資 料

[資料リスト]

- 1. 調査団員・氏名
- 2. 調査行程
- 3. 関係者(面会者) リスト
- 4. 討議資料 (M/D)
- 5. 参考資料
- 5-1 フェリー利用者のヒアリング調査
- 5-2 波浪条件解析結果
- 5-3 桟橋構造計算結果
- 6. その他の資料・情報 (現地再委託調査結果)

1. 調査団員・氏名

1-1 現地調査

No.	担当	氏名	所属
1	総括	小柳 桂泉	JIJCA
2	業務主任者/港湾計画	松浦 榮一	Ides
3	港湾施設設計	浅野 敦	JPC
4	自然条件調査	佐瀬 攻	JPC
5	環境社会配慮	山田 正穂	Ides
6	施工・調達計画/積算	西村 進	JPC

1-2 概略設計説明

No.	担当	氏名	所属
1	総括	小柳 桂泉	JIJCA
2	計画管理	工藤貴裕	JIJCA
3	業務主任者/港湾計画	松浦 榮一	Ides
4	港湾施設設計	浅野 敦	JPC

2. 調査行程

2-1 現地調査

				調者	内容		1
日付	曜日	総括/JICA	業務主任/港湾計画 成田→シンガポール	港湾施設設計 成田→シンガポール	自然条件	施工・調達計画/積算 成田→シンガポール	環境社会配慮
6月29日	月						
6月30日	火		Arr Dili by MI296 (14:20)	Arr Dili by Ml296 (14:20)		Arr Dili by MI296 (14:20)	
7月1日	水		現地調査日程等協議 APORTILとの日程 等調整会議	現地調査日程等協議 APORTILとの日程 等調整会議		現地調査日程等協議 APORTILとの日程 等調整会議	
7月2日	木		IC/R等説明·協議	IC/R等説明協議		IC/R等説明協議	
7月3日	金		APORTIL打合せ	APORTIL打合せ		市場調査。 現地建設業者面談、調査票配布	
7月4日	±		APORTIL打合せ 資料整理	APORTIL打合せ 資料整理		APORTIL打合せ 単価調査。資料整理	
7月5日	П	Arr Dili by GA7300 (12:20) Internal Meeting	団内会議	団内会議		団内会議	
7月6日	月	JICA事務所協議 MD協議 (APORTIL) IFC関き取り調査	JICA事務所協議 MD協議(APORTIL) IFC聞き取り調査	MD協議(APORTIL)	成田→シンガポール	MD協議(APORTIL)	成田一シンガポール
7月7日	火	GIZ Maritime Project聞き取り調査 MD 協議 (APORTIL)	GIZ Maritime Project聞き取り調査 MD 協議(APORTIL)	GIZ Maritime Project聞き取り調査/MD協 議(APORTIL)	シンガポール→ディリ 現地調査準備	GIZ Maritime Project聞き取り調査 MD協議(APORTIL)	シンガポール→ディリ 現地調査準 備
7月8日	水	MD協議(APORTIL)	MD協議(APORTIL)	MD協議(APORTIL)/現地再委託調査 応札書類開封・評価/契契約書署名	JICA表敬訪問 現地再委託業者能力評価	現地再委託調査応札書類開封·評価 /契契約書署名	APORTIL打合せ(IC/P, 質問表等)
7月9日	木	外務協力省 協議 Tibar新港開発状況視察 Dry port 状況視察	外務協力省 協議 Tibar新港開発状況視察 port 状況視察	フェリー旅客ヒアリング項目の検討 /Tibar新港開発状況視察/Dry port 状況視察	現地再委託土質調査業者との協議/	関税率等調査 Tibar新港開発状況視察 Dry port 状況視察	環境社会配慮聞き取り調査スケ ジュールの検討/Tibar新港開発状況 視察/Dry port 状況視察
7月10日	金	JICA事務所協議 MD協議(APORTIL) IFC聞き取り調査	JICA事務所協議 MD協議(APORTIL) IFC関き取り調査	現地再委託業者(Package 1)調査日 程打合せ/契約書作成・処理	現地再委託土質調査業者と契約 海上作業許可申請書作成	現地船会社面談 市場調査	環境社会配慮現地再委託業者内容 の精査/APOTIL打合せ
7月11日	±	火山噴火の影響による出発遅延	団内打合せ/資料整理	団内打合せ/資料整理	団内打合せ/現地再委託業者 (Package-2)との交渉/契約書作成/JI CA報告作成(現地再委託)	団内打合せ/資料整理 第3国調査票送付	団内打合せ/資料整理
7月12日	В	Dep Dili by GA7310 (13:20)	資料整理 MOTC (Ferry 諸元、計画協議)	資料整理 MOTC (Ferry 諸元、計画協議)	現地再委託業者(Package-2)との交 渉/契約書作成/JICA報告作成(現地 再委託) APORTIL協議(自然条件関連資料の	資料整理	資料整理 現地再委託業者・調査日程打合せ
7月13日	月		, , , , , , , , , , , , , , , , , , , ,	-	入手について)		
7月14日	火		現地再委託業者作業工程等調整 計画条件の検討 MOTC(副大臣とMD内容の確認、署	現地再委託業者作業工程等調整 計画条件の検討 MOTC(副大臣とMD内容の確認、署	現地再委託業者作業工程等調整 計画条件の検討 自然条件資料の収集/再委託業務の	市場調査。 邦人建設会社調査票配布 現地建設業者調査票回収	資料収集 環境省打合せ(環境関連法、資料入
7月15日	水		名促進方依頼)	名促進方依頼)	進行状況チェック	単価調査	手方法等)
7月16日	木		APORTIL打合せ(概略計画案の協議 と要望ヒアリング)	APORTIL打合せ(概略計画案の協議 と要望ヒアリング)	自然条件資料の収集/再委託業務の 進行状況チェック	邦人コンサルタント面談	現地再委託調査状況チェック/協議
7月17日	金		概略配置計画案の検討	概略配置計画案の検討	自然条件資料の収集/再委託業務の 進行状況チェック	施工計画検討	環境関連資料の収集
7月18日	±		/団内打合せ	団内打合せ/資料整理	再委託業務の進行状況チェック/資料 整理		団内打合せ/資料整理
7月19日	日		資料整理	資料整理	資料整理	資料整理	資料整理
7月20日	月		APORTIL打合せ(調査進行状況報告 及び協議)	APORTIL打合せ(調査進行状況報告 及び協議) ナクロマ利用者ヒアリング調査	APORTIL打合せ(調査進行状況報告 及び協議)	APORTIL打合せ(調査進行状況報告 及び協議) 邦人コンサルタント面談	APORTIL打合せ(調査進行状況報告 及び協議)
7月21日	火		現地調査報告書案作成/補足調査	現地調査報告書案作成/補足調査	ビザ延長申請/自然条件資料の収集/ 再委託業務の進行状況チェック	邦人建設会社面談 単価調査。	APORTIL協議(管理運営体制・運営 管理等)
7月22日	水		現地調査報告書案作成/補足調査	現地調査報告書案作成/補足調査	自然条件資料の収集/再委託業務の 進行状況チェック	施工計画検討	現地再委託調査状況チェック/協議
7月23日	*		現地調査報告書案作成/補足調査	現地調査報告書案作成/補足調査	自然条件資料の収集/再委託業務の 進行状況チェック	概算事業費検討	環境関連資料の収集
7月24日	金		APORTIL打合せ	APORTIL打合せ		APORTIL打合せ	APORTIL打合せ
7月25日	±		団内打合せ/資料整理	団内打合せ/資料整理	団内打合せ/再委託業務の進行状況 チェック/資料整理	団内打合せ/資料整理	団内打合せ/資料整理
7月26日	日		資料整理	資料整理	資料整理	資料整理	資料整理
7月27日	月		JICA報告	JICA報告	JICA報告/再委託業務の進行状況	JICA報告	JICA報告/APORTIL打合せ(調査進 行状況報告及び協議)
7月28日	火		ディリ→シンガポール	ディリ→シンガポール		ディリ→シンガポール	現地調査報告書案作成、自然・環境
7月29日			シンガポール→成田	シンガポール→成田	進行状況チェック 自然条件資料の収集/再委託業務の	シンガポール→成田	調査業者との打合せ・確認作業 現地調査報告書案作成/補足調査
7月30日	*				進行状況チェック 自然条件収集資料の整理/再委託業		現地調査報告書案作成/補足調査
7月31日	金				務の進行状況チェック 自然条件収集資料の整理/再委託業		JICA打合せ APORTIL打合せ
8月1日	±				務の進行状況チェック 団内打合せ/自然条件収集資料の整		環境調査状況確認 団内打合せ/資料整理
8月2日	日				理/再委託業務の進行状況チェック 現地調査報告書案作成/自然条件収		資料整理
8月3日	月				集資料の整理/再委託業務の進行状 JICAへの報告/再委託業者の進行状		JICAへの報告
					況確認 自然条件資料の収集/再委託業務の		環境調査状況確認 ディリーシンガポール
8月4日	火水				進行状況チェック 自然条件資料の収集/再委託業務の		シンガポール→成田
					進行状況チェック 現地調査報告書案作成/補足調査		
8月6日	*				現地調査報告書案作成/補足調査		
8月7日	金土				自然条件資料の収集/再委託業務の		
8月9日	日				進行状況チェック 資料整理		
8月9日	月				資料整理		
					資料整理/再委託業者の進行状況		
8月11日	火				チェック JICAへの報告		
8月12日	水				ディリ→シンガポール		
8月13日	木				シンガポール→成田		
8月14日	金						

2-2 概略設計説明

日順	D/4	曜日		調査	內容	
口順	日付	唯日	総括/JICA	計画管理/JICA	業務主任/港湾計画	港湾施設設計
1	1月25日	月	成田一シンガポール	成田一シンガポール	成田→シンガポール	成田→シンガポール
2	1月26日	火	シンガポール→ディリ JICA打合 せ	シンガポールーディリ JICA打合 せ	シンガポールーディリ JICA打合 せ	シンガポールーディリ JICA打合 せ
3	1月27日	700	MTC副大臣説明 APORTIL説明·協議	MTC副大臣説明 APORTIL説明·協議	MTC副大臣説明 APORTIL説明·協議	MTC副大臣説明 APORTIL説明·協議
4	1月28日		APORTIL説明·協議 財務省説明	APORTIL説明·協議 財務省説明	APORTIL説明·協議 財務省説明	APORTIL説明·協議 財務省説明
5	1月29日	金	ミニッツ署名 JICA報告 大使館報告	ミニッツ署名 JICA報告 大使館報告	ミニッツ署名 JICA報告 大使館報告	ミニッツ署名 JICA報告 大使館報告
6	1月30日	±	ディリーシンガポール	ディリ→シンガポール	ディリーシンガポール	ディリーシンガポール
7	1月31日	日	シンガポールー成田	シンガポール一成田	シンガポール→成田	シンガポール→成田

3. 関係者(面会者) リスト

Organization	Name	Position
Ministry of Foreign Affairs and	Mr. Nuno Moniz Alves	Director
Cooperation	Mr. Ines Da Costa Moreira	Desk Officer for Asia and
		Middle-East
	Mr. Cristiana Gloria	Assistant Administration
Ministry of Finance	Mr. Elson Martinho da Costa	External Assistance
		Coordination Officer
	Ms. Miranda Santo	ditto
	Mr. Hideaki Maruyama	Advisor
Ministry of Public Works,	Mr. Inacio Moreira	Vice Minister II
Transport and	Mr. Constantino Ferreira	Advisor for Vice Minister
Communications	Soares	
	Mr. Rui Mannel Neto Fragh	Advisor for Vice Minister
	Mr. Teotonio de Assis	Advisor for Vice Minister
Ministry of Commerce,	Mr. Antonio Lelo Taci	Director of NDE
Industry and Environment	Mr. Francisco Poto	Chief of EIA Department
National Directorate for		
Environment (NDE) , State		
Secretariat for Environment		
APORTIL /DNTM	Mr. Constantino Ferreira	President
	Soares	
	Mr. Lino Barreto	Director of DNTM
	Mr. Gabriel Hilario	Engineer
	Fernandes	
	Mr. Jonas F. Alves Do Rego	Operational Security
	Mr. Joes M. Marques	Harbor Master/APORTIL &
	M II 1 1 C'1	DNTM
	Mr. Helder da Silva	Technical officer/APORTIL &
		DNTM
	Ms. Adelina Andrade	Finance /APORTIL
	Mr. Moises de Araiyo	APORTIL
	Mr. Joao de F. Fernandes	DNTM
	Mr. Alberto F Percira	DNTM
	Mr. Hiroyuki Onishi	Advisor/JICA

Custom Department Office	Ms. Rosa de Silva	Head of Commercial
		Compliance
Meteorological Office	Mr. Eqidio da Costa Butares	Advisor
GIZ	Mr. Rodrigo Garcia-Bernal	Principal Advisor
	Ms. Nadezuda Nikolous	Junior Advisor
IFC	Ms. Milissa Day	Resident Representative,
		Timor Leste
在東ティモール日本国大使館	山本 栄二	特命全権大使
	川崎 敏秀	参事官
	米光 雅宜	二等書記官
	吉川 幸絵	専門調査員 (経済担当)

MINUTES OF DISCUSSIONS ON THE PREPARATORY SURVEY

FOR THE PROJECT FOR URGENT SHIFT OF FERRY TERMINAL IN DILI PORT IN THE DEMOCRATIC REPUBLIC OF TIMOR-LESTE

In response to a request from the Government of Democratic Republic of Timor-Leste (hereinafter referred to as "Timor-Leste"), the Government of Japan decided to conduct a Preparatory Survey on "The Project for Urgent Shift of Ferry Terminal in Dili Port" (hereinafter referred to as "the Project"). In accordance with this decision, Japan International Cooperation Agency (hereinafter referred to as "JICA") decided to commence the survey.

JICA sent the Preparatory Survey Team for the Field Survey (hereinafter referred to as "the Team"), which is headed by Mr. Yoshimoto KOYANAGI, Deputy Director, Transportation and ICT Group, Infrastructure and Peacebuilding Department, JICA, and is scheduled to stay in the country from June 30th to August 4th, 2015.

The Team held discussions with the officials concerned of the Timor-Leste side, and conducted a field survey at the Project site.

In the course of discussions and field survey, the both sides confirmed the main items described on the attached sheets. The Team will proceed to further works and prepare a Draft Report of the Preparatory Survey.

Dili, **August 25**, 2015

小柳桂泉

Mr. Yoshimoto Koyanagi Leader Preparatory Survey Team

Japan International Cooperation Agency

Ministry of Public Works,

Communications

The Democratic Republic of Timor-Leste

(Witnessed by)

Ministry of Finance

The Democratic Republic of Timor-Leste

ATTACHMENT

1. Objective of the Project

The objective of the Project is to achieve a safer port operation by construction of new ferry jetty and necessary facilities, thereby contributing to better environment to port users.

2. Title of the Preparatory Survey

Both sides confirmed the title of the Preparatory Survey as "the Preparatory Survey for the Project for Urgent Shift of Ferry Terminal in Dili Port".

3. Project Site

Both sides confirmed that site of the Project is in Dili Port which is shown in Annex-1.

4. Line Ministry and Executing Agency

Both sides confirmed the line ministry and executing agency as follows:

- 4-1. The line ministry is Ministry of Public Works, Transport and Communications (MPWTC), which would be the agency to supervise the executing agency.
- 4-2. The executing agency is Adminstração dos Portos de Timor-Leste (APORTIL). The executing agency shall coordinate with all the relevant agencies to ensure smooth implementation of the Project and ensure that the Undertakings are taken by relevant agencies properly and on time.
- 4-3. The organization chart is shown in Annex-2.
- 5. Item requested by the Government of Timor-Leste
- 5-1. As a result of discussions, with the Team, both sides confirmed that the items requested by the Government of Timor-Leste are as follows:
 - Jetty to accommodate two(2) ferries at the same time and landing platform
 - Facilities such as water supply, power supply, fire hydrant, lighting system, and safety control system, etc.
- 5-2. The Team explained to the Timor-Leste side that the ferry to be procured by the Germany in future will be given the higher priority in the process of the examination of the design for new jetty.
- 5-3. The Timor-Leste side requested to the Team that the countermeasure for sedimentation would be considered for the design of the above mentioned jetty and facilities.
- 5-4. JICA will assess the appropriateness of the above requested items through the survey and will report findings to the Government of Japan. The final components of the Project

would be decided by the Government of Japan.

6. Japan's Grant Aid Scheme

- 6-1. The Timor-Leste side understood the Japan's Grant Aid Scheme and its procedures as described in Annex-3, Annex-4 and Annex-5, and necessary measures to be taken by the Government of Timor-Leste.
- 6-2. The Timor-Leste side agreed to take the necessary measures, as described in Annex-6, for smooth implementation of the Project, as a condition for the Japan's Grant Aid to be implemented. The detailed contents of the Annex-6 will be worked out during the survey and shall be agreed no later than by the Explanation of the Draft Preparatory Survey Report.

The contents of Annex-6 will be used to determine the following:

- (1) The scope of the Project.
- (2) The timing of the Project implementation.
- (3) Timing and possibility of budget allocation

Contents of Annex-6 will be updated as the Preparatory Survey progresses, and will finally be the Attachment to the Grant Agreement.

7. Schedule of the Study

- 7-1. The Team will proceed with further field survey in Timor-Leste until August 4th, 2015.
- 7-2. JICA will prepare the draft Preparatory Survey Report and dispatch a mission to Timor-Leste in order to explain its contents around January, 2016.
- 7-3. If the contents of the draft Preparatory Survey Report is accepted in principle and the Undertakings are fully agreed by the Government of Timor-Leste side, JICA will complete the final report and send it to Timor-Leste around May, 2016.
- 7-4. The above schedule is tentative and subject to change.

8. Environmental and Social Considerations

- 8-1. The Timor-Leste side confirmed to give due environmental and social considerations during implementation of the Project, and after completion of the Project, in accordance with the JICA Guidelines for Environment and Social Considerations (April, 2010).
- 8-2. The Timor-Leste side agreed to conduct the necessary procedures concerning the environmental assessment (including stakeholder meetings, Initial Environmental Examination (IEE) etc.) and submit required environmental report of the Project to the Ministry of Commerce, Industry and Environment. The period required from the request of approval till the obtainment of approval will be further examined, and the Timor-Leste side agreed to obtain the approval from Ministry of Commerce, Industry and Environment and submit it to JICA Timor-Leste Office preferably before the Cabinet

approval of the Project by the Government of Japan which is scheduled around April, 2016.

9. Disclosure of Information

Both sides confirmed that the study results excluding the Project cost will be disclosed to the public after the completion of the Survey. All the study results including the Project cost will be disclosed to the public after all the verification of contracts for the Project are concluded by JICA.

10. Other Relevant Issues

- 10-1. The Timor-Leste side explained to the Team that Tibar New Port development project is in progress exclusively for cargo handling and that Dili Port will be utilized as a passenger port even after completion of the Tibar Port project.
- 10-2. The Timor-Leste side explained to the Team their plan for procurement of new ferries of which the ferries from Portugal and Germany will be deployed in a few years. The detailed information on timing of deployment and operation plan by new ferries, etc., will be informed by the Timor-Leste side to the Team by July 27th, 2015.
- 10-3. The Timor-Leste side agreed that they will construct the passenger terminal building by their own expense by the completion of the project. The both sides will continue technical discussion during the Team's stay till July 27th, 2015, on layout plan of passenger terminal building which is alignment with the construction plan of new jetty and platform. The necessary condition for the outline design work for the new jetty and platform such as passengers' flow, access road route to the platform, shall be agreed during the Team's stay.
- 10-4. The Timor-Leste side assured that they will secure the necessary budget and personnel for operation and maintenance of the facilities to be provided by the Project.
- 10-5. The Timor-Lestc side agreed to secure the temporary construction yards and the dumping site around the Project site.
- 10-6. If the dredging work is required to secure the necessary water depth, the Timor-Leste side shall secure the dumping area for the dredged soil which accords to the environmental condition and requirement.
- 10-7. The Timor-Leste side agreed that the implementing agency (APORTIL) shall bear the cost, which is equivalent to the customs duties, internal taxes and other fiscal levies which may be imposed in Timor-Leste, instead of tax exemption system.
- 10-8. The both sides agreed to the issuance of the Working Visa for all workers who will be engaged in the project, and agreed that the Timor-Leste side shall take necessary actions to support for the smooth issuance of Working Visa and that the Japanese side shall follow the required procedure in a timely manner.

10-9. During implementation and after completion of the Project, the progress and issues will be monitored by using Project Monitoring Report. The format of Project Monitoring Report is attached as Annex-7.

Annex-1 Project Site

Annex-2 Organization Chart

Annex-3 Japan's Grant Aid

Annex-4 Flow Chart of Japan's Grant Aid

Annex-5 Financial Flow of Japan's Grant Aid

Annex-6 Major Undertakings to be taken by Each Government

Annex-7 Project Monitoring Report

Project Site

Existing Ferry Terminal

Off

Organization Chart

JAPAN'S GRANT AID

The Government of Japan (hereinafter referred to as "the GOJ") is implementing the organizational reforms to improve the quality of ODA operations, and as a part of this realignment, a new JICA law was entered into effect on October 1, 2008. Based on this law and the decision of the GOJ, JICA has become the executing agency of the Grant Aid for General Projects, for Fisheries and for Cultural Cooperation, etc.

The Grant Aid is non-reimbursable fund provided to a recipient country to procure the facilities, equipment and services (engineering services and transportation of the products, etc.) for its economic and social development in accordance with the relevant laws and regulations of Japan. The Grant Aid is not supplied through the donation of materials as such.

1. Grant Aid Procedures

The Japanese Grant Aid is supplied through following procedures:

- ·Preparatory Survey
 - The Survey conducted by JICA
- ·Appraisal &Approval
 - Appraisal by the GOJ and JICA, and Approval by the Japanese Cabinet
- ·Authority for Determining Implementation
 - The Notes exchanged between the GOJ and a recipient country
- ·Grant Agreement (hereinafter referred to as "the G/A")
 - Agreement concluded between JICA and a recipient country
- ·Implementation
 - Implementation of the Project on the basis of the G/A

2. Preparatory Survey

(1) Contents of the Survey

The aim of the preparatory Survey is to provide a basic document necessary for the appraisal of the Project made by the GOJ and JICA. The contents of the Survey are as follows:

- Confirmation of the background, objectives, and benefits of the Project and also institutional capacity of relevant agencies of the recipient country necessary for the implementation of the Project.
- Evaluation of the appropriateness of the Project to be implemented under the Grant Aid Scheme from a technical, financial, social and economic point of view.
- Confirmation of items agreed between both parties concerning the basic concept of the Project.
- Preparation of an outline design of the Project.
- Estimation of costs of the Project.

The contents of the original request by the recipient country are not necessarily approved in their initial form as the contents of the Grant Aid project. The Outline Design of the Project is confirmed based on the guidelines of the Japan's Grant Aid scheme.

JICA requests the Government of the recipient country to take whatever measures necessary to achieve its self-reliance in the implementation of the Project. Such measures must be

guaranteed even though they may fall outside of the jurisdiction of the organization of the recipient country which actually implements the Project. Therefore, the implementation of the Project is confirmed by all relevant organizations of the recipient country based on the Minutes of Discussions.

(2) Selection of Consultants

For smooth implementation of the Survey, JICA employs (a) registered consulting firm(s). JICA selects (a) firm(s) based on proposals submitted by interested firms.

(3) Result of the Survey

JICA reviews the Report on the results of the Survey and recommends the GOJ to appraise the implementation of the Project after confirming the appropriateness of the Project.

3. Japan's Grant Aid Scheme

(1) The E/N and the G/A

After the Project is approved by the Cabinet of Japan, the Exchange of Notes(hereinafter referred to as "the E/N") will be singed between the GOJ and the Government of the recipient country to make a pledge for assistance, which is followed by the conclusion of the G/A between JICA and the Government of the recipient country to define the necessary articles to implement the Project, such as payment conditions, responsibilities of the Government of the recipient country, and procurement conditions.

(2) Selection of Consultants

In order to maintain technical consistency, the consulting firm(s) which conducted the Survey will be recommended by JICA to the recipient country to continue to work on the Project's implementation after the E/N and G/A.

(3) Eligible source country

Under the Japanese Grant Aid, in principle, Japanese products and services including transport or those of the recipient country are to be purchased. When JICA and the Government of the recipient country or its designated authority deem it necessary, the Grant Aid may be used for the purchase of the products or services of a third country. However, the prime contractors, namely, constructing and procurement firms, and the prime consulting firm are limited to "Japanese nationals".

(4) Necessity of "Verification"

The Government of the recipient country or its designated authority will conclude contracts denominated in Japanese yen with Japanese nationals. Those contracts shall be verified by JICA. This "Verification" is deemed necessary to fulfill accountability to Japanese taxpayers.

(5) Major undertakings to be taken by the Government of the Recipient Country In the implementation of the Grant Aid Project, the recipient country is required to undertake such necessary measures as Annex.

(6) "Proper Use"

The Government of the recipient country is required to maintain and use properly and effectively the facilities constructed and the equipment purchased under the Grant Aid, to

assign staff necessary for this operation and maintenance and to bear all the expenses other than those covered by the Grant Aid.

(7) "Export and Re-export"

The products purchased under the Grant Aid should not be exported or re-exported from the recipient country.

(8) Banking Arrangements (B/A)

- a) The Government of the recipient country or its designated authority should open an account under the name of the Government of the recipient country in a bank in Japan (hereinafter referred to as "the Bank"). JICA will execute the Grant Aid by making payments in Japanese yen to cover the obligations incurred by the Government of the recipient country or its designated authority under the Verified Contracts.
- b) The payments will be made when payment requests are presented by the Bank to JICA under an Authorization to Pay (A/P) issued by the Government of the recipient country or its designated authority.

(9) Authorization to Pay (A/P)

The Government of the recipient country should bear an advising commission of an Authorization to Pay and payment commissions paid to the Bank.

(10) Social and Environmental Considerations

A recipient country must carefully consider social and environmental impacts by the Project and must comply with the environmental regulations of the recipient country and JICA socio-environmental guidelines.

FLOW CHART OF JAPAN'S GRANT AID PROCEDURES Recipient Government Japanese Government Contract or Consulta Others JICA Flow & Works Ħ Stage (T/R : Terms of Reference) Request Application Project Screening of Project Identification Evaluation of T/R Survey* Field Survey Home Office Work Project Formulation & Preparation Preliminary *if necessary Survey* Reporting Preparatory Survey Selection & Field Survey Home Office Work Outline Design Contracting of Study Consultant by Proposal Reporting Explanation of Draft Final Report Final Report Final Report Appraisal of Project Appraisal & Approval V Inter Ministerial Consultation V Presentation of Draft Notes Approval by the Cabinet (E/N: Exchange of Notes) E/N and G/A (G/A: Grant Agreement) (A/P: Authorization to Pay) Banking Amangement Verification Issuance of A/P Consultant Contract Implementation Detailed Design & Approval by Preparation for Tendering Tender Documents Recipient Government Tendering & Evaluation Procurement /Construction Verification A/P Contract Completion Certificate Construction A/P Recipient Government ₩ Operation Post Evaluation Study Evaluation& Follow up Ex-post Follow up Evaluation

Financial Flow of Grant Aid

Major Undertakings to be taken by Each Government

Major Undertakings to be taken by Recipient Government

1. Before the Tender

ИО	Items	Deadline	In charge	Ref.
1	To approve IEE/EIA	before the Project approval by Japanese Cabinet	APORTIL	
2	To open Bank Account (Banking Arrangement (B/A))	within 1 month after G/A	MPWTC	
3	To secure lands 1) temporary construction yard and stock yard near the Project area 2) borrow pit and disposal site near the Project area	before notice of the tender document	APORTIL	
4	To obtain the planning, zoning, building permit	before notice of the tender document	APORTIL	
5	To clear, level and reclaim the following sites when needed	before notice of the tender document	APORTIL	

2. During the Project Implementation

МО	l tems	Deadline	In charge	Ref.
1	To bear the following commissions to a bank of Japan for the banking services based upon the B/Λ			
	1) Advising commission of A/P	within 1 month after the singing of the contract	мог	
	2) Payment commission for A/P	cvcry payment	APORTIL	
2	To issue the Working Visa for workers	before commencement of the Project	Ministry of Internal Affairs	
3	To construct the passenger terminal building	during the Project	APORTIL	
4 .	To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country	during the Project	APORTIL	
5	To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contract such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work	during the Project	APORTIL	
	To bear the cost which is equivalent to the customs duties, internal taxes and other fiscal levies which may be imposed in the country of the Recipient with respect to the purchase of the Products and/or the Services, instead of tax exemption system. Such customs duties, internal taxes and other fiscal levies mentioned above include VAT, commercial tax, income tax and corporate tax of Japanese nationals, resident tax, fuel tax, but not limited, which may be imposed in the recipient country with respect to the supply of the products and services under the verified contract		APORTIL	
	To bear all the expenses, other than those to be borne by the Grant Aid, necessary for the Project implementation	during the Project	APORTIL	
8	To submit environmental monitoring report to JICA Timor-Leste Office	during the Project	APORTIL	

- 12 -

G/A NO. XXXXXXX PMR prepared on DD/MM/YY

3. After the Project

NO	Items	Deadline	In charge	Ref.
1	To maintain and use properly and effectively the facilities constructed and equipment	After completion of the	APORTIL	
	provided under the Grant Aid	construction		
	1) Allocation of maintenance cost			
1	Operation and maintenance structure			
	3) Routine/Periodic inspection			

Major Undertakings to be covered by the Grant Aid

No	Items	Deadline	Cost Estimated (Million Japanese Yen)*	
1	To construct ferry terminal jetty and necessary facilities (or To procure equipment)			
	- Improvement of ferry terminal jetty			
	- Improvement of necessary facilities			
	To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country		xx.xx	
	a) Marine(Air) transportation of the products from Japan to the recipient country			
	b) Internal transportation from the port of disembarkation to the project site			
	2) To construct access roads			
	a) Within the site			
2	To implement detailed design, tender support and construction supervision		YYYY	
	(Consultant)	···	1 1.11	
3	Contingencies		ww.ww	
	Total		zz.zz	

(Sample)

Project Monitoring Report

on

Project Name
Grant Agreement No. XXXXXXX

Organization Information

Authority (Signer of the G/A)	Person in Charge Contacts	(Division) Address: Phone/FAX: Email:	-
Executing Agency	Person in Charge Contacts	(Division) Address: Phone/FAX: Email:	
Line Ministry	Person in Charge Contacts	(Division) Address: Phone/FAX: Email:	

Outline of Grant Agreement:

Source of Finance	Government of Japan: Not exceeding JPYmil. Government of ():
Project Title	
E/N	Signed date: Duration:
G/A	Signed date: Duration:

- 14 -

					•		
1: F	Project	Description					
1-1	Proje	ct Objective					
1-2	- Co	ssity and Priority of onsistency with development plans and	velopment				
1-3		tiveness and the inc					
	-				,		-
2: P	Project	Implementation	The State of				
2-1	Proje	ct Scope					
		Table 2-1-1a: Comp	arison of Or	iginal an	d Actual	Location	
T		Original: (M/D)		Ac	tual: (P/I	Rand PCR)	
Locat	tion	Attachment(s):Ma	p	At	tachmer	ıt(s):Map	

Table 2-1-1b.	Comparison	of Original	and Actua	1 Scope

Items	Original	Actual
	e e e	
(M/D)	(M/D)	(P/R and PCR)
		. · ·

2-1-2 Reason(s) for the	he modification if there l	have been any.	
(P/R and PCR)			

2-2 Implementation Schedule

2-2-1 Implementation Schedule

Table 2-2-1: Comparison of Original and Actual Schedule

Items -	Orig	inal	A _C T
Rems	DOD	G/A	Actual
[M/D]	(M/D)		(P/R,PCR)
[NIVID]	(141)		As of (Date of Revision)
			,
			Please state not only the most updated schedule but also other past revisions chronologically.
			past revisions enfoncing carry.
Project Completion Date*			

^{*}Project Completion was defined as ______ at the time of G/A

2-2-2 Reasons for any changes of the schedule, and their effects on the project.

(P/R and PCR)		 	
·			
:			

- 2-3 Undertakings by each Government
- **2-3-1 Major Undertakings** See Attachment 2.
- **2-3-2** Activities See Attachment 3.
- 2-4 Project Cost
- 2-4-1 Project Cost

Table 2-3-1 Comparison of Original and Actual Cost by the Government of Japan (Confidential until the Tender)

	Items		Cos (Million	
AND ELLER PROPERTY OF THE PARTY	Original	Actual	Original	Actual
Construction				
Facilities				
(or Equipment)				
Consulting	- Detailed design			
Services	-Procurement Management			
	-Construction Supervision			

	PMR pre	G/A NO. XXXXXXX epared on DD/MM/YY
Total		pared on DD/MMM I
Note:	1) Date of estimation:	<u>.</u>
	2) Exchange rate: 1 US Dollar = Yen	
Tal	ble 2-3-2 Comparison of Original and Actual Cost by the C	Government of XX
	Items	Cost
		(Million USD)
	Original Actual Actual	Original Actual
T		
Total		
Note:	1) Date of estimation:	
	2) Exchange rate: 1 US Dollar = (local currency)	
2-4-2	Reason(s) for the wide gap between the original and act	ual if there have
∠1 - ∠ ,	been any, the remedies you have taken, and their results	
(P/R,)		
2-5	Organizations for Implementation	
2-5-1	Executing Agency:	
	- Organization's role, financial position, capacity, cost r	
	- Organization Chart including the unit in charge of the	implementation and
	number of employees.	
Origii	nal: <i>(M/D)</i>	
Actua	l, if changed: (P/R and PCR)	

2-6 Environmental and Social Impacts

Report based on the agreed environmental checklist and monitoring form (See Attachment 4)

3: Operation and Maintenance (O&M)

3-1 O&M and Management

- Organization chart of O&M
- Operational and maintenance system (structure and the number ,qualification and skill of staff or other conditions necessary to maintain the outputs and benefits of the project soundly, such as manuals, facilities and equipment for maintenance, and spare part stocks etc)

Original: (M/D)	
Actual: (PCR)	-
	,

3-2 O&M Cost and Budget

- The actual annual O&M cost for the duration of the project up to today, as well as the annual O&M budget.

Original: (M/D)	,			-	•	
*						

4: Precautions (Risk Management)

- Risks and issues, if any, which may affect the project implementation, outcome, sustainability and planned countermeasures to be adapted are below.

Original Issues and Countermeasure(s): (M/	D)
Potential Project Risks	Assessment
1.	Probability: H/M/L
(Description of Risk)	Impact: H/M/L
	Analysis of Probability and Impact:
	Mitigation Measures:
	Action during the Implementation:

G/A NO. XXXXXXX PMR prepared on DD/MM/YY

	PMR prepared on DD/MM/YY
	Contingency Plan (if applicable):
2.	Probability: H/M/L
(Description of Risk)	Impact: H/M/L
	Analysis of Probability and Impact:
	·
	Mitigation Measures:
	William Headings.
	Action desires the Transfers supplies
	Action during the Implementation:
	Contingency Plan (if applicable):
3.	Probability: H/M/L
(Description of Risk)	Impact: H/M/L
	Analysis of Probability and Impact:
	Mitigation Measures:
	Action during the Implementation:
	·
	Contingency Plan (if applicable):
	Total (at apparent).
Actual issues and Countermeasure(s)	
(P/R and PCR)	
(2) It alia I City	
The state of the s	

5: Evaluation

5-1 Overall evaluation

Please describe your evaluation on the overall outcome of the project.

(PCR)			

5-2 Lessons Learnt and Recommendations

Please raise any lessons learned from the project experience, which might be valuable for the future assistance or similar type of projects, as well as any recommendations, which might be beneficial for better realization of the project effect, impact and assurance of sustainability.

(PCR)		

Attachment

- 1. Project Location Map
- 2. Undertakings to be taken by each Government
- 3. Monthly Report
- 4. Monitoring report on environmental and social considerations

Orla

MINUTES OF DISCUSSIONS

ON THE PREPARATORY SURVEY FOR THE PROJECT FOR URGENT SHIFT OF FERRY TERMINAL IN DILI PORT (EXPLANATION ON DRAFT PREPARATORY SURVEY REPORT)

On the basis of the discussions and field survey in the Democratic Republic of Timor-Leste (hereinafter referred to as "Timor-Leste") in July, 2015, and the subsequent technical examination of the results in Japan, the Japan International Cooperation Agency (hereinafter referred to as "JICA") prepared a draft Preparatory Survey Report (hereinafter referred to as "the Draft Report") on the Project for urgent shift of ferry terminal in Dili Port (hereinafter referred to as "the Project").

In order to explain the Draft Report and to consult with the concerned officials of the Government of Timor-Leste on its contents, JICA sent to Timor-Leste the Preparatory Survey Team for the explanation of the Draft Report (hereinafter referred to as "the Team"), headed by Mr. Yoshimoto KOYANAGI, Deputy Director, Transportation and ICT Group, Infrastructure and Peacebuilding Department, JICA, from January 26 to 30, 2016.

As a result of the discussions, both sides confirmed the main items described in the attached sheets.

1、柳桂泉

Mr. Yoshimoto Koyanagi Leader

Preparatory Survey Team

Japan International Cooperation Agency

Japan

Dili, January 29th, 2016

Mr. Constantino Ferreira Soares

Presidente

Adminstração dos Portos de Timor-Leste The Democratic Republic of Timor-Leste

(Witnessed by)

Mr. Cancio de Jesus Oliveira

Director

Development Partnership Management Unit

Ministry of Finance

The Democratic Republic of Timor-Leste

ATTACHEMENT

1. Objective of the project

The objective of the Project is to achieve a safer port operation by construction of new ferry jetty and necessary facilities, thereby contributing to better environment to port users.

2. Project Site

Both sides confirmed that site of the Project is in Dili Port which is shown in Annex-1.

3. Line Agency and Executing Agency

Both sides confirmed the line agency and executing agency as follows:

- 3-1. The line ministry is Ministry of Public Works, Transport and Communications (MPWTC), which would be the agency to supervise the executing agency.
- 3-2. The executing agency is Adminstração dos Portos de Timor-Leste (APORTIL). The executing agency shall coordinate with all the relevant agencies to ensure smooth implementation of the Project and ensure that the Undertakings are taken by relevant agencies properly and on time. The Timor-Leste side explained to the Team that APORTIL has been reorganized as a financially independent entity responsible for operation and maintenance of port facilities from January 2016, and is an authorized agency for implementation of the Project including budgetary authority.
- 3-3. The organization chart is shown in Annex-2.

4. Contents of the Draft Report

After the explanation of the contents of the Draft Report by the Team, the Timor-Leste side agreed in principle to its contents.

5. Cost Estimation

Both sides confirmed that the Project cost estimation described in Annex-3 is provisional and would be examined further by the Government of Japan for its final approval.

& h

6. Confidentiality of the Cost Estimation and Specifications

Both sides confirmed that the Project cost estimation and technical specifications in the Draft Report should never be duplicated or disclosed to any third parties until all the contracts of the Project are concluded.

7. Japan's Grant Aid Scheme

The Timor-Leste side understood the Japan's Grant Aid Scheme and its procedures as described in Annex-4, Annex-5 and Annex-6, and necessary measures to be taken by the Government of Timor-Leste.

8. Project Implementation Schedule

The Team explained to the Timor-Leste side that the expected implementation schedule is as attached in Annex-7.

9. Expected outcomes and Indicators

Both sides agreed that key indicators for expected outcomes are as follows. The Timor-Leste side has responsibility to monitor the progress of the indicators and achieve the target in year 2021.

[Quantitative Effect]

Indices	Basis (at 2014)	Target (at 2021, three years after completion of the Project)	
Berthing hours of Ferry (hours per day)	3 hours per day	24 hours	
Annual number of	Atauro: 21,634 passengers	Atauro: 28,392 passengers	
Passenger	Oecussi: 44,036 passengers	Oecussi:70,985 passengers	

[Qualitative Effect]

(1) Direct effects

- > Improvement of safety for the passenger's embarkation and disembarkation
- > Safe berthing of ferry regardless the tide level
- > User-friendly terminal with the passenger terminal close by
- > The jetty reduces the deflection of the ferry during the approach to the terminal.

 As a result, flexibility in bunkering work will be highly increased.
- > Better transportation services for people because of more flexible navigation schedule and larger transportation volume due to the double berthing jetty
- > Contribution to the development of new international Ferry Routes because of the character of the ferry (Ro/Ro type) to be introduced from Portugal.

\$ k

(2) In-direct effects

- > Contribution to the economic development of the enclave, islands and the northern coast with increased commodity between the rural areas and the capital city
- > Conducing the rural economic development as potential transportation measures for tourists which are expected to increase in the future
- > Clear demarcation of the role of Dili Port as nodal port for the International tourists and for domestic ferry after transfer of cargo function to the new port in Tibar.

10. Undertakings Taken by Both Sides

Both sides confirmed undertakings described in Annex-8. The Timor-Leste side assured to take the necessary measures and coordination including allocation of the necessary budget which are preconditions of implementation of the Project. It is further agreed that the costs are indicative, i.e. at Outline Design level. More accurate costs will be calculated at the Detailed Design stage. Contents of Annex-8 will be updated as the Detailed Design progresses, and will finally be the Attachment to the Grant Agreement.

11. Monitoring during the Implementation

The Project will be monitored every six months during the project period by the executing agency using the Project Monitoring Report (PMR) described in Annex-9.

12. Ex-Post Evaluation

JICA will conduct ex-post evaluation three (3) years after the project completion with respect to five evaluation criteria (Relevance, Effectiveness, Efficiency, Impact, Sustainability) of the Project. Result of the evaluation will be publicized. The Timor-Leste side is required to provide necessary support for them.

13. Schedule of the Study

JICA will complete the Final Report of the Preparatory Survey in accordance with the confirmed items and send it to the Timor-Leste side around May, 2016.

14. Environmental and Social Considerations

14-1 General Issues

8 }

14-1-1 Environmental Guidelines and Environmental Category

The Team explained that "JICA Guidelines for Environmental and Social Considerations (April 2010)" (hereinafter referred to as "the Guidelines") is applicable for the Project. The Project is categorized as B because the Project is not located in a sensitive area, nor has it sensitive characteristics, nor falls it into sensitive sectors under the Guidelines, and its potential adverse impacts on the environment are not likely to be significant.

14-1-2 Environmental Checklist

The environmental and social considerations including major impacts and mitigation measures for the Project are summarized in the Environmental Checklist attached as Annex-10. Both sides confirmed that in case of major modification of the content of the Environmental Checklist, The Timor-Leste side shall submit the modified version to JICA in a timely manner.

14-2 Environmental Issues

14-2-1 Initial Environmental Examination (IEE)

The Timor-Leste side agreed to conduct the necessary procedures concerning the environmental assessment (including stakeholder meetings, Initial Environmental Examination (IEE) etc.) and submit required environmental report of the Project to the Ministry of Commerce, Industry and Environment, and the Timor-Leste side agreed to obtain the approval of the necessary environment document from Ministry of Commerce, Industry and Environment and submit it to JICA Timor-Leste Office preferably before the Cabinet approval of the Project by the Government of Japan which is scheduled around April, 2016.

14-2-2 Environmental Monitoring Plan

The Timor-Leste side agreed that monitoring for environmental and social considerations will be conducted by the responsibility of APORTIL in accordance with the Environmental Monitoring Plan described in the Draft Report. The results of monitoring will be provided to JICA Timor-Leste Office by filling in the Environmental Monitoring Form attached as Annex-11, during construction phase and after completion of the Project.

14-3 Information Disclosure of Monitoring Results

Both sides confirmed that the Timor-Leste side will disclose results of environmental and social monitoring to local stakeholders in their office and/or through their website.

The Timor-Leste side agreed that JICA will disclose results of environmental and

A }

social monitoring submitted by the Timor-Leste side as the monitoring forms attach as Annex-11 on its website.

15. Other Relevant Issues

15-1. Operation and Maintenance of the Facilities

The team explained the importance of operation and maintenance of the facilities constructed by the Project considering that proper asset management impacts greatly on life-span of the facilities and its maintenance cost. The Timor-Leste side shall secure enough staff and budgets necessary for appropriate operation and maintenance of the facilities. The annual operation and maintenance costs are estimated and shown in Annex 12.

15-2. Safety Measures

To avoid accidents on site during the implementation of the Project, the Timor-Leste side agreed to cause the consultant and the contractor to enforce safety measures such as setting safety assurance to the site, providing information for security control to public, and deploying adequate security personnel, based on "The Guidance for the Management of Safety for Construction Works in Japanese ODA Projects" which has been published on JICA's URL below.

http://www.jica.go.jp/activities/schemes/oda_safety/ku57pq00001nz4eu-att/guida nce_en.pdf

15-3. Misconduct

If JICA receives information related to suspected corrupt or fraudulent practices in the implementation of the Project, APORTIL and relevant organizations will provide JICA with such information as JICA may reasonably request, including information related to any concerned official of the government and/or public organizations of Timor-Leste.

APORTIL and relevant organizations will not, unfairly or unfavorably treat the person and/or company which provided the information related to suspected corrupt or fraudulent practices in the implementation of the Project.

15-4. Disclosure of Information

Both sides confirmed that the study results excluding the Project cost will be disclosed to the public after completion of the Preparatory Survey. All the study results including the project cost will be disclosed to the public after all the contracts for the Project are concluded.

15-5. Operation of Dili Port

The Timor-Leste side explained to the Team that they don't have any plan of

Of

K &

concession contract on the operation of Dili Port to any private company from other country and that Dili port will be operated by the Government of Timor-Lest (APORTIL).

15-6. Temporary Construction Yard, Borrow Pit and Disposal Site

The Timor-Leste side agreed to secure the temporary construction yard, borrow pit and disposal site near the Project site before tender notice of the Project and also agreed to demolish the blockage in the construction yard before commencement of the construction work with the coordination/adjustment with contractor(s).

15-7. Passenger Terminal

The Timor-Leste side explained to the Team about construction plan of passenger terminal and also explained that the passenger terminal will be completed by the end of the Project.

15-8. Progress of New Ferries

The Timor-Leste side explained to the Team about the progress of procurement of new ferries of which the ferry from Portugal and Germany will be deployed around the end of 2016 and mid-term of 2017 respectively.

15-9. Working Visa

Both sides agreed the necessary procedure for the issuance of Working Visa for all workers who will be engaged in the project, and agreed that both sides shall follow the required procedure and take necessary actions in a timely manner respectively.

- Annex-1 Project site
- Annex-2 Organization Chart
- Annex-3 Project Cost Estimation
- Annex-4 Japan's Grant Aid
- Annex-5 Flow Chart of Japan's Grant Aid
- Annex-6 Financial Flow of Japan's Grant Aid
- Annex-7 Project Implementation Schedule
- Annex-8 Major Undertakings to be taken by Each Government
- Annex-9 Project Monitoring Report (PMR)
- Annex-10 Environmental Checklist
- Annex-11 Environmental Monitoring Form
- Annex-12 Operation and Maintenance Cost

£ }

Project Sites

an

£ 13

Organization Chart

Project Cost Estimation

(1) Cost Borne by the Government of Japan

Description	Estimated Cost
Description	(million Yen)
Facilities	1,999
Detailed design and Construction supervision	132
TOTAL	2,131

(2) Cost Borne by the Government of Timor-Leste

Description	Estimated Cost (USD)	Converted to Japanese Yen (million JPY)
Land purchased fee	State property	-
Demolition of the blockage in the construction yard	19,500	2.42
Construction of New Ferry Terminal Building	1,036,700	128.24
Import tax for the everlasting construction materials (2.5%)	72,500	8.97
Necessary cost of Banking Arrangement	17,200	2.13
TOTAL	1,145,900	141.76

Notes:

- (1) The cost estimates in the above table are provisional and will be further examined by the Government of Japan for the approval of the Grant.
- (2) The total cost of the project JPY 141.76 million is equivalent to USD 1.15 million at the current exchange rate; USD 1.0=JPY 123.70

op

Z }

JAPAN'S GRANT AID

The Government of Japan (hereinafter referred to as "the GOJ") is implementing the organizational reforms to improve the quality of ODA operations, and as a part of this realignment, a new JICA law was entered into effect on October 1, 2008. Based on this law and the decision of the GOJ, JICA has become the executing agency of the Grant Aid for General Projects, for Fisheries and for Cultural Cooperation, etc.

The Grant Aid is non-reimbursable fund provided to a recipient country to procure the facilities, equipment and services (engineering services and transportation of the products, etc.) for its economic and social development in accordance with the relevant laws and regulations of Japan. The Grant Aid is not supplied through the donation of materials as such.

1. Grant Aid Procedures

The Japanese Grant Aid is supplied through following procedures:

- ·Preparatory Survey
 - The Survey conducted by JICA
- · Appraisal & Approval
 - Appraisal by the GOJ and JICA, and Approval by the Japanese Cabinet
- · Authority for Determining Implementation
 - The Notes exchanged between the GOJ and a recipient country
- Grant Agreement (hereinafter referred to as "the G/A")
 - Agreement concluded between JICA and a recipient country
- Implementation
 - Implementation of the Project on the basis of the G/A

2. Preparatory Survey

(1) Contents of the Survey

The aim of the preparatory Survey is to provide a basic document necessary for the appraisal of the Project made by the GOJ and JICA. The contents of the Survey are as follows:

- Confirmation of the background, objectives, and benefits of the Project and also institutional capacity of relevant agencies of the recipient country necessary for the implementation of the Project.
- Evaluation of the appropriateness of the Project to be implemented under the Grant Aid Scheme from a technical, financial, social and economic point of view.
- Confirmation of items agreed between both parties concerning the basic concept of the Project.
- Preparation of an outline design of the Project.
- Estimation of costs of the Project.

The contents of the original request by the recipient country are not necessarily approved in their initial form as the contents of the Grant Aid project. The Outline Design of the Project is confirmed based on the guidelines of the Japan's Grant Aid scheme.

JICA requests the Government of the recipient country to take whatever measures necessary to achieve its self-reliance in the implementation of the Project. Such measures must be

2 b

guaranteed even though they may fall outside of the jurisdiction of the organization of the recipient country which actually implements the Project. Therefore, the implementation of the Project is confirmed by all relevant organizations of the recipient country based on the Minutes of Discussions.

(2) Selection of Consultants

For smooth implementation of the Survey, JICA employs (a) registered consulting firm(s). JICA selects (a) firm(s) based on proposals submitted by interested firms.

(3) Result of the Survey

JICA reviews the Report on the results of the Survey and recommends the GOJ to appraise the implementation of the Project after confirming the appropriateness of the Project.

3. Japan's Grant Aid Scheme

(1) The E/N and the G/A

After the Project is approved by the Cabinet of Japan, the Exchange of Notes(hereinafter referred to as "the E/N") will be singed between the GOJ and the Government of the recipient country to make a pledge for assistance, which is followed by the conclusion of the G/A between JICA and the Government of the recipient country to define the necessary articles to implement the Project, such as payment conditions, responsibilities of the Government of the recipient country, and procurement conditions.

(2) Selection of Consultants

In order to maintain technical consistency, the consulting firm(s) which conducted the Survey will be recommended by JICA to the recipient country to continue to work on the Project's implementation after the E/N and G/A.

(3) Eligible source country

Under the Japanese Grant Aid, in principle, Japanese products and services including transport or those of the recipient country are to be purchased. When JICA and the Government of the recipient country or its designated authority deem it necessary, the Grant Aid may be used for the purchase of the products or services of a third country. However, the prime contractors, namely, constructing and procurement firms, and the prime consulting firm are limited to "Japanese nationals".

(4) Necessity of "Verification"

The Government of the recipient country or its designated authority will conclude contracts denominated in Japanese yen with Japanese nationals. Those contracts shall be verified by JICA. This "Verification" is deemed necessary to fulfill accountability to Japanese taxpayers.

(5) Major undertakings to be taken by the Government of the Recipient Country In the implementation of the Grant Aid Project, the recipient country is required to undertake such necessary measures as Annex.

(6) "Proper Use"

The Government of the recipient country is required to maintain and use properly and effectively the facilities constructed and the equipment purchased under the Grant Aid, to

a

& L

assign staff necessary for this operation and maintenance and to bear all the expenses other than those covered by the Grant Aid.

(7) "Export and Re-export"

The products purchased under the Grant Aid should not be exported or re-exported from the recipient country.

(8) Banking Arrangements (B/A)

- a) The Government of the recipient country or its designated authority should open an account under the name of the Government of the recipient country in a bank in Japan (hereinafter referred to as "the Bank"). JICA will execute the Grant Aid by making payments in Japanese yen to cover the obligations incurred by the Government of the recipient country or its designated authority under the Verified Contracts.
- b) The payments will be made when payment requests are presented by the Bank to JICA under an Authorization to Pay (A/P) issued by the Government of the recipient country or its designated authority.

(9) Authorization to Pay (A/P)

The Government of the recipient country should bear an advising commission of an Authorization to Pay and payment commissions paid to the Bank.

(10) Social and Environmental Considerations

A recipient country must carefully consider social and environmental impacts by the Project and must comply with the environmental regulations of the recipient country and JICA socio-environmental guidelines.

FLOW CHART OF JAPAN'S GRANT AID PROCEDURES

Stage	Flow & Works	Recipient Government		JICA	Consulta nt	Contract or	Others
Application	Request (T/R : Terms of Reference) Screening of Project Evaluation of T/R Evaluation of T/R			~			
Project Formulation & Preparation Preparation	Preliminary Survey Preliminary Survey Office Work Reporting Selection & Contracting of Consultant by Proposal Explanation of Draft Final Report Final Report Final Report				¥		
Appraisal & Approval	Appraisal of Project Inter Ministerial Consultation Presentation of Draft Notes Approval by the Cabinet						
Implementation	(E/N: Exchange of Notes) E/N and G/A (G/A: Grant Agreement) (A/P: Authorization to Pay) Banking Arrangement Verification Issuance of A/P Detailed Design & Approval by Recipient Government Tendering & Evaluation Verification Verification Construction Constr						
Evaluation& Follow up	Ex-post Follow up	~	1	Y		-	

verified contract Contractor / Supplier recipient country 6, Send Government of Japanese 4. Confract 7. Issue of A/P Financial Flow of Grant Aid 9. Request for Payment 8. Notification of A/P 1. Signing of E/N 2. Signing of G/A 5. Verification 3. Open Account 12. Payment B/A 10.Request for Paying **Agent Bank** in Japan Government of Japan **J**UN 11. Payment Account

0

E 1

0 29 Jetty pavement 28 6 (Miscellaneous, Cleaning) (Demobi of) Crane barge (Concrete sub structure of Jetty) (PC girder) 27 2018 26 (ancillary facilities) (Super structure of Platform) 25 2018 (Adjustment concrete) 24 (Steel pile driving for Jetty) 23 (Demobi of Piling barge) 22 29months 7 (Steel pile driving for Platform) Total 8 (PC pile driving for Platform) (Reinstatement of revetment) 12 6 (Demolition of revelment & slope) (Mobilization, Transportation) Ξ 18 9 17 2017 9 6 (Preparation) 2 4 2017 13 9 (Tender related work) 12 2 (Approval of Tender ddocuments) (Preparation of Tender documents) Ξ 4 2 6 (Cost Estimation) (Detailed design) 12 \equiv 2016 2 S 2016 4 6 (Site survey) 3 90 7 _ 9 Month from Contract of Contractor Calender Month Year Fiscal Year Detailed Design Implementation & Procurement

Project Implementation Schedule

a j

Major Undertakings to be taken by Each Government

Major Undertakings to be taken by Recipient Government

1. Before the Tender

NO	Items	Deadline	In charge	Cost Estimated (USD)	Ref.
1		before the Project approval by Japanese Cabinet	APORTIL		
2	To open Bank Account (Banking Arrangement (B/A))	within I month after G/A	MPWTC		
3	To secure lands 1) temporary construction yard and stock yard near the Project area 2) borrow pit and disposal site near the Project area	within I month after G/A	APORTIL		
4	To obtain the planning, zoning, building permit	before tender notice	APORTIL		
5	To clear, level and reclaim the following sites when needed	before tender notice	APORTIL		
6	To determine the plan of passenger terminal building	before tender notice	APORTIL		

During the Project Implementation

NO	ltems	Deadline	In charge	Cost Estimated (USD)	Ref.
1 1	To bear the following commissions to a bank of Japan for the banking services based upon the B/A				
	1) Advising commission of A/P	within 1 month after the singing of the contract	MOF	17,200	
	2) Payment commission for A/P	every payment	APORTIL	·	
2	To issue the Working Visa for workers	before commencement of the Project	Ministry of Internal Affairs		
3	To construct the passenger terminal building	during the Project	APORTIL	1,036,700*1	
4	To demolish the blockage in the construction yard	before commencement of the construction work	APORTIL	19,500	
5	To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country	during the Project	APORTIL		
6	To accord Japanese nationals whose services may be required in connection with the supply of the products and the services under the verified contract such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work	during the Project	APORTIL		
7	To bear the cost which is equivalent to the customs duties, internal taxes and other fiscal levies which may be imposed in the country of the Recipient with respect to the purchase of the Products and/or the Services, instead of tax exemption system.	during the Project	APORTIL	72,500	
X I	To bear all the expenses, other than those to be borne by the Grant Aid, necessary for the Project implementation	during the Project	APORTIL		
9	To submit environmental monitoring report to JICA Timor-Leste Office	during the Project	APORTIL		

^{*1/} Cost of construction of passenger terminal is subject to change based on the design and BoQ (Bill of Quantity).

3. After the Project

NO	Items	Deadline	In charge	Cost Estimated (USD)	Ref.
	To maintain and use properly and effectively the facilities constructed and equipment provided under the Grant Aid 1) Allocation of maintenance cost 2) Operation and maintenance structure 3) Routine/Periodic inspection	after completion of the construction	APORTIL	Refer to Annex-12	
2	To submit environmental monitoring report to JICA Timor-Leste Office	after completion of the construction	APORTIL		

Major Undertakings to be covered by the Grant Aid

No	Items	Deadline	Cost Estimated (Million Japanese Yen)	Ref.
1	To construct ferry terminal jetty and necessary facilities (or To procure equipment) - Improvement of ferry terminal jetty - Improvement of necessary facilities To ensure prompt unloading and customs clearance at the port of disembarkation in recipient country a) Marine(Air) transportation of the products from Japan to the recipient country b) Internal transportation from the port of disembarkation to the project site	Before end of contract	1,999	
2	To implement detailed design, tender support and construction supervision (Consultant)	Before end of contract	132	

Project Monitoring Report

Project Name

Grant Agreement No. XXXXXXX 20XX, Month

Organization Information

Person in Charge	(D)		***
Contacts	(Division) Address:		
	Phone/FAX: Email:	<u> </u>	
Person in Charge	(D::)	_	_
Contacts	Address:		
	•		
Person in Charge	/D::::	<u>-</u>	_
Contacts	(Division) Address:		-
	Phone/FAX:		
	Person in Charge Contacts Person in Charge	Contacts (Division) Address: Phone/FAX: Email: Person in Charge (Division) Address: Phone/FAX: Email: Person in Charge (Division) Address:	Contacts Address: Phone/FAX: Email: Person in Charge (Division) Contacts Address: Phone/FAX: Email: Person in Charge (Division) Contacts Address: Phone/FAX: Email: Contacts Address: Phone/FAX: Email:

Outline of Grant Agreement:

Source of Finance	Government of Japan: Not exceeding JPYmil. Government of ():
Project Title	
E/N	Signed date: Duration:
G/A	Signed date: Duration:

& L

1:	Project Description				
1-1	Project Objective				
			·		
1-2	Necessity and Priority of Consistency with development plans a	levelopment policy			
1-3	Effectiveness and the i	ndicators			
	- Effecti v eness b				
Qua	antitative Effect (Operation an	d Effect indicators)			
	Indicators	Original (Yr)	Target (Yr)
Qua	alitative Effect				

2: **Project Implementation**

Project Scope 2-1

Table 2-1-1a: Comparison of Original and Actual Location

Location	Original: (M/D)	Actual: (PMR)
Location	Attachment(s):Map	Attachment(s):Map

Table 2-1-1b: Comparison of Original and Actual Scope

Items	Original	Actual
(M/D)	(M/D)	(PMR)
		Please state not only the most updated schedule but also other past revisions chronologically.
		All change of design shall be recorded regardless of its degree.

2-1-2 Reason(s) for the modification if there have been any.

(PMR)

Implementation Schedule 2-2

2-2-1 Implementation Schedule

Table 2-2-1: Comparison of Original and Actual Schedule

Items	Orig	inal	Actual
Items	DOD	G/A	Actual
[M/D]	(M/D)		(PMR) As of (Date of Revision)
'Soft component' shall be stated in the column of 'Items'.			Please state not only the most updated schedule but also other past revisions chronologically.
Project Completion Date* *Project Completion was d	efined as		at the time of G/A.

2-2-2 Reasons for any changes of the schedule, and their effects on the project.

2-3 Undertakings by each Government

2-3-1 Major Undertakings

See Attachment 2.

2-3-2 Activities

See Attachment 3.

2-4 Project Cost

2-4-1 Project Cost

Table 2-4-1a Comparison of Original and Actual Cost by the Government of Japan (Confidential until the Tender)

	Items			Cost lion Yen)
	Original	Actual	Original	Actual
Construction	'Soft component' shall be			Please state not
Facilities	included in 'Items'.			only the most
(or Equipment)				updated
				schedule but
				also other past
				revisions
				chronologically.
Consulting	- Detailed design			
Services	-Procurement			
	Management			
	-Construction Supervision			
Total				

Note:

1) Date of estimation:

2) Exchange rate:

1 US Dollar = Yen

Table 2-4-1b Comparison of Original and Actual Cost by the Government of Sri Lanka

	Items		tanàna dia mandratra	Cost ion USD)
	Original	Actual	Original	Actual
				Please state not
				only the most
				updated
				schedule but
				also other past
				revisions
				chronologically.
Total	****			

Z &

Note: 1) Date of estimation:

2) Exchange rate:

1 US Dollar = (local currency)

2-4-2 Reason(s) for the wide gap between the original and actual, if there have been any, the remedies you have taken, and their results

	been dity, the remedies jed have taken and results.	
(PMR))	
•		

2-5 Organizations for Implementation

2-5-1 **Executing Agency:**

- Organization's role, financial position, capacity, cost recovery etc,
- Organization Chart including the unit in charge of the implementation and number of employees.

	<u> </u>
Original: (M/D)	
Actual, if changed	: (PMR)

2-6 **Environmental and Social Impacts**

- The results of environmental monitoring as attached in Attachment 5 in accordance with Schedule 4 of the Grant Agreement.
- The results of social monitoring as attached in Attachment 5 in accordance with Schedule 4 of the Grant Agreement.
- Information on the disclosed results of environmental and social monitoring to local stakeholders, whenever applicable.

3: Operation and Maintenance (O&M)

3-1 O&M and Management

- Organization chart of O&M
- Operational and maintenance system (structure and the number, qualification and skill of staff or other conditions necessary to maintain the outputs and benefits of the project soundly, such as manuals, facilities and equipment for maintenance, and spare part stocks etc)

Original: (M/D)	
Actual: (PMR)	

3-2 O&M Cost and Budget

- The actual annual O&M cost for the duration of the project up to today, as well as the annual O&M budget.

Original: (M/D)		

4: Precautions (Risk Management)

Risks and issues, if any, which may affect the project implementation, outcome, sustainability and planned countermeasures to be adapted are below.

Original Issues and Countermeasure(s): (M/I	0)
Potential Project Risks	Assessment
1.	Probability: H/M/L
(Description of Risk)	Impact: H/M/L
	Analysis of Probability and Impact:
	Mitigation Measures:
	Action during the Implementation:
	Contingency Plan (if applicable):
2.	Probability: H/M/L
(Description of Risk)	Impact: H/M/L
	Analysis of Probability and Impact:

		Mitigation Measures:
		Action during the Implementation:
		2 Retort during the imprementation.
	·	Contingency Plan (if applicable):
3.		Probability: H/M/L
_	cription of Risk)	Impact: H/M/L
`	,	Analysis of Probability and Impact:
		Military Management
	·	Mitigation Measures:
		·
		Action during the Implementation:
		Contingency Plan (if applicable):
Actua	al issues and Countermeasure(s)	
(PMI		
,		
5:	Evaluation at Project Complet	tion and Monitoring Plan
- 4	0 11 1 11	
5-1	Overall evaluation Please describe your overall eva	luation on the project
	ricase describe your overall eva	nuation on the project.
5-2	Lessons Learnt and Recommen	
		from the project experience, which might
		tance or similar type of projects, as well as might be beneficial for better realization of
	the project effect, impact and ass	-
	The project office, impact and and	·

5-3 Monitoring Plan for the Indicators for Post-Evaluation

Please describe monitoring methods, section(s)/department(s) in charge of monitoring, frequency, the term to monitor the indicators stipulated in 1-3.

Attachment

- 1. Project Location Map
- 2. Undertakings to be taken by each Government
- 3. Monthly Report
- 4. Environmental Monitoring Form / Social Monitoring Form
- 5. Monitoring sheet on price of specified materials
- 6. Report on Proportion of Procurement (Recipient Country, Japan and Third Countries)
 (Final Report Only)

Environmental	Environmental Checklist: 10. Ports and Harbors	and Harbors		
Cotogony	Environmental	Main Chaolt Itama	Yes: Y	Confirmation of Environmental Considerations
Caregory	Item	Main Check Dems	$N_0:N$	(Reasons, Mitigation Measures)
1. Permits and	(1) EIA and	(a) Have EIA reports been already prepared in	(a) N	(a) It is assumed that APORTIL will prepare EIS (Category
Explanation	Environmental	official process?		A Project) or SEIS (Category B Project) by end of April
	Permits	(b) Have EIA reports been approved by	N (9)	2016.
		authorities of the host country's government?		(b) APORTIL will proceed and Environmental License will
		(c) Have EIA reports been unconditionally	(c) N	be issued by the end of June 2016.
		approved? If conditions are imposed on the		(c) EIS/SEIS meets the requirements of NDE, therefore,
		approval of EIA reports, are the conditions		any collateral condition may not be required.
		satisfied?	N (þ)	
		(d) In addition to the above approvals, have other		(d) Permit for construction works will be prepared by
		required environmental permits been obtained		APORTIL and obtained by the commencement of the
		from the appropriate regulatory authorities of the		construction work.
		host country's government?		
	(2) Explanation	(a) Have contents of the project and the potential	(a) N	(a) It is assumed that this project will be classified as
	to the Local	impacts been adequately explained to the Local		Category B Project, therefore, the public consultation to be
	Stakeholders	stakeholders based on appropriate procedures,		held at the stage of SEIS and EMP is not mandatory.
		including information disclosure? Is		APORTIL will discuss with NDE on the Public
		understanding obtained from the Local		Consultation to be held or not. After NDE will review the
		stakeholders?	(p) N	SEIS and EMP, then NDE may require to hold the public
		(b) Have the comment from the stakeholders		consultation.
		(such as local residents) been reflected to the		(b) Comments and opinion collected at Public Consultation
		project design?		will be replied by APORTIL and those comments will be
				taken into account, if necessary.
	(3) Examination	(a) Have alternative plans of the project been	(a) Y	(a) Review of alternative plans including environmental
	of Alternatives	examined with social and environmental		and social considerations matter has already carried out.

Environmental	Environmental Checklist: 10. Ports and Harbors	and Harbors		
Cotogogo	Environmental	Main Chaol Itama	Yes: Y	Confirmation of Environmental Considerations
Calegory	Item	Main Oleca Dellis	No:N	(Reasons, Mitigation Measures)
		considerations?		
2. Pollution	(1) Air Quality	(a) Do air pollutants, such as sulfur oxides (SOx),	(a) Y	(a) Field survey was conducted prior to the commencement
Control		nitrogen oxides (NOx), and soot and dust emitted		of construction work, all items clear the criteria.
		from ships, vehicles and project equipment		During construction and operation, number of vessels and
		comply with the country's emission standards?		vehicles will be increased, however, the impact to air
		Are any mitigating measures taken?		quality is minimal. During construction, water splay and
				tire cleaning facility will be provided and inspection and
				maintenance of engines for vessels and vehicles will be
				conducted for the improvement of exhausted gas quality.
	(2) Water Quality	(a) Do effluents from the project facilities comply	(a) Y	(a) Related facility (passenger terminal building) will be
		with the country's effluent and environmental		constructed and sewerage facility and rainwater drainage
		standards?		which meet the environmental quality standard will be
			(p) Y	provided. Present water quality clear the standard of
		(b) Do effluents from the ships and other project		Indonesia because local environmental quality standard
		equipment comply with the country's effluent and		has not been issued yet.
		environmental standards?		(b) Timor-Leste does not have own quality standard for
				discharge water and water quality, however, MARPOL
	_		(c) Y	(Annex IV), Marine Pollution Prevention Act 2008 and
		(c) Does the project prepare any measures to		other international agreements are applied.
		prevent leakages of oils and toxicants?		(c) Fuel supply to working vessels and construction
			N (b)	machine will be conducted in accordance with the
		(d) Does the project cause any alterations in		requirements of working procedural manual and project
		coastal lines and disappearance of		contractor must prepare the action plan for oil spill.
		surface water to change water temperature or		(d) Reclamation is not necessary, and the jetty and platform

							l														
Confirmation of Environmental Considerations	(Reasons, Mitigation Measures)	is supported by steel pipe piles and concrete piles,	therefore, seawater exchange will not occur.		(e) Reclamation is not necessary.		(a) Wastes are collected by APORTIL and disposed of at	public landfill.			(b) In case dredging work is necessary, pollution prevention	membrane must be installed to prevent spreading muddy	water. Dredged material must be dumped at authorized	offshore dumping area.	(c) It is not planned that any hazardous substance is used.	In case hazardous substance is used in this project, project	contractor must prepare the procedural manual for	handling hazardous substance and the operation must be	carried out according to the procedural manual.	(a) Level of noise and vibration clear the Indonesian	criteria because Timor-Lest does not have local criteria.
Yes: Y	Z : 0Z	(e) N					(a) Y			(b) Y			Y (5)							(a) Y	
11 17 . 34	Main Oneck Items	quality by decrease of water exchange or changes	in flow regimes?	(e) Does the project prepare any measures to	prevent polluting surface, sea or underground	water by the penetration from reclaimed lands?	(a) Are wastes generated from the ships and other	project facilities properly treated and disposed of	in accordance with the country's regulations?	(b) Is offshore dumping of dredged soil properly	disposed in accordance with the country's	regulations?		(c) Does the project prepare any measures to	avoid dumping or discharge toxicants?					(a) Do noise and vibrations from the vehicle and	train traffic comply with the country's standards?
Environmental	Item						(3) Wastes													(4) Noise and	Vibration
	Category																. =				

Environmental Checklist: 10. Ports and Harbors

Japanese criteria is used for forecasting the level of noise

(a) Groundwater is not pumped up. and vibration during piling work.

(a) N

(a) In the case of extraction of a large volume of

is there a possibility that the

groundwater,

(5) Subsidence

`	Environmental	Environmental Checklist: 10. Ports and Harbors	and Harbors	ΛΛ	One House of Description
	Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
l.		Item		No: N	(Reasons, Mitigation Measures)
			extraction of groundwater will cause subsidence?		
		(6) Odor	(a) Are there any odor sources? Are adequate odor	(a) Y	(a) In case dredging work is necessary, dredged material
			control measures taken?		may generate bad smell. If the bad smell is tremendous,
					some measure to neutralize ammonia is taken.
		(7) Sediment	(a) Are adequate measures taken to prevent	(a) Y	(a) MARPOL (Annex IV), Marine Pollution Prevention Act
			contamination of sediments by discharges or		2008 and Waste Management Act 2010 are applied,
			dumping of hazardous materials from the ships		therefore, vessels and related facilities do not dispose/dump
			and related facilities?		pollutant to the seawater.
	3. Natural	(1) Protected	(a) Is the project site located in protected areas	N (a)	(a) Protected area does not exist around the proposed
	Environment	Areas	designated by the country's laws or international		project area.
20			treaties and conventions? Is there a possibility		
			that the project will affect the protected areas?	•	
		(2) Ecosystem	(a) Does the project site encompass primeval	(a) N	(a) There are not primary forest, tropical natural forest,
			forests, tropical rain forests, ecologically valuable		important habitat of coral, mangrove, wetland, tidal
			habitats (e.g., coral reefs, mangroves, or tidal		wetland, etc. around the project site, however, coral which
			flats)?		is classified as Near Threatened (NT) is found at the area
					about 1,000 meters to north from the project site, and
					countermeasures to prevent giving impact due to
				N (a)	construction work on the coral above must be provided.
			(b) Does the project site encompass the protected		(b) There is not any important habitat for precious species
			habitats of endangered species designated by the		around project site.

(c) There is no concern to give impact on ecological system, however, visual observation must be conducted to find any

(c) Y

are

impacts

significant ecological

conventions?

If

ල

country's laws or international treaties and

Environmental	Environmental Checklist: 10. Ports and Harbors	and Harbors		
100000	Environmental	Main Olecal Items	Yes: Y	Confirmation of Environmental Considerations
Category	Item	Main Oneck Lems	No:N	(Reasons, Mitigation Measures)
		anticipated, are adequate protection measures		spreading of muddy water. When working vessel will be
		taken to reduce the impacts on the ecosystem?		imported from foreign country, ship bottom cleaning prior
				to the mobilization and verification upon arrival must be
			Д (Р)	carried out to prevent adventive to come in.
		(d) Is there a possibility that the project will		(d) Ditto above
		adversely affect aquatic organisms? Are adequate		
		measures taken to reduce negative impacts on	(e) N	
		aquatic organisms?		
				(e) No impact will be given to coastal vegetation and wild
		(e) Is there a possibility that the project will		animals.
		adversely affect vegetation or wildlife of coastal		
		zones? If any negative impacts are anticipated,		
-		are adequate measures taken to reduce the		
		impacts on vegetation and wildlife?		
	(3) Hydrology	(a) Do the project facilities affect adversely flow	(a) N	(a) Jetty and platform are supported by steel pipe piles and
		regimes, waves, tides, currents of rivers and etc. if		concrete piles, therefore, ferry mooring facility does not
		the project facilities are constructed on/by the		give negative impact on flow condition, wave and tidal
		seas?		current.
	(4) Topography	(a) Does the project require any large scale	(a) N	(a) Change of topography and geology and cease of natural
	and Geology	changes of topographic/geographic features or		seashore will not occur.
		cause disappearance of the natural seashore?		

(a) to (j) No land acquisition nor involuntary resettlement

(a) N

(a) Is involuntary resettlement caused by project

(1) Resettlement

4. Social

	Y Confirmation of Environmental Considerations	N (Reasons, Mitigation Measures)	occur because the project area is under the control of	APORTIL.																						
	Yes: Y	No:N				N (9)	4)		(c) N				N (b)		(e) N	N (9)		•		N (g)		(b) N	4)		N (i)	
and Harbors	Mess Class Trees	Main Oneck Items	implementation? If involuntary resettlement is	caused, are efforts made to minimize the impacts	caused by the resettlement?	(b) Is adequate explanation on compensation and	resettlement assistance given to affected people	prior to resettlement?	(c) Is the resettlement plan, including	compensation with full replacement costs,	restoration of livelihoods and living standards	developed based on socioeconomic studies on	resettlement?	(d) Are the compensations going to be paid prior	to the resettlement?	(e) Are the compensation policies prepared in	document?	(f) Does the resettlement plan pay particular	attention to vulnerable groups or people,	including women, children, the elderly, people	below the poverty line, ethnic minorities, and	indigenous peoples?	(g) Are agreements with the affected people	obtained prior to resettlement?	(h) Is the organizational framework established to	properly implement resettlement? Are the
Environmental Checklist: 10. Ports and Harbors	Environmental	Item																								
Environmental (2000	Category	Environment																							

Environmental Environmental Environmental Main Check Items Item capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? (a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary? (b) Is there a possibility that changes in water uses (including fisheries and recreational uses) in the surrounding areas due to project will adversely affect the livelihoods of inhabitants? (c) Is there a possibility that diseases, including infectious diseases, such as HIV will be brought due to immigration of workers associated with the project? Are considerations given to public health, if necessary?	Yes: Y Confirmation of Environmental Considerations No: N (Reasons, Mitigation Measures)	7						Y (a) During construction work, vehicles for construction	work may impact the traffic of surrounding area, however,	the number of vehicle is not many and level of impact is	minor. Work schedule is informed on ahead to the	N surrounded residents.	(b) There is no impact on the usage of water area.		X.	(c) Same as (a)		Z	(d) Any population inflow is not expected due to this	project.			
Environmental Environmental Item (2) Living and Livelihood	Main Check Items		plan?	(i) Are any plans developed to monitor the	impacts of resettlement?	grievance redress	established?	that the project will	living	inhabitants? Are adequate measures considered	to reduce the impacts, if necessary?	(Q)		uses (including fisheries and recreational uses) in		(c) Is there a possibility that port and harbor	facilities will adversely affect the existing water		(d) Is there a possibility that diseases, including	infectious diseases, such as HIV will be brought	due to immigration of workers associated with the	project? Are considerations given to public health,	if necessary?
	Category Environmental Item							(2) Living and	Livelihood														

Harbors
and
Ports
10.
Checklist:
ronmental
3nvi

	The company of the control of the co	and manage	•	
Category	Environmental	Main Chaol Itams	Yes: Y	Confirmation of Environmental Considerations
Calegory	Item	Mani Oleca Items	No: N	(Reasons, Mitigation Measures)
	(3) Heritage	(a) Is there a possibility that the project will	(a) N	(a) There is no legacy nor historical places around the
		damage the local archeological, historical,		project site.
		cultural, and religious heritage? Are adequate		
		measures considered to protect these sites in		
		accordance with the country's laws?		
	(4) Landscape	(a) Is there a possibility that the project will	(a) N	(a) The area for this project is within the existing port area,
		adversely affect the local landscape? Are		therefore, it is assumed that the project has no negative
		necessary measures taken?		impact on the landscape.
	(5) Ethnic	(a) Are considerations given to reduce impacts on	(a) N	(a) and (b) The ethnic minority and indigenous people does
	Minorities and	the culture and lifestyle of ethnic minorities and	N (9)	not exist around the project area and the fishery rights
	Indigenous	indigenous peoples?		does also not exist because the project area locates within
	Peoples	(b) Are all of the rights of ethnic minorities and		the existing port area.
		indigenous peoples in relation to land and		
	,	resources respected?		
	(6) Working	(a) Is the project proponent not violating any laws	(a) Y	(a) Local regulations are observed.
	Conditions	and ordinances associated with the working		
		conditions of the country which the project		
		proponent should observe in the project?		
		(b) Are tangible safety considerations in place for	(b) Y	(b) Safety measures, such as wearing life jackets (when
		individuals involved in the project, such as the		working on the sea) and installing life float, safety fence
		installation of safety equipment which prevents		and caution sign are planned.
		industrial accidents, and management of		
		hazardous materials?	(c) Y	
9		(c) Are intangible measures being planned and		(c) It is planned to provide the safety and health training to

Environmental Checklist: 10. Ports and Harbors

римпешен	Environmental officials \cdot 10. Forts and narrors	and narbors		
Cateoniv	Environmental	Wain Chark Tems	Yes: Y	Confirmation of Environmental Considerations
frogano.	Item		No: N	(Reasons, Mitigation Measures)
		implemented for individuals involved in the		workers, including the safety and health of workers and
		project, such as the establishment of a safety		respecting the local society.
		and health program, and safety training		
		(including traffic safety and public health) for	(p) X	
		workers etc.?		(d) Employment of local people must be prioritized and
		(d) Are appropriate measures taken to ensure		workers must be educated for respecting local culture.
		that security guards involved in the project not to		
		violate safety of other individuals involved, or		
		local residents?		
5. Others	(1) Impacts	(a) Are adequate measures considered to reduce	(a) Y	(a) Construction volume must be minimized. Monitoring
	during	impacts during construction (e.g., noise,		must be carried out for dust, noise, vibration, exhaust gas,
	Construction	vibrations, turbid water, dust, exhaust gases, and		muddy water, etc. by instrument measurement and visual
		wastes)?		observation daily, and impact to the surrounding area must
			N (9)	be verified.
		(b) If construction activities adversely affect the		(b) It is not assumed that any work generating pollution is
		natural environment (ecosystem), are adequate		implemented, however, monitoring to verify the generation
		measures considered to reduce impacts?		of pollution can minimize the negative impact on natural
				environment. The construction work has minimal impact
				on natural environment. Natural environment other than
			(c) N	pollution has no negative impact.
		(c) If construction activities adversely affect the		
		social environment, are adequate measures		(c) Increase of number of vehicles during the construction
		considered to reduce impacts?		work is low, however, interview to the surrounding
				residents must be carried our periodically in order to

	Environmental Category	Environmental Checklist: 10. Ports and Harbors Category Item	Main Check Items	Yes: Y	Confirmation of Environmental Considerations (Reasons. Mitigation Measures)	
<u> </u>					nd t	
					minimal.	
		Note on Using	Note on Using (a) Where necessary, impacts on groundwater	(a) N	(a) It is not assumed that the project has impact on	
		Environmental	hydrology (groundwater level drawdown and		groundwater system (lowering of water level and	
		Checklist	salinization) that may be caused by alteration of		salination) and ground settlement due to usage of	
			topography, such as land reclamation and canal		groundwater.	
			excavation should be considered, and impacts,			
			such as land subsidence that may be caused by			
			groundwater uses should be considered. If	· <u>-</u>		
			significant impacts are anticipated, adequate			
 عر			mitigation measures should be taken.	Z (q)		
 5			(b) If necessary, the impacts to transboundary or		(b) The project hes at northern side and central part of the	
			global issues should be confirmed, if necessary		island of Timor-Leste, it is not assumed that the impact	
			(e.g., the project includes factors that may cause		caused by the project has cross-border impact.	
			problems, such as transboundary waste			
			treatment, acid rain, destruction of the ozone			
			layer, or global warming).			

MONITORING FORM (Before and during construction work)

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
Responses/Actions to Comments and	
Guidance from Government Authorities	
Number and contents of comments made by	
stakeholders	
Number and contents of responses made by	
project proponent	

2. Mitigation Measures

Air Quality, Ecological System

Schedule	Condition of air quality, dust, ecological system, etc. by visual observation	Judgement, countermeasure
1st day	<u></u>	
2nd day		
3rd day		

In case any unusual situation of air quality is identified during visual observation, the following quality survey is implemented.

- Air Quality (Emission Gas / Ambient Air Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's s Standard s	Referred Internationa I Standards	Remarks (Measuremen t Point, Frequency, Method, etc.)
SO ₂	μg/Nm	max.365/24hour s	max.900/hou	N.A.	Indonesia	
NO ₂	μg/Nm 3	max.150/24hour s	max.400/hou r	N.A.	Indonesia	
СО	μg/Nm 3	max.10,000 /24hours	max.30,000 /hour	N.A.	Indonesia	
O ₃	μg/Nm 3	-	max.235/hou r	N.A.	Indonesia	

Dust	μg/Nm	max.230/24hour	-	N.A.	Indonesia	
(TSP	3	s				
)						
HC	μg/Nm	max.160/3hours		N.A.	Indonesia	
	3					
Pb	μg/Nm	max.2/24hours	_	N.A.	Indonesia	
	3					

Water Quality (by Visual Observation)

Schedule	Rain fall	Condition of water pollution	Condition of rain fall and drainage	Judgement, countermeasur e
1st day	yes/no			
2nd day	yes/no			
3rd day	yes/no			
•				

In case any unusual situation of water quality is identified during visual observation, the following quality survey is implemented.

Water Quality

Schedule	Item	Unit	Sample	Sample -2	Sample -3	Sample -4	Sample -5	*Criteria	Adjudica- tion
1 st day	Turbidity	NTU						Max. 5	
	рH	_						7-8.5	
(Date)	Total	mg/L						0.1	
	nitrogen								
	Total	mg/L						0.015	
	phosphate								
	COD	mg/L						_	,
	Oil &	mg/L						-	
	grease								
	Total	mg/L						Max. 20	
	suspended								
ard 1	solids	A TOTAL T	 						
3 rd day	Turbidity	NTU						Max. 5	
(D-4-)	pН	- /T						7-8.5	
(Date)	Total	mg/L						0.1	
	nitrogen								
	Total	mg/L						0.015	
	phosphate	/T							
	COD	mg/L						-	
	Oil &	mg/L						-	
	grease	/T						36. 20	
	Total	mg/L						Max. 20	
	suspended solids								
5 th day	Turbidity	NTU					••••••	Max. 5	
3 day	pH	N10						7-8.5	
(Date)	Total	mg/L			·			0.1	
(Date)	nitrogen	mg/L						0.1	
	Total	mg/L						0.015	
	phosphate	mg/L						0.015	
	COD	mg/L						_	
	Oil &	mg/L							
	grease	ر روس							
	Total	mg/L						Max. 20	
		15/1			27	L		1714A. 2V	

& Ja

Schedule	Item	Unit	Sample -1	Sample -2	Sample -3	Sample -4	Sample -5	*Criteria	Adjudica- tion
	suspended solids								
7 th day	Turbidity	NTU						Max. 5	
	рH							7-8.5	
(Date)	Total nitrogen	mg/L						0.1	
	Total phosphate	mg/L			*************	, , , , , , , , , , , , , , , , , , ,		0.015	
,	COD	mg/L						-	
	Oil & grease	mg/L			,			-	
	Total suspended solids	mg/L		-				Max. 20	

^{*:}Indonesian criteria are applied because Timor-Leste's criteria have not been issued.

Waste (within construction area)

Schedule	Contents	Quantity (m ³)	Disposal method
1st day			
2nd day			
3rd day			

Soil pollution

Schedule	Description of work	Yes/No of soil pollution	Mitigation method
1st day			
2nd day			

Noise / Vibration

Item (unit)	Measur ed value (average	Measure d value (max)	Local standar d	Internatio nal standard referred	Frequenc y (during piling work)	Metho d	Measuring point
Noise level (dB)			NA	80 (7AM-7P M)	10 min.	Noise level meter	Border of lot
Vibratio n level (dB)			NA	70 (7AM-7P M)	Twice/day	Vibratio n meter	Border of lot

Note: Japanese standard of Ministry of Land, Infrastructure, Transport and Tourism is

referred as International standard for noise and vibration.

Odor

Schedule	Description of work	Yes/No of odor	Mitigation method
1st day			·
2nd day	-	_	
			·

3. Natural Environment

- Ecosystem

Monitoring Item	Monitoring Results during Report Period			
Negative effects/Actions to Valuable species	To be carried out together with Air Quality			
	visual observation			

4. Social Environment

Monitoring item	Item	Method	Frequenc y	Condition during reporting period
Resettlement	Not Applicab	le		
Livelihood	Traffic jam,	Visual	Once/wee	
	noise,	observation	k	
	vibration	and hearing		
Working environment	Implementatio n status of management of safety and health	Verification of monthly	Once/month	
Accident	Implementatio n status of management of safety and health	Verification of monthly accident report	Once/month	

MONITORING FORM (During operation)

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
Responses/Actions to Comments and	
Guidance from Government Authorities	
Number and contents of comments made by	
stakeholders	
Number and contents of responses made by	
project proponent	

2. Social environment

Monitoring item	Item	Method	Frequency	Condition during reporting period
Accident	Implementation status of management of safety and health,	Verification of monthly accident report	Once/month	
	Safe traffic line of passengers			

Operation and Maintenance Cost

Item	Yearly	Periodical	Incidental Investment Cost			
	Maintenance Cost	Maintenance Cost				
Overall Facilities	US\$3,600					
Jetty, Platform		US10,000/3 year	Concrete repair cost			
Movable Ramp		US\$5,200/2 year	Repair cost for structural damage			
Rubber Fender			US\$25,000/set (when damaged)			
Bollard	US\$100					
Navigation Aids						
Lighting facility			US\$70/lamp (change)			
Water supply & Hydrant	US\$100					
CCTV System			US\$50/No. (Camera) US\$200/No. (Monitor) US\$450/set (DC power source)			
			(all for replace)			
TOTAL	US\$3,800					

5. 参考資料

5-1 フェリー利用者ヒアリング調査結果

5-1-1 調査概要

ナクロマ利用客に対して下記の内容でヒアリング調査を実施した。

- ① 日 時:2015年7月21日(月) 13:00~17:00
- ② 場 所:ディリ港東側ゲート付近
- ③ ヒアリング人数:100名
- ④ ヒアリング項目:表 5-1 に示すヒアリング調査シートを作成して実施した。

表 5-1 ヒアリング調査シート

ディリ港フェリーターミナル利用者(ディリ⇒オエクシ間)調査表 —Japanese—

ノイラ/センエッ	メート ノングリカモ	111177	エノノ回	则且以	—Japanes	-		
作: 別	□男□女	年齢		因籍	□東ティモ □インドネ □その他(ペシア)	
住. 所	ロディリ ロオエ ロその他(職業	□学生 □白営業 □その他(□農業	l)			
利用目的	□仕事 □商川 □帰郷 □買い物 □旅行 □その他()			同伴者 見送り		4 名		
自動車利用か?	□YES □NO	自動車の種類	□乗川耳□その値		゙ック □オ゙	トバイ)	
積荷の種類	□食料品 □衣料 □その他(獎品 □嗜好	Füll)				
1ヶ月当たりの利用回数		2 □ □ 3	□ □ 4	回 🗆 5	5回以上(旦)		
乗船に問題はないか?	□YES □NO							
どの様な時が問題か?	□チケット購入が難しい。 □チケット購入に時間がかかる。 □乗船までの持合場所がない。 □乗船までにどのくらい時間がかかるか?(時間) □連行時間の遅延 □その他							
危険を感じたことはあるか?	□YES □NO							
どの様な時か?	□乗船までの通路 □自動車の通行 □その他	□コンデ	ナの荷役機	械				
フェリーターミナルにあってほしい 設備はあるか?	□符合室 □洗面 □駐車場 □バイ □その他				□授乳室	□遊戯施		
その他、要望はあるか?								

5-1-2 調査結果

ヒアリング調査結果をグラフ化して、図 5-1~5-2 に示す。

ナクロマ利用者の年齢は、 $21\sim23$ 歳が約 40%を占め、国籍はほぼ東ティモールでありディリかオエクシの住居者が利用している。利用者の職業は、学生、会社員及び農業の順となっている。利用目的は、帰郷が約 40%を占め、旅行、仕事の順となっている。同伴人数は、 $1\sim3$ 人が過半数をしめている。見送り人数は、過半数がなしで、 $1\sim3$ 人程度である。モーターバイク利用者は、全体の 25%で、1 ヶ月当たりの利用回数は、 $1\sim2$ 回が約 85%である。

乗船時の問題点は、約80%の人が問題ありと回答しており、待合室がない点とチケット購入の難しさをあげている。乗船時に感じる危険としては、乗船までの通路、ランプウェイからの乗り込み時及び自動車の通行をあげている。また、フェリーターミナルへの要望施設は、待合室、出発・到着時間掲示板、洗面所、食堂及び授乳室の整備の要望が多い。

その他の回答の得られた要望を下記に示す。

- ・質の高い新しい港湾を建設して、施設、スタッフを増やして、健康のための良い環境が非常に 重要です。
- ・小さな庭を組み入れた快適な空間を創って下さい。
- ・旅客需要が現在非常に多いので、必要に応じて、フェリーをもう1隻建造して下さい。
- ・緊急事態に対応する、応急手当の為に治療とスタッフのためにスペースを確保して下さい。
- ・船内の混雑、狭い車道と待合室がないことが問題です。
- ・フェリーの運行と乗客が満足する様な、質の高い新しい港を建設して下さい。
- ・スタッフを増員すれば、乗客は彼らから情報を簡単に得られます。コンテナの一時置場として ターミナル地域を使わないで下さい。
- ・施設を増やして、良いシステムを構築して下さい。
- ・施設を増やして下さい。そして、安全装置システムを含む港湾システムは、国際標準でなければなりません。
- ・可能であれば、オエクシ港と同じ様な新しい港湾を建設して下さい。そして、オエクシ港と同様な駐車場システムを造ってください。
- ・新しい港湾とフェリーターミナビルディングを作って下さい。そして、フェリーをもおう1隻加えて下さい。
- ・港湾施設とターミナル設備を増やして、すべての乗客の為のスペースを確保して下さい。
- ・港湾施設(例えば乗降客用ターミナルと駐車場)を建設することを、国際社会に問います。
- ・コンテナ置き場と分離した待合室を含むすべての港湾港施設を増やしてください。

図 5-1 ヒアリング調査結果(1)

図 5-1 ヒアリング調査結果 (2)

図 5-2 ヒアリング調査結果

ナクロマ係留状況

ゲート外待機状況

ヒアリング状況(1)

ヒアリング状況(2)

モーターバイク乗船状況

ゲート付近乗船券確認状況

旅客ゲート内徒歩状況

旅客乗船状況

調査時写真

Annex 1

	tal Bal
表-1	性別
性	別
男 女 合計 表-2	42 人
女	58 人
台計	100人
	年 齢
年	齢
0~10 歳	0人
11~20 歳	18 人
21~30 歳	39 人
31~40 歳	25 人
41~50 歳	12 人
51~60 歳	4人
61~70 歳	1人
71~80 歳	1人
合 計	100 人
表-3	国 籍
玉	籍
東ティモール	98 人
インドネシア	0人
その他	2 人
合 計	100 人
• •	住所
住	所
ディリ	48 人
オエクシ	36 人
その他	16 人
合 計	100 人
表-5	職業
職	業
学 生	36 人
会社員	29 人
自営業	8人
農業	19 人
その他	8人
合 計	100 人
表-6 禾	川用目的
利用	目的
仕 事	16 人
商用	5人
帰 郷	39 人
買い物	6人
旅行	26 人
その他	8人
	伴者人数
同伴者	
1. 4 1 1 1	
なし	1 31 A
なし 1人	31 人 17 人
1人	17 人
1人 2人	17 人 24 人
1人 2人 3人	17 人 24 人 11 人
1人 2人 3人 4人	17 人 24 人 11 人 8 人
1人 2人 3人 4人 5人以上	17 人 24 人 11 人 8 人 9 人
1人 2人 3人 4人	17 人 24 人 11 人 8 人

表-8 見送り	人数
見送り人数	
なし	55 人
1 人	17 人
2 人	15 人
3 人	7人
4 人	4 人
5 人以上	2 人
合 計	100 人
表-9 自動車	利用
自動車利用	
はい	23 人
いいえ	77 人
合 計	100 人
表-10 1ヶ月当たり	
1ヶ月当たりの利用回	回数
1 回	61 人
2 回	23 人
3 回	3 人
4 回	11 人
5 回以上	2 人
Total	100 人
表-11 乗船時の	問題点
乗船時の問題点	
ある	81 人
ない	19 人
合 計	100 人
表-12 乗船時の	問題点

20 10 MM	1.470
乗船時の問題点	
チケット購入が難しい	60 人
チケット購入に時間がかかる	37 人
乗船までの待合室がない	64 人
乗船までに時間がかかる	36 人
運行時間の遅延	23 人
その他	0人
表-13 危険を感し	ごるか?

危険を感じるか?	
感じる	41 人
感じない	59 人
合 計	100 人
表-14 危険を感じ	こる状態.

危険を感じる状態	
乗船までの通路	32 人
ランプウェイからの乗り込み	29 人
時	
自動車の通行	27 人
コンテナの荷役機械	17 人
その他	2 人

表-15 フェリーターミナルにあってほしい設備

フェリーターミナルにあってし	ほしい設備
待合室	96 人
洗面所	65 人
売店	34 人
公衆電話	29 人
食堂	47 人
授乳室	48 人
遊戯施設	6人
駐車場	21 人
モーターバイク置場	30 人
出発、到着時間掲示板	78 人
その他	0人

5-2 波浪条件解析結果

計画地は海面擾乱が発生しやすい地形であり、十分な波浪解析を行なって設計波浪条件を設定する必要があるため、今回実施した深浅測量成果により長期間の波浪推算結果を用いて①計画する桟橋等の設計波浪の設定と②計画地での静穏度解析の検討を行なった。

① 計画対象地点の設計波浪の推算

NOAA(アメリカ海洋大気庁)(35 か年間)をもとに、計画地の設計波浪条件を解析する。 検討フローを図 5-2 に示す。

② 計画対象地点での静穏度解析

5か年間の波浪推算をもとに、設計対象フェリーの利用限界波高に係る静穏率の算定を実施する。検討フローを図 5-3に示す。

図 5-2 設計波検討フロー

図 5-3 静穏度検討フロー

5-2-1 波浪解析

5-2-1-1 自然条件

5-2-1-1-1 地形・深浅測量

ディリ港付近の海図は、British Admiralty Paper Charts 942A 及び 3296 である。これらの海図を図 5-4~図 5-6 に示す。また、深浅測量の結果を図 5-7 に示す。同図によれば、海底勾配は、汀線(± 0.0 m)~-10.0m で急激に落ち込んでおり、1:2 程度となっている。-10.0m から沖側の海底勾配についても急で、1:10~1:20 となっている。

図 5-4 海図 942A (Timor 島近海抜粋)

図 5-5 海図 3296

図 5-6 海図 3296

図 5-7 地形深浅測量図及び桟橋設計予定付近の水深

5-2-1-1-2 風

NOAA (アメリカ海洋大気局) におけるディリ港近郊の推算地点は、図 5-8 に示す通り、地点 M2 (南緯 8°、東経 125.5°) 及び地点 M3 (南緯 8.5°、東経 125.5°) である。

図 5-8 DILI 近郊推算地点(NOAA)

図 5-9 及び表 5-2 に各地点での再解析データ(NOAA)の風配図、頻度表を示す。地点 M3 ではティモール島の影響を受けるので地点 M2 に対し風速は弱くなるが、風向は年間を通じ、同様の傾向にある。

図 5-9 風配図 (期間:1980年1月~2014年12月)

表 5-2 風頻度表 (期間:1980年1月~2014年12月)

		Observed	102272
地点 M2		Missing	0
		Calm	74

Wind Direction Wind Speed(m/s)	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N	Total	(0.1%)
-4.99	2386	2431	3073	3888	5431	4908	3114	1966	2129	2956	4294	4641	4442	3750	3089	2470	54968	(537)
5.00- 9.99	500	886	2387	4742	13198	12957	921	23	33	278	1967	3888	2469	804	713	625	46391	(453)
10.00- 14.99	-		1	42	221	56	- 1	- 8			53	310	131	15	5		835	(8)
15.00- 19.99							7	74		-		2	2	Te			4	(0)
20.00-	1 - 1					-11	1 1										0	(0)
Total	2886	3317	5461	8672	18850	17921	4036	1989	2162	3234	6314	8841	7044	4569	3807	3095	102198	
(0.1%)	(28)	(32)	(53)	(84)	(184)	(175)	(39)	(19)	(21)	(31)	(61)	(86)	(68)	(44)	(37)	(30)	(999)	

地点 M3	Observed	102272
26 M M3	Missing	- 0
	Calm	122

Wind Direction Wind Speed(m/s)	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N	Total	(0.1%)
-4.99	4290	4664	6200	8051	11465	18387	7142	1818	1482	2093	4457	6633	6223	5059	4374	4518	96856	(947
5.00- 9.99	96	334	609	604	618	817	40	1		9	229	1055	652	123	41	62	5290	(51
10.00- 14.99	1 1		-	171			14	1		4	-1	3	0.		-	19	4	(0)
15.00- 19.99			!				18	1 1		10	- 4		1 7 6	3			0	(0
20.00-				(*)													0	(0
Total (0,1%)	4386	4998	6809 (66)	8655	12083	19204 (187)	7182	1819 (17)	1482	(20)	4687	7691 (75)		5182	4415	4580 (44)	102150 (998)	

5-2-1-1-3 波浪

波浪は、風の再解析データの M2、M3 地点における、NOAA による推算結果を利用した。図 5-10 \sim 図 5-11、表 5-3~表 5-8 に NOAA による推算結果の頻度図表を示す。同図表によれば地点 M2 はアロル島とティモール島の間からインド洋のうねりが来襲していることが分かる。また、ウェタル島の影響のためか、 $NNE\sim ENE$ の出現頻度がきわめて少なくなっている。

図 5-10 頻度分布図(地点 M2)

図 5-11 頻度分布図(地点 M3)

表 5-3 地点 M2 波高·周期頻度表

19 (0.02)	Total Exceedance	182 102253		-	-	-	-	-	821 1646	+	-	-	Н	+	_	\vdash	٠	-	(0.00) (0.00)		0 0 0 0		0 0	+	00	-	-	-		0 00	0 0 0	-	H
Missing		-	+	(38	25	30	(6)	20.5	oc s	44	(0)	210	-	0)	(0)	1		0)	9	0)	9)			9	0)	(0)	(0)	9	9	9	0	9	+
Mis	CAM	0 00					_			ļ			ŀ	1		L	ļ					L	L	+	+								0
	Z	397	1656	(1.62	009	149	(0.15	53	23	6	(0.01		L				L							1								L	7997
	NNN	445	1880	(1.84)	568	(0.36)	(0.19)	51 (0.09)	32	14	(0.01)																						2150
	35W	352	1738	(0.70)	724	283	(0.28)	113	42	6	(0.01)																						2050
	WNW	838	4776	(4.67)	3098	1946	(06.0)	1012	551	318	(0.31)	194	114	(0.11)	(0,04)	14	4	(00'0)	(0,00)					Ī	Ī								19015
	W	254	1080	(1,06)	652	377	(0.37)	218	127	71	(20.0)	20	13	(0.01)			Ī							Ī	1								-0180
	MSM	202	423	(0.41)	134	46	(60.0)	12 (0.01)	10	1	(00'0)						Ī							Ī	1								200
	SW	20862	18383	(17.98)	2518	(2,46)	(80.0)			Ī			Ī	Ī			Ī							Ī	Ī								41947
	MSS	25	23	(0.02)	200	(00.00)																		Ī	Ī								90
	us.	27	20	(0.02)	I w	(00'0)								1			l								1								48
	SSE	98	153	(0.15)	15	(0.01)				Ī				Ī			Ī								Ī								366
	H.	118	1593	(1.36)	2134	266	(0.26)	7 (0.0)	T T	(0.0)			Ī	Ī			Ī							Ī	Ī								4110
	ESE	661	4625	(4.52)	11472	4802	(4.70)	422	28	10,037				1			Ī					Г		Ī	1								21548
	ш	94	2021	(1.98)	3264	3,19)	(1.38)	146	1	10.01				Ť			İ							Ī	Ī								6008
	ENE	149	610	(0.60)	152	(0.13)	(0.01)	(0.00)	10000	İ			T				Ī																918
	N	57	216	(0,21)	800	(10.01)																											981
	NNE	100	304	(0.30)	8	(0.01)	(00'0)						Ī				Ī																414
	Wave Direction	- 0.24	0.00 - 0.00		0.50 - 0.74		0,75 - 0,99	1.00 - 1.24	1.25 - 1.49		120 - 174	1.75 - 1.99	2.00 - 2.24		2.25 - 2.49	250 - 2.74		2.73 - 2.99	3.00 - 3.24	3,25 ~ 3,49	3.50 - 3.74	3.75 - 3.99	4.00 - 4.24	10		4.50 - 4.74	4.75 - 4.99	5,00 - 5.24	5.25 - 5.49	5.30 - 5.74	5,75 - 5,99	6,00	

7			
7			
τ.			
			1

Wave Direction	NNE	AIN	ENE	b	350	40	CCE	U	CCIV	CIA	WCM	A	WANA	MEX	XXXX	9	CAM	Torni	December
Wave Period(s)	7666	140	Tive I	1	Light	3	700		1100						MAN.		CONT	1000	Tarregalan
- 2.99	282 (0.28)	209	484 (0.47)	1391	2729	1097	(0.19)	48 (0.05)	47	(60.03)	253	423	397	519 (0.51)	1081	(0.74)	(0.00)	(9.77)	(100.00)
3.00 - 3.99	84	44	159	4643	16109	2962	35		3	15	267	878	2130	1150	798	486		29764	92258
4.00 - 4.99	46	21 (0.09)	104	866	2702	09 (90 0)	Jones Comment		COLUMN TO SERVICE STATE OF THE PARTY OF THE	None of	189	662	4978	1228	955	1011		12822	62494
5.00 - 5.99	(0.00)	4 (0.00)	81	7 (0.01)	8 (10.0)	Tonas a					(0.01)	419	3370	335	309	542		5085	49672 (48.58)
6.00 - 6.99	(0.00)	(0.00)	71 (0.07)	(0.00)								264 (0.26)	1599	26 (0.03)	42 (0.04)	68		2096 (2,05)	44587 (43.60)
7.00 - 7.99			17 (0.02)									126 (0.12)	419 (0.41)		(0,00)	4 (0.00)		570 (0.56)	42491 (41.55)
8.00 - 8.99			(0.00)							12 (0.01)	7 (0:01)	38 (0.04)	19 (0.02)					78 (0.08)	41921
66.6 - 00.6										41 (0.04)	3 (0.00)							44 (0.04)	41843 (40.92)
10.00 - 10.99										507	16 (0.02)							523 (0.51)	41799 (40.88)
11.00 - 11.99										3464 (3.39)	22 (0.02)	(0.00)						3487	41276 (40.37)
12.00 - 12.99										(6.45)	15 (0.01)							(6.46)	37789
13.00 - 13.99										8738 (8.55)	10 (0.01)							8748	31182
14.00 - 14.99										8462 (8.28)	18 (0.02)							8480	22434 (21.94)
15.00 - 15.99										6405	(0.01)							6414 (6.27)	13954 (13,65)
16.00 - 16.99										3984	7 (0.01)							3991	7540 (7.37)
17.00 - 17.99										2108 (2.06)	(0.01)							2116 (2:07)	3549
18.00 - 18.99										(0.70)	(0.00)							716	1433
19.00 -										715	(0.00)							717	717
ı																			
i																			
+																			
2.																			
1																			
-4-																			
Total	414 (0.40)	281 (0.27)	918 (0.90)	(6.76)	21548 (21.07)	4119 (4.03)	226 (0,22)	48 (0.05)	50 (0.05)	41847 (40,92)	836 (0,82)	2812 (2.75)	12912 (12.63)	3258	3189	2887	(0.00)	102253 (100.00)	
Exceedance	102253	101839	101558	100640	93732	72184	68065	67839	67791	67741	25894	25058	22246	9334	6076	2887	0 00		

表 5-6 地点 M3 波高·周期頻度表

(1.89)		Exceedance	(100.00)	14675	(14.62)	(1.23)	98	(60.0)	000	0	(00 0)	(0.00)	0	0	(0.00)	(000)	0	(00.00)	(00'0)	0000	0	(00'0)	(0 00)	0	(000)	(000)	(00'0)	0	(000)	(000)	(00 0)	0	(000)	(000)	00.00	0000		
1930		Total	(85.38)	13444	(13.40)	(1.145)	75	(0.07)	(100)	0	(000)	(000)	0	0	(00.0)	(000)	0	(0.00)	(000)	0	0	(00'0)	(000)	0	(0.00)	(000)	0000	0	(000)	(00.00)	0 00	0	(000)	(00'0)	(000)	0000)	(100.00)	
Missing	0'61	ı	427																																		427	427
_	18.0	189	237		Ī				I					Ī				Ī			Ī				Ī				Ī				Ī				237	664
	-		776		Ī													Ī							Ī				Ī								176	1440
	16.0	16.9	(1102		Ī									Ī	1			Ī			Ī	1			Ì				Ī			Ī	Ī				1102	2542
	15.0	1 82	1291		Ī									T				Ī			Ī				Ī				Ī				Ī	Ī	П		1531	3833
	14.0	1 6	1796		İ					Ī				İ	Ī	Ī	Ī	İ			T				Ì				İ		Ī	Ī	İ	Ī			1796	5629
	-		1592	N	(0.00)				Ī		1			T	1			Ì			T								İ				İ		Г		1594	7223
	12.0	12.9	1063		İ									t	1		r	İ			T	1			İ				t			T	t		П		(1063	8286
	110	1 6	531		İ									İ			l	İ			Ī								İ			ľ	Ì	Ī			531	(8.79)
	10.0	10.9	182		Ì					l	1			İ	1	Ī	l	İ			Ī				Ì				t		Ī	ľ	İ	Ī			182	8999
	9.0	1 6	124		1						1			t	1		l	t			t	1							İ			l	t				124	9123
	8.0	1 8	295	1	(00:0)	(100)	63	(00:0)	Ī					t	1		r	t			T	1			T				t		Ī	T	t				307	9430
	7.0	7.9	102	138	(0.14)	(0.13)	6	(00.00)			1			t	1		l	Ť			T	1			Ì				Ť				t				375	9805
		6.9	0	763	(0.76)	(0.03)				Ī				t	Ì	i	l	İ			İ	Ī			İ	Ī			İ		Ī	Ī	İ	Ī			1344	11149
	5.0	1 60	2528	423	(0.42)									t	1	i	l	İ			t	Ì							İ			l	İ	Ī			-	14100
	-	1 9		61	4	(000)	21	(200)	(100)	7				t							t								t				İ				5446	-
	3.0			**	4	(0.80)	-	(0.04)		l				t	1		l				t	1			t				t				1				-	27310 (27.22)
	-	29		-	4	(0.17)	_	(10.0)			1			t	1		r	t	i		l	1			İ				t				t				-	100342
HOROGINA DARRA	Wave Period(s)	Wave Heighton	-	0.25 - 0.49		0.50 - 0.74	0.75 - 0.99	5	1.00 - 1.24	125 - 140		1.50 - 1.74	1.75 - 1.99	166 - 000		225 - 249	2.50 - 2.74	1	275 - 299	3.00 - 3.24	200		3.50 - 3.74	3.75 - 3.99		4.00 - 4.24	4.25 - 4.49	4.50 - 4.74	Н	4.75 - 4.99	5.00 - 5.24	525 - 549	1	5.50 - 5.74	5.75 - 5.99	- 00'9	Total	Exceedance

表 5-7 地点 M3 波高·波向頻度表

ai	-	ESE	SE	SSE	90	NSS	SW	WSW	*	WWW	NN	NNW	z	CAM	Total	Ексоедансе
8048		10286 (10.25)	7478 (7.45)	2158	234 (0.23)	(0.02)	(6.17)	3766	5901	(11.10)	5260 (5.24)	(5.89)	(6.54)	(0.00)	85.38)	100342 (100.00)
		2441	1186	195 (0.19)	(0.00)	(0.00)	(0.00)	(0.06)	1224	2885	316 (0.31)	92 (0.09)	250 (0.25)		13444 (13.40)	(14.62)
(0.06)		131 (0.13)	(0.06)	(0.01)				(0,01)	384 (0.38)	426 (0.42)	14 (0.01)	(0.00)	(0.00)		0.140	1231 (1.23)
		(0.01)	(0.00)	(0.00)					(0.03)	33 (0.03)					75 (0.07)	(0.09)
									11						111	11 (0.01)
									10000						0	0
	-														0 00	(0.00)
															0 00 00	0 00
															0 00	(00 0)
															0 00	(00'0)
															0 00	1000
															0 000	0 00
															0 (00:00)	(0.00)
															(0.00)	(0.00)
															00.00	(0.00)
															(0.00)	(0.00)
															(00,00)	(00.00)
															00.00	(0.00)
															(00.00)	(00:00)
															(00.00)	(0.00)
															0 (00'0)	(00'0)
															(00:00)	(0:00)
															00.00	(00'0)
															(0.00)	(0.00)
															(00:00)	(0.00)

Deserved	100342
Calm	0
Missing	1930

Wave Direction	NNE	¥	ENE	ш	ESE	SE	SSE	so	SSW	WS	WSW	W	WWW	WW	MNN	z	CAM	Total	Exceedance
- 2.99	4193	4177	6491	10206	12526 (12.48)	8531	2312 (2.30)	205	(0.02)	33 (0.03)	246 (0.25)	3620	5218	3130	5238 (5.22)	6885	(0.00)	73032 (72.78)	100342 (100.00)
3.00 - 3.99		16 (0.02)	148 (0.15)	315 (0,31)	339 (0.34)	200 (0.20)	54 (0,05)	34 (0.03)	(0.00)	(0.00)	202 (0.20)	3016	2247	864 (0.86)	320 (0.32)	(0.00)		7764	27310 (27,22)
4.00 - 4.99											(0.09)	658	3310	1063	302	20 (0.02)		5446	19546
5.00 - 5.99											8 (0.01)	133	2273	427	108	(0.00)		2951	14100
6.00 - 6.99											00 00	64	1151	92	32	200		1344	11149
7.00 - 7.99										10000	44	40	273	13	4			375	9805
8.00 - 8.99										139	143	11 (0.01)	13	(0.00)	(0000)			307	9430
66.6 - 00.6										21 (0.02)	96	4 (0.00)	1000	700000				124 (0.12)	9123
10.00 - 10.99										(80.0)	103	70000						182 (0.18)	8999
11.00 - 11.99										374	157							531	8817
12.00 - 12.99										806	256	(0 00)						1063	8286
13.00 - 13.99										1175	419 (0.42)							1594	7223
14.00 - 14.99										1241	555 (0.55)							1796 (67.1)	5629
15.00 - 15.99										874 (0.87)	417 (0.42)	Ī						1291	3833
16.00 - 16.99										(0.66)	442 (0.44)							1102	2542 (2.53)
17.00 - 17.99										442 (0.44)	334 (0.33)							776 (0.77)	1440
18.00 - 18.99										118	119							237	664
19.00										224 (0.22)	203							427 (0.43)	427 (0.43)
1																			
5																			
1																			
1																			
Total	4193 (4.18)	4193	(6.62)	(10.49)	12865 (12.82)	8731 (8.70)	2366	239 (0.24)	(0.02)	6191	3845	7547 (7.52)	14485 (14.44)	5590 (5.57)	(5.98)	(6.89)	(0.00)	100342 (100.00)	
Exceedance	100342	96149	91956	85317	74796	61931	53200	50834	50595	50573	44382	40537	32990	18505	12915	6911	0		

5-2-1-1-4 潮位

ディリ港の潮位は、現地再委託調査結果より、表 5-9 の値とする。

表 5-9 潮位表

名 称	潮 位
大潮平均高潮面 High Water Spring (HWS)	+ 2.8 m
平均高高潮位面 Mean Higher High Water (MHHW)	+ 2.3 m
平均低高潮位面 Mean Lower High Water (MLHW)	+1.8 m
平均水面 Mean Sea Level (MSL)	+ 1 .4 m
平均高低潮位面 Mean Higher Low Water (MHLW)	+1.0 m
平均低低潮位面 Mean Lower Low Water (MLLW)	+0.4 m
大潮平均低潮面 Low Water Spring	±0.0 m
最低水面 Chart Datum (CD)	$\pm 0.0~\mathrm{m}$

出典: Kepanduan Bahari Indonesia Wilayah III (Bahari Indonesia Scout Region III, Page 183), Indonesian Navy 2013

5-2-1-2 確率波の検討

5-2-1-2-1 波の確率波

(1) 年最大値の算出

波浪資料より、各地点における波向別年最大波を算出し、表 5-10 及び表 5-11 に整理した。表 5-10 は、地点 M2 における波向別年最大波である。NNE~ENE 方向では、抽出下限値を 0.75m としたとき、最大値の抽出が少ないため抽出下限値を 0.3m とした場合の波向別年最大波も算出した。表 5-11 は地点 M3 における波向別年最大波である。抽出下限値は全方向で 0.3m としている。

表 5-10 波向別年最大波(地点 M2)

Page								表 5-	.10	似凹	加十	最大	又 (上	也点 [V12)						
						付象方向													設計波	常方向	
	抽出		22.5			20 5	AF	675	60	1:05	125	157 5		_	205	247 5	270	202 5	215	227 5	200
1000	取得年月	洪叩							_	_				_							
1981 10 1	1	Н			_		-			_					1		_	_			_
Fig. 1982	198010	Т	1.95	2.4	3.19	-	-	-	5.01	494	-	-	-	-	17.77	-	5.97	7.25	5.63	5.41	5.05
Fig. 19. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	198112		0.46			-	-	-		+	-	-	-		0.85	0.88		2.39	1.67	1.18	1.03
19820 7 98 29 10 40 40 20 80 8 8 9 8 9 1 60 20 20 10 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td>_</td>										_				_			_		_		_
1933 H. B. S. S. S. S. S. S. S. S. S. S. S. S. S.						-	_	_	l	1	l .		_	l	I .	_		l	l		
		Н				-	-	-	1.42	_		-	-	-	_	-	_			1.54	1.6
	198311	Т	5.82	2.72	2.79	-	-	-	4.91	454	4.15	-	-	-	17.93	-	-	3.76	4.01	5.73	7.12
						-	-	-	l	1	l .	-	-	-	-	-		l	l		
						-	-	-		_		-	-	-	- 00	-			_	_	_
1981 1981 1981 1981 1981 1982 1983 20 20 20 20 20 20 20 20 20 20 20 20 20							-							ļ							ł
Fig. 14		н	0.35		_		-	-		_			-	-	-		_			-	
1471 1472	198611	Т	2.35	2.5	3.32		-	-	4.77	437	3.78		-	-			7.91	7.35	4.96	-	
1849										+											
					_		-		_	_	_			-	0.79		_				_
						-		-					-	-							
1991 T				0.36	_	-	-			_	_		-	-	-		_			_	
1990 1990 1990 254 256 2		_	-		_	-	-	-	_	_		-	-	-	-		_	_	_	-	-
18912							-	-		·	-	-	-								
			_		_		-	-		_	-	-	-	-	18./						
1921 M							-						-	ļ						~	
19821 N 289 231 330 4 9	199212	н	0.45	0.43	0.62	-	-		1.03	104	0.82				0.92	-	1.05	1.49	1.22		-
1931 1932 1		_	2.69	2.91	3.13	-	-	-		_	4.1		-	-	18.55	-	4.36	5.46	5.02		5.56
1949 M			***************************************				-						- -								
1949 T					_		-			_			-	_							
1991 7						-	-	-				-	-	-	-	-	-				
1989 12 17 278 295 289	199512	Н	0.43	0.48	0.51	-	-	-	1.13	1.07	0.77	-	-	-	-	-	1.21	1.84	1.39	1.24	1.23
19912 T 278 235 289 -		_	_		_		-			_			-	-	-	_	_			_	-
189712 H 0.64 0.5 0.63 0.7 0.7 0.7 0.7 0.13 1.22 0.88 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8														ļ							ł
19912 T					_				_	_				_	15.29		_		_		-
1991						-	-	-				-	-	-	-						
189910	199812	н	0.43	0.47	0.58	-	-	-	1.04	1.07	0.79	-	-	-	0.8	1.18	1.16	1.07	1.16	1.72	0.87
1999			_	_	_					_				_	_		_	_		_	-
20012			-			-	-		l					l	l .	_			_	-	
20012			0.3		_	-	-			_	_			_	_	0.79	_		1.3	1.04	$\overline{}$
200112							-			+			-		-						
200212	200112	Н	0.34	0.37	0.55	-	-		1.07	121	0.98	-	-		0.81	0.81	1.65	1.66	0.81	-	
2001 2					_	-	-	-		_		-	-	-	17.64	3.75					-
200312 H 0.53 0.6 0.75 0.75 1.11 10.6 0.79 1.5 2.14 2.15 10.4 10.2 0.92 200312 T 3.38 3.19 7.86 7.86 4.51 4.17 3.84 5.4 6.21 7.69 5.77 9.85 5.47 200412 H 0.43 0.46 0.47 7.86 4.51 4.17 3.84 5.4 6.21 7.69 5.77 9.85 5.47 200412 H 0.43 0.46 0.47 4.21 4.22 3.95 5.4 6.21 7.69 5.77 9.85 5.47 200412 T 2.49 2.84 3.14 4.21 4.22 3.95 3.83 8.6 8.28 5.51 5.51 200509 H 0.42 0.35 0.55 4.21 4.8 4.01 3.75 0.76 - 1.31 1.72 0.96 200509 H 0.42 0.35 0.55 4.48 4.01 3.75 1.59 4 - 4.99 5.91 4.67 200511 H 0.48 0.44 0.22 3.47 4.31 4.35 3.8 0.81 - 4.98 5.91 4.67 200712 H 0.41 0.38 0.7 3.47 4.31 4.35 3.8 0.81 - 1.58 1.88 1.34 1 200712 H 0.41 0.38 0.7 3.47 4.31 4.35 3.8 1.78 0.81 - 1.88 2.33 0.78 1.24 200712 H 0.41 0.38 0.7 3.56 4.55 4.53 4.06 1.88 2.33 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79			*************												ļ <u>-</u>	ļ <u>-</u>					
200312 T 3.39 3.19 7.66 - - 7.86 4.51 4.17 3.84 - - - - 5.4 6.21 7.69 5.77 5.55 5.47			_	_	_	-	-		_	_		-	-	-	-	1.5	_	_	_	_	-
200412	200312	Т	3.39	3.19	7.86	-	-	7.86	4.51	417	3.84	-	-	-	-	5.4	6.21	7.69			
200412 T 2.49 2.84 3.14 4.21 482 3.95 3.83 6.6 8.28 551 551 200509 H 0.42 0.35 0.55 1.1 6.99 0.78 0.78 - 1.31 1.72 0.96 200509 T 2.41 2.43 2.56 4.48 401 3.75 15.94 - 4.99 5.91 4.67 200611 H 0.49 0.44 0.82 0.82 1.22 115 0.82 1.594 - 4.98 5.91 4.67 200611 T 2.71 2.56 3.47 3.47 4.31 4.35 3.8 1.594 1.26 2.65 1.2 200712 H 0.41 0.38 0.7 1.27 1.27 1.25 0.89 0.81 - 1.58 1.88 1.34 1 200712 T 2.52 2.36 3.6 4.89 4.75 3.85 0.81 - 1.59 1.88 1.88 1.34 1 200712 T 2.52 2.36 3.6 4.88 4.75 3.85 1.795 - 5.4 3.37 5.22 5.74 - 200812 T 2.69 2.92 3.56 3.56 4.56 4.56 4.53 4.06 1.195 - 5.4 5.37 5.22 5.74 200812 T 2.69 2.92 3.56 3.56 4.56 4.56 4.53 4.06 1.23 1.45 0.97 1 1.20 1.23 1.45 0.97 1						-	-					-	-								
200509 T 241 243 2.56 4.48 401 3.75 15.94 - 4.99 5.91 4.67 200611 H 0.49 0.44 0.62 0.82 1.22 1.15 0.82 0.61 1.28 2.65 1.2 200611 T 2.71 2.56 3.47 3.47 4.31 4.55 3.8 0.61 - 0.62 4.7.72 6.24 200712 H 0.41 0.38 0.7 4.89 4.75 3.95 0.81 - 0.58 1.68 1.34 1 200712 T 2.52 2.36 3.68 4.89 4.75 3.95 17.95 - 5.4 5.37 5.22 5.74 200812 H 0.49 0.46 0.38 0.78 1.14 1.28 1 1.28 2.33 0.78 200812 T 2.69 2.22 3.69 3.56 4.56 4.53 4.06 1.28 2.33 0.78 200912 H 0.4 0.39 0.59 1.16 106 0.77 1.23 1.45 0.97 200912 H 0.4 0.39 0.59 4.84 4.21 3.74 1.23 1.45 0.97 200912 T 2.46 2.7 3.68 4.84 4.21 3.74 0.81 0.56 5.07 5.02 0.88 2.01012 H 0.4 0.39 0.59 4.84 4.21 3.74 1.23 1.45 0.97 200912 T 2.46 2.7 3.68 4.84 4.21 3.74 1.23 1.45 0.97 200912 T 2.46 2.7 3.68 4.84 4.21 3.74 0.88 0.85 1.14 0.95 0.93 0.86 2.01012 T 8.32 4.84 5.05 3.93 3.94 4.01 6.09 4.65 5.05 5.07 2.01109 H 0.66 4.84 4.05 3.93 0.81 0.82 1.98 2.34 0.75 201109 T 0.66 4.84 4.05 3.93 0.81 0.82 1.98 2.34 0.75 201109 T 0.66 4.84 4.05 3.93 0.81 0.82 1.98 2.34 0.75 201109 T 0.66 4.84 4.05 3.93 0.81 0.82 1.98 2.34 0.75 201109 T 0.66 4.84 4.05 3.93 0.81 0.82 1.98 2.34 0.75						-	-	-		_		-	-	-	-				_	_	-
200611														·}							····
200611 T 271 256 3.47 - - 3.47 4.31 4.35 3.8 - - - - - 6.24 7.72 6.24 - - 200712 H 0.41 0.38 0.7 - - - 4.89 4.75 3.95 - - - 17.95 - 5.4 5.37 5.22 5.74 - 200712 T 2.52 2.38 3.68 - - - 0.78 1.14 128 1 - - - - - 17.95 - 5.4 5.37 5.22 5.74 - 200812 H 0.49 0.46 0.38 - - 0.78 1.14 128 1 - - - - - - 0.81 2.33 0.78 - - - 200812 T 2.69 2.82 3.56 - - 3.56 4.56 4.63 4.66 - - - - - - - - 6.05 6.69 4.62 - - - 200912 T 2.46 2.7 3.08 - - - 4.3 4.21 3.74 - - - - - 1.23 1.45 0.97 - - - 200912 T 2.46 2.7 3.08 - - - 4.84 4.01 3.34 - - - - - 0.88 0.85 1.41 0.95 0.93 0.86 2.01012 T - - - 8.32 - - - 4.64 5.05 3.93 - - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.66 - - - - 4.64 5.05 3.93 - - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.66 - - - - 4.19 4.01 - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.66 - - - - 4.19 4.01 - - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.64 - - - - 4.54 4.24 - - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.64 - - - - 0.86 1.32 0.85 - - - - 0.81 0.82 1.88 2.34 0.75 - - 2.01109 T - - 0.64 - - - - 0.86 1.32 0.85 - - - - 0.81 0.82 1.41 0.93 0.86 0.85						-	-			_		-	-	-	-	-	_			-	-
200712 T 252 236 3.66 - - - 4.89 475 3.95 - - - 17.95 - 5.4 5.37 5.22 5.74 -																					
200812 H 0.49 0.46 0.78 - - 0.78 1.14 128 1 -															····					*	
200812 T 2.69 2.92 3.56 - - 3.56 4.56 463 4.06 - - - - 6.05 6.69 4.62 -					_					_		_		-	_		_				_
200912 H 0.4 0.39 0.59 1.16 106 0.77 1.23 1.45 0.97 200912 T 2.46 2.7 3.66 4.3 421 3.74 0.88 0.85 1.41 0.95 0.93 0.86 201012 H 0.832 4.64 0.05 3.93 3.94 4.01 6.09 4.65 5.05 5.07 201109 H 0.66 1.05 0.9 0.81 0.82 1.98 2.34 0.75 201109 T 777 4.84 0.05 0.99 1.04 2.57 4 6.27 7.5 4.44 201109 T 777 1.08 0.37 1.08 0.27 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09										·				ł							
200912 T 246 2.7 3.68 - - - 4.3 421 3.74 -				_	_	-	-	-	_	_		-	-	-	-	-		_		-	-
201012 T 8.32 4.64 105 3.83 3.94 4.01 6.09 4.65 5.05 5.07 201109 H 0.66 105 0.9 0.81 0.82 1.98 2.34 0.75 201109 T 777 419 4.01 2.57 4 6.27 7.5 4.44 201208 H 0.37 109 1.04 0.95 - 1.06 1.6 1.19 1.61 1.59 201208 T 777 428 4.24 12.43 - 4.73 6.38 5.2 6.35 6.65 201312 H 0.64 0.86 132 0.85 1.47 2.31 1.39 201312 T 777 3.81 4.69 3.84 6.7 7.41 5.12 201412 H 0.49 1.24 0.93 0.8 1.48 2.19 2.42 1.24						-	-			+		-	-	-							
201109 H 0.66 105 0.9 0.81 0.82 1.98 2.34 0.75 201109 T 777 419 4.01 257 4 6.27 7.5 4.44 201208 H 0.37 10.9 1.04 0.95 - 1.06 1.6 1.19 1.61 1.59 2.01208 T 777 428 4.24 12.43 - 4.73 6.38 5.2 6.35 6.65 2.01312 H 0.64 0.64 0.86 1.32 0.85 1.24 0.93 6.7 7.41 5.12 201312 T 777 3.81 4.69 3.84 0.8 1.48 2.19 2.42 1.24 201412 H 0.49 0.49 12.4 0.93 0.8 1.48 2.19 2.42 1.24									l	1	l .			l	l .			l	l		
201109 T 777 119 401 257 4 627 7.5 444 201208 H 0.37 109 1.04 0.95 - 1.06 1.6 1.19 1.51 1.59 201208 T 777 428 424 1243 - 4.73 6.38 52 6.35 6.65 201312 H 0.64 0.64 0.86 132 0.85 1.24 3 - 4.73 6.38 52 6.35 6.65 201312 T 777 3.81 469 3.84 6.7 7.41 5.12 201412 H 0.49 0.49 124 0.93 0.8 1.48 2.19 2.42 1.24		_	-	_			-			_			_	_	_						
201208 H 0.37 109 1.04 0.95 - 1.06 1.6 1.19 1.51 1.59 201208 T 777 428 4.24 12.43 - 4.73 6.38 5.2 6.35 6.65 201312 H 0.64 0.86 1.32 0.85 1.47 2.31 1.39 201312 T 777 3.81 4.69 3.84 6.7 7.41 5.12 201412 H 0.49 1.24 0.93 0.8 1.48 2.19 2.42 1.24										+											
201312 H 0.64 0.86 132 0.85 1.47 2.31 1.39 201312 T 777 3.81 469 3.84 6.7 7.41 5.12 201412 H 0.49 124 0.93 0.8 1.48 2.19 2.42 1.24					_					_				_	_		_			_	
201312 T 777 3.81 4.59 3.84 6.7 7.41 5.12 201412 H 0.49 124 0.93 0.8 1.48 2.19 2.42 1.24	201208	Т	-	-	777	-	-	-	-	428	4.24	-	-	-	12.43	-	4.73	6.38	5.2	6.35	6.65
201312 T 777 3.81 4.69 3.84 6.7 7.41 5.12 201412 H 0.49 124 0.93 0.8 1.48 2.19 2.42 1.24							-	-				-	-	-		-					
				_	_		-	-	_	_		-	-	-	_	140	_		_		_
							-			+				ł							····
	22.7416									2.00					. 5.67	2.70			2.70		

H:波高(m) T:周期(s)

表 5-11 波向別年最大波(地点 M3)

		10-1	計波対象方	向		3-11	1001	刊刀1十	427	W (-1		10,			設計波宛	2 方向	
抽出	条件								0.3m	以上					war in the		-
	波向	22.5	45	67.5	90	112.5	135	157.5	180	202.5	225	247.5	270	292.5	315	337.5	360
取得年月		NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N
198011	Н	-	0.4	0.55	0.51	0.47	0.36	-	-	-	-	-	0.69	0.72	0.45	-	0.31
198011	Т	-	2.52	2.97	2.96	2.88	2.57	-	-	-	-	-	3.51	7.34	6.45	-	2.48
198112	Н	-	0.39	0.42	0.39	0.36	-	-	-	-	-	-	0.71	0.68	0.47		
198112	T	-	2.59	2.7	2.66	2.58	-	-	-	-	-	-	3.39	3.3	8.27	-	-
198211	Н	0.31	0.42	0.53	0.45	0.36	0.3		-	-	-	-	0.4	0.61	0.56	031	0.3
198211	T	2.16	2.71	3.09	2.87	0.43	2.37	-	-	-	-	-	2.76	3.24	6.66	241	2.29
198311	Н Т	0.32 2.25	0.33 2.54	0.43 2.79	0.46 2.88	2.73	0.35 2.53					-		0.36 2.52	0.36 2.53	035 249	0.31 2.52
198412	Н	-	0.47	0.51	0.47	0.43	0.32	0.3	-	-	-	0.32	0.45	0.5	0.43	2.45	0.31
198412	т		2.89	2.89	2.84	2.69	2.52	2.33				2.57	2.83	2.99	2.8		2.38
198510	н	-	03	0.37	0.47	0.36	-	-	-	-	-	-	-	0.68	0.31	032	0.32
198510	Т	-	22	2.49	2.82	2.38	-	-	-	-	-	-	-	3.31	5.95	254	2.34
198612	Н	-	0.34	0.45	0.46	0.38	-	-	-	-	-	0.33	1	0.97	-	-	0.3
198612	Т	-	2.34	2.73	2.9	2.76	-	-	-	-	-	2.36	4.25	4.22	-	-	2.13
198712	Н	0.3	0.41	0.55	0.5	0.36	0.3	-	-	-	-	-	0.78	0.74	0.47	-	0.34
198712	Т	2.17	25	3.11	2.85	2.48	2.36	-	-	-	-	-	3.74	3.67	2.86	-	2.5
198812	Н	0.33	0.42	0.43	0.51	0.35	0.3	-	-	-	-	0.32	0.65	0.49	0.34	-	
198812	T	2.5	2.61	2.55	3.01	2.52	2.2	-	-	-	-	2.3	3.51	2.93	2.52	-	-
198912	Н		0.36	0.54	0.4	0.3						0.48	0.49	0.68			0.32
198912	T	-	232	2.95	2.69	2.4	-	-	-	-	-	2.88	3.06	3.4	-	-	2.44
199012	Н	0.36	0.47	0.57	0.47	0.34	0.3					0.37	0.72	0.42	0.3	036	
199012	T	2.35	2.76	3.16	2.93	2.39	2.33	-	-	-	-	2.76	3.58	2.8	2.21	254	-
199112	Н	0.37 2.42	0.49 2.76	0.57 3.24	0.37 2.57	0.34 2.51		-	····-				0.37 2.85	0.53 3.11	0.31 2.28		0.3 2.19
199212	н	0.33	0.51	0.6	0.41	0.34		-	-	-	-	-	0.45	0.57	0.47		2.10
199212	т	2.31	3.03	3.12	2.56	2.46							2.75	3.11	2.8		-
199312	н	0.32	0.54	0.67	0.61	0.44	-	-	-	-	-	-	0.87	0.8	0.41	-	-
199312	Т	2.65	3.05	3.46	3.38	2.85	-	-		-	-	-	3.74	8.36	6.03	-	-
199411	н	0.36	0.4	0.4	0.49	0.45	0.31	-	-	-	-	-	0.37	0.57	0.65	0.3	-
199411	Т	2.38	2.75	2.46	3.04	2.68	2.41	-	-	-	-	-	2.55	3.25	3.4	241	-
199512	Н	0.31	0.47	0.5	0.44	0.38	0.33	-	-	-	-	-	0.66	0.57	0.3	-	-
199512	Т	2.43	2.97	3.07	2.79	2.65	2.39	-	-	-	-	-	3.46	3.06	2.23	-	-
199612	Н	0.3	0.35	0.37	0.39	0.35	-	-	-	-	-	-	0.59	0.59	0.61	-	-
199612	Т	2.18	2.36	2.52	2.59	2.57	-	-	-	-	-	-	3.28	3.28	7.42	-	-
199712	H	0.39	0.4	0.57	0.42	0.36	-	-	-	-	-	0.33	0.68	0.58	0.42		0.3
199712	T	2.55	2.51	3.08	2.71	2.51	-	-	-	-	-	2.32	3.49	7.18	6.42		2.2
199812	Н		04	0.45	0.44	0.41	0.32	-	-		-	-	0.55	0.55	0.38		
199812	T H	-	2.53	2.88	2.87	2.67	2.44	-	-	-	-	-	3.2	0.43	5.67		-
199912	Т	<u>-</u>	0.31	0.47 2.94	0.5 2.84	0.36 2.54	0.33	0.33 2.46	<u>-</u>		<u>-</u>	<u>-</u>	0.56 3.23	2.72			
200012	Н	_	0.38	0.47	0.48	0.44	0.36	0.35	0.35	_	_	_	0.54	0.54	0.39		
200012	т		2.56	2.95	2.99	2.87	2.49	2.53	2.46	-	-	-	3.13	3.12	6.03	_	_
200109	Н	-	0.31	0.49	0.4	0.36	0.38	-	-	-	-	-	0.73	0.64	-	-	-
200109	т	-	2.37	2.9	2.7	2.63	2.65			-	-	-	3.53	3.49		-	-
200212	Н	0.33	0.43	0.46	0.4	0.32	-	-	-	-	-	-	0.61	0.53	-		-
200212	Т	2.5	2.77	2.71	2.65	2.37	-	-	-	-	-	-	3.3	3.08	-	-	-
200312	Н	-	0.37	0.52	0.46	0.35	-	-	-	-	-	-	0.8	0.62	0.42	-	-
200312	Т	-	2.67	2.97	2.94	2.36	-	-	-	-	-	-	3.81	3.1	2.69	-	-
200412	Н	0.34	03	0.52	0.48	0.46	0.32	0.31	-	-	-		1.19	0.84	0.58	-	
200412	T	2.35	225	2.91	2.89	2.85	2.35	226	-	-	-	-	4.58	8.139999	7.38	-	-
200510	Н		0.38	0.36	0.39		-	0.3		-	-		0.57	0.47			-
200510	Т	-	2.52	2.41	2.61	-	-	2.33	-	-	-	-	3.3	2.85	-		-
200611	Н	0.33	0.38	0.41	0.44	0.38	0.32	0.32			-		0.72	0.92	0.71		.
200611	T	0.31	2.39	2.82 0.49	0.44	0.39	2.53	2.34	-	-	-	-	3.59 0.67	4.01 0.74	7.79 0.43		-
200712	H T	2.19	0.48 2.84	2.95	2.79	2.54	<u>-</u>						3.61	3.58	2.84		
200712	Н	2.19	0.39	0.57	0.48	0.42	0.35	_	_	-	-	-	1.12	0.71	0.3		
200812	т	-	2.63	3.08	2.94	2.69	2.52						4.42	3.6	2.19		
200911	Н	0.33	0.43	0.52	0.55	0.34	-	-	_	-	-	-	0.46	0.5	0.35	-	-
200911	т	2.73	2.69	2.92	3.14	2.39	-	-	-	-	-	-	2.78	2.9	2.47	-	-
	,		_,,,		2												

H:波高(m) T:周期(s)

(2) 確率波の算定

年最大波より確率統計処理を行い、M2 地点及び M3 地点各々の波向 WNW、NW.NNW,N,NNE,NE,ENEの7方位について、確率波高を算出した。算出結果の一例として、M2 地点、波向 WNW を図 5-12 に示す。(付属資料 1 参照)。また、周期については図 5-13 及び図 5-14 に示す年最大値波高と周期の相関図より算出した。相関図作成にあたっては、インド洋から(SW, SSW 方向)の波向については、対象地点への影響が小さいので除外している。以上により算出した確率波を表 5-12 に整理した。

図 5-12 確率波高算出結果(地点 M2、WNW)

図 5-13 年最大値波高と周期の相関図(地点 M2)

図 5-14 年最大値波高と周期の相関図(地点 M3)

表 5-12 確率波算出結果

(計)泊(次至)	冰水点		確率波(地点M2)		抽山冬卅
波浪資料	波向	5年	10年	30年	50年	抽出条件
	WNW	2.35 m	2.64 m	3.02 m	3.17 m	
	VVINVV	$7.5 \mathrm{\ s}$	8.1 s	8.8 s	9.2 s	
	NW	1.36 m	1.51 m	1.70 m	1.78 m	
	INVV	$5.4 \mathrm{\ s}$	$5.7 \mathrm{\ s}$	6.1 s	$6.3 \mathrm{\ s}$	0.75m以上
	NNW	1.23 m	1.43 m	1.70 m	1.81 m	0.73m以上
	ININ VV	$5.2 \mathrm{\ s}$	$5.6 \mathrm{\ s}$	6.1 s	6.4 s	
NOAA	N	1.07 m	1.28 m	1.57 m	1.70 m	
(地点M2)	IN	4.8 s	$5.3 \mathrm{\ s}$	$5.9 \mathrm{\ s}$	6.1 s	
	NNE	0.48 m	0.56 m	0.71 m	0.79 m	
	ININE	$3.6 \mathrm{\ s}$	$3.8 \mathrm{\ s}$	4.1 s	4.2 s	
	NE	0.47 m	0.51 m	0.56 m	0.58 m	0.3m以上
	INE	$3.6 \mathrm{\ s}$	$3.7 \mathrm{\ s}$	$3.8 \mathrm{\ s}$	$3.8 \mathrm{\ s}$	0.3m以上
	ENE	0.73 m	0.81 m	0.92 m	0.98 m	
	EINE	4.1 s	4.3 s	4.5 s	4.6 s	

2中2点2540	>H+ ←		確率波(:	地点M3)		抽山夕
波浪資料	波向	5年	10年	30年	50年	抽出条件
	WNW	0.71 m	0.79 m	0.93 m	0.99 m	
	VVINVV	4.0 s	4.3 s	4.9 s	$5.1 \mathrm{\ s}$	
	NW	0.48 m	0.56 m	0.66 m	0.71 m	
	INVV	$3.1 \mathrm{\ s}$	$3.4 \mathrm{\ s}$	$3.8 \mathrm{\ s}$	4.0 s	
	NNW		データ不足に	より算定不可		
NOAA	N	0.30 m	0.31 m	0.33 m	0.33 m	0.3m以上
(地点M3)	IN	2.4 s	2.4 s	$2.5 \mathrm{\ s}$	$2.5 \mathrm{\ s}$	U.SM以上
	NNE	0.33 m	0.35 m	0.38 m	0.39 m	
	ININE	$2.5 \mathrm{\ s}$	$2.6 \mathrm{\ s}$	$2.7 \mathrm{\ s}$	$2.8 \mathrm{\ s}$	
	NE	0.45 m	0.48 m	0.53 m	0.55 m	
	INE	$3.0 \mathrm{\ s}$	$3.1 \mathrm{\ s}$	$3.3 \mathrm{\ s}$	$3.4 \mathrm{\ s}$	
	ENE	0.54 m	0.59 m	0.64 m	0.66 m	
	EME	$3.4 \mathrm{\ s}$	$3.6 \mathrm{\ s}$	$3.7 \mathrm{\ s}$	$3.8 \mathrm{\ s}$	

5-2-1-2-2 風波による確率波

表 5-12 に示した通り、波浪推算による M2、M3 地点での NNE~ENE 方向の確率波は、50 年 確率波で 1.0 m 未満の結果である。この結果は設計波算出にあたって過小である可能性があるので、ここでは、NNE~ENE 方向について SMB 法により確率波を算定した。

(1) 算出方法

M1 地点における確率波 (NNE~ENE) は以下のフローチャートにより算出した。

図 5-16 有効吹送距離

(2) 年最大値の算出

地点 M3 の再解析風資料より、各地点における波向別年最大風速を算出し、表 5-13 に整理した。

表 5-13 波向別年最大風速(地点 M3)

	設	計波対象方	Ō											設計波	対象方向	
波向	22.5	45	67.5	90	112.5	135	157.5	180	202.5	225	247.5	270	292.5	315	337.5	360
取得年月	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	w	WNW	NW	NNW	N
198012	5.09	7.1	7.01	6.86	6.76	5.58	4.35	-	-	3.2	709	7.56	7.22	5.04	4.63	4.94
198112	5	5.97	6.07	5.99	5.6	5.15	4.09	-	-	3.45	625	8.03	7.17	6.73	4.74	5.2
198212	5.4	5.77	6.58	6.85	6.4	5.39	4.53	-	-	3.87	458	6.34	7.18	5.43	5.11	5.53
198312	5.23	5.38	6.43	6.4	6.32	6.78	4.76	3.1	3.32	-	3.4	4.49	5.49	5.23	5.45	4.83
198412	5.14	6.68	6.77	6.27	6.14	5.5	4.63	-	-	4.19	553	6.52	5.43	5.38	4.88	5.38
198512	5.17	5.13	5.49	6.38	6.35	5.37	4.48	-	-	3.41	448	7.65	7.0€	4.72	5.35	5.06
198612	5.07	5.39	6.06	7.13	5.68	5.12	4.59	4.03	-	5.66	4.9	9.11	8.58	5.19	4.31	5.45
198712	5.92	6.29	6.46	6.68	6.05	5.32	4.01	-	-	-	488	7.79	9.01	6.12	4.12	5.54
198812	5.7	5.85	6.69	6.73	5.65	5.65	4.61	-	4.31	4.68	586	7.25	6.07	5.4	4.84	4.86
198912	4.8	6.08	7.22	5.76	5.34	5.18	4.59	3.42	3.47	5.55	648	6.76	7.25	6.36	4.87	5.32
199012	5.79	6.42	7.49	6.3	6.28	5.01	4.65	3.24	3.01	4.29	713	7.74	6.24	5.18	5.66	4.86
199112	5.49	6.79	7.22	5.86	5.32	5.26	4.37	-	-	-	469	5.95	6.14	5.43	4.69	5.21
199212	5.63	6.78	7.47	6.31	5.31	5.11	4.13	3.5	-	3.7	535	6.21	6.58	6.85	5.04	5.2
199312	5.72	6.7	7.15	8.35	6.56	5.42	5.35	-	3.96	3.39	639	8.44	6.99	6.63	4.71	4.57
199412	5.45	5.43	6.51	6.49	6.95	5.58	4.71	3.05	-	-	319	6.16	6.63	7.49	5.18	5.03
199512	4.89	6.04	6.84	6.06	6.2	5.48	4.7	3.12	-	3.35	583	7.5	6.01	4.76	5	4.97
199612	4.91	5.98	5.59	5.33	5.74	4.9	4.53	-	4.33	4.66	636	7.16	6.59	5,22	4.84	5.09
199712	5.54	6.37	7.26	6.51	5.58	5.65	4.63	-	-	4.07	737	7.68	6.52	5.27	4.71	4.82
199812	4.98	5.72	6.21	6.1	5.76	5.31	4.25	3.23	3.14	4.74	564	6.78	7.03	5.57	5.36	4.99
199912	4.79	5.47	6.49	6.77	5.24	5.34	4.86	3.1	-	-	1.5	6.89	5.18	5.35	3.98	4.24
200012	4.5	5.92	6.74	6.06	6.73	5.61	4.95	3.48	3.81	4.03	497	6.69	6.95	5.11	4.05	4.36
200112	4.93	5.03	6.5	5.73	5.64	5.63	4.93	-	3.02	3.38	718	7.85	7.01	5.02	4.18	4.1
200212	5.51	6.53	6.35	5.58	5.16	4.79	4.52	3.11	-	3.25	636	7.29	5.92	4.52	4.8	5
200312	5.38	5.95	6.87	6.07	6.14	4.89	4.57	-	-	4.34	791	8.47	9.22	5.81	4.3	4.75
200412	5.62	5.56	5.31	6.86	6.58	6.1	4.59	-	3.25	-	615	10.32	8.95	6.58	4.5	4.51
200512	4.99	5.39	6.04	5.81	5.31	4.84	4.79	-	-	4.21	668	6.99	5.99	5.16	4.19	5.18
200612	6.8	6.09	5.93	5.86	6.13	5.95	4.93	3.36	-	3.48	612	7.8	8.69	5.78	5.22	8.7
200712	5.14	6.36	6.73	6.16	5.66	5.3	4.74	-	-	3.05	539	8.24	7.73	6.1	5.15	4.8
200812	5.28	6.25	7.18	6.69	5.9	5.94	5.1	-	-	3.77	10.19	10.46	7.71	5.87	5.04	4.32
200912	5.29	6.32	6.93	6.83	6.17	5.03	4.2	3.23	-	3.01	498	6.05	6.24	5.11	4.32	4.62
201012	4.86	4.19	5.59	6.55	7.65	7.34	5.62	3.92	3.13	4	584	7.21	7.8	6.18	6.05	4.43
201112	5.39	4.76	6.77	7.13	6.67	7.21	5.72	-	3.88	5.51	672	6.73	5.61	6.43	6.7	5.54
201212	5.67	6.32	5.44	5.63	5.78	7.04	5.84	5.09	-	3.57	667	7.15	6.29	6.8	5.2	5.51
201312	5.06	5.47	6.11	6.21	6.81	7.14	5.83	3.64	3.88	4.71	672	6.78	8.14	5.94	6.11	5.01
201412	6.09	5.73	6.5	6.58	6.94	6.74	5.25	-	3.31	6.17	764	7.92	8.09	5.74	5.98	6.06

単位(m)

(3) 確率波の算定

年最大風速より確率統計処理を行ない、M2 地点及び M3 地点における風向 NNE、NE、ENE の 3 位の確率風速を算出した。算出結果の一例を図 5-17 に示す (付属資料 2 参照)。

図 5-17 確率風速算出結果(地点 M3、NNE)

表 5-14 確率波算出結果

波向	確率年	確率風速 (m/s)	吹送距離 (km)	沖波波高 (m)	周期 (s)	沖波波長 (m)	波形勾配	Smax
	50	6.50	121.3	0.80	3.8	22.5	0.036	10
NNE	30	6.32	121.3	0.80	3.7	21.4	0.037	10
ININE	10	5.92	121.3	0.70	3.6	20.2	0.035	10
	5	5.65	121.3	0.70	3.4	18.0	0.039	10
	50	7.36	78.7	0.90	3.8	22.5	0.040	10
NE	30	7.18	78.7	0.90	3.7	21.4	0.042	10
NE	10	6.75	78.7	0.80	3.6	20.2	0.040	10
	5	6.43	78.7	0.70	3.5	19.1	0.037	10
	50	7.88	59.9	0.90	3.8	22.5	0.040	10
ENE	30	7.72	59.9	0.90	3.7	21.4	0.042	10
ENE	10	7.31	59.9	0.80	3.6	20.2	0.040	10
	5	6.99	59.9	0.80	3.5	19.1	0.042	10

5-2-1-2-3 確率波算定結果

以上の結果を図 5-14 及び図 5-18 に整理した。

波浪資料による確率波算定結果 (M3 地点) では、50 年確率波で、全方向とも 1.0m 以下となっている。このことは、M3 地点が浅海域であり、またアタウロ島とティモール島に囲まれており、精度良く推算されていない可能性が高いためと考えられる。

また、M2 地点の $NNE\sim ENE$ 方向の推算結果は、風資料からの推算結果と同じような値であるが、R アタウロ島の回折により波浪が減衰すると考えられることから、以降の検討は R 地点での推算結果 R NNER を採用とした。

表 5-15 確率波算定結果一覧表

	波问	5 4 :	10年	30年	50年	抽出条件	資料
	WNW	2.35 m	2.64 m	3.02 m	3.17 m		
	VV IN VV	7.5 s	8.1 s	8.8 s	9.2 s		
	NW	1.36 m	1.51 m	1.70 m	1.78 m		
	INVV	5.4 s	5.7 s	6.1 s	6.3 s	0.75m	
	NNW	1.23 m	1.43 m	1.70 m	1.81 m	以上	
	ININAA	$5.2 \mathrm{\ s}$	5.6 s	6.1 s	$6.4 \mathrm{\ s}$		波浪資料
確率波	N	1.07 m	1.28 m	1.57 m	1.70 m		NOAA
(地点 M2)	IN	4.8 s	5.3 s	5.9 s	6.1 s		(地点M2)
	NNE	0.48 m	0.56 m	0.71 m	0.79 m		
	ININE	$3.6 \mathrm{\ s}$	3.8 s	4.1 s	4.2 s		
	NE	0.47 m	0.51 m	0.56 m	0.58 m	0.3m	
	NE	$3.6 \mathrm{\ s}$	3.7 s	3.8 s	$3.8 \mathrm{\ s}$	以上	
	ENE	0.73 m	0.81 m	0.92 m	0.98 m		
	ENE	4.1 s	4.3 s	4.5 s	4.6 s		
	WNW	0.71 m	0.79 m	0.93 m	0.99 m		
	******	4.0 s	4.3 s	4.9 s	5.1 s		
	NW	0.48 m	0.56 m	0.66 m	0.71 m		
	2111	3.1 s	3.4 s	$3.8 \mathrm{\ s}$	4.0 s		
	NNW		データ不足に	より算定不可			
確率波	N	0.30 m	0.31 m	0.33 m	0.33 m	0.3m	波浪資料
(地点 M 3)	IN	2.4 s	2.4 s	2.5 s	2.5 s	以上	NOAA (地点M3)
	NNE	0.33 m	0.35 m	0.38 m	0.39 m		(30,1010)
	ININE	$2.5 \mathrm{\ s}$	2.6 s	$2.7 \mathrm{\ s}$	2.8 s		
	NE	0.45 m	0.48 m	0.53 m	0.55 m		
	NE	3.0 s	3.1 s	$3.3 \mathrm{\ s}$	3.4 s		
	ENE	0.54 m	0.59 m	0.64 m	0.66 m		
	ENE	$3.4~\mathrm{s}$	$3.6 \mathrm{\ s}$	$3.7~\mathrm{s}$	3.8 s		
	NNE	0.70 m	0.70 m	0.80 m	0.80 m		風資料 NOAA
	ININE	3.4 s	3.6 s	3.7 s	3.8 s		
確率波	NE	0.70 m	0.80 m	0.90 m	0.90 m] _	
(地点 M1)	INE	3.5 s	3.6 s	3.7 s	3.8 s		NOAA (地点M3)
	ENE	0.80 m	0.80 m	0.90 m	0.90 m		(4/143/
	EINE	3.5 s	3.6 s 3.7 s 3	3.8 s			

図 5-18 50 年確率波高

5-2-1-3 ディリ港付近の設計波諸元

前項で求めた確率波(WNW \sim N)は地点 M2 であるため、ここでは M2 地点の確率波を波浪 変形して M1 地点での波を求めた。

5-2-1-3-1 手法

波浪変形計算はエネルギー平衡方程式を用いる。エネルギー平衡方程式の基礎方程式は付属資料3に示す。

図 5-19 地点 M1 位置図

5-2-1-3-2 条件

(1) 波浪条件

波浪条件は表 5-15 に示す確率波算定結果一覧より、表 5-16 に示す 50 年確率波とした。

表 5-16 沖波条件

50年確率波	(地点 M 2)			
沖波向	WNW	NW	NNW	N
沖波波高	3.17 m	1.78 m	1.81 m	1.70 m
周期	9.2 s	6.3 s	6.4 s	6.1 s

(2) 水深及び地形

水深及び地形は下記に示した資料を使用した。

- ・海図 942A
- ・測量データ (貸与資料)
- ・GEBCO30 (出典: http://www.gebco.net/)

(3) 潮位条件

前出の潮位条件より、HWL を使用する。

$$M.H.H.W=+2.30m$$

(4) 計算範囲及び計算格子間隔

計算格子間隔 200m

図 5-20 計算範囲

5-2-1-3-3 結果

波向 WNW、NW、NNW の 3 方位について検討を行ったが、計算結果の一例として、波向 WNW の計算結果を図 5-21 から図 5-26 に示す。なお、全ケースの計算結果は付属資料 4 参照。計算結果より M1 地点での設計波諸元を求め、表 5-17 に整理した。

M1 地点設計沖波 M2 地点設計沖波 入射波向 波向 波高(m) 周期(s) 波高(m) 周期(s) 備考 (°) WNW 3.17 9.2 324.0 9.2 1.63 NW 1.78 6.3 327.0 1.13 6.3 波浪資料による値 外洋性波 NNW 1.81 6.4 330.0 1.17 6.4 360.0 1.36 N 1.70 6.1 6.1

表 5-17 M1 地点設計沖波諸元(50 年確率波)

波向はNから時計まわりの角度

2.63 2.94 3.02 3.07 3.10 3.11 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.16 3.16 3.17 3.17 3.17 3.17 3.17 3.17 1.96 2.70 2.89 2.97 3.03 3.06 3.08 3.10 3.11 3.12 3.13 3.13 3.14 3.14 3.15 3.15 3.15 3.16 3.16 3.16 3.16 3.16 1,77 2,43 2,72 2,86 2,94 2,99 3,03 3,05 3,07 3,09 3,10 3,11 3,12 3,12 3,13 3,13 3,14 3,14 3,14 3,15 3,15 3,15 1.69 2.22 2.55 2.73 2.84 2.91 2.96 3.00 3.03 3.05 3.06 3.08 3.09 3.10 3.11 3.12 3.12 3.12 3.13 3.13 3.14 3.14 1.08 1.65 2.08 2.39 2.60 2.74 2.83 2.89 2.94 2.98 3.00 3.03 3.04 3.06 3.07 3.08 3.09 3.10 3.11 3.11 3.12 3.12 3.13 0.53 1.21 1.63 1.98 2.27 2.48 2.64 2.74 2.82 2.88 2.92 2.96 2.98 3.01 3.03 3.04 3.06 3.07 3.08 3.08 3.09 3.10 3.11 3.11 0.83 1.27 1.60 1.91 2.17 2.38 2.54 2.66 2.75 2.81 2.87 2.91 2.94 2.97 2.99 3.01 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.09 0.98 1.32 1.58 1.86 2.10 2.29 2.45 2.58 2.67 2.75 2.81 2.86 2.90 2.93 2.95 2.98 3.00 3.01 3.03 3.04 3.05 3.06 3.07 3.08 1.07 1.34 1.57 1.83 2.03 2.22 2.37 2.50 2.60 2.68 2.75 2.80 2.85 2.88 2.92 2.94 2.96 2.98 3.00 3.01 3.03 3.04 3.05 3.06 1.14 1.36 1.56 1.79 1.98 2.16 2.30 2.43 2.54 2.62 2.69 2.75 2.80 2.84 2.88 2.91 2.93 2.95 2.97 2.99 3.00 3.02 3.03 3.04 1.18 1.37 1.55 1.76 1.94 2.10 2.24 2.37 2.47 2.56 2.64 2.70 2.75 2.80 2.84 2.87 2.90 2.92 2.94 2.96 2.98 2.99 3.01 3.01 1.21 1.38 1.55 1.74 1.91 2.06 2.19 2.31 2.42 2.51 2.58 2.65 2.71 2.75 2.80 2.83 2.86 2.89 2.91 2.93 2.95 2.97 2.84 3.02 1.24 1.39 1.54 1.72 1.88 2.02 2.15 2.26 2.36 2.46 2.53 2.60 2.66 2.70 2.75 2.79 2.83 2.86 2.88 2.90 2.87 2.78 8 97 2.16 1.26 1.39 1.54 1.71 1.86 1.99 2.11 2.22 2.32 2.32 2.82 2.85 2.87 1.29 1.40 1.54 1.70 1.84 1.96 2.07 2.18 2.17 0.44 1.71 2.63 2.81 2.75 1.66 0.47 0.4 0.06 0.20 0.83 1.63 2.33 2.65 2.62 2.10 1.18 0.44 0.18 1.31 1.41 1.54 1.70 1.82 1.93 2.04 2.11 1.97 0.58 1.33 1.42 1.54 1.69 1.80 1.90 2.00 2.00 1.84 1.13 0.07 0.04 0.08 0.17 0.52 1.02 1.60 2.12 2.41 2.45 2.17 1.61 0.97 0.47 1.35 1.43 1.54 1.69 1.78 1.87 1.93 1.90 1.74 1.28 0.41 0.10 0.16 0.37 0.74 1.14 1.57 1.95 2.19 2.26 2.12 1.77 1.33 0.89 1.35 1.45 1.54 1.69 1.76 1.83 1.86 1.80 1.67 1.33 0.72 0.21 0.29 0.56 0.88 1.20 1.53 1.82 2.01 2.09 2.01 1.80 1.50 1.17 1.45 1.54 1.68 1.72 1.78 1.78 1.73 1.61 1.34 0.92 0.42 0.45 0.71 0.97 1.23 1.47 1.71 1.87 1.94 1.89 1.76 1.56 1.33 4-53 1.67 1.68 1.73 1.71 1.66 1.56 1.33 1.03 0.66 0.61 0.81 1.02 1.23 1.42 1.62 1.75 1.82 1.78 1.70 1.56 1.40 **3**.63 1.64 1.61 1.51 1.32 1.11 0.86 0.75 0.88 1.05 1.21 1.37 1.53 1.64 1.71 1.69 1.63 1.53 1.41 1.57 1.56 1.47 1.32 1.17 1.01 0.88 0.93 1.05 1.19 1.32 1.46 1.56 1.62 1.61 1.57 1.50 1.40

lave direction	WNW (324)	<u></u>
lave height	3.17 m	
lave period	9. 20 sec	
10	20km	

図 5-21 換算沖波波高分布 (WNW)

図 5-22 波向ベクトル分布 (WNW)

図 5-23 波向数值分布(WNW)

図 5-24 換算沖波波高分布 (N)

図 5-25 波向ベクトル分布 (N)

図 5-26 波向数值分布(N)

5-2-1-4 対象地点の設計波諸元

ここでは、M1 地点より設計対象地点での設計波諸元を求めた。

5-2-1-4-1 手法

手法は、エネルギー平衡方程式より算出した。

5-2-1-4-2 条件

(1) 波浪条件

M1 地点における波浪諸元を表 5-18 に整理した。

表 5-18 波浪諸元 (地点 M1)

	N	l1地点		/
波	向	波高(m)	周期(s)	- 備考
WNW	324.0	1.63	3.1	
NW	327.0	1.13	6.3	波浪資料による値
NNW	330.0	1.17	4.2	外洋性波
N	360.0	1.36	6.1	
NNE	22.5	0.80	3.8	
NE	45.0	0.90	3.8	風資料による値
ENE	67.5	0.90	3.8	

波向はNから時計まわりの角度

(2) 水深及び地形

水深及び地形は下記に示した資料を使用した。

- ・海図 3296
- ・現地再委託調査による測量データ
- ・GEBCO30 (出典: http://www.gebco.net/)

(3) 潮位条件

前項と同様、下記に示す M.H.H.W とする。

M.H.H.W = +2.30m

(4) 計算範囲及び計算格子間隔

計算格子間隔 10m

図 5-27 計算範囲

5-2-1-4-3 結果

計算は、波向 WNW、NW、NNW、N、NNE、NE、ENE の 7 方位について行ったが、計算結果の一例として、波向 WNW の結果を図 5-28~図 5-33 に示す。なお、全てのケースの計算結果は付属資料 5 参照。

0.69 0.72 0.74 0.77 0.79 0.81 0.83 0.84 0.86 0.87 0.88 0.89 0.91 0.93 0.96 0.97 0.99 1.01 1.03 1.04 1.05 1.06 1.06 1.08 1.08 1.08 0.69 0.71 0.73 0.76 0.78 0.80 0.82 0.83 0.84 0.86 0.87 0.88 0.90 0.92 0.95 0.96 0.98 1.01 1.03 1.05 1.06 1.08 1.07 1.10 1.11 1.10 0.68 0.70 0.73 0.75 0.78 0.79 0.81 0.82 0.84 0.85 0.87 0.88 0.90 0.92 0.95 0.96 0.98 1.00 1.04 1.06 1.08 1.10 1.08 1.12 1.13 1.12 0.67 0.70 0.72 0.75 0.77 0.79 0.81 0.82 0.84 0.85 0.86 0.88 0.90 0.92 0.95 0.96 0.97 0.99 1.04 1.07 1.10 1.12 1.09 1.13 1.14 1.13 0.68 0.69 0.72 0.75 0.77 0.79 0.81 0.82 0.84 0.85 0.86 0.88 0.90 0.92 0.95 0.96 0.97 0.99 1.04 1.08 1.10 1.13 1.09 1.13 1.14 1.13 0.66 0.68 0.72 0.75 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 0.89 0.91 0.94 0.96 0.96 0.98 1.03 1.07 1.10 1.13 1.09 1.12 1.14 1.14 0.63 0.68 0.71 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 0.89 0.91 0.94 0.95 0.94 0.96 1.02 1.07 1.10 1.13 1.08 1.12 1.13 1.14 0.63 0.67 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.87 0.89 0.90 0.93 0.94 0.93 0.94 1.00 1.05 1.09 1.12 1.07 1.11 1.13 1.15 0.63 0.66 0.71 0.74 0.77 0.79 0.81 0.83 0.85 0.85 0.85 0.87 0.88 0.90 0.91 0.92 0.91 0.92 0.97 1.03 1.08 1.11 1.07 1.11 1.14 1.16 0.64 0.67 0.71 0.73 0.76 0.79 0.81 0.83 0.85 0.85 0.85 0.86 0.87 0.88 0.90 0.91 0.90 0.90 0.95 1.00 1.06 1.10 1.08 1.11 1.14 1.18 0.66 0.68 0.69 0.72 0.76 0.79 0.81 0.83 0.84 0.85 0.84 0.85 0.86 0.88 0.89 0.90 0.89 0.90 0.93 0.99 1.04 1.09 1.08 1.12 1.16 1.19 0.67 0.68 0.68 0.70 0.76 0.78 0.81 0.83 0.84 0.85 0.84 0.85 0.86 0.87 0.89 0.89 0.89 0.89 0.97 1.02 1.07 1.06 1.11 1.16 1.19 0.67 0.68 0.69 0.69 0.73 0.78 0.81 0.73 0.84 0.85 0.84 0.84 0.85 0.87 0.88 0.89 0.88 0.81 0.95 1.00 1.04 1.04 1.09 1.14 1.18 0.68 0.69 0.70 0.70 0.72 0.78 0.80 0.83 0.84 0.84 0.83 0.83 0.84 0.85 0.87 0.87 0.87 0.88 0.89 0.92 0.97 1.01 1.01 1.06 1.11 1.16 0.69 0.70 0.72 0.72 0.72 0.76 0.80 0.82 0.83 0.83 0.82 0.82 0.83 0.84 0.85 0.85 0.85 0.85 0.87 0.90 0.95 0.99 0.99 1.04 1.09 1.14 0.70 0.70 0.71 0.71 0.75 0.78 0.80 0.81 0.82 0.81 0.81 0.81 0.82 0.83 0.84 0.83 0.83 0.86 0.89 0.93 0.98 0.98 1.03 1.08 1.12 0.69 0.68 0.68 0.74 0.77 0.79 0.80 0.80 0.80 0.80 0.80 0.81 0.82 0.62 0.82 0.82 0.85 0.88 0.92 0.96 0.97 1.01 1.06 1.10 0.67 0.67 0.72 0.75 0.79 0.79 0.79 0.78 0.78 0.79 0.79 0.89 0.81 0.81 0.81 0.84 0.87 0.91 0.95 0.96 1.00 1.04 1.08 6.68 0.71 0.74 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.79 0.79 0.80 0.80 0.83 0.86 0.90 0.94 0.95 0.99 1.03 1.06 0.68 0.70 0.71 0.75 0.77 0.78 0.76 0.76 0.76 0.76 0.78 0.78 0.79 0.80 0.82 0.86 0.90 0.93 0.94 0.98 1.01 1.04 0.69 0.69 0.70 0.76 0.75 0.76 0.75 0.75 0.76 0.77 0.78 0.79 0.80 0.82 0.85 0.89 0.92 0.93 0.97 1.00 1.03 0.70 0.72 0.70 0.75 0.74 0.73 0.75 0.76 0.77 0.78 0.79 0.82 0.85 0.88 0.92 0.92 0.95 8.98 1.01 0.73 0.71 0.70 0.71 0.71 0.73 0.75 0.76 0.78 20.79 0.82 0.84 0.88 0.91 0.91 0.94 0.97 0.99 0.70 0.65 0.69 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.87 0.90 0.90 0.93 0.95 0.98 0.68 0.64 0.67 0.70 0.73 0.75 0.77 0.80 0.82 0.84 0.86 0.89 0.89 0.91 0.94 0.97 0.64 0.62 0.69 0.72 0.75 0.77 0.80 0.82 0.84 0.86 0.88 0.89 0.91 0.93 0.96 0.45 0.0 0.73 0.76 0.79 0.82 0.83 0.85 0.87 0.88 0.90 0.93 0.95 0.81 0.83 0.85 0.87 0.88 0.90 0.92 0.94 9,79 0.83 0.85 0.87 0.87 0.89 0.91 0.93 0.81 0.84 0.86 0.87 0.89 0.90 0.92 0.85 0.85 0.86 0.88 0.89 0.90 0.93 0.86 0.86 0.87 0.89 0.89 0.88 0.86 0.87 0.84 0.88 0.88 Wave direction WNW (324) Wave height 1.63 m 50 100m 9.20 sec Wave period

図 5-28 換算沖波波高分布 (WNW)

図 5-29 波向ベクトル分布 (WNW)

図 5-30 波向数值分布(WNW)

0.99 1.01 1.03 1.05 1.07 1.08 1.09 1.10 1.11 1.12 1.14 1.15 1.16 1.18 1.19 1.20 1.21 1.22 1.24 1.26 1.27 1.28 1.28 1.29 1.29 1.29 0.98 1,00 1.02 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.16 1.17 1.19 1.20 1.21 1.22 1.25 1.26 1.27 1.27 1.28 1.30 1.30 1.31 0.97 1.00 1.02 1.04 1.06 1.07 1.08 1.09 1.10 1.12 1.13 1.14 1.16 1.17 1.19 1.20 1.23 1.25 1.26 1.27 1.28 1.28 1.30 1.31 1.31 0.96 0.99 1.01 1.04 1.05 1.07 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.17 1.18 1.19 1.20 1.22 1.25 1.27 1.28 1.28 1.28 1.30 1.31 1.31 0.95, 0.98 1.01, 1.03 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.14 1.15 1.17 1.18 1.19 1.20 1/22 1.25 1.27 1.28 1.28 1.28 1.28 1.30 1.31 1.31 0.94 0.97 1.00 1.03 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.13 1.15 1.16 1.18 1.18 1.19 1.22 1.27 1.28 1.27 1.28 1.27 1.30 1.30 1.31 0.91 0.96 0.99 1.02 1.04 1.06 1.07 1.09 1.10 1.10 1.12 1.13 1.14 1.16 1.17 1.18 1.19 1.22 1.25 1.26 1.27 1.28 1.27 1.29 1.30 1.31 0.89 0.95 0.98 1.01 1.04 1.05 1.07 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.16 1.17 1.18 1.20 1.24 1.26 1.27 1.27 1.27 1.29 1.30 1.31 0.88 0.92 0.97 1.01 1.03 1.05 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.15 1.16 1.17 1.17 1.19 1.22 1.25 1.27 1.27 1.26 1.28 1.30 1.30 0.88 0.92 0.97 0.99 1.02 1.05 1.06 1.08 1.09 1.10 1.10 1.11 1.13 1.14 1.15 1.16 1.16 1.18 1.21 1.24 1.26 1.27 1.27 1.28 1.29 1.30 0.89 0.92 0.94 0.98 1.01 1.04 1.06 1.07 1.09 1.09 1.00 1.11 1/12 1.13 1.14 1.15 1.16 1.17 1.20 1.23 1.25 1.27 1.27 1.29 1.30 1.31 0.89 0.92 0.93 0.95 0.99\1.03 <u>1.05</u> 1.07 1.08 1.09 1.09 1.10 1.11 1.12 1.14 1.15 1.15 1.17 1.19 1.22 1.24 1.26 1.26 1.26 1.29 1.31 1.31 0.89 0.91 0.92 0.93 0.98 1.01 1.04 1.06 1.07 1.08 1.09 1.09 1.10 1.12 1.13 1.14 1.15 1.16 1.19 1.21 1.23 1.25 1.25 1.25 1.28 1.29 1.29 0.89 0.91 0.92 0.93 0.95 1.06 1.03 1.05 1.07 1.08 1.08 1.09 1.10 1.11 1.12 1.16 1.44 1.15 1.18 1.20 1.22 1.23 1.24 1.26 1.27 1.28 0.90 0.91 0.93 0.94 0.94 0.99 1.03 1.05 1.06 1.07 1.07 1.08 1.09 1.10 1.41 1.12 1/13 1.14 1.17 1.19 1.20 1.22 1.23 1.25 1.26 1.27 0.91 0.92 0.92 0.96 1.00 1.03 1.05 1.06 1.06 1.07 1.08 1.09 1.16 1.17 1.12 1.14 1.16 1.18 1.19 1.21 1.22 1.24 1.25 1.26 0.90 0.89 0.88 0.95 0.98 1.01 1.03 1.05 1.05 1.06 1.07 1.08 0.09 1/10 1.11 1.13 1.15 1.17 1.18 1.20 1.21 1.22 1.24 1.25 9.88 9.87 0.93 0.96 1.00 1.02 1.03 1.04 1.05 1.06 1.07 (1.08) 0.09 1.10 1.12 1.14 1.16 1.18 1.19 1.20 1.21 1.23 1.23 0.88 0.91 0.95 0.98 1.00 1.01 1.03 1.04 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.15 1.17 1.18 1.19 1.20 1.22 1.22 0.88 0.90 0.91 0.96 0.98 1.00 1.01 1.03 1.04 1.06 7.07 1.08 1.09 1.11 1.12 1.14 1.16 1.17 1.18 1.20 1.20 1.21 0.89 0.90 0.91 0.99 0.99 1.00 1.01 103 1.05 1.06 1.07 1.09 1.10 1.12 1.13 1.15 1.16 1.17 1.19 1.19 1.20 0.91 0.96 0.94 0.99 1.00 1.01 1.03 1.05 1.06 1.08 1.09 1.11 1.12 1.14 1.16 1.16 1.17 P.18 1.19 0.97 0.95 0.96 0.97 0.99 1.01 1.04 1.06 1.07 3.09 1.10 1.12 1.13 1.15 1.15 1.16 1.17 1.18 0.96 0.89 0.95 0.99 1.02 1.05 1.07 1.09 1.10 1.12 1.13 1.14 1.15 115 1.16 1.16 0.94 0.88 0.92 0.97 1.01 1.04 1.07 1.09 1.10 1.11 1.12 1.13 1.14 1.14 1.15 1.15 0.88 0.86 0.95 0.99 1.03 1.06 1.08 1.10 1.11 1.11 1.12 1.13 1.13 1.14 1.15 0.66 0.0 1.01 1.05 1.07 1.09 1.10 1.11 1.11 1.12 1.13 1.14 1.15 1.04 1.08 1.09 1.10 1.11 1.11 1.12 1.13 1.14 4.04 1.08 1.09 1.10 1.10 1.11 1.12 1.13 1.03 1.07 1.09 1.10 1.10 1.11 1.12 1.04 1.07 1.08 1.09 1.10 1.11 1.07 1.05 1.07 1.09 1.09 1.07 1.05 1.06 1.07 1.04 1.06 1.05 1.06 Wave direction (360)1.36 m Wave height 50 100m 6.10 sec Wave period

図 5-31 換算沖波波高分布(N)

図 5-32 波向ベクトル分布 (N)

図 5-33 波向数值分布(N)

算出した換算沖波波高分布より $H_{1/3}$, H_{max} を表 5-19、表 5-20 に整理した。算出例を図 5-35 に示す。また同表より水深と $H_{1/3}$, H_{max} の関係を図 5-34 に整理した。

同図によれば、浅海域においては $H_{1/3}$, H_{max} 共に WNW が高く、それ以外の水深では N が高い値を示している。よってこれ以降の波頂高の検討については、N, WNW を対象とする。

表 5-19 換算沖波波高, H_{1/3}, H_{max}一覧

M2波F	向(°)	波高(m)	周期(s)	潮位(m)	Lo	勾配 (1/x x=)	水深 h(m)	Ho'(m)	H1/3(m)	Hmax(m)
						(1/ X X-/	16.0	0.87	0.80	1.40
							15.0	0.84	08.0	1.40
							12.5	0.80	0.70	1.30
							11.5	0.78	0.70	1.30
							10.0	0.76	0.70	1.30
							9.0	0.76	0.70	1.30
							8.0	0.76	0.70	1.30
wnw	324	3.17	9.2	2.30	132.04	10	7.0 6.0	0.76 0.76	0.70 0.70	1.30
*****	324	3.17	3.2	2.50	132.04	10	5.0	0.76	0.80	1.40
							4.0	0.76	0.80	1.40
							3.0	0.76	0.80	1.50
							2.0	0.76	0.80	1.50
							1.0	0.76	0.90	1.70
							0.0	0.76	1.20	2.10
							-1.0	0.76	1.30	1.80
							-2.0	0.76	0.50	0.80
							16.0	0.70	0.70	1.20
							15.0	0.68	0.60	1.20
							12.5	0.66	0.60	1.10
							11.5	0.64	0.60	1.10
							10.0	0.63	0.60	1.00
							9.0	0.61	0.60	1.00
							8.0	0.61	0.60	1.00
NW	327	1.78	6.3	2.30	61.92	10	7.0 6.0	0.60	0.60	1.00
	02/	1.70	0.5	2.00	01.32	10	5.0	0.60	0.60	1.00
							4.0	0.59	0.50	1.00
							3.0	0.59	0.60	1.00
							2.0	0.58	0.60	1.00
							1.0	0.58	0.60	1.10
							0.0	0.58	0.60	1.20
							-1.0	0.58	0.90	1.50
							-2.0	0.58	0.40	0.60
							16.0	0.74	0.70	1.30
							15.0	0.72	0.70	1.20
							12.5	0.70	0.60	1.20
							11.5	0.68	0.60	1.10
							10.0	0.67	0.60	1.10
							9.0	0.67	0.60	1.10
							8.0 7.0	0.66	0.60	1.10
NNW	330	1.81	6.4	2.30	63.90	10	6.0	0.65	0.60	1.10
141444	330	1.01	0.4	2.00	00.00	10	5.0	0.55	0.50	0.90
							4.0	0.64	0.60	1.10
							3.0	0.64	0.60	1.10
							2.0	0.63	0.60	1.10
							1.0	0.63	0.60	1.20
							0.0	0.62	0.70	1.30
							-1.0	0.62	0.90	1.50
							-2.0	0.62	0.40	0.60
							16.0	1.14	1.10	2.00
							15.0	1.11	1.10	1.90
							12.5	1.08	1.00	1.80
							11.5	1.07	1.00	1.80
							10.0	1.05	1.00	1.70
							9.0	1.05	1.00	1.70
							8.0	1.04	1.00	1.70
,. I	200	1.70		0.00	E0.05	10	7.0	1.04	0.90	1.70
N	360	1.70	6.1	2.30	58.05	10	6.0	1.03	0.90	1.70
							5.0 4.0	1.03	0.90	1.70 1.70
							3.0	1.02	1.00	1.70
							2.0	1.02	1.00	1.80
							1.0	1.00	1.00	1.90
							0.0	0.99	1.20	2.10
							-1.0	0.99	1.20	1.70
							-2.0	0.99	0.50	0.70

波向はNから時計まわりの角度

表 5-20 換算沖波波高, H_{1/3}, H_{max}一覧

M3波[向(°)	波高(m)	周期(s)	潮位(m)	Lo	勾配 (1/x x=)	水深 h(m)	Ho'(m)	H1/3(m)	Hmax(m)
							16.0	0.80	0.80	1.40
		l					15.0	0.80	0.80	1.40
		l					12.5	0.79	0.80	1.40
		l					11.5	0.79	0.80	1.40
							10.0	0.78	0.80	1.40
		l					9.0	0.78	0.80	1.40
							8.0	0.77	0.80	1.40
		l					7.0	0.77	0.80	1.40
NNE	22.5	0.80	3.8	2.30	22.53	10	6.0	0.76	0.70	1.30
							5.0	0.76	0.70	1.30
							4.0	0.75	0.70	1.30
							3.0	0.75	0.70	1.30
		l					2.0	0.74	0.70	1.20
							1.0	0.74	0.70	1.20
							0.0	0.73	0.70	1.20
		l					-1.0	0.73	0.80	1.30
							-2.0	0.73	0.40	0.50
		l					16.0	0.86	0.90	1.50
							15.0	0.85	0.80	1.50
		l					12.5	0.85	0.80	1.50
		l					11.5	0.84	0.80	1.50
		l					10.0	0.83	0.80	1.50
							9.0	0.83	0.80	1.50 1.50
							8.0	0.83	0.80	
NE	45	0.90	3.8	2.30	22.53	10	7.0 6.0	0.82 0.82	0.80	1.40 1.40
INE	45	0.90	3.0	2.30	22.00	10	5.0	0.82	0.80	1.40
							4.0	0.82	0.80	1.40
							3.0	0.82	0.80	1.40
		l					2.0	0.81	0.70	1.30
		l					1.0	0.81	0.70	1.30
							0.0	0.80	0.80	1.40
							-1.0	0.80	0.90	1.40
							-2.0	0.80	0.40	0.50
							16.0	0.74	0.70	1.30
							15.0	0.74	0.70	1.30
							12.5	0.72	0.70	1.30
							11.5	0.72	0.70	1.30
							10.0	0.71	0.70	1.30
							9.0	0.71	0.70	1.30
							8.0	0.71	0.70	1.30
							7.0	0.71	0.70	1.30
ENE	67.5	0.90	3.8	2.30	22.53	10	6.0	0.71	0.70	1.20
							5.0	0.70	0.70	1.20
							4.0	0.70	0.70	1.20
							3.0	0.70	0.60	1.20
							2.0	0.70	0.60	1.20
							1.0	0.70	0.60	1.20
							0.0	0.69	0.70	1.20
							-1.0	0.69	0.80	1.30
							-2.0	0.69	0.40	0.50

波向はNから時計まわりの角度

図 5-34 砕波帯内の有義波高算定図

図 5-35 水深と H_{1/3}, H_{max}の関係 (M.H.H.W 時)

水深別に波頂高 (C_{max}) を算出した結果を表 5-21 に示す。 C_{max}/H_{max} は図 5-36 より読み取った。表 5-21 によれば、汀線付近において約 1.5m の値が算出された。

表 5-21 水深別波頂高 (50 年確率波、潮位 M.H.H.W)

W2波向	(m)	(a)	回で	Fo	10年	勾配 (1/x x=)	光 (m)	e (F)	E	(m)	E CHIEX	750	100	/Ho.	/H6'	/Ho	H. 4	/Hmax
							16	1.14	1.08	1.94	1,16	0.020	0.315	16.05	960	180	90.0	090
							15	1.11	1.05	1.89	1.13	0.019	0.298	15.59	0.95	1.80	90.0	090
							12.5	1.08	1.00	1.80	1.10	0.019	0.255	13.70	0.93	1.80	10.0	0.61
							11.5	1.07	1.00	1.80	1.10	810.0	0238	12.90	0.93	1.80	10.0	0.61
							10	1.05	0.97	1.75	1.07	0.018	0212	11.71	0.92	1.80	80.0	0.61
							0.8	1.05	0.97	1.75	1.09	0.018	0.195	10.76	280	1.80	60.0	0.62
							8.0	1.04	0.95	1.71	1.06	0.018	171.0	9.90	0.91	1.80	0.09	0.62
	1.36	6.1	360.0	58.05	2.30	10	7.0	1.04	0.95	17.1	1.06	0.018	0.160	8.94	160	1.80	0.10	0.62
							6.0	1.03	0.94	1.69	1.05	8100	0.143	8.06	0.91	1.80	0.11	0.62
							5.0	1.03	0.95	1.85	1.17	0.018	0.126	7.09	260	1.80	0.13	690
							4.0	1.02	0.95	1.84	1.18	0.018	0.109	6.18	0.93	1.80	0.15	0.64
							3.0	1.02	0.96	184	1.20	0.018	180.0	520	0.94	1.80	0.18	0.65
							2.0	1.01	0.97	1.82	122	710.0	97074	426	96'0	1.80	0.23	19'0
							1.0	1.00	1.04	1.86	1.30	0.017	0.057	330	1.04	1.86	0.32	0.70
							0.0	0.99	1.17	2.08	1.48	7100	0.040	232	1.18	2.10	0.51	0.71
MULIAN	1.67	0.0	9340	1990	2.50	10	-1.0	0.76	1.30	1.76	1.34	900'0	0.010	171	1.71	231	1.00	97.0
	200	70	25.40	105.01	2.00	2	-20	92.0	0.52	18.0	190	9000	0.002	0.39	690	1.07	1.73	0.83

出典:港湾構造物の耐波設計 P212

図 5-36 最高波頂高の観測

5-2-2 静穏度検討

5-2-2-1 計算方法

静穏度の検討フローを図 5-37 に示す。

対象施設沖合地点の波浪検討(5か年間)

- 1) M2地点の波浪を対象施設沖合に換算する。
- 2) 風波の推算 (M1地点)
- 3) 合成波の算出(1)と2)を合成する)

各種諸元の設定

代表波向、代表周期、静穏の目標、評価エリアの設定

バース位置への波浪変形計算

代表波向、代表周期を用いて浅海域の波浪変形計算を行なう。 ついで、評価エリアでの最大波高比を抽出する。

利用限界波高に対する稼働率の算定

- 1) M1地点での限界波高の算定 (限界波高/評価エリアでの最大波高比)
- 2) M1地点での限界波高以上の出現頻度を求める。
- 3) 稼働率 (=100% 2)の出現頻度) を算出する。

図 5-37 静穏度の検討フロー

5-2-2-2 対象施設沖合地点の波浪検討

5-2-2-2-1 推算データを対象施設沖合に換算

図 5-20 に示す波向別換算率により M2 地点の波浪データを M1 地点の波浪にする。

(1) 手法

波浪変形計算はエネルギー平衡方程式を用いる。エネルギー平衡方程式の基礎方程式は参考資料3に示す。

(2) 条件

• 波浪

5 か年間 (2010年~2014年)

• 波浪換算

換算対象波向: M1 地点の地形を考慮(前出図 5-28 参照) して WNW \sim N \sim ENE の 7 方向とした。換算沖波周期: WNW \sim N \sim ENE 方向の周期はほぼ 3.0 \sim 8.0sec であるので、4, 6, 8sec を設定した。

• その他

水深及び地形、潮位、計算範囲及び計算格子間隔は 5-2-1-3-2 条件に同様とする。

表 5-22 波浪換算

沖波波向	波	高換算值(n	n)	換算	算後の波向(°)
/十/汉/汉刊	4.0s	6.0s	8.0s	4.0s	6.0s	8.0s
WNW	0.51	0.51	0.51	324	324	324
NW	0.63	0.63	0.63	327	327	327
NNW	0.84	0.84	0.83	329	329	329
N	0.80	0.80	0.79	0	0	0
NNE	0.83	0.82	0.81	29	29	29
NE	0.82	0.81	0.80	43	43	43
ENE	0.74	0.74	0.73	48	48	48

波向はNから時計まわりの角度

図 5-38 波浪換算

(3) 結果

表 5-3、図 5-38 は波向別、周期別に波浪変形計算を行ない、沖合から M1 地点への換算率を求めたものである。アロル島、アタウロ島の影響で開口している NNW、NNE、NE への換算率が高くなっている。この換算率をもとに、表 5-23~表 5-25 に示す M2 地点の波を M1 地点の波に変換した結果を表 5-26~表 5-28 に示す。

表 5-23 地点 M2 波高·周期頻度表

5.0 6.0 7.0 8.0 9.0
6.9
(0.10)
(0.13) (0.04)
(0.03)
2
(0.66) (0.06) (0.02)
42 98 11 (0.67) (0.08)
2
(0.15) (0.12)
(0.05) (0.10)
-
(3.09) (0.60) (0.16)
6639

d 14589	0 0	104
Observed	Calm	A direction

Wave Height(m)	NNE	쀳	ENE	ш	ESE	SE	SSE	sh.	WSS.	SW	WSW	W	WNW	MN	NNN	ż	CAM	Total	Exceedance
- 0.24	(0.01)	(0,05)	(0.58)	13 (0.09)	(0.53)	(0,07)	(0,03)			4849	(0.58)	(0.54)	255 (1.75)	66 (0.45)	(0,48)	63 (0.43)	(00'0)	5664 (38.82)	(100,00)
0.25 - 0.49			74 (0.51)	93	1136	135	(0.02)			1445 (9.90)	50 (0.34)	105	746	115 (0.79)	62 (0.42)	48 (0.33)		4012 (27.50)	8925 (61.18)
0.50 - 0.74			12 (0.08)	(0,42)	1754	207				176	(0.12)	103	579	49 (0.34)	30 (0.21)	(0.10)		3003	4913
0.75 - 0.99				25	756	37				0	00	53	368	29	17	1		1281	1910
				(0.17)	(5.18)	(0.25)				(0.03)	(0,05)	(0.20)	(2.52)	(0.20)	(0.12)	(0.05)		(8.78)	(13.09)
1.00 - 1.24				(0.04)	(0.61)	(0.01)					(0.02)	(0.10)	(1.23)	(80.0)	(0.03)	(0,04)		(2.17)	(4.31)
1.25 - 1.49					(0,08)						(0.05)	(0.09)	115 (0.79)	4 (0.03)	(0.01)	8 (0.05)		161	313
1.30 - 1.74												9	72		3	2		83	152
ŀ												(000)	(0,49)		(0.02)	(0.01)		(0.37)	(1.04)
1.75 - 1.99												(0.01)	(0.26)					(0.27)	(0.47)
2.00 - 2.24												(0.01)	20 (0.14)					22 (0.15)	29 (0.20)
2.25 - 2.49													7 20					70.07	7
													0000					0	0
5.00 - 00.2																		(00'0)	(00'0)
2.75 - 2.99																		(00'0)	
3.00 - 3.24																		(0.00)	(0,00)
3,25 - 3,49																		0.00	
250 - 274																		0	0 0
																		(00.00)	(0.00)
3.75 - 3.99																		(0.00)	(00'0)
4.00 - 4.24																		0 00	0 00 00
4.25 - 4.49																		0 000	0 00
4.50 - 4.74																		0	0
																		0 0	0
4.00 - 4.00																		(0.00)	(0.00)
5.00 - 5.24																		(00.00)	(0,00)
5.25 - 5.49																		0 000	0 00 00
5.50 = 5.74																		0	0
5,75 - 5,99																		0	0
6.00																		0.00	0.00)
2000	0	a	1.7.1	108	2802	390	ox	0	0	6475	124	253	0380	975	184	1.50	0	(0,00)	(00:00)
Total	(10.01)	(0,05)	0.17	(1.36)	(26,20)	(2.67)	(0,05)	(00'0)	(00'0)	(44,38)	0.15	(2,42)	(16,31)	(1.88)	(1.27)	(1.02)	(00'0)	(100,00)	
Exceedance	14589	14587	14579	11108	14916	10387	2000	DODG	Second	COOCO	111111	2040	46.45.45.45	10000	400	140			

Wouth: 201001-201412 Point: DILIMEnn2 All mo

表 5-25 地点 M2 周期·波向頻度表

Wave Direction	NNE	NE	ENE	121	BSB	120	SSE	is	MSS	WS	MSM	W	WWW	NOV	NNN	Z	CAM	Total	Excoodance
Wave Period(s)	100	1000	Mai Aller	à	Seeding	-0.00	dele		4000	-	and an		distant.	1000			(1)	10000	Providence (Provid
- 2.99			(0.01)	66	822	74 (0.51)	410.05			8 (0.05)	24	(0.12)	26	4 (6.03)	11 (0.08)	2 (0.01)	0 00	1058	14589
3.00 - 3.99		6 (0.04)	18 (0.12)	114	2622	307	0 01)			3 (0.00)	46	131	360	90	78	49		3830	13531
4.00 - 4.99	(0.01)	2 (0.01)	65	17	376	9 (0.08)	TANA.			100.00	22	94	196	151	71	64		1840	9701
5,00 - 5,99	O CONTRACTOR OF THE CONTRACTOR	100000	39	10,3867	3	(00'0)					7 (0.05)	62	589	29	24	181		771	7861
6.00 - 6.99			39	(0.01)	1900el						100,000	26	366	1 (0.01)	(0.01)	16 (0.11)		451	7090
7.00 - 7.99			9 (10 0)									6 00	72 (0.49)		Table 1			87	6639
8.00 - 8.99			(0.01)							(0.01)	7 (0.05)	14	701.00					24 (0.16)	6552 (44.91)
66.6 - 00.6										16	1							16	6528
10.00 - 10.99										128	14							142	6512
11.00 - 11.99										720	12 (0.08)							732	6370
12.00 - 12.99										1223	11 (0.08)							1234	5638
13.00 - 13.99										1444	(9.09)							(451	4404
14.00 - 14.99										1389	J6 (0.11)							1405	2953
15.00 - 15.99										693	3 (0.00)							696	1548
16.00 - 16.99										417	in the same of							417	852
17,00 - 17,99										296	(10.0)							297	435
18.00 - 18.99										(0.34)	(0.01)							50 (0.34)	138
- 00'61										88 (0.60)								88 (0.60)	88
X																			
χ																			
,																			
(
-																			
Y																			
Total	(0.01)		(1.17)	198	3823 (26.20)	390	(0.02)	(00.0)	(0.00)	6475	(217)	353	2380	275 (1,88)	186 (1.27)	(1.02)	(00.00)	14589	
Exceedance	14589	14587	14579	14408	14210	10387	168 89)	9889	9989	6866	3514	3343	2990 (20.49)	610	335	149	0 00		

表 5-26 地点 M1 波高・周期頻度表

(0.13)	Faceadance		3431 (23.52)	1591	(10.91)	431	98	(0.67)	25	5	(0.03)	0 00	0	(0.00)	0	0	(00.0)	(000)	0	(0.00)	0 00	0	(0.00)	(0.00)	0	0	(0.00)	(0.00)	(0.00)	0	(0.00)	(0.00)	0	0	(0.00)	0 00	0000	000	
2	Total		(12.61)	1160	(1.95)	333	73	(0.50)	50	5	(0.03)	00'0)	0	(00.0)	0 0	0	(0.00)	(0 0)	0	(00.0)	0000	0	(0.00)	(000)	0000	0	(0.00)	(00:0)	(00 0)	0	(0.00)	(0.00)	0	0000	(00.0)	(000)	000	3431	
	19.0				Ī					Ī		Ī	Ī			Ī			Ī				Ī		Ī	Ī	Ī		Ī		Ī			Ī			-	00.00	0 00
1	18.0	18.9			Ī					Ì		Ī	ľ			Ī	1		Ī				İ				İ		Ī		İ			Ī				(000)	0 00
	17.0	17.9			1					Ì			l			l							Ì				İ				1			İ				(000)	0 00
	16.0	16.9			Ī								Ī			Ī	1			1			Ī				İ				Ī			Ī				0000)	000/
	15.0	15.9			1					İ			İ			Ī	1		Ī				Ì			Ī	İ				İ			İ				0000	0000)
	140	14.9			1					ı			l				1		l	1			t			İ	Ì				1			t				(000)	0000)
	13.0	13.9			Ì		l			Ì			l	1			1		l				1			İ	Ì				1			t				0 00 0)	0 00
	12.0	12.9	П		1					Ì			t	1		l			l	1	Ī		t			l	t				1			İ			-	0000	-
	11.0	11.9			1					t			İ	1	Ī				l	1			t	i		l	t							t				0 (0 (0)	0 (000)
	10.0	10.9			1		l			l						l						l				l					1			t				0 00	
	9.0	6.6								t			t	1					l	1			t			l	t							l				(000)	
	0.0	8.9	(0.10)	1	(10.01)	(10.0)				l					H	l							t			l	t				1			t				16	
	7.0	7.9			(0.17)		19	(0.11)	7	(000																i	t							t				H	103
	0.9	69		10	4	(0.94)	0		0	4	(0.03)		ŀ			l			l				t			l	t							t				(3.07)	
	2.0	5.9	219	0		(0.80)	49		e	10.02	(0.01)					l			l				+											t				746	
	4.0	4.9	898	9		(0.29)	-						t			l			l								t							t				-	2695
	30	3.9	(4.12)	830.		(001)	H	_		t						l				1			+						Ī					l				671	
	. 1	2.9	(0.41)	80	(0.03)					l			t						ŀ				+			t	t				1			t				65 (0.45)	
	Wave Period(s)	Wave Height(m)	- 0.24	0.25 - 0.49		0.50 - 0.74	þ	0.75 ~ 0.99	1.00 - 1.24	H	65.1 - 02.1	1.50 - 1.74	1 35 - 1 00		2.00 - 2.24	2.25 - 2.49	1	2.50 - 2.74	978 - 960		3.00 - 3.24	325 - 349		3.50 - 3.74	3.75 - 3.99	4.00 - 4.24	1	4.25 - 4.49	4.50 - 4.74	4.75 - 4.99		5.00 - 5.24	5.25 - 5.49	1	5.30 - 5.74	6.75 - 5.99	- 00.9	Total	Exceedance

5-62

(99,	3 (76.	(0)
14585	11158	116
Observed	Calm	Missing

Exceedance	(100,000)	1991 (10.91)	(2.95)	98	25	5	0	(00.00)	(00.00)	(00'0)	(0.00)	0000	0 000	0 00 00	0 000	(00.0)	(0.00)	0.000	0 (0.00)	(0.00)	(0.00)	0 (0.00)	(00.0)	0 000	(0.00)	0 000	- Contract	
Total	12998 (89,09)	1160 (7.95)	333 (2.28)	73	200	0 0	0	(0.00)	(00'0)	(00'0)	(0.00)	00.00	0 00	0 00 00	0 00	(00.00)	(0.00)	0.00	0 00	(0.00)	(0.00)	0 00)	0 00	0 000	(0.00)	0 00	14589	
CAM	11158																										11158	11158
z	(0.51)	(0.10)	(0.05)	4	0 0	(00.00)																					106	11264
MNN	86 (0.59)	50 (0.34)	33 (0.23)	12	7 7	5	(0,03)																				193	11457 (78.53)
WN	238	(1.05)	(0,39)	7	(0.00)																						465	11912
WWW	1069 (7.33)	876 (6.00)	232 (1.59)	50	8	(0,00)																					2235	14147 (96,97)
*	211	19 (0.13)	(0.01)			T		Ī																	Ī		232	14379 (98.56)
WSW						Ī																					0 00	14379 (98.56)
SW	П						Ī	Ī		Ī																	0 00	
WSS						Ī		Ī		Ī																	(00.0)	14379 (98.56)
so.								Ī																			(0.00)	14379 (98,56)
SSE						T		Ì		Ī																	00.00	14379 (98.56)
SE	П							Ī																			0 00	14379 (98,56)
EXE						T																					(0.00)	
ш	16 (0.11)					T				Ī															Ī		16	
ENE	31 (0.21)	(0.01)																									32 (0.22)	
NE NE	11.2 (0.77)	47 (0.32)	(0.01)			Ī																					160	
NNE	2 (0.01)							Ì																			6 000	
Wave Direction	-	0.25 - 0.49	0.50 - 0.74	0.75 - 0.99	1.00 - 1.24	1.25 - 1.49	1.50 - 1.74	1		2.00 - 2.24	2.25 - 2.49	2.50 - 2.74	2.75 - 2.99	3.00 - 3.24	3,25 - 3,49	3.50 - 3.74	3.75 - 3.99	4.00 - 4.24	4,25 - 4,49	4.50 - 4.74	4.75 - 4.99	5.00 - 5.24	5.25 - 5.49	5.50 - 5.74	5.75 - 5.99	- 00.9	Total	Exceedance

Month: 201001-201412 Point: DILI(MZm1) All menths

表 5-28 地点 M1 周期・波向頻度表

(99.87) (76.48) (0.13)	Exceedance	14589	3366 (23.07)	2695	1297	551	103	16 (0.11)	0 (0,00)	(0.00)	(0.00)	(0.00)	(0,00)	(0.00)	(0.00)	(0.00)	(00.0)	(0.00)	(0.00)									
111589	Total	11223	(4.60)	1398	746 (5.11)	448	(0,60)	(0.11)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(00.00)	(0.00)	(0.00)	(0.00)	(00.00)	(0.00)								14589 (100,00)	
Observed Celm Missing	CAM	11158																									11158 (76,48)	11158 (76.48)
	×	20.013	36 (0.25)	(E.0)	11 (0.08)	10 (0.07)																					901	(77,21)
	NNN	(9.05)	73 (0.50)	74 (0.51)	31 (0.21)	8 (0.05)																					193	(78.53)
	W	9 (0.06)	149	233	55 (0.38)	0,00																					(3.12)	(81,65)
	WNW	25	318	899 (6.16)	563	358	(0,49)																				(15.32)	14147 (96.97)
	3	(90'0)	58 (0.40)	71 (0.49)	47 (0.32)	24	(90'0)	14 (0.10)																			232 (1.59)	14379 (98.56)
	WSW																										(0.00)	14379 (98.56)
	MS																											14379 (98,56)
	SSW																											
	so																											14379
	SSE																											14379 (98.56)
	95 55																											14379 (98.56)
	ESE																										-	14379 (98.56)
	(11)	4 (0.03)	8 (0.05)	4 (0.03)																								14395 (98.67)
VII months	ENE	6 (90.0)		(0.05)		4 (0,03)																						
1001-2014 LI(M2m1)	NE				35 (0.24)		-	(0.01)																				
Month: 201001-201412 Point: DILI(MZm1) All months	NNE		(0.0)	-																								
	Wave Direction	- 2.99	3.00 - 3.99	4,00 - 4,99	5.00 - 5.99	6.00 - 6.99	7,00 - 7,99	8.00 - 8.99	8.00 - 9.99	10,00 - 10.99	11,00 - 11,99	12.00 - 12.99	13.00 - 13.99	14.00 = 14.99	15.00 - 15.99	16.00 - 16.99	17,00 - 17.99	18.00 - 18.99	19,00 -	,C	X	1	γ.	i	y	×.	Total	Exceedance

5-2-2-2 風波の推算

(1) 手法

SMB 法により算出した。

- (2) 条件
 - 風

M3 地点における 5 か年間 (2010 年~2014 年) の風を使用した。

• 有効吹送距離

有効吹送距離は、図 5-16 に示す値を使用した。なお、推算にあたっては、設計波算出の時と同様に NNE~ENE 方向を対象とした。

(3) 結果

推算結果を表 5-29~表 5-31 に示す。

表 5-29 波高・周期頻度表

Wave Direction: All directions																				
Wave Period(s)	1 6	30.1 30	0,104	0 1 0	0 1 8	0.7	8.0	0.0	001	0 0	12.0	13.0	14.0	15.0	16.0	170	18.0	0.61	Total	Exceedance
30		161		2	3		3	2	2			2			3				5514	(45.98)
0.49 (7.96)	-	(0.20)																	(8.16)	1203 (8.24)
0.74 (0.05)	00	69																	(0.08)	(0.08)
66.0																			(0.00)	(000)
124																			0 00	0 00
1.49	H			t	T		T	T	T			Г	Ī				T		0 0	0000
1.74	+	-	F	t	T		T	T	T		Ī		Ī	Ī	T	t	Ī		0 0	000
66.1	-				Ī		T	Ī										Ī	0 0	0000
2.24		H		T	T	Ī	T	T	Ī	Ī					Ī				0 0	0000
249					Ī			Ī	Ī										0000	0 00
274	-			T	Ī														0	0
2.99				T	T				T								T		000	000
3.24	-			T	T	Ī	T	T	T	Ī	Г			Ī	Ī	T	Г		000	0000
3.49	-						T			Ī					T		Γ		0 0	0000
3.74	-				Ī			Ī							Ī				0 0	0000
3.99																			(000)	0 00
424																			(000)	0 (0 (0)
4.49																			(000)	(000)
434					П														0 00	0000
4.99																			(000)	(000)
5.24																			(0.00)	(0.00)
6.49					Г														(0.00)	0 00
5.74		111																	(000)	(0.00)
5.99																			(0.00)	(0.00)
														- 1					(000)	(0.00)
6524 (44.66)	6) (1.32)		0000)	(000)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(000)	(000)	(0:00)	(000)	(000)	(000)	(0.00)	(00:00)	(45.98)	
Exceedance 6717	-			11	(00:00)	(000)	(0.00)	(000)	(000)	0000	(000)	(000)	(000)	(000)	(00'0)	(000)	0000	0 00		

5-66

表 5-30 波高・波向頻度表

10,002	Exceedance	14608 (100.00)	1203	11 (0.08)	(0.00)	0 00	0 (0 (0)			(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		(0.00)		(0.00)	(0.00)	(0.00)	(00'0)	(0.00)	(00'0)	(0,00)	(0,00)	
	Total	13405 (91.76)	(8,16)	(0,08)	0 (00:00)	0 00	0 0	(0.00)	(00.00)	(0.00)	(0.00)	(0.00)	(0.00)	00.00	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	00.00	(00'0)	(0.00)	(00.00)	14608 (100.00)
Missing	CAM	7891 (54.02)																									7891 (54,02)
	z																										(00.00)
	NNN																										(00.00)
	NW.																										(0.00)
	WWW						T																				(0.00)
	*				ī																						(0.00)
	WSW																										(0.00)
	SW				ī																						(0.00)
	MSS																										(0.00)
	v)																										(0.00)
	SSE				ī																						(00.00)
	SE																										(0.00)
	ESE																										(00.00)
-	ш																										(0.00)
ŀ	ENE	3132	844	10 (0.07)																							3986 (27,29)
	NE	715 (4.89) (850 (5.82) (
	NNE		213 (1.46)	-																							1881 (12,88) (
Mana Director		-	0.25 - 0.49	0.50 - 0.74	0,75 - 0,99	1.00 - 1.24	1.25 - 1.49	1.50 - 1.74	1.75 - 1.99	2,00 - 2,24	2.25 - 2.49	2.50 - 2.74	2.75 - 2.99	3.00 - 3.24	3.25 - 3.49	3.50 - 3.74	3.75 - 3.99	4.00 - 4.24	4.25 - 4.49	4.50 - 4.74	4.75 - 4.99	5.00 - 5.24	5.25 - 5.49	5.50 - 5.74	5,73 - 5,99	- 00'9	Total (1

5-67

表 5-31 周期・波向頻度表

Wave Direction	NAS	NE NE	ENE	Ц	ESE	SE	255	V	CCUV	ANS.	mem	W	WWW	MIL	ANN	2	CAM	Total	Dynamical
Wave Period(s)	OK.W)	200	own.	4	260	tre	oóc	1	100		11511			ariv.	mini		N.C.W		CACAMBRICA.
- 2.99	(12.21)	807	3933														(54.02)	14415 (98.68)	14608
3.00 - 3.99	76	43	53.															193	193
4.00 - 4.99	JAN SAN	Jones Co.	- Constant															0	0
																		(00.00)	(00'0)
5,00 - 5,99																		(00'0)	(00'0)
66'9 - 00'9																		(0,00)	(00:00)
7.00 - 7.99																		(0.00)	(00'0)
8.00 - 8.99																		(0.00)	(0.00)
9.00 ~ 9.99																		(0.00)	(0.00)
10.00 - 10.99																		(0 00)	(00.0)
11.00 - 11.99																		(0.00)	(00'0)
12,00 - 12.99																		(0.00)	(00'0)
13.00 - 13.99																		(0.00)	(00'0)
14.00 - 14.99																		(0.00)	(00'0)
15,00 - 15,99																		(0.00)	(0.00)
16,00 - 16,99																		(0.00)	(00.0)
17,00 - 17,99																		(0.00)	(00'0)
18.00 - 18.99																		(0.00)	(000)
19.00 -																		(0.00)	(00:00)
1,																			
1.																			
1																			
4																			
ı																			
4																			
Total	1881 (12.88)	850 (5,82)	3986 (27,29)	(0.00)	(0,00)	(0.00)	(00'0)	(0.00)	(00'0)	(0,00)	(0.00)	(00'0)	(0.00)	(0.00)	(0.00)	(0.00)	7891	14608	
Exceedance	14608	_	11877	1681	7891	1682	7891	7891	7891	1687	1881	1682	7891	7891	7891	7891	7891		

Month: 201001-201412 Point: DILRPD All mon

5-2-2-3 合成波算出

ここでは、前項で算出したM1地点での換算波浪とSMB法にて推算した波浪結果を合成した。 合成にあたっては、換算波浪とSMB法による推算波を比較して波高の大きい値を採用した。合成した結果を表 5-32~表 5-34に示す。

表 5-32 波高・周期頻度表

Wave	Wave Direction: All directions	All discourse																		
Wave Period(s)		3.0	4.0	2,0	0.9	0.7	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0		
Wave Height(m)	5.6	1 6	1 6	1 60	1 69	7.9	1 60	1 6	10.9	1 6	12.9	139	149	1 6	1 69	17.9	1 88		Total	Exceedance
- 0.24	5182	707	803	192	40	6 (0.04)	(010)												6944	9722
0.25 - 0.49	(7 93)	96	453	389	215	25	1 (100)												2336	2778
0.50 - 0.74	8 (0.05)	(0.03)	43	(0.80)	137	33 (0.23)	1 (10.0)												344 (2.36)	(3.03)
0.75 - 0.99			(10.0)	(0.11)	(0.27)	(0.11)													73 (0.50)	98 (0.67)
1.00 - 1.24	Ī	Ī		3 (0.02)	(0.07)	7 (0.05)													20 (0.14)	25 (0.17)
1.25 - 1.49				(10.0)	(0.03)														5 (0.03)	5 (0.03)
1.50 - 1.74																			0 (0 (0)	(000)
1.75 - 1.99																			0 00	0 00
2.00 - 2.24																			0 00	0 00
2.25 - 2.49																			0	0 0000
2.50 - 2.74																			000	0 00
2.75 - 2.99																			0 (0 00)	0 (0.00)
3.00 - 3.24																			(0.00)	(0.00)
3.25 - 3.49																			0000)	0 (00 0)
3.50 - 3.74																			0 00	0 00
3.75 - 3.99																			(0.00)	(0.00)
4.00 - 4.24																			(0.00)	0 (00 (0)
4.25 - 4.49																			(0.00)	(0:00)
4.50 - 4.74																			(0.00)	0.00
4.75 - 4.99																			(0.00)	(0.00)
5.00 - 5.24																			(0:00)	(0.00)
5.25 - 5.49																			(0.00)	(0.00)
5.50 - 5.74																			(0.00)	0000
5.75 - 5.99																			(0:00)	(0.00)
- 00.9																			(000)	(0.00)
Total	(43.50)	808 (5.54)	1300 (8.91)	(4.92)	(3.06)	(0.60)					(0.00)	(00:0)	(00:0)	(0.00)	(0.00)	(00:0)	(0.00)	(0.00)	9722 (66.63)	
Exceedance	9722 (66.63)	3375 (23.13)	(17.59)	(8.68)	(3.76)	(0.71)	(0.11)	(00:00)	(00:00)	-	(0.00)	(0.00)	(0.00)	(000)	(0.00)	(0.00)	(0.00)	(00:0)		

表 5-33 波高・波向頻度表

(0.11)	Exceedance	14592 (100.00)	2778	(19.04)	(3,03)	86	(0.67)	25	30.10	(0.03)	00 00	0		Ö		0	(00'0)	(00'0)	(00'0)	(0.00)	(0.00)	0 00	0 00	0 00	0000	0	(00'0)	(00'0)	(0,00)	(0.00)	(0.00)	(0.00)	
16	Total	11814 (80.96)	2336	(10.01)	344	7.3	(0.50)	20	0.147	(0.03)	(00 00)	0	(0.00)	(00'0)	(0.00)	0	(0,00)	(00'0)	(00.0)	(0.00)	(0.00)	0.001	0 00	0 00	0000	0	(0.00)	(00'0)	(0.00)	(0.00)	(0.00)	(0.00)	14592 (100.00)
Missing	CAM	4870 (33.37)			Ī				Ī		Ī				Ī											Ī	Ī						4870 (33,37)
	z	73	14	(0.10)	8 (0.05)	-	(0,03)	100 00	(0,00)																								101 (0.71)
	NNN	(0.56)	20	(0.34)	33	71	(80.0)	7 000	6.00)	(0,03)																							189
	NW	228 (1.56)	153	(1.05)	(0,39)	1	(0.05)		Ī								Ī										Ī						445 (3.05)
ľ	WNW	980	876	(00'9)	(1.59)	50	(0.34)	8 00	10,037				Ī				Ī										Ī						2146 (14.71)
	W	203	16	(0.13)	(0.01)				İ				Ī				Ī									Ī	Ī						224
	WSW			İ					Ī				Ī				Ī									Ī	Ī						(0.00)
-	MS								İ			Ī	Ť				Ť									Ī	Ī						(0.00)
	SSW								İ				Ì				İ										Ì						(0.00)
	so								İ				Ì				Ī									Ī	Ī						(0.00)
	SSE			1					İ				İ				İ									l	Ì						(0,00)
	SE			1					t				İ				t									l	Ť						(0.00)
	ESE								İ				t				t									T	Ì						(0,00)
r	ш	(0.01)							İ				İ				İ									t	Ì						(0.01)
	ENE	3089 (21,17)		(5.74)	(0,07)				t				t				t										t						3936 (26.97)
	100	761 (5.22) (1	(10,01)																												938 (6.43)
-	-	1527 (10.46)		+	(10.0)				t								+								-								1739
Wave Direction		_	0.25 - 0.49		0.30 - 0.74	00 0	0.65 - 0.99	1.00 - 1.24	П	1.25 - 1.49	1.50 - 1.74	1.75 - 1.99		2.00 - 2.24	2.25 - 2.49	2.50 - 2.74		2.75 - 2.99	3.00 - 3.24	3,25 - 3,49	3.50 - 3.74	3,75 - 3,99	4.00 - 4.24	4.25 - 4.49	4.30 - 4.74	4.75 - 4.99		5.00 - 5.24	5.25 - 5.49	5.50 - 5.74	5.75 - 5.99	- 00'9	Total

表 5-34 周期・波向頻度表

(33.37)	Exceedance	14592 (100.00)	3375 (23,13)	2567	1267	(3,76)	103	(0.11)	(0.00)	(0.00)	(0.00)	(0.00)	(0,00)	(0.00)	(00.00)	(0.00)	(0.00)	(0.00)	(00:00)									
16	Total	11217 (76.87)	808	1300	718	446 (3.06)	(0.60)	16 (0.11)	(0.00)	(0.00)	(0.00)	(00.0)	(00.00)	(0.00)	(0.00)	(0.00)	(0.00)	(00.00)	(00.00)								14592 (100,00)	
Missing	CAM	4870 (33,37)		-												1											4870	4870
	N	(0.01)	34 (0,23)	47 (0.32)	(0.08)	10 (0.07)																					104 (0.71)	(34,09)
	NNN	6 (0.04)	71 (0.49)	73 (0.50)	31 (0.21)	8 (0.05)																					189	5163
	WW	(90'0)	144 (0.99)	231	62 (0.36)	(90'0)																					443	5608
	WWW	24 (0.16)	300	841	551	358	(0.49)																				2146	(53.14)
	3	(90.0)	(0.39)	68 (0.47)	43 (0.29)	24 (0,163	6 (90.0)	(0,10)																			224	7978
	WSW																										0.000	7978
	SW																										(00'0)	7978
	MSS																										(00'0)	7978
	·S																										(00.0)	7978
	SSE																										(00.0)	7978
	SE																										(0.00)	7978
	ESE																Г										(000)	7978
	ш	(0.01)																										7979 (54,68)
Point: DILI(qM2P) All months	ENE	3875 (26,56)	920	(0.03)		4 (0.03)																					3936 (26,97)	(81,65)
ILI(qM2P)	NE	776 (5.32)	54 (0,37)	37 (0.25)	30 (0.21)	33 (0,23)	(0.04)	(0.01)																			938	-
Point: D	SNE	1645	93 (0,64)	(0.01)																							1739	
	Wave Direction		3,00 - 3,99	4.00 - 4.99	2.00 - 5.99	66.9 - 00.9	7.00 - 7.99	8.00 - 8.99	66'6 - 00'6	10.00 - 10.99	11.00 - 11.99	12.00 - 12.99	13.00 - 13.99	14.00 - 14.99	15.00 - 15.99	16.00 - 16.99	17.00 - 17.99	18.00 - 18.99	- 00'61	X	ζ	(,)	x-	Y	Total	Exceedance

5-2-2-3 各種諸元の設定

稼働率算出にあたって必要な諸元を設定した。

5-2-2-3-1 代表波向

対象地点の地形及び合成波の波向を考慮して代表波向を図 5-40 に示す NW、NNW、N、NNE、NE とした。

5-2-2-3-2 代表周期

合成波高・周期の頻度表によれば卓越する周期帯は $5.0 \sim 7.0 \mathrm{sec}$ であるので、ここでは代表周期を $6.0 \mathrm{sec}$ とした。

5-2-2-3-3 静穏の目標

表 5-35 は、荷役限界波高の参考値である。この表より荷役限界波高($H_{1/3}$)を 0.3m、0.5m の 2 種とした。

船形 荷役限界波高 (H1/3)
小型船 0.3m
中・大型船 0.5m
超大型船 0.7~1.5m

表 5-35 荷役限界波高の参考値

※うねり性の波浪及び長周期波による影響が無い場合

出典:港湾の施設の技術上の基準・同解説(平成19年7月) p.809

5-2-2-3-4 稼働率評価エリア

評価点は、図 5-39 に示す桟橋の西側(A)と東側(B)を設定した。

図 5-39 稼働率評価エリア

5-2-2-4 バース位置への波浪変形計算

5-2-2-4-1 バース位置までの波浪変形計算

代表波向、代表周期を用いて浅海域の波浪変形計算を行なった。

(1) 手法

解析手法は、エネルギー平衡方程式により算出した。

(2) 条件

波浪

代表波向: NW、NNW、N、NNE、NE

代表周期: 6.0sec

計算範囲及び計算格子間隔

計算格子間隔 10m

図 5-40 計算範囲

(3) 結果

計算結果を図 5-41 から図 5-45 に示す。

0.46 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58 0.59 0.60 0.60 0.61 0.62 0.63 0.63 0.64 0.64 0.65 0.65 0.65 0.46 0.47 0.48 0.49 0.51 0.52 0.53 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.60 0.61 0.61 0.62 0.63 0.63 0.64 0.64 0.65 0.66 0.66 0.45 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58 0.59 0.60 0.60 0.61 0.62 0.63 0.63 0.64 0.64 0.65 0.66 0.66 0.45 0.46 0.47 0.48 0.50 0.51 0.52 0.53 0.54 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.60 0.60 0.62 0.63 0.63 0.64 0.64 0.65 0.66 0.66 0.43 0.45 0.46 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.59 0.60 0.60 0.61 0.62 0.63 0.64 0.64 0.65 0.65 0.66 0.43 0.44 0.46 0.47 0.49 0.50 0.51 0.52 0.53 0.54 0.54 0.55 0.56 0.57 0.58 0.59 0.59 0.61 0.62 0.63 0.64 0.63 0.64 0.65 0.66 0.42 0.43 0.45 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.58 0.59 0.59 0.60 0.61 0.62 0.64 0.63 0.64 0.65 0.66 0.41 0.42 0.44 0.46 0.47 0.49 0.50 0.51 0.52 0.53 0.53 0.54 0.55 0.56 0.57 0.58 0.58 0.58 0.60 0.61 0.62 0.63 0.63 0.64 0.64 0.65 0.41 0.42 0.45 0.46 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.58 0.59 0.60 0.61 0.63 0.62 0.63 0.64 0.65 0.42 0.41 0.42 0.43 0.46 0.47 0.49 0.50 0.51 0.52 0.52 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.58 0.59 0.61 0.62 0.62 0.63 0.64 0.65 0.42 0.42 0.41 0.42 0.44 0.46 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.54 0.55 0.56 0.56 0.57 0.57 0.59 0.60 0.62 0.63 0.64 0.65 0.43 0.42 0.41 0.41 0.43 0.45 0.47 0.49 0.50 0.51 0.52 0.52 0.53 0.54 0.55 0.55 0.56 0.56 0.57 0.58 0.60 0.61 0.62 0.63 0.64 0.66 0.44 0.42 0.41 0.42 0.44 0.46 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.55 0.56 0.56 0.58 0.59 0.60 0.61 0.62 0.64 0.65 0.45 0.43 0.42 0.41 0.41 0.43 0.45 0.47 0.49 0.50 0.51 0.51 0.52 0.53 0.54 0.54 0.55 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.63 0.65 0.44 0.44 0.43 0.42 0.40 0.42 0.44 0.46 0.48 0.49 0.50 0.50 0.51 0.52 0.53 0.53 0.53 0.54 0.54 0.55 0.56 0.57 0.59 0.59 0.61 0.62 0.64 0.43 0.43 0.42 0.40 0.40 0.42 0.45 0.47 0.48 0.49 0.50 0.50 0.51 0.52 0.53 0.53 0.53 0.54 0.55 0.57 0.58 0.59 0.60 0.62 0.63 0.42 0.41 0.40 0.40 0.41 0.43 0.45 0.47 0.48 0.49 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.61 0.62 0.40 0.40 0.40 0.40 0.42 0.44 0.46 0.47 0.48 0.49 0.50 0.50 0.51 0.52 0.52 0.53 0.54 0.55 0.57 0.57 0.59 0.60 0.62 0.40 0.40 0.41 0.41 0.41 0.42 0.44 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.60 0.61 0.39 0.41 0.41 0.41 0.42 0.43 0.44 0.46 0.47 0.48 0.49 0.50 0.50 0.51 0.52 0.53 0.54 0.56 0.56 0.58 0.59 0.60 0.40 0.41 0.41 0.43 0.43 0.43 0.44 0.46 0.47 0.48 0.49 0.50 0.51 0.53 0.54 0.55 0.56 0.57 0.58 0.60 0.41 0.44 0.44 0.43 0.43 0.44 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.58 0.59 0.44 0.44 0.45 0.43 0.42 0.45 0.46 0.47 0.48 9.49 0.50 0.51 0.53 0.54 0.55 0.56 0.57 0.58 0.44 0.42 0.41 0.43 0.45 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 6,55 0.56 0.57 0.43 0.44 0.40 0.41 0.44 0.46 0.47 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.41 0.40 0.40 0.42 0.45 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.36 0.31 0.0 0.42 0.45 0.47 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.44 0.48 0.50 0.51 0.52 0.53 0.54 0.55 0.55 9.44 0.48 0.50 0.51 0.52 0.53 0.54 0.55 0.45 0.49 0.51 0.52 0.52 0.53 0.54 0.46 0.49 0.51 0.52 0.53 0.54 0.47 0.48 0.50 0.52 0.53 0.47 0.48 0.49 0.51 0.47 0.48 0.49 0.48 Wave direction NW Wave height 1.0 m 100m 50 Wave period 6.0 sec

図 5-41 波高比分布 (NW)

0.57 0.59 0.60 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.74 0.75 0.76 0.76 0.77 0.77 0.78 0.78 0.79 0.56 0.58 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.78 0.79 0.79 0.56 0.57 0.59 0.60 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.77 0.77 0.77 0.79 0.79 0.79 0.55 0.57 0.58 0.60 0.61 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73 0.73 0.75 0.76 0.77 0.78 0.77 0.79 0.79 0.79 0.80 0.54 0.56 0.58 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73 0.75 0.76 0.77 0.78 0.77 0.78 0.79 0.80 0.53 0.55 0.57 0.59 0.60 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73 0.74 0.76 0.77 0.78 0.77 0.78 0.79 0.80 0.51 0.54 0.56 0.58 0.60 0.61 0.63 0.64 0.65 0.65 0.65 0.66 0.68 0.69 0.70 0.71 0.72 0.72 0.72 0.75 0.76 0.77 0.77 0.78 0.79 0.80 0.50 0.52 0.55 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.71 0.72 0.74 0.75 0.76 0.77 0.76 0.78 0.79 0.80 0.50 0.51 0.54 0.56 0.59 0.60 0.62 0.63 0.64 0.65 0.65 0.67 0.68 0.69 0.70 0.70 0.70 0.71 0.73 0.75 0.76 0.77 0.76 0.77 0.78 0.79 0.51 0.52 0.53 0.55 0.58 0.60 0.61 0.62 0.64 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.70 0.71 0.72 0.74 0.75 0.77 0.76 0.77 0.78 0.80 0.51 0.52 0.53 0.54 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.65 0.66 0.67 0.68 0.69 0.70 0.70 0.72 0.73 0.75 0.77 0.77 0.78 0.79 0.80 0.52 0.52 0.52 0.52 0.55 0.58 0.60 0.61 0.63 0.64 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.70 0.71 0.73 0.74 0.76 0.76 0.78 0.79 0.80 0.54 0.53 0.52 0.52 0.54 0.57 0.59 0.61 0.62 0.63 0.64 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.71 0.72 0.74 0.75 0.76 0.77 0.79 0.80 0.55 0.54 0.53 0.52 0.53 0.55 0.58 0.60 0.62 0.63 0.63 0.64 0.65 0.66 0.61 0.68 0.69 0.70 0.71 0.73 0.74 0.75 0.77 0.78 0.80 0.55, 0.55, 0.55, 0.53, 0.52, 0.54, 0.57, 0.59, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.67, 0.68, 0.69, 0.71, 0.72, 0.74, 0.74, 0.76, 0.77, 0.79 0.55 0.55 0.54 0.52 0.53 0.56 0.58 0.60 0.61 0.62 0.63 0.63 0.64 0.65 0.68 0.67 0.67 0.67 0.69 0.70 0.71 0.73 0.74 0.75 0.77 0.78 0.54 0.54 0.52 0.53 0.54 0.56 0.59 0.60 0.61 0.62 0.63 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.71 0.72 0.73 0.75 0.76 0.77 0.53 0.52 0.53 0.54 0.55 0.57 0.59 0.60 0.61 0.62 0.63 0.64 0.64 0.65 0.66 0.68 0.69 0.70 0.72 0.72 0.74 0.75 0.77 0.52 0.52 0.55 0.55 0.55 0.56 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.65 0.67 0.68 0.70 0.71 0.72 0.73 0.75 0.76 0.52 0.54 0.55 0.55 0.55 0.56 0.57 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.68 0.69 0.70 0.71 0.73 0.74 0.75 0.53 0.54 0.55 0.58 0.56 0.56 0.57 0.59 0.61 0.62 0.63 0.63 0.64 0.66 0.67 0.68 0.70 0.71 0.72 0.73 0.74 0.55 0.59 0.58 0.57 0.56 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.68 0.69 0.70 0.71 0.72 0.73 0.59 0.58 0.59 0.56 0.55 0.58 0.60 0.61 0.62 20.63 0.65 0.66 0.67 0.68 0.69 0.70 0.72 0.73 0.59 0.55 0.53 0.56 0.59 0.61 0.62 0.63 0.64 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.58 0.54 0.53 0.54 0.57 0.60 0.61 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.54 0.53 0.53 0.56 0.59 0.61 0.62 0.64 0.65 0.66 0.67 0.68 0.68 0.69 0.70 0.48 0.41 0.0 0.56 0.60 0.62 0.63 0.65 0.65 0.66 0.67 0.68 0.69 0.70 0.59 0.62 0.64 0.65 0.66 0.67 0.68 0.69 0.70 9,60 0.63 0.64 0.66 0.66 0.67 0.68 0.69 0.60 0.63 0.65 0.66 0.67 0.67 0.68 0.60 0.63 0.65 0.66 0.67 0.68 0.62 0.62 0.64 0.65 0.67 0.62 0.62 0.63 0.65 0.62 0.62 0.62 0.62 Wave direction NNW Wave height 1.0 m 50 100m 6.0 sec Wave period

図 5-42 波高比分布 (NNW)

0.69 0.71 0.73 0.74 0.75 0.77 0.78 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.69 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.92 0.92 0.68 0.70 0.72 0.73 0.74 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.92 0.92 0.67 0.69 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.83 0.84 0.85 0.85 0.86 0.87 0.88 0.89 0.90 0.90 0.90 0.91 0.92 0.92 0.66 0.69 0.71 0.72 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.88 0.89 0.90 0.90 0.90 0.91 0.92 0.92 0.65 0.68 0.70 0.72 0.73 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.88 0.89 0.90 0.90 0.90 0.91 0.92 0.92 0.64 0.67 0.69 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.81 0.82 0.83 0.84 0.84 0.85 0.86 0.88 0.89 0.89 0.90 0.89 0.91 0.91 0.92 0.63 0.65 0.68 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.84 0.86 0.88 0.89 0.89 0.89 0.89 0.90 0.91 0.92 0.62 0.64 0.67 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.98 0.80 0.81 0.82 0.83 0.83 0.84 0.85 0.87 0.88 0.89 0.89 0.89 0.90 0.91 0.920.63 0.65 0.67 0.69 0.72 0.73 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.83 0.84 0.86 0.88 0.89 0.89 0.89 0.90 0.91 0.92 0.64 0.65 0.66 0.67 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.78 0.80 0.81 0.81 0.82 0.83 0.84 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.92 0.65 0.66 0.66 0.66 0.69 0.72 <u>0.74</u> 0.75 0.76 0.77 0.77 0.78 0.79 0.80 0.81 0.82 0.82 0.83 0.85 0.87 0.88 0.89 0.90 0.91 0.92 0.92 0.67 0.66 0.66 0.66 0.67 0.71 0.73 0.74 0.75 0.76 0.77 0.77 0.78 0.80 0.80 0.81 0.82 0.83 0.84 0.86 0.87 0.89 0.89 0.91 0.91 0.92 0.68 0.68 0.67 0.66 0.66 0.69 0.72 0.74 0.75 0.76 0.76 0.77 0.78 0.79 0.84 0.83 0.82 0.84 0.85 0.86 0.88 0.88 0.90 0.91 0.91 0.68 0.69 0.69 0.68 0.66 0.68 0.71 0.73 0.74 0.75 0.76 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.86 0.87 0.87 0.89 0.90 0.90 0.69 0.69 0.68 0.66 0.67 0.69 0.72 0.73 0.74 0.75 0.75 0.76 0.77 0.78 0.78 0.80 0.81 0.82 0.84 0.85 0.86 0.87 0.88 0.89 0.90 9.68 0.68 0.66 0.67 0.68 0.70 9.72 0.73 0.74 0.75 0.76 0.76 0.77 0.78 0.79 0.80 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.67 0.66 0.68 0.68 0.69 0.70 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.78 0.79 0.81 0.82 0.83 0.85 0.85 0.86 0.87 0.88 0.67 0.67 0.69 0.69 0.69 0.69 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.82 0.83 0.84 0.85 0.86 0.87 0.87 0.67 0.69 0.69 0.69 0.68 0.69 0.70 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.81 0.82 0.83 0.84 0.85 0.86 0.86 0.68 0.68 0.69 0.72 0.70 0.69 0.70 0.72 0.73 0.74 0.75 0.76 0.77 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.85 0.69 0.73 0.72 0.76 0.69 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.74 0.73 0.73 0.69 0.68 0.71 0.73 0.74 0.75 20.76 0.77 0.78 0.80 0.81 0.81 0.82 0.83 0.84 0.73 0.68 0.66 0.69 0.72 0.73 0.75 0.76 0.77 0.78 0.79 0.80 0.81 8 81 0.82 0.83 0.71 0.67 0.66 0.67 0.70 0.73 0.74 0.76 0.77 0.78 0.78 0.79 0.80 0.80 0.81 0.82 0.67 0.66 0.66 0.69 0.72 0.74 0.75 0.77 0.77 0.78 0.79 0.79 0.80 0.80 0.81 0.60 0.50 0.0 0.70 0.73 0.75 0.76 0.77 0.77 0.78 0.79 0.79 0.80 0.81 0.72 0.75 0.76 0.77 0.78 0.78 0.79 0.80 0.80 9,73 0.75 0.76 0.77 0.78 0.78 0.79 0.80 0.72 0.75 0.76 0.77 0.77 0.78 0.79 0.72 0.75 0.76 0.77 0.77 0.78 0.74 0.73 0.75 0.76 0.77 0.73 0.73 0.74 0.75 0.73 0.73 0.73 0.73 Wave direction N Wave height 1.0 m 50 100m Wave period 6.0 sec

図 5-43 波高比分布 (N)

図 5-44 波高比分布 (NNE)

図 5-45 波高比分布 (NE)

5-2-2-4-2 評価エリアの波高比分布

計算結果より評価エリア内の最大値を抽出し、表 5-36 にまとめた。

表 5-36 評価エリア別波高比

波向	評価エリアA	評価エリアB
NW	0.54	0.54
NNW	0.68	0.68
N	0.81	0.82
NNE	0.89	0.90
NE	0.85	0.86

代表周期: 6.0s

5-2-2-5 稼働率

前項までの結果を踏まえて稼働率を算定した結果を図 5-46 に示す。算出にあたっては、限界 波高を 0.3m と 0.5m として M1 地点での限界波高(限界波高/波高比)を求め、ついで M1 地点 での限界波高以上の出現頻度を求めた。

稼働率は 100%-(M1 地点での限界波高以上の出現頻度) として算出した(付属資料 6 参照)。 限界波高 0.5m においては、評価エリア A,B とも稼働率 97.5% を超える結果となった。

乾季:12月~5月 雨季:6月~11月

図 5-46 季節別稼働率

5-3 栈橋構造計算結果

5-3-1 桟橋

5-3-1-1 防舷材の検討

1. 設計条件

項	B	設計条件	単位
船種		ナクロマ	
重量トン数	(DWT)	287.00	(t)
総トン数	(GT)	1134.00	(t)
船長	(L)	46.76	(m)
垂線間長	(L _{pp})	41.33	(m)
型幅	(B)	12.00	(m)
型深さ	(D)	10.00	(m)
満載喫水	(d)	2.42	(m)
接岸速度	(V)	0.35	(m/s)

2. 接岸エネルギーの算出 船舶の接岸エネルギーは、下記により算出します。

 $E_f = (M_s \cdot V^2/2) \times C_e \times C_m \times C_s \times C_c$

ここに、

E_f: 船舶の接岸エネルギー (kJ)

M。: 船舶の質量 (t)

V: 船舶の接岸速度 (m/s)

C_e: 偏心係数 C_m: 仮想質量係数

Cs: 柔軟性係数(1とします)

C。: バースの形状係数(1とします)

(1). 船舶の排水量 (Ms)

船舶の排水量は、下記の通りとする。

M_s=925t

(2). 偏心係数

偏心係数は、下記の式により算出します。

 $C_e = 1/\{1+(1/r)^2\}$

ZZIZ.

Ce: 偏心係数

1: 船舶の接岸点から係留施設の法線に平行に測った当該船舶の重心までの距離 (

r: 船舶の重心を通る鉛直軸回りの回転半径 (m)

回転半径は、下記の式より算出します。

 $r = (0.19C_b + 0.11)L_{pp}$

 $= (0.19 \times 0.7518926 + 0.11) \times 41.33$

=10.45069

図1に示すように、船舶がP点で最も係船岸に近づき防舷材F1及びF2に接触するとき、係留施設に平行に測った接岸点から船舶重心までの距離Iは、下記の式によって求めます。ただし、Iはk>0.5のとき L_1 を、k<0.5のときは L_2 を用います。k=0.5のときは、 L_1 、 L_2 のうち、Ceが大きくなる方の値をとります。

$$L_1 = [0.5 \alpha + e(1-k)] L_{pp} \cos \theta$$

$$L_2 = [0.5 \alpha - ek] L_{pp} \cos \theta$$

ZZIZ.

- L₁: 船舶が防舷材F1に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- L₂: 船舶が防舷材F2に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- θ:接岸角度
- e: 船の長手方向に測った防舷材間隔(20m)と垂線間長との比 e=20/41.33

=0.48391とします

- α : 防舷材との接岸点高さにおける船舶の側面の平行舷(パラレルサイド)の長さと垂線間長との比 $\alpha=0.5$ とします
- k: 防舷材F1とF2の間において船舶と係船岸が最も近づく点を表すパラメーター k=0.5とします

k=0.5ですから、lはL₁、L₂のうち小さい方をを用います。

 $L_1 = \{0.5 \times 0.5 + 0.48391 \times (1 - 0.5)\} \times 41.33 \times \cos(10^\circ)$

=20.0236

 $L_2 = \{0.5 \times 0.5 - 0.48391 \times 0.5\} \times 41.33 \times \cos(10^\circ)$

=0.3274492

したがって、1=0.3274492とします。

よって、

 $C_e = 1/[1+(0.3274492/10.45069)^2]$ = 0.9990192

(3). 仮想質量係数 (Cm)

船舶の仮想質量係数は、下記の式により算出します。

$$C_m = 1 + {\pi/(2 \cdot C_h)} (d/B)$$

ZZIZ.

C_b: ブロック係数

 $C_b = \nabla / (L_{pp} Bd)$

▽: 船舶の排水体積(m³) ▽=M_s/ω₀

L_{pp}: 垂線間長 (m)

B: 型幅 (m)

d: 満載喫水 (m)

ω₀: 海水の単位体積重量 (1.025t/m³)

 $C_b = 925/(41.33 \times 12 \times 2.42 \times 1.025)$

=0.7518926

 $C_m = 1 + [\pi/(2 \times 0.7518926)] \times (2.42/12)$ = 1.421306

(4). 接岸エネルギー (E_f)

 $E_f = (925 \times 0.35^2/2) \times 0.9990192 \times 1.421306 \times 1 \times 1$ = 80.44691 (kJ) 1. 設計条件

項	目	設計条件	単位
船種		ナクロマ2	
重量トン数	(DWT)	1050.00	(t)
総トン数	(GT)	2359.35	(t)
船長	(L)	67.30	(m)
垂線間長	(L _{pp})	61.20	(m)
型幅	(B)	16.00	(m)
型深さ	(D)	8.90	(m)
満載喫水	(d)	3.30	(m)
接岸速度	(V)	0.35	(m/s)

2. 接岸エネルギーの算出

船舶の接岸エネルギーは、下記により算出します。

 $E_f = (M_s \cdot V^2/2) \times C_e \times C_m \times C_s \times C_o$ $\exists \exists I \exists$

E4: 船舶の接岸エネルギー (kJ)

Ms: 船舶の質量 (t)

V: 船舶の接岸速度 (m/s)

C_e: 偏心係数

C_m: 仮想質量係数

Cs: 柔軟性係数(1とします)

C。: バースの形状係数(1とします)

(1). 船舶の排水量 (M。)

船舶の排水量は、下記の通りとする。

 $M_{\circ} = 2,503t$

(2). 偏心係数

偏心係数は、下記の式により算出します。

 $C_e = 1/[1+(1/r)^2]$ $= 1/[1+(1/r)^2]$

Ce: 偏心係数

1: 船舶の接岸点から係留施設の法線に平行に測った当該船舶の重心までの距離 (

r: 船舶の重心を通る鉛直軸回りの回転半径 (m)

回転半径は、下記の式より算出します。

 $r = (0.19C_b + 0.11)L_{pp}$

 $= (0.19 \times 0.7557039 + 0.11) \times 61.2$

=6.732

図1に示すように、船舶がP点で最も係船岸に近づき防舷材F1及びF2に接触するとき、係留施設に平行に測った接岸点から船舶重心までの距離Iは、下記の式によって求めます。ただし、Iはk>0.5のとき L_1 を、k<0.5のときは L_2 を用います。k=0.5のときは、 L_1 、 L_2 のうち、Ceが大きくなる方の値をとります。

$$L_1 = \{0.5 \alpha + e(1-k)\} L_{pp} \cos \theta$$

$$L_2 = \{0.5 \alpha - ek\} L_{pp} \cos \theta$$

ここに、

- L₁: 船舶が防舷材F1に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- L₂: 船舶が防舷材F2に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- θ:接岸角度
 - e: 船の長手方向に測った防舷材間隔(20m)と垂線間長との比 e=20/61.2 =0.326797とします
- α : 防舷材との接岸点高さにおける船舶の側面の平行舷(パラレルサイド)の長さと垂線間長との比 $\alpha=0.5$ とします
- k: 防舷材F1とF2の間において船舶と係船岸が最も近づく点を表すパラメーター k=0.5とします

k=0.5ですから、lはL1、L2のうち小さい方をを用います。

 $L_1 = \{0.5 \times 0.5 + 0.3267974 \times (1 - 0.5)\} \times 61.2 \times \cos(10^\circ)$

=24.91564

 $L_2 = \{0.5 \times 0.5 - 0.3267974 \times 0.5\} \times 61.2 \times \cos(10^\circ)$

=5.219481

したがって、1=5.219481とします。

よって、

 $C_e = 1/\{1+(5.219481/6.732)^2\}$

=0.6245599

(3). 仮想質量係数 (Cm)

船舶の仮想質量係数は、下記の式により算出します。

 $C_m = 1 + [\pi/(2 \cdot C_b)] (d/B)$

ここに、

C_b: ブロック係数

 $C_b = \nabla/(L_{pp}Bd)$

▽: 船舶の排水体積 (m³)

 $\nabla = M_s/\omega_0$

L_{pp}: 垂線間長 (m)

B: 型幅 (m)

d: 満載喫水 (m)

ω₀: 海水の単位体積重量 (1.025t/m³)

 $C_b = 2503/(61.2 \times 16 \times 3.3 \times 1.025)$

=0.7557039

 $C_m = 1 + {\pi/(2 \times 0.7557039)} \times (3.3/16)$ = 1.428709

(4). 接岸エネルギー (E_f)

 $E_f = (2503 \times 0.35^2/2) \times 0.6245599 \times 1.428709 \times 1 \times 1$ = 136.7996 (kJ) 1. 設計条件

項	目	設計条件	単位
船種		ポルトガルフェリー	
重量トン数	(DWT)	0.00	(t)
総トン数	(GT)	0.00	(t)
船長	(L)	71.30	(m)
垂線間長	(L _{pp})	59.34	(m)
型幅	(B)	12.60	(m)
型深さ	(D)	10.00	(m)
満載喫水	(d)	3.70	(m)
接岸速度	(V)	0.35	(m/s)

2. 接岸エネルギーの算出 船舶の接岸エネルギーは、下記により算出します。

 $E_f = (M_s \cdot V^2/2) \times C_e \times C_m \times C_s \times C_c$

ZZIZ.

E_f: 船舶の接岸エネルギー (kJ)

Ms: 船舶の質量 (t)

V: 船舶の接岸速度 (m/s)

Ce: 偏心係数

Cm: 仮想質量係数

C。: 柔軟性係数(1とします)

C。: バースの形状係数(1とします)

(1). 船舶の排水量 (M_s)

船舶の排水量は、下記の通りとする。

 $M_s = 2.870t$

(2). 偏心係数

偏心係数は、下記の式により算出します。

 $C_p = 1/\{1+(1/r)^2\}$ ここに、

C_e: 偏心係数

1: 船舶の接岸点から係留施設の法線に平行に測った当該船舶の重心までの距離 (

r: 船舶の重心を通る鉛直軸回りの回転半径 (m)

回転半径は、下記の式より算出します。

 $r = (0.19C_b + 0.11)L_{pp}$

 $= (0.19 \times 1.012134 + 0.11) \times 59.34$

=17.93881

図1に示すように、船舶がP点で最も係船岸に近づき防舷材F1及びF2に接触するとき、係留 施設に平行に測った接岸点から船舶重心までの距離は、下記の式によって求めます。ただ し、 $ll_1 = 0.5$ のとき $L_1 = 0.5$ のときは $L_2 = 0.5$ のときは、 $L_1 = 0.5$ のときは、 $L_2 = 0.5$ のときは、 $L_3 = 0.5$ 0のときは、 $L_4 = 0.5$ 0のときは、 $L_5 = 0$ きくなる方の値をとります。

$$L_{1} = \{0.5 \alpha + e(1-k)\} L_{pp} \cos \theta$$

$$L_{2} = \{0.5 \alpha - ek\} L_{pp} \cos \theta$$

ZZIZ,

- L₁: 船舶が防舷材F1に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- L₂: 船舶が防舷材F2に接触するときの係留施設に平行に測った接岸点から船舶の重心までの距離 (m)
- θ:接岸角度
- e: 船の長手方向に測った防舷材間隔(20m)と垂線間長との比 e=20/59.34 =0.337041とします
- α : 防舷材との接岸点高さにおける船舶の側面の平行舷(パラレルサイド)の長さと垂線間長との比 $\alpha=0.5$ とします
- k: 防舷材F1とF2の間において船舶と係船岸が最も近づく点を表すパラメーター k=0.5とします

k=0.5ですから、lはL1、L2のうち小さい方をを用います。

 $L_1 = [0.5 \times 0.5 + 0.3370408 \times (1 - 0.5)] \times 59.34 \times \cos(10^\circ)$

=24.4577

 $L_2 = \{0.5 \times 0.5 - 0.3370408 \times 0.5\} \times 59.34 \times \cos(10^\circ)$ = 4.761546

したがって、1=4.761546とします。

よって、

 $C_e = 1/\{1+(4.761546/17.93881)^2\}$ = 0.9341826

3). 仮想質量係数 (Cm)

船舶の仮想質量係数は、下記の式により算出します。

 $C_m = 1 + [\pi/(2 \cdot C_b)] (d/B)$

ZZIZ.

C_b: ブロック係数 C_b=▽/(L_{oo}Bd)

▽: 船舶の排水体積 (m³) マ=M_s/ω₀

L_{pp}: 垂線間長 (m)

B: 型幅 (m)

d: 満載喫水 (m)

ω₀: 海水の単位体積重量 (1.025t/m³)

 $C_b = 2870/(59.34 \times 12.6 \times 3.7 \times 1.025)$

=1.012134

 $C_m = 1 + {\pi/(2 \times 1.012134)} \times (3.7/12.6)$ = 1.455735

(4). 接岸エネルギー (E_f)

 $E_f = (2870 \times 0.35^2/2) \times 0.9341826 \times 1.455735 \times 1 \times 1$ = 239.0574 (kJ)

■ DA-A500H圧縮性能

■性能グレード:Mシリーズ 性能グレード M1 M2 МЗ 設計標準変位量 52.5% 52.5% 52.5% 52.5% 項目 反力 吸収エネルギー 反力 吸収エネルギー 反力 吸収エネルギー 反力 吸収エネルギー 長さ (kN)(kN·m) (kN) (kN·m) (kN)(kN·m) (kN)(kN·m) 1000mm 534 408 337 70.9 286 60.2 112 85.7 1500mm 801 168 612 129 506 106 429 90.3 1070 674 2000mm 224 816 171 142 572 120 2500mm 1340 280 1020 214 843 177 715 151 1600 1220 3000mm 336 257 1011 213 858 181 3500mm 1870 392 1430 300 1180 248 1000 211

■性能グレード:Rシリーズ

性能グレード	R	R1	F	22	F	3
設計標準変位量	45	.0%	45	.0%	45	.0%
項目	反力	吸収エネルギー	反力	吸収エネルギー	反力	吸収エネルギー
長さ	(kN)	(kN·m)	(kN)	(kN·m)	(kN)	(kN·m)
1000mm	422	72.5	367	63.1	275	47.3
1500mm	633	109	551	94.7	413	71.0
2000mm	844	145	734	126	550	94.6
2500mm	1060	181	918	158	688	118
3000mm	1270	218	1100	189	825	142
3500mm	1480	254	1280	221	963	166

図 5-48 防舷材取付け位置検討図

5-3-1-2 耐力照査

表 5-37(1/2) 耐力照査(BH-3、接岸時)

(1/4)
接岸時
BH3
BD

Pile No.	×	y	Z	鉛直角	平面角	杭径	內厚	腐食代	材質	突出長	会
	(m)	(m)	(m)	(()	(m)	(m)	(m)		(m)	(m)
-	0.000	0.000	10.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
2	0.000	0.000	9.550	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
3	0.450	0.000	5.000	15.00	270.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
4	-0.450	0.000	5.000	15.00	90.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
5	0.000	0.000	0.450	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
9	0.000	0.000	-0.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
7	0.450	0.000	-5.000	15.00	270.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
∞	-0.450	0.000	-5.000	15.00	90.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
6	0.000	0.000	-9.550	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.900
10	0.000	0.000	-10.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.900

2,751.000 kN-m 0.000 kN-m 493.000 kN-m

Mx= My= Mz=

818.000 kN 17,648.000 kN -2,045.000 kN

Xo= Yo= Zo=

4
છે
盐
接岸
33
표
BD

⊀	2. バネ定数									BD	BD BH3 接岸時 (2/4)	(2/4)
Pile No.	断面積	断面係数	断面2次 モーメント	β	$ m K_{X1}$	$ m K_{Z1}$	$ m K_{X2}$	$ m K_{Z2}$	$ m K_{X4}$	$ m K_{Z4}$	$ m K_D$	$ m K_{ m V}$
	(cm^2)	(cm^3)	(cm ⁴)	(m ⁻¹)	(kN/m)	(kN/m)	(kN/m) (kN/rad)	(kN/rad)	(kN-m/rad)	(kN/rad) (kN-m/rad) (kN-m/rad) (kN-m/rad)	(kN-m/rad)	(kN/m)
	306.53		301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	10,655.68 10,655.68 129,698.94 129,698.94	25,647.41 157,596.50	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36	1,178.36	10,655.68	10,655.68	129,698.94	10,655.68 10,655.68 129,698.94 129,698.94	25,647.41 157,596.50	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36		10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6,715	301,502	0.2071	1,178.36		10,655.68	10,655.68	129,698.94	1,178.36 10,655.68 10,655.68 129,698.94 129,698.94 25,647.41 157,596.50	25,647.41	157,596.50
	306.53	6.715	301.502	0.2071	1.178.36	1.178.36	10.655.68	10.655.68	129.698.94	1.178.36 1.178.36 10.655.68 10.655.68 129.698.94 129.698.94 25.647.41 157.596.50	25.647.41	157.596.50

三次元杭基礎の設計

1. 入力条件

Ship

10 4.930 h

杭本数 n= Kh= 有効座屈長

表 5-37(2/2) 耐力照査(BH-3、接岸時)

3. 杭応力	五									BD B	BD BH3 接岸時 (3/4)	(3/4)
Pile No.	Px	Py	Pz	Mx	My	Mz	Me	1/r	σc σt	σ bc σ bt	σ ca σ ta	σba σta
	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)	(kN-m)		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
	16.812	2,058.323	-45.470	-407.924	-0.893	-183.118	447.140	42.27	19		202	235
	-23.670	1,332.325	45.795	411.877	-2.025	245.131	479.306	42.27	43	71	202	235
	40.586	3,306.366	20.763	218.295	4.731	-364.166	424.595	42.27	108	63	202	235
	-47.704	214.166	-20.438	-214.341	-7.649	428.533	479.178	42.27	7	71	202	235
	-24.516	1,428.662	45.795	411.877	-2.025	252.788	483.267	42.27	47	72	202	235
	17.259	2,226.079	-45.470	-407.924	-0.893	-187.160	448.810	42.27	73	29	202	235
	40.326	3,436.251	21.457	224.570	4.731	-361.813	425.854	42.27	112	63	202	235
	-47.964	344.051	-21.132	-220.616	-7.649	430.886	484.111	42.27	11	72	202	235
	-25.447	1,534.525	45.795	411.877	-2.025	261.202	487.721	42.27	50	73	202	235
10	17.669	17.669 2,379.984	-45.470	-407.924	-0.893	-190.868	450.369	42.27	78	29	202	235

(4/4)
接岸時
BH3
BD

		原点の	原点の変位		
$^{0}\mathrm{X}$	(m)	0.009632	0 \mathcal{D}		(rad) 0.000085
\mathbf{y}_0	(m)	0.011997	0 θ	(rad)	(rad) -0.000059
\mathbf{Z}_0	(m)	-0.039471	λ 0	(rad)	-0.000933

			X) A	$Z^{()}$							
	Z 方向変位	(m)	-0.039471	-0.039471	-0.039444	-0.039497	-0.039471	-0.039471	-0.039444	-0.039497	-0.039471	-0.039471
	Y方向変位	(m)	0.011106	0.011182	0.011151	0.011990	0.011959	0.012036	0.012004	0.012843	0.012812	0.012889
	X方向変位	(m)	0.009016	690600.0	0.009337	0.009337	0.009605	0.009658	0.009926	0.009926	0.010194	0.010247
	応力比		0.617	0.519	0.804	0.338	0.538	0.645	0.826	0.362	0.558	0.671
なび変位量		(m)	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120
4. 杭の応力判定及び変位量	杭径	(m)	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000
4. 杭の	Pile No.		1	2	С	4	5	9	7	∞	6	10

表 5-38(1/2) 耐力照查(BH-3、橋軸直角方向地震時)

盂
訟
9
さ
華
杭
民
次
Ш

世
米
R
\prec
-

 Γ

X0=	0.000	kN
Y0=	13,648.000 kN	kN
=oZ	2,047.000	kN
Mx =	-2,047.000 kN-m	kN-m
My =	0.000	kN-m
Mz=	0.000	kN-m

38.900

38.900 38.900

38.900 38.900

13.257 13.257 13.257 13.257 13.257 13.257 13.257

0.0010 SKK400

0.012 0.012

0.9000

 (\mathbb{H})

0.0010 SKK400

0.9000 0.9000

180.00 270.00

15.00 15.00 15.00 15.00 15.00 15.00 15.00

5.000 9.550

5.000

4 2 9 _ ∞ 6

0.450 -0.450

15.00

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(m)

Pile No.

0.450 0.450 -0.450 0.000 0.000 0.450 -0.450

- 2 m

0.0010 SKK400

0.012

SKK400

0.0010

0.012 0.012

0.9000 0.9000

90.00 180.00 0.00

BD BH3 地震時_橋軸直角方向 (1/4)

腐食代 (m)

平面角

鉛直角

38.900

0.0010 SKK400 0.0010 SKK400

0.012 0.012 0.012

0.9000 0.9000

270.00

-5.000 -5.000

0.0010 SKK400

38.900

38.900 38.900 38.900

13.257

0.0010 SKK400

0.9000

90.00 180.00 0.00

> 15.00 15.00

> -9.550 -10.450

> > 0.000

0.000

13.257 13.257

0.0010

0.0010 SKK400

0.012

0.9000

杭本数 n= 有効座屈長

2. バネ定数	定数								BD BH	BD BH3 地震時_橋軸直角方向 (2/4)	軸直角方向	(2/4)
Pile No.	断面積	断面係数	断面2次 モーメント	β	K_{X1}	$ m K_{Z1}$	$ m K_{X2}$	$ m K_{Z2}$	$ m K_{X4}$	K_{Z4}	$ m K_D$	$ m K_{ m V}$
	(cm^2)	(cm ³)	(cm ⁴)	(m ⁻¹)	(kN/m)	(kN/m)	(kN/rad)	(kN/rad)	(kN-m/rad)	$\begin{array}{c c} (kN/rad) & (kN-m/rad) & (kN-m/rad) & (kN-m/rad) \end{array} \right (kN/m)$	(kN-m/rad)	(kN/m)
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95		131,576.71	10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
2	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71		25,951.65 157,596.50
3	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	10,947.95	131,576.71	131,576.71	25,951.65	157,596.50
4	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	10,947.95	131,576.71	131,576.71	25,951.65	157,596.50
5	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95		10,947.95 131,576.71 131,576.71	131,576.71	25,951.65	25,951.65 157,596.50
9	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	10,947.95	131,576.71	131,576.71	25,951.65	157,596.50
7	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	10,947.95	131,576.71	131,576.71	25,951.65	157,596.50
8	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	10,947.95 131,576.71 131,576.71	131,576.71	25,951.65	25,951.65 157,596.50
6	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71	10,947.95	131,576.71	131,576.71	25,951.65 157,596.50	157,596.50
10	306.53	6,715	301,502	0.2166	0.2166 1,225.04		1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	10,947.95	131,576.71	131,576.71	25,951.65	157,596.50

表 5-38(2/2) 耐力照査(BH-3、橋軸直角方向地震時)

3. 杭応力	£								BD BH3	BD BH3 地震時_橋軸直角方向 (3/4)	植角方向	(3/4)
Pile No.	Px	Py	Pz	Mx	My	Mz	Me	1/r	σc	σ bc σ bt	σ ca σ ta	σ ba σ ta
	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)	(kN-m)		(N/mm^2)	(N/mm ²)	(N/mm ²)	(N/mm^2)
_	-19.298	1,624.393	48.603	432.213	-0.985	232.166	490.622	42.27	53	73	202	235
2	12.741	1,512.597	-48.499	-430.933	-0.031	-173.568	464.574	42.27	49	69	202	235
3	-50.131	-66.337	-15.180	-193.150	-12.394	445.614	485.753	42.27	2	72	235	235
4	44.052	2,973.954	15.294	194.530	11.379	-391.285	437.048	42.27	76	65	202	235
5	12.980	1,285.437	-48.488	-430.833	-0.031	-175.706	465.285	42.27	42	69	202	235
9	-18.791	1,515.522	48.603	432.213	-0.985	227.637	488.494	42.27	49	73	202	235
7	-49.906	-174.483	-14.931	-190.932	-12.394	443.601	483.026	42.27	9	72	235	235
8	44.277	2,865.809	15.046	192.312	11.379	-393.298	437.872	42.27	93	65	202	235
6	12.966	1,169.028	-48.488	-430.833	-0.031	-175.577	465.236	42.27	38	69	202	235
10	-18.326	-18.326 1,415.641	48.603	432.213	-0.985	223.481	486.572	42.27	46	72	202	235

(4/4)
方向
軸直角
時_橋
地震
BH3
8

(rad) -0.000020 (rad) | -0.000071

 α_0 β_0

0.002940 0.009198 0.040241

0.001770

(rad)

4. 杭の	4. 杭の応力判定及び変位量	及び変位量						BD	BD BH
Pile No.	杭径	肉厚	応力比	X方向変位	Y 方向変位 Z 方向変位	Z方向変位			
	(m)	(m)		(m)	(m)	(m)			
1	0.9000	0.0120	0.574	0.002728	0.009940	0.040241	0 X 0		(m)
2	0.9000	0.0120	0.539	0.002746	0.010672	0.040250	yo		(m)
n	0.9000	0.0120	0.317	0.002838	0.010349	0.040250	z_0		(m)
4	0.9000	0.0120	0.758	0.002838	0.008756	0.040231			
5	0.9000	0.0120	0.503	0.002931	0.009229	0.040241			
9	0.9000	0.0120	0.555	0.002949	0.009166	0.040241			
7	0.9000	0.0120	0.330	0.003041	0.009639	0.040250			
∞	0.9000	0.0120	0.741	0.003041	0.008046	0.040231			
6	0.9000	0.0120	0.484	0.003133	0.008519	0.040241			
10	0.9000	0.0120	0.538	0.003151	0.008455	0.040241			

表 5-39(1/2) 耐力照査(BH-3、橋軸方向地震時)

38.900

)設計									BD BF	13 地震時	BD BH3 地震時_橋軸方向 (1/4)	(1/4)
	Pile No.	×	y	Z	鉛直角	平面角	杭徭	肉厚	腐食代	材質	突出長	会
		(m)	(m)	(m)	(°)	(°)	(m)	(m)	(m)		(m)	(m)
	_	0.000	0.000	10.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
2,047.000 kN	2	0.000	0.000	9.550	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
13,648.000 kN	3	0.450	0.000	5.000	15.00	270.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
0.000 kN	4	-0.450	0.000	5.000	15.00	90.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
	5	0.000	0.000	0.450	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
0.000 kN-m	9	0.000	0.000	-0.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
0.000 kN-m	7	0.450	0.000	-5.000	15.00	270.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
2,047.000 kN-m	8	-0.450	0.000	-5.000	15.00	00.06	0.9000	0.012	0.0010	SKK400	13.257	38.90
	6	0.000	0.000	-9.550	15.00	180.00	0.9000	0.012	0.0010	SKK400	13.257	38.90
= 10	10	0.000	0.000	-10.450	15.00	00.00	0.9000	0.012	0.0010	SKK400	13.257	38.90

Xo= Yo= Zo=

三次元杭基礎の設計

1. 入力条件 L1 5.900

有効座屈長 Kh=

杭本数 n=

Mx= My= Mz=

38.900

38.900 38.900 38.900

38.900

38.900

38.900 38.900 38.900

(m)

2. バネ定数	·定数								8	BD BH3 地震時_橋軸方向 (2/4)	時_橋軸方向	(2/4)
Pile No.	断面積	断面係数	斯面2次 モーメント	β	K_{Xl}	K_{Z1}	K _{X2}	K_{Z2}	$ m K_{X4}$	K_{Z4}	$ m K_D$	$ m K_{ m V}$
	(cm^2)	(cm^3)	(cm^4)	(m ⁻¹)	(kN/m)	(kN/m)	(kN/rad)		(kN-m/rad)	(kN/rad) (kN-m/rad) (kN-m/rad) (kN-m/rad)	(kN-m/rad)	(kN/m)
1	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
7	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
3	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71		25,951.65 157,596.50
4	306.53	6,715	301,502	0.2166	1,225.04		10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
5	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
9	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71		25,951.65 157,596.50
7	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71	25,951.65	25,951.65 157,596.50
∞	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
6	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71		25,951.65 157,596.50
10	306.53	6,715	301,502	0.2166	0.2166 1,225.04		10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50

5-94

表 5-39(2/2) 耐力照査(BH-3、橋軸方向地震時)

3. 杭応力	5.力								BD	BD BH3 地震時_橋軸方向 (3/4)	- 橋軸方向	(3/4)
Pile	Dv	Dv	D2	My	Mar	Ma	Me	1/1	οc	σ pc	o ca	σ ba
No.	v 1	λī	7 7	VIVI	tvty	TAIT	TATO	1/1	σt	o bt	o ta	o ta
	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)	(kN-m)		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
	-10.895	2,777.778	6.728	59.921	-1.928	240.098	247.466	42.27	91	37	202	235
7	4.777	121.047	-6.330	-55.141	-1.590	-185.424	193.452	42.27	4	29	202	235
c	-9.911	1,493.830	-4.268	-175.397	-30.176	87.725	197.265	42.27	49	29	202	235
4	3.873	1,366.706	4.665	180.176	26.658	-33.763	184.276	42.27	45	27	202	235
5	4.094	60.158	-6.330	-55.141	-1.590	-179.319	187.609	42.27	2	28	202	235
9	-9.903	2,767.242	6.728	59.921	-1.928	231.233	238.874	42.27	06	36	202	235
7	-9.831	1,455.542	-3.408	-167.714	-30.176	87.012	190.139	42.27	47	28	202	235
∞	3.953	1,328.418	3.806	172.494	26.658	-34.476	176.909	42.27	43	26	202	235
6	3.343	-6.753	-6.330	-55.141	-1.590	-172.611	181.208	42.27	0	27	235	235
10	-8.993	2,757.577	6.728	59.921	-1.928	223.099	231.010	42.27	06	34	202	235

(4/4)
軸方向
震時備
BH3 拖
30

 α_0 (rad) -0.000025 β_0 (rad) -0.000070 γ_0 (rad) 0.004231

原点の変位

4. 杭の	4. 杭の応力判定及び変位量	及び変位量						В	BD BH3 地震時	监
Pile No.	杭径	肉厚	応力比	X方向変位	Y方向変位	Z方向変位				
	(m)	(m)		(m)	(m)	(m)			原点の変	0
	0.9000	0.0120	0.607	0.032493	0.009541	0.005547	\mathbf{x}_0	(m)	0.033226	
2	0.9000	0.0120	0.142	0.032556	0.009519	0.005547	yo	(m)	0.009278	
c	0.9000	0.0120	0.367	0.032875	0.011308	0.005579	Z_0	(m)	0.005547	
4	0.9000	0.0120	0.338	0.032875	0.007500	0.005515				
5	0.9000	0.0120	0.129	0.033195	0.009290	0.005547				
9	0.9000	0.0120	0.599	0.033258	0.009267	0.005547				
7	0.9000	0.0120	0.356	0.033577	0.011056	0.005579				
∞	0.9000	0.0120	0.327	0.033577	0.007249	0.005515				
6	0.9000	0.0120	0.116	0.033896	0.009038	0.005547				
10	0.9000	0.0120	0.593	0.033960	0.009016	0.005547				

耐力照查(BH-4、接岸時) 表 5-40(1/2)

38.900 38.900

13.257

0.0010 SKK400

0.9000

0.9000 0.9000

15.00 15.00 15.00

-5.000

0.000

-5.000 -9.550

0.000 0.000

-0.450 0.000 0.000

15.00

0.450 -0.450

0.000

0.000 0.000 0.450

0.000

kN-m

2,751.000

Mx= My= Mz=

493.000 0.000

5.000

0.000

-0.450

Ž

0.0010 SKK400

13.257 13.257 13.257

SKK400 SKK400

0.0010

0.0010 0.0010

38.900

13.257 13.257

38.900 38.900 38.900

38.900

13.257 13.257 13.257

SKK400 SKK400 SKK400 SKK400

0.0010

0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

0.9000

0.00

15.00

10.450

0.000 0.000 0.000

(m)

(m)

(m)

0.0010 0.0010

0.9000

270.00 90.00 180.00 0.00 270.00 90.00

15.00 15.00 15.00

0.9000 0.9000

0.9000

180.00

15.00

9.550 5.000

0.000 0.450

7 m 4 2 9 _

0.0010

(II)

全雨 (m)

突出長

材質

魚代 (E)

杭径 (m)

平面角

鉛直角

Pile No.

BD BH4 接岸時 (1/4)

38.900

SKK400

0.9000

180.00 0.00

0.9000

15.00

-10.450

0.000

10

6 ∞

38.900

13.257

0.0010 SKK400

38.900

三次元杭基礎の設計

1. 入力条件

Ship

17,648.000 kN .2,045.000 818.000 Xo= Yo= Zo=

4.930 10 有効座屈長 抗本数 n=

BD BH4 接岸時 (2/4)

25,647.41 | 157,596.50 25,647.41 | 157,596.50 25,647.41 | 157,596.50 157,596.50 25,647.41 | 157,596.50 25,647.41 | 157,596.50 25,647.41 157,596.50 25,647.41 | 157,596.50 25,647.41 | 157,596.50 25,647.41 | 157,596.50 \mathbf{K}_{V} (kN-m/rad) | (kN-m/rad) | (kN-m/rad) 25,647.41 $m K_D$ 10,655.68 129,698.94 129,698.94 129,698.94 129,698.94 10,655.68 | 129,698.94 | 129,698.94 129,698.94 | 129,698.94 10,655.68 | 129,698.94 | 129,698.94 10,655.68 | 129,698.94 | 129,698.94 10,655.68 | 129,698.94 | 129,698.94 129,698.94 129,698.94 | 129,698.94 10,655.68 | 129,698.94 | 129,698.94 $K_{\rm Z4}$ 129,698.94 $K_{\rm X4}$ 10,655.68 10,655.68 10,655.68 10,655.68 (kN/rad) $K_{\rm Z2}$ 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 10,655.68 (kN/rad) $K_{X2} \\$ 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 (kN/m) $K_{\rm Z1}$ 1,178.36 1,178.36 1,178.36 1,178.36 1.178.36 1,178.36 1,178.36 1,178.36 1,178.36 1,178.36 kN/m) K_{X1} 0.2071 0.2071 0.2071 0.2071 0.2071 0.2071 0.2071 0.2071 0.2071 0.2071 301,502 301,502 301,502 301,502 断面2次 モーメント 301,502 301,502 301,502 301,502 301,502 301.502 (cm^4) 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 断面係数 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 断面積 2. バネ定数 No. 10 9 ∞ 6 0 co 4 2 /

表 5-40(2/2) 耐力照査(BH-4、接岸時)

BD BH4 接岸時 (3/4) 3. 杭応力

_	_		_	_	_	_	_	_	_	_	_	_
o ba	σ ta	(N/mm^2)	235	235	235	235	235	235	235	235	235	235
о са	σ ta	(N/mm^2)	202	202	202	202	202	202	202	202	202	202
o pc	o bt	(N/mm^2)	29	71	63	71	72	29	63	72	73	19
0 C	σt	(N/mm^2)	29	43	108	7	47	73	112	11	50	78
1/1	1 (1		42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27
Me	211	(kN-m)	447.140	479.306	424.595	479.178	483.267	448.810	425.854	484.111	487.721	450.369
M ₂	771	(kN-m)	-183.118	245.131	-364.166	428.533	252.788	-187.160	-361.813	430.886	261.202	-190.868
M	1413	(kN-m)	-0.893	-2.025	4.731	-7.649	-2.025	-0.893	4.731	-7.649	-2.025	-0.893
Ϋ́	VIAT	(kN-m)	-407.924	411.877	218.295	-214.341	411.877	-407.924	224.570	-220.616	411.877	-407.924
p ₇	7 1	(kN)	-45.470	45.795	20.763	-20.438	45.795	-45.470	21.457	-21.132	45.795	-45.470
Pv	, y	(kN)	2,058.323	1,332.325	3,306.366	214.166	1,428.662	2,226.079	3,436.251	344.051	-25.447 1,534.525	17.669 2,379.984
Рх	· ·	(kN)	16.812	-23.670	40.586	-47.704	-24.516	17.259	40.326	-47.964	-25.447	17.669
Pile	No.		1	2	3	4	5	9	7	~	6	10

BD BH4 接岸時 (4/4)

		原点の	原点の変位		
\mathbf{x}_0	(m)	0.009632	$^{0}\mathrm{v}$	(rad)	0.000085
yo	(m)	0.011997	0 β	(rad)	-0.000059
Z_0	(m)	-0.039471	γ 0	(rad)	-0.000933

	Y 方向変位 Z 方向変位	(m) (m)	0.011106 -0.039471	0.011182 -0.039471	0.011151 -0.039444	0.011990 -0.039497	0.011959 -0.039471	0.012036 -0.039471	0.012004 -0.039444	0.012843 -0.039497	0.012812 -0.039471	0.012889 -0.039471	
	X方向変位	(m)	0.009016	690600.0	0.009337	0.009337	0.009605	0.009658	0.009926	0.009926	0.010194	0.010247	
	応力比		0.617	0.519	0.804	0.338	0.538	0.645	0.826	0.362	0.558	0.671	
		(m)	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	
	杭径	(m)	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	
サース つくし こうべいご	Pile No.		1	2	С	4	5	9	7	8	6	10	

耐力照查(BH-4、橋軸直角方向地震時) 表 5-41(1/2)

38.900 38.900

SKK400

0.0010

0.012

13.257

0.0010 | SKK400

0.012

13.257 13.257

13.257

13.257

0.0010

0.0010

0.9000 0.9000 0.9000 0.9000 0.9000

0.00

270.00

0.9000

180.00

0.0010

90.00

-5.000 -9.550

0.000 0.000 0.000

> 6 10

 ∞

0.000 0.000

-10.450

180.00 0.00

38.900 38.900 38.900 38.900 38.900 38.900 38.900 38.900

13.257

SKK400 SKK400 SKK400 SKK400 SKK400 SKK400 SKK400 SKK400

0.0010

0.012

0.9000

0.00

15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

10.450 9.550 5.000 5.000 0.450 -0.450 -5.000

0.000 0.000 0.000 0.000 0.000

0.000 0.450 0.450 -0.450 0.000 0.000 0.450 -0.4500.000 0.000

(H)

Œ

(H)

Pile No.

(E)

0.0010 0.0010

0.0010

0.012 0.012 0.012 0.012 0.012 0.012

0.9000 0.9000

270.00

90.00

0.0010

0.012

0.9000

180.00

 Ξ

13.257 13.257 13.257 13.257

全辰 (\mathbf{H})

突出長

材質

腐食代

肉厚 (H)

抗径 (H)

平面角

鉛直角

BD BH4 地震時_橋軸直角方向 (1/4)

+
dia.
ĘΚ
詥
6
拙山
色
華
宀
₩.
ıP
חי
X
5/1
Ш

1. 入力条件

ΓΙ

Ϋ́ Ķ 3,648.000 kN 2,047.000 0.000 Y0= $Z_0=$

 \mathcal{C} 4 S 9 _

7

kN-m kN-m 2,047.000 kN-m 0.000 0.000 My= Mz=

 N/cm^3 5.900 10 有効座屈長 抗本数 n=

BD BH4 地震時橋軸直角方向 (2/4)

(kN/m) \vec{K}_{V} (kN-m/rad) (kN-m/rad) (kN-m/rad)

25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 25,951.65 | 157,596.50 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 131,576.71 | 131,576.71 10.947.95 | 131.576.71 | 131.576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 | 131,576.71 | 131,576.71 10,947.95 (kN/rad) 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 10,947.95 (kN/rad) 1,225.04 1,225.04 1,225.04 1,225.04 1,225.04 1,225.04 ,225.04 1,225.04 1,225.04 1,225.04 (kN/m) 1,225.04 1,225.04 1,225.04 1,225.04 1,225.04 1,225.04 ,225.04 ,225.04 1,225.04 1,225.04 (kN/m) 0.2166 0.2166 0.2166 0.2166 0.2166 0.2166 0.2166 0.2166 0.2166 0.2166 (m⁻¹) 301,502 301,502 301,502 断面2次 モーメント 301,502 301,502 301,502 301,502 301,502 301,502 301,502 (cm^4) 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 6,715 断面係数 (cm³) 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 306.53 断面積 (cm^2) Pile

10

2. バネ定数

8

 \mathcal{C} 4 2 9 _ ∞ 6

 $^{\circ}$

表 5-41(2/2) 耐力照査(BH-4、橋軸直角方向地震時)

3. 杭応力	七六								BD BH4	BD BH4 地震時_橋軸直角方向 (3/4)	帕直角方向	(3/4)
Pile No.	Px	Py	Pz	Mx	My	Mz	Me	1/r	σc σt	σ bc σ bt	o ca o ta	o ba o ta
	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)	(kN-m)		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm ²)
	-19.298	1,624.393	48.603	432.213	-0.985	232.166	490.622	42.27	53		202	235
2	12.741	1,512.597	-48.499	-430.933	-0.031	-173.568	464.574	42.27	49	69	202	235
3	-50.131	-66.337	-15.180	-193.150	-12.394	445.614	485.753	42.27	2	72	235	235
4	44.052	2,973.954	15.294	194.530	11.379	-391.285	437.048	42.27	26	99	202	235
5	12.980	1,285.437	-48.488	-430.833	-0.031	-175.706	465.285	42.27	42	69	202	235
9	-18.791	1,515.522	48.603	432.213	-0.985	227.637	488.494	42.27	49	73	202	235
7	-49.906	-174.483	-14.931	-190.932	-12.394	443.601	483.026	42.27	9	72	235	235
∞	44.277	2,865.809	15.046	192.312	11.379	-393.298	437.872	42.27	93	99	202	235
6	12.966	1,169.028	-48.488	-430.833	-0.031	-175.577	465.236	42.27	38	69	202	235
10	-18.326	-18.326 1,415.641	48.603	432.213	-0.985	223.481	486.572	42.27	46	72	202	235

4
4
佢
不
佃
画
橋軸
地震時,
BH4
BD

(m) 0.009198 β_0 (rad) -0.000020 (m) 0.040241 γ_0 (rad) 0.001770

(m) 0.002940 α_0 (rad) -0.000071

Pile	枯谷	E E	干干	V 右向恋价	V 古向亦位 V 古向亦位 7 古向亦位	7 古向亦位	
No.	#U.A.	+	バンノナロ	ムンドダド	1 21円 1		
	(m)	(m)		(m)	(m)	(m)	
	0.9000	0.0120	0.574	0.002728	0.009940	0.040241	\mathbf{X}_0
	0.9000	0.0120	0.539	0.002746	0.010672	0.040250	yo
	0.9000	0.0120	0.317	0.002838	0.010349	0.040250	Z_0
_	0.9000	0.0120	0.758	0.002838	0.008756	0.040231	
10	0.9000	0.0120	0.503	0.002931	0.009229	0.040241	
	0.9000	0.0120	0.555	0.002949	0.009166	0.040241	
	0.9000	0.0120	0.330	0.003041	0.009639	0.040250	
200	0.9000	0.0120	0.741	0.003041	0.008046	0.040231	
	0.9000	0.0120	0.484	0.003133	0.008519	0.040241	
0	0.9000	0.0120	0.538	0.003151	0.008455	0.040241	

耐力照查(BH-4、橋軸方向地震時) 表 5-42(1/2)

38.900 38.900

SKK400

0.0010

0.012 0.012

0.0010 SKK400

0.9000 0.9000

0.00

-10.450

0.000

10

38.900

13.257 13.257 13.257

BD BH4 地震時 橋軸方向 (1/4)

38.900

13.257 13.257

0.0010 0.0010

38.900

0.0010 SKK400 0.0010 SKK400

0.012

38.900

13.257

38.900 38.900

13.257 13.257

0.0010 SKK400

0.012

0.9000

0.00

15.00 15.00 15.00 15.00 15.00

10.450

0.000

0.000 0.000 0.450 -0.450 0.000

(II)

(m)

9.550

0.000 0.000

7

(H)

SKK400 SKK400 SKK400

0.0010

0.012 0.012 0.012

0.9000

180.00

0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

270.00 90.00 180.00

5.000

5.000

0.000 0.000 0.000 0.000 0.000 0.000

4 2 9

(E)

突出長 (m)

腐食代 (\mathbb{H})

肉厚 (m)

平面角

鉛直角

Pile No.

38.900 38.900

13.257

13.257

SKK400 SKK400

0.0010 0.0010

0.012 0.012

0.012

0.00

15.00

0.000

0.450 -0.450 0.000 0.000

> ∞ 6

0.450 -0.450 -5.000 -5.000 -9.550

270.00

15.00 15.00 15.00 15.00

90.00

180.00

三次元杭基礎の設計

1. 入力条件

 $\Gamma 1$

kN-m kN-m kN-m ΚN 13,648.000 kN 2,047.000 2,047.000 0.000 0.000 0.000 $\begin{aligned} \mathbf{M}\mathbf{x} &= \\ \mathbf{M}\mathbf{y} &= \\ \mathbf{M}\mathbf{z} &= \\ \end{aligned}$ Xo= $Y_0 =$ $Z_0=$

 N/cm^3 5.900 有効座屈長 杭本数 n=

2. バネ庁巻

BN B1/ 神剛時 梅軸木匠 (9/1)

ارير	2. ハイ圧数								9	BD BH4 地震時_備黜力问 (2/4)	5.倘翈力问	(2/4)
釆	断面積	断面係数	断面2次モーメント	β	K_{X1}	K_{Z1}	$ m K_{X2}$	$ m K_{Z2}$	$ m K_{X4}$	${ m K}_{{ m Z}4}$	$ m K_D$	$ m K_V$
	(cm^2)	(cm^3)	(cm^4)	(m^{-1})	(kN/m)	(kN/m)	(kN/rad)	(kN/rad)	(kN-m/rad)	$ \begin{array}{c c} (kN/rad) & (kN-m/rad) & (kN-m/rad) & (kN-m/rad) & (kN/m) \end{array} $	(kN-m/rad)	(kN/m)
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	1,225.04 10,947.95	10,947.95	131,576.71	10,947.95 131,576.71 131,576.71	25,951.65 157,596.50	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71		25,951.65 157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71	25,951.65 157,596.50	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6,715	301,502	0.2166	1,225.04	1,225.04	10,947.95	10,947.95	131,576.71	1,225.04 10,947.95 10,947.95 131,576.71 131,576.71 25,951.65 157,596.50	25,951.65	157,596.50
	306.53	6.715	301.502	0.2166	0.2166 1.225.04 1.225.04 10.947.95 10.947.95 131.576.71 131.576.71 25.951.65 157.596.50	1.225.04	10.947.95	10.947.95	131.576.71	131.576.71	25.951.65	157.596.50

表 5-42(2/2) 耐力照査(BH-4、橋軸方向地震時)

4)	σ ba	o ta	N/mm ²)	235	235	235	235	235	235	235	235	235	235
軸方向 (3/4	σca	o ta	(N/mm^2) (N	202	202	202	202	202	202	202	202	235	202
BD BH4 地震時_橋軸方向 (3/4)	o pc	σ bt	(N/mm^2) (N	37	29	29	27	28	36	28	26	27	34
BD BH	οс	σt	(N/mm^2) (91	4	49	45	2	06	47	43	0	06
	1/r	1/1)	42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27	42.27
	Me	TATO	(kN-m)	247.466	193.452	197.265	184.276	187.609	238.874	190.139	176.909	181.208	231.010
	Mz	71/17	(kN-m)	240.098	-185.424	87.725	-33.763	-179.319	231.233	87.012	-34.476	-172.611	223.099
	Ms	tvi	(kN-m)	-1.928	-1.590	-30.176	26.658	-1.590	-1.928	-30.176	26.658	-1.590	-1.928
	Me	VIAT	(kN-m)	59.921	-55.141	-175.397	180.176	-55.141	59.921	-167.714	172.494	-55.141	59.921
	D-7	7 7	(kN)	6.728	-6.330	-4.268	4.665	-6.330	6.728	-3.408	3.806	-6.330	6.728
	Dy	۲ ک	(kN)	2,777.778	121.047	1,493.830	1,366.706	60.158	2,767.242	1,455.542	1,328.418	-6.753	2,757.577
ر ل	Dv	۲ .	(kN)	-10.895	4.777	-9.911	3.873	4.094	-9.903	-9.831	3.953	3.343	-8.993
3. 杭応力	Pile	No.		1	2	3	4	5	9	7	∞	6	10

(4/4)
橋軸方向
地震時
3D BH4

m)			原点の	原点の変位		
05547	N ₀	(m)	(m) 0.033226	α^{0}	(rad)	α_0 (rad) -0.000025
05547	y_0	(m)	0.009278		(rad)	β_0 (rad) -0.000070
05579	Z_0	(m)	0.005547	γ_0	(rad)	γ_0 (rad) 0.004231

A		47	47	19	15	47	47	42	15	47	47	
Z 方向麥	(m)	0.005547	0.005547	0.005579	0.005515	0.005547	0.005547	0.005579	0.005515	0.005547	0.005547	
Y 方向変位 Z 方向変位	(m)	0.009541	0.009519	0.011308	0.007500	0.009290	0.009267	0.011056	0.007249	0.009038	0.009016	
X方向変位	(m)	0.032493	0.032556	0.032875	0.032875	0.033195	0.033258	0.033577	0.033577	0.033896	0.033960	
応力比		0.607	0.142	0.367	0.338	0.129	0.599	0.356	0.327	0.116	0.593	
肉厚	(m)	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	0.0120	
杭径	(m)	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	
Pile 杭径 肉厚 No.		1	2	3	4	5	9	7	∞	6	10	

表 5-43 BH-3 接岸時支持力算定結果

杭の静的最大軸方向押込み抵抗力及び静的最大引抜き抵抗力

1.杭諸元

杭径(mm)	肉厚(mm)	斜角(°)	腐食代(mm)
900	12	15	0

2. 先端抵抗力Rpk

 R_{pk} =300NAp α

 R_{pk} =6CpAp α

N	Ср	$A_p (m^2)$	閉塞率(α)	R _{pk} (kN)
50		0.636	0.400	3,817.0

3.周面抵抗力R_{fk}

 $R_{fk} = \sum r_{fki} A_{si}$

 $r_{fki}=2N$

r_{fki}=C_a

No.	上端	下端	J	層厚	A_{s}	N	C	2NA _s	C _a A _s
NO.	(m)	(m)	li (m)	$li/cos \theta$ (m)	(m ²)	IN	(kN/m^2)	(kN)	(kN)
1	-11.20	-14.40	3.20	3.31	9.367		35.0	0.0	327.8
2	-14.40	-18.00	3.60	3.73	10.538	4.0		84.3	0.0
3	-18.00	-33.80	15.80	16.36	46.249		65.0	0.0	3,006.2
4	-33.80	-36.00	2.20	2.28	6.440	50.0		644.0	0.0
(5)									
6									
7									
8									
9									
100									
				R _{fk} , R _{tk}				4,0	62.3

4.静的最大軸方向押込み抵抗力

Ya		$R_{td} = (\gamma_N, \gamma_c)$	$\times (R_{pk} + R_{fk})$		y a·Rtd
0.66	1.0 × (3,817.0 +	4,062.3)=	7,879.4	5,200.4

γa	R	$_{td} = (\gamma_N, \gamma_{c'}) \times R_{fk}$		$\gamma_a \cdot R_{td}$
0.40	1.0 ×	4,062.3 =	4,062.3	1,624.9

表 5-44 BH-3 地震時支持力算定結果

杭の静的最大軸方向押込み抵抗力及び静的最大引抜き抵抗力

1.杭諸元

杭径(mm)	肉厚(mm)	斜角(°)	腐食代(mm)
900	12	15	0

2. 先端抵抗力Rpk

 R_{pk} =300NAp α

R_{pk}=6CpAp α

N	Ср	$A_p (m^2)$	閉塞率(α)	R _{pk} (kN)
50		0.636	0.400	3,817.0

3.周面抵抗力Rfk

 $R_{fk} = \sum r_{fki} A_{si}$

 $r_{fki}=2N$

r_{fki}=C_a

No.	上端	下端)	層厚.	A_s	N	C	2NA _s	C _a A _s .		
NO.	(m)	(m)	li (m)	li/cos θ (m)	(m^2)	(m ²)	(m^2)	¹ s N	(kN/m^2)	(kN)	(kN)
1	-11.20	-14.40	3.20	3.31	9.367		35.0	0.0	327.8		
2	-14.40	-18.00	3.60	3.73	10.538	4.0		84.3	0.0		
(3)	-18.00	-33.80	15.80	16.36	46.249		65.0	0.0	3,006.2		
4	-33.80	-36.00	2.20	2.28	6.440	50.0		644.0	0.0		
(5)											
6											
7											
8											
9											
(10)											
				R _{fk} , R _{tk}				4,0	62.3		

4.静的最大軸方向押込み抵抗力

γa		$R_{td} = (\gamma_N, \gamma_c)$	$\times (R_{pk} + R_{fk})$		y a · R _{td}
0.66	1.0 ×(3,817.0 +	4,062,3)=	7,879.4	5,200.4

γа		Rtd	$= (\gamma_N, \gamma_{c'}) \times R_{fk}$		$\gamma_a {\cdot} R_{td}$
0.40	1.0	×	4,062.3 =	4,062.3	1,624.9

表 5-45 BH-4 接岸時支持力算定結果

杭の静的最大軸方向押込み抵抗力及び静的最大引抜き抵抗力

1.杭諸元

杭径(mm)	肉厚(mm)	斜角(°)	腐食代(mm)
900	14	15	0

2. 先端抵抗力Rpk

 R_{pk} =300NAp α

 R_{pk} =6CpAp α

N	Ср	$A_p (m^2)$	閉塞率(α)	R _{pk} (kN)
50		0.636	0.400	3,817.0

3.周面抵抗力R_{fk}

 $R_{fk} = \sum r_{fki} A_{si}$

r_{fki}=2N

 $r_{fki} = C_a$

No.	上端	下端	j	層厚	A_s	N	C	2NA _s	C _a A _s
NO.	(m)	(m)	li (m)	li/cos θ (m)	(m ²)	N	(kN/m^2)	(kN)	(kN)
1	-21.60	-38.40	16.80	17.39	49.177		25.0	0.0	1,229.4
2	-38.40	-40.40	2.00	2.07	5.854	16.0		187.3	0.0
3	-40.40	-42.40	2.00	2.07	5.854	50.0		585.4	0.0
4									
(5)									
6									
7									
(8)									
9									
10									
				R _{fk} , R _{tk}				2,0	02.2

4.静的最大軸方向押込み抵抗力

Ув		$R_{td} = (y_N, y_{c'})$	$\times (R_{pk} + R_{fk})$		$\gamma_a \cdot R_{td}$
0.66	1.0 ×(3,817.0 +	2,002.2)=	5,819.2	3,840.7

γa		R _{td}	$= (\gamma_N, \gamma_c) \times R_{fk}$		$\gamma_a \cdot R_{td}$
0.40	1.0	×	2,002.2 =	2,002.2	800.9

表 5-46 BH-4 地震時支持力算定結果

杭の静的最大軸方向押込み抵抗力及び静的最大引抜き抵抗力

1.杭諸元

杭径(mm)	肉厚(mm)	斜角(°)	腐食代(mm)
900	14	15	0

2. 先端抵抗力R_{pk}

 R_{pk} =300NAp α

 R_{pk} =6CpAp α

N	Ср	$A_p (m^2)$	閉塞率(α)	R _{pk} (kN)
50		0.636	0.400	3,817.0

3.周面抵抗力Rfk

 $R_{fk} = \sum r_{fki} A_{si}$

 $r_{fki}=2N$

r_{flei}=C_a

No.	上端	下端)	層厚	A_s	N	C	2NA _s	C_aA_s
NO.	(m)	(m)	li (m)	li/cos θ (m)	(m ²)	IN.	(kN/m^2)	(kN)	(kN)
1	-21.60	-38.40	16.80	17.39	49.177		25.0	0.0	1,229.4
2	-38.40	-40.40	2.00	2.07	5.854	16.0		187.3	0.0
3	-40.40	-42.40	2.00	2.07	5.854	50.0		585.4	0.0
4									
(5)									
6									
7									
8									
9									
10									
				R _{fk} , R _{tk}				2,0	02.2

4.静的最大軸方向押込み抵抗力

γa		$R_{td} = (\gamma_N, \gamma_{c'})$	$\times (R_{pk} + R_{fk})$		γ _a ·R _{td}
0.66	1.0 ×(3,817.0 +	2,002.2)=	5,819.2	3,840.7

γa		Rtd	$= (\gamma_N, \gamma_{c'}) \times R_{fk}$		γ _a •R _{td}
0.40	1.0	×	2,002.2 =	2,002.2	800.9

5-3-2 プラットホーム

5-3-2-1 鋼管杭部

表 5-47(1/4) 耐力照查(BH-2、法線直角方向地震時)

_																																
(1/4)	会	(m)	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000	34.800	35.000	35.000
	突出長	(m)	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200	10.400	8.900	8.200
PL BH2 法線直角方向地震時	村質		SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400	SKK400
⊃L BH2 法	腐食代	(m)	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	肉厚	(m)	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
	杭径	(m)	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000	0.8000
	平面角	(°)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
	鉛直角	()	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Z	(m)	25.875	25.875	25.875	20.000	20.000	20.000	14.125	14.125	14.125	9.125	9.125	9.125	3.125	3.125	3.125	-3.125	-3.125	-3.125	-9.125	-9.125	-9.125	-14.125	-14.125	-14.125	-20.000	-20.000	-20.000	-25.875	-25.875	-25.875
	ý	(m)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	×	(m)	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250	5.250	0.500	-4.250
	Pile No.		1	7	3	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30

三次元杭基礎の設計1. 入力条件
Ship

Xo= 3,453.000 kN
Yo= 23,018.000 kN
Zo= 0.000 kN-m
Mx= 0.000 kN-m
My= 0.000 kN-m
Mx= 18.000 kN-m
が対対を n= 18.000 kN-m
特別を n= 18.000 kN-m
有効を用長 n

表 5-47(2/4) 耐力照查(BH-2、法線直角方向地震時)

2. / / / / / / 效	产 数	•										
Pile No.	断面積	断面係数	野屈2次・	β	K_{X1}	K_{Z1}	K_{X2}	K_{Z2}	K_{X4}	K_{Z4}	$ m K_D$	$K_{\rm V}$
	(cm^2)	(cm ³)	(cm^4)	(m ⁻¹)	(kN/m)	(kN/m)	(kN/rad)	(kN/rad)	(kN-m/rad)	(kN-m/rad)	(kN-m/rad)	(kN/m)
	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
2	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
3	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
4	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
5	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
9	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
7	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
~	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
6	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
10	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
11	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
12	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
13	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
14	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
15	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
16	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
17	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
18	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
19	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
20	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
21	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
22	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
23	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
24	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
25	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
26	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
27	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
28	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
29	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
30	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10

5-107

表 5-47(3/4) 耐力照査(BH-2、法線直角方向地震時)

5-108

PL BH2 法線直角方向地震時 (4/4)

4. 杭の応力判定及び変位量

		原点0	原点の変位		
\mathbf{x}_0	(m)	0.045160	$^{0} \mathcal{D}$	(rad) (0.000000
Уo	(m)	0.004860	β_0	(rad)	0.000000.0
Z ₀	(m)	0.000000	0 λ	(rad)	(rad) 0.000133

Pile	特级	<u>I</u>	士 士	V七向亦位	V 七向亦位	7 七向亦位
No.	WUL	<u>+</u>	コイケイング	マンドメー	1 7 円 8 円	
	(m)	(m)		(m)	(m)	(m)
1	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
2	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
3	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
4	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
5	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
9	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
7	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
8	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
6	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
10	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
11	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
12	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
13	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
14	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
15	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
16	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
17	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
18	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
19	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
20	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
21	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
22	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
23	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
24	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
25	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
26	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
27	0.8000	0.0120	0.763	0.045160	0.004296	0.000000
28	0.8000	0.0120	0.618	0.045160	0.005557	0.000000
29	0.8000	0.0120	0.712	0.045160	0.004926	0.000000
30	0.8000	0.0120	0.763	0.045160	0.004296	0.000000

表 5-48(1/4) 耐力照查(BH-2、法線平行方向地震時)

								PL BHZ ¼	FC BHZ 法核半行方向 Bi標本		(1/4)
Pile No.	×	y	Z	鉛直角	平面角	杭径	沟厚	腐食代	材質	突出長	全里
	(m)	(m)	(m)	()	()	(m)	(m)	(m)		(m)	(m)
1	5.250	0.000	25.875	00.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
2	0.500	0.000	25.875	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
3	-4.250	0.000	25.875	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
4	5.250	0.000	20.000	00.00	00.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
5	0.500	0.000	20.000	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
9	-4.250	0.000	20.000	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
7	5.250	0.000	14.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
8	0.500	0.000	14.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
6	-4.250	0.000	14.125	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
10	5.250	0.000	9.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
11	0.500	0.000	9.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
12	-4.250	0.000	9.125	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
13	5.250	0.000	3.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
14	0.500	0.000	3.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
15	-4.250	0.000	3.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
16	5.250	0.000	-3.125	00.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
17	0.500	0.000	-3.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
18	-4.250	0.000	-3.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
19	5.250	0.000	-9.125	00.00	00.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
20	0.500	0.000	-9.125	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
21	-4.250	0.000	-9.125	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
22	5.250	0.000	-14.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
23	0.500	0.000	-14.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
24	-4.250	0.000	-14.125	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
25	5.250	0.000	-20.000	00.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
26	0.500	0.000	-20.000	00.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
27	-4.250	0.000	-20.000	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000
28	5.250	0.000	-25.875	0.00	0.00	0.8000	0.012	0.0010	SKK400	10.400	34.800
29	0.500	0.000	-25.875	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.900	35.000
30	-4.250	0.000	-25.875	0.00	0.00	0.8000	0.012	0.0010	SKK400	8.200	35.000

			N N	<u>Z</u>	kN-m	kN-m	kN-m		N/cm ³	
오言부			0.000 kN 23,018.000 kN	3,453.000	0.000	0.000	0.000	30	18.000	h
三次元杭基礎の設計	1. 入力条件	Ship		Zo=	Mx =	My =	MZ=	杭本数 n=	Kh=	有効座屈長

表 5-48(2/4) 耐力照查(BH-2、法線平行方向地震時)

2. バネ定数	定数								PL BI	BH2 法線平行	法線平行方向地震時	(2/4)
Pile No.	断面積	断面係数	断届2次ポーメント	β	$ m K_{X1}$	K_{Z1}	$ m K_{X2}$	${ m K}_{ m Z2}$	$ m K_{X4}$	${ m K}_{ m Z4}$	$ m K_D$	$K_{ m V}$
	(cm^2)	(cm^3)	(cm^4)	(m ⁻¹)	(kN/m)	(kN/m)	(kN/rad)	(kN/rad)	(kN-m/rad)	(kN-m/rad)	(kN-m/rad)	(kN/m)
1	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
2	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
3	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
4	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
5	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
9	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
7	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
8	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
6	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
10	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
11	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
12	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
13	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
14	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
15	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
16	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
17	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
18	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
19	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
20	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
21	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
22	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
23	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
24	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
25	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
26	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
27	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10
28	271.97	5,278	210,602	0.3041	1,917.29	1,917.29	13,122.76	13,122.76	120,587.64	120,587.64	23,669.03	156,303.26
29	271.97	5,278	210,602	0.3041	2,685.62	2,685.62	16,367.37	16,367.37	134,306.28	134,306.28	26,581.82	155,410.10
30	271.97	5,278	210,602	0.3041	3,183.67	3,183.67	18,288.38	18,288.38	141,718.28	141,718.28	28,201.41	155,410.10

表 5-48(3/4) 耐力照查(BH-2、法線平行方向地震時)

3. 杭応力	Ł								PL BH2	PL BH2 法線平行方向地震時 (3/4)	5向地震時((3/4)
Pile	þv	ΡΛ	D ₇	My	Mv	M ₂	Me	1/r	οc	ο pc	o ca	σ ba
No.	۲,	ý.	7.1	VIVI	141	1412	2141	1,7	σt	o bt	o ta	o ta
	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)	(kN-m)		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
_	-1.802	715.826	85.433	584.227	996.0-	7.283	584.273	37.37	26	1111	208	235
2	-2.855	832.948	119.182	725.772	-1.085	11.727	725.867	31.98	31	138	216	235
3	-3.568	954.160	140.685	807.547	-1.151	14.475	807.677	29.47	35	153	219	235
4	-1.342	700.545	85.433	584.227	-0.966	4.136	584.242	37.37	26	111	208	235
5	-2.211	817.754	119.182	725.772	-1.085	7.801	725.814	31.98	30	138	216	235
9	-2.804	938.967	140.685	807.547	-1.151	10.088	807.611	29.47	35	153	219	235
7	-0.883	685.264	85.433	584.227	996.0-	0.988	584.229	37.37	25	111	208	235
8	-1.567	802.561	119.182	725.772	-1.085	3.876	725.783	31.98	30	138	216	235
6	-2.041	923.773	140.685	807.547	-1.151	5.702	807.568	29.47	34	153	219	235
10	-0.491	672.259	85.433	584.227	-0.966	-1.690	584.230	37.37	25	1111	208	235
111	-1.019	789.630	119.182	725.772	-1.085	0.535	725.773	31.98	29	138	216	235
12	-1.391	910.842	140.685	807.547	-1.151	1.969	807.550	29.47	33	153	219	235
13	-0.022	656.653	85.433	584.227	-0.966	-4.905	584.248	37.37	24	1111	208	235
14	-0.361	774.113	119.182	725.772	-1.085	-3.474	725.781	31.98	28	138	216	235
15	-0.611	895.325	140.685	807.547	-1.151	-2.511	807.552	29.47	33	153	219	235
16	0.468	640.397	85.433	584.227	-0.966	-8.253	584.286	37.37	24	111	208	235
17	0.324	757.950	119.182	725.772	-1.085	-7.651	725.813	31.98	28	138	216	235
18	0.201	879.162	140.685	807.547	-1.151	-7.177	807.579	29.47	32	153	219	235
19	0.937	624.791	85.433	584.227	-0.966	-11.467	584.340	37.37	23	111	208	235
20	0.982	742.433	119.182	725.772	-1.085	-11.660	725.866	31.98	27	138	216	235
21	0.981	863.645	140.685	807.547	-1.151	-11.657	807.632	29.47	32	153	219	235
22	1.329	611.786	85.433	584.227	-0.966	-14.146	584.399	37.37	22	111	208	235
23	1.530	729.502	119.182	725.772	-1.085	-15.001	725.928	31.98	27	138	216	235
24	1.631	850.714	140.685	807.547	-1.151	-15.390	807.694	29.47	31	153	219	235
25	1.788	596.505	85.433	584.227	-0.966	-17.294	584.484	37.37	22	1111	208	235
26	2.174	714.308	119.182	725.772	-1.085	-18.926	726.019	31.98	26	138	216	235
27	2.395	835.521	140.685	807.547	-1.151	-19.776	807.790	29.47	31	153	219	235
28	2.248	581.224	85.433	584.227	996.0-	-20.441	584.585	37.37	21	1111	208	235
29	2.819	699.115	119.182	725.772	-1.085	-22.852	726.132	31.98	26	138	216	235
30	3.158	820.327	140.685	807.547	-1.151	-24.163	807.909	29.47	30	153	219	235

5-112

PL BH2 法線平行方向地震時 (4/4)

4. 杭の応力判定及び変位量

	7		4
	(rad) -0.000017	(rad) -0.000041	(rad) -0.000164
			(rad)
原点の変位	ο χ	βο	7
原点の	-0.001008	0.005011	0.044459
	(m)	(m)	(m)
	$^{0}\mathrm{X}$	y_0	Zo

0.0120 0.597
0.0120 0.727
0.0120 0.811
0.0120 0.595
0.0120 0.725
0.0120 0.809
0.0120 0.592
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120 0.801
0.0120 0.584
0.0120 0.714
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120
0.0120

表 5-49 BH-2 地震時支持力算定結果

杭の静的最大軸方向押込み抵抗力及び静的最大引抜き抵抗力

1.杭諸元

杭径(mm)	肉厚(mm)	斜角(°)	腐食代(mm)
800	12	0	0

2. 先端抵抗力Rpk

 R_{pk} =300NAp α

R_{pk}=6CpAp α

N	Ср	$A_p (m^2)$	閉塞率(α)	R _{pk} (kN)
	78	0.503	0.000	0.0

3.周面抵抗力Rfk

 $R_{fk} = \sum r_{fki} A_{si}$

 $r_{fki}=2N$

 $r_{fki} = C_a$

No.	上端	下端	J	層厚	A_s	NT.	C	2NA _s	C_aA_s
NO.	(m)	(m)	li (m)	li/cos θ (m)	(m ²)	N	(kN/m^2)	(kN)	(kN)
1	-7.61	-13.10	5.49	5.49	13.798	12.0		331.1	0.0
2	-13.10	-17.30	4.20	4.20	10,556		45.0	0.0	475.0
3	-17.30	-22.70	5.40	5.40	13.572	17.0		461.4	0.0
4	-22.70	-28.00	5.30	5.30	13.320		77.5	0.0	1,032.3
(5)									
6									
7									
8									
9									
(10)									
				R _{fk} , R _{tk}				2,2	99.9

4.静的最大軸方向押込み抵抗力

γa			$R_{td} = (\gamma_N, \gamma_c)$	$\times (R_{pk} + R_{fk})$		$\gamma_a \cdot R_{td}$
0.50	1.0	× (0.0 +	2,299.9)=	2,299.9	1,150.0

5.静的最大引抜き抵抗力

γa		$R_{td} = (\gamma$	$_{\rm N}$, $_{\rm C}$, \times $\rm R_{fk}$		γ _a •R _{td}
0.40	1.0	× 2,	299.9 =	2,299.9	920.0

5-3-2-2 PHC 杭部

5-3-2-2-1 設計条件

(1) 一般事項

・データファイル名: PL PHC. F8F

・タイトル :プラットホーム

(2) 杭の条件

・杭種 : PHC杭 (スパイラル鉄筋を考慮する)

 ・施工工法
 : 打込み杭(打撃)

 ・杭頭接合条件
 : 剛結・ヒンジ

・杭先端条件 : ヒンジ
 ・杭の種類 : 摩擦杭
 ・杭の許容変位量 常 時 : 50.0 (mm)

地震時 : 100.0 (mm)

・杭体のヤング係数 : $4.00 \times 10^4 \text{ (N/mm}^2\text{)}$

・杭本数 : 50 (本)・杭径 : 800.0 (mm)・厚さ : 110.0 (mm)

・設計杭長,種類 : 31.00 (m) C種

(3) 適用基準及び参考文献

- ·道路橋示方書 I 共通編(平成24年3月)
- ・道路橋示方書Ⅲコンクリート橋編(平成24年3月)
- ·道路橋示方書IV下部構造編(平成24年3月)
- ·道路橋示方書V耐震設計編(平成24年3月)
- ・杭基礎設計便覧(平成19年1月)
- ・道路橋の耐震設計に関する資料(平成9年3月)

(4) 使用材料および許容応力度

設計基準強度 σ_{ck}=80.00(N/mm²)

単位:N/mm2

No	割増係数	許容曲げ圧縮応力度	許容曲げ引張	応力度 σ ta	許容せん断応力度
NO	可归水效	σ са	σ ce $<$ 7.8	σ _{ce} ≧7.8	τа
1	1.50	40.00	3.00	5. 00	1. 275

(5) 杭配置図・側面図

--- 設計地盤面(常時) --- 設計地盤面(地震時) (b)側面図(橋軸直角方向)

杭頭座標(m)

X方向(橋軸直角方向)

No	1	2	3	4	5
座標	-10.675	-5.337	0.000	5.337	10.675

Y方向(橋軸方向)

No.	1	2	3	4	5	6	7	8
座標	26.000	20.222	14.444	8.667	2.889	-2.889	-8.667	-14.444
No	9	10						
座標	-20.222	-26.000						

| <u>座標 | -20.222 | -26.000 |</u> **※**各方向の座標の向きは図中(a)に示す。

(6) 地層データ

層		層厚(m)		平均	$\alpha \cdot E_o(kN/m^2)$		$\gamma (kN/m^3)$		$f(kN/m^2)$	
No	層種	常時	地震時		常時	地震時	γ	γ'	f	fn
*		7.300	7.300							
1	砂質土	9.100	9.100	12.0	33,600	67,200	18.00	9.90	24.0	24.0
2	粘性土	4.200	4.200	10.0	28,000	56,000	15.00	4.90	45.0	45.0
3	砂礫土	5.400	5.400	17.0	47,600	95,200	15.00	4.90	34.0	34.0
4	粘性土	5.00	5.000	22.0	61,600	123,200	15.00	4.90	77.5	77.5

^{*}は突出部を表わす。

(7) ばね定数,許容支持力・引抜力,断面二次モーメント

・杭軸方向ばね定数 Kv(kN/m)

常時	456,671
地震時	456,671

・許容支持力・引抜力 (kN/本)

許容支持力	常時	756
計谷又行刀	地震時	1,152
許容引抜力	常時	528
計分り扱力	地震時	938

·水平方向地盤反力係数 k_H(kN/m³)

層No	層厚	旱 (m)	橋軸直	角方向	橋軸方向		
層NO	常時	地震時	常時	地震時	常時	地震時	
突出部	7.300	7.300 7.300 — —					
1	9.100	9.100 9.100 32,37		64,754	32,377	64,754	
2	4.200	4.200	26,981	53,962	26,981	53,962	
3	5.400	5.400 5.400 45,868		91,735 45,868		91,735	
4	5.000	5.000	59,358	118,716	59,358	118,716	

・杭体断面二次モーメント I(m⁴)

第1断面 0.014551221

※断面の取扱い:総断面

(8) 作用力

(a) 橋軸直角方向

No	荷重ケース名称	割増 係数	鉛直力 V(kN)	水平力 H(kN)	モーメント M(kN.m)
1	地震時	1.50	41,517.00	6,228.00	0.00

(b) 橋軸方向

No	荷重ケース名称	割増 係数	鉛直力 V(kN)	水平力 H(kN)	モーメント M(kN.m)	
1	地震時	1.50	41,517.00	6,228.00	0.00	

橋軸方向

橋軸直角方向

5-3-2-2-2 安定計算

(1) 杭軸直角方向ばね定数

橋軸直角方向

杭頭剛結

	単位	常時	地震時
K1 K2 K3 K4	kN/m kN/rad kN.m/m kN.m/ra d	5,936 30,807 30,807 215,956	6,972 34,472 34,472 229,308

橋軸方向

杭頭剛結

	単位	常時	地震時
K1 K2 K3 K4	kN/m kN/rad kN.m/m kN.m/ra d	5,936 30,807 30,807 215,956	6,972 34,472 34,472 229,308

(2) 杭基礎の剛性行列

1. 変位法による底版中心の変位と外力の関係

$$\begin{bmatrix} V \\ H \\ M \end{bmatrix} = \begin{bmatrix} Azz & Azx & Aza \\ Axz & Axx & Axa \\ Aaz & Aax & Aaa \end{bmatrix} \begin{bmatrix} \delta z \\ \delta x \\ \alpha \end{bmatrix}$$

2. 剛性行列要素

$$A_{zz} = \Sigma (K_v \cdot \cos^2 \theta + K1 \cdot \sin^2 \theta)$$
 i $A_{zx} = A_{xz} = \Sigma (K_v \cdot \cos \theta \cdot \sin \theta - K1 \cdot \sin \theta \cdot \cos \theta)$ i $A_{za} = A_{az} = \Sigma (K_v \cdot X \cdot \cos^2 \theta + K1 \cdot X \cdot \sin^2 \theta + K2 \cdot \sin \theta)$ i $A_{xx} = \Sigma (K_v \cdot \sin^2 \theta + K1 \cdot \cos^2 \theta)$ i $A_{xa} = A_{ax} = \Sigma (K_v \cdot X \cdot \sin \theta \cdot \cos \theta - K1 \cdot X \cdot \sin \theta \cdot \cos \theta - K2 \cdot \cos \theta)$ i $A_{aa} = \Sigma \{K_v \cdot X^2 \cdot \cos^2 \theta + K1 \cdot X^2 \cdot \sin^2 \theta + (K2 + K3) \cdot X \cdot \sin \theta + K4\}$ i ここに、 A_{zz} : 鉛直方向ばね (kN/m) $A_{zx} = A_{xz}$: 鉛直と水平の連成ばね (kN/m)

Aza=Aaz:鉛直と回転の連成ばね(kN/rad, kN.m/m)

Axx : 水平方向ばね(kN/m)

Axa=Aax : 水平と回転の連成ばね(kN/rad, kN.m/m)

Aaa : 回転ばね(kN.m/rad)

V : 原点に作用する鉛直力(kN)H : 原点に作用する水平力(kN)

M:原点に作用するモーメント(kN.m)

K_{vi}: 杭軸方向ばね定数(kN/m)

K1_i~K4_i: 杭軸直角方向ばね定数(kN/m, kN/rad, kN. m/m, kN. m/rad)

X_i : 杭頭の水平座標(m)

θ_i : 杭軸が鉛直軸となす角度(rad)

 δ z
 : 原点鉛直変位 (m)

 δ x
 : 原点水平変位 (m)

 α
 : 原点回転角 (rad)

注)式中のiはi番目の杭を示す。

L Aaz Aax Aaa

(a) 橋軸直角方向

杭頭剛結

常時

1111	.,1					
	Azz	Azx	Aza	22833550	0	0
	Axz	Axx	Axa =	0	296801	-1540329
L	Aaz	Aax	Aaa _	0	-1540329	1311754814
地類	喪時					
	Azz	Azx	Aza	22833550	0	0
	Axz	Axx	Axa =	0	348583	-1723608
	Aaz	Aax	Aaa _	0	-1723608	1312422418

(b) 橋軸方向

杭頭剛結

常時

	Azz	Azx	Aza		22833550	0	0	
	Axz	Axx	Axa		0	296801	-1540329	
	_ Aaz	Aax	Aaa _		0	-1540329	6299256291 _	
抴	2震時							
	Azz	Azx	Aza -	1 [22833550	0	0 -	1
	Axz	Axx	Axa	=	0	348583	-1723608	

0 -1723608

6299923895

(3) 杭反力及び変位の計算

 $\delta zi = (\delta z + \alpha \cdot Xi) \cdot \cos\theta i + \delta x \cdot \sin\theta i$

 $\delta xi = -(\delta z + \alpha \cdot Xi) \cdot \sin\theta i + \delta x \cdot \cos\theta i$

ここに、 PN_i: 杭軸方向反力(kN/本)

PH_i: 杭軸直角方向反力(kN/本) Mt_i: 杭頭モーメント(kN.m/本)

Kvi: 杭軸方向ばね定数(kN/m)

K1i~K4i: 杭軸直角方向ばね定数(kN/m,kN/rad,kN.m/m,kN.m/rad)

X_i : 杭頭座標(m)

θ_i: 杭軸が鉛直軸となす角度(rad)

 δ_z :原点鉛直変位(m) δ_x :原点水平変位(m) α :原点回転角(rad)

 δz_i : 杭頭の杭軸方向変位(m) δx_i : 杭頭の杭軸直角方向変位(m)

杭頭での鉛直反力Vi,及び水平反力Hiは、次式による。

0.00 (kN.m)

 $Vi {=} PN_i \boldsymbol{\cdot} cos\theta_i {-} PH_i \boldsymbol{\cdot} sin\theta_i$

 $H_i = PN_i \cdot \sin\theta_i + PH_i \cdot \cos\theta_i$

注)式中のiはi番目の杭を示す。

(a) 橋軸直角方向

杭頭剛結

地震時

• 原点作用力

 $V_{o} = 41,517.00 (kN)$ $H_{o} = 6,228.00 (kN)$ ・原点変位 δ_z =

 $\delta_{z} = 1.82 \text{ (mm)}$ $\delta_{x} = 17.98 \text{ (mm)}$ $\alpha = 0.00002362 \text{ (rad)}$

• 杭反力

 $M_o =$

N o	X(m)	本数	PN(kN)	PH(kN)	M _t (kN.m)	V _i (kN)	H _i (kN)	$\delta f_x(mm)$
1	-10.675	10	715.20	124.56	-614.51	715.20	124.56	3.56
2	-5.337	10	772.78	124.56	-614.51	772.78	124.56	3.56
3	0.000	10	830.34	124.56	-614.51	830.34	124.56	3.56
4	5.337	10	887.90	124.56	-614.51	887.90	124.56	3.56
5	10.675	10	945.48	124.56	-614.51	945.48	124.56	3.56

(b) 橋軸方向

杭頭剛結

地震時

• 原点作用力

・原点変位

 $V_{\rm o} = 41,517.00 \, (kN)$ $H_o =$ 6,228.00 (kN) $M_o =$ $0.00 \, (kN.m)$ $\delta_z \ = \$ 1.82 (mm)

 $\delta_x =$ 17.89 (mm)

 $\alpha =$ 0.00000489 (rad)

・杭反力

N o	Y(m)	本数	PN(kN)	PH(kN)	M _t (kN.m)	$V_i(kN)$	H _i (kN)	$\delta f_x(mm)$
1	26.000	5	888.46	124.56	-615.61	888.46	124.56	3.55
2	20.222	5	875.54	124.56	-615.61	875.54	124.56	3.55
3	14.444	5	862.63	124.56	-615.61	862.63	124.56	3.55
4	8.667	5	849.71	124.56	-615.61	849.71	124.56	3.55
5	2.889	5	836.80	124.56	-615.61	836.80	124.56	3.55
6	-2.889	5	823.88	124.56	-615.61	823.88	124.56	3.55
7	-8.667	5	810.97	124.56	-615.61	810.97	124.56	3.55
8	-14.444	5	798.05	124.56	-615.61	798.05	124.56	3.55
9	-20.222	5	785.14	124.56	-615.61	785.14	124.56	3.55
10	-26.000	5	772.22	124.56	-615.61	772.22	124.56	3.55

888.46 (kN) $\leq R_a = 1,152.00$ (kN) : OK $PN_{max} \! = \!$ $PN_{min}\!=\!$ $(kN) \ge P_a = -938.00 (kN) : OK$ 772.22 $(mm) \ \leqq \ \delta_a = \qquad 100.00 \qquad (mm) \quad : OK$ $\delta_f \ =$ 3.55

5-3-2-2-3 断面計算

(1) 杭体断面力

表 5-50 杭体断面力(橋軸直角方向 地震時)

		杭頭剛結			杭頭ヒンジ	;	
杭頭作用力 H (kN) M (kN.m)		124.56 -614.51			124.56 0.00		
杭軸直角方向ばね定数 K1(kN/m) K2(kN/rad) K3(kN.m/m) K4(kN.m/rad)		6,972 34,472 34,472 229,308		1,789 0 0 0			
$\begin{array}{ccc} M_t & (kN.m) \\ M_{max} & (kN.m) \\ Z & (m) \\ 1/2M_{max}(kN.m) \\ S & (kN) \end{array}$	-614.51 344.32 8.181 466.14 124.56			0.00 932.28 7.688 466.14 -221.84			
Z (m)	δx(mm)	M (kN.m)	S (kN)	δx(mm)	M (kN.m)	S (kN)	
0.000	17.983	-614.51	124.56	69.609	0.00	124.56	
0.500	17.844	-552.23	124.56	64.381	62.28	124.56	
1.000	17.468	-489.95	124.56	59.180	124.56	124.56	
1.500	16.881	-427.67	124.56	54.033	186.84	124.56	
2.000	16.110	-365.39	124.56	48.965	249.12	124.56	
2.500	15.182	-303.11	124.56	44.005	311.40	124.56	
3.000	14.125	-240.83	124.56	39.179	373.68	124.56	
4.000	11.725	-116.27	124.56	30.034	498.24	124.56	
5.000	9.127	8.29	124.56	21.745	622.80	124.56	
6.000	6.542	132.85	124.56	14.527	747.36	124.56	
7.000	4.185	257.41	124.56	8.592	871.92	124.56	
7.300	3.555	294.78	124.56	7.094	909.29	124.56	
8.000	2.268	342.58	19.80	4.150	919.73	-76.94	
9.000	0.923	316.50	-60.36	1.257	763.47	-210.63	
10.000	0.114	240.27	-85.15	-0.335	536.48	-229.67	
11.000	-0.282	156.32	-79.34	-1.002	322.84	-191.90	
12.000	-0.408	85.83	-60.57	-1.107	158.69	-135.54	
13.000	-0.384	35.85	-39.61	-0.931	50.68	-82.02	
14.000	-0.295	5.50	-21.87	-0.662	-9.47	-40.63	
15.000	-0.195	-9.60	-9.20	-0.403	-35.29	-13.23	
16.000	-0.110	-14.53	-1.41	-0.203	-39.94	2.19	
16.400	-0.082	-14.68	0.57	-0.142	-38.31	5.74	
17.000	-0.048	-13.80	2.24	-0.069	-33.97	8.43	
18.000	-0.011	-10.83	3.43	0.006	-24.68	9.61	
19.000	0.009	-7.34	3.41	0.039	-15.51	8.51	
20.000	0.015	-4.18	2.85	0.045	-7.93	6.61	
20.600	0.016	-2.59	2.45	0.042	-4.31	5.47	
21.000	0.015	-1.70	2.00	0.038	-2.36	4.29	
22.000	0.011	-0.20	1.05	0.026	0.69	1.96	

22.000 | 0.011 | -0.20 | 1.05 | 0.026 | 0.69 | 1.96 | $\%M_{max}$:地中部最大モーメント, $1/2M_{max} = 1/2 \cdot max(M_{max}, M_t)$, M_t :杭頭モーメント

表 5-51 杭体断面力(橋軸方向 地震時)

		杭頭剛結			杭頭ヒンジ		
杭頭作用力							
H (kN)		124.56			124.56		
M (kN.m)		-615.61			0.00		
杭軸直角方向ばね				0.00			
定数							
K1(kN/m)		6,972			1,789		
K1(kN/III) K2(kN/rad)		34,472			0		
K2(kN/18d) K3(kN.m/m)		34,472			0		
K4(kN.m/rad)		229,308			0		
` '							
M_t (kN.m)		-615.61			0.00		
M_{max} (kN.m)		343.32			932.28		
Z (m)		8.182			7.688		
$1/2M_{max}(kN.m)$		466.14			466.14		
S (kN)		124.56			-221.84		
Z (m)	δx(mm)	M (kN.m)	S (kN)	δx(mm)	M (kN.m)	S (kN)	
0.000	17.891	-615.61	124.56	69.609	0.00	124.56	
0.500	17.761	-553.33	124.56	64.381	62.28	124.56	
1.000	17.393	-491.05	124.56	59.180	124.56	124.56	
1.500	16.814	-428.77	124.56	54.033	186.84	124.56	
2.000	16.051	-366.49	124.56	48.965	249.12	124.56	
2.500	15.131	-304.21	124.56	44.005	311.40	124.56	
3.000	14.080	-241.93	124.56	39.179	373.68	124.56	
4.000	11.693	-117.37	124.56	30.034	498.24	124.56	
5.000	9.104	7.19	124.56	21.745	622.80	124.56	
6.000	6.528	131.75	124.56	14.527	747.36	124.56	
7.000	4.178	256.31	124.56	8.592	871.92	124.56	
7.300	3.549	293.68	124.56	7.094	909.29	124.56	
8.000	2.265	341.55	19.98	4.150	919.73	-76.94	
9.000	0.922	315.70	-60.09	1.257	763.47	-210.63	
10.000	0.115	239.73	-84.89	-0.335	536.48	-229.67	
11.000	-0.281	156.02	-79.14	-1.002	322.84	-191.90	
12.000	-0.407	85.70	-60.43	-1.107	158.69	-135.54	
13.000	-0.383	35.83	-39.53	-0.931	50.68	-82.02	
14.000	-0.295	5.53	-21.84	-0.662	-9.47	-40.63	
15.000	-0.195	-9.55	-9.19	-0.403	-35.29	-13.23	
16.000	-0.109	-14.49	-1.42	-0.203	-39.94	2.19	
16.400	-0.082	-14.64	0.56	-0.142	-38.31	5.74	
17.000	-0.048	-13.76	2.23	-0.069	-33.97	8.43	
18.000	-0.011	-10.80	3.42	0.006	-24.68	9.61	
19.000	0.009 -7.32 3.40			0.039	-15.51	8.51	
20.000	0.005 -7.32 3.40 0.015 -4.17 2.85			0.045	-7.93	6.61	
20.600	0.016	-2.58	2.44	0.042	-4.31	5.47	
21.000	0.015	-1.70	2.00	0.042	-2.36	4.29	
22.000	0.013	-0.20	1.04	0.026	0.69	1.96	
		$\frac{-0.20}{1/2 M_{\text{max}}} = 1/2 M_{\text{max}}$			<u> </u>		

stM_{max}:地中部最大モーメント, 1/2M_{max} = $1/2 \cdot max(M_{max}, M_t)$, M_t :杭頭モーメント

(2) 断面力図

橋軸直角方向 地震時 杭 径 D = 800.0 (mm) 杭 長 L = 31.00 (m)

【杭頭剛結】

H = 124.56 (kN) M = -614.51 (kN.m)

【杭頭ヒンジ】

H = 124.56 (kN)

図 5-49 断面力図(橋軸直角方向、地震時)

2) 橋軸方向 地震時

杭 径 D = 800.0 (mm)

杭 長 L= 31.00 (m)

【杭頭剛結】

H = 124.56 (kN) M = -615.61 (kN.m)

【杭頭ヒンジ】

H = 124.56 (kN)

(3) 杭体応力度

PHC杭

第1断面

杭外径 D = 800.0(mm)

厚さ t = 110.0(mm)

種別 C種

有効プレストレス $\sigma_{ce} = 10.000(N/mm^2)$

換算断面積 $A_e = 2512.00 \times 10^2 (mm^2)$

換算断面係数 $Z_e = 38,340.00 \times 10^3 (mm^3)$

曲げ応力度の照査

$$\sigma = \sigma ce + \frac{N}{Ae} \pm \frac{M}{Ze}$$

(a) 橋軸直角方向

N o	荷重名略称	着 行	目杭列	M (kN.m)	N (kN)	σ_c, σ_{ca} (N/mm^2)	$\begin{matrix} \sigma_{t,}\sigma_{ta} \\ (N/mm^2) \end{matrix}$	$M_r(kN.m)$ $M_r_L(m)$
1	1 以6层的土	1	5	614.51	945.48	29.79 40.00	-2.26 -5.00	719.41
1	地震時	1	1	614.51	715.20	28.88 40.00	-3.18 -5.00	684.26

上段がN_{max}, 下段がN_{min}を示す。M_r LはM_rと実モーメントとの交点深度を示す。

(b) 橋軸方向

N o	荷重名略称	着 行	目杭 列	M (kN.m)	N (kN)	σ_c, σ_{ca} (N/mm^2)	$\begin{matrix} \sigma_t, \sigma_{ta} \\ (N/mm^2) \end{matrix}$	$M_r(kN.m)$ $M_r_L(m)$
1	1 地震時	1	1	615.61	888.46	29.59 40.00	-2.52 -5.00	710.70
1	地展时	10	1	615.61	772.22	29.13 40.00	-2.98 -5.00	692.96

上段がN_{max}, 下段がN_{min}を示す。M_r_LはM_rと実モーメントとの交点深度を示す。

せん断応力度の照査

コンクリートのみでせん断力を負担する場合

$$\tau = \frac{S}{b \cdot d} \le \tau a$$

 $\tau a = CN \, \boldsymbol{\cdot} \, \tau_{a1}$

ここに、

S : せん断力(kN)

b : 部材断面幅(等積箱形断面の腹部の合計幅とする) b = 195 (mm) d : 部材断面の有効高(等積箱形断面の有効高とする) d = 710 (mm)

 r_s : 部材軸方向鉄筋の配置半径 r_s = 395.0 (mm)

τ_a: 軸方向圧縮力により割増しされた許容せん断応力度 (N/mm²)

τ_{al}: コンクリートのみでせん断力を負担する場合の許容せん断応力度 (N/mm²)

CN: 軸方向圧縮力による補正係数

$$CN = 1 + \frac{Mo}{M}$$
 $\hbar t \in \mathbb{N}$ $1 \leq CN \leq 2$

M。: 軸方向圧縮力によりコンクリートの応力度が部材引張縁で零となる 曲げモーメント(kN.m)

$$Mo = \left(\sigma ce + \frac{N}{Ac}\right) \cdot \frac{Ic}{y}$$

N: 部材断面に作用する軸方向圧縮力(kN)

 σ_{ce} : 有効プレストレス $\sigma_{ce} = 10.00 \, (N/mm^2)$

 A_c : 部材断面積 $A_c = 2,384.4689 \times 10^2 \text{ (mm}^2\text{)}$

 I_c : 部材断面の図心軸に関する断面二次モーメント $I_c = 1,455,122.1741 \times 10^4 \, (mm^4)$

y : 部材断面の図心より部材引張縁までの距離 y = 400 (mm)

斜引張鉄筋 (スパイラル鉄筋) と共同してせん断力を負担する場合

 $P_s = S_c + S_s$

 $S_c = \tau_{a1} \cdot CN \cdot b \cdot d$

 $Ss = \frac{Aw \cdot \sigma \operatorname{sa} \cdot d \cdot (\sin \theta + \cos \theta)}{1.15 \cdot s}$

 $S \leq P_s$

ここに、

Ps : 許容せん断力 (kN)

 S_c : コンクリートの負担するせん断力 (kN)

S。: 斜引張鉄筋の負担するせん断力 (kN)

 au_{al} : コンクリートのみでせん断力を負担する場合の許容せん断応力度 (N/mm^2)

b : 部材断面幅 (等積箱形断面の腹部の合計幅とする) (mm) d : 部材断面の有効高 (等積箱形断面の有効高とする) (mm)

 A_w : 間隔sおよび角度 θ で配筋される斜引張鉄筋の断面積 $A_w = 0.000 \times 10^2 \, (mm^2)$

σ_{sa}: 斜引張鉄筋の許容引張応力度

 $\sigma_{sa} = 50.00 \, (N/mm^2)$

s : 斜引張鉄筋の部材軸方向の間隔 (mm)

(地震時の基本値) $\sigma_{sa} = 50.00 \, (N/mm^2)$

s = 80 (mm)

θ:斜引張鉄筋が部材軸方向となす角度(90°とする)

(a) 橋軸直角方向

N o	荷重名略称	着目行	杭 列	M (kN.m)	N (kN)	M _o (kN.m) CN	S _c (kN) S _s (kN)	$\begin{array}{c} \tau \; (N/mm^2) \\ \tau_a (N/mm^2) \end{array}$	S (kN) P _s (kN)
1	地震時	1	5	614.51	945.48	508.02 1.827	322.46 0.00	0.900 2.329	124.56 322.46
1	地長时	1	1	614.51	715.20	472.89 1.770	312.37 0.00	0.900 2.256	124.56 312.37

上段がN_{max}, 下段がN_{min}を示す。

(b) 橋軸方向

(-)									
N	荷重名略称	着目杭		M	N	$M_o(kN.m)$	$S_c(kN)$	$\tau (N/mm^2)$	S (kN)
О	14 = 11111	行	列	(kN.m)	(kN)	CN	$S_{s}(kN)$	$\tau_a(N/mm^2)$	$P_s(kN)$
1	地震時	1	1	615.61	888.46	499.33 1.811	319.71 0.00	0.900 2.309	124.56 319.71
	地展时	10	1	615.61	772.22	481.59 1.782	314.62 0.00	0.900 2.272	124.56 314.62

上段がN_{max}, 下段がN_{min}を示す。

5-3-2-2-4 基礎杭計算結果一覧表

(1) 橋軸直角方向

表 5-52 基礎杭計算結果一覧表(橋軸直角方向)

荷重	重ケースN	o. 略称	1
	原点作用	力	地震時
	Vo Ho Mo	kN kN kN.m	41,517.0 6,228.0 0.0
	原点変化	77.	
	$\begin{array}{l} \delta_x \\ \delta_z \\ \alpha \end{array}$	mm mm rad	17.98 1.82 0.00002362
抽片	δ _f , δ _a 出杭番号	mm 行,列	$3.56 \le 100.00 \\ (1, 1)$
	鉛直反	カ	
抽b Pi	PN _{max} , R _a 由出杭番号 行 PN _{min} , P _a k 由出杭番号 行		$945.48 \le 1,152.00$ $(1,5)$ $715.20 \ge -938.00$ $(1,1)$
	水平反	カ	
抽出	PH 出杭番号	kN 行,列	124.56 (1, 1)
杭	作用モー	メント	
地中	頭 M _t 出杭番号 中部 Mm 出杭番号	kN.m 行,列 kN.m 行,列	-614.51 (1, 1) 932.28 (1, 1)
	杭体応力	度	
1 断面	f		$ \begin{array}{ccc} 29.79 \leq & 40.00 \\ & (1, 5) \\ -3.18 \geq & -5.00 \\ & (1, 1) \\ 0.900 \leq & 2.256 \\ & (1, 1) \\ 124.56 \leq & 312.37 \\ & (1, 1) \end{array} $
	判定	<u> </u>	OK
-			

杭 種:打込み杭打撃工法 PHC杭

杭 径: φ = 800.0 (mm) 厚 さ: t = 110.0 (mm) 杭 長: L = 31.00 (m) 種 類: C種

(2) 橋軸方向

表 5-53 基礎杭計算結果一覧表(橋軸方向)

			2=0 ((((((((((((((((((((((((((((((((((((
荷	重ケースN	o. 略称	1		
	原点作用	力	地震時		
	Vo	kN	41,517.0		
	H_{o}	kN	6,228.0		
	$M_{\rm o}$	kN.m	0.0		
	原点変化	八			
	$\delta_{\rm x}$	mm	17.89		
	δ_{z}	mm	1.82		
	α	rad	0.00000489		
	δ_f , δ_a	mm	$3.55 \leq 100.00$		
抽	I出杭番号	行,列	(1, 1)		
	鉛直反	カ			
F	PN _{max} , R _a	kN	888.46≦ 1,152.00		
	出杭番号	行,列	(1,1)		
	PN_{min}, P_a	kN	772.22≧ -938.00		
	出杭番号	行,列	(10, 1)		
	水平反	カ			
	PH	kN	124.56		
抽	出杭番号	行,列	(1,1)		
₹.	亢作用モー	メント			
材	t頭 M _t	kN.m	-615.61		
	出杭番号	行,列	(1, 1)		
	中部 Mm	kN.m	932.28		
	出杭番号	行,列	(1,1)		
	杭体応力	度			
	σ_{c} , σ_{ca}	N/mm ²	29.59≦ 40.00		
	抽出杭	行,列	(1,1)		
	7ш <u>ш</u> 17 г. О t, О tа	N/mm^2	-2.98 ≥ -5.00		
1	抽出杭	行,列	(10, 1)		
断	τ, τ_a	N/mm^2	$0.900 \leq 2.272$		
面	抽出杭 行,列		(10, 1)		
	S, P_s	kN	$124.56 \leq 314.62$		
	抽出杭	行,列	(10, 1)		
	判定	-	OK		
	, ,, _				

杭 種:打込み杭打撃工法 PHC杭

杭 径: ϕ = 800.0 (mm) 厚 さ: t = 110.0 (mm) 杭 長: L = 31.00 (m)

種 類: C種

5-3-2-2-5 予備計算

(1) 水平方向地盤反力係数

杭外径

杭体ヤング係数
$$E=4.00\times10^7~(kN/m^2)$$
 杭体断面二次モーメント $I=0.014551221~(m^4)$ 杭の特性値(換算載荷幅算出) 常時 $\beta=0.324771~(m^{-1})$ 水平抵抗に関する 常時 $1/\beta=3.0791~(m)$ 地震時 $1/\beta=3.0791~(m)$ 地震時 $1/\beta=3.0791~(m)$ が電盤の深さ 地震時 $1/\beta=3.0791~(m)$ $1/$

D = 0.8000

(m)

※地震時BH算出時のα・Eoの取扱い:地震時の1/2

層No	層原	享(m)	α • E _o	(kN/m^2)	$k_{\rm H} (kN/m^3)$		
)官NO	常時	地震時	常時	地震時	常時	地震時	
突出部	7.300	7.300 — —					
1	9.100	9.100	33,600	67,200	32,377	64,754	
2	4.200	4.200 4.200		28,000 56,000		53,962	
3	5.400	5.400	47,600	95,200	45,868	91,735	
4	5.000 5.000		61,600	123,200	59,358	118,716	

(2) 杭軸方向鉛直ばね定数

$$Kv = a \cdot \frac{Ap \cdot Ep}{L}$$

杭 種:PHC杭

工 法:打込み杭打撃工法

 $a = 0.014 \cdot (L'/D) + 0.72 = 1.1348$

Ap: 杭の純断面積 = 0.23845 (m^2) Ep: 杭体のヤング係数 = 4.00×10^7 (kN/m^2) L: 杭長 = 23.700 (m) L': 杭長(補正係数a算出用) = 23.700 (m) D: 杭径 = 0.8000 (m)

Kv = 456,671 (kN/m)

(3) 最大周面摩擦力度

杭周面に働く最大周面摩擦力度を以下に示す。

(a) 最大周面摩擦力度の推定方法

	砂質土	粘性土
打込み杭工法	2N (≦100)	cまたは10N (≦150)

※Nは各層のN値、cは地盤の粘着力(kN/m²)を示す。

※粘性土の最大周面摩擦力度は、N値および粘着力cから推定した結果のうち小さい方を 採用する。

※N値から推定する場合、N値が5未満となる軟弱層の最大周面摩擦力度は0とする。

(b) 最大周面摩擦力度

層 No		層厚 (m)	土質	平均 N値	粘着力c (kN/m²)	f_i (kN/m ²)
1	-4. 000 -13. 100	9. 100	砂質	12. 0	0.0	24. 0
2	-13. 100 -17. 300	4. 200	粘性	10.0	45. 0	45.0
3	-17. 300 -22. 700	5. 400	砂礫	17. 0	0.0	34. 0
4	-22. 700 -44. 600	21. 900	粘性	22. 0	77. 5	77. 5

※現地盤面から全層の最大周面摩擦力度を示す。

(4) 許容支持力の計算

(a) 杭の諸元

杭 種 : PHC杭 φ 800.0 (mm)

工 法 : 打込み杭(打撃)

設計杭長 : L = 31.000 (m)

突出杭長 : Lo = 7.300 (m) (現地盤面から上を示す)

杭の種類 : 摩擦杭

(b) 軸方向許容押込み支持力の計算

$$Ra = \frac{\gamma}{n} \cdot (Ru - W_S) + W_S - W$$

 $R_u = U \cdot \Sigma(L_i \cdot f_i)$ (常 時), (地震時(液無))

 $R_u = U \cdot \Sigma(L_i \cdot f_i \cdot DE_i)$ (地震時(液有))

Ra: 杭頭における杭の軸方向許容押込み支持力 (kN)

n: 安全率 3.0 (常 時) 2.0 (地震時)

y: 安全率の補正係数 = 1.0

Ru: 地盤から決まる杭の極限支持力 (kN)

U : 杭の周長(m)

 $U = \pi \cdot 0.8000 = 2.513$ (m)

L_i:層厚(m)

fi:層の最大周面摩擦力度(kN/m²)

DE_i: 土質定数の低減係数(地震時のみ)

W_s: 杭で置き換えられる部分の土の有効重量(kN)

 $Ws = Ap \cdot \Sigma(\gamma i \cdot Li)$

γ_i: 土の有効単位重量(kN/m³)

周面摩擦力および杭で置き換えられる部分の土の有効重量

• 常 時

層 No	土質	平均 N値	粘着力 (kN/m²)	層厚 L _i (m)		W _s (kN)	f_i (kN/m^2)	$L_i \cdot f_i$ (kN/m)
1	砂質	12.0	0.0	9.100	9.90	45.28	24.0	218.40
2	粘性	10.0	45.0	4.200	4.90	10.34	45.0	189.00
3	砂礫	17.0	0.0	5.400	4.90	13.30	34.0	183.60
4	粘性	22.0	77.5	5.000	4.90	12.32	77.5	387.50
計				23.700		81.24		978.50

· 地震時(液無)

層 No	土質	平均 N値	粘着力 (kN/m²)	層厚 Li(m)	$\frac{\gamma_i}{(kN/m^3)}$	W _s (kN)	f_i (kN/m^2)	L _i • f _i (kN/m)
1	砂質	12.0	0.0	9.100	9.90	45.28	24.0	218.40
2	粘性	10.0	45.0	4.200	4.90	10.34	45.0	189.00
3	砂礫	17.0	0.0	5.400	4.90	13.30	34.0	183.60
4	粘性	22.0	77.5	5.000	4.90	12.32	77.5	387.50
計				23.700		81.24		978.50

地盤から決まる極限支持力

常時

$$\begin{aligned} R_u &= U \cdot \Sigma(L_i \cdot f_i) \\ &= 2.513 \cdot 978.5 = 2,459 \text{ (kN)} \end{aligned}$$

地震時(液無)

$$R_u = U \cdot \Sigma(L_i \cdot f_i)$$

= 2.513 \cdot 978.5 = 2.459 (kN)

W : 杭の有効重量(kN)

 $W = \Sigma(W" \cdot L + W_o \cdot L_o) (kN)$

W":水中部単位長重量 (kN/m)L :水中部杭長 (m)W_o :水位上部単位長重量(kN/m)

L。: 水位上部杭長 (m)

断面	W"	L(m)		\mathbf{W}_{o}	L _o (m)		W _i (kN)	
No	(kN/m)	常時	地震時	(kN/m)	常時	地震時	常時	地震時
1	3.672	29.100	29.100	6.080	1.900	1.900	118.398	118.398
計							118.398	118.398

許容支持力

常 時 Ra =
$$\frac{1.0}{3.0}$$
 · (2459 - 81.2) + 81.2 - 118.4 = 756 (kN) 地震時(液無) Ra = $\frac{1.0}{2.0}$ · (2459 - 81.2) + 81.2 - 118.4 = 1152 (kN)

(c) 軸方向許容引抜き抵抗力の計算

$$Pa = \frac{1}{n} \cdot Pu + W$$

$$P_u = U \cdot \Sigma(L_i \cdot f_i)$$
 (常 時), (地震時(液無))

$$P_u = U \cdot \Sigma(L_i \cdot f_i \cdot DE_i)$$
 (地震時(液有))

Pa: 杭頭における杭の軸方向許容引抜き抵抗力 (kN)

n:安全率 6.0(常 時) 3.0(地震時)

Pu: 地盤から決まる杭の極限引抜き抵抗力 (kN)

P_u = 2.513 · 978.5 = 2,459 (kN) (常 時)

P_u = 2.513 · 978.5 = 2,459 (kN) (地震時(液無))

W : 杭の有効重量 118.4 (kN) (常 時) 118.4 (kN) (地震時)

許容引抜力

常 時 Pa =
$$\frac{1}{6.0}$$
 • 2459 + 118.4 = 528 (kN)

地震時(液無) Pa =
$$\frac{1}{3.0}$$
 · 2459 + 118.4 = 938 (kN)

(d) 計算結果一覧

(kN/本)

許容支持	常時	756
計谷又行	地震時(液無)	1,152
許容引抜力	常時	528
計合が扱力	地震時(液無)	938

付属資料1 確率波高算出結果

最適関数 WEIBULL分布 (k = 0.75)相関係数 0.955 確率年 期待値 0.48 5 0.56 10 20 0.65 3 0 0.71 0.75 4 0 0.79 5 0 0.82

図1 M2地点(NNE)確率波高

60

図2 M2地点(NE)確率波高

データ数 35 (35年) 最適関数 GUMBEL分布 相関係数 0.988 確率年 期待值 5 0.73 10 0.81 20 0.88 0.92 3 0 0.95 40 5 0 0.98

1.00

図3 M2地点(ENE)確率波高

60

データ数 35 (35年) 最適関数 WEIBULL分布 (k = 2.00)相関係数 0.984 確率年 期待値 5 2.35 2.64 1 0 2.89 20 3.02 3 0 4 0 3.11 5 0 3.17 3.23 60

図4 M2地点(WNW)確率波高

データ数 34 (35年) 最適関数 WEIBULL分布 (k = 2.00)相関係数 0.993 確率年 期待値 5 1.36 1 0 1.51 2 0 1.64 3 0 1.70 4 0 1.75 5 0 1.78 1.81 6 0

図5 M2地点(NW)確率波高

データ数 22 (35年) 最適関数 WEIBULL分布 (k = 1.50)相関係数 0.977 確率年 期待値 5 1.23 10 1.43 2 0 1.60 1.70 3 0 1.76 4 0 1.81 5 0 60 1.85

図6 M2地点(NNW)確率波高

データ数 16 (35年) 最適関数 WEIBULL分布 (k = 1.25)相関係数 0.964 確率年 期待値 5 1.07 10 1.28 20 1.47 1.57 3 0 1.65 4 0 1.70 5 0 6 0 1.75

図7 M2地点(N)確率波高

17 (35年) 最適関数 WEIBULL分布 (k = 1.50)相関係数 0.984 確率年 期待値 5 0.33 0.35 10 20 0.37 3 0 0.38 40 0.38 5 0 0.39 0.39

図8 M3地点(NNE)確率波高

6 0

データ数 30 (35年) 最適関数 WEIBULL分布 (k = 2.00)相関係数 0.989 確率年 期待値 5 0.45 1 0 0.48 20 0.51 0.53 3 0 0.5440 0.55 5 0 0.55 6 0

図9 M3地点(NE)確率波高

データ数 30 (35年) 最適関数 WEIBULL分布 (k = 2.00)相関係数 0.983 確率年 期待値 0.54 5 0.59 10 20 0.62 3 0 0.64 4 0 0.65 5 0 0.66

図10 M3地点(ENE)確率波高

0.67

60

データ数 28 (35年) 最適関数 GUMBEL分布 0.989 相関係数 確率年 期待值 5 0.77 10 0.90 20 1.02 3 0 1.09 4 0 1.13 5 0 1.17 6 0 1.20

図11 M3地点(W)確率波高

データ数 30 (35年) 最適関数 GUMBEL分布 相関係数 0.994 確率年 期待值 5 0.710.79 10 20 0.88 3 0 0.93 4 0 0.96 5 0 0.99 60 1.01

図12 M2地点(WNW)確率波高

24 (35年) 最適関数 WEIBULL分布 (k = 1.50)0.990 相関係数 確率年 期待値 0.48 5 0.56 1 0 20 0.63 0.66 3 0 40 0.69 0.71 5 0

0.72

60

図13 M3地点(NW)確率波高

図14 M3地点(N)確率波高

付属資料 2 確率風速算出結果

最適関数 WEIBULL分布 (k = 1.50)0.989 相関係数 確率年 期待値 5 5.98 10 6.62 7.17 20 7.46 3 0 7.66 4 0 5 0 7.80

図1 M2地点(NNE)確率風速

7.92

60

データ数 32 (35年) GUMBEL分布 最適関数 相関係数 0.996 確率年 期待值 5 7.50 10 8.05 20 8.58 8.89 3 0 9.10 40 5 0 9.27

6 0

図2 M2地点(NE)確率風速

9.40

データ数 35 (35年) 最適関数 WEIBULL分布 (k=2.00)

相関係数 0.971 確率年 期待値 5 11.05 11.92 10 12.66 20 3 0 13.06 40 13.33 13.53 5 0 13.68 60

図3 M2地点(ENE)確率風速

最適関数 WEIBULL分布 (k = 0.75)相関係数 0.949 確率年 期待値 5 5.10 1 0 5.45 5.90 20 3 0 6.19 6.41 4 0

図4 M2地点(N)確率風速

6.58

6.73

カータ級 35 (35年) 最適関数 WEIBULL分布 (k=2.00) 相関係数 0.992 確率年 期待値

7.90

10 8.48 20 8.99 30 9.26 40 9.44 50 9.57 60 9.68

5

図5 M3地点(WNW)確率風速

データ数35 (35年)最適関数WE1BULL分布
(k=2.00)相関係数0.991確率年期待値56.29

10 6.67 20 7.00 30 7.18 40 7.29 50 7.38 60 7.45

図6 M3地点(NW)確率風速

データ数 35 (35年) 最適関数 GUMBEL分布 相関係数 0.993 確率年 期待値 5 5.42 10 5.80 20 6.16 6.37 3 0 4 0 6.52 5 0 6.63 6.72 60

図7 M3地点(NNW)確率風速

データ数 35 (35年) 最適関数 WEIBULL分布 (k = 0.75)相関係数 0.928 確率年 期待値 5 5.40 1 0 5.94 20 6.53 6.90 3 0

7.17

50 7.38

40

60 7.56

図8 M3地点(N)確率風速

付属資料3 エネルギー平衡方程式

エネルギー平衡方程式基礎方程式

波の不規則性を考慮したエネルギー平衡方程式に基づく計算法は、沖側での波浪諸元(スペクトル形を含む)を与え、これが水深変化に伴って変形する過程を次式のエネルギー平衡方程式を数値的に解くことによって求め、対象地点での換算沖波波高等を算定するものである。

$$\frac{\partial}{\partial x} \left(C_g \cos \theta \cdot D \right) + \frac{\partial}{\partial y} \left(C_g \sin \theta \cdot D \right) + \frac{\partial}{\partial \theta} \left(\frac{Cg}{C} \left(\frac{\mathcal{X}}{\partial x} \sin \theta - \frac{\mathcal{X}}{\partial y} \cos \theta \right) D \right) = 0 \tag{3.1}$$

ここで、x,yは座標,は波向き,Dは方向スペクトル,Cgは群速度,Cは波速である。

計算方法の詳細は以下の通りである。

方向スペクトルをDとし、外部エネルギーの授受をQ、エネルギー伝播速度ベクトルを \bar{V} とすると、エネルギー平衡方程式は次のように表される。

$$\frac{\partial D}{\partial t} + \nabla \cdot \left(D\vec{V} \right) + Q = 0 \tag{3.2}$$

ここに.

$$\nabla = \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial f}, \frac{\partial}{\partial \theta} \right\}$$

$$\vec{V} = \begin{cases} V_x \\ V_y \\ V_f \\ V_\theta \end{cases} = \begin{cases} C_g \cos \theta \\ C_g \sin \theta \\ \frac{\partial f}{\partial t} \\ \frac{C_g}{C} \left(\frac{\partial C}{\partial x} \sin \theta - \frac{\partial C}{\partial y} \cos \theta \right) \end{cases}$$

$$C_g = \frac{C}{2} \left(1 + \frac{2kd}{\sinh 2kd} \right)$$

$$(3.3)$$

Cgは群速度、Cは速度、kは波数、dは水深 である。

ここで、①波は時間的に変化しない、②成分波の周期は変化しない、③外部からはエネルギーを受けないと仮定すると式(3.1)は次のように書き直せる。

$$\frac{\partial (DV_x)}{\partial x} + \frac{\partial (DV_y)}{\partial y} + \frac{\partial (DV_\theta)}{\partial \theta} = 0$$
 (3.4)

式(3.4)を D について解けば、ある地点における波の状態がわかることになる。しかし、一般に、式(3.4)を解析的に解くことは困難なため、実際には各項について差分法を使用して式(3.4)は解かれる。

すなわち、対象領域を一定間隔の格子網で覆い各格子点で水深等の条件を与え地形を格子 で近似して計算を行う。

計算は、まず、最も沖側格子行でその地点の方向スペクトルが提案方向スペクトル(通常は深海波のスペクトル)に等しいという条件を与える。沖側境界以降は、各行ごとにエネルギー平衡方程式(式(3.4))を差分法で解き方向スペクトルの分布を求める。この各行毎の計算を沖から岸側に向かって順次進め、対象領域内すべての格子点における方向スペクトルの分布が求められる。

この際の側方の境界条件は、海域側と陸域側を分けて次のような条件とする。

・海域側: 内外のスペクトルを同一とする

・陸域側: 波のエネルギーは陸部で吸収されるものとする

このようにして、ある地点の方向スペクトルが求まれば、それから屈折・浅水変形後の波 浪諸元が求まることになる。また、島や構造物背後の遮蔽効果は、島、構造物よりエネルギ ーの流入が無いものとすると方向分散効果が考慮される。

不規則波のスペクトル形としては、周波数スペクトルとしてブレッドシュナイダー・光易型を、方向分布関数には光易型を用いる。

$$S(f) = 0.257H_{1/3}^{2}T_{1/3}(T_{1/3}f)^{-5} \exp[-0.103(T_{1/3}f)^{-4}]$$

$$G(f,\theta) = G_{0} \cos^{2s}(\theta/2) \qquad , \qquad G_{0} = \left[\int_{\theta_{\min}}^{\theta_{\max}} \cos^{2s}(\theta/2)d\theta\right]^{-1}$$

$$S = \begin{cases} S_{\max}(f/f_{p})^{-2.5} & (f > f_{p}) \\ S_{\max}(f/f_{p})^{5} & (f < f_{p}) \end{cases}$$

$$f_{p} = 1/(1.05T_{1/3})$$

$$(3.5)$$

ここで、 S_{\max} は方向集中度を示すパラメータで、スペクトルのピーク周波数における Sの値である。

a) 浅水変形

微小振幅波理論による浅水変形は、次式で計算する。

$$K_{s} = \frac{H}{H_{0}'} = \sqrt{\frac{1}{2n} \frac{C_{0}}{C}}$$

$$n = \frac{1}{2} \left\{ 1 + \frac{4\pi h/L}{\sinh(4\pi h/L)} \right\}$$

$$C_{0} = \frac{g}{2\pi} T$$

$$C = \frac{L}{T} = \sqrt{\frac{gL}{2\pi} \tanh \frac{2\pi h}{L}}$$
(3.6)

ここで、Ks は浅水係数,Hは水深 h における波高,Hoは換算冲波波高,Co は深海での波速,Cは水深 h における波速,L は水深 h における波長である。

上記の浅水変形に関する式は、浅海域を進行した波が砕波点に近づき、波形勾配が大きくなるとこの式が成り立たなくなるため、次に示す非線形長波理論による浅水変形を考慮する。

$$K_{s} = \frac{1}{\sqrt{\left\{1 + \frac{4\pi h/L}{\sinh(4\pi h/L)}\tanh\frac{2\pi h}{L}\right\}}} \qquad \left(\frac{gHT^{2}}{h^{2}} \le 30\right)$$

$$Hh^{2/7} = const. \qquad \left(30 \le \frac{gHT^{2}}{h^{2}} < 50\right)$$

$$Hh^{5/2}\left\{\sqrt{gHT^{2}/d^{2} - 2/\sqrt{3}}\right\} = const. \qquad \left(50 \le \frac{gHT^{2}}{h^{2}}\right)$$

付属資料 4 DILI 港付近の設計波計算結果

2.63 2.94 3.02 3.07 3.10 3.11 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.16 3.16 3.17 3.17 3.17 3.17 3.17 3.17 1.96 2.70 2.89 2.97 3.03 3.06 3.08 3.10 3.11 3.12 3.13 3.14 3.14 3.15 3.15 3.15 3.16 3.16 3.16 3.16 3.17 1.77 2.43 2.72 2.86 2.94 2.99 3.03 3.05 3.07 3.09 3.10 3.11 3.12 3.12 3.13 3.13 3.14 3.14 3.14 3.15 3.15 3.15 1.69 2.22 2.55 2.73 2.84 2.91 2.96 3.00 3.03 3.05 3.06 3.08 3.09 3.10 3.11 3.12 3.12 3.13 3.13 3.14 3.14 1.08 1.65 2.08 2.39 2.60 2.74 2.83 2.89 2.94 2.98 3.00 3.03 3.04 3.06 3.07 3.08 3.09 3.10 3.11 3.11 3.12 3.12 3.13 0.53 1.21 1.63 1.98 2.27 2.48 2.64 2.74 2.82 2.88 2.92 2.96 2.98 3.01 3.03 3.04 3.06 3.07 3.08 3.08 3.09 3.10 3.11 3.11 0.83 1.27 1.60 1.91 2.17 2.38 2.54 2.66 2.75 2.81 2.87 2.91 2.94 2.97 2.99 3.01 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.09 0.98 1.32 1.58 1.86 2.10 2.29 2.45 2.58 2.67 2.75 2.81 2.86 2.90 2.93 2.95 2.98 3.00 3.01 3.03 3.04 3.05 3.06 3.07 3.08 107 134 157 183 203 222 237 250 260 268 275 280 285 288 292 294 296 298 300 301 303 304 305 306 1.14 1.36 1.56 1.79 1.98 2.16 2.30 2.43 2.54 2.62 2.69 2.75 2.80 2.84 2.88 2.91 2.93 2.95 2.97 2.99 3.00 3.02 3.03 3.04 1.18 1.37 1.55 1.76 1.94 2.10 2.24 2.37 2.47 2.56 2.64 2.70 2.75 2.80 2.84 2.87 2.90 2.92 2.94 2.96 2.98 2.99 3.01 3.01 1.21 1.38 1.55 1.74 1.91 2.06 2.19 2.31 2.42 2.51 2.58 2.65 2.71 2.75 2.80 2.83 2.86 2.89 2.91 2.93 2.95 2.97 2.84 3.02 1.24 1.39 1.54 1.72 1.88 2.02 2.15 2.26 2.36 2.46 2.53 2.60 2.66 2.70 2.75 2.79 2.83 2.86 2.88 2.90 2.87 1.26 1.39 1.54 1.71 1.86 1.99 2.11 2.22 2.32 2.32 2.82 2.85 2.87 9.44 1.71 2.63 2.81 2.75 1.66 0.47 0.41 1.29 1.40 1.54 1.70 1.84 1.96 2.07 2.18 2.17 0.06 0.20 0.83 1.63 2.33 2.65 2.62 2.10 1.18 0.44 0.18 1.31 1.41 1.54 1.70 1.82 1.93 2.04 2.11 1.97 0.58 1.33 1.42 1.54 1.69 1.80 1.90 2.00 2.00 1.84 1.13 0.07 0.04 0.08 0.17 0.52 1.02 1.60 2.12 2.41 2.45 2.17 1.61 0.97 0.47 1.35 1.43 1.54 1.69 1.78 1.87 1.93 1.90 1.74 1.28 0.41 0.10 0.16 0.37 0.74 1.14 1.57 1.95 2.19 2.26 2.12 1.77 1.33 0.89 1.35 1.45 1.54 1.69 1.76 1.83 1.86 1.80 1.67 1.33 0.72 0.21 0.29 0.56 0.88 1.20 1.53 1.82 2.01 2.09 2.01 1.80 1.50 1.17 1.45 1.54 1.68 1.72 1.78 1.78 1.73 1.61 1.34 0.92 0.42 0.45 0.71 0.97 1.23 1.47 1.71 1.87 1.94 1.89 1.76 1.56 1.33 4-53_1.67_1.68_1.73_1.71_1.66_1.56_1.33_1.03_0.66_0.61_0.81_1.02_1.23_1.42_1.62_1.75_1.82_1.78_1.70_1.56_1.40_ 63 1.68 1.64 1.61 1.51 1.32 1.11 0.86 0.75 0.88 1.05 1.21 1.37 1.53 1.64 1.71 1.69 1.63 1.53 1.41 1.57 1.56 1.47 1.32 1.17 1.01 0.88 0.93 1.05 1.19 1.32 1.46 1.56 1.62 1.61 1.57 1.50 1.40

Wave di	rection	WNW (324)	
Wave he	ight	3. 17 m	
Wave pe	riod	9.20 sec	
0	10	20km	
	_		図1 換算沖波波高分布(WN

1.05 1.17 1.27 1.37 1.45 1.52 1.58 1.62 1.65 1.68 1.70 1.72 1.73 1.74 1.75 1.76 1.76 1.77 1.77 1.77 1.78 1.78 1.78 1.78 1.08 1.17 1.26 1.36 1.44 1.50 1.56 1.60 1.63 1.66 1.68 1.70 1.72 1.73 1.74 1.75 1.76 1.76 1.77 1.77 1.77 1.78 1.78 1.78 1.09 1.18 1.26 1.35 1.42 1.48 1.54 1.58 1.62 1.64 1.67 1.69 1.70 1.72 1.73 1.74 1.75 1.75 1.76 1.76 1.77 1.77 1.76 1.78 1.11 1.18 1.26 1.34 1.41 1.47 1.52 1.56 1.60 1.63 1.65 1.67 1.69 1.71 1.72 1.73 1.74 1.75 1.75 1.76 1.70 1.12 1.18 1.26 1.34 1.40 1.46 1.50 1.54 1.57 1.60 1.74 1.73 1.69 8.87 1.49 1.13 1.19 1.26 1.33 1.39 1.44 1.48 1.50 1.37 9.52 1.37 1.67 1.68 1.57 0.81 0.43 0.32 1.14 1.19 1.26 1.33 1.38 1.42 1.43 1.39 1.20 0.32 0.12 0.38 0.86 1.30 1.53 1.58 1.47 1.07 0.63 0.20 0.05 1.15 1.20 1.25 1.32 1.35 1.37 1.36 1.29 1.11 0.62 0.04 0.09 0.18 0.38 0.66 0.95 1.23 1.42 1.47 1.38 1.12 0.78 0.42 0.19 1.16 1.20 1.24 1.30 1.31 1.31 1.29 1.20 1.04 0.71 0.25 0.22 0.38 0.56 0.76 0.97 1.18 1.32 1.35 1.29 1.10 0.85 0.59 0.38 1.15 1.19 1.22 1.27 1.26 1.25 1.22 1.14 1.00 0.76 0.45 0.37 0.50 0.65 0.81 0.97 1.13 1.23 1.26 1.21 1.07 0.88 0.68 0.51 1.17 1.19 1.23 1.21 1.21 1.16 1.08 0.97 0.79 0.60 0.49 0.58 0.70 0.83 0.96 1.07 1.15 1.17 1.13 1.02 0.88 0.73 0.59 **146** 1.20 1.17 1.16 1.11 1.05 0.96 0.82 0.69 0.59 0.63 0.73 0.83 0.94 1.02 1.09 1.10 1.07 0.98 0.87 0.75 0.64 13 1.13 1.08 1.03 0.96 0.84 0.75 0.67 0.67 0.74 0.83 0.91 0.98 1.03 1.04 1.01 0.95 0.85 0.76 0.66 1.05 1.01 0.96 0.86 0.79 0.73 0.70 0.75 0.82 0.88 0.94 0.98 0.98 0.97 0.92 0.83 0.75 0.68

Wave di	rection	NW (324)	
Wave he	ight	1.78 m	
Wave pe	eriod	6.30 sec	
0	10	20km	
			図2 換算沖波波高分布(NW)

4.79 | 1.81 | **y** 80 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.47 1.53 1.58 1.63 1.67 1.71 1.73 1.75 1.77 1.79 1.80 1.80 1.81 1.81 1.80 1.80 1.80 1.79 1.78 1.75 1.59/ 1.79 1.48 1.53 1.58 1.63 1.67 1.69 1.71 1.72 1.67 1.72 1.74 1.69 1.58 1.48 1.52 1.56 1.60 1.63 1.64 1.63 1.57 1.30 0.72 1.54 1.66 1.58 1.37 0.57 0.56 0.34 0.21 0.56 1.09 1.44 1.54 1.47 1.25 0.80 0.50 0.12 0.02 1.47 1.50 1.53 1.56 1.57 1.56 1.51 1.39 1.09 0.24 1.45 1.47 1.49 1.51 1.50 1.46 1.39 1.24 0.98 0.49 0.06 0.16 0.29 0.55 0.88 1.15 1.36 1.43 1.36 1.17 0.84 0.51 0.14 0.03 1.42 1.43 1.44 1.45 1.42 1.37 1.29 1.14 0.91 0.58 0.27 0.35 0.54 0.76 0.96 1.14 1.28 1.32 1.25 1.10 0.85 0.56 0.27 0.09 1.38 1.39 1.39 1.39 1.35 1.29 1.20 1.06 0.88 0.65 0.48 0.53 0.69 0.84 0.99 1.12 1.20 1.22 1.16 1.03 0.84 0.61 0.39 0.20 1.35 1.33 1.33 1.28 1.22 1.13 1.01 0.88 0.73 0.63 0.65 0.76 0.87 0.99 1.08 1.13 1.13 1.08 0.97 0.82 0.64 0.46 0.30 **4.28 1.28 1.29 1.17 1.08 0.99 0.90 0.78 0.73 0.72 0.79 0.88 0.97 1.03 1.07 1.06 1.01 0.92 0.79 0.65 0.51 0.38** 17 1.13 1.05 0.98 0.91 0.83 0.79 0.78 0.81 0.88 0.94 0.99 1.01 1.00 0.95 0.87 0.77 0.65 0.54 0.43 1.03 0.98 0.93 0.85 0.82 0.81 0.82 0.87 0.92 0.95 0.95 0.94 0.90 0.84 0.75 0.65 0.56 0.47

Wave direction	NN₩ (330)
Wave height	1.81 m
Wave period	6.40 sec
) 10	20km

0 10 20km

図3 換算沖波波高分布(NNW)

図4 換算沖波波高分布(N)

図8 波向ベクトル分布(N)

Wave direction	WNW (324)
Wave height	3.17 m
Wave period	9, 20 sec

0 10 20km

図9 波向数值分布(WNW)

数値:Nから時計回りの角度 (deg)

数値:Nから時計回りの角度 (deg)

Wave direction	NW (327)
Wave height	1.78 m
Wave period	6.30 sec

0 10 20km

図10 波向数値分布(NW)

数値:Nから時計回りの角度 (deg)

Wave direction	NNW (330)
Wave height	1.81 m
Wave period	6.40 sec

0 10 20km

図11 波向数值分布(NNW)

図12 波向数值分布(N)

付属資料 5 対象地点の設計波計算結果

0.69 0.72 0.74 0.77 0.79 0.81 0.83 0.84 0.86 0.87 0.88 0.89 0.91 0.93 0.96 0.97 0.99 1.01 1.03 1.04 1.05 1.06 1.06 1.08 1.08 1.08 0.69 0.71 0.73 0.76 0.78 0.80 0.82 0.83 0.84 0.86 0.87 0.88 0.90 0.92 0.95 0.96 0.98 1.01 1.03 1.05 1.06 1.08 1.07 1.10 1.11 1.10 0.68 0.70 0.73 0.75 0.78 0.79 0.81 0.82 0.84 0.85 0.87 0.88 0.90 0.92 0.95 0.96 0.98 1.00 1.04 1.06 1.08 1.10 1.08 1.12 1.13 1.12 0.67 0.70 0.72 0.75 0.77 0.79 0.81 0.82 0.84 0.85 0.86 0.88 0.90 0.92 0.95 0.96 0.97 0.99 1.04 1.07 1.10 1.12 1.09 1.13 1.14 1.13 0.68, 0.69, 0.72, 0.75, 0.77, 0.79, 0.81, 0.82, 0.84, 0.85, 0.86, 0.88, 0.90, 0.92, 0.95, 0.96, 0.97, 0.99, 1.04, 1.08, 1.10, 1.13, 1.09, 1.13, 1.14, 1.13 0.66 0.68 0.72 0.75 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 0.89 0.94 0.96 0.96 0.96 0.96 1.03 1.07 1.10 1.13 1.09 1.12 1.14 1.14 0.63 0.88 0.71 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.88 0.89 0.91 0.94 0.95 0.94 0.96 1.02 1.07 1.10 1.13 1.08 1.12 1.13 1.14 0.63 0.67 0.74 0.74 0.77 0.79 0.81 0.83 0.84 0.85 0.86 0.87 0.89 0.90 0.93 0.94 0.93 0.94 1.00 1.05 1.09 1.12 1.07 1.11 1.13 1.15 0.63 0.66 0.71, 0.74 0.77 0.79 0.81 0.83 0.85 0.85 0.85 0.87 0.88 0.90 0.91 0.92 0.91 0.92 0.97 1.03 1.08 1.11 1.07 1.11 1.14 1.16 0.64 0.67 0.77 0.73 0.76 0.79 0.81 0.83 0.85 0.85 0.85 0.86 0.87 0.88 0.90 0.91 0.90 0.90 0.95 1.00 1.06 1.10 1.08 1.11 1.14 1.18 0.66 0.68 0.69 0.72 0.76 0.79 0.81 0.83 0.84 0.85 0.84 0.85 0.86 0.88 0.89 0.90 0.89 0.90 0.93 0.99 1.04 1.09 1.08 1.12 1.16 1.19 .0.67 0.68 0.68 0.70 0.76 0.7<u>8 0.81 0</u>.83 0.84 0.85 0.84 0.85 0.86 0.87 0.89 0.89 0.89 0.89 0.92 0.97 1.02 1.07 1.06 1.11 1.16 1.19 0.67 0.68 0.69 0.69 0.73 0.78 0.81 0.83 0.84 0.85 0.84 0.84 0.85 0.87 0.88 0.89 0.88 0.89 0.91 0.95 1.00 1.04 1.04 1.09 1.14 1.18 0.68 0.69 0.70 0.70 0.72 0.78 0.80 0.83 0.84 0.84 0.83 0.83 0.84 0.85 0.87 0.87 0.87 0.87 0.80 0.89 0.92 0.97 1.01 1.01 1.06 1.11 1.16 0.69 0.70 0.72 0.72 0.72 0.76 0.80 0.82 0.83 0.83 0.82 0.83 0.84 0.85 0.85 0.85 0.85 0.87 0.90 0.95 0.99 0.99 1.04 1.09 1.14 0.70 0.70 0.71 0.71 0.75 0.78 0.80 0.81 0.82 0.81 0.81 0.81 0.82 0.83 0.83 0.83 0.83 0.86 0.89 0.93 0.98 0.98 1.03 1.08 1.12 0.69 0.68 0.68 0.74 0.77 0.79 0.80 0.80 0.80 0.80 0.80 0.81 0.82 0.82 0.82 0.82 0.85 0.88 0.92 0.96 0.97 1.01 1.06 1.10 0.67 0.67 0.72 0.75 0.79 0.79 0.79 0.78 0.78 0.79 0.79 0.88 0.81 0.81 0.81 0.84 0.87 0.91 0.95 0.96 1.00 1.04 1.08 0.68 0.71 0.74 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.79 0.79 0.80 0.80 0.83 0.86 0.90 0.94 0.95 0.99 1.03 1.06 0.68 0.70 0.71 0.75 0.77 0.78 0.76 0.76 0.76 0.76 0.78 0.78 0.78 0.79 0.80 0.82 0.86 0.90 0.93 0.94 0.98 1.01 1.04 0.69 8.69 0.70 0.76 0.75 0.76 0.75 0.75 0.76 0.77 0.78 0.79 0.80 0.82 0.85 0.89 0.92 0.93 0.97 1.00 1.03 0.70 0.72 0.70 0.75 0.74 0.73 0.75 0.76 0.77 0.78 0.79 0.82 0.85 0.88 0.92 0.92 0.95 6.98 1.01 0.73 0.71 0.70 0.71 0.77 0.73 0.75 0.76 0.78 9.79 0.82 0.84 0.88 0.91 0.91 0.94 0.97 0.99 0.70 0.65 0.69 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.87 0.90 0.90 0.93 0.95 0.98 0.68 0.64 0.67 0.70 0.73 0.75 0.77 0.80 0.82 0.84 0.86 0.89 0.89 0.91 0.94 0.97 0.64 0.62 0.69 0.72 0.75 0.77 0.80 0.82 0.84 0.86 0.88 0.89 0.91 0.93 0.96 0.73 0.76 0.79 0.82 0.83 0.85 0.87 0.88 0.90 0.93 0.95 0.77 0.81 0.83 0.85 0.87 0.88 0.90 0.92 0.94 9,79 0.83 0.85 0.87 0.87 0.89 0.91 0.93 0.81 0.84 0.86 0.87 0.89 0.90 0.92 0.85 0.85 0.86 0.88 0.89 0.90 0.93 0.86 0.86 0.87 0.89 0.89 0.88 0.86 0.87 0.84 0.88 0.88 Wave direction WNW (324) 0.90 1,63 m Wave height 50 100m Wave period 9. 20 sec

図1 換算沖波波高分布(WNW)

0.59 0.61 0.63 0.64 0.66 0.67 0.68 0.69 0.70 0.71 0.71 0.72 0.74 0.75 0.76 0.76 0.77 0.78 0.79 0.81 0.82 0.82 0.82 0.83 0.84 0.83 0.59 0.60 0.62 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.80 0.81 0.82 0.82 0.82 0.84 0.85 0.850.58 0.60 0.61 0.63 0.64 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.80 0.81 0.82 0.83 0.82 0.84 0.85 0.85 0.57 0.59 0.61 0.63 0.64 0.65 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.74 0.75 0.76 0.76 0.77 0.80 0.81 0.82 0.84 0.82 0.84 0.85 0.85 0.56 0.58 0.60 0.62 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.75 0.76 0.77 0.79 0.81 0.82 0.84 0.82 0.84 0.85 0.85 0.55 0.57 0.59 0.61 0.63 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.79 0.81 0.82 0.83 0.82 0.84 0.85 0.85 0.53 0.56 0.59 0.61 0.63 0.64 0.65 0.67 0.68 0.68 0.69 0.70 0.71 0.72 0.74 0.74 0.74 0.76 0.79 0.80 0.81 0.83 0.82 0.83 0.84 0.85 0.52 0.55 0.57 0.60 0.62 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.74 0.74 0.75 0.77 0.80 0.81 0.83 0.81 0.83 0.84 0.85 0.52 0.54 0.56 0.59 0.6† 0.63 0.65 0.66 0.67 0.68 0.68 0.69 0.70 0.71 0.72 0.73 0.73 0.73 0.76 0.79 0.81 0.82 0.81 0.83 0.84 0.85 0.52 0.53 0.56 0.58 0.60 0.62 0.64 0.65 0.67 0.67 0.68 0.69 0.70 0.70 0.71 0.72 0.72 0.73 0.75 0.77 0.80 0.82 0.81 0.83 0.84 0.86 0.53 0.53 0.54 0.57 0.59 0.62 0.63 0.65 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.72 0.74 0.76 0.79 0.81 0.81 0.83 0.84 0.86 ~0.53 0.53 0.53 0.55 0.58 0.60 <u>0.6</u>3 0.64 0.66 0.67 0.67 0.68 0.68 0.69 0.70 0.71 0.71 0.72 0.74 0.76 0.78 0.80 0.80 0.80 0.83 0.85 0.86 0.53 0.53 0.53 0.53 0.56 0.59 0.62 0.64 0.65 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.71 0.72 0.73 0.75 0.77 0.79 0.79 0.81 0.83 0.85 ୍ 0.53 0.53 0.53 0.53 0.55 0.58 0.61 0.63 0.65 0.66 0.66 0.66 0.67 0.68 0.69 0.90 0.90 0.70 0.72 0.74 0.75 0.77 0.78 0.80 0.82 0.84 0.53 0.53 0.54 0.54 0.54 0.57 0.60 0.62 0.64 0.65 0.65 0.66 0.66 0.67 0.68 0.69 0.69 0.70 0.71 0.73 0.74 0.76 0.77 0.79 0.81 0.83 0.53 0.53 0.53 0.52 0.55 0.58 0.61 0.63 0.64 0.65 0.65 0.66 0.66 0.66 0.67 0.68 0.69 0.69 0.71 0.72 0.74 0.76 0.76 0.78 0.80 0.82 8.52 0.51 0.50 0.54 0.57 0.59 0.61 0.63 0.64 0.64 0.65 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.73 0.75 0.76 0.77 0.79 0.81 0.50 0.49 0.52 0.55 0.58 0.60 0.62 0.63 0.64 0.64 0.65 0.66 0.67 0.67 0.68 0.69 0.71 0.73 0.74 0.75 0.77 0.79 0.80 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.63 0.63 0.64 0.65 0.66 0.67 0.67 0.69 0.70 0.72 0.74 0.74 0.76 0.78 0.79 0.50 0.51 0.52 0.55 0.57 0.59 0.60 0.61 0.63 0.6 0.64 0.65 0.66 0.67 0.68 0.70 0.71 0.73 0.74 0.75 0.77 0.79 0.50 0.51 0.52 0.57 0.58 0.59 0.60 0.61 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.71 0.72 0.73 0.75 0.76 0.78 0.52 0.56 0.55 0.58 0.59 0.60 0.62 0.63 0.64 0.65 0.66 0.67 0.69 0.70 0.72 0.73 0.74 6.76 0.77 0.56 0.56 0.56 0.57 0.58 0.60 0.62 0.63 0.65 0.66 0.67 0.68 0.70 0.71 0.72 0.73 0.75 0.76 0.56 0.52 0.56 0.58 0.61 0.63 0.64 0.66 0.67 0.68 0.70 0.71 0.72 873 0.74 0.75 0.55 0.54 0.54 0.57 0.59 0.62 0.64 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.51 0.50 0.55 0.58 0.61 0.63 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.58 0.62 0.64 0.66 0.67 0.68 0.69 0.70 0.71 0.73 0.74 0.61 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.73 9,62 0.66 0.67 0.69 0.70 0.70 0.72 0.73 0.62 0.66 0.68 0.69 0.70 0.71 0.72 0.63 0.66 0.68 0.69 0.70 0.71 0.65 0.65 0.67 0.69 0.70 0.66 0.65 0.67 0.68 0.64 0.66 0.66 (324)Wave direction 0.67 Wave height 1.13 m 50 100m Wave period 6.30 sec

図2 換算沖波波高分布(NW)

0.63 0.64 0.66 0.68 0.69 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.87 0.88 0.88 0.88 0.62 0.64 0.65 0.67 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.80 0.80 0.81 0.82 0.84 0.86 0.86 0.87 0.87 0.89 0.90 0.90 0.61 0.63 0.65 0.67 0.68 0.69 0.74 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.80 0.80 0.81 0.82 0.85 0.86 0.87 0.88 0.87 0.89 0.90 0.90 0.61 0.63 0.64 0.66 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.77 0.78 0.79 0.80 0.80 0.82 0.84 0.86 0.87 0.88 0.87 0.89 0.90 0.90 0.60 0.62 0.64 0.66 0.67 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.79 0.80 0.80 0.81 0.84 0.86 0.87 0.88 0.87 0.89 0.90 0.90 0.59 0.61 0.63 0.65 0.67 0.68 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.79 0.81 0.84 0.85 0.87 0.88 0.87 0.89 0.90 0.90 0.56 0.60 0.62 0.64 0.66 0.68 0.69 0.71 0.72 0.72 0.73 0.74 0.75 0.77 0.78 0.79 0.79 0.80 0.83 0.85 0.86 0.88 0.86 0.88 0.89 0.90 0.55 0.58 0.61 0.64 0.66 0.67 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.78 0.78 0.79 0.82 0.85 0.86 0.87 0.86 0.88 0.89 0.90 0.55 0.57 0.60 0.63 0.65 0.67 0.68 0.70 0.71 0.72 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.81 0.83 0.86 0.87 0.86 0.88 0.89 0.90 0.55 0.57 0.59 0.62 0.64 0.66 0.68 0.69 0.71 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.76 0.77 0.79 0.82 0.84 0.87 0.86 0.88 0.89 0.91 0.56 0.57 0.58 0.60 0.63 0.65 0.67 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.77 0.79 0.81 0.84 0.86 0.86 0.88 0.90 0.91 ~0.56 0.56 0.57 0.58 0.6√ 0.64 0.67 0.68 0.70 0.71 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.76 0.76 0.80 0.83 0.85 0.85 0.85 0.88 0.90 0.91 0.56 0.56 0.57 0.57 0.60 0.63 0.66 0.68 0.69 0.70 0.7↑ 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.78 0.79 0.82 0.84 0.84 0.86 0.88 0.90 0.56 0.56 0.57 0.57 0.58 0.62 0.65 0.67 0.69 0.70 0.70 0.71 0.71 0.72 0.73 0.74 0.74 0.75 0.76 0.78 0.80 0.82 0.83 0.85 0.87 0.89 0.56 0.57 0.57 0.57 0.57 0.57 0.61 0.64 0.66 0.68 0.69 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.74 0.76 0.77 0.79 0.81 0.82 0.84 0.86 0.88 0.56 0.56 0.56 0.56 0.59 0.62 0.65 0.67 0.68 0.69 0.69 0.70 0.70 0.77 0.73 0.73 0.73 0.75 0.77 0.78 0.80 0.81 0.83 0.85 0.87 0.55 0.54 0.53 0.58 0.61 0.63 0.65 0.67 0.68 0.68 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.76 0.78 0.80 0.80 0.82 0.84 0.86 0.54 0.53 0.56 0.59 0.62 0.64 0.66 0.67 0.67 0.68 0.69 0.78 0.71 0.71 0.72 0.74 0.75 0.77 0.79 0.80 0.82 0.83 0.85 0.53 0.55 0.58 0.60 0.62 0.64 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.73 0.75 0.77 0.78 0.79 0.81 0.83 0.84 0.53 0.55 0.56 0.59 0.61 0.63 0.64 0.65 0.67 0.6 668 0.69 0.70 0.71 0.73 0.74 0.76 0.78 0.78 0.80 0.82 0.83 0.54 8.55 0.56 0.62 0.62 0.63 0.64 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.74 0.75 0.77 0.78 0.80 0.81 0.83 0.56, 0.60 0.59 0.62 0.63 0.64 0.66 0.67 0.68 0.69 0.70 0.72 0.73 0.75 0.77 0.77 0.79 680 0.82 0.60 0.59 0.59 0.61 0.62 0.64 0.66 0.67 0.69 2 70 0.71 0.73 0.74 0.76 0.77 0.78 0.79 0.81 0.59 0.55 0.59 0.62 0.65 0.67 0.68 0.70 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.80 0.58 0.55 0.57 0.60 0.63 0.66 0.68 0.70 0.71 0.72 0.74 0.75 0.76 0.77 0.78 0.79 0.54 0.53 0.59 0.62 0.65 0.67 0.69 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.79 0.63 0.66 0.68 0.70 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.65 0.69 0.71 0.72 0.74 0.74 0.76 0.77 0.78 9 66 0.70 0.72 0.73 0.74 0.75 0.76 0.71 0.67 0.70 0.72 0.73 0.74 0.75 0.76 3.68 0.70 0.72 0.73 0.74 0.75 0.70 0.70 0.72 0.73 0.74 0.70 0.70 0.71 0.73 0.68 0.71 0.71 NNW (324) Wave direction Wave height 1, 17 m 50 100m Wave period 6.40 sec

図3 換算沖波波高分布(NNW)

0.99 1.01 1.03 1.05 1.07 1.08 1.09 1.10 1.11 1.12 1.14 1.15 1.16 1.18 1.19 1.20 1.21 1.22 1.24 1.26 1.27 1.28 1.28 1.29 1.29 1.29 0.98 1.00 1.02 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.16 1.17 1.19 1.20 1.21 1.22 1.25 1.26 1.27 1.27 1.28 1.30 1.30 1.31 0.97 1.00 1.02 1.04 1.06 1.07 1.08 1.09 1.10 1/12 1.13 1.14 1.16 1.17 1.19 1.20 1.20 1.20 1.23 1/25 1.26 1.27 1.28 1.28 1.30 1.31 1.31 0.96 0.99 101 1.04 1.05 1.07 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.17 1.18 1.19 1.20 1.22 1.25 1.27 1.28 1.28 1.28 1.30 1.31 1.31 0.95, 0.98, 1.07, 1.03, 1.05, 1.06, 1.08, 1.09, 1.10, 1.11, 1.12, 1.14, 1.15, 1.17, 1.18, 1.19, 1.20, 1/22, 1.25, 1.27, 1.28, 1.28, 1.28, 1.30, 1.31, 1.31, 0.94 0.97 1.00 1.03 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.13 1.15 1.16 1.18 1.19 1.22 1.25 1.27 1.28 1.27 1.30 1.30 1.31 0.91 0.96 0.99 1.02 1.04 1.06 1.07 1.09 1.10 1.10 1.12 1.31 1.14 1.16 1.17 1.18 1.19 1.22 1.25 1.26 1.27 1.28 1.27 1.29 1.30 1.31 0.89 0.95 0.98 1.01 1.04 1.05 1.07 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.16 1.17 1.18 1.20 1.24 1.26 1.27 1.27 1.27 1.29 1.30 1.31 0.88 0.92 0.97 1.01 1.03 1.05 1.07 1.08 1.09 1.10 191 1.12 1.13 1.15 1.16 1.17 1.17 1.17 1.19 1.22 1.25 1.27 1.27 1.26 1.28 1.30 1.30 0.88 0.92 0.97 0.99 1.02 1.05 1.06 1.08 1.09 1.10 1.10 1.11 1.13 1.14 1.15 1.16 1.16 1.18 1.21 1.24 1.26 1.27 1.27 1.28 1.29 1.30 0.89 0.92 0.94 0.98 1.01 1.04 1.06 1.07 1.09 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.20 1.23 1.25 1.27 1.27 1.29 1.30 1.31 0.89 0.92 0.93 0.95 0.99 1.03 <u>1.05</u> 1.07 1.08 1.09 1.09 1.10 1.11 1.12 1.14 1.15 1.15 1.17 1.19 1.22 1.24 1.26 1.26 1.29 1.31 1.31 0.89 0.91 0.92 0.93 0.98 1.01 1.04 1.06 1.07 1.08 1.09 1.09 1.10 1.12 1.13 1.14 1.15 1.16 1.19 1.21 1.23 1.25 1.25 1.28 1.29 1.29 889 0.91 0.92 0.93 0.95 7.06 1.03 1.05 1.07 1.08 1.08 1.09 1.10 1.11 1.12 1.16 1.44 1.15 1.18 1.20 1.22 1.23 1.24 1.26 1.27 1.28 0.90 0.91 0.93 0.94 0.94 0.99 1.03 1.05 1.06 1.07 1.07 1.08 1.09 1.10 1.11 1.12 1/13 1.14 1.17 1.19 1.20 1.22 1.23 1.25 1.26 1.27 0.96 0.91 0.92 0.92 0.96 0.00 1.03 1.05 1.06 1.06 1.07 1.08 1.09 1.16 1.17 1.12 1.14 1.16 1.18 1.19 1.21 1.22 1.24 1.25 1.26 0.90 0.89 0.88 0.95 0.98 (10) 4.03 1.05 1.05 1.06 1.07 1.08 1.09 1.00 1.11 1.13 1.15 1.17 1.18 1.20 1.21 1.22 1.24 1.25 0.88 0.87 0.93 0.96 1.00 1.02 1.03 1.04 1.05 1.06 1.07 (108) 0.09 1.10 1.12 1.14 1.16 1.18 1.19 1.20 1.21 1.23 1.23 0.88 0.91 0.95 0.98 1.00 1.01 1.03 1.04 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.15 1.17 1.18 1.19 1.20 1.22 1.22 0.88 0.90 0.91 0.96 0.98 1.00 1.01 1.03 1.04 1.0 1.08 1.09 1.11 1.12 1.14 1.16 1.17 1.18 1.20 1.20 1.21 0.89 0.90 0.91 0.99 0.99 1.00 1.01 1003 1.95 1.06 1.07 1.09 1.10 1.12 1.13 1.15 1.16 1.17 1.19 1.19 1.20 0.91 0.96 0.94 0.99 1.00 1.01 1.03 1.05 1.06 1.08 1.09 1.11 1.12 1.14 1.16 1.16 1.17 1.18 1.19 0.97 0.95 0.96 0.97 0.99 1.01 1.04 1.06 1.07 3.09 1.10 1.12 1.13 1.15 1.15 1.16 1.17 1.18 0.96 0.89 0.95 0.99 1.02 1.05 1.07 1.09 1.10 1.12 1.13 1.14 1.15 115 1.16 1.16 0.94 0.88 0.92 0.97 1.01 1.04 1.07 1.09 1.10 1.11 1.12 1.13 1.14 1.14 1.15 1.15 0.88 0.86 0.95 0.99 1.03 1.06 1.08 1.10 1.11 1.11 1.12 1.13 1.13 1.14 1.15 0,66 0.0 1.01 1.05 1.07 1.09 1.10 1.11 1.04 1.08 1.09 1.10 1.11 1.11 1.12 1.13 1.14 4.04 1.08 1.09 1.10 1.10 1.11 1.12 1.13 03 1.07 1.09 1.10 1.10 1.11 1.12 1.04 1.07 1.08 1.09 1.10 1.11 1.07 1.05 1.07 1.09 1.09 1.07 1.05 1.06 1.07 .04 1.06 1.05 (324)Wave direction 1.36 m Wave height 50 100m Wave period 6.10 sec

図4 換算沖波波高分布(N)

0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.81 0.81 0.81 $0.82 \quad 0.82 \quad 0.82 \quad 0.82 \quad 0.82 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.83 \quad 0.82 \quad 0.82 \quad 0.82 \quad 0.82 \quad 0.82 \quad 0.81 \quad 0.81 \quad 0.81 \quad 0.81 \quad 0.80 \quad$ 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.80 0.80 0.80 0.79 - 0.79 - 0.79 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.80 - 0.79 - 0.79 - 0.79 - 0.79 - 0.79 0.73 0.72 0.72 0.71 0.70 0.71 0.71 0.72 0.72 0.72 0.73 0.73 0.73 0.73 0.74 0.74 0.75 0.76 0.76 0.76 0.75 0.73 0.73 0.70 0.72 0.72 0.73 0.72 0.71 0.72 0.73 0.72 0.72 0.73 0.75 0.76 0.76 0.76 0.73 0.71 0.69 2.5 0.72 0.72 0.72 0.71 0.71 0.72 0.72 0.72 0.72 0.74 0.75 0.76 0.75 0.74 0.72 0.70 6 12 6 12 0178 017 6 017 C 0 3 **10**.65 a* Wave direction NNE (22.5) Wave height 0.80 m 3.8 sec Wave period 50 100m

図5 換算沖波波高分布(NNE)

図6 換算沖波波高分布(NE)

 $0.81 \quad 0.80 \quad 0.80 \quad 0.79 \quad 0.79 \quad 0.79 \quad 0.78 \quad 0.78 \quad 0.78 \quad 0.77 \quad 0.77 \quad 0.77 \quad 0.75 \quad 0.75 \quad 0.75 \quad 0.74 \quad 0.74 \quad 0.73 \quad 0.73 \quad 0.72 \quad 0.72 \quad 0.71 \quad 0.71 \quad 0.70 \quad 0.69 \quad 0.79 \quad$ 0.80 0.80 0.80 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.75 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 .0.80 0.80 0.80 0.79 0.79 0.78 0.78 0.78 0.78 0.77 0.77 0.76 0.75 0.75 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.69 0.69 0.80 0.80 0.79 0.79 0.79 0.78 0.78 0.78 0.78 0.77 0.76 0.76 0.75 0.75 0.74 0.73 0.73 0.73 0.72 0.71 0.71 0.71 0.70 0.70 0.69 0.69 0.80 0.79 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.75 0.75 0.74 0.73 0.73 0.73 0.72 0.71 0.71 0.71 0.71 0.70 0.69 0.68 0.80 - 0.79 0.79 0.79 0.78 0.78 0.78 0.77 0.77 0.76 0.76 0.75 0.74 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.79 0.79 0.79 0.78 0.78 0.78 0.77 0.76 0.76 0.76 0.75 0.74 0.73 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.79 0.79 0.79 0.78 0.78 0.78 0.77 0.77 0.76 0.76 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.69 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.76 0.76 0.75 0.75 0.74 0.74 0.74 0.73 0.72 0.72 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.78 0.78 0.78 0.78 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 $0.78 \quad 0.78 \quad 0.78 \quad 0.78 \quad -9.77 \quad -0.77 \quad 0.76 \quad 0.76 \quad 0.75 \quad 0.75 \quad 0.75 \quad 0.75 \quad 0.74 \quad 0.73 \quad 0.72 \quad 0.72 \quad 0.71 \quad 0.71 \quad 0.70 \quad 0.70 \quad 0.69 \quad 0.69 \quad 0.68$ $0.78 \quad 0.78 \quad 0.77 \quad 0.77 \quad 0.76 \quad 0.76 \quad 0.76 \quad 0.75 \quad 0.75 \quad 0.74 \quad 0.74 \quad 0.73 \quad 0.73 \quad 0.72 \quad 0.72 \quad 0.71 \quad 0.71 \quad 0.70 \quad 0.69 \quad 0.69 \quad 0.68 \quad$ $0.78 \quad 0.77 \quad 0.77 \quad 0.76 \quad 0.76 \quad 0.76 \quad 0.76 \quad 0.75 \quad 0.75 \quad 0.75 \quad 0.75 \quad 0.74 \quad 0.74 \quad 0.73 \quad 0.73 \quad 0.72 \quad 0.72 \quad 0.72 \quad 0.71 \quad 0.71 \quad 0.70 \quad 0.69 \quad 0.69 \quad 0.69 \quad 0.68 \quad$ 0.77 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.67 0.67 077 077 076 076 076 075 075 075 075 074 073 073 073 072 072 071 071 070 070 0.69 0.68 0.68 0.67 0.67 0.77 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.69 0.69 0.69 0.68 0.68 0.67 0.67 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.72 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.69 0.68 0.68 0.67 0.66 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.67 0.76 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.76 0.76 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.74 0.71 0.71 0.70 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.75 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.73 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.69 0.68 0.67 0.67 0.66 0.66 0.73 0.73 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.66 0.74 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.71 0.70 0.70 0.70 0.70 0.69 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.65 0.74 0.73 0.73 0.71 0.70 0.70 0.70 0.70 0.69 0.68 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.67 0.65 0.64 0.63 0.59 0.74 0.74 0.73 0.72 0.72 0.72 0.74 0.74 0.70 0.71 0.72 0.72 0.72 0.70 0.68 0.65 0.62 2.5 073 073 872 071 071 071 0.71 0.70 0.70 0.71 0.72 0.72 0.71 0.69 0.69 0.66 0.60 20.57 • Wave direction ENE (67.5) Wave height 0.90 m 3.8 sec Wave period 50 100m

図7 換算沖波波高分布(ENE)

図8 波向数值分布(WNW)

図9 波向数值分布(NW)

図10 波向数値分布(NNW)

図11 波向数值分布(N)

図12 波向数值分布(NNE)

図13 波向数值分布(NE)

図14 波向数值分布(ENE)

5-194

5-195

5-196

図19 波向ベクトル分布(NNE)

図20 波向ベクトル分布(NE)

図21 波向ベクトル分布(ENE)

付属資料 6 稼働率計算結果

表 1 稼働率計算結果 評価エリアA(利用限界波高 0.3m)

稼働率計算結果

利用限界波高 0.3m

形 状 DILI港

区 域 評価エリアA

利 用 限 界 出 現 率

波 向	波高比	沖波波高	通年	乾季	雨季	
NW	0. 540	0. 56	1.962	0.000	3. 930	
NNW	0.680	0.44	0.472	0.002	0.943	
N	0.810	0. 37	0. 167	0.005	0.324	
NNE	0.890	0.34	0.932	1. 572	0. 288	
NE	0.850	0.35	4. 244	6.712	1.760	
		合計	7. 776	8. 291	7. 245	
		稼働率	92. 224	91. 709	92. 755	

乾季:12月~5月 雨季:6月~11月

表 2 稼働率計算結果 評価エリアA(利用限界波高 0.5m)

稼働率計算結果

利用限界波高 0.5m

形 状 DILI港

区 域 評価エリアA

利 用 限 界 出 現 率

波 向	波高比	沖波波高	通年	乾季	雨季		
NW	0. 540	0.93	0. 162	0.000	0. 328		
NNW	0.680	0.74	0. 169	0.000	0. 348		
N	0.810	0.62	0.091	0.000	0.177		
NNE	0.890	0. 56	0.008	0.008	0.000		
NE	0.850	0.59	0.051	0.064	0.032		
		合計	0. 481	0.072	0.886		
		稼働率	99. 519	99. 928	99. 114		
						协 禾 10 口	

乾季:12月~5月 雨季:6月~11月

表 3 稼働率計算結果 評価エリア B(利用限界波高 0.3m) 稼働率計算結果

利用限界波高 0.3m

形 状 DILI港 区域 評価エリアB

		利	用	限	界	出	現	率	
油 白	油直比	油油油直							

波 向	波高比	沖波波高	通年	乾季	雨季		
NW	0. 540	0.56	1.962	0.000	3. 930		
NNW	0.680	0.44	0.472	0.002	0.943		
N	0.820	0. 37	0. 167	0.005	0.324		
NNE	0.900	0. 33	0. 989	1.669	0.306		
NE	0.860	0.35	4. 244	6. 712	1.760		
		合計	7.834	8. 389	7. 263		
		稼働率	92. 166	91.611	92. 737		
						故季,19日	~.5 H

乾季:12月~5月 雨季:6月~11月

表 4 稼働率計算結果 評価エリア B(利用限界波高 0.5m)

稼働率計算結果

利用限界波高 0.5m

形 状 DILI港

区 域 評価エリアB

利 用 限 界 出 現 率

भेट ह	沖古い	洲洲洲 古	济左		一五禾	
波 向	波高比	沖波波高	通年	乾季	雨季	
NW	0. 540	0.93	0. 162	0.000	0.328	
NNW	0.680	0.74	0. 169	0.000	0.348	
N	0.820	0.61	0.094	0.000	0.182	
NNE	0.900	0. 56	0.008	0.008	0.000	
NE	0.860	0.58	0.054	0.068	0.034	
		合計	0. 487	0.076	0.892	
		稼働率	99. 513	99. 924	99. 108	
	Į.	- Love 1991 —	00.010	00.021	55.100	

乾季:12月~5月 雨季:6月~11月