

PLANNING \& DESIENS DIVISTON

SUPPLY OF TYPE 600 PVC PIPES

Table A - PVC/1

1
2
3
4

Diameter (mm)	Supply Rate (Rs:/m)	Supply Rate Transmission Main (Rs:/m)	Supply Rate Distribution System (Rs:/m)
$\mathbf{3 2}$	39.00	47.00	53.00
40	53.00	64.00	72.00
$\mathbf{5 0}$	83.00	100.00	113.00
63	133.00	160.00	180.00
$\mathbf{7 5}$	199.00	239.00	269.00
$\mathbf{9 0}(\mathbf{R R J})$	265.00	318.00	358.00
$\mathbf{1 1 0 (R R J)}$	452.00	543.00	611.00
$\mathbf{1 6 0}$	799.00	959.00	$1,079.00$
$\mathbf{2 2 5}$	$1,570.00$	$1,884.00$	$2,120.00$
$\mathbf{2 8 0}$	$2,457.00$	$2,949.00$	$3,317.00$
$\mathbf{3 1 5}$	$4,131.00$	$4,958.00$	$5,577.00$

Table A - PVC/2

SUPPLY OF TYPE 1000 PVC PIPES

1 2

Diameter (mm)	Supply Rate (Rs:/m)	Supply Rate Transmission Main (Rs:/m)	Supply Rate Distribution System (Rs:/m)
20	26.00	32.00	36.00
25	39.00	47.00	53.00
32	52.00	63.00	71.00
40	83.00	100.00	113.00
$\mathbf{5 0}$	129.00	155.00	175.00
$\mathbf{6 3}$	219.00	263.00	296.00
75	312.00	375.00	422.00
$90($ RRJ	432.00	519.00	584.00
$\mathbf{1 1 0 (R R J)}$	573.00	688.00	774.00
$\mathbf{1 6 0}$	$1,350.00$	$1,620.00$	$1,823.00$
225	$2,592.00$	$3,110.00$	$3,500.00$
$\mathbf{2 8 0}$	$4,175.00$	$5,010.00$	$5,637.00$
$\mathbf{3 1 5}$	$8,141.00$	$9,770.00$	$10,991.00$

Note:

1. Supply rate includes cost of rubber rings and lubricants.
2. Supplier's $\mathrm{O} / \mathrm{H} \& \mathrm{P}$ included.
3. To obtain supply rate for transmission main, 20% added to the basic supply rate to accommodate cost of fittings, specials and valves for Valves, Culvert crossings and, bridge crossings etc. that are incorporated in the Transmission Main.
4. To obtain supply rate for distribution Systems, 35% added to basic supply rate to accommodate cost of fittings, specials and valves for Valves, Culvert crossings and, bridge crossings etc. that are that are incorporated in the Distribution System.
5. An additional 20% added for supplying and laying contracts, for transport from supplier's store to site store, loading, unloading, investment cost, storage, protection, overhead and profit of the supply \& laying contractor.

Source:
Tender Prices (NWS\&DB) - $20143^{\text {rd }}$ and $4^{\text {th }}$ quarters
Supplier's Price Lists
Table A - PVC/3

1	2	3	4	5	6	7	8	9
		Transmis	on Main	Distributi	System			
Pipe Dia. mm	Cost (Firm Sand) Rs: /m	Laying Cost for Specials \qquad	Total Laying Cost Rs: /m	Laying Cost for Specials Rs: /m	Total Laying Cost Rs: /m	Excavation Cost (Firm Sand) Rs: /m	Earthwork Support (Firm Sand) Rs:/m	Dewatering (Firm Sand) Rs:/m
63	177.00	54.00	231.00	71.00	248.00	299.00	1,737.00	133.00
75	177.00	54.00	231.00	71.00	248.00	299.00	1,737.00	133.00
90	209.00	63.00	272.00	84.00	293.00	348.00	1,612.00	155.00
110	217.00	66.00	283.00	87.00	304.00	348.00	1,759.00	155.00
160	299.00	90.00	389.00	120.00	419.00	464.00	1,759.00	207.00
225	387.00	117.00	504.00	155.00	542.00	580.00	1,906.00	258.00
280	517.00	156.00	673.00	207.00	724.00	760.00	1,906.00	338.00
315	639.00	192.00	831.00	256.00	895.00	908.00	1,979.00	404.00

[^0]LAYING OF PVC PIPES

SUPPLY \& DELIVERY OF HDPE Pipes (PR 100-SDR 17 PN10)

Asian Countries without Malaysia

	2	4		5	6	8		9	10
			Transmis	ion main			Distribut	ion main	
Pipe Dia. mm	$\begin{aligned} & \text { CIF Value } \\ & \text { Rs./m } \end{aligned}$	CIF value for Specials Rs./m	(Col.2+3) Total CIFCost Rs./m	 Clearance Rs./m	Custom Duty Rs./m	CIF value for Specials Rs./m	(Col.2+7) Total CIFCost Rs./m	 Clearance Rs./m	Custom Duty Rs./m
20	54.00	17.00	71.00	4.00	30.00	22.00	76.00	4.00	32.00
25	81.00	25.00	106.00	6.00	44.00	33.00	114.00	6.00	47.00
32	95.00	29.00	124.00	7.00	51.00	38.00	133.00	7.00	55.00
40	111.00	34.00	145.00	8.00	60.00	45.00	156.00	8.00	64.00
50	173.00	52.00	225.00	12.00	93.00	70.00	243.00	13.00	100:00
63	271.00	82.00	353.00	18.00	145.00	109.00	380.00	19.00	156.00
75	367.00	111.00	478.00	24.00	196.00	147.00	514.00	26.00	211.00
90.	528.00	159.00	687.00	35.00	282.00	212.00	740.00	37.00	304.00
110	787.00	237.00	1,024.00	52.00	420.00	315.00	1,102.00	56.00	452.00
125	1,006.00	302.00	1,308.00	66.00	537.00	403.00	1,409.00	71.00	578.00
140	1,261.00	379.00	1,640.00	82.00	673.00	505.00	1,766.00	89.00	725.00
160	1,642.00	493.00	2,135.00	107.00	876.00	657.00	2,299.00	115.00	943.00
180	2,087.00	627.00	2,714.00	136.00	1,113.00	835.00	2,922.00	147.00	1,199.00
200	2,866.00	860.00	3,726.00	187.00	1,528.00	1,147.00	4,013.00	201.00	1,646.00
225	3,251.00	976.00	4,227.00	212.00	1,734.00	1,301.00	4,552.00	228.00	1,867.00
250	4,010.00	1,203.00	5,213.00	261.00	2,138.00	1,604.00	5,614.00	281.00	2,302.00
280	5,053.00	1,516.00	6,569.00	329.00	2,694.00	2,022.00	7,075.00	354.00	2,901.00
315	6,403.00	1,921.00	8,324.00	417.00	3,413.00	2,562.00	8,965.00	449.00	3,676.00
355	8,154.00	2,447.00	10,601.00	531.00	4,347.00	3,262.00	11,416.00	571.00	4,681.00
400	10,497.00	3,150.00	13,647.00	683.00	5,596.00	4,199.00	14,696.00	735.00	6,026.00
450	13,026.00	3,908.00	16,934.00	847.00	6,943.00	5,211.00	18,237.00	912.00	7,478.00
500	16,112.00	4,834.00	20,946.00	1,048.00	8,588.00	6,445.00	22,557.00	1,128.00	9,249.00
560	20,178.00	6,054.00	26,232.00	1,312.00	10,756.00	8,072.00	28,250.00	1,413.00	11,583.00
630	25,560.00	7,668.00	33,228.00	1,662.00	13,624.00	10,224.00	35,784.00	1,790.00	14,672.00
710	36,680.00	11,004.00	47,684.00	2,385.00	19,551.00	14,672.00	51,352.00	2,568.00	21,055.00
800	46,508.00	13,953.00	60,461.00	3,024.00	24,790.00	18,604.00	65,112.00	3,256.00	26,696.00
900	65,817.00	19,746.00	85,563.00	4,279.00	35,081.00	26,327.00	92,144.00	4;608.00	37,780.00

Note:

1. Column (4) includes additional 30% of CIF value for transmission mains and Column (8) includes additional 40% of CIF value for distribution mains to cover the costs of fittings,specials, accessories, valves and miscellaneous items.
2. Column (5 and 9) - 5% of total CIF cost added for clearance $\&$ transport (up to site stores) for supply only Contracts and additional 20% added for supply \& laying Contracts for transport from supplier's store to site store, loading, unloading, investment cost, storage, protection, overhead and profit of the supply \& laying Contractor.
3. Custom Duty is taken as 41.00% of CIF value.
4. Supplier's $\mathrm{O} / \mathrm{H} \& \mathrm{P}$ are included in the CIF value.

Source:

Based on supplier's rates and forecast tender prices of 2014 to 2015

LAYING OF HDPE PIPES (PE 100 - SDR 17 PN10)

	2	3	4	5	6	7	8	9
	Basic Laying Cost	Transmission main		Distribution main		Excavation Cost (firm sand) Rs./m	EWS Cost Rs./m	$\begin{gathered} \text { Dewatering } \\ \text { Rs./m } \end{gathered}$
Pipe Dia. mm		Laying Cost for Specials Rs./m	Total Laying Cost	Laying Cost for Specials Rs./m	Total Laying Cost			
50	260.00	78.00	338.00	104.00	364.00	370.00	1,447.00	207.00
63	303.00	91.00	394.00	122.00	425.00	427.00	1,737.00	238.00
75	306.00	92.00	398.00	123.00	429.00	427.00	1,737.00	238.00
90	366.00	110.00	476.00	147.00	513.00	504.00	1,930.00	282.00
110	450.00	135.00	585.00	180.00	630.00	616.00	1,642.00	344.00
125	458.00	138.00	596.00	184.00	642.00	616.00	1,671.00	344.00
140	466.00	140.00	606.00	187.00	653.00	616.00	1,686.00	344.00
160	601.00	181.00	782.00	241.00	842.00	792.00	1,715.00	443.00
180	616.00	185.00	801.00	247.00	863.00	792.00	1,744.00	443.00
200	632.00	190.00	822.00	253.00	885.00	792.00	1,774.00	443.00
225	697.00	210.00	907.00	279.00	976.00	853.00	1,818.00	477.00
250	722.00	217.00	939.00	289.00	1,011.00	853.00	1,847.00	477.00
280	804.00	242.00	1,046.00	322.00	1,126.00	924.00	1,891.00	517.00
315	849.00	255.00	1,104.00	340.00	1,189.00	924.00	1,950.00	517.00
355	1,034.00	311.00	1,345.00	414.00	1,448.00	1,109.00	2,008.00	620.00
400	1,106.00	332.00	1,438.00	443.00	1,549.00	1,109.00	2,067.00	620.00
450	1,281.00	385.00	1,666.00	513.00	1,794.00	1,233.00	2,140.00	689.00
500	1,514.00	455.00	1,969.00	606.00	2,120.00	2,090.00	2,214.00	744.00
560	1,690.00	507.00	2,197.00	676.00	2,366.00:	2,177.00	2,404.00	775.00
630	1,866.00	560.00	2,426.00	747.00	2,613.00	2,177.00	2,404.00	775.00
710	2,298.00	690.00	2,988.00	920.00	3,218.00	2,612.00	2,404.00	930.00
800	2,586.00	776.00	3,362.00	1,035.00	3,621.00	2,612.00	2,492.00	930.00
900	3,084.00	926.00	4,010.00	1,234.00	4,318.00	2,903.00	2,785.00	1,033.00

Note:
1 Column (2) Basic laying cost includes placing, jointing, transporting from site stores, pressure testing, and cleaning \& disinfection.
2 Column (4) includes additional 30% of basic laying cost for transmission mains and Column (6) includes additional 40% of basic laying cost for distribution mains to cover the laying cost of fittings, specials, accessories and miscellaneous items including other costs such as culvert crossings, bridge crossings, valve chambers, thrust blocks, pipe supports etc.
3 Column (7) Basic excavation cost includes excavation in 'normal' ground conditions (firm sand), preparation of bottom of excavation, backfilling with selected excavated material, ramming (consider 98% compaction) and disposal of surplus excavated material.
4 Contractor's O/H \& P not included.
5 Rock excavation, traffic management, dust controlling, maintenance of roads and preliminaries are not included in basic cost.
6 Add 40% to the total cost of laying and excavation to cover the additional cost for removing asphalt layer with base courses and other relevant additional costs for highways.

Source:

Based on work study and established data from published books (Refer Annex 9).

CHAPTER 4

REVIEW OF PHASE 2 PROJECT

Issues

>Balance 210 km distribution pipe laying
>Batampara Tower site modification work

Appendix 4．1－2 Water Quality of Raw Water and Treated Water of Ruhunupura WSS
（1）Treated Water
TREATED WATER QUALITY MONITORING OF HAMBANTOTA REGION－2015

1／8u－（uw se）${ }^{\text {asauesuew }}$	$\overline{0}$					$\stackrel{9}{0}$		
$J_{0} \cdot \mathrm{dmar}$		$\stackrel{O}{\mathrm{O}}$	$\stackrel{\text { N }}{\substack{~}}$	$\underset{\text { Ñ }}{\text { N}}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	O.	$\stackrel{\circ}{\circ}$	\bigcirc
1／8u－Sp！！os әлjoss！a jezol	$\stackrel{8}{6}$	$\stackrel{\sim}{0}$	N్ర	－	N	$\underset{N}{N}$	$\stackrel{\square}{7}$	$\stackrel{9}{\sim}$
1／8u－（＇OSS se）areydins	$\stackrel{\sim}{n}$	\pm	\sim	N	$=$	응	9	\pm
	3	8	$\begin{aligned} & \mathbf{O} \\ & 0 \end{aligned}$	O	응	O	\bigcirc	$\stackrel{\square}{0}$
	$\stackrel{0}{\mathrm{~N}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	－	$\stackrel{\text {－}}{\text {－}}$	억	－	\bigcirc
1／8u－（tod se）әepydsoud	$\begin{aligned} & \mathrm{O} \\ & \mathbf{i} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	8	$\underset{~ N}{\text { N}}$	응	$\hat{0}$	$\stackrel{\circ}{0}$	$\frac{\infty}{0}$
	$\stackrel{9}{-}$	$\stackrel{त}{\mathrm{C}}$	$\stackrel{N}{\text { No }}$	$\stackrel{n}{0}$	$\stackrel{N}{n}$	$\underset{\sim}{m}$	J	$\stackrel{\sim}{0}$
（／3m－（zon se）－	m	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	O.	8－	$\stackrel{\circ}{-1}$
	8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\pi}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\frac{\mathrm{m}}{\circ}$	$\stackrel{\infty}{\circ}$	$\xrightarrow{\circ}$
1／8ur－e！	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{n}{6}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	0	$\stackrel{0}{0}$	$\stackrel{\square}{0}$	¢
	잉	인	$\xrightarrow{4}$	$\stackrel{\mathrm{a}}{\mathrm{a}}$	$\stackrel{\text { 을 }}{ }$	$\stackrel{\mathrm{N}}{=}$	\cdots	$\stackrel{\circ}{\square}$
1／8u－（1）se ）әр！о／ч）	$\stackrel{\rightharpoonup}{N}$	ㅇ	\％	$\stackrel{\infty}{6}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{2}$	テ	$\stackrel{\infty}{\sim}$
		웅	od	$\stackrel{\infty}{+}$	$\stackrel{\square}{7}$	$\frac{m}{7}$	¢	$\stackrel{\infty}{0}$
$\mathrm{Hd}^{\text {d }}$	$\begin{aligned} & \text { m } \\ & \substack{0 \\ i \\ 0} \end{aligned}$	$\vec{\sim}$	$\stackrel{n}{\sim}$	\cdots	$\bar{\sim}$	¢0．	$\stackrel{?}{?}$	\vec{i}
	N	$\stackrel{n}{n}$	$\stackrel{\infty}{0}$	$\begin{gathered} m \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{O}{0}$	ก	$\stackrel{\sim}{\infty}$
（7ٕun uazeh）solos	\sim	n	n	n	n	n	n	응
！ $00-3$	$\overline{\bar{z}}$	0	0	－	－	O	\bigcirc	－
யגO！！ $10 \bigcirc$｜еłOL	m	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	$\stackrel{\infty}{\circ}$	\cdots	$\stackrel{\text { 안 }}{ }$	\bigcirc	$\stackrel{0}{\wedge}$	\bigcirc	$\stackrel{\sim}{\sim}$
－ON•qE7	20	＊	8	\cdots	O	앗	\cdots	$\stackrel{\sim}{\sim}$
2m！	$\stackrel{\bar{z}}{5}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{p}} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\square}{\prime} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{0} \end{aligned}$	$\stackrel{\infty}{\infty} \underset{\infty}{\infty}$	n_{n}^{∞}	\cdots	$\stackrel{\sim}{\square}$
әде	$\underset{\sim}{3}$	N	$\stackrel{\sim}{\sim}$	σ	$\stackrel{N}{2}$	N	∞	N
47uow	$\left.\begin{aligned} & \ddot{寸} \\ & 6 \\ & n \\ & 5 \end{aligned} \right\rvert\,$		棫		気	\pm	$\stackrel{0}{3}$	3

August	3	10.40	1345	0.8	0	0	5	0.49	7.1	337	38	112	0.02	0.08	0.023	0.38	0.18	114	0.03	10	222	27.8	
Septembel	22	9.30	1705	1.5	0	0	5	0.48	7.1	335	34	120	0.05	0.08	0.016	0.38	0.02	118	0.03	9	221	30.0	
October	16	9.10	1925	1.5	0	0	5	0.32	6.9	333	42	106	0.04	0.04	0.019	0.39	0.09	118	0.04	9	220	29.9	

（2）Raw Water
SURFACE WATER QUALITY MONITORING OF HAMBANTOTA REGION－2015

	\bigcirc	\％	9	a	\％	$\stackrel{\circ}{7}$	$\stackrel{m}{\sim}$	の	¢
	m	$\stackrel{\sim}{0}$	\％	8	\％	욱	$\stackrel{m}{\sim}$	m	¢
1／8u－－ 108		号	艺	\＃	を	亡	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$	N
1／8u－（0a）иә8кхо ралооss！a		\pm	！	を	¢	艺	$\stackrel{\infty}{\dot{+}}$	$\stackrel{\infty}{+}$	i
1／3u－003	9	\pm	\＃	を	$\stackrel{\square}{\text { c }}$	\％	ন	$\underset{\sim}{\sim}$	艺
1／8u－（\％os se pereydjns	우N	$\underset{\sim}{~}$	$\stackrel{\square}{7}$	$\underset{\sim}{\sim}$	σ	$\stackrel{\sim}{7}$	악	\bigcirc	の
1／8u－（ey se）uodj Iexol	Mo	$\stackrel{\sim}{N}$	$\stackrel{n}{7}$	$\stackrel{\infty}{\circ}$	$\stackrel{n}{\square}$	$\begin{aligned} & 6 \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{0} \end{aligned}$	N	$\stackrel{\sim}{\circ}$
	$\stackrel{\sim}{1}^{1}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	8	$\xrightarrow{-}$	$\stackrel{0}{-}$	$\stackrel{\square}{7}$	$\stackrel{0}{7}$
／／8u－sp！｜os panjoss！a［eıos	$\begin{aligned} & 0 \\ & \text { io } \\ & \hline \end{aligned}$	$\underset{\sim}{\dot{N}}$	$\underset{\sim}{7}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\sim}{N}$	$\underset{\sim}{\sim}$	$\stackrel{m}{N}$	－	－
1／8u－（tod Se）afeydsourd	$\stackrel{\text { ®ㅏN }}{ }$	$\stackrel{8}{\circ}$	্ָচ	$\stackrel{9}{7}$	$\begin{gathered} \text { N } \\ \text { O } \end{gathered}$	$\stackrel{\sim}{\mathrm{N}}$	$\underset{\substack{\text { N }}}{ }$	$\begin{aligned} & 0 \\ & \stackrel{-}{0} \end{aligned}$	$\stackrel{\infty}{\sim}$
／／8u－（t se）apuon／s	\bigcirc	ন্তু	N్	$\underset{\sim}{\underset{\sim}{N}}$	$\stackrel{\text { Y }}{0}$	$\underset{0}{7}$	$\underset{\substack{7 \\ \hline}}{ }$	¢	$\stackrel{\square}{\circ}$
	m	$\begin{aligned} & \text { m} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { M } \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	O－1	g 0
1／8u－（\％ON se）әledun	is	$\begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & \hline \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \infty \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \infty \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \hline \end{gathered}$	N	\bigcirc
1／8u－e！uomuv zars	$\begin{aligned} & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{gathered} \underset{0}{7} \end{gathered}$	$$	웅	O	O	O	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$
	\％	$\underset{\sim}{\sim}$	$\stackrel{\sim}{7}$	$\underset{\sim}{\mathcal{F}}$	$\underset{\sim}{q}$	$\stackrel{\text { g }}{7}$	$\underset{\sim}{\circ}$	$\stackrel{\text { 각 }}{ }$	$\stackrel{\sim}{\mathrm{M}}$
1／8u－（I）se）әриоочэ	－	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{N}$	N	우	아	$\stackrel{\sim}{\sim}$	N
（ $\mathrm{m} / \mathrm{TsTr}$ ） 3		$\underset{N}{N}$	$$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\vec{j}}$		$\underset{\sim}{\sim}$	$\stackrel{\bullet}{m}$	\％
Hd	¢	$\stackrel{\square}{\sim}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{n}$	$\stackrel{n}{\sim}$	$\stackrel{n}{n}$	$\stackrel{m}{N}$	$\stackrel{\sim}{6}$
	N	$\begin{aligned} & \text { Ǹ } \\ & \text { H } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{M}{O} \\ & \underset{-1}{ } \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \dot{m} \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{\circ}{~}$	$$	$\stackrel{\infty}{\mathrm{O}}$	$\stackrel{ \pm}{7}$
（1＋un uәzeh）dojos	ฝ	\％	m	$\stackrel{\sim}{\square}$	\％	¢	\cdots	O	¢
วun11		$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	$\underset{\infty}{\sim}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { ì } \\ & \text { O} \end{aligned}$	$\underset{\infty}{\infty}$	－80
27ea		N	$\stackrel{\sim}{\sim}$	σ	∞	N	m	N	$\stackrel{\square}{\square}$
		$\begin{aligned} & \text { T } \\ & \text { 岂 } \\ & \stackrel{\rightharpoonup}{7} \\ & \end{aligned}$		$\begin{aligned} & \tilde{U} \\ & \dot{U} \\ & \underline{N 0} \\ & \hline \end{aligned}$	$\stackrel{0}{5}$	䘱	容 恧		¢ ¢ O O
ON Mojesoqe7		ำ	웅	\％	N／N	$\begin{aligned} & \text { N} \\ & \text { In } \end{aligned}$	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	ন্ড

Terms of Reference (TOR)

Consulting Services
(Detailed Design and Tender Assistance)
for Anuradhapura North Water Supply Project Phase 2

1. The Background including the Project Summary

1.1 Background

The Government of Sri Lanka will undertake the Anuradhapura North Water Supply Project, (the Project) with financial assistance from the Japan International Cooperation Agency (hereinafter referred to as "JICA"). Anuradhapura is located about 205km away from Colombo. The Project area covers the four (4) Divisional Secretariat Divisions (DSDs) namely Kebithigollewa, Kahatagasdigiliya, Horowpothana and Padaviya in Anuradhapura District. The location map is attached as Annex 1. The objective of the Project is to provide safe drinking water to the area which does not have access to water supply system and to increase water supply coverage by constructing surface water supply systems in Anuradhapura North area where the people depend on unsafe ground water which causes dental and skeletal fluorosis, Chronic Kidney Disease (CKD) and thereby contributing to improved hygienic status and health condition in the area.

1.2 Project Summary

The Project comprises the following sub scheme:
Wahalkada Water Supply Scheme which provides drinking water supply to the four (4) Divisional Secretariat Divisions (DSDs) namely Kebithigollewa, Kahatagasdigiliya, Horowpothana and Padaviya.

The detail components of the project are attached as Annex 2.

1.3 Project Implementation Arrangement

The National Water Supply and Drainage Board (NWSDB) will be the Project's Implementing Agency. The Executing Agency will be the Ministry of City Planning and Water Supply.

Project Management Unit (PMU) has been set up in NWSDB for project implementation. The PMU is headed by the Project Director who is reporting to the Additional General Manager of Water Supply Projects [Addl. GM WSP] of NWSDB. The organization chart of NWSDB is attached as Annex 3.1 and the organization chart of PMU is attached as Annex 3.2.

2. The Consulting Services

The consulting services shall be provided by an international consulting firm (hereinafter referred to as "the Consultant") in association with national consultants
in compliance with the Guidelines for the Employment of Consultants under Japanese ODA Loans (April 2012). The Anuradhapura North Water Supply Project plans to be implemented under Japanese ODA loan and the Consulting Services consists of the following parts;

Phase 2: Pre Design, Detail Design and Preparation of Bid documents, Procurement Assistance, Environmental Matters, Technology Transfer, and Awareness Programmes of Wahalkada Water Supply System.

This TOR is for "Anuradhapura North Water Supply 'Project Phase 2".

2.1 The Objectives of the Consultancy Assignment

The objective of the consulting services assignment is to achieve and ensure the quality and efficiency of the project implementation through the proper and correct detailed designs, preparation of bidding documents, procurement assistance, environmental matters, technology transfer and awareness programs of Wahalkada Water Supply System.

2.2 Funding Source for Consultancy Services

The Government of Sri Lanka intends to use part of the proceeds of the Japanese ODA Loan No. SL-P 110 for eligible payments for consulting services for which this TOR is issued.

2.3 The Scope Consulting Services

2.3.1 Pre Design Stage

The Consultants shall;
(a) Review the Final Report of Preparatory Survey study carried out by M/s. NJS Consultants Co., Ltd. \& M/s. Nihon Suido Consultants Co., Ltd. for any deviation from the scope ensuring;

1. Adequacy of foundation investigations
2. Cost effectiveness
3. Compatibility with site conditions
(b) Review and verify all available primary and secondary data collected during the above referenced preparatory survey study.
(c) Carry out all the required engineering surveys and investigations such as topographical survey, hydrological survey, geotechnical survey, material availability survey, raw water quality survey, etc., as applicable to the concerned project components.
(d) Investigate and recommend water treatment plant effluent disposal routes and effluent reuse systems.
(e) Plan the consultancy services in such a way that procurement of works of at least one package could commence within the first six months of the consultancy services.
(f) Submit the Inception Report
(g) Prepare detailed work plan, progress reports and implementation schedule
for the Project to ensure effective monitoring and timely project outputs, and regularly update the same during other stages;

2.3.2 Detailed Design Stage

The Consultants shall;
(a) Carry out detailed designs and prepare Bidding Documentation for Wahalkada Water Supply System which shall include, but not limited to, following:

- Water Intake of Capacity $28,800 \mathrm{~m}^{3} /$ day (approx) with associated Mechanical \& Electrical installations having pumping capacity of $16,000 \mathrm{~m}^{3} /$ day (approx) by keeping provisions for future installation up to full capacity of $28,800 \mathrm{~m}^{3} /$ day.
- Raw Water Main from Wahalkada Intake to Wahalkada WTP including surge arresting 'system, suitable line flushing and flow measuring devices etc.,
- Water Treatment plant of capacity of $27,400 \mathrm{~m}^{3} /$ day (approx) to cater to year 2034 projected demand in a manner that $15,000 \mathrm{~m}^{3} /$ day capacity treatment plant could be implemented as the first stage and the number of process trains shall be more than two as appropriate and shall accommodate the minimum of the given treatment plant components of the preparatory survey study including flocculator, sedimentation tank, Rapid Sand filters, sludge treatment, clear water storage units. The following components and related appurtenances shall suit the WTP capacity of $27,400 \mathrm{~m}^{3} /$ day.
i. Receiving Well
ii. Distribution Chamber
iii. Activated Carbon Filters (ACF) including a sump
iv. Backwash water recycle tank
v. Blower room including blowers
vi. Chlorine mixing chamber
vii. Chlorine house including Chlorinators, neutralization facilities
viii. Chemical building, including chemical storing, Chemical preparation and delivering facilities
ix. Clear water tank
x. High lift pumping Station
xi. Elevated service water tank
xii. Sludge lagoon
xiii. Administrator building including process laboratory
xiv. Warehouse
xv. Watchers hut, parking shed etc;
xvi. Quarters
xvii. Boundary walls internal roads yard piping \& Landscaping
- Transmission Mains and Sub mains from Wahalkada WTP to Kahatagollewa Bogahawewa, KAH-KEB Median, Kebithigollewa , Weerasole, North Horowpothana, Horowpothana, West Horowpothana, Rathmalgahawewa, Hamillewa and Kahatagasdigiliya of total length 142 km including required surge arresting systems
- Distribution model design to cover Horowpothana, Kahatagasdigiliya,

Kebithigollewa, and Padaviya divisions and Distribution Systems to cater to said areas of total length 873 km approx.

- Ground Reservoirs at
i. Kahatagollewa $\left(1,000 \mathrm{~m}^{3}\right)$
ii. Kebithigollewa ($500 \mathrm{~m}^{3}$)
iii. Weerasole ($1,500 \mathrm{~m}^{3}$)
iv. Horowpothana $\left(1,000 \mathrm{~m}^{3}\right)$
v. Kahatagasdigilliya $\left(500 \mathrm{~m}^{3}\right)$
- Elevated Tank
i. Wahalkada ($500 \mathrm{~m}^{3}$)
ii. Kahatagollewa $\left(250 \mathrm{~m}^{3}\right)$
iii. Bogahawewa $\left(2,000 \mathrm{~m}^{3}\right)$
iv. KAH-KEB Median $\left(250 \mathrm{~m}^{3}\right)$
v. Kebithigollewa ($750 \mathrm{~m}^{3}$)
vi. North Horowpothana ($250 \mathrm{~m}^{3}$)
vii. Horowpothana $\left(500 \mathrm{~m}^{3}\right)$
viii. West Horowpothana $\left(750 \mathrm{~m}^{3}\right)$
ix. Rathmalgahawewa ($500 \mathrm{~m}^{3}$)
x. \quad Hamillewa $\left(1,250 \mathrm{~m}^{3}\right)$
xi. Kahatagasdigiliya $\left(1,500 \mathrm{~m}^{3}\right)$
xii. Other 5 tanks ($250 \mathrm{~m}^{3}$ each)
- Chlorine Building $100 \mathrm{~m}^{2}$ (approx.) including chlorinators at
i. Weerasole
ii. Horowpothana
iii. North Horowpothana
iv. West Horowpothana
v. Hamillewa
vi. Kahatagasdigiliya
vii. Rathmalgahawewa
viii. Kebithigollewa
ix. KAH-KEB Median
x. Kahatagollewa
xi. Bogahawewa
- Area Engineer's Office with Operational complex, SCADA system, Consumer counter, Zonal lab (Residual Chlorine, Turbidity, pH) at;
i. Horowpothana
ii. Kahatagasdigiliya
iii. Kebithigollewa
iv. Bogahawewa
- OIC Office with SCADA system, Consumer counter, Zonal lab (RCI, Turbidity, pH) and Room for crews etc., at
i. Kahatagasdigiliya
ii. Kebithigollewa
iii. Bogahawewa
- Work Shop buildings at
i. Horowpothana
ii. Kebithigollewa
- Care taker Quarters $100 \mathrm{~m}^{2}$ approx. at
i. Weerasole
ii. Horowpothana
iii. North Horowpothana
iv. West Horowpothana
v. Hamillewa
vi. Kahatagasdigiliya
vii. Rathmalgahawewa
viii. Kebithigollewa
ix. KAH-KEB Median
x. Kahatagollewa
xi. Bogahawewa
- Staff Quarters at
i. Horowpothana
ii. Kahatagasdigiliya
iii. Kebithigollewa
iv. Bogahawewa

Note: It should be noted that the consultant shall not be limited to the above referenced components but shall design a complete scheme by incorporating additional components/items as appropriate. The Consultants shall accommodate reasonable requests made by the Project Director, if necessary, for the completeness of the scheme within the given inputs.
(b) Prepare bidding documents for procurement activities of Wahalkada WSS in accordance with the latest version of Standard Bidding Documents under Japanese ODA Loans for Procurement of Works together with all relevant specifications, drawings and other documents; for following procurement packages, separately for Wahalkada WSS

Package	Component	Procurement
Package A	Intake, Water Treatment Plants, Ground Sumps, Pumping Stations and Elevated Tanks, Civil, Mechanical Electrical works and Building works	ICB with PQ
Package B	Procurement and installation of Transmission/ Distribution Mains HDPE)	ICB with PQ
Package C	Procurement and Installation of Distribution System for 63mm to 225mm, uPVC pipes	LCB
Package D	Procurement of Vehicles	LCB
Package E	Procurement of Heavy Duty Machines	LCB

* ICB -International competitive bidding
*LCB -Local competitive bidding
*PQ-Pre- Qualification
*HDPE- high density Polyethylene
(c) Sign all detailed designs, drawings and calculations where the Consultant shall ensure and be responsible for the satisfactory structural and functional requirements of the scheme components.
(c) Carry out Cost estimation including Engineer's estimate. The Engineer's estimate shall be prepared using NWSDB Rate Book and other appropriate rates if NWSDB rates are not available for such items.

The Consultant shall prepare the detailed designs of the Project in sufficient detail to ensure clarity and understanding by NWSDB, contractors and other relevant stakeholders. All the designs should be in conformity with the Sri Lankan Standards (SLS) if available, or with the appropriate international standards subject to the approval of the Engineer.

The detailed designs will, as a minimum, include construction drawings, detailed cost estimates, necessary calculations, associated contract documentation to including detailed specifications, bill of quantities (BOQ), and the implementation schedule for the Project.

Such detailed specifications will contain those in relation to
i. Quality assurance and control of plant, materials and workmanship,
ii. Safety
iii. Protection of the environment,
iv. Other stake holder's requirements such as RDA, CEB, Pradeshiya Saba etc.,

The detailed design shall be prepared in close consultation with, and to meet the requirements of NWSDB and the consultants shall make every effort to incorporate the comments made by NWSDB into the detailed designs prior to submission for approval. The consultant's staff shall make presentations to the relevant NWSDB staff on detailed design prior to finalization, on agreed intervals during the designs.

2.3.3 Procurement Process Assistance Stage

2.3.3.1 Assistance in Pre-Qualification (PQ)

The Consultants shall:
a) Define technical and financial requirements, capacity and/or experience for PQ criteria taking into consideration technical features of the project;
b) Prepare PQ documents in accordance with the latest version of Standard Prequalification Documents under Japanese ODA Loans;
c) Assist NWSDB in PQ announcement, addendum/corrigendum, and clarifications to the applicants' queries;
d) Assist to evaluate PQ applications in accordance with the criteria set forth in PQ documents; and
e) Assist to prepare a PQ evaluation report for approval of the PQ evaluation committee.

2.3.3.2 Assistance during the Bidding

The Consultants shall:
a) Assist NWSDB in issuing bid invitation, conducting pre-bid conferences, issuing addendum/corrigendum, and clarifications to bidders' queries.
b) Assist for the technical clarification during bid evaluation in accordance with the criteria set forth in the bidding documents. In such evaluation assistance, the Consultant shall carefully confirm that bidders' submissions in their technical proposal including, but not limited to, site organization, mobilization schedule, method statement, construction schedule, safety plan,
have . been prepared in harmony each either and will meet such requirements set forth in applicable laws and regulations, specifications and other parts of the bidding documents;
c) Assist Technical Evaluation Committees (TECs) in preparation of bid evaluation reports for approval of the procurement committees and to submit an independent report to JICA.
d) Assist NWSDB in contract negotiations by preparing agenda and facilitating negotiations including preparation of minutes of negotiation meetings;
e) Assist to prepare a draft and final contract agreement.
f) Assist in tender awards and signing the contract agreements.
2.4. Facilitation of implementation of Environmental Management Plan (EMP), Environmental Monitoring Plan (EMoP) and Resettlement Action Plan (RAP)

The Consultant shall:
a) Update EMP, as appropriate; incorporate necessary technical specifications with design and contract documentation;
b) During the preparation of bidding documents, clearly identify environmental responsibilities as explained in the Environmental Impact Assessment/Initial Environmental Examination report and Environmental Monitoring Plan;
c) Update and/or prepare RAP as necessary based on detailed design in accordance with the agreed resettlement framework, including entitlement matrix and compensation plan, coordinate with various agencies in preparing the procedures for timely land acquisition and disbursement of compensation to affected persons;
d) Assess the social impact and prepare necessary social development plans. The plan should be based on indigenous people development framework, as required;
e) Monitor land acquisition and compensation activities being undertaken by NWSDB and district authorities, and report the activities in monthly progress reports;
f) Assist NWSDB in the capacity building of NWSDB staff on environmental management through on-the-job training on environmental assessment techniques, mitigation measure planning, supervision and monitoring, and reporting.

2.5 Technology Transfer

The Consultant shall carry out the technology transfer as an important aspect in design works. The Consultant shall provide the opportunity to NWSDB officers and staffs to be involved in the working team of the Consultant during the design and pre-contract administration works for their capacity building wherever possible. If requested by NWSDB, the Consultant shall brief and demonstrate the survey and design procedure and pre-contract management process and procedures. The consultant shall assist NWSDB and its staff to build their capacity as a part of on-the-job-training under the Project.

2.6 Guidance for Public Awareness Campaign

The purpose of public awareness campaign is to inform and educate the general public of the present situation of health damage in the project area caused by the use of
groundwater, the objectives of the proposed project, the importance of connection to a proposed water supply system under the project and payment of water tariff for sustainable operation and management of water supply facilities.

The Consultant shall:
a) Arrange the data on health damage in the project area focusing on dental and skeletal fluorosis and Chronic Kidney Diseases. (CKD)
b) Analyse the demographic characteristics of the project area such as sex, age, ethnic, religion, occupation, income, coverage by water supply, sanitation and power supply, etc.,
c) Develop the strategy including approach and methodology to extend the Public Awareness Campaign.
d) Organize the public information and education campaign teams by selecting the staff mainly from NWSDB and being reinforced by the use of external resources as required.
e) Decide the assignment of respective staff in the public information and education campaign.
f) Unify the campaign team through trial practice and brainstorming
g) Hold the seminar/ public information campaign on the date and at places as scheduled at least twelve (12) times.
h) Improve \& adjust the content of the seminar according to the people's response at the previous seminar.
i) Prepare the report summarizing the public information and education campaign including the evaluation of the effect and recommendation for future extension of publi9 awareness campaign.
j) Awareness of farmers on water management.

2.7 Nature of and limit to the responsibilities, which the Consultant is to undergo.

The Consultant shall perform the Services and carry out their obligations hereunder with all due diligence, efficiency and economy, in accordance with generally accepted professional techniques and practices, and shall observe sound management practices, and deploy appropriate advance technology and safe and effective equipment, machinery, materials, computer software and methods. The Consultants shall always act, in respect of any matter relating to this Contract or to the Services, as faithful advisers to the Employer, and shall at all times support and safeguard the Employer's legitimate interests in any dealings with sub consultants or third parties.

The Consultants shall obtain the Employer's prior approval in writing before taking any of the following actions.
a) Appointing such members of the personnel as is listed in Section 2.9 merely by title but not by name;
b) Entering into a sub contract for the performance of any part of the services, it being understood (a) that the selection of sub consultant and the terms and conditions of the sub contract shall have been approved in writing by the Employer prior to the execution of the sub contract, and (b) that the consultants shall remain fully liable for the performance of the services by the sub consultant and its personnel pursuant to this contract.
c) Any variation of the scope of the Consultancy Service.
d) Any variation orders to the Contractor during Contract execution

2.8 The Man Month Schedule and Expected Time Schedule

The team shall comprise Professional international consultants having allocated 65 person-months and Professional local consultants and technical administrative support staff having allocated 120 and 199 person-months maximum. The consultants will be engaged over 21 months duration of consulting services. Refer to Annex 4 for proposed Implementation Schedule.

All necessary Technical and Administrative supporting staff (having allocated 384 PM) should be provided by the consultant by referring Annex 5.

It is the Consultant's responsibility to select the optimum team and to propose the professionals whom he believes will best meet the needs of NWSDB without exceeding total person months proposed for each category

2.9 The qualification and Expertise required and Detailed Scope of Works for Experts

Key Experts (International)

Position	Qualification	Experience
Team Leader	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Civil Engineering/ contract management and Masters/or PE Qualification in a relevant field and Should be a member of recognized professional Institution.	Total Experience At least 20 years after graduation experience Project Related Experience - At least 15 years experience out of which 10 years experience in Water Supply projects including; a) Design b) Project Management c) Contract Management of major projects with ICB contracts - At least ten years experience in similar water supply Projects as a Team Leader of a project more than 25 million US\$.
Water Treatment Expert	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Civil Engineering and Masters/or PE Qualification in a relevant field and Should be a member of recognized professional Institution.	Total Experience At least 15 years after graduation experience Project Related Experience - At least 8 years experience in designs of water treatment plants and at least 3 years experience in Operation and Maintenance of Water Supply Facilities - Experience as a water treatment specialist in at least two urban water supply projects of which each having water treatment plants of capacity at least $20,000 \mathrm{~m}^{3} /$ day .
Civil Engineer (Water Treatment Plant)	Professionally Qualified Civil Engineer Graduate (B.Sc.) in Water Supply/ Civil Engineering and Should be a member of recognized professional Institution.	Total Experience At least 15 years after graduation experience Project Related Experience - At least 10 years experience in Design/ Operation and Maintenance of Water Supply Facilities - Experience as a Civil Engineer in at least two urban water supply projects of which each having WTP of capacity at least $20,000 \mathrm{~m} 3 / \mathrm{d}$ and contract amount is more than 5 million US\$. - Experience in ICB contract is desirable.

Position	Qualification	Experience
Civil Engineer (Water Transmission)	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Water Supply/ Sanitation /Civil Engineering and related field and Should be a member of recognized professional Institution.	Total Experience At least 15 years experience Project Related Experience - At least 10 years experience in design/ operation and maintenance of Water Supply transmission Facilities including minimum 8 years experience in water supply design. - Experience as a Civil Engineer in at least two urban water supply projects of which each having more than 200 km transmission/distribution system. - Experience in ICB contract is desirable.
Mechanical Engineer	Professionally Qualified Mechanical Engineer Graduate (B.Sc.) in Mechanical Engineering and related field Should be a member of recognized professional Institution.	Total Experience At least 15 years Project Related Experience - At least 7 years experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as a Mechanical Engineer in four urban water supply projects of which each contract amount is more than 5 million US\$. - Experience in ICB contract is desirable -two urban water supply projects
Electrical Engineer	Professionally .Qualified Electrical Engineer Graduate (B.Sc,) in Electrical Engineering and related field and Should be a member of recognized professional Institution.	Total Experience At least 15 years Project Related Experience - At least 7 years experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as an Electrical Engineer in four urban water supply projects of which each contract amount is 5 million US\$. - Experience in ICB contract -two urban water supply projects
Hydrologist	Professionally Qualified Hydrologist and Graduate (B.Sc.) in Hydrology and Should be a member of recognized professional Institution.	Total Experience At least 15 years experience Project Related Experience - At least 7 years experience in four urban water supply projects of which each contract amount is 5 million US\$. - Experience in ICB contract -two urban water supply projects

Key Experts (Local)

Position	Qualification	Experience
Deputy Team Leader	Chartered Civil Engineer and Graduate (B.Sc.) or equivalent in Civil Engineering/ and Masters Qualification in a relevant field.	Total Experience At least 20 years after graduation experience Project Related Experience - At least fifteen years experience combined experience in Water Supply projects including; (i) Design (ii) Project Management (iii) Contract Management of major projects with ICB contracts - At least five years experience in similar water supply Projects as a CoTeam Leader or Deputy Team Leader of a project more than 15 million US\$
Structural Specialist	Chartered Civil Engineer and Graduate (B.Sc.) or equivalent in Civil Engineering and Masters Qualification in Structural Engineering	Total Experience At least 15 years after graduation experience Project Related Experience - At least 10 years experience in design/ operation and maintenance of Water Supply Facilities - Experience as a structural specialist in at least two urban water supply projects of which each contract amount is more than 10 million US\$
Civil Engineer Water Treatment Plant)	Chartered Civil Engineer and Graduate (B.Sc.) or equivalent in and Masters Qualification in Water Supply Engineering /Environmental Engineering	Total Experience At least 15 years after graduation experience Project Related Experience - At least 10 years experience in design/ operation and maintenance of Water Supply Facilities - Experience as a Civil Engineer in two urban water supply projects of which each contract amount is more than 5 million US\$. - Experience in ICB contract is desirable

Position	Qualification	Experience		
$\begin{array}{l}\text { Civil Engineer } \\ \text { (Reservoirs, } \\ \text { Pumping } \\ \text { Stations, Towers, } \\ \text { Transmission } \\ \text { \& Distribution) }\end{array}$	$\begin{array}{l}\text { Chartered Civil Engineer and } \\ \text { Graduate (B.Sc.) or } \\ \text { equivalent in Water Supply/ } \\ \text { Sanitation } \\ \text { /Civil Engineering and } \\ \text { related field }\end{array}$	$\begin{array}{l}\text { Total Experience } \\ \text { Atleast 15years after graduation experience } \\ \text { Project Related Experience }\end{array}$		
• At least 10 years experience in design/				
operation and maintenance of Water				
Supply transmission Facilities,				
reservoirs, pumping stations and				
towers			$]$	•Experience as a civil Engineer intwo
:---				
urban water supplyprojects of which				
eachcontract amount is morethan5				
million US\$.				

Position	Qualification	Experience
Electrical Engineer	Electrical Engineer Graduate (B.Sc.) or equivalent in Electrical Engineering and related field	Total Experience Atleast 15years after graduation experience Project Related Experience - Atleast 7 years experience in design/ operation and maintenance of Water Supply Facilities and related field - Experienceas anElectricalEngineer in foururban watersupply projects of which each contract amount is 5 million US\$. - Experience in ICB contract-two urban water supply projects
Instrumentation Specialist	Electrical Engineer Graduate (B.Sc.) or equivalent in Electrical Engineering and related field	Total Experience At least 15 years after graduation experience Project Related Experience - Atleast 7 years experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as anElectrical Engineer in foururban watersupplyprojects of which each contract amount is 5 million US\$. - Experience in ICB contract-two urban water supply projects

Other Experts (Local)

Position	Qualification	Experience
Procurement Specialist	Graduate in Civil Engineering (B.Sc.) or equivalent and Masters Qualification inproject management and Diploma in Procurement and construction claims	Total Experience At least 15 years after graduation experience Project Related Experience
	At least 7 years experience as a Procurement Specialist Experience in two urban water supply projects of which each having ICB contract more than 10 million US\$. - Experience in JICA projects is	
Specialist		

Position	Qualification	Experience
$\begin{array}{l}\text { Quantity } \\ \text { Surveyor }\end{array}$	$\begin{array}{l}\text { Professionally qualified } \\ \text { Quantity Surveyor with } \\ \text { Bachelor degree or } \\ \text { equivalent in Quantity } \\ \text { surveyingand should be a } \\ \text { member of recognized } \\ \text { professional institution }\end{array}$	$\begin{array}{l}\text { TotalExperience: } \\ \text { At least 10years after graduation } \\ \text { experience } \\ \text { Project Related Experience: } \\ \text { - At least two years experience in water } \\ \text { treatment plant estimates with a } \\ \text { recognized consulting firm//National } \\ \text { water utility Organization } \\ \text { Note: }\end{array}$
An input of 8 man months of a Quantity		
Surveyor (local) shall be allocated		
Design Section in Head Office.		

2.10 Task of the Experts

2.10.1 The Tasks of the Key Experts

International Experts

The specific tasks include, but not limited to;

Position	Main Tasks
Team Leader	1. Shall bear the overall responsibility and shall represents the project Consultant's Team in all matters relating to the performance of services, coordinating with all other consultant's staff to deliver excellent product during the stipulated time schedule. 2. Shall oversee and Supervise the Consultant's services 3. Assume direct responsibility for day-to-day consulting services including day to day management of all consultants' staff and coordination among and with them. 4. Review existing studies/documents and other resources available and formulate a best implementation approach including programmatic project schedule; 5. Prepare PQ and bid evaluation report for JICA, 6. Coordinate interfaces between Consultancies (Phase $1 \&$ Phase 2) 7. Check the bidding documents prepared by the local consultants and ensure all bidding documents are complete in every respect; 8. Assist PD to conduct pre-bid conferences, issuing addendum/corrigendum, and classifications to bidders' queries. 9. Assist in PQ, evaluation of bids; 10. Assist NWSDB in contract negotiations; 11. Assist to prepare a draft and final contract agreement. 12. Assist tender awards and signing the contract agreements
Water Treatment Expert	1. Carry out bench scale testing and pilot testing for average and critical conditions of raw water quality 2. Decide the required water treatment process and to review the Intake, WTP components proposed by the preparatory survey studies 3. Prepare the preliminary (basic) designs of the Intake and WTP. 4. Prepare WTP detailed Process Diagrams 5. Assure resource optimization including the treatment plant waste treatment and re-cycling 6. Advise on the degree of Automation and controlling required for the optimum performance of the WTPs and distribution systems in collaborations with Electrical and Mechanical Engineers 7. Advise on preparation of Sequence of Operation (SOO) for the treatment plants
Civil Engineer (Intake Water Treatment Plant)	1. Assist the Water Treatment expert in preparing the basic design of the water treatment plant including water intake facilities 2. Direct the local Consulting Engineers attending the detailed designs of the water treatment plant including water intake facilities and check the detailed designs done by the local Consulting engineers 3. Prepare Technical Specifications 4. Check and certify the drawings and BOQs

Civil Engineer (Water Transmission)	1. Assist the water treatment expert in preparing the basic design of the water supply transmission and distribution systems including storage reservoirs and towers 2. Direct the local Engineers attending the detailed designs including network models of the water Transmission and Distribution systems 3. Select appropriate modelling software with the consultation of PD 4. Check Network models 5. Prepare Technical Specifications 6. Check and certify the drawings and BOQs 7. Develop course module on network installation and maintenance training and Conduct 3 days Water Distribution and Network Installation and Maintenance Training Course for NWSDB RSC-NC \& P\&D staff
Mechanical Engineer	1. Design of the mechanical equipment 2. Prepare specifications, Mechanical layouts and drawings; 3. Assist during commissioning of project components 4. Assist Team Leader for preparation of O\&M manuals 5. Direct the local Mechanical Engineers for mechanical designs and check the designs 6. Direct the local Mechanical Engineers in their day-to-day activities 7. Support the O\&M training
Electrical Engineer	1. Designs of the electrical equipment 2. Prepare specifications, electrical layouts and drawings; 3. Assessment of the power requirements and establish power availability and assist NWSDB staff obtaining the requirement from CEB; 4. Assist Team Leader for preparation of the O\&M manuals 5. Direct the local Electrical Engineers for electrical designs and check the designs 6. Direct the local Electrical Engineers in their day-to-day activities 7. Check the performance of an instrumentation system
Hydrologist	1. Carry out suitable hydrological investigations for proposed water resources and review the extraction methodology; 2. Prepare detailed Engineering designs for extraction; 3. Recommend and find the solutions for protection of water resources and their catchments prepare cost estimation; 4. Analyzing the effect of environmental changes on water flow, 5. Planning of water resource development by forecasting and monitoring water usage and rainfall, 6. Assessing the relationship between rainfall \& run off of tank catchment

Local Experts

Position	Main Tasks
Deputy Team Leader	1. Shall assist the Team Leader in all matters relating to the performance of services. 2. Shall assist the Team Leader to oversee and supervise the Consultant's services 3. Assumes direct responsibility for day-to-day consulting services including day to day management of all consultants' staff during the absence of the team leader 4. Prepare of basic designs 5. Prepare detailed designs including the specifications, drawings and BOQs etc., for all the project components 6. Develop bidding documents, including bill of quantities and specifications for the water treatment plant following JICA guidelines 7. Conduct topographical, geotechnical and other surveys; 8. Formulate and use GIS base for details design works; 9. Liaise with others to ensure adequate site investigations carried out for the design of the water supply and distribution systems and for the contractor's bidding requirements 10. Liaise with other specialists to ensure a consistent philosophy and integrated approach to the design and operation of the distribution system; 11. Advise on O\&M requirements such as training, human resources, etc. 12. Assist to prepare a draft and final contract agreement
Structural Specialist	1. Carry out all structural designs and necessary structural drawings and specifications including BOQs for the entire project; 2. Identify the necessary soil investigations required for the structural designs and administer that work 3. Liaise with other specialists to ensure consistent philosophy and integrated approach to the design
Civil Engineer (Intake Water Treatment Plant)	1. Review structural designs 2. Assist the water supply experts in preparing the basic design of the water treatment plant including water intake facilities 3. Carry out detailed designs of the Intakes, Raw water mains, water treatment plants 4. Prepare Technical Specifications 5. Check Drawings and Bill of Quantities 6. Assist the Deputy Team Leader
Civil Engineer (Reservoirs, Pumping Stations, Towers, Transmission Distribution)	1. Review structural designs 2. Assist the water supply expert in preparing the basic design of the water treatment plant including reservoirs, pumping stations, towers transmission and distribution lines. 3. Carry out detailed designs of the Water storage reservoirs, pumping stations, Elevated towers, Transmission \& distribution networks 4. Prepare Technical Specifications 5. Check Drawings and Bill of Quantities
Mechanical Engineer	1. Attend to the detailed design of mechanical equipment 2. Prepare specifications, mechanical layouts and drawings;
Electrical Engineer	1. Attend detailed Designs of Electrical equipment 2. Design associated PLC control system/SCADA systems 3. Prepare specifications, electrical layouts and drawings; 4. Assessment of the power requirements and establish power availability and assist NWSDB staff obtaining the requirement from CEB;

2.10.2 The Tasks of the other Experts

Environmental Specialist	1. Update Environmental management Plan (EMP) 2. Prepare programs and strategies to improve / protect these catchments with short term / long term perspectives in consultation with other experts
Procurement Specialist	1. Prepare pre-qualification requirements and evaluation; 2. Prepare bidding documents compliant with JICA's latest standard bidding requirements 3. Design post-qualification criteria which should comply with JICA's guidelines 4. Organize and identify with NWSDB staff in contract packaging and preparing procurement time schedules for each contract package in consultation with project staff 5. Prepare sample Evaluation Reports to ensure JICA's and GOSL requirements are satisfied 6. Assist the TEC members during evaluation
Architect	1. Design environmental friendly and energy efficient building designs, for water treatment plants, waste water treatment plants, pump houses and intakes, landscaping treatment plants, towers and intake facilities 2. Provide design, specification for interior decorations including interior lighting, selecting furniture for plant offices, colour coding and painting of structures, exterior lighting etc. 3. Design necessary buffer zones and other architectural features for noise and odour control
Quantity Surveyor	1. Prepare BOQs, according to CESSM code for water supply systems and SLS code for buildings 2. Prepare rated BOQs 3. Prepare work norms and material/day work schedules 4. Prepare cost estimates
Public Awareness Campaign Specialist	1. Analyse the demographic characteristics of the project area such as sex, age, ethnic, occupation, income, coverage by water supply, sanitation and power supply, etc. 2. Arrange the data on health damage in the project area focusing on dental and skeletal fluorosis and chronic kidney diseases (CKD) 3. Develop the strategy including approach and methodology to extend the public awareness campaign 4. Organize the public information and education campaign teams through selecting the staff mainly from NWSDB and being reinforced by the use of external resources as required 5. Decide the assignment of respective staff in the public information and education campaign 6. Unify the campaign team through trial practice and brainstorming 7. Design, implement, and monitor the public awareness campaigns for farmers and arrange site visits to farmer organizations leaders and other relevant stake holders for inspection of water treatment plants. 8. Develop methods of mobilizing community participation in the design, management, construction, and O\&M of community water supply and sanitation; 9. Conduct public awareness campaigns / seminar at the date and places as scheduled at least eight (8) times on issues related to water conservation, reduction of NRW, efficient irrigation water management practices for farmers, importance of pipe born water, water related diseases, catchment protection, preventing water pollution and sanitation in household level. 10. Improve and adjust the content of the seminar according to the people's response at the previous seminar.

	11. Prepare the report summarizing the public information and education campaign including the evaluation of the effect and recommendation for future extension of public awareness campaign.			
Micro-	1.Test and recommend relevant parameters of raw water; especially with respect to the fresh water Algae/Cyanobacteria and Nutrients.			
2. Advise the process design of water treatment plants during designing stage to				
suit the raw water qualities and to assure resource optimization including the				
treatment plant		$	$	3. Advise the pilot water quality testing
:---				
4. Advise preparation of sequence of operation (SOO) for the treatment plants				
5. Assist in adjusting water quality and treated effluent of water treatment plants				
during commissioning	\quad	6. Advise on chemical dosing during commissioning stage		
:---				
7. Identify and recommend the list of requirements for the Laboratory to				
procurement officer.				

2.11 The Reports and Documents

Within the scope of consulting services, the Consultant shall prepare and submit reports and documents to Project Director / Project manager in charge in NWSDB as shown in Table 2.13. The Consultant shall provide electronic copy of each of these reports.

Table 2.13

Stage	Type of Report	Timing	No. of Copies
Consultancy Services	Monthly Progress Report	Every month (by the 10 each month	10
	Quarterly Progress Report	Every quarter (at every three months)	10
	Inception Report	Within 1 month after commencement of the services	10
	Project Definition Report	Within 3 months after commencement of the services	10
Detailed Design	Draft Design Report	Within 8 months after commencement of the services	10
	Tender Assistance drawings \& Cost Estimates	Pre-Qualification Document Report	Within 10 months after commencement of the services commencement of the services
	Bidding Documents each (Draft)	At appropriate timing	10
	Bidding Documents each (Final)	At appropriate timing	15
	Pre-qualification Evaluation Report	At appropriate timing	10
	Technical Evaluation Report	At appropriate timing	10
	Tender Evaluation Report	At appropriate timing	10
Assistance in Environment	Environmental Monitoring Report	At appropriate timing	10

and Resettlement Monitoring	Land Acquisition and Resettlement Monitoring Report	During land acquisition and resettlement implementation period	10
	Environmental and Social Plan Report	At the end of the services	10

Contents to be included in each report are as follows:

a) Monthly Progress Report:

Shall briefly describe all the activities carried out and progress for the previous month. Problems encountered or anticipated will be clearly stated, together with actions to be taken or recommendations on remedial measures for correction. Also indicates the work to be performed during the coming month.
b) Quarterly Progress Report

Shall present the progress status of the Project.
c) Inception Report:

Shall present the methodologies, schedule, organizations, etc.;
d) Project Definition Report

Shall present the design criteria, Design Concepts, Key plans, Preliminary Designs, Lay outs and standards use by the consultant in detailed designs. Also indicate the Network modelling software, Surge analysis software, Structural modelling software etc.;
e) Draft Design Report

Shall present the detailed engineering design including draft detailed designs, cost estimates, procurement plan etc.; incorporating the NWSDB comments on Project Definition Report.

f) Final Design Report

Shall present the final detailed designs, final cost estimates and finalized procurement plan incorporating the NWSDB comments on Draft Design Report, provided by and the Consultant
g) Pre-qualification Document Report

Shall present the pre-qualification documents and its evaluation criteria.
h) Bidding Document Report

Shall present bidding documents and bid evaluation criteria.
i) Pre-qualification Evaluation Report

Shall present the results of the evaluation and the criteria to select the qualified applicants

j) Technical Evaluation Report

Shall present the results of technical evaluation and the criteria to recommend the qualified applicants.

k) Tender Evaluation Report

Shall present the results of the tenders and the criteria to select the most responsible contractors.

l) Environmental Monitoring Report

Shall present the environmental impacts and implementation of environmental mitigation measures during and after the construction stage. Environmental monitoring forms attached as Appendix will be filled and attached to the Report.
m) Land Acquisition and Resettlement Monitoring Report

Shall present the progress of land acquisition and resettlement implementation. RAP monitoring form attached as Appendix shall be filled and attached the Report.
n) Environmental and Social Plan Report

Shall present the EMP, EMoP and RAP prepared by the consultants.

2. Client's input and Counterpart Personnel

A certain range of arrangements and services will be provided by NWSDB to the Consultant for smooth implementation of the Consulting Services. In this context, NWSDB will:
(1) Report and data

Make available to the Consultant existing reports and data available with NWSDB related to the Projects as required.
(2) Office Space

During the pre-Design, Design and procurement assistance stages and consultants shall have their own offices with necessary equipment, furniture and utility and shall accommodate the office space for NWSDB project staff and counterpart officials. The Consultant's requirement for office space, office rental including necessary equipment, furniture and utilities, should be clearly stated in the proposal with cost for providing such facilities. Such equipment and furniture shall be handed over to employer after completion of the project.
(3) Cooperation and counterpart staff

The Client shall provide the following counterpart officials for effective implementation of the Consulting Services;

01 No. Engineer (civil)
0201 No. Engineering Assistant (civil)
(4) Assistance and exemption

Use its best efforts to ensure that the assistance and exemption, as described in the Standard Request for Proposal issued by JICA, will be provided to the Consultant, in relation to

- Work permit and such other documents;
- Entry and exit visas, residence permits, exchange permits and such other documents
- Clearance through customs;
- Instruction and information to officials, agent and representatives of the Sri Lankan Government;
- Exemption from any requirement for registration to practice their profession;
- Privilege pursuant to the applicable law in Sri Lanka.

ANNEX 1. LOCATION MAP

ANNEX 2. PROJECT COMPONENTS

COMPONENT ITEMS		QUANTITY
<<Lot A>> Intake, WTP, Reservoirs		
Intake	Capacity:	28,800m ${ }^{3} / \mathrm{d}$
WTP	Capacity:	$15,000 \mathrm{~m}^{3} / \mathrm{d}$
Elevated Tanks and Ground Sumps		
Elevated Tanks and reservoirs		16 nos.
same for ex-Bowser Area		5 nos.
<<Lot B>>Transmission and Distribution Pipe		
Pipe Works		
Transmission Main		126,100 m
Transmission Sub-main		24,300 m
Distribution Main		$326,700 \mathrm{~m}$
Bridges		$1,955 \mathrm{~m}$
Flowmeters		35 nos.
<<Lot C>> Distribution Sub-System		
Pipe Works		
Distribution Sub-system		330,000 m
Distribution Sub-system in ex-Bowser Area		390,740 m
<<Lot D>> Vehicles		
Vehicles		7 types 16 nos.
<<Lot E>> Heavy Duty Machines		
Heavy Duty Machines		7 types 13 nos.

ANNEX 3.1. ORGANIZATION CHART OF NWSDB

ANNEX 3.2. ORGANIZATION CHART OF PMU

Terms of Reference
ANNEX 3. IMPLEMENTATION SCHEDULE
The TOR shall cover Phase 2 D/D and T/A of the schedule below:

	2015						2016								2017								2018							2019							2020						Month					
																				$88^{81} 10{ }^{11} 112$				$2{ }^{2} 3.4$	56									$\begin{array}{l\|l\|l\|l\|l\|} \hline 7 & 8 & 9 & 10 & 11 \\ \hline & 12 \\ \hline \end{array}$			12		27 3 4	55^{6}								
<<Phase 2 D/D \& T/A for Wahalkada System>>											.	,				,	-		,																													
Selection of Consultant (3)								1.	1																																		3					
Execution of Consulting Services									11	111	1111	111	11	11	11	11	1111	111	11	111	111																						21					
Preparation of Detailed Design including prepara	ding	docu	en	nts (1	(10)				1.	111	111	111	11	1	1																												10					
Preparation of Prequalification Documents (2)												1																															2					
Prequalification (2) (Lot A and Lot B)														11																													2					
Bidding (3) (Lot A)																		1.																									3					
Technical Evaluation (1)																			1																								1					
Financial Evaluation (1)																					1																						1					
<<Phase 2 C/S for Wahalkada System>>																																																
Selection of Consultant for C/S (20)																1.	1.11	1.1	11		1.																						12					
																																								111	111							
Execution of Consulting Services (35)																												1	1.1			14.	111		11	11.1			1.1	1.1	1.1	-	35					
Construction Schedule	2015						2016								2017							2018								2019							2020											
Lot A: Intake, WTP, and Reservoirs							0								0								9							11.	12						9						30					
Lot B: Transmission and Distribution Main															0								10								12							11					33					
Lot C: Distribution Sub-system															0								10						1) 11								11						33					
Lot D: Vehicles							0								0																							111	11	0	11	111	6					
Lot E: Heavy Duty Machines																						$\begin{array}{l\|l\|l\|lll} & & & \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$								\qquad							\qquad						6					

ANNEX5. ESTIMATED PERSON-MONTHS FOR CONSULTING SERVICES

	Position	PM
Pro-A Foreign Staff		
	Team Leader	18.0
2	Water Treatment Specialist	3.0
3	Civil Engineer - WTP	10.0
4	Civil Engineer - Pipelines 1	10.0
5	Civil Engineer - Pipelines 2	7.0
6	Mechanical Engineer	6.0
	Electrical Engineer	6.0
8	Contract Specialist	3.0
9	Hydrologist	2.0
	Sub-Total A	65.0
Pro-B Local Staff		
1	Deputy Team Leader	22.0
2	Environmental Specialist	1.5
3	Geo-technical Engineer	1.5
4	Civil Engineer-1 for WTP1	10.0
5	Civil Engineer-2 for Reservoirs \& Towers	10.0
6	Civil Engineer-3 for Pipelines1	10.0
	Civil Engineer-4 for Pipelines2	10.0
8	Civil Engineer-5 for Pipelines3	8.0
9	Civil Engineer-6 for Pipelines4	8.0
10	Mechanical Engineer	2.0
11	Electrical Engineer	2.0
12	Instrumentation Engineer	3.0
13	Structural Engineer	7.0
14	Architect	7.0
15	Building Utilities Engineer	3.0
16	Chemist	2.0
17	Quantity Surveyor1	5.0
18	Procurement Specialist	5.0
19	Public Awareness campaign Expert	1.0
20	IEC Specialist	2.0
	Sub-Total B	120.0
Staff C. Project Office Support		
1	Assistant Engineer	20.0
2	Inspector/Surveyor	20.0
3	CAD Operator	68.0
4	GIS Specialist	3.0
5	Office Manager	22.0
6	Accountant	22.0
	Clerk	22.0
8	Office Aid	22.0
	Sub-Total C	199.0
	Total	384.0

Terms of Reference (TOR)

Construction Supervisory Services
 for

Anuradhapura North Water Supply Project Phase 2

1. The Background including the Project Summary

1.1 Background

The Government of Sri Lanka will undertake the Anuradhapura North Water Supply Project Phase 2 (the ANWSP2) with financial assistance from the Japan International Cooperation Agency (hereinafter referred to as "JICA"). Anuradhapura is located about 250 km away from Colombo. The project area of ANWSP2 covers the six (6) Divisional Secretariat Divisions (DSDs) namely Kebithigollewa, Kahatagasdigiliya, Horowpothana and Padaviya for the Wahalkada Water Supply System, and Rambewa and Medawachchiya Anuradhapura District. The location map is attached as Annex 1. The objective of the Project is to provide safe drinking water to the area which does not have access to water supply system and to increase water supply coverage by constructing surface water systems in Anuradhapura North area where the people depend on unsafe ground water which causes dental and skeletal fluorosis, Chronic Kidney Diseases (CKD) and thereby contributing to improved hygienic status and health condition in the area.

1.2 Project Summary

The Project comprises the following sub scheme:
Wahalkada Water Supply Scheme which provides drinking water supply to the four (4) Divisional Secretariat Divisions (DSDs) namely Kebithigollewa, Kahatagasdigiliya, Horowpothana and Padaviya.

A part of Mahakanadarawa Water Supply Scheme which provides drinking water supply to the three (3) Divisional Secretariat Divisions (DSDs) namely Rambewa, a small part of Mihinthale, and Medawachchiya. Main part of Mahakanadarawa Water Supply Scheme will be constructed in the Anuradhapura North water Supply Project Phase 1 (ANWSP1). Distribution sub-systems in isolated areas in Rambewa and Medawachchiya will be included in ANWSP2.

The detail components of the Project are attached as Annex 2.

1.3 Project Implementation Arrangement

The National Water Supply and Drainage Board (NWSDB) will be the Project's Implementing Agency. The Executing Agency will be the Ministry of City Planning and Water Supply.

Project Management Unit (PMU) has been set up in NWSDB for project implementation. The PMU is headed by the Project Director who is reporting to the Additional General manager of Water Supply Project [Addl. GM WSP] of NWSDB.

2. The Consulting Services

The consulting services shall be provided by an international consulting firm (hereinafter referred to as "The Consultant") in association with national consultants in compliance with the Guidelines for the Employment of Consultants under Japanese ODA Loans (April 2012).

The Anuradhapura North Water Supply Project plans to be implemented under Japanese ODA loan and the Consulting Services consists of the following parts:

Construction Supervision, Safety Matter, Environmental Matters, Technology Transfer and Awareness Programmes of Wahalkada Water Supply System.

2.1 The Objectives of the Consultancy Assignment

The objective of the consulting services assignment is to achieve and ensure the quality and efficiency of the project implementation through the proper Construction supervision, Contract administration, Public awareness campaigns, and environmental matters of Wahalkada Water Supply System and the technology transfer and training for capacity building of NWSDB staff.

2.2 Funding Source for Consultancy Services

The Government of Sri Lanka intends to use part of the proceeds of the Japanese ODA Loan No. \qquad for eligible payments for consulting services for which this TOR is issued.

2.3 The Scope of the Consulting Services

The Consultant shall perform his duties during the construction period in accordance with the contracts to be executed between NWSDB and the contractors (Packages A, B, C, D and E). FIDIC MDB Harmonized Edition (2010) complemented with the Specific Provisions as included in the Standard Bidding Documents under Japanese ODA Loans for Procurement of Works will be applied to the civil works of the Project. The Consultant shall function with the authorities and responsibilities of the role of Engineer's representative in case it is provided in the Contract Documents of this Project. In this context, the Consultant shall:
a) Act as the Engineer's Representative to execute construction supervision and contract administration services in accordance with the power and authority delegated by NWSDB
b) Review, analyse and make recommendations to the Employer concerning variations and claims which are to be ordered/issued by NWSDB;
c) Provide recommendation to NWSDB for acceptance of the Contractor's Performance security, advance payment security and required insurances.
d) Review and recommend for approval the proposal submitted by the contractors which include work program, method statements, material sources, manpower and equipment deployment. In light of Section 3.03 of Guidelines for the Employment of Consultants under Japanese ODA Loans (April 2012), the Consultant shall pay attention, in particular, to whether such proposals will meet the safety requirements set forth in the applicable laws and regulations, the specifications or other parts of the contract;
e) Make no design change at site unless any unforeseen situation.
f) Provide guidance for unforeseen matters.
g) Review, verify and further detail the design of the works, recommend to approve the Contractor's working drawings and if necessary, issue further drawings and/or give instructions to the Contractor;
h) Ensure that all the affected utility services are promptly relocated by the contractors.
i) Carry out field inspections on the contractor's setting out to ensure that the works are carried out in accordance with drawings and other design details and approve the same.
j) Direct and guide the supervising Engineering staff of the contractor to ensure adequate rate of progress and quality in the field.
k) Regularly monitor physical and financial progress against the milestones as per the contract so as to ensure completion of contract in time;
l) Supervise the works so that all the contractual requirements will be met by the contractors, including those in relation to i) quality of the works, ii) safety and iii) protection of the
environment. In light of Section 3.03 of Guidelines for the Employment of Consultants under Japanese ODA Loans (April 2012), the Consultant shall confirm that the accident prevention officer proposed by the contractor is duly assigned at the project site and that construction works are carried out according to the requirements set forth in the applicable laws and regulations, the specifications or other parts of the contract;
$\mathrm{m})$ Inspect all construction materials at site, check and verify quality test reports.
n) Supervise field tests, sampling and laboratory tests to be carried out by the contractors;
o) Develop checklist and other formats for the supervisory staff.
p) Review and approve the bar schedules submitted by the contractors.
q) Inspect the construction method, equipment to be used, workmanship and quality of work at the site.
r) Survey and measure the work output performed by the contractors and recommend to issue payment certificates such as interim payment certificates and final payment certificate as specified in the contract;
s) Coordinate the works among different contractors employed for the Project;
t) Assist NWSDB in coordinating with the external agencies including preparation of minutes of all meetings. It is very essential to have smooth continued coordination meetings with Road Authorities, Local Authorities, Utility Agencies such as Ceylon Electricity Board and Sri Lanka Telecom Ltd., NWSDB Operation and Maintenance (O\&M) Section, etc.
u) Conduct weekly progress meeting, preparation of minutes and reporting. This shall include critical review and advise on timely execution of Contractor's detail work programmes, machinery and manpower inputs, etc., and identification and advising on removal of hindrances and obstacles to smooth execution of the programmes.
v) Carry out timely reporting to NWSDB for any inconsistency in executing the works and suggest appropriate corrective measures to be applied;
w) Inspect, verify and determine claims issued by NWSDB in accordance with the civil works contract;
x) Perform the inspection of the works and recommend to issue certificates such as the Taking-Over Certificates, Performance Certificate as specified in the civil works and contract;
y) Supervise commissioning and carry out testing during commissioning;
z) Provide periodic and/or continuous inspection services during defects liability period and if any defects are noted, recommend to instruct the contractor to rectify;
aa) Check and recommend to certify as-built drawings for the parts of the works designed by the contractors, if any: Prepare and submit an operation and maintenance manual for the facilities constructed in the Project; and Prepare and submit reports to NWSDB, which are detailed in Clause 2.13 of the TOR in relation to the implementation of the Project.
bb) Prepare an efficient and effective strategy to provide water service connections to individual consumers during the construction period itself;
cc) Ensure a set up for better NRW management and maintenance;
dd) Conduct training program for O\&M staff during WTP commissioning;
ee) Prepare an asset registry,
ff) Assist to obtain approval from other organizations such as RDA, PRDA, Pradeshiya Saba, etc.,
gg) Evaluation and recommendation for approval of time extension claims, etc.,
hh) Coordination of works among the contractors engaged in the project including organizing, conducting and preparation of minutes for progress meetings, design review meetings and preparation of progress reports.
ii) Assist the Engineer in preparation of cash flow statements \& disbursement schedules
jj) All possible claims that may arise, for which notices given or not, should be identified in advance and action shall be taken to maintain detail contemporary records, as are reasonable and may be material to the claim, with the Consultant and the Contractor together with necessary signatures, etc.

2.4 Safety Measures

The Consultant shall;

a) Review the safety plans submitted by the bidders from the point of view of securing the safety during the construction (Refer to Paragraph (2), Section 4.02 Scope of the Project and of the Consulting Services of the Guidelines for the Employment of Consultants under Japanese ODA Loans, April 2012).
b) Review the Programme submitted by the contractors from the point of view of securing the safety during the construction and requires them to submit further details, if necessary.
c) Confirm that an accident prevention officer proposed by the contractor is duly assigned at the project site during the supervision of the construction works and ensure the work is carried out according to the safety plan as well as the safety measures prescribed in the Programme. If consultants recognize any questions regarding the safety measures in general including the ones mentioned above, the consultants shall require the contractors to make appropriate improvements.
d) Supervise the contractor to implement an HIV-AIDS awareness programme of the contractor certainly.

2.5 Facilitation of Implementation of Environmental Monitoring Plan (EMoP) and Resettlement Action Plan (RAP)

The Consultant shall;
a) Supervise EMP implementation and undertake regular compliance monitoring to ensure that the civil works are implemented in accordance with the EMP; and
b) Assist NWSDB staff on environmental management through on-the-job training on environmental assessment techniques, mitigation measure planning, supervision and monitoring and reporting.
c) Further, when it becomes necessary, update and/or prepare RAP in accordance with the related JICA's guidelines as necessary based on detailed design in accordance with the agreed resettlement framework, including entitlement matrix and compensation plan, coordinate with various agencies in preparing the procedures for timely land acquisition and disbursement of compensation to affected persons; and
d) Update EMP and EMoP with the related JICA's guidelines, when it becomes necessary.

2.6 Technology Transfer

The Consultant shall carry out the technology transfer as an important aspect in design, construction supervision and O\&M works. The Consultant shall provide the opportunity to NWSDB offices and staffs to be involved in the working team of the Consultant during the supervision works for their capacity building wherever possible. If requested by NWSDB, the Consultant shall brief and demonstrate the construction supervision and contract management process and procedures. The consultant shall assist NWSDB and its staff to build their capacity as part of on-the-job training under the Project.

2.7 Training for Capacity Development of NWSDB's Staff

The objectives of capacity building and development are twofold. First is to enhance the capacity/ability of the RSC ($\mathrm{NC} \mathrm{)} \mathrm{to} \mathrm{perform} \mathrm{the} \mathrm{activities} \mathrm{related} \mathrm{to} \mathrm{the} \mathrm{operation} \mathrm{and}$ maintenance of the newly constructed facilities. Second is to enhance the existing skills of key staff, as well as identified group(s) of personnel with the competencies required to manage, operate and maintain the new facilities/system thereby transforming organizational and individual potentials into actuality.

The Consultant shall:
a) Conceptualize and develop the five-year RSC(NC) Training Plan for implementation by the proposed Training Unit of the regional support centre;
b) Develop the training modules, materials and manuals for the following training programme/courses:

- The technical courses:
i) Project management;
ii) Water Treatment Plant Operations and Maintenance;
iii) Network Designs
- The non-technical courses:
i) Human Resources Management (focus on Training and Development);
ii) Public Information, Education and Communication;
iii) Trainer's Training
c) Use new technical software for design and construction of water supply systems and train the NWSDB staff for the above and all software should be handed over to NWSDB; and
d) Conduct the actual training for the identified training programmes (as enumerated) for the concerned / identified personnel of the RSC (NC) of NWSDB following the training needs analysis.

2.8 Guidance for Public Awareness Campaign

The purpose of public awareness campaign is to inform and educate the general public of the present situation of health damage in the project area caused by use of groundwater, the objectives of the proposed project, the importance of connection to a proposed water supply system under the project and payment of water tariff for sustainable operation and management of water supply facilities.

The Consultant shall:
a) Arrange the data on health damage in the project area focusing on dental and skeletal fluorosis and Chronic Kidney Diseases (CKD),
b) Analyse the demographic characteristics of the project area such as sex, age, ethnic, religion, occupation, income, coverage by water supply, sanitation and power supply, etc.,
c) Develop the strategy including approach and methodology to extend the Public Awareness Campaign which shall be prepared with considerations on gender and poverty to attain the well attendance of them.
d) Organize the public information and education campaign teams through selecting the staff mainly from NWSDB and being reinforced by the use of external resources as required,
e) Decide the assignment of respective staff in the public information and educational campaign,
f) Unify the campaign team through trial practice and brainstorming,
g) Hold the seminar/public information campaign at the date and place as scheduled at least twelve (12) times,
h) Improve \& adjust the content of the seminar according to the people's response at the previous seminar,
i) Prepare the report summarizing the public information and education campaign including the evaluation of the effect and recommendation for future extension of public awareness campaign, and
j) Raise awareness of farmers on water management.

2.9 Nature of and limit to the responsibilities, which the Consultant is to undergo

The Consultant shall perform the Services and carry out their obligations hereunder with all due diligence, efficiency and economy, in accordance with generally accepted professional techniques and practices, and shall observe sound management practices, and deploy appropriate advance technology and safe and affectivity equipment, machinery, materials, computer software and methods. The Consultants shall always act, in respect of any matter relating to this Contract or to the Services, as faithful advisers to the Employer, and shall at all times support and safeguard the Employer's legitimate interests in any dealings with sub consultants or third parties.

The Consultants shall obtain the Employer's prior approval in writing before taking any of the following actions:
a) Appointing such members of the personnel as listed in Section $\mathbf{2 . 1 1}$ merely by title but not by name;
b) Entering into a sub contract for the performance of any part of services, it being understood (a) that the selection of sub consultant and the terms and conditions of the sub contract shall have been approved in writing by the Employer prior to the execution of the sub contract, and (b) that the consultants shall remain fully liable for the performance of the services by the sub consultants and its personnel pursuant to this contract.
c) Any variation of the scope of the Consultancy Service
d) Any variation orders to the Contractor during Contract execution

In the process, it is necessary that detail diary extracts (including those of expatriate staff) are submitted to the Project Management Unit (PMU). Also during the construction stage, it is necessary that the Consultant's staff is available for supervision during Saturdays.

2.10 The Man Month Schedule and Expected Time Schedule

The team shall comprise Professional international consultants having allocated 42.5 personmonths and Professional local consultants having allocated 256.0 person-months maximum. The consultants will be engaged over 47 months duration of consulting services, including Defect Liability Period. Refer to Annex 3 for proposed Implementation Schedule.

All necessary Technical and Administrative supporting staff (having allocated 357.0 personmonths) should be provided by the consultant by referring to Annex 4.

It is the Consultant's responsibility to select the optimum team and to propose the professionals which he believes best meets the needs of NWSDB without exceeding total person months proposed for each category.

2.11 Qualification and Expertise Required and Detailed Scope of Works for Experts

Key Experts (International)

Position	Qualification	Experience
Team Leader	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Civil Engineering/ construction or PE management and Masters/or PE Qualification in a relevant field and Should be a member of recognized professional Institution.	Total Experience At least 20 years after graduation experience Project Related Experience - At least 15 years' experience out of which 10 years' experience in Water Supply projects including; a) Design b) Project Management c) Contract Management of major projects with ICB contracts - At least ten years' experience in similar water supply Projects as a Team Leader of a project more than 25 million US\$.
Water Treatment Expert	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Civil Engineering and Masters/or PE Qualification in a relevant field and Should be a member of recognized professional Institution.	Total Experience At least 15 years after graduation experience Project Related Experience - At least 8 years' experience in design of water treatment plants and at least 3 years' experience in Operation and Maintenance of Water Supply Facilities - Experience as a water treatment specialist in at least two urban water supply projects of which each having water treatment plants of capacity at least $20,000 \mathrm{~m}^{3} /$ day.
Civil Engineer (Water Transmission)	Professionally Qualified Civil Engineer and Graduate (B.Sc.) in Water Supply/ Sanitation/Civil Engineering and related field and Should be a member of recognized professional Institution.	Total Experience At least 15 years' experience Project Related Experience - At least 10 years' experience in design/ operation and maintenance of Water Supply transmission Facilities including minimum 8 years' experience in water supply design. - Experience as a Civil Engineer in at least two urban water supply projects of which each having more than 200 km transmission/distribution system. - Experience in ICB contract is desirable.

Position	Qualification	Experience
Mechanical Engineer	Professionally Qualified Mechanical Engineer Graduate (B.Sc.) in Mechanical Engineering and related field Should be a member of recognized professional Institution.	Total Experience At least 15 years Project Related Experience - At least 7 years' experience in design/ operation and maintenance of Water Supply Facilities and related field -Experience as a Mechanical Engineer in four urban water supply projects of which each contract amount is more than 5 million US\$. -Experience in ICB contract is desirable -two urban water supply projects
Electrical Engineer	Professionally .Qualified Electrical Engineer Graduate (B.Sc,) in Electrical Engineering and related field and Should be a member of recognized professional Institution.	Total Experience At least 15 years Project Related Experience - At least 7 years’ experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as an Electrical Engineer in four urban water supply projects of which each contract amount is 5 million US\$. - Experience in ICB contract -two urban water supply projects

Key Experts (Local)

Position	Qualification	Experience
Deputy Team Leader	Chartered Civil Engineer and Graduate (B.Sc.) or equivalent in Civil Engineering/ and Masters Qualification in a relevant field.	Total Experience At least 20 years after graduation experience Project Related Experience -At least 15 years’ experience combined experience in Water Supply projects including; (i) Design (ii) Project Management (iii) Contract Management of major projects with ICB contracts - At least 5 years' experience in similar water supply Projects as a Deputy Team Leader of a project more than 15
million US\$		

Position	Qualification	Experience
Civil Engineer (Reservoirs, Pumping Stations, Towers, Transmission \& Distribution)	CharteredCivil Engineer and Graduate (B.Sc.) or equivalent in Water Supply/ Sanitation/Civil Engineering and related field	Total Experience At least 15 years aftergraduation experience Project Related Experience - At least 10 years' experience in design/ operation and maintenance of Water Supply transmission Facilities - Experience as a civil Engineer in two urban water supply projects of which each contract amount is more than 5 million US\$. - Experience in ICB contract is desirable.
Mechanical Engineer	Mechanical Engineer Graduate (B.Sc.) or equivalent in Mechanical Engineering and related field	Total Experience Atleast 15years after graduation experience Project Related Experience - At least 7years' experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as a Mechanical Engineer in four urban water supplyprojects of which each contract amount is more than 5 million US\$ - Experience in ICB contract is desirable -two urban water supply projects
Electrical Engineer	Electrical Engineer Graduate (B.Sc.) or equivalent in Electrical Engineering and related field	Total Experience Atleast 15years aftergraduation experience Project Related Experience - At least 7 years'experience in design/ operation and maintenance of Water Supply Facilities and related field - Experience as an Electrical Engineer in foururban watersupplyprojects of which each contractamount is 5 million US\$. - Experience in ICB contract -two urban water supply projects

Other Experts (Local)

Position	Qualification	Experience
Procurement Specialist	Graduate in Civil Engineering (B.Sc.) or equivalent and Masters Qualification inproject management and Diploma in Procurement and construction claims	Total Experience At least 15 years after graduation experience Project Related Experience - At least 7 years' experience as a Procurement Specialist - Experience in two urban water supply projects of which each having ICB contract more than 10 million US\$. - Experience in JICA projects is
Environmental Specialist	Bachelor degree in Engineering/environmental science/Agriculture	Total Experience At least 15 years after graduation experience Project Related Experience - Not less than 6 years’ experience in environmental Assessments with reference to water pollution, waste water, sanitation, and the impact of construction works and at least two years' experience with a recognized consulting firm/National water utility Organization
Public Awareness Campaign Specialist	Bachelor degree in Social Science	Total Experience At least 10 years after graduation experience Project Related Experience - At least 2 years’ experience with a recognized consulting firm /National water utility Organization - Having experience in conducting Public awareness campaigns
IEC Specialist	Bachelor degree in Social Science	Total Experience At least 10 years after graduation experience Project Related Experience - At least 2 years' experience with a recognized consulting firm /National water utility Organization - Having experience in conducting Public awareness campaigns

Architect	Professionally qualified graduate Architect and should be a member of recognized professional institution	Total Experience - At least 10 years after graduation experience Project Related Experience - Not less than 5 years' experience in architectural buildings and industrial/ water or wastewater treatment plant plans, familiar with green building techniques \& practice on energy efficient buildings and at least 2 years' experience with a recognized consulting firm
Quantity Surveyor	Professionally qualified Quantity Surveyor with Bachelor degree or equivalent in Quantity surveyingand should be a member of recognized professional institution	Total Experience: At least 10 years after graduation experience Project Related Experience: - At least 2 years' experience in water treatment plant estimates with a recognized consulting firm//National water utility Organization Note: An input of 8 man months of a Quantity Surveyor (local) shall be allocated exclusively for the use of Planning \& Design Section in Head Office.
MicroBiologist Chemist	A graduate in the relevant field with a Master Degree in Micro- Biology/ Chemistry/ Limnology	TotalExperience: At least 10 years after graduation experience Project Related Experience - Not less than 10 years' experience in the drinking water sector specially in enumeration of Algae and other constituents/species in impounded water bodies with emphasis on Algae \& Cynobacteria control and at least five years in recognized consulting firm

2.12 Task of the Experts

2.12.1 The Tasks of the Key Experts

International Experts

The specific tasks include, but not limited to;

Position
Team Leader

1. Shall bear the overall responsibility and shall represents the project Consultant's Team in all matters relating to the performance of services, coordinating with all other consultant's staff to deliver excellent product during the stipulated time schedule.
2. Shall oversee and Supervise the Consultant's services
3. Assume direct responsibility for day-to-day consulting services including day to day management of all consultants' staff and coordination among and with them.
4. Review existing studies/documents and other resources available and formulate a best implementation approach including programmatic project schedule;
5. Contract management and administration;
6. Develop and implement quality assurance programme;
7. Recommend contract payments;
8. Review, analyse and make recommendations to the Employer concerning variations and claims which are to be ordered/issued by NWSDB;
9. Recommend to issue the commencement order to the Contractors;
10. Evaluation of time extension claims and make recommendations
11. Provide recommendation to NWSDB for acceptance of the Contractor's Performance security, advance payment security and required insurances.
12. Explain and/or adjust ambiguities and/or discrepancies in the Contract Documents and recommend to issue any necessary clarifications or instructions;
13. Review, verify and further detail the design of the works, recommend to approve the Contractors' working drawings and if necessary, issue further drawings and/or give instructions to the Contractor;
14. Review and recommend to approve the proposals submitted by the contractors
15. Make necessary design changes and amendments at site
16. Provide guidance for unforeseen matters.
17. Progress reporting
18. Prepare necessary documentation to obtain approval from all concerned authorities such as local authorities, Provincial Road Authority, Road Development Authority, Ceylon Electricity Board, Central Environmental Authority, Telecom, Police or any other related institutions for laying pipes and construction of other structures;
19. Present designs, Progress of works at agreed time schedules and milestones to NWSDB staff and other stakeholders including arranging of field trips if necessary
20. Briefly present and demonstrate the studies, surveys, design procedures, treatment process, conceptual designs, detailed designs, and contract management process and procedures to NWSDB staff
21. Prepare Asset registry;
22. Prepare institutional arrangement for $\mathrm{O} \& \mathrm{M}$;
23. Prepare training programmes for NWSDB designs, construction supervision and O\&M staff and organize and conduct the training.
24. Certify all the drawings, BOQs, Cost Estimates and specifications
25. Ensure the safety conditions at work sites
26. Supervise commissioning and carry out testing during commissioning;
27. Review O\&M manuals
28. Develop a course module on project management including project coordination, contract administration, over-all supervision over the implementation of the project and conduct 3 days Project Management Training Course for the NWSDB project staff
29. Conduct training needs analysis for RSC-NC as the basis for the training plan and arrange to conduct the identified training programmes (as enumerated) for the concerned/identified personnel of the RSC-NC of NWSDB following the training needs analysis.
Water
Treatment
Expert

Mechanical 1. Check the shop drawings submitted by the contractors Engineer
2. Assess the substitution of products proposed by the contracts

Electrical 1. Assess the power requirements and establish power availability and assist
3. Assist during the commissioning of project components
4. Assist Team Leader for preparation of O\&M manuals
5. Direct the local Mechanical Engineers in their day-to-day activities
6. Supervise the installation works of mechanical equipment
7. Attend the trial operation of mechanical equipment
8. Check the performance of an instrumentation system.
9. Support the O\&M training NWSDB staff obtaining the requirement from CEB;
2. Assist during commission of project components
3. Assist Team Leader for preparation of O\&M manuals
4. Direct the local Electrical Engineers in their day to day activities
5. Check the shop drawings submitted by the contractors
6. Assess the substitution of products proposed by the contractors
7. Supervise the installation work of Electrical equipment
8. Attend the trial operations of Electro-mechanical equipment
9. Check all the performance of an instrumentation system
10. Support the O\&M training

Position

Structural
Specialist

Main Tasks

1. Shall assist the Team Leader in all matters relating to the performance of services.
2. Shall assist the Team Leader to oversee and supervise the Consultant's services
3. Assumes direct responsibility for day-to-day consulting services including day to day management of all consultants’ staff during the absence of the team leader
4. Ensure site safety requirements
5. Conduct weekly progress meetings at sites, preparation of minutes and reporting. This shall include critical review and advice on timely execution of Contractor's detail work programmes, machinery and manpower inputs etc., and identification and advising on removal of hindrances and obstacles to smooth execution of the programmes.
6. Inspect all construction material at site, check and verify quality test reports.
7. Supervise field test, sampling and laboratory test to be carried out by the contractors;
8. Develop checklist \& other formats for the supervisory staff (NWSDB staff)
9. Review and approve the bas schedules submitted by the contractors.
10. Inspect the construction method, equipment to be used workmanship at the sites
11. Ensure Quality assurance and control of plant, materials and workmanships at the sites.
12. Supervise the commissioning and carry out testing during commission;
13. Prepare O\&M manuals and construction record drawings (As Built Drawings)
14. Prepare an efficient and effective strategy to provide water service connections to individual consumers during the construction period itself
15. Ensure a set up for better NRW management and maintenance
16. Provide periodic and/or continuous inspection of services during defects liability period and if any defects are noted, recommend to instruct to contractor to rectify;
17. Identify the necessary soil investigations required for the structural designs and administer such work
18. Liaise with other specialists to ensure consistent philosophy and integrated approach to the design
19. Provide necessary advises to carry out all construction works in order to comply with the design codes

Position Civil Engineer (Intake \& Water Treatment Plant)

Civil Engineer
(Reservoirs, Pumping Stations, Towers, Transmission \& Distribution)

Mechanical
Engineer

Electrical
Engineer

Main Tasks

1. Assist the Deputy Team Leader in contract supervision of the water treatment plants including water intake facilities
2. Assist the Deputy Team Leader in inspection all construction materials at site, check and verify quality test reports of the water treatment including water intake facilities.
3. Assist the Deputy team leader in supervise field tests, sampling and laboratory test to be carried out by the contractors of the water treatment plant including water intake facilities;
4. Assist the Deputy Team Leader in developing a checklist \& other formats for the supervisory staff. (NWSDB Staff) of the water treatment plant including water intake facilities;
5. Assist the Deputy Team Leader in reviewing and approving the bar schedules submitted by the contractors of the water treatment plant including water intake facilities;
6. Assist the Deputy Team Leader in inspecting the construction method, equipment to be used, workmanship at the sites of the water treatment plant including water intake facilities;
7. Assist the Deputy Team Leader in quality assurance and control of plant, materials and workmanship at sites of the water treatment plant including water intake facilities;
8. Assist the Deputy Team Leader in supervising the commissioning and carrying out of testing during commissioning of the water treatment plant including water intake facilities;
9. Assist the Deputy Team Leader in contract supervision of the Reservoirs, PS, Towers Transmission \& Distribution System;
10. Assist the Deputy Team Leader in inspecting all construction materials, at site; check and verify quality test reports of Reservoirs, PS, Towers Transmission \& Distribution System;
11. Assist the Deputy Team Leader in supervising field tests, sampling and laboratory test to be carried out by the contractors of the Reservoirs, PS, Tower Transmission \& Distribution System;
12. Assist the Deputy Team Leader in developing a checklist \& other formats for the supervisory staff (NWSDB staff) of the Reservoirs, PS, Tower Transmission \& Distribution System;
13. Assist the Deputy Team Leader in reviewing and approving the bar schedules submitted by the contractors of Reservoirs, PS, Tower Transmission \& Distribution System;
14. Assist the Deputy Team Leader in inspecting the construction method, equipment to be used, workmanship at the sites of the Reservoirs, PS, Tower Transmission \& Distribution System;
15. Assist the Deputy Team Leader in quality assurance and control of plant, materials and workmanship at sites of the Reservoirs, PS, Tower Transmission \& Distribution System;
16. Assist the Deputy Team Leader in supervising the commissioning and carry out testing during commissioning of the Reservoirs, PS, Tower Transmission \& Distribution System;
17. Check the shop drawings submitted by the contractors
18. Assess the substitution of products proposed by the contractors
19. Supervisethe installation work of mechanical equipment
20. Attend the trial operations and testing's of mechanical equipment
21. Supportthe O\&Mtraining
22. Check the shop drawings submitted by the contractors
23. Assessment of the power requirements and establish power availability and assist NWSDB staff obtaining the requirement from CEB;
24. Assist during commissioning of project components

Main Tasks
4. Assist Team Leader for preparation of O\&M manuals
5. Assess the substitution of products proposed by the contractors
6. Supervise the installation work of Electrical equipment
7. Attend the trial operation of Electro-mechanical equipment
8. Check the performance of a instrumentation system
9. Support the O\&M training

2.12.2 The Tasks of the other Experts

Position
Environmental
Specialist
Procurement
Specialist

1. Update Environmental management Plan (EMP)
2. Prepare programs and strategies to improve/protect these catchments with short term/long term perspectives in consultation with other experts
3. Prepare pre-qualification requirements and evaluation;
4. Prepare bidding documents compliant with JICA's latest standard bidding requirements
5. Design post-qualification criteria which should comply with JICA's guidelines
6. Organize and identify with NWSDB staff in contract packaging and preparing procurement time schedules for each contract package in consultation with project staff
7. Prepare sample Evaluation Reports to ensure JICA's and GOSL requirements are satisfied
8. Assist the TEC members during evaluation

Architect 1. Supervise and confirm that all water treatment plants, waste water treatment plants, pump houses and intakes, landscaping treatment plants, towers and intake facilities shall be constructed as per specifications.
2. Supervise the contractor to follow the specification for interior decorations including interior lighting, selecting furniture for plant offices, colour coding and painting of structures, exterior lighting etc.
3. Design necessary buffer zones and other architectural features for noise and odour control
Quantity

1. Confirmation of work norms and material/day work schedule

Surveyor
Public
Awareness
Campaign
Specialist
2. Checking relevant documents for contractors' claims and variations
3. Prepare of cost estimates

1. Analyse the demographic characteristics of the project area such as sex, age, ethnic, occupation, income, coverage by water supply, sanitation and power supply, etc.
2. Arrange the data on health damage in the project area focusing on dental and skeletal fluorosis and chronic kidney diseases (CKD)
3. Develop the strategy including approach and methodology to extend the public awareness campaign
4. Organize the public information and education campaign teams through selecting the staff mainly from NWSB and being reinforced by the use of external resources as required
5. Decide the assignment of respective staff in the public information and education campaign
6. Unify the campaign team through trial practice and brainstorming
7. Design, implement, and monitor the public awareness campaigns for farmers and arrange site visits to farmer organizations leaders and other relevant stake holders for inspection of water treatment plants.
8. Develop methods of mobilizing community participation in the design, management, construction, and O\&M of community water supply and sanitation;
9. Conduct public awareness campaigns / seminar at the date and places as scheduled at least twelve (12) times on issues related to water conservation,

Position Main Tasks	
	reduction of NRW, efficient irrigation water management practices for farmers, importance of pipe born water, water related diseases, catchment protection, preventing water pollution and sanitation in household level.
10. Improve and adjust the content of the seminar according to the people’s response	
at the previous seminar.	

2.13 The Reports and Documents

Within the scope of consulting supervisory services, the Consultant shall prepare and submit reports and documents to Project Director/Project Manager in charge in NWSDB as shown in Table 2.13. The Consultant shall provide electronic copy of each of these reports.

Table 2.13 Reports and Documents

Stage	Type of Report	Timing	No. of
Consultancy Services	Monthly Progress Report	Every month (by the $10^{\text {th }}$ day of next month	Copies 10
Construction Supervision	Operation and maintenance	One month after the	10
	Manual	commissioning of the plant	
	Construction Completion Report (and As-Built drawing, if any)	Within 1 month after completion of Commissioning	10
	Project Completion Report (for submission to JICA)	At the end of the services	10
Training	Training Plan	At appropriate timing in accordance with the Inception Report	10
	Training Execution and Evaluation Report	Within 1 month after training	10
Other Report	Technical Report	As required or upon request	As

Contents to be included in each report are as follows:
a) Monthly Progress Report:

Shall briefly describe all the activities carried out and progress for the previous month. Problems encountered or anticipated will be clearly stated, together with actions to be taken or recommendations on remedial measures for correction. Also indicates the work to be performed during the coming month.
b) Operation and Maintenance Manual:

Shall contain technical procedures for the appropriate operation and maintenance of all project facilities
c) Construction CompletionReport:

Shall comprise full size As-Built drawings for all the structures and facilities completed in a format appropriate to the Employer, and the final details of the construction completed together with all data, records material tests results, field books
d) Project Completion Report (for Submission to JICA):

Shall comprise a full report of the project according to JICA requirements

3. Client's input and Counterpart Personnel

A certain range of arrangements and services will be provided by NWSDB to the Consultant for smooth implementation of the Consulting Services. In this context, NWSDB will:

(1) Report and data

Make available to the Consultant existing reports and data available with NWSDB related to the Project as required.
(2) Office Space

During the construction stage, the consultants shall have their own offices with necessary equipment, furniture and utility and shall accommodate the office space for NWSDB project staff and counterpart officials. The Consultant's requirement for
office space, office rental including necessary equipment, furniture and utilities, should be clearly stated in the proposal with cost for providing such facilities. Such equipment and furniture shall be handed over to employer after completion of the project.
(3) Cooperation and counterpart staff

The Client shall provide the following counterpart officials for effective implementation of the Consulting Services:

01 No. Engineer (civil)
01 No. Engineering Assistant (civil)
(4) Assistance and exemption

Use its best efforts to ensure that the assistance and exemption, as described in the Standard Request for Proposal issued by JICA, will be provided to the Consultant, in relation to

- Work permit and such other documents;
- Entry and exit visas, residence permits, exchange permits and such other documents
- Clearance through customs;
- Instruction and information to officials, agent and representatives of the Sri Lankan Government;
- Exemption from any requirement for registration to practice their profession;
- Privilege pursuant to the applicable law in Sri Lanka.

ANNEX 1. LOCATION MAP

ANNEX 2. PROJECT COMPONENTS

COMPONENT ITEMS		QUANTITY
<<Lot A>> Intake, WTP, Reservoirs		
Intake	Capacity:	28,800m ${ }^{3} / \mathrm{d}$
WTP	Capacity:	$15,000 \mathrm{~m}^{3} / \mathrm{d}$
Elevated Tanks and Ground Sumps		
Elevated Tanks and Reservoirs		16 nos.
same for Isolated Area		5 nos.
<<Lot B>> Transmission and Distribution Pipe		
Pipe Works		
Transmission Main		126,100 m
Transmission Sub-main		24,300 m
Distribution Main		326,700 m
Pipe Bridges		$1,955 \mathrm{~m}$
Flowmeters		35 nos.
<<Lot C>> Distribution Sub-System		
Pipe Works		
Distribution Sub-systems		330,000 m
Distribution Sub-systems in Isolated Areas		$390,740 \mathrm{~m}$
<<Lot D>> Vehicles		
Vehicles		7 types 16 nos.
<<Lot E>> Heavy Duty Machines		
Heavy Duty Machines		7 types 13 nos.

The TOR shall cover Phase $2 \mathrm{C} / \mathrm{S}$ of the schedule below:

		2015					201	16					201						2018					2019					2020	Month	
	12345	667	$1 \cdot$	9101112		234	56	78	4.10	101112		234	56	78	410	1112		$23 \cdot 46$	567	18.	$910111{ }^{12}$	121	2 3145	56	78	[10 11112		23145			
	-																												,		
<<Phase 2 D/D \& T/A for Wahalkada System>>																															
Selection of Consultant (3)																														3	
Execution of Consulting Services										111	1.	14	41	$\underline{1+}$																21	
Preparation of Detailed Design including preparation	bdding docu	ments	s (10)				11	11	111	111	1																			10	
Preparation of Prequalification Documents (2)	\square							1																						2	
Prequalification (2) (Lot A and Lot B)																														2	
Bidding (3) (Lot A)																														3	
Technical Evaluation (1)														1																1	
Financial Evaluation (1)															1															1	
<<Phase 2 C/S for Wahalkada System>>																															
Selection of Consultant for C/S (20)												111	11	11																12	
																													111111		
Execution of Consulting Services (35)																														35	
Construction Schedule		2015					201	16					201						2018					2019					2020		
Lot A: Intake, WTP, and Reservoirs	111			11															1911				1111	12 12				1.111	$\begin{gathered} 9 \\ \|1\| 1 \mid \end{gathered}$	30	
Lot B: Transmission and Distribution Main	11			11								11						111	10		1111		$\begin{array}{\|l\|l\|l\|} \hline 1 & 1 & 1 \\ \hline \end{array}$	12 $1: 1 \mid 1$		1\| 1	: 1			11 $\begin{array}{l\|l\|l\|l\|l\|} \hline 11 & \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$	33
Lot C: Distribution Sub-system	111			111															10					12					11	33	
Lot D: Vehicles	114											11						1111	$\begin{gathered} 6 \\ 111 \\ \hline \end{gathered}$		111		11			111		111	0	6	
Lot E: Heavy Duty Machines	1H1			1								11						$1\|\|1\| 1$	$\begin{array}{r} 6 \\ 11 \\ \hline \end{array}$	1	11		11		11	11				6	

ANNEX 4. ESTIMATED PERSON-MONTHS FOR CONSULTING SERVICES

	Position	PM
Pro-A Foreign Staff		
1	Team Leader	33.0
2	Water Treatment Specialist	2.5
3	Civil Engineer - WTP	0.0
4	Civil Engineer - Pipelines 1	0.0
5	Civil Engineer - Pipelines 2	0.0
6	Mechanical Engineer	3.5
7	Electrical Engineer	3.5
8	Contract Specialist	0.0
9	Hydrologist	0.0
	Sub-Total A	42.5
Pro-B Local Staff		
1	Deputy Team Leader	36.0
2	Environmental Specialist	3.5
3	Geo-technical Engineer	0.0
4	Civil Engineer-1 for WTP1	30.0
5	Civil Engineer-2 for Reservoirs \& Towers	30.0
6	Civil Engineer-3 for Pipelines1	35.0
7	Civil Engineer-4 for Pipelines2	30.0
8	Civil Engineer-5 for Pipelines3	0.0
9	Civil Engineer-6 for Pipelines4	0.0
10	Mechanical Engineer	4.5
11	Electrical Engineer	4.5
12	Instrumentation Engineer	1.5
13	Structural Engineer	2.0
14	Architect	4.0
15	Building Utilities Engineer	1.0
16	Chemist	2.0
17	Quantity Surveyor1	35.0
18	Quantity Surveyor2	29.0
19	Procurement Specialist	1.0
20	Training Expert	1.0
21	Public Awareness campaign Expert	3.0
22	IEC Specialist	3.0
	Sub-Total B	256.0
Staff C. Project Office Support		
1	Assistant Engineer	35.0
2	Inspector/Surveyor	147.0
3	CAD Operator	35.0
4	GIS Specialist	0.0
5	Office Manager	35.0
6	Accountant	35.0
7	Clerk	35.0
8	Office Aid	35.0
	Sub-Total C	357.0
	Total	655.5

Manning Schedule of the Consulting Services for Phase 2

Appendix 4.3-1

\section*{Base Cost of Cpnstruction Work of Phase 2 Wahalkada Water Supply System
 | 1 USD $=$ | 120.1 | JPY |
| :--- | :--- | :--- |
| 1 USD $=$ | 139.0 | LKR |
| 1 LKR $=$ | 0.864 | JPY |}

$\begin{array}{\|l\|} \hline \text { Packag } \\ \mathrm{e} \\ \hline \end{array}$	Item	Specifications	Amount			Remarks
			JPY	LKR	Total JPY	
Grand Total			5,817,879,000	9,586,664,000	14,100,755,000	
A	Lot A: Intake, WTP, Reservoirs		1,371,127,000	3,979,613,000	4,809,512,000	
B	Lot B: Transmission and Distribution Pipe		4,109,327,000	3,061,695,000	6,754,631,000	
C	Lot C: Distribution Sub-system		337,425,000	2,466,266,000	2,468,278,000	
D	Lot D: Vehicles		0	63,440,000	54,812,000	
E	Lot E: Heavy Duty Machines		0	15,650,000	13,522,000	
A	<<Lot A>> Intake, WTP, Reservoirs		1,371,127,000	3,979,613,000	4,809,512,000	
A-1	Intake		79,025,000	208,104,000	258,827,000	
A-2	WTP		782,331,000	1,370,674,000	1,966,593,000	
A-3	Elevated Tanks and Ground Sumps		509,771,000	2,400,835,000	2,584,092,000	
B	<<Lot B>>Transmission and Distribution Pipe		4,109,327,000	3,061,695,000	6,754,631,000	
B-1	Transmission Sub-main		2,478,743,000	1,207,722,000	3,522,215,000	
B-2			63,894,000	91,625,000	143,058,000	
B-3	Distribution Main		1,563,998,000	1,662,969,000	3,000,803,000	
B-4	Miscellaneous works		2,692,000	99,379,000	88,555,000	
C	<<Lot C>>Distribution Sub-System		337,425,000	2,466,266,000	2,468,278,000	
C-1	Distribution Sub-system		135,116,000	954,706,000	959,982,000	
C-2	Miscellaneous Works		1,795,000	90,668,000	80,132,000	
C-3	ex-Bowser Area in Phase1		73,743,000	489,792,000	496,923,000	
C-4	ex-Bowser Area in Phase2		126,771,000	931,100,000	931,241,000	
D	<<Lot D>> Vehicles		0	63,440,000	54,812,000	
D-1	Vehicles	7 types 16nos.	0	63,440,000	54,812,000	
E	<<Lot E>> Heavy Duty Machines		0	15,650,000	13,522,000	
E-1	Heavy Duty Machines	7 types 13 nos.	0	15,650,000	13,522,000	

Lot A-1
Lot A-1

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-1	Intake						79,025,000	208,104,000	258,827,000	
A-1-1	Civil Works for Intake		LS	1			1,681,000	173,441,000	151,534,000	
A-1-2	Mechanical Works for Intake		LS	1			52,844,000	20,636,000	70,674,000	
A-1-3	Electrical Works for Intake		LS	1			24,500,000	14,027,000	36,619,000	
A-1-1	Civil Works for Intake						1,681,000	173,441,000	151,534,000	
A-1-1	Civil Works for Intake		Ls	1			1,681,000	173,441,000	151,534,000	
A-1-2	Mechanical Works for Intake						52,844,000	20,636,000	70,674,000	
A-1-2	Mechanical Works for Intake		Ls	1			52,844,000	20,636,000	70,674,000	
A-1-3	Electrical Works for Intake						24,500,000	14,027,000	36,619,000	
A-1-3	Electrical Works for Intake		Ls	1			24,500,000	14,027,000	36,619,000	

Lot A-2

		Specifications			Unit Price		Amount			
Code	Item	Specifications	Unit	Quantiy	FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-2	WTP						782,331,000	1,370,674,000	1,966,593,000	
A-2-1	Civil Works for WTP		Ls	1			62,932,000	1,031,550,000	954,191,000	
A-2-2	Mechanical Works for WTP		Ls	1			490,488,000	179,566,000	645,633,000	
A-2-3	Electrical Works for WTP		Ls	1			228,911,000	159,558,000	366,769,000	
A-2-1	Civil Works for WTP						62,932,000	1,031,550,000	954,192,000	
A-2-1-1	Site Work (including Intake Site)		Ls	1			0	278,863,000	240,938,000	
A-2-1-2	Receiving Well/Distribution Chamb		Ls	1			0	15,112,000	13,057,000	
A-2-1-3	Flocculation and DAF		Ls	1			0	65,657.000	56,728,000	
A-2-1-4	Rapid Sand Filter		Ls	1			0	76,800,000	66,355,000	
A-2-1-5	Granual Activated Carbon (GAC) F		Ls	1			0	109,162,000	94,316,000	
A-2-1-6	Clear Water Tank and Pump House		Ls	1			0	140,837,000	121,683,000	
A-2-1-7	Backwash Recycling Tank and Slud	Tank	Ls	1			0	41,760,000	36,081,000	
A-2-1-8	Sludge Thickener and Pump House		Ls	1			0	20,947.000	18,098,000	
A-2-1-9	Sludge Drying Bed		LS	1			0	47,352,000	40,912,000	
A-2-1-10	Lagoon		Ls	1			0	13,830,000	11,949,000	
A-2-1-11	Inplant Building Works		Ls	1			0	180,391,000	155,858,000	
A-2-1-12	Inplant Pipe Works		Ls	1			62,932,000	40,839,000	98,217,000	

Lot A-2

Lot A-3, Lot A-3-1

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-3	Elevated Tanks and Ground Sumps						509,771,000	2,400,835,000	2,584,093,000	
A-3-1	Elevated Tanks and Ground Sumps						479,394,000	2,029,433,000	2,232,824,000	
A-3-2	Additional Elevated Tank for Phase 1						17,357,000	179,849,000	172,747,000	
A-3-3	Additional Elevated Tank for Phase 2						13,020,000	191,553,000	178,522,000	
A-3-1	Elevated Tanks and Ground Sumps						479,394,000	2,029,433,000	2,232,824,000	
A-3-1-1	Reservoir Construction		Ls	1	0		0	1,178,512,000	1,018,234,000	
A-3-1-2	Site Work		Ls	1	0		0	122,630,000	105,952,000	
A-3-1-3	Internal Building Work		Ls	1	0		0	474,200,000	409,709,000	
A-3-1-4	Internal Pipe Works		Ls	1	0		39,457,000	24,639,000	60,745,000	
A-3-1-5	Yard Pipe Works		Ls	1	0		26,049,000	24,141,000	46,907,000	
A-3-1-6	Mechanical and Electrical Work		Ls	1	0		413,888,000	205,311,000	591,277,000	
A-3-1-1	Reservoir Construction						0	1,178,512,000	1,018,232,000	
A-3-1-1-1	Kabithigollewa	$\begin{aligned} & \hline \text { Ground } \\ & \mathrm{V}=500 \mathrm{~m} 3 \\ & \hline \end{aligned}$	Ls	1	0	42,879,553	0	42,880,000	37,048,000	
A-3-1-1-2	Kahatagollewa	$\begin{aligned} & \begin{array}{l} \text { Ground } \\ \mathrm{V}=1,000 \mathrm{~m} 3 \end{array} \end{aligned}$	Ls	1	0	65,184,312	0	65,184,000	56,319,000	
A-3-1-1-3	Weerasole	$\begin{aligned} & \text { Ground } \\ & \mathrm{V}=1,500 \mathrm{~m} 3 \end{aligned}$	Ls	1	0	76,996,839	0	76,997,000	66,525,000	
A-3-1-1-4	Horowpothana	Ground $\mathrm{V}=1,000 \mathrm{~m} 3$	Ls	1	0	65,184,312	0	65,184,000	56,319,000	
A-3-1-1-5	Kahatagasdigiliya	$\begin{aligned} & \text { Ground } \\ & \mathrm{V}=500 \mathrm{~m} 3 \end{aligned}$	Ls	1	0	42,879,553	0	42,880,000	37,048,000	
A-3-1-1-6	Wahalkada	$\begin{aligned} & \text { Elevated } \\ & \mathrm{V}=500 \mathrm{~m} 3 \end{aligned}$	Ls	1	0	71,792,683	0	71,793,000	62,029,000	
A-3-1-1-7	Kebithigollewa	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=750 \mathrm{~m} 3 \end{array}$	Ls	1	0	93,050,393	0	93,050,000	80,395,000	
A-3-1-1-8	Keb-Kah	Elevated $\mathrm{V}=250 \mathrm{~m} 3$	Ls	1	0	50,534,972	0	50,535,000	43,662,000	

Lot A-3-1

Lot A-3-1

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-3-1-2-11	Hamillewa	Elevated only 1250m3	m3	1,250	0	9,433	0	11,791,000	10,187,000	
A-3-1-2-12	Rathmalgahawewa	Elevated only 500m3	m3	500	0	9,433	0	4,717,000	4,075,000	
A-3-1-3	Internal Building Work						0	474,200,000	409,709,000	
A-3-1-3-1	Kabithigollewa		LS	1			0	62,400,000	53,914,000	
A-3-1-3-2	Kahatagollewa		LS	1			0	37,100,000	32,054,000	
A-3-1-3-3	Horowpothana		LS	1			0	79,720,000	68,878,000	
A-3-1-3-4	Kahatagasdigiliya		LS	1			0	41,200,000	35,597,000	
A-3-1-3-5	Weerasole		LS	1			0	33,580,000	29,013,000	
A-3-1-3-6	Wahalkada		LS	1			0	144,400,000	124,762,000	
A-3-1-3-7	Keb-Kah		LS	1			0	8,500,000	7,344,000	
A-3-1-3-8	Bogahawewa		Ls	1			0	33,300,000	28,771,000	
A-3-1-3-9	Horowpothana North		LS	1			0	8,500,000	7,344,000	
A-3-1-3-10	Horowpothana West		LS	1			0	8,500,000	7,344,000	
A-3-1-3-11	Hamillewa		LS	1			0	8,500,000	7,344,000	
A-3-1-3-12	Rathmalgahawewa		LS	1			0	8,500,000	7,344,000	
A-3-1-4	Internal Pipe Works						39,457,000	24,639,000	60,745,000	
A-3-1-4-1	Kabithigollewa	Ground $V=500 \mathrm{~m} 3$	m3	500	2,302	3,061	1,151,000	1,531,000	2,474,000	
A-3-1-4-2	Kahatagollewa	$\begin{aligned} & \hline \text { Ground } \\ & \mathrm{V}=1,000 \mathrm{~m} 3 \\ & \hline \end{aligned}$	m3	1,000	2,302	3,061	2,302,000	3,061,000	4,947,000	
A-3-1-4-3	Weerasole	$\begin{aligned} & \hline \begin{array}{l} \text { Ground } \\ \mathrm{V}=1,500 \mathrm{~m} 3 \end{array} \\ & \hline \end{aligned}$	m3	1,500	2,302	3,061	3,453,000	4,592,000	7,420,000	

Lot A-3-1

Lot A-3-1

Lot A-3-1

Code	Item		Specifications	Unit	Quantity	Unit Price		Amount			Remarks	
			FC(JPY)			LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)			
A-3-1-6-13	Keb-Kah	Mechanical		Elevated only 250m3	m3	250	5,367	3,130	1,342,000	783,000	2,019,000	
A-3-1-6-14	Keb-Kah	Electrical	Elevated only 250m3	m3	250	6,526	2,978	1,632,000	745,000	2,276,000		
A-3-1-6-15	Bogahawewa	Mechanical	$\begin{array}{\|l} \hline \text { Elevated only } \\ 2,000 \mathrm{~m} 3 \\ \hline \end{array}$	m3	2,000	5,367	3,130	10,734,000	6,260,000	16,143,000		
A-3-1-6-16	Bogahawewa	Electrical	$\begin{array}{\|l} \hline \text { Elevated only } \\ 2,000 \mathrm{~m} 3 \\ \hline \end{array}$	m3	2,000	6,526	2,978	13,052,000	5,956,000	18,198,000		
A-3-1-6-17	Horowpothana North	Mechanical	Elevated only 250m3	m3	250	5,367	3,130	1,342,000	783,000	2,019,000		
A-3-1-6-18	Horowpothana North	Electrical	Elevated only 250m3	m3	250	6,526	2,978	1,632,000	745,000	2,276,000		
A-3-1-6-19	Horowpothana West	Mechanical	Elevated only 750m3	m3	750	5,367	3,130	4,025,000	2,348,000	6,054,000		
A-3-1-6-20	Horowpothana West	Electrical	Elevated only 750m3	m3	750	6,526	2,978	4,895,000	2,234,000	6,825,000		
A-3-1-6-21	Hamillewa	Mechanical	Elevated only 1250m3	m3	1,250	5,367	3,130	6,709,000	3,913,000	10,090,000		
A-3-1-6-22	Hamillewa	Electrical	Elevated only 1250m3	m3	1,250	6,526	2,978	8,158,000	3,723,000	11,375,000		
A-3-1-6-23	Rathmalgahawewa	Mechanical	Elevated only 500m3	m3	500	5,367	3,130	2,684,000	1,565,000	4,036,000		
A-3-1-6-24	Rathmalgahawewa	Electrical	Elevated only 500m3	m3	500	6,526	2,978	3,263,000	1,489,000	4,549,000		

Lot A-3-1-3 Internal buiding work

Code	Item			Quantity	Unit Price		Amount			
Code	Item	Specifications	Unit	Quantiy	FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	Remarks
A-3-1-3-1	Kebithigollewa		Ls	1			0	62,400,000	53,914,000	
1)	Guard House		Ls	1	0	2100000	0	2100000	1814000	
2)	AE Office		Ls	1	0	13000000	0	1300000	1232000	
3)	Pump House	$17 \times 6.0 \mathrm{~m}$								
3)			m2	102	0	100,000	0	10,200,000	8,813,000	
4)	Generator Building		15	1	0	7400000	0	7400000	6.394000	
	Workshop									
$5)$			Ls	1	0	11,500,000	0	11,500,000	9,936,000	
6)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
7)	Caretaker Quarters									
7			Ls	1	0	6,300,000	0	6,300,000	5,443,000	
8)	Staff Quarters		Ls	1	0	9,700,000	0	9,700,000	8,381,000	
A-3-1-3-2	Kahatagollewa		Is	1			0	37100,000	32054000	
	Generator Building									
1)			Ls	1	0	7,400,000	0	7,400,000	6,394,000	
2)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
3)	Pump House	26.5x8.0m								
			m2	212	0	100,000	0	21,200,000	18,317,000	
4)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-1-3-3	Horowpothana		Ls	1			0	$79,720,000$	68878000	
	Guard House									
1)			Ls	1	0	2,100,000	0	2,100,000	1,814,000	
2)	AE Office		Ls	1	0	13,000,000	0	13,000,000	11,232,000	
3)	Pump House	$34.4 \times 8.0 \mathrm{~m}$	m2	275				27.52000		
			m2	275		100,000	0	27,520,000	23,777,000	
4)	Generator Building		Ls	1	0	7,400,000	0	7,400,000	6,394,000	
5)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
	Workshop									
			Ls	1	0	11,500,000	0	11,500,000	9,936,000	
7)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	

Lot A-3-1-3 Internal buiding work

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remark
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
8)	Staff Quarters		Ls	1	0	9,700,000	0	9,700,000	8,381,000	
A-3-1-3-4	Kahatagasdigiliya		Ls	1			0	41,200,000	35,597,000	
1)	Guard House		Ls	1	0	2,100,000	0	2,100,000	1,814,000	
2)	OIC Office		Ls	1	0	13,000,000	0	13,000,000	11,232,000	
3)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	
4)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
5)	Generator Building		Ls	1	0	7,400,000	0	7,400,000	6,394,000	
6)	Pump House	$17 \times 6 \mathrm{~m}$	m2	102	0	100,000	0	10,200,000	8,813,000	
A-3-1-3-5	Weerasole		Ls				0	33,580,000	29,013,000	
1)	Pump House	$22.1 \times 8 \mathrm{~m}$	m2	177	0	100,000	0	17,680,000	15,276,000	
2)	Generator Building		Ls	1	0	7,400,000	0	7,400,000	6,394,000	
3)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
4)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-1-3-6	Wahalkada		Ls	1			0	144,400,000	124,762,000	
1)	Guard House		Ls	1	0	2,100,000	0	2,100,000	1,814,000	
2)	Caretaker Quarters		Ls	4	0	6,300,000	0	25,200,000	21,773,000	
3)	Warehouse		Ls	1	0	10,900,000	0	10,900,000	9,418,000	
4)	Chlorination Building		Ls	1	0	8,400,000	0	8,400,000	7,258,000	
5)	Chemical Building		Ls	1	0	22,600,000	0	22,600,000	19,526,000	
6)	Pump Station	$33.5 \times 8 \mathrm{~m}$	m2	268	0	100,000	0	26,800,000	23,155,000	
7)	Generator Building		Ls	1	0	7,400,000	0	7,400,000	6,394,000	
8)	Administration Building		Ls	1	0	41,000,000	0	41,000,000	35,424,000	

Lot A－3－1－3 Internal buiding work

	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \mathrm{H}^{-} \\ & \mathrm{N} \end{aligned}$	8 8 8 -1 8 -1	8 8 0 7 7 7	O O - N N N N	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{H}_{1} \\ & 0 \\ & -i \end{aligned}$	O O N N N $\underset{\sim}{-1}$	8 8 0 $-i$ - $-i$		8 8 0 -1 0 0 ∞ 0	O O^{2} H^{-} N N	8 0 $-i$ -8 $-i$			$\begin{aligned} & \mathrm{O}_{1} \\ & 0 \\ & -i \\ & 0 \\ & -i \end{aligned}$		8 0 + 	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & -i \end{aligned}$			8 8 0 -1 8 $-i$		
	8 8 0 0 0 0	O 0 0 \mathbf{N} 	8 0 0 0 0 0 0		8 0 0 0 i i	8 0 0 0 0 0 n 7	O O O N N	0 0 0 0 0 0	8 0 0 0 0 0 0	8 8 0 0 0 0 0		8 0 0 0 0 0 0	8 0 0 0 0 0	8 0 0 0 N N	8 0 0 0 0 0	8 8 0 0 0 0 0	8 8 0 0 N N	8 0 0 0 0 0 0	8 0 0 0 0 0	8 0 0 0 N N	O 	
	\bigcirc	－	－	－	\bigcirc																	
		8 0 0 0 N N	$\begin{aligned} & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{1}{2} \\ & \text { N } \end{aligned}$	8 8 0 8 8 0 3 7 -1	O O O O N N	O 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8 0 0 0 N N	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		O O O O N N	8 0 0 0 0 0 0		8 0 0 0 N N	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8 0 0 0 N N	8 0 0 0 0 0 0	
		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													
	\cdots	\checkmark	\checkmark	\cdots	\checkmark	\cdots	\checkmark	\cdots	\checkmark	\neg	\neg	\checkmark	\cdots	\checkmark	\cdots	\checkmark	\checkmark	\checkmark	\checkmark	\neg	\checkmark	
$\stackrel{\#}{5}$	0	\sim	0	0	0	0	9	9	0	0	0	0	9	0	9	9	9	9	9	0	0	
$\begin{aligned} & \underset{ভ}{\Xi} \\ & \pm= \end{aligned}$									$\begin{aligned} & \frac{\pi}{0} \\ & \frac{\pi}{0} \\ & \frac{\pi}{3} \\ & \frac{\pi}{\sigma} \\ & \stackrel{\pi}{\omega} \end{aligned}$													
$\frac{0}{0}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\prime}} \\ & \stackrel{1}{1} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\sim}$	ล	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{1}} \\ & \stackrel{1}{1} \\ & \dot{\mu} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\sim}$	ล	ल	چ	$\stackrel{1}{6}$		$\stackrel{\sim}{\sim}$	へ	$\begin{aligned} & \text { O-1 } \\ & \text { ले } \\ & \underset{\text { M }}{4} \end{aligned}$	$\stackrel{\sim}{\sim}$	へ		$\stackrel{\sim}{\sim}$	へ	$\begin{aligned} & \text { N} \\ & \text { M} \\ & \underset{\sim}{c} \\ & \text { M} \end{aligned}$	$\stackrel{\sim}{\sim}$	ล	

Lot A-3-2

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remark
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-3-2	Additional Elevated Tank for Phase 1						17,357,000	179,849,000	172,746,000	
A-3-2-1	Reservoir Construction		Ls	1			0	143,585,000	124,057,000	
A-3-2-2	Site Work		Ls	1			0	9,433,000	8,150,000	
A-3-2-3	Internal Building Work		Ls	1			0	17,000,000	14,688,000	
A-3-2-4	Internal Pipe Works		Ls	1			3,423,000	1,279,000	4,528,000	
A-3-2-5	Yard Pipe Works		Ls	1			2,040,000	2,444,000	4,152,000	
A-3-2-6	Mechanical and Electrical Work		Ls	1			11,894,000	6,108,000	17,171,000	
A-3-2-1	Reservoir Construction						0	143,585,000	124,057,000	
	Kallanchiya	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=750 \mathrm{~m} 3 \end{array}$	Ls	1	0	93,050,393	0	93,050,000	80,395,000	
	Konakumbukwewa	$\begin{aligned} & \text { Elevated } \\ & \mathrm{V}=250 \mathrm{~m} 3 \end{aligned}$	Ls	1	0	50,534,972	0	50,535,000	43,662,000	
A-3-2-2	Site Work						0	9,433,000	8,150,000	
	Kallanchiya	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=750 \mathrm{~m} 3 \end{array}$	m3	750	0	9,433	0	7,075,000	6,113,000	
	Konakumbukwewa	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=250 \mathrm{~m} 3 \\ \hline \end{array}$	m3	250	0	9,433	0	2,358,000	2,037,000	
A-3-2-3	Internal Building Work						0	17,000,000	14,688,000	
A-3-2-3-1	Kallanchiya						0	8,500,000	7,344,000	
1)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
2)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-2-3-2	Konakumbukwewa						0	8,500,000	7,344,000	
1)	Chlorination Building		Ls	1	0	2,200,000	0	2,200,000	1,901,000	
2)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	

Lot A-3-2

Lot A-3-3

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-3-3	Additional Reservoir for Phase 2						13,020,000	191,553,000	178,522,000	
A-3-3-1	Reservoir Construction						0	151,605,000	130,987,000	
A-3-3-2	Site Work						0	7,074,000	6,112,000	
A-3-3-3	Internal Building Work						0	25,500,000	22,032,000	
A-3-3-4	Internal Pipe Works						2,568,000	960,000	3,397,000	
A-3-3-5	Yard Pipe Works						1,530,000	1,833,000	3,114,000	
A-3-3-6	Mechanical and Electrical Work						8,922,000	4,581,000	12,880,000	
A-3-3-1	Reservoir Construction						0	151,605,000	130,986,000	
A-3-3-1-1	North Area	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=250 \mathrm{~m} 3 \end{array}$	Ls	1	0	50,534,972	0	50,535,000	43,662,000	
A-3-3-1-2	Central Area	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=250 \mathrm{~m} 3 \end{array}$	Ls	1	0	50,534,972	0	50,535,000	43,662,000	
A-3-3-1-3	South Area	$\begin{aligned} & \text { Elevated } \\ & \mathrm{V}=250 \mathrm{~m} 3 \end{aligned}$	Ls	1	0	50,534,972	0	50,535,000	43,662,000	
A-3-3-2	Site Work						0	7,074,000	6,111,000	
A-3-3-2-1	North Area	Elevated $\mathrm{V}=250 \mathrm{~m} 3$	m3	250	0	9,433	0	2,358,000	2,037,000	
A-3-3-2-2	Central Area	$\begin{array}{\|l\|} \hline \text { Elevated } \\ \mathrm{V}=250 \mathrm{~m} 3 \\ \hline \end{array}$	m3	250	0	9,433	0	2,358,000	2,037,000	
A-3-3-2-3	South Area	$\begin{aligned} & \text { Elevated } \\ & \mathrm{V}=250 \mathrm{~m} 3 \\ & \hline \end{aligned}$	m3	250	0	9,433	0	2,358,000	2,037,000	

Lot A-3-3

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
A-3-3-3	Internal Building Work						0	25,500,000	22,032,000	
A-3-3-3-1	North Area						0	8,500,000	7,344,000	
1)	Chlorination Building		LS	1	0	2,200,000	0	2,200,000	1,901,000	
2)	Caretaker Quarters		LS	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-3-3-2	Central Area						0	8,500,000	7,344,000	
1)	Chlorination Building		LS	1	0	2,200,000	0	2,200,000	1,901,000	
2)	Caretaker Quarters		LS	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-3-3-3	South Area						0	8,500,000	7,344,000	
1)	Chlorination Building		LS	1	0	2,200,000	0	2,200,000	1,901,000	
2)	Caretaker Quarters		Ls	1	0	6,300,000	0	6,300,000	5,443,000	
A-3-3-4	Internal Pipe Works						2,568,000	960,000	3,396,000	
A-3-3-4-1	North Area	Elevated $\mathrm{V}=250 \mathrm{~m} 3$	m3	250	3,423	1,278	856,000	320,000	1,132,000	
A-3-3-4-2	Central Area	Elevated $\mathrm{V}=250 \mathrm{~m} 3$	m3	250	3,423	1,278	856,000	320,000	1,132,000	
A-3-3-4-3	South Area	Elevated $\mathrm{V}=250 \mathrm{~m} 3$	m3	250	3,423	1,278	856,000	320,000	1,132,000	

Lot A-3-3

Lot B							$\begin{aligned} & 1 \text { USD= } \\ & 1 \text { USD= } \\ & 1 \text { LKR= } \end{aligned}$	$\begin{aligned} & 120.1 \\ & 139.0 \\ & 0.864 \end{aligned}$	JPY LKR JPY	
Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remark
Code	Hem	Specifications	Unit	Quantity	FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
B	<<Lot B>> Transmission and Distribution Main						4,109,327,000	3,061,695,000	6,754,631,000	
B-1	Transmission Main						2,478,743,000	1,207,722,000	3,522,215,000	
B-2	Transmission Sub-main						63,894,000	91,625,000	143,058,000	
B-3	Distribution Main						1,563,998,000	1,662,969,000	3,000,803,000	
B-4	Miscellaneous works						2,692,000	99,379,000	88,555,000	
B-1	Transmission Main						2,478,742,542	1,207,722,048	3,522,214,000	
B-1(A)	Transmission Main A						683,474,000	365,837,969	999,558,000	
B-1(B)	Transmission Main B						1,795,268,542	841,884,079	2,522,656,000	
B-2	Transmission Sub Main						63,894,000	91,625,062	143,058,000	
B-2(A)	Transmission Sub-Main A						367,000	691,510	964,000	
B-2(B)	Transmission Sub-Main B						63,527,000	90,933,552	142,094,000	

Lot B

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remark
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
B-3	Distribution Main						1,563,998,000	1,662,969,388	3,000,803,000	
B-3(A)	Distribution Main A						454,633,000	587,465,720	962,203,000	
B-3(B)	Distribution Main B						1,109,365,000	1,075,503,668	2,038,600,000	
B-4	Miscellaneous works						2,692,000	99,379,000	88,556,000	
B-4-1	Provision of Bonds and Insurances						0	10,084,000	8,713,000	
B-4-2	Provision and maintenance of site o						0	12,160,000	10,506,000	
B-4-3	Provision of pipe stores						0	16,807,000	14,521,000	
B-4-4	Provision of site safety						0	38,929,000	33,635,000	
B-4-5	Quality assurance and material test						2,692,000	2,584,000	4,925,000	
B-4-6	Progress documents and drawings						0	2,597,000	2,244,000	
B-4-7	Miscellaneous						0	16,218,000	14,012,000	

Lot B-1

${ }^{\text {meas }}$

Lot B-2

Lot B-2

Lot B-3

Lot B-3

Lot B-3

Lot C-1(A)

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
C-1	Distribution Sub System						135,116,000	954,705,640	959,981,000	
C-1(A)	Distribution Sub System (A)		Ls	1			47,535,000	335,933,096	337,781,000	
C-1(B)	Distribution Sub System (B)		LS	1			87,581,000	618,772,544	622,200,000	
C-1(A)	Distribution Sub System (A)						47,535,000	335,933,096	337,781,000	
C-1(A)1	Distribution Sub-main (A)	NWSDB	m	85,700			31,592,000	220,980,000	222,519,000	
C-1(A)2	Road Reinstatement (A)	NWSDB	Ls	1			3,254,000	25,325,784	25,135,000	
C-1(A)3	Distribution Sub-main (A)	CBO	m	31,300			11,501,000	80,381,000	80,950,000	
C-1(A)4	Road Reinstatement (A)	CBO	Ls	1			1,188,000	9,246,312	9,177,000	
C-1(A)1	Distribution Sub-main (A)	NWSDB	m	85,700			31,592,000	220,980,000	222,520,000	
C-1(A)1-1	PVC ND200/OD225		m	0	917.00	7,044.00	0	0	0	
C-1(A)1-2	PVC ND150/OD 160		m	1,100	618.00	4,596.00	680,000	5,055,600	5,048,000	
C-1(A)1-3	PVC ND100/OD 110		m	13,100	430.00	3,059.00	5,633,000	40,072,900	40,256,000	
C-1(A)1-4	PVC ND 75/ OD 90		m	19,900	396.00	2,782.00	7,880,000	55,361,800	55,713,000	
C-1(A)1-5	PVC ND 50/ OD 63		m	22,200	303.00	2,088.00	6,727,000	46,353,600	46,777,000	
C-1(A)1-6	PVC ND200/OD225 T600		m	0	738.00	5,474.00	0	0	0	
C-1(A)1-7	PVC ND150/OD 160 T600		m	0	521.00	3,749.00	0	0	0	
C-1(A)1-8	PVC ND100/OD 110 T600		m	13,100	408.00	2,873.00	5,345,000	37,636,300	37,863,000	
C-1(A)1-9	PVC ND 75/ OD 90 T600		m	8,100	366.00	2,526.00	2,965,000	20,460,600	20,643,000	
C-1(A)1-10	PVC ND 50/ OD 63 T600		m	8,200	288.00	1,956.00	2,362,000	16,039,200	16,220,000	

Lot C-1(A)

Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			Remarks
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
$\mathrm{C}-1(\mathrm{~A}) 2$	Restoration of Road Pavement	NWSDB					3,254,000	25,325,784	25,135,000	
C-1(A)2-1	Restoration of Pavement (carriageway) RDA/PRDA		m2	4,114	568	4,419	2,337,000	18,179,766	18,044,000	
C-1(A)2-2	Restoration of Pavement (Car	$\begin{array}{\|l} \text { JC/PS } \\ 4 \% \text { of pipeline } \\ \hline \end{array}$	m2	4,114	223	1,737	917,000	7,146,018	7,091,000	
C-1(A)3	Distribution Sub-main (A)	CBO	m	31,300			11,501,000	80,381,000	80,950,000	
C-1(A)3-1	PVC ND200/OD22		m	0	917.00	7,044.00	0	0	0	
C-1(A)3-2	PVC ND150/OD 160		m	600	618.00	4,596.00	371,000	2,757,600	2,754,000	
C-1(A)3-3	PVC ND100/OD 110		m	2,800	430.00	3,059.00	1,204,000	8,565,200	8,604,000	
C-1(A)3-4	PVC ND 75/ OD 90		m	10,300	396.00	2,782.00	4,079,000	28,654,600	28,837,000	
C-1(A)3-5	PVC ND 50/ OD 63		m	7,700	303.00	2,088.00	2,333,000	16,077,600	16,224,000	
C-1(A)3-6	PVC ND200/OD225 T600		m	0	738.00	5,474.00	0	0	0	
C-1(A)3-7	PVC ND150/OD 160 T600		m	0	521.00	3,749.00	0	0	0	
C-1(A)3-8	PVC ND100/OD 110 T600		m	2,800	408.00	2,873.00	1,142,000	8,044,400	8,092,000	
C-1(A)3-9	PVC ND 75/ OD 90 T600		m	4,200	366.00	2,526.00	1,537,000	10,609,200	10,703,000	
C-1(A)3-10	PVC ND 50/ OD 63 T600		m	2,900	288.00	1,956.00	835,000	5,672,400	5,736,000	
C-1(A)4	Restoration of Road Pavement	CBO					1,188,000	9,246,312	9,177,000	
C-1(A)4-1	Restoration of Pavement (carriageway) RDA/PRDA		m2	1,502	568	4,419	853,000	6,637,338	6,588,000	
$\mathrm{C}-1(\mathrm{~A}) 4-2$	Restoration of Pavement (Carriageway) UC/PS		m2	1,502	223	1,737	335,000	2,608,974	2,589,000	

Lot C-1 (B)

Lot C-1 (B)

Lot C-3

Lot C-3

Lot C-4

Lot C-4

Lot C-4

Lot C-4

Lot D: Vehicles							$\begin{aligned} & 1 \text { USD= } \\ & 1 \text { USD= } \\ & 1 \text { LKR= } \end{aligned}$	120.1 JPY 139.0 LKR 0.864 JPY		$\begin{gathered} \text { Remark } \\ \mathrm{s} \end{gathered}$
Code	Item	Specifications	Unit	Quantity	Unit Price		Amount			
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
D-1	Vehicles						0	63,440,000	54,812,000	
D-1-1	Crew Cab		Nr.	2	0	6,630,000	0	13,260,000	11,457,000	
D-1-2	Single Cab		Nr .	1	0	3,320,000	0	3,320,000	2,868,000	
D-1-3	Double Cab		Nr.	2	0	6,630,000	0	13,260,000	11,457,000	
D-1-4	Water Bowser		Nr.	2	0	7,030,000	0	14,060,000	12,148,000	
D-1-5	Motor Cycles		Nr.	7	0	220,000	0	1,540,000	1,331,000	
D-1-6	Lorry with Jib Crane	capacity: 5 ton	Nr .	1	0	8,000,000	0	8,000,000	6,912,000	
D-1-7	Lorry	with enclosed cargo bed		1	0	10,000,000	0	10,000,000	8,640,000	

Lot E: Heavy Duty Machines							$\begin{aligned} & 1 \text { USD= } \\ & 1 \text { USD= } \\ & 1 \text { LKR= } \end{aligned}$	$\begin{array}{ll} 120.1 & \text { JPY } \\ 139.0 & \text { LKR } \\ 0.864 & \text { JPY } \end{array}$		$\begin{gathered} \text { Remark } \\ \mathrm{s} \end{gathered}$
Code	Item	Specifications	Unit	Quantity	Unit	rice		Amount		
					FC(JPY)	LC(LKR)	FC(JPY)	LC(LKR)	Total (JPY)	
E-1	Heavy Duty Machines						0	15,650,000	13,522,000	
E-1-1	Asphalt Cutters		Nr.	2	0	630,000	0	1,260,000	1,089,000	
E-1-2	Tapping Machines		Nr.	2	0	80,000	0	160,000	138,000	
E-1-3	Compactors		Nr.	2	0	330,000	0	660,000	570,000	
E-1-4	Vibrating Hammers		Nr.	2	0	330,000	0	660,000	570,000	
E-1-5	Portable Generators		Nr.	3	0	800,000	0	2,400,000	2,074,000	
E-1-6	Water Meter Test Bench		Nr.	1	0	3,320,000	0	3,320,000	2,868,000	
E-1-7	Mini-Backhoe		Nr .	1	0	7,190,000	0	7,190,000	6,212,000	

Non-Eligible Work by NWSDB

Non-Eligible Wahalkada - 1

Summary

coiliom	${ }_{\text {Fsispl }}^{\text {sipy } \text { Cost }}$		${ }_{\text {F/S }}^{\text {Laymg Cost }}$ Sts		Fs	${ }_{\text {Tosal }}^{\text {Tsis }}$	Rato
							1.701.70 and and 3.55 3.55$\|$
			$\begin{gathered} 1.989 \\ \hline 1.355 \\ \hline 135 \end{gathered}$	$\begin{gathered} 7,569 \\ \hline 6.859 \\ \hline, 6759 \end{gathered}$	$\begin{aligned} & 26,453 \\ & 20,873 \\ & 16,709 \end{aligned}$		${ }_{1}^{1.58}$

${ }^{\text {lem }} 0$	${ }_{\text {Fsis }}{ }^{\text {suppy Cost }}$ Sts		$\mathrm{Fs}^{\text {Laxing Cost }}$ Sts		FIS	${ }_{\text {Tolal }}^{\text {Sos }}$	Rato

Transmission Line

Item	Supply Cost									Laying Cost										$\begin{aligned} & \text { 1RS= } \\ & \hline \begin{array}{c} \text { TOTAL } \\ \text { PRTICE } \\ \text { (LKR) } \end{array} \\ & \hline \end{aligned}$	0.61 JPY	
ID OD	CIF Price	10\%	Conv LKR	Filting \&Val	Inland Trans	Supply Price	Contractor ОН (7\%)	Total Supoly	NWSDB	Laying	Fittings	Exc.	Earth work	Dewatering	Bedding \&	Rock Allm	total	$\underset{\text { Contractor }}{\text { OH }}$	Total		Unit Price	
	US\$	Discount	130.00			Suppraice						omn				50\%	Laying				Yen	LKR
HDPE 50050											${ }^{30 \%}{ }_{869}$											
$500 \quad 560$	52.71	137.44	17,867	4,467	1,340	23,674	1,657	25,331	22,176		869	697				349	1,915	517	2,431	27,762	14,552	3,907
450	121.91	109.72	14263	3,566	1,070	${ }^{18,898}$	1,323	20,221	16,632		848	581				291 214	1,720 1,250 1	464 340	2,184	22,405	11,639	3,325 263
$400 \quad 450$	99.90	89.91	11687	2,922	${ }^{877}$	15,485	1,084	16,569	9,519		618 59	${ }_{413}^{427}$				214 207	1,259 1,179	340	+1,598	18,168	9,519	2,563
350 300 400 355	77.88	70.09 5547	7111	2,278 1803 18	683 541	$\begin{array}{r}12,072 \\ 9,555 \\ \hline\end{array}$	845	12,917 10,223	¢,774		559 481	413 401				201	$1,1,083$	292	${ }_{1}^{1,375}$	+11.598	7,444 5,909	2,211 1,911
$250 \quad 280$	38.23	34.40	4472	1,118	335	5,925	415	6,340	3,514		364	324				162	850	230	1,080	7,420	3,685	1,379
200250	30.45	27.40	3562	891	267	4,720	330	5,050	3,306		296	264				132	692	187	879	5,929	2,937	1,114
$150 \quad 180$	15.87	14.29	1857	464	139	2,461	172	2,633	1,788		227	224				112	563	152	715	3,348	1,554	800
$100 \quad 110$	7.68	6.91				1,190		1,273			182	190								1,866		597
$75 \quad 90$	4.05	3.64	473	118	35	627	44	671	527		180	130				65	375	101	476	1,147	423	453
PVC Pipe				20\%							30\%											
$250 \quad 280$			4140	828		4,968	348	5,316	4140		219.7	338				169	726.7	196	923	6,239	232	5,859
200 225 150 160			3462 1254 1	${ }_{6}^{692}$		4,154	291	4,445	$\begin{array}{r}3462 \\ \hline 125 \\ \hline 1\end{array}$		170.3	338				169	${ }_{59}^{677.3}$	183	860 753	5,305	202 113	4,974
$150 \quad 160$			1254	251		1,505	105	1,610	1254		124.8	312				156	592.8	160	753	2,363	113	2,178
$100 \quad 110$			601	120		721	50	772	601		96.2	234				117	447.2	121	568	1,340	73	1,220
$75 \quad 90$			396	79		475	33	508	336		80.6	215				107.5	403.1	109	512	1,020	61	
$50 \quad 63$			265	53		318	22	340	265		78	117				58.5	253.5	68	322	662	39	598
${ }_{400}{ }^{\text {N16 HDPE }}$																						
$350 \quad 400$	116.82	105.14	13667	3,417	1,025	18,109	1,268	19,376	9,519		559	413				207	+1,179	318	${ }_{1}^{1,497}$	20,873	11,098	3,163 2,680
$300 \quad 355$	92.45	83.20	10816	2,704	811	14,331	1,003	15,334	6,774		481	401				201	1,083	292	1,375	16,709	8,800	2,283

ltem				Supply Co									Laying Cos						1RS=	0.904	
		CIF Price				upply \& layng										total				Unit Price	
ID	OD		Fittings \&Valves	Clearance \& Trans 5\%	Supply Price	transport,loadin g,unloading,inve stment cost .storage.protec	$\begin{gathered} \text { Total } \\ \text { Supply } \end{gathered}$	NWSDB Rate (re	Laying	Fittings \&Valves 35%	Excavation Comn	Earth work supports	Dewatering	Bedding \& surrounding	Rock allowanc e 50%	Laying	Contractor OH (27\%)	Total Install	PRICE Supply \& Install(LKR	Yen	LKR
HDPE Pipe			35\%																		
500	560	20,178	7,062	1,362	28,602	5,720	34,322		1,690	591.5	2,177	480.80	155.00	1,792	1,089	7,975	2,153	10,128	44,450	29,607	11,699
450		${ }^{16,112}$	5,639	1,088	22,839		27,406		1,514	529.9	2,090	${ }^{442.80}$	148.80	1,709	1,045	7,480	2,019	9,499		23,831	
400	450	${ }^{13,026}$	4,559	879	18,464	3,693	22,157		1,281	448.35	1,233	428.00	137.80	1,607	617	5,752	1,553	7,305	29,462	19,216	8,205
350	400	10,497	3,674	709	14,880	2,976	17,855		1,106	387.1	1,109	413.40	124.00	1,583	555	5,277	1,425	6,702	24,557	15,595	7,306
300	355	8,154	2,854	550	11,558	2,312	13,870		1,034	361.9	1,109	401.60	124.00	1,349	555	4,934	1,332	6,266	20,136	12,257	6,578
	315	6,403	2,241	432	9,076	1,815	10,891		849	297.15	924	390.00	103.40	1,237	462	4,263	1,151	5,413	${ }^{16,305}$	9,691	5,585
250	280	5,053	1,769	341	7,163	1,433	8,596		804	281.4	924	378.20	103.40	1,174	462	4,127	1,114	5,241	${ }^{13,837}$	7,779	5,232
200	250	4,010	1,404	271	5,685	1,137	6,822		722	252.7	853	369.40	95.40	1,157	427	3,876	1,047	4,923	11,744	6,276	4,802
	225	3,251	1,138	219	4,608	${ }^{922}$	5,530		697	243.95	853	${ }^{363.60}$	95.40	948	${ }^{427}$	3,627	979	4,607	10,137	5,171	4,417
150	180	2,087	730	141	2,958	592	3,549		616	215.6	792	348.80	88.60	831	396	3,288	888	4,176	7,725	3,483	3,872
	160	1,642	575	111	2,328	466	2,793		601	210.35	792	343.00	88.60	794	396	3,225	871	4,096	6,889	2,850	3,736
100	125	1,006	352	68	1,426	285	1,711		458	160.3	616	328.40	68.80	785	308	2,725	736	3,460	5,171	1,874	3,098
	110	787	275	53	1,115	223	1,338		450	157.5	616	328.40	68.80	785	308	2,714	733	3,446	4,785	1,565	3,053
75	90	528	185	36	749	150	898		366	128.1	504	386.00	56.40	771	252	2,464	665	3,129	4,027	1,160	2,744
PVC Pipe			25\%																		
250	280 225	4175	1,044		5,219	1,044	6,263 3888		517 387	180.95	760	381.20	${ }_{5}^{67.60}$	$\begin{array}{r}1174 \\ 948 \\ \hline 18\end{array}$	380	3,461	934 749	4,395 3 3	10,658	5,970	4,054
200 150	225 160	2592 1350	648 3		3,240	648 338	3,888 2,026		387 299	135.45 104.65	580 464	381.20 351.80	51.60 41.40	948 794	290	$\begin{array}{r}2,773 \\ \hline\end{array}$	749	3,522	7,410	3,813	3,192 2.574
100	110 110	573	143 148		+1,686	143	-859		217	75.95	348	${ }_{351.80}$	31.00	785	174	1,983	535	2,518	3,377	${ }_{1,077}$	${ }_{2,186}^{2,574}$
75	90	432	108		540	108	648		209	73.15	348	322.40	31.00	771	174	1,929	521	2,449	3,097	886	2,117
50	63	219	55		274	55	329		177	61.95	299	347.40	26.60	532	150	1,593	430	2,024	2,352	555	1,739
HDPE PIPE	PE100	SDR11 PN	35\%																		
400	450	19991	6,997							473.9	1233	428.00	137.80	1709			1,607		41,564	29,001	9,483
350 300	400 355	15431 11995	5,401 4,198	1,042 810	21,874 17003	4,375 3,401	26,248 20.403		1172 1100	410.2 385	1109 1109	413.40 401.60	124.00 124.00	1583 1349	555 555	5,366	1,449 1 1356	6,815	33,063 36783	22,517	8,155
	355	1995	4,198																		7,259

Distribution Line

Supply
Asian countries with out Malaysia
2015 NWSDB Rate Book
PVC type 1000
HDPE
For Transmission 30% of rate book allowcation was added additiona 5% to cater the Chambers.(DI)(pipe laying away from the
shorder) Fistribution 40% of rate book allowcation was added additiona 10% to cater the Chambers.(DI)(pipe laying away from the shoulder)
prc
For Transmission 20% of rate book allowcation was added additiona 5% to cater the Chambers.(DI)(pipe laying away from the sholder)
For Distribution 35\% of rate book allowcation was added additiona 10% to cater the Chambers.(DI)(pipe laying away from the shoulder)

material,ramming,(98\% compaction) and disposal of surplus excavated material
Earth work supports \& dewatering considered 20% according to site survey.
Bedding \& surrounding rate anaylized
$\underset{\text { HDP }}{\substack{\text { H I rans }}}$
he shoulder \% of rate book allowcation was added adationa 5% to cater the Chambers.(For Ul pipes)Hipe laying away from
For Distribution 40% of rate book allowcation was added additiona 10% to cater the Chambers.(DI)(pipe laying away from the
shoulder)

the shoulder
For Distribution 40% of rate book allowcation was added additiona 10% to cater the Chambers.(DI)(pipe laying away from the

CHAPTER 6

FINANCIAL AND ECONOMIC CONSIDERATIONS

STATEMENT OF COMPREHENSIVE INCOME

Year ended 31 December 2014

		Budget 2014	$\begin{gathered} \text { Actual } \\ 2014 \end{gathered}$	$\begin{gathered} \text { Actual } \\ 2013 \end{gathered}$
	Note	Rs.	Rs.	Rs.
Revenue	7	18,733,888,000	18,710,049,680	17,074,986,476
Cost of Sales	8	$(10,993,514,984)$	$(11,325,829,471)$	$(10,015,137,052)$
Gross Profit		7,740,373,016	7,384,220,209	7,059,849,424
Other Operating Income and Gains	9	2,475,745,000	1,443,777,097	1,195,405,502
Administrative Expenses	10	$(6,311,835,016)$	$(5,985,331,888)$	(5,831,427,723)
Other Operating Expenses	11	$(490,000,000)$	$(334,370,432)$	(559,425,320)
Operating Profit / (Loss)		3,414,283,000	2,508,294,987	1,864,401,883
Finance Income	12	145,000,000	213,239,303	225,687,464
Finance Cost	13	(1,237,834,000)	$(1,242,530,161)$	$(1,039,762,873)$
Profit / (Loss) before Tax		2,321,449,000	1,479,004,129	1,050,326,475
Provision for Income Taxation	14	$(60,000,000)$	$(53,113,301)$	$(47,466,069)$
Profit / (Loss) for the Year		2,261,449,000	1,425,890,828	1,002,860,406

Other Comprehensive Income for the Year, Net of Tax \qquad
\qquad
\qquad
Total Comprehensive Income for the Year
$\underline{\underline{2,261,449,000} \xlongequal{\mathbf{1 , 4 2 5 , 8 9 0 , 8 2 8}} \xlongequal{1,002,860,406}}$

Accounting Policies \& Notes from pages 6 to 27 form an integral part of these Financial Statements.

STATEMENT OF COMPREHENSIVE INCOME

Year ended 31 December 2012

		Budget 2012	$\begin{gathered} \text { Actual } \\ 2012 \end{gathered}$	Actual 2011
	Notes	Rs.	Rs.	Rs.
Revenue	8	14,759,465,860	14,344,205,499	12,609,703,240
Cost of Sales	9	(10,224,592,139)	(8,821,797,602)	(7,470,490,082)
Gross Profit		4,534,873,721	5,522,407,897	5,139,213,158
Other Operating Income and Gains	10	1,384,558,140	1,586,511,700	1,318,540,370
Administrative Expenses	11	$(5,126,575,861)$	$(5,848,136,492)$	$(4,680,820,504)$
Other Operating Expenses	12	$(432,894,000)$	$(54,474,810)$	(227,425,798)
Operating Profit / (Loss)		359,962,000	1,206,308,295	1,549,507,226
Finance Income	14	100,000,000	213,955,983	131,257,102
Finance Cost	13	$(2,100,000,000)$	(1,013,244,742)	$(943,355,146)$
Profit / (Loss) before tax		$(1,640,038,000)$	407,019,536	737,409,181
Taxation	15	$(38,000,000)$	$(40,217,024)$	(53,055,544)
Profit / (Loss) for the Year		(1,678,038,000)	366,802,512	684,353,637

Other Comprehensive Income for the Year, Net of Taxes
Total Comprehensive Income for the Year

-	-	-
$(1,678,038,000)$	366,802,512	684,353,637

Accounting Policies \& Notes from pages 6 to 31 form an integral part of these Financial Statements.

STATEMENT OF FINANCIAL POSITION

As at 31 December 2014

D. Thotawatte

Addl.G.M.(Finance)
The Board of Directors is responsible for the preparation and presentation of these Financial Statements

K. A. Ansar	B.W.R.Balasuriya
Chairman	General Manager
Accounting Policies \& Notes from pages 6 to 27 form an integral part of these Financial Statements.	
Colombo	
20th March 2015	

As at 31 December 2012

		$\underset{\text { Rs. }}{2012}$	$\begin{gathered} 2011 \\ \text { Rs. } \end{gathered}$	$\begin{gathered} 2010 \\ \text { Rs. } \end{gathered}$
Assets				
Non- Current Assets	Notes			
Property , Plant \& Equipments	31	104,138,121,929	84,358,595,809	73,488,501,348
Intangible Assets	17	153,038,825	204,051,766	255,064,708
Capital Work in Progress	16	103,647,170,880	93,616,616,133	75,122,041,709
Other Financial assets	18	37,818,865	47,021,257	65,483,233
Total Non-Current Assets		207,976,150,498	178,226,284,966	148,931,090,998
Current Assets				
Non Operating Assets		117,763,828	129,519,607	186,528,287
Inventories	19	3,193,201,350	2,942,958,858	2,888,139,263
Trade \& Other Receivables	20	4,930,179,819	4,442,510,374	3,953,334,109
Deposits \& Advances	21	3,496,450,351	4,456,408,204	5,573,160,188
Investments	22	12,341,312	892,090,141	357,413,810
Cash \& Cash Equivalents	23	1,874,266,329	810,401,456	1,415,660,310
Total Current Assets		13,624,202,989	13,673,888,639	14,374,235,967
Total Assets		221,600,353,487	191,900,173,605	163,305,326,963
Equity and Liabilities				
Equity				
Assets taken over from Government Dept.	24	185,480,387	185,480,387	185,480,387
Government Grants	25	77,931,820,155	69,440,023,265	62,617,514,691
Capital Grants	26	116,361,732,845	94,049,872,568	78,517,957,742
Staff Welfare Fund	27	14,415,579	13,935,577	13,468,272
Retained Earnings		(15,412,753,303)	(12,733,326,604)	(12,920,392,765)
Total Equity		179,080,695,663	150,955,985,193	128,414,028,327
Non-Current Liabilities				
Loan Payable	28	29,011,510,716	27,838,903,108	23,070,625,176
Other Deferred Liabilities	29	2,152,080,886	2,528,998,643	2,485,297,289
Total Non-Current Liabilities		31,163,591,602	30,367,901,751	25,555,922,465
Current Liabilities				
Trade \& Other Payables	30	4,923,021,889	5,290,853,161	3,654,779,563
Loan Capital Payable		3,592,784,161	2,687,799,521	2,362,323,996
Loan Interest Payable		2,768,276,863	2,464,625,111	3,157,126,784
Non Operating Liabilities		71,983,310	133,008,868	161,145,829
Total Current Liabilities		11,356,066,223	10,576,286,661	9,335,376,172
Total Equity and Liabilities		221,600,353,487	191,900,173,605	163,305,326,963

D. Thotawatte

Addl.G.M.(Finance \& Commercial)

The Board of Directors is responsible for the preparation and presentation of these financial statements

$$
\begin{aligned}
& \begin{array}{l}
\text { K. Hettiarachchi } \\
\text { Chairman }
\end{array} \begin{array}{c}
\text { B.W.R.Balasuriya } \\
\text { General Manager }
\end{array} \\
& \text { Accounting Policies \& Notes from pages } 6 \text { to } 31 \text { form an integral part of these Financial Statements. } \\
& \text { Colombo } \\
& \text { 5th of February } 2014
\end{aligned}
$$

STATEMENT OF CASH FLOW

Year ended 31 December 2014

	Note	$\begin{gathered} 2014 \\ \text { Rs. } \\ \hline \end{gathered}$	$\begin{gathered} 2013 \\ \text { Rs. } \\ \hline \end{gathered}$
Cash Flows From / (Used in) Operating Activities			
Net Profit/(Loss) before Tax		1,479,004,129	1,050,326,475
Adjustments for			
Interest Income	13	$(213,239,303)$	$(225,687,464)$
(Profit)/Loss on disposal of Fixed Assets		$(1,540,413)$	$(14,647)$
Depreciation	10.2	2,730,436,009	2,586,090,059
Amortization of Intangible Assets	10.2	293,841	-
Grant amortization against depreciation	10.2	$(699,693,512)$	$(590,253,350)$
Revaluation surplus	35	$(53,710,538)$	
Retiring gratuity provision	29.1	227,136,696	241,659,234
Opening Balance Adjustments		25,126.00	-
Interest Expense	13	1,242,530,161	1,039,762,873
Operating Profit before Working Capital Changes		4,711,242,197	4,101,883,179
(Increase)/Decrease in Inventories		(1,874,070,539)	$(607,663,128)$
(Increase)/Decrease in Debtors, Rece'bles \& Deposits		$(5,402,599,585)$	(1,264,090,309)
Increase/(Decrease) in Creditors \& Provisions		1,756,947,297	335,176,667
Cash Generated from Operations		(808,480,630)	2,565,306,409
Tax Paid	14	$(53,113,301)$	$(47,466,069)$
Gratuity Paid	11	$(227,136,696)$	(241,659,234)
Net Cash from Operating Activities		(1,088,730,627)	2,276,181,106
Cash Flows from/(used) in Investing Activities			
Investments in Fixed Assets \& Work-In-Progress		(31,492,384,463)	$(21,594,999,438)$
Withdrawal of other financial assets		8,197,324	6,810,864
Sale proceeds for disposal assets		5,613,335	51,000
Investment Income Received		216,449,698	240,834,475
(Investment) / Withdrawl of Investments		96,707,679	$(328,628,877)$
Net Cash Flows used in Investing Activities		(31,165,416,426)	$(21,675,931,977)$
Cash Flows from/(used in) Financing Activities			
Government Grant during the Period		7,768,323,405	5,147,344,801
Capital Grant during the period		23,177,800,978	13,530,554,067
New Loans		5,569,216,314	4,213,780,952
Loan Repayments		(1,030,498,375)	$(200,741,478)$
Interest Paid		$(1,871,942,868)$	(1,376,381,658)
VAT payments through treasury funds		$(482,110,508)$	(1,909,195,386)
		33,130,788,946	19,405,361,298
Net Increase in Cash \& Cash Equivalents		876,641,892	5,610,428
Cash \& Cash Equivalents at the begining of the year		1,879,876,757	1,874,266,329
Cash \& Cash Equivalents at the end of the year		2,756,518,649	1,879,876,757

[^1]
CASH FLOW STATEMENT

Year ended 31 December 2012

	$\begin{gathered} 2012 \\ \text { Rs. } \end{gathered}$	$\begin{gathered} 2011 \\ \text { Rs. } \end{gathered}$
Cash Flows From / (Used in) Operating Activities		
Net Profit/(Loss) before Tax	407,019,536	737,409,181
Adjustments for		
Interest Income	$(213,955,983)$	$(131,257,102)$
Profit/Loss on disposal of Fixed Assets	3,689,147	1,010,820
Depreciation	2,026,525,175	1,997,682,527
Revaluation loss	776,836,147	474,261,491
Grant amortization against depreciation	$(336,788,311)$	$(277,796,256)$
Retiring gratuity provision	$(146,349,076)$	216,756,879
Prior Year Adjustments	$(76,516,584)$	$(496,354,003)$
Non conversion adjustment	534,440,243	$(466,168)$
Interest Expense	1,013,244,742	943,355,146
Operating Profit before Working Capital Changes	3,988,145,035	3,464,602,516
(Increase)/Decrease in Inventories	$(250,242,493)$	$(54,819,595)$
(Increase)/Decrease in Debtors, Rece'bles \& Deposits	509,984,138	685,915,163
Increase/(Decrease) in Creditors \& Provisions	$(463,739,399)$	1,615,810,241
Cash Generated from Operations	3,784,147,282	5,711,508,326
Tax Paid	$(40,217,024)$	$(53,055,544)$
Gratuity Paid	$(195,686,112)$	$(180,929,130)$
Net Cash from Operating Activities	3,548,244,145	5,477,523,652
Cash Flows from/(used) in Investing Activities		
Investments in Fixed Assets	$(26,099,213,596)$	$(13,347,264,249)$
Investments in Work-In-Progress	$(10,030,554,746)$	$(18,494,574,425)$
Withdrawal of other financial assets	9,202,392	18,461,976
Sale proceeds for disposal assets	8,964,140	4,214,950
Investment Income Received	188,016,031	129,926,338
(Investment) / Withdrawl of Investments	879,748,829	$(534,676,331)$
Net Cash Flows used in Investing Activities	$(35,043,836,950)$	$(32,223,911,741)$
Cash Flows from/(used in) Financing Activities		
Government Grant during the Period	9,906,397,371	8,193,233,405
Capital Grant during the period	22,623,615,804	15,786,177,156
New Loans	2,665,416,044	4,768,277,932
Loan Repayments	$(610,990,948)$	325,475,525
Interest Paid	$(686,425,837)$	$(1,635,856,820)$
VAT payments through treasury funds	$(1,338,554,755)$	$(1,296,177,963)$
	32,559,457,678	26,141,129,236
Net Increase in Cash \& Cash Equivalents	1,063,864,873	$(605,258,854)$
Cash \& Cash Equivalents at the begining of the year	810,401,456	1,415,660,310
Cash \& Cash Equivalents at the end of the period	1,874,266,329	810,401,456

Accounting Policies \& Notes from pages 6 to 31 form an integral part of these Financial Statements.
National Water Supply And Drainage Board

| STATEMENT OF CHANGES IN EQUITY | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Year ended 31 December 2013 | | | | |

Accounting Policies \& Notes from pages 6 to 28 form an integral part of these Financial Statements.
National Water Supply And Drainage Board
STATEMENT OF CHANGES IN EQUITY
Year ended 31 December 2012
Balance as at 1 January 2011
Net profit for the year
Receipts / Transfers during the year
Transfers to Staff welfare fund
Prior Year Adjustments (Salary arreas 2009)
Prior Year Adjustments (Ministry Advance write off)
Disposal Adjustment
Balance as at 31 December 2011
Net profit for the year
Receipts / Transfers during the year
Transfers to Staff welfare fund
Prior Year Adjustments (Salary arreas 2009) Prior year adj. (GL code 680 error correction) Prior year adjustment (Sewerage)
Revaluation Deficit
Disposal Adjustment
Non conversion adjustments
Balances as at 31 December 2012

[^2]
The Gazette of the Democratic Scialisis Republic of SriL Lanka EXTRAORDINARY

No. 1776/13-TUESDAY SEPTEMBER 18, 2012

(Published by Authority)

PART I : SECTION (I) — GENERAL Government Notifications

NATIONAL WATER SUPPLY AND DRAINAGE BOARD LAW, No. 2 OF 1974

Notice under Section 84

NOTICE is hereby given in terms of Section 84 of the National Water Supply and Drainage Board Law No. 02 of 1974 that the following tariffs will be charged with effect from the 01 st day of October 2012, from all the consumers supplied with water from the water supply schemes of the National Water Supply and Drainage Board.

This notice replaces with effect from the 01st day of October 2012, the notice appearing in the Gazette Extraordinary No. 1588/26 dated 13th February, 2009 in respect of the water tariff applicable to all consumers who are supplied with water by the National Water Supply and Drainage Board.

Karunasena Hettiarachchi,
Chairman.

National Water Supply and Drainage Board,
Ratmalana,
18th September 2012.

TARIFF 01

Domestic - SAmurdhi Receipients
(i) This tariff shall apply to water provided to households of Samurdhi recipients for domestic purposes.
(ii) The monthly charges for supply under this tariff shall be as given in the table below :-
 Part I : Sec. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 18.09.2012

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-05$	5.00	50.00
$06-10$	10.00	50.00
$11-15$	15.00	50.00
$16-20$	40.00	80.00
$21-25$	58.00	100.00
$26-30$	88.00	200.00
$31-40$	105.00	400.00
$41-50$	120.00	650.00
$51-75$	130.00	$1,000.00$
Over 75	140.00	$1,600.00$

TARIFF 02

Domestic - Non Samurdhi Tenement Garden

(i) This tariff shall apply to supplies of water to households, other than those of Samurdhi recipients, residing in tenement gardens, for domestic purposes.
(ii) The monthly charges for supply under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-05$	8.00	50.00
$06-10$	11.00	65.00
$11-15$	20.00	70.00
$16-20$	40.00	80.00
$21-25$	58.00	100.00
$26-30$	88.00	200.00
$31-40$	105.00	400.00
$41-50$	120.00	650.00
$51-75$	130.00	$1,000.00$
Over 75	140.00	$1,600.00$

TARIFF 03

Other than for Samurdhi Receipients and Tenement Garden

(i) This tariff shall apply to supplies of water to households, other than those of Samurdhi recipients and residing in tenement gardens, for domestic purposes.
(ii) The monthly charges for supply under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-05$	12.00	50.00
$06-10$	16.00	65.00
$11-15$	20.00	70.00
$16-20$	40.00	80.00
$21-25$	58.00	100.00
$26-30$	88.00	200.00
$31-40$	105.00	400.00
$41-50$	120.00	650.00
$51-75$	130.00	$1,000.00$
Over 75	140.00	$1,600.00$

TARIFF 04

Public stand Posts and Garden Taps
(i) This tariff shall apply for the supply of water through public Stand Posts and Garden Taps.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	10.00	250.00
$26-50$	10.00	500.00
$51-100$	10.00	$1,000.00$
$101-200$	10.00	$1,600.00$
Over 200	10.00	$2,500.00$

 Part I : Sec. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 18.09.2012

TARIFF 05

Schools and Religious Institutions

(i) This tariff shall apply for supply of water to Government Schools and Government Assisted Schools, Places of Worship in Religious Institutions and Government approved Charitable Institutions.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-05$	6.00	50.00
$06-10$	6.00	65.00
$11-15$	6.00	70.00
$16-20$	6.00	80.00
$21-25$	6.00	100.00
$26-30$	6.00	200.00
$31-40$	6.00	400.00
$41-50$	16.00	650.00
$51-75$	16.00	$1,000.00$
Over 75	16.00	$1,600.00$

TARIFF 06
Commercial
(i) This tariff shall apply for supply of water to Commercial Institutions, Private Hospitals, Non State Institutions, Tourist Hotels and Guest Houses.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	75.00	290.00
$26-50$	75.00	575.00
$51-75$	75.00	$1,150.00$
$76-100$	75.00	$1,150.00$
$101-200$	75.00	$1,840.00$
$201-500$	75.00	$2,875.00$
$501-1,000$	75.00	$4,600.00$
$1,001-2,000$	75.00	$8,625.00$
$2,001-4,000$	75.00	$14,375.00$
$4,001-10,000$	75.00	$28,750.00$
$10,001-20,000$	75.00	$57,500.00$
Over 20,000	75.00	$115,000.00$

TARIFF 07

Government Hospitals

(i) This tariff shall apply for supply of water to Government Hospitals.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	53.00	250.00
$26-50$	53.00	500.00
$51-75$	53.00	$1,000.00$
$76-100$	53.00	$1,000.00$
$101-200$	53.00	$1,600.00$
$201-500$	53.00	$2,500.00$
$501-1,000$	53.00	$4,000.00$
$1,001-2,000$	53.00	$7,500.00$
$2,001-4,000$	53.00	$12,500.00$
$4,001-10,000$	53.00	$25,000.00$
$10,001-20,000$	53.00	$50,000.00$
Over 20,000	53.00	$100,000.00$

TARIFF 08

Industries under Small and Medium Enterprises (SME)
(i) This tariff shall apply for supply of water to Industries under Small and Medium Enterprises (SME).
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	56.00	265.00
$26-50$	56.00	525.00
$51-75$	56.00	$1,050.00$
$76-100$	56.00	$1,050.00$
$101-200$	56.00	$1,680.00$
$201-500$	56.00	$2,625.00$
$501-1,000$	56.00	$4,200.00$
$1,001-2,000$	56.00	$7,875.00$
$2,001-4,000$	56.00	$13,125.00$
$4,001-10,000$	56.00	$26,250.00$
$10,001-20,000$	56.00	$52,500.00$
Over 20,000	56.00	$105,000.00$

TARIFF 09

Industries other than Industries under Small and Medium Enterprises (SME) and Government Institutions
(i) This tariff shall apply for supply of water to Industries and Government Institutions.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	58.00	275.00
$26-50$	58.00	550.00
$51-75$	58.00	$1,100.00$
$76-100$	58.00	$1,100.00$
$101-200$	58.00	$1,760.00$
$201-500$	58.00	$2,750.00$
$501-1,000$	58.00	$4,400.00$
$1,001-2,000$	58.00	$8,250.00$
$2,001-4,000$	58.00	$13,750.00$
$4,001-10,000$	58.00	$27,500.00$
$10,001-20,000$	58.00	$55,000.00$
Over 20,000	58.00	$110,000.00$

TARIFF 10

Export Processing Zones of the Board of Investment

(i) This tariff shall apply for supply of water to Industries Export Processing Zones of the Board of Investment.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	61.00	290.00
$26-50$	61.00	575.00
$51-75$	61.00	$1,150.00$
$76-100$	61.00	$1,150.00$
$101-200$	61.00	$1,840.00$
$201-500$	61.00	$2,875.00$
$501-1,000$	61.00	$4,600.00$
$1,001-2,000$	61.00	$8,625.00$
$2,001-4,000$	61.00	$14,375.00$
$4,001-10,000$	61.00	$28,750.00$
$10,001-20,000$	61.00	$57,500.00$
Over 20,000	61.00	$115,000.00$

TARIFF 11
Shipping
(i) The monthly charges for supply of water to Ships calling, over at Ports/Harbours shall be as given in the table below:
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	480.00	300.00
$26-50$	480.00	600.00
$51-75$	480.00	$1,200.00$
$76-100$	480.00	$1,200.00$
$101-200$	480.00	$1,920.00$
$201-500$	480.00	$3,000.00$
$501-1,000$	480.00	$4,800.00$
$1,001-2,000$	480.00	$9,000.00$
$2,001-4,000$	480.00	$15,000.00$
$4,001-10,000$	480.00	$30,000.00$
$10,001-20,000$	480.00	$60,000.00$
Over 20,000	480.00	$120,000.00$

TARIFF 12

Bulk Supply

(i) This tariff shall apply for the bulk supply of water to Local Authorities.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :-

No. of units	Usage Charge Rs./Unit	Monthly Service Charge Rs.
$00-25$	18.00	275.00
$26-50$	18.00	550.00
$51-75$	18.00	$1,100.00$
$76-100$	18.00	$1,100.00$
$101-200$	18.00	$1,760.00$
$201-500$	18.00	$2,750.00$
$501-1,000$	18.00	$4,400.00$
$1,001-2,000$	18.00	$8,250.00$
$2,001-4,000$	18.00	$13,750.00$
$4,001-10,000$	18.00	$27,500.00$
$10,001-20,000$	18.00	$55,000.00$
Over 20,000	18.00	$110,000.00$

TARIFF 13
Community based Organizations
(i) This tariff shall apply for the bulk supply of water to Rural Water Supply Schemes maintained by Community based Organization.
(ii) The monthly charges for supply of water under this tariff shall be as given in the table below :

No. of units	Usage Charge Rs./Unit
$01-999999999$	17.00

TARIFF 14
Bowser Supply
(i) This tariff for supply of water through Bowsers shall be at the rate of Rs. 72.00 per unit.
(ii) This charge excludes costs incurred for transport and other overheads, which would be recovered on the basis of actuals.

Defective Meters

If a meter is found to be out of order or if it is removed for repairs or calibration, the consumption, of water during the time that the meter is not available to record consumption, shall be calculated according to the average rate of daily consumption obtained during any two successive readings immediately preceding the removal of meter or the meter becoming defective.

Miscellaneous Charges and Conditions

(1) New Service Connections:

The cost of providing a new service connection will be levied from the consumer.
(2) Testing of water meters at the request of consumers :

The fee for testing of water meters at the request of the consumers, shall be determined by the General Manager of the National Water Supply and Drainage Board, based on costs incurred for the testing of such meter. If on testing such meter it is proved that the meter had been over/under registering by more than 2% of the correct consumption, this fee will be refunded.
(3) Incentive for prompt Payment :

Consumers paying their water bills within 14 working days from the date of issue of the bill will be given a rebate of 2% on the value of the bill. Arrangements are available for consumers to deposit money with the Board in advance to meet the cost of water bills.
(4) Surcharge for delay in Payment :

Consumers are expected to pay bills, within a period of 14 days. If consumers fail to settle the water bill within a period of 30 days from the date of issuing a bill, an additional charge of 2.5% per month on the balance outstanding shall be made from the date the bill was issued.
(5) Disconnection of Service Connections :

The General Manager of the National Water Supply and Drainage Board shall have the power to disconnect the service connection of consumers, whose bills are in arrears for a period of more than 30 days.
(6) Re-Connection Fee :

The fee for re-connecting the supply, after the service has been disconnected, shall be determined by the General Manager of the National Water Supply and Drainage Board, based on the costs incurred for such re-connection.
(7) Violation of Regulations :

If any regulation, under which the water supply has been provided, is violated by any consumer, action will be taken under the relevant provisions of the National Water Supply and Drainage Board Law No. 02 of 1974, the National Water Supply and Drainage Board (Amendment) Act, No. 13 of 1992 or any other subsequent amendment to the legislation.
(8) Prevailing taxes will be included when preparing Water Charges

Note :- One Unit shall be defined as one cubic meter. (1000 Liters)

CHAPTER 7

OPERATION AND EFFECT INDICATORS

Appendix 7.2-1 Water Quality of CBO Water Supply Systems

			Water Quality								
S/N	Name of CBO	Water Source	T. Hardness (CaCO3,mg/L)	$\begin{array}{\|c\|} \text { Iron } \\ (\mathrm{Fe}, \mathrm{mg} / \mathrm{L}) \end{array}$	Manganese $(M g, m g / L)$	Fluoride $\text { (} \mathrm{F}-, \mathrm{mg} / \mathrm{L})$	Odour	Color (Hazen Unit)	Turbidity (NTU)	pH	$\begin{aligned} & \text { E. Condictivity } \\ & (\mu \mathrm{S} / \mathrm{cm}) \end{aligned}$
Mahakanadarawa Water Supply System Area											
01	Sw ashakthi CBO	S	-			0.85	None	Clear	0.05	7.86	860
02	Ikra CBO	D-1, S-1	-	-	-	0.83	None	Clear	0.06	7.72	950
03	Arunalu CBO	S	-	-	-	0.59	Fishy	Clear	0.1	7.93	940
04	Samagi CBO	D	-			1.01	None	Clear	0	7.76	930
05	Ekamuthu CBO	S	-			0.32	None	Clear Clear	$\begin{aligned} & \hline 0.08 \\ & 0.03 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.74 \\ 7.77 \end{array}$	$\begin{aligned} & 700 \\ & 880 \end{aligned}$
	Ekamuthu CBO - Katukaliyaw a					1.19					
06	Rangiri CBO	D	-			0.88	None	Clear	0.03	7.79	1080
07	Nildiy adahara CBO	S	360/280	-	-	0.72	-	Clear	0.15	7.77	740
08	Eksath CBO	S	340	-	-	0.4/0.78	None	Clear			
09	Mahasen CBO	S	80	-	-	0.39	-	clear	0.08	7.6	730
10	Dimuthu CBO	S	312	-	-	0.57	-	Clear	0.12	7.91	610
11	Pragathi CBO	S	344	-	-	1.38	-	Clear	0.05	7.7	1450
12	Jayashakthi CBO	D	-	-	-	1.9	None	Clear	0.06	7.76	1570
13	Samagi CBO	D	332/270/330	-	-	1.08	None	Clear	0.07	7.8	1000
14	Samagi CBO	S	-	-	-	0.5	-	<5	0.02	-	590
15	Ekamuthu CBO	D	-	-	-	0.81	-	<5	0.03	-	650
16	Ran Arulnalu CBO	D	490/720/640	0.03/-/-	-	1.55/1.1/0.36					
17	Isuru CBO	D	High	-	-	0.98	None	Clear	0.05	7.84	1060
18	Randiya Dhahara CBO	S	-	-	-	1.15	None	Clear	0.09	7.76	840
19	Nelum CBO	S	-	-	-	1.11	None	Clear	0.05	7.86	970
20	Diriy amatha CBO	S	250/261/284	-	-	0.83	-	Clear	0.1	7.75	700
	Diriyamatha CBO - Mahakubugollaw a	S	-	-	-	0.69	-	Clear	0.12	7.79	870
21	Gemunu CBO	S	-	-	-	0.75	-	<5	0.21	-	950
22	Sisila Diyadahara CBO	S	-	-	-	0.76	None	Clear	0.06	7.86	880
23	Diriya Shakthi	S	373/342	-	-	0.86	None	Clear	0.1	7.64	1220
24	Ridi Nadee	S	-	-	-	0.21	None	Clear	0.06	7.75	610
Wahalkada Water Supply System Area											
25	Shakthi CBO	D	324	3.3	-	0.1		N/A			
26	Al-Naja	D	-	-	-	-					
27	CBO not formed \& Scheme Not implemented			-	-	-					
28	Parakum CBO	D	108	0.14	-	1.04	-	Clear	0	7.76	740
29	Suw asehana CBO	D	1.13	-	-	1.13		Clear	0.07	7.76	740
30	Suw asetha CBO	S	-	-	-	0.96		Clear	0.04	7.63	740
31	Vajira CBO	D	262/204	-	-	1.5/1.54					
32	Pragathi CBO	D	-	-	-	0.58	None	Clear	0.08	7.54	1430
33	Janasetha CBO	S	-	-	-	1.37		Clear	0.01	7.85	670
34	Sobasisila CBO	S	-	-	-	0.67		Clear	0.02	7.64	810
35	Randiya	S-2	-	-	-	0.31		Clear	0.14	7.76	760
36	Nilmini	D	-	-	-	-					
37	Senath CBO	D	-	-	-	1.9	None	Clear	0.02	7.75	1240
38	Eksath CBO	S	296	-	-	1.62	None	Clear	0.02	7.78	860
39	Praja Shakthi	D	-	-	-	0.42	None	Clear	0.01	7.85	520
40	Apsara	S	-	-	-	1.35		Clear	0.14	7.69	1380
41	Pinibindu CBO	R	Rainw ater supply implmented in 60 Households. No Piped Water Supply								
42	Sham Sham	-	-	-	-	-					
43	Ekamuthu CBO	S	264	-	-	0.14		Clear	0.05	7.6	640
44	Pradeepa	D	448	-	-	0.82		Clear	0.01	7.8	1150
45	Upul CBO	D	290	-	-	0.92		Clear	0	7.83	1000
46	Jalasavi	D	-	-	-	1.58		Clear	0.02	7.74	1330
47	Tristar CBO	D	300	-	-	0.001		$2.5>$	4.1	8.3	
48	Alhidra CBO	D	300	-	-	0.04	N/A	2.5	1.3	6.9	
49	Adhikw a CBO	D	280	-	-	0.7	N/A				
50	Hansajala CBO	S	442	-	-	1.8	N/A	<5	1	7.6	
	Lanka Standard SLS 614:2013		250	0.3	0.1	1	\#	15	2	6.5-8.5	-
	Lanka Standard SLS 614:1983							Unobjectiona			750/3500

S: Shallow Well, D: Deep Well, R: Rain water tank, Figures after "-" means number of water source.
Shaded figure exceeds standard value.

Appendix 7.2-2 List of CBO Water Supply Systems

S/N	Name of CBO	Location			Population of GND			Populationserved served
		DS	GND	Village	No of Village Covered	No of Village Excluded	Population in Service GND	
Mahakanadarawa Water Supply System Area								
01	Swashakthi CBO	Rambewa	Kendewa (97), Galkandagama (85)	Kendewa	3	-	3000	755
02	Ikra CBO	Rambewa	Ikkirigollawa (102)	Ikkirigollawa	3	-	-	3015
03	Arunalu CBO	Rambewa	Sangilikandarawa (111)	Sangilikandarawa	5	-		915
04	Samagi CBO	Rambewa	Thalgahawewa (84)	Thalgahawewa	2	0		660
05	Ekamuthu CBO	Rambewa	Wahamalgollawa (109)	Wamalgollawe	1	-		1220
06	Rangiri CBO	Rambewa	Wewalkatiya (82)	Wewalkatiya	2	-		590
07	Nildiyadahara CBO	Rambewa	Maha Kandarawa yaya -01 (94)	Maha Kandarawa Yaya	1	-	1080	715
08	Eksath CBO	Rambewa	Katukeliya (106)	Katukeliya	3	-	1080	575
09	Mahasen CBO	Rambewa	Mahakandarayaya - 02 (93)	Weliwewa	3	-	-	755
10	Dimuthu CBO	Rambewa	Ihala Kolangaswewa (87)	Ihala Kolangaswewa	3	-	1050	325
11	Pragithi CBO	Rambewa	$\begin{array}{l}\text { Bala Honda Wewa(86), Ihala } \\ \text { olangaswewa (87) }\end{array}$ Kat	Bala Hondawewa	4	-	885	635
12	Jayashakthi CBO	Medawachchiya	Katuwela (66)	Katuwela	3	1		1090
13	Samagi CBO	Medawachchiya	Halambagaswewa (70)	Halambagaswewa, Palukandawewa	2	-		935
14	Samagi CBO	Medawachchiya	Ataweeragollewa (56)	Pahala Thammannagama, Kubukkollawa,	3	-	1580	540
15	Ekamuthu CBO	Medawachchiya	Hirulugama (54)	Hirulugama	1	-		855
16	Ran Arulnalu CBO	Medawachchiya	Wiralmurippu (64)	Wiralmurippu, Kulikkada	2	-	1375	945
17	Isuru CBO	Medawachchiya	Kadawathgama (60)	Kadawathgama	3	-	2640	895
18	Randiya Dhahara CBO	Medawachchiya	Unagaswewa (75)	Unagaswewa	3	-		520
19	Nelum CBO	Medawachchiya	Kirigalwewa (72)	Kirigalwewa	4	-		680
20	Diriyamatha CBO	Medawachchiya	Maha Kumbugollawa (46)	Maha Kumbugollawa, Kuda Halmillawa	3	-		890
21	Gemunu CBO	Medawachchiya	Maha Divulwewa (57)	Maha Divulwewa	1	2		345
22	Sisila Diyadahara CBO	Medawachchiya	Kidawarankulama (42)	Kidawarankulama	2	-		935
23	Diriya Shakthi	Medawachchiya	Periyakulama (49), Yakkawewa (50)	Periyakulama	3	1		675
24	Ridi Nadi	Medawachchiya	Athakade (55)	Athakade	2	1		600
25	Shakthi CBO	Medawachchiya	Ayyatigewewa (24)	Ayyatigewewa	1	-	2015	1165
Wahalkada Water Supply System Area								
26	Al-Naja	Kebitigollewa	Muslim Attaweerawewa (32)	Attaweerawewa (Paranagama, Aluthgama, Kurulugama)	2	-	2050	Connection not given yet$\|$
27	CBO not formed \& Scheme Not implemented	Kebitigollewa	Gonumariyaya (25)	Gonumariyaya	-	-	-	-
28	Parakum CBO	Padaviya	Parakramapura(06), Buddhangala(05), Elikumbulagala (07)	Parakiramapura Town	11	5	-	2820
29	Suwasehana CBO	Padaviya	18 Kanuwa (02)	18 Kanuwa, Deewara Gammanan, Isipathana gama	3	-	1750	945
30	Suwasetha CBO	Padaviya	Bogahawewa (14)	Bogahawewa	6	-	1750	910
31	Vajira CBO	Kahadagasdigiliya	Maha Kumbukwewa (222)	Maha Kumbukwewa	2	-		665
32	Pragathi CBO	Kahadagasdigiliya	Moragahawela (202)	Moragahawela	3	1		640
33	Janasetha CBO	Kahadagasdigiliya	Ratmalgahawewa(225), Paalishpothana(224), Kirigallawa (226)	Palispothana	5	5	1500	920
34	Sobasisila CBO	Kahadagasdigiliya	Pandarella(210), Panwella (211)	Kokabe, Panderellawewa, Panwella, Thimbiriwewa	4	3		875
35	Randiya	Kahadagasdigiliya	Ranpathwila (196)	Rotapukuna	2	-		1130

Appendix 7.2-2 List of CBO Water Supply Systems (cont'd)

S/N	Name of CBO	Location			Population of GND			Populationserved
		DS	GND	Village	No of Village Covered	No of Village Excluded	Population in Service GND	
36	Nilmini	Kahadagasdigiliya	Kokmaduwa (201)	Kokmaduwa	1	3		795
37	Senath CBO	Kahadagasdigiliya	Gonamaruwewa (223)	Gonamaruwewa, Nelugolla Kade	2	1		385
38	Eksath CBO	Kahadagasdigiliya	Turukkuragama (234), Maha Kiri Ibbawa (233)	Aluthwattha, Galwala, Hijra Mawatha,	4	3		470
39	Praja Shakthi CBO	Kahadagasdigiliya	Mahawewa (221)	Wirandagollawa, Mahawewa	5	1		810
40	Apsara	Kahadagasdigiliya	Meekumbukwewa (212)	Meeminnawala, Aluthwewa, Kumbukwewa	3	-		1480
41	Pinibindu CBO	Kahadagasdigiliya	Ambagahawewa (213)	Rainwater supply implmented in 60 Households. No Piped Water Supply				
42	Sham Sham	Kahadagasdigiliya	Weligollawa (218), Kuncha Halmillawa (219)	Weligollawa, Kunchahalmillawa, Ihalamillawa	3	-		210
43	Ekamuthu CBO	Kahadagasdigiliya	Kumbukgollawa (209)	Kumbukgollawa	1	2		380
44	Pradeepa	Horowpothana	Wadigewewa (126)	Wadigewewa	5	1		805
45	Upul CBO	Horowpothana	Parangiwadiya (149)	Parangiwadiya	2	-		905
46	Jalasavi	Horowpothana	Kapugollewa (140)	Kapugollewa	2	1		785
47	Tristar CBO	Horowpothana	Agunuchchiya (119)	Parangiwadiya	2	1		215
48	Alhidra CBO	Horowpothana	Anolondawewa (138)	Alondawewa	2	1		730
49	Adhikwa CBO	Horowpothana	Weerasole (139)	Weerasole	1	1		-
50	Hansajala CBO	Horowpothana	Maradankadawala (133)	Maradankadawala	3	2		565

[^0]: Column (2) Basic Laying Cost includes placing, jointing, transporting from the site stores to site, pressure testing, cleaning \& disinfection and many risks.

 Column (4) includes additional 30% of the basic laying cost for transmission main and Column (6) includes additional 40% of basic laying cost for distribution systems to cover the laying cost of fittings, specials, accessories and miscellaneous items including other costs such as culvert crossings,

 Column (7) basic excavation cost includes excavation in 'normal' ground condition (firm sand), preparation of bottom of excavation, backfilling with selected excavated material, ramming (consider 98% compaction) and disposal of excavated material.

 Pipe bedding and surrounding, rock excavation, traffic management, dust controlling, maintenance of roads and preliminaries are not included in the basic cost.

 Add 40% to the total cost of laying and excavation to cover the additional cost for removing asphalt layer with base courses and other relevant
 additional cost for high ways.
 Contractor's $\mathrm{O} / \mathrm{H} \& P$ is not
 Contractor's $\mathrm{O} / \mathrm{H} \& \mathrm{P}$ is not included.
 Based on work study and established data from published books.

 Note:
 Source:

[^1]: Accounting Policies \& Notes from pages 6 to 27 form an integral part of these Financial Statements.

[^2]: Accounting Policies \& Notes from pages 6 to 31 form an integral part of these Financial Statements.

