6. その他の資料・情報(現地再委託調査結果)

Dated: 30 September 2015 Report No. GET15-8035 Copyright @ by GPL & JPC

Geotechnical Investigation Report

Geotechnik Ltd geotechnical and material engineer's

URGENT SHIFT OF FERRY TERMINAL IN DILI PORT Democratic Republic of Timor Leste

Client: JAPAN PORT CONSULTANTS, LTD, TIMOR LESTE

Aitarak Laran Dili, Timor Leste. H/P: +670 77232786. FAX: 00 670 3 310362 email<abbasel@msn.com>

Report No. GET15 8035 Date: 05 October 2015 Page: 1 of 13

Report No. GET15-8035 05 October 2015

Japan Port Consultants Ltd. Mr. Yuzo Suzuki Director

Attention : Mr. Yuzo Suzuki

Geotechnical Soil Investigation Urgent Shift Of Ferry Terminal In Dili Port Timor Leste

Gentlemen:

Geotechnik Ltd. is pleased to submit this report for our geotechnical investigation performed for the construction of the Jetty for the **Urgent Shift Of Ferry Terminal, Dili Port Project** in Republic of Timor Leste. The new facility will consist and use for loading / un-loading at the port. We performed this study in general accordance with our proposal dated 25 June 2015. The field investigation was conducted on 18 July thru 14 August 2015.

PROJECT DESCRIPTION

Geotechnik Ltd was contracted by **Japan Port Consultants Ltd.** to conduct a sub-soil investigation at the proposed location **Urgent Shift Of Ferry Terminal, Dili Port Project** in Republic of Timor Leste. The structure will be in use for loading / unloading at the port facility purpose. The borehole locations are marked on site by representative of Japan Port Consultants Ltd.

PURPOSE AND SCOPE OF STUDY

We performed this study to explore the subsurface stratigraphy and groundwater conditions at the site and to develop engineering recommendations to guide the design and construction of foundations for the Jetty - **Urgent Shift Of Ferry Terminal, Dili Port Project** in Republic of Timor Leste. We accomplished study by:

- 1) drilling four boreholes to explore subsurface stratigraphy and groundwater conditions and to obtain samples of the subsurface materials for laboratory testing; and
- 2) analysing the field and laboratory data to develop engineering recommendations.

REPORT FORMAT

In the initial sections of this report we have presented descriptions of the field and laboratory phases of the study and the generalized subsurface conditions at the site. Recommendations for site preparation, foundation design, foundation protection, and foundation construction considerations are presented in subsequent sections. Illustrations following the report text include a vicinity map, a plan of borings, boring logs, laboratory test results and foundation design information.

FIELD INVESTIGATION

General We explored the subsurface conditions at the Urgent Shift Of Ferry Terminal, Dili Port Project site by drilling four boreholes at site location. The boreholes were drilled ranging from 30 m to 45m depths below the existing sea-bed. Borehole locations was set out and staked in the field by representative of Japan Port Consultants Ltd.

Sampling Procedure Granular soil encountered in the borehole was sampled in general accordance with the standard penetration test (SPT) procedures specified in ASTM D-1586. The number of blows required with a 63 kg hammer falling 0.76 m to drive the sampler the final 0.30 m of the 0.45 m sampling interval is referred to as the SPT N value. Where very dense material was encountered, the actual penetration after the initial 0.15 m seating of the sampler is recorded for a total of 50 blows. Failure to attain the initial 0.15 m sampler penetration within 50 blows is referred to as refusal and is shown on the boring logs as "Ref" for the indicated amount of sampler penetration.

Boulder / Rock / Coral encountered in the borings was sampled by both SPT procedures. In our experience, coral is poor for vibration / cyclic and dynamic loading and good for static loading. Coral / rock coring methods are needed to explore a coral profile, since neither method is completely successful in all instances.

Sample Handling After recovery, each sample was removed from the sampler, examined, and visually classified by our geotechnical technician on site. Representative portions of each soil sample samples were then sealed, packaged, and transported to our laboratory in Republic of Timor Leste for further examination and classification.

Boring Logs A record of field observations was maintained in the form of field logs describing the visual identification of the subsurface materials encountered at different depths below the existing grade, and other pertinent field data. The boring logs were later edited to incorporate information obtained from laboratory examination and classification. The final borehole logs are presented on Plates 3a thru 6d.

Water Level Observations We measured the water level in the borehole after completion of field operations. The depth to water observations are recorded at the top of the borehole logs.

SUB-SURFACE MATERIAL – SOIL EXPLORATION

Sub Surface Material Stratigraphy The subsurface materials at the proposed Urgent Shift Of Ferry Terminal, Dili Port Project location mainly consist of Medium dense dark grey Sandy well graded GRAVEL (GW) (Gravels are subrounded, sub-angular Quartz) / Medium dense dark grey Silty fine to coarse SAND with Gravel (SM) (Gravels are sub-rounded, sub-angular Quartz) / Loose dark grey calcareous SILT with little Sand (ML), with low plasticity / Very loose light grey carbonate Silty, Gravelly fine to coarse SAND (SM) (Gravels are coral and shell fragments interbedded with Silt and Sand layers) / Loose greyish white carbonate Silty well graded GRAVEL with Sand (GW) (Gravels are coral and shell fragments interbedded with Silt and Sand layers) / Very loose dark grey carbonate SILT with Sand and Gravel (ML), with low plasticity (Gravels are coral and shell fragments interbedded with Silt and Sand layers) / Dense whitish light grey carbonate Silty, Gravelly fine to coarse SAND (SM) (Coralline Sand with coral and shell fragments and flacky Quartz) / Medium dense dark grey SILT (ML), with moderate to high plasticity.

The representative samples collected along the depth of boreholes were analysed. The identification and classification details along with penetration resistance are presented on Plates 3 through 6d.

S. No.	Borehole Point	Easting, m	Northing, m	Elevation (Z), m	Depth of Borehole	Remarks
1	BH # 1	783,172.82	9,053780.58	+ 3.31	40.50	onshore
2	BH # 2	783,193.37	9,053,826.49	(-) 5.02	45.05	offshore
3	BH # 3	783,204.90	9,053,854.30	(-) 11.22	33.60	offshore
4	BH # 4	783,232.82	9,053,918.49	(-) 16.63	30.05	offshore

The details of borehole are tabulated below:

LABORATORY TEST RESULTS

General We performed laboratory tests on selected samples, recovered during the field investigation phase of this study, to verify field classifications and to estimate the index and engineering properties of the subsurface materials. All tests were conducted in general accordance with current applicable ASTM procedures or equivalent.

Identification Tests Identification tests performed on selected samples encountered in the borings drilled at the site included grain-size analysis (ASTM D 422) and determination of the percentage of material passing No. 200 sieve and Atterberg limits determination (ASTM D 4318). The results of grain-size analyses performed on selected samples, recovered from the borings are presented as grain size curves on Plates 11 through 19. The percentage of material passing the No.200

Report No. GET15 8035 Date: 05 October 2015 Page: 4 of 13

sieve was determined as a routine part of the grain-size analysis. Results of these tests are tabulated on the boring logs in the column labelled "-0.075, %". Liquid and plastic limits, determined for selected samples, are tabulated on the boring logs in the column identified "LL(PL)".

Consolidation Test Procedure -ASTM D-2435

Sample Measurement, Sealing and Labeling Upon removal of the tube, remove the drill cuttings in the upper end of the tube and measure the length of the soil sample recovered to the nearest 5 mm in the tube. Seal the upper and lower end of the tube by molten wax. Remove at least 25mm of material from the lower end of the tube. Use this material for soil description in accordance with Practice ASTM D 2488. Measure the overall sample length. Seal the lower end of the tube and carefully transported to the laboratory. Storage of sealed samples was done as no moisture was lost during storage, that is, no evidence of partial drying of the ends of the samples or shrinkage. Time of storage was minimized, particularly when the soil or soil moisture was expected to react with the sample tubes.

Summary of Test Method In this test method, the soil specimen is restrained laterally and loaded axially with total stress increments. Each stress increment is maintained until excess pore water pressures are completely dissipated. During the consolidation process, measurements are made of change in the specimen height and these data are used to determine the relationship between the effective stress and void ratio or strain. and the rate at which consolidation can occur by evaluating the coefficient of consolidation. The data from the consolidation test are used to estimate the magnitude and rate of both differential and total settlement of a structure or earth-fill. Estimates of this type are of key importance in the design of engineered structures and the evaluation of their performance. The test results can be greatly affected by sample disturbance. Careful selection and preparation of test specimens is required to minimize disturbance. Consolidation test results are dependent upon the magnitude of the load increments. Traditionally, the load is doubled for each increment resulting in a load-increment ratio of 1. The apparatus in general use for this test method does not have provisions for verification of saturation. Most undisturbed samples taken from below the water table may be saturated. This test method uses conventional consolidation theory based on Terzaghi's consolidation equation to compute the coefficient of consolidation, cv.

The analysis is based upon the following assumptions:

- a) The soil is saturated and has homogeneous properties;
- b) The flow of pore water is in the vertical direction;
- c) The compressibility of soil particles and pore water is negligible compared the compressibility of the soil skeleton;
- d) The stress-strain relationship is linear over the load increment;
- e) The ratio of soil permeability to soil compressibility is constant over the load increment; and
- f) Darcy 's law for flow through porous media applies.

Specimen Preparation All possible precautions were taken to minimize disturbance of the soil or changes in moisture and density during specimen preparation. Avoid vibration, distortion, and compression. Prepared test specimens in an environment where soil moisture change during preparation was minimized. Trimmed the specimen and insert it into the consolidation ring. Carefully insert the specimen into the consolidation ring, by the width of the cut, with a minimum of force. All fibrous soils, such as peat, and those soils that are easily damaged by trimming, were transferred directly from the sampling tube to the ring, provided that the ring has the same diameter as the sample tube.

<u>Test Results</u> The test data were and developed the graphical presentation of void ratio verses log effective stresses and presented on Plates 20 thru 23. The computation and summarized (**Cc**) Compression Index, (**av**) Coefficient of Compression, (**m**_v) Coefficient of Volume Compressibility, (**Cv**) Coefficient of Consolidation, (**Pc**) Preconsolidation Pressure and (**K**) Coefficient of Permeability, presented on Data Plate 20 thru 23.

Compression Index (Cc) were calculated from the consolidation data by the following equation:

$$Cc = (e_1 - e_2)/(\log \sigma \gamma_2 - \log \sigma_1)$$

Coefficient of Compression (a_v) were calculated from the consolidation data by the following equation:

$$a_v = (e_1 - e_2) / (\sigma_2 - \sigma_1)$$

Coefficient of Volume Compressibility (m_v) and also called modulus of compressibility were calculated from the consolidation data by the following equation:

$$m_v = [(e_1 - e_2) / (\sigma_2 - \sigma_1)] / (1 + e_o) \text{ or } a_v / (1 + e_o) \text{ or } (\delta e / \delta \sigma) x[1/(1 + e_o)]$$

Where: $e_1 - e_2$ are the void ratio at 1 and 2 stage of loading.

 $\sigma_2 - \sigma_1$ are the effective stresses at 1 and 2 stage of loading.

Preconsolidation Pressure (Pc) was computed on each curves and construction were illustrated. The sketch is self explanatory and the preconsolidation pressures are tabulated on Plates 20 thru 23. Coefficient of Permeability (K) The coefficient of permeability of a fine grained soil may be indirectly determined by the consolidation test data. Coefficient of permeability can be calculated by the following equation:

$$C_v = k(1+e_o) / (a_v \gamma_w) = k / (m_v \gamma_w)$$

Or

$$\mathbf{k} = \mathbf{C}_{\mathbf{v}}\mathbf{m}_{\mathbf{v}}\mathbf{\gamma}_{\mathbf{w}}$$

Unconsolidated Undrained Triaxial Test (UU) ASTM D-2850

The purpose of this laboratory is to determine the unconfined compressive strength of a cohesive soil sample. We will measure this with the unconfined compression test, which is an unconsolidated undrained (UU or Q-type) test where the lateral confining pressure is equal to zero (atmospheric pressure). As stated in ASTM D-2850.

Applied the axial load to produce axial strain at a rate of approximately 1 %/min for plastic materials that achieve maximum deviator stress at approximately 3 to 6 % strain. At these rates, the elapsed time to reach maximum deviator stress will be approximately 15 to 20 min. Continue the loading to 15 % axial strain, except loading may be stopped when the deviator stress has peaked then dropped 20 % or the axial strain has reached 5 % beyond the strain at which the peak in deviator stress occurred. Recording load and deformation values to three significant digits at about 0.1, 0.2, 0.3, 0.4, and 0.5 % strain; then at increments of about 0.5 % strain to 3 %; and, thereafter at every 1 %. Took sufficient readings to define the stress-strain curve; hence, more frequent readings may be required in the early stages of the test and as failure is approached. The curves of Unconsolidated Undrained Triaxial test result are presented on Plate UU.

Chemical Tests Chemical tests included determination of the carbonate content of soils (ASTM D 4373), Carbonate content, which provides an indication of the potential for carbonate leaching, was estimated for selected samples by determining the percentage of material soluble in a dilute solution of hydrochloric acid. Results of these tests are considered in classification of soil and are presented on the boring logs.

Liquefaction of Standard Sands and Gravels:

Liquefaction is define as landslide or flowing of natural slopes of saturated which triggered by minor forces and resembles from initial slopes of about 20^{0} may try come to rest on flat slopes of 4^{0} or less. Saturated sandy soils in a loose to medium dense condition were liquefied during earthquakes varying in magnitude from 5.5 to 8.5 [Richter scale] and at epicenter distance ranging from several miles to hundred miles. Most of the liquefaction of sands occurred under such condition D_{50} < 2mm and C_{u} < 10. the effective overburden pressure may be less than 2.0 kg/cm², D_{r} < 75 % and no fine-grained soil strata lay above the saturated sands.

Japanese Engineers have made a detailed study of the relationship between soil, foundation condition and building performance in zone c (heavy damage). Variation of Standard Penetration Resistance (SPT N-Value) with depth falls within the shaded envelop of liquefaction is important of concern. The results of similar study to determine the relationship between depths of pile, penetration resistance of the subsurface material at the pile tip and extent of damage for pile supported structures. If we install pre-cast or caste in-situ pile 45 to 60 feet long than as per site analyses no chances of damage in term of liquefaction.

FOUNDATION ANALYSES and RECOMMENDATIONS

Foundation Design Criteria. A suitable foundation for any structure must satisfy two basic independent criteria with respect to the underlying foundation soils. First, the foundations should have an adequate factor of safety with respect to the shear strength of the supporting soils. Second, the vertical movement of the footings due to settlement or swelling of the foundation soils should be within the tolerable limits for the structures. The structural loads from the new facility may be supported on shallow foundations provided our recommendations for site preparation, foundation construction and protection are followed.

Subsurface soils at the site, in their existing condition, are considered not suitable to support the proposed new facilities on shallow foundations. The new facilities may be supported either on natural soils or on deep foundations. Our foundation analyses presented in this section are for foundations bearing on natural existing soils.

Foundation Types. We understand that Japan Port Consultants Ltd is planning for **Urgent Shift Of Ferry Terminal, Dili Port Project** of Jetty, which provides loading / unloading facilities, estimated and design loads through shallow foundations or piles. The type of foundation for a particular structure should be decided based on the subsurface stratigraphy and comparative economic and construction considerations. Therefore Piles can serve the purpose with stability.

Deep Foundations Pre-cast and Drilled Piers

General. Drilled piers derive their resistance to compressive (downward) and tensile (uplift) forces from skin friction acting on the foundation shaft. The following sections discuss design recommendations for drilled piers in granular soils.

Method of Analysis for Drilled Pier capacity. The ultimate compressive capacity, Q, for a given drilled pier penetration is taken as the sum of the skin friction on the pier wall, Q_s , and the end bearing on the pier tip, Q_p , so that:

$\mathbf{Q} = \mathbf{Q}_{s} + \mathbf{Q}_{p} = \mathbf{f}\mathbf{A}_{s} + \mathbf{q}\mathbf{A}_{p}$

Where A_s and A_p represent, respectively, the embedded surface and pier end area; f and q represent, respectively, the unit skin friction and unit end bearing. When computing ultimate tensile capacity, the end bearing term in the above equation is neglected. Ultimate Pile Capacity and depth of pile plots for 0.4m and 1.0m diameter Pipe and Bored caste-insitu concrete piles are presented on Plates 24a thru 25d.

Strength Parameters. Design soil parameters are based on grain size, material type, SPT N-values of soil, water depth, carbonate content, density and laboratory test results.

Unit Skin Friction. We recommend computing the unit skin friction in the granular soils using the procedure described by Tomlinson (1991) as follows:

$$f_{sz} = K_s P_o \tan \delta$$

Report No. GET15 8035 Date: 05 October 2015 Page: 8 of 13

Where: f _{sz} :	=	ultimate unit side resistance at depth z;
Po :	=	average effective vertical stress in soil up to depth z;
δ :	=	angle of friction between soil and pile = $\frac{3}{4} \phi$; and
K _s :	=	coefficient of horizontal stress;
ф =	=	angle of internal friction.

End Bearing. The end bearing of drilled shafts in soil can be computed using the following equation as described by Tomlinson (1991).

	q _{ult}	=	q _b A
Where:	q _{ult}	=	ultimate end bearing;
	А	=	cross-sectional area of the pile base; m ² ; and
	\mathbf{q}_{b}	=	ultimate unit base resistance.

Values of q_b as presented in Tomlinson (1991) for a pile tip movement of 5 percent of the pile diameter are as follows:

for loose sand, q_b	=	0
for medium dense sand	, q _b =	1,530 kN/m ²
for dense sand, q_b	=	3,830 kN/m ²

For drilled shafts bearing on rock the ultimate unit base resistance can be calculated using the following equation:

 q_b = 2 N $\phi \; q_{uc}$ <UCS of rock or concrete whichever is less

where:	Νφ	=	$\tan^2 (45 + \phi/2);$
	q _{uc}	=	unconfined compressive strength of rock; and

 ϕ = angle of friction between rock and concrete.

Lateral Capacity. For drilled piers embedded in sandy soils along the transmission line, the lateral resistance should be calculated using the Broms (1964) equation as follows:

where:

$0.5\gamma DL^3 K_p$

$$=$$
 $(e+L)$

Ρ

Ρ	=	ultimate lateral resistance (kN);
γ	=	effective soil unit weight, kN/m ³ ;
D	=	pile diameter, m;
L	=	pile length, m;
K_{p}	=	passive pressure coefficient; and
е	=	eccentricity of applied load, m.

SITE PREPARATION

General. Fill and excavation will be required at the site for the construction of foundations. We recommend all fill placement and compaction be done in accordance with our recommendations presented in this and subsequent sections.

Fill Characteristics. Clean sand is considered a good fill material. Ideally, fill should consist of sand with less than 12 percent passing No. 200 sieve. However, sand containing between 12 and 30 percent fines may also be used. The minus No.40 sieve fraction should have a liquid limit less than 25 and a plasticity index less than 8. Silty gravel or gravel, sand and silt mixture is also considered a suitable fill material.

Compaction Equipment. The procedures used for fill placement and compaction generally depend upon the material used and equipment available. Granular fill should be compacted using a vibratory roller. A 10-tonne vibratory roller is generally suitable for compacting granular soils, but large quantities of water may be needed to facilitate compaction. The lift thickness of fill should be limited to 0.2 m, loose measure.

Structural and General Fill. Fill placed in paved areas or below specific facilities should be compacted in accordance with recommendations given below for structural fill. Fill placed for landscaping purposes is considered general fill. Structural and general fill should be compacted to the applicable average in situ densities given below.

Clean sand should be compacted to the following relative densities based on limiting densities determined in accordance with ASTM D-4253 and D-4254. Sand containing less than 12 percent passing 0.075-mm (No. 200) sieve is considered clean sand.

Report No. GET15 8035 Date: 05 October 2015 Page: 10 of 13

- structural fill consisting of clean sand should be compacted to an average relative density of 75 percent with no test less than 70 percent, and
- general fill consisting of clean sand should be compacted to an average relative density of 70 percent with no test less than 65 percent. The following criteria apply to fill containing greater than 12 percent passing the 0.075 mm (No. 200) sieve.
- structural fill should be placed slightly wet of optimum moisture content and compacted to 95 percent of maximum dry density determined in accordance with ASTM D 1557-78 (modified Proctor); and
- general fill should be compacted to 90 percent of maximum dry density determined in accordance with ASTM D 1557-78 (modified Proctor).

Placement Control. Fill placement and compaction can be monitored by a nuclear density gage, or sand cone density test. Dry densities and moisture contents may be determined by any one of these tests. Selection of the appropriate procedure will depend upon the types of fill material and expertise of the personnel performing the quality control.

Excavation Stability. Excavations for below-grade facilities can be performed using sheeted vertical cuts or open-cut procedures. While open-cut methods of completing excavations are considered generally satisfactory for shallow below-grade structures, we believe they may not be feasible for deeper-seated facilities. These excavations will require increased space to accommodate side slopes. We recommend temporary side slopes in natural material cut areas should not exceed 2.0-horizontal to 1.0-vertical. Therefore, vertically cut excavations retained by using conventional sheeting may be an effective method of excavating for deeper-seated below-grade structures.

Although other types of excavation sheeting are appropriate, conventional interlocking steel sheet piling is commonly used in site development to retain vertically cut excavations.

FOUNDATION CONSTRUCTION AND PROTECTION CONSIDERATIONS

Wind and Water Erosion Clean sand backfill placed outside the structures should be protected against wind and water erosion. Recommendations for marl cap are given for the site preparation, Marl which consist of silty sands or sandy silts with limestone fragments/coralline sand is frequently used as a fill material in the embedment region.

The natural cementation properties of this material when compacted to 90 percent of the maximum dry density determined in accordance with ASTM provides adequate resistance to wind and water erosion. Other alternatives for wind and water erosion protection include asphalt paving and planned landscaping.

Compaction The procedures used for fill placement and compaction generally depend upon the material used and equipment available. Granular fill should be compacted using a vibratory roller.

Report No. GET15 8035 Date: 05 October 2015 Page: 11 of 13

A 10-tonne vibratory roller is generally suitable for compacting granular soils, but large quantities of water may be needed to facilitate compaction. The lift thickness of fill should be limited to 0.30 m, loose measure. When the fill is compacted with small vibratory rollers or hand-guided plate tampers in trenches etc., the lift thickness should be limited to 0.15 m, loose measure.

Chemical Attack of Buried Concrete.

Buried reinforced concrete may be susceptible to deterioration by chemical attack if the chemicals are in solution form and above a certain concentration. The two major types of chemical attack are due to sulphate and chloride concentrations in the foundation soils.

We recommend to use Type I cement modified with micro silica along with the super plasticizer and corrosion inhibitors for all below grade concrete at the site, to provide protection against both sulphate attack on concrete and chloride induced corrosion of reinforcing steel.

To minimize corrosion potential the concrete mix should be designed using a water-cement ratio not greater than 0.45. Admixtures may be required to provide workability. Concrete should be densified using vibrators and a cover of not less than 75 mm provided over all reinforcing steel embedded in foundation concrete.

Carbonate Leaching

Carbonate leaching is considered a significant foundation design factor if:

1) soils above groundwater level contain more than 20 percent carbonates; and

2) conditions are present that may lead to long-term percolation of water through the carbonate-enriched foundation soils.

Carbonate leaching occurs when the soluble salts present in soils above groundwater are dissolved by relatively fresh water percolating through the carbonate enriched soils. This leaching of carbonates eventually weakens the original soil structure leading to foundation distress.

Based on our laboratory test results, the carbonate content of the soils above ground water level at the site is greater than 20 percent. Therefore, protection against carbonate leaching due to possible percolation of water from rainfall, leaking pipes, and irrigation is warranted at this site.

We recommend that an impermeable membrane, such as Visqueen, be placed around building perimeters to a distance of approximately 1.5 m beyond the edge of the foundations and be sloped away from structures to provide drainage. Alternatively, placing 1.5 m wide concrete or asphalt apron around structures is considered satisfactory. Plantation around the building perimeters to a lateral distance of 1.5 m should be avoided.

LIMITATION

This report and analysis are based on the limited extent of soil exploration work. However during the excavation of foundation if considerable departure of reported soil strata are observed, the matter be reported to us for further advice.

Report No. GET15 8035 Date: 05 October 2015 Page: 12 of 13

The following illustrations are attached and complete this report.

Illustrations

	Plate
Vicinity Map	1
Borehole Location Plan	2
Fence diagram	3
Boring Logs	3a thru 6e
Symbol and Term Used Boring Logs	7
Engineering Rock Mass-Classification	8
Carbonate Classification	9
Plot SPT N-Values Vs Depth	10a thru 10d
Grain Size Curves	11 thru 19
Consolidation Test Result Curves	20 thru 23
Unconsolidation Undrained Triaxial Test Result Curves	UU
Pile Load Carrying Capacity Vs Depths Plots	24a thru 25d
Location Photo Graph	Appendix-A
Summary of Gradation Analyses	Appendix-B
Samples Photo Graph	Appendix-C

We appreciate being of service to **Urgent Shift Of Ferry Terminal, Dili Port Project** in Republic of Timor Leste, with the **Japan Port Consultants Ltd.** Please call us if you have any further questions and assistance.

Sincerely,

Prof. {Dr} Gulam Murtaza Principal Geotechnical Manager

Ph D in Geotechnical Engineering, Roorkee M.E in Soil Mechanics and Foundation Eng. Roorkee Ex Head- Soil Mechanics & Foundation Engineering, AMU Life Member of Roorkee University Alumni Association Member of Indian Geotechnical Society M I S of Soil Mechanics and Foundation Engineers

Geotechink Ltd.

Syed Abbas Murtaza **Project Manager**

REFERENCE

1.	Bowles, J.E.	Foundation Analysis and design McGraw Hill Company New York.
2.	Rock, R.B. W.E.	Foundation Engineering & end Ed. Wiley New Hanson and T. Hornburn (1974)
3.	Singh. Alam (1967)	Soil Engineering in Theory and Practices Asia Publishing House, New Delhi
4.	Terzaghi, K., Peck, R.	B., and Mesri, G. (1996), <u>Soil Mechanics in</u> <u>Engineering Practice</u> , 3 rd Edition, J. Wiley, New York.
5.	Terzaghi K. and R,B.	Soil Mechanics in Engineering Practice McGraw Peck (1967) Hill Company New York
6.	Schmertmann, J.H. H	lartmann, J.P.; and Brown, P.R., (1978), "Improved Strain Influence Factor Diagram", <u>Journal, Geotechnical Engineering Division</u> ASCE, Vol. 104, No. GT8, pp. 1131-1135
7.	Oweis, Issa A. (1979)	, "Equivalent Linear Model for Predicting Settlements of Sand Bases", <u>Journal of</u> <u>Geotechnical Engineering Division,</u> Vol. 105, No. GT 12, pp. 1525 to 1544.
8.	Vesic, A.S. (1975), "Bear	ing Capacity of Shallow Foundations" Chapter 3 , <u>Foundation Engineering Handbook</u> , Edited by H.F. Winterkorn and H.Y. Fang, Van Nostrand Reinhold Company, New York, pp. 121 - 147
9.	API American Pile Instit	ute (1986), "Developed a software to compute

9. **API American Pile Institute (1986),** "Developed a software to compute the Pile load carrying capacity in different conditions, pre-cast, cast in-situ with various sections".

ILLUSTRATION

VICINITY MAP Report No. GET15-8035

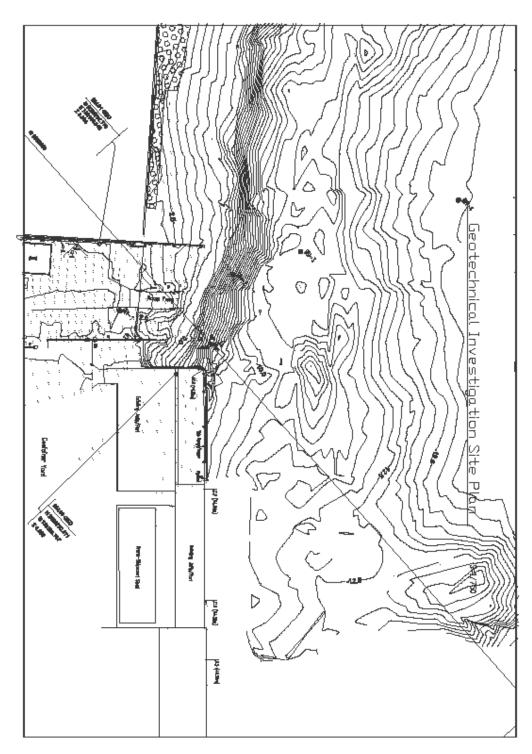
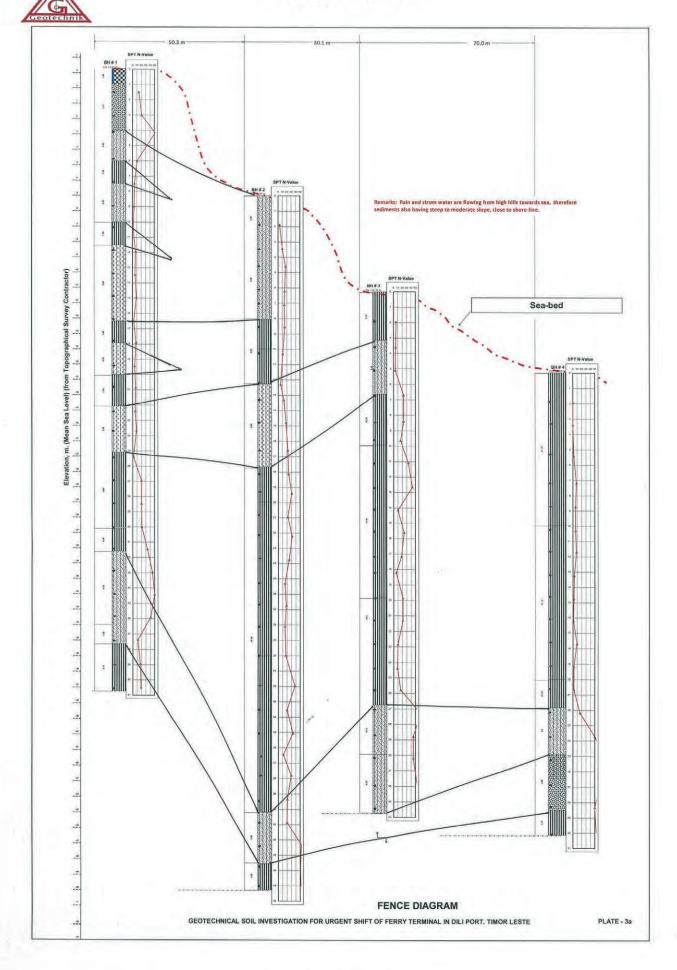

VICINITY MAP Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT TIMOR LESTE

PLATE - 1


PLAN OF FIELD TESTs

Report No. GET 15-8035

PLAN OF FIELD TESTs Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT TIMOR LESTE

PLATE - 2

geotechnical and material engineers

BORING LOG

_		GET 15												
CLI	ENT:	JAP	AN		SULTANTS,LTD									
				CHNICAL SO PORT, TIMO	OIL INVESTIGATION FOR URGE R LESTE	NT SHIFT OI	F FERRY		во	RIN	G NO	Э.	BH # 1	
CO-(ORDI	NATE	E (M)	X= 783,172.8	82	DIAM: 96	mm		SH	EET	: 1	OF	= 5	
				Y= 9,053,78	0.58								Location	: On-shore
Grou	und E	Elevat	ion (m) = + 3.31							Da	ate of	f Commencement: 18	3 July 2015
Dep	th (m): 40.	50										Date Completed: 24	July 2015
'er	(m) no	(m) (ess, m	ogical bol	SOIL / ROCK MATERIA	AL		Blo	Blows/15 cm		Value		SPT Chart	Sample No.
Layer	Elevation (m)	Depth (m)	Thickness, m	Lithological Symbol	IN-SITU DESCRIPTIO	Ν	Depth (m)	No	N ₁	N ₂	SPT N-Value	0 10 20 30 40 50		Depth of the Sample
۲		1.00	1.00		Filled up Boulder, cobble, Grave matrix	I and sand						0		Rec. 17% RQD 0
				•	Medium dense dark grey Sandy w GRAVEL (GW) (Gravels are subro subangular Quartz) - whitish dark grey Sandy well gra	aded	1.5	5	6	8	14	2	A	S-1 1.05-1.50
7		10	3.15	•	GRAVEL with Silt (GW-GM) to 2.5 - very dense whitish light grey be m		3.00	8	10	11	21	3		S-2 2.55-3.00
3		4.15	.85		Medium dense dark grey Silty fine SAND with Gravel (SM) (Gravels a subrounded, subangular Quartz)		4.15	52			52	4		S-3 4.00-4.15
		6.00	-	•			6.00	4	5	6	11	6		S-4 5.55-6.00
4		0	1.50		Loose dark grey calcareous SILT Sand (ML), with low plasticity	with little						7		S-5
		7.50			Very loose light grey carbonate Sil fine to coarse SAND (SM) (Gravel and shell fragments interbedded w Sand layers)	s are coral	7.50	1	2	3	5	8		7.05-7.50
5		10.00	2.50				9.00	1	2	2	4	9		S-6 8.55-9.00
			Conti	ineous Cor	ig Rock Sample	10.00 m	1		<u> </u>	<u> </u>		10	4	
			SP	T Represen	tative Sample									
			٦	hin Wall Tu	ube Sample							L		PLATE - 3a

BORING LOG

Report	NO.	GEI	15-8035	

Elevation (m)	(m): 40		Y= 9,053,78 (m) = + 3.31	0.58												
epth (i	(m): 40		(m) = + 3.31									L	ocation	n: On-shor		
		.50								Da	te of Co	mmence	ment: 1	8 July 201		
Layer Elevation (m)	oth (m)										Da	ate Comp	leted: 2	4 July 201		
Elevat		Thickness, m	Lithological Symbol	SOIL / ROCK MATERIA		Depth (m)	Blo	Blows/15 cm		N-Value		SPT Chart		Sample No		
	Dep	Thick	Thick	Thickn	Lithol Syr	IN-SITU DESCRIPTION	1		N ₀	N ₁	N ₂		0 · 10 -	10 20 30	40 50	Depth of the Sample
9	11.50	1.50		Very loose whitish grey carbonate S Sand & Gravel (ML) , with low plasti (Gravels are coral and shell fragme interbedded with Silt and Sand laye	icity ents	10.50	3	1	1	2	11			S-7 10.05-10.5		
	<u> </u>			Loose whitish light grey carbonate s graded GRAVEL with Sand (GW) (coral and shell fragments interbed Silt and Sand layers)	Gravels are	11.95	10	4	3	7	12 –4			S-8 11.50-11.95		
7		5.00				13.45	3	3	3	6	13 — 2 14 —	<u> </u>		S-9 13.0-13.45		
				- very loose below 14.90 m		14.90	2	4	5	9	15			S-10 14.45-14 .9		
	16.50			Loose whitish grey carbonate Grav with Sand (ML) , with low plasticity (16.50	2	1	2	3	16 A			S-11 16.05-16 .5		
œ	17.90	1.40		coral and shell fragments interbedd and Sand layers)		17.90	5	4	4	8	17			S-12 17.45-17.9		
6		2.10		Loose greyish white carbonate Silty graded GRAVEL with Sand (GW) (coral and shell fragments interbed Silt and Sand layers)	Gravels are	19.45	7	3	2	5	19			S-13 19.0-19.4 5		
	20.00				20.00 m						4					

BORING LOG

geotechnical and material engineers

						Soil investigation for URG Dr leste	ENT SHIFT OF	FERRY		во	RIN	G NO	Э.	BH # 1	
0-0	ordi	NATE	E (M)	X= 78	3,172	.82	DIAM: 96	mm		SH	EET	: 3	OF	F 5	
				Y= 9,	053,7	80.58			-	-				Locati	on: On-sho
Grou	und E	levat	ion (m) =	+ 3.31							Da	ate of	f Commencement	: 18 July 20
Dept	th (m): 40.	50	T		-		1	1					Date Completed	24 July 201
Layer	Elevation (m)	Depth (m)	less, m	odical	Symbol	SOIL / ROCK MATER		Depth (m)	Blows/15 c		N-Value			Sample No	
La	Elevat	Dept	Thickness,	Lithol	Syn		N	Doptin (iii)	No	N ₁	N ₂		20	0 10 20 30 40 5	Depth of th Sample
10			1.95			Loose light grey carbonate SILT Gravel (ML), with low plasticity (C coral and shell fragments interbe and Sand layers)	Gravels are	20.85	5	3	4	7	21	<u> </u>	S-14 20.4-20.8
		21.95				Loose whitish grey carbonate we GRAVEL with Silt (GW-GM) (Gra and shell fragments interbedded Sand layers)	ivels are coral		5	4	2	6	22 23		S-15 21.95-22 . S-16
1		15	3.00					23.85	5	4	5	9	24		23.4-23.8
		24.95				Very loose dark grey carbonate S and Gravel (ML) , with low plastic are coral and shell fragments inte Silt and Sand layers)	ity (Gravels	25.40	4	1	1	2	25 26		S-17 24.95-25.
N			6.50	Ô.		- medium dense grey carbonate fine Sand (ML), 26.50 to 28.00 m		26.95	7	8	12	20	27		S-18 26.5-26.9
12			6.	•		- medium dense dark grey carbo (ML) with low to moderate plastic 28.00 m		28.45	6	8	12	20	28 29		S-19 28.0-28.4
		30.00					30.00 m	30.00	6	9	13	22	30		S-20 29.55-30.

PLATE - 3c

BORING LOG

Report	No	GET	15-8035	

ſER	MINA	LIN	DILI	POF	₹ Τ, Έ	TIMO	DR LESTE		F FERRY		во	RIN	g No	5.	BH # 1		
0-0	ORDI	NATE	E (M)	X= '	783	,172	.82	DIAM: 96	mm		SH	EET	: 4	OF	5		
				Y=	9,0	53,7	80.58									Locatio	on: On-shor
		levat		m) =	: +	3.31							Da	te of			18 July 201
Dept	th (m): 40.	50	-			1		r —	r			1		Date Co	mpleted:	24 July 201
Layer	Elevation (m)	Depth (m)	Thickness, m		Lithological	nbol	SOIL / ROCK MATER		Depth (m)	Blo	ws/15	cm	N-Value		SPT CI	nart	Sample No.
Ľ	Eleva	Dep	Thick		Litho	ŝ		DN .	,	N ₀	N 1	N ₂		30	0 10 20	30 40 50	
12		31.45	6.50				Dense grey carbonate Sandy SIL low plasticity Dense whitish light grey carbonat	e Silty,	31.45	5	10	24	34	31			S-21 31.0-31.45
							Gravelly fine to coarse SAND (SI Sand with coral and shell fragmen Quartz)		32.95	12	22	23	45	33		A	S-22 32.5-32.95
13			4.45						34.40	13	22	28	50	34 35			S-23 33.95-34.4
		35.90		•			Medium dense dark grey Silty, G		35.90	14	20	21	41	36			S-24 35.45-35 .9
14		37.40	1.50				coarse SAND (SM), Gravels are to sub-angular Quartz		37.40	3	4	8	12	37			S-25 36.45-37. 4
			0				Medium dense dark grey SILT (M moderate to high plasticity	L) , with						38			S-26
15		0	3.10				-3.1		38.95	5	9	8	17	39			38.5-38.9
		40.00					rig Rock Sample	40.00 m						40			

Report	No.	GET	15-8035

	CLII	ENT: JAPAN POR	T CONSULTANTS	,LTD						
	PROJECT: GEOTECHNICAL SOIL INVESTIGATION FOR URGENT SHIFT OF FERRY TERMINAL IN DILI PORT, TIMOR LESTE BORING NO. B									
Sample #	Depth (m)	Moisture Contant (%)	Wet Density (Kg/m3)	Dry density (Kg/m3)	Spesific Gravity					
S-1	1.50	7.5	1929	1795	2.62					
S-2	3.00									
S-3	4.15	4.8			2.61					
S-4	6.00									
S-5	7.50	37.3			2.32					
S-6	9.00	42.4	1577	1107	2.26					
S-7	10.50									
S-8	11.95	39.6			2.21					
S-9	13.45	37.4			2.28					
S-10	14.90									
S-11	16.50									
S-12	17.90	36.6			2.31					
S-13	19.45									
S-14	20.85	31.2	1714	1306	2.32					
S-15	22.40									
S-16	23.85	29.8			2.19					
S-17	25.40	28.7			2.37					
S-18	26.95	33.5	1670	1251	2.29					
S-19	28.45									
S-20	30.00	34.5			2.29					
S-21	31.45	24.7			2.46					
S-22	32.95	32.6			2.60					
S-23	34.40	7.4			2.60					
S-24	35.90	7.3	2126	1982	2.52					
S-25	37.40									
S-26	38.95	41.6			2.21					
S-27	40.50	39.2	2143	1540	2.20					

BORING LOG

Renort	No	GET	15-8035	
nepon	140.		13-0033	

20-0				PORT, TIMOI X= 783,172.8		DIAM: 96	mm		SH	EFT	: 5	OF	5			
	51121			Y= 9,053,78		DIAM: 00			011			0.			Locatio	on: On-sho
Grou	ind E	levat		m) = + 3.31							Da	te of	Comn			18 July 20
): 40.		,												24 July 20
-				gical ool	SOIL / ROCK MATERIA	<u> </u>		Blo	ws/15	cm	Value			T Chart		Sample N
Layer	Elevation (m)	Depth (m)	Thickness, m	Lithological Symbol	IN-SITU DESCRIPTIO		Depth (m)	N ₀	N 1	N ₂	SPT N-Value		0 10	20 30	0 40 50	Depth of t Sample
. 15 I		40.50	3.10		Medium dense dark grey SILT (ML moderate to high plasticity	.) , with	r ^{40.50} -	<u></u> .	_7.	_12	_19	40				S-27 40.05-40
				· · · · · · · · · · · · · · · · · · ·		. <u>40.50</u> m _/	į					41				
												42				
												43				
												44				
												45				
												46				
												47				
												48				
												49				
					- modium							50				

geotechnical and material engineers

BORING LOG

-																
<u> </u>	rt No. (SULTANTS,LTD										
PRO	JECT	T: GE	от	CHNI	CAL S	DIL INVESTIGATION FOR URGEN	NT SHIFT OF	FERRY		во	RIN	G NC). E	3H # 2		
co-	ordi	NATE	E (M)	X= 78	33,193.:	37	DIAM: 96	mm		SH	EET	: 1	OF	5		
				Y= 9,	,053,82	6.49									Location	: Off-shore
Grou	und E	levat	ion ((m) =	- 5.02							Da	te of	Commer	ncement: 2	8 July 2015
Dep	th (m)): 45.	05										Da	te Comp	leted: 24 A	ugust 2015
Layer	Elevation (m)	Depth (m)	Thickness, m	locical	Symbol			Depth (m)		ws/15	cm	SPT N-Value		SPT Cł	nart	Sample No. Depth of the
Lá	Eleva	Dep	Thick	Litho	Š	IN-SITU DESCRIPTION	N		N ₀	N ₁	N ₂	SPT	0	0 10 20	30 40 50	Sample
-			3.00	•		Very loose grey Silty fine to coarse little Gravel (SM) , (Gravels are sub subangular Quartz)		1.90	5	2	2	4	1	A		S-1 1.45-1.90
		3.00					<u>3.00 m</u>						2			
				•		Very loose to medium dense grey of Silty fine to coarse SAND with Grav (Gravels are coral and shell fragme interbedded with Silt and Sand laye and Sanstone)	vel (SM) ents	3.45	1	4	6 9	10	4			S-2 3.00-3.45 S-3 4.15-4.60
2			5.10			- loose to 4.15 m							5			
				•		- medium dense below 4.15 m		6.20	7	7	8	15	6			S-4 5.76-6.20
				•				7.10	4	6	8	14	7	4		S-5 6.65-7.10
		8.10					8.10 m						8	-+ +		S-6
3			4.20	•		Medium dense dark grey carbonate Sand & little Gravel (ML) , with low p (Gravels are coral and shell fragme	olasticity	8.55	7	6	9	15	9	4		8.10-8.55
		10.00					10.00 m						10			
ļ			SP	T Rep	oresen	ig Rock Sample tative Sample ube Sample		1	<u>I</u>	1	<u>I</u>	<u> </u>	10	1		PLATE - 4a
	_			-		•										

BORING LOG

Report	No.	GET	15-8035	

:0-0	ORDI	NATI	E (M)	X= 783,193.	37	DIAM: 96	mm		SH	EET	: 2	O	F 5	
				Y= 9,053,82	26.49								Loca	tion: Off-sho
àrοι	und E	leva	tion ((m) = - 5.02							Da	ate of	f Commencemen	t: 28 July 20
)ept	th (m): 45.	05	-				-				D	ate Completed: 2	4 August 20
Layer	Elevation (m)	Depth (m)	lhickness, m	Lithological Symbol	SOIL / ROCK MATERIA		Depth (m)	Blo	ws/15	cm	SPT N-Value		SPT Chart	Sample N
Ľ	Eleva	Dep	Thick	Litho Syı	IN-SITU DESCRIPTIO	N	,	No	N ₁	N ₂	SPTN	10	0 10 20 30 40	50 Depth of t Sample
3			4.20		Loose to medium dense dark grey SILT with Sand & Gravel (ML), wit plasticity (Gravels are coral and sh fragments interbedded with Silt an layers)	h low Iell	10.30	3	5	6	11	11		S-7 9.85-10.3
		12.30			- medium dense to 10.30 m - loose below 10.30 m Medium dense light grey carbonat	12.30 m	12.30	3	2	4	6	12	4	S-8 11.85-12. 3
					graded GRAVEL with Silt (GW-GN are coral and shell fragments int with Silt and Sand layers)	I) (Gravels	13.30	7	5	8	13	13	<u> </u>	S-9 12.85-13.3
4			5.40		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		14.80	9	7	11	18	14 15		
							16.60	11	9	13	22	16 17		
		17.70	30		Medium dense light grey carbonat Sand & little Gravel (ML) , with low (Gravels are coral and shell fragm	plasticity ents	18.15	12	11	13	24	18	Δ	S-12 17.7-18 .1
2		20.00	22.30	-	interbedded with Silt and Sand lay - Gravelly SILT with Sand (ML) b 18.95 m		19.40	13	15	16	31	19		S-13 18.95-19

BORING LOG

Repo	rt No. (GET 15	5-8035	5												
CLI	ENT:	JAF	AN	POF	RT (CON	ISULTANTS,LTD				-					
							OIL INVESTIGATION FOR URGEI OR LESTE	NT SHIFT OF	FERRY		во	RIN	g NG). E	3H # 2	
CO-	ordi	NAT	E (M)) X= 1	783,	193.	37	DIAM: 96	mm		SH	EET	: 3	OF	5	
				Y=	9,05	53,82	26.49								Location	n: Off-shore
Gro	und E	levat	ion	(m) =	= - 5	5.02							Da	te of	Commencement: 2	8 July 2015
Dep	th (m): 45.	05	0										Da	te Completed: 24 A	ugust 2015
Layer	Elevation (m)	Depth (m)	Thickness, m		Lithological				Depth (m)	Blo	ws/15	cm	N-Value		SPT Chart	Sample No. Depth of the
Ľ	Eleva	Dep	Thick		Litho) 	IN-SITU DESCRIPTION	N		No	N ₁	N ₂		(20	0 10 20 30 40 50	Sample
							Medium dense to dense light grey of SILT (ML) , with high to moderate p (Gravels are coral and shell fragme interbedded)	lasticity	20.95	7	9	13	22	21		S-14 20.5-20.95
							- medium dense to 21.75 m - dense, 21.75 to 23.30 m		22.20	11	17	15	32	22		S-15 21.75-22.2
				•			- dark grey medium dense below :	23.30 m	23.75	9	13	12	25	23 24		S-16 23.3-23.75
5			22.30						25.30	8	7	8	15	25	<u> </u>	S-17 24.85-25.3
				•					26.75	7	9	9	18	26 27	A	S-18 26.3-26.75
									28.10	7	4	11	15	28	Δ	S-19 27.65-28.1
		30.00						30.00 m	30.00	6	8	9	17	29 30		S-20 29.55-30.0
<u> </u>			SP	T Re	epre	eser	ig Rock Sample ntative Sample ube Sample								4	PLATE - 4c

BORING LOG

						OR LESTE						g No		3H # 2	
0-0	ORDI	NATE	E (M)		83,193		DIAM: 96	mm		SH	EET	: 4	OF		
					9,053,8		-					-			n: Off-sho
): 45.		(m) =	- 5.02							Da		Commencement: 2	-
chi). 43.	1									ø	Da	the completed. 247	ugusi zu
/er	on (m	۲ ۳	ess, r		ogical	SOIL / ROCK MATER	IAL	Denth (m)	Blo	ws/15	cm	-Valu		SPT Chart	Sample N
Layer	Elevation (m)	Depth (m)	Thickness, m		Lithological Symbol	IN-SITU DESCRIPTI	N	Depth (m)	No	N ₁	N ₂	SPT N-Value	(30	0 10 20 30 40 50	Depth of t Sample
						Medium dense to dense dark gre SILT (ML), with high to moderate (Gravels are coral and shell frage interbedded)	plasticity						31		
				-		- dense to 32.0 m - medium dense, 32.0 to 34.60	n	32.00	20	19	19	38	32		S-21 31.55-3 2
								33.55	6	8	12	20	33		S-22 33.1-33.
5			22.30			- dense, 34.60 to 36.00m		35.05	12	16	18	34	34 35		S-23 34.6-35 .
			2					36.45	7	4	8	12	36		S-24 36.0-36 .
								37.80	6	13	17	30	37 38		S-25 37.35-37
		40.00						39.35	8	9	12	21	39		S-26 38.9-39 .

BORING LOG

		15-803	

CO-(ordi	NATE	E (M)	X= 783,19	93.3	37	DIAM: 96	mm		SH	EET	: 5	OF	5						
				Y= 9,053	,82	6.49				Location: Off-shore										
Grou	und E	levat	ion (m) = - 5.0	2				Comme	ncement: 2	28 July 20 ⁻									
Dep	th (m): 45.	05					-	1				Da	ate Comp	leted: 24	August 20				
Layer	Elevation (m)	Depth (m)	Thickness, m	Lithological Symbol		SOIL / ROCK MATERIA	۸L	Depth (m)	Blo	ws/15	s/15 cm		SPT Chart			Sample N				
La	Elevat	Dept	Thickn	Lithol Syn		IN-SITU DESCRIPTIO	N	Deptii (iii)	No	N ₁	N ₂	SPT N-Value	40	0 10 20	30 40 50	Depth of tl Sample				
						Medium dense to very dense dark grey Silty, Gravelly fine to coarse S (Gravels are Quartz & Phylite)		40.85	13	9	11	20	41			S-27 40.4-40.8				
9			3.80			- medium dense to 41.85 m - very dense below 41.85 m		42.30	27	33	31	64	42			S-28 41.85-42				
		43.80					40.50 m						43			S-29				
7			1.25			Very dense reddish greyish mix wit SILT with Sand and little Gravel (M to moderate plasticity (Gravels are Phylite)	IL), with low	43.80	16	24	27	51	44			43.35-43				
		45.05	_ .		, , ,	- greyish light brown below 44.6 n	n	45.05 	21 	20	32	52	45			S-30 44.6-45. (
							J						46							
													47							
													48							
						- modium							49							
													50							

geotechnical and material engineers

Report No. GET 15-8035

	DTECHNICAL SOIL II ERRY TERMINAL IN			BORING NO	. BH # 2		
Sample #	Depth (m)	Moisture Contant (%)	Wet Density (Kg/m3)	Dry density (Kg/m3)	Spesific Gravity		
0.1							
S-1 S-2	1.90	17.0	2091	1787	2.60		
S-2 S-3	3.45						
<u> </u>	4.60	12.2	2682	2391	2.60		
S-4	6.20						
S-6	7.10	22.0	2618	2145	2.40		
S-6 S-7	8.55	32.2	2007	1518	2.34		
	10.30						
S-8	12.30	30.9	2522	1926	2.28		
S-9	13.30						
S-10	14.80	22.3			2.40		
S-11	16.60	28.8	2451	1903	2.41		
S-12	18.15						
S-13	19.40	28.4	2016	1570	2.40		
S-14	20.95						
S-15	22.20						
S-16	23.75	34.6	2425	1802	2.26		
S-17	25.30						
S-18	26.75	33.6	1907	1427	2.28		
S-19	28.10						
S-20	30.00	32.6	2371	1789	2.29		
S-21	32.00	40.5	2369	1686	2.21		
S-22	33.55						
S-23	35.05						
S-24	36.45						
S-25	37.80						
S-26	39.35	54.3	2172	1407	2.02		
S-27	40.85						
S-28	42.30	17.0	2039	1743	2.47		
S-29	43.80						
S-30	45.05	21.5	2536	2088	2.36		

geotechnical and material engineers

BORING LOG

Report No. GET 15-8035 CLIENT: JAPAN PORT CONSULTANTS,LTD																				
_										1	1									
							DIL INVESTIGATION FOR URGE R LESTE	NT SHIFT O	FFERRY		во	RIN	g No	D. E	3H # 3					
CO-(ORDI	NATE	E (M)	X= 7	83,20	04.9	00	DIAM: 96	mm		SH	EET	: 1	OF	4					
				Y= 9	9,053	,85 ₄	4.30								Location	n: Off-shore				
Grou	und E	levat	tion ((m) =	- 11.	.22				Date of Commencement: 29 July 201										
Dept	th (m)): 33.	60						-					Da	te Completed: 04 A	ugust 2015				
rer	Elevation (m)	(m) r	ess, m		ogical		SOIL / ROCK MATERIA	AL	Denth (m)	Blo	ows/15 cm		Value		SPT Chart Sample					
Layer	Elevati	Depth (m)	Thickness, m		Lithological Symbol		IN-SITU DESCRIPTIO	N	Depth (m)	No	N ₁	N ₂	SPT N-Value	0	Depth of the Sample					
-			3.15				Loose grey calcareous SILT with f (ML) , with low plasticity	ine Sand	1.95	3	3	3	6	0 1 2	-	S-1 1.50-1.95				
		3.15		•			Very loose to loose dark grey carb fine to medium SAND with little Gr (Gravels are coral and shell fragm interbedded with Silt and Sand lay	avel (SM) ents	3.60	1	2	3	5	3		S-2 3.15-3.60				
2			3.55				- loose to 4.65 m - very loose, 4.65 to 6.25 m		5.10	2	2	2	4	5	A	S-3 4.65-5.10				
		6.70					- medium dense Silty fine to coar with Gravel (SM) below 6.25 m Medium dense dark grey carbonat fine Sand (ML), with low plasticity	6.70 m	6.70	5	11	12	23	6 7		S-4 6.25-6.70				
с			15.70	-					8.40	5	11	12	23	8 9		S-5 7.95-8.40				
		10.00					e Baak Garage	10.00 m	9.65	8	8	8	16	10		S-6 9.20-9.65				
		C	SP	T Re	pres	sen	ig Rock Sample tative Sample ıbe Sample									_PLATE - 5a				

BORING LOG

geotechnical and material engineers

		GET 1			RT	CON	ISULTANTS,LTD													
PRO	JEC	T: GI	ΕΟΤΙ	ЕСН	NIC	AL S	OIL INVESTIGATION FOR URGEI	NT SHIFT OF	FERRY		во	RIN	G NO). I	BH # 3					
					-			DIAM: 96	mm		SH	EET	: 2	OF	: 4					
	-		• •			53,85					-			-	Location	: Off-shor				
Grou	ind E	leva	tion	(m) :	= - '	11.22	2						Da	ate of Commencement: 29 July 201						
Dept	h (m): 33.	60											Date Completed: 04 August 20						
	(m		ε		al					Blo	ws/15	vs/15 cm 🔊								
Layer	tion (Depth (m)	ness,		logic.	oqu D	SOIL / ROCK MATERIA		Depth (m)				N-Value		SPT Chart	Sample No				
La	Elevation (m)	Depi	Thickness, m		Lithological	ŝ	IN-SITU DESCRIPTION	N	-F- ()	No	N ₁	N ₂	SPT N		0 10 20 30 40 50	Depth of th Sample				
							Loose to medium dense dark grey fine Sandy SILT (ML), with low plas (Gravels are coral and shell fragme interbedded with Silt and Sand laye	sticity ents	11.10	12	15	19	34	10		S-7 10.65-11.1				
							- medium dense to 12.22 m - dense,12.22 to 13.70 m		12.67	14	20	23	43	12 13		S-8 12.22-12.6				
							- loose, 13.70 to 15.15 m		14.15	4	5	5	10	14		S-9 13.7-14.15				
3			15.70	0			- medium dense,15.15 to 17.75 m		15.60	7	10	14	24	15 16		S-10 15.15-15 .				
							- dark grey carbonate SILT (ML) , moderate plasticity below 16.70 m	with high to	17.15	8	8	10	18	17	<u> </u>	S-11 16.7-17.1				
							- loose, 17.75 to 19.40 m		18.20	3	3	3	6	18		S-12 17.75-18.				
		20.00					- medium dense below 19.40 m	20.00 m	19.85	4	9	12	21	19 20		S-13 19.4-19.8				
_		C					rig Rock Sample							_0						
		,	SP	ΤR	epr	eser	ntative Sample ube Sample													

PLATE - 5b

BORING LOG

geotechnical and material engineers

Repor	t No. (GET 1	5-8035	5																			
CLIE	ENT:	JAF	PAN	PO	RT	CO	NS	SULTANTS,LTD															
								DIL INVESTIGATION FOR URGE	NT SHIFT OF	FERRY		во	RIN	g NG	NO. BH # 3								
co-o	ORDI	NAT	E (M)) X=	78	3,204	1.9	0	DIAM: 96	mm		SH	EET	: 3	OF	4							
				Y=	9,0)53,8	354	4.30			-	-					L	ocatio	n: Off-shor				
Grou	und E	Elevat	tion	(m)	= -	11.2	22						Da	Date of Commencement: 29 July 201									
Dept	Depth (m): 33.60 Date Completed: 04 Aug												ugust 201										
Layer	Elevation (m)	Image: Constraint of the second se										N-Value		SPT	Chart		Sample No.						
La	Elevat	Dept	Thickness,		Lithol	Syn		IN-SITU DESCRIPTIO	N		No	N ₁ N ₂			20	0 10 2	20 30	40 50	Depth of the Sample				
3		.40	15.7					Medium dense dark grey carbonate (ML), with high to moderate plastic are coral and shell fragments)		21.30	8	11	10	21	21		-		S-14 20.85-21.3				
		23.		•				Loose to medium dense dark grey SILT (ML), with high to moderate p		22.85	4	5	5	10	23				S-15 22.4-22.85				
4				¢				- loose to 25.35 m		24.40	4	5	4	9	24 25	<u> </u>			S-16 23.95-24. 4				
		.85						- medium dense below 25.35 m		25.80	5	8	8	16	26				S-17 25.35-25. 8				
		26.						Dense to very dense light to dark g Silty, Gravelly fine to coarse SAND	26.85 m reenish (SM)	27.30	18	28	34	62	27				S-18 26.85-27.3				
5			6.75					(Gravels are Phyllite and Quartz) - very dense to 28.35 m - dense below 28.35 m		28.80	26	21	24	45	28 29				S-19 28.35-28.8				
		30.00						n Daalo Cammir	30.00 m						30								
		(SP	ΤR	ер	rese	ent	g Rock Sample tative Sample ıbe Sample															

PLATE - 5c

BORING LOG

Report	No	GET	15-8035	

0-0	ORDI	NATE	E (M)	X= 7	83,204	1.90	DIAM:	96 mm		SHI	EET	: 4	OF	4			
				Y= 9	9,053,8	354.30										Location	: Off-sho
rou	ind E	levat	ion (m) =	- 11.2	2						Da	te of	Comr	nenc	ement: 2	9 July 20
ept	h (m)): 33.	60	ſ		-			1			1	Da	ugust 20			
Layer	Lithological Thickness, m (m) (m) (m) (m) (m) (m) (m) (m) (m) (Depth (m)		ws/15	/15 cm ania N-N LdS			SF	T Char	t	Sample N				
Га	Elevat	Dept	Thickr		Syn	IN-SITU DESCRIPT	ION	bopin (iii)	No	N ₁	N ₂	SPT N	30	0 10	20 3		Depth of t Sample
						Dense to very dense light to da Silty, Gravelly fine to coarse SA		30.20	25	20	25	45				▲	S-20 29.75-30
						(Gravels are Phyllite and Quart	z)						31				
,			6.75			- dense to 31.65 m							32				S-21
			9			- very dense below 31.65 m		32.10	25	27	28	55	52				31.65-32
													33				
		33.60					33.6	50 m 33.60	27	25	34	59 					S-22 33.15-33
													34				
													35				
													36				
													37				
													38				
													39				
						prig Rock Sample							40				

geotechnical and material engineers

Report No. GET 15-8035

	DTECHNICAL SOIL II ERRY TERMINAL IN			BORING NO	. BH # 3
Sample #	Depth (m)	Moisture Contant (%)	Wet Density (Kg/m3)	Dry density (Kg/m3)	Spesific Gravity
S-1	1.95	34.9	1860	1379	2.32
S-2	3.60	30.9	1930	1475	2.36
S-3	5.10				
S-4	6.70	26.4	1941	1535	2.36
S-5	8.40				
S-6	9.65	30.7	1882	1440	2.25
S-7	11.10				
S-8	12.67	33.5	1860	1393	2.32
S-9	14.15				
S-10	15.60				
S-11	17.15	34.4	1834	1364	2.23
S-12	18.20				
S-13	19.85				
S-14	21.30	34.8	1869	1386	2.30
S-15	22.85				
S-16	24.40	42.2	1766	1242	2.14
S-17	25.80				
S-18	27.30	8.3	1987	1836	2.63
S-19	28.80				
S-20	30.20	9.2	1802	1651	2.56
S-21	32.10				
S-22	33.60	9.3	1713	1567	2.61

TERMINAL IN DILI PORT, TIMOR LESTE CO-ORDINATE (M) X= 783,232.82

CLIENT: JAPAN PORT CONSULTANTS, LTD

Y= 9,053,918.49

PROJECT: GEOTECHNICAL SOIL INVESTIGATION FOR URGENT SHIFT OF FERRY

Geotechnik Ltd

DIAM: 96 mm

BORING LOG

Location: Off-shore

BORING NO. BH # 4

3

SHEET: 1 OF

							_				_		
Ground Elevation (m) =	- 16.63						D	ate					ugust 2015
Depth (m): 30.05				1	I				Da	te Co	mplete	d: 14 A	ugust 2015
Layer Elevation (m) Depth (m) Thickness, m	Lithological Symbol	SOIL / ROCK MATERIA IN-SITU DESCRIPTION		Depth (m)		ws/15	i cm N ₂	SPT N-Value	(T Chart 20 30	40 50	Sample No. Depth of the Sample
1 21.75		Very loose dark grey calcareous S Sand (ML), with low plasticity - loose below 6.75 m	SILT with	1.95 3.40 5.45 7.2 8.75	0 0 1 3 3	0	0	0 0 2 8 6	0 - 1 1 2 2 2 3 2 4 5 6 7 7 8 8 9				S-1 1.50-1.95 S-2 2.95-3.40 S-3 5.00-5.45 S-4 6.75-7.20 S-5 8.30-8.75
10.00			10.00 m						10				S-6 9.85-10.30
Continec	ous Cori	ig Rock Sample tative Sample											
Thin	Wall Tu	ube Sample											PLATE - 6a

BORING LOG

geotechnical and material engineers

Renort	No	GET	15-8035	
nepuit	140.	GEI	10-0030	

0-0	ORDI	NATE	E (M)	X =	783,23	2.8	2	DIAM: 96	mm		SH	EET	: 2	0	F 3	
				Y=	9,053,9	918	.49								Locat	ion: Off-sho
Grou	ind E	Elevat	ion (m) =	- 16.0	63						D	ate	of C	ommencement: 12	2 August 20
Dept	h (m): 30.	05	1					1					D	Date Completed: 14	August 20
Layer	Elevation (m)	Depth (m)	Thickness, m		Lithological Symbol		SOIL / ROCK MATERIA		Depth (m)	Blo	ws/15	cm	SPT N-Value		SPT Chart	Sample N
Ľ	Eleva	Dep	Thick		Sy Sy		IN-SITU DESCRIPTIO	N		No	N ₁	N ₂	SPT N	10	0 10 20 30 40	Depth of t Sample
						li	Very loose to loose dark grey carb with Sand (ML), with low plasticity coral and shell fragments interbedo	(Gravels are	10.30	2	2	4	6			S-6 9.85-10.3
				÷		i	and Sand layers)		11.70	3	2	6	8	11	4	S-7 11.25-11.7
							- loose to 11.70 m - very loose, 11.70 to 17.25 m		10.05	~		-		12 13		
						ł	- SILT (ML) , with high to moderate below 13.25 m	e plasticity	13.25	2	2	1	3	14		12.8-13.2 S-9
-			21.75						14.75	1	1	1	2	15		14.3-14.
									16.20	1	1	0	1	16		S-10 _ 15.75-16
							- loose below 17.25 m		17.70	2	4	5	9	17		S-11 17.25-1 7
														18		- S-12
		20.00							19.20	1	1	1	2	19		18.75-19
			Cont			ШI srid	g Rock Sample	20.00 m			I		L	20	└	┛ ┝────

BORING LOG

geotechnical and material engineers

	rt No. C ENT:				ON	SULTANTS,LTD										
-		-	-	ECHNICA PORT, TI	-	DIL INVESTIGATION FOR URGEI R LESTE	NT SHIFT OF	FERRY		во	RIN	G NO	Э. BH#	4		
co-(ORDI	NATE	E (M)	X= 783,2	232.8	32	DIAM: 96	mm		SH	EET	: 3	OF 3	}		
				Y= 9,053	3,91	8.49				8				Le	ocation	: Off-shore
Grou	und E	levat	ion	(m) = - 16	6.63						D	ate	of Comm	encemer	nt: 12 A	ugust 201
Dept	th (m)): 30.	05						1				Date C	omplete	d: 14 A	ugust 201
Layer	Elevation (m)	Depth (m)	Thickness, m	Lithological Symbol				Depth (m)	Blo	ws/15	cm	N-Value		SPT Chart		Sample No. Depth of the
Ľ	Eleva	Dep	Thick	Syl	` 	IN-SITU DESCRIPTIO	N		No	N ₁	N ₂		0 1 20	0 20 30	40 50	Sample
-		5	21.75			Very loose dark grey carbonate Sa (ML), with moderate to low plasticit are coral and shell fragments intert Silt and Sand layers)	y (Gravels	20.70	1	1	1	2	21			S-13 20.25-20.7
		21.75		•		Medium dense greyish brown Silty, fine to coares SAND (SM) (Gravels and Quartz fragments)		22.20	6	8	8	16	22 —			S-14 21.75-22.2
2			3.0	•		- medium dense to 23.30 m - dense below 23.30 m		23.75	31	27	23	50	23			S-15 23.3-23.75
		24.75		•		Very dense greyish brown Silty, Sa graded GRAVEL (GM) (Gravels ar and Quartz fragments)		25.20	27	32	38	70	25 —			S-16 24.75-25.2
ъ			3.60	•		- well graded GRAVEL with little below 26.35 m	Sand (GW)	26.80	39	28	32	60	26			S-17 26.35-26.8
		28.35					28.35 m	28.35	19	22	28	50	28 —			S-18 27.9-28.35
4		5	1.70			Very dense light greyish light brown Sand and Gravel (ML) with low to r plasticity							29 —			S-19
		30.05					30.05 m	30.05	16	22	32	54	30			29.6-30.05
			SP	T Repre	sen	ig Rock Sample tative Sample ıbe Sample	30.05 M	00.00			<u> </u>		30		1	29.6-30.0

PLATE - 6c

geotechnical and material engineers

Report No. GET 15-8035

	DTECHNICAL SOIL INV ERRY TERMINAL IN D			BORING NO). BH # 4
Sample #	Depth (m)	Moisture Contant (%)	Wet Density (Kg/m3)	Dry density (Kg/m3)	Spesific Gravity
S-1	1.95	37.8	1919	1392	2.25
S-2	3.40				
S-3	5.45				
S-4	7.20	33.9	1904	1422	2.29
S-5	8.75				
S-6	10.30				
S-7	11.70	45.6	1744	1198	2.18
S-8	13.25				
S-9	14.75	39.3	1830	1313	2.27
S-10	16.20	29.8	1804	1390	2.25
S-11	17.70				
S-12	19.20				
S-13	20.70	42.6	1793	1257	2.13
S-14	22.20	28.2	1984	1547	2.23
S-15	23.75	9.6	2205	2011	2.53
S-16	25.20				
S-17	26.80	8.3	2196	2028	2.54
S-18	28.35	5.4			2.55
S-19	30.05	20.9	1797	1487	2.34

Report No. GET15-8035

SYMBOLS AND TERMS USED ON BORING LOGS

SOIL AND ROCK (SHOWN IN SYMBOI		SAMPLER TYPES (SHOWN IN SAMPLES COLUMN)
Sand Silty Sand Silt Clay	Gravel Linestone Sardatone Conglor	
Predominant ty	pe shown heavy	Barrel Barrel
TERMS DESCR	IBING DENSITY CON	IDITION FOR CONSISTENCY
The condition of coarse grained soils n tests. Approximate correlation betwee	hay be obtained by performing in these tests and the density	g sampler penetration tests or cone penetrometer condition are given below:
DENSITY CONDITION	SPT VALUES, N	CONE TIP RESISTANCE, MPa
Very loase Loose Medium dense Dense Very dense	< 4 4 to 10 10 to 30 30 to 50 > 50	< 2 2 to 4 4 to 12 12 to 20 20
samplers are used. Density versus con depth also; see Schmertmann, 1978.	ie tip resistance relationship g ly be obtained by performing	68. See Lacroix and Horn, 1973 if non-standard liven above, after Meyerhof 1965; is a function of undrained shear strength tests. Degrees of IED SHEAR STRENGTH, kPa
Very s		< 12
Sof Firn		12 to 25 25 to 50
Stif	f	50 to 100
Very s Harv		100 to 200 > 200
TER	MS CHARACTERIZING	SOIL STRUCTURE
Seam- horizontal inclusionLayer- horizontal inclusionPocket- inclusion of differeFissured- containing shrinkagInterbedded- composed of alterrSilty- containing 12 to 5Calcareous- containing 12 to 5		5-mm thick than 75-mm thick an the diameter of the soil sample th fine sand or silt; usually more or less vertical
Terms used in this report for describin ASTM D 2487-90 and D 2488-90	g soils according to their text	ure or grain size distribution are in accordance with

Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT TIMOR LESTE

PLATE-7

Geotechnical, Material and Structural Engineers

Report No. GET 14-8035

	Unconfined	Compressive		
Term		ngth (ksf)		Field Estimation of Hardness
Extremely strong Very strong Strong Moderately stron Moderately weak Weak Very weak	100 - 200 50 - 100 g 12.5 - 50	>4000 2000 - 4000 1000 - 2000 250 - 1000 100 - 250 30 - 100 10 - 30	More than on Hand held sp Indentation o Too hard to c Materials crui geologic pick.	of geologic hammer required to break specimen. a blow of geologic hammer required to break specimen. climen can be broken with single blow of hammer. 5 mm with sharp end of pick. ut by hand into a compression test specimen. hobles under firm blows with sharp end of a h, may be broken by hand with difficulty.
	NSHIP OF RO			WEATHERING
al served of cattering is	RQD, Rock	Quality	/ Merce UNLEASE Apple 2015-21	
Fair Good Excellent ROD is the perce	Designation	on, (%) 25 50 75 90 100 tal length	Moderate - Sig we co Severe - Ro ex Very Severe - Ma	ck fresh with joints and may show slight staining. Inificant portions of rock show discoloration and athering effects and show significant loss of stren mpared with fresh rock. In shows severe loss of strength and can be cavated with geologist's pick. Is effectively reduced to soil with only fragments ong rock remaining.
	Description for Bedding planes	MICR	NTINUITY SU COSTRUCTUR Spacing (mm)	
		MICR	OSTRUCTUR	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium Closely
	Bedding planes Very thickly bedded Thickly bedded Medium bedded Thinly bedded	MICR	Spacing (mm) > 1000 300 - 1000 100 - 300 30 - 100	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium
	Bedding planes Very thickly bedded Thickly bedded Medium bedded Thinly bedded Very thinly bedded Thickly laminated Thinly laminated	MICR	Spacing (mm) > 1000 300 - 1000 100 - 300 30 - 100 10 - 30 3 - 10 < 3	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium Closely Very closely
	Bedding planes Very thickly bedded Thickly bedded Medium bedded Thinly bedded Very thinly bedded Thickly laminated Thinly laminated	MICR	Spacing (mm) > 1000 300 - 1000 100 - 300 30 - 100 10 - 30 3 - 10 < 3 JGHNESS CL	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium Closely Very closely
Classification Smooth Slightly Rough	Bedding planes Very thickly bedded Thickly bedded Medium bedded Thinly bedded Very thinly bedded Thickly laminated Thinly laminated	JOINT ROL Aspr Aspr Larg	Spacing (mm) > 1000 300 - 1000 100 - 300 30 - 100 10 - 30 3 - 10 <3	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium Closely Very closely
Classification Smooth Slightly Rough Medium Rough Rough Very Rough References:	Bedding planes Very thickly bedded Thickly bedded Medium bedded Very thinly bedded Very thinly bedded Thickly laminated Thinly laminated	MICR JOINT ROL App Asp Larg Near	Spacing (mm) > 1000 300 - 1000 100 - 300 30 - 100 10 - 30 30 - 100 10 - 30 3 - 10 <3 JGHNESS CL/ D e s ears smooth and is erities an the fractu erities are clearly vie e angular asperities r vertical steps and Engineering Group,	E SPACING Description for Joints Faults or Other Fractures Very widely (fractured or jointed) Widely Medium Closely Very closely ASSIFICATION (3) cription smooth to the touch. May be slickensided. re surfaces are visible and can be distinctly felt sible and fracture surface feels abrasive. can be seen some ridge and angle steps are evide

TIMOR LESTE

Plate-8

CLASSIFICATION SYSTEM FOR CARBONATE SOILS AND ROCKS

Report No. GET 15-8035

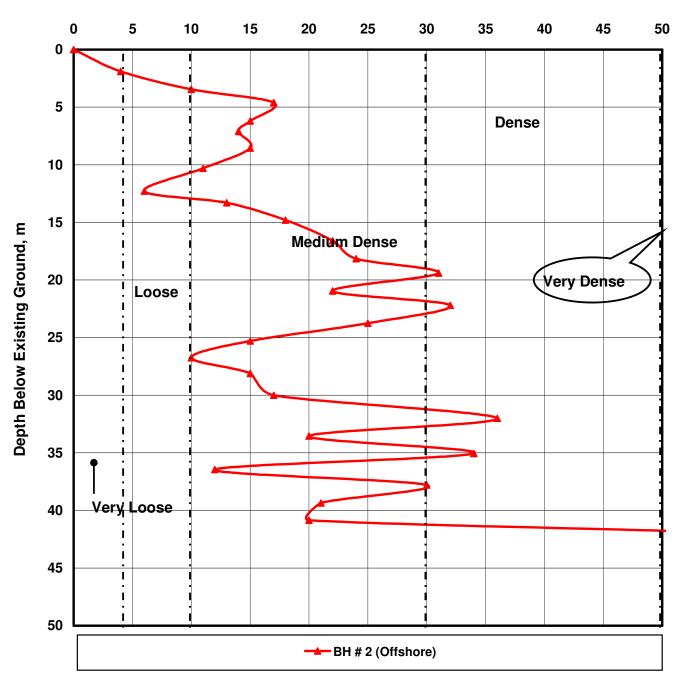
١

							ietroO i sulq s						 Non-carbonate constituents are likely to be siliceous apart from local concentration of minerals such as feldspar and mixed heavy minerals 	In description, the rough proportions of carbonate and non-carbonate constituents should be quoted and details of both the particle minerals and matrix minerals should be included	Calcareous is suggested as a general term to indicate the presence of unidentified carbonate. When mineral identification is possible calcareous referring to calcite or alternative adjectives such as dolomitic, aregonitic, sideritic, etc. should be used
_				uu	70 C	% DC 1	0,71	20 20		% 	2		t from lo	n-carbor s and ma	: presenc eous refe tic, etc. :
		Pisolitic (Inorganic)		76 mm	Mixed Carbonate and	Non-carbonate Gravel (2)	Gravel	Limestone Conclomerate	or Breccia	Calcareous Conglomerate or Breccia	Conglomerate or Breccia		be siliceous apar avy minerals	In description, the rough proportions of carbonate and non-carbonate constituents should be quoted and details of both the particle minerals and matrix minerals shou be included	Calcareous is suggested as a general term to indicate the presence of unidentified carbonate. When mineral identification is possible calcareous referring to calcite o alternative adjectives such as dolomitic, aragonitic, sideritic, etc. should be used
	t Particles	Algal (Organic)	A i i i i i i i i i i i i i i i i i i i	4.76 mm	Mixed Ca		1	Limestone (or B	Calcareous	Conglomera		ents are likely to ar and mixed he	1 proportions of etails of both th	l as a general te al identification Ich as dolomític.
	Additional Descriptive Terms Based on Origin of Constituent Particles	Coral (Organic)	Increasing Grain Size of Particulate Deposits	4.7	Carbonate Sand (1)		1	Limestone	ł	Calcareous Sandstone	Sandstone		Non-carbonate constituents are likely to be siliceous minerals such as feldspar and mixed heavy minerals	iption, the rough be quoted and d ded	ous is suggested ate. When miner ive adjectives su
	d on Origin c	Shell {Organic}	of Particula	0.074 mm	Carbonat	I :	1 1	Limest	 	1	Sand	<u>Notes:</u>	1) Non-car mineral	 In descriptio should be a be included 	3) Calcare carbone alternat
	Terms Base	Oolitic (Inorganic)	Grain Size	0.07	Carbonate Silt (1)		Silt	imestone	Fine-grained Limestone	Calcareous Siltstone	Siltstone				oonate) oorate) areous e
	I Descriptive	Bioclastic (Organic)	- Increasing	0.002 mm	Carbonat	Calcareo	1	Lime	Fine-grained	Calcareou	Silts		ting algae ction	s als	cles, usually carl cles, usually cart commonly calc cryptocrystallin
	Additiona	Not Discernible		0.00	Carbonate Clay	eous Clay (3)	Clay	estone	stone	Calcareous Claystone	Claystone	Terms Related to Carbonate Classification	Composed of the remains of calcareous secreting algae Formed in place by chemical or biochemical action	Consisting of fragmental remains of organisms Calcareous skeleton of a coral or group of corals Derived of pre-existing rock fragments	Made up of oofiths (0.25 to 2 mm round particles, usually carbonate) Made up of pisoliths (2 to 10 mm round particles, usually carbonate) The generally hard rigid covering of an animal, commonly calcareous Containing abundant quartz or silica, generally cryptocrystalline
												to Carbo	mposed of rmed in pla	Consisting of fi Calcareous ske Derived of pre-	ade up of o ade up of p e generally intaining at
			Degree of Induration		bə1 >		noN	«		npul IsboMi	>	Related	1 1		1 1 1
			De Ind			(lioS)			(Y)	o9)		Terms	Algal Authigeníc	Bioclastic Coral Detrital	Oolitic Pisolitic Shell Siliceous

Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT TIMOR LESTE

PLATE – 9

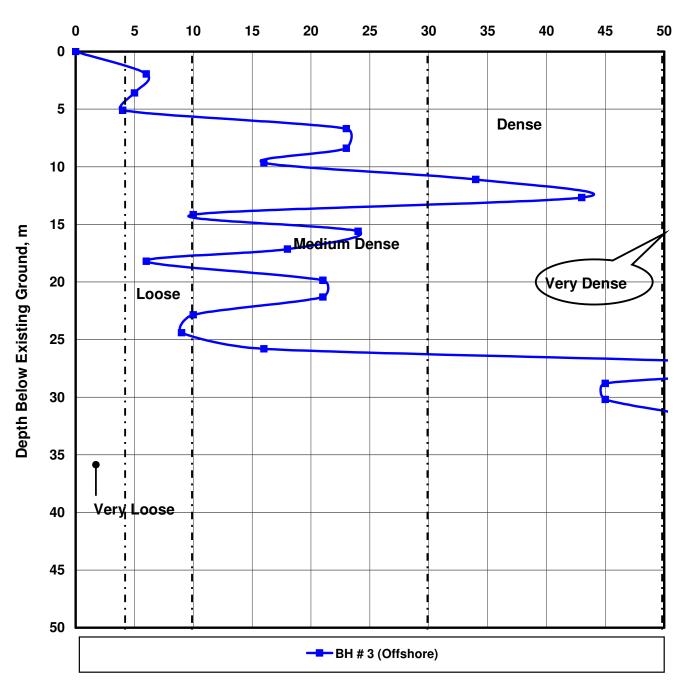
Geotechnik Ltd SPT N-Value Vs Depth Plot Report No. GET 15-8035


SPT N - Value

SPT N-Value Vs Depth PLOT Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT, DILI, TIMOR LESTE

PLATE - 10a

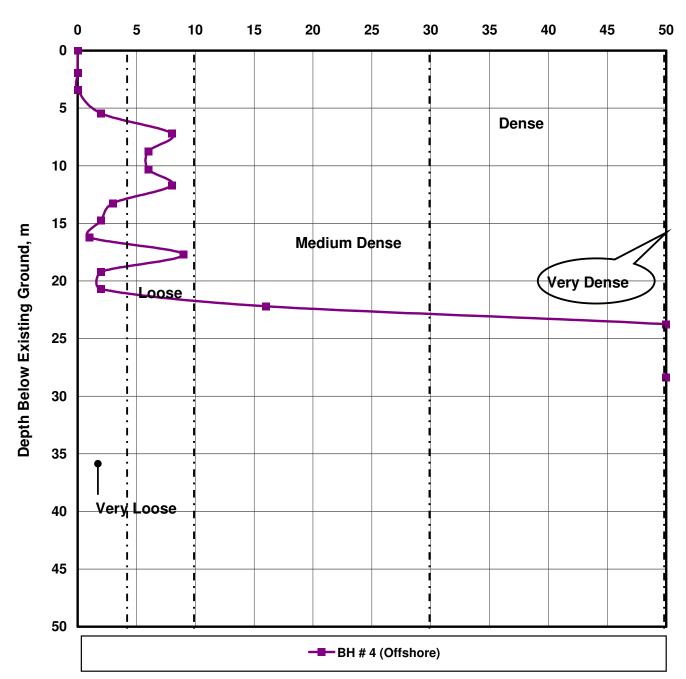
Geotechnik Ltd SPT N-Value Vs Depth Plot Report No. GET 15-8035


SPT N - Value

SPT N-Value Vs Depth PLOT Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT, DILI, TIMOR LESTE

PLATE - 10b

Geotechnik Ltd SPT N-Value Vs Depth Plot Report No. GET 15-8035



SPT N - Value

SPT N-Value Vs Depth PLOT Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT, DILI, TIMOR LESTE

PLATE – 10c

SPT N - Value

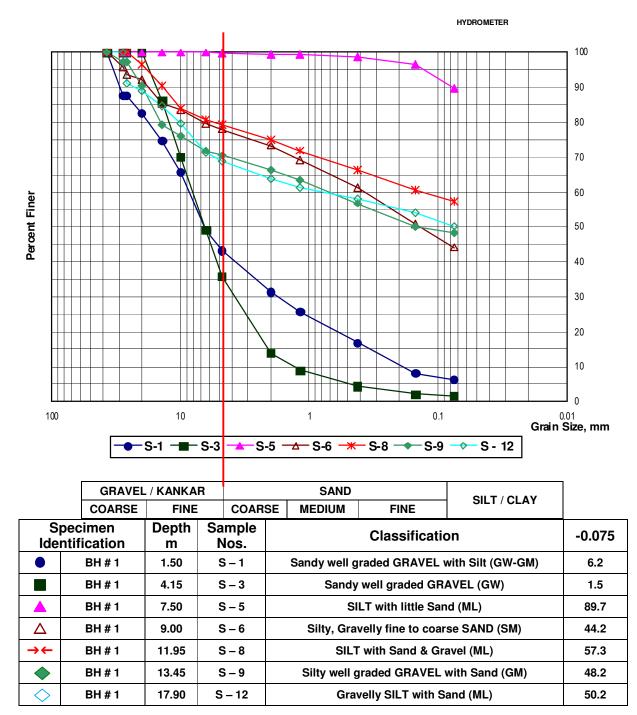

SPT N-Value Vs Depth PLOT Geotechnical Investigation URGENT SHIFT OF FERRY TERMINAL IN DILI PORT, DILI, TIMOR LESTE

PLATE – 10d

GRAIN SIZE ANALYSIS

Report No. GET 15-8035

GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

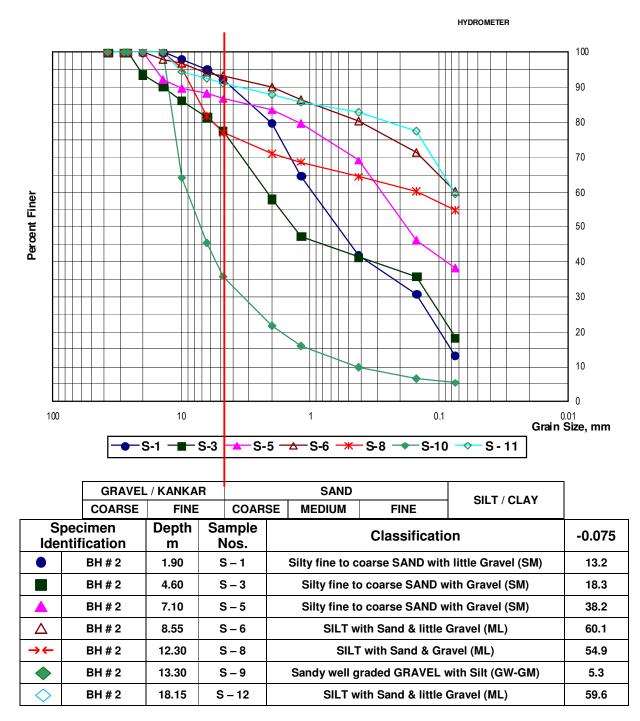
GRAIN SIZE ANALYSIS

Report No. GET 15-8035

				HYDROMETER	
Π				* * * * * * * * * * * * * * * * * * * *	100
-					90
-					80
-					70
ner		1			60
Percent Finer					50
Per					40
					30
					20
				₽─₽ ↓ ↓ ↓ ₽ ↓ ₽ ↓ ₽	10
					0
100		10		1 0.1 0.0 Grain S	i ize, mm
		14 — S-16	5 📥 S	-17 <u>→</u> S-18 × S-20 → S-21 → S-22	,
		/ KANKAR		SAND SILT / CLAY	
	COARSE	FINE	COAR	SE MEDIUM FINE	
	pecimen ntification		ample Nos.	Classification	-0.075
	BH # 1		S – 14	SILT with Sand & Gravel (ML)	50.0
	BH # 1	23.85	S – 16	Well graded GRAVEL with Silt (GW-GM)	8.0
	BH # 1	25.40	S – 17	SILT with Sand & Gravel (ML)	60.8
Δ	BH # 1	26.95	S – 18	SILT with fine Sand (ML)	80.7
→←	BH # 1	30.00	S – 20	SILT (ML)	96.2
	BH # 1	31.45	S – 21	Sandy SILT (ML)	61.0
\diamond	BH # 1	32.95	S – 22	Silty, Gravelly fine to coarse SAND (SM)	14.6

GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

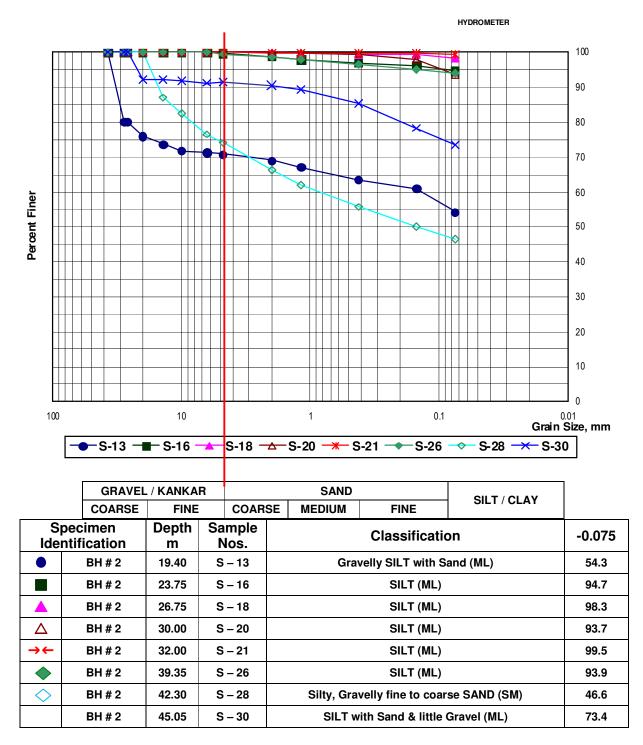
Report No. GET 15-8035


HYDROMETER 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 10 0.1 0.01 Grain Size, mm 1 GRAVEL / KANKAR SAND SILT / CLAY MEDIUM COARSE FINE COARSE FINE Depth Sample Specimen Classification -0.075 Identification Nos. m BH # 1 34.40 S – 23 Silty, Gravelly fine to coarse SAND (SM) 12.3 Gravelly fine to coarse SAND with Gravel (SM) BH # 1 35.90 S – 24 11.9 BH # 1 38.95 S – 26 SILT (ML) 98.7 40.50 Δ BH # 1 S – 27 SILT (ML) 97.9

> GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

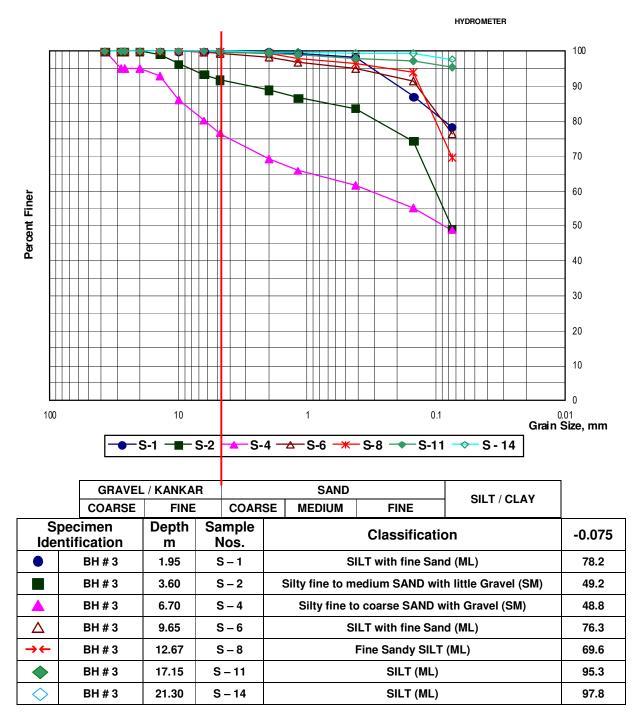
Report No. GET 15-8035



GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

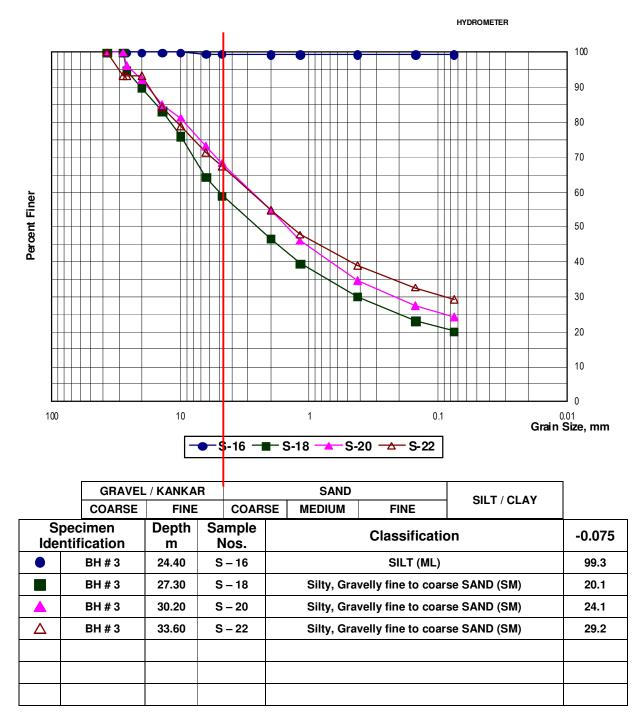
Report No. GET 15-8035



GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

Report No. GET 15-8035



GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

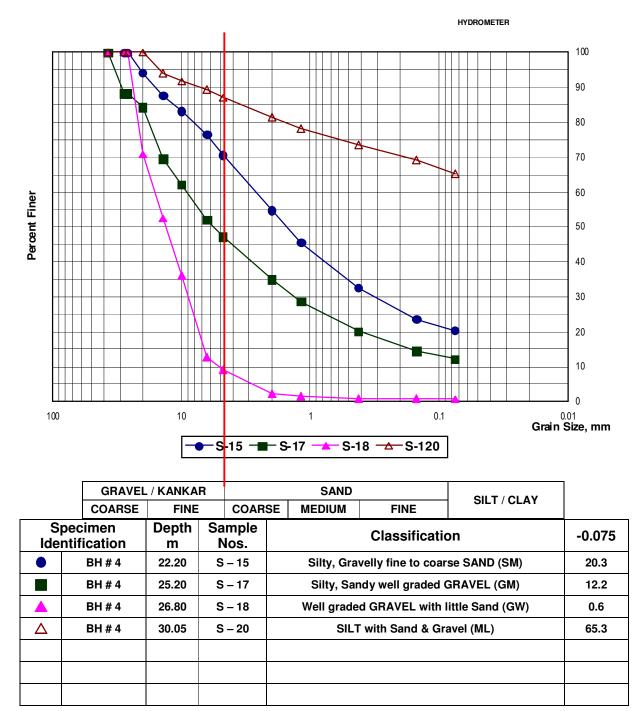
Report No. GET 15-8035



GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

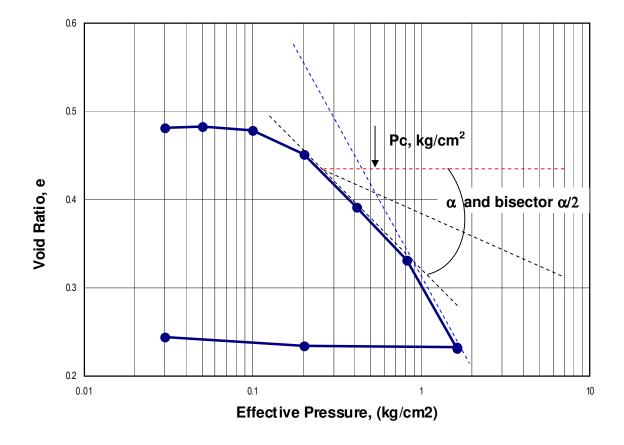
Report No. GET 15-8035



GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

GRAIN SIZE ANALYSIS

Report No. GET 15-8035


GRAIN SIZE CURVES Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

e – log P' ANALYSIS

Report No. GET15-8035

Material: Very loose whitish grey carbonate SILT with Sand & Gravel (ML), with low plasticity Depth : 10.05 to 10.50 m Borehole: BH # 1 S-7 Remoulded Percentage of Fines (-0.075mm): 57.3 % Liquid Limit: 36.7 % Plastic Limit: 27.36 % Plastic Index: 9.34 % Natural Moisture Content: 39.6 % Maximum Pre-consolidation Pressure (Pc): 0.53 kg/cm²

Void Ratio Verses Effective Pressure Curve Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Plate 20 Consolidation Curve

e – log P' ANALYSIS

Report No. GET15-8035

Material: Very loose whitish grey carbonate SILT with Sand & Gravel (ML), with low plasticity Depth : 10.05 to 10.50 m Borehole: BH # 1, S-7, Remoulded

Loading Data:

LUAUIIIY DALA.	a.								
Applied Pressure (kg/cm ²)	8H (mm)	Specimen Height (mm)	Void Ratio (e)	t ₉₀ (minutes)	ပိ	a _v (cm ² /kg)	m _v (cm ² /kg)	C _V (cm ² /kg)	K = C _v m _v ‰ (cm/min.)
0.00 - 0.03	0.080	13.020	0.4813		1		ı		
0.03 - 0.05	090.0	13.040	0.4834	60	-0.010	-0.109	-0.070	5.361	0.000373
0.05 - 0.1	0.100	13.000	0.4791	06	0.008	0.087	0.056	3.441	0.000191
0.1 - 0.2	0.350	12.750	0.4518	120	0.033	0.273	0.174	2.000	0.000348
0.2 - 0.41	006.0	12.200	0.3917	150	0.053	0.286	0.182	0.787	0.000143
0.41 - 0.82	1.450	11.650	0.3317	180	0.042	0.146	0.093	0.054	0.000005
0.82 - 1.63	2.370	10.730	0.2312	720	0.058	0.124	0.079	0.003	0.000000

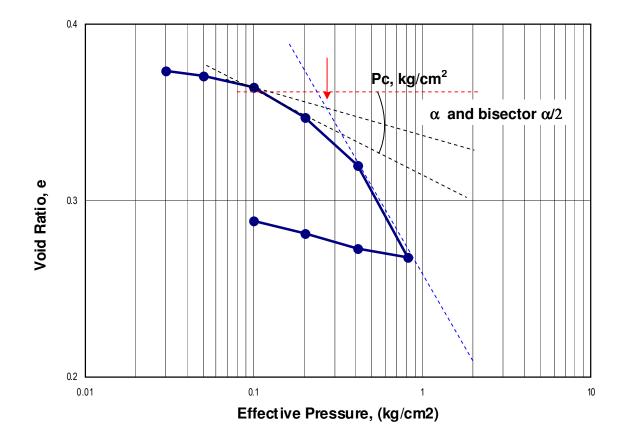
Un-loading Data:

Un-loading (kg/cm ²)	Void Ratio (e)
0.82	0.233
0.20	0.235
0.03	0.244
-	

- Legend: C_c ; Compression Index. a_v : Coefficient of Compression. m_v : Coefficient of Volume Compressibility. C_v : Coefficient of Consolidation. Pc : 0.53 Preconsolidation Pressure, kg/cm². K : Coefficient of Permeability.
- **CONSOLIDATION TEST RESULT DATA**

Urgent Shift of Ferry Terminal In Dili Port, Timor Leste

Geotechnical Investigation


Plate 21 Consolidation Data

e – log P' ANALYSIS

Report No. GET15-8035

Material: Medium dense dark grey carbonate SILT with Sand & little Gravel (ML), with low plasticity Depth : 8.10 to 8.550 m Borehole: BH # 2, S-6, Remoulded Percentage of Fines (-0.075mm): 60.1 % Liquid Limit: 47.67 % Plastic Limit: 33.95 % Plastic Index: 13.72 % Natural Moisture Content: 32.2 % Maximum Pre-consolidation Pressure (Pc): 0.28 kg/cm²

Void Ratio Verses Effective Pressure Curve Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Plate 22 Consolidation Curve

e – log P' ANALYSIS Report No. GET15-8035

Material: **Medium dense dark grey carbonate SILT with Sand & little Gravel (ML), with low plasticity** Depth : 8.10 to 8.55 m Borehole: BH # 2, S-6 Remoulded

Loading Data:

Applied Pressure (kg/cm ²)	₩ H8	Specimen Height (mm)	Void Ratio (e)	t ₉₀ (minutes)	ပိ	a _v (cm ² /kg)	m _v (cm²/kg)	Cv (cm ² /min)	K = Cv mv ‱ (cm/min.)
0.00 - 0.03	0.01	13.99	0.3739		1	1	1		
0.03 - 0.05	0.04	13.96	0.3710	60	0.431	0.147	0.107	0.738	7.9104E-05
0.05 - 0.1	0.11	13.89	0.3641	06	0.431	0.137	0.100	0.731	
0.1 – 0.2	0.28	13.72	0.3474	120	0.431	0.167	0.121	0.713	8.6595E-05
0.2 - 0.41	0.56	13.44	0.3199	150	0.431	0.131	0.095	0.684	6.5174E-05
0.41 - 0.82	1.09	12.91	0.2678	180	0.431	0.127	0.092	0.631	5.8301E-05

Un-loading Data:

Un-loading (kg/cm ²)	Void Ratio (e)
0.41	0.2728
0.20	0.2816
0.03	0.2885
0.00	0.3130

Legend:

- C.; Compression Index.
 a.: Coefficient of Compression.
 m.: Coefficient of Volume Compressibility.
 C.: Coefficient of Consolidation.
 Pc: 0.28 Preconsolidation Pressure, kg/cm².
 K : Coefficient of Permeability.
- **CONSOLIDATION TEST RESULT DATA**

Urgent Shift of Ferry Terminal In Dili Port, Timor Leste

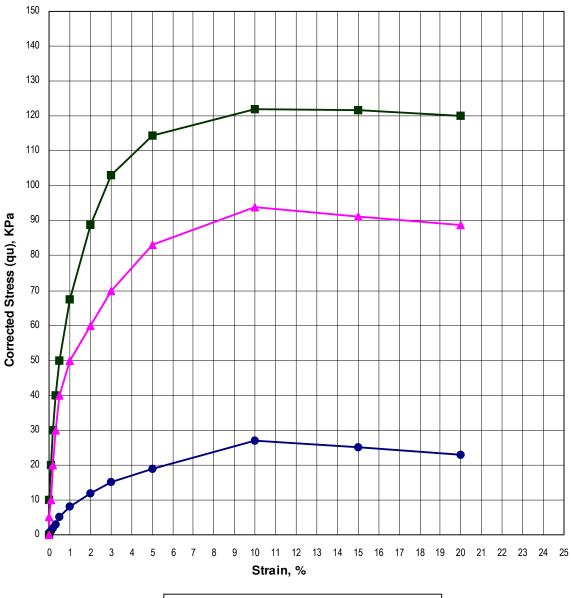
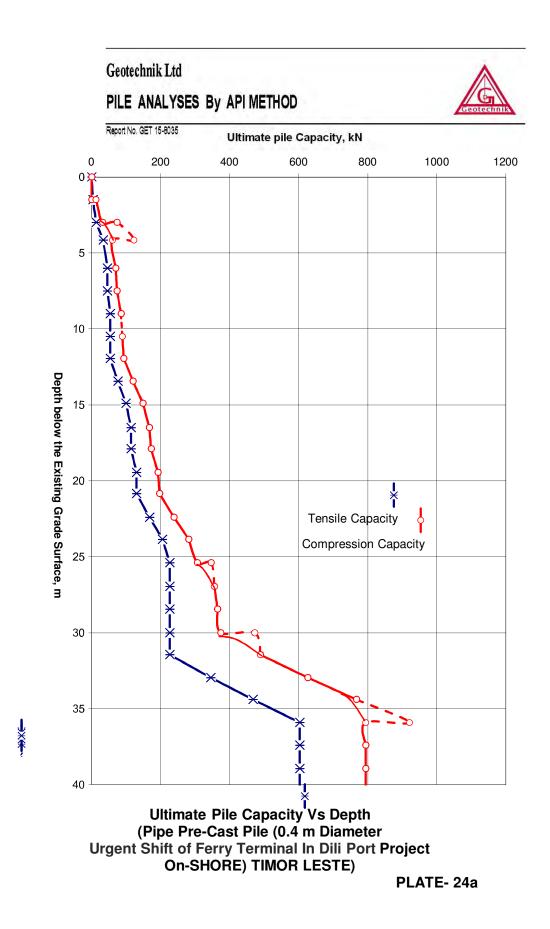
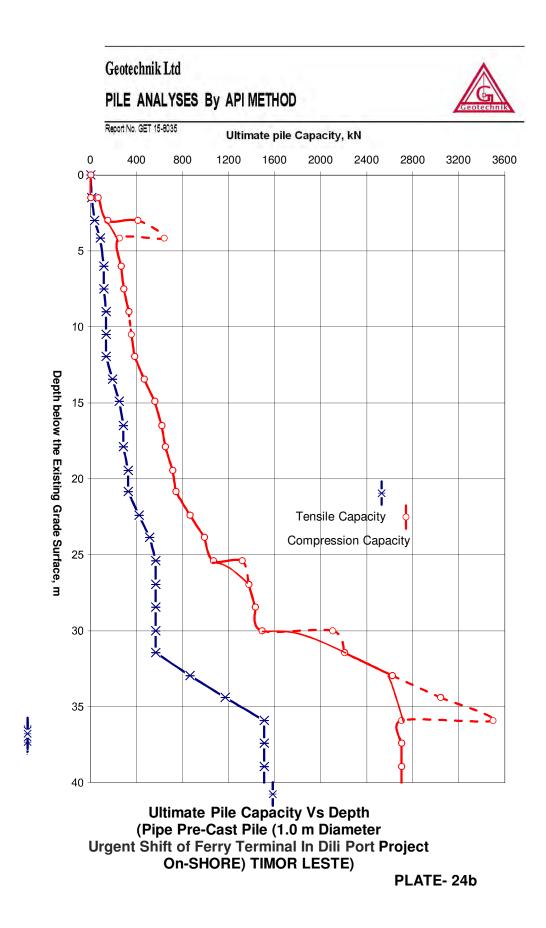
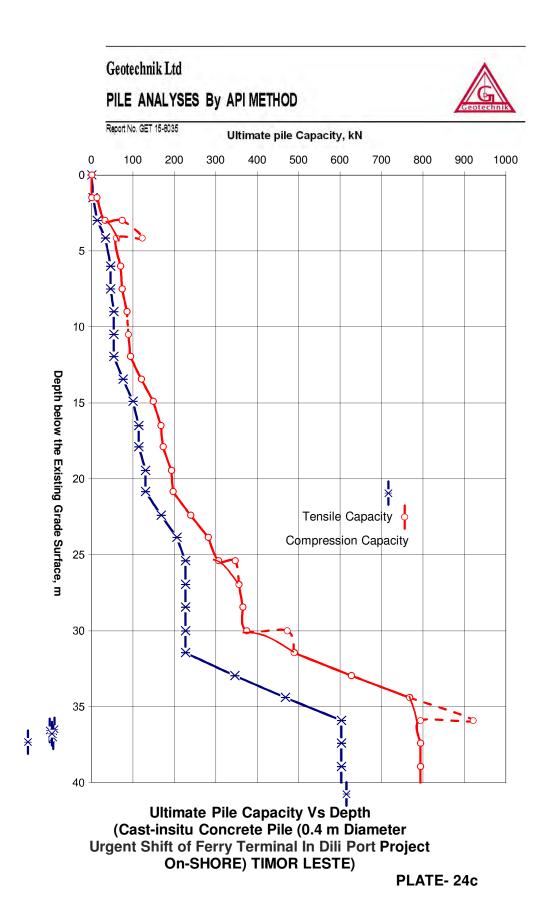

Geotechnical Investigation

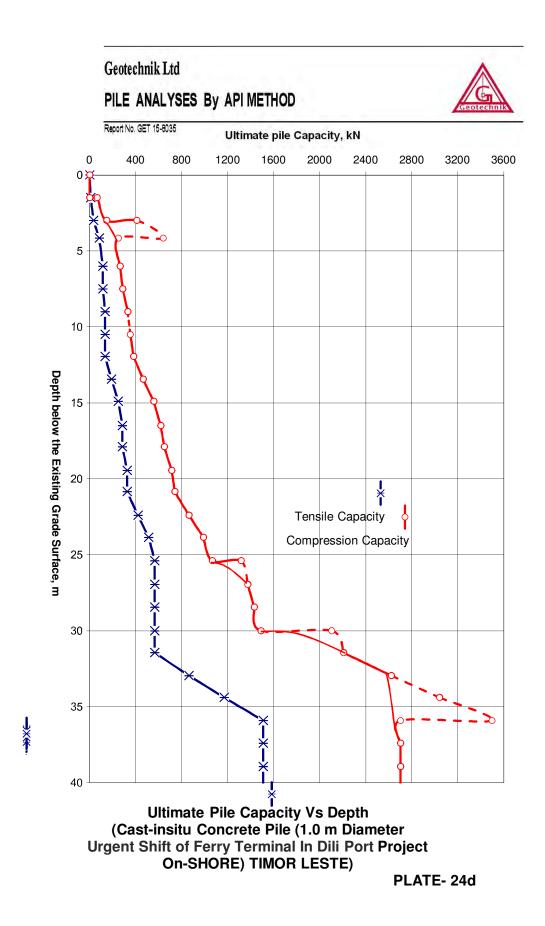
Plate 23 Consolidation Data

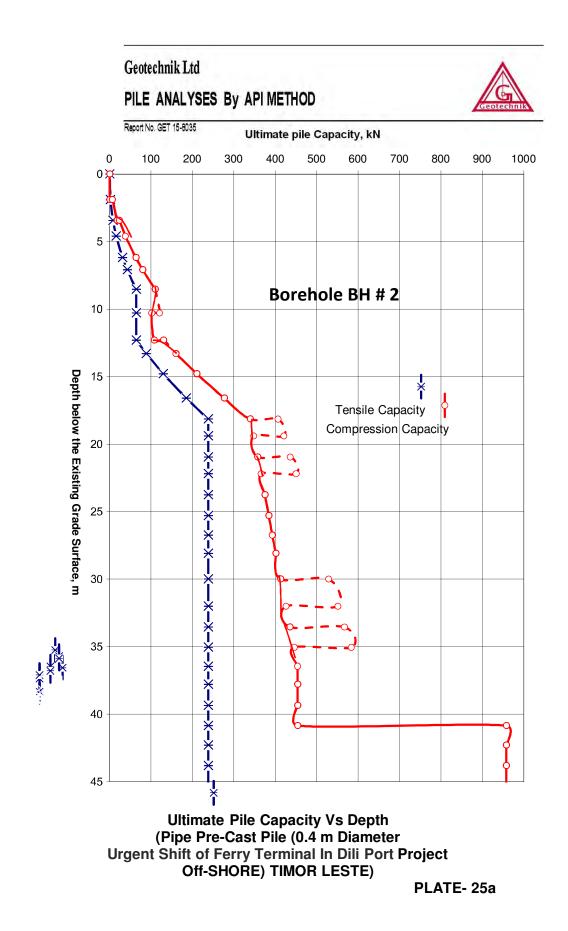
UU Test Results ASTM D-2850


Report No. GET 15-8035




● BH#1, S-5 ● BH#2, S-7 ● BH#4, S-5


Specimen Identification		Depth m	Sample Nos.	Unconfined Compressive Strength (qu) KPa	Undrained Shear Strength (Su) KPa
	BH # 1	7.05-7.50	S – 5	27	13.5
	BH # 2	9.85-10.30	S – 7	122	61
	BH # 4	6.75-7.20	S – 4	94	47


Unconsolidated Undrained Tri-axial Compression Test Results Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

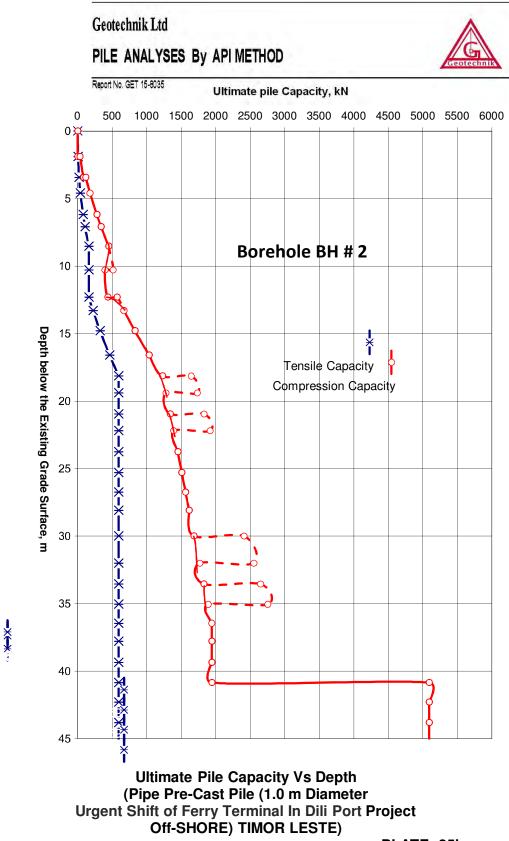
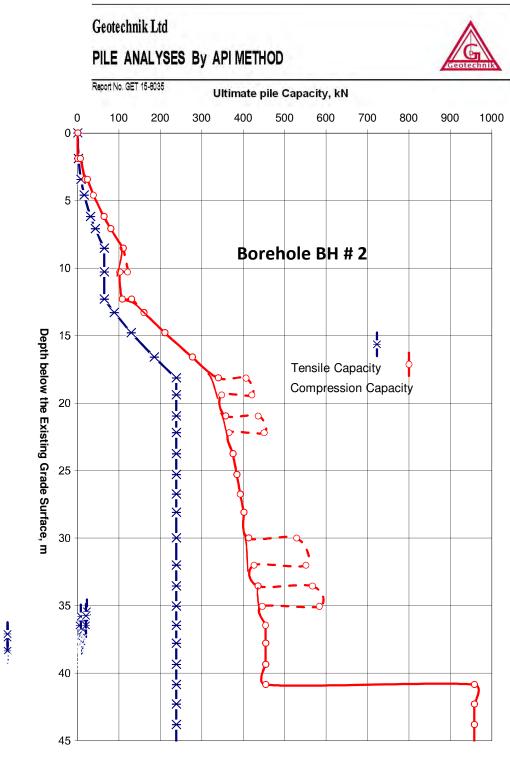
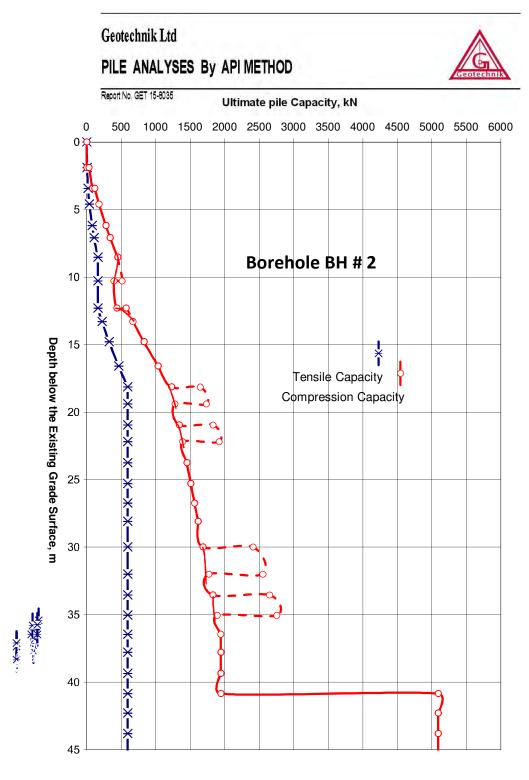




PLATE- 25b

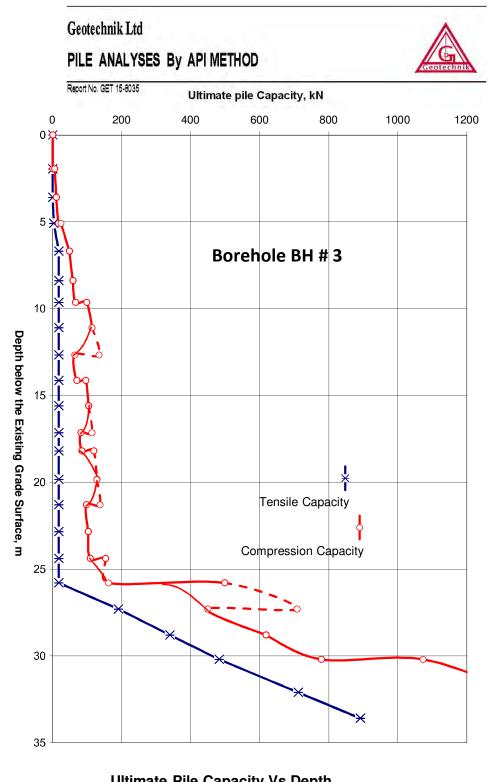

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (0.4 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 25c

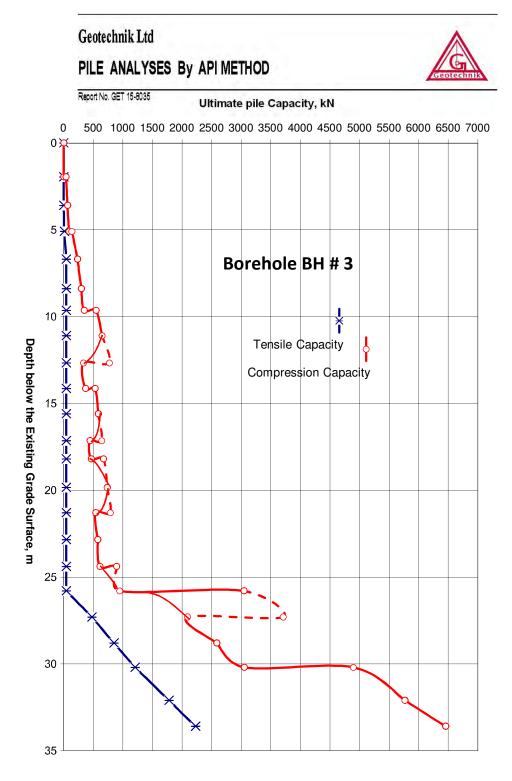

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (1.0 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 25d

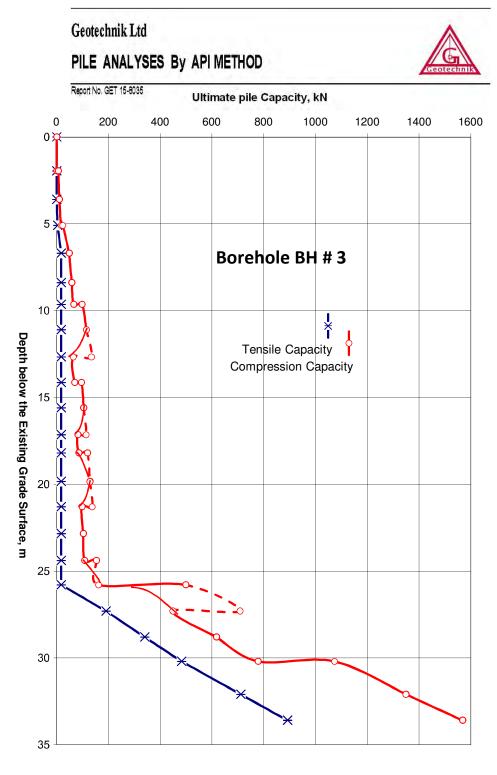

Ultimate Pile Capacity Vs Depth (Pipe Pre-Cast Pile (0.4 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 26a

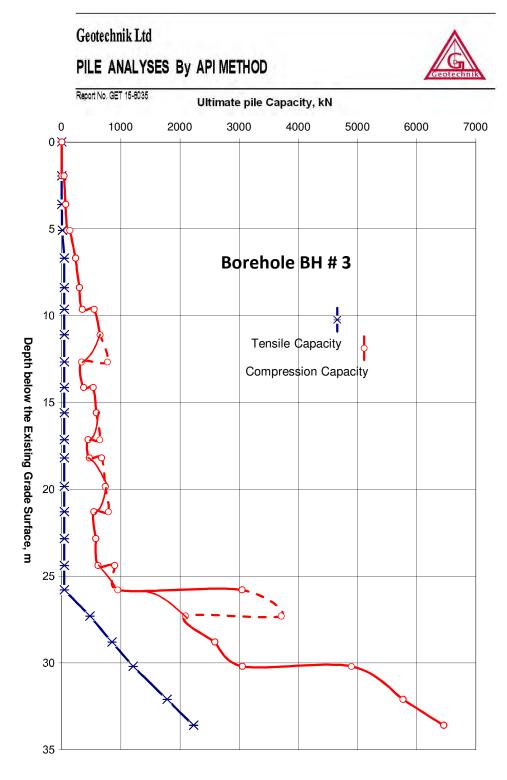

Ultimate Pile Capacity Vs Depth (Pipe Pre-Cast Pile (1.0 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 26b

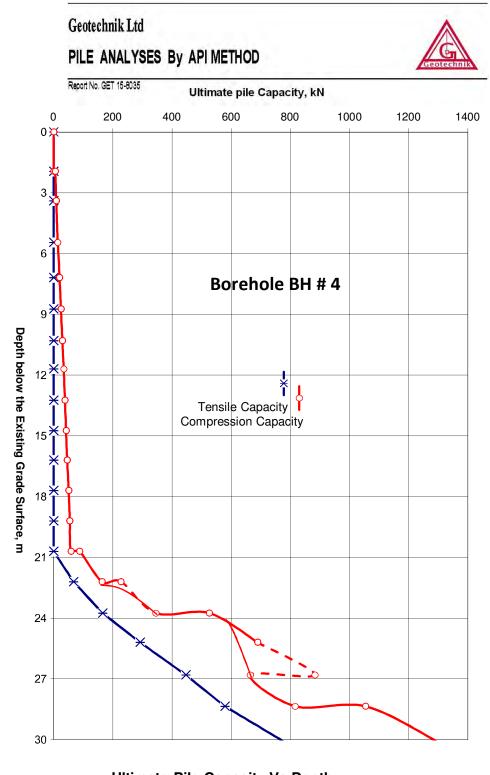

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (0.4 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE-26c

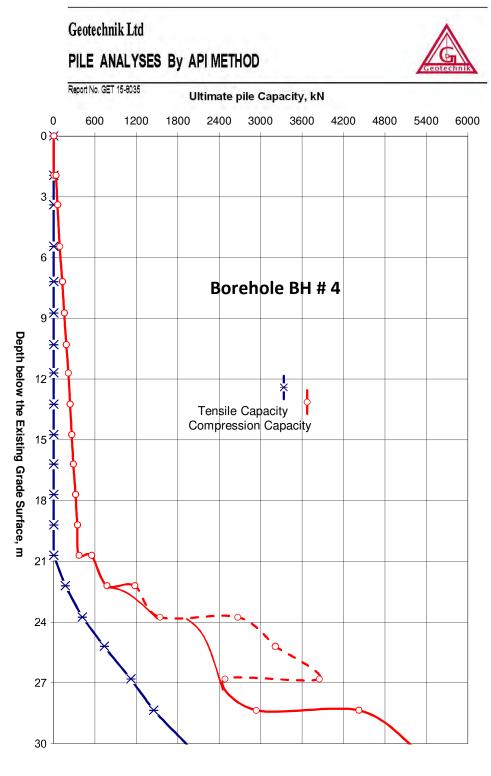

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (1.0 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 26d

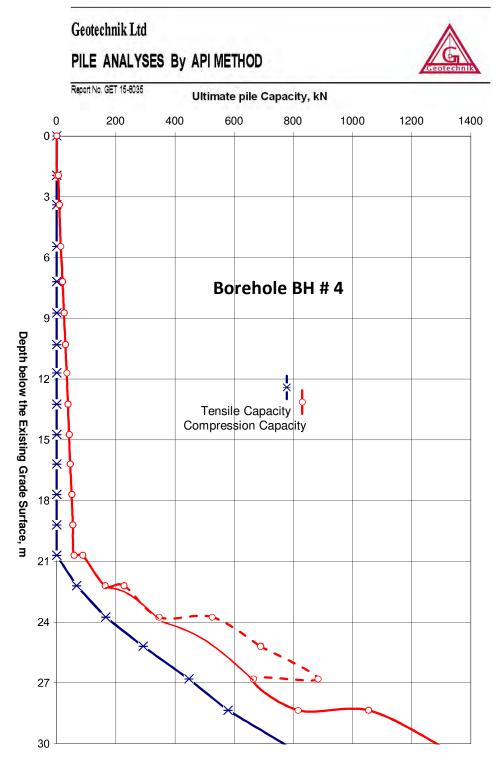

Ultimate Pile Capacity Vs Depth (Pipe Pre-Cast Pile (0.4 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 27a

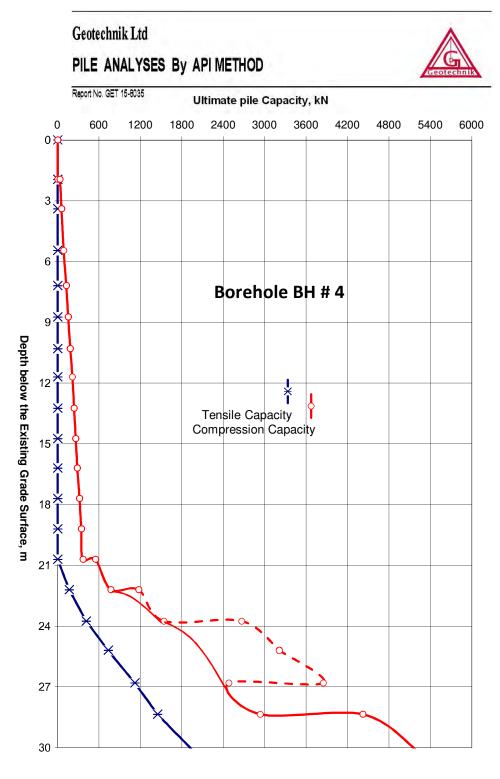

Ultimate Pile Capacity Vs Depth (Pipe Pre-Cast Pile (1.0 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 27b

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (0.4 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 27c

Ultimate Pile Capacity Vs Depth (Cast-in-situ Concrete Pile (1.0 m Diameter Urgent Shift of Ferry Terminal In Dili Port Project Off-SHORE) TIMOR LESTE)

PLATE- 27d

APPENDIX-A

APPENDIX-A (BORE HOLE LOCATION PHOTOGRAPHS)

Geotechnik Ltd Standard Penetration Test in Progress Report No. GET 15-8035

Standard Penetration Test in Progress Bore Hole # 1 Location Photo Graph. Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste.

Appendix –A-1

Geotechnik Ltd Drilling Work in Progress Report No. GET 15-8035

Drilling Work in Progress Bore Hole # 2 Location Photo Graph. Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste.

Appendix –A-2

Geotechnik Ltd Drilling Work in Progress Report No. GET 15-8035

Drilling Work in Progress Bore Hole # 3 Location Photo Graph. Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste.

Appendix –A-3

Geotechnik Ltd Drilling Work in Progress Report No. GET 15-8035

Drilling Work in Progress Bore Hole # 4 Location Photo Graph. Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste.

APPENDIX-B

APPENDIX-B (Summary of Gradation Analyses & Liquid Limit and Plastic)

Report No. GET 15-8035

Geotechnik Ltd

geotechnical and material engineers

SIEVE PERCENTAGE PASSING

CLIENT:	JAPAN	PORT	CONSUL	TANTS	,LTD													
GEOTECHI TIMOR LES		DIL INVES	STIGATIC	IN FOR L	IRGENT	Shift oi	F FERRY	TERMIN	al in dil	I PORT,		-		BORIN	IG NO. BH	l # 01	_	
size (mm)	S-1	S-3	S-5	S-6	S-8	S-9	S - 12	S-14	S-16	S-17	S-18	S-20	S-21	S-22	S-23	S-24	S-26	S-27
37.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
28.00	87.6	100.0	100.0	95.7	100.0	97.2	100.0	100.0	64.1	94.3	100.0	100.0	100.0	100.0	88.3	100.0	100.0	100.0
26.50	87.6	100.0	100.0	93.7	100.0	97.2	91.0	100.0	56.1	94.3	100.0	100.0	100.0	100.0	88.3	100.0	100.0	100.0
20.00	82.7	100.0	100.0	92.1	96.5	90.5	89.1	100.0	56.1	94.3	100.0	100.0	100.0	85.7	81.4	93.8	100.0	100.0
14.00	74.7	86.0	100.0	85.2	90.5	79.3	84.6	92.7	31.8	85.1	100.0	100.0	97.5	84.1	81.4	80.7	100.0	100.0
10.00	65.7	69.9	100.0	83.4	84.1	76.1	79.6	85.3	20.2	79.9	100.0	100.0	95.7	79.6	77.7	72.1	100.0	98.3
6.30	49.1	49.1	100.0	79.7	80.8	71.9	71.4	81.2	16.9	76.2	99.9	100.0	93.4	72.5	65.1	65.2	99.8	98.0
4.75	43.2	35.7	99.9	78.0	79.3	70.5	68.9	75.1	16.0	75.0	99.8	100.0	92.1	67.9	60.0	60.4	99.8	98.0
2.00	31.4	13.8	99.5	73.3	75.0	66.5	63.7	71.9	14.3	72.4	99.6	99.6	88.3	53.3	43.3	47.0	99.7	98.0
1.18	25.6	9.0	99.3	69.3	71.9	63.4	61.4	63.2	13.6	70.9	99.0	99.3	86.3	41.9	33.9	36.0	99.6	98.0
0.425	16.9	4.3	98.7	61.3	66.4	56.7	57.9	59.3	12.1	68.5	98.3	98.7	79.6	26.9	23.2	22.1	99.5	98.0
0.150	8.1	2.1	96.6	50.8	60.5	50.1	54.0	55.2	8.7	65.5	96.7	98.2	64.9	18.2	17.6	14.8	99.3	97.9
0.075	6.2	1.5	89.7	44.2	57.3	48.2	50.2	50.0	8.0	60.8	80.7	96.2	61.0	14.6	12.3	11.9	98.7	97.9

APPENDIX-B1

geotechnical and material engineers

Report No. GE	T 15-8035				S	IEVE	PERC	ENTA	GE P/	ASSIN	G				
CLIENT:	JAPAN	PORT	CONSUL	TANTS	,LTD										
GEOTECHI		DIL INVES	STIGATIO	N FOR U	IRGENT	SHIFT OF	FERRY	TERMIN	AL IN DIL	I PORT,		BOF	RING NO.	BH # 02	
size (mm)	S-1	S-3	S-5	S-6	S-8	S-10	S - 11	S-13	S-16	S-18	S-20	S-21	S-26	S-28	S-30
37.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
28.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	80.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0
26.50	100.0	100.0	100.0	100.0	100.0	100.0	100.0	80.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0
20.00	100.0	93.6	100.0	100.0	100.0	100.0	100.0	76.1	100.0	100.0	100.0	100.0	100.0	100.0	92.4
14.00	100.0	90.2	92.0	97.9	100.0	100.0	100.0	73.7	100.0	100.0	100.0	100.0	100.0	87.1	92.4
10.00	98.0	86.3	89.8	96.7	95.3	64.0	94.6	71.9	100.0	100.0	100.0	100.0	100.0	82.5	91.8
6.30	95.1	81.3	88.2	94.2	81.8	45.3	92.6	71.2	100.0	100.0	100.0	100.0	100.0	64.1	91.3
4.75	92.4	77.6	86.7	93.3	77.0	35.9	91.2	70.9	99.7	100.0	100.0	100.0	99.6	74.1	91.4
2.00	79.6	58.0	83.4	90.1	71.1	21.8	87.9	69.1	98.8	100.0	100.0	99.9	98.5	66.3	90.5
1.18	64.7	47.3	79.7	86.5	68.7	15.9	85.9	67.1	97.9	99.7	99.8	99.8	97.9	62.0	89.3
0.425	41.8	41.3	69.1	80.5	64.4	9.8	82.9	63.6	97.0	99.5	99.6	99.7	96.5	55.7	85.4
0.150	30.8	35.8	46.1	71.2	60.2	6.5	77.4	61.0	96.3	99.3	98.1	99.7	95.0	50.0	78.4
0.075	13.2	18.3	38.2	60.1	54.9	5.3	59.6	54.3	94.7	98.3	93.7	99.5	93.9	46.6	73.4

Appendix-B2

geotechnical and material engineers

Report No. GE	T 15-8035				S	EVE I	PERC	ENTA	GE P/	ASSIN	IG
CLIENT:	JAPAN	PORT	CONSUL	TANTS	,LTD			BORIN	IG NO. E	BH # 03	
GEOTECH PORT, TIM		-	STIGATIO	ON FOR	URGENT	SHIFT C)F FERR\	(TERMIN	NAL IN D	ILI	
size (mm)	S-1	S-2	S-4	S-6	S-8	S-11	S - 14	S-16	S-18	S-20	S-22
37.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
28.00	100.0	100.0	95.2	100.0	100.0	100.0	100.0	100.0	100.0	100.0	93.3
26.50	100.0	100.0	95.2	100.0	100.0	100.0	100.0	100.0	94.8	96.2	93.3
20.00	100.0	100.0	95.2	100.0	100.0	100.0	100.0	100.0	89.8	92.1	93.3
14.00	100.0	99.1	93.0	100.0	100.0	100.0	100.0	100.0	83.1	85.0	84.2
10.00	100.0	96.4	86.1	100.0	100.0	100.0	100.0	100.0	76.1	81.2	78.9
6.30	100.0	93.4	80.2	99.7	99.9	100.0	100.0	99.5	64.2	73.1	71.3
4.75	100.0	91.8	76.5	99.4	99.8	99.7	100.0	99.5	59.0	68.3	67.3
2.00	99.8	88.8	69.2	98.5	99.4	99.4	99.9	99.4	46.6	54.7	54.8
1.18	99.6	86.6	65.8	96.8	98.0	98.9	99.8	99.4	39.5	46.0	47.8
0.425	98.4	83.7	61.7	94.9	96.7	97.9	99.6	99.3	30.1	34.7	39.0
0.150	87.1	74.4	55.0	91.5	94.0	97.2	99.3	99.3	23.1	27.3	32.6
0.075	78.2	49.2	48.8	76.3	69.6	95.3	97.8	99.3	20.1	24.1	29.2

Appendix-B3

geotechnical and material engineers

Report No. GE	T 15-8019				S	EVE I	PERC	ENTA	GE P/	ASSIN	IG		
CLIENT:	JAPAN	PORT	CONSUL	TANTS	,LTD			BORING NO. BH # 04					
GEOTECHI PORT, TIM			STIGATIO	ON FOR	URGENT	SHIFT C)F FERR	(TERMIN	NAL IN D	ILI			
size (mm)	S-1	S-4	S-7	S-9	S-10	S-13	S - 14	S-15	S-17	S-18	S-19		
37.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
28.00	100.0	100.0	100.0	93.6	100.0	100.0	100.0	100.0	88.2	100.0	100.0		
26.50	100.0	100.0	100.0	93.6	100.0	100.0	100.0	100.0	88.2	100.0	100.0		
20.00	100.0	100.0	100.0	89.1	100.0	100.0	100.0	94.0	84.2	70.8	100.0		
14.00	100.0	100.0	99.0	89.1	100.0	100.0	100.0	87.6	69.4	52.5	94.0		
10.00	100.0	100.0	98.1	84.2	99.3	98.7	99.6	83.1	62.1	36.0	91.8		
6.30	99.7	99.9	97.1	78.7	99.3	98.7	99.6	76.5	52.1	12.6	89.2		
4.75	99.7	99.9	96.3	76.1	99.3	98.7	98.2	70.6	47.2	9.1	87.1		
2.00	99.5	99.5	93.7	72.1	99.3	98.3	94.9	54.6	35.0	2.3	81.3		
1.18	99.1	98.8	91.0	69.6	99.2	98.1	91.3	45.5	28.6	1.5	78.3		
0.425	98.2	98.2	86.5	66.6	99.1	97.6	83.3	32.7	20.1	0.9	73.5		
0.150	94.8	96.7	81.6	63.5	98.9	96.7	73.3	23.6	14.4	0.8	69.2		
0.075	81.7	78.7	79.6	61.9	98.6	96.2	67.9	20.3	12.2	0.6	65.3		

Appendix-B4

LIQUID LIMIT (Casagrande Method) AND PLASTIC LIMIT

	ENT: JAPAN PORT CONSULT	5		DATE : 8/7/2015				
	DJECT: GEOTECHNICAL SOIL IN GENT SHIFT OF FERRY TERMINAL			LAB NO :	GET-15-8035			
LES	TE		-	TESTING METHO	D :	ASTM-D-4318		
LOC.	ATION :BH# 1 , S-7							
TYPI	E OF SAMPLE :SILT with Sand & Gravel (M	L)						
PLA	STIC LIMIT	Test no.	S-20	S-20	S-20			
Conta	ainer no.		D-1	D-3	D-5			
Mass	of wet soil + container (A)	g	82.60	83.50	71.00			
Mass	of dry soil + container (B)	g	78.20	79.80	68.10			
Mass	of container (C)	g	62.50	65.80	57.60			
Mass	of moisture $(D = A-B)$	g	4.40	3.70	2.90			
	of dry soil ($E = B-C$)	g	15.70	14.00	10.50			
Mois	ture content ($W = D \times 100$) E	%	28.03	26.43	27.62		27.36	
LIQ	JID LIMIT	Test no.	1	1	1	1		
Number of bumps			30	28	26	18		
Conta	ainer no.		D-2	D-4	D-6	D-8		
Mass	of wet soil + container (A)	g	101	86.6	87.1	79.7		
Mass	of dry soil + container (B)	g	91.4	79.9	78.5	73.5		
Mass	of container (C)	g	63.9	61.2	54.8	57.7		
Mass	of moisture (D = A-B)	g	9.60	6.70	8.60	6.20		
	of dry soil ($E = B-C$)	g	27.50	18.70	23.70	15.80		
Mois	ture content ($W = D \times 100$) E	%	34.91	35.83	36.29	39.24		
					Proportion retaine	ed on		
	40.00				425µm sieve	%		
	40.00				Liquid Limit	36.7	%	
	39.00				Plastic Limit	27.36	%	
	38.00				Plasticity index	9.34	ML	
%	37.00	<u>\</u> - -			Remarks:			
itent %	36.00							
	35.00							
Moisture con								
loist	34.00							
2	33.00							
	32.00							
	31.00				GEO	DTECHNIK	K LDA	
	30.00 12 14 16 18 20 22	24 26 28	30 32 34					

Appendix-B1Liquid Limit and Plastic BH1, Sample7

LIQUID LIMIT (Casagrande Method) AND PLASTIC LIMIT

LOCATION :BH# 1, 5-27 TYPE OF SAMPLE :ILT (ML), with moderate to high plasticity PLASTIC LIMIT Test no. 5-27 S-27 S-27 S-27 Container no. D-9 D-11 D-13 D-15 Mass of ver soil + container (A) g 78.20 78.80 82.00 84.40 Mass of dry soil + container (B) g 74.20 73.80 78.00 78.20 Mass of container (C) g 61.60 59.50 64.80 61.30 Mass of moisture (D = A-B) g 4.00 5.00 4.00 6.20 Mass of very soil (E = B-C) g 12.60 14.30 13.20 16.90 Miss of very soil (E = B-C) g 12.60 14.30 13.20 16.90 E UQUD LIMIT Test no. 1 1 1 1 1 Number of humps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of very soil + container (A) g 97.1 79.2 85.2 92.3 Mass of outsion = (C) g 66.7 64.2 62.9 58.9 Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of dry soil + container (C) g 66.7 64.2 62.9 58.9 Mass of dry soil + container (C) g 21.10 10.50 15.30 22.30 Moisture content (W = D x 100) % 44.08 42.86 45.75 49.78 E Proportion retained on 425µm size% Liquid Limit 44.5 % Plastic Limit 33.43 % Plastic Limit 34.5 % Plastic		NT: JAPAN PORT CONSU			DATE :	8/7/2015			
LESTE TESTING METHOD: ASTM-D-3318 LOCATION:BH#1,S-27 TYPE OF SAMPLE :LT (ML), with moderate to high plasticity PLASTIC LIMIT Test no. S-27					LAB NO :	GET-15-8035	ET-15-8035		
TYPE OF SAMPLE :ILT (ML), with moderate to high plasticity PLASTIC LIMIT Test no. B 527 S.27 S.27 S.27 S.27 Container no. Mass of vet soil + container (A) g 78.20 78.80 82.00 84.40 Mass of dry soil + container (B) g 74.20 73.80 78.00 78.20 Mass of container (C) g 61.60 59.50 64.80 61.30 Mass of moisture (D = A-B) g 4.00 5.00 4.00 6.20 Mass of moisture (D = A-B) g 12.60 14.30 13.20 16.90 Moisture content (W = D x 100) E % 31.75 34.97 30.30 36.69 E LQUD LIMIT Test no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					TESTING METHO	D:	ASTM-D-4318		
PLASTIC LIMIT Test no. S-27 S-27 S-27 S-27 S-27 Container no. D-9 D-11 D-13 D-15 Mass of wet soil + container (A) g 78.20 78.80 82.00 84.40 Mass of dry soil + container (B) g 74.20 73.80 78.00 78.20 Mass of moisture (D = A-B) g 61.60 59.50 64.80 61.30 Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = Dx 100)	CATI	ION :BH# 1 , S-27							
Container no. D-9 D-11 D-13 D-15 Mass of wet soil + container (A) g 78.20 78.80 82.00 84.40 Mass of dry soil + container (B) g 74.20 73.80 78.00 78.20 Mass of dry soil + container (C) g 61.60 59.50 64.80 61.30 Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = D_X 100) % 31.75 34.97 30.30 36.69 LQUID LIMIT Test no. 1 1 1 1 1 Number of bumps 32 29 22 12 12 Container no. D-10 D-12 D-14 D-16 Mass of dry soil + container (A) g 97.1 79.2 85.2 92.3 Mass of outrainer (D g 66.7 64.2 62.9 58.9 10 Mass of outrainer (D = A-B) g 9.30 4.50 7.00 11.10 10	PE O	OF SAMPLE :ILT (ML), with moderate	e to high plasticity						
Mass of wet soil + container (A) g 78.20 78.80 82.00 84.40 Mass of dry soil + container (B) g 74.20 73.80 78.00 78.20 Mass of dry soil + container (C) g 61.60 59.50 64.80 61.30 Mass of moisture (D = A-B) g 4.00 5.00 4.00 6.20 Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = D x 100) % 31.75 34.97 30.30 36.69 LIQUID LIMIT Test no. 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of dry soil + container (A) g 97.1 79.2 85.2 92.3 Mass of ordy soil + container (B) g 87.8 74.7 78.2 81.2 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = D x 100.) $%$ 44.08 42.86 45.75 49.78	ASTI	IC LIMIT	Test no.	S-27	S-27	S-27	S-27		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ntaine	er no.		D-9	D-11	D-13	D-15		
Mass of container (C) g 61.60 59.50 64.80 61.30 Mass of moisture (D = A-B) g 4.00 5.00 4.00 6.20 Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = $D \ge 100$) % 31.75 34.97 30.30 36.69 LIQUID LIMIT Test no. 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of container (A) g 97.1 79.2 85.2 92.3 Mass of container (C) g 66.7 64.2 62.9 58.9 Mass of dry soil + container (B) g 97.30 4.50 7.00 11.10 Mass of dry soil + container (C) g 66.7 64.2 62.9 58.9 9 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 100 Moisture content (W = $D \ge 100$) % 44.08 42.86 45.75 49.78 <	ass of	wet soil + container (A)	g	78.20	78.80	82.00	84.40		
Mass of moisture (D = A-B) g 4.00 5.00 4.00 6.20 Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = $D \ge 100$) % 31.75 34.97 30.30 36.69 LIQUID LIMIT Test no. 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of dry soil + container (A) g 97.1 79.2 85.2 92.3 Mass of onsisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil + container (B) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (C) g 66.7 64.2 62.9 58.9 9 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = D x 100) % 44.08 42.86 45.75 49.78 Store 50.00 50.00 1 1 10 10.07 MI.<	ass of	dry soil + container (B)	g	74.20	73.80	78.00	78.20		
Mass of dry soil (E = B-C) g 12.60 14.30 13.20 16.90 Moisture content (W = $D_X 100$) % 31.75 34.97 30.30 36.69 LIQUID LIMIT Test no. 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of dry soil + container (A) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (B) g 66.7 64.2 62.9 58.9 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $D_X 100$) % 44.08 42.86 45.75 49.78 Proportion retained on 42.50 50.00 50.00 50.00 50.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60	ass of	container (C)	g	61.60	59.50	64.80	61.30		
Moisture content ($W = D \times 100$) % 31.75 34.97 30.30 36.69 LIQUID LIMIT Test no. 1 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of wet soil + container (A) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of container (C) g 66.7 64.2 62.9 58.9 9 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content ($W = D \ge 100$) % 44.08 42.86 45.75 49.78 Foroportion retained on 42.5µm sieve % Plasticity index 11.07 MI Mass of dry soil ($E = B-C$) g 20.00 % 44.08 42.86 45.75 49.78 Foroportion retained on 425µm sieve %	ass of	moisture (D = A-B)	g	4.00	5.00	4.00	6.20		
$\frac{E}{E} \qquad \% \qquad 31.75 \qquad 34.97 \qquad 30.30 \qquad 36.69 \\ \frac{E}{E} \qquad \% \qquad 31.75 \qquad 34.97 \qquad 30.30 \qquad 36.69 \\ \frac{E}{E} \qquad 100 \qquad 1000 \qquad 100 \qquad 100 \qquad 100 \qquad 100 \qquad 100 \qquad 100 \qquad 1000 \qquad 10000 \qquad 1000 \qquad 10000 \qquad 1000 \qquad 10000 \qquad 100000 \qquad 1000000 \qquad 100000000$			g	12.60	14.30	13.20	16.90		
LIQUID LIMIT Test no. 1 1 1 1 1 Number of bumps 32 29 22 12 Container no. D-10 D-12 D-14 D-16 Mass of wet soil + container (A) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of container (C) g 66.7 64.2 62.9 58.9 11.10 Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 10.10.50 Moisture content (W = D x 100) $%$ 44.08 42.86 45.75 49.78 E Image: Container don $425 \mum$ sieve	oisture	` <u> </u>	%	31.75	34.97	30.30	36.69	33.43	
Container no. D-10 D-12 D-14 D-16 Mass of wet soil + container (A) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of container (C) g 66.7 64.2 62.9 58.9 Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $\underline{D \times 100}$) \mathcal{R} 44.08 42.86 45.75 49.78 Fe \mathcal{R} </td <td>QUID</td> <td></td> <td>Test no.</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	QUID		Test no.	1	1	1	1		
Mass of wet soil + container (A) g 97.1 79.2 85.2 92.3 Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of container (C) g 66.7 64.2 62.9 58.9 Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = D x 100) % 44.08 42.86 45.75 49.78 Fe % 44.08 42.86 45.75 49.78 Proportion retained on 425µm sieve	mber	of bumps		32	29	22	12		
Mass of dry soil + container (B) g 87.8 74.7 78.2 81.2 Mass of container (C) g 66.7 64.2 62.9 58.9 Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $\underline{D \times 100}$) $%$ 44.08 42.86 45.75 49.78 Proportion retained on E 90.00	ntaine	er no.		D-10	D-12	D-14	D-16		
Mass of container (C) g 66.7 64.2 62.9 58.9 Mass of container (C) g 9.30 4.50 7.00 11.10 Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $\underline{D \times 100}$) \mathcal{H} 44.08 42.86 45.75 49.78 Ferror \mathcal{H}	ass of	wet soil + container (A)	g	97.1	79.2	85.2	92.3		
Mass of moisture (D = A-B) g 9.30 4.50 7.00 11.10 Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $\underline{D \times 100}$) % 44.08 42.86 45.75 49.78 Fe Proportion retained on 425µm sieve% Liquid Limit 44.5 % 60.00 58.00 56.00 54.00 60.00 11.07 MIL 8 52.00 50.00 48.00 10.07 MIL 8 40.0 10.0 10.07 MIL	ass of	dry soil + container (B)	g	87.8	74.7	78.2	81.2		
Mass of dry soil (E = B-C) g 21.10 10.50 15.30 22.30 Moisture content (W = $\underline{D \times 100}$) % 44.08 42.86 45.75 49.78 E Proportion retained on 425µm sieve % Iquid Limit 44.5 % Plastic Limit 33.43 % Plasticity index 11.07 ML Remarks: Remarks: Remarks:				66.7	64.2	62.9	58.9		
Moisture content ($W = Dx 100$) % 44.08 42.86 45.75 49.78 E % 44.08 42.86 45.75 49.78 E % 44.08 42.86 45.75 49.78 E % 1 1 1 1 1 60.00 60.00 60.00 60.00 60.00 10.07 10.07 10.07 10.07 11	ass of	moisture (D = A-B)	g	9.30	4.50	7.00	11.10		
E Proportion retained on 425µm sieve% Liquid Limit 44.5 % Plastic Limit 33.43 % Plasticity index 11.07 ML Remarks:		-	g	21.10	10.50	15.30	22.30		
60.00 Proportion retained on 58.00 1 56.00 1 56.00 1 52.00 1 50.00 1 48.00 1	oisture		%	44.08	42.86	45.75	49.78		
60.00 58.00 56.00 54.00 52.00 50.00 48.00 60.00 52.00 50		Ľ				Proportion retain	ed on	1	
58.00 58.00 56.00 56.00 54.00 52.00 50.00 1 48.00 1						_			
58.00 56.00 56.00 9 54.00 9 52.00 1 50.00 1 48.00 1	60	0.00				Liquid Limit	44.5	%	
\$ 54.00 Remarks: 52.00 1 50.00 1 48.00 1	58	3.00				•	33.43	%	
\$ 54.00 Remarks: 52.00 1 50.00 1 48.00 1	56	5.00				Plasticity index	11.07	ML	
52.00 50.00 48.00	54	4.00				-			
50.00 48.00									
50.00 48.00	52								
48.00 48.00	50	0.00							
	48	3.00							
46.00	46	5.00	↓						
44.00	44	+ 00							
GEOTECHNIK LI						GEG	OTECHNIE	K LDA	
42.00	42	2.00							
40.00 10 12 14 16 18 20 22 24 26 28 30 32 34	40			20 20 24					

Appendix-B2 Liquid Limit and Plastic BH1, Sample27

LIQUID LIMIT (Casagrande Method) AND PLASTIC LIMIT

	IENT: JAPAN PORT CONSULT			DATE :	8/7/2015		
	OJECT: GEOTECHNICAL SOIL IN GENT SHIFT OF FERRY TERMINA			LAB NO :	GET-15-8035		
	STE			TESTING METHO	D :	ASTM-D-4318	
LOC	CATION :BH-2 S-6						
TYP	E OF SAMPLE :SILT with Sand & little Gra	vel (ML)					
PLA	STIC LIMIT	Test no.	S-3	S-3			
Cont	tainer no.		F-6	F-8			
Mass	s of wet soil + container (A)	g	45.00	46.30			
Mass	s of dry soil + container (B)	g	41.00	41.60			
Mass	s of container (C)	g	29.00	28.00			
Mass	s of moisture ($D = A-B$)	g	4.00	4.70			
	s of dry soil ($E = B-C$)	g	12.00	13.60			
Mois	Moisture content ($W = D \times 100$) E		33.33	34.56			33.95
LIO	UID LIMIT	Test no.	S-3	S-3	S-3		
	ber of bumps		28	25	20		
Cont	tainer no.		F-7	F-9	F-10		
Mass	s of wet soil + container (A)	g	62.3	66.1	68.3		
Mass	s of dry soil + container (B)	g	52.1	53.8	57.6		
Mass	s of container (C)	g	30	28	36.3		
Mass	s of moisture ($D = A-B$)	g	10.20	12.30	10.70		
	s of dry soil ($E = B-C$)	g	22.10	25.80	21.30		
Mois	sture content ($W = D \times 100$) E	%	46.15	47.67	50.23		
	E				Proportion retain	ed on	1
					425µm sieve		
	60.00				Liquid Limit	47.67	%
	58.00				Plastic Limit	33.95	%
	56.00				Plasticity index	13.72	ML
%	54.00				Remarks:		
nt	52.00						
Moisture conter		<u> </u>					
ure	50.00						
loist	48.00						
Σ	46.00						
	44.00	1					
	42.00				GEO	DTECHNI	K LDA
	40.00 14 16 18 20 22 24	26 28 3	30 32 34				

Appendix-B3 Liquid Limit and Plastic BH-2 S-6

APPENDIX-C (SAMPLES PHOTOGRAPHS)

Geotechnik Ltd SAMPLE PHOTO Report No. GET 15-8035

AFTER WASH SAMPLE BH # 1

Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Appendix C1

Geotechnik Ltd SAMPLE PHOTO

Report No. GET 15-8035

AFTER WASH SAMPLE BH # 2

Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Appendix C2

Geotechnik Ltd SAMPLE PHOTO

Report No. GET 15-8035

BEFORE WASH SAMPLE BH # 3

AFTER WASH SAMPLE BH # 3

Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Appendix B3

Geotechnik Ltd SAMPLE PHOTO

Report No. GET 15-8035

AFTER WASH SAMPLE BH # 4

Geotechnical Investigation Urgent Shift of Ferry Terminal In Dili Port Timor Leste

Appendix C4

Japan Port Consultants, Ltd. TK Gotanda Bldg, 8-3-6, Nishi-Gotanda,

Shinagawa-ku, Tokyo, Japan

Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

Reference Contract Agreement, July 2015 by and between Japan Port Consultants, Ltd., (Tokyo, Japan), and PT. GEOMARINDEX (Jakarta, Indonesia)

FINAL REPORT VOLUME 3 ENVIRONMENTAL QUALITY SURVEY

Submitted to: Japan Port Consultants, Ltd. TK Gotanda Bldg, 8-3-6, Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan

Submitted by:

PT. GEOMARINDEX

Issued Date: October 26, 2015

7th Floor, GRAHA SIMATUPANG Tower II Block A Jalan Letjen TB Simatupang Kav. 38 Jakarta 12540 Telp: +62-021-7884 0421, 781 7777 ext. 122 | Fax: +62-021-782 9337 E-mail: <u>fsgultom.geo@gmail.com</u>, <u>geomarindex@gmail.com</u> | mobile: +62 811864458

CONTENTS

3.1	Project and Agreement	Contract Assignment	1
		~	
3.3	Scope of Work		2
3.4	Performance of Method	blogy	4
	3.4.1 Sea Water Qualit	and Plankton (Code: AL)	4
	3.4.2 Bottom Sedimen	(Code: S) 1	0
	3.4.3 Noise Level (Cod	e: U) 1	4
		ty (Code: U) 1	
3.5		lt 1	

VOLUME 3 ENVIRONMENTAL QUALITY SURVEY

3.1 PROJECT AND AGREEMENT CONTRACT ASSIGNMENT

Project:

Project of the Urgent Shift of Ferry Terminal in Dili Port, Timor Leste. Geographically, it locates at South Latitude: 8° 33' 05.1991" and East Longitude 125° 34' 19.7262" as shown in **Figure 3.2** Location Map of Sampling Point.

Agreement contract assignment:

Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port.

Reference Agreement:

Between Japan Port Consultants, Ltd., and PT. Geomarindex dated July 2015.

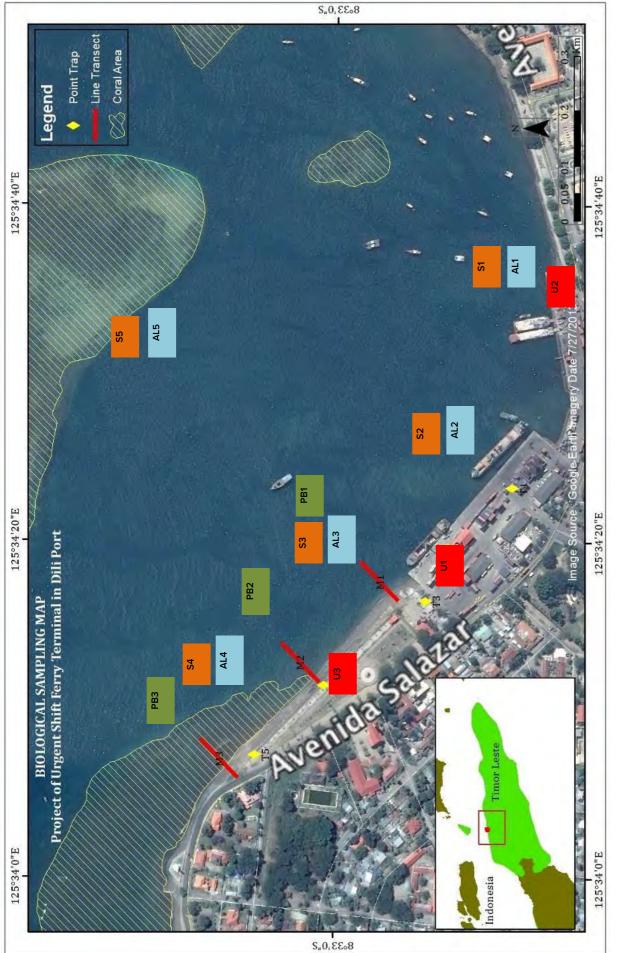
Subject: Natural and Environmental Survey

It has geographic coordinates at South Latitude: 8°33'05.1991" and East Longitude 125°34'19.7262"

Figure 3.1 Photograph of the Project Site

3.2 THE OBJECTIVE

The objective of quality sampling and laboratory testing is to collect the samples from the project site and around, and send them to laboratory for quality parameter testing, such as: air quality, noise level, water quality, and bottom sediment quality.


3.3 SCOPE OF WORK

The contents of scope of work are as follow:

CATEGORY	POINT, LAYER, FREQUENCY	ITEMS
Water Quality	5 points x 1 layer (surface); 1 time (estimation 2 or 3 days parallel with sedimentation sampling)	Coordinates, sampling date and time, depth, water color, smell, water temperature, salinity, pH, turbidity, DO, SS, COD, E-Coli, oil content, T-N, T-P
Bottom Sediment	5 points x 1 layer (surface); 1 time (estimation 2 or 3 days parallel with water quality sampling)	Coordinates, sampling date and time, depth, soil temperature, soil color, smell, characteristics, specific gravity, water content, grain size composition, TOC, TPH, arsenic, cadmium, chrome, lead, mercury, copper, nickel, zinc, TBP
Noise	3 points x 1 time; 24 hours (estimation 3 days)	Equivalent sound level
Air Quality	3 points x 1 time; 24 hours (estimation 6 days)	SO ₂ , NO ₂ , Oxidant, CO, TSP, PM10, PM2.5, Hydrocarbon, Lead

 Table 3.1 Scope of Work Contents

The location points where the samples were taken are shown in Figure 3.2 below.

3.4 PERFORMANCE OF METHODOLOGY

Methodology for implementing this sampling is presented below.

3.4.1 Sea Water Quality and Plankton (Code: AL)

a. Methodology of Data Collection

Sample of water was taken by water sampler, subsequently insitu testing was carried out to measure some of parameters. Plankton test was carried out by sea water sampling at mid layer and sampling for suspended solid at the seabed that contains grains of soil or sediment was carried out. Those samples were sent to the laboratory for analysis.

b. Methodology of Data Analysis

Quality parameters of sea waters were analyzed in respect to the physical and chemical characteristics. Some parameters that are rapidly changing were measured in the field (in situ) and other parameters were examined in the laboratory using SNI-06-2412-1991 (SNI = Standard Nasional Indonesia) as sampling method. The examined parameters were depth, water color, smell, water temperature, salinity, pH, turbidity, DO, Suspended Solid, COD, E-Coli, oil content, Total Nitrogen, Total Phosphporous. Whilst plankton test was caried out in laboratory by measuring its amount in every sampling location.

c. Location

Sea water sampling locations are shown in **Figure 3.2** and samples were taken at 5 points and 1 layer in each point.

Figure 3.3 Sea Water Quality Sampling Activity

d. Test Result

Below is test results of sea water around the survey area.

Table 3.2 Sea Water Quality Sampling Result

	Sample Item Coordinate Sampling Method Sampling Date Receive Laboratory Date Test Date	: S 08° : SNI-00 : Augus : Augus	Vater (AL 1) 33' 11,3" E 125 6-2412-1991 st 01, 2015 st 04, 2015 st 04, 2015 un		, 2015	
NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Phosphate (PO₄)*)	mg/L	0,02	Max. 0,015	Fail	18-27/IK/ALT
2	Salinity	‰	39	33 to 34	Fail	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Not found	Fail	Extraction- spectrophotometry
4	Turbidity	NTU	1	<5	Pass	SNI 06-6989.25- 2005
5	Dissolved Oxygen (DO) insitu	mg/L	3	>5	Fail	SNI 06-6989.14- 2004
6	pH (insitu) *)	-	8	7 to 8,5	Pass	SNI 06-6989.11- 2004
7	Temperature (insitu) *)	°C	29	28 to 30	Pass	SNI 06-6989.23- 2005
8	Total Coliforms	MPN/100ml	3	Max. 1000	Pass	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solids (TSS)	mg/L	<2	Max. 20	Pass	SNI 06-6989.3- 2004
10	COD	mg/L	45	-	-	SNI 06-6989.15- 2004
11	Total Nitrogen (as N)	mg/L	2	_	-	Water Research Methods Chapter XI -1984
12	Total Dissolved Solids (TDS)	mg/L	38.300	-	-	SNI 06-6989.27- 2005

*) = Parameter Accreditation by KAN No. LP-195-IDN < = Smaller than Description :

Criteria using Environmental Ministry Decree of Republic Indonesia No. 51 of 2004 about Sea Water Quality Standard for Marine Biota

Sample Item	: Sea Water (AL 2)					
Coordinate	: S 08º 33' 09,6" E 125º 34' 28,5"					
Sampling Method	: SNI-06-2412-1991					
Sampling Date	: August 01, 2015					
Receive Laboratory Date	: August 04, 2015					
Test Date	: August 04, 2015 until August 26, 2015					

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Phosphate (PO ₄)*)	mg/L	<0,01	Max.	Fail	18-27/IK/ALT

152610 ENVIRONMENTAL QUALITY Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
				0,015		
2	Salinity	‰	38	33 to 34	Fail	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Not found	Fail	Extraction- spectrophotometry
4	Turbidity	NTU	2	<5	Pass	SNI 06-6989.25- 2005
5	Dissolved Oxygen (DO) insitu	mg/L	3	>5	Fail	SNI 06-6989.14- 2004
6	pH (insitu) *)	-	8	7 to 8,5	Pass	SNI 06-6989.11- 2004
7	Temperature (insitu) *)	°C	29	28 to 30	Pass	SNI 06-6989.23- 2005
8	Total Coliforms	MPN/100ml	4	Max. 1000	Pass	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solids (TSS)	mg/L	<2	Max. 20	Pass	SNI 06-6989.3- 2004
10	COD	mg/L	46	-	-	SNI 06-6989.15- 2004
11	Total Nitrogen (as N)	mg/L	5	-	-	Water Research Methods Chapter XI -1984
12	Total Dissolved Solids (TDS)	mg/L	39.200	-	-	SNI 06-6989.27- 2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN < = Smaller than Criteria using Environmental Ministry Decree of Republic Indonesia No. 51 of 2004 about Sea Water Quality Standard for Marine Biota

	· Caa Watar (AL 2)
Sample Item	: Sea Water (AL 3)
Coordinate	: S 08º 33' 03,5" E 125º 34' 23,7"
Sampling Method	: SNI-06-2412-1991
Sampling Date	: August 01, 2015
Receive Laboratory Date	: August 04, 2015
Test Date	: August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Phosphate (PO4)*)	mg/L	0,01	Max. 0,015	Fail	18-27/IK/ALT
2	Salinity	‰	38	33 to 34	Fail	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Not found	Fail	Extraction- spectrophotometry
4	Turbidity	NTU	1	<5	Pass	SNI 06-6989.25- 2005
5	Dissolved Oxygen (DO) insitu	mg/L	3	>5	Fail	SNI 06-6989.14- 2004
6	pH (insitu) *)	-	8	7 to 8,5	Pass	SNI 06-6989.11- 2004
7	Temperature (insitu) *)	°C	30	28 to 30	Pass	SNI 06-6989.23- 2005

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
8	Total Coliforms	MPN/100ml	4	Max. 1000	Pass	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solids (TSS)	mg/L	<2	Max. 20	Pass	SNI 06-6989.3- 2004
10	COD	mg/L	40	-	-	SNI 06-6989.15- 2004
11	Total Nitrogen (as N)	mg/L	2	-	_	Water Research Methods Chapter XI -1984
12	Total Dissolved Solids (TDS)	mg/L	38.300	-	-	SNI 06-6989.27- 2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN < = Smaller than

Criteria using Environmental Ministry Decree of Republic Indonesia No. 51 of 2004 about Sea Water Quality Standard for Marine Biota

Sample Item	
Coordinate	
Sampling Met	hod
Sampling Date	5
Receive Labo	ratory Date
Test Date	

: Sea Water (AL 4) : S 08° 32' 55,2" E 125° 34' 15,3" : SNI-06-2412-1991 : August 01, 2015 : August 04, 2015 : August 04, 2015 until August 26, 2015

	TC3i Duic	. August 04, 2013 until August 20, 2013				
NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Phosphate (PO ₄)*)	mg/L	0,01	Max. 0,015	Fail	18-27/IK/ALT
2	Salinity	‰	39	33 to 34	Fail	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Not found	Fail	Extraction- spectrophotometry
4	Turbidity	NTU	3	<5	Pass	SNI 06-6989.25- 2005
5	Dissolved Oxygen (DO) insitu	mg/L	4	>5	Fail	SNI 06-6989.14- 2004
6	pH (insitu) *)	-	8	7 to 8,5	Pass	SNI 06-6989.11- 2004
7	Temperature (insitu) *)	°C	29	28 to 30	Pass	SNI 06-6989.23- 2005
8	Total Coliforms	MPN/100ml	3	Max. 1000	Pass	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solids (TSS)	mg/L	<2	Max. 20	Pass	SNI 06-6989.3- 2004
10	COD	mg/L	34	-	-	SNI 06-6989.15- 2004
11	Total Nitrogen (as N)	mg/L	2	-	-	Water Research Methods Chapter XI -1984
12	Total Dissolved Solids (TDS)	mg/L	38.900	-	-	SNI 06-6989.27- 2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN

, < = Smaller than

Criteria using Environmental Ministry Decree of Republic Indonesia No. 51 of 2004 about Sea Water Quality Standard for Marine Biota

Sample Item Coordinate Sampling Method Sampling Date Receive Laboratory Date Test Date

: Sea Water (AL 5) : S 08° 32' 59,3" E 125° 34' 27,7" : SNI-06-2412-1991 : August 01, 2015 : August 04, 2015 : August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Phosphate (PO ₄)*)	mg/L	<0,01	Max. 0,015	Fail	18-27/IK/ALT
2	Salinity	‰	39	33 to 34	Fail	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Not found	Fail	Extraction- spectrophotometry
4	Turbidity	NTU	2	<5	Pass	SNI 06-6989.25- 2005
5	Dissolved Oxygen (DO) insitu	mg/L	4	>5	Fail	SNI 06-6989.14- 2004
6	pH (insitu) *)	_	8	7 to 8,5	Pass	SNI 06-6989.11- 2004
7	Temperature (insitu) *)	°C	29	28 to 30	Pass	SNI 06-6989.23- 2005
8	Total Coliforms	MPN/100ml	<3	Max. 1000	Pass	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solids (TSS)	mg/L	<2	Max. 20	Pass	SNI 06-6989.3- 2004
10	COD	mg/L	26	-	-	SNI 06-6989.15- 2004
11	Total Nitrogen (as N)	mg/L	2	_	-	Water Research Methods Chapter XI -1984
12	Total Dissolved Solids (TDS)	mg/L	39.400	-	-	SNI 06-6989.27- 2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN < = Smaller than Criteria using Environmental Ministry Decree of Republic Indonesia No. 51 of 2004 about Sea Water Quality Standard for Marine Biota

Table 3.3 Plankton Sampling Result

: Plankton
: P1. Sea Water (AL 3)
: P2. Between (AL3- AL4)
: P3. Sea Water (AL 4)
: P1. S 08º 33' 03,5" E 125º 34' 23,7"
: P2. S 08º 32' 57,0" E 125º 34' 18,0"
: P3. S 08º 32' 55,2" E 125º 34' 15,3"
: August 01, 2015
: August 04, 2015
: August 04, 2015 until August 26, 2015

Fitopankton

NO	INDIVIDUAL	AL 4	AL1	AL3			
CYA	CYANOPHYTA						
1	Oscillatoria sp. 1	75	33	47			

152610 ENVIRONMENTAL QUALITY Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

NO	INDIVIDUAL	AL 4	AL1	AL3
2	Oscillatoria sp. 2		35	9
	YSOPHYTA			ý
3	Amphiprora sp.		2	1
4	Bacteriastrum sp.	14	2 8	12
5	Biddulphia sp.	13	7	19
6	Ceratailina sp.			14
7	Chaetoceros laeve	15	13	21
8	Chaetoceros sp. 1	38	29	49
9	Chaetoceros sp. 2	36	28	56
10	Chaetoceros sp. 3	34	26	54
11	Chaetoceros sp. 4	25	28	20
12	Chaetoceros sp. 5		5	
13	Climacospenia sp.	6	3	5
14	Coscinodiscus jonesianus	29	18	31
15	Coscinodiscus sp. 1	31	18	15
16	Coscinodiscus sp. 2	48	28	51
17	Coscinodiscus sp. 3		3	
18	Flagillaria sp.1	12	4	33
19	Flagillaria sp.2	12	19	33
20	Hemidiscus sp.	11	5	4 2
21	Licmophora sp.	7	3	2
22	Navicula sp. 1		3	6
23	Navicula sp. 2	18	29	38
24	Nitzschia seriata	21	17	28
25	Nitzschia sp. 1	18	12	26
26	Nitzschia sp. 2	4	2	4
27	Planktoniella sp.	4	2	1
28	Pleurosigma sp. 1	4	2	14
29	Pleurosigma sp. 2	33	24	18
30	Pleurosigma sp. 3	4	5	12

Zooplankton

NO	INDIVIDUAL	AL 4	AL 1	AL 3				
	RHOPODA							
	CRUSTACEA							
	COPEPODA							
1	Centrophagus sp.	5	2					
2	Corycaeus sp.	4	2	3				
3	Microsetella sp.	2	13	3 8 5				
4	Oithona sp. 1	23	2	5				
5	Oithana sp. 2	3						
6	Oncaena sp.	7	5	3				
7	HARPATICOIDA							
8	COPEPODA (1, nauplius)	2	3	3				
9	COPEPODA (2, nauplius)	4	8	3 6 3				
10	COPEPODA (1, copepodite)	6	4	3				
11	COPEPODA (1, copepodite)	1		5				
	ΤΟΖΟΑ							
	PHORA							
	SELLATA	1		1				
	FLAGELLATA (1))		5					
13	FLAGELLATA (2))		15	4				
				I				
14	Codonellopsis sp.		3					
15 16	Rhabdonella sp.	7 9	4 3	3				
	Tintinnidae CHELMINTHES	9	3					
	ATORIA							
17	ROTATORIA (1)	2						
17		۷						
Total	Individual/L	55	69	45				

152610 ENVIRONMENTAL QUALITY Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

NO	INDIVIDUAL	AL 4	AL 1	AL 3
Total	Таха	13	13	11
Diver	rsity Index H' = - E pi Ln pi	2.41	2.32	2.32
(SHA	NNON – WIENER, 1949)		·	
H-ma	ax = Ln S	2.56	2.56	2.40
Equit	aility (E) = H'/H-max	0.94	0.91	0.97
Criter	ria:			

Diversity index standard/criteria of Shannon-Wiener divided into 3 (three), namely: H' < 1 = Low Diversity Index

H' < 1 = Low Diversity Index 1 < H' < 3 = Middle Diversity Index

H' > 3 = High Diversity Index

3.4.2 Bottom Sediment (Code: S)

a. Methodology of Data Collection

Samples of sediment were taken by using grab sampler method and were taken custody in plastic containers that were labeled, and they were analyzed in laboratory.

b. Methodology of Data Analysis

The examined parameters by using SNI 13-4720-1998 and USEPA SW 846-3050B method are depth, soil temperature, soil color, smell, characteristics, specific gravity, water content, grain size composition, Total Organic Carbon, Total Petroleum Hidrocarbon, arsenic, cadmium, chrome, lead, mercury, copper, nickel, zinc, and Tributylin (TBP).

c. Location

Bottom sediment sampling locations are shown in **Figure 3.2** and samples were taken at 5 points and 1 layer at each point.

Figure 3.4 Bottom Sediment Sampling Activity

d. Test Result

Results of sediment test are shown below.

Table 3.4 Bottom Sediment Sampling Result

Sample Item Coordinate Sampling Date	: Sediment (S 1) : S 08° 33' 11,3" E 125° 34' 36,1" : August 01, 2015
Receive Laboratory Date	: August 04, 2015
Test Date	: August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Organic Carbon (TOC)	%	0,85	-	-	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	Max. 9,8	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3114B- 2012
3	Cadmium (Cd)	mg/kg	<0,5	Max. 0,99	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
4	Mercury (Hg)	mg/kg	<0,01	Max. 0,18	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3112B- 2012
5	Zinc (Zn)	mg/kg	21	Max. 120	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
6	Copper (Cu)	mg/kg	5	Max. 32	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
7	Chromium (Cr)	mg/kg	<3	Max. 43	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
8	Lead (Pb)	mg/kg	<5	Max. 36	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
9	Nickel (Ni)	mg/kg	<3	Max. 23	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
10	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	-	-	UESPA 8440 1996

Description : < = Smaller than

Criteria from Wisconsin Department of Natural Resources

Sample Item: Sediment (S 2)Coordinate: S 08° 33' 09,6" E 125° 34' 28,5"Sampling Date: August 01, 2015Receive Laboratory Date: August 04, 2015Test Date: August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Organic Carbon (TOC)	%	0,79	-	-	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	Max. 9,8	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3114B- 2012
3	Cadmium (Cd)	mg/kg	3	Max. 0,99	Fail	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
4	Mercury (Hg)	mg/kg	<0,01	Max. 0,18	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3112B- 2012
5	Zinc (Zn)	mg/kg	143	Max. 120	Fail	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
6	Copper (Cu)	mg/kg	20	Max. 32	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
7	Chromium (Cr)	mg/kg	<3	Max. 43	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
8	Lead (Pb)	mg/kg	8	Max. 36	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
9	Nickel (Ni)	mg/kg	<3	Max. 23	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
10	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	-	-	UESPA 8440 1996

Description : < = Smaller than Criteria from **Wisconsin Department of Natural Resources**

Sample Item Coordinate Sampling Date Receive Laboratory Date Test Date : Sediment (S 3) : S 08° 33' 03,5" E 125° 34' 23,7" : August 01, 2015 : August 04, 2015 : August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Organic Carbon (TOC)	%	0,70	-	-	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	Max. 9,8	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3114B- 2012
3	Kadmium (Cd)	mg/kg	<0,5	Max. 0,99	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
4	Mercury (Hg)	mg/kg	<0,01	Max. 0,18	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3112B- 2012
5	Zinc (Zn)	mg/kg	29	Max. 120	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
6	Copper (Cu)	mg/kg	5	Max. 32	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
7	Chromium (Cr)	mg/kg	<3	Max. 43	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
8	Lead (Pb)	mg/kg	<5	Max. 36	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
9	Nickel (Ni)	mg/kg	<3	Max. 23	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
10	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	-	-	UESPA 8440 1996

Description : < = Smaller than

Criteria from Wisconsin Department of Natural Resources

Sample Item Coordinatee Sampling Date Receive Laboratory Date Test Date : **Sediment (S 4)** : S 08° 32' 55,2" E 125° 34' 15,3" : August 01, 2015

: August 04, 2015

: August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Organic Carbon (TOC)	%	0,79	-	-	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	Max. 9,8	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3114B- 2012
3	Cadmium (Cd)	mg/kg	2	Max. 0,99	Fail	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
4	Mercury (Hg)	mg/kg	<0,01	Max. 0,18	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3112B- 2012
5	Zinc (Zn)	mg/kg	26	Max. 120	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
6	Copper (Cu)	mg/kg	7	Max. 32	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
7	Chromium (Cr)	mg/kg	<3	Max. 43	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
8	Lead (Pb)	mg/kg	<5	Max. 36	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
9	Nickel (Ni)	mg/kg	4	Max. 23	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
10	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	-	-	UESPA 8440 1996

Description : < = Smaller than Criteria from **Wisconsin Department of Natural Resources**

Sample Item Coordinate Sampling Date Receive Laboratory Date Test Date

: Sediment (S5)

: S 08° 32' 59,3" E 125° 34' 27,7" : August 01, 2015 : August 04, 2015 : August 04, 2015 until August 26, 2015

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
1	Total Organic Carbon (TOC)	%	0,78	-	-	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	Max. 9,8	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3114B- 2012
3	Cadmium (Cd)	mg/kg	0,5	Max. 0,99	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
4	Mercury (Hg)	mg/kg	<0,01	Max. 0,18	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3112B- 2012
5	Zinc (Zn)	mg/kg	78	Max. 120	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
6	Copper (Cu)	mg/kg	19	Max. 32	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
7	Chromium (Cr)	mg/kg	<3	Max. 43	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
8	Lead (Pb)	mg/kg	5	Max. 36	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012

NO	PARAMETER	UNIT	RESULT	CRITERIA	EVALUATION	METHOD
9	Nickel (Ni)	mg/kg	4	Max. 23	Pass	USEPA SW 846-3050B ; APHA Ed 22nd 3111B- 2012
10	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	-	-	UESPA 8440 1996

Description : < = Smaller than

Criteria from Wisconsin Department of Natural Resources

3.4.3 Noise Level (Code: U)

a. Methodology of Data Collection

Noise level for environmental purpose was measured by sound level meter. The sound pressure dB(A) was measured for 5 minutes for every measurement. Readings were taken for 5 seconds. Measurement was carried out for 24 hours (L_{sm}) at the day during peak activity for 16 hours (L_s) between 06.00 am – 10.00 pm and night activity for 8 hours between 10.00 pm – 06.00 am.

b. Methodology of Data Analysis

Sampling using SNI 7231 2009 method with interval of measurement are as follow:

- (1) L1 representing interval 06.00 09.00
- (2) L2 representing interval 09.00 14.00
- (3) L3 representing interval 14.00 17.00
- (4) L4 representing interval 17.00 22.00
- (5) L5 representing interval 22.00 24.00
- (6) L6 representing interval 24.00 03.00
- (7) L7 representing interval 03.00 06.00

c. Location

Noise level measurement samplings consist of 3 locations, and they are shown in Figure 3.2.

Figure 3.5 Noise Level Sampling Activity

d. Test Result

Noise level measurements result around survey area are shown below.

Table 3.5 Noise Level Sampling Result

Coordir Samplir	ng Method nate ng Date e Laboratory Date	: SNI 723 : S 08° 3 : July 29 : August	.evel (U 1) 31 : 2009 3' 00,2" E 125° and 30, 2015 04, 2015 04, 2015 until A		
NO	LOCATION	TIME	RESULT *)		EVALUATION
K1	Port Location - West	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L.3. 15 ⁰⁰ L4. 20 ⁰⁰	L _s d B (A) 66	dB (A) Max. 60	Fail
NO	LOCATION	TIME	RESULT *) L _M dB (A)	CRITERIA dB (A)	EVALUATION
K1	Port Location - West	L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	50	Max. 60	Pass
NO	LOCATION	TIME	RESULT *)	CRITERIA	EVALUATION
	LOCATION		L _{SM} dB (A)	dB (A)	LVALOATION
K1	Port Location - West	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ⁰⁰ L4. 20 ⁰⁰ L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	64	Max. 60 + 3	Fail
	METHOD	•		22-3/IK/UA-0	

Description: *) = Noise Level is an Equivalent Number along temporary time measurement in 10 minutes with interval 5 seconds.

**) = Accreditation parameter by KAN No. LP-195-IDN
 Criteria using Environmental Decree of Republic Indonesia No. 48 of 1996 for Public Facilities

- L_S = Leq Value at Daytime (16 hours) - L_M = Leq Value at Nighttime (8 nours) - L_{SM} = Leq Value along 24 hours - L_{SM} value that calculate and compare with noise level standard set with tolerance value +3 dB(A)

	-	Ű	
Test Date	: August 04, 2	2015 until Augus	t 26, 2015
Recieve Laboratory Date	: August 04, 2	2015	
Sampling Date	: July 30 and 3	31, 2015	
Sampling Method	: SNI 7231 : 20	009	
Sample Item	: Noise Level	(U2)	

NO	LOCATION	TIME	RESULT *) L _s dB (A)	CRITERIA dB (A)	EVALUATION
		L1. 07 00			Pass
К2	Port Location - East	L.2 10 00	58	Max. 60	
ΝZ	FOIL LOCATION - LAST	L3. 15 ⁰⁰			
		L4. 20 ⁰⁰			

NO	LOCATION	TIME	RESULT *) L _M dB (A)	CRITERIA dB (A)	EVALUATION
K2	Port Location - East	L5. 23 ⁰⁰	49	Max. 60	Pass

152610 ENVIRONMENTAL QUALITY Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

NO	LOCATION	TIME	RESULT *)	CRITERIA	EVALUATION
	LOCATION		L _M dB (A)	dB (A)	EVALUATION
		L6. 01 00			
		L7. 04 ⁰⁰			
NO	LOCATION	TIME	RESULT *)	CRITERIA	EVALUATION
	LUCATION		L _{SM} dB (A)	dB (A)	EVALUATION
К2	Port Location - East	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ⁰⁰ L4. 20 ⁰⁰ L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	57	Max. 60 + 3	Pass
	METHOD	L		22-3/IK/UA-0	

Description: *) = Noise Level is an Equivalent Number along temporary time measurement in 10 minutes with interval 5 seconds.

**) = Accreditation parameter by KAN No. LP-195-IDN Criteria using Environmental Decree of Republic Indonesia No. 48 of 1996 for Public Facilities

- L_s = Leq Value at Daytime (16 hours) - L_M = Leq Value at Nighttime (8 nours) - L_{sm} = Leq Value along 24 hours

- L_{SM}^{m} value that calculate and compare with noise level standard set with tolerance value +3 dB(A)

Sampli	ng Method ng Date e Laboratory Date	(U3) 209 August 01, 2015 2015 2015 until Augus	t 26, 2015		
NO	LOCATION	TIME	RESULT *)	CRITERIA	EVALUATION
			L _s dB (A)	dB (A)	
К3	Outside Port	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ⁰⁰ L4. 20 ⁰⁰	54	Max. 60	Pass
			RESULT *)	CRITERIA	
NO	LOCATION	TIME	L _M dB (A)	dB (A)	EVALUATION
КЗ	Outside Port	L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	43	Max. 60	Pass
			RESULT *)	CRITERIA	
NO	LOCATION	TIME	L _{SM} dB (A)	dB (A)	EVALUATION
K3	Outside Port	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ⁰⁰ L4. 20 ⁰⁰ L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	53	Max. 60 + 3	Pass
	METHOD			22-3/IK/UA-0	
Descrip	tion: *) = Noise Level is an l	Eauivalent Numbe	er alona temporar	v time measurem	ent in 10 minutes wi

Equivalent Number along temporary time measurement in 10 minutes with Description.) interval 5 seconds.

**) = Accreditation parameter by KAN No. LP-195-IDN

Ćriteria using Environmental Decree of Republic Indonesia No. 48 of 1996 for Public Facilities

- L_s = Leq Value at Daytime (16 hours) - L_M = Leq Value at Nighttime (8 nours)

- L_{SM} = Leq Value along 24 hours - L_{SM} value that calculate and compare with noise level standard set with tolerance value +3 dB(A)

152610 ENVIRONMENTAL QUALITY Survey Report in Dili Port

3.4.4 Ambient Air Quality (Code: U)

a. Methodology of Data Collection

Taking samples of air quality especially dust (TSP) and Pb were carried out by High Volume Air Sampler, and taking samples for gas air pollutants were carried out by Gas Sampler. Collected, samples were analyzed in laboratory.

b. Methodology of Data Analysis

Sampling was carried out in accordance with SNI 19-71119.6-2005 method.

c. Location

Air quality sampling location consists of 3 locations, and they are shown in Figure 3.2.

Figure 3.6 Air Quality Sampling Activity

d. Test Result

Below is test result of ambient air quality in the survey area.

Table 3.6 Ambient Air Quality Sampling Result

Sample Item	:	Ambient Air Quality Location Port - West (U1)
Sampling Method		SNI 19-7119.6-2005
Coordinate		S 08° 33' 07,3" E 125° 34' 23,1"
Sampling Date		July 29 and 30, 2015
Receive Laboratory Date		August 04, 2015
Test Date		August 04, 2015 until August 26, 2015
Temperature		24 - 34 °C
Humidity		62 - 83 % RH
Dominant wind direction		West
Wind speed average		1.7 km/hour
Weather		Bright

NO	PARAMETER	DURATION OF TEST	UNIT	RESULT	INDONESIAN STANDARD	WHO STANDARD	EVALUATION	METHOD
		1 Hour	µg/Nm³	25	Max. 900	-	Pass	
1	Sulphur Dioxide (SO ₂) **)	24 Hour	µg/Nm³	-	Max. 365	125 (interim target-1) 50 (interim target-2) 20 (guideline)	-	SNI 19- 7119.7-2005
	Carbon	1 Hour	µg/Nm ³	3.357	Max. 30.000	(guideline)	Pass	
2	Monoxide			5.557		-	1 055	SNI 7119.10-
-	(CO) **)	24 Hour	µg/Nm³	-	Max. 10.000	-	-	2011
3	Nitrogen Dioxide (NO ₂)	1 Hour	µg/Nm³	23	Max. 400	200 (guideline)	Pass	SNI 19.7119.2.20
	**)	24 Hour	µg/Nm³	-	Max. 150	-	-	05
4	Ozone (O ₃) **)	1 Hour	µg/Nm³	35	Max. 235	-	Pass	SNI 19- 7119.8-2005
5	Hydro carbon (HC) **)	3 Hour	µg/Nm³	105	Max. 160	-	Pass	SNI 7119.13- 2009
6	Dust (TSP) **)	24 Hour	µg/Nm ³	120	Max. 230	-	Pass	SNI 19- 7119.3-2005
7	PM ₁₀ (Particulate < 10 µm)	24 Hour	µg/Nm ³	50	Max. 150	150 (interim target-1) 100 (interim target-2) 75 (interim target-3) 50 (guideline)	Pass	High volume air sampler
8	PM _{2.5} (Particulate < 2,5 μm)	24 Hour	µg/Nm ³	28	Max. 65	75 (interim target-1) 50 (interim target-2) 37,5 (interim target-3) 25 (guideline	Pass	High volume air sampler
9	Lead (Pb) **)	24 Hour	µg/Nm ³	O,1	Max. 2	-	Pass	SNI 19- 7119.4-2005

Criteria Standard from Government Regulation of Republic Indonesia No. 41 of 1999 National Ambient Air Quality Standard and WHO IFC Standard **) = Parameter Accreditation by KAN No. LP-195-IDN N = Dry Air Suction Volume Unit Corrected in Normal Condition (25°C, 76 cmHg) Description :

Sample Item	:	Ambient Air Quality Location Port - East (U2)
Sampling Method	:	SNI 19-7119.6-2005
Coordinate	:	S 08º 33' 12,5" E 125º 34' 36,7"
Sampling Date	:	July 30 and 31, 2015
Receive Laboratory Date	:	August 04, 2015
Test Date	:	August 04, 2015 until August 26, 2015
Temperature	:	24 - 34 °C
Humidity	:	62 - 83 % RH
Dominant wind direction	:	West
Wind speed average	:	2.1 km/hour
Weather	:	Bright

NO	PARAMETER	DURATION OF TEST	UNIT	RESULT	INDONESIAN STANDARD	WHO STANDARD	EVALUATION	METHOD
		1 Hour	µg/Nm³	23	Max. 900	-	Pass	
1	Sulphur Dioxide (SO ₂) **)	24 Hour	µg/Nm³	-	Max. 365	125 (interim target-1) 50 (interim target-2) 20 (guideline)	-	SNI 19- 7119.7-2005
2	Carbon	1 Hour	µg/Nm³	3.299	Max. 30.000	-	Pass	SNI 7119.10-

NO	PARAMETER	DURATION OF TEST	UNIT	RESULT	INDONESIAN STANDARD	WHO STANDARD	EVALUATION	METHOD
	Monoxide (CO) **)	24 Hour	µg/Nm³	-	Max. 10.000	-	-	2011
3	Nitrogen Dioxide (NO ₂)	1 Hour	µg/Nm³	21	Max. 400	200 (guideline)	Pass	SNI 19.7119.2.20
	**)	24 Hour	µg/Nm ³	-	Max. 150	-	-	05
4	Ozone (O ₃) **)	1 Hour	µg/Nm³	34	Max. 235	-	Pass	SNI 19- 7119.8-2005
5	Hydro carbon (HC) **)	3 Hour	µg/Nm³	98	Max. 160	-	Pass	SNI 7119.13- 2009
6	Dust (TSP) **)	24 Hour	µg/Nm ³	110	Max. 230	-	Pass	SNI 19- 7119.3-2005
7	PM _{to} (Particulate < 10 μm)	24 Hour	µg/Nm ³	40	Max. 150	150 (interim target-1) 100 (interim target-2) 75 (interim target-3) 50 (guideline)	Pass	High volume air sampler
8	PM _{2.5} (Particulate < 2,5 μm)	24 Hour	µg/Nm³	22	Max. 65	75 (interim target-1) 50 (interim target-2) 37,5 (interim target-3) 25 (guideline	Pass	High volume air sampler
9	Lead (Pb) **)	24 Hour	µg/Nm³	0,05	Max. 2	-	Pass	SNI 19- 7119.4-2005

Criteria Standard from Government Regulation of Republic Indonesia No. 41 of 1999 National Ambient Air Quality Standard and WHO IFC Standard **) = Parameter Accreditation by KAN No. LP-195-IDN N = Dry Air Suction Volume Unit Corrected in Normal Condition (25°C, 76 cmHg) Description :

Sample Item	:	Ambient Air Quality Outside Port Location (U3)
Sampling Method		SNI 19-7119.6-2005
Coordinate		S 08° 33' 00,2" E 125° 34' 15,2"
Sampling Date		July 31, 2015 until August 1, 2015
Receive Laboratory Date		August 04, 2015
Test Date		August 04, 2015 until August 26, 2015
Temperature		24 - 34 °C
Humidity		62 - 85 % RH
Dominant wind direction		West
Wind speed average		2.8 km/hour
Weather		Bright

NO	PARAMETER	DURATION OF TEST	UNIT	RESULT	INDONESIAN STANDARD	WHO STANDARD	EVALUATION	METHOD
		1 Hour	µg/Nm³	15	Max. 900	-	Pass	
1	Sulphur Dioxide (SO ₂) **)	24 Hour	µg/Nm³	-	Max. 365	125 (interim target-1) 50 (interim target-2) 20 (guideline)	-	SNI 19- 7119.7-2005
	Carbon	1 Hour	µg/Nm³	2.795	Max. 30.000	-	Pass	SNI 7119.10-
2	Monoxide (CO) **)	24 Hour	µg/Nm³	-	Max. 10.000	-	-	2011
3	Nitrogen Dioxide (NO ₂)	1 Hour	µg/Nm³	14	Max. 400	200 (guideline)	Pass	SNI 19.7119.2.20
	**)	24 Hour	µg/Nm ³	-	Max. 150	-	-	05
4	Ozone (O ₃) **)	1 Hour	µg/Nm³	34	Max. 235	-	Pass	SNI 19- 7119.8-2005
5	Hydro carbon (HC) **)	3 Hour	µg/Nm³	85	Max. 160	_	Pass	SNI 7119.13- 2009

NO	PARAMETER	DURATION OF TEST	UNIT	RESULT	INDONESIAN STANDARD	WHO STANDARD	EVALUATION	METHOD
6	Dust (TSP) **)	24 Hour	µg/Nm³	67	Max. 230	-	Pass	SNI 19- 7119.3-2005
7	PM _{io} (Particulate < 10 μm)	24 Hour	µg/Nm ³	29	Max. 150	150 (interim target-1) 100 (interim target-2) 75 (interim target-3) 50 (guideline)	Pass	High volume air sampler
8	PM _{2.5} (Particulate < 2,5 μm)	24 Hour	µg/Nm³	13	Max. 65	75 (interim target-1) 50 (interim target-2) 37,5 (interim target-3) 25 (guideline	Pass	High volume air sampler
9	Lead (Pb) **)	24 Hour	µg/Nm³	<0,02	Max. 2	-	Pass	SNI 19- 7119.4-2005

Criteria Standard from **Government Regulation of Republic Indonesia No. 41 of 1999 National Ambient Air Quality Standard** and **WHO IFC Standard** **) = Parameter Accreditation by KAN No. LP-195-IDN N = Dry Air Suction Volume Unit Corrected in Normal Condition (25°C, 76 cmHg) Description :

3.5 LABORATORY TESTING RESULT

Laboratory analysis has been carried out in the Unilab laboratory, Jakarta, Indonesia and the results are attached in the annex.

SAMPLE (NAME/CODE)	LOCATION	NUMBER
(1) Ambient Air Quality (U)	U1, U2, U3	3
(2) Noise Level (U)	U1, U2, U3	3
(3) Water Quality (AL)	AL1, AL2, AL3, AL4, AL5	5
(4) Sediment Quality (S)	S1, S2, S3, S4, S5	5
(5) Plankton (P)	P1, P2, P3	3

Table 3.7 Checklist of Sample and Results

UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 a-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number . 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	: Dili, Timor Leste
Identification number	: 05958-01/UA/08/2015
Description of Sample	: Ambient Air
and the second se	U1. Location Port - West
Coordinate	: S 08° 33' 07,3" E 125° 34' 23,1"
Method of sampling	: SNI 19-7119.6-2005
Date of sampling	: July 29 - 30, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015

Result of Measurement

Temperature	: 24 - 34	°C
Humidity	: 62 - 83	% RH
Wind direction from	: West	
Wind Velocity	: 1,7	km/hour
Climate	: Bright	

Laboratory Analysis Result

PARAMETER	TIME OF MEASUREMENT	REQUIREMENT *)	UNIT	RESULT	METHOD
	1 hour	900	µg/Nm ³	25	SNI 19-7119.7-2005
Sultur Dioxide (SO ₂))	24 hours	365	µg/Nm ³	-	SNI 19-7118.7-2000
a 1. 11. (20) #2	1 hour	30,000	µg/Nm ³	3.357	SNI 7119.10-2011
Carbon Monoxide (CO) **)	24 hours	10,000	µg/Nm ³	-	- SINI / 118.10-2011
	1 hour	400	µg/Nm ³	23	SNI 19.7119.2.2005
Nitrogen Dioxide (NO2) ***)	24 hours	150	µg/Nm ³	-1	- SNI 18.(118.2.2003
Oxidant (Ox) **)	1 hour	235	µg/Nm ³	35	SNI 18-7118.8-2005
Hydrocarbon (HC) **)	3 hours	160	µg/Nm ³	105	SNI 7119.13-2009
Dust (TSP) **)	24 hours	230	µg/Nm ³	120	SNI 19-7119.3-2005
and the second se	24 hours	150	µg/Nm ³	50	High volume air sampler
	24 hours	65	µg/Nm ³	28	High volume air sampler
Lead (Pb) **)	24 hours	2	µg/Nm ³	0,1	SNI 19-7119.4-2005
	PARAMETER Sulfur Dioxide (SO ₂) **) Carbon Monoxide (CO) **) Nitrogen Dioxide (NO ₂) **) Nitrogen Dioxide (NO ₂) **) Oxidant (Ox) **) Hydrocarbon (HC) **) Dust (TSP) **) PM ₁₀ (Dust < 10 µm) PM ₂₅ (Dust < 2,5 µm)	PARAMETERTIME OF MEASUREMENTSulfur Dioxide $(SO_2)^{**}$)1 hour 24 hoursCarbon Monoxide $(CO)^{**}$)1 hour 24 hoursNitrogen Dioxide $(NO_2)^{**}$)1 hour 24 hoursNitrogen Dioxide $(NO_2)^{**}$)1 hour 24 hoursOxidant $(Ox)^{**}$)1 hour 1 hourHydrocarbon $(HC)^{**}$)3 hoursDust $(TSP)^{**}$)24 hoursPM ₁₀ (Dust < 10 µm)	PARAMETER TIME OF MEASUREMENT REQUIREMENT Sulfur Dioxide (SO ₂)**) 1 hour 900 24 hours 365 Carbon Monoxide (CO)**) 1 hour 30,000 24 hours 10,000 24 hours 10,000 Nitrogen Dioxide (NO ₂)**) 1 hour 400 Nitrogen Dioxide (NO ₂)**) 1 hour 400 Oxidant (Ox)**) 1 hour 235 Hydrocarbon (HC)**) 3 hours 160 Dust (TSP)**) 24 hours 230 PM ₁₀ (Dust < 10 µm)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER TIME OF MEASUREMENT REGLIREMENT UNIT RESULT Sulfur Dioxide (SO ₂)**) 1 hour 900 µg/Nm ³ 25 Sulfur Dioxide (SO ₂)**) 1 hour 365 µg/Nm ³ - Carbon Monoxide (CO)**) 1 hour 30,000 µg/Nm ³ 3.357 Carbon Monoxide (CO)**) 1 hour 30,000 µg/Nm ³ - Nitrogen Dioxide (NO ₂)**) 1 hour 400 µg/Nm ³ 23 Oxidant (Ox)**) 1 hour 235 µg/Nm ³ 35 Hydrocarbon (HC)**) 3 hours 160 µg/Nm ³ 105 Dust (TSP)**) 24 hours 230 µg/Nm ³ 120 PM ₁₀ (Dust < 10 µm)

Note :

*) = PPRI No. 41 year 1999 – National Ambient Air Quality Standards **) = Accredited Parameter by National Accreditation Committee (KAN) No. LP-195-IDN

N = Unit of Absorb Volume Dry Air corrected by Normal Condition (25°C, 76 cmHg)

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

Quality Assurance Manager

Page 1 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

T. UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusat : GEDUNG UNILAB, Jl. Cliedug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unllabperdana@centrin.net.id Kantor Perwakilan ; Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC
Address Identification number Description of Sample	: Dili, Timor Leste : 05958-02/UA/08/2015 : Ambient Air U2. Location Port - East
Coordinate Method of sampling Date of sampling Date of received Date of analysis	. S 08° 33' 12,5" E 125° 34' 36,7" . SNI 19-7119.6-2005 . July 30 - 31, 2015 : August 04, 2015 : August 04, 2015 up to August 26, 2015

Result of Measurement

:24 - 34	°C
: 62 - 83	% RH
: West	
. 2,1	km/hour
: Bright	
	: 62 - 83 : West . 2,1

Laboratory Analysis Result

NO.	PARAMETER	TIME OF MEASUREMENT	REQUIREMENT*)	UNIT	RESULT	METHOD
	<u> </u>	1 hour	900	µg/Nm ³	23	SNI 19-7119.7-2005
1	Sulfur Dioxide (SO2) **)	24 hours	365	µg/Nm ³	-	- ONI 18-7118.7-2000
		1 hour	30,000	µg/Nm ³	3.299	SNI 7119,10-2011
2	2 Carbon Monoxide (CO) **)	24 hours	10,000	µg/Nm ³		
1		1 hour	400	µg/Nm ³	21	SN/ 19.7119.2.2005
3	3 Nitrogen Dioxide (NO ₂) **)	24 hours	150	µg/Nm ³		3NI 18.7118.2.2000
4	Oxidant (Ox) **)	1 hour	235	µg/Nm ³	34	SNI 19-7119.8-2005
5	Hydrocarbon (HC) **)	3 hours	160	µg/Nm ³	98	SNI 7119.13-2009
6	Dust (TSP) **)	24 hours	230	µg/Nm ³	110	SNI 19-7119.3-2005
7	PM ₁₀ (Dust < 10 µm)	24 hours	150	µg/Nm°	40	High volume air sampler
B	PM _{2.5} (Dust < 2,5 µm)	24 hours	65	µg/Nm ³	22	High volume air sampler
9	Lead (Pb) **)	24 hours	2	µg/Nm ³	0,05	SNI 19-7119.4-2005

Note :

*) = PPRI No. 41 year 1999 – National Amblent Air Quality Standards **) = Accredited Parameter by National Accreditation Committee (KAN) No. LP-195-IDN

N = Unit of Absorb Volume Dry Air corrected by Normal Condition (25°C, 76 cmHg)

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

LABORATORIUS HLANS Khairun Nisa

Quality Assurance Manager

Page 2 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

T. UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusal : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail ; unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number . 06815/LHP/VIII/2015

Principal	: URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address Identification number Description of Sample	: Dill, Timor Leste : 05958-03/UA/08/2015 : Ambient Air U3. Outside Port Location
Coordinate Method of sampling Date of sampling Date of received Date of analysis	: S 08° 33' 00,2" E 125° 34' 15,2" : SNI 19-7119.6-2005 : July 31 - August 01, 2015 : August 04, 2015 : August 04, 2015 up to August 26, 2015

Result of Measurement

Temperature	: 24 - 34	°C
Humidity	: 62 - 83	% RH
Wind direction from	West	
Wind Velocity	: 2,1	km/hour
Climate	: Bright	

Laboratory Analysis Result

NO.	PARAMETER	TIME OF MEASUREMENT	REQUIREMENT *)	UNIT	RESULT	* METHOD
		1 hour	900	µg/Nm ³	15	SNI 19-7119.7-2005
1	Sulfur Dioxide (SO2) ***)	24 hours	365	µg/Nm ³	-	- SNI 18-/119./-2000
		1 hour	30,000	µg/Nm ³	2.795	SNI 7119.10-2011
2	Carbon Monoxide (CO) **)	24 hours	10,000	µg/Nm ³	-	- SNI / 118.10-2011
THE SUCCESSION OF		1 hour	400	µg/Nm ³	14	SNI 19.7119.2.2005
3	3 Nitrogen Dioxide (NO ₂) **)	24 hours	150	µg/Nm ³		SNI 18./118.2.2003
4	Oxidant (Ox) **)	1 hour	235	µg/Nm ³	34	SNI 19-7119 8-2005
5	Hydrocarbon (HC) **)	3 hours	160	µg/Nm ³	85	SNI 7119.13-2009
6	Dust (TSP) **)	24 hours	230	µg/Nm ³	67	SNI 19-7119.3-2005
7	PM10 (Dust < 10 µm)	24 hours	150	µg/Nm ³	29	High volume air sampler
8	PM25 (Dust < 2,5 µm)	24 hours	65	µg/Nm ⁴	13	High volume air sampler
9	Lead (Pb) **)	24 hours	2	µg/Nm ³	<0,02	SNI 19-7119.4-2005

") = PPRI No. 41 year 1999 - National Ambient Air Quality Standards Note :

**) = Accredited Parameter by National Accreditation Committee (KAN) No. LP-195-IDN N = Unit of Absorb Volume Dry Air corrected by Normal Condition (25°C, 76 cmHg)

Jakarta, August 26, 2015 UNILAB PERDANA, PT. PESDALIN ULTANS Khairun Nise Quality Assurance Manager

Page 3 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

E

PT. UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusat : GEDUNG UNILAB, JI. Cliedug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

DEDODT OF AMAI VOIC

	Number : 06815/LHP/VIII/2015
Principal	: URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	: Dili, Timor Leste
Identification number	05958-04/K/08/2015
Uraian contoh	: Noise (24 Hours) **)
Method of sampling	: SNI 7231 : 2009
Date of sampling	: July 29 - 30, 2015
Date of received	: August 04, 2015
Date of analysis	August 04, 2015 up to August 26, 2015

NO.	LOCATION TIME OF SAMPLING		RESULT *)
1.464	T COMPETITION	THRE OF SMARCHING	Ls dB (A)
K1	Location Port - West S 08° 33' 07,3" E 125° 34' 23,1"	L1. 07 00 L.2 10 00 L3. 15 00 L4. 20 00	66
NO,	LOCATION	TIME OF SAMPLING	RESULT*) La dB (A)
K1	Location Port - West S 08° 33' 07,3" E 125° 34' 23,1"	L5. 23 ⁶⁰ L6. 01 ⁶⁰ L7. 04 ⁶⁰	50
NO.	LOCATION	TIME OF SAMPLING	RESULT *) L _{sin} de (A)
K1	Location Port - West S 08° 33' 07,3° E 125° 34' 23,1°	L1. 07 ¹⁰ L.2 10 ¹⁰ L.3. 15 ¹⁰ L4. 20 ¹⁰ L5. 23 ¹⁰ L6. 01 ¹⁰ L7. 04 ¹⁰	64
	METHOD		22-3/IK/UA-0

*) = Noise value is the value of equivalent noise during the measurement time Note :

Is for 10 minutes with intervals of 5 seconds.

**) = Accredited Parameter by KAN No. LP-196-IDN.

- L_S = Leq Value (Daytime) (16 hours)
 L_A = Leq Value (Night) (8 hours)
 L_{SM} = Leq Value for 24 hours

- L_{SM} Value calculated compared with standard values of Noise level Sel with Tolerance + 3 dB(A)

· KEP. 48/MENLH/11/1996, Attachement I Standard for Noise Level for 24 hours

- Governance and Public Facilities = 60 dB (A) 1.
- Office and Commercial Area = 65 dB (A) 2.
- 3. Housing and Settlements = 56 dB (A)
- 4 Trade and Services = 70 dB (A) 5.
- Green open space = 50 dB (A) Recreation = 70 dB (A) Industry = 70 dB (A)
- 67.

Jakarta, August 26, 2015 1 UNILAB PERDANA, PT.

ALIGEILIN GRINGAN the Khairun Nisa Quality Assurance Manager

Page 4 of 25

The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory
 Complains of the analysis report is not served after 30 days of the report published's date

PT. UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	: Dili, Timor Leste
Identification number	: 05958-05/K/08/2015
Uraian contoh	Noise (24 Hours) **)
Method of sampling	: SNI 7231 : 2009
Date of sampling	: July 30 - 31, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015

NO.	LOCATION TIME OF SAMPLING		RESULT *)
1100	AND SAFE I FULLY	TUNE OF SPORE FILLO	Ls dB (A)
K 1	Location Port - East S 08º 33' 12,5" E 125º 34' 36,7"	L1.07 w L.2 10 w L3. 15 w L4. 20 w	58
NO.	LOCATION	TIME OF SAMPLING	RESULT*) LaidB (A)
K1	Location Port - East S 08º 33' 12.5" E 125º 34' 36,7"	L5. 23 ⁶⁰ L6. 01 ⁶⁰ L7. 04 ⁶⁰	49
NO,	LOCATION	TIME OF SAMPLING	RESULT *) L _{sta} HB (A)
K1	Location Port - East S 08° 33' 12,5" E 125° 34' 36,7"	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ¹⁰⁰ L4. 20 ⁰⁰ L5. 23 ¹⁰¹ L6. 01 ¹⁰⁰ L7. 04 ¹⁰⁰	57
	METHOD		22-3/1K/UA-0

") = Noise value is the value of equivalent noise during the measurement time Note :

is for 10 minutes with intervals of 5 seconds. ") = Accredited Parameter by KAN No. LP-195-IDN.

- L_S = Leq Value (Daytime) (16 hours) L_M = Leq Value (Night) (8 hours) L_{SM} = Leq Value for 24 hours
- Lew Value calculated compared with standard values of Noise level Set with Tolerance + 3 dB(A)

. KEP. 48/MENLH/11/1996, Attachement I Standard for Noise Level for 24 hours

- 1. Governance and Public Facilities = 60 dB (A) Office and Commercial Area = 65 dB (A)
- 2. 3. Housing and Settlements = 55 dB (A)
- 4 Trade and Services = 70 dB (A)
- 6. Green open space = 50 dB (A)
- 6 Recreation = 70 dB (A)
- Industry = 70 dB (A) 7.

Jakarta, August 26, 2015 UNICAB PERDANA, PT. THE MITORIUM KUNGAN Khairun Nisa Quality Assurance Manager

Page 5 of 25

The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory
 Complains of the analysis report is not served after 30 days of the report published's date

PT. UNILAB PERDANA LABORATORIUM LINGKUNGAN HIDUP No. Reg. : 0001/LPJ/LABLING-1/LRK/KLH

Kantor Pusat : GEDUNG UNILAB, JI. Cliedug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan ; Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number 06815/1 HP/VIII/2015

Principal	: URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	. Dili, Timor Leste
Identification number	05958-06/K/08/2015
Uraian contoh	: Noise (24 Hours) **)
Method of sampling	: SNI 7231 : 2009
Date of sampling	: July 31 - August 01, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015

NO.	LOCATION	TIME OF SAMPLING	RESULT *)
Eddine.	- LUCATION	THIR OF SMARLING	Ls dB (A)
K 1	Outside Port Location S 08° 33' 00,2" E 125° 34' 15,2"	L1. 07 00 L.2 10 00 L3. 15 00 L4. 20 00	54
NO.	LOCATION	TIME OF SAMPLING	RESULT *) L ₂ 48 (A)
- K1	Outside Port Location S 08º 33' 00,2" E 125º 34' 15,2"	L5. 23 ⁰⁰ L6. 01 ⁰⁰ L7. 04 ⁰⁰	43
NO.	LOCATION	TIME OF SAMPLING	RESULT *) Lsn.dB (A)
К1	Outside Port Location	L1. 07 ⁰⁰ L.2 10 ⁰⁰ L3. 15 ¹⁰ L4. 20 ⁰⁰	- 53
	\$ 08° 33' 00,2" E 125° 34' 15,2"	L5. 23 to L6. 01 to L7. 04 to	

Note : ") = Noise value is the value of equivalent noise during the measurement time Is for 10 minutes with intervals of 5 seconds.

") = Accredited Parameter by KAN No. LP-195-IDN.

- L₃ = Leq Value (Daylime) (16 hours) L₄ = Leq Value (Night) (8 hours)
- Lsm = Leq Value for 24 hours
- L_{SM} Value calculated compared with standard values of Noise level Set with Tolerance + 3 dB(A)

· KEP. 48/MENLH/11/1996, Attachement I Standard for Noise Level for 24 hours

- Governance and Public Facilities = 60 dB (A) 1
- 2 Office and Commercial Area = 65 dB (A)
- 3 Housing and Settlements = 55 dB (A)
- 4 Trade and Services = 70 dB (A)
- Green open space = 50 dB (A) Recreation = 70 dB (A) Industry = 70 dB (A) 5.
- 6. 7.

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

NUMBER CANS 1 NGAN Khairun Nisa Quality Assurance Manager

Page 6 of 25

The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.ld Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number : 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	: Dili, Timor Leste
Identification nur	
Description of Sa	
Coordinate	: S 08° 33' 11,3" E 125° 34' 36,1"
Method of sampl	
Date of sampling	. August 01, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015
· · · · · ·	

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Phosphate (PO _d) *)	mg/L	0,02	18-27/IK/ALT
2	Salinity	%aa	39	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Ekstraksi-Spektrofotometri
4	Turbldity	NTU	1	SNI 06-6989.25-2005
5	Dissolved Oxygen (DO) on site	mg/L	3	SNI 06-6989.14-2004
6	pH (on site) *)		8	SNI 06-6989.11-2004
7	Temperature (on site) *)	°C	29	SNI 06-6989.23-2005
8	Total coliform	MPN/100ml	3	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solid (TSS) *)	mg/L	<2	SNI 06-6989.3-2004
10	COD	mg/L	45	SNI 06-6989.15-2004
11	Nitrogen (N) Total	mg/L	2	Metode Penelitian Air Bab XI -1984
12	Total Disolved Solid (TDS)	mg/L	38.300	SNI 06-6989 27-2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN

< = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

Khairun Nisa Quality Assurance Manager

Page 7 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unllabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Principal

Address Identification number Description of Sample Coordinate Method of sampling Date of sampling Date of received Date of analysis

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dili, Timor Leste
D5958-08/AL/08/2015
Sea Water (AL 2)
S 08° 33' 09,6" E 125° 34' 28,5"
SNI 06-2412-1991
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Phosphate (PO4)*)	mg/L	<0,01	18-27/IK/ALT
2	Salinity	%0	38	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Ekstraksi-Spektrofotometri
4	Turbidity	NTU	2	SNI 06-6989.25-2005
5	Dissolved Oxygen (DO) on site	mg/L	3	SNI 06-6989.14-2004
6	pH (on site) *)	-	8	SNI 06-6989 11-2004
7	Temperature (on site) *)	°C	29	SNI 06-6989.23-2005
8	Total collform	MPN/100ml	4	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solid (TSS) *)	mg/L	<2	SNI 06-6989.3-2004
10	COD	mg/L	46	SNI 06-6989.15-2004
11	Nitrogen (N) Total	mg/L	5	Metode Penelitian Air Bab XI -1984
12	Total Disolved Solid (TDS)	mg/L	39.200	SNI 06-6989.27-2005

Description : *) = Parameter Accreditation by KAN No. LP-185-IDN

< = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT. LABORATORIUM KONSULTANS RUUE Khairun Nisa

Quality Assurance Manager

Page 8 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Principal

Address Identification number Description of Sample Coordinate Method of sampling Date of sampling Date of received Date of analysis

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dilli, Timor Leste 05958-09/AL/08/2015 Sea Water (AL 3) S 08° 33' 03,5" E 125° 34' 23,7" SNI 06-2412-1991 August 01, 2015 August 04, 2015 August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Phosphate (PO4)*)	mg/L	0,01	18-27/IK/ALT
2	Salinity	%	38	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Ekstraksi-Spektrofotometri
4	Turbidity	NTU	1	SNI 06-6989.25-2005
5	Dissolved Oxygen (DO) on site	mg/L	3	SNI 06-6989.14-2004
6	pH (on site) *)	-	8	SNI 06-6989.11-2004
7	Temperature (on site) *)	°C	30	SNI 06-6989.23-2005
8	Total coliform	MPN/100ml	4	APHA Ed. 22nd 9221.8-2012
9	Total Suspended Solid (TSS) *)	mg/L	<2	SNI 06-6989.3-2004
10	COD	mg/L	40	SNI 6989.2-2009
11	Nitrogen (N) Total	mg/L	2	Metode Penelitian Air Bab XI -1984
12	Total Disolved Solid (TDS)	mg/L	38.300	SNI 06-6989.27-2005

*) = Parameter Accreditation by KAN No. LP-195-IDN

< = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT

Description :

Quality Assurance Manager

Page 9 of 25

The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number 00015/LMP/V11/2015

Principal

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Address Identification number Description of Sample Coordinate Method of sampling Date of sampling Date of received Date of analysis Dili, Timor Leste
05958-10/AL/08/2015
Sea Water (AL 4)
S 08° 32' 55,2" E 125° 34' 15,3"
SNI 06-2412-1991
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NØ	PARAMETER	UNIT	RESULT	METHOD
1	Total Phosphate (PO _d)*)	mg/L	D,D1	18-27/IK/ALT
2	Salinity	%10	39	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Ekstraksi-Spektrofotometri
4	Turbidity	NTU	3	SNI 06-6989.25-2005
5	Dissolved Oxygen (DO) on site	mg/L	4	SNI 06-6989.14-2004
6	pH (on site) *)	-	8	SNI 06-6989.11-2004
7	Temperature (on site) *)	°C	29	SNI 06-6989.23-2005
8	Total coliform	MPN/100ml	3	APHA Ed. 22nd 9221.B-2012
9	Total Suspended Solid (TSS) *)	mg/L	<2	SNI 06-6989.3-2004
10	COD	mg/L	34	SNI 6989.2-2009
11	Nitrogen (N) Total	mg/L	2	Metode Penelitian Air Bab XI -1984
12	Total Disolved Solid (TDS)	mg/L	38.900	SNI 06-6989.27-2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN

= Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT. ABORATORIUN KONOUI TAHS INGAN De II

Khairun Nisa Quality Assurance Manager

Page 10 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusal : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Principal

Address Identification number Description of Sample Coordinate Method of sampling Date of sampling Date of received Date of analysis

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dili, Timor Leste
05958-11/AL/08/2015
Sea Water (AL 5)
S 08° 32' 59,3" E 125° 34' 27,7"
SNI 06-2412-1991
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Phosphate (POn)*)	mg/L	<0,01	18-27/IK/ALT
2	Salinity	%0	39	APHA Ed. 22nd 2520.B-2012
3	Oil & Grease	mg/L	<0,2	Ekstraksi-Spektrofotometri
4	Turbidity	NTU	2	SNI 06-6989.25-2005
5	Dissolved Oxygen (DO) on site	mg/L	4	SNI 06-6989.14-2004
6	pH (on site) *)		8	SNI 06-6989.11-2004
7	Temperature (on site) *)	°C	29	SNI 06-6989.23-2005
8	Total coliform	MPN/100ml	<3	APHA Ed. 22nd 9221.8-2012
9	Total Suspended Solid (TSS) *)	mg/L	<2	SNI 06-6989.3-2004
10	COD	mg/L	26	SNI 6989.2-2009
11	Nitrogen (N) Total	mg/L	2	Metode Penelitian Air Bab XI -1984
12	Total Disolved Solid (TDS)	mg/L	39.400	SNI 06-6989.27-2005

Description : *) = Parameter Accreditation by KAN No. LP-195-IDN

< = Smaller than

Khairun Nisa Quality Assurance Manager

BULTANS

Page 11 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number 06815/LHP/VIII/2015

Principal

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Address Identification number Description of Sample Coordinate Date of sampling Date of received Date of analysis Dili, Timor Leste
05958-12/SD/08/2015
Sediment (Sediment 1)
S 08° 33' 11,3" E 125° 34' 36,1"
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO.	PARAMETER	UNIT	RESULT	METHOD
1	Total Organik Carbon (TOC)	%	0,85	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3114B-2012
3	Cadmlum (Cd)	mg/kg	<0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
4	Mercury (Hg)	mg/kg	<0,01	USEPA SW 846-3050B ; APHA Ed 22nd 3112B-2012
5	Zinc (Zn)	mg/kg	21	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
6	Copper (Cu)	mg/kg	5	USEPA SW 848-3050B ; APHA Ed 22nd 3111B-2012
7	Chromium (Cr)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
8	Lead (Pb)	mg/kg	<5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
9	Nickel (Ni)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012

Note : < = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT. LABIRATIONA NOUL TAHSI GAUNGAN HILDA)F Khairun Nisa Quality Assurance Manager

Page 12 of 25

[•] The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

[.] Complains of the analysis report is not served after 30 days of the report published's date

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.ld Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Principal : URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE Address : Dili, Timor Leste Identification number 05958-13/SD/08/2015 Description of Sample Sediment (Sediment 2) Coordinate : S 08º 33' 09,6" E 125º 34' 28,5" Date of sampling : August 01, 2015 Date of received : August 04, 2015 : August 04, 2015 up to August 26, 2015 Date of analysis

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Organik Carbon (TOC)	%	0,79	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3114B-2012
3	Cadmium (Cd)	mg/kg	3	USEPA SW 848-30508 ; APHA Ed 22nd 3111B-2012
4	Mercury (Hg)	mg/kg	<0,01	USEPA SW 846-3050B ; APHA Ed 22nd 3112B-2012
5	Zinc (Zn)	mg/kg	143	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
6	Copper (Cu)	mg/kg	20	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
7	Chromium (Cr)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
8	Lead (Pb)	mg/kg	8	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
9	Nickel (Ni)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012

Note : < = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT. LABURATORIUM KOKABULT 1 SKUNGAN Khairun Nisa

Quality Assurance Manager

Page 13 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory
 Complete a the analysis report is not samed after 30 days of the report publiched's date.

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015

Humber . Coordier ..

-	1.00		- A
νr	ind	2 Ir	121
	11.15	U 164	CLUB.

: URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Address Identification number Description of Sample Coordinate Date of sampling Date of received Date of analysis

TIMORLESTE
: Dili, Timor Leste
: 05958-14/SD/08/2015
: Sediment (Sediment 3)
: S 08° 33' 03,5" E 125° 34' 23,7"
: August 01, 2015
: August 04, 2015
: August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Organik Carbon (TOC)	%	0,70	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	USEPA SW 848-3050B ; APHA Ed 22nd 3114B-2012
3	Cadmium (Cd)	mg/kg	<0,5	USEPA SW 846-30508 ; APHA Ed 22nd 3111B-2012
4	Mercury (Hg)	mg/kg	<0,01	USEPA SW 846-3050B ; APHA Ed 22nd 3112B-2012
5	Zinc (Zn)	mg/kg	29	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
6	Copper (Cu)	mg/kg	5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
7	Chromium (Cr)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
8	Lead (Pb)	mg/kg	<5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
9	Nickel (Ni)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012

Note : < = Smaller than

Jakarta, August 26, 2015 v UNILAB PERDANA, PT LABORISTORIUM KOSASULIANSI NGAN

Khairun Nisa Quality Assurance Manager

Page 14 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unllabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number 06815/LHP/VIII/2015

1.1.1		ε.
CAL.	na	L
	va	L
	CÍ	icipa

Address Identification number Description of Sample Coordinate Date of sampling Date of received Date of analysis

: URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dili, Timor Leste
05958-15/SD/08/2015
Sediment (Sediment 4)
S 08° 32' 55,2" E 125° 34' 15,3"
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NÖ	PARAMETER	UNIT	RESULT	METHOD
1	Total Organik Carbon (TOC)	%	0,79	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3114B-2012
3	Cadmium (Cd)	mg/kg	2	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
4	Mercury (Hg)	mg/kg	<0,01	USEPA SW 846-3050B ; APHA Ed 22nd 3112B-2012
5	Zinc (Zn)	mg/kg	26	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
θ	Copper (Cu)	mg/kg	7	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
7	Chromium (Cr)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
8	Lead (Pb)	mg/kg	<5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
9	Nickel (Ni)	mg/kg	4	USEPA SW 848-3050B ; APHA Ed 22nd 3111B-2012

Note : < = Smaller than

Jakarta, August 26, 2015 ∖h UNILABIPERDANA, PT. STEATORIUS

Page 15 of 25

The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is for duplicated (except the general report) without the license from the laboratory

[·] Complains of the analysis report is not served after 30 days of the report published's date

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	· Dili, Timor Leste
Identification number	: 05958-16/SD/08/2015
Description of Sample	: Sediment (Sediment 5)
Coordinate	· S 08° 32' 59,3" E 125° 34' 27,7"
Date of sampling	: August 01, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Organik Carbon (TOC)	%	0,78	SNI 13-4720-1998
2	Arsenic (As)	mg/kg	<0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3114B-2012
3	Cadmium (Cd)	mg/kg	0,5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
4	Mercury (Hg)	mg/kg	<0,01	USEPA SW 846-3050B ; APHA Ed 22nd 3112B-2012
5	Zinc (Zn)	mg/kg	78	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
6	Copper (Cu)	mg/kg	19	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
7	Chromium (Cr)	mg/kg	<3	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
8	Lead (Pb)	mg/kg	5	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012
9	Nickel (NI)	mg/kg	4	USEPA SW 846-3050B ; APHA Ed 22nd 3111B-2012

Note : < = Smaller than

Jakarta, August 26, 2015 UNILAB PERDANA, PT. RAIGRIUM DINSULTANSI IN GRUNGAN HDIN Khairun Nisa **Quality Assurance Manager**

Page 16 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Teip. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number : 06815/LHP/VIII/2015

Principal

Address Identification number Description of Sample Date of sampling Date of received Date of analysis

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dili, Timor Leste 05958-17/SD/08/2015 Sediment (Sediment 1) August 01, 2015 August 04, 2015 August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	UESPA 8440 1996
2	TBT (Tri Butil Toluene)	mg/kg	<0,5	Water Leach, LC-MS/MS
3	Water Content	%	9,48	Metoda Gravimetri
4	Texture	0 . L	1	
	- Sand Fraction			
	a > 1000 u	gram	98,21	Metoda Dry Sieve Sievieng
	b. 500 - 1000 u	gram	78,18	Metoda Dry Sieve Sievieng
	c. 200 - 600 u	gram	67,34	Metoda Dry Sieve Sievleng
	d. 100 - 200 u	gram	42,81	Metoda Dry Sieve Sievieng
	e. 50 - 100 u	gram	33,12	Metoda Dry Sieve Sievieng
	- Dust Fraction			
	a. 20 - 50 u	gram	27,34	Metoda Dry Sieve Sievieng
	b. 10 - 20 u	gram	18,41	Metoda Dry Sieve Sievieng
	c. 2 - 10 u	gram	15,10	Metoda Dry Sieve Sievieng
	- Clay Fraction			
	a. 0,05 - 2 u	gram	3,61	Metoda Dry Sieve Sievieng
	b. 0 - 0,05 u	gram	1,71	Metoda Dry Sieve Sievieng

Note : < = Below

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

Page 17 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number : 06815/LHP/VIII/2015

Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
Address	: Dill, Timor Leste
Identification number	: 05958-18/SD/08/2015
Description of Sample	Sediment (Sediment 2)
Date of sampling	: August 01, 2015
Date of received	: August 04, 2015
Date of analysis	: August 04, 2015 up to August 26, 2015
Costs for a data	

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	UESPA 8440 1996
2	TBT (Tri Butil Toluene)	mg/kg	<0,5	Water Leach, LC-MS/MS
3	Water Content	%	13,5	Metoda Gravimetri
4	Texture	1.00		
	- Sand Fraction			
	a. > 1000 u	gram	73,19	Metoda Dry Sieve Sievieng
	b. 500 - 1000 u	gram	63,25	Metoda Dry Sieve Sievieng
	c. 200 - 500 u	gram	47,23	Metoda Dry Sieve Slevieng
	d. 100 - 200 u	gram	38,72	Metoda Dry Sieve Sievieng
-	e. 50 - 100 u	gram	23,44	Metoda Dry Sieve Sievieng
	- Dust Fraction	the second state of the se		
	a. 20 - 50 u	gram	19,42	Metoda Dry Sieve Sievieng
	b. 10 - 20 u	gram	12,01	Metoda Dry Sieve Sievieng
	c. 2 - 10 u	gram	8,42	Metoda Dry Sleve Slevieng
	- Clay Fraction			
	a. 0,05 - 2 u	gram	2,11	Metoda Dry Sieve Slevieng
	b. 0 - 0,05 u	gram	1,05	Metoda Dry Sieve Sievieng

Note : < = Below

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

Page 18 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

Number : 06815/LHP/VIII/2015

Principal

- URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE
- Address Identification number Description of Sample Date of sampling Date of received Date of analysis

Dili, Timor Leste
05958-19/SD/08/2015
Sediment (Sediment 3)
August 01, 2015
August 04, 2015
August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMÉTÉR	UNIT	RESULT	METHOD
1	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	UESPA 8440 1996
2	TBT (Tri Butil Toluene)	mg/kg	<0,5	Water Leach, LC-MS/MS
3	Water Content	%	11,2	Metoda Gravimetri
4	Texture			
	- Sand Fraction			
	a. > 1000 u	gram	143,13	Metoda Dry Sieve Sievieng
	b. 500 - 1000 u	gram	82,14	Metoda Dry Sieve Sievieng
The second s	c. 200 - 500 u	gram	49,78	Metoda Dry Sieve Sievieng
	d. 100 - 200 u	gram	29,33	Metoda Dry Sieve Sievieng
	e. 50 - 100 u	gram	17,82	Metoda Dry Sieve Sievieng
	- Dust Fraction			
	a. 20 - 50 u	gram	15,97	Metoda Dry Sieve Sievieng
	b. 10 - 20 u	gram	14.14	Metoda Dry Sieve Sievieng
	c. 2 - 10 u	gram	5,62	Metoda Dry Sieve Sievieng
	- Clay Fraction			a land a late and a late and a late a
-	a. 0,05 - 2 u	gram	1,23	Metoda Dry Sieve Sievieng
	b. 0 - 0,05 u	gram	0,83	Metoda Dry Sieve Sievieng

Note : < = Below

Jakarta, August 26, 2015 UNILAB PERDANA, PT. ALLINGTORIUM USULTANE! BRINGAN Khairun Nisa

Quality Assurance Manager

Page 19 of 25

 The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JL Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015

Principal

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Address Identification number Description of Sample Date of sampling Date of received Date of analysis

: 05958-20/SD/08/2015

Sediment (Sediment 4)

: August 01, 2015

: Dili, Timor Leste

- : August 04, 2015
- August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NØ	PARAMETER	UNIT	RESULT	METHOD
1	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	UESPA 8440 1996
2	TBT (Tri Butil Toluene)	mg/kg	<0,5	Water Leach, LC-MS/MS
3	Water Content	%	14,3	Metoda Gravimetri
4	Texture			
	- Sand Fraction			
	a. > 1000 u	gram	127,27	Metoda Dry Sieve Sievieng
	b. 500 - 1000 u	gram	95,62	Metoda Dry Sieve Sievieng
	c. 200 - 500 u	gram	52,31	Metoda Dry Sieve Sievieng
	d. 100 - 200 u	gram	25,33	Metoda Dry Sieve Sievieng
	e. 50 - 100 u	gram	19,42	Metoda Dry Sieve Sievieng
	- Dust Fraction			
	a. 20 - 50 u	gram	17,43	Metoda Dry Sieve Sievieng
	b. 10 - 20 u	gram	12,24	Metoda Dry Sieve Sievieng
	c. 2 - 10 u	gram	4,31	Metoda Dry Sieve Sievieng
	- Clay Fraction			
	a.0,05-2u	gram	1,43	Metoda Dry Sieve Sievleng
	b. 0 - 0,05 u	gram	0,72	Metoda Dry Sieve Sievieng

Note : < = Below

Jakarta, August 26, 2015 UNILAB PERDANA, PT. ALLANDENDE ADUSAUNGAN KUSKUNGAN HIDUP Khairun Nisa

Quality Assurance Manager

Page 20 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/1 HP/VIII/2015

Principal

Address Identification number Description of Sample Date of sampling Date of received Date of analysis

URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE

Dili, Timor Leste 05958-21/SD/08/2015 Sediment (Sediment 5) August 01, 2015 August 04, 2015 : August 04, 2015 up to August 26, 2015

Laboratory Analysis Result

NO	PARAMETER	UNIT	RESULT	METHOD
1	Total Petroleum Hydrocarbon (TPH)	mg/kg	<20	UESPA 8440 1996
2	TBT (Tri Butil Toluene)	mg/kg	<0,5	Water Leach, LC-MS/MS
3	Water Content	%	16,8	Metoda Gravimetri
4	Texture			
	- Sand Fraction			
	a. > 1000 u	gram	164,20	Metoda Dry Sieve Sievieng
	b. 500 - 1000 u	gram	88,72	Metoda Dry Sieve Sievieng
	c. 200 - 500 u	gram	79,41	Metoda Dry Sieve Sievieng
	d. 100 - 200 u	gram	54,27	Metoda Dry Sieve Sievieng
	e. 50 - 100 u	gram	41,82	Metoda Dry Sieve Sievieng
	- Dust Fraction			
	a. 20 - 50 u	gram	21,92	Metoda Dry Sieve Sievieng
	b. 10 - 20 u	gram	19,33	Metoda Dry Sieve Sievieng
	c. 2 - 10 u	gram	14,55	Metoda Dry Sieve Sievieng
	- Clay Fraction			
	a. 0,05-2 u	gram	1,54	Metoda Dry Sleve Slevieng
	b. 0 - 0,05 u	gram	0,91	Metoda Dry Sieve Sievieng

Note : < = Below

Jakarta, August 26, 2015 UNICAB PERDANA, PT.

Page 21 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed and this analysis report is not for duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

DEDADT OF AMALVOID

	Number : 06815/LHP/VIII/2015
Principal	URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC
Address	: Dili, Timor Leste
Identification number	: 05958.22-24/P/08/2015
Description of sample	Plankton P1. Sea Water AL 3 (S 08° 33' 03,5" E 125° 34' 23,7") P2. Between AL3 - AL4 (S 08° 32' 57,0" E 125° 34' 18,0") P3. Sea Water AL 4 (S 08° 32' 55,2" E 125° 34' 15,3")
Method of sampling	: SNI 13-4717-1998
Method of analysis	SNI 06-3963-1995
Date of sampling	: August 01, 2015
Date of received	: August 01, 2015
Date of analysis	: August 01, 2015 up to August 26, 2015

Fitoplankton :

NO	INDMDU	P1	P2	P3
_	CYANOPHYTA			
1	Oscillatoria sp.1	42525	18711	26649
2	Oscillatoria sp.2		19845	5103
	CHRYSOPHYTA	Property and the second s		54 Ca
3	Amphiprora sp.	N	1134	567
4	Bacteriastrum sp.	7938	4536	6804
5	Biddulphia sp.	7371	3969	10773
6	Ceratailina sp.	A CONTRACTOR OF THE OWNER	a second second	7938
7	Chaetoceros laeve	8505	7371	11907
8	Chaetoceros sp.1	21546	16443	27783
9	Chaetoceros sp.2	20412	15876	31752
10	Chaetoceros sp.3	19278	14742	30618
11	Chaetoceros sp.4	14175	15876	11340
12	Chaetoceros sp.5		2835	
13	Climacospenia sp.	3402	1701	2835
14	Coscinodiscus jonesianus	16443	10206	17577
15	Coscinodiscus sp.1	17577	10206	8505
16	Coscinodiscus sp.2	27216	15876	28917
17	Coscinodiscus sp.3	The second	1701	62 S
18	Fragillaria sp.1	6804	2268	18711
19	Fragillaria sp.2	6804	10773	18711
20	Hemidiscus sp.	6237	2835	2268
21	Licmophora sp.	3969	1701	1134
22	Navicula sp.1		1701	3402
23	Navicula sp.2	10206	16443	21546
24	Nitzschia seriata	11907	9639	15876
25	Nitzschia sp.1	10206	6804	14742
26	Nitzschia sp.2	2268	1134	2268
27	Planktoniella sp.	2268	1134	567
28	Pleurosigma sp.1	2268	1134	7938
29	Pleurosigma sp.2	18711	13608	10206
30	Pleurosigma sp.3	2268	2835	6804

Page 22 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed report and

this analysis is not duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015

NO	INDVIDU	P1	P2	P3
31	Rhabdonema sp.	1701	5103	10206
32	Rhizosolenia calcar-avis	29484	19278	43092
33	Rhizosolenia robusta	14742	27783	42525
34	Rhizosolenia styliformis 1	31752	20979	42525
35	Rhizosolenia styliformis 2	2835	2835	1701
36	Rhizosolenia sp.1	28350	21546	23814
37	Rhizosolenia sp.2	30618	17577	26082
38	Surirella gemma		567	1701
39	Thalassiosira sp.		3969	1134
40	Thallasiothrix elongata	27783	23247	38556
41	Thallasiothrix nitzschioides	31752	15876	19845
42	FRAGILARIOIDEAE	3969	1701	1134
umlah	n individu/m ⁹	493290	393498	605556
umlah	Таха	34	41	40
ndeks diversitas H' = - E pi Ln pi		3.23	3.36	3.32
SHAN	INON - WEAVER, 1949)			
I-max	= Ln S	3.53	3.71	3.69
quitai	litas (E) = H'/H-max	0.92	0.90	0.90

Page 23 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed report and this analysis is not duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, Jl. Ciledug Raya No. 10, Cipulir, Kabayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : Jl. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS

NO	INDIVIDU	P1	P2	Pa
	ARTRHOPODA			
1.11	CRUSTACEA			
	COPEPODA			
1	Centrophagus sp.	2835	1134	
2	Corycaeus sp.	2268	1134	1701
3	Microsetella sp.	1134	7371	4536
4	Oithona sp.1	1701	1134	2835
5	Oithona sp.2	1701		
6	Oncaea sp.	3969	2835	1701
7	COPEPODA (1, nauplius)	1134	1701	1701
8	COPEPODA (2, nauplius)	2268	4536	3402
9	COPEPODA (1, copepodite)	3402	2268	1701
10	COPEPODA (.2, copepodite)	567		2835
	PROTOZOA			
	CILIOPHORA			
	FLAGELLATA	NECO		
11	FLAGELLATA (1))		2835	
12	FLAGELLATA (2))		8505	2268
-	TINTINNIDA			the second s
13	Codonellopsis sp.		1701	
14	Rhabdonella sp.	3969	2268	1701
15	Tintinnidae	5103	1701	1134
	TROCHELMINTHES			
	ROTATORIA			
16	ROTATORIA (1)	1134		
Jumla	h individu/m³	31185	39123	25515
Jumla	h Taxa	13	13	11
	s diversitas H' = - E pi Ln pi	2.41	2.32	2.32
	NNON - WEAVER, 1949)			
Section of the sectio	x = Ln S	2.56	2.56	2.40
	illitas (E) = H/H-max	0.94	0.90	0.97

Jakarta, August 26, 2015

Quality Assurance Manager

Page 24 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed report and this analysis is not duplicated (except the general report) without the license from the laboratory

LABORATORIUM LINGKUNGAN HIDUP

Kantor Pusat : GEDUNG UNILAB, JI. Ciledug Raya No. 10, Cipulir, Kebayoran Lama, Jakarta 12230 Telp. (021) 7253322 (hunting) Fax : 7253323 e-mail : unilabperdana@centrin.net.id Kantor Perwakilan : JI. Kutisari IV/2B, Kutisari, Tenggilis Mejoyo, Surabaya, Jawa Timur, Telp. (031) 8415839 Fax : (031) 8415839

REPORT OF ANALYSIS Number : 06815/LHP/VIII/2015 URGENT SHIFT OF FERRY TERMINAL IN DEMOCRATIC TIMOR LESTE : Dili, Timor Leste

Address
Identification number
Description of sample

Method of sampling Method of analysis Date of sampling Date of received Date of analysis TIMOR LESTE : Dili, Timor Leste : 05958.25-27/B/08/2015 : Benthos B1. Sea Water AL 3 (S 08° 33' 03,5" E 125° 34' 23,7") B2. Between AL3 - AL4 (S 08° 32' 57,0" E 125° 34' 18,0") B3. Sea Water AL 4 (S 08° 32' 55,2" E 125° 34' 15,3") : SNI 13-4718-1998 : SNI 03-3401-1994 : August 01, 2015 : August 01, 2015 : August 01, 2015 up to August 26, 2015

Benthos :

Principal

NO	INDIVIDU	81	82	B3
	MOLLUSCA			
	BIVALVIA			
1	Veneriidae			15
2	BIVALVIA (1)	15		
3	BIVALVIA (2) GASTROPODA		15	15
	GASTROPODA			The second se
4	Acmaea sp.1	15		
5	Acmaea sp.2		30	and the second
6	Bittium sp.		30	30
7	Cerithopsis sp.	15	15	30
8	Mitra sp.		15	Contraction of the second
9	Nassarius (sp 1)	15	A A	15
10	Nassarius (sp 2)	and the second second	15	
11	Natica sp.	and the second second	15	
12	Polynices sp.	15		
13	Triphora sp.	60		
14	Vexillum		15	
15	GASTROPODA (1)		1	15
	ARTRHOPODA		1	10
	CRUSTACEA			
16	Apseudes sp.	15		
17	AMPHIPODA	180		the product of the
- Altra	ANNELIDA	1	and the second sec	
	OLYGOCHAETA		1	
18	Sternaspis sp.		45	
19	Cossundae		10	45
20	Nereidae (sp.1)			90
20 21	Phylodocidae	60	75	15
22	Phylodocidae Spionidae	45	10	10
23	POLYCHAFTA(1)	30		
24	POLYCHAETA (1) POLYCHAETA (2)	00		15
2-7	SIPUNCULIDA			10
25	SIPUNCULIDAE	15	1	
	NEMATHELMINTHES	10		
26	NEMATODA (sp. 1)	240	15	180
27	NEMATODA (sp.2)	270	15	100
aler 1			1	
Jumlah individu/m²		720	300	465
lumlar	п Таха	13	12	11
Indeks diversitas H' = - E pi Ln pi		2.00	2.29	1.93
SHAN	NON - WEAVER, 1949)		La charte	1.00
-max	= Ln S	2.56	2.48	2.40
Equitailitas (E) = H/H-max		0.78	0.92	0.80

Jakarta, August 26, 2015 UNILAB PERDANA, PT.

Khairun Nisa

Quality Assurance Manager

Page 25 of 25

. The analysis laboratory that summarized only correlated with the samples have been analyzed report and this analysis is not duplicated (except the general report) without the license from the laboratory . Complains of the analysis report is not served after 30 days of the report published's date

Japan Port Consultants, Ltd.

TK Gotanda Bldg, 8-3-6, Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan

Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

Reference Contract Agreement, July 2015 by and between Japan Port Consultants, Ltd., (Tokyo, Japan), and PT. GEOMARINDEX (Jakarta, Indonesia)

FINAL REPORT VOLUME 4 ECOSYSTEM SURVEY (TERRESTRIAL AND MARINE BIOTA)

<u>Submitted to:</u> Japan Port Consultants, Ltd. TK Gotanda Bldg, 8-3-6, Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan

Submitted by:

PT. GEOMARINDEX

7th Floor, GRAHA SIMATUPANG Tower II Block A Jalan Letjen TB Simatupang Kav. 38 Jakarta 12540 Telp: +62-021-7884 0421, 781 7777 ext. 122 | Fax: +62-021-782 9337 E-mail: <u>fsgultom.geo@gmail.com, geomarindex@gmail.com</u> | mobile: +62 811864458

Issued Date: October 30, 2015

CONTENTS


4.1	Introduction	1
4.2	Methodology	2
	4.2.1 Data Collection	
	4.2.2 Location	2
4.3	Data Analysis	
	4.3.1 Species and Ecosystem Diversity	2
	4.3.2 Density/Abundance, Frequency, and Important Value Index	3
	4.3.3 List of Protected and Important Taxa	4
4.4	Result	
	4.4.1 Terrestrial Biota	
	4.4.2 Marine Biota	5
	4.4.2.1 Transect 1	6
	4.4.2.2 Transect 2	6
	4.4.2.3 Transect 3	6
	4.4.2.4 Additional Area (Extra Transect)	6
4.5	Conclusions	11
4.6	References	3
4.7	Appendix	4

VOLUME 4 ECOSYSTEM SURVEY (TERRESTRIAL AND MARINE BIOTA)

4.1 INTRODUCTION

Terrestrial and marine biota survey is one of the important natural and environmental aspects to determine biological environmental information from the study area, in the case of assessing environmental pre-condition of ferry terminal in Dili Port, Timor-Leste before Ferry Terminal urgent shift or kind of development project. Biological diversity or biodiversity is the variety of all life forms. It encompasses three (3) levels of diversity: genetic, species and ecosystems. The Convention of Biological Diversity (CBD) defined biodiversity as the variability among living organisms such as terrestrial, marine and other aquatic systems. Biodiversity is constantly changing. It can be increased by genetic changes and evolutionary processes, or it can be reduced by threats that lead to biodiversity population decline and extinction. Biodiversity is the life-support system for all human beings. It provides food, health, shelter, medicine, fuel, clean air and water, contributes to local livelihoods, and regulates the overall climate system. Plants, animals, coral reef, and others kinds of organisms are playing role as bio-indicator of environmental health and ecosystem stability, as life alarm to warn quality decreasing because of physical or chemical over-intervention to the habitat.

Dili Port Ferry Terminal urgent shifting project will impact the existing environment condition, especially life organism near the project site. To prevent negative impact, the management should understand existing biodiversity condition as a baseline, predict and minimize environmental impact, also conduct regular monitoring. To provide biodiversity data baseline, biological team has surveyed terrestrial and marine biodiversity around project site. As we know on The National Biodiversity Strategy and Action Plan (NBSAP) of Timor-Leste 2010-2020 summarize that Timor-Leste have 2,448 biological species around 14.916.767 Km². Here we describe the methodology and result of the survey.

¹⁵³⁰¹⁰ ECOSYSTEM (Terrestrial and Marine Biota) Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

4.2 METHODOLOGY

4.2.1 Data Collection

Assessment method for terrestrial biology and marine biology is data collection by 3 Transects for each one of them 100 m cross the terrestrial, coastal and marine area. If there is woody plants, also assessed by sampling plot 20 m x 20 m. Data that already recorded are name, number, place/habitat, and interval of species found, special characteristic especially for unidentified species, and also photo if available to record.

4.2.2 Location

Data was collected in area around Dili Port, Timor-Leste (see Figure 1).

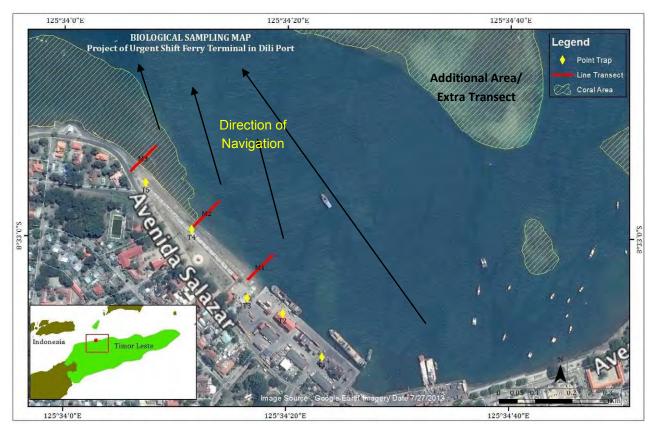
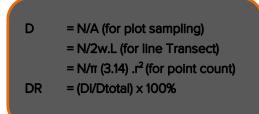


Figure 4.1 Sampling Location

4.3 DATA ANALYSIS

4.3.1 Species and Ecosystem Diversity

Species diversity is analyzed using Shannon Wiener Formula. All of individual sample catagorized in every taksonomy group, such as species and family. Shannon Wiener Formula (H') is used species diversity index measured by formula:


153010 ECOSYSTEM (Terrestrial and Marine Biota) Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

$$H' = -\sum_{i=1}^{R} p_i \ln p_i$$

Where : pi = proportion of species

4.3.2 Density/Abundance, Frequency, and Important Value Index

To understand size of a population in one study area in one period of time, we need to measure important value index (IVI) that contents of the percentage values of relative species density or at least it abundance and relative species frequency, for plant species with diameter, should be completed by relative dominance values. The index is used to determine the overall importance of each species in the community structure. Density (D) is number of individual sample of one species per area at on time, then also measured numerical strenght of a species in relation to the total number of individuals of all the species called relative density (DR), in other hands if there is no sufficient data to count the desity, the abundance is the alternative, which is proportional number of individual sample of one species whitout area comparison. The formula is :

Where :	D	= density
	DR	= relative density
	Di	= density of species i
	D total	= total of all density species
	Ν	= number of species
	А	= area sampling
	W	= width of sampling
	L	= length of sampling
	r	= radius of sampling

The term of frequency (F) refers to the degree of dispersion of individual species in an area and usually discribe in term of percentage occurrence. It was studied by sampling of the study area at several places. The degree of dispersion of individual species in relation the number of all the species recorded called relative frequecy (FR). The formula is :

F = number of sampling area where species "i" found/total sampling area
 FR = Fi/Ftotal

```
Where : Fi= Frequency of species "i"Ftotal= Total of all frequency
```

Because of there is no plant or vegetation with diameter found in study area, the dominance values and the relatives is not analyzed. To measure Important Value Index (IVI) follow this formula:

4.3.3 List of Protected and Important Taxa

All of species or genus of biodiversity sampling result are matched with species protection list of International Union for Conservation Nature (IUCN), Convention of International Trade of Endangered Species (CITES), and local protection law or national biodiversity action plan in Timor-Leste.

4.4 RESULT

4.4.1 Terrestrial Biota

Terrestrial fauna diversity survey found seven species of 167 species of avifauna in Timor Leste, for any details, NSBAP of Timor-Leste indicates the presence of 151 terrestrial, 16 marine, and 91 terrestrial and marine birds. With regard to mammals, we only found one species from 69 terrestrial mammals listed in Timor-Leste. Most of them are common species which are found in urban area, like *Rattus norvegicus* (Norwegian rat) which are usually found in small garden near APORTIL office and *Passer montanus* (Eurasian Tree Sparrow), *Pycnonotus aurigaster* (the sooty-headed bulbul), *Hirundo tahitica* (Pacific Swallow) for avifauna which are found almost every where near and around the port. Some of them are also rarely found around area like *Egretta sacra sacra* (Pacific reef heron), we found it only one time when it flew around the beach.

TAXA	SPECIES	COMMON NAME	IVI
Mammals	Rattus norvegicus	Norwegian rat	0
Avifauna	Pycnonotus aurigaster	the sooty-headed bulbul	39.8
Avifauna	Passer montanus	Eurasian Tree Sparrow	53.5
Avifauna	Ducula sp.	-	11.1
Avifauna	Hirundo tahitica	Pacific Swallow	51.5
Avifauna	Cuculus lepidus	Sunda lesser cuckoo	11.1
Mammals	Rattus norvegicus	Norwegian rat	Ô

Table 4.1 List of Terrestrial Biota that Exist in the Survey Area

Primary Data : Tim Ecology Survey, August 2015

Figure 4.2 Avifauna around Project Site, Passer montanus, Hirundo tahitica, Ducula sp., Pycnonotus aurigaster

All of mammals and avifauna list are categorized in International Union for Conservation Nature (IUCN) Red-list as Least Concern, which means that it has been evaluated against the criteria and does not qualify for Critically Endangered, Endangered, Vulnerable or Near Threatened, in other name the list does not qualify as for threatened category. The list is also not listed in Convention International Trade of Endangered Species (CITES). Species diversity index value (H') for avifauna is 1,423, it means that diversity is low and there is dominance of one or two species, that is *Passer montanus* and *Hirundo tahitica*. Mammals are not able to count of H' value because only one was record.

Terrestrial flora diversity survey only found one costal plant species *Ipomea pes-caprae* which was found around costal area near APORTIL, It grows on the upper parts of beaches and endures salted air and aslo one of the most common and most widely distributed salt tolerant plants and provides one of the best known examples of oceanic dispersal. Its seeds float and are unaffected by salt water. As describe on NBSAP of Timor-Leste, the natural vegetation is tropical dry broadleaf with an undergrowth of shrubs and grasses supporting a rich wildlife. Many trees are deciduous or partly deciduous, dropping their leaves during the dry season. There are also evergreen and thorn trees in the woodland mix. Typical trees of the lowland slopes include a tropical chestnut, *Sterculia foetida, Callophyllum teysmanii* and candlenut (*Aleurites moluccand*). The dominant native species available are *Eucalyptus alba, Eucalyptus urophylla, Pterocarpus indicus* and *Santalum album*. The most valuable among the native species are *Pterocarpus indicus* and *Santalum album*.

4.4.2 Marine Biota

The geographic positioning of Timor-Leste places it in a strategic area for marine biodiversity as part of the Coral Triangle. By approximately 700 kilometers long of coastal line, Timor-Leste is one of the center of marine biodiversity and home to 75 percent of all known coral species, more than 3,000 species of reef fishes, six of the seven known turtle species, whale sharks, manta rays and a diverse array of marine mammals such as 22 species of dolphin, and a variety of whale species. This survey showed that 18 marine plants consisting of 16 macro alga and seagrass of 28 species, 12 benthos species, 4 soft coral species, 17 hard coral species, and 7 species of fish were found in the northwest of the APORTIL (Dili Port) area.

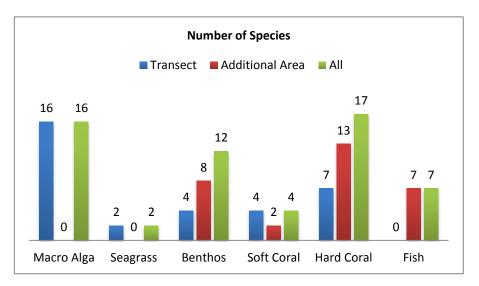
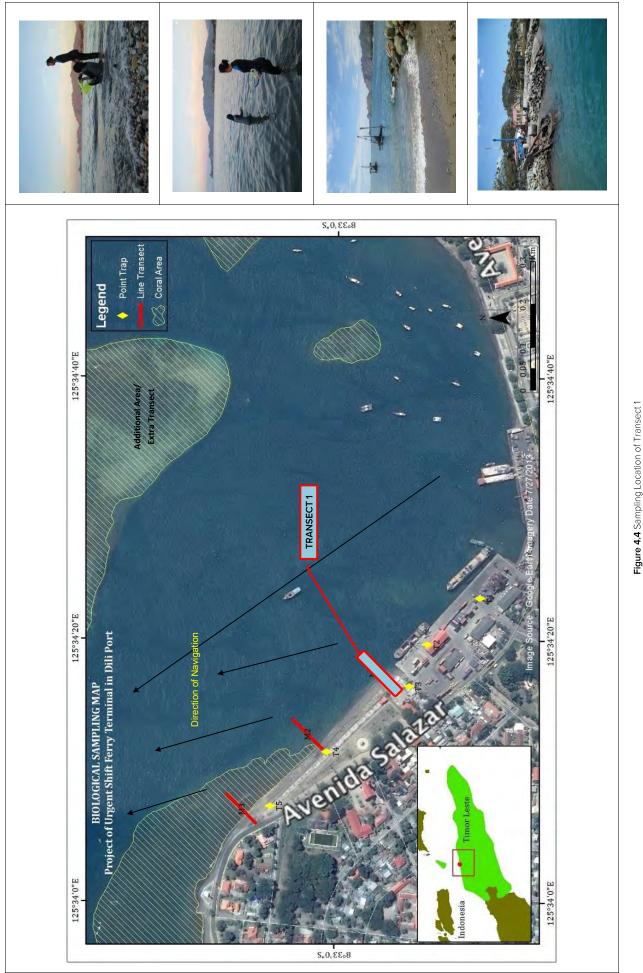


Figure 4.3 List of Species Number That Exist in The Survey Area

4.4.2.1 Transect 1

Transect 1 is existing location of Dili Port. There are already port operation activites such as docking and unloading ships. According to the result of ecology marine observation at Transect 1 coral reef such as soft corals, hard corals, or micro algae was not found. Basic condition consists of substrate mud with sea water condition are quite murky. At this location there were not any important types of biota that can be taken into consideration that the location is a conservation site or location with a high degree of diversity or fishing ground. So that ecologically, Transect 1 location is safe enough to become the location of port development.

4.4.2.2 Transect 2


Based on ecology observation at Transect 2, there are only mud substrate and not found coral and other corals such as hard corals, soft corals, and macro algae.

4.4.2.3 Transect 3

At Transect 3 there were 16 species of macro algae (sea weed), 2 species of sea grass, 4 species benthos, 4 soft coral species, and 7 hard corals.

4.4.2.4 Additional Area (Extra Transect)

At additional area or extra Transect there were 8 species benthos 2 soft coral species, 13 hard coral species, and all of the fish recorded outside.

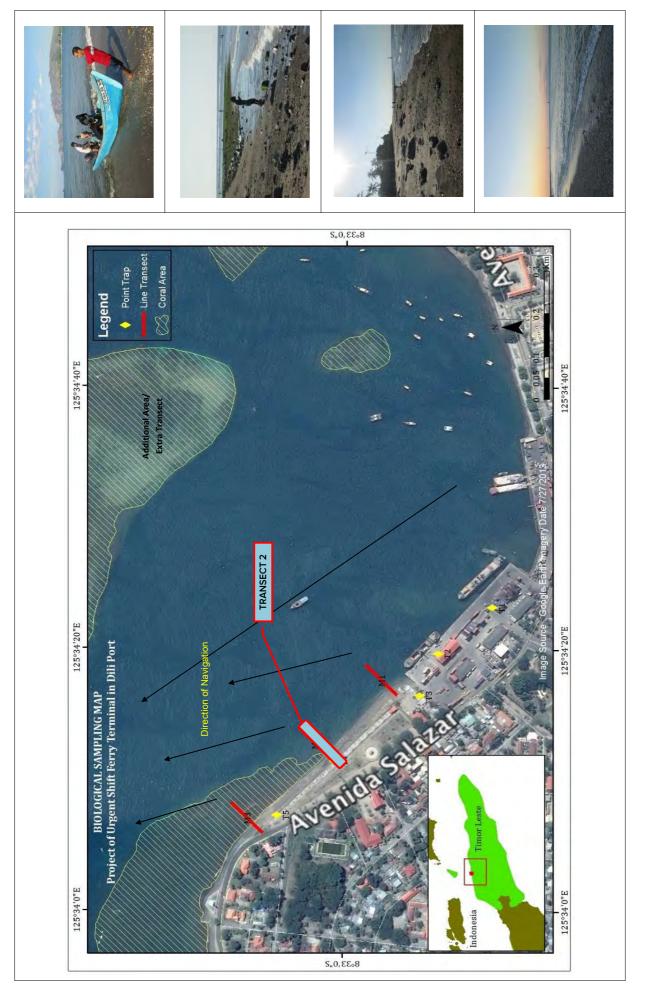
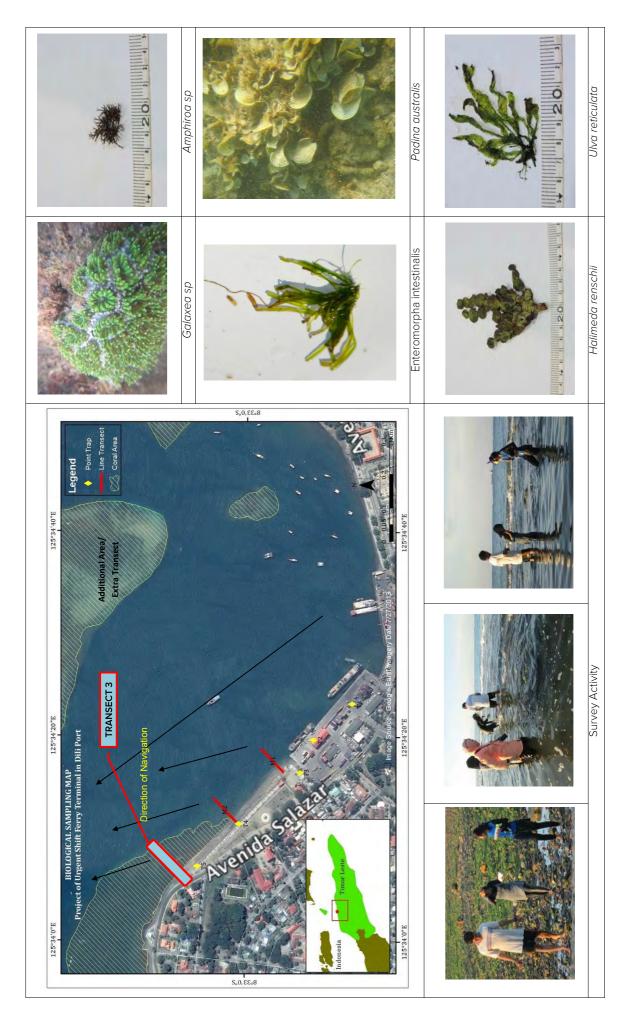



Figure 4.5 Sampling Location of Transect 2

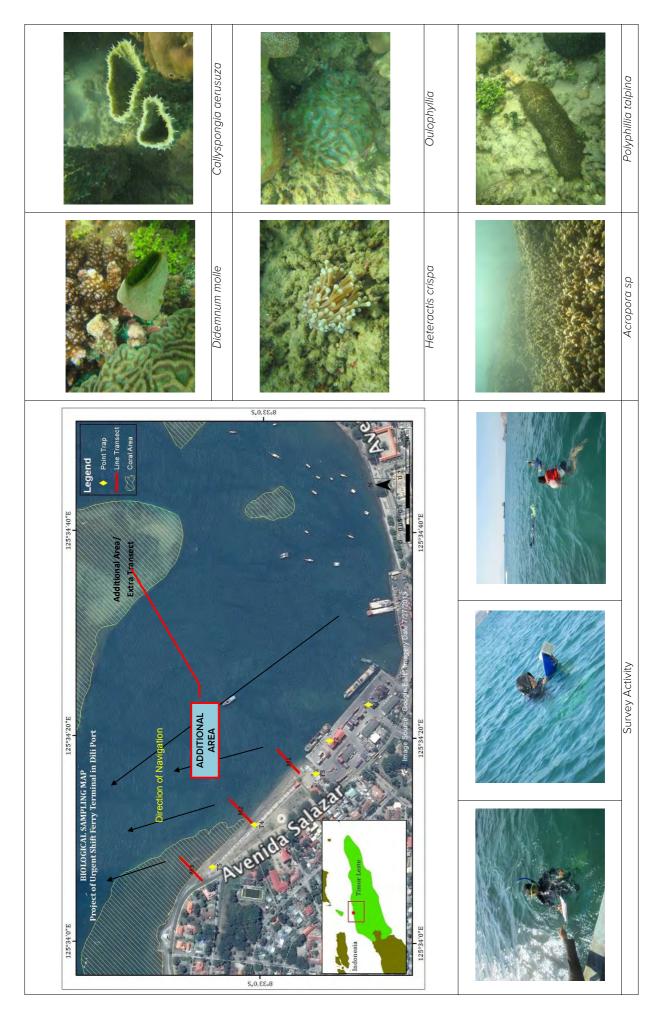


Figure 4.7 Sampling Location of Extra Transect

4.5 CONCLUSIONS

Important coral was widely found in the end point of Transect 3 which is listed in Least Concern IUCN Redlist and six species of the coral were found in the additional area (extra sampling point) around 600 m north of Dili Port. Table 4.2 below shows the point where corals were found.

NO	SPECIES	LOCATION / GPS POINT	IUCN REDLIST
1	Pocillopora damicornis	Around Transect 3 125° 34' 28,73" E 8° 32' 47,86" E	Least Concern
2	Diploastrea heliopora	Around Additional Area/Extra Transect	Near Threatened
3	Polyphyllia talpina	125°34' 42,20" E	Least Concern
4	Heliofungia actiniformis	8º32'05,36" E	Vulnerable
5	Fungia concinna		Least Concern
6	Pachyseris speciosa		Least Concern
7	Coeloseris mayeri ny Data : Tim Ecology Survey ,		Least Concern

Table 4.2 List of Species that have a IUCN Redlist

Primary Data : Tim Ecology Survey, August 2015

Notes : - = not have English/common name, usually common name is brad mark name.

In order to understand the condition of the coral and other important species distribution around the project site, the survey at the additional area was conduct for comparison purpose.

Figure 4.8 Hard Coral Around Additional Area (Extra Transect), Diploastrea heliopora, Polyphyllia talpina, dan Heliofungia actiniformis

Figure 4.9 Hard Coral around Transect 3, Pocillopora damicornis

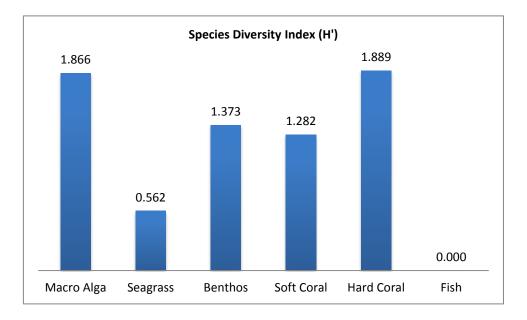


Figure 4.10 Species Diversity Index

All of marine biota listed have different diversity and condition and shown in species diversity index. Macro alga and Hard Coral have similar value, because some of live and dead hard coral provide habitat for macro alga. Benthos also has similar value, despite benthos is higher, because it has any similar habitat with soft coral. Sea grass has lowest value, because common substrate in coastal area is hard rock and soft area degraded by wave and human activities. All of fish species were only found outside Transect and the data is unable to conduct H' analysis. There are two species of hard coral listed in IUCN Redlist as Near Threatened, *Diploastrea heliopora* and Vulnerable, *Heliofungia actiniformis*. Both of them need serious handling to prevent extinction. Project area should have the minimum environmental impact by avoiding physical and chemical destruction. But both of them are found in additional area or Extra Transect not only in the main location of port development. Additional locations are only used as a comparison only for the handling of the environmental impact of the port activities in the future.

- 1. Terrestrial biodiversity have 7 species avifauna with species diversity 1,247; 1 species mammals and 1 coastal plant. None of them are listed on endangered protection status.
- 2. Marine biodiversity have 16 species macro alga, 2 species sea grass, 12 species benthos, 4 species soft coral, 17 species hard coral and 7 species fish and all of them are only found in the location of Transects 3 and an additional area. One type of coral that have the status of Least Concern IUCN Redlist (A taxon is Least Concern when it has been evaluated against the criteria and does not qualify for Critically Endangered, Endangered, Vulnerable or Near Threatened. Widespread and abundant taxa are included in this category) were found at Transect 3 only.
- There are 2 hard coral species assessed as vulnerable and near threatened but both of them were found in additional area or Extra Transect not in the main location to be used for Dili port development. Additional locations were surveyed only for comparison purpose. (Appendix 4.7 List of Marine Biota).

- 4. Coral reef or coral species were not found in Transect 2 and Transect 1 so it can be recommended as a location for Dili Port development.
- 5. Site conditions around Dili port is still relatively well so the survey result can be used as a reference for the monitoring plan, in order to prevent/mitigate the negative environmental impact to the species of coral and fish around the site.
- 6. The existence of the existing port so far does not interfere with the existence of the coral and other species. The environmental conditions should be maintained by conducting periodic monitoring of the condition of marine ecology, terrestrial and marine water quality so that the negative impact on the surrounding environment can be managed and monitored properly.

4.6 REFERENCES

____. The National Biodiversity Strategy and Action Plan of Timor-Leste 2011-2010. Democratic Republic of Timor-Leste. 2011.

Eaton J. Timor-Leste. Bird Tour Asia. 2013.

Burung Indonesia. Ecosystem Profile Summary, Wallacea Biodiversity Hotspot. 2014.

International Union for Conservation Nature Red-List. www.iucnredlist.org, access date Aug 2015. Convention of International Trade for Endangered Species. www.cites.org. access date Aug 2015.

\mathbf{X}	
D	
Ш	
ק	
Ā	
4	

rial
errestri
List of T
Table 4.3

NO	ТАХА	FAMILY	ENGLISH NAME	SCIENTIFIC NAME	ы	DR	FR	IVI	IUCN	CITES
-	Mammals	Muridae	Norwegian Rat	Rattus norvegicus	Э				LC	I
2	Avifauna	Avifauna Pycnonotidae	The sooty-headed bulbul	Pycnonotus aurigaster	11	21.57	21.57 18.18	39.75	LC	I
ю	Avifauna	Passeridae	The Eurasian tree sparrow	Passer montanus	18	35.2 9	18.18	53.4 8	LC	T
4	Avifauna	Avifauna Columbidae		Ducula sp	1	1.96	60'6	11.05		ı
വ	Avifauna	Hirundinidae	Pacific swallow	Hirundo tahitica	17	33.33	17 33.33 18.18	51.52	LC	ı
9	Avifauna	Cuculidae	Sunda Cucko	Cuculus lepidus	1	1.96	60'6	11.05	LC	ı
7	Avifauna	Avifauna Scolopacidae	Sharp-Tailed sandpiper	Calidris acuminata	2	3.92	18.18	3.92 18.18 22.10	LC	I
∞	Avifauna Ardeidae	Ardeidae	Pacific Reef Heron	Egretta sacra sacra	-	1.96	60.6	11.05	LC	I
0+0/V	1 7			11 11 1 11			ر		. ر	

Note: Important Value Index (IVI) is one of the parameters used in calculating the measurements of communities of organisms.

ta
<u>o</u> t
. 🖂
Ē
d)
Ä
rine
a
ŝ
2
ч <u> </u>
Ö
St
_
4
4
d)
<u>ے</u>
a
a
⊢
-

				_	ane		INIA								
	4 V V		ENGLISH	CDECIEC	C	COORE	COORDINATE	TRA	TRANSECT	5		8		PROTECTION	CTION
			NAME	JLECIES	1	×	٨	1 2 3 ADD	3 1	DD	בא	۲ ۲	Ξ	IUCN	CITES
-	Macro Alga	Caulerpaceae	The Sea Grape	Caulerparacemosa	5	125 ⁰ 34' 12,61" E	125 ⁰ 34' 12,61" E 8 ⁰ 32' 56,428" S	1	>	ı	1.309	1.309 6.250 7.559	7.559	T	I
2	Macro Alga	Caulerpaceae	The Green Feather Alga	Caulerpasertularoides	2	125°34' 12,61" E	125° 34' 12,61" E 8° 32' 56,428" S	1	>	ı	0.524	0.524 6.250	6.774	I	ı
ю	Macro Alga	Cladophoraceae	I	Chaetomorphacrassa	6	125 ⁰ 34' 12,61" E	125° 34' 12,61" E 8° 32' 56,428" S	1	>	1	1.571	1.571 6.250	7.821	I	I
4	Macro Alga	Coralinaceae	I	Amphiroasp	2	125 ⁰ 34' 12,61" E	125 ⁰ 34' 12,61" E 8 ⁰ 32' 56,428" S	1	>	1	0.524	0.524 6.250	6.774	I	I
Ð	Macro Alga	Dictyotaceae	The Brown Alga	Padinaaustralis	110	125 ⁰ 34' 12,61" E	125° 34' 12,61" E 8° 32' 56,428" S	1	>	-	28.796	6.250	28.796 6.250 35.046	I	ı
9	Macro Alga	Dictyotaceae	I	Dictyotabartayresiana	3	125 ⁰ 34' 12,61" E	125°34' 12,61" E 8°32' 56,428" S	1	>	1	0.785	6.250	7.035	I	I
7	Macro Alga	Dictyotaceae	1	Padinatetrastomatica	8	125 ⁰ 34' 12,61" E	125°34' 12,61" E 8°32' 56,428" S	1	>	ı	2.094	6.250	8.344	I	I
∞	Macro Alga	Galaxauraceae	I	Galaxauraarborea	1	125 ⁰ 34' 12,61" E	125°34'12,61" E 8°32'56,428" S	1	>	I	0.262	0.262 6.250 6.512	6.512	I	I

Ľ		ENGLISH	CDECIEC	5	COORDINATE	INATE	TRA	TRANSECT		8	2	PROTECTION	CTION
	_	NAME	0160160	J	×	۲	1 2	3 ADI			2	IUCN	CITES
Gracilariaceae	aceae	ı	Gracillariacanaliculata	10	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 2.618	6.250	8.868	ı	I
Gracilariaceae	iaceae	I	Gracillariacurtissae	2	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 0.524	6.250	6.774	ı	ı
Halimedaceae	laceae	I	Halimedagracillis	28	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 7.330	6.250	13.580	ı	I
Halimedaceae	laceae	I	Halimedarenschii	l	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 0.262	2 6.250	6.512	-	I
Rhodom	Rhodomelaceae	Mustard Limu	Laurencianidifica	∞	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 2.094	l 6.250	8.344	ı	I
UIve	Ulvaceae	I	Ulvareticulata	130	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 34.031	1 6.250	40.281	ı	I
Ulv	Ulvaceae	I	Enteromorphaintestinalis	25	125 ⁰ 34' 12,61" E	8°32' 56,428" S	1	>	- 6.545	6.250	12.795	ı	I
NΝ	Ulvaceae	I	Ulvalactuca	41	125°34' 12,85" E	8°32' 56,19" S	1	>	- 10.733	3 6.250	16.983	ı	I
Hydroc	Hydrocharitaceae	I	Enhalusacoroides	33	125 ⁰ 34' 12,85" E	8°32' 56,19" S	1	>	- 75.000		50.000125.000	ı	I
Hydroc	Hydrocharitaceae	I	Halophilaovalis	11	125 ⁰ 34' 12,85" E	8°32' 56,19" S	1	>	- 25.00	0 50.000	25.000 50.000 75.000	ı	I
Sab	Sabellidae	I	Sabellastartesp	с	125°34' 12,85" E	8°32' 56,19" S	1	>	- 27.273	3 25.000	0 52.273	ı	I
Sei	Serpulidae	Christmas Tree Worms	Spirobranchusgiganteus	3	125 ⁰ 34' 28,73" E	8°32'47,86" S	1	>	- 27.273	3 25.000	0 52.273	I	I
Sul	Suberitidae	I	Aaptossp 1	Э	125°34' 12,85" E	8°32' 56,19" S	1	>	- 27.273	3 25.000	0 52.273	I	I
Sub	Suberitidae	I	Aaptossp 2	2	125 ⁰ 34' 28,73" E	8°32'47,86" S	1	>	- 18.182	25.000	0 43.182	I	I
Cally	Callyspngiidae	I	Callyspongiaaerisuza	-	125 ⁰ 34' 42,20" E	8°32' 05,36" S	1	1		I	ı	I	I
Sub	Suberitidae	I	Aaptos sp.	-	125°34' 42,20" E	8°32'05,36" S	1	1	- ^	I	I	I	I
Рһу	Phyllidiidae	Sea Slug	Phyllidiavaricosa	-	125°34'42,20" E	8°32' 05,36" S	-	1	- ^	I	I	I	I
Did	Didemnidae	The Tall Urn Ascidian	Didemnummolle	-	125°34'42,20" E	8°32' 05,36" S	1	1	- >	I	I	I	I
Cla	Clavelinidae	Tunicate Black Orange	Clavelinarobusta	I	125°34'42,20" E	8°32' 05,36" S	1	1	- >	I	I	I	I
Stiche	Stichodactylidae	Sebae Anemone	Heteractiscrispa	I	125°34'42,20" E	8°32' 05,36" S	1	1	- >	I	I	I	I
Stiche	Stichodactylidae	Ritteri Anemone	Heteractismagnifica	I	125 ⁰ 34' 42,20" E	8°32' 05,36" S	1	1	-	I	I	I	I
Alc	Alcyoniidae	I	Sarcophytonsp	Ĺ	125 ⁰ 34' 28,73" E	8°32'47,86" S	1	>	- 43.750	0 25.000	0 68.750	I	I
Alc	Alcyoniidae	I	Sinulariasp 2	Е	125 ⁰ 34' 28,73" E	8°32'47,86" S	1	>	- 18.75(18.750 25.000	0 43.750	I	I
Alc	Alcyoniidae	I	Sinulariasp	4	125 ⁰ 34' 28,73" E	8°32'47,86" S	1	>	- 25.00	0 25.000	25.000 25.000 50.000	I	I

153010 ECOSYSTEM (Terrestrial and Marine Biota) Survey Report Package-2: Natural and Environmental Survey for Preparatory Survey for the Project of the Urgent Shift of Ferry Terminal in Dili Port

Page 15

TION	CITES	I	I	I	I	I	I	ı	I	I	ı	I	ı	I	I	I	I	I	I	I	ı	I	ı	ı	ı
PROTECTION		I	I	I	1	1	1	LC	ı	1	NT	LC	٧U	LC	1	1	LC	LC	I	1	1	I	1		LC
	2	37.500	25.397	36.508	25.397	25.397	36.508	25.397	25.397	ı	ı	ı	1	ı	ı	ı	I	I	I	1	ı	1	-	ı	1
£	Ч	25.000	14.286	14.286	14.286	14.286	14.286	14.286	14.286	I	T	I	I	I	I	I	I	I	I	I	ı	I	I	ı	ı
2	הא	12.500	11.111	22.222	11.111	11.111	22.222	11.111	11.111	ı	I	ı	ı	1	ı	ı	ı	I	I	ı	ı	I	ı	ı	ı
СТ	ADD	ı	ı	ı	1	ı	ı	ı	1	>	~	>	>	>	>	>	>	~	>	>	>	>	~	>	>
TRANSECT	ю	>	>	>	>	>	>	>	>	1	I	ı	ı	ı	ı	1	1	I	I	ı	ı	1	1	ı	ı
TR/	1 2	1	1	1	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
COORDINATE	Y	8°32'47,86" S	8°32'47,86" S	8°32′47,86° S	8°32'47,86" S	8°32'47,86" S	8°32'47,86" S	8° 32' 47,86" S	8°32'47,86" S	8°32'05,36" S	8°32' 05,36" S	8°32'05,36" S	8°32' 05,36" S	8°32' 05,36" S	8°32'05,36" S	8°32'05,36" S	8°32' 05,36" S	8°32′05,36° S	8°32' 05,36" S	8°32'05,36" S	8°32' 05,36" S	8°32' 05,36" S	8°32' 05,36" S	8°32' 05,36" S	8°32' 05,36" S
COORI	×	125°34' 28,73" E	125°34' 28,73" E	125°34' 28,73" E	125°34'28,73"E	125°34' 28,73" E	125°34' 28,73" E	125°34' 28,73" E	125°34'28,73"E	125°34'42,20" E	125° 34' 42,20" E	125°34'42,20" E	125°34'42,20" E	125°34'42,20" E	125°34'42,20" E	125°34'42,20" E	125°34'42,20" E	125 ⁰ 34'42,20"E	125° 34' 42,20" E	125°34'42,20" E	125° 34' 42,20" E	125° 34' 42,20" E	125°34'42,20" E	125 ⁰ 34' 42,20" E	125 ⁰ 34' 42,20" E
C	7	2	1	2	-	-	2	1	-	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı			I	,	,
CDLCIFC	SFECIES	Neptheasp	Goniastreasp	Faviasp	Favitessp 2	Favitessp 1	Galaxeasp	Pocilloporadamicornis	Poritessp	Oulophylliasp	Diploastreaheliopora	Polyphylliatalpina	Heliofungiaactiniformis	Fungiaconcinna	Pectiniasp	Galaxeasp	Pachyserisspeciosa	Coeloserismayeri	Acroporasp	Amphiprionsp	Pomacentrusmoluccensis	Hemiglyphidodonplagiom etopon	Cheiloprionlabiatus	Paraglyphidodonmelas	Labroidesdimidiatus
ENGLISH	NAME	-	-	I	I	I	I	Cauliflower Coral	I	I	Diploastrean Brain Coral	Father Coral	Long Tentacle Coral	Disc Coral	I	I	I	-	I	I	Lemon Damselfish	Lagoon Damselfish	-	Bluefin Damselfish	Blue Diesel Wrasse
		Nephtheidae	Faviidae	Faviidae	Faviidae	Faviidae	Oculinidae	Pocilloporidae	Poritidae	Faviidae	Faviidae	Fungidae	Fungidae	Fungidae	Pectiniidae	Oculinidae	Agariciidae	Agariciidae	Acroporidae	Pomacentridae	Pomacentridae	Pomacentridae	Pomacentridae	Pomacentridae	Labridae
A V A	IAAA	Soft Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Hard Coral	Fish	Fish	Fish	Fish	Fish	Fish
) z	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57

	1 1 1		ENGLISH	CDECIEC	C	COORDINATE	NATE		TRANSECT	ECT ECT		8		PROTE	PROTECTION
			NAME	OT ECLED	3	×	۲	1 2	5	ADD	ž	Ľ	5	IUCN	IUCN CITES
28 2	Fish	Labridae	Yellowtail	Diproctacanthusxanthurus		125° 34' 42.20" E 8° 32' 05.36" S	8°32' 05.36" S	1	۱	>	I	I	ı	LC	ı
			tupenp				1								

Note: Important Value Index (IVI) is one of the parameters used in calculating the measurements of communities of organisms. (-) = not have English/common name, usually common name is brad mark name.