8-6. Domestic training materials and syllabus

1st Domestic Training

Venue: PWD Seminar Room Duration: Feb 11, 2013 to Feb 19, 2013

Course Title: Short Training Course on Seismic Assessment, Retrofit Design and Construction of RC

Buildings.

Course Duration: 11/02/13 to 19/02/13

Program Schedule:

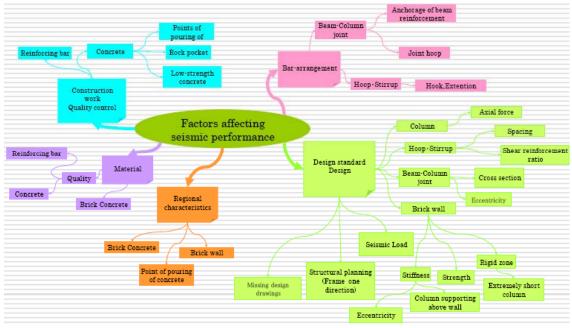
Date	Time		Title of Lecture	Resource Person
11-02-13	2:30 - 3:15		Inauguration of the course	
(Monday)	3:15 - 3:30		Tea Break	
	3:30 - 5:30	A1 &	Basic concept on seismic evaluation	Md. Rafiqul Islam
		A2	of RC buildings	
12-02-13	2:30 - 3:25	A3	Overview of seismic evaluation	Ahmed Abdullah Noor
(Tuesday)			according to Japanese Standard	
	3:25 - 4:20	A4	Screening procedure with example	Md. Emdadul Huq
			(1 st level)	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	A5	Screening procedure with example (2 nd level) [cont.]	Md. Emdadul Huq
13-02-13	2:30 - 3:25	A6	Screening procedure with example	Md. Emdadul Huq
(Wednesday)	2.30 - 3.23	AU	(2^{nd} level)	Ma. Emaadul Huq
	3:25 - 4:20	R1	Concept on Retrofitting Design	Anup Kumar Halder
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	R2	Retrofitting design methods (cont.)	Md. Mominur Rahman
14-02-13	2:30 - 3:25	R3	Retrofitting design methods	Md. Mominur Rahman
(Thursday)	3:25 - 3:40		Tea Break	
	3:40 - 5:30	R4 &	Retrofitting works procedure with site	Md. Sohel Rahman
		R5	visit	
17-02-13	2:30 - 3:25	R6	Retrofitting design example of a real	Anup Kumar Halder
(Sunday)			structure (cont.)	
	3:25 - 4:20	R7	Retrofitting design example of a real	Anup Kumar Halder
			structure	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	R8	Pushover Analysis in retrofitting	Moniruzzaman Moni
			design	
18-02-13	2:30 - 3:25	N1	Seismic design concept for new	Md. Mominur Rahman
(Monday)			buildings	
	3:25 - 4:20	N2	Code provision for seismic analysis	Md. Rafiqul Islam
			with example (cont.)	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	N3	Code provision for seismic analysis with example	Md. Rafiqul Islam
19-02-13	2:30-4:20	N4 &	Code provision for seismic design	Md. Rafiqul Islam
(Tuesday)	2.50 1.20	N5	with example	Tria. Ituriyur ibiuni
(4:20-4:35		Tea Break	
	4:35 - 5:30	N6	Effect of infill wall in seismic	Md. Jahidul Islam Khan
			analysis	
20-02-13	1	1	Closing ceremony	
20 02 15				

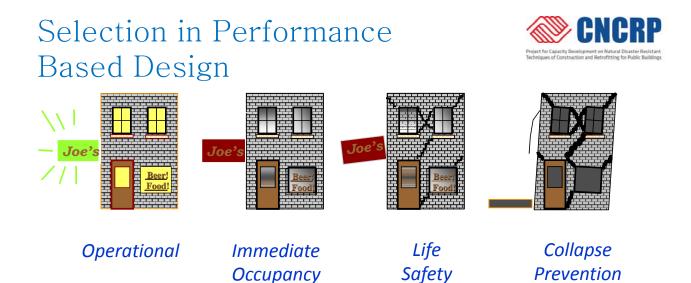
1.	d. Ahsan abib, PEng	2.	ohammad Shamim Akhter
	Executive Engineer		Executive Engineer
	PWD Design Division 2		PWD Design Division 6
3.	d. hairul Islam	4.	ostafa asan
	Executive Engineer		Executive Engineer
	Staff Officer to Chief Engineer PWD		PWD Audit Division
5.	d. Shakhawat ossain	6.	Dr. ohammad Sharfuddin
5.	Executive Engineer , PWD	0.	Sub Divisional Engineer
	Executive Engineer, FVVD		Ũ
_	Abd Hab a base of the base		PWD Design Division 6
7.	Abdullah ohammod ubair	8.	D. Shafiul Islam
	Sub Divisional Engineer		Assistant Engineer
	PWD Design Division 5		PWD Design Circle 1
9.	d. aruful o ue	10.	Nur E awonine
	Sub Divisional Engineer		Assistant Engineer
	PWD Design Division 2		PWD Design Division 1
11.	A.S. Shahriar Jahan	12.	Dewan ehidi assan
	Assistant Engineer		Assistant Engineer
	PWD Design Division 1		PWD Design Division 1
13.	Sk. Toufi ur Rahman	14.	D. Shamsul Islam
15.	Assistant Engineer	14.	Assistant Engineer
	-		-
45	PWD Design Division 3	10	PWD Design Division 4
15.	Lintu a i	16.	A Sajadur Rahman
	Assistant Engineer		Assistant Engineer
	PWD Design Division 6		PWD Design Division 5
17.	Afro a Begum	18.	Shah Naimul uader
	Executive Engineer		Executive Engineer (Design)
	Education Engineering Department		Education Engineering Department
19.	d. Na mulasan	20.	d. Arifujjaman
	Assistant Engineer B/R		Research Engineer
	Army ead uarter, E in C's Branch,		BRI
	Works Directorate (.E.S)		
21.	Dr. Ruhul Amin	22.	Engr. d. oynal Abedin
21.	Senior Engineer	22.	Additional Chief Engineer
	DP Consultant		Concord Architects and Engineers Ltd.
22	d. ahedul Islam	24	
23.		24.	. Ehsan ameel
	Executive Engineer		Project anager
	LED		RAJ
25.	ahna Tabassum	26.	Engr. B Nural Absar
	Engineer		Assistant Engineer
	Axis Design Consultant Ltd.		BCL Associates Ltd.
27.	a i d. Jahangir ossain PEng	28.	uhammad aniru aman
	Executive Engineer		Deputy Project Director
	National ousing Authority		CSSED Project
			Election Commission secretariat
29.	d. aheb ossain		
23.	Assistant Engineer		
	Dhaka South City Corporation		

Basics of Seismic Vulnerability Assessment

Md. Rafiqul Islam

Executive Engineer PWD Design Division - 3 & Team Leader Working Team - 2 CNCRP Project


Is the Building Safe to Earthquak.


- What is the seismic intensity?
- What is the lateral load resisting system?
- What is the performance objective?
- Age of the building?
- Subsoil condition?
- Irregularity of the building?
- What is the evaluation standard?

Factors Affecting Seismic Performance

Reference: Presentation 'Issues of Seismic Performance' by Yosuke Nakajima, JICA Expert Team, 2012

Operational - negligible impact on building and it is fully operable

Immediate Occupancy – building is safe to occupy and retain its pre-earthquake strength and stiffness

Life Safety – building is safe during event but possibly not afterward Collapse Prevention – building is on verge of collapse, probable total loss

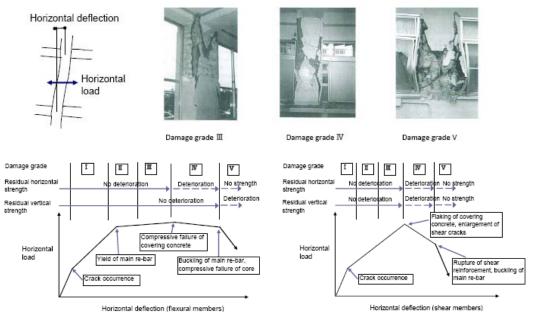
Performance Level for Evaluation.

Performance level checked for both structural and non-structural components:

- 1. Life Safety (LS) Performance Level:
 - Partial or total structural collapse does not occur
 - Damage to non-structural components is non-life-threatening
- 2. Immediate Occupancy (IO) Performance Level:
 - Vertical and lateral force resisting system retain nearly pre-earthquake strength
 - The damage is repairable while the building is occupied

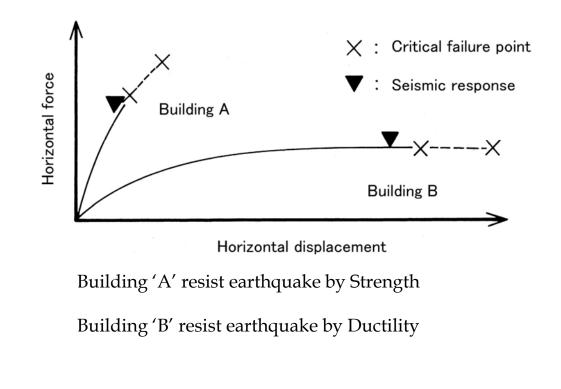
Geologic site hazard and foundation hazard are also assessed.

Methods of Seismic Vulnerability Assessment


- 1. Rapid Visual Screening (FEMA 154) [Pre evaluation sage]
- 2. Seismic Evaluation of Existing Building (ASCE/SEI 31-03)
 - Tier 1 Screening phase
 - Tier 2 Evaluation phase
 - Tier 3 Detailed evaluation phase
- 3. Seismic Evaluation of Existing Reinforced Concrete Structure, 2001 [Japanese standard]
- 4. Euro Code 8: Part 1-4
- 5. Document by New Zealand Society for Earthquake Engineering
- 6. Report by Structural Engineering Research Centre of India

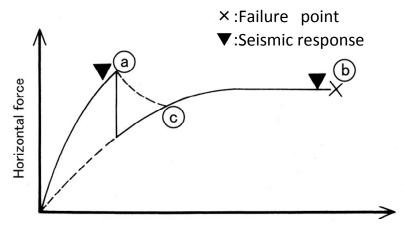
Three levels of screening in Japanese Standard

- 1. First level screening
 - Beam is extremely rigid and only vertical member will deform
 - Vertical members are classified into three categories
 - Concrete strength and sectional area of vertical member are required for calculation; reinforcement details is not required
- 2. Second level screening
 - Beam is extremely rigid and only vertical member will deform
 - Vertical members are classified into five categories
 - Reinforcement details of vertical member is required for calculation
- 3. Third level screening
 - Beam is flexible and hinge may form either in beam or column
 - Vertical and horizontal members are classified into eight categories
 - Calculation process is very rigorous



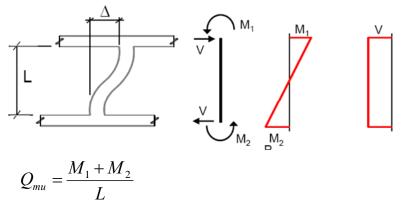
Reference: Lecture 'Seismic damages and performance of building' by Akira Inoue , JICA Expert Team, 07/06/2011

[Source: "Standard of Judgment of Damage Grade and Guidelines of Recovery Engineering for Damaged Buildings, 2001", The Japan Building Disaster Prevention Association (written in Japanese)]



Different Types of Structure

Structure Configuring Members with Different Ductility

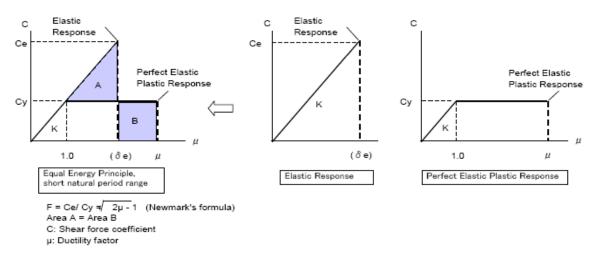

Horizontal displacement

Brittle failure of non-ductile member at 'a' Sudden drop of stiffness from 'a' to 'c' Performance of ductile member up to 'b'

What is Strength?

A) Flexural strength (Q_{mu}) from moment capacity of the structural member

B) Shear strength (Q_{su}) from shear reinforcement of the structural member


Strength is minimum of Q_{mu} and Q_{su}

What is Ductility?

Ductility is the capacity of building material, systems or structure to absorb energy by deforming into inelastic range.

Equal Energy Principle: Ideal Non-linear Earthquake Response In a relatively short range period building

Ref: 'Seismic Design, Evaluation and Retrofitting of Building ' by Akira Inoue, JICA Expert Team

Japanese Method of Seismic Vulnerability Assessment

Seismic index of structure $I_s = E_0 \times S_D \times T$

 E_0 = Basic seismic index of structure = C x F

C = Strength index = $\frac{Q}{W}$

Q = Shear strength

W = Weight on vertical member

F = Ductility index (it is function of ductility factor)

 S_D = Irregularity index

T = Time index

Seismic Demand Index

Seismic demand index, $I_{so} = E_s \times Z \times G \times U$

 E_s = Basic seismic demand index (depends on level of screening)

Z = Zone index (factor for seismic intensity of the site)

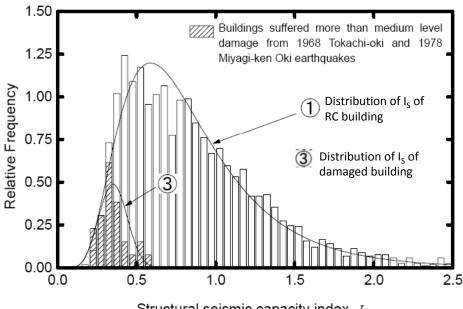
G = Ductility index (factor consider sub-soil condition)

U = Usage index (factor for occupancy type)

Judgment on Seismic Safety

A safe structure shall satisfy both the following checking:

- A) $I_s \ge I_{so}$ I_s = Seismic index of structure I_{so} = Seismic demand index
- B) $C_{TU} \ge 0.3(?) \times Z \times G \times U$


 C_{TU} = Cumulative strength at ultimate deformation of structure

Judgment to be applied

- Each story

- Each principal horizontal direction of a building

Study on Earthquake Damaged Buildings

Structural seismic capacity index Is

Ref: Nakano, Yoshiaki and Tsuneo Okada "Reliability analysis on seismic capacity of existing reinforced concrete buildings in Japan" Journal, Transaction of Architecture Institute of Japan, No. 406, 37 – 43 (1988)

I_{SO} for Bangladeshi Buildings

Base shear,
$$V = \frac{ZIC}{R}W$$

Z = Zone coefficient

I = Importance factor

C = Numerical coefficient for sub-soil and structural period (maximum value is 2.75)

Rearranging

$$\frac{V}{W} \times R = Z \times I \times C$$

i.e Strength index \times ductility index = $Z \times I \times C$

For Dhaka $Z \times I \times C = 0.15 \times 1 \times 2.75 = 0.413$ (?)

Reference: Presentation 'proposed seismic demand index of structures, Iso, for existing RC buildings in Bangladesh' by Akira Inoue , JICA Expert Team, 2012

How to Calculate Strength Index (C)

Strength index, $C = \frac{Q_u}{\Sigma W}$

where,

 Q_u =Ultimate lateral load carrying capacity of vertical member ΣW = Weight of the building supported by the story concerned

Strength index shall be modified for each story by

Story shear modification factor = $\frac{n+1}{n+i}$

n = Number of stories of a buildingi = Number of story is being evaluated

How to Calculate Ductility Index (F)

Various types of deflection angle $(R_{max'}, R_{y'}, R_{su'}, R_{mu'}, R_{mp})$ of column is calculated based on:

- 1) Column size
- 2) Clear height of column
- 3) Axial force ratio
- 4) Shear force ratio
- 5) Tensile reinforcement ratio
- 6) Spacing of shear reinforcement
- 7) Margin against shear failure
- 8) etc.

How to Calculate Ductility Index (F)

A) Ductility index for shear column:

$$F = 1.0 + 0.27 \frac{R_{su} - R_{250}}{R_y - R_{250}}$$

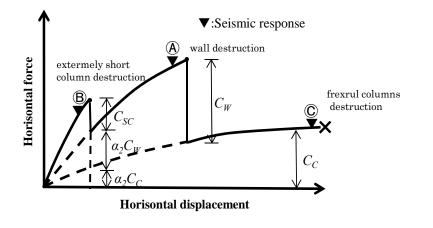
B) Ductility index for flexural column:

(i) In case
$$R_{mu} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$

(ii) In case
$$R_{mu} \ge R_y$$

$$F = \frac{\sqrt{2 R_{mu}/R_y - 1}}{0.75 \cdot (1 + 0.05 R_{mu}/R_y)} \le 3.2$$



Strength Dominant Basic Seismic Index (E₀)

$$E_0 = \frac{n+1}{n+i} \left(C_i + \sum_j \alpha_j C_j \right) \cdot F_1$$

where:

aj= Effective strength factor

Ductility Dominant Basic Seismic Index (E_0)

$$E_0 = \frac{n+1}{n+i}\sqrt{E_1^2 + E_2^2 + E_3^2}$$

where:

$$E_{1} = C_{1} \times F_{1}$$
$$E_{2} = C_{2} \times F_{2}$$
$$E_{3} = C_{3} \times F_{3}$$

 C_1 = The strength index C of the first group (with small F index).

 C_2 = The strength index C of the second group (with medium F index).

 C_3 = The strength index C of the third group (with large F index).

 F_1 = The ductility index F of the first group.

 F_2 = The ductility index *F* of the second group.

 F_3 = The ductility index F of the third group.

Irregularity Index (S_D)

Irregularity Index covers:

- 1. Regularity
- 2. Aspect ratio of plan
- 3. Expansion joint
- 4. Well-style area
- 5. Underground floor
- 6. Story height uniformity
- 7. Soft story
- 8. Eccentricity
- 9. Stiffness/mass ratio

Irregularity Index (S_D) ≤ 1.0

Time Index (T)

Time Index evaluates:

- 1. Deflection of beam and column
- 2. Cracking in walls
- 3. Fire experience
- 4. Occupied by chemical
- 5. Age of building
- 6. Finishing condition

Time Index (T) ≤ 1.0

Second-Class Prime Element

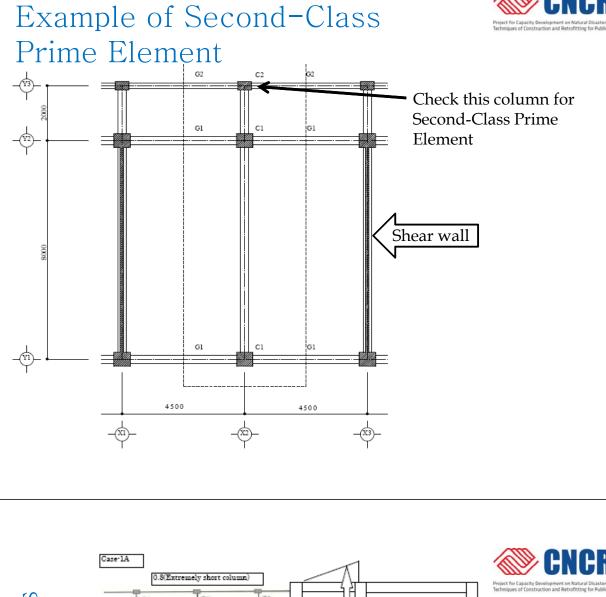
A column is a Second-Class Prime Element if

- 1. It fails in brittle manner
- 2. Its sustaining axial load can not be redistributed or not be sustained by surrounding members in the structure
- 3. Lateral force resisting capacity of the structure is still enough

It is necessary to check

- Shear column
- Extremely short column
- Column supporting the wall above

Residual Axial Load Capacity, $\eta = N/A_c F_c$


Column	p_w (%)	F=1.0	F=1.27	F=2	F=3
	$0.4 < p_w^{*1}$	0.4	0.3	0.1	0
Extremely short	$0.2 \le p_w \le 0.4^{*2}$	0.3[0.4]	0.1	0	0
column* ³	$p_w < 0.2$	0[0.4]	0	0	0
	$0.4 < p_w^{*1}$	0.6	0.4	0.2	0
Shear column	$0.2 \le p_w \le 0.4^{*2}$	0.5	0.3[0.4]	0.1	0
continu	$p_w < 0.2$	0.4	0[0.4]	0	0
	$0.4 < p_w^{*1}$	0.6	0.6	0.5	0.4
Flexural column	$0.2 \le p_w \le 0.4^{*2}$	0.5	0.5	0.3[0.4]	0.2[0.3]
Column	$p_w < 0.2$	0.4	0.4	0[0.3]	0[0.2]

*1: In case that spacing is not larger than 100mm, $p_w > 0.4\%$, and sub ties are provided at the same spacing as that of main ties. In case where p_w is different in each direction, the smaller p_w can be used.

*2: In case that spacing is not larger than 100mm.

*3: The flexural column of $h_0 \bullet D \le 2$ and $F \le 1.27$ is included.

Example of Second-Class Prime Element

0.S(Extr	emely short colum	n)				
C3	C3.	C3		ΣQ8-240k	N	
C2	C2 (Shear column)	C2	N0=300E			N0=900EN
W1		W1	Į		N0=1200	leN
CI	Cr (Shear column)	C1		ESC	1.0SC	1.0SC
F=1.0		_		L		
C3,C3'	Jae 7=0.8		«D×F=0 0=300kN ::	↓ ×QB=240kN ⇒ <u>Se</u>	cond-class Prin	ne Elements
I Table T?	N.3-1 Residual axia (g,= N,/ le 3.2.1-1 in the comm	Hoad capaci	ty N_r and as $= N_R / A_c F$	<u>Se</u> sial load capa 'c])	cond-class Prin city N _R Tapamene versio	
I Table T?	N.3-1 Residual axia $(\pi_r = N_r)$ le 3.2.1-1 in the comm p_r (%)	Hoad capaci	ty N_r and as $= N_R / A_c F$	<u>Se</u> sial load capa 'c])	city N _R	
Table T? (quoted from Table Column	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$	I load capact [A_cF]c[v x tentor of 3.2 F-1.0 0.4	$0=300 \text{kN}$ iy N_r and as $= N_R / A_c F$ if of the Stars	Sal load capa (d) dard of 2001 d	cond-class Prin city N _R Tapamene versio	
Table T2 (quoted from Table Column Extremely	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$	1 load capacity $A_c F_c[v_s \\ restorp of 3.2 \\ F=1.0 \\ 0.4 \\ 0.3[0.4]$	V = 300 kN : V_{K} and as $= N_{K} / A_{C}F$. I of the State F = 1.27 0.3 0.1	Second capacity ial load capacity	city N _R	
Table T? (quoted from Table Column	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$	I load capact [A_cF]c[v x tentor of 3.2 F-1.0 0.4	ty N, and as $= N_R / A_C F$ I of the Stant F=1.27 0.3	sial load capa (cj) durd of 2001 o F=2 0.1	cond-class Prince N_R $I_{APATR-ESE}$ rerain F=3 0	
Table 17 (quoted from Table Column Extremely short	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$	1 load capacity $A_c F_c[v_s \\ restorp of 3.2 \\ F=1.0 \\ 0.4 \\ 0.3[0.4]$	V = 300 kN : V_{K} and as $= N_{K} / A_{C}F$. I of the State F = 1.27 0.3 0.1	Second capacity ial load capacity	city N _R	
Table T? (quoted from Table Column Extremely short column* ³ Shear	N.3-1 Residual axia ($\pi_r = N_{er}/c$ le 3.2.1-1 in the conn p_r (%) $0.4 < p_r^{-1}$ $0.2 < p_r < 0.4^{-2}$ $p_r < 0.2$	N=N I load capaci (A _c F _c [y x tentor of 3.2 F-1.0 0.4 0.5[0.4]		Stall load capation col col F=2 0.1 0 0	city N _R	
Table 17 (quoted from Table Column Extremely short column*3	N.3-1 Residuel axis $(q_r = N_r)$ $p_r(5i)$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $p_r < 0.2$ $0.4 \le p_r^{-1}$	N=N I load capaci (A _c F _c [y _A p:1.0 p:4 03[0.4] 0.6	$N_{\rm r} = 300 \text{kN}$: $N_{\rm r} = N_{\rm r} / A_{\rm c} F$ $I = 0 \text{fills} \frac{F - 1.27}{0.3}$ 0.1 0 0.4	Second load capa- [c]) dend of 2001 / [c] 0 [0] 0 [0] 0 [0] 0	cond-class Prin city N _R /aparsese versis F-3 0 0 0 0 0 0	
Table T? (quoted from Table Column Extremely short column ⁹³ Shear	N.3-1 Residuel axis $(q_r = N_{r'})$ $p_r(%)$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $p_r < 0.2$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $0.2 \le p_r \le 0.4^{-2}$	Nt=N Hoad capaci (A_cF_c[y_s postorf of 3.1 p.4 0.3[0.4] 0.6 0.5	$ \begin{array}{l} \sum_{k=0}^{\infty} N_{k} \ \text{and} \ \text{as} \\ N_{k} \ \text{and} \ \text{as} \\ N_{k} \ \text{A} \ \text{c} \ F \\ I \ \text{of} \ \text{the} \ \text{Sum} \\ \hline F^{-1.27} \ 0.3 \\ 0.1 \\ 0 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \end{array} $	stal load capa: [c]) dard of 2001 / F=2 0.1 0 0 0 0.2 0.1	cond-class Print city N _R /aparsese tersis	

 $p_w < 0.2$ Reference: Lecture material by Yosuke Nakajima, JICA Expert Team

0.4

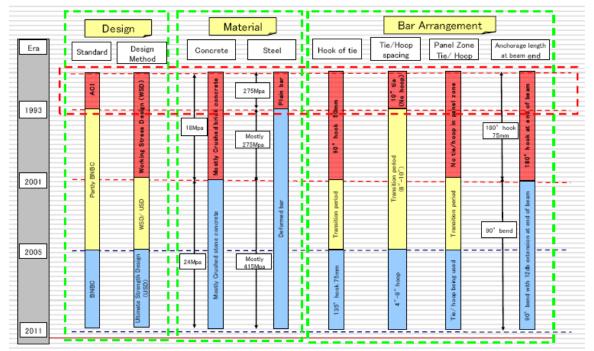
0[0.3]

0[0.2]

olumn

Building Inspection

Inspection Types	Inspection Objectives	Inspection Items
Preliminary inspection	To determine the applicability of the evaluation standard	Summery of the structure and building condition
Inspection without design drawings	To inspect various structural elements by conducting the actual measurement	The dimensions of building frames and reinforcing bars, arrangement of bars, etc
Detailed inspection	 To calculate Time index and irregularity index To inspect the necessity of refurbishment of aged deterioration To determine the present strength related data to enhance the accuracy of evaluation procedure 	Differences from original design drawings, structural cracks, deformations. Inspect material strength, concrete neutralization depth, reinforcing bar strength etc.



Benchmark for Buildings of USA

	Model Building Seismic Design Provisions							
Building Type ^{1, 2}	NBC ^{Is}	SBC ^{Is}	UBC ^{is}	IBC ^{is}	NEHRP ^{IS}	FEMA 178 ^{Is}	FEMA 310 ^{Is, io}	CBC ^{io}
Wood Frame, Wood Shear Panels (Type W1 & W2)	1993	1994	1976	2000	1985	*	1998	1973
Wood Frame, Wood Shear Panels (Type W1A)	*	*	1997	2000	1997	*	1998	1973
Steel Moment-Resisting Frame (Type S1 & S1A)	*	*	1994 ⁴	2000	**	•	1998	1995
Steel Braced Frame (Type S2 & S2A)	1993	1994	1988	2000	1991	1992	1998	1973
Light Metal Frame (Type S3)	*	*	*	2000	*	1992	1998	1973
Steel Frame w/ Concrete Shear Walls (Type S4)	1993	1994	1976	2000	1985	1992	1998	1973
Reinforced Concrete Moment-Resisting Frame (Type C1) ³	1993	1994	1976	2000	1985	*	1998	1973
Reinforced Concrete Shear Walls (Type C2 & C2A)	1993	1994	1976	2000	1985	*	1998	1973
Steel Frame with URM Infill (Type S5, S5A)	*	*	*	2000	*	*	1998	*
Concrete Frame with URM Infill (Type C3 & C3A)	*	*	*.	2000	*	*	1998	*
Tilt-up Concrete (Type PC1 & PC1A)	*	*	1997	2000	*	*	1998	*
Precast Concrete Frame (Type PC2 & PC2A)	*	*	*	2000	*	1992	1998	1973
Reinforced Masonry (Type RM1)	*	*	1997	2000	*	*	1998	*
Reinforced Masonry (Type RM2)	1993	1994	1976	2000	1985	*	1998	*
Unreinforced Masonry (Type URM)5	*	*	1991 ⁶	2000	*	1992	*	*
Unreinforced Masonry (Type URMA)	*	*	*	2000	*	*	1998	*

No Benchmark for Buildings in Bangladesh

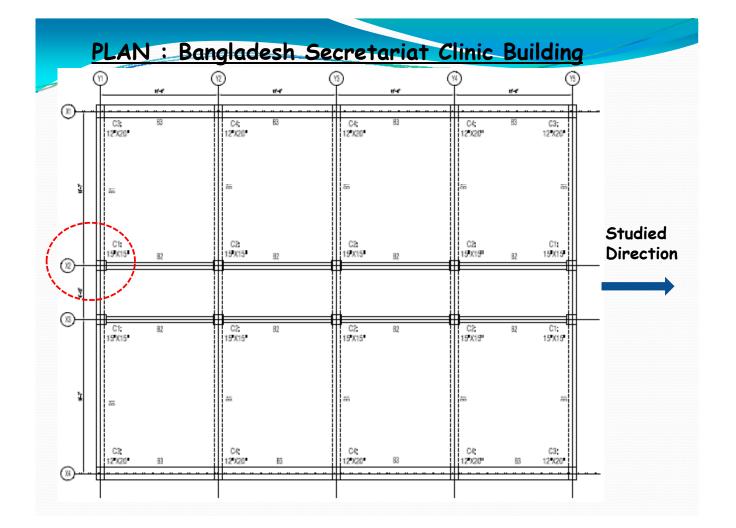
Reference: 'Issues of Seismic Performance' by Yosuke Nakajima, JICA Expert Team

Difficulties of Seismic Assessmen CCRPP of Bangladeshi Buildings

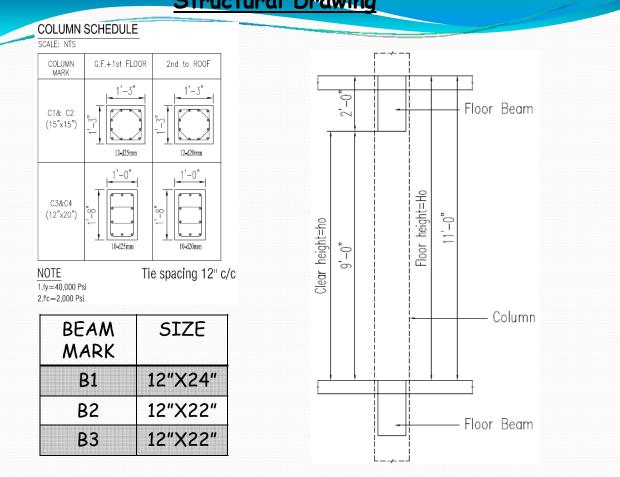
- 1. Missing architectural and structural design of existing building.
- 2. Lack of reliability in construction even if drawing is available.
- 3. A few or no study about lateral load resisting system of building of our country.
- 4. Effect of infill masonry wall in frame structure.
- 5. Performance of mixed type (masonry + RC frame) structure.
- 6. Reinforcing bars of existing structure are significantly corroded.
- 7. Etc.

Thank you

(CAPACITY DEVELOPMENT ON NATURAL DISASTER RESISTANT TECHNIQUES OF CONSTRUCTION AND RETROFITTING FOR PUBLIC BUILDINGS)


CNCRP

Technical co-operation project between --PWD & JICA



PRESENTATION ON Screening Procedure with example (1st & 2nd Level)

Md. Emdadul Huq Member of Working Team-2

Structural Drawing

About The Building

- 1. Name: Bangladesh Secretariat Clinic(Hospital Building)
- 2. Design period of the building is 1984
- 3. 5(Five)-Storied framed structured building.
- 4. Seismic detailing not provided
- 5. f'c = 2000 Psi = 13.79 N/mm²
- 6. fy = 40000 Psi = 275 N/mm²

Japanese Standard (Contd..)

In the **Japanese standard** three levels of seismic screening procedure.

1) 1st level screening procedure.

2) 2nd level screening procedure.

3) 3rd level screening procedure.

1st level:

-Simplest

(easy to calculation in comparison with other two evaluation procedure)

-More conservative

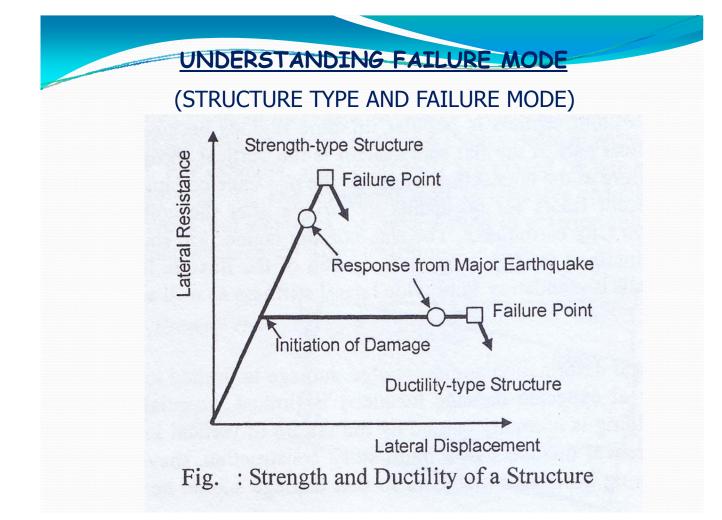
-Only X-sectional area & Concrete Strength of vertical Member is considered to calculate the strength

-Inelastic deformability is neglected in this level.

2nd level:

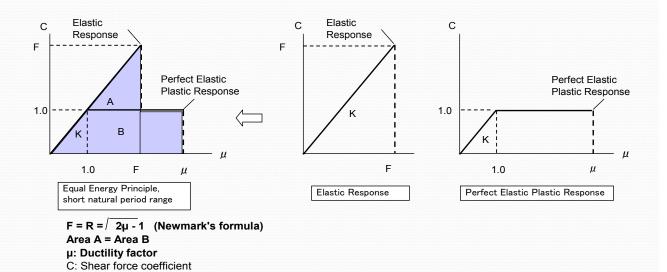
-More detail than 1st level screening procedure.
-Assuming that the strength of beam is greater than that of column(Weak column & Strong Beam)
-Evaluate ultimate strength & plastic deformation capacity of vertical members based on x-section, bar detail & material strength.

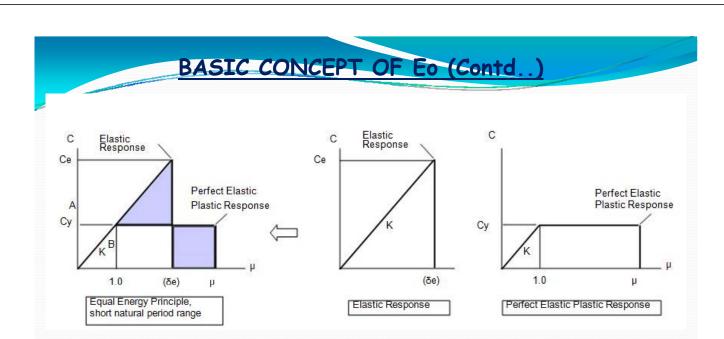
3rd level:


-Building characteristics are examined in greater detail than in the 2nd level screening procedure -3rd level is more reliable than 2nd level screening procedure where weak beam in structure

Basic Concept of Seismic evaluation

Seismic Index of Structure (Is) = $E_o X S_d x T$


Where


- E_o = Basic Seismic Index of Structure
 - = C X F
- C= Strength Index
- F=Ductility Index
- S_d = Irregularity Index
- T = Time Index

Basic Concept of Eo (Contd..)

"C x F" shows basic seismic performance of a structure. "C" is strength index, which is horizontal strength divided by building weight. "F" is ductility index. This "F" is developed based on (so called) Newmark's principle, and is related to ductility factor μ as shown below. This Equal Energy Principle for an ideal non-linear earthquake response is accepted practically in case of buildings with relatively short range natural period.

Cy = Min Base Shear Coefficient Structural System(Elastic Plastic Response)Ce =Ground Motion Produces Elastic Response Base Shear(Elastic Response) $<math>\mu = Ductility(Ultimate Deformation/Yield Deformation)$

$$C_e = C_y \sqrt{2\mu - 1}$$
 for short period systems
 $C_e = C_y \cdot \mu$ for long period systems
 $E_0 = C \cdot F$

Two Types Seismic Index

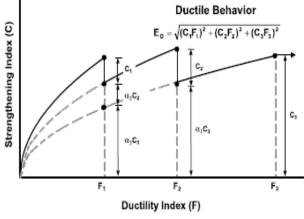
A. Strength-Dominant Structure

$$E_0 = \frac{n+1}{n+i} \left(C_1 + \sum_j \alpha_j C_j \right) \cdot F_1$$

B. Ductility-Dominant Structure

$$E_0 = \frac{n+1}{n+i}\sqrt{E_1^2 + E_2^2 + E_3^2}$$

B) Ductility-Dominant Structure (Contd.)


 $E_0 = (n+1)/(n+i)\sqrt{(E_1^2 + E_2^2 + E_3^2)}$

Where

- $E_1 = C_1 F_1$ $E_2 = C_2 F_2$
- $E_3 = C_1 F_3$

 $C_1 = The strength index C of the first group (with small F index).$

- C_2 = The strength index C of the second group (with medium F index).
- $C_3 =$ The strength index C of the third group (with large F index).
- $F_1 =$ <u>The</u> ductility index *F* of the first group.
- $F_2 = \underline{The} \text{ ductility index } F \text{ of the second group.}$
- $F_3 = \underline{The} \text{ ductility index } F \text{ of the third group.}$

<u>Classification of vertical members in the</u> 1st level screening procedure

Vertical member	Definition
Column	Columns having h_o/D larger than 2
Extremely short column	Columns having h_o/D equal to or less than 2
Wall	Walls including those without boundary columns

Ductility index in the 1st level screening

Vertical member	Ductility index F
Column $(h_0/D>2)$	1.0
Extremely short column $(h_0/D \le 2)$	0.8
Wall	1.0

Note: h_o : Column clear height D : Column depth

Basic Seismic Index of Structure(E₀) For 1st level Screening

$$E_0 = \frac{n+1}{n+i}(C_W + \alpha_1 C_C) \cdot F_W$$

$$E_0 = \frac{n+1}{n+i} (C_{SC} + \alpha_2 C_W + \alpha_3 C_C) \cdot F_{SC}$$

Where:

n = Number of stories of a building.

i = Number of the story for evaluation, where the first story is numbered as1 and the top story as n.

 $C_{\rm W}$ = Strength index of the walls.

 $C_{\rm C}$ = Strength index of the columns.

 α_1 = Effective strength factor of the columns at the ultimate deformation of the walls, which may be taken as 0.7. The value should be 1.0 in case of C_w =0.

 α_2 = Effective strength factor of the walls at the ultimate deformation of the extremely short columns, which may be taken as 0.7.

 α_3 = Effective strength factor of the columns at the ultimate deformation of the extremely short columns, which may be taken as 0.5.

 F_w = Ductility index of the walls , which may be taken as 1.0.

 F_{sc} = Ductility index of the extremely short columns, which may be taken as 0.8.

	eur onress u	Ductility 1
ST0RY		AT GRID X1Y1
	COLUMN	C1
	h0/D	9x12/15=7.2
5	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
4	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
3	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
2	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
1	CATEGORY	COLUMN
	τ(N/mm ²)	0.7
	F	1.0

Calculation of Shear Stress & Ductility Index

STORY		X2&Y1	X2&Y2	X1&Y1	X1&Y2
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
5	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
4	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
3	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
2	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
1	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0

		Colculation of	column stre	noth(C)
		$C = \frac{\tau_c \cdot A_c}{r_c \cdot A_c} \cdot \beta$		$F_c \leq 20$
		$C_c = \sum_{\Sigma W} P_c$	$p_c = \frac{1}{20}$	$\Gamma_c \ge 20$
		$C_{c} = \frac{\tau_{c} \cdot A_{c}}{\Sigma W} \cdot \beta_{c}$ $C_{sc} = \frac{\tau_{sc} \cdot A_{sc}}{\Sigma W} \cdot \beta_{c}$	$\beta_c = \sqrt{\frac{F_c}{20}}$	$F_{c} > 20$
C_{c}	= ;	Strength index of columns.	-	
C_{sc}	= ;	Strength index of extremel	y short columns.	
τ_c	= _	Average shear stress at th	e ultimate state	of columns, which may be
	take	n as 1 N/mm ² or 0.7 N/mm	h^2 in case h_0/D is	larger than 6.
τ_{sc}	= _	Average shear stress at th	e ultimate state	of extremely short columns,
	whic	ch may be taken as 1.5 N/n	nm^2 .	
A_{sc}	=	Total cross-sectional area	a of extremely	short columns (mm^2) .
A_{C}	= 7	Total cross-sectional area	of columns (m	m ²)
F _c	= (Compressive strength of c	oncrete (N/mm ²)	
ΣW	=]	Fotal weight (dead load plu	is live load for se	eismic calculation) supported
	1	by the story concerned		

Calculation of Area Unit Weight(W)						
TYPE	OF LOAD	TYPICAL FLOOR	ROOF	Unit		
Live	e Load	0.80	0.30	kN/m²		
Bric	k Wall	4.50	0.00	kN/m²		
Floo	r Finish	1.25	2.00	kN/m²		
Slab	Weight	3.50	3.50	kN/m²		
SW(Colu	ımn+Beam)	2.25	2.25	kN/m²		
L	W	12.3	8.05	kN/m²		

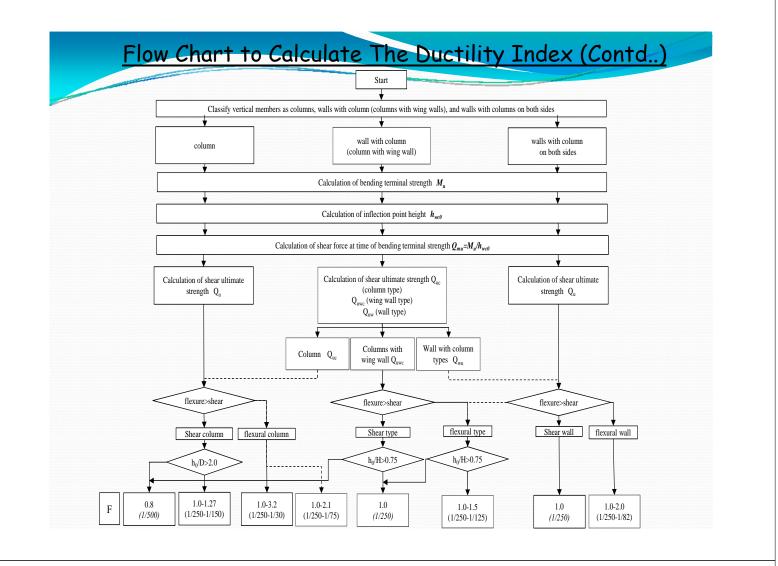
Calculation of Floor Weight

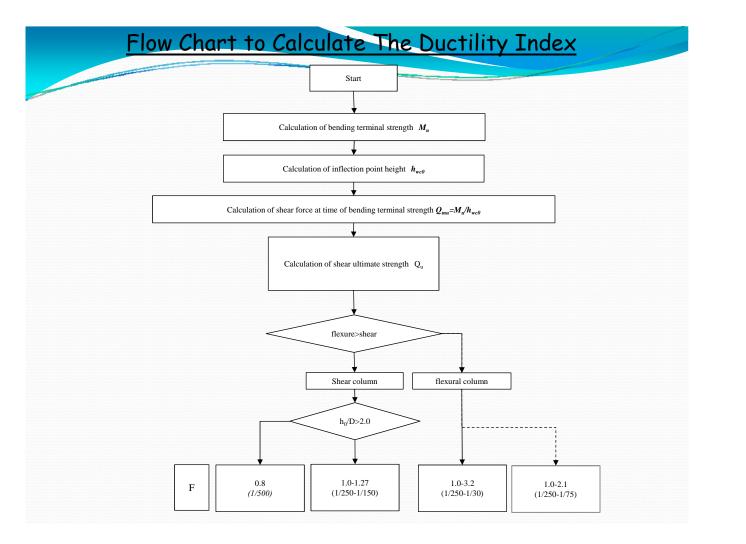
STORY	L(m)	B(m)	A(m²)	Σw
5	18.6	14.54	270.44	2177
4	18.6	14.54	270.44	5504
3	18.6	14.54	270.44	8830
2	18.6	14.54	270.44	12156
1	18.6	14.54	270.44	15483

Column ID	Story	β _c	Σw	A _c (mm²)	τ(N/mm²)	C _c
	5	0.69	2177	140625	0.7	0.031
	4	0.69	5504	140625	0.7	0.012
C1	3	0.69	8830	140625	0.7	0.008
	2	0.69	12156	140625	0.7	0.006
	1	0.69	15483	140625	0.7	0.004

Column ID	Story	β _c	Σw	A _c (mm²)	τ(N/mm²)	C _c
	5	0.69	2177	140625	0.7	0.03
	4	0.69	5504	140625	0.7	0.01
C1	3	0.69	8830	140625	0.7	0.00
	2	0.69	12156	140625	0.7	0.00
	1	0.69	15483	140625	0.7	0.004
	5	0.69	2177	140625	0.7	0.03
	4	0.69	5504	140625	0.7	0.01
C2	3	0.69	8830	140625	0.7	0.00
	2	0.69	12156	140625	0.7	0.00
	1	0.69	15483	140625	0.7	0.00
	5	0.69	2177	150000	0.7	0.03
	4	0.69	5504	150000	0.7	0.01
C3	3	0.69	8830	150000	0.7	0.00
	2	0.69	12156	150000	0.7	0.00
	1	0.69	15483	150000	0.7	0.00
	5	0.69	2177	150000	0.7	0.03
	4	0.69	5504	150000	0.7	0.01
C4	3	0.69	8830	150000	0.7	0.00
	2	0.69	12156	150000	0.7	0.00
	1	0.69	15483	150000	0.7	0.00

	dex T by the first level				
[A] Item to be checked	[B] Degree	[C] <i>T</i> value (check circle at relevant degree)	[D] Item to be checked for the second level inspection		
	Tilting of a building or obvious uneven settlement is observed	0.7			
Deflection	Landfill site or former rice field	0.9	Structural		
Denection	Deflection of beam or column is observed visually	0.9	 cracking and deflection 		
	No correspondence to the foregoing	1			
Cracking in walls and columns	Rain leak with rust of reinforcing bar is observed	0.8			
	Inclined cracking in columns is obviously observed	0.9	Structural		
	Countless cracking is observed in external wall	0.9	cracking and deflection		
	Rain leak without rust of reinforcing bar is observed	0.9			
	No correspondence to the foregoing	1			
	Trace	0.7	Structural		
Fire experience	Experience but traceless	0.8	cracking and deflection		
The experience	No experience	1	Deterioration and aging		
0	Chemical has been used	0.8	Deterioration		
Occupation	No correspondence to the foregoing	1	and aging		
Age of building	30 years or older	0.8			
	20 years or older	0.9	Deterioration		
	19 years or less	1	and aging		
Finishing condition	Significant spalling of external finishing due to aging is observed	0.9			
	Significant spalling and deterioration of internal finishing is observed	0.9	Deterioration and aging		
	No problem	1			


Story	Column ID	Column No	Cc	Total C _c	F	α	(n+1)/ (n+i)	Eo	Т	S _d	I _s
	C1	4	0.031								
5	C2	6	0.031	0.64	1.00	1.00	0.60	0.39	0.8	1	0.31
5	C3	4	0.033	0.04	1.00	1.00	0.00	0.59	0.8	T	0.51
	C4	6	0.033								


Calculation of Is of Building											
Story	Column ID	Column No	Cc	Total C _c	F	α	(n+1)/ (n+i)	Eo	т	S _d	I _s
	C1	4	0.031								
5	C2	6	0.031	0.64	1.00	1.00	0.60	0.39	0.8	1	0.31
J	C3	4	0.033	0.04	1.00		0.60	0.39	0.8	1	0.31
	C4	6	0.033								
	C1	4	0.012		1.00	1.00	0.67	0.17	0.8	1	
4	C2	6	0.012	0.25							0.14
4	C3	4	0.013								0.14
	C4	6	0.013								
	C1	4	0.008		1.00		0.75	0.12	0.8	1	
3	C2	6	0.008	0.16		1.00					0.10
5	C3	4	0.008	0.10		1.00					0.10
	C4	6	0.008								
	C1	4	0.006								
2	C2	6	0.006	0.12	1.00	1.00	0.86	0.10	0.8	1	0.08
2	C3	4	0.006	0.12	1.00	1.00	0.80	0.10	0.8	T	0.08
	C4	6	0.006								
	C1	4	0.004								
1	C2	6	0.004	0.00	1.00	1.00	1.00	0.09	0.8	1	0.07
1	C3	4	0.005	0.09	1.00	1.00	1.00		0.8	1	0.07
	C4	6	0.005								


<u>Classification of vertical members based on failure</u> modes in the second level screening

Vertical member	Definition
Shear wall	Walls whose shear failure precede flexural
Flexural wall	Walls whose flexural yielding precede shear failure
Shear column	Columns whose shear failure precede flexural yielding, except for extremely brittle columns
Flexural column	Columns whose flexural yielding precede shear failure
Extremely brittle column	Columns whose h ₀ /D are equal to or smaller than 2 and shear failure precede flexural yielding

Flexural ultimate strength of columns (M_u)

Calculation of Ultimate flexural Strength of Column(Mu)

The ultimate	e flexural strength of columns shall be calculated
$M_u = \Big\{ 0.8a_t \cdot$	$\sigma_{y} \cdot D + 0.12b \cdot D^{2} \cdot F_{c} \left\{ \cdot \left(\frac{N_{max} - N}{N_{max} - 0.4b \cdot D \cdot F_{c}} \right) For \ N_{max} \ge N > 0.4b \cdot D \cdot F_{c} (1) \right\}$
$M_u = 0.8a_t \cdot \sigma$	$\sigma_{y} \cdot D + 0.5N \cdot D \cdot \left(1 - \frac{N}{b \cdot D \cdot F_{c}}\right) For \ 0.4b \cdot D \cdot F_{c} \ge N > 0 (2)$
$M_u = 0.8a_t \cdot \sigma$	$\sigma_{y} \cdot D + 0.4N \cdot D For 0 > N \ge N_{min} \textbf{(3)}$
$N_{\rm max} = A$	Axial compressive strength $= b \cdot D \cdot F_c + a_g \cdot \sigma_v$ (N).
2022	Axial tensile strength = $-a_g \cdot \sigma_v$ (N) Aria force
N = A	Axial force (N) Total cross sectional area of tensile reinforcing bars (mm ²)
$a_g = T$	Fotal cross sectional area of reinforcing bars (mm ²) Perual nonest M, Third Equation Third Equation
30 U	Column width (mm).
D = C	Column width (mm). N=79 KN N _{max} =2976 KN
$\sigma_v = Y$	Yield strength of reinforcing bars (N/mm ²) 0.4bDFc=776 KN
$F_c = 0$	Compressive strength of concrete (N/mm ²) $0.8a_t\sigma_y D=103.8 \text{ KN.m}$
	$0.5ND(1-N/bDF_c)=0.5*79*375(1-0.041)/1000=14.2$ KN.m
Q	$Q_{mu} = 2 \cdot M_u / h_0$ [Mu= 118 KN.m] $Q_{mu} = 87$ KN]

COLUMN MARK	STORY	AREA(m²)	N (KN)
	5	9.81	79
	4	9.81	200
C1	3	9.81	320
	2	9.81	441
	1	9.81	562
	5	18.37	148
	4	18.37	374
C2	3	18.37	600
	2	18.37	826
	1	18.37	1052
	5	7.88	63
	4	7.88	160
C3	3	7.88	257
	2	7.88	354
	1	7.88	451
	5	14.76	119
	4	14.76	300
C4	3	14.76	482
	2	14.76	664
	1	14.76	845

Calculation of Ultimate Shear Strength of Column(Qsu)

Q_{su}=149 KN

$$Q_{su} = \left\{ \frac{0.053 p_t^{0.23} (18 + F_c)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot s \sigma_{wy}} + 0.1 \sigma_0 \right\} \cdot b \cdot j$$

$$p_t$$
 = Tensile reinforcement ratio (%)

 p_w = Shear reinforcement ratio, $p_w = 0.012$ for $p_w \ge 0.012$

$$\sigma_{wy}$$
 = Yield strength of shear reinforcing bars (N/mm²)

$$\sigma_0$$
 = Axial stress in column (N/mm²)

$$d$$
 = Effective depth of column. *D*-50mm may be applied.

$$\frac{M}{Q}$$
 = Shear span length. Default value is $\frac{h_0}{2}$

 h_0 = Clear height of the column

j

= Distance between centroids of tension and compression forces, default value is 0.8*D*.

If $M/(Q \cdot d)$ is less than unity or greater than 3, the value of $M/(Q \cdot d)$ shall be unity or 3 respectively

if the value of σ_0 is greater than 8N/mm², the value of σ_0 shall be 8N/mm²

Failure Mode Categorization According to the Strength Margin (Contd...)

Story	Column	N(KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column
5		79	118	87	149	87	Flexural
4		200	137	102	159	102	Flexural
3	C1	321	154	114	169	114	Flexural
2		442	226	167	185	167	Flexural
1		562	237	175	194	175	Flexural

Failure Mode Categorization According to the Strength Margin

	and the second s						
Sto	ry Column	N(KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column
5		79	118	87	149	87	Flexural
4		200	137	102	159	102	Flexural
3	C1	321	154	114	169	114	Flexural
2		442	226	167	185	167	Flexural
1		562	237	175	194	175	Flexural
5		148	129	96	155	96	Flexural
4		375	160	119	173	119	Flexural
3	C2	601	181	134	191	134	Flexural
2		828	245	181	216	181	Flexural
1		1054	224	166	234	166	Flexural
5		64	92	68	145	68	Flexural
4		161	105	78	152	78	Flexural
3	C3	258	117	87	160	87	Flexural
2		355	174	129	175	129	Flexural
1		452	183	135	183	135	Flexural
5		119	100	74	149	74	Flexural
4		301	122	90	164	90	Flexural
3	C4	483	139	103	178	103	Flexural
2		666	197	146	200	146	Flexural
1		848	202	150	214	150	Flexural

Ductility index of flexural column (F)

In case
$$R_{mn} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$
In case $R_{mn} \ge R_y$
 $F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$

Where:

 R_y = Yield deformation in terms of inter-story drift angle, which in principle shall be taken as R_y =1/150.

 R_{250} = Standard inter-story drift angle, R_{250} = 1/250.

 R_{mu} = Inter-story drift angle at the ultimate deformation capacity in flexural failure of the column.

Calculation of Upper limit of the drift angle of flexural column (_cR_{max}) Calculation of drift angle for shear force

$${}_{c} R_{\max(s)} = {}_{c} R_{250} \quad for \quad {}_{c} \tau_{u} / F_{c} > 0.2$$

$${}_{c} R_{\max(s)} = {}_{c} R_{30} \quad for \ other \ case$$

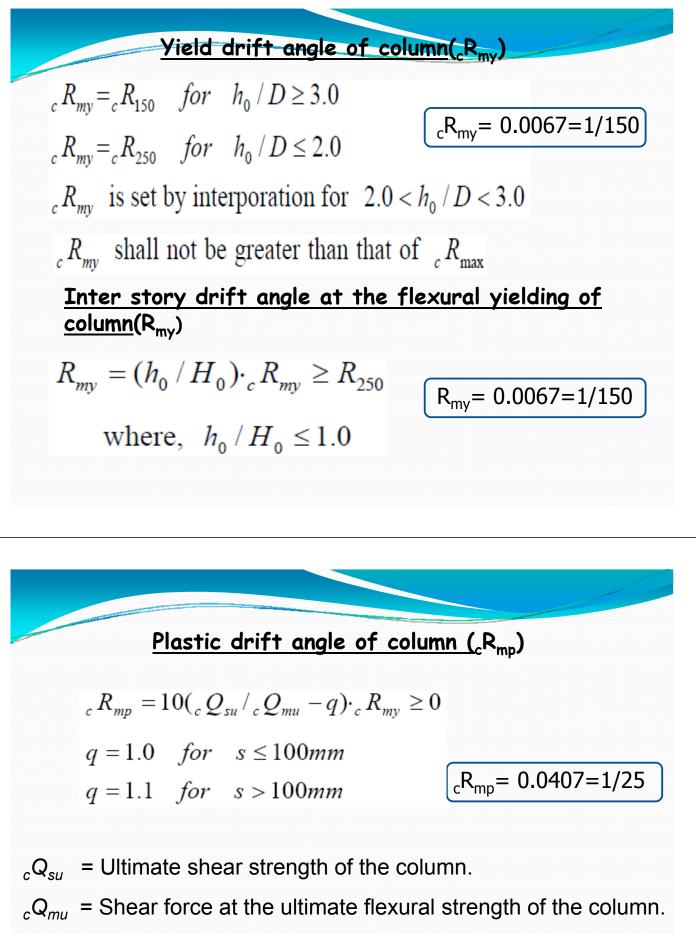
$$_{c}R_{max(s)} = 1/30$$

 $_{C}\tau_{u}$ = Shear stress at the column strength.

 $_{c}Q_{mu}$ = Shear force at the ultimate flexural strength of the column.

 $_{c}Q_{su}$ = Ultimate shear strength of the column

j


Distance between the centroids of the tension and compression forces.
 Default value is 0.8D.

Calculation of drift angle for tensile reinforcement

$${}_{c} R_{\max(t)} = {}_{c} R_{250}$$
 for $p_{t} > 1.0\%$
 ${}_{c} R_{\max(t)} = {}_{c} R_{30}$ for other case ${}_{c} R_{\max(t)} = 1/30$
 p_{t} = Tensile reinforcement ratio (%).
Calculation of drift angle for axial force
 ${}_{c} R_{\max(n)} = {}_{c} R_{250}$ for $\eta > \eta_{H}$
 ${}_{c} R_{\max(n)} = {}_{c} R_{30} \cdot \left(\frac{c}{R_{250}} \int_{0}^{n'} \leq {}_{c} R_{30}\right)$ for other case
where: ${}_{c} R_{\max(n)} = {}_{c} R_{30} \cdot \left(\frac{c}{R_{250}} \int_{0}^{n'} \leq {}_{c} R_{30}\right)$ for other case
 $n' = (\eta - \eta_{L})(\eta_{H} - \eta_{L}).$
 $\eta = N_{s} / (b \cdot D \cdot F_{c}).$
 $\eta_{L} = 0.25$ and $\eta_{H} = 0.4$ for $s > 100mm$.

$$\frac{\text{Calculation of }_{c}R_{max}}{c R_{max} = \min\{c R_{max(n)}, c R_{max(s)}, c R_{max(t)}, c R_{max(b)}, c R_{max(h)}\}}$$

$$\begin{bmatrix} c R_{max(n)} = 1/30 \\ c R_{max(s)} = 1/30 \\ c R_{max(t)} = 1/30 \\ c R_{max(b)} = 1/50 \\ c R_{max(h)} = 1/30 \end{bmatrix}$$

- $_{c}R_{mv}$ = Yield drift angle of column.
- S = Spacing of hoops

Inter story drift angle at the ultimate flexural strength of column (R_{mu})

$$R_{mu} = (h_0 / H_0) \cdot_c R_{mu} \ge R_{250}$$

where, $h_0 / H_0 \le 1.0$
 $_c R_{mu} = {}_c R_{my} + {}_c R_{mp} \le {}_c R_{30}$

cRmy= 0.0067=1/150cRmp= 0.0407=1/25cRmu=cRmy+cRmp= $0.0467=1/21 \le 1/30$ So, cRmu = $1/30 \le cRmax=1/50$ So Final cRmax=1/50Rmu = $1/50\ge 1/250$, So Rmu= 1/50

 $_{c}R_{mu}$ = Drift angle at the ultimate flexural strength of column $_{c}R_{mu}$ shall not be larger than $_{c}R_{max}$

1) In Case
$$R_{mu} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$
2) In Case $R_{mu} \ge R_y$

$$F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$$

Where:

 R_y = Yield deformation in terms of inter-story drift angle, which in principle shall be taken as R_y =1/150.

 R_{250} = Standard inter-story drift angle, R_{250} = 1/250.

 R_{mu} = Inter-story drift angle at the ultimate deformation capacity in flexural failure of the column.

Story	Column	N (KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column	cRmax	cRmy	cRmp	cRmu	F
5		79	118	87	149	87	Flexural	50	150	25	50	2.59
4		200	137	102	159	102	Flexural	50	150	32	50	2.59
3	C1	321	154	114	169	114	Flexural	50	150	39	50	2.59
2		442	226	167	185	167	Flexural	250	250	6604	250	1.00
1		562	237	175	194	175	Flexural	250	250	3141	250	1.00

Calculation of Ductility Index(F)

Story	Column	N (KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column	cRmax	cRmy	cRmp	cRmu	F
5		79	118	87	149	87	Flexural	50	150	25	50	2.59
4		200	137	102	159	102	Flexural	50	150	32	50	2.59
3	C1	321	154	114	169	114	Flexural	50	150	39	50	2.59
2	_	442	226	167	185	167	Flexural	250	250	6604	250	1.00
1		562	237	175	194	175	Flexural	250	250	3141	250	1.00
5		148	129	96	155	96	Flexural	50	150	29	50	2.59
4		375	160	119	173	119	Flexural	50	150	42	50	2.59
3	C2	601	181	134	191	134	Flexural	50	150	47	50	2.59
2		828	245	181	216	181	Flexural	250	250	278	250	1.00
1		1054	224	166	234	166	Flexural	250	250	82	250	1.00
5		64	92	68	145	68	Flexural	50	150	15	50	2.59
4		161	105	78	152	78	Flexural	50	150	17	50	2.59
3	C3	258	117	87	160	87	Flexural	50	150	20	50	2.59
2		355	174	129	175	129	Flexural	250	250	97	250	1.00
1		452	183	135	183	135	Flexural	250	250	100	250	1.00
5		119	100	74	149	74	Flexural	50	150	16	50	2.59
4		301	122	90	164	90	Flexural	50	150	21	50	2.59
3	C4	483	139	103	178	103	Flexural	50	150	24	50	2.59
2		666	197	146	200	146	Flexural	250	250	94	250	1.00
1		848	202	150	214	150	Flexural	250	250	76	250	1.00

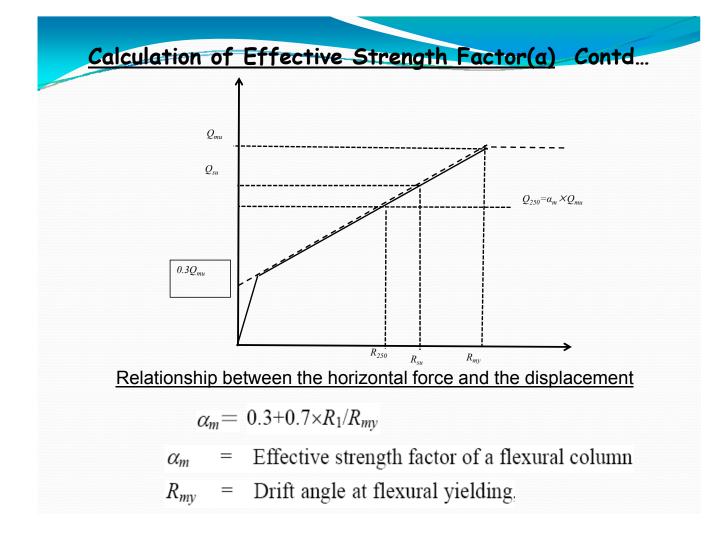
Calculation of Strength Index(C)

The strength index *C* in the second level screening procedure shall be calculated by the following equation

$$C = \frac{Q_u}{\sum W}$$
 C=0.16

Where:

 Q_u = Ultimate lateral load-carrying capacity of the vertical members in the story concerned.


 Σ W= The weight of the building including live load for seismic calculation supported by the story concerned.

<u>Calculation of Strength Index(C)</u> (Contd...)

Story	Column ID	Qmu (KN)	Qsu (KN)	Qu (KN)	Column No	W (KN)	ΣW (KN)	С
	C1	87	149	87	4	79		0.16
_	C2	96	155	96	6	148		0.26
5	C3	68	145	68	4	64	2175	0.13
	C4	74	149	74	6	119		0.20

Calculation of Strength Index(C)

Story	Column	Qmu (KN)	Qsu (KN)	Qu (KN)	Column No	W (KN)	ΣΜ (κν)	С
	C1	87	149	87	4	79		0.16
-	C2	96	155	96	6	148	2175	0.26
5	C3	68	145	68	4	64	2175	0.13
	C4	74	149	74	6	119		0.20
	C1	102	159	102	4	200		0.07
4	C2	119	173	119	6	375	E 4 0 9	0.13
4	C3	78	152	78	4	161	5498	0.06
	C4	90	164	90	6	301		0.10
	C1	114	169	114	4	321		0.05
3	C2	134	191	134	6	601	8822	0.09
5	C3	87	160	87	4	258	8822	0.04
	C4	103	178	103	6	483		0.07
	C1	167	185	167	4	442		0.06
2	C2	181	216	181	6	828	10145	0.09
2	C3	129	175	129	4	355	12145	0.04
	C4	146	200	146	6	666		0.07
	C1	175	194	175	4	562		0.05
1	C2	166	234	166	6	1054	15468	0.06
T	C3	135	183	135	4	452	10400	0.03
	C4	150	214	150	6	848		0.06

Calculation of Effective Strength Factor(a) Contd...

				Effective Strength Factor(a)						
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th></r1<r150<>	R1>R150			
Story	Column ID	F index	1/R _{my}	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th></f1<1.27)<>	F1(1.27<=F1)			
	C1	2.59	150				1.0			
_	C2	2.59	150				1.0			
5	C3	2.59	150				1.0			
	C4	2.59	150				1.0			

	Ca	lculatio	n of Ef	fective	Streng	th Factor(a	r)
					ffective S	Strength Facto	r(a)
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th></r1<r150<>	R1>R150
Story	Column	F index	1/R _{my}	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th></f1<1.27)<>	F1(1.27<=F1)
	C1	2.59	150				1.0
5	C2	2.59	150				1.0
5	C3	2.59	150				1.0
	C4	2.59	150				1.0
	C1	2.59	150				1.0
4	C2	2.59	150				1.0
4	C3	2.59	150				1.0
	C4	2.59	150				1.0
	C1	2.59	150				1.0
3	C2	2.59	150				1.0
5	C3	2.59	150				1.0
	C4	2.59	150				1.0
	C1	1.00	250		1.0		
2	C2	1.00	250		1.0		
2	C3	1.00	250		1.0		
	C4	1.00	250		1.0		
	C1	1.00	250		1.0		
1	C2	1.00	250		1.0		
1	C3	1.00	250		1.0		
	C4	1.00	250		1.0		

				Cal	culatio	on of CTU	Indices			
					Effective					
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th><th></th><th></th><th></th></r1<r150<>	R1>R150			
Story	Column	С	F	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>C_{TU}</th><th>С_{т∪}Sd</th><th>Evaluation</th></f1<1.27)<>	F1(1.27<=F1)	C _{TU}	С _{т∪} Sd	Evaluation
	C1	0.16	2.59				1.0			
5	C2	0.26	2.59				1.0	0.75	0.75	ОК
J	C3	0.13	2.59				1.0	0.75	0.75	UK
	C4	0.20	2.59				1.0			
	C1	0.07	2.59				1.0			
4	C2	0.13	2.59				1.0	0.36	6 0.36	ОК
4	C3	0.06	2.59				1.0	0.30	0.30	UK
	C4	0.10	2.59				1.0			
	C1	0.05	2.59				1.0			
3	C2	0.09	2.59				1.0	0.25	0.25	NG
5	C3	0.04	2.59				1.0	0.25	0.25	DN
	C4	0.07	2.59				1.0			
	C1	0.06	1.00		1.0					
2	C2	0.09	1.00		1.0			0.26	0.26	NG
2	C3	0.04	1.00		1.0			0.20	0.20	
	C4	0.07	1.00		1.0					
	C1	0.05	1.00		1.0					
1	C2	0.06	1.00		1.0			0.20	0.20	NG
T	C3	0.03	1.00		1.0			0.20	0.20	NG
	C4	0.06	1.00		1.0					

<u>Calculation of Eo (Contd...)</u>

					Effective	Strength Facto	r(α)		
				R1=R500	R1=R250	R250 <r1<r150< td=""><td>R1>R150</td><td></td><td></td></r1<r150<>	R1>R150		
Story	Column	С	F index	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>E_o(Eq1)</th><th>E_o(Eq2)</th></f1<1.27)<>	F1(1.27<=F1)	E _o (Eq1)	E _o (Eq2)
	C1	0.16	2.59				1.0		
5	C2	0.26	2.59				1.0	1.95	1.01
5	C3	0.13	2.59				1.0	1.95	1.01
	C4	0.20	2.59				1.0		

E_o(Eq1)=(C1+∑α1.C1)*F1

E_o(Eq2)=Sqrt((C1*F1)^2+....+(Ci*Fi)^2))

Calculation of Eo

					Effective	Strength Facto	r(α)		
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th><th></th><th>E∘</th></r1<r150<>	R1>R150		E∘
Story	Column	С	F	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>E_o(Eq1)</th><th>E_o(Eq2)</th></f1<1.27)<>	F1(1.27<=F1)	E _o (Eq1)	E _o (Eq2)
	C1	0.16	2.59				1.0		
5	C2	0.26	2.59				1.0	1.95	1.01
5	C3	0.13	2.59				1.0	1.55	1.01
	C4	0.20	2.59				1.0		
	C1	0.07	2.59				1.0		
4	C2	0.13	2.59				1.0	0.93	0.49
4	C3	0.06	2.59				1.0	0.95	0.49
	C4	0.10	2.59				1.0		
	C1	0.05	2.59				1.0		
3	C2	0.09	2.59				1.0	0.65	0.34
2	C3	0.04	2.59				1.0	0.05	0.34
	C4	0.07	2.59				1.0		
	C1	0.06	1.00		1.0				
2	C2	0.09	1.00		1.0			0.26	0.13
2	C3	0.04	1.00		1.0			0.20	0.15
	C4	0.07	1.00		1.0				
	C1	0.05	1.00		1.0				
1	C2	0.06	1.00		1.0			0.20	0.10
1	C3	0.03	1.00		1.0			0.20	0.10
	C4	0.06	1.00		1.0				

E_o(Eq1)=(C1+∑α1.C1)*F1 E_o(Eq2)=Sqrt((C1*F1)^2+....+(Ci*Fi)^2))

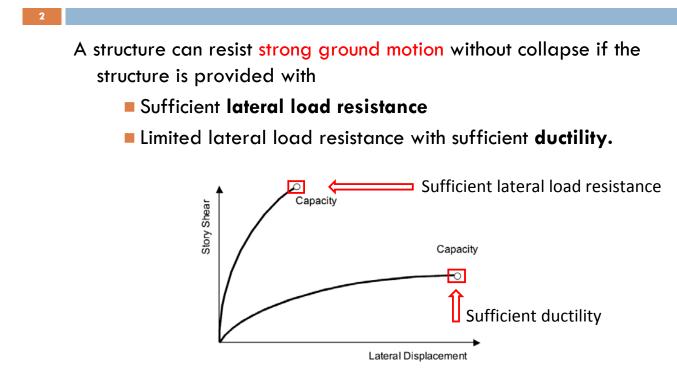
Calculation of Is(Contd...)

Story	Column	(n+1)/ (n+i)	E _o (Eq1)	E _o (Eq2)	E _o	S _d	т	I _s
	C1							
5	C2	0.60	1.95	1.01	1.95	1	0.8	0.94
	C3							
	C4							

Story	Column	(n+1)/(n+i)	E _o (Eq1)	E _o (Eq2)	Eo	S _d	Т	I _s
5	C1							
	C2	0.60	1.95	1.01	1.95	1	0.8	0.94
	C3	0.00	1.55	1.01	1.55	T	0.0	0.54
	C4							
	C1					1		0.50
4	C2	0.67	0.93	0.49	0.93		0.8	
4	C3	0.67	0.93					
	C4							
	C1	0.75	0.65	0.34	0.65	1	0.8	0.39
3	C2							
5	C3							
	C4							
	C1		0.26	0.13	0.26	1	0.8	0.10
2	C2							
2	C3	0.86						0.18
	C4							
	C1							
_	C2	1.00	0.20	0.10	0.20	1	0.8	0.10
1	C3		0.20					0.16
	C4							

Overview of Seismic Capacity Evaluation According to Japanese Standard

February 12, 2013


By

Ahmed Abdullah NOOR

Sub-Divisional Engineer

Public Works Department (PWD), Bangladesh.

Basic concept of Seismic Resistance:

Story Shear- Story Drift Relationship

Basic Concept of Seismic evaluation

in Japanese Standard

The seismic index of structure Is,

 $Is = E_0 * S_D * T$

Where

 ${\rm E}_{\rm 0=}\,{\rm Basic}$ seismic index of structure

 $\boldsymbol{S}_{D=}$ Irregularity index

T= Time index

Is should be calculated at each story and in each principal horizontal direction

Basic seismic index of structure E_0

Where

 $E_0 = \Phi * C * F$

 ϕ = Story Index C = Strength Index

F = Ductility index

Basic Concept of Seismic Evaluation (Contd.)

The standard consists of **three** different level procedures: first, second and third level procedures.

The first level procedure is the simplest and most conservative procedure. Two major things are considered in this level to calculate the strength:

- Sectional area of columns and walls
- Strength of concrete.
- \rightarrow Inelastic deformability is neglected in this level.
- → First Level screening should not be used if large eccentricity exists in a floor

Second and Third Level Screening <u>ultimate lateral load carrying capacity</u> of vertical members or frames are evaluated using

material and sectional properties together with reinforcing details

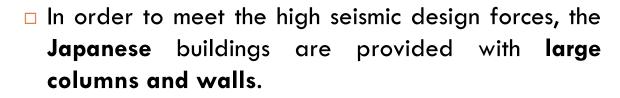
Characteristics of the ground motion

5

The characteristics of the ground motion based on response spectrum is expressed by required Seismic Capacity Index of Structure, Iso

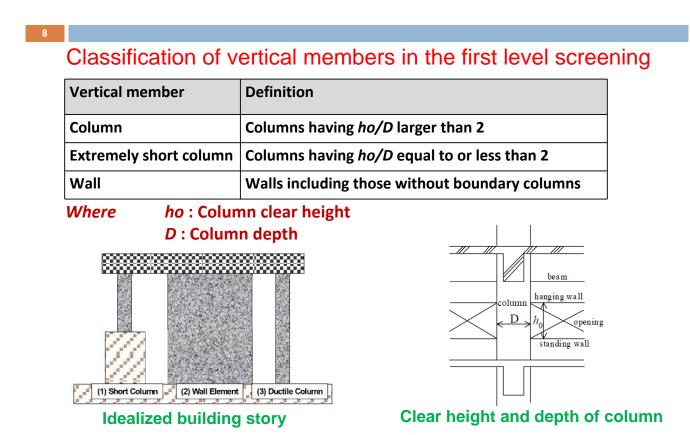
 $Iso = Es^*Z^*G^*U$

Where:


- Es= Basic Seismic Demand Index of structure
- Z = Zone index (Seismic activity at construction area)
- G = Ground index (Amplification of ground motion by surface soil deposit)
- U = Usage index. (Here in this case 1.5 is used assuming the building will be used as a shelter after a severe earthquake)

First Level Screening Procedure

6


- Lateral strength of a story is crudely evaluated by examining the shear strength of columns and walls by their cross-sectional areas. The strength of girder is not examined at this stage because:
- The column is believed to be more vulnerable to earthquake force.
- Failures of columns lead to the collapse of the building.
- □ The girder is believed to be more ductile.

Important Features of First Level Screening

- Importance of shear wall is also emphasized in design.
- Therefore a Japanese building is believed to possess lateral strength larger than required by code.
- First level screening procedure is to identify these **strong** buildings by a simple calculation.

Vertical Members in First Level Screening

Basic parameters used in First Level Screening

A crude and conservative estimation of shear strength per unit sectional area is used for

- short columns 1.5 Mpa
- columns 1.0 Mpa

ф

- walls with boundary columns on both sides 3 Mpa
- walls with boundary columns on one side 2 Mpa
- walls with boundary columns with no boundary 1 Mpa

Based on dimension, materials, reinforcement ratio commonly used in Reinforced Concrete buildings in Japan.

Basic Seismic Index for First Level Screening

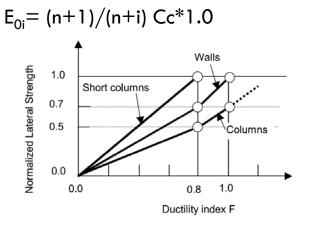
Short columns are likely to fail in brittle shear mode, and a small ductility index (F=0.8) is assigned.

- The **wall and columns** are **assumed** to develop **70% and 50% of their strength**, respectively when the short column fails in shear.
- Structural Index E_{0i} of the i story is evaluated by the following equation at the failure of short column:

↑ C

 $E_{0i} = ((n+1)/(n+i)) * (Csc + 0.7*Cw + 0.5*Cc)*0.8$

Basic Seismic Index for First Level Screening (Contd.)


If short column doesn't exist in a story or if the failure of short column will not lead to the collapse of the story, Structural Index E_{0i} of the i story is evaluated by the following equation at the failure of wall:

 $E_{0i} = (n+1)/(n+i)$ (Cw +0.7*Cc)*1.0

Where the **ductility index** for wall is selected to be **1.0 and 70% of column strength** is **assumed** to be developed at the failure of wall

Basic Seismic Index for First Level Screening (Contd.)

 If no structural wall/ short column exists in a story (Cw=0), then the structural index is estimated by the following equation:

Strength and deformation relation in first level screening procedure

Irregularity/ Configuration Index

- Irregularity in plan
- Longitudinal to transverse plan length ratio
- Expansion joints
- Existence of basement
- Abrupt discontinuity of stiffness along the height; especially soft story
- A simple grading chart is provided to determine the configuration index which varies from **0.42 to 1.2**

Time/Age Index

14	
	In evaluating age index T the following things are to be considered:
	Observed deformation in the building caused by uneven settlement of foundation
	Cracks in columns and walls
	Rust on reinforcement

- Past and present use of chemicals
- Past fire experience
- Finishing condition and building age
- Age Index T varies from 0.7 to 1.0

Second Level Screening Procedure

- The combination of different ductility levels and shear resistance of vertical members are considered in earthquake resistance of a structure.
- The shear resistance of vertical members (columns and walls) must be calculated on the basis of member geometry, the amount of longitudinal and lateral reinforcement and concrete strength.
- Failure mode, either shear or flexural is determined by comparing shear strength and flexural strength

Classification of Vertical Members

	7	
	r • 1	

Classification of vertical members based on failure modes in the second level screening procedure

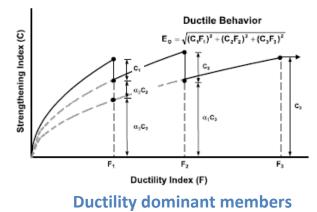
Vertical	Definition	Ductility	
member		Index, F	
Shear wall	Walls whose shear failure precede flexural yielding	1.0	
Flexural wall	Walls whose flexural yielding precede shear failure	1.0-2.0	
Shear column	Columns whose shear failure precede flexural yielding, except for extremely brittle columns	1.0	
Flexural column	Columns whose flexural yielding precede shear failure	1.27-3.2	
Extremely brittle column	Columns whose <i>ho/D</i> are equal to or smaller than 2 and shear failure precede flexural yielding	0.8	

Dominant Members in Second Level Screening

1

Ductility-dominant basic seismic index of structure

- Vertical members shall be classified by their ductility indices F into three groups or less
- The index F of the first group shall be taken as larger than 1.0 and the index F of the third group shall be less than the ductility index corresponding to the ultimate deformation of the story
- The minimum ductility index of the vertical members should be used in each group.


Any grouping of members may be adopted so that the index E0 would be evaluated as maximum

Dominant Members in Second Level Screening (Contd.)

$$E_0 = (n+1)/(n+i)\sqrt{(E_1^2 + E_2^2 + E_3^2)}$$

Where

- $E_1 = C_1 F_1$ $E_2 = C_2 F_2$ $E_3 = C_1 F_3$
- $C_1 = \underline{The}$ strength index C of the first group (with small F index).
- $C_2 = The strength index C of the second group (with medium F index).$
- $C_3 =$ The strength index C of the third group (with large F index).
- $F_1 =$ <u>The</u> ductility index *F* of the first group.
- $F_2 = The ductility index F$ of the second group.
- F_3 = The ductility index *F* of the third group.

Dominant Members in Second Level Screening (Contd.)

19

Strength-dominant basic seismic index of structure

- ductility index of the first group F1 shall be selected as the cumulative point of strength.
- contribution of strength indices of only the vertical members with larger ductility indices than that of the first group shall be considered

Any grouping of members may be adopted so that the index E0 would be evaluated as maximum

 $E_0 = (n+1)/(n+i) (C_1 + \Sigma \alpha_j C_j) F_1$

α_j= Effective Strength Factor in the j-th group at the ultimate deformation R1 corresponding to the first group (Ductility Index F1)

Dominant Members in Second Level Screening (Contd.)

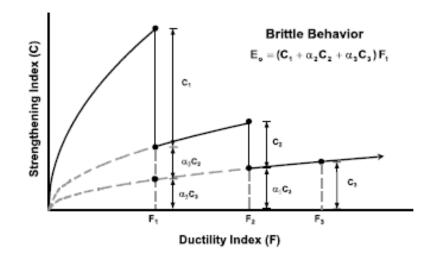
Effective Strength Factor

Cumulative point of the first group $F_1 = 0.8$ (Drift angle $R_1 = R_{500} = 1/500$)							
	F_1	F ₁ =0.8					
	R_1	$R_1 = R_{500}$					
	Shear $(R_{su}=R_{250})$	α_s					
Second and	Shear ($R_{250} < R_{su}$)	α_s					
higher groups	Flexural $(R_{my}=R_{250})$	0.65					
	Flexural ($R_{250} < R_{my} < R_{150}$)	α_m					
	Flexural $(R_{my}=R_{150})$	0.51					
	Flexural and shear walls	0.65					

Dominant Members in Second Level Screening (Contd.)

Effective Strength Factor (Contd.)

Cumulative point of the first group $F_1 \ge 1.0$ (Drift angle $R_1 \ge R_{250} = 1/250$)								
	F_1	$F_1 = 1.0$	$1.0 < F_1 < 1.27$	$1.27 \le F_1$				
	R_1	R ₂₅₀	$R_{250} < R_1 < R_{150}$	$R_{150} \leq R_1$				
	Shear $(R_{su}=R_{250})$	1.0	0.0	0.0				
Second and	Shear $(R_1 \leq R_{su})$	α_s	α_s	0.0				
higher groups	Flexural $(R_{my} \leq R_1)$	1.0	1.0	1.0				
	Flexural $(R_1 \leq R_{my})$	α_m	α_m	1.0				
	Flexural	0.72	α_m	1.0				
	$(R_{my}=R_{150})$							


Dominant Members in Second Level Screening (Contd.)

22

- = Effective strength factor of a shear column, calculated by α_{S} $\alpha_{S} = Q_{(F1)}/Q_{su} = \alpha_{m} Q_{mu}/Q_{su} \leq 1.0$ Effective strength factor of a flexural column, calculated by = α_m $\alpha_m = Q_{(F1)}/Q_{mu} = 0.3 + 0.7 \times R_1/R_{mv}$ Drift angle at flexural yielding, calculated by Eq. (A1.3-1) in the R_{mv} Supplementary Provisions 1. Drift angle at shear strength, calculated by Eq. (A1.2-11) in the R_{su} Supplementary Provisions 1. Shear force at the deformation capacity R_1 of a column in the = $Q_{(F1)}$ second and higher groups.
- Q_{su} = Shear strength of a column in the second and higher groups (3.2.2).
- Q_{mu} = Shear force at flexural yielding of a column in the second and higher groups (3.2.2).

Dominant Members in Second Level Screening (Contd.)

Brittle dominant members

Seismic Index Is after rehabilitation

- If the structural seismic capacity I_S is more than required seismic capacity I_{SO}, the structure is judged safe against earthquake motion observed in 1968 Tokachi Oki earthquake, 1978 Miyagi Ken Oki earthquake or the 1995 Hyogo ken Nanbu earthquake.
- If Seismic Index I_S is less than index I_{SO} but more than
 0.65 I_{SO} the structure is thought to possess reasonable seismic resistance, but the vulnerability assessment by the second level screening is recommended.

Conclusion

Seismic evaluation technique developed in Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 is basically based on the existing RCC buildings of Japan, so some parameters may be modified for using it in any other country.

References

26

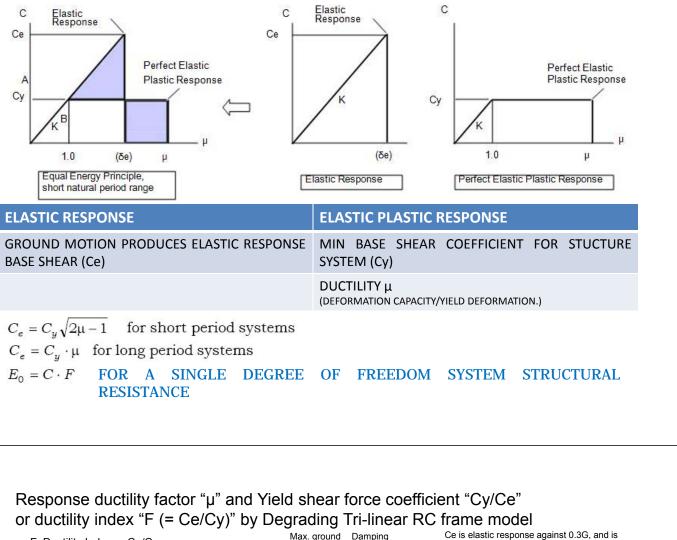
- Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001, Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001 and Technical Manual for Seismic Evaluation and Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001
- Lecture Notes of IISE, BRI for Earthquake Engineering Course by Shunsuke Sugano, Professor Emeritus, Hiroshima University, Visiting Research Fellow, IISEE, BRI.
- Shunsuke OTANI, Professor, University of Tokyo, "Seismic Vulnerability of Reinforced Concrete Building."
- Toshimi Kabeyasawa, Professor, University of Tokyo, "Improvement of Seismic Performance of Reinforced Concrete School Building in Japan Part1 Damage Survey and Performance Evaluation after 1995 Hyogo- Ken Nambu Earthquake.

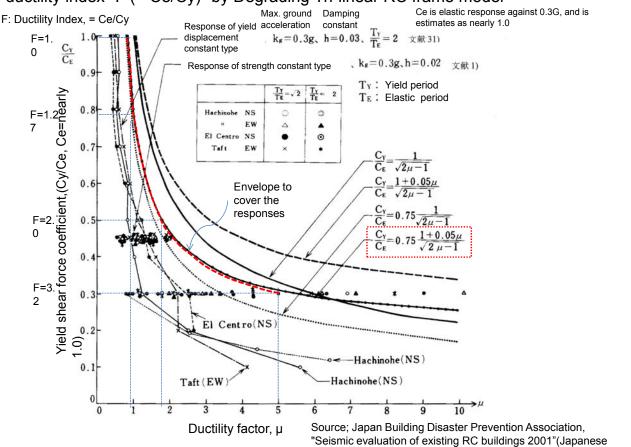
25

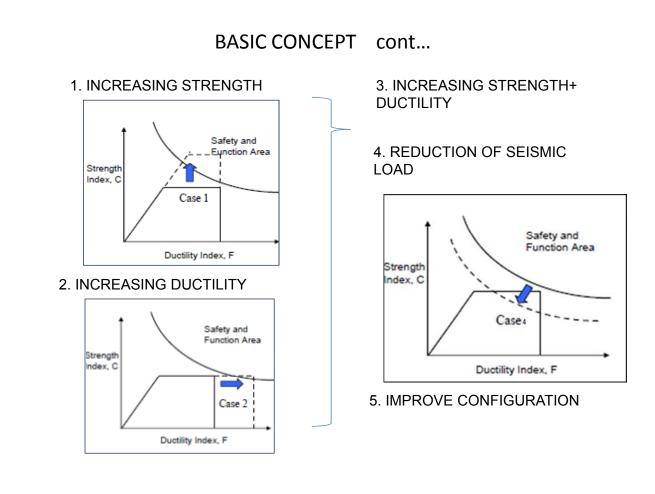
SHORT TRAINING COURSE ON SEISMIC ASSESSMENT, RETROFIT DESIGN AND CONSTRUCTION OF RC BUILDING

TITLE OF LECTURE

CONCEPT ON RETROFITTING DESIGN


PRESENTED BY


ANUP KUMAR HALDER SUB DIVISIONAL ENGINEER PWDDESIGN DIVISION-V. & TEAM MEMBER WORKING TEAM-II


OUTLINE

- 1. BASIC CONCEPT
- 2. SIGNIFICANCE OF "C"
- 3. SIGNIFICANCE OF "F"
- 4. SHEAR COLUMN
- 5. FLEXURAL COLUMN
- 6. STRENGTH DOMINANT & DUCTILITY DOMINANT STRUCTURE
- 7. SIGNIFICANCE OF "Eo"
- 8. ESTABLISHMENT OF "Iso" VALUE
- 9. IMPORTANCE OF "SD"
- 10. IMPORTANCE OF "T"
- 11. JUDGEMENT OF "Iso" VALUE
- 12. SEISMIC PERFORMANCE LEVEL AS PER ASCE-41
- 13.ANALYSIS & ACCEPTANCE CRITERION ASCE-41
- **14. RETROFITTING METHODS**
- **15. STRENGTHENING EFFECT OBSERVED**
- **16. STRATEGIES & PLANNING**

BASIC CONCEPT

SIGNIFICANCE OF "C"

LATERAL STRENGTH OR LOAD CARRYING CAPACITY OF A MEMBER

$$C_{c} = \frac{\tau_{c} \cdot A_{c}}{\Sigma W} \cdot \beta_{c} \qquad \beta_{c} = \frac{F_{c}}{20} \qquad F_{c} \le 20 \qquad \tau_{c} = 1 \text{ N/mm}^{2} \qquad 1 \text{ST LEVEL}$$

$$\beta_{c} = \sqrt{\frac{F_{c}}{20}} \qquad F_{c} > 20$$

$$\frac{\text{Story}}{20} \qquad \Sigma W \qquad T. \text{ Ac (mm^{2})} \qquad f'c(\text{Mpa}) \qquad (n+1)/(n+i) \qquad \beta_{c} \qquad Cc$$

Story	Σw	T. Ac (mm ²)	f'c(Mpa)	(n+1)/(n+i)	β _c	Сс
5	3021	5625000	17	0.60	0.85	1.58
4	7703	5625000	17	0.67	0.85	0.62
3	12386	5625000	17	0.75	0.85	0.39
2	17068	5625000	17	0.86	0.85	0.28
1	21750	5625000	17	1.00	0.85	0.22

	Frame	FL	∑W (KN)	Qu	С	
$C = Q_u$		5	525	199	0.3795	
$C = \frac{\mathcal{Q}_u}{\sum W}$		4	1050	211	0.2013	2 ND LEVEL
		3	1557	223	0.1435	
		2	2082	235	0.1131	
	2A	1	2624	248	0.0943	

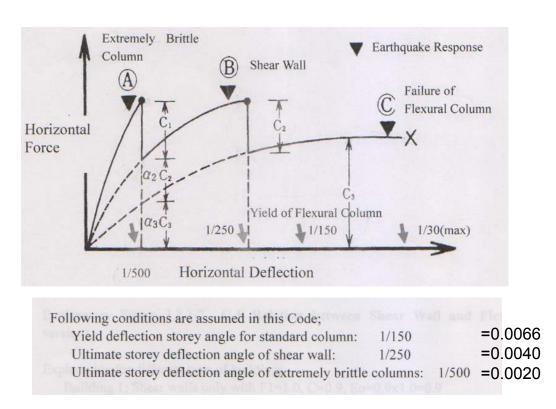
DEFORMATION CAPACITY OF STRUCTURAL MEMBER

Vertical member	Ductility index F
Column $(h_0/D>2)$	1.0
Extremely short column $(h_0/D \le 2)$	0.8
Wall	1.0

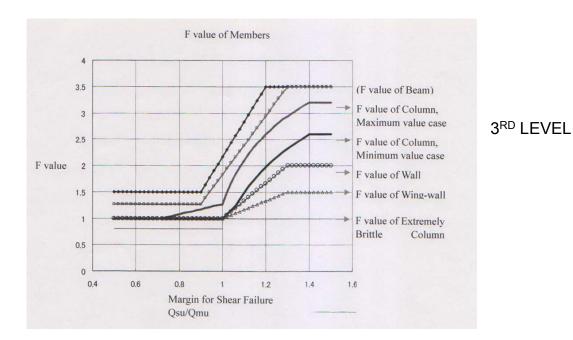
1ST LEVEL

SHEAR COLUMN

$$F = 1.0 + 0.27 \frac{R_{su} - R_{250}}{R_y - R_{250}}$$


FLEXURAL COLUMN

$$F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}} \qquad \qquad R_{mu} < R_y$$


$$F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2 \qquad \qquad R_{mu} \ge R_y$$

2ND LEVEL

SIGNIFICANCE OF "F" cont..... (STANDARD DEFORMATION ANGLE)

SIGNIFICANCE OF "F" cont.... (Margin of shear failure)

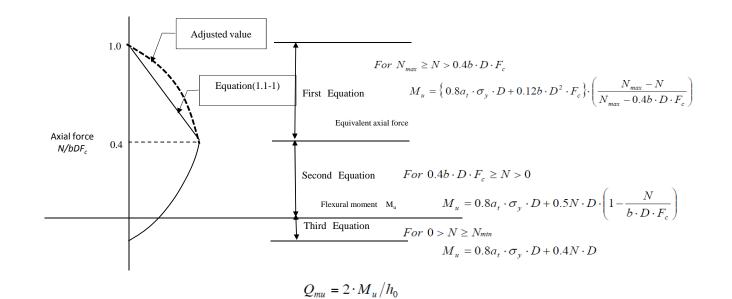
SIGNIFICANCE OF "F" cont.... (Based on Ductility ratio)

DUCTILITY CAPACITY OF A FLEXURAL COLUMN :

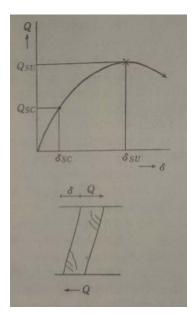
$$1 \le \mu = \mu_0 - k_1 - k_2 \le 5$$

 $\mu_{0} = 10 \left(\frac{c Q_{su}}{c Q_{mu}} - 1 \right)$ $k_{c} = 2.0 \qquad (K1=1; \text{ WHEN HOOP SPACING 8TIMES THE DIA OF MAIN RE BAR})$ $k_{2} = 30 \left(\frac{c^{\tau}_{mu}}{F_{c}} - 1 \right) \ge 0$ $c^{\tau}_{mu} = \frac{c Q_{mu}}{(b \cdot j)}$

DUCTILITY INDEX F=1; IF FOLLOWING CONDITION IS SATISFIED

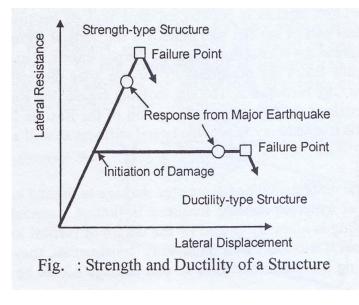

$$N_s/(bDF_c) > 0.4$$

$$_c \tau_{mn}/F_c > 0.2$$

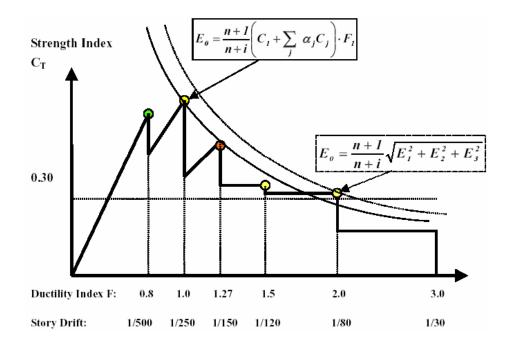

$$P_t > 1\%$$

$$h_o/D \le 2.0$$

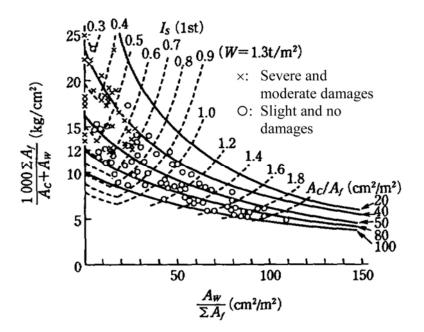
FLEXURAL COLUMN


SHEAR COLUMN

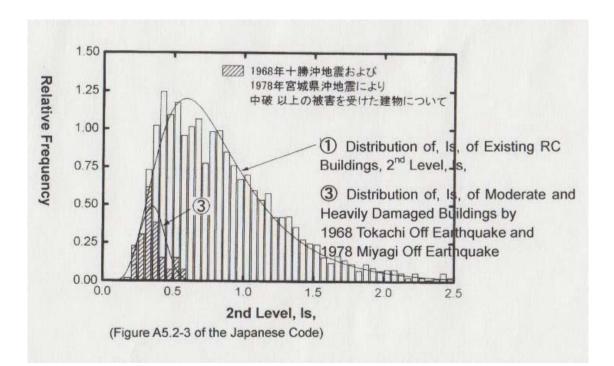
MAIN REBAR RATIO, CONCRETE STRENGTH $Q_{su} = \begin{cases} \frac{0.053 p_t^{0.23} (18 + F_c)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot_s \sigma_{wy}} + 0.1 \sigma_0 \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$


FROM EMPIRICAL EQUATION

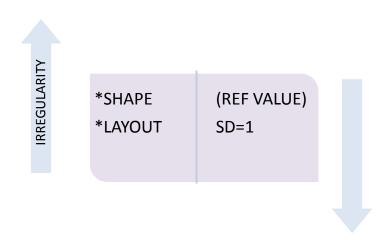
STRENGTH TYPE & DUCTILITY TYPE STRUCTURE


SOURCE: PROFESSOR SHUNSUKE OTANI'S PAPER

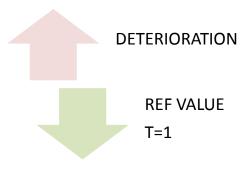
SIGNIFICANCE OF E0


Idealized relations of lateral strength and ductility for seismic index SOURCE: PROFESSOR KABAYASAWA'S PAPER

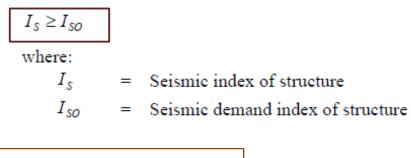
ESTABLISHMENT OF Iso (based on 1st level)


ESTABLISHMENT OF Iso (based on 2nd level)

IMPORTANCE OF \mathbf{S}_{D}

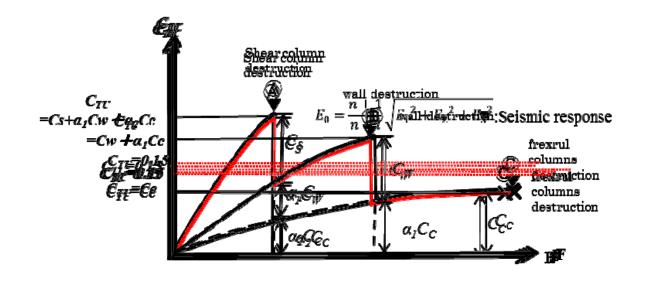

IT MODIFY SEISMIC INDEX BY QUANTIFYING THE EFFECT OF

- HORIZONTAL BALANCE
- ELEVATION BALANCE
- ECCENTRICITY
- STIFFNESS



IMPORTANCE OF **T**

TIME INDEX EVALUATES THE EFFECTS OF STRUCURAL DEFECTS •STRUCTURAL CRACKING AND DEFLECTION •DETERIORATION AND AGING.


JUDGEMENT

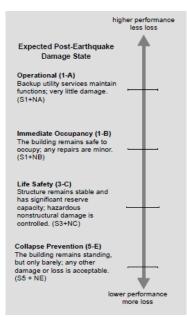
 $C_{TU} \cdot S_D \geq 0.3 \cdot Z \cdot G \cdot U$

 C_{TU} = Cumulative strength index at the ultimate deformation of structure. S_D = Irregurality index.

JUDGEMENT

 $I_{SO} = E_S \cdot Z \cdot G \cdot U$

 E_s = Basic seismic demand index of structure, standard values of which shall be selected as follows regardless of the direction of the building:


 $E_s = 0.8$ for the first level screening,

 $E_s = 0.6$ for the second level screening, and

 $E_s = 0.6$ for the third level screening.

- Z = Zone index, namely the modification factor accounting for the seismic activities and the seismic intensities expected in the region of the site.
- G = Ground index, namely the modification factor accounting for the effects of the amplification of the surface soil, geological conditions and soil-and-structure interaction on the expected earthquake motions.
- U = Usage index, namely the modification factor accounting for the use of the building.

SEISMIC PERFORMANCE LEVELS

TARGET BUILDINGS PERFORMANCE LEVEL (ASCE-41)

PERFORMANCE LEVEL ASCE 41 Table C1-2. Damage Control and Building Performance Levels

Structural Performance Levels Life Safety Collapse Prevention Immediate (S-5) (S-3) Occupancy (S-1) Elements Туре Concrete Frames Primary Extensive cracking and hinge Extensive damage to beams. Minor hairline cracking. Limited yielding possible at a few locaformation in ductile elements. Spalling of cover and shear cracking (< 1/8-in. width) for tions. No crushing (strains Limited cracking and/or splice ductile columns. Minor spalling below 0.003). failure in some nonductile columns. Severe damage in in nonductile columns. Joint short columns. cracks < 1/8 in. wide. Secondary Extensive spalling in columns Extensive cracking and hinge Minor spalling in a few places in formation in ductile elements. ductile columns and beams. (limited shortening) and beams. Limited cracking and/or splice Flexural cracking in beams and Severe joint damage. Some reincolumns. Shear cracking in failure in some nonductile forcing buckled. joints < 1/16-in. width. columns. Severe damage in short columns. 1% transient; 2% transient: Drift 4% transient or permanent. 1% permanent. negligible permanent.

Table C1-3. Structural Performance Levels and Damage^{1,2,3}—Vertical Elements

 Table C1-4. Structural Performance Levels and Damage^{1,2}—Horizontal Elements

 Table C1-6. Nonstructural Performance Levels and Damage¹—Mechanical, Electrical, and

 Plumbing Systems/Components

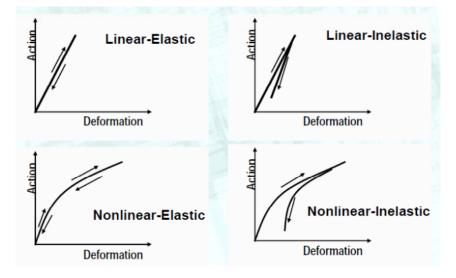
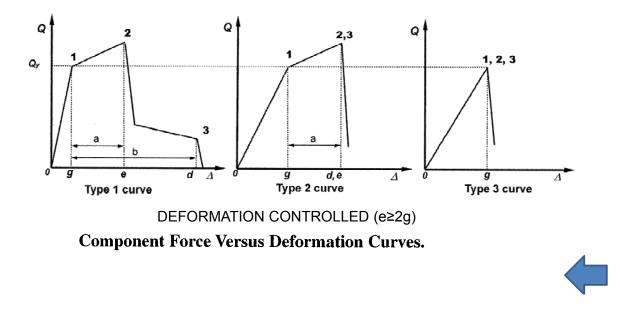
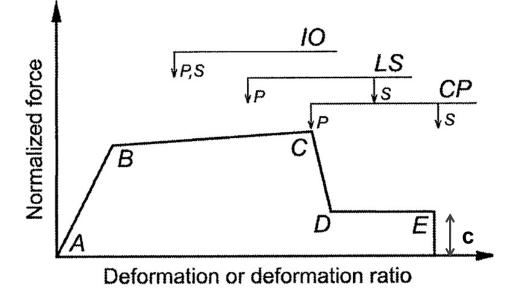

Table C1-5. Nonstructural Performance Levels and Damage¹—Architectural Components

Table C1-7. Nonstructural Performance Levels and Damage¹-Contents

Table C1-8. Target Building Performance Levels and Ranges


ANALYSIS PROCEDURE (ASCE-41)

- 1. LINEAR STATIC
- 2. LINEAR-DYNAMIC
- 3. NONLINEAR STATIC
- 4. NONLINEAR-DYNAMIC

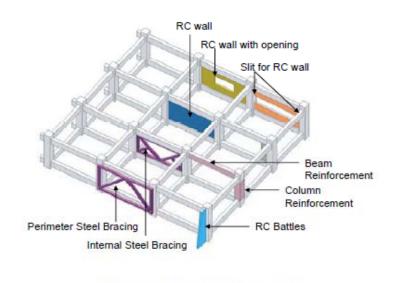


ACCEPTANCE CRITERIA (ASCE-41)

- PRIMARY COMPONENT (P)
- SECONDARY COMPONENT (S)
- DEFORMATION CONTROLLED ACTION
- FORCE CONTROLLED ACTION

ACCEPTANCE CRITERIA cont....(ASCE-41)

COMPONENT OR ELEMENT DEFORMATION ACCEPTANCE CRITERIA

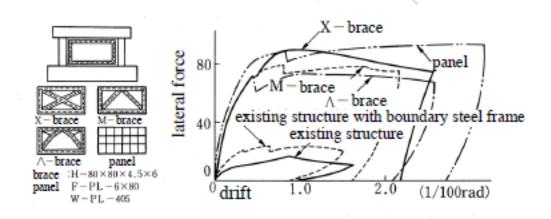

NUMERICAL ACCEPTANCE CRITERIA FOR COLUMNS, ASCE-41

			Mod	leling Para	meters ⁴		Acce	ptance Cri	iteria ⁴		
					Plastic Rotation Angle, radians						
							Performance Level				
					Residual	Component Type					
		Plastic Rotation Angle, radians		Strength Ratio		Primary Secondary					
Conditio	ns		a	b	с	ю	LS CP	CP	P LS	CP	
i. Colum	ns controlle	d by flexure ¹									
$\frac{P}{A_g f_c'}$	Trans. Reinf. ²	$\frac{V}{b_w d \sqrt{f_c'}}$									
≤ 0.1	с	≤ 3	0.02	0.03	0.2	0.005	0.015	0.02	0.02	0.03	
≤ 0.1	С	≥6	0.016	0.024	0.2	0.005	0.012	0.016	0.016	0.024	
≥ 0.4	С	≤ 3	0.015	0.025	0.2	0.003	0.012	0.015	0.018	0.025	
≥ 0.4	С	≥6	0.012	0.02	0.2	0.003	0.01	0.012	0.013	0.02	0.0066
≤ 0.1	NC	≤ 3	0.006	0.015	0.2	0.005	0.005	0.006	0.01	0.015	(1/150
≤ 0.1	NC	≥6	0.005	0.012	0.2	0.005	0.004	0.005	0.008	0.012	(1/130
≥ 0.4	NC	≤ 3	0.003	0.01	0.2	0.002	0.002	0.003	0.006	0.01	
≥ 0.4	NC	≥6	0.002	0.008	0.2	0.002	0.002	0.002	0.005	0.008	
ii. Colum	ins controlle	ed by shear ^{1, 3}	3								
All cases	5		-	-	-	-	-	-	.0030	.0040	0.0040
		ed by inadequ	late devel	opment or	splicing along	the clear	height ^{1,3}				(1/250)
Hoop spacing ≤ d/2			0.01	0.02	0.4	0.005	0.005	0.01	0.01	0.02	
Hoop spacing > d/2 0.0			0.0	0.01	0.2	0.0	0.0	0.0	0.005	0.01	
iv. Colun	nns with axi	al loads excee	eding 0.70	, p ₀ 1, 3							
	ng hoops ov		0.015	0.025	0.02	0.0	0.005	0.01	0.01	0.02	
All other cases			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

RETROFITTING METHODS

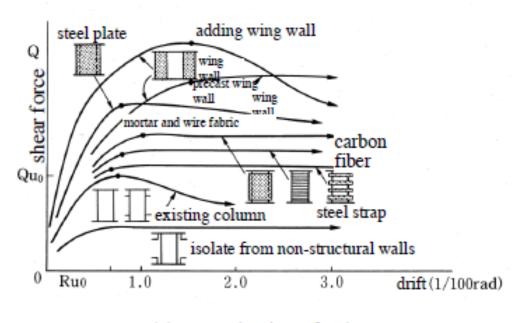
A. STRENGTH UPGRADING	1. ADDING WALL		
	2. STEEL WITH FRAME		
	3. EXTERIOR STEEL		
	FRAME		
	4. STRUCTURAL FRAME		
	5. OTHERS		
B. DUCTILITY UPGRADING	1. RC JACKETING		
	2. STEEL JACKETING		
	3. FRP WRAPING		
C. PREVENTION OF	1. IMPROVEMENT OF VIBRATION PROPERTY		
DAMAGE CONNECTION	2. IMPROVEMENT OF EXTREME BRITTLE		
	MEMBER		
D. REDUCTION OF SEISMIC	1. MASS REDUCTION		
FORCES	2. SEISMIC ISOLATION		
TOROEO			
	3. STRUCTURAL RESPONSE DEVICE		
E. STRENGTHENING OF	1. STRENGTHENING FOUNDATION BEAM		
FOUNDATION	2. STRENGTHENING OF		
FOUNDATION	PILE		

RETROFITTING METHODS cont..



Building Contractors Society (BCS), Japan 'Seismic Retrofitting Brochure 2006'

STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST


STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST cont..

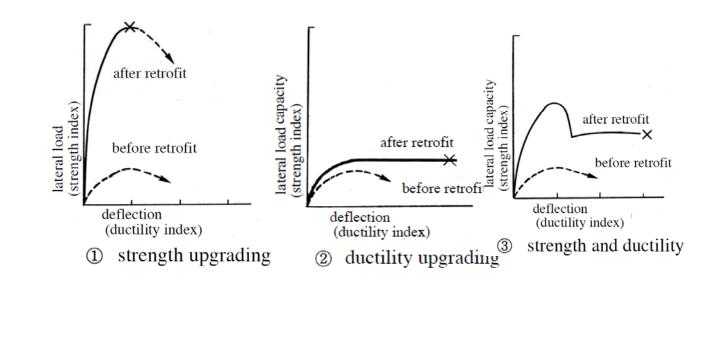
(b) strengthened structure with steel brace with boundary steel frame

Figure TN.9 Strengthening effect observed in previous structural tests (quoted from the figure on page 73 in the commentary of 2.1.2 of the Guidelines of 2001 Japanese version)

STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST cont....

(c) strengthening of column

Figure TN.9 Strengthening effect observed in previous structural tests (quoted from the figure on page 73 in the commentary of 2.1.2 of the Guidelines of 2001 Japanese version)

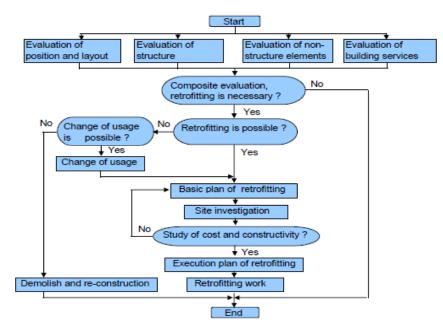

STRATEGIES

- IMPROVING REGULARITIES
- STRENGTHENING
- DUCTILITY
- DAMPING
- MASS REDUCTION
- CHANGING USE

DESIGN PROCEDURE

- PLANNING
- STRUCTURAL DESIGN
- DETAILED DESIGN
- EVALUATION OF RETROFIT EFFECT

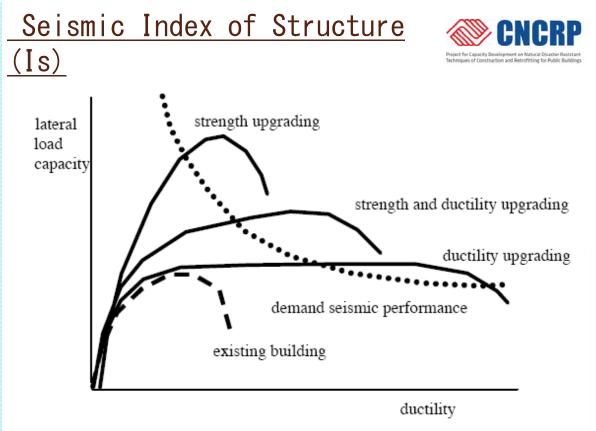
PLANNING & STRUCTURAL DESIGN cont..



RETROFITTING DESIGN METHODS

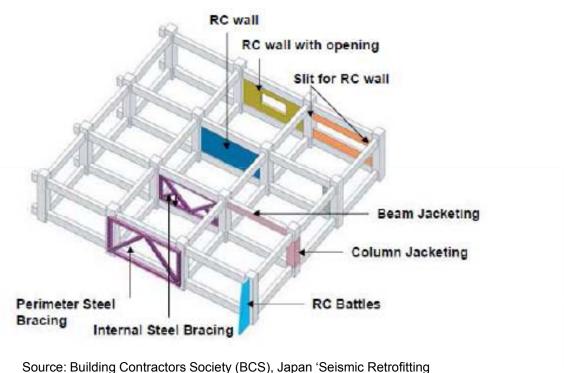
MD. MOMINUR RAHMAN EXECUTIVE ENGINEER PUBLIC WORKS DEPARTMENT AND TEAM MEMBER, COMPONENT-2, CNCRP PROJECT

A flow chart of Seismic Evaluation and Retrofitting for public buildings (facilities), Japan



Source: Building Integrity Center, 1996 "Guideline and explanation of composite seismic evaluation and retrofitting for public facilities (in Japanese)"

Methods of Retrofitting


	Types of Retrofitting Methods						
No.	Description of Retrofitting Methods	Improvement of Strength	Improvement of Ductility	Improvemen of Structural Balance			
1	Steel Framed Bracing	0					
2	Infilling New RC Shear Wall into Open Frame	0		0			
3	Increasing Thickness of Existing Shear Wall	0		0			
4	Infilling Steel Plate Wall into Open Frame	0		0			
5	Constructing New RC Wing Wall to RC Column	0					
6	Constructing External Frame	0					
7	Constructing External Buttress	0					
8	Steel Plate Jacketing around RC Column		0				
9	Carbon Fiber (Sheet / Strand) Wrapping around RC Column		0				
10	Concrete Jacketing around RC Column	0	0				
11	Providing New Selsmic Slit		0	0			

Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),

Methods of Retrofitting

Brochure 2006'

Basics of Retrofitting Design

Seismic Index of Structure, $Is = EoS_DT$ (1) whrere: Eo: Basic Seismic Index of Structure S_D : Irregularity Index T: Time Index Eo as the larger one from eqs (4) and (5). Each equation is calculated within the limitation of the maximum ductility index. Eo of ductility-dominant Structure, $Eo = (n+1/n+i)^* \sqrt{(C1^*F1)^2 + (C2^*F2)^2 + (C3^*F3)^2}$ (4)

 $Eo = (n+1/n+i)^{*} (C1+\Gamma i)^{2} + (C2+2)^{2} + (C3+3)^{2}$ (4) Eo of strength-dominant Structure, $Eo = (n+1/n+i)^{*} (C1+\Sigma \alpha j C j)F1$ (5)

whrere: C : Strength Index,

F: Ductility Index, Ductility Index is estimated mainly depending on the margin of members against shear failure.

n+1/n+i : Storey-shear modification factor

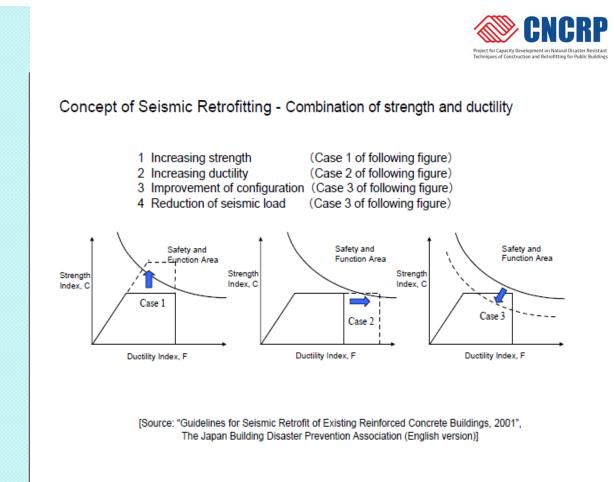
a: Effective strength factor

 $C = Qu / \Sigma W$ (12)

Qu :Ultimate lateral load-carrying capacity of the vertical members in the storey concerned

SW: Total weight supported by the storey concerned

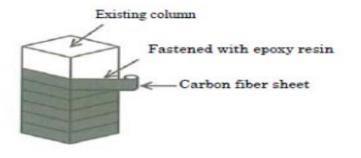
Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),



- E_s = Basic seismic demand index of structure
- Z = Zone index
- G = Ground index
- U = Usage index

Check no -2: C_{TU} . $S_D \ge 0.3 . Z . G . U$ C_{TU} = Cumulative strength index at ultimate deformation of structure S_D = Irregularity index

Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),



Outline of retrofitting method

1.Carbon Fiber Sheet Wrapping around RC Column

Existing columns in buildings are wrapped with carbon fibre sheets

STRENGTH OF COLUMN AFTER CARBON FIBER WRAPPING

Shear strength of Column

 $Q_{su} = [0.053 P_{t2}^{0.23}(F_{c1}+18)/(M/Q d+0.12)]$

+0.85 Sqrt(P_wσ_{wy}+ P_{wf}σ_{fd})+0.1σ_o]bj

 p_{t2} = tensile reinforcement ratio of existing column in %

p_w= shear reinforcement ratio of existing column in decimal

p_{wf}= shear reinforcement ratio of carbon fiber sheet in decimal

 $\rm F_{c1}$ =compressive strength of concrete for existing structure, N/mm^2 M/ Qd ranges from 1 to 3 and ~ j= 0.8D

b= width of column and D= depth of column

 $\sigma_{0}\text{=}axial$ compressive stress and maximum value 7.8 N/mm^{2}

d= effective depth of column

 $\sigma_{\rm fd}\text{=}\text{tensile}$ strength of carbon fiber sheet for shear design

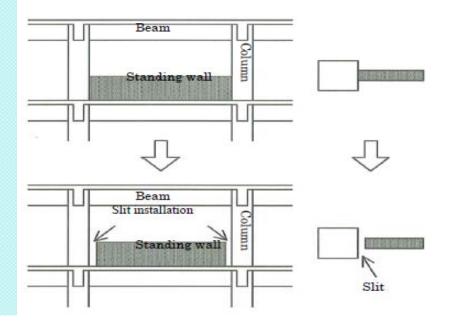
Retrofitting with Carbon Fiber Wrapping

Main features of Carbon Fiber Wrapping:

•Carbon fiber sheet is wrapped with epoxy resin around existing column.

- •This method is done for upgrading ductility.
- •Construction shall be done by skilled worker since performance of this method is highly dependent construction quality

•Overlap of carbon fiber sheet shall be long enough to ensure the rupture of the material.


Kensetsu Kaikan Building

2. Providing New Seismic Slit

Slits (open joint) are provided between columns and attached

standing walls or wing walls

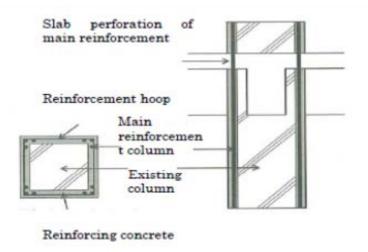
Retrofitting with Structural Slit

Main features of Structural slit:

•Structural slit may be provided in brick wall or RC wall adjacent to column.

•Improve ductility by avoiding short column.

•Secure safety against out of plane behavior of wall to be cut.


•Secure water proofing performance.

3: Concrete Jacketing around RC Column

Reinforced concrete of a thickness of around 10-15cm is jacketed around

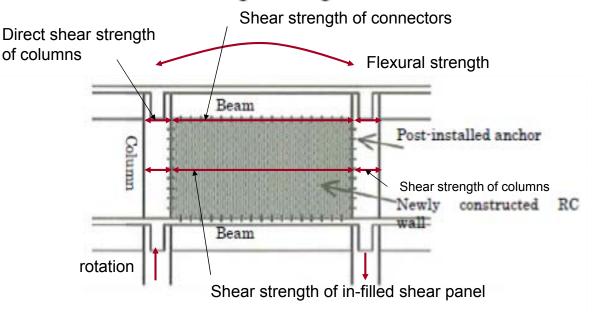
existing building columns

STRENGTH OF COLUMN AFTER RC JACKETING Ultimate Flexural Strength of Jacketed Column $M_u = a_t \sigma_x g + a_{t2} \sigma_{y2} g_2 + 0.5 \text{ N} D_2[1-N/(b_2D_2F_{c1})]$ Shear force by flexural strength Qmu = 2Mu/h Ultimate Shear Strength of Jacketed Column $Q_{su} = \phi [0.053 P_{t2}^{0.23}(F_{c1}+18)/(M/Q d_2+0.12)$ +0.85 Sqrt($P_{w},\sigma_{wx} + P_{w2},\sigma_{wy2}$)+0.1 N/b₂D₂]0.8 b₂D₂ F_{c1} =compressive strength of concrete for existing structure, N/mm² p_{t2} =tensile reinforcement ratio of jacketed column in %

Retrofitting with Column Jacketing

Main features of RC column jacketing:

- •Cross section of existing column is increased.
- •Usual thickness of jacket is 10 to 15 cm with reinforced concrete.
- •Retrofit to improve ductility only.
- •Retrofit to improve both ductility and strength.
- •In case ductility upgrading provide slit at top and bottom of the column.
- •In case of strength upgrading provide shear key.



Kensetsu Kaikan Building

4: Infilling New RC Shear Wall into Open Frame

Reinforced concrete walls (RC walls) are newly constructed inside existing building column/beam frames

CAPACITY OF INFILLED SHEAR WALL

Shear strength of column:

 wQ_{su} =min { wQ'_{su} + 2 $\propto Q_{c}, Q_{j}$ +p Q_{c} + $\propto Q_{c}$,}

Shear strength of infilled shear panel

$$wQ'_{su} = \max(\rho_w, w\sigma_y, \frac{F_{cw}}{20} + 0.5\rho_w. w\sigma_y).t_w.l'$$

 Q_c =Smaller value of the other column between

the shear force at the yielding and shear strength. $p_w, w\sigma_y$ = wall reinforcement ratio and yield strength of wall bar, N/mm²

 F_{cw} = concrete strength of installed wall panels, N/mm2

 $t_{w}\!,$ l'= wall thickness and clear span of installed wall panel, mm α = reduction factor, 1 for shear column and 0.7 for flexural column

 Q_j =Sum of the shear strengths of connectors underneath the beam pQ_c =Direct shear strength of column $=K_{min}.\tau_0. b_e.D$ K_{min} = 0.34/(.52+a/D) b_e =effective width of columns, D=depth of columns, τ_0 = f(σ , F_{c1}) σ =p_g. $\sigma_y + \sigma_0$ p_g = ratio of a_g to $b_e.D$ σ_y =yield strength of longitudinal bars of a column σ_0 =N/b_e.D

Ultimate flexural strength

To

 $wM_{u} = a_{t.} \sigma_{sy} l_{w} + 0.5 \sum (a_{wy} \sigma_{wy}) l_{w} + 0.5 N l_{w}$

 a_t , $\sum a_{wy}$ = cross sectional area of main bars of a boundary column and Vertical bars in the wall, respectively in mm²

 σ_{sy} , σ_{wy} = yield strength of longitudinal bars of a boundary column and Vertical bars in the wall, respectively (N/mm²)

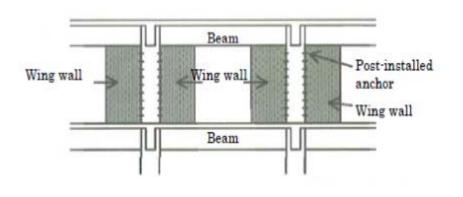
N= total axial force in the boundary columns

 I_w = distance between the centre of the boundary columns of the wall, mm

Retrofitting with Shear Wall

Main features of Shear wall:

- •This method is done for strength upgrading.
- •Uplift strength of wall shall not be less than shear strength.
- •Check structural balance i.e. eccentricity.
- •Check capacity of solid shear wall as well as connections with boundary frame.
- •Thickness of wall shall not be less than 15 cm but not more than the width of the beam.
- •Reduce lighting and ventilation or subdivide inner spaces.



Meguro-ward Government Office

5: Constructing New RC Wing Wall to RC Column

Wing walls of reinforced concrete constructions are newly established in existing building columns

CAPACITY AFTER ADDING WING WALL:

Ultimate Flexural Strength

$$M_{u} = (0.9 + \beta)a_{t}\sigma_{y}D + 0.5ND\{1 + 2\beta - \frac{N}{\alpha_{\varepsilon}bDF_{ct}}(\frac{\alpha_{t}\sigma_{y}}{N} + 1)^{2}\}$$

Ultimate Shear Strength

$$\underline{\mathbf{Q}_{su}} = \frac{\Phi}{\frac{0.053 \rho_{ce}^{0.23} (F_c + 18)}{\frac{M}{Q.d_e} + 0.12}} + 0.85 \sqrt{\rho_{we} \sigma_{wy}} + 0.1 \sigma_{0e} \frac{b_{eje}}{b_{eje}}$$

 $\alpha_e = (1+2\alpha\beta)/(1+2\beta)$

 F_{c1} =compressive strength of concrete for wing wall , N/mm²

N= axial force of column, N

b= width of column, D=depth of column,

at= gross sectional area of main bars of column in tensile side, mm²

 σ_v = yield strength of main bars of column, N/mm² and ϕ =0.8

 F_c =compressive strength of concrete for existing structure, N/mm²

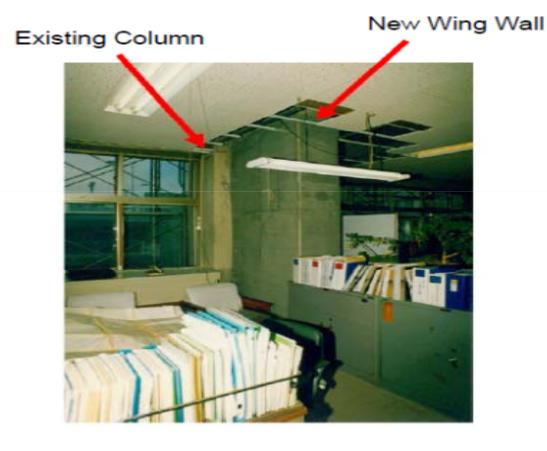
 $p_{te} = 100a_t/(b_e.d_e)$ $b_e = \alpha_e.$ b in mm

 p_{we} . σ_{wy} = p_w , σ_{wy} (b/b_e)+ p_{sh} , σ_{sy} (t/b_e)

 p_w , σ_{wy} = hoop ratio and yield strength of existing column, N/mm² p_{sh} , σ_{sy} =lateral reinforcement ratio of installed wing wall and its yield strength ,N/mm² σ_{oe} = N/b_e. j_e and j_e= 7d_e/8 in mm

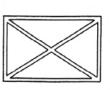
Retrofitting with Wing Wall

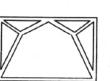
Main features of Wing wall:


•This method is usually done for strength upgrading.

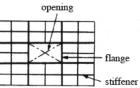
•Seismic performance may be upgraded by changing failure mechanism from column yielding to beam yielding

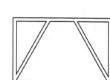
•Not suitable for column with short span beam, ensure clear span/depth ratio is more than 4.

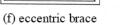

- •Check structural balance i.e. eccentricity.
- •Thickness of wall shall not be less than 20 cm.



Retrofitting with Steel Frame

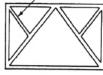


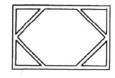

(a) X type brace



(c) mansard type

(e) steel plate wall(panel)





(g) Y type brace

bucking prevention

(b) K type brace

(d) diamond type

Steel bracing:

Steel member

Connection

Headed stud

Post installed anchor

F = 1.5 to 2.0 subject to failure mode of steel bracing , connection and RC frame

Retrofitting with Steel Frame

Main features of Steel frame:

•Steel framed braced/panel or non-frame brace/panel is inserted into existing RC frame.

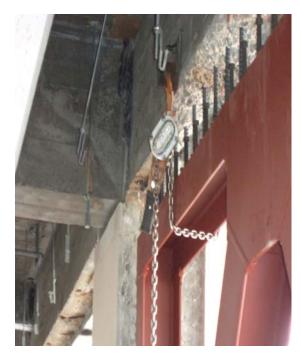
•Resistance mechanism after retrofitting may be-(1) strength dominant type, (2) ductility dominant type (3) strength and ductility dominant type.

•Check structural balance i.e. eccentricity.

•Check local buckling of steel member.

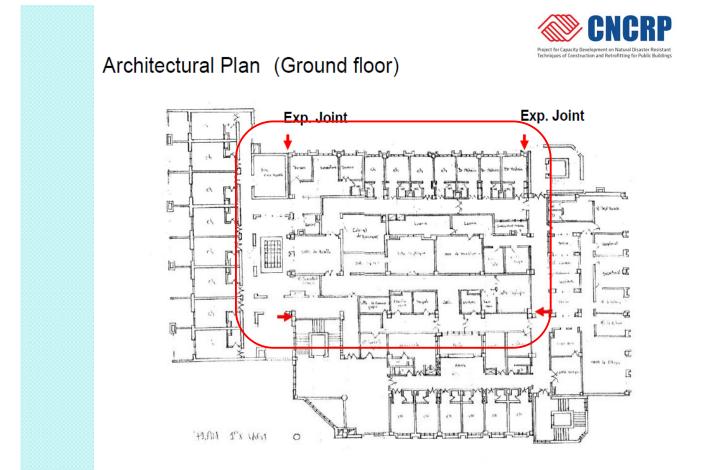
•Check capacity of post installed anchor and studs.

•Lighting and ventilation is not so disturbed.

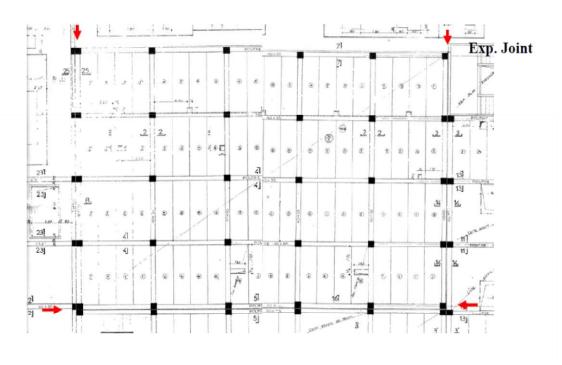

A school building of Japan

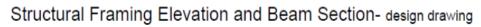
A stadium building of Japan

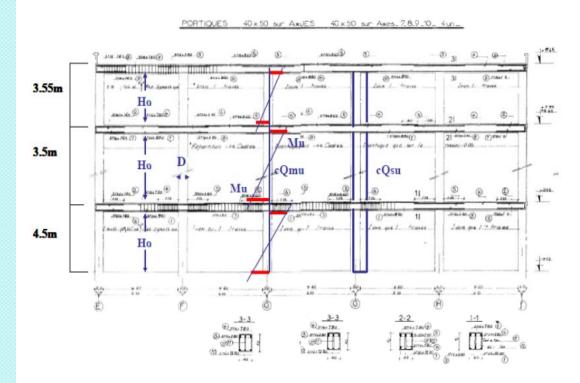
Retrofitting of a school building in Japan


An Example of Seismic Evaluation and Retrofitting of Existing RC Buildings 2nd level seismic screening is applied, assuming column collapse.

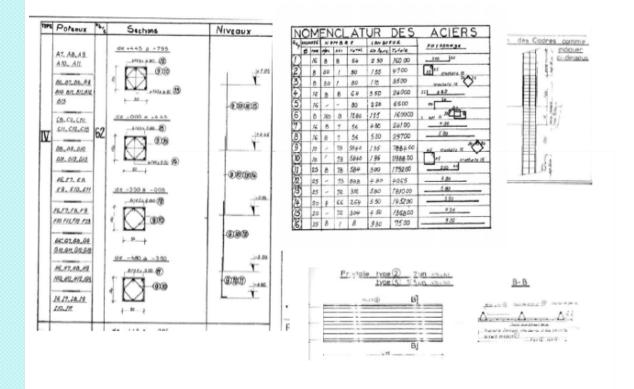
General View of an Essential Hospital in Algiers, Algeria


Source: lecture from Akira INOUE, JICA Expert Team delivered on 09/June/2011




Structural Framing Plan (1st Floor)

One Block of Moment Frame Building is Selected for Seismic Evaluation and Retrofitting



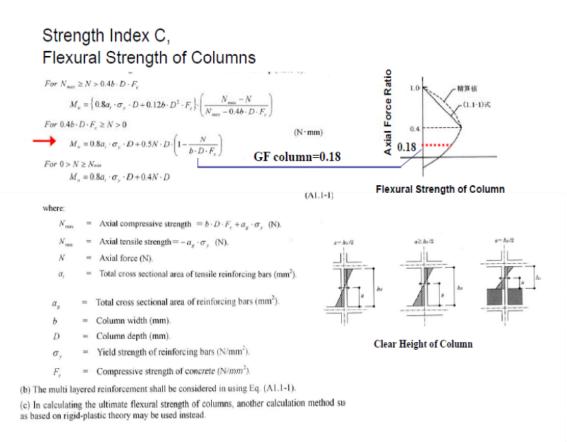
Column Section and Floor Slab System- design drawing

Building Dimensions, Weight of Building and Materials

- Building Dimensions
- X direction 6.0m span x 5=30m, Y direction 5.1m x 4=20.4m (grid line)
- Storey Height GF 4.5m, 1F 3.5m, 2F 3.55m total 11.55m
- Clear Length of Column Y direction 1F 4.0m, 2F 3.0m, 3F 3.05m

Unit Weight per Floor Area (Supposed Condition)

- Roof 11 kN/m² (1.12tf/m²)
- 1st Floor, 2nd Floor 14 kN/m² (1.43tf/m²)


Weight of Building

- Roof 7012kN
- 2nd Floor 8924kN 15936kN (Roof + 3rd floor)
- 1st Floor 8924kN 24860kN (Roof + 3rd + 2nd floor)

• Material (from Design Drawings)

- Re-bar Main Bars High Strength 412N/mm² (4200kg/cm²) Φ≦20nn
 - 392N/mm² (4000kg/cm²) Φ>20nn
 - Hoops, Stirrups Mild Steel 235N/mm² (2400kg/cm²)
- Concrete (28 days strength) 27N/mm2 (275kg/cm²)

Shear Strength of Columns

$$Q_{su} = \left\{ \frac{0.053 p_{i}^{0.23} (18 + F_{c})}{M/(Q \cdot d) + 0.12} + 0.85 \sqrt{p_{w} \cdot_{s} \sigma_{uy}} + 0.1 \sigma_{0} \right\} \cdot b \cdot j$$
 (N) (A1.1-2)

where:

d

i

- p_t = Tensile reinforcement ratio (%).
- p_w = Shear reinforcement ratio, $p_w = 0.012$ for $p_w \ge 0.012$.
- σ_{vv} = Yield strength of shear reinforcing bars (N/mm²).
- σ_0 = Axial stress in column (N/mm²).
 - Effective depth of column. D-50mm may be applied.
- $\frac{M}{O}$ = Shear span length. Default value is $\frac{h_0}{2}$.
- $h_0 = \text{Clear height of the column.}$
 - Distance between centroids of tension and compression forces, default value is 0.8D.

(b) If the value of $M/(Q \cdot d)$ is less than unity or greater than 3, the value of $M/(Q \cdot d)$ shall be unity or 3 respectively in using Eq. (A1.1-2). And if the value of σ_0 is greater than 8N/mm², the value of σ_0 shall be 8N/mm² in using Eq. (A1.1-2).

Flexural Strength of Column and Margin against Shear Failure

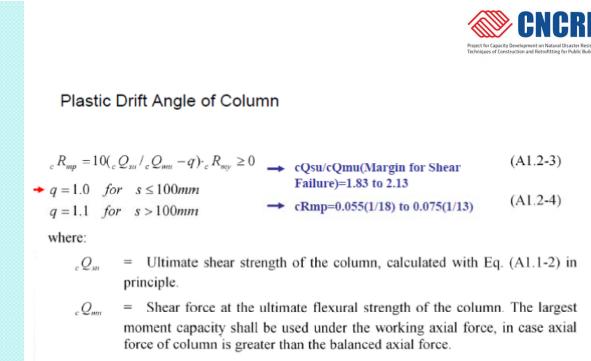
	Internal Columns				External Columns			
	Mu(kN∙ m)	cQmu(k N)	cQsn(k N)	cQsn/cQ mu	Mu(kN∙ m)	cQmu(k N)	cQsn(k N)	cQmu/cQ mu
2F	286	191	349	1.83	250	167	337	2.02
1F	375	250	384	1.53	303	202	356	1.76
GF	451	226	418	1.85	352	176	374	2.13

Mu: Ultimate Flexural Strength of Column (A1.1-1) cQmu: Shear Force at the Ultimate Flexural Strength of Column cQmu=Mu/(h₀/2) cQsn: Ultimate Shear Strength of Column (A1.1-2) cQsn/cQmu: Strength Margin for Shear Failure of Flexural Column

Strength Index (C)

		Internal Co	lumns 12nos	External Col	Total	
	ΣW(kN)	cQmux12	C=cQmux12/Σ W	cQmux18	C=cQmux18/ ΣW	С
2F	7012	2288	0.326	3001	0.428	0.754
1F	15936	3002	0.188	3635	0.228	0.416
GF	24860	2707	0.109	3165	0.127	0.236

ΣW: Total Weight (Dead Load plus Live Load) Supported by the Storey Concerned


C: Strength Index C=Qu/ΣW (12)

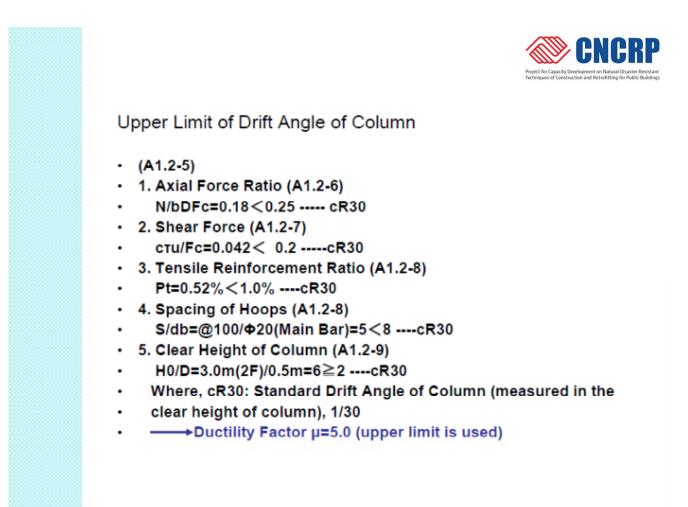
Qu: Ultimate Lateral Load-carrying Capacity of the Vertical Members in the Storey Concerned, (in this case, Qu=cQmu(internal)x12+cQmu(external)x18)

Ductility Index (F), Yield Deflection of Flexural Column

(A1.3-1) $R_{mv} = (h_0 / H_0) \cdot_c R_{mv} \ge R_{230}$ $h_0/H_0 = 1.0$ where, $h_0 / H_0 \le 1.0$ → cRmy=cR₁₅₀=1/150 • $_{c}R_{mv} = _{c}R_{150}$ for $h_{0}/D \ge 3.0$ (A1.3-2) $_{c}R_{my} = _{c}R_{250}$ for $h_{0}/D \le 2.0$ $_{e}R_{mr}$ is set by interporation for $2.0 < h_{o} / D < 3.0$ where: h_0 = Clear height of the column. = Standard clear height of the column from the bottom of the upper floor H_{0} beam to the top of the lower floor slab. Column depth. D = Standard drift angle of the column (measured in the clear height of $_{e}R_{150}$ column), 1/150. = Standard drift angle of the column (measured in the clear height of _c R₂₅₀ column), 1/250. = Standard inter-story drift angle, 1/250. R_{250} Yield drift angle of the column (measured in the clear height of column). _c R_{mv} The value of $_{c}R_{mn}$ shall not be greater than that of $_{c}R_{max}$ specified in the section 1.2(3) of

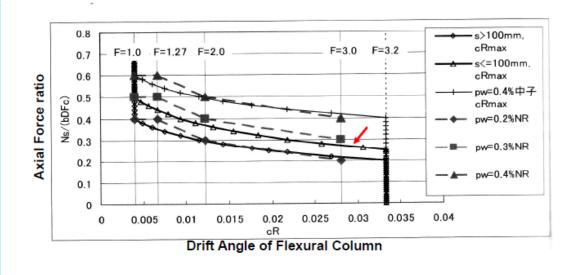
s = Spacing of hoops.

Supplementary Provisions.


Storey Drift Angle at Ultimate Flexural Strength of Column

$$R_{uu} = (h_n / H_0), R_{uu} \ge R_{330}$$
(A1.2-1)
where, $h_0 / H_0 \le 1.0 \longrightarrow h_0 / H_0 = 1.0$, Rmu=cRmu

$$R_{uu} = {}_c R_{uv} + {}_c R_{uv} \le {}_c R_{30} \longrightarrow cRmu=cRmy(1/150) + cRmp(A1.2- (A1.2-2))$$
where:


$$h_0 = Clear height of column.$$

$$H_0 = Standard clear height of column from bottom of the upper floor beam to
top of the lower floor slab.
$$e^{R_{uv}} = Yield drift angle of column (measured in clear height of column),
specified in the section 1.3 of Supplementary Provisions.
$$e^{R_{uv}} = Plastic drift angle of the column (measured in the clear height of column),
specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{uv}} = Standard drift angle of the column (measured in the clear height of column),
specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{30}} = Standard drift angle of the column (measured in the clear height of column), specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{30}} = Standard drift angle of the column (measured in the clear height of column), 1/30.
$$R_{250} = Standard inter-story drift angle, 1/250.$$$$$$$$$$$$$$

Upper Limit of Drift Angle of Flexural Column and

Axial Force Ratio

Ductility Index (F) of Flexural Column (i) In case $R_{mn} < R_y$ $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$ (15)Rmu (ii) In case $R_{mn} \ge R_{v}$ $F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$ → Rmu/Ry=5.0, F=3.2 (16)where: = Yield deformation in terms of inter-story drift angle, which in R_{v} principle shall be taken as $R_{\nu}=1/150$. Standard inter-story drift angle (corresponding to the ductility = R_{250} index of the shear wall), $R_{250} = 1/250$. = Inter-story drift angle at the ultimate deformation capacity R_{m} flexural failure of the column member, calculated by Eq. (A1.2 in the Supplementary Provisions 1.2(1).

Ductility-dominant Basic Seismic Index of Structure Eo

$$E_0 = \frac{n+1}{n+i} \sqrt{E_1^2 + E_2^2 + E_3^2} \qquad E_0 = (3+1)/(3+1) \cdot C_1 \cdot F_1 \quad (GF) \qquad (4)$$
where:

$$E_1 = C_1 \cdot F_1.$$

$$E_2 = C_2 \cdot F_2.$$

$$E_3 = C_3 \cdot F_3.$$

$$C_1 = \text{The strength index } C \text{ of the first group (with small F index).}$$

$$C_2 = \text{The strength index } C \text{ of the second group (with medium F index).}$$

$$C_3 = \text{The strength index } C \text{ of the third group (with large F index).}$$

$$F_1 = \text{The ductility index } F \text{ of the first group.}$$

$$F_3 = \text{The ductility index } F \text{ of the third group.}$$

Strength-dominant Basic Seismic Index of Structure Eo

$$E_0 = \frac{n+1}{n+i} \left(C_1 + \sum_j \alpha_j C_j \right) \cdot F_1$$

(5)

where:

 α_{j}

= Effective strength factor in the *j*-th group at the ultimate deformation R_i corresponding to the first group (ductility index of F_1), given in Table 3.

Table 3	Effective strength	factor
---------	--------------------	--------

Cumulative p	point of the first group $F_1 = 0$.	8 (Drift angle $R_1 = R_{500} = 1/500$)
	F_1	F1=0.8
	<i>R</i> ₁	R1=R500
	Shear $(R_{su}=R_{250})$	as
Second and	Shear $(R_{250} < R_{su})$	as
higher groups	Flexural $(R_{my}=R_{250})$	0.65
	Flexural ($R_{250} < R_{my} < R_{150}$)	α_m
	Flexural $(R_{my}=R_{150})$	0.51
	Flexural and shear walls	0.65

Irregularity Index Sp Table 6

	-			Gi (Grade)		R (adjustm	ent fator)
			1.0	0.9	0.8	Rli	R2i
	а	Regularity	Regular al	Nearly regular a2	Irregular a3	1.0	0.5
	ь	Aspect ratio of plan	b≤5	5 <b≤8< td=""><td>8<b< td=""><td>0.5</td><td>0.25</td></b<></td></b≤8<>	8 <b< td=""><td>0.5</td><td>0.25</td></b<>	0.5	0.25
	c	Narrow part	0.8≤c	$0.5 \le c < 0.8$	c<0.5	0.5	0.25
Horizontal	d	Expansion joint *1	1/100≦d	1/200≦d< 1/100	D<1/200	0.5	0.25
Horizontal balance	e	Well-style area	e≦0.1	5 <e≦8< td=""><td>0.3<e< td=""><td>0.5</td><td>0.25</td></e<></td></e≦8<>	0.3 <e< td=""><td>0.5</td><td>0.25</td></e<>	0.5	0.25
	ſ	Eccentric well-style area*2	$f_1 \le 0.4 \&$ $f_2 \le 0.1$	$\begin{array}{c} f_1\!\leq\!0.4 \ \& \\ 0.1\!<\!f_2\!\leq\!0.3 \end{array}$	$0.4 \le f_1 \text{ or}$ $0.3 \le f_2$	0.25	R2/ 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 1.0 1.0 1.0
	8						
	h	Underground floor	f2≦0.1 0.1 <f2≦0.3 1.0≦h 0.5≦h<1.0</f2≦0.3 	$0.5 \leqq h \le 1.0$	h<0.5	0.5	0.5
Elevation	i	Story height uniformity	$0.8 \le 1$	$0.7 \le l < 0.8$	I<0.7	0.5	0.25
balance	Ĵ.	Soft story	No soft story	c $0.5 \le c < 0.8$ $c < 0.5$ id 1/200 ≤ d <	Eccentric soft story	1.0	1.0
	k						
Secontricity	I	Eccentricity*3	1≦0.1	0.1 ≦0.15</td <td>0.15 < /</td> <td></td> <td>1.0</td>	0.15 < /		1.0
area any	m						0.25 0.25 0.25 0.25 0.25 0 0.5 0.5 0.25 1.0 1.0 1.0
	*	(Stiffness/mass)Ratio of above and below stories	n≤1.3	$1.3 \le n \le 1.7$	1.7 <n< td=""><td></td><td>1.0</td></n<>		1.0
Selfiness	0						1.0

Time Index T=0.95 (assumed) Table 8

Table 8 Evaluation of time index by the second level inspection (-story)

	Item	Structur	al cracking and	deflection	Daw	rioration and a	ging
1	_	a	b		8	b	0
Portion	Degree	1. Crading caused by uneven settlement. 2. Shear or inclund cracking in beams, walls, and/or coloins, observed evidently.	1. Deflection of a slab and/or bears, advandor bears, advandor of men-structural element. 2. Same as left, but not visible from some distance. 3. Same as advance. 3. Same as advance. 4. Same as advance.	1 Minute senataral cracking net corresponding to the items a or b. 2. Deflection of a size and/or beam, not corresponding to the item a or b.	1. Cracking by constrete enganeous due to the rast of reinforcing har. 3. Rout of reinforcing har. 3. Cracking caused by a Cracking caused by a free disaster. 4. Deterioration (s)	L. Seep of the reinforcing bar date to rain source or moter lack. 2. Neutrolization to the depth of reinforcing bar or equivalent aging 3. Spating off of flambing materials.	L Remarkable Henrish of concerne due to min value to min value value task, mid chemicals. 2 Deverioration or slight spating off of a finishing material.
1	1) L3 or more of total fleer	0.017	0.005	0.001	0.017	0.005	0.001
54ab	2) 1/3~1/9	0.006	0.002		0.016	0,002	0
including sub-beam	3) 1.9 or less	0.002	0.001	Ð	0.042	0.001	0
	4)0.8	2	0	0	2	0	0
п	1) 1/3 or more of total number of members for each direction	0.85	0.015	0.004	eas	0.015	0.004
Beam	2) 1/2~1/9	0.017	0.008	0.001	0.017	0.005	0.001
	3) 1/9 or less	0.006	0.002	0	0.006	0.002	0
	4)0#	0	g	0	0	2	0
UU Wali	1) LS or more of total number of members	0.15	0.045	0.011	0.15	0.045	0.018
ā.	2) 1/3~1/9	0.05	0.015	0.004	0.05	0.015	0.004
Column	3) 1/9 or less	0.017	0.005	0.001	0.017	0.005	0.001
	4) 0.4	2	<u>+</u>	2	0	0	0
Mark-down	Subtotal						
Total	Ground		PI			P2	

2nd Level Seismic Screening Seismic Index of Structure, Is, Y Direction

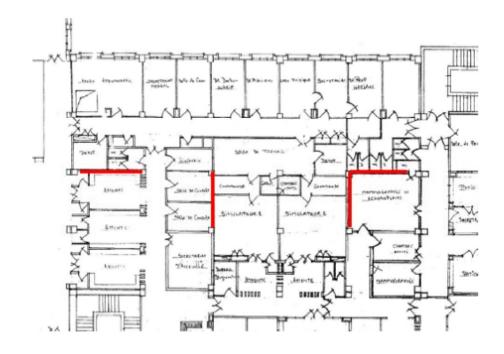
	С	F	n+1/n+i	Eo	So	т	ls
2F	0.76	3.2	0.67	1.63	1.11*	0.95	1.72*
1F	0.42	3.2	0.80	1.07	1.11*	0.95	1.13*
GF	0.24	3.2	1.00	0.76	1.00*	0.95	0.72*

C: Strength Index (12), (A1.1-1), (A1.1-2)

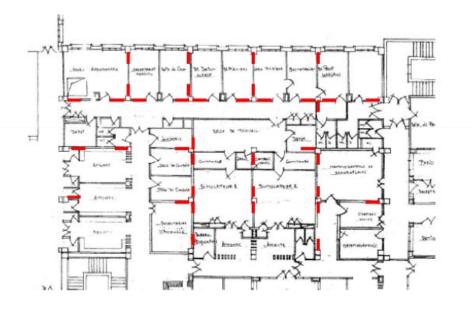
(16)

F: Ductility Index

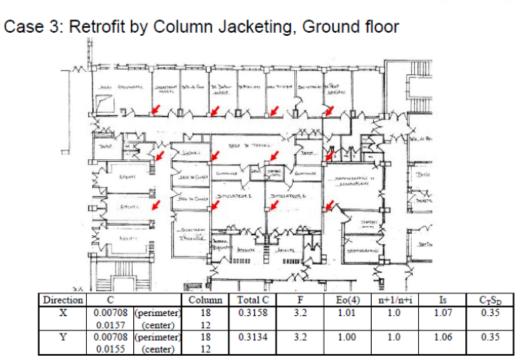
n: Number of storey


Eo: Basic Seismic Intensity of Structure Eo=(n+1/n+i)CF (4)

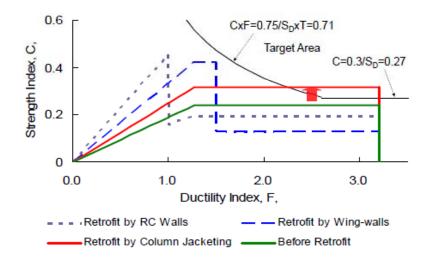
T: Time Index (0.95 is used) Table 8


Is: Seismic Index of Structure $Is=EoS_DT$ (1)

Case 1: Retrofit by RC Walls, 1st Storey



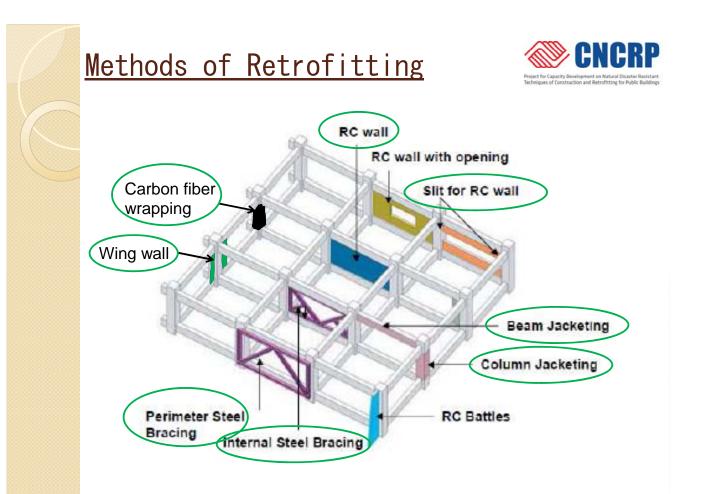
Case 2: Retrofit by Wing-walls, Ground Storey

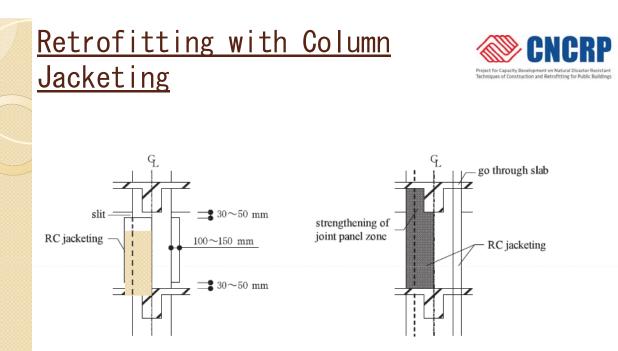


S_D=1.11, T=0.95

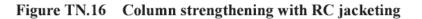
Strength increase 0.316/0.24=1.32

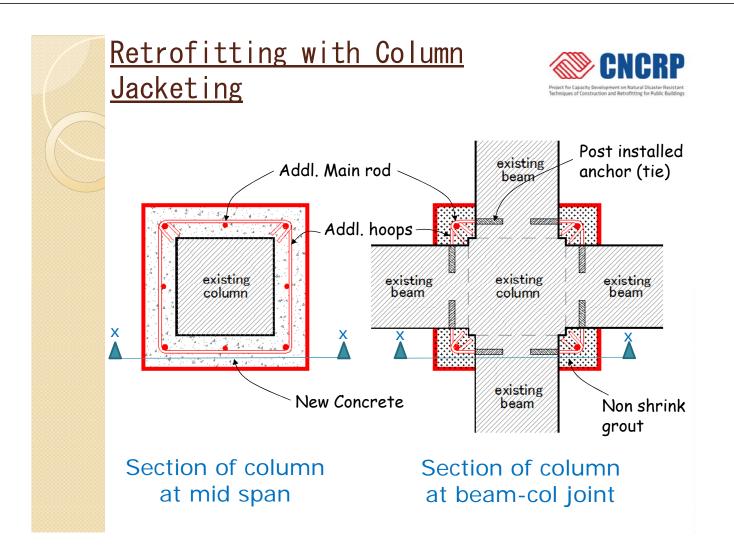
Strength Index (C) and Ductility Index (F) in X direction of 1st Storey, column jacketing is proposed

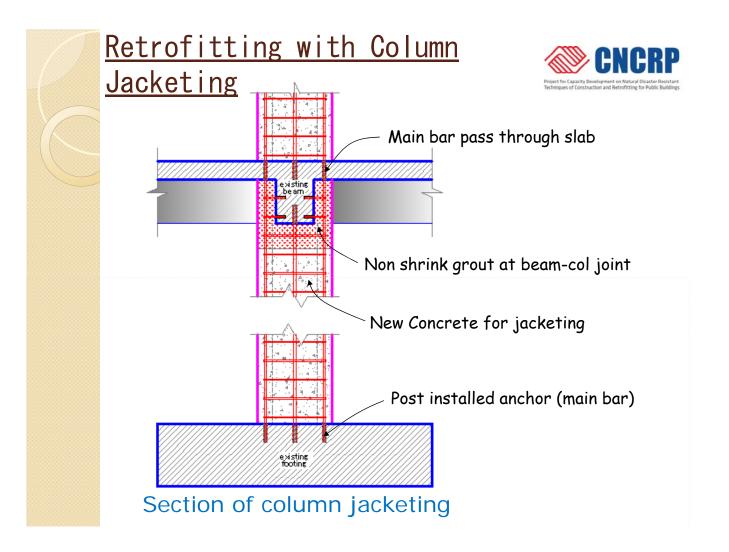




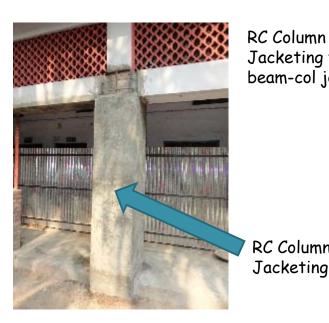
Retrofitting Works


Md. Sohel Rahman Executive Engineer PWD Design Division-4 and Team Leader, Component 3 CNCRP Project

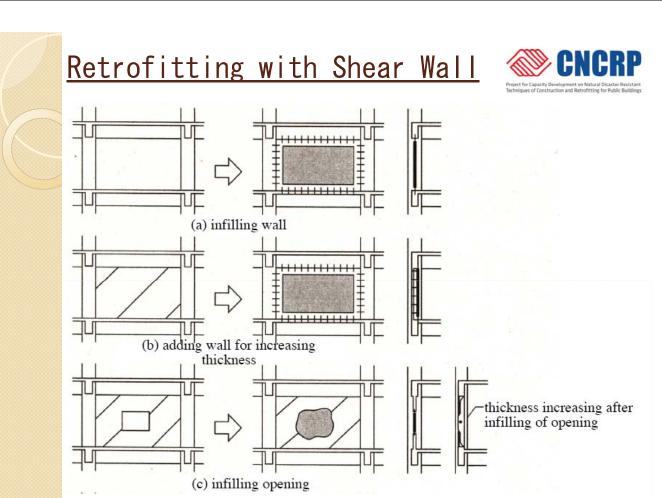

(a) in case of increase in shear strength

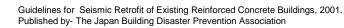

(b) in case of increase in flexural, shear and axial strength

SOURCE:

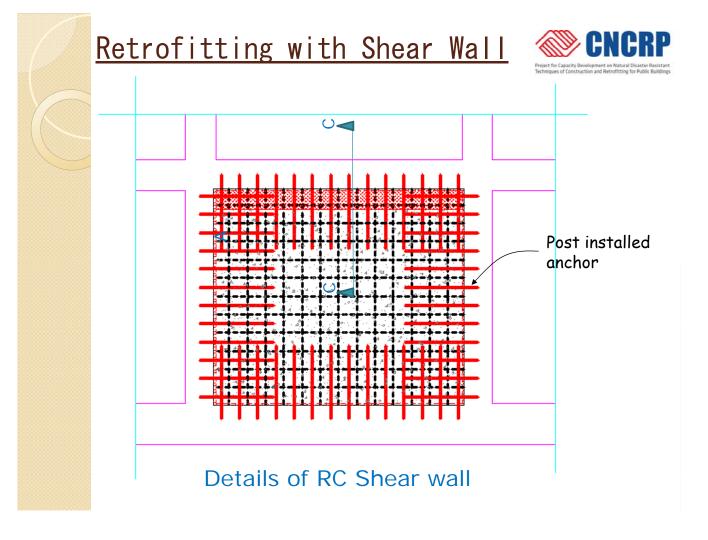

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

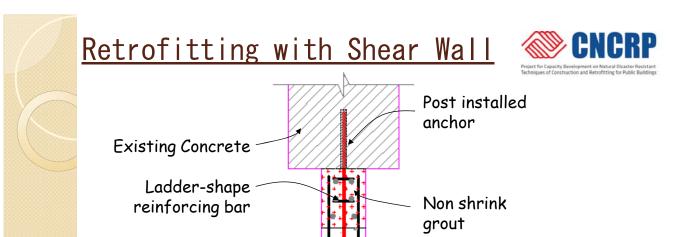
<u>Retrofitting with Column</u> <u>Jacketing</u>





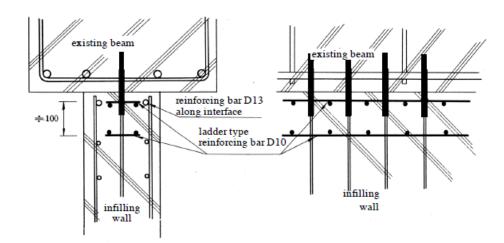
Test Work of CNCRP in 2012


RC Column Jacketing through beam-col joint RC Column Jacketing


Test Work of CNCRP in 2013

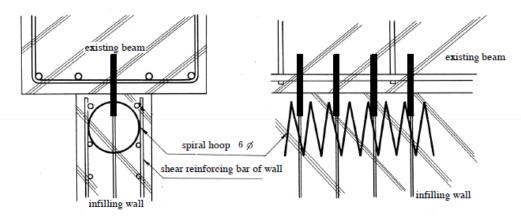
SOURCE:

4


Section C-C

Reinforcement of Shear Wall

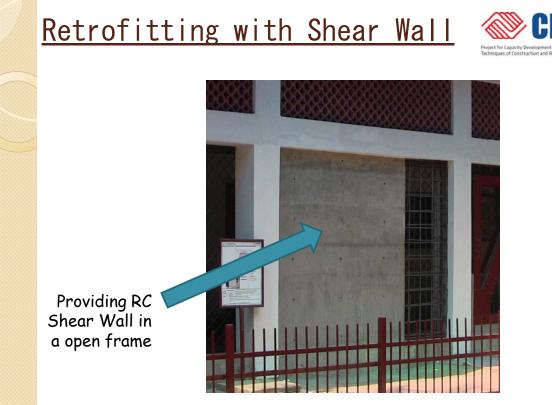
Normal concrete

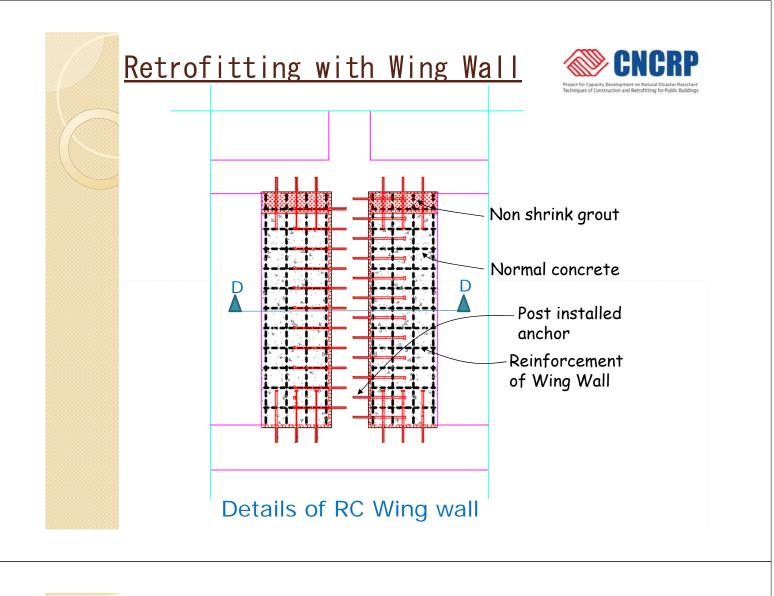

Figure TN.12 Strengthening against splitting with ladder type reinforcing bars (quoted from the figure on page 98 in the commentary of 3.1.4 of the Guidelines of 2001 Japanese version)

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

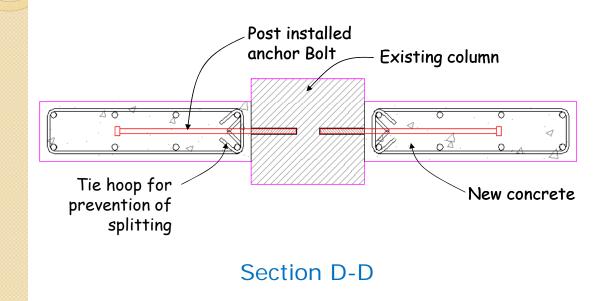
Retrofitting with Shear Wall



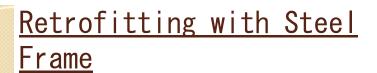

Figure TN.11 Strengthening against splitting with spiral reinforcing bars (quoted from the figure on page 98 in the commentary of 3.1.4 of the Guidelines of 2001 Japanese version)

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

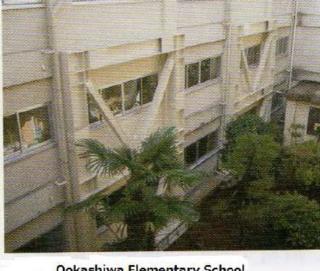


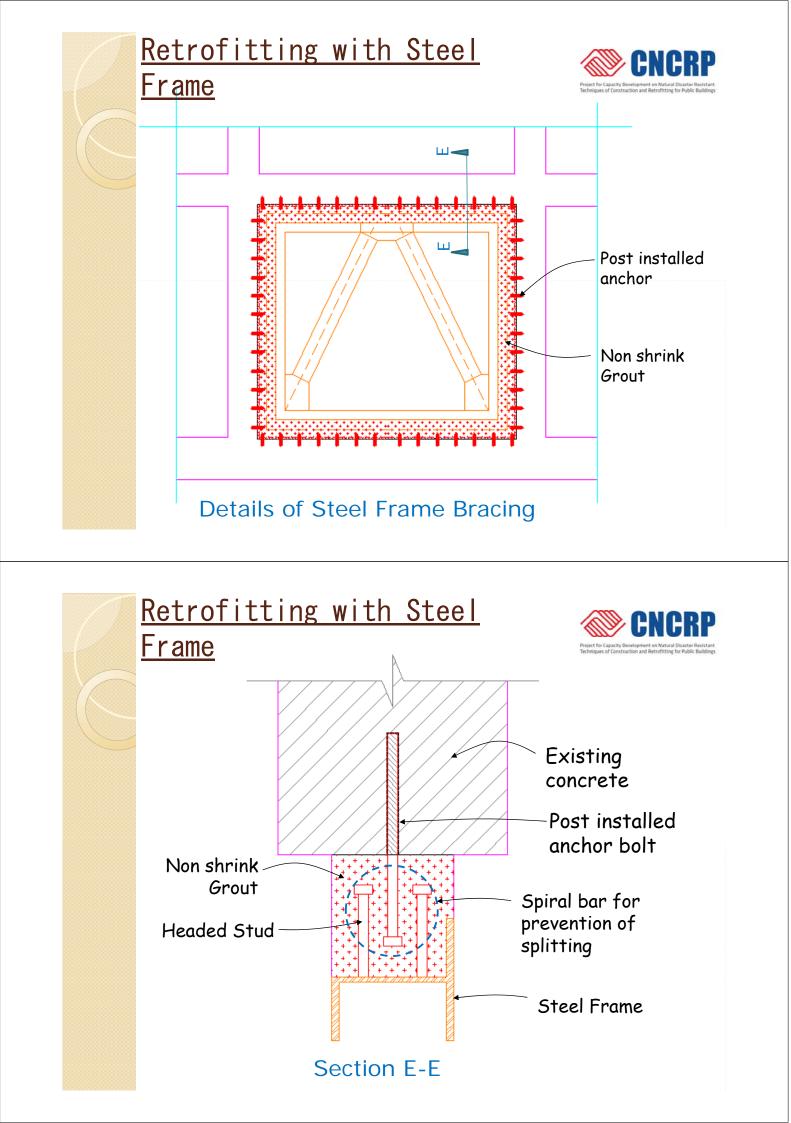
Test Work of CNCRP in 2012

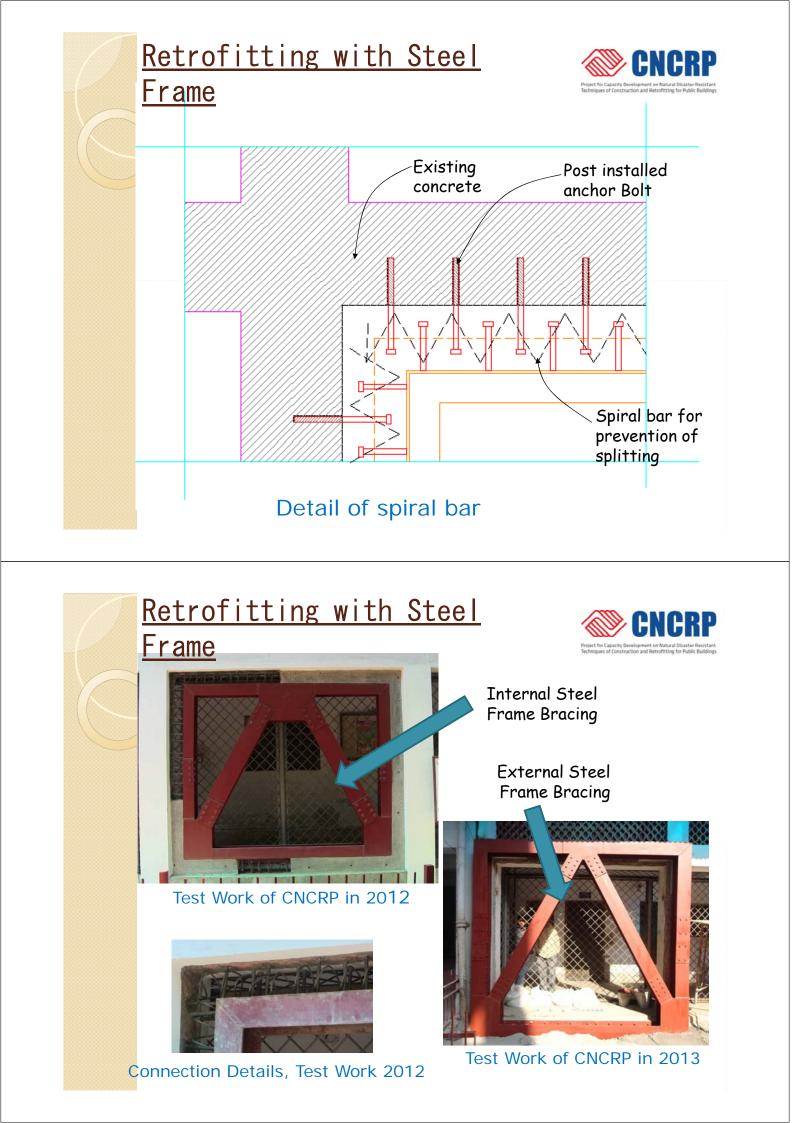

Retrofitting with Wing Wall

RC Wing Wall Provided at an existing column

Test Work of CNCRP in 2012


1. Steel Framed Bracing

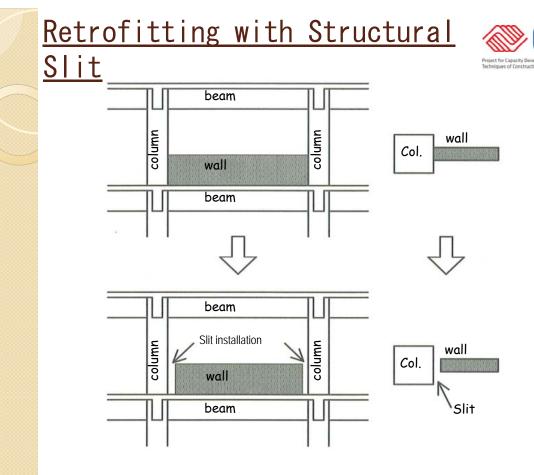

K type brace



Ookashiwa Elementary School

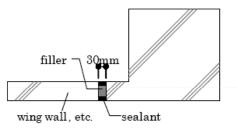
Steel framed bracing

a)Junior High School Building (School Colored)

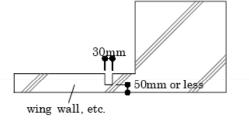

SOURCE:

b) Junior High School Building (Designed by Students)

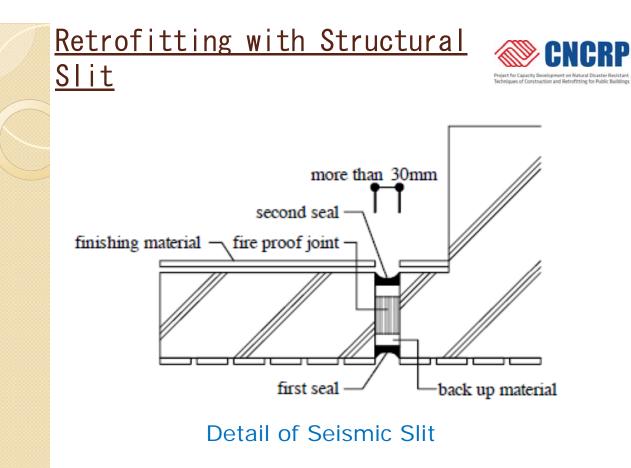
c)University Building (with Exterior Panels) d)Elementary School Building (with Balconies) Class note of Mr. Hiroshi OHIRA for CNCRP Project

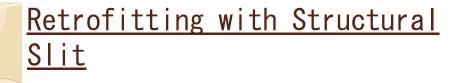

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association



<u>Retrofitting with Structural</u> <u>Slit</u>

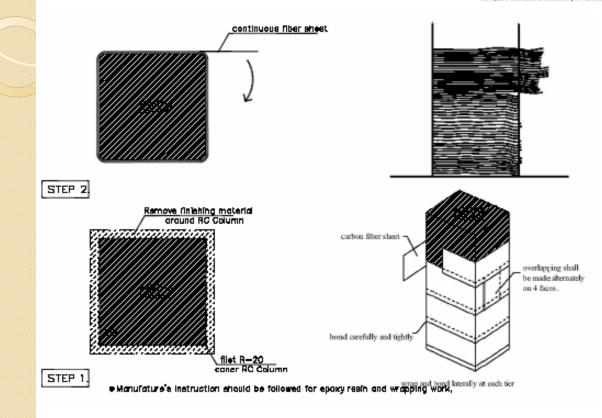

(a) Full slit


(b) Partial slit

SOURCE:

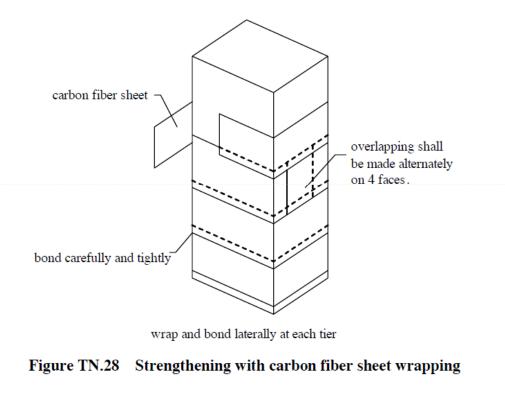
Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

SOURCE: Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association



Seismic Slit is provided at a brick wall

Test Work of CNCRP in 2012

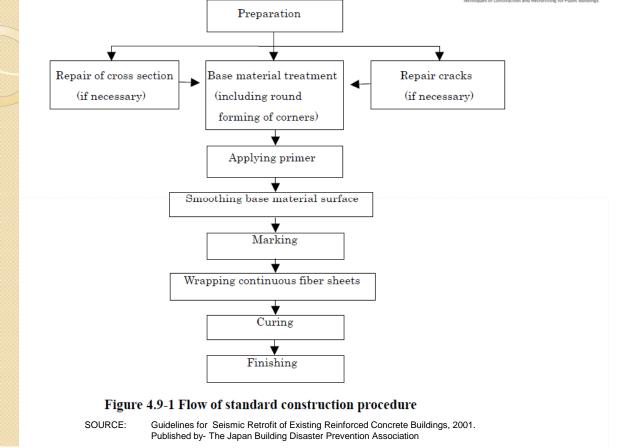

Carbon fiber sheet wrapping

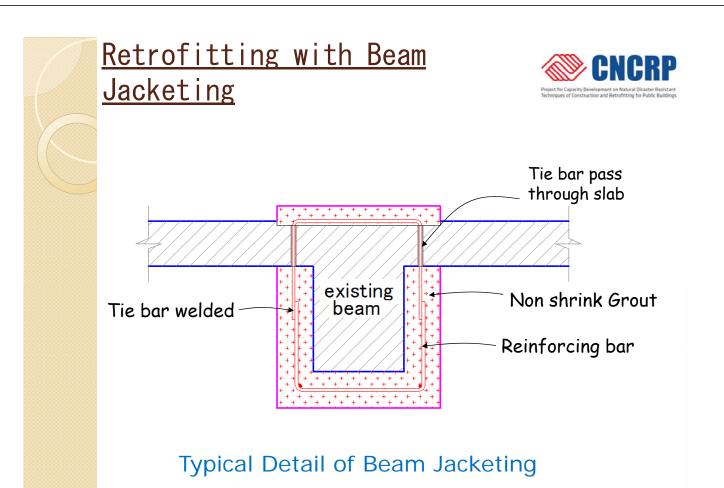
<u>Carbon fiber sheet wrapping</u>

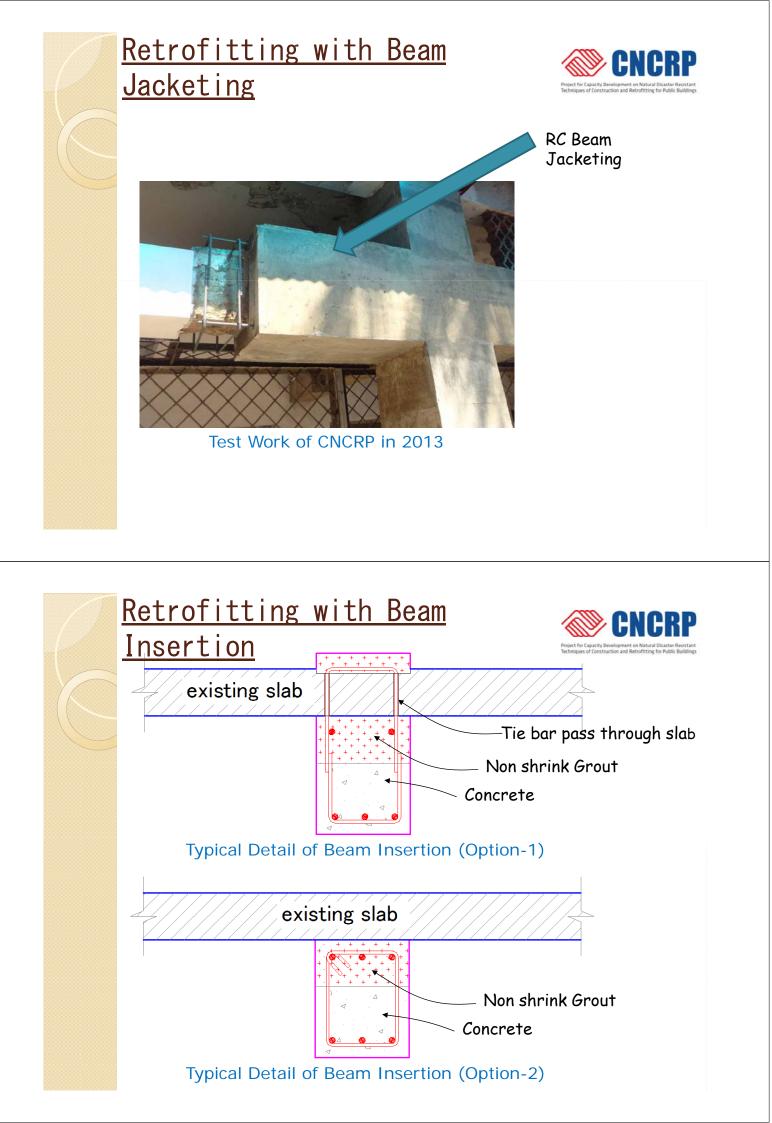
SOURCE:

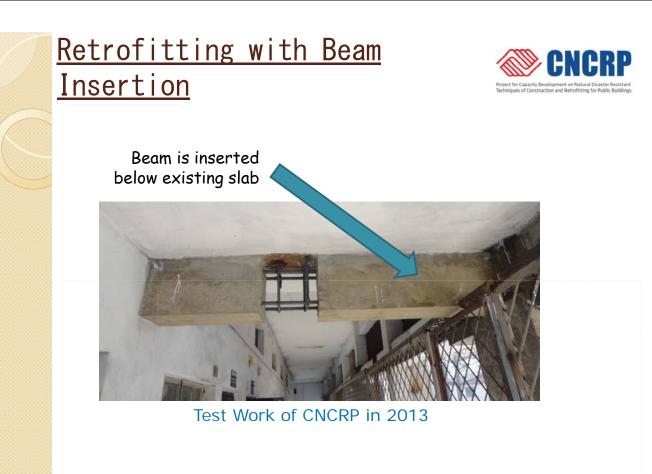
Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

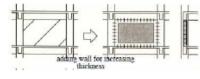
<u>Carbon fiber sheet wrapping</u>


Test Work of CNCRP in 2012



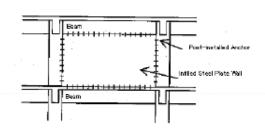

Test Work of CNCRP in 2012


Carbon fiber sheet wrapping



Methods of Retrofitting

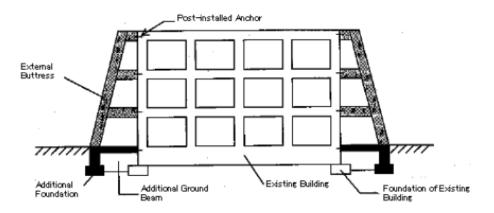
3. Increasing Thickness of Existing Shear Wall



Da Vinch Ginza Building

Methods of Retrofitting

4. Infilling Steel Plate Wall into Open Frame


Under Construction

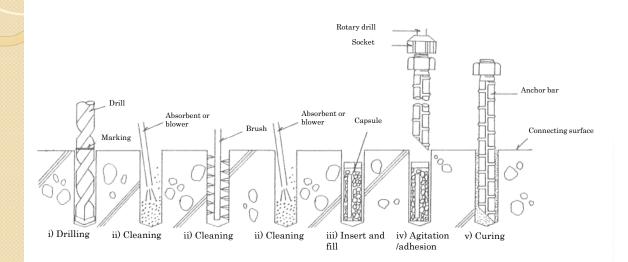
SOURCE: Class note of Mr. Hiroshi OHIRA for CNCRP Project

Methods of Retrofitting

7. Constructing External Buttress

Base Isolation

CONCRP


 Project for Capacity Development on Natural Disaster Resistant
 techniques of Construction and Restrictiviting for Public

Lead Rubber Bearing with Isolator used Damper used

Post-Installed Anchor Work

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

<u>Post-Installed Anchor Work</u>

Pressurized Grouting Work

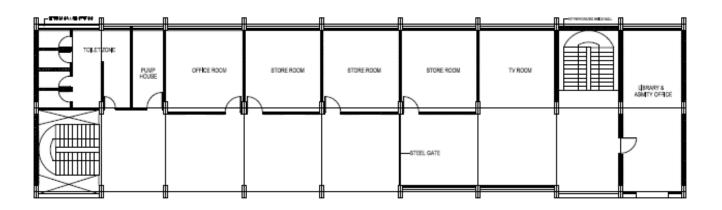
Thank you very much

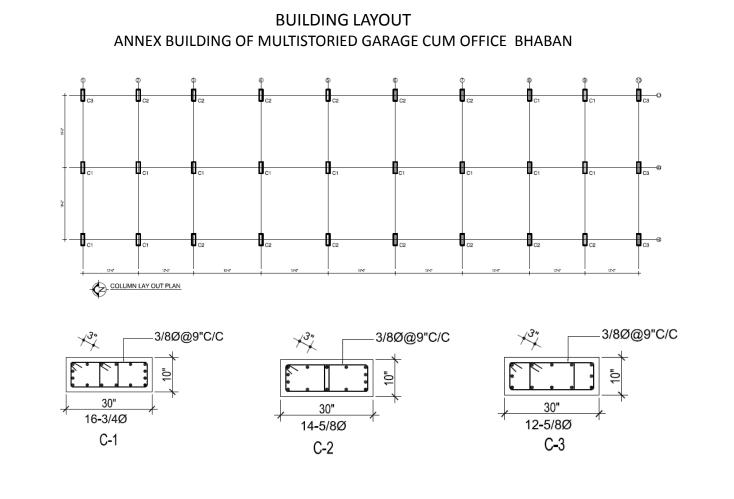
SHORT TRAINING COURSE ON SEISMIC ASSESSMENT, RETROFIT DESIGN AND CONSTRUCTION OF RC BUILDING

TITLE OF LECTURE

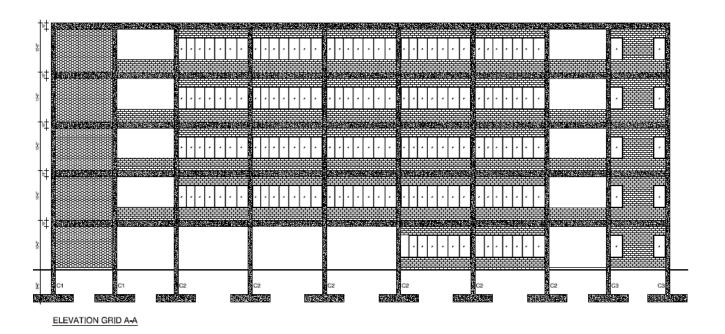
RETROFITTING DESIGN EXAMPLE OF A REAL STRUCTURE

PRESENTED BY ANUP KUMAR HALDER SUB DIVISIONAL ENGINEER PWDDESIGN DIVISION-V. & TEAM MEMBER WORKING TEAM-II


OUTLINE


- 1. BUILDING VIEW/ PLAN/ LAYOUT/ELEVATION
- 2. INSPECTION FOR BUILDING DATA
- 3. ASSESSMENT IN X DIRECTION (DETAILS OF STOREY-1)
- 4. ASSESSMENT IN Y DIRECTION (DETAILS OF STOREY-1)
- 5. C, F VALUE IN X DIRECTION FLOOR WISE
- 6. CALCULATION OF DEMAND
- 7. COLUMN JACKETING
- 8. WING WALL
- 9. SHEAR WALL
- 10. CHECK FOR PERFORMANCE OF SW
- 11. CARBON FIBRE WRAPING
- 12. STEEL BRACING
- **13.SELECTION OF METHOD**

BUILDING VIEW ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN.



BUILDING PLAN ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

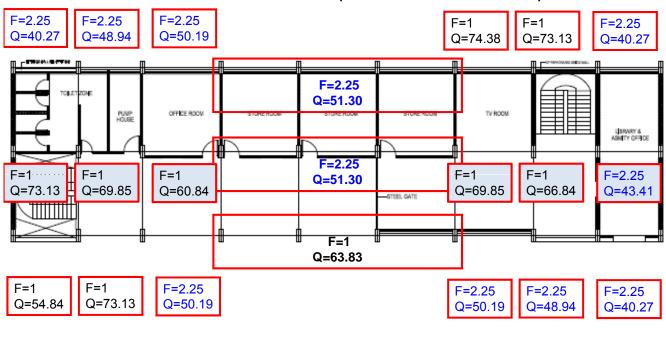
ELEVATION GRID A-A ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

INSPECTION ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

BUILDING DATA

	NAME	ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN.
- Fred to	BUILDING USE	OFFICE
34.73	STRUCTURE TYPE	R.C.C FRAMED STRUCTURE
19-12	YEAR OF CONSTRUCTION	1985
TE LE	CONCRETE f'c	9.2 Mpa (DESIGN f'c=13.7Mpa)
	REBAR fy	275 Mpa
S. Marine	TOTAL STOREY	5(FIVE)
	FLOOR AREA	377.38 Sqm
	FOUNDATION TYPE	SHALLOW /DEPTH 4'-6" FROM EGL
	BEARING CAP	1.00 TSF

BUILDING DATA cont.....


Material Properties:	
f'c(N/mm2)	9.20
σy(N/mm2)	275.00
σwy(N/mm2)	275.00

Unit Are	Unit Area weight(Roof):									
1. Live Load		0.30	kN/Sqm							
2. Brick Wall		0.00	kN/Sqm							
3. Slab weight & Floor Finish		3.85	kN/Sqm							
5. SW(Column+Beam)		2.15	kN/Sqm							
	w =	6.3	kN/Sqm							

Unit Area	a weight(Typic	al Floor):	
1. Live Load		0.80	kN/Sqm
2. Brick Wall		4.00	kN/Sqm
3. Slab weight & Floor Finish		3.85	kN/Sqm
5. SW(Column+Beam)		2.15	kN/Sqm
-	w =	10.8	kN/Sqm

FLOOR AREA	377.38	Sqm
------------	--------	-----

BUILDING ASSESSMENT (X DIRECTION STORY 1)

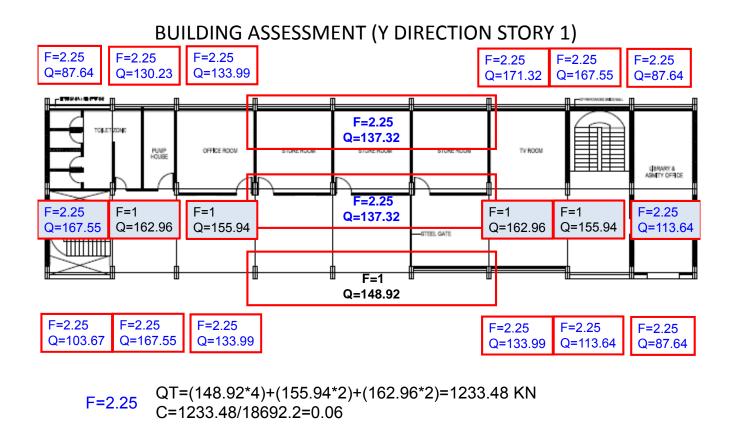
QT=(51.30*8)+(40.27*3)+(48.94*2)+(50.19)*3+43.41=822.89 KN

C=822.89/18692.2=0.04

F=2.25

Eo CALCULATION (X DIR STORY 1)

STRENGTH DOMINANT STRUCTURE


				Σwi=	18692.2	kN					
Direction	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
		1	0.0	0.00	0.00	0.000	0.80				
		2	874.3	0.05	1466.96	0.078	1.00		0.078	0.08	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
х	1	7	0.0	0.00	0.00	0.000	1.50				
^	T	8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00				
		10	823.1	0.04	823.10	0.044	2.25		0.099	0.04	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	1697.4		MAX_E0	0.044	2.25		0.099		

DUCTILITY DOMINANT STRUCTURE

 $E_0 = \sqrt{(1^*0.05)^2 + (2.25^*0.04)^2} = 0.11$

ASSESSMENT SUMMARY (X DIRECTION)

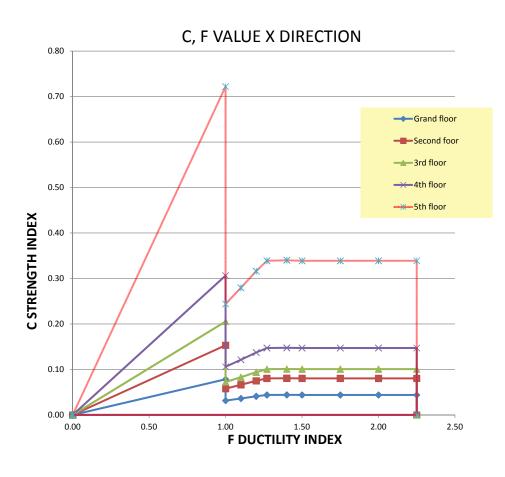
Direction	Story	С	F	Failure Mode	Eo	т	S _D	Is	C _{TU} ∙S _D	Result	Adoptior	Eq
												5
		0.339	2.25		0.458			0.458	0.203	ОК		5
	5	0.478	1.00			1.000	1.000					
	5	0.339	2.25		0.540	1.000	1.000	0.540	0.203	ОК		4
		0.722	1.00		[0.433]			0.433	[0.433	ОК		5
												5
		0.147	2.25	D	UCTILI	TY DC	MINA	NT	0.098	NG		5
	4	0.200	1.00			1.000	1.000					
		0.147	2.25		0.258	C	STREN	сти г			ιт	4
		0.307	1.00		[0.455]			-	-		11	5
		0.307	1.00		[0.155]			0.155	[0.133]	NG		5
		0.101	2.25		0.170			0.170	0.076	NG		5
		0.133	1.00		0.170	1.000 1.000		0.170	0.070	NO		
Х	3	0.101	2.25		0.197		1.000	0.197	0.076	NG		4
		0.101	2.20									
		0.206	1.00		[0.154]			0.154	[0.154]	NG		5
												5
		0.080	2.25		0.155			0.155	0.069	NG		5
	2	0.095	1.00	Is CONS			R o					
	2	0.080	2.25				r v	0.110	0.069	NG		4
				RETRO	FITTIN	G						
		0.153	1.00		[0.131]	L		0.131	[0.131]	NG		5
									\square			5
		0.044	2.25		0.099			0.099	0.044	NG		5
	1	0.047	1.00			1.000	1.000					
		0.044	2.25		0.110			0.110	0.044	NG		4
		0.070	4.00		[0.070]			0.070	[0.076]			
		0.078	1.00		[0.078]			0.078	[0.078]	NG		5

CALCULATION OF E0 (STRENGTH DOMINENET STRUCTURE)

STRENGTH DOMINANT STRUCTURE

Direction	Story	GN		N+1/N+i= Σwi= C	1.000 18692.2 ΣQ	kN C1	F	E0-1	E0-2	Ctu	
Direction	JUTY	1	0.0	0.00	0.00	0.000	0.80		102	Clu	
									0 170	0.10	
		2	1233.5	0.07	3320.48	0.178	1.00		0.178	0.18	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
Y	1	7	0.0	0.00	0.00	0.000	1.50				
T	T	8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00				
		10	2898.6	0.16	2898.61	0.155	2.25		0.349	0.16	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	4132.1		MAX_E0	0.155	2.25		0.349		

DUCTILITY DOMINANT STRUCTURE

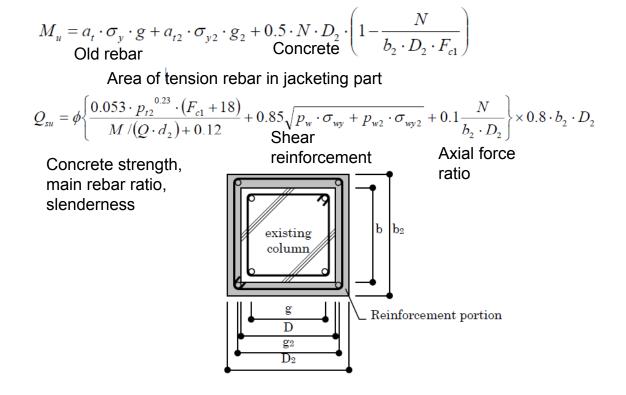

 $E_0 = \sqrt{(1*0.07)^2 + (2.25*0.16)^2 = 0.36}$

			ASSES.	SIVIEINTS			DINEC		/			
	Seis	mic demand	index				lso=	0.30	C	_{TU} •S _D =	0.1	15
Direction	Story	С	F	Failure Mode	Eo	т	S _D	Is	C _{TU} ∙S _D	Result	Adoptior	Eq
			80000000000000000000000000000000000000									5
		1.789	1.50		1.610			1.610	1.073	ОК		5
	5	0.646	1.50			1.000	1.000					
	5	1.143	2.25		1.649	2.000	1.000	1.649	0.686	ОК		4
												5
		0.746	1.20		0.500			0 500	0.407	01/		5
		0.746	1.20		0.596			0.596	0.497	ОК		5
	4	0.391	1.20 2.25		0.651	1.000	1.000	0.651	0.254	ок		4
		0.561	2.25		0.031			0.031	0.234	UK		4
												5
												5
		0.515	1.20		0.463			0.463	0.386	ОК		5
v	2	0.268	1.20			4 000	1 000					
Y	3	0.265	2.25		0.507	1.000	1.000	0.507	0.198	ок		4
												5
												5
		0.214	2.00		0.367			0.367	0.184	ОК		5
	2	0.189	1.00			1.000	1.000					
		0.214	2.00		0.355			0.355	0.184	ОК		4
		0.242	1.00		[0 20 4]			0.204	[0 20 4]	NC		
		0.343	1.00		[0.294]			0.294	[0.294]	NG		5
		0.155	2.25		0.349			0.349	0.155	ОК		5 5
		0.155	1.00		0.349			0.549	0.155	UK		5
	1	0.155	2.25		0.355	1.000	1.000	0.355	0.155	ок		4
		0.155	2.23		0.000			0.000	0.100			
		0.178	1.00		[0.178]			0.178	[0.178]	NG		5

ASSESSMENT SUMMARY (Y DIRECTRION)

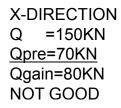
ASSESSMENT IN Y DIR STORY 1

Seismic demand index								lso=	0.30	(C _{TU} ∙S _D =	0.15
Y	1											5
		0.155	5	2.25		0.349			0.349	0.155	ОК	5
		0.066	5	1.00			1.000	1.000				
		0.155	5	2.25		0.355	1.000	1.000	0.355	0.155	ОК	4
		0.178	3	1.00		[0.178]			0.178	[0.178]	NG	5
	N+1/N+i= 1.000											
	Σwi= 18692.2 kN											
Dire	ection	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
	Y	1	1	0.0	0.00	0.00	0.00 0.000	0.80	_			
			2	1233.5	4	3320.48	4			0.178	0.18	
			3	0.0							-	
			4	0.0							-	╹──╹
			5	0.0			CTILITY	DOMINA		RUCTUR	E	
			<u>6</u> 7	0.0								
			8	0.0			=√(1*0.	07) ² +(2.25*0.16) ² =0.36				
			9	0.0		-	_			,		
			10	2898.6	1	1		1		0.349	0.16	
			11	0.0			1					
			12	0.0	0.00	0.00	0.000	1				
			13	0.0	0.00		0.000	3.20				
			ΣQ	4132.1		MAX_E0	0.155	2.25		0.349		

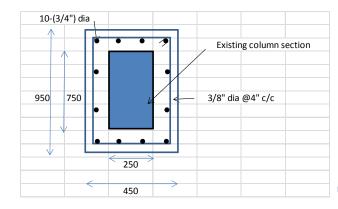


CALCULATION OF DEMAND

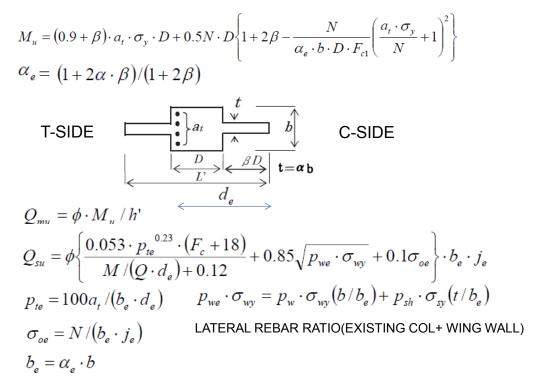
- $I_{so}=E_{o}xS_{D}xT=C1xFXS_{D}xT=C1=\sumQ1/W$
- $I_{sx}=E_0xS_DxT=C2xFXS_DxT=C2=\sumQ2/W$
- CONSIDERING NO CHANGE IN THE SYSTEM WITH (FXS_DxT)
- Iso-Isx=∑Q1/W-∑Q2/W
- Iso-Isx)XW=∑Q1-∑Q2=REQUIRED SHEAR CAPACITY
- I_{so}=0.3
- Isx=0.078
- Isy=0.178
- W=18692.2 KN
- SHEAR REQUIREMENT IN X=(0.3-0.078)X18692.2=4150KN
- SHEAR REQUIREMENT IN Y=(0.3-0.178)X18692.2=2280KN


COLUMN JACKETING

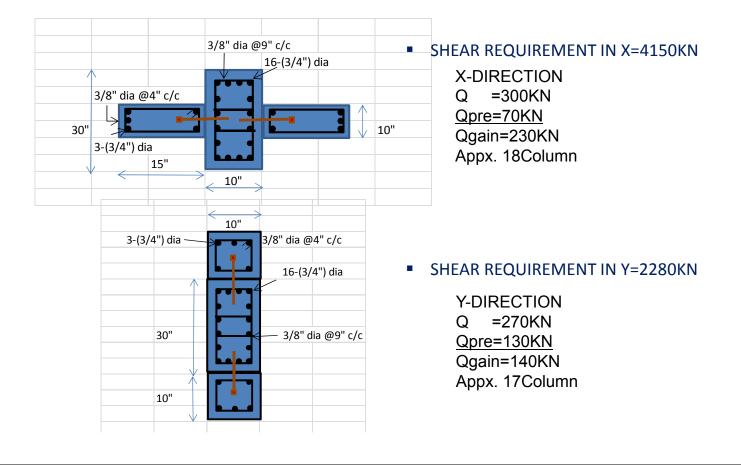
When $0.4b \cdot D \cdot F_{c1} \ge N \ge 0$,


COLUMN JACKETING cont...

SHEAR REQUIREMENT IN X=4150KN


SHEAR REQUIREMENT IN Y=2280KN

Y-DIRECTION Q =242KN <u>Qpre=130KN</u> Qgain=112KN Appx. 20Column



WING WALL

CONTRIBUTION OF TENSION SIDE WING WALL IGNORED

WING WALL cont...

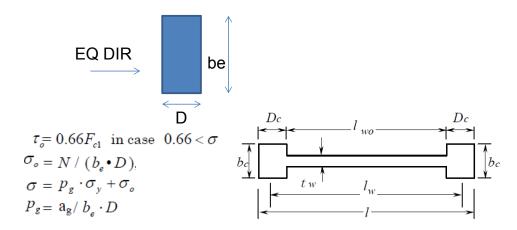
SHEAR WALL CALCULATION

SHEAR STRENGTH OF SW

Shear force of column Direct shear strength at top of col $_{W}Q_{su} = \min \left\{ \underset{W}{\overset{Q}{}_{su}} + 2 \cdot \alpha \cdot Q_{c}^{\vee}, Q_{j} + \underset{p}{\overset{Q}{}_{c}} + \alpha \cdot Q_{c}^{\vee} \right\}$

Shear strength of infill panel

Shear connector

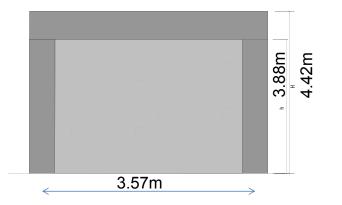

$${}_{W}Q_{su}^{'} = \max\left(p_{w}\cdot_{W}\sigma_{y}, F_{cw}/20 + 0.5p_{w}\cdot_{W}\sigma_{y}\right)\cdot t_{W}\cdot l^{'}$$

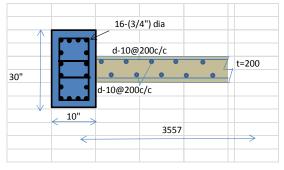
Wall reinforcement ratio and yield strength Wall thickness & clear span

SHEAR STRENGTH COLUMN

$$_{p}Q_{c} = K_{\min} \cdot \tau_{o} \cdot b_{e} \cdot D$$

 $Q_{j} =$ Sum of the shear strengths of connectors underneath the beam.


SHEAR WALL CALCULATION cont..



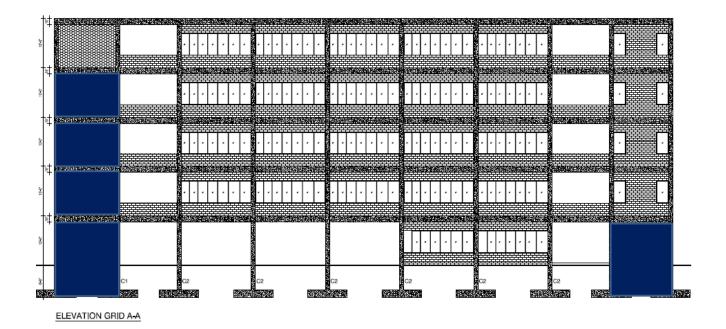
FLEXURAL STRENGTH OF SW

 $_{W}M_{u} = a_{t} \cdot \sigma_{sy} \cdot l_{W} + 0.5 \sum (a_{wy} \cdot \sigma_{wy}) \cdot l_{W} + 0.5 N \cdot l_{W}$

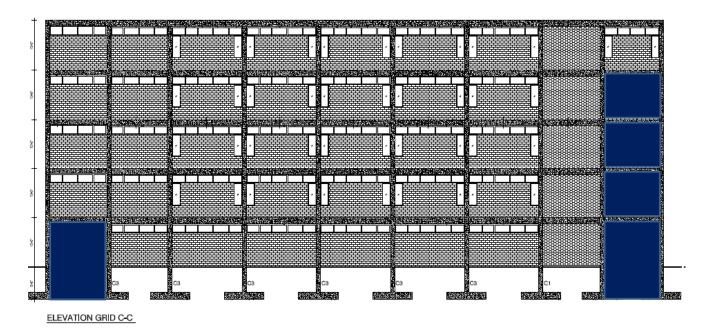
SHEAR WALL CALCULATION cont..

 $w Q_{su} = 1400 \text{KN} (X-DIRECTION)$

 $WQ_{su} = 1500 \text{KN} (Y-DIRECTION)$


CALCULATION FOR SW(X-DIR)

Direction	Story	С	F	Eo	т	SD	Is	C _{TU} •S _D	Result	Adoption	Eq	WT (KN)	n+1/(n+i)	SW Cap (KN)	Req SW No=(Is0-Is)XWt/SW cap	No of SW
	5										5					
		0.339	2.25	0.458			0.458	0.203	ОК		5					
		0.478	1.00		1.000	1.000			ОК		4					
		0.339	2.25	0.540	1.000	1.000	0.540	0.203								
											-					
		0.722	1.00	[0.433]			0.433	[0.433]	ОК		5	2377.494	0.6	840	-0.4	Not Required
	4										5					
		0.147	2.25	0.221			0.221	0.098	NG		5					
		0.200	2.25	0.258	1.000	1.000	0.258	0.980	NG		4					
		0.147	2.25	0.238			0.238	0.980	NO		4					
		0.307	1.00	[0.155]			0.155	[0.155]	NG		5	6453.198	0.67	933.3333333	0.6	1
	3	0.507	1.00	[0.100]			0.155	[0.155]			5	01001200	0.07		0.0	-
-		0.101	2.25	0.170			0.170	0.076	NG		5					
		0.133	1.00		4 000	4 000					4					
		0.101	2.25	0.197	1.000	1.000	0.197	0.076	NG							
х		0.206	1.00	[0.154]			0.154	[0.154]	NG		5	10528.902	0.75	1050	1.4	1
	2										5					
		0.080	2.25	0.155			0.155	0.069	NG		5					
		0.095	1.00	0.110	1.000	1.000	0.440	0.000	NG		4					
		0.080	2.25	0.110			0.110	0.069	NG		4					
		0.153	1.00	[0.131]			0.131	[0.131]	NG		5	14604.606	0.857142857	1200	1.9	2
	1	0.155	1.00	[0.151]			0.151	[0.151]	NG		5	14004.000	0.857142857	1200	1.9	2
	T	0.044	2.25	0.099			0.099	0.044	NG		5					
		0.180	1.00	0.000			0.000	0.044			5					
		0.044	2.25	0.110	1.000	1.000	0.110	0.044	NG		4					
		0.078	1.00	[0.078]			0.078	[0.078]	NG		5	18680.31	1	1400	2.7	3



ADDING SW IN X-DIR (GROUND FLOOR)

ELEVATION GRID A-A

ELEVATION GRID C-C

BUILDING ASSESSMENT (X DIRECTION STORY 1 AFTER) F=2.25 F=2.25 F=2.25 F=2.25 F=1 F=1 Q=50.19 Q=40.27 Q=48.94 Q=74.38 Q=73.13 Q=40.27 Ш F=2.25 торы: ONE Q=51.30 OFFICE BOOM TV ROOM PUMP HOUSE LIBRARY & ASMITY OFFICE h F=2.25 F=1 F=1 Q=73.13 Q=69.85 F=1 F=1 F=1 F=2.25 Q=51.30 Q=60.84 Q=69.85 Q=66.84 Q=43.41 STEEL GAT F=1 Q=63.83

QT(-)=874.3-(54.84+73.13)+(0.72)(823.1-40.27*3-48.94*2)+4*1400=6781.5

F=2.25

Q=48.94

F=2.25

Q=40.27

F=2.25

Q=50.19

Eo CALCULATION (X DIR STORY 1 AFTER INSERTION OF 4-WALL)

STRENGTH DOMINANT STRUCTURE

F=1

Q=54.84

F=1

F=2.25

F=2.25

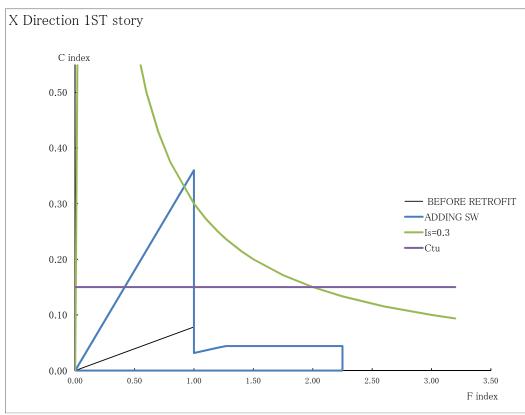
Q=73.13

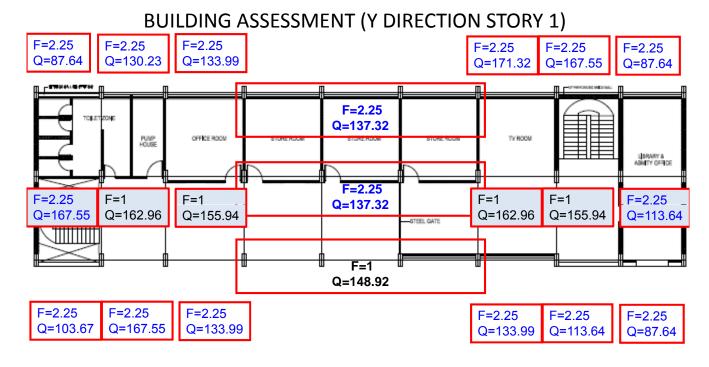
F=2.25

C=6781.5/18692.2=0.36

C=604.41/18692.2=0.032

QT=823.1-40.27*3-48.94*2=604.41KN

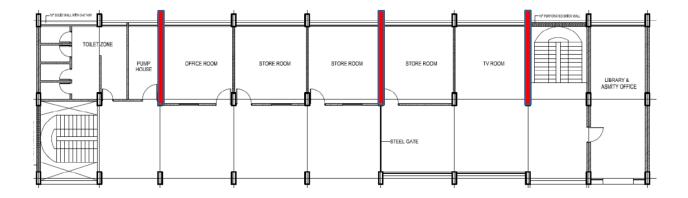

Q=50.19


				Σwi=	18692.2	kN					
Direction	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
		1	0.0	0.00	0.00	0.000	0.80				
		2	6346.33	0.33	6781.50	0.36	1.00		0.36	0.36	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
х	1	7	0.0	0.00	0.00	0.000	1.50				
~	T	8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00	1	0.070		
		10	604.41	0.032	604.41	0.032	2.25		0.072	0.032	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	1697.4		MAX_E0	0.36	1.0		0.36		

DUCTILITY DOMINANT STRUCTURE

 $E_0 = \sqrt{(1^*0.36)^2 + (2.25^*0.032)^2 = 0.36}$

PERFORMANCE OF SHEAR WALL C, F VALUE AFTER ADDING SW IN X DIR 1ST STOREY



F=2.25 QT=(148.92*4)+(155.94*2)+(162.96*2)=1233.48 KN C=1233.48/18692.2=0.06

CALCULATION FOR SW(Y-DIR)

Direction	Story	С	F	Eo	т	SD	Is	Cīu∙So	Result	Adoption	Eq	WT (KN)	n+1/(n+i)	SW Cap (KN)	Req SW No=(Is0-Is)XWt/SW cap	No of SW
											5					
		1.789	1.50	1.610			1.610	1.073	ОК		5					
	5	0.646	1.50		1.000	1.000										
	э	1.143	2.25	1.649	1.000	1.000	1.649	0.686	ОК		4					
											5	2377.494	0.6	900	-3.2	Not Required
											5					
		0.746	1.20	0.596			0.596	0.497	OK		5					
	4	0.391	1.20		1.000	1.000										
	-	0.381	2.25	0.570	1.000	1.000	0.570	0.254	ОК		4					
											5	6453.198	0.67	1000	-1.7	Not Required
											5					
		0.515	1.20	0.463			0.463	0.386	ОК		5					
Y	3	0.268	1.20		1.000	1.000										
	-	0.265	2.25	0.507			0.507	0.198	ОК		4					
											5	10528.902	0.75	1125	-1.6	Not Required
											5					
		0.214	2.00	0.367			0.367	0.184	ОК		5					
	2	0.189	1.00	0.055	1.000	1.000	0.055	0.184	0 1/		4					
		0.214	2.00	0.355			0.355	0.184	ОК		4					
		0.242	1.00	[0.294]			0.204	[0.20.4]	NG		5		0.0574.40057	4005 744005	0.5	
		0.343	1.00	[0.294]			0.294	[0.294]	NG			14604.606	0.857142857	1285.714286	-0.5	Not Required
		0.155	2.25	0.349			0.349	0.155	ОК		5 5					
		0.155	1.00	0.549			0.349	0.155	UK		3					
	1	0.155	2.25	0.355	1.000	1.000	0.355	0.155	ок		4					
		0.155	2.25	0.555			0.333	0.155	UK.		-					
		0.178	1.00	[0.178]			0.178	[0.178]	NG		5	18680.31	1	1500	1.6	2
		0.176	1.00	[0.1/0]			0.170	[0.1/0]	DN	L	3	10060.31	1	1300	1.6	Z

ADDING SW IN Y-DIR (GROUND FLOOR)

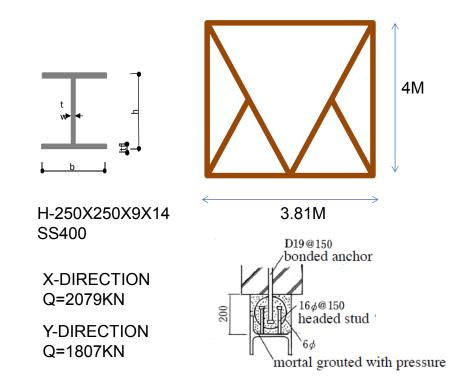
CARBON FIBER

$$Q_{su} = \left\{ \frac{0.053 \cdot p_t^{0.23} \cdot (F_{c1} + 18)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot \sigma_{wy} + p_{wf} \cdot \sigma_{fd}} + 0.1\sigma_o \right\} \cdot b \cdot j$$

 $p_{w} \cdot \sigma_{wy} + p_{wf} \cdot \sigma_{fd}$ shall be not more than 9.8 N/mm².

carbon fibar		
roll	3	
thickness	0.167	mm
tensile strength	3430	N/mm2
Young's modulus	230000	N/mm2
σ fd	1610	N/mm2
Pwf	0.00401	

 P_{wf} = Shear reinforcement ratio of carbon fiber sheet (decimal).


 E_{fd} = Young's modulus of carbon fiber sheet ε_{fd} = Effective strain of carbon fiber sheet at shear failure.

 $\sigma_{fd} = \min\{E_{fd} \cdot \varepsilon_{fd}, (2/3) \cdot \sigma_f\}, \text{ tensile strength of carbon fiber sheet for shear}$

 σ_f = Specified tensile strength of carbon fiber sheet.

X DIRECTION:	Y DIRECTION:
Qsu=105 KN; F=3.2	Qsu=256 KN; F=1

SELECTION OF METHOD

CHOICE OF METHOD SHOULD CONSIDER 1.USE OF LOCAL AVAILABLE MATERIAL 2.ECONOMY 3.CONSTRUCTION TIME 4.EASE OF CONSTRUCTION 5.QUALITY CONTROL 6.RELABILITY OF METHOD BASED ON TEST DATA 7.ARCHITECTURAL SIMPLICITY & COHERENCE 8.UNINTERREPTED USE DURING RETROFITTING 9.LESS DISTURB THE OCCUPANT 10.MINIMUN MODIFICATION IN PURPOSE OR USE.

THANK YOU

Capacity Development on Natural Disaster Resistant Techniques of Construction and Retrofitting for Public Buildings (CNCRP)

Presentation on Pushover Analysis for Retrofitting Design by Moniruzzaman Moni Member, Working Team-2

Introduction

- Nonlinear static analysis or pushover analysis has been developed over the past thirty years
- It is the preferred analysis procedure for design and seismic performance evaluation

Introduction

3

Introduction

Introduction

Taiwan,1999

Earthquake happens every day somewhere in the world Earthquake causes loss of human lives and damage of infrastructures 5

<text><text><image>

Learning from Earthquakes - Sichuan, 2008

Introduction

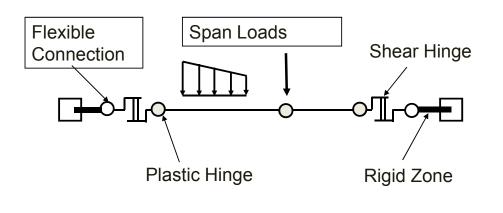
- Nonlinear Static Procedures (NSP) shall be used for analysis of buildings when linear procedures are not permitted
- The NSP shall be permitted for structures in which higher mode effects are not significant

7

Key Elements of the Pushover Analysis

- Nonlinear static procedure: constant gravitational loads and monotonically increasing lateral loads
- Plastic mechanisms and P-A effects: diplacement or arc length control
- Estimation of the target displacement: elastic or inelastic response spectrum for equivalent SDOF system

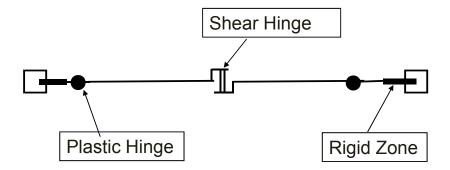
Key Elements of the Pushover Analysis

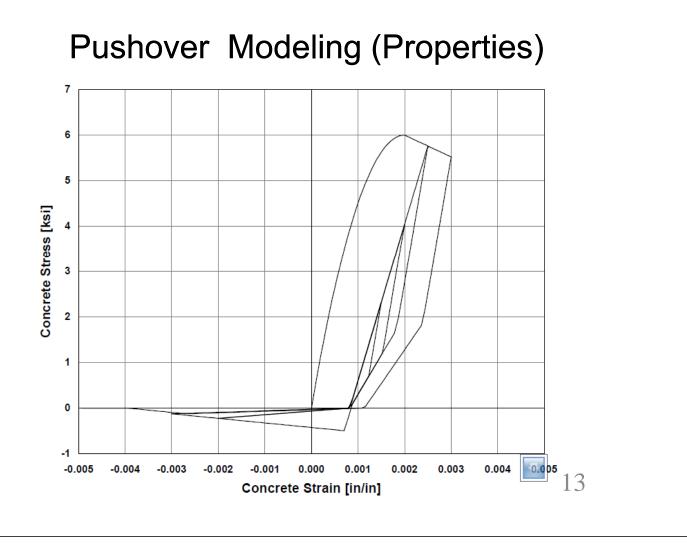

- Lateral load patterns: uniform, modal, ELF force distribution
- Capacity curve: Control node displacement vs base shear force
- Performance evaluation: global and local seismic demands with capacities of performance level

Pushover Modeling (Elements)

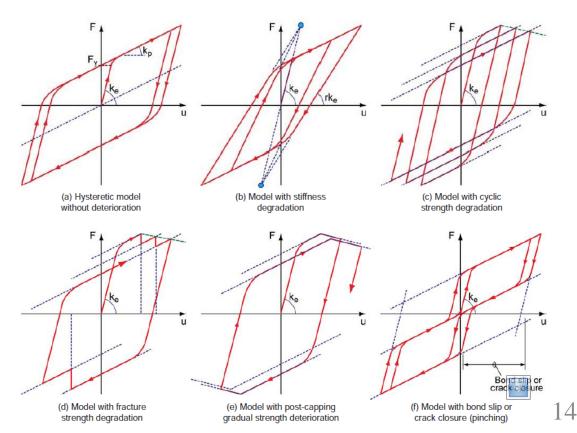
- Types of Elements
 - Truss yielding and buckling
 - 3D Beam major direction flexural and shear hinging
 - 3D Column P-M-M interaction and shear hinging
 - Panel zone Shear yielding
 - In-fill panel Shear failure
 - Shear wall P-M-Shear interaction
 - Spring for foundation modeling

Pushover Modeling (Beam Element)


Three dimensional Beam Element



11

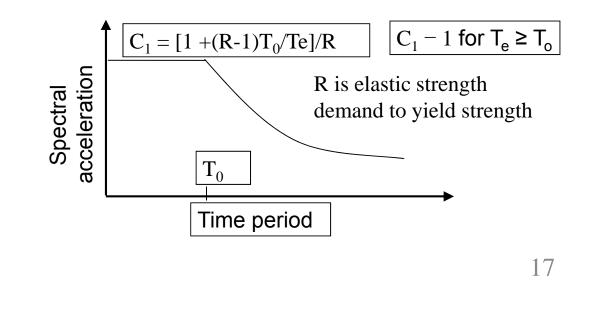

Pushover Modeling (Column Element)

Three dimensional Column Element

Pushover Modeling (Properties)

Target Displacement (FEMA-356)

Estimation of Target Displacement
Estimate effective elastic stiffness, K_e
Estimate post yield stiffness, K_s
Estimate effective fundamental period, T_e
Calculate target roof displacement $\delta = C_0 C_1 C_2 C_3 S_a T_e^2 / (4\pi^2) * g$


Target Displacement (FEMA-356)

- \succ Calculation of C₀
 - * Relates spectral to roof displacement
 - Use modal participation factor for control node from first mode or
 - Use modal participation factor for control node from deflected shape at the target displacement or
 - Use tables based on number of stories and varies from 1 to 1.5

Target Displacement (FEMA-356)

\succ Calculation of C₁

Modifier for inelastic displacement

Target Displacement (FEMA-356)

Calculation of C₂

Modifier for hysteresis loop shape

- Depends on framing type (degrading strength)
 - Depends on performance level
 - *Depends on Effective Period
- *1.0 shall be permitted for nonlinear procedures

Target Displacement (FEMA-356)

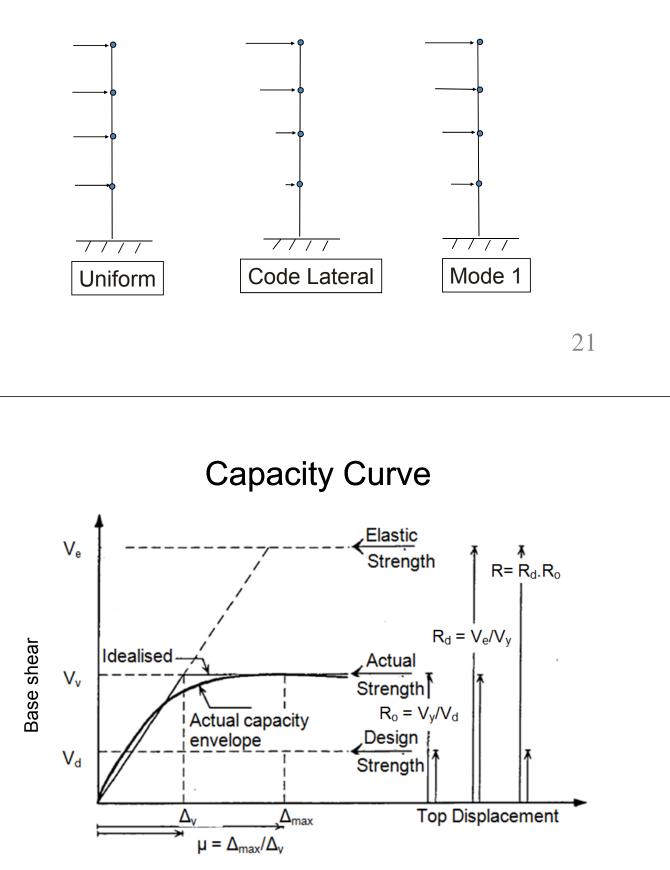
> Calculation of C_3

Modifier for dynamic second order effects
 C₃ = 1 if post yield slope is positive else
 C₃ = 1 +[|α|(R-1)^{3/2}]/T_e

- R=Ratio of elastic strength demand to calculated yield strength

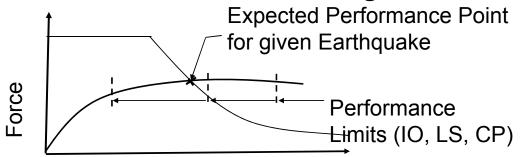
Pushover Modeling (Loads)

Start with Gravity Loads


 Dead Load
 Some portion of Live Load

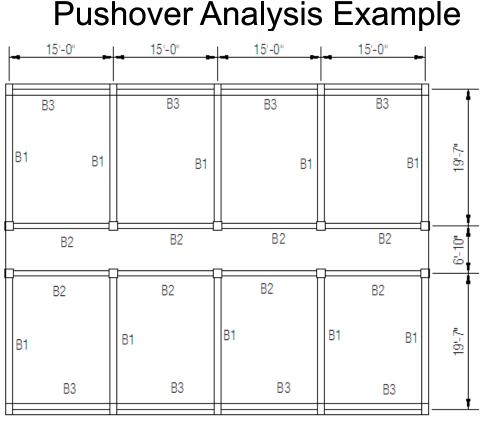
 Select Lateral Load Pattern

 Lateral Load Patterns (Vertical Distribution)
 Lateral Load Horizontal Distribution
 Torsional Effects
 Orthogonal Effects


Pushover Modeling (Loads)

Lateral Load Patterns (Vertical Distribution)

Relation of different factors


Performance Check Using Pushover

Deformation

- Construct Pushover curve
- Select earthquake level(s) to check and construct their spectrum curves
- Decide the performance level(s) (i.e.: IO, LS, CP)
- Verify structural performance with guidelines
 - Capacity Spectrum Method (ATC-40)
 - Displacement Coefficient Method (FEMA 356)

23

Clinic Building

Pushover Analysis Example

					Units			- Grid Lines
System	Namo	101	.0BAL		_	. in, F	•	Quick Start
Jystein	name	Jui	JODAL		JNP.	. ш., г	-	gener stat
(Grid Da	ta							
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color	•	00000
1	A	0.	Primary	Show	End			
2	В	180.	Primary	Show	End			
3	С	360.	Primary	Show	End			
4	D	540.	Primary	Show	End			19-1
5	E	720.	Primary	Show	End			
6								
7								
8							-	
Grid Da	ta							Display Grids as
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color		Ordinates C Spacing
1	1	0.	Primary	Show	Start	and Color	-	• orunates to spacing
2	2	234,9996	Primary	Show	Start			
3	3	317.0004	Primary	Show	Start			Hide All Grid Lines
4	4	555.	Primary	Show	Start			
5	-1		rindiy	011044	otait			Glue to Grid Lines
6								
7								Bubble Size 57.
8							-	
Grid Da	ha							
							_	Reset to Default Color
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.		_	
1	Z1	0.	Primary	Show	End			Reorder Ordinates
2	Z2	120.	Primary	Show	End			
3	Z3	240.	Primary	Show	End			
4	Z4	360.	Primary	Show	End			
5	Z5 Z6	480. 600.	Primary Primary	Show	End			
6				Show	End			

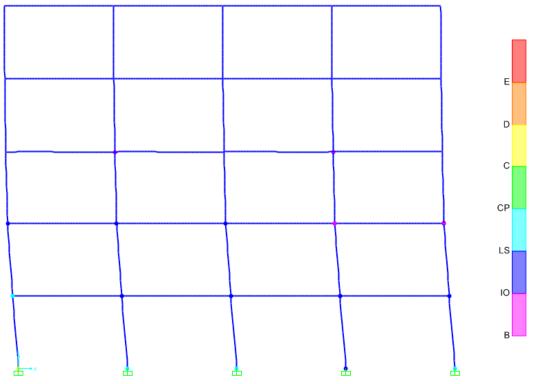
25

Pushover Analysis Example

Frame Properties	Reinforcement Data
Properties Find this property: C8 B1 B2 B3 B4 C1 C2 C5 C6	Rebar Material Longitudinal Bars + A615Gr60 Confinement Bars (Ties) + A615Gr60 Design Type © Column (P-M2-M3 Design) © Beam (M3 Design Only)
Rectangular Section	Reinforcement Configuration Confinement Bars © Rectangular © Ties © Circular © Spiral
Section Name C8 Section Notes Modify/Show Notes Properties Property Modifiers Section Properties Set Modifiers	Longitudinal Bars - Rectangular Configuration Clear Cover for Confinement Bars 1.5 Number of Longit Bars Along 3-dir Face 4 Number of Longit Bars Along 2-dir Face 2 Longitudinal Bar Size + #7
Dimensions Depth (13) 12. Width (12) 20.	Confinement Bars Confinement Bar Size + #3 Longitudinal Spacing of Confinement Bars 10. Number of Confinement Bars in 3-dir 3 Number of Confinement Bars in 2-dir 3
Display Color	Check/Design Reinforcement to be Checked Reinforcement to be Designed Cancel

Pushover Analysis Example

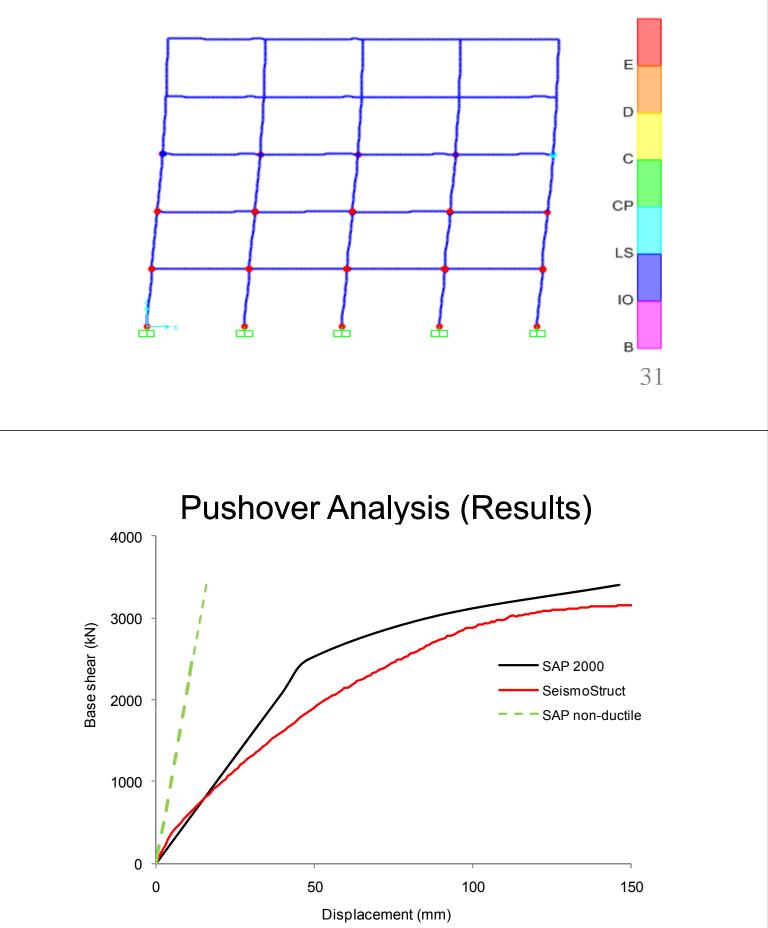
Name A	k to: Add New Property
Default For Added Hinges	Frame Hinge Property Data Hinge Property Name FH1
Use Defaults For C Steel C Concrete C User Defined	Hinge Type C Force Controlled (Brittle) C Deformation Controlled (Ductile) Axial P
OK Cancel	Modify/Show Hinge Property Cancel 27


Pushover Analysis Example

dit Displacement (Control Parameters-			
 Drops Is Extra 			✓ ✓ ✓ Symmetric	Type ✓ Moment - Rotation ✓ Moment - Curvature Hinge Length ✓ Relative Length Hysteresis Type And Parameters Hysteresis Type Isotropic ✓ No Parameters Are Required For This Hysteresis Type
🔲 Use Yi		ent SF .	Negative	
Acceptance	e Criteria (Plastic Rota adiate Occupancy Safety pse Prevention ccceptance Criteria o	Positive 3.000E-03 0.012 0.015	Negative	OK Cancel

Pushover Analysis Example

MODAL LL FF W EQX EQY	Load Case Type Vonlinear Static Modal "inear Static "inear Static "inear Static "inear Static "inear Static "inear Static Nonlinear Static	 Click to: Add New Load Case Add Copy of Load Case Modify/Show Load Case Delete Load Case Display Load Cases Show Load Case Tree DK Cancel 	
		Load Case Name Notes Load Case Type Push-1 Set Def Name Modify/Show Static Initial Conditions Continue from Unstressed State Important Not: Analysis Type Important Not: Load Case from this previous case are included in the current case DEAD Important Not: Modal Load Case MODAL Important Not: Continue from Unstressed State Important Not: Modal Load Case Applied Important Not: Continue are staged Constru Load Supplied Load Name Scale Factor Accel UX T Add Modify Delete Delete	ers
		Other Parameters Oddfy/Show Load Application Displ Control Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters Default Modify/Show	


Pushover Analysis (Results)

30

29

Pushover Analysis (Results)

SEISMIC DESIGN CONCEPT FOR NEW BUILDINGS

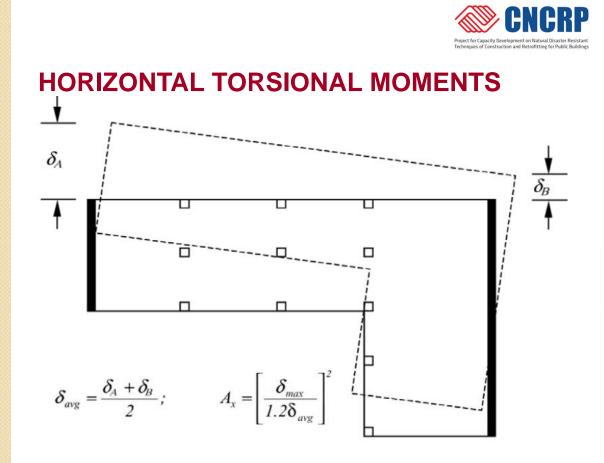
MD. MOMINUR RAHMAN EXECUTIVE ENGINEER PUBLIC WORKS DEPARTMENT AND TEAM MEMBER, COMPONENT-2 CNCRP PROJECT.

An effective seismic design generally includes

1. Layout of a lateral force-resisting system which includes providing a redundant and continuous load path to ensure that a building responds as a unit during ground motion.

2. Determination of code-prescribed forces and deformations generated by the ground motion, and distribution of the forces vertically to the lateral force-resisting system.

3. Analysis of the building for the combined effects of gravity and

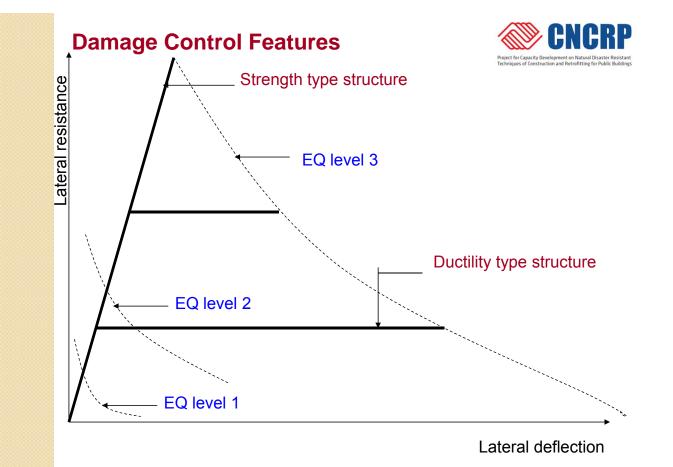

seismic loads to verify that adequate vertical and lateral strengths

and stiffnesses are achieved to satisfy the structural performance

and acceptable deformation levels prescribed in the building code.

4. Structural detailing to assure that the structure has sufficient

inelastic deformability to undergo large deformations when subjected to a major earthquake.



The accidental torsional moment M_{tai} at level *i* is given as: $M_{tai} = e_{ai} F_i$

where, e_{ai} = accidental eccentricity of floor mass at level i applied in the same direction at all floors = ±0.05 *Li* L_i = floor dimension perpendicular to the direction of seismic force considered.

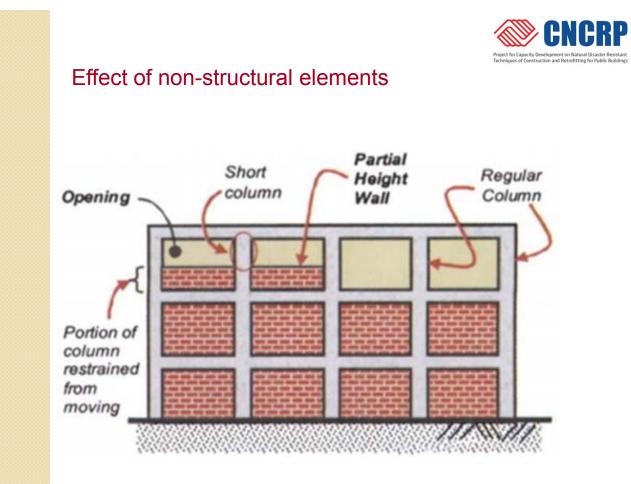
Where torsional irregularity exists for Seismic Design Category C or D, the irregularity effects shall be accounted for by increasing the accidental torsion M_{tai} at each level by a torsional amplification factor,

 $A_x = [\delta_{max} / (1.2\delta_{avg})]^2 \le 3.0$

To minimize the damage of nonstructural elements, special care in

detailing, either to isolate these elements or to accommodate the

movement, is required.

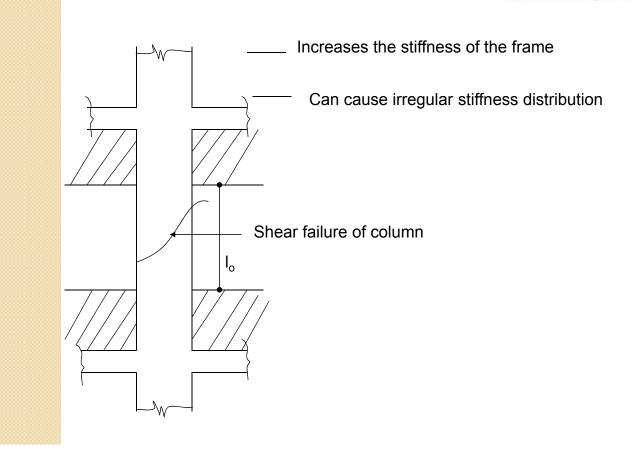

Breakage of glass windows can be minimized by providing adequate

clearance at edges to allow for frame distortions.

Damage to rigid nonstructural partitions can be largely eliminated by

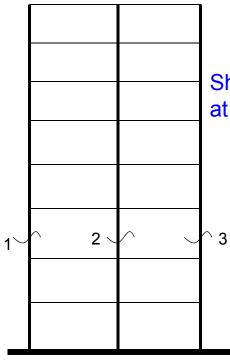
providing a detail at the top and sides, which will permit relative

movement between the partitions and the adjacent structural elements.



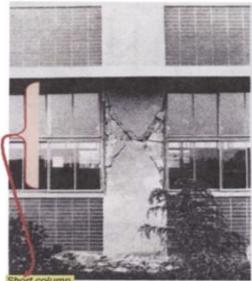
 Tall Column:
Attracts smaller
horizontal force
 Short Columns:
Attracts larger
horizontal force

 Dor behaviour of short columns is due to the fact that in an earthquake,
a tall column and a short column of same cross section move horizontal

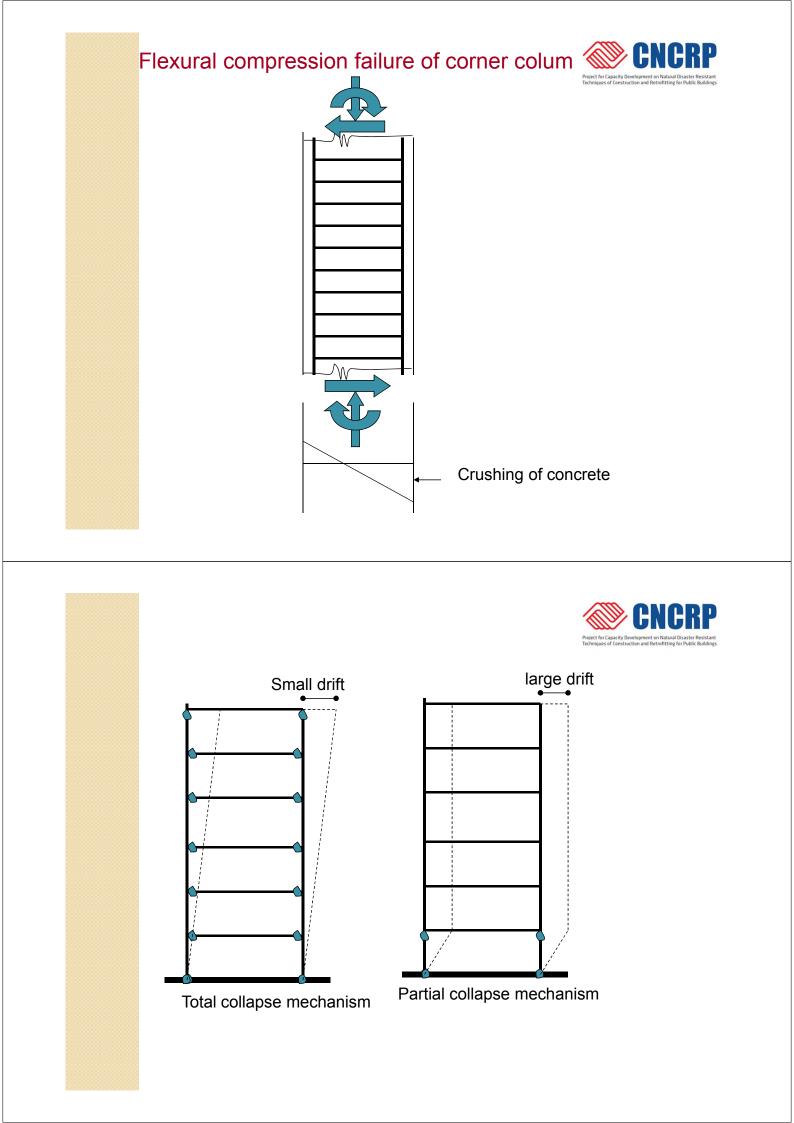

by same amount which can be seen from the given figure.

Project for Capacity Development on Natural Disaster Resistant Techniques of Construction and Retrofittine for Public Buildines

Progressive collapse of a brittle structure



Shear failure of short column occurs at low deformation.



Short column failure

between lintel and sill of window

Soft story failure

Effect of column tie on shear failure of column

1. If column tie is absent, brittle shear failure occurs in diagonal tension mode.

2. If minimum column tie is present, diagonal compression failure of concrete occurs after tie yielding. Not brittle failure, but deformation capacity is low.

3. Tie resists tension under shear and must be 135⁰ hook.

Pounding effect

•Deterioration with age

Beam-column joint failure

Splicing failure of column main reinforcement

Poor quality of concrete

SITE INVESTIGATION

Appropriate site investigations should be carried out to identify the ground conditions influencing the seismic action. The ground conditions at the building site

should normally be free from risks of ground rupture, slope instability and permanent

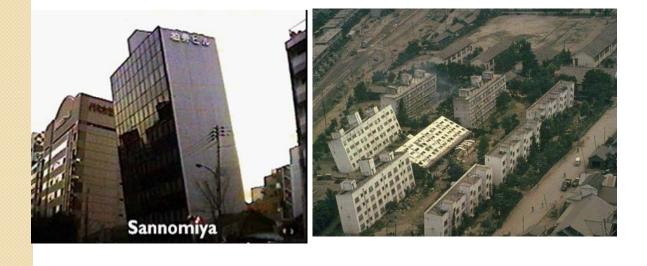
settlements caused by liquefaction or densification during an earthquake. The possibility of such phenomena should be investigated in accordance with standard

procedures.

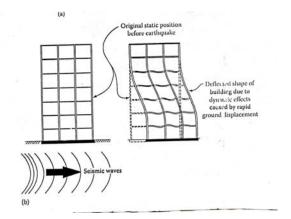
Liquefaction potential and possible consequences should be evaluated for design

earthquake ground motions consistent with peak ground accelerations. Any settlement due to densification of loose granular soils under design earthquake

motion should be studied. The occurrence and consequences of geologic hazards


such as slope instability or surface faulting should also be considered. The dynamic

lateral earth pressure on basement walls and retaining walls during earthquake ground shaking is to be considered as an earthquake load for use in design load combinations.


CNCR

Foundation failure due to liquefaction

Structural Response

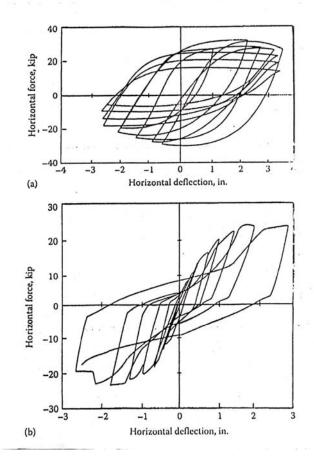
The inertia forces generated by the horizontal components of ground motion require greater consideration for seismic design since adequate resistance to vertical seismic loads is usually provided by the member capacities required for gravity load design.

Load Path

1. There must be a complete gravity and lateral forceresisting system that forms a continuous load path between the foundation and all portions of the building.

2. If there is a discontinuity in the load path, the building is unable to resist seismic forces regardless of the strength of the elements.

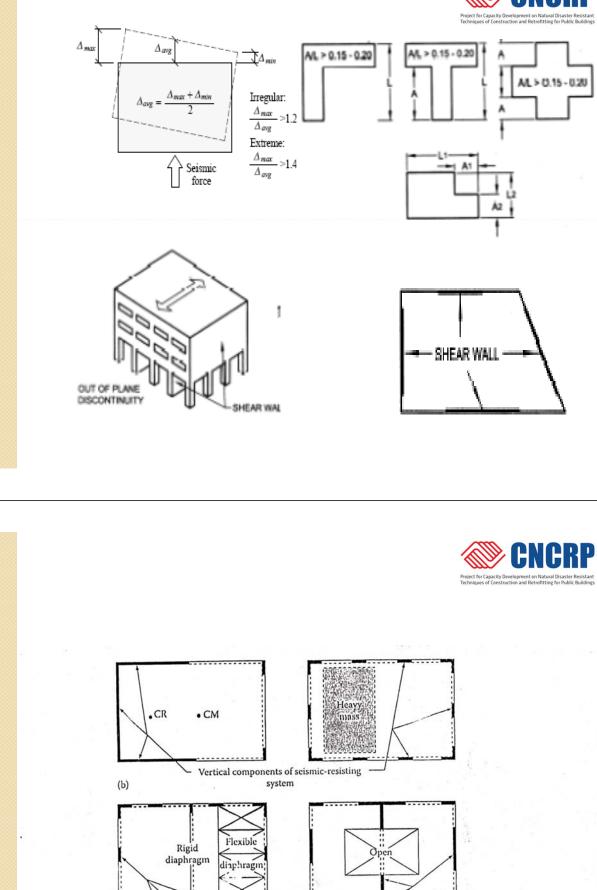
3. Interconnecting the elements needed to complete the load path is necessary to achieve the required seismic performance.



Ductility

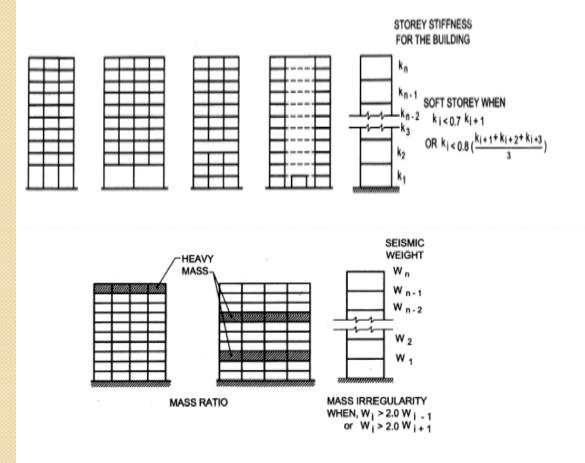
Ductility is the capacity of building materials, systems or structures to absorb energy by deforming into the inelastic range. The capability of a structure to absorb energy, with acceptable deformations and without failure, is a very desirable characteristic in any earthquake-resistant design.

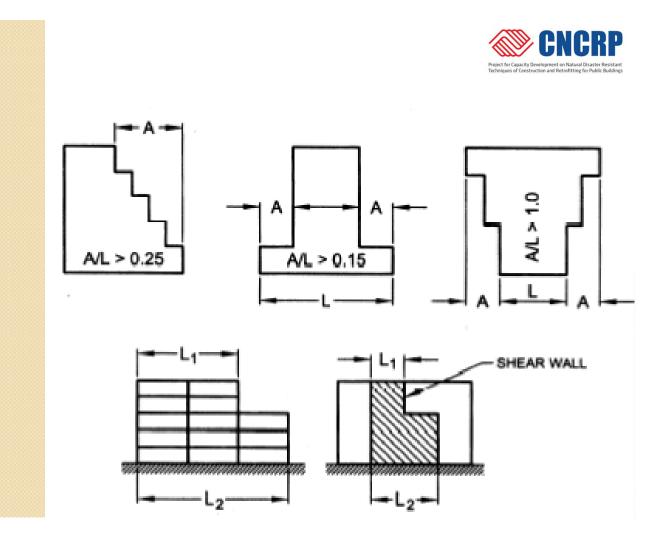
Ductility or hysteretic behavior may be considered as an energy-dissipating mechanism due to inelastic behavior of the structure at large deformations.



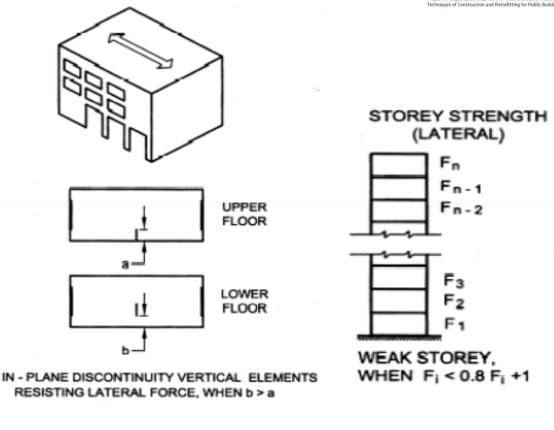
Irregular Buildings

Geometric configuration, type of structural members, details of connections, and materials of construction, all have a profound effect on the structural dynamic response of a building. When a building has irregular features, such as asymmetry in plan or vertical discontinuity, the assumptions used in developing seismic criteria for buildings with regular features may not apply. So it is best to avoid creating buildings with irregular features.





Vertical components of scismic-resisting -


system

(c)

Redundancy

A high degree of redundancy accompanied by redistribution capacity through ductility is desirable, enabling a more widely spread energy dissipation across the entire structure and an increased total dissipated energy. The use of evenly distributed structural elements increases redundancy.

The failure of a single connection or component in a building with a redundant system does not adversely affect its lateral stability.

Lateral Force-Resisting Systems

In moment frames, the drift may be large. So a moment-frame building can have substantial nonstructural damage and still be structurally safe.

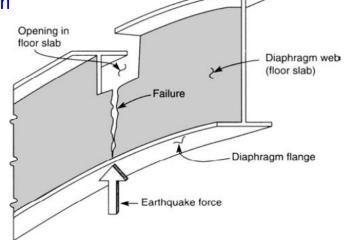
A shear-wall building is typically more rigid than a framed structure.

Table 2.5.7 Response reduction factor, deflection amplification factor for different Structural Systems and height limitations (m) for different seismic design categories

Seismic Force-Resisting System	Response Reduction Factor, R	Deflection Amplification Factor, C _d	Seis. Design Category B	Seis. Design Category C	Seis. Design Category D
			Heigh	t limit	(m)
A. BEARING WALL SYSTEMS (no frame)					
1. Special reinforced concrete shear walls	5	5	NL	NL	50
2. Ordinary reinforced concrete shear walls	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear walls	2	1.75	NL	50	NP
4. Ordinary plain masonry shear walls	1.5	1.25	18	NP	NP
B. BUILDING FRAME SYSTEMS (with bracing or shear wall)					
 Steel eccentrically braced frames, moment resisting connections at columns away from links 	8	4	NL	NL	50
 Steel eccentrically braced frames, non-moment-resisting, connections at columns away from links 	7	4	NL	NL	50
Special steel concentrically braced frames	6	5	NL	NL	50
 Ordinary steel concentrically braced frames 	3.25	3.25	NL	NL	11
5. Special reinforced concrete shear walls	6	5	NL	50	50
6. Ordinary reinforced concrete shear walls	5	4.25	NL	NL	NP
7. Ordinary reinforced masonry shear walls	2	2	NL	50	NP
 Ordinary plain masonry shear walls 	1.5	1.25	18	NP	NP

Table 2.5.7 Response reduction factor, deflection amplification factor for different Structural Systems and height limitations (m) for different seismic design categories

Seismic Force-Resisting System	Response Reduction Factor, <i>R</i>	Deflection Amplification Factor, C _d	Seis. Design Category B	Seis. Design Category C	Seis. Design Category D
			Heigh	t limit	(m)
C. MOMENT RESISTING FRAME SYSTEMS (no shear wall)					
1. Special steel moment frames	8	5.5	NL	NL	Р
2. Intermediate steel moment frames	4.5	4	NL	NL	35
3. Ordinary steel moment frames	3.5	3	NL	NL	NP
4. Special reinforced concrete moment frames	8	5.5	NL	NL	NL
 Intermediate reinforced concrete moment frames 	5	4.5	NL	NL	NP
6. Ordinary reinforced concrete moment frames	3	2.5	NL	NP	NP
D. DUAL SYSTEMS: SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)					
1. Steel eccentrically braced frames	8	4	NL	NL	NL
2. Special steel concentrically braced frames	7	5.5	NL	NL	NL



					Techn
Seismic Force-Resisting System	Response Reduction Factor, R	Deflection Amplification Factor, C _d	Seis. Design Category B	Sels. Design Category C	Seis. Design Category D
			Heigh	ıt limit	(m)
3. Special reinforced concrete shear walls	7	5.5	NL	NL	NL
4. Ordinary reinforced concrete shear walls	6	5	NL	NL	NP
E. DUAL SYSTEMS: INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)					
1. Special steel concentrically braced frames	6	5	NL	NL	11
2. Special reinforced concrete shear walls	6.5	5	NL	NL	50
3. Ordinary reinforced masonry shear walls	3	3	NL	50	NP
4. Ordinary reinforced concrete shear walls	5.5	4.5	NL	NL	NP
F. DUAL SHEAR WALL-FRAME SYSTEM: ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS	4.5	4	NL	NP	NP
G. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE	3	3	NL	NL	NP

Diaphragms

Earthquake loads at any level of a building will be distributed to the lateral load-resisting vertical elements through the floor slabs. Inappropriate location or large size openings for stairs or lift cores create problems similar to those related to cutting the flanges and holes in the web of a steel beam adjacen

Proposed BNBC 2010:

Seismic Design Category: Structural Implications Seismic design category D has the most stringent seismic design detailing ,while seismic design category B has the least seismic design detailing requirements. Certain structural systems are not permitted for seismic design categories C and D.

Imortance Class I and II				Imortance Class III and IV				
Site class	Zone 1	Zone 2	Zone 3	Zone 4	Zone 1	Zone 2	Zone 3	Zone 4
SA SB SC SD SE, S1, S2	B B C D	C C D D	C D D D	D D D D	C C D D	D D D D	D D D D	D D D D

Dynamic Analysis

For the buildings that are asymmetrical or with areas of discontinuity or irregularity, dynamic analysis is used to determine significant response characteristics such as (a) the effects of the structure's dynamic characteristics on the vertical distribution of lateral forces, (b) the increase in dynamic loads due to torsional motions, (c) the influence of higher modes, resulting in an increase in story shears and deformations.

Static methods specified in building codes are based on single-mode response with simple corrections for including higher mode effects. While appropriate for simple regular structures, the simplified procedures do not take into account the full range of seismic behavior of complex structures. Therefore dynamic analysis is the preferred method for the design of buildings with unusual or irregular geometry.

REQUIREMENT FOR DYNAMIC ANALYSIS

Dynamic analysis should be performed to obtain the design seismic force, and its distribution to different levels along the height of the building and to the various lateral load resisting elements, for the following buildings:

- a) Regular buildings with height greater than 40 m in Zones 2, 3, 4 and greater than 90 m in Zone 1.
- b) Irregular buildings with height greater than 12 m in Zones 2,3, 4 and greater than 40 m in Zone 1. For irregular buildings, smaller than 40 m in height in Zone 1, dynamic analysis, even though not mandatory, is recommended.

P-DELTA EFFECTS:

The P - delta effects on story shears and moments, the resulting member forces and moments, and the story drifts induced by these effects are not required to be considered if the stability coefficient (θ) determined by the following equation is not more than 0.10:

$\theta = P_x \Delta / (V_x h_{sx} C_d)$

Where,

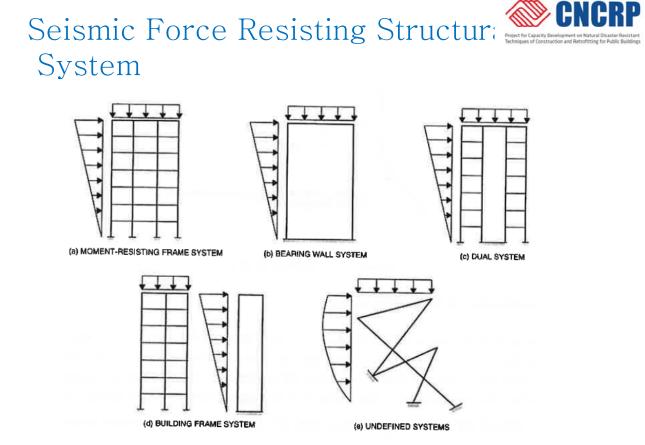
Px = the total vertical design load at and above level x; where computing Px, no individual load factor need exceed 1.0 Δ = the design story drift occurring simultaneously with VxVx = the storey shear force acting between levels x and x - 1 hsx = the story height below level x Cd = the deflection amplification factor given in BNBC The stability coefficient (θ) shall not exceed θ max.

Code Provisions for Seismic Analysis and Design - Example

[Short Training Course on Seismic Assessment, Retrofit Design and Construction of RC Buildings 11-20 Feb, 2013]

Md. Rafiqul Islam

Executive Engineer PWD Design Division - 3 & Team Leader Working Team - 2 CNCRP Project


Earthquake Design Philosophy

- 1. It is uneconomical and unnecessary to design a structure in elastic range for maximum EQ induced inertia force.
- 2. The large deformation during EQ will be accompanied by yielding in some of the members of the structure.
- 3. Critical regions of certain members should have sufficient inelastic deformability to dissipate seismic energy.
- 4. Structure will not collapse when subjected to several cycles of loading into inelastic range.
- 5. Proper rebar detailing should avoid all forms of brittle failure.

Considerations for EQ Analysis

- 1. Selection of lateral force resisting system.
- 2. Check irregularities of structure.
- 3. Occupancy type of structure.
- 4. Location of structure in seismic zoning map.
- 5. Subsoil characteristics

Reference: 'Seismic and Wind Design of Concrete Buildings – S. K. Gosh and Qiang Shen

Types of Moment Frame

Moment Frame: A frame in which member and joint resist

lateral forces by flexure.

- Ordinary Moment Frame
- Intermediate Moment Frame
- Special Moment Frame

Ductility is the capacity of building material, systems or structure to absorb energy by deforming into inelastic range.

Choice of Frame (or SDC)

- Restriction from Code
 - Location of building
 - Occupancy type
 - Height of building
 - Soil type
- Choice of the client or designer
- ✓ Designer must confirm all the provisions of Code of specific frame type.
- ✓ Site engineer must ensure design and detailing provided by the designer.

Calculation of EQ force

Design base shear $V = S_a W$

 S_a = Lateral seismic force coefficient

W = Total seismic weight of the building

In addition to total dead load, consideration for live load are:

- a) Live load $\leq 3.0 \text{ KN/m}^2$, consider minimum 25% of live load
- b) Live load $\geq 3.0 \text{ KN/m}^2$, consider minimum 50% of live load
- c) 100% of permanent heavy equipment or retained liquid or any imposed load

Building Codes Implied	Poiet for Capacity Development on Natural Disaster Resistan Techniques of Construction and Aetrofitting for Public Building
Performance	Return Period
 Ability to resist frequent, minor earthquakes without damage 	100 yrs
• Ability to resist infrequent, moderate earthquakes with limited structural and nonstructural damage	475 yrs
• Ability to resist worst earthquakes ever likely to occur without collapse or major life safety endangerment	2475 yrs
Basic consideration: Design Basis Earthquake (DBE) ground motion = 2/3 of Maximum Considered Earthquake (MCE) ground motion	

Design Spectral Acceleration

$$S_a = \frac{2}{3} \frac{ZI}{R} C_s \le \frac{2}{3} ZI\beta$$

Z = Seismic zone coefficient

I = Structure importance actor

R = Response reduction factor

 β = Coefficient for lower bound of S_a = 0.2

C_s = Normalized acceleration response spectrum (function of structure period and soil type)

$$\frac{I}{R} \le 1.0$$

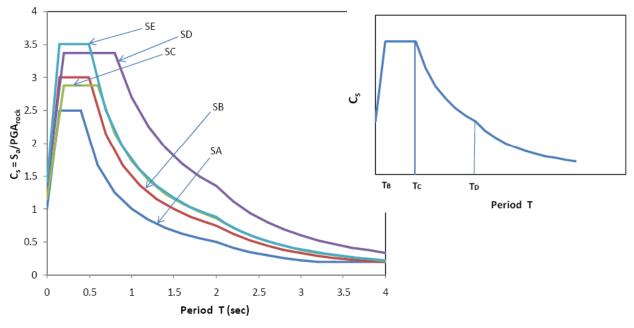
Site Classification

Site Class	Description of soil profile up to 30 meters depth	Average Soil Properties in top 30 meters				
		Shear wave velocity \overline{V}_s (m/s)	Standard Penetration Value, N (blows/30cm)	Undrained shear strength, \overline{S}_u (kPa)		
SA	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800				
SB	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250		
SC	Deep deposits of dense or medium dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 - 360	15 - 50	70 - 250		
SD	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70		

Site Classification

	Description of soil profile up to 30 meters depth	Average Soil Properties in top 30 meters				
		Shear wave velocity \overline{V}_s (m/s)	Standard Penetration Value, \overline{N} (blows/30cm)	Undrained shear strength <i>, S_u</i> (kPa)		
SE	A soil profile consisting of a surface alluvium layer with V_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $V_s > 800$ m/s.					
S1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content			10 - 20		
S ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types SA to SE or S1					

Normalized Acceleration Response Spectrum (C_s)


$C_s = S\left(1 + \frac{T}{T_B}(2.5\eta - 1)\right) \text{for} 0 \le T \le T_B$	_
$C_s = 2.5S\eta$ for $T_B \le T \le T_C$	_
$C_s = 2.5S \eta \left(\frac{T_C}{T} \right)$ for $T_C \le T \le T_D$	
$C_s = 2.5S \eta \left(\frac{T_C T_D}{T^2} \right)$ for $T_D \le T \le 4 \sec$	_

Soil type	S	<i>T_B</i> (s)	Т _с (s)	T _D (s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

S (soil factor), T_B, T_C, T_D depends on site class Damping correction factor, $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ ξ = Damping ratio

Normalized Acceleration Response Spectrum Graph

Seismic Design Category (SDC)

Building have to be assigned a SDC based on:

- Seismic zone
- Local site condition
- Importance class

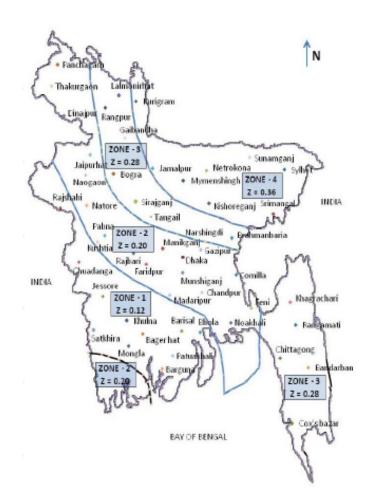
SDC – D has the most intrinsic seismic design detailing and SDC –B has the least seismic detailing requirement

	Occup	Occupancy Category I, II and III			Occupancy Category IV			
Site	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone
Class	1	2	3	4	1	2	3	4
SA	В	С	С	D	С	D	D	D
SB	В	С	D	D	С	D	D	D
SC	В	С	D	D	С	D	D	D
SD	С	D	D	D	D	D	D	D
SE, S1, S2	D	D	D	D	D	D	D	D

Occupancy Importance Factor (I)

Nature of Occupancy	Occupancy Category	Importance Factor
Building have low hazard to human life in the event of failure	I	1.0
Buildings except those listed in Occupancy Categories in I, III and IV	II	1.0
 Building have substantial hazard to human life in the event of failure Buildings potential to cause a substantial economic impact or mass disruption to day to day civilian life in the event of failure Building containing substantial quantities of toxic or explosive substances 	111	1.25
 Building designated as essential facilities: Hospital, emergency shelter, power generation station Fire, police station and emergency vehicle garage Aviation control tower etc. 	IV	1.5

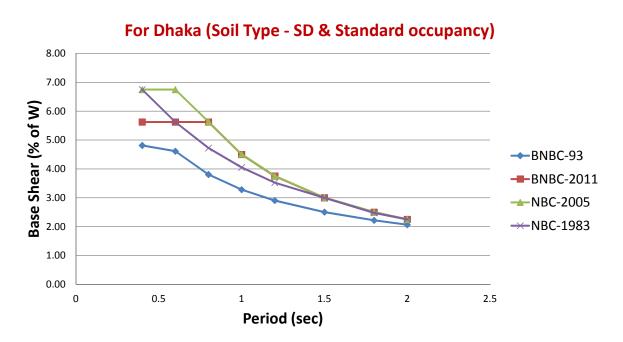
Choice of Structural System


Seismic Force Resisting System		C _d	SDC-B	SDC-C	SDC-D
			Hei	ght Limit	: (m)
A. Bearing Wall System					
1. Special reinforced concrete shear wall	5	5	NL	NL	50
2. Ordinary reinforced concrete shear wall	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear wall	2	1.75	NL	50	NP
4. Ordinary plain masonry shear wall	1.5	1.25	18	NP	NP
B. Building Frame System					
5. Special reinforced concrete shear wall	5	4.25	NL	NL	NP
6. Ordinary reinforced concrete shear wall	2	2	NL	50	NP
7. Ordinary reinforced masonry shear wall	1.5	1.25	18	NP	NP

Choice of Structural System

Seismic Force Resisting System		C _d	SDC-B	SDC-C	SDC-D
			Hei	ght Limit	: (m)
C. Moment Resisting Frame System					
4. Special RC moment frame	8	5.5	NL	NL	NL
5. Intermediate RC moment frame	5	4.5	NL	NL	NP
6. Ordinary RC moment frame	3	2.5	NL	NP	NP
D. Dual Systems: SMF Capable of 25% V					
3. Special RC shear wall	7	5.5	NL	NL	NL
4. Ordinary RC shear wall	6	5	NL	NL	NP
E. Dual Systems: IMF Capable of 25% V					
3. Special RC shear wall	6.5	5	NL	NL	50
4. Ordinary RC shear wall	5.5	4.5	NL	NL	NP
F. Dual Systems: Ordinary RC Moment Frame and Ordinary RC Shear wall	4.5	4	NL	NP	NP

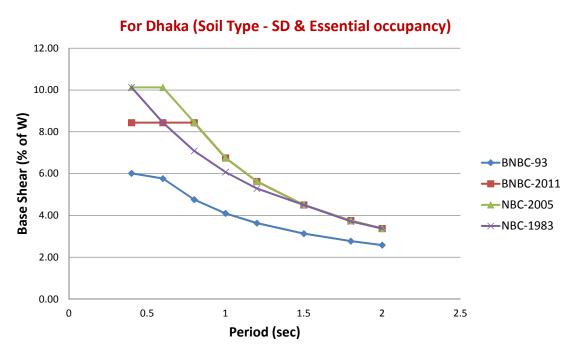
Zone Factor(Z)



Comparison of Base Shear

For Dhaka (Soil Type - SD & Standard occupancy)							
Structural	Base shear	Base shear (% of wt)		Base shear (% of wt) according to Indian Code			
period (T)	BNBC-93	BNBC-2011	BNBC-2011	NBC-2005	NBC-1983		
0.4	4.81	5.63	16.88%	6.75	6.75		
0.6	4.61	5.63	21.95%	6.75	5.63		
0.8	3.81	5.63	47.73%	5.64	4.73		
1	3.28	4.50	37.14%	4.51	4.05		
1.2	2.91	3.75	29.06%	3.76	3.53		
1.5	2.50	3.00	19.81%	3.01	3.00		
1.8	2.22	2.50	12.74%	2.51	2.48		
2	2.07	2.25	8.85%	2.25	2.25		

Comparison of Base Shear in Various Codes



Comparison of Base Shear

For Dhaka (Soil Type - SD & Essential occupancy)							
Structural	Base shear	Base shear (% of wt)		Base shear (% of wt) according to Indian Code			
period (T)	BNBC-93	BNBC-2011	BNBC-2011	NBC-2005	NBC-1983		
0.4	6.02	8.44	40.26%	10.13	10.13		
0.6	5.77	8.44	46.34%	10.13	8.44		
0.8	4.76	8.44	77.28%	8.45	7.09		
1	4.10	6.75	64.57%	6.76	6.08		
1.2	3.63	5.63	54.87%	5.64	5.29		
1.5	3.13	4.50	43.77%	4.51	4.50		
1.8	2.77	3.75	35.29%	3.76	3.71		
2	2.58	3.38	30.62%	3.38	3.38		

۱

Comparison of Base Shear in Various Codes

Building Period (T)

a) Structural dynamics procedure (Rayleigh method):

$$T_A = 2\pi \sqrt{\sum_{i=1}^n w_i \delta_i^2} / g \sum_{i=1}^n f_i \delta_i$$

b) Approximate method:

$$T_B = C_t (h_n)^m$$

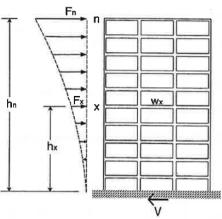
 h_n =Height of building in meter

Structure Type	C _t	m
Concrete moment resisting frames	0.0466	0.9
Steel moment resisting frames	0.0724	0.8
Eccentrically braced steel frame	0.0731	0.75
All other structural systems	0.0488	0.75

 $T_A \leq 1.4 T_B$

Vertical distribution of EQ force

$$F_x = V \frac{w_x h_x^{\ k}}{\sum_{i=1}^n w_i h_i^{\ k}}$$


 F_x = Part of base shear force induced at level x

 w_i and w_x = Seismic weight of structure at level i and x

 h_i and h_x = Height from base to level i and x

- k = 1 for structure period ≤ 0.5 sec
 - = 2 for structure period \geq 2.5 sec
 - = linear interpolation for other period between 1.0 and 2.0

n = number of stories

Project for Capacity Development on Natural Disaster Resistant Exchanges of Construction and Retrofitting for Public Buildings

Accidental Torsional Effect

Accidental torsional moment in regular structure $M_{tai} = e_{ai}F_i$ e_{ai} = Accidental eccentricity of floor mass at level i = $\pm 0.05L_i$

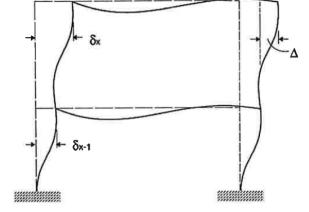
Where torsional irregularity exist in SDC-C and SDC-D increase accidental torsion, M_{ta} by A_x

$$A_{x} = \left[\delta_{\max} / (1.2\delta_{avg})\right]^{2} \le 3.0$$

$$\delta_{A}$$

$$\delta_{A}$$

$$\delta_{B}$$



Deflection and Story Drift

Deflection at level x, $\delta_x = \frac{C_d \delta_{xe}}{I}$

- C_d = Deflection amplification factor
- δ_{xe} = Deflection determined by an elastic analysis
- *I* = Importance factor

Check deflection at center of mass

Story drift at story x, $\Delta_x = \delta_x - \delta_{x-1}$

Allowable Story Drift Limit

Structure	Occupancy (
	I and II	111	IV
Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts.	0.025h _{sx}	0.020h _{sx}	0.015h _{sx}
Masonry cantilever shear wall structures	$0.010h_{sx}$	$0.010 h_{sx}$	$0.010 h_{sx}$
Other masonry shear wall structures All other structures	$0.007h_{sx}$ $0.020h_{sx}$	0.007h _{sx} 0.015h _{sx}	$0.007 \mathrm{h_{sx}}$ $0.010 \mathrm{h_{sx}}$

NOTES:

h_{sx} is the story height below Level x.

2. There shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the storey drifts.

 Structures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered from their base or foundation support which are so constructed that moment transfer between shear walls (coupling) is negligible.

4. Occupancy categories are defined in Table 1.2.1

Guideline for EQ resistant Building

- 1. Building shall be approximately symmetrical with respect to stiffness and mass distribution.
- 2. Both lateral stiffness and mass of an individual story shall remain constant or reduce gradually, without abrupt change.
- 3. All structural elements such as cores, structural walls or frames shall run without interruption from foundation to the top.
- 4. An irregular building may be subdivided into dynamically independent regular unit well separated against pounding.
- 5. The length by breadth ratio of the building in plan shall not be more than 4.

Effects of P-Delta

P-Delta effects are not required to be considered if stability coefficient $\theta \le 0.10$, where

$$\theta = \frac{P_X \Delta}{V_x h_{sx} C_d}$$

- P_x = Vertical load above level x (with individual load factor ≤ 1.0)
- Δ = Design story drift occurring simultaneously with V_x
- V_x = Story shear force acting between level x and x-1
- h_{sx} = Story height below level x

 C_d = Deflection amplification factor

$$\theta_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$
 conservatively, $\beta = 1.0$

If $0.10 \le \theta \le \theta_{max}$ increase displacement and member forces by rational analysis or multiply by a factor $1.0/(1-\theta)$

Requirements for Static and Dynamic Analysis

Equivalent static analysis may be applied if two conditions satisfy:

- 1. The building period in two main horizontal direction is smaller than both $4T_c$ and 2 sec.
- 2. The building does not posses any vertical irregularity.

Dynamic analysis should be performed for following buildings:

- Regular buildings with height greater than 40m in Zones 2, 3,
 4 and greater than 90m in Zone 1.
- Irregular buildings with height greater than 12m in zone 2, 3,
 4 and greater than 40m in Zone 1.

Earthquake Load Combination

Following are the guidelines for combination of earthquake load in two orthogonal direction:

- 1. For structures of SDC-B the design seismic forces are permitted to be applied independently in each of two orthogonal direction.
- Structures of SDC-C and D, in addition to applying requirements for SDC-B following combinations should be satisfied: "±100% in X-direction ±30% in Y-direction"

" $\pm 30\%$ in X-direction $\pm 100\%$ in Y-direction"

The combination which produce most unfavourable effect, shall be considered.

Vertical Earthquake Loading

Maximum vertical ground acceleration shall be taken as 50% of expected horizontal PGA.

The vertical seismic load effect E_v may be determined as :

$$E_{v} = 0.5(a_{h})D$$

Where,

 a_h = expected horizontal peak ground acceleration for design = (2/3)ZS D = effect of dead load

Load Combinations for EQ force

Common load combinations:

- 1.4D
- 1.2*D* + 1.6*L*
- 1.2*D* + 1.0*L* + 1.0*E*
- 0.9*D* + 1.0*E*
- D = Dead load
- L = Live load
- E = Earthquake load

Provision for Soft Story

- Soft story problem is one of the major vertical irregularity.
- Commonly it happens in open parking floor.

Following two approaches are recommended -

- 1. Approach-1: Perform dynamic analysis considering strength and stiffness of infill wall and calculate inelastic deformations in members.
- 2. Approach -2:
 - a) Carry out elastic earthquake analysis neglecting effect of infill wall
 - b) Beam and column of soft story to be designed for 2.5 times shear and moment derived from elastic analysis.
 - c) Symmetrically placed shear wall to be designed for 1.5 times lateral shear force calculated from elastic analysis

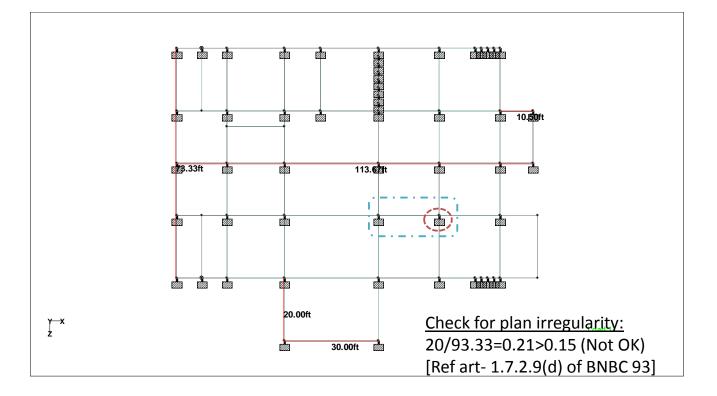
Architectural Plan view of examp



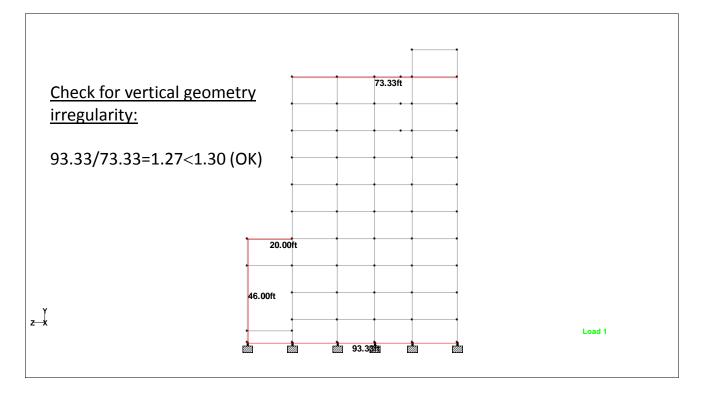
<u>Reference Code</u> For Analysis: For Design & Detailing

Upcoming BNBC ACI 318-08

Architectural Plan view of examp



Architectural Plan view of examp



Plan view of structural model

Elevation of structural model

Selection of Seismic Design Cate

- 1. Building located at Dhaka (Z = 0.2) s
- 2. Hospital building (I = 1.5)
- 3. Soil type is SD
- 4. Seismic Design Category is SDC D

Soil type	S	T _B (s)	T _c	T _D
			(s)	(s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

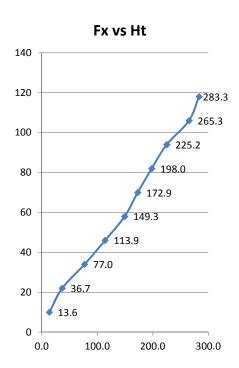
	Occupancy Category I, II and III			Occupa	incy Cate	egory IV		
Site	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone
Class	1	2	3	4	1	2	3	4
SA	В	С	С	D	С	D	D	D
SB	В	С	D	D	С	D	D	D
_SC	<u> </u>	С	D	D	c	_D	D	D
SD	С	D	D	D	D	(D)!	D	D
SE, S1, S2	D	D	D	D	D	D	D	D
	•					·		

Selection of Structural System

Seismic Force Resisting System		C _d	SDC-B	SDC-C	SDC-D
			Height Limit (m)		
A. Bearing Wall System					
1. Special reinforced concrete shear wall	5	5	NĹ	NL	50
2. Ordinary reinforced concrete shear wall	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear wall	2	1.75	NL	50	NP
4. Ordinary plain masonry shear wall	1.5	1.25	18	NP	NP
B. Building Frame System					
5. Special reinforced concrete shear wall	5	4,25	NL	NL	NP
6. Ordinary reinforced concrete shear wall	2	2	NL	50	NP
7. Ordinary reinforced masonry shear wall	1.5	1.25	18	NP	NP

Selection of Structural System

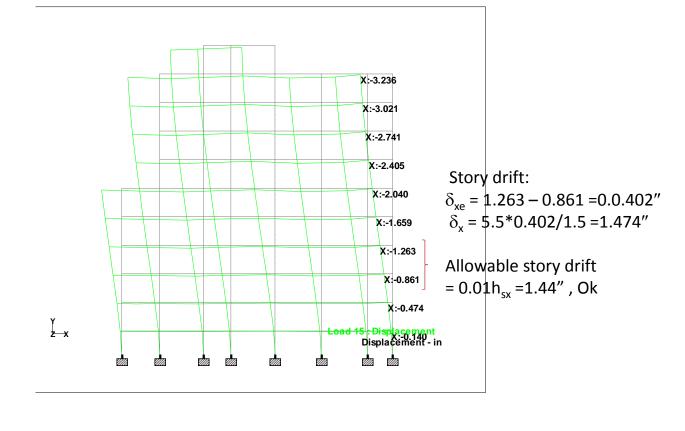
	Seismic Force Resisting System	R	C _d	SDC-B	SDC-C	SDC-D
				Hei	ght Limit	: (m)
	C. Moment Resisting Frame System					
i	4. Special RC moment frame	8	5.5	NĹ	NL	NL
	5. Intermediate RC moment frame	5	4.5	NL	NL	NP
	6. Ordinary RC moment frame	3	2.5	NL	NP	NP
	D. Dual Systems: SMF Capable of 25% V					
i	3. Special RC shear wall	7	5.5	NĹ	NL	NL
	4. Ordinary RC shear wall	6	5	NL	NL	NP
	E. Dual Systems: IMF Capable of 25% V					
i	2. Special RC shear wall	6.5	5	NĹ	NL	50
	4. Ordinary RC shear wall	5.5	4.5	NL	NL	NP
	F. Dual Systems: Ordinary RC Moment Frame and Ordinary RC Shear wall	4.5	4	NL	NP	NP



- 6. S = 1.35, $T_B = 0.2$ sec, $T_C = 0.8$ sec, $T_D = 2.0$ sec
- 7. Period of the structure is 1.08 sec.
- 8. $C_s = 2.5\eta(T_c/T) = 2.5$
- 9. $S_a = (2/3)(Z^*I/R)C_s = 0.0714$
- 10. Minimum $S_a = (2/3)(Z^*I)\beta = 0.04$
- 11. Weight, W = 20743 (DL) + 744 (25% of LL) = 21487 kip
- 12. Calculated Base Shear = S_aW = 1535 kip

K = 1.387 for T = 1.08 sec

Floor level	Story weight, w× (kip)	Height, h× (ft)	w×h× ^k	Lateral Force, F× (kip)	Story shear, V× (kip)
10	1677	118	1253815	283.3	283.3
9	1822	106	1173945	265.3	548.6
8	1827	94	996476	225.2	773.7
7	1942	82	876413	198.0	971.8
6	2111	70	764961	172.9	1144.6
5	2366	58	660525	149.3	1293.9
4	2491	46	504219	113.9	1407.8
3	2559	34	340590	77.0	1484.8
2	2230	22	162273	36.7	1521.4
1	2462	10	60019	13.6	1535.0
Σ	21487		6793235		



Check Storey Drift

Check for P-Delta Effect

P-Delta effects need not be considered if stability coefficient $\theta \le 0.10$

$$\theta = \frac{P_X \Delta}{V_x h_{sx} C_d}$$

At ground floor level: $P_x = 20605 \text{ kip}$ $\Delta = 1.837 \text{ inch}$ $V_x = 1521.4 \text{ kip}$ $h_{sx} = 12\text{ ft}$ $C_d = 5.5$ So, $\theta = 0.031 < 0.1$ $\theta_{max} =$

$$P_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$

conservatively, $\beta = 1.0$

Here $\theta_{max} = 0.091$

If $0.10 \le \theta \le \theta_{max}$ increase displacement and member forces by rational analysis or multiply by a factor $1.0/(1-\theta)$

- Design a strong-column/weak beam frame
- Avoid shear failure
- Detail for ductile behavior

21.1.4 – Concrete Properties of SMF

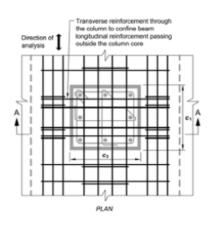
- 21.1.4.1 Provisions apply to special moment frames, special structural walls, and coupling beams.
- 21.1.4.2 Specified concrete compressive strength must be at least 3000 psi.
- 21.1.4.3 Specified concrete compressive strength must not exceed 5000 psi for lightweight concrete.

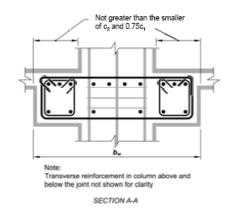
21.1.5 - Reinforcement of SMF

- 21.1.5.1 Provisions apply to special moment frames, special structural walls, and coupling beams.
- 21.1.5.2 Deformed reinforcement must satisfy ASTM A706.
 Grades 40 and 60 of ASTM A 615 are permitted if:
 - The actual yield stress does not exceed the nominal yield stress by more than 18 ksi.
 - The ratio of the actual tensile strength to actual yield stress exceeds 1.25.

21.5 – Beams in Special Moment Frames

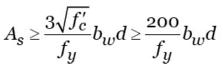
- A beam is defined as any frame member that resists earthquake-induced forces and is proportioned primarily to resist flexure.
- Beams must satisfy the following:
 - Factored axial compressive force must not exceed Agfc'/10.
 - Clear span must be more than 4 times the effective depth.
 - Width of member must not be less than the smaller of 0.3h and 10 in.



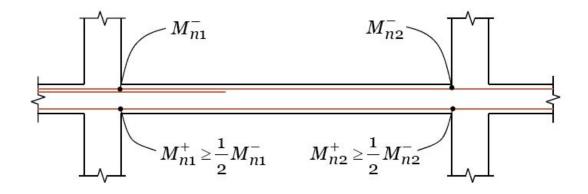


21.5 – Beams in Special Moment Frames

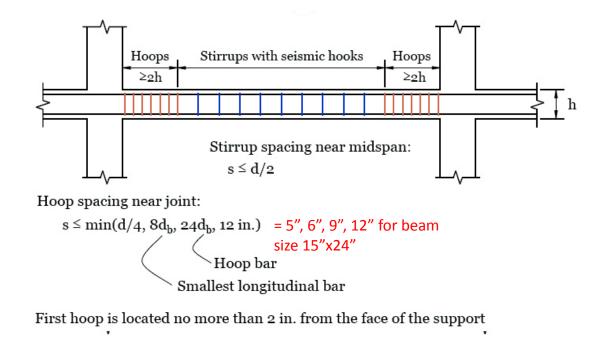
- 21.5.1.4 relaxed to permit wide beams.
 - $b_{w,max} = min (3c_2, c_2 + 1.5c_1)$
- 21.7.3.3 added to address confinement of longitudinal beam reinforcement located beyond column core.



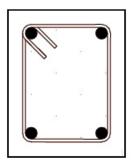
21.5.2 – Longitudinal Reinforcement

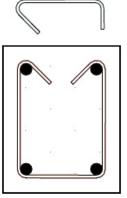

All locations:

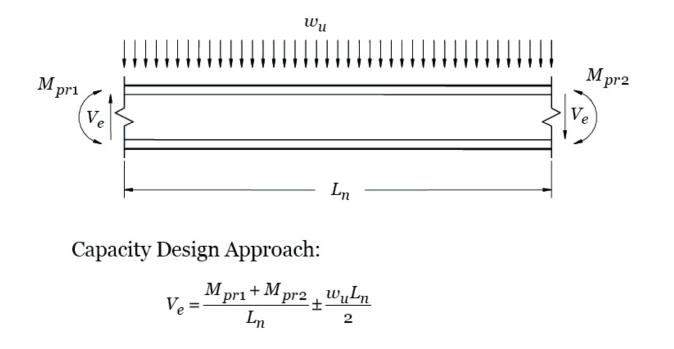
Minimum of two continuous bars per face


 $M_n \ge \frac{1}{4} \max \left(M_{n1}^-, M_{n2}^- \right)$

 $\rho \le 0.025$



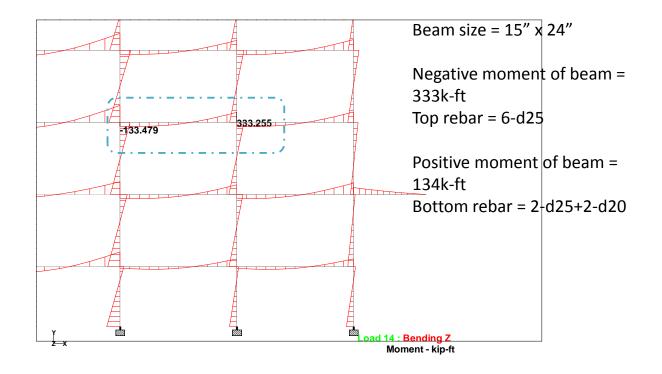

21.5.3 – Transverse Reinforceme


• Hoops in beams are permitted to be made of two pieces of reinforcement: a stirrups having seismic hooks at both ends and a cross tie.

21.5.4 - Shear Strength Requirements

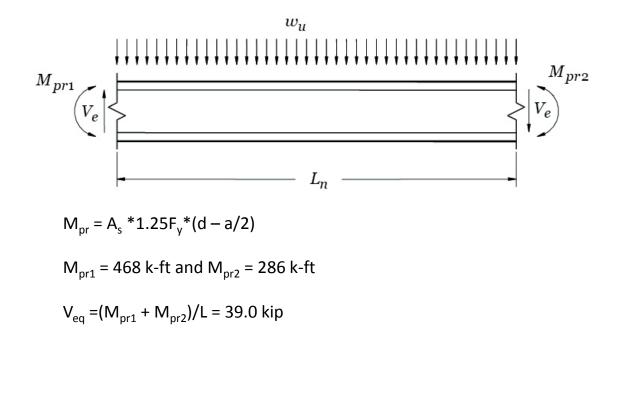
 V_{ρ} = design shear force (factored shear)

 M_{pr} = probable flexural strength, calculated using a stress in the reinforcement of 1.25 f_y and a strength reduction factor of 1.0.

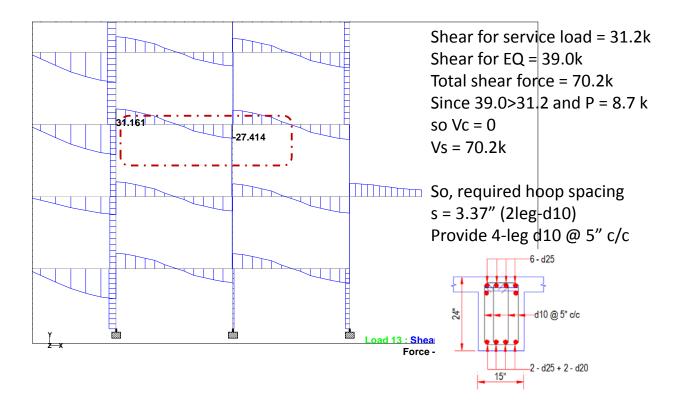


21.5.4 - Shear Strength Requirements

- Transverse reinforcement in the regions where hoops are required shall be proportioned to resist shear assuming that
 - V_c = 0 when both of the following conditions occur:
 - The earthquake-induced shear force represents at least 50% of the required shear strength.
 - The factored axial compressive force including earthquake effects is less than $A_g f_c'/20$.

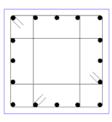


Beam Bending moment



Earthquake Induced Shear Force

Beam Shear Force



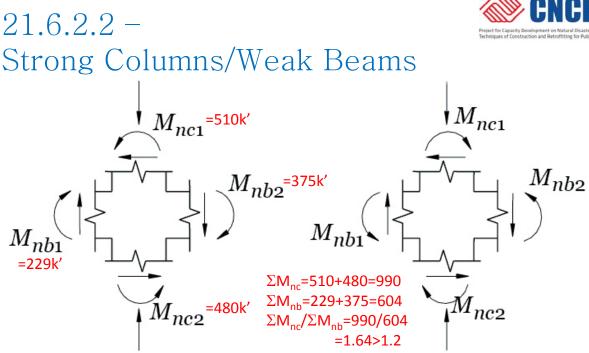
21.6 – Column in Special Moment Frames

- A column is defined as any frame member that resists earthquake-induced forces and has a factored axial force in any load combination that exceeds $A_g f_c'/10$.
- Columns must satisfy the following:
 - Shorter cross-sectional dimension must be at least 12 in.
 - Aspect ratio for the column must not be less than 0.4.

For axial load 1030 kip and Moment 258k-ft Column designed as Size = 24"x24" Main rebar = 16-d25 Hoop = d10 @ 4" c/c

21.6.2.2 – Strong Columns/Weak Beams

• A strong column-weak beam system must satisfy:


$$\Sigma M_{nc} \ge (6/5)\Sigma M_{nb}$$

 M_{nc}

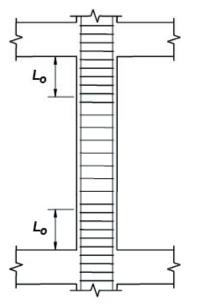
= sum of moments at the faces of the joint corresponding to the nominal flexural strength of the columns framing into that joint.

 M_{nb} = sum of moments at the faces of the joint corresponding to the nominal flexural strength of the girders framing into that joint. In T-beam construction, where the slab is in tension under the moments at the face of the joint, slab reinforcement within the effective slab width defined in 8.10 shall be assumed to contribute to the flexural strength if the slab reinforcement is developed at the critical section for flexure.

The nominal flexural capacities of the members are summed such that column moments oppose the beam moments. The column strengths must satisfy the relationship for beam moments acting in both directions.

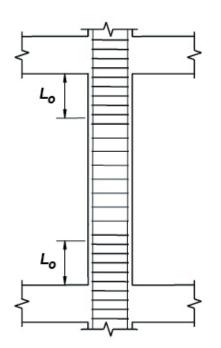
- If the columns do not satisfy the requirements for strong • columns, the columns must satisfy the provisions in 21.13.
- In addition, the lateral strength and stiffness of columns that ٠ do not satisfy 21.6.2.2 must be ignored when calculating the strength and stiffness of the structure.

21.6.3 – Longitudinal Reinforcement


- The longitudinal reinforcement ratio must not be less than 0.01 nor more than 0.06.
- Lap splices are only permitted within the center half of the member and must be proportioned as tension splices.

21.6.4.1 – Transverse Reinforcement

 L_{o} is the largest of: *h*, *b*, $\frac{L_{u}}{6}$, 18 in.


=24", 24", 20.5", 18" for column size is 24"x 24" And floor height 12'-0"

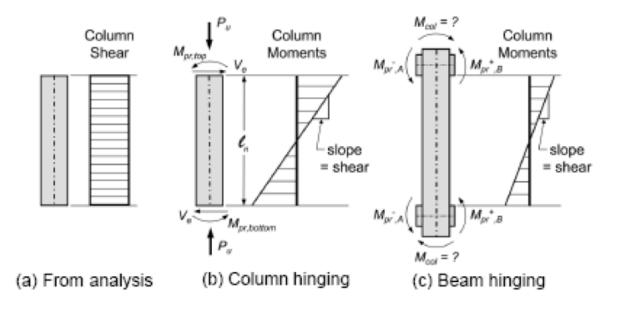
24" X 24" 16 - d25 d10 @ 4" c/c

21.6.4.3 – Spacing of Transverse Reinforcement

Within *L_o*, *s* must not exceed the smallest of:

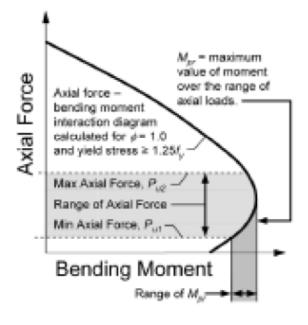
 $\frac{b}{4}$, $\frac{h}{4}$, $6d_b$, $s_o = 6^{"}, 6^{"}, 6^{"}, s (req)$ For column size is 24"x 24"

d_b = diameter of smallest longitudinal bar.


$$\boldsymbol{s_0} = 4 + \left(\frac{14 - \boldsymbol{h_X}}{3}\right) = 4.17$$

s_o ≤ 6 in.

s_o need not be taken less than 4 in.


21.6.5 – Calculation of Column Shear

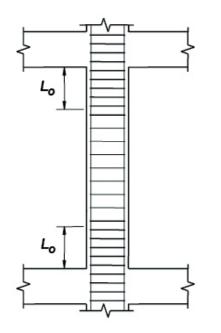
Probable Moment (M_{pr}) in Column

21.6.5.2 - Shear Strength Requirements

- Transverse reinforcement over the length L_o , shall be proportioned to resist shear assuming that $V_c = 0$ when both of the following conditions occur:
 - The earthquake-induced shear force represents at least 50% of the required shear strength.
 - The factored axial compressive force, *P_u*, including earthquake effects is less than A_gf_c/20.

21.6.6.4(b) – Rectangular Hoops

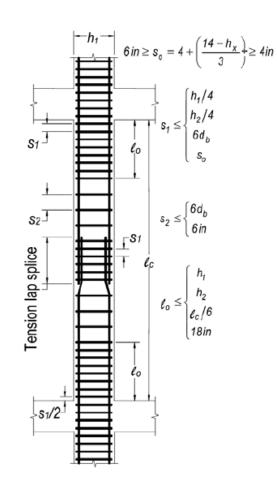
• The total cross-sectional area of rectangular hoop reinforcement must not be less than the larger of:


$$A_{sh} = 0.3 \left(sb_c \frac{f'_c}{f_{yt}} \right) \left(\frac{A_g}{A_{ch}} - 1 \right) = 0.465 < 0.48$$

$$A_{sh} = 0.09 \left(sb_c \frac{f'_c}{f_{yt}} \right) = 0.456$$

- A_{ch} = cross-sectional area of a structural member measured to the <u>outside edges</u> of transverse reinforcement
- b_c = cross-sectional dimension of column core measured to the <u>outside edges</u> of transverse reinforcement

21.6.4.5 – Transverse Reinforcement

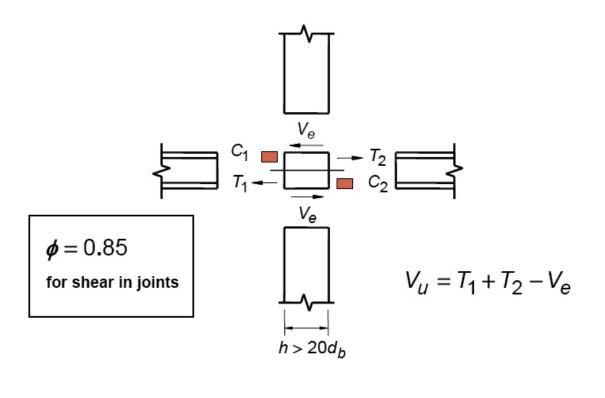

Outside L_o , the column shall contain spiral or hoop reinforcement satisfying 7.10, unless a larger amount of transverse reinforcement is required by 21.6.3.2 or 21.6.5. *s* shall not exceed the smaller of:

6d_b, 6 in.

d_b = diameter of smallest longitudinal bar.

View CONCEPP

Typical Column Transverse Reinforcement Requirement



21.7 - Beam-Column Joints

21.7.2 - General Requirements

- Forces in longitudinal beam reinforcement at the joint face shall be determined by assuming that the stress in the flexural reinforcement is 1.25 fy.
- Beam reinforcement that terminates in a beam-column joint must extend to the far face of the confined core and be anchored in tension per 21.7.5 or in compression per Chapter 12.
- Where longitudinal beam reinforcement extends through a beam-column joint, the column dimensions parallel to the beam reinforcement shall not exceed 20 times the diameter of the largest longitudinal beam.

21.7.3.1~2 – Transverse Reinforcement

- The closely-spaced transverse reinforcement required near the ends of a column must be continued through the joint., except as permitted in 21.7.3.2.
- Where beams frame into all four sides of a joint and where the width of each beam is at least 75% of the column width, the amount of transverse reinforcement may be reduced by 50% and the spacing may be increased to 6 in. within the overall depth of the shallowest beam.

21.7.3.3 – Transverse Reinforcement

- Longitudinal beam reinforcement outside the column core must also be confined by transverse reinforcement that passes through the column.
- This transverse reinforcement must satisfy the spacing required by 21.5.3.2. and the requirements of 21.5.3.3 and 21.5.3.6.

21.7.4 - Shear Strength of Joint

The nominal shear strength of the joint shall not exceed the values given below:

- Joints confined on all four faces $20Vf'_{c}A_{i}$
- Joints confined on three faces or $15Vf'_cA_j$ on two opposite faces
- Other joints $12\sqrt{f'_cA_i}$

It is not possible to increase the shear strength of the joint by adding more reinforcement.

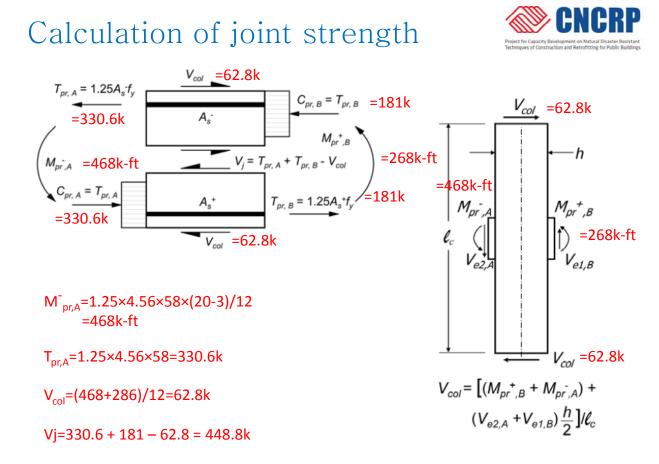
21.7.4 - Shear Strength of Joint

- A beam that frames into the face of a joint is considered to provide confinement to the joint if the area of the beam covers at least 75% of the face of the joint.
- Extensions of beams at least h beyond the joint face are considered to provide confinement. Extensions of beams must satisfy 21.5.1.3, 21.5.2.1, 21.5.3.2, 21.5.3.3, and 21.5.3.6.

21.7.4 - Shear Strength of Joint

The area of the joint, *Aj, is calculated as the joint* depth times the effective joint width.

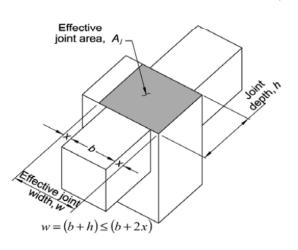
• Joint depth is the overall depth of the column, h.


• <u>Effective joint width is the overall width of the column, b,</u> except where a beam frames into a wider column.

The effective joint width shall not exceed the smaller of the followings:

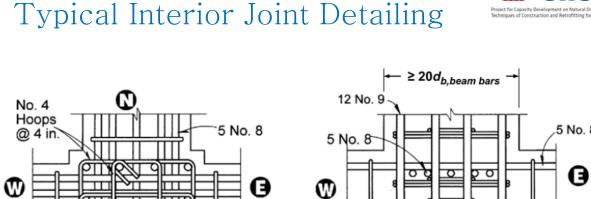
(a) Beam width plus joint depth.

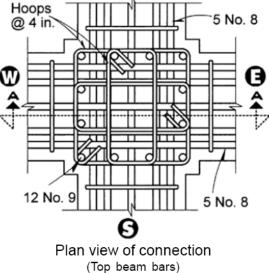
(b) Twice the smaller perpendicular direction from the longitudinal


axis of the beam to the side of the column.

Calculation of joint strength

If beam passes through centre of the column, then b = 24'' and h = 24''So, $A_j = 24x24 = 576$ $\phi Vc = 12 \sqrt{f'c} Aj$ = 348k < 448.8k, Not OK If beam passes through either edges of the column, then b =15" and h=24" So, $A_j = 15x24=360$ $_{\phi}Vc=12vf'c Aj$ =216.8k < 448.8k, Not OK

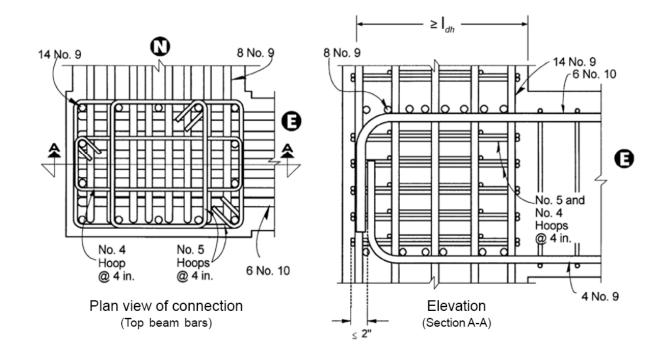

- The development length for a bar with a 90° hook shall not be less than the largest of:
 - 8 d_b
 - 6 in.

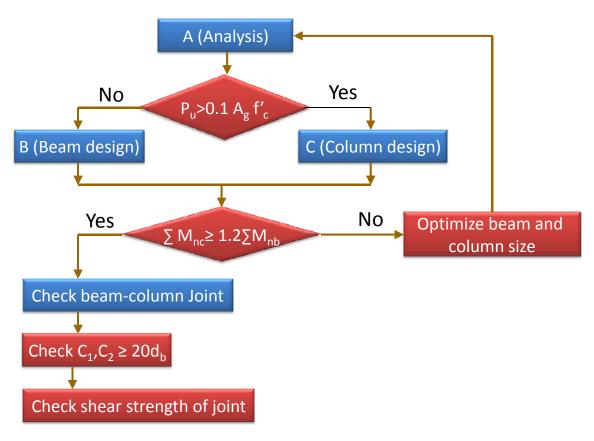

#3 through #11 bars Normal weight concrete

• The 90° hook must be located within the confined core of a column or boundary element.

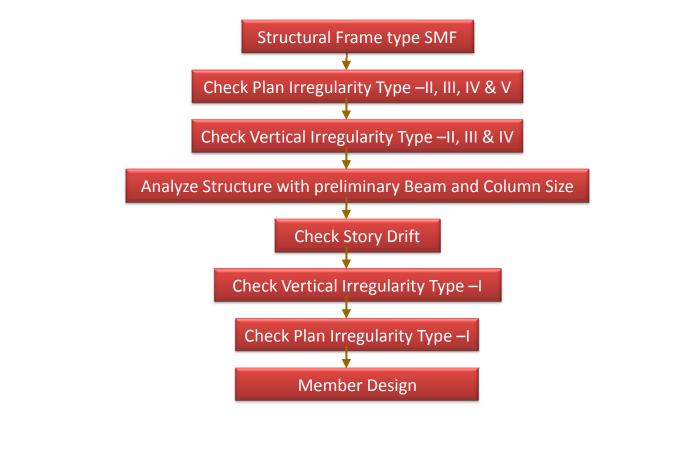
21.7.5.2 – Development length of Straight bar

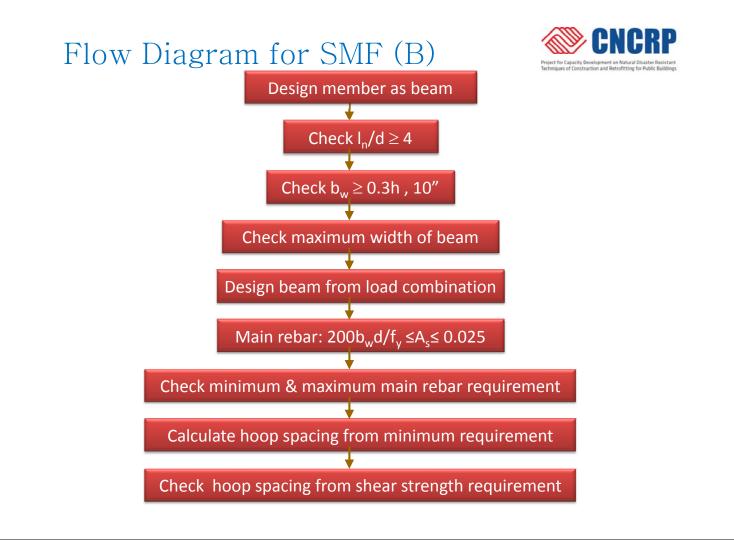
- The development length of a straight bar in tension (#3 through #11) must not be less than the larger of (a) and (b):
 - (a) 2.5 times the development length for a hooked bar if the depth of concrete does not exceed 12 in.,
 - (b) 3.5 times the development length for a hooked bar if the depth of concrete exceeds 12 in.
- Straight bars terminated in a joint must pass through the confined core of a column or boundary element.
- Any portion of the straight embedded length that is not within the confined core must be increased by a factor of 1.6.



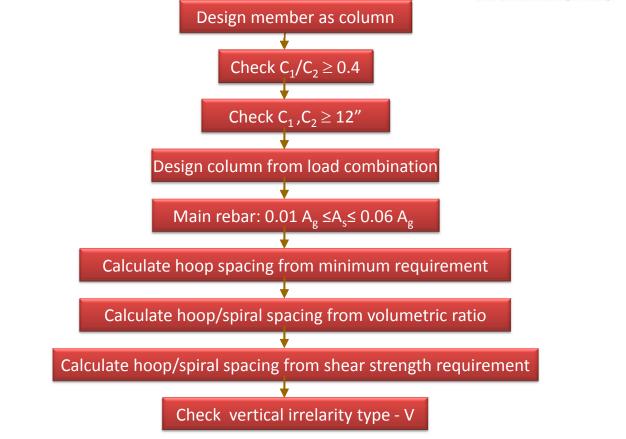


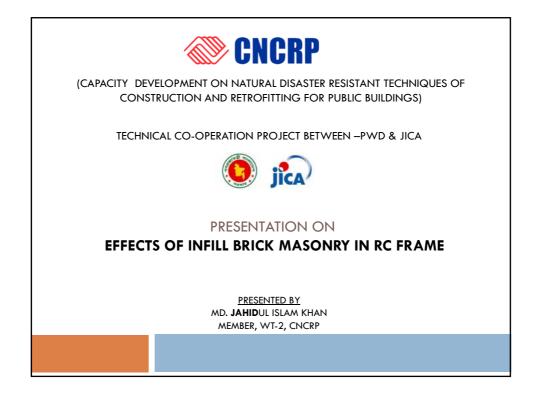
Typical Exterior Joint Detailing

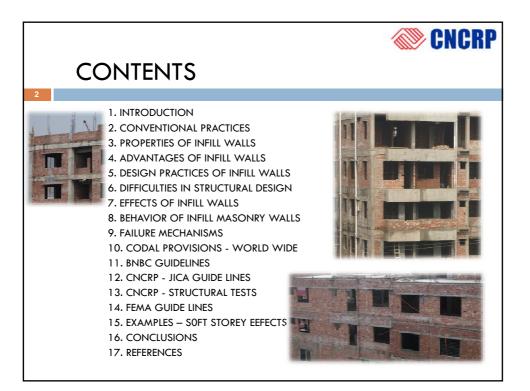

Flow Diagram for SMF (Brief)

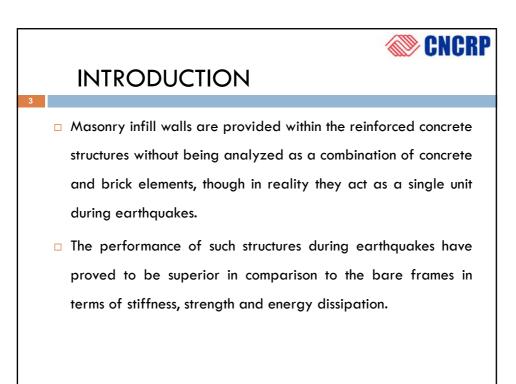


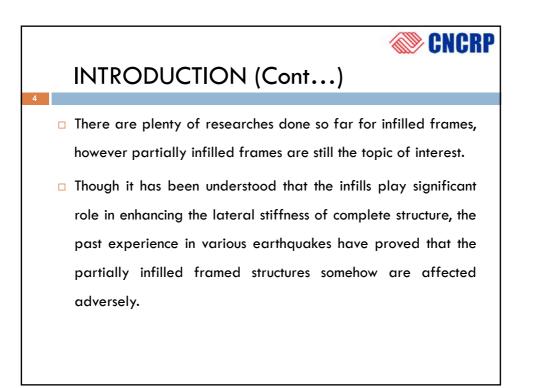
Flow Diagram for SMF (A)

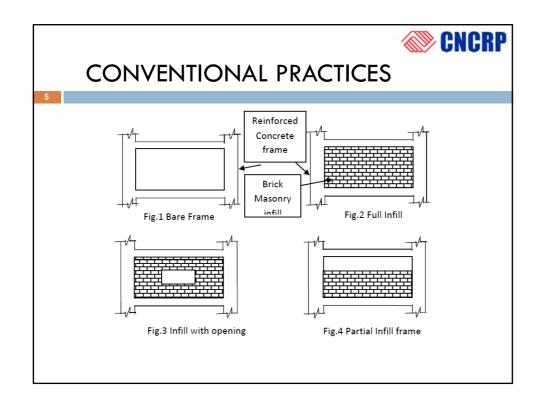


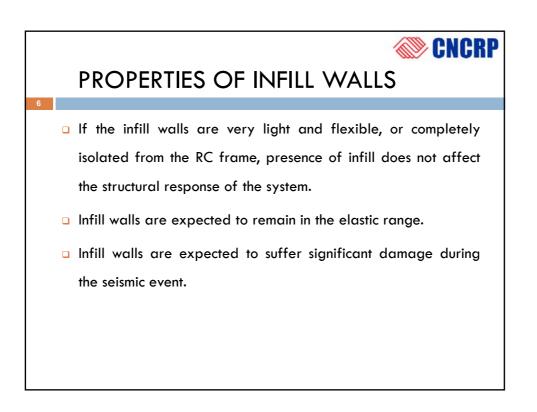


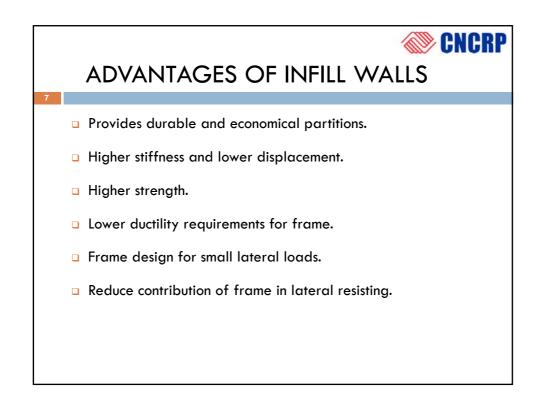

Flow Diagram for SMF (C)

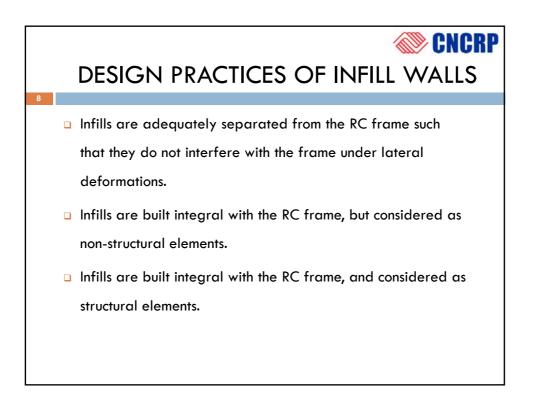


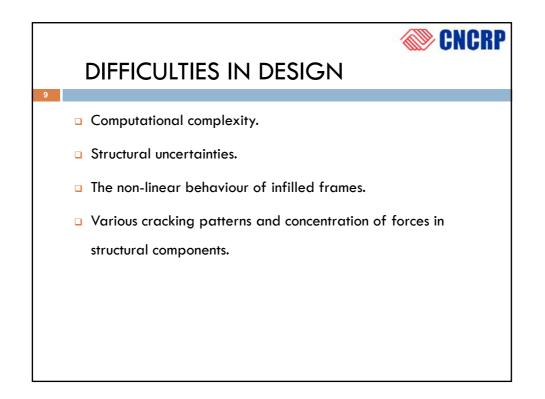


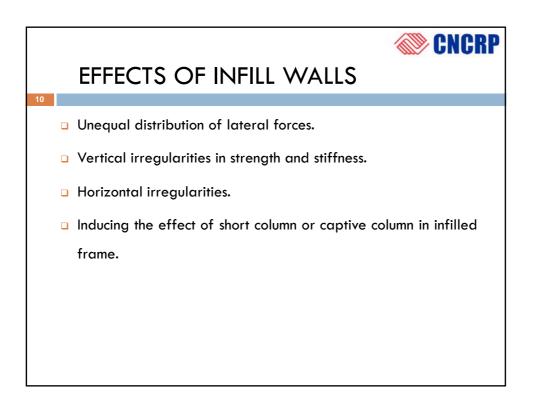

Thank you

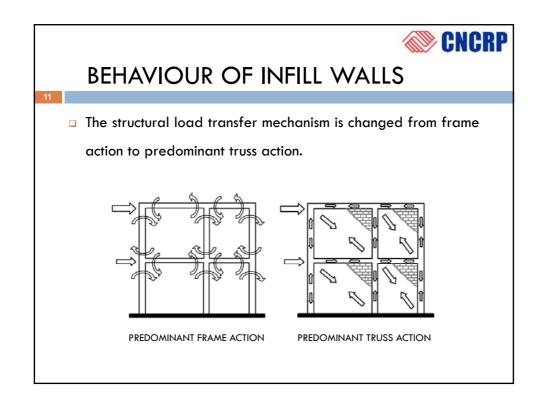


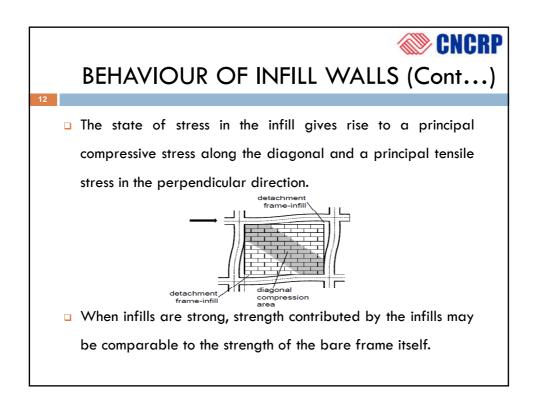


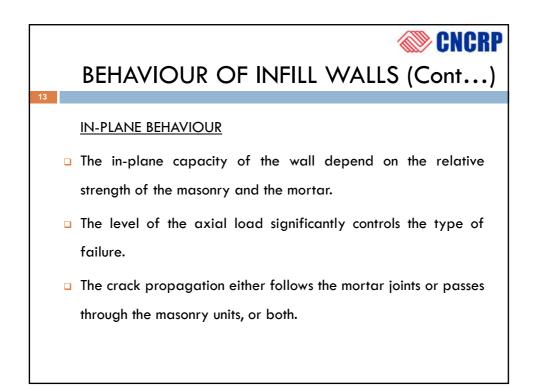


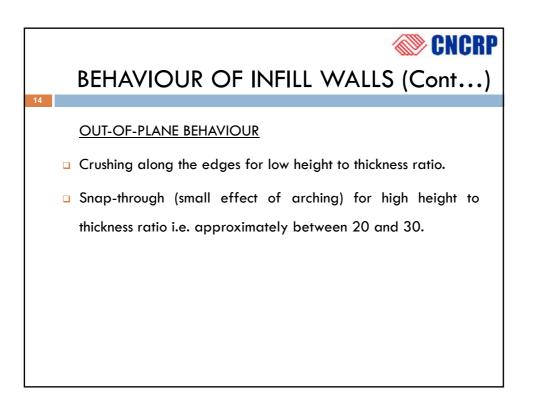


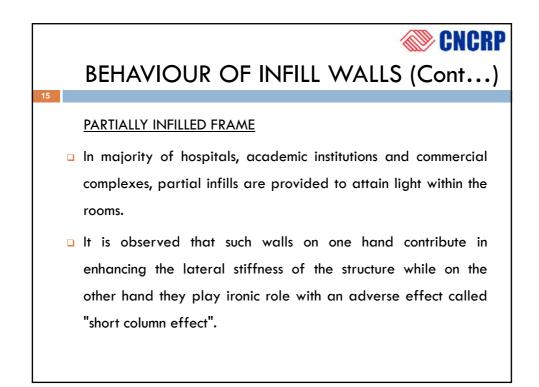


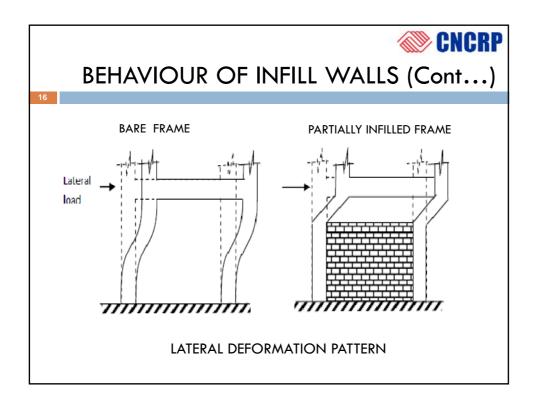


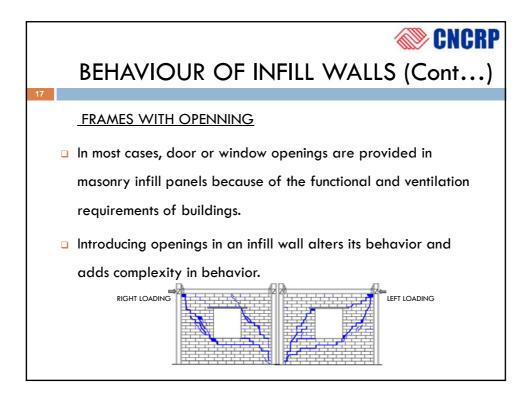




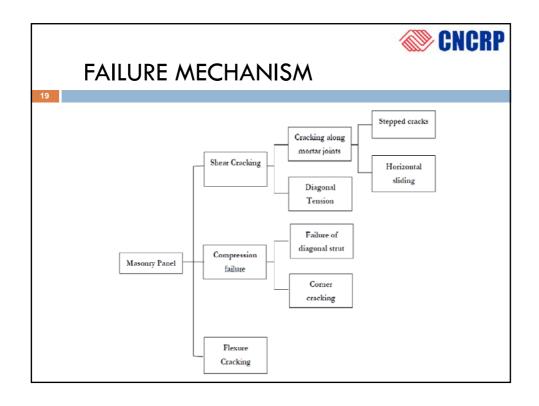


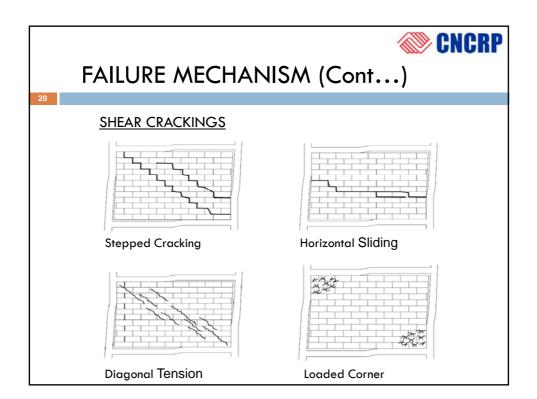


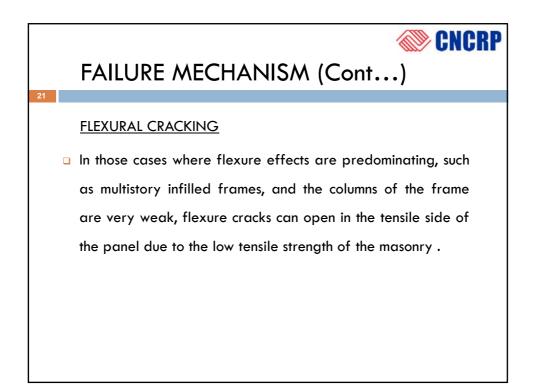


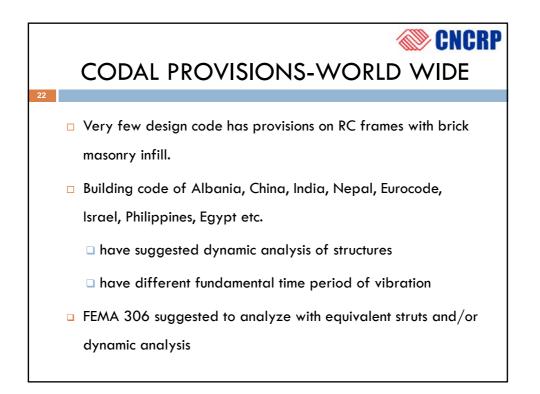


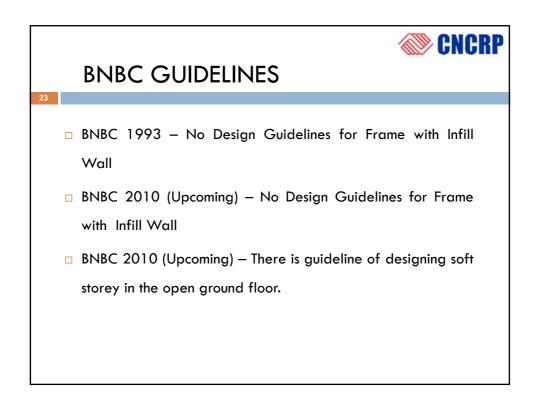


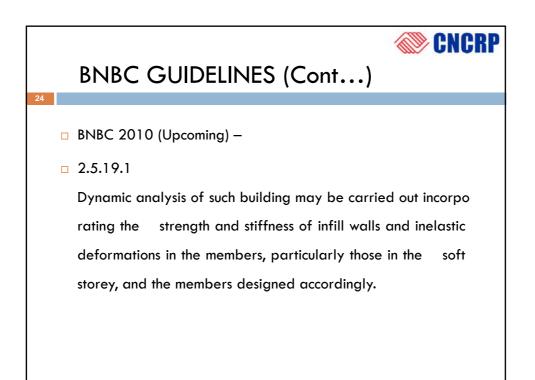


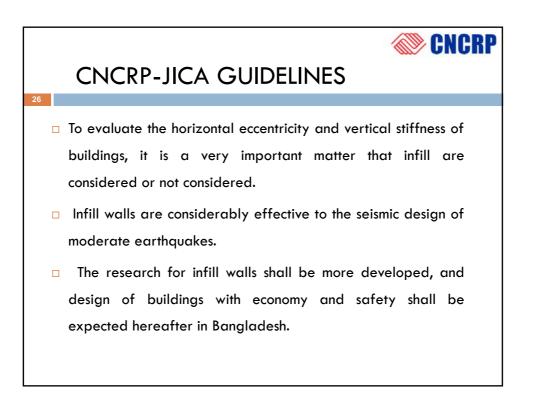


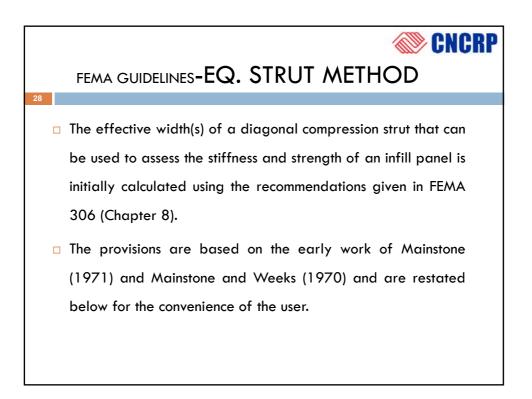


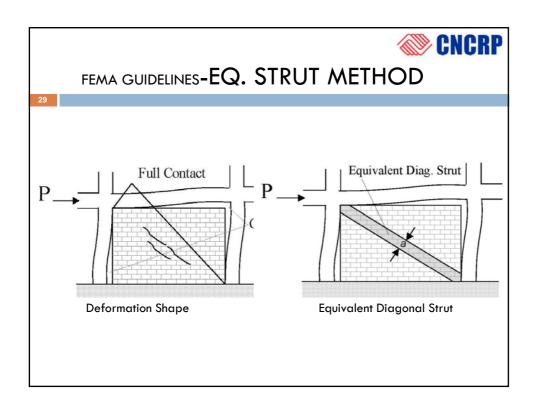




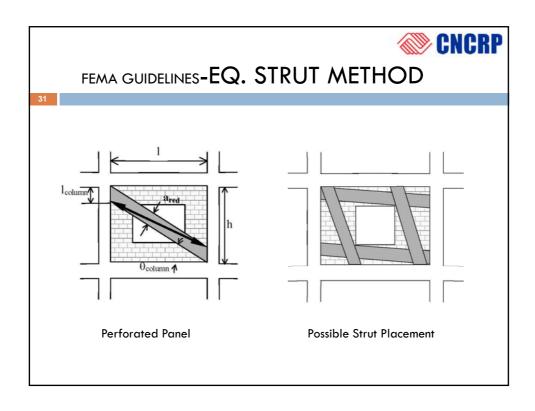


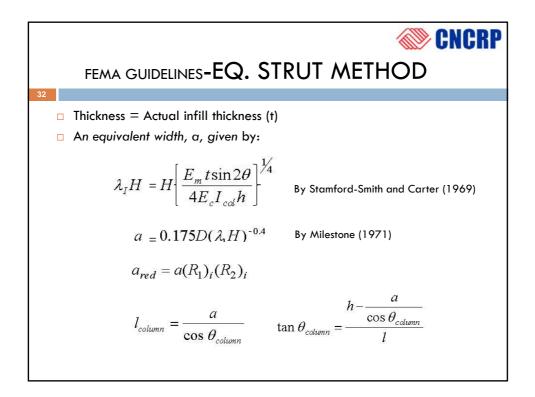


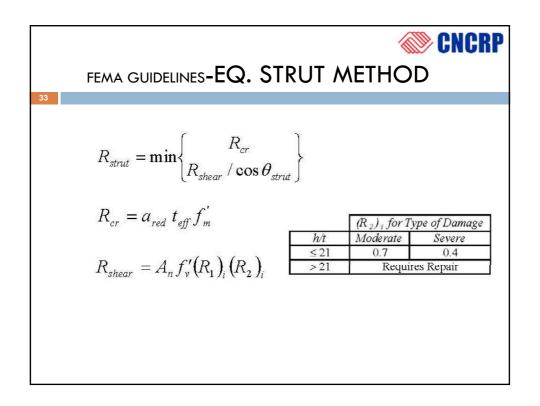


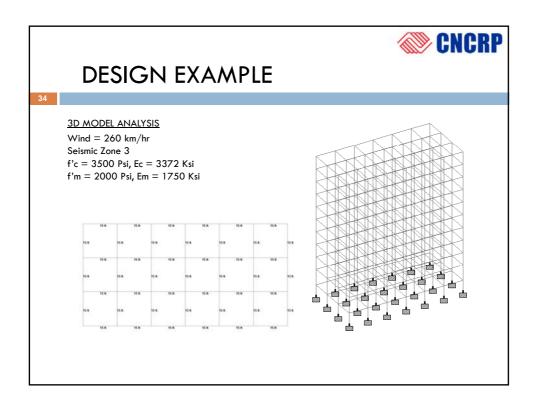


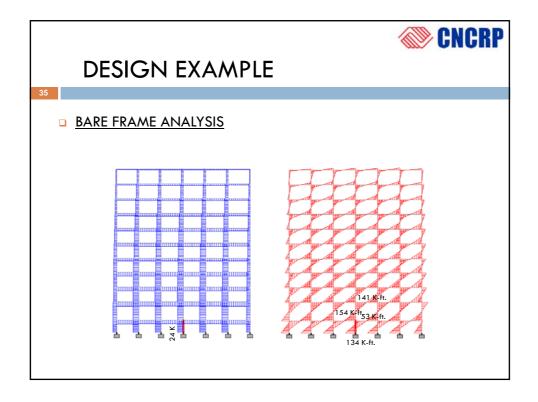
CONCRESSION CONTINUES CONTINUES CONTINUES CONTINUES CONTINUES (CONTINUES CONTINUES CONTINUES

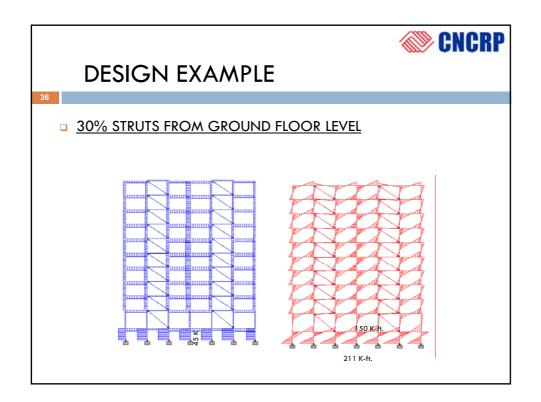


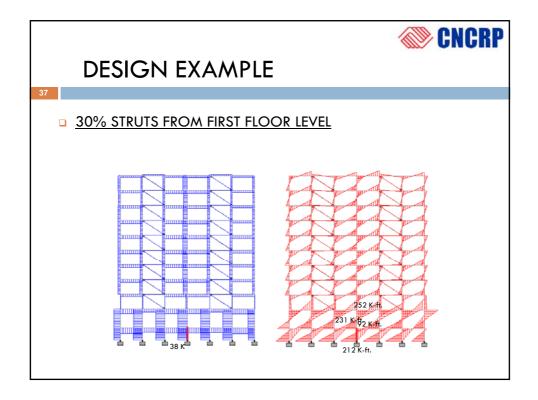


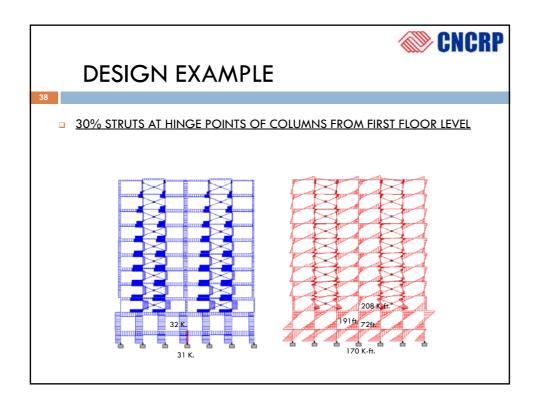


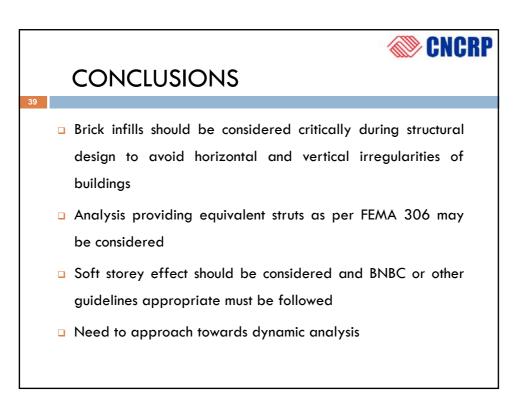


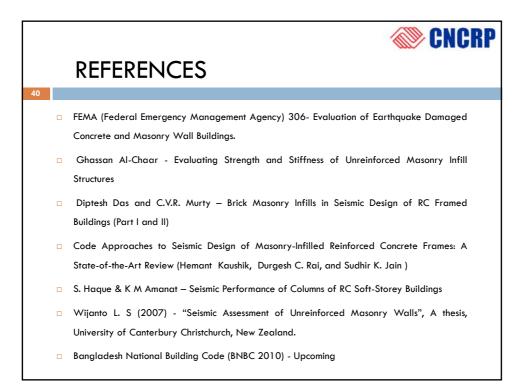












2nd Domestic Training

Venue: PWD Seminar Room

Duration: Apr 16, 2013 to Apr 25, 2013

Schedule

Course Title: Short Training Course on Seismic Assessment, Retrofit Design and Construction of RC Buildings.

Course Duration: 16/04/13 to 24/04/13

Total participant = 34

Program Schedule:

Date	Time		Title of Lecture	Resource Person
16-04-13	2:30 - 3:15		Inauguration of the course	
(Tuesday)	3:15 - 3:30		Tea Break	
	3:30 - 5:30	A1 &	Basic concept on seismic evaluation	Md. Rafiqul Islam
	-	A2	of RC buildings	
17-04-13	2:30 - 3:25	A3	Overview of seismic evaluation	Ahmed Abdullah Noor
(Wednesday)			according to Japanese Standard	
	3:25 - 4:20	A4	Screening procedure with example	Md. Emdadul Huq
			(1 st level)	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	A5	Screening procedure with example	Md. Emdadul Huq
			(2 nd level) [cont.]	
18-04-13	2:30-3:25	A6	Screening procedure with example	Md. Emdadul Huq
(Thursday)			(2 nd level)	
	3:25 - 4:20	R1	Concept on Retrofitting Design	Anup Kumar Halder
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	R2	Retrofitting design methods (cont.)	Md. Mominur Rahman
21-04-13	2:30 - 3:25	R3	Retrofitting design methods	Md. Mominur Rahman
(Sunday)	3:25 - 3:40	1	Tea Break	
	3:40 - 5:30	R4 &	Retrofitting works procedure with site	Md. Sohel Rahman
		R5	visit	
22-04-13	2:30-3:25	R6	Retrofitting design example of a real	Anup Kumar Halder
(Monday)			structure (cont.)	
	3:25 - 4:20	R7	Retrofitting design example of a real	Anup Kumar Halder
			structure	
	4:20 - 4:35	1	Tea Break	
	4:35 - 5:30	R8	Proposed seismic demand index, "Iso"	Akira Inoue
	-		and others	
23-04-13	2:30 - 3:25	N1	Seismic design concept for new	Md. Mominur Rahman
(Tuesday)			buildings	
	3:25 - 4:20	N2	Code provision for seismic analysis	Md. Rafiqul Islam
			with example (cont.)	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	N3	Code provision for seismic analysis	Md. Rafiqul Islam
			with example	
24-04-13	2:30-4:20	N4 &	Code provision for seismic design	Md. Rafiqul Islam
(Wednesday)		N5	with example	
	4:20 - 4:35		Tea Break	
	4:35 - 5:30	N6	Effect of infill wall in seismic	Md. Jahidul Islam Khai
			analysis	
25-042-13			Closing ceremony	
(Thursday)				

List of Participants

Short Training Course on "Seismic Assessment, Retrofit Design and Construction of RC Buildings"(16-25 April,2013)

List of Participants

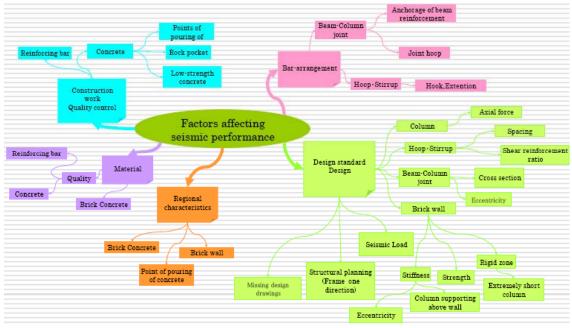
Abul Khair Mohammad Salehuddin	Deputy Secretary, MoPA
Md. Sayed Mahbub Morshed	Executive Engineer, PWD Design Division 1
Kazi Wasif Ahmad	Executive Engineer, PWD Khulna Division-1
Md. Mahmud Kabir	Executive Engineer, PWD Chadpur Division
Swarnendu Shekhar Mondal	Sub-Divisional Engineer, PWD Dhaka Div-3
Zahid Hasan Khan	Assistant Engineer, PWD Design Division-5
Mohammad Tariqul Islam	Assistant Engineer, PWD Design Division-6
Rəshed Ahsan	Assistant Engineer, PWD Design Division-6
Mahmudul Hasam	Assistant Engineer, PWD Design Division-2
Md. Adnan Rahman	Assistant Engineer, PWD Survey Division
Md. Amanullah Sarkar	Assistant Engineer, PWD Maintaince Circle
Md. Harun-or-Rashid	Professor, Khulna University of Engineering & Technology(KUET)
Dr. Md. Mokhlesur Rahman	Professor, Dhaka University of Engineering & Technology(DUET)
Dr. Sharmim Reza Chowdhury	Associate Professor, Ahsanullah University of Science & Technology(AUST)
Dr. Touhidur Rahman	Associate Professor, Shahjalal University of Science & Technology(SUST)
	Md. Sayed Mahbub Morshed Kazi Wasif Ahmad Md. Mahmud Kabir Swarnendu Shekhar Mondal Zahid Hasan Khan Mohammad Tariqul Islam Rashed Ahsan Mahmudul Hasam Md. Adnan Rahman Md. Adnan Rahman Md. Amanullah Sarkar Md. Harun-or-Rashid Dr. Md. Mokhlesur Rahman Dr. Sharmim Reza Chowdhury

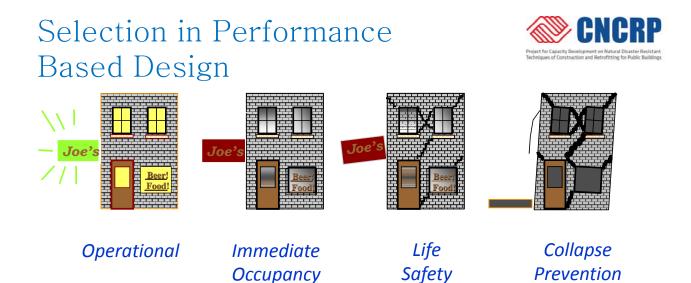
mainiainciúlainnuu		and a second
16	Md. Tarek Hossain Khondoker	Lecturer, University of Asia Pacific
17	Md. Nuruzzaman	Assistant Engineer, Dhaka North City Corporation
18	Md. Mojaffor Uddin	Exwcutive Engineer, RAJUK
19	Engr. Boni Amin	Reserch Engineer, House Building Research Institute
20	Engr. Tapos Chowdhury	Senior Assistant Engineer, Local Government Engineering Department(LGED)
21	Md. Hossain	Executive Engineer, RAJUK
22	Shantanu Ghose Sagar	Assistant Engineer, National Housing Authority (NHA)
23	Nure Alam Siddiki	Sub-Divisional Engineer,Power Development Board (PD8)
24	Engr Sajedul Huq	Engineer, ENVIRON
25	Engr. Tanvir Quasem	Engineer, ENVIRON
26	Md. Sayeedul Haque	Engineer, BCL
27	Samy Muhammad Reza	Structural Engineer, DPM
28	kh. Mobinur Rahman	Senior Engineer, AXIS
29	M. Mahbubul Alam	Senior Engineer, CONCORD
30	Mrs. Ayesa Siddika	Engineer, STHAPATI
31	Md. Yousuf Pasha	Assistant Engineer, BEPZA

Basics of Seismic Vulnerability Assessment

Md. Rafiqul Islam

Executive Engineer PWD Design Division - 3 & Team Leader Working Team - 2 CNCRP Project


Is the Building Safe to Earthquak.


- What is the seismic intensity?
- What is the lateral load resisting system?
- What is the performance objective?
- Age of the building?
- Subsoil condition?
- Irregularity of the building?
- What is the evaluation standard?

Factors Affecting Seismic Performance

Reference: Presentation 'Issues of Seismic Performance' by Yosuke Nakajima, JICA Expert Team, 2012

Operational - negligible impact on building and it is fully operable

Immediate Occupancy – building is safe to occupy and retain its pre-earthquake strength and stiffness

Life Safety – building is safe during event but possibly not afterward Collapse Prevention – building is on verge of collapse, probable total loss

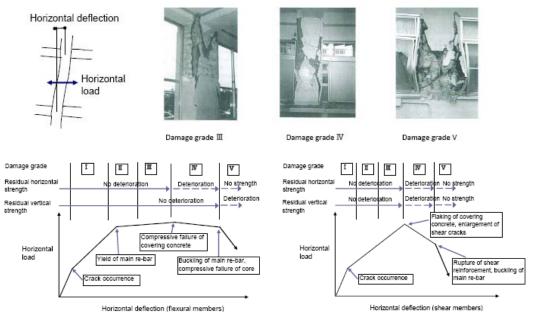
Performance Level for Evaluation.

Performance level checked for both structural and non-structural components:

- 1. Life Safety (LS) Performance Level:
 - Partial or total structural collapse does not occur
 - Damage to non-structural components is non-life-threatening
- 2. Immediate Occupancy (IO) Performance Level:
 - Vertical and lateral force resisting system retain nearly pre-earthquake strength
 - The damage is repairable while the building is occupied

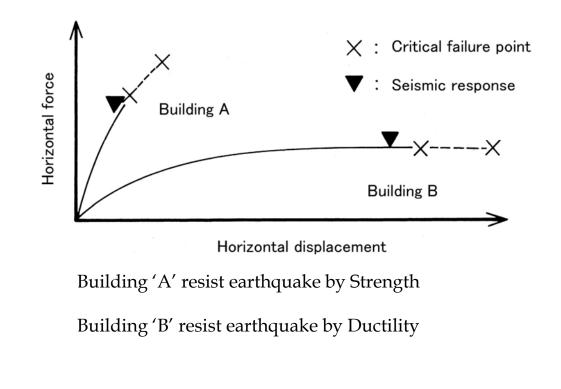
Geologic site hazard and foundation hazard are also assessed.

Methods of Seismic Vulnerability Assessment


- 1. Rapid Visual Screening (FEMA 154) [Pre evaluation sage]
- 2. Seismic Evaluation of Existing Building (ASCE/SEI 31-03)
 - Tier 1 Screening phase
 - Tier 2 Evaluation phase
 - Tier 3 Detailed evaluation phase
- 3. Seismic Evaluation of Existing Reinforced Concrete Structure, 2001 [Japanese standard]
- 4. Euro Code 8: Part 1-4
- 5. Document by New Zealand Society for Earthquake Engineering
- 6. Report by Structural Engineering Research Centre of India

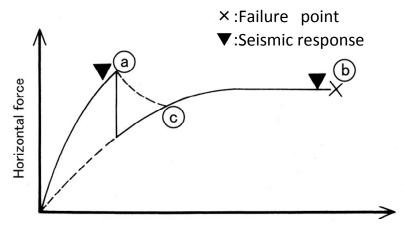
Three levels of screening in Japanese Standard

- 1. First level screening
 - Beam is extremely rigid and only vertical member will deform
 - Vertical members are classified into three categories
 - Concrete strength and sectional area of vertical member are required for calculation; reinforcement details is not required
- 2. Second level screening
 - Beam is extremely rigid and only vertical member will deform
 - Vertical members are classified into five categories
 - Reinforcement details of vertical member is required for calculation
- 3. Third level screening
 - Beam is flexible and hinge may form either in beam or column
 - Vertical and horizontal members are classified into eight categories
 - Calculation process is very rigorous



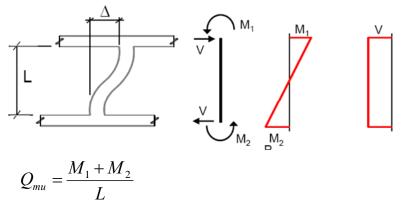
Reference: Lecture 'Seismic damages and performance of building' by Akira Inoue , JICA Expert Team, 07/06/2011

[Source: "Standard of Judgment of Damage Grade and Guidelines of Recovery Engineering for Damaged Buildings, 2001", The Japan Building Disaster Prevention Association (written in Japanese)]



Different Types of Structure

Structure Configuring Members with Different Ductility

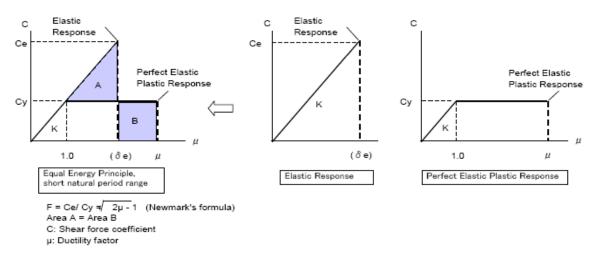

Horizontal displacement

Brittle failure of non-ductile member at 'a' Sudden drop of stiffness from 'a' to 'c' Performance of ductile member up to 'b'

What is Strength?

A) Flexural strength (Q_{mu}) from moment capacity of the structural member

B) Shear strength (Q_{su}) from shear reinforcement of the structural member


Strength is minimum of Q_{mu} and Q_{su}

What is Ductility?

Ductility is the capacity of building material, systems or structure to absorb energy by deforming into inelastic range.

Equal Energy Principle: Ideal Non-linear Earthquake Response In a relatively short range period building

Ref: 'Seismic Design, Evaluation and Retrofitting of Building ' by Akira Inoue, JICA Expert Team

Japanese Method of Seismic Vulnerability Assessment

Seismic index of structure $I_s = E_0 \times S_D \times T$

 E_0 = Basic seismic index of structure = C x F

C = Strength index = $\frac{Q}{W}$

Q = Shear strength

W = Weight on vertical member

F = Ductility index (it is function of ductility factor)

 S_D = Irregularity index

T = Time index

Seismic Demand Index

Seismic demand index, $I_{so} = E_s \times Z \times G \times U$

 E_s = Basic seismic demand index (depends on level of screening)

Z = Zone index (factor for seismic intensity of the site)

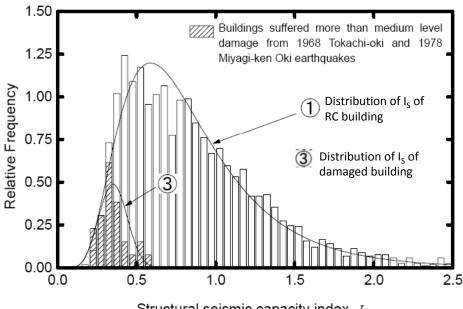
G = Ductility index (factor consider sub-soil condition)

U = Usage index (factor for occupancy type)

Judgment on Seismic Safety

A safe structure shall satisfy both the following checking:

- A) $I_s \ge I_{so}$ I_s = Seismic index of structure I_{so} = Seismic demand index
- B) $C_{TU} \ge 0.3(?) \times Z \times G \times U$


 C_{TU} = Cumulative strength at ultimate deformation of structure

Judgment to be applied

- Each story

- Each principal horizontal direction of a building

Study on Earthquake Damaged Buildings

Structural seismic capacity index Is

Ref: Nakano, Yoshiaki and Tsuneo Okada "Reliability analysis on seismic capacity of existing reinforced concrete buildings in Japan" Journal, Transaction of Architecture Institute of Japan, No. 406, 37 – 43 (1988)

I_{SO} for Bangladeshi Buildings

Base shear,
$$V = \frac{ZIC}{R}W$$

Z = Zone coefficient

I = Importance factor

C = Numerical coefficient for sub-soil and structural period (maximum value is 2.75)

Rearranging

$$\frac{V}{W} \times R = Z \times I \times C$$

i.e Strength index \times ductility index = $Z \times I \times C$

For Dhaka $Z \times I \times C = 0.15 \times 1 \times 2.75 = 0.413$ (?)

Reference: Presentation 'proposed seismic demand index of structures, Iso, for existing RC buildings in Bangladesh' by Akira Inoue , JICA Expert Team, 2012

How to Calculate Strength Index (C)

Strength index, $C = \frac{Q_u}{\Sigma W}$

where,

 Q_u =Ultimate lateral load carrying capacity of vertical member ΣW = Weight of the building supported by the story concerned

Strength index shall be modified for each story by

Story shear modification factor = $\frac{n+1}{n+i}$

n = Number of stories of a buildingi = Number of story is being evaluated

How to Calculate Ductility Index (F)

Various types of deflection angle $(R_{max'}, R_{y'}, R_{su'}, R_{mu'}, R_{mp})$ of column is calculated based on:

- 1) Column size
- 2) Clear height of column
- 3) Axial force ratio
- 4) Shear force ratio
- 5) Tensile reinforcement ratio
- 6) Spacing of shear reinforcement
- 7) Margin against shear failure
- 8) etc.

How to Calculate Ductility Index (F)

A) Ductility index for shear column:

$$F = 1.0 + 0.27 \frac{R_{su} - R_{250}}{R_y - R_{250}}$$

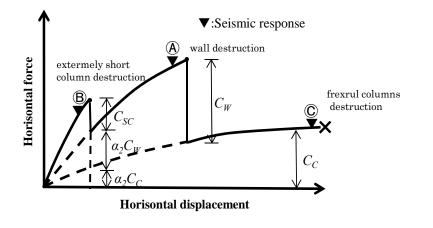
B) Ductility index for flexural column:

(i) In case
$$R_{mu} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$

(ii) In case
$$R_{mu} \ge R_y$$

$$F = \frac{\sqrt{2 R_{mu}/R_y - 1}}{0.75 \cdot (1 + 0.05 R_{mu}/R_y)} \le 3.2$$



Strength Dominant Basic Seismic Index (E₀)

$$E_0 = \frac{n+1}{n+i} \left(C_i + \sum_j \alpha_j C_j \right) \cdot F_1$$

where:

aj= Effective strength factor

Ductility Dominant Basic Seismic Index (E_0)

$$E_0 = \frac{n+1}{n+i}\sqrt{E_1^2 + E_2^2 + E_3^2}$$

where:

$$E_{1} = C_{1} \times F_{1}$$
$$E_{2} = C_{2} \times F_{2}$$
$$E_{3} = C_{3} \times F_{3}$$

 C_1 = The strength index C of the first group (with small F index).

 C_2 = The strength index C of the second group (with medium F index).

 C_3 = The strength index C of the third group (with large F index).

 F_1 = The ductility index F of the first group.

 F_2 = The ductility index *F* of the second group.

 F_3 = The ductility index F of the third group.

Irregularity Index (S_D)

Irregularity Index covers:

- 1. Regularity
- 2. Aspect ratio of plan
- 3. Expansion joint
- 4. Well-style area
- 5. Underground floor
- 6. Story height uniformity
- 7. Soft story
- 8. Eccentricity
- 9. Stiffness/mass ratio

Irregularity Index (S_D) ≤ 1.0

Time Index (T)

Time Index evaluates:

- 1. Deflection of beam and column
- 2. Cracking in walls
- 3. Fire experience
- 4. Occupied by chemical
- 5. Age of building
- 6. Finishing condition

Time Index (T) ≤ 1.0

Second-Class Prime Element

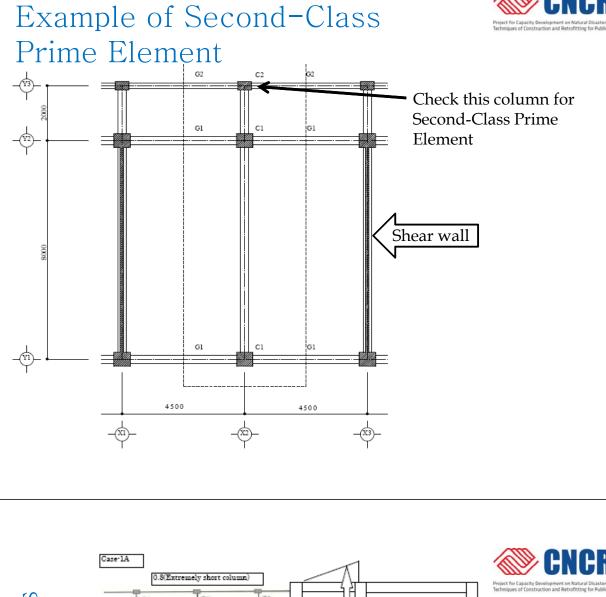
A column is a Second-Class Prime Element if

- 1. It fails in brittle manner
- 2. Its sustaining axial load can not be redistributed or not be sustained by surrounding members in the structure
- 3. Lateral force resisting capacity of the structure is still enough

It is necessary to check

- Shear column
- Extremely short column
- Column supporting the wall above

Residual Axial Load Capacity, $\eta = N/A_c F_c$


Column	p_w (%)	F=1.0	F=1.27	F=2	F=3
	$0.4 < p_w^{*1}$	0.4	0.3	0.1	0
Extremely short	$0.2 \le p_w \le 0.4^{*2}$	0.3[0.4]	0.1	0	0
column* ³	$p_w < 0.2$	0[0.4]	0	0	0
	$0.4 < p_w^{*1}$	0.6	0.4	0.2	0
Shear column	$0.2 \le p_w \le 0.4^{*2}$	0.5	0.3[0.4]	0.1	0
continu	$p_w < 0.2$	0.4	0[0.4]	0	0
	$0.4 < p_w^{*1}$	0.6	0.6	0.5	0.4
Flexural column	$0.2 \le p_w \le 0.4^{*2}$	0.5	0.5	0.3[0.4]	0.2[0.3]
Column	$p_w < 0.2$	0.4	0.4	0[0.3]	0[0.2]

*1: In case that spacing is not larger than 100mm, $p_w > 0.4\%$, and sub ties are provided at the same spacing as that of main ties. In case where p_w is different in each direction, the smaller p_w can be used.

*2: In case that spacing is not larger than 100mm.

*3: The flexural column of $h_0 \bullet D \le 2$ and $F \le 1.27$ is included.

Example of Second-Class Prime Element

0.S(Extr	emely short colum	n)				
C3	C3.	C3		ΣQ8-240k	N	
C2	C2 (Shear column)	C2	N0=300E			N0=900EN
W1		W1	Į		N0=1200	leN
CI	Cr (Shear column)	C1		ESC	1.0SC	1.0SC
F=1.0		_		L		
C3,C3'	Jae 7=0.8		«D×F=0 0=300kN ::	↓ ×QB=240kN ⇒ <u>Se</u>	cond-class Prin	ne Elements
I Table T?	N.3-1 Residual axia (g,= N,/ le 3.2.1-1 in the comm	Hoad capaci $A_C F _C = 2 \times 2$	ty N_r and as $= N_R / A_c F$	<u>Se</u> sial load capa 'c])	cond-class Prin city N _R Tapamene versio	
I Table T?	N.3-1 Residual axia $(\pi_r = N_r)$ le 3.2.1-1 in the comm p_r (%)	Hoad capaci	ty N_r and as $= N_R / A_c F$	<u>Se</u> sial load capa 'c])	city N _R	
Table T? (quoted from Table Column	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$	I load capact [A_cF]c[v x tentor of 3.2 F-1.0 0.4	$0=300 \text{kN}$ iy N_r and as $= N_R / A_c F$ if of the Stars	Sal load capa (d) dard of 2001 d	cond-class Prin city N _R Tapamene versio	
Table T2 (quoted from Table Column Extremely	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$	N=N A _c F _c [s x restorp of 3.2 F-1.0 0.4 03[0.4]	V = 300 kN : V_{K} and as $= N_{K} / A_{C}F$. I of the State F = 1.27 0.3 0.1	Second capacity ial load capacity	city N _R	
Table T? (quoted from Table Column	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$	I load capact [A_cF]c[v x tentor of 3.2 F-1.0 0.4	ty N, and as $= N_R / A_C F$ I of the Stant F=1.27 0.3	sial load capar (cj) durd of 2001 o F=2 0.1	cond-class Prince N_R $I_{APATR-ESE}$ rerain F=3 0	
Table 17 (quoted from Table Column Extremely short	N.3-1 Residual axia $(\pi_r = N_r)^r$ le 3.2.1-1 in the comm p_r (%) $0.4 < p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$	N=N A _c F _c [s x restorp of 3.2 F-1.0 0.4 03[0.4]	V = 300 kN : V_{K} and as $= N_{K} / A_{C}F$. I of the State F = 1.27 0.3 0.1	Second capacity ial load capacity	city N _R	
Table T? (quoted from Table Column Extremely short column* ³ Shear	N.3-1 Residual axia ($\pi_r = N_{er}/c$ le 3.2.1-1 in the conn p_r (%) $0.4 < p_r^{-1}$ $0.2 < p_r < 0.4^{-2}$ $p_r < 0.2$	N=N I load capaci (A _c F _c [y x tentor of 3.2 F-1.0 0.4 0.5[0.4]		Stall load capation col darrd of 2001 / F=2 0.1 0 0	city N _R	
Table 17 (quoted from Table Column Extremely short column*3	N.3-1 Residuel axis $(q_r = N_r)$ $p_r(5i)$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $p_r < 0.2$ $0.4 \le p_r^{-1}$	N=N I load capaci (A _c F _c [y _A p:1.0 p:4 03[0.4] 0.6	$N_{\rm r} = 300 \text{kN}$: $N_{\rm r} = N_{\rm r} / A_{\rm c} F$ $I = 0 \text{fills} \frac{F - 1.27}{0.3}$ 0.1 0 0.4	Second load capa- [c]) dend of 2001 - [c] 0.1 [0] 0 [0] 0.2	cond-class Prin city N _R /aparsese versis F-3 0 0 0 0 0 0	
Table T? (quoted from Table Column Extremely short column* ³ Shear	N.3-1 Residuel axis $(q_r = N_{r'})$ $p_r(%)$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $p_r < 0.2$ $0.4 \le p_r^{-1}$ $0.2 \le p_r \le 0.4^{-2}$ $0.2 \le p_r \le 0.4^{-2}$	Nt=N Hoad capaci (A_cF_c[y_s postorf of 3.1 p.4 0.3[0.4] 0.6 0.5	$ \begin{array}{l} \sum_{k=0}^{\infty} N_{k} \ \text{and} \ \text{as} \\ N_{k} \ \text{and} \ \text{as} \\ N_{k} \ \text{A} \ \text{c} \ F \\ I \ \text{of} \ \text{the} \ \text{Sum} \\ \hline F^{-1.27} \ 0.3 \\ 0.1 \\ 0 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \end{array} $	stal load capa: [c]) dard of 2001 / F=2 0.1 0 0 0 0.2 0.1	cond-class Print city N _R /aparsese tersis	

 $p_w < 0.2$ Reference: Lecture material by Yosuke Nakajima, JICA Expert Team

0.4

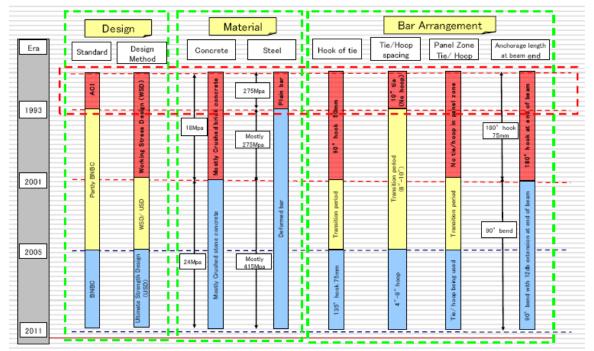
0[0.3]

0[0.2]

olumn

Building Inspection

Inspection Types	Inspection Objectives	Inspection Items
Preliminary inspection	To determine the applicability of the evaluation standard	Summery of the structure and building condition
Inspection without design drawings	To inspect various structural elements by conducting the actual measurement	The dimensions of building frames and reinforcing bars, arrangement of bars, etc
Detailed inspection	 To calculate Time index and irregularity index To inspect the necessity of refurbishment of aged deterioration To determine the present strength related data to enhance the accuracy of evaluation procedure 	Differences from original design drawings, structural cracks, deformations. Inspect material strength, concrete neutralization depth, reinforcing bar strength etc.



Benchmark for Buildings of USA

	Model Building Seismic Design Provisions							
Building Type ^{1, 2}	NBC ^{Is}	SBC ^{Is}	UBC ^{is}	IBC ^{is}	NEHRP ^{IS}	FEMA 178 ^{Is}	FEMA 310 ^{Is, io}	CBC ^{io}
Wood Frame, Wood Shear Panels (Type W1 & W2)	1993	1994	1976	2000	1985	*	1998	1973
Wood Frame, Wood Shear Panels (Type W1A)	*	*	1997	2000	1997	*	1998	1973
Steel Moment-Resisting Frame (Type S1 & S1A)	*	*	1994 ⁴	2000	**	•	1998	1995
Steel Braced Frame (Type S2 & S2A)	1993	1994	1988	2000	1991	1992	1998	1973
Light Metal Frame (Type S3)	*	*	*	2000	*	1992	1998	1973
Steel Frame w/ Concrete Shear Walls (Type S4)	1993	1994	1976	2000	1985	1992	1998	1973
Reinforced Concrete Moment-Resisting Frame (Type C1) ³	1993	1994	1976	2000	1985	*	1998	1973
Reinforced Concrete Shear Walls (Type C2 & C2A)	1993	1994	1976	2000	1985	*	1998	1973
Steel Frame with URM Infill (Type S5, S5A)	*	*	*	2000	*	*	1998	*
Concrete Frame with URM Infill (Type C3 & C3A)	*	*	*.	2000	*	*	1998	*
Tilt-up Concrete (Type PC1 & PC1A)	*	*	1997	2000	*	*	1998	*
Precast Concrete Frame (Type PC2 & PC2A)	*	*	*	2000	*	1992	1998	1973
Reinforced Masonry (Type RM1)	*	*	1997	2000	*	*	1998	*
Reinforced Masonry (Type RM2)	1993	1994	1976	2000	1985	*	1998	*
Unreinforced Masonry (Type URM)5	*	*	1991 ⁶	2000	*	1992	*	*
Unreinforced Masonry (Type URMA)	*	*	*	2000	*	*	1998	*

No Benchmark for Buildings in Bangladesh

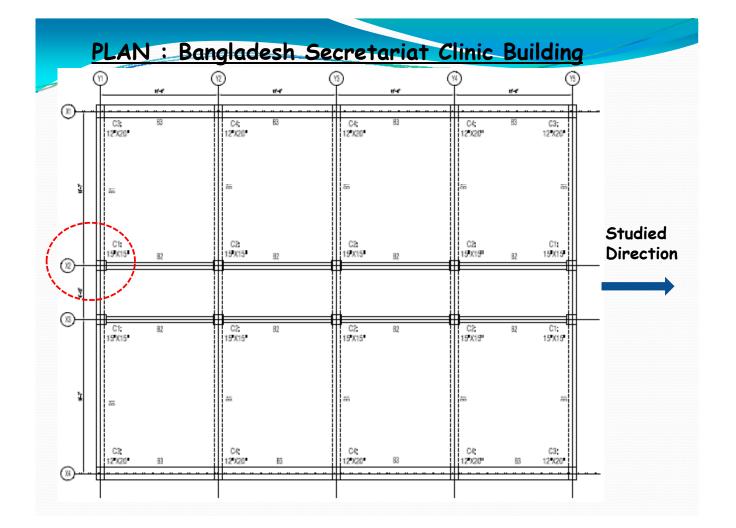
Reference: 'Issues of Seismic Performance' by Yosuke Nakajima, JICA Expert Team

Difficulties of Seismic Assessmen CCRPP of Bangladeshi Buildings

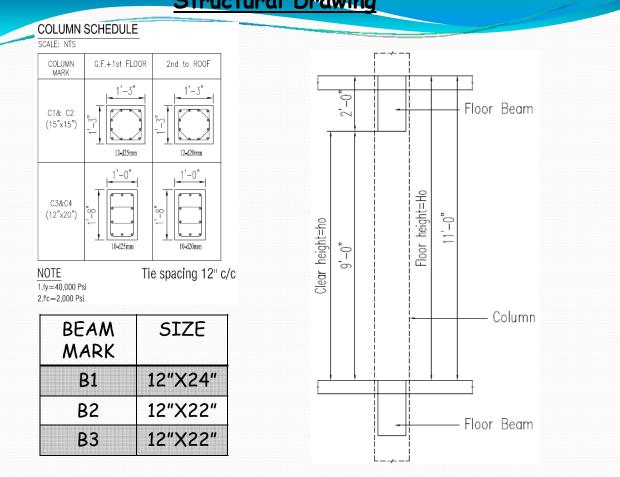
- 1. Missing architectural and structural design of existing building.
- 2. Lack of reliability in construction even if drawing is available.
- 3. A few or no study about lateral load resisting system of building of our country.
- 4. Effect of infill masonry wall in frame structure.
- 5. Performance of mixed type (masonry + RC frame) structure.
- 6. Reinforcing bars of existing structure are significantly corroded.
- 7. Etc.

Thank you

(CAPACITY DEVELOPMENT ON NATURAL DISASTER RESISTANT TECHNIQUES OF CONSTRUCTION AND RETROFITTING FOR PUBLIC BUILDINGS)


CNCRP

Technical co-operation project between --PWD & JICA



PRESENTATION ON Screening Procedure with example (1st & 2nd Level)

Md. Emdadul Huq Member of Working Team-2

Structural Drawing

About The Building

- 1. Name: Bangladesh Secretariat Clinic(Hospital Building)
- 2. Design period of the building is 1984
- 3. 5(Five)-Storied framed structured building.
- 4. Seismic detailing not provided
- 5. f'c = 2000 Psi = 13.79 N/mm²
- 6. fy = 40000 Psi = 275 N/mm²

Japanese Standard (Contd..)

In the **Japanese standard** three levels of seismic screening procedure.

1) 1st level screening procedure.

2) 2nd level screening procedure.

3) 3rd level screening procedure.

1st level:

-Simplest

(easy to calculation in comparison with other two evaluation procedure)

-More conservative

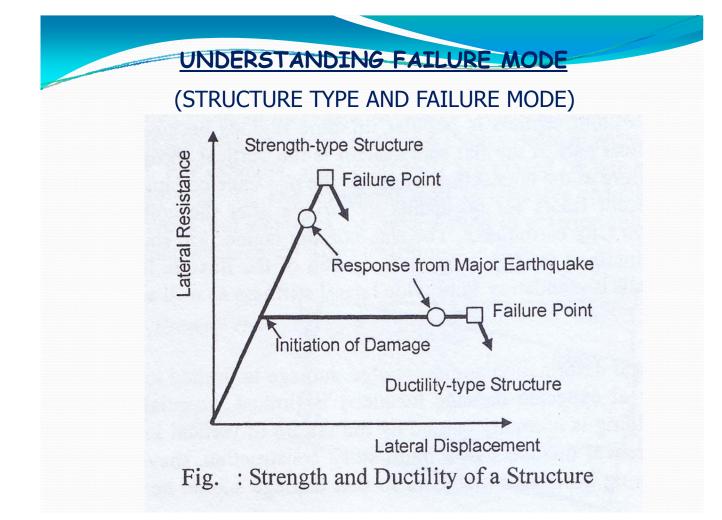
-Only X-sectional area & Concrete Strength of vertical Member is considered to calculate the strength

-Inelastic deformability is neglected in this level.

2nd level:

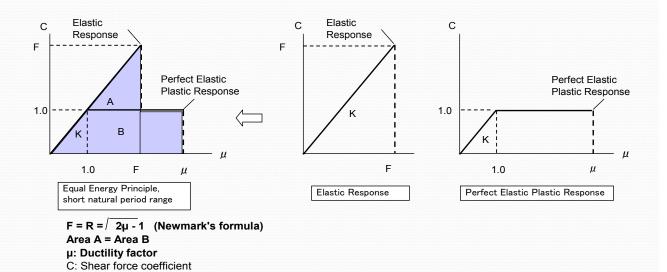
-More detail than 1st level screening procedure.
-Assuming that the strength of beam is greater than that of column(Weak column & Strong Beam)
-Evaluate ultimate strength & plastic deformation capacity of vertical members based on x-section, bar detail & material strength.

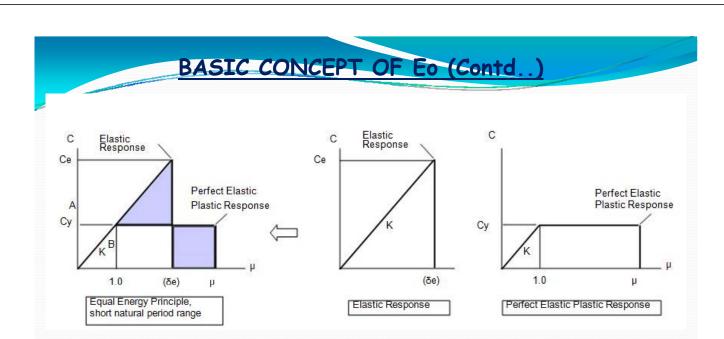
3rd level:


-Building characteristics are examined in greater detail than in the 2nd level screening procedure -3rd level is more reliable than 2nd level screening procedure where weak beam in structure

Basic Concept of Seismic evaluation

Seismic Index of Structure (Is) = $E_o X S_d x T$


Where


- E_o = Basic Seismic Index of Structure
 - = C X F
- C= Strength Index
- F=Ductility Index
- S_d = Irregularity Index
- T = Time Index

Basic Concept of Eo (Contd..)

"C x F" shows basic seismic performance of a structure. "C" is strength index, which is horizontal strength divided by building weight. "F" is ductility index. This "F" is developed based on (so called) Newmark's principle, and is related to ductility factor μ as shown below. This Equal Energy Principle for an ideal non-linear earthquake response is accepted practically in case of buildings with relatively short range natural period.

Cy = Min Base Shear Coefficient Structural System(Elastic Plastic Response)Ce =Ground Motion Produces Elastic Response Base Shear(Elastic Response) $<math>\mu = Ductility(Ultimate Deformation/Yield Deformation)$

$$C_e = C_y \sqrt{2\mu - 1}$$
 for short period systems
 $C_e = C_y \cdot \mu$ for long period systems
 $E_0 = C \cdot F$

Two Types Seismic Index

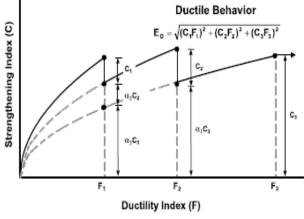
A. Strength-Dominant Structure

$$E_0 = \frac{n+1}{n+i} \left(C_1 + \sum_j \alpha_j C_j \right) \cdot F_1$$

B. Ductility-Dominant Structure

$$E_0 = \frac{n+1}{n+i}\sqrt{E_1^2 + E_2^2 + E_3^2}$$

B) Ductility-Dominant Structure (Contd.)


 $E_0 = (n+1)/(n+i)\sqrt{(E_1^2 + E_2^2 + E_3^2)}$

Where

- $E_1 = C_1 F_1$ $E_2 = C_2 F_2$
- $E_3 = C_1 F_3$

 $C_1 = The strength index C of the first group (with small F index).$

- C_2 = The strength index C of the second group (with medium F index).
- $C_3 =$ The strength index C of the third group (with large F index).
- $F_1 =$ <u>The</u> ductility index *F* of the first group.
- $F_2 = \underline{The} \text{ ductility index } F \text{ of the second group.}$
- $F_3 = \underline{The} \text{ ductility index } F \text{ of the third group.}$

<u>Classification of vertical members in the</u> 1st level screening procedure

Vertical member	Definition
Column	Columns having h_o/D larger than 2
Extremely short column	Columns having h_o/D equal to or less than 2
Wall	Walls including those without boundary columns

Ductility index in the 1st level screening

Vertical member	Ductility index F
Column $(h_0/D>2)$	1.0
Extremely short column $(h_0/D \le 2)$	0.8
Wall	1.0

Note: h_o : Column clear height D : Column depth

Basic Seismic Index of Structure(E₀) For 1st level Screening

$$E_0 = \frac{n+1}{n+i}(C_W + \alpha_1 C_C) \cdot F_W$$

$$E_0 = \frac{n+1}{n+i} (C_{SC} + \alpha_2 C_W + \alpha_3 C_C) \cdot F_{SC}$$

Where:

n = Number of stories of a building.

i = Number of the story for evaluation, where the first story is numbered as1 and the top story as n.

 $C_{\rm W}$ = Strength index of the walls.

 $C_{\rm C}$ = Strength index of the columns.

 α_1 = Effective strength factor of the columns at the ultimate deformation of the walls, which may be taken as 0.7. The value should be 1.0 in case of C_w =0.

 α_2 = Effective strength factor of the walls at the ultimate deformation of the extremely short columns, which may be taken as 0.7.

 α_3 = Effective strength factor of the columns at the ultimate deformation of the extremely short columns, which may be taken as 0.5.

 F_w = Ductility index of the walls , which may be taken as 1.0.

 F_{sc} = Ductility index of the extremely short columns, which may be taken as 0.8.

	eur onress u	Ductility 1
ST0RY		AT GRID X1Y1
	COLUMN	C1
	h0/D	9x12/15=7.2
5	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
4	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
3	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
2	CATEGORY	COLUMN
	τ(N/mm²)	0.7
	F	1.0
	COLUMN	C1
	h0/D	7.2
1	CATEGORY	COLUMN
	τ(N/mm ²)	0.7
	F	1.0

Calculation of Shear Stress & Ductility Index

STORY		X2&Y1	X2&Y2	X1&Y1	X1&Y2
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
5	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
4	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
3	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
2	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0
	COLUMN	C1	C2	C3	C4
	h0/D	7.2	7.2	9.0	9.0
1	CATEGORY	COLUMN	COLUMN	COLUMN	COLUMN
	τ(N/mm²)	0.7	0.7	0.7	0.7
	F	1.0	1.0	1.0	1.0

		Colculation of	column stre	noth(C)
		$C = \frac{\tau_c \cdot A_c}{r_c \cdot A_c} \cdot \beta$		$F_c \leq 20$
		$C_c = \sum_{\Sigma W} P_c$	$p_c = \frac{1}{20}$	$\Gamma_c \ge 20$
		$C_{c} = \frac{\tau_{c} \cdot A_{c}}{\Sigma W} \cdot \beta_{c}$ $C_{sc} = \frac{\tau_{sc} \cdot A_{sc}}{\Sigma W} \cdot \beta_{c}$	$\beta_c = \sqrt{\frac{F_c}{20}}$	$F_{c} > 20$
C_{c}	= ;	Strength index of columns.	-	
C_{sc}	= ;	Strength index of extremel	y short columns.	
τ_c	= _	Average shear stress at th	e ultimate state	of columns, which may be
	take	n as 1 N/mm ² or 0.7 N/mm	h^2 in case h_0/D is	larger than 6.
τ_{sc}	= _	Average shear stress at th	e ultimate state	of extremely short columns,
	whic	ch may be taken as 1.5 N/n	nm^2 .	
A_{sc}	=	Total cross-sectional area	a of extremely	short columns (mm^2) .
A_{C}	= 7	Total cross-sectional area	of columns (m	m ²)
F _c	= (Compressive strength of c	oncrete (N/mm ²)	
ΣW	=]	Fotal weight (dead load plu	is live load for se	eismic calculation) supported
	1	by the story concerned		

Calculation of Area Unit Weight(W)								
TYPE OF LOAD		TYPICAL FLOOR	ROOF	Unit				
Live Load		0.80	0.30	kN/m²				
Brick Wall		4.50	0.00	kN/m²				
Floor Finish		1.25	2.00	kN/m²				
Slab Weight		3.50	3.50	kN/m²				
SW(Column+Beam)		2.25	2.25	kN/m²				
L	W	12.3	8.05	kN/m²				

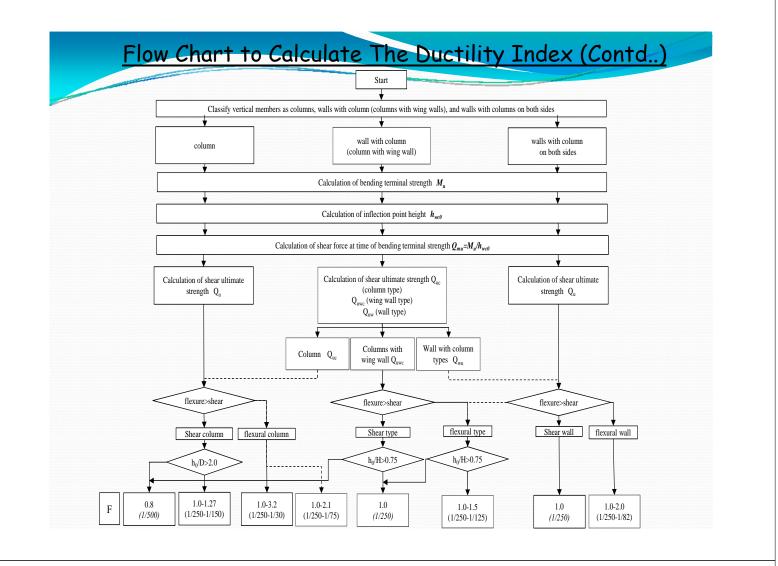
Calculation of Floor Weight

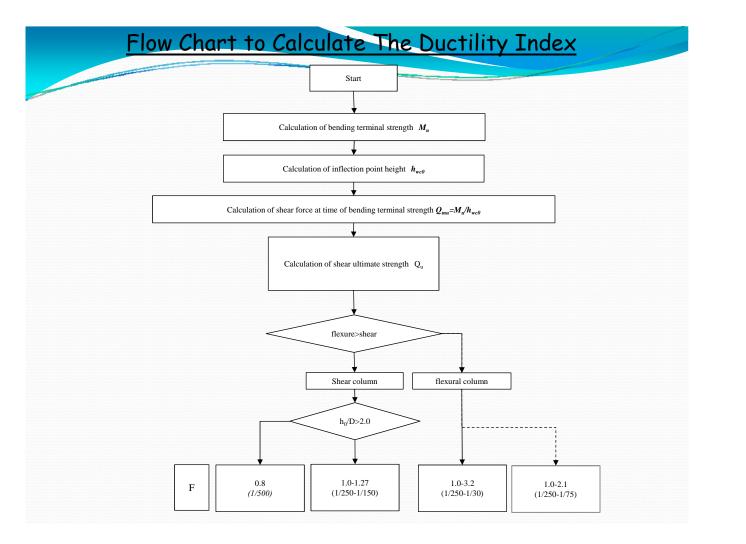
STORY	L(m)	B(m)	A(m²)	Σw	
5	18.6	14.54	270.44	2177	
4	18.6	14.54	270.44	5504	
3	18.6	14.54	270.44	8830	
2	18.6	14.54	270.44	12156	
1	18.6	14.54	270.44	15483	

Column ID	Story	β _c	Σw	A _c (mm²)	τ(N/mm²)	C _c
C1	5	0.69	2177	140625	0.7	0.031
	4	0.69	5504	140625	0.7	0.012
	3	0.69	8830	140625	0.7	0.008
	2	0.69	12156	140625	0.7	0.006
	1	0.69	15483	140625	0.7	0.004

Column ID	Story	β _c	Σw	A _c (mm²)	τ(N/mm²)	C _c
	5	0.69	2177	140625	0.7	0.03
	4	0.69	5504	140625	0.7	0.01
C1	3	0.69	8830	140625	0.7	0.00
	2	0.69	12156	140625	0.7	0.00
	1	0.69	15483	140625	0.7	0.004
	5	0.69	2177	140625	0.7	0.03
	4	0.69	5504	140625	0.7	0.01
C2	3	0.69	8830	140625	0.7	0.00
	2	0.69	12156	140625	0.7	0.00
	1	0.69	15483	140625	0.7	0.00
	5	0.69	2177	150000	0.7	0.03
	4	0.69	5504	150000	0.7	0.01
C3	3	0.69	8830	150000	0.7	0.00
	2	0.69	12156	150000	0.7	0.00
	1	0.69	15483	150000	0.7	0.00
	5	0.69	2177	150000	0.7	0.03
	4	0.69	5504	150000	0.7	0.01
C4	3	0.69	8830	150000	0.7	0.00
	2	0.69	12156	150000	0.7	0.00
	1	0.69	15483	150000	0.7	0.00

	dex T by the first level			
[A] Item to be checked	[B] Degree	[C] <i>T</i> value (check circle at relevant degree)	[D] Item to be checked for the second level inspection	
	Tilting of a building or obvious uneven settlement is observed	0.7	Structurel	
Deflection	Landfill site or former rice field	0.9	Structural cracking and	
Denection	Deflection of beam or column is observed visually	0.9	deflection	
	No correspondence to the foregoing	1		
	Rain leak with rust of reinforcing bar is observed	0.8		
Contraction 11	Inclined cracking in columns is obviously observed	0.9	Structural cracking and deflection	
Cracking in walls and columns	Countless cracking is observed in external wall	0.9		
	Rain leak without rust of reinforcing bar is observed	0.9		
	No correspondence to the foregoing	1		
	Trace	0.7	Structural	
Fire experience	Experience but traceless	0.8	cracking and deflection	
The experience	No experience	1	Deterioration and aging	
0	Chemical has been used	0.8	Deterioration	
Occupation	No correspondence to the foregoing	1	and aging	
	30 years or older	0.8		
Age of building	20 years or older	0.9	Deterioration and aging	
	19 years or less	1	and aging	
	Significant spalling of external finishing due to aging is observed	0.9		
Finishing condition	Significant spalling and deterioration of internal finishing is observed	0.9	Deterioration and aging	
	No problem	1		


Story	Column ID	Column No	Cc	Total C _c	F	α	(n+1)/ (n+i)	Eo	Т	S _d	I _s
	C1	4	0.031								
5	C2	6	0.031	0.64	1 00	1 00	0.60	0.39	0.8	1	0.31
5	C3	4	0.033	0.04	1.00	1.00	0.00	0.59	0.8	T	0.51
	C4	6	0.033								


	Calculation of Is of Building													
Story	Column ID	Column No	Cc	Total C _c	F	α	(n+1)/ (n+i)	Eo	т	S _d	I _s			
	C1	4	0.031											
5	C2	6	0.031	0.64	1.00	1.00	0.60	0.39	0.8	1	0.31			
J	C3	4	0.033	0.04	1.00	1.00	0.00	0.55	0.8		0.31			
	C4	6	0.033											
	C1	4	0.012		1.00									
4	C2	6	0.012	0.25		1.00	0.67	0.17	0.8	1	0.14			
4	C3	4	0.013	0.23	1.00	1.00	0.07	0.17	0.8	T	0.14			
	C4	6	0.013											
	C1	4	0.008		1.00					1				
3	C2	6	0.008	0.16		1.00	0.75	0.12	0.8		0.10			
5	C3	4	0.008	0.10			0.75				0.10			
	C4	6	0.008											
	C1	4	0.006											
2	C2	6	0.006	0.12	1.00	1.00	0.86	0.10	0.8	1	0.08			
2	C3	4	0.006	0.12	1.00	1.00	0.80	0.10	0.8	T	0.08			
	C4	6	0.006											
	C1	4	0.004											
1	C2	6	0.004	0.09	1.00	1.00	1.00	0.09	0.0	1	0.07			
1	C3	4	0.005	0.09	1.00	1.00	1.00	0.09	0.8	1				
	C4	6	0.005											


<u>Classification of vertical members based on failure</u> modes in the second level screening

Vertical member	Definition					
Shear wall	Walls whose shear failure precede flexural					
Flexural wall	Walls whose flexural yielding precede shear failure					
Shear column	Columns whose shear failure precede flexural yielding, except for extremely brittle columns					
Flexural column	Columns whose flexural yielding precede shear failure					
Extremely brittle column	Columns whose h ₀ /D are equal to or smaller than 2 and shear failure precede flexural yielding					

Flexural ultimate strength of columns (M_u)

Calculation of Ultimate flexural Strength of Column(Mu)

The ultimate	flexural strength of columns shall be calculated
$M_u = \Big\{ 0.8a_t \cdot $	$\sigma_{y} \cdot D + 0.12b \cdot D^{2} \cdot F_{c} \left\{ \cdot \left(\frac{N_{max} - N}{N_{max} - 0.4b \cdot D \cdot F_{c}} \right) For \ N_{max} \ge N > 0.4b \cdot D \cdot F_{c} (1) \right\}$
$M_u = 0.8a_t \cdot \sigma$	$F_{y} \cdot D + 0.5N \cdot D \cdot \left(1 - \frac{N}{b \cdot D \cdot F_{c}}\right) For \ 0.4b \cdot D \cdot F_{c} \ge N > 0 (2)$
$M_u = 0.8a_t \cdot \sigma$	$T_y \cdot D + 0.4N \cdot D$ For $0 > N \ge N_{min}$ (3)
$N_{\rm max} = A$	Axial compressive strength $= b \cdot D \cdot F_c + a_g \cdot \sigma_v$ (N).
2022	Axial tensile strength = $-a_g \cdot \sigma_v$ (N) Arial force
N = A	Axial force (N) Cotal cross sectional area of tensile reinforcing bars (mm ²)
$a_g = T$	Fotal cross sectional area of reinforcing bars (mm ²) Perul Notest M, Third Equation
	Column width (mm).
D = C	Column width (mm). N=79 KN N _{max} =2976 KN
$\sigma_v = Y$	<i>Tield strength of reinforcing bars (N/mm²)</i> 0.4bDFc=776 KN
$F_c = C$	Compressive strength of concrete (N/mm^2) 0.8a _t $\sigma_y D=103.8$ KN.m
	$(0.5ND(1-N/bDF_c)=0.5*79*375(1-0.041)/1000=14.2 \text{ KN.m})$
Q	$Q_{mu} = 2 \cdot M_u / h_0$ [Mu= 118 KN.m] $Q_{mu} = 87$ KN]

COLUMN MARK	STORY	AREA(m²)	N (KN)
	5	9.81	79
	4	9.81	200
C1	3	9.81	320
	2	9.81	441
	1	9.81	562
	5	18.37	148
	4	18.37	374
C2	3	18.37	600
	2	18.37	826
	1	18.37	1052
	5	7.88	63
	4	7.88	160
C3	3	7.88	257
	2	7.88	354
	1	7.88	451
	5	14.76	119
	4	14.76	300
C4	3	14.76	482
	2	14.76	664
	1	14.76	845

Calculation of Ultimate Shear Strength of Column(Qsu)

Q_{su}=149 KN

$$Q_{su} = \left\{ \frac{0.053 p_t^{0.23} (18 + F_c)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot s \sigma_{wy}} + 0.1 \sigma_0 \right\} \cdot b \cdot j$$

$$p_t$$
 = Tensile reinforcement ratio (%)

 p_w = Shear reinforcement ratio, $p_w = 0.012$ for $p_w \ge 0.012$

$$\sigma_{wy}$$
 = Yield strength of shear reinforcing bars (N/mm²)

$$\sigma_0$$
 = Axial stress in column (N/mm²)

$$d$$
 = Effective depth of column. *D*-50mm may be applied.

$$\frac{M}{Q}$$
 = Shear span length. Default value is $\frac{h_0}{2}$

 h_0 = Clear height of the column

j

= Distance between centroids of tension and compression forces, default value is 0.8*D*.

If $M/(Q \cdot d)$ is less than unity or greater than 3, the value of $M/(Q \cdot d)$ shall be unity or 3 respectively

if the value of σ_0 is greater than 8N/mm², the value of σ_0 shall be 8N/mm²

Failure Mode Categorization According to the Strength Margin (Contd...)

Story	Column	N(KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column
5		79	118	87	149	87	Flexural
4		200	137	102	159	102	Flexural
3	C1	321	154	114	169	114	Flexural
2		442	226	167	185	167	Flexural
1		562	237	175	194	175	Flexural

Failure Mode Categorization According to the Strength Margin

	and the second s						
Sto	ry Column	N(KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column
5		79	118	87	149	87	Flexural
4		200	137	102	159	102	Flexural
3	C1	321	154	114	169	114	Flexural
2		442	226	167	185	167	Flexural
1		562	237	175	194	175	Flexural
5		148	129	96	155	96	Flexural
4		375	160	119	173	119	Flexural
3	C2	601	181	134	191	134	Flexural
2		828	245	181	216	181	Flexural
1		1054	224	166	234	166	Flexural
5		64	92	68	145	68	Flexural
4		161	105	78	152	78	Flexural
3	C3	258	117	87	160	87	Flexural
2		355	174	129	175	129	Flexural
1		452	183	135	183	135	Flexural
5		119	100	74	149	74	Flexural
4		301	122	90	164	90	Flexural
3	C4	483	139	103	178	103	Flexural
2		666	197	146	200	146	Flexural
1		848	202	150	214	150	Flexural

Ductility index of flexural column (F)

In case
$$R_{mn} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$
In case $R_{mn} \ge R_y$
 $F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$

Where:

 R_y = Yield deformation in terms of inter-story drift angle, which in principle shall be taken as R_y =1/150.

 R_{250} = Standard inter-story drift angle, R_{250} = 1/250.

 R_{mu} = Inter-story drift angle at the ultimate deformation capacity in flexural failure of the column.

Calculation of Upper limit of the drift angle of flexural column (_cR_{max}) Calculation of drift angle for shear force

$${}_{c} R_{\max(s)} = {}_{c} R_{250} \quad for \quad {}_{c} \tau_{u} / F_{c} > 0.2$$

$${}_{c} R_{\max(s)} = {}_{c} R_{30} \quad for \ other \ case$$

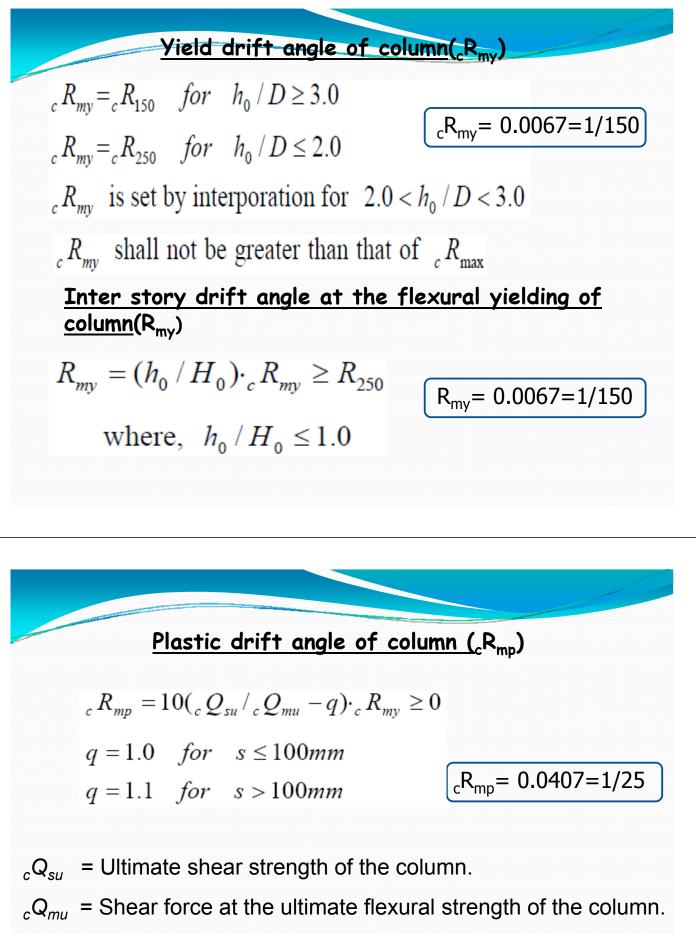
$$_{c}R_{max(s)} = 1/30$$

 $_{C}\tau_{u}$ = Shear stress at the column strength.

 $_{c}Q_{mu}$ = Shear force at the ultimate flexural strength of the column.

 $_{c}Q_{su}$ = Ultimate shear strength of the column

j


Distance between the centroids of the tension and compression forces.
 Default value is 0.8D.

Calculation of drift angle for tensile reinforcement

$${}_{c} R_{\max(t)} = {}_{c} R_{250}$$
 for $p_{t} > 1.0\%$
 ${}_{c} R_{\max(t)} = {}_{c} R_{30}$ for other case ${}_{c} R_{\max(t)} = 1/30$
 p_{t} = Tensile reinforcement ratio (%).
Calculation of drift angle for axial force
 ${}_{c} R_{\max(n)} = {}_{c} R_{250}$ for $\eta > \eta_{H}$
 ${}_{c} R_{\max(n)} = {}_{c} R_{30} \cdot \left(\frac{c}{R_{250}} \int_{0}^{n'} \leq {}_{c} R_{30}\right)$ for other case
where: ${}_{c} R_{\max(n)} = {}_{c} R_{30} \cdot \left(\frac{c}{R_{250}} \int_{0}^{n'} \leq {}_{c} R_{30}\right)$ for other case
 $n' = (\eta - \eta_{L})(\eta_{H} - \eta_{L}).$
 $\eta = N_{s} / (b \cdot D \cdot F_{c}).$
 $\eta_{L} = 0.25$ and $\eta_{H} = 0.4$ for $s > 100mm$.

$$\frac{\text{Calculation of }_{c}R_{max}}{c R_{max} = \min\{c R_{max(n)}, c R_{max(s)}, c R_{max(t)}, c R_{max(b)}, c R_{max(h)}\}}$$

$$\begin{bmatrix} c R_{max(n)} = 1/30 \\ c R_{max(s)} = 1/30 \\ c R_{max(t)} = 1/30 \\ c R_{max(b)} = 1/50 \\ c R_{max(h)} = 1/30 \end{bmatrix}$$

- $_{c}R_{mv}$ = Yield drift angle of column.
- S = Spacing of hoops

Inter story drift angle at the ultimate flexural strength of column (R_{mu})

$$R_{mu} = (h_0 / H_0) \cdot_c R_{mu} \ge R_{250}$$

where, $h_0 / H_0 \le 1.0$
 $_c R_{mu} = {}_c R_{my} + {}_c R_{mp} \le {}_c R_{30}$

cRmy= 0.0067=1/150cRmp= 0.0407=1/25cRmu=cRmy+cRmp= $0.0467=1/21 \le 1/30$ So, cRmu = $1/30 \le cRmax=1/50$ So Final cRmax=1/50Rmu = $1/50\ge 1/250$, So Rmu= 1/50

 $_{c}R_{mu}$ = Drift angle at the ultimate flexural strength of column $_{c}R_{mu}$ shall not be larger than $_{c}R_{max}$

1) In Case
$$R_{mu} < R_y$$

 $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$
2) In Case $R_{mu} \ge R_y$

$$F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$$

Where:

 R_y = Yield deformation in terms of inter-story drift angle, which in principle shall be taken as R_y =1/150.

 R_{250} = Standard inter-story drift angle, R_{250} = 1/250.

 R_{mu} = Inter-story drift angle at the ultimate deformation capacity in flexural failure of the column.

Story	Column	N (KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column	cRmax	cRmy	cRmp	cRmu	F
5		79	118	87	149	87	Flexural	50	150	25	50	2.59
4		200	137	102	159	102	Flexural	50	150	32	50	2.59
3	C1	321	154	114	169	114	Flexural	50	150	39	50	2.59
2		442	226	167	185	167	Flexural	250	250	6604	250	1.00
1		562	237	175	194	175	Flexural	250	250	3141	250	1.00

Calculation of Ductility Index(F)

Story	Column	N (KN)	Mu (KN.m)	Qmu (KN)	Qsu (KN)	Qu (KN)	Type of Column	cRmax	cRmy	cRmp	cRmu	F
5		79	118	87	149	87	Flexural	50	150	25	50	2.59
4		200	137	102	159	102	Flexural	50	150	32	50	2.59
3	C1	321	154	114	169	114	Flexural	50	150	39	50	2.59
2	_	442	226	167	185	167	Flexural	250	250	6604	250	1.00
1		562	237	175	194	175	Flexural	250	250	3141	250	1.00
5		148	129	96	155	96	Flexural	50	150	29	50	2.59
4		375	160	119	173	119	Flexural	50	150	42	50	2.59
3	C2	601	181	134	191	134	Flexural	50	150	47	50	2.59
2		828	245	181	216	181	Flexural	250	250	278	250	1.00
1		1054	224	166	234	166	Flexural	250	250	82	250	1.00
5		64	92	68	145	68	Flexural	50	150	15	50	2.59
4		161	105	78	152	78	Flexural	50	150	17	50	2.59
3	C3	258	117	87	160	87	Flexural	50	150	20	50	2.59
2		355	174	129	175	129	Flexural	250	250	97	250	1.00
1		452	183	135	183	135	Flexural	250	250	100	250	1.00
5		119	100	74	149	74	Flexural	50	150	16	50	2.59
4		301	122	90	164	90	Flexural	50	150	21	50	2.59
3	C4	483	139	103	178	103	Flexural	50	150	24	50	2.59
2		666	197	146	200	146	Flexural	250	250	94	250	1.00
1		848	202	150	214	150	Flexural	250	250	76	250	1.00

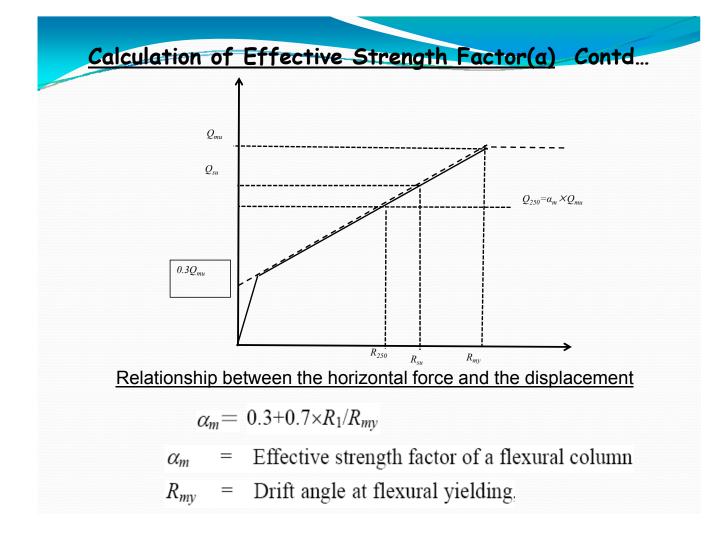
Calculation of Strength Index(C)

The strength index *C* in the second level screening procedure shall be calculated by the following equation

$$C = \frac{Q_u}{\sum W}$$
 C=0.16

Where:

 Q_u = Ultimate lateral load-carrying capacity of the vertical members in the story concerned.


 Σ W= The weight of the building including live load for seismic calculation supported by the story concerned.

<u>Calculation of Strength Index(C)</u> (Contd...)

Story	Column ID	Qmu (KN)	Qsu (KN)	Qu (KN)	Column No	W (KN)	ΣW (KN)	С
	C1	87	149	87	4	79		0.16
_	C2	96	155	96	6	148	2175	0.26
5	C3	68	145	68	4	64	2175	0.13
	C4	74	149	74	6	119		0.20

Calculation of Strength Index(C)

Story	Column	Qmu (KN)	Qsu (KN)	Qu (KN)	Column No	W (KN)	ΣΜ (κν)	С
	C1	87	149	87	4	79		0.16
-	C2	96	155	96	6	148	2175	0.26
5	C3	68	145	68	4	64	2175	0.13
	C4	74	149	74	6	119		0.20
	C1	102	159	102	4	200		0.07
4	C2	119	173	119	6	375	E 4 0 9	0.13
4	C3	78	152	78	4	161	5498	0.06
	C4	90	164	90	6	301		0.10
	C1	114	169	114	4	321	8822	0.05
3	C2	134	191	134	6	601		0.09
5	C3	87	160	87	4	258		0.04
	C4	103	178	103	6	483		0.07
	C1	167	185	167	4	442		0.06
2	C2	181	216	181	6	828	10145	0.09
2	C3	129	175	129	4	355	12145	0.04
	C4	146	200	146	6	666		0.07
	C1	175	194	175	4	562		0.05
1	C2	166	234	166	6	1054	15468	0.06
T	C3	135	183	135	4	452	10400	0.03
	C4	150	214	150	6	848		0.06

Calculation of Effective Strength Factor(a) Contd...

				Effective Strength Factor(a)				
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th></r1<r150<>	R1>R150	
Story	Column ID	F index	1/R _{my}	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th></f1<1.27)<>	F1(1.27<=F1)	
	C1	2.59	150				1.0	
_	C2	2.59	150				1.0	
5	C3	2.59	150				1.0	
	C4	2.59	150				1.0	

	Calculation of Effective Strength Factor(a)								
					Effective Strength Factor(a)				
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th></r1<r150<>	R1>R150		
Story	Column	F index	1/R _{my}	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th></f1<1.27)<>	F1(1.27<=F1)		
	C1	2.59	150				1.0		
5	C2	2.59	150				1.0		
5	C3	2.59	150				1.0		
	C4	2.59	150				1.0		
	C1	2.59	150				1.0		
4	C2	2.59	150				1.0		
4	C3	2.59	150				1.0		
	C4	2.59	150				1.0		
	C1	2.59	150				1.0		
3	C2	2.59	150				1.0		
5	C3	2.59	150				1.0		
	C4	2.59	150				1.0		
	C1	1.00	250		1.0				
2	C2	1.00	250		1.0				
2	C3	1.00	250		1.0				
	C4	1.00	250		1.0				
	C1	1.00	250		1.0				
1	C2	1.00	250		1.0				
1	C3	1.00	250		1.0				
	C4	1.00	250		1.0				

				Cal	culatio	on of CTU	Indices			
					Effective	e Strength Factor(α)			
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th><th></th><th></th><th></th></r1<r150<>	R1>R150			
Story	Column	С	F	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>C_{TU}</th><th>С_{т∪}Sd</th><th>Evaluation</th></f1<1.27)<>	F1(1.27<=F1)	C _{TU}	С _{т∪} Sd	Evaluation
	C1	0.16	2.59				1.0			
5	C2	0.26	2.59				1.0	0.75	0.75	ОК
J	C3	0.13	2.59				1.0	0.75	0.75	UK
	C4	0.20	2.59				1.0			
	C1	0.07	2.59				1.0			
4	C2	0.13	2.59				1.0	0.36	0.36	ОК
4	C3	0.06	2.59				1.0	0.50	0.30	UK
	C4	0.10	2.59				1.0			
	C1	0.05	2.59				1.0			NG
3	C2	0.09	2.59				1.0	0.25	0.25	
5	C3	0.04	2.59				1.0	0.25	0.25	
	C4	0.07	2.59				1.0			
	C1	0.06	1.00		1.0					
2	C2	0.09	1.00		1.0			0.26	0.26	NG
2	C3	0.04	1.00		1.0			0.20	0.20	
	C4	0.07	1.00		1.0					
	C1	0.05	1.00		1.0					
1	C2	0.06	1.00		1.0			0.20	0.20	NG
T	C3	0.03	1.00		1.0			0.20	0.20	NG
	C4	0.06	1.00		1.0					

<u>Calculation of Eo (Contd...)</u>

					Effective Strength Factor(α)				
				R1=R500	R1=R250	R250 <r1<r150< td=""><td>R1>R150</td><td></td><td></td></r1<r150<>	R1>R150		
Story	Column	С	F index	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>E_o(Eq1)</th><th>E_o(Eq2)</th></f1<1.27)<>	F1(1.27<=F1)	E _o (Eq1)	E _o (Eq2)
	C1	0.16	2.59				1.0		
5	C2	0.26	2.59				1.0	1.95	1.01
5	C3	0.13	2.59				1.0	1.95	1.01
	C4	0.20	2.59				1.0		

E_o(Eq1)=(C1+∑α1.C1)*F1

E_o(Eq2)=Sqrt((C1*F1)^2+....+(Ci*Fi)^2))

Calculation of Eo

					Effective	Strength Facto	r(α)		
				R1=R500	R1=R250	R250 <r1<r150< th=""><th>R1>R150</th><th></th><th>E∘</th></r1<r150<>	R1>R150		E∘
Story	Column	С	F	F1(=0.8)	F1(=1)	F1(1 <f1<1.27)< th=""><th>F1(1.27<=F1)</th><th>E_o(Eq1)</th><th>E_o(Eq2)</th></f1<1.27)<>	F1(1.27<=F1)	E _o (Eq1)	E _o (Eq2)
	C1	0.16	2.59				1.0		
5	C2	0.26	2.59				1.0	1.95	1.01
J	C3	0.13	2.59				1.0	1.55	1.01
	C4	0.20	2.59				1.0		
	C1	0.07	2.59				1.0		0.49
4	C2	0.13	2.59				1.0	0.93	
4	C3	0.06	2.59				1.0	0.95	
	C4	0.10	2.59				1.0		
	C1	0.05	2.59				1.0	0.65	0.34
3	C2	0.09	2.59				1.0		
2	C3	0.04	2.59				1.0		
	C4	0.07	2.59				1.0		
	C1	0.06	1.00		1.0				
2	C2	0.09	1.00		1.0			0.26	0.13
2	C3	0.04	1.00		1.0			0.20	0.15
	C4	0.07	1.00		1.0				
	C1	0.05	1.00		1.0				
1	C2	0.06	1.00		1.0			0.20	0.10
1	C3	0.03	1.00		1.0			0.20	
	C4	0.06	1.00		1.0				

E_o(Eq1)=(C1+∑α1.C1)*F1 E_o(Eq2)=Sqrt((C1*F1)^2+....+(Ci*Fi)^2))

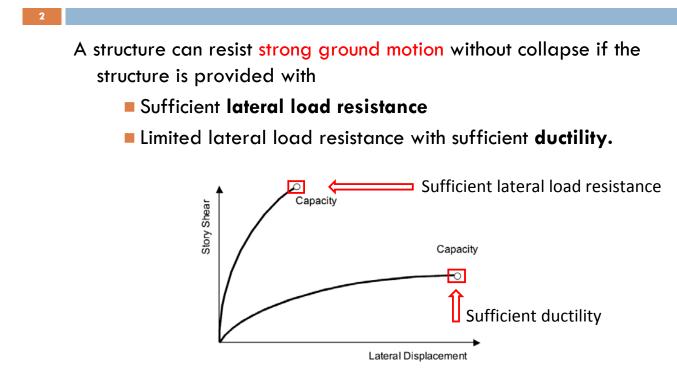
Calculation of Is(Contd...)

Story	Column	(n+1)/ (n+i)	E _o (Eq1)	E _o (Eq2)	E _o	S _d	т	I _s
	C1							
5	C2	0.60	1.95	1.01	1.95	1	0.8	0.94
	C3							
	C4							

Story	Column	(n+1)/(n+i)	E _o (Eq1)	E _o (Eq2)	Eo	S _d	Т	I _s
5	C1							
	C2	0.60	1.95	1.01	1.95	1	0.8	0.94
	C3	0.00	1.55	1.01	1.55	T	0.0	0.54
	C4							
	C1							
4	C2	0.67	0.93	0.49	0.93	1	0.8	0.50
	C3	0.07		0.49	0.95			
	C4							
2	C1	0.75	0.65					
	C2			0.34	0.65	1	0.8	0.39
3	C3			0.54	0.05	1	0.8	0.39
	C4							
	C1			0.13	0.26	1		0.18
2	C2	0.00	0.00					
2	C3	0.86	0.26				0.8	
	C4							
	C1							
1	C2	1.00	0.20	0.10	0.20	1	0.8	0.16
1	C3		0.20					
-	C4							

Overview of Seismic Capacity Evaluation According to Japanese Standard

February 12, 2013


By

Ahmed Abdullah NOOR

Sub-Divisional Engineer

Public Works Department (PWD), Bangladesh.

Basic concept of Seismic Resistance:

Story Shear- Story Drift Relationship

Basic Concept of Seismic evaluation

in Japanese Standard

The seismic index of structure Is,

 $Is = E_0 * S_D * T$

Where

 ${\rm E}_{\rm 0=}\,{\rm Basic}$ seismic index of structure

 $\boldsymbol{S}_{D=}$ Irregularity index

T= Time index

Is should be calculated at each story and in each principal horizontal direction

Basic seismic index of structure E_0

Where

 $E_0 = \Phi * C * F$

 ϕ = Story Index C = Strength Index

F = Ductility index

Basic Concept of Seismic Evaluation (Contd.)

The standard consists of **three** different level procedures: first, second and third level procedures.

The first level procedure is the simplest and most conservative procedure. Two major things are considered in this level to calculate the strength:

- Sectional area of columns and walls
- Strength of concrete.
- \rightarrow Inelastic deformability is neglected in this level.
- → First Level screening should not be used if large eccentricity exists in a floor

Second and Third Level Screening <u>ultimate lateral load carrying capacity</u> of vertical members or frames are evaluated using

material and sectional properties together with reinforcing details

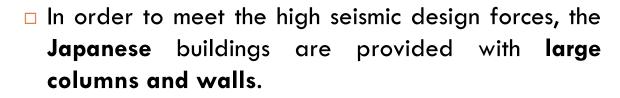
Characteristics of the ground motion

5

The characteristics of the ground motion based on response spectrum is expressed by required Seismic Capacity Index of Structure, Iso

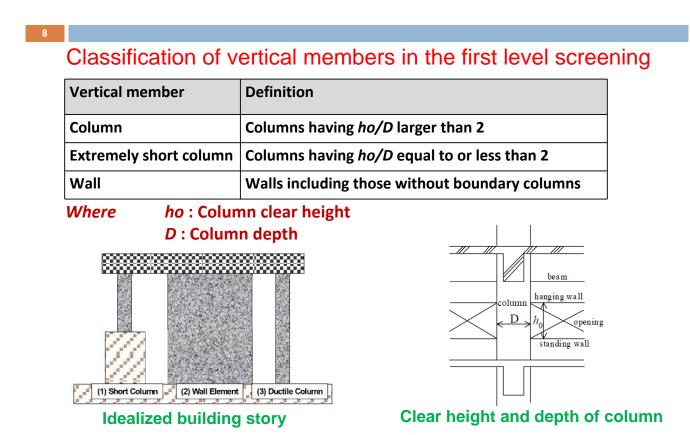
 $Iso = Es^*Z^*G^*U$

Where:


- Es= Basic Seismic Demand Index of structure
- Z = Zone index (Seismic activity at construction area)
- G = Ground index (Amplification of ground motion by surface soil deposit)
- U = Usage index. (Here in this case 1.5 is used assuming the building will be used as a shelter after a severe earthquake)

First Level Screening Procedure

6


- Lateral strength of a story is crudely evaluated by examining the shear strength of columns and walls by their cross-sectional areas. The strength of girder is not examined at this stage because:
- The column is believed to be more vulnerable to earthquake force.
- Failures of columns lead to the collapse of the building.
- □ The girder is believed to be more ductile.

Important Features of First Level Screening

- Importance of shear wall is also emphasized in design.
- Therefore a Japanese building is believed to possess lateral strength larger than required by code.
- First level screening procedure is to identify these **strong** buildings by a simple calculation.

Vertical Members in First Level Screening

Basic parameters used in First Level Screening

A crude and conservative estimation of shear strength per unit sectional area is used for

- short columns 1.5 Mpa
- columns 1.0 Mpa

ф

- walls with boundary columns on both sides 3 Mpa
- walls with boundary columns on one side 2 Mpa
- walls with boundary columns with no boundary 1 Mpa

Based on dimension, materials, reinforcement ratio commonly used in Reinforced Concrete buildings in Japan.

Basic Seismic Index for First Level Screening

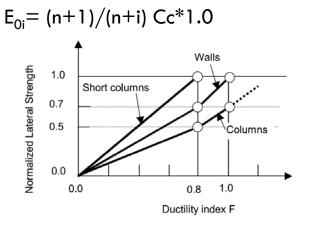
Short columns are likely to fail in brittle shear mode, and a small ductility index (F=0.8) is assigned.

- The **wall and columns** are **assumed** to develop **70% and 50% of their strength**, respectively when the short column fails in shear.
- Structural Index E_{0i} of the i story is evaluated by the following equation at the failure of short column:

↑ C

 $E_{0i} = ((n+1)/(n+i)) * (Csc + 0.7*Cw + 0.5*Cc)*0.8$

Basic Seismic Index for First Level Screening (Contd.)


If short column doesn't exist in a story or if the failure of short column will not lead to the collapse of the story, Structural Index E_{0i} of the i story is evaluated by the following equation at the failure of wall:

 $E_{0i} = (n+1)/(n+i)$ (Cw +0.7*Cc)*1.0

Where the **ductility index** for wall is selected to be **1.0 and 70% of column strength** is **assumed** to be developed at the failure of wall

Basic Seismic Index for First Level Screening (Contd.)

 If no structural wall/ short column exists in a story (Cw=0), then the structural index is estimated by the following equation:

Strength and deformation relation in first level screening procedure

Irregularity/ Configuration Index

- Irregularity in plan
- Longitudinal to transverse plan length ratio
- Expansion joints
- Existence of basement
- Abrupt discontinuity of stiffness along the height; especially soft story
- A simple grading chart is provided to determine the configuration index which varies from **0.42 to 1.2**

Time/Age Index

14	
	In evaluating age index T the following things are to be considered:
	Observed deformation in the building caused by uneven settlement of foundation
	Cracks in columns and walls
	Rust on reinforcement

- Past and present use of chemicals
- Past fire experience
- Finishing condition and building age
- Age Index T varies from 0.7 to 1.0

Second Level Screening Procedure

- The combination of different ductility levels and shear resistance of vertical members are considered in earthquake resistance of a structure.
- The shear resistance of vertical members (columns and walls) must be calculated on the basis of member geometry, the amount of longitudinal and lateral reinforcement and concrete strength.
- Failure mode, either shear or flexural is determined by comparing shear strength and flexural strength

Classification of Vertical Members

	17	
	• 1	

Classification of vertical members based on failure modes in the second level screening procedure

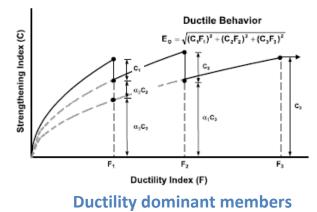
Vertical	Definition	Ductility
member		Index, F
Shear wall	Walls whose shear failure precede flexural yielding	1.0
Flexural wall	Walls whose flexural yielding precede shear failure	1.0-2.0
Shear column	Columns whose shear failure precede flexural yielding, except for extremely brittle columns	1.0
Flexural column	Columns whose flexural yielding precede shear failure	1.27-3.2
Extremely brittle column	Columns whose <i>ho/D</i> are equal to or smaller than 2 and shear failure precede flexural yielding	0.8

Dominant Members in Second Level Screening

1

Ductility-dominant basic seismic index of structure

- Vertical members shall be classified by their ductility indices F into three groups or less
- The index F of the first group shall be taken as larger than 1.0 and the index F of the third group shall be less than the ductility index corresponding to the ultimate deformation of the story
- The minimum ductility index of the vertical members should be used in each group.


Any grouping of members may be adopted so that the index E0 would be evaluated as maximum

Dominant Members in Second Level Screening (Contd.)

$$E_0 = (n+1)/(n+i)\sqrt{(E_1^2 + E_2^2 + E_3^2)}$$

Where

- $E_1 = C_1 F_1$ $E_2 = C_2 F_2$ $E_3 = C_1 F_3$
- $C_1 = \underline{The}$ strength index C of the first group (with small F index).
- $C_2 = The strength index C of the second group (with medium F index).$
- $C_3 =$ The strength index C of the third group (with large F index).
- $F_1 =$ <u>The</u> ductility index *F* of the first group.
- $F_2 = The ductility index F$ of the second group.
- F_3 = The ductility index *F* of the third group.

Dominant Members in Second Level Screening (Contd.)

19

Strength-dominant basic seismic index of structure

- ductility index of the first group F1 shall be selected as the cumulative point of strength.
- contribution of strength indices of only the vertical members with larger ductility indices than that of the first group shall be considered

Any grouping of members may be adopted so that the index E0 would be evaluated as maximum

 $E_0 = (n+1)/(n+i) (C_1 + \Sigma \alpha_j C_j) F_1$

α_j= Effective Strength Factor in the j-th group at the ultimate deformation R1 corresponding to the first group (Ductility Index F1)

Dominant Members in Second Level Screening (Contd.)

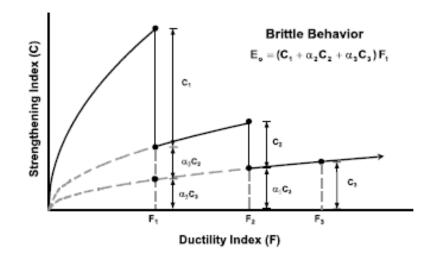
Effective Strength Factor

Cumulative point of the first group $F_1 = 0.8$ (Drift angle $R_1 = R_{500} = 1/500$)						
	F_1	F ₁ =0.8				
	R_1	$R_1 = R_{500}$				
	Shear $(R_{su}=R_{250})$	α_s				
Second and	Shear ($R_{250} < R_{su}$)	α_s				
higher groups	Flexural $(R_{my}=R_{250})$	0.65				
	Flexural ($R_{250} < R_{my} < R_{150}$)	α_m				
	Flexural $(R_{my}=R_{150})$	0.51				
	Flexural and shear walls	0.65				

Dominant Members in Second Level Screening (Contd.)

Effective Strength Factor (Contd.)

Cumulative point of the first group $F_1 \ge 1.0$ (Drift angle $R_1 \ge R_{250} = 1/250$)						
	F_1	$F_1 = 1.0$	$1.0 < F_1 < 1.27$	$1.27 \le F_1$		
	R_1	R ₂₅₀	$R_{250} < R_1 < R_{150}$	$R_{150} \leq R_1$		
	Shear $(R_{su}=R_{250})$	1.0	0.0	0.0		
Second and higher groups	Shear $(R_1 \leq R_{su})$	α_s	α_s	0.0		
	Flexural $(R_{my} \leq R_1)$	1.0	1.0	1.0		
	Flexural $(R_1 \leq R_{my})$	α_m	α_m	1.0		
	Flexural	0.72	α_m	1.0		
	$(R_{my}=R_{150})$					


Dominant Members in Second Level Screening (Contd.)

22

- = Effective strength factor of a shear column, calculated by α_{S} $\alpha_{S} = Q_{(F1)}/Q_{su} = \alpha_{m} Q_{mu}/Q_{su} \leq 1.0$ Effective strength factor of a flexural column, calculated by = α_m $\alpha_m = Q_{(F1)}/Q_{mu} = 0.3 + 0.7 \times R_1/R_{mv}$ Drift angle at flexural yielding, calculated by Eq. (A1.3-1) in the R_{mv} Supplementary Provisions 1. Drift angle at shear strength, calculated by Eq. (A1.2-11) in the R_{su} Supplementary Provisions 1. Shear force at the deformation capacity R_1 of a column in the = $Q_{(F1)}$ second and higher groups.
- Q_{su} = Shear strength of a column in the second and higher groups (3.2.2).
- Q_{mu} = Shear force at flexural yielding of a column in the second and higher groups (3.2.2).

Dominant Members in Second Level Screening (Contd.)

Brittle dominant members

Seismic Index Is after rehabilitation

- If the structural seismic capacity I_S is more than required seismic capacity I_{SO}, the structure is judged safe against earthquake motion observed in 1968 Tokachi Oki earthquake, 1978 Miyagi Ken Oki earthquake or the 1995 Hyogo ken Nanbu earthquake.
- If Seismic Index I_S is less than index I_{SO} but more than
 0.65 I_{SO} the structure is thought to possess reasonable seismic resistance, but the vulnerability assessment by the second level screening is recommended.

Conclusion

Seismic evaluation technique developed in Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 is basically based on the existing RCC buildings of Japan, so some parameters may be modified for using it in any other country.

References

26

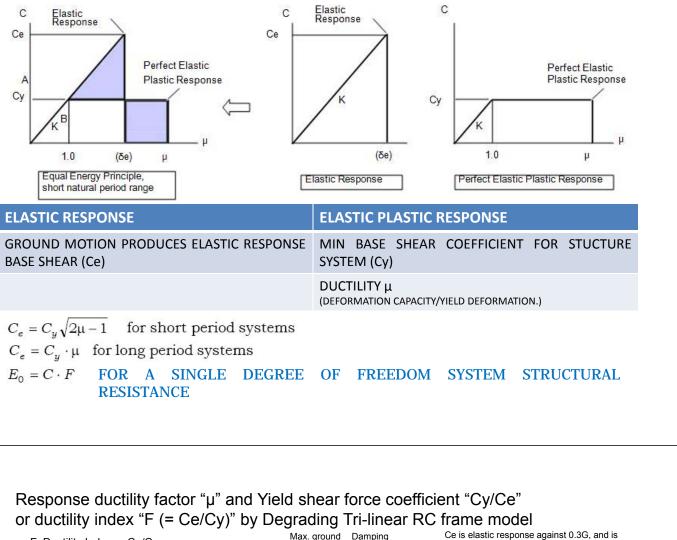
- Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001, Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001 and Technical Manual for Seismic Evaluation and Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001
- Lecture Notes of IISE, BRI for Earthquake Engineering Course by Shunsuke Sugano, Professor Emeritus, Hiroshima University, Visiting Research Fellow, IISEE, BRI.
- Shunsuke OTANI, Professor, University of Tokyo, "Seismic Vulnerability of Reinforced Concrete Building."
- Toshimi Kabeyasawa, Professor, University of Tokyo, "Improvement of Seismic Performance of Reinforced Concrete School Building in Japan Part1 Damage Survey and Performance Evaluation after 1995 Hyogo- Ken Nambu Earthquake.

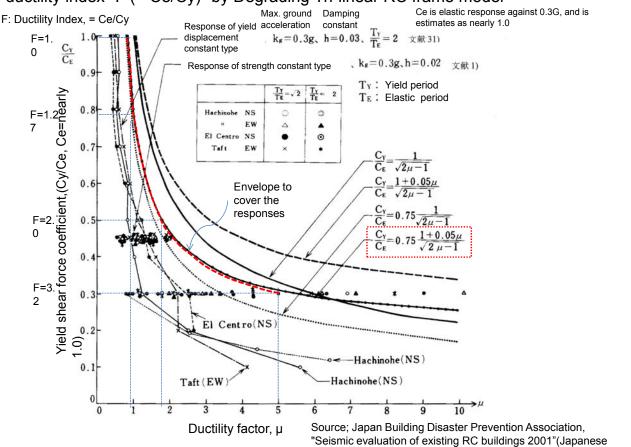
25

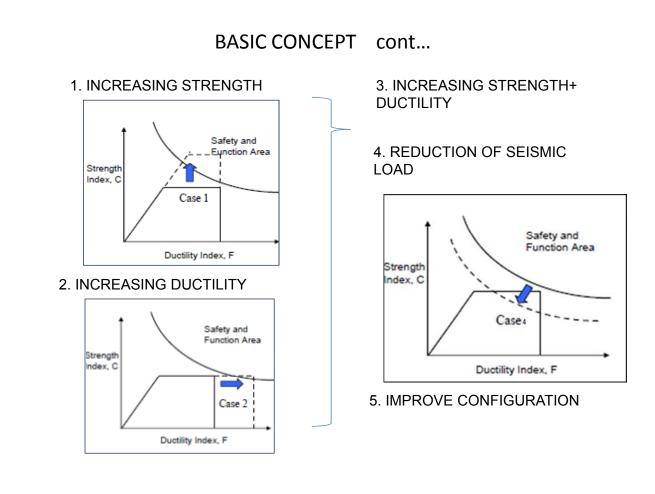
SHORT TRAINING COURSE ON SEISMIC ASSESSMENT, RETROFIT DESIGN AND CONSTRUCTION OF RC BUILDING

TITLE OF LECTURE

CONCEPT ON RETROFITTING DESIGN


PRESENTED BY


ANUP KUMAR HALDER SUB DIVISIONAL ENGINEER PWDDESIGN DIVISION-V. & TEAM MEMBER WORKING TEAM-II


OUTLINE

- 1. BASIC CONCEPT
- 2. SIGNIFICANCE OF "C"
- 3. SIGNIFICANCE OF "F"
- 4. SHEAR COLUMN
- 5. FLEXURAL COLUMN
- 6. STRENGTH DOMINANT & DUCTILITY DOMINANT STRUCTURE
- 7. SIGNIFICANCE OF "Eo"
- 8. ESTABLISHMENT OF "Iso" VALUE
- 9. IMPORTANCE OF "SD"
- 10. IMPORTANCE OF "T"
- 11. JUDGEMENT OF "Iso" VALUE
- 12. SEISMIC PERFORMANCE LEVEL AS PER ASCE-41
- 13.ANALYSIS & ACCEPTANCE CRITERION ASCE-41
- **14. RETROFITTING METHODS**
- **15. STRENGTHENING EFFECT OBSERVED**
- **16. STRATEGIES & PLANNING**

BASIC CONCEPT

SIGNIFICANCE OF "C"

LATERAL STRENGTH OR LOAD CARRYING CAPACITY OF A MEMBER

$$C_{c} = \frac{\tau_{c} \cdot A_{c}}{\Sigma W} \cdot \beta_{c} \qquad \beta_{c} = \frac{F_{c}}{20} \qquad F_{c} \le 20 \qquad \tau_{c} = 1 \text{ N/mm}^{2} \qquad 1 \text{ST LEVEL}$$

$$\beta_{c} = \sqrt{\frac{F_{c}}{20}} \qquad F_{c} > 20$$

$$\frac{\text{Story}}{20} \qquad \Sigma W \qquad T. \text{ Ac (mm^{2})} \qquad f'c(\text{Mpa}) \qquad (n+1)/(n+i) \qquad \beta_{c} \qquad Cc$$

Story	Σw	T. Ac (mm²)	f'c(Mpa)	(n+1)/(n+i)	β _c	Сс
5	3021	5625000	17	0.60	0.85	1.58
4	7703	5625000	17	0.67	0.85	0.62
3	12386	5625000	17	0.75	0.85	0.39
2	17068	5625000	17	0.86	0.85	0.28
1	21750	5625000	17	1.00	0.85	0.22

	Frame	FL	∑W (KN)	Qu	С	
$C = \underline{Q_u}$		5	525	199	0.3795	
$C = \frac{\mathcal{Q}_u}{\sum W}$		4	1050	211	0.2013	2 ND LEVEL
		3	1557	223	0.1435	
		2	2082	235	0.1131	
	2A	1	2624	248	0.0943	

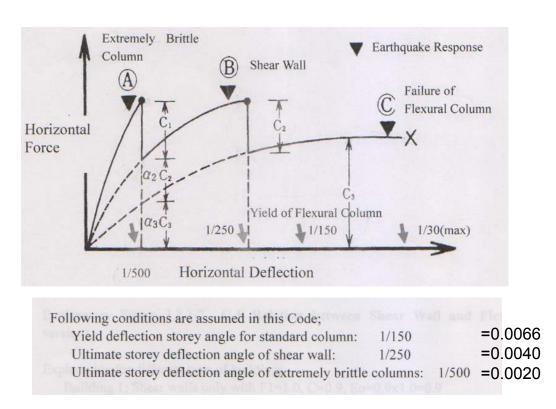
DEFORMATION CAPACITY OF STRUCTURAL MEMBER

Vertical member	Ductility index F
Column $(h_0/D>2)$	1.0
Extremely short column $(h_0/D \le 2)$	0.8
Wall	1.0

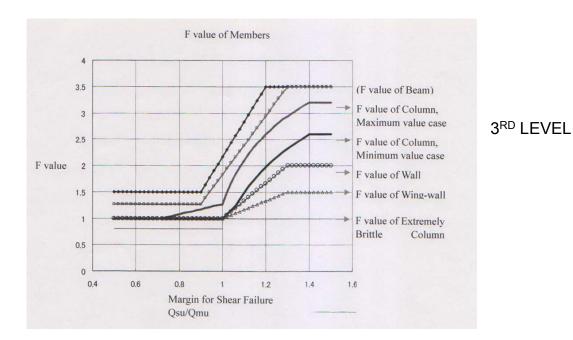
1ST LEVEL

SHEAR COLUMN

$$F = 1.0 + 0.27 \frac{R_{su} - R_{250}}{R_y - R_{250}}$$


FLEXURAL COLUMN

$$F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}} \qquad \qquad R_{mu} < R_y$$


$$F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2 \qquad \qquad R_{mu} \ge R_y$$

2ND LEVEL

SIGNIFICANCE OF "F" cont..... (STANDARD DEFORMATION ANGLE)

SIGNIFICANCE OF "F" cont.... (Margin of shear failure)

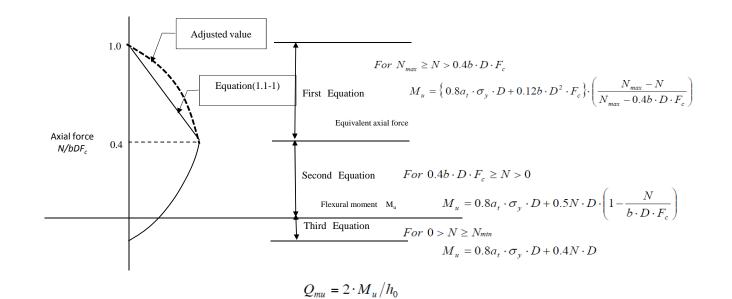
SIGNIFICANCE OF "F" cont.... (Based on Ductility ratio)

DUCTILITY CAPACITY OF A FLEXURAL COLUMN :

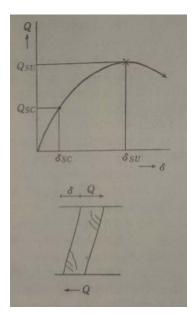
$$1 \le \mu = \mu_0 - k_1 - k_2 \le 5$$

 $\mu_{0} = 10 \left(\frac{c Q_{su}}{c Q_{mu}} - 1 \right)$ $k_{c} = 2.0 \qquad (K1=1; \text{ WHEN HOOP SPACING 8TIMES THE DIA OF MAIN RE BAR})$ $k_{2} = 30 \left(\frac{c^{\tau}_{mu}}{F_{c}} - 1 \right) \ge 0$ $c^{\tau}_{mu} = \frac{c Q_{mu}}{(b \cdot j)}$

DUCTILITY INDEX F=1; IF FOLLOWING CONDITION IS SATISFIED

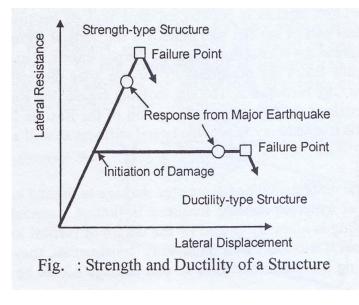

$$N_s/(bDF_c) > 0.4$$

$$_c \tau_{mn}/F_c > 0.2$$

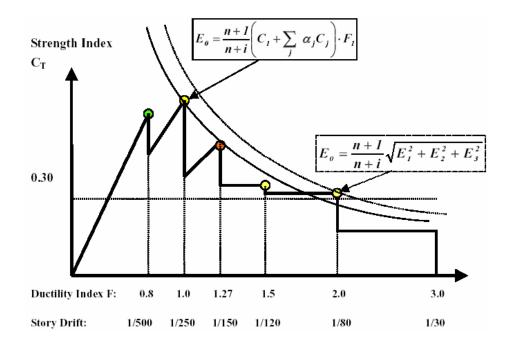

$$P_t > 1\%$$

$$h_o/D \le 2.0$$

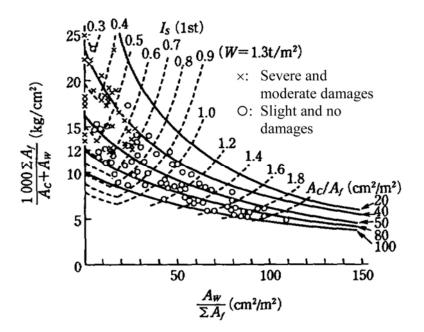
FLEXURAL COLUMN


SHEAR COLUMN

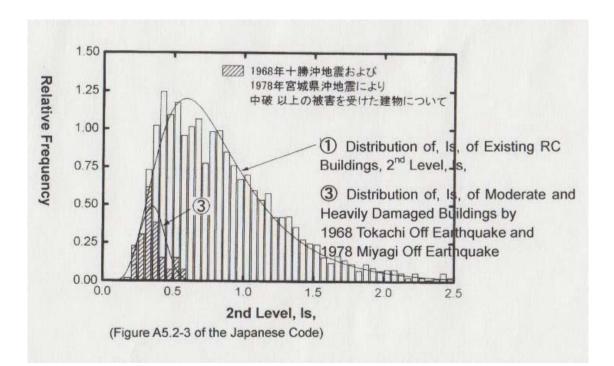
MAIN REBAR RATIO, CONCRETE STRENGTH $Q_{su} = \begin{cases} \frac{0.053 p_t^{0.23} (18 + F_c)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot_s \sigma_{wy}} + 0.1 \sigma_0 \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$


FROM EMPIRICAL EQUATION

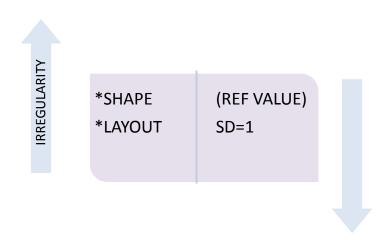
STRENGTH TYPE & DUCTILITY TYPE STRUCTURE


SOURCE: PROFESSOR SHUNSUKE OTANI'S PAPER

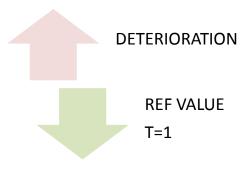
SIGNIFICANCE OF E0


Idealized relations of lateral strength and ductility for seismic index SOURCE: PROFESSOR KABAYASAWA'S PAPER

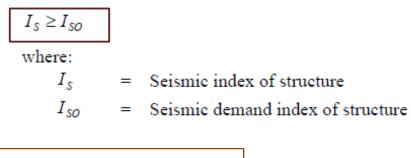
ESTABLISHMENT OF Iso (based on 1st level)


ESTABLISHMENT OF Iso (based on 2nd level)

IMPORTANCE OF \mathbf{S}_{D}

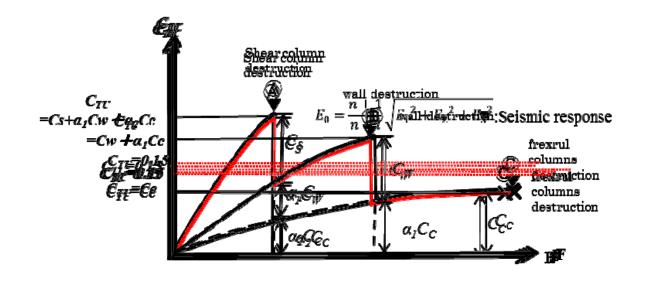

IT MODIFY SEISMIC INDEX BY QUANTIFYING THE EFFECT OF

- HORIZONTAL BALANCE
- ELEVATION BALANCE
- ECCENTRICITY
- STIFFNESS



IMPORTANCE OF **T**

TIME INDEX EVALUATES THE EFFECTS OF STRUCURAL DEFECTS •STRUCTURAL CRACKING AND DEFLECTION •DETERIORATION AND AGING.


JUDGEMENT

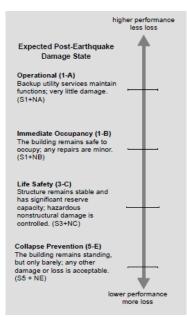
 $C_{TU} \cdot S_D \geq 0.3 \cdot Z \cdot G \cdot U$

 C_{TU} = Cumulative strength index at the ultimate deformation of structure. S_D = Irregurality index.

JUDGEMENT

 $I_{SO} = E_S \cdot Z \cdot G \cdot U$

 E_s = Basic seismic demand index of structure, standard values of which shall be selected as follows regardless of the direction of the building:


 $E_s = 0.8$ for the first level screening,

 $E_s = 0.6$ for the second level screening, and

 $E_s = 0.6$ for the third level screening.

- Z = Zone index, namely the modification factor accounting for the seismic activities and the seismic intensities expected in the region of the site.
- G = Ground index, namely the modification factor accounting for the effects of the amplification of the surface soil, geological conditions and soil-and-structure interaction on the expected earthquake motions.
- U = Usage index, namely the modification factor accounting for the use of the building.

SEISMIC PERFORMANCE LEVELS

TARGET BUILDINGS PERFORMANCE LEVEL (ASCE-41)

PERFORMANCE LEVEL ASCE 41 Table C1-2. Damage Control and Building Performance Levels

Structural Performance Levels Life Safety Collapse Prevention Immediate (S-5) (S-3) Occupancy (S-1) Elements Туре Concrete Frames Primary Extensive cracking and hinge Extensive damage to beams. Minor hairline cracking. Limited yielding possible at a few locaformation in ductile elements. Spalling of cover and shear cracking (< 1/8-in. width) for tions. No crushing (strains Limited cracking and/or splice ductile columns. Minor spalling below 0.003). failure in some nonductile columns. Severe damage in in nonductile columns. Joint short columns. cracks < 1/8 in. wide. Secondary Extensive spalling in columns Extensive cracking and hinge Minor spalling in a few places in formation in ductile elements. ductile columns and beams. (limited shortening) and beams. Limited cracking and/or splice Flexural cracking in beams and Severe joint damage. Some reincolumns. Shear cracking in failure in some nonductile forcing buckled. joints < 1/16-in. width. columns. Severe damage in short columns. 1% transient; 2% transient: Drift 4% transient or permanent. 1% permanent. negligible permanent.

Table C1-3. Structural Performance Levels and Damage^{1,2,3}—Vertical Elements

 Table C1-4. Structural Performance Levels and Damage^{1,2}—Horizontal Elements

 Table C1-6. Nonstructural Performance Levels and Damage¹—Mechanical, Electrical, and

 Plumbing Systems/Components

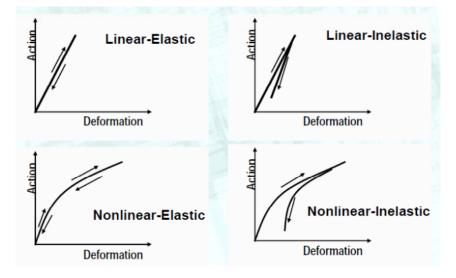
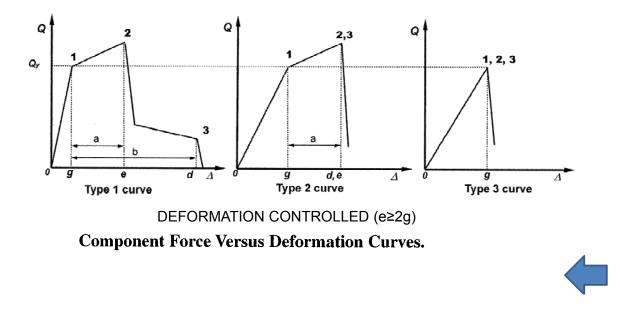
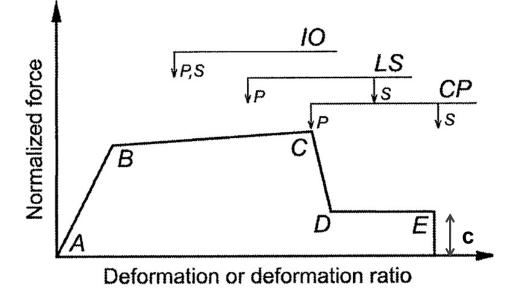

Table C1-5. Nonstructural Performance Levels and Damage¹—Architectural Components

Table C1-7. Nonstructural Performance Levels and Damage¹-Contents

Table C1-8. Target Building Performance Levels and Ranges


ANALYSIS PROCEDURE (ASCE-41)

- 1. LINEAR STATIC
- 2. LINEAR-DYNAMIC
- 3. NONLINEAR STATIC
- 4. NONLINEAR-DYNAMIC

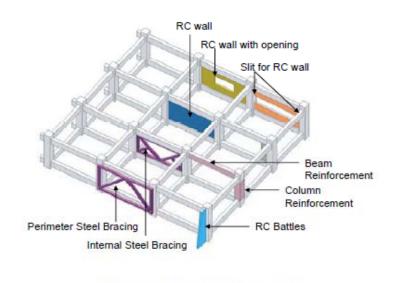


ACCEPTANCE CRITERIA (ASCE-41)

- PRIMARY COMPONENT (P)
- SECONDARY COMPONENT (S)
- DEFORMATION CONTROLLED ACTION
- FORCE CONTROLLED ACTION

ACCEPTANCE CRITERIA cont....(ASCE-41)

COMPONENT OR ELEMENT DEFORMATION ACCEPTANCE CRITERIA

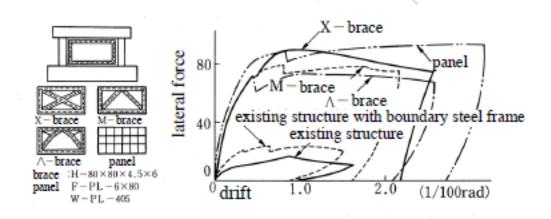

NUMERICAL ACCEPTANCE CRITERIA FOR COLUMNS, ASCE-41

	Modeling Parameters ⁴ Acceptance Criteria ⁴										
						Plastic Rotation Angle, radians Performance Level				s	
					Residual	Component Type					
			Plastic Rotation Angle, radians		Strength Ratio		Primary		Secondary		
Conditions		a	b	с	10	LS	CP	LS	CP		
i. Colum	ns controlle	d by flexure ¹									
$\frac{P}{A_g f_c'}$	Trans. Reinf. ²	$\frac{V}{b_w d \sqrt{f_c'}}$									
≤ 0.1	с	≤ 3	0.02	0.03	0.2	0.005	0.015	0.02	0.02	0.03	
≤ 0.1	С	≥6	0.016	0.024	0.2	0.005	0.012	0.016	0.016	0.024	
≥ 0.4	С	≤ 3	0.015	0.025	0.2	0.003	0.012	0.015	0.018	0.025	
≥ 0.4	С	≥6	0.012	0.02	0.2	0.003	0.01	0.012	0.013	0.02	0.0066
≤ 0.1	NC	≤ 3	0.006	0.015	0.2	0.005	0.005	0.006	0.01	0.015	(1/150
≤ 0.1	NC	≥6	0.005	0.012	0.2	0.005	0.004	0.005	0.008	0.012	(1/130
≥ 0.4	NC	≤ 3	0.003	0.01	0.2	0.002	0.002	0.003	0.006	0.01	
≥ 0.4	NC	≥6	0.002	0.008	0.2	0.002	0.002	0.002	0.005	0.008	
ii. Colum	ins controlle	d by shear ^{1, 3}	3								
All cases ⁵ – –			-	-	-	-	-	.0030	.0040	0.0040	
		ed by inadequ	late devel	opment or	splicing along	the clear	height ^{1,3}				(1/250)
Hoop spacing ≤ d/2			0.01	0.02	0.4	0.005	0.005	0.01	0.01	0.02	
Hoop spacing > d/2		0.0	0.01	0.2	0.0	0.0	0.0	0.005	0.01		
iv. Colun	nns with axia	al loads exce	eding 0.70	, 1, 3							
Conforming hoops over the entire length			0.015	0.025	0.02	0.0	0.005	0.01	0.01	0.02	
All other cases			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

RETROFITTING METHODS

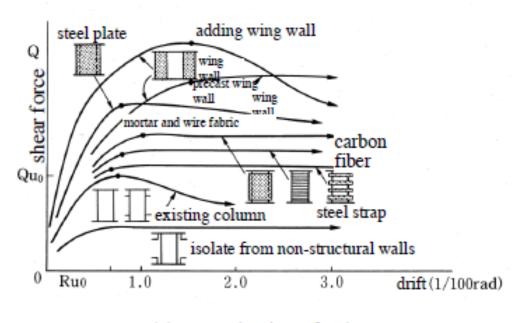
A. STRENGTH UPGRADING	1. ADDING WALL
	2. STEEL WITH FRAME
	3. EXTERIOR STEEL
	FRAME
	4. STRUCTURAL FRAME
	5. OTHERS
B. DUCTILITY UPGRADING	1. RC JACKETING
	2. STEEL JACKETING
	3. FRP WRAPING
C. PREVENTION OF	1. IMPROVEMENT OF VIBRATION PROPERTY
DAMAGE CONNECTION	2. IMPROVEMENT OF EXTREME BRITTLE
	MEMBER
D. REDUCTION OF SEISMIC	1. MASS REDUCTION
FORCES	2. SEISMIC ISOLATION
TOROEO	
	3. STRUCTURAL RESPONSE DEVICE
E. STRENGTHENING OF	1. STRENGTHENING FOUNDATION BEAM
FOUNDATION	2. STRENGTHENING OF
FOUNDATION	PILE

RETROFITTING METHODS cont..



Building Contractors Society (BCS), Japan 'Seismic Retrofitting Brochure 2006'

STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST


STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST cont..

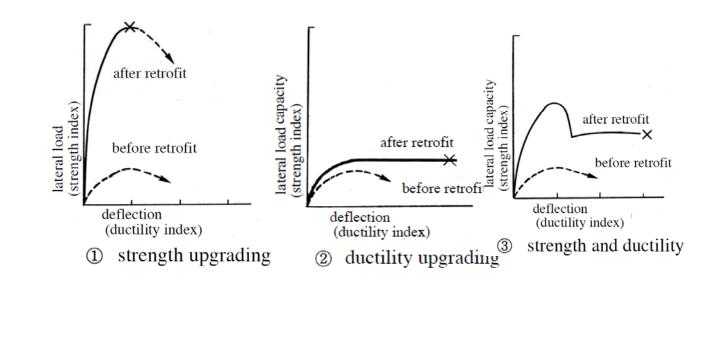
(b) strengthened structure with steel brace with boundary steel frame

Figure TN.9 Strengthening effect observed in previous structural tests (quoted from the figure on page 73 in the commentary of 2.1.2 of the Guidelines of 2001 Japanese version)

STRENGTHENING EFFECT OBSERVED IN STRUCTURAL TEST cont....

(c) strengthening of column

Figure TN.9 Strengthening effect observed in previous structural tests (quoted from the figure on page 73 in the commentary of 2.1.2 of the Guidelines of 2001 Japanese version)

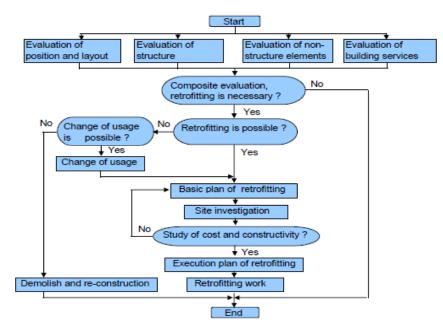

STRATEGIES

- IMPROVING REGULARITIES
- STRENGTHENING
- DUCTILITY
- DAMPING
- MASS REDUCTION
- CHANGING USE

DESIGN PROCEDURE

- PLANNING
- STRUCTURAL DESIGN
- DETAILED DESIGN
- EVALUATION OF RETROFIT EFFECT

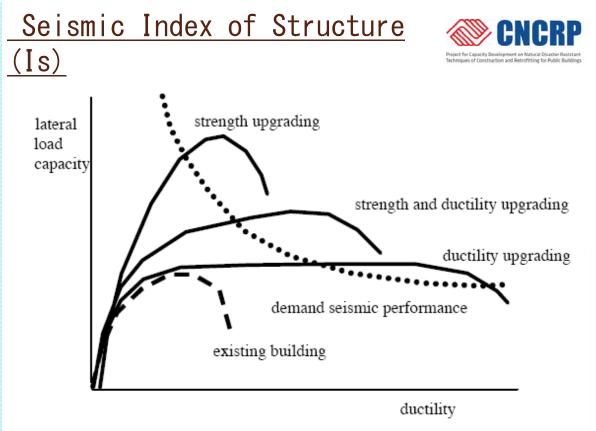
PLANNING & STRUCTURAL DESIGN cont..



RETROFITTING DESIGN METHODS

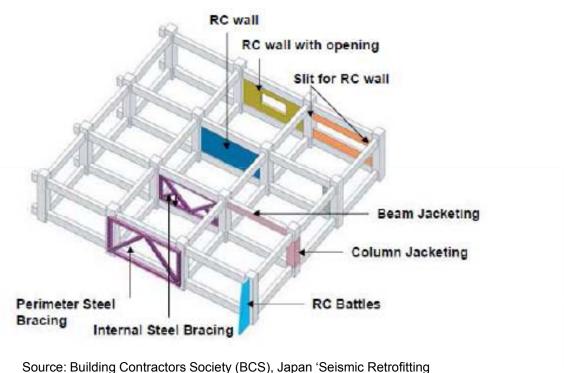
MD. MOMINUR RAHMAN EXECUTIVE ENGINEER PUBLIC WORKS DEPARTMENT AND TEAM MEMBER, COMPONENT-2, CNCRP PROJECT

A flow chart of Seismic Evaluation and Retrofitting for public buildings (facilities), Japan



Source: Building Integrity Center, 1996 "Guideline and explanation of composite seismic evaluation and retrofitting for public facilities (in Japanese)"

Methods of Retrofitting


Types of Retrofitting Methods						
No.	Description of Retrofitting Methods	Improvement of Strength	Improvement of Ductility	Improvemen of Structural Balance		
1	Steel Framed Bracing	0				
2	Infilling New RC Shear Wall into Open Frame	0		0		
3	Increasing Thickness of Existing Shear Wall	0		0		
4	Infilling Steel Plate Wall into Open Frame	0		0		
5	Constructing New RC Wing Wall to RC Column	0				
6	Constructing External Frame	0				
7	Constructing External Buttress	0				
8	Steel Plate Jacketing around RC Column		0			
9	Carbon Fiber (Sheet / Strand) Wrapping around RC Column		0			
10	Concrete Jacketing around RC Column	0	0			
11	Providing New Selsmic Slit		0	0		

Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),

Methods of Retrofitting

Brochure 2006'

Basics of Retrofitting Design

Seismic Index of Structure, $Is = EoS_DT$ (1) whrere: Eo: Basic Seismic Index of Structure S_D : Irregularity Index T: Time Index Eo as the larger one from eqs (4) and (5). Each equation is calculated within the limitation of the maximum ductility index. Eo of ductility-dominant Structure, $Eo = (n+1/n+i)^* \sqrt{(C1^*F1)^2 + (C2^*F2)^2 + (C3^*F3)^2}$ (4)

 $Eo = (n+1/n+i)^{*} (C1+\Gamma i)^{2} + (C2+2)^{2} + (C3+3)^{2}$ (4) Eo of strength-dominant Structure, $Eo = (n+1/n+i)^{*} (C1+\Sigma \alpha j C j)F1$ (5)

whrere: C : Strength Index,

F: Ductility Index, Ductility Index is estimated mainly depending on the margin of members against shear failure.

n+1/n+i : Storey-shear modification factor

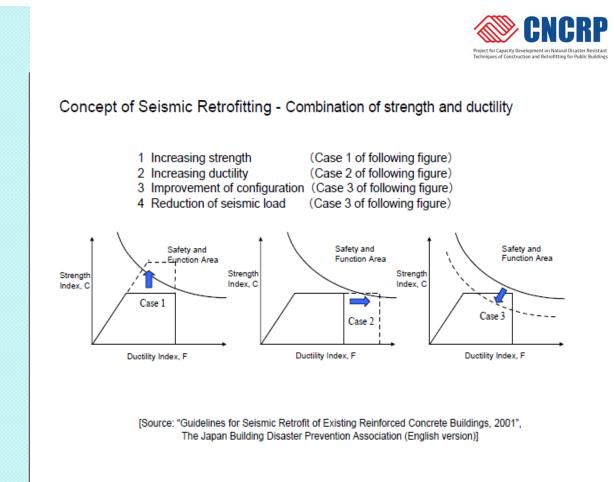
a: Effective strength factor

 $C = Qu / \Sigma W$ (12)

Qu :Ultimate lateral load-carrying capacity of the vertical members in the storey concerned

SW: Total weight supported by the storey concerned

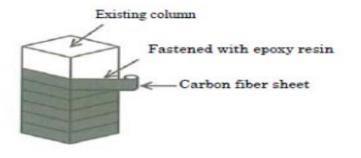
Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),



- E_s = Basic seismic demand index of structure
- Z = Zone index
- G = Ground index
- U = Usage index

Check no -2: C_{TU} . $S_D \ge 0.3 . Z . G . U$ C_{TU} = Cumulative strength index at ultimate deformation of structure S_D = Irregularity index

Source: Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, 2001 (English version, 1st edition),



Outline of retrofitting method

1.Carbon Fiber Sheet Wrapping around RC Column

Existing columns in buildings are wrapped with carbon fibre sheets

STRENGTH OF COLUMN AFTER CARBON FIBER WRAPPING

Shear strength of Column

 $Q_{su} = [0.053 P_{t2}^{0.23}(F_{c1}+18)/(M/Q d+0.12)]$

+0.85 Sqrt(P_wσ_{wy}+ P_{wf}σ_{fd})+0.1σ_o]bj

 p_{t2} = tensile reinforcement ratio of existing column in %

p_w= shear reinforcement ratio of existing column in decimal

p_{wf}= shear reinforcement ratio of carbon fiber sheet in decimal

 $\rm F_{c1}$ =compressive strength of concrete for existing structure, N/mm^2 M/ Qd ranges from 1 to 3 and ~ j= 0.8D

b= width of column and D= depth of column

 $\sigma_{0}\text{=}axial$ compressive stress and maximum value 7.8 N/mm^{2}

d= effective depth of column

 $\sigma_{\rm fd}\text{=}\text{tensile}$ strength of carbon fiber sheet for shear design

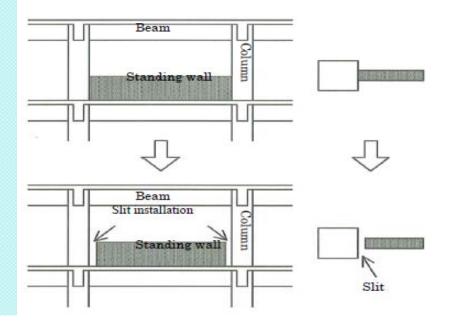
Retrofitting with Carbon Fiber Wrapping

Main features of Carbon Fiber Wrapping:

•Carbon fiber sheet is wrapped with epoxy resin around existing column.

- •This method is done for upgrading ductility.
- •Construction shall be done by skilled worker since performance of this method is highly dependent construction quality

•Overlap of carbon fiber sheet shall be long enough to ensure the rupture of the material.


Kensetsu Kaikan Building

2. Providing New Seismic Slit

Slits (open joint) are provided between columns and attached

standing walls or wing walls

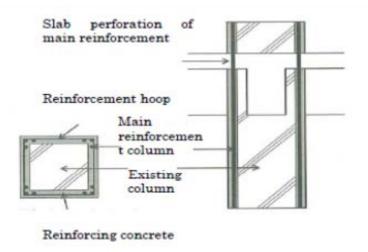
Retrofitting with Structural Slit

Main features of Structural slit:

•Structural slit may be provided in brick wall or RC wall adjacent to column.

•Improve ductility by avoiding short column.

•Secure safety against out of plane behavior of wall to be cut.


•Secure water proofing performance.

3: Concrete Jacketing around RC Column

Reinforced concrete of a thickness of around 10-15cm is jacketed around

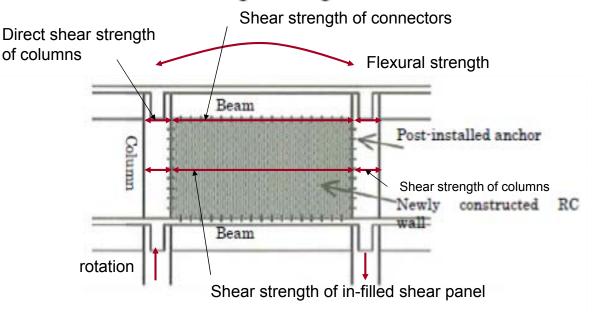
existing building columns

STRENGTH OF COLUMN AFTER RC JACKETING Ultimate Flexural Strength of Jacketed Column $M_u = a_t \sigma_x g + a_{t2} \sigma_{y2} g_2 + 0.5 \text{ N} D_2[1-N/(b_2D_2F_{c1})]$ Shear force by flexural strength Qmu = 2Mu/h Ultimate Shear Strength of Jacketed Column $Q_{su} = \phi [0.053 P_{t2}^{0.23}(F_{c1}+18)/(M/Q d_2+0.12)$ +0.85 Sqrt($P_{w},\sigma_{wx} + P_{w2},\sigma_{wy2}$)+0.1 N/b₂D₂]0.8 b₂D₂ F_{c1} =compressive strength of concrete for existing structure, N/mm² p_{t2} =tensile reinforcement ratio of jacketed column in %

Retrofitting with Column Jacketing

Main features of RC column jacketing:

- •Cross section of existing column is increased.
- •Usual thickness of jacket is 10 to 15 cm with reinforced concrete.
- •Retrofit to improve ductility only.
- •Retrofit to improve both ductility and strength.
- •In case ductility upgrading provide slit at top and bottom of the column.
- •In case of strength upgrading provide shear key.



Kensetsu Kaikan Building

4: Infilling New RC Shear Wall into Open Frame

Reinforced concrete walls (RC walls) are newly constructed inside existing building column/beam frames

CAPACITY OF INFILLED SHEAR WALL

Shear strength of column:

 wQ_{su} =min { wQ'_{su} + 2 $\propto Q_{c}, Q_{j}$ +p Q_{c} + $\propto Q_{c}$,}

Shear strength of infilled shear panel

$$wQ'_{su} = \max(\rho_w, w\sigma_y, \frac{F_{cw}}{20} + 0.5\rho_w. w\sigma_y).t_w.l'$$

 Q_c =Smaller value of the other column between

the shear force at the yielding and shear strength. $p_w, w\sigma_y$ = wall reinforcement ratio and yield strength of wall bar, N/mm²

 F_{cw} = concrete strength of installed wall panels, N/mm2

 $t_{w}\!,$ l'= wall thickness and clear span of installed wall panel, mm α = reduction factor, 1 for shear column and 0.7 for flexural column

 Q_j =Sum of the shear strengths of connectors underneath the beam pQ_c =Direct shear strength of column $=K_{min}.\tau_0. b_e.D$ K_{min} = 0.34/(.52+a/D) b_e =effective width of columns, D=depth of columns, τ_0 = f(σ , F_{c1}) σ =p_g. $\sigma_y + \sigma_0$ p_g = ratio of a_g to $b_e.D$ σ_y =yield strength of longitudinal bars of a column σ_0 =N/b_e.D

Ultimate flexural strength

To

 $wM_{u} = a_{t.} \sigma_{sy} l_{w} + 0.5 \sum (a_{wy} \sigma_{wy}) l_{w} + 0.5 N l_{w}$

 a_t , $\sum a_{wy}$ = cross sectional area of main bars of a boundary column and Vertical bars in the wall, respectively in mm²

 σ_{sy} , σ_{wy} = yield strength of longitudinal bars of a boundary column and Vertical bars in the wall, respectively (N/mm²)

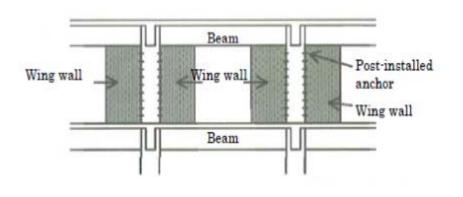
N= total axial force in the boundary columns

 I_w = distance between the centre of the boundary columns of the wall, mm

Retrofitting with Shear Wall

Main features of Shear wall:

- •This method is done for strength upgrading.
- •Uplift strength of wall shall not be less than shear strength.
- •Check structural balance i.e. eccentricity.
- •Check capacity of solid shear wall as well as connections with boundary frame.
- •Thickness of wall shall not be less than 15 cm but not more than the width of the beam.
- •Reduce lighting and ventilation or subdivide inner spaces.



Meguro-ward Government Office

5: Constructing New RC Wing Wall to RC Column

Wing walls of reinforced concrete constructions are newly established in existing building columns

CAPACITY AFTER ADDING WING WALL:

Ultimate Flexural Strength

$$M_{u} = (0.9 + \beta)a_{t}\sigma_{y}D + 0.5ND\{1 + 2\beta - \frac{N}{\alpha_{\varepsilon}bDF_{ct}}(\frac{\alpha_{t}\sigma_{y}}{N} + 1)^{2}\}$$

Ultimate Shear Strength

$$\underline{\mathbf{Q}_{su}} = \frac{\Phi}{\frac{0.053 \rho_{ce}^{0.23} (F_c + 18)}{\frac{M}{Q.d_e} + 0.12}} + 0.85 \sqrt{\rho_{we} \sigma_{wy}} + 0.1 \sigma_{0e} \frac{b_{eje}}{b_{eje}}$$

 $\alpha_e = (1+2\alpha\beta)/(1+2\beta)$

 F_{c1} =compressive strength of concrete for wing wall , N/mm²

N= axial force of column, N

b= width of column, D=depth of column,

at= gross sectional area of main bars of column in tensile side, mm²

 σ_v = yield strength of main bars of column, N/mm² and ϕ =0.8

 F_c =compressive strength of concrete for existing structure, N/mm²

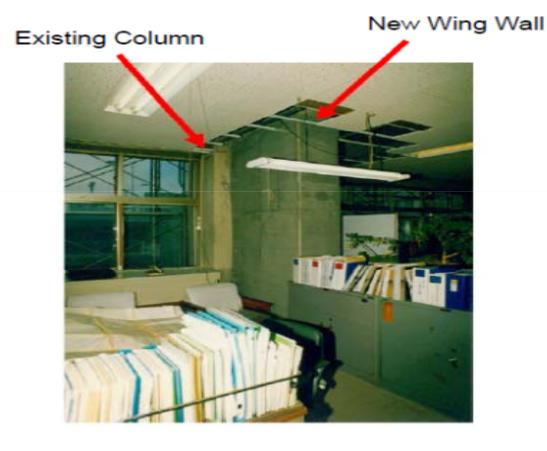
 $p_{te} = 100a_t/(b_e.d_e)$ $b_e = \alpha_e.$ b in mm

 p_{we} . σ_{wy} = p_w , σ_{wy} (b/b_e)+ p_{sh} , σ_{sy} (t/b_e)

 p_w , σ_{wy} = hoop ratio and yield strength of existing column, N/mm² p_{sh} , σ_{sy} =lateral reinforcement ratio of installed wing wall and its yield strength ,N/mm² σ_{oe} = N/b_e. j_e and j_e= 7d_e/8 in mm

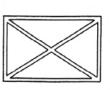
Retrofitting with Wing Wall

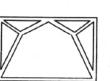
Main features of Wing wall:


•This method is usually done for strength upgrading.

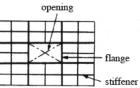
•Seismic performance may be upgraded by changing failure mechanism from column yielding to beam yielding

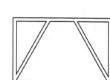
•Not suitable for column with short span beam, ensure clear span/depth ratio is more than 4.

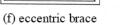

- •Check structural balance i.e. eccentricity.
- •Thickness of wall shall not be less than 20 cm.



Retrofitting with Steel Frame

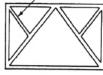


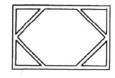

(a) X type brace



(c) mansard type

(e) steel plate wall(panel)





(g) Y type brace

bucking prevention

(b) K type brace

(d) diamond type

Steel bracing:

Steel member

Connection

Headed stud

Post installed anchor

F = 1.5 to 2.0 subject to failure mode of steel bracing , connection and RC frame

Retrofitting with Steel Frame

Main features of Steel frame:

•Steel framed braced/panel or non-frame brace/panel is inserted into existing RC frame.

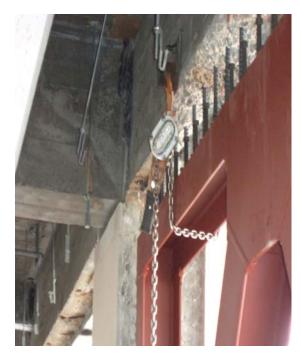
•Resistance mechanism after retrofitting may be-(1) strength dominant type, (2) ductility dominant type (3) strength and ductility dominant type.

•Check structural balance i.e. eccentricity.

•Check local buckling of steel member.

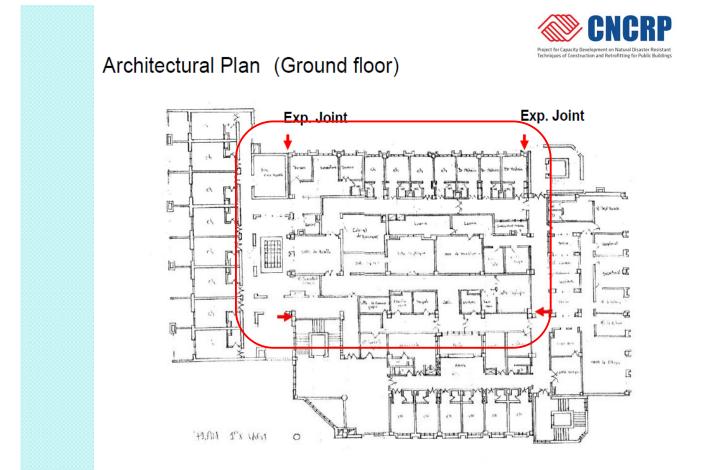
•Check capacity of post installed anchor and studs.

•Lighting and ventilation is not so disturbed.

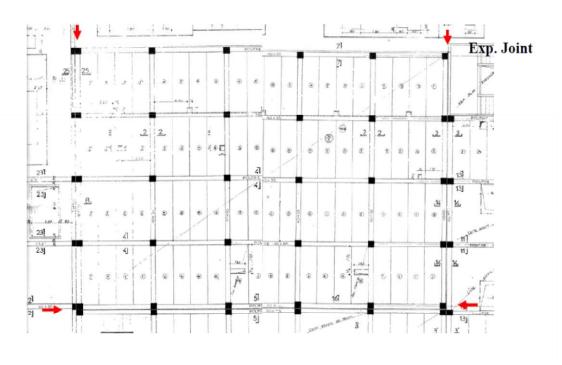

A school building of Japan

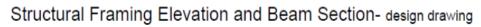
A stadium building of Japan

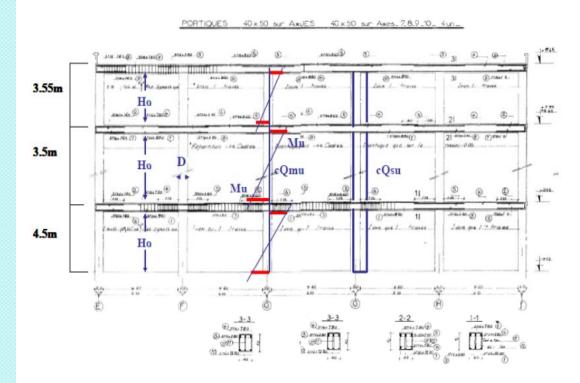
Retrofitting of a school building in Japan


An Example of Seismic Evaluation and Retrofitting of Existing RC Buildings **2nd level seismic screening** is applied, assuming column collapse.

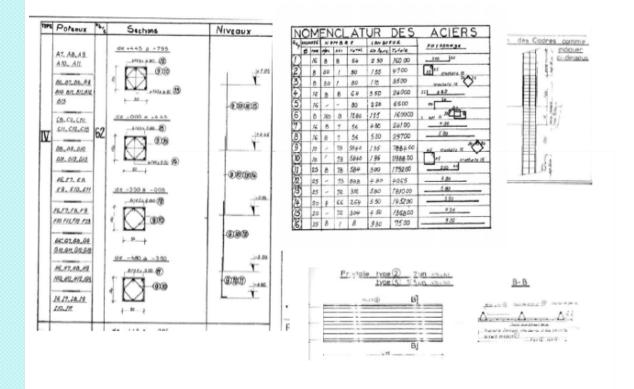
General View of an Essential Hospital in Algiers, Algeria


Source: lecture from Akira INOUE, JICA Expert Team delivered on 09/June/2011




Structural Framing Plan (1st Floor)

One Block of Moment Frame Building is Selected for Seismic Evaluation and Retrofitting



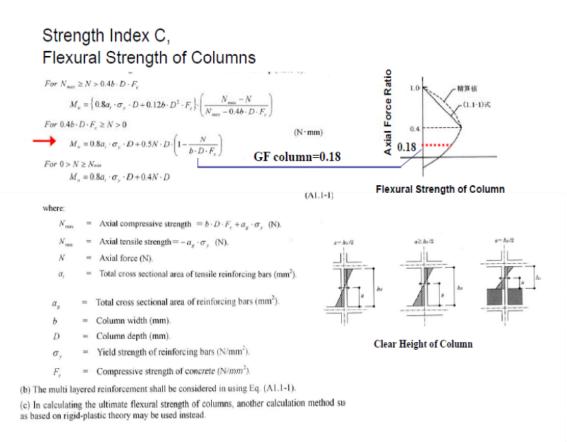
Column Section and Floor Slab System- design drawing

Building Dimensions, Weight of Building and Materials

- Building Dimensions
- X direction 6.0m span x 5=30m, Y direction 5.1m x 4=20.4m (grid line)
- Storey Height GF 4.5m, 1F 3.5m, 2F 3.55m total 11.55m
- Clear Length of Column Y direction 1F 4.0m, 2F 3.0m, 3F 3.05m

Unit Weight per Floor Area (Supposed Condition)

- Roof 11 kN/m² (1.12tf/m²)
- 1st Floor, 2nd Floor 14 kN/m² (1.43tf/m²)


Weight of Building

- Roof 7012kN
- 2nd Floor 8924kN 15936kN (Roof + 3rd floor)
- 1st Floor 8924kN 24860kN (Roof + 3rd + 2nd floor)

• Material (from Design Drawings)

- Re-bar Main Bars High Strength 412N/mm² (4200kg/cm²) Φ≦20nn
 - 392N/mm² (4000kg/cm²) Φ>20nn
 - Hoops, Stirrups Mild Steel 235N/mm² (2400kg/cm²)
- Concrete (28 days strength) 27N/mm2 (275kg/cm²)

Shear Strength of Columns

$$Q_{su} = \left\{ \frac{0.053 p_i^{0.23} (18 + F_c)}{M/(Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot \sigma_{uy}} + 0.1 \sigma_0 \right\} \cdot b \cdot j$$
 (N) (A1.1-2)

where:

d

i

- p_t = Tensile reinforcement ratio (%).
- p_w = Shear reinforcement ratio, $p_w = 0.012$ for $p_w \ge 0.012$.
- σ_{vv} = Yield strength of shear reinforcing bars (N/mm²).
- σ_0 = Axial stress in column (N/mm²).
 - Effective depth of column. D-50mm may be applied.
- $\frac{M}{O}$ = Shear span length. Default value is $\frac{h_0}{2}$.
- $h_0 = \text{Clear height of the column.}$
 - Distance between centroids of tension and compression forces, default value is 0.8D.

(b) If the value of $M/(Q \cdot d)$ is less than unity or greater than 3, the value of $M/(Q \cdot d)$ shall be unity or 3 respectively in using Eq. (A1.1-2). And if the value of σ_0 is greater than 8N/mm², the value of σ_0 shall be 8N/mm² in using Eq. (A1.1-2).

Flexural Strength of Column and Margin against Shear Failure

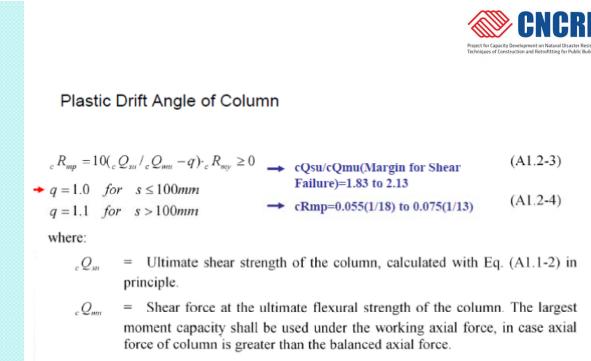
	Internal Co	olumns			External Columns			
	Mu(kN∙ m)	cQmu(k N)	cQsn(k N)	cQsn/cQ mu	Mu(kN∙ m)	cQmu(k N)	cQsn(k N)	cQmu/cQ mu
2F	286	191	349	1.83	250	167	337	2.02
1F	375	250	384	1.53	303	202	356	1.76
GF	451	226	418	1.85	352	176	374	2.13

Mu: Ultimate Flexural Strength of Column (A1.1-1) cQmu: Shear Force at the Ultimate Flexural Strength of Column cQmu=Mu/(h₀/2) cQsn: Ultimate Shear Strength of Column (A1.1-2) cQsn/cQmu: Strength Margin for Shear Failure of Flexural Column

Strength Index (C)

		Internal Co	lumns 12nos	External Col	Total	
	ΣW(kN)	cQmux12	C=cQmux12/Σ W	cQmux18	C=cQmux18/ ΣW	С
2F	7012	2288	0.326	3001	0.428	0.754
1F	15936	3002	0.188	3635	0.228	0.416
GF	24860	2707	0.109	3165	0.127	0.236

ΣW: Total Weight (Dead Load plus Live Load) Supported by the Storey Concerned


C: Strength Index C=Qu/ΣW (12)

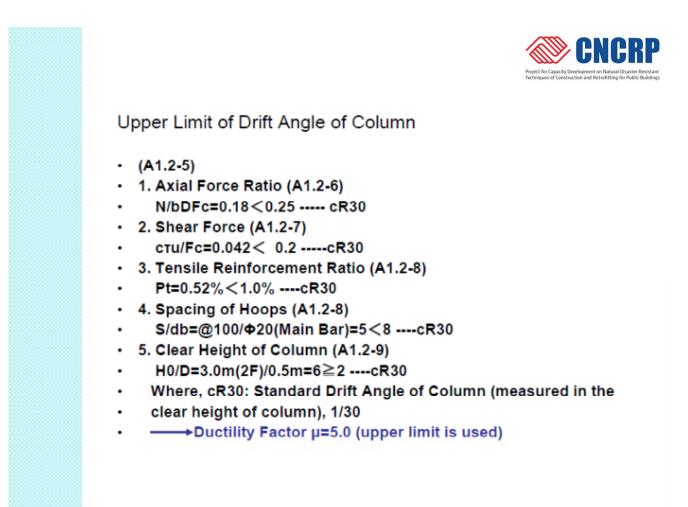
Qu: Ultimate Lateral Load-carrying Capacity of the Vertical Members in the Storey Concerned, (in this case, Qu=cQmu(internal)x12+cQmu(external)x18)

Ductility Index (F), Yield Deflection of Flexural Column

(A1.3-1) $R_{mv} = (h_0 / H_0) \cdot_c R_{mv} \ge R_{230}$ $h_0/H_0 = 1.0$ where, $h_0 / H_0 \le 1.0$ → cRmy=cR₁₅₀=1/150 • $_{c}R_{mv} = _{c}R_{150}$ for $h_{0}/D \ge 3.0$ (A1.3-2) $_{c}R_{my} = _{c}R_{250}$ for $h_{0}/D \le 2.0$ $_{e}R_{mr}$ is set by interporation for $2.0 < h_{o} / D < 3.0$ where: h_0 = Clear height of the column. = Standard clear height of the column from the bottom of the upper floor H_{0} beam to the top of the lower floor slab. Column depth. D = Standard drift angle of the column (measured in the clear height of $_{e}R_{150}$ column), 1/150. = Standard drift angle of the column (measured in the clear height of _c R₂₅₀ column), 1/250. = Standard inter-story drift angle, 1/250. R_{250} Yield drift angle of the column (measured in the clear height of column). _c R_{mv} The value of $_{c}R_{mn}$ shall not be greater than that of $_{c}R_{max}$ specified in the section 1.2(3) of

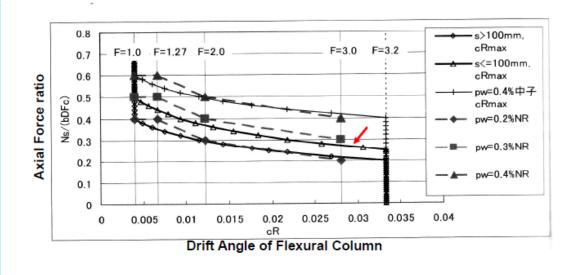
s = Spacing of hoops.

Supplementary Provisions.


Storey Drift Angle at Ultimate Flexural Strength of Column

$$R_{uu} = (h_n / H_0), R_{uu} \ge R_{330}$$
(A1.2-1)
where, $h_0 / H_0 \le 1.0 \longrightarrow h_0 / H_0 = 1.0$, Rmu=cRmu

$$R_{uu} = {}_c R_{uv} + {}_c R_{uv} \le {}_c R_{30} \longrightarrow cRmu=cRmy(1/150) + cRmp(A1.2- (A1.2-2))$$
where:


$$h_0 = Clear height of column.$$

$$H_0 = Standard clear height of column from bottom of the upper floor beam to
top of the lower floor slab.
$$e^{R_{uv}} = Yield drift angle of column (measured in clear height of column),
specified in the section 1.3 of Supplementary Provisions.
$$e^{R_{uv}} = Plastic drift angle of the column (measured in the clear height of column),
specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{uv}} = Standard drift angle of the column (measured in the clear height of column),
specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{30}} = Standard drift angle of the column (measured in the clear height of column), specified in the section 1.2(2) of Supplementary Provisions.
$$e^{R_{30}} = Standard drift angle of the column (measured in the clear height of column), 1/30.
$$R_{250} = Standard inter-story drift angle, 1/250.$$$$$$$$$$$$$$

Upper Limit of Drift Angle of Flexural Column and

Axial Force Ratio

Ductility Index (F) of Flexural Column (i) In case $R_{mn} < R_y$ $F = 1.0 + 0.27 \frac{R_{mu} - R_{250}}{R_y - R_{250}}$ (15)Rmu (ii) In case $R_{mn} \ge R_{v}$ $F = \frac{\sqrt{2R_{mu} / R_y - 1}}{0.75 \cdot (1 + 0.05R_{mu} / R_y)} \le 3.2$ → Rmu/Ry=5.0, F=3.2 (16)where: = Yield deformation in terms of inter-story drift angle, which in R_{v} principle shall be taken as $R_{\nu}=1/150$. Standard inter-story drift angle (corresponding to the ductility = R_{250} index of the shear wall), $R_{250} = 1/250$. = Inter-story drift angle at the ultimate deformation capacity R_{m} flexural failure of the column member, calculated by Eq. (A1.2 in the Supplementary Provisions 1.2(1).

Ductility-dominant Basic Seismic Index of Structure Eo

$$E_0 = \frac{n+1}{n+i} \sqrt{E_1^2 + E_2^2 + E_3^2}$$

$$E_0 = (3+1)/(3+1) \cdot C1 \cdot F1 \quad (GF) \quad (4)$$
where:

$$E_1 = C_1 \cdot F_1.$$

$$E_2 = C_2 \cdot F_2.$$

$$E_3 = C_3 \cdot F_3.$$

$$C_1 = \text{The strength index } C \text{ of the first group (with small F index).}$$

$$C_2 = \text{The strength index } C \text{ of the second group (with medium F index).}$$

$$C_3 = \text{The strength index } C \text{ of the third group (with large F index).}$$

$$F_1 = \text{The ductility index } F \text{ of the first group.}$$

$$F_3 = \text{The ductility index } F \text{ of the third group.}$$

Strength-dominant Basic Seismic Index of Structure Eo

$$E_0 = \frac{n+1}{n+i} \left(C_1 + \sum_j \alpha_j C_j \right) \cdot F_1$$

(5)

where:

 α_{j}

= Effective strength factor in the *j*-th group at the ultimate deformation R_i corresponding to the first group (ductility index of F_1), given in Table 3.

Table 3	Effective strength	factor
---------	--------------------	--------

Cumulative p	point of the first group $F_1 = 0$.	8 (Drift angle $R_1 = R_{500} = 1/500$)
	F_1	F1=0.8
	<i>R</i> ₁	R1=R500
	Shear $(R_{su}=R_{250})$	<i>α</i> _S
Second and	Shear $(R_{250} < R_{SU})$	α_{S}
higher groups	Flexural $(R_{my}=R_{250})$	0.65
	Flexural ($R_{250} < R_{my} < R_{150}$)	α_m
	Flexural $(R_{my}=R_{150})$	0.51
	Flexural and shear walls	0.65

Irregularity Index Sp Table 6

	-			Gi (Grade)		R (adjustm	ent fator)
			1.0	0.9	0.8	Rli	R2i
	а	Regularity	Regular al	Nearly regular a2	Irregular a3	1.0	0.5
Horizontal balance	ь	Aspect ratio of plan	b≤5	5 <b≤8< td=""><td>8<b< td=""><td>0.5</td><td>0.25</td></b<></td></b≤8<>	8 <b< td=""><td>0.5</td><td>0.25</td></b<>	0.5	0.25
	c	Narrow part	0.8≤c	$0.5 \le c < 0.8$	c<0.5	0.5	0.25
	d	Expansion joint *1	1/100≦d	1/200≦d< 1/100	D<1/200	0.5	0.25
	e	Well-style area	e≦0.1	5 <e≦8< td=""><td>0.3<e< td=""><td>0.5</td><td>0.25</td></e<></td></e≦8<>	0.3 <e< td=""><td>0.5</td><td>0.25</td></e<>	0.5	0.25
	ſ	Eccentric well-style area*2	$f_1 \le 0.4 \&$ $f_2 \le 0.1$	$\begin{array}{c} f_1\!\leq\!0.4 \ \& \\ 0.1\!<\!f_2\!\leq\!0.3 \end{array}$	$0.4 \le f_1 \text{ or}$ $0.3 \le f_2$	0.25	0
	8						
	h	Underground floor	1.0≦h	$0.5 \leqq h \le 1.0$	h<0.5	0.5	0.5
Elevation	i	Story height uniformity	$0.8 \le 1$	$0.7 \le l < 0.8$	I<0.7	0.5	0.25
balance	Ĵ.	Soft story	No soft story	Soft story	Eccentric soft story	1.0	1.0
	k						
Secontricity	I	Eccentricity*3	1≦0.1	0.1 ≦0.15</td <td>0.15 < /</td> <td></td> <td>1.0</td>	0.15 < /		1.0
area any	m						1.0
	*	(Stiffness/mass)Ratio of above and below stories	n≤1.3	1.3 < n≦1.7	1.7 <n< td=""><td></td><td>1.0</td></n<>		1.0
Stiffness	0						1.0

Time Index T=0.95 (assumed) Table 8

Table 8 Evaluation of time index by the second level inspection (-story)

	Item	Structur	al cracking and	deflection	Daw	rioration and a	ging
1	_	a	b		8	b	0
Portion	Degree	1. Crading caused by uneven settlement. 2. Shear or inclund cracking in beams, walls, and/or coloins, observed evidently.	1. Deflection of a slab and/or bears, adho and/or bears, adhocing on the function of mon-structural element. 2. Same as left, but not visible from some distance. 3. Same as above but can be observed from some distance.	1 Minute senataral cracking net corresponding to the items a or b. 2. Deflection of a size and/or beam, not corresponding to the item a or b.	1. Cracking by constrete enganeous due to the rast of reinforcing har. 3. Rout of reinforcing har. 3. Cracking caused by a Cracking caused by a free disaster. 4. Deterioration (s)	L. Seep of the reinforcing bar date to rain water for water lack. 2. Neutrolization to the depth of reinforcing bar or equivalent aging 3. Spating off of flawhing materials.	L Remarkable Henrish of concerne due to min value to min value value task, mid chemicals. 2 Deverioration or slight spating off of a finishing material.
1	1) L3 or more of total fleer	0.017	0.005	0.001	0.017	0.005	0.001
54ab	2) 1/3~1/9	0.006	0.002		0.016	0,002	0
including sub-beam	3) 1.9 or less	0.002	0.001	Ð	0.042	0.001	0
	4)0.8	2	0	0	2	0	0
п	1) 1/3 or more of total number of members for each direction	0.85	0.015	0.004	eas	0.015	0.004
Beam	2) 1/2~1/9	0.017	0.008	0.001	0.017	0.005	0.001
	3) 1/9 or less	0.006	0.002	0	0.006	0.002	0
	4)0#	0	g	0	0	2	0
UU Wali	1) LS or more of total number of members	0.15	0.045	0.011	0.15	0.045	0.018
ā.	2) 1/3~1/9	0.05	0.015	0.004	0.05	0.015	0.004
Column	3) 1/9 or less	0.017	0.005	0.001	0.017	0.005	0.001
	4) 0.4	2	<u>+</u>	2	0	0	0
Mark-down	Subtotal						
Total	Ground		PI			P2	

2nd Level Seismic Screening Seismic Index of Structure, Is, Y Direction

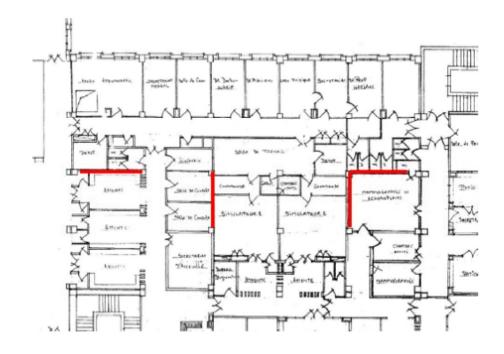
	С	F	n+1/n+i	Eo	So	т	ls
2F	0.76	3.2	0.67	1.63	1.11*	0.95	1.72*
1F	0.42	3.2	0.80	1.07	1.11*	0.95	1.13*
GF	0.24	3.2	1.00	0.76	1.00*	0.95	0.72*

C: Strength Index (12), (A1.1-1), (A1.1-2)

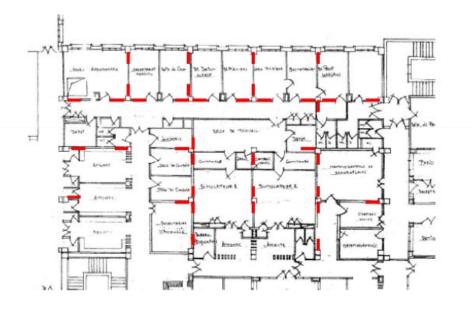
(16)

F: Ductility Index

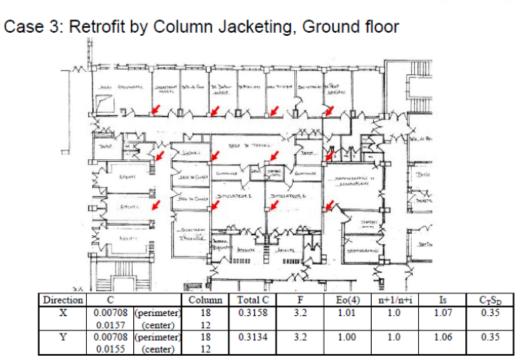
n: Number of storey


Eo: Basic Seismic Intensity of Structure Eo=(n+1/n+i)CF (4)

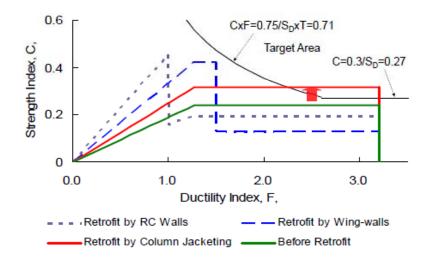
T: Time Index (0.95 is used) Table 8


Is: Seismic Index of Structure $Is=EoS_DT$ (1)

Case 1: Retrofit by RC Walls, 1st Storey



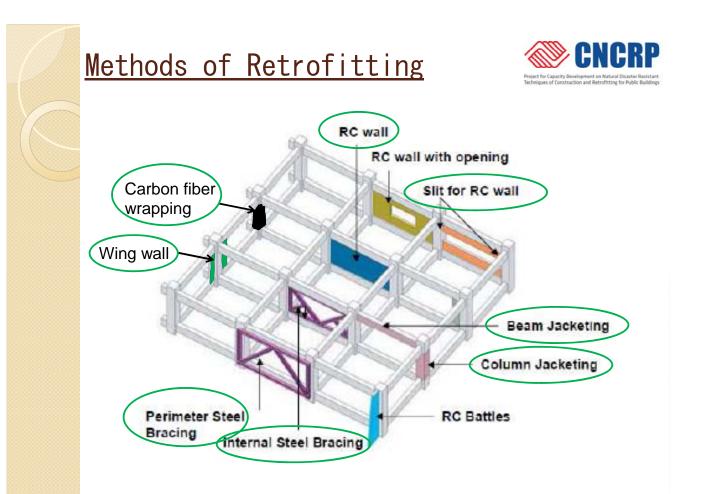
Case 2: Retrofit by Wing-walls, Ground Storey

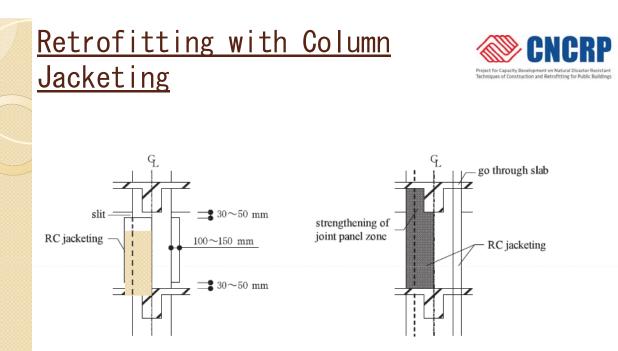


S_D=1.11, T=0.95

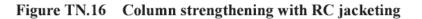
Strength increase 0.316/0.24=1.32

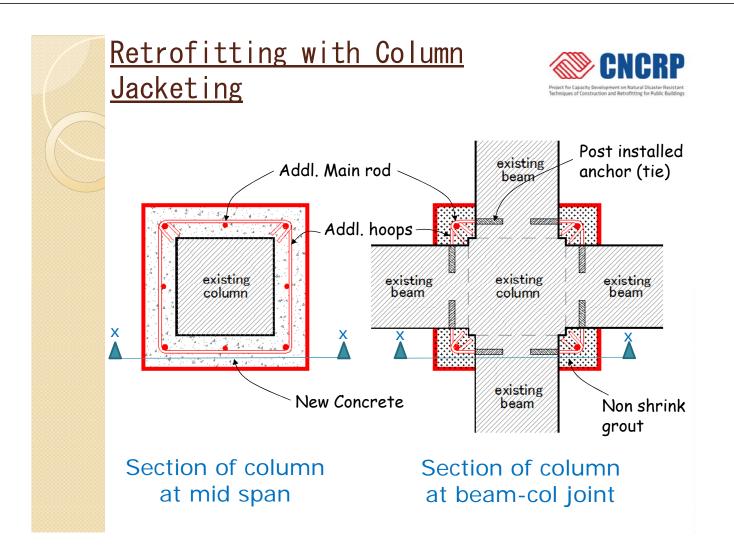
Strength Index (C) and Ductility Index (F) in X direction of 1st Storey, column jacketing is proposed

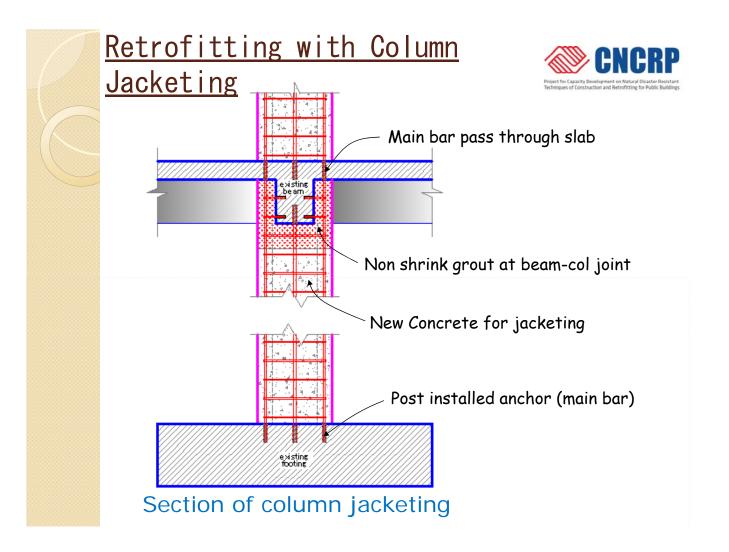




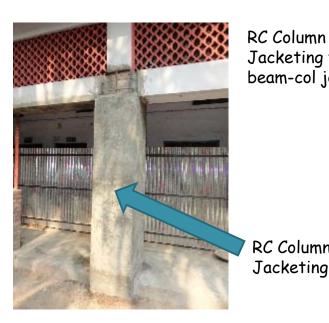
Retrofitting Works


Md. Sohel Rahman Executive Engineer PWD Design Division-4 and Team Leader, Component 3 CNCRP Project

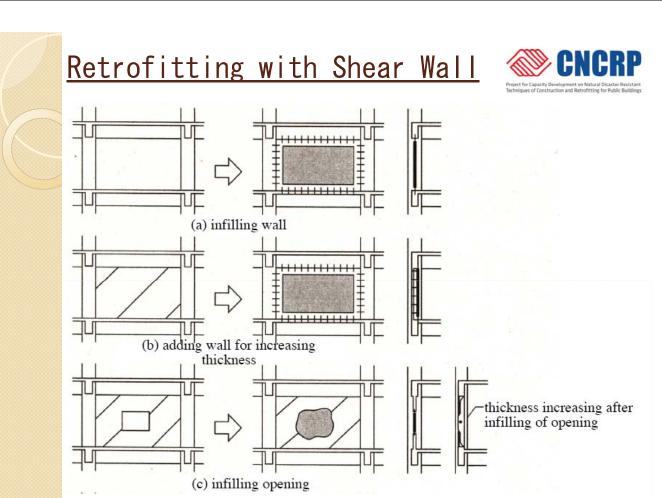

(a) in case of increase in shear strength

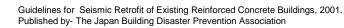

(b) in case of increase in flexural, shear and axial strength

SOURCE:

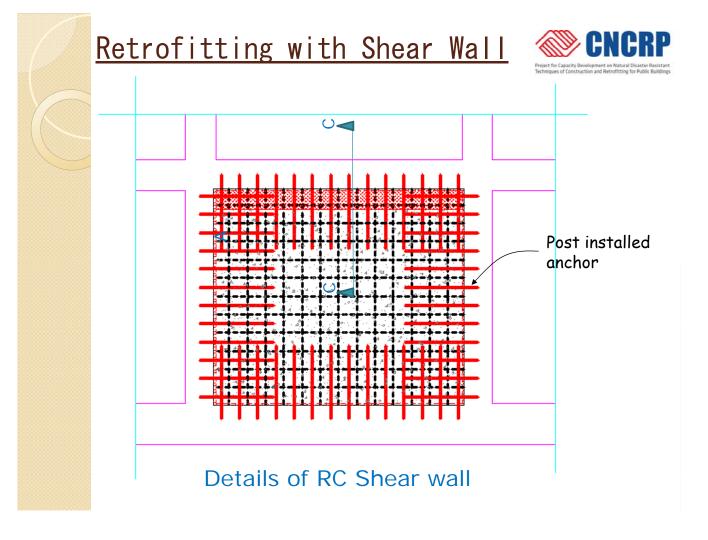

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

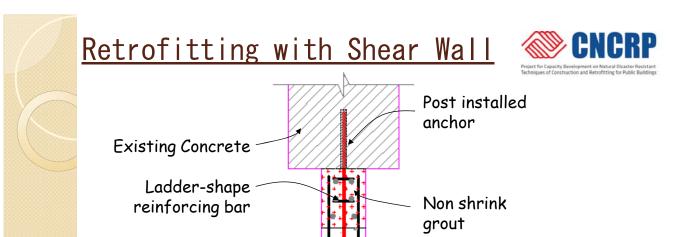
<u>Retrofitting with Column</u> <u>Jacketing</u>





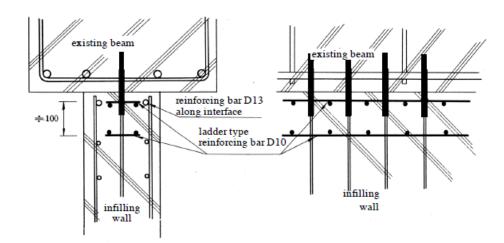
Test Work of CNCRP in 2012


RC Column Jacketing through beam-col joint RC Column Jacketing


Test Work of CNCRP in 2013

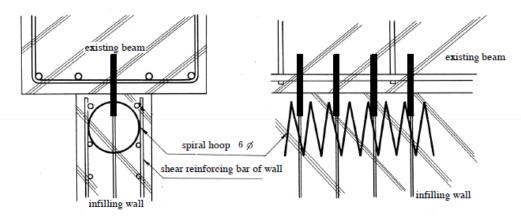
SOURCE:

4


Section C-C

Reinforcement of Shear Wall

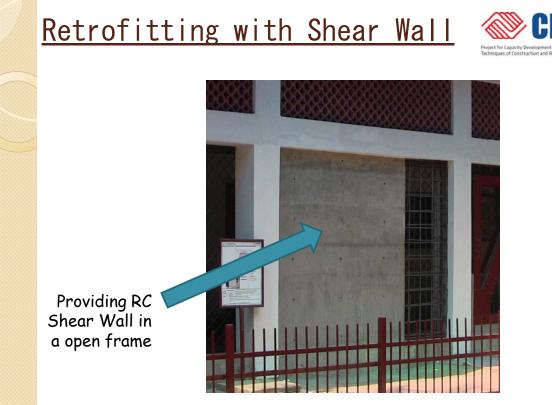
Normal concrete

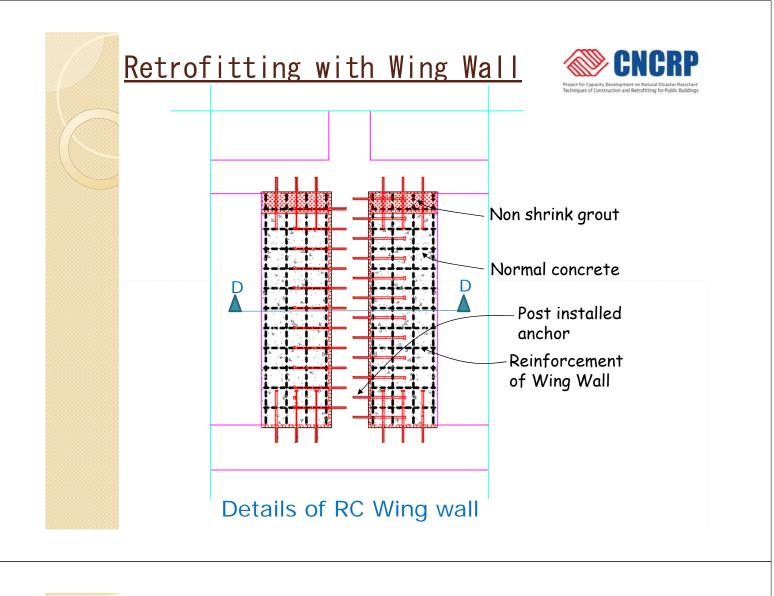

Figure TN.12 Strengthening against splitting with ladder type reinforcing bars (quoted from the figure on page 98 in the commentary of 3.1.4 of the Guidelines of 2001 Japanese version)

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

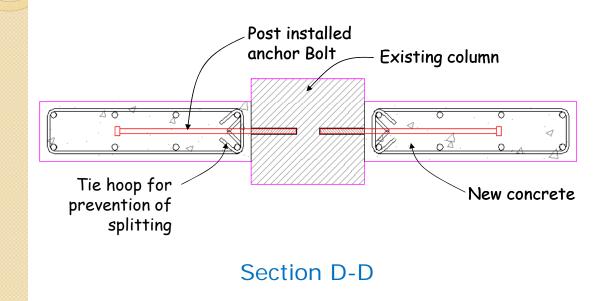
Retrofitting with Shear Wall



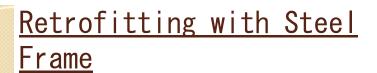

Figure TN.11 Strengthening against splitting with spiral reinforcing bars (quoted from the figure on page 98 in the commentary of 3.1.4 of the Guidelines of 2001 Japanese version)

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

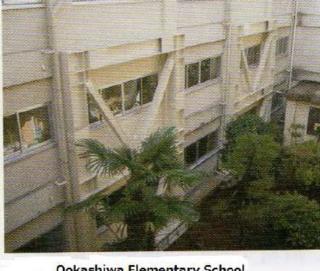


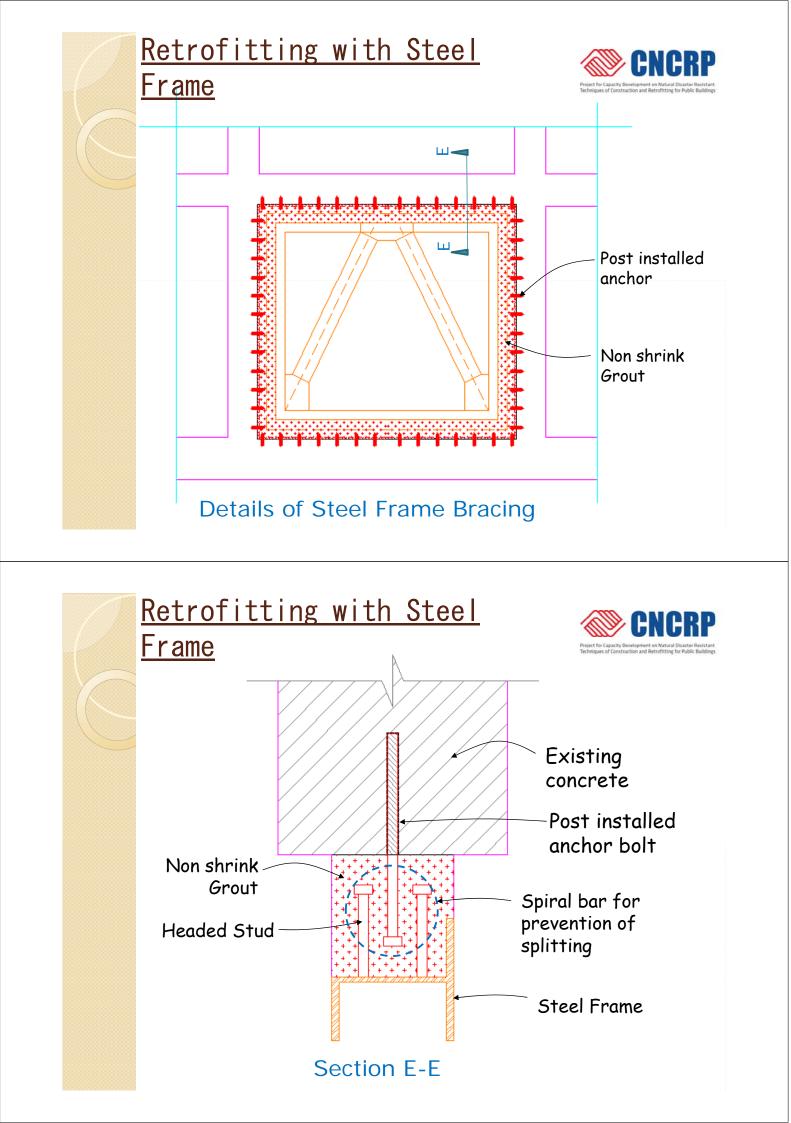
Test Work of CNCRP in 2012

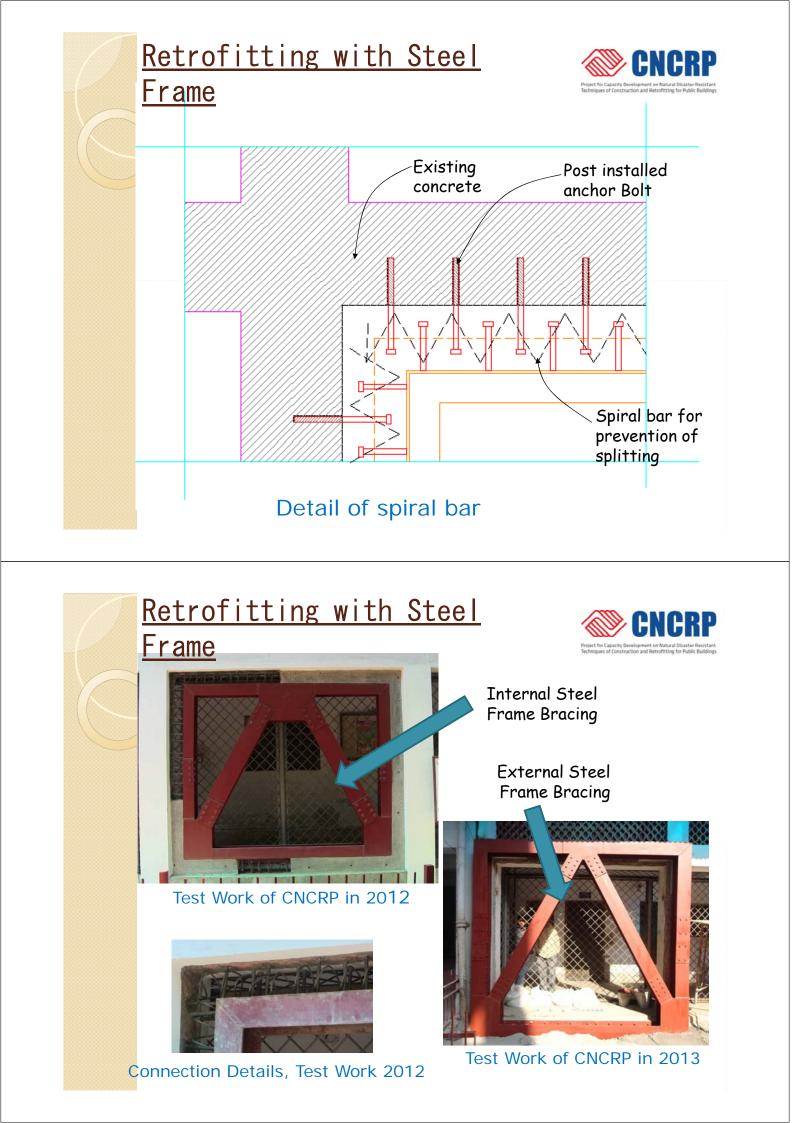

Retrofitting with Wing Wall

RC Wing Wall Provided at an existing column

Test Work of CNCRP in 2012


1. Steel Framed Bracing

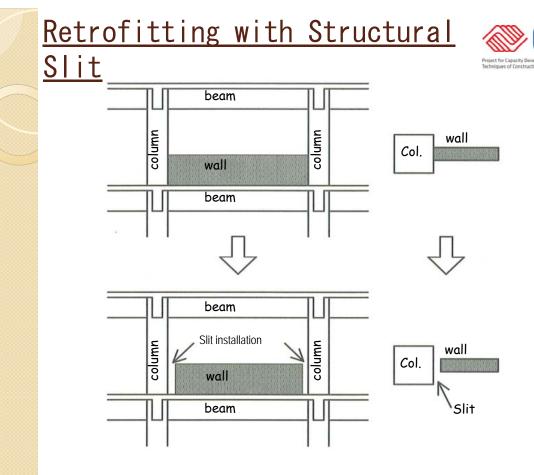

K type brace



Ookashiwa Elementary School

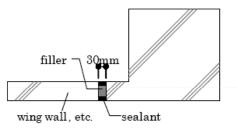
Steel framed bracing

a)Junior High School Building (School Colored)

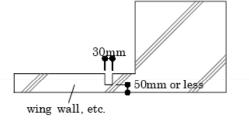

SOURCE:

b) Junior High School Building (Designed by Students)

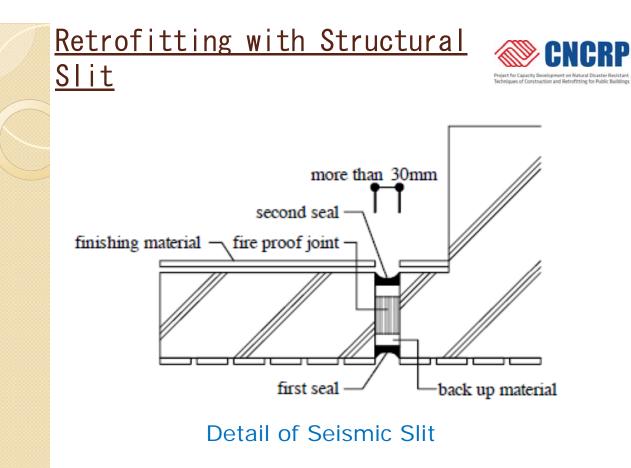
c)University Building (with Exterior Panels) d)Elementary School Building (with Balconies) Class note of Mr. Hiroshi OHIRA for CNCRP Project

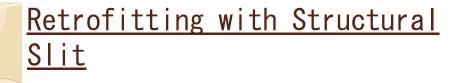

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association



<u>Retrofitting with Structural</u> <u>Slit</u>

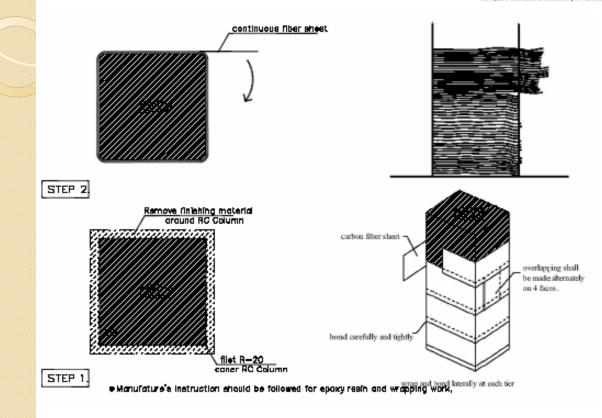

(a) Full slit


(b) Partial slit

SOURCE:

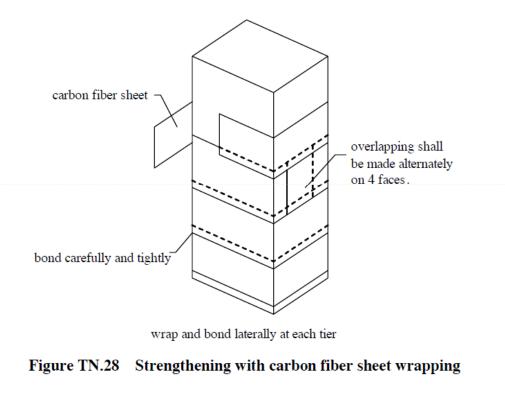
Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

SOURCE: Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association



Seismic Slit is provided at a brick wall

Test Work of CNCRP in 2012

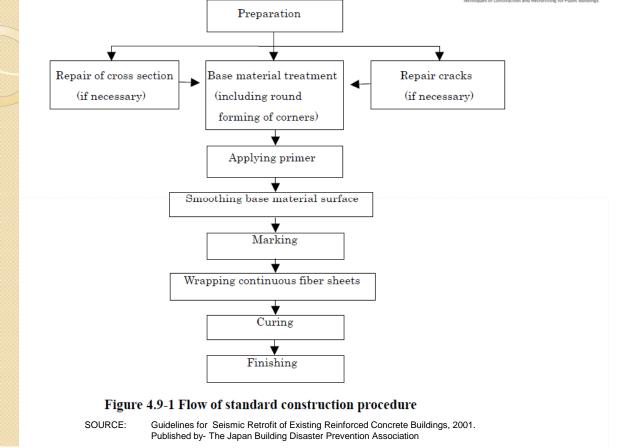

Carbon fiber sheet wrapping

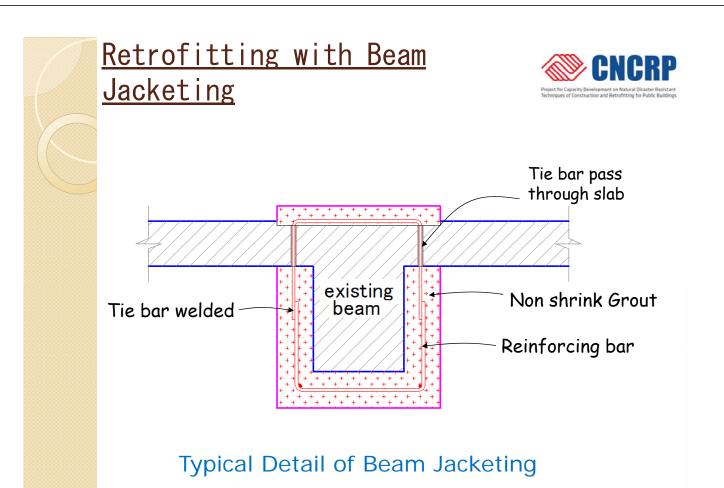
<u>Carbon fiber sheet wrapping</u>

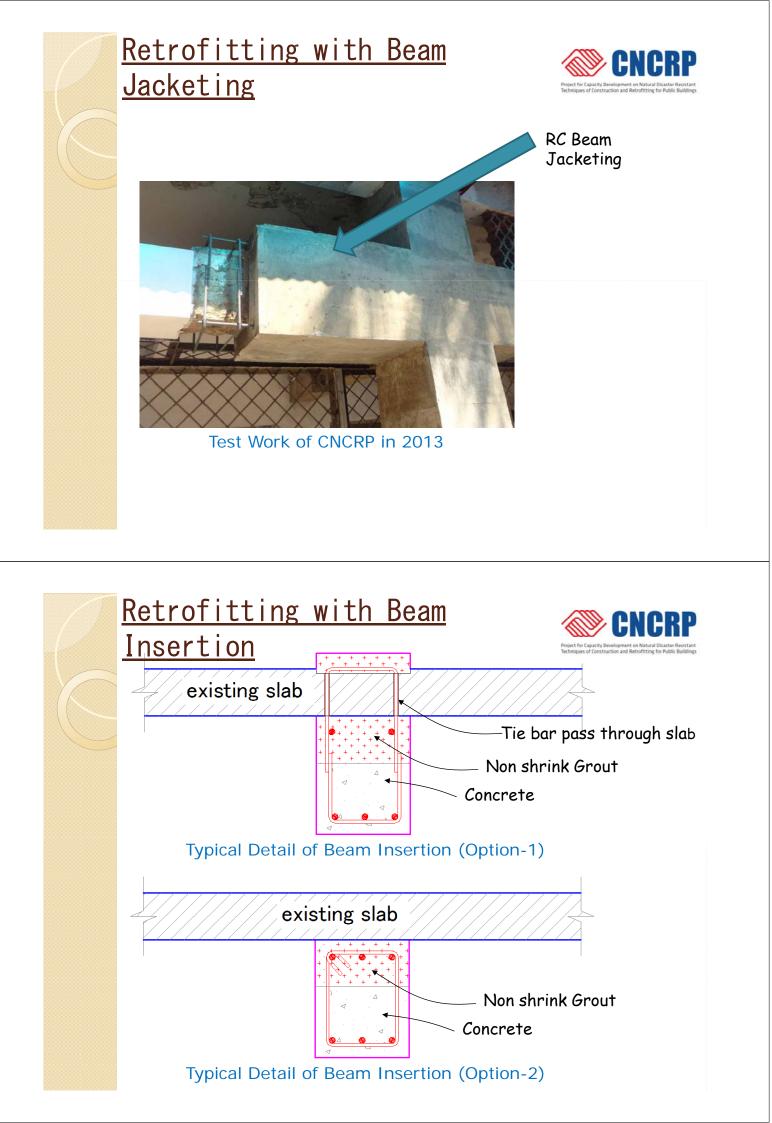
SOURCE:

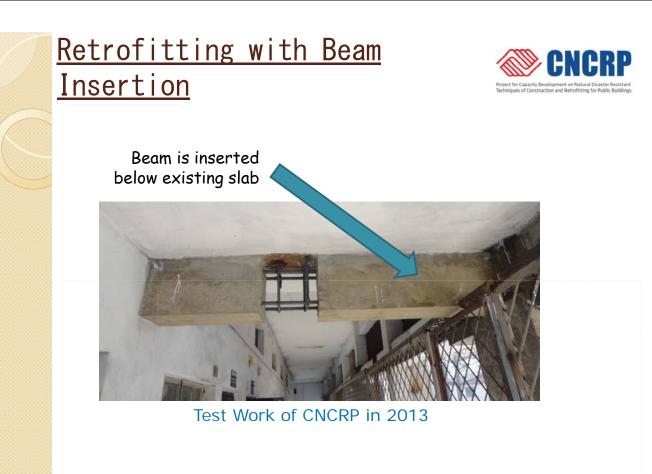
Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

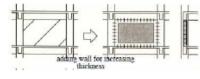
<u>Carbon fiber sheet wrapping</u>


Test Work of CNCRP in 2012



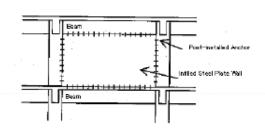

Test Work of CNCRP in 2012


Carbon fiber sheet wrapping



Methods of Retrofitting

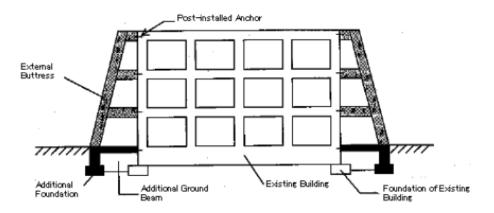
3. Increasing Thickness of Existing Shear Wall



Da Vinch Ginza Building

Methods of Retrofitting

4. Infilling Steel Plate Wall into Open Frame


Under Construction

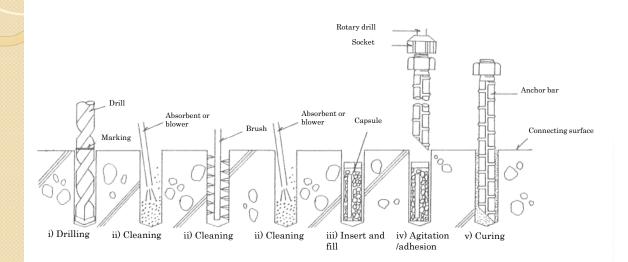
SOURCE: Class note of Mr. Hiroshi OHIRA for CNCRP Project

Methods of Retrofitting

7. Constructing External Buttress

Base Isolation

CONCRP


 Project for Capacity Development on Natural Disaster Resistant
 techniques of Construction and Restrictiviting for Public

Lead Rubber Bearing with Isolator used Damper used

Post-Installed Anchor Work

SOURCE:

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

<u>Post-Installed Anchor Work</u>

Pressurized Grouting Work

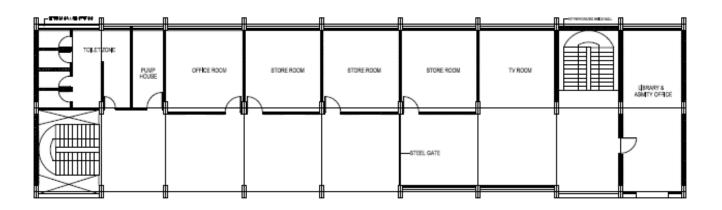
Thank you very much

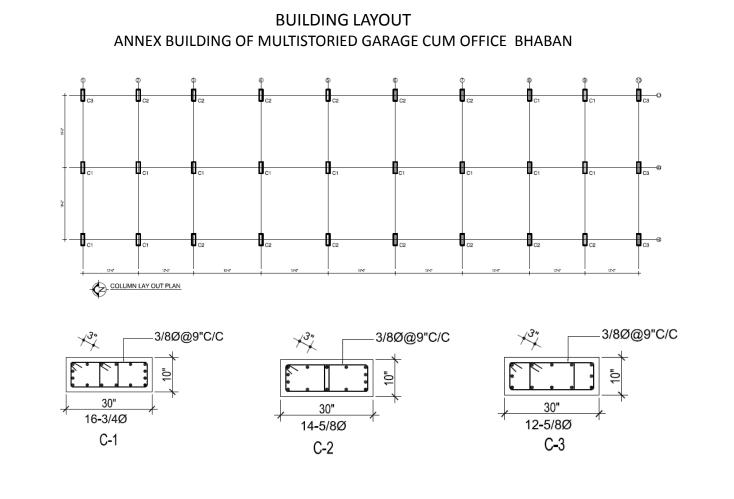
SHORT TRAINING COURSE ON SEISMIC ASSESSMENT, RETROFIT DESIGN AND CONSTRUCTION OF RC BUILDING

TITLE OF LECTURE

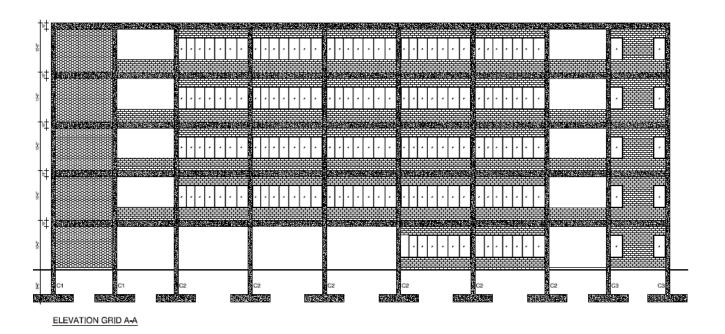
RETROFITTING DESIGN EXAMPLE OF A REAL STRUCTURE

PRESENTED BY ANUP KUMAR HALDER SUB DIVISIONAL ENGINEER PWDDESIGN DIVISION-V. & TEAM MEMBER WORKING TEAM-II


OUTLINE


- 1. BUILDING VIEW/ PLAN/ LAYOUT/ELEVATION
- 2. INSPECTION FOR BUILDING DATA
- 3. ASSESSMENT IN X DIRECTION (DETAILS OF STOREY-1)
- 4. ASSESSMENT IN Y DIRECTION (DETAILS OF STOREY-1)
- 5. C, F VALUE IN X DIRECTION FLOOR WISE
- 6. CALCULATION OF DEMAND
- 7. COLUMN JACKETING
- 8. WING WALL
- 9. SHEAR WALL
- 10. CHECK FOR PERFORMANCE OF SW
- 11. CARBON FIBRE WRAPING
- 12. STEEL BRACING
- **13.SELECTION OF METHOD**

BUILDING VIEW ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN.



BUILDING PLAN ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

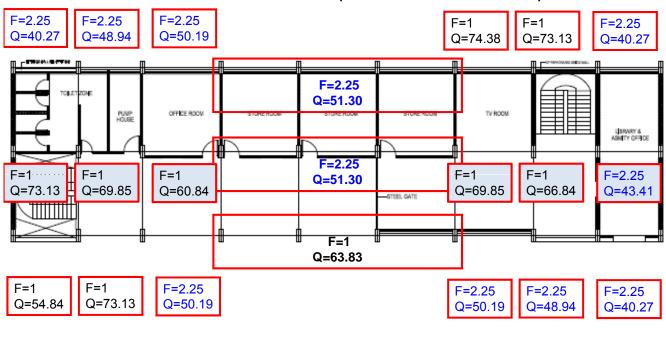
ELEVATION GRID A-A ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

INSPECTION ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN

BUILDING DATA

	NAME	ANNEX BUILDING OF MULTISTORIED GARAGE CUM OFFICE BHABAN.
- Fred to	BUILDING USE	OFFICE
34.73	STRUCTURE TYPE	R.C.C FRAMED STRUCTURE
19-12	YEAR OF CONSTRUCTION	1985
TE LE	CONCRETE f'c	9.2 Mpa (DESIGN f'c=13.7Mpa)
	REBAR fy	275 Mpa
S. Marine	TOTAL STOREY	5(FIVE)
	FLOOR AREA	377.38 Sqm
	FOUNDATION TYPE	SHALLOW /DEPTH 4'-6" FROM EGL
	BEARING CAP	1.00 TSF

BUILDING DATA cont.....


Material Properties:	
f'c(N/mm2)	9.20
σy(N/mm2)	275.00
σwy(N/mm2)	275.00

Unit Area weight(Roof):					
1. Live Load		0.30	kN/Sqm		
2. Brick Wall		0.00	kN/Sqm		
3. Slab weight & Floor Finish		3.85	kN/Sqm		
5. SW(Column+Beam)		2.15	kN/Sqm		
	w =	6.3	kN/Sqm		

Unit Area weight(Typical Floor):				
1. Live Load		0.80	kN/Sqm	
2. Brick Wall	4.00	kN/Sqm		
3. Slab weight & Floor Finish		3.85	kN/Sqm	
5. SW(Column+Beam)		2.15	kN/Sqm	
-	w =	10.8	kN/Sqm	

FLOOR AREA	377.38	Sqm
------------	--------	-----

BUILDING ASSESSMENT (X DIRECTION STORY 1)

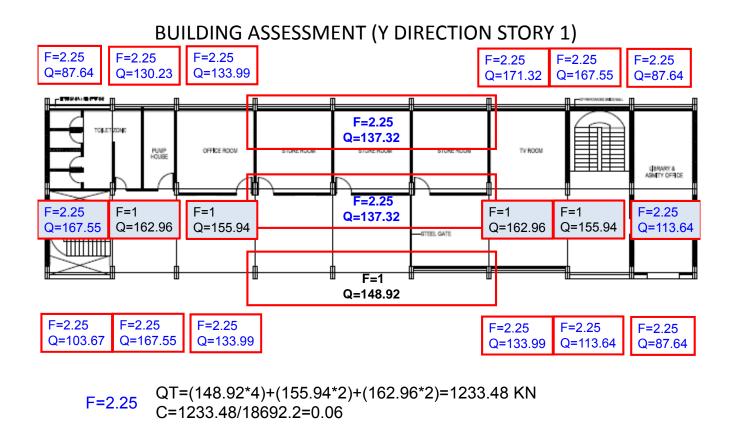
QT=(51.30*8)+(40.27*3)+(48.94*2)+(50.19)*3+43.41=822.89 KN

C=822.89/18692.2=0.04

F=2.25

Eo CALCULATION (X DIR STORY 1)

STRENGTH DOMINANT STRUCTURE


				Σwi=		18692.2 kN					
Direction	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
x	1	1	0.0	0.00	0.00	0.000	0.80				
		2	874.3	0.05	1466.96	0.078	1.00		0.078	0.08	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
		7	0.0	0.00	0.00	0.000	1.50				
		8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00				
		10	823.1	0.04	823.10	0.044	2.25		0.099	0.04	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	1697.4		MAX_E0	0.044	2.25		0.099		

DUCTILITY DOMINANT STRUCTURE

 $E_0 = \sqrt{(1^*0.05)^2 + (2.25^*0.04)^2} = 0.11$

ASSESSMENT SUMMARY (X DIRECTION)

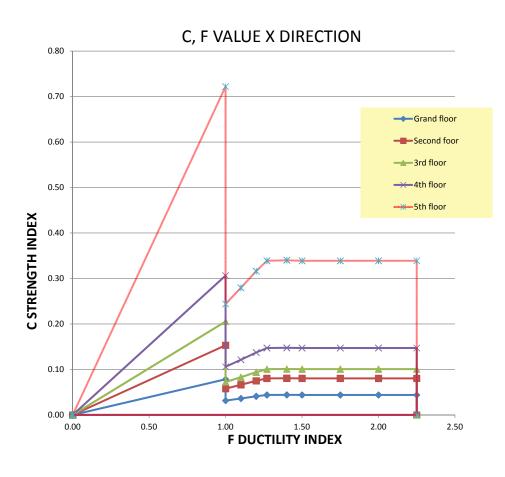
Direction	Story	С	F	Failure Mode	Eo	т	S _D	Is	C _{TU} ∙S _D	Result	Adoptior	Eq	
												5	
5 4 X 3 2 1		0.339	2.25		0.458			0.458	0.203	ОК		5	
	5	0.478	1.00			1.000	1.000						
	5	0.339	2.25		0.540	1.000	1.000	0.540	0.203	ОК		4	
		0.722	1.00		[0.433]			0.433	[0.433	ОК		5	
	4								T			5	
		0.147	2.25	D	UCTILITY DOMINAN			NT 0.098		NG		5	
		0.200	1.00			1.000	1.000					4	
		0.147	2.25		0.258		•						
							SIREN	NGTH DOMINAN					
		0.307	1.00		[0.155]			0.135	[0.155]	DVI		5	
							1.000					5	
		0.101	2.25		0.170			0.170	0.076	NG		5	
	3	0.133	1.00		0.197	1.000		0.197	0.076	NG		4	
		0.101	2.25					0.197					
		0.206	1.00		[0.154]			0.154	[0 1 5 4]	NG		5	
	2	0.206	1.00		[0.154]			0.154	[0.154]	NG		5	
		0.080	2.25		0.155			0.155	0.069	NG		5	
		0.095					R ⁰		0.009				
		0.080	2.25	Is CONS	SIDERE				0.069			4	
		0.000		RETRO				0.110	0.000				
		0.153	1.00		[0.131]	Ŭ		0.131	[0.131]	NG		5	
					[0.202]							5	
		0.044	2.25		0.099			0.099	0.044	NG		5	
		0.047	1.00			1.000	1.000			-		4	
	1	0.044	2.25		0.110			0.110	0.044	NG			
		0.078	1.00		[0.078]			0.078	[0.078]	NG		5	

CALCULATION OF E0 (STRENGTH DOMINENET STRUCTURE)

STRENGTH DOMINANT STRUCTURE

Direction	Story	GN		N+1/N+i= Σwi= C	1.000 18692.2 ΣQ	kN C1	F	E0-1	E0-2	Ctu	
Direction	JUTY	1	0.0	0.00	0.00	0.000	0.80		102	Clu	
									0 170	0.10	
		2	1233.5	0.07	3320.48	0.178	1.00		0.178	0.18	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
Y	1	7	0.0	0.00	0.00	0.000	1.50				
T	T	8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00				
		10	2898.6	0.16	2898.61	0.155	2.25		0.349	0.16	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	4132.1		MAX_E0	0.155	2.25		0.349		

DUCTILITY DOMINANT STRUCTURE

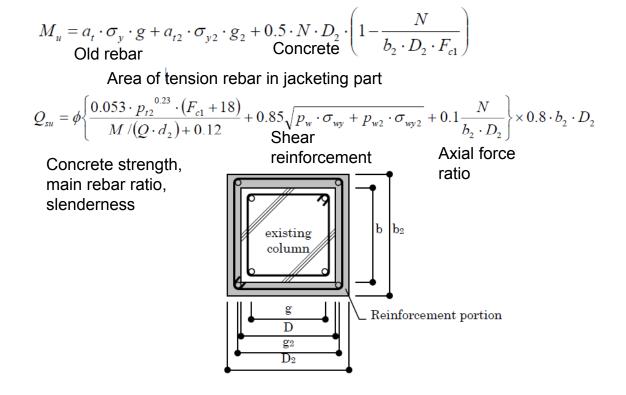

 $E_0 = \sqrt{(1*0.07)^2 + (2.25*0.16)^2 = 0.36}$

			ASSES.	SIVIEINTS			DINEC		/			
	Seis	mic demand	index				lso=	0.30	C	_{TU} •S _D =	0.1	15
Direction	Story	С	F	Failure Mode	Eo	т	S _D	Is	C _{TU} ∙S _D	Result	Adoptior	Eq
			80000000000000000000000000000000000000									5
		1.789	1.50		1.610			1.610	1.073	ОК		5
	5	0.646	1.50			1.000	1.000					
	5	1.143	2.25		1.649	1.000	1.000	1.649	0.686	ОК		4
												5
		0.746	1.20		0.500			0 500	0.407	01/		5
		0.746	1.20		0.596			0.596	0.497	ОК		5
	4	0.391	1.20 2.25		0.651	1.000	1.000	0.651	0.254	ок		4
		0.561	2.25		0.031			0.031	0.234	UK		4
												5
												5
		0.515	1.20		0.463			0.463	0.386	ОК		5
v	2	0.268	1.20			4 000	1 000					
Y	3	0.265	2.25		0.507	1.000	1.000	0.507	0.198	ок		4
												5
												5
		0.214	2.00		0.367			0.367	0.184	ОК		5
	2	0.189	1.00			1.000	1.000					
		0.214	2.00		0.355			0.355	0.184	ОК		4
		0.242	1.00		[0 20 4]			0.204	[0 20 4]	NC		
		0.343	1.00		[0.294]			0.294	[0.294]	NG		5
		0.155	2.25		0.349			0.349	0.155	ОК		5 5
		0.155	1.00		0.349			0.549	0.155	UK		5
	1	0.155	2.25		0.355	1.000	1.000	0.355	0.155	ок		4
		0.155	2.23		0.000			0.000	0.100			
		0.178	1.00		[0.178]			0.178	[0.178]	NG		5

ASSESSMENT SUMMARY (Y DIRECTRION)

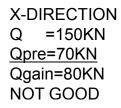
ASSESSMENT IN Y DIR STORY 1

	Seis	mic deman	d index					lso=	0.30	(C _{TU} •S _D =	0.15
												5
		0.155	5	2.25		0.349			0.349	0.155	ОК	5
Y	1	0.066	5	1.00			1.000	1.000				
'	1	0.155	5	2.25		0.355	1.000	1.000	0.355	0.155	ОК	4
										<u> </u>		
		0.178	3	1.00		[0.178]			0.178	[0.178]	NG	5
					N+1/N+i=	1.000			1			
					Σwi=	18692.2	kN					
Dire	ection	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
		Į .	1	0.0	0.00	0.00	0.000	0.80				
			2	1233.5	4	3320.48	4	1.00		0.178	0.18	
			3	0.0		-						
			4	0.0							-	╹──╹
			5	0.0			GHLITY	DOMINA		RUCTUR	E	
			<u>6</u> 7	0.0								
	Y	1	8	0.0			=√(1*0.	07) ² +(2	25*0.1	$6)^2 = 0.36$	6	ł
			9	0.0		-	_			,		
			10	2898.6	1	1	1			0.349	0.16	
		1	11	0.0			1					
			12	0.0	0.00	0.00	0.000					
		Į .	13	0.0	0.00		0.000	3.20				
			ΣQ	4132.1		MAX_E0	0.155	2.25		0.349		

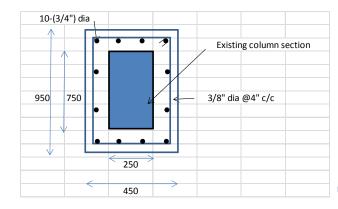


CALCULATION OF DEMAND

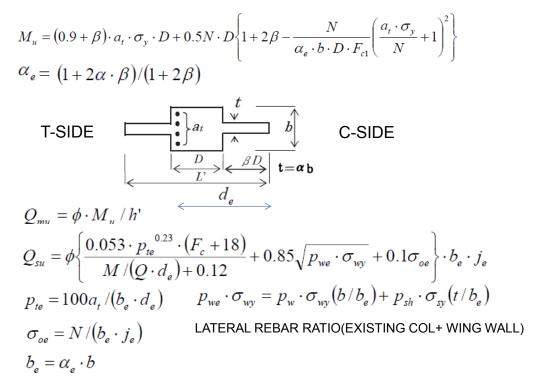
- $I_{so}=E_{o}xS_{D}xT=C1xFXS_{D}xT=C1=\sumQ1/W$
- $I_{sx}=E_0xS_DxT=C2xFXS_DxT=C2=\sumQ2/W$
- CONSIDERING NO CHANGE IN THE SYSTEM WITH (FXS_DxT)
- Iso-Isx=∑Q1/W-∑Q2/W
- Iso-Isx)XW=∑Q1-∑Q2=REQUIRED SHEAR CAPACITY
- I_{so}=0.3
- Isx=0.078
- Isy=0.178
- W=18692.2 KN
- SHEAR REQUIREMENT IN X=(0.3-0.078)X18692.2=4150KN
- SHEAR REQUIREMENT IN Y=(0.3-0.178)X18692.2=2280KN


COLUMN JACKETING

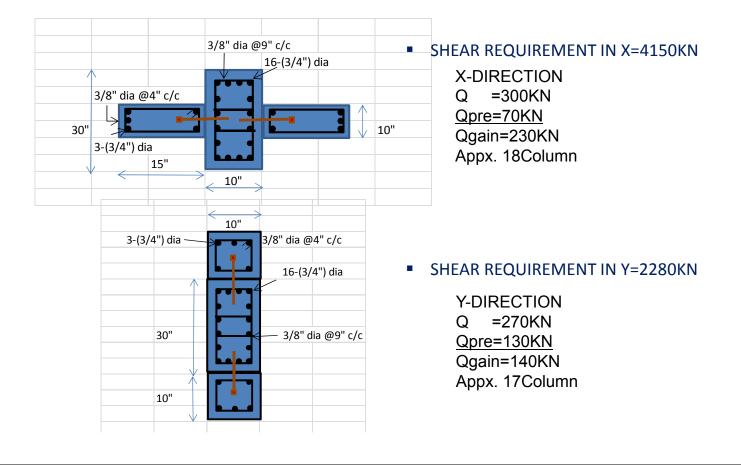
When $0.4b \cdot D \cdot F_{c1} \ge N \ge 0$,


COLUMN JACKETING cont...

SHEAR REQUIREMENT IN X=4150KN


SHEAR REQUIREMENT IN Y=2280KN

Y-DIRECTION Q =242KN <u>Qpre=130KN</u> Qgain=112KN Appx. 20Column



WING WALL

CONTRIBUTION OF TENSION SIDE WING WALL IGNORED

WING WALL cont...

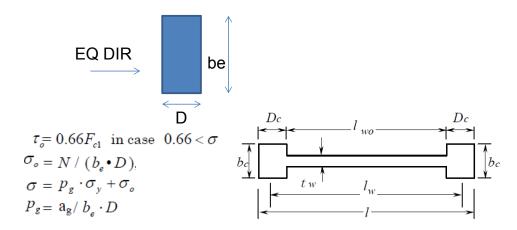
SHEAR WALL CALCULATION

SHEAR STRENGTH OF SW

Shear force of column Direct shear strength at top of col $_{W}Q_{su} = \min \left\{ \underset{W}{\overset{Q}{}_{su}} + 2 \cdot \alpha \cdot Q_{c}^{\vee}, Q_{j} + \underset{p}{\overset{Q}{}_{c}} + \alpha \cdot Q_{c}^{\vee} \right\}$

Shear strength of infill panel

Shear connector

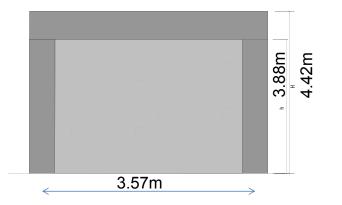

$${}_{W}Q_{su}^{'} = \max\left(p_{w}\cdot_{W}\sigma_{y}, F_{cw}/20 + 0.5p_{w}\cdot_{W}\sigma_{y}\right)\cdot t_{W}\cdot l^{'}$$

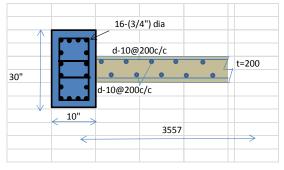
Wall reinforcement ratio and yield strength Wall thickness & clear span

SHEAR STRENGTH COLUMN

$$_{p}Q_{c} = K_{\min} \cdot \tau_{o} \cdot b_{e} \cdot D$$

 $Q_{j} =$ Sum of the shear strengths of connectors underneath the beam.


SHEAR WALL CALCULATION cont..



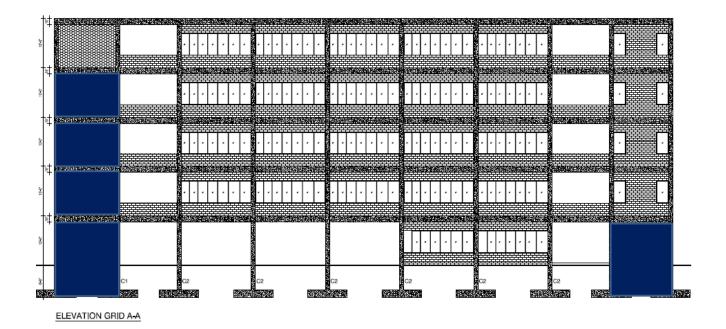
FLEXURAL STRENGTH OF SW

 $_{W}M_{u} = a_{t} \cdot \sigma_{sy} \cdot l_{W} + 0.5 \sum (a_{wy} \cdot \sigma_{wy}) \cdot l_{W} + 0.5 N \cdot l_{W}$

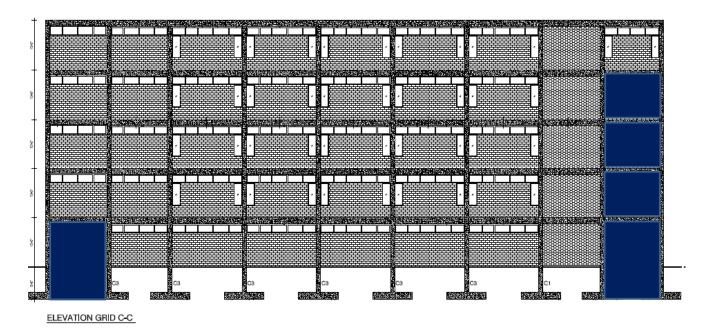
SHEAR WALL CALCULATION cont..

 $w Q_{su} = 1400 \text{KN} (X-DIRECTION)$

 $WQ_{su} = 1500 \text{KN} (Y-DIRECTION)$


CALCULATION FOR SW(X-DIR)

Direction	Story	С	F	Eo	т	SD	Is	C _{TU} •S _D	Result	Adoption	Eq	WT (KN)	n+1/(n+i)	SW Cap (KN)	Req SW No=(Is0-Is)XWt/SW cap	No of SW
	5										5					
		0.339	2.25	0.458			0.458	0.203	ОК		5					
		0.478	1.00		1.000	1.000			ОК		4					
		0.339	2.25	0.540	1.000	1.000	0.540	0.203								
											-					
		0.722	1.00	[0.433]			0.433	[0.433]	ОК		5	2377.494	0.6	840	-0.4	Not Required
	4										5					
		0.147	2.25	0.221			0.221	0.098	NG		5					
		0.200	2.25	0.258	1.000	1.000	0.258	0.980	NG		4					
		0.147	2.25	0.238			0.238	0.980	NO		4					
		0.307	1.00	[0.155]			0.155	[0.155]	NG		5	6453.198	0.67	933.33333333	0.6	1
	3	0.507	1.00	[0.100]			0.155	[0.155]			5	01001200	0.07	333.33333333	0.0	-
-		0.101	2.25	0.170			0.170	0.076	NG		5					
		0.133	1.00		4 000	4 000					4					
		0.101	2.25	0.197	1.000	1.000	0.197	0.076	NG							
х		0.206	1.00	[0.154]			0.154	[0.154]	NG		5	10528.902	0.75	1050	1.4	1
	2										5					
		0.080	2.25	0.155			0.155	0.069	NG		5					
		0.095	1.00	0.440	1.000	1.000	0.440	0.000								
		0.080	2.25	0.110			0.110	0.069	NG		4					
		0.153	1.00	[0.131]			0.131	[0.131]	NG		5	14604.606	0.857142857	1200	1.9	2
	1	0.155	1.00	[0.151]			0.151	[0.151]	NG		5	14004.000	0.857142857	1200	1.9	2
	T	0.044	2.25	0.099			0.099	0.044	NG		5					
		0.180	1.00	0.000			0.000	0.044			5					
		0.044	2.25	0.110	1.000	1.000	0.110	0.044	NG		4					
		0.078	1.00	[0.078]			0.078	[0.078]	NG		5	18680.31	1	1400	2.7	3



ADDING SW IN X-DIR (GROUND FLOOR)

ELEVATION GRID A-A

ELEVATION GRID C-C

BUILDING ASSESSMENT (X DIRECTION STORY 1 AFTER) F=2.25 F=2.25 F=2.25 F=2.25 F=1 F=1 Q=50.19 Q=40.27 Q=48.94 Q=74.38 Q=73.13 Q=40.27 Ш F=2.25 торы: ONE Q=51.30 OFFICE BOOM TV ROOM PUMP HOUSE LIBRARY & ASMITY OFFICE h F=2.25 F=1 F=1 Q=73.13 Q=69.85 F=1 F=1 F=1 F=2.25 Q=51.30 Q=60.84 Q=69.85 Q=66.84 Q=43.41 STEEL GAT F=1 Q=63.83

QT(-)=874.3-(54.84+73.13)+(0.72)(823.1-40.27*3-48.94*2)+4*1400=6781.5

F=2.25

Q=48.94

F=2.25

Q=40.27

F=2.25

Q=50.19

Eo CALCULATION (X DIR STORY 1 AFTER INSERTION OF 4-WALL)

STRENGTH DOMINANT STRUCTURE

F=1

Q=54.84

F=1

F=2.25

F=2.25

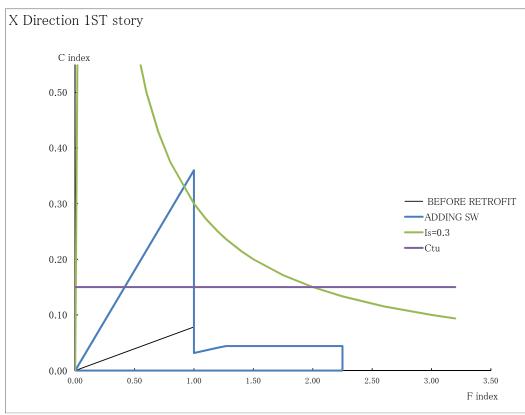
Q=73.13

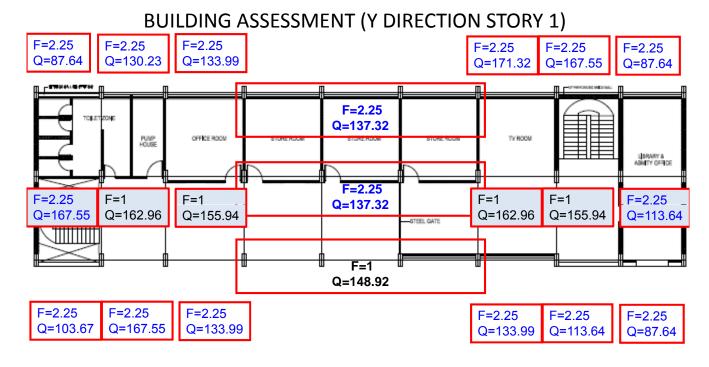
F=2.25

C=6781.5/18692.2=0.36

C=604.41/18692.2=0.032

QT=823.1-40.27*3-48.94*2=604.41KN

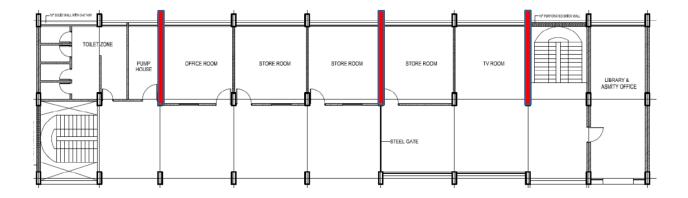

Q=50.19


				Σwi=	18692.2	kN					
Direction	Story	GN	Q	С	ΣQ	C1	F	E0-1	E0-2	Ctu	
		1	0.0	0.00	0.00	0.000	0.80				
		2	6346.33	0.33	6781.50	0.36	1.00		0.36	0.36	
		3	0.0	0.00	0.00	0.000	1.10				
		4	0.0	0.00	0.00	0.000	1.20				
		5	0.0	0.00	0.00	0.000	1.27				
		6	0.0	0.00	0.00	0.000	1.40				
х	1	7	0.0	0.00	0.00	0.000	1.50				
~	T	8	0.0	0.00	0.00	0.000	1.75				
		9	0.0	0.00	0.00	0.000	2.00	1	0.070		
		10	604.41	0.032	604.41	0.032	2.25		0.072	0.032	
		11	0.0	0.00	0.00	0.000	2.60				
		12	0.0	0.00	0.00	0.000	3.00				
		13	0.0	0.00	0.00	0.000	3.20				
		ΣQ	1697.4		MAX_E0	0.36	1.0		0.36		

DUCTILITY DOMINANT STRUCTURE

 $E_0 = \sqrt{(1^*0.36)^2 + (2.25^*0.032)^2 = 0.36}$

PERFORMANCE OF SHEAR WALL C, F VALUE AFTER ADDING SW IN X DIR 1ST STOREY



F=2.25 QT=(148.92*4)+(155.94*2)+(162.96*2)=1233.48 KN C=1233.48/18692.2=0.06

CALCULATION FOR SW(Y-DIR)

Direction	Story	С	F	Eo	т	SD	Is	Cīu∙So	Result	Adoptior	Eq	WT (KN)	n+1/(n+i)	SW Cap (KN)	Req SW No=(Is0-Is)XWt/SW cap	No of SW
											5					
		1.789	1.50	1.610			1.610	1.073	ОК		5					
	5	0.646	1.50		1.000	1.000										
	э	1.143	2.25	1.649	1.000	1.000	1.649	0.686	ОК		4					
											5	2377.494	0.6	900	-3.2	Not Required
											5					
		0.746	1.20	0.596			0.596	0.497	OK		5					
	4	0.391	1.20		1.000	1.000										
	-	0.381	2.25	0.570	1.000	1.000	0.570	0.254	ОК		4					
											5	6453.198	0.67	1000	-1.7	Not Required
											5					
		0.515	1.20	0.463			0.463	0.386	ОК		5					
Y	3	0.268	1.20		1.000	1.000										
	-	0.265	2.25	0.507			0.507	0.198	ОК		4					
											5	10528.902	0.75	1125	-1.6	Not Required
											5					
		0.214	2.00	0.367			0.367	0.184	ОК		5					
	2	0.189	1.00	0.055	1.000	1.000	0.055	0.184	0 11		4					
		0.214	2.00	0.355			0.355	0.184	ОК		4					
		0.242	1.00	[0.204]			0.204	[0 20 4]	NC		-		0.0574.40057	4205 744205	0.5	
		0.343	1.00	[0.294]			0.294	[0.294]	NG		5	14604.606	0.857142857	1285.714286	-0.5	Not Required
		0.155	2.25	0.349			0.349	0.155	ОК		5 5			1		
		0.155	2.25	0.349			0.349	0.155	UK		Э			1		
	1	0.066	2.25	0.355	1.000	1.000	0.355	0.155	ок		4					
		0.155	2.25	0.335			0.355	0.155	UK		4			[
		0.178	1.00	[0.178]			0.178	[0.178]	NG		5	18680.31	1	1500	1.6	2
		0.1/0	1.00	[0.1/0]			0.173	[0.1/0]	UNU	l	J	10000.51	1 1	1000	1.0	۷.

ADDING SW IN Y-DIR (GROUND FLOOR)

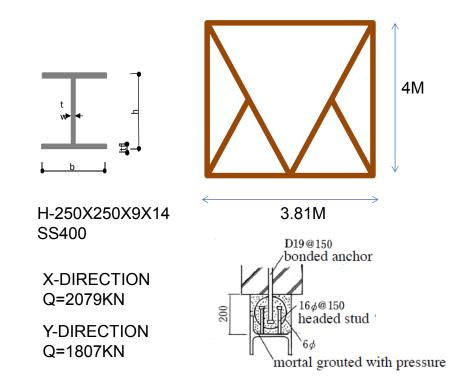
CARBON FIBER

$$Q_{su} = \left\{ \frac{0.053 \cdot p_t^{0.23} \cdot (F_{c1} + 18)}{M / (Q \cdot d) + 0.12} + 0.85 \sqrt{p_w \cdot \sigma_{wy} + p_{wf} \cdot \sigma_{fd}} + 0.1\sigma_o \right\} \cdot b \cdot j$$

 $p_{w} \cdot \sigma_{wy} + p_{wf} \cdot \sigma_{fd}$ shall be not more than 9.8 N/mm².

carbon fibar		
roll	3	
thickness	0.167	mm
tensile strength	3430	N/mm2
Young's modulus	230000	N/mm2
σ fd	1610	N/mm2
Pwf	0.00401	

 P_{wf} = Shear reinforcement ratio of carbon fiber sheet (decimal).


 E_{fd} = Young's modulus of carbon fiber sheet ε_{fd} = Effective strain of carbon fiber sheet at shear failure.

 $\sigma_{fd} = \min\{E_{fd} \cdot \varepsilon_{fd}, (2/3) \cdot \sigma_f\}, \text{ tensile strength of carbon fiber sheet for shear}$

 σ_f = Specified tensile strength of carbon fiber sheet.

X DIRECTION:	Y DIRECTION:
Qsu=105 KN; F=3.2	Qsu=256 KN; F=1

SELECTION OF METHOD

CHOICE OF METHOD SHOULD CONSIDER 1.USE OF LOCAL AVAILABLE MATERIAL 2.ECONOMY 3.CONSTRUCTION TIME 4.EASE OF CONSTRUCTION 5.QUALITY CONTROL 6.RELABILITY OF METHOD BASED ON TEST DATA 7.ARCHITECTURAL SIMPLICITY & COHERENCE 8.UNINTERREPTED USE DURING RETROFITTING 9.LESS DISTURB THE OCCUPANT 10.MINIMUN MODIFICATION IN PURPOSE OR USE.

THANK YOU

Capacity Development on Natural Disaster Resistant Techniques of Construction and Retrofitting for Public Buildings (CNCRP)

Presentation on Pushover Analysis for Retrofitting Design by Moniruzzaman Moni Member, Working Team-2

Introduction

- Nonlinear static analysis or pushover analysis has been developed over the past thirty years
- It is the preferred analysis procedure for design and seismic performance evaluation

Introduction

3

Introduction

Introduction

Taiwan,1999

Earthquake happens every day somewhere in the world Earthquake causes loss of human lives and damage of infrastructures 5

<text><text><image>

Learning from Earthquakes - Sichuan, 2008

Introduction

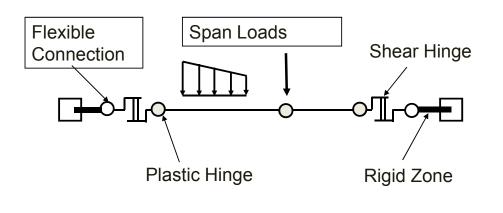
- Nonlinear Static Procedures (NSP) shall be used for analysis of buildings when linear procedures are not permitted
- The NSP shall be permitted for structures in which higher mode effects are not significant

7

Key Elements of the Pushover Analysis

- Nonlinear static procedure: constant gravitational loads and monotonically increasing lateral loads
- Plastic mechanisms and P-A effects: diplacement or arc length control
- Estimation of the target displacement: elastic or inelastic response spectrum for equivalent SDOF system

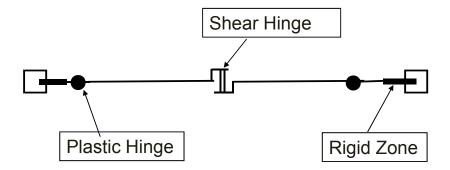
Key Elements of the Pushover Analysis

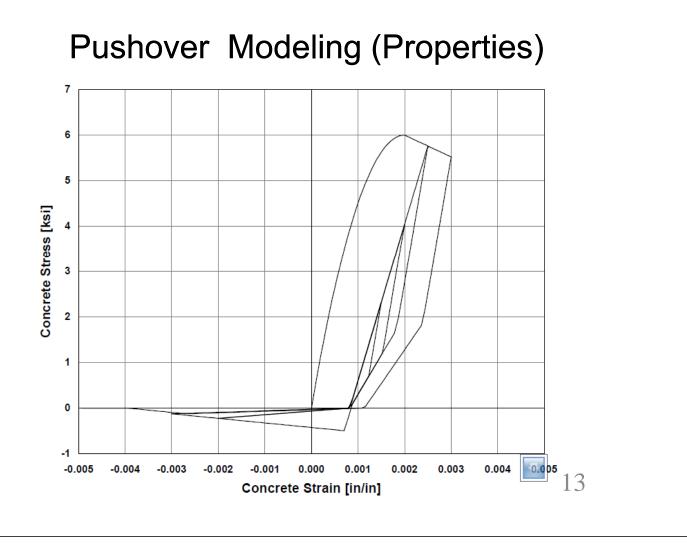

- Lateral load patterns: uniform, modal, ELF force distribution
- Capacity curve: Control node displacement vs base shear force
- Performance evaluation: global and local seismic demands with capacities of performance level

Pushover Modeling (Elements)

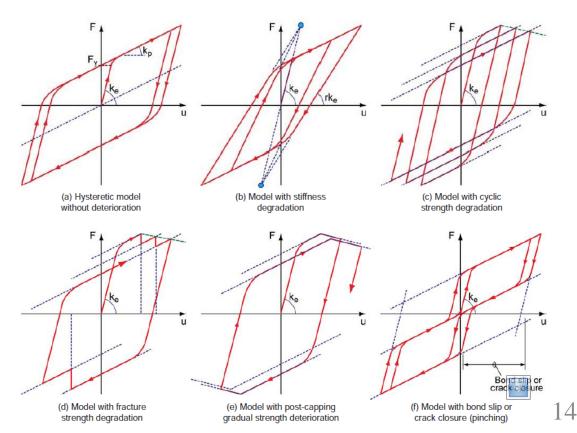
- Types of Elements
 - Truss yielding and buckling
 - 3D Beam major direction flexural and shear hinging
 - 3D Column P-M-M interaction and shear hinging
 - Panel zone Shear yielding
 - In-fill panel Shear failure
 - Shear wall P-M-Shear interaction
 - Spring for foundation modeling

Pushover Modeling (Beam Element)


Three dimensional Beam Element



11

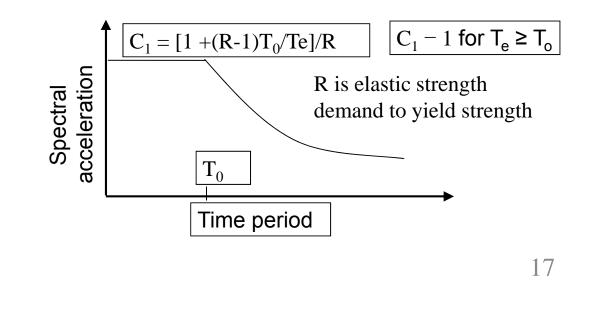

Pushover Modeling (Column Element)

Three dimensional Column Element

Pushover Modeling (Properties)

Target Displacement (FEMA-356)

Estimation of Target Displacement
Estimate effective elastic stiffness, K_e
Estimate post yield stiffness, K_s
Estimate effective fundamental period, T_e
Calculate target roof displacement $\delta = C_0 C_1 C_2 C_3 S_a T_e^2 / (4\pi^2) * g$


Target Displacement (FEMA-356)

- \succ Calculation of C₀
 - Relates spectral to roof displacement
 - Use modal participation factor for control node from first mode or
 - Use modal participation factor for control node from deflected shape at the target displacement or
 - Use tables based on number of stories and varies from 1 to 1.5

Target Displacement (FEMA-356)

\succ Calculation of C₁

Modifier for inelastic displacement

Target Displacement (FEMA-356)

Calculation of C₂

Modifier for hysteresis loop shape

- Depends on framing type (degrading strength)
 - Depends on performance level
 - *Depends on Effective Period
- *1.0 shall be permitted for nonlinear procedures

Target Displacement (FEMA-356)

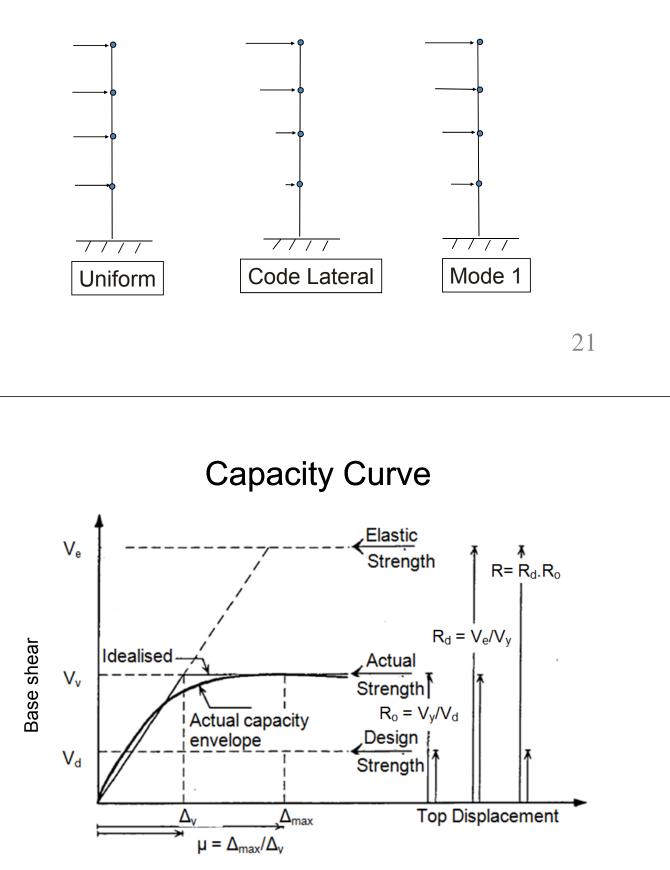
> Calculation of C_3

Modifier for dynamic second order effects
 C₃ = 1 if post yield slope is positive else
 C₃ = 1 +[|α|(R-1)^{3/2}]/T_e

- R=Ratio of elastic strength demand to calculated yield strength

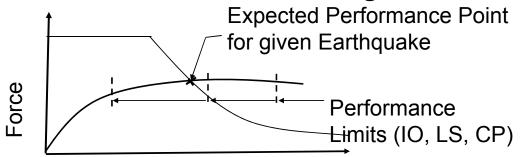
Pushover Modeling (Loads)

Start with Gravity Loads


 Dead Load
 Some portion of Live Load

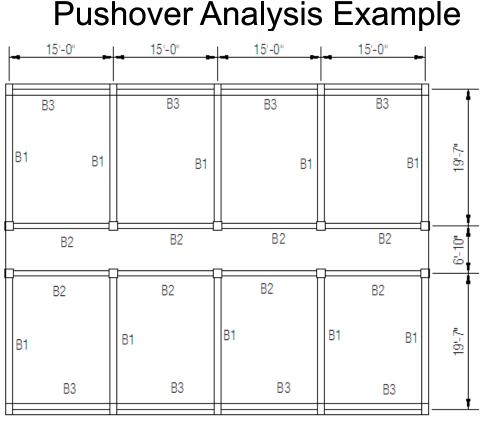
 Select Lateral Load Pattern

 Lateral Load Patterns (Vertical Distribution)
 Lateral Load Horizontal Distribution
 Torsional Effects
 Orthogonal Effects


Pushover Modeling (Loads)

Lateral Load Patterns (Vertical Distribution)

Relation of different factors


Performance Check Using Pushover

Deformation

- Construct Pushover curve
- Select earthquake level(s) to check and construct their spectrum curves
- Decide the performance level(s) (i.e.: IO, LS, CP)
- Verify structural performance with guidelines
 - Capacity Spectrum Method (ATC-40)
 - Displacement Coefficient Method (FEMA 356)

23

Clinic Building

Pushover Analysis Example

					Units			- Grid Lines
System	Namo	101	.0BAL		_	. in, F	•	Quick Start
Jystein	name	Jui	JODAL		JNP.	. ш., г	-	gener stat
(Grid Da	ta							
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color	•	00000
1	Α	0.	Primary	Show	End			\frown T T T T T
2	В	180.	Primary	Show	End			
3	С	360.	Primary	Show	End			
4	D	540.	Primary	Show	End			19-1
5	E	720.	Primary	Show	End			
6								
7								
8							-	
Grid Da	ta							Display Grids as
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.	Grid Color		Ordinates C Spacing
1	1	0.	Primary	Show	Start	and Color	-	• orunates to spacing
2	2	234,9996	Primary	Show	Start			
3	3	317.0004	Primary	Show	Start			Hide All Grid Lines
4	4	555.	Primary	Show	Start			
5	т		1 ninuty	011017	oran			Glue to Grid Lines
6								
7								Bubble Size 57.
8							-	
Grid Da	ha							
							_	Reset to Default Color
	Grid ID	Ordinate	Line Type	Visibility	Bubble Loc.		_	
1	Z1	0.	Primary	Show	End			Reorder Ordinates
2	Z2	120.	Primary	Show	End			
3	Z3	240.	Primary	Show	End			
4	Z4	360.	Primary	Show	End			
5	Z5 Z6	480. 600.	Primary Primary	Show	End			
6				Show	End			

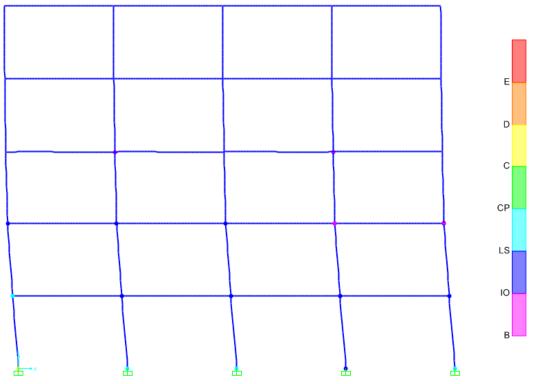
25

Pushover Analysis Example

Frame Properties		Reinforcement Data	
Properties Find this property: [C8 [B1 [B2 [B3 [B4 [C1 [C2 [C5 [C6 [C6 [C6 [C6	Click to: Import New Property Add New Property Add Copy of Property Modify/Show Property Delete Property		+ A615Gr60 • + A615Gr60 •
Rectangular Section	Cancel 1	Reinforcement Configuration Rectangular Circular	Confinement Bars
Section Name Section Notes Properties Section Properties Property Section Properties	C8 Modify/Show Notes Modfiers edifiers	⊢ Longitudinal Bars - Rectangular C Clear Cover for Confinement Bars Number of Longit Bars Along 3-d Number of Longit Bars Along 2-d Longitudinal Bar Size	s 1.5 ir Face 4
Dimensions Depth (13) 12. Width (12) 20.		Confinement Bars Confinement Bar Size Longitudinal Spacing of Confiner Number of Confinement Bars in 3 Number of Confinement Bars in 2	3-dir 3
Concrete Reinforcement	Display Color	Check/Design Reinforcement to be Checke Reinforcement to be Designe	

Pushover Analysis Example

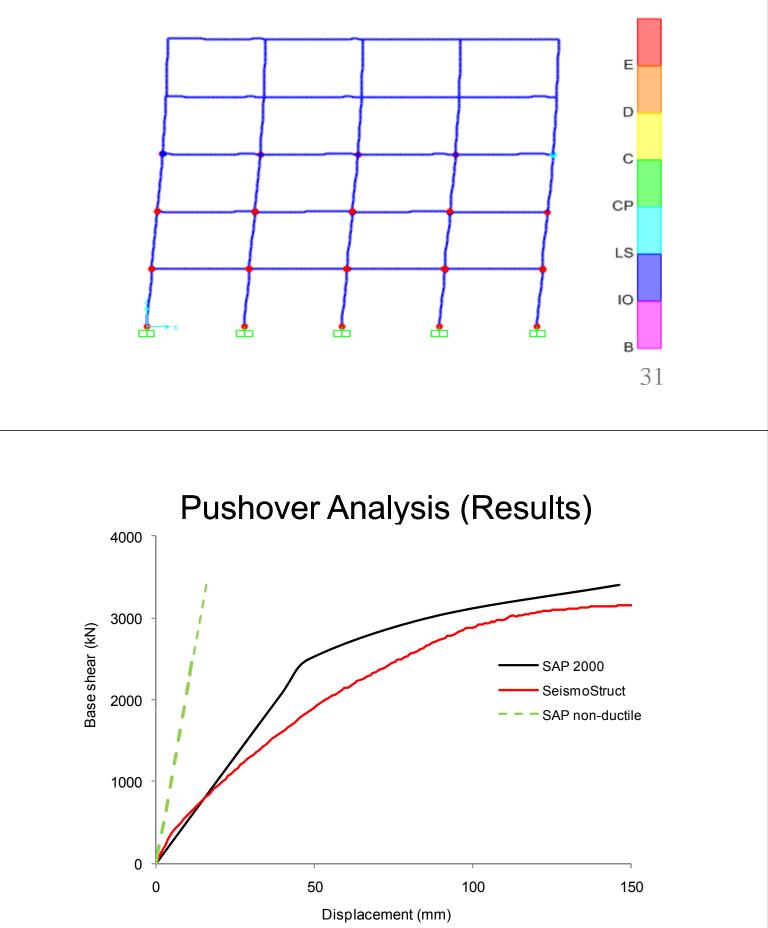
Name A	k to: Add New Property Add Copy of Property
Default For Added Hinges	Frame Hinge Property Data Hinge Property Name FH1
Use Defaults For C Steel C Concrete C User Defined	Hinge Type C Force Controlled (Brittle) C Deformation Controlled (Ductile) Axial P
OK Cancel	Modify/Show Hinge Property Cancel 27


Pushover Analysis Example

dit Displacement (Control Parameters-			
 Drops Is Extra 			✓ ✓ ✓ Symmetric	Type ✓ Moment - Rotation ✓ Moment - Curvature Hinge Length ✓ Relative Length Hysteresis Type And Parameters Hysteresis Type Isotropic ✓ No Parameters Are Required For This Hysteresis Type
🔲 Use Yi		ent SF .	Negative	
Acceptance	e Criteria (Plastic Rota adiate Occupancy Safety pse Prevention ccceptance Criteria o	Positive 3.000E-03 0.012 0.015	Negative	OK Cancel

Pushover Analysis Example

MODAL LL FF W EQX EQY	Load Case Type Vonlinear Static Modal "inear Static "inear Static "inear Static "inear Static "inear Static "inear Static Nonlinear Static	 Click to: Add New Load Case Add Copy of Load Case Modify/Show Load Case Delete Load Case Display Load Cases Show Load Case Tree DK Cancel 	
		Load Case Name Notes Load Case Type Push-1 Set Def Name Modify/Show Static Initial Conditions Continue from Unstressed State Important Not: Analysis Type Important Not: Load Case from this previous case are included in the current case DEAD Important Not: Modal Load Case MODAL Important Not: Continue from Unstressed State Important Not: Modal Load Case Applied Important Not: Continue are staged Constru Load Supplied Load Name Scale Factor Accel UX T Add Modify Delete Delete	ers
		Other Parameters Oddfy/Show Load Application Displ Control Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters Default Modify/Show	


Pushover Analysis (Results)

30

29

Pushover Analysis (Results)

SEISMIC DESIGN CONCEPT FOR NEW BUILDINGS

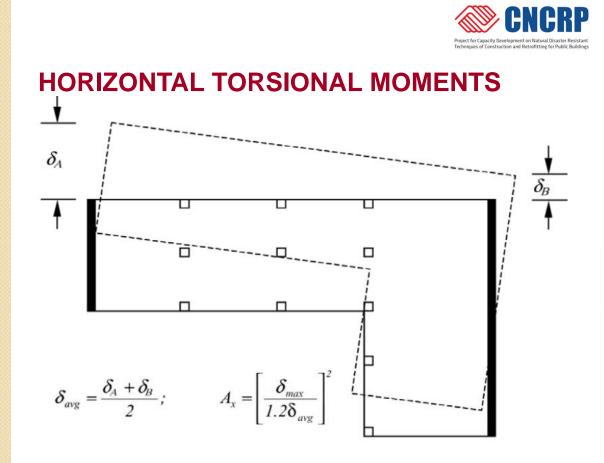
MD. MOMINUR RAHMAN EXECUTIVE ENGINEER PUBLIC WORKS DEPARTMENT AND TEAM MEMBER, COMPONENT-2 CNCRP PROJECT.

An effective seismic design generally includes

1. Layout of a lateral force-resisting system which includes providing a redundant and continuous load path to ensure that a building responds as a unit during ground motion.

2. Determination of code-prescribed forces and deformations generated by the ground motion, and distribution of the forces vertically to the lateral force-resisting system.

3. Analysis of the building for the combined effects of gravity and

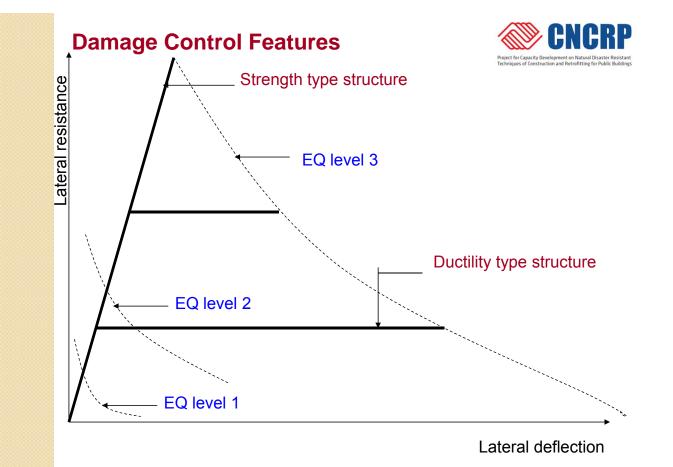

seismic loads to verify that adequate vertical and lateral strengths

and stiffnesses are achieved to satisfy the structural performance

and acceptable deformation levels prescribed in the building code.

4. Structural detailing to assure that the structure has sufficient

inelastic deformability to undergo large deformations when subjected to a major earthquake.



The accidental torsional moment M_{tai} at level *i* is given as: $M_{tai} = e_{ai} F_i$

where, e_{ai} = accidental eccentricity of floor mass at level i applied in the same direction at all floors = ±0.05 *Li* L_i = floor dimension perpendicular to the direction of seismic force considered.

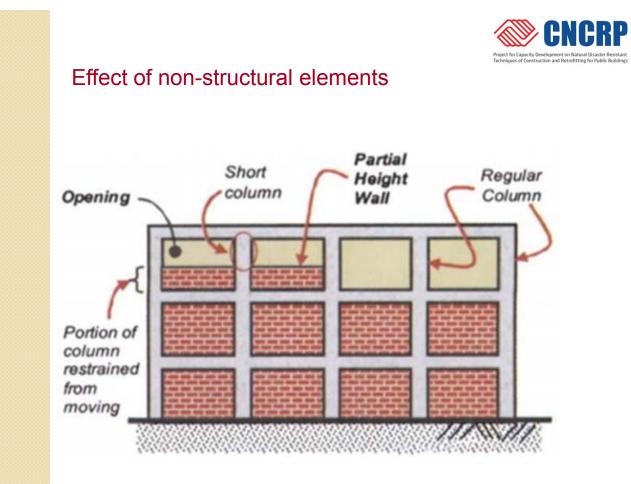
Where torsional irregularity exists for Seismic Design Category C or D, the irregularity effects shall be accounted for by increasing the accidental torsion M_{tai} at each level by a torsional amplification factor,

 $A_x = [\delta_{max} / (1.2\delta_{avg})]^2 \le 3.0$

To minimize the damage of nonstructural elements, special care in

detailing, either to isolate these elements or to accommodate the

movement, is required.

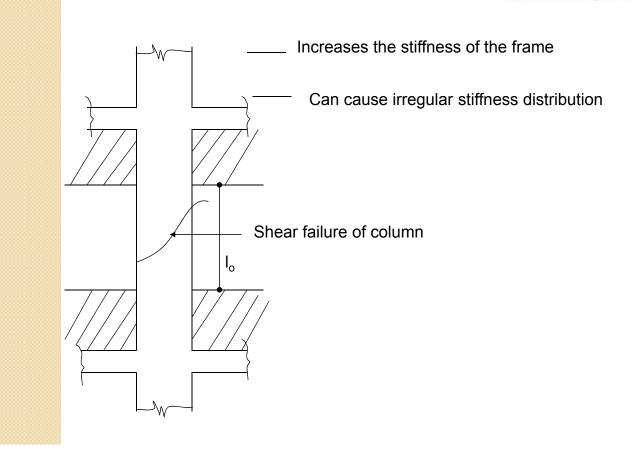

Breakage of glass windows can be minimized by providing adequate

clearance at edges to allow for frame distortions.

Damage to rigid nonstructural partitions can be largely eliminated by

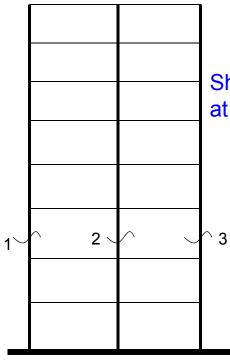
providing a detail at the top and sides, which will permit relative

movement between the partitions and the adjacent structural elements.



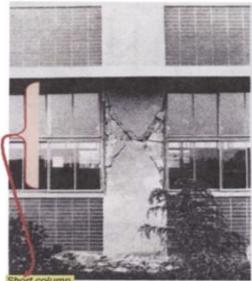
 Tall Column:
Attracts smaller
horizontal force
 Short Columns:
Attracts larger
horizontal force

 Dor behaviour of short columns is due to the fact that in an earthquake,
a tall column and a short column of same cross section move horizontal

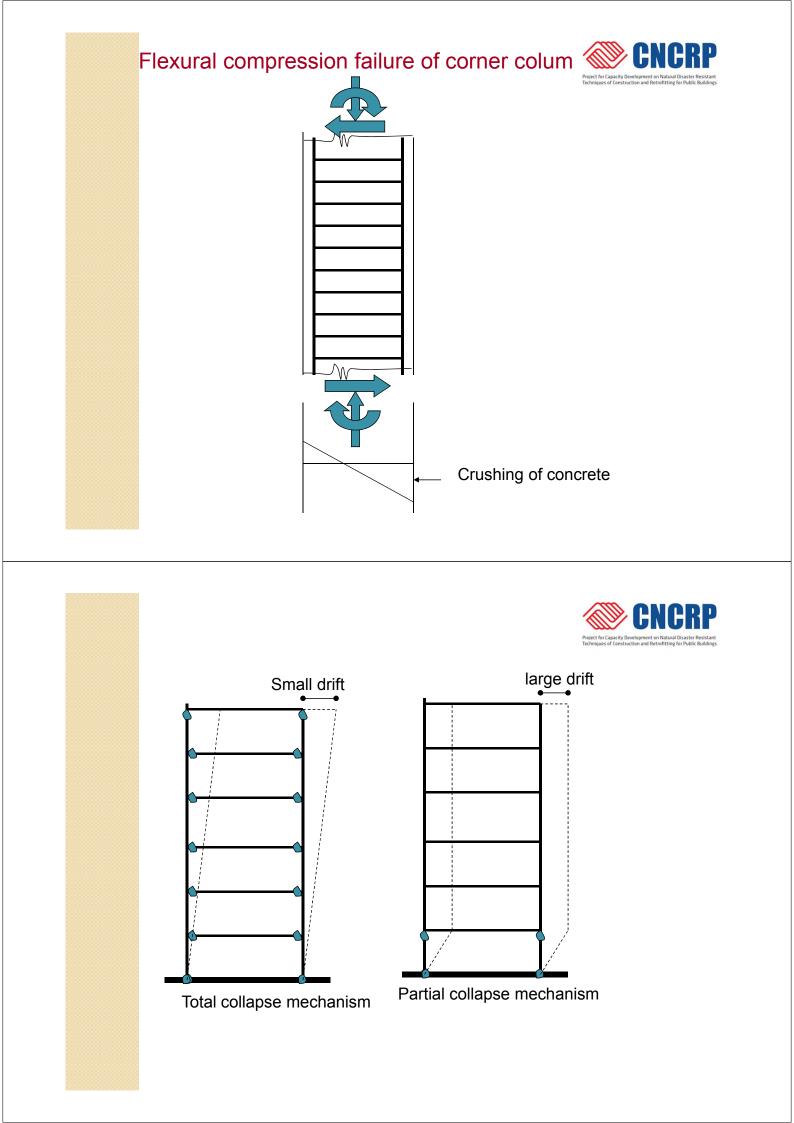

by same amount which can be seen from the given figure.

Project for Capacity Development on Natural Disaster Resistant Techniques of Construction and Retrofittine for Public Buildines

Progressive collapse of a brittle structure



Shear failure of short column occurs at low deformation.



Short column failure

between lintel and sill of window

Soft story failure

Effect of column tie on shear failure of column

1. If column tie is absent, brittle shear failure occurs in diagonal tension mode.

2. If minimum column tie is present, diagonal compression failure of concrete occurs after tie yielding. Not brittle failure, but deformation capacity is low.

3. Tie resists tension under shear and must be 135⁰ hook.

Pounding effect

•Deterioration with age

Beam-column joint failure

Splicing failure of column main reinforcement

Poor quality of concrete

SITE INVESTIGATION

Appropriate site investigations should be carried out to identify the ground conditions influencing the seismic action. The ground conditions at the building site

should normally be free from risks of ground rupture, slope instability and permanent

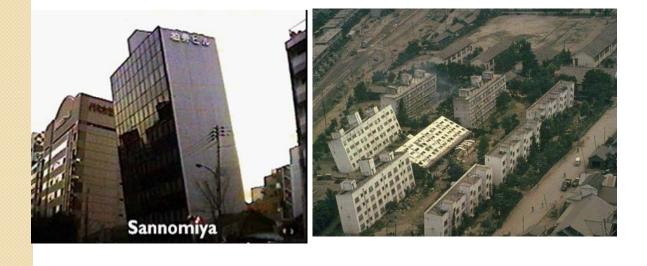
settlements caused by liquefaction or densification during an earthquake. The possibility of such phenomena should be investigated in accordance with standard

procedures.

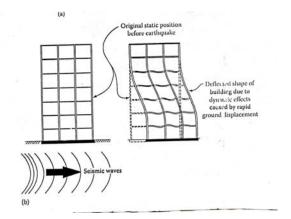
Liquefaction potential and possible consequences should be evaluated for design

earthquake ground motions consistent with peak ground accelerations. Any settlement due to densification of loose granular soils under design earthquake

motion should be studied. The occurrence and consequences of geologic hazards


such as slope instability or surface faulting should also be considered. The dynamic

lateral earth pressure on basement walls and retaining walls during earthquake ground shaking is to be considered as an earthquake load for use in design load combinations.


CNCR

Foundation failure due to liquefaction

Structural Response

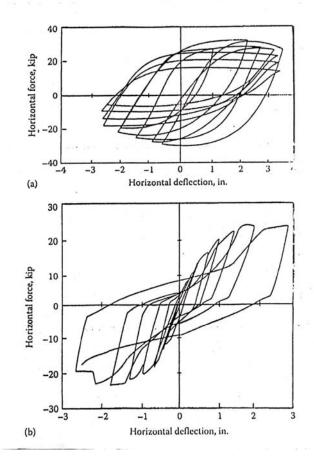
The inertia forces generated by the horizontal components of ground motion require greater consideration for seismic design since adequate resistance to vertical seismic loads is usually provided by the member capacities required for gravity load design.

Load Path

1. There must be a complete gravity and lateral forceresisting system that forms a continuous load path between the foundation and all portions of the building.

2. If there is a discontinuity in the load path, the building is unable to resist seismic forces regardless of the strength of the elements.

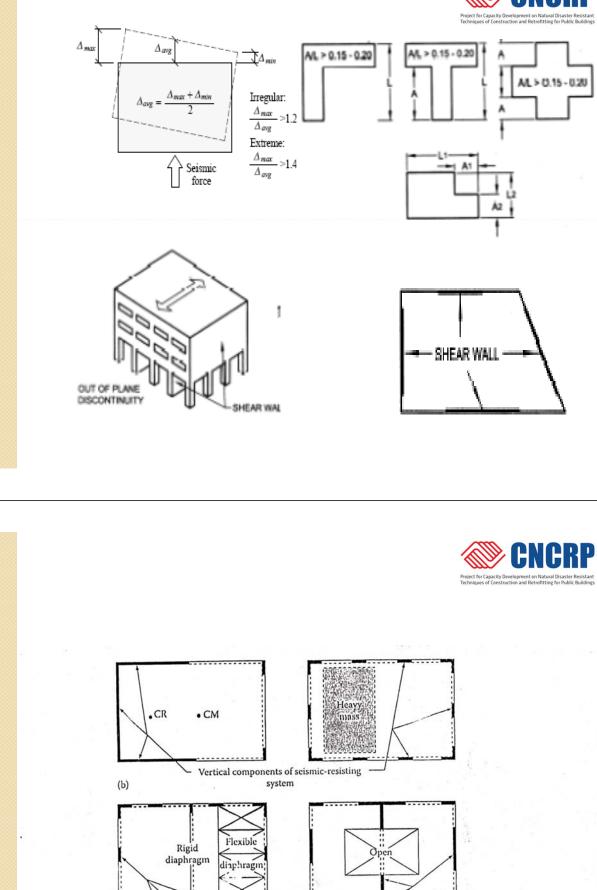
3. Interconnecting the elements needed to complete the load path is necessary to achieve the required seismic performance.



Ductility

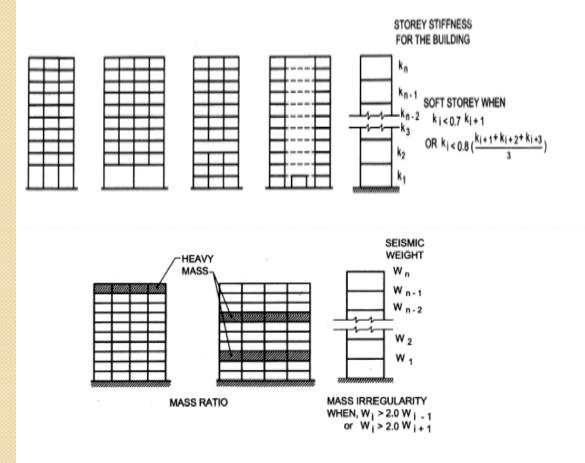
Ductility is the capacity of building materials, systems or structures to absorb energy by deforming into the inelastic range. The capability of a structure to absorb energy, with acceptable deformations and without failure, is a very desirable characteristic in any earthquake-resistant design.

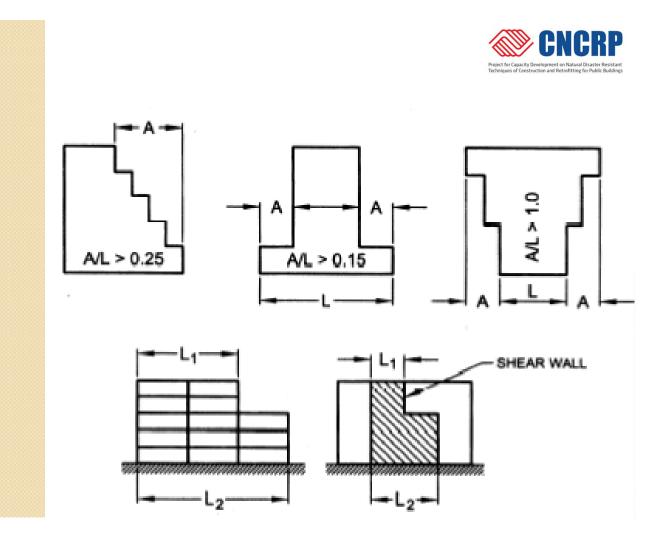
Ductility or hysteretic behavior may be considered as an energy-dissipating mechanism due to inelastic behavior of the structure at large deformations.



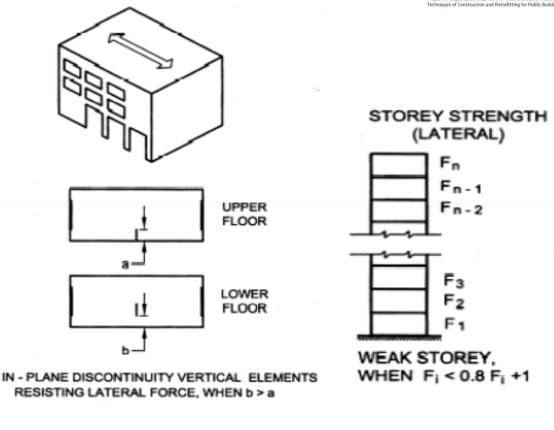
Irregular Buildings

Geometric configuration, type of structural members, details of connections, and materials of construction, all have a profound effect on the structural dynamic response of a building. When a building has irregular features, such as asymmetry in plan or vertical discontinuity, the assumptions used in developing seismic criteria for buildings with regular features may not apply. So it is best to avoid creating buildings with irregular features.





Vertical components of scismic-resisting -


system

(c)

Redundancy

A high degree of redundancy accompanied by redistribution capacity through ductility is desirable, enabling a more widely spread energy dissipation across the entire structure and an increased total dissipated energy. The use of evenly distributed structural elements increases redundancy.

The failure of a single connection or component in a building with a redundant system does not adversely affect its lateral stability.

Lateral Force-Resisting Systems

In moment frames, the drift may be large. So a moment-frame building can have substantial nonstructural damage and still be structurally safe.

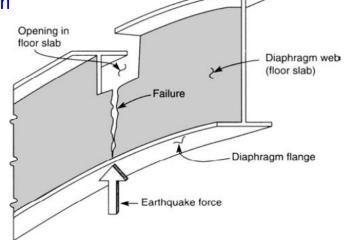
A shear-wall building is typically more rigid than a framed structure.

Table 2.5.7 Response reduction factor, deflection amplification factor for different Structural Systems and height limitations (m) for different seismic design categories

Seismic Force-Resisting System	Response Reduction Factor, R	Deflection Amplification Factor, C _d	Seis. Design Category B	Seis. Design Category C	Seis. Design Category D
			Heigh	t limit	(m)
A. BEARING WALL SYSTEMS (no frame)					
1. Special reinforced concrete shear walls	5	5	NL	NL	50
2. Ordinary reinforced concrete shear walls	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear walls	2	1.75	NL	50	NP
4. Ordinary plain masonry shear walls	1.5	1.25	18	NP	NP
B. BUILDING FRAME SYSTEMS (with bracing or shear wall)					
 Steel eccentrically braced frames, moment resisting connections at columns away from links 	8	4	NL	NL	50
 Steel eccentrically braced frames, non-moment-resisting, connections at columns away from links 	7	4	NL	NL	50
Special steel concentrically braced frames	6	5	NL	NL	50
 Ordinary steel concentrically braced frames 	3.25	3.25	NL	NL	11
5. Special reinforced concrete shear walls	6	5	NL	50	50
6. Ordinary reinforced concrete shear walls	5	4.25	NL	NL	NP
7. Ordinary reinforced masonry shear walls	2	2	NL	50	NP
 Ordinary plain masonry shear walls 	1.5	1.25	18	NP	NP

Table 2.5.7 Response reduction factor, deflection amplification factor for different Structural Systems and height limitations (m) for different seismic design categories

Seismic Force-Resisting System	Response Reduction Factor, <i>R</i>	Deflection Amplification Factor, C _d	Seis. Design Category B	Seis. Design Category C	Seis. Design Category D
			Heigh	t limit	(m)
C. MOMENT RESISTING FRAME SYSTEMS (no shear wall)					
1. Special steel moment frames	8	5.5	NL	NL	Р
2. Intermediate steel moment frames	4.5	4	NL	NL	35
3. Ordinary steel moment frames	3.5	3	NL	NL	NP
4. Special reinforced concrete moment frames	8	5.5	NL	NL	NL
 Intermediate reinforced concrete moment frames 	5	4.5	NL	NL	NP
6. Ordinary reinforced concrete moment frames	3	2.5	NL	NP	NP
D. DUAL SYSTEMS: SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)					
1. Steel eccentrically braced frames	8	4	NL	NL	NL
2. Special steel concentrically braced frames	7	5.5	NL	NL	NL



					Techn
Seismic Force-Resisting System	Response Reduction Factor, R	Deflection Amplification Factor, C _d	Seis. Design Category B	Sels. Design Category C	Seis. Design Category D
			Heigh	ıt limit	(m)
3. Special reinforced concrete shear walls	7	5.5	NL	NL	NL
4. Ordinary reinforced concrete shear walls	6	5	NL	NL	NP
E. DUAL SYSTEMS: INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES (with bracing or shear wall)					
1. Special steel concentrically braced frames	6	5	NL	NL	11
2. Special reinforced concrete shear walls	6.5	5	NL	NL	50
3. Ordinary reinforced masonry shear walls	3	3	NL	50	NP
4. Ordinary reinforced concrete shear walls	5.5	4.5	NL	NL	NP
F. DUAL SHEAR WALL-FRAME SYSTEM: ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS	4.5	4	NL	NP	NP
G. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE	3	3	NL	NL	NP

Diaphragms

Earthquake loads at any level of a building will be distributed to the lateral load-resisting vertical elements through the floor slabs. Inappropriate location or large size openings for stairs or lift cores create problems similar to those related to cutting the flanges and holes in the web of a steel beam adjacen

Proposed BNBC 2010:

Seismic Design Category: Structural Implications Seismic design category D has the most stringent seismic design detailing ,while seismic design category B has the least seismic design detailing requirements. Certain structural systems are not permitted for seismic design categories C and D.

Imortance Class I and II				Imortance Class III and IV				
Site class	Zone 1	Zone 2	Zone 3	Zone 4	Zone 1	Zone 2	Zone 3	Zone 4
SA SB SC SD SE, S1, S2	B B C D	C C D D	C D D D	D D D D	C C D D	D D D D	D D D D	D D D D

Dynamic Analysis

For the buildings that are asymmetrical or with areas of discontinuity or irregularity, dynamic analysis is used to determine significant response characteristics such as (a) the effects of the structure's dynamic characteristics on the vertical distribution of lateral forces, (b) the increase in dynamic loads due to torsional motions, (c) the influence of higher modes, resulting in an increase in story shears and deformations.

Static methods specified in building codes are based on single-mode response with simple corrections for including higher mode effects. While appropriate for simple regular structures, the simplified procedures do not take into account the full range of seismic behavior of complex structures. Therefore dynamic analysis is the preferred method for the design of buildings with unusual or irregular geometry.

REQUIREMENT FOR DYNAMIC ANALYSIS

Dynamic analysis should be performed to obtain the design seismic force, and its distribution to different levels along the height of the building and to the various lateral load resisting elements, for the following buildings:

- a) Regular buildings with height greater than 40 m in Zones 2, 3, 4 and greater than 90 m in Zone 1.
- b) Irregular buildings with height greater than 12 m in Zones 2,3, 4 and greater than 40 m in Zone 1. For irregular buildings, smaller than 40 m in height in Zone 1, dynamic analysis, even though not mandatory, is recommended.

P-DELTA EFFECTS:

The P - delta effects on story shears and moments, the resulting member forces and moments, and the story drifts induced by these effects are not required to be considered if the stability coefficient (θ) determined by the following equation is not more than 0.10:

$\theta = P_x \Delta / (V_x h_{sx} C_d)$

Where,

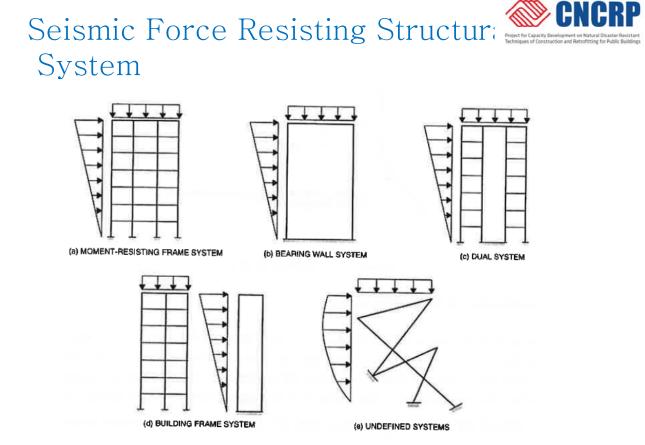
Px = the total vertical design load at and above level x; where computing Px, no individual load factor need exceed 1.0 Δ = the design story drift occurring simultaneously with VxVx = the storey shear force acting between levels x and x - 1 hsx = the story height below level x Cd = the deflection amplification factor given in BNBC The stability coefficient (θ) shall not exceed θ max.

Code Provisions for Seismic Analysis and Design - Example

[Short Training Course on Seismic Assessment, Retrofit Design and Construction of RC Buildings 11-20 Feb, 2013]

Md. Rafiqul Islam

Executive Engineer PWD Design Division - 3 & Team Leader Working Team - 2 CNCRP Project


Earthquake Design Philosophy

- 1. It is uneconomical and unnecessary to design a structure in elastic range for maximum EQ induced inertia force.
- 2. The large deformation during EQ will be accompanied by yielding in some of the members of the structure.
- 3. Critical regions of certain members should have sufficient inelastic deformability to dissipate seismic energy.
- 4. Structure will not collapse when subjected to several cycles of loading into inelastic range.
- 5. Proper rebar detailing should avoid all forms of brittle failure.

Considerations for EQ Analysis

- 1. Selection of lateral force resisting system.
- 2. Check irregularities of structure.
- 3. Occupancy type of structure.
- 4. Location of structure in seismic zoning map.
- 5. Subsoil characteristics

Reference: 'Seismic and Wind Design of Concrete Buildings – S. K. Gosh and Qiang Shen

Types of Moment Frame

Moment Frame: A frame in which member and joint resist

lateral forces by flexure.

- Ordinary Moment Frame
- Intermediate Moment Frame
- Special Moment Frame

Ductility is the capacity of building material, systems or structure to absorb energy by deforming into inelastic range.

Choice of Frame (or SDC)

- Restriction from Code
 - Location of building
 - Occupancy type
 - Height of building
 - Soil type
- Choice of the client or designer
- ✓ Designer must confirm all the provisions of Code of specific frame type.
- ✓ Site engineer must ensure design and detailing provided by the designer.

Calculation of EQ force

Design base shear $V = S_a W$

 S_a = Lateral seismic force coefficient

W = Total seismic weight of the building

In addition to total dead load, consideration for live load are:

- a) Live load $\leq 3.0 \text{ KN/m}^2$, consider minimum 25% of live load
- b) Live load $\geq 3.0 \text{ KN/m}^2$, consider minimum 50% of live load
- c) 100% of permanent heavy equipment or retained liquid or any imposed load

Building Codes Implied	Poiet for Capacity Development on Natural Disaster Resistan Techniques of Construction and Aetrofitting for Public Building
Performance	Return Period
 Ability to resist frequent, minor earthquakes without damage 	100 yrs
• Ability to resist infrequent, moderate earthquakes with limited structural and nonstructural damage	475 yrs
• Ability to resist worst earthquakes ever likely to occur without collapse or major life safety endangerment	2475 yrs
Basic consideration: Design Basis Earthquake (DBE) ground motion = 2/3 of Maximum Considered Earthquake (MCE) ground motion	

Design Spectral Acceleration

$$S_a = \frac{2}{3} \frac{ZI}{R} C_s \le \frac{2}{3} ZI\beta$$

Z = Seismic zone coefficient

I = Structure importance actor

R = Response reduction factor

 β = Coefficient for lower bound of S_a = 0.2

C_s = Normalized acceleration response spectrum (function of structure period and soil type)

$$\frac{I}{R} \le 1.0$$

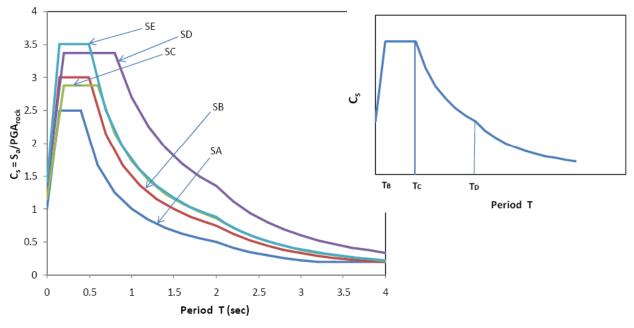
Site Classification

Site Class	Description of soil profile up to 30 meters depth	Average Soil Properties in top 30 meters				
		Shear wave velocity \overline{V}_s (m/s)	Standard Penetration Value, N (blows/30cm)	Undrained shear strength, \overline{S}_u (kPa)		
SA	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800				
SB	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250		
SC	Deep deposits of dense or medium dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 - 360	15 - 50	70 - 250		
SD	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70		

Site Classification

	Description of soil profile up to 30 meters depth	Average Soil Properties in top 30 meters				
		Shear wave velocity \overline{V}_s (m/s)	Standard Penetration Value, \overline{N} (blows/30cm)	Undrained shear strength <i>, S_u</i> (kPa)		
SE	A soil profile consisting of a surface alluvium layer with V_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $V_s > 800$ m/s.					
S1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content			10 - 20		
S ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types SA to SE or S1					

Normalized Acceleration Response Spectrum (C_s)


$C_s = S\left(1 + \frac{T}{T_B}(2.5\eta - 1)\right) \text{for} 0 \le T \le T_B$	_
$C_s = 2.5S\eta$ for $T_B \le T \le T_C$	_
$C_s = 2.5S \eta \left(\frac{T_C}{T} \right)$ for $T_C \le T \le T_D$	
$C_s = 2.5S \eta \left(\frac{T_C T_D}{T^2} \right)$ for $T_D \le T \le 4 \sec$	_

Soil type	S	<i>T_B</i> (s)	Т _с (s)	T _D (s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

S (soil factor), T_B, T_C, T_D depends on site class Damping correction factor, $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ ξ = Damping ratio

Normalized Acceleration Response Spectrum Graph

Seismic Design Category (SDC)

Building have to be assigned a SDC based on:

- Seismic zone
- Local site condition
- Importance class

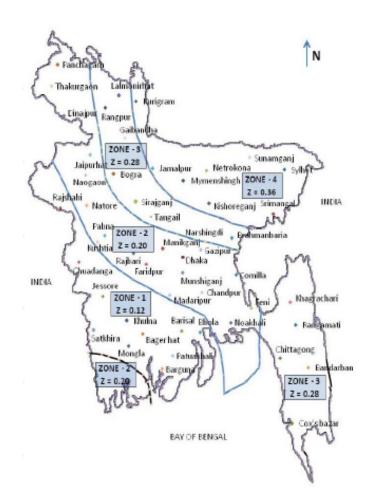
SDC – D has the most intrinsic seismic design detailing and SDC –B has the least seismic detailing requirement

	Occup	Occupancy Category I, II and III			Occupancy Category IV			
Site	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone
Class	1	2	3	4	1	2	3	4
SA	В	С	С	D	С	D	D	D
SB	В	С	D	D	С	D	D	D
SC	В	С	D	D	С	D	D	D
SD	С	D	D	D	D	D	D	D
SE, S1, S2	D	D	D	D	D	D	D	D

Occupancy Importance Factor (I)

Nature of Occupancy	Occupancy Category	Importance Factor
Building have low hazard to human life in the event of failure	I	1.0
Buildings except those listed in Occupancy Categories in I, III and IV	II	1.0
 Building have substantial hazard to human life in the event of failure Buildings potential to cause a substantial economic impact or mass disruption to day to day civilian life in the event of failure Building containing substantial quantities of toxic or explosive substances 	111	1.25
 Building designated as essential facilities: Hospital, emergency shelter, power generation station Fire, police station and emergency vehicle garage Aviation control tower etc. 	IV	1.5

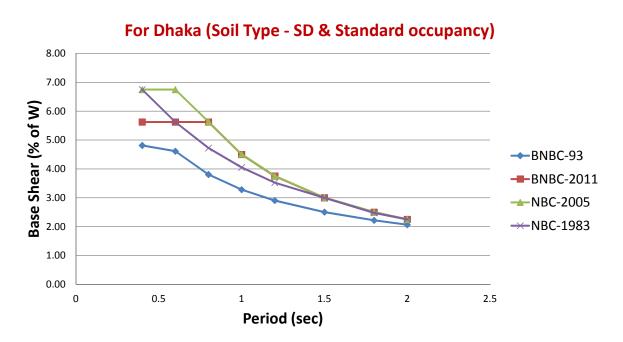
Choice of Structural System


Seismic Force Resisting System		C _d	SDC-B	SDC-C	SDC-D
			Hei	ght Limit	: (m)
A. Bearing Wall System					
1. Special reinforced concrete shear wall	5	5	NL	NL	50
2. Ordinary reinforced concrete shear wall	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear wall	2	1.75	NL	50	NP
4. Ordinary plain masonry shear wall	1.5	1.25	18	NP	NP
B. Building Frame System					
5. Special reinforced concrete shear wall	5	4.25	NL	NL	NP
6. Ordinary reinforced concrete shear wall	2	2	NL	50	NP
7. Ordinary reinforced masonry shear wall	1.5	1.25	18	NP	NP

Choice of Structural System

Seismic Force Resisting System	R	C _d	SDC-B	SDC-C	SDC-D
			Hei	ght Limit	: (m)
C. Moment Resisting Frame System					
4. Special RC moment frame	8	5.5	NL	NL	NL
5. Intermediate RC moment frame	5	4.5	NL	NL	NP
6. Ordinary RC moment frame	3	2.5	NL	NP	NP
D. Dual Systems: SMF Capable of 25% V					
3. Special RC shear wall	7	5.5	NL	NL	NL
4. Ordinary RC shear wall	6	5	NL	NL	NP
E. Dual Systems: IMF Capable of 25% V					
3. Special RC shear wall	6.5	5	NL	NL	50
4. Ordinary RC shear wall	5.5	4.5	NL	NL	NP
F. Dual Systems: Ordinary RC Moment Frame and Ordinary RC Shear wall	4.5	4	NL	NP	NP

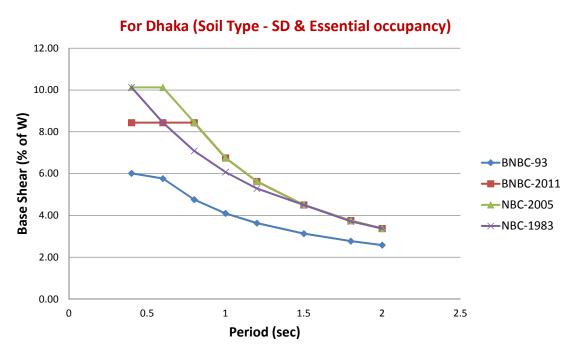
Zone Factor(Z)



Comparison of Base Shear

For Dhaka (Soil Type - SD & Standard occupancy)							
Structural	Base shear (% of wt)		% change in	Base shear (% of wt) according to Indian Code			
period (T)	BNBC-93	BNBC-2011	BNBC-2011	NBC-2005	NBC-1983		
0.4	4.81	5.63	16.88%	6.75	6.75		
0.6	4.61	5.63	21.95%	6.75	5.63		
0.8	3.81	5.63	47.73%	5.64	4.73		
1	3.28	4.50	37.14%	4.51	4.05		
1.2	2.91	3.75	29.06%	3.76	3.53		
1.5	2.50	3.00	19.81%	3.01	3.00		
1.8	2.22	2.50	12.74%	2.51	2.48		
2	2.07	2.25	8.85%	2.25	2.25		

Comparison of Base Shear in Various Codes



Comparison of Base Shear

For Dhaka (Soil Type - SD & Essential occupancy)							
Structural	Base shear (% of wt)		% change in	Base shear (% of Indian	wt) according to Code		
period (T)	BNBC-93	BNBC-2011	BNBC-2011	NBC-2005	NBC-1983		
0.4	6.02	8.44	40.26%	10.13	10.13		
0.6	5.77	8.44	46.34%	10.13	8.44		
0.8	4.76	8.44	77.28%	8.45	7.09		
1	4.10	6.75	64.57%	6.76	6.08		
1.2	3.63	5.63	54.87%	5.64	5.29		
1.5	3.13	4.50	43.77%	4.51	4.50		
1.8	2.77	3.75	35.29%	3.76	3.71		
2	2.58	3.38	30.62%	3.38	3.38		

۱

Comparison of Base Shear in Various Codes

Building Period (T)

a) Structural dynamics procedure (Rayleigh method):

$$T_A = 2\pi \sqrt{\sum_{i=1}^n w_i \delta_i^2} / g \sum_{i=1}^n f_i \delta_i$$

b) Approximate method:

$$T_B = C_t (h_n)^m$$

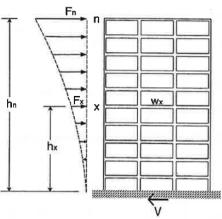
 h_n =Height of building in meter

Structure Type	C _t	m
Concrete moment resisting frames	0.0466	0.9
Steel moment resisting frames	0.0724	0.8
Eccentrically braced steel frame	0.0731	0.75
All other structural systems	0.0488	0.75

 $T_A \leq 1.4 T_B$

Vertical distribution of EQ force

$$F_x = V \frac{w_x h_x^{\ k}}{\sum_{i=1}^n w_i h_i^{\ k}}$$


 F_x = Part of base shear force induced at level x

 w_i and w_x = Seismic weight of structure at level i and x

 h_i and h_x = Height from base to level i and x

- k = 1 for structure period ≤ 0.5 sec
 - = 2 for structure period \geq 2.5 sec
 - = linear interpolation for other period between 1.0 and 2.0

n = number of stories

Project for Capacity Development on Natural Disaster Resistant Exchanges of Construction and Retrofitting for Public Buildings

Accidental Torsional Effect

Accidental torsional moment in regular structure $M_{tai} = e_{ai}F_i$ e_{ai} = Accidental eccentricity of floor mass at level i = $\pm 0.05L_i$

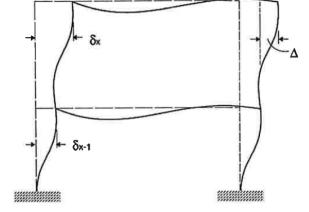
Where torsional irregularity exist in SDC-C and SDC-D increase accidental torsion, M_{ta} by A_x

$$A_{x} = \left[\delta_{\max} / (1.2\delta_{avg})\right]^{2} \le 3.0$$

$$\delta_{A}$$

$$\delta_{A}$$

$$\delta_{B}$$



Deflection and Story Drift

Deflection at level x, $\delta_x = \frac{C_d \delta_{xe}}{I}$

- C_d = Deflection amplification factor
- δ_{xe} = Deflection determined by an elastic analysis
- *I* = Importance factor

Check deflection at center of mass

Story drift at story x, $\Delta_x = \delta_x - \delta_{x-1}$

Allowable Story Drift Limit

Structure	Occupancy (
	I and II	111	IV
Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts.	0.025h _{sx}	0.020h _{sx}	0.015h _{sx}
Masonry cantilever shear wall structures	$0.010h_{sx}$	$0.010 h_{sx}$	$0.010 h_{sx}$
Other masonry shear wall structures All other structures	$0.007h_{sx}$ $0.020h_{sx}$	0.007h _{sx} 0.015h _{sx}	$0.007 \mathrm{h_{sx}}$ $0.010 \mathrm{h_{sx}}$

NOTES:

h_{sx} is the story height below Level x.

2. There shall be no drift limit for single-story structures with interior walls, partitions, ceilings, and exterior wall systems that have been designed to accommodate the storey drifts.

 Structures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered from their base or foundation support which are so constructed that moment transfer between shear walls (coupling) is negligible.

4. Occupancy categories are defined in Table 1.2.1

Guideline for EQ resistant Building

- 1. Building shall be approximately symmetrical with respect to stiffness and mass distribution.
- 2. Both lateral stiffness and mass of an individual story shall remain constant or reduce gradually, without abrupt change.
- 3. All structural elements such as cores, structural walls or frames shall run without interruption from foundation to the top.
- 4. An irregular building may be subdivided into dynamically independent regular unit well separated against pounding.
- 5. The length by breadth ratio of the building in plan shall not be more than 4.

Effects of P-Delta

P-Delta effects are not required to be considered if stability coefficient $\theta \le 0.10$, where

$$\theta = \frac{P_X \Delta}{V_x h_{sx} C_d}$$

- P_x = Vertical load above level x (with individual load factor ≤ 1.0)
- Δ = Design story drift occurring simultaneously with V_x
- V_x = Story shear force acting between level x and x-1
- h_{sx} = Story height below level x

 C_d = Deflection amplification factor

$$\theta_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$
 conservatively, $\beta = 1.0$

If $0.10 \le \theta \le \theta_{max}$ increase displacement and member forces by rational analysis or multiply by a factor $1.0/(1-\theta)$

Requirements for Static and Dynamic Analysis

Equivalent static analysis may be applied if two conditions satisfy:

- 1. The building period in two main horizontal direction is smaller than both $4T_c$ and 2 sec.
- 2. The building does not posses any vertical irregularity.

Dynamic analysis should be performed for following buildings:

- Regular buildings with height greater than 40m in Zones 2, 3,
 4 and greater than 90m in Zone 1.
- Irregular buildings with height greater than 12m in zone 2, 3,
 4 and greater than 40m in Zone 1.

Earthquake Load Combination

Following are the guidelines for combination of earthquake load in two orthogonal direction:

- 1. For structures of SDC-B the design seismic forces are permitted to be applied independently in each of two orthogonal direction.
- Structures of SDC-C and D, in addition to applying requirements for SDC-B following combinations should be satisfied: "±100% in X-direction ±30% in Y-direction"

" $\pm 30\%$ in X-direction $\pm 100\%$ in Y-direction"

The combination which produce most unfavourable effect, shall be considered.

Vertical Earthquake Loading

Maximum vertical ground acceleration shall be taken as 50% of expected horizontal PGA.

The vertical seismic load effect E_v may be determined as :

$$E_{v} = 0.5(a_{h})D$$

Where,

 a_h = expected horizontal peak ground acceleration for design = (2/3)ZS D = effect of dead load

Load Combinations for EQ force

Common load combinations:

- 1.4D
- 1.2*D* + 1.6*L*
- 1.2*D* + 1.0*L* + 1.0*E*
- 0.9*D* + 1.0*E*
- D = Dead load
- L = Live load
- E = Earthquake load

Provision for Soft Story

- Soft story problem is one of the major vertical irregularity.
- Commonly it happens in open parking floor.

Following two approaches are recommended -

- 1. Approach-1: Perform dynamic analysis considering strength and stiffness of infill wall and calculate inelastic deformations in members.
- 2. Approach -2:
 - a) Carry out elastic earthquake analysis neglecting effect of infill wall
 - b) Beam and column of soft story to be designed for 2.5 times shear and moment derived from elastic analysis.
 - c) Symmetrically placed shear wall to be designed for 1.5 times lateral shear force calculated from elastic analysis

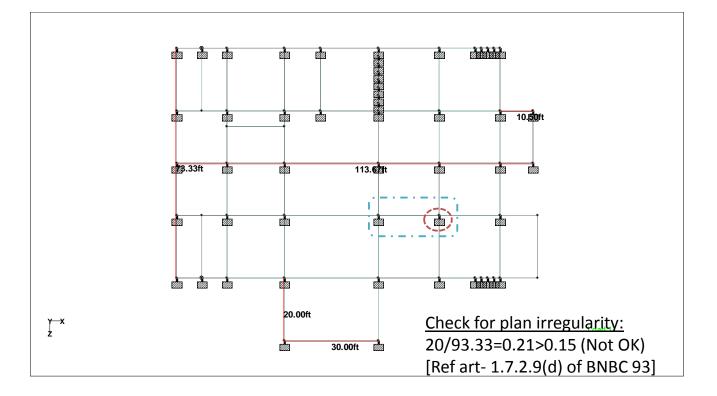
Architectural Plan view of examp



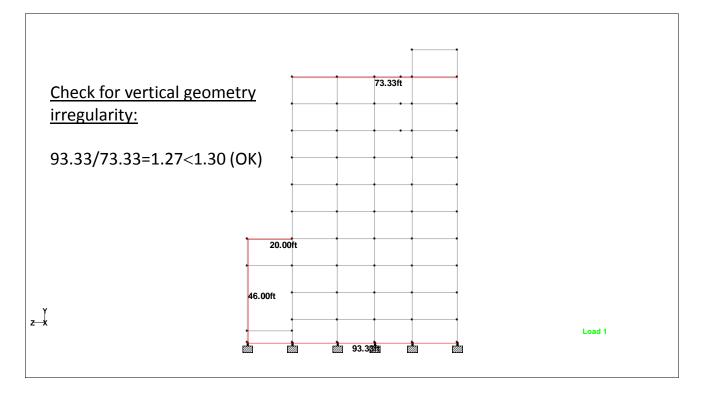
<u>Reference Code</u> For Analysis: For Design & Detailing

Upcoming BNBC ACI 318-08

Architectural Plan view of examp



Architectural Plan view of examp



Plan view of structural model

Elevation of structural model

Selection of Seismic Design Cate

- 1. Building located at Dhaka (Z = 0.2) s
- 2. Hospital building (I = 1.5)
- 3. Soil type is SD
- 4. Seismic Design Category is SDC D

Soil type	S	T _B (s)	T _c	T _D
			(s)	(s)
SA	1.0	0.15	0.40	2.0
SB	1.2	0.15	0.50	2.0
SC	1.15	0.20	0.60	2.0
SD	1.35	0.20	0.80	2.0
SE	1.4	0.15	0.50	2.0

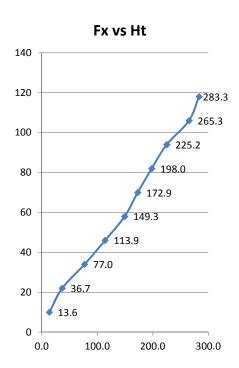
	Occupancy Category I, II and III			Occupa				
Site	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone
Class	1	2	3	4	1	2	3	4
SA	В	С	С	D	С	D	D	D
SB	В	С	D	D	С	D	D	D
_SC	<u> </u>	с	D	D	c	_D	D	D
SD	С	D	D	D	D	(D)!	D	D
SE, S1, S2	D	D	D	D	D	D	D	D
	•					·		

Selection of Structural System

Seismic Force Resisting System		C_d	SDC-B	SDC-C	SDC-D
			Hei	ght Limit	: (m)
A. Bearing Wall System					
1. Special reinforced concrete shear wall	5	5	NĹ	NL	50
2. Ordinary reinforced concrete shear wall	4	4	NL	NL	NP
3. Ordinary reinforced masonry shear wall	2	1.75	NL	50	NP
4. Ordinary plain masonry shear wall	1.5	1.25	18	NP	NP
B. Building Frame System					
5. Special reinforced concrete shear wall	5	4,25	NL	NL	NP
6. Ordinary reinforced concrete shear wall	2	2	NL	50	NP
7. Ordinary reinforced masonry shear wall	1.5	1.25	18	NP	NP

Selection of Structural System

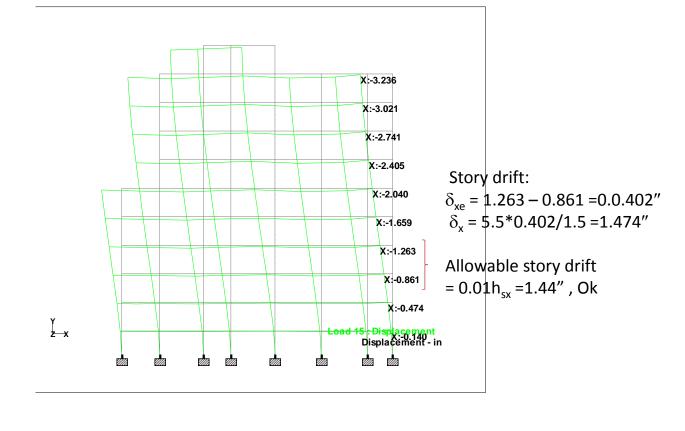
	Seismic Force Resisting System	R	C _d	SDC-B	SDC-C	SDC-D	
				Hei	Height Limit (m)		
	C. Moment Resisting Frame System						
i	4. Special RC moment frame	8	5.5	NĹ	NL	NL	
	5. Intermediate RC moment frame	5	4.5	NL	NL	NP	
	6. Ordinary RC moment frame	3	2.5	NL	NP	NP	
	D. Dual Systems: SMF Capable of 25% V						
i	3. Special RC shear wall	7	5.5	NĹ	NL	NL	
	4. Ordinary RC shear wall	6	5	NL	NL	NP	
	E. Dual Systems: IMF Capable of 25% V						
i	2. Special RC shear wall	6.5	5	NĹ	NL	50	
	4. Ordinary RC shear wall	5.5	4.5	NL	NL	NP	
	F. Dual Systems: Ordinary RC Moment Frame and Ordinary RC Shear wall	4.5	4	NL	NP	NP	



- 6. S = 1.35, $T_B = 0.2$ sec, $T_C = 0.8$ sec, $T_D = 2.0$ sec
- 7. Period of the structure is 1.08 sec.
- 8. $C_s = 2.5\eta(T_c/T) = 2.5$
- 9. $S_a = (2/3)(Z^*I/R)C_s = 0.0714$
- 10. Minimum $S_a = (2/3)(Z^*I)\beta = 0.04$
- 11. Weight, W = 20743 (DL) + 744 (25% of LL) = 21487 kip
- 12. Calculated Base Shear = S_aW = 1535 kip

K = 1.387 for T = 1.08 sec

Floor level	Story weight, w× (kip)	Height, h× (ft)	w×h× ^k	Lateral Force, F× (kip)	Story shear, V× (kip)
10	1677	118	1253815	283.3	283.3
9	1822	106	1173945	265.3	548.6
8	1827	94	996476	225.2	773.7
7	1942	82	876413	198.0	971.8
6	2111	70	764961	172.9	1144.6
5	2366	58	660525	149.3	1293.9
4	2491	46	504219	113.9	1407.8
3	2559	34	340590	77.0	1484.8
2	2230	22	162273	36.7	1521.4
1	2462	10	60019	13.6	1535.0
Σ	21487		6793235		



Check Storey Drift

Check for P-Delta Effect

P-Delta effects need not be considered if stability coefficient $\theta \le 0.10$

$$\theta = \frac{P_X \Delta}{V_x h_{sx} C_d}$$

At ground floor level: $P_x = 20605 \text{ kip}$ $\Delta = 1.837 \text{ inch}$ $V_x = 1521.4 \text{ kip}$ $h_{sx} = 12\text{ ft}$ $C_d = 5.5$ So, $\theta = 0.031 < 0.1$ $\theta_{max} =$

$$P_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$

conservatively, $\beta = 1.0$

Here $\theta_{max} = 0.091$

If $0.10 \le \theta \le \theta_{max}$ increase displacement and member forces by rational analysis or multiply by a factor $1.0/(1-\theta)$

- Design a strong-column/weak beam frame
- Avoid shear failure
- Detail for ductile behavior

21.1.4 – Concrete Properties of SMF

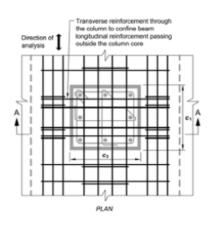
- 21.1.4.1 Provisions apply to special moment frames, special structural walls, and coupling beams.
- 21.1.4.2 Specified concrete compressive strength must be at least 3000 psi.
- 21.1.4.3 Specified concrete compressive strength must not exceed 5000 psi for lightweight concrete.

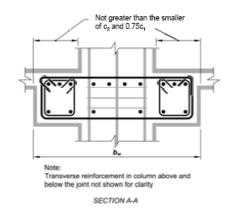
21.1.5 - Reinforcement of SMF

- 21.1.5.1 Provisions apply to special moment frames, special structural walls, and coupling beams.
- 21.1.5.2 Deformed reinforcement must satisfy ASTM A706.
 Grades 40 and 60 of ASTM A 615 are permitted if:
 - The actual yield stress does not exceed the nominal yield stress by more than 18 ksi.
 - The ratio of the actual tensile strength to actual yield stress exceeds 1.25.

21.5 – Beams in Special Moment Frames

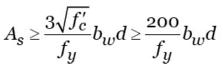
- A beam is defined as any frame member that resists earthquake-induced forces and is proportioned primarily to resist flexure.
- Beams must satisfy the following:
 - Factored axial compressive force must not exceed Agfc'/10.
 - Clear span must be more than 4 times the effective depth.
 - Width of member must not be less than the smaller of 0.3h and 10 in.



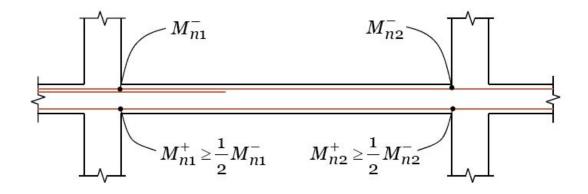


21.5 – Beams in Special Moment Frames

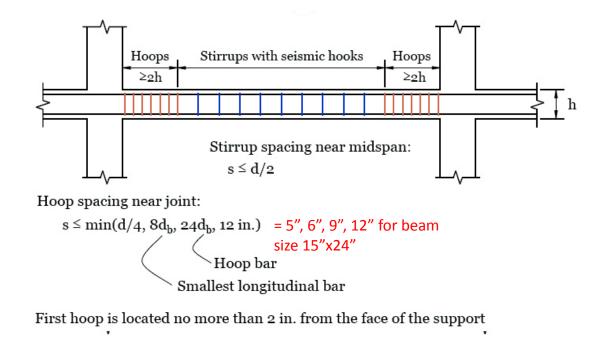
- 21.5.1.4 relaxed to permit wide beams.
 - $b_{w,max} = min (3c_2, c_2 + 1.5c_1)$
- 21.7.3.3 added to address confinement of longitudinal beam reinforcement located beyond column core.



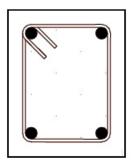
21.5.2 – Longitudinal Reinforcement

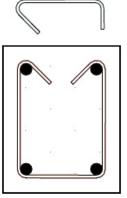

All locations:

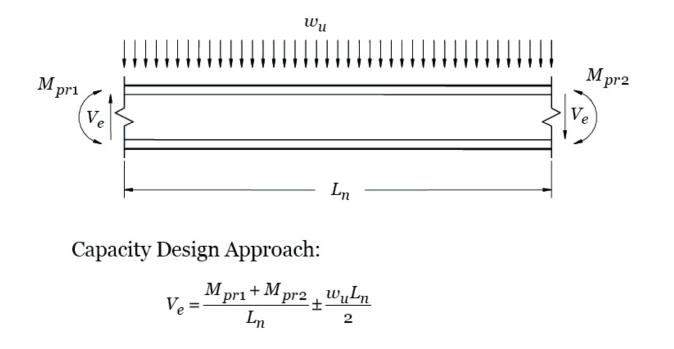
Minimum of two continuous bars per face


 $M_n \ge \frac{1}{4} \max \left(M_{n1}^-, M_{n2}^- \right)$

 $\rho \le 0.025$



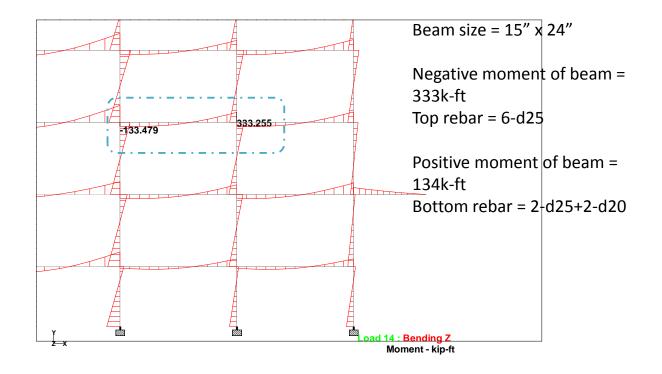

21.5.3 – Transverse Reinforceme


• Hoops in beams are permitted to be made of two pieces of reinforcement: a stirrups having seismic hooks at both ends and a cross tie.

21.5.4 - Shear Strength Requirements

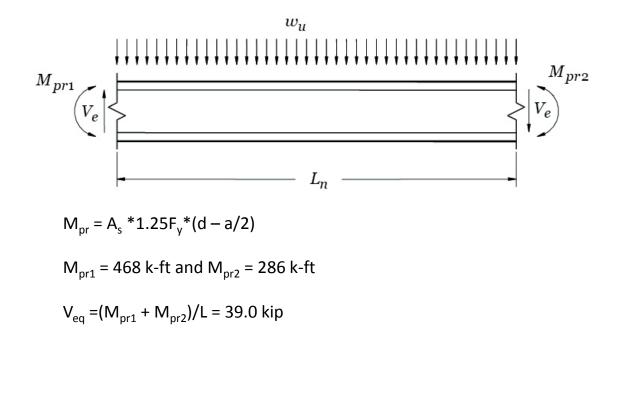
 V_{ρ} = design shear force (factored shear)

 M_{pr} = probable flexural strength, calculated using a stress in the reinforcement of 1.25 f_y and a strength reduction factor of 1.0.

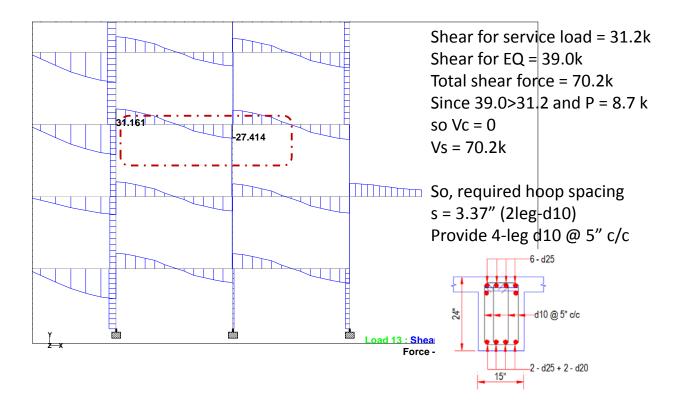


21.5.4 - Shear Strength Requirements

- Transverse reinforcement in the regions where hoops are required shall be proportioned to resist shear assuming that
 - V_c = 0 when both of the following conditions occur:
 - The earthquake-induced shear force represents at least 50% of the required shear strength.
 - The factored axial compressive force including earthquake effects is less than $A_g f_c'/20$.

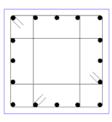


Beam Bending moment



Earthquake Induced Shear Force

Beam Shear Force



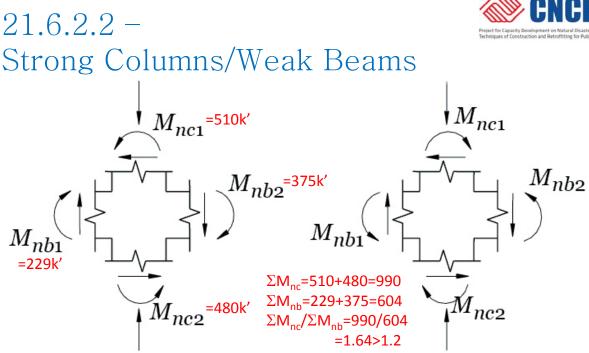
21.6 – Column in Special Moment Frames

- A column is defined as any frame member that resists earthquake-induced forces and has a factored axial force in any load combination that exceeds $A_g f_c'/10$.
- Columns must satisfy the following:
 - Shorter cross-sectional dimension must be at least 12 in.
 - Aspect ratio for the column must not be less than 0.4.

For axial load 1030 kip and Moment 258k-ft Column designed as Size = 24"x24" Main rebar = 16-d25 Hoop = d10 @ 4" c/c

21.6.2.2 – Strong Columns/Weak Beams

• A strong column-weak beam system must satisfy:


$$\Sigma M_{nc} \ge (6/5)\Sigma M_{nb}$$

 M_{nc}

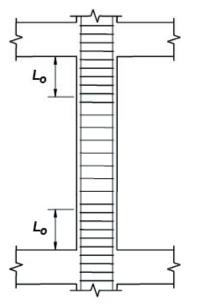
= sum of moments at the faces of the joint corresponding to the nominal flexural strength of the columns framing into that joint.

 M_{nb} = sum of moments at the faces of the joint corresponding to the nominal flexural strength of the girders framing into that joint. In T-beam construction, where the slab is in tension under the moments at the face of the joint, slab reinforcement within the effective slab width defined in 8.10 shall be assumed to contribute to the flexural strength if the slab reinforcement is developed at the critical section for flexure.

The nominal flexural capacities of the members are summed such that column moments oppose the beam moments. The column strengths must satisfy the relationship for beam moments acting in both directions.

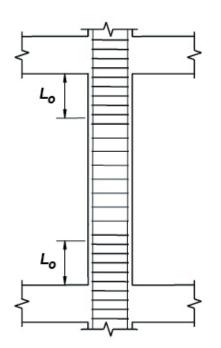
- If the columns do not satisfy the requirements for strong • columns, the columns must satisfy the provisions in 21.13.
- In addition, the lateral strength and stiffness of columns that • do not satisfy 21.6.2.2 must be ignored when calculating the strength and stiffness of the structure.

21.6.3 – Longitudinal Reinforcement


- The longitudinal reinforcement ratio must not be less than 0.01 nor more than 0.06.
- Lap splices are only permitted within the center half of the member and must be proportioned as tension splices.

21.6.4.1 – Transverse Reinforcement

 L_{o} is the largest of: *h*, *b*, $\frac{L_{u}}{6}$, 18 in.


=24", 24", 20.5", 18" for column size is 24"x 24" And floor height 12'-0"

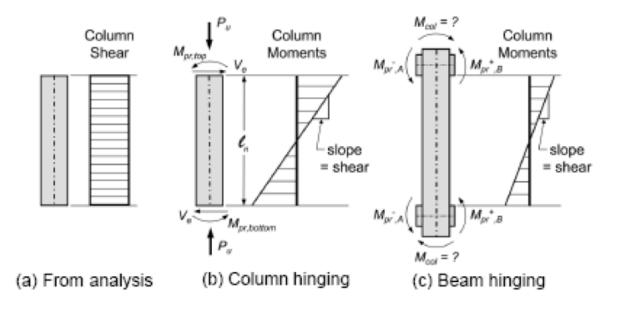
24" X 24" 16 - d25 d10 @ 4" c/c

21.6.4.3 – Spacing of Transverse Reinforcement

Within *L_o*, *s* must not exceed the smallest of:

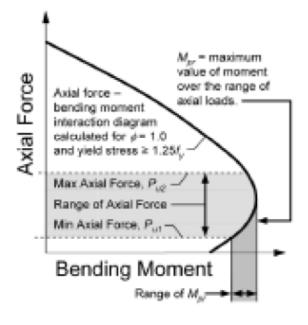
 $\frac{b}{4}$, $\frac{h}{4}$, $6d_b$, $s_o = 6^{"}, 6^{"}, 6^{"}, s (req)$ For column size is 24"x 24"

d_b = diameter of smallest longitudinal bar.


$$\boldsymbol{s_0} = 4 + \left(\frac{14 - \boldsymbol{h_X}}{3}\right) = 4.17$$

s_o ≤ 6 in.

s_o need not be taken less than 4 in.


21.6.5 – Calculation of Column Shear

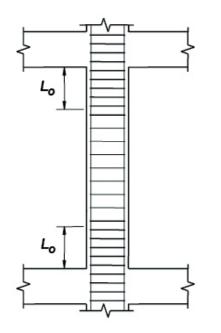
Probable Moment (M_{pr}) in Column.

21.6.5.2 - Shear Strength Requirements

- Transverse reinforcement over the length L_o , shall be proportioned to resist shear assuming that $V_c = 0$ when both of the following conditions occur:
 - The earthquake-induced shear force represents at least 50% of the required shear strength.
 - The factored axial compressive force, P_u, including earthquake effects is less than A_gf_c/20.

21.6.6.4(b) – Rectangular Hoops

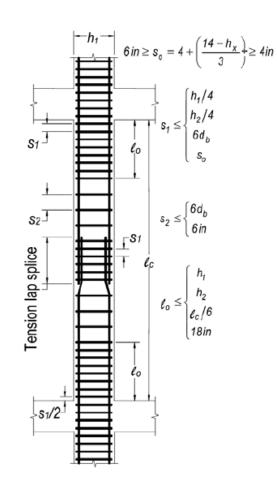
• The total cross-sectional area of rectangular hoop reinforcement must not be less than the larger of:


$$A_{sh} = 0.3 \left(sb_c \frac{f'_c}{f_{yt}} \right) \left(\frac{A_g}{A_{ch}} - 1 \right) = 0.465 < 0.48$$

$$A_{sh} = 0.09 \left(sb_c \frac{f'_c}{f_{yt}} \right) = 0.456$$

- A_{ch} = cross-sectional area of a structural member measured to the <u>outside edges</u> of transverse reinforcement
- b_c = cross-sectional dimension of column core measured to the <u>outside edges</u> of transverse reinforcement

21.6.4.5 – Transverse Reinforcement

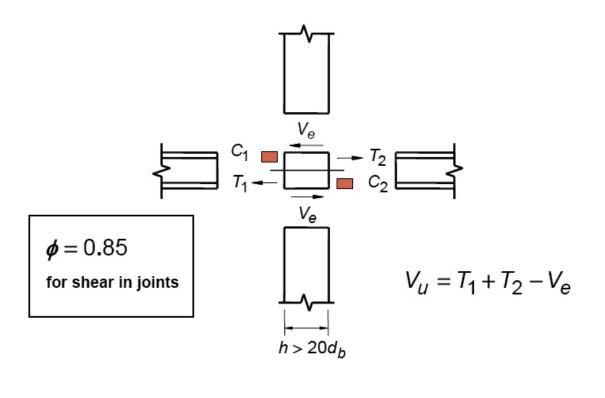

Outside L_o , the column shall contain spiral or hoop reinforcement satisfying 7.10, unless a larger amount of transverse reinforcement is required by 21.6.3.2 or 21.6.5. *s* shall not exceed the smaller of:

6d_b, 6 in.

d_b = diameter of smallest longitudinal bar.

View CONCEPP

Typical Column Transverse Reinforcement Requirement



21.7 – Beam-Column Joints

21.7.2 - General Requirements

- Forces in longitudinal beam reinforcement at the joint face shall be determined by assuming that the stress in the flexural reinforcement is 1.25 fy.
- Beam reinforcement that terminates in a beam-column joint must extend to the far face of the confined core and be anchored in tension per 21.7.5 or in compression per Chapter 12.
- Where longitudinal beam reinforcement extends through a beam-column joint, the column dimensions parallel to the beam reinforcement shall not exceed 20 times the diameter of the largest longitudinal beam.

21.7.3.1~2 – Transverse Reinforcement

- The closely-spaced transverse reinforcement required near the ends of a column must be continued through the joint., except as permitted in 21.7.3.2.
- Where beams frame into all four sides of a joint and where the width of each beam is at least 75% of the column width, the amount of transverse reinforcement may be reduced by 50% and the spacing may be increased to 6 in. within the overall depth of the shallowest beam.

21.7.3.3 – Transverse Reinforcement

- Longitudinal beam reinforcement outside the column core must also be confined by transverse reinforcement that passes through the column.
- This transverse reinforcement must satisfy the spacing required by 21.5.3.2. and the requirements of 21.5.3.3 and 21.5.3.6.

21.7.4 - Shear Strength of Joint

The nominal shear strength of the joint shall not exceed the values given below:

- Joints confined on all four faces $20Vf'_{c}A_{i}$
- Joints confined on three faces or $15Vf'_cA_j$ on two opposite faces
- Other joints $12\sqrt{f'_cA_i}$

It is not possible to increase the shear strength of the joint by adding more reinforcement.

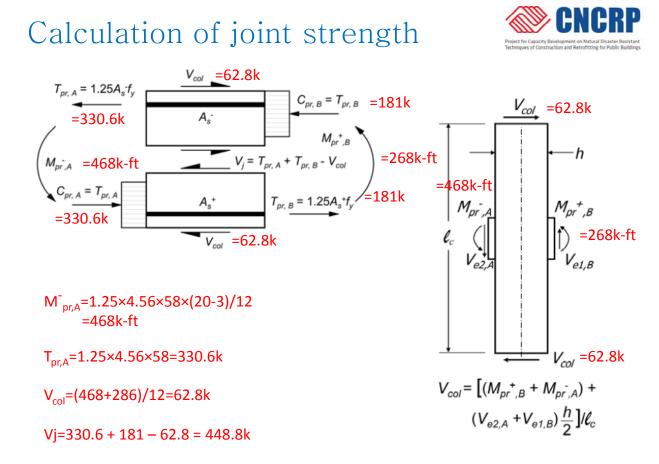
21.7.4 - Shear Strength of Joint

- A beam that frames into the face of a joint is considered to provide confinement to the joint if the area of the beam covers at least 75% of the face of the joint.
- Extensions of beams at least h beyond the joint face are considered to provide confinement. Extensions of beams must satisfy 21.5.1.3, 21.5.2.1, 21.5.3.2, 21.5.3.3, and 21.5.3.6.

21.7.4 - Shear Strength of Joint

The area of the joint, *Aj, is calculated as the joint* depth times the effective joint width.

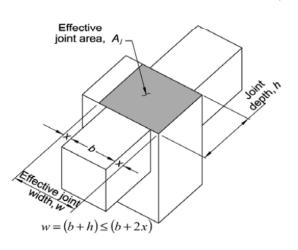
• Joint depth is the overall depth of the column, h.


• <u>Effective joint width is the overall width of the column, b,</u> except where a beam frames into a wider column.

The effective joint width shall not exceed the smaller of the followings:

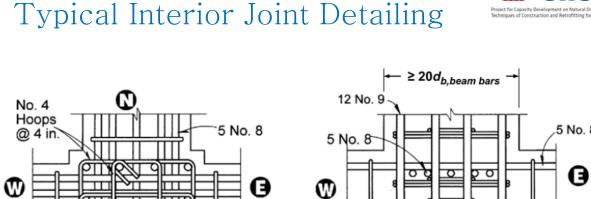
(a) Beam width plus joint depth.

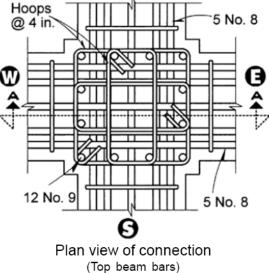
(b) Twice the smaller perpendicular direction from the longitudinal


axis of the beam to the side of the column.

Calculation of joint strength

If beam passes through centre of the column, then b = 24'' and h = 24''So, $A_j = 24x24 = 576$ $\phi Vc = 12 \sqrt{f'c} Aj$ = 348k < 448.8k, Not OK If beam passes through either edges of the column, then b =15" and h=24" So, $A_j = 15x24=360$ $_{\phi}Vc=12vf'c Aj$ =216.8k < 448.8k, Not OK

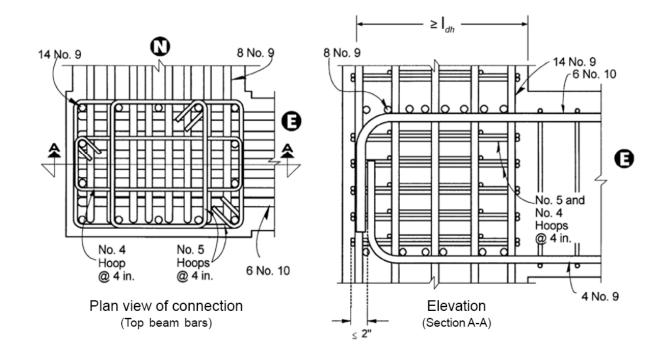

- The development length for a bar with a 90° hook shall not be less than the largest of:
 - 8 d_b
 - 6 in.

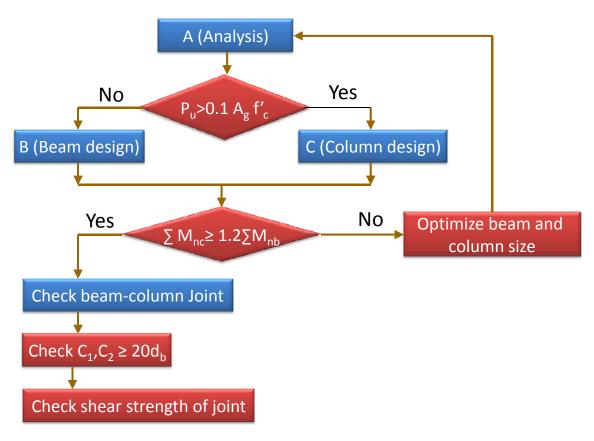

#3 through #11 bars Normal weight concrete

• The 90° hook must be located within the confined core of a column or boundary element.

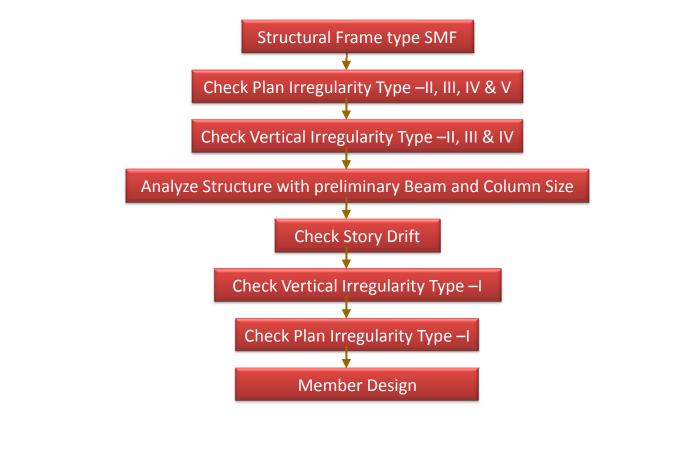
21.7.5.2 – Development length of Straight bar

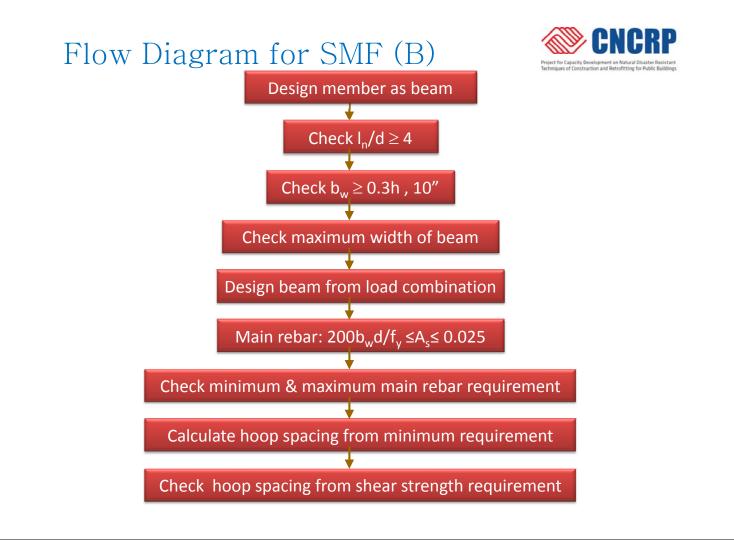
- The development length of a straight bar in tension (#3 through #11) must not be less than the larger of (a) and (b):
 - (a) 2.5 times the development length for a hooked bar if the depth of concrete does not exceed 12 in.,
 - (b) 3.5 times the development length for a hooked bar if the depth of concrete exceeds 12 in.
- Straight bars terminated in a joint must pass through the confined core of a column or boundary element.
- Any portion of the straight embedded length that is not within the confined core must be increased by a factor of 1.6.



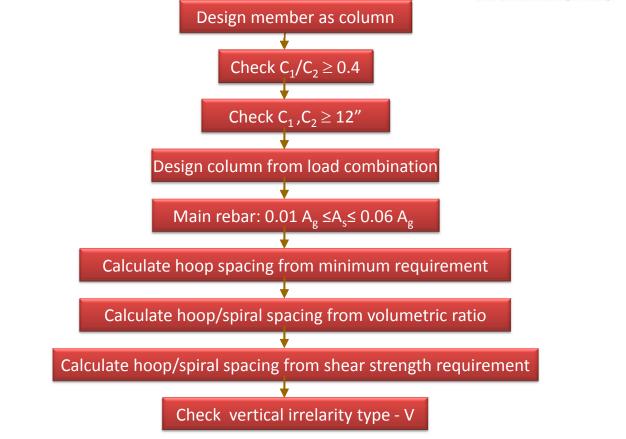


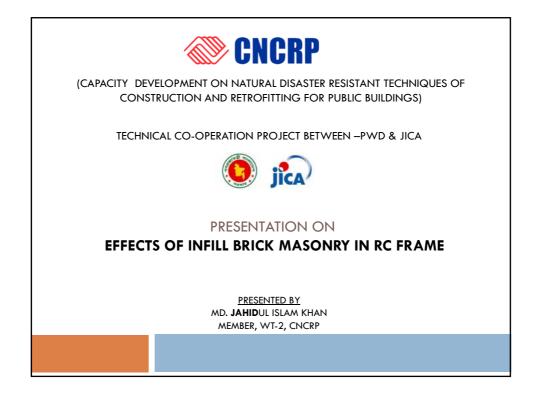
Typical Exterior Joint Detailing

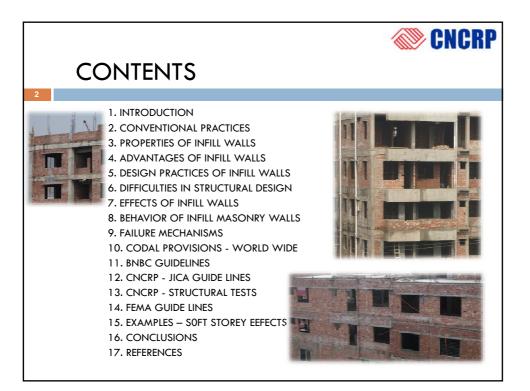

Flow Diagram for SMF (Brief)

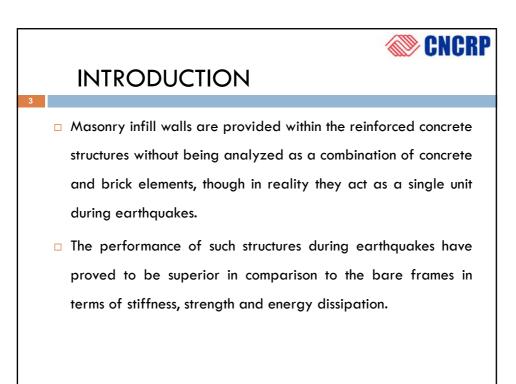


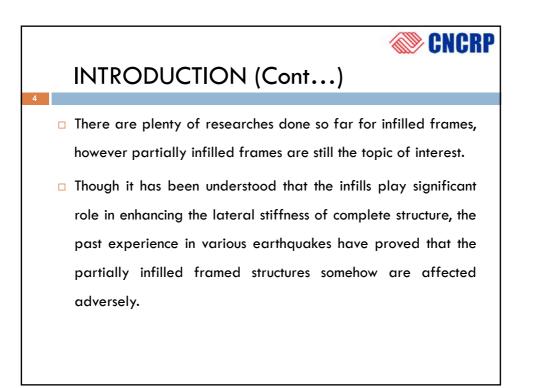
Flow Diagram for SMF (A)

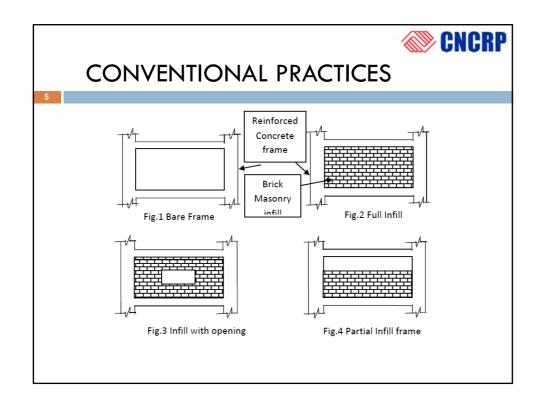


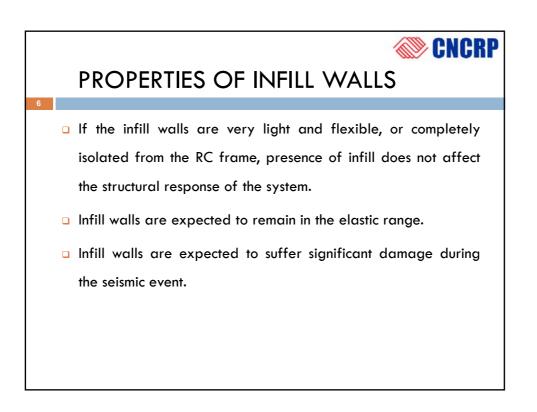


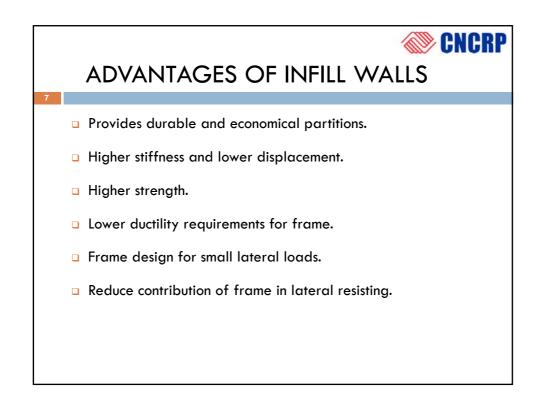

Flow Diagram for SMF (C)

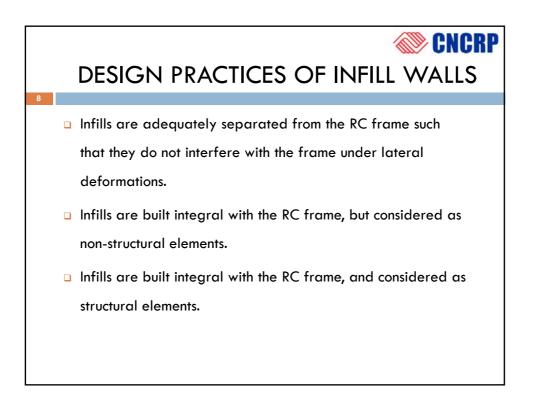


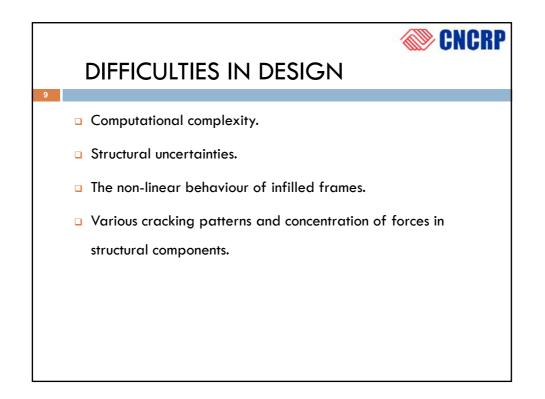


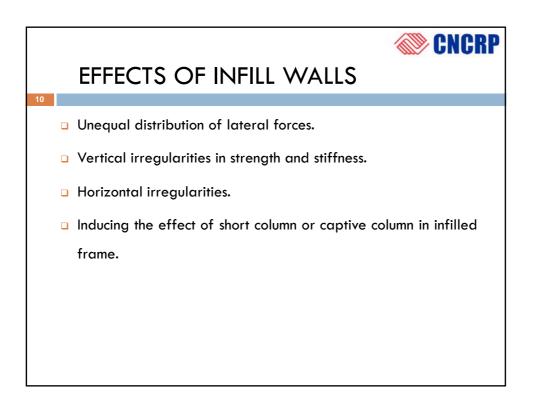

Thank you

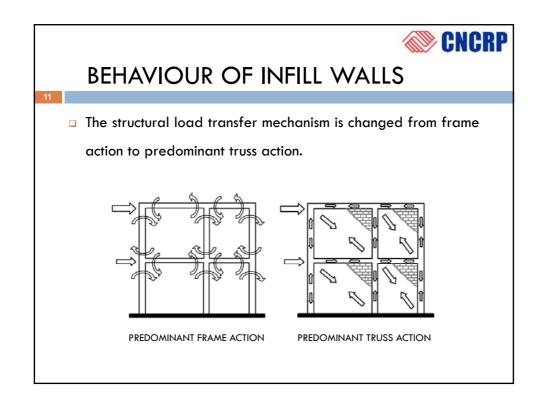


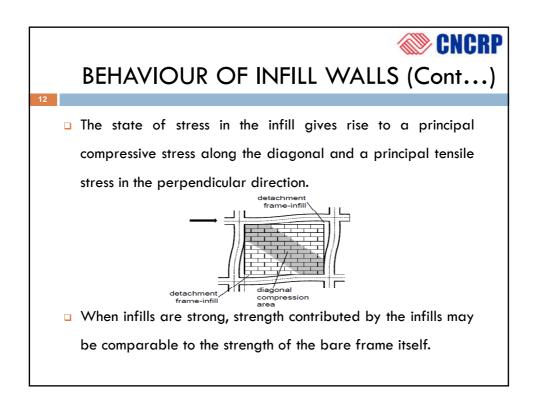


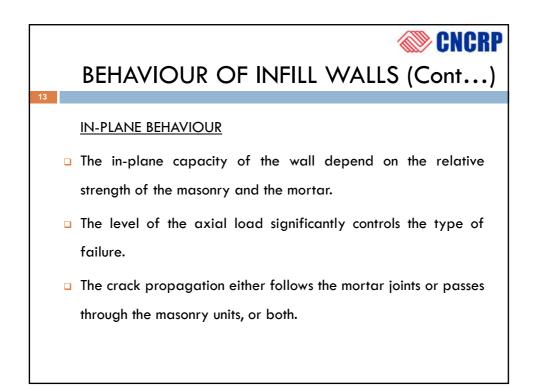


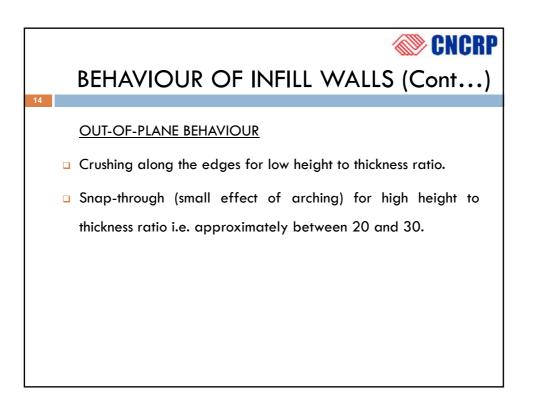


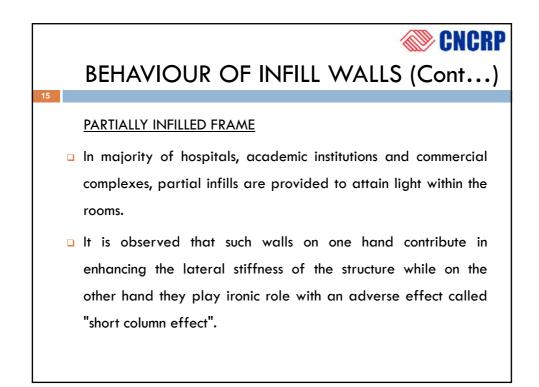


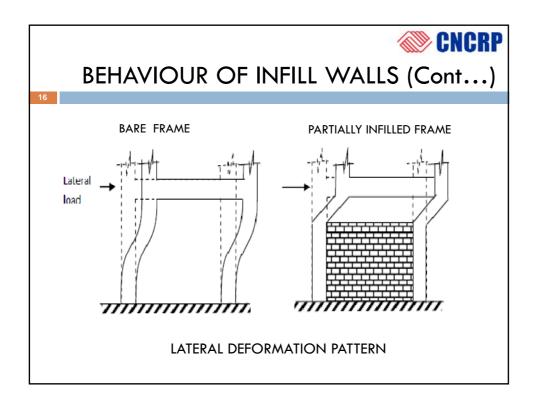


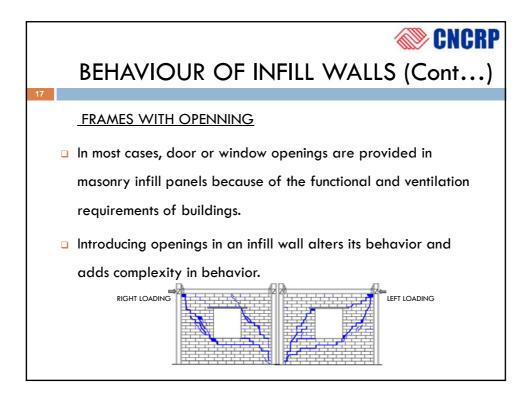




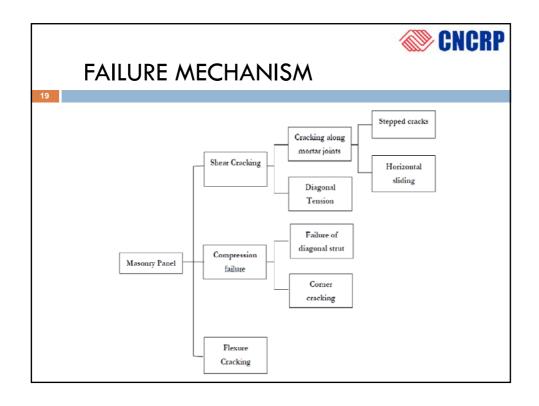


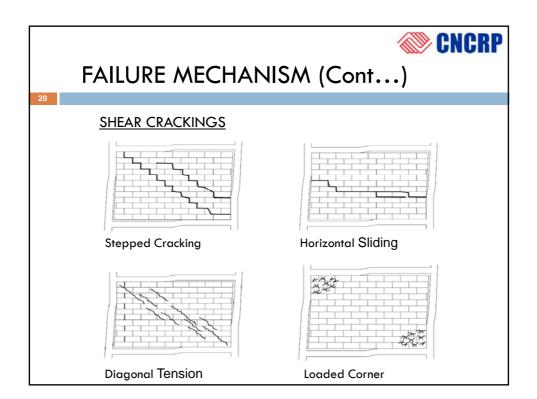


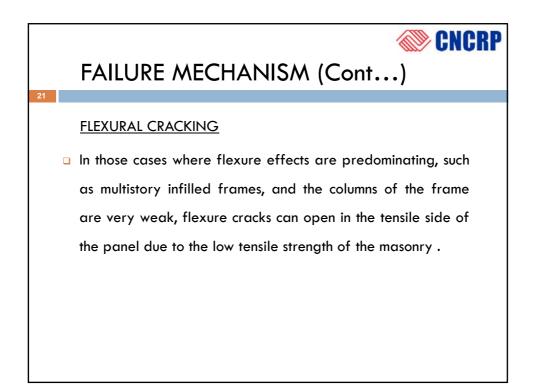


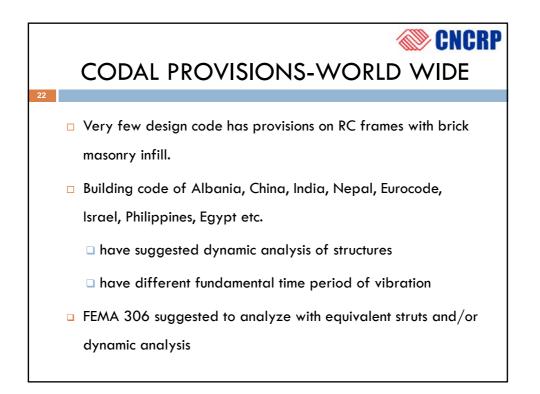


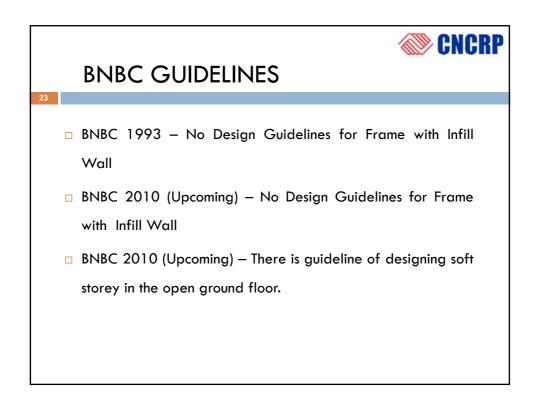


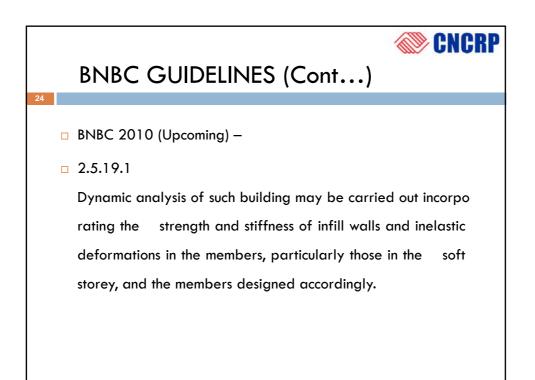


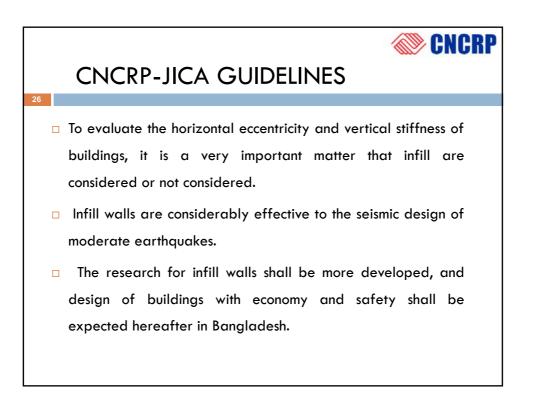


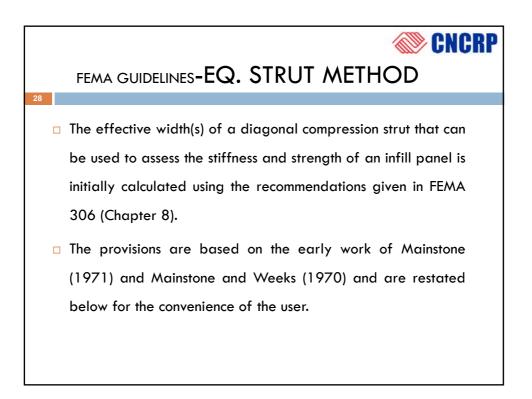


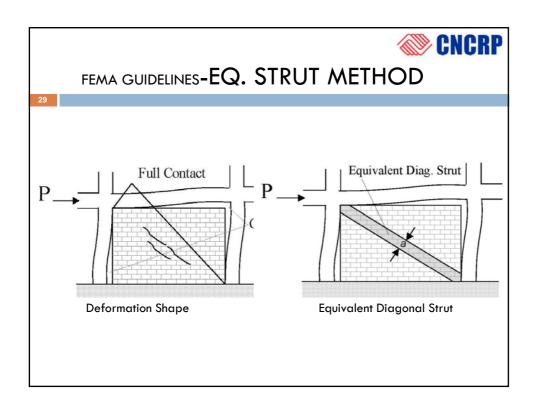




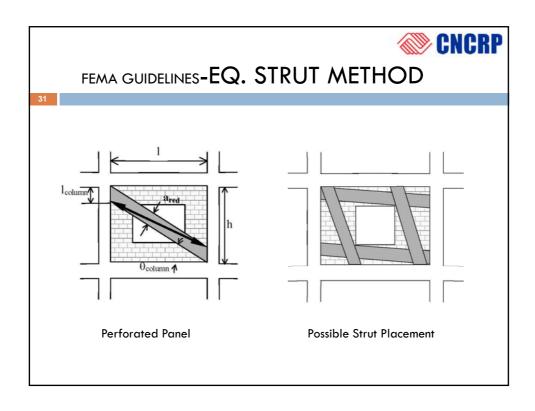


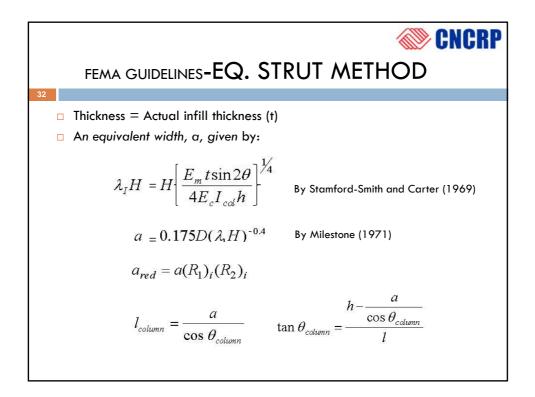


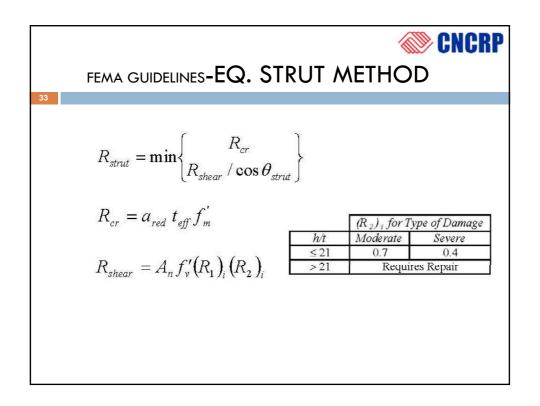


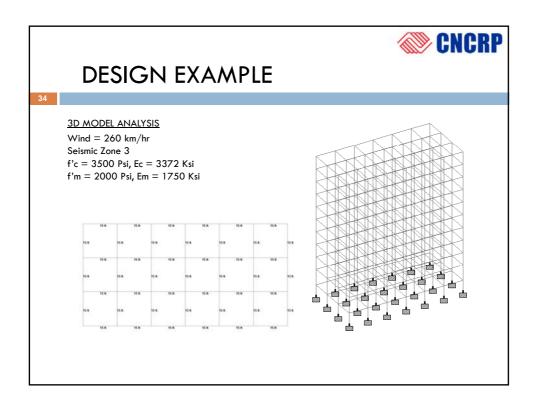


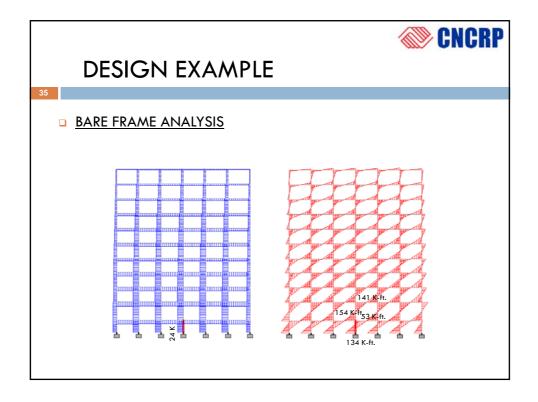
CONCRESSION CONTINUES CONTINUES CONTINUES CONTINUES CONTINUES (CONTINUES CONTINUES CONTINUES

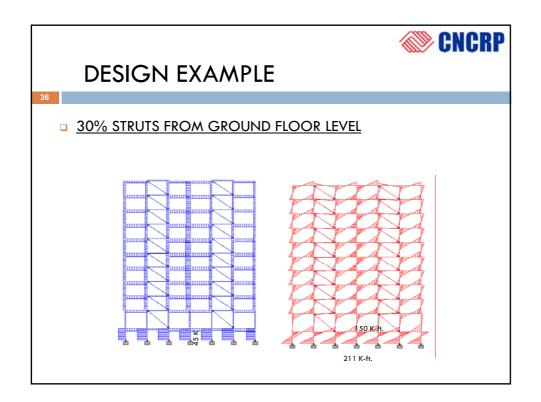


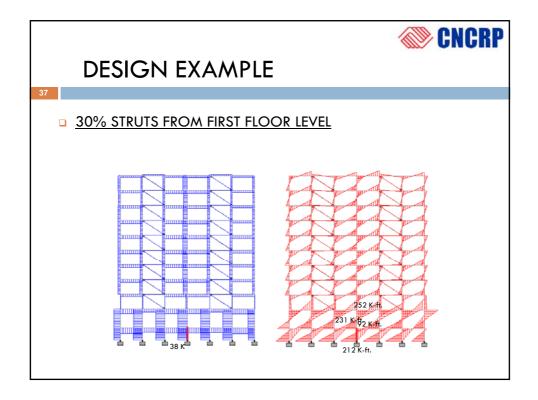


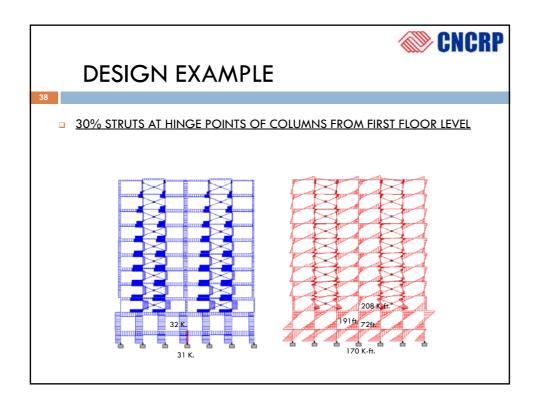


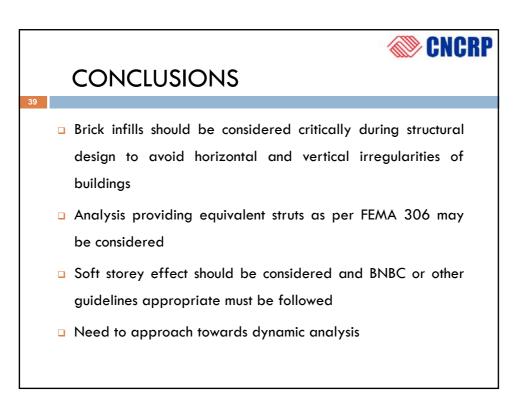


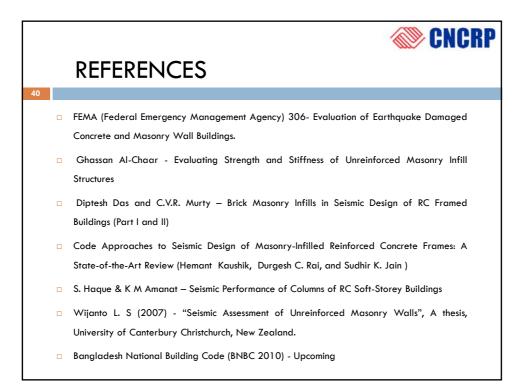












3rd Domestic Training Retrofitting Construction and Quality Control Venue: PWD Seminar Room Duration: Feb 11, 2013 to Feb 19, 2013

List of Participants

SL NO	NAME	DESIGNATION AND ORGANIZATION
1.	BRIG. GENERAL ENGR. ALI AHMED KHAN	DIRECTOR GENERAL FIRE SERVICE & CIVIL DEFENSE
2.	MD. ABUL QASIM	SENIOR STRUCTURAL ENGINEER ESL (ENVIRON STRUCTURE LTD)
3.	A.S.M. ZIAUDDIN HAIDER	SUPERINTENDING ENGINEER NATIONAL HOUSING AUTHORITY
4.	ENGR. PRODIP KUMAR SHIL	D.G.M. THE CIVIL ENGINEERS LTD
5.	MOHAMMAD SHAHINUR FERDOUSH	RESIDENT ENGINEER CONCORD GROUP OF COMPANIES
6.	SK. KAMRUZZAMAN	ASSISTANT ENGINEER RDA
7.	MD. MAINUL ISLAM	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
8.	LT. COL. MD. SIRAJUL HOQUE	PROJECT DIRECTOR FIRE SERVICE & CIVIL DEFENSE
9.	TANVIR QUASEM	STRUCTURAL ENGINEER ESL (ENVIRON STRUCTURE LTD)
10.	A.N.M. MAZHARUL ISLAM	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
11.	SOHEL MAHMUD	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
12.	BONI AMIN	RESEARCH ENGINEER HBRI
13.	ENGR. MATIUR RAHMAN	DIRECTOR A & S ENGINEERS LTD.
14.	SUMON CHANDRA PAUL	PROJECT MANAGER HOME TRUST DEVELOPMENT LTD.
15.	ENGR. A.N.M. KHALED	PROPRIETOR CONCEPT ENGINEERS & ASSOCIATES
16.	MOHAMMAD SHAH ALAM FARUQ CHOWDHURY	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
17.	SHAZZAD HOSSAIN	DEPUTY SECRETARY BGMEA
18.	KAZI MUZAMMEL	EXECUTIVE DIRECTOR CONSTRUCTION AID & LOGISTICS LTD
19.	MD. SHAHIDUL ISLAM	ENGINEER NUTECH CONSTRUCTION CHEMICAL CO. LTD.
20.	MOHAMMAD ABDUL KARIM KHAN	DESIGN ENGINEER DPM CONSULTANTS LTD
21.	MD. SHAHRIAR KABIR BHUIYAN	DESIGN ENGINEER BCL ASSOCIATES LTD.

SL NO	NAME	DESIGNATION AND ORGANIZATION
22.	ZIA NAIM HAIDER	DESIGN ENGINEER BCL ASSOCIATES LTD.
23.	MOHAMMAD AL-AMIN	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
24.	MD. ALI AHASAN KHAN	ENGINEER CONSTRUCTION AID & LOGISTICS LTD
25.	MD. SHAMIM HAIDER KHAN	CIVIL ENGINEER CONSTRUCTION AID & LOGISTICS LTD.
26.	SUCHANA MUTSUDDI	ASSISTANT ENGINEER PUBLIC WORKS DEPARTMENT
27.	SK. NAUREEN LAILA	DESIGN ENGINEER DPM CONSULTANTS LTD.
28.	ENGR. MD. MEHEDY HASSAN	ENGINEER (CIVIL) BKMEA
29.	MD. ABUL HAYAT CHOWDHURY	ASSISTANT ENGINEER LGED
30.	MAHBUB MOURSHED SOHEL	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
31.	MOHAMMAD SHOWKAT ULLAH	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
32.	A.G.M SALIM	EXECUTIVE ENGINEER RDA
33.	MD. MOAJJEM HOSSAIN	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
34.	MD. QUTUB AL-HOSSAIN	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
35.	RIPON KUMER ROY	SUB-DIVISIONAL ENGINEER PUBLIC WORKS DEPARTMENT
36.	LT. COL. MOHIUDDIN AHMED, PEng.	INSTRUCTOR MIST

Course Title: Short Training Course on "Techniques of Retrofit Construction and Quality Control for R.C. Buildings"

Organizer: CNCRP

n: 3 working days (25th- 27th February, 2014)
Lectures 2 days (2:30pm-5:30pm)
Site visit 1 day
a) Engineers of PWD and other government departments
b) Engineers from private consulting and construction firms
(Total 36 participant/batch.)

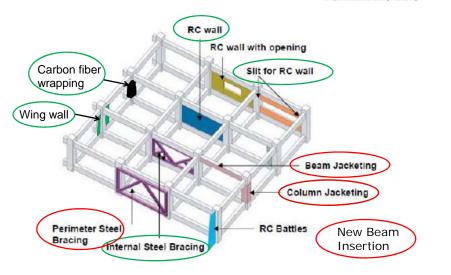
Course content:

- 1. Introduction to Seismic Retrofitting
- 2. Seismic Assessment and Retrofit Design
- 3. Quality Control of Construction
- 4. Management of Retrofit works
- 5. Site visit

Course content:

Date	Lecture-1	Lecture-2	Bre	Lecture-3
	(2:30-3:20)	(3:20-4:10)	ak	(4:30- 5:20)
25/02/14	Intro. to Seismic	Seismic Assessment &		Retro. Methods :WT-3
	Retrofitting : PMT	Retrofit Design :WT2	:30	
26/02/14	Retro.	Quality Control of	- 4	Management of
	Methods(cont.):WT-3	Construction Work :WT-4	4:10	Retrofit Construction:WT-3, PMT
27/02/14	Test site at PWD premise and one government		Certificate Awarding	
	construction site visit			

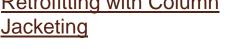
Md. Shafiul Islam

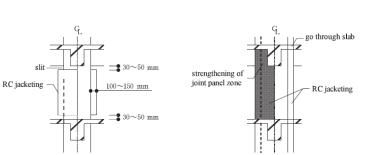

Nur-E-Kawonine

Working Team 3

CNCRP Project

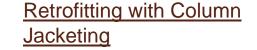
Methods of Retrofitting

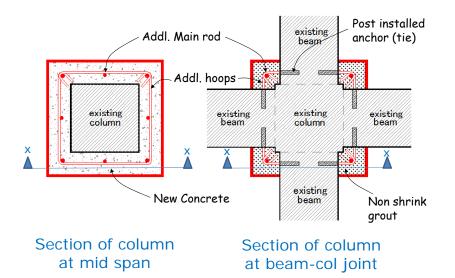


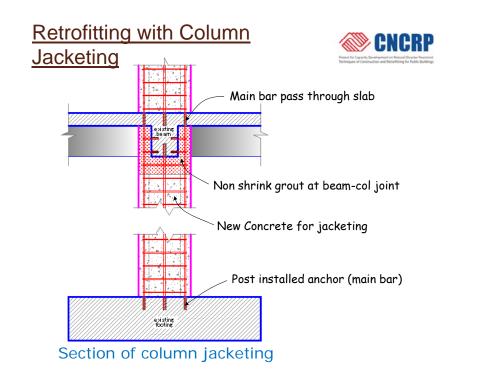


Retrofitting with Column Jacketing

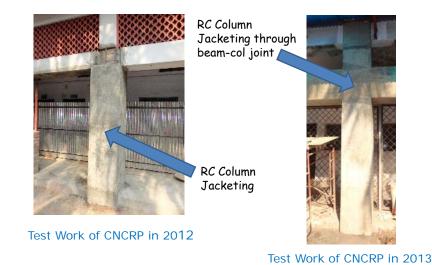
JÌCA





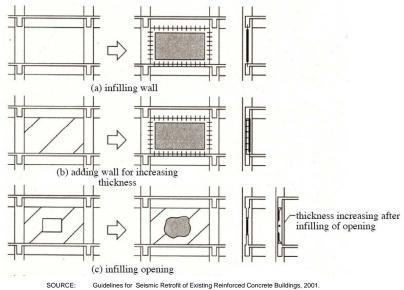

(a) in case of increase in shear strength (b) in case of increase in flexural, shear and axial strength

SOURCE: Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

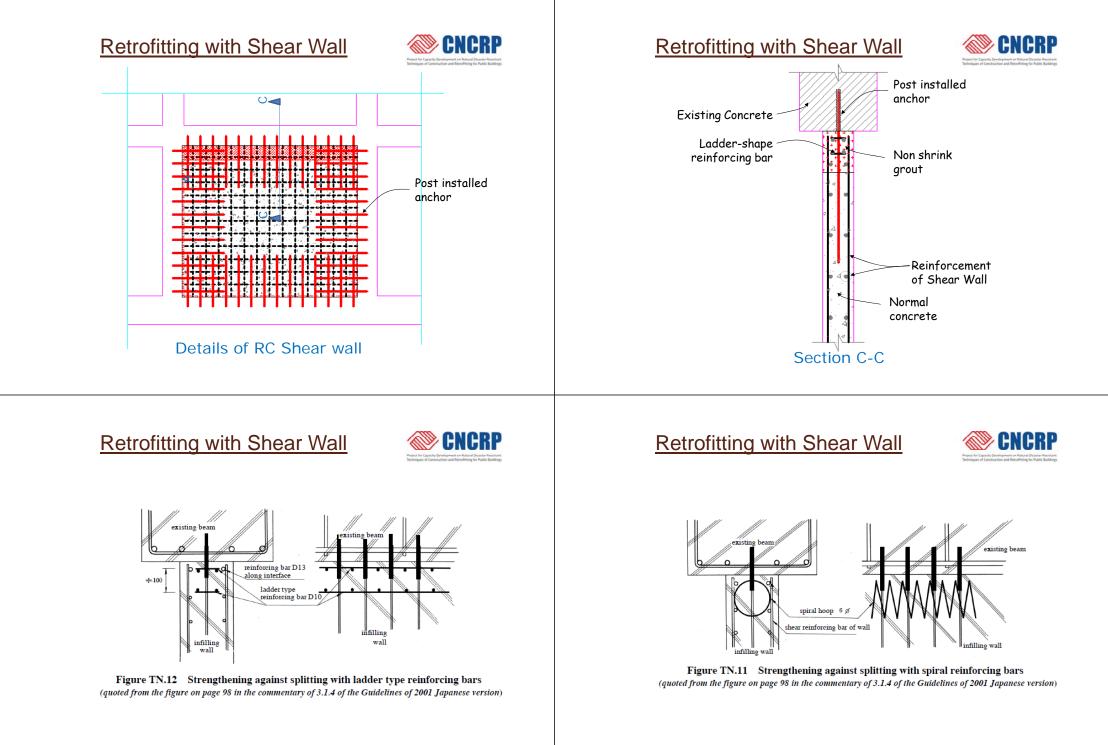


Retrofitting with Column **Jacketing**

Retrofitting with Column Jacketing



- Improve shear strength and ductility of existing building.
- To improve bonding between old and new concrete provide shear key and/ or epoxy coating over existing column.

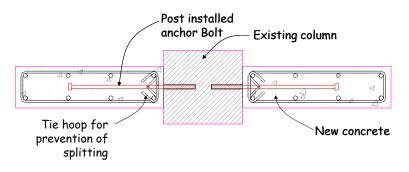


Retrofitting with Shear Wall

Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

Retrofitting with Shear Wall

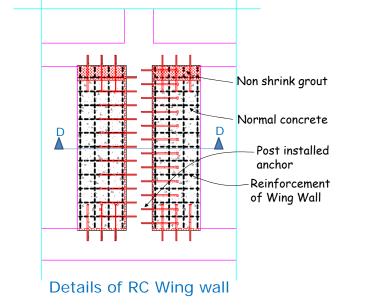
- Improve shear strength and structural balance.
- Existing brick wall may be replaced by RC shear wall.
- Reduces ventilation and natural light if it is used in open frame.


Providing RC Shear Wall in a open frame

Retrofitting with Wing Wall

DENERSE INCOM

Test Work of CNCRP in 2012



Section D-D

Retrofitting with Wing Wall

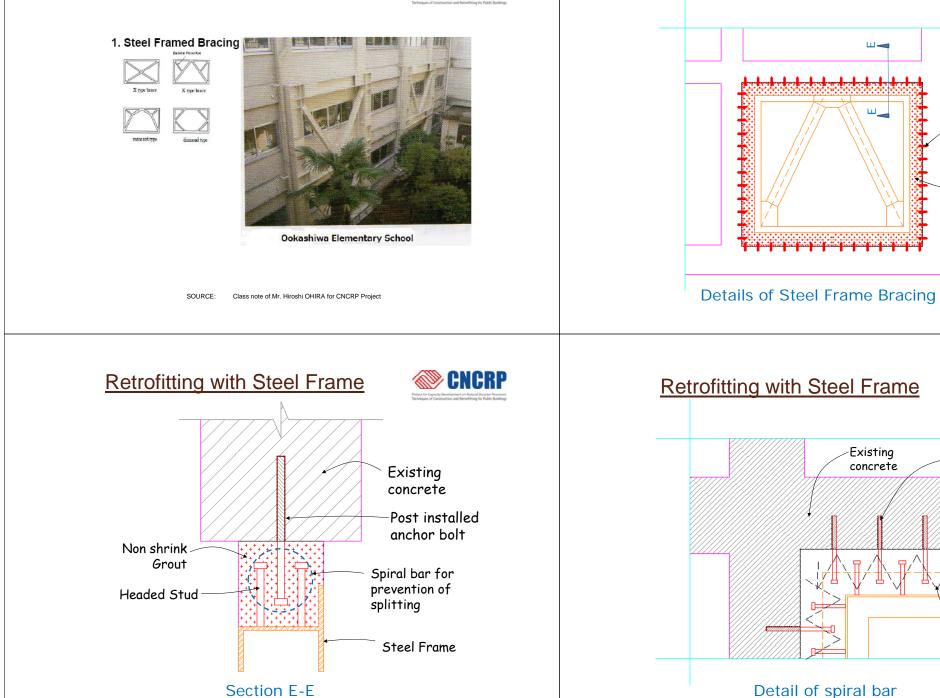
- Improve shear strength and ductility.
- failure mechanism from column yielding to beam yielding.
- Not suitable for short span beam.
 - RC Wing Wall Provided at an existing column

Test Work of CNCRP in 2012

Retrofitting with Steel Frame

Retrofitting with Steel Frame

Post installed anchor


Non shrink Grout

Post installed

Spiral bar for prevention of

splitting

anchor Bolt

Retrofitting with Steel Frame

Test Work of CNCRP in 2012

Connection Details, Test Work 2012

Internal Steel Frame Bracing

External Steel Frame Bracing

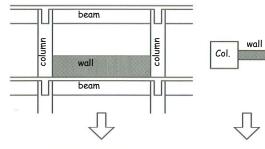
Test Work of CNCRP in 2013

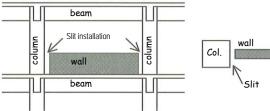
Steel framed bracing

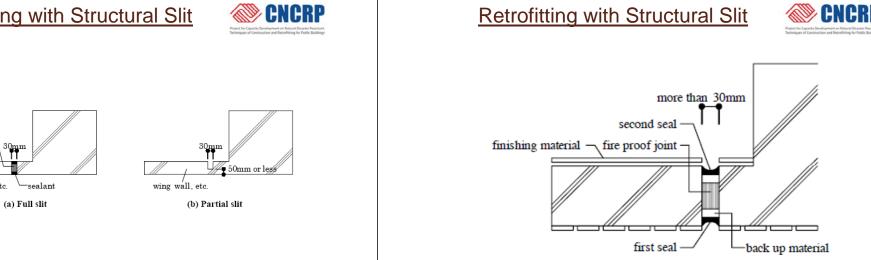
c)University Building (with Exterior Panels) d)Elementary School Building (with Balconies) SOURCE: Class note of Mr. Hiroshi OHIRA for CNCRP Project

Retrofitting with Steel Frame

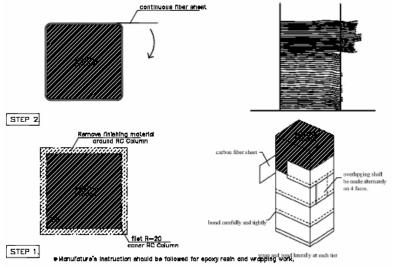
• Improve shear strength.



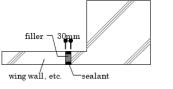

Test Work of CNCRP in 2012


- soft storey/ weak storey problem may be resolved.
- Lighting and ventilation is not much disturbed, so suitable for outer frames.

Retrofitting with Structural Slit



Detail of Seismic Slit


Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. SOURCE: Published by- The Japan Building Disaster Prevention Association

Carbon fiber sheet wrapping

Retrofitting with Structural Slit

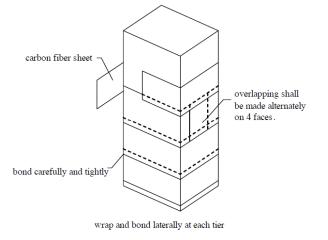
Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. SOURCE: Published by- The Japan Building Disaster Prevention Association

CNCRP

Seismic Slit is provided at a

brick wall

Retrofitting with Structural Slit



Test Work of CNCRP in 2012

- To improve structural balance and ductility of existing building
- Short column failure may be avoided.

Carbon fiber sheet wrapping

SOURCE: Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association

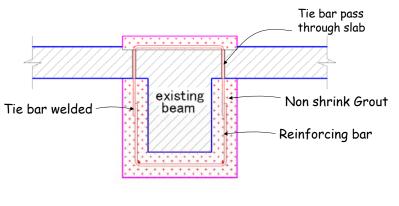
Carbon fiber sheet wrapping

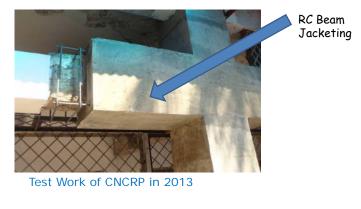
Test Work of CNCRP in 2012

Test Work of CNCRP in 2012

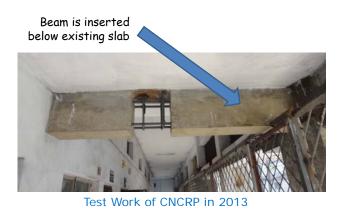
Carbon fiber sheet wrapping Preparation Repair of cross section Repair cracks Base material treatment -(if necessary) (including round (if necessary) forming of corners) Applying primer ¥ Smoothing base material surface Marking ¥ Wrapping continuous fiber sheets ¥ Curing • Finishing Figure 4.9-1 Flow of standard construction procedure

SOURCE: Guidelines for Seismic Retrofit of Existing Reinforced Concrete Buildings, 2001. Published by- The Japan Building Disaster Prevention Association


Carbon fiber sheet wrapping


- Improve ductility.
- Skilled worker is mandatory to ensure quality construction.
- This method may be applicable on the frames with inadequate seismic hoops or tie

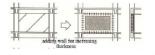
Typical Detail of Beam Jacketing



• Improve ductility.

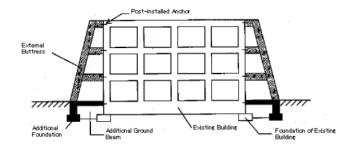
Retrofitting with Beam Insertionexisting slabexisting slabTie bar pass through slabNon shrink GroutConcreteTypical Detail of Beam Insertion (Option-1)existing slabexisting slabfor existing slab

Retrofitting with Beam Insertion



 Improve ductility and stiffness of the existing building.

3. Increasing Thickness of Existing Shear Wall



Da Vinch Ginza Building

SOURCE: Class note of Mr. Hiroshi OHIRA for CNCRP Project

7. Constructing External Buttress

SOURCE: Class note of Mr. Hiroshi OHIRA for CNCRP Project

Base Isolation

Lead Rubber Bearing with Isolator used

Damper used

Thank you very much

Quality Control of Construction Works

Md. Ziaul Hafiz CNCRP Project

🧼 ENEKP

Definition of Quality

Quality is "meeting or exceeding customer expectations."

Quality defined in ISO 8402 as: 'Totality of characteristics of an entity which bear on its ability to satisfy stated and implied needs.'

Quality Control

Quality Control is all about ensuring the finished product meets the standards set in the specification and by various controlling bodies.

Quality Control

- Focuses on the operational techniques and activities used by those involved in the project,
- Fulfills the requirements for quality (for example, by quality inspections or testing),
- Identifies ways of eliminating causes of unsatisfactory performance.

Main Objectives of Quality Control in relation to Civil construction Works

- □ Scrutiny and interpretation of drawings and specifications.
- **Liaison with design Engineer**
- **Evaluation of materials and plant**
- **Preparation of construction procedures**
- □ Inspection and approval of construction joints, formwork, rebar etc.

٠

Main Objectives of Quality Control in relation to Civil construction Works

- Supervision of concrete production, placing and curing
- Materials testing
- Preparation of documentation including "as-built" drawings

Phases of Quality Control

Quality Control at Design Phase

Quality Control at Construction Phase

CONCEPP CONCEPP In Capacity Development on Natural Disaster Revisitant spars of Construction and Resolutions for Public Buildings

Quality Control at Design Phase

Ultimate purpose of any civil construction works is to fulfill requirements of the clients and/or building owner. To realize the purpose, architects, structural engineers, electrical & mechanical engineers and concerned staff have a duty to ensure the design quality. Accordingly, management tools targeting to satisfy the requirement designated in the relative acts and codes shall be used at the time of designing.

Quality Control at Design Phase

- □ To ensure the quality of the design works, the engineers shall follow some guidelines which include at least-
 - Checklists for design works
 - Corrective action for unsatisfactory design works
 - **Record management**

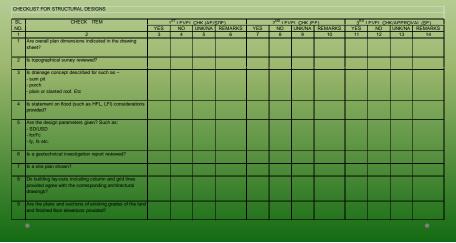
CNCRP

Quality Control at Design Phase

Checklists for Design Works:

To realize quality control "Checklist for Design Works" shall be checked by the Structural Designer and Electrical / Mechanical Engineer.

Quality Control at Design Phase


Checklists for Design Works:

All checklists shall be recorded and stored belonging to the *table below*, so that all concerned persons can easily find out their whereabouts and/or understand the contents.

Quality Control at Design Phase

Sample of Design Checklist

Quality Control at Design Phase

Checklists for Design Works:

Sample of Checklist record form

Documents title	Storing Place	Storing Period	Responsible person
Structural Drawing	*** Department,	*** years (until the end of year	Mr. ******, Title
Drawing	PWD	(until the end of year ****)	**** Department
Checked List			

Quality Control at Design Phase

Corrective Action for Unsatisfactory Design Works:

1. Design Engineers have the responsibility for carrying out corrective actions for unsatisfactory design works.

Quality Control at Design Phase

Corrective Action for Unsatisfactory Design Works:

2. In case of any errors, Design Engineers shall decide the needed action upon consideration of factor of errors.

Peiget he Casacity Development on National Disaster Revolution Peiget he Casacity Development on National Disaster Revolution Retensions of Contractions and Disaster Revolution

CNCRP

Quality Control at Design Phase

ame of the Project

Sample

	Date, Month of Error
	(DD/MM/YY)
	Location
	(Name of building, X and Y position, Region)
	Work Description
	(Name of work with errors)
	Detail Description of Error
of Corrective	Factor/Reason of Error
ion Form	
	Action to be taken
	Date, Month of Correction
	Date, Month of Confirmation by Engineer
	Date: DD/MM/YY
	(Signature)
	(Name of the Engineer)

Quality Control at Design Phase

Record management:

The Design Engineers shall record and keep the following documents at the end of both checking & correction-

- **1. Results of checking**
- **2.** Corrective action (if any)

Quality Control at Construction Phase

- Quality control gets its most intensive application in the construction phase. Construction is the area where payoff from quality control is perhaps the greatest.
- □ With the best designs and specifications, one can still have a poor structure if things go wrong in the field.

Outline of Quality Control at Construction Phase

- Human Control
 Materials Control
 Quality Control by Inspection & Checklist
 Control of Construction Machinery and
- **General Construction Methods**
- **D** Environmental Control
- Documents Control

Equipments

Human Control at Construction Phase

As the main activity part of construction process, the overall quality and individual ability of human will determine the results of all quality activities.

The main measures and approach of human control are as follows:

(1) The management objectives and responsibilities of project manager being considered as the center, the organization of project management should be set up reasonably with appropriate management personnel.

Human Control at Construction Phase

The main measures and approach of human control are as follows:

(2) With the strict qualification review of sub-units, the overall quality of sub-units should be controlled, including the technical quality, management quality, service and social reputation.

Human Control at Construction Phase

The main measures and approach of human control are as follows:

(3) The operating workers should be asked certificates, particularly important technical trades, special trades, and aloft work, etc.

(5) There should be very strict on-site management system and production discipline, and the standard of operation technology and management activities.

Human Control at Construction Phase

The main measures and approach of human control are as follows:

(6) Incentives and communication activities should be promoted to arouse staff's enthusiasm.

Materials Control at Construction Phase

Control of Material quality is one of necessary conditions to ensure construction quality. Main contents of quality control of materials:

(1) Material Procurement

(2) Material Testing

(3) Material Storage and Usage

Materials Control at Construction Phase

(1) Material procurement

- > The procurement should be arranged in advance according to the construction schedule.

(2) Material testing:

Frequent testing of construction materials is one of key quality controlling factors of construction. Through a number of tests, the material data obtained is compared with quality standards like BDS, EN, ASTM, ISO, IS etc. to judge the reliability of quality of materials and whether they can be used for engineering construction.

UNCRP

c) mix of reinforcement with different diameters.

Quality Control by Inspection at Construction Phase

Inspection means to check the construction works in the middle of construction process.

Objective of Inspection:

to determine whether the procured materials or completed works meet the standard or not.

Types of Inspection:

- 1) Total Inspection (100% inspection)
- 2) Sampling Inspection- all sampling inspection method shall specify frequency.

Quality Control by Inspection at Construction Phase

Sample of Inspection Checklist (for column)	NAME OF THE PROJECT : LOCATION : 1) DATE: 2) COLUMN NO : C	YesNo YesNo DA@CC DA@CC YesNo	
	13) SPLICE LENGTH : in 14) IS THERE ANY INNER TIE ?	Ves No Nosmm Dia, EXTRA Nosmm Dia, EXTRA Vosmm Dia, EXTRA	•

INSPECTION SHEET (FOR COL

Quality Control by Inspection at Construction Phase

SL.							1 ¹⁰ Level checked	2 rd Level Checked	3 rd Lovel Checked		
NO.	CHECK ITEM	Reference	YES	NO	NA	LS Non	Frequency	SAE	SOE	13	Comme
	Does the proposed site is a private land ?										
	Keeping relevant site hand over papers (having all signatures properly).										
	Approved site plan.									1.1	
	Spot level										
	Is there any dispute with nearby land owner and proposed site ?							1.1			
	Is there any soil erosion and flood control plan required?										
	If Yes, has it been accepted?										
	Is there any Electric over head line passes over the site ?										
	# Yes, has it been accepted ?										
	Location of adjacent streets and alleys										
	Location / indication of >										
	temporary labor shed place.										
	water supply arrangement,						1				
	Material storing place										
	Permanent bench mark										
	Highest flood level						· · · · · · · · · · · · · · · · · · ·		1		
	Is there any trees and house (to be dismantled) within the site 7										
	# Yes, is there any satisfactory action 7		_	-				-			
	Proper cleaning for foundation layout							1.4		6.0	
STI SL. NO.	TEP-2: CHECK LIST FOR THE ARCHITECTURAL DRAWING										
		2000					1 ³⁷ Level checked	2 rd Level Checked	3 rd Level Checked		
	CHECK ITEM	Reference	YES	NO	NA	1.5 Non	Frequency	SAE	SOE	E.E.	Commert
	Approved architectural drawing.		-			1404	-				
			+	-	-	-	-		-		
	All dimensions are visible and sum of individual dimensions are checked		_	-							
	with the total dimension.		-	_	_	-					
	is there any part of the architectural drawing that is to be constructed		_	<u> </u>	<u> </u>	-					
	from it's foundation level like cantilever verands, duct, etc						C	14 - L			
	(Not mentioned in structural drawing)										

Quality Control by Inspection at Construction Phase

Quality Control by Inspection at Construction Phase

🍩 CNCRP

Control of Construction Machinery and Equipments

Construction machinery and equipments are essential facilities for the modern construction, reflecting the construction power of the enterprise, and having a direct impact on the project progress and quality.

Sample of Constructior

Control of Construction Machinery and Equipments

(1) The contractor should select construction machinery and equipment in accordance with

a) advanced technology,b) economic rationality,c) production application,d) reliable performance and safety,

Control of Construction Machinery and Equipments

(2) The performance parameters should be made sure correctly in accordance with the requirements of construction and quality assurance.

(3) Construction machinery and equipment should be regularly calibrated, so as not to mislead the operator.

Control of Construction Methods

Construction methods are reflected in the concentration of technical solution, process, testing methods and arrangements of construction procedures.

Control of Construction Methods

Main aspects of Construction methods :

(1) Construction program should be constantly refined and deepened with the progress of the project construction.

Control of Construction Methods

Main aspects of Construction methods :

(2) To select the construction program some viable options of major projects should be prepared to choose the best option, presenting

- a) main contradictions,
- b) advantages and disadvantages,
- e) discussion and comparison.

Control of Construction Methods

Main aspects of Construction methods :

(3) When developing programs for the major projects, key and difficult parts of the projects should be fully assessed such as

- a) the new structure,
- b) new materials,
- c) new technology,
- d) large-span, large cantilever, the tall structure parts, and so on,
- e) the possible construction quality problems and treatment.

Environmental Control

Creating a good environment will play an important role in guaranteeing the quality and safety of construction projects.

Main items of Environmental Control-

- a) Control of the natural environment
- b) Control of management environment
- c) Control of working environment

Environmental Control

(a) Control of the natural environment is to

- 1) Grasp data and information of hydrology, geology and meteorology of construction site,
- 2) Know the actual conditions of ground and underground water, affecting construction.

Environmental Control

(2) Control of management environment is to

- 1) Learn the management relations of all participating construction units.
- Acquire the coordination, communication and good public relations with the neighboring residents .

Environmental Control

(3) Control of working environment is to

- 1) Do rational planning and management of construction plan,
- 2) Arrange the layout of mechanical equipment, materials, components, roads, pipelines, and various large temporary facilities.
- 3) Take various protective measures.

Documents Control

	/ 0	~	
S/V1	: Documents for commencement work	S/V5 : Weekly Report by Contractor	
	1.Commencement Order	1. Minutes of Meeting	
	2.Hand over letter to Contractor, etc.	2. Weekly Progress Schedule	
	: Construction Management Manual	3. Quality Control Report, if necessary	
	- Prepared by Consultant -	4. Performance Control Report, if necessary	
	: Work Plan by Contractor	5. Safety Control Report, if necessary	
S/V2	: Communication Letter	S/V6 : Monthly Report	
	1. Question and Answer letter with Client	1. Submit to Client, if necessary	
	2. Question and Answer letter with Contractor		
S/V3	: Quality Control -Approved Document-	S/V7 : Document of Contract and Payment	
	1. Materials :	1. Request Letter from Concerned Authority	
	a. Certificate of Each Materials, Mill Sheet,	2. Contract of Contractor	
	Frog Mark of Brand, etc. by Contractor	3. Payment Record	
	 Testing Report Include Picture by PWD 		
	2. Shop Drawings by Contractor, if possible		
S/V4	: Performance Control	S/V8 : Completion Document	
	- Inspection Report by Contractor, approved by PWD -	1. As- built Drawing by Contractor	
	1. Inspection Record include Pictures	2. Final Inspection Report by Consultant	
	- Architectural work -	Completion Report by Consultant	
	2. Inspection Record include Pictures		
	- Mechanical work -		
	3. Inspection Record include Pictures		
	- Electrical work -		
	Inspection Record include Pictures		
	- Plumbing work -		

Documents Control

1 Documents for commencement Work

- o Work Order
- o Hand Over letter to contractor
- o Management Guideline by consultant
- o Work plan by contractor etc.
- 2 Communication letters
 - o Question and answer letter with client
 - o Question and answer letter with contractor.

Documents Control

- 3 Quality Control- Material approved documents
 - Certificates of each materials, Mill sheet, Frog mark of brand etc. by contractor.
 - o Testing Reports including pictures.
 - Shop drawing by contractor, if necessary.

4 Performance Control

- Inspection Report by contractor approved by the consultant/ authority
- Inspection Record include Pictures

Documents Control

- 7 Documents of Contract and Payment
 - o Request Letter from concerned authority
 - Contract of contractor
 - Payment Records

8 Completion Documents

- o As-built drawing by Contractor
- o Final Inspection Report by Consultant
- o Completion Report by Consultant

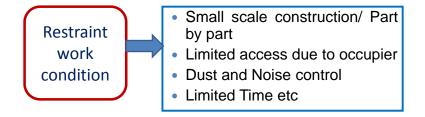
Documents Control

- 5 Weekly Reports by Contractor
 - o Minutes of Meeting
 - o Weekly Progress Schedule
 - o Quality Control Report, if necessary
 - o Performance Control Report, if necessary
 - o Safety Control Report, if necessary

6 Monthly Report

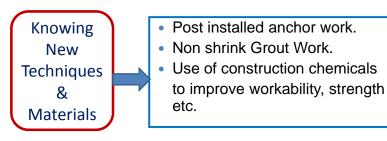
o Monthly report submit to client.

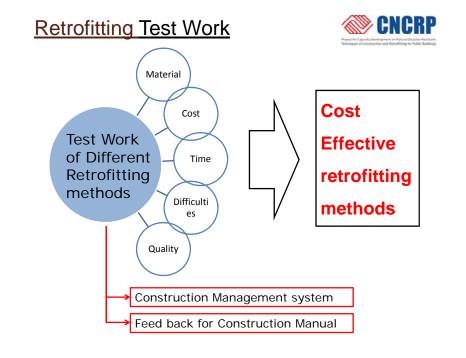
Thank you very much


Management of Retrofitting Construction

Md. Mafizur Rahman And Md. Sohel Rahman CNCRP Project

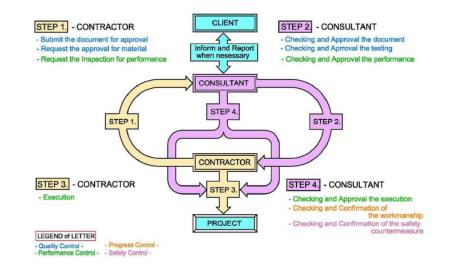
Retrofitting Work


What are special considerations!



Retrofitting Work

What are special considerations!


Outline of Construction Management

- o Documents Control (File Management)
- o Quality Control- Material
- o Quality Control- Performance
- Progress Control
- o Safety Control

Flow Chart : Construction Stage

Documents Control

			Techniques of Construction and Retrofftting for Public Buildings
S/V1	: Documents for commencement work	S/V5	: Weekly Report by Contractor
	1.Commencement Order		1. Minutes of Meeting
	2.Hand over letter to Contractor, etc.		2. Weekly Progress Schedule
	: Construction Management Manual		3. Quality Control Report, if necessary
	- Prepared by Consultant -		4. Performance Control Report, if necessary
	Work Plan by Contractor		5. Safety Control Report, if necessary
S/V2	: Communication Letter	S/V6	: Monthly Report
	1. Question and Answer letter with Client		1. Submit to Client , if necessary
	2. Question and Answer letter with Contractor		
S/V3	: Quality Control -Approved Document-	S/V7	: Document of Contract and Payment
	1. Materials :		1. Request Letter from Concerned Authority
	a. Certificate of Each Materials, Mill Sheet,		2. Contract of Contractor
	Frog Mark of Brand, etc. by Contractor		3. Payment Record
	b. Testing Report Include Picture by PWD		
	2. Shop Drawings by Contractor, if possible		
S/V4	: Performance Control	S/V8	: Completion Document
	- Inspection Report by Contractor, approved by PWD -		1. As- built Drawing by Contractor
	1. Inspection Record include Pictures		2. Final Inspection Report by Consultant
	 Architectural work - 		3. Completion Report by Consultant
	2. Inspection Record include Pictures		
	- Mechanical work -		
	3. Inspection Record include Pictures		
	– Electrical work -		
	Inspection Record include Pictures		
	– Plumbing work -		

Documents Control

Documents for commencement Work

o Work Order

1

2

- o Hand Over letter to contractor
- o Management Guideline by consultant
- o Work plan by contractor etc.

Communication letters

- o Question and answer letter with client
- o Question and answer letter with contractor.

Documents Control

3

4

7

8

Quality Control- Material approved documents

- Certificates of each materials, Mill sheet, Frog mark of brand etc. by contractor.
- o Testing Reports including pictures.
- o Shop drawing by contractor, if necessary.

Performance Control

- Inspection Report by contractor approved by the consultant/ authority
- o Inspection Record include Pictures

Documents Control

Documents of Contract and Payment

- o Request Letter from concerned authority
- o Contract of contractor
- Payment Records

Completion Documents

- o As-built drawing by Contractor
- o Final Inspection Report by Consultant
- o Completion Report by Consultant

Documents Control

Weekly Reports by Contractor

- o Minutes of Meeting
- o Weekly Progress Schedule
- o Quality Control Report, if necessary
- o Performance Control Report, if necessary
- o Safety Control Report, if necessary

6 Monthly Report

5

o Monthly report submit to client.

Quality Control- Materials

- A Quality Control Program must be set by the consultant as per design and specification, such as Quality Control Table, Performance Control Table etc.
- Confirmation of quality of materials as per the quality control program

Quality Control- Materials

			QUALITY CONTROL TABLE				
	WORK	CHECK ITEM	CHECK METHOD	STANDARD	CHECKING	RESULTS	REMARKS
	CONCRETE						
•	1 Cement	 Classification of Cement Mawn to the Standard 	Printing of the cement bag running of the cement bag	i) OPC: BDS-EN-197-1:1995 OEM-I, 42.5 N ii) PCC: BDS EN:197-1:1995 CEM-11/A.	Occasionally at Plants Store Phor to Mixing Design		
		 Type, Suitability 	Manufacturers Specification	BDS EN-934-1 / Manufacturers Standard	Phor to Mixing Design	Submit Manufacturers Specification	
	3 water	1) Quality for concrete mixing	Commission by rested results	Ionized Chioride is not more than 200ppm BDS: Potable Water	Luot to wirring Design	Submit Test Report	Laboratory
	4 s		JIS A 1102 or equiv. Confirmation by Tested Results	JASS 5 Table 4.3 BDS 243 (1963)			Witnessed by the Consultant
		5) Specific Gravity & of Fine Aggregate	Confirmation by Tested Results JIS A 1109 or equiv. Confirmation by Tested Results	1.25kg/L			lf Absorption, Grading Range, Unit Weight and Specific Gravity exceed
		 Specific Gravity & of Coarse Aggregate Midday Substance alter 	JIS A TITU or equiv. Confirmation by Tested Results JIS A TITUS of equiv.		Once when source or kind of aggregates are	Submit as "Test Report of	the specified range, mixing design shall be adjusted accordingly.
		Washing Aggregates	JIS A 5308 (Appendices 7, 8) or equiv.		changed	Aggregates"	n jugged as narmini, counter measure to suppress Alkali- Aggregate Reaction shall
		 Amount of Chlorides 	Supervision Guidance for Construction of Building by the Minister's Secretariat, Ministry of Land, Infrastructure and	715 A 5506 of equiv. Total Amount of Chlorides: ≈0.3kg/m3			If exceed the allowable value, adequate counter- measure shall be taken.
	Mixing	 Iral Mixing 	Mixing Design Sheet	TS: Chapter 5.4.1 (Slump, Temperature, Strength)	Once at the time of Commencement with each strength and whenever mixing design	Submit Test Report	Witnessed by the Consultant

Quality Control- Materials

QUALITY CON	QUALITY CONTROL TABLE							
WORK	CHECK ITEM	CHECK METHOD	STANDARD					
CONCRETE								
A Material								
1 Cement	1) Classification of Cement	Printing of the cement bag	i) OPC: BDS- EN-197- 1:1993					
	2) Match to the Standard	Printing of the cement bag	CEM-I, 52.5 N					
2 Admixture	1) Type, Suitability	Manufacturer's Specification	BDS EN-934-1 / Manufacturer s Standard					

Quality Control- Materials

	QUALITY CONTROL TABLE	(Continued)	
	FREQUENCY OF	CONTRACTTOR'S	REMARKS
	CHECKING	RESPONSIBILITY	
1 Cement	Occasionally at Plant's Store prior to mixing design	Approval to be taken before mixing	
2 Admixture		Manufacturer's specification and previous test record to be submitted before mixing for approval	

Quality Control- Materials

Quality Control- Performance OCCRP

 Confirmation of quality of performance as per the performance control program

Quality Control- Performance CNCRP

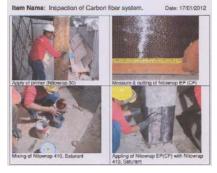
	MEASUREMENT		FREQUENCY OF	UNIT	TREATMENT	ALLOWABLE	
WORK		METHOD					REMARKS
	ITEM		MEASUREMENT	mm	OF RESULTS	TOLERANCE	
Earthwork							
1 Excavation	Bottom Level	1	* 4 corner and 1 center for	10	Survey Record	±30 mm	Photo record shall be attache
			square trench				
			* every 5m at center of trench				
			 every 5m in length and breadth 				
			for overall excavation				
2 Backfilling	Top Level	1	* every 5m in length and breadth	10	Survey Record	±30 mm	Photo record shall be attach
Foundation Work							
1 Gravel / Crushed Stone	Top Level	1	* 4 corner and 1 center for	10	Survey Record	±30 mm	Photo record shall be attach
			square trench				
			 every 5m at center of trench 				
			every 5m in length and breadth				
			for overall excavation				
	Width	2	Every 5m	10	Survey Record	±50 mm	Photo record shall be attach
Concrete Work							
1 Footing	Top Level	1	Random		Survey Record	±20 mm	Photo record shall be attach
Underground Beam	Cross Section	2	Random	1	Survey Record	+50 🗠 -10 mm	Photo record shall be attach
	Dimensions						
2 Slab on Grade	Top Level	1	Random	1	Survey Record		Photo record shall be attach
						±10 mm	
3 Column	Cross Section	2	Random	1	Survey Record	+20 🗂 -5 mm	Photo record shall be attach
	Dimensions						
	Deviation from Plumb	2	Random	1	Survey Record	±20 mm	Photo record shall be attach
	Line						
4 Girder, Beam	Cross Section	2	Random	1	Survey Record	+20 🗂 -5 mm	Photo record shall be attach
	Dimensions						
	Bottom Level	1	Random		Survey Record	±20 mm	Photo record shall be attach
5 Slab	Top Level	1	Random	1	Survey Record		Photo record shall be attach

Quality Control- Performance OCCRP

PERFORMANCE CONTROL TABLE

	WORK	MEASUREMENT ITEM	METHOD	FREQUENCY OF MEASUREMENT
D	Structural Work			
	1 Reinforcement Work	Diameter, number and space	As per Design Drawings	When completed assembling re-bars.
		Length and location of splice joints, Anchor length	As per Design Drawings	When completed assembling re-bars.
	Concrete coverage, Additional bar		As per Design Drawings and Specifications	When completed assembling re-bars.

Quality Control- Performance OCCRP


PERFORMANCE CONTROL TABLE (Contd.)

	UNIT mm	TREATMENT	ALLOWABLE	REMARKS
		OF RESULTS	TOLERANCE	
1 Reinforcement Work		Inspection		Photo record shall
WORK		Record		be attached
				Photo record shall
				be attached
				Photo record shall
				be attached

Quality Control- Performance CNCRP

Inspection Report

Project Name: Test work for capacity development on natural disaster resista techniques on construction and retrolitting for public building.

- Strength test of anchor by hammering
- Site: Chiba Prefectural Sakura Higashi
 Senior High School

Progress Control



- Request the contractor to submit the work progress chart/ graph (Time schedule).
- Confirm the work progress at the weekly meeting, on schedule or not.
- When find out the problem of progress, discuss with the contractor how to solve.

Progress Control

Example of the work progress schedule table provided by JET

Safety Control

- Confirm the safety measures taken for workers and local residents.
- Make sure crisis management is perfect, and confirm the emergency response

Safety Control

Green MarkSite: IDEC Corporation new HQ

Worker with Safety HarnessSite: IDEC Corporation new HQ

Thank you very much

4th Domestic Training

Venue: PWD Seminar Room

and Site Visit (Tejgaon Fire Station)

Duration: Nov 12, 13 and 15 2014

Short Training Course on

"Techniques of Retrofit Construction for R.C. Buildings and Quality Control for Retrofitting Work"

Under "RMG Sector Safe Working Environment Program"

Attendence Sheet

15 Date: **13**.11.2014

SL. NO	Engineers Name	Name of company / Applicant	Designation	Contract No	E-mail	Signature	Remarks
1	Md.Rahmat-E-Rabbi	d.zign Scape Consultants Ltd.	Construction Engineer	(+88) 01826474747	rabbi@dzignscape.net	Falustina	
2	Nur Mohammad	d.zign Scape Consultants Ltd.	Assistant Engineer	(+88) 01822441999	noorrangpur@gmail.com	Happel	constion
3	Md. Anowarul Mahmud	Associated Builders Corporation Ltd	Project Manager	(+88) 01819246789	biplob 90@yahoo.com	Cost 5/m114	-
4	Md. Abu Shoeb	Associated Builders Corporation Ltd	Head of Project Evaluation	(+88) 01817537482	abcltd72@gmail.com	Con 15 11/2014	
5	Md.Nizamul Haque	MS Troyee Enterprise	Project Manager	(+88) 01823061374 (+88) 01711817029	nizamulhaque.milon@gmail .com	das	-
6	Md.Jakir Hossain	MS Troyee Enterprise	Site Engineer	(+88) 01733019677	jakir9602@gmail.com	Thorsten	
7	Md.Ali Ahasan Khan	The Cementation	Project Manager	(+88) 01799089431	safe_3p@yahoo.com	Akasan	
8	Md.Saiful Islam	The Cementation	Management Trainee	(+88) 01712717522	fmu'l.com shohag39@yatto.com	shoney	
9	Md.Abdul Ali	Padma Associates & Engineers Ltd	Site Engineer	(+88) 01922338975		15/11/14	
10	Md. Abdul Kader Mia	Padma Associates & Engineers Ltd	Senior Site engineer	(+88) 01913621120		Aboler 15.11.14	
11	Md.S f aidur Rahman Chowdhury	Auspicious	Senior Structural engineer	(+88) 01911312911	<u>md.saidur@auspiciousbd.c</u> <u>om</u>	the the	Name Goralin
12	Md.Anoyar Bin Rashid	Auspicious	Site Engineer	(+88) 01723742472	anoyar@auspiciusbd.com	An	

		C			0	
13	Md.Saiful Islam	Heritage housing Ltd.	Structural engineer	(+88) 01811421041	saiful602010@gmail.com	Angeong
14	Md.Abu Hasan	Heritage housing Ltd.	Project Engineer Manging Dirutor	(+88) 018162826 4 01816288264	henitage64@gmail.com	P Cel NO, 8 Rmail Nochampe
15	Sk.Kamal Hossain	Engineering & Supports Services	Project Manager	(+88) 01714046086	kamal_engg2006@yahoo.c om	Alfosi.
16	Animesh Chandra Biswas	Engineering & Supports Services	Project Co-ordinator	(+88) 01713435005	animesh.kus@gmail.com	Arr.
17	Md.Motaher Hossen	Shunirman Associates & Builders Ltd.	Senior Assistant Engineer	(+88) 01811267768	hmanik.kuet@gmail.com	44 000 2014 15 Nov, 2014
18	Shaikh raseduzzaman	Shunirman Associates & Builders Ltd.	Assistant Engineer	(+88) 01718017200	rased1982@gmail.com	themen
19	S.M.Kobir Hossain	National Development Engineers Ltd	Office Engineer	(+88) 01714454079	eng.kobir@yahoo.com	the
20	Amit Kumar Bhadra	National Development Engineers Ltd	Office Engineer	(+88) 01712110921	samit95079@gmail.com	Amit
21	Md-Anisur Rahman	United Engineering Consortium	Project Dierctor			
22	Puulak Kumar Basu	United Engineering Consortium	COO			
23	Md. Sharegul alam	Greenyard construction Ltd.	Managing Director	(+88) 01989155361	greenyardltd@gmail.com	Stran
24	Md.Forjul Islam	Greenyard construction Ltd.	Project Manager	(+88) 01918042104	greenyardltd@gmail.com	Fingel.
25	Md.Shamim Haider Khan	Construction Aid & Logistics Ltd	Junior Manager	(+88) 01911771734	<u>shamim_buet05@yah00.co</u> <u>m</u>	Sha
26	Md.Nasir Uddin	Construction Aid & Logistics Ltd	Purchase Engineer (Sells & Marketing)	(+88) 01755607063	nasircall@gmail.com	Alan
27	Abu Taher Md.Sarwar Alam	Faruq Consultants & Constructions Ltd	Project Engineer	(+88) 01772560346	fccl_bd@hotmail.com	Fatto

•		C			0		
28	Md.Rifat Ibne Sayed	Faruq Consultants & Constructions Ltd	Purchase officer	(+88) 01676210657	fccl_bd@hotmail.com	A	
29	Md.Moniruzzaman	Eclectic	CEO	(+88) 01618666423	moni. eclectic e gnil.		-
30	Mohammad Wali Hafi Ulloh	Eclectic	Project Engineer	(+88) 01818485023	Waligg ullahe gow	1 contr	Print ognin Correct
31	Md.Azizul Islam Khan	City Steel Building	General Manager	01721596972	aity steelbuil derse		
32	Saidur Rahman	City Steel Building	Project co-ordinator	0772031964	city steelbuil derse yahoo. cm.	Saidur Ral	iman
33	Hilton Das	Retrotech Associates	Advisor	(+88) 01713336282	arkoconsults@gmail.com	-	-
34	Saikat Roy	Retrotech Associates	Project Engineer	(+88) 01979225697	saikat.k.roy@gmail.com	Story	
35	Engr.Aminul Haque Bhuiyam	The Civil Engineers Ltd	Project Engineer	(+88) 01714103079	eaminul@gmail.com	Alleve	
36	Md.Shahidul Islam	The Civil Engineers Ltd	Seinior Engineer	(+88) 01711638890		Cause L	
37	Ajmail Hossain	Nutech Construction Chemical Co.Ltd	Project Manager	(+88) 01556550063		Burg	
38	Durjoy biswas	Nutech Construction Chemical Co.Ltd	Assistant engineer	(+88) 01713238310	durjoybiswas@gmail.com	Down	
39	Md.Shahariar Islam	Hasan & Sons Ltd	Project Engineer	(+88) 01719571959	<u>shahariar.ecn10@gmail.co</u> <u>m</u>	Sampo P	
40	Md.Mostafizur Rahman	Hasan & Sons Ltd	Seinior Project Engineer	(+88) 01718180612	shohel.sahi@gmail.com	Aler	
41	Biprojit Hore	Aziz & Co. Ltd	Project Engineer	(+88) 01738246511	biprojit.shuvo@gmail.com	Kak .	
42	Md. Masum Baza REZA	Aziz & Co. Ltd	D.P.M (Civil)	(+88) 01915687968	mdreza200@gmail.com	Re	Name Correction

		0			0	
43	Ashique Ahmed	Star Delta Engineers Ltd	Enginees (Civil)	(+88) 01674990900	ashikbsce@gmail.com	Ashik (th mad
44	Md.Abdul kader Sarker	Star Delta Engineers Ltd	Project Engineer	(<u>+88) 0172243191</u> 7 01711027-995	2	ISUIN IN
45	Md. Mehedy Hassan	BKMEA	Engineer (Civil)	(+8 8) 0171102799 6 0 1722431917	engr.mehedy@gmail.com	Motaty -
46	Md. Humayun kabir	BKMEA	Engineer (Civil)	(+88) 01920565191	humayun_ce@yahoo.com	Humayun
47	M.D. Shamin Alumme	Flo Nin Propention	site Engg.	0192609519,		Im
48						

Course Title: Short Training Course on "Techniques of Retrofit Construction for R.C. Buildings and Quality Control for Retrofitting Work"

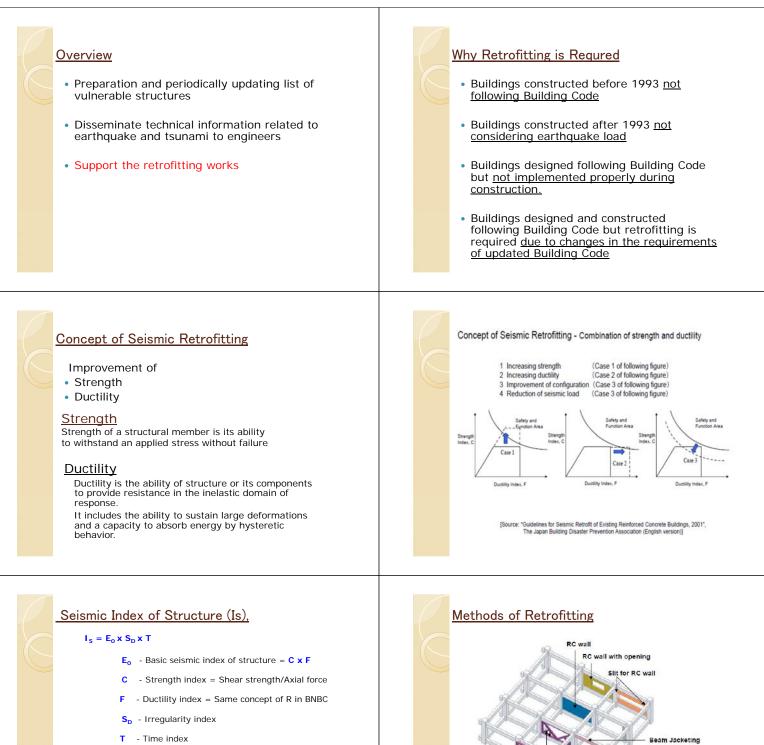
Organizer: CNCRP

1. Course Duration: 3 half-working days

	Lectures 2 days Site visit 1 day	2:30pm-5:30pm
2. Participants:	Working Environment Pro	ted Contractors for "RMG Sector Safe gram
3. Venue:	(Total 48 participant) Room No. 725, Purto Bhal	oan, Segunbagicha, Dhaka-1000

Course content:

- 1. Introduction to Seismic Retrofitting
- 2. Outline of Seismic Assessment and Retrofit Design
- 3. Retrofit Works and Quality Control
- 4. Management of Retrofit works
- 5. Site visit


Course content:

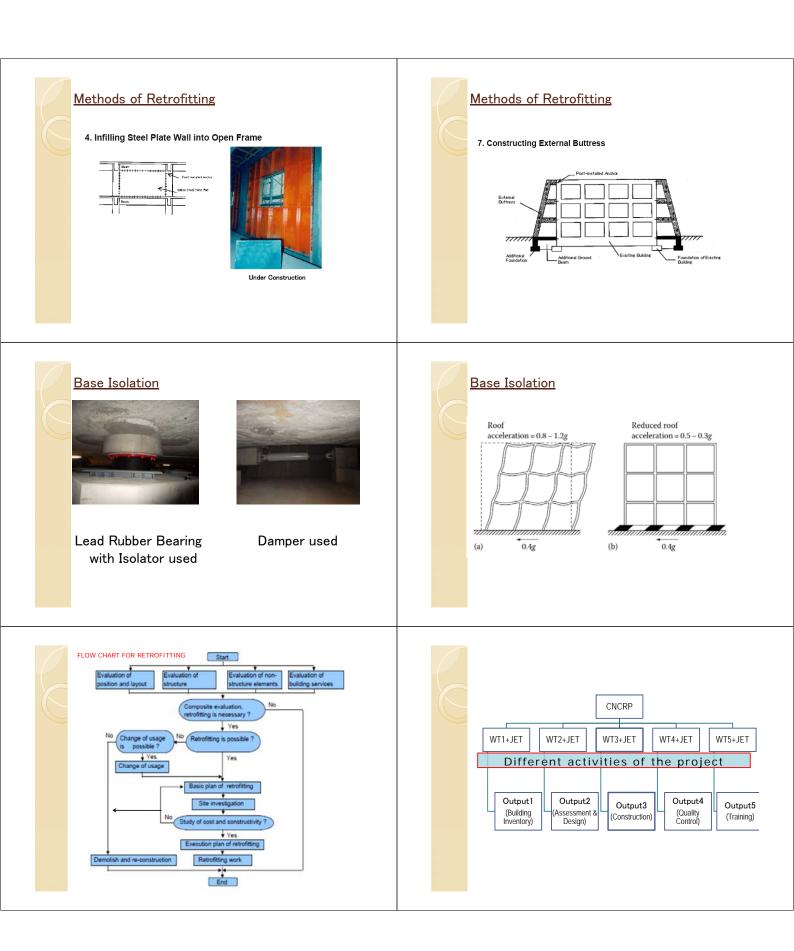
Date	Lecture-1 (2:30-3:20)	Lecture-2 (3:20-4:10)	Break	Lecture-3 (4:30- 5:20)
12/11/14	Intro. to Seismic Retrofitting	Retrofitting Methods	:30	Retrofitting Methods (continued)
	:PMT	:WT-3	4	:WT-3
13/11/14	Outline of Seismic Assessment & Retrofit Design :WT2	Quality Control of Retrofit Works :WT-4	4:10 -	Management of Retrofit Construction :WT-3, PMT

15/11/14Site Visit (10:00-1:00)Test site at PWD premise and Retrofit construction of Tejgaon Fire Station	Certificate Awarding
--	----------------------

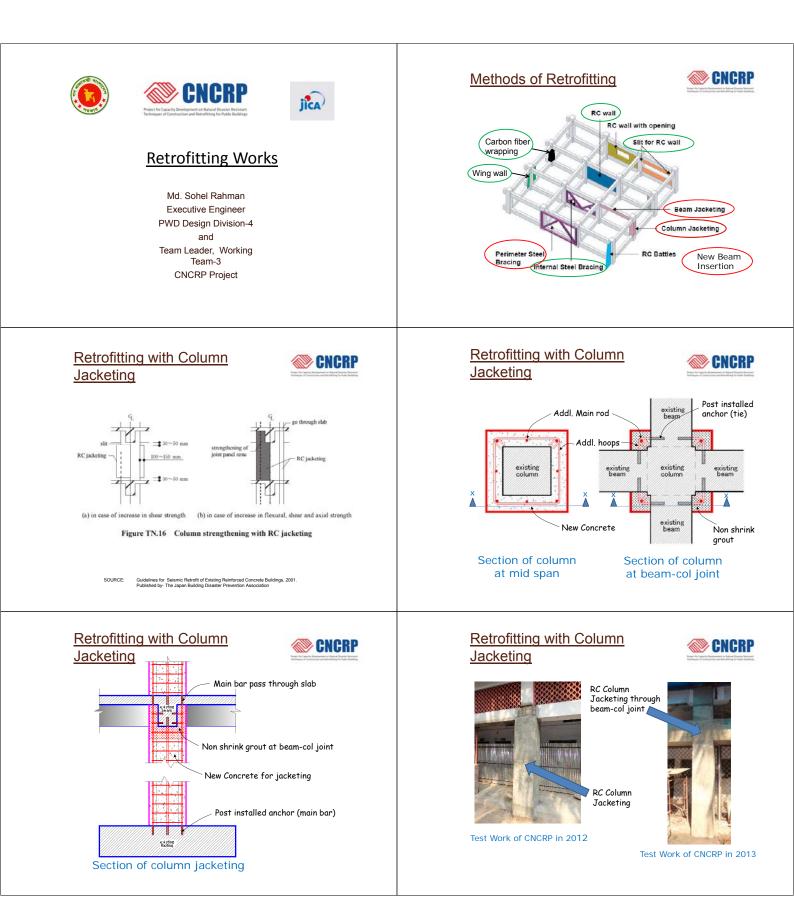
Contact Person:	1.	Md. Sohel Rahman Executive Engineer PWD Design Division-4 and Team Leader, WT-3, CNCRP	9560614 sohelr86@yahoo.com
	2.	Md.Hafizur Rahman. Project Engineer, CNCRP	01711579063 topu_014@yahoo.com

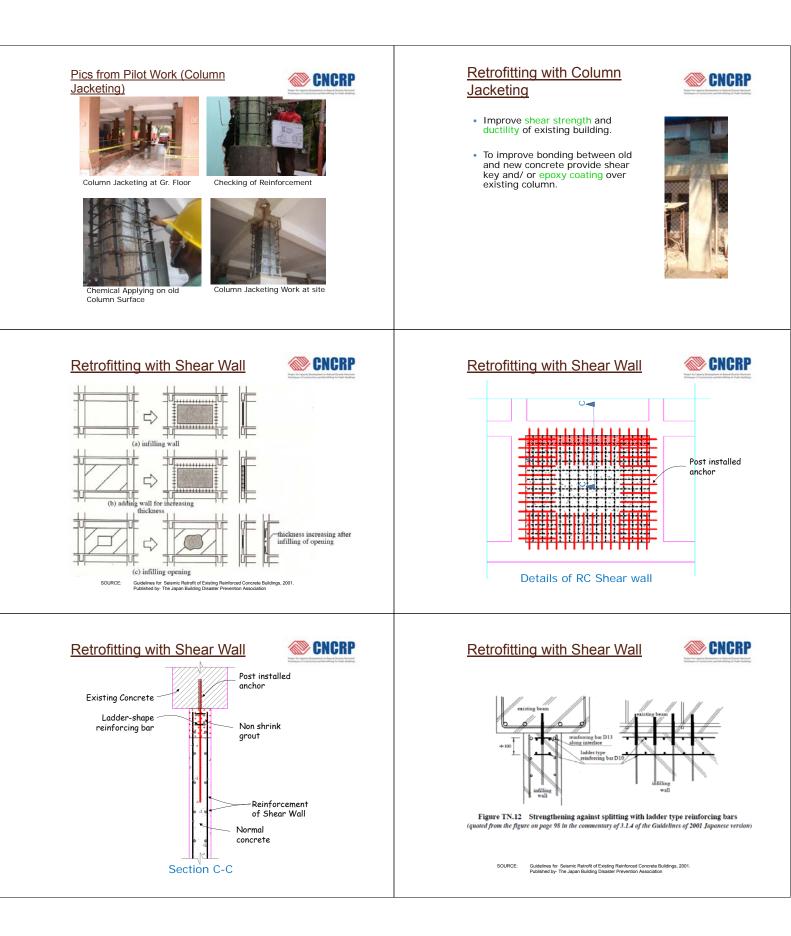
Column Jacketing

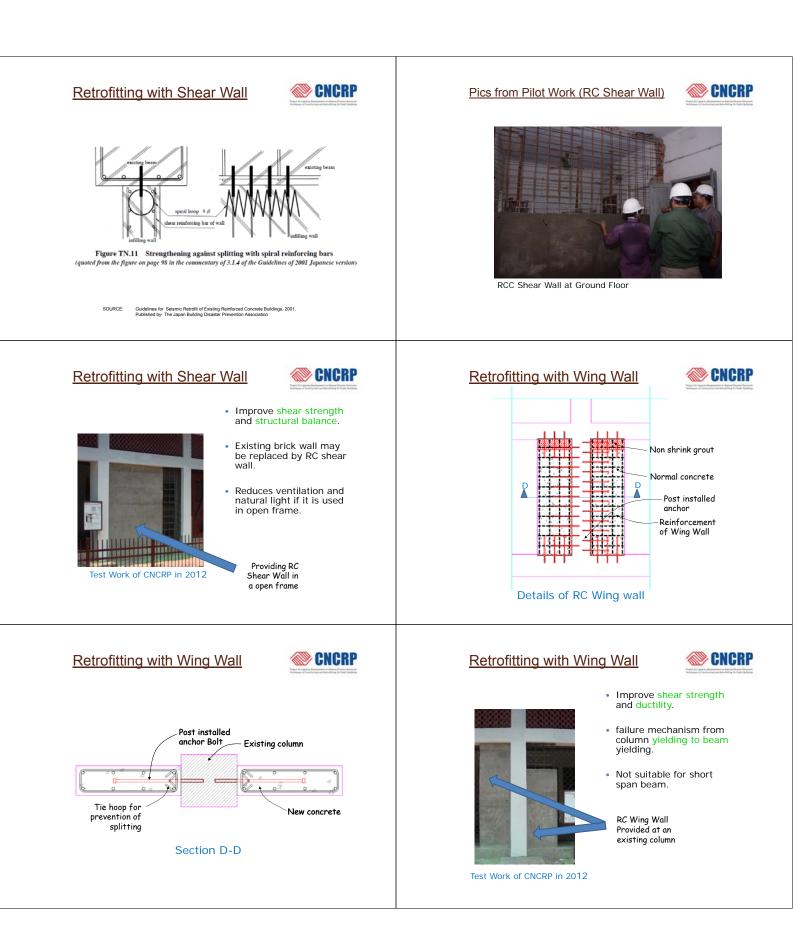
RC Battles


Perimeter Steel Bracing

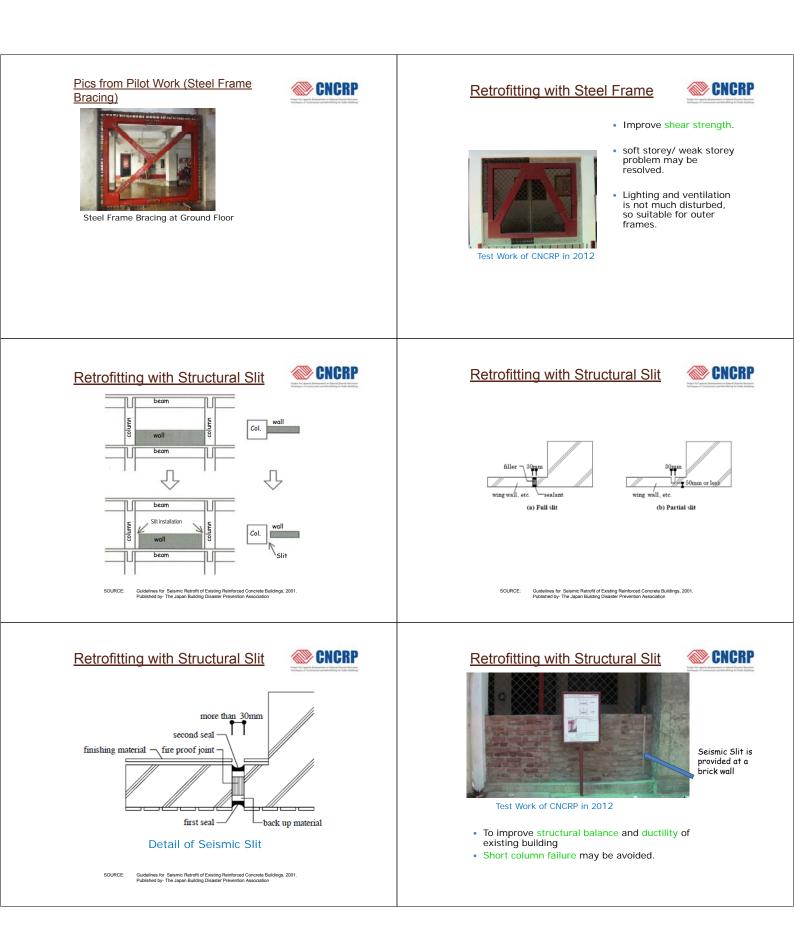
Internal Steel Bra

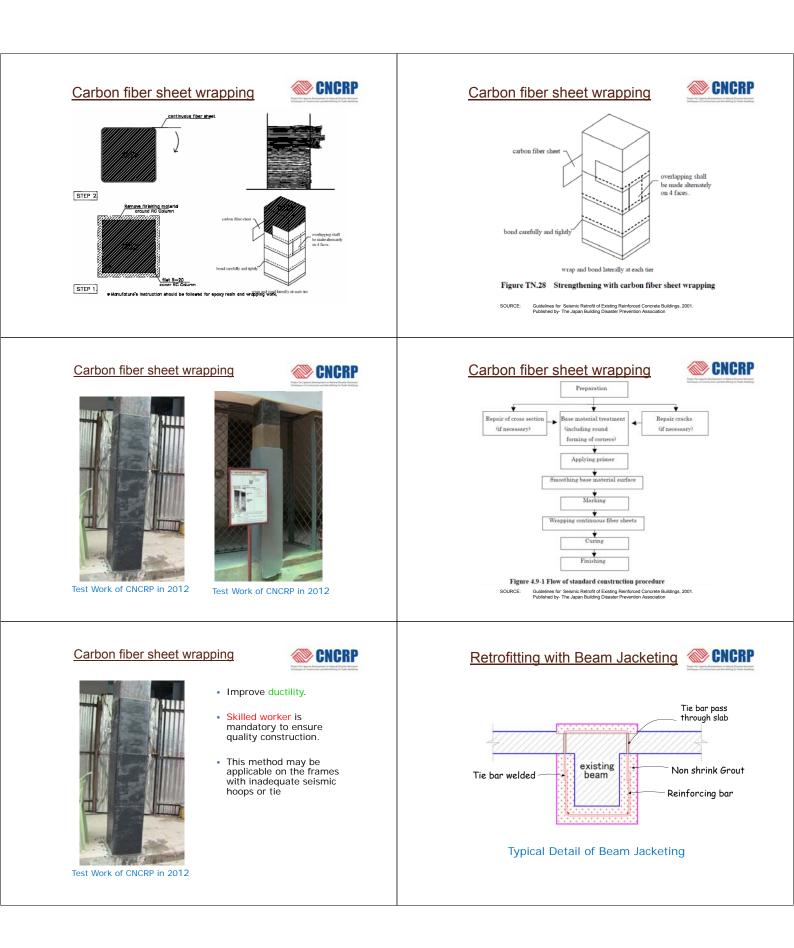

- T Time index
- Check : 1) $I_s \ge I_{so}$ 2) Minimum strength of structure
- I_{so} Seismic demand index of structure which is a preset value
 - Is is checked
 - Each story
 - Each principal horizontal direction of a building.

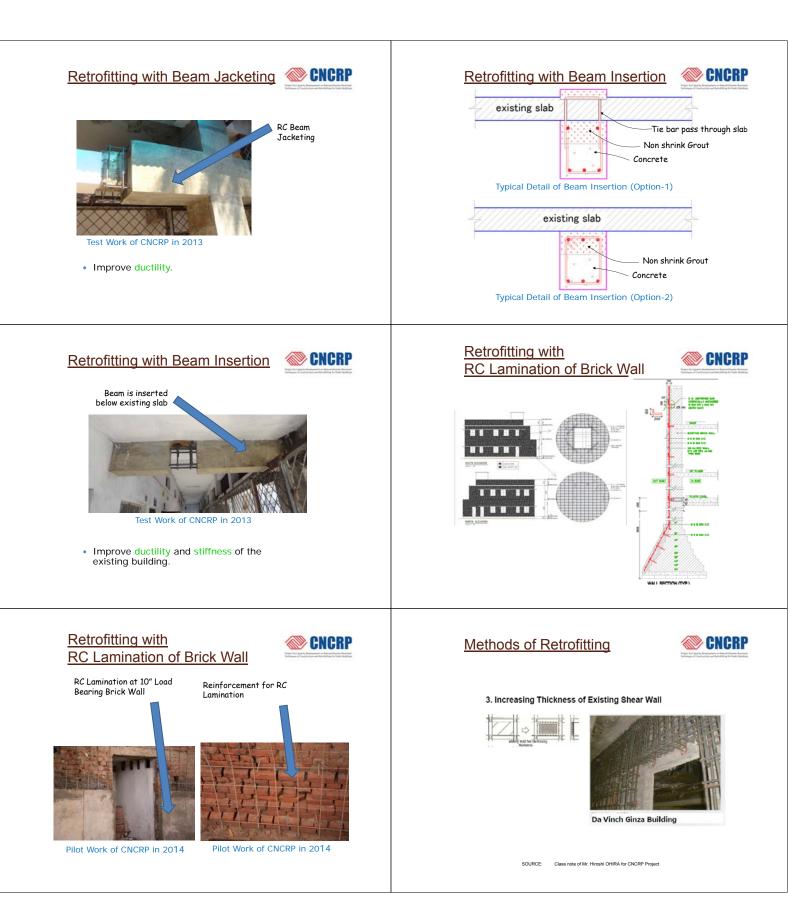


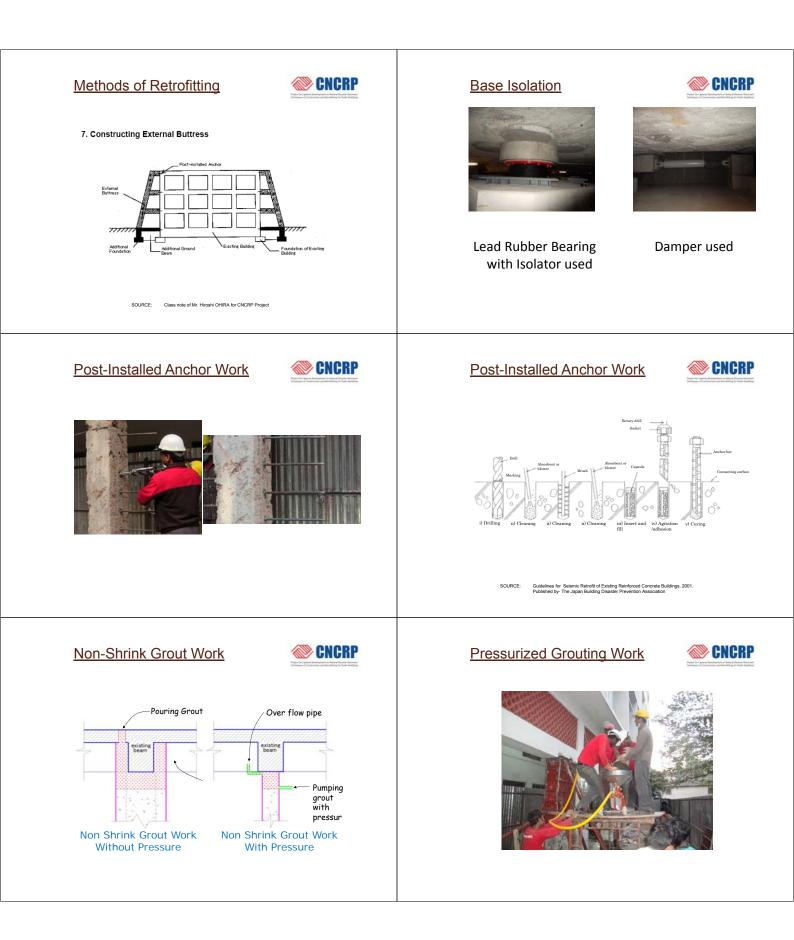


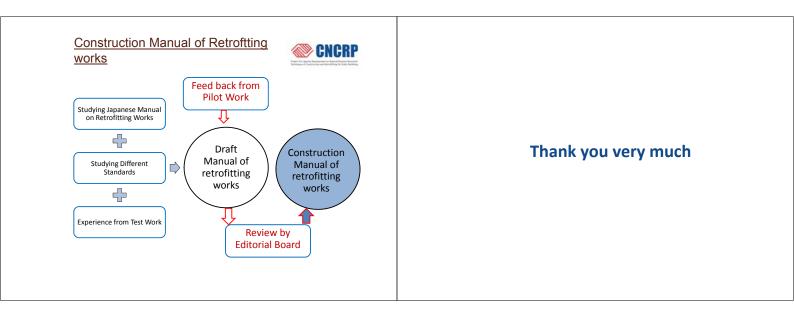


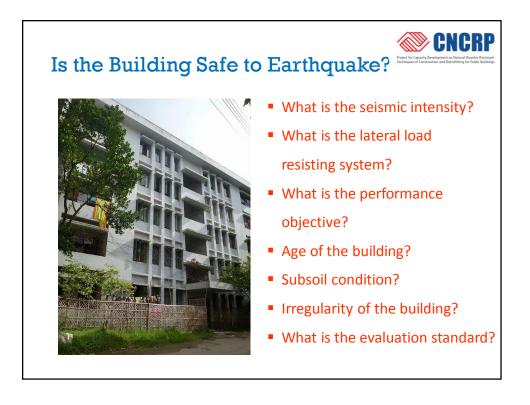


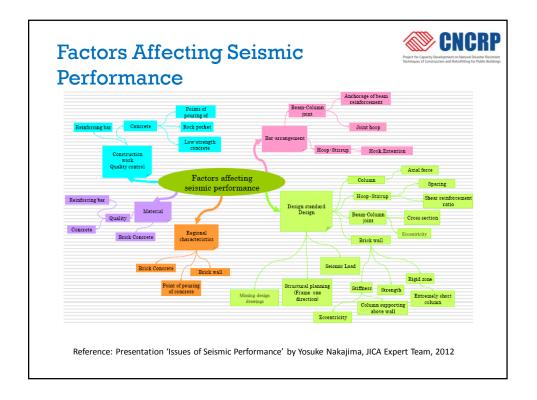


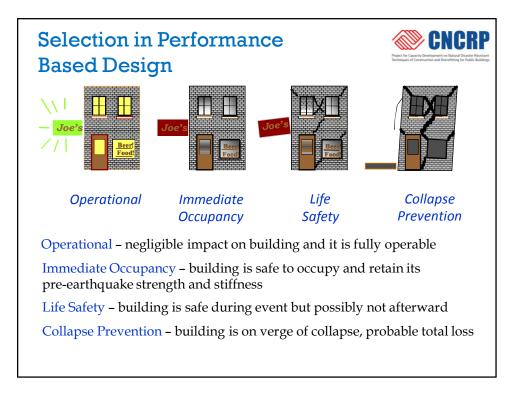


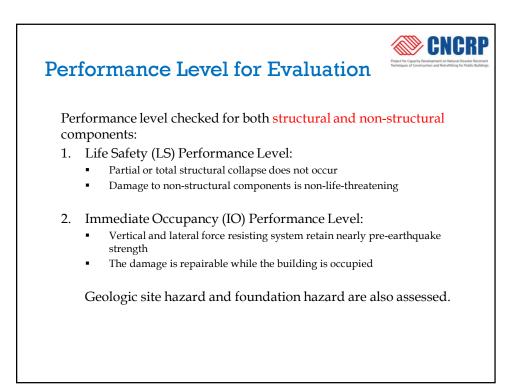


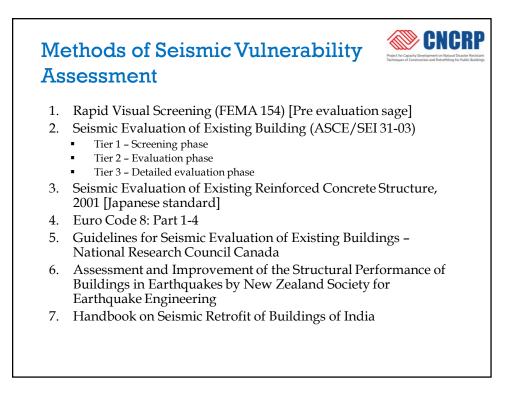


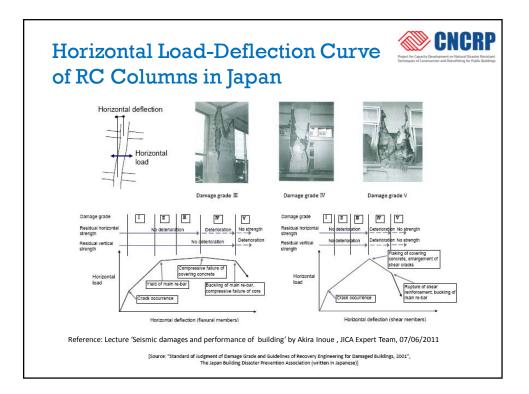


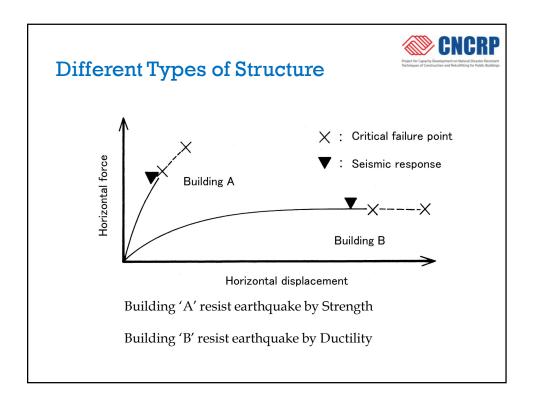


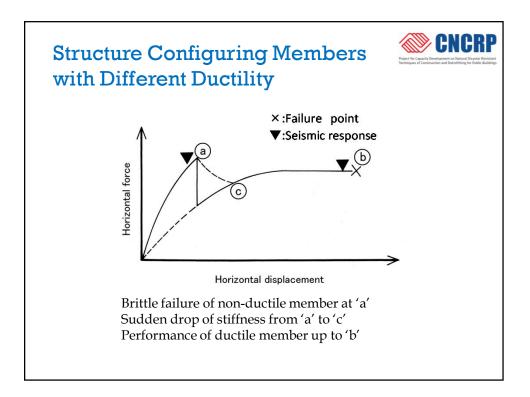


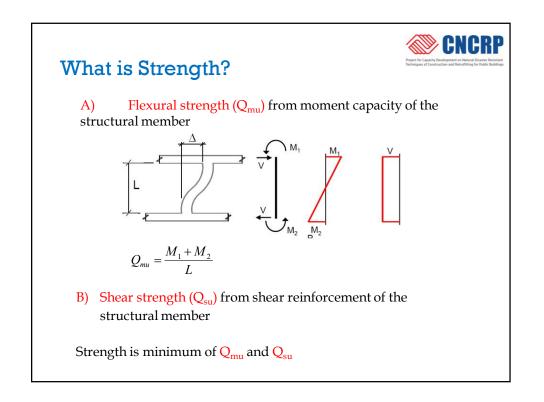


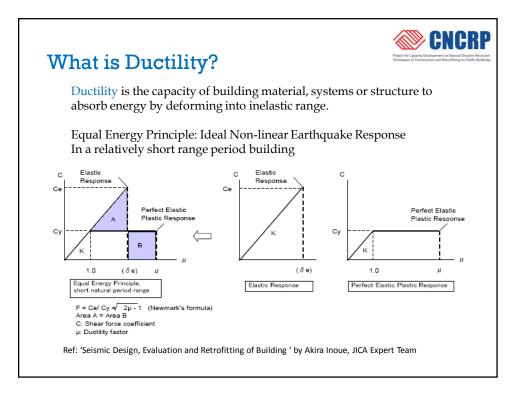


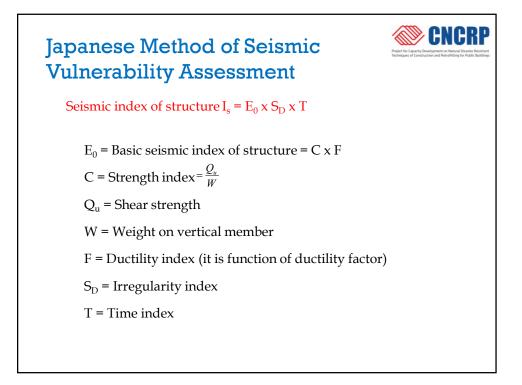


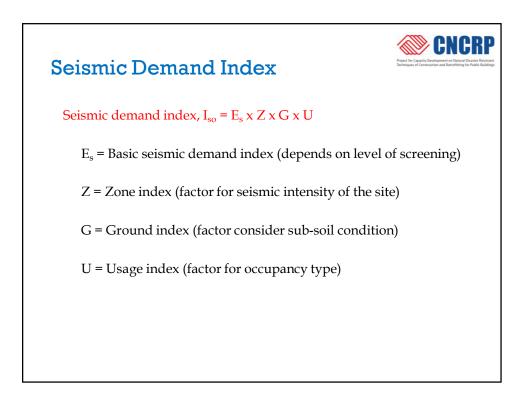


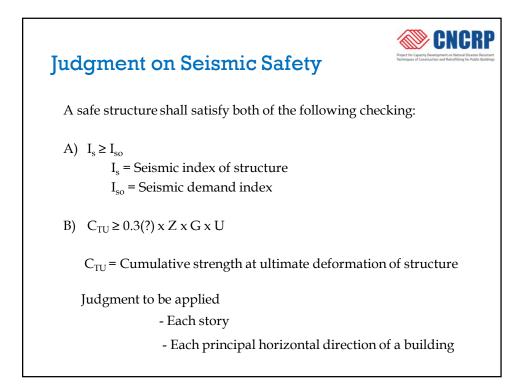


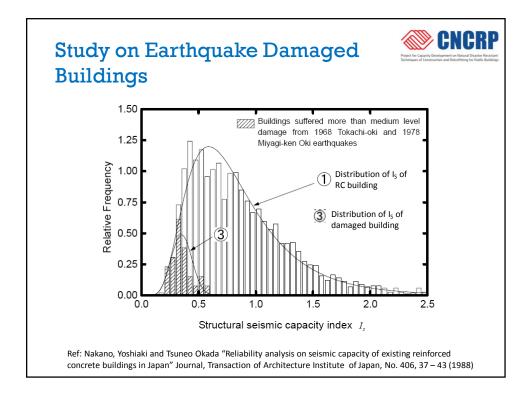

1. First level screening

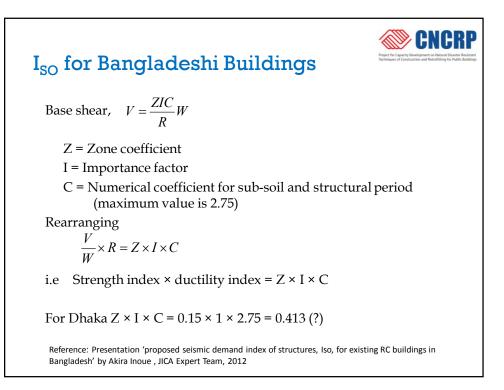

- Beam is extremely rigid and only vertical member will deform
- Vertical members are classified into three categories
- Concrete strength and sectional area of vertical member are required for calculation; reinforcement details are not required
- Suitable for building that have too many walls
- 2. Second level screening
 - Beam is extremely rigid and only vertical member will deform
 - Vertical members are classified into five categories
 - Reinforcement details of vertical member is required for calculation
- 3. Third level screening
 - Beam is flexible and hinge may form either in beam or column
 - Vertical and horizontal members are classified into eight categories
 - Calculation process is very rigorous

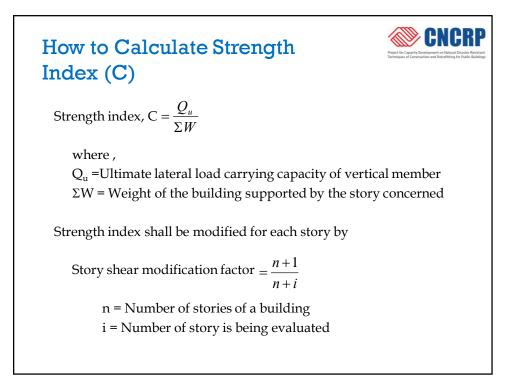


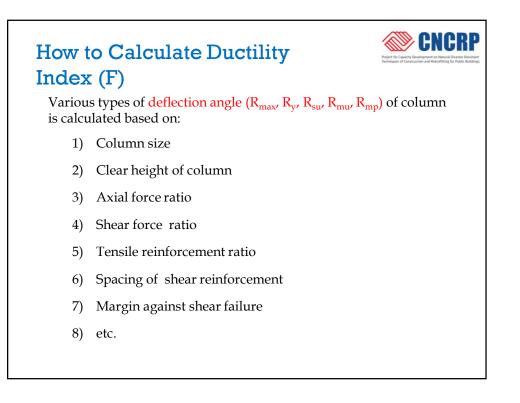


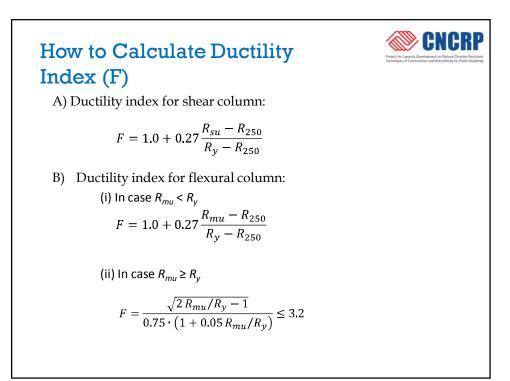


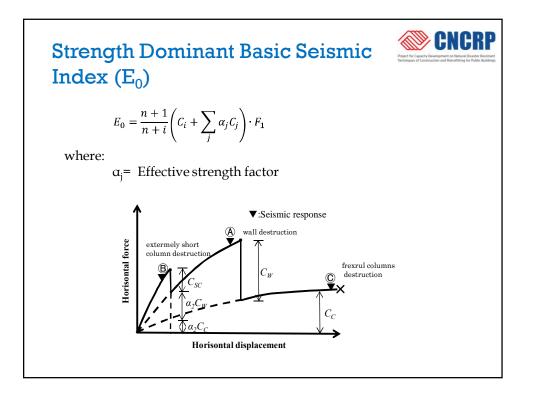


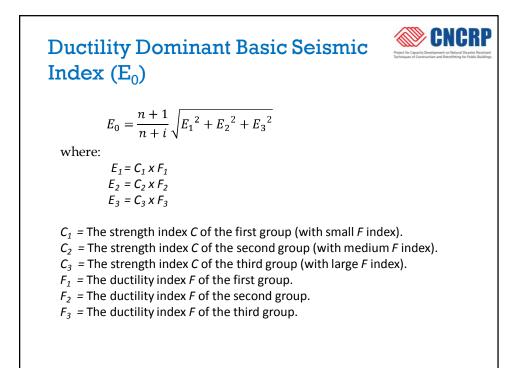


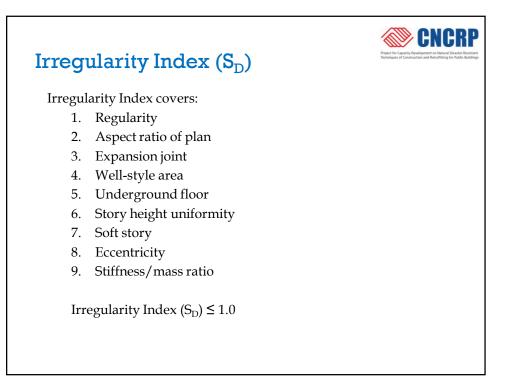


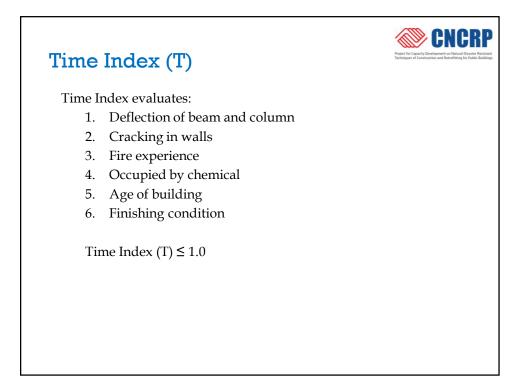


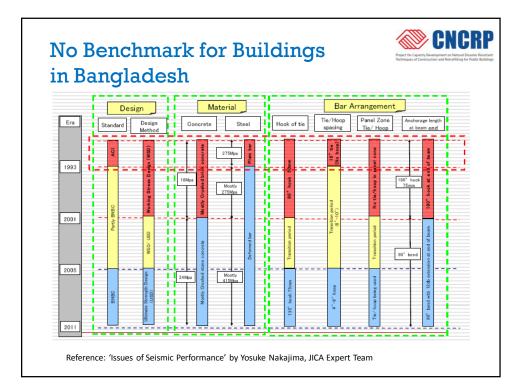


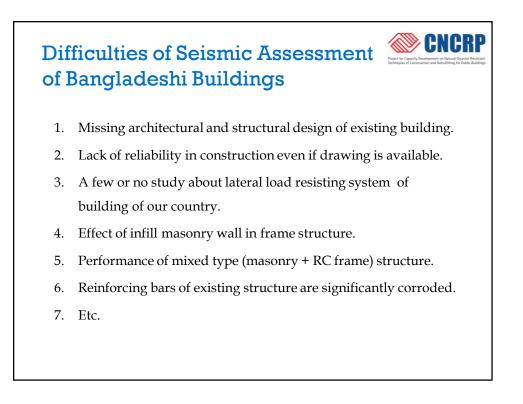


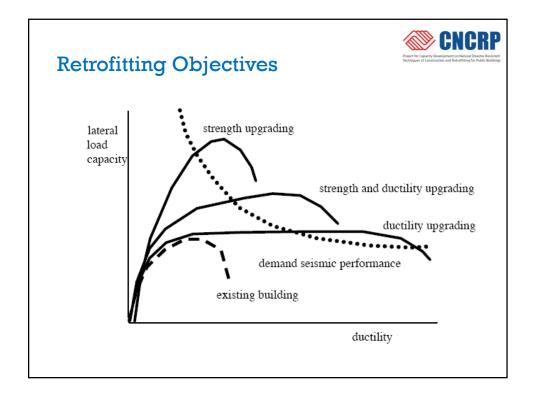


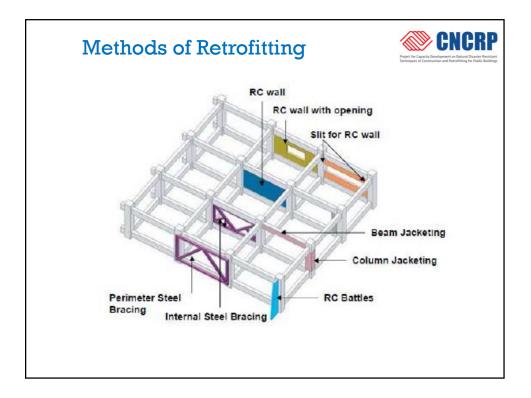




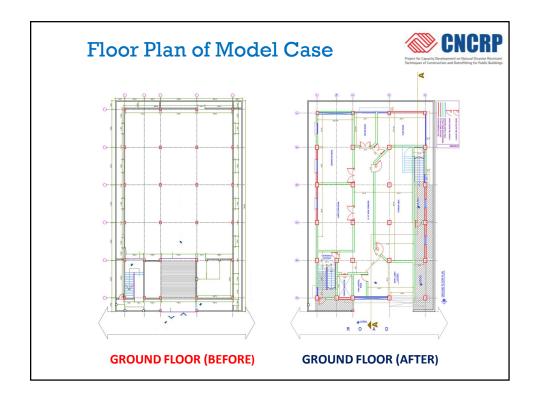


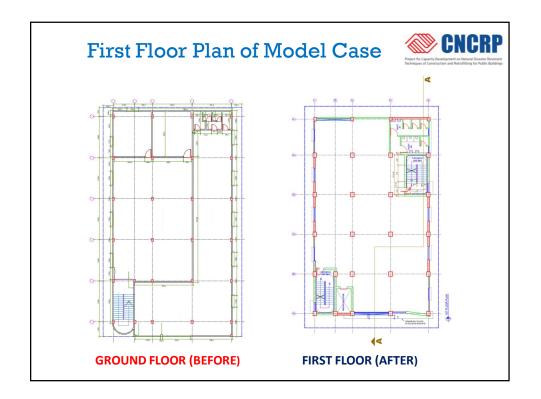


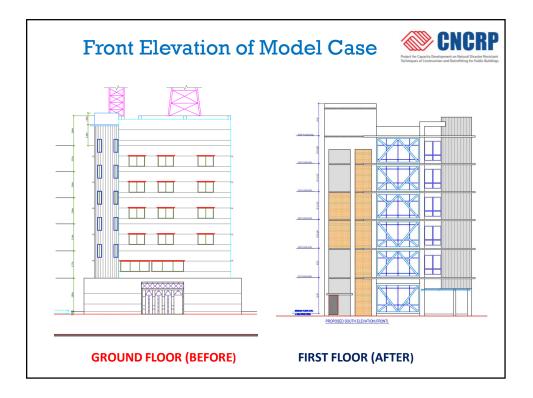

Building Inspection

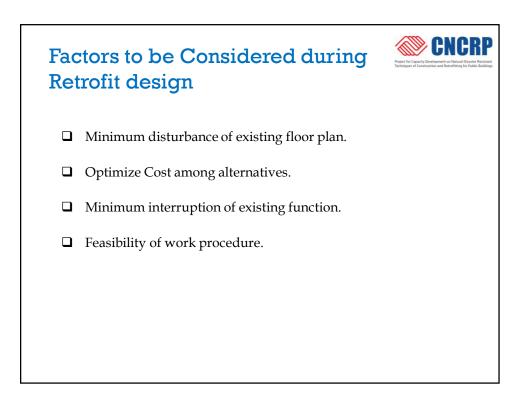

Inspection Types	Inspection Objectives	Inspection Items		
Preliminary inspection	To determine the applicability of the evaluation standard	Summery of the structure and building condition		
Inspection without design drawings	To inspect various structural elements by conducting the actual measurement	The dimensions of building frames and reinforcing bars, arrangement of bars, etc		
Detailed inspection	 To calculate Time index and irregularity index To inspect the necessity of refurbishment of aged deterioration To determine the present strength related data to enhance the accuracy of evaluation procedure 	Differences from original design drawings, structural cracks, deformations. Inspect material strength, concrete neutralization depth, reinforcing bar strength etc.		

nchmark for B	uilo	din	gs	of	USA	A		pacity Developme Construction and
	Model Building Seismic Design Provisions							
Building Type ^{1, 2}	NBC	SBC ^{is}	UBC ^{IS}	IBC ^{is}	NEHRP Is	FEMA 178 ^{is}	FEMA 310 ^{Is, io}	CBC
Wood Frame, Wood Shear Panels (Type W1 & W2)	1993	1994	1976	2000	1985	·	1998	1973
Wood Frame, Wood Shear Panels (Type W1A)	•	*	1997	2000	1997	•	1998	1973
Steel Moment-Resisting Frame (Type S1 & S1A)	*		1994 ⁴	2000	**	•	1998	1995
Steel Braced Frame (Type S2 & S2A)	1993	1994	1988	2000	1991	1992	1998	1973
Light Metal Frame (Type S3)	•	•		2000	*	1992	1998	1973
Steel Frame w/ Concrete Shear Walls (Type S4)	1993	1994	1976	2000	1985	1992	1998	1973
Reinforced Concrete Moment-Resisting Frame (Type C1) ³	1993	1994	1976	2000	1985	*	1998	1973
Reinforced Concrete Shear Walls (Type C2 & C2A)	1993	1994	1976	2000	1985	*	1998	1973
Steel Frame with URM Infill (Type S5, S5A)	*	•	•	2000	•	*	1998	•
Concrete Frame with URM Infill (Type C3 & C3A)	•	•	•	2000	•	*	1998	•
Tilt-up Concrete (Type PC1 & PC1A)	*	•	1997	2000	*	*	1998	*
Precast Concrete Frame (Type PC2 & PC2A)	*	•	•	2000	•	1992	1998	1973
Reinforced Masonry (Type RM1)	*	*	1997	2000	•	*	1998	*
Reinforced Masonry (Type RM2)	1993	1994	1976	2000	1985	*	1998	*
Unreinforced Masonry (Type URM)5	*	*	1991 ⁶	2000	•	1992	*	*
Unreinforced Masonry (Type URMA)	*	*	*	2000	*	*	1998	*



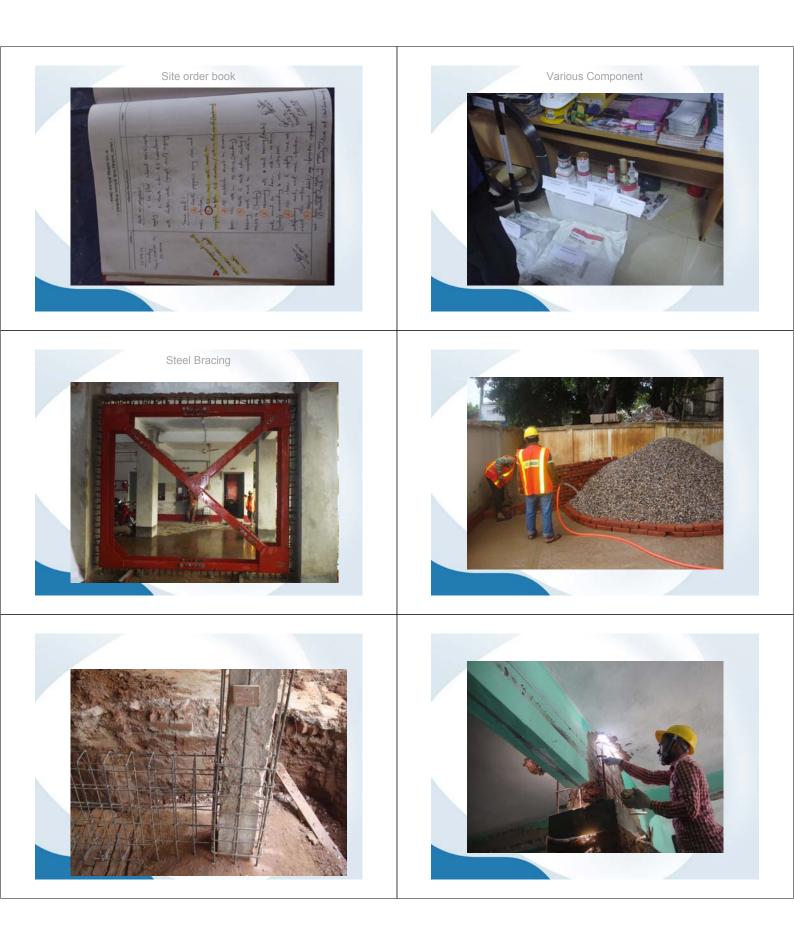




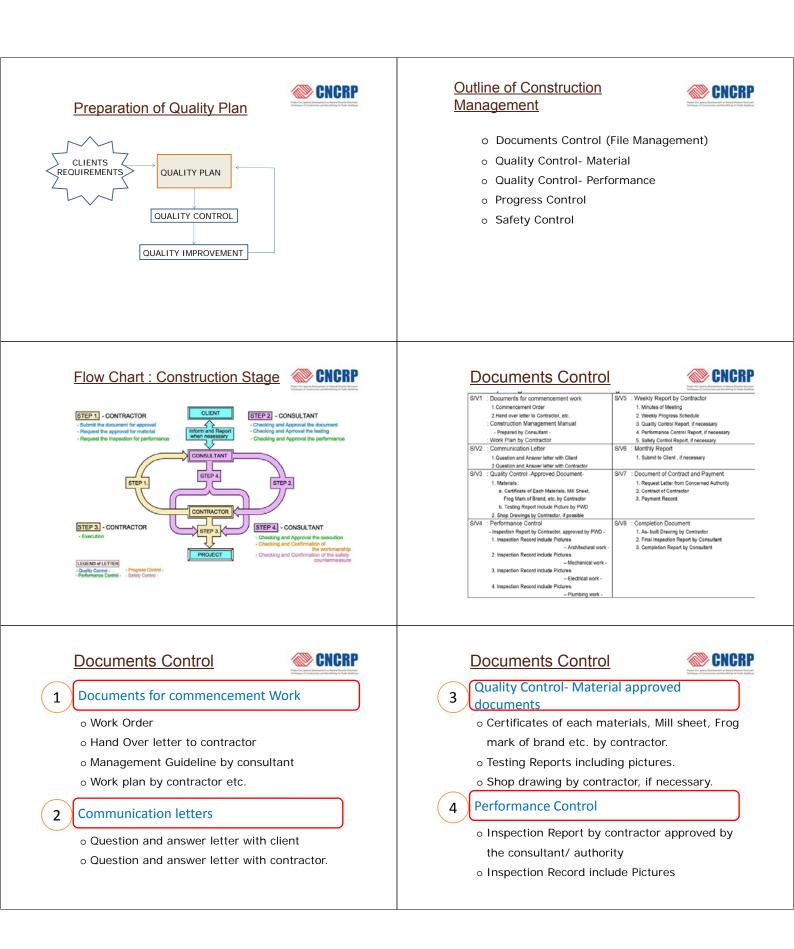

Techniques el Construction and R							
No.	<u>Types of Retrofitt</u> Description of Retrofitting Methods	Ing Method Improvement of Strength	Improvement of Ductility	Improveme of Structur Balance			
1	Steel Framed Bracing	0					
2 🤇	Infilling New RC Shear Wall into Open Frame	0		0			
3	Increasing Thickness of Existing Shear Wall	0		0			
4	Infilling Steel Plate Wall into Open Frame	0		0			
5	Constructing New RC Wing Wall to RC Column	0					
6	Constructing External Frame	0					
7	Constructing External Buttress	0					
8	Steel Plate Jacketing around RC Column		0				
9 🤇	Carbon Fiber (Sheet / Strand) Wrapping scound RC Column		0				
10 (Concrete Jacketing around RC Column	0	0				
11 (Providing New Selsmic Slit		0	0			

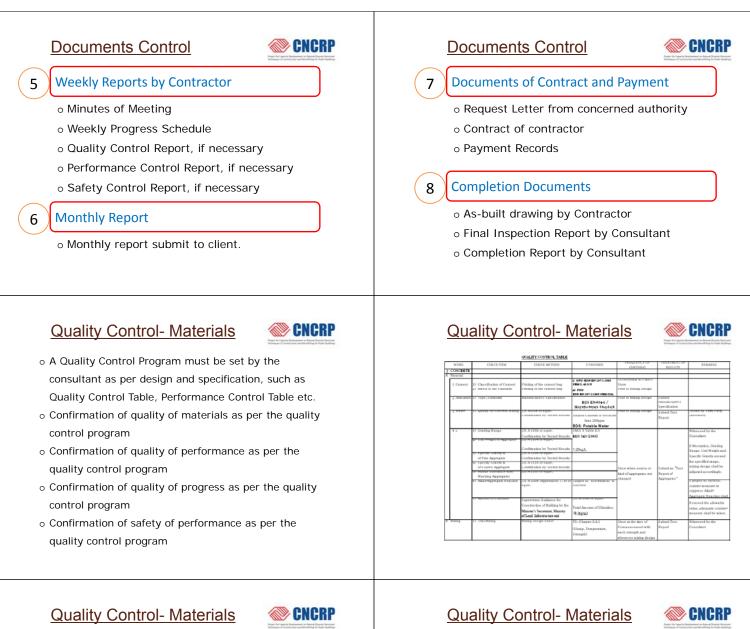
Why Retrofitting is Required

- Building constructed before 1993 not following Code
- Building constructed after 1993 not considering earthquake load
- Building designed following Code but not implemented properly at field level
- Building designed and constructed following Code but retrofitting is required due to change in updated Codal requirement



OJECT NAME: EEKLY WORK PROGRAM FROM	Weekly work	program		1000		
		program			SPECTION SHEET FOR ADMINISTRATIVE AND TECHNICAL APPROVAL AME OF THE PROJECT :	SL NO: IS(AT)-
DATE	WORK TO BE DONE	WORK DONE REMA	INING WORK COMMENTS		CATION OF THE PROJECT:	
71	4				ITE:	
				1) Ad	tministrative approval documents like DPP and other relavant papers are present.	TYES NO
1				2) Not	otfication of award is present.	YES NO YES NO
10				4) Wo	ork program schedule is present.	YES NO
				6) Ret	s built detail drawings are present. etrofit detail design drawings are present.	YES NO YES NO
5					proceed site plan is present.	YES NO
-				9) Ter	emporary labor shed is indicated and adequate.	YES NO YES NO
1				11) Loc	cation of material storing place is idicated and adequate.	YES NO
				13) Ele	tical distance from existing building is considered. ectric over head line passing over the site is considered.	YES NO
21					ees and houses to be removed from site are considered. te is cleaned, cleared from temporary obstacles.	VES NO VES NO
				16) Pho	notographs are taken	VES NO
31	-				ICHITECTURAL AND STRUCTURAL DRAWINGS	
				18) App	proved detail architectural drawings are kept in the site. proved detail structural drawings are kept in the site.	YES NO
	Giunteniques by SDE		NTRACTOR		chitectural drawing and Structural drawing are coinciding each her (no difference) .	
				-	CONTRACTOR SUB-ASSISTANT ENGINEER	SUB-DIVISIONAL ENGINEER
INSPECTION SHE	ET FOR SAFETY AND DEMOLISHING WORK	SL	NO: IS(SD)-			
NAME OF THE PRO					ECTION SHEET FOR EXCAVATION	SL NO: IS(EX)-
LOCATION OF THE	PROJECT:				OF THE PROJECT :	
DATE				LOCAT DATE:	TION OF THE PROJECT:	
LOCATION OF WORK					ilt site plan is present.	YES NO
SAFETY 1) Sufficient helmet a	re present.	lves		2) R.L (R	Reduced level) Sheet is presented before excavation	YES NO
 Sufficient gloves at 3) Sufficient shoes an 	re prosent. e prosent.	YES .	NO NA NO NA	4) Protect	cutting location & variable depth is considered. ction methods of soil are considered.	YES NO
 4) Safety belt for fall (5) First aid box is pres 	protections are present. sent & well ecuirced.	YES VES	NO NA		mposed layer is indicated with sign, vation is executed to the target depth.	YES NO
 6) Proper supply of p 7) Sefety net is prese 	ure dinking water.	YES VES	NO NA NO NA	7) Found	dation bed is properly compacted and level. over the foundation bed is compacted well.	YES NO YES NO
a) Sefety canopy is pr	resent.	VES		9) Khoa -	-sand over the foundation bed is compacted well.	YES NO
15) Scattolds are erec	Is instructions for safety operation are present. ted on solid supports with handrails and tied with fixed cted and in good condition.			11) Existin	bjectionable observations in foundation bed are removed. ng utility lines (Gas, Sewerage, Electric, Supply water, Etc) are considered	YES NO YES NO
	cess of 15 feet have extra protection.	YES YES		12) Existin	ng hazards structure are considered. (suface drain.pit.piller etc.) sion for dewatering is considered	YES NO
19) Excavation work is	are in good condition, barricaded and lightings are provided. activated, removed, or posted with warning signs.	YES VES		14) Rain p	stacking yard is considered.	YES NO
20) Power lines are de 21) At least 25 feet de 22) Fire protection arm	arance from overhead power lines are secured.	YES		15) Earth 1 16) Photo	stacking yard is considered graphs are taken	YES NO YES NO
23) Photographs are to	aken					
FOR DEMOLISHIN 24) Engineering survey	y reports are prepared properly.	VES		· · · · · · · · · · · · · · · · · · ·	CONTRACTOR SUB-ASSISTANT ENGINEER	SUB-DIVISIONAL ENGINEER
26) Demolishing plan i	d for disposing of materials. s accepted by concern engineer.	YES VES	NO NA			/
28) Hazardous materia	ater and electricity lines are disconnected. als/chemicals are removed from any pipes, tanks, or e	equipment.	NO NA			
29) Temporary suppor	t has been provided around the area to be demolished signals, and protective equipment are in place. aken	id. YES VES				
31) Photographs are to	iken	YES	NO			
_			(EM)-		INSPECTION SHEET FOR FABRICATION & PLACEMENT OF RE-BAR WITH ANCHO	BAGE SL NO: IS(RC)-
INSPECTION SHEET	FOR EQUIPMENT AND MATERIAL'S PREPRATION	SL. NO: ISI			A NAME OF THE PROJECT : B LOCATION OF THE PROJECT :	
NAME OF THE PROJE	ct:	51. NO: 15				
NAME OF THE PROJE LOCATION OF THE PR	ct:				C DATE	
NAME OF THE PROJE LOCATION OF THE PF MATERIALS 1) Appropries are free to	ICT:		2 - NA		D FABRICATION & PLACEMENT OF REBAR LOCATION	
NAME OF THE PROJE LOCATION OF THE PR MATERIALS 1) Appropriates are tree to 2) Appropriates size is as 3) Brick appropriates are	CT:		10 NA 10 NA 10 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE-BAR 10 mm 12 mm 16 mm	20 m/m 25 m/m
NAME OF THE PROJE LOCATION OF THE PR MATERIALS 11 Appropriates are then to 21 Brick appropriate are two 31 Brick appropriates are writing 11 Appropriates are writing	CT :	DATE:			D FABRICATION & FLACEMENT OF REBAR LOCATION E SIZE OF RE BAR 10 mm 12 mm 16 mm G RE BAR ORADE & RE BAR SCHEDULE	20 mm 25 mm
NAME OF THE PROJE LOCATION OF THE PR MATERIALS 11 Appropriates are then to 21 Brick appropriates are writing 21 Brick appropriates are writing 21 Appropriates are writing 21 Appropriates are writing 21 Appropriates are strong 21 Service and 21 Brite International 21 Bend in the free from duals	CCT	DATE	4.4 00 00 04 00 04 00 04 00 04		D FABRICATION & FLACEMENT OF REBAR LOCATION E SIZE OF RE BAR OR BE BAR SCHEDULE TABRICATION & NACEMENT OF REBAR () Approved me-bar test reports are present YES	
NAME OF THE PROJE LOCATION OF THE PP MATERIALS 11 Aggregates are free to 21 Bit Aggregates are site 21	CCT .	DATE	00 44 4		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE-BAR D RE-BAR ROADE & RE-BAR SCHEDULE TABRECATION & TA-ACCEMENT OF RE-BAR 2) Approved hear barts fregoris are present 2) Approved hear barts fregoris are present 2) Ro-bar strength (grade) are as per design, yes 3) Size (keight and diameter) of the bar are as per design. 9) Size (keight and diameter) of the bar are as per design.	
NAME OF THE PROJE LOCATION OF THE PP MATERIALS 1) Appropriates are free th 2) Appropriates are store 1) Brick appropriates are 2) Brick appropriates are 2) Brick appropriates are writing 2) Appropriates are writing 2) Appropriates are writing 2) Bond is three from dual 2) Bond is infree from dual 2) Bond is infrae from dual 2) Bond 2) Bond 2) Bond 2) Bond	ICT:	DATE	00 UA 100 NA 100 NA 100 NA 100 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE-BAR C RE-BAR A S RE-BAR RORADE & RE-BAR SCHEDULE TABRICATION & PLACEMENT OF RE-BAR 1) Approved m-bar test reports are present 2) Re-bar strength (grade) are as per design specifications. 2) RE-bar test and diameter) of m-bar are as per design. 2) Hocks and bean des are folded as per design specification. 2) YIS	
NAME OF THE IPROJE LOCATION OF THE IP MATCHIALS 11. Appropriate and the In 12. Appropriate science are 14. Appropriate science are 14. Appropriate and the optimum 14. Appropriate are strong 19. End in stree from dust 19. End of science (CEE) 19. Control function of the 19. The of science (CEE) 19. Control function of the 19. The of science (CEE) 19. Control function of the 19. Control functi	CT: master perspectration, master and the spectration, a det important a det important d a det impor	DATE	10 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SEC OF RE BAR R GARGE & RE BAR SCHEDULE TARRECATION & PLACEMENT OF REBAR 1) Approved m-bar test reports are present 2) Abors rendering of m-bar are as per design specifications. 2) Size (rength and diameter) of m-bar are nas per design. 3) Size (rength and diameter) of m-bar are nas per design. 3) Size is fibre from any crack. 3) Re-bar is fibre from any crack. 4) VES 4) Number of m-bar are as per design. 4) VES 4) Numbe	NO NA NO NA NO NA NO NA NO NA
NAME OF THE PROJE DICATION OF THE PROJE DICATION OF THE PRO- 10 Appropriate are when a 10 Appropriate are with a 10 Pick appropriate approximation 10 Pick approximation approximation 10 Pick approxim	DCT:	DATE	00 NA 00 NA 00 NA 00 NA 00 NA 00 NA 00 NA 00 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SEC OF RE-BAN OF EAR AN E SEAR ORACE & RE-BAN SCHEDULE TARRACTION & PLACEMENT OF RE-BAR 1) Approved m-bat test reports are present 2) Ro-bat resting (regod) are as per design specifications. 2) Ro-bat resting of the bat are as per design specification. 2) Size (regot) and diameter) of m-bat are as per design. 3) Ro-bat is free from any crack. 3) Ro-bat is free from any crack. 4) VES 1) Approved m-bat are as per design. 4) VES 2) Sacing of m-bat are as per design. 4) VES 2) Sacing of m-bat are as per design. 4) VES 2) Sacing of m-bat are as per design. 4) VES 2) Sacing of m-bat are as per design. 4) VES 3) Sacing of m-bat are as per design. 4) VES 4) Main re-bat diction are as per design. 4) VES 4) Main re-bat diction are as per design. 4) VES 4) Main re-bat diction are as per design. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) Main re-bat diction are as per design instruction. 4) VES 4) MED 4) MED 4) MED 4) MED 4) MED 4) M	NO NA
NAME OF THE PROJE LICATION OF THE IP MADE AND A THE AND A THE Appropriate and these 10 Appropriate such that 10 Appropriate such that 10 Appropriate must stree 10 Approximation and the 10 Approxim	DCT:		10 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE BAR OF READ OF READA OF REA	NO NA
NAME OF THE PROJ. LCLICING OF THEM MATCHING 1. Appropriate site that a 2. Appropriate site that a 3. Approprised site that a 3. Appropriate site that a 3. Approprie	CT:	DATE	10 NA		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE GAR S CHECKER STATUS S	NO NA
NAME OF THE PROJ. LOLDING OF THE PROJ. PROJECTION OF THE PROJ. 14 Appropriate an end of the PROJ. 15 Appropriate and the PROJ. 16 Appropriate and the PROJ. 16 Appropriate and the PROJ. 16 Appropriate and the PROJ. 17 Approx 10 Ap	CT:		00 44. 00 44. 00 44. 10 44.		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF REAM OF	NO NA
NAME OF THE PROJE LOLDING OF THE PROJE COLONG OF THE PRO- THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJECT OF THE PROJ	CT:		10 14.4 10 14.4		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF REAM B CONCENTRATION RELATED AT LOCATION E SIZE OF REAM CONCENTRATION IN THE SIZE OF REAM CONCENTRATION AT LACEMENT OF REAME INCOMENTATION OF REAME INCO	NG NA
NAME OF THE PHOLE LIGATION OF THEM THEM IN THE AND	CT:				D FABRICATION & PLACEMENT OF REBAR LOCATION ISO mm E SIZE OF RE GAR ISO mm D RE BAR ORDER SH EAR SCHEDULE ISO mm TABRECATION FAR THE THE STATE	NC NA NO NA
NAME OF THE PROJ. LICENSION OF THE PROJ. INCLUDENCE THE PROJ. PROVIDENCE AND ADDRESS AND A	CT:		10 14.4 10 14.4		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE.BAR D RE BAR GNOCE BR EAR SCHEDULE TERMENT OF RE.BAR LOCATION 1 Annotation of the second schedule TERMENT OF TRE.BAR 1 Approved head test terports are provided as per design specification. VIES Size (length and diameter) of the same as as per design specification. VIES Size (length and diameter) of the same as as per design specification. VIES IN and diameter) of the same as as per design specification. VIES IN anno as per design specification. <td>NC N/A NC N/A NO N/A</td>	NC N/A NO N/A
NAME OF THE PROJE LICENSOR OF THE PROJE DUCTION OF THE PROJECT 1. Opportunities of the provided of the provid	CT:		10 14.4 10 14.4		D FABRICATION & PLACEMENT OF REBAR LOCATION E SIZE OF RE.ARA E SIZE OF RE.ARA D RE BAR GROES BE REAR SCHEDULE TERRECTION FOR REARA 2) Ro-bcar Internation of Internation 2) Ro-bcar Internation of Internation 2) Ro-bcar Internation of Internation 2) Ro-bcar Internation 2) Locarion on Ro-	NC NA NO NA
NAME OF THE PROJ. LICENSO OF THEM THEM IN THEM INFORMATION INFORMATIO	CT:		10 14.4 10 14.4		D FABRICATION & PLACEMENT OF REBAR LOCATION E SEE OF RE GAR STER BAR GROCE RE EAR SCHEDULE STER BAR GROCE RE FEAR SCHEDULE Standard strabut not in monority in an experiment 1) Approad strabut not in monority in an experiment 2) Stace length and damateri of markeding specification. 3) Stace length and another of markeding specification. 4) Hobs and bends are provided as per design specification. 5) Raberia Interna and as per design specification. 6) Number of methar and as per design specification. 9) Robaria Is deal H2 SIXOW (ref. (mach and every joint) 9) Stack length is as per design specification. 10) Stack length as a per design specification. 11) Standard science hook is provided. 12) Charar cover is aubtance. 10) Cober cover is mutainiand as per design specification. 10) Tespacing in subtance. 11) Tespacing in eminianing as per design specification. 12) Cober cover is mutainstrab specification. 13) Cover interiors subtance. 14) Tespacing in subtance. 15) Cover metricorement is provided. 15) Cover metresorement is provided.<	NO NA NO NA





QUALITY CONTROL TABLE

CHECK ITEM

Cement

2) Match to the

Standard

2 Admixture 1) Type, Suitability

1) Classification of

CHECK METHOD

bag

bag

Printing of the cement

Printing of the cement

Manufacturer's

Specification

STANDARD

i) OPC: BDS-

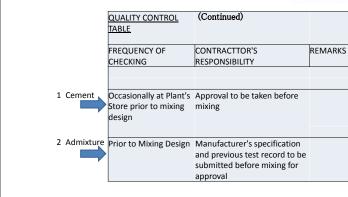
CEM-I, 52.5 N

BDS EN-934-1

Manufacture

s Standard

EN-197-


1:1993

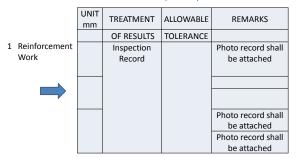
WORK

CONCRETE

1 Cement

Material

Quality Control- Performance CNCRP


 Confirmation of quality of performance as per the performance control program

Quality Control- Performance @ CNCRP

	CHECK LIST FOR TH	E PERFORMED WO					
WORK	MEASUREMENT	METHOD	FREQUENCY OF	UNIT	TREATMENT	ALLOWABLE	REMARKS
WORK	ITEM	METHOD	MEASUREMENT	nn	OF RESULTS	TOLERANCE	REMARINO
A Farthwork							
1 Excavation	Bottom Level	1	 4 corner and 1 center for square trench every 5m at center of trench every 5m in length and breadth for overall excavation 		Survey Record	±30 mm	Photo record shall be attached
2 Backfiling B. Foundation Work	Top Level	1	 every 5m in length and breadth 	10	Survey Record	±30 mm	Photo record shall be attached
1 Gravel /Crushed Stone	Top Level	1	1.4 comer and 1 center for	10	Survey Record	±30 mm	Photo record shall be attached
			square trench * every 5m at center of trench * every 5m in length and breadth for overall excavation				
	Wide	2	Every 5m	10	Survey Record	±50 mm	Photo record shall be attached
C Concrete Work							
1 Footing	Top Level	1	Random			±20 mm	Photo record shall be attached
Underground Beam	Cross Section Dimensions	2	Random	1	Survey Record	+5010 mm	Photo record shall be attached
2 Slab on Grade	Top Level	1	Random	1	Survey Record	±10 mm	Photo record shall be attached
3 Column	Cross Section Dimensions	2	Random	1	Survey Record	+20 *** -5 mm	Photo record shall be attached
	Deviation from Plumb Line	2	Random	1	Survey Record	±20 mm	Photo record shall be attached
4 Girder, Beam	Cross Section Dimensions	2	Random	1	Survey Record	+20 ~ -5 mm	Photo record shall be attached
	Bottom Level	1	Random	1	Survey Record	±20 mm	Photo record shall be attached
5 Slab	Top Level	1	Random	1	Survey Record	±10 mm	Photo record shall be attached
	Bottom Level	1	Random	1	Survey Record	±20 mm	Photo record shall be attached

Quality Control- Performance CNCRP

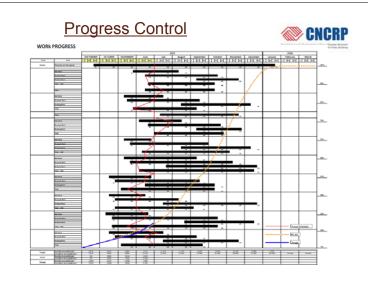
PERFORMANCE CONTROL TABLE (Contd.)

Quality Control- Performance CNCRP

PERFORMANCE CONTROL TABLE

	WORK	MEASUREMENT ITEM	METHOD	FREQUENCY OF MEASUREMENT
D	Structural Work	TEM		MEASOREMENT
	1 Reinforcement Work	Diameter, number and space	As per Design Drawings	When completed assembling re-bars.
		Length and location of splice joints, Anchor length	As per Design Drawings	When completed assembling re-bars.
		Concrete coverage, Additional bar	As per Design Drawings and Specifications	When completed assembling re-bars.

Quality Control- Performance @ CNCRP



 Strength test of anchor by hammering
 Site: Chiba Prefectural Sakura Higashi Senior High School

Progress Control

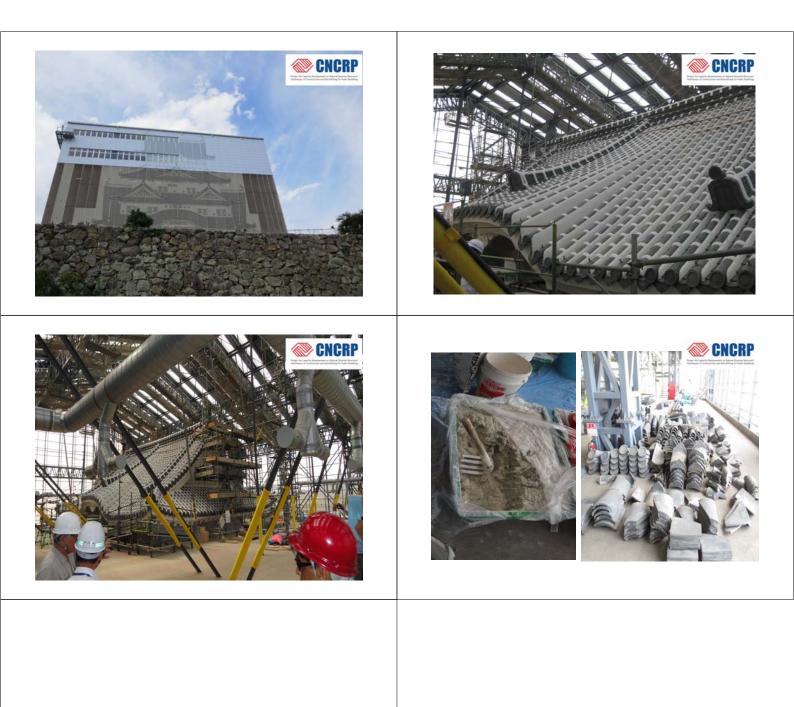
- Request the contractor to submit the work progress chart/ graph (Time schedule).
- Confirm the work progress at the weekly meeting, on schedule or not.
- When find out the problem of progress, discuss with the contractor how to solve.

Safety Control

- Confirm the safety measures taken for workers and local residents.
- Make sure crisis management is foolproof and confirm the emergency response

Safety Control

Worker with Safety Harness Site: IDEC Corporation new HQ



Worker with Safety Harness Site: IDEC Corporation new HQ

Himeji Castle: A Case Study

Thank you very much