APPENDIX I

PRELIMINARY DESIGN FOR URGENT PROTECTION MEASURES

<This Appendix has been removed because of confidential information.>

APPENDIX J

PRELIMINARY COST ESTIMATE

<This Appendix has been removed because of confidential information.>

APPENDIX K

RESULT OF FREQUENCY ANALYSIS

Table K.1: Result of Frequency	Analy	/sis (1/2)	
--------------------------------	-------	--------	------	--

Station I	ח	9535005	9535006	9536000	9536002	9536004	9536005	9536011	9536017	9635001	9635012	9635014	9636000	9636002	9636004	9636006	9636008	9636013	9636018	9636020
No. of San		6	5	37	14	34	6	6	38	76	24	24	32	5	6	28	44	34	30	50
Туре		Rainfall																		
Method		-	-	LN3PM	-	Gumbel	-	-	Gev	Gev	LogP3	Gev	LogP3	-	-	LogP3	Gev	Gev	Gev	LogP3
SLSC(99%)		-	-	0.019	-	0.026	-	-	0.032	0.02	0.028	0.045	0.037	-	-	0.036	0.032	0.037	0.043	0.025
Probability	2	-	-	60.0	-	57.3	-	-	55.8	68.3	61.8	60.0	54.0	-	-	67.7	55.2	56.5	67.8	54.4
Hydrological	3	-	-	70.0	-	67.2	-	-	62.2	76.8	69.3	70.5	60.8	-	-	79.5	63.2	64.6	79.3	61.4
Value in	5	-	-	79.8	-	78.3	-	-	68.1	85.7	76.8	82.6	67.9	-	-	92.1	72.6	73.4	90.8	68.8
Return Period	10	-	-	90.3	-	92.2	-	-	74.2	95.9	85.2	98.5	76.1	-	-	106.9	85.3	84.0	103.4	77.3
	20	-	-	99.2	-	105.5	-	-	78.9	104.9	92.4	114.3	83.4	-	-	120.3	98.5	93.8	113.9	84.9
	30	-	-	103.9	-	113.2	-	-	81.1	109.7	96.2	123.7	87.3	-	-	127.6	106.5	99.3	119.3	89.1
	50	-	-	109.3	-	122.8	-	-	83.5	115.4	100.7	135.8	92.1	-	-	136.4	117.0	106.0	125.4	94.1
	80	-	-	114.0	-	131.6	-	-	85.5	120.3	104.5	147.2	96.4	-	-	144.3	127.1	112.0	130.5	98.6
	100	-	-	116.1	-	135.7	-	-	86.3	122.6	106.3	152.7	98.4	-	-	147.9	132.1	114.8	132.8	100.6
	150	-	-	119.9	-	143.3	-	-	87.6	126.5	109.4	162.8	101.9	-	-	154.4	141.4	119.8	136.7	104.3
	200	-	-	122.5	-	148.6	-	-	88.4	129.1	111.5	170.2	104.3	-	-	158.9	148.2	123.3	139.2	106.8
	400	-	-	128.4	-	161.5	-	-	90.2	135.1	116.3	188.3	110.0	-	-	169.4	165.5	131.4	144.8	112.8
JackKnife	2	-	-	60.9	-	57.3	-	-	55.7	68.3	61.5	59.7	53.7	-	-	67.4	55.2	56.5	67.8	54.3
Estimate in	3	-	-	71.0	-	67.2	-	-	62.3	76.8	69.3	70.6	60.9	-	-	79.5	63.2	64.7	79.4	61.4
Return Period	5	-	-	80.4	-	78.3	-	-	68.3	85.7	77.2	83.3	68.4	-	-	92.3	72.7	73.5	91.1	68.9
	10	-	-	90.2	-	92.2	-	-	74.4	96.0	86.0	99.7	77.1	-	-	107.5	85.6	84.3	103.7	77.5
	20	-	-	98.0	-	105.5	-	-	78.9	105.0	93.6	115.5	84.6	-	-	121.0	98.7	94.0	114.0	85.1
	30	-	-	101.9	-	113.2	-	-	81.0	109.7	97.5	124.5	88.5	-	-	128.3	106.7	99.4	119.1	89.3
	50	-	-	106.5	-	122.8	-	-	83.0	115.3	102.1	135.5	93.2	-	-	137.1	117.0	105.8	124.8	94.3
	80	-	-	110.2	-	131.6	-	-	84.6	120.1	106.0	145.2	97.1	-	-	144.7	126.8	111.4	129.3	98.7
	100	-	-	111.9	-	135.7	-	-	85.2	122.3	107.7	149.6	98.8	-	-	148.2	131.6	113.9	131.3	100.7
	150	-	-	114.8	-	143.3	-	-	86.1	126.0	110.8	157.2	101.8	-	-	154.3	140.4	118.4	134.5	104.3
	200	-	-	116.7	-	148.6	-	-	86.6	128.5	112.8	162.3	103.8	-	-	158.5	146.8	121.4	136.5	106.7
	400	-	-	121.0	-	161.5	-	-	87.6	134.1	117.3	173.1	108.3	-	-	168.1	162.7	128.1	140.6	112.5
JackKnife	2	-	-	4.5	-	3.7	-	-	2.3	2.3	3.7	4.5	2.7	-	-	5.9	2.6	2.8	6.6	2.5
Estimate	3	-	-	4.7	-	4.5	-	-	2.6	2.6	4.0	5.9	2.9	-	-	6.6	3.3	3.4	6.8	2.8
Error in	5	-	-	4.8	-	5.7	-	-	2.9	3.0	4.6	7.9	4.0	-	-	6.9	4.4	4.5	6.3	3.0
Return Period	10	-	-	4.9	-	7.5	-	-	3.4	3.6	6.2	11.5	6.8	-	-	7.0	6.3	6.1	5.3	3.4
	20	-	-	5.2	-	9.3	-	-	4.3	4.4	8.6	16.7	10.4	-	-	7.6	8.8	8.2	5.5	4.0
	30	-	-	5.5	-	10.3	-	-	5.1	5.0	10.1	20.7	12.7	-	-	8.4	10.8	9.7	6.6	4.5
	50	-	-	6.0	-	11.7	-	-	6.2	6.0	12.3	26.8	15.9	-	-	10.2	13.8	12.0	8.8	5.3
	80	-	-	6.6	-	12.9	-	-	7.3	7.0	14.4	33.8	18.9	-	-	12.5	17.1	14.4	11.1	6.2
	100	-	-	6.9	-	13.5	-	-	7.9	7.6	15.5	37.5	20.4	-	-	13.7	18.9	15.7	12.4	6.6
	150	-	-	7.6	-	14.6	-	-	8.9	8.6	17.4	45.0	23.2	-	-	16.3	22.6	18.2	14.7	7.6
	200	-	-	8.1	-	15.3	-	-	9.7	9.4	18.8	50.9	25.2	-	-	18.4	25.6	20.1	16.4	8.3
	400	- 	-	9.5	-	17.2	-	-	11.5	11.5	22.3	67.6	30.2	-	-	23.9	33.9	25.2	20.7	10.3

											•	• • • • • •		(_/_/					
Station II	D	9636026	9636027	9636029	9636030	9636031	9636032	9636033	9636034	9636037	9636038	9736007	Azimio	Chihanga	lbwaga	Kikombo	Mayamaya	1GD2	1GD2
No. of Sam	nple	13	12	15	6	5	5	5	6	4	6	23	6	5	4	6	6	76	20
Туре		Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	CA Rainfal	Discharge										
Method		-	-	Gev	-	-	-	-	-	-	-	LN2LM	-	-	-	•	-	lwai	lwai
SLSC(99%)		-	-	0.036	-	-	-	-	-	-	-	0.034	-	-	-	-	-	0.018	0.038
Probability	2	-	-	59.1	-	-	-	-	-	-	-	73.4	-	-	-	-	-	27.5	55
Hydrological	3	-	-	65.5	-	-	-	-	-	-	-	82.9	-	-	-	-	-	31.1	74
Value in	5	-	-	70.8	-	-	-	-	-	-	-	93.1	-	-	-	•	-	34.9	98
Return Period	10	-	-	75.7	-	-	-	-	-	-	-	105.4	-	-	-	-	-	39.4	130
	20	-	-	78.9	-	-	-	-	-	-	-	116.8	-	-	-	•	-	43.6	165
	30	-	-	80.3	-	-	-	-	-	-	-	123.2	-	-	-	-	-	45.9	186
	50	-	-	81.7	-	-	-	-	-	-	-	131.1	-	-	-	•	-	48.8	214
	80	-	-	82.6	-	-	-	-	-	-	-	138.2	-	-	-	-	-	51.3	240
	100	-	-	83.0	-	-	-	-	-	-	-	141.6	-	-	-	•	-	52.5	253
	150	-	-	83.6	-	-	-	-	-	-	-	147.6	-	-	-	-	-	54.7	278
	200	-	-	84.0	-	-	-	-	-	-	-	151.9	-	-	-	•	-	56.2	296
	400	-	-	84.7	-	-	-	-	-	-	-	162.1	-	-	-	-	-	59.8	342
JackKnife	2	-	-	59.1	-	-	-	-	-	-	-	73.3	-	-	-	-	-	27.4	54
Estimate in	3	-	-	65.6	-	-	-	-	-	-	-	82.8	-	-	-	-	-	31.0	74
Return Period	5	-	-	71.0	-	-	-	-	-	-	-	92.9	-	-	-	-	-	34.9	97
	10	-	-	75.8	-	-	-	-	-	-	-	105.2	-	-	-	-	-	39.5	130
	20	-	-	78.8	-	-	-	-	-	-	-	116.5	-	-	-	•	-	43.8	164
	30	-	-	80.0	-	-	-	-	-	-	-	122.8	-	-	-	-	-	46.2	184
	50	-	-	81.1	-	-	-	-	-	-	-	130.6	-	-	-	-	-	49.1	211
	80	-	-	81.9	-	-	-	-	-	-	-	137.7	-	-	-	-	-	51.7	237
	100	-	-	82.1	-	-	-	-	-	-	-	141.0	-	-	-	-	-	52.9	249
	150	-	-	82.5	-	-	-	-	-	-	-	146.9	-	-	-	-	-	55.1	272
	200	-	-	82.7	-	-	-	-	-	-	-	151.2	-	-	-	-	-	56.7	289
	400	-	-	83.0	-	-	-	-	-	-	-	161.3	-	-	-	-	-	60.4	332
JackKnife	2	-	-	4.6	-	-	-	-	-	-	-	4.2	-	-	-	-	-	1.1	11
Estimate	3	-	-	4.2	-	-	-	-	-	-	-	4.8	-	-	-	-	-	1.2	14
Error in	5	-	-	3.6	-	-	-	-	-	-	-	5.7	-	-	-	-	-	1.4	16
Return Period	10	-	-	3.1	-	-	-	-	-	-	-	7.2	-	-	-	-	-	1.7	19
	20	-	-	3.1	-	-	-	-	-	-	-	8.8	-	-	-	-	-	2.2	25
	30	-	-	3.4	-	-	-	-	-	-	-	9.8	-	-	-	-	-	2.5	30
	50	-	-	3.9	-	-	-	-	-	-	-	11.1	-	-	-	-	-	2.9	37
	80	-	-	4.4	-	-	-	-	-	-	-	12.3	-	-	-	-	-	3.3	45
	100	-	-	4.6	-	-	-	-	-	-	-	12.9	-	-	-	-	-	3.6	49
	150	-	-	5.0	-	-	-	-	-	-	-	14.0	-	-	-	-	-	4.0	58
	200	-	-	5.3	-	-	-	-	-	-	-	14.8	-	-	-	-	-	4.3	65
	400	-	-	5.9	-	-	-	-	-	-	-	16.8	-	-	-	-	-	5.0	84

Table K.1: Result of Frequency Analysis (2/2)

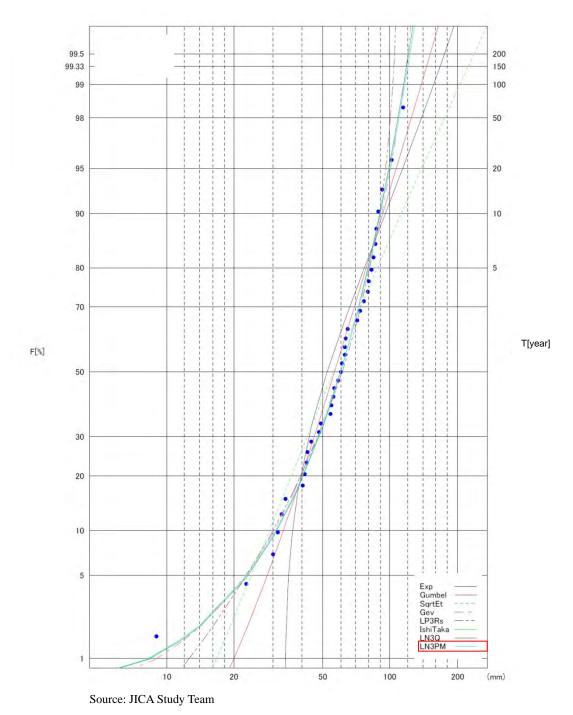


Figure K.1: Result of Frequency Analysis (Point Rainfall at 9536000)

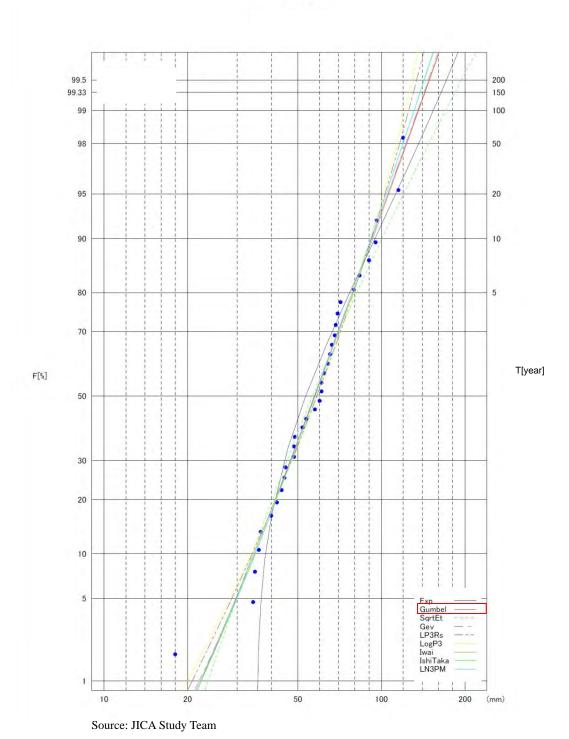


Figure K.2: Result of Frequency Analysis (Point Rainfall at 9536004)

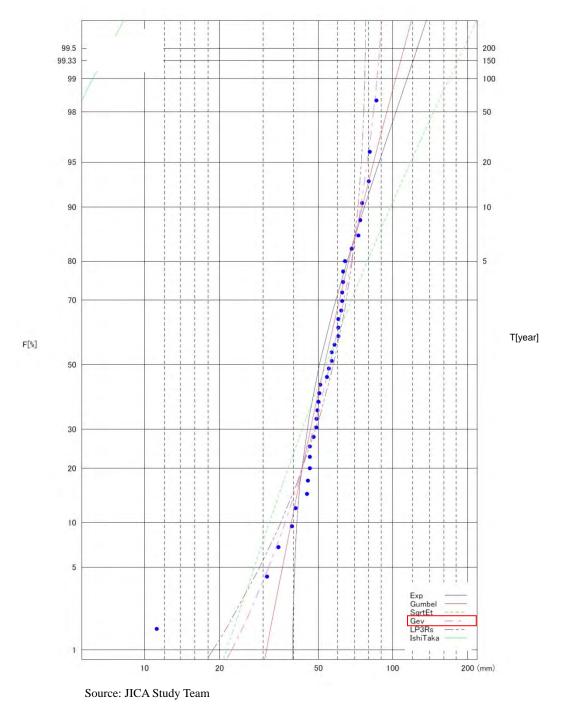


Figure K.3: Result of Frequency Analysis (Point Rainfall at 9536017)

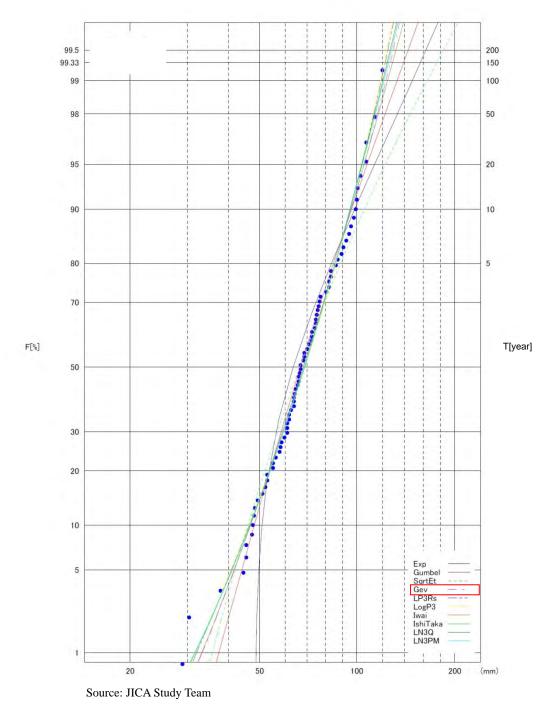


Figure K.4: Result of Frequency Analysis (Point Rainfall at 9635001)

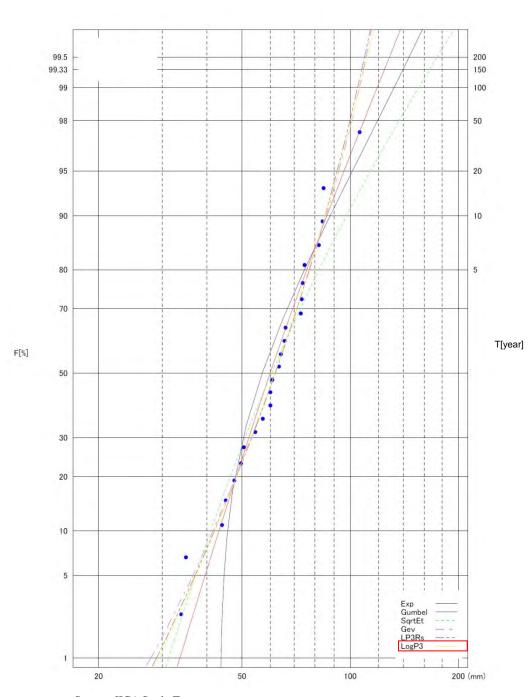


Figure K.5: Result of Frequency Analysis (Point Rainfall at 9635012)

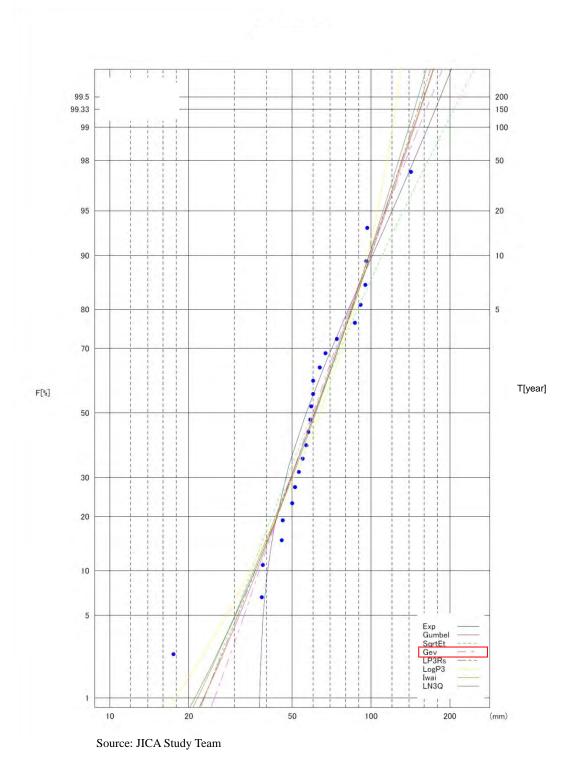


Figure K.6: Result of Frequency Analysis (Point Rainfall at 9635014)

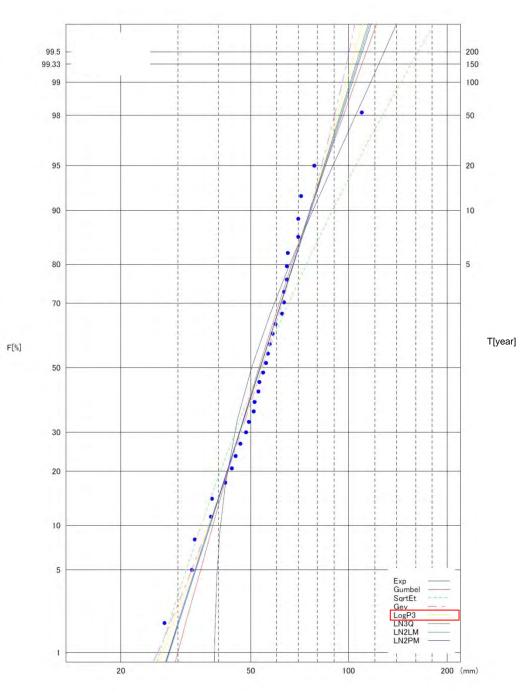


Figure K.7: Result of Frequency Analysis (Point Rainfall at 9636000)

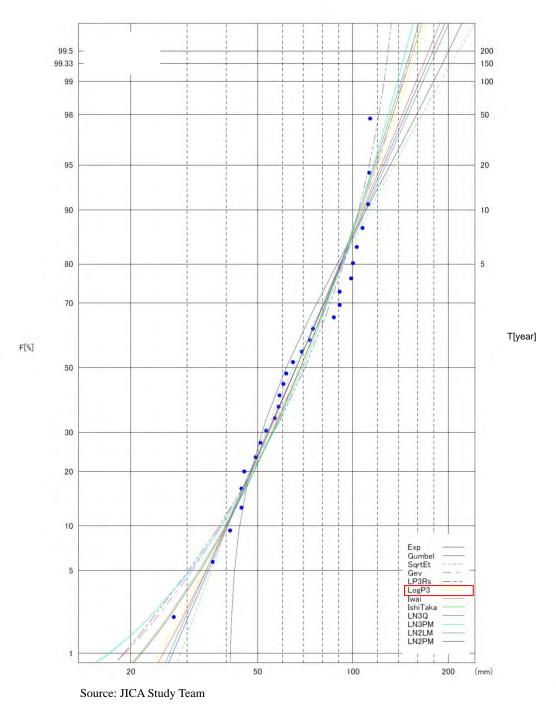


Figure K.8: Result of Frequency Analysis (Point Rainfall at 9636006)

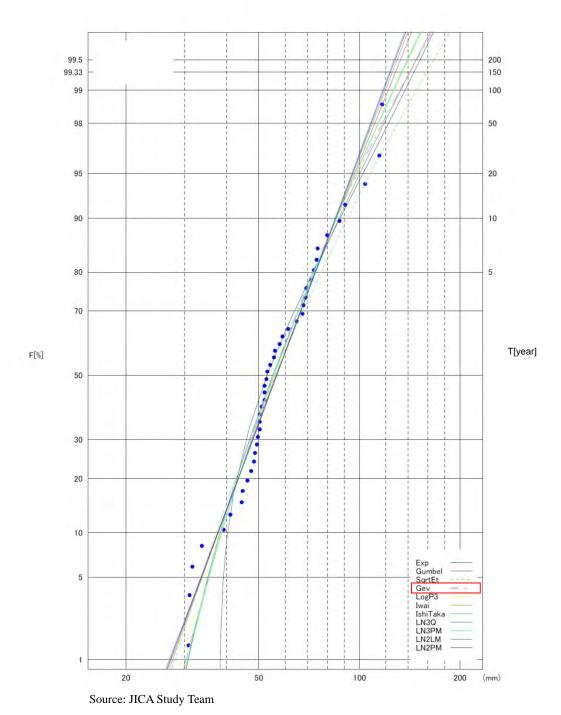
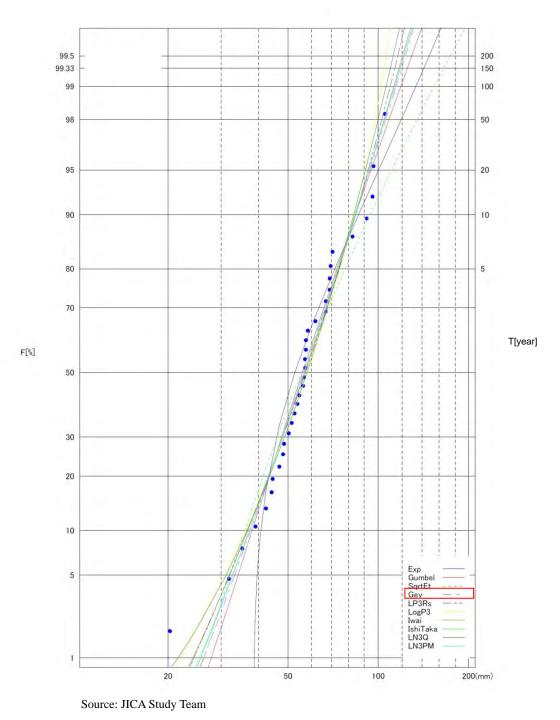
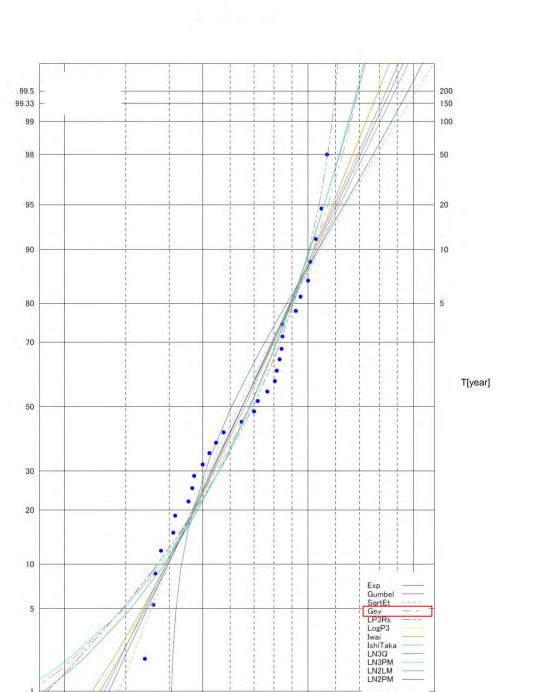


Figure K.9: Result of Frequency Analysis (Point Rainfall at 9636008)




Figure K.10: Result of Frequency Analysis (Point Rainfall at 9636013)

F[%]

1

20

Source: JICA Study Team

Final Report

Figure K.11: Result of Frequency Analysis (Point Rainfall at 9636018)

100

200

(mm)

50

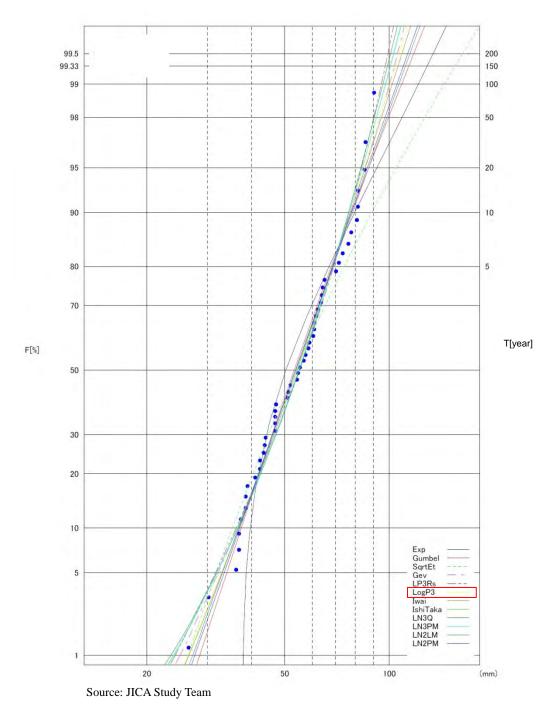


Figure K.12: Result of Frequency Analysis (Point Rainfall at 9636020)

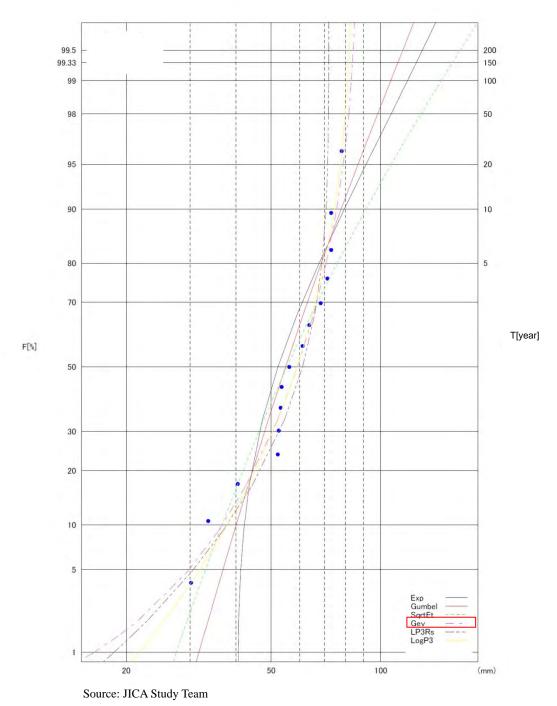


Figure K.13: Result of Frequency Analysis (Point Rainfall at 9636029)

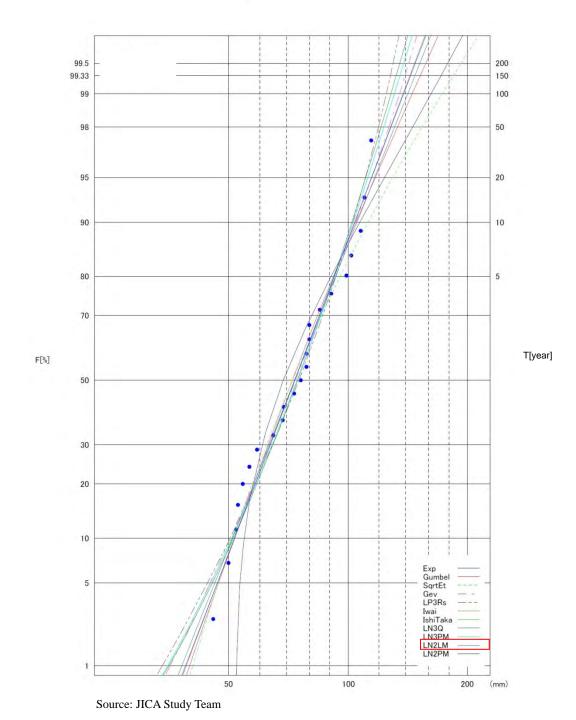


Figure K.14: Result of Frequency Analysis (Point Rainfall at 9736007)

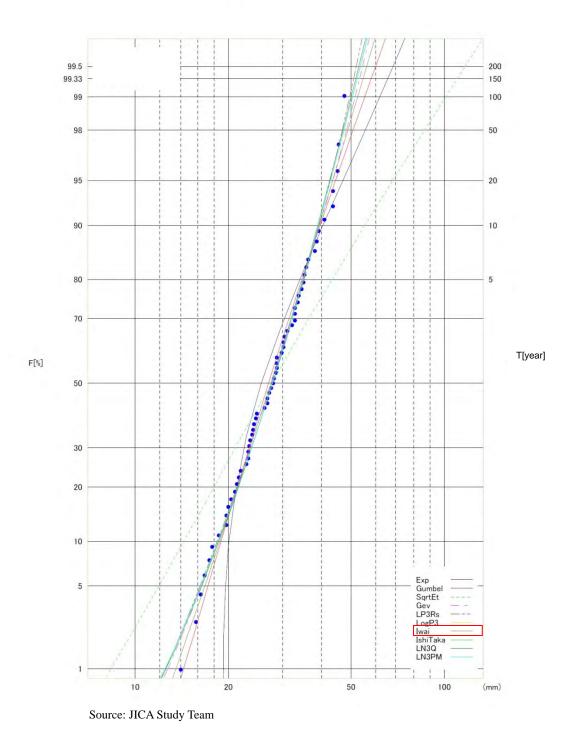


Figure K.15: Result of Frequency Analysis (Catchment Average Rainfall at 1GD2)

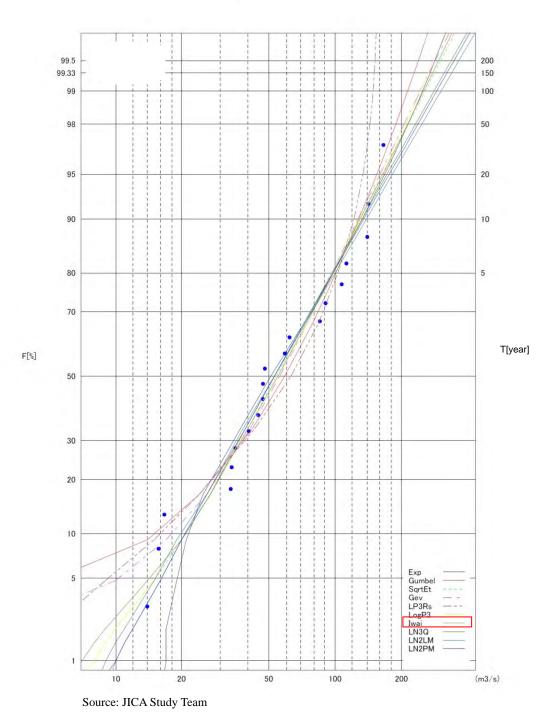
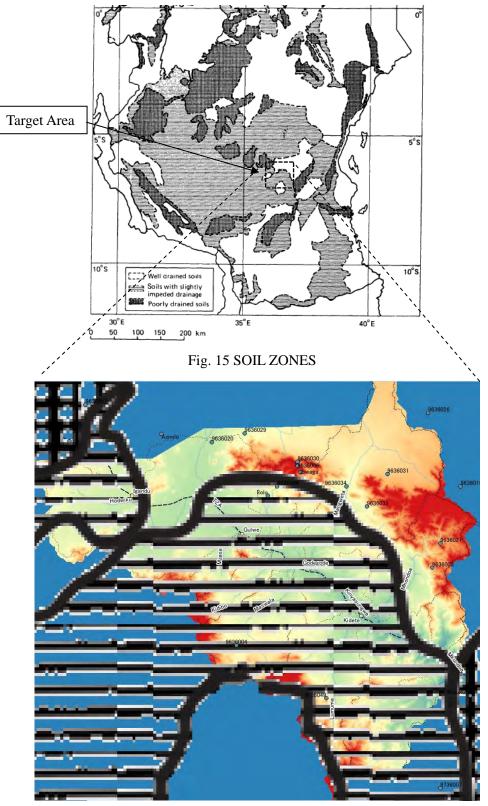



Figure K.16: Result of Frequency Analysis (Daily Discharge at 1GD2)

APPENDIX L

PARAMETERS FOR THE TRRL EAST AFRICAN FLOOD MODEL

Close-up of Target Area of Fig. 15

Source: D. Fiddes, The TRRL East African Flood Model, Department of the Environment, TRRL Laboratory Report 706, Crowthorn, 1975

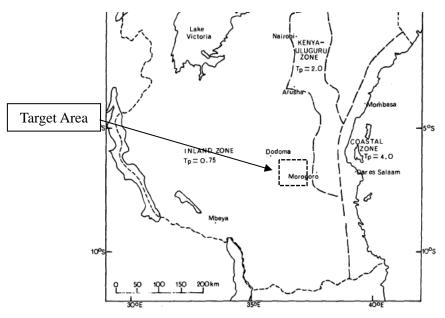


Fig. 16 RAINFALL TIME (Tp) ZONES

TABLE 3

Antecedent catchment conditions for storms of greater than 50mm

	Potential Evaporation	Rainfall (mm)			antecedent fall (mm)		moisture arge (mm)
	mm/day	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
SEMI ARID							
North Eastern Kenya	6.9	20.4	32.0	46.5	56.5	45.0	62.6
DRY ZONES							
Western Uganda	5.2	10.2	14.6	32.6	28.3	40.2	39.0
Central Uganda	4.6	10.0	15.6	42.9	44.1	66.9	61.0
Northern Uganda	5.3	12.0	16.3	39.5	31.9	65.3	57.0
Nyanza	5.6	21.1	29.0	48.4	46.0	60.9	53.0
Central Tanzania	5.6	23.6	38.5	68.5	70.2	54.0	59.0
WET ZONES							
Kenya Coast	5.9	32.9	40.6	76.9	85.5	81.1	76.0
Tanzania Coast	6.0	25.6	45.5	56.9	58.4	90.1	64.0
Kitui	5.2	31.4	42.1	83.4	84.6	101.8	84.5
Nairobi	4.9	21.2	27.8	81.7	67.1	117.0	67.0
Lake Malawi	4.4	41.0	49.8	125.5	121.0	170.3	74.0

Source: D. Fiddes, The TRRL East African Flood Model, Department of the Environment, TRRL Laboratory Report 706, Crowthorn, 1975

TABLE 4

			Soil type	_		
Catchmen	t slope	Well drained	Slightly impeded drainage	Impeded drainage		
Very Flat	< 1.0%		0.15	0.30		
Moderate	1-4%	0.09	0.38	0.40		
Rolling	4-10%	0.10	0.45	0.50		
Hilly	10-20%	0.11	0.50	ļ		
Mountainous	> 20%	0.12				

Standard contributing area coefficients (Wet zone catchment, short grass cover)

Note:

The soil types are as in Fig 16 and are based on the soils map contained in the Handbook of Natural Resources of East Africa (see ref 13).

TABLE 5

Catchment	wetness	factor
-----------	---------	--------

	Catchment wetness factor (C_w)						
Rainfall zone	Perennial streams	Ephemeral streams					
Wet zones	1.0	1.0					
Semi arid zone	1.0	1.0					
Dry zones (except West Uganda)	0.75	0.50					
West Uganda	0.60	0.30					

Source: D. Fiddes, The TRRL East African Flood Model, Department of the Environment, TRRL Laboratory Report 706, Crowthorn, 1975

TABLE 6

Land use factors (CL)

(Base assumes short grass cover)

_	Largely bare soil	1.50
	Intense cultivation (Particularly in valleys)	1.50
	Grass cover	1.00
	Dense vegetation (particularly in valleys)	0.50
ĺ	Ephemeral stream, sand filled valley	0.50
-	Swamp filled valley	0.33
	Forest	0.33

TABLE 7

Catchment lag times

Catchment type	Lag time (K) hrs
Arid	0.1
Very steep small catchments (slopes > 20%)	0.1
Semi arid scrub (large bare soil patches)	0.3
Poor pasture	0.5
Good pasture	1.5
Cultivated land (down to river bank)	3.0
Forest, overgrown valley bottom	8.0
Papyrus swamp in valley bottom	20.0

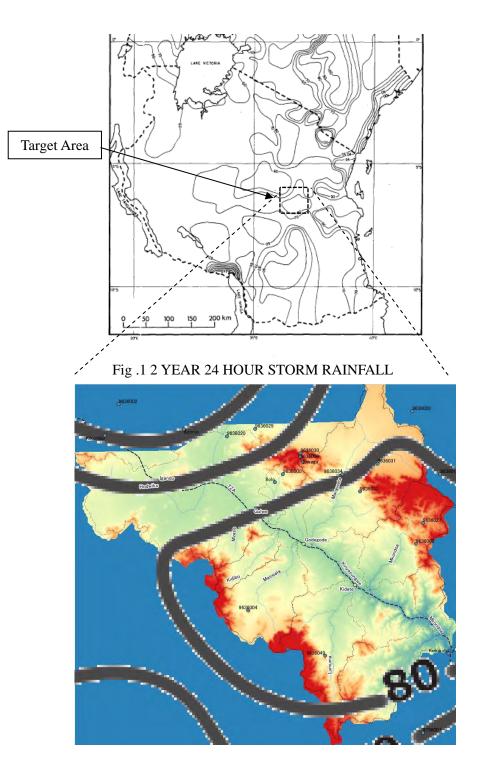

Table 8 Rainfall Time(Tp)for East African 10 year storms

TABLE 8

Rainfall time (Tp) for East African 10 year storms

-	Zone	Index "n"	Rainfall time (Tp) (h)
ſ	Inland zone	0.96	0.75
•	Coastal zone	0.76	4.0
_	Kenya-Aberdare Uluguru Zone	0.85	2.0

Source: D. Fiddes, The TRRL East African Flood Model, Department of the Environment, TRRL Laboratory Report 706, Crowthorn, 1975

Source: D. Fiddes, J. A. Forsgate and A. O. Grigg, The prediction of storm rainfall in East Africa, Department of the Environment, TRRL Laboratory Report 623, Crowthorn, 1974

Fig. 4 10YEAR RATIO

Source: D. Fiddes, J. A. Forsgate and A. O. Grigg, The prediction of storm rainfall in East Africa, Department of the Environment, TRRL Laboratory Report 623, Crowthorn, 1974

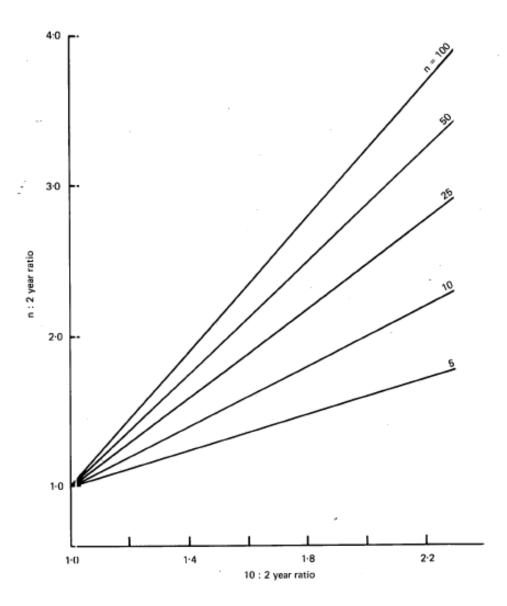


Fig. 5 FLOOD FACTORS

Source: D. Fiddes, J. A. Forsgate and A. O. Grigg, The prediction of storm rainfall in East Africa, Department of the Environment, TRRL Laboratory Report 623, Crowthorn, 1974

APPENDIX M

THE LIST OF CULVERTS

				Confirmation	Sheet Number	
S/N	Station Km	Longitude	Latitude	Method	(Progress Report)	W/C
1	Km 283.6	36.977306	-6.830056	Field Survey	PCL 283.6	
2	Km 283.9	36.975306	-6.827333	Field Survey	BCL 283.9	
3	Km 284.47	36.97175	-6.824611	Field Survey	BCL 284.47	
4	Km 285.3	36.969059	-6.81804	Aerial Photo		
5	Km 285.45	36.968	-6.81675	Field Survey	BCL 285.45	
6	Km 285.65	36.967361	-6.815111	Field Survey	BCL 285.65	
7	Km 286.15	36.967333	-6.810722	Field Survey	PCL 286.15	
8	Km 286.4	36.967444	-6.808333	Field Survey	PCL 286.4	
9	Km 286.65	36.9665	-6.806472	Field Survey	PCL 286.65	\bigcirc
10	Km 286.88	36.965472	-6.804528	Field Survey	PCL 286.88	
11	Km 287.15	36.964472	-6.801778	Field Survey	PCL 287.15	
12	Km 287.25	36.964111	-6.801139	Field Survey	BCL 287.25	
13	Km 287.3	36.963444	-6.800417	Field Survey	PCL 287.3	\bigcirc
14	Km 287.7	36.961889	-6.797694	Field Survey	BCL 287.7	0
15	Km 288	36.959418	-6.79587	Aerial Photo		
16	Km 288.35	36.956583	-6.795972	Field Survey	PCL 288.35	\bigcirc
17	Km 289	36.950139	-6.759556	Field Survey	BCL 289	
18	Km 289.1	36.89975	-6.745389	Field Survey	BCL 289.1	
19	Km 289.3	36.9495	-6.790333	Field Survey	PCL 289.3	
20	Km 289.6	36.949528	-6.787639	Field Survey	PCL 289.6	
21	Km 289.9	36.949583	-6.785139	Field Survey	PCL 289.9	
22	Km 290.4	36.948333	-6.781111	Field Survey	BCL 290.4	\bigcirc
23	Km 290.6	36.947583	-6.7795	Field Survey	PCL 290.6	
24	Km 290.9	36.945944	-6.77625	Field Survey	BR 290.9	\bigcirc
25	Km 291.2	36.944	-6.774556	Field Survey	PCL 291.2	
26	Km 291.5	36.942083	-6.772639	Field Survey	PCL 291.5	
27	Km 291.5B	36.941806	-6.772333	Field Survey	PCL 291.5b	
28	Km 291.7	36.940972	-6.771472	Field Survey	PCL 291.7	
29	Km 291.9	36.93975	-6.769861	Field Survey	PCL 291.9	
30	Km 292.2	36.938389	-6.767639	Field Survey	BCL 292.2	
31	Km 292.6	36.937556	-6.7645	Field Survey	BCL 292.6	\bigcirc
32	Km 292.7	36.936944	-6.763361	Field Survey	PCL 292.7	
33	Km 292.8	36.936472	-6.762917	Field Survey	BCL 292.8	
34	Km 293.0	36.935111	-6.762083	Field Survey	BCL 293	
35	Km 293.1	36.93375	-6.761806	Field Survey	BCL 293.1	
36	Km 293.8	36.927333	-6.76061111	Field Survey	PCL 293.8	
37	Km 294.2	36.92375	-6.7595	Field Survey	PCL 294.2	
38	Km 294.5	36.920667	-6.75863889	Field Survey	BCL 294.5	\bigcirc
39	Km 295.1	36.918167	-6.75541667	Field Survey	BCL 295.1	
40	Km 295.3	36.918111	-6.75319444	Field Survey	BCL 295.3	0
				, j		-

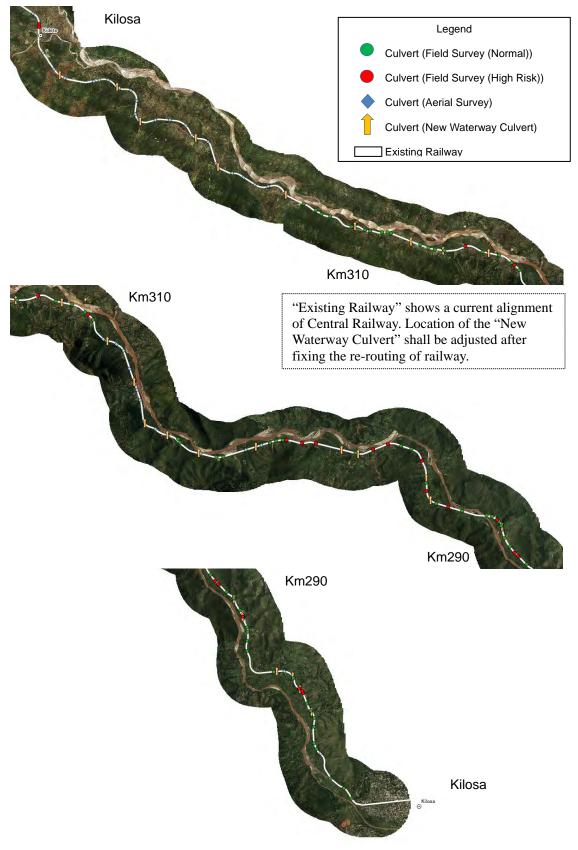
The List of Culverts and	Bridge of Concerned Area (1/6)
--------------------------	----------------------------	------

				Confirmation	Sheet Number		1
S/N	Station Km	Longitude	Latitude	Method		ess Report)	W/C
41	Km 295.7	36.917889	-6.76647222	Field Survey	BCL	295.7	
42	Km 295.9	36.916972	-6.74752778	Field Survey	BCL	295.9	
43	Km 296.4	36.91425	-6.74452778	Field Survey	BCL	296.4	
44	Km 296.7	36.911694	-6.74363889	Field Survey	BCL	296.7	
45	Km 297.1	36.908167	-6.74311111	Field Survey	BCL	297.1	
46	Km 297.6	36.904306	-6.74455556	Field Survey	BCL	297.6	\bigcirc
47	Km 299.3	36.889556	-6.74288889	Field Survey	PCL	299.3	\bigcirc
48	Km 299.7	36.885972	-6.74283333	Field Survey	PCL	299.7	
49	Km 300.1	36.881889	-6.74191667	Field Survey	PCL	300.1	
50	Km 300.2	36.880861	-6.742	Field Survey	PCL	300.2	
51	Km 300.5	36.879083	-6.74222222	Field Survey	BCL	300.5	
52	Km 300.6	36.877528	-6.74261111	Field Survey	BCL	300.6	
53	Km 300.8	36.875381	-6.7432672	Aerial Photo			\bigcirc
54	Km 301.3	36.87131	-6.7445	Aerial Photo			
55	Km 302.0	36.8655	-6.74630556	Field Survey	PCL	302	
56	Km 302.2	36.863694	-6.74644444	Field Survey	BCL	302.2	
57	Km 302.7	36.859534	-6.7454478	Aerial Photo			\bigcirc
58	Km 303.3	36.854194	-6.74258333	Field Survey	BCL	303.3	
59	Km 303.4	36.853694	-6.74155556	Field Survey	BCL	303.4	
60	Km 303.7	36.851233	-6.740696	Aerial Photo			\bigcirc
61	Km 304.1	36.847797	-6.739059	Aerial Photo			\bigcirc
62	Km 305.2	36.843973	-6.7314553	Aerial Photo			
63	Km 305.5	36.843099	-6.728833	Aerial Photo			
64	Km 305.6	36.84258	-6.72727	Aerial Photo			\bigcirc
65	Km 306.1	36.841249	-6.7232918	Aerial Photo			
66	Km 306.7	36.839652	-6.7185877	Aerial Photo			
67	Km 306.9	36.837915	-6.7169553	Aerial Photo			
68	Km 307.2	36.835281	-6.7160301	Aerial Photo			\bigcirc
69	Km 307.4	36.834398	-6.7155739	Aerial Photo			
70	Km 308.1	36.831722	-6.71058333	Field Survey	BCL	308.1	
71	Km 308.3	36.830417	-6.70919444	Field Survey	BCL	308.3	
72	Km 308.4	36.829778	-6.70863889	Field Survey	PCL	308.4	
73	Km 308.9	36.826417	-6.70652778	Field Survey	PCL	308.9	
74	Km 309.4	36.822083	-6.70566667	Field Survey	BCL	309.4	\bigcirc
75	Km 309.9	36.8175	-6.70427778	Field Survey	BCL	309.9	
76	Km 310.5	36.812056	-6.70533333	Field Survey	BCL	310.5	\bigcirc
77	Km 310.8	36.809472	-6.70502778	Field Survey	PCL	310.8	
78	Km 311.0	36.807806	-6.70458333	Field Survey	PCL	311	
79	Km 311.2	36.805667	-6.70375	Field Survey	BR	311.2	\bigcirc
80	Km 312.2	36.798056	-6.70069444	Field Survey	BCL	312.2	

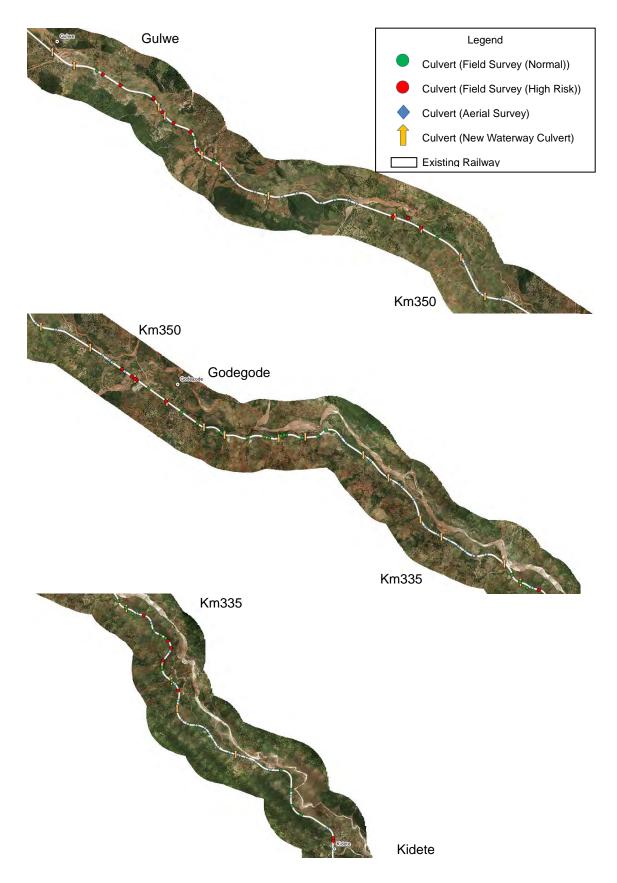
S/N Station Km Longitude Latitude Method (Progress Report) W/C 81 Km 312.4 36.797083 -6.70041667 Field Survey BCL 312.4 36.795667 -6.70038889 Field Survey BCL 312.4 36.791255 -6.70008333 Field Survey BCL 312.4 36.79127 -6.69891667 Field Survey BCL 313.3 ○ 85 Km 313.3 36.787917 -6.69891667 Field Survey BCL 313.4 ○ 86 Km 314.4 36.779778 -6.6958333 Field Survey BCL 314.1 87 Km 314.5 36.778417 -6.69458333 Field Survey PCL 314.5 36.778417 -6.69458333 Field Survey BCL 314.9 ○ ○ 9 Xm 316.5 36.765728 -6.69043833 Field Survey BCL 314.9 ○ ○ 9 38 Mail.5 36.765728 -6.6883368 Aerial Photo ○ ○					Confirmation	Sheet Number		<u> </u>
81 Km 312.3 36.797083 -6.70041667 Field Survey BCL 312.4 82 Km 312.4 36.792556 -6.70003889 Field Survey BCL 312.4 83 Km 312.9 36.792556 -6.70008333 Field Survey BCL 312.4 84 Km 312.9 36.791222 -6.699801667 Field Survey BCL 313.4 86 Km 313.4 36.78717 -6.6982222 Field Survey BCL 313.4 87 Km 314.4 36.779778 -6.69558333 Field Survey PCL 314.4 88 Km 314.5 36.775083 -6.6983333 Field Survey PCL 314.4 80 Km 315.5 36.77016 -6.6991483 Aerial Photo 91 Km 315.5 36.77288 -6.6883398 Aerial Photo 92 Km 316.7 36.75229 -6.68847862	S/N	Station Km	Longitudo	Latituda				W/C
82 Km 312.4 36.795667 -6.7003889 Field Survey BCL 312.4 83 Km 312.9 36.791222 -6.69986111 Field Survey BCL 312.9 84 Km 313.3 36.787917 -6.699801667 Field Survey BCL 313.3 \begin{tabular}{lllllllllllllllllllllllllllllllllll								w/c
83 Km 312.8 36.792556 -6.70008333 Field Survey BCL 312.8 84 Km 312.9 -6.69986111 Field Survey BCL 312.9 85 Km 313.3 36.787611 -6.699801667 Field Survey BCL 313.4 86 Km 314.4 36.787611 -6.69528333 Field Survey BCL 314.4 87 Km 314.4 36.778417 -6.69528333 Field Survey PCL 314.4 88 Km 314.5 36.778017 -6.695283333 Field Survey PCL 314.4 90 Km 314.9 36.775083 -6.69283333 Field Survey BCL 314.4 91 Km 315.5 36.77016 -6.69283333 Field Survey BCL 314.4 92 Km 316.5 36.762327 -6.687824 Aerial Photo 93 Km 317.8 36.752132 -6.6828251 Aerial Photo </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
84 Km 312.9 36.791222 -6.69891667 Field Survey BCL 312.9 85 Km 313.3 36.787917 -6.69891667 Field Survey BCL 313.4 86 Km 314.4 36.787611 -6.69622222 Field Survey BCL 314.1 87 Km 314.4 36.779778 -6.69458333 Field Survey PCL 314.4 88 Km 314.4 36.775083 -6.69458333 Field Survey PCL 314.4 89 Km 314.5 36.77016 -6.69458333 Field Survey BCL 314.9 90 Km 316.5 36.750237 -6.6871778 Aerial Photo \bigcirc 92 Km 316.3 36.752327 -6.6871778 Aerial Photo \bigcirc \bigcirc 93 Km 317.3 36.752132 -6.68247862 Aerial Photo \bigcirc \bigcirc 96 Km 317.3 36.731636 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
85 Km 313.3 36.787917 -6.69891667 Field Survey BCL 313.3 \bigcirc 86 Km 313.4 36.787611 -6.6962222 Field Survey BCL 313.4 87 Km 314.1 36.78771 -6.6958333 Field Survey BCL 314.4 88 Km 314.4 36.777084 -6.69283333 Field Survey PCL 314.4 89 Km 314.9 36.775083 -6.69283333 Field Survey BCL 314.4 90 Km 316.1 36.762327 -6.688398 Aerial Photo \bigcirc \bigcirc 91 Km 316.5 36.75232 -6.6847862 Aerial Photo \bigcirc \bigcirc 94 Km 316.3 36.752034 -6.6847862 Aerial Photo \bigcirc \bigcirc 95 Km 317.8 36.751064 -6.676528 Aerial Photo \bigcirc \bigcirc 98 Km 319.1 36.73623 -6.670679								
86 Km 313.4 36.787611 -6.69891667 Field Survey BCL 313.4 87 Km 314.1 36.782 -6.6952322 Field Survey BCL 314.1 88 Km 314.4 36.779778 -6.69558333 Field Survey PCL 314.5 90 Km 314.9 36.775083 -6.69283333 Field Survey PCL 314.5 90 Km 314.9 36.775083 -6.69283333 Field Survey PCL 314.5 90 Km 315.5 36.77016 -6.6901483 Aerial Photo								\cap
87 Km 314.1 36.782 -6.69622222 Field Survey BCL 314.1 88 Km 314.4 36.779778 -6.69558333 Field Survey PCL 314.4 89 Km 314.5 36.778417 -6.69458333 Field Survey PCL 314.5 90 Km 315.5 36.77016 -6.6901483 Aerial Photo 314.9 91 Km 316.1 36.765728 -6.6873778 Aerial Photo					,			\bigcirc
88 Km 314.4 36.779778 -6.69558333 Field Survey PCL 314.4 89 Km 314.5 36.775083 -6.69283333 Field Survey PCL 314.5 90 Km 314.9 36.775083 -6.69283333 Field Survey BCL 314.9 91 Km 315.5 36.77016 -6.6921483 Aerial Photo 92 Km 316.5 36.76522 -6.688398 Aerial Photo 93 Km 316.9 36.75229 -6.682251 Aerial Photo 94 Km 317.3 36.75213 -6.682251 Aerial Photo 95 Km 319.1 36.745758 -6.674652 Aerial Photo 98 Km 319.4 36.73623 -6.670679 Aerial Photo 100 Km 319.9 36.731285 -6.665163 Aerial Photo								
89 Km 314.5 36.778417 -6.69458333 Field Survey PCL 314.5 90 Km 314.9 36.775083 -6.69283333 Field Survey BCL 314.9 91 Km 315.5 36.77016 -6.6901483 Aerial Photo								
90 Km 314.9 36.775083 -6.69283333 Field Survey BCL 314.9 91 Km 315.5 36.77016 -6.6901483 Aerial Photo								
91 Km 315.5 36.77016 -6.6901483 Aerial Photo Image: Constraint of the state								
92 Km 316.1 36.765728 -6.6883398 Aerial Photo 93 Km 316.5 36.762327 -6.6877778 Aerial Photo 94 Km 316.9 36.75929 -6.685824 Aerial Photo 95 Km 317.3 36.756346 -6.688251 Aerial Photo 96 Km 317.8 36.752132 -6.682251 Aerial Photo						DCL	514.7	\cap
93 Km 316.5 36.762327 -6.6877778 Aerial Photo 94 Km 316.9 36.75929 -6.68824 Aerial Photo 95 Km 317.3 36.756346 -6.688251 Aerial Photo 96 Km 317.8 36.75064 -6.6765288 Aerial Photo								\bigcirc
94 Km 316.9 36.75929 -6.685824 Aerial Photo 95 Km 317.3 36.756346 -6.6847862 Aerial Photo 96 Km 317.8 36.752132 -6.682251 Aerial Photo								
95 Km 317.3 36.756346 -6.6847862 Aerial Photo 96 Km 317.8 36.752132 -6.682251 Aerial Photo 97 Km 318.5 36.750064 -6.6765288 Aerial Photo 98 Km 319.1 36.745758 -6.674652 Aerial Photo 99 Km 319.4 36.745758 -6.670753 Aerial Photo 100 Km 319.9 36.73623 -6.670773 Aerial Photo 101 Km 320.3 36.73623 -6.670561 Aerial Photo								
96 Km 317.8 36.752132 -6.682251 Aerial Photo Image: Constraint of the state								
97 Km 318.5 36.750064 -6.6765288 Aerial Photo 98 Km 319.1 36.745758 -6.674652 Aerial Photo 99 Km 319.4 36.745758 -6.672208 Aerial Photo 100 Km 319.9 36.739973 -6.670753 Aerial Photo 101 Km 320.3 36.73623 -6.670679 Aerial Photo 102 Km 320.8 36.731688 -6.670561 Aerial Photo								\cap
98 Km 319.1 36.745758 -6.674652 Aerial Photo O 99 Km 319.4 36.744169 -6.672208 Aerial Photo Image: Constraint of the state of the st								\bigcirc
99 Km 319.4 36.744169 -6.672208 Aerial Photo 100 Km 319.9 36.739973 -6.670753 Aerial Photo 101 Km 320.3 36.73623 -6.6707679 Aerial Photo 102 Km 320.8 36.731688 -6.670561 Aerial Photo O 103 Km 321.0 36.731285 -6.6656163 Aerial Photo O 104 Km 321.4 36.730944 -6.669162 Aerial Photo O 105 Km 321.8 36.729766 -6.662327 Aerial Photo O 106 Km 322.1 36.72672 -6.660103 Aerial Photo O 107 Km 322.6 36.721515 -6.6600699 Aerial Photo O 108 Km 322.8 36.712478 -6.6595869 Aerial Photo O 110 Km 323.8 36.706764 -6.65286 Aerial Photo O 111 Km								\bigcirc
100 Km 319.9 36.739973 -6.670753 Aerial Photo 101 Km 320.3 36.73623 -6.670679 Aerial Photo 102 Km 320.8 36.731688 -6.670561 Aerial Photo 103 Km 321.0 36.731285 -6.6656163 Aerial Photo 104 Km 321.4 36.730944 -6.669162 Aerial Photo 105 Km 321.8 36.729766 -6.662327 Aerial Photo 106 Km 322.1 36.72672 -6.6601103 Aerial Photo								\cup
101 Km 320.3 36.73623 -6.670679 Aerial Photo 102 Km 320.8 36.731688 -6.670561 Aerial Photo 103 Km 321.0 36.731285 -6.6656163 Aerial Photo 104 Km 321.4 36.730944 -6.669162 Aerial Photo 105 Km 321.8 36.729766 -6.6628492 Aerial Photo 106 Km 322.1 36.72672 -6.6601103 Aerial Photo <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
102 Km 320.8 36.731688 -6.670561 Aerial Photo 103 Km 321.0 36.731285 -6.6656163 Aerial Photo 104 Km 321.4 36.730944 -6.669162 Aerial Photo 105 Km 321.8 36.729766 -6.6628492 Aerial Photo <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
103 Km 321.0 36.731285 -6.6656163 Aerial Photo 104 Km 321.4 36.730944 -6.669162 Aerial Photo 105 Km 321.8 36.729766 -6.6628492 Aerial Photo 106 Km 322.1 36.72672 -6.662327 Aerial Photo O 107 Km 322.6 36.723757 -6.6601103 Aerial Photo O 108 Km 322.8 36.721515 -6.6600699 Aerial Photo O 108 Km 323.0 36.720119 -6.660452 Aerial Photo O 109 Km 323.8 36.712478 -6.6595869 Aerial Photo O 110 Km 324.2 36.706764 -6.6572188 Aerial Photo O 111 Km 324.8 36.706764 -6.65286 Aerial Photo O O 113 Km 325.7 36.705722 -6.64608333 Field Survey PCL 325.75 114 Km 326.1 36.704111 -6.642512 Aerial Photo								\cap
104 Km 321.4 36.730944 -6.669162 Aerial Photo 105 Km 321.8 36.729766 -6.6628492 Aerial Photo 106 Km 322.1 36.72672 -6.662327 Aerial Photo 107 Km 322.6 36.723757 -6.6601103 Aerial Photo 108 Km 322.8 36.721515 -6.6600699 Aerial Photo 109 Km 323.0 36.720119 -6.660452 Aerial Photo <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\bigcirc</td></t<>								\bigcirc
105 Km 321.8 36.729766 -6.662327 Aerial Photo 106 Km 322.1 36.72672 -6.662327 Aerial Photo <								
106 Km 322.1 36.72672 -6.662327 Aerial Photo								
107 Km 322.6 36.723757 -6.6601103 Aerial Photo 108 Km 322.8 36.721515 -6.6600699 Aerial Photo 109 Km 323.0 36.720119 -6.660452 Aerial Photo 110 Km 323.8 36.712478 -6.6595869 Aerial Photo 111 Km 324.2 36.709578 -6.6572188 Aerial Photo								\cap
108 Km 322.8 36.721515 -6.6600699 Aerial Photo 109 Km 323.0 36.720119 -6.660452 Aerial Photo 110 Km 323.8 36.712478 -6.6595869 Aerial Photo 111 Km 324.2 36.709578 -6.6572188 Aerial Photo <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\bigcirc</td>								\bigcirc
109 Km 323.0 36.720119 -6.660452 Aerial Photo 110 Km 323.8 36.712478 -6.6595869 Aerial Photo 111 Km 323.8 36.709578 -6.6572188 Aerial Photo 111 Km 324.2 36.709578 -6.6572188 Aerial Photo 112 Km 324.8 36.706764 -6.65286 Aerial Photo								
110 Km 323.8 36.712478 -6.6595869 Aerial Photo 111 Km 324.2 36.709578 -6.6572188 Aerial Photo 112 Km 324.8 36.706764 -6.65286 Aerial Photo								
111 Km 324.2 36.709578 -6.6572188 Aerial Photo 112 Km 324.8 36.706764 -6.65286 Aerial Photo 113 Km 325.7 36.705722 -6.64608333 Field Survey PCL 325.7 115 Km 325.75 36.705694 -6.64533333 Field Survey PCL 325.75 114 Km 326.1 36.704111 -6.642512 Aerial Photo 116 Km 326.9 36.696861 -6.63095556 Field Survey PCL 326.9 117 Km 327.4 36.694306 -6.63638889 Field Survey BCL 327.4 118 Km 327.8 36.694058 -6.633591 Aerial Photo 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9								
112 Km 324.8 36.706764 -6.65286 Aerial Photo								\cap
113 Km 325.7 36.705722 -6.64608333 Field Survey PCL 325.7 115 Km 325.75 36.705694 -6.64533333 Field Survey PCL 325.75 114 Km 326.1 36.704111 -6.642512 Aerial Photo								\bigcirc
115 Km 325.75 36.705694 -6.64533333 Field Survey PCL 325.75 114 Km 326.1 36.704111 -6.642512 Aerial Photo 116 Km 326.9 36.696861 -6.63905556 Field Survey PCL 326.9 117 Km 327.4 36.694306 -6.63638889 Field Survey BCL 327.4 118 Km 327.8 36.694058 -6.633591 Aerial Photo 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9						DCI	225.7	
114 Km 326.1 36.704111 -6.642512 Aerial Photo 116 Km 326.9 36.696861 -6.63905556 Field Survey PCL 326.9 117 Km 327.4 36.694306 -6.63638889 Field Survey BCL 327.4 118 Km 327.8 36.694058 -6.633591 Aerial Photo 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9								
116 Km 326.9 36.696861 -6.63905556 Field Survey PCL 326.9 117 Km 327.4 36.694306 -6.63638889 Field Survey BCL 327.4 118 Km 327.8 36.694058 -6.633591 Aerial Photo - 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9						FUL	323.13	
117 Km 327.4 36.694306 -6.63638889 Field Survey BCL 327.4 118 Km 327.8 36.694058 -6.633591 Aerial Photo - - 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9						DCI	326.0	
118 Km 327.8 36.694058 -6.633591 Aerial Photo 119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9								
119 Km 327.9 36.694111 -6.63194444 Field Survey PCL 327.9						DCL	321.4	
						PCI	327.0	
	120	Km 328.8	36.691278	-6.62655556	Field Survey	PCL	328.8	

The List of Culverts and B	Bridge of Concerned Area (3/6)
----------------------------	----------------------------	------

				Confirmation	Sheet Number	
S/N	Station Km	Longitude	Latitude	Method	(Progress Report)	W/C
121	Km 329.1	36.68817	-6.626388	Aerial Photo		
122	Km 329.6	36.684406	-6.6241803	Aerial Photo		
123	Km 329.9	36.681912	-6.622983	Aerial Photo		
124	Km 330.2	36.679844	-6.622351	Aerial Photo		\bigcirc
125	Km 330.5	36.677075	-6.621494	Aerial Photo		
126	Km 330.9	36.673884	-6.619901	Aerial Photo		
127	Km 331.2	36.672614	-6.618083	Aerial Photo		
128	Km 331.4	36.671538	-6.616289	Aerial Photo		
129	Km 331.6	36.670256	-6.614794	Aerial Photo		
130	Km 331.9	36.667914	-6.613915	Aerial Photo		
131	Km 332.2	36.665504	-6.613606	Aerial Photo		
132	Km 332.4	36.66381	-6.612512	Aerial Photo		
133	Km 332.8	36.662875	-6.607115	Aerial Photo		
134	Km 333.0	36.662562	-6.6086736	Aerial Photo		\bigcirc
135	Km 333.1	36.662889	-6.60425	Field Survey	BCL 333.1	
136	Km 333.6	36.661942	-6.6023743	Aerial Photo		
137	Km 333.6	36.661139	-6.60169444	Field Survey	BCL 333.6	\bigcirc
138	Km 334.1	36.658361	-6.59808333	Field Survey	BCL 334.1	\bigcirc
139	Km 334.3	36.65875	-6.59591667	Field Survey	PCL 334.3	
140	Km 334.6	36.660607	-6.5934247	Aerial Photo		
141	Km 334.7	36.65875	-6.59591667	Field Survey	BCL 334.7	
142	Km 334.8	36.660861	-6.5925	Field Survey	BCL 334.8	
143	Km 335	36.660139	-6.59055556	Field Survey	BCL 335	
144	Km 335.1	36.6595	-6.58983333	Field Survey	BCL 335.1	
145	Km 335.3	36.658056	-6.58888889	Field Survey	BCL 335.3	
146	Km 335.5	36.65625	-6.58763889	Field Survey	BCL 335.5	
147	Km 335.8	36.655511	-6.585498	Aerial Photo		
148	Km 335.8	36.949472	-6.78397222	Field Survey	BCL 335.8	
149	Km 336.1	36.653472	-6.58344444	Field Survey	BCL 336.1	
150	Km 336.3	36.651678	-6.582953	Aerial Photo		
151	Km 336.3	36.650306	-6.58291667	Field Survey	BCL 336.3	
152	Km 336.7	36.648361	-6.58138889	Field Survey	BCL 336.7	\bigcirc
153	Km 337	36.646417	-6.57947222	Field Survey	PCL 337	\bigcirc
154	Km 337	36.646389	-6.5795	Field Survey	BCL 337	
155	Km 338	36.639523	-6.574122	Aerial Photo		
156	Km 338.4	36.63678	-6.574515	Aerial Photo		
157	Km 338.4	36.636622	-6.574499	Aerial Photo		
158	Km 338.4	36.636365	-6.574451	Aerial Photo		
159	Km 338.7	36.634105	-6.573273	Aerial Photo		
160	Km 338.9	36.632373	-6.571891	Aerial Photo		


The List of Culverts and Bridge of Concerned Area (4/6)

				Confirmation	Sheet Number	
S/N	Station Km	Longitude	Latitude	Method	(Progress Report)	W/C
161	Km 339.2	36.629966	-6.5703989	Aerial Photo		
162	Km 339.6	36.627149	-6.5689419	Aerial Photo		\bigcirc
163	Km 340	36.624137	-6.5671354	Aerial Photo		
164	Km 340	36.623808	-6.5668167	Aerial Photo		
165	Km 340.3	36.622529	-6.5649696	Aerial Photo		\bigcirc
166	Km 340.9	36.620573	-6.5595615	Aerial Photo		
167	Km 341.4	36.617612	-6.5563263	Aerial Photo		
168	Km 341.5	36.616976	-6.5557491	Aerial Photo		
169	Km 341.8	36.614818	-6.5543282	Aerial Photo		
170	Km 341.9	36.613857	-6.5537413	Aerial Photo		\bigcirc
171	Km 342.6	36.609562	-6.5493696	Aerial Photo		
172	Km 342.8	36.60801	-6.5481939	Aerial Photo		\bigcirc
173	Km 343.5	36.603124	-6.544798	Aerial Photo		
174	Km 343.7	36.601721	-6.543116	Aerial Photo		
175	Km 344.8	36.597917	-6.54138889	Field Survey	BCL 344.8	
176	Km 344.8B	36.595861	-6.54283333	Field Survey	BCL 344.8B	
177	Km 345.0	36.591722	-6.54336111	Field Survey	BCL 345.0	\bigcirc
178	Km 345.5	36.587361	-6.54261111	Field Survey	PCL 345.5	
179	Km 345.6A	0	0	Field Survey	PCL 345.6a	
180	Km 345.6B	36.586111	-6.54283333	Field Survey	PCL 345.6b	\bigcirc
181	Km 346	36.582917	-6.54336111	Field Survey	PCL 346	
182	Km 346.2	36.581778	-6.54308333	Field Survey	PCL 346.2	
183	Km 346.6A	36.586944	-6.54263889	Field Survey	BCL 346.6a	
184	Km 346.6	36.586634	-6.5428206	Aerial Photo		
185	Km 346.6B	36.577333	-6.54319444	Field Survey	BCL 346.6b	
186	Km 347.5	36.570389	-6.54194444	Field Survey	BCL 347.5	\bigcirc
187	Km 347.8	36.566041	-6.5404689	Aerial Photo		\bigcirc
188	Km 348	36.564222	-6.5395	Field Survey	BCL 348	
189	Km 348.3	36.564222	-6.5395	Field Survey	PCL 348.3	
190	Km 348.8	36.560028	-6.53644444	Field Survey	BCL 348.8	
191	Km 349.4	36.556	-6.53358333	Field Survey	BCL 349.4	\bigcirc
192	Km 349.0B	36.551444	-6.53019444	Field Survey	PCL 349.0B	
193	Km 349.4B	36.548528	-6.52811111	Field Survey	BCL 349.4B	\bigcirc
194	Km 349.5B	36.547861	-6.52763889	Field Survey	BCL 349.5B	
195	Km 349.6B	36.547083	-6.52705556	Field Survey	BCL 349.6B	
196	Km 349.8	36.545246	-6.5256913	Aerial Photo		
197	Km 349.8B	36.544556	-6.52522222	Field Survey	BCL 349.8B	
198	Km 349.9B	36.544583	-6.52522222	Field Survey	BCL 349.9B	
199	Km 350.2	36.541893	-6.523261	Aerial Photo		
200	Km 350.3	36.541316	-6.522839	Aerial Photo		


S/N	Station Km	Longitude	Latitude	Confirmation Method	Sheet Number (Progress Report)	W/C
201	Km 350.5	36.539542	-6.52155	Aerial Photo		\bigcirc
202	Km 352.1	36.527342	-6.514776	Aerial Photo		
203	Km 352.7	36.522104	-6.513051	Aerial Photo		\bigcirc
203	Km 352.9	0	0	Field Survey	BCL 352.9	
205	Km 352.9B	36.51125	-6.49869444	Field Survey	BCL 352.9B	
206	Km 353.6	36.518188	-6.505662	Aerial Photo		\bigcirc
207	Km 354.3	36.506972	-6.49622222	Field Survey	BCL 354.3	\bigcirc
208	Km 355.6	36.503667	-6.49372222	Field Survey	BCL 355.6	
200	Km 355.9	36.499879	-6.493347	Aerial Photo	DCL 555.0	\bigcirc
210	Km 356.1	36.499806	-6.49338889	Field Survey	BCL 356.1	
210	Km 357	36.490526	-6.4899394	Aerial Photo	50.1	
212	Km 357.2	36.488627	-6.4892458	Aerial Photo		
213	Km 357.7	36.484893	-6.488927	Aerial Photo		
214	Km 358.1	36.481258	-6.489797	Aerial Photo		
215	Km 358.8	36.475073	-6.487282	Aerial Photo		
216	Km 359+0.3	36.471237	-6.488029	Aerial Photo		
217	Km 359+0.7	36.467257	-6.487649	Aerial Photo		\bigcirc
218	Km 359+1.4	36.464321	-6.486841	Aerial Photo		
219	Km 359+2.3	36.45938	-6.484266	Aerial Photo		
220	Km 359+2.8	36.457985	-6.48265	Aerial Photo		
221	Km 359+3.5	36.455677	-6.480101	Aerial Photo		\bigcirc
222	Km 360	36.45375	-6.47894444	Field Survey	BCL 360	
223	Km 360.6	36.4495	-6.47594444	Field Survey	BCL 360.6	\bigcirc
224	Km 360.9	36.44875	-6.47283333	Field Survey	BCL 360.9	
225	Km 361.1	36.447889	-6.47125	Field Survey	BCL 361.1	
226	Km 361.9	36.443444	-6.46902778	Field Survey	BCL 361.9	
227	Km 362.1	36.440583	-6.46622222	Field Survey	BCL 362.1	\bigcirc
228	Km 362.5	36.438361	-6.46277778	Field Survey	PCL 362.5	\bigcirc
229	Km 362.9	36.438333	-6.46263889	Field Survey	BCL 362.9	
230	Km 363.3	0	0	Field Survey	BCL 363.3	
231	Km 363.7	36.429861	-6.45919444	Field Survey	BCL 363.7	
232	Km 364.2	36.425361	-6.45641667	Field Survey	BCL 364.2	
233	Km 364.4	36.42375	-6.45541667	Field Survey	BCL 364.4	
						\bigcirc
						\bigcirc
						\bigcirc

APPENDIX N

THE LOCATION OF CULVERTS

The location of culvert from Kilosa to Kidete

The location of culvert from Kidete to Gulwe

APPENDIX O

RIVERBED MATERIAL SAMPLING AND GRAIN SIZE ANALYSIS

0.1 The Objective

The objective of this investigation is to grasp the real condition of the material of discharged sediment. For that purpose, investigation is conducted at the mainstream, tributaries, and for the comparison, at cultivated lands along the river.

O.2 Actual Work Schedule

The schedule of planned activities shows the series of activities undertaken for a period starting late week of February 2015 to May 2015 (See Figure).

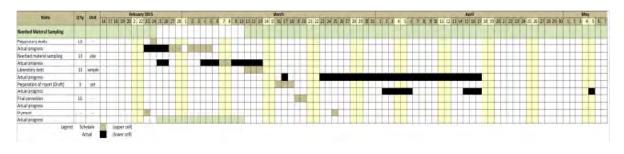


Figure O.1: Actual Schedule

O.3 Existing Agency

The following persons and institutions are gratefully acknowledged for assisting with information presented in this report:

• **DUNNY GEOINFOMATICS CONSULTANCY & SERVICES** Boma Road, P.O. Box 371, Morogoro, Tanzania

Authors	Association	Position and Component	Contact
Dunford Mateso	Dunny	Technical Advisor	dunnygcs@gmail.com
Eng. Maximillian	Dunny	Group Team	maximilliansereka@gmail.com
Sereka		Leader-Hydrology and	
		Water Resources	
		Engineering	
Rosemary	Dunny	Hydrology and Hydraulic	rmasikini@gmail.com
Masikini		(Team Leader-Sampling)	
Asha Msoka	Dunny	Environmental Expert	ashamsoka@gmail.com
Ernest Lema	Dunny	Senior Hydrology	elema@yahoo.com
		Technician	
Dr. Muhaiki	SUA-Laboratory	Head SUA Soil	konsolatha@yahoo.com
		Laboratory-TSS and River	
		bed analysis	

Table O.1: Persons and Institutions

0.4 Methodology and Location of Sampling

0.4.1 Method of Sampling and Laboratory Test

The riverbed material sampling is conducted at the 13 sites by taking materials on the surface of riverbed and cultivated land. Sampled material should be 0.20 m in depth, 0.30 m in width and length. And laboratory test is conducted about a total of 26 sampling.

O.4.2 Sampling of Riverbed Material

The locations of riverbed material sampling are as shown in Figure O.2 and Table O.2.

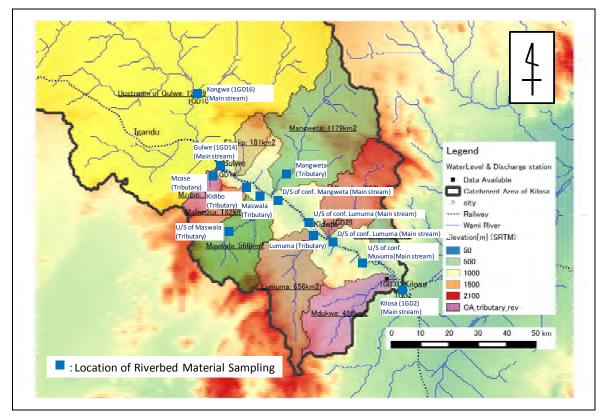


Figure 0.2: Location of Riverbed Material Sampling

	Site	Latitude (S)	Longitude (E)	Ana No	Remarks
1	Kongwa (1GD16) (Main stream)	6°13'02.25"	36°19'37.41"	1083	LB
1	Kongwa (TODTO) (Walli stream)	0 13 02.23	30 19 37.41	1084	Middle of river
2	Gulwe (1GD14) (Main stream)	6°26'57.78"	36°24'48.91"	1068	RB
2	Guiwe (TOD14) (Wall stream)	0 20 37.78	30 24 46.91	1070	Middle of river
3	Massa (Tributan)	6°27'22.20"	36°24'10.96"	1067	LB
3	Mzase (Tributary)	6*2722.20*	36°24 10.96"	1069	Cult land
4	Kidibo (Tributary)	(921)22 111	26922156 021	1065	RB
4	Kidibo (Ilibutary)	6°31'33.11"	36°32'56.93"	1066	Cult land
5	Maswala (Tributary)	6°34'51.06"	36°31'36.79"	1080	LB
5	Maswala (IIIbulary)	0 34 31.00	50 51 50.79	1082	Middle of river
6	U/S of Maswala (Tributary)	6°35'10.52"	36°31'37.35"	1079	LB
0	0/S of Maswala (Tribulary)	0 33 10.32	50 51 57.55	1081	Cult land
7	Manager (Talkatana)	6°26'30.85"	26929125 021	1071	RB
7	Mangweta (Tributary)	6*26'30.85*	36°38'25.93"	1072	Cult land
				1073	RB
8	D/S of conf. Mangweta (Main stream)	6°32'27.71"	36°34'54.92"	1074	Cult land
_				1060	RB
9	U/S of conf. Lumuma (Main stream)	6°38'59.72"	36°42'15.13"	1061	Cult land
				1063	Cult land
10	Lumuma (Tributary)	6°38'56.82"	36°42'19.56"	1064	RB
11	D/S of conf Lymmun (Main stream)	(929)50 221	36°42'28.19"	1059	RB
11	D/S of conf. Lumuma (Main stream)	6°38'59.23"	36°42′28.19″	1062	LB
12	U/S of conf. Muvuma (Main stream)	6°44'36.64"	36°54'8.60"	1077	LB
12		0 44 50.04	50 54 8.00	1078	RB
13	Kilosa (1GD2) (Main stream)	6°49'51.84"	36°59'5.05"	1075	RB
15		0 49 51.64	30 39 3.03	1076	RBUB

Table 0.2: Site Location

Ana No: Analysis No, U/S of conf:Upstream of confluence, D/S of conf: Downstream of confluence, LB:Left Bank, RB:Right Bank, Cult: Cultivated land, RBUB:Right bank upstream of bridge

The specific investigations are shown as follows.

This site is located at Kongwa of the Kinyasungwe River. In this site, two samples were taken on the left bank and the middle of the river (Date: 26 Feb. 2015). And Analysis number of each site is shown in Figure O.3 (Ex: Ana 1083).

Sampling on the left bank (Ana No. 1083)

Sampling on the middle of the river (Ana No. 1084) Figure O.3: Site No. 1 This site is located at Gulwe of the Kinyasungwe River. In this site, two samples were taken on the right bank and the middle of the river (Figure O.4, Date: 26 Feb. 2015).

Sampling on the right bank(Ana No. 1068)

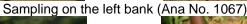

Sampling on the middle of the river (Ana No. 1070)

Figure O.4: Site No. 2

This site is located at Gulwe of the Mzase River. In this site, two samples were taken on the left bank and on the cultivated land (Figure O.5, Date: 26 Feb. 2015).

Sampling on the cultivated land (Ana No. 1069)

Figure O.5: Site No. 3

This site is located at the downstream of the Kidibo River. In this site, two samples were taken on the right bank and on the cultivated land (Figure O.6, Date: 11 Mar. 2015).

Sampling on the right bank (Ana No. 1065)

Sampling on the cultivated land (Ana No. 1066)

Figure O.6: Site No. 4

This site is located at Godegode of the Maswala River. In this site, two samples were taken on the left bank and the middle of the river (Figure O.7, Date: 11 Mar. 2015).

Sampling on the left bank (Ana No. 1080)

Sampling on the middle of the river (Ana No. 1082)

Figure O.7: Site No. 5

This site is located at the upstream of the Maswala River. In this site, two samples were taken on the left bank and on the cultivated land (Figure O.8, Date: 11 Mar. 2015).

Sampling on the cultivated land (Ana No. 1081)

Figure O.8: Site No. 6

This site is located at Mbori of the Mangweta River. In this site, two samples were taken on the right bank and on the cultivated land (Figure O.9, Date: 06 Mar. 2015).

Sampling at the right bank (Ana No. 1071)

Sampling on cultivated land (Ana No. 1072)

Figure O.9: Site No. 7

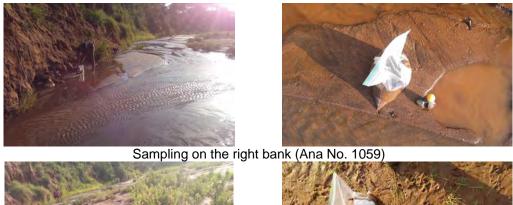
This site is located at the downstream of confluence of the Mangweta River. In this site, two samples were taken on the right bank and on the cultivated land (Figure 0.10, Date: 13 Mar. 2015).

Sampling on cultivated land (Ana No. 1074)

Figure O.10: Site No. 8

This site is located at the upstream of confluence of the Lumuma River. In this site, two samples were taken on the right bank and on the cultivated land (Figure 0.11, Date: 11 Mar. 2015).

Figure 0.11: Site No. 9


This site is located at Kidete of the Lumuma River. In this site, two samples were taken on the right bank and on the cultivated land (Figure O.12, Date: 05 Mar. 2015).

Sampling on the right bank (Ana No. 1064)

Figure O.12: Site No. 10

This site is located at the downstream of confluence of the Lumuma River. In this site, two samples were taken on the left bank and the right bank of the river (Figure 0.13, Date: 11 Mar. 2015).

Sampling on the left bank (Ana No. 1062)

Figure O.13: Site No. 11

This is located at the upstream of confluence of the Muvuma River. In this site, two samples were taken on the left bank and the right bank of the river (Figure 0.14, Date: 12 Mar. 2015).

Sampling on the right bank (Ana No. 1078)

Figure O.14: Site No. 12

This site is located at Kilosa of the Mkondoa River. In this site, two samples were taken on the right bank and the right bank upstream of the bridge (Figure 0.15, Date: 25 Feb. 2015).

Sampling on the right bank (Ana No. 1075)

Sampling on the right bank upstream of the bridge (Ana No. 1076)

Figure O.15: Site No. 13

O.5 Laboratory Test of Material

O.5.1 Methodology of Test

Samples obtained at the sites are brought in the laboratory for analysis of grain size distribution. Sieve analysis was conducted as analysis of particle size distribution of the sampled riverbed materials.

From the result of the size analysis of each sample, a particle size gradation curve with an accumulated percentage finer as the ordinate and a sediment diameter in the logarithm scale as abscissa is described.

0.5.2 Result of Grain Size Analysis

(1) Comparison of Each River

Table O.3 shows the grain size distribution of the riverbed materials in the Kinyasungwe mainstream, tributaries and on the cultivated land along these rivers. Classification of the grain size is as follows.

- clay = <0.002 mm
- silt = 0.002 0.02 mm
- fine sand = 0.02–0.20 mm
- coarse sand = 0.20–2.0 mm
- gravel = >2.0 mm

Distribution		Lumuma Ms D RB (1059)	Lumuma Ms U RB (1060)	Lumuma Ms U Cult (1061)	Lumuma Ms D LB (1062)	Lumuma Tr Cult (1063)	Lumuma Tr RB (1064)	Kidibo Tr RB (1065)
Clay	0.002	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Silt	0.02	3.44	4.36	10.00	7.00	19.69	5.26	7.57
Very fine sand/coarse silt	0.075	4.00	5.00	11.95	12.69	22.94	5.26	10.00
Medium sand	0.25	8.26	8.36	21.95	20.91	51.20	80.80	25.29
Granule/very coarse sand	2	91.42	92.44	95.26	94.78	93.57	83.90	100.00
Pebble	4	99.75	98.87	99.44	98.74	99.40	84.91	100.00
Total (%)		100.00	100.00	100.00	100.00	100.00	100.00	100.00
Distribution		Kidibo Tr Cult (1066)	Mzase Tr LB (1067)	Gulwe Ms RB (1068)	Mzase Tr Cult (1069)	Gulwe Ms Md (1070)	Mangweta Tr RB (1071)	Mangweta Tr Cult (1072)
Clay	0.002	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Silt	0.02	2.74	22.00	25.04	9.00	1.00	5.04	7.00
Very fine sand/coarse silt	0.075	4.00	27.04	30.00	10.04	8.04	6.00	12.98
Medium sand	0.25	7.74	52.04	55.04	19.04	9.04	11.04	29.98
Granule/very coarse sand	2	93.28	96.68	100.00	100.00	100.00	100.00	96.58
Pebble	4	97.68	99.72	100.00	100.00	100.00	100.00	99.90
Total (%)		100.00	100.00	100.00	100.00	100.00	100.00	100.00
Distribution		Mangweta Ms D RB (1073)	Mangweta Ms D Cult (1074)	Kilosa Ms RB (1075)	Kilosa Ms RBUB (1076)	Muvuma Ms U LB (1077)	Muvuma Ms U RB (1078)	Maswala Tr U LB (1079)
Distribution	0.002	0	0	Kilosa Ms RB				Maswala Tr U
	0.002	D RB (1073)	D Cult (1074)	Kilosa Ms RB (1075)	RBUB (1076)	LB (1077)	RB (1078)	Maswala Tr U LB (1079)
Clay		D RB (1073)	D Cult (1074) 0.00	Kilosa Ms RB (1075) 0.00	RBUB (1076) 0.00	LB (1077)	RB (1078)	Maswala Tr U LB (1079) 0.00
Clay Silt	0.02	D RB (1073) 0.00 4.78	D Cult (1074) 0.00 9.99	Kilosa Ms RB (1075) 0.00 1.04	RBUB (1076) 0.00 2.00	LB (1077) 0.00 3.00	RB (1078) 0.00 1.72	Maswala Tr U LB (1079) 0.00 1.00
Clay Silt Very fine sand/coarse silt	0.02 0.075	D RB (1073) 0.00 4.78 5.00	D Cult (1074) 0.00 9.99 24.17	Kilosa Ms RB (1075) 0.00 1.04 6.00	RBUB (1076) 0.00 2.00 6.79	LB (1077) 0.00 3.00 4.04	RB (1078) 0.00 1.72 5.00	Maswala Tr U LB (1079) 0.00 1.00 5.56
Clay Silt Very fine sand/coarse silt Medium sand	0.02 0.075 0.25	D RB (1073) 0.00 4.78 5.00 16.55	D Cult (1074) 0.00 9.99 24.17 36.11	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04	RBUB (1076) 0.00 2.00 6.79 9.79	LB (1077) 0.00 3.00 4.04 7.04	RB (1078) 0.00 1.72 5.00 6.72	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand	0.02 0.075 0.25	D RB (1073) 0.00 4.78 5.00 16.55 97.10	D Cult (1074) 0.00 9.99 24.17 36.11 97.54	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00	RBUB (1076) 0.00 2.00 6.79 9.79 9.721	LB (1077) 0.00 3.00 4.04 7.04 100.00	RB (1078) 0.00 1.72 5.00 6.72 95.51	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble	0.02 0.075 0.25	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 0.00 100.00 100.00	RBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%)	0.02 0.075 0.25	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB	D Cult (1074) 0.000 9.999 24.17 36.11 97.54 99.89 100.00 Maswala Tr U	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00 100.00 100.00 Maswala Tr Md	RBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 Kongwa Ms Md	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution	0.02 0.075 0.25 2 4	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080)	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Maswala Tr U Cult (1081)	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00 100.00 100.00 Maswala Tr Md (1082)	RBUB (1076) 0.00 2.00 0.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083)	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 100.00 Kongwa Ms Md (1084)	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution Clay	0.02 0.075 0.25 2 4 0.002	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080) 0.00	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Maswala Tr U Cult (1081) 0.00	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00 100.00 100.00 Maswala Tr Md (1082) 0.00	RBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083) 0.00	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 Kongwa Ms Md (1084) 0.00	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution Clay Silt	0.02 0.075 0.25 2 4 0.002 0.002	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080) 0.00 1.82	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Maswala Tr U Cult (1081) 0.00 1.41	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00 100.00 100.00 Maswala Tr Md (1082) 0.00 2.00	RBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083) 0.00 10.00	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 100.00 Kongwa Ms Md (1084) 0.00 4.00	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution Clay Silt Very fine sand/coarse silt	0.02 0.075 2 4 0.002 0.002 0.02 0.075	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080) 0.00 1.82 5.00	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Cult (1081) 0.00 1.41 20.00	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 100.00 100.00 100.00 Maswala Tr Md (1082) 0.00 2.00 3.99	KBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083) 0.00 10.00 13.98	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 Kongwa Ms Md (1084) 0.00 4.00 4.16	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution Clay Silt Very fine sand/coarse silt Medium sand	0.02 0.075 2 4 0.002 0.002 0.025 0.25	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080) 0.00 1.82 5.00 6.82	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Maswala Tr U Cult (1081) 0.00 1.41 20.00 43.31	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 0.00 100.00 100.00 100.00 Maswala Tr Md (1082) 0.00 2.00 3.99 5.99	KBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083) 0.00 10.00 13.98 23.98	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 Kongwa Ms Md (1084) 0.00 4.00 4.16 10.16	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64
Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand Pebble Total (%) Distribution Clay Silt Very fine sand/coarse silt Medium sand Granule/very coarse sand	0.02 0.075 0.25 2 4 0.002 0.002 0.002 0.075 0.25 2	D RB (1073) 0.00 4.78 5.00 16.55 97.10 99.38 100.00 Maswala Tr LB (1080) 0.000 1.82 5.00 6.82 96.92	D Cult (1074) 0.00 9.99 24.17 36.11 97.54 99.89 100.00 Maswala Tr U Cult (1081) 0.00 1.41 20.00 43.31 95.07	Kilosa Ms RB (1075) 0.00 1.04 6.00 11.04 0.00 100.00 100.00 100.00 Maswala Tr Md (1082) 0.00 2.00 3.99 5.99 85.15	KBUB (1076) 0.00 2.00 6.79 9.79 97.21 98.93 100.00 Kongwa Ms LB (1083) 0.00 13.98 23.98 88.67	LB (1077) 0.00 3.00 4.04 7.04 100.00 100.00 Kongwa Ms Md (1084) 0.00 4.00 4.16 10.16 91.98	RB (1078) 0.00 1.72 5.00 6.72 95.51 99.45	Maswala Tr U LB (1079) 0.00 1.00 5.56 6.56 93.19 97.64

Table 0.3: Grain Size Distribution

Ms:Main stream, U:Upstream of confluence, D: Downstrea of confluence, LB:Left Bank, RB:Right Bank, Cult: Cultivated, RBUB:Right bank upstream of bridge

Figure O.16 shows the grain size accumulation curve of riverbed deposition at Gulwe site in mainstream of the Kinyasunguwe River and that of riverbed deposition in the Mzase, Kidibo, Maswala, Mangweta and Lumuma Rivers.

According to this Figure, the characteristics of the grain size distribution are as follows.

- Material of riverbed deposition in Mzase and Gulwe which consists of materials from Mzase River is almost the same composition. And these materials mainly consist of silt, medium sand and granule. The ratio accounts for about 50%.
- Materials in Kidibo, Maswala, Mangweta River almost consist of granule.
- Material in Lumuma River mainly consists of medium sand.

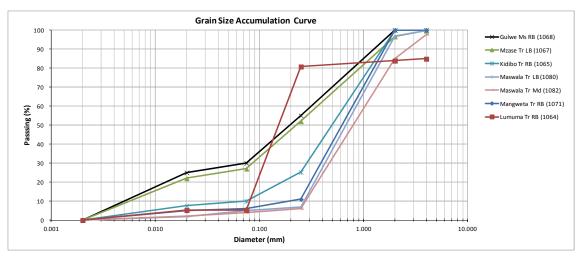


Figure 0.16: Grain Size Accumulation Curve

Figure O.17 shows the grain size accumulation curve of riverbed deposition in the Maswala River and that of the cultivated land along the river.

According to this Figure, the characteristics of the grain size distribution are as follows.

• Material of riverbed deposition in Maswala mainly consists of granule.

On the other hand, that of the cultivated area shows that the composition ration of very find sand and medium sand accounts for a high ratio compared with the riverbed one. The ratio account for about 40%.

Figure 0.17: Grain Size Accumulation Curve

Figure O.18 shows the grain size accumulation curve of riverbed deposition and cultivated area at downstream of confluence of the Mangweta River and that of riverbed deposition and cultivated area in the Mangweta River.

According to this Figure, the characteristics of the grain size distribution are as follows.

• Material of riverbed deposition in both the Kinyasungwe and the Mangweta River mainly consists of granule.

• On the other hand, that of cultivated land shows that the composition ration of very find sand and medium sand accounts for a high ratio compared with the riverbed. The ratio accounts for about 30%.

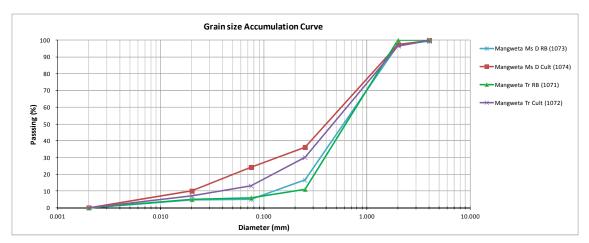


Figure 0.18: Grain Size Accumulation Curve

Figure O.19 shows the grain size accumulation curve of riverbed deposition and cultivated land at downstream of confluence of the Lumuma River and that of riverbed deposition and cultivated area in the Lumuma River.

According to this Figure, the characteristics of the grain size distribution are as follows.

- Material of riverbed deposition in the Kinyasungwe River mainly consists of granule.
- On the other hand, that of riverbed deposition in the Lumuma River shows that the composition ration of medium sand accounts for a high ratio compared with the riverbed one. The ratio accounts for about 75%.
- And that of cultivated land in the Lumuma River shows a high ratio of very find sand and medium sand.

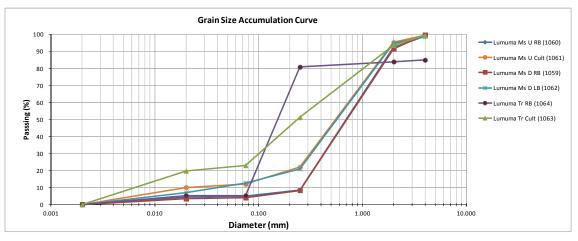


Figure 0.19: Grain Size Accumulation Curve

Figure O.20 shows the grain size accumulation curve of riverbed deposition at upstream and downstream sites of confluence of each river.

According to this Figure, the characteristics of the grain size distribution are as follows.

- Material of riverbed deposition in the Kinyasungwe River mainly consists of granule. The ratio accounts for about 70%–90%.
- But, that of Gulwe site consists of silt, medium sand and granule. Because this is presumed that the material of Gulwe site consists of the discharge materials from the Mzase River as mentioned above. The ratio below medium sand accounts for about 55%.

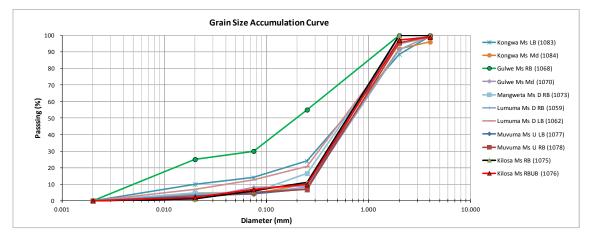


Figure O.20: Grain Size Accumulation Curve

Figure O.21 shows the grain size accumulation curve of cultivated lands along each river.

According to this Figure, the characteristics of the grain size distribution are as follows.

- Material of cultivated land generally consists of silt, very find sand, medium sand and granule.
- This is presumed that cultivated lands are less affected by the stream flow. But the ratio of clay is not observed.

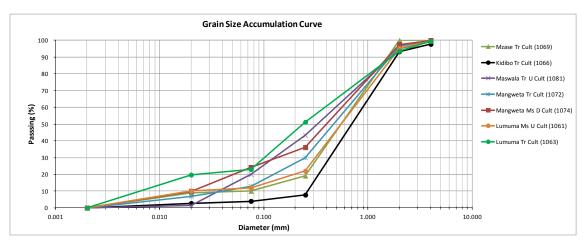


Figure 0.21: Grain Size Accumulation Curve

(2) Summary

- The riverbed materials in the Kinyasungwe River and the Mkondoa River consist of granule. The ratio accounts for about 70%–90%.
- That of the cultivated area and the Mzase River shows that the composition ration of very find sand and medium sand accounts for a high ratio compared with the riverbed one. The ratio account for about 40% to 50%.
- Fine materials below medium sand in the main stream are presumed to be flowed out easily to the downstream as wash load.
- The riverbed materials of tributary near the sediment production source consist of the fine material compared with the mainstream of the Kinyasungwe River and the Mkondoa River.
- Materials of cultivated land consist of more fine material such as silt, very fine sand and medium sand.

APPENDIX P

DISCHARGE MEASUREMENT AND SUSPENDED LOAD SAMPLING

P.1 The Objective

P.1.1 Main Objective

The main objective of the work is to measure river discharge and take samples of suspended load during flood in order to understand characteristics of flood flow and sediment transport in the upstream area of Kilosa.

P.1.2 Specific Objective

During the survey work the sub-contractor also observes the importance of the following necessary information;

- To conduct cross-section survey at each gauging station and overlaying with the existing cross section surveyed during the construction and installation of staff gauges.
- To examine the change in River bed (Siltation/Scouring) at the measuring point.
- Collecting rainfall data in the near stations within the catchment.

P.2 Scope of Work

The work covered the following parts:

- Installation of water level gauges
- Monitoring of Water Level
- Discharge Measurements during floods
- Suspended Load Sampling and Laboratory Test

P.3 Actual Work Schedule

The planned schedule of activities as per attached it shows the series of activities for the project undertaken for a period starting late of February 2015 to end of May 2015. The planned early schedule was affected by climatic (weather) condition especially the rain season (Figure P.1).

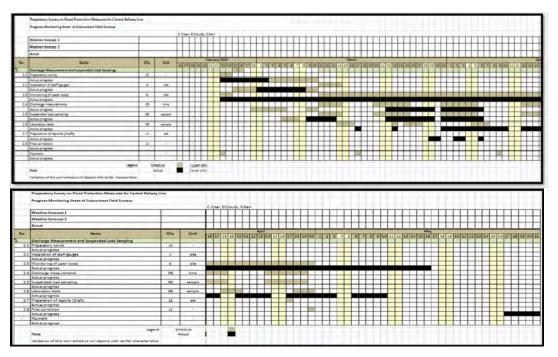
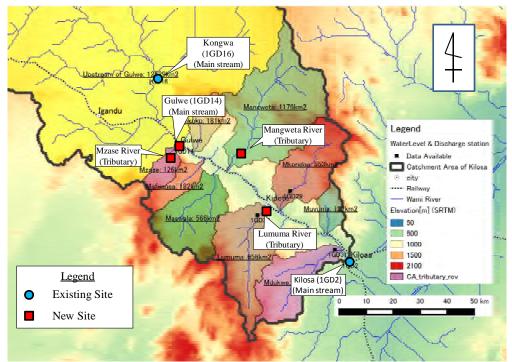


Figure P.1: Actual Work Schedule

P.4 Discharge Measurement and Sampling

P.4.1 Location of Works


The work was conducted at six gauging stations as shown in the table below. The location for the Work is shown on the location map of the proposed gauging stations in Table P.1. The location is subject to change in the course of the Work depending on site conditions (See Figure P.2). Table P.1 shows the newly constructed station's details namely; Kinyasungwe at Gulwe, Mzase at Gulwe, Lumuma at Kidete and Mangweta at Mbori and existing stations namely Kinyasungwe at Kongwa and Mkondoa at Kilosa.

Also summarizes the newly constructed station's details namely; Kinyasungwe at Gulwe, Mzase at Gulwe, Lumuma at Kidete and Mang'weta/Mbori and existed stations namely Kinyasungwe at Kongwa/Dodoma and Mkondoa at Kilosa for flood monitoring under the project (Preparatory survey on flood protection measures for central railway between Kilosa and Gulwe).

Table P.1: List of Gauging Stations for Flood Monitoring

		Existing	Locati	on GPS	Gauge	No. of	Ways of discharge	Name of gauge
No.	Station Name	or New	Lat	Long	ranges	gauges	measurements	reader
1	Mkondoa at Kilosa	Existing	-6.83158	36.97822	1–5	5	Bridge/Float	Salehe Kaombwe
2	Lumuma at Kidete	New	-6.64912	36.70543	1–2	2	Bridge/Float	Nangise Mkuya
3	Mangweta at Mbori	New	-6.4419	36.64054	1–2	2	Float/Boat	Peter Samwel
4	Kinyasungwe at Gulwe	New	-6.44938	36.41359	1–3	3	Bridge/Float/ Current Meter	Fidia George
5	Kinyasungwe at Kongwa	Existing	-6.21729	36.32706	0.5–1 1–4	4	Bridge/Float/boat	Anderson M.
6	Mzase at Gulwe	New	-6.45617	36.40305	1–4	4	Railwaybridge/ Float	Festo Peter

Source: JICA Study Team

Source: JICA Study Team

Figure P.1: Location Map

P.4.2 Installation of Gauges

(1) Cross Section Survey

The river cross-section was preceded by transect walk for suitable site selection and re-surveyed to determine the best site and maximum elevation and the point of zero flow for gauge installation.

The site is located at Gulwe of the Kinyasungwe River. In this site, three gauges were installed at upstream of the bridge (Date: 4 March 2015).

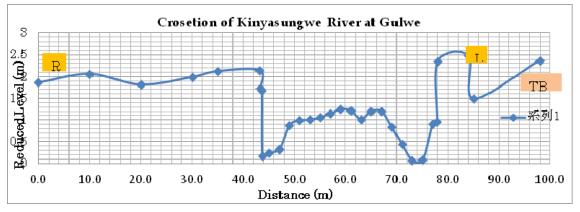


Figure P.2: Cross Section of the Kinyasungwe River at Gulwe

Figure P.3: Construction of the Water Level Gauges at Gulwe

This site is located at Gulwe of the Mzase River. In this site, four gauges were installed (Date: 4 Marchch. 2015).

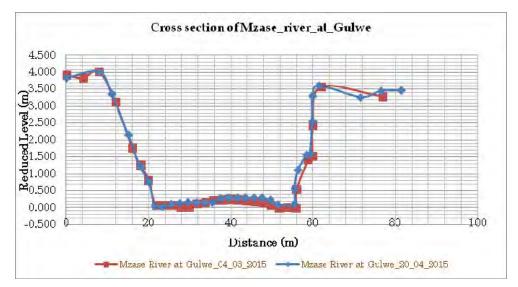


Figure P.4: Cross Section of the Mzase River at Gulwe

Figure P.5: Construction of the Water Level Gauges in the Mzase River at Gulwe

This site is located at Kidete of the Lumuma River. In this site, two water level gauges were installed (Date: 5 March 2015).

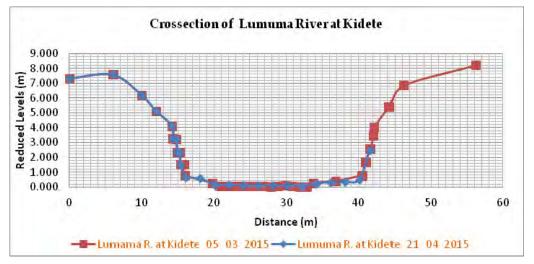


Figure P.6: Cross Section of the Lumuma River at Kidete

Figure P.7: Construction of the Water Level Gauges at Kidete

This site is located at Mbori of the Mangweta River. In this site, two water level gauges were installed (Date: 6 March 2015).

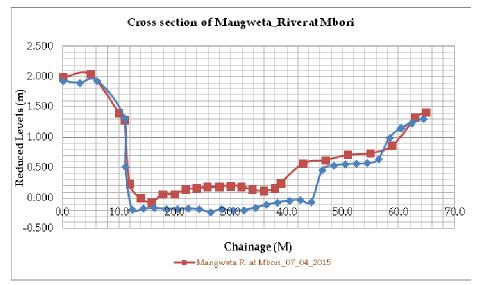


Figure P.8: Cross Section of the Mangweta River at Mbori

Figure P.9: Constructing the Water Level Gauges at Mbori

After the installation of staff gauges the water levels at every gauging station were managed and recorded daily at the intervals of 0600 hrs, 1200 hrs and 1800 hrs respectively by selected local observers.

Next two site are the existing sites.

This site, which is the existing site, is located at Kongwa of the Kinyasungwe River.

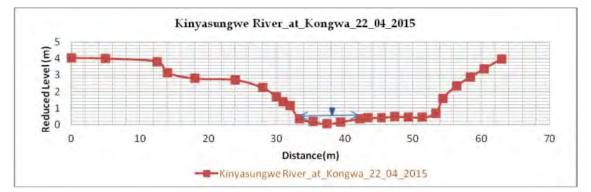


Figure P.10: Cross Section of the Kinyasungwe River at Kongwa

Figure P.11: Existing Gauges at Kongwa

This site, which is the existing site, is located at Kilosa of the Mangweta River.

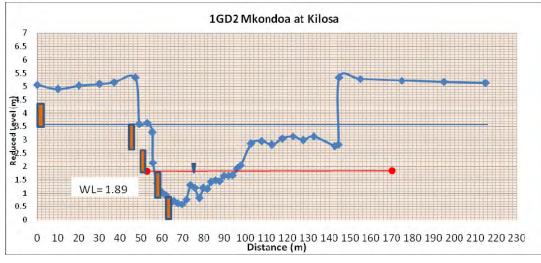


Figure P.12: Cross Section of the Mkondowa River at Kilosa

Figure P.13: Existing Gauges at Kilosa

P.4.3 Discharge Measurements

(1) Methodology of Discharge Measurements

Discharge measurement was done using float method, Current Meter, Leveling and chainage which were used as method to conduct flow campaign in six (6) times at each targeted river gauging station at different water level and the tools used were; Leveling machine and Current meter (Universal and Pygmy).

Also the wetted area depth was determined by sounding depth rod and calculated on field as illustrated in the figure below:

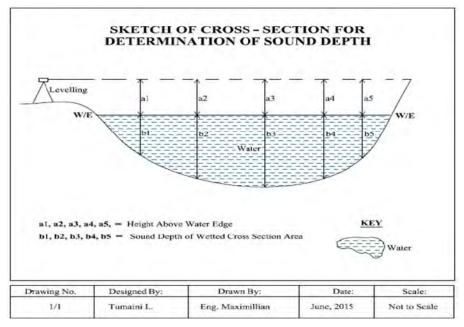


Figure P.14: Sketch of Cross-Section for Determination of the Sound Depth in the Wetted Area

Table P.2 shows the number of flow measurements in each site.

No.	Station Name	Proposed Measurements No.	Actual Done
1	Mkondoa/Kilosa	6	7
2	Kinyasungwe/Kongwa	6	6
3	Kinyasungwe/Gulwe	6	5
4	Mzase/Gulwe	6	5
5	Mangweta/Mbori	6	6
6	Lumuma/Kidete	6	6
	Total of Measurements	36	35

Table P.2: Number of Discharge Measurements Done at Each Station

(2) Result of Discharge Measurement

Discharge campaign was conducted by different team of experts camping near respective area where measurement sited to be carried. Unfortunately due to climatic condition, it was not possible to capture the full range of expected maximum flood area due to limited amount of rainfall pattern within the catchment during the time of consideration. However several numbers of measurements were carried on but at medium level depth, basically this was associated with small amount of rainfall within the catchments.

Table P.3: Flow Measurements the Mkondoa River at Kilosa

								(at Kilosa)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m/s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
25/03/2015	78.816	37.841	2.083	0.93	1.87	41	1523-1536	Vid_20150325_Mkondoa
26/03/2015	77.486	37.04	2.0919	0.90	1.80	41	1810-1810	Vid_20150326_Mkondoa
26/03/2015	85.00	42.33	2.008	1.00	1.89	41.5	1553-1707	-
27/03/2015	93.961	43.14	2.178	1.08	1.90	41.5	1624-1630	Vid_20150327_Mkondoa
30/03/2015	72.086	35.835	2.012	0.89	1.65	40.4	08:15-08:52	Vid_20150330_Mkondoa
11/4/2015	43.083	30.45	1.415	0.76	1.61	41	0817-0829	Vid_20150411_Mkondoa
3/5/2015	65.064	33.65	1.934	0.84	1.77	41	0824-0842	Vid_20150503_Mkondoa

Table P.4: Flow Measurements Station Number 1GD 16 Kinyasungwe at Kongwa

								(1GD 16 at Kongwa)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m/s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
30/03/2015	0.200	1.603	0.125	0.247	0.38	4.8	1040-1106	-
31/03/2015	0.223	1.605	0.139	0.245	0.38	4.8	1636-1700	-
4/4/2015	0.200	1.585	0.126	0.246	0.38	4.8	0849-0913	-
6/4/2015	0.085	1.71	0.050	0.212	0.37	4.8	0820-0840	-
12/4/2015	0.261	1.75	0.149	0.421	0.6	7	0921-0933	-
3/5/2015	0.559	2.53	0.222	0.513	0.64	9	0856-0910	Vid_20150503_Kongwa

Table P.5: Flow Measurements the Kinyasungwe River at Gulwe

							(Kinya	asungwe River at Gulwe)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m/s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
11/4/2015*	0.385	0.668	0.576	0.13	0.85	5.5	0828-0838	-
12/4/2015*	0.162	0.620	0.261	0.12	0.79	5	0806-0817	-
13/04/2015**	0.667	1.427	0.467	0.14	0.89	8	0913-0930	Vid_20150413_Gulwe
20/04/2015*	0.296	1.56	0.189	0.12	0.78	4.8	1423-1433	-
3/5/2015*	0.019	0.255	0.075	0.100	0.66	3	1012-1058	-

Method :* by Pygm Current meter, **Float method

								(Mzase River at Gulwe)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m/s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
5/4/2015	23.0169	14.891	1.546	0.45	0.58	36	0725-0733	Vid_20150405_Mzase
6/4/2015	32.054	19.21	1.669	0.57	0.70	37	0718-0730	Vid_20150406_Mzase
12/4/2015	1.075	1.23	0.873	0.09	0.10	30	0810-0821	-
13/04/2015	3.808	4.26	0.893	0.17	0.20	36	0645-0655	-
13/04/2015	0.095	0.401	0.238	0.00	0.02	4	1300-1306	-

Table P.7: Flow Measurements the Mangweta River at Mbori

							(1	Mangweta River at Mbori)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m/s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
31/03/2015	23.006	14.767	1.558	0.46	0.04	32.40	0850-0912	Vid_20150331_Mangweta
1/4/2015	23.094	14.967	1.543	0.48	0.04	32.60	0930-0942	Vid_20150401_Mangweta
3/4/2015	24.415	15.676	1.558	0.42	0.04	32.50	1324-1342	Vid_20150403_Mangweta
11/4/2015	31.215	18.833	1.657	0.49	0.08	33.00	0743-0753	Vid_20150411_Mangweta
12/4/2015	23.416	15.040	1.557	0.43	0.04	32.50	0832-0846	Vid_20150412_Mangweta
13/04/2015	20.059	13.800	1.453	0.41	0.03	32.00	0810-0829	Vid_20150413_Mangweta

Table P.8: Flow Measurement the	Lumuma River at Kidete
---------------------------------	------------------------

								(Lumuma River at Kidete)
Date	Q (m ³ /s)	Area (m ²)	Velocity (m ³ /s)	Avg Depth (m)	WL (m)	Span (m)	Time taken	Video file name
30/03/2015	1.758	2.155	0.816	0.170	0.15	14.00	1140-1200	Vid_20150330_Lumuma
31/03/2015	1.712	2.24	0.764	0.160	0.14	14.10	0811-0825	-
1/4/2015	1.656	2.180	0.759	0.133	0.12	13.20	1200-1220	-
2/4/2015	1.307	1.560	0.838	0.152	0.12	13.1	1730-1747	-
11/4/2015	1.140	1.570	0.726	0.135	0.1	13.00	0816-0825	-
12/4/2015	1.093	1.505	0.73	0.143	0.1	12.20	0753-0803	-

(3) Rainfall

Manual Rainfall data were collected at two rain gauge located within Two Meteorological station (Ilolo met station and Kongwa met station) the data shows for the period from January to mid-May 2015 the total rainfall recorded at Ilolo was 400.3 mm and Kongwa was 329.8 mm. Some areas are completely dry and crops become destroyed by sunlight, according to history of the surrounding people this year they said it purely dry, they are expecting to suffer from fetching water in future. Some have started getting water aside river ponds.

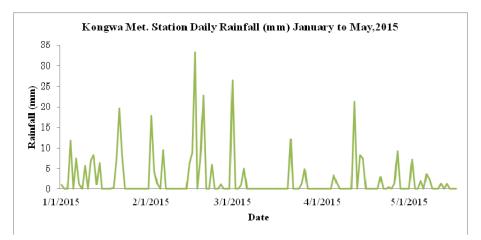


Figure P.15: Kongwa Met. Station Daily Rainfall

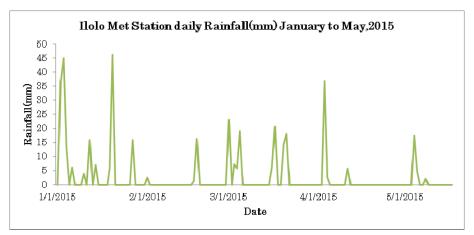


Figure P.16: Ilolo Met. Station Daily Rainfall

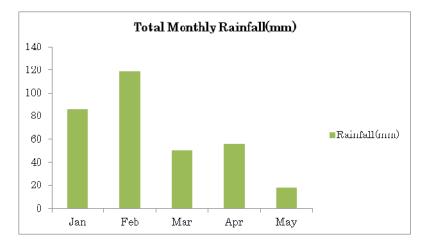


Figure P.17: Rainfall Distribution at Kongwa St. (January to May 2015)

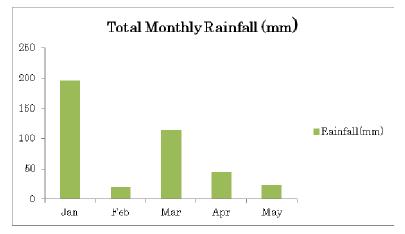


Figure P.18: Rainfall Distribution at Ilolo–Mpwapwa St. (January to May 2015)

Montl	n Jan.	Feb.	Mar.	Apr.	May	Total
Kongwa St.	86	118.7	50.9	56.3	17.9	329.8
Ilolo–Mpwapwa St.	196	20.3	114.5	45.2	24.3	400.3

Table P.9: Total Rainfall (mm)

(4) Water Level

The data from gauge readers were collected and minor correction was done, some station shows there was no much greater change in water levels, and this implies that water depends much on rainfall patterns.

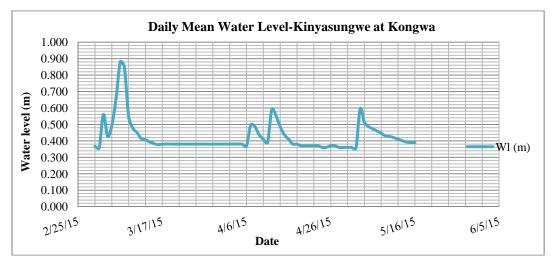
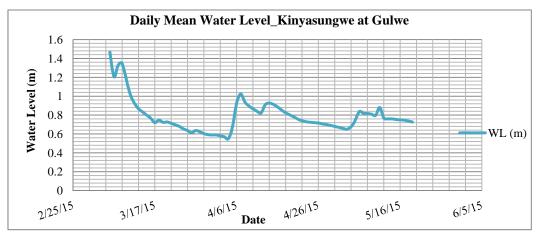



Figure P.19: Water Level at Kongwa

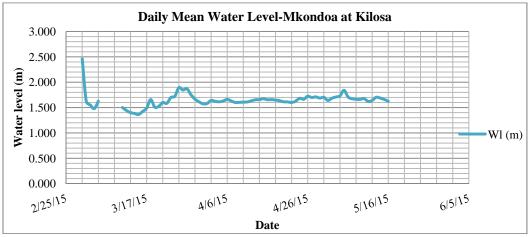
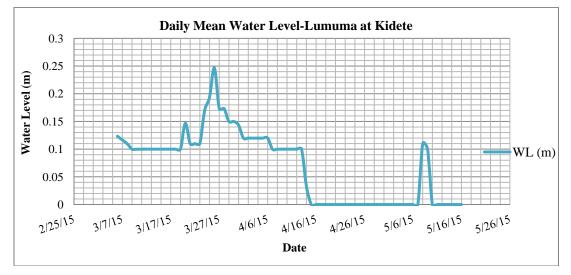
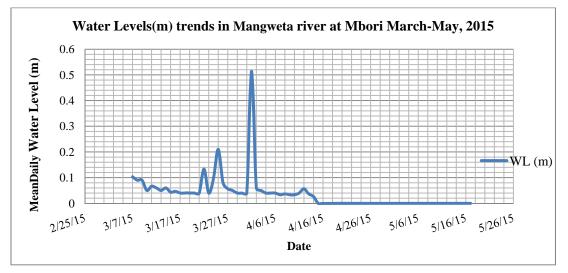




Figure P.21: Water Level at Kilosa

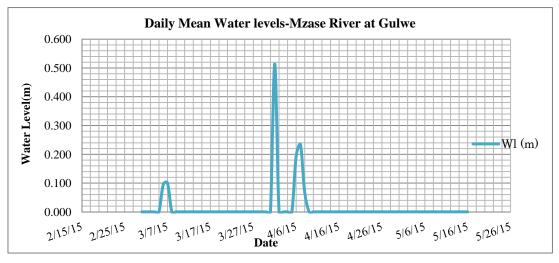


Figure P.24: Water Level at Gulwe in the Mzase River

(5) Monitoring of Water Levels by Staff Gauges

The water levels at every gauging station were managed and recorded daily at the intervals of 0600 hrs, 1200 hrs and 1800 hrs respectively by selected trained local observer.

(6) Location of Suspended Load Sampling

This site is located at Kongwa of the Kinyasungwe River. In this site, two samples were taken on the left side and middle of the river since at the right part of the river there was no water (Date: 10 March 2015).

Figure P.25: Sampling at Kongwa the Kinyasungwe River

This site is located at Gulwe of the Kinyasungwe River. In this site, three samples were taken on the left, middle and right side of the river (Date: 11 March 2015).

Figure P.26: Sampling at Gulwe of the Kinyasungwe River

This site is located at Kidete of the Lumuma River. In this site, only one sample was taken because on that day there was little water in the River (Date: 11 March 2015).

Figure P.27: Sampling at Kidete of the Lumuma River

This site is located at Kilosa of the Mkondoa River. In this site, three samples were taken on the left, middle and right side of the river (Date: 12 March 2015).

Figure P.28: Sampling at Kilosa of the Mkondoa River

This site is located at Mbori of the Mangweta River. In this site, three samples were taken on the left, middle and right side of the river (Date: 13 March 2015).

Figure P.29: Sampling at Mbori of the Mangweta River

P.4.4 Laboratory Test of Sampled Material

(1) Laboratory procedures

Laboratory procedures were as follows;

- Filtration of water samples for suspended solids was done by using an electrical
- Total Suspended Solids (TSS) operated vacuum pressure-pump fitted with glass fiber 0.45µm diameter membrane filters which were initially treated in the oven at 70°C for 24 hours. Before being used the original weight in grams of the filter membranes were taken by using a sensitive balance and then recorded. 500 ml of water sample was

filtered, and then the wet filters were dried in an oven at 103°C–105°C for 1 hour. The weights in grams of the filters with dried residue were noted.

(2) Calculations

After the laboratory analysis, the amount of suspended solids in each sample was calculated using the formula;

Suspended solids = $\frac{[F_{R}(g) - F_{E}(g)] * 1000}{\text{Sample volume (ml)}}$ (g/l)

Where;

 F_R = weight of filter with dry residue in (g) F_E = dry weight of filter in (mg)

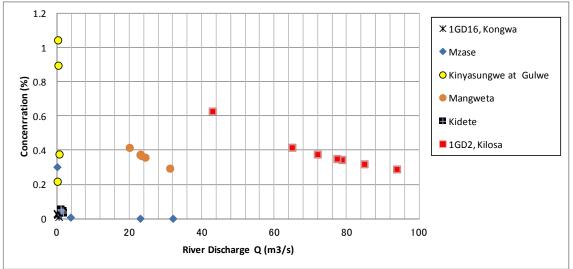
(3) Sieving and Hydrometer Analysis

Hydrometer Bouyoucos method was used for sediments/soils. Part of the sediment was separated into various size fractions and the proportion of these fractions was determined. Theoretically, the particles are assumed to be spherical having a specific gravity of 2.65 g/cm^3 .

If all other factors are constant, then the settling velocity is proportional to the square of the radius of the particle. The determination comprises all material, i.e. including gravel and coarser material, but the procedure itself is applied to the fine earth (< 2 mm) only.

The sample was shaken with a dispersing agent (calgon) and sand is separated from clay and silt with a 63-µm sieve. The clay and silt fractions are determined by the hydrometer method. And sand fractions are separated by sieving method as described by standard procedure in attachment. (See Table P.10)

No:	Descriptions of Stations	Sample Taken (Low Flow)	Sample Taken (High Flow)		
1	Kinyasungwe/Gulwe	4	15		
2	Lumuma/Kidete	1	21		
3	Mangweta/Mbori	3	18		
4	Kinyasungwe/Kongwa	3	18		
5	Mkondoa/Kilosa	3	21		
6	Mzase/Gulwe	0	18		
	Sub-Total Samples No.	14	111		
	Grand Total No.	125 (More than 29 samples collected) in low and high flow			


 Table P.10: Summary of the samples taken during low and high flow TSS

Total proposed samples (Low and High) flow was 96 but actual collected was 125 samples and analyzed in laboratory of Sokoine University of Agriculture-Morogoro (See Table P.13 to Talbe P.18).

(4) River Discharge and Concentration

Relationship between river discharge and sediment concentration is as shown in Figure P.31 and Table P.11. But, abnormal value, which is a data of 3 May 2015 of the Kinyasungwe at Gulwe, is excluded.

According to Figure P.31, the increase of concentration which is caused by the increase of the river discharge is not observed.

Source: JICA Study Team

Figure P.30: River Discharge and Sediment Concentration

River	Date	Q (m ³ /s)	TSS(Max) (g/L)	Sediment Concentration (cm^3/L^{-1})	Sediment Concentration (%)
	30/3/2015	0.20	0.70	0.26	0.026
	31/3/2015	0.22	0.64	0.24	0.024
1GD16,	4/4/2015	0.20	0.74	0.28	0.028
Kongwa	6/4/2015	0.09	0.82	0.31	0.031
	12/4/2015	0.26	0.57	0.22	0.022
	3/5/2015	0.56	0.26	0.10	0.010
	5/4/2015	23.02	0.03	0.01	0.001
	6/4/2015	32.05	0.02	0.01	0.001
Mzase	12/4/2015	1.08	0.71	0.27	0.027
	13/4/2015-1	3.81	0.20	0.08	0.008
	13/4/2016 ⁻²	0.10	8.02	3.03	0.303
	13/4/2015	0.67	10.00	3.77	0.377
Kinyasungwe	11/4/2015	0.39	23.77	8.97	0.897
at Gulwe	12/4/2015	0.16	5.77	2.18	0.218
	20/4/2015	0.30	27.70	10.45	1.045
	31/3/2015	23.01	9.90	3.74	0.374
	1/4/2015	23.09	9.97	3.76	0.376
	3/4/2015	24.42	9.50	3.58	0.358
Mangweta	11/4/2015	31.22	7.80	2.94	0.294
	12/4/2015	23.42	9.74	3.68	0.368
	13/4/2015	20.06	11.02	4.16	0.416
	30/3/2015	1.76	0.90	0.34	0.034
	31/3/2015	1.71	0.93	0.35	0.035
V:1.4.	1/4/2015	1.66	1.20	0.45	0.045
Kidete —	2/4/2015	1.31	1.21	0.46	0.046
	11/4/2015 ⁻¹	1.14	1.30	0.49	0.049
Γ	12/4/2015	1.09	1.46	0.55	0.055
	25/3/2015	78.82	9.07	3.42	0.342
	26/3/2015-1	77.49	9.23	3.48	0.348
	26/3/2015-2	85.00	8.41	3.17	0.317
1GD2, Kilosa	27/3/2015	93.96	7.61	2.87	0.287
	30/3/2015	72.09	9.92	3.74	0.374
Γ	11/4/2015	43.08	16.60	6.26	0.626
	3/5/2015	65.06	10.98	4.14	0.414

Table P.11: River Discharge and Sediment Concentr	ation
---	-------

1) Rock Density (g/cm^3)

2.65

NAME	CLIENT: THE PROJECT:	JICA study Team Detailed engineering design of permanent solution for flood-prone railway corridor and recommend control and mitigation measures between Ritiosa – Gulwe along the central railway line	ign of permanen - Gulwe along	t solution for the central ra	flood-prone rai	way corridor and	d recommend	control and mi	tig
s.	FIELD REF			total	¥¢	wtfp + sed	wt sed	TSS	
LAB NOS			DATE	ī	c0	c0	6.0	g/m1	
S/72/2015	U	MIDDLE		500	0.129	0.442	0.313	0.00063	0.626
73	GULINE MN STR,MIDDLE	MIDDLE	11-03-15	500	0.133	0.158	0.025	0.00005	0.050
74	LUMUMA MN STR,MIDDLE		11-03-15	500	0.127	0.346	0.219	0.00044	0.438
75	MANGWETA AT MBORI TSS RB	RIGHT	13-03-15	500	0.126	0.699	0.573	0.00115	1.146
76			11-03-15	500	0.128	0.172	0.044	0.00009	0.088
77	KINVASUNGWE AT LEFT BANK EDGE			500	0.131	0.177	0.046	0.00009	0.092
78				500	0.13	0.674	0.544	0.00109	1.088
79	MANGWETA AT MBORI TSS LB	LB	13-03-15	500	0.128	2.607	2.479	0.00496	4.958
80	MKONDOA AT KILOSA RIGHT	RIGHT	12-03-15	500	0.126	2.021	1.895	0.00379	3.790
81	GULWE MN STR LEFT	LEFT	11-03-15	500	0.13	0.229	0.099	0.00020	0.198
82	MKONDOA AT KILOSA MDDLE	LEFT	12-03-15	500	0.128	0.511	0.383	0.00077	0.766
83	MKONDOA AT KILOSA LEFT	LEFT	12-03-15	500	0.128	0.187	0.059	0.00012	0.118
84	2X	MIDDLE	10-03-15	500	0.133	0.142	0.009	0.00002	0.018
85	MANGWETA AT MBORI TSS MIDDLE	MIDDLE	13-03-15	500	0.135	0.160	0.025	0.00005	0.050

Table P.12: TSS Results during Low Flow and High Flow

SOKONE UNIVERSITY OF AGRICULTERS DEPARTMENT OF SOIL SCIENCE 3008 2. 0. 30× 30

Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

P-18

D (FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Kinyasugwe at Kongwa	NOS	ml	g	g	g	g/ml	g/L	mg/L
	М	W/201/2015	500	0.123	0.438	0.315	0.00063	0.630	630.000
30/3/15	L	202	500	0.126	0.426	0.300	0.00060	0.600	600.000
	R	203	500	0.123	0.473	0.350	0.00070	0.700	700.000
	М	204	500	0.123	0.408	0.285	0.00057	0.570	570.000
31/3/15	L	205	500	0.123	0.398	0.275	0.00055	0.550	550.000
	R	206	500	0.125	0.445	0.320	0.00064	0.640	640.000
	М	207	500	0.123	0.453	0.330	0.00066	0.660	660.000
4/4/15	L	208	500	0.123	0.438	0.315	0.00063	0.630	630.000
	R	209	500	0.123	0.493	0.370	0.00074	0.740	740.000
	М	210	500	0.123	0.488	0.365	0.00073	0.730	730.000
6/4/15	L	211	500	0.125	0.475	0.350	0.00070	0.700	700.000
	R	212	500	0.125	0.535	0.410	0.00082	0.820	820.000
	М	213	500	0.123	0.378	0.255	0.00051	0.510	510.000
12/4/15	L	214	500	0.123	0.363	0.240	0.00048	0.480	480.000
	R	215	500	0.123	0.408	0.285	0.00057	0.570	570.000
	М	216	500	0.123	0.243	0.120	0.00024	0.240	240.000
3/5/15	L	217	500	0.123	0.238	0.115	0.00023	0.230	230.000
	R	218	500	0.123	0.253	0.130	0.00026	0.260	260.000

Table P.13: TSS Data Sheet

Table P.14: TSS Data Sheet

Date	FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Mzase at Gulwe	NOS	ml	g	g	g	g/ml	g/L	mg/L
	R	W/219/15	500	0.124	0.139	0.015	0.00003	0.030	30.000
5/4/15	L	220	500	0.121	0.136	0.015	0.00003	0.030	30.000
	М	221	500	0.125	0.140	0.015	0.00003	0.030	30.000
	R	222	500	0.123	0.133	0.010	0.00002	0.020	20.000
6/4/15	L	223	500	0.123	0.133	0.010	0.00002	0.020	20.000
	М	224	500	0.124	0.134	0.010	0.00002	0.020	20.000
	R	225	500	0.123	0.123	0.000	0.00000	0.000	0.000
11/4/15	L	226	500	0.123	0.123	0.000	0.00000	0.000	0.000
	М	227	500	0.126	0.126	0.000	0.00000	0.000	0.000
	R	228	500	0.125	0.450	0.325	0.00065	0.650	650.000
12/4/15	L	229	500	0.123	0.488	0.365	0.00073	0.730	730.000
	М	230	500	0.123	0.478	0.355	0.00071	0.710	710.000
	R	231	500	0.124	0.214	0.090	0.00018	0.180	180.000
13/4/15	L	232	500	0.123	0.228	0.105	0.00021	0.210	210.000
	М	233	500	0.124	0.224	0.100	0.00020	0.200	200.000
	R	234	500	0.125	3.805	3.680	0.00736	7.360	7360.000
14/4/15	L	235	500	0.124	4.244	4.120	0.00824	8.240	8240.000
	М	236	500	0.123	4.133	4.010	0.00802	8.020	8020.000

Date	FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Lumuma at Kidete	NOS	ml	g	g	g	g/ml	g/L	mg/L
	R	W/237/15	500	0.123	0.573	0.450	0.00090	0.900	900.000
30/3/15	L	238	500	0.123	0.573	0.450	0.00090	0.900	900.000
	М	239	500	0.123	0.573	0.450	0.00090	0.900	900.000
	R	240	500	0.126	0.591	0.465	0.00093	0.930	930.000
31/3/15	L	241	500	0.123	0.588	0.465	0.00093	0.930	930.000
	М	242	500	0.123	0.588	0.465	0.00093	0.930	930.000
	R	243	500	0.123	0.723	0.600	0.00120	1.200	1200.000
1/4/15	L	244	500	0.124	0.724	0.600	0.00120	1.200	1200.000
	М	245	500	0.123	0.723	0.600	0.00120	1.200	1200.000
	R	246	500	0.125	0.730	0.605	0.00121	1.210	1210.000
2/4/15	L	247	500	0.125	0.730	0.605	0.00121	1.210	1210.000
	М	248	500	0.125	0.730	0.605	0.00121	1.210	1210.000
	R	249	500	0.123	0.818	0.695	0.00139	1.390	1390.000
11/4/15	L	250	500	0.123	0.818	0.695	0.00139	1.390	1390.000
	М	251	500	0.122	0.817	0.695	0.00139	1.390	1390.000
	R	252	500	0.122	0.852	0.730	0.00146	1.460	1460.000
12/4/15	L	253	500	0.123	0.853	0.730	0.00146	1.460	1460.000
	М	254	500	0.125	0.855	0.730	0.00146	1.460	1460.000
	R	255	500	0.124	0.125	0.001	0.00000	0.000	0.000
3/5/15	L	256	500	0.123	0.124	0.001	0.00000	0.000	0.000
	Μ	257	500	0.123	0.124	0.001	0.00000	0.000	0.000

Table P.15: TSS Data Sheet

Table P.16: TSS Data Sheet

Date	FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Mangweta at Mbori	NOS	ml	g	g	g	g/ml	g/L	mg/L
	R	W/258/15	500	0.124	1.274	1.150	0.00230	2.300	2300.000
31/3/15	L	259	500	0.123	5.073	4.950	0.00990	9.900	9900.000
	М	260	500	0.125	0.175	0.050	0.00010	0.100	100.000
	R	261	500	0.124	1.284	1.160	0.00232	2.320	2320.000
1/4/15	L	262	500	0.124	5.109	4.985	0.00997	9.970	9970.000
	М	263	500	0.124	0.174	0.050	0.00010	0.100	100.000
	R	264	500	0.123	1.228	1.105	0.00221	2.210	2210.000
3/4/15	L	265	500	0.123	4.873	4.750	0.00950	9.500	9500.000
	М	266	500	0.124	0.164	0.040	0.00008	0.080	80.000
	R	267	500	0.126	1.031	0.905	0.00181	1.810	1810.000
11/4/15	L	268	500	0.123	4.023	3.900	0.00780	7.800	7800.000
	М	269	500	0.124	0.164	0.040	0.00008	0.080	80.000
	R	270	500	0.123	1.253	1.130	0.00226	2.260	2260.000
12/4/15	L	271	500	0.123	4.993	4.870	0.00974	9.740	9740.000
	М	272	500	0.124	0.174	0.050	0.00010	0.100	100.000
	R	273	500	0.125	1.405	1.280	0.00256	2.560	2560.000
13/4/15	L	274	500	0.123	5.633	5.510	0.01102	11.020	11020.000
	М	275	500	0.124	0.179	0.055	0.00011	0.110	110.000

Date	FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Mkondoa at Kilosa	NOS	ml	g	g	g	g/ml	g/L	mg/L
	R	W/27615	500	0.124	4.659	4.535	0.00907	9.070	9070.000
25/3/15	М	277	500	0.125	4.140	4.015	0.00803	8.030	8030.000
	L	278	500	0.125	2.475	2.350	0.00470	4.700	4700.000
	R	279	500	0.125	4.740	4.615	0.00923	9.230	9230.000
26/3/15	М	280	500	0.123	4.208	4.085	0.00817	8.170	8170.000
	L	281	500	0.122	2.482	2.360	0.00472	4.720	4720.000
	R	282	500	0.123	4.328	4.205	0.00841	8.410	8410.000
26/3/15	М	283	500	0.123	3.848	3.725	0.00745	7.450	7450.000
	L	284	500	0.124	2.304	2.180	0.00436	4.360	4360.000
	R	285	500	0.123	3.928	3.805	0.00761	7.610	7610.000
27/3/15	М	286	500	0.124	3.494	3.370	0.00674	6.740	6740.000
	L	287	500	0.122	2.092	1.970	0.00394	3.940	3940.000
	R	288	500	0.122	5.082	4.960	0.00992	9.920	9920.000
30/3/15	Μ	289	500	0.125	4.515	4.390	0.00878	8.780	8780.000
	L	290	500	0.123	2.693	2.570	0.00514	5.140	5140.000
	R	291	500	0.123	8.423	8.300	0.01660	16.600	16600.000
11/4/15	Μ	292	500	0.124	7.474	7.350	0.01470	14.700	14700.000
	L	293	500	0.123	4.423	4.300	0.00860	8.600	8600.000
	R	294	500	0.124	5.614	5.490	0.01098	10.980	10980.000
3/5/15	М	295	500	0.122	4.982	4.860	0.00972	9.720	9720.000
	L	296	500	0.122	2.967	2.845	0.00569	5.690	5690.000

Table P.17: TSS Data Sheet

Table P.18: TSS Data Sheet

Date	FIELD REF	LAB	total	wt fp	wtfp + sed	wt sed	TSS	TSS	TSS
Date	Kinyasungwe at Gulwe	NOS	ml	g	g	g	g/ml	g/L	mg/L
	М	297	500	0.126	5.126	5.000	0.01000	10.000	10000.000
11/4/15	L	298	500	0.126	0.326	0.200	0.00040	0.400	400.000
	R	299	500	0.125	0.225	0.100	0.00020	0.200	200.000
	М	300	500	0.125	12.010	11.885	0.02377	23.770	23770.000
12/4/15	L	301	500	0.125	4.880	4.755	0.00951	9.510	9510.000
	R	302	500	0.126	2.501	2.375	0.00475	4.750	4750.000
	М	303	500	0.123	3.008	2.885	0.00577	5.770	5770.000
13/4/15	L	304	500	0.122	1.277	1.155	0.00231	2.310	2310.000
	R	305	500	0.123	0.698	0.575	0.00115	1.150	1150.000
	М	306	500	0.125	13.975	13.850	0.02770	27.700	27700.000
20/4/15	L	307	500	0.125	5.665	5.540	0.01108	11.080	11080.000
	R	308	500	0.123	2.893	2.770	0.00554	5.540	5540.000
	М	309							
30/4/15	L	310							
	R	311							
	М	312	500	0.125	52.443	52.318	0.09026	90.263	90263.000
3/5/15	L	313	500	0.125	40.650	40.525	0.08105	81.050	81050.000
	R	314	500	0.123	20.388	20.265	0.04053	40.530	40530.000

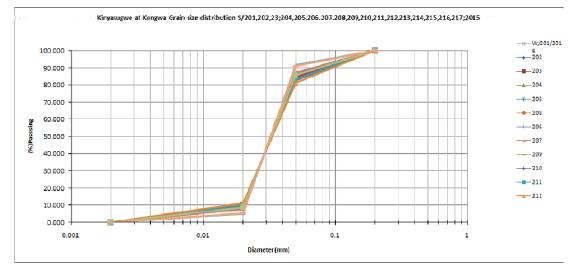


Figure P.31: Grain Size Distribution Analysis Graphs (Kinyasungwe/Kongwa)

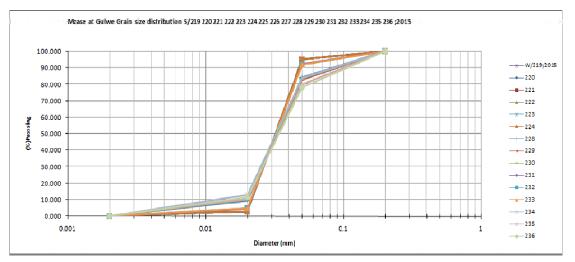


Figure P.32: Grain Size Distribution Analysis Graphs (Mzase/Gulwe)

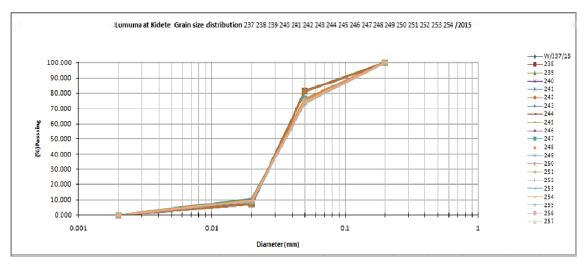


Figure P.33: Grain Size Distribution Analysis Graphs (Lumuma/Kidete)

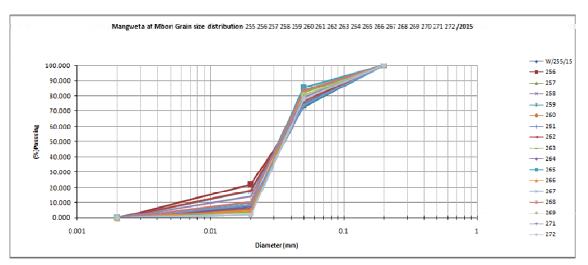


Figure P.34: Grain Size Distribution Analysis Graphs (Mangweta/Mbori)

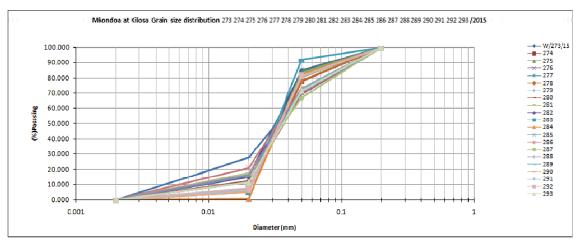


Figure P.35: Grain Size Distribution Analysis Graphs (Mkondoa/Kilosa)

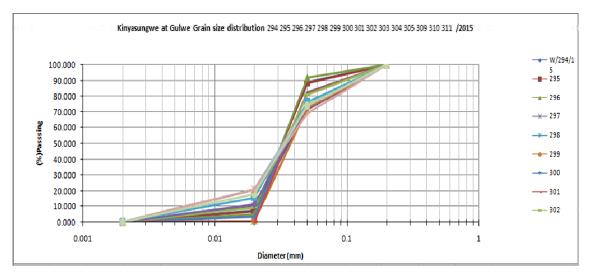


Figure P.36: Grain Size Distribution Analysis Graphs (Kinyasungwe/Gulwe)

Appendix 1: Discharge Floats Sheet at Mangweta

				DISCHARGE CALCU							
				(USING FLOAT	METHOD)						
Station Name		Date:	31 March 2015				We	ather	Computed by:		FT
Mangw	veta	Start Time:	8:50	AM	Obs. Duration		Clo	oudy			
Observers:		End Time:	9:12	АМ	0:22	hr	CIC	Judy	Checked by:		TL, JK
		Start WL:	0.04	m	Start Width:		32.60	m			
		End WL:	0.04	m	End Width:		32.40	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.20	m			
		Average WL:	0.04	m	Average Width:		32.50	m			
	Distance of center	Reach I	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)		
No. of partial section	line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	9.0	1	19	2.11	1.943	0.850	1.651	4.710	4.970	4.840	7.992
		2	21	1.90							
		3	22	1.82							
2	18.0	1	22	1.82	1.741	0.850	1.480	4.930	5.120	5.025	7.438
		2	24	1.67							
		3	23	1.74							
3	27.0	1	22	1.82	1.818	0.850	1.545	4.454	5.350	4.902	7.576
		2	22	1.82			1.559				
		3	22	1.82							
						1	Fotal	14.094	15.440	14.767	23.006

DISCHARGE CALCULATION FORM

				DISCHARGE CALCU	JLATION FORM						
				(USING FLOAT	METHOD)						
Station Name		Date:	1 April 2015				We	ather	Computed by:		FT
Mangw	reta	Start Time:	9:30	AM	Obs. Duration		Cl	oudy			
Observers:		End Time:	9:42	AM	0:12	hr	Ch	Judy	Checked by:		TL, JK
		Start WL:	0.04	m	Start Width:		32.60	m			
		End WL:	0.04	m	End Width:		32.60	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.04	m	Average Width:		32.60	m			
	Distance	Reach L	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	-
1	9.0	1	24	1.67	1.768	0.850	1.503	4.910	4.970	4.940	7.422
		2	22	1.82							
		3	22	1.82							
2	18.0	1	22	1.82	1.741	0.850	1.480	4.930	5.120	5.025	7.438
		2	24	1.67							
		3	23	1.74							
3	27.0	1	21	1.90	1.937	0.850	1.646	4.654	5.350	5.002	8.233
		2	20	2.00			1.543				
		3	21	1.90							
						r	Fotal	14.494	15.440	14.967	23.094

				DISCHARGE CALCU	JLATION FORM						
				(USING FLOAT	METHOD)						
Station Name		Date:	3 April 2015				We	ather	Computed by:		FT
Mangw	/eta	Start Time:	13:24	AM	Obs. Duration		Cl	oudy			
Observers:		End Time:	13:42	AM	0:18	hr	Ch	Judy	Checked by:		TL, JK
		Start WL:	0.04	m	Start Width:		32.50	m			
		End WL:	0.04	m	End Width:		32.50	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.04	m	Average Width:		32.50	m			
	Distance	Reach I	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	velocity (iii/s) (m/s) section section	Discharg (m ³ /s)							
1	9.0	1	19	2.11	1.943	0.850	1.651	4.610	5.560	5.085	8.39
		2	21	1.90							
		3	22	1.82							
2	18.0	1	22	1.82	1.741	0.850	1.480	4.930	5.750	5.340	7.90
		2	24	1.67							
		3	23	1.74							
3	27.0	1	22	1.82	1.818	0.850	1.545	5.141	5.360	5.251	8.11
		2	22	1.82			1.559				
		3	22	1.82							
						[Fotal	14.681	16.670	15.676	24.41

				DISCHARGE CALCU	LATION FORM						
				(USING FLOAT	METHOD)						
Station Name		Date:	11 April 2015				We	ather	Computed by:		FT
Mangw	/eta	Start Time:	7:43	AM	Obs. Duration		Clo	oudy			
Observers:		End Time:	7:53	AM	0:10	hr	CIC	Judy	Checked by:		TL, JK
		Start WL:	0.08	m	Start Width:		33.00	m			
		End WL:	0.08	m	End Width:		33.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.08	m	Average Width:		33.00	m			
	Distance	Reach I	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.0	1	19	2.11	2.038	0.850	1.733	6.125	6.200	6.163	10.678
		2	19	2.11							
		3	21	1.90							
2	21.0	1	22	1.82	1.847	0.850	1.570	6.500	6.650	6.575	10.323
		2	21	1.90							
		3	22	1.82							
3	30.0	1	21	1.90	1.972	0.850	1.676	6.090	6.100	6.095	10.214
		2	21	1.90			1.660				
		3	19	2.11							
							Fotal	18.715	18.950	18.833	31.215

				DISCHARGE CALCU	LATION FORM						
				(USING FLOAT	METHOD)						
Station Name		Date:	12 April 2015				We	ather	Computed by:		FT
Mangw	veta	Start Time:	8:32	AM	Obs. Duration		Cl	oudy			
Observers:		End Time:	8:46	AM	0:14	hr	CIC	Judy	Checked by:		TL, JK
		Start WL:	0.04	m	Start Width:		32.50	m			
		End WL:	0.04	m	End Width:		32.50	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.04	m	Average Width:		32.50	m			
	Distance	Reach I	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	9.2	1	22	1.82	1.943	0.850	1.651	4.730	4.970	4.850	8.009
		2	21	1.90							
		3	19	2.11							
2	18.0	1	23	1.74	1.765	0.850	1.501	5.000	5.120	5.060	7.593
		2	22	1.82							
		3	23	1.74							
3	27.0	1	23	1.74	1.792	0.850	1.523	4.910	5.350	5.130	7.813
		2	22	1.82			1.558				
		3	22	1.82							
						5	Fotal	14.640	15.440	15.040	23.410

				DISCHARGE CALCU	JLATION FORM						
				(USING FLOAT	METHOD)						
Station Name		Date:	13 April 2015				We	ather	Computed by:		FT
Mangw	veta	Start Time:	8:10	AM	Obs. Duration		Cl	oudy			
Observers:		End Time:	8:29	АМ	0:19	hr	Ch	Judy	Checked by:		TL, JK
		Start WL:	0.03	m	Start Width:		32.00	m			
		End WL:	0.03	m	End Width:		32.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.03	m	Average Width:		32.00	m			
	Distance	Reach L	Length (m)	40.00	Type of floa	at:	orange		Area (m ²)	-	
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section Downstream section Average 4.200 4.600 4.400		Discharge (m ³ /s)	
1	9.5	1	24	1.67	1.691	0.850	1.437	4.200	4.600	4.400	6.324
		2	23	1.74							
		3	24	1.67							
2	19.0	1	23	1.74	1.741	0.850	1.480	4.900	4.900	4.900	7.253
		2	22	1.82							
		3	24	1.67							
3	28.0	1	22	1.82	1.695	0.850	1.441	4.300	4.700	4.500	6.483
		2	25	1.60			1.453				
		3	24	1.67							
						1	Fotal	13.400	14.200	13.800	20.059

				DISCH	ARGE CALCULAT	ION FORM]				
				(U	SING FLOAT MET	HOD)					
Station Name		Date:	5 April 2015				Wea	ther	Computed by:		FT
Mzase		Start Time:	7:25	AM	Obs. Duration		Clo	u du			
Observers:		End Time:	7:33	AM	0:08	hr	Clo	udy	Checked by:		TL, JK
		Start WL:	0.70	m	Start Width:		36.00	m			
		End WL:	0.68	m	End Width:		36.00	m	Approved by:		MS
		Diff.:	0.02	m	Diff.:		0.00	m			
		Average WL:	0.69	m	Average Width:		36.00	m			
	Distance	Reach Le	ength (m)	40.00	Type of fl	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	9.0	1	20	2.00	1.908	0.850	1.622	4.750	4.972	4.861	7.88
		2	21	1.90							
		3	22	1.82							
2	18.0	1	22	1.82	1.741	0.850	1.480	6.100	5.110	5.605	8.29
		2	24	1.67							
		3	23	1.74							
3	27.0	1	22	1.82	1.818	0.850	1.545	4.000	4.850	4.425	6.8
		2	22	1.82			1.549				
		3	22	1.82							
						1	Fotal	14.850	14.932	14.891	23.0

Appendix 2: Discharge Float Sheet at Mzase

				DISCHAR	GE CALCULATIO	N FORM					
				(USI	NG FLOAT METH	OD)					
Station Name		Date:	6 April 2015				Wear	ther	Computed by:		FT
Mzas	se	Start Time:	12:00	AM	Obs. Duration		Clou	udv			
Observers:		End Time:	12:20	AM	0:20	hr	Ciot	idy	Checked by:		TL, JK
		Start WL:	0.12	m	Start Width:		37.00	m			
		End WL:	0.12	m	End Width:		37.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.12	m	Average Width:		37.00	m			
	Distance	Reach Le	ength (m)	40.00	Type of fl	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	9.3	1	19	2.11	2.003	0.850	1.703	5.980	5.916	5.948	10.128
		2	21	1.90							
		3	20	2.00							
2	18.5	1	19	2.11	2.038	0.850	1.733	6.650	6.250	6.450	11.176
		2	21	1.90							
		3	19	2.11							
3	27.8	1	20	2.00	1.857	0.850	1.579	6.630	6.990	6.810	10.75
		2	21	1.90			1.671				
		3	24	1.67							
						1	Fotal	19.260	19.156	19.208	32.054

				DISCHAR	GE CALCULATIO	N FORM					
				(USI)	NG FLOAT METH	OD)					
Station Name		Date:	12 April 2015				Weat	ther	Computed by:		FT
Mzas	se	Start Time:	8:10	AM	Obs. Duration		Clou	udv			
Observers:		End Time:	8:21	AM	0:11	hr	Clot	idy	Checked by:		TL, JK
		Start WL:	0.10	m	Start Width:		28.00	m			
		End WL:	0.10	m	End Width:		28.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.10	m	Average Width:		28.00	m			
	Distance	Reach Le	ength (m)	30.00	Type of fl	oat:	orange		Area (m ²)	-	
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	am Average	Discharge (m ³ /s)
1	10.0	1	30	1.00	1.023	0.850	0.870	0.510	0.490	0.500	0.43
		2	29	1.03							
		3	29	1.03							
2	19.0	1	30	1.00	1.001	0.850	0.851	0.052	0.500	0.276	0.23
		2	29	1.03							
		3	31	0.97							
3	30.0	1	27	1.11	1.049	0.850	0.891	0.450	0.460	0.455	0.40
		2	29	1.03			0.870	0.870			
		3	30	1.00							
						7	Fotal	1.012	1.450	1.231	1.07

				DISCHAR	GE CALCULATIO	N FORM					
				(USI	NG FLOAT METH	OD)					
Station Name		Date:	13April 2015				Wea	ther	Computed by:		FT
Mzas	se	Start Time:	6:45	AM	Obs. Duration		Clou	du			
Observers:		End Time:	6:55	AM	0:10	hr	Clot	idy	Checked by:		TL, JK
		Start WL:	0.20	m	Start Width:		35.00	m			
		End WL:	0.20	m	End Width:		35.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.20	m	Average Width:		35.00	m			
	Distance	Reach Le	ength (m)	30.00	Type of fl	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharg (m ³ /s)
1	10.0	1	29	1.03	1.072	0.850	0.911	1.300	1.450	1.375	1.25
		2	27	1.11							
		3	28	1.07							
2	20.0	1	29	1.03	1.059	0.850	0.900	1.520	1.500	1.510	1.359
		2	28	1.07							
		3	28	1.07							
3	30.0	1	30	1.00	1.023	0.850	0.870	1.400	1.350	1.375	1.19
		2	29	1.03			0.894				
		3	29	1.03							
]	Fotal	4.220	4.300	4.260	3.80

				DISCHAR	GE CALCULATIO	N FORM					
				(USIN	NG FLOAT METH	OD)					
Station Name		Date:	13 April 2015				Weat	ther	Computed by:		FT
Mzas	se	Start Time:	13:00	PM	Obs. Duration		Clou	udv			
Observers:		End Time:	13:06	PM	0:06	hr	Clot	idy	Checked by:		TL, JK
		Start WL:	0.02	m	Start Width:		3.80	m			
		End WL:	0.02	m	End Width:		3.80	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.02	m	Average Width:		3.80	m			
	Distance	Reach Le	ength (m)	10.00	Type of fl	oat:	orange		Area (m ²)		_
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	1.5	1	40	0.25	0.257	0.850	0.218	0.140	0.130	0.135	0.029
		2	39	0.26							
		3	38	0.26							
2	3.0	1	34	0.29	0.303	0.850	0.258	0.130	0.140	0.135	0.035
		2	32	0.31							
		3	33	0.30							
3	4.0	1	35	0.29	0.280	0.850	0.238	0.132	0.129	0.131	0.03
		2	36	0.28			0.238				
		3	36	0.28							
						1	Fotal	0.402	0.399	0.401	0.095

				DISCHARGE	E CALCULATION	FORM					
Station Name		Date:	30 March 2015				Weat	her	Computed by:		FT
1GD16, K	Kongwa	Start Time:	10:40	AM	Obs. Duration		Class	. .			
Observers:		End Time:	11:06	AM	0:26	hr	Clou	ldy	Checked by:		TL, JK
		Start WL:	0.38	m	Start Width:		4.80	m			
		End WL:	0.38	m	End Width:		4.80	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.38	m	Average Width:		4.80	m			
		Reach Le	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharg (m ³ /s)
1	1.2	1	39	0.13	0.132	0.850	0.112	0.520	0.560	0.540	0.06
		2	37	0.14							
		3	38	0.13							
2	2.4	1	32	0.16	0.176	0.850	0.149	0.670	0.580	0.625	0.09
		2	26	0.19							
		3	28	0.18							
3	3.6	1	38	0.13	0.134	0.850	0.114	0.455	0.420	0.438	0.05
		2	37	0.14			0.125				
		3	37	0.14							
							Total	1.645	1.560	1.603	0.20

Appendix 3: Discharge Float Sheet at Kongwa 1GD16

P-35

				DISCHARGE	E CALCULATION	FORM					
Station Name		Date:	31 March 2015				Weat	ther	Computed by:		FT
1GD16, F	Kongwa	Start Time:	16:36	PM	Obs. Duration		Class	- 1			
Observers:		End Time:	17:00	PM	0:24	hr	Clou	ldy	Checked by:		TL, JK
		Start WL:	0.38	m	Start Width:		4.80	m			
		End WL:	0.38	m	End Width:		4.80	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.38	m	Average Width:		4.80	m			
		Reach Le	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	1.2	1	34	0.15	0.152	0.850	0.129	0.520	0.560	0.540	0.070
		2	33	0.15							
		3	32	0.16							
2	2.4	1	30	0.17	0.175	0.850	0.149	0.670	0.580	0.625	0.093
		2	27	0.19							
		3	29	0.17							
3	3.6	1	30	0.17	0.163	0.850	0.139	0.450	0.430	0.440	0.061
		2	32	0.16			0.139				
		3	30	0.17							
							Total	1.640	1.570	1.605	0.223

				DISCHARGE	CALCULATION H	FORM					
Station Name		Date:	4 April 2015				Weat	ther	Computed by:		FT
1GD16, K	ongwa	Start Time:	8:49	AM	Obs. Duration		Clou	du			
Observers:		End Time:	9:13	AM	0:24	hr	Clot	luy	Checked by:		TL, JK
		Start WL:	0.38	m	Start Width:		4.80	m			
		End WL:	0.38	m	End Width:		4.80	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.38	m	Average Width:		4.80	m			
		Reach Lei	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	1.2	1	37	0.14	0.134	0.850	0.114	0.520	0.510	0.515	0.059
		2	36	0.14							
		3	39	0.13							
2	2.4	1	33	0.15	0.170	0.850	0.144	0.670	0.480	0.575	0.083
		2	28	0.18							
		3	28	0.18							
3	3.6	1	36	0.14	0.139	0.850	0.118	0.450	0.540	0.495	0.058
		2	35	0.14							
		3	37	0.14							
							Total	1.640	1.530	1.585	0.200

				DISCHARGE	CALCULATION H	FORM					
Station Name		Date:	6 April 2015				Weat	ther	Computed by:		
1GD16, K	longwa	Start Time:	8:20	AM	Obs. Duration		Clou	. de .			FT
Observers:		End Time:	8:40	AM	0:20	hr	Clot	ldy	Checked by:		
		Start WL:	0.37	m	Start Width:		4.80	m			TL, JK
		End WL:	0.37	m	End Width:		4.80	m	Approved by:		
		Diff.:	0.00	m	Diff.:		4.80	m			MS
		Average WL:	0.37	m	Average Width:		4.80	m			
		Reach Le	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	1.2	1	80	0.06	0.059	0.850	0.050	0.550	0.420	0.485	0.024
		2	85	0.06							
		3	89	0.06							
2	2.4	1	89	0.06	0.056	0.850	0.048	0.680	0.510	0.595	0.028
		2	97	0.05							
		3	82	0.06							
3	3.6	1	81	0.06	0.060	0.850	0.051	0.780	0.480	0.630	0.032
		2	86	0.06							
		3	82	0.06							
							Total	2.010	1.410	1.710	0.085

				DISCHARGE	CALCULATION F	FORM					
Station Name		Date:	12-Apr-15				Weat	her	Computed by:		FT
1GD16, K	longwa	Start Time:	9:21	AM	Obs. Duration		Class				
Observers:		End Time:	9:33	AM	0:12	hr	Clou	luy	Checked by:		TL, JK
		Start WL:	0.60	m	Start Width:		7.00	m			
		End WL:	0.60	m	End Width:		7.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.60	m	Average Width:		7.00	m			
		Reach Ler	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	0.590	Discharge (m ³ /s)
1	1.2	1	30	0.17	0.173	0.850	0.147	0.560	0.570	0.565	0.083
		2	29	0.17							
		3	28	0.18							
2	2.4	1	30	0.17	0.173	0.850	0.147	0.600	0.580	0.590	0.087
		2	29	0.17							
		3	28	0.18							
3	3.6	1	27	0.19	0.181	0.850	0.154	0.620	0.565	0.593	0.091
		2	29	0.17							
		3	27	0.19							
							Total	1.780	1.715	1.748	0.261

				DISCHARGE	CALCULATION F	FORM					
Station Name		Date:	3-May-15				Weat	ther	Computed by:		FT
1GD16, K	ongwa	Start Time:	8:56	AM	Obs. Duration		CI	1			
Observers:		End Time:	9:10	AM	0:14	hr	Clou	idy	Checked by:		TL, JK
		Start WL:	0.64	m	Start Width:		8.20	m			
		End WL:	0.64	m	End Width:		8.20	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.64	m	Average Width:		8.20	m			
		Reach Let	ngth (m)	5.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	Distance of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	1.2	1	18	0.28	0.283	0.850	0.241	0.900	0.820	0.860	0.207
		2	17	0.29							
		3	18	0.28							
2	2.5	1	20	0.25	0.250	0.850	0.213	0.790	0.760	0.775	0.165
		2	21	0.24							
		3	19	0.26							
3	3.6	1	18	0.28	0.248	0.850	0.211	0.880	0.900	0.890	0.18
		2	22	0.23							
		3	21	0.24							
							Total	2.570	2.480	2.525	0.559

				DISCHAR	GE CALCULATIO	N FORM					
Station Name		Date:	30 March 2015				Wea	ather	Computed by:		FT
Kidete		Start Time:	11:40	AM	Obs. Duration		Cla	oudy			
Observers:		End Time:	12:00	PM	0:20	hr	Ciù	uuy	Checked by:		TL, JK
		Start WL:	0.15	m	Start Width:		14.00	m			
		End WL:	0.15	m	End Width:		14.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.15	m	Average Width:		14.00	m			
	Distance	Reach I	Length (m)	20.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	3.5	1	23	0.87	0.910	0.850	0.774	0.780	0.710	0.745	0.576
		2	21	0.95							
		3	22	0.91							
2	7.0	1	20	1.00	1.035	0.850	0.880	0.620	0.720	0.670	0.589
		2	19	1.05							
		3	19	1.05							
3	10.5	1	21	0.95	0.941	0.850	0.800	0.760	0.720	0.740	0.592
		2	20	1.00			0.818				
		3	23	0.87							
							Fotal	2.160	2.150	2.155	1.758

Appendix 4: Discharge Float Sheet at Kidete

				DISCHAI	RGE CALCULATI	ON FORM					
Station Name		Date:	31 March 2015				Wea	ather	Computed by:		FT
Kide	ete	Start Time:	8:11	AM	Obs. Duration		Cla				
Observers:		End Time:	8:25	AM	0:14	hr		oudy	Checked by:		TL, JK
		Start WL:	0.14	m	Start Width:		14.10	m			
		End WL:	0.14	m	End Width:		14.10	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.14	m	Average Width:		14.10	m			
	Distance	Reach I	Length (m)	20.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	3.5	1	24	0.83	0.898	0.850	0.764	0.780	0.710	0.745	0.569
		2	21	0.95							
		3	22	0.91							
2	7.0	1	22	0.91	0.914	0.850	0.777	0.700	0.750	0.725	0.563
		2	20	1.00							
		3	24	0.83							
3	10.5	1	21	0.95	0.885	0.850	0.752	0.770	0.770	0.770	0.579
		2	23	0.87			0.764				
		3	24	0.83							
						1	Fotal	2.250	2.230	2.240	1.711

				DISCHA	RGE CALCULATI	ON FORM					
Station Name		Date:	1 April 2015				Wea	ather	Computed by:		FT
Kide	ete	Start Time:	12:00	AM	Obs. Duration		Cla				
Observers:		End Time:	12:20	AM	0:20	hr	Clo	oudy	Checked by:		TL, JK
		Start WL:	0.12	m	Start Width:		13.20	m			
		End WL:	0.12	m	End Width:		13.20	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.12	m	Average Width:		13.20	m			
	Distance Reach Length (m)		Length (m)	20.00	Type of float:		orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.1	1	24	0.83	0.898	0.850	0.764	0.660	0.710	0.685	0.523
		2	21	0.95							
		3	22	0.91							
2	20.2	1	22	0.91	0.871	0.850	0.740	0.690	0.750	0.720	0.533
		2	24	0.83							
		3	23	0.87							
3	30.3	1	21	0.95	0.910	0.850	0.774	0.780	0.770	0.775	0.60
		2	22	0.91			0.759				
		3	23	0.87							
						7	Fotal	2.130	2.230	2.180	1.650

				DISCHAR	GE CALCULATIO	N FORM					
Station Name		Date:	2 April 2015				Wea	ther	Computed by:		FT
Kide	ete	Start Time:	17:30	AM	Obs. Duration		Cla				
Observers:		End Time:	17:47	AM	0:17	hr	Clo	udy	Checked by:		TL, JK
		Start WL:	0.12	m	Start Width:		13.10	m			
		End WL:	0.12	m	End Width:		13.10	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.12	m	Average Width:		13.10	m			
	Distance	Reach I	Length (m)	20.00	Type of float:		orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.1	1	20	1.00	1.021	0.850	0.868	0.490	0.490	0.490	0.425
		2	21	0.95							
		3	18	1.11							
2	20.2	1	21	0.95	1.002	0.850	0.851	0.530	0.550	0.540	0.460
		2	20	1.00							
		3	19	1.05							
3	30.3	1	21	0.95	0.938	0.850	0.797	0.540	0.520	0.530	0.423
		2	22	0.91			0.839				
		3	21	0.95							
						1	Fotal	1.560	1.560	1.560	1.308

				DISCHAR	GE CALCULATIO	N FORM					
Station Name		Date:	11 April2015				Wea	ther	Computed by:		FT
Kidete		Start Time:	8:16	AM	Obs. Duration		Cla	4			
Observers:		End Time:	8:25	PM	0:09	hr	Clo	udy	Checked by:		TL, JK
		Start WL:	0.10	m	Start Width:		13.00	m			
		End WL:	0.10	m	End Width:		13.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.10	m	Average Width:		13.00	m			
	Distance	Reach I	Length (m)	20.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	5.0	1	24	0.83	0.822	0.850	0.699	0.510	0.520	0.515	0.360
		2	25	0.80							
		3	24	0.83							
2	10.0	1	23	0.87	0.883	0.850	0.750	0.520	0.530	0.525	0.394
		2	22	0.91							
		3	23	0.87							
3	15.0	1	24	0.83	0.857	0.850	0.729	0.540	0.520	0.530	0.386
		2	23	0.87			0.726				
		3	23	0.87							
						7	Fotal	1.570	1.570	1.570	1.140

				DISCHAR	GE CALCULATIO	N FORM					
Station Name		Date:	11 April2015				Wea	ther	Computed by:		FT
Kidete		Start Time:	7:53	AM	Obs. Duration		Cla				
Observers:		End Time:	8:03	PM	0:10	hr	Clo	udy	Checked by:		TL, JK
		Start WL:	0.10	m	Start Width:		12.00	m			
		End WL:	0.10	m	End Width:		12.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.10	m	Average Width:		12.00	m			
	Distance	Reach I	Length (m)	20.00	Type of float:		orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	5.0	1	24	0.83	0.822	0.850	0.699	0.510	0.490	0.500	0.349
		2	25	0.80							
		3	24	0.83							
2	10.0	1	23	0.87	0.883	0.850	0.750	0.490	0.500	0.495	0.371
		2	22	0.91							
		3	23	0.87							
3	15.0	1	24	0.83	0.857	0.850	0.729	0.520	0.500	0.510	0.372
		2	23	0.87			0.726				
		3	23	0.87							
]	Fotal	1.520	1.490	1.505	1.093

				DISCHAR	GE CALCULATIO	N FORM					
Station Name		Date:	25 March 2015				We	ather	Computed by:		FT
1GD2, Mk	ondoa	Start Time:	15:23	PM	Obs. Duration		Cla	oudy			
Observers:		End Time:	15:36	PM	0:13	hr	Cit	Judy	Checked by:		TL,JK
		Start WL:	1.87	m	Start Width:		41.00	m			
		End WL:	1.86	m	End Width:		41.00	m	Approved by:		MS
		Diff.:	0.01	m	Diff.:		0.00	m			
		Average WL:	1.87	m	Average Width:		41.00	m			
	Distance	Reach Le	ngth (m)	50.00	Type of flo	at:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.3	1	22	2.27	2.385	0.850	2.027	11.990	10.360	11.175	22.650
		2	21	2.38							
		3	20	2.50							
2	20.5	1	22	2.27	2.240	0.850	1.904	13.700	13.970	13.835	26.339
		2	22	2.27							
		3	23	2.17							
3	30.8	1	19	2.63	2.735	0.850	2.325	12.312	13.350	12.831	29.826
		2	19	2.63			2.085				
		3	17	2.94							
						r	Fotal	38.002	37.680	37.841	78.816

Appendix 5: Discharge Float Sheet at Mkondoa

				DISCHAR	GE CALCULATIO	ON FORM	1				
Station Name		Date:	26 March 2015				Wea	ather	Computed by:		FT
1GD2, Mk	ondoa	Start Time:	18:10	РМ	Obs. Duration		Clo	oudy			
Observers:		End Time:	18:25	PM	0:15	hr)	Checked by:		TL, JK
		Start WL:	1.80	m	Start Width:		41.00	m			
		End WL:	1.70	m	End Width:		41.00	m	Approved by:		MS
		Diff.:	0.10	m	Diff.:		0.00	m			
		Average WL:	1.75	m	Average Width:		41.00	m			
	Distance of center	Reach Le	ngth (m)	50.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m³/s)
1	10.3	1	20	2.50	2.460	0.850	2.091	11.590	9.780	10.685	22.345
		2	21	2.38							
		3	20	2.50							
2	20.5	1	18	2.78	2.408	0.850	2.047	13.190	13.670	13.430	27.490
		2	22	2.27							
		3	23	2.17							
3	30.8	1	20	2.50	2.517	0.850	2.139	12.150	13.700	12.925	27.651
		2	18	2.78			2.092				
		3	22	2.27							
						Т	otal	36.930	37.150	37.040	77.486

				DISCHARG	E CALCULATION	FORM					
Station Name		Date:	26 March 2015				Wea	ther	Computed by:		FT
1GD2, Mk	ondoa	Start Time:	15:53	AM	Obs. Duration		Cla	4			
Observers:		End Time:	16:07	AM	0:14	hr		udy	Checked by:		TL,JK
		Start WL:	1.90	m	Start Width:		41.50	m			
		End WL:	1.89	m	End Width:		41.50	m	Approved by:		MS
		Diff.:	0.01	m	Diff.:		0.00	m			
	_	Average WL:	1.90	m	Average Width:		41.50	m			
	Distance	Reach Le	ngth (m)	50.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.4	1	21	2.38	2.345	0.850	1.993	13.960	13.500	13.730	27.366
		2	22	2.27							
		3	21	2.38							
2	20.8	1	23	2.17	2.528	0.850	2.149	14.560	14.740	14.650	31.477
		2	19	2.63							
		3	18	2.78							
3	30.2	1	22	2.27	2.207	0.850	1.876	15.660	12.230	13.945	26.158
		2	23	2.17			2.006				
		3	23	2.17							
							Fotal	44.180	40.470	42.325	85.001

				DISCHARG	E CALCULATION	FORM					
Station Name		Date:	27 March 2015				Wea	ther	Computed by:		FT
1GD2, Mk	ondoa	Start Time:	16:24	PM	Obs. Duration		Cla				
Observers:		End Time:	16:30	PM	0:06	hr		udy	Checked by:		TL, JK
		Start WL:	1.90	m	Start Width:		41.50	m			
		End WL:	1.90	m	End Width:		41.50	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	1.90	m	Average Width:		41.50	m			
	Distance	Reach Le	ngth (m)	50.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.4	1	19	2.63	2.548	0.850	2.166	13.700	13.500	13.600	29.455
		2	21	2.38							
		3	19	2.63							
2	20.8	1	20	2.50	2.636	0.850	2.241	14.420	14.740	14.580	32.674
		2	19	2.63							
		3	18	2.78							
3	30.2	1	21	2.38	2.504	0.850	2.129	15.150	14.760	14.955	31.832
		2	20	2.50			2.178				
		3	19	2.63							
							Fotal	43.270	43.000	43.135	93.961

				DISCHARG	E CALCULATION	FORM					
Station Name I		Date:	30 March 2015				Weather		Computed by:		FT
1GD2, Mkondoa		Start Time:	8:15	AM	Obs. Duration		Cloudy				
Observers:		End Time:	8:52	AM	0:37	hr	- Cloudy		Checked by:		TL, JK
		Start WL:	1.89	m	Start Width:		40.40	m			
		End WL:	1.89	m	End Width:		40.40	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	1.89	m	Average Width:		40.40	m			
No. of partial section	Distance of center line from left bank (m)	Reach Length (m)		50.00	Type of flo	oat: orange		Area (m ²)			
		Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	10.1	1	23	2.17	2.276	0.850	1.934	11.190	11.660	11.425	22.101
		2	21	2.38							
		3	22	2.27							
2	20.2	1	20	2.50	2.500	0.850	2.125	12.360	11.600	11.980	25.458
		2	20	2.50							
		3	20	2.50							
3	30.3	1	21	2.38	2.321	0.850	1.973	12.160	12.700	12.430	24.527
		2	20	2.50			2.011				
		3	24	2.08							
							Fotal	35.710	35.960	35.835	72.086

				DISCHARG	E CALCULATION	FORM					
Station Name		Date:	11-Apr-15				Weather		Computed by:		FT
1GD2, Mkondoa		Start Time:	8:17	AM	Obs. Duration		Cloudy				
Observers:		End Time:	8:29	AM	0:12	hr	Cloudy		Checked by:		TL, JK
		Start WL:	1.61	m	Start Width:		41.00	m			
		End WL:	1.61	m	End Width:		41.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	1.61	m	Average Width:		41.00	m			
No. of partial section	Distance of center	Reach Length (m)		50.00	Type of flo	oat:	orange		Area (m ²)		
	line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	11.0	1	28	1.79	1.708	0.850	1.451	9.500	10.000	9.750	14.152
		2	29	1.72							
		3	31	1.61							
2	25.0	1	28	1.79	1.745	0.850	1.483	10.000	10.200	10.100	14.978
		2	29	1.72							
		3	29	1.72							
3	37.0	1	31	1.61	1.549	0.850	1.316	11.000	10.200	10.600	13.953
		2	32	1.56			1.417				
		3	34	1.47							
						1	Fotal	30.500	30.400	30.450	43.083

				DISCHARG	E CALCULATION	FORM					
Station Name		Date:	3-May-15				Wea	ther	Computed by:		FT
1GD2, Mk	ondoa	Start Time:	8:24	AM	Obs. Duration		Cla	J			
Observers:		End Time:	8:42	AM	0:18	hr	Clo	udy	Checked by:		TL, JK
		Start WL:	1.77	m	Start Width:		41.00	m			
		End WL:	1.77	m	End Width:		41.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	1.77	m	Average Width:		41.00	m			
	Distance	Reach Ler	ngth (m)	50.00	Type of flo	oat:	orange		Area (m ²)		
No. of partial section	of center line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	12.0	1	23	2.17	2.240	0.850	1.904	11.000	10.200	10.600	20.181
		2	22	2.27							
		3	22	2.27							
2	25.0	1	22	2.27	2.345	0.850	1.993	11.000	11.400	11.200	22.323
		2	21	2.38							
		3	21	2.38							
3	38.0	1	22	2.27	2.240	0.850	1.904	11.700	12.000	11.850	22.560
		2	23	2.17			1.934				
		3	22	2.27							
]	Fotal	33.700	33.600	33.650	65.064

				DISCHARG	E CALCULATION	I FORM					
				(USING	G FLOAT METHC	D)					
Station Name		Date:	13 April 2015				We	eather	Computed by:		FT
Kinyasungwe	at Gulwe	Start Time:	9:13	РМ	Obs. Duration		CI	oudy			
Observers:		End Time:	9:23	РМ	0:10	hr	CI	oudy	Checked by:		TL, JK
		Start WL:	0.89	m	Start Width:		8.00	m			
		End WL:	0.89	m	End Width:		8.00	m	Approved by:		MS
		Diff.:	0.00	m	Diff.:		0.00	m			
		Average WL:	0.89	m	Average Width:		8.00	m			
	Distance of center	Reach L	ength (m)	10.00	Type of flo	at:	orange		Area (m ²)		
No. of partial section	line from left bank (m)	Rdg. No.	Time, s	Float velocity (m/s)	Mean float velocity (m/s)	Coef.	Mean velocity (m/s)	Upstream section	Downstream section	Average	Discharge (m ³ /s)
1	2.0	1	20	0.50	0.492	0.850	0.418	0.478	0.472	0.475	0.19
		2	21	0.48							
		3	20	0.50							
2	4.0	1	17	0.59	0.590	0.850	0.501	0.489	0.466	0.478	0.23
		2	16	0.63							
		3	18	0.56							
3	6.0	1	17	0.59	0.568	0.850	0.482	0.468	0.481	0.475	0.22
		2	19	0.53			0.467				
		3	17	0.59							
]	Fotal	1.435	1.419	1.427	0.66

Appendix 6: Discharge Float Sheet at Gulwe

Gulwe Station	ame; Kinyas	ungwe at			date of n=<1.7	f measur	rements V=0.0678*n+0.01	6 1.78=<	11/4/2015	V=0.0571 ³	BODY N0 C *n+0.035,7.65=			Gauge heig	ht 0.85
Number ;	local	PRPPEL	LOR NO I-17	71646		537*n+(.,					at 1358-	1431	Span 5.5
distance	sounded	revised	unrevised	revised	revs.	time	revs./time	vel.at		velocity			area of	discharge	discharg
from	depth	depth	depth	depth			(n)	point	multiplier		mean vel.	mean vel.	sect	in section	accum
initial			of	of							in vert	in section			
point			obs	obs											
0.0	0.00							0.000			0.000				
												0.298	0.007	0.002	0.0
0.1	0.13		0.08		398	40	9.950	0.595			0.595				
												0.589	0.257	0.151	0.1
2.0	0.14		0.08		389	40	9.725	0.583			0.583				
												0.589	0.145	0.085	0.2
3.0	0.15		0.09		398	40	9.950	0.595			0.595				
												0.595	0.130	0.077	0.3
4.0	0.11		0.07		398	40	9.950	0.595			0.595				
												0.589	0.105	0.062	0.3
5.0	0.10		0.06		388	40	9.700	0.582			0.582				
	0.13											0.299	0.025	0.007	0.3
5.5	0.00		0.00		0	40	0.000	0.016			0.016				
												0.008	0.000	0.000	0.3
													0.668		

Appendix 7: Discharge Sheet by Using Current Meter

Station N at Gulwe Station	Jame; Kiny	asungwe			date of n=<1.7	measur	ements V=0.0678*n+0.01	6. 1.78	12/4/2015 8= <n=<7.65< th=""><th>V=0.0571</th><th>BODY N0 C2 *n+0.035,7.65=</th><th></th><th></th><th>Gauge heig</th><th>ght 0.79</th></n=<7.65<>	V=0.0571	BODY N0 C2 *n+0.035,7.65=			Gauge heig	ght 0.79
Number ;	local	PRPPEL	LOR NO I-1	71646		537*n+0					,		at 0806-0	817	Span 5
distance	sounded	revised	unrevised	revised	revs.	time	revs./time	vel.at		velocity			area of	discharge	discharge
from	depth	depth	depth	depth			(n)	point	multiplier		mean vel.	mean vel.	sect	in section	accum
initial	_	-	of	of				_			in vert	in section			
point			obs	obs											
0.0	0.00							0.000			0.000				
												0.137	0.090	0.012	0.012
1.0	0.18		0.11		168	40	4.200	0.275			0.275				
												0.276	0.160	0.044	0.056
2.0	0.14		0.08		169	40	4.225	0.276			0.276				
												0.311	0.135	0.042	0.098
3.0	0.13		0.08		217	40	5.425	0.345			0.345				
												0.332	0.150	0.050	0.148
4.0	0.17		0.10		199	40	4.975	0.319			0.319				
	0.12											0.160	0.085	0.014	0.162
5.0	0.00		0.00		0	40		0.000			0.000				
												0.000	0.000	0.000	0.162
													0.620		

Station Na	ame; Kinyas	sungwe a	t Gulwe			date of n=<1.7	measure	ements 7=0.0678*n+0.016	5. 1.78= <r< th=""><th>20/04/201</th><th></th><th>BODY N0 C2 1*n+0.035,7.65</th><th></th><th></th><th>Gauge heig</th><th>ht 0.78</th></r<>	20/04/201		BODY N0 C2 1*n+0.035,7.65			Gauge heig	ht 0.78
Station N	umber ;loca	1	PRPPEL	LOR NO I-1	71646		537*n+0		, 1.70= <i< td=""><td>1=<7.05</td><td>v=0.057</td><td>1 1110.055,7.05</td><td>= <ii= <17.551<="" td=""><td>at 1358-1</td><td>431</td><td>Span 5.8</td></ii=></td></i<>	1=<7.05	v =0.057	1 1110.055,7.05	= <ii= <17.551<="" td=""><td>at 1358-1</td><td>431</td><td>Span 5.8</td></ii=>	at 1358-1	431	Span 5.8
distance	sounded	angle	revised	unrevised	revised	revs.	time	revs./time	vel.at		velocity			area of	discharge	discharge
from	depth		depth	depth	depth			(n)	point	multiplier		mean vel.	mean vel.	sect	in section	accum
initial				of	of							in vert	in section			
point				obs	obs											
0.0	0.00								0.000			0.000				
													0.097	0.200	0.019	0.019
2.0	0.20			0.12		111	40	2.775	0.193			0.193				
													0.216	0.540	0.116	0.136
4.0	0.34			0.20		142	40	3.550	0.238			0.238				
													0.236	0.540	0.128	0.263
6.0	0.20			0.12		140	40	3.500	0.235			0.235				
	0.247												0.117	0.280	0.033	0.296
8.8	0.00					0	0					0.000				
													0.000	0.000	0.000	0.296
														1.560		

Station Na Station	ame; Kinyas	ungwe at C	Julwe		date of n=<1.7	f measur	rements V=0.0678*n+0.02	16 17	3/5/2015 8= <n=<7.65< th=""><th>V=0.057</th><th>BODY N0 C2 1*n+0.035,7.65</th><th></th><th></th><th>Gauge heig</th><th>ht 0.66</th></n=<7.65<>	V=0.057	BODY N0 C2 1*n+0.035,7.65			Gauge heig	ht 0.66
Number ;l	ocal	PRPPEL	LOR NO I-17	71646		537*n+(10, 117	0- (II- (7.05	1-0.057	1 11 0.055,7.05	- (1- (17.551	at 0826	-0833	Span 5.8
distance	sounded	revised	unrevised	revised	revs.	time	revs./time	vel.at		velocity		1	area of	discharge	discharge
from	depth	depth	depth	depth			(n)	point	multiplier		mean vel.	mean vel.	sect	in section	accum
initial			of	of							in vert	in section			
point			obs	obs											
0.0	0.00							0.000			0.000				
												0.029	0.025	0.001	0.001
0.5	0.10		0.06		25	40	0.625	0.058			0.058				
												0.074	0.053	0.004	0.005
1.0	0.11		0.07		44	40	1.100	0.091			0.091				
												0.102	0.055	0.006	0.010
1.5	0.11		0.07		57	40	1.425	0.113			0.113				
												0.096	0.053	0.005	0.015
2.0	0.10		0.06		37	40	0.925	0.079			0.079				
												0.068	0.048	0.003	0.018
2.5	0.09		0.05		24	40	0.600	0.057			0.057				
	0.10											0.036	0.023	0.001	0.019
3.0	0.00		0.00		0	50	0.000	0.016			0.016				
												0.008	0.000	0.000	0.019
													0.255		

APPENDIX Q

FLOOD MARK SURVEY

Q.1 Introduction

Q.1.1 Overview

This final report is about the survey work of Flood Marks along the Kinyasungwe - Mkondoa Rivers in connection with the "Preparatory Survey on Flood Protection Measures for Central Railway Line" undertaken by JICA Study Team. The Flood Mark Survey was carried out between Gulwe/Mpwapwa (Dodoma District) and Kilosa Township (Kilosa District). The purpose of the Flood Mark Survey is to measure the spot elevation of the flood marks along the target river sections in order to utilize the records to understand the magnitude of past flood events and also to be used for subsequent analysis of hydraulic computation for the said river valleys.

Q.1.2 Objectives of the Report

This report describes the whole survey work operation for the Flood Mark Survey. As such, its main objective is to describe the methodology employed to carry out the work, instrumentation used, challenges faced in the field during the execution of the various tasks and finally present the results obtained.

The execution of the whole survey work was largely guided by the specifications provided for bidding purposes and as discussed in various meetings held between the Client (JICA Study Team) and the Consultant. The key elements of the project are structured such that a logical work flow follows, with clear inputs and outputs between inter-related activities.

Q.2 **Project Location**

The location of the Work is along the river stretches of the Kinyasingwe and Mkondoa Rivers between Kilosa (Km283) and Igandu (Km 402). Between this section 42 Flood Marks were surveyed.

Q.3 Scope of the Work

The "Flood Mark Survey" covered the following work items in accordance with the Technical Specifications:

- (1) Preparation of work plan and schedule with analyses of existing data and information
- (2) Field reconnaissance to identify the flood marks that could be marked between Kilosa and Gulwe before flood marking activities.
- (3) Interview to local people residing near the identified site so as to pinpoint the locations of the highest level reached and on which particular year the event of the flood occurred.
- (4) Marking of flood marks on the buildings/ architecture/ walls, etc. identified by the local residents. This was followed by taking measurement of height from the ground surface nearby including measurement of elevation of the painted flood marks by connecting with bench marks established by the "River Cross Section Survey" or other registered bench mark in Tanzania.
- (5) A record of the interviews as well as the measurements and pictures showing the location of the flood mark and level information were filled up in the "Inventory Sheet for Flood Mark Survey" prepared by the JICA Study Team.
- (6) Preparation of work outputs

Q.4 Work Schedule

The whole work was to be carried out as per original agreed schedule and to follow the scope of work as described in part 3. above. However the actual work did not fully follow the schedule due to unavoidable circumstances, the actual schedule followed is as shown in Table.1 below:

Work Item	Feb	. 2015	Ma	r. 2015	5	A	or. 2015	5	May	2015
1) Preparatory Works										
2) General Reconnaissance to Identify the Flood Marks										
3) Marking of Flood Marks and Measurements of Elevation										
4) Interview to Local People on Past Flood Events										
5) Preparation of Work Outputs										
Draft Report										
Final Report										

Table Q.1: Original and Actual Schedule of Work

Actual Time Schedule

Q.5 Personnel Involved in the Field Work

The following people were involved in the execution of the Flood Mark Survey Tasks:

- Main Work Supervisor (Mr. Abdallah Bawazir) who was fully involved in the reconnaissance work, planning of the field operations and preparation of the works output.
- Main Surveyor (Mr. Miraji Mandia) who was fully involved in all the aspect of the task from start to finish.
- 2 Technicians (Mr. Sylvester Adrian and Mr. Muhsin) who were involved in all field operations.
- A number of Casual Labourers hired on site

Q.6 Methodology

The methodology for executing the task was as follows:

- (1) A general reconnaissance of the whole work area was carried out between Gulwe and Kilosa. This assisted in identifying the condition of the site, transport issues, places where the survey team could be accommodated during the execution of the survey and all other logistical issues. During this time also the survey team was introduced to the village authorities so as to seek cooperation with the local people as well as the RAHCO authorities so as to get assistance on transport matters when the need arose. The time was also utilized to identify nearby control points established by the Cross-Section Survey Team (Dunny Geoinformatics, Morogoro, Tanzania) and to ensure that information on levels was obtained so as to use this data for the Flood Mark survey.
- (2) Interview surveys were conducted to the residents who were residing along the river stretches nearby the identified flood marks. The interview question and information filled in the questionnaire sheets, as specified by the JICA Study Team, generally followed this procedure:
 - Evacuation (if they had eva General Information on when the highest flood was experienced to the knowledge of the interviewee.
 - The Surveyors then took information on Location (coordination and distance from road • or river)
 - Inundation (maximum depth, date and time at peak level, inundation period, flow direction)

- cuated or not. If so, where and how long).
- Sketch of the location was made and photographs were taken to show the general surrounding of the areas.
- (3) Some of the Flood marks were marked on structures (bridges, stations, gang camps, buildings, etc.), others were marked on natural features such as tree trunks and on places where it was not possible to mark on the structures or tree trunks, the flood marks were marked on information boards placed on the ground and the elevation from the ground was measured. The work of marking the flood marks started in Gulwe and proceeded to Kilosa. In addition to the marking of the flood mark, the elevation measured was also indicated on the flood mark as shown below:

Photographs of the flood mark or information board were taken together with the surrounding areas so that it is easier to find or re-establish the mark if required.

- (4) The coordination of the flood mark was measured and recorded using a hand held GNSS receiver for the Latitude and Longitude information while the elevation information was obtained by spirit leveling from the nearest benchmark established during the River Cross Section survey. Instruments used for this tasks included the following:
 - ProMark III GNSS receiver for the positioning (Latitude and Longitude)
 - Sokkia C32 Automatic Level for elevation measurements.
- (5) A list of the coordinates and elevations of the flood marks as determined in the field is included in Table 2. The coordinates given are in WGS84 coordinate system while the elevations are above mean sea level as determined from tying the levels to the bench marks. This is an abridged output of the result as the complete set of results is submitted as an external Appendix together with other field data and maps and interview forms.

Q.7 Work Output

As per Technical Specifications and requirements the final output includes the following:

- Weekly Report on the field work progress, data processing and report preparation.
- This main report which contains the results of the flood mark survey
- Drawing showing the locations of the flood marks plotted on the background of the 1:50,000 topographic map sheets for that area and prepared on A3 format.
- Original interview forms as filled in the field and those prepared in the office with all filed records typed in by computers. The interview forms prepared and completed in the office also incorporates pictures of the flood mark location as taken in the field.

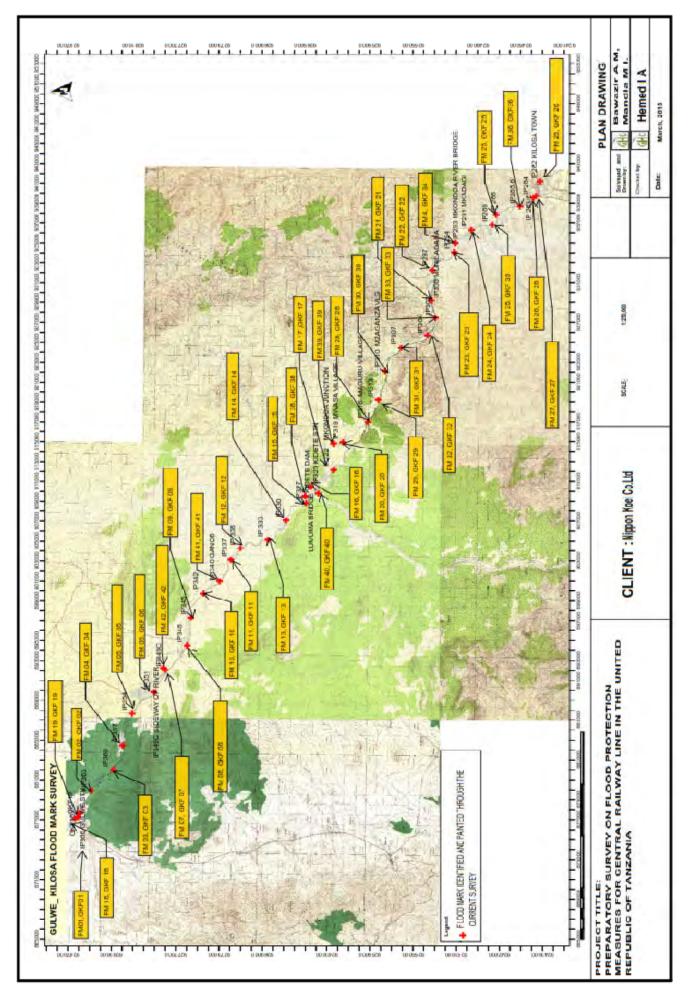
Q.8 Challenges and Achievements Encountered in the Field.

During the execution of the survey work the survey team faced a number of challenges; the critical ones are elaborated below:

- The work was carried out during a seasonal rainy period and this frequently disrupted the work progress.
- The rain also resulted in flooding in some areas and this severely limited access to these areas.

• Transportation to some part was extremely difficult as there was no access by 4 wheel vehicles. The only viable access was to use motorcycles, a service provided commercially by local residents. In some cases transportation was provided by the RAHCO people using their trolley and railway engines.

In spite of the challenges mentioned above the survey team also had a number of notable achievements that helped to secure the completion of the survey work and on time. These achievements included:


- Remarkably good cooperation from the local people who were willing to be interviewed and provided important information on the flood events, when they occurred and showed us the location of maximum flooding.
- Good cooperation from RAHCO people in terms of assistance on transportations by trolleys and other means at their disposal when needed.
- In total 42 flood marks were determined, marked and measured as required by the terms of the Technical Specifications.
- All flood marks were surveyed and their elevations determined and tied to the bench marks established by the River Cross-Section survey as required.

Q.9 Conclusion

The planning of the work, methodologies employed and the commitment of the Survey Team led to a successful completion of the tasks as specified in the Scope of Work.

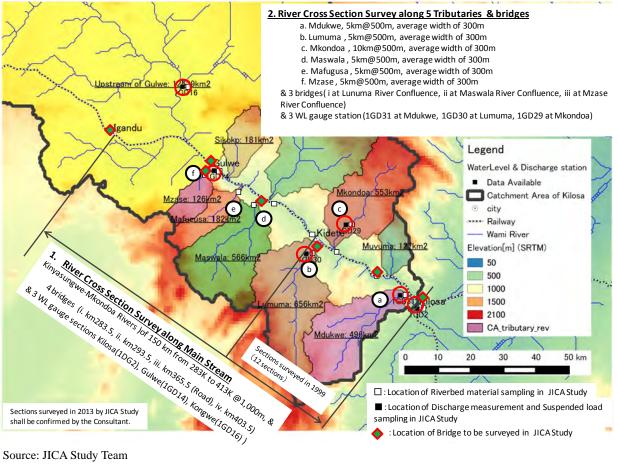
Flood	WGS		Flood Mark	Flood	Bench	Elevation of
Mark	Longitude (E) –	Latitude (S) –	Elevation	Mark Field	Mark	Bench Mark
Number	(dms)	(dms)	(m)	- ID	Tied TO	Used (m)
FM01	36 24 32.29375	6 26 51.63560	783.208	GKF01	A5/05	782.839
FM02	36 26 04.84809	6 27 40.34508	777.025	GKF02	IP 363	777.203
FM03	36 27 02.63032	6 58 17.26945	772.097	GKF03	IP 360	772.385
FM04	36 28 32.92967	6 29 12.80253	766.210	GKF04	IP 357	769.475
FM05	36 30 16.66043	6 29 39.89111	756.788	GKF05	IP 354	757.692
FM06	36 31 25.00728	6 30 45.95712	750.880	GKF06	IP 351	751.321
FM07	36 32 41.98800	6 31 21.78599	748.784	GKF07	IP 349C	751.261
FM08	36 33 59.91002	6 32 25.09802	736.058	GKF08	IP 348	738.148
FM09	36 35 31.94402	6 32 35.57400	726.575	GKF09	IP 345	729.157
FM10	36 36 50.05512	6 33 13.94603	708.076	GKF10	IP 342	708.872
FM11	36 38 41.43600	6 34 37.03799	697.712	GKF11	IP 337	694.795
FM12	36 39 19.21800	6 35 04.88399	688.506	GKF12	IP 336	690.006
FM13	36 39 46.76619	6 36 26.44674	675.750	GKF13	IP 333	678.772
FM14	36 40 50.19845	6 37 21.14750	668.297	GKF14	IP 330	671.056
FM15	36 41 48.85615	6 38 19.49448	661.924	GKF15	IP 327	670.329
FM16	36 42 41.19595	6 38 35.12471	664.048	GKF16	A4/28	676.571
FM17	36 43 38.04380	6 39 44.21051	647.954	GKF17	IP 322	651.970
FM18	36 24 49.48360	6 27 06.16491	784.210	GKF18	A5/05	782.839
FM19	36 24 56.53399	6 26 59.93535	782.100	GKF19	A5/05	782.839
FM20	36 44 50.77477	6 27 10.56502	628.390	GKF20	IP 319	629.884
FM21	36 52 52.32000	6 44 35.04847	544.830	GKF21	IP 300	544.530
FM22	36 54 31.53600	6 44 35.80080	530.930	GKF22	IP 297	530.790
FM23	36 55 32.09156	6 45 41.06148	524.760	GKF23	IP 294	520.335
FM24	36 56 43.19883	6 46 32.53888	511.750	GKF24	IP 291	512.421
FM25	36 57 34.30782	6 47 46.99663	505.370	GKF25	IP 288	506.392
FM26	36 58 33.95168	6 49 48.43699	493.440	GKF26	IP 284	494.730
FM27	36 58 40.7917	6 49 56.62762	493.810	GKF27	IP 284	494.730
FM28	36 46 14.68473	6 41 23.70673	614.230	GKF28	IP 316	616.318
FM29	36 47 27.35013	6 41 55.80319	599.220	GKF29	IP 313	606.290
FM30	36 49 01.43276	6 42 14.88974	584.510	GKF30	IP 310	585.060
FM31	36 50 18.30700	6 43 02.82021	572.260	GKF31	IP 307	571.320
FM32	36 50 58.53339	6 44 24.45438	559.990	GKF32	IP 304	561.460
FM33	36 51 56.65099	6 44 46.03246	550.770	GKF33	IP 302	552.450
FM34	36 56 03.30337	6 45 43.34451	519.760	GKF34	IP 293	520.335
FM35	36 57 00.64590	6 47 35.01384	504.330	GKF35	IP 289	505.947
FM36	36 58 02.57629	6 48 57.51631	495.820	GKF36	IP 286	500.327
FM37	36 59 24.71873	6 49 56.32702	486.510	GKF37	IP 282	487.680
FM38	36 42 10.06951	6 38 16.99070	662.510	GKF38	IP 326	674.722
FM39	36 45 02.98752	6 39 41.56908	633.419	GKF39	IP 320	637.170
FM40	36 42 20.70225	6 38 57.69518	670.790	GKF40	A4/28	676.571
FM41	36 37 31.17601	6 34 01.38599	701.250	GKF41	IP 340	704.060
FM42	36 32 46.81727	6 31 14.53880	745.620	GKF42	IP 349C	751.261

Table Q.2: Coordinates of the Flood Mark Locations (WGS84 Coordinate System)

APPENDIX R

RIVER CROSS SECTION AND LONGITUDINAL PROFILE SURVEY

R.1 Introduction

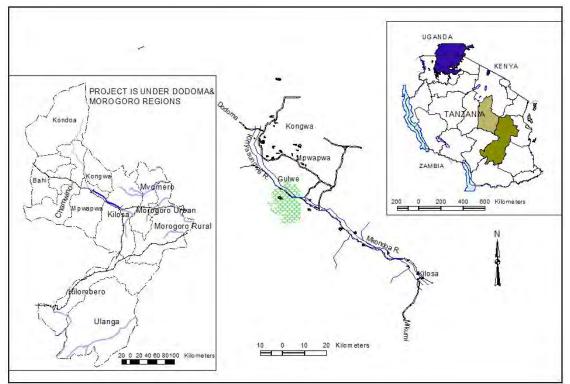

R.1.1 Main Objective

The purpose of the work is to measure the current conditions of river cross-sections and riverbed slopes that will be used for the hydraulic simulation of the Kinyasungwe/Mkondoa River and seven major tributaries.

Survey Contract R.1.2

Through competitive bidding of least-cost proposals, the following subcontractor was selected of three who submitted their bids by the deadline. Key information on the subcontractor is summarized below:

- Date of contract signed: 23 December 2014
- Survey period: 23 December 2014 to 31 March 2015 (contract); 25 February to 25 July 2015 (actual)
- Contractor: Dunny Geoinformatics Consultancy & Services •
- Address: P.O. Box 371, Plot No. 14 Boma Road, Morogoro, Tanzania
- Representative/Contact: Mr. Dunford Mateso; Tel: +252-21-754372851; • e-mail: dunnygca@gmail.com



Source: JICA Study Team

Figure R.1: Map of River Cross-Section and Longitudinal Profile Survey

R.1.3 Survey Area

The survey area is a corridor of approximately 1.0 km width of the Kinyasungwe/Mkondoa River from Kilosa to Gulwe along the Central Railway line and is shown on the location map in Figure R.2.

Source: Danny Informatics

Figure R.2: Location Map of Surveyed Area

R.1.4 Work Schedule

Actual work schedule is shown in Figure R.3 in next page:

										20)15									
No.	Activity	Fe	ebr		Ma	ırc	h	A	pril	l		Μ	ay		Ju	ine		Ju	ıly	
1.0	Mobilization																			
	Work preparation:- Procurement of field materials, Purchase of signal corrections, Mobilization of field teams& Camp shift																			
2.0	Ground Control Points extension																			
2.1	Points identification (Team_1)																			
2.2	Points monument at every 5km (along railway) (Team_1)																			
	Point description (Team_1)																			
2.3	Spirit levelling& Search for National BM (Team_4)																			
2.4	Points monument at every 1km (along railway) (Team_1, 2& 3)																			
2.5	GPS-RTK Observations for 5km interval points (Team_1)																			
3.0	River Cross Section readings																			
3.1	Lines clearance																			
3.2	GPS-RTK Observations, along cross sections (Team_1,2&3)																			
3.3	Data processing (Team_1,2&3)																			
3.4	Report writing (Team_1,2&3)																			
	Omnistar observation																			
4.0	Preparation of drawings and compile a draft report (Team_1,2&3) and Office team																			
5.0	Demobilization (Team_1,2&3)																			
6.0	Submission of final draft report (Team leader)																			
7.0	Submission of final report (Team leader)																			
8.0	Re-submission of final report (Team leader)																			

Source: Dunny Geoinformatics

Figure R.3: Actual Work Schedule

R.2 Methodology

R.2.1 Installation of Bench Marks and Field Measurement

The bench marks and stake pins of the work were installed together along the railway line at interval of approximately 5 km and 1 km, respectively. These Bench marks and stake pins of the work used to control measurements of all cross sections along the Kinyasungwe/Mkondoa River together with selected tributaries and bridges.

All alignments for the Kinyasungwe/Mkondoa River and selected tributaries were identified and scanned. This helped to calculate the number of bench marks and stake pins to be installed and number of bench marks were placed on the ground at every 20 km (approx.) from Kilosa to Gulwe. The process of alignment identification was carried out in the office using GIS techniques with Arc View software.

Handheld GPS was used in the field to navigate the approximate positions of points along the railway line and to select positions where by residents not easier to damage the monuments. The coordinates of these points were digitized from the geo-referenced topographic maps Nos. 163/1, 3&4, 164/3 and 181/1–4.

Monuments of pillars were placed by using bucket of 10 litres of 25 cm diameter and height of 30 cm. The bucket placed in the trench for 20 cm down and remaining part of 10 cm is above the ground surface.

Later, bucket was filled up with mortar including remaining spaces on the trench to strengthen the pillar (See photo below). Centre of the bucket placed a small iron bar of 10 mm diameter and height of 23 cm to define a centering point of instrument. Monument of pillars (bench marks) at the top is marked with name as shown below:

(a) Plan view

Source: Dunny Geoinformatics

(b) Side view

Figure R.4: Monument of Bench Mark

Placement of the stake pins were followed by having 10–15 mm diameter and height of 1.0 meter. The iron pin was placed for 70–90 cm deep and just few10-30 cm above surface line and rounded with mortar on small trench to strengthen a pin.

Layout of all iron pins are indicated on map sheets of 1:50,000 at interval of 1 km along railway and other pins for the bridges with staff gauge and old cross sections, which were surveyed in 1999, placed the same.

Figure R.5: Iron Pin in Concrete

R.2.2 Coordination of Bench Marks

(1) Ordinary (Spirit) Leveling

A horizontal line of sight is established by an observer with aid of a spirit bubble, plumb line or freely suspended compensator system. Enables line is to be sighted through a telescope in a horizontal direction.

Methods (differential leveling, rise & fall, height of collimation); (dH = BS - FS) the survey was conducted based on rise and fall method. Reasonable accuracies was achieved, but the requirement to close all leveling circuits remains to avoid gross errors and to control misclosure limits.

Leveling of all points along railway line was started from known National Bench Marks and traversing through newly established stake pins at every 1km along the railway line. Spirit levelling survey based to the Rise and Fall method, its traverse were started to a known National Bench Marks, which height values are known and closed to the another bench mark, which could be checked itself and confirmed to be in-situ.

The Instruments used for the survey were Automatic Levels, Tripod stands, leveling staffs, ranging rods, steel tape, Iron blade (*Panga*). The accuracy specified is per loop $\pm 10 \text{ mm}\sqrt{D}$ (D: leveled distance in km) were achieved (Ref: Appendix 4).

(2) Coordination of Horizontal Positions

The horizontal positions (N, E) with coordination of all the bench marks and the section stakes points were surveyed by using of the satellite positioning techniques instead of Total Station traversing. This process was carried out in two stages by the first being the coordination of the main bench marks at 20 km intervals basing on the National Bench Marks. This was secondly followed by the coordination of the Section Stake points with this coordination being based on the 20 km bench mark points as references.

The coordination of the bench marks was verified by using the Trimble ProXRT GNSS receiver (See figure below). All GNSS receivers are able to receive signals from the current available satellite positioning systems including the United States Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS), the European Galileo. Currently some systems can also receive signals from the Chinese BDS system. This lead to a rapid and relatively high accuracy positioning compared to using only one system.

Figure R.6: Trimble Pro-XRT GNSS Receiver

In addition, using the signals from multiple satellite systems for improved positioning, the accuracy is further improved to centimeter level by applying differential corrections to the observed position. This involves getting corrections from a reference fixed station which is simultaneously making observations on a known location and computes differences to observed and the known coordinates on that reference points. The theory is that the differences are due to un-modelled errors from the satellite systems which reduce the accuracy of the observed positions. These differences are then sent to the observer as corrections to the observed

positions and results in the final observed position to have accuracy of ± 3 cm or less. The differential corrections can be sent to the observer via orbiting satellites systems such as the OmniSTAR system or via direct radio link or cellular GSM systems in a mode known as Real Time Kinematic (RTK or GPS-RTK or GNSS-RTK).

Using the Trimble ProXRT GNSS receiver with corrections from OmniSTAR system six benchmarks namely CSS001, IP285 CSS002, CSS003, CSS004 and CSS005 were coordinated. In order to have all coordinates referred to the National Coordinate system, the OmniSTAR corrections were initialized by using a known point in Kilosa.

Based on the six bench marks as reference controls, the stake pins at one km interval were coordinates by using the GNSS-RTK technique. Two survey groups were involved. One group used the X900 GNSS-RTK instrument from the Chinese CHC company, while the other group used the V30Pro GNSS-RTK instrument from the Chinese Hi-Target company. GNSS-The RTK technique was also used for observing the cross sections once the stake pin has been coordinated. The observation of the cross section was based on the coordinates of the stake pin. As for cross section observations, the elevation value used was that obtained from spirit leveling.

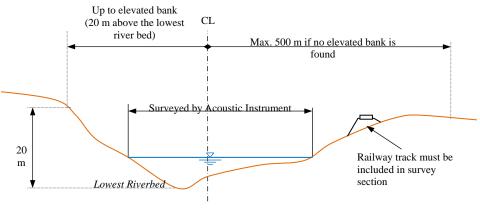
Figure R.7: X900 GNSS- RTK Instrument Set

Figure R.8: V30 Pro GNSS- RTK Instrument Set

Using the GNSS-RTK methods Stake pins at every cross section in the main river of Kinyasungwe/ Mkondoa coordinated. Namely, these were IP282, IP283, IP284, IP285, IP286, IP287, IP288, IP289, IP290, IP291, IP292, IP293, IP294, IP295, IP296, IP297, IP298, IP299, IP300, IP301, IP302, IP303, IP304, IP305, IP306, IP307, IP308, IP309, IP310, IP311, IP312, IP313, IP314, IP315, IP316, IP317, IP318, IP319, IP320, IP321, IP322, IP323, IP324, IP325, IP326, IP327, IP328, IP329, IP330, IP331, IP332, IP333, IP334, IP335, IP336, IP337, IP338,

IP339, IP340, IP341, IP342, IP343, IP344, IP345, IP346, IP347, IP348, IP349A, IP349A1, IP249B, IP349C, IP349, IP350, IP351, IP352, IP353, IP354, IP355, IP356, IP357, IP358, IP359, IP360, IP361, IP362, IP363, IP364, IP365 and IP366.

In addition to the above, stake pins that were established on historical sections, which were previously measured in 1999, were re-surveyed. These are named as Sect_284.38, Sect_289.37, Sect_290.74, Sect_291.70, Sect_292.30, Sect_292.70, Sect_296.50, Sect_298.30, Sect_302.18, Sect_306.80 and Sect_314.60 respectively.


Additional sections were also measured on selected bridges and these include two bridges at Kilosa, near Km293.5 (New bridge) Kidete, Kidibo, Gulwe and at Kongwa.

R.2.3 River Cross Section Survey for the Kinyasungwe–Mkondoa Rivers and Seven Tributaries

Setting up of the cross sections for Kinyasungwe/Mkondoa River were conducted after all points were monumented along the railway. Two points more were fixed besides of the river along the same line using tracking alignment set up of GPS-RTK.

The Surveyors were responsible to make sure the cross section meet approximately at perpendicular to the direction of water flow. The width and interval of each cross section were maintained as requirements in the specification, unless there limitation which does not fit the intention, but another option was adapted to fulfill the specifications.

During the time of setting out of cross sections, observations by using Real Time Kinematic RTK method was continued to coordinates in terms of Northings, Eastings and height of all desirable points simultaneously (section width 1000 m and interval 1000 m). The accuracy of Differential GPS is 5-10 cm.

Source: JICA Study Team

Figure R.9: Cross Section Layout

Cross sections for tributaries were fixed of 500 m interval with 300 m width and reading of each section was started at rivers confluence to the direction to upstream for 5 km. The two marks of iron pins with concrete were placed at each safe side of the river. Thereafter, reading of points along the section was carried out by using RTK- GPS.

R.2.4 Certification of Existing Control Points (Datum Points)

The Director of Survey and Mapping in the Ministry of Lands, Housing and Human Settlements Development has approved the survey to adopt methodology of using Trimble ProXRT receiver that has capacity to operate in real time and without the need for local base stations or telemetry links and permit of using bench marks that are existing along or near the railway line. The used instruments of Trimble ProXRT No. 85360-10 with Activation code No. 14-0053568 of signal corrections as Omnister Id and are known worldwide that is operating in Tanzania.

R.2.5 Consultations Meeting

The survey contractor had meetings several times with JICA Study Team to modify, update and change the number of activities in order to make sure the work to accomplish under the specified standards.

R.2.6 Survey Personnel and Tasks Allocated

Team No.1

Tasks:

- (1) To install Bench marks of our work of 20 km interval and 5 km interval.
 - (2) Monumentation of bench marks and stake pins
 - (3) GPS- RTK observations in cross sections points
 - (4) Data compilation and computations

Sr. No.	Names	Position(s)	Education
1.	Samuel Mwanga	Geomatician	BSc. Geomatics
2.	Daniel Mnkeni	Survey Tech.	Diploma in Geomatics
3.	Andrew Lungo	Survey Tech (Experienced)	Std VII
4.	Daliki A. Dalikia	Survey Tech (Experienced)	Form IV
5.	Emmanuel Kanuti	Driver	Form IV

Team No. 2

- Tasks: (1) To install Stake pins along railway line at every 1 km
 - (2) Monumentation of stake pins
 - (3) GPS- RTK observations along cross sections points
 - (4) Data compilation and computations

Sr. No.	Names	Position(s)	Education
1.	Katete Enock	Geomatician	BSc. Geomatics
2.	Saleh Khamis	Survey Tech	_
3.	Sabinus Tilia	Survey Tech	_
4.		Driver	_

Team No. 3

Tasks:

- (1) To install Stake pins along railway line at every 1 km
 - (2) Monumentation of stake pins
 - (3) GPS- RTK observations along cross sections points
 - (4) Data compilation and computations

Sr. No.	Names	Position(s)	Education
1.	Jaffari Lindonde	Geomatician	BSc. Geomatics
2.	Muhsin Ally	Survey Tech	_
3.	Hemedi Ally Buguza	Survey Tech	_
4.	Hamisi Namanka	Geomatician	BSc. Geomatics

Team No. 4

Tasks:

- (1) To install Stake pins along railway line at every 1km
 - (2) Monumentation of stake pins
 - (3) Levelling of all points along Railway line from Kilosa to Gulwe
 - (4) Data compilation and computations

Sr. No.	Names	Position(s)	Education
1.	Athumani Shehoza	Surveyor	BSc-Geomatics
2.	Kamtwanje Hussein	Surveyor	BSc-Geomatics
3.	Salum Mohamed	Surveyor	Diploma Land Surveying

Office team

Tasks: (1) Administration & Management

- (2) Data compilation& computations
- (3) Preparation of drawings

Sr. No.	Names	Position(s)	Education
1.	Dunford Mateso	Leader	MSc. LUP& BSc. Geomatics
2.	Hassan Mdimu	Land Surveyor	Diploma in Land Surveying
3.	Yassin Kabandika	Sen. Land Surveyor	Diploma in Land Surveying

R.3 Survey Results

R.3.1 Bench Marks and Stake Pins

A total of five stations were established along the railway line. These points were qualified as bench marks, thereafter 89 points were established in each kilometer from Kilosa to Gulwe and also qualified as stake pins nearby cross sections lined.

Purposely of determining deposition of materials on the riverbed also 12 points were approximately installed at the positions where another sections measured in 1999. The size, shape and name of all points listed on previous chapter 2.

Some of the dedicated points were prepared its description cards (Appendix 1) which will help other surveyors to approach the points easily.

R.3.2 Spirit Leveling

Leveling instruments occupied to the new installed bench marks along railway line from IP282 to IP366 (Traverse route indicated on Appendix 5) and make a total of 24 Bench marks of our work and 84 Stake pins. The fixations of these points were assured at a level of misclosure not greater than ± 0.025 m, this fact you can get from Appendix 3. Table below illustrates Names of occupied Bench marks and Stake pins and the column for elevation values.

The National Bench marks used to fix the height of new points were as follows: A4/6, A4/10, A4/25, A4/25, A4/28 and A4/42. The points abstracted from the list of National Bench Marks on Appendix 3.

The lowest value along the route of new Bench marks and Stake pins is 487.680 m and highest is 782.457 m determined at IP282 and IP366 respectively, which make a difference in height of 294.777 m.

The approximately middle height can be found at IP319 and IP320 where its values are 629.884 m and 637.170 m respectively, the locality of the middle elevation along the railway can be found near Mwasa settlements.

SR	STN ID	ADJ RL	Remarks
1	IP 282	487.680	Stake pin
2	CSS001		BM of our work
3	IP 283	489.277	Stake pin
4	IP 284	494.726	Stake pin
5	IP 285	497.900	BM of our work
6	IP 286	500.327	Stake pin
7	IP 287	503.124	Stake pin
8	IP 288	506.391	Stake pin
9	IP 289	505.947	Stake pin
10	IP 290	510.170	BM of our work
11	IP 291	512.469	Stake pin
12	IP 292		Stake pin
	SECT 292.30	516.856	Stake pin
14	SECT 292.70		Stake pin
15	IP 293		Stake pin
16	IP 294	520.335	Stake pin
17	IP 295	523.218	BM of our work
18	IP 296		Stake pin
19	SECT 296.50		Stake pin
20	IP 297	530.786	Stake pin
21	IP 298	536.165	Stake pin
22	SECT 298.30		Stake pin
23	IP 299	538.470	Stake pin
24	IP 300	544.533	Stake pin
25	IP 301		Stake pin
26	IP 302		Stake pin
	CSS002		BM of our work
28	IP 303		Stake pin
	IP 304		Stake pin
30	IP 305		BM of our work
	SECT 289.37		Stake pin
	SECT 290.74		Stake pin
	IP 306		Stake pin
	SECT 306.80		Stake pin
35	IP 307		Stake pin
	IP 308		Stake pin
	SECT 308.84		Stake pin
	IP 309		Stake pin
	IP 310		BM of our work
	IP 311		Stake pin

Table R.1: Summary of Levels

Note: SR= Serial number, STN ID= Station name, ADJ RL= Adjusted Levels, BM= Bench marks.

SR	STN ID	ADJ RL	Remarks
41	IP 312	595.714	Stake pin
42	IP 313	602.292	Stake pin
43	IP 314		Stake pin
44	SECT 314.60	607.480	Stake pin
45	IP 315	610.009	BM of our work
46	IP 316	616.318	Stake pin
47	IP 317	620.057	Stake pin
48	IP 318	623.918	Stake pin
49	IP 319	629.884	Stake pin
50	IP 320	637.170	BM of our work
51	IP 321		Stake pin
52	IP 322	651.969	Stake pin
53	IP 323	660.781	Stake pin
54	IP 324	670.249	Stake pin
55	IP 325	675.829	BM of our work
56	IP 326	674.722	Stake pin
57	IP 327	670.329	Stake pin
58	IP 328	670.192	Stake pin
59	IP 329	670.633	Stake pin
60	IP 330	671.056	BM of our work
61	IP 331	671.367	Stake pin
62	IP 332	676.265	Stake pin
63	IP 333	678.772	Stake pin
64	IP 334	685.490	Stake pin
65	IP 335	688.649	BM of our work
66	IP 336	690.007	Stake pin
67	IP 337	694.795	Stake pin
68	IP 338	700.725	Stake pin
69	IP 339	701.982	Stake pin
70	IP 340	704.060	BM of our work
71	IP 341	704.846	Stake pin
72	IP 342	708.872	Stake pin
73	CSS004	713.731	BM of our work
74	IP 343	714.695	Stake pin
75	IP 344	722.607	Stake pin
76	IP 345	729.157	BM of our work
77	IP 346	734.343	Stake pin
78	IP 347		Stake pin
79	IP 348		Stake pin

/9 IF 348738.148Stake pinNote: SR= Serial number, STN ID= Station name, ADJ RL= Adjusted Levels,
BM= Bench marks.

SR	STN ID	ADJ RL	Remarks
80	IP 349/1A	739.490	Stake pin
81	IP 349A	739.729	Stake pin
82	IP 349B	743.354	Stake pin
83	IP 349C	751.261	Stake pin
84	IP 350	752.142	BM of our work
85	IP 351	751.321	Stake pin
86	IP 352	754.388	Stake pin
87	IP 353	755.374	Stake pin
88	IP 354	757.692	Stake pin
89	IP 355	765.882	BM of our work
90	IP 356	768.310	Stake pin
91	IP 357	769.475	Stake pin
92	IP 358	770.314	Stake pin
93	IP 359	771.221	Stake pin
94	IP 360	772.385	BM of our work
95	IP 361	774.189	Stake pin
96	IP 362		Stake pin
97	CSS005	777.752	BM of our work
98	IP 363	777.203	Stake pin
99	IP 364	777.549	Stake pin
100	IP 365	781.691	BM of our work
101	IP 349	753.546	Stake pin
102	IP 366	783.277	Stake pin
103	IP 366/5	782.457	Stake pin
104	SECT 284.38	495.113	Stake pin

Note: SR= Serial number, STN ID= Station name, ADJ RL= Adjusted Levels, BM= Bench marks Source: Dunny Geoinformatics

R.3.3 Measurements of Cross sections

Cross sections in our project are the lines running approximately perpendicular to the Main River and selected tributaries.

To set these lines we used GPS- RTK to fix the position of each point at any change of gradient along specified line.

To make sure line is straight at any point, the GPS-RTK instruments setup was automatic not to read position in Northings, Eastings and Height till it reach within 3 cm allowable error.

Before carrying out measurements the GPS-RTK should have two receivers, one is set at known station in position wise and another is roaming along sections line to determine new positions. The two receivers they link to each other through radio waves.

Cross sections data sample (Table R.2) were listed in terms of Offset, Elevation and Descriptions, the data were abstracted from coordinates of Northings, Eastings, Elevations and Descriptions which processed direct from the software after downloading from GPS- RTK controller.

Cross sections details sketch for bridges is indicated on Appendix 6.

IP322			IP323			
Offset	Eleva	Description	Offset	Eleva	Description	
423.4052	657.1322	SH	565.7042	660.354	SH	
418.3545	651.965	SH	638.0018	662.315	SH	
415.7619	652.4128	CRL322	625.4196	660.44	SH	
413.3934	651.97	IP322	602.6077	656.192	SH	
402.764	657.6654	SH	584.6743	654.633	SH	
361.9957	655.208	SH	572.4312	660.668	SH	
309.0032	653.114	SH	569.2765	660.841	RL	
257.3459	651.4415	SH	567.2066	660.575	IP323	
226.0828	647.3995	SH	555.5353	654.532	SH	
201.345	647.4754	SH	525.0898	654.794	SH	
144.2205	647.3511	SH	492.5978	655.225	SH	
89.0366	648.3255	XIP322/1	422.7103	655.218	SH	
80.82334	648.0481	RB	369.2219	654.213	SH	
61.39231	639.2339	RBO	363.5568	653.12	SH	
0	640.135	Criver	326.6521	653.131	SH	
-135.18	640.856	SH	296.9185	653.975	SH	
-196.076	641.573	SH	257.2293	655.511	SH	
-247.937	641.9078	LBO	209.0607	654.97	SH	
-260.874	646.4381	LB	154.2609	654.566	SH	
-277.858	647.1563	XIP322/2	124.881	654.797	SH	
-333.036	646.4778	SH	113.5425	654.766	IP323/1 BANK	
-525.774	645.6612	SH	104.5989	645.347	SH	
-766.092	648.4664	SH	98.82636	642.775	WATER FLOOR	
-785.227	654.3099	SH	88.47241	642.735	SH	
-807.854	661.4751	SH	77.79019	642.709	SH	

Table R.2: River Cross Section Data

Source: Dunny Geoinformatics

Lack of reliable horizontal National bench marks the Ministry of Land allowed our project to base on Static GPS of Integrated Omnistar signal corrections.

The entire work its coordinates system were transformed from GPS-RTK to adopt the Static GPS system, it is not possible to have the same transformation parameters because our project is in linearity character which their distortion in scale, rotation and transition it starts to change in large values beyond 5 km. So in our particular project we break portions of 10–15 km and transform the coordinates with different parameters which were desired.

The transformation process produces $\pm 0.5-1$ meter accuracies in positioning horizontally and this vary depending on the distances. Shorter distance, error is small and longer distances having big error.

We have experienced the UTM coordinates system used in mapping in Tanzania is based on Arc 1960 Datum which is not fitting well on determined ellipsoid compared to WGS84 Datum.

Here we revised readings to improve the accuracy attained earlier by occupying more Bench Marks of our work and stake pins. We used Trimble Pro XRT to revisit some points which control revised cross section readings, their readings listed down on Table R.3. In the table you can find accuracies attained by instrument.

Pt_nam			Max_H			Filt_	Horz_			
e	Location	DOP	DOP	Corr_Type	GPS_Date	Pos	Prec	Std_Dev	Northing	Easting
IP366	GULWE	2.2	1.3	Real-time Code	6/22/2015	30	9.2	0.037735	9286700.368	213542.189
IP364	GULWE	2.2	1.0	Real-time Code	6/22/2015	30	9.2	0.027707	9285808.606	215265.731
IP363	GULWE	3.1	1.1	Real-time Code	6/22/2015	30	9.3	0.012856	9285404.442	216168.572
css 005	GULWE	2.3	1.0	Real-time Code	6/22/2015	30	9.2	0.011541	9285361.960	216364.428
IP366/5	GULWE	2.3	0.9	Real-time Code	6/23/2015	30	9.2	0.029786	9287013.387	213150.932
IP362	GULWE	2.5	1.0	Real-time Code	6/23/2015	30	9.4	0.019881	9284766.341	216870.545
IP361	GULWE	2.1	1.2	Real-time Code	6/23/2015	30	9.4	0.018639	9284229.948	217691.177
IP360	GULWE	2.0	1.0	Real-time Code	6/23/2015	30	9.1	0.019949	9283449.770	218272.793
IP359	GULWE	2.2	1.0	Real-time Code	6/23/2015	30	9.3	0.040670	9282775.122	218997.271
IP358	GULWE	2.1	0.9	Real-time Code	6/23/2015	30	9.2	0.070559	9282441.107	219929.148
IP357	GULWE	2.4	1.1	Real-time Code	6/23/2015	30	5.6	0.023463	9282516.322	220923.309
IP356	GULWE	1.9	0.9	Real-time Code	6/23/2015	30	9.3	0.027361	9282374.113	221816.395
IP354	GULWE	1.6	0.8	Real-time Code	6/23/2015	30	9.6	0.012106	9281764.676	223715.912
IP350	GULWE	2.2	0.9	Real-time Code	6/24/2015	30	9.3	0.016413	9279459.162	226727.188
IP346	Godegode	2.2	1.3	Real-time Code	6/24/2015	30	9.3	0.018305	9276378.326	232656.904
IP343	GODEGODE	2.1	1.0	Real-time Code	6/24/2015	30	9.3	0.021454	9275928.541	235300.023
IP342	GODEGODE	4.6	1.3	Real-time Code	6/24/2015	30	9.3	0.061287	9275254.756	236043.378
IP338	GODEGODE	2.3	1.0	Real-time Code	6/24/2015	30	9.1	0.016947	9273014.274	239000.916
IP337	GODEGODE	2.3	1.0	Real-time Code	6/24/2015	30	9.2	0.033980	9272343.975	239686.436
IP333	GENGE5	2.1	1.0	Real-time Code	6/25/2015	30	9.1	0.045751	9269474.336	
IP329	GENGE5	2.1	1.0	Real-time Code	6/25/2015	30	9.8	0.018898	9267258.111	244325.068
IP324	KIDETE	2.0	1.0	Real-time Code	6/25/2015	30	9.2	0.041804	9263677.813	246862.013
IP317	MWASA	5.5	1.7	Real-time Code	6/25/2015	30	9.8	0.047106	9260746.408	252152.366
IP312	MZAGANZA	2.4	1.1	Real-time Code	6/25/2015	30	9.1	0.034054	9259028.534	256642.721
IP310	MZAGANZA	2.2	1.4	Real-time Code	6/26/2015	30	9.2	0.018342	9258661.521	258557.003
IP305	MZAGANZA	4.6	1.3	Real-time Code	6/26/2015	30	9.7	0.026327	9255441.102	261624.938
IP300	MUNISAGARA	2.4	1.0	Real-time Code	6/26/2015	30	9.3	0.038771	9254543.662	265931.764
IP295	MUNISAGARA	2.0	0.9	Real-time Code	6/26/2015	30	9.4	0.020893	9253037.211	269814.107
IP282	KILOSA	2.1	1.0	Real-time Code	6/27/2015	30	8.8	0.022695	9244803.072	277886.999
IP283	KILOSA	2.1	1.3	Real-time Code	6/27/2015	30	9.2	0.034049	9244708.916	276896.629
IP290	KILOSA	3.1	1.1	Real-time Code	6/27/2015	30	9.3	0.046017	9249912.226	273283.706
IP 285	KILOSA TOWN	1.9	0.8	Real-time Code	4/25/2015	30	9.4	0.053919	9245932.764	275568.439
IP 302	MUNISAGARA	2.3	0.9	Real-time Code	4/25/2015	30	9.7	0.014211	9254092.191	263993.433
CSS002	MUNISAGARA	2.1	0.8	Real-time Code	4/25/2015	30	9.5	0.084359	9254200.076	263189.625
IP 323	KIDETE	4.2	1.2	Real-time Code	4/25/2015	30	9.4	0.017076	9263515.416	247824.266
CSS004		1.5	0.8	Real-time Code	4/26/2015	30	9.3	0.013520	9275816.128	
MORGA	GULWE	2.3	0.8	Real-time Code	4/26/2015	30	9.6	0.092836	9287107.542	212941.678
KN03A	KONGWA	2.7	1.1	Real-time Code	4/26/2015	30	9.8	7.058889	9312285.609	
BASE	KONGWA	2.2		Real-time Code	4/26/2015	30	8.9	0.025089		
<u> </u>		 M	DDOD		· · D'I		C D		UDOD M	

Table R.3: Static GPS Observations

Note: Pt_name= Point name, Max_PDOP= Maximum Precision Dilution of Positions, Max_HDOP= Maximum of Height Dilution of Positions, Corr_Type= Signal correction type, Rcvr_Type= Receiver type, GPS_date= Global Positioning System date, Vrt_Prec= Vertical precision, Hrz_Prec= Horizontal precision, Std_Dev= Standard deviation. Source: Dunny Geoinformatics

R.3.4 Data Processing of GPS- RTK (Real Time Kinematic)

The raw data collected by a receiver were processed in order to determine the differential relationship between the points during data collection. The results of processing GPS raw data were vectors defining this relationship. Computation of these vectors was the role of the data processing module done within GNSS (Glonass Network Satellite System) Solutions software.

The purpose of data processing module was to analyze the quality of the raw data files and adjust processing parameters to produce the best vectors. In GNSS Solutions software, the actual processing of data is limited to a simple press of the process button.

In this stage of data processing, three steps were done as follows:

- **Pre-process data analysis**: Point and observation properties were verified and/or entered
- **Processing**: GNSS vectors were produced from raw data.
- **Post-process data analysis:** Produced GNSS vectors were analyzed using supplied analysis tool to determine the quality of processed data.

R.3.5 Coordinate System Summary

Coordinate system Name: Type: Unit name: Meters per unit: Vertical datum: Vertical unit: Meters per unit:	UTM/ARC1960/UTM zone 37S Projected Meters 1 EGM96 Meters 1
Datum Name : Ellipsoid Name: Semi-major Axis: Inverse Flattening: DX to WGS84: DY to WGS84: DY to WGS84: RX to WGS84: RX to WGS84: RZ to WGS84: ppm to WGS84:	ARC 1960 CLARK1880 6378249.149 m 293.465 -160.0000 m -6.0000 m -302.0000 m 0.000000 " 0.000000 " 0.000000 "
Projection Projection Class: Latitude of origin Central meridian Scale factor False easting False northing	Transverse_Mercator 0° 00' 00.00000"N 39° 00' 00.00000"E 0.999600000000 500000.000 m 10000000.000 m

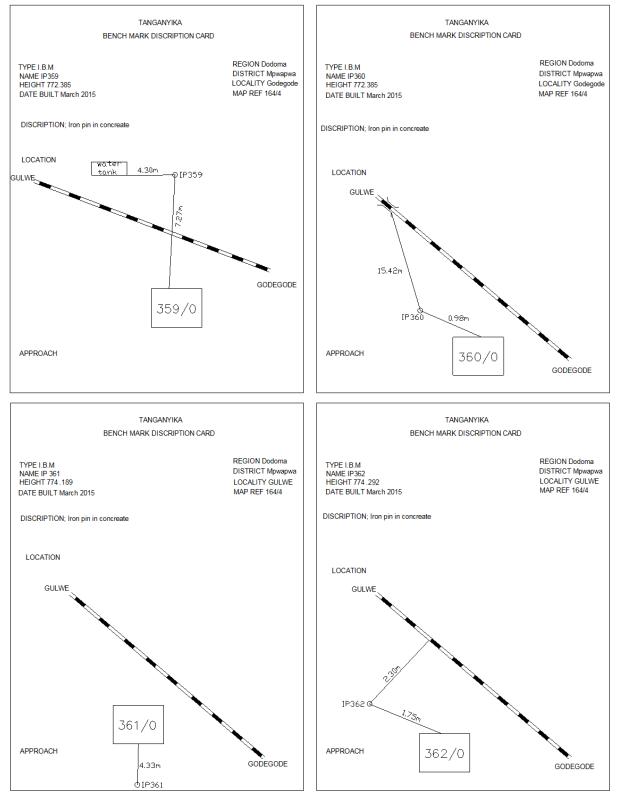
R.3.6 Output

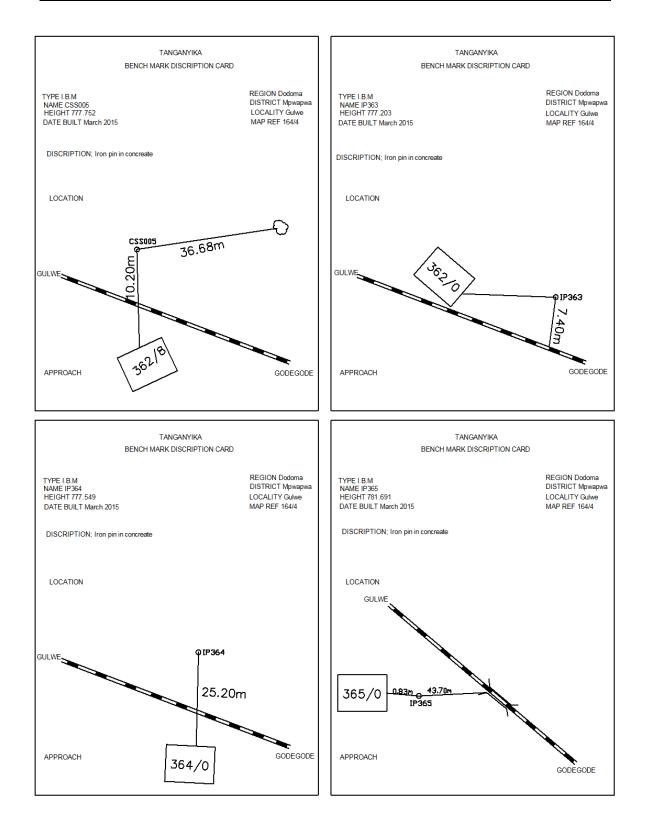
- (1) Layout map of main river cross sections, tributary and bridge positions were plotted on physically on the ground. The surveyed cross sections were overlaid on the topographic maps in scale of 1:50000.
- (2) Plan view drawn to scale of 1:50000 and two sheets of A1 size covered to all cross sections
- (3) Longitudinal section was drawn in scale of 1: 50000 for horizontal and vertical to and covered with two sheets of A1.
- (4) Cross sections were drawn in scale of 1:500 for horizontal and vertical to 1:100 view to all of main river and tributaries
- (5) Bridges cross section were shown with large scale this made to explore more details especially bridge size and height between bridge level and river bed.

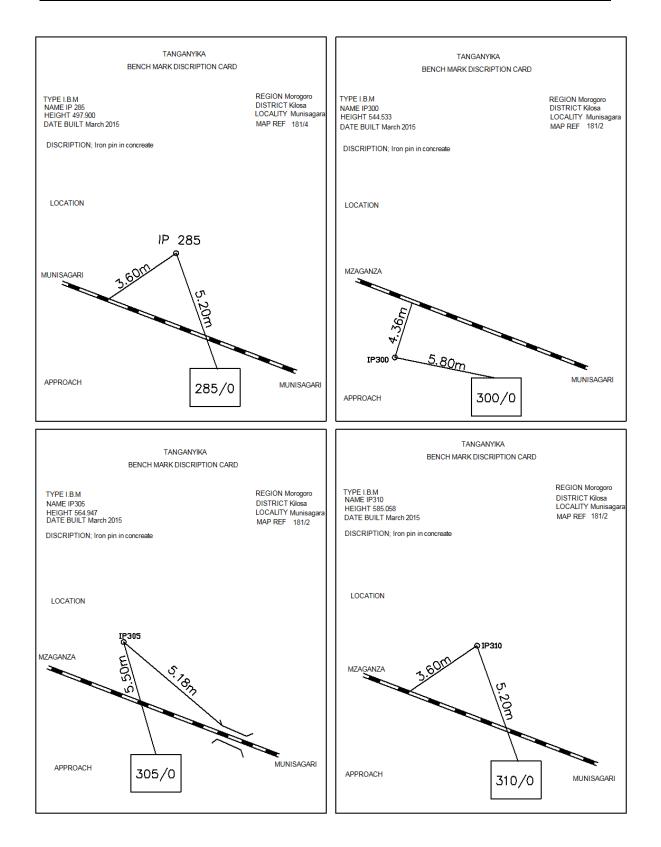
R.4 Recommendations

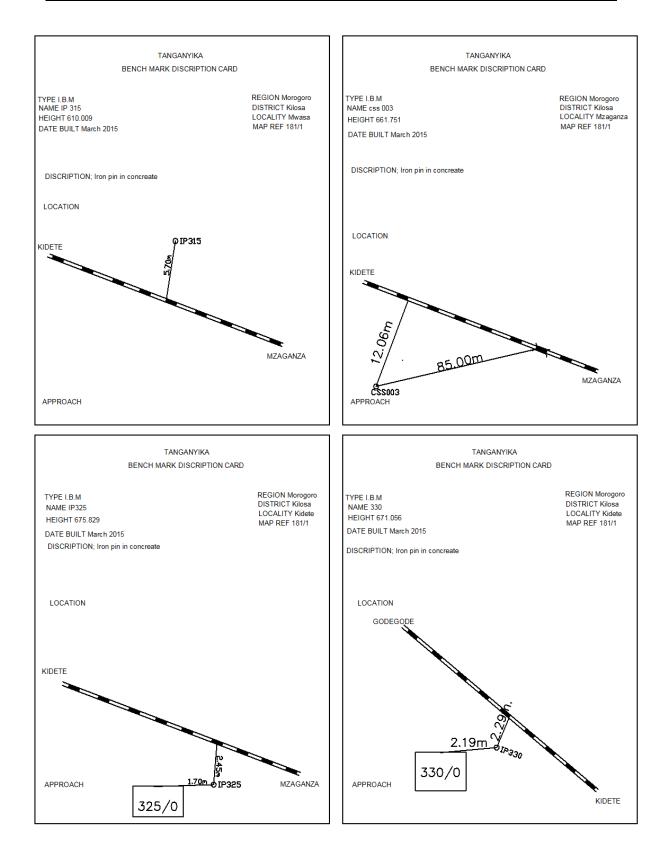
As for combined observation method using GPS based on Omnistar signal corrections and GPS-RTK, surveyors should take care of the distance limit for getting proper accuracy. If distance of fixing position is beyond 5 km, the accuracy starts decreasing due to distortions of scale and rotation. Therefore, it is advised that surveyors on using both instruments should take care of the distance limits not to fix points beyond radius of 5 km.

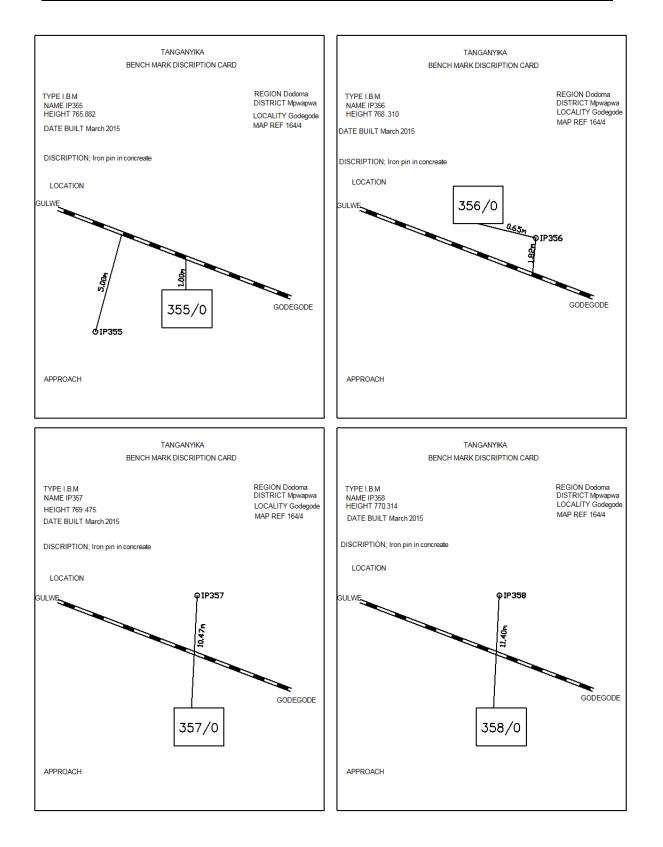
Appendices

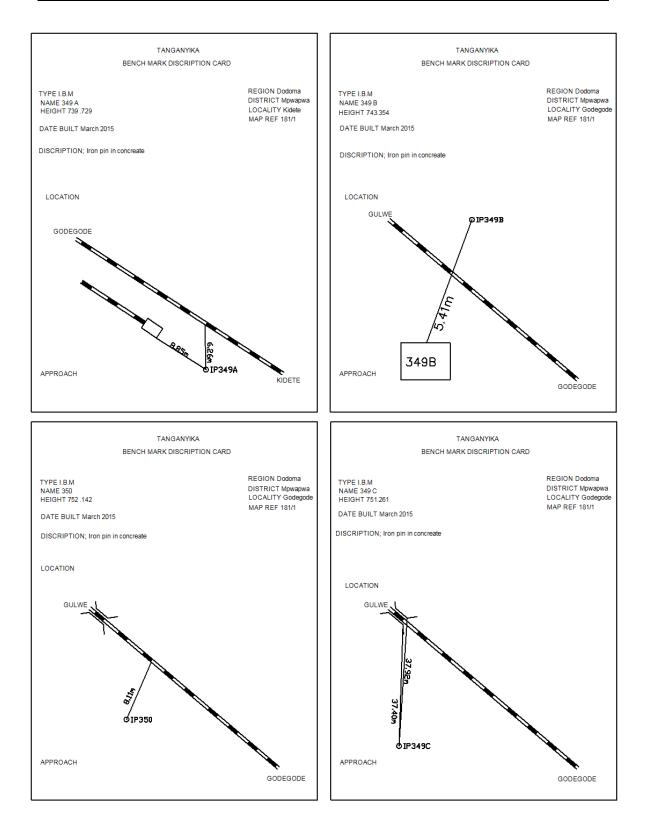

Appendix 1: Drawings

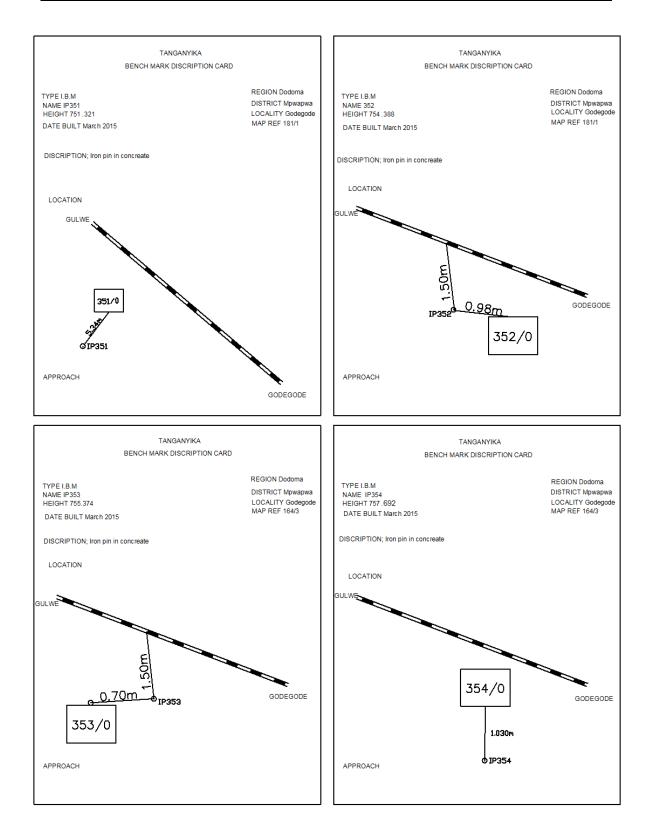

List of Survey Drawings

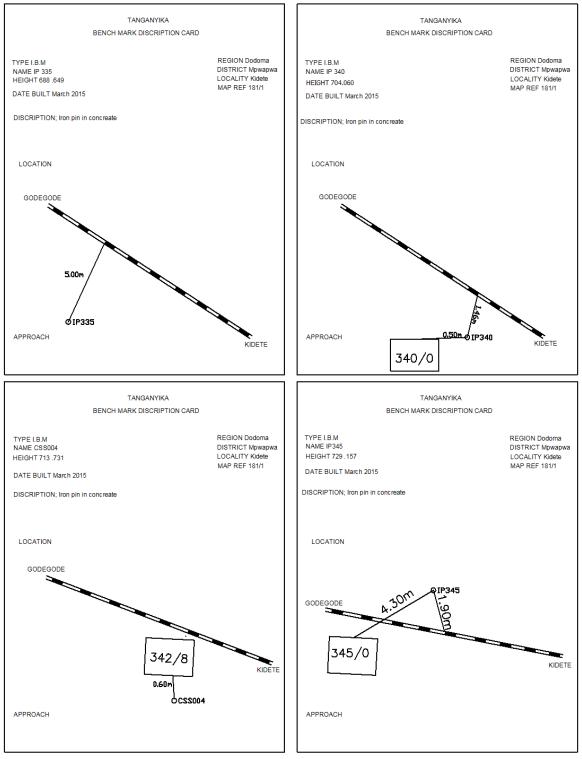

Id	List of survey drawings	Copies	Scale
1.	General location map		
2.	Location map of bench mark and cross sections (1/2)	3	1:50000
3.	Location map of bench mark and cross sections $(1/2)$	3	1:50000
4.	Plan view (1/2)	3	1:50000
5.	Plan view (2/2)	3	1:50000
6.	Longitudinal profile of main stream	3	Vertical 1:1500
			Horizontal 1:7500
7.	Longitudinal profile of Mzase tributary	3	Vertical 1:1500
			Horizontal 1:7500
8.	Longitudinal profile of Sikoko tributary	3	Vertical 1:1400
			Horizontal 1:7000
9.	Longitudinal profile of Kidibo tributary	3	Vertical 1:1400
			Horizontal 1:7000
10.	Longitudinal profile of Maswala tributary	3	Vertical 1:1000
			Horizontal 1:5000
11.	Longitudinal profile of Mangweta tributary	3	Vertical 1:1400
			Horizontal 1:7000
12.	Longitudinal profile of Lumuma tributary	3	Vertical 1:7500
			Horizontal 1:15000
13.	Longitudinal profile of Mkondoa tributary	3	Vertical 1:1600
			Horizontal 1:8000
14.	Cross sections tributaries	21	Vertical1:100
			Horizontal 1:500
15.	Cross sections of main river		Vertical1:200
			Horizontal 1:1000
			Horizontal 1:1500


Source: Dunny Geoinformatics


Appendix 2: Control Points Description Cards







Source: Dunny Geoinformatics

Appendix 3: List of National Bench Marks

-	FROM	F.B.M KILOSA			
	то	F.B.M GULWE			
~			IGHT		
SR	POINT ID		IN meters		
1	F.B.M KILOSA	1640.48			
2	SURFACE MARK	1645.76	501.628		
3	A4/1	1630.37	496.937		
4	A4/2	1639.65	499.765		
5	A4/3	1662.44	506.712		
6	A4/4	1663.37	506.995		
7	A4/5	1685.17	513.640		
8	A4/6	1702.51	518.925		
9	A4/7	1706.95	520.278		
	A4/8	1731.21	527.673		
11	A4/9	1742.76	531.193		
12	A4/10	1759.44	536.277		
	A4/11	1789.80	545.531		
	A4/12	1813.40	552.724		
15	A4/13	1827.47	557.013		
16	A4/14	1852.82	564.740		
	A4/15	1872.34	570.689		
18	A4/16	1893.48	577.133		
	A4/17	1918.78	584.844		
	A4/18	1939.21	591.071		
21	A4/19	1975.87	602.245		
22	A4/20	1988.17	605.994		
23	A4/21	2015.34	614.276		
24		2029.32 2047.21	618.537 623.990		
	A4/23				
20	A4/24 A4/25	2075.51 2108.62	632.615 642.707		
27	A4/25 A4/26	2108.02	652.040		
28	A4/20 A4/27	2139.24	669.515		
30	A4/28	2190.37	676.571		
31	A4/29	2195.70	669.249		
-	A4/30	2201.95	671.154		
33	A4/31	2202.96	671.462		
34	A4/32	2231.46	680.149		
35	A4/33	2255.37	687.437		
36	A4/34	2268.83	691.539		
37	A4/35	2300.37	701.153		
38	A4/36	2302.85	701.909		
39	A4/37	2310.63	704.280		
40		2340.39			
	A4/39	2383.17	726.390		
	A4/40	2400.00	731.520		
43	A4/41	2412.27	735.260		
44	A4/42	2427.81	739.996		
45	A4/43	2449.24	746.528		
46	A4/44	2470.61	753.042		
	A4/45	2471.31	753.255		
	A4/46	2474.36	754.185		
49	A4/47	2478.91	755.572		
	A4/48	2514.18	766.322		
51	A4/48.5	2521.11	768.434		
52	A4/49	2519.76	768.023		
	A4/50	2520.77	768.331		
	A451	2540.51	774.347		
55	A4/51.5	2541.09	774.524		
	A4/52	2538.98	773.881		
	A4/53	2548.02			
58	F.BM. GULWE	2570.08	783.360		
	SURFACE MARK		783.827		

KEY Bench Marks used

APPENDIX U

BREAKDOWN OF COST ESTIMATE

<This Appendix has been removed because of confidential information.>

APPENDIX X

ALIGNMENT STATEMENT OF REROUTING LINE

<This Appendix has been removed because of confidential information.>

APPENDIX Z

Geotechnical Investigation

Geotechnical Investigation Works on the Preparatory Survey on Flood Protection Measures for Central Railway Line in the United Republic of Tanzania

Kilosa – Gulwe Section

Ground Investigation Report

May 2015

C-Labs(Tz) Ltd P. O. Box 34325 DAR ES SALAAM TEL: +255 782 059 955 +255 653 434 392 C.LabsTz@gmail.com

REPORT TITLE:

Geotechnical Investigation for the Preparatory Survey on Flood Protection Measures for the Central Railway Line between Kilosa and Gulwe

Report No:	PROJECT LOCATION:	DATE:
CL-S083/S0820	Kilosa – Gulwe Section of	18 th May 2015
	Centraql Railway	
CLIENT:		AUTHOR:
PADECO COMPANY LTD.		Jotham Ntensibe
(JICA study team)		Yustino Kwingwa
		Victor Salema

Background:

In February 2015, PADECO Company Limited of 6-17-19 Shinbashi, Minato-ku, Tokyo, 105-0004, JAPAN requested C-Labs to carry out a Geotechnical Investigation for the Preparatory Survey on Flood Protection Measures for the Central Railway Line between Kilosa and Gulwe in the United Republic of Tanzania. The Investigation was a component of a JICA study team.

This report contains the findings of the geotechnical investigation.

This report is presented as a purely factual report of the tests results as required by the terms of reference.

SECTION	
●Geotechnical	
Soils	
Bitumen	
Asphalt	
Chemistry	
Cement	
Concrete	

List of Symbols

MSL	Mean Sea Level			
SPT	Standard Penetration Test – with a 63.5kg hammer			
N, N ₆₀	SPT value, corrected SPT value			
USCS	Unified Soil classification system			
BSCS	British soil classification system			
LL, PL, PI	Liquid Limit, Plastic Limit, Plasticity Index			
NMC, w	Natural Moisture Content, moisture content			
SG, G	Specific Gravity			
U4 / U100	Undisturbed sample – 4 inches / 100mm diameter			
DS	Disturbed Sample			
GWT	Ground Water Table			
γ, γ _w	Unit weight of soil (gamma), Unit weight of water			
с	Soil cohesion. Units of pressure, kPa			
Su	Undrained shear strength. Units of pressure, kPa			
¢	Angle of friction (phi)			
α	Adhesion Factor			
Ks	Coefficient of Earth Pressure			
k	permeability			
OCR	Over consolidation ratio			
mv	Coefficient of volume compressibility			
Es	Elasticity Modulus			
μ	Poisson's Ratio			
e, e ₀	Void Ratio, Initial void ratio			
Cr	Compression / Compressibility index			
Cs	Recompression index			
Se	settlement			
S	Degree of saturation			
σ, ρ	Overburden pressure, soil pressure			
u	Pore pressure			

CONTENTS

- **1.0 TERMS OF REFERENCE**
- 2.0 SITE LOCATION
- 3.0 GEOLOGY
- 4.0 INVESTIGATION METHODOLOGY
- 5.0 SOIL TEST RESULTS
- 6.0 OBSERVATIONS AND TEST RESULTS ON ROCK CORES
- 7.0 CHEMICAL TESTS ON GROUND WATER

APPENDICES

1.0 TERMS OF REFERENCE

In summary, the investigation was tasked to carry out the following.

- 1) Drilling Site: 10 sites between Kilosa and Igandu along the Central Corridor Railway
- 2) Core Drilling including Standard Penetration Test (SPT) including sampling and Laboratory

Tests, to a depth of 30m or to a depth where 5.0 meter thickness of more than 50 N values of STP can be confirmed

SPT's were envisaged in all the boreholes and samples for laboratory tests were envisaged for boreholes 3, 6 and 10 as shown in the following table – based on expected soil / rock profile indicated.

Depth	Ground formations	Drilling site No.1, 2, 4, 5, 7, 8, 9		Drilling site No.3, 6, 10		
		STP	Sampling	STP	Sampling	Rock tests
0m	Cohosiya agil	0		0		
2m	Cohesive soil (clay, semi clay, sandy	0		0	0	
4m	clay)	0		0	0	
6m		0		0	0	
8m		0		0	0	
10m	Non-Cohesive soil	0		0	0	
12m	(sand, pebbles)	0		0	0	
14m		0		0	0	
16m		0		0		
18m	Weathered rock of less	0		0		
20m	than 50 N values	0		0		
22m		0		0		
24m		0		0		
26m	Weathered and/or un-	0		0		0
28m	weathered rock of more	0		0		
30m	than 50 N values	0		0		

On exploration, it was found that the depth of rock was quite different. The depth to rock was found to be as follows:

	Depth of Soil - to	Depth of Weathered	Depth of intact Rock	
	Weathered Rock	Rock		
BH 1	0 - 30m			
BH 2	0 - 30m			
BH 3	0 – 1m	1.0 – 14.0m	14.0 – 26.2m	
BH 4	0 – 3m	3.0 – 13.5m	13.5 – 22.4m	
BH 5	0 – 13.5m	13.5 – 21.0m	21.0 – 26.7m	
BH 6	0 – 2.0m	2.0 – 17.0m	17.0 – 22.0m	
BH 7	0 – 11.0m	12.0 – 13.0m	13.0 – 18.0m	
BH 8	0 – 15.7m	15.7 – 20.0m	20.0 – 26.8m	
BH 9	0 – 9.5m	9.5 – 28.0m	28.0 – 33.0m	
BH 10	0 – 12.0m	12.0 – 23.7m	23.7 – 30.8m	

Table 2: Depth of soil, weathered rock and intact rock investigated in each borehole

Boreholes 3 and 6 had a very shallow soil profile. The highlighted boreholes had at least 5m of soil before encountering rock. No rock was encountered in boreholes 1 and 2. U4 Soil samples were taken at about 2m intervals in each borehole and visual and strength assessment made of the rock in each borehole. Considerably more was done than was required in the ToR so as to present a better understanding of the soil and rock types along the investigated route.

2.0 SITE LOCATION

The Central Railway Line between Kilosa and Gulwe runs in the valley of the NW-SW flowing river Mkondoa along which the altitude falls from about 790m in Gulwe to 520m in Kilosa. The river collects from the mountains including Ukaguru, Kiboriani, Ulugaro mountains at the western fringes of the Wami/Ruvu catchment. Many rock outcrops are found on the Kilosa end of the project and past Gode Gode towards Gulwe. The hydraulics of the tributaries from the surrouinding mountains have caused disruptions on the operation of the existing central railway line. The railway runs general south of the river.

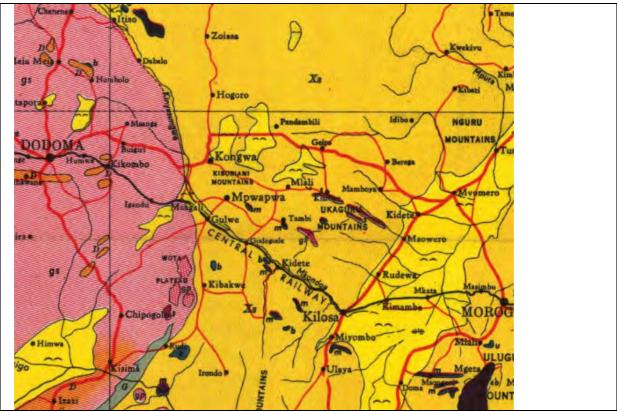
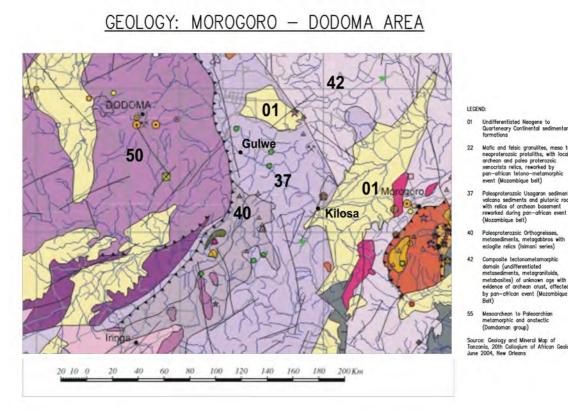


Figure 1: Topography of the Project area

3.0 GEOLOGY


The two maps below illustrate the general geology of the project route.

Source: Geological Map of Tanganyika, Geological survey Department Dodoma, 1959 Figure 2a. Typical Geology between Kilosa and Gulwe

- Xs = Usagaran Archean formations. Marble; Quartzite; Graphite Schist;, Chlorite, Amphiboles, Mica and Kyanite Schist; Hornblende, Biotite and garnet gneiss; acid gneiss; granulite; charnockite.
- m= metagabbros (Archean)
- b= un-metamorphorsed gabbroic and anorthositic rocks, as well as more or less metamorphosed peridotite, pyroxenite, and serpentine (mainly Pre-Cambrian)

Figure 2b. Typical Geology between Kilosa and Gulwe.

3.1 Key geological formations.

Metapsammitic granulites of the Usagara Archean formations.

The Archean rocks in Central Tanzania (2.5 - 4 billion years old) consist of belts of greenstone (volcano-sedimentary) sequences, found within a larger region of predominantly younger granitic rocks.

But in the Usagaran formations found in Central and Eastern Tanzania including the project area, a later Pan African tectonic-thermal Pretorozoic event occurred (0.5 to 2.5 billiom years), and a variety of high grade metamorphic rocks of both sedimentary and igneous origin were formed from the Archean . Amphibolite grade metamorphic assemblages predominate related to the granitization amd migmatization of the event, the same that effected the Mozambican Belt¹. The structural trends are mostly North to South.

¹ A brief Introduction to the Geology and Mining Inductry of Tanzania, SIKA Resources Inc, Oct 2011 Toronto Ontario

4.0 INVESTIGATION METHODOLOGY:

4.1 Location of the boreholes:

The location of the boreholes was selected by the client. A total of ten boreholes were drilled close to bridge locations, on the side opposite to the river. The GPS locations and a map of the physical locations is found in Table 1 and figure 3 below . The boreholes are numbered from Kilosa to Gulwe. BH10 is at the highest altitude on the Gulwe end. BH1 is at the lowest altitude on the Kilosa end.

		201010100			
Label	Easting*	Northing	Distance from	Height with	Approximate
			previous point,	respect to Railway	Elevation***
			km**		
BH01	268587.5	9254399.7	0	-0.762	534.2
BH02	263190.7	9254193.7	5.40	-0.492	557.0
BH03	256366.8	9259116.3	8.41	-0.660	604.7
BH04	253383.1	9260250.5	3.19	-1.295	618.4
BH05	242421.1	9268380.1	13.64	-1.875	675.2
BH06	239638.8	9272439.0	4.92	+0.150	697.0
BH07	232655.0	9276368.3	8.01	-1.143	733.8
BH08	222325.4	9282245.6	11.88	-0.425	769.1
BH09	217353.6	9284422.9	5.42	-0.762	778.8
BH10	213838.6	9286420.2	4.04	-0.462	785.0
*	1000 7000 27				

Table 1: Location of the Boreholes

*UTM Arc 1960 Zone 37

**straight line distances. Not measured along rail.

***elevations provided by client



Figure 3: Locations of the boreholes

4.2 Boring Methods

The primary method used was rotary drilling using 120mm and 150mm bits and bentonite fluid. Before SPT and sampling, the boreholes were cleaned and sufficient length of sample was taken to ensure an uncontaminated undisturbed sample was obtained in each U100 sampler. The SPT's were carried out immediately after sampling in clean boreholes.

Boreholes 1 and 2 had no rock formations. They were investigated to 30m depth. All the other holes had rocks at various depths as illustrated in Table 2 above. These boreholes were drilled through hard weathered rock with SPT > 50 but with poor rock recovery, and into intact rock with good rock recovery for at a depth of at least 5m. Intact rock was found between 13 and 28m deep. Single HQ (61mm nominal diameter cores) and NQ (47mm nominal diameter cores) core barrels were used. The latter was used after about 2m of drilling in hard intact rock.

4.3 Sampling:

The following samples were taken as boring progressed:

- 100mm dia undisturbed soil samples were taken every 2m in boreholes 1 and 10 wherever possible. Undisturbed soil samples were taken every 4m in all other boreholes. Sampling was only required @2m to a depth of 15m in Boreholes 3, 6 and 10 in the terms of reference. However it was found that boreholes 3 and 6 had very shallow soil profiles less than 2m deep. The soil samples were spread out over boreholes 2,5, 7 and 9.
- Disturbed samples were taken from the SPT sampler but they were mostly used for visual classification on site rather than Laboratory tests.

• Continuous samples of the rock were taken for visual descriptions and strength testing. The recovery in highly weathered rock was generally poor – as expected.

4.4 In-situ Tests

SPT sounding was carried out every 2m in each borehole to refusal (taken as N > 50blows). Thereafter drilling continued without SPT's .

4.5 Laboratory Tests Carried Out

Laboratory tests on the undisturbed soil samples have been carried out as follows.

On the Undisturbed	 Particle Size Analysis on all samples, 	BS 1377 Part2: 1990
Samples	including hydrometer method on	
	selected samples	
	 Atterberg's limits on all samples 	BS 1377 Part2: 1990
	 Bulk Density on all samples 	BS 1377 Part2: 1990
	 Natural Moisture Content 	BS 1377 Part2: 1990
	 Determination of undrained shear 	BS 1377 Part7: 1990
	strength Su on clay samples, UU tests	
	 Direct shear on predominantly sandy 	BS 1377 Part7: 1990
	samples	
	 One dimensional Consolidation 	BS 1377 Part5: 1990
	Properties on clay samples	
On disturbed SPT	No Lab tests. Only a visual assessment.	
Samples		

Table 2: Laboratory Tests carried out on soil samples

Classification testing (grading and plasticity) was carried out on undisturbed samples so as to show progression of the classification of soil with depth in each borehole.

The Sandy Clay soils were tested using the direct shear apparatus to obtain angle of friction φ' . The cohesive soils were tested for Total stress (UU) to determine the undrained cohesive strength s_u of the soil.

A number of additional soil properties have been obtained from the test results including estimates of Elastic modulus, Coefficient of volume compressibility, the compression and unloading /recompression indices and the over-consolidation ratio. These can be found in the summarized test results in **Appendix A** and the detailed test results in the following appendices.

6 samples of ground water were tested for pH, Chloride content and Sulphate content.

A visual assessment of the Rock cores was carried out to determine Rock Quality designation index and in addition, the bulk density, porosity and UCS strength and point load index were determined at about 1 - 2m interval depths for each borehole. Tests were carried out in accordance with the recommendations of the International Society of Rock Mechanics ISRM.

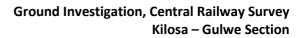
5.0 SOIL TEST RESULTS

5.1 Soil summaries

A summary of the findings in each borehole can be found on the borehole logs in **Appendix B**. The logs contain:

- Field Soil descriptions,
- SPT results,
- A summary of the Classification Results,

5.2 Detailed Results


:

A summary of the laboratory tests on each sample can be found in **Appendix B**. Detailed results of the testing can be found in **Appendix C to E**. The results for each borehole include

- Results of the Particle size analysis including hydrometer tests results
- Results of the Atterberg's limits test including Linear Shrinkage
- Results of the Shear tests including Direct shear, Unconsolidated Undrained Triaxial Tests (UU).
- The Consolidation test results. One dimensional consolidation tests were only carried out on undisturbed cohesive samples.

In the summaries, the soil has been classified to the British Soil Classification System (BSCS) found in BS 5930 – *Code of practice for site investigations*, but also to the Unified Soil Classification System (USCS). The former has clearer **descriptions** of the plasticity of the clays and silts and in our experience, correlates more closely to the field descriptions. But the USCS classification is more widely used for **analysis** and has appropriately been used in this report

Boreholes 2, 3, 4, 7 and 10 have predominantly granular material consisting of clayey sands, clayey gravels and sand. Borehole 8 has low plasticity fines and clays and Borehole 5 has potentially expansive clays and silts of high plasticity.

6.0 OBSERVATIONS AND TEST RESULTS ON THE ROCK CORES:

6.1 Lithology:

Field descriptions of the Lithology can be found in Appendix A3 to A10. The descriptions include pictures of the rock cores and an estimation of the Rock Quality Designation.

- No rock was encountered in Boreholes 1 and 2 up to 30m drill depth
- Boreholes 3 and 4 consists predominantly of metamorphosed sandstone.
- Boreholes 5 to 10 consist of complex gneiss formations from both sedimentary and igneous protoliths.

6.2 Lab Tests on Rocks

Tests on the rocks included UCS and Point Load Index tests for strength, Bulk density, moisture and porosity. These results can be found in **Appendix F** and **Appendix G**.

The density of the rocks varies from 2.4 to 3.0. The least porous rocks (<0.7) are found in the lower portions of Boreholes 3 (below 14m) and borehole 4 (below 13.5m) and at various levels in borehole 10. The strongest rocks are also found in these three boreholes with average UCS values greater than 55MPa. Borehole 4 however had weak rock at its bottom.

.Relatively porous rocks (>1.5) were found in Boreholes 8, and on the upper portions of boreholes 5 (above 25m) and Borehole 1 (above 14m). The weakest rock is found in Borehole 5 with a UCS average less than 25MPa.

These figures highlight the large variation and observed complexity of the rock formation,

11

7.0 CHEMICAL TESTS ON WATER

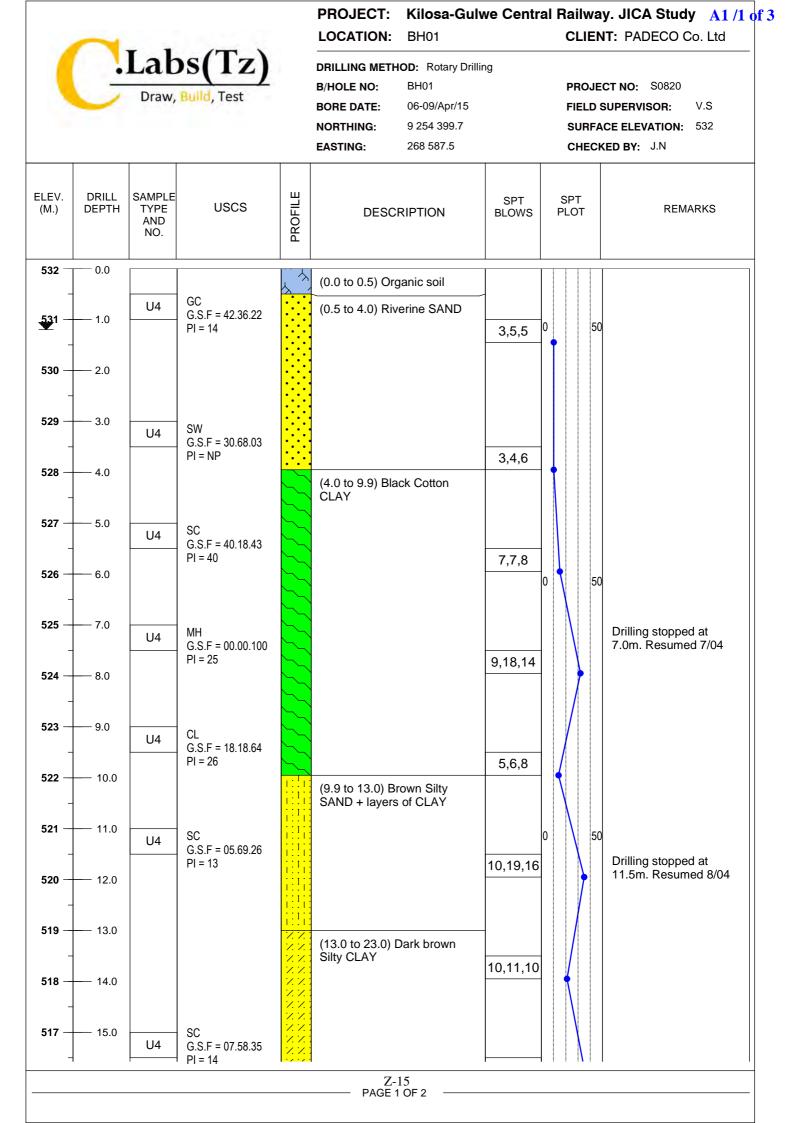
The table below has a summary of the chemical tests on water collected from the boreholes. No ground water was encountered in Boreholes 3, 4 and 10.

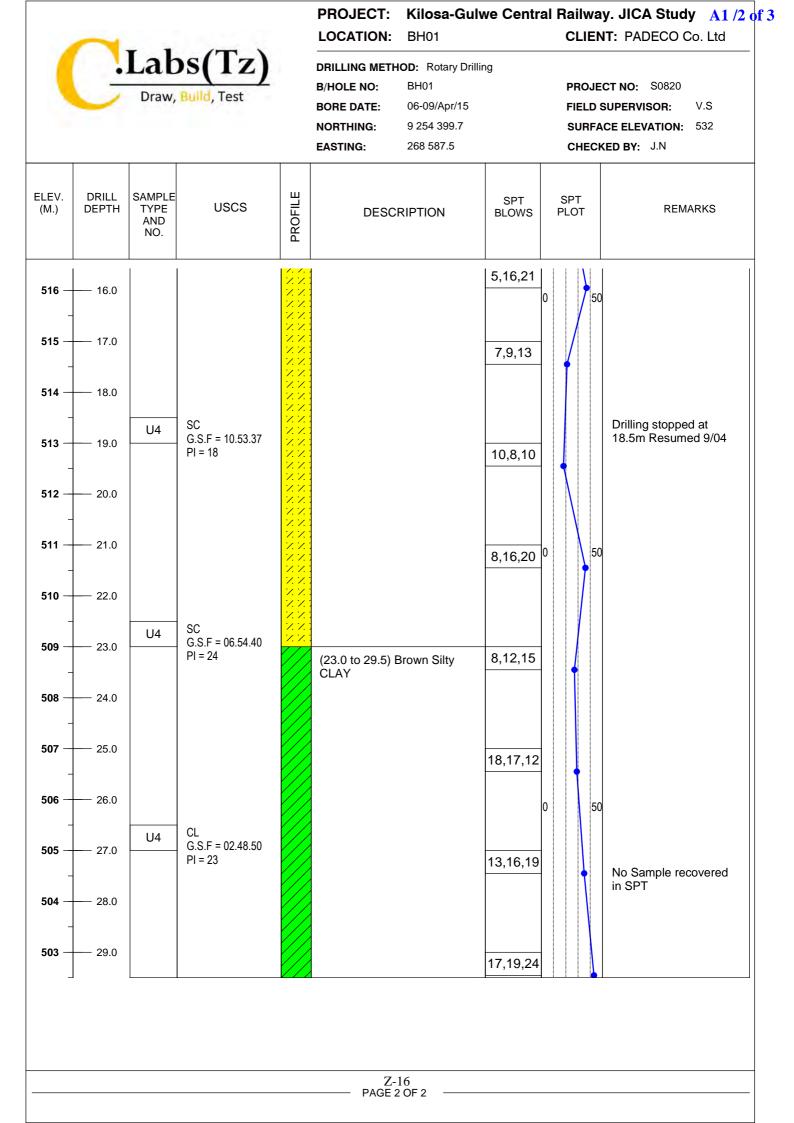
	рН	Chloride content	Sulphate Content
		Cl ⁻ , mg/l	SO₄ ⁻ , mg/l
BH1	7.62	92.2	311.7
BH2	7.56	74.4	365.9
BH 3	-	-	-
BH 4	-	-	-
BH5	7.26	42.5	280.0
BH6	7.72	85.1	209.7
BH7	7.73	88.6	219.5
BH8	7.71	95.7	286.9
BH9	7.53	85.1	382.7
BH 10	-	-	-

Table 3 : Results of Chemical Tests on Ground Water

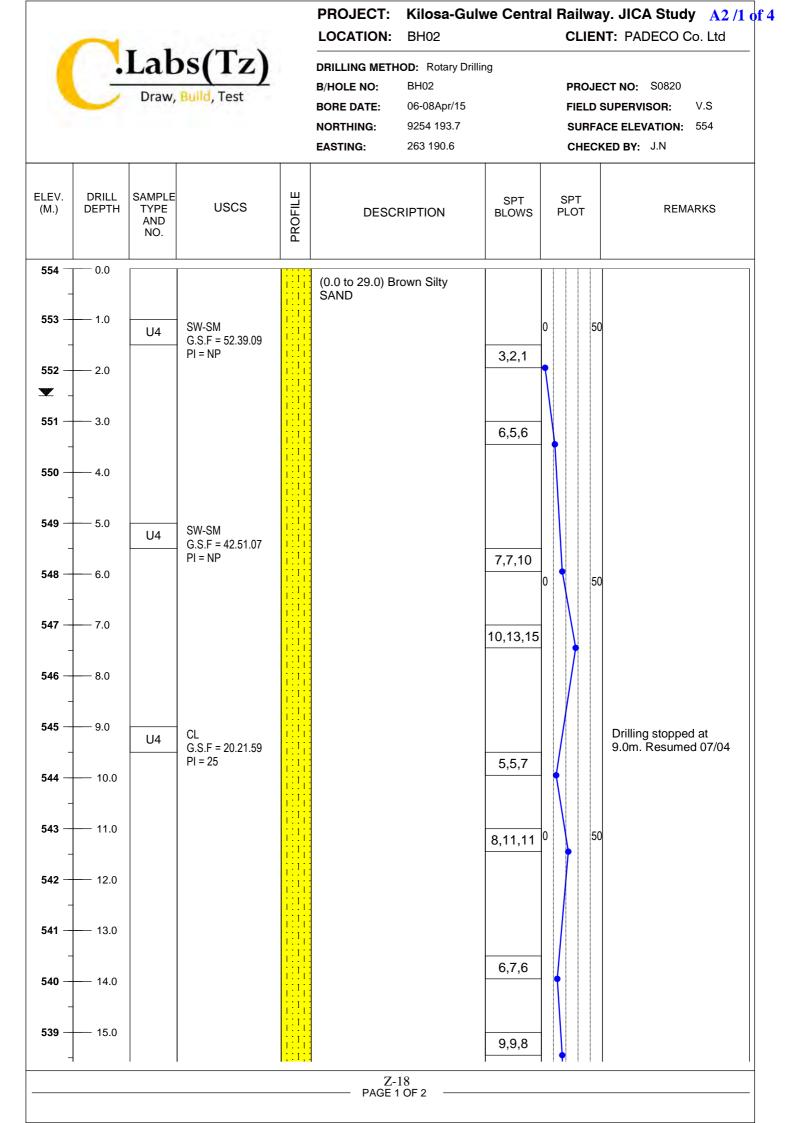
It can be seen that the sulphate content in the water is quite high. Detailed test result sheets can be found in **Appendix H**

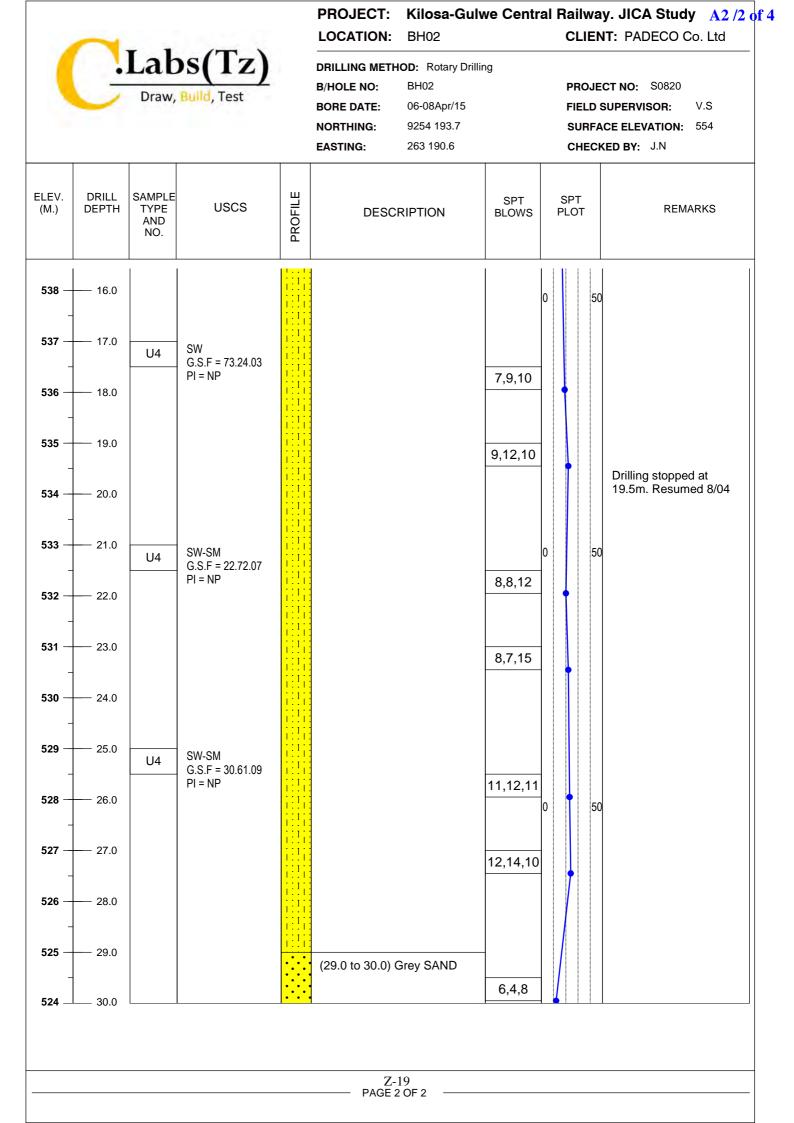
END C-Labs(Tz) Ltd

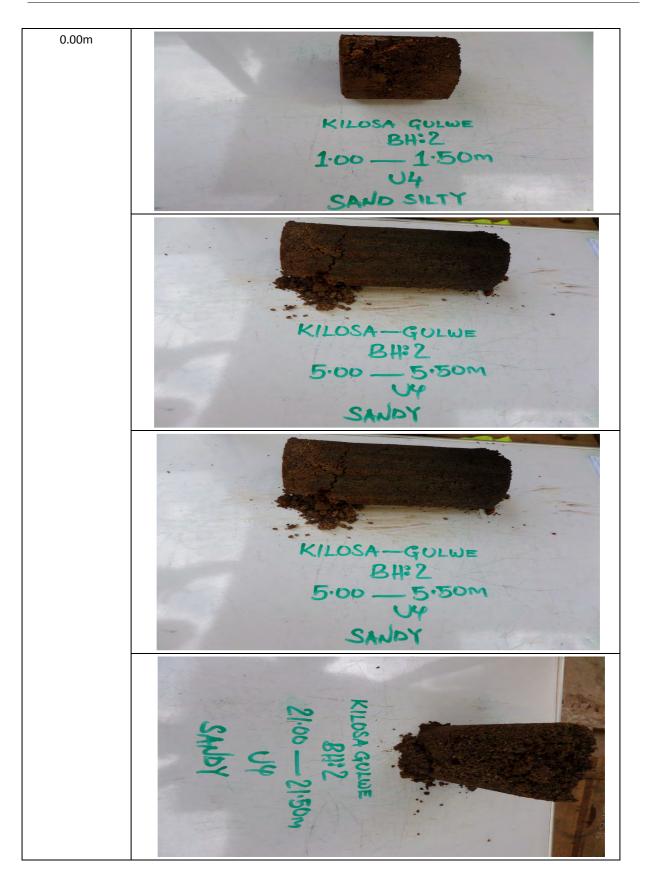

LIST OF APPENDICES


APPENDIX A2:BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 2APPENDIX A3:BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 3APPENDIX A4:BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 4APPENDIX A5:BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 5APPENDIX A6:BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 6

APPENDIX A1: BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 1


- APPENDIX A7: BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 7
- APPENDIX A8: BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 8
- APPENDIX A9: BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 9
- APPENDIX A10: BOREHOLE LOGS AND PHOTOGRAPHS BOREHOLE 10
- APPENDIX B: SUMMARIES OF SOIL CLASSIFICATION
- APPENDIX C: THE UNCONSOLIDATED UNDRAINED TEST RESULTS
- APPENDIX D: THE DIRECT SHEAR TEST RESULTS
- APPENDIX E: THE ONE DIMENSIONAL CONSOLIDATION TEST RESULTS
- APPENDIX F: THE UCS AND POINT LOAD STRENGTH RESULTS ON ROCK CORES
- APPENDIX G: THE DENSITY AND POROSITY RESULTS ON ROCK CORES
- APPENDIX H: CHEMICAL TEST RESULTS ON THE GROUND WATER

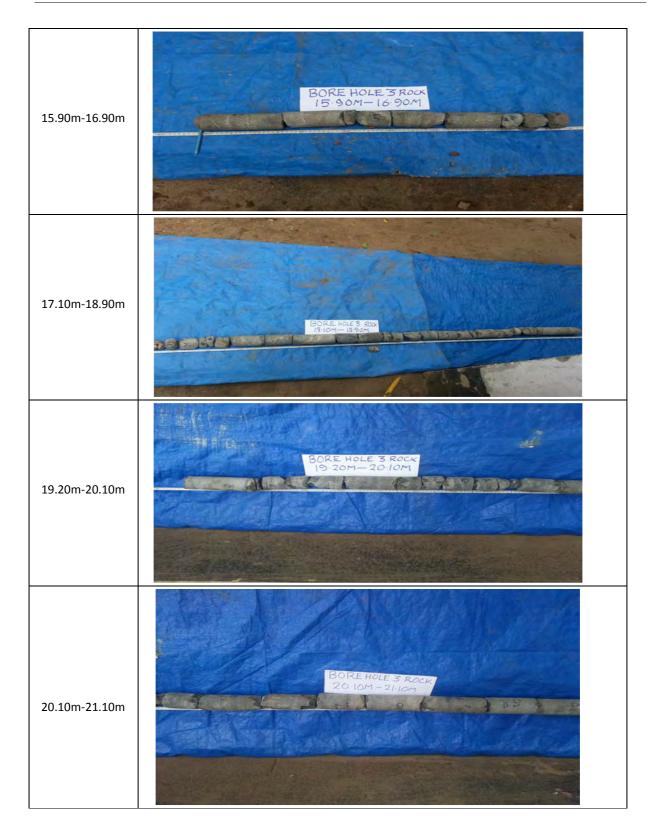

13

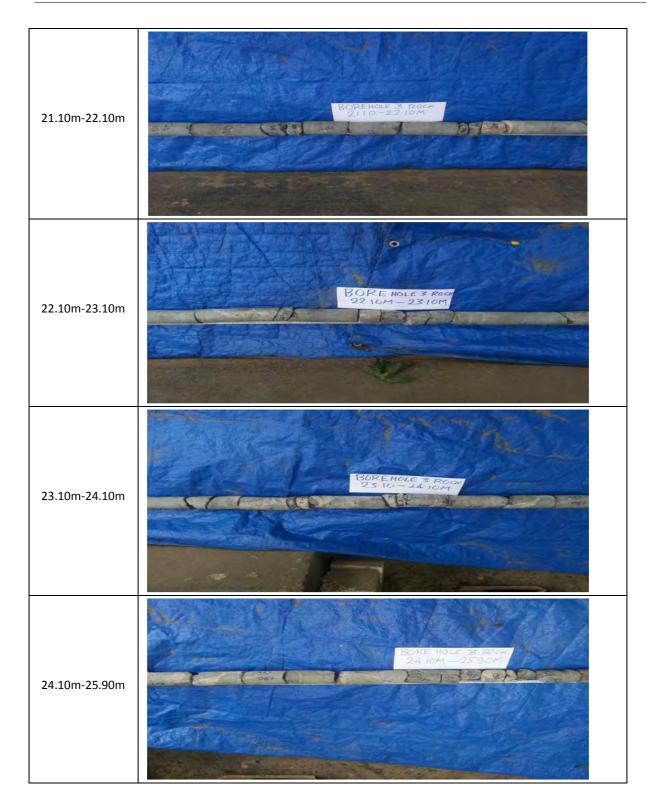


0.00m-3.50m	KILOSA - COLWE BHJ 1 0.50 - 1.00m SAND
3.50m-9.50m	KILOSA-QULWE BHF1 5.00 UG CLAY-SAND
9.95m-13.00m	KILOSA-COLWE BH: 1 11.00 - 11.50M UY SILTY-SAND
13.00m-23.00m	KILOSA-QULWE BH-1 18.50 - 19.00m U4 CLAY-SAND
23.00m-29.45m	KILOSA - CULWE BH: 1 26.50 - 27.00m U4 CLAY - SILTY

	KILOSA- GULWE BH: 2 25.00 - 25.50 U4
29.95m	SANDY

	1	r . 1	-(T)		LOCATION: BH03		CLIER	NT: PADECO Co. Ltd
Labs(Tz) Draw, Build, Test					DRILLING METH-D: Rotary Drilli B/HOLE NO: BH03 BORE DATE: 01-03/Apr/15 NORTHING: 9259 116.34 EASTING: 256 366.7	ng	FIELD SURF#	CT NO: S0820 SUPERVISOR: V.S ACE ELEVATION: 599 KED BY: J.N
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCRIPTION	SPT BLOWS	SPT PLOT	REMARKS
599 -	0.0				(0.0 to 2.0) Dry Brown Silty			
598 -	1.0	U4	GW-GM		SAND		0 50	
597 -	2.0	G.S.F = 66.25.09 PI = NP				-		from 1 to 19.2m during drilling suggesting rock with large fractures
596 -	3.0				(2.0 to 13.5) Quartzite / Gneiss. Various degree of weathering .			
590 -	- 3.0							
595 -	4.0							
594 -	5.0							
593 -	6.0						0 50	
592 -	7.0							
591 -	8.0							
590 -	9.0							Drilling stopped at
589 -	10.0							9.4m. Resumed 2/4/15
588 -	11.0						0 50	
587 -	12.0							
586	13.0							
- 00C	- 13.0				(13.5 to 19.2) Moderately	_		
585 -	14.0				weathered Gneiss			
584 -	15.0							Drilling stopped at 14.9m. Resumed 3/4/15


			PROJECT: Kilosa-Gulwe Central Railway. JICA Stu- LOCATION: BH03 CLIENT: PADECO							
	<u>.</u>		DS(TZ) Build, Test		DRILLING METH B/HOLE NO: BORE DATE: NORTHING: EASTING:	OD: Rotary Drillir BH03 01-03/Apr/15 9259 116.34 256 366.7	ng	PROJECT NO: S0820 FIELD SUPERVISOR: V.S SURFACE ELEVATION: 599 CHECKED BY: J.N		
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCI	RIPTION	SPT BLOWS	SPT PLOT	REMARKS	
583 582 581 579 577 5776 5775 5775 5774 5773	18.0 19.0 20.0 21.0 22.0 23.0 24.0				(19.2 to 26.2) I	ntact Rock.		0 5	Reduced rate of percolation during drilling indicating intact rock	
					Z-2 Z-2	23 OF 2				


Client Locat Coorc	ion	KILOSA GULWE Elevations 9259116.3N Date	levation 599m late 03 Ap ogged By VS			599m 03 Apr 2015			Labs(Tz) Draw, Build, Test				
Elevation	Lithology	LITHOLOGIC DESCRIPTION	Degree of Weathering	Strength UCS MPa 50	Dat (20)	Hardness	Discontinuity D Dip Angles	Spacing (cm)	Core Run depth, m	TCR %	SCR %	RQD %	
2 - 597 - 3 - 596		(2 - 9) Hornfels. Quartzites	IV		27	R1			3.0	51	0	0	
4 595 5 594			IV			R4			5.5	95	62	57	
5 - 593 - 7 - 592 - 3 - 591			IV			R4			7.4	68	19	13	
- - - - - - - - - - - - - - - - - - -		(9 - 13) Quartzites and Feldspathoids	IV		69	R3			9.4	42	0	0	
2 587			١V	•		R3			11.1	43	30	13	
- - - - - - - - - - - - - -		(13 - 17) Weathered green and dark grey gneiss	IV			R2			12.5 13.9	97	82	80	
- 505			 			R2				99	76	75	

3 2 3 2 1		ld, Test	-	Lat Draw,	-				015	BH 03 599m 03 Apr 2 VS	on	B/Hole Elevatio Date Logged	PADECO Co. Ltd KILOSA GULWE 9259116.3N 256366.7E		ent catio ordi	L
17 - 582 (17 - 26) Hornfels. Granulitic Amphibolites. Quartz intrusions III R4 III 17.1 79 70 18 - 581 III III R4 III IIII IIIIII IIIII IIIII IIIII IIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SCR % RQD %	% 40 V	TCR %	Core Run depth, m			Dip Angles		(50)	UCS MPa	Degree of Weathering	CRIPTION	LITHOLOGIC DESCI	LILINOUGY		
$ \begin{array}{c} $	0 55	9 70	79					R4			111				83	-
$ \begin{array}{c} 0 - 579 \\ - 1 - 578 \\ 2 - 577 \\ - 3 - 576 \end{array} $ $ \begin{array}{c} 11 - 578 \\ - 1 - $	1 38	4 41				-		R4			II					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				20.1												-
3-576	97	00 97	100			-		R4			II					-
				23.1		_										
4 - 575 24.1 5 - 574 100 62	2 62	00 62						R2			11					-

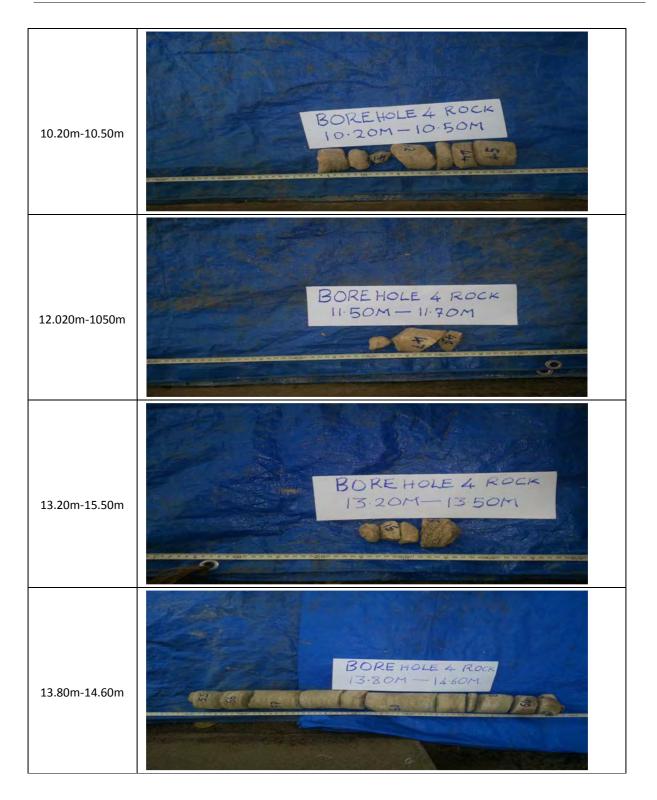
Depth	Observations	Picture
1.5 - 2.6	 Dark grey, fine to medium grained No foliation apparent. Metamorphosed igneous rock. Hornfels Intrusive Silica band about 30-40mm Some mica Shiny lustre 	KILOSA-GULWE BH3 2.00M
3.0 - 4.4	 Dark grey, fine to medium grained No foliation apparent. Metamorphosed igneous rock. Hornfels. Some mica 	KILDSA-EULWE BH3 3.70M.
5.5 – 6.5	 Dark grey, fine to medium grained No foliation apparent. Metamorphosed igneous rock Fracture 10mm wide, filled with cemented sand and weak white to pink silica band about 20mm 	KILOSA-GULKIE BH3 6.00M

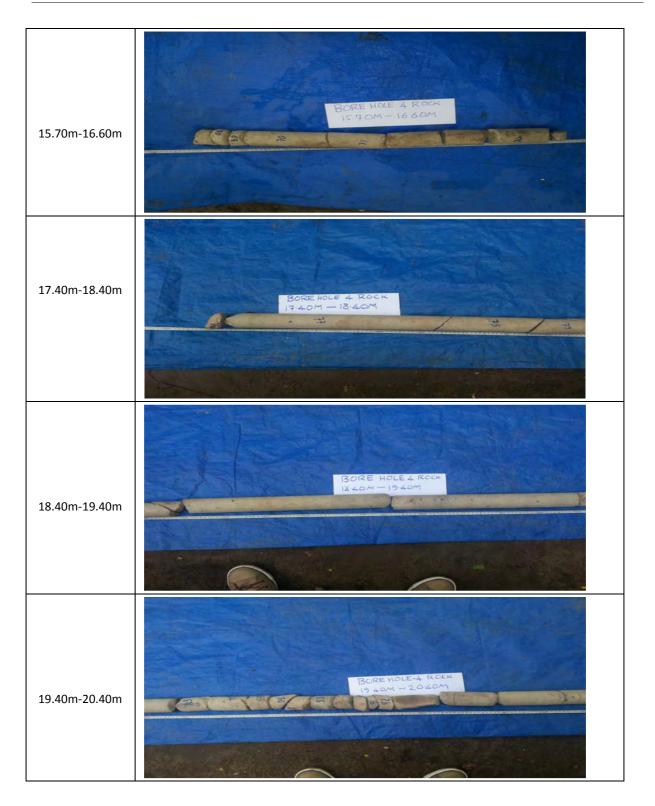
Depth	Observations	Picture
9.4 - 12.1	 Observations Contact discontinuity at about 9.8m between fine dark grey rock and white quartzitic rock. Pink rock with some brown discoloration. Crystals not distinct. Feldspar and Quartz 	Picture

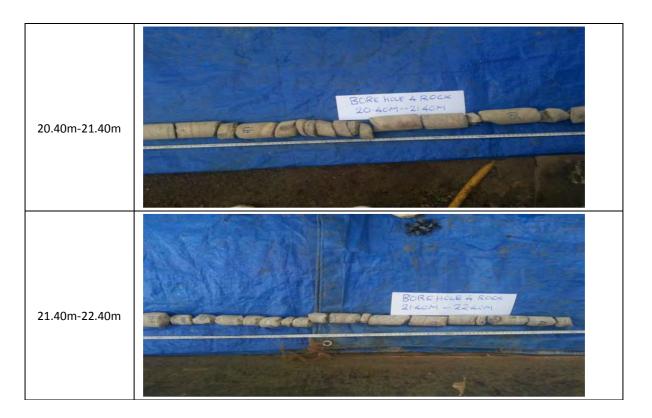
Depth	Observations	Picture
12.5 – 16.9	 Dark grey, and green weathered rock. Abrades easily into sand grains. Weathered. Intercrossing hairline veins. Possibly chemical deposits as water seeps through relatively porous rock. Larger vein with cemented sand infill dipping about 45 – 60 deg Weathered rock described above improves to a uniform medium grained dark grey rock. 	KILOSA·GULWE BH3 ISOOM KILOSA·GULWE BH3 I4·SOM KILOSA·GULWE BH3 I6·40M

Depth	Observations	Picture
17.1 – 18.9	 High concentration of mica Dark and light grey Pink siliceous intrusion about 50mm thick dipping about 60deg 	KILOSA- GULWE BH3 18:40M
19.2 22.1	 Dark grey fine rock. Mafic. Hard but slaty Foliations not distinct. Similar to rock found in between 2 and 9m Mica present 	KILOSA- GULWE BH3 J9.50M. KILOSA-GULWE BH3 21.90M.

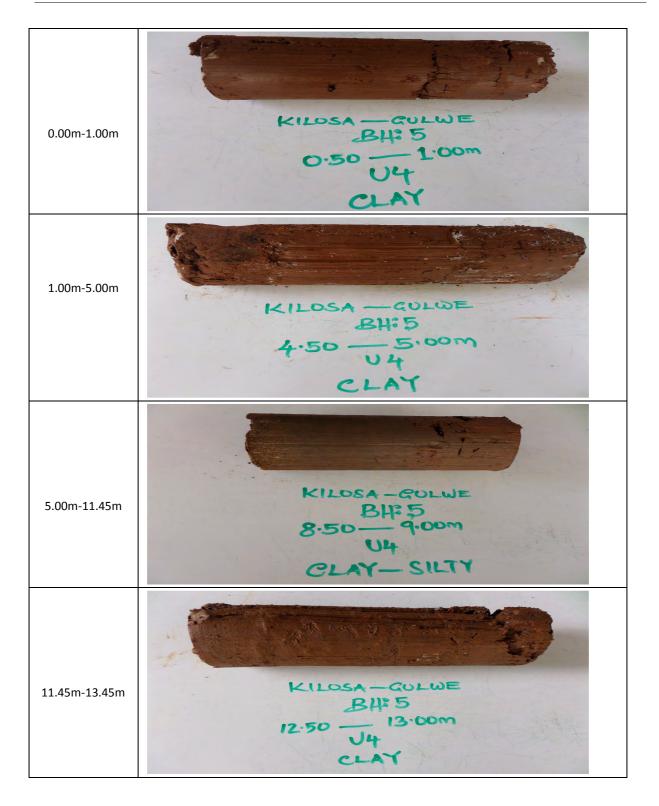
Depth	Observations	Picture
22.1 - 25.9	 The Dark fine to medium grained grey rock in a shear zone, foliated. Metamorphosed : Bands of steeply dipping dark rock and pink siliceous rock. Granulitic at 25m depth 	KILOSA-GULWE BH3 23:80M KILOSA-GULWE BH3 24:90M


	~				PROJECT:Kilosa-GuLOCATION:BH04	Ilwe Cent		ay. JICA Study A4 /1 o NT: PADECO Co. Ltd
	<u>_</u>		DS(TZ) Build, Test		DRILLING METHOD: Rotary Dr B/HOLE NO: BH04 BORE DATE: 30Mar - 01/Ag NORTHING: 9260 250.5 EASTING: 253 383.1		FIELD SURF	ECT NO: S0820 SUPERVISOR: V.S ACE ELEVATION: 614 KED BY: J.N
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCRIPTION	SPT BLOWS	SPT PLOT	REMARKS
614	0.0			<u> </u>	(0.0 to 5.0) Brown clayey			
- 613 —	1.0	U4	SC G.S.F = 26.53.21	777 777 777 77	SAND		0 5	
612 —	2.0		PI = 16	ンン ンン ンン ンン ンン		18,27,26		SPT N=53
611 —	3.0			ンス ンス ンス ンス ンス		45/5cm		SPT refusal (N>50)
610 —	4.0			7.7. 7.7. 7.7. 7.7. 7.7.				
609 —	5.0				(5.0 to 13.5) Weathered rock	45/5cm		SPT refusal (N>50)
608	6.0						0 5	ο
606	8.0							
605 —	-							
604 —	10.0							Drilling stopped at 8.6m. Resumed 31/03
603 —	11.0						0 5	0
602 —	12.0							
601	13.0							
600	14.0				(13.5 to 22.4) Intact Rock. Sandstone			
599 —	15.0							Drilling stopped at 14.6m. Resumed 01/04

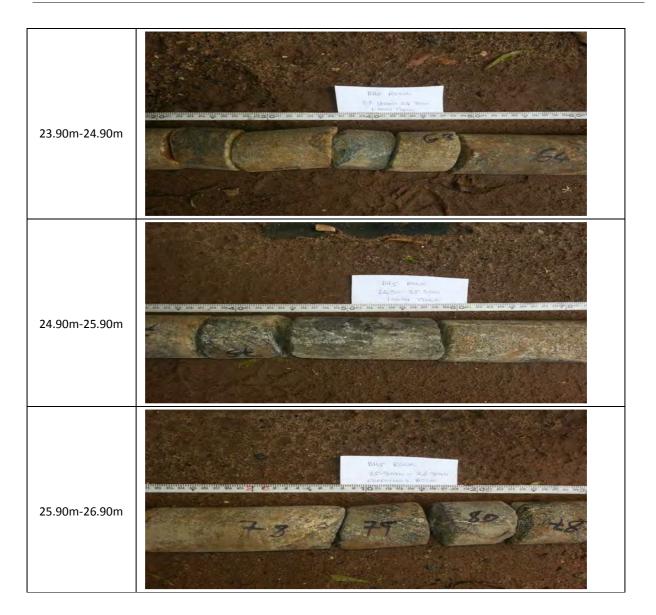

	~		a en estera		PROJECT: LOCATION:	Kilosa-Gulv BH04	ve Centr		y. JICA Study A4 /2 o NT: PADECO Co. Ltd
	<u>C</u>		DS(TZ) Build, Test		DRILLING METH B/HOLE NO: BORE DATE: NORTHING: EASTING:	OD: Rotary Drillir BH04 30Mar - 01/Apr/1 9260 250.5 253 383.1		FIELD SURFA	CT NO: S0820 SUPERVISOR: V.S ICE ELEVATION: 614 KED BY: J.N
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCI	RIPTION	SPT BLOWS	SPT PLOT	REMARKS
598 –	16.0							0 50	
597 -	17.0								
596 -	18.0								
595 -	19.0								
594 –	20.0								
593 –	21.0							0 50	
592 -	22.0								


	Client Locat Coord	ion	KILOSA GULWE Elev s 9260250.5N Date	ole No. /ation e ged By	614m 31Mar20)15		C		Lab Draw,	DS(()
Down Hole Depth (m)	Elevation	Lithology	LITHOLOGIC DESCRIPTION	Degree of Weathering	Strength UCS MPa 50	Dat (20)	Hardness	Discontinuity D Dip Angles	Spacing (cm)	Core Run depth, m	TCR %	SCR %	RQD %
5-	- 609		(5 - 14) Weathered			3.6							
6-	- 608			IV		7.4	R0				3	0	0
7-	- 607			IV		1.4	R0			6.8			
-	- 606			IV	•	3.9	R4			8.5	100	27	27
-	- 605 - - 604												
-	- - 603			IV		7.5	R1			10.2	15	0	0
-	-					4.8				11.5			
12 -	- 602 -			IV		-	R1				17	0	0
13 -	- 601			IV		9.3	R1				33	0	0
14 -	- 600 -		(14 - 20) Metamorphosed Sandstone			-	R3			13.8		10	10
15 -	- 599 -			IV		-	кэ			15.7	88	19	19
-	- 598			11			R3				89	73	73
-	597 - 596			11			R4			17.4	100	86	86

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Clien Loca Coor		PADECO Co. Ltd KILOSA GULWE 9260250.5N 253383.1E	B/Hole Elevatic Date Logged	on	BH 04 614m 31Mar20 VS	15			C		Draw, Bu	1	2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Down Hole Depth (m) Elevation	Lithology	LITHOLOGIC DESCRI	PTION	Degree of Weathering	UCS MPa			Dip Angles			Core Run depth, m	SCR %	RQD %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 - 595				II		,	R5					0 97	97
2 - 592 III • R2 III 21.4 100 40 40	20 594		(20 - 22) Semipelite		. 11			R5				10	0 58	58
	21 — 593 -										2	21.4		
											<u></u> 2	4		


Depth	Observations	Picture
5.00 – 8.60	 Highly weathered metasediments. Medium grained High mica content Mottled light grey, black and pink. 	KILOSA-GULKIE BH4 7.00M
10.2 – 11.7	 Light gray to white Metasediment High mica content Medium grained Small intrusions of light pink quartz 	KILOSA-GULKE BH4 II.SOM.
13.2 – 14.6	 Light grey with pink spots Weathered metasediment Black translucent mica (Biotite) and quartz Medium grained 	KILOSA-GULWE BOBOHOLE4 13.80M

Depth	Observations	Picture
15.7 – 20.4	 Metasediment Mottled Pink and grey Uniform Medium grained. Sand Metasandstone High concentration of mica Little signs of weathering Very hard rock Strength decreases approaching 20.4m 	KILOSA-GULWE ISH 4 IZ. 80M.
20.4 - 22.4	 Light grey metasediment. Semipelite High mica concentration Moderately weathered Light pink quartz intrusion Medium grained 	KILOSA-GULWE BH4 21/11


	~				PROJECT: Kilosa-Gult LOCATION: BH05	we Centra		NY. JICA Study A5 /2
	<u>.</u>		DS(Tz) Build, Test		DRILLING METHOD: Rotary DrilliB/HOLE NO:BH05BORE DATE:22 - 24Mar/15NORTHING:9260 250.5EASTING:242 421.1	ng	FIELD SURFA	CT NO: S0820 SUPERVISOR: V.S ACE ELEVATION: 672 KED BY: J.N
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCRIPTION	SPT BLOWS	SPT PLOT	REMARKS
672 -	0.0	U4	CH G.S.F = 00.02.98		(0.0 to 1.5) Clayey organic soil			
- 670 -	2.0		PI = 39		(1.5 to 5.0) Stiff Reddish brown CLAY	2,6,7	0 50	
• 669 —	3.0					6,8,15		
668 —	4.0							
- 667 — -	5.0	U4	CH G.S.F = 00.00.100 PI = 52		(5.0 to 7.5) Reddish brown Silty CLAY	9,17,20		
666 — -	6.0			- + + + - + + + + +			0 50	
665 — -	7.0					10,13,17		Drilling stopped at 7m. Resumed 23/03
664 — _	8.0		МН		(7.5 to 11.4) Light Grey Silty SAND			
663 — _	9.0	U4	G.S.F = 02.09.89 PI = 25			11,13,15		
662 — -	10.0							
661 — -	11.0				(11.4 to 13.5) Reddish brown	16,18,19	0 50	
660 — -	12.0	U4	MH	 	silty CLAY			
659 — -	13.0	04	G.S.F = 03.10.86 PI = 21	 	(12 5 to 15 5) Light group of	36,13,20		
658 — _	14.0				(13.5 to 15.5) Light grey soft Rock. Sand grains			
657 — -	15.0					23,29,24		• Drilling stopped at
					Z-45 PAGE 1 OF 2			

	C		os(Tz) Build, Test		PROJECT:Kilosa-GulvLOCATION:BH05DRILLING METHOD:Rotary DrillinB/HOLE NO:BH05BORE DATE:22 - 24Mar/15NORTHING:9260 250.5EASTING:242 421.1		PROJE FIELD SURFA	CLIENT: PADECO Co. Ltd PROJECT NO: S0820 FIELD SUPERVISOR: V.S SURFACE ELEVATION: 672 CHECKED BY: J.N		
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCRIPTION	SPT BLOWS	SPT PLOT	REMARKS		
656 —	16.0				(15.5 to 21.0) Weathered rock		0 50	15.4m. Resumed 24/03		
655 —	17.0							High rate of percolation of drilling fluid in		
654 —	18.0							weathered rock indicating large discontinuities		
653 —	19.0									
652 —	20.0									
651 — -	21.0				(21.0 to 26.7) Intact rock. Sandstone		0 50			
650 — -	22.0							Low rate of percolation of dilling fluid.		
649 — -	23.0									
648 — -	24.0									
647 — -	25.0									
646 —	26.0						0 50			

	Client Locat Coord	ion	KILOSA GULWE 9260250.5N	B/Hole I Elevatic Date Logged	on	BH 05 672m 24Mar20 VS	15			9		DS()
Down Hole Depth (m)	Elevation	Lithology	LITHOLOGIC DESCRIPT	ION	Degree of Weathering	Strength UCS MPa 50	Dat (20) si	Hardness	Discontinuit	Type Spacing (cm)	oth, m	TCR %	SCR %	RQD %
:0 - 1	- 652 - - 651 -		(20 - 27) Metamorphosed Sandstone		II			R3				45	100	45
-	- 650 - - 649				11			R3			21.9	100	95	95
_	- 649 - - 648				III			R2			23.9	100	90	90
5 -	- — 647				=			R2 R3			24.9	100 100	92 94	92 94
- 6 -	- 646 -				-			R3			25.9 26.9	100		82
We TC	eathering R = Tota	g: I = Fr al Core	xtremely weak, R1 = Very weak, R2 = esh, II = Slightly, III = Moderately, IV = Recovery, SCR = Solid core recovery d compressive Strength, Is(50) = Adjus	= Highly, V ', RQD = R	= Co ock (mpletely, VI = Quality Design	Res	idual	ıg, R5 = Very St	trong, Ri	6 = Extrn	nely St	rong	

Depth	Observations	Picture
20 – 24.9m	 Dark grey and brown Moderately Weathered No foliation Fine to medium grained Like a Metamorphosed sandstone Metasandstone Randomly oriented, closed and open joints. 	KILOSA- GULVAL BH 5 22.00M.
24.9 – 26.9m	 Dark grey metasediments No foliation - granular Fine to medium grained Metasandstone Mica present 10-20mm quartzitic veins 	KILOSA-GULWE BH5 25:00M.

10	~				PROJECT:Kilosa-GulLOCATION:BH06	we Centr		iy. JICA Study <u>A6</u> /1 (NT: PADECO Co. Ltd
	<u>.</u>		DS(TZ) Build, Test		DRILLING METHOD:Rotary DrilB/HOLE NO:BH06BORE DATE:21 - 23Mar/15NORTHING:9272 439.0EASTING:239 638.8	ling	FIELD SURF#	ECT NO: S0820 SUPERVISOR: V.S ACE ELEVATION: 695 KED BY: J.N
ELEV. (M.)	DRILL DEPTH	SAMPLE TYPE AND NO.	USCS	PROFILE	DESCRIPTION	SPT BLOWS	SPT PLOT	REMARKS
695 —	0.0				(0.0 to 1.0) Sandy organic			
- 694 —	1.0	U4	CL G.S.F = 02.27.71		soil (1.0 to 2.0) Dark brown	_	0 50	
- 693 — -	2.0		PI = 22		CLAY (2.0 to 4.0) Silty Sand	2,4,5	-	
692 — _	3.0	U4	SM G.S.F = 23.62.14 PI = NP			32,22,24		
691 —	4.0			1	(4.0 to 17.0) Weathered dark grey rock	52,22,24		
690 — _	5.0				g. cy . co	30/3cm		SRT at 5.0 - 5.45m estimatede at 75
689 — _	6.0						0 50	
- 888	7.0							
687 — _	8.0							
686 — _	9.0					35,38,36		Drilling stopped at 9m. Resumed 22/03
685 — _	10.0							
684 — _	11.0						0 50	
683 — -	12.0							
682 — -	—— 13.0							
681 — -	—— 14.0							Drilling stopped at 14m. Resumed 23/03
680 —	— 15.0							

M.) DEPTH TYPE AND NO. USCS II DESCRIPTION BLOWS PLOT REMARKS 579 - 16.0 678 - 17.0 677 - 18.0 676 - 19.0 675 - 20.0 1 - 20.0	Draw, Build, TestBindle No.DrawladityField Supervisor:V.SBORE DATE: $21 \cdot 23Mair/15$ Field Supervisor:V.SNorthing: $9272 439.0$ Suprace Elevation:695EASTING: $239 638.8$ CHECKED BY:J.NEV.DRILLSAMPLEUSCS $\frac{14}{20}$ DESCRIPTIONSPTNO.NO.VSCS $\frac{14}{20}$ DESCRIPTIONSPTPLOT7916.01011.011.012.0Intect rock7918.017.011.011.012.0Intect rock7619.019.01050107421.010105010				Alterna		PROJECT: LOCATION:		ve Centr		y. JICA Study A6 /2 o NT: PADECO Co. Ltd		
679 16.0 678 17.0 677 18.0 677 19.0 675 20.0	79 - 16.0 $78 - 17.0$ $77 - 18.0$ $76 - 19.0$ $77 - 20.0$ $74 - 21.0$ $74 - 21.0$ $75 - 20.0$ $74 - 21.0$ $75 - 20.0$ $75 - 20.0$ $76 - 19.0$ $76 - 19.0$ $76 - 19.0$ $77 - 18.0$ $77 - 18.0$ $77 - 18.0$ $77 - 18.0$ $77 - 18.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $78 - 19.0$ $79 - 10.0$ $70 - 10.0$ $70 -$		<u>_</u>	Lab Draw,	os(Tz) Build, Test		B/HOLE NO: BH06 BORE DATE: 21 - 23Mar/15 NORTHING: 9272 439.0			FIELD SUPERVISOR:V.SSURFACE ELEVATION:695			
$ \begin{array}{c} 678 \\ - 17.0 \\ 677 \\ - 18.0 \\ 676 \\ - 19.0 \\ 675 \\ - 20.0 \\ - 1 \\ - 20.0 \\ - 1 \\ - 1 \\ $	78 - 17.0 77 - 18.0 76 - 19.0 77 - 20.0 74 - 21.0 74 - 21.0 75 - 20.0 74 - 21.0 75 - 20.0 75 - 20.0 74 - 21.0 75 - 20.0 75	ELEV. (M.)	DRILL DEPTH	TYPE AND	USCS	PROFILE	DESC	RIPTION	SPT BLOWS	SPT PLOT	REMARKS		
677 - 18.0 - 19.0 - 20.0 - 20.0	77 - 18.0 76 - 19.0 75 - 20.0 74 - 21.0 74 - 21.0 75 - 50 75 - 50	679 —	16.0							0 50			
676 - 19.0 - 675 - 20.0 - - - - - - - -	76 - 19.0 $75 - 20.0$ $74 - 21.0$ $0 50$	678 —	17.0				(17.0 to 22.0) I	ntact rock					
675 — 20.0	75 - 20.0 74 - 21.0 0 50	- 677 —	18.0										
		- 676 —	19.0										
		- 675 —	20.0										
		- 674 —	21.0							0 50			
673 22.0		- 673 —	22.0										
							Z-:	53					
2.53	Z-53						PAGE 2	OF 2					

