
Rail works		191,000	169,000	168,000	64,000	9,000	189,000	368,000	422,000
River works		26,000	52,000	40,000	70,000	310,000	34,000	376,000	156,000
Package total		217,000	221,000	208,000	134,000	319,000	223,000	744,000	578,000
Package total balance		Embankmen	t > Excavation	Embankmen	t < Excavation	Embankmen	t < Excavation		
Required Spoil bank Volume=(Ex-Em/0.9) x 1.5		-43,000		89,000		107,000			
Soil conversion factor (compaceted soil 0.9)		n3 (Borrow pit)		m3 (Spoil bank)		m3 (Spoil bank)			
Gabion, Access road, Slope protec	tion,	Loosed rock	Natural ground (m3	Loosed rock	Natural ground (Loosed rock	Natural ground (m3)*	Stone	
Rail ballast, etc.m3)	Rail works	-	71,000	-	60,000	-	103,000	234,000	
	River works	43,000	29,000	58,000	39,000	40,000	27,000	95,000	
Natural=Loosed / 1.5 : Soil conversion factor	Package total		100,000		99,000		130,000	329,000	
Required volume concidering Tra.+M anu.losses	Loss 20%		120,000		119,000		156,000		
Aggregate for concrete (m3)		Concrete (m3)	Aggregate (m3)	Concrete (m3)	Aggregate (m3)	Concrete (m3)	Aggregate (m3)	Aggregate	
Aggregate volume=0.7m3 / 1m3 concrete	Rail works	-	2,500	-	2,100	-	3,700	8,300	
70% of concrete vol.	River works	793	600	1,393	1,000	11,718	8,200	9,800	
	Package total		3,100		3,100		11,900	18,100	
Required volume concidering Tra.+M anu.losses	Loss 20%		3,700		3,700		14,300		

Source: JICA Study Team

(8) Labor

All necessary laborers can be found in Dar es Salaam, its surrounding areas, and villages surrounding the Project area.

(9) Equipment and Materials

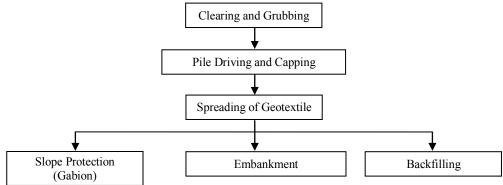
All necessary construction equipment and materials can be purchased in Dar es Salaam and its surrounding areas, or other regions in Tanzania. However, sheet pile, crawler cranes, and mounting vibration hammers are not produced in Tanzania. Hence, those materials and construction equipment will be procured and transported from Japan or another country.

10.2.4 Construction Method

(1) General

Most of the flood protection measures for rail and river structures include earthwork and concrete work. Considering the local market in Kilosa-Gulwe and its surrounding areas, ready-mixed concrete is not assumed for the construction method and cost estimation. Instead, procurement of concrete plant, or hand-mixing of concrete is considered for construction.

The effect of rainfall is already considered in the workable days calculation. However, detailed effects of the sequence of works, including river diversion works reflected by the dry and rainy season, shall be considered in the detailed design stage.


(2) Riverbank Protection for Main Stream

Structures for riverbank protection consists of slope protection by gabion with filter clothes, embankment, backfilling, concrete capping, and steel sheet piles for leakage failure and foot scouring measures. The standard cross-section of riverbank protection is presented in Figure 10.72.

Figure 10.72: Standard Cross-Section of Riverbank Protection

Flow of construction of the riverbank protection is shown in Figure 10.73.

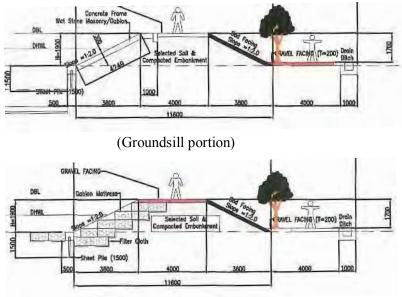
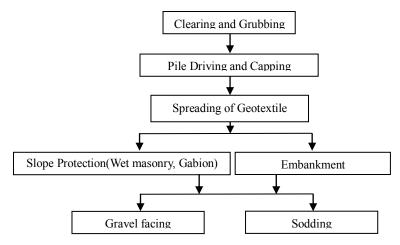

Source: JICA Study Team

Figure 10.73: Construction Flow of Riverbank Protection

(3) Training Works for Tributary

1) Dike (Maswala, Mzase)


There are two types of dikes: the first one has wet masonry slope protection at groundsill portion. and the other has gabion slope protection. These have steel sheet piles for scouring measures. Dike body consists selected compacted soil, and gravel facing. Standard cross-sections for those dikes are shown in Figure 10.74.

Source: JICA Study Team

Figure 10.74: Standard Cross-Section of Dike

Flow of construction of the dike is shown in Figure 10.75.

Source: JICA Study Team

Figure 10.75: Construction Flow of Dike

2) Groundsill (Maswala, Mzase)

The nine groundsills of 90 m width are provided in the Maswala River, and five of 40 m width in the Mzase River. The groundsills consist of a main body and apron by gabion mattress.

Standard cross-sections for those dikes are shown in Figure 10.76. The flow of construction of the groundsill is shown in Figure 10.77.

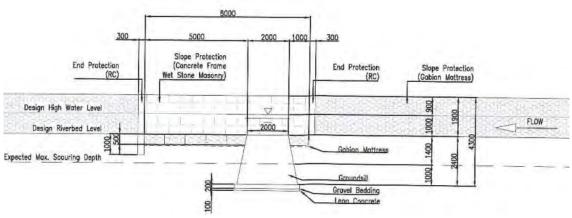


Figure 10.76: Standard Cross-Section of Groundsill

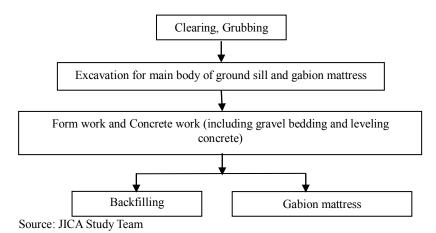


Figure 10.77: Construction Flow of Groundsill

3) Check dam (Maswala)

The check dam is provided at the downstream end of the Maswala river training works. The check dam consists of a concrete body, apron, and transition structures. The standard cross-section for check dam is shown in Figure 10.78. The flow of construction of the check dam is shown in Figure 10.79.

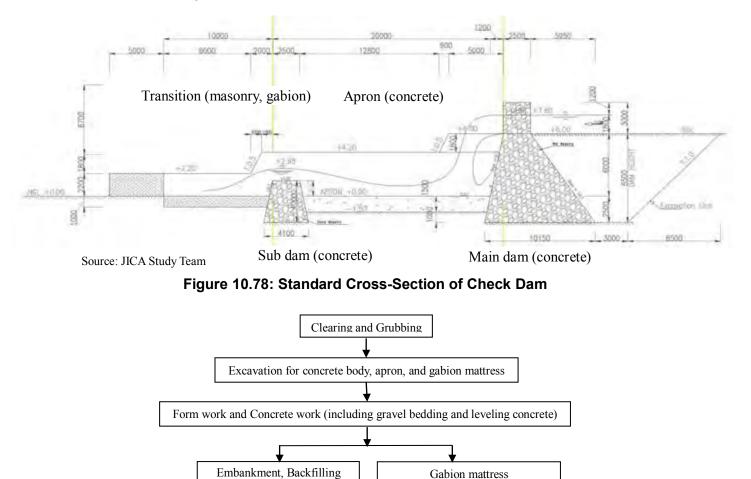


Figure 10.79: Construction Flow of Check Dam

(4) Rerouting of Railway

- 1) Railway Embankments
- i) Track bed

The track bed consists of the layers of ballast and sub-ballast above a prepared subgrade/formation (see Figure 10.83). It is designed primarily to reduce the stress on the subgrade.

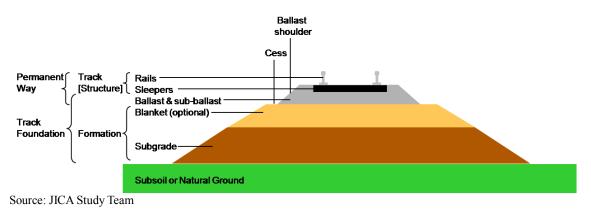
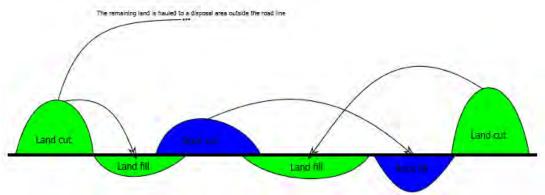


Figure 10.80: Section of Railway Track and Foundation

ii) Railway Embankments


The railway embankment is normally a large structure, the construction of which always involves moving vast amounts of good-quality soil. Therefore, the planning of the railway consists of excavating earth of equal quantity as the embankment requirements necessitate.

• Materials

Embankments are often constructed using materials obtained from a cutting procedure. Embankments need to be constructed using non-aerated, waterproofed, and compacted (or entirely non-porous) material to provide adequate support to the formation and a long-term level surface with stability.

• Cut and fill

In earthmoving, cut and fill is the process of constructing the railway whereby the amount of material from cuts roughly matches the amount of fill needed to make nearby embankments, so minimizing the amount of construction works.

Source: JICA Study Team

Figure 10.81: The Balance of Cut and Fill

For the fill material, it is necessary to check the material and compaction characteristics of the soil at the site, and if it is inadequate, to source it from a separate soil field.

10.2.5 Productivity for Major Works

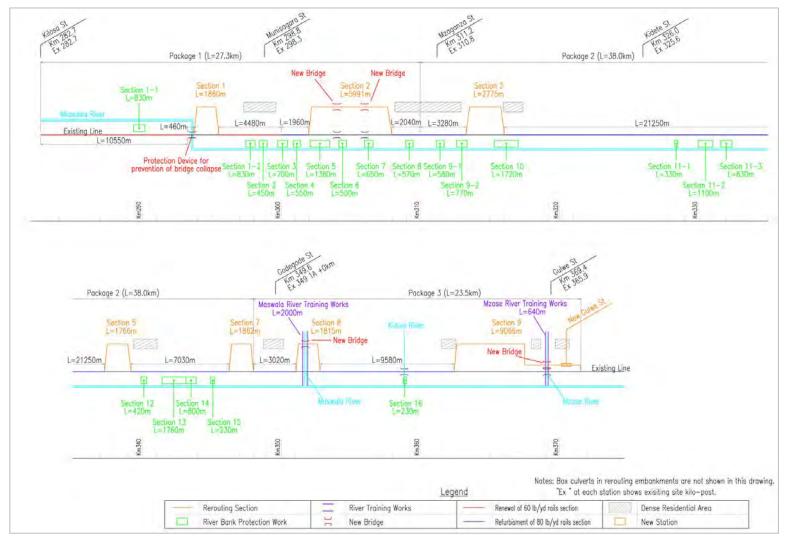
Table 10.82 shows the relationship between construction equipment for major work items and their associated productivities.

Work Item	Equipment, Manpower	Productivity	Remarks
Excavation	Dump Truck (4 ton) Backhoe (0.8 m ³)	60 m ³ /day/party	Productivity is calculated based on the Standard Cost Estimation for
			Civil Works in Japan
Embankment	Motorized Road Grader	270 m ³ /hr./party	-do-
	Vibratory Roller (12 MT)		
	(Dump Truck (10 t)		
Gabion works	One party consists of:	One party:	-do-
	Backhoe (0.6 m^3) -1 set	300 m ³ Gabion	
	Forman-1	/month	
	Skilled labor -2		
	Unskilled labor-5		
Steel Sheet Pile	Crawler Crane (50 t)	One party:	-do-
(Driving)	Vibratory Hammer (60 kW)	480 m ² sheet	
	Sheet pile 0.4W, 6.0L	pile/month	
Cutting works	Dump Truck (10 t)	41 m ³ /day/party	-do-
	Backhoe (1.0 m^3) &		
	Hydraulic breaker		
Railway	Dump Truck (10 t)	360 m ³ /day/	-do
Embankment	Bulldozer (10 t)	party	
	Motorized Road Grader (3.7 m)		
	Backhoe (1.0 m^3)		
	Vibratory Roller (12 MT)		
Slope protection	One party consists of:	One party:	-do-
work	Track crane (25 t) -1 set	48 m ² /day/	
	Forman-3	month	
	Skilled labor -4		
	Unskilled labor-10		

Table 10.82: Productivity for Major Work Item

Source: JICA Study Team

10.2.6 Location of Construction Works


Table 10.83 shows the location of rerouting railway, riverbank protection, and access road. The construction zone is to be separated into five zones considering the quantities of construction works, construction schedule, and associated costs. The track installation/rehabilitation work is shown in Table 10.84. The layout plan and location of above construction works are indicated in Figure 10.82 and Table 10.85 respectively.

	CONSTR	Sheet No. Description		Length (km)					gth (km)	er bank protection				
ACKAGE	UCTION				Railway		Acces	s road		Railway			River	
	ZONE			From	То	Existing	New constructi on	Improve ment of existing	No	Re-route	km	No	Bank protection	kn
		1 Kilosa B.P(km	283.5 C.E.R)	283.5	285.0	1.5							_	
		2		285.0	288.0	3.0								
		3		288.0	291.0	3.0	1.6					1-1	289.38-290.20	0.8
		4 No.1 SP293.8	Bridge ≒80m is reqiued	291.0	295.0	4.0	4.0							
	1	5 No.1 EP295.5		295.0	298.5	3.5	3.6		1	293.8~295.5	1.7	1-2	297.45-298.11	0.1
		6 No.2 SP302		298.5	299.0	0.5	0.5					2	298.42-298.99	0.4
		6 No.2 SP 302		299.0	300.0	1.0	1.0					3	299.75-300.45	0.
1		6 No.2 SP302		300.0	301.0	1.0	1.0					4	300.88-301.38	0.
		6 No.2 SP 302		301.0	302.0	1.0	1.0						300.00 301.50	0
		7 No.2 SP 302		302.0	303.0	1.0	3.9		2	302.0		5	302.08-303.48	1.
		7 No.2 SP 302		303.0	304.0	1.0	1.0		-			5	302.08-303.48	1
	2	7 No.2 SP 302 7 No.2 SP 302		303.0	304.0	1.0	1.0					6	304.14-304.67	0.5
		0 110.2 SF 502		304.0	305.0	1.0	1.0					7	305.96-306.6	0.
		0 No 2 EB207 0								207.0	5.0		-	
		9 No.2 EP307.9		306.0	309.0	3.0	3.1			307.9	5.9	8	308.96-309.48	0.
		10 MZAGANZA		309.0	312.7	3.7	3.7			212.2	2.5	9-1	311.15-311.71	0.
		11 No.3 SP313.3		312.7	317.0	4.3	4.5		3	313.3~316.0	2.7	9-2	312.6-313.37	0.
			ASI (Conecting to existing roa			0.0	0.8					10	315.32-317.04	1.
	3	12		317.0	321.35	4.4	4.3							
			xisting road (km 318.9 C.E.R)			0.0	0.4							
		13 Kidete (km 32	5.8 C.E.R)	321.35	325.8	4.4		5.0	Bridg	ge ≒50m is req	uired			
		14		325.8	326.46	0.7	0.7							
		14		326.46	328.4	1.9		2.0				11-1	328.29-328.52	0.
2		15		328.4	331.8	3.4	3.2					11-2	329.98-331.03	1.
		16		331.8	335.0	3.2	3.1					11-3	331.62-332.40	0.
		17		335.00	336.4	1.4		1.4						
		17		336.4	337.1	0.7	0.7							
	4	17		337.10	339.0	1.9		1.9	5	337.3~339.2	1.9			
		18		339.0	340.7	1.7	1.7					12	339.92-340.32	0.4
		18		340.70	342.0	1.3		1.3				13	341.43-343.20	1.1
		19		342.00	345.0	3.0		3.0				14	343.20-343.88	0.
		20 Godegode (km	349 1C E R)	345.00	349.1	4.1		4.1	7	346.2~348.0	1.8	15	344.92-345.23	0.
		21 Maswala (km3		349.10	351.6	2.5		2.9	8	351.0				
		21 New construct		351.60	353.0	1.4		1.8	Ŭ	352.8	1.8			
			353.0km (Bridge ≒80m is req		555.0					352.0	1.0			
			for Maswala river measures	aneu)			2.3						MASWALA	
		21 Access 10au 22	ior wras wata river measures	353.00	355.0	2.0	2.3	2.0					check dam includin	~
		22 23 Kidebo		355.00	356.1	2.0		1.1						g
							0.2	1.1					(2000m)	
		23 Kidebo		356.1	356.35	0.25	0.3					16	250 76 250 88	0
3	5	23 Kidebo		356.35	359.0	2.6		2.6				16	358.76-358.98	0.1
		24 Kidebo		359.00	363.0	4.0		4.0	9	362.4				
		25		363.00	367.0	4.0		4.0						
		26 Mzase		367.00	368.9	1.9		1.9						
		26 Mzase (km36		368.9	369.75	0.9						1	MZASE	
		26 New construct											(640m)	
		at right bank M	Izase river (Submerged Bridge				0.5	1.0				1		
		26 Mzase		369.75	371.4	1.6	1.6			371.6	9.2			
		26 Access road	for Mzase river measures				0.6							
ote ;				Sub total		87.9	50.9	40.1						
	ecting to exis	ting road				Access R	oad tota	l (km)	Re-r	outing railway		Bank p	rotection	
isting rail p	oint in km						91.0				25.0			15.

Table 10.83: Construction Zones

Package-4 : Renewal of 60lb/yd rais by 80lb/yd (15km) and Refurbish of ballast & track rectification (48.8km) not shown
Source: JICA Study Team

Work Items	Package 1	Package 2	Package 3	Total
Railway rerouting construction works	7.8	6.4	11.0	25.2
Bank protection for main stream	6.34	8.54	0.23	15.11
Tributary River Training Work	-	-	2.64	2.64
Temporary road	25.5	40.1	34.5	100.1
Installation of track	7.8	6.4	11.0	25.2
Renewal of 60lb/yd rails by 80lb/yd rails	15.0	-	-	15.0
Refurbishment of 80lb/yd rails section	4.6	31.6	12.6	48.8
Relocation of Gulwe Station	-	-	1-lump	1-lump

Source: JICA Study Team

10-99

Figure 10.82: Layout Plan of Flood Protection Works and Track Rehabilitations of Alternative B-2

Table 10.85: Location of Flood Protection Works and Track Rehabilitation of **Alternative B-2**

1.	Retouting	Section

5. Box Culverts

Section	Start (km) ¹	End (km) ¹	Length (m)
1	293.71	295.52	1,860
2	301.96	307.96	5,991
3	313.28	316.05	2,775
5	337.30	339.21	1,766
7	346.24	348.00	1,862
8	351.02	352.82	1,815
9	362.41	371.56	9,066
Total	-	-	25,134
¹ New kilometerage	je.		

2. Renewal of 60 bl/yd rails section

Section	Start (km) ¹	End (km) ¹	Length (m)						
1	282.70	293.25	10,550						
2	295.52	300.00	4,480						
Total	-	-	15,030						
¹ New kilometerag	¹ New kilometerage.								

3. Refurbisment of 80 lb/yd railssection

Section	Start (km) ¹	End (km) ¹	Length (m)
1	293.25	293.71	460
2	300.00	301.96	1,960
3	307.96	310.00	2,040
4	310.00	313.28	3,280
5	316.05	337.30	21,250
6	339.21	346.24	7,030
7	348.00	351.02	3,020
8	352.82	362.41	9,580
Total	-	-	48,620
¹ New kilometerag	e.		

4. River Bank P	rotection Work		
Section	Start (km) ¹	End (km) ¹	Length (m)
1-1	289.38	290.20	830
1-2	297.45	298.11	830
2	298.42	298.99	450
3	299.75	300.45	700
4	300.88	301.38	550
5	302.08	303.48	1,380
6	304.14	304.67	500
7	305.96	306.60	650
8	308.96	309.48	570
9-1	311.15	311.71	580
9-2	312.60	313.37	770
10	315.32	317.04	1,720
11-1	328.29	328.52	330
11-2	329.98	331.03	1,100
11-3	331.62	332.40	830
12	339.92	340.32	420
13	341.43	343.14	1,760
14	343.14	343.88	800
15	344.92	345.23	230
16	358.77	359.00	230
Total	-	-	15,230

Totai ¹New kilometerage.

		Ground Elevation (rail	Height of		quired Nur		
1	No.	center)	Embankm't	1.0m*1.	1.5m*	2.0m*	3.0m
	-	(EL.m)	H (m)	0m	1.5m	2.0m	3.0m
1	R1-1	518.84	1.54	1	1	1	1
2	R1-2	520.19	1.03	2	1	1	1
3	R1-3	522.00	1.74	2	1	1	1
4	R1-4	522.30	3.60	1	1	1	1
5	R1-5	523.71	3.77	2	1	1	1
6	R1-6	523.44	2.69	26	8	4	2
7	R2-1	552.56	1.61	2	1	1	1
8	R2-2	555.58	1.32	2	1	1	1
9	R2-3	553.88	2.70	2	1	1	1
10	R2-4	553.59	6.79	18	6	3	1
11	R2-5	559.63	3.02	1	1	1	1
12	R2-6	559.35	2.62	1	1	1	1
12	R2-0	560.20	3.92				
10				-	1	1	-
13	R2-8	561.05	6.69	1			1
14	R2-9	565.04	6.30	10	3	2	1
15	R2-10	565.22	5.88	3	1	1	1
16	R2-11	570.76	2.70	1	1	1	1
-	R2-12	569.99	2.42	-	-	-	-
17	R2-13	572.14	1.63	1	1	1	1
18	R2-14	571.61	3.44	2	1	1	1
19	R2-15	572.29	3.16	1	1	1	1
20	R2-16	573.24	2.34	2	1	1	1
21	R2-17	575.25	-0.51	3	1	1	1
22	R3-1	603.68	-0.41	14	4	2	1
23	R3-2	602.12	7.15	22	7	3	1
24	R3-3	602.89	8.18	3	1	1	1
25	R3-4	614.73	-0.86	2	1	1	1
26	R3-5	610.92	5.55	1	1	1	1
27	R3-6	611.13	5.30	1	1	1	1
28	R3-7	614.43	-0.67	427	122	60	20
			2.03				
29	R5-1	694.32		1	1	1	1
30	R5-2	701.79	-0.24	133	38	19	7
31	R5-3	704.22	0.66	200	57	28	10
32	R5-4	701.54	1.66	1	1	1	1
33	R7-1	733.65	0.11	18	6	3	1
34	R7-2	737.48	4.28	90	26	13	5
35	R7-3	736.17	-0.50	56	16	8	3
36	R8-1	750.93	2.10	1	1	1	1
37	R8-2	754.41	1.82	1	1	1	1
38	R8-3	755.06	2.33	7	2	1	1
39	R8-4	756.86	1.45	1	1	1	1
40	R8-5	754.29	1.59	3	1	1	1
41	R9-1	770.88	1.66	1	1	1	1
42	R9-2	771.59	2.96	1	1	1	1
43	R9-3	774.55	1.60	1	1	1	1
44	R9-4	775.48	2.87	11	3	2	1
45	R9-5	776.37	2.58	3	1	1	1
46	R9-6	776.54	4.35	6	2	1	1
47	R9-7	776.54	3.39	28	8	4	2
48	R9-8	775.51	4.86	7	2	1	1
49	R9-9	779.64	2.17	28	8	4	2
50	R9-10	775.13	6.30	4	1	4	- 1
50	R9-10 R9-11	775.13	5.14	4	2	1	1
52	R9-11 R9-12	783.39	2.02	22	7	4	1
53	R9-13	781.29	4.52	2	1	1	1
54	R9-14	788.28	2.60	1	1	1	1
55	R9-15	788.67	4.44	3	1	1	1
56	R9-16	789.22	0.76	1	1	1	1
57	R9-17	782.26	3.82	18	6	3	1
58	R9-18	784.32	4.26	2	1	1	1
59	R9-19	784.63	4.84	33	10	5	2
60	R9-20	786.75	2.72	2	1	1	1
61	R9-21	785.33	3.83	2	1	1	1
62	R9-22	784.70	1.38	3	1	1	1
63	R9-23	783.28	2.80	7	2	1	1
64	R9-24	784.62	1.46	10	3	2	1
		104.02	1.40	10	9		

 Notes:
 3.35
 18
 3
 3
 1

 1) A total of 65 box culverts is planned in the rerouting sections, with an average interval of 380 m
 2) The exact location of box culverts will be determined in the detailed design in consideration of a condition of each site
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

3) Red colored values are chosen as recommendations.

10.2.7 Construction Schedule

Figure 10.83-Figure 10.87 show the construction schedule of temporary roads, railway rerouting, and riverbank protection for the five construction zones.

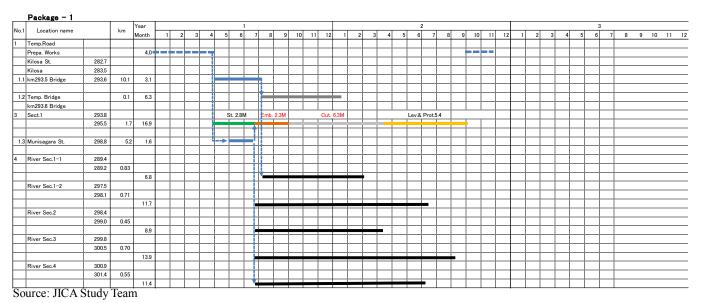
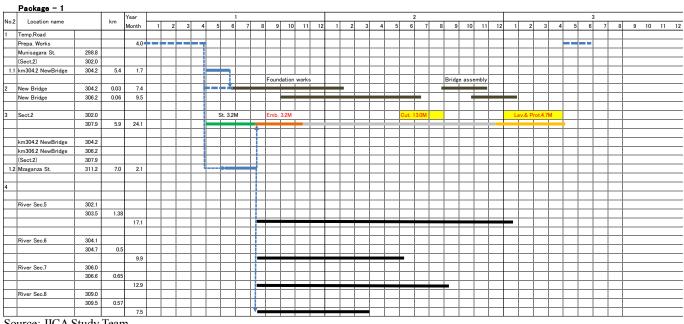



Figure 10.83: Construction Schedule Package 1 (Construction Zone 1)

lo.3	Location name		km	Year							1											2												3					
).3	Location name		KIII	Month	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11
	Temp.Road																																						
	Prepa. Works			4.0		-																										-							
	Mzaganza St.	311.2																																					
	(Sect.3)	313.3																																					
	(Sect.3)	316.0																																					
1.1		321.4	10.2	3.1								1																											
	ĺ											1																											
1.2	Temp. Bridge	316.0	0.02	1.1								1						-																					
	Temp. Bridge	325.3	0.10	6.3																														\rightarrow					
												1																						\rightarrow					
	Sect.3	313.3								St.	4.5M				Emb.	5.0M							Cut. 9	.1M				Lev.	& Prot	4.3			\neg	\rightarrow					
_		316.0	2.7	23.0			1					-																	-		-		\rightarrow	-		\rightarrow			
							1				<u> </u>																						\rightarrow	\rightarrow	\neg	\rightarrow			
1.3		321.4					1				<u> </u>	1								_			_										\rightarrow	-		\rightarrow			
_	Kidete St.	326.0	4.6	1.4						>=										_			_							-	-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
_							<u> </u>													_			_										\rightarrow	\rightarrow	\rightarrow	-			-
-	River Sec.9-1	311.2				-		-	-	-	-	-	-			-				_			_								-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			-
-		311.7	0.58			-		-	-	-	-	-	-			-				_			_								-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			-
		011.7	0.00	11.5		-		-	-	-	-									_			_								-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			-
	River Sec.9-2	312.6		11.5		-		-	-	-				_				_	_	_			-					_			-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
	River Sec.9-2	312.0	0.77			-		-	-	-		-					_			_			_					_			-	-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
		313.4	0.77	18.5		-		-	-	-										_			_									-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
				16.5		-		-	-	-			_					_	_	_			_									-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
	River Sec.10	315.3				-		-	-	-		-								_			_				-					-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
	River Sec.10	315.3	1.72			-					<u> </u>	-								_			_				_					-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
		317.0	1.72	18.5		-					<u> </u>					_																-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
				18.5		-					<u> </u>			_				_	_	_			_									-	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
						-		-	-	-	<u> </u>	-								_			_										\rightarrow	\rightarrow	\rightarrow	\rightarrow			
	River Sec.11-1	328.3				-		-	-	-	<u> </u>	-								_			_				_						\rightarrow	\rightarrow	\rightarrow	\rightarrow			
		328.5	0.33			<u> </u>	-								_			_				_					_	\rightarrow	\rightarrow	\rightarrow	\rightarrow								
				7.9		<u> </u>			_				_	_	_			_				_					_	\rightarrow	\rightarrow	\rightarrow	\rightarrow								
						<u> </u>									_			_				_					_	\rightarrow	\rightarrow	\rightarrow	\rightarrow								
	River Sec.11-2	330.0																											_		_		\rightarrow	\rightarrow	\rightarrow	\rightarrow			
		331.0	1.10																										_		_		\rightarrow	\rightarrow	\rightarrow	\rightarrow			
				15.5																							-						\rightarrow	\rightarrow	\rightarrow				
	River Sec.11-3	331.6																																					
		332.4	0.83																																				
				13.7								×											_								T								

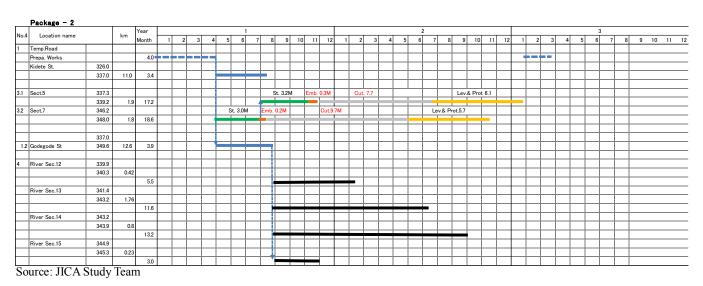


Figure 10.86: Construction Schedule Package 2 (Construction Zone 4)

				Year						1												2	2												3						4	ţ
No.5	Location name		km	Month	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	5 6	7 اذ	8	9	10	11	12	1	2
1	Temp.Road														Rainy	seas	son		Rainy	/ seas	on						Rainy	seas	ion		Rainy	/ sea:	son						Rainy	seas	on	
	Prepa. Works			4.0			-	-																																-		
	Godegode St	349.6						C	ritica	l path																								1	1	1						
	km351.7 NewBridge	351.7								T																								1	1	1						
1.1		361.0	11.4	3.5								•																						1	1	1						
																																		1	\square	-				_		
2.1	km351.7 NewBridge	351.7	0.09	14.3																														1	1	1						
	Foundation works																																	1						_		
P1	Temporary works			1.5								1															_							1	\square	-				_		
	Retaining walls & ex	cavation		1.5									P1	<u> </u>			P2						P3					P						1	\square	-				_		
	Piling works			1.0													1							_	÷.			P					-		1							
\rightarrow	Footing concrete			1.0								Н					Ý			Cu	ring			Curin	ø	Ť		-		Curir	19		ţ	-	Curi	ng						_
	Upper part concrete			1.2						-								1			_	- 1			<u> </u>		-			-				•								_
	Backfill & removal w			0.8				-	-			T												_					-					<u> </u>	-							
	Temporary works			1.5			-	-	+	-	-	t				-		1													-	-	<u> </u>	1	1	1	\vdash			-		
	Retaining walls & ex	cavation		1.5				-					A1											A2										1	1	1				_		
	Piling works			1.0		-	-	-	+	-	+		7.1			•										•							<u> </u>	1	+	1	\vdash					
	Footing concrete			1.0				-	-		-						t 🕇	_		_		Curin		_		_		Ý.	_	-	Curir	<u>لــــــــــــــــــــــــــــــــــــ</u>		+	+	-			Critic	al nat	th -	
	Upper part concrete			1.5					-		-												<u>~</u>	_		_				-i			-	+	+	-			Ondo	ai pac	<u> </u>	
	Backfill & removal w			1.0				-	-	-	-									_		_				-				- i	-			-	+	+				_		
	Bridge works			1.0			-	-	-		-	t			-			-		-	-			_						-	-	-		F	+	+	Shor	e fixin		_		
	Prepa. Works		(m)	3.0			-	-	-		-				-			<u> </u>		_		_		_							-	-	-	-	+	-	101106			_		
		A1-P1	21.00	2.0		-	-	-	-	-	-+							-						_						-			-	+	+	-				_		
		P1-P2	21.00	2.0		-		-	+	-	-+	H			-			-		-	-									-	-	-	-	+	+	+	H	\vdash		_		
	Bridge assembly	P2-P3	21.00	2.0			-	-	-		-	t			-			-		-				_						- *			-	-	+	-	+			_		
		P3-P4	21.00	2.0		-	-	-	-	-	-+	t						-				_		-									-		+	,				_		
	Bridge assembly	P4-A2	20.00	2.0		-	-	-	-+	-	\rightarrow				-			-		-	-			-					_	_	-	-	-		-					_		
	Dridge assertibly	14 /12	20.00	2.0			-	-	-		-							-						_						_			-	-	+					_		_
\vdash						-	-	-	-	-	-				-					-		_		-		-			_	-			-	-	+	-				_		
2.2	km369.4 NewBridge	369.4	0.06	11.4			-	-+																-							-	-			+	+	⊢	⊢⊣	\vdash	_		_
2.2	killada.4 Newbridge	305.4	0.00	11.4		-	-	-+	-7			Ŧ								-				_		-				_	-	-	-	+	+	+	\vdash		\vdash	_		
0.1	Sect.8	351.0				-	-	-		. 3.0M				Cut.	0.414			-		-		_	Lev.8	-	6.7	-				_	-	-	<u> </u>	-	+	+	\vdash	\vdash	\vdash	_		_
3.1	Secta	351.0	1.8	10.7		-	-		31.	. 3.0M	_			Gut			L						Lev.6	Prot	.5.7					_	-	-			+	+	⊢	⊢⊣	\vdash	_		_
2.2	Sect.9	362.4	1.0	10.7		-	-	-F	-		-	St 5.	1.64				4.2M			Cut.	2.014				Lev.&	Deed			_	_	-	-	-	+	+	+	\vdash		\vdash	_		
0.2	36019	371.6	9.2	11.2		-	-	-	-		-	51 0.	TM			Emb.	4.2 M			out.	3.0M			_	Lev.o	Frou	.0.3			_	-	-	<u> </u>	-	+	+	\vdash	\vdash	\vdash	_		_
\vdash		3/1.0	9.2	11.2		-	-	-	-F			÷	_		-	_	-	-						_						_	-	-	<u> </u>	+	+	+	\vdash	\vdash	\vdash	_		_
1.2	Gulwe St.	369.4					-	-+	+	\rightarrow	+	H	-	-	-	-	-	-					\vdash	_	\vdash		\vdash			_	-	-	+	+	+	+	⊢	\vdash	\vdash	-		_
1.2	GUIWE ST.	369.4	2.2	0.7	\vdash		-		⇒	\rightarrow	\rightarrow	H	-			-	-		\vdash				\square	_			\vdash			_	-	-			+		–	\vdash	\vdash	_		_
\vdash		3/1.6	2.2	0.7		\rightarrow	-	-	-	-	\rightarrow	+						-		-				_		-		-		_	-	-	+	+	+		⊢	\vdash	\vdash	-	-	
\vdash	Maswala Training Wo		2.0				\rightarrow			\rightarrow	+				<u> </u>			-						_						_	-	-	-	+	+		<u> </u> '	\vdash	\vdash	\rightarrow	$ \rightarrow $	
\vdash	waswala Training Wo	orks 90m	2.0	00.0	\vdash	\rightarrow	\rightarrow	+	-	\rightarrow	+	t						-															<u> </u>		+		–	\vdash	\vdash	\rightarrow		
\vdash	Maswala Check Dam	0.5	100	20.6	\vdash		\rightarrow	+	_	\rightarrow	+	E																					1-		+		–	\vdash	\vdash	\rightarrow		
\vdash	maswala Gheck Dam	1 ø.5m H,	122m L	12.1				+	_	\rightarrow	+	T:													\vdash		\vdash				-	-		+	+	+	+'	\vdash	\vdash	\rightarrow		_
\vdash		40		12.1	\vdash		-	+	-	\rightarrow	\rightarrow	+	*														\vdash			_	-	-		+	+		<u> </u> _'	\vdash	\vdash	\rightarrow		
\vdash	Mzase Training Work	ks 40m W	0.64	104	\vdash		-	+	-	\rightarrow	\rightarrow	÷	-			-	-						\vdash	_	\vdash		\vdash			_	-	-		+	+		<u> </u> _'	\vdash	\vdash	\rightarrow		
\vdash	Di 0 10			10.8	\vdash			+	-				-							-											-	-		+	+		<u> </u> _'	\vdash	\vdash			
\vdash	River Sec.16	358.8				\rightarrow	-	_	_	\rightarrow	\rightarrow	÷												_							-	-			+		\vdash	\vdash	\vdash	_		
\vdash		359.0	0.23	3.0			-	-	+	\rightarrow	\rightarrow	-					-	-						_			\vdash			_	-	-		+	+		<u> </u> _'	\vdash	\vdash	\rightarrow	$ \rightarrow $	
								1									1	1																								

Source: JICA Study Team

Figure 10.87: Construction Schedule Package 3 (Construction Zone 5)

10.3 Preliminary Cost Estimate

10.3.1 Basic Condition of Cost Estimate

(1) Price Level

The cost estimate was conducted using the price levels as of April 2016.

(2) Exchange Rate

The exchange rates are set forth as follows:

TZS1 = 0.0516JPY US\$1 = 2,189.67TZS US\$1 = 113.1JPY

1)

(3) Currency for Cost Estimates

The Project cost components shall consist of local currency (TZS) and foreign currency (JPY) portions. The classifications of local and foreign currency portions are as follows:

Local Currency Portion All labor costs A part of cost for construction materials A part of cost for equipment lease Value Added Tax (VAT) Import Tax

2) Foreign Currency Portion

A part of cost of construction materials that require international quality A part of cost for equipment lease and services that require international quality

10.3.2 Methodology of Cost Estimate

Costs for construction works are essentially estimated on the unit price basis. The unit prices include various costs as described below:

(1) Construction Cost

The construction cost consists of labor, material, and equipment cost. These costs are shown in following tables as reference. And additional ten percent (10%) of the estimated direct cost will be added as mobilization and demobilization cost in this Project.

1) Labor Cost

Labor rates are shown in Table 10.86.

Des	cription	Unit	Local Currency TZS/day
1.	Foreman	man/day	64,000
2.	Skilled labor	man/day	34,000
3.	Unskilled labor	man/day	25,000
4.	Carpenter	man/day	32,000
5.	Rigger	man/day	34,000
6.	Mason	man/day	34,000
7.	Plasterer	man/day	34,000
8.	Electrician, Mechanic	man/day	43,000
9.	Pipe fitter	man/day	34,000
10.	Painter	man/day	34,000
11.	Operator (Dump, Heavy equipment)	man/day	42,000
12.	Welder	man/day	34,000

Table 10.86: Labor Costs

Notes on salary:

1) Basic consideration: Tanzania Ministry of Labor and Employment, "New Minimum Wages for Private Sectors 2013-" +Allowance (40% of minimum wage on construction services sector)

2) Condition of minimum wage: 1 day=9.0 hr (including 1.0 hr overtime), 1 week=6 days working day, and 1 month=26 days working day

3) Various allowance for social insurance, retirement, and taxes are included in "salary"

4) Overtime = weekdays multiplier by normal rate is 1.5, Overtime=weekends multiplier by normal rate is 2.0 Source: JICA Study Team

2) Material Cost

The costs of construction materials and supplies are shown in Table 10.87.

Material	Description	Unit	US\$	TZS	JPY
Cement	42.5 N/mm^2	ton	142.00	309,560	17,296
Sand	0-5 mm	m ³	17.00	37,060	2,071
Crushed stone	5-20 mm	m ³	54.00	117,720	6,577
Gravel	2-20 mm	m ³	54.00	117,720	6,577
Admixture	AE (200lit/drum)	drum	600.00	1,308,000	73,080
Ready mixed concrete	18N/mm ²	m ³	137.09	298,856	16,698
Ready mixed concrete	24N/mm ³	m ³	154.78	337,420	18,852
Hot mix asphalt concrete	AC20	ton	133.84	291,771	16,302
Hot mix asphalt concrete	AC14	ton	133.84	291,771	16,302
Plywood (form)	12 mm	m ²	13.00	28,340	1,583
Deformed bar	BS Grade 460	ton	1,075.00	2,343,500	130,935
Equal angel steel	L-75*75	ton	1,352.00	2,947,360	164,674
Channel steel	[-100*50	ton	1,316.00	2,868,880	160,289
H-Beam	H-300	ton	1,202.00	2,620,360	146,404
Steel sheet pile	SYW295 (II, hat 25H)	ton	1,674.88	3,651,232	204,000
RC pipe	d300 mm, L=1.0 m	nos.	35.00	76,300	4,263
RC pipe	d600 mm, L=1.0 m	nos.	65.00	141,700	7,917
RC pipe	d900 mm, L=1.0 m	nos.	110.00	239,800	13,398
PVC pipe	d 100 mm	m	10.00	21,800	1,218
PVC pipe	d 150 mm	m	14.00	30,520	1,705
Geotextile	t=10 mm with anchor	m ²	8.00	17,440	974
Gabion	0.5H*1.2W*10L (m)	m	27.91	60,854	3,400
Interlocking block	t=60 mm	pc	0.36	785	44
Diesel		lit	1.33	2,899	162

Table 10.87: Material Cost

Source: JICA Study Team based on the information from TANROAD and local supplies

3) Equipment Cost

The daily-operated rental rates are shown in Table 10.88. As for special equipment and machinery, such as a vibration hammer, the operation costs have been estimated based on the information presented by local suppliers.

Description	US\$/month	US\$/day	TZS/day	JPY/day
Back hoe 0.45 m^3	5,200	200	436,000	24,360
Back hoe 0.8 m ³	9,100	350	763,000	42,630
Dump truck 4 ton	2,600	100	218,000	12,180
Dump truck 10 ton	3,380	130	283,400	15,834
Heavy truck 10 ton	3,380	130	283,400	15,834
Trailer low bed	4,680	180	392,400	21,924
Trailer flat bed	8,320	320	697,600	38,976
Unic truck crane 4 ton	2,860	110	239,800	13,398
Truck crane 25 ton	8,320	320	697,000	38,976
Crawler crane 50 ton	15,600	600	1,308,000	73,080
Motor grader 3.1 m	10,400	400	872,000	48,720
Wheel loader 2.0 m ³	5,200	200	436,000	24,360
Vibration hammer 60 kW	4,680	180	392,400	21,924
Vibration hammer 60 kW (for hat type 900 mm)	10,920	420	915,600	51,156
Concrete agitator truck 5 m ³	7,800	300	654,000	36,540
Concrete pump (boom) 110 m ³ /hr	5,200	200	436,000	24,360
Vibration roller 2 ton	6,240	240	523,200	29,232
Vibration roller 10 ton	6,240	240	523,200	29,232
Macadam roller 10 ton	6,240	240	523,200	29,232
Tire roller 13 ton	6,500	250	545,000	30,450
Walkbind roller 700 kg	1,560	60	130,800	7,308
Asphalt finisher 2.4/4.5 m	7,800	300	654,000	36,540
Air compressor 18.5 m ³ /min	5,200	200	436,000	24,360

Table 10.88: Equipment Costs

Description	US\$/month	US\$/day	TZS/day	JPY/day
Power generator 46 kVA	1,170	45	98,100	5,481
Power generator 200 kVA	5,200	200	436,000	24,360

Notes: 1) Average operation hour per month = 260 hr (normal hour 220 hr + overtime 40 hr), 2) 1 month = 26 days operating days,

3) Price is equipment owner ship cost. Not including fuel and operator cost. Source: JICA Study Team

4) Other Costs

Other costs consists of overhead expenses, temporary construction cost and field expenses, miscellaneous expenses, and contractors' profit margin as follows:

a) Overhead Expenses

The overhead expenses are for engineering and administrative cost, transportation allowance, office expense, a premium on Contractor's All Risk Insurance (CARI), financing costs (such as premium on bid security), etc.

b) Temporary Construction Cost and Field Expenses

The temporary construction cost and the field expenses are for meetings, coordination with other stakeholders, billboards, stages during groundbreaking and inauguration ceremonies, as well as during other unforeseen events.

c) Miscellaneous Expenses

The miscellaneous expenses are included as laboratory tests for quality control and plan preparation.

d) Contractors' Profit Margin

The contractors' profit margin is included in the other costs.

5) Mobilization and Other Expenses

Mainly before the main construction period starts, there are several works or issues shall be done or considered. Mobilization and demobilization, temporary facility, utility, housing, camp set-up, camp take-down, construction safety and health checks, geological survey, etc. This cost is estimated at ten percent (10%) of the sum of direct cost.

10.3.3 Project Cost

(1) Construction Costs

The total construction cost is shown in Table 10.89. The construction cost for each package is shown in Table 10.90-Table 10.92.

item				Deine	-	and .	
item	unit	Quantity	Unit I Foreign	Price Local	C Foreign	Local	Total
			JPY	TZS	JPY	TZS	JPY
Railway rerouting construction works (25.1km) Embankment work	m3	470,000	314.6	54,876.9	147,874,969	25,792,145,820	1,478,749,69
Embankment protection work	m2	41,000	7,375.1	571,713.9	302,379,488	23,440,270,392	1,511,897,44
Embankment sod facing work	m2	107,000	957.6	74,232.5	102,463,092	7,942,875,360	512,315,46
Soil replacement work	m3	528,800	610.3	47,306.3	322,700,735	25,015,560,864	1,613,503,67
Side ditch	m	50,200	5,188.1	402,176.0	260,441,160	20,189,237,208	1,302,205,80
Cutting work Cutting protection work	m3 m2	366,000 103,000	467.6 8,767.3	81,561.2 396,454.7	171,148,125 903,033,273	29,851,417,134 40,834,837,911	1,711,481,24
Bridge work	m	255	2,008,670.8	25,951,818.8	512,211,047	6,617,713,787	853,685,07
Culvert work	set	65	9,098,426.7	264,489,147.4	591,397,734	17,191,794,581	1,478,494,33
Bridge collapse work	set	1	5,006,232.0	97,020,000.0	5,006,232	97,020,000	10,012,46
Bank protection for main stream 15.11km							
Gabion Geotextile	m3 m2	102,000	8,296.0 750.9	375,144.0 9,702.0	846,196,243 127.658.916	38,264,688,000 1,649,340,000	2,820,654,14
Excavation	m3	67,000	125.2	21,829.5	8,385,439	1,462,576,500	83,854,38
Embankment	m2	124,000	232.4	40,540.5	28,821,593	5,027,022,000	288,215,92
Steel Sheet Pile	l.m	91,250	10,441.6	134,904.0	952,793,226	12,309,990,000	1,587,988,71
Concrete	m3	2,000	12,622.9	570,801.0	25,245,713	1,141,602,000	84,152,37
Tributary River Training Works (Maswala 2.0km, Gabion			0.000.0	075 444.0	200 052 520	40,000,000,000	1,023,178,46
Geotextile	m3 m2	37,000 54,000	8,296.0 750.9	375,144.0 9,702.0	306,953,539 40,550,479	13,880,328,000 523,908.000	67,584,13
Excavation	m3	354,000	125.2	21,829.5	44,305,153	7,727,643,000	443,051,53
Embankment	m2	33,000	232.4	40,540.5	7,670,263	1,337,836,500	76,702,62
Steel Sheet Pile	m	20,000	10,441.6	134,904.0	208,831,392	2,698,080,000	348,052,32
Concrete	m3	20,000	12,622.9	570,801.0	252,457,128	11,416,020,000	841,523,76
Gravel Facing	m3	13,000	309.9	54,054.0	4,028,825	702,702,000	40,288,24
Sod Facing Temporary road (Rail:82.6km+River:17.5km=100	m2 1km)	26,000	77.5	13,513.5	2,014,412	351,351,000	20,144,124
Temporary road (Kail.52.5Kin+Kiver.17.5Kin=100	km	100.1	3,144,941.4	243,793,905.1	314,808,632	24,403,769,900	1,574,043,15
Installation of track (25.1km)			.,,	.,,		,,	
80lb/yd rails	ton	2,180	154,350.0	0.0	336,483,000	0	336,483,00
Fish plate, bolt, nut, lock nut washer per km	pcs	530	17,850.0	0.0	9,460,500	0	9,460,50
Thermit welding	pcs	1,580	63,000.0	0.0	99,540,000	0	99,540,00
Steel sleeper with fastenings	pcs	38,980	11,550.0	0.0	450,219,000	0	450,219,00
Turnoput 1:12 Buffer stop	sets sets	6	10,143,000.0 1,195,950.0	0.0	60,858,000 2,391,900	0	60,858,00 2,391,90
Ballast	m3	24,940	0.0	82,950.0	2,391,900	2,068,773,000	2,391,90
Road-rail 8 ton dump truck	sets	12	43,666,677.9	0.0	524,000,135	0	524,000,13
Road-rail 8 ton crawler crane	sets	4	74,683,304.5	0.0	298,733,218	0	298,733,21
Road-rail power shovel (RPS)	sets	4	34,473,693.1	0.0	137,894,772	0	137,894,77
RPS with 16-tool tie tamper attchment	sets sets	2	47,114,047.2	0.0	94,228,094 13,789,477	0	94,228,09
RPS wgripper attchment RPS 16-tool tie tamper attchment	sets	4	3,447,369.3 12,640,354.1	0.0	13,789,477 50,561,417	0	13,789,47 50,561,41
Simplified track inspecting instrument	sets	2	5,745,615.5	0.0	11,491,231	0	11,491,23
Track construction (80lb/yd rails)	km	25.1	0.0	276,396,750.0	0	6,937,558,425	357,978,01
Thermit weldings	pcs	1,580	0.0	1,134,000.0	0	1,791,720,000	92,452,75
Installation of turnputs 1:12	sets	6	0.0	22,681,050.0	0	136,086,300	7,022,05
Buffer stop	sets	2	0.0	9,165,450.0	0	18,330,900	945,87
Renewal of 60lb/yd rails by 80lb/yd rails (15.0km 80lb/yd rails) ton	1,250.0	142,477.0	0.0	178,096,270	0	178,096,27
Fish plate, bolt, nut, lock nut washer per km	pcs	320.0	16,477.0	0.0	5,272,635	0	5,272,63
Thermit welding	pcs	950.0	58,153.9	0.0	55,246,208	0	55,246,20
Steel sleeper with fastenings	pcs	23,260.0	10,661.5	0.0	247,987,549	0	247,987,54
Ballast	m3	14,290.0	0.0	82,950.0	0	1,185,355,500	61,164,34
Road-rail 8 ton dump truck	sets sets	6	43,666,677.9	0.0	262,000,068 149,366,609	0	262,000,06
Road-rail 8 ton crawler crane Road-rail power shovel (RPS)	sets	2	74,683,304.5 34,473,693.1	0.0	68,947,386	0	68,947,38
RPS with 16-tool tie tamper attchment	sets	1	47,114,047.2	0.0	47,114,047	0	47,114,04
RPS wgripper attchment	sets	2	3,447,369.3	0.0	6,894,739	0	6,894,73
RPS 16-tool tie tamper attchment	sets	2	12,640,354.1	0.0	25,280,708	0	25,280,70
Simplified track inspecting instrument	sets	1	5,745,615.5	0.0	5,745,616	0	5,745,61
Track construction (80lb/yd rails)	km	15.0	0.0	276,396,750.0	0	4,145,951,250	
Thermit weldings Earth works (Raise cess, widen and strengthen	pcs	950.0	0.0	1,134,000.0			
embankment)	m³	1,735.0			0	1,077,300,000	55,588,68
		,	0.0	78,750.0	0	1,077,300,000	55,588,68
Earth works (Rreprofiling)	site	5	0.0	196,550,550.0	0	136,631,250 982,752,750	55,588,68 7,050,17 50,710,04
Earth works (Drains)	site item				0	136,631,250	55,588,68 7,050,17 50,710,04
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km)	item	5	0.0	196,550,550.0 262,067,400.0	0 0 0	136,631,250 982,752,750	213,931,08 55,588,68 7,050,17 50,710,04 40,568,03
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails	item ton	5 3 80.0	0.0 0.0 154,350.0	196,550,550.0 262,067,400.0 0.0	0 0 0 12,348,000	136,631,250 982,752,750 786,202,200 0	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km)	item	5	0.0	196,550,550.0 262,067,400.0	0 0 0	136,631,250 982,752,750	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Balast	ton pcs pcs m3	5 3 80.0 20 1,440 23,240	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0	0 0 12,348,000 357,000 16,632,000 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31
Earth works (Drains) Refurbishment of 80lbyd rails section (48.8km) 80lbyd rails 80lbyd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Ballast Refurbishment of 80lbyd rails	ton pcs pcs m3 km	5 3 80.0 20 1,440 23,240 8.9	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0	0 0 12,348,000 357,000 16,632,000 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 711,378,780	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14
Earth works (Drains) Refurbishment of 80b/yd rails section (48.8km) 80b/yd rails 90b/yd rails 90b/yd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Ballasti Refurbishment of 80b/yd rails Ballasting 300mm, lifting, tamping, distressing	ton pcs pcs m3 km km	5 3 80.0 20 1,440 23,240 8.9 11.8	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0	0 0 12,348,000 357,000 16,632,000 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 711,378,780 2,744,508,900	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,616,65
Earth works (Drains) Refurbishment of 801byd rails section (48.8km) 801byd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Ballasti Refurbishment of 801byd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 100mm, lifting, tamping, distressing	item ton pcs m3 km km km	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0	0 0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0	136,631,250 982,752,750 0 0 0 1,927,758,000 711,378,780 2,744,508,900 1,457,223,075	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,616,65 75,192,71
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails 80lb/yd rails Steel sleeper with fastenings Balasti Refurbishment of 80lb/yd rails Balasting 300mm, fifting, tamping, distressing Ballasting 100mm, fifting, tamping, distressing Earth works (Raise cess, widen and strengthen embankmont)	item ton pcs m3 km km km km m ³	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0 78,750.0	0 0 112,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 711,378,780 2,744,508,900 1,457,223,075 444,465,000	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,1616,65 75,192,71 22,934,39
Earth works (Reizens) Refurbishment of 801byd rails section (48.8km) 801byd rails Fish plate, bolt, nut, lock nut washer per km Steel skeper with fastenings Ballasti Refurbishment of 800b/yd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 100mm, lifting, tamping, distressing Earth works (Reize cass, widen and strengthen embankment) Earth works (Reprofiling)	item ton pcs m3 km km km km site	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0 78,750.0 196,550,550.0	0 0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136.631.250 982.752.750 786,202.200 0 0 0 1,927.758.000 7711.378.760 2,744.508,900 1,457.223.075 444,465.000 2,948,258.250	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails 90lb/yd rails 90lb/yd rails Ballasti Refurbishment of 80lb/yd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 300mm, lifting, tamping, distressing Ballasting 400mm, lifting,	item ton pcs m3 km km km km m ³	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0 78,750.0	0 0 112,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 711,378,780 2,744,508,900 1,457,223,075 444,465,000	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12
Earth works (Prains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails Fish plate, bolt, nut, tock nut washer per km. Steel sleeper with fastenings Balasti Refurbishment of 80lb/yd rails Balasting 300mm, fiting, tamping, distressing Balasting 100mm, fiting, tamping, distressing Earth works (Reips class, widen and strengthen embankment) Earth works (Reprofiling) Earth works (Drains) Relocation of Gulwe Station	item ton pcs m3 km km km km site item	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0 9.0	0.0 0.0 154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550.0 262,067,400.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0 78,750.0 196,550,550.0 262,067,400.0	0 0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 711,378,780 2,744,508,900 1,457,223,075 444,465,000 2,948,258,250 2,358,606,600	55,588,68 7,050,17 50,710,04 40,558,03 12,348,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12 121,704,10
Earth works (Drains) Refurbishment of 80/b/yd rails section (48.8km) 80/b/yd rails bolt, nut, lock nut washer per km Siteel sleeper with fastenings Ballasti Refurbishment of 80/b/yd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 300mm, lifting, tamping, distressing Earth works (Reise cess, widen and strengthen embankment) Earth works (Reprofiling) Earth works (Reprofiling)	item ton pcs m3 km km km km site	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0	0.0 0.0 154,350.0 17,850.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,500.0 88,316,550.0 78,750.0 196,550,550.0	0 0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136.631.250 982.752.750 786,202.200 0 0 0 1,927.758.000 711.378.760 2,744.508,900 1,457.223.075 444,465.000 2,948,258.250	55,588,68 7,050,17 50,710,04 40,568,00 357,00 16,632,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12 121,704,10 10,224,33
Earth works (Drains) Refurbishment of 80bbyd rails section (48.8km) 80bbyd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Balast Refurbishment of 90bbyd rails Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting Relais cess, widen and strengthen entbankment) Earth works (Reprofiling) Earth works (Reprofiling) Earth works (Reprofiling) Station office building Station equipment building Station squipment building	item ton pcs pcs m3 km km km km km item item	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 150.0 225.0 150.0	0.0 0.0 1154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 79,930,200.0 232,585,550.0 232,585,550.0 288,316,550.0 78,750.0 196,550,550.0 262,067,400.0 634,200.0 507,150.0	0 0 0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,756,000 1,927,756,000 1,457,223,075 444,465,000 2,948,258,250 2,358,606,600 95,130,000 114,108,750 76,072,500	55,588,68 7,050,17 50,710,04 40,558,02 12,348,00 387,00 16,632,00 99,472,31 36,707,14 14,1616,65 75,192,71 22,934,33 152,130,12 121,704,10 121,704,10 121,704,10 12,248,33 10,224,33 110,224,33 12,266,76 8,177,84
Earth works (Drains) Refurbishment of 80/byd rails section (48.8km) 80/byd rails 90/byd rails Balbasting Refurbishment of 80/byd rails Balbasting Refurbishment of 80/byd rails Balbasting 300mm, lifting, tamping, distressing Balbasting 300mm, lifting, tamping, distressing Balbasting 100mm, lifting, tamping, distressing Bath works (Drains) Relocation of Gulwe Station Station office building Station equipment building Strage building	item ton pcs pcs m3 km km km km km km item item m ² m ² m ²	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 225.0 150.0 180.0	0.0 0.0 154,350.0 17,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550.0 262,067,400.0 0.0 0.0 0.0 82,950.0 232,586,500.0 88,316,550.0 78,750.0 196,550.5550.0 262,067,400.0 634,200.0 507,150.0 380,100.0	0 0 12,348,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 2,744,508,900 1,457,223,075 444,465,000 2,358,606,600 95,130,000 114,108,750 76,072,500 76,072,500 76,478,000	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 99,472,31 36,707,14 141,632,00 99,472,31 36,707,14 141,632,00 99,472,31 36,707,14 141,21,704,10 10,224,33 12,266,76 8,177,84 7,357,61
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails Bolb/yd rails Steel sleeper with fastenings Balasti Refurbishment of 80lb/yd rails Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting 100mm, lifting, tamping, distressing Station equipment building Strage building Wash building	item ton pcs pcs m3 km km item m³ site item m² m² m² m² m²	5 3 80.0 20 1,440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 225.0 150.0 180.0 0 64.0	0.0 0.0 154,350.0 17,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 0,0 0,0 0,0 28,950,0 79,330,200,0 282,556,50,0 282,556,50,0 196,550,550,0 282,067,400,0 507,150,0 507,150,0 380,010,0 317,1000	0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 711,378,780 2,744,508,900 1,457,223,075 444,465,000 2,948,258,250 2,358,606,600 95,130,000 114,108,750 76,072,500 68,418,000 20,294,400	55,588,68 7,050,17 50,710,04 40,558,03 12,348,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12 121,704,10 10,224,33 12,226,76 8,177,84 7,357,61 2,181,19
Earth works (Drains) Refurbishment of 80b/yd rails section (48.8km) 80b/yd rails Fish plate, bolt, nut, tock nut washer per km Siteel sleeper with fastenings Balasta Refurbishment of 80b/yd rails Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting 100mm, lifting, tamping, distressing Batatin varier (Braise Duikling) Station officer buikling Strage buikling Wash buikling Paved concourse	item ton pcs pcs m3 km km item m³ site item m² m² m² m² m² m² m²	5 3 88.0 20 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 150.0 150.0 150.0 150.0 225.0 150.0 225.0 150.0 225.0	0.0 0.0 154,350.0 11,7,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 232,585,500,0 232,585,500,0 232,585,500,0 232,585,500,0 232,585,500,0 232,067,400,0 262,067,400,0 262,067,400,0 380,100,0 330,100,0 317,100,0 22,550,0	0 0 12,348,000 367,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 2,744,508,900 1,457,223,075 444,465,000 2,944,258,250 2,358,606,600 95,130,000 114,108,750 96,418,000 20,294,400 6,426,000	55,588,68 7,060,17 50,710,04 40,658,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,616,65 75,192,77 22,934,32 152,130,12 121,704,10 10,224,33 12,266,76 8,177,84 7,357,61 2,181,15 609,44
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails 90lb/yd rails 90lb/yd rails Ballasti Refurbishment of 80lb/yd rails Ballasting Ballasting 000rm, lifting, tamping, distressing Ballasting 000rm, lifting, tamping, distressing Ballasting (Reliaic cess, widen and strengthen embankment) Earth works (Reiprofiling) Earth works (Reiprofiling) Earth works (Reiprofiling) Station of Gulves Station Station staff rest building Station staff rest building Strape building Wash building Paved concourse Paved station pfaza	item ton pcs pcs m3 km km km km km item m ² m ² m ² m ² m ²	5 3 80.0 20 1,440 23,240 8.9 9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 225.0 180.0 180.0 64.0 225.0	0.0 0.0 154,350.0 17,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0 12.348.000 357.000 16.632.000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 711,378,700 2,274,4508,900 711,378,700 2,274,4508,900 2,358,606,600 9,5130,000 114,108,750 76,072,500 68,418,000 20,284,400 6,428,000 37,800,000	55,588,68 7,050,17 50,710,04 40,558,03 12,2348,00 357,00 16,632,00 99,472,31 36,707,14 1411,616,65 75,192,71 22,934,39 152,130,12 121,704,10 10,224,33 12,266,76 8,177,84 7,357,61 2,181,19 690,44 4,076,73
Earth works (Drains) Refurbishment of 80bbyd rails section (48.8km) 80bbyd rails Fish plate, bolt, nut, lock nut washer per km Steel sleeper with fastenings Ballast Refurbishment of 80bbyd rails Balasting 300mm, lifting, tamping, distressing Balasting 100mm, lifting, tamping, distressing Earth works (Preprofiling) Earth works (Preprofiling) Earth works (Drains) Relocation of Gubwe Station Station office building Station office building Station sequipment building Station sequipment building Strage building Wash building Pawed concourse	item ton pcs pcs m3 km km item m³ site item m² m² m² m² m² m² m²	5 3 88.0 20 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 150.0 150.0 150.0 150.0 225.0 150.0 225.0 150.0 225.0	0.0 0.0 1154,350.0 11,7,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 232,585,500,0 232,585,500,0 232,585,500,0 232,585,500,0 232,585,500,0 232,067,400,0 262,067,400,0 262,067,400,0 380,100,0 330,100,0 317,100,0 22,550,0	0 0 12,348,000 367,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 2,744,508,900 1,457,223,075 444,465,000 2,944,258,250 2,358,606,600 95,130,000 114,108,750 96,418,000 20,294,400 6,426,000	55,588,68 7,050,17 50,710,04 40,558,02 12,348,00 387,00 16,632,00 99,472,31 36,707,14 141,616,632,00 99,472,31 36,707,14 141,616,652,00 99,472,31 152,130,12 12,268,76 8,177,84 7,387,61 2,181,77,84 7,387,61 2,181,77,84 7,387,61 2,181,77,84 7,387,61 2,181,77,84 7,387,61 2,181,91,85 8,191,78,185 1,91,95 1,91,95
Earth works (Drains) Refurbishment of 80bbyd ralls section (48.8km) 80bbyd ralls Fish plate, bolt, nut, lock nut washer per km Siteel sleeper with fastenings Ballasting Refurbishment of 80bbyd ralls Ballasting 300mm, lifting, tamping, distressing Ballasting 100mm, lifting, tamping, distressing Station office building Station sequipment building Station sequipment building Paved concourse Paved station plaza Platform	ton pcs pcs m3 km km km km km km km km km km km km km	5 3 80.0 20 1.440 23.240 8.9 11.8 16.5 5.644 15.0 9.0 225.0 150.0 225.0 150.0 64.0 225.0 180.0 0 64.0 225.0 1.000.0 1.000.0 1.000.0	0.0 0.0 154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 771,378,780 2,744,508,900 2,744,508,900 2,444,508,005 2,948,258,250 2,358,606,600 95,130,000 114,108,750 76,072,500 68,418,000 20,2924,400 6,428,000,00 37,800,000 22,855,750	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 99,472,31 36,707,14 141,616,632,00 99,472,31 36,707,14 141,616,652 75,192,71 22,934,38 152,130,12 10,224,33 12,2266,76 8,177,84 7,357,61 2,181,19 690,44 4,076,73 1,991,85 680,93 1,991,85 680,93 3,34,46
Earth works (Drains) Refurbishment of 80b/yd rails section (48.8km) 80b/yd rails Fish plate, bolt, nut, lock nut washer per km Siteel sleeper with fastenings Balasting Refurbishment of 80b/yd rails Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting 300mm, lifting, tamping, distressing Balasting 100mm, lifting, tamping, distressing Bath works (Reprofiling) Earth works (Reprofiling) Earth works (Reprofiling) Station officers building Station equipment building Strage building Strage building Paved concourse Paved station plaza Pladform Generator base Water tank base and tower Convertor	item ton pcs pcs m3 km km km km item item m ² m ² m ² m ² m ² cs ton ton pcs pcs m3 km km km km km km km km km km km km km	5 3 80.0 20 1.440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 150.0 225.0 150.0 150.0 150.0 225.0 150.0 225.0 1,000.0 1,000.0 1.0 1,000.0 1.0 1,000.00	0.0 0.0 1154,350.0 11,7,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 0,0 0,0 0,0 282,950,0 79,392,200,0 232,585,500,0 88,316,550,0 282,067,400,0 282,067,400,0 282,067,400,0 282,067,400,0 30,7150,0 3317,100,0 3317,100,0 3317,100,0 33,50,050,0 5,071,500,0 3,50,071,500,0 3,50,071,500,0 5,070,000,00,00,000,000,000,000,000,000,	0 12,348,000 367,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0,927,758,000 1,927,758,000 1,457,223,075 444,450,800 2,944,258,250 2,358,606,600 95,130,000 114,108,750 96,418,000 20,294,400 6,428,000 37,800,000 22,555,750 6,339,900	55,588,68 7,060,17 50,710,04 40,0568,03 12,348,00 16,632,00 99,472,31 36,707,14 1416,166,65 75,192,77 22,934,38 152,130,12 121,704,10 10,224,33 12,266,76 8,177,84 7,357,61 2,181,15 609,44 4,076,77 1,991,85 666,93 343,44 3,516,47
Earth works (Drains) Refurbishment of 80/by/d rails section (48.8km) 80/by/d rails 80/by/d rails Balbasting Refurbishment of 80/by/d rails Ballasting 80/by/d rails 80/by/d rai	tiem ton pcs m3 km km km km m ² site item m ² m ² m ² site tem m ² m ² site LS LS	5 3 80.0 20 1.440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 150.0 150.0 150.0 150.0 150.0 100.0 1,000.0	0.0 0.0 154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0 12,348,000 367,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,027,758,000 711,378,700 2,948,258,250 2,958,806,600 2,948,258,250 2,958,806,600 95,130,000 114,108,750 76,072,500 68,418,000 24,250,000 5,071,500 5,071,500 5,705,700 5,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705 5,705 5,700 5,705 5,700 5,705 5,700 5,	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,616,66 75,192,71 22,934,38 152,130,12 121,704,10 10,224,33 12,226,76 8,177,84 7,357,61 2,181,19 690,44 4,076,73 1,991,85 666,93 343,46 3,516,47 1,038,55
Earth works (Dreins) Refurbishment of 80b/yd rails section (48.8km) 80b/yd rails Fish plate, bolt, nut, lock nut washer per km Siteel sleeper with fastenings Ballasting Refurbishment of 80b/yd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 300mm, lifting, tamping, distressing Ballasting 100mm, lifting, tamping, distressing Ballasting (Relise cess, widen and strengthen erbankment) Earth works (Relise cess, widen and strengthen erbankment) Earth works (Reperfulfing) Earth works (Reperfulfing) Station office building Station squipment building Station squipment building Station squipment building Wash building Paved concourse Paved station plaza Platform Generator base Water tanks hase and tover Generator Water tanks	item ton pcs pcs m3 km km km km item item m ² m ² m ² m ² m ² cs ton ton pcs pcs m3 km km km km km km km km km km km km km	5 3 80.0 20 1.440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 150.0 225.0 150.0 150.0 150.0 225.0 150.0 225.0 1,000.0 1,000.0 1.0 1,000.0 1.0 1,000.00	0.0 0.0 154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 282,950,0 79,330,200,0 282,955,00,0 88,316,550,0 282,656,050,0 282,067,400,0 282,067,400,0 282,000,0 380,100,0 380,100,0 282,000,000,000,000,000,000,000,000,000,	0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 771,378,780 2,744,508,900 2,948,258,250 2,368,606,600 95,130,000 114,108,750 76,072,500 68,418,000 0,20,294,400 6,428,000,000 3,78,000,000 5,071,500 5,55,750 6,339,900 5,705,700 73,500,000	55,588,68 7,050,17 50,710,04 40,658,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,616,66 75,192,71 22,934,38 152,130,12 121,704,10 10,224,33 12,226,77 8,177,84 7,357,61 2,181,19 680,44 4,076,73 1,991,85 686,83 3,792,60
Earth works (Drains) Refurbishment of 80lb/yd rails section (48.8km) 80lb/yd rails Bolbiyd rails Bolbiyd rails Bolbiyd rails Bellasting Refurbishment of 80lb/yd rails Bellasting 300mn, lifting, tamping, distressing Bellasting 300mn, lifting, tamping, distressing Bellasting 100mn, lifting, tamping, distressing Bellasting (Relize cass, widen and strengthen erbankment) Earth works (Reizer cass, widen and strengthen erbankment) Earth works (Drains) Relocation of Gulwe Station Station office building Station staff rest building Station staff rest building Station plaza Pawed concurse Pawed station plaza Pladform Generator base Water tank base and tower Generator Water tanks Relocation of the existing facilities Environmental and social management plan	tiem ton pcs m3 km km km km m ² site item m ² m ² m ² site tem m ² m ² site LS LS	5 3 80.0 20 1.440 23,240 8.9 11.8 16.5 5,644 15.0 9.0 225.0 150.0 150.0 150.0 150.0 150.0 150.0 100.0 1,000.0	0.0 0.0 154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0 12,348,000 367,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,027,758,000 711,378,700 2,948,258,250 2,958,806,600 2,948,258,250 2,958,806,600 95,130,000 114,108,750 76,072,500 68,418,000 24,250,000 5,071,500 5,071,500 5,705,700 5,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705,700 5,705 5,705 5,700 5,705 5,700 5,705 5,700 5,	55,588,68 7,050,17 50,710,04 40,558,03 12,348,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12 10,224,33 12,226,76 8,177,84 7,357,61 2,181,19 690,44 4,076,73 1,991,85 686,83 3,43,46 3,516,47 1,038,59 3,43,46 3,579,60
Earth works (Drains) Refurbishment of 80/blyd rails section (48.8km) 80/blyd rails Fish plate, bolt, nut, lock nut washer per km Siteel sleeper with fastenings Ballasting Refurbishment of 80/blyd rails Ballasting 300mm, lifting, tamping, distressing Ballasting 100mm, lifting, tamping, distressing Ballasting, Report (Date) Station staff rest building Station staff rest building Paved concourse Paved station plaza Platform Generator Water tanks Relocation of the existing facilities Environmental and social management plan during construction	tinem ton pcs pcs m3 km km km km km km km km km km km km km	5 3 200 1,440 23,240 8,9 11,8 16.5 5,644 15.0 9,0 150.0 225.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 1000.0 1,000.0 1,000.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 1154,350.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0 12,348,000 337,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 1,927,758,000 711,378,780 2,744,508,900 1,447,223,075 444,465,000 2,948,258,250 2,336,606,600 95,130,000 114,108,750 76,072,500 64,418,000 0,2,254,400 6,428,000 0,2,053,750 6,339,900 5,071,500 5,075,700 73,500,000 2,67,755,700 73,500,000 2,67,755,700 1,500,000 2,67,755,700 1,500,000	55,588,68 7,050,17 50,710,04 40,0588,03 12,248,00 99,472,31 36,707,14 141,616,65 75,192,71 22,934,39 152,130,12 122,134,10 10,224,33 12,226,76 8,177,84 7,557,61 2,181,19 680,44 4,076,73 1,1991,85 686,83 3,43,46 3,516,47 1,038,59 3,782,60 13,815,90
Earth works (Drains) Refurbishment of 80bbyd rails section (48.8km) 80bbyd rails Fish plate, bolt, nut, lock nut washer per km Siteel sleeper with fastenings Balasting Refurbishment of 80bbyd rails Balasting 300mm, lifting, tamping, distressing Balasting 100mm, lifting, tamping, distressing Balasting, Report Report Station staff rest building Station staff rest building Pawed concourse Pawed station plaza Pawed station plaza Platform Generator Water tanks Relocation of the existing facilities Environmental and social management plan during construction	time pcs m3 km km km km km km km km km km km km km	5 3 200 1,440 23,240 8,9 11,8 16,5 5,644 15,0 9,0 150,0 150,0 150,0 150,0 150,0 1,000,0 1,000,0 1,000,0 1,000,0 1,000,0 1,000,0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0.0 0.0 1154.380.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0,0 1,927,758,000 1,457,223,075 444,455,000 2,948,258,250 2,358,606,600 95,130,000 114,108,750 76,072,500 68,418,000 22,254,400 6,428,000 37,800,000 22,553,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,774,500,000 2,775,500,000,000,000,000,000,000,000,000	55,588,68 7,050,17 50,710,04 40,558,03 12,348,00 99,472,31 36,707,14 141,616,632,00 99,472,31 36,707,14 141,616,652,00 99,472,31 36,707,14 141,616,652 75,192,71 22,934,39 152,130,12 122,934,39 152,130,12 10,224,33 12,2266,76 8,177,84 7,357,61 2,181,19 860,44 4,076,73 1,991,85 666,93 3,43,46 3,516,47 1,038,59 3,792,60 13,815,90 10,223,76
Earth works (Drains) Refurbishment of 80b/yd rails section (48.8km) 80b/yd rails Bolbiyd rails Bolbiyd rails Balast Refurbishment of 80b/yd rails Balasta Refurbishment of 80b/yd rails Balastag Bal	time pcs m3 km km km km km km km km km km km km km	5 3 80.0 20 1.440 23,240 8.9 11.8 16.5 5,644 150.0 225.0 150.0 225.0 150.0 1600.0 1600.0 1,000.0 1.000.1 1.00 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1 1	0.0 0.0 1154,350.0 11,7,850.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	196,550,550,0 282,067,400,0 282,067,400,0 0,0 0,0 0,0 282,950,0 79,392,200,0 282,585,500,0 88,316,550,50 282,067,400,0 282,067,400,0 282,067,400,0 282,067,400,00 330,100,0 330,100,0 331,100,0 282,550,50 5,071,500,0 5,071,500,0 5,075,700,0 5,705,700,0 138,135,000 189,135,000 189,155,000 189,155,000 189,155,000 199,155,000 199,155,000 199,1	0 0 12,348,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0 1,927,758,000 2,744,508,900 1,457,223,075 444,465,000 2,942,258,250 2,358,606,600 95,130,000 114,108,750 96,418,000 20,294,400 6,428,000 37,800,000 22,555,750 2,535,750 0,339,900 5,705,700 0,339,900 5,755,700,000 7,750,000 2,67,750,000 198,135,000 3,57,224,700	55,588,68 7,050,17 50,710,04 40,568,03 12,348,00 357,00 16,632,00 99,472,31 36,707,14 141,161,66 75,192,71 22,934,39 152,130,12 121,704,10 10,224,33 112,266,76 8,177,84 7,357,61 2,181,19 960,44 4,076,73 1,991,85 666,83 3,372,60 3,379,60 3,379,60 3,379,60 3,379,60 3,3815,90 10,223,76 18,432,79
Earth works (Drains) Refurbishment of 80lby/d rails section (48.8km) 80lbiy/d rails Fish plate, bolt, nut, bock nut washer per km Steel sleeper with fastenings Balasting Balasting 300mr, lifting, tamping, distressing Balasting 300mr, lifting, tamping, distressing Earth works (Reiperofiling) Earth works (Reiperofiling) Earth works (Reiperofiling) Station of Gulves Station Station staff rest building Station staff rest building Station staff rest building Station staff rest building Paved concourse Paved station flaza Platform Generator base Water tank base and tover Generator	time pcs m3 km km km km km km km km km km km km km	5 3 200 1,440 23,240 8,9 11,8 16,5 5,644 15,0 9,0 150,0 150,0 150,0 150,0 150,0 1,000,0 1,000,0 1,000,0 1,000,0 1,000,0 1,000,0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0.0 0.0 1154.380.0 11,550.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	196,550,550,0 282,067,400,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0 12,348,000 357,000 16,632,000 0 0 0 0 0 0 0 0 0 0 0 0	136,631,250 982,752,750 786,202,200 0 0 0,0 1,927,758,000 1,457,223,075 444,455,000 2,948,258,250 2,358,606,600 95,130,000 114,108,750 76,072,500 68,418,000 22,254,400 6,428,000 37,800,000 22,553,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750 6,339,900,000 2,535,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,577,750,000 2,774,500,000 2,775,500,000,000,000,000,000,000,000,000	55,588,68 7,050,17 50,710,04 40,558,03 12,2348,00 99,472,31 36,707,44 141,616,65 75,192,71 22,934,39 152,130,12 122,704,10 10,224,33 12,2266,76 8,177,84 7,357,61 2,181,19 690,44 4,076,73 1,991,85 866,83 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,516,47 1,093,85 866,93 343,46 3,792,60 3,792,703,702,703,703,703,703,703,703,703,703,703,703

Table 10.89: Construction Cost (at Current Price)

Table 10.90: Construction Cost, Package 1 (at Current Price)

item	unit	Quantity	Unit I Foreign	Local	Foreign	Local	Total
			JPY	TZS	JPY	TZS	JPY
Railway rerouting construction works (7.60km)	-						
Embankment work	m3	194,000	314.6	54,876.9	61,037,753	10,646,119,764	610,377,5
Embankment protection work Embankment sod facing work	m2 m2	23,000 31,000	7,375.1 957.6	571,713.9 74,232.5	169,627,518 29,685,569	13,149,419,976 2,301,206,880	848,137,5 148,427,8
Soil replacement work	m3	218,300	610.3	47,306.3	133,217,796	10,326,960,924	666,088,9
Side ditch	m	15,200	5,188.1	402,176.0	78,858,678	6,113,075,808	394,293,3
Cutting work	m3	189,000	467.6	81,561.2	88,379,769	15,415,076,061	883,797,6
Cutting protection work	m2	50,000	8,767.3	396,454.7	438,365,666	19,822,736,850	1,461,218,8
Bridge work	m	90	2,008,670.8	25,951,818.8	180,780,370	2,335,663,690	301,300,6
Culvert work	set	21	9,098,426.7	264,489,147.4	191,066,960	5,554,272,096	477,667,4
Bridge collapse work	set	1	5,006,232.0	97,020,000.0	5,006,232	97,020,000	10,012,4
Bank protection for main stream 6.34km	_						
Gabion	m3	42,798.1	8,296.0	375,144.0	355,055,207	16,055,468,029	1,183,517,3
Geotextile Excavation	m2 m3	71,330.2 28,112.5	750.9 125.2	9,702.0 21,829.5	53,564,363 3,518,443	692,046,036 613,681,999	89,273,9 35,184,4
Embankment	m2	52,029.1	232.4	40,540.5	12,093,243	2,109,286,531	120,932,4
Steel Sheet Pile	m	38,287.6	10,441.6	134,904.0	399,782,201	5,165,144,712	666,303,6
Concrete	m3	839.2	12,622.9	570,801.0	10,592,840	479,004,413	35,309,4
Temporary road (25.2km)					.,		
Temporary road	km	25.2	3,144,941.4	243,793,905.1	79,252,523	6,143,606,408	396,262,6
nstallation of track (7.80km)							
80lb/yd rails	ton	669	154,350.0	0.0	103,223,869	0	103,223,8
Fish plate, bolt, nut, lock nut washer per km	pcs	163	17,850.0	0.0	2,902,225	0	2,902,2
Thermit welding	pcs	485	63,000.0	0.0	30,536,175	0	30,536,1
Steel sleeper with fastenings	pcs	11,958	11,550.0	0.0	138,114,992	0	138,114,9
Turnoput 1:12	sets	2	10,143,000.0	0.0	18,669,586	0	18,669,5
Buffer stop	sets	1	1,195,950.0	0.0	733,770	0	733,7
Ballast	m3	7,651	0.0	82,950.0	0	634,643,510	32,747,6
Road-rail 8 ton dump truck	sets	12	43,666,677.9	0.0	524,000,135	0	524,000,1
Road-rail 8 ton crawler crane	sets	4	74,683,304.5	0.0	298,733,218	0	298,733,2
Road-rail power shovel (RPS)	sets	4	34,473,693.1	0.0	137,894,772	0	137,894,7
RPS with 16-tool tie tamper attchment	sets	2	47,114,047.2	0.0	94,228,094	0	94,228,0
RPS wgripper attchment	sets	4	3,447,369.3	0.0	13,789,477	0	13,789,4
RPS 16-tool tie tamper attchment	sets	4	12,640,354.1	0.0	50,561,417	0	50,561,4
Simplified track inspecting instrument Track construction (80lb/yd rails)	sets km	2	5,745,615.5 0.0	0.0 276,396,750.0	11,491,231 0	2,128,254,975	11,491,2 109,817,9
Thermit weldings	pcs	485	0.0	1,134,000.0	0	549,651,155	28,362,0
Installation of turnputs 1:12	sets	465	0.0	22,681,050.0	0	41,747,590	20,302,0
Buffer stop	sets	1	0.0	9,165,450.0	0	5,623,424	2,134,1
Renewal of 60lb/yd rails by 80lb/yd rails (15.0km)			0.0	9,105,450.0	0	5,025,424	290,1
80lb/yd rails	ton	1,250.0	142,477.0	0.0	178,096,270	0	178,096,2
Fish plate, bolt, nut, lock nut washer per km	pcs	320.0	16,477.0	0.0	5,272,635	0	5,272,6
Thermit welding	pcs	950.0	58,153.9	0.0	55,246,208	0	55,246,2
Steel sleeper with fastenings	pcs	23,260.0	10,661.5	0.0	247,987,549	0	247,987,5
Turnoput 1:12	sets	0	9,362,775.4	0.0	0	0	
Buffer stop	sets	0	1,103,944.6	0.0	0	0	
Ballast	m3	14,290.0	0.0	82,950.0	0	1,185,355,500	61,164,3
Road-rail 8 ton dump truck	sets	6	43,666,677.9	0.0	262,000,068	0	262,000,0
Road-rail 8 ton crawler crane	sets	2	74,683,304.5	0.0	149,366,609	0	149,366,6
Road-rail power shovel (RPS)	sets	2	34,473,693.1	0.0	68,947,386	0	68,947,3
RPS with 16-tool tie tamper attchment	sets	1	47,114,047.2	0.0	47,114,047	0	47,114,0
RPS wgripper attchment	sets	2	3,447,369.3	0.0	6,894,739	0	6,894,7
RPS 16-tool tie tamper attchment	sets	2	12,640,354.1	0.0	25,280,708	0	25,280,7
Simplified track inspecting instrument	sets	1	5,745,615.5	0.0	5,745,616	0	5,745,6
Track construction (80lb/yd rails)	km	15.0	0.0		0	4,145,951,250	213,931,0
Thermit weldings	pcs	950.0	0.0	1,134,000.0	0	1,077,300,000	55,588,6
Earth works (Raise cess, widen and strengthen embankment)	m ³	1,735.0	0.0	78,750.0	0	136,631,250	7,050,1
Earth works (Rreprofiling)	site	5	0.0	196,550,550.0	0	982,752,750	50,710,0
Earth works (Drains)	item	3	0.0	262,067,400.0	0	786,202,200	40,568,0
Refurbishment of 80lb/yd rails section (4.6km)							,.
80lb/yd rails	ton	7	154,350.0	0.0	1,144,206	0	1,144,2
Fish plate, bolt, nut, lock nut washer per km	pcs	2	17,850.0	0.0	33,081	0	33,0
Thermit welding	pcs	0	0.0	0.0	0	0	
Steel sleeper with fastenings	pcs	133	11,550.0	0.0	1,541,176	0	1,541,1
Turnoput 1:12	sets	0	0.0	0.0	0	0	
Buffer stop	sets	0	0.0	0.0	0	0	
Ballast	m3	2,153	0.0	82,950.0	0	178,632,418	9,217,4
Refurbishment of 80lb/yd rails	km	0.8	0.0	79,930,200.0	0	65,918,705	3,401,4
Ballasting 300mm, lifting, tamping, distressing	km	1.1	0.0	232,585,500.0	0	254,315,252	13,122,6
Ballasting 100mm, lifting, tamping, distressing	km	1.5	0.0	88,316,550.0	0	135,031,099	6,967,6
Earth works (Raise cess, widen and strengthen embankment)	m ³	523	0.0	78,750.0	0	41,185,594	2,125,1
Earth works (Rreprofiling)	site	1.4	0.0	196,550,550.0	0	273,195,339	14,096,8
Earth works (Drains)	item	0.8	0.0	262,067,400.0	0	218,556,271	11,277,5
nvironmental and social management plan	Ls	1	0.0	82,138,446.2	0	82,138,446	4,238,3
Environmental and social management plan during construction Environmental and social monitoring plan	10		0.0	60 702 450 0	~	60 700 450	2 400 0
during construction Environmental and social monitoring plan during construction	Ls	1	0.0	60,782,450.2	0	60,782,450	
during construction	Ls Ls	1	0.0 87,284,925.0	60,782,450.2 0.0	0 87,284,925	60,782,450 0	3,136,3 87,284,9

Table 10.91: Construction Cost, Package 2 (at Current Price)	
--	--

			Unit			Cost		
item	unit	Quantity	Foreign	Local	Foreign	Local	Total	
			JPY	TZS	JPY	TZS	JPY	
Railway rerouting construction works (6.40km)								
Embankment work	m3	87,000	314.6	54,876.9	27,372,601	4,774,290,822	273,726,00	
Embankment protection work	m2	11,000	7,375.1	571,713.9	81,126,204	6,288,853,032	405,631,02	
Embankment sod facing work	m2	11,000	957.6	74,232.5	10,533,589	816,557,280	52,667,94	
Soil replacement work	m3	97,800	610.3	47,306.3	59,682,549	4,626,554,184	298,412,74	
Side ditch	m	12,800	5,188.1	402,176.0	66,407,308	5,147,853,312	332,036,53	
Cutting work	m3	168,000	467.6	81,561.2	78,559,795	13,702,289,832	785,597,95	
Cutting protection work	m2	49,000	8,767.3	396,454.7	429,598,353	19,426,282,113	1,431,994,51	
Bridge work	m	0	2,008,670.8	25,951,818.8	0	0		
Culvert work	set	14	9,098,426.7	264,489,147.4	127,377,973	3,702,848,064	318,444,93	
Bridge collapse work	set	0	5,006,232.0	97,020,000.0	0	0		
Bank protection for main stream 8.54km								
Gabion	m3	57,649.2	8,296.0	375,144.0	478,260,484	21,626,766,083	1,594,201,61	
Geotextile	m2	96,082.1	750.9	9,702.0	72,151,366	932,188,193	120,252,27	
Excavation	m3	37,867.6	125.2	21,829.5	4,739,354	826,631,589	47,393,54	
Embankment	m2	70,083.4	232.4	40,540.5	16,289,636	2,841,215,611	162,896,36	
Steel Sheet Pile	m	51,573.5	10,441.6	134,904.0	538,507,886	6,957,466,221	897,513,14	
Concrete	m3	1,130.4	12,622.9	570,801.0	14,268,589	645,220,455	47,561,96	
Temporary road (40.1km)		1,100.1	12,02210	010,00110	1,200,000	010,220,100	11,001,00	
Temporary road	km	40.1	3,144,941.4	243,793,905.1	126,112,149	9,776,135,594	630,560,74	
Installation of track (6.40km)	i ani	-10.1	0,141,041.4	2-10,7 00,000.1	120,112,140	0,110,100,004	000,000,7	
80lb/yd rails	ton	555.9	154,350.0	0.0	85,796,462	0	85,796,46	
Fish plate, bolt, nut, lock nut washer per km	pcs	135	17,850.0	0.0	2,412,239	0	2,412,23	
Thermit welding	pcs	403	63,000.0	0.0	25,380,717	0	25,380,71	
Steel sleeper with fastenings	pcs	9,939	11,550.0	0.0	114,796,876	0	114,796,87	
Turnoput 1:12	sets	3,333	10,143,000.0	0.0	15,517,578	0	15,517,57	
Buffer stop	sets	1	1,195,950.0	0.0	609,887	0	609,88	
Ballast	m3	6,359	0.0	82,950.0	009,007	527,495,904	27,218,78	
Track construction (80lb/yd rails)	km	6.4	0.0	276,396,750.0	0	1,768,939,200	91,277,26	
Thermit weldings	pcs	402.9	0.0	1,134,000.0	0	456,852,908	23,573,61	
Installation of turnputs 1:12	sets	402.9	0.0	22,681,050.0	0	34,699,296	1,790,48	
Buffer stop	sets	0.5	0.0	9,165,450.0	0	4,674,014	241,17	
•	Seis	0.5	0.0	9,100,400.0	0	4,074,014	241,17	
Refurbishment of 80lb/yd rails section (31.6km)	40.0	50	154,350.0	0.0	0.000.052	0	0.000.00	
80lb/yd rails	ton	52 13	154,350.0	0.0	8,009,952	0	8,009,95	
Fish plate, bolt, nut, lock nut washer per km	pcs				231,580		231,58	
Thermit welding	pcs	0	0.0	0.0	0	0	40 700 0	
Steel sleeper with fastenings	pcs	934	11,550.0	0.0	10,788,915	0	10,788,91	
Turnoput 1:12	sets	0	0.0	0.0	0	0		
Buffer stop	sets	0	0.0	0.0	0	0		
Ballast	m3	15,075	0.0	82,950.0	0	1,250,506,072	64,526,11	
Refurbishment of 80lb/yd rails	km	5.8	0.0	79,930,200.0	0	461,460,144	23,811,34	
Ballasting 300mm, lifting, tamping, distressing	km	7.7	0.0	232,585,500.0	0	1,780,319,441	91,864,48	
Ballasting 100mm, lifting, tamping, distressing	km	10.7	0.0	88,316,550.0	0	945,277,521	48,776,32	
Earth works (Raise cess, widen and strengthen	m ³	3,661	0.0	78,750.0	0	288,317,404	14,877,17	
embankment) Earth works (Rreprofiling)	site	9.7	0.0	196,550,550.0	0	1,912,488,416	98.684.40	
		9.7 5.8			0		1 1 -	
Earth works (Drains)	item	5.8	0.0	262,067,400.0		1,529,990,733	78,947,52	
Environmental and social management plan during construction	Ls	1	0.0	68,270,916.3	0	68,270,916	3,522,77	
Environmental and social monitoring plan								
during construction	Ls	1	0.0	50,520,478.1	0	50,520,478	2,606,85	
Land development for relocation of PAPs	Ls	1	0.0	357,224,700.0	0	357,224,700	18,432,79	
Dispute Board (Standing 3person)	Ls	1	88,048,350	0	88,048,350	0	88,048,35	
							. ,	
Total	1 >		/		2,482,580,394	113,528,189,534	8,340,634,97	

Source: JICA Study Team

:t		0	Unit			Cost	Total
item	unit	Quantity	Foreign	Local	Foreign	Local	
hibury resoluting construction works (11.10km)			JPY	TZS	JPY	TZS	JPY
Railway rerouting construction works (11.10km)	0	400.000	044.0	54.070.0	50 404 045	40.074.705.004	504.040.4
Embankment work	m3	189,000	314.6	54,876.9	59,464,615	10,371,735,234	594,646,1
Embankment protection work	m2	7,000	7,375.1	571,713.9	51,625,766	4,001,997,384	258,128,8
Embankment sod facing work	m2	65,000	957.6	74,232.5	62,243,934	4,825,111,200	311,219,6
Soil replacement work	m3	212,700	610.3	47,306.3	129,800,390	10,062,045,756	649,001,9
Side ditch	m	22,200	5,188.1	402,176.0	115,175,174	8,928,308,088	575,875,8
Cutting work	m3	9,000	467.6	81,561.2	4,208,560	734,051,241	42,085,6
Cutting protection work	m2	4,000	8,767.3	396,454.7	35,069,253	1,585,818,948	116,897,5
Bridge work	m	165	2,008,670.8	25,951,818.8	331,430,678	4,282,050,098	552,384,4
Culvert work	set	30	9,098,426.7	264,489,147.4	272,952,800	7,934,674,422	682,382,0
Bridge collapse work	set	0	5,006,232.0	97,020,000.0	0	0	
Bank protection for main stream 0.23 km							
Gabion	m3	1,552.6	8,296.0	375,144.0	12,880,552	582,453,887	42,935,1
Geotextile	m2	2,587.7	750.9	9,702.0	1,943,187	25,105,771	3,238,6
Excavation	m3	1,019.9	125.2	21,829.5	127,641	22,262,912	1,276,4
Embankment	m2	1,887.5	232.4	40,540.5	438,714	76,519,858	4,387,1
Steel Sheet Pile	l.m	1,389.0	10,441.6	134,904.0	14,503,140	187,379,067	24,171,9
Concrete	m3	30.4	12,622.9	570,801.0	384,283	17,377,132	1,280,9
ributary River Training Works (Maswala 2.0km,	Mzas	e 0.64km)					
Gabion	m3	37,000	8,296.0	375,144.0	306,953,539	13,880,328,000	1,023,178,4
Geotextile	m2	54,000	750.9	9,702.0	40,550,479	523,908,000	67,584,1
Excavation	m3	354,000	125.2	21,829.5	44,305,153	7,727,643,000	443,051,5
Embankment	m2	33,000	232.4	40,540.5	7,670,263	1,337,836,500	76,702,6
Steel Sheet Pile	m	20,000	10,441.6	134,904.0	208,831,392	2.698.080.000	348,052,3
Concrete	m3	20,000	12,622.9	570,801.0	252,457,128	11.416.020.000	841,523,7
		-,	309.9			1 -11	
Gravel Facing	m3	13,000		54,054.0	4,028,825	702,702,000	40,288,2
Sod Facing	m2	26,000	77.5	13,513.5	2,014,412	351,351,000	20,144,1
Femporary road (34.8 km)							
Temporary road	km	34.8	3,144,941.4	243,793,905.1	109,443,960	8,484,027,897	547,219,7
nstallation of track (11.0 km)							
80lb/yd rails	ton	955.4	154,350.0	0.0	147,462,669	0	147,462,6
Fish plate, bolt, nut, lock nut washer per km	pcs	232	17,850.0	0.0	4,146,036	0	4,146,0
Thermit welding	pcs	692	63,000.0	0.0	43,623,108	0	43,623,1
Steel sleeper with fastenings	pcs	17,083	11,550.0	0.0	197,307,131	0	197,307,1
Turnoput 1:12	sets	3	10,143,000.0	0.0	26,670,837	0	26,670,8
Buffer stop	sets	1	1,195,950.0	0.0	1,048,243	0	1,048,2
Ballast	m3	10,930	0.0	82,950.0	0	906,633,586	46,782,2
Track construction (80lb/yd rails)	km	11.0	0.0	276,396,750.0	0	3,040,364,250	156,882,7
Thermit weldings	pcs	692.4	0.0	1,134,000.0	0	785,215,936	40,517,1
Installation of turnputs 1:12	sets	2.6	0.0	22,681,050.0	0	59,639,414	3,077,3
Buffer stop	sets	0.9	0.0	9,165,450.0	0	8,033,462	414,5
Refurbishment of 80lb/yd rails section (12.6km)							
80lb/yd rails	ton	21	154,350.0	0.0	3,193,842	0	3,193,8
Fish plate, bolt, nut, lock nut washer per km	pcs	5	17,850.0	0.0	92,339	0	92,3
Thermit welding	pcs	0	0.0	0.0	02,009	0	52,0
Steel sleeper with fastenings		372	11,550.0	0.0	4,301,909	0	4,301,9
	pcs			0.0		0	4,301,8
Turnoput 1:12	sets	0	0.0		0		
Buffer stop	sets	0	0.0	0.0	0	0	05 700 0
Ballast	m3	6,011	0.0	82,950.0	0		25,728,8
Refurbishment of 80lb/yd rails	km	2.3	0.0	79,930,200.0	0	183,999,931	9,494,3
Ballasting 300mm, lifting, tamping, distressing	km	3.1	0.0	232,585,500.0	0	709,874,207	36,629,5
Ballasting 100mm, lifting, tamping, distressing	km	4.3	0.0	88,316,550.0	0	376,914,455	19,448,7
Earth works (Raise cess, widen and strengthen	m ³	1,460	0.0	78,750.0	0	114,962,003	5,932,0
embankment)							
Earth works (Rreprofiling)	site	3.9	0.0	196,550,550.0	0	762,574,495	39,348,8
Earth works (Drains)	item	2.3	0.0	262,067,400.0	0	610,059,596	31,479,0
Relocation of Gulwe Station	2	450.0	05 407 5	004.000.0	5 0 1 5 0 0 5	05 400 000	40.004.0
Station office building	m ²	150.0	35,437.5	634,200.0	5,315,625	95,130,000	10,224,3
Station equipment building	m ²	225.0	28,350.0	507,150.0	6,378,750	114,108,750	12,266,7
Station staff rest building	m ²	150.0	28,350.0	507,150.0	4,252,500	76,072,500	8,177,8
Strage building	m ²	180.0	21,262.5	380,100.0	3,827,250	68,418,000	7,357,6
Wash building	m ²	64.0	17,718.8	317,100.0	1,134,000	20,294,400	2,181,1
Paved concourse	m²	225.0	1,595.0	28,560.0	358,864	6,426,000	690,4
Paved station plaza	m²	1,000.0	2,126.3	37,800.0	2,126,250	37,800,000	4,076,7
Platform	m²	1,000.0	637.4	26,250.0	637,350	26,250,000	1,991,8
Generator base	LS	1.0	425,245.8	5,071,500.0	425,246	5,071,500	686,9
Water tank base and tower	LS	1.0	212,622.9	2,535,750.0	212,623	2,535,750	343,4
Generator	LS	1.0	3,189,339.3	6,339,900.0	3,189,339	6,339,900	3,516,4
Water tanks	LS	1.0	744,179.1	5,705,700.0	744,179	5,705,700	1,038,5
Relocation of the existing facilities	LS	1.0	0.0	73,500,000.0	0	73,500,000	3,792,6
invironmental and social management plan							
luring construction	Ls	1	0.0	117,340,637.5	0	117,340,637	6,054,7
Environmental and social monitoring plan	10	1	0.0	86 832 071 7	0	86 022 072	A 400 F
	Ls		0.0	86,832,071.7	0	86,832,072	4,480,5
luring construction							
uring construction ispute Board (Standing 3 persons)	Ls	1	88,048,350	0	88,048,350	0	88,048,3

Table 10.92: Construction Cost, Package 3 (at Current Price)

Total Source: JICA Study Team

(2) Consulting Services

Two consulting Services are planned under the Project; namely the Consulting Engineering and Supervisory (CES) Services for the Project implementation and the Consulting Advisory Services for the Capacity Building for Construction Management (CBCM). These costs are estimated for "Remuneration and Direct Cost" as shown in Table 10.93.

Item	LC (1,000 TZS)	FC (1,000 JPY)
CES Service		
Remuneration	13,869,100	2,261,728
Direct Cost	8,270,743	649,832
Total	22,139,843	2,911,560
CBCM Services		
Remuneration	928,000	433,293
Direct Cost	719,279	56,078
Total	1,647,279	489,371

 Table 10.93: Consulting Services, (at current Price)

Source: JICA Study Team

(3) Cost for Land Acquisition and Compensation

Compensation costs for land acquisition and house relocation for the railway rerouting and the channel construction is calculated and summarized in Table 10.94.

Compensation cost for the land is calculated from the unit price in the project area, 200 TZS/m^2 . The cost for crops and trees are also calculated in accordance with the "Regional Valuation Schedule of Morogoro", but seasonal crops, which were not grown at the time of the survey in December, are not considered. Disturbance allowances which correspond to 5% of the total amount are added to the compensation cost based on the Land Act of Tanzania.

For the housing structures, costs are calculated based on the unit rate of the structure type and the area of each structure. Accommodation and transport allowance for relocation are also considered in addition to the disturbance allowance based on the Land Act. On the other hand, depreciation of the structure, which is usually considered in Tanzania, is not considered for this calculation of the 'replacement cost'.

	Items	Amount (TZS)	Total Amount (TZS)
Land	Value	439,569,200	
	Disturbance allowance (5%)	21,978,460	461,547,660
Crops and Trees	Value	14,415,000	
	Disturbance allowance (5%)	720,750	15,135,750
Housing structures	Value	691,569,615	
	Disturbance allowance (5%)	34,578,481	
	Accommodation Allowance	76,946,000	
	Transport Allowance	3,300,000	806,394,096
Total			1,283,077,506

 Table 10.94: Summary of Cost for Land Acquisition and Compensation

Source: JICA Study Team

(4) Administration Cost

Administration cost includes expenses to be incurred by the Project Management Office of RAHCO from commencement until completion of construction works of the Project.

(5) Maintenance and Recovery Cost

1) Review of estimation in Interim Report

When the project cost was previously estimated in the Interim Report (November 2015), aiming at the selection of most affordable alternative, the maintenance and recovery cost of Alternative B-2, which was eventually selected by comparison, was assumed as follows:

Table 10.95: Annual Maintenance and Recovery Cost of Alternative B-2in Interim Report

B-2												
	Maintenand	e cost is estim	ated under follow	ing condition	ns:							
1	Railway co	nstruction + Riv	er bank protectio	n	Initial of	direct cost	395,332,	000,000	Tsh.	26,447,711,000	JPY	
	Repair Cos	t including add	lional protection c	of bank (Initia	l cost x	% =	1,976,6	60,000	Tsh.	132,239,000	JPY	0.50%
2	Removal of	f sediment in b	ox culvert	4,400	m3 x	233/136=	Total Vol.	7,500	m3	Conducted 3,750	m3	50%
	Cost	(1m3=8.0US	\$ x % =	2,889	Tsh./m	13)=	10,8	33,600	Tsh.	725,000	JPY	20%
3	Removal of	fsedimentato	onfluence				Total Vol.	14,000	m3	Conducted 14,000	m3	100%
	Cost	(1m3=8.0US	\$ x % =	2,889	Tsh./m	13)=	40,4	45,440	Tsh.	2,706,000	JPY	20%
Total							2,027,9	39,000	Tsh	135,670,000	JPY	
					21-yea	ır		42,587	Mil Ts	h		

Source: JICA Study Team

Supplemental note on Table 10.95.

- Item 1. Overall annual operation/maintenance and recovery cost (OM & R cost) is estimated by a constant rate (0.5 %) to the initial investment cost
 - \Rightarrow approx. <u>97.5 %</u> of total OM & R cost
- Item 2. Cost for removal of debris in culverts (based on the results of the Flood Risk Assessment in Dec. 2014, Ref: Appendix J)
 - Volume of debris for 136 culverts: 4,400 m³
 - Estimated total volume in 233 culverts: 7,500 m³
 - A half volume is assumed as annual deposit = $3,750 \text{ m}^3/\text{year}$
 - \Rightarrow approx. <u>0.5 %</u> of total OM & R cost
- Item 3. Cost for removal of sediment deposit accumulated near confluences of the Maswala, Kidibo, and Mzase Rivers
 - Sediment volume: 14,000m³/year (total volume from three tributaries)
 - \Rightarrow approx. <u>2.0 %</u> of total OM & R cost
- 2) Other information on recovery cost

(a) Construction of flood protection measures recommended by the Flood Risk Assessment

 $\Rightarrow \underline{\text{TZS3,000,000,000}} = \text{USD 1,700,000} = \text{JPY200,000,000}$ (USD1.0=TZS1,750=JPY118.0)

RAHCO reported that although the funds had been approved by MOF, they have not yet been released to them (December 2015).

- (b) Budget of TRL for countermeasures and recovery at damaged section between Kilosa and Gulwe (requested by the Dar es Salaam Civil Engineers' Office to the TRL Central Office)
 - \Rightarrow Total <u>TZS581,201,000</u> = USD266,606 = JPY32,472,606 (USD1.0=TZS2,180=JPY121.8)

The above amount is estimated for flood protection measures at the nine sites, such as river training works, embankment and revetment, etc. However, as per TRL, it is not certain whether the full amount has been approved or not (December 2015).

3) Estimation in Final Report

The annual maintenance and recovery cost needs to be allocated for (a) remedial works, such as routine maintenance works against future flood damage, and (b) urgent recovery works immediately after flooding to recover railway operation. Therefore, the cost is estimated in such categories as follows:

- (a) Maintenance cost (for remedial works after floods)
 - The following structures should be properly maintained after construction:
 - Railway-related civil structures (track, embankment, bridges, culverts, slope protection works, etc.)
 - Railway operation systems (signals, station facilities, etc.)
 - Riverbank protections by gabion (revetment, foot protection)
 - Sediment control structures (ground sills, check dam, new channel)
 - Inlet and outlet channels connected with new and existing culverts
 - Annual maintenance cost (same rate applied in IT/R is adopted: 0.5%)

Initial investment x 0.5 % =TZS335,000,000,000 x 0.005

= TZ\$1,675,000,000 = JPY93,632,500 (TZ\$1.0=JPY0.0559)

 Removal of debris from culverts and sediment deposit from confluences of tributaries

Excavation $:14,000 \text{ m}^3/\text{year x TZS}21,000/\text{m}^3=\text{TZS}294,000,000$ (including hauling and dumping)

Subtotal: $1,675,000,000 + 294,000,000 = \underline{TZS} 1,969,000,000/year$ (A)

(b) Recovery cost (for urgent recovery works)

The type of damage and location of flood occurrences which will likely occur at the target area is difficult to reasonably assume. Therefore, the amount estimated by TRL as cited in Item 2) (b) above is used.

On the other hand, after completion of the proposed project, the flood damage could be significantly reduced compared to the present case. It is assumed that a similar magnitude of recovery works will be required once every five years in the future, and thus the annual average recovery cost is estimated as follows:

• TZS581,201,000/5 = TZS116,240,200/year (B)

As discussed above, total annual cost is estimated as follows:

(A) + (B) = $1,969,000,000+116,240,200 = \underline{TZS} 2,085,240,200/year$ (=JPY 116,565,000/year)

(6) Project Cost

The total project cost is shown in Table 10.96. The basis or the cost estimation has been set forth as follows:

Base cost	: April 2016
Exchange rates	$: US$1 = 113.1JPY^5$
	$: US$1 = TZS2,189.67^{6}$
	$: TZS1 = 0.0516JPY^7$

⁵ The dollar-yen exchange rate is the monthly average in March 2016 announced by the Bank of Japan.

⁶ The dollar-shilling exchange rate is the rate of Bank of Tanzania in 6th April 2016.

Price escalation:	
Foreign currency	: 1.6 % annually
Local currency	: 7.6 % annually
VAT	: 18 % of foreign and local portions
Import tax	: 15% of foreign portions
Physical contingency	: 10 %
Physical contingency for consultant	: 10 %

Item		Amount	
	FC (JPY)	LC (TZS)	Total in JPY
A. ELIGIBLE PORTION			
I) Procurement / Construction	12,141	513,735	38,650
Package-1	4,922	127,398	11,496
Package-2	2,962	115,205	8,907
Package-3	2,448	100,623	7,640
Base cost for JICA financing	10,332	343,225	28,043
Price escalation	705	123,807	7,094
Physical contingency	1,104	46,703	3,514
II) Consulting services	3,870	31,277	5,484
a. CES Services			
Base cost	2,912	22,140	4,054
Price escalation	98	4,305	320
Physical contingency	301	2,644	437
b. CBCM Services			
Base cost	489	1,647	574
Price escalation	19	341	37
Physical contingency	51	199	61
Total (I + II)	16,011	545,011	44,134
B. NON ELIGIBLE PORTION			
a. Procurement / Construction	0	0	0
b. Land Acquisition	0	1,538	79
Base cost	0	1,283	66
Price escalation	0	115	6
Physical contingency	0	140	7
c. Administration cost	0	25,705	1,326
d. VAT	0	153,954	7,944
e. Import Tax	0	46,544	2,402
Total (a+b+c+d+e)	0	227,741	11,751
TOTAL (A+B)	16,011	772,753	55,885
C. Interest during Construction	18	0	18
Construction	15	0	15
Consulting services	3	0	3
D. Front End Fee	0	0	0
GRAND TOTAL (A+B+C+D)	16,029	772,753	55,903
E. JICA finance portion incl. IDC (A+C+D)	16,029	545,011	44,151

Table 10.96: Summary of Project Cost (Unit: Million)

Source: JICA Study Team

10.3.4 Annual Fund Requirement

The annual fund requirement is shown in Table 10.97.

 $^{^7}$ The yen-shilling exchange rate is calculated by the footnote 1 and 2 above.

	Amount							
Year	FC (JPY)	LC (TZS)	Total in JPY					
2016	824	5,635	1,115					
2017	1,031	6,525	1,368					
2018	490	3,114	650					
2019	5,214	190,836	15,061					
2020	3,365	124,661	9,794					
2021	3,318	133,489	10,206					
2022	1,122	49,124	3,657					
2023	665	31,678	2,299					
Total	16,029	545,011	44,151					

Table 10.97: Annual Fund Requirement (Unit: Million)

10.4 Application of Japanese Technology to the Project Component

The conventional bank protection method is adopted in the main stream, the Maswala and Mzase Rives as mentioned above. However, these conventional methods much remain to be improved as followings:

- Construction cost
- Construction period
- Long-term durability of gabion structure
- Scouring for foundation of bank protection

The problems above have occurred before, but the following technologies (solutions) have been developed in Japan:

- Branch Block (retaining wall construction method)
- Filter Unit (material bagging method)
- In-situ Construction Excavated Material (recycling use of site material)
- Hat-type Steel Sheet Pile (wide shape steel sheet pile)
- TRD Construction Method (underground continuous wall construction method)
- Weathering Steel (materials for bridges build)
- RRR-B (method for construction of railway embankment)

This sections study the application of Japanese technologies to the Project components.

10.4.1 Branch Block

(1) Outline

This is one of retaining wall construction methods which is composed of pillar-shaped secondary concrete product, "Branch Block", with stone filling. This can form revetment structures and protect against slope failures with a reduced construction period.

(2) Principal Features

- Combined by natural stone and concrete products
- Can fit at curve and varied height/gradient
- Unnecessary pouring of concrete at field
- Speedy construction
- Material of random gravel and stone from field can be utilized.
- Regulate flow velocity by surface irregularity at revetment and protect foot erosion

Source: JICA Study Team

(3) Candidate Sites for Application

Protection at progressive bank erosion sections for the main stream and slope surrounding the Maswala and Mzase Rivers.

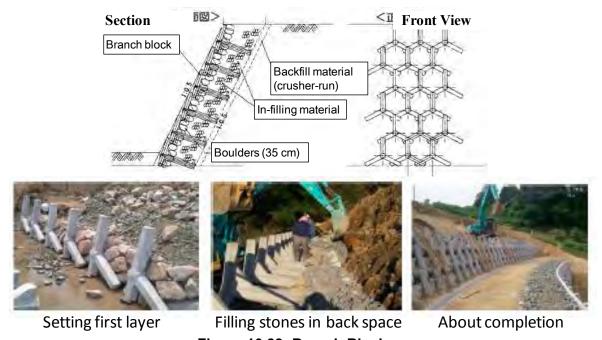


Figure 10.88: Branch Block
Source: Branch Block Association in Japan

(4) Evaluation for Imported Technology

	Item	Gabion Mattress Bank Prot	ection	Branch Block Bank Protect	tion				
		Revetment and Retaining wall cons method which is composed of steel cage " Gabion" with stone filling.		Revetment and Retaining wall construction which is composed of pillar-shaped prece- product "Branch Block" with stone filling	ast concrete				
		This can form revetment structures and protect against slope failure.							
Descr	iption of Method	Wall is constructed by Gabion (W H=0.5m, L=10m) which is arranged stepwise shape.	,	Wall is constructed by RC Pillar element (W=1.3m, H=1.2m, L=1.0~2.0m), boulders in front, and in -filling material behind which is similar as masonry retaining wall construction method					
Candidate	e Sites to be applied	Protection at bank erosion section along main stream, etc	and slope	Protection at progressive bank erosion so slope surrounding the Maswala and Mza					
	Merit	Conventional construction method		Short-term construction can be attained. Branch Block Bank Protection has dura longevity performance. Reduce velo roughness of the surface can mitigat foundation. Construction cost is lowe	city by e erosion at				
	Demerit	Gabion steel mesh has no durable k performance. This is not suitable to eroded bank where high velocity flo anticipated.	use at	It is necessary to provide technical guida experts from JAPAN during construction	2				
Construction	Unit price	US\$ 177.0 / Gabion m ³	100%	US\$ 248.9 / Banch Block m ³	141%				
Direct Cost	Wall cost (4.0mH, 1.0mThickness, 1:0.5)	US\$ 1,172 / 1.0m length	100%	US\$ 1,062 / 1.0m length	91%				
Construction Period	100m ³ wall construction period	9.9 days	100%	8.9 days	90%				
]	Evaluation	Construction Period. Branch Block Bank Protection is re section. Gabion Bank Protection is recomm	commended ended utilizin l be importe	d in view points of Performance, Construct d utilizing in extremely progressive ero ang in moderately progressive erosion d from JAPAN. It is necessary to provide ruction.	osion section.				

Table 10.98: Comparison of Slope Protection

Note: Construction period and direct cost consists of labor, machine, material, fuel, and miscellaneous expense, which is calculated based on "Daily productivity data per unit construction element in JAPAN.

Direct Cost is current price, not including contractor's indirect cost, VAT and contingency.

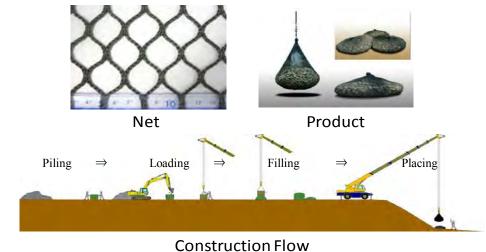
Exchange rate: 1US\$=2,189.67TZS, 1JPY=19.36TZS

Source: JICA Study Team

10.4.2 Filter Unit

(1) Principal Features

- Placement of mesh net, which is made of synthetic fiber, of in-filled stone is conducted by crane.
- Having more than 30 years resistance by improving weak points of weather ability.
- Due to the synthetic fiber, it is strong against sea water, acid, corrosion.
- Having advantages in workability and enable to complete in short period.


(2) Structure

- Shape : Bag (double layers)
- Material : Recycled polyester Russell net
- Net mesh : 25mm mesh

- In-filling stone crushed of dia. 50-200 mm •
- Rounded stones and lump of concrete can be utilized.
- Complete feature •
 - For 2t: Dia. 1.9 m x Height 0.4 m
 - For 4t: Dia. 2.4 m x Height 0.6 m

(3) Construction Record

Many examples, since 2002 in Japan and 2009 overseas.

Under installation

(1994)

19 years after Just after completion completion (2013) Site: Uji River in Yodo River basin

Source: Pamphlets of Kyowa Sumitomo Co.

Figure 10.89: Filter Unit

(1994)

(4) Evaluation for Imported Technology

Table 10.99: Comparison of Gabion and Filter Unit for Measures against FootErosion in Structures

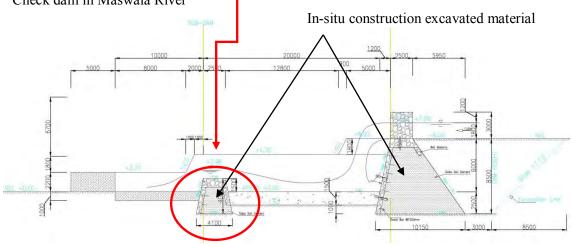
Description of Candidate Sites to Merit	[°] Method	The foot protection work is con Gabion (Stone = 5.7 m^3 :1.2W x which is arranged in stepwise s	age " Gabion" with n measures which t structed by x 0.5H x 10.0L)	Foot protection for river structure, composed of recycled polyester fib Filter Unit" with stone filling. resist to water current in weight on The foot protection work is constru Units (Stone=5.7m3 :1.25m3 stone	er mesh bag " structure's foot.			
Candidate Sites to		The foot protection work is con Gabion (Stone = 5.7 m^3 :1.2W x which is arranged in stepwise s	structed by x 0.5H x 10.0L)	The foot protection work is constru				
	o be applied	Gabion (Stone = 5.7 m^3 :1.2W x which is arranged in stepwise s	x 0.5H x 10.0L)	-	cted by Filter			
	o be applied	which is arranged in stepwise s	-	Units (Stone=5.7m3 :1.25m3 stone				
	o be applied		шцл.	bags) which is arranged in a trefoi	Units (Stone=5.7m3 :1.25m3 stone / bag x 4.56 bass) which is arranged in a trefoil share			
		1 I TOUR CHOIL OF PROPERTY		on and area around bridge pier, abut	-			
		Conventional protection work		Short-term construction can be attained by using machines in construction. Filter Unit Protection has durable longevity performance. Construction cost is lower. Flexibile bag can mitigate erosion at foundation.				
Demeri	it	This method can not save labor filling in cage needs manpower. term construction can not be att steel mesh has no durable longe Construction cost is a little high	Therefore short- tained. Gabion evity performance.	Recycled polyester fiber mesh bag needed to import from JAPAN.	"Filter Unit" is			
Direct construction cost	Unit price	US\$ 177.0 / Gabion m ³	100%	US \$ 166.5/ Filter Unit m ³	94%			
Construction period	100 m ³ foot protection	0.33 month	100%	0.17 month	52%			
		Filter Unit Foot Protection is re Construction Period.	commended in vie	w points of Performance, Constru	iction Cost, and			
Evaluati	ion	Recycled polyester fiber mesh bag "Filter Unit" is needed to import from JAPAN.						
		Gabion Bank Protection is recommended utilizing in moderately progressive erosion section.						
11000.	-	and direct cost consists of labor, machin runit construction element in JAPAN.	ne, material, fuel, and m	iscellaneous expense, which is calculated ba	sed on "Daily			
		t price, not including contractor's indire =2,189.67ГZS, 1JPY=19.36TZS	ct cost, VAT and conti	ngency.				
Source: JICA Stud	5							
Gabion mat	tress			Gabion mattress				
Embankment wall		Compacted backfill random materia Geotextile		Ge	Compacted random			
GAI		T PROTECTION		FILTER UNIT FOOT P	ROTECTIO			

10.4.3 In-situ Construction Excavated Material (INSEM)

(1) Outline

This is one of the artificial construction materials which is composed of cement, site materials (soil, sand, stone, etc.) and water. The material serves an intermediate function between the soil and concrete, and allows for the recycling of site materials and thus reduction of construction cost.

(2) Principal Features


- Having an intermediate function between soil and concrete and reducing construction cost by recycling materials
- Applicable in various parts of construction structures

(3) Consideration for implementation

- A thorough field test is required before it can be applied.
- Inferior in abrasion resistance compared with concrete. Therefore, the surfaces, if required, shall be protected with concrete blocks or stones.

(4) Applicable Sites and Structures

- Groundsills in Maswala, Mzase Rivers
- Check dam in Maswala River

Source: JICA Study Team

Figure 10.90: Applicable Part of In-situ Construction Excavated Material for Groundsill and Check Dam

(5) Evaluation for Imported Technology

Item	Conventional construction method utilizing normal concrete		Construction method utilizing Sabo Soil Cement (INSEM Method: In-situ Stabilized Excavated Materia)			
Description of Method	concrete plant or portable mixer. Then transporting to construction spot, placing concrete.		Mixing excavated soil, sand, water, and cement in field. Then transporting to construction spot, bulldozing mixed material, compacting with vibrating roller. The surface of the above, if required, protected with concrete, masonry.			
Candidate Sites to be applied	Ground sills, ch	eck dam	at Maswala, Mzase tributary			
Merit			Construction cost is lower. Residual soil could be reduced.			
Demerit	Construction cost is higher.		Durable longevity performance is lower. Therefore, if required, surface protection is needed.			
Direct Construction Cost for Check Dam	US\$ 2.9 Mil.	100%	US\$ 2.0 Mil.	68%		
Construction Period	2,200 m3/month	100%	2,800 m ³ /month	79%		
	Construction method utilizing S points.	Sabo Soil	Cement is recommended in follow	wing view		
	To reduce construction cost 32 %, To reduce construction period 20%					
Evaluation	Residual soil could be reduced. Therefore could contribute to reduction in environment load.					
Evaluation	Furthermore, mixing soil cement is utilizing improvement for soft ground.					
	Material investigation, sampling, trial mixing, and confirmation of mixing proportion					
	based on the result of hexavalent chromium elution test, is required before					
			conducted to reduce elution on pro-	oceeding		
	hydration exothermic reaction					

Table 10.100: Comparison of Construction Method

Note: Source; SABO & LANDSLIDE TECHNICAL CENTER JAPAN

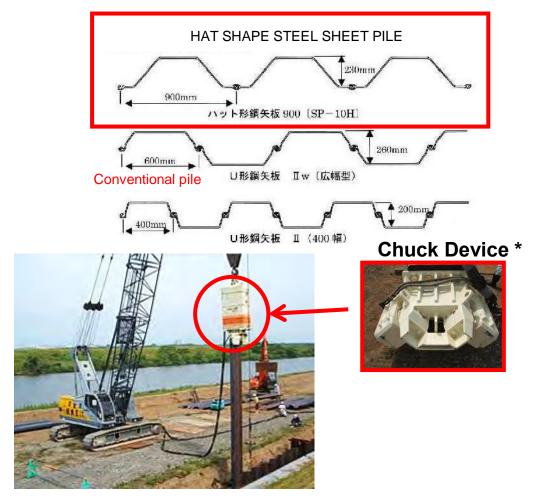
Direct Cost is current price, not including contractor's indirect cost, VAT and contingency.

Exchange rate: 1US\$=2,189.67TZS, 1JPY=19.36TZS

Source: JICA Study Team

10.4.4 Hat-Type Steel Sheet Pile

(1) Principal Features


- Having 1.5-2.25 times the width compared with 40-60 cm conventional piles
- Reduction of 10-30% of management costs and construction costs
- Steel sheet pile of 900 mm wide is applied as one of the original technologies of Japan.
- To reduce 1/2 to 2/3 of the construction period as compared with a conventional technology.

(2) Consideration for implementation

- To utilize a vibration-hammer for pile driving.
- The conventional "chuck-duck" device for steel sheet piles cannot be used for hat-shaped ones. Therefore, special devices should be imported from Japan.

(3) Candidate Sites and Structures to be applied

The foundation of bank protection where significant erosion is in progress at 300.88km~358.98km in total 6,080m and tributary 1,310m total distance 7,390m.

Source: Chowa Kogyo co.jp, Japanese Technical Association for Steel Pipe Piles and Sheet Piles

Figure 10.91: Hat-Type Steel Sheet Pile

(4) Evaluation for Imported Technology

	Item	Conventional Steel Sheet pile (400mm width)		Hat type Steel Sheet pile (900mm width)		
Description of Method (Steel sheet pile for leakage prevention)		Base machine: Hydraulic Crawler Crane 50~55ton		Base machine: Hydraulic Crawler Crane 50~55ton		
		Pile hammer: Conventional Electric Vibration Hammer 60kW		Pile hammer: Electric Vibration Hammer with variable moment float 60kW		
		Steel sheet pile: Type II (W=400mm, t=13mm)		Steel sheet pile: Hat Type 25H (W=900mm, t=13mm)		
Candidate	e Sites to be applied	The foundation of bank protection w 300.881km~358.98km in total 6,080m	U	1 0		
Merit		To utilize vibration-hammer for pile driving method, which is high versatility equipment.		Construction period can be shortened. Management and construction cost can be reduced.		
Demerit		Steel sheet pile is necessary to import.		Steel sheet pile, vibration hammer is necessary to import.		
	Nos.	7,390m / 0.4m =18,475 sheets	100%	7,390m / 0.9m=8211 sheets	44%	
Construction Direct Cost	Unit price	US\$ 663 / sheet-6m	100%	US\$ 1,184 / sheet 6m	179%	
Direct Cost	Direct cost (1,000US\$)	12,248	100%	9,721	79%	
Construction	10 nos sheets piling period	1.00 day / 4m	100%	0.69 day / 9m	313%	
Period 7,390m construction period		7,360/4*1.0=1,848day=61.6 month	100%	7,360/9*0.69=446 day =14.9 month	24%	
		HAT type steel sheet method is recommended considering following items :				
	Evaluation	To reduce 21% of construction cost				
Evaluation		To reduce 76% of construction period				
Note:		Sheet pile and electric vibration hammer should be imported from JAPAN				

Table 10.101: Comparison of Steel Sheet Pile

Construction period and direct cost consists of labor, machine, material, fuel, and miscellaneous expense, which is calculated based productivity data per unit construction element in JAPAN.

Direct Cost is current price, not including contractor's indirect cost, VAT and contingency.

Exchange rate: 1US\$=2,189.67TZS, 1JPY=19.36TZS

Source: JICA Study Team

10.4.5 TRD Construction Method

(1) Outline

This is one of continuous underground wall construction methods in Japan (herein refered to as "**TRD**": Trench Cutting Remixing Deep Wall Method).

The TRD mechanism works as follows:

- A cutter post which is chain-saw-shaped is used for excavation.
- A mixing machine is inserted into the ground to create a cavity of certain thickness.
- Cement slurry is then injected into the cavity and mixed with the soil.
- This process is continued sideways to create a continuous wall in the ground.

This can form underground revetment structures and protect against slope failures behind walls.

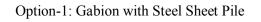
(2) Principal Features

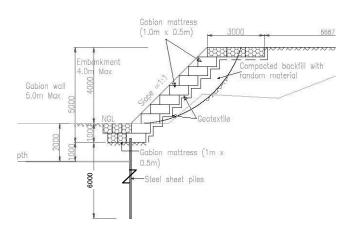
- No work is conducted on the natural riverbank. Therefore, the natural environment is preserved.
- Year-round construction work can be conducted without concern for river pollution and river diversion works.
- Mechanized work will result in labor and cost savings and shortening of construction period.
- Reduced noise and vibration impacts.

(3) Consideration for implementation

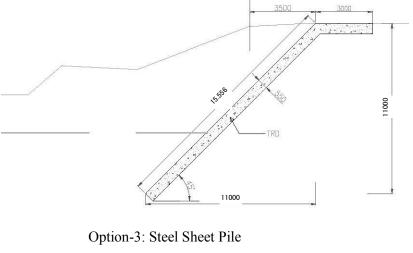
- There still remains a possibility of exposed TRD wall erosion when the front of the ground erodes.
- The TRD machine should be imported from Japan, and experts and technical guidance are also required for its usage.

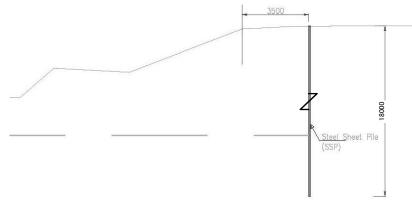
(4) Candidate Sites and Structures to be applied


The foundation of bank protection where significant erosion is in progress at 300.88km-358.98km in total 6,080m and 1,310m in tributary total distance 7,390m.


(5) Evaluation for Imported Technology

The evaluation for imported technology is conducted in a serious bank erosion in distance 7,390m.


		Option 1	Option 2	Option 3		
T.		Protection in front of Bank	Protection	behind Bank		
Item		Gabion with Steel Sheet Pile	TRD Method (Trench Cutting Re-mixing Deep wall)	Sheet Pile alone		
Locatic adoj	on to be pted	Section with serious bank erosion in total L=7,390m				
Schemat Sec	tic Cross tion	(See attached drawing)				
Description of Method Method Method Method Method Method		 Slope protection with gabion mattress (H=4m) is provided in front of the existing bank. Scouring protection with sheet pile (L=6m) is provided at bottom of gabion wall 	•Slope protection of underground wall behind the existing bank is provided by TRD method (L=15.6m)	•Slope protection of underground wall behind the existing bank is provided by SSP (L=18m)		
Advantage		•Conventional construction method adopted in the site at present	•Construction work can be done without coffering •Faster construction speed	•Construction work can be done without coffering		
Disadvantage		Coffering/dewatering is required in case river water is available.	Additional slope protection works will be provided in case of the wall is exposed due to progressive erosion. Special equipment shall be imported.	 Highest cost among three options Deep embedded depth of SSP (L=18m) is required to stabilize the SSP wall in case the wall will be exposed due to extermely progressive erosion. 		
	Scouring	Ø	0	O		
Effects of protection	Surface erosion	Ø	Δ	0		
	Retaining wall	0	Ø	0		
Co	ost	© US\$ 3,122/m	O US\$ 3,496/m	△ US\$ 4,950/m		
Construction Period		O 8.2 month	© 3.3 month	© 7.5 month		
Overall e	valuation	0		0		
		Gabion with Steel Sheet Pile is	recommend in view points of P	erformance, Construction cost.		
Source: JICA		s current price, not including contractor's	indirect cost. VAT and contingency			
		: 1US\$=2,189.67TZS, 1JPY=19.36TZS				


Table 10.102: Comparison of Riverbank Protection

10.4.6 Weathering Steel⁸

(1) Outline

In recent years, concern over Life Cycle Cost (LCC) is calling for structures that are low in cost and maintenance and, at the same time, high in durability. Bridges built with weathering steel can be regarded as meeting these needs.

(2) Principal Features

Weathering steel is produced by adding trace amounts of alloying elements, such as copper, chromium, and nickel to ordinary carbon steel, thereby improving the properties of the rust itself and suppressing the further development of corrosion.

(3) Consideration for implementation

- A comparison is required with ordinary steel bridge and concrete bridge (economic efficiency, construction workability, etc.).
- Weathering steel has a unique color.

(4) Applicable Sites and Structures

• Maswala River Bridge, Mzase River Bridge, and New Bridges near Km304 and Km306.

(5) Comparison of Ordinary Steel and Weathering Steel

Table 10.103: Comparison of Ordinary Steel Cost and Weathering Steel Cost

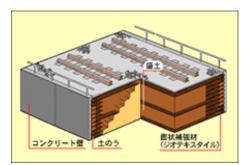
Item	Ordinary Steel	Weathering Steel	
Material Cost	10	12	
Production	40	40	
Bridging	25	25	
Others	25	25	
Initial Total Cost (Except Painting)	100	102	
Painting Cost (Initial)	7	0	
Initial Total Cost	107	102	
Painting (Maintenance)			
30 years	7*		
60 years	7*		
90 years	7*		
Total Cost (100 years)	128	102	

*Separately require the cost of scaffolding.

Source: JICA Study Team

10.4.7 RRR-B (Method for Construction of Railway Embankment)

(1) Outline


The RRR-B method is a reinforced soil embankment construction method used to build embankments with vertical slopes. RRR-B is a combination of cast-in-place rigid concrete wall and a synthetic polymer-based surface-shaped reinforcing material (geotextile or geo synth tex).

(2) Principal Feature

- It has high stability within a short reinforcement length.
- This method was developed by Japan Railway Technical Research Institute.

⁸ Although the accurate wording is "weathering steel", "weather-resistant steel" is also generally utilized.

- Embankments by RRR are higher in durability than the conventional methods
- RRR can reduce the fill amount and the acquisition of land, because the bank slope can be built vertically.

(3) Applicable Sites and Structures

• Areas slated for water protection of the railway embankment.

(4) Comparison of Ordinary Slope and RRR-B

Table 10.104: Comparison of Ordinary Slope and RRR-B

	Ordinary Slope	RRR-B
Figure	1:30 Wet Masonry + Crib Works Leveling Concrete Crushed Stone	Concrete. Wall
Cost	100%	96%

(5) Evaluation

RRR-B is recommended in comparison with Wet Masonry slope protection. However, in comparison with Branch Block slope protection, the Branch Block method is more advantageous in terms of both cost and construction period. Therefore, RRR-B is not adopted as a slope protection method.

10.5 Adjusted Preliminary Cost Estimate in consideration of Japanese Technology

As the result of methods comparison between conventional technology and Japanese technology in Section 10.4, the following Japanese technology is expected to reduce construction cost, shorten the construction period, ensure long-term durability, and be generally useful in the prevention of scouring in bank foundation.

- Branch Block (retaining wall construction method)
- Filter Unit (material bagging method)
- In-situ Construction Excavated Material (recycling use of site material)
- Hat-type Steel Sheet Pile (wide shape steel sheet pile)
- Weathering Steel (materials for bridges build)

This section studies the construction period and cost in which Japanese technology is applied to the main stream, Maswala River, Mzase River, and parts of the railway sections.

10.5.1 Shortened Construction Period

Table 10.105 shows the comparison of construction period between conventional and Japanese technologies. The construction period could be shortened 0.3 to 5.4 months in all sections by applying the Japanese technology of branch block, filter unit, and hat-type steel pile. The detailed construction period is shown in Appendix U.

D 1	Section No	Construction p	eriod (month)	Shortening of	D 1
Package	9	Conventional technology	Japanese technology	Period (month)	Remarks
	1-1	6.8	4.9	1.9	
	1-2	11.7	8.4	3.3	Branch Block and Filter unit
	2	8.9	6.7	2.2	instead of Gabion
	3	13.9	10.4	3.5	
1	4	11.7	7.2	4.5	Branch Block Filter unit and Hat
1	5	17.1	11.9	5.2	type steel pile instead of Gabion, standard steel pile
	6	9.9	7.4	2.5	
	7	12.9	9.7	3.2	Branch Block and Filter unit
	8	7.5	5.1	2.4	instead of Gabion
	9-1	11.5	8.6	2.9	
	9-2	18.5	15.8	2.7	
	10	18.5	13.1	5.4	Branch Block Filter unit and Hat
	11-1	7.9	5.8	2.1	type steel pile instead of Gabion, standard steel pile
2	11-2	15.5	11.1	4.4	Gabion, standard steer pile
2	11-3	13.7	9.9	3.8	
	12	5.5	3.7	1.8	Branch Block and Filter unit
	13	11.6	7.8	3.8	instead of Gabion
	14	13.2	9.5	3.7	instead of Gabion
	15	3.0	2.0	1.0	
	Maswala Training works	20.6	15.7	4.9	Branch Block, Filter unit, Hat
3	Maswala Check dam	12.1	9.3	2.8	type steel pile, and INSEM instead of Gabion, standard steel
	Mzase Training work	10.8	7.0	3.8	pile, and normal concrete
3	16	3.0	2.0	1.0	Branch Block Filter unit and Hat type steel pile instead of Gabion, standard steel pile
1	Rail -2	24.1	23.8	0.3	Branch Block and Filter unit
3	Rail-9	19.3	19.0	0.3	instead of Gabion

 Table 10.105: Shortened Construction Period

Source: JICA study team

10.5.2 Comparison for Direct Construction Cost between Conventional Technology and Japanese Technology

Table 10.106 shows the comparison of construction costs between conventional and Japanese technologies. The direct costs of construction could be reduced by TZS 11,750 million by applying Japanese technologies of branch block, filter unit, hat-type steel pile, and weathering steel. The detailed construction costs are shown in Appendix U.

⁹ location name of river section

Construction	Technology	Main stream	Tributary	Total
	Conventional	70,864	39,920	110,787
River construction works	Japanese	65,785	33,361	99,146
	Difference	5,082	6,559	11,641
Deilever construction mode	Conventional	11,	937	-
Railway construction works (weathering steel)	Japanese	11,828		-
(weathering steer)	Difference	109		109
Total (of difference)	-		-	11,750

Table 10.106: Comparison of Direct Construction Cost (Unit: Million TZS)

Source: JICA Study Team

10.5.3 Consideration for Japanese Technology

The utilization of Japanese technologies could reduce construction cost and shorten the construction period, as mentioned in Subsection 10.5.2. However, in implementing such technologies, the following considerations are still needed:

Branch Block (retaining wall construction method)

- Measures against scoring at the toe of Branch Block
- Long-term durability in the river if it contains high amounts of silt
- Repair works after completion of the project in case of the Branch Block damaged
- Technical assistance for manufacturing concrete pillar, and masonry work in Tanzania, etc.
- Field-proof testing shall be executed in Tanzania, if possible.

Filter Unit (material bagging method)

• Long-term durability of exposed net in dray season

In-situ Construction Excavated Material (recycling use of site material)

• Technical assistance for producing INSEM in Tanzania

Hat-type Steel Sheet Pile (wide shape steel sheet pile)

• Measures in case the geological conditions are not met with piling work

Weathering steel (for bridge superstructure)

• Weathering steel has a unique color.

11. **Project Implementation and O&M Structures**

11.1 **Project Implementation Structure**

Following the implementation arrangements for the World Bank-assisted TIRP, RAHCO will be the Executing Agency for the Project (see Section 3.2.5 for the implementation arrangements for TIRP). The organizational structure of RAHCO is described in Section 3.2.1.

As described in Section 3.2.1, RAHCO has, with only about 50 officials, insufficient technical capabilities to effectively manage a large-scale project such as TIRP and the Project. As of December 2015, for the implementation of TIRP, RAHCO was in the process of establishing a Project Implementation Team (PIT) as described in Section 3.2.5, recruiting several experts from outside of RAHCO.

In order to ensure smooth and effective implementation of the Project, it is essential to make similar arrangements to those for TIRP, and a Project Management Team (PMT) is to be established for the Project. The PMT is to be staffed with core personnel as listed in Table 11.1 who are to be provided by RAHCO and the Project.

Position	No of Staff	Main Responsibility
Chief of PMT	1	To be responsible for overall project management and coordination with concerned agencies.
Deputy Chief of PMT	1	To be responsible for all of the technical and financial aspects of the Project and assist Chief of PMT in overall project management.
Project Engineers (Civil Work/River Structure)	2	To supervise technical aspects of the Project and assist Deputy Chief of PMT in technical management.
Accounting Specialist	1	To undertake accounting management of the Project and assist Deputy Chief of PMT in financial management.
Procurement Specialist	1	To undertake procurement management of the Project and assist Deputy Chief of PMT in procurement management.
Assistant Project Engineers (Civil Work/ Hydrology)	2	To assist Project Engineers in supervising technical aspects of the Project.
Environmental and Social Specialist	1	To undertake environmental and social management of the Project and assist Deputy Chief of PMT in environmental and social management.
Support Staff (Driver)	1	To undertake day-to-day operation of PMT.

Source: JICA Study Team

The PMT for the Project is to undertake, but not be limited to, the following activities:

- Overall project management operations throughout the pre-construction and construction stages, including reviewing, monitoring, coordination, evaluation, modification of, and reporting concerning, project implementation
- Overall planning of the Project at the initial stage, including detailed planning of the implementation program of the Project, establishing and managing fund disbursement procedures, and establishing the organizational structure and communication channels for project implementation.
- Selection of, and contracting with, the consultants to be employed for the Project.

- Supervision of the design work and preparation of tender documents to be undertaken by the consultants employed for the Project.
- Arrangement for securing the budget from the Ministry of Works, Transport and Communications (MWTC) for any local portion of the funds required for the Project.
- Management regarding environmental and social impacts (including RAP/CRP during the detailed design) of the Project in accordance with the procedures and requirements specified in relevant laws and regulations.
- Management of tender processing and contracting for all of the contract packages of the Project, including advertising, pre-qualification of bidders, short-listing of bidders, tender call, pre-tender conference, site orientation, opening of tender, tender evaluation, contract negotiations with successful bidders, and other relevant activities.
- Overall management and monitoring of the construction works and related activities for proper control of the quality, progress and budget of the Project.
- Coordination with TIRP, funded by the World Bank.
- Reporting to, and coordination with, the agencies/entities concerned with the implementation of the Project, including JICA.
- Examination and approval regarding consultant's monthly statements of performance and contractors' monthly certificates of payment.

11.2 O&M Structure

11.2.1 Division of Roles and Responsibilities in Railway O&M

Table 11.2 shows the current and planned institutional setup for railway infrastructure management and railway services provision (which is an excerpt from Table 3.1 in Section 3.2 of this report).

Table 11.2: Current and Planned Institutional Setup for Management of Railway Infrastructure and Provision of Railway Services

		Transition	
Issues	Current	period	Long term
Railway infrastructure			
Ownership of infrastructure assets	RAHCO	RAHCO	RAHCO
Railway infrastructure development	RAHCO	RAHCO	RAHCO
Routine infrastructure maintenance and casual renewal ¹	TRL	TRL	RAHCO ²
Railway services			
Provide operational services for operators	TRL	TRL	RAHCO
Ownership of rolling stock	RAHCO	TRL	TRL
Provide railway freight and passenger services	TRL	TRL	TRL
Maintenance and repair of rolling stock	TRL	TRL	TRL
Procurement of new rolling stock	TRL	TRL	TRL

Notes: (1) Based on the Concession Agreement (2007), TRL is currently "responsible for the first US\$ 100,000 of the cost of any restoration to such lost or damaged immovable assets and to the extent that the total cost of such restoration is less than US\$ 100,000". (2) In July 2015, MOT mentioned that the transfer of this responsibility to RAHCO will be conducted by the end of 2019 when the TIRP Program is completed. However, it is still unclear who will actually conduct the maintenance work (see 3.2.6 (iii) for more details). Source: Table 3.1 of this report

Currently, routine infrastructure maintenance is carried out by TRL. In the long term, this responsibility is planned to be transferred to RAHCO, although the timing of the transfer and the way RAHCO will conduct maintenance work are still uncertain. It is planned that designing the right maintenance organization and sustainable maintenance activities as well as a training

program for RAHCO will be conducted as part of TIRP (see Section 3.2.4). The progress of these initiatives needs to be closely updated before and during the implementation of the Project.

In the short to medium term, TRL will be responsible for routine infrastructure maintenance. As mentioned in Section 3.2.6, considering that RAHCO does not have its own in-house maintenance workforce and that there is no plan to significantly increase the size of RAHCO's workforce, it is envisaged that even after the routine maintenance responsibility is transferred to RAHCO, TRL (and a private company currently contracted out by TRL) will subsequently carry out the maintenance work on a contract basis. It is therefore realistic to assume that TRL will continue to conduct routine infrastructure maintenance in examining the scope of any technical assistance for flood protection by JICA.

The railway services will continue to be provided by TRL. As described in Sections 3.2.3 and 3.2.4, strengthening the capacity of RAHCO and TRL is essential for revitalizing the Central Railway Line before introducing new institutional arrangements, including the implementation of the open access policy. In this regard, the Study Team's concerns over the reintroduction of PPP to the railway system in Tanzania are described in Section 11.2.3.

11.2.2 Setting Up of Operation, Maintenance and Safety (OMS) Team during Construction

The Project needs to be implemented under continued railway operation. Therefore, in order to undertake train operation and infrastructure maintenance safely and efficiently during the construction stage of the Project, an Operation, Maintenance and Safety (OMS) Team is to be set up, consisting of representatives from RAHCO, TRL, the supervision consultant, and the contractors for the Project.

The OMS Team for the Project is to undertake, but not be limited to, the following activities for the section between Kilosa and Gulwe:

- Monitoring of train operations, maintenance activities, and construction works.
- Planning and implementation of safety and protection measures on the construction sites.
- Securing evacuation areas to evacuate staff/workers on the construction sites and construction equipment/machinery, etc., in case of emergency.
- Maintenance of communication equipment.

11.2.3 Concerns over Reintroduction of PPP

Considering that the railway sector of Tanzania experienced a failure in the past of a concession arrangement, the sector should take a very careful step toward any re-use of the private sector forces to provide railway services.

It is necessary to note the important lessons learned from what occurred after PPP were introduced for railways in several African countries, including Tanzania, including the following¹:

¹ These lessons are based on the findings from a series of JICA studies on the development of economic or transport corridors in SADC countries conducted in the past several years.

- Refurbishment of railway system should be undertaken before transferring operation and maintenance works to concessionaires. Such refurbishment should be implemented with clear specifications and quality, which need to be documented explicitly.
- When deciding terms to be included in the concession agreements, the demarcation and responsibilities of contractors and concessionaires regarding maintenance should be clearly specified with details. In general cases, concessionaires are private commercial enterprises, which tend to seek maximum profit with minimum maintenance cost. Terms in the concession agreements should explicitly include the maintenance items to properly control this tendency.
- When transferring operation and maintenance works to concessionaires, the status of the railway system should be checked in detail, in the presence of contractors and concessionaires, and the conditions and qualities at the time of transfer should be clearly recorded.

11.2.4 Recommended Points on Railway O&M

Taking into account the above lessons on railway PPP and the current conditions of the railway system in Tanzania, it is recommended that the following points be considered by the Tanzanian government with respect to railway O&M:

- To improve railway infrastructure under the management by the public sector as a top priority.
- To achieve the level of rail freight tonnage during the peak times, i.e., in 2001–2004, under the current institutional setup before any re-use of PPP (including the open access policy) is implemented.
- To focus more on freight transport that will contribute to the improvement of financial performance of the railway system while placing lower priority on passenger services that would require operating subsidy.
- To strengthen the capacity of RAHCO and TRL under the current institutional setup.
- Not to rush toward complete vertical separation of the railway system, considering that even in Europe, there is no evidence indicating that vertical separation leads to better railway performance compared to vertically-integrated systems (see Box 11.1 below).

Box 11.1: Results of Selected Recent Research on Vertical Separation versus Vertical Integration in the Railway Sector

(a) J. Drew, and C.A. Nash (2011), "Vertical separation of railway infrastructure – does it always make sense?" Working Paper 594, Institute for Transport Studies, University of Leeds

- The results based on the analysis of railways in EU countries show that there is no correlation between vertical separation and the growth in rail freight traffic or rail's share of total freight traffic.
- If the key objective of vertical separation is to promote the efficiency and growth of rail freight, vertical separation may impede rail growth in some circumstances, particularly those in some Central and Eastern European countries where adequate government funding for infrastructure is not available.
- Before considering whether to make vertical separation mandatory within the EU, a much better understanding is required of the factors which determine competition, efficiency, and growth in the railway industry. On existing evidence, there is no reason to conclude that vertical separation improves rail performance.

(b) C.A. Nash, A.S. Smith, D. van de Velde, F. Mizutani, and S. Uranishi (2014), "Structural reforms in the railways: Incentive misalignment and cost implications," Research in Transportation Economics, Volume 48, pp. 16-23.

- The results based on the analysis of railways in European and East Asian OECD countries indicate that vertical separation raises costs for more densely-used railways and those with a higher proportion of freight traffic.
- It appears that the main reason for the above results is the misalignment of incentives, leading each player in the vertically separated system to seek to optimize their own costs rather than those of the system as a whole.
- There is no evidence that complete vertical separation leads to more competition.
- The findings of this research suggest that alternative railway structures will suit different railways with different patterns of usage and therefore a policy that seeks to impose complete vertical separation on all EU members would increase costs.

(c) Roland Berger (2012), "The optimal setup of a rail system - Lessons learned from outside Europe."

- This study was triggered by the debate on whether to impose complete separation on all EU members. It analyzed rail structures in the US, Canada, Japan, Russia, and China, which together account for 80% of global freight transportation by rail and 50% of passenger rail travel.
- Major railways in these countries have vertically-integrated structures that result in optimum resource allocation and efficient processes while avoiding additional costs. Integrated railways are able to act as a system integrator and help reach decisions by considering infrastructure and rolling stock jointly, based on their direct knowledge of customer requirements. As stated by several senior railway executives in these countries, key operational processes can be handled much more efficiently by integrated railways, especially when changes on short notice come into play and in case of intensely-used infrastructure. Integrated systems also avoid the additional interfaces and transaction costs of vertically-separated systems.
- Railways in these countries significantly improved their traffic volumes and personnel productivity over the last decade.
- Railways in these countries invest increasingly in assets. One reason could be that due to direct customer access, integrated railways are in an ideal position to forecast future transport needs and the required assets. They have an incentive to invest in infrastructure as they themselves are its main users.

12. **Project Implementation Plan**

12.1 **Project Procurement Plan and Method**

12.1.1 **Public Procurement System in Tanzania**

Currently, the public procurement system in Tanzania is governed by the Public Procurement Act (PPA) 2011 and its regulations titled the Public Procurement Regulations (PPR) 2013¹. As was the case for the previous Public Procurement Act 2004 (which was repealed by the PPA 2011), the PPA 2011 is modeled on the UNCITRAL (United Nations Commission on International Trade Law) Model Law on Procurement of Goods, Construction and Services $(1994)^2$.

The PPR 2013 has provisions for donor funded procurement (no. 11) as follows:

- 11.- (1) In dealing with donor funded procurement, the procuring entity shall observe the provisions of section 4(1) of the Act³.
 - (2) A procuring entity shall not seek clearance of tender documents or award recommendations from a foreign government, agency or institution that extended the loan, credit or grant before obtaining internal clearance of the same from an appropriate approving authority.
 - To the extent that the clearance or approval of the appropriate internal approving (3) authority conflict with the external clearance or approval of an external approving authority arising out of the loan or credit or grant agreement, the clearance or approval of the external approving authority shall prevail, but in all other respects, the internal clearance or approval shall prevail.

The above legal instruments are complemented by standard bidding documents and guidelines provided by the Public Procurement Regulatory Authority (PPRA), which is a regulatory body established under the PPA 2011. Table 12.1 shows these documents and guidelines.

Guidelines
 Advertisement and Disclosure Forms
 Procedural Forms
 Circulars to Procuring Entities
 Evaluation of Tenders and Proposal
 Preparing Responsive Proposals
 Tips for Preparing Responsive Bids

Table 12.1: Standard Bidding Documents and Guidelines by PPRA

Source: Public Procurement Regulatory Authority (PPRA)

PPR 2013: http://www.psptb.go.tz/news_files/psptb_496.pdf

¹ The PPA 2011 and the PPR 2013 are downloadable from:

PPA 2011: https://www.ppra.go.tz/index.php/95-legislation/140-public-procurement-act-2011

² For the new features of the PPA 2011 and the PPR 2013 compared with their predecessor act and regulations, see, for example, the following paper:

http://www.academia.edu/7317192/The_New_Facets_of_Public_Procurement_Law_in_Tanzania_A_Walkthrough_of the_Public_Procurement_Act_2011_and_the_Public_Procurement_Regulations_2013 ³ 4(1) of the Act is as follows: The basic principles of public procurement shall be to make the best possible use of

public funds with honesty and fairness.

The bidding documents for donor funded projects in Tanzania may generally be in line with, if any, the standard documents provided by donors. For example, it is reported that the bidding documents for the World Bank-assisted TIRP have been prepared in accordance with the Bank's Standard Bidding Documents.

12.1.2 Recent Major Procurement by RAHCO

Table 12.2 shows recent major procurement conducted by RAHCO. Some of them have been conducted by TRL on behalf of RAHCO.

Contract		
Year	Procurement	Contracting Company
2014	Remanufacturing 14 locomotives (88 Type)	Supplier: SMH Rail SDN BHD
	(BRN-C2)	(Malaysian enterprise)
2013	Procurement of new 22 coaches	Supplier: Sung Shin Rolling Stock
		Technologies Limited, Korea
2014	Repair of Tura quarry and its equipment	Contractor: CREATIVE
2014	Protection and Replacement of bridges at km	Design and supervision: Gauff
	293+050, 303+800 and 517+175 between	Contractor: China Civil Engineering
	Kilosa and Kidete on the Central Railway	Construction Corporation Ltd. (CCECC)
	Line	
2013/14	Bridge at km 349/450 and associated works	Design and supervision: Gauff
	between Godegode and Gulwe Stations on the	(Note that the works were suspended due
	Central Railway Line	to the bid price higher than the budget.)

Table 12.2: Recent Major Procurement by RAHCO

Source: RAHCO, TRL

12.1.3 Situation of Local Consultants

There are several international consulting firms working on railway projects/studies in Tanzania including those listed in Table 12.3.

Company Name	Railway Project Experience in Tanzania		
H.P. Gauff Ingenieure	2015: Feasibility study and preliminary design for the Arusha–Musoma		
GmbH & Co. KG -JBG, Dar	railway section		
es Salaam	2014: Design and Supervision of Protection and Replacement of		
(Germany)	Bridges Kilosa to Kidete on the Central Railway Line		
	2013: Design and Supervision of Bridge at Km 349/450 and Associated		
	Works between Godegode and Gluwe Stations on the Central Railway		
	Line		
	1988: Assessment of Flood Damages on Railway Line between Kilosa		
	and Kidete", with DE-Consult		
CPCS Transcom,	2013: Railways Upgrading and Performance Improvement Study,		
(Canada)	World Bank		
	2009: East Africa Railway Master Plan		
CANARAIL	On-going: Inspection and Capacity Rating of Railway Bridges:		
(Canada)	(Phase1) Dar Es Salaam to Isaka		
(Subsidiary of SYSTRA)	(Phase2) Tabora to Kigoma and Isaka to Mwanza		
	2014: Phase II of the Study for the Dar Es Salaam–Isaka–Kigali/Keza–		
	Musongati Railway Project		
DB International (Germany)) <u>2009</u> : Feasibility Study for the Isaka–Kigali/Keza–Musonagati Railway		
	Project		

Table 12.3: International Consulting FirmsWorking on Railway Projects/Studies in Tanzania

Company Name	Railway Project Experience in Tanzania
COWI International	2014: Upgrading of Tanga–Arusha and Isaka–Mwanza Railway Lines,
(Denmark)	Tanzania (aerial mapping, geotechnical investigations etc., feasibility
COWI Tanzania Consulting	and environmental studies, detailed design, tender documents)
Engineers & Planners Ltd,	
Dar es Salaam	
SMEC International	1977: Technical assistance for a change management program
(Australia)	implemented by the TRC with a particular focus on environmental
	frameworks

Source: JICA Study Team

As shown in Table 12.4 there are several major local consulting firms in Tanzania while only a limited number of firms have been involved in railway projects, as an associate consultant under international consulting firms.

		Example of Railway Project
Company Name	Field of Specialization	Experience
AMBICON	Design and supervision for:	Design of permanent protection works
ENGINEERING	buildings, bridges, highways,	on the El Nino damaged Kilosa-Kidete
LTD, Dar es Salaam	maritime & coastal, railways, river	section of Central Railway Line, 1999,
	training and protection	under WSP International (UK)
INTER CONSULT	Engineering/project management for	Flood prevention works between
LTD, Dar es Salaam	highways, water & waste, E&M,	Kilosa and Gulwe on TRC Central
	telecommunication, geotechnical,	Line Contract Nr 3806 Additional
	architecture, land survey, quantity	Works, 1997, under Mott MacDonald,
	survey	funded by European Union
APEX	Engineering/project management for	Unknown
ENGINEERING CO	highways, bridges, airports, harbours/	
LTD, Dar es Salaam	ports/ferries, water supply/sewerage	
	systems, irrigation systems, buildings	
MAK CONSULT	Engineering/project management for	Unknown
Engineering &	highways, airports, geotechnical,	
Transport Services	town planning, water & waste	
Ltd., Dar es Salaam	disposal, ESIA topographical	
	survey, traffic	
M- Konsult LTD,	Engineering/project management for	Unknown
Dar es Salaam	highways, transportation, bridges,	
	water & public health,	
	electrical/power	
NORPLAN	Engineering for highways,	Unknown
Tanzania LTD, Dar	transportation, structural, bridges,	
es Salaam	water supply & sanitation, ESIA,	
	energy and building services	
SOU CONSULT,	Engineering/construction	Unknown
Dar es Salaam	management for civil/structural,	
	sanitary, hydraulic, roads	
TANCONSULT	Engineering for structural, bridges,	Unknown
LTD, Dar es Salaam	multi-storey buildings, civil,	
	irrigation, roads and highways, urban	
	water supply and sanitation	
UWP	Engineering/construction supervision	Unknown
CONSULTING (T)	for civil/structural, highways, water,	
LTD, Dar es Salaam	mining, information management	
,	<i>c,</i>	

Table 12.4: Major Local Consulting Firms in Tanzania

Source: JICA Study Team

12.1.4 Situation of Local Contractors

The information on contractors in Tanzania can be obtained from the Contractors Registration Board (CRB), which is a regulatory body charged with responsibility for registration, regulation and development of contractors. A number of contractors are registered with the CRB, among which the Class-1 contractors covering civil works are listed in Table 12.5. Class-1 contractors are defined as those with no limit of amount in any single contract.

No.	Category	Company Name	Location	
1	Foreign	TENDAR INTERNATIONAL CO. LIMITED	Dar es Salaam	
2	Foreign	CHINA HENAN INTERNATIONAL COOPERATION	Dar es Salaam	
		GROUP CO. LTD		
3	Foreign	CRJE (EAST AFRICA) LIMITED (a member of China	Dar es Salaam	
		Railway Group Limited in China)		
4	Foreign	CHINA WU YI CO. LTD	China	
5	Foreign	MUTLUHAN CONSTRUCTION INDUSTRY COMPANY	Dar es Salaam	
		LIMITED		
6	Foreign	JIANGXI GEO-ENGINEERING (GROUP) CORPORATION	Dar es Salaam	
7	Foreign	CHENGDU SHEMNA INTERNATIONAL LIMITED	Dar es Salaam	
8	Local	ENGIPLAN LIMITED	Dar es Salaam	
9	Local	TONTAN PROJECTS TECHNOLOGY CO. LIMITED	Dar es Salaam	
10	Local	KEENMAN LIMITED	Dar es Salaam	
11	Local	MASIDO ENTERPRISES AND GENERAL SUPPLIES	Dar es Salaam	
12	Local	BUILDING, WATER & EARTHWORK LTD.	Dar es Salaam	
13	Local	TANPILE LIMITED	Dar es Salaam	
C	Contractors Desistration Deard (CDD) of Tongonia			

Source: Contractors Registration Board (CRB) of Tanzania

Table 12.6 shows the contractors undertaking recent major construction projects in Tanzania. It is highly likely that large-scale projects in the country will be undertaken by foreign contractors in the years to come.

No.	Name of Project	Contractor	Status
1	Rehabilitation and extension Kilimanjaro	BAM International	On-going
	Airport, Dar es Salaam	(Netherlands)	
2	BRT project in Dar es Salaam	STRABAG AG	On-going
		(Germany)	
3	Kigamboni Bridge over Kurasini Creek,	China Railway Jiangchang	Nearly
	Dar es Salaam	Engineering (T) Ltd., and China	completed
		Major Bridge Engineering	
		Company	
4	Flyover at Selander Bridge in Dar es	Korean contractor	Will start
	Salaam, with length of 1.03 km crossing		sometime
	the Indian Ocean (USD91.032 million		soon
	financed by South Korean Exim Bank)		
5	Protection and Replacement of Bridges at	China Civil Engineering	Completed
	km 293+050, 303+800 and 517+175	Construction Corporation Ltd.	in 2014
	between Kilosa and Kidete on the Central	(CCECC)	
	Railway Line		
Source	: JICA Study Team		

Source: JICA Study Team

From the current situation of local contractors in Tanzania, potential bidders for the construction work of the Project are likely to be European, Chinese, Korean, and/or Japanese contractors, some of which may joint venture with local contractors.

12.1.5 Basic Policy on Bidding Method and Conditions of Contract

In order to meet the urgent need for flood protection along the Central Railway Line, the period of time for procurement should be minimized to the extent possible while complying with the Guidelines for Procurement under Japanese ODA Loans (2012) that will be applied if the Japanese ODA loan is provided for the Project. Several potential measures for minimizing the time for procurement include the following:

- <u>Detailed design and preparation of bidding documents</u> Preparation of bidding documents is to be undertaken at the same time of detailed design, thereby starting the procurement of contractors earlier.
- <u>Selection of contractors</u>

The method to select "Single-Stage Two-Envelopment Bidding with Prequalification" rather than "Bids following Prequalification" may be used in order to save time for procurement of contractors, namely cutting a period of two months in the JICA standard procurement schedule as compared with the latter.

<u>Measures during construction</u>

Potential measures during construction include the following:

- ✓ To select contract packaging that will contribute to minimizing the period of construction (See Section 12.2.1 for Project Packages.)
- ✓ To utilize faster construction methods such as advanced construction methods developed, e.g., in Japan
- \checkmark To include incentive clauses in the conditions of contract
- ✓ To improve access roads to the project sites before starting the construction, especially between Kilosa and Kidete, and between Godegode and Kidete, both currently unpaved and in very poor condition
- <u>Temporary flood protection measures</u>

Since it takes several years to complete the Project, it is important to continue to undertake temporary flood protection measures until project completion in order to minimize delays of the Project due to negative impacts of floods on the construction. It would be effective to include annual preventive flood protection measures and faster recovery works in the scope of work of each construction package as Daywork.⁴

12.1.6 Selection of Consultants

The selection method shall be planned and conducted in compliance with the following JICA guidelines

- Chapter 1: Guidelines for the Employment of Consultants under Japanese ODA Loans, Handbook for Procurement under Japanese ODA Loans, April 2012.
- Standard Request for Proposals under Japanese ODA Loans, Selection of Consultants, October 2012.

⁴ For Daywork, see, for example, Clause 13.6: Daywork in FIDIC Conditions of Contract for Construction for Building and Engineering Works Designed by the Employer, Multilateral Development Bank Harmonised Edition, June 2010.

It is necessary to prepare the following items in advance:

- Short list of candidate consultants
- Request for Proposal (RFP) including the Terms of Reference (TOR), work plan, organization for the work, and staffing (composition of experts, etc.)

Selection of Contractors 12.1.7


The selection method shall be planned and conducted in compliance with the following JICA guidelines:

- Chapter 2: Guidelines for Procurement under Japanese ODA Loans, Handbook for Procurement under Japanese ODA Loans, April 2012.
- Standard Bidding Documents under Japanese ODA Loans, Procurement of Works, . October 2012.
- Standard Bidding Documents under Japanese ODA Loans, Procurement of Goods, May 2013.

Project Implementation Plan 12.2

Project Packages 12.2.1

The Project construction works are distributed along the Central Railway Line between Kilosa and Gulwe as shown in Figure 12.1.

Source: JICA Study Team

Figure 12.1: Distribution of Construction Works

When the Project is divided into a number of contract packages, the following conditions are taken into account:

- Geographical features, which are almost the same among the Project sections. •
- Distribution of construction works, which are determined according to the technical requirements, namely the construction of rerouting sections, track rehabilitation works, and riverbank protection works.

- The scale of different packages, such as work volume, contract amount, and completion of work should only have small differences.
- Construction works be completed as early as possible.
- Maintain high bid participation opportunity for potential bidders; contract amount should not be a risk for bidders.
- Ease in project management.

As the number of contract packages in the Project decreases, the size of each contract package (and thus, contract amount) increases. The larger scale contract packages have larger risks for all stakeholders. It is not easy, even for large companies, to bid for the large-scale contract packages, particularly in consideration of the nature of the Project, in which construction works are done over three years, including three annual rainy seasons. Therefore, large contract packages may narrow the range of potential contractors to participate in the bidding process.

Thus, it is important that appropriate packaging is made for potential bidders, and that all the contract packages have bidders and all the bids are successfully contracted. In this respect, the amount of the contract packages should be less than a certain amount, one which allows potential bidders to take part in the bidding. Considering the current state of bidding in the international construction industry, an amount around JPY 15 billion is acceptable.

In view of above considerations, the Study Team carried out a comparison analysis of packaging as shown in Table 12.7. The results indicate that three packages are recommended for the Project.

Comparison Items	One Package	Two Packages	Three Packages
Geographical features (A	88.9	P1: 44.3	P1: 27.3, P2: 38.0
length of section, km)		P2: 44.6	P3: 23.6
Distribution of works			
Rerouting section including	25.1	P1: 10.5,	P1: 7.7, P2: 6.4,
track installation (km)		P2: 14.6	P3: 11.0
Renewal of 60 lb/yd rails	15.0	P1: 15.0, P2: -	P1: 15.0, P2: -, P3: -
Refurbish. of 80 lb/yd rails	48.8	P1: 19.9,	P1: 4.6, P2: 31.6,
section		P2: 28.9	P3: 12.6
Bank protection for main	15.1	P1: 10.8	P1: 6.4, P2: 8.5,
stream		P2: 4.3	P3: 0.2
Tributary river training	-	-	P3: 2.6
work			
Temporary road	100.1	P1: 52.0	P1: 25.5, P2: 40.1,
		P2: 48.1	P3: 34.5
Work volumes per package	Largest	Medium	Small
Construction cost (current	28,043	P1: 13,458	P1: 11,496, P2: 8,907
price, million JPY)		P2: 14,585	P3: 7,640
Construction schedule	Could be nearly the	Could be nearly the	P1: 34.5
(period)	same with the three	same with the three	P2: 36.0
	packages	packages	P3: 36.0
Bid participation opportunity	Low	Middle	High
Project soft-management:	Integrated and easier	Coordination within	Coordination within
	than others.	acceptable level.	acceptable level.
Project physical aspect:	Long project section.	Mid-length sections.	Shortest sections.
Overall evaluation	Not recommended	Not recommended	Recommended

 Table 12.7: Comparison of Packages

Source: JICA Study Team

12.2.2 Procurement Plan of Products and Materials

The procurement sources of major materials and equipment for railway and river construction works are shown in Table 12.8 and Table 12.9, respectively.

	Procurement Source		
Materials	Domestic	Overseas	Remarks
Cement	0		m3/unit, 42.5 N/mm ²
Sand	0		m3/unit, 0-5 mm
Crushed stone	0		m3/unit, 5-20 mm
Gravel	0		2-20 mm
Admixture		0	AE (200lit/drum)
Plywood (form)	0		12 mm
Deformed bar		0	BS Grade 460
Equal angel steel		0	ton/unit, L-75*75
Channel steel		0	ton/unit, [-100*50
H-Beam		0	ton/unit, H-300
Steel sheet pile		0	ton/unit, SYW295 (II, hat 25H)
RC pipe	0		Dia. varied, L=1.0m
PVC pipe		0	d=100mm,150nn
Geotextile		0	t=10 mm with anchor
Gabion		0	0.5*1.2W*10L (m)
Rail		0	80 lb/yd, 24.0m or more, 3 holes at each end
Fish plate and accessories		0	For 80 lb/yd rail, 6 holes
Steel sleeper with fastenings		0	For 80 lb/yd rail, with elastic fastening
			(pandrol)
Turnout		0	80 lb/yd, 1:12
Ballast	0		Graded 20mm - 63mm, Granite stone.

 Table 12.8: Procurement Source for Major Materials

Source: JICA Study Team

Table 12.9: Procurement Source for Major Equipment

	Procurement Source		
Equipment	Domestic	Overseas	Remarks
Back hoe 0.45 m ³		0	Crauler, Bucket Capacity 0.45 m3, Engine
			power 60 kW
Back hoe 0.8 m ³		0	Crauler, Bucket Capacity 0.8 m3, Engine
			power 104 kW
Dump truck 4 ton		0	On-road, Diesel, Capacity tonnage 4 ton,
			Engine power 135 kw
Dump truck 10 ton		0	On-road, Diesel, Capacity tonnage 10 ton,
			Engine power 246 kw
Trailer flat bed		0	On-road, Capacity tonnage 15 ton
Truck crane 25 ton		0	With the hydraulic telescopic jib, Maximizing
			lifting load 25 ton, Engine power: 162 kW
Crawler crane 50 ton		0	Hydraulic winch, Lattice jib, Maximizing
			lifting load 50 ton, Engine power 102 kW
Motor grader 3.1 m		0	Earthwork, Blade width 3.1 m, Engine power
			85 kw
Vibration hammer 60 kW		0	Driving of steel sheet piles, Electric, Variable
			moment type, Engine power 60 kW
Vibration hammer 60 kW (for hat		0	Driving of Hat-type steel sheet piles, Electric,
type 900 mm)			Variable moment type, Engine power 60 kW
Concrete agitator truck 5 m ³		0	Transport of fresh concrete, Mixed capacity:
			4.4 m3, Engine power 213 kw
Concrete pump (boom) 110 m ³ /hr		0	Pouring of concrete, Boom-type, Pressure feed
			capacity 90-110 m3/h, Engine power 199 kw

	Procurem	ent Source	
Equipment	Domestic	Overseas	Remarks
Vibration roller 10 ton		0	Boarding type, Operating weight 8-10 ton,
			Engine power 77 kw
Asphalt finisher 2.4/4.5 m		0	Wheel type, Paving width: 2.4-4.5m, Engine
			power: 49 kw
Air compressor 18.5 m ³ /min		0	Portable type, Engine drive, Screw
			compressor, Discharge: 18-19 m3/min, 0.7
			MpPas, Engine power 240 kW
Power generator 200 kVA		0	Diesel engine, Rating capacity 200-220 kVA
Road-rail 8 ton dump track		0	Transport of replenishing ballast
			Rubber insulation crawler, Gauge 1,000 mm
Road-rail 8 ton crawler crane		0	Unloading of heavy articles and shifting of
			track panels in lateral directions
			Rubber insulation crawler, Maximizing lifting
			load 8 ton, Gauge 1,000 mm
Road-rail power shovel (RPS)		0	Forming of track ballast
			Rubber insulation crawler、 Bucket capacity
			0.3m3, Gauge 1,000 mm
RPS with 16-tool tie tamper		0	Tamping of track ballast
attachment			Maximizing construction depth under the
			sleeper 300mm, Vibration force 30000N×2
RPS gripper attachment		0	Unloading and arranging sleepers
Simplified track inspecting		0	Track inspection
instrument			Alignment (left and right), Longitudinal (left
			and right) Gauge, Cross level, Twist, Track
			distance, Gauge 1,000 mm

12.2.3 Traffic and Safety Management Plans

Traffic and safety management plans will be prepared in accordance with the relevant laws and regulations of the United Republic of Tanzania and the Guidance for the Management of Safety for Construction Works in Japanese ODA Projects (JICA, September 2014). In case these laws and regulations do not fully cover the safety and health issues for the Project, the relevant regulations of Japan will be applied as much as practical. The basic policy of the management plan is shown as follows:

- Basic Principles of Safety Management: <u>Safety is a top priority</u> All Project Stakeholders shall put top priority on safety and use their best endeavors to eliminate the occurrence of accidents.
- Compliance with Relevant Laws and Regulations Compliance with laws and regulations of the United Republic of Tanzania will be applied. In particular, as the occurrence of traffic accidents is envisaged, compliance with traffic rules will be stressed.
- Responding to natural disasters such as landslides and floods Using flood predictions provided by the collection of weather information, evacuation procedures can be done early.
- Method Statements on Safety The method statements, as shown in Table 12.10, will be prepared by contractors.

(1) Construction plant and machinery	Specifications and quantity of construction machines to be used
(2) Equipment and tools	Equipment and tools to be used
(3) Construction materials	Specifications and quantities of major materials to be used
(4) Necessary qualifications and licenses	Qualifications or licenses necessary
(5) Order of command (including names of supervisors)	Name of supervisors for each section of work.
(6) Work items	Work items classified into the unit work according to the order in the works schedule.
(7) Procedure for the execution of the works	Procedure for the execution of the major work operations for each type of work item
(8) Foreseeable risks	Foreseeable risks for each work item
(9) Precautionary measures	Countermeasures to prevent foreseeable risks, and the necessary protective gear

Table 12.10: Traffic and Safety	Management Plans
---------------------------------	-------------------------

12.2.4 Project Implementation Schedule

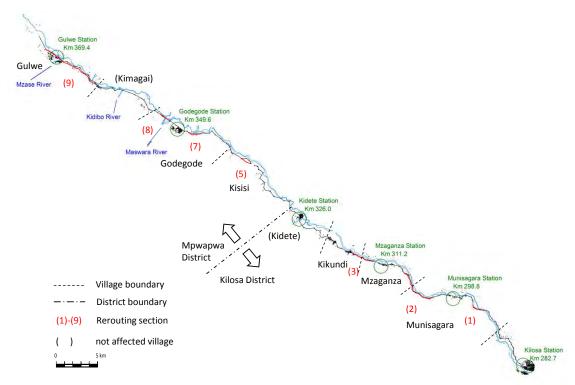
The Project implementation schedule as shown in Figure 12.2 is estimated on the assumption that the conclusion of loan agreement will be in October 2016. The implementation schedule shows major activities beginning from the fund allocation and ending at the end of warranty period. The project stages and their associated durations are as follows:

Loan Agreement	: October 2016
Selection of consultant	: 7 months after loan agreement
Land acquisition	: 10 months from commencement of detail design
Relocation	: 13 months after payment of compensation
Detail design and tender documents	: 16 months
Selections of contractors	: 13 months
Construction work	: 36 months
Completion inspection and trial run	: 2 months
Inauguration	: October 2022
Warranty period	: 12 months after the completion of the Project

Year	201516			201	5/17					201	17/1	8		Т			20	18/1	9			Т		2	2019	/20			Г		2	020	/21			Т			202	1/22	2					2	022/	/23			202	3/24
Month	5 6	7 8	9 =	-	_	3 4	5 6	7 8	9 =	_			4 5	67	8	10	_	_	<u> </u>	3 4	5 6	7	89				3 4	56	7	8 9	_	12		3 4	5 6	5 7	8 9		-		23	4 5	5 6	7 8	9			<u> </u>	3 4	56	5 7	
Appraisal mission, pledge, & signing of loan agreement					Τ		Π		Π		Π	Π	П	Т	Π	Γ	Π			Π				Π	Π					Π		Π														-			Π	Π		
Selection of consultant									T		Π	Π	T				Π	T											Π	Γ					Π	Π				Π					Π				Π	Π		T
Preparation of RFP			Т		T	Π	T	Π	П	T	Π	T	Π	Т	П	Τ	Π	T	П	П		П	1	Π	П		П	П	П	Т	Π	П	П	П	Π	П	1	П	Т	11		П	T	1	11	T	Π	Π	Π	П	Π	Ť
JICA's review and concurrence of invitation letter and RFP	Π	Π			Τ		П	Π	Π		Π	Π	П	Т	Π	Γ	Π		Π	П	Π			Π	Π			Π		Π		Π			Π	П										-	Π	Π	Π	Π		T
Preparation of technical and financial proposals					Τ		П	Π	Π		Π		П	Т	Π	Γ	Π		Π	Π				Π	Π					Π		Π				П										-		Π	Π	Π		T
Evaluation of technical proposal and JICA' review & concurrence							П		Π		Π	Π	П	Т	Π	Γ	Π			Π				Π	Π				Π	Π		Π	Π		Π	П	0000	Π		Π							Π	Π	Π	Π		T
Evaluation of financial proposal and JICA' review & concurrence	П	Π					П	Π	Π		Π	Π	Π	Т	Π	Γ	Π							Π	Π			Π				Π			Π			Π				Π	Π				Π	Π	Π	Π		T
Contract negotiation between RAHCO and consultant	П	Π			Τ		П	Π	Π		Π	Π	Π	Т	Π	Τ	Π							Π	Π			Π				Π			Π	Π	0000	Π				Π	Π				Π	Π	Π	Π		T
Preparation of contract documents	П	Π			Τ		П	Π	Π		Π		П	Т	Π	Γ	Π			Π				Π	Π							Π				П													Π	П		T
Approval for negotiation results and contract signing by GoT					Τ	H	Π		Π		Π	Π	П	Т	Π	Γ	Π			Π				Π	Π				Π	Π		Π			Π	П		Π		Π							Π	Π	Π	Π	П	Τ
Contract signing	П	Π			Τ		7	Π			Π	Π	Π	Т	Π	Γ	Π							Π	Π			Π				Π	Π		Π	Π		Π				Π	Π				Π	Π	Π	Π		T
JICA's review and concurrence of contract	П	Π			Τ			Π	Π		Π	Π	Π	Т	Π	Τ	Π							Π	Π			Π				Π			Π	Π		Π				Π	Π				Π	Π	Π	Π	Π	Τ
Survey, design and tender documentation		Π																											Π							Π				Π					Π				Π	Π		Τ
Approval of tender documents by GoT					I						Π				Π		Π												Π						Π					Π									Π			T
ROW boundary staking and land acquisition procedures							Ì				l				•		Π						-						T											Π									Π	Π	T	T
CRP preparation and approval															Π														Π									Π									Π		Π	Π		T
Payment of compensation								Π			Π		П	Т	Π		Π							Π																									Π	Π		T
Preparation of relocation site and LRP		Π										H		+															П	Π																	Π		Π	Π	Π	T
Relocation					Τ						Π													Π																			-			-			Π	П		T
Selection of contractors	Т	Π	П	T	T	П	Т	Π	Π	T	Π	П	Π	Т	H					H	-			Π	Π								П					Π											Π	Π		T
Preparation of RFP								Π			Π		П	Т			Π							Π																									Π	Π		T
JICA's review and concurrence					Τ						Π		Π	Т			Π							Π	Π				П						Π			Π					-				Π		Π	Π		Τ
Preparation of technical and financial proposals					Τ						Π		Π	Т									-	Π	Π												-						-			-		1	Т	П		T
Evaluation of Prequalification								Π			Π	Π	Π	Τ			Π							Π					Π								-	Π					-			-		1	Т	Π		T
Evaluation of technical proposals											Π			Τ															П																				Т			Τ
JICA's review and concurrence											Π			Τ																																			П			Τ
Evaluation of financial proposals					Τ						Π		П	Т	Π								-	Π	Π												-						-						Т	П		T
JICA's review and concurrence										-	Π			Τ															Π																				Т			Τ
Contract negotiation between RAHCO and contractors											Π			Τ							-								Π																				Т			Τ
JICA's review and concurrence											Π			Τ																																			П			Τ
Issuance of notice to proceed								Π	Π		Π	Π	Π	Τ	П								7						Π						Π														П			Τ
Opening of L/C and L/Com		П			1						Π	Π	T	T															П	Π		Π			Π			Π	T						Π				Т	Π	Π	T
Package 1: Railway rerouting construction works															Π																																					Ι
Track installation	Π	Π	T	Π	Τ	Π	Π	Π	Π	Π	Π	Π	Π	T	П	Π	Π	Π	Π	Π		Π	Π	Π	П	T	Π	Π	П	Π	IT	П	Π	1:1.3	7 m 📕		Т	П	3:	2.7	n.				Π	T	Π	Π	T	T	Π	T
Renewal of 60lb/yd rails and refurbishment	Ť	Π	T	Τ	T	m	T	Π	$\uparrow\uparrow$	Τ	m	Ħ	$\uparrow\uparrow$		TŤ	T	m	T	m	П	m	T	Ê	P	rocure	ement	<u>}</u>	60b/s	netocolor Netocolor	neval.		TŤ	П	m	TŤ	\uparrow	T	TT	T	ПŤ	T	П	T	1	Π	Ť	T	\square	1	T	T	Ť
River construction works	Ť	+	Ť	Τ	T	Ħ	1	Π	\dagger	Τ	Ħ	††	++		††	T	Ħ	Т	h	Ħ	T	\square	T	Ħ	Ħ										it i	Ħ	T	ΤŤ	T	Ħ	Т	h		十	Ħ	-	m	+	T	T	11	1
Package 2: Railway rerouting construction works		Η			1			Π			Ħ	Ħ	Π	T	Ħ		Π		Π	Π	H	П															-			П		П		1	П		П		T	T	Ħ	T
Track installation	-		T	T	1	\square	1		$\uparrow\uparrow$	T	Ħ	Ħ	\top		Ħ	1	Ħ	\neg	h	$\uparrow\uparrow$	h	1	1	Ħ	Ħ		ΗŤ	tt	tt	\square	m	tt	\neg	h	ahandan	o comb		handa		km		m	1	1	Ħ	-	m	+		m	11	1
Refurbishment of 80lb/yd rails section		+	Ħ	\uparrow	t	$^{++}$	1	Η	††	\uparrow	Ħ	†	+	-	Ħ	\top	H	+	H	$^{++}$	H	\top	E	H-	TOCUT	ement		亣	$^{++}$	†	Ħ	tt	$^{+}$		$\dot{\tau}$		÷	<u>it</u>	urbist	hmen		-	-	+	Ħ	+	H	$^{++}$	十	Ħ	竹	t
River construction works	+	+	Η	+	+	\mathbb{H}	$^{+}$	$^{+}$	+	+	Ħ	†	+		$^{++}$	+	H	+	H	+	H	+	T	Ħ	ff													F	T	Ħ		T	Ħ	T	†	+	H	+ +	十	Ħ	$\uparrow \uparrow$	+
Package 3: Railway rerouting construction works		+	1	1	+			Η		1	Ħ	Ħ	+	+	Ħ	t	H		H	Ħ	H	Ħ																							H	+	H		+	Ħ	Ħ	$^{+}$
Track installation	+	+	Ť	$^{+}$	+	+	+	$^{+}$	+	$^{+}$	H	Ħ	+		$^{++}$	+	H	+	H	+	H	+	T	Ħ	f		IT	fŦ	ff	Ħ	F	fF	П	8:	.skm						9; 9.2	hm			Ħ	+	H	+ +	十	Ħ	Ħ	t
Refurbishment of 80lb/yd rails section	+	+	H	+	+	++	+	+	+	+	H	$^{+}$	+ +		$^{++}$	+	H	+	H	+	h	+	÷	۲	TOCUM	emert		$^{++}$	$^{++}$	+		Refuel	bishipu	ent	tf	$\uparrow\uparrow$	十	Ħ	1	Ħ	+	\vdash	+	7-	$^{++}$	+	\vdash	++	\neg	++	+	-
River construction works	+	+	+	+	+		+	+	+	+	\mathbb{H}	\mathbb{H}	+	-	++	+	\mathbb{H}	+	H	+	\vdash	+	F	Fŕ	T											Ы				Η	+	\vdash	+	+	$^{++}$	+-	\vdash	+	+	++	+	+
Trial run		+		+	+		1	+		-	H	+	+	+	+	+	+	1	H	+	H	+	1	H	+				П	Ħ		П	T		T	Ħ	1	П	T	H		\square	-	+			\vdash		+	+	+	+
I rial run Inauguration		+		-	+			+			\mathbb{H}	+	+	+	+	+	+		\mathbb{H}	+	+	+		\mathbf{H}	+				+			+		\square		+				\mathbb{H}			-	-		╈	+		+	++	╉	+
Warranty period	+	+			+			+			H	+	+	+	+		\mathbb{H}		\mathbb{H}	+	+	+		\mathbf{H}	+		\square		+	+		+	+	H		+	-			H		\mathbf{H}	-	+	1 1	_			╈		╈	+
	+	+	-	-	+		1	H			Н	H			Ш				Ц	Ш		L	1						Ц			Н			H	Ц			1	Ц			1		1 1			1				_
Consulting services		- 1 - 1		11	1	1	1		- (0.00									- 1 - 3				1	1 1			1		10 1		0 6	- 1		() ()		1	9 6	-9-4	(1		(i i i i i i i i i i i i i i i i i i i		1					100			-

Figure 12.2: Project Implementation Schedule

13. Environmental and Social Considerations


13.1 Environmental Impact Assessment (EIA)

13.1.1 Project Components Which May Affect Environment

The project components to be considered in this chapter are listed below.

(1) Rerouting

In total 25 km of the existing railway between Kilosa and Gulwe is to be relocated toward mountainside, a movement of at most five hundred meters, to avoid the impact of flooding. The rerouting sections consist of the seven sections shown in Figure 13.1; Section 9 includes the relocation of Gulwe Station for one kilometer to the west. Each rerouting section is built by embankment or cutting of the mountain slopes.

Source: JICA Study Team

Figure 13.1: Location of the Rerouting Sections

(2) Bank Protection

The riverbank is protected by installing gabion/blocks. The locations of these are presented in Subsection 10.1.9.

(3) River Training Works

At Maswara and Mzase Rivers, which are tributaries of the mainstream, the river course is straightened and defined by excavating channels together with constructing a check dam and groundsill. The details are presented in Subsection 10.1.10.

(4) Construction Access Road

The temporary construction access road will be prepared along the existing railway within the ROW.

13.1.2 Environmental and Social Conditions of the Study Area

(1) Land Cover and Land Use

Typical conditions of land cover and land use between Kilosa and Dodoma are presented in Figure 13.2 and Figure 13.3. Forest is the typical land cover around Kilosa, while bushland mixed with agricultural land are common in the western half of the Kilosa-Gulwe section. After Gulwe and toward Dodoma, the condition becomes drier. Pasturing is commonly observed at the bushland.

Forest near Kilosa

Source: JICA Study Team

Bushland at the west half of the Kilosa-Gulwe section

Figure 13.2: Typical Land Cover (Vegetation)

Agricultural land (maize) near Gulwe Source: JICA Study Team

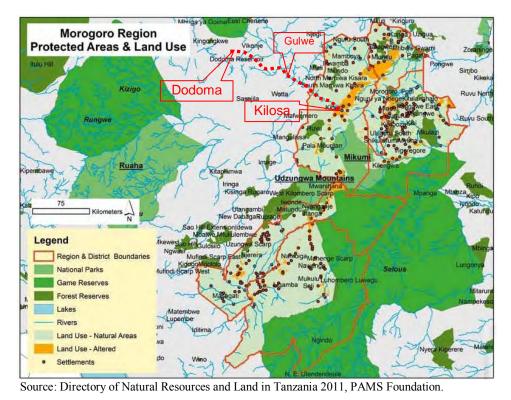
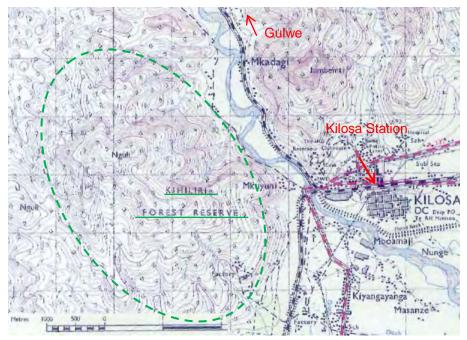

Pasture at the bushland

Figure 13.3: Typical Land Use

(2) Protected Areas

Distributions of national parks, game reserves and forest reserves in Morogoro and Dodoma region are presented in Figure 13.4 and Figure 13.5. The closest reserve to this project area is Kihiliri forest reserve located near Kilosa Station. Although the location is close to the project

area, an environmental impact to the reserve is not anticipated as the location is segregated from the railway by the river (Figure 13.6). The other reserves are located more than several kilometers away from the railway.



Legend **Dodoma Region** arangire **Protected Areas & Land Use** Region & District Bound National Parks Game Reserves Forest Reserves Lakes Rivers Land Use - Natural Areas Land Use - Altered Settlements Gulwe Dodom Kizigo Ruaha

Figure 13.4: National Parks and Reserves in Morogoro Region

Figure 13.5: National Parks and Reserves in Dodoma Region

Source: Directory of Natural Resources and Land in Tanzania 2011, PAMS Foundation.

Source: Topographic map with a scale of 1 to 50,000

Figure 13.6: Location of Kihiliri Forest Reserve and the Railway

(3) Socio-economic Conditions by District

The Railway Line along the Kilosa-Dodoma section runs through the three Districts: Kilosa of the Morogoro Region, and Mpwapwa and Chamwino of the Dodoma Region. The present socio-economic conditions of each District are summarized below based on the information collected from each District Office.

General Land Usage by Districts

Kilosa District:

The District's land use consists of Agriculture (37%), Grazing (33%), Mikumi National Park (22%), Forest (5%), Built-up area and wetlands (1%).

The rail alignment runs through the two agro-ecological zones – Medium High Zone and Plains – where maize, rice, cassava, sorghum and bananas are cultivated.

Mpwapwa District:

The District's land use consists of Agriculture (31%), Grazing (35%), Game Controlled Area (19%), Forest Reserve (1.2%), Community Forest (0.9%), Settlement (4.2%) and Water Bodies (4.2%) – marsh and wetlands.

Agro-ecologically, the rail alignment, existing and proposed, lies within the Intermediate Zone (IZ) and the Low Land Zone (LLZ). Agriculture in the IZ features the cultivation of paddy, maize, sorghum and legumes, as well as dairy and traditional livestock. Agriculture in the LLZ features cultivation of dry resistance crops including millet, maize, sorghum, groundnuts, beans and tropical fruits. However, due to its temperature, the greatest part of the area is used for grazing traditional livestock.

Chamwino District:

Chamwino District has a total area of 8,856 square kilometers (km²), out of which 4,823.066 km² (54.45%) is potential land for agriculture, 1864,937 km² (21.05%) is currently under cultivation, 1093.192 km² (12.34%) is used as grazing land, 813.1 km² (9.18%) is used as residential area, 1960.96 km² (22.14%) covers natural forest, 63.08 km² (0.71%) is used as forest reserve area and 102.1 km² (1.15%) is wetland. (Source: District Vulnerability Report, 2012.)

The District is characterized by two agro-ecological zones in terms of annual precipitation -a zone with 400 mm rainfall and another with 550–650 mm, with different soil features.

Key Socio-economic Features by District

Key socio-economic features by District are collected from respective District Offices. Extracted are the relevant facts in terms of employment structure, ethnic variety, poverty indicators, sources of household cash income, health situation, and availability of water, types of crop cultivated, and so on.

These facts constitute fundamental inputs to comprehend the target area's socio-economic baseline data.

Kilosa District (Extracts from District Profile, 2014):

- Employment Structure by Sectors: More than 80% of the District population is employed by the agriculture sector. They are engaged either at the subsistence level, growing (rice, maize, beans, cassava, and bananas) or in cultivating cash crops (sisal, sugar cane, cotton, and sunflowers). Aside from agriculture sector, office work (2.8%), livestock keeping (0.93%), fishing (0.08), plant operations (0.49%), and informal sector (15.7%) constitute other employment patterns.
- **Production of cash crop and food crops:** The District's volume of cash crops, in terms of annual yield in tons (Source: Agricultural & Livestock Dept. August 2010) is as follows: cotton (47,515), onion (13,277), sugarcane (573,294), groundnut (1,763), and coconut (4,549).

Major food crops produced (for the year 2009/2010, in tons/year) are maize (153,939), cassava (55,543), rice (43,059), banana (27,705), sweet potato (14,799), beans (13,332) and others.

- **Livestock keeping:** Cattle, goats, sheep, pigs, and poultry represent the major livestock kept. This activity is mostly performed by Masai and Sukuma tribes who migrate to the District from other regions. Grazing is the major type of livestock keeping used by livestock keepers which in turn create social and environmental consequences with those settled farmers and cultivators. Nomad-like practices coupled with overgrazing has so far produced social conflicts among farmers and pastoralists, resulted in demarcation of a confined settlement at Twatwatwa for Masai tribes to settle.
- **Proliferation of HIV/AIDS:** According to the District Medical Office report (2010), out of a total of 16,986 persons of age above 15 screened, 1,961 persons are identified as HIV positive.
- Water Supply: The District population is served by shallow wells (737 schemes, 139, 985 population served), gravity water supply (4 schemes, 36,226 population served), and piped water supply (33 schemes, 158,650 population served). In particular, at Kidete Ward, villagers depend on 52 shallow wells, of which 43 are working (Source: Kilosa District Water Department, 2009).

Mpwapwa District (Extracts from District Profile, 2014):

- Village Land Development: As the existing rail alignment currently does, and proposed rail alignment will, traverse rural village land, it is critical to comprehend current village land use planning statuses in view of conducted surveys. In the Mpwapwa Division, 35 villages were surveyed, however none are offered certificates. (Source: Mpwapwa District Land, Natural Resources and Environment Department, 2012)
- Main Economic Activities: About 90% of the people in the District are engaging in agriculture and livestock rearing as their major source of income. Agriculture employs about 86% of the District's labor force population.
- **Crops produced:** During 2011/2012 season, 31,968 tons for food crops were produced. The food requirement for the period of 2012/13 is 70,460 tons and hence there is a food shortage of 38,492 tones. A total of 39,189 households had food shortages.
- Animal Husbandry: Livestock keepers who practice traditional animal husbandry (free range system) keep cattle (179,737), goats (148,317), sheep (56,343), donkeys (3,262), pigs (3,102), dogs (9,064), and chicken (204,923). It is estimated that the livestock sector contributes to about 45% of the total District GDP.
- Ethnic Groups: The dominant ethnic groups are Gogo (40%), Kaguru (16%), and Hehe (11%), in terms of total District population of 305,056 (National Population Census' Projection (2012)). Also present are a small number of pastoral groups of Wamang'ati and Wamasai, grazing at Mtera Dam and Ruaha Rivers.
- **Rural Women's Domestic Work:** Mpwapwa District's women use about 80% of their time to get essential services such as water; firewood, health services, education, milling machine, markets, shopping, and other services at a distance of 2-10 km.
- **Employment by Sector:** Agriculture and livestock activities employ about 90%, small and medium scale businesses employ 7%, small-scale industries employ 1%, and office works employs 2% of the total population.
- **Poverty Indicators:** Only 28% of Mpwapwa District residents live below the basic needs poverty line (Poverty and Human Development Report, 2005).
- Access to Clean Drinking Water: The proportion of households supplied with piped water in the wet season was 37%, compared to 43.9% in the dry season (The National Sample Census of Agriculture 2002/03). The well is the second main source of drinking water in Mpwapwa District, followed by springs and surface water such as river, streams, and dams. The District has 32 boreholes, 81 shallow wells (using hand pumps), and 32 water springs. The number of people served with clean water in the District has been increasing from 52.4% in 2007/08 to 60% in 2012/2013.
- **Fishery:** Fishing is not an economic activity rather than merely for domestic consumption. However, fingerlings, mainly of the Tilapia species, are the main fish type available. Fishing activities are usually undertaken in Mtera Dam in Rudi Ward. Wetlands in Mlunduzi Ward are also potential areas for ponds and fisheries.
- **Health:** The healthcare system consists of 1 hospital, 4 health centers, and 52 other facilities (48 are public, 4 owned by Parastatal, and 1 is private). 46 out of 93 villages have health facilities equal to 51% of the total villages. Only 25.5% of the total population lives within 5 km from health facilities.

• **Types of Toilets:** Almost all households in Mpwapwa District (87.3%) use traditional pit latrines, followed by those with no toilets (8.2%), improved pit latrines (1.4%), and flush toilets (1.3%) (Source: National Sample Census of Agriculture 2002/03)

Chamwino District (Extracted from District Profile, 2012):

- Limited Dependency on Railway Service: The Central Railway Line serves about 15.6 km in the District, which passes through Igandu and Mnase villages. However, this means of transport has some caveats, such as the infrastructure being old, and the District has limited influence on the ability to improve the railway.
- Agriculture and Livestock Sector: More than 90% of the District population relies on agriculture.

Out of 563,920 hectares suitable for agricultural production only about 246,821(44%) hectares are used for crop production.

Common crops produced include food crops such as sorghum, maize, and cassava. Cash crops grown include grapes, sunflower, groundnuts, bulrush millet, and paddy.

Apart from agriculture, livestock keeping is ranked second as a vital economic activity in the District. In 2012 the District had an estimate of 284,749 indigenous cattle based on 2002 livestock census projection, where number of cattle was 185,659, goats was 41,384, and sheep was 9,007.

HIV/AIDS Proliferation: HIV/AIDS is still a problem in the community and has been affecting the workforce in the District. The rate of infection dropped from 3.0% in 2007 to 2.6 % in 2013. The District Council will continue enhancing sensitization strategies to reduce the spread of HIV/AIDS and improve care of HIV victims.

Children' Issue: The District Council is aware of impacts from increased crime rates and social problems, like street children and drug addicts.

Water Supply: A District-wide absence of reliable water sources – permanent rivers and springs – has led the community to depend on water from boreholes, shallow wells, and rainwater harvesting. The District has 201 water supply schemes capable of providing clean and safe water to 72% people of the District. 66 villages out of 77 in the District have water committees and established water funds.

Fact-Finding through Discussions with District Council Officials

Fact-finding results are grouped by thematic topics of the JICA Study's concern, consolidating District-by-District facts identified by field data collection and interviews with responsible District Officers.

Past Dependency on Railway Services (Freight and Passengers) and Future Expectations:

Kilosa: Railway transport used to be acknowledged as cheaper, reliable, and able transport in bulk compared to road transport. Poor railway services have had some significant negative impact on the socioeconomic development of Kilosa District because of the reduced frequency of traders/middlemen coming to buy agricultural commodities (maize, rice, sunflower, and onions) and transporting via railway.

Mpwapwa: Cash crops were transported by railway in the past. Other goods transported by railway were livestock (cattle and goats).

Copper mining at Kinusi area in Gulwe also depended on railway services in the past. There is a copper processing factory in the Gulwe area which would benefit from improved railway services.

Chamwino: The railway used to be a major means of transport to Dodoma (Town) and other regions in Tanzania as there are no commuter buses in the area. Based on the production capacity (there is little or no surplus production due to rainfall scarcity) in the area, passenger trains are more important than freight trains.

Status of Village-level Land Use Planning Eligible for Development:

Kilosa: None of the villages have a land use plan established.

Mpwapwa: Villages' (in adjacency of existing alignment) land use planning status not known.

Chamwino: Igandu and Mnase are the only villages along the Gulwe-Igandu railway section in Chamwino District. Neither of these villages has a land use plan. Chamwino District has a total of 99 villages and only seven have a land use plan.

Modality of Farmers' Cooperatives Capable of Exercising Power on Railway Operation and Services:

Kilosa: There are groups of small number of farmers (named SACOS) supportive of the railway (freight) services.

Mpwapwa: There are no formal farmers' organizations, but the Mpwapwa Agricultural Society (MPWAGRISO) is emerging as supporter of smallholders.

Traditionally, the local people (ethnicity of Wagogo or Gogo), are not good farmers. They are used to zero tillage associated with shifting cultivation, which triggers soil erosion.

Chamwino: There are no cooperatives/unions in the two villages in the Project area, but there are four agricultural cooperative societies in the District.

Past Incidents of Conflict Caused by Pastoralists with a Herd of Livestock Crossing the Railbed Embankment and Measures against Them:

Kilosa: To mediate Masai pastoralists' grazing activity infringing farmland cultivated by settled farmers, the District Council has demarcated and organized a tract of land named TwaTwatwa Reserve (not a formal reserve) at Parakuyo Ward, Mbwande.

Mpwapwa: No report available to provide evidence of such incidents.

Chamwino: No recorded conflicts because livestock-keeping is minimal in the immediate proximity of the railway alignment.

13.1.3 Legal Framework for Environmental and Social Considerations

(1) Tanzanian Laws and Regulations

In the United Republic of Tanzania, ministries are responsible for environmental monitoring of projects under their jurisdiction. However, the Vice President's Office (VPO) has overall

responsibility for environmental policy formulation - including coordination and monitoring of National Environmental Management Council (NEMC) activities.

This section addresses the legal and regulatory conditions, which are relevant to this project.

National Policies, Act and Regulations

Table 13.1 is a summary of relevant environmental and social management policies, acts and regulations for the project. Each is aligned with the enforcement or implementation authority.

The list includes framework policies and legislation that provide the basis for more detailed regulatory instruments. Environmental management and governance in Tanzania is underpinned by two such pieces of legislation, namely the Constitution and the Environmental Management Policy (1997) and Environmental Management Act Cap 191.

NO.	POLICIES, LAWS AND REGULATIONS	AUTHORITY
	National Constitution	
1.	Constitution of the United Republic of Tanzania, Cap. 2	Ministry of Justice and
	(1977)	Constitutional Affairs
	Environmental and Social Management	
2.	National Environmental Policy (1997)	Department of Environment (in
3.	Environmental Management Act, Cap. 191	the Vice President's Office)
		and National Environmental
		Management Council (NEMC)
4.	Environmental Impact Assessment and Audit Regulations	NEMC
4.	(2005)	NEIME
5.	Environmental Management (Air Quality Standards)	
5.	Regulations (2007)	
6.	Environmental Management (Hazardous Waste Control and	
	Management) Regulations (2009)	
7.	Environmental (Solid Waste Management) Regulations,	
	(2009)	
8.	Environmental management (Quality Standards for Control of	
	Noise and Vibration Pollution) Regulations (2011)	
9.	Environmental Management (Fees and Charges) Regulations	
	(2009)	
10	Land and Land Use	
10.	National Land Policy (1997)	Ministry of Lands, Housing and
11.	Land Act, Cap. 113 (1999)	Human Settlement
12.	The Land (Amendment) Act (2004)	
13.	Village Land Act (1999)	
14.	Land Use Planning Act, No. 6 (2007)	
15.	Land Acquisition Act (1967)	
16.	The National Land Use Planning Commission Act (No. 3),	
17	1984	
17.	Land (Forms) Regulations, 2001	
18.	Land (Assessment of the Value of Land for Compensation)	
10	Regulations, 2001	
<u>19.</u> 20.	Land (Compensation Claims) Regulations, 2001 Land (Management of the Land Compensation Fund)	
20.	Regulations, 2001	
	Negulations, 2001	

Table 13.1: Summary of Relevant Policies, Laws and Regulations

NO.	POLICIES, LAWS AND REGULATIONS	AUTHORITY
21.	The Village Land Regulations, 2001	Village Administration;
		Ministry of Land Housing and
		Human Settlement
	Natural Resources Management	
22.	National Water Policy (2002)	Ministry of Water
23.	Water Resources Management Act, No. 11 (2009)	_
24.	Water Supply and Sanitation Act, No. 12 (2009)	
25.	Fisheries Sector Policy and Strategy (1997)	Ministry of Livestock and
26.	Fisheries Act, Cap. 279 (2003)	Fisheries Development
27.	Fisheries (Principal) Regulations (1989)	
	Health and Safety	
28.	Occupational Health and Safety Act, No. 5 (2003)	Occupational Health and Safety
		Authority (OSHA)
29.	Workers' Compensation Act, Cap 263 (2008)	Ministry of Labour and
30.	Employment and Labour Relations Act, No. 6 (2004)	Employment
31.	National Policy on HIV/AIDS (2001)	Prime Minister's Office
32.	HIV and AIDS (Prevention and Control) Act, No. 28 (2008)	Ministry of Health and Social
		Welfare
33.	TASAF III Resettlement Policy Framework, 2012	
	Archaeology and Cultural Heritage	
34.	Graves (Removal) Act, 2007	Ministry of Culture, Youth and
35.	Antiquities Act No. 10 (1964)	Sports
	Administrative / Public Laws	
36.	Local Government Laws (Miscellaneous Amendments) Act,	Ministry of Regional
	No. 13 (2006)	Administration and Local
37.	Tenzonio Commission for AIDS Act. Con. 270 (2001)	Governments
37.	Tanzania Commission for AIDS Act, Cap. 379 (2001)	Tanzania Commission for AIDS
		(TACAIDS), Ministry of Health and Social Welfare
20	Local Government (District Authorities) Act	Ministry of Regional
<u>38.</u> <u>39.</u>	Local Government (Urban Authorities) Act	Administry of Regional
37.	Local Government (Orban Autionnes) Act	Governments
40.	Road Sector Compensation and Resettlement Guidelines,	Ministry of Works
40.	2009	
41.	Guidelines	
	Guidennes	

Laws and Regulations for Environmental Management Aspects

The laws and regulations listed in Table 13.2 address specific environmental and social management aspects.

Management aspect	Relevant acts and regulations
Air Emissions and	Environment Management Act, Cap 191 - Protection of the Atmosphere and
Ambient Air Quality	Measure on Climate Change (Part V S. 74 and 75); Management of Gaseous
	Wastes (Part IX d).
	Environmental Management (Air Quality Standards) Regulations, (2007)
	Public Health Act, Cap. 336 (2009) - Gaseous Waste Management (Part IV d).
	Occupational Health and Safety Act, No. 5 (2003)
Solid Wastes	Environmental Management Act, Cap 191 (2004) - Management of Solid (Part
	IX a)
	Environmental (Solid Waste Management) Regulations, (2009)
	Public Health Act, No. 1 (2009) - Solid Waste Management (Part IV c)
Wastewater and	Public Health (Sewerage and Drainage) Act, Cap. 336 (2009) - (Prevention of
Ambient Water	Spread of Diseases (Part III, Sub S. b, 15); Sanitation, Housing and Hygiene
Quality	(Part IV: Sub. S. a - g)
	Environmental Management (Water Quality Standards) Regulations, (2007)
Soil Quality	Environmental Management (Soil Quality Standards) Regulations, (2007)
Hazardous Materials	Industrial and Consumer Chemicals (Management and Control) Act, No. 5
/ Substances	(2003)- Control of Production, Importation, Exportation, Transportation,
Management	Storage of and Dealing in Chemicals (Part III); Management of Industrial and Consumer Chemicals (Part IV)
	Environmental Management Act, Cap. 191 (2004) - Management of hazardous
	wastes (Part IX e)
	Environmental Management (Hazardous Waste Control and Management)
	Regulations (2009)
Noise Management	Environmental Management Act, Cap. 191(2004) - Environmental Quality
č	Standards (Part X (S. 147)
	Environmental management (Quality Standards for Control of Noise and

 Table 13.2: Laws for Key Environmental and Social Management Aspects

(2) Procedure of EIA

Legal Framework in Tanzania

Tanzanian environmental matters are governed by the Environmental Management Act, 2004, which is Act No. 20 of 2004 (hereinafter referred to as "the Act"), and its implementation is regulated by the Environmental Impact Assessment and Audit Regulations, 2005 (the Regulation). The Regulation stipulates projects to be classified into either Type A or Type B.

Type A – Project requiring a mandatory EIA:

The Project is likely to have a significant adverse environmental impacts and an in-depth study is required to determine the scale, extent, and significance of the impacts and to identify appropriate mitigation measures.

Among the list of type A projects, item 9 (iii) "Construction or new expansion to existing railway lines" can be applied to the proposed Project. Sub-item (iii) "Construction and expansion/upgrading of roads, harbors, shipyards, fishing harbors, air fields and ports, railways and pipelines" of item 14 "Building and Civil Engineering" can also be applied to the proposed Project.

Excerpted below are relevant projects of Type A.

Listed under item 9 Transport and Infrastructure are:

- (i) Construction, expansion or rehabilitation of new trunk roads
- (ii) Construction, expansion or rehabilitation of airports and airstrips and their ancillary facilities
- (iii) Construction or new expansion to existing railway lines
- (iv) Construction of new, or expansion to shipyards or harbor facilities

Listed under sub-item (iii) of item 14 Building and Civil Engineering is:

(iii) Construction and expansion/upgrading of roads, harbors, ship yards, fishing harbors, air fields and ports, railways and pipelines

Type B – Project requiring Preliminary Environmental Assessment:

The Project is likely to have some significant adverse environmental impacts, but as the magnitude of the impacts is not well-known, a preliminary environmental assessment is required to decide whether the Project can proceed without a full environmental impact assessment.

Generally, the EIA procedure for Type A project takes the following steps.

- a) An application for an environmental impact assessment certificate shall be made in the format of a project brief set out in the First Schedule to the Regulation, and the applicant shall submit the application together with the prescribed fee to the Council (Article 5, the Regulation).
 - (1) A developer or proponent shall, depending on the nature of the project or undertaking, register in accordance with Form No. 1 specified in the Third Schedule to these Regulations and prepare a project brief stating:
 - (a) the nature of the project in accordance with the categories identified in the Third Schedule to the Act and the First Schedule to these Regulations;
 - (b) the location of the project including to the physical area that may be affected by the project's activities;
 - (c) the activities that shall be undertaken during the project construction, operation and decommissioning phases;
 - (d) the design of the project;
 - (e) the materials to be used, products and by-products, including waste to be generated by the project and the methods of their disposal;
 - (f) the potential environmental impacts of the project and the mitigation measures to be taken during and after implementation of the project;
 - (g) an action plan for the prevention and management of possible accidents during the project cycle;
 - (h) a plan to ensure the health and safety of the workers and neighboring communities;
 - (i) the economic and socio-cultural impacts to the local community and the nation in general;
 - (j) the project budget; and
 - (k) any other information which the Council may require.
 - (2) In preparing a project brief under this Regulation, the proponent or developer shall pay particular attention to other issues specified in the First Schedule to these Regulations.
 - (3) A project brief shall be prepared by an environmental impact assessment expert registered as such under the regulations made under the Act.

- b) A proponent or developer shall submit at least ten copies of the project report to the Council or the Council's appointed agent in Form No. 1 specified in the Third Schedule to the Regulations accompanied by the prescribed fees. "Council" means the National Environment Management Council (NEMC) established under section 16 of the Act.
- c) Comments on the Project Brief
 - (1) Where the project brief conforms to the requirements of regulation 6, the Council shall, within seven days upon receipt of the project report, submit a copy of the project brief to:
 - (a) each of the relevant ministry or public institution;
 - (b) the relevant local government environmental management officer; and
 - (c) where more than one District is involved, to the relevant Regional Secretariats, for their written comments.
 - (2) Comments shall be submitted to the Council within twenty one days from the date of receipt of the project brief.
 - (3) On receipt of the comments or where no comments have been received the Council shall proceed to determine the project brief.
- d) Screening of project brief
 - (1) The Council shall screen the project brief according to the screening criteria specified in the Second Schedule to these Regulations.
 - (2) The screening process shall be undertaken with the objective of determining whether an environmental impact assessment is to be undertaken.
- e) Approval of Project Brief
 - (1) On determination of the project brief, the decision of the Council, together with the reasons thereof, shall be communicated to the developer or proponent within forty-five days of the submission of the project brief.
 - (2) Where the Council is satisfied that the project shall not have significant negative impact on the environment, or that the project brief discloses sufficient mitigation measures, the Council may proceed to recommend to the Minister to approve the project.
 - (3) Approval of the project or undertaking shall be made in Form 3 specified in the Third Schedule to these Regulations.
- f) Decision that an Environmental Impact Statement (EIS) be prepared
 - (1) Where the Council finds that the project shall have a significant impact on the environment and the project report discloses no sufficient mitigation measures, it shall require the developer or proponent to:
 - (a) undertake an environmental impact assessment in accordance with these Regulation; or
 - (b) undertake a preliminary assessment, where more information is required to determine a screening decision.
 - (2) A preliminary assessment shall proceed along the following steps:
 - (a) description of the project characteristics and the affected environment;
 - (b) identification of impacts on the local environment; and

Policy to fill

- (c) assessment or evaluation of the significance of the impacts in terms of energy flow, transformation of matter, effects on sensitive ecosystems relative to the baseline state, and socioeconomic impacts.
- (3) Where the Council finds that the project shall have no significant negative impact on the environment and the project report discloses sufficient mitigation measures, it shall not require the developer or proponent to undertake an environmental impact assessment, and may proceed to recommend to the Minister for approval of the project.

Comparison of JICA Guidelines and Tanzanian EIA

The policy framework of Tanzanian EIA was compared with the requirements of JICA Guidelines. As shown in Table 13.3, Tanzanian EIA mostly satisfies JICA Guidelines.

No.	JICA Guidelines	Tanzanian EIA	Gaps	the gaps in this study
1	When assessment procedures already exist in host countries, and projects are subject to such procedures, project proponents etc. must officially finish those procedures and obtain the approval of the government of the host country.	EIA procedure is required by the Environmental Management Act, 2004, to be approved by NEMC.	None	-
2	EIA reports (which may be referred to differently in different systems) must be written in the official language or in a language widely used in the country in which the project is to be implemented. When explaining projects to local residents, written materials must be provided in a language and form understandable to them	EIA reports must be accompanied with a stand- alone non-technical summary in both Kiswahili and English languages.	Language for written materials for local explanation is not stipulated by the regulation.	Materials for explanation to local residents shall be made in Kiswahili.
3	EIA reports are required to be made available to the local residents of the country in which the project is to be implemented. The EIA reports are required to be available at all times for perusal by project stakeholders such as local residents and copying must be permitted	NEMC shall grant any person who desires to consult the EIA reports and any other information submitted to NEMC access to those documents.	None	-
4	In preparing EIA reports, consultations with stakeholders, such as local residents, must take place after sufficient information has been disclosed. Records of such consultations must be prepared	Public participation and consultation are required through the procedure and the records shall be included in the EIA report.	None	-

Table 13.3: Comparison and Gaps of JICA Guidelines and Tanzanian EIA

<u>No.</u> 5	JICA Guidelines	Tanzanian EIA	Gaps	the gaps in this study
	Consultations with relevant stakeholders, such as local residents, should take place if necessary throughout the preparation and implementation stages of a project. Holding consultations is highly desirable, especially when the items to be considered in the EIA are being selected, and when the draft report is being prepared	During the process of conducting an environmental impact assessment study, the developer or proponent shall in consultation with NEMC, seek the views of any person who is or is likely to be affected by the project. Consultation is taken place by the developer or proponent at scoping stage. NEMC holds public hearing before approval of the EIA report.	None	-
6	It is desirable that EIA reports cover the items enumerated in the following: -Executive summary, -Policy, legal, and administrative framework, -Project description, -Baseline data, -Environmental impacts, -Analysis of alternatives, -Environmental Management Plan (EMP), and -Consultation.	EIA report shall closely be styled and contain the following information: (i) executive summary; (ii) acknowledgement; (iii) acronyms; (iv) introduction; (v) project background and description; (vi) policy, administrative and legal framework; (vii) baseline or existing conditions; (viii) assessment of impacts and identification of alternatives; (ix) impacts management or environmental mitigation measures; (x) environmental and social management plan; (xi) environmental and social monitoring plan; (xii) resource evaluation or cost benefit analysis; (xiii) decommissioning; (xiv) summary and conclusions (xv) references; (xvi) appendices.	None	-

RAHCO's Procedure for EIA

As this Project, a railways rehabilitation project, falls under type A of "construction and expansion/upgrading of roads, harbors, ship yards, fishing harbors, air fields and ports, railways and pipelines", the First Schedule of the Regulation, RAHCO, is mandated to obtain an EIA clearance from the environment authority. Therefore, the proponent agency (RAHCO) is undertaking the following actions to proceed with the project.

Step 1: Project Registration and Screening--- Already completed in March-April 2015.

- (a) Developer or proponent submits a dully filled registration form and project brief to the Council as per Regulation 9;
- (b) Council shall then undertake a review of the project brief in accordance with Regulation 10 and 11; and
- (c) Council undertakes the screening of the proposed project in accordance with Regulation 12 and undertake the screening in accordance with any guidelines that the Minister may issue for this activity.

Step 2: Scoping--- Already completed in June-July 2015.

The developer, proponent, environmental experts or firm of experts shall undertake a scoping exercise in order to:

- (a) Identify the main stakeholders that will be negatively or positively impacted by the proposed project;
- (b) Identify stakeholder's main concerns regarding the proposed project;
- (c) Identify main project alternatives;
- (d) Identify likely impacts, data requirements, tool and techniques for impact identification, prediction and evaluation;
 - (i) identify project boundaries in terms of spatial, temporal and institutional aspects;
 - (ii) environmental experts or firm of experts must ensure there is adequate stakeholder participation in this and all the other stages of the environmental impact assessment; and
- (e) the developer or the environmental experts or firm of experts prepare a scoping report and terms of reference for the environmental impact assessment of the proposed project and submits to the Council for approval.

Step 3: Baseline Study --- Already completed in December 2015.

- (a) The environmental experts or firm of experts undertake detailed survey of the existing social, economic, physical, ecological, social-cultural and institutional environment within the project boundary area; and
- (b) The consultant must ensure adequate stakeholder participation is engaged.

Step 4: Impact Assessment--- Already completed in January 2016.

- (a) The consultant undertakes impact identification, impact prediction and evaluation of impact significance following a variety of appropriate techniques and approaches as specified in the guidelines issued under this Regulation;
- (b) The environmental experts or firm of experts must ensure that concerns and views from stakeholders are fully taken into account during the assessment of impacts; and
- (c) The environmental experts or firm of experts assess all possible alternatives and their impacts and recommends most appropriate options.

Step 5: Impact mitigation and enhancement measures --- Already completed in January 2016.

- (a) environmental experts or firm of experts prepare impact mitigation measures for all negative significant impacts, either by elimination, reduction or remedial methods;
- (b) environmental experts or firm of experts prepare enhancement measures for all significant positive effects arising from the project so as to increase the contribution from the project to social development and environmental conservation;
- (c) environmental experts or firm of experts prepare Mitigation and Enhancement Plan for all significant negative impacts and positive effects, with details about institutional

responsibilities and costs were appropriate; and

(d) environmental experts or firm of experts prepare a Monitoring Plan and Environmental and Social Management Plan with details about institutional responsibilities, monitoring framework, parameters, indicators for monitoring and costs of monitoring were appropriate.

Step 6: Preparation of Environmental Impact Statement (EIS) --- Already completed in March 2016.

- (a) environmental experts or firm of experts prepare an Environmental Impact Statement (EIS) adhering to the contents outlined in these Regulations;
- (b) EIS must be accompanied with a stand-alone non-technical summary in both Kiswahili and English languages; and
- (c) All technical details, including assessment methodologies, list of consulted stakeholders and their signatures, drawings and terms of references are put in the appendix.

Step 7: Review of EIS--- Ongoing as of March 2016.

- (a) Council reviews the EIS adhering to the review criteria and any guidelines that may be issued under these Regulations;
- (b) Council may call for a public hearing and public review of the EIS in accordance with conditions and procedures stipulated under these Regulations; and
- (c) Council shall submit review report to the Minister with its recommendations and all documents used in the review for approval or disapproval.

Step 8: Environmental Monitoring and Auditing--- Will be conducted when the Project is implemented.

The Council shall conduct environmental monitoring in order to evaluate the performance of the mitigation measures following the prepared Environmental and Social Management Plan as well as the Monitoring Plan, thus:

- (a) monitoring include the verification of impacts, adherence to approve plans, environmental standards and general compliance of terms and conditions set out in the Environmental Impact Assessment certificate;
- (b) developer can also undertake monitoring of the implementation of the project to ensure if mitigation measures are effective;
- (c) both the developer and the Council collects data that can be used in future projects and for environmental management;
- (d) Council and the developer undertake environmental audits for the project;
- (e) mechanisms for stakeholder participation during the monitoring and auditing process must be defined and followed through; and
- (f) the auditing exercise may focus on the following areas:
 - (i) implementation/enforcement audit, which takes place when the Council verifies if the mitigation measures and levels of pollution are within limits;
 - (ii) performance/regulatory audit that entails identification of compliance to relevant legislation or safety standards;
 - (iii) impact prediction audits checks the accuracy and efficacy of the impact prediction by comparing them with monitored impacts;
 - (iv) Council collects and compiles information arising from auditing for future use; and
 - (v) developer collects data from the audit and compiles information for project management and also for submission to the Council.

13.1.4 Alternatives

(1) Without Project Option

'Without project option' means no flood protection measures are formulated and no action will be taken to change the present situation of the Kilosa-Dodoma section. As transport demand is rapidly increasing, the following issues are expected to occur if "without project":

- 1) The railway line will continuously be affected by floods and be washed away frequently. This situation means the railway service faces serious problems for securing safe and stable transportation.
- 2) Once the line is washed away, the railway passengers and freight are hindered in their ability to travel until the recovery works are completed. It will affect the social and economic activities relying on the railway transport by the Central Railway Line, which is not limited to the section of Kilosa-Dodoma.
- 3) Because of the unreliability of the railway service, passengers and freight will be shifted to road traffic. As heavy tracks are applied for the freight, it will cause deterioration of road infrastructure, and increase risks of road accidents and freight transportation costs.
- 4) As the emission of carbon dioxide from the road traffic is generally larger than the railway, shifting to the road traffic will result in emissions increases.

Therefore, flood protection measures needs to be taken to improve the safety and reliability of the railway transportation, as well as to protect environmental and social conditions.

(2) Consideration of Alternative Plans

As presented in Subsection 8.6.2, Alternative A, B, and C for the flood protection measures were proposed to select the most optimal option in terms of the cost, reduction in danger of flood damages, technical difficulties, and environmental and social considerations. As the track relocation (rerouting) will affect the residential area by traversing villages when it is planned only from the engineering aspects, an additional alternative was drawn attempting to reduce the number of the affected buildings. Consequently, in total six alternatives were planned and compared: A-1, B-1, and C-1 are favoring track alignment in terms of engineering aspects, while A-2, B-2, and C-2 are those to avoid traversing residential area as much as possible.

The basic idea of Alternative A-2, B-2, and C-2 is to draw the rerouting alignment at lower elevation than Alternatives A-1, B-1, and C-1, avoiding dense residential areas. Instead of securing the high elevation above the design condition, the embankments of Alternatives A-2, B-2, and C-2 were reinforced by bank protection.

A comparison between the alternatives was presented in Subsection 8.6.2 (Table 8.40). As a result of the comparison, Alternative B-2 was selected as the optimal alternative.

13.1.5 Scoping

A scoping exercise was done for proposed Project's anticipated impacts.

Anticipated impacts are rated by A, A+, B, B+, C, C+, and D, in terms of their spatial extent, magnitude of the number of people and settlements affected, impact's duration – temporal or persistent, irreversible or reversible, etc.

The following scores are employed in rating the impacts:

- A+/-: Significant positive/negative impact is expected.
- B+/-: Positive/negative impact is expected to some extent.
- C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)
- D: No impact is expected.

The result from the exercise is shown in Table 13.4.

Based on the scoping results, Terms of Reference (TOR) for Environmental and Social Considerations are prepared as shown in Table 13.6 and Table 13.7.

Impact Rating	Elements
A+: Significant positive impact is expected.	<u>During Construction</u> Employment and Local Economy, Land Use and Local Resources Utilization
	<u>Railway in Service</u> Employment and Local Economy, Land Use and Local Resources Utilization, Existing Social Infrastructure and Social Services
A-: Significant negative impact is expected.	Prior to Construction Resettlement
B+: Positive impact is expected to some extent.	Prior to Construction/During Construction Soil Erosion,
	<u>Railway in Service</u> Gender, Global warming
B-: Negative impact is expected to some extent.	<u>During Construction</u> Air Quality, Water Quality, Solid Waste, Soil Erosion, Soil Contamination, Noise Vibration, Ecosystems, Water Use, Existing Social Infrastructure and Services, Infectious diseases HIV/AIDS, Working Environment, inclusive of occupational safety, Accidents
	<u>Railway in Service</u> Accidents, Resettlement, Solid Waste, Noise/Vibration, Ecosystems
C+/-: Extent of positive/negative impact is unknown. (A further	<u>During Construction</u> Poor, Hydrology/Water Regime, Topography and Geology, Social Capital and Local Decision Making Institution, Cultural Heritages, Landscape, Children's Rights, Indigenous People
examination is needed, and the impact could be clarified as the study progresses)	<u>Railway in Service</u> Water Quality, Social Capital and Local Decision Making Institution, Cultural Heritages, Children's Rights,, Infectious Diseases, Working Environment, inclusive of Occupational health, Water Use, Poor, Landscape
D: No impact is expected.	<u>Prior to/During Construction</u> Land Subsidence, Protected Area/Forest Reserves, Trans boundary pollution
	<u>Railway in Service</u> Air Quality, Solid Waste, Soil Contamination, Land Subsidence, Protected Area/Forest Reserves, Hydrology/Water Regime, Topography and Geology, Trans boundary pollution
Source: JICA Study Team	

 Table 13.4: Summary of Scoping Result

			Assess	ment	
Environmental Domain		Environmental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Reasons of Assessment
	1	Air Quality	B-	D	Prior to construction/During Construction1.1Construction work will generate dust.1.2Construction equipment will emit air pollutants.Railway in serviceI.31.3Emission from train operation will be the same condition with the existing operation.
Pollution	2	Water Quality	В-	C-	 Prior to construction/During Construction 2.1 High potential of soil runoff and/or sedimentation/siltation by the riverbank protection works and bridge/culvert construction/improvement works resulting from earthmoving and/or piling/foundation works. As a result, temporal increase in turbidity and an increase in suspended solids in the water bodies are anticipated (streams/stagnant water) at the construction sites and downstream. 2.2 Earth-moving works (cut and fill) at the hillside (proposed rerouting alignment) or inland away from the riverbanks will yield temporal soil runoff, causing water quality degradation (Mkondoa River /Kinyasungwe River) and sedimentation. <u>Railway in service</u> 2.3 Least possibility of surface runoff from rail embankment contaminating the Mkondoa River. 2.4 Effluents from stations and associated facilities are minimal.
	3	Soil Erosion	B-	B+	 Prior to construction/During Construction 3.1 The existing alignment runs through a flood-prone area, in parallel with the frequently-flooded river systems of the Mkondoa and Kinyasungwe Rivers. The alignment lies over land sensitive to any earthmoving civil work, which has a high potential to trigger soil erosion and land degradation. Proper mitigation work needs to be devised and implemented to avoid soil erosion and sedimentation. <u>Railway in service</u> 3.2 Progress of flood-protection work in the entire sections will reduce soil erosion/sedimentation to a certain extent, though the incidents are anticipated to occur.
	4	Solid Waste	В-	В-	Prior to construction/During Construction 4.1 Surplus/excess soil volume generated by cut/fill is anticipated.

			Assess	ment	
Environmental Domain		Environmental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Reasons of Assessment
					Railway in service
					4.2 Hazardous/toxic waste generation by railway
	~	0.1	D	D	operation is not anticipated.
	5	Soil Contamination	B-	D	5.1 Some construction activities such as burying piles
		Contamination			may cause soil contamination.5.2 No significant impacts during railway in service.
	6	Noise/	B-	B-	6.1 Construction noise will be generated by works of
		Vibration	D	D	equipment.6.2 Noise and vibration caused by train passing will be increased if the railway is relocated into the residential area.
	7	Land	D	D	7.1 No significant impact is anticipated as underground
		subsidence			construction, which causes land subsidence, is not
					planned.7.2 No significant impact is anticipated as drawing
					groundwater, which causes land subsidence, is not
					planned for the railway operation.
	8	Protected Area/Forest reserve	D	D	 8.1 National Parks, Wildlife Management Areas (WMA), Forest Reserves (National Level) are not found within a 1 km-radius range of the existing rail alignment. 8.2 Districts (Kilosa, Mpwapwa, and Chamwino) have their own designation of Forest Reserves, however none with their boundaries conflicting with existing rail alignment. The Kihili Forest Reserve is situated in the vicinity of Kilosa Station. In proposing a rerouting of the alignment, potential conflicts with District Forest Reserve need to be checked.
Natural Environment	9	Eco-systems	B-	B-	 9.1 The project site, including proposed rerouting alignment, does not encompass ecologically valuable habitats like those designated by IBA's area. 9.2 The Project site, including proposed rerouting alignment, does not encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions. 9.3 Adequate mitigation measures are to be taken to avoid conflicts with wildlife/livestock migration routes. 9.4 Proposed railway re-routing alignment may pass through primary forest in undeveloped hillside areas, resulting in loss of natural vegetation.
	10	Hydrology/ Water Regime	C-	C-	10.1 Anticipated changes in water regime in the water bodies affected by flood protection works, which may result in changes in aquatic ecosystems.10.2 Anticipated changes in aquatic biota (fish species).

			Assess	ment	
Environmental Domain		Environmental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Reasons of Assessment
	11	Topography and Geology	C-	D	 11.1 There is a possibility that civil works, such as cutting and filling along the re-routing alignment at the hill side, will cause slope failures or landslides. 11.2 There is a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites.
	12	Resettlement	A-	D	 <u>Prior to construction/During construction</u> 12.1 No more than 40 households, at one site, are anticipated to be relocated, due to the re-routing alignment at Gulwe and the smaller number of households at Godegode. 12.2 Recovery of livelihoods of those relocated need to be secured and compensation delivered.
	13	Poor	С	С	Prior to construction/During construction 13.1 Poor or vulnerable people may be included in those to be relocated. Railway in service 13.2 The poor and vulnerable will benefit from the relocation and be able to upgrade their quality of life. On the other hand, their livelihood may be affected by resettlement if they are among that population.
Social Environment	14	Indigenous People	С	С	Prior to construction/During construction 14.1 Masai people often traverse the alignment with their herds of livestock. Need to identify their grazing area to assess the impacts. Railway in service 14.2 Underpasses will be designed to allow Masai with their herds to traverse the alignment safely, reducing potential accidents and degradation of embankment.
S	15	Employment and Local Economy	A+	A+	 Prior to construction/During construction 15.1 Construction of rerouting sections may absorb local laborers. 15.2 Employment opportunities may generate positive impacts to the local economy.
	16	Land use and local resources utilization	A+	A+	Prior to construction/During construction 16.1 For the re-routing sections, the new alignment will pave the way for village land use transformation, leading to potential industrial development. Railway in service 16.2 The new alignment together with transformed village land use as "General Land" will accelerate development.
	17	Water Use	B-	С	Prior to construction/During construction 17.1 Residents making avail of nearby river water systems as sources of water are adversely (access to water bodies/water quality degradation) affected by

			Assess	ment	
Environmental Domain		Environmental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Reasons of Assessment
					the flood protection works. 17.2 Project's impact on water use is temporal and local residents can enjoy previous river water usage.
	18	Existing Social infrastructure and Social services	B-	A+	 <u>Prior to construction/During construction</u> 18.1 Flood protection works will entail increased traffic of construction machinery/heavy duty trucks on the narrow village roads, impacting village people's access to roads, resulting in degraded quality of their living environment.
					<u>Railway in service</u> 18.2 Villagers' access to social services will be improved due to improved railway service.
	19	Social capital and local decision- making institutions	С	С	Prior to construction/During construction 19.1 The new alignment due to rerouting transforms village land use into general land suitable to economic and industrial development, triggering changes in traditional social capital and local decision-making institutions.
					19.2 Neighboring communities along the newly rerouted alignment will undergo gradual changes in social capital and local decision-making institutions.
	20	Cultural Heritage	С	С	20.1 Cultural and historical heritage sites to be found in the project affected area along the railway alignment, both new and existing, are not well- explored/recorded.
	21	Landscape	С	С	Prior to construction/During construction 21.1 The new alignment, due to rerouting, that runs the hillside in the primary forest, will have visual impact for the village people living in the community nearby the new alignment. Railway in service 21.2 Local community people will be exposed to the new landscape with the improved new railway track.
	22	Gender	B-	B+	Prior to construction/During construction 22.1 Traditional rural women's work load of capturing water and care for livestock husbandry is going to be interfered during construction work in progress, in particular obstacle are access to water sources and community roads blocked by traffic by heavy-duty trucks and construction machinery. Railway in service 22.2 Local community women's domestic work is less hampered by heavy-duty vehicles' traffic.

			Assess	ment	
Environmental Domain		Environmental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Reasons of Assessment
	23	Children's rights	С	С	Prior to construction/During construction 23.1 The Project is not deemed to impact present situation of children's rights living in the rural environment.
	24	Infectious diseases HIV/AIDS	B-	С	Prior to construction/During construction 24.1 Laborers to be engaged in construction work may come from outside may have potential to trigger HIV/AIDS proliferation in the community.
	25	Working Environment, inclusive of occupational safety	B-	С	Prior to construction/During construction 25.1 Need to care for construction workers' occupation health environment. Railway in service 25.2 No impacts on operators/laborers engaged in railway service.
	26	Accidents	B-	B-	Prior to construction/During construction 26.1 Need to devise countermeasures to reduce accidents during construction. Railway in service 26.2 Increased service frequency will induce higher chances of transport accidents.
Others	27	Trans- boundary pollution	D	D	Prior to construction/During construction27.1 The Wami-Ruvu watershed has no internationally- connected water systems within the basin. Water pollutants shall not have a chance to migrate to surrounding countries. There are no significant sources of air-pollutants emitted from industrial establishments within the basin.Railway in service27.2 No trans-boundary pollution impacts are anticipated during railway in service.
	28	Global warming	D	B+	Prior to construction/During construction 28.1 Emission of greenhouse gas by construction works is limited. Railway in service 28.2 Emission of greenhouse gas will be reduced by improving the railway because road transportation is expected to shift to the railway.

A+/-: Significant positive/negative impact is expected.

B+/-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be clarified as the study progresses)

D: No impact is expected.

Source: JICA Study Team

Environmental elements	Survey items	Survey methodology
Air quality	 Ambient air quality 	- Field measurement
Water quality	 Water quality of the river along the 	 Field measurement
1	railway	 Sampling and analysis
Soil erosion	 Current condition of soil erosion of the riverbank 	 Field observation
Solid waste	 Volume of surplus/excess soil 	- Reviewing construction plan
	- Type of waste and the volume	and method
	generated by the railway operation	 Interview with TRL
Soil contamination	- Source of soil contamination through	 Reviewing construction plan
	the construction	and method
Noise/vibration	 Current noise/vibration along the railway 	 Field measurement
	 Noise level of construction equipment 	 Existing data collection
Eco-systems	 Fish species in the river 	 Field observation
	 Terrestrial vegetation 	- Interview with local people
	– Avifauna	 Literature survey
	– Mammals	
	 Reptiles and amphibians 	
Hydrology/water	 Plan of flood protection measures 	 Reviewing project plan
regime	which may change the river flow such	
T 1 1	as embankment and bridge pier	
Topography and geology	- Topographic feature	 Reviewing topographic map
Resettlement	 Number of affected people and their properties 	 Census and inventory survey
Poor	- Social condition of the affected people	 Interview with the affected people
Indigenous people	- Existence of indigenous tribes	 Interview with local government
Employment and local economy	 Employment opportunities and the local people's intention 	 Interview and consultation with the local people
Land use and local	- Current land use along the railway	 Interview with local
resources utilization		government
Water use	 Domestic water source 	- Interview with local people
	 River water use 	
Existing social	 Village road condition 	 Field observation
infrastructure and	- Current railway operation	 Data collection from TRL
social services	 Local people's expectation on traffic 	- Consultation with local
<u>Q 1</u>	infrastructure	people
Social capital and local decision-	- Local people's intention for developing	- Consultation with local
making institutions	economic and industrial conditions and	people
Cultural heritage	 local decision-making institution Type and location of cultural heritage 	- Field observation
Cultural lier lage	- Type and location of cultural heritage	
Landscape	- Landscape condition	 Interview with local people Field observation
Gender	 Landscape condition Existing gender issues 	
Guiuci	 Existing gender issues Women's work 	- Interview with local people
Children's right	 Existing children's issues 	- Interview with local people
e e	- Children's work	i · · F
Infectious diseases	 Prevalence of HIV/AIDS 	- Data collection from local
HIV/AIDS		

Table 13.6: Survey Items and Methodology

Environmental		
elements	Survey items	Survey methodology
Working environment, inclusive of occupational safety	 Working conditions of workers related to the railway 	- Interview with TRL
Accidents	 Number of railway accidents and their causes 	- Data collection from TRL

Survey items	Survey Area		Outline
Natural environmen	nt		
Air quality	Around the railway track	√ √	Measurement by portable outdoor monitor Parameters: NO ₂ , CO
Water quality	Mkondoa River (along the railway line)	✓ ✓ ✓	Two times – the dry and the wet season (June and December) Parameters: EC, pH, SS, turbidity, temperature, heavy metals, etc. Observation of stream flow condition
Fish species	Mkondoa and Kinyasungwe River (along the railway line)	√ √	Collecting species by net Interview with local people nearby the riverbank
Terrestrial vegetation	Along rerouting track alignment	~	Species identification consisting the representative vegetation
Avifauna, mammals, reptiles and amphibians Noise and	Around the track alignment including rerouting track Around the railway track	 ✓ ✓ ✓ ✓ 	Species identification through field observation Interview with local people Literature survey Measurement at the time of train passing
vibration		_	
Social environment District/ward level	Kilosa, Mupuwapwa and Chamwino Districts	~	Secondary data collection (e.g., population, ethnicity, religion, industry, employment, livelihood, education, health condition) to compare with the primary data of village level.
Village level	Villages along the railway track of Kilosa-Dodoma	•	Interview with the communities (e.g., population, ethnicity, religion, industry, employment, livelihood, education, health condition, means of transport, flood effects)

Table 13.7: Baseline Survey Plan

Source: JICA Study Team

13.1.6 Survey Results for Environmental and Social Considerations

Survey results are summarized in Table 13.8.

Environmental	
elements	Survey Results
Air quality	Ambient air quality was measured at five stations between Kilosa and Gulwe in December 2015. The results showed that the ambient air quality was in good condition: the average value of NO_2 at each station was 0.0-0.05ppm (standard of US EPA:0.053 ppm), CO was 1.5-10.0 ppm (standard of US EPA: 35 ppm).

Table 13.8: Survey Results

ents			S	Surve	y Res	ults					
	(Summary of the	e air quali	ty meas	surem	nent)						
	Station		Avera				Reco	nmen	ded air (quality	
	Station		11,01,	"ge					l of US I		
		NO ₂ (ppm) (CO (ppm)		NO ₂ (ppm) CO (p				
	17.1) III)			,					
	Kilosa	0.0			5.0		0.0	53	35	35	
	Munisagara	0.0			1.5						
	Kidete	0.0			4.0						
	Godegode	0.05			8.0						
	Gulwe	0.05			10.0						
er quality	Water quality a	t the rive	rs alon	σ the	railu	av wa	is exa	mined	l in hot	h the	
quanty	season (June 20										
	found that turbi										
	which flow alon	g the raily	vay (10	01-12	0 NTU	J in th	e dry	seasoi	1, 368-1	060 N	
	in the wet seaso	n). This i	s due t	o the	natura	l cond	dition	of the	rivers	(brown	
	color) carrying a									(
										vorka v	
	Considering this										
	not cause signifi										
	impacts, especia	ally at the	tributa	ries v	whose	turbid	lity is	not so	o high c	compar	
	with the main st	ream. On	the oth	er hai	nd. lea	kage (of oil a	and th	e other	chemic	
	from the cons										
	wastewater from										
	managed as to 1	not to affe	ect the	river	and f	he wa	ter au	ality	(Impact	t #5_6	
	and 20 in the EI			IIVCI	anu u	ic wa	ici qu	anty.	(impac	$1 \pi 3, 0,$	
	(Results of the v	vater quali	ity exai	minat	ion)						
	(Results of the v [Dry season: 7-1			minat	ion)						
	[Dry season: 7-1	3 June, 20		minat							
					Sar	nple			TZ. STD*		
	[Dry season: 7-1 PARAMETERS	3 June, 20		minat		nple S4	S5	S6	TZ. STD*		
	[Dry season: 7-1 PARAMETERS Physical Parameters	3 June, 20)15] 	S2	Sar S3	S4	1				
	[Dry season: 7-1 PARAMETERS Physical Parameters Turbidity	3 June, 20 UNITS	2.35	52 120	Sar 53 8.00	S4 101	10.20	1.15	30		
	[Dry season: 7-1 PARAMETERS Physical Parameters	3 June, 20)15] 	S2	Sar S3	S4	1				
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour	3 June, 20 UNITS NTU PtCo/1	2.35 9.40	S2 120 300	Sar S3 8.00 18.60	54 101 286	10.20 26.40	1.15 7.20	<u>30</u> 50		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids	3 June, 20 UNITS NTU PtCo/1 mg/l	2.35 9.40 10	52 120 300 90	Sar 53 8.00 18.60 15	S4 101 286 100	10.20 26.40 20	1.15 7.20 10	30 50 1000		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/ICaC03	2.35 9.40 10 360	52 120 300 90 440	Sar S3 8.00 18.60 15 212	54 101 286 100 85	10.20 26.40 20 40	1.15 7.20 10 255	30 50 1000 600		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/ICaC03	2.35 9.40 10 360	52 120 300 90 440	Sar S3 8.00 18.60 15 212	54 101 286 100 85	10.20 26.40 20 40	1.15 7.20 10 255	30 50 1000 600		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1CaC03 mg/1CaC03	2.35 9.40 10 360 230 88.64	52 120 300 90 440 280 66.48	Sar 53 8.00 18.60 15 212 148 65.45	S4 101 286 100 85 70 45.00	10.20 26.40 20 40 45 18.50	1.15 7.20 10 255 298 160	30 50 1000 600 N.M. 250		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20	S2 120 300 90 440 280 66.48 24.00	Sar 53 8.00 18.60 15 212 148 65.45 10.0	54 101 286 100 85 70 45.00 28.20	10.20 26.40 20 40 45 18.50 12.0	1.15 7.20 10 255 298 160 84.20	30 50 1000 600 N.M. 250 400		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20 0.04	S2 120 300 90 440 280 666.48 24.00 0.02	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil	S4 101 286 100 85 70 45.00 28.20 0.02	10.20 26.40 20 40 45 18.50 12.0 Nil	1.15 7.20 10 255 298 160 84.20 0.05	30 50 1000 600 N.M. 250 400 N.M		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20	S2 120 300 90 440 280 66.48 24.00	Sar 53 8.00 18.60 15 212 148 65.45 10.0	54 101 286 100 85 70 45.00 28.20	10.20 26.40 20 40 45 18.50 12.0	1.15 7.20 10 255 298 160 84.20	30 50 1000 600 N.M. 250 400		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20 0.04	S2 120 300 90 440 280 666.48 24.00 0.02	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil	S4 101 286 100 85 70 45.00 28.20 0.02	10.20 26.40 20 40 45 18.50 12.0 Nil	1.15 7.20 10 255 298 160 84.20 0.05	30 50 1000 600 N.M. 250 400 N.M		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lcaC03 mg/lcaC03 mg/l mg/l mg/l mg/l	2.35 9.40 10 360 230 888.64 71.20 0.04 2.10	S2 120 300 90 440 280 66.48 24.00 0.02 2.0	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60	S4 101 286 100 85 70 45.00 28.20 0.02 2.0	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80	1.15 7.20 10 255 298 160 84.20 0.05 3.90	30 50 1000 600 N.M. 250 400 N.M 30		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Akalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	215] 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01	Sar 53 8.00 18.60 15 212 122 148 65.45 10.0 Nil 0.60 Nil Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50	30 50 600 N.M. 250 400 N.M 30 N.M. 0.50		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	215] 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10	30 50 1000 600 N.M. 250 400 N.M 30 N.M.		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil	52 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil	30 50 1000 600 N.M. 250 400 N.M 30 N.M. 0.50 1.5-8.0		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-carbonates	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1CaC03 mg/1CaC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2.35 9.40 10 360 230 888.64 71.20 0.04 2.10 0.10 0.10 Nil 160	\$2 120 300 90 440 440 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil 25	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.02 2.0 0.06 0.01 Nil 75	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 40	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210	30 50 1000 600 N.M. 250 400 N.M 30 N.M. 0.50 1.5-8.0 N.M.		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-carbonates Carbonates Aluminium Sodium	3 June, 20 UNITS NTU PtCo/1 mg/I mg/IcaC03 mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 0.10 Nil 160 Nil 160 Nil 100	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 12.00	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil 2.00	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 75 Nil Nil 10.30	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil Nil Nil Nil 2.S0	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30	30 50 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.30 250		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-Carbonates Carbonates Aluminium Sodium Potassium	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.04 2.10 0.10 Nil 160 Nil 160 Nil 40.00 8.48	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nill 65 Nill 12.00 21.36	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil 25 Nil Nil 2.00 9.41	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.02 2.0 0.06 0.01 Nil 7S Nil Nil 10.30 5.25	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil 40 Nil Nil 2.S0 1.40	1.15 7.20 10 255 298 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil 30 17.50	30 50 000 000 N.M. 250 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.50 250 200		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Carbonates Aluminium Sodium Potassium Magnesium	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil 160 Nil 160 Nil 40.00 8.48 12.47	52 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil Nil 12.00 21.36 23.24	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil 25 Nil Nil 25 Nil Nil 21 21 21 21 21 21 21 21 21 21	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 75 Nil 10.35 25 6.0	10.20 26.40 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 40 Nil Nil 2.50 1.40 0.60	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 0 17.50 21.40	30 50 1000 N.M. 250 400 N.M 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.30 250 200 150		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Akalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrate Nitrite Ammonium Eluorides Bi-carbonates Carbonates Carbonates Aluminium Sodium Potassium Magnesium Calcium	3 June, 20 UNITS NTU PtCo/1 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil 160 Nil 0.01 40.00 8.48 12.47 33.64	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil 12.00 21.36 23.24 16.82	Sar S3 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil Nil Nil 25 Nil Nil 2,00 9.41 10.47 50.46	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 7S Nil 10.30 5.25 6.0 10.50	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil 40 Nil Nil 2.50 1.40 0.60 2.80	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 17.50 21.40 36.20	30 50 1000 600 N.M. 250 400 N.M. 0.50 N.M. 0.50 N.M. N.M. 0.30 250 200 150 300		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Carbonates Aluminium Sodium Potassium Magnesium	3 June, 20 UNITS NTU PtCo/1 mg/1 mg/1caC03 mg/1caC03 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	2.15] 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil 160 Nil 160 Nil 0.01 40.00 8.48 12.47 33.64 0.21	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 12.00 21.36 23.24 16.82 1.90	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil Nil Nil Nil Nil 2.00 9.41 10.47 50.46 0.11	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 75 Nil 10.30 5.25 6.0 0.04	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil Nil Nil 2.50 1.40 0.60 2.80 0.01	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 0 17.50 21.40	30 50 1000 N.M. 250 400 N.M 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.30 250 200 150		
	[Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Carbonates Carbonates Aluminium Sodium Potassium Magnesium Calcium Iron	3 June, 20 UNITS NTU PtCo/1 mg/IcaC03 mg/IcaC03 mg/I mg/IcaC03 mg/I mg/I mg/I mg/I mg/I mg/I mg/I mg/I	2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil 160 Nil 0.01 40.00 8.48 12.47 33.64	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil 12.00 21.36 23.24 16.82	Sar S3 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil Nil Nil 25 Nil Nil 2,00 9.41 10.47 50.46	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 7S Nil 10.30 5.25 6.0 10.50	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil 40 Nil Nil 2.50 1.40 0.60 2.80	1.15 7.20 10 255 298 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil Nil 30 17.50 21.40 36.20 0.20	30 50 600 N.M. 250 400 N.M 30 N.M 0.50 1.5-8.0 N.M 0.30 250 200 150 300 0.30		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Suspended Solids Total Akalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Carbonates Aluminium Sodium Potassium Maganesium Calcium Iron Manganese Cooper Arsenic	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lcaC03 mg/lcaC03 mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	2.35 9.40 10 360 230 888.64 71.20 0.04 2.10 0.04 2.10 0.10 0.10 0.10 Nii 160 Nii 160 Nii 160 Nii 160 Nii 160 Nii 160 Nii 160 Nii 10,00 8.48 12.47 33.64 0.21 0.08	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Niil 65 Niil 12.00 21.36 23.24 16.82 1.90 0.05	Sar S3 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil 25 Nil Nil 2.00 9.41 10.47 50.46 0.11 Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 7S Nil 10.30 5.25 6.0 10.50 0.04 Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 2.50 1.40 0.60 2.80 0.01 Nil	1.15 7.20 10 255 298 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 17.50 21.40 36.20 0.20	30 50 1000 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. 0.50 1.5-8.0 N.M. 0.30 250 200 150 300 0.30 0.30		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Carbonates Aluminium Sodium Potassium Magnesium Calcium Iron Manganese Cooper	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lcaC03 mg/l	2.15] 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.10 0.10 Nil 160 Nil 0.01 40.00 8.48 12.47 33.64 0.21 0.08 Nil Nil Nil	S2 120 300 90 440 2400 0.02 2.0 0.05 0.01 Nil 55 Nil 12.00 21.36 23.24 1.90 0.05 Nil 1.36 23.24 1.90 0.05 Nil Nil Nil Nil Nil	Sar 53 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil Nil Nil Nil 2.00 9.41 10.47 50.46 0.111 Nil Nil Nil Nil Nil Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.02 2.0 0.06 0.01 Nil 10.30 5.25 6.0 10.50 0.04 Nil 0.10 Nil Nil 0.10 Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 2.S0 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil 0.10 Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 17.50 21.40 36.20 0.20 0.20 0.04 0.30 Nil Nil	30 50 1000 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. 0.30 250 200 150 300 0.30 0.30 0.30 0.10 1.55 300		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-carbonates Carbonates Carbonates Aluminium Sodium Potassium Calcium Iron Manganese Cooper Arsenic Lead Zinc	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lcaC03 mg/lcaC03 mg/l	215] 51 2.35 9.40 10 360 230 230 88.64 71.20 0.04 2.10 0.10 0.10 0.10 Nii 160 Nii 160 Nii 160 Nii 100 40.00 8.48 12.47 3.64 0.21 0.08 Nii Nii 0.10	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 12.00 21.36 23.24 16.82 1.90 0.05 Nil Nil 16.82 1.90 0.05 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	Sar S3 8.00 18.60 15 212 65.45 10.0 Nil 65.45 10.0 Nil 0.60 Nil Nil Nil 25 Nil Nil 2.00 9.41 10.47 50.46 0.11 Nil 10.47 50.46 Nil 10.47 50.46 Nil 10.47 50.46 Nil 10.07	S4 101 286 100 85 70 28.20 0.02 2.0 0.02 2.0 0.06 0.01 Nil 10.30 5.25 6.0 10.50 0.04 Nil 0.10 Nil 0.40	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 2.S0 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil Nil 0.10	1.15 7.20 10 255 298 84.20 0.05 3.90 0.10 0.50 Nil 0.50 Nil Nil Nil 30 17.50 21.40 36.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	30 50 000 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. 0.30 250 200 150 300 0.30 0.30 0.30 0.10 1.5 .0.05 5		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Fluorides Bi-carbonates Caluminium Sodium Potassium Magenesium Cacloum Iron Manganese Cooper Arsenic Lead Zinc Cyanide	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lcaC03 mg/lcaC03 mg/l	D15] 51 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.04 2.10 0.04 2.10 0.10 0.10 0.10 Nii 160 Nii 40.00 8.48 12.47 33.64 0.21 0.08 Nii Nii Nii 0.10 0.010 0.01	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nill 65. Nill 12.00 21.36 23.24 16.82 1.90 0.05 Nil Nil Nil 0.23 Nil	Sar S3 8.00 15 212 148 65.45 10.0 Nil 0.60 Nil 0.60 Nil Nil 25 Nil 2.00 9.41 10.47 50.46 0.11 Nil 10.47 50.46 0.11 Nil Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 S0.41 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S	S4 101 286 100 85 70 28.20 0.02 2.0 0.06 0.01 Nil 7S Nil 10.30 5.25 6.0 10.50 0.04 Nil 0.10 Nil 0.10 Nil 0.40 Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 2.50 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil Nil Nil 0.10 Nil Nil Nil 0.10 Nil	1.15 7.20 10 255 298 8 4.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 17.50 21.40 36.20 0.20 0.04 0.30 Nil Nil 30.21 0.04 0.30 Nil Nil 30 17.50	30 50 1000 600 N.M. 250 400 N.M 30 N.M 0.50 1.5-8.0 N.M 0.50 1.5-8.0 N.M 0.30 250 200 150 300 0.30 0.30 0.10 1.5 5 0.05		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-Carbonates Aluminium Sodium Potassium Magnesium Calcium Iron Manganese Cooper Arsenic Lead Zinc Cyanide Cadmium	3 June, 20 UNITS NTU PtCo/1 mg/l mg/lac03 mg/lac03 mg/lac03 mg/l	215] 51 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.04 2.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08 Nil 0.21 0.08 Nil Nil 0.10 0.08 Nil Nil Nil Nil Nil Nil Nil Nil	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil 12.00 21.36 23.24 16.82 1.90 0.05 Nil Nil	Sar S3 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil 0.60 Nil Nil 25 Nil Nil 2.00 9.41 10.47 50.46 0.11 Nil Nil Nil Nil 0.07 Nil Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 75 Nil 10.30 5.25 6.0 10.50 0.04 Nil Nil 0.10 Nil 0.10 Nil Nil 0.10 Nil 0.10 Nil 0.10 Nil Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 40 Nil Nil 2.50 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil Nil Nil 1.20 1.20 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil 1.40 Nil Nil Nil Nil 1.40 Nil Nil Nil Nil Nil Nil Nil Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil Nil 36.20 0.20 0.20 0.20 0.20 0.20 0.20 0.04 0.30 Nil Nil Nil	30 50 1000 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.30 250 200 200 200 150 300 0.30 0.10 1.5 5 0.10 0.05		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Suspended Solids Total Hardness Total Akalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrate Bi-carbonates Carbonates Aluminium Sodium Potassium Manganese Cooper Arsenic Lead Zinc Cyanide Cadmium	3 June, 20 UNITS NTU PtCo/1 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/I	D15] 51 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.04 2.10 0.04 2.10 0.10 0.10 0.10 Nii 160 Nii 40.00 8.48 12.47 33.64 0.21 0.08 Nii Nii Nii 0.10 0.010 0.01	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nill 65. Nill 12.00 21.36 23.24 16.82 1.90 0.05 Nil Nil Nil 0.23 Nil	Sar S3 8.00 15 212 148 65.45 10.0 Nil 0.60 Nil 0.60 Nil Nil 25 Nil 2.00 9.41 10.47 50.46 0.11 Nil 10.47 50.46 0.11 Nil Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 Nil 10.47 S0.46 S0.41 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S0.51 S	S4 101 286 100 85 70 28.20 0.02 2.0 0.06 0.01 Nil 7S Nil 10.30 5.25 6.0 10.50 0.04 Nil 0.10 Nil 0.10 Nil 0.40 Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil Nil 2.50 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil Nil Nil 0.10 Nil Nil Nil 0.10 Nil	1.15 7.20 10 255 298 8 4.20 0.05 3.90 0.10 0.50 Nil 210 Nil Nil 30 17.50 21.40 36.20 0.20 0.04 0.30 Nil Nil 30.21 0.04 0.30 Nil Nil 30 17.50	30 50 1000 600 N.M. 250 400 N.M 30 N.M 0.50 1.5-8.0 N.M 0.50 1.5-8.0 N.M 0.30 250 200 150 300 0.30 0.30 0.10 1.5 5 0.05		
	Dry season: 7-1 PARAMETERS Physical Parameters Turbidity Colour Total Suspended Solids Total Hardness Total Alkalinity Chemical analysis Chlorides Sulphates Ortho-Phosphate Nitrate Nitrite Ammonium Eluorides Bi-Carbonates Aluminium Sodium Potassium Magnesium Calcium Iron Manganese Cooper Arsenic Lead Zinc Cyanide Cadmium	3 June, 20 UNITS NTU PtCo/1 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/IcaC03 mg/I	215] 51 2.35 9.40 10 360 230 88.64 71.20 0.04 2.10 0.04 2.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08 Nil 0.21 0.08 Nil Nil 0.10 0.08 Nil Nil Nil Nil Nil Nil Nil Nil	S2 120 300 90 440 280 66.48 24.00 0.02 2.0 0.05 0.01 Nil 65 Nil 12.00 21.36 23.24 16.82 1.90 0.05 Nil Nil	Sar S3 8.00 18.60 15 212 148 65.45 10.0 Nil 0.60 Nil 0.60 Nil Nil 25 Nil Nil 2.00 9.41 10.47 50.46 0.11 Nil Nil Nil Nil 0.07 Nil Nil	S4 101 286 100 85 70 45.00 28.20 0.02 2.0 0.06 0.01 Nil 75 Nil 10.30 5.25 6.0 10.50 0.04 Nil Nil 0.10 Nil 0.10 Nil Nil 0.10 Nil 0.10 Nil 0.10 Nil Nil	10.20 26.40 20 40 45 18.50 12.0 Nil 0.80 Nil Nil 40 Nil Nil 2.50 1.40 0.60 2.80 0.01 Nil 0.10 Nil Nil Nil Nil Nil Nil 1.0 1.0 Nil 1.0 Nil Nil Nil Nil Nil Nil Nil Nil	1.15 7.20 10 255 298 160 84.20 0.05 3.90 0.10 0.50 Nil Nil 36.20 0.20 0.20 0.20 0.20 0.20 0.20 0.04 0.30 Nil Nil Nil	30 50 1000 600 N.M. 250 400 N.M. 30 N.M. 0.50 1.5-8.0 N.M. N.M. 0.30 250 200 200 200 150 300 0.30 0.10 1.5 5 0.10 0.05		

*Environmental Management (Water Quality Standard) Regulations 2007 SI = Mkadage borehole; S2 = Mkondoa River at Mkadage village; S3 = Mdukwi River at Mkadage village, S4 = Mkondoa River at Munisagara village, S5 = Isima River at Munisagara village, S6=Kikundi borehole

Bestal Parameters Turbidity NTU 1060 192 (2) 708. Dit	S1 S2 Physical Parameters	S 3									
Physical Parameters NTU 1066 19.20 708. Colour PICol 1200 45 1260 Dit	Physical Parameters Turbidity NTU 1060 19.2 Colour PtCo/l 1700 45 pH - 7.97 7.80		S 4	TZ. STD*							
colour PColl 1700 45 1260 rit 1701 138 520 Total Suscended Solids mpl 410 100 280 Total Backnets mpl 420 130 120 Total Markeness mpl 660 90 300 Total Alkalinity mpl/CeC03 280 65 150 Total Alkalinity mpl/CeC03 250 60 120 Chiorides mpl 0.05 Nil 0.02 Nitrate mpl 0.05 Nil 0.02 Nitrate mpl 0.80 Nil 0.02 Ammonium mpl 0.80 Nil 0.01 Ammonium mpl 2.0 10.00 12.0 Addiam mpl 2.0 10.00 10.02 Maresium mpl 2.0 10.02 10.01 Ammonium mpl 2.00 10.02 10.00 Carbonates mpl 0.03 Nil <nil< td=""> Nil<nil< td=""> Aduminum mpl 2.40 6.60 13.0 Aduminum mpl 2.40 10.00 12.0 Aduminum mpl 2.00 10.01</nil<></nil<>	Colour PtCo/l 1700 45 DH - 7.97 7.80	1		T							
att - - 727 720 720 720 Electrical Conductivity ub/c 710 138 520 Total Suspender Solids mg/L 630 90 300 Total Malinity mg/L GcO3 280 66 150 Total Akalinity mg/L GcO3 280 60 120 Chemical anabias mg/L 60.0 500 500 60.0 500 Subnates mg/L 60.0 150.0 60.0 500 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0 60.0 150.0	υH - 7.97 7.86		368	30							
Electrical Conductivity usc(cm 770 138 520 Total Suscended Solids mp/1 366 90 300 Total Marchess mp/1 666 90 300 Total Allanity mp/1 62.0 15.00 15.00 Cherides mp/1 62.0 15.40 48.20 Ortho-Phosphate mp/1 62.0 15.40 48.20 Ortho-Phosphate mp/1 62.0 60.100 48.20 Ortho-Phosphate mp/1 62.0 60.100 48.20 Ortho-Phosphate mp/1 63.0 0.00 48.20 Ammonium mp/1 648 60 130.0 60.21 Carbonates mp/1 418 48.20 60 130.0 60.21 Carbonates mp/1 43.0 10.20 12.0 12.0 60 Carbonates mp/1 43.0 130.0 60.7 130 60.7 Maneases mp/1 0.18			810 7.45	50 6.5 - 8.5							
Total Jissobed Solids mail (GQ)1 360 90 300 Total Alkalinity mg/l (GQ)2 250 60 120 Chlorides mg/l 62.0 15.00 48.20 Orthor/Phosphate mg/l 62.0 15.00 48.20 Orthor/Phosphate mg/l 62.0 15.40 48.20 Orthor/Phosphate mg/l 62.0 15.40 48.20 Orthor/Phosphate mg/l 1.65 0.03 0.09 Nitrate mg/l 1.65 0.03 0.02 Ammonium mg/l Nit Nit Nit Nit Bicarbonates mg/l 0.02 Nit Nit Nit Softium mg/l 32.0 10.50 22.20 Patassum mg/l 32.0 10.50 22.01 Reassum mg/l 43.50 15.0 26.0 Iron mg/l Nit Nit Nit Ammonium mg/l Nit Nit Nit Arsensium mg/l Nit Nit	Electrical Conductivity µS/Cm 710 138		490	2000							
Initial landness mg/l CaC03 280 65 150 Total Alkalinity mg/l CaC03 250 60 120 Chorides mg/l 62.0 15.0 64.0 120 Subhates mg/l 62.0 15.0 64.0 48.2 Othor.Phosphate mg/l 0.05 Nil 0.02 Niltrate Niltrite mg/l 0.80 Nil 0.02 Nilt 0.02 Ammonium mg/l 0.80 Nil 0.02 Nilt Nil 0.02 Ammonium mg/l 0.80 Nil Nil 0.02 Nilt Nil Nil Patassium mg/l 260 60 130 12.0 18.0 Carbonates mg/l 43.50 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 15.0 25.0 <td></td> <td>280</td> <td>200</td> <td>1000</td>		280	200	1000							
Total Alkalinity mg/l 250 60 120 Chemical analysis mg/l 652.0 155.0 60.0 Subhates mg/l 62.0 155.0 60.0 Subhates mg/l 62.0 155.0 60.0 Nitrate mg/l 62.0 155.0 60.0 Nitrate mg/l 62.0 155.0 60.0 Nitrate mg/l 62.0 Nit 0.02 Nitrate mg/l 0.80 Nit 0.02 Ammonium mg/l 20.0 10.20 10.0 Carbonates mg/l 25.0 15.0 25.1 Potassium mg/l 25.0 15.0 26.0 Potassium mg/l 25.0 15.0 26.0 Iron mg/l 0.18 0.10 0.0 26.0 Potassium mg/l Nit Nit Nit Nit Amenesium mg/l 0.10 0.00 26.0			280	NIL							
Chemical analysis Chlorides mat/l 65.10 19.50 60.0 Sublates mat/l 62.0 15.40 48.20 Orthe-Phosphate mat/l 0.02 NII 0.02 Nitrite mat/l 0.02 NII 0.02 Nitrite mat/l 0.02 NII 0.02 Ammonium mat/l 0.02 NII 0.02 Ammonium mat/l 0.02 NII 0.02 Ammonium mat/l 0.02 NII NII 0.02 Ammonium mat/l 0.02 NII NII NII NII Bicarbonates mat/l 0.02 NII NII NII NII Adminium mat/l 2.0 10.20 18.0 16.60 Masanese mat/l NII NII NII NII NII Carbonates mat/l NII NII NII NII NII Caloum			140 110	600 N.M.							
Subhates mg/l 62.0 15.40 48.02 Ortho-Phosphate mg/l 0.05 Nil 0.02 Nitrate mg/l 1.65 0.03 0.09 Nitrite mg/l 0.80 Nil 0.02 Ammonium mg/l Nil Nil Nil 0.02 Ammonium mg/l 0.07 Nil Nil Nil Nil Fluorides mg/l 0.07 Nil Nil <t< td=""><td></td><td>120</td><td>1 110</td><td>1.101.</td></t<>		120	1 110	1.101.							
ortho-Phosphate mg/l 0.05 Nil 0.02 Nitrate mg/l 1.65 0.03 0.09 Nitrite mg/l 0.02 Nil Nil 0.02 Ammonium mg/l 0.07 Nil Nil Nil Nil Fluorides mg/l 0.07 Nil Nil Nil Nil Bicarbonates mg/l 260 60 130 Garbonates mg/l 260 60 130 Garbonates mg/l Nil Nil Nil Nil Auminium mg/l 20 10.50 12.00 Potassium mg/l 29.0 10.20 18.0 Calcium mg/l 43.50 15.0 26.0 Icon mg/l 0.38 Nil Nil Calcium mg/l Nil Nil Nil Concer mg/l Nil Nil Nil Calcium mg/l Nil Nil Nil <			56.50	250							
Nitrate me/l 1.65 0.03 0.02 Ammonium mg/l 0.80 Nii 0.02 Ammonium mg/l 0.07 Nii Nii 0.02 Ammonium mg/l 0.07 Nii			40.0	400							
Nitrite mp/l 0.80 Nil 0.02 Ammonium mp/l Nil			0.03	N.M. 30							
Fluorides mg/l 0.07 Nil Nil Nil Bicarbonates mg/l 260 60 130 Carbonates mg/l Nil Nil Nil Nil Aluminium mg/l 32.0 10.50 21.20 Potassium mg/l 25.40 6.40 16.60 Magnesium mg/l 43.50 10.20 180 Calcium mg/l 43.50 10.20 180 Calcium mg/l 43.50 10.20 180 Calcium mg/l 43.50 10.20 0.07 Mamaanese mg/l 0.03 Nil Nil Nil Copper mg/l Nil Nil Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Nil Nil Camium mg/l Nil Nil Nil Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Nil Nil Comium mg/l Nil			Nil	N.M.							
Bicarbonates mg/l 260 60 130 Carbonates mg/l Nil Nil Nil Nil Nil Aluminium mg/l 32.0 10.50 21.20. Potassium mg/l 25.40 6.40 16.60 Magnesium mg/l 21.01.00 10.00 10.00 Manaesium mg/l 0.18.0 10.00 0.07 Iron mg/l 0.18.0 10.00 0.07 Maneanese mg/l 0.11 Nil Nil Nil Cooper mg/l Nil Nil Nil Nil Nil Cooper m	Ammonium mg/l Nil Nil	Nil	Nil	0.50							
Carbonates mg/l Nil Nil Nil Aluminium mg/l Nil Nil Nil Nil Sodium mg/l 22.0 10.55 21.20 Potassium mg/l 22.0 6.40 16.60 Magnesium mg/l 29.0 10.0 21.20 Potassium mg/l 29.0 10.0 21.20 Carbonates mg/l 29.0 10.0 21.20 Potassium mg/l 29.0 10.0 26.0 Carbonates mg/l 0.18 0.10 0.07 Manganese mg/l 0.03 Nil Nil Carbonates mg/l Nil Nil Nil Carbonates mg/l Nil Nil Nil Nil Nil Carbonates mg/l Nil <td></td> <td></td> <td>Nil</td> <td>1.5 - 8.0</td>			Nil	1.5 - 8.0							
Aluminium mg/l Nil Nil Nil Sodium mg/l 32.0 10.50 21.20 Potassium mg/l 25.0 10.50 21.20 Potassium mg/l 25.0 10.20 18.0 Calcium mg/l 0.18 0.01 0.07 Mananese mg/l 0.18 0.01 0.07 Mananese mg/l Nil Nil Nil Nil Arsenic mg/l Nil Nil Nil Nil Nil Canide mg/l Nil Nil Nil Nil </td <td></td> <td></td> <td>120 Nil</td> <td>N.M. N.M.</td>			120 Nil	N.M. N.M.							
Sodium mg/l 32.0 10.50 21.20 Patassium mg/l 25.40 6.40 16.60 Magnesium mg/l 43.50 15.0 26.0 Iron mg/l 43.50 15.0 26.0 Iron mg/l 0.03 Nil Nil Nil Copper mg/l Nil Nil Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Nil Nil Canium mg/l Nil Nil Nil Nil Nil Nil Nil Nil Camium mg/l Nil Nil Nil Nil Nil Nil Cannium mg/l Nil Nil Nil Nil Nil Nil Cannium mg/l Nil Nil Nil Nil Nil Cannium mg/l Nil Nil Nil Nil Nil Cannium mg/l Nil Nil Nil Nil Nil Totatoofform			Nil	0.30							
Magnesium mg/l 29.0 10.20 18.0 Calcium mg/l 0.18 0.00 26.0 26.0 Manganese mg/l 0.03 Nil Nil Nil Nil Copper mg/l 0.03 Nil Nil <td>Sodium mg/l 32.0 10.5</td> <td>0 21.20</td> <td>18.60</td> <td>250</td>	Sodium mg/l 32.0 10.5	0 21.20	18.60	250							
Calcium me/l 43.50 15.0 26.0 Iron me/l 0.18 0.10 0.07 Manganese mg/l 0.03 Nii Nii Nii Copper mg/l Nii Nii Nii Nii Nii Arsenic mg/l Nii Nii Nii Nii Nii Nii Lead mg/l Nii Nii Nii Nii Nii Nii Nii Zinc me/l Nii Nii Nii Nii Nii Nii Nii Chronium mg/l Nii Nii Nii Nii Nii Nii Bateriological analysis mg/l Nii Nii Nii Nii Nii Eavironmental Management (Water Quality Standard) Regulation Standard Alage Standard) Regulation Standard Alage Standard) Regulation Stare back Coliform No/100 mls Nii Nii Nii Nii Faecal Coliform No/100 mls Nii Nii Nii Nii Nii Vil erosion Riverbank erosi			16.80	200							
Iron mg/l 0.18 0.10 0.07 Manganese mg/l 0.03 Nii Nii Copper mg/l Nii Nii Nii Nii Arsenic mg/l Nii Nii Nii Nii Nii Lead mg/l Nii Nii Nii Nii Nii Nii Cwanide mg/l Nii Nii Nii Nii Nii Nii Nii Cwanide mg/l Nii Nii Nii Nii Nii Nii Eductological analysis Mondoa River at Mzaganza village; S2 = Isima/Muvuma Mkondoa River at Mzaganza village; S2 = Isima/Muvuma Mkondoa River at Mzaganza village; S4 = Kinyasungwe River a Nii encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and ero the EIS.) Idid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will			15.0 24.60	150 300							
Manganese mg/l 0.03 Nil Nil Cooper mg/l Nil Nil Nil Nil Arsenic mg/l Nil Nil Nil Nil Nil Arsenic mg/l Nil Nil Nil Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Nil Nil Carnide mg/l Nil Nil Nil Nil Nil Nil Chromium mg/l No/100 mls Nil Nil Nil Nil Total coliform No/100 mls Nil Nil Nil Nil Total coliform No/100 mls Nil Nil Nil Nil Nil ecoliform No/100 mls Nil Nil </td <td></td> <td></td> <td>0.08</td> <td>0.30</td>			0.08	0.30							
Arsenic mg/l Nil Nil Nil Lead mg/l Nil Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Nil Canide mg/l Nil Nil Nil Nil Nil Nil Cadmium mg/l Nil Nil Nil Nil Nil Nil Bacteriological analysis mg/l Nil Nil Nil Nil Nil Faecal Coliform No/100 mls Nil Nil Nil Nil Nil Faecal Coliform No/100 mls Nil Nil Nil Nil Nil Faecal Coliform No/100 mls Nil Nil Nil Nil Nil Faecal Coliform No/100 mls 30 Nil 40 Nil Nil *Environmental Management (Water Quality Standard) Regulatior S1 Mkondoa River at Mzaganza village; S2 = Isima/Muvuma Mil environ mg/l Nil Nil Nil Nil Nil Nil environ Riverbank erosion is one of th	Manganese mg/l 0.03 Nil	Nil	Nil	0.10							
Lead mg/l Nil Nil Nil Zinc mg/l Nil Nil Nil Nil Cwanide mg/l Nil Nil Nil Nil Nil Cadmium mg/l Nil Nil Nil Nil Nil Nil Chromium mg/l Nil Nil Nil Nil Nil Nil Bacteriolocical analysis mg/l Nil Nil Nil Nil Nil Faecal Coliform No/100 mls Nil Nil Nil Nil Nil Total coliform No/100 mls Nil Nil Nil Nil Nil Total coliform No/100 mls Sol Nil Nil Nil Nil Total coliform No/100 mls Sol Nil Nil Nil Nil Total coliform No/100 mls Sol Regulation Sol Sol Sol Sol Sol Sol Sol Sol			Nil	1.5							
Zinc mg/l Nil Nil Nil Canide mg/l Nil Nil Nil Cadmium mg/l Nil Nil Nil Chromium mg/l Nil Nil Nil Bacteriological analysis mg/l Nil Nil Nil Faecal Coliform No/100 mls Nil Nil Nil 40 *Environmental Management (Water Quality Standard) Regulation S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River a oil erosion Riverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and ero the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid			Nil Nil	0.05							
Cvanidemg/lNilNilNilCadmiummg/lNilNilNilNilBacteriolocical analysismg/lNilNilNilBacteriolocical analysismg/lNilNilNilFaecal CollformNo/100 mlsNilNilNilTotal colliformNo/100 mls30Nil40*Environmental Management (Water Quality Standard) Regulation S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River at oil erosionoil erosionRiverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil erosy the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to e earth-moving activities may cause soil run-off and ero the EIS.)olid wasteSurplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid			Nil	5							
Chromiummg/lNilNilNilBacteriological analysisiiiFaceal ColiformNo/100 mlsNilNilNilTotal coliformNo/100 mls30Nil40*Environmental Management (Water Quality Standard) RegulationS1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma= Mkondoa River at Mzaganza village; S4 = Kinyasungwe River aoil erosionRiverbank erosion is one of the major causes whAdditionally, upstream erosion brings a great deal ofit encourages the flood damages through the sedimeobserved throughout the Study indicate that soil erosthe project area, and it affects both infrastructure andAs the project cuts the mountain slope and fills to eearth-moving activities may cause soil run-off and erothe EIS.)olid wasteSurplus soil will be generated by cutting the moundisposal volume will be minimized by utilizing it forThe minimized excess soil will be disposed at a pagreed upon with the local government.During the construction phase, waste oils from condomestic waste from the construction workers will bethe existing station and tracks will also generate solid			Nil	0.10							
Bacteriolocical analysis No/100 mls Nil Nil Faecal Coliform No/100 mls 30 Nil 40 *Environmental Management (Water Quality Standard) Regulation S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River at oil erosion Riverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to e earth-moving activities may cause soil run-off and ero the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid			Nil	0.05							
Faecal ColliformNo/100 mlsNilNilNilTotal colliformNo/100 mls30Nil40*Environmental Management (Water Quality Standard) Regulation S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River at oil erosionoil erosionRiverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil erosi the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to e earth-moving activities may cause soil run-off and ero the EIS.)olid wasteSurplus soil will be generated by cutting the mound disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid		Nil	Nil	0.05							
*Environmental Management (Water Quality Standard) Regulation S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River ar oil erosion Riverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to e earth-moving activities may cause soil run-off and ero the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid		Nil	Nil	Nil							
S1 = Mkondoa River at Munisagara village; S2 = Isima/Muvuma = Mkondoa River at Mzaganza village; S4 = Kinyasungwe River at oil erosion Riverbank erosion is one of the major causes wh Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and ero the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid	Total coliform No/100 mls 30 Nil	40	20	Nil							
Additionally, upstream erosion brings a great deal of it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and ero the EIS.)blid wasteSurplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid	S1 = Mkondoa River at Munisagara village; S2 = Isima = Mkondoa River at Mzaganza village; S4 = Kinyasungv	/Muvuma ve River	a River : at Gulw	at Munisag ve village							
it encourages the flood damages through the sedime observed throughout the Study indicate that soil eros the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to e earth-moving activities may cause soil run-off and ero the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid											
observed throughout the Study indicate that soil erose the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and erothe EIS.) olid waste Surplus soil will be generated by cutting the mound disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a pagreed upon with the local government. During the construction phase, waste oils from condomestic waste from the construction workers will be the existing station and tracks will also generate solid		Additionally, upstream erosion brings a great deal of sediment to the rivers and									
the project area, and it affects both infrastructure and As the project cuts the mountain slope and fills to a earth-moving activities may cause soil run-off and ere the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid		it encourages the flood damages through the sedimentation. Those facts wer									
As the project cuts the mountain slope and fills to earth-moving activities may cause soil run-off and erective EIS.) lid waste Surplus soil will be generated by cutting the mound isposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a pagreed upon with the local government. During the construction phase, waste oils from condomestic waste from the construction workers will be the existing station and tracks will also generate solid		observed throughout the Study indicate that soil erosion is easily occurring									
earth-moving activities may cause soil run-off and ere the EIS.) olid waste Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid		the project area, and it affects both infrastructure and the environment.									
the EIS.) blid waste Surplus soil will be generated by cutting the moundisposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a pagreed upon with the local government. During the construction phase, waste oils from condomestic waste from the construction workers will be the existing station and tracks will also generate solid											
Surplus soil will be generated by cutting the moun disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid	earth-moving activities may cause soil run-of	earth-moving activities may cause soil run-off and erosion. (Impact #1 and 7									
disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid											
disposal volume will be minimized by utilizing it for The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid	ste Surplus soil will be generated by cutting t	Surplus soil will be generated by cutting the mountain slope; however, the									
The minimized excess soil will be disposed at a p agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid		disposal volume will be minimized by utilizing it for filling the embankmen									
agreed upon with the local government. During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid											
During the construction phase, waste oils from con domestic waste from the construction workers will be the existing station and tracks will also generate solid	1	1 1 1									
domestic waste from the construction workers will be the existing station and tracks will also generate solid											
the existing station and tracks will also generate solid											
		domestic waste from the construction workers will be generated. Demolition									
13 III UIC E15.)	the existing station and tracks will also gener 15 in the EIS.)	the existing station and tracks will also generate solid waste. (Impact #6, 9, an 15 in the EIS.)									
During the operation phase, it is concerned that the	During the operation phase, it is concerned	that th	ne pass	sengers 1							
their waste around the station. However, the volum											
current condition around the stations is kept clean by											
bil contamination 'Sabo Soil Cement', which will be used for constr											
ground sill at Maswara and Mzase Rivers, may cause chromium into the existing soil, though the possibil	amination - 'Saho Soil ('ement' which will be used to	ay caus	e disso	olution of							

Environmental elements	Survay Raci	alts						
Noise/vibration	Survey Results Although it is not an urban area, the construction noise will affect surrounding							
	residents and fauna, such as birds. Expected range of the noise emission of the							
	construction equipment to be used is 55 dB (vehicle)-85 dB (bulldozer)							
	(Impact #2,10, 13, and 16 in the EIS.)	. (/ -	(
	As the rerouted section does not pass throu	gh reside	ential ar	eas the impacts of				
	noise and vibration by trains will be the sat							
	results of noise measurement at a train passi							
	was not so high comparing with internation							
	short time, at most several times in one day.	ai guidei	ines, un	a it will fust only				
	(Measured Noise Level at Kilosa Station)							
	Condition			Level (dBA) Iax Min.				
	No train with no passengers shouting		40.2 -					
	No train with passengers talking/shouting/la	ughing	55 - 61					
	Train approaching without whistling		65 - 66)				
	Stationary train		65 - 66)				
	Train moving away from the station		65 - 66)				
	(Guidelines for ambient noise)							
		On Day		L _{Aeq} (dBA)				
		7:00-2		Nigh time 22:00-7:00				
	Residential; institutional; educational			45				
	Industrial; commercial		55 45 70 70					
	IFC EHS Guidelines	/	0	70				
	(Guidelines for occupational health)							
	Duration per day	N	loise lev	el (dB A)				
	8 hours 85							
	Environmental Management (Standar	he Con	trol of Noise an					
	Vibration Pollution) Regulations, 2011, and IFC EHS Guidelines.							
Eco-systems		orically_	valuable	e habitats such a				
Leo-systems	The project site does not encompass ecologically-valuable habitats, such as primeval forests. Fauna and flora in the area are as follows:							
	Aquaticecology:							
	The fish found in the rivers consists of s							
	african sharptooth catfish (Clarias ga							
	<i>niloticus</i>), etc. Of these, three species are migratory fish species: <i>Labeo</i> sp.,							
	Barbus paludinosus, and Anguilla sp. Most of the fish specimen were found in							
	large pool areas especially at the Gulwe s							
	only small sized fish. Other aquatic a							
	(Crocodylus niloticus) and monitor lizards							
	were, however, not encountered during							
	identified species are categorized as vulnerable, threatened, or endangered as per CITES.							
	As the water quality is an important living							
	they will be affected if the river water is pe							
	operation of the rail, such as by oil leakag EIS.).	e (Impao	et #5, 6	, 9, and 20, in th				
	<u>Flora:</u>							
	The vegetation of the proposed project site	falls und	er two i	main Phytocorion				

The vegetation of the proposed project site falls under two main Phytocorions.

Environmental elements	Survey Results
	One of them is Zambezian regional centre of endemism, characterized by drier miombo woodland, patches of flood plain grassland and riparian woodland. The other phytocorion is Somali-Masai regional centre of endemism characterized by <i>Acacia-Commiphora</i> deciduous bushland and patches of Halophytic vegetation dominated with <i>Tamarix nilotica</i> stands. Based on physiognomic characterisation within the proposed project area, seven main vegetation categories have been classified from the project area includes: <i>Acacia</i> <i>–Commiphora</i> deciduous bushland, Drier miombo woodland, Settlements with alien species, Cultivations, Marshland with sands, Riparian, and <i>Tamarix</i> <i>nilotica</i> stands. Around the project site, one tree species (<i>Cordyla densiflora</i>) has been identified growing in <i>Acacia – Commiphora</i> deciduous bushland at Kitete and Gulwe which is considered vulnerable under International Union for Conservation of Nature (IUCN) list.
	Although the construction site is not in a primary forest, railway rerouting and the access road construction will directly affect the vegetation within the site. (Impact #2 in the EIS.)
	<u>Amphibians and Reptiles:</u> Eleven species of amphibians were recorded between Kilosa and Gulwe. None of the species are threatened of extinction according to the IUCN list. Twenty- three species of reptiles were observed along the proposed rerouting sections and the access road. Most of the species do not appear in the IUCN list.
	Although those species can move away from the construction, vegetation clearance in the site and construction noise/vibration will affect the living conditions. (Impact #2 in the EIS.)
	<u>Avifauna:</u> 126 species of birds were recorded. Out of them, Fisher's Lovebird, or <i>Agapornis fischeri</i> , is categorized as Near Threatened (NT) according to IUCN list. However, the impacts will not be critical as it was commonly observed in the project area between Godegode and Gulwe, and not specified in the construction site.
	<u>Mammals:</u> 26 species of mammals were recorded in the study area through direct observation and interview with the locals. Out of the species, Leopard (<i>Panthera pardus</i>) and African Elephant (<i>Loxodonta africana</i>) were categorized Near Threatened (NT) and Vulnerable (VU) by IUCN. Presence of Leopard was mentioned by local pastoralists. African Elephant was also mentioned by the locals. However, they are not commonly observed; especially African Elephant, which is very occasionally observed and the frequency is very low.
Hydrology/water regime	Migratory species which frequently or seasonally move through the project area were not recognized. Out of the project components, the river-training works at Maswara and Mzase River will change the river course of those tributaries.
regime	The works at Maswara is to fix the river course and secure the enough cross- section area by excavating within the present flood plain (see Subsection 10.1.10). As the works are conducted in the existing flood plain, water flow which runs into Kinyasunguwe River will not be changed; therefore, the downstream hydrology will not be altered.

Environmental elements	Survey Results
	The works at Mzase are to straighten the curved river course to secure a smooth flow. The same as with the works at Maswara River, training works are conducted in the present flood plain. Therefore, the alteration of the river course will not affect downstream hydrology.
	The other project components, namely rerouting, bank protection and access road, will not cause hydrological changes.
Topography and geology	As the rerouting is to be conducted by cutting and filling the mountain slopes, topography around the rerouting section will be altered. Although the excavated soil will be utilized for filing the embankment, additional soil needs to be procured if the volume is not enough. In this case, it is necessary to develop new quarry near the construction site, and it will cause additional topographic change.
Resettlement	Compensation and Resettlement Plan (CRP) survey results showed that in total 952 people (201 households) will be affected by the rerouting and river- training works. Out of them, 414 people (109 household) are affected for their housing structures. (Impact #12 in the EIS)
Poor	Average household income of the affected household is about 4 million TZS/year (range of 100,000-73,440,000 TZS/year). As the average number of the household member is 4.74, average income per capita is estimated to be about 840,000 TZS/year. Comparing with the national poverty line, USD 1/capita/day which is equivalent to 730,000 TZS/capita/year, the average affected household's condition is close to be the poverty line.
	The project will affect those poor household by taking their agricultural land and the other properties. On the other hand, it is expected that the construction works will provide income source such as by employment of workers and procurement of materials. Additionally, the stable railway operation brought by the project will contribute to their income improvement through increase of the economic activities.
Indigenous people	In Kilosa District, various ethnic groups are living together due to the history of plantations of the colonial period, which made the laborers migrate from various parts of the country. As indigenous tribes, the Sagara and the Kaguru are living as minority; however, the lifestyle has already become similar with the others. In Mpwapwa District, the Gogo, the indigenous tribe is dominated but the others are also living together and the lifestyle is common. The Gogo are predominantly Christian.
	The Maasai and the Mang'ati are living in both Districts as pastoralists. They are new comers to the areas and not recognized as the indigenous. Kiswahili is commonly spoken between and within the tribes.
Employment and local economy	Through the local stakeholder meetings, expectations of the employment opportunities for the construction and the railway operation were raised by the villagers. Especially for the construction works, it is reasonable for employing local people for simple labor works such as vegetation clearance and making gabions. During operation, it is expected that increased passenger trains will provide opportunities to the locals to sell their products such as food and fruits. (Impact #31, 32, and 33 in the EIS.)
Land use and local resources utilization	As the rerouting distance at most several hundred meters from the existing railway, it will not change the land use at the project site.
	The construction will require construction materials such as sand, gravel and stone. Those materials need to be procured from existing quarries or a new quarry which is approved by NEMC and local authorities. (Impact #3 in the EIS)

Environmental	
elements	Survey Results
Water use	Domestic water is collected from boreholes and streams at the project site.
	Although the construction works may use some water, the volume will not be
	huge and not to affect the existing water use. On the other hand, there is a
	possibility to pollute water quality due to the construction and railway
	operation such as by oil leakage. (Impact #5, 6, 9, and 20 in the EIS.)
Existing social	Although it is not an authorized proper road, the local people are using the
infrastructure and	space along the railway as a road for their daily transport by motorbikes and
social services	bicycles. As the construction works will affect the usage, it is necessary to
	arrange good site management to minimize the disturbances as well as
	preventing accidents. (Impact #14 in the EIS.)
	and the second sec
	X
	(Motorbikes along the railway)
	The project will bring reliable and stable train operation. It will directly
	contribute to the social transport service. (Impact #24 in the EIS.)
Social capital and	The project area is in an agricultural area organized by the village government.
local decision-	As the rerouting distance is at most several hundred meters in the same
making institution	vicinity, it will not affect the local decision-making institution.
Cultural heritage	Archaeological and cultural heritage of the project area remains relatively
-	unknown. During the survey, archaeological site of early iron working was
	recorded at Mkadage in Kilosa District. Scatters of ancient settlements were
	observed at Munisagara Village. Additionally, a few potsherds from between
	the 17th and 19th centuries, and a huge scatter of ceramic materials were
	recorded. In Kikundi, ceramics of different age periods, ranging from the 8th to
	the 18th centuries, were recorded in the vicinity of the railway. (Impact #11 in
	the EIS.)
Landscape	The project site is between the river and the mountain slope. As the railway
	rerouting will create embankments with several meters height and cut the
	mountain slope, the landscape will be changed. However, as it is mountainous
	area with various topographic conditions and there are no specific views to be
	protected, the change will be acceptable.
Gender	Although it is a patriarchal society, there is evolution towards acceptance of
	women's rights; for example, each village has women council members and a
	women's committee.
	Most of the domestic works, such as fetching water, cooking, and collecting
	firewood tend to be carried out by women. However, the construction and the
	railway operation will not cause impacts to those domestic activities.
Children's right	Every village community has at least one primary school and every ward has at
	least one secondary school. The rate of enrolment of pupils in class is 77.3% in
	the Morogoro Region and 70.8% in the Dodoma Region.
Infectious diseases	The HIV prevalence rate of Tanzania is about 5% in 2013 (Ministry of Health
HIV/AIDS	(2014) 'Global AIDS Response Country Progress Report'). Annual new
	infections in the project area decreased recently: in Kilosa District, from 430
	people in 2009 to 132 people in 2014; in Mpwapwa District, from 342 people
	in 2009 to 153 people in 2014. However, inflows of construction workers may
	cause the spread of infectious diseases as they will stay a certain period close
	to the local communities away from their own families. (Impact #18 in the
	EIS.)

Environmental	
elements	Survey Results
Working environment, inclusive of occupational safety	Construction works will involve hazardous situations, such as falling objects, moving vehicles and machines, generation of noxious fumes, working on elevated heights, exposure to welding blaze, falling in ditches, high temperature surfaces, noisy operations, etc. All these constitute occupational health and safety risks. Occupational health hazards may also be promoted by lack of procedures that mitigate negligence at work, fatigue due to understaffing and long working hours, employing wrong people on particular jobs and low morale etc. (Impact #13 and 17 in the EIS.)
	For the railway operation, the working condition of TRL staffs are regulated by the following regulations:
	 Employment and Labor Relations Act No.6, 2004 Government Notes No.42, 2007 Collective agreement: Agreement between management and workers of TRL. It is agreed every two years. The latest one is for 2013-2015. Service regulation 1984 :Internal regulation Railway Act No.4, 2002 Public Service Act, 2003
	According to TRL, accidents of TRL staff during working time are very common. Gumboots, groves, overcoats and helmets are provided to staffs working at workshops. For gang men, gumboots and grove are provided. However, the quantity of these is not enough.
	For the workers in workshop, in-house training to avoid accidents is carried out. For the gang men, they are trained by supervisors.
Accidents	Users of land abutting or neighboring the project site are likely to be affected by accidents during construction (traffic movements, open pits filled with water) due to lack of appropriate/sufficient signage at construction sites and timely notification. Workers are commonly exposed to health risks that are prevalent in the project area. (Impact #13 in the EIS.)
	During the railway operation, there are tendencies of passengers to jump on and off the train while the train is moving. Additionally, there are people, particularly children and elderly people, who may cross the railway line while the train is approaching. Another vulnerable group are motorcycle riders who at times are knocked off their vehicles at level-crossings. With the expected increase in the number of trains (both cargo and passenger trains), accidents may happen more frequently. (Impact #23 in the EIS.)
	Additionally, there is a risk of accidents related to the transportation of dangerous goods. Dangerous goods are frequently transported by rail, which represents a potential risk of release into the environment in the event of an accident. In intermodal containers spills and leaks may result from improper packing and the resultant shifting of loads during transport. Additionally, there is potential diesel release during fueling operations. (Impact #27 in the EIS.)

13.1.7 Impact Assessment

Results of the impact assessment are summarized in Table 13.9.

E.				sment coping	Fin Asses	nal sment	
Environmental Domain		Environ- mental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Prior to Construction/ During Construction	Railway In Service	Reasons of the Final Assessment
	1	Air Quality	B-	D	B-	D	<u>During Construction</u> (same as the scoping results) <u>Railway in service</u> (same as the scoping results)
	2	Water Quality	B-	C-	B-	B-	During ConstructionLeakage of oil and the otherchemicals from the constructionequipment and waste watergenerated from the activities need tobe managed not to affect theriver/ground water quality.Railway in serviceWaste oils generated by the railwayoperation and the wastewaterdischarge from the station facilitiesneed to be managed not to affect theriver/ground water quality.
Pollution	3	Soil Erosion	B-	B+	B-	B+	During Construction As the project cuts the mountain slope and fills to develop embankment, the earth-moving activities may cause soil run-off and erosion. <u>Railway in service</u> (same as the scoping results)
	4	Solid Waste	B-	B-	B-	D	During Construction Waste oils from construction equipment and domestic waste from the construction workers will be generated. Demolition of the existing station and tracks will also generate solid waste. <u>Railway in service</u> Waste disposal by the passengers is limited. The current condition around the stations is kept clean by the station staffs.
	5	Soil Contamination	B-	D	B-	D	<u>During Construction</u> 'Sabo Soil Cement' which will be used for constructing check dam and ground sill may cause dissolution of

Table 13.9: Results of the Impact Assessment

ain				sment coping		nal sment	
Environmental Domain		Environ- mental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Prior to Construction/ During Construction	Railway In Service	Reasons of the Final Assessment
							hexavalent chromium. It will be examined before the construction works. <u>Railway in service</u> (same as the scoping results)
	6	Noise/ Vibration	B-	B-	B-	D	During ConstructionThe construction noise will affectsocial and natural environment.Railway in serviceNoise from the train lasts only inshort time during train passing.
	7	Land subsidence	D	D	D	D	<u>During Construction</u> (same as the scoping results) <u>Railway in service</u> (same as the scoping results)
	8	Protected Area/Forest reserve	D	D	D	D	No protected area/forest reserve is found at the project site.
onment	9	Eco-systems	B-	B-	B-	B-	The construction will directly affect the vegetation within the site. The vegetation clearance and construction noise/vibration will affect the terrestrial fauna. For the aquatic fauna, they will be affected if the river water is polluted by the construction and the operation such as by oil leakage.
Natural Environment	10	Hydrology/ Water Regime	C-	C-	D	D	The river-training works at Maswara and Mzase Rivers will change the river course; however, it will not affect downstream hydrology because they are conducted within the present flood plain.
	11	Topography and Geology	C-	D	B-	D	During Construction Developing a new quarry for filling embankment will cause another topographic change. <u>Railway in service</u> No activities is expected which causes topographic/geological change.
Social Environment	12	Resettlement	A-	D	A-	D	Prior to Construction 952 people (201 households) will be affected for their land/housing structures.

			Asses	sment	Fi	nal	
ain			for Sc	oping	Asses	sment	
Environmental Domain		Environ- mental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Prior to Construction/ During Construction	Railway In Service	Reasons of the Final Assessment
	13	Poor	С	С	B-/+	B+	Prior to/During Construction The project will affect the poor households by taking their properties. On the other hand, it is expected that the construction works will provide income source such as such as by employment of workers and procurement of materials. <u>Railway in service</u> The stable railway operation brought by the project will contribute to the people's income improvement through an increase of economic activity.
	14	Indigenous People	С	С	D	D	There are various tribes in the project area. Some of them are indigenous; however, the lifestyle has become similar with the others.
	15	Employment and Local Economy	A+	A+	A+	A+	(same as the scoping results)
	16	Land use and local resources utilization	A+	A+	B-	D	During ConstructionThe construction will not changeland use. It is necessary to procureconstruction materials fromregistered quarries.Railway in serviceThe railway operation will notchange land use.
	17	Water Use	B-	С	B-	B-	Although water volume will not be affected by the construction and the operation of the railway, it is necessary to prevent water pollution caused by oil leakage and others.
	18	Existing Social infrastructure and Social services	B-	A+	B-	A+	During Construction The construction work will affect the informal local road along the railway. <u>Railway in service</u> The railway operation will become reliable and stable.
	19	Social capital and local decision- making institutions	С	С	D	D	As the rerouting distance is maximally within several hundred meters in the same village, it will not affect the local decision-making institution.

.u				sment coping		nal sment	
Environmental Domain		Environ- mental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Prior to Construction/ During Construction	Railway In Service	Reasons of the Final Assessment
	20	Cultural Heritage	С	С	B-	D	During Construction Some archaeological materials were found through the survey, especially in Kilosa District. The construction may affect those things. <u>Railway in service</u> As the materials are buried in the ground, railway operation will not affect them.
	21	Landscape	С	С	D	D	Landscape will be changed because of the embankment and cutting mountain slope; however, it will be acceptable as it is mountainous area and no specific views to be protected.
	22	Gender	B-	B+	D	D	The construction and the railway operation will not cause impacts to the domestic activities by women.
	23	Children's rights	С	С	D	D	The construction and the railway operation will not cause impacts specified for children.
	24	Infectious diseases HIV/AIDS	B-	С	B-	D	During ConstructionInflow of the construction workersmay cause spread of the infectiousdiseases as they will stay certainperiod close to the localcommunities away from their ownfamilies.Railway in serviceRisk of the spread of diseases is lowbecause the railway passengers willnot stay long at the project siteexcept residents.
	25	Working Environment, inclusive of occupational safety	B-	С	B-	В-	During Construction Occupational health and safety risks need to be considered for construction workers. <u>Railway in service</u> There are risks of an increase of accidents affecting TRL staff due to the increase of train operations.
Others	26	Accidents	В-	B-	В-	В-	During ConstructionThere are risks of accidents for localpeople.Railway in serviceTrain accidents affecting localpeople may be increased due to theincrease of train operations.

uin				sment coping		nal sment	
Environmental Domain		Environ- mental Elements Impacted	Prior to Construction/ During Construction	Railway In Service	Prior to Construction/ During Construction	Railway In Service	Reasons of the Final Assessment
	27	Trans- boundary pollution	D	D	D	D	(same as the scoping results)
	28	Global warming	D	B+	D	B+	During Construction (same as the scoping results) Railway in service (same as the scoping results)

A+/-: Significant positive/negative impact is expected. B+/-: Positive/negative impact is expected to some extent. C+/-: Extent of positive/negative impact is unknown. (A further examination is needed, and the impact could be

clarified as the study progresses) D: No impact is expected. Source: JICA Study Team

13.1.8 Mitigation Measures

Negative impacts which were evaluated as A, B, and C in the above section were presented in the Environmental Impact Statement (EIS) as Impact #1-27. The correspondence relations are tabulated in Table 13.10.

Table 13.11 presents mitigation measures and the Environmental/Social Management Programme (ESMP) describe in the EIS.

Implementation responsibility of the ESMP is solely under the project proponent, RAHCO. RAHCO shall supervise and monitor all components implemented by the Contractor. RAHCO shall provide the necessary supervisory oversight to ensure the mitigation measures are implemented.

RAHCO shall designate an Environmental Control Officer (ECO) who takes responsible for oversight of environmental compliance. The ECO shall serve in a day-to-day supervisory role during the entire construction period. The ECO shall have the capacity to coordinate the implementation of the various activities in the ESMP and ensure all RAHCO's Health Safety and Environment (HSE) management requirements are met by all aspects of the project. The ECO shall be the main contact person on all environmental and social matters related to the project (shall maintain contacts with officials in the various relevant Ministries, Departments and agencies both central and within Local Government Authorities and the RAHCO).

The Contractor shall ensure that those mitigation measures that are to be implemented during mobilization and construction are attended to. The Contractor shall designate among its staff/appoint an officer to act as Environmental Liaison Officer (ELO), and he/she will be responsible to ensure the environmental and social management mitigation measures are implemented during the contract period.

	mpacts in the above s			EIS
No.	items	Rating	No.	Impact description
Prior	to construction/during			
1	Air quality	В-	Impact #4	Impaired air quality & contribution to climate
			and #8	change due to release of dust, greenhouse gases
				and other noxious air pollutants
2	Water quality	В-	Impact #5	Release of oils and fuels in the aquatic
				environment
			Impact #6	Contamination of surface and ground water with
				demolition debris
			Impact #9	Impaired land and water qualities and contained
				resources from discharge of pollutants (wastes,
				oily substances, etc.)
3	Soil erosion	B-	Impact#1	Land disturbances/soil erosion at offsite
				locations - sources of construction materials -
				(sand, ballast, concrete blocks, aggregates, and
				stones)
			Impact #7	Land disturbances/soil erosion
4	Solid waste	B-	Impact #6	Contamination of surface and ground water with demolition debris
			Impact #9	Impaired land and water qualities and contained
			F	resources from discharge of pollutants (waste,
				oily substances, etc.)
			Impact #15	Loss of aesthetics due to haphazard disposal of
			I	demolition waste
5	Soil contamination	B-	_	(Although it is not specified in the EIS,
-				implementation of the examination will be
				secured in the detailed design stage.)
6	Noise/vibration	B-	Impact #2	Loss/damage/disturbance of indigenous
			1	vegetation and contained biodiversity species
			Impact #10	Temporary disturbances/flight of fauna from
			-	noise, gaseous and dust emissions
			Impact #13	Construction health and safety hazards
			Impact #16	Nuisance and disturbances from noise/
			-	vibrations (exceeding allowable level for the
				zone)
9	Ecosystem	B-	Impact	(Impacts from water pollution)
	(Aquatic ecology)		#5,6,9	
	(Terrestrial flora	B-	Impact #2	Loss/damage/disturbance of indigenous
	and fauna)			vegetation and contained biodiversity species
11	Topography and	B-	-	(EIA for new quarry development will be
	geology			conducted if necessary.)
12	Resettlement	A-	Impact #12	Change or modification of population and its
				quality of life due to land take
13	Poor	B-	Impact #12	Change or modification of population and its
				quality of life due to land take
16	Land use and local resource utilization	B-	Impact #3	Depletion at point source
17	Water use	В-	Impact	(Impacts from water pollution)
1/	water use	<u></u> -	#5,6,9	(impacts from water politition)

Table 13.10: Correspondence Relation Between Above Section and the EIS

I	mpacts in the above so	ection		EIS
No.	items	Rating	No.	Impact description
18	Existing social infrastructure and services	B-	Impact #14	Temporary disruption of socioeconomic activities
20	Cultural heritage	B-	Impact #11	Destruction of archaeological and cultural heritage resources
24	Infectious disease HIV/AIDS	B-	Impact #18	Public HSS risks: traffic accidents, risks of human-human transmission of diseases (STD, HIV, etc.), Infections from putrescible wastes with disease pathogens
25	Working environment, inclusive of occupational safety	B-	Impact#13	Construction health and safety hazards
			Impact #17	Occupational HSS risks (Serious injuries, Disturbances/nuisance and discomfort, Fatalities, Sickness and ill-health, Negligence due to fatigue, Loss of morale
26	Accidents	B-	Imact#13	Construction health and safety hazards
Railv	vay in service			
2	Water quality	B-	Impact #20	Release of oils and fuels in the aquatic environment
9	Ecosystem (Aquatic ecology)	B-	Impact #20	(Impacts from water pollution)
17	Water use	B-	Impact #20	(Impacts from water pollution)
25	Working environment, inclusive of occupational safety	B-	Impact #22	Occupational and Public health and safety during operation
26	Accidents	B-	Impact #23	Potential loss of lives and property as a result of falling off from moving train, collision with train at road crossing as a result of increased train frequencies
			Impact #27	Impairment of environmental quality due to accidental events

Source: JICA Study Team

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
	BILISATION PHASE			U U	
Natural Resource Receptor	Impact #1: Land disturbances/soil erosion at onsite and offsite location	 In order to mitigate land degradation onsite and offsite the contractor shall, through the entire mobilisation phase, implement the following measures: Implement soil erosion control and land rehabilitation measures at all project sites and offsite locations Ensure strict control of trucks, vehicles as well as equipment and machinery to ensure that they operate only within the project area Limit excavations area needed for construction works, construct temporary drainage grooves and sedimentation ponds for surface runoff collection and compact the disturbed areas soon after construction. Compact the disturbed areas soon after construction. Whenever possible development activities shall be implemented when the agents of erosion (i.e., rain and wind) are not active. RAHCO will monitor areas of exposed soil during periods of heavy rainfall throughout the project development phase. 	All disturbed land is rehabilitated	RAHCO	25,000,000
Natural Resource Receptor	Impact #2: Loss/damage/disturba nce of indigenous vegetation and contained biodiversity species	 In order to mitigate loss, damage, disturbance of indigenous flora and fauna, through the entire project phases, RAHCO shall ensure the following measures are implemented: Vegetation Develop and Implement a Flora and Vegetation Conservation and Soil Restoration Plan – which shall include: conduct pre-construction floristic conservation survey; identification and re-planting of the species to be conserved in similar alternative habitats; collection of their seeds and bulbs and establishment of small-scale nurseries and ex- situ and in situ conservation measures. Train the workers and construction of soils on large areas Fauna Examine at each section: breeding areas of special wildlife and invertebrates in water objects 	As minimum impact as possible	RAHCO	50,000,000
		Examine at each section:			

Table 13.11: Mitigation Measures and the Environmental/Social Management Program

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 Mitigation of noise The Contractor shall implement the following measures: Maintaining machinery and equipment in good running conditions and avoiding sudden loud noise Establish and enforce good site management Develop and observe best practice - methods of working Restrict hours of working during day light at the settlements; Exercise efficient material handling Define access routes to the site with the smallest number of properties in proximity Keep trucks and vehicle movements to a minimum possible 			
Material efficiency and waste receptor	Impact #3: Depletion at point source	 RAHCO shall ensure that the construction materials such as sand, gravel, natural stones, ballast are procured from registered quarry and sand mining firms, whose projects have undergone satisfactory environmental assessment/audit and received NEMC/District Council approval. RAHCO shall impress the Contractor to avoid over procurement of construction materials RAHCO shall impress the Contractor to avoid wastage, damage or loss (through run-off, wind, etc.) of materials at the construction site 	Resources are used as per requirement	RAHCO	0
Air quality and climate change receptor	Impact #4: Impaired air quality & contribution to climate change due to release of dust, greenhouse gases and other noxious air pollutants	 In order to mitigate the impairment of climate change, throughout the project cycle, the Contractor, RAHCO will continuously implement the following measures: Use of best practice management techniques during extraction, loading and transporting raw materials. Use efficient trucks and vehicles Train driver-training to minimize emissions (e.g., prevention of over revving, shut off engines when vehicles not in use). Regular (monthly) servicing of engines Ensure efficient equipment operations and maintenance measures to minimize emissions. Institute proper planning of transportation of materials to ensure that vehicle fills are increased in order to reduce the number of trips done or the number of vehicles on the road. 	Environmental Management (Air Quality Standards) Regulations, 2007	RAHCO	100,000,000 per year
Water resources receptor	Impact #5: Release of oils and fuels in the aquatic environment	 In order to protect the receiving environment against fuels the Contractor and RAHCO shall implement the following measure: Fuels and lubricants shall be stored only at designated areas. Storage of fuel and lubricants shall be kept at least 30m from the edge of the 	Environmental Management (water Quality Standards)	RAHCO	Covered under impact #4

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
Acceptor		 surface waters, e.g., rivers Refuelling and lubrication of equipment shall be restricted to areas at least 30m away from the edge of the surface waters Perform all routine equipment maintenance at least 30 meter away from the edge of the rivers and recover and dispose of wastes in an appropriate manner. Fixed fuel dispensing locations will be provided with secondary containment to capture fuel from leaks, drips, and overfills. A supply of sorbent and barrier materials sufficient to allow the rapid containment and recovery of spills shall be maintained at construction site Ensure that all equipment is free of leaks prior to use on the Project and prior to entering or working in or near the water bodies. Conduct regular maintenance and inspections of the equipment to reduce the potential for spills or leaks. Rubber-tired vehicles (trucks) shall refuel at commercial fuel stations. Tracked machinery (e.g., backhoes, bulldozers) shall be refuelled and lubricated on the 	Regulations, 2007	Unity	
Water resources receptor	Impact #6: Contamination of surface and ground waters with demolition debris and soils	 construction site. In order to mitigate impacts of demolition waste the Contractor together with RAHCO shall be guided by the waste management guidelines as follows:¹ Prevent the generation of hazardous waste; Where elimination is not possible apply means and techniques to reduce the quantity of hazardous waste generated; Minimize amount of waste for disposal by recycling, reuse and/or recovery. This includes the recovery of energy which may be available from the waste. Treat waste to stabilize, immobilize, contain or destroy hazardous properties. Dispose of residues with minimum environmental impact. Appropriately contain, isolate and store hazardous waste for which no acceptable treatment or disposal option is currently available. Other specific measures that will be implemented are: <i>Inert Construction Materials:</i> These materials shall be used for construction of 	All waste are handled accord to respective regulations	RAHCO	10,000,000
		 embankments, acoustic barriers or as filling materials on rural roads. Non-hazardous Waste: Concrete waste will be disposed in similar manner as inert wastes. Metal waste shall be disposed separately for reuse and recycling. 			

¹ Environmental Management (Hazardous Waste Management) Regulations, 2008

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 Hazardous Waste: Hazardous wastes will be collected and transported to Dar es Salaam for their final disposal. Uncontrolled incineration will not be allowed. Before removal of wastes from the site, the quantity (volume) and size of wastes; the name of waste collector/disposal agent and the name of the place of their final disposal/measure shall be specified. This issue shall be controlled by site manager The technical personnel shall be trained and informed about the appropriate regulations for handling hazardous waste i.e., Environment Management (Hazardous Waste Control and Management) Regulations, 2008 After demolition the place shall be restored to the pre-construction state. 			
CONSTRUCTIO					
Land resources receptor	Impact #7: Land disturbances/soil erosion	 In addition to mitigation measures listed under impact #1 following measures will also be implemented: RAHCO shall make land management and soil erosion control a requirement in the bidding document; RAHCO shall develop management plans for its existing quarry sites, and new sources of construction materials. Contractors will be required to control soil erosion and rehabilitate disturbed land; RAHCO shall provide oversight supervision and monitoring during and after project implementation. Contractor shall identify erosion prone areas, identify permanent erosion control measures (applicable for a particular site) and plan construction works and sites to limit quantity of material likely to be eroded and transported into the nearby rivers. Deliberately the Contractor will cover exposed soils with grass and other appropriate species as soon as possible and temporarily will bind exposed soil and redirect flows from heavy runoff areas that threaten to erode or result in substantial surface runoff to adjacent water courses. 	All site with erosion tendencies	RAHCO	The cost of implementing these measures are part of the project implementati on. They will be included in bill of quantities
		 <i>Topsoil removal, disposal and piling</i> First of all the topsoil and then subsoil shall be cut and piled (stocked) separately on specially selected area for their purposeful use. The stocked topsoil should not be mixed up with unfertile soils, stones, etc. It should be prevented from washing to preserve the structure, fertility and seeds base of the topsoil. Topsoil will be stored in the form of stockpiles having the height up to 2 m and 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
	Impueto	 slope inclination up to 30-35°. Erosion of stockpile surface shall be provided through compacting surfaces to the level having no threat of development of anaerobic processes. The Contractor shall stop topsoil removal and stocking operations if topsoil is saturated with water. Stocked soil shall be protected from washing, therefore, it is necessary to arrange drainage [system] in the bottom of the storage. Stocking of removed topsoil outside the RoW, shall be avoided as far as possible. If this is not possible appropriate sites shall be identified and used in accordance with the current Tanzania Laws (e.g., Village Land Act, 1999) 		<i>oney</i>	
		 With the current fanzahla Laws (e.g., Vinage Land Act, 1999) <i>Erosion control</i> Following erosion control measures shall be implemented: Arrangement of berms, stone mounds and gabions will be required at the cut slopes and in the bottom of the slopes. Cut topsoil shall not be used for construction of berms within the RoW. At the location of cult slopes and ravine crossings where the excavation works are to be carried out, water collecting and conveyance canals shall be built to regulate the flows of surface waters. At the ends of water conveyance canals the settlers shall be arranged (pits, sand sacks) to prevent damage of areas adjacent to RoW with water. Phyto-amelioration measures shall be implemented to stabilize the edges of slopes and cut slopes if required. It is particularly important to protect the removed and stocked topsoil from erosion processes – as follow. ✓ Stocked topsoil shall be drained. ✓ To control erosion processes at the edge of the cut slope, phyto-amelioration measures shall be implemented on the slope. ✓ For regulation of surface waters, berms and water canals shall be arranged at the edge of the slope that will be connected to natural water courses to avoid development of lateral erosion. 	All site with erosion tendencies	RAHCO	The cost of implementing these measures are part of the project implementati on. They will be included in bill of quantities
		 Soil reinstatement measures After completion of excavation works and laying the rails the soil reinstatement activities shall be implemented in the areas adjacent to the embankment. The reinstatement works shall be carried out in favourable meteorological (dry) conditions and in the shortest possible time. During implementation of soil reinstatement works mechanical and physical- 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 chemical characteristics of soils shall be taken into account. Soils shall be reinstated at least to its initial state for the purpose of observation of the principles of environmental safety and preservation of the recreational value of landscapes. 			
		 Reinstatement works to be carried out within the framework soil quality management; therefore the following will be required: preservation of landscapes and their recreational value; reinstatement-conservation of the areas modified as a result of construction activities to their initial visual-aesthetic state as much as possible; the construction shall not cause negative impact on the environment of the railway route and the RoW; implementation of slope stabilization and designing activities at the crossings of the railway with ravines; reinstatement of the private land parcels located in the vicinity of the railway bypass to their initial state, conservation of their fertility and natural characteristics; implementation of erosion control measures along and in the vicinity of the railway. 	All site with erosion tendencies	RAHCO	The cost of implementing these measures are part of the project implementati on. They will be included in bill of quantities
		 Other mitigation measure include: <i>Training of workers and construction site managers</i> to avoid, along other impacts, destruction-trampling and mechanical damage of soils by construction machinery in the areas adjacent to the construction sites. 			
Air quality and climate change receptor	Impact #8: Impaired air quality & contribution to climate change due to release of dust (including fugitive (unavoidable, residual), greenhouse gases and other noxious air pollutants	Mitigation measures listed under Impact #4 apply.		RAHCO	Covered under Impact #4

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
Water resources receptor and Land Resources Receptor	Impact #9: Impaired land and water qualities and contained resources from discharge of pollutants (wastes, oily substances etc.)	 In addition to mitigation listed under Impact #5 and Impact #6, the Contractor and RAHCO shall implement following additional measures: Develop and implement project-specific Waste Management Procedure/Plan (i) identify what type of solid or liquid wastes and categories of wastes the project will generate or handle (biodegradable/organic wastes; packaging materials; non-biodegradable (metallic, plastic), and hazardous wastes i.e., fuels, oils, lubricants, vehicle/machinery fluids etc.); (ii) identify ways to reduce the volume of waste by reusing or recycling initiatives (iii) establish technological interventions to capture and removal unwanted materials and sand before entering the water ways i.e., bar screens, sand traps and grit chambers. The following are specific waste management procedures to be implemented: During earthworks, i.e., excavation, digging pits, quarrying, etc. Contractor shall ensure the top soil is pilled aside at one place, then after finishing the earthwork the top soil shall be used to fill any bare land surfaces around the site. 	Environmental Management (Waste Management) Regulations, 2008	RAĤCO	50,000,000
		 Plastic and glass bottles (about 9 kg per day) shall be collected into litter bins, and transported to plastic recyclers. At completion of each day, site shall be left clean and tidy; debris, scrap and spill materials removed. Biodegradable waste of about 900 kg per day consisting of mainly paper, etc. 			
		 Batteries will be sent to YUASA in Dar es Salaam for recycling Batteries will be disposed at the site during construction. Fuel, oils and lubricants (300kg per day) on average from construction machinery and equipment from maintenance workshops, fuelling points etc. will be collected for use in furnaces 			
		 Demolition debris will be used during construction as construction aids or distributed to community project and filling of rural roads. 			
		Following specific measures shall be implemented where applicable: <i>Inert Construction Materials:</i> measures listed under impact #6 apply			
		 The Contractor and RAHCO shall implement following additional measures to mitigate water pollution from vehicle related activities: vehicle fuelling stations (in case of their existence at the construction stage) shall be embanked to prevent spread of fuel and pollution of the surrounding area in case of accidental spills; vehicle wash areas within the garages shall be embanked. For wastewater 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 treatment a primitive treatment facility in the form of concrete covered two-step ditches to prevent discharge of untreated waters in ravines and rivers; washing of vehicles in river and other surface water object shall not be allowed; layers of soil polluted by fuel and lubricants spilled from construction machinery shall be removed and transported to the place agreed with the Vice President's Office (VPO), Division of Environment (DoE), Department Natural Resources in advance; when painting metal constructions, especially metal bridges, tin or other covers shall be placed under the sections to be painted to avoid spill of paints into the surface water objects; Crossing of the planned railway with water bodies shall be designed in a manner to avoid penetration of pollutants in water bodies. 			
		 Other wastes places for toilets within the construction camps shall be selected with consideration of the groundwater levels. Cesspools shall be covered with cement solution to avoid pollution of groundwater with faeces. Cesspools shall be emptied on a regular basis in accordance with the number of workers living in the construction camp. construction waste shall be piled at a distance of at least 50 m from the riverbeds of rivers and ravines prior to disposal to the specially allocated dumpsites; temporary barriers shall be arranged at the small ravines and gullies to avoid movement of increased volumes of solid materials from the RoW to large ravines and rivers at the construction stage; the design of shall ensure protection of the groundwater and the river water from pollution 			
		 Non-hazardous Waste - mitigation measures listed under impact #6 apply Construction camps will be provided with toilet/shower facilities connected to a regularly empting septic tank; Special waste bins and waste collection system will be introduced to ensure disposal of wastes at landfills; The concrete wastewater will be collected, processed through a sedimentation tank and neutralized, usually with gaseous CO₂, before their disposal; Vegetation wastes generated from site clearance during construction can be left on the site only in exceptional cases. They will be transported to the suitable waste management facility; 	Environmental Management (Solid Waste Management) Regulations, 2009 Environmental Management (Hazardous	RAHCO	

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 Hazardous Waste - mitigation measures listed under impact #6 apply Reserves of potential polluters will be stored on special insulating bedding and fenced by a berm made of the similar material to retain the polluter in an amount of 10% more than stored. During operation all stationary construction machinery operating on diesel and petrol will be equipped with a special container to collect leaking fuel for disposal. Main equipment and vehicles will be fuelled on special insulating bedding wherever possible. A special attention will be paid to prevention of fuel spills. Special collectors will be installed at the points of potential leakage. Absorbents will be used as well. Fuel will be transported by specially designed fuel trucks. Collection, treatment and transportation of waste wastes generate at the construction site will be implemented in accordance with the general plan of waste management. Wastes shall be collected on a daily basis. Waste bins labelled with special signs will be placed on specially allocated points for collection and further disposal of wastes. 	Waste Control and Management) Regulations 2008		
Natural environment & biodiversity receptor	Impact #10: Temporary disturbances/flight of aquatic fauna from noise emission	 In addition to mitigation listed under Impact # 2, the Contractor and RAHCO shall implement following additional measures: During the construction phase small supporting enterprises, construction camps, parking and maintenance areas shall be arranged at a considerable distance from the settlements. If protected species are found, special measures to minimize their disturbance during reproduction and breeding periods will be develop and implemented; Arrange fences to prevent animals from falling into the trenches. Before filling the trenches make sure that there is no animal there. In general, it will be sufficient to place wooden boards in trenches that will be used by animals for escaping; Keep old trees near the RoW during the construction works; After completion of construction works the water courses and forest strips shall be recovered, topsoil shall be reinstated and re-cultivated, shrubbery shall be planted along the RoW. Pipes laid in gorges will play the role of so-called "Green Bridges" for animals. 	Environmental Management (Noise and Vibration) Regulations, 2008	RAHCO	The costs are covered under impact #2

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
SOCIAL IMPACT			Stundard	omey	
SITE SELECTION		AND CONTSRUCTION PHASES			
Acrcheology and Cultural Heritage Receptor	Impact #11 Destruction of archaeological and cultural heritage resources	 During implementation of earthworks at the project sites and adjacent areas permanent inspection/monitoring of the archaeologist shall be done The results of inspection will be reflected in the construction progress report If cultural/archaeological heritage is discovered or the grounds for assuming its existence are revealed during construction works, RAHCO (or/and its Contractor) is legally bound to stop the activities that bear the risk of damaging cultural heritage and inform in writing the Director of Archaeology and Cultural Resources in the Division for Antiquities, Ministry of Natural Resources and Tourism. The Director has to verify the discovered cultural heritage or the grounds for supporting the discovery and inform RAHCO 9 or /and its Contractor) about the verification results in writing no later than in 2 weeks offer receipt of the notification. 	Antiquities Act No 10 of 1964	RAHCO	Part of construction costs
Community wellbeing receptor	Impact #12: Change or modification of population and its quality of life due to land take	 In order to mitigate impact associated with land take and land use change RAHCO shall implement the following measures, before project implementation begins; The Project Affected People will be compensated as proposed in the Resettlement Action Plan (RAP) Ensure user participation at the planning, design, and implementation stages of the project. Consultations with. Ensure women and other vulnerable groups are not disadvantaged by the project. Encourage the PAPs to join Village Community Bank (VICOBA) as a way of protecting their money. 	All PAPs to be compensated for their land and property before the project kicks off	RAHCO	The estimated costs are contained in the CRP
		 Loss of land and property To minimize the negative effects of the relocation of affected communities RAHCO shall develop a Resettlement and Compensation Plan. RAHCO has developed a preliminary Project Resettlement Framework containing possible mitigation measures Consultations with the PAPs on the developed relocation program shall be continuously be made. Information on timeframe of the relocation program should be provides. In addition, railway staff should be trained on relocation program if appropriate. Consultations should be conducted not only with the people that are subject of displacement but also with the host community members. The affected community members should be involved in the decision-making process related to the resettlement process: compensation packages, resettlement assistance, 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 suitability of proposed resettlement sites and the proposed timing. In terms of mitigation and reduction of negative impacts from disruption of social relationships and networks while considering resettlement opportunities priority should be given to those areas where the possible resettlement of the whole community/settlement exists. To address in a timely manner specific concerns that will be raised during the resettlement process Grievance Mechanism should be established at an early stage as possible. 			
CONSTRUCTION	N PHASE				
Welfare, Health & Well-being receptor	Impact 13: Construction health and safety hazards	 In order to mitigate these impacts RAHCO should oblige construction company through contractual terms to conduct the following activities: To develop and implement <i>Public health and Safety and Construction Health and Safety Plans</i> - these should address the dust and noise issues. Where possible erect special fences; provide adequate sheeting of vehicle, ensure loads up until tipping point when moving around the site; use of dust filters on fixed plant and machinery. The workers should be provided with and require wearing protective special masks especially those workers who are involved in the implementation of dust generating works. Where possible avoid conduction works during night-time Develop and implement Grievance Mechanism through which local residents and workers could bring their concerns on the noise and dust caused to the construction. 	OSHA Regulations	RAHCO	20,000,000
		 Additional measures include: Avoid and minimize the pollution and ensure environmental safety of workers and the population all construction equipment is maintained in good running conditions. Develop and implement Construction Site Management Plan: which will regular watering of relevant sites, especially in dry and windy weather, regular washing of construction machinery and their wheels and use of closed waste containers to ensure additional protection from unpleasant smell Use of diesel engines in closed spaces shall be restricted within depots and maintenance areas, exhaust mufflers shall be installed on internal boilers and proper ventilation of closed spaces shall be ensured. 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
Community wellbeing receptor	Impact #14: Temporary disruption of socioeconomic activities	 During construction the Contractor shall implement the following measures to mitigate disruption of other socioeconomic activities: Establish and enforce good site management to limit the construction activities as close as possible to the construction site Develop and observe best practice - methods of working – e.g., avoid unnecessary noise Restrict hours of working during day light; Exercise efficient material handling to minimise vehicle movement Define access routes to the site, and try to avoid the large port area Keep trucks and vehicle movements to a minimum possible 	As minimum as possible	RAHCO	Part of contract sum
Landscape & Visual Amenity receptor	Impact #15: Loss of aesthetics due to haphazard disposal of demolition waste	 Mitigation measures listed under Impacts #6 & 9 apply 			
Natural environment and habitants receptor	Impact #16: Nuisance and disturbances from noise/vibrations (exceeding allowable level for people comfort) due to construction activities	 Mitigation measures listed under Impact #10 apply 			
Community wellbeing receptor	Impact #17: Occupational Health and Security and Safety (HSS) risks	 In order to mitigate Occupational and Health safety Hazards the Contractor and RAHCO shall implement the following measures: Avoid use of faulty equipment, tools and risk practices: Standards and operations and equipment: lifting, electrical isolation/installation, working at heights, manual handling, fitness for work, hand tools, housekeeping, building and office, vehicle and driving, hazardous substances, etc. Employ trained /qualified and competent Personnel. Provide appropriate equipment and working condition. Provide PPEs (to workers and visitors) and enforce their use. Put in place fall-prevention systems for people working at elevated sites. Install Signage: post warning signs with appropriate text (local language) and graphics. Observe standard working hours (8 hours per day) Secure equipment properly and demarcate any hazardous areas. Enforce best code of practices at the work place: Observe internationally acceptable Performance Standards on health/safety requirements. 	OSHA Regulations	RAHCO	Part of contract sum

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 Institute procedures and guidelines, work procedures, inspections and maintenance system, Implement in-house health and safety manual /guidelines Avoid inadequacies in water and sanitation provisions The demolition and construction work shall be contracted to class one contractor to avoid unnecessary health risks. OSHA guidelines on workers safety shall be implemented Raise awareness on construction hazards to construction workers. Use water sprinklers to suppress dust during construction Post warning signs with appropriate text (local language) and graphics. Workers Code of Conduct with the Community Liaison Plan will be developed and implemented – this will provide rules of conduct while conflict situations; emphasizing cultural characteristics of the local communities if migrants from different cultures enter the area shall be developed. Moreover, workers should be trained in order to ensure that they behave according to the developed Workers Code of Conduct. 			
Community wellbeing receptor	Impact #18: Public HSS risks: traffic accidents, Risks of human-human transmission of diseases (STD, HIV, etc.) Infections from putrescible wastes with disease pathogens	 In order to mitigate public health and safety hazards, the Contractor and RAHCO shall implement the following measures: Cooperate with local Civil Society Organizations (CSOs)/public health offices in programmes for reduction/eradication of the diseases and establish worker's health protection procedures (e.g., make available free condoms to workers) Enforce surveillance measures, e.g., yellow fever vaccination, potential Ebola infection, etc. Enforce speed limit for vehicles The construction area shall be isolated with special fences from the settled areas; clear signs should be posted at the entrance to the construction area to ensure that community members will avoid entrance of this area and will be more cautious when passing the construction site 	No injuries to the public	RAHCO	Part of contract sum
		 Other measures include: <i>Public Health and Safety Plan</i> shall be developed and implemented to mitigate the impacts of the movement of heavy equipment on existing local roads. <i>Construction Traffic Management Plan</i> shall be developed which will allow rerouting of the truck traffic from residential streets or using local roads with fewest homes for transportation of construction materials. Develop and implement a Grievance Mechanism to facilitate early notifications of any concern from the public 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
	Impact #19: Vandalism of structures/equipment, theft of materials and portable items during construction	 In order to mitigate vandalism tendencies RAHCO shall implement the following measures: Strengthen patrol of project construction sites and routes Strengthen security on construction sites 	No theft or vandalism	RAHCO	Part of contract sum
RAILWAY OPER					
Water resources receptor	Impact #20: Release of oils and fuels in the aquatic environment	 In order to protect the receiving environment against oils and fuels during operation TRL shall implement the following measure: Fuels and lubricants shall be stored only at designated areas. Storage of fuel and lubricants shall be kept at least 30m from the edge of the surface waters, e.g., rivers Refuelling and lubrication of equipment shall be restricted to areas at least 30 m away from the edge of the surface waters Perform all routine equipment maintenance at least 30 meter away from the edge of the rivers and recover and dispose of wastes in an appropriate manner. Fixed fuel dispensing locations will be provided with secondary containment to capture fuel from leaks, drips, and overfills. A supply of sorbent and barrier materials sufficient to allow the rapid containment and recovery of spills shall be maintained at construction site Conduct regular maintenance and inspections of the locomotives to reduce the potential for spills or leaks. 	Environmnetal Management (Water Quality Standard) Regulations 2007	TRL	Normal Operation and Maintenance of TRL
Air quality receptor	Impact #21: Impairment of local air quality	 Mitigation measures listed under Impact #4 & 8 apply Other mitigation measures include: Proper maintenance of trains, rails and wheels; Speed of trains may be restricted when passing the sensitive areas; Supporting structures may be constructed along the railway track which will play a role of acoustic screens. 	Environmental management (Standards for Control noise and vibration pollution) Regulations 2011	RAHCO	100,000,000 per year
Welfare, Health & Well-being receptor	Impact #22: Occupational and Public health and safety during operation	 In addition to mitigation measures under Impact #17, TRL shall implement the following measures to reduce risks of worker accidents during rail operations: Develop and implement a <i>Safety Program</i> in accordance with the international norms. Ensure that every manager and worker receives training before they perform any work on the line, and are provided refresher training at least every year thereafter. This applies to temporary workers as well. 	OSHA Regulations	TRL	20,000,000 per year

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
		 Train workers in personal track safety procedures Block train traffic on lines where maintenance is occurring (green zone working) or if blocking the line is not possible use an automatic warning system Segregation of stabling, marshalling and maintenance areas from running lines. Railway workers should schedule rest periods at regular intervals and during the night to the extent feasible, to maximize the effectiveness of rest breaks and in accordance with international standards and good practices for work time in order to avoid fatigue of workers and accidents invoked by this. 			
Welfare, Health & Well-being receptor	Impact #23: Potential loss of lives and property as a result of falling off from moving train, collision with train at road crossing as a result of increased train frequencies	 To avoid, minimize and control the risks associated with railway operation including railway crossings the RAHCO and TRL shall implement the following measures: Use of bridges or tunnels is recommended. If level crossings are unavoidable, signals shall be installed and their regular inspection/maintenance provided. Increase the security at all railway stations Continuously provide awareness campaign to inform passengers on the dangers of boarding or disembarking train while the train is moving. TRL will develop and implement a <i>Safety Program</i> in accordance with the international norms. Underpasses or level crossings should be developed based on the consultations with the public and representatives of local government. Post visible warning signs at potential points of entry to track areas. Fencing or other barriers should be installed at station ends and other locations to prevent access to tracks by unauthorized persons. Stations should be designed in such a way to ensure that the authorized route is safe, clearly indicated and easy to use. In addition awareness raising campaign should be conducted in the area for the local public to provide them relevant information and increase their awareness on the risks of trespassing. 	OSHA Regulations Zero accident	TRL RAHCO	20,000,000 per year
Welfare, Health & Well-being receptor	Impact #24: Additional pressure and demands on local social services and resources (increase water users, toilet users)	 RAHCO shall implement the following measures Ensure there enough toilets and washrooms at all stations Ensure availability of clean water at all stations Construct passenger waiting room Provide areas for canteen operation 	Adequate numbers and quantities	TRL RAHCO	100,000,000

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
Welfare, Health & Well-being receptor	Impact #25: Vandalism of structures/equipment, theft of materials and portable items	 In order to mitigate vandalism tendencies RAHCO shall implement the following measures: Strengthen patrol of the railway infrastructure Work with village leadership to get their cooperation to guard the infrastructure Strengthen community outreach and Corporate Socio Responsibility programmes 			
	DENTAL AND ANTHR				
Water and land resources receptor	Impact #26: Physical damage of project structures and disruption of railway operations and schedules due to natural causes	 This project is aimed at mitigating recurrent flood risk as such efforts should be made to implement it In order to protect the environment from natural or accidental events RAHCO shall implement the following mitigation measures: RAHCO should develop a disaster management program. The main tasks of this programme are: Introduction and systematic use of methods for analyzing, evaluating and predicting the risks of disasters in practice; Improve the management and coordination activities for the reduction of disaster risk and increase the resilience of sites of critical infrastructure; Establishment of an early warning system and notification of disasters; Improving the quality of management, organization and technical provision of the single rescue system; Development of systems for seismic surveys and monitoring of water basins and rivers; Improving the system for training of managerial staff for disaster response; Public education using modern technologies and media to form a culture of safe life activity. 	Minimum or no damage	RAHCO	Const are included in the project costs. For additional measures 50,000,000 for developing a disaster management programme
Natural Environment & Biodiversity receptor	Impact #27: Impairment of environmental quality due to accidental events	 RAHCO in collaboration with TRL shall implement the following measures: Carry out continuous research and monitoring to determine the reasons for and reduce the risk of freight train derailment – e.g., the probability that a train will be involved in a derailment is a function of the quality of track, the length of train, and exposure in terms of distance travelled etc. Implement rail operational safety procedures aimed at reducing the likelihood of train collisions, such as a positive train control (PTC) system. Conduct regular inspection and maintenance of rail lines and facilities to ensure track stability and integrity in accordance with national and international safety standards. Implement an overall safety management program that is equivalent to 			

Receptor	Project Aspect/ Potential Direct Impacts	Mitigation Measures/Management Program	Target Level/ Standard	Responsi- bility	Estimated Cost [TZS]
	-	internationally recognized railway safety operations. For example, the Safety Management System published by the Safety Management in Railways group of the International Union of Railways (IUR).			
		 Accidents related to the transportation of dangerous goods TRL should develop and implement a system for the proper screening, acceptance and transport of dangerous goods. RAHCO should develop spill prevention and control, and emergency preparedness and response plans and ensure its implementation. 			
		 Vegetation TRL and RAHCO should develop and implement a system to rehabilitate areas of damaged vegetation as a result of railway accidents (oil spills, destruction of the soil horizon, etc.) along with implementation of the Emergency Response Plan. Conduct regular training of the relevant employees for preparedness and timely and effective response to emergency situations. 			
Natural Environment & Biodiversity receptor	Impact # 28: Impairment of railway operations as a result of flooding of Gombe Dam	RAHCO shall continuously liaise with operator of the Gombe Dam to ensure that the dam is effectively managed to ensure it does not flood beyond its boundaries	The flood does not extend beyond the boundaries of the dam	RAHCO	5,000,000 per year
Social Impacts					
Welfare, Health & Well-being receptor	Impact #29: Increased train frequencies and therefore smoothen passenger and cargo movement	 In order to enhance the benefits that will result from the implementation of this project TRL and RAHCO shall Invest in other infrastructure and operational requirements such as procuring more wagons and more engines, improving welfare of workers etc. 	At least one passenger train per day to operate from Dar es Salaam and One from Kigoma and Mwanza	RAHCO TRL	
Built environment receptor	Impact #30: Protection of roads from heavy cargo as is the current practice	 In order to improve the usage of railway system to transport cargo instead of roads the following mitigation measure should be considered: Tanzania should make it mandatory to transport heavy cargo with railway system instead of using road 			
Welfare, Health & Well-being receptor	Impact #31: Increased income to local suppliers	In order to enhance the benefits that may result from procurement of construction materials and other services from local business people the following measures may be implemented:			

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

Project Aspect/ Potential Direct		Target Level/	Responsi-	Estimated
Impacts	 RAHCO and TRL will develop a plan aiming at providing opportunities, where possible, for procurement contracts with local companies in the context of all 	Standard	bility	Cost [TZS]
Impact #32:				
Employment	implemented:			
opportunities	 RAHCO and TRL will develop and implement a Local Workforce Recruitment Plan aiming at providing opportunities for employment of local workforce. Information with regard to construction recruitment will be comprehensively and 			
Impact #33: Increased income and improved or livelihoods as result of increased agricultural production, trading activities, and movement of people within the region and bordering countries Impact #34: Improved comfort of passengers as a result of increased train frequencies	Measures under Impact #29 will apply. Measures under Impact #29 will apply.			
Impact #35: Improved quality of the landscape features and appearance of the	 River embankment protection will be implemented as planned 			
	 Mitigation measures under Impacts # 28 apply 			
	winigation measures under impuets in 20 uppry			
emanating from proper operation of the Gombe Dam				
	Impacts Impact #32: Employment opportunities Impact #33: Increased income and improved or livelihoods as result of increased agricultural production, trading activities, and movement of people within the region and bordering countries Impact #34: Improved comfort of passengers as a result of increased train frequencies Impact #35: Improved quality of the landscape features and appearance of the river embankments Impact # 36: Improved flood management emanating from proper operation of	Impacts Mitigation Measures/Management Program Impacts • RAHCO and TRL will develop a plan aiming at providing opportunities, where possible, for procurement contracts with local companies in the context of all areas of service requirement during construction and operation Impact #32: In order to enhance the employment benefits the following measures may be implemented: opportunities In order to enhance the employment benefits the following measures may be implemented: opportunities In order to enhance the employment benefits the following measures may be implemented: opportunities In order to enhance the employment benefits the following measures may be implemented: opportunities In order to enhance the employment of local workforce. Impact #33: Information with regard to construction recruitment will be comprehensively and timely communicated to the local community members by contractors. Impact #33: Measures under Impact #29 will apply. Increased agricultural production, trading activities, and movement of people within the region and bordering countries Measures under Impact #29 will apply. Impact #34: Measures under Impact #29 will apply. Improved comfort of passengers as a result of increased train frequencies • River embankment protection will be implemented as planned Improved quality of the landscape features and appearance of the river embankments	Impacts Mitigation Measures/Management Program Standard Impacts • RAHCO and TRL will develop a plan aiming at providing opportunities, where possible, for procurrent contracts with local companies in the context of all areas of service requirement during construction and operation Impact #32: In order to enhance the employment benefits the following measures may be implemented: opportunities • RAHCO and TRL will develop and implement a Local Workforce Recruitment Plan aiming at providing opportunities for employment of local workforce. • Information with regard to construction recruitment will be comprehensively and timely communicated to the local community members by contractors. Measures under Impact #29 will apply. Increased income and improved or livelihoods as result Measures under Impact #29 will apply. Impact #34: Inpact #34: Measures under Impact #29 will apply. Impact #34: Measures under Impact #29 will apply. Improved comfort of passengers as a result of increased train frequencies • River embankment protection will be implemented as planned Impact #35: • River embankment protection will be implemented as planned Improved quality of the landscape features and appearance of the river embankments • Mitigation measures under Impacts #28 apply Improved flood management empanting from proper operation of • Mitigation measures under Impacts #28 apply	Impacts Mitigation Measures/Management Program Standard bility • RAHCO and TRL will develop a plan aiming at providing opportunities, where possible, for procurement contracts will hocal companies in the context of all areas of service requirement during construction and operation • </td

13.1.9 Monitoring Plan

Table 13.12 shows the Environmental/Social Monitoring Program (ESMoP).

The project proponent, RAHCO, has sole responsibility on implementation of the ESMoP. RAHCO shall supervise and monitor components of the monitoring plan and keep records of the monitoring outcome.

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
Mobilisation		1					
Impact #1: Land disturbances/soil erosion at onsite and offsite location	Rills and gullies (visual observation of soil erosion) Sediments in receiving water bodies	Once every six months	Project site	None mg/l	No erosion None	RAHCO	10,000,000 per year
Impact #2: Loss/damage/disturbance of indigenous vegetation and contained biodiversity species	Types of vegetation being cleared Existence of endemic /protected species Area being cleared	Continuously during mobilisation and construction phase	Entire project site	Numbers	No endemic/ protected species cleared Clearance should be restricted to project corridor	Contractor	Part of contract costs
Impact #3: Depletion at point source	Procurement records	Monthly during construction	Point of sourcing and Project site	all procurements from licensed operator	No material from unlicensed supplier, No new borrow pit	RAHCO Environmental Manager	200,000 per month
Impact #4: Impaired air quality & contribution to climate change due to release of dust, greenhouse gases and other noxious air pollutants	CO, NOx, dust	Once every six month	Construction site	mg/l, ppm	NOx = $150 \mu g/$ Nm ³ for 24- hours average value ² CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not exceed 20 mg/kg. Dust (measured as PM10) = $150 \mu g/m^3$	Contractor ELO ECO	1,000,000 per month

Table 13.12: Environmental/Social Monitoring Program

² Environmental Management (air Quality Standard)Regulation of 2007

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
					measured over 24hour average ³		
Impact #5: Release of oils and fuels in the aquatic environment	Oil contents	Once every six month	Surface water bodies	mg/l	10 ⁴	RAHCO	500,000 per year
Impact #6: Contamination of surface waters with demolition debris and soils	All types of waste including Heaps of soils Plastics wastes Glass wastes 	Continuous throughout the project cycle	Project site	None	No haphazard disposal of waste	RAHCO Environmental Manager	500,000per month
	 Turbidity 			NTU	300^{4}		
	 Suspended solids in receiving water 			mg/l	100 4		
	bodies • BOD			mg/l	30 4		
Construction							
Impact #7: Land disturbances/soil erosion	Rills and gullies Sediments in receiving water bodies	Once every six months during construction	Project site	None	No erosion None	RAHCO	2,000,000 per year
Impact #8: Impaired air quality & contribution to climate change due to release of dust (including fugitive (unavoidable, residual), greenhouse gases and other noxious air pollutants	CO, NOx, dust	Once every year during construction	Construction site	mg/l mg/l, ppm	NOx = 150 μ g/ Nm ³ for 24- hours average value ⁵ CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not	Contractor ELO ECO	1,000,000 per month

³ USA National Air Quality Standard
 ⁴ Environmental Management (Water Quality Standards) Regulations, 2007
 ⁵ TBS - Ambient air quality

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
					exceed 20 mg/kg. Dust (measured as PM10) = 150μ g/m ³ measured over 24hour average ⁶		
Impact #9: Impaired land and water qualities and contained resources from discharge of pollutants (wastes, oily substances etc.)	Oil contents All types of waste including Heaps of soils Plastics wastes Glass wastes	Once every year during construction	Surface water bodies	mg/l	107	RAHCO	1,000,000 per year
)	 Turbidity Suspended solids in receiving water bodies 			NTU mg/l	300 ³¹ 100 ³¹		
Impact #10: Temporary disturbances/flight of aquatic fauna from noise emission	BOD Noise levels	Once month after commencement of construction	Project site	mg/l dB	30 ³¹ <85 dB ⁸	RAHCO Environmental Manager	1,000,000
Impact #11: Destruction of archeological and Cultural heritage resources	No. of discoveries	Continuously	Project site	Number	All discoveries should be reported	RAHCO Contractor	12,000,000 per year
Impact #12: Change or modification of population and its quality of life due to land take	Existing of land related conflicts Types of land use	Continuously	All villages along the project corridor	Number of conflicts	Zero	RAHCO	500,000 per six months
Impact #13: Construction health and safety hazards	 Personnel health records Noise levels Concentration of pollutants such as 	Once every year	Project site	None dB ppm numbers	Noise = <85dB Dust = Not to exceed	RAHCO OHS Officer	5,000,000 per year

⁶ USA National Air Quality Standard
 ⁷ Environmental Management (Water Quality Standards) Regulations 2007
 ⁸ Environmental Management (Noise and Vibration Management and Control) Regulations of 2007

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
	dust in the working environment • Number injuries				250 mg/Nm ³ (24h mean value) ⁹ Zero injuries		
Impact #14: Temporary disruption of socioeconomic activities	Existence of complaints	Continuously during construction	Entire project site	Number of complaints	As minimum as possible	Contractor RAHCO	Included in impact #11
Impact #15: Loss of aesthetics due to haphazard disposal of demolition waste	All types of waste including Heaps of soils Plastics wastes	Continuous throughout the project cycle	Project site	None	No haphazard disposal of waste	RAHCO Environmental Manager	500,000per month
waste	 Glass wastes 			NTU	300 ³¹		
	 Turbidity Suspended solids in receiving water 			mg/l	100 31		
	bodiesBOD			mg/l	30 ³¹		
Impact #16: Nuisance and disturbances from noise/vibrations (exceeding allowable level for people comfort) due to construction activities	Noise levels	Once month after commencement of construction	Project site	dB	<85 dB ¹⁰	RAHCO Environmental Manager	Covered under #10
Impact #17: Occupational Health and Security and Safety (HSS) risks	Incidences of breach of health and safety	Continuously	Project area	Number of incidence	Zero	RAHCO	3,000,000 per year
Impact #18: Public HSS risks: traffic accidents, Risks of human-human transmission of diseases (STD, HIV, etc.) Infections from putrescible wastes with disease pathogens	STDs HIV/AIDS infections Cholera	At the beginning of the project and once every year	hospital/dispensary	Number of people infected	No or as minimum infectious cases	District Medical Officer	2,000,000 per year

 ⁹ Environmental Management (Air Quality Standard) Regulation of 2007
 ¹⁰ Environmental Management (Noise and Vibration Management and Control) Regulations of 2007

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
Impact #19: Vandalism of structures/equipment, theft of materials and portable items during construction	Destroyed infrastructure and loss of equipment	Continuously during construction phase	Construction site and stores	Number of theft incidences	No or minimum vandalism cases	RAHCO	10,000,000
Railway Operation							
Impact #20: Release of oils and fuels in the aquatic environment	Oil contents	Once every six month	Surface water bodies	mg/l	10 ¹¹	RAHCO	
Impact #21: Impairment of local air quality	CO, NOx, dust	Once every six month	Construction site	mg/l, ppm	NOx = $150 \mu g/$ Nm ³ for 24- hours average value ¹² CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not exceed 20 mg/kg. Dust (measured as PM10) = $150\mu g/m^3$ measured over 24hour average ¹³	Contractor ELO ECO	1,000,000 per month
Impact #22: Occupational and Public health and safety	 Personnel health records Noise levels Concentration of pollutants such as dust in the working 	Once every year	Project site	None dB ppm numbers	Noise = <85 dB Dust = Not to exceed 250 mg/Nm ³ (24h mean value) ¹⁴	RAHCO OHS Officer	

¹¹ Environmental Management (Water Quality Standards) Regulations, 2007
 ¹² Environmental Management (Air Quality Standard) Regulation of 2007
 ¹³ USA National Air Quality Standard
 ¹⁴ Environmental Management (Air Quality Standard) Regulations of 2007

13-64

Potential Impact	Parameter to be monitored environment	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard Zero injuries	Responsible party	Estimated Cost TZS
	 Number injuries 						
Impact #23: Potential loss of lives and property as a result of falling off from moving train, collision with train at road crossing as a result of increased train frequencies	Reported cases of such injuries	Once every month	Railway stations	Number	Zero	TRL RAHCO	500,000 per year
Impact #24: Additional pressure and demands on local social services and resources (increase water	Number of toilets at each station	Once at the beginning of operation and then one year and	Railway stations	Number of functioning toilets Clean water	As many as possible	TRL RAHCO	500,000 per year
users, toilet users)	Incidences of open defecations	availability of clean water Continuously		Signs of open defecation	No open defecation		
Impact #25: Vandalism of structures/equipment, theft of materials and portable items	Reported cases of vandals	Continuously	Entire project	Reported cases	No or minimum vandalism cases	TRL RAHCO	500,000 per year
Impact #26: Physical damage of project structures and disruption of railway operations and schedules due to natural causes	Physical strength of impacted structure Visual monitoring of soil erosion along the unpaved project areas and river banks	Once every year	Project site	None	No structure weakness	Contractor RAHCO	5,0000,000 per year
Impact #27: Impairment of environmental quality due to accidental event	Vegetation Oil contamination	Immediately after accident and once every six months	Site of accident	Decontaminated soils and plants mg/l	10 ¹⁵	TRL	5,000,000 per year
Impact # 28: Impairment of railway operations as a result of flooding of Gombe Dam	Flooding tendencies	Continuously during rainy season	Gombe Dam Area	Visual	Floods should not extend beyond the dam boundaries	RAHCO	5,000,000 per year

¹⁵ Environmental Management (Water Quality Standards) Regulations, 2007

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

Potential Impact	Parameter to be monitored	Monitoring frequency	Monitoring areas	Measurement units	Target level or standard	Responsible party	Estimated Cost TZS
Impact #29: Increased train frequencies and therefore smoothen passenger and cargo movement	Train frequencies	Once every year	TRL Head Quarters	Number	At least one passenger train per day	TRL	0
Impact #30: Protection of roads from heavy cargo as is the current practice	Cargo tonnage transported by train	Once every year	TRL Head Quarters	Tonnage	At least 80% of cargo is reported by train by 2019	TRL	0
Impact #31: Increased income to local suppliers	Supplies and services received from the residents	Monthly	Procurement supply list	Number of supplies and services from the residents	As many supplies and services from the residents	Procurement manager	0
Impact #32: Employment opportunities	Number of residents employed	Every year	Employed employees	Number of employees	As many tenant employees as possible	RAHCO	0
Impact # 33: Increased income and improved or livelihoods as result of increased agricultural production, trading activities, and movement of people within the region and bordering countries	Incomes of local people in the project area	Once every year	Affected villages	Per capita income	National per capita income average	RAHCO	10,000,000 per year
Impact # 34: Improved comfort of passengers as a result of increased train frequencies	Passenger perception	Once (six months after commissioning of the project sections)	Affected villages	Perception	Positive perception	RAHCO	5,000,000
Impact # 35: Improved quality of the landscape features and appearance of the river embankments	Landscape	Once after completing the construction work	The project area	Visual appearance	Attractive visual appearance	RAHCO	2,000,000
Impact # 36: Improved flood management emanating from proper operation of the Gombe Dam Source: Environmental Impac	Flooding tendencies	Continuously during rainy season	Dam area	Over flooding	No flooding beyond the border of the dam	RAHCOO	5,000,000 per year

Source: Environmental Impact Statement

13.1.10 Stakeholder Meetings for EIA

(1) The First Meeting

Outline

In accordance with the Environmental Management Act and JICA Guidelines, the first series of stakeholder meetings were held in the villages along the railway in the study area. The meetings aimed to involve local communities at an early stage such as to collect necessary information for the EIA study and encourage local participation into the mitigation measures for possible environmental and social impacts.

The meeting was held in six villages in the Kilosa–Gulwe section and three villages in the extended project section to Dodoma (Table 13.13). In the Kilosa–Gulwe section, the meetings basically consisted of two sessions: the first was for village leaders and the second was for the village assembly. Participants in the first session included about 20–30 representatives in each village including village council members, ward officers, elders, religious leaders, women committee members, members of youth groups, security officers, political leaders, and so on. After the first session, the results were presented in the village assembly, in which about 100 villagers participated at each meeting to collect comments from the villagers.

The schedule of the village assembly was informed through village leaders and networks among villagers. As representatives from women's committee were invited for each village leader's meeting, participation of women was secured in all of the meetings and the village assemblies.

		Village infor	mation		ber of cipants
Village name (Ward and District name)	km post	Status of the station	Accessibility by car	Leaders' meeting	Village assembly
Mkadage (Magomeni, Kilosa)	286	No station	No access	47	
Munisagara (Msanze, Kilosa)	298	Closed	No access	25	72
Mzaganza (Kidete, Kilosa)	311	Closed	No access		140
Kikundi (Kidete, Kilosa)	316	No station	No access	24	80
Godegode (Godegode, Mpwapwa)	349	Closed	Available	25	98
Gulwe (Gulwe, Mpwapwa)	366	Operational	Available	31	87
Musagali (Chunyu, Mpwapwa)	382	Closed	Available	18	-
Igandu (Igandu, Chamwino)	402	Closed	Available	21	-
Ihumwa (Mtumba, Dodoma)	439	Closed	Available	20	-
	(Ward and District name) Mkadage (Magomeni, Kilosa) Munisagara (Msanze, Kilosa) Mzaganza (Kidete, Kilosa) Kikundi (Kidete, Kilosa) Godegode (Godegode, Mpwapwa) Gulwe (Gulwe, Mpwapwa) Musagali (Chunyu, Mpwapwa) Igandu (Igandu, Chamwino)	(Ward and District name)postMkadage (Magomeni, Kilosa)286Munisagara (Msanze, Kilosa)298Mzaganza (Kidete, Kilosa)311Kikundi (Kidete, Kilosa)316Godegode (Godegode, Mpwapwa)366Musagali (Chunyu, Mpwapwa)382Igandu (Igandu, Chamwino)402	Village namekmStatus of(Ward and District name)postthe stationMkadage (Magomeni, Kilosa)286No stationMunisagara (Msanze, Kilosa)298ClosedMzaganza (Kidete, Kilosa)311ClosedKikundi (Kidete, Kilosa)316No stationGodegode (Godegode, Mpwapwa)349ClosedGulwe (Gulwe, Mpwapwa)366OperationalMusagali (Chunyu, Mpwapwa)382ClosedIgandu (Igandu, Chamwino)402Closed	(Ward and District name)postthe stationby carMkadage (Magomeni, Kilosa)286No stationNo accessMunisagara (Msanze, Kilosa)298ClosedNo accessMzaganza (Kidete, Kilosa)311ClosedNo accessKikundi (Kidete, Kilosa)316No stationNo accessGodegode (Godegode, Mpwapwa)349ClosedAvailableGulwe (Gulwe, Mpwapwa)366OperationalAvailableMusagali (Chunyu, Mpwapwa)382ClosedAvailableIgandu (Igandu, Chamwino)402ClosedAvailable	Village informationparticVillage namekmStatus ofAccessibilityLeaders'(Ward and District name)postthe stationby carmeetingMkadage (Magomeni, Kilosa)286No stationNo access47Munisagara (Msanze, Kilosa)298ClosedNo access25Mzaganza (Kidete, Kilosa)311ClosedNo access24Godegode (Godegode, Mpwapwa)349ClosedAvailable25Gulwe (Gulwe, Mpwapwa)366OperationalAvailable31Musagali (Chunyu, Mpwapwa)382ClosedAvailable18Igandu (Igandu, Chamwino)402ClosedAvailable21

Table 13.13: Outline of the First Stakeholder Meetings (8–12 June 2015)

Note: Village assemblies were not planned in Musagali, Igandu and Ihumwa as they are out of the main project area. Source: JICA Study Team

Results

The possible positive and negative impacts by the project were raised by the participants responding to the facilitator's question (Table 13.14). As a positive impact, expectations for job opportunities for the construction works and railway operation were raised at almost every village. On the other hand, some negative concerning was also raised such as compensation for resettlement and sexual disease/HIV effects. Those concerns were addressed in the mitigation plan in the EIA.

Apart from the project impacts, participants expressed various requests related to the project; for example, flood protection for agricultural land in addition to the railway, and improvement of train service and road infrastructure (Table 13.15). Although most of them are out of the scope of this project, their requests shall be noted for possible future plans.

Subjects	Rais	sed Issues	Response
Positive impacts	1)	Job opportunities for construction and train operation. It should be prioritized to the local villagers.	The contractor is to be coordinate with the local government closely and prioritize the job opportunities to the villagers considering equal distribution through the village government.
	2)	Improvement of the railway service for transporting agricultural products.	-
	3)	Protection of the agricultural land and people's properties from flood, not only the railway.	The project aims to protect the railway, not the agricultural land and people's properties.
	4)	Economic growth of the villages/villagers.	-
Negative impacts	5)	House relocation and land acquisition. It should be compensated properly.	Addressed in the CRP.
	6)	Sexual diseases such as HIV and marriage destruction caused by inflow of construction workers. Education is necessary for both community and workers.	Addressed in the mitigation plan.
	7)	OHS (Occupational Health and Safety)/ worker's insurance	Addressed in the mitigation plan.
	8)	Students may leave their studies to seek employment.	Addressed in the mitigation plan.
	9)	Environmental degradation such as deforestation and pollution such as dust.	Addressed in the mitigation plan.
	10)	It is concerned that the culvert improvement might affect downstream agricultural land by the increased flood flow (Igandu).	To be addressed in the culvert improvement planning at Igandu.

Table 13.14:	Positive and	Negative	Impacts	Raised in	the Meetings

Source: JICA Study Team

Topics	Requests		Villages	Response
Flood protection measures	1)	Kidete Dam should be renovated as the first priority for protecting both agricultural land and the railway from flood.	Mkadage, Mzaganza Kikundi	Flood flow prevention shall be addressed in future project such as watershed management project.
	2)	Flood flow from Kibakwe should be prevented for the same reason as above.	Godegode	
	3)	Flood flow from Kimagai and Kidete Dams should be prevented for the same reason as above.	Gulwe	
	4)	Flood flow from Bujuku and Maschilo should be considered	Musagali	
	5)	Number of culvert under the railway needs to be increased to discharge flood flow from agriculture land (near Musagali Station).	Musagali	To be addressed in the future improvement plan.
Irrigation	6)	Reserving water is necessary at the same time with flood protection.	Musagali	To be noted for the future development.
Train services/ operations	7)	Existing station to be operated and rehabilitated.	Munisagara, Mzaganza Godegode, Musagali Igandu	To be noted for TRL.

Topics	Req	uests	Villages	Response
	8)	A station to be built in the village.	Mkadage, Kikundi	To be noted for the future development.
	9)	Trolley or small train to be operated for local transportation.	Mkadage, Mzaganza	To be noted for TRL.
	10)	Train operation to be regulated more strictly for safety control. (e.g., speed limitation, sounding phone more frequently)	Munisagara, Igandu	To be noted for TRL.
	11)	Communication system needs to be improved to find the flood disaster points on the railway.	Musagali	To be noted for TRL.
Side road	12)	The road along the railway to be improved for securing safety and local transportation.	Mkadage, Munisagara Mzaganza, Kikundi	To be discussed the possibilities.
	13)	Temporary road for construction to be utilized for local transportation after the construction.	Mzaganza	-
	14)	After relocating the railway, the existing railway location to be utilized for a local road. Existing bridge and culvert to be maintained after the relocation.	Munisagara, Kikundi	-
Crossing road	15)	Roads to cross the railway (with livestock) to be built.	Mkadage, Munisagara Mzaganza, Igandu Ihumwa	Underpass is to be planned in this study for the section of railway embankment.
	16)	The existing culvert needs to be improved not only for flood protection but also for crossing the railway.	Igandu	-

Source: JICA Study Team

(2) The Second Meeting

Outline

The second series of the meetings were held in order to provide feedback of the EIA results to the local stakeholders. The meetings were held at five villages with participants from six villages which would be affected by the project, especially by the railway rerouting. It was called for the village leaders as shown in Table 13.16 including women leaders.

	Village name			nber of icipants
Date	(Ward and District name)	Participants	Total	(Women)
22 Feb.	Munisagara (Msanze, Kilosa)	Village Executive Officer (VEO), village chairman, village council members, sub-village leaders	18	(5)
	Mzaganza (Kidete, Kilosa)	VEO, village chairman, village council members, sub-village leaders, secretary of political party, teacher	16	(3)
23Feb.	Kikundi (Kidete, Kilosa)	Ward Executive Officer(WEO), VEO, village chairman, village council members, sub-village leaders, elder	12	(2)
24 Feb.	Gulwe (Gulwe, Mpwapwa)	WEO, ward councilor, VEO, village chairman, village council members, sub-village leaders, village land officers, teacher, nurse, TRL staff	20	(8)
	Godegode (Godegode, Mpwapwa) Kisisi (Godegode, Mpwapwa)	WEO, VEO, village chairman, village council members, sub- village leaders, village health officer, party leader, elders	20	(7)

Table 13.16: Outline of the Second Stakeholder Meetings (22–24 February 2016)

Source: JICA Study Team

Results

During the meetings, the entrusted consultant explained the major points of the ESMP including responses to the comments at the first meetings. After that, the participants made questions/comments and the consultant and RAHCO answered (Table 13.17). Through the meetings, the results of the ESMP were well accepted and the understandings on the project were encouraged among the participants. It was agreed by the participants to explain the meeting results to the other villagers.

Table 13.17: Questions/Comments and Response in the Meeting

Que	estions/Comments	Response
1)	The service of local shuttle trains (pick-up train -	The plans will be put in place to resume
	locally known as "punguza") should be re-	the services of the shuttle train during
	established to serve communities located away from	operation phase.
	the existing main railway stations and who haven't	
	any other means of reliable transport. (Munisagara)	
2)	It is concerned that heavy truck and equipment will	Appropriate mitigation measures have
	be used during construction phase and will cause	been put in place to mitigate all
	environmental degradation particularly to the	environmental impacts including
	existing flora and fauna. (Kikundi)	degradation of existing flora and fauna in
		the project area.
3)	Is the EMP applied for the existing construction work	The proposed EMP is for the JICA
	for the flood damage this year? (Kikundi)	project.
4)	Is it possible for constructing a school and a	As far as they are not affected, the new
	dispensary at the relocation site? (Kikundi)	facilities are not planned.
5)	Is the 30 m distance away from the water source	It is legally acceptable and seems to be
	enough to avoid water pollution by the construction	enough.
	works specified in the EMP? Is it legal? (Kikundi)	
6)	Pathway for livestock keepers is requested for	Culverts will be prepared with enough
	crossing the new track. (Gulwe)	size for livestock to cross the rail.

Que	stions/Comments	Response
7)	Is there any physical properties left for village use after project construction phase? (Gulwe)	The camp site might be left for village use at the end of construction phase, but this will be discussed and agreed at the end of project implementation. Also livelihood restoration shall be provided to the affect people.
8)	Flood measure at Mzase River is necessary. (Gulwe)	Already planned.
9)	Will the village land be compensated if it is affected? (Gulwe)	Yes it will.
10)	There might be conflict between Contractor and village government on issue of payment of village levy for construction materials. (Gulwe)	Contractor shall abide and follow all local government by-laws and regulation including the payment of all relevant levy. Contractor shall also source construction materials at authorized areas in order to avoid conflicts with local communities and environmental degradation.
11)	Road damage by the heavy construction materials is concerned. (Gulwe)	Construction access road will be prepared. If the village road is damaged, the contractor is to be responsible for repairing.
12)	Is there any regulation for paying tax for the material procurement? (Gulwe)	Is should be consulted with the local government in accordance with the regulation.
13)	It is necessary to collaborate between contractor and the local people in order to secure the environmental and social management. (Gulwe)	-
14)	The construction access road is requested to be left for public use. (Godegode/Kisisi)	It will be left.
15)	Pollution of water source by the construction is concerned. (Godegode/Kisisi)	It will be managed by the EMP and EMoP.
16)	There is water scarcity in Godegode village, thus requested the Contractor to be engaged to build water well as compensation for taking construction materials within the village area. (Godegode/Kisisi)	The village government should discuss and see the possibility of this matter with the Contractor prior to commencement of the construction works.
17)	Accident is concerned because of the shortage of medical facilities and staffs. (Godegode/Kisisi)	Safety management plan will be prepared to prevent accidents.

Source: JICA Study Team

Meeting with village leaders In the first meeting Source: JICA Study Team

Village assembly In the first meeting

Meeting with village leaders In the second meeting

13.2 Compensation and Resettlement Plan

13.2.1 Necessity of Resettlement

The following project components will cause resettlement.

(1) Rerouting

In accordance with the Railway Act (2002), "railway strip" which means ROW is defined as land adjacent to the railway track reserved to facilitate future development of rail infrastructure. In this strip, a person shall not erect any building or structure or execute any works without written permission of RAHCO. The act also defines the width of the strip as fifteen meters in urban area and thirty meters in rural area from the center line of the track. Based on the act, it is necessary to acquire the land for thirty meters of both sides of the newly rerouted railway tracks.

As explained in Subsection 8.6.2 and 13.1.4, the rerouting course was selected to minimize the house relocation by comparing Alternative A-1, B-1, and C-1 versus A-2, B-2, and C-2. However, not all of the residential areas were avoidable and the agricultural land would be affected.

(2) River-Training Works

Excavating a new channel at Maswara River will directly affect the agricultural land in the flood plain. However, no house relocation is required.

Training works at Mzase River will not affect either agricultural land or housing structures as the location is bare land and not used for any such purpose.

13.2.2 Legal Framework for Compensation and Resettlement

The Tanzanian legal framework for land acquisition and Compensation and Resettlement Plan (hereinafter referred to as "CRP") is summarized in Table 13.18.

Types	Name of policies/laws
National Policies	National Land Policy, 1997
	National Environmental Policy, 1997
	National Human Resettlement Development Policy, 2000
	TASAF III Resettlement Policy Framework, 2012
Legal Framework	The Land Act, 1999
	The Land (Amendment) Act, 2004
	The Village Land Act, 1999
	The Land Acquisition Act, 1967
	The National Land Use Planning Commission Act (No. 3), 1984
	Urban Planning Act, 2007
	Graves (Removal) Act, 2007
	Local Government (District Authorities) Act
	Local Government (Urban Authorities) Act
	Land (Forms) Regulations, 2001
	Land (Assessment of the Value of Land for Compensation) Regulations, 2001
	Land (Compensation Claims) Regulations, 2001
	Land (Management of the Land Compensation Fund) Regulations, 2001
	The Village Land Regulations, 2001
Guidelines	Road Sector Compensation and Resettlement Guidelines, 2009

Source: JICA's Tanzanian Environmental and Social Consideration Profile, Sept. 2011, with updated revisions by JICA Study Team

(1) Summary of Relevant Policies and Regulations for Social Considerations in Tanzania

Tanzanian main laws and regulations on land acquisition and compensation and resettlement plan procedures, can be summarized as below.

The Land Acquisition Act, 1967

The Land Acquisition Act, 1967 is the principal legislation insofar as land acquisition is concerned. The provisions of Section (1) draw attention to the requirements of the Constitution: *"Subject to the provision of this Act, where any land is acquired by the President under Section 3, the Minister shall on behalf of the Government pay in respect, thereof, out of moneys provided for the purpose of the Parliament; such compensation as may be argued upon or determined in accordance with the provision of this Act."*

The most common instruments which the state has and can apply to access land are: negotiations and persuasion, legalized force, and compulsory acquisition. The latter is normally effected through the power of "eminent domain". This gives the state powers to expropriate private property for public use without necessarily seeking the owners' consent. However, this is subject to payment of fair and prompt compensation. Compulsory land acquisition involves four key steps, namely: (i) planning and the decision to acquire land, (ii) legal preliminaries, including getting statutory authority and serving notices, (iii) field investigations, including valuation, and (iv) payment of compensation to those being dispossessed.

Normally it is the local or central government that initiates the process of land acquisition for public use. Valuation of land and other improvements therein is done either by the government or by private companies, but the central government must give approval. While dispossessed households are entitled to fair and prompt compensation, the allocation of alternative land for resettlement is not a right, but is instead at the discretion of the government or any other institution involved in the acquisition of land for public use. In the Tanzanian context, the provision of alternative land in an appropriate location seems to be a key pre-condition not only for restoring land occupiers to the situation they were in before the acquisition of their land for public use, but also for promoting sustainable use of environmental resources on which the survival of urban settlers depends.

The Land Act (No. 6), 1999

The current basic law in effect in relation to land can be identified as the Land Act (No. 6), 1999, excluding village land management, settlement of disputes and related matters. The Act relates to land-use planning processes, land-use management, and guidance to landownership in Tanzania. The law vests all land in the name of the President, empowering him to grant occupancy rights to individuals, legal persons and territorial communities. The President is and empowered to revoke the "Right of Occupancy" of any landholder for the "public/national interest" should the need arise. The President can acquire land for public use and benefit, for instance, to resettle people from densely populated areas to sparsely populated areas, and so forth. The President can also acquire land for other national projects, like railway infrastructure. However, the law declares the value attached to any piece of land and as such any land rights transfer is subject for compensation.

Under the Government Standing Order on expropriation for public utility, the holder of a Right of Occupancy is guaranteed a free enjoyment of the land and is entitled to compensation if dispossessed by the Government for public use. In many cases, whilst the holders agree to leave their land, they are not happy with the amount and delay of the compensation. Often, for example, improvements that they have made to the land are omitted or underrated. The expropriation should match the price that improvements could fetch if sold in the open market. Replacement value (defined as the cost of putting up a structure equivalent to the evaluated one) makes allowances for age, state of repair, and economic obsolescence.

The Village Land Act (No. 7), 1999¹⁶

This Act was enacted for the purpose of regulating administration and management of land in villages. Under the provisions of the Act, the Village Council¹⁷ is responsible for the management of village land, taking respect of balance in land use, other natural resources development, and environmental preservation, by upholding the principle of sustainable development.

The Land (Assessment of the Value of Land for Compensation) Regulations, 2001

The regulation outlines that the basis for assessment of the value of any land and un-exhausted improvement for the purpose of compensation shall be its market value:

- (a) The asset evaluation related to land and accommodated properties, shall be based on market value.
- (b) The market value of land and accommodated properties, shall be set up based on comparative proof, of equivalent land's recent actual selling price, by income approach, or by replacement cost method.
- (c) In terms of payment by the government or by the local authority in charge, the land and all the remaining value identified, must be confirmed by the administrative auditor or by the competent representative in charge.
- (d) If compensation is not paid promptly, and payment of interest rate may become an additional obligation, then the government or the local authority in charge must be held accountable in bearing such cost.
- (e) In order to evaluate the interest rate of the compensation payment, "prompt payment of compensation" stated in above item, shall mean, within 6 months, after the subjected land acquisition or after expiration of its land right.
- (f) If in case, within 6 months, after the subjected land acquisition or after expiration of its land right, the compensation is not paid, then payment of the interest rate, by adopting the commercial banks' fixed deposit standard rate, until the compensation payment period, shall additionally be paid.

The Land (Allocation Committee) Regulations, 2001

This regulation established a Land Allocation Committee in every District and Urban Authority as well as in the Ministry Headquarters. Allocation of identified resettlement sites to PAPs would ideally be done by the five District's District Land Allocation Committee.

The Land (Compensation Claims) Regulations, 2001

The Regulation sets out the rights and entitlement for one to claim compensation against the Government or local government or any public institution under the Act. The below categorized groups are entitled to put up such a claim:

(a) Based on Article 5 of the Land Act (hereinafter referred to as "the Act"), land title holder of general land transferred into village land, or protected land; based on Article 22 of the

¹⁶ Extract from and reference to, Working Paper no. 82 –Cities and Fragile States- Land Acquisition for Public Use: Emerging Conflicts and their Socio-Political Implications, Wilbard Kombe, ARDHI University, Oct. 2010

¹⁷ Based on article 25 of the Local Government (District Authorities) Act, 1982, all villages are obligated to set up each Village Council.

Act, land title holder of land, subjected for compulsory land acquisition upon order by the President for the purpose of public use; or based on Article 54 of the Act, land title holder whose land rights are subjected for expiration.

- (b) Based on Article 7 of the Act, title holder of awarded customary occupancy rights of the land registered as hazardous land.
- (c) Land title holder based on customary occupancy rights, whose subjected land are to be occupied by a third person.
- (d) Land title holder awarded or transferred customary occupancy rights, whom have had withdrawn his/her rights based on Article 54 of the Act.
- (e) Land title holder of urban area and its surrounding area, whom have had acquired land under order by the President based on Article 60 of the Act.

The Land Management Officer appointed from the Commissioner, or Officer who has competent right, upon implementation of the land acquisition procedure, shall put up a notification at the public bulletin board, and at the same time, notify to all the land title holders, based on below mandated style:

- (a) Notify to the land title holders to be subjected for compensation
- (b) To request the subjected land title holders to submit a request of compensation
- (c) To request the subjected land title holders to attend at the inspection place at the appointed date and time for its assessment

The Land Management Officer or the Officer with the competent power shall conduct the assessment on the compensation amount, required for payment (based on Valuation Form 1 provided by MLHHSD). The Officer in charge shall then draft a compensation payment schedule, and along with the request for compensation form, submit the forms to the Land Compensation Fund (hereinafter referred to as "the Fund") established under the Act.

- (a) The Fund based on the compensation schedule drafted by the Land Management Officer or the Officer with the competent right, must decide within 30 days prior to compensation payment schedule, on the relevancy of the payment.
- (b) This regulation applies to all the compensation applications and/or claims to the government, local government, public organizations, and public institutions.
- (c) Compensation based on Article 156 of the Act, does not apply to non-governmental organizations or individual entitled with public easement rights.

The payment shall be in monetary payment form. Although in principle, compensation should be in monetary payment form, according to decision by the government, compensation can be provided in the form of all the following, or any of its combination.

- (a) In the form of land, equivalent in quality, scale of area and potential productivity, to the land to be lost
- (b) In the form of building, equivalent in quality, scale of area, and purpose of usage, to the building to be lost
- (c) Plants and nursery trees
- (d) Crops and basic food

(2) Social Consideration Related Authorities in Tanzania

Historically, the Ministry of Lands was established as the Department of Lands, and later changed into a full ministry, which changed its name according to its functions at that specific

period in time. The current name is Ministry of Lands, Housing and Human Settlements Development encompass core sector Departments which are: Land Administration, Survey and Mapping, Physical Planning and Housing. Core sector units are Registration of Titles, Property Valuation, and District Land and Housing Tribunal. The mandate of the ministry is to facilitate an effective management of land and human settlements development services for the betterment of social and economic well-being of Tanzanian society.

MLHHSD is the sole Ministry in charge of certifying approval of the CRP Report, and if there is no problem with its content, it usually takes merely approximately a week in obtaining approval after submission to the section in charge.

(3) Land Acquisition and Compensation and Resettlement Plan (CRP) Procedure in Tanzania

In reference to the Road Sector Compensation and Resettlement Guideline, 2009, the following steps are taken to fulfill Compensation and Resettlement Plan (CRP) procedural requirements in Tanzania.

Initial (Reconnaissance) Survey

- (a) During initial surveys and field trips (on site surveys) undertaken for the EIA Study, discussions should be held with the District administrations to inform about the project and activities, and to ask them what the social impacts of the project are likely to be.
- (b) District authorities are often well aware of locations where displacement of people are likely to occur, and can therefore be able to arrange meetings with the ward and village administrations. At the meeting, below items (c) to (g) should be discussed.
- (c) The subjected route and its length, possible realignments, municipal rights of way.
- (d) The type of improvement works.
- (e) Likelihood of persons being displaced or in some way affected by the construction works.
- (f) The criteria adopted for eligibility for compensation and resettlement (including possible cut-off-date).
- (g) Total project time, from planning to completion, including indication of the time required for the C & R process.

The Ward and Village Administration's Role

- (a) Identifying the PAPs and confirming their eligibility.
- (b) Identifying and providing land for the relocation of houses and buildings.
- (c) Providing assistance to PAPs during the resettlement process and monitoring the progress of the CRP, in particular the status of the resettled persons.
- (d) Assisting the formation of a Compensation and Resettlement Implementation Sub-Committee.
- (e) To assist the PAP Census and Survey Team, to set up meetings with the local communities.

The PAP Census and Socio-Economic Survey

- (a) After alignment has been confirmed, and PAP surveys are about to begin, meetings have to be held again with the District, ward and village administrations to re-affirm above issues and in more detail including below (b) to (d).
- (b) Setting of cut-off-date, usually given at the date of completion of the PAP census.
- (c) Physical identification of the possible relocation areas within the village or ward.

- (d) Prevailing land tenure and transfer systems in the areas to where resettlers may be relocated.
- (e) The purpose of the PAP census is to identify each and every project affected party (people as well as private and public institutions). Information collected during the census is typically recorded **Valuation Form 1** provided by the Ministry of Lands.
- (f) As a minimum, the following information should be collected during the socio-economic survey, for preparing a **socio-economic profile**; to be able to plan the types of facilities required, as well as the kind of assistance required for the PAPs.
 - Household head and Structure
 - Household size
 - Gender structure
 - Age structure
 - Ethnicity and religion
 - Migratory status
 - Occupations of the PAPs
 - Income and expenditure
 - Education levels
 - Health status
 - Vulnerable groups; requiring special assistance

Land/ Property Assessment Survey

Information on the property and assets is also collected on Valuation Form 1, including:

- (a) Type of property
- (b) Details of construction
- (c) Accommodation characteristics
- (d) Condition of the property
- (e) Purpose/use of property
- (f) Area of affected buildings/structures (built-up-area)
- (g) Types of crops grown
- (h) Area of cultivated land affected
- (i) Total area of land

Note 1: Though the Form does not explicitly ask for it, information on trees, fences and/or boundary walls, wells, should be included in the survey of assets.

Note 2: The Valuation Form 1 must be signed by the PAP, a representative of the local administration and the land valuer/surveyor.

Consultations with the Authorities and the PAPs

Based on the Road Sector Compensation and Resettlement Guidelines, 2009, consultations with the related Authorities should be held at least in three stages.

The first is during the Initial (Reconnaissance) Survey stage of SIA, also corresponding with the scoping stage of the EIA procedure. Above explained contents of the survey, for example project outline and assumed impacts based on rapid assessment, should be informed to the District, Ward and Village Administrations, as well as for asking in advance, assistance in formation of the Compensation and Resettlement Implementation Sub-Committee, to monitor the CRP process, identification and eligibility, status of the PAPs, to identify and provide the land for the relocation of houses and buildings, and to assistance the PAPs during the resettlement process.

For the PAP Census (and Socio-Economic Survey to be held concurrently) preparation, so that the surveying team will be able to hold the first meetings with the local communities, these meetings should also be arranged by the local Administrations, upon request from the Implementing Sub-Committee. Since a number of critical issues will be discussed here, it is important that there is good representation from local communities at this meeting.

It is important to keep a consultation log, and to have a record of all the consultations. Minutes of the consultations should therefore be drawn up and signed by the local community leaders present, as well as by an official representative from the District, ward or village.

When the Sub-Committee surveying team undertakes the PAP Census and Socio-Economic Survey, information disclosure to the communities, such as an outline of the project, etc. (details described in page 55 of Road Sector Compensation and Resettlement Guideline) must be informed, and the District, Ward and Village Administrations are committed to assist in the CRP process, also (so that the community will recognize that it is an official process).

After the PAP Census, Socio-Economic Survey, and Socio-Economic Profile are compiled, consultations with local Administration, yet again must be held. The agenda for the consultations shall be: (a) to have the Administrations to approve the list of PAPs, and (b) reconfirm on areas to where affected households can be relocated, (c) confirm that the village, ward, District and town Administrations are aware of their specific responsibilities regarding the monitoring of the compensation and resettlement process (please refer to p. 54 of Road Sector Compensation and Resettlement Guideline for further details), (d) discuss and develop grievance redress mechanism that will be most appropriate for the affected communities, and (e) determine existing social networks and social support systems that can help persons affected by the project, and ways in which support can be given.

(4) JICA's Policies on Resettlement

The key principle of JICA policies on involuntary resettlement is summarized below.

- I. Involuntary resettlement and loss of means of livelihood are to be avoided when feasible by exploring all viable alternatives.
- II. When, population displacement is unavoidable, effective measures to minimize the impact and to compensate for losses should be taken.
- III. People who must be resettled involuntarily and people whose means of livelihood will be hindered or lost must be sufficiently compensated and supported, so that they can improve or at least restore their standard of living, income opportunities and production levels to pre-project levels.
- IV. Compensation must be based on the full replacement cost as much as possible.
- V. Compensation and other kinds of assistance must be provided prior to displacement.
- VI. For projects that entail large-scale involuntary resettlement, resettlement action plans must be prepared and made available to the public. It is desirable that the resettlement action plan include elements laid out in the World Bank Safeguard Policy, OP 4.12, Annex A.
- VII. In preparing a resettlement action plan, consultations must be held with the affected people and their communities based on sufficient information made available to them in advance. When consultations are held, explanations must be given in a form, manner, and language that are understandable to the affected people.
- VIII. Appropriate participation of affected people must be promoted in planning, implementation, and monitoring of resettlement action plans.
- IX. Appropriate and accessible grievance mechanisms must be established for the affected people and their communities.

Above principles are complemented by World Bank OP 4.12, since it is stated in JICA Guideline that "JICA confirms that projects do not deviate significantly from the World Bank's Safeguard Policies". Additional key principle based on World Bank OP 4.12 is as follows.

- X. Affected people are to be identified and recorded as early as possible in order to establish their eligibility through an initial baseline survey (including population census that serves as an eligibility cut-off date, asset inventory, and socioeconomic survey), preferably at the project identification stage, to prevent a subsequent influx of encroachers of others who wish to take advance of such benefits.
- XI. Eligibility of Benefits include, the PAPs who have formal legal rights to land (including customary and traditional land rights recognized under law), the PAPs who don't have formal legal rights to land at the time of census but have a claim to such land or assets and the PAPs who have no recognizable legal right to the land they are occupying.
- XII. Preference should be given to land-based resettlement strategies for displaced persons whose livelihoods are land-based.
- XIII. Provide support for the transition period (between displacement and livelihood restoration.
- XIV. Particular attention must be paid to the needs of the vulnerable groups among those displaced, especially those below the poverty line, landless, elderly, women and children, ethnic minorities etc.
- XV. For projects that entail land acquisition or involuntary resettlement of fewer than 200 people, abbreviated resettlement plan is to be prepared.

In addition to the above core principles on the JICA policy, it also laid emphasis on a detailed resettlement policy inclusive of all the above points; project specific resettlement plan; institutional framework for implementation; monitoring and evaluation mechanism; time schedule for implementation; and, detailed Financial Plan etc.

(5) Comparison of JICA Guidelines and Tanzanian Related Policies

Harmonization of Tanzanian Compensation and Resettlement policies with international donor policies, such with as the World Bank Operational Policy, O.P. 4.12 on Involuntary Resettlement, of which, basically speaking, the JICA Environmental and Social Consideration Guideline (April 2010 version) follows suit, is gradually in progress, as taken up in the contents of the National Human Resettlement Development Policy, 2000 and TASAF III Resettlement Policy Framework, 2011 (Draft).

Table 13.19 summarizes the abovementioned gap. However, current works are still based on past laws and regulations, from around 2008. Therefore, further revisions are needed.

No.	Resettlement and compensation Aspect	JICA Guidelines (A)	Resettlement Policy of Tanzania (B)	Gaps (C) between JICA (A) and Tanzania (B)	Resettlement Policy under the Project (D)
1.	Avoidance	Involuntary resettlement and loss of means of livelihood are to be avoided when feasible by exploring all viable alternatives. (JICA GL)	Literally the same	None	Adopt both
2.	Impact minimization	When population displacement is unavoidable, effective measures to minimize impact and to compensate for losses should be taken. (JICA GL)	Literally the same	None	Adopt both
3.	Livelihoods restoration	People who must be resettled involuntarily and people whose means of livelihood will be hindered or lost must be sufficiently compensated and supported, so that they can improve or at least restore their standard of living, income opportunities and production levels to pre-project levels. (JICA GL).	Landowners, with or without formal legal rights, are entitled to full, fair and prompt compensation. They also get disturbance allowance, transport allowance, accommodation allowance and loss of profit if they were in actual occupation of the acquired property. There are no legal provisions requiring the government to restore livelihoods or to provide assistance towards the restoration of such livelihoods.	Payment of compensation for loss of assets, allowances and other relocation assistance to restore/improve livelihoods.	Full, fair and prompt compensation; as well as disturbance allowance, transport allowance, accommodation allowance and loss of profit should satisfy both JICA GL and Tanzanian requirements.
4.	Calculation of compensation and valuation	Compensation must be based on the full replacement cost as much as possible. (JICA GL)	The basis for assessment any land and unexhausted improvement for purposes of compensation is the market value of such land. The market value is arrived at by the use of comparative method evidenced by actual recent sales of similar properties; or by the use of the income approach, or replacement cost method, where the property is of special nature and not saleable.	Literally none as the Tanzanian approach attempts to achieve full replacement cost by using replacement cost method.	Adopt both

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

No.	Resettlement and compensation Aspect	JICA Guidelines (A)	Resettlement Policy of Tanzania (B)	Gaps (C) between JICA (A) and Tanzania (B)	Resettlement Policy under the Project (D)
5.	Timing of compensation payments	Compensation and other kinds of assistance must be provided prior to displacement. (JICA GL)	Tanzanian law requires that compensation be full, fair and prompt. "Prompt" means it should be paid within six months, failure to do so results in an interest rate equivalent to the average rate offered by commercial banks on fixed deposits.	In terms of timing, both Tanzanian laws and JICA GL require that compensation be paid promptly. However, the practice in Tanzania, compensation is hardly paid promptly, and delays are not rectified by paying the interest rate as required by the law.	Compensation and other kinds of assistance must be provided prior to displacement.
6.	Requirement for preparation of RAPs	For projects that entail large-scale involuntary resettlement, resettlement action plans (RAPs) must be prepared and made available to the public. (JICA GL)	Literally the same. The Land Act allows displaced persons to fill in forms requiring that their land be valued, and giving their own opinion as to what their assets are worth.	Literally none	Adopt both
7.	Consultation	In preparing a RAP, consultations must be held with the affected people and their communities based on sufficient information made available to them in advance (JICA GL)	Several Tanzanian land laws have provisions insisting on the urgency for consultation with project affected persons.	Literally none	Adopt both
8.		When consultations are held, explanations must be given in a form, manner, and language that are understandable to the affected people. (JICA GL)	The Land Act allows displaced persons to fill in forms requiring that their land be valued, and giving their own opinion as to what their assets are worth.	Literally none	Adopt both
9.	Participation	Appropriate participation of affected people must be promoted in planning, implementation, and monitoring of resettlement action plans. (JICA GL)	As above. And PAPs are to be informed about their options and rights, offered choices/alternatives, but also given chance to choose their preferences.	Literally none	Adopt both
10	Grievance mechanisms	Appropriate and accessible grievance mechanisms must be established for the affected people and their communities. (JICA GL)	In practice the government tries to resolve grievances through public meetings of the affected persons.	None	Appropriate and accessible grievance mechanisms must be established for the affected people and their communities.

Final Report

No.		JICA Guidelines (A)	Resettlement Policy of Tanzania (B)	Gaps (C) between JICA (A) and Tanzania (B)	Resettlement Policy under the Project (D)
11.	Identification of project affected persons (PAPs)	Affected people are to be identified and recorded as early as possible in order to establish their eligibility through an initial baseline survey (including population census that serves as an eligibility cut-off date, asset inventory, and socioeconomic survey), preferably at the project identification stage, to prevent a subsequent influx of encroachers of others who wish to take advance of such benefits. (WB OP4.12 Para.6)	The entitlement cut-off date refers to the time when the assessment of persons and their properties in the area is carried out, i.e., the time when the project area has been identified and when the socio-economic study is taking place. Thereafter, no new cases of affected people will be considered. Persons who encroach the area after the socio-economic study (census and valuation) are not eligible for compensation or any form of resettlement assistance.	Literally none	It will be important to set a cut-off date early on in the RAP preparation process in order to avoid speculation and spurious claims. An appropriate cut-off date will possibly be the time when the location of project is identified on the ground and when the baseline survey and socio-economic study is undertaken.
12.	Eligibility criteria	Eligibility of benefits includes: the PAPs who have formal legal rights to land (including customary and traditional land rights recognized under law), the PAPs who don't have formal legal rights to land at the time of census but have a claim to such land or assets and the PAPs who have no recognizable legal right to the land they are occupying. (WB OP4.12 Para.15)	The Land Acquisition Act, the Land Act 1999 and the Village Land Act 1999 have it clearly that landowners, with or without formal legal rights, are entitled to full, fair and prompt compensation.	There is no gap between JICA GL and Tanzania laws as far as those with formal legal rights and those without formal legal rights but have a claim to land and assets are concerned.	As long as ownership can be proved compensation is payable.
13.	Land-based resettlement	Preference should be given to land- based resettlement strategies for displaced persons whose livelihoods are land-based. (WB OP4.12 Para.11)	Tanzanian laws do not provide for relocation and resettlement. However, there are a few cases where the government has provided both compensation and alternative land, but this has been done at its discretion. In general however, the government feels that it has discharged its duty once compensation is paid, and it is up to the displaced persons to resettle and re-establish themselves elsewhere.	Occasionally, in a discretionary manner, an alternative land is awarded.	Ensure full replacement cost as much as possible; and where possible provide alternative land.

No.	Resettlement and compensation Aspect	JICA Guidelines (A)	Resettlement Policy of Tanzania (B)	Gaps (C) between JICA (A) and Tanzania (B)	Resettlement Policy under the Project (D)
14.	Transition period support	Provide support for the transition period (between displacement and livelihood restoration). (WB OP4.12 Para.6)	Tanzanian law provides for transport allowance for 12 tons of luggage for up to 12 km from the acquired land, provided the displaced person was living on that land. In lieu of housing accommodation allowance is made in the form of rent for 36 months.	Literally none	Ensure full replacement cost as much as possible to the extent that PAPs could withstand challenges of transition period.
15.	Vulnerable groups	Particular attention must be paid to the needs of the vulnerable groups among those displaced, especially those below the poverty line, landless, elderly, women and children, ethnic minorities etc. (WB OP4.12 Para.8)	There are no specific provisions that require the government to pay special attention to vulnerable groups or indigenous peoples.	Vulnerable groups are treated as other PAPs.	Particular attention to be paid to the needs of the vulnerable groups.
16.	Abbreviated resettlement plan	For projects that entail land acquisition or involuntary resettlement of fewer than 200 people, abbreviated resettlement plan is to be prepared. (WB OP4.12 Para.25)	No specific provisions on preparation of RAPs based on the number of people to be involuntarily resettled.	Literally none	RAP to be prepared irrespective of the number of PAPs.

Source: Input by the JICA Study Team, using JICA template for Gap Analysis.

(6) Objectives of the CRP in This Study

As land acquisition and house relocation are unavoidable due to the project, a Compensation and Resettlement Plan (CRP) which corresponds to the Resettlement Action Plan (RAP) in the World Bank (WB) Safeguard Policies (Operational Policy (OP) 4.12) shall be prepared in accordance with the JICA Guidelines for Environmental and Social Considerations.

In Tanzania, valuation of affected land/assets for compensation is carried out after the detailed design stage, when all proposed project activities are approved by the relevant authorities. As it is still in the feasibility study stage, the valuation of affected land/assets is conducted as a **preliminary valuation** at this point. Objectives of the CRP in this study which includes the preliminary valuation are listed as follows. The results of the valuation in this survey need to be updated at the detailed design stage.

The objectives of the CRP in this study are to:

- Clarify compensation policy for this project which fulfills both Tanzanian law and JICA Guidelines/the WB OP 4.12;
- Identify social impacts at the early stage and prepare appropriate mitigation measures, including compensation;
- Obtain consensus of the affected peoples in the early stage and incorporate their views to the mitigation measures; and
- Estimate compensation amount for preparing the project budget.

As the initial step for preparing the CRP, the framework of the CRP is drafted as follows.

13.2.3 Framework of the CRP

(1) Key Principles

The key principles of the compensation and resettlement policy are as flows:

- (i) Involuntary resettlement and loss of means of livelihood are to be **avoided** whenever feasible, or **minimized**, by identifying possible alternative project designs that have the least adverse impact on the communities in the project area.
- (ii) Where displacement of households is unavoidable, all PAPs (including communities) losing assets, livelihoods, or resources will be **fully compensated** and assisted so that they can improve, or at least restore, their former economic and social conditions.
- (iii) Compensation and rehabilitation support will be provided to any PAPs, that is, any person or household or business which on account of project implementation would have his, her or their:
 - Standard of living adversely affected;
 - Right, title or interest in any house, interest in, or right to use, any land (including premises), agricultural and grazing land, commercial properties, tenancy, or right in annual or perennial crops and trees or any other fixed or moveable assets, acquired or possessed, temporarily or permanently;
 - Income earning opportunities, business, occupation, work or place of residence or habitat adversely affected temporarily or permanently; or
 - Social and cultural activities and relationships affected or any other losses that may be identified during the process of resettlement planning.
- (iv) All affected people will be eligible for compensation and rehabilitation assistance, **irrespective of tenure status**, social or economic standing, and any such factors that may

discriminate against achievement of the objectives outlined above. Lack of legal rights to the assets lost or adversely affected tenure status and social or economic status will not bar the PAPs from entitlements to such compensation and rehabilitation measures or resettlement objectives. All PAPs residing, working, doing business and/or cultivating land within the project impacted areas **as of the date of the latest census** and inventory of lost assets (IOL), are entitled to compensation for their lost assets (land and/or nonland assets), at replacement cost, if available, and restoration of incomes and businesses, and will be provided with rehabilitation measures sufficient to assist them to improve or at least maintain their pre-project living standards, income-earning capacity, and production levels.

- (v) PAPs that **lose only part of their physical assets** will not be left with a portion that will be inadequate to sustain their current standard of living. The minimum size of remaining land and structures will be agreed during the resettlement planning process.
- (vi) People **temporarily affected** are to be considered PAPs and resettlement plans will address the issue of temporary acquisition.
- (vii) Payment for land and/or non-land assets will be based on the principle of **replacement cost**.
- (viii) Compensation for PAPs dependent on agricultural activities will be **land-based** wherever possible. Land-based strategies may include the provision of replacement land, ensuring greater security of tenure, and/or upgrading livelihoods of people without legal land titles. If replacement land is not available, other strategies may be built around opportunities for re-training, skill development, wage employment, or self-employment, including access to credit. Solely cash-based compensation will be avoided as an option if possible, as this may not address losses that are not easily quantified, such as access to services and traditional rights, and may eventually lead to those populations being worse off than without the project.
- (ix) Replacement lands, if the preferred option of PAPs, should be within the immediate vicinity of the affected lands wherever possible and be of comparable productive capacity and potential. As a second option, sites should be identified that minimize the social disruption of those affected; such lands should also have access to services and facilities similar to those available in the lands affected.
- (x) The resettlement plan must consider the needs of those most **vulnerable** to the adverse impacts of resettlement (including the poor, those without legal title to land, ethnic minorities, women, children, the elderly, and the disabled) and ensure they are considered in resettlement planning and mitigation measures identified. Assistance should be provided to help them improve their socio-economic status.
- (xi) PAPs will be **involved** in the process of developing and implementing resettlement plans.
- (xii) PAPs and their communities will be **consulted** about the project, the rights and options available to them, proposed mitigation measures for adverse effects, and, to the extent possible, be involved in the decisions that are made concerning their resettlement.
- (xiii) **Displacement does not occur before provision of compensation and of other assistance** required for relocation. Sufficient civic infrastructure must be provided at the resettlement site prior to relocation. Acquisition of assets, payment of compensation, and the resettlement and start of the livelihood rehabilitation activities of PAPs, will be completed prior to any construction activities, except when a court of law orders so in expropriation cases. Livelihood restoration measures must also be in place but not necessarily completed prior to construction activities, as these may be ongoing activities.

- (xiv) **Organization and administrative arrangements** for the effective preparation and implementation of the resettlement plan will be identified and in place prior to the commencement of the process; this will include the provision of adequate human resources for supervision, consultation, and monitoring of land acquisition and rehabilitation activities.
- (xv) Appropriate reporting (including auditing and redress functions) and **monitoring and evaluation mechanisms** will be identified and set in place as part of the resettlement management system.

(2) Principle of Valuation for Compensation

All affected land and non-land assets needs to be valuated for compensation based on the **full replacement cost**, in accordance with the JICA Guidelines/WB OP4.12. "Replacement cost" refers to the entire amount required to acquire the asset, with equal value to the affected asset, at the present time, covering the market value of the asset as well as the cost of any registration and transfer taxes.

Tanzanian laws also stipulate valuation in market value and compensation to include allowances, which cover costs for acquiring alternative assets for land and buildings/structures. However, some disparities with JICA Guidelines/WB OP4.12 are found as follows:

- (i) In Tanzania, the market value of buildings/structures is valuated factoring in depreciation, while WB OP4.12 requires valuation **without depreciation**.
- (ii) In Tanzania, non-land assets owned by encroachers who does not have legal right to land cannot be compensated while WB OP4.12 recognize them as eligible for the compensation.
- (iii) In Tanzania, compensation is paid principally by cash, while JICA Guidelines/WB OP4.12 strongly prefer '**land-based**' replacement, especially when the PAP's livelihood is dependent on land and a large portion of the land (greater than 20%) is affected.

Considering the disparities, the following principles shall be applied for this project to comply with JICA Guidelines/WB OP4.12.

- (i) The valuation of non-land assets including buildings/structures owned by PAPs with land right for compensation shall basically follow Tanzanian laws including allowances. In addition, community support will be provided and covered by the loan. The requests on the community support from the affected community are described in Table 13.45.
- (ii) The number and status of assets without land which are in the existing ROW and which might be in the proposed ROW are described in Table 13.32 and Table 13.33. Resettlement policy for those assets will be applied as described in Table 13.33.
- (iii) Land-for-land replacement shall be prioritized over cash compensation, especially when the PAP's livelihood is based on the land and greater than 20% of the land asset will be affected. If a land-for-land replacement is not feasible, LRP shall be provided to restore the livelihood without the land asset.

For valuation of assets in replacement cost, the following definition of replacement cost by Resettlement Guidelines, 2009, developed by the Ministry of Infrastructure Development, is noted as the basic principle for this project:

• For agricultural land, it is the pre-project or pre-displacement, whichever is higher, market value of land of equal productive potential or use located in the vicinity of the

affected land, plus the cost of preparing the land to levels similar to those of the affected land, plus the cost of any registration and transfer taxes.

- For land in urban areas (residential area), it is the pre-displacement market value of land of equal size and use, with similar or improved public infrastructure facilities and services and located in the vicinity of the affected land, plus the cost of any registration and transfer taxes.
- For houses and other structures, it is the market cost of the materials to build a replacement structure with an area and quality similar to or better than those of the affected structure, or to repair a partially affected structure, plus the cost of transporting building materials to the construction site, plus the cost of any labor and contractors' fees, plus the cost of any registration and transfer taxes.

Regarding the allowances to be included in compensation, the Road Sector Compensation and Resettlement Guidelines are summarized as follows:

- **Disturbance allowance** based on the principle of "the value of the Estate multiplied by the rate of interest prevailing and payable to fixed deposits by commercial banks".
- **Transport allowance,** which is the actual cost of transporting twelve tons of luggage by rail or road within 20 km from the point of displacement.
- Accommodation allowance based on market rent for 36 months. These can be determined based on actual rents stated by property owners, although further investigation may be necessary to verify reliability.
- Loss of rental income restoration, based on loss of rental income for 36 months rent per tenant.
- **Loss of profits** is calculated on the basis of net monthly profits of the business carried out on the land, for a period of 36 months.
- Loss of wages, equivalent to payment in lieu of wages while rebuilding.

In addition, costs associated with the acquisition of the subject land; and any loss or capital expenditure incurred to the development of the subject land must be included in the valuation.

The PAP is eligible to obtain hard copy of the valuation form which will be recorded during the census/valuation survey to confirm his/her valuated properties.

(3) Policy for Vulnerable People

There are no specific provisions that require paying special attention to vulnerable people in Tanzanian laws for compensation and resettlement. However, Road Sector Compensation and Resettlement Guidelines list the following people who require special assistance – physical and moral – during the compensation or relocation process:

- Old people (>65 years)
- Women heads of households
- Widows
- Single mothers
- Orphans
- Physically and mentally challenged
- The infirmed.

(4) Livelihood Restoration Program

There are no legal provisions for restoring livelihoods or providing assistance towards the restoration of such livelihoods in Tanzania. However, considering that the project may severely affect their livelihood in the cases of lost agricultural land or other means of income, the project shall consider preparing the Livelihood Restoration Program (LRP) for those affected people.

The details of the LRP are prepared after the census/socio-economic survey, based on the affected people's needs and requests.

(5) Entitlement Matrix

The entitlements for compensation and rehabilitation assistance for this project are developed and presented in Table 13.11 below:

Types of Asset	Types of Impact	Person(s) Affected	Compensation/Entitlement/Benefits
Agricultural land	Loss of land under cultivation Greater than 20% of land holding lost	Title holder [Both statutory and customary]	 (a) Land-for-land replacement where feasible, or compensation in cash for the entire landholding according to the PAP's choice. Land-for-land replacement will be in terms of a new parcel of land of equivalent size and productivity with a secure tenure status at an available location which is acceptable to the PAP. Tax for transferring the land to the PAP, registration fee, and other costs for obtaining the land shall be compensated. If the livelihood is affected by losing agricultural land, the PAP is entitled to be compensated for the loss or join the Livelihood Restoration Program. Compensation for land users will be paid through land owners based on their contracts. Land owners/land users are allowed harvesting crops that are within the affected area. The deadline for the harvest shall be discussed and determined with the PAP during the Detailed Design stage.
		Land user (Tenant/lease holder) Encroacher	 (b) In case the livelihood is affected by losing agricultural land, the PAP is entitled to join the Livelihood Restoration Program. (c) The PAP is allowed harvesting crops that are within the affected area. The deadline for the harvest shall be discussed and determined with the PAP during the Detailed Design stage. If the livelihood is affected by losing agricultural land, the PAP is entitled to join the Livelihood Restoration Program.
		Vulnerable title holder Vulnerable land user	 (d) Same with (a) plus: Process for obtaining and registering alternative land shall be assisted. Assistance for securing the livelihood depending on the PAP's situation. (e) Same with (b) plus:
		(Tenant/lease holder)	 Assistance for securing the livelihood depending on the PAP's situation.
	Less than 20% of land holding affected	Title holder [Both statutory and customary]	 (f) Cash compensation for affected land equivalent to replacement value OR alternative land of equivalent size and productivity with a secure tenure status at an available location which is acceptable to the PAPs where feasible. Tax for transferring the land to the PAP, registration fee, and other costs for obtaining the land shall be compensated. If the livelihood is affected by losing agricultural land, the PAP is entitled to be compensated for the loss or join the Livelihood Restoration Program. Compensation for land users will be paid through land owners based on their contracts. Land

Table 13.20: Entitlement Matrix

Types of Asset	Types of Impact	Person(s) Affected	Com	pensation/Entitlement/Benefits
	A			owners/land users are allowed harvesting crops that are within the affected area. The deadline for the harvest shall be discussed and determined with the PAP during the Detailed Design stage.
		Land user (Tenant/lease holder)	(g)	 In case the livelihood is affected by losing agricultural land, the PAP is entitled to join the Livelihood Restoration Program.
		Encroacher	(h)	Same with (c).
		Vulnerable title holder	(i)	 Same with (f) plus: Process for obtaining and registering alternative land shall be assisted. Assistance for securing the livelihood depending on the PAP's situation.
		Vulnerable land user (Tenant/lease holder)	(j)	 Same with (g) plus: Assistance for securing the livelihood depending on the PAP's situation.
	Loss of land under cultivation by public/ community	Public/community	(k)	• Cash compensation for affected land equivalent to replacement value.
Commercial land	Loss used for business The remaining	Title holder	(1)	 Same with (a) plus: Opportunity cost compensation equivalent to 2 months net income based on tax records for previous year (or tax records from comparable business, or estimates) Compensation for land users will be paid through land owners based on their contracts.
	assets become insufficient for business purposes	Land user (Tenant/lease holder)	(m)	• In case the livelihood is affected by losing agricultural land, the PAP is entitled to join the Livelihood Restoration Program.
	The business can be continued by the remaining assets	Title holder	(n)	 Same with (f) plus: Opportunity cost compensation equivalent to 5% of net annual income based on tax records for previous year (or tax records from comparable business, or estimates where such records do not exist). Compensation for land users will be paid through land owners based on their contracts.
Residential land	Loss of residential land either partially or entirely	Title holder	(0)	 Land-for-land replacement or compensation in cash according to the PAP's choice. Land-for-land replacement shall be of minimum plot of acceptable size under the relevant law(s) or a plot of equivalent size, whichever is larger, in either the community or a nearby resettlement area with adequate physical and social infrastructure systems. When the affected holding is larger than the relocation plot, cash compensation to cover the

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

Types of Asset	Types of Impact	Person(s) Affected	Com	pensation/Entitlement/Benefits
				difference in value.Tax for transferring the land to the PAP, registration fee, and other costs for obtaining the land shall be compensated.
		Vulnerable title holder	(p)	Same with (o) plus:Process for obtaining and registering alternative land shall be assisted.
	Loss of residential land used by public/ community	Public/community	(q)	• Cash compensation for affected land equivalent to replacement value.
The other type of land	Loss of the other type of public land (e.g., forest, pastureland)	Public/community	(r)	• Cash compensation for affected land equivalent to replacement value.
Buildings and structures	Entire structures are affected	Owner	(s)	 Cash compensation for entire structure and other fixed assets with depreciation following Tanzanian laws, including allowances. Relocation allowances which include those for disturbance, transportation, accommodation and loss of income during relocation.
		Renter	(t)	 Relocation allowances which include those for disturbance, transportation, accommodation and loss of income during relocation.
		Squatter/informal dweller	(u)	• The policy described in the Table 13.33 will be applied.
		Vulnerable owner	(v)	 Same with (s) plus: Process for obtaining alternative structure shall be assisted. Assistance for securing the livelihood depending on the PAP's situation.
	Entire public structures are affected	Public/community	(w)	 Cash compensation for entire structure and other fixed assets, or alternative structure of equal or better size and quality in an available location which is acceptable to the PAP. Relocation allowances which include those for disturbance, transportation and accommodation.
	Structures are partially affected	Owner	(x)	 Cash compensation for affected building and other fixed assets Cash assistance to cover costs of restoration of the remaining structure
	Remaining structures are			• Disturbance compensation equivalent to applicable rental costs or time that will take to finish construction work.

Types of Asset	Types of Impact	Person(s) Affected	Com	pensation/Entitlement/Benefits
	viable for continued use			
Standing crops	Crops affected by land acquisition or temporary acquisition	Owner of crops	(y)	• PAP allowed harvesting crops if fully matured OR cash compensation of the crops equivalent to the market value for the mature and harvested crop.
Trees	Trees lost	Owner of trees	(z)	Cash compensation based on type, age and productive value of affected trees.
Cultural properties	Loss of graves, archaeological sites	Owner of graves, Community	(aa)	• Compensation based on the relevant law (Graves (Removal) Act, 1969; Antiquities Act, 1964)

Source: JICA Study Team

(6) Cut-off Date

The "cut-off date" refers to the date prior to which the occupation or use of the project area makes the occupants/users eligible to the entitlement. Establishment of a cut-off date is intended to prevent the influx of ineligible non-residents who might erroneously or inadequately get benefits from the project entitlement.

In Tanzania, the cut-off date is usually set as the date of completion of the census survey which is conducted together with asset valuation for compensation. As the survey in this study is for preliminary valuation without official approval by the Ministry of Lands, Housing and Human Settlements Development (MLHHSD), the official cut-off date is to be set at the time of the official survey after the detailed design stage. In order to prevent an influx of ineligible people to the project area before the official cut-off date, the cooperation of the local governments is to be asked to not to allow any individuals/groups to occupy or use the project area after the date of the completion of the census survey in this study. As the project area is village land under management of village government, the village government has enough power to restrict the land transaction and occupation before the official cut-off date. In this context, the date of the completion of the census survey in this study is recognized as 'preliminary' cut-off date prior to the official cut-off date.

(7) Institution Arrangements for the CRP Implementation

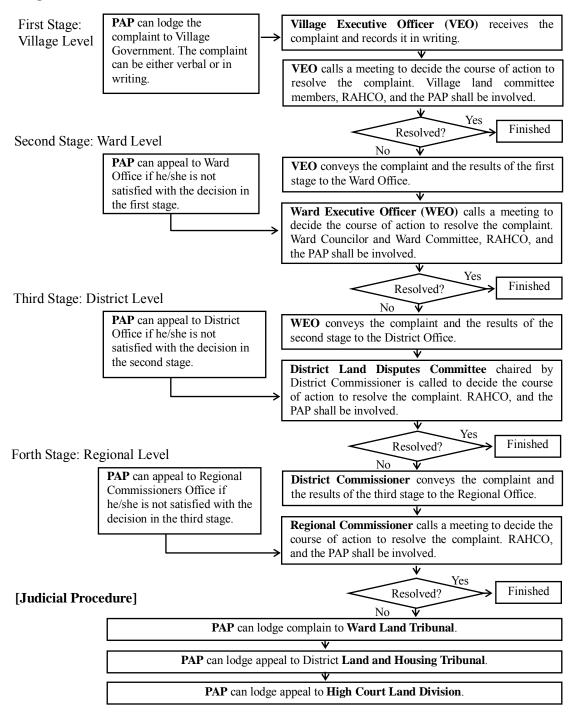
After the detailed design is completed and when the CRP is updated, it is appropriate to set up a Compensation and Resettlement Implementation Committee. The Committee will consist of representatives from RAHCO and local governments, including village leaders as representatives of affected community. Basic responsibilities of the relevant agencies for implementing the CRP are proposed in Table 13.21.

Ager	ncy	Responsibility
MLH	IHSD	 Approval of the CRP, including valuation results for compensation. Ensuring that compensation is paid or resettlement is undertaken as agreed.
	RAHCO	• Overall responsibility for implementing the CRP, including compensation payment and LRP.
tee	Regional government	Facilitating and assisting local governments.
Committee	District government, Ward government, and Village	 Consultation with affected people, Arrangement of plots for resettlement,
0	government.	 Assisting mobilization, Assisting LRP implementation, Receiving grievances from affected villagers.
	sultant/NGO* nissioned by RAHCO	 Coordinating with relevant agencies for proceeding with the activities,
		• Preparing plots/structures for resettlement coordinating with RAHCO and the contractor,
		 Assisting vulnerable affected people,
		• Implementation of LRP,
		• Recording progress of the CRP implementation,
		 Monitoring and evaluating the process.

Table 13.21: Responsibilities	of Relevant Agencies for	Implementing the CRP

*Qualifications of the Consultant/NGO:

Source: JICA Study Team


⁻ Experience of implementing CRP which complies with WB OP 4.12 in Tanzania.

⁻ Including the following specialists who have experience in each field: valuer, sociologist, community development expert, and social worker.

(8) Grievance Redress Mechanism

In order to redress any grievances during implementation of the CRP, such as regarding compensation amount, entitlement, resettlement places, livelihood restoration and any of the survey results related to the CRP which includes PAP census and socio-economic survey, the following grievance redress mechanism shall be established before implementation. Although Tanzania has judicial procedures for land acquisition and compensation disputes to bring to the Court (Land Act 1999 and Village Land Act 1999), negotiation and mediation procedures before the judicial procedure shall be established to precede this, as the judicial procedure may not be easy to access for most of the affected people.

A flow chart of the grievance redress mechanism is presented in Figure 13.8. At each stage, RAHCO shall be involved as the responsible agency of the CRP implementation.

[Negotiation and Mediation Procedure]

Source: JICA Study Team

13.2.4 Scope of Resettlement Impact

(1) Determination of the Preliminary Cut-off Date

Population census was conducted on 2-9 December, 2015 together with the asset inventory. The date of the completion, 9 December 2015 was identified as the 'preliminary' cut-off date. The

preliminary cut-off date was defined as the date after which an influx of ineligible people and unnecessary development are prevented under the villagers' consensus and observation by the village leaders and the neighbors. After the official project decision, the official cut-off date will be set at the time of the official survey to be conducted based on Tanzanian laws and approved by the Ministry of Lands, Housing and Human Settlements Development (MLHHSD) for determination of the compensation amount to be provided to each PAP. The eligibility will be finalized at the time of the official cut-off date together with the valuation for compensation.

The preliminary cut-off date was agreed in the consultation meetings with PAPs.

(2) **Population Census**

The results of the population census showed that 201 households with 952 populations would be affected by the project (Table 13.22). As the PAPs are cultivating the land around their houses, most of the PAPs are affected because of their land and less frequently because of the existence of structures (Table 13.23). Eleven illegal land users were identified who cultivated crops or built structures within the existing ROW. In addition to the individual PAPs, village owned public land (village land) is affected at each village.

Region	Village	Project Affected Households (PAHs)	Project Affected Persons (PAPs)
Morogoro	Munisagara	37	159
-	Muzaganza	32	138
	Kikundi	39	199
Dodoma	Kisisi	4	27
	Godegode	28	125
	Gulwe	61	304
Total		201	952

Source: JICA Study Team

Table	13 23.	Number	of	Total	PΔHs	and	PΔPs	bv	Imnact	
Table	10.20.	Number	U.	i otai		and	IAIJ	Юу	impact	

Type of impact		oject Affe Seholds (F		Project Affected Persons (PAPs)			
	Legal	Illegal	Total	Legal	Illegal	Total	
Land without structure is affected	87	5	92	505	33	538	
Both land and structure are affected	92	6	98	354	28	382	
Structure without land is affected	11	0	11	32	0	32	
Total	190	11	201	891	61	952	

Source: JICA Study Team

(3) Asset Inventory

The measured total affected land area is presented in Table 13.24. Most of the affected land is agricultural land cultivated by individuals (private). The other land type is village land managed by the village government. The village land is basically not used as they are not suitable for either cultivation or housing due to the topographic conditions.

The number of affected structures is presented in Table 13.25. In total, 317 structures are affected. Out of them, 150 were identified as houses. Although the structures need to be relocated, it is difficult to identify whether the PAP needs to move out from their land to another area, because they may be able to stay within their plot just by shifting their house location. The

necessity and the preference of the moving shall be decided in the detailed design stage after the project area is demarcated physically.

Land type	Area (m ²)
Private used land (agricultural land with/without housing)	1,538,508
Village land (bare land/forest)	659,338
Total	2,197,846

Table 13.24: Affected Land Area

Source: JICA Study Team

Type of structures		Number
House	Traditional	135
	Modern	10
	Mixed modern & ultra-modern	5
Outer structures	Outer kitchen	53
	Outer toilet	59
	Warehouse/animal shed	48
Public structures	Grain storage	1
	Grave yards	6
Total		317

Table 13.25: Number of Affected Structures

Total

Traditional: grass/fronds roof, mud/stick walls, mud floor; Modern: corrugated iron sheets, burnt bricks, cement floor; Ultra modern: tiled roof, cement blocks, tiled floor

Source: JICA Study Team

Source: JICA Study Team

Community grain storage

Figure 13.9: Examples of the Affected Structures

(4) Socio-Economic Conditions of the Affected Households

In the project area, various ethnic groups are living together, especially in Kilosa District, while the Gogo is dominant in Mpwapwa District. The Gogo is predominantly known as Christian. The lifestyles of each tribe are not specified and Kiswahili is commonly spoken between and within the tribes.

From the results of the interview surveys with the affected households, 15% of the affected household heads were found to be illiterate who could neither read nor write Kiswahili. The number of household members was varied, ranging one to twenty per household (Table 13.26). Almost all of the households are small-scale farming households (Table 13.27) and the income of the majority of them is below 5 million TZS/year (equivalent to 2,294 USD/year). Comparing with the national poverty line, USD 1/capita/day, the averaged affected household's condition is close to be the poverty line.

		Number of household members														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	20
Land affected household	19	13	25	30	26	29	10	9	5	7	4	1	1	1	1	1
Structure affected household	10	8	7	21	10	13	2	3	3	4	2	1	0	0	1	0
Source: IICA Study Team																

Table 13.26: Number of Affected Households by Number of Household Members

Source: JICA Study Team

Table 13.27: Number of Affected Households by Occupation

		Occupation									
	Farmer	Livestock keeper	Trading	Agricultural officer	Fisherman/ woman	Artisan					
Land affected household	190	-	2	2	1	2					
Structure affected household	107	2	-	-	-	-					

Source: JICA Study Team

Table 13.28: Number of Affected Households by Income

		Household Income (TZS/year)			
	100,000- 1,000,000	1,000,001- 5,000,000	5,000,001- 10,000,000	10,000,001- 20,000,000	20,000,001- 80,000,000.00
Land affected household	68	85	14	6	1
Structure affected household	23	52	4	16	3

Source: JICA Study Team

Vulnerable Affected Households (5)

Through the interview survey, vulnerable persons listed in Table 13.29 were identified in the affected households.

Vulnerability	Frequency	
Disease /Sick	4	
Elderly	39	
Orphan	2	
Widow	5	
Women household heads	47	
Total	97	

Table 13.29: Number of Vulnerable Affected Persons

Source: JICA Study Team

(6) Tenants

Five affected tenants of land are identified through this survey. Information of those tenants are summarized in Table 13.30.

Tenant	Village	Description		
1.	Gulwe	Small scale peasant, a tenant on the father's land; has another small farm away.		
2.	Godegode	Rents a land on which he grows seasonal crops (maize, sunflower). Has another		
		plot in the nearby village		
3.	Kikundi	A rich peasant living in Dar es Salaam; rents land at Kikundi for irrigation		
		farming for commercial reasons. Has other source of income.		
4.	Mzaganza	Rents on land of his father in law on which he grows maize. Does not have		
		another plot.		
5.	-	Rents a plot on which he grows seasonal crops. Has other source of income.		
0 110	1 0 1 5			

Table 13.30: Information of Affected Land Tenants

Source: JICA Study Team

13.2.5 Compensation Plan

(1) Compensation for the Loss

The affected people are small scale farmers who are based on their farm land. Although the percentages of the affected area of each owner's land were not quantified through this survey, 136 landowners out of 172 respondents answered that they did not have alternative plots other than the land in the project area. In such cases, JICA's compensation policy generally leads to land-for-land compensation by providing alternative land instead of cash compensation. However, a problem in this area is the difficulty to find alternative spare land due to the mountainous topographic conditions. As many people were aware of this situation, the majority of the affected landowners replied that they prefer cash compensation rather than in-kind compensation because the area is precarious; namely, hilly, periodically affected by floods, dry and inaccessible (Table 13.31).

Considering this situation, cash compensation is deemed to be suitable for those who prefer cash compensation in this project, given that they will receive livelihood support from the Livelihood Restoration Program (LRP).

Compensation form	Number of respondents
Cash	108 (61%)
In-kind (land)	27 (15%)
Both cash and in-kind	42 (24%)
Total respondents	177
Source: JICA Study Team	

 Table 13.31: The PAP's Preference on Compensation Form

(2) Compensation for Assets in the Existing Right of Way (ROW)

The area within the existing ROW, thirty meters width from the center line of the railway track, is owned by RAHCO and any erection of structures and execution of works are forbidden without permission. Considering that WB OP4.12 recognizes those persons who encroaches the ROW as eligible for the compensation while Tanzanian law does not, the status of each affected asset in the existing ROW are investigated. The results and the resettlement policy for each case are presented in Table 13.32 and Table 13.33.

		Survey date: 14-16 June, 2016			
No.	Location	Type of Asset and the Condition			
<u>No.</u> 1	Km 302 Munisagara Rerouting section (2)- 600m				
2	Km 305 Munisagara Rerouting section (2)- 3800m				

Table 13.32: Affected Assets in the Existing ROW

Survey date: 14-16 June, 2016

No.	Location	Type of Asset and the Condition			
<u>No.</u> 3,4	Location Km 315 Kikundi Rerouting section (3) - 2500m	<complex-block></complex-block>			
5	Km 371 Gulwe Rerouting	Just outside of the existing ROWJ One grave of a villager killed by a train accident in 2004.			
	section (9)- 8800m				

No.	Location	Type of Asset and the Condition		
<u>- No.</u> <u>6</u>	Km 305 Munisagara Rerouting section (2)- 3600m	Crops (sunflower, maize) along the railway, about 200m.		
7	Km 371 Gulwe Rerouting section (9)- 8200-8800m	Crops (sunflower, maize) along the railway, about 600m.		

Source: JICA Study Team

			Condition			
No.	*1	Type of Asset	Within the Existing ROW? (30m from the existing rail)	Recognized as Encroacher?	Within the New ROW?	Posottlomont Policy
1		Three	Yes	Yes	No No	Resettlement Policy No resettlement
1		structures	105	105	INO	No resettiement
2 ^{*2}	2-1	Two structures	Yes	Yes	No	No resettlement
	2-2	One structure	No	No	No (To be scrutinized in the detailed design stage.)	No resettlement (same policy in case the structure will be within the new ROW)
3	I	One structure	Yes	No	Yes	It will be compensated by the Tanzanian Government because the structure is in the existing ROW due to the relocation of the existing railway.
4		Well	Yes	No	No	It needs to be relocated because it will be separated from the community. Development of a new well at the resettlement site has already been planned.
5		Grave	No	No	Yes	It will be compensated by the Tanzanian Government
6		Crop	Yes	Yes	Yes	The PAP is allowed harvesting crops that are within the affected area. The deadline for the harvest shall be discussed and determined with the PAP during the Detailed Design stage.
7		Сгор	Yes	Yes	Yes	The PAP is allowed harvesting crops that are within the affected area. The deadline for the harvest shall be discussed and determined with the PAP during the Detailed Design stage.

Table 13.33: Resettlement Policy on Assets without Land in the Existing ROW

*1 The number is consistent with Table 13.32.

Source: JICA Study Team

^{*2} The three structures are owned by one household and the structure 2-2 is their residence. In case the structure 2-2 would be resettled, JICA thinks that the other two structures 2-1 should be resettled together. However, the other two structures cannot be compensated under the Tanzanian laws and regulations because they are in the existing ROW. Therefore, RAHCO and JICA came to an understanding that it might be better to have an option for the PAPs that the three structures can be left there even though the residence might cross the new ROW because the construction activities can be implemented not affecting the structures. RAHCO pointed out that in case the structures would be left there, the PAPs shall not make any new development with the proposed ROW. The decision on this matter would be made in close consultation with the PAPs during the Detailed Design.

Livelihood Restoration Program (3)

During the socio-economic interview survey, it was asked to the PAPs what kind of assistance they prefer for compensating their affected livelihood. As summarized in Table 13.34, 67 out of 171 respondents answered they preferred agricultural land-based assistance, such as training on modern farming, while the other 104 preferred non-landbased assistance, such as trading and enterprising. The latter preference is basically from the younger generations who seem to be unsatisfied by the livelihood conditions in the project area.

According to the Kilosa District Office, the District government has experiences of providing training on agriculture, beekeeping, poultry, entrepreneurship, and savings/loans in other areas in the District. That training and implementation are deemed to be applicable to the affected area for this project with the cooperation of the Districts. The details shall be discussed in the detailed design stage.

Livelihood Restoration Preference	Number of respondents	Description of the respondents
(1) Agricultural production based assistance (land based): training on modern/scientific farming, access to credits and lucrative markets.	67	Mainly aged PAPs (50 years and above), PAPs who have extra land either within the same village or in another village PAPs who preferred land for land compensation, Vulnerable households headed by the older persons.
(2) Non-farm based assistance (non-land based): training on small enterprising especially in agricultural products; access to credits, practical skills training, e.g., carpentry, masonry, tailoring, etc.	104	Mainly persons of young age, in their 20s to early 40s.

ource: JICA Study Team

(4) **Resettlement Site**

The railway rerouting was planned to avoid residential area as much as possible; however, it is not avoidable that the section at Km315-316 affects a community in Kikundi Village. As there is not enough spare land for relocating the affected residents, it was requested by the villagers to develop a resettlement site at the mountain slope within the village (Figure 13.10).

The resettlement site is planned to be about one hectare, which is equivalent to the area of the affected community. The land belongs to the village and currently not used for any purpose, and is covered by vegetation (Figure 13.11). Environmental and social impacts are hardly expected for the development as it is not a primary forest and it is easily accessible from the existing residential area. As shown in Table 13.35, available infrastructure in the new resettlement site will be the same with the current settlement.

The construction outline and the settlement procedure are planned as follows:

(Construction)

After clearing the vegetation, the slope is leveled by excavating and spreading the excavated soil.

- The leveled land is compacted and rainwater drainages are installed.
- One well with hand pump is installed.
- The construction cost is shown in Table 13.36.

(Settlement)

- After identification of the households to be relocated to the site, the procedure for selecting plots are discussed and confirmed among the PAPs; for example, selection by lottery.
- The PAPs build their structure at the allocated plots by themselves and move to.
- The District Officers or assigned NGO staff assists the procedure coordinating with the village government if necessary.

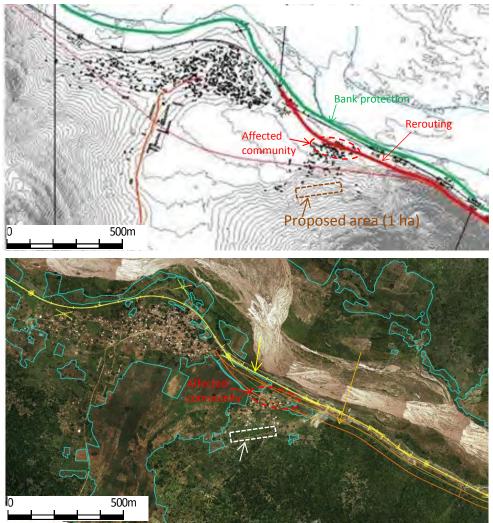
Expected schedule of the resettlement is presented in Table 13.37.

Table 13.35: Comparison of the Infrastructure in the Current Settlement and the New Resettlement Site

Infrastructure	Current Affected Settlement	Plan of the New Resettlement Site
Area	About one hectare	Planned to be one hectare.
Water source	A communal well with hand pump	A new communal well with hand pump is installed.
Rainwater drainage	(none)	Rainwater drainages are installed.
Road	A communal road	A communal road is planned in the area to connect with the existing .residential area adjacent to the site.

Source: JICA Study Team

Table 13.36: Construction Cost of the Resettlement Site Development


TZS
309,705,732
30,508,317
340,214,049

Source: JICA Study Team

Table 13.37: Expected Schedule of the Site Preparation and Resettlement

Year	2017				2018									
Month	9	10	11	12	1	2	3	4	5	6	7	8	9	10
Detailed Design of the Site and Cordination with the Village Government														
Selecting Construction Contractor														
Leveling the resettlement site														
Installing a well with hand pump														
Construction of houses and relocation														

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Figure 13.11: Condition of the Proposed Resettlement Site

13.2.6 Implementation Schedule

Expected implementation schedule of the CRP is presented in Table 13.38. As the CRP prepared in this Study is recognized as the Preliminary CRP with a preliminary valuation, it needs to be updated together with the implementation of official asset valuation. The survey will be commenced after the project area is demarcated on the ground based on the detailed design.

Year	2017				2018									
Month	9	10	11	12	1	2	3	4	5	6	7	8	9	10
1. Demarcation of the project area														
2. Compensation Process														
2.1 Consultation with PAPs/Establishment of Committee						Ι								
2.2 Census and Socio-Economic Survey			<u> </u>	🕈 off	icial cı	t-off-	date							
2.3 Valuation (field survey and filling valuation form)				ł										
2.4 Preparing the Report (CRP/Valuation Report)	1	<u> </u>												
2.5 Approval of the CRP/Valuation Report by the Ministry of Land including coordination with local government						-								
2.6 Compensation Payment	1	1			1	-								
2.7 Handling Greivances				1									——	
3. Preparing Resettlement Site and LRP														
3.1 Detailed Design of the Resettlement Site and Cordination with the Village Government														
3.2 Selecting Construction Contractor for the Resettlement Site		1		—						1	1		[
3.3 Construction of the Resettlement Site		1		1	1					1				
3.4 Preparing Implementation Plan of the LRP		—			1									
4. Relocation/LRP/Monitoring	1	1		1	1	1	—		_					

13.2.7 Cost and Budget

The estimated cost for implementing the CRP is presented in Table 13.39. The budgetary responsibility is under the project proponent, RAHCO.

	Resettlement Activity	Cost (TZS)	Contingency (TZS)	Total (TZS)
1	Compensation costs for Crops and Trees	14,415,000	1,441,500	15,856,500
2	Compensation costs for Land	439,569,200	43,956,920	483,526,120
3	Compensation costs for Housing Structures	484,098,731	48,409,873	532,508,604
4	Transport allowance	3,300,000	330,000	3,630,000
5.	Disturbance allowance	46,904,147	4,690,415	51,594,562
6.	Accommodation allowance	76,946,000	7,694,600	84,640,600
7.	Resettlement Assistance	100,000,000	10,000,000	110,000,000
8.	Community support	217,844,429	21,784,443	239,628,872
9.	Livelihood Restoration Program	1,200,000,000	120,000,000	1,320,000,000
10.	Grievance handling	12,000,000	1,200,000	13,200,000
11.	Management & administration	80,000,000	8,000,000	88,000,000
12	Monitoring & evaluation	200,000,000	20,000,000	220,000,000
	Total			3,162,585,258

Table 13.39: Cost for Implementing the CRP

Note: contingency is estimated as 10% of the cost. Source: JICA Study Team

13.2.8 Monitoring Plan

RAHCO shall take full responsibility for conducting regular monitoring of the CRP implementation. Indicators of the monitoring are listed in Table 13.40. The monitoring shall be continued until the project activities are completed.

In addition to the internal monitoring, RAHCO shall engage an independent agency to undertake the external monitoring. TOR for the external monitoring is presented in Table 13.41.

Items		Indicators			
Progress of compensation and	-	Number of compensation payments			
relocation	-	Number of prepared relocation plots			
		Number of structures constructed			
		Number of PAPs relocated			
	-	Number of vulnerable people assisted			
Procedure	-	Institutional establishment (internal unit in RAHCO and			
		CRP Committee)			
	-	Grievance mechanism			
	-	Consultation meetings with PAPs			
Grievance	-	Logged grievance and the solutions			
Livelihood Restoration Program	-	Number of participants/beneficiaries			
		Implementation of the activates			
Socio-economic conditions		Income change between before and after the relocation			
	-	Accessibility to public infrastructure/services			

Source: JICA Study Team

Table 13.41: TOR for External Monitoring

A. Project Background

Reli Assets Holding Company (RAHCO) has intended to improve the section between Kilosa and Gulwe of the Central Railway Line which is suffering from the frequent damages caused by the floods. To implement the improvemet, the Project will require land acquisition and involuntary resettlement for rerouting the existing railway with the length of 25km which will affect households according to the land acquisition and resettlement action plan. RAHCO will implement land acquisition and resettlement activities following the updated RAP to meet the requirements of lenders. RAHCO seeks to engage an independent External Monitoring Agency (EMA) to undertake monitoring and evaluation of the RAP implementation process.

B. Key Objective of External Monitoring

Monitoring is an integral part of the resettlement process. The External Monitoring Agency (EMA) will review implementation process as per set policies and criteria in the RAPs report, assess the achievement of resettlement objectives, the changes in living standards and livelihoods, restoration of the economic and social base of the project affected people, the effectiveness, impact and sustainability of entitlements, the need for further mitigation measures if any, and to learn strategic lessons for future policy formulation and planning.

C. Scope of Work

The scope of work of the External Monitoring Agency (EMA) will include the following activities:-

- 1. To develop specific monitoring indicators for undertaking monitoring of the Resettlement Action Plans (RAPs).
- 2. To review and verify the progress in land acquisition/resettlement implementation of the Project.
- 3. Identify the strengths and weaknesses of the land acquisition/resettlement objectives and

approaches as well as implementation strategies.

- 4. Evaluate and assess the adequacy of compensation given to the APs and the livelihood opportunities and incomes as well as the quality of life of APs of project-induced changes.
- 5. Identification of the categories of impacts and evaluation of the quality and timeliness of delivering entitlements (compensation and rehabilitation measures) for each category and how the entitlements were used and their impacts and adequacy to meet the specified objectives of the Plans. The quality and timeliness of delivering entitlements, and the sufficiency of entitlements as per approved entitlement matrix.
- 6. Provide a summary of whether involuntary resettlement was implemented (a) in accordance with the RAPs, and (b) in accordance with the stated policy.
- 7. To review the quality and suitability of the relocation sites from the perspective of the both affected and host communities.
- 8. Verify expenditure & adequacy of budget for resettlement activities.
- 9. To analyze the pre-and post-project socio-economic conditions of the affected people. The methodology for assessment should be very explicit, noting any qualifications.
- 10. Review results of internal monitoring and verify claims through sampling check at the field level to assess whether land acquisition/resettlement objectives have been generally met. Involve the affected people and community groups in assessing the impacts of land acquisition for monitoring and evaluation purposes.
- 11. To monitor and assess the adequacy and effectiveness of the consultative process with affected people, particularly those vulnerable, including the adequacy and effectiveness of grievance procedures and legal redress available to the affected parties, and dissemination of information about these.
- 12. Identify, quantify, and qualify the types of conflicts and grievances reported and resolved and the consultation and participation procedures.
- 13. Describe any outstanding actions that are required to bring the resettlement activities in line with the policy. Describe further mitigation measures needed to meet the needs of any affected person or families judged and/or perceiving themselves to be worse off as a result of the Project. Provide a timetable and define budget requirements for these supplementary mitigation measures.
- 14. Describe any lessons learned that might be useful in developing the new national resettlement policy and legal/institutional framework for involuntary resettlement.
- 15. Verifying internal reports by field-checking delivery of compensation to PAPs, including the levels and timing of the compensation; readjustment of land; preparation and adequacy of resettlement sites; construction of houses; provision of employment, the adequacy of the employment, and income levels; training; special assistance for vulnerable groups; repair, relocation, or replacement of infrastructure; relocation of enterprises, compensation, and adequacy of the compensation; and transition allowances;
- 16. Interviewing a random sample of PAPs in open-ended discussions, to assess their knowledge and concerns about the resettlement process, their entitlements, and the rehabilitation measures;
- 17. Observing the functioning of the resettlement operation at all levels, to assess its effectiveness and compliance with the RAP;
- 18. Checking the type of grievance issues and the functioning of grievance redress mechanisms by reviewing the processing of appeals at all levels and interviewing aggrieved PAPs:
- 19. Advising RAHCO regarding possible improvements in the implementation of the RAP.

D. Methodology and Approach

The general approach to be used is to monitor activities and evaluate impacts ensuring participation of all stakeholders especially women and vulnerable groups. Monitoring tools should include both quantitative and qualitative methods. The external monitor should reach out to cover:

- PAPs who had property, assets, incomes and activities severely affected by Project works and had to relocate either to resettlement sites or who chose to self-relocate, or whosesource of income was severely affected.
- PAPs who had property, assets, incomes and activities marginally affected by Project works and did not have to relocate;

• PAPs by off-site project activities by contractors and sub-contractors, including employment, use of land for contractor's camps, pollution, public health etc.;

Supplemented by Focused Group Discussions (FGD) which would allow the monitors to consult arrangement of stakeholders (local government, resettlement field staff, NGOs, community leaders, and most importantly, APs), community public meetings: Open public meetings at resettlement sites to elicit information about performance of various resettlement activities.

E. Other Stakeholders and their Responsibility

1. Responsibility of the executing Agencies (EAs)

The EAs through their Project Implementation Unit (PIU) will ensure timely supply of background references, data and other necessary information to the EMA and provide access to project sites and relevant places to let the EMA implement external monitoring activity.

2. Responsibility of the Implementing organization(s)

Organizations that will assist EAs in implementing land acquisition and resettlement activities will provide information required by the EMA at site and at their Project Offices. It will on behalf of EAs ensure free access to project sites and related areas and the database on land acquisition and resettlement activities.

F. Team Composition of the External Monitoring Agency

The EMA should focus on Data collection, processing and analysis to pin point problem areas and weaknesses, and to light on deserving measures to achieve the objectives on schedule are the special interest of the subject. Thus, there is a need for a dedicated monitoring team with adequate gender representation. Further, it is essential that the central team or field level coordinators responsible for monitoring, are skilled and trained in data base management, interview technique, and social and economic/finance. Keeping in mind these criteria, the team should ideally include:

Position/expertise	Qualification and experience
1. Team Leader/ Implementation Specialist	Master in social science with 10-year working experience in social impact assessment including census and socioeconomic surveys, stakeholders' consultation, and analyzing social impacts to identify mitigation measures in compliance with social safeguard policies of the international development financing institutions and national legislations. Experience of preparing resettlement framework and action plans and implementation of plans for externally financed projects is essential.
2. Social Impact Specialist	Master in social science with 5-year working experience in social impact assessment including census and socioeconomic surveys, stakeholders' consultation, and analyzing social impacts to identify mitigation measures in compliance with social safeguard policies of the international development financing institutions and national legislations. Experience of preparing resettlement framework and action plans and implementation of plans for externally financed projects is essential.
3. Data Analyst	Graduate with working experience and knowledge of software such as SPSS (Statistical Package for the Social Sciences)

G.Time Frame and Reporting

The EMA will be employed over a period of 3 years with intermittent inputs from the professional team to continue 2 years after completion of the RAP implementation.

Quarterly and annual monitoring reports should be submitted to RAHCO with copies to JICA. An evaluation report at the end of the project should be submitted to RAHCO and concerned parties with critical analysis of the achievement of the program and performance of EAs and implementing organizations.

The external monitors will provide monitoring and evaluation report covering the following aspects:

- Whether the resettlement activities have been completed as planned and budgeted;
- The extent to which the specific objectives and the expected outcomes/results havebeen achieved and the factors affecting their achievement or non-achievement;

- The extent to which the overall objective of the Resettlement Plan, pre project orimproved social and economic status, livelihood status, have been achieved and thereasons for achievement / non achievement;
- Major areas of improvement and key risk factors;
- Major lessons learnt; and
- Recommendations.

Formats for collection and presentation of monitoring data will be designed in consultation with EAs.

H. Qualification of the External Monitoring Agency

The EMA will have at least 10 years of experience in resettlement policy analysis and implementation of resettlement plans. Further, work experience and familiarity with all aspects of resettlement operations would be desirable. NGOs, Consulting Firms or University Departments (consultant organization) having requisite capacity and experience on the same can qualify for services

Interested agencies should submit a proposal to RAHCO with a brief statement of the approach, methodology, and relevant information concerning previous experience on monitoring of resettlement implementation and preparation of reports.

The profile of its agency, along with full signed CVs of the team to be engaged, must be submitted along with the technical proposal.

I. Budget and Logistics

The budget should include all expenses such as staff salary, office accommodation, training, computer/software, transport, field expenses and other logistics necessary for field activities, data collection, processing and analysis for monitoring and evaluation work. Additional expense claims whatsoever outside the proposed and negotiated budget will not be entertained. VAT, Income Tax and other charges admissible will be deducted at source as per Government laws.

Source: JICA Study Team

13.2.9 Consultation Meetings

(1) Meetings in December 2015

A series of consultation meetings with the PAPs were held at six villages to be directly affected by the land acquisition for the railway rerouting and the river-training works (Table 13.42). The purpose of the meeting was to disclose the proposed project location, identify the affected individuals, and obtain their opinion/consensus on the compensation policies. The meeting was called by the village leaders thorough the network among the villagers.

Agenda and the points of explanation in the meetings are listed below:

- 1. Opening remarks/self-introduction of the survey team
- 2. Purpose and meeting objective
 - ✓ It was explained that the survey is preliminary survey as a part of the feasibility study and the official valuation for compensation will be conducted after the official decision of the project.
- 3. Project information
 - ✓ The place which needs land acquisition was explained using project maps and clarification with attendees.
 - \checkmark Draft plan of the temporary construction access road was also explained.
- 4. Ordinal compensation process based on the Tanzanian laws
 - ✓ District valuers explained the process of asset valuation and compensation as well as allowances in accordance with the Tanzanian laws.
- 5. Compensation policies considering JICA's policies

- ✓ It was explained that the JICA's compensation policies would also be applied, combining with the Tanzanian laws, to minimize the social impacts.
- ✓ Entitlement Matrix (in Swahili) which shows compensation policies for this project was explained and provided to the village leaders.
- ✓ It was explained that Livelihood Restoration Program (LRP) is provided to the affected people and the contents would be decided based on the people's requirements.
- ✓ Although it cannot be the official cut-off-date to restrict the land use and the transaction, it was explained that unnecessary development for being compensated should be prevented under observation by the village leaders and the villagers after the completion of the survey.
- 6. Identification of the affected people
 - ✓ At the end of the meeting, affected people claimed to be identified under the witness of the other villagers.

The participants raised questions on the compensation policies and the details of the procedures, which were answered by the consultants and RAHCO (Table 13.43). No dissenting voice or objection against the project or the compensation policies was identified through the meetings.

Table 13.42: Consultation N	/leetings with the PAPs (1–7 ∣	December 2015)

	Village name	Number of	participants
Date	(Ward and District name)	Total	(Women)
1Dec.	Munisagara (Msanze, Kilosa)	130	(32)
	Mzaganza (Kidete, Kilosa)	30	(7)
2 Dec.	Kikundi (Kidete, Kilosa)	173	(74)
6 Dec.	Kisisi (Godegode, Mpwapwa)	116	(74)
	Godegode (Godegode, Mpwapwa)	181	(54)
7 Dec.	Gulwe (Gulwe, Mpwapwa)	138	(23)

Source: JICA Study Team

Table 13.43: Major Comments and Response in the Meetings(1–7 December 2015)

Subjects	Rai	sed Issues	Response
Project implementation /general	1)	When will the construction activities be commenced? (Munisagara)	After completion of the feasibility study and the compensation.
frameworks	2)	PAPs to be informed early in advance before project implementation to avoid further use of the project area.(Mzaganza)	PAPs will be informed when the official valuation is carried out.
	3)	Who is going to compensate? The government of Tanzania or Japan? (Munisagara)	The government of Japan funds for the project. Compensation will be paid by the government of Tanzania.
	4)	Progress of each step of the project should be informed from time to time after the meeting. (Mzaganza)	Noted.
Compensation / valuation	5)	Does RAHCO commit compensating for encroachers? (Munisagara)	RAHCO is requested to comply with JICA's policy to compensate for encroachers.
	6)	Will it be compensated if only half of the structure is affected? (Munisagara)	Yes. All affected asset will be compensated.
	7)	Is it possible to continue construction of the house if it is already under construction? (Kikundi, Godegode)	Yes, because it is still preliminary valuation stage.

Subjects	Raised	Issues	Response
	la	lany people are lack of legal documents of nd ownership. Is it possible to be ompensated? (Kisisi)	Land ownership is recognized by inheritance, traditional and legal ownership.
		/hat about if graves are affected? Kikundi, Godegode, Gulwe)	There is a law for compensatin graves.
	· · · · ·	/hat about if watering place is affected? Kikundi)	If the land belongs to the village, the village will be compensated.
	11) W	/ill natural tree be compensated? (Kisisi)	If it has value, it will be compensated.
		ompensation should be paid fairly, comptly and timely. (Munisagara)	It will be made in accordance with law.
	to th	he government should fairly compensate all affected persons in order to maintain eir living standard together with their milies (Mzaganza)	
		ssure of the compensation because the anzanian system is so prolonged. (Kisisi)	RAP committee team will be established for assurance.
	co	onstruction should be started after ompensation and resettlement (Mzaganza)	It will in accordance with both Tanzanian law and JICA's policy.
	co	/hat can we do if we don't satisfy the ompensation payment? (Mzaganza, ikundi, Gulwe)	You can appeal through the grievance mechanism.
	17) Va	aluation schedule should be informed in Ivance to the PAPs. (Munisagara)	Noted.

(2) Meetings in June 2016

In order to provide a feedback of the results of the CRP, another series of consultation meetings with the PAPs were held at six affected villages (Table 13.44). The main purpose of the meetings was to confirm the compensation policy and finalize their consensus. The participants were the PAPs called by the village leaders, and the word officers.

Agenda and the points of explanation in the meetings are listed below:

- 1. Introduction
 - \checkmark It was announced that the preliminary CRP has been completed in this study.
 - \checkmark It was informed that the final CRP would be taken place, expected to be in 2017.

2. Compensation policy of affected structure

- ✓ It was explained that the Tanzanian law would be the base of the valuation for compensation. The PAPs consent on this policy was confirmed.
- ✓ In addition, it was explained that a community support would be provided by JICA through RAHCO in accordance with JICA's policy.
- ✓ Although the details of the community support would be decided in the next study stage, the PAPs were inquired about their requests on the community support for information for the next stage.
- 3. Compensation policy of affected land
 - ✓ Considering that the alternative spare land is limited in the project area, it was explained that land-for-land compensation would not be feasible although it was recommended by JICA's policy. The PAPs opinion on this issue was collected.

- ✓ It was confirmed that a Livelihood Restoration Program (LRP) would be provided based on the JICA's policy for the PAPs who lose farmland. PAPs were inquired about their requests on the contents of the LRP.
- 4. Cut-off-date
 - ✓ It was confirmed that unnecessary development should be prevented until the final CRP survey stage.
 - ✓ It was explained that a legal cut-off-date would be established in the final CRP which was expected to be taken place in 2017.
- 5. Grievance redress mechanism
- ✓ Grievance redress mechanism proposed in the CRP was introduced to the PAPs.
- 6. Provision of the reports
 - ✓ Following documents were introduced and provided to the village leaders.
 - Summary of the preliminary RAP (CRP)
 - Entitlement matrix
 - Summary of ESIA report

The major results of the meetings are listed below:

- All participants at each village agreed that the compensation of structure would be based on Tanzanian law. They also appreciated the community support. They understood that the details of the support would be decided in the next stage together with the budget scale.
- All participants at each village agreed with cash compensation for the affected land considering limitation of spare land with exception of residential land in Kikundi. (In Kikundi, it was already agreed that residential land to be resettled would be developed for the PAPs.)
- Requests on the community support and the LRP are listed in Table 13.45 and Table 13.46.

The other major questions/comments from the participants and the responses by the consultant, RAHCO and the JICA Study Team are listed in Table 13.47.

Village name		Number of participants*	
Date	(Ward and District name)	Total	(Women)
Tuesday 14 June.	Munisagara (Msanze, Kilosa)	26	(5)
Wednesday 15 June	Mzaganza (Kidete, Kilosa)	60	(17)
	Kikundi (Kidete, Kilosa)	38	(10)
	Kisisi (Godegode, Mpwapwa)	9	(0)
Thursday 16 June	Godegode (Godegode, Mpwapwa)	27	(6)
	Gulwe (Gulwe, Mpwapwa)	66	(12)

 Table 13.44: Consultation Meetings with the PAPs (14–16 June 2016)

** including village leaders and word officers Source: JICA Study Team

Village name	Requests
Munisagara	 School infrastructure - especially class rooms and teachers' houses are inadequate;
	 Road to the village - the community faces difficulty and risk by utilising the railway as access to the village;
	 Dispensary – needs to be repaired
Mzaganza	 Dispensary since there is none;
	 Access road to the village since there is no road;
	 Safe and clean water supply - the villagers currently fetch water for domestic use from the river which is always turbid and not safe;
	 Completion of Kidete dam embankment - so that flooding to the downstream can be controlled;
	- Rehabilitation of church (Roman Catholic) buildings;
	 Rehabilitation of class rooms and teachers' house - since the school has 6 class rooms which are dilapidated and pause a safety risk to pupils;
	 Construction of village office
Kikundi	 Dispensary since there is none in the village;
	 Class rooms for their primary school since there are only 2 rooms;
	 Teachers' house - the school has no teacher's house which makes it difficult for teachers to stay far from school premises;
	- Water supply - requesting an additional water well;
	- Rehabilitation of the existing road to Mpwapwa
Kisisi	 Water supply for the village - water is a problem since they depend or Chinyasungwe river and others where they have to walk 7km to reach;
	 Dispensary - since they have to travel 9km to Godegode in search for health services;
	 Class rooms - Kisisi Primary School has 4 rooms where only 2 rooms are in use The other 2 are out of order and pose safety risks to pupils. Other pupils take their classes outside, sitting under tree shades
Godegode	 Health centre - the existing dispensary is overloaded
	- Water supply - the village is experiencing water scarcity
	- Police station - to boost security
Gulwe	- Water supply - since the currently used sources are not reliable and unsafe;
	 Secondary school - since the village has no secondary school. Students travel a distance of between 15 to 20km daily for studies;
	 Health centre - since the existing serves 3 villages of Chiseyu, Uyuma and Gulwe, all found in Gulwe Ward.

Table 13.45	: Request o	f the Communit	y Support
-------------	-------------	----------------	-----------

Village name	Requests
Munisagara	 Assistance for agriculture
	– Poultry
Mzaganza	- Irrigation infrastructure
	- Bee-keeping
	- Entrepreneurship training e.g. soap making, raising of livestock (cows, poultry)
Kikundi	- Farming implements and inputs i.e. seeds, insecticides, machinery etc.
Kisisi	- Equipment for increasing agricultural production - tractors, ox, fertiliser, etc.
	 Capacity building on how to increase land productivity
	- Fish farming
	 Modern livestock keeping

Village name	Requests	
Godegode	- Water pumps to enable water for irrigation reach their farms	
	Agricultural implements, e.g. tractors, power tillers etc.	
	 Skills development through trainings on entrepreneurship 	
Gulwe	– Poultry	
	- Open up vegetable gardens and give training on how to grow healthy vegetables	
	 Piggery and milk cows raring 	
	- Training on carpentry	
	 Provision of agricultural implements 	
	- Beekeeping	
	- Fish farming	

Table 13.47: Questions/Comments and Response in the Meeting
(14–16 June 2016)

Subjects	Rai	ised Issues	Response
RAP survey	1)	How will I be compensated since I was not considered in the previous survey? (Godegode) A tenant was recorded on my	The survey exercise will be repeated. The previous survey was to get the overview of the situation. In the second survey, PAPs will be photographed while standing in their piece of land to be taken by the project and requested to sign valuation report. Therefore, there is still a chance to come for updating the PAPs database. There will be another survey which gathers
	2)	land and not me, how will I be considered? (Godegode)	PAPs details.
Compensation of structure	3)	What Tanzania laws state for valuation and compensation of assets? (Mzaganza)	Tanzania laws take into consideration type of house, type of construction materials, age and current condition at the time of valuation (depreciation).
	4)	If PAPs want to rebuild the affected house, how will it be considered during valuation? (Gulwe)	The laws in Tanzania do not consider replacement; only gives cash compensation.
	5)	There was a plan that the project would re-build the affected houses at the resettlement site in Kikundi. Is the plan still valid? (Kikundi)	If the PAPs chose in-kind compensation, namely compensation by re-built houses, community support program will not be provided. ->The PAPs agreed with cash compensation so that they could build the houses at the resettlement site by themselves.
Compensation of land	6)	Shall land be sold or taken by the project? (Mzaganza)	No land shall be taken without compensation.
	7)	If I sell a piece of land to someone and that person constructs a house, how will that be handles? (Kikundi)	Compensation will be on owner of that land. However, that will be confirmed at the final survey to be undertaken in 2017.
	8)	I have a piece of land on which a tenant has constructed a residential house. What will I get? (Kikundi)	Owner of the house will be compensated for a house and land owner shall be compensated for land.
	9)	What guide is used to determine value of PAPs' land? (Godegode)	Value of land depends on size, location and current local price. The district has guidelines in determining the value of land for the entire district council jurisdiction.

Subjects		sed Issues	Response
	10)	I used to cultivate food crops on my land. How will I continue my livelihood? (Godegode)	Land in Tanzania is vested in the custody of the President of the United Republic. If the government has national interest in your piece of land, then there are procedures laid down by law on how to acquire that land.
	11)	Why is allowance not given on disturbance due to loss of land since it might take longer for PAPs to get a new piece of land considering the fact that land is limited in the village? (Godegode)	Bare land does not be considered for disturbance allowance. Moreover, land grown with crops is considered i.e. land is compensated and crops compensated as well
Community support	12)	Who specifically are the beneficiaries of the community support program? (Munisagara)	Community support program intends to benefit the entire community.
	13)	How do PAPs benefit if their assets are affected but community support program is extended to the entire community and not the PAPs? (Kisisi)	Apart from the compensation to each PAP, JICA wishes to contribute to the community of which structures are affected.
	14)	Why is the entire community benefiting from JICA through community support program while the PAPs are compensated by Tanzania only? (Godegode)	Compensation for structures shall be governed by Tanzania laws, which take into consideration value of structures and some additional allowances but no more support. JICA proposes to assist the entire community/village from which built structures are lost to the proposed project.
Livelihood Restoration Program	15)	How long will the Livelihood Restoration Program last?	The program can be operated by JICA for 2-3 years after which PAPs should be able to continue by themselves.
C	16)	Will the money for livelihood restoration be given directly to PAPs or shall be channeled through the district office?	Livelihood Restoration Program does not involve provision of cash to PAPs. The program shall sponsor what is required or requested by PAPs.
Cut-off-date	17)		Cultivation can be continued until the cut-off date is announced in the final RAP expected to be in 2017.
	18)	If not compensated within 6 months of the cut-off date, where should we report? (Mzaganza)	Grievance handling procedure shall be established.
	19)	What about those PAPs who had plans to construct extra rooms to their houses and now are not supposed to do any developments to the existing situation, how should they live? (Mzaganza)	Developments can be undertaken on emergency cases. If the PAP had plans to add rooms to the house before the preliminary survey was undertaken, it means there was need to do so in order to shelter the family.
	20)	I was told to stop construction of my house. (Godegode)	If you already began constructing and you have a great need for that house for habitat and that there no other alternatives then should continue with construction. However,

Subjects	Raised Issues	Response
		PAPs were cautioned not to construct houses beyond their requirements.
	21) What if land owners decid build houses on the land earmarked for the project provided they are in need that house? (Godegode)	e to Buildings to be compensated should be on fel- and genuine requirements only and not targeting compensations. If extra houses are
Others	22) How will PAPs be sure that their money posted in the bank account is what was agreed upon? (Kikundi)	At PAPs will be informed of the total amount of their compensation. If the amount posted is not what the PAP signed, then there will be a desk to handle such grievances.
	23) How will compensation be handled if the previously identified owner of land passed away? (Godegode)	e In case the departed person did not prepare a will, then it is the family to resolve the ownership so that there wouldn't be setbacks during valuation exercise.
	24) What is the plan to deal w special groups of PAPs (disabled, elderly, and children) who are not able capable to make use of compensation to rebuild th lives? (Gulwe)	or
	25) Where will mobilization vehicles pass during rerouting of the railway? (Gulwe)	The temporary road to be used for mobilization shall be opened within 30m buffer zone and other public roads that exist in the area. But if it is necessary to open up a route across the community areas, there will be memorandum of understanding signed between the Contractor and the particular person.
	26) A PAP has a conflict of lar ownership with the village government of an area preliminary identified as affected by the re-routing. How will that be handled during valuation? (Gulwe)	nd The compensation team will not work on areas with conflicts. The village government was advised to resolve the misunderstandings so that during the valuation exercise, all conflicts should have been solved.

13.3 Checklist and Monitoring Form under JICA's Guidelines

The environmental checklist for the railway project was filled, as per Table 13.48.

Table 13.48: Environmental Checklist

	Environmental		Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Check Items	No: N	(Reasons, Mitigation Measures)
1 Permits and Explanation	(1) EIA and Environmental	(a) Have EIA reports been already prepared in official process?(b) Have EIA reports been approved by authorities of the host	(a)Y (b)N	(a) The report was prepared in January 2016.(b) The report was submitted to NEMC in March 2016. (c)
	Permits	country's government? (c) Have EIA reports been unconditionally approved? If conditions are	(c)N/A (d)N	N/A (d) The other permits will be obtained/renewed in a timely
		imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government?		manner; those are a permission for transportation of heavy cargo for construction, environmental certificate to open a new quarry, works permit for construction workers, a permit for transportation of chemicals, and a permit for transportation of waste.
	(2) Explanation to the Local stakeholders	(a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders?(b) Have the comment from the stakeholders (such as local residents) been reflected to the project design?	(a)Y (b)Y	(a) A series of local stakeholder meetings were held at the scoping stage and the final stage of the EIA Study. The project outlines, potential impacts and the mitigation measures were explained and accepted.(b) Comments from the stakeholders at the scoping stage were incorporated in the EMP.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a)Y	(a) The rerouting sections were selected from six alternatives based on the results of comparison in terms of the economic and physical feasibility and minimization of resettlement and land acquisition.
2 Pollution Control	(1) Water Quality	(a) Is there a possibility that soil runoff from the bare lands resulting from earthmoving activities, such as cutting and filling will cause water quality degradation in downstream water areas?(b) Do effluents from the project facilities, such as stations, comply with the country's effluent standards and ambient water quality standards? Is there a possibility that the effluents will cause areas not to comply with the country's ambient water quality standards?	(a)N (b)Y	(a) As the turbidity is already high in the rivers, soil runoff will not affect the water quality. However, the condition will be monitored.(b) The station facilities newly planned for this project will be designed to be equipped with enough capacity for the domestic wastewater treatment. As the discharge volume will be limited, it will not cause significant water pollution.
	(2) Wastes	(a) Are wastes generated from the project facilities, such as stations and depot, properly treated and disposed of in accordance with the country's regulations?	(a)Y	(a) Waste disposal by the passengers at the stations is limited. The collected waste is disposed in accordance with the village rules.
	(3) Noise and Vibration	(a) Do noise and vibrations from the vehicle and train traffic comply with the country's standards?	(a)N/A	(a) Tanzania does not have ambient noise and vibration standards. Impacts of noise and vibration by trains will be the same as with the present condition.
	(4) Subsidence	(a) In the case of extraction of a large volume of groundwater, is there a possibility that the extraction of groundwater will cause subsidence (especially in case of Undergrounds/Subways)?	(a)N/A	(a) Extraction of a large volume of groundwater is not planned.

	Environmental		Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Check Items	No: N	(Reasons, Mitigation Measures)
Environment	(1) Protected Areas	(a) Is the project site located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a)N	(a) The project area is not located in protected areas.
	(2) Ecosystem	 (a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Are adequate protection measures taken to prevent impacts, such as disruption of migration routes, habitat fragmentation, and traffic accident of wildlife and livestock? (e) Is there a possibility that installation of rail roads will have impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of ecosystems due to introduction of exotic (non-native invasive) species and pests? Are adequate measures for preventing such impacts considered? (f) In cases the project site is located at undeveloped areas, is there a possibility that the new development will result in extensive loss of natural environments? 	(a)N (b)N (c)Y (d)Y (e)N (f)N/A	 (a) The project site does not encompass ecologically-valuable habitats such as primeval forests. (b) Although some species to be protected according to the IUCN list were reported, the project site does not encompass the protected habitats of those species. (c) Although significant ecological impacts are not anticipated, flora and vegetation conservation plans will be developed before the construction commences to secure bio-diversity. (d) Terrestrial migratory species were not found in the project area. Habitat fragmentation is not anticipated as the railway already exists. For livestock, culverts will be installed at the rerouting sections to secure pathways to cross the rail. (e) As the project is not to install a new railway, those impacts are not anticipated. (f) The project site is not an undeveloped area with the existing railway.
	(3) Hydrology	(a) Is there a possibility that alteration of topographic features and installation of structures, such as tunnels will adversely affect surface water and groundwater flows?	(a)N	(a) River-training works will change the river course; however, it will not cause adverse impacts because it is within the flood plain.
	(4) Topography and Geology	 (a) Is there a soft ground on the route that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed? (b) Is there a possibility that civil works, such as cutting and filling will cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides? (c) Is there a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites? Are adequate measures taken to prevent soil runoff? 	(a)N (b)N (c)Y	 (a) Mountain slopes to be cut for rerouting consist of hard rocks. (b) Slope failures or landslides are not anticipated. (c) Measures for managing soil erosion and the runoff will be applied; for example, controlling work areas of equipment/vehicles, preparing sedimentation ponds, and compacting disturbed areas.
4 Social Environment	(1) Resettlement	(a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement?(b) Is adequate explanation on compensation and resettlement	(a)Y (b)Y (c)Y (d)Y	(a) A Livelihood Restoration Program will be provided for minimizing the impacts caused by the agricultural land acquisition.(b) During this Study, compensation and assistance policy

	Environmental		Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Check Items	No: N	(Reasons, Mitigation Measures)
		 assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Are the compensations going to be paid prior to the resettlement? (e) Are the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? 	(e)Y (f)Y (g)Y (h)Y (i)Y (j)Y	 based on both Tanzanian law and JICA's policies were explained to the affected people. (c) The preliminary resettlement plan was developed during the Study including compensation policies and the socioeconomic Study results. It will be updated and detailed after the project implementation is officially decided. (d) Both Tanzanian law and JICA's policies regulate the payment to be prior to the resettlement. (e) The compensation policies are presented in the report of this Study. (f) The policy includes the assistance for old people, women heads of households, widows, single mothers, orphans, physically and mentally challenged and the infirmed people. (g) So far, there have been no objections from the affected people. (h) RAHCO will establish an internal unit and the CRP Committee with local governments. RAHCO takes full responsibility for budgetary preparation. (i) Internal and external monitoring will be conducted by RAHCO. (j) It will be established under cooperation of the local governments.
	(2) Living and Livelihood	 (a) Where railways are newly installed, is there a possibility that the project will affect the existing means of transportation and the associated workers? Is there a possibility that the project will cause significant impacts, such as extensive alteration of existing land uses, changes in sources of livelihood, or unemployment? Are adequate measures considered for preventing these impacts? (b) Is there any possibility that the project will adversely affect the living conditions of inhabitants other than the affected inhabitants? Are adequate measures considered to reduce the impacts, if necessary? (c) Is there any possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary? (d) Is there any possibility that the project will adversely affect road traffic in the surrounding areas (e.g., by causing increases in traffic congestion and traffic accidents)? 	(a)N/A (b)N (c)Y (d)N (e)N (f)N	 (a) The railway is not newly-installed, but already exists. (b) The project will not cause impacts widely spread out of the affected communities. (c) The inflow of construction workers may bring infectious diseases. Prevention programs will be established with the cooperation with local government officers. (d) Traffic congestion is not anticipated as the existing traffic is limited. (e) Culverts will be installed at the rerouting sections to secure pathways to cross the rail. (f) Structures with high altitudes which will cause sun-shading and radio interference are not planned.

Final Report

	Environmental		Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Check Items	No: N	(Reasons, Mitigation Measures)
		(e) Is there any possibility that railways will impede the movement of inhabitants?(f) Is there any possibility that structures associated with railways (such as bridges) will cause a sun shading and radio interference?		
4 Social Environment	(3) Heritage	(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a)Y	(a) Although the archaeological and cultural heritage of the project area remains unknown, some archaeological sites were found around the project site. In accordance with the EMP, the contractor has to observe and record the resources discovery during the earthworks and inform to the Ministry of Natural Resources and Tourism if something is discovered.
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a)N/A	(a) There is no specific landscape to be protected.
	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?	(a)N/A (b)N/A	(a)(b) There are no ethnic minorities nor indigenous people to be considered.
	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents? 	(a)Y (b)Y (c)Y (d)N/A	 (a) RAHCO and TRL comply with the Occupational Health and Safety Act No. 5 (2003), Employment and Labor Relations Act No.6 (2004), Workers' Compensation Act Cap 263 (2008) and other relevant regulations. (b) Protective masks will be provided to the construction workers who are involved in the dust generation works. Fire extinguisher and fire alarms are equipped in the TRL offices. Gumboots, groves, overcoats, and helmets are provided to staffs working at workshops. For gang men, gumboots and groves are provided. (c) For the construction workers, a "public health and safety and construction health and safety plan" and "construction site management plan" will be established and implemented. For operation, TRL will prepare/update the safety program including safety training. (d) It is hardly expected that the project security guard violate the other individual's safety.
5 Others	(1) Impacts during Construction	(a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)?(b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts?	(a)Y (b)Y (c)Y (d)N/A	(a) Management of the construction noise, water pollution, air pollution and waste are included in the EMP.(b) In accordance with the EMP, investigation of flora and fauna has to be conducted before commencement of the construction works. If protected species are found, measures

Final Report

	Environmental		Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Check Items	No: N	(Reasons, Mitigation Measures)
		(c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts?(d) If the construction activities might cause traffic congestion, are adequate measures considered to reduce such impacts?		 such as re-planting needs to be considered. (c) Temporary disturbance of socioeconomic activities and public health and safety hazards are managed in accordance with the EMP. (d) Traffic congestion is not anticipated.
	(2) Monitoring	 (a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts? (b) What are the items, methods and frequencies of the monitoring program? (c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities? 		(a) The monitoring plan was developed as a part of the EIA.(b) The items, parameters, frequency, and areas are described in the monitoring plan in the EIA.(c) The Environmental Control Officer (ECO) of RAHCO will take responsibility on the monitoring. The budget is under the responsible of RAHCO.(d) NEMC can request proponents to submit the monitoring results.

Source: Input by the JICA Study Team, using JICA template.

		Monitoring	Parameter to be	Baseline (Average/Ma	Result (Average/ Max/	Measurement		Monitoring
Potential Impact Mobilization	Item	area	monitored	x/Total, etc.)	Total, etc.)	unit	Target level or standard	frequency
Impact # 1: Land disturbances / soil erosion at onsite and offsite location	Land surface condition	Project site	Rills and gullies Sediments in receiving water bodies			None mg/l	No erosion None	Once every six months
Impact # 2: Loss / damage / disturbance of indigenous vegetation and contained biodiversity species	Vegetation and wild animals	Entire project site	Types of vegetation being cleared, Existence of endemic /protected species, Area being cleared			Numbers	No endemic/ protected species cleared Clearance should be restricted to project corridor	Continuously during mobilization and construction phase
Impact # 3: Depletion at point source	Material procurement	Point of sourcing and Project site	Procurement records			all procurements from licensed operator	No material from unlicensed supplier, No new borrow pit	Monthly during construction
Impact # 4: Impaired air quality & contribution to climate change due to release of dust, greenhouse gases and other noxious air pollutants	Air quality	Construction site	CO2, NOx, dust			mg/l, ppm	NOx = 150 μ g/ Nm3 for 24-hours average value ^[1] CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not exceed 20 mg/kg. Dust (measured as PM10) = 150 μ g/m3 measured over 24hour average ^[2]	Once every six month
Impact # 5: Release of oils and fuels in the aquatic environment	Water quality (oil)	Surface water bodies	Oil contents			mg/l	10 ^[3]	Once every six month

Table 13.49: Environmental Monitoring Form for Construction Stage

Potential Impact	Item	Monitoring area	Parameter to be monitored	Baseline (Average/Ma x/Total, etc.)	Result (Average/ Max/ Total, etc.)	Measurement unit	Target level or standard	Monitoring frequency
Impact # 6: Contamination of surface waters with demolition debris and soils	Water quality (turbidity etc.)	Project site	All types of waste including § Heaps of soils § Plastics wastes § Glass wastes § Turbidity			None	No haphazard disposal of waste 300 ^[3]	Continuous throughout the project cycle
			§ Suspended solids in receiving water bodies § BOD			mg/l mg/l	100 ^[3] 30 ^[3]	
Construction	•	•						
Impact # 7: Land disturbances / soil erosion	Land surface condition	Construction site	Rills and gulliesSediments in receiving water bodies			Nonemg/l	No erosionNone	Once every six months
Impact # 8: Impaired air quality & contribution to climate change due to release of dust (including fugitive (unavoidable, residual), greenhouse gases and other noxious air pollutants	Air quality	Construction site	CO2, NOx, dust			mg/l, ppm	NOx = 150 μ g/ Nm3 for 24-hours average value ^[1] CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not exceed 20 mg/kg. Dust (measured as PM10) = 150 μ g/m3 measured over 24hour average ^[2]	Once every year
Impact # 9: Impaired land and water qualities and contained resources from discharge of pollutants (wastes, oily substances etc.)	Water quality	Surface water bodies	Oil contents All types of waste including § Heaps of soils § Plastics wastes § Glass wastes § Turbidity § Suspended solids in receiving water bodies § BOD			mg/l None NTU mg/l mg/l	10 ^[3] No haphazard disposal of waste 300 ^[3] 100 ^[3] 30 ^[3]	Once every year

Potential Impact	Item	Monitoring area	Parameter to be monitored	Baseline (Average/Ma x/Total, etc.)	Result (Average/ Max/ Total, etc.)	Measurement unit	Target level or standard	Monitoring frequency
Impact # 10: Temporary disturbances / flight of aquatic fauna from noise emission	Noise	Project site	Noise levels			dB	<85 dB ^[4]	Once month after commencemen t of construction
Impact # 11: Destruction of archeological and Cultural heritage resources	Archeologic al and cultural heritage	Project site	No. of discoveries			Number	All discoveries should be reported	Continuously
Impact # 12: Change or modification of population and its quality of life due to land take	Affected people	All villages along the project corridor	Existing of land related conflicts, Types of land use			Number of conflicts	Zero	Continuously
Impact # 13: Construction health and safety hazards	Health and safety	Construction site	Personnel health records			None		Once every year
			 Noise levels Concentration of pollutants such as dust in the working environment 			dB ppm	Noise = <85 dB Dust = Not to exceed 250 mg/Nm3(24h mean value) ^[1]	
Impact # 14: Temporary disruption of socioeconomic activities	Socioecono mic activities	Entire project site	Number injuries Existence of complaints			numbers Number of complaints	Zero injuries As minimum as possible	Continuously during construction
Impact # 15: Loss of aesthetics due to haphazard disposal of demolition waste	Waste	Project site	All types of waste including § Heaps of soils § Plastics wastes § Glass wastes			None	No haphazard disposal of waste	Continuous throughout the project cycle
			 § Turbidity § Suspended solids in receiving water bodies § BOD 			NTU mg/l mg/l	300 ^[3] 100 ^[3] 30 ^[3]	

Potential Impact	Item	Monitoring area	Parameter to be monitored	Baseline (Average/Ma x/Total, etc.)	Result (Average/ Max/ Total, etc.)	Measurement unit	Target level or standard	Monitoring frequency
Impact # 16: Nuisance and disturbances from noise / vibrations (exceeding allowable level for people comfort) due to construction activities	Noise	Project site	Noise levels			dB	<85 dB ^[4]	Once month after commencemen t of construction
Impact # 17: Occupational Health and Security and Safety (HSS) risks	Health and safety	Project area	Incidences of breach of health and safety			Number of incidents	Zero	Continuously
Impact # 18: Public HSS risks: traffic accidents, Risks of human-human transmission of diseases (STD, HIV, etc.) Infections from putrescible wastes with disease pathogens	Infectious disease	hospital / dispensary	STDsHIV/AIDS infectionsCholera			Number of people infected	No or as minimum infectious cases	At the beginning of the project and once every year
Impact # 19: Vandalism of structures / equipment, theft of materials and portable items during construction	Vandalism	Construction site and stores	Destroyed infrastructure and loss of equipment			Number of theft incidences	No or minimum destruction, theft incidences	Continuously during construction

[1] Environmental Management (air Quality Standard)Regulation of 2007
[2] USA National Air Quality Standard
[3] Environmental Management (Water Quality Standards) Regulations 2007
[4] Environmental Management (Noise and Vibration Management and Control) Regulations of 2007 Source: JICA Study Team

Potential Impact	Item	Monitoring area	Parameter to be monitored	Baseline (Average/Max/ Total, etc.)	Result (Average/Max/ Total, etc.)	Measurement unit	Target level or standard	Monitoring frequency
Impact # 20: Release of oils and fuels in the environment	Water quality	Surface water bodies	Oil contents			mg/L	10 [1]	Once every six month
Impact # 21: Impairment of local air quality	Air quality	Along railway	CO2, NOx, dust			mg/L, ppm	NOx = 150 μ g/ Nm3 for 24-hours average value ^[2] CO = Daily average of hourly values shall not exceed 10mg/kg and average of hourly values in eight consecutive hours shall not exceed 20 mg/kg. Dust (measured as PM10) = 150 μ g/m3 measured over 24hour average ^[3]	Once every six month
Impact # 22: Occupational and Public health and safety	Health and safety	Project site	 Personnel health records Noise levels Concentration 			None dB ppm	Noise = <85dB Dust = Not to	Once every year
			of pollutants such as dust in the working environment				exceed 250 mg/Nm3(24h mean value) ^[2]	
			 Number injuries 			numbers	Zero injuries	
Impact # 23: Potential loss of lives and property as a result of falling off from moving train, collision with train at road crossing as a result of increased train frequencies	Accidents	Railway stations	Reported cases of such injuries			Number	Zero	Once every month

Table 13.50: Environmental Monitoring Form for Operation Stage

				Baseline	Result			
	_	Monitoring	Parameter to be	(Average/Max/	(Average/Max/	Measurement		Monitoring
Potential Impact	Item	area	monitored	Total, etc.)	Total, etc.)	unit	Target level or standard	frequency
Impact # 24: Additional	Social	Railway	Number of toilets			Number of	As many as possible	Once at the
pressure and demands on local social services	services	stations	at each station			functioning		beginning of
and resources (increase						toilets, Clean water		operation and
water users, toilet users)						Clean water		then one year and availability
water users, tonet users)								of clean water
			Incidences of			Signs of open	No open defecation	Continuously
			open defecations			defecation	No open delecation	Continuousiy
Impact # 25: Vandalism	Vandalism	Entire project	Reported cases of			Reported cases	No or minimum	Continuously
of structures /	v undumbini	Entire project	vandals			reported cuses	vandalism cases	Continuousiy
equipment, theft of			, and and					
materials and portable								
items								
Impact # 26: Physical	Project	Project site	Physical strength			None	No structure weakness	Once every
damage of project	structure	-	of impacted					year
structures and			structure					
disruption of railway								
operations and								
schedules due to natural								
causes								
Impact # 27:	Accidents	Site of	Vegetation,			Decontaminated		Immediately
Impairment of		accident				soils and plants	10 [1]	after accident
environmental quality			Oil contamination			mg/L	10	and once every
due to accidental event	Flag 1 of Jam	Caral Dam	The dime			X7:		six months
Impact #28 Impairment	Flood at dam	Gombe Dam	Flooding tendencies			Visual	Flood should not extent beyond the dam	Continuously
of railway operations as a result of flooding of		Area	tendencies				boundaries	during rainy season
Gombe Dam							boundaries	season
Impact # 29: Increased	Number of	TRL Head	Train frequencies			Number	At least one passenger	Once every
train frequencies and	passenger	Quarters	fram nequencies			rumber	train per day	vear
therefore smoothen	Pussenger	Zuurtors					train per duy	Jour
passenger and cargo								
movement								
Impact # 30: Protection	Number of	TRL Head	Cargo tonnage			Tonnage	At least 80% of cargo is	Once every
of roads from heavy	cargo	Quarters	transported by			E E	reported by train by 2019	year
cargo as is the current	, č	-	train				~ ~ ~	-
practice								

		Monitoring	Parameter to be	Baseline (Average/Max/	Result (Average/Max/	Measurement		Monitoring
Potential Impact	Item	area	monitored	Total, etc.)	Total, etc.)	unit	Target level or standard	frequency
Impact # 31: Increased income to local suppliers	Local economy	Procurement supply list	Supplies and services received from the residents			Number of supplies and services from the residents	As many supplies and services from the residents	Monthly
Impact # 32: Employment opportunities	Employment	Employed employees	Number of residents employed			Number of employees	As many tenant employees as possible	Every year
Impact # 33: Increased income and improved or livelihoods as result of increased agricultural production, trading activities, and movement of people within the region and bordering countries	Local economy	Affected villages	Incomes of local people in the project area			Per capita income	National per capita income average	Once every year
Impact # 34: Improved comfort of passengers as a result of increased train frequencies	Comfor of passengers	Affected villages	Passenger perception			Perception	Positive perception	Once (six months after commissioning of the project sections)
Impact # 35: Improved quality of the landscape features and appearance of the river embankments	Landscape	The project area	Landscape			Visual appearance	Attractive visual appearance	Once after completing the construction work
Impact # 36: Improved flood management emanating from proper operation of the Gombe Dam	Flood at dam	Dam area	Flooding tendencies			Over flooding	No flooding beyond the border of the dam	Continuously during rainy season

 [1] Environmental Management (Water Quality Standards) Regulations 2007

 [2] Environmental Management (air Quality Standard)Regulation of 2007

 [3] USA National Air Quality Standard

 Source: JICA Study Team

Table 13.51: Monitoring Form for Land Acquisition

Progress of Land Acquisition

	Kilosa	Mpwapwa	(Expected) Date of Completion
Vacation of Land(% of progress)			YYYY/MM
Number of Affected Households			

Procedures

Submission of Monitoring Report

Procedure		Date		Internal Monitoring	External Monitoring
Institutional Arrangement			2017 (1st qtr)	YYYY/MM/DD	YYYY/MM/DD
Establishment of Project Manage	ement Unit	YYYY/MM/DD	2018 (1st qtr)	YYYY/MM/DD	YYYY/MM/DD
Establishment of Grievance Redu	ess Committee	YYYY/MM/DD	2018 (2nd qtr)	YYYY/MM/DD	YYYY/MM/DD
Detailed Measurement Survey (DMS Survey (RCS)	b) and Replaceme	ent Cost	2018 (3rd qtr)	YYYY/MM/DD	YYYY/MM/DD
Bidding and Contract Process to hire independent agency	YYYY/N	MM/DD	2018 (4th qtr)	YYYY/MM/DD	YYYY/MM/DD
Start of DMS & RCS	YYYY/M	MM/DD	2019 (1st qtr)	YYYY/MM/DD	YYYY/MM/DD

Grievance

Re	dress	

	Grievance received	Grievance resolved	Note (if any)
1	YYYY/MM/DD	YYYY/MM/DD	
2	YYYY/MM/DD	YYYY/MM/DD	
3	YYYY/MM/DD	YYYY/MM/DD	
	YYYY/MM/DD	YYYY/MM/DD	
	YYYY/MM/DD	YYYY/MM/DD	

Public

Information Meeting

	Agenda	Date	Place	Number of Participants
1		YYYY/MM/DD		
2		YYYY/MM/DD		
3		YYYY/MM/DD		
		YYYY/MM/DD		
		YYYY/MM/DD		

Final Report

Income
Restoration
Drogrom

Pr	ogi	ram	

	Content of Activity	Date	Place	Number of Participants
1		YYYY/MM/DD		
2		YYYY/MM/DD		
3		YYYY/MM/DD		
		YYYY/MM/DD		
		YYYY/MM/DD		

Source: JICA Study Team

14. **Project Evaluation and Estimation of Project Effects**

In this chapter, an economic and financial analysis of the Project was conducted for the evaluation period of 2016–2044, i.e., from the year of project commencement to the final year of the 30-year planning period (2015–2044) employed in Chapter 8. Inflation was not considered in the analysis. The chapter also presents the performance indicators to be used for ex-post evaluation of the Project.

14.1 With- and Without-Project Scenarios

In the economic and financial analysis, costs and benefits/revenues were estimated by comparing the with- and without-project scenarios. The railway traffic for these scenarios is set out as shown in Table 14.1. Note that this traffic projection is based on the transport capacity assessed in Subsection 9.3.3 while the traffic demand forecast in Chapter 4 was provided without considering particular constraints on the transport capacity.

Table 14.1: Rail Traffic Projection for With- and Without-Project Scenarios

Scenario	Rail Traffic Projection
With- Project Scenario	 To reach the estimated transport capacity in 2025, the fourth year after project completion, i.e., 1.34 million tons for freight and 0.87 million passengers per year. Assumptions for freight traffic: 6 trains per direction/day, 20 wagons per train, 40 tons per wagon, empty backhaul, 10% empty wagon ratio, 0.85 load factor for loaded wagons, and 365 days of operation per year, leading to 1.34 million tons per year. Assumptions for passenger traffic: 6 train per direction/week, 1,400 passengers per train, and 52 weeks of operation per year, leading to 0.87 million passengers per year. To assume that the freight and passenger traffic in 2022–2024 will be 70%, 80%, and 90% of the above capacity, respectively, gradually increasing to the transport capacity. To assume that the freight and passenger traffic in 2022 will be two-thirds of a full-year projection taking into account the project schedule. To assume that the traffic after 2025 will remain the same as that in 2025. To assume that the average length of haul for freight is 980 km and the average travel distance for passengers 643 km, based on the past rail traffic statistics.
Without- Project Scenario	 To assume that the freight and passenger traffic will remain the same as that in 2014, i.e., 0.19 million tons of freight and 0.30 million passengers. To assume the same average length of haul for freight and the same average travel distance for passengers as those for the with-project scenario.

Source: JICA Study Team

14.2 Economic Analysis

14.2.1 Costs

The following costs were considered in the economic analysis:

- Project costs:
 - The Project costs include construction costs, consulting fees, physical contingencies, land acquisition costs, and compensation for relocation of affected people, and administration costs.
 - A residual value of the construction costs (including the physical contingencies) at the end of the evaluation period was considered assuming the average economic life of 40 years for the infrastructure to be developed by the Project.
- Operation and maintenance (O&M) costs:
 - The O&M costs for the incremental traffic were estimated using the unit costs set out

based on relevant data from various sources¹.

- Additional maintenance and recovery cost:
 - The maintenance and recovery cost for the infrastructure/facilities to be developed by the Project was also considered in the analysis (see Subsection 10.3.3 (5) of Chapter 10 for detailed items and estimates of this cost)².

14.2.2 Benefits

The benefits quantified in the economic analysis include the following:

- Avoidance of road vehicle operating costs that would be required if the incremental rail traffic caused by the Project were to go via road rather than rail³.
- Avoidance of road maintenance costs that would be required in the same way as above⁴.
- Avoidance of rail investment costs for flood recovery that would be required without the Project⁵.
- Reduction in CO₂ emissions⁶.
- Negative benefits due to longer travel time of passengers by rail than by road (note that the time of freight transport for rail and road was estimated to be comparable and thus was not considered in the analysis)⁷.

¹ For the with-project scenario, the average unit O&M cost is assumed at USD 0.038 per freight ton-km, referring to the OPEX estimates in RAHCO/World Bank, Financial and Economic Analysis of TIRP, Final Report, September 2013 (RAHCO/World Bank Study) and USD 0.017 per passenger-km, as estimated in Phase II of the Study for the Dar es Salaam-Isaka-Kigali/Keza-Musongati Railway Project, Final Report, March 2014 (Railway Extension Study). For the without-project scenario, the average unit O&M cost is assumed at USD 0.050 per freight ton-km, referring to the OPEX estimates in the RAHCO/World Bank Study and JICA, Comprehensive Transport and Trade System Development Master Plan in Tanzania, Final Report, March 2014 (JICA Master Plan) and USD 0.022 per passenger-km, based on the unit cost figures above.

² This maintenance and recovery cost is estimated at TZS 2,085 million per year as described in Subsection 10.3.3 (5). For the economic analysis, this amount is converted to the economic cost (resulting in TZS 1,812 million per year) using the standard conversion factor of 0.869 (see Subsection 14.2.3 for the standard conversion factor).

³ The operating costs for trucks, buses, and passenger cars were estimated assuming the unit costs as follows: USD 0.078 per ton-km for trucks (referring to the tariff data from the RAHCO/World Bank Study and the Railway Extension Study), USD 0.018 per passenger-km for buses (estimated based on the bus fares set by SUMATRA), and USD 0.096 per passenger-km for passenger cars (based on the VOC estimates by JICA, Project Formulation Study on Road Transport Network – New Bagamoyo Road in Tanzania, Final Report, August 2008, adjusted for inflation).

⁴ The road maintenance costs that would be avoided were estimated using the unit maintenance costs for trucks, buses and cars presented in the Railway Extension Study.

⁵ The flood recovery cost during the evaluation period is assumed at USD 1.52 million per year based on the record of investment for flood recovery works in 1997 (December)–98 (USD 7.8 million), 2009–10 (USD 17 million), and 2014 (USD 1 million) over the 17-year period.

⁶ For freight transport, the basic unit of CO₂ emissions was assumed at 22 g/ton-km for rail and 144 g/ton-km for trucks, following the assumptions by METI of Japan, Study on the Central Corridor Railway Revitalization and Energy Efficiency Project in Tanzania, February 2014. For passenger transport, 22 g/passenger-km for rail, 68 g/passenger-km for buses, and 158 g/passenger-km for cars were used, based on the assumptions by the European Environment Agency (http://www.eea.europa.eu/media/infographics/co2-emissions-from-passenger-transport/view) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan (http://www.mlit.go.jp/sogoseisaku/environment/sosei environment tk 000007.html).

⁷ For passenger transport, the average speed of road transport is estimated at 64 km/hour based on the travel times by bus on the Central Corridor, while the average speed by rail is set at 37 km/hour. It is assumed that by 2044 the average speed of road transport will decrease by 10% considering that traffic congestion in and around urban areas would increasingly affect intercity road transport. On the other hand, the transit time by truck between Dar es Salaam and Isaka is estimated at approximately 36 hours based on the data in Central Corridor Transit Transportation Facilitation Agency (CCTTFA), Central Corridor Transport Observatory Annual Report 2014, April 2015. This is comparable to the target transit time by rail, which is 36 hours between Dar es Salaam and Isaka.

Unit: Million TZS

14.2.3 EIRR Estimation

For the economic analysis, financial costs were converted to economic costs using a standard conversion factor of 0.869, which was taken from a past transport study in Tanzania funded by JICA⁸. The exchange rate of TZS 2,189.67 : USD 1.0 was used for the analysis. The economic internal rate of return (EIRR) was used as the measure for economic evaluation, which is the rate of discount at which cost and benefit streams over the evaluation period are equalized.

Since most of the benefits result from freight transport, benefits and costs were first compared by considering the freight transport alone. As shown in Table 14.2, the EIRR is estimated at 12.2%.

		Cost			Benefit			
	Project	O&M	Additional	VOC	Road	Flood	Reduction	Net
Year	cost	cost	maintenance	avoidance	maintenance	recovery	in CO ₂	benefit
			& recovery		cost	cost	emissions	stream
			cost		avoidance	avoidance		
2016	19,342	0	0	0	0	0	0	-19,342
2017	24,084	0	0	0	0	0	0	-24,084
2018	10,843	0	0	0	0	0	0	-10,843
2019	223,327	0	0	0	0	0	0	-223,327
2020	137,934	0	0	0	0	0	0	-137,934
2021	135,935	0	0	0	0	0	0	-135,935
2022	45,965	32,511	1,208	72,551	1,699	1,920	3,265	-250
2023	27,226	58,264	1,812	128,321	3,005	2,880	5,774	52,678
2024	0	67,761	1,812	147,816	3,462	2,880	6,651	91,235
2025	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2026	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2027	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2028	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2029	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2030	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2031	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2032	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2033	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2034	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2035	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2036	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2037	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2038	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2039	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2040	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2041	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2042	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2043	0	77,258	1,812	167,310	3,918	2,880	7,528	102,566
2044	-207,798	77,258	1,812	167,310	3,918	2,880	7,528	310,364
Source:	Source: JICA Study Team $EIRR = 12$							

Table 14.2: Benefit and Cost Streams and EIRR for Freight Transport

Considerting both freight and passenger transport, the EIRR is estimated slightly higher, at 12.9%, as shown in Table 14.3. The net benefit for passenger transport is significantly lower than that for freight, indicating that the economic benefit of the Project will be mostly generated by the freight transport.

⁸ Source: JICA, Dar es Salaam Transport Policy and System Development Master Plan, June 2008.

Unit: Million T78

	Freight	eight Passenger						t: Million TZS
		Cost		Benefit				Net benefit
	Net benefit			Road	Travel	Reduction	Net benefit	stream for
	stream for	O&M	VOC	maintenance	time	in CO ₂	stream for	freight and
Year	freight	cost	avoidance	cost avoidance	savings	emissions	passenger	passenger
2016	-19,342	0	0	0	0	0	0	-19,342
2017	-24,084	0	0	0	0	0	0	-24,084
2018	-10,843	0	0	0	0	0	0	-10,843
2019	-223,327	0	0	0	0	0	0	-223,327
2020	-137,934	0	0	0	0	0	0	-137,934
2021	-135,935	0	0	0	0	0	0	-135,935
2022	-250	3,177	7,656	54	-3,217	1,513	2,829	2,579
2023	52,678	6,583	14,659	103	-6,120	2,897	4,956	57,634
2024	91,235	8,400	17,833	126	-7,398	3,524	5,685	96,920
2025	102,566	10,217	21,008	148	-8,659	4,151	6,431	108,997
2026	102,566	10,217	21,008	148	-8,602	4,151	6,488	109,054
2027	102,566	10,217	21,008	148	-8,545	4,151	6,545	109,111
2028	102,566	10,217	21,008	148	-8,487	4,151	6,603	109,169
2029	102,566	10,217	21,008	148	-8,428	4,151	6,662	109,228
2030	102,566	10,217	21,008	148	-8,370	4,151	6,721	109,287
2031	102,566	10,217	21,008	148	-8,310	4,151	6,780	109,346
2032	102,566	10,217	21,008	148	-8,250	4,151	6,840	109,406
2033	102,566	10,217	21,008	148	-8,189	4,151	6,901	109,467
2034	102,566	10,217	21,008	148	-8,128	4,151	6,962	109,528
2035	102,566	10,217	21,008	148	-8,066	4,151	7,024	109,590
2036	102,566	10,217	21,008	148	-8,004	4,151	7,086	109,652
2037	102,566	10,217	21,008	148	-7,941	4,151	7,149	109,715
2038	102,566	10,217	21,008	148	-7,877	4,151	7,213	109,779
2039	102,566	10,217	21,008	148	-7,813	4,151	7,277	109,843
2040	102,566	10,217	21,008	148	-7,748	4,151	7,342	109,908
2041	102,566	10,217	21,008	148	-7,683	4,151	7,408	109,973
2042	102,566	10,217	21,008	148	-7,616	4,151	7,474	110,040
2043	102,566	10,217	21,008	148	-7,550	4,151	7,541	110,107
2044	310,364	10,217	21,008	148	-7,482	4,151	7,608	317,972
	IICA Study T						TID	R - 12 0%

Table 14.3: Benefit and Cost Streams and EIRRfor Freight and Passenger Transport

Source: JICA Study Team

EIRR = 12.9%

14.2.4 Sensitivity Analysis

In view of the inevitable uncertainty concerning the precise values of key variables in the economic analysis, a sensitivity analysis was conducted. Table 14.4 shows the sensitivity of the EIRR with respect to changes in the Project cost and rail traffic. The EIRR for both freight and passenger transport is still estimated to be above 10% in the pessimistic case that the Project cost increases by 10% and the rail traffic decreases by 10%.

Table	14.4:	Sensivity	of EIRR
-------	-------	-----------	---------

EIRR for freight alone	EIRR for freight and passenger
12.2%	12.9%
11.1%	11.8%
10.9%	11.5%
9.9%	10.5%
	12.2% 11.1% 10.9%

Source: JICA Study Team

14.3 Financial Analysis

The Project intends to restore the transport capacity of the entire Central Railway Line by targeting the Kilosa-Gulwe section, the biggest bottleneck of the line, leading to an increase in rail traffic and revenues. The financial analysis examines the cash-generating capacity of the

Project by estimating a financial internal rate of return (FIRR) from the total investment point of view (also called a Project IRR).

14.3.1 General Assumptions and Conditions

The following assumptions/conditions are employed in the financial analysis:

- Project cash flow: The analysis focuses on the cash flows from the total investment point of view, and does not consider the items related to financing activities such as loans, interests, equitities, and dividend.
- Evaluation period: The evaluation period for the financial analysis is the same as that for the economic analysis, i.e., 2016–2044.
- Project schedule: The commencement of the Project is in 2016, and the construction is to end at the beginning of 2022, followed by the start of cash inflows by the Project in 2022.
- Inflation: Inflation is not considered in the analysis.

14.3.2 Cash Inflows

i) Traffic volume

The incremental freight and passenger traffic on the Central Railway Line is used for revenue calculation. As was done for the economic evaluation, the incremental traffic is calculated as the difference in traffic between the with- and without-project scenarios.

ii) Unit values of freight and passenger revenues

Table 14.5 shows the unit values of fright revenue by commodity and those of passenger revenue by class used for the analysis. These figures are estimated based on the TRL revenue data in 2013/14 and 2014/15. The table also shows the composition of freight and passenger traffic used for the analysis.

Freig	ht Transport		Passenger Transport			
Commodity	Unit Freight Revenue (TZS/ton)	Traffic Share ¹ (%)	Class	Unit Passenger Revenue (TZS/passenger)	Traffic Share ² (%)	
Domestic			First	71,584	0.80%	
Cement	88,462	6.23%	Second-Sleeping	43,185	3.33%	
Coffee	86,205	0.77%	Second-Sitting	37,518	0.37%	
Cotton	86,205	1.06%	Third	18,189	76.41%	
Cotton Cake	86,205	0.47%	TTE's ³	22,827	19.09%	
Fertilizer	72,421	0.93%	Total	-	100%	
General Cargo	88,525	21.73%				
Grains	65,039	1.31%				
Gypsum	46,119	0.97%				
Livestock	53,407	0.53%				
Maize	52,511	1.85%				
Petroleum/Oil	118,877	0.93%				
Salt	109,555	6.40%				
Sugar	86,205	0.60%				
Timber	48,926	1.81%				
Tobacco	111,972	0.35%				
Parcels/Luggage	160,272	1.67%				
Transit Sub-total	98,063	52.38%				
Total	-	100%				

Table 14.5: Unit Values of Freight and Passenge	Revenues
---	----------

Note: (1) These are the traffic shares for 2023 estimated in the potential traffic demand forecast presented in Chapter 4. (2) These are actual traffic shares in 2014/15. (3) TTE stands for Traveling Ticket Examiner, and these figures are based on ticket sales collected by TTE's onboard the trains. Source: JICA Study Team

14.3.3 Cash Outflows

The following costs were considered for the cash outflows:

- The costs considered in the economic analysis, including the Project cost, the O&M costs for the incremental traffic, and the additional maintenance cost for the infrastrucrture/facilities to be developed by the Project.
- The residual value of the construction costs (including the physical contingencies), which was added back at the end of the evaluation period.
- The rail investment costs for flood recovery that would be required without the Project, which were subtracted from the cost outflows.

All of the costs are financial costs valued in current prices, and tax is not taken into account.

14.3.4 FIRR Estimation

Based on the cash inflows and outflows described above, an FIRR (or a Project IRR) was computed. As was done for the EIRR, the FIRR for freight transport alone was first estimated at -0.05% (Table 14.6), and that for both freight and passenger transport at -0.03% (Table 14.7). The FIRR estimated at around zero indicates that the Project would be capable of generating cash that could more or less cover both investment and O&M costs.

	Cash outflow			Cash inflow		
			Additional	Flood		
			maintenance &	recovery cost		Net cash flow
Year	Project cost	O&M cost	recovery cost	avoidance	Revenue	for freight
2016	22,258	0	0	0	0	-22,258
2017	27,715	0	0	0	0	-27,715
2018	12,477	0	0	0	0	-12,477
2019	256,993	0	0	0	0	-256,993
2020	158,727	0	0	0	0	-158,727
2021	156,427	0	0	0	0	-156,427
2022	52,894	37,412	1,390	-2,209	47,238	-42,249
2023	31,330	67,047	2,085	-3,314	83,551	-13,598
2024	0	77,976	2,085	-3,314	96,244	19,496
2025	0	88,905	2,085	-3,314	108,937	21,260
2026	0	88,905	2,085	-3,314	108,937	21,260
2027	0	88,905	2,085	-3,314	108,937	21,260
2028	0	88,905	2,085	-3,314	108,937	21,260
2029	0	88,905	2,085	-3,314	108,937	21,260
2030	0	88,905	2,085	-3,314	108,937	21,260
2031	0	88,905	2,085	-3,314	108,937	21,260
2032	0	88,905	2,085	-3,314	108,937	21,260
2033	0	88,905	2,085	-3,314	108,937	21,260
2034	0	88,905	2,085	-3,314	108,937	21,260
2035	0	88,905	2,085	-3,314	108,937	21,260
2036	0	88,905	2,085	-3,314	108,937	21,260
2037	0	88,905	2,085	-3,314	108,937	21,260
2038	0	88,905	2,085	-3,314	108,937	21,260
2039	0	88,905	2,085	-3,314	108,937	21,260
2040	0	88,905	2,085	-3,314	108,937	21,260
2041	0	88,905	2,085	-3,314	108,937	21,260
2042	0	88,905	2,085	-3,314	108,937	21,260
2043	0	88,905	2,085	-3,314	108,937	21,260
2044	-239,123	88,905	2,085	-3,314	108,937	260,383

 Table 14.6: Cash Flows and FIRR for Freight Transport

Source: JICA Study Team

Note: Tax is not taken into account in the analysis.

FIRR = -0.05%

				Unit: Million TZ
	Freight	Passe		Net cash flow
Year	5	Cash outflow	Cash inflow	for freight
	Net cash flow	O&M cost	Revenue	and
	for freight			passenger
2016	-22,258	0	0	-22,258
2017	-27,715	0	0	-27,715
2018	-12,477	0	0	-12,477
2019	-256,993	0	0	-256,993
2020	-158,727	0	0	-158,727
2021	-156,427	0	0	-156,427
2022	-42,249	3,656	4,299	-41,606
2023	-13,598	7,575	8,232	-12,941
2024	19,496	9,666	10,014	19,845
2025	21,260	11,757	11,797	21,300
2026	21,260	11,757	11,797	21,300
2027	21,260	11,757	11,797	21,300
2028	21,260	11,757	11,797	21,300
2029	21,260	11,757	11,797	21,300
2030	21,260	11,757	11,797	21,300
2031	21,260	11,757	11,797	21,300
2032	21,260	11,757	11,797	21,300
2033	21,260	11,757	11,797	21,300
2034	21,260	11,757	11,797	21,300
2035	21,260	11,757	11,797	21,300
2036	21,260	11,757	11,797	21,300
2037	21,260	11,757	11,797	21,300
2038	21,260	11,757	11,797	21,300
2039	21,260	11,757	11,797	21,300
2040	21,260	11,757	11,797	21,300
2041	21,260	11,757	11,797	21,300
2042	21,260	11,757	11,797	21,300
2043	21,260	11,757	11,797	21,300
2044	260,383	11,757	11,797	260,423
urce. IIC	A Study Team	,		RR = -0.03%

Table 14.7: Cash Flows and FIRR for Freight and Passenger Transport

Note: Tax is not taken into account in the analysis.

14.4 Setting of Operation and Effect Indicators

Perfomance indicators for the Project (called the "operation and effect indicators" by JICA) have been set as shown in Table 14.8 and Table 14.9, based on JICA Operation Indicator and Effect Indicator Reference in ODA Loan Projects (July 2014). Considering the reliability and availability of required data and information, five operation indicators (Table 14.8) and four effect indicators (Table 14.9) have been proposed with baseline values (prior to the Project) and target values (two years after completion of the Project).

Reference Value, Source	Remark
1) Baseline value (TRL 2014 data):	The Project is intended to relieve the
• 0.19 mil. ton/year	biggest bottleneck of the Central
• 200 mil. ton-km/year	Railway Line; thus, it is appropriate to
2) Target value (two years after project completion):	measure the transport volume on the
• 1.07 mil. ton/year	entire line.
• 1,051 mil. ton-km/year	
1) Baseline value (TRL 2014 data):	Same as above
• 0.30 mil. passenger/year	
 205 mil. passenger-km/year 	
2) Target value (two years after project completion):	
• 0.70 mil. passenger/year	
• 449 mil. passenger-km/year	
1) Baseline value (eatimates based on TRL 2014	The Project is intended to relieve the
data):	biggest bottleneck of the Central
• 833/year (freight 622, passenger 211)	Railway Line; thus, it is appropriate to
2) Target value (two years after project completion):	measure the number of train on the
• 4,003/year (freight 3,504, passenger 499)	entire line.
1) Baseline value (not established yet)	Monitoring of water levels is an
• Zero/year (at both Kilosa G/S and Gulwe G/S)	important task during rainy season to
2) Target value (2 years after project completion)	secure safe operation of railway.
• 151 days/year (at both Kilosa G/S and Gulwe G/S)	Utilization of staff gauges installed by
(total numbers of day from December to April which	the Project shall be confirmed through
falls in rainy period in normal year)	verification of the indicators.

Table 14.8: Operation Indicators

Purpose To identify the level of facility

utilization. This gives basic data in

transport planning.

Same as above

(passenger/year, passenger-· 205 mil. passenger-km/y km/year) 2) Target value (two years • 0.70 mil. passenger/year • 449 mil. passenger-km/y To identify the level of facility Auxiliary Number of running trains on 1) Baseline value (eatimate the entire Central Railway utilization. This gives most basic data data): Line (/year) on transport capacity in transport • 833/year (freight 622, pa planning worked out from the above 2) Target value (two years tons of cargo and number of • 4,003/year (freight 3,504 passengers transported. To evaluate flood monitoring practices Number of days when water Auxiliary 1) Baseline value (not estab levels were monitored along through a deepening of · Zero/year (at both Kilosa the mainstream (days/year) understanding regarding flood risk 2) Target value (2 years after and disaster management among the (at Kilosa G/S and Gulwe • 151 days/year (at both K G/S) responsible agencies by means of (total numbers of day from implementation of flood protection falls in rainy period in normal year) verification of the indicators. measures To evaluate number of inspected Number of culverts 1) Baseline value Regular inspection of culverts is a Auxiliarv inspected culverts to check clogging by debris • 36 sites/year (numbers of site identified as high fundamental action to mitigate flood risk by Flood Risk Assessment in December 2014) (sites/year) as one of preventive measures prior to damage as one of preventive measures (between Kilosa and Gulwe) 2) Target value (2 years after project completion) prior to the rainy season. rainy season • 100 sites/year (approx. 30% of total number of culverts) Notes: The basic indicators are generally deemed necessary regardless of the characteristics of the Project, for which data collection is deemed possible. The auxiliary indicators are likely to be needed depending on the characteristics and components of the Project, or they are indicators where data collection is difficult although they are deemed necessary indicators.

Abbreviation: GS = gauging station Source: JICA Study Team

Category

Basic

Basic

Name

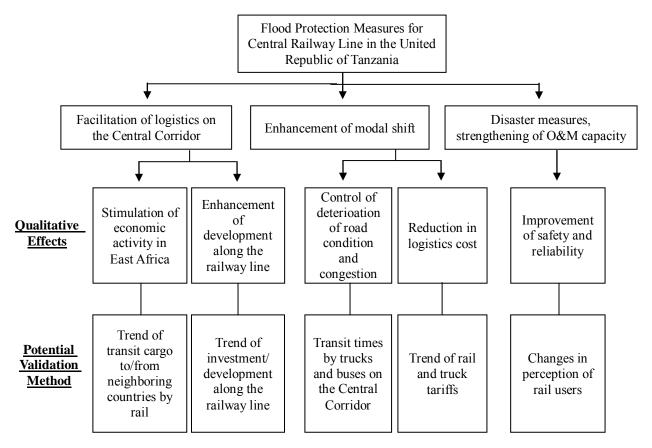
Freight traffic on the entire

(ton/year, ton-km/year)

Passenger traffic on the

entire Central Railway Line

Central Railway Line


Category	Name	Purpose	Reference Value, Source	Remark
Basic	Times of occurrence of flood and sediment disasters in target area	To verify contribution to an increase of freight volume of railway by flood damage reduction directly	 Baseline value 8 times/year (average annual occurrences in past 4 year records) Target value (2 years after project completion) 4 times/year 	The target areas for verification will be the 7 re-routing sections of track (total 25 km long) and 20 bank protection sites (total 15 km long), resulting a total of 40 km approximately.
Basic	Times of occurrence of over- topping of tracks by flood flow from major tributaries	To verify effects of flood and sediment disaster measures at bottlenecks of two tributaries (at Maswala and Mzase)	 Baseline value 10 times/year (maximum annual occurrences of two tributaries in past 4 year records, which was in 2014) Target value (2 years after project completion) 2 times/year 	The target sites for verification will be crossings with track over two tributaries of the Maswala and the Mzase. By means of the protectipon measures proposed against bank erosion, the extent of damge will be substantially reduced.
Auxiliary	Transit time of freight trains for the Dar es Salaam–Isaka section	To identity whether the Project contributes to the reliability of cargo transportation on the Central Corridor	 Baseline value (2015 TRL estimate): 72 hours Target value (two years after project completion): 36 hours 	This includes loading/unloading times at Dar es Salaam and Isaka, and is regarded as an auxiliary indicator due to uncertainty of accurate data collection.
Auxiliary	Transit time of passenger trains for the Dar es Salaam– Tabora section	To identify whether the Project contributes to the safety of railway transportation	 Baseline value (average in March 2016): 27.6 hours for regular trains 22.6 hours for Deluxe trains Target value (two years after project completion): 24 hours for regular trains 22 hours for Deluxe trains 	Regular trains stop at every station while Deluxe trains, introduced in April 2015, stop at major stations. Although the transit time depends also on track and other conditions outside the Project section, it is appropriate to collect this data for each train especially in latest months.

Notes: The basic indicators are generally deemed necessary regardless of the characteristics of the Project, for which data collection is deemed possible. The auxiliary indicators are likely to be needed depending on the characteristics and components of the Project, or they are indicators where data collection is difficult although they are deemed necessary indicators. Source: JICA Study Team

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

14.5 Examination of Qualitative Effects

The Project aims at improving the reliability of railway transportation by providing long-term flood protection measures, thereby ensuring the safety and reliability of cargo and passenger transportation on the Central Corridor, and stimulating the economic activities in the East African region. Figure 14.1 presents major qualitative effects that would be brought about by the Project and potential methods to validate these effects relatively less costly.

Source: JICA Study Team

Figure 14.1: Major Qualitative Effects and Potential Validation Method

15. Conclusions and Recommendations

15.1 Conclusions

(1) **Project Feasibility**

- Alternative B-2 should be implemented, as the Study proves that this alternative can be feasible in terms of its technical, economical, financial, environmental, and social elements.¹
- The EIRR considering freight transport alone was first estimated at 12.2%, and that for both freight and passenger transport at 12.9%. These results indicate that the Project is considered feasible from the national economy's point of view.
- The FIRR was estimated at around zero, suggesting that the Project should be implemented with the use of a long-term soft loan such as an ODA Loan.

(2) **Proposed Flood Protection Measures**

(a) **Basic Policy in Formulating Alternatives**

JICA Study Team defines long-term flood protection measures as solutions that are most effective for eliminating flood damages to the greatest extent possible while being economically viable. As explained in Chapter 8, the proposed Alternative B-2 is found to be economically viable and can have significant effects to eliminate large- and medium-scale flood damages, allowing smooth train operations throughout the year with minimum interruptions.² While this alternative has certain limitations as explained below (c), the potential damages are expected to be minimal and can be further mitigated by taking appropriate measures that combine hard and soft measures as follows:

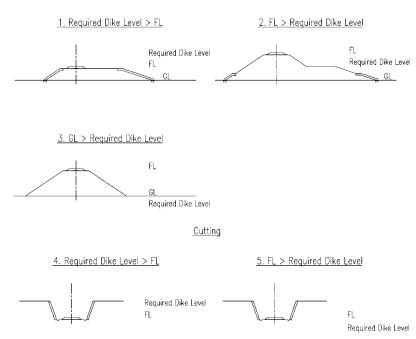
Hard Measures

The Study proposes flood protection measures that combine flood protection works with maintenance after completion of the Project. As annual proper maintenance is essential to ensure the Project's effectiveness, the proposed measures were planned based on the assumption that proper maintenance will be carried out afterwards. This maintenance work includes the removal of deposited sand in and around culverts and drainage infrastructure.

Soft Measures

In the situation in which design floods occur in sections where no protection works have been provided, the plans assume the possibility that inundation/overtopping of railway embankment occurs and can last from a few hours to a few days. To ensure the safety of train movements during such times, a suspension of operation or enforcement of temporary speed restrictions is likely to be required.

(b) **Project Effectiveness**


Figure 15.1 classifies the results of rerouting in terms of the relationship between the required dike level (RDL) and the formation/ground level (FL/GL).³ Table 15.1 further shows the relationship between train operation safety and planned formation level based on these categories. The achievements of the Project are also explained below:

¹ In order to avoid any flood damages and continue train operation, considerable budget is required. This in turn leads to a conclusion that the investment is not justified economically. Alternative B-2 therefore was selected as a well-balanced measure from technical and economical points of view.

 $^{^2}$ Based on TRL data, 91% of the line closure resulting from floods during 2011-14 can be prevented with Alternative B-2.

³ The required dike level (RDL) is a sum of the Design High Water Level (DHWL) and the freeboard.

<u>Embankment</u>

Notes: (i) The section of drawing numbers 1 and 4 is located in an approach section from the existing line. (ii) The section of drawing number 2 is located in an approach section from the existing line, and a section where sufficient horizontal distance cannot be provided due to narrow topographical condition of the valley. Source: JICA Study Team

Figure 15.1: Relationship between Required Dike Level and FL/GL

Rerouting Sections

The Project ensures the ability to have the following patterns of train operations in case of design floods:

- Train service shall be suspended over a total of 4,680 m (18.5%) as the formation level (FL) is lower than RDL
- Trains shall be operated with caution over a total of 5,060 m (20.1%) as FL is higher than RDL in embankment sections
- Trains shall be operated safely over a total of 15,480 m (61.4%) as FL is higher than RDL in cutting sections

Relationship	Dwg.	Train Operation		Total						
between RDL and FL/GL	Dwg. No.		1	2	3	5	7	8	9	(%)
RDL > FL (Embank.)	1	Suspended	1,040	200	260	240	0	0	440	2,180 (8.6)
RDL > FL (Cutting)	4		700	480	260	380	340	0	340	2,500 (9.9)
FL > RDL	2	Caution	100	2,160	500	60	0	0	2,240	5,060 (20.1)
GL > RDL	3	Safe	0	440	60	180	160	1,620	5,040	7,500 (29.7)
FL > RDL	5		40	2,720	1,700	920	1,380	200	1,020	7,980 (31.7)
Total	-	-	1,880	6,000	2,780	1,780	1,880	1,820	9,080	25,220 (100.0)

Table 15.1: Patterns of Train Operations in Rerouting Sections (m)

Note: Each length is rounded to 20 m, thus the total is not equal to the exact length of 25.134 km. Abbreviation: FL = Formation Level, GL = Ground Level, RDL = Required Dike Level Source: JICA Study Team

Non-Rerouting Sections

Table 15.2 shows the patterns of train operations in case of design flood (i.e., DHWL) in non-rerouting sections, which is summarized as follows:

- Train service shall be suspended over a total of 20,230 m (32.4%) as the rail level (RL) is lower than DHWL
- Train shall be operated with caution or safely over a total of 42,500 m (67.6%) as RL is higher than DHWL

Та	ble 15.2: Pat	tterns of Train Operations in Non-Rerouting Sectio	ns
	Tusin	Section between each reporting section (m)	Tot

Trme	Train		Total						
Туре	Operation	Start-1	1 - 2	2 - 3	3 - 5	5 - 7	7 - 8	8 - 9	(%)
DHWL > RL	Suspended	2,280	4,440	2,140	5,060	2,980	2,440	1,040	20,230 (32.4)
RL > DHWL	Caution/ Safe	7,940	2,020	3,200	16,180	4,060	580	8,520	42,500 (67.6)
Total	-	10,220	6,460	5,340	21,240	7,040	3,020	9,560	62,880 (100.0)

Note: Each length is rounded to 20 m, thus the total is not equal to the exact length of 62.873km. Abbreviation: RL = Rail Level, DHWL = Design High Water Level Source: JICA Study Team

Figure 15.2 illustrates the patterns of train operations over the Kilosa-Gulwe section during design floods (See Appendix AA for its detail).

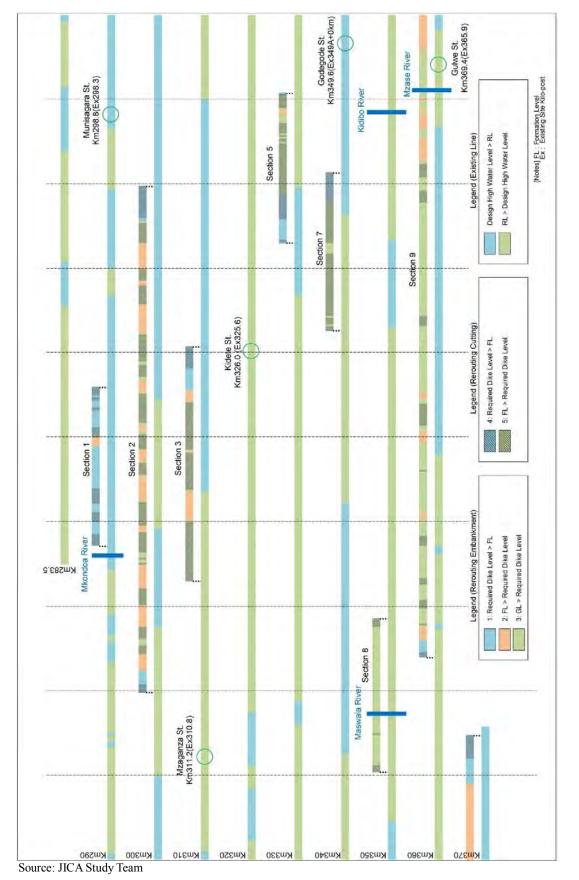
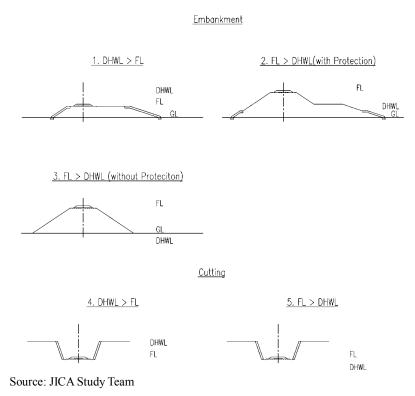



Figure 15.2: Patterns of Train Operations during Design Floods

(c) **Project Limitation**

While Alternative B-2 eliminates large- and medium-scale flood damages, it does not address small-scale flood damages. This indicates that there will be some sections that are under the Design High Water Level (DHWL) after the completion of the Project. These sections are subject to inundation and/or overtopping by floodwaters in case of design floods, and require regulation of train operations.

Figure 15.3 classifies the relation between DHWL and the formation level (FL). Table 15.3 and Table 15.4 further show these relations in the rerouting and non-rerouting sections respectively.

Figure 15.3: Relationship between DHWL and FL

Rerouting Sections

Table 15.3 indicates the length of inundation/overtopping in each rerouting section (i.e., embankment sections, cutting sections) in case of design floods, which is summarized as follows:

- A total of 1,360 m (9.2% of all the embankment sections) is subject to inundation and/or overtopping as the FL is lower than the DHWL.
- A total of 1,960 m (18.7% of all the cutting sections) is subject to inundation and/or overtopping as the FL is lower than the DHWL.

Relationship between	Dwg.		Rerouting Section No.								
DHWL and FL	No.	1	2	3	5	7	8	9	(%)		
DHWL > FL (Embank.)	1	820	0	160	240	0	0	140	1,360 (9.2)		
DHWL > FL (Cutting)	4	620	300	280	160	260	40	300	1,960 (18.7)		

Abbreviation: FL = DHWL = Design High Water Level, FL = Formation Level Source: JICA Study Team

Non-Rerouting Sections

Table 15.4 shows the length of inundation/overtopping in non-rerouting sections in case of design floods, which is summarized as follows:

• A total of 20,230 m (32.4% of all the non-rerouting sections) is subject to inundation and/or overtopping as the FL is lower than the DHWL.

Table 15.4: Section by Inundation/Overtopping in Non-Rerouting Sections

Туре		Total						
Туре	Start-1	1 - 2	2 - 3	3 - 5	5 - 7	7 - 8	8 - 9	(%)
DHWL > FL	2,280	4,440	2,140	5,060	2,980	2,440	1,040	20,230 (32.4)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								

Note: Figures are same with Table 15.2 since it is assumed that FL = RL because accurate FL on site is unknown. Abbreviation: FL = DHWL = Design High Water Level, FL = Formation Level Source: JICA Study Team

Figure 15.4 illustrates the extent of sections with inundation/overtopping over the Kilosa–Gulwe section during design floods (See Appendix AA for additional detail).

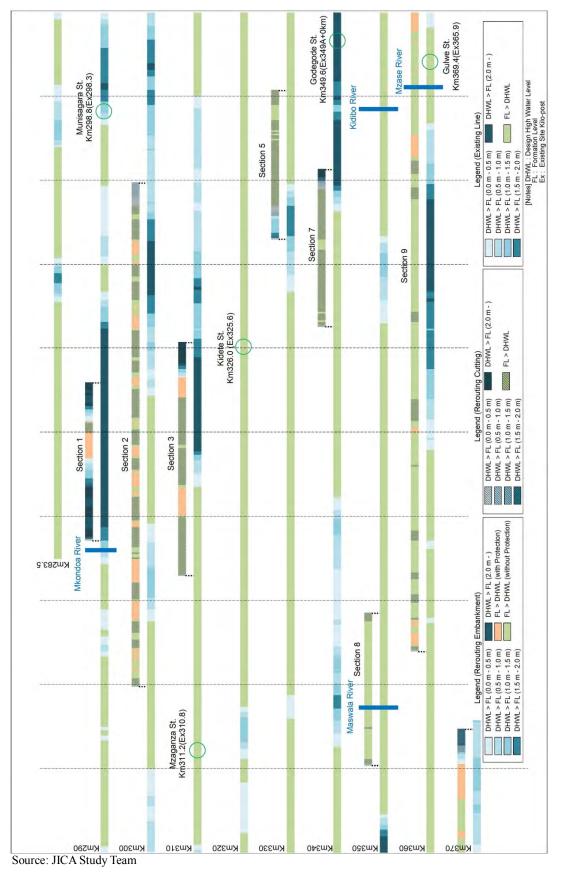


Figure 15.4: Length of Sections by Inundation/Overtopping during Design Floods

(d) Further Actions Required

During Detailed Design Stage

Considering the extent of the damages from a series of floods occurring from January to April 2016, minor modifications of the preliminary design of flood protection measures will be necessary in the Detailed Design stage. In particular, it is required to adjust the layout and major dimensions of the proposed structures, which should be further clarified through additional topographic survey and geotechnical investigations, etc., in the beginning of Detailed Design. Essentially, the protection measures in the affected areas to be reviewed, which have been recognized through the joint site inspection by the JICA Study Team and RAHCO/TRL representatives in April 2016, are as follows:

i) Mzase River

- The protection of the second priority area at the upstream (embankment, bank protection, etc.)
- In-depth review of the proposed river-training works in the first priority area at the downstream due to heavy deposition of sediment material in 2016 (channel geometry/alignment, embankment, groundsills, etc.)

ii) Maswala River

- In-depth review of the proposed river-training works with consideration of the new water course traced by the floods and heavy sediment deposition in January/ February 2016 (channel geometry/alignment, embankment, groundsills, check dam, etc.)

iii) Riverbank protection along the mainstream

- The joint site inspection has revealed that some large-scale sand bars were eroded and shifted after the floods in 2016, particularly at Km 297-298, Km 304-305, Km 307-308, Km 316-317, etc. (mostly downstream sections). Therefore, the newly damaged sections due to 2016 floods including the prioritized sections selected for riverbank protection during DF/R will be totally reviewed in the Detailed Design stage.

After Completion of the Project

- Further measures for the elimination of inundation/overtopping beyond the current proposal may be implemented in the future when railway traffic increases to the extent that justifies additional investments.
- River basin management in the upstream of tributaries, discussed in Subsection 15.2 (9), should be initiated by the relevant stakeholders to reduce the volume of sediments, which is a major origin of flood damages to the railway.

(3) Annual Maintenance after Project Completion

The Study proposes flood protection measures that combine flood protection works with maintenance after completion of the Project. Conducting annual proper maintenance is essential to keep the Project effectiveness. In order to operate trains safely, continuous monitoring of flood prevention structures and annual proper maintenance are essential. Among the maintenance, sediment control is of utmost importance considering the anticipated sediment discharge. This involves the management of discharged sediment in the vicinity of railway track, namely, the removal of deposited sand in and around culverts and drainage infrastructure especially at the Maswala and Mzase tributaries. This work needs to be carried out not only regularly but also urgently after the occurrence of floods. For this to materialize, strengthening of (i) regular maintenance organization (in terms of budget, staffing, and roles), which is a prerequisite of sustainable flood protection measures, and (ii) emergency work organization

during floods is imperative. It is considered effective to implement these activities under the Project.

(4) Safety of Train Operation

The principal rules regarding operation and mainteance of railway facilities during the rainy season (or any other instance of heavy rain) is described in the Genral Rules⁴ and the Civil Engineering Manual⁵. It is required to confirm actual operation of these rules/manuals, and verify whether (i) the contents are in line with the actual conditions in light of recent flood disasters, and (ii) there is a need to update/revise rules that lead to preventing accidents caused by flood disasters. The Study prepared hazard maps indicating, among other things, the critical sites requiring the utmost attension (e.g., track sections repeatedly damaged by erosion and the intersection of the track and the tributaries where severe sedimentation is observed), past flood records, and flood marks (See Appendix T). While accumulating data through (i) regular observation of rainfall in the river basin and water levels in rainy seasons (at Gulwe and Kilosa), and (ii) continuous record of river bank erosion progress, it is desired that these data (including the hazard maps) be utilized for safety of train operation (i.e., speed restriction, service suspension).

Active participation of RAHCO/TRL staff in these activities is essential. It is therefore important to include the activities above under the Project.

(5) Impact on the Project due to Climate Change

Any reference regarding discussions and/or research on the future trends of rainfall intensity of short-duration in Tanzania, which commonly causes flood and sediment disasters, is not available at the present time. However, the projection of annual and seasonal rainfall change in the central region, where the target area of the Project is located, is available in the "Climate Change Project for Tanzania" prepared by Tanzania Meteorological Agency in 2015. The results indicate that future rainfall during rainy seasons from December to February might increase as compared with the present climate, whereas the future rainfall from March to May might not change drastically (-3.7% to -2.8% of the March to May seasonal rainfall value at 2050). In this context, the Project might be able to persist even with a change of rainfall intensity in the future.

(6) Application of Japanese Technologies

There are five Japanese technologies that have been proposed for application in the Project. These include, among others, branch block and in-situ stabilized excavated materials (INSEM) methods. Application of these two technologies (or construction methods) is mainly subject to (i) scouring phenomena and sediment behavior in the river channel, and (ii) in-situ materials, including sand and stone. It is necessary therefore to determine during Detailed Design the extent of revetment and shape of foundation, etc. through trial construction and hydraulic laboratory test, etc.

15.2 Recommendations

(1) **Project Implementation Structure**

Following the implementation structure for the World Bank-assisted TIRP, it is recommended that RAHCO be the Executing Agency for the Project, and that a Project Management Team (PMT) be established with core personnel provided by RAHCO and the Project. The core

⁴ See 230. Warning Order (p.157) and 236. Floods and Landslides (p.167)

⁵ See 15.3.12 Precautions before and during rains (p.15-20)

personnel is to consist of: Chief of PMT, Deputy Chief of PMT, Project Engineers (two), Accounting Specialist, Procurement Specialist, Assistant Project Engineers (two), Environmental and Social Specialist, and support staff. It is also recommended to prepare an operation manual for implementation of the Project that may be similar to that for TIRP.

(2) **Project O&M Structure**

- In order to undertake train operation and infrastructure maintenance safely and efficiently during the construction stage of the Project, it is recommended that an Operation, Maintenance and Safety (OMS) Team be set up, consisting of representatives from RAHCO, TRL, the supervision consultant, and the contractors for the Project.
- Strengthening the capacity of RAHCO and TRL is essential for revitalizing the Central Railway Line before introducing new institutional arrangements, including the implementation of the Open Access Policy.
- Considering that the railway sector of Tanzania in the past experienced a failure of a concession arrangement, any re-use of PPP to provide railway services should be carefully approached. For example, the sector should aim at achieving the level of rail freight tonnage during the peak times (2001–04) under the current institutional setup before any re-use of PPP (including the Open Access Policy) is implemented.
- It is recommended that the Tanzanian railway sector focus more on freight transport that will contribute to the improvement of financial performance of the railway system while placing a lower priority on passenger services that would require operating subsidy.
- It is also recommended that the sector should not rush toward complete vertical separation of the railway system considering that, even in Europe, there is no evidence indicating that vertical separation leads to better railway performance compared to vertically-integrated systems.

(3) Decision-Making Process

- Based on the lessons learned by TIRP, it is recommended that the Managing Director of the Executing Agency be the accounting officer for the Project, and that the accounting officer exchange directly with the Attorney General the draft contract (the value of which is TZS 50 million or above) for vetting.⁶
- Even in the case that the Executing Agency is obliged to submit the draft contract via the supervising ministry for review as with the case of TIRP, it is recommended that the review period by the ministry be defined and followed strictly.⁷

(4) Capacity Building for Flood Protection through the Improvement of Train Operation Safety

A possibility of overtopping/inundation during floods will remain mainly in the non-rerouting sections after completion of the Project, which may create suspension/speed restriction of train

⁶ The Public Procurement Regulations (PPR) 2013 has provisions for vetting of contracts by the Attorney General (no. 59) as follows: 59-(1) Any formal contract arising out of the acceptance of tender whose value is fifty million shillings or more shall be vetted by the Attorney General before the contract is signed by the parties. (2) Subject to sub-regulation (1), a contract whose value is fifty million shillings and above, which is not vetted by the Attorney General shall be void. (3) The accounting officer shall, within three working days after being notified by the tender board of its award decision, submit to the Attorney General the draft contract for vetting. (4) The Attorney General shall, within twenty one working days upon receiving the draft contract from the accounting officer, vet the draft contract and provide comments to the accounting officer, if any. (5) The accounting officer shall, upon receiving the draft contract.

⁷ In addition to sending every draft contract over TZS 50 million to the Attorney General for his/her endorsement, RAHCO is obliged to send them via the MoWTC for review (on the way out and on the way back) under TIRP. These processes have been a major barrier to efficient progress according to the TIRP PIT Quarterly Report covering 1 October to 31 December 2015.

operations and further train accidents. In order to improve safety of train operations, following measures are required:

- Review of the current annual monitoring and maintenance plan being employed by RAHCO/TRL so that they would be suited to the current site conditions of the Kilosa–Gulwe section.
- Confirmation of actual operation of rules/manuals regarding train operations during the rainy season (or heavy rain) described in the Genral Rules and the Civil Engineering Manual, and verification of (i) the contents in terms of the actual conditions in light of recent flood disasters and (ii) a need to update/revise rules that lead to preventing accidents caused by floods.

From the view to the above, it is recommended to strengthening the capability of RAHCO/TRL to prevent train accidents caused by floods through the implementation of the measures above under the Project.

(5) Further Consideration of Shortening the Construction Period

It was estimated that up to 36 months would be required for construction works including embankment and cutting works, track installation work, and bridge work. This includes annual three-month non- working period for bridge works in the tributaries considering the rainy seasons. Nevertheless, the exact candidates of the quarry site, borrow pit, and disposal area for the Project will be selected during Detailed Design; therefore, further consideration should be given to shortening of the construction work period.

(6) Consideration of Phased Completion Inspection (Opening)

Completion inspection is planned to be undertaken after completion of all construction works. In order to remove the possibility of flood damages as early as possible, however, it is proposed that consideration be given during Detailed Design to the implementation of phased completion inspections. In so doing, the priority order of work completion should also be considered.

(7) Securing of Adequate Contingency

As the Kilosa–Gulwe section suffers from flood and sediment disasters almost every year, there is an extremely high likelihood that the section will be damaged by floods prior to completion of the Project. In fact, the January 2016 floods damaged several parts of the railway system, halting train services between Dar es Salaam and Dodoma for about 2.5 months. As there is a possibility of variation in design, work period, and project cost, it is recommended that contingency and work period be decided with careful consideration.

(8) Countermeasures Upstream of Maswala and Mzase Tributaries

As a means of regulating sediment discharge at the Maswala and Mzase tributaries, first and second priority countermeasures have been proposed. The first priority covers downstream areas, while the second priority is at upstream areas. The Project is limited to covering downstream areas (i.e., the first priority), which directly affect the track and appurtenant structures. Any countermeasures in the sediment production in upstream areas are not included in the Project. It is thus recommended that upstream areas (i.e., the second priority) in these tributaries be targeted shortly after the completion of the Project.

(9) River Basin Management

In order to reduce flood damages, it is recommended that river basin management upstream of the three tributaries (i.e., Maswala, Kidibo, and Mzase) and other tributaries with high sediment

productivity (e.g., Sikoko, Mangweta, and Lumuma) be implemented in coordination with concerned responsible agencies such as the Ministry of Agriculture and Local Government Authorities. River basin management includes, among other things, control of sediment discharge from cultivated areas, livestock grazing control, land use regulations, tree-planting, and hillside works.

(10) Application of In-situ Excavation Material (INSEM)

As for construction of the ground sills and check dam in the Maswala and Mzase River basins, the in-situ excavation material (INSEM) method will be able to apply as mentioned in Subsection 10.4.3., which is one of Japanese technologies. However, it should be noted that material investigation, sampling, trial mixing, and confirmation of mix proportion based on the results of hexavalent chromium elution test, are required before construction by INSEM. Mix proportion shall be conducted considering the reduction of elution on proceeding hydration exothermic reaction.