NATIONAL WATER SUPPLY AND DRAINAGE BOARD (NWSDB) MINISTRY OF CITY PLANNING AND WATER SUPPLY THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

SUPPLEMENTAL STUDY ON ANURADHAPURA NORTH WATER SUPPLY PROJECT (PHASE 2) IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FINAL REPORT

FEBRUARY 2016

JAPAN INTERNATIONAL COOPERATION AGENCY

NJS CONSULTANTS CO., LTD.

The cost estimates is based on the price level and exchange rates as of November 2015.

Exchange Rates:	LKR $1.00 = JPY 0.864$
	USD $1.00 = JPY 120.1$
	LKR: Sri Lankan Rupee
	JPY: Japanese Yen
	USD: United States Dollars

NATIONAL WATER SUPPLY AND DRAINAGE BOARD (NWSDB) MINISTRY OF CITY PLANNING AND WATER SUPPLY THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

SUPPLEMENTAL STUDY ON ANURADHAPURA NORTH WATER SUPPLY PROJECT (PHASE 2) IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FINAL REPORT

FEBRUARY 2016

JAPAN INTERNATIONAL COOPERATION AGENCY

NJS CONSULTANTS CO., LTD.

Table of Contents

Location Map	
Table of Contents	(i)
List of Tables and Figures	(iii)
List of Appendices	(v)
List of Abbreviations	(vi)
SUMMARY	S-1
CHAPTER 1 BACKGROUND OF SUPPLEMENTAL STUDY	
1.1 Background of the Study	1-1
1.2 Objective of S/S	1-2
1.3 Study Team for S/S	1-2
1.4 Schedule of S/S	1-2
CHAPTER 2 WATER DEMAND PROJECTION	
2.1 Water Demand Projection in F/S	2-1
2.1.1 Flowchart for Estimation	2-1
2.1.2 Estimation of Design Water Flow	2-2
2.2 Water Demand Projection in D/D for Mahakanadarawa System	2-9
2.3 Water Demand Projection in the S/S for Wahalkada System	2-21
CHAPTER 3 REVIEW OF PHASE 1 PROJECT Non-disclosure information	
CHAPTER 4 REVIEW OF PHASE 2 PROJECT Non-disclosure information	
CHAPTER 5 IMPLEMENTATION PLAN Non-disclosure information	
CHAPTER 6 FINANCIAL AND ECONOMIC CONSIDERATIONS Non-disclosure information	
CHAPTER 7 OPERATION AND EFFECT INDICATORS	
7.1 Results in Preparatory Survey	
7.2 Revised Indicators	7-3

8.1	Project Summary	8-1
	8.1.1 Project Title	8-1
	8.1.2 Project Summary	8-1
8.2	Purpose of the S/S	8-1
	8.2.1 Task of the S/S	8-1
8.3	Result	8-2
	8.3.1 Review of the Government Policies and Regulations	8-2
	8.3.2 Change of Environmental Standards	8-6
	8.3.2.1 Specification for Potable Water (SLS 614)	8-6
	8.3.2.2 Air Emission, Fuel and Vehicle Importation Standards	8-9
	8.3.3 Approval	8-9
	8.3.4 Current Status of the Land Acquisition for the Phase 2	8-10
8.4	Lessons Learned from Phase 1 Project	8-17
	8.4.1 Issues of Effluent Management	8-17
	8.4.2 Issues of Water Intake Design	8-18
	8.4.3 Protest Movement	8-18
	8.4.4 Pipe laying at Road Reservation	8-21
8.5	Environmental Management	8-21
8.6	Environmental Monitoring and Implementation Framework	8-22
8.7	Environmental Check List	8-25
8.8	Recommendation	8-33

CHAPTER 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

LIST OF TABLES AND FIGURES

TABLES

Table 2.1-1	Population Projection in the Project Area in F/S	2-2
Table 2.1-2	Summary of Design Criteria in F/S	2-5
Table 2.1-3	Annual Change in Design Daily Average and Maximum Water Suppl	y in F/S
	(Mahakanadarawa System)	2-6
Table 2.1-4	Annual Change in Design Daily Average and Maximum Water Suppl	y in F/S
	(Wahalkada System)	2-7
Table 2.1-5	Planned Capacity of Water Treatment Plants in F/S	2-8
Table 2.2-1	Total Population Projection for Mahakanadarawa System	2-11
Table 2.2-2	Target Population Projection for Mahakanadarawa System	2-12
Table 2.2-3	Served Population Projection for Mahakanadarawa System	2-15
Table 2.2-4	Water Demand Projection for Mahakanadarawa System	2-18
Table 2.2-5	Water Demand for Mahakanadarawa System in F/S and S/S	2-19
Table 2.2-6	Summary of Design Criteria for Mahakanadarawa System	2-19
Table 2.3-1	Population Projection for Wahalkada System	2-21
Table 2.3-2	Served Population Projection for Wahalkada System	2-22
Table 2.3-3	Water Demand Projection for Wahalkada System	2-25
Table 2.3-4	Water Demand for Wahalkada System in F/S and S/S	2-24
Table 2.3-5	Design Criteria for Wahalkada System	2-26
Table 7.1-1	Operation Indicators for ANWSB	7-1
Table 7.1-2	Effect Indicators for Water Supply	7-2
Table 7.2-1	Performance and Operation Indicators	7-3
Table 8.3-1	Sri Lanka Policies for Environmental and Social Issues	8-2
Table 8.3-2	Act and Ordinance to Consider	8-4
Table 8.3-3	Regulations to Follow	8-5
Table 8.3-4	Sri Lanka Drinking Water Standard in 1983 and 2013	8-7
Table 8.3-5	Sri Lanka Drinking Water Standard in 1983 and 2013 (continued)	8-8
Table 8.3-6	Summary of Monitoring Result of Wahalkada Tank Water	8-8
Table 8.3-7	Discharge Standards for Petrol Vehicles	8-9
Table 8.3-8	Discharge Standards for Diesel Vehicles	8-9
Table 8.3-9	Current Status of Land Acquisition (as of 3rd November 2015)	8-11
Table 8.7-1	Necessary Considerations with Review of Phase 2	8-25
Table 8.7-2	Environmental Checklist	8-26

FIGURES

Figure 2.1-1	Flowchart of Design Water Supply Estimation	2-1
Figure 2.1-2	Project Area and DSDs	2-3
Figure 2.2-1	GNDs added in Phase 1 D/D	2-9
Figure 2.2-2	GNDs in Category A	2-13
Figure 2.2-3	GNDs in Category D	2-13
Figure 2.2-4	Demand and Supply of Mahakanadarawa System	2-18
Figure 2.3-1	Demand and Supply of Wahalkada System	2-26
Figure 8.4-1	Diagram of Treatment Process	8-17
Figure 8.4-2	Present Irrigation Area of Wahalkada and Planned Irrigation Area of	
	Yan Oya Project	8-20
Figure 8.5-1	Land Use Map of Anuradhapura	8-22
Figure 8.6-1	Proposed Organizational Arrangement	8-23
Figure 8.6-2	Project Management Unit (PMU)	8-24
Figure 8.6-3	Organization Chart of Project Manger's Office	8-24

LIST OF APPENDICES

- Appendix 7.2-1 Water Quality of CBO Supply Systems
- Appendix 7.2-2 List of CBO Water Facilities
- Appendix 8.3-1 Drinking Water Quality Standard of Sri Lanka
- Appendix 8.3-2 Wahalkada Raw Water Quality
- Appendix 8.3-3 Regulation for Vehicle Emission Gas
- Appendix 8.3-4 Recommendation from Central Environmental Authority for Wahalkada WTP
- Appendix 8.3-5 Resettlement Compensation Report
- Appendix 8.4-1 Thoroughfare Act 1988
- Appendix 8.4-2 Thoroughfare Act 2008
- Appendix 8.5-1 Environmental Management Plan for Mahakanadarawa WTP
- Appendix 8.5-2 Environmental Management Plan for Phase 2
- Appendix 8.6-1 Monitoring Plan for Phase 2
- Appendix 8.6-2 Monitoring Form
- Appendix 8.7-1 Minutes of Understanding about Water Rights for Water Intake
- Appendix 8.7-2 Environmental Checklist for Phase 2

LIST OF ABBREVIATIONS

ADB	Asian Development Bank
ANWSP	Anuradhapura North Water Supply Project
СВО	Community-Based Organization
CEA	Central Environmental Authority, the Ministry of Environment and Natural
	Resources (ME&NR)
СЕВ	Ceylon Electric Board
CFI	Community Fluorosis Index
CKD	Chronic Kidney Diseases
CRM	Certified Reference Material
CWSSP	Community Water Supply and Sanitation Program
DAF	Dissolved Air Floatation
DI pipe	Ductile Iron Pipe
DSD	Divisional Secretary Division
EA	Engineering Assistant
EIA	Environmental Impact Assessment
EIRR	Economic Internal Rate of Return
EOI	Expression of Interest
ET	Elevated Tank
FB	Freeboard
FC	Foreign Currency
FIRR	Financial Internal Rate of Return
FR	Forest Reserve
FSD	Full Supply Depth
FSL	Full Storage Level
GAC	Granular Activated Carbon
GND	Grama Niladhari Division
GOJ	Government of Japan
GOSL	Government of Sri Lanka
GPRS	General Packed Radio Service
HDPE	High Density Polyethylene
HH	Household
HWL	High Water Level
ID	Irrigation Department
IDP	Internally Displaced Persons
IEE	Initial Environmental Examination
IFRC	International Federation of Red Cross and Red Crescent Societies
JICA	Japan International Cooperation Agency
KfW NC	German Government-owned Development Bank, (Kreditanstalt für Wiederaufbau) North Central
NC LA	Local Authority
	Lovarrautority

LAA	Land Acquisition Act
LB	Left Bank
LC	Local Currency
LCD	Liquid Crystal Display
Lpcd	Litre per capita per day
LWL	Low Water Level
МСВ	Miniature Circuit Breaker
MCC	Motor Control Centre
МССВ	Molded Case Circuit Breaker
MCGs	Mahinda Chintana Goals
MCM	Million Cubic Meter (1,000,000 m ³)
MDGs	Millennium Development Goals
MWSD	Ministry of Water Supply and Drainage
NABL	National Accreditation Board for Testing and Calibration Laboratories
N/C	North Central
NCP	North Central Province
ND	Nominal Diameter
NEA	National Environmental Act
NEP	National Environmental Policy
NHWA	National Heritage Wilderness Area
NIRP	National Involuntary Resettlement Policy
NRW	Non Revenue Water
NWSDB OD	National Water Supply and Drainage Board Outer Diameter
OIC	Officer-in-Charge
PAA	Project Approving Agency
PCC	Project Coordination Committee
PCV pipe	Un-plasticized Polyvinyl Chloride Pipe
PD	Project Director
PEA	Project Executing Agency
PE pipe	Polyethylene Pipe
PLC	Programmable Logic Controller
PMU	Project Management Unit
PS	Pump Station
RAP	Resettlement Action Plan
RSC (N/C)	Regional Support Centre (North Central)
RSF	Rapid Sand Filter
RWS	Rural Water Supply
SCADA	Supervisory Control and Data Acquisition
SLAB	Sri Lanka Accreditation Board
SP	Steel Pipe
SSF	Slow Sand Filter

TEC	Technical Evaluation Committee
UPS	Uninterruptible Power Systems
uPVC	Un Plasticized Poly-Vinyl Chloride
VSD	Variable Speed Driver
WB	World Bank
WFP	Work and Financial Plan
WHO	World Health Organization
WLPSA	Wildlife Protected Area
WSP	Water Supply Project
WSS	Water Supply Scheme
WTP	Water Treatment Plant
Ac	$= 4,047 \text{ m}^2$
Acft	$= 1,234 \text{ m}^3$

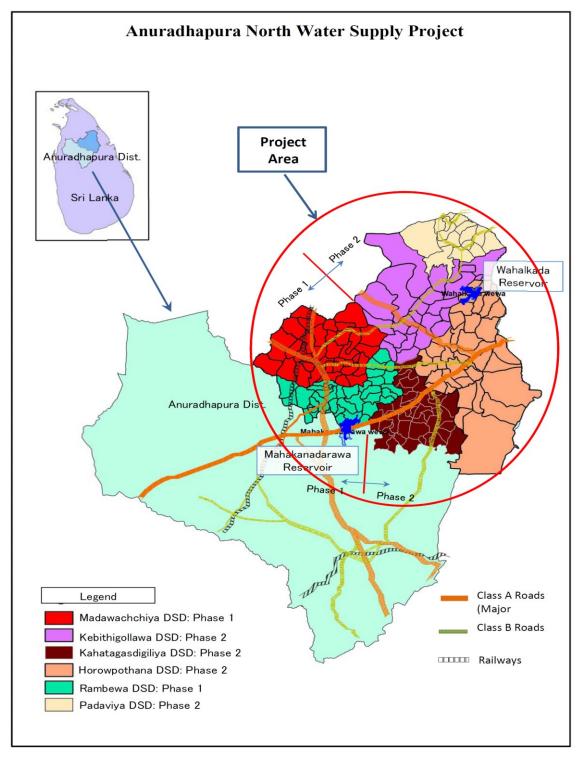
SUMMARY

CHAPTER 1 BACKGROUND OF SUPPLEMENTAL STUDY

1.1 Background of the Study

The Anuradhapura North Water Supply Project (hereinafter referred to as "Project") aims to develop the water supply system in the Project area which can supply stable and safe water, and consequently to prevent health damage of the residents.

Regarding this Project, National Water Supply and Drainage Board (hereinafter referred to as "NWSDB"), the executing agency, considered that the Project would be financed by Japanese official development assistance loan (hereinafter referred to as "ODA loan") based on the results of the Preparatory Survey conducted by JICA in 2013 (hereinafter referred to as "F/S"). The Phase 1 of the Project (hereinafter referred to as "Phase 1") has been conducted under the ODA loan SL-P110, and a part of the scope of the Phase 1 was changed during its detailed design stage (hereinafter referred to as "D/D"), i.e. water supply method (from bowser supply to piped water supply in isolated areas) and water treatment process (from coagulation sedimentation method to dissolved air floatation method (DAF), and early introduction of Granular Activated Carbon (GAC) filtration which was planned to be introduced in future in the F/S). Further, the engineer's estimates for Phase 1 was extremely increased through D/D from the one estimated in the F/S. Because of the increase of the cost estimates for Phase 1, it was expected with high possibility that the cost for the work of Anuradhapura North Water Supply Project (Phase 2)" (hereinafter referred to as "Phase 2") will also be increased largely. Consequently, it was determined that collection of additional information, and review of cost estimates are necessary for the Phase 2 project which was requested by NWSDB in 2015 to be financed by the ODA loan, and then, this Supplemental Study (hereinafter referred to as "S/S") was conducted.


1.2 Objective of the S/S

Objective of the S/S is to conduct collection of supplemental information, to analyze the collected information, and to provide recommendation based on them, then consequently, to examine appropriateness of the Project for Japanese ODA loan.

CHAPTER 2 WATER DEMAND PROJECTION

2.1 Service Area

•	Phase-1 Area (Mahakanadarawa System)	: Medawachchiya, Rambewa, a part of 2 GNDs of Mihinthale
•	Phase-2 Area (Wahalkada System)	: Kebithigollewa, Horowpothana, Kahatagasdigiliya, Padaviya

Source: F/S Final Report

Figure 2.1-1 Project Area and DSDs

2.2 Design Criteria and Result of Water Demand Projection

2.2.1 Mahakanadarawa System

Table 2.2-1 Summary of Design Criteria for Mahakanadarawa System

	01 2 00-g-				-	
Items	Unit	Calculation	S/S		F/S	
Itellis	Unit	Calculation	2024	2034	2024	2034
Served Population	pop	а	46,110	65,686	70,097	111,900
Per Capita Water Consumption	LPCD	b	86	91	86/10	91/10
Non-Domestic Water Demands	%	с	-	30	3	35
Allowance for Unplanned Water Demands	%	d	1	.5	-	-
Non-Revenue Water (in total water demand)	%	e	13.8	20.0	2	20
Design Daily Average Water Demand (Dave)	m ³ /day	f = a x b x (1+c) x (1+d) / (1-e)	10,002	17,252	7,154	14,414
Design Load Factor to Dmax	%	g	1	10	12	20
Design Daily Maximum Water Demand (Dmax)	m ³ /day	h = f x g	11,003	18,977	8,585	17,297
Required WTP Production Capacity (Output)	m ³ /day	i	11,003	18,977	8,585	17,297
Proposed WTP Production Capacity (Output)	m ³ /day	j	11,200	18,800	8,950	17,900
Water Loss at Water Treatment Plant	%	k		5		5
Required Raw Water Demand	m ³ /day	l=i/(1-k)	11,582	19,976	9,014*	18,162*
Required Raw Water Intake	m ³ /day	m	11,582	19,976	9,014	18,162
Proposed Capacity of Intake Facility	m ³ /day	n	11,800	19,800	9,400	18,800
Design Peak Factor	%	0	1	60	2	00
Design Hourly Maximum Water Supply (Hmax)	m ³ /day	p = h x o	17,605	30,363	17,170	34,594

*: Required Raw Water Demand in F/S = Required WTP Production x 1.05 9,014 = 8,585 x 1.05; 18,162 = 17,297 x 1.05

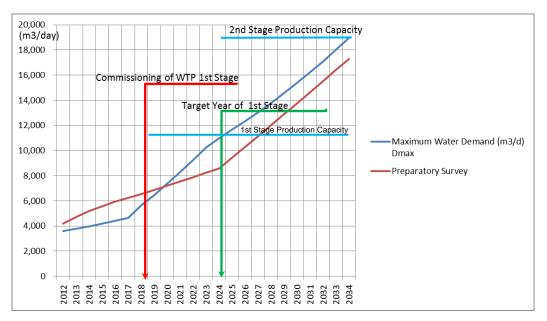


Figure 2.2-1 Demand and Supply of Mahakanadarawa System

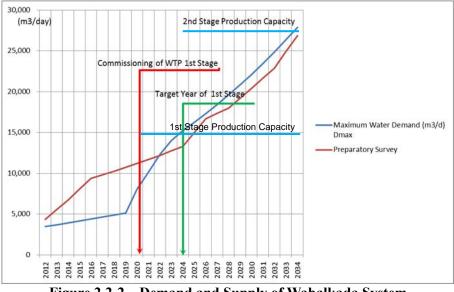

2.2.2 Wahalkada System

Table 2.2-2 Design Criteria for Wanaikada System							
Items	Unit	calculation	S/S F/S				
itenis	Ulin	calculation	2024	2034	2024	2034	
Served Population	рор	а	106,121	168,776	100,393	161,468	
Per Capita Water Consumption	LPCD	b	86	91	86/10	91/10	
Non-Domestic Water Demands	%	с	3	0	35		
Allowance for Unexpected Water Demands	%	d	1	.5	-	-	
Non-Revenue Water (in total water demand)	%	e	12.9	20.0	2	0	
Design Daily Average Water Demand (Dave)	m ³ /day	f = a x b x (1+c) x (1+d) / (1-e)	13,819	25,334	11,098	22,932	
Design Load Factor to Dmax	%	g	110		120		
Design Daily Maximum Water Demand (Dmax)	m ³ /day	h = f x g	15,201	27,867	13,318	26,870	
Required WTP Production Capacity (Output)	m ³ /day	i	15,201	27,867	13,318	26,870	
Proposed WTP Production Capacity (Output)	m ³ /day	j	15,000	27,400	13,700	27,400	
Water Loss at Water Treatment Plant	%	k	4	5	5		
Required Raw Water Demand	m ³ /day	1 = i / (1-k)	16,001	29,334	13,983*	28,214*	
Required Raw Water Intake	m ³ /day	m	16,001	29,334	13,983*	28,214*	
Proposed Capacity of Intake Facility	m ³ /day	n	16,000	28,800	14,400	28,800	
Design Peak Factor	%	0	10	160 200)0	
Design Hourly Maximum Water Supply (Hmax)	m ³ /day	p = h x o	24,321	44,587	26,635	53,740	

Table 2.2-2 Design Criteria for Wahalkada System

*: Required Raw Water Demand in F/S = Required WTP Production x 1.05

13,983 = 13,318 x 1.05; 28,214 = 26,870 x 1.05

CHAPTER 3 REVIEW OF PHASE 1 PROJECT

Non-disclosure Information

CHAPTER4 REVIEW OF PHASE 2 PROJECT

Non-disclosure Information

CHAPTER 5 IMPLEMENTATION PLAN

Non-disclosure Information

CHAPTER 6 FINANCIAL AND ECONOMIC CONSIDERATIONS

Non-disclosure Information

CHAPTER 7 OPERATION AND EFFECT INDICATORS

The operation and effect indicators presented in the F/S includes those which are considered to be relatively hard to follow up, and several indicators have vague expressions with indistinct definition such like population who has access to safe drinking water in the project. Considering above problems, application of revised indicators are recommended for simplification of indicators as shown in **Table 7.1-1**.

Indicator	(2012)	Present (2015)	Target (2020)
Mahakanadarawa System			
Served Population	27,818	31,896	53,531
Water Supply Coverage (w/ Surface Water) (%)	0	0	56
Fluoride in drinking water (mg/L)	1.9 ³ (Jayashakthi CBO)	-	<1.0
Rate of Facility Utilization ² (%)	-	-	60
Wahalkada System	(2012)	Present (2015)	Target (2022)
Served Population			
Water Supply Coverage (w/ Surface Water) (%)	26,589	31,182	88,148
Fluoride in drinking water (mg/L)	0	0	63
Rate of Facility Utilization ² (%)	1.9 ³ (Senath CBO)	-	<1.0

Note:

1: During the F/S, Census Population was not available. Figures in this table are based on the population in 2012 Census.

2: Mahakanadarawa; 6,652/11,200, Wahalkada; 11,193/15,000

3: The Figure of 1.9 mg/L is detected from existing CBO water supply systems in the project area as the analysed maximum value obtained in the Preparatory Survey. This figure exceeded the drinking water quality standard of Sri Lanka 2013 (<1.0 mg/L) (refer to **Appendix 7.2-1**, and **Appendix 7.2-2**).

Chapter 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

8.1 Review of the Government Policies and Regulations

There has not been any major change of policies and laws after F/S, but a couple of standard sets have been revised, i.e., drinking water standard and discharge standards for Petrol Vehicles.

8.1.1 Specification for Potable Water (SLS 614)

The old version of standards had two kinds of criteria for some parameters as 'Highest desirable level' and 'Maximum permissible level'. But new version of the standards only has one criteria for each parameter. Other notable differences are the change of criteria concentration for some parameters, such as fluoride (1.5 mg/l to 1.0 mg/l), arsenic (0.05 mg/l to 0.01 mg/l), and addition of some parameters like nickel, total dissolved solid etc.

NWSDB continues the monthly monitoring of water quality at Wahalkada tank. The parameters which exceeded the standard value are colour, turbidity, iron and bacteriological parameters are able to be removed by the usual water treatment procedure. Toxic substances are not measured by usual NWSDB monitoring. The F/S team measured toxic substances from December 2011 to June 2012, and all reported results satisfied the requirements of the updated standards.

8.1.2 Air Emission, Fuel and Vehicle Importation Standards

The Air Emission standards was established in 2003 and amended in 2008. It was again amended in 2014. The type of vehicle is changed and criteria value of emission gas is revised.

8.2 Approval

This project is not requested EIA and IEE. The any projects to establish industrial activities, which are not subject to EIA are advised to obtain Environmental Recommendation from the Central Environmental Authority (hereinafter referred to as "CEA") for the proposed sites. Environmental Recommendation for the Phase 2 project was issued by the CEA NCR (North Central Region) office on 23rd September 2015. NWSDB should obtain Environmental Protection License (EPL) 3 months before starting operation.

8.3 Current status of the Land Acquisition for the Phase 2

NWSDB has started the land acquisition procedure for the Phase 2 project. **Table 8.3-9** shows current status of proposed sites of Phase 2. The ownership transfer of sites is proceeding smoothly. Currently, there is no possibility of resettlement and NWSDB will pay the effort to avoid relocation of resident in future. But if needs arise, NWSDB will follow the JICA guidelines of resettlement.

	Table 8.5-1 Current Status of Land Acquisition (as of Srd November 2015)				
No	Name of Site	Major Facilities*	Area (m ²)	Current Owner	Present Status of Land Clearance
1	Kahatagasdigiliya	WR, WT, PH, CH, GR, OF, SQ,	7,000m ²	NWSDB	ok
2	Hamillewa	WT, CH, SQ	4,000m ²	Government	Approval letter to be received from Divisional Secretary (DS).
3	Rathmalgahawewa	WT, CH, SQ	2,000 m ²	Government	Land commission's Approval to be received for prepares a survey plan.
4	Horowpothana	WR, WT, PH, GR, CH, OF, WS, SQx2	8,000 m ²	NWSDB	ok
5	West Horowpothana	WT, CH, SQ	4,000 m ²	FOREST Dept.	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of Divisional Forest Officer (DFO).
6	North Horowpothana	WT, CH, SQ	2,000 m ²	FOREST Dept.	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of DFO.
7	Weerasole	WR, PH, GR, CH, SQ	4,000 m ²	FOREST Dept.	Approval granted by the Forest Conservator. Position to be

 Table 8.3-1
 Current Status of Land Acquisition (as of 3rd November 2015)

					transferred. Constructions can be commenced under the supervision of DFO.
8	Kebithigollewa	WR, WT, PH, GR, WS, CH, SQx2, OF	9,000 m ²	NWSDB	ok
9	KAH-KEB	WT, CH, SQ	2,000 m ²	Government	Local authority approval to be received.
10	Kahatagollewa – 1	WT, CH	$2,000 \text{ m}^2$	Government	Local authority approval was received.
11	Kahatagollewa – 2	WR, PH, GR, SQ,	$4,000 \text{ m}^2$	Government	Local authority approval was received.
12	Bogahawewa	WT, OF, CH, SQx2	4,000 m ²	Government	Lease application and relevant documents to be forwarded to Land Commissioner (LC) through the Provincial Land Commissioner (PLC) by DS.
13	Wahalkada - 1	Water Treatment Plant, WT	40,000 m ²	FOREST Dept.	Approval from the Forest department was received. Annual rental to be paid amount of LKR 160,000.00 to the Forest Department.
14	Wahalkada – 2	Intake and PH	2,000 m ²	FOREST Dept.	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of DFO.
15	Mahakanadarawa System service area	Water Tower (750m ³)	Approx 4,000 m ²	Not yet identified	Sites are not yet identified. They shall be identified during Phase 2 D/D stage. It will be selected in a property of Forest department or local government property for obtaining clearance smoothly.
16	Mahakanadarawa System service area	Water Tower (250m ³)	Approx 2,000 m ²	Not yet identified	Same to above.
17-19	Wahalkada System service area	Water Tower (250m ³) x 3	Approx 2,000 m ² each	Not yet identified	Same to above.

*: Abbreviations

WR; Ground Reservoir, WT; Water Tower (Elevated Tank), PH; Pump House, CH; Chlorination House, GR; Generator Room, OF; Office, SQ; Staff Quarters,

Source: NWSDB- RSC-NC

8.4 Lessons learned from Phase 1 Project

8.4.1 Issues of Effluent Management

In the phase 1, the Irrigation Department requested that the discharge water quality has to meet the drinking water quality standards because the residents living alongside the canal usually use the canal water for drinking and cooking purpose. In case of the Wahalkada WTP, NWSDB will be requested to take measures for effluent management. NWSDB can treat effluent in order to satisfy the drinking water quality standard with the additional treatment processes or, discharge water to the drainage canal.

8.4.2 Issues of Water Intake Design

The Irrigation Department requested NWSDB to bear the cost to automate the main gate due to the difficulty of the manual gate operation of the Mahakanadarawa scheme in phase 1. Therefore, similar request might come to Wahalkada. In case of the Wahalkada, there is unlined extent at upper stream of the proposed intake point. It is expected that the Irrigation Department will request NWSDB to campshed the

upper distance of the intake point.

8.4.3 **Protest Movement**

During the F/S period, there were multiple protest movement for opposition against the sharing water of irrigation to drinking water use at the surroundings of the Wahalkada WTP planned site. However, protest movement quieted down by the effort of NWSDB. On the other hand, the new development plan of irrigation system is ongoing in the vicinity of the Wahalkada. Wahalkada is also covered by the project. Therefore, it is conceivable that possibility of relapse of protest movement became extremely low.

8.4.4 Pipe laying at Road Reservation

The road reservation and building limit are discussed at National Thoroughfares Act. The Act states that the construction work can be conducted within the reservation with the permission of Executive Engineer of the authority. Therefore, the pipelines of the Project can be laid within the road reservation, and land acquisition beside the road is not required.

8.5 Environmental Management

The environment of the project area has not changed significantly for these three years. Therefore, the reported contents of environmental and social consideration in the F/S report are still effective. The environmental management and mitigation measures are part of the report and the concept is succeeded by the Environmental Management Plan (EMP).

Phase 2 project area is located in forest-rich area compared with Phase 1. The main possible adverse effects to be considered at any project for fauna and flora are loss or separation of living place, disturbance of living, and danger of life. Pipe laying construction work could affect negatively to the fauna and flora. In same sense, the negative effect is considerable at the construction mainly. The JICA Study team observed a traffic sign notifying elephant crossing. The most effective preventive action to traffic accident is training and education of site workers and drivers. The awareness raising program is very effective and the EMP put the importance on the educational program. The revised EMP draft is attached as **Appendix 8.5-2**.

8.6 Environmental Monitoring and Implementation Framework

The Contractor is to submit his/her proposal for the Environmental Management Implementation Plan (EMIP) at the beginning of the contract and obtain the Engineer's approval and is to employ a competent Officer (Health & Safety / Accident Prevention) to monitor the EMP requirements. The contractor will submit a monthly environment and safety status report on the basis of EMIP, and is requested to conduct internal auditing in every six months.

The revised Environmental Monitoring Plan and Monitoring Form are attached as Appendix 8.6-1 and

Appendix 8.6-2, respectively.

8.7 Environmental Check List

Table 8.7-1 describes the necessary considerations with the difference of the project scope between the F/S and the S/S. The revised checklist for Phase 2 is attached as **Appendix8.7-2**.

Item		Stage of study		Description	Impact
1		F/S	S/S		
Water treatm	ent capacity	13,700m ³ /day	15,000m ³ /day	The increase of capacity and	Same
Treatment procedure		Coagulating sedimentation	Dissolved Air Floatation and Granular Activated Carbon Filtration	addition of facilities don't need the increase of land always. Phase 1 solves the same issues by the arrangement of facilities. Phase 2 will be able to solve it same way and impact will not be significant.	
Elevated tanks and reservoirs for isolated area		0	5 (2 in Phase 1) (3 in Phase 2)	The new project land will be acquired. The locations are in remote area and the resettlement is avoidable by selecting unused lands. Impact to the natural environment should be carefully considered.	Increase negative but minor
Length of pipe works	Transmission	117.3 km	126.1 km	Laying pipe at road doesn't require land. The longer construction distance will create	Increase negative but minor
	Distribution -sub	633.0 km	720.7 km	the negative impact during construction stage.	
Supply procedure to isolated area		Bowser supply	Piped supply	Users can access water dramatically easier. They are free from inconvenience of water fetching.	Positive impact

Table 8.7-1 Necessary	Considerations	with Review of Phase 2
-----------------------	----------------	------------------------

8.8 Recommendation

There are some ongoing development projects for irrigation, and the negative feeling of the farmers seems settled down. However, NWSDB has to continue the discussions with stakeholders. Sharing information of the project activities and progress, explanation of positive and negative aspects honestly are important for succeeding the project. The meeting records of these discussions should be kept.

The environmental adverse effect is generally limited in a water supply project. The impact is mainly created at the construction period. Therefore the EMP and the EMIP are important, and the establishment of monitoring body and its active contribution are highly appreciated. The project site is outside of the natural reserves or other protected area, however, the all concerning parties should be aware of protection of environment.

Currently, there are no squatters and illegal cultivation at the planned project sites. Many of sites are covered by the trees and bushes and difficult to start living. However, NWSDB is better to establish a

signboard, fence or some kind of notice at the land to reduce the possibility of the encroachment. The clear statement of the cut-off date is recommended. After cut-off date, the compensation is not required on the basis of the JICA guideline requirement and safe guard policy OP 4.12 of World Bank.

If the additional land is required for the reviewed project activities, the land acquisition will not be problem without the case of protected area and reserved forest. In such case, the prompt decision of the land selection is required.

CHAPTER 1

BACKGROUND OF SUPPLEMENTAL STUDY

CHAPTER 1 BACKGROUND OF SUPPLEMENTAL STUDY

1.1 Background of the Study

In the Democratic Socialist Republic of Sri Lanka (hereinafter referred to as "Sri Lanka"), 85.2%¹ of the population is accessible to safe water² by means of a water supply system, wells and/or rainwater. However, there is no developed water supply system in Anuradhapura District, located in the North Central Province, and the residents in the region only can access to wells as water sources. The water source, groundwater contains high fluoride concentration exceeding the drinking water quality standard of Sri Lanka. It is harmful to the human body, and this has caused problems on their teeth and bones. The highly concentrated fluoride is also said to be a major factor of Chronic Kidney Diseases (hereinafter referred to as "CKD") which has a high incidence in this area, as well as other health problems. Because of above situation in the area, the changing of water source from groundwater to surface water is an urgent need.

The Anuradhapura North Water Supply Project (hereinafter referred to as "Project") aims to develop the water supply system in the Project area which can supply stable and safe water, and consequently to prevent health damage of the residents.

Regarding this Project, National Water Supply and Drainage Board (hereinafter referred to as "NWSDB"), the executing agency, considered that the Project would be financed by Japanese official development assistance loan (hereinafter referred to as "ODA loan") based on the results of the Preparatory Survey conducted by JICA in 2013 (hereinafter referred to as "F/S"). The Phase 1 of the Project (hereinafter referred to as "Phase 1") has been conducted under the ODA loan SL-P110, and a part of the scope of the Phase 1 was changed during its detailed design stage (hereinafter referred to as "D/D"), i.e. water supply method (from bowser supply to piped water supply in isolated areas) and water treatment process (from coagulation sedimentation method to dissolved air floatation method (DAF), and early introduction of Granular Activated Carbon (GAC) filtration which was planned to be introduced in future in the F/S). Further, the engineer's estimates for Phase 1 was extremely increased through D/D from the one estimated in the F/S. Because of the increase of the cost estimates for Phase 1, it was expected with high possibility that the cost for the work of Anuradhapura North Water Supply Project (Phase 2)" (hereinafter referred to as "Phase 2") will also be increased largely. Consequently, it was determined that collection of additional information, and review of cost estimates are necessary for the Phase 2 project which was

¹ NWSDB WEB Site on 14th January 2016: file:///C:/Users/NJS-Temp/Downloads/ASW%20Coverage%20June%202015.pdf Piped Water Supply: 45.0%, Protected Dug Well: 36.5%, Tube Wells/Hand Pumps: 3.2%, Rain Water Harvesting & others: 0.5%, No access to Safe Water: 14.8%

² Terminology of "Safe Water" means harmless water to human body. To assure the drinking safety of water, satisfaction of water quality standard is required in principle.

requested by NWSDB in 2015 to be financed by the ODA loan, and then, this Supplemental Study (hereinafter referred to as "S/S") was conducted.

1.2 Objective of S/S

Objective of the S/S is to conduct collection of supplemental information, to analyze the collected information, and to provide recommendation based on them, then consequently, to examine appropriateness of the Project for Japanese ODA loan.

1.3 Study Team for S/S

The Study Team for the S/S was composed of following persons;

(1) N	Mr. Takafumi Kiguchi	Team Leader /	Water Supply Planning
-------	----------------------	---------------	-----------------------

(2) Mr. Hirofumi Sano	Construction Plan / Cost Estimates 1
-----------------------	--------------------------------------

- (3) Mr. M. M. P. M. Bandara Construction Plan / Cost Estimates 2
- (4) Mr. Toru Suetake Economic and Financial Analysis
- (5) Ms. Yasuko Kamegai Environmental and Social Consideration

1.4 Schedule of S/S

The S/S was conducted as follows:

(1) Stage 1 (15 to 18 October 2015): Preparation for Field Work

The Stage 1 was started from 15 October and ended on 18 October 2015 for preparation of field work of the S/S. The Work Plan was established during this period.

(2) Stage 2 (19 October to 8 November 2015): Field Work

The field work was conducted from 19 October to 8 November 2015. Required data collection and interviews with concerning persons were conducted during this period.

(3) Stage 3 (9 November to 30 November 2015): Analysis of Collected Data

Data and information collected by the field work were examined and analyzed. Results were compiled in the Draft Final Report (hereinafter referred to as "DFR").

(4) Stage 4 (1 December to 10 December 2015): Explanation and Discussion on DFR

Accompanying with the Fact Finding mission of JICA, explanation about DFR and discussion with NWSDB based on the draft papers for the DFR was conducted in order to finalize the DFR.

(5) Stage 5 (11 December 2015 to 3 February 2016)

The Final Report (hereinafter referred to as "FR"), which reflected comments from JICA and NWSDB on the DFR, was prepared and submitted on 3 February 2016.

CHAPTER 2

WATER DEMAND PROJECTION

CHAPTER 2 WATER DEMAND PROJECTION

2.1 Water Demand Projection in F/S

In the Preparatory Survey (F/S), the design water flow was estimated as described below. (Tables and figures in Section 2.1 are referred from the F/S report.) :

2.1.1 Flowchart for Estimation

The design water flow was estimated in accordance with the flowchart as shown in Figure 2.1-1.

Figure 2.1-1 Flowchart of Design Water Flow Estimation

2.1.2 Estimation of Design Water Flow

(1) Service Area

The service area covers six DSDs¹, namely, Medawachchiya, Rambewa², Kebithigollewa, Horowpothana, Kahatagasdigiliya, and Padaviya which are located in the north-eastern part of Anuradhapura District. Out of six DSDs stated above, Medawachchiya and Rambewa belong to Phase-1 area of the Project and remaining 4 DSDs belong to Phase 2 (refer to **Figure 2.1-2**).

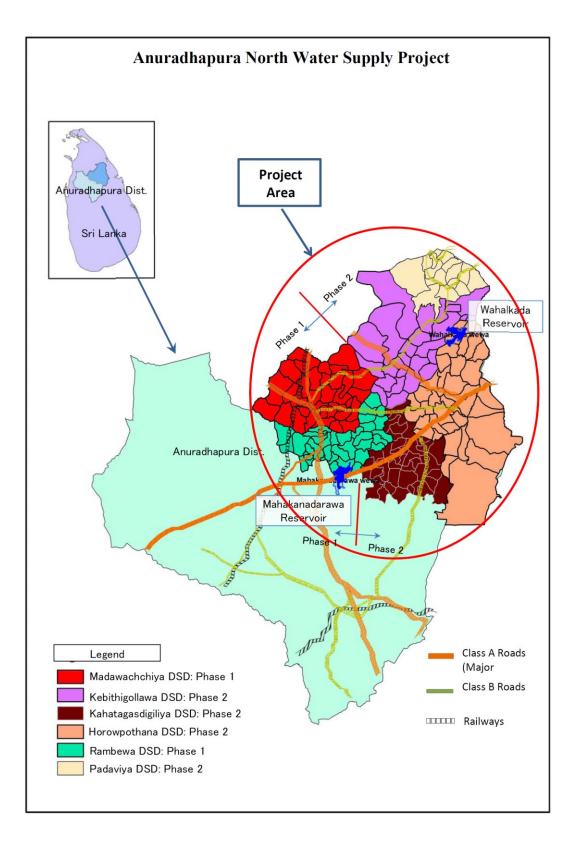
(2) Target Year

The target year was set in 2034 and an interim target year was also set in 2024 for staged construction.

(3) Projected Population

The projected population is summarized in Table 2.1-1.

	Census	Estim	ated Populat	ion	Annual Average Growth Rate (%)					
	2001	2012	2024	2034	2012/2001	2024/2012	2034/2012			
Padaviya	21,146	24,403	28,583	32,655	1.31	1.33	1.33			
Kebithigollewa	19,457	23,007	27,661	32,276	1.54	1.55	1.55			
Horoupothana	29,642	34,374	40,462	46,412	1.36	1.37	1.37			
Kahatagasdigillia	33,572	39,096	46,234	53,219	1.39	1.41	1.41			
Sub-total	103,817	120,880	142,940	164,562	1.39	1.41	1.41			
Medawachchiya	40,469	47,533	56,688	65,677	1.47	1.48	1.48			
Rambewa	31,604	36,325	42,355	48,207	1.27	1.29	1.29			
Sub-total	72,073	83,858	99,043	113,884	1.39	1.40	1.40			
Total	175,890	204,738	241,983	278,446	1.39	1.40	1.41			


Table 2.1-1Population Projection in the Project Area in F/S

Note: Population in 2012 was estimated because results of 2012 Census was not available at the time of the F/S.

Source: F/S final report

 ¹ DSD: Divisional Secretary Division. Administrative sub-units in Sri Lanka between District and GND (page2-3)
 ² Very small part of Mihinthale, i.e. a part of 2 GNDs, was added in Phase-1 D/D because their water

supply systems will be connected with the Mahakanadarawa System.

Source: F/S Final Report

(4) Served Population

1) Pipe Borne Water Supply

In the GNDs³ with an existing pipe borne water supply system, the coverage ratio was assumed to be growing up from present coverage ratio to 100 % in 2034 lineally, while in those with no pipe borne water supply system, the served population was assumed to be increased in the later years.

2) Bowser Water Supply

Water supply to the isolated areas was planned by using water bowsers and the water reservoirs which were arranged at the locations convenient to the residents. Population coverage was set at 100% constantly.

(5) Per Capita Domestic Water Consumption

The per capita domestic water consumption was set at 80 $LPCD^4$ for the year of 2012 with an annual increment of 0.5 LPCD. Accordingly, the per capita domestic water consumption was 86 LPCD in 2024 and 91 LPCD in 2034.

For the isolated areas covered by bowsers, the per capita domestic water consumption is fixed at 10 LPCD with no annual increment.

(6) Non-Domestic Water Demand

Non-domestic water demand such as commercial use was calculated as 35% of domestic water demand in the F/S.

(7) Non-revenue Water (NRW)

In the Project, the water distribution facilities in the existing water supply system will be used for the proposed integrated water supply system as much as possible. However, since water transmission and other distribution pipelines will be newly installed, the present NRW level of 20% in Anuradhapura District is assumed to be maintained in the future. This ratio of 20% is the one to total supply and is equivalent to 25% of revenue water.

(8) Load Factor for Daily Maximum Water Demand

³ GND: Grama Niladhari Division. The smallest administrative unit in Sri Lanka under DSD

⁴ LPCD: Liter Per Capita Per Day

The maximum monthly demand per connection per day in 5 water supply systems in the study area varies from 1.18 to 1.23 times of the average monthly demand, with an average of 1.21. Then, load factor for the maximum daily demand was set at 1.20 of the average daily demand

(9) Summary of Design Criteria

The design criteria are summarized in **Table 2.1-2**. Annual Change in Served population, Average Daily Demand and Maximum Daily Demand Water Supply are shown in **Table 2.1-3** for the Mahakanadarawa System and in **Table 2.1-4** for the Wahalkada System, respectively. Planned water production capacity is set so as to have 5% allowance to maximum daily demand taking into account of the miscellaneous use of water in the water treatment plant.

Design Water Demand		Application to Facility Design	Unit	Mahaka	nadarawa	System					
Water Supply Mode				Pipe Borne Water Supply	Bowser Water Supply	Total	Pipe Borne Water Supply	Bowser Water Supply	Total		
Design Served Population				92,597	19,303	111,900	144,745	16,723	161,468		
Per Capita Domestic Water Consumption	=80+0.5x(2034-2	2012)=91	(LPCD)	91	10		91	10			
Premium for Non-domestic Water (35%)	=1.35			1.35	1		1.35	1			
NRW Ratio (20%)	=100/(100-20)=	1.25		1.25	1		1.25	1			
Design Daily Average Water Supply (Dave)			(m ³ /day)	14,219	193	14,412	22,227	167	22,394		
Design Load Factor to Dmax	=1.2										
Design Daily Maximum Water Supply (Dmax)	=Dave x 1.20	-Transmission Facility	(m ³ /day)			17,294			26,873		
Design Peak factor	=1.20										
Design Hourly Maximum Water Supply (Hmax)	=Dmax x 2.0	-Distribution Facility	(m ³ /day)			34,588			53,746		
Design Water Intake	=Dmax x 1.05	-Intake Pump Station -Raw water Conveyance Facility -WTP (input)	(m ³ /day)		say Margin	18,245 18,200 600		say Margin	28,217 28,200 600		
Water Right			(m ³ /day)			18,800			28,800		

Table 2.1-2 Summary of Design Criteria in F/S

Source: F/S Final Report

Mahakanadarawa S	System (Excl. Ind	lepende	nt CBO)									
		2012	2014	2016	2018	2020	2022	2024	2026	2028	2030	2032	2034
Total Population	Total Pop.	83,858	86,208	88,626	91,120	93,684	96,321	99,043	101,838	104,719	107,686	110,736	113,884
46 - Maha Kumbukgollewa	Population	1,430	1,473	1,518	1,564	1,611	1,660	1,710	1,761	1,815	1,870	1,926	1,984
	Served Population	286	589	789	860	886	996	1,026	1,233	1,361	1,496	1,733	1,984
	Water Demand	39	81	109	120	126	143	149	181	202	225	263	305
Target Population	Population	82,428	84,735	87,108	89,556	92,073	94,661	97,333	100,077	102,904	105,816	108,810	111,900
for Pipe Borne WS	Pipe Borne WSS	62,778	64,665	66,608	68,613	70,680	72,808	75,010	82,347	84,796	87,319	89,915	92,597
	(Existing)	46,591	48,010	49,473	50,982	52,541	54,141	55,802	57,512	59,277	61,098	62,974	64,912
	(New)	16,187	16,655	17,135	17,631	18,139	18,667	19,208	24,835	25,519	26,221	26,941	27,685
for Non Pipe Borne WS	Non Pipe Borne WSS	19,650	20,070	20,500	20,943	21,393	21,853	22,323	17,730	18,108	18,497	18,895	19,303
Coverage (%)	Coverage (Total)	31.4	59.4	63.0	65.2	67.5	69.7	72.0	74.8	82.1	88.4	94.7	100.0
for Pipe Borne WS	Coverage (Pipe WS)	41.2	46.8	51.6	54.6	57.7	60.7	63.7	69.4	78.2	85.9	93.6	100.0
	(Existing)	56.0	60.0	64.0	68.0	72.0	76.0	80.0	84.0	88.0	92.0	96.0	100.0
	(New)	0.0	10.0	17.0	17.0	17.0	17.0	17.0	40.0	60.0	75.0	90.0	100.0
for Non Pipe Borne WS	Non Pipe Borne WSS	100	100	100	100	100	100	100	100	100	100	100	100
Served Population	Served Population	25,892	50,347	54,890	58,431	62,142	66,025	70,097	74,846	84,458	93,515	103,019	111,900
for Pipe Borne WS	Pipe Borne WSS	25,892	30,277	34,390	37,488	40,749	44,172	47,774	57,116	66,350	75,018	84,124	92,597
	(Existing)	25,892	28,611	31,476	34,491	37,665	40,998	44,509	48,196	52,073	56,144	60,419	64,912
	(New)	-	1,666	2,914	2,997	3,084	3,174	3,265	8,920	14,277	18,874	23,705	27,685
for Non Pipe Borne WS	Non Pipe Borne WSS	-	20,070	20,500	20,943	21,393	21,853	22,323	17,730	18,108	18,497	18,895	19,303
Water Demand (Dave: m3day)	Dave	3,495	4,341	4,961	5,456	5,994	6,557	7,154	8,562	10,029	11,448	12,963	14,414
Pipe Borne WS	Pipe Borne WSS	3,495	4,141	4,756	5,247	5,779	6,337	6,982	8,384	9,847	11,263	12,774	14,221
	(Existing)	3,495	3,913	4,354	4,828	5,341	5,882	6,459	7,075	7,728	8,429	9,175	9,970
	(New)	-	228	402	419	438	455	523	1,309	2,119	2,834	3,599	4,251
Non Pipe Borne WS	Non Pipe Borne WSS	-	200	205	209	215	220	172	178	182	185	189	193
Water Demand for Transmission	Dmax (Dave x 1.20)	4,194	5,209	5,953	6,547	7,193	7,868	8,585	10,274	12,035	13,738	15,556	17,297
Water Demand for Treatment	Dmax x1.05	4,400	5,500	6,300	6,900	7,600	8,300	9,000	10,800	12,600	14,400	16,300	18,200

Table 2.1-3 Annual Change in Design Daily Average and Maximum Water Supply in F/S (Mahakanadarawa System)

Source: Preparatory Survey Report, JICA

Wahalkada System	(Excl. Independe	ent CBC)s)										
		2012	2014	2016	2018	2020	2022	2024	2026	2028	2030	2032	2034
Total Population	Total Pop.	120,880	124,293	127,794	131,417	135,150	138,985	142,940	147,008	151,200	155,525	159,978	164,562
32 - Kurulugama	•	1,354	1,379	1,403	1,429	1,455	1,481	1,508	1,535	1,563	1,591	1,620	1,649
119 - Ihala Angunachchiya	•	1,041	1,073	1,105	1,139	1,173	1,208	1,245	1,283	1,321	1,361	1,402	1,445
Sub-Total		2,395	2,452	2,508	2,568	2,628	2,689	2,753	2,818	2,884	2,952	3,022	3,094
Served Population		· · · · ·	, í	, , , , , , , , , , , , , , , , , , ,	, í	, i i i i i i i i i i i i i i i i i i i					, i i i i i i i i i i i i i i i i i i i	, í	
32 - Kurulugama		271	552	730	786	800	889	905	1,075	1,172	1,273	1,458	1,649
119 - Ihala Angunachchiya		208	429	575	626	645	725	747	898	991	1,089	1,262	1,445
Sub-Total		479	981	1,305	1,412	1,445	1,614	1,652	1,973	2,163	2,362	2,720	3,094
Water Demand													
32 - Kurulugama		37	75	101	110	113	128	131	158	174	191	221	253
119 - Ihala Angunachchiya		28	59	80	88	91	104	108	132	147	164	192	222
Sub-Total		65	134	181	198	204	232	239	290	321	355	413	475
Target Population	Population	118,485	121,841	125,286	128,849	132,522	136,296	140,187	144,190	148,316	152,573	156,956	161,468
for Pipe Borne WS	Pipe Borne WSS	95,911	98,775	101,715	104,766	107,907	111,145	114,485	128,836	132,633	136,549	140,587	144,745
	(Existing)	49,985	51,530	53,117	37,488	40,749	44,172	60,026	67,997	70,064	72,193	74,394	76,664
	(New)	45,926	47,245	48,598	50,004	51,445	52,929	54,459	60,839	62,569	64,356	66,193	68,081
for Non Pipe Borne WS	Non Pipe Borne WSS	22,574	23,066	23,571	24,083	24,615	25,151	25,702	15,354	15,683	16,024	16,369	16,723
Coverage	Coverage (Total)	22.7	51.2	62.7	64.8	66.9	69.1	71.6	74.2	80.7	87.1	93.6	100.0
for Pipe Borne WS	Coverage (Pipe WS)	28.1	39.9	54.0	56.7	59.4	62.1	65.2	71.2	78.4	85.6	92.8	100.0
	(Existing)	54.0	18.0	62.0	97.0	98.0	99.0	79.0	59.0	80.0	84.0	87.0	91.0
	(New)	0.0	20.0	45.0	46.0	47.0	48.0	50.0	60.0	70.0	80.0	90.0	100.0
for Non Pipe Borne WS	Non Pipe Borne WSS	100	100	100	100	100	100	100	100	100	100	100	100
Served Population		26,925	62,431	78,510	83,471	88,692	94,133	100,393	107,042	119,656	132,911	146,846	161,468
for Pipe Borne WS	Pipe Borne WSS	26,925	39,365	54,939	59,388	64,077	68,982	74,691	91,688	103,973	116,887	130,477	144,745
	(Existing)	26,925	29,916	33,072	36,392	39,895	43,576	47,449	51,521	55,803	60,302	65,033	70,000
	(New)	-	9,449	21,867	22,996	24,182	25,406	27,242	40,167	48,170	56,585	65,444	74,745
for Non Pipe Borne WS	Non Pipe Borne WSS	-	23,066	23,571	24,083	24,615	25,151	25,702	15,354	15,683	16,024	16,369	16,723
Water Demand	Dave	3,636	5,615	7,843	8,556	9,336	10,147	11,098	13,616	15,599	17,719	19,979	22,392
Pipe Borne WS	Pipe Borne WSS	3,636	5,384	7,608	8,315	9,087	9,893	10,841	13,463	15,441	17,556	19,815	22,225
	(Existing)	3,636	4,203	4,577	5,097	5,658	6,248	6,888	7,566	8,286	9,058	9,874	10,748
	(New)	-	2,240	3,031	3,218	3,429	3,645	3,953	5,897	7,155	8,498	9,941	11,477
Non Pipe Borne WS	Non Pipe Borne WSS	-	1,227	235	241	249	254	257	153	158	163	164	167
Water Demand for Transmission	Dmax (Dave x 1.20)	4,363	6,738	9,412	10,267	11,203	12,176	13,318	16,339	18,719	21,263	23,975	26,870
Water Demand for Treatment	Dmax x 1.05	4,600	7,100	9,900	10,800	11,800	12,800	14,000	17,200	19,700	22,300	25,200	28,200

Table 2.1-4 Annual Change in Design Daily Average and Maximum Water Supply in F/S (Wahalkada System)

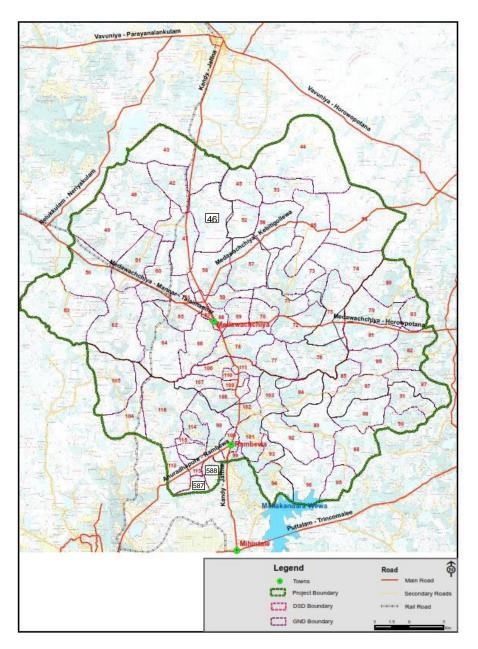
Source: Preparatory Survey Report, JICA

(10) Design Flow of Water Treatment Plants for Stage Construction

Both water treatment plants for the Mahakanadarawa System and the Wahalkada System were planned to be constructed stage by stage.

The planned capacities of Stage 1 (in 2024) and Long-term Plan (in 2034) are as shown in Table 2.1-5.

	Stage-1 (2024)	Long-term Plan (2034)
Mahakanadarawa WTP		
Daily Maximum Water Supply (Output)	8,950 m ³ /day	17,900 m ³ /day
Production Capacity* (Input)	9,400 m ³ /day	18,800 m ³ /day
Wahalkada WTP		
Daily Maximum Water Supply (Output)	13,700m ³ /day	27,400 m ³ /day
Production Capacity* (Input)	14,400 m ³ /day	28,800 m ³ /day


 Table 2.1-5
 Planned Capacity of Water Treatment Plants in F/S

*: The terminology "Production Capacity" in this table means required "Input", namely required volume of raw water intake. Production Capacity for "Output" is the same as Daily Maximum Water Supply.

2.2 Water Demand Projection for Mahakanadarawa System

(1) Service Area

In the D/D stage, GND No.46 - Maha Kumbukgollewa, Medawachchiya DSD, GND No.587 - Doramadalawa, Mihinthale DSD, and GND No.588 - Ukkulankulama, Mihinthale DSD were added to the service area of the Mahakanadarawa system.

Source: F/S Final Report

Figure 2.2-1 GNDs added in Phase 1 D/D

During the F/S, GND No.46 was not requested for water supply by the Phase 1 project because there is an existing CBO scheme. However, during the Phase-1 D/D, residents in GND No.46 requested NWSDB in writing to include their CBO under the Phase 1 project.

GNDs No.587 and No.588 are in Mihinthale DSD. However, some parts of these GNDs are covered under the existing Rambewa Water Supply System. Since the Rambewa existing pipe network is to be connected to the new pipe network under the scope of Phase 1 project, water of the Mahakanadarawa system will flows to the GNDs No.587 and No.588 automatically. Therefore, these partially covered areas were considered in the demand calculations.

(2) Target Year

In the Phase-1 D/D, the target year was set as 2034 with an interim target year of 2024 for staged construction as same as those in the F/S,

(3) Projected Population

Considering that the results of 2012 Census was not available during the F/S, the population projection was revised in the Phase 1 D/D based on the results of 2012 Census (provisional) as summarized in **Table 2.2-1**. The annual population growth rate at 1.33% was adopted for projection based on the average annual population growth in Anuradhapura District which was derived from data in 2001 Census and 2012 Census (provisional).

DSD	Area	Census	Increase		Projecte	d Total Poj	pulation	
DSD	Category	2012	Ratio	2019	2020	2024	2030	2034
	Existing	14,919	1.33%	16,365	16,582	17,482	18,925	19,952
Rambewa	New	21,877	1.33%	23,997	24,316	25,636	27,751	29,257
	Total	36,796	1.33%	40,361	40,898	43,118	46,675	49,208
	Existing	22,032	1.33%	24,167	24,488	25,817	27,947	29,464
Medawachchiya	New	24,711	1.33%	27,105	27,466	28,957	31,345	33,047
	Total	46,743	1.33%	51,272	51,954	54,774	59,293	62,511
	Existing	1,298	1.33%	1,424	1,443	1,521	1,646	1,736
Mihinthale	New	-	1.33%	-	-	-	-	-
	Total	1,298	1.33%	1,424	1,443	1,521	1,646	1,736
	Existing	38,249	1.33%	41,955	42,513	44,820	48,518	51,151
Total	New	46,588	1.33%	51,102	51,782	54,592	59,096	62,303
	Total	84,837	1.33%	93,058	94,295	99,413	107,614	113,455

 Table 2.2-1
 Total Population Projection for Mahakanadarawa System

Source: Phase-1 D/D Design report, revised by the JICA Study Team

Note: In Mihinthale DSD, GND No. 587 was counted as its 90% and No. 588 as 50% because of coverage area of the existing system.

Population Projection in S/S

The population growth rate at 1.33% per annum was adopted for projection uniformly. Further, the data used for the project were provisional. Recently, final results of 2012 Census on GND level became available, then, projected total population were revised in the S/S using average annual population increase ratio of each GND in order to reflect characteristic of each GND. GNDs in the project area were categorized into following 4 types considering characteristics of each GND.

- A: GND with main road
- B : Surrounding GND
- C: Isolated GND
- D: Urban Centre

Category of each GND was decided with following method as same as the F/S:

- GNDs at urban centers are categorized in D as shown in Figure 2.2-2.
- GNDs at along the main roads are categorized in A as shown in Figure 2.2-3. Categorized GNDs into D shown in Figure 2.2-2 are not categorized into D

- GNDs next to GNDs in Category A and D are categorized into B.
- Remaining GNDs are categorized into C

Average population increase ratios between 2001 and 2012 by DSD by category were applied for population projection of each GND. Results of revised calculation by DSD is summarized by water supply type as shown in **Table 2.2-2**.

DCD	Area	Census		Projecte	ed Target Pop	oulation	
DSD	Category	2012	2019	2020	2024	2030	2034
	Existing	18,438	20,292	20,572	21,730	23,591	24,921
Rambewa	New	18,344	20,282	20,576	21,792	23,752	25,156
	Total	36,782	40,574	41,147	43,521	47,343	50,077
	Existing	29,204	32,006	32,428	34,172	36,967	38,956
Medawachchiya	New	17,702	19,526	19,801	20,943	22,782	24,097
	Total	46,906	51,532	52,229	55,115	59,749	63,054
	Existing	1,303	1,446	1,468	1,558	1,704	1,809
Mihinthale	New	-	-	-	-	-	-
	Total	1,303	1,446	1,468	1,558	1,704	1,809
	Existing	48,945	53,744	54,467	57,460	62,262	65,686
Total	New	36,046	39,808	40,377	42,735	46,534	49,253
	Total	84,991	93,552	94,844	100,195	108,796	114,939

 Table 2.2-2
 Target Population Projection for Mahakanadarawa System

Source: JICA Study Team

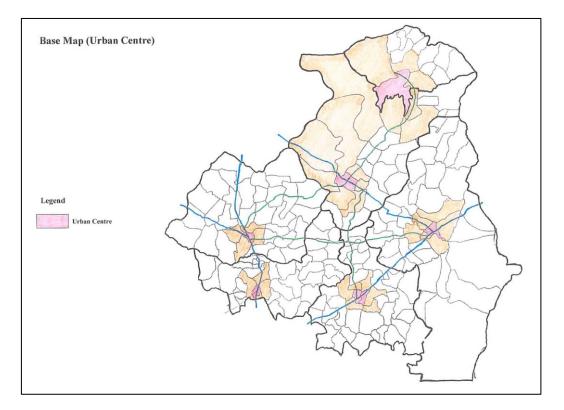


Figure 2.2-2 GNDs in Category A

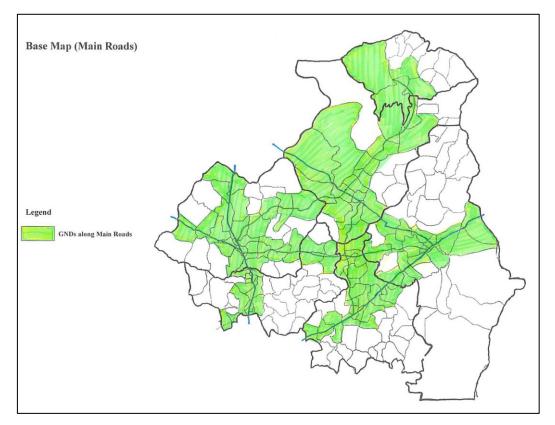


Figure 2.2-3 GNDs in Category D

(4) Served Population

Since the residents with high expectation for pipe borne water supply are willing to connect to a water supply system as soon as possible, the connection ratio to the system is assumed to be increased with a high increase rate during a few years soon after the completion of the system and thereafter it will become lower in general.

1) Existing Pipe Borne Water Supply Area

In the GNDs with an existing pipe borne water supply system, the coverage ratio was assumed to grow up from present coverage ratio to 100 % in 2034 lineally.

2) New Coverage Area

In the Phase 1 D/D, it was assumed that the rate of new connections in new coverage areas would be high in the early years of the project life. But this rate was assumed to decrease gradually and to follow the same pattern as of the existing supply areas after reaching a certain level of service coverage. In the Phase 1 D/D, the service coverage was assumed to be 75% in 2024. In the calculation of the S/S, said service coverage was decreased by 5 %, namely 70%, considering the delay of the Phase-1 project.

DCD	Area		Projec	ted Served Popul	ation	
DSD	Category	2019	2020	2024	2030	2034
	Existing *	70%	72%	80%	92%	100%
Service Coverage	New	25%	35%	70%	88%	100%
Coverage	Total *	51%	56%	76%	90%	100%
	Existing	15,568	16,103	18,363	22,133	24,921
Rambewa	New	5,071	7,201	15,254	20,902	25,156
	Total	20,638	23,305	33,617	43,034	50,077
	Existing	21,260	22,265	26,519	33,653	38,956
Medawachchiya	New	4,881	6,930	14,660	20,048	24,097
	Total	26,141	29,195	41,180	53,702	63,054
	Existing	985	1,031	1,227	1,559	1,809
Mihinthale	New	-	-	-	-	-
	Total	985	1,031	1,227	1,559	1,809
	Existing	37,812	39,399	46,110	57,345	65,686
Total	New	9,952	14,132	29,914	40,950	49,253
	Total	47,764	53,531	76,024	98,295	114,939

 Table 2.2-3
 Served Population Projection for Mahakanadarawa System

Source: JICA Study Team

Note: Commissioning of WTP is assumed to be end of 2018.

*: Service coverage % for Existing and Total are the results of calculation.

(5) Per Capita Domestic Water Consumption

The policy in the F/S was also applied in the Phase-1 D/D. Based on the result of the F/S, per capita domestic water consumption in 2024 and 2034 are set as 86 LPCD, 91 LPCD respectively.

(6) Non-Domestic Water Demands

Non-domestic water demand such as commercial use was calculated as 35% of domestic water demand in

the F/S. However, in the Phase 1 D/D, NWSDB agreed to apply 30% instead of 35 %. Therefore, the

Phase 1 D/D set 30% of domestic water demand as Non-domestic water demand.

(7) Allowance for Unplanned Water Demands

Even though it was not considered in the F/S, allowance for unexpected water demand was considered as 1.5% of total water demand in the Phase 1 D/D.

(8) Non-Revenue Water

In the F/S, the ratio of non-revenue water was set at 25% of revenue water, which is equivalent to 20% of total water demand, through project years. In the Phase-1 D/D, the same ratio of 20% of total demand was applied for 2034. This ratio, however, was assumed to be increased from 10% at the commissioning expecting completeness of new facilities. The ratios in intermediate years were assumed to increase lineally.

(9) Daily Maximum, Hourly Maximum and Raw Water Intake Amount

In the Phase-1 D/D, daily maximum demand is modified to 110% of daily average demand from 120% in the F/S, while hourly maximum demand is modified to 160% of daily maximum demand from 200% in the F/S. These modifications were made in accordance with the NWSDB Design Manual (refer to extraction of the manual shown on following page). According to the D/D team, the peak load factor of 160% was decided considering the present situation of the service area. Actually it was difficult to measure the peak ratio because of intermittent water supply in the area.

Water loss at the each WTP was set at 5% as same as the F/S.

(10) Design Flow of Water Treatment Plants for Stage Construction

In the F/S, the capacity of each WTP in the initial stage (2024) was designed at 50 % of the capacity of target year (2034). In the Phase-1 D/D, completion of construction of the Mahakanadarawa WTP initial stage was planned in 2018⁵, about 60% of ultimate capacity would be completed.

(11) Water Demand

Based on the design criteria mentioned above, planned water demand was re-calculated as shown in **Table 2.2-4**. Comparing with the result of the F/S, 10% increase of water production capacity is necessary for 2034, but, for the first stage of construction work, the production capacity is desired to be increased by

⁵ Its completion was expected to be March 2018 in the F/S. Considering present status of the Project, however, the JICA Study Team assumed it will be the end of 2018.

28% of that in the F/S as shown in Table 2.2-5.

As also shown in **Table 2.2-5**, the WTP production capacity designed in the Phase-1 D/D will be sufficient in 2024, while planned capacity for 2034 is slightly less than requirement. However, lack of capacity is less than 1% and is possible to consider negligible at this moment. It shall be examined in the future.

Extract from Design Man	ual D2 Urban Water Supply and Sanitation March 1989 by NWSDB.
3.2,5	Peaking Factors
	The maximum demand for water in a system varies from season to season depending on temperature and rainfall, with the highest demands naturally occurring on hot, dry days. In addition, the system demand varies throughout the day with peak system demands normally in the early morning and late afternoon.
in the R	The maximum day peaking factor in Sri Lanka is typically 1.1 (smaller urban < 20,000 population) to 1.25 (larger urban > 20,000 population) times the mean annual daily consumption, (In foreign countries with hot summers and a high use for garden watering the factor may be 2.0 or more). Facilities that should be designed for maximum day demand are:
	o Source works, intakes*
×	o Transmission mains
	 Supply system pumping stations*
	o Treatment works*
	o Service reservoirs
	ie. the complete supply system up to the service reservoirs.
	The maximum hourly peaking factor depends on the hours of service per day, and the proportion of consumers with in-house storage tanks, which have the effect of levelling out peaks. Aim for providing a continuous 24-hour service unless there are particular constraints preventing this (i.e. water source or power restrictions). Intermittent supply is neither desirable from a public health point of view nor is it economical. However, it may become necessary to provide intermittent service when the available supply is inadequate to meet the demand. For a 24-hour system, where the majority of consumers have storage tanks, use a peak factor of 2.5 (smaller urban) to 2.0 (larger urban $>$ 20 000) times the mean annual daily consumption. (See also Section 8.2)
	where treatment is required, facilities handling raw water source works, low lift pumps and mains, treatment plants) be sized with a capacity of 1.05 to 1.1 times maximum day to for treatment losses.

			Tab	le 2.	2-4	Wa	ter D	ema	na P	rojec	ction	lor	vian	akan	adar	awa	Syste	m							
			2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Total Population			84,991	86,164	87,353	88,559	89,781	91,021	92,278	93,552	94,844	96,154	97,483	98,829	100,195	101,579	102,983	104,406	105,849	107,312	108,796	110,300	111,825	113,371	114,93
	Rambewa	Existing	18,438	18,692	18,950	19,211	19,475	19,744	20,016	20,292	20,572	20,855	21,143	21,434	21,730	22,029	22,333	22,641	22,954	23,270	23,591	23,917	24,247	24,582	24,9
		New	18,344	18,609	18,878	19,151	19,428	19,709	19,993	20,282	20,576	20,873	21,175	21,481	21,792	22,107	22,426	22,751	23,080	23,413	23,752	24,095	24,444	24,797	25,1
	Medawachchiya	Existing	29,204	29,589	29,978	30,373	30,774	31,179	31,590	32,006	32,428	32,856	33,289	33,727	34,172	34,623	35,079	35,542	36,010	36,485	36,967	37,454	37,948	38,449	38,9
		New	17,702	17,952	18,205	18,462	18,722	18,986	19,254	19,526	19,801	20,081	20,364	20,652	20,943	21,239	21,539	21,843	22,152	22,465	22,782	23,104	23,430	23,761	24,0
	Mihinthale	Existing	1,303	1,322	1,342	1,362	1,383	1,403	1,424	1,446	1,468	1,490	1,512	1,535	1,558	1,581	1,605	1,629	1,654	1,679	1,704	1,729	1,755	1,782	1,80
		New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Target Population (persons)		Total	84,991	86,164	87.353	88.559	89,781	91,021	92,278	93,552	94,844	96.154	97.483	98.829	100.195	101,579	102.983	104,406	105.849	107,312	108.796	110.300	111,825	113,371	114.93
	Rambewa	Existing	18,438	18,692	18,950	19,211	19,475	19,744	20,016	20,292	20,572	20,855	21,143	21,434	21,730	22,029	22,333	22,641	22,954	23,270	23,591	23,917	24,247	24,582	24,9
		New	18,344	18,609	18,878	19,151	19,428	19,709	19,993	20,282	20,576	20,873	21,175	21,481	21,792	22,107	22,426	22,751	23,080	23,413	23,752	24,095	24,444	24,797	25,1
	Medawachchiya	Existing	29,204	29,589	29,978	30,373	30,774	31,179	31,590	32,006	32,428	32,856	33,289	33,727	34,172	34,623	35,079	35,542	36,010	36,485	36,967	37,454	37,948	38,449	38,9
		New	17,702	17,952	18,205	18,462	18,722	18,986	19,254	19,526	19,801	20,081	20,364	20,652	20,943	21,239	21,539	21,843	22,152	22,465	22,782	23,104	23,430	23,761	24,0
	Mihinthale	Existing	1,303	1,322	1,342	1,362	1,383	1,403	1,424	1,446	1,468	1,490	1,512	1,535	1,558	1,581	1,605	1,629	1,654	1,679	1,704	1,729	1,755	1,782	1,8
		New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-		
0 (W)	h = . / .	T . 4 . 1			0.5				40		50		67	70	70	70	01						0.5		10
Coverage (%)	b=c/a	Total	33 57	34 59	35 61	36 63	37 65	38 66	46 68	51 70	56 72	62 74	67 76	73 78	76 80	78 82	81 84	83 86	86 88	88 90	90 92	93 94	95 96	98 98	10
		Existing New	0	0	0	03	0	00	15	25	35	45	55	65	70	73	76	79	82	90 85	92	94	90	98	10
		INEW	U	0	0	0	0	0	10	20			55	00	70	/3	70		02	00	00	91	94	97	10
Served Population (persons)	c	Total	27,818	29,146	30,506	31,896	33,319	34,773	42,148	47,764	53,531	59,451	65,527	71,762	76,024	79,524	83,107	86,773	90,526	94,366	98,295	102,315	106,428	110,635	114,93
	Rambewa	Existing	12,125	12,586	13,056	13,537	14,028	14,530	15,043	15,568	16,103	16,650	17,209	17,780	18,363	18,959	19,567	20,189	20,823	21,471	22,133	22,808	23,498	24,202	24,92
		New	0	0	0	0	0	0	2,999	5,071	7,201	9,393	11,646	13,963	15,254	16,138	17,044	17,973	18,925	19,901	20,902	21,927	22,977	24,053	25,15
	Medawachchiya	Existing	14,833	15,688	16,564	17,460	18,378		20,277	21,260	22,265	23,293	24,344	25,420	26,519	27,644	28,793	29,969	31,170	32,398	33,653	34,936	36,247	37,587	38,95
		New	0	0	0	0	0	0		4,881	6,930	9,036	11,200	13,424	14,660	15,505	16,370	17,256	18,164	19,095	20,048	21,024	22,024	23,049	24,09
	Mihinthale	Existing	860	873	886	899	913	926	940	985	1,031	1,078	1,127	1,176	1,227	1,279	1,332	1,387	1,443	1,500	1,559	1,619	1,681	1,744	1,80
		New	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	<u>ا </u>	<u> </u>
Per Capita Water Consumption (LPCD)	d		80.0	80.5	81.0	81.5	82.0	82.5	83.0	83.5	84.0	84.5	85.0	85.5	86.0	86.5	87.0	87.5	88.0	88.5	89.0	89.5	90.0	90.5	91.0
Domestic Water Consumption (m3/d)	e = o x d	Total	2,225	2,346	2,471	2,600	2,732	2,869	3,498	3,988	4,497	5,024	5,570	6,136	6,538	6,879	7,230	7,593	7,966	8,351	8,748	9,157	9,579	10,012	10,459
Domestic Water Consumption (m3/ a)	8 – 6 x 6 Rambewa	Existing	970	1,013	1,058	1,103	1,150	1,199	1,249	1,300	1,353	1,407	1,463	1,520	1,579	1,640	1,702	1,583	1,832	1,900	1,970	2,041	2,115	2,190	2,26
	Nampewa	New	370	1,013	1,030	1,103	1,130	1,133	249	423	605		990		1,373	1,040	1,483	1,573	1,665	1,300	1,860	1,962	2,068	2,130	
	Medawachchiya	Existing	1,187	1,263	1,342	1,423	1,507	1,594		1,775	1,870	1,968	2,069	2,173	2,281	2,391	2,505	2,622	2,743	2,867	2,995	3,127	3,262	3,402	3.54
	Wedawaenemya	New	1,107	1,200	1,042	1,420	1,007				582		952		1,261	1,341	1,424	1,510	1,598	1,690	1.784	1,882	1,982	2,086	
	Mihinthale	Existing	69	70	72	73	75	-			87		96		106	111	116	121	127	133	139	145	151	158	
	in in tendio	New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Non-Domestic Water Consumption	f = e x 30%		668	704	741	780	820	861	1,049	1.196	1,349	1.507	1,671	1,841	1,961	2,064	2,169	2,278	2.390	2.505			2,874	3,004	3,138
	Rambewa	Existing	291																		2,624	2,747			
			201	304	317	331	345			390	406	422	439		474	492	511	530	550	570	591	612	634		
		New	0	0	0	0	0	0	75	390 127	181	238	297	358	394	419	445	472	500	570 528	591 558	612 589	620	653	61
	Medawachchiya	Existing	0	304 0 379	0	331 0 427	0 452	0 478	75 505	390 127 533	181 561	238 590	297 621	358 652	394 684	419 717	445 752	472 787	500 823	570 528 860	591 558 899	612 589 938	620 979	653 1,020	68
		Existing New	0 356 0	0 379 0	0 403 0	0 427 0	0 452 0	0 478 0	75 505 72	390 127 533 122	181 561 175	238 590 229	297 621 286	358 652 344	394 684 378	419 717 402	445 752 427	472 787 453	500 823 480	570 528 860 507	591 558 899 535	612 589 938 565	620 979 595	653 1,020 626	68 1,00
	Medawachchiya Mihinthale	Existing New Existing	0	0	0	0	0 452 0	0 478 0	75 505 72	390 127 533 122	181 561	238 590	297 621	358 652 344	394 684	419 717	445 752	472 787	500 823	570 528 860	591 558 899	612 589 938	620 979	653 1,020	68 1,06 65
		Existing New	0 356 0	0 379 0	0 403 0 22 -	0 427 0 22 -	0 452 0	0 478 0	75 505 72	390 127 533 122 25 -	181 561 175	238 590 229 27 -	297 621 286 29	358 652 344	394 684 378	419 717 402 33	445 752 427 35 -	472 787 453	500 823 480	570 528 860 507	591 558 899 535 42 -	612 589 938 565	620 979 595	653 1,020 626	68 1,06 65
Allow. for Unexpected Water Consumption		Existing New Existing	0 356 0	0 379 0 21 - 46	0 403 0	0 427 0 22 - 51	0 452 0 22 - 53	0 478 0 23 - 56	75 505 72 23 - 68	390 127 533 122	181 561 175 26 - 88	238 590 229 27 - 98	297 621 286 29 	358 652 344 30 - 120	394 684 378	419 717 402 33 - 134	445 752 427 35 - 141	472 787 453 36 - 148	500 823 480	570 528 860 507	591 558 899 535 42 - 171	612 589 938 565	620 979 595	653 1,020 626	61 1,00 61
Allow. for Unexpected Water Consumption	Mihinthale	Existing New Existing	0 356 0 21 -	0 379 0 21 -	0 403 0 22 -	0 427 0 22 -	0 452 0 22 -	0 478 0 23 - 56	75 505 72 23 - 68	390 127 533 122 25 - 78	181 561 175 26 - 88 26	238 590 229 27 -	297 621 286 29 	358 652 344 30 - 120 30	394 684 378 32 - 127 31	419 717 402 33 - - 134 32	445 752 427 35 - 141 33	472 787 453 36 - 148 34	500 823 480 38 - 155 36	570 528 860 507 40 - - 163 37	591 558 899 535 42 - - 171 38	612 589 938 565 43 - 179 40	620 979 595 45 - 187 41	653 1,020 626 47 - 195 43	68 1,00 69 204
Allow. for Unexpected Water Consumption	Mihinthale g = (e+f) x 1.5%	Existing New Existing New	0 356 0 21 - 43 19 0	0 379 0 21 - 46 20 0	0 403 0 22 - - 48 21 0	0 427 0 22 - 51 22 0	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26 12	238 590 229 27 - 98 27 15	297 621 286 29 - - 109 29 19	358 652 344 30 - 120 30 23	394 684 378 32 - 127 31 26	419 717 402 33 134 32 27	445 752 427 35 - 141 33 29	472 787 453 36 - 148 34 31	500 823 480 38 - 155 36 32	570 528 860 507 40 	591 558 899 535 42 - 171 38 36	612 589 938 565 43 - 179 40 38	620 979 595 45 - 187 41 40	653 1,020 626 47 - 195 43 42	68 1,06 65 204 204
Allow. for Unexpected Water Consumption	Mihinthale g = (e+f) x 1.5%	Existing New Existing New Existing New Existing	0 356 0 21 -	0 379 0 21 - 46	0 403 0 22 - - 48 21 0	0 427 0 22 - 51	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26	238 590 229 27 - 98 27 15 38	297 621 286 29 	358 652 344 30 - 120 30 23 42	394 684 378 32 - 127 31 26 44	419 717 402 33 134 32 27 47	445 752 427 35 - - 141 33 29 49	472 787 453 36 - 148 34 31 51	500 823 480 38 - 155 36 32 53	570 528 860 507 40 - - 163 37 34 56	591 558 899 535 42 - - 171 38 36 58	612 589 938 565 43 - 179 40 38 61	620 979 595 45 - 187 41 40 64	653 1,020 626 47 - - 195 43 43 42 66	68 1.00 68 204
Allow. for Unexpected Water Consumption	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya	Existing New Existing New Existing New Existing New	0 356 0 21 - 43 19 0	0 379 0 21 - 46 20 0	0 403 0 22 - - 48 21 0	0 427 0 22 - 51 22 0	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26 12	238 590 229 27 - 98 27 15	297 621 286 29 - - 109 29 19	358 652 344 30 - 120 30 23 42	394 684 378 32 - 127 31 26	419 717 402 33 134 32 27	445 752 427 35 - 141 33 29	472 787 453 36 - 148 34 31 51 29	500 823 480 38 - 155 36 32	570 528 860 507 40 - 163 37 34 56 33	591 558 899 535 42 - 171 38 36	612 589 938 565 43 - 179 40 38	620 979 595 45 - 187 41 40	653 1,020 626 47 - 195 43 42	
Allow. for Unexpected Water Consumption	Mihinthale g = (o+f) x 1.5% Rambewa	Existing New Existing New Existing New Existing New Existing	0 356 0 21 - 43 19 0	0 379 0 21 - 46 20 0	0 403 0 22 - - 48 21 0	0 427 0 22 - 51 22 0	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26 12	238 590 229 27 - 98 27 15 38	297 621 286 29 	358 652 344 30 - 120 30 23 42	394 684 378 32 - 127 31 26 44	419 717 402 33 134 32 27 47	445 752 427 35 - - 141 33 29 49	472 787 453 36 - 148 34 31 51	500 823 480 38 - 155 36 32 53	570 528 860 507 40 - - 163 37 34 56	591 558 899 535 42 - - 171 38 36 58	612 589 938 565 43 - 179 40 38 61	620 979 595 45 - 187 41 40 64	653 1,020 626 47 - - 195 43 43 42 66	68 1.00 68 204
Allow. for Unexpected Water Consumption	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya	Existing New Existing New Existing New Existing New	0 356 0 21 - 43 19 0	0 379 0 21 - 46 20 0	0 403 0 22 - - 48 21 0	0 427 0 22 - 51 22 0	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26 12	238 590 229 27 - 98 27 15 38	297 621 286 29 	358 652 344 30 - 120 30 23 42	394 684 378 32 - 127 31 26 44	419 717 402 33 134 32 27 47	445 752 427 35 - - 141 33 29 49	472 787 453 36 - 148 34 31 51 29	500 823 480 38 - 155 36 32 53	570 528 860 507 40 - 163 37 34 56 33	591 558 899 535 42 - - 171 38 36 58	612 589 938 565 43 - 179 40 38 61	620 979 595 45 - 187 41 40 64	653 1,020 626 47 - - 195 43 43 42 66	6 1.0 6 20
Allow. for Unexpected Water Consumption	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya	Existing New Existing New Existing New Existing New Existing	0 356 0 21 - 43 19 0	0 379 0 21 - 46 20 0	0 403 0 22 - - 48 21 0	0 427 0 22 - 51 22 0	0 452 0 22 - 53 22 0	0 478 0 23 - 56 23 0	75 505 72 23 - 68 24 5	390 127 533 122 25 - 78 25 8	181 561 175 26 - 88 26 12	238 590 229 27 - 98 27 15 38	297 621 286 29 	358 652 344 30 - 120 30 23 42	394 684 378 32 - 127 31 26 44	419 717 402 33 134 32 27 47	445 752 427 35 - - 141 33 29 49	472 787 453 36 - 148 34 31 51 29	500 823 480 38 - 155 36 32 53	570 528 860 507 40 - 163 37 34 56 33	591 558 899 535 42 - - 171 38 36 58	612 589 938 565 43 - 179 40 38 61	620 979 595 45 - 187 41 40 64	653 1,020 626 47 - - 195 43 43 42 66	6 1.0 6 20
Average Daily Water Consumption	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya Mihinthale	Existing New Existing New Existing New Existing New Existing New	0 356 0 211 - 43 19 0 23 0 1 1 - - 2,936	0 379 0 21 46 20 0 0 25 0 0 1 1 3,096	0 403 0 22 - - 48 21 0 26 0 1 1 - 3,260	0 427 0 22 51 22 0 28 0 28 0 1 1 - 3,430	0 452 0 22 53 22 0 29 0 1 1 3,605	0 478 0 23 56 23 0 31 31 0 1 1 3,785	75 505 72 23 68 24 5 33 35 5 2 2 4,616	390 127 533 122 25 - - 78 25 8 8 35 8 8 22 - - 5,263	181 561 175 26 - - 88 26 12 36 11 2 36 11 2 5,933	238 590 229 27 - - - - - - - - - - - - - - - - - -	297 621 286 29 	358 652 344 30 - 120 30 23 42 22 22 - 8,096	394 684 378 32 - 127 31 26 44 25 2 - 8,627	419 717 402 33 33 - - 134 32 27 47 47 26 2 2 - - 9,077	445 752 427 35 - 141 33 29 49 28 2 2 2 - 9,540	472 787 453 36 - 148 34 31 51 29 2 2 - -	500 823 480 38 38 - 155 36 32 53 31 2 - 10,511	570 528 860 507 40 183 37 34 56 333 3 11,020	591 558 899 535 42 171 38 36 58 33 - 11,543	612 589 938 565 43 - 179 40 38 61 37 3 3 - 12,083	620 979 595 45 - - 187 41 40 64 39 33 - -	653 1,020 626 47 - 195 43 42 66 41 3 - - 13,211	6 1.0 6 20
Average Daily Water Consumption Non-Revenue Water Demand	Mihinthale g = (o+f) x 1.5% Rambewa Medawachchiya Mihinthale h = o + f + g I	Existing New Existing New Existing New Existing New Existing	0 356 0 21 - - 43 19 0 23 0 11 - 2,936 10.0%	0 379 0 21 46 20 0 0 25 0 1 1 3,096	0 403 0 22 - - 48 21 0 26 0 1 1 - - 3,260 10.0%	0 427 0 22 51 22 0 28 0 28 0 1 1 - - 3,430	0 452 0 22 53 22 0 29 0 1 1 - - 3,605	0 478 0 23 23 - - 56 23 0 31 31 0 1 1 - - 3,785 10.0%	75 505 72 23 - - 68 24 5 33 35 5 2 2 - - 4,616	390 127 533 122 25 78 25 8 35 8 35 8 22 - - 5,263 10.6%	181 561 175 26 - - 88 26 12 36 11 2 36 11 2 5,933 11.3%	238 590 229 27 - - 98 27 15 38 15 2 2 - - 6,629 11.9%	297 621 286 29 	358 652 344 30 - 120 30 23 42 22 2 2 - - 8,096 13.1%	394 684 378 32 - 127 31 26 44 25 2 2 - - 8,627 13.8%	419 717 402 33 33 - - - 2 2 7 47 26 2 2 2 - - 9,077 14.4%	445 752 427 35 - - 141 33 29 49 49 28 22 - - 9,540 15.0%	472 787 453 36 - 148 34 31 51 51 29 2 2 - - 10,019 15.6%	500 823 480 38 - 155 36 32 53 31 2 - - 10,511 16.3%	570 528 860 507 400 - - - - - 33 3 3 3 3 3 - - 11,020 16,9%	591 558 899 535 - - 171 38 36 58 35 3 3 - - 11,543 17.5%	612 589 938 565 - 179 0 38 61 37 3 3 - - 12,083 18.1%	620 979 595 45 45 41 40 64 39 3 3 - - 12,639 18.8%	653 1,020 626 47 	6 1.0 6 20 13,80 20.
Average Daily Water Consumption Non-Revenue Water Demand	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya Mihinthale	Existing New Existing New Existing New Existing New Existing New	0 356 0 211 - 43 19 0 23 0 1 1 - - 2,936	0 379 0 21 46 20 0 0 25 0 0 1 1 3,096	0 403 0 22 - - 48 21 0 26 0 1 1 - 3,260	0 427 0 22 51 22 0 28 0 28 0 1 1 - 3,430	0 452 0 22 53 22 0 29 0 1 1 3,605	0 478 0 23 56 23 0 31 31 0 1 1 3,785	75 505 72 23 68 24 5 33 35 5 2 2 4,616	390 127 533 122 25 - - 78 25 8 8 35 8 8 22 - - 5,263	181 561 175 26 - - 88 26 12 36 11 2 36 11 2 5,933	238 590 229 27 - - - - - - - - - - - - - - - - - -	297 621 286 29 	358 652 344 30 - 120 30 23 42 22 22 - 8,096	394 684 378 32 - 127 31 26 44 25 2 - 8,627	419 717 402 33 33 - - 134 32 27 47 47 26 2 2 - - 9,077	445 752 427 35 - 141 33 29 49 28 2 2 2 - 9,540	472 787 453 36 - 148 34 31 51 29 2 2 - -	500 823 480 38 38 - 155 36 32 53 31 2 - 10,511	570 528 860 507 40 183 37 34 56 333 3 11,020	591 558 899 535 42 171 38 36 58 33 - 11,543	612 589 938 565 43 - 179 40 38 61 37 3 3 - 12,083	620 979 595 45 - - 187 41 40 64 39 33 - -	653 1,020 626 47 - 195 43 42 66 41 3 - - 13,211	68 1.00 68 204
Average Daily Water Consumption Non-Revenue Water Demand	Mihinthale g = (o+f) x 1.5% Rambewa Medawachchiya Mihinthale h = o + f + g I	Existing New Existing New Existing New Existing New Existing New	0 356 0 21 - - 43 19 0 23 0 11 - 2,936 10.0%	0 379 0 21 46 20 0 0 25 0 1 1 3,096	0 403 0 22 - - 48 21 0 26 0 1 1 - - 3,260 10.0%	0 427 0 22 51 22 0 28 0 28 0 1 1 - - 3,430	0 452 0 22 53 22 0 29 0 1 1 - - 3,605	0 478 0 23 23 - - 56 23 0 31 31 0 1 1 - - 3,785 10.0%	75 505 72 23 - - 68 24 5 33 35 5 2 2 - - 4,616	390 127 533 122 25 78 25 8 35 8 35 8 22 - - 5,263 10.6%	181 561 175 26 - - 88 26 12 36 11 2 36 11 2 5,933 11.3%	238 590 229 27 - - 98 27 15 38 15 2 2 - - 6,629 11.9%	297 621 286 29 	358 652 344 30 - 120 30 23 42 22 2 2 - - 8,096 13.1%	394 684 378 32 - 127 31 26 44 25 2 2 - - 8,627 13.8%	419 717 402 33 33 - - 134 32 27 47 47 26 2 2 2 - - 9,077 14.4%	445 752 427 35 - - 141 33 29 49 49 28 22 - - 9,540 15.0%	472 787 453 36 - 148 34 31 51 29 2 2 2 10,019 15.6%	500 823 480 38 - 155 36 32 53 31 2 - - 10,511 16.3%	570 528 860 507 400 - - - - - 33 3 3 3 3 3 - - 11,020 16,9%	591 558 899 535 - - 171 38 36 58 35 3 3 - - 11,543 17.5%	612 589 938 565 - 179 0 38 61 37 3 3 - - 12,083 18.1%	620 979 595 45 45 41 40 64 39 3 3 - - 12,639 18.8%	653 1,020 626 47 	6 1.0 6 20 20 13,80 20. 3,45
Average Daily Water Consumption Non-Revenue Water Demand volume	Mihinthale $g = (o+f) \times 1.5\%$ Rambewa Medawachchiya Mihinthale h = o + f + g i j = h / (1-i) - h	Existing New Existing New Existing New Existing New Existing New	0 356 0 21 - - 43 19 0 23 0 1 - - 2,936 10.0% 326	0 379 0 21 46 20 0 25 0 0 1 1 3,096 10.0%	0 403 0 22 - - 48 21 0 26 0 1 1 3,280 10.0% 362	0 427 0 22 51 22 0 0 28 0 0 1 1 - - 3,430 10.0%	0 452 0 22 53 22 0 29 0 1 1 3,605 10.0%	0 478 0 23 56 23 0 31 0 1 1 3,785 10.0% 421	75 505 72 23 688 24 5 333 5 2 2 4,616 10.0% 513	390 127 533 122 25 78 25 8 35 5 8 2 2 - - 5,263 10.6% 626	181 561 175 26 - - - - - - - - - - - - - - - - - -	238 590 229 27 98 27 15 38 15 2 2 6,629 11.9% 893	297 621 286 29 109 29 40 40 19 29 40 19 19 19 19 19 19 19 19 19 19 19 19 19	358 652 344 30 - - 120 30 23 42 22 2 2 2 - - 8,096 13.1% 1,223	394 684 378 32 - - 127 127 127 2 44 25 2 2 - - 8,627 13.8% 1,375	419 717 402 33 33 34 27 47 26 2 27 47 26 2 2 7 47 26 2 7 47 26 2 7 47 26 144 8,077	445 752 427 35 - - 141 33 29 49 49 28 22 - - 9,540 15.0% 1,684	472 787 453 36 - - 148 34 31 51 51 29 2 2 2 10,019 15.6% 1,855	500 823 480 - - 155 32 53 31 2 2 53 31 2 10,511 16.3% 2,040	570 528 860 507 40 - - - - - - - - - - - 11,020 16.9% 2,237	591 558 899 535 422 - 171 38 36 58 35 33 - - 11,543 17,5% 2,449	612 589 938 565 43 - 179 40 38 61 37 3 - 12,083 18.1% 2,875	620 979 595 45 187 40 64 39 3 3 12,639 18.8% 2,917	653 1,020 626 47 - - 195 43 42 66 41 3 42 66 41 13,211 19,4% 3,175	66 1,00 67 200 13,80 20.0 13,80 20.0 13,80 17,255
Average Daily Water Consumption Non-Revenue Water Demand volume Average Water Demand (m3/d) Dave	Mihinthale g = (e+f) x 1.5% Rambewa Medawachchiya Mihinthale h = o + f + g i J = h / (1-1) - h k = h + j	Existing New Existing New Existing New Existing New Existing New	0 356 0 21 43 19 0 23 0 1 1 - 2,936 10.0% 326 3,263	0 379 0 21 - - 46 20 0 25 0 0 1 1 - - 3,096 10.0% 344 3,440	0 403 0 22 - - - - - - - - 3,260 10.0% 3,623	0 427 0 22 51 22 0 28 0 28 0 1 28 0 3,430 10.0% 3,811 3,811	0 452 0 22 53 22 0 29 0 1 3,605 10.0% 401 4,006	0 478 0 23 56 58 0 31 0 1 3,785 10.0% 421 4,208	75 505 72 23 68 68 24 5 33 5 5 2 2 4,616 10.0% 513 5,129	390 127 533 122 25 - 78 25 8 8 35 8 35 8 35 8 2 2 - 5,263 10.6% 626 5,888	181 561 175 26 - 26 12 36 11 2 36 11 2 5,933 11.3% 752 6,685	238 590 229 27 - - 98 98 7 7 5 38 15 2 - - 6,629 11.9% 893 7,522	297 621 286 29 109 199 40 19 40 19 2 7,349 12.5% 1,050 8,399	358 652 344 30 - - 120 30 23 42 22 22 22 - - 8,096 13.1% 1,223 9,319	394 684 378 32 - - 127 31 26 44 25 2 2 - - 8,627 13.8% 1,375	419 717 402 33 33 32 27 47 47 26 2 2 7 47 47 26 2 7 47 26 2 7 47 26 2 7 144 8 1,524 10,600	445 752 427 35 141 33 29 49 28 22 9,540 15.0% 1,884 11,224	472 787 453 36 - - 148 31 51 51 29 2 2 2 2 51 0,019 15.6% 1,865 11,874	500 823 480 - - 155 36 32 53 31 2 - - - 10,511 16.3% 2,040 12,551	570 528 860 507 40 - - - 163 37 34 56 33 3 3 4 56 33 3 3 - - - - 11,020 16,9% 2,237 13,257	591 558 899 535 42 - - 171 38 35 58 35 3 3 - 11,543 17,5% 2,449 13,992	612 589 938 5655 43 - - 179 40 38 61 37 - - 12,083 18.1% 2,675 14,758	620 979 595 45 - 187 41 40 64 39 3 3 - 12,639 18.8% 2,917 15,555	653 1,020 626 47 - 195 43 42 66 411 3 - 13,211 19,4% 3,175 16,386	66 1,00 63 200 100 13,80 20.

 Table 2.2-4
 Water Demand Projection for Mahakanadarawa System

Note: Coverage % for "New Area" was adjusted by the JICA Study Team to cope with the expected commissioning year, 2018.

			2024		2034					
Items	Unit	F/S	S/S	Ratio	F/S	S/S	Ratio			
Design daily average water demand	m ³ /day	7,154	10,002	1.40	14,414	17,252	1.20			
Design daily maximum water demand	m ³ /day	8,585	11,003	1.28	17,297	18,977	1.10			
Design hourly maximum water demand	m ³ /day	17,170	17,605	1.03	34,594	30,363	0.88			
Required WTP Production Capacity	m ³ /day	8,585	11,003	1.28	17,297	18,977	1.10			
Proposed WTP Production Capacity	m ³ /day	8,950	11,200	1.25	17,900	18,800	1.05			
Required Raw Water Intake	m ³ /day	9,014	11,582	1.28	18,162	19,976	1.10			
Proposed Raw Water Intake Capacity	m ³ /day	9,400	11,800	1.26	18,800	19,800	1.05			

Table 2.2-5 Water Demand for Mahakanadarawa System in F/S and S/S

Note: Required Raw Water Intake is calculated based on the Required WTP Production Capacity.

Proposed Capacities of Facilities are those designed in the Phase-1 D/D.

(12) Summary of Design Criteria

Design criteria and results of water demand projection calculated in the S/S are summarized in Table

2.2-6.

Figure 2.2-4 shows the relationship between water demand and water supply capacity through the target

year 2034 projected in the S/S.

Items	Unit	Calculation	S	/S	F/S		
nems	UIII	Calculation	2024	2034	2024	2034	
Served Population	pop	а	46,110	65,686	70,097	111,900	
Per Capita Water Consumption	LPCD	b	86	91	86/10	91/10	
Non-Domestic Water Demands	%	с		30	3	5	
Allowance for Unplanned Water Demands	%	d	1	.5	-	-	
Non-Revenue Water (in total water demand)	%	e	13.8	20.0	2	0	
Design Daily Average Water Demand (Dave)	m ³ /day	f = a x b x (1+c) x (1+d) / (1-e)	10,002	17,252	7,154	14,414	
Design Load Factor to Dmax	%	g	1	10	12	0	
Design Daily Maximum Water Demand (Dmax)	m ³ /day	h = f x g	11,003	18,977	8,585	17,297	
Required WTP Production Capacity (Output)	m ³ /day	i	11,003	18,977	8,585	17,297	
Proposed WTP Production Capacity (Output)	m ³ /day	j	11,200	18,800	8,950	17,900	
Water Loss at Water Treatment Plant	%	k		5	:	5	
Required Raw Water Demand	m ³ /day	l=i/(1-k)	11,582	19,976	9,014*	18,162*	
Required Raw Water Intake	m ³ /day	m	11,582	19,976	9,014	18,162	
Proposed Capacity of Intake Facility	m ³ /day	n	11,800	19,800	9,400	18,800	
Design Peak Factor	%	0	1	60	200		
Design Hourly Maximum Water Supply (Hmax)	m ³ /day	p = h x o	17,605	30,363	17,170	34,594	

 Table 2.2-6
 Summary of Design Criteria for Mahakanadarawa System

*: Required Raw Water Demand in F/S = Required WTP Production x 1.05

9,014 = 8,585 x 1.05; 18,162 = 17,297 x 1.05

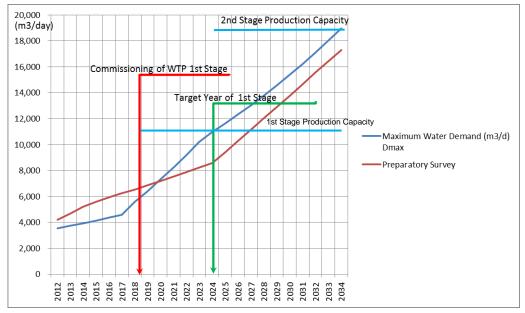


Figure 2.2-4 Demand and Supply of Mahakanadarawa System

2.3 Water Demand Projection in the S/S for Wahalkada System

(1) Service Area

In the S/S, the service area for Phase 2 project is set as the same as planned in the F/S. That is; GNDs in Kebithigollewa, Horowpothana, Kahatagasdigiliya, and Padaviya DSDs except GND No.32 - Kurulugama and GND No.119 - Ihala Angunachchiya.

(2) Target Year

In the S/S, the target year for the Wahalkada System was set as 2034 with an interim target year of 2024 for staged construction as same as those in the F/S and the Phase-1 D/D.

(3) Projected Population

The projected population for the Wahalkada system was also revised in the S/S based on the results of 2012 Census with the same method described in 2.2 (3).

Results of re-calculation by DSD are summarized by water supply type as shown in Table 2.3-1.

Area	Census		Projec			
Category	2012	2020	2021	2024	2030	2034
Padaviya						
Existing	12,822	13,516	13,605	13,877	14,438	14,825
New	10,176	10,931	11,030	11,330	11,956	12,393
Total	22,998	24,447	24,635	25,207	26,394	27,218
Kebithigollewa						
Existing	6,696	7,288	7,365	7,603	8,102	8,452
New	14,064	15,595	15,798	16,424	17,756	18,706
Total	20,760	22,883	23,163	24,028	25,858	27,158
Horowpothana						
Existing	9,430	11,144	11,379	12,116	13,737	14,938
New	26,465	31,065	31,694	33,660	37,968	41,146
Total	35,895	42,209	43,074	45,776	51,705	56,084
Kahatagasdigiliya						
Existing	21,638	24,812	25,240	26,571	29,451	31,545
New	18,701	21,303	21,653	22,738	25,078	26,772
Total	40,339	46,114	46,893	49,310	54,529	58,316
All						
Existing	50,586	56,759	57,590	60,167	65,727	69,759
New	69,406	78,894	80,175	84,153	92,759	99,017
Total	119,992	135,653	137,765	144,320	158,486	168,776

Table 2.3-1	Population Pro	ojection for	Wahalkada	System

Source: JICA Study Team

(4) Served Population

The served population for the Wahalkada system was also revised in the S/S with the same method described in 2.2 (4).

DCD	Area	Projected Served Population									
DSD	Category	2020	2021	2024	2030	2034					
Comico	Existing *	70%	72%	78%	91%	100%					
Service	New	25%	40%	70%	88%	100%					
Coverage	Total *	44%	53%	74%	89%	100%					
	Existing	8,760	9,160	10,388	12,985	14,825					
Padaviya	New	2,733	4,412	7,931	7,299	12,393					
	Total	11,493	13,572	18,319	20,284	27,218					
	Existing	5,480	5,668	6,256	6,056	8,452					
Kebithigollewa	New	3,899	6,319	11,497	10,538	18,706					
	Total	9,378	11,988	17,753	16,595	27,158					
	Existing	7,996	8,391	9,658	9,221	14,938					
Horowpothana	New	7,766	12,678	23,562	21,444	41,146					
	Total	15,762	21,068	33,220	30,666	56,084					
	Existing	17,408	18,248	20,912	20,000	31,545					
Kahatagasdigiliya	New	5,326	8,661	15,917	14,541	26,772					
	Total	22,734	26,909	36,829	34,540	58,316					
	Existing	39,644	41,467	47,215	48,262	69,759					
All	New	19,723	32,070	58,907	53,822	99,017					
	Total	59,368	73,537	106,121	102,085	168,776					

 Table 2.3-2
 Served Population Projection for Wahalkada System

Source: JICA Study Team

Note: Commissioning of WTP assumed to be in October 2020.

*: Service coverage % for Existing and Total are the results of calculation.

(5) Per Capita Domestic Water Consumption

Based on the result of the F/S, per capita domestic water consumption in 2024 and 2034 were set as 86 LPCD and 91 LPCD respectively in the Phase-1 D/D for the Mahakanadarawa System. In the S/S, same policy was applied for the Wahalkada System.

(6) Non-Domestic Water Demands

In the S/S, non-domestic water consumption for the Wahalkada System was assumed to be 30% of domestic water consumption as same as that of the Phase-1 D/D for the Mahakanadarawa System.

(7) Allowance for Unplanned Water Demands

The S/S also assumed the unexpected water demand allowance as 1.5% for the Wahalkada System as same as that for the Mahakanadarawa System projected in the Phase-1 D/D.

(8) Non-Revenue Water

The S/S employed the same non-revenue water ratio for the Wahalkada System as the one for the Mahakanadarawa System in the Phase-1 D/D, i.e. 20% of total demand in 2034. Then the ratio was assumed to be increased from 10% at the commissioning year expecting completeness of new facilities. The ratios in intermediate years were assumed to increase lineally. Consequently the ratio in 2024 was 12.9 %. This ratio is slightly lower than that of the Mahakanadarawa System, i.e. 13.8 % because of difference of completion year.

(9) Daily Maximum, Hourly Maximum and Raw Water Intake Amount

Based on the discussions with NWSDB in the Phase-1 D/D, daily maximum volume is modified to 110% of daily average volume, while hourly maximum volume is modified to 160% of daily maximum volume. Water loss at the each WTP, is set at 5% of total treated water, the same as the F/S and the D/D.

(10) Design Flow of Water Treatment Plants for Stage Construction

In the F/S, the capacity of WTP in the initial stage (2024) was designed at 50 % of the capacity of target year (2034). In the S/S, the initial stage construction work was assumed to be completed in 2020 with about 55% of ultimate stage capacity.

(11) Water Demand

Based on the design criteria mentioned above, planned water demand was calculated in the S/S as shown in **Table 2.3-3**. The results are summarized in **Table 2.3-4** as a comparison with the F/S. As shown in the table, increased water production capacity by 4% is required in 2034, but the production capacity at the first stage of construction work is required to be 14% increase from the F/S. As shown in the table, the

proposed WTP production capacity in 2034 is less than the required WTP production capacity. The proposed WTP capacity was slightly less the required capacity. The proposed capacity for 2024 was decided to be the same as water rights agreed with the Irrigation Department. Though the proposed capacity for the year 2024, i.e. 15,000 m³/day, is not sufficient to satisfy the demand in the year, it can fulfil the demand by the year of 2023. The lack of capacity in 2024 will be 1.3%. If water right will not be increased in future, the lack of capacity will be 1.7% in 2034. After completion of Yan Oya Project, it is desirable to negotiate with the Irrigation Department to increase the water right.

Items	Unit		2024			2034	
Items	Ullit	F/S	S/S	Ratio	F/S	S/S	Ratio
Design daily average water demand	m ³ /day	11,098	13,819	1.25	22,392	25,334	1.13
Design daily maximum water demand	m ³ /day	13,318	15,201	1.14	26,870	27,867	1.04
Design hourly maximum water demand	m ³ /day	26,635	24,321	0.91	53,740	44,587	0.83
Required WTP Production Capacity	m ³ /day	13,318	15,201	1.14	26,870	27,867	1.04
Proposed WTP Production Capacity	m ³ /day	13,700	15,000	1.09	27,400	27,400	1.00
Required Raw Water Intake	m ³ /day	13,983	16,001	1.14	28,214	29,334	1.04
Proposed Raw Water Intake Capacity	m ³ /day	14,400	16,000	1.11	28,800	28,800	1.00

Table 2.3-4 Water Demand for Wahalkada System in F/S and S/S

Note: Required Raw Water Intake is calculated based on the Required WTP Production Capacity.

Proposed Raw Water Intake Capacities in 2034 is set at the quantity of water rights, and Proposed WTP Production Capacity is decided based on it. Proposed water Production Capacity in 2024, 15,000 m³/day, was set based on the request of NWSDB. Proposed raw Water Intake Capacity in 2024 was decided based on the required WTP Production capacity.

Table 2.3-3 Water Demand Projection for Wahalkada System

		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Total Population		122,652	124,543	126,466	128,422	130,412	132,435	134.494	136,587	138.717	140,883	143.086	145,328	147,608	149,928	152,287	154.688	157,130	159,614	162,142	164.714	167,330	169,992	172,700
Padaviva	Existing	12,822	12,907	12.992	13,078	13.164	13,251	13.339	13,427	13,516	13,605	13,695	13,786	13,877	13.969	14.061	14.154	14,248	14.343	14.438	14.533	14,630	14,727	14,825
i adaviya	New	10,176	10,267	10,360	10,453	10,104	10,642	10,737	10,834	10,931	11.030	11,129	11,229	11,330	11,432	11,535	11.639	11,744	11.850	11.956	12.064	12,173	12,282	12,393
Kebithigollewa	Existing	8,261	8,360	8,460	8,562	8,664	8,768	8,874	8,981	9,089	9,198	9,309	9,421	9,535	9,650	9,767	9,885	10,004	10,125	10,248	10,372	10,498	10,625	10,754
restrigeneria	New	14.064	14.246	14.431	14,619	14.809	15,001	15,197	15,394	15,595	15,798	16.004	16,213	16,424	16.639	16.856	17.077	17,300	17.527	17,756	17,989	18,225	18,464	18,706
Horowpothana	Existing	10,525	10,743	10,967	11,194	11,427	11.664	11,907	12,154	12,407	12,665	12.929	13,198	13,472	13,753	14.039	14.332	14.630	14.935	15.247	15,565	15,889	16,101	16,559
Theorem	New	26,465	27,000	27,546	28,103	28,672	29,252	29.844	30,449	31,065	31,694	32,336	32,991	33,660	34,342	35,038	35,749	36,474	37,213	37,968	38,739	39,525	40,327	41.146
Kahatagasdigiliya	Existing	21.638	22.011	22.391	22.777	23.170	23.570	23.976	24.390	24.812	25.240	25.676	26,120	26.571	27.031	27.498	27.974	28.458	28.950	29,451	29.961	30,480	31.008	31.545
	New	18,701	19,008	19,320	19,637	19.959	20,287	20,620	20,958	21,303	21,653	22,009	22,370	22,738	23,112	23,492	23,879	24,272	24,672	25,078	25,491	25,911	26,338	26,772
Population of GNDs excluded																								
32-Kurulugama	Kebithigollewa	1,565	1,593	1,621	1,650	1,679	1,708	1,739	1,770	1,801	1,833	1,865	1,898	1,932	1,966	2,001	2,036	2,072	2,109	2,146	2,184	2,223	2,262	2,302
119-Ihala Angunachchiya	Horowpothana	1,095	1,115	1,135	1,155	1,176	1,197	1,219	1,241	1,263	1,286	1,309	1,332	1,356	1,381	1,406	1,431	1,457	1,483	1,510	1,537	1,564	1,593	1,621
Sub-Total		2,660	2,707	2,756	2,805	2,855	2,906	2,957	3,010	3,064	3,118	3,174	3,231	3,288	3,347	3,406	3,467	3,529	3,592	3,656	3,721	3,787	3,855	3,924
Target Population (persons)	8	119,992	121,836	123,710	125,617	127,557	129,530	131,536	133,577	135,653	137,765	139,912	142,097	144,320	146,581	148,881	151,221	153,601	156,023	158,486	160,993	163,542	166,137	168,776
Padaviya	Existing	12,822	12,907	12,992	13,078	13,164	13,251	13,339	13,427	13,516	13,605	13,695	13,786	13,877	13,969	14,061	14,154	14,248	14,343	14,438	14,533	14,630	14,727	14,825
W 1111 0	New	10,176	10,267	10,360	10,453	10,547	10,642	10,737	10,834	10,931	11,030	11,129	11,229	11,330	11,432	11,535	11,639	11,744	11,850	11,956	12,064	12,173	12,282	12,393
Kebithigollewa	Existing	6,696	6,767	6,839	6,912	6,986	7,060	7,135	7,211	7,288	7,365	7,444	7,523	7,603	7,684	7,766	7,848	7,932	8,016	8,102	8,188	8,275	8,363	8,452
	New	14,064	14,246	14,431	14,619	14,809	15,001	15,197 10.688	15,394	15,595	15,798	16,004	16,213	16,424	16,639	16,856	17,077	17,300	17,527	17,756	17,989	18,225	18,464 14,628	18,706
Horowpothana	Existing	9,430 26,465	9,629 27.000	9,832 27,546	10,039 28,103	10,251 28.672	10,467 29,252	29.844	10,914 30,449	11,144 31.065	11,379 31,694	11,620 32,336	11,865 32,991	12,116 33.660	12,372 34,342	12,634 35,038	35,749	13,174 36,474	13,452 37,213	13,737 37,968	14,028 38,739	14,325 39,525	40.327	14,938 41,146
Kabata an di Shira	New	20,405	22,000	27,546	28,103	28,672	29,252	29,844	24,390	24.812	25,240	25,676	26,120	26,571	27.031	27,498	27,974	28,458	28,950	29,451	38,739 29.961	39,525	40,327	31,545
Kahatagasdigiliya		18,701	19,008	19,320	19,637	19,959	20,287	20,620	20,958	24,812	21,653	22,009	22,370	20,371	23,112	23,492	23,879	24,272	28,950	25,078	25,491	25,911	26,338	26,772
	New	,				19,909	20,207	20,620	20,938	21,303		22,009		22,730	23,112	23,492	23,079	24,272	24,072	23,078	20,491	20,911		
Coverage (%)	b = c / a	22%	23%	24%	25%	26%	27%	27%	28%	44%	53%	63%	70%	74%	76%	79%	81%	84%	87%	89%	92%	95%	97%	100%
for Pipe Borne WS	Existing	53%	55%	57%	59%	61%	63%	66%	68%	70%	72%	74%	76%	78%	81%	83%	85%	87%	89%	91%	94%	96%	98%	100%
																					01/0			
	New	0%	0%	0%	0%	0%	0%	0%	0%	25%	40%	55%	65%	70%	73%	76%	79%	82%	85%	88%	91%	94%	97%	100%
Served Population (persons)	New C		0% 28.081	0% 29.612		0% 32.791	0%	0%	0%	25%	40%		65%	70%	73%	76%	79%	82%	85%		91%	94%		100%
Served Population (persons) Padaviva	0	26,589	28,081		31,182	32,791	0% 34,44 1	0% 36,132	0% 37,866	25% 59,368	40%	55% 88,148	65% 99,073	70%	73% 111,661	76% 117,351	79% 123,196		85% 1 35,366	88%	91% 1 48,202	94% 1 54,879	161,736	
Served Population (persons) Padaviya	0			29,612			0%	0%	0%	25%	40%	55%	65%	70%	73%	76%	79%	82% 129,200	85%	88%	91%	94%		100% 168,776
	0	26,589	28,081	29,612	31,182	32,791	0% 34,44 1	0% 36,132	0% 37,866	25% 59,368 8,760	40% 73,537 9,160	55% 88,148 9,564	65% 99,073 9,974	70% 106,121 10,388	73% 111,661 10,808	76% 117,351 11,233	79% 123,196 11,663	82% 129,200 12,098	85% 135,366 12,539	88%	91% 148,202 13,437	94% 154,879 13,894	161,736 14,356	100% 168,776 14,825
Padaviya	c Existing New	26,589 5,737 0	28,081 6,099 0	29,612 6,465 0	31,182 6,836 0	32,791 7,211 0	0% 34,441 7,591 0	0% 36,132 7,976 0	0% 37,866 8,366 0	25% 59,368 8,760 2,733	40% 73,537 9,160 4,412	55% 88,148 9,564 6,121	65% 99,073 9,974 7,299	70% 106,121 10,388 7,931	73% 111,661 10,808 8,345	76% 117,351 11,233 8,767	79% 123,196 11,663 9,195	82% 129,200 12,098 9,630	85% 135,366 12,539 10,072	88% 141,698 12,985 10,522	91% 148,202 13,437 10,978	94% 154,879 13,894 11,442	161,736 14,356 11,914	100% 168,776 14,825 12,393
Padaviya	c Existing New	26,589 5,737 0	28,081 6,099 0	29,612 6,465 0	31,182 6,836 0	32,791 7,211 0	0% 34,441 7,591 0	0% 36,132 7,976 0	0% 37,866 8,366 0	25% 59,368 8,760 2,733 5,480	40% 73,537 9,160 4,412 5,668	55% 88,148 9,564 6,121 5,861	65% 99,073 9,974 7,299 6,056	70% 106,121 10,388 7,931 6,256	73% 111,661 10,808 8,345 6,458	76% 117,351 11,233 8,767 6,665	79% 123,196 11,663 9,195 6,875	82% 129,200 12,098 9,630 7,089	85% 135,366 12,539 10,072 7,306	88% 141,698 12,985 10,522 7,527	91% 148,202 13,437 10,978 7,753	94% 154,879 13,894 11,442 7,982	161,736 14,356 11,914 8,215	100% 168,776 14,825 12,393 8,452
Padaviya Kebithigollewa	¢ Existing New Existing New	26,589 5,737 0 4,086 0	28,081 6,099 0 4,249 0	29,612 6,465 0 4,415 0	31,182 6,836 0 4,585 0	32,791 7,211 0 4,757 0	0% 34,441 7,591 0 4,933 0	0% 36,132 7,976 0 5,112 0	0% 37,866 8,366 0 5,294 0	25% 59,368 8,760 2,733 5,480 3,899	40% 73,537 9,160 4,412 5,668 6,319	55% 88,148 9,564 6,121 5,861 8,802	65% 99,073 9,974 7,299 6,056 10,538	70% 106,121 10,388 7,931 6,256 11,497	73% 111,661 10,808 8,345 6,458 12,146	76% 117,351 11,233 8,767 6,665 12,811	79% 123,196 11,663 9,195 6,875 13,491	82% 129,200 12,098 9,630 7,089 14,186	85% 135,386 12,539 10,072 7,306 14,898	88% 141,698 12,985 10,522 7,527 15,625	91% 148,202 13,437 10,978 7,753 16,370	94% 154,879 13,894 11,442 7,982 17,131	161,736 14,356 11,914 8,215 17,910	100% 168,776 14,825 12,393 8,452 18,706
Padaviya Kebithigollewa	© Existing New Existing New Existing	26,589 5,737 0 4,086 0	28,081 6,099 0 4,249 0	29,612 6,465 0 4,415 0	31,182 6,836 0 4,585 0	32,791 7,211 0 4,757 0 6,547 0	0% 34,441 7,591 0 4,933 0	0% 36,132 7,976 0 5,112 0	0% 37,866 8,366 0 5,294 0	25% 59,368 8,760 2,733 5,480 3,899 7,996	40% 73,537 9,160 4,412 5,668 6,319 8,391	55% 88,148 9,564 6,121 5,861 8,802 8,799	65% 99,073 9,974 7,299 6,056 10,538 9,221	70% 106,121 10,388 7,931 6,256 11,497 9,658	73% 111,661 10,808 8,345 6,458 12,146 10,111	76% 117,351 11,233 8,767 6,665 12,811 10,578	79% 123,196 11,663 9,195 6,875 13,491 11,062	82% 129,200 12,098 9,630 7,089 14,186 11,562	85% 135,366 12,539 10,072 7,306 14,898 12,079	88% 141,698 12,985 10,522 7,527 15,625 12,614	91% 148,202 13,437 10,978 7,753 16,370 13,166	94% 154,879 13,894 11,442 7,982 17,131 13,738	161,736 14,356 11,914 8,215 17,910 14,328	100% 168,776 14,825 12,393 8,452 18,706 14,938
Padaviya Kebithigollewa Horowpothana	e Existing New Existing New Existing New	26,589 5,737 0 4,086 0 5,288 0	28,081 6,099 0 4,249 0 5,586 0	29,612 6,465 0 4,415 0 5,895 0	31,182 6,836 0 4,585 0 6,216 0	32,791 7,211 0 4,757 0 6,547 0	0% 34,441 7,591 0 4,933 0 6,891 0	0% 36,132 7,976 0 5,112 0 7,247 0	0% 37,866 8,366 0 5,294 0 7,615 0	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241	82% 12,098 9,630 7,089 14,186 11,562 29,908	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154	161,736 14,356 11,914 8,215 17,910 14,328 39,118	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya	e Existing New Existing New Existing New	26,589 5,737 0 4,086 0 5,288 0 11,478 0	28,081 6,099 0 4,249 0 5,586 0 12,148 0	29,612 6,465 0 4,415 0 5,895 0 12,837 0	31,182 6,836 0 4,585 0 6,216 0 13,546 0	32,791 7,211 0 4,757 0 6,547 0 14,275 0	0% 34,441 7,591 0 4,933 0 6,891 0 15,026 0	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0	0% 37,886 8,366 0 5,294 0 7,615 0 16,592 0	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917	73% 111,681 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772
Padaviya Kebithigollewa Horowpothana	e Existing New Existing New Existing New	26,589 5,737 0 4,086 0 5,288 0	28,081 6,099 0 4,249 0 5,586 0	29,612 6,465 0 4,415 0 5,895 0	31,182 6,836 0 4,585 0 6,216 0	32,791 7,211 0 4,757 0 6,547 0	0% 34,441 7,591 0 4,933 0 6,891 0	0% 36,132 7,976 0 5,112 0 7,247 0	0% 37,866 8,366 0 5,294 0 7,615 0	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000	70% 108,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070 21,850	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya	e Existing New Existing New Existing New	26,589 5,737 0 4,086 0 5,288 0 11,478 0	28,081 6,099 0 4,249 0 5,586 0 12,148 0	29,612 6,465 0 4,415 0 5,895 0 12,837 0	31,182 6,836 0 4,585 0 6,216 0 13,546 0	32,791 7,211 0 4,757 0 6,547 0 14,275 0	0% 34,441 7,591 0 4,933 0 6,891 0 15,026 0	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0	0% 37,886 8,366 0 5,294 0 7,615 0 16,592 0	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917	73% 111,681 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD)	Contemporation of the second s	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0	0% 34,441 7,591 0 4,933 0 6,891 0 15,026 0 82.5	0% 36,132 7,976 0 0 5,112 0 7,247 0 15,798 0 83.0	0% 37,866 8,366 0 5,294 0 7,615 0 16,592 0 83.5	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661 84.5 6,214 3,504	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85.0 7,493 3,684	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,126 4,060	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86,5 9,659 4,258	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462	79% 123,196 11.663 9.195 6.875 13.491 11.062 28.241 23.805 18.864 87.5	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 888.5	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90.5 14,637 6,086	100% 1488,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD)	o Existing New Existing New Existing New Existing New Existing New d o = o x d	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 2,399	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0	0% 34,441 0 4,933 0 6,891 0 15,026 0 0 82.5 2,841	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999	0% 37,866 8,366 0,0 5,294 0 7,615 0 16,592 0 83.5 83.5 3,162	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661 84.5 6,214	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85.0 7,493	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,126	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86.5 9,659	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210	79% 123,198 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87,5 10,780	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,264	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0 13,939	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90.5 14,637	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD)	o Existing New Existing New Existing New d d Existing Existing	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 2,399	31,182 6,836 0 4,585 0 0 6,216 0 13,546 0 81.5 2,541 2,541	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 2,689 2,689	0% 34,441 0 4,933 0 6,891 0 15,026 0 0 82.5 2,841	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 2,999	0% 37,868 8,366 0 5,294 0 7,615 0 16,592 0 83.5 83.5 3,162	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661 84.5 6,214 3,504	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85.0 7,493 3,684	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,126 4,060	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86,5 9,659 4,258	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462	79% 123,198 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87,5 10,780 4,673	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,284 5,585	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0 13,939 5,832	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90.5 14,637 6,086	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya Per Capita Water Consumption (LPOD) Domestio Water Consumption (m3/d)	o Existing New d e = o x d Existing New	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 80.0 2,127 2,127 0	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 0	29,612 6,465 0 4,415 0 5,895 0 12,837 0 12,837 0 81.0 81.0 2,399 0 0	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541 2,541 0	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 82.0 82.0 82.0 0 0	0% 34,441 7,591 0 4,933 0 6,891 0 15,026 0 15,026 0 82,5 2,841 2,841 2,841 0	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 2,999 0	0% 37,868 8,366 0 5,294 0 7,615 0 16,592 0 83.5 3,162 3,162 0	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330 1,657	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,661 84.5 6,214 3,504 2,710	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85.0 7,493 3,684 3,809	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,128 4,060 5,066	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86.5 9,659 4,258 5,401	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87,5 10,780 4,673 6,107	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,264 5,585 7,679	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0 13,939 5,832 8,107	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90,5 14,637 6,086 8,551	100% 1488,776 14.825 12.393 8.452 18.706 14.938 41.146 31.545 26,772 91.0 15,359 6.348 9.011
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya Per Capita Water Consumption (LPCD) Domestic Water Consumption (m3/d) Non-Domestic Water Consumption	o Existing New Existing New Existing New Existing New d d Existing New f = o x d Existing	26,589 5,737 0 4,086 0 5,288 0 0 11,478 0 80.0 80.0 80.0 2,127 2,127 0 638	28,081 6,099 0 4,249 0 5,586 0 12,148 80.5 2,261 2,261 0 678	29,612 6,465 0 4,415 0 5,895 0 12,837 12,837 0 81.0 2,399 2,399 0 0 720	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541 2,541 0 0 762	32,791 7,211 0 4,757 0 6,547 0 14,275 0 14,275 0 82.0 2,689 2,689 0 0 807	0% 34,441 7,591 0 4,933 0 0 6,891 0 0 15,026 0 82.5 2,841 2,841 0 0 852	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 2,999 0 900	0% 37,866 8,366 0 5,294 0 7,615 0 16,592 0 83.5 3,162 3,162 0 949	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330 1,657 1,496	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 8,8661 84,5 6,214 3,504 2,710 1,884	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541	70% 106,121 10,388 7,931 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,128 4,060 5,066 2,738	73% 111,661 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86.5 9,659 4,258 5,401 2,898	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87.5 10,780 4,673 6,107 3,234	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594	88% 141,898 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,264 5,585 7,679 3,979	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0 13,939 5,832 8,107 4,182	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90,5 14,637 6,086 8,551 4,391	100% 1488,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya Per Capita Water Consumption (LPOD) Domestic Water Consumption (m3/d) Non-Domestic Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption	o Existing New Existing New Existing New d d e = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127 2,127 0 0 838 41 2,806	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 2,261 44 44 2,983	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 2,399 2,399 0 720 720 47 3,166	31,182 6,836 0 4,585 0 6,216 0 13,546 81.5 2,541 2,541 0 0 762 50 3,353	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	0% 34,441 7,591 0 4,933 0 0 15,026 0 15,026 0 82,5 2,841 2,841 0 852 555 3,748	0% 38,132 7,976 0 5,112 0 7,247 0 0 15,798 0 83.0 2,999 0 2,999 0 0 900 58 3,957	0% 37,866 8,366 0,0 7,615 0,0 16,592 0 83.5 3,162 3,162 0,0 83.5 3,162 4,173	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84,0 4,987 3,330 1,657 1,496 97 6,580	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 84.5 6,214 3,504 2,710 1,864 121 8,199	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 165 11,177	70% 106,121 10.388 7.931 6.256 11,497 9.658 23.562 20.912 15.917 86.0 9,128 4.060 5.066 2.738 178 12,042	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86,5 9,659 4,258 5,401 2,898 188 12,745	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87,5 10,780 4,673 6,107 3,234 210 14,224	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411 222 15,003	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,640	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,284 5,585 7,679 3,979 259 17,502	94% 154,879 13,894 11,442 7,892 17,131 13,738 37,154 24,356 90.0 13,939 5,832 8,107 4,182 272 18,383	161,736 14,356 11,914 8,215 11,914 8,215 14,328 39,118 30,348 25,547 90,5 14,637 6,086 8,551 4,391 285 19,313	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608 300 20,267
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD) Domestio Water Consumption Mon-Domestic Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption Non-Revenue Water Domand	o Existing New Existing New Existing New Existing New Existing New f = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g i (% in total)	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127 2,127 0 838 41 2,806 10,0%	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 2,261 0 678 44 2,983 10.0%	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 81.0 81.0 2,399 0 720 720 720 47 3,168	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541 2,541 2,541 0 782 50 50 3,353	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 2,689 0 82.0 2,689 0 807 52 3,548 10.0%	0% 34,441 7,591 0 4,933 0 6,891 0 0 15,026 0 82,5 2,841 2,841 0 0 852 55 55 3,748 10,0%	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 0 83.0 2,999 0 900 58 58 3,957	0% 37,866 8,366 0 5,294 0 16,592 0 83.5 3,162 3,162 0 949 949 62 4,173 10.0%	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330 1,657 1,496 97 6,580 10,0%	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 8,661 8,445 6,214 3,504 2,710 1,864 121 8,199 10,7%	55% 88,148 9,564 6,121 5,861 8,802 8,799 9,7,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887 11,4%	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 185 11,177 12,1%	70% 106.121 10.388 7.931 16.256 11.497 23.562 20.912 15.917 86.0 9.128 4.060 5.066 2.738 178 12.042	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 16,872 86.5 9,659 4,258 5,401 2,898 188 12,745 13,6%	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472 14,3%	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87.5 10,780 4,673 6,107 3,234 210 14,224 15,0%	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411 2222 15,003 15,7%	85% 135,366 12,539 10,072 7,366 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808 16,4%	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,840 17,1%	91% 148,202 13,437 10,978 7,753 16,370 13,166 328,049 23,197 89.5 13,264 5,585 7,679 3,979 259 17,502 17,9%	94% 154,879 13,894 11,442 7,882 17,131 13,738 324,356 90.0 13,939 5,832 8,107 4,182 272 18,393 18,6%	161,738 14.356 11.914 8.215 17.910 14.328 39,118 30.348 25.547 90.5 14,637 6,086 8.551 14,637 6,086 8.551 285 19,313 19,3%	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608 300 20,267 20,0%
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya Per Capita Water Consumption (LPOD) Domestic Water Consumption (m3/d) Non-Domestic Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption	o Existing New Existing New Existing New d d e = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127 2,127 0 0 838 41 2,806	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 2,261 44 44 2,983	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 2,399 2,399 0 720 720 47 3,166	31,182 6,836 0 4,585 0 6,216 0 13,546 81.5 2,541 2,541 0 0 762 50 3,353	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	0% 34,441 7,591 0 4,933 0 0 15,026 0 15,026 0 82,5 2,841 2,841 0 852 555 3,748	0% 38,132 7,976 0 5,112 0 7,247 0 0 15,798 0 83.0 2,999 0 2,999 0 0 900 58 3,957	0% 37,866 8,366 0,0 7,615 0,0 16,592 0 83.5 3,162 3,162 0,0 83.5 3,162 4,173	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84,0 4,987 3,330 1,657 1,496 97 6,580	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 18,248 84.5 6,214 3,504 2,710 1,864 121 8,199	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 165 11,177	70% 106,121 10.388 7.931 6.256 11,497 9.658 23.562 20.912 15.917 86.0 9,128 4.060 5.066 2.738 178 12,042	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86,5 9,659 4,258 5,401 2,898 188 12,745	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87,5 10,780 4,673 6,107 3,234 210 14,224	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411 222 15,003	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,640	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,284 5,585 7,679 3,979 259 17,502	94% 154,879 13,894 11,442 7,892 17,131 13,738 37,154 24,356 90.0 13,939 5,832 8,107 4,182 272 18,383	161,736 14,356 11,914 8,215 11,914 8,215 14,328 39,118 30,348 25,547 90,5 14,637 6,086 8,551 4,391 285 19,313	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608 300 20,267
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD) Domestio Water Consumption Mon-Domestic Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption Non-Revenue Water Domand	o Existing New Existing New Existing New Existing New Existing New f = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g i (% in total)	26,589 5,737 0 4,086 0 5,288 0 11,478 0 80.0 2,127 2,127 0 838 41 2,806 10,0%	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 2,261 0 678 44 2,983 10.0%	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 81.0 81.0 2,399 0 720 720 720 47 3,168	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541 2,541 2,541 0 782 50 50 3,353	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 2,689 0 82.0 2,689 0 807 52 3,548 10.0%	0% 34,441 7,591 0 4,933 0 6,891 0 0 15,026 0 82,5 2,841 2,841 0 0 852 55 55 3,748 10,0%	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 0 83.0 2,999 0 900 58 58 3,957	0% 37,866 8,366 0 5,294 0 16,592 0 83.5 3,162 3,162 0 949 949 62 4,173 10.0%	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330 1,657 1,496 97 6,580 10,0%	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 8,661 8,445 6,214 3,504 2,710 1,864 121 8,199 10,7%	55% 88,148 9,564 6,121 5,861 8,802 8,799 9,7,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887 11,4%	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 185 11,177 12,1%	70% 106.121 10.388 7.931 16.256 11.497 23.562 20.912 15.917 86.0 9.128 4.060 5.066 2.738 178 12.042	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 16,872 86.5 9,659 4,258 5,401 2,898 188 12,745 13,6%	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472 14,3%	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87.5 10,780 4,673 6,107 3,234 210 14,224 15,0%	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411 2222 15,003 15,7%	85% 135,366 12,539 10,072 7,366 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808 16,4%	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,840 17,1%	91% 148,202 13,437 10,978 7,753 16,370 13,166 328,049 23,197 89.5 13,264 5,585 7,679 3,979 259 17,502 17,9%	94% 154,879 13,894 11,442 7,882 17,131 13,738 324,356 90.0 13,939 5,832 8,107 4,182 272 18,393 18,6%	161,738 14.356 11.914 8.215 17.910 14.328 39,118 30.348 25.547 90.5 14,637 6,086 8.551 14,637 6,086 8.551 285 19,313 19,3%	100% 168,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608 300 20,267 20,0%
Padaviya Kebithigollewa Horowpothana Kahatagasdigiliya Per Capita Water Consumption (LPOD) Domestic Water Consumption (M3/d) Non-Domestic Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption Non-Revenue Water Demand volume	o Existing New Existing New Existing New Existing New Existing New f = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g i (% in total) j = h / (1-i) - h	26,589 5,737 0 4,086 0 0 5,288 0 0 11,478 0 80.0 2,127 2,127 0 0 638 41 2,806 10.0% 312	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 0 678 44 2,983 10.0% 331	29,612 6,465 0 4,415 0 5,895 0 12,837 0 81.0 2,399 0 720 720 47 3,166 10.0% 382	31,182 6,836 0 4,585 0 6,216 0 0 81.5 2,541 2,541 2,541 0 782 50 3,353 10.0% 373	32,791 7,211 0 4,757 0 6,547 0 14,275 2,689 0 822.0 822.0 822.0 807 52 3,548 10.0% 394	0% 34,441 7,591 0 4,933 0 6,891 0 0 15,026 0 82,5 2,841 2,841 2,841 2,841 0 0 852 55 3,748 10,0% 416	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 83.0 83.0 900 900 58 3,957 10.0%	0% 37,868 8,366 0 5,294 0 7,615 0 16,592 0 83.162 3,162 3,162 0 949 62 4,173 10.0%	25% 59,368 8,760 2,733 5,480 3,899 7,996 7,766 17,408 5,326 84.0 4,987 3,330 1,657 1,486 97 6,580 10,0% 731	40% 73,537 9.160 4.412 5.668 6.319 8.391 12.678 8.18,248 8.661 84.5 6,214 3.504 2.710 1,864 121 8,199 10.7% 984	55% 88,148 9,564 6,121 5,861 8,802 8,799 17,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887 11,4%	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 165 11,177 12,1% 1,545	70% 106,121 10,388 7,331 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,128 4,060 5,066 2,738 17,8 12,042 12,9%	73% 111,861 10,808 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86.5 9,659 4,258 5,401 2,888 188 12,745 13,6% 2,001	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472 14,3% 2,245	79% 123,196 11,663 9,195 6,875 13,491 11,062 28,241 23,805 18,864 87.5 87.5 10,780 4,673 6,107 3,234 210 14,224 15,0% 2,510	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 6,479 3,411 222 15,003 15,7% 2,797	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88,55 11,980 5,115 6,865 3,594 234 15,808 16,4% 3,108	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,640 17,1% 3,443	91% 148,202 13,437 10,97% 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,284 5,585 7,679 3,979 259 17,502 17,9% 3,805	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 24,356 90.0 13,939 5,832 8,107 4,182 272 18,393 18,6% 4,185	181,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90.5 14,637 6,086 8,551 4,391 285 19,313 19,3% 4,815	100% 188,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 4,608 300 20,267 20,0% 5,067
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD) Domestio Water Consumption (m3/d) Non-Domestic Water Consumption Allow. for Unexpected Water Consumption Allow. for Unexpected Water Consumption Non-Revenue Water Demand volume Average Water Demand (m3/d) Dave	o existing New Existing New Existing New Existing New Existing New d e = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g i (% in total) j = h / (1-i) - h k = h + j	26,589 5,737 0 4,086 0 0 11,478 0 80.0 2,127 2,127 2,127 2,127 638 41 2,806 10.0% 312 3,118	28,081 6,099 0 4,249 0 5,586 0 12,148 0 80.5 2,261 2,261 2,261 0 678 44 2,983 10,0% 3311 3,314	29,612 6,465 0 0 5,895 0 12,837 0 81.0 2,399 2,399 2,399 0 720 720 720 47 3,166 10.0% 352 3,518	31,182 6,836 0 4,585 0 6,216 0 13,546 0 81.5 2,541 2,541 0 762 50 3,353 10.0% 373 3,728	32,791 7,211 0 4,757 0 6,547 0 14,275 0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	0% 34,441 7,591 0 4,933 0 6,891 0 0 82,5 2,841 2,841 2,841 0 855 5 5 5 3,748 10.0% 416 4,164	0% 36,132 7.976 0 5,112 0 7.247 0 15,798 0 83.0 2,999 2,999 0 9 00 83.0 2,999 3,957 10.0% 440 4,387	0% 37,868 8,366 0 0,5,294 0 7,615 0 16,592 0 83.5 3,162 3,162 3,162 3,162 3,162 4,173 10,0% 464 4,637	25% 59,368 8,760 2,733 5,480 7,996 7,766 7,766 8,40 4,987 3,330 1,657 1,498 97 6,580 10,0% 731 7,311	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 8,861 84.5 6,214 3,504 2,710 1,864 2,710 1,864 121 8,199 10,7% 984 9,183	55% 88,148 9,564 6,121 5,861 8,799 17,785 19,112 12,105 85,0 7,493 3,684 3,809 2,248 146 9,887 11,4% 1,276 11,163	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85.5 8,471 3,869 4,602 2,541 165 11,177 12,1% 1,545 12,722	70% 106,121 10,388 7,331 6,256 11,497 9,658 23,562 20,912 15,917 86.0 9,128 4,060 5,066 2,738 12,042 12,9% 1,777 13,819	73% 111,661 10,008 8,345 6,458 12,146 10,111 25,070 21,850 16,872 86.5 9,659 4,258 5,401 12,888 12,745 13,6% 2,001 14,746	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472 14,3% 2,245 15,717	79% 123,198 11,663 9,195 6,875 13,491 11,062 28,241 23,805 10,780 4,673 6,107 3,234 210 14,224 15,0% 2,510 16,734	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 88,0 11,370 4,890 6,479 3,411 222 15,003 15,7% 2,797 17,800	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808 16,4% 3,109 18,916	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.0 12,611 5,346 7,265 3,783 246 16,840 17,1% 3,443 20,063	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,585 28,049 23,197 89.5 13,264 5,585 7,679 3,979 259 17,502 17,502 17,9% 3,805 21,307	94% 154,879 13,894 11,482 7,982 17,131 13,738 24,356 90.0 13,939 5,832 8,107 4,182 272 18,383 18,6% 4,195 22,588	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90,5 14,637 6,086 8,551 4,381 285 19,313 19,3% 4,615 23,928	100% 166,776 14,825 12,393 8,452 18,706 14,938 41,146 31,545 26,772 91.0 15,359 6,348 9,011 15,359 6,348 9,011 4,608 3000 20,267 20,0% 5,067 25,334
Padaviya Kebithigollewa Horowpothana Kahatagasdigilya Per Capita Water Consumption (LPCD) Domestio Water Consumption (M3/d) Non-Domestio Water Consumption Allow. for Unexpected Water Consumption Average Daily Water Consumption Non-Revenue Water Demand Volume Average Water Demand (m3/d) Dave Maximum Water Demand (m3/d) Dmax Water Demand (or Intake (m3/d)	o e Existing New Existing New Existing New Existing New d d = o x d Existing New f = o x 30% g = (o+f) x 1.5% h = o + f + g i (% in total) j = h / (1-i) - h k = h + i l = k x 1.1	28,589 5,737 0 4,086 0 5,288 0 11,478 0 80,0 80,0 80,0 80,0 80,0 80,0 80,0	28,081 6,099 0 4,249 0 5,586 0 0 12,148 0 80.5 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 2,261 3,314 3,314	29,612 6,465 0 0 5,895 0 12,837 0 81.0 81.0 81.0 2,399 0 720 720 720 720 720 47 3,166 10.0% 3,518 3,870	31,182 6,836 0 4,585 0 6,216 0 13,546 2,541 2,541 2,541 0 782 50 3,353 10.0% 3733 3,726 4,098	32,791 7,211 0 4,757 0 0 14,275 0 82,09 2,689 0 82,689 0 807 52 3,548 10.0% 3,942 4,338	0% 34,441 7,591 0 4,933 0 6,891 0 0 15,026 0 0 82,5 2,841 2,841 0 852 855 3,748 10,0% 4166 4,164 4,164	0% 36,132 7,976 0 5,112 0 7,247 0 15,798 0 83.0 2,999 0 83.0 2,999 0 900 900 900 900 900 900 900 900 9	0% 37,868 8,366 0,5,294 0,7,615 0,0 16,592 0,0 83,5 3,162 3,162 3,162 3,162 4,173 10,0% 4,637 5,100	25% 59,368 8,760 2,733 5,480 3,899 7,766 7,766 7,766 8,5326 4,987 3,330 1,657 1,496 97 6,580 10.0% 7,811 8,042	40% 73,537 9,160 4,412 5,668 6,319 8,391 12,678 8,661 84,5 6,214 3,504 2,710 1,864 121 8,199 10.7% 984 9,183 10,101	55% 88,148 9,564 6,121 5,861 5,861 8,802 8,799 17,785 19,112 12,105 85.0 7,493 3,684 3,809 2,248 146 9,887 11,4% 1,276 11,163	65% 99,073 9,974 7,299 6,056 10,538 9,221 21,444 20,000 14,541 85,5 8,471 3,869 4,602 2,541 185 11,177 12,1% 1,545 12,722 13,994	70% 106,121 10,388 7,931 6,256 23,562 20,912 15,917 886.0 9,128 4,060 5,066 2,738 178 12,042 12,9% 1,777 1,3,819 15,201	73% 111,661 10,008 8,3445 6,458 12,146 10,111 25,070 2,850 16,872 86.5 9,859 4,258 5,401 2,898 188 12,745 13,6% 2,001 14,746	76% 117,351 11,233 8,767 6,665 12,811 10,578 26,629 22,815 17,854 87.0 10,210 4,462 5,747 3,063 199 13,472 14,3% 2,245 15,717	79% 123,198 11,663 9,195 6,875 13,491 11,062 28,241 28,241 28,241 28,241 28,241 28,241 28,241 28,241 13,673 6,107 3,234 210 14,224 15,0% 2,510 16,734 18,408	82% 129,200 12,098 9,630 7,089 14,186 11,562 29,908 24,824 19,903 88.0 11,370 4,890 6,479 3,411 222 15,003 15,7% 2,787 17,800 19,560	85% 135,366 12,539 10,072 7,306 14,898 12,079 31,631 25,870 20,971 88.5 11,980 5,115 6,865 3,594 234 15,808 16,4% 3,108 18,916 20,807	88% 141,698 12,985 10,522 7,527 15,625 12,614 33,412 26,945 22,068 89.00 12,611 5,346 7,265 3,783 246 16,640 17,1% 3,443 20,063 22,0061	91% 148,202 13,437 10,978 7,753 16,370 13,166 35,252 28,049 23,197 89.5 13,264 5,585 7,679 3,979 259 17,502 17,9% 3,805 21,307 23,437	94% 154,879 13,894 11,442 7,982 17,131 13,738 37,154 29,183 29,183 29,183 20,183 20,183 20,184 20,183 20,184 2	161,736 14,356 11,914 8,215 17,910 14,328 39,118 30,348 25,547 90.5 14,637 4,391 285 19,313 19,3% 19,3% 19,3% 23,928 26,320	100% 168,778 14,825 12,393 8,452 18,706 31,545 26,772 91.0 15,359 6,348 9,011 4,608 3000 20,267 20,0% 5,067 25,334 27,867

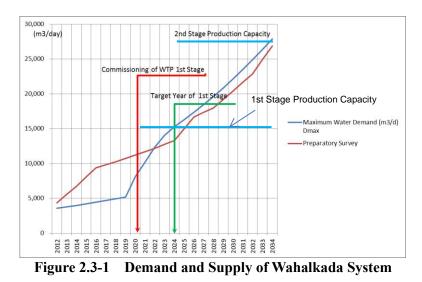
Note: Coverage % was adjusted to cope with the expected commissioning year, 2020.

(11) Summary of Design Criteria

Design criteria and results of Water Demand Projection calculated in the S/S are summarized in Table

2.3-5.

Itama	Unit	calculation	S	/S	F	/S
Items	Unit	calculation	2024	2034	2024	2034
Served Population	рор	а	106,121	168,776	100,393	161,468
Per Capita Water Consumption	LPCD	b	86	91	86/10	91/10
Non-Domestic Water Demands	%	с	3	0	3	5
Allowance for Unexpected Water Demands	%	d	1	.5	-	-
Non-Revenue Water (in total water demand)	%	e	12.9	20.0	2	0
Design Daily Average Water Demand (Dave)	m ³ /day	f = a x b x (1+c) x (1+d) / (1-e)	13,819	25,334	11,098	22,932
Design Load Factor to Dmax	%	g	110		12	20
Design Daily Maximum Water Demand (Dmax)	m ³ /day	h = f x g	15,201	27,867	13,318	26,870
Required WTP Production Capacity (Output)	m ³ /day	i	15,201	27,867	13,318	26,870
Proposed WTP Production Capacity (Output)	m ³ /day	j	15,000	27,400	13,700	27,400
Water Loss at Water Treatment Plant	%	k	4	5	4	5
Required Raw Water Demand	m ³ /day	1 = i / (1-k)	16,001	29,334	13,983*	28,214*
Required Raw Water Intake	m ³ /day	m	16,001	29,334	13,983*	28,214*
Proposed Capacity of Intake Facility	m ³ /day	n	16,000	28,800	14,400	28,800
Design Peak Factor	%	0	10	50	20)0
Design Hourly Maximum Water Supply (Hmax)	m ³ /day	p = h x o	24,321	44,587	26,635	53,740


 Table 2.3-5
 Design Criteria for Wahalkada System

*: Required Raw Water Demand in F/S = Required WTP Production x 1.05

13,983 = 13,318 x 1.05; 28,214 = 26,870 x 1.05

Figure 2.3-1 shows relationship between water demand and water supply capacity through the target year

2034 projected by the S/S.

CHAPTER 3

REVIEW OF PHASE 1 PROJECT

Non-disclosure information

CHAPTER 4

REVIEW OF PHASE 2 PROJECT

Non-disclosure information

CHAPTER 5

IMPLEMENTATION PLAN

Non-disclosure information

CHAPTER 6

FINANCIAL AND ECONOMIC CONSIDERATIONS

Non-disclosure information

CHAPTER 7

OPERATION AND EFFECT INDICATORS

CHAPTER 7 OPERATION AND EFFECT INDICATORS

7.1 **Results in Preparatory Survey**

In the F/S, the operation and effect indicators were set as follows:

Table 7.1-1	Operation Indicators for ANWSP
	operation materiors for the cost

Mahakanada	rawa System				
			Target		
Indicators	Calculation Equation of Indicators	Present	2020	2024	Purpose
		2012			_
Served population	Served population by pipe borne water supply =				
(persons)	(No. of connections) \times (Average per HU	25,900	40,700	47,800	
	population)				
	Served population by bowsers = (total population)	0	21 400		
		0	21,400	22,300	
	Total served population = Served population +				
	Served population by bowsers	25,900	62,100	70,100	
	Daily maximum water distribution = (the biggest	0	= 102	0.505	
(m^3/day)	one in the daily water distribution records	0	7,193	8,585	
	throughout a year)				
	Daily average water distribution = (annual water	0	5,994	7,154	
	distribution amount) / (annual days)	0	5,994	/,134	
Facility	Facility utilization rate (Max.) = (Daily maximum				
utilization rate	water production) / (treatment capacity) \times 100	0	80	96	
(%)					
	Facility utilization rate (Ave.) = (Daily average	0	67	80	
	water production) / (treatment capacity) \times 100	0	07	00	
Compliance rate	No. of samples with a fluoride concentration of				^{*1} The drinking standard for
of drinking	below 0.6 mg/L / Total no. of samples x 100	_*1	100	100	fluoride is not complied to at 19
standard for			100	100	schemes out of 24 existing
fluoride (%)					CBOs
NRW ratio (%)	NRW ratio = (NRW volume) / (water distribution) \times	_*2	20%	20%	*2 Current NRW at NWSDB
	100		20/0	2070	RSC(N/C) is 19.8% (2008)

Mahakanadarawa System

Wahalkada System

			Target		
Indicators	Calculation Equation of Indicators	Present 2012	2020	2024	Purpose
Served population (persons)	Served population by pipe borne water supply = (No. of connections) × (Average per HH population)	26,900	64,100	74,700	
	Served population by bowsers = (total population)	0	24,600	25,700	
	Total served population = Served population + Served population by bowsers	26,900	88,700	100,400	
Water distribution (m ³ /day)	Daily maximum water distribution = (the biggest one in the daily water distribution records throughout a year)	0	11,203	13,318	
	Daily average water distribution = (annual water distribution amount) / (annual days)	0	9,336	11,098	
Facility utilization rate (%)	Facility utilization rate (Max.) = (Daily maximum water production) / (treatment capacity) \times 100	0	82	97	
	Facility utilization rate (Ave.) = (Daily average water production) / (treatment capacity) × 100	0	68	81	
Compliance rate of drinking	No. of samples with a fluoride concentration of below 0.6 mg/L / Total no. of samples *100	_*1	100	100	^{*1} The drinking standard for fluoride is not complied to at

			Target		
Indicators	Calculation Equation of Indicators	Present 2012	2020	2024	Purpose
standard for fluoride (%)					13 schemes out of 20 existing CBOs
NRW ratio (%)	NRW ratio=(NRW volume) / (water distribution) × 100	_*2	20%	20%	^{*2} Current NRW at NWSDB RSC(N/C) is 19.8% (2008)

Table 7.1-2Effect Indicators for Water Supply

Mahakanadarawa System

			Target		
Indicators	Calculation Equation of Indicators	Present 2012	2020	2024	Purpose
Population coverage by water supply	(Pipe borne water supply) Population coverage = (Served population) / (Administrative population) × 100	41%	58%	64%	Status of risk avoidance being suffered from
nation supply	(Water delivery service by bowsers) Population coverage = (Served population) / (Administrative population) × 100	0 %	100%	100%	fluorosis and CKD through shifting of water source from well water to tap water
	(Population coverage for an access to safe water) Population coverage = (Served population) / (Administrative population) × 100	31%	68%	72%	
Fluoride risk rate	(Fluoride risk rate) = 100 - (Population coverage for an access to safe water)	-	32%	28%	The current rate is 84.4% at the existing service area.
Per capita consumption	Per capita daily maximum consumption = (Daily maximum domestic consumption) / (Served population)	96 LPCD	101 LPCD	103 LPCD	Shifting of water source from well water to tap water
	Per capita daily average consumption = (Daily average domestic consumption) / (Served population)	80 LPCD	84 LPCD	86 LPCD	

Wahalkada System

			Target		
Indicators	Calculation Equation of Indicators	Present 2012	2020	2024	Purpose
Population coverage by water supply	(Pipe borne water supply) Population coverage = (Served population) / (Administrative population) × 100	28%	59%	65%	Status of risk avoidance being suffered from fluorosis and CKD
	(Water delivery service by bowsers) Population coverage = (Served population) / (Administrative population) × 100	0 %	100%	100%	through shifting of water source from well water to tap water
	(Population coverage for an access to safe water) Population coverage = (Served population) / (Administrative population) × 100	27%	67%	72%	
Fluoride risk rate	(Fluoride risk rate) = 100 - (Population coverage for an access to safe water)	-	33%	28%	The current rate is 71.2% at the existing service area.
Per capita consumption	Per capita daily maximum consumption = (Daily maximum domestic consumption) / (Served population)	96 LPCD	101 LPCD	103 LPCD	Shifting of water source from well water to tap water
Samuel E/C Eine	Per capita daily average consumption = (Daily average domestic consumption) / (Served population)	80 LPCD	84 LPCD	86 LPCD	

Source: F/S Final Report

7.2 Revised Indicators

The operation and effect indicators presented in the F/S includes those which are considered to be relatively hard to follow up, and several indicators have vague expressions with indistinct definition such like population who has access to safe drinking water in the project. Considering above problems, application of revised indicators are recommended for simplification of indicators as follows:

- (1) Served population (persons) : Population served by piped water supply system including those served by CBO water supply systems with NWSDB bulk water supply.
- (2) Water Supply Coverage (with surface water) (%) : Served Population with water originated in surface water / Total Administrative Population
- (3) Fluoride in Drinking Water (mg/L) : Fluoride concentration at tap
- (4) Rate of facility Utilization (%) : Daily Maximum Production Volume/ Capacity of Water Treatment Plant:

 Table 7.2-1 shows those indicators by water supply system:

Indicator	(2012)	Present (2015)	Target (2020)
Mahakanadarawa System			
Served Population	27,818	31,896	53,531
Water Supply Coverage (w/ Surface Water) (%)	0	0	56
Fluoride in drinking water (mg/L)	1.9 ³ (Jayashakthi CBO)	-	<1.0
Rate of Facility Utilization ² (%)	-	-	60
Indicator	(2012)	Present (2015)	Target (2022)
Wahalkada System			
Served Population	26,589	31,182	88,148
Water Supply Coverage (w/ Surface Water) (%)	0	0	63
Fluoride in drinking water (mg/L)	1.9 ³ (Senath CBO)	-	<1.0
Rate of Facility Utilization ² (%)	-	=	74

 Table 7.2-1 Performance and Operation Indicators

Note:

1: During the F/S, Census Population was not available. Figures in this table are based on the population in 2012 Census.

2: Mahakanadarawa; 6,685/11,200, Wahalkada; 11,163/15,000.

3: The Figure of 1.9 mg/L is detected from existing CBO water supply systems in the project area as the analysed maximum value obtained in the Preparatory Survey. This figure exceeded the drinking water quality standard of Sri Lanka 2013 (<1.0 mg/L) (refer to **Appendix 7.2-1**, and **Appendix 7.2-2**).

CHAPTER 8

ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

Chapter 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

8.1 **Project Summary**

8.1.1 Project Title

Anuradhapura North Water Supply Project (ANWSP) Phase 2.

8.1.2 **Project Summary**

The project was planned to provide safe drinking water in the northern part of Anuradhapura in Sri Lanka. It was separated into two phases; Phase 1 for Mahakanadarawa scheme and Phase 2 for Wahalkada scheme. The current main water source in the target area is groundwater and it is usually supplied by small-scale piped water supply systems or from individual wells. The groundwater in the area contains high concentration of hardness and sometimes contains high concentration of fluoride. It is believed that the bad water quality brings about endemic diseases such as fluorosis and CKDs. For this reason, the NWSDB has decided to establish a water supply system in the area using an alternative water source from irrigation tanks, namely artificial reservoirs.

The planned project will provide a positive impact to the people in the area by improving their living standards. On the other hand, the project might have negative impacts on the natural environment and social conditions. The F/S identified the project in Category B because the adverse effects were manageable and not serious.

8.2 Purpose of the S/S

The F/S was carried out in 2012, and accordingly, the Phase 1 project has started D/D. It is supposed that the problem identified at Phase 1 could occur again at Phase 2 because these two projects have close similarity. Prior to starting Phase 2 project, JICA decided to review the current environment of the project and study the lessons from preceding Phase 1, in order to minimize adverse effects and maximize benefit.

8.2.1 Task of the S/S

1) Review the environmental and social impact by the project with the modified plan and design

There are some modification of the plan and design of the project. The JICA Study team studies about the necessary additional consideration that could be created by the modification.

2) Study the Phase 1 about the land acquisition and resettlement

The JICA Study team evaluates the procedure and progress of land acquisition and resettlement of the Phase 1. The result will be utilized for the Phase 2 project.

3) Check the current status of the land acquisition and resettlement

The phase 2 plans to construct four pumping stations, five ground reservoirs and sixteen elevated water tanks as well as one WTP. The JICA Study team checked the owner of the land, the current status of land acquisition, presence of squatters, and clarify the potential problem to the project and make recommendations of the measures to be taken.

8.3 Result

8.3.1 Review of the Government Policies and Regulations

It has passed about three years after the F/S, and the changes of the policies and regulations which have been created during this period should be examined. The change of regime occurred at the election on early January 2015, but a new president follows his predecessor's policy in regard to environmental and social issues. There has not been any major change of policies and laws. **Table 8.3-1** shows the policies related to the environmental and social issues.

Table 8.3-1 Sri Lanka Policies for Environmental and Social Issues

National Environment Policy – 2003

The policy aims to promote the sound management of Sri Lanka's environment balancing the needs for social and economic development and environment integrity. It also aims to manage the environment by linking together the activities, interests and perspectives of stakeholders and to assure environmental accountability.

National Forestry Policy – 1995

The policy was drawn up to provide clear directions for safeguarding the remaining natural forests of the country in order to conserve biodiversity, soil and water resources.

The National Policy on Wildlife Conservation - 2000

The policy renews the commitment of the government to conserve wildlife resources through promoting conservation, maintaining ecological processes and life sustaining systems, managing genetic diversity and ensuring sustainable utilization and sharing of equitable benefits arising from biodiversity. It emphasizes the need for effective protected area management with the participation of local communities.

National Air Quality Management Policy – 2000

The policy aims to maintain good air quality to reduce morbidity due to air pollution and in turn reduce national health expenditures.

National Watershed Management Policy - 2004

The policy aims to conserve, protect, rehabilitate, sustainably use and manage the watersheds while managing their environment characteristics with the involvement of people.

Cleaner Production Policy – 2004

The objective of this policy is to incorporate the cleaner production concept and practices into all development sectors of the country.

National Biosafety Policy – 2005

The policy on biosafety set the overall framework in which adequate safety measures will be developed and put into force to minimize possible risks to human health and the environment while extracting maximum benefits from any potential that modern bio technology may offer.

National Policy on Wetlands – 2005

The policy seeks to give effect to National Environment Policy and other relevant national policies, while respecting national commitments towards relevant international conventions, protocols, treaties and agreements to which Sri Lanka is a party.

National Policy on Sand as a Resource for the Construction Industry – 2006

The policy statement reflects Sri Lanka's constitutional, international and national obligations, including the Mines and Minerals Act No. 33 of 1992, the National Environmental Act of 1980, the Coast Conservation Act of 1981 and other relevant legislation, regulations and policy statements. It defines the commitment of Government, in partnership with the people, to effectively manage the construction-sand resource for the benefit of present and future generations.

National Policy on Elephant Conservation - 2006

The policy was developed to ensure the long-term survival of the elephant in the wild in Sri Lanka through the mitigation of the human-elephant conflict.

National Policy on Solid Waste Management - 2007

The policy has been prepared to ensure integrated, economically feasible and environmentally sound solid waste management practices for the country at national, provincial and Local Authority level. The main objectives of the policy are (a) to ensure environmental accountability and social responsibility of all waste generators, waste managers and service providers (b) to actively involve individuals and all institutions in integrated and environmentally sound solid waste management practices (c) to maximize resource recovery with a view to minimize the amount of waste for disposal and (d) to minimize adverse environmental impacts due to waste disposal to ensure health and well-being of the people and on ecosystems.

Source: CEA, Professor in Forestry and Environmental Science of University of Sri Jayewardenepura

From the viewpoint of the environmental and social issues, the project should be aware many of Ordinances, Acts and Regulations to follow. **Table 8.3-2** and **Table 8.3-3** are summaries with the updating information.

Name	Last amendment	Contents	Administration
National Environmental (Amendment) Act,	2000	Provision for the protection and management of the environment	CEA
Forest (Amendment) Act	2009	 Amendment of Forest Ordinance Conservation, protection, and sustainable management of forest resources Provisions for community involvement in forest management and benefit sharing through forest agreements. 	Forest department
Fauna and Flora Protection (Amendment) Act	2009	 Amendment of Fauna and Flora Protection Ordinance Provisions for protection of certain species of fauna outside reserves and prohibition and control of export of some wild animals. Provisions for protection of some identified Protected Trees 	Department of Wildlife Conservation
National Heritage and Wilderness Areas Act	1988	• Special protection to the forest areas that harbour unique ecosystems, genetic resources, or outstanding natural features	Forest Department
Soil Conservation Act	1996	• Provision for the conservation of soil resources, for the prevention or mitigation of soil erosion and for the protection of land against damage by floods and drought	Department of agriculture
Land Acquisition Act	1986	• Provision for the acquisition of lands and servitudes for public purposes and to provide for matters connected with or incidental to such provision.	Department of land
Urban Development Authority (Amendment) Act	1984	 Amendment of Urban Development Authority Law Provision for preserving and promoting landscaping 	UDA
Antiquities (Amendment) Act	1998	 Amendment of Antiquities Ordinance Reservation of Antiquities 	Department of Archaeology
Factories (Amendment) Act	2002	• Provision for the safety and welfare of workers in factories	Department of Labour

Table 8.3-2 Act and Ordinance to Consider

Source: CEA, Forest Department, Professor in Forestry and Environmental Science of University of Sri Jayewardenepura

Category	ID	Date of Gazette	Remarks
Environment Protection	Order published under the Gazette Notification No. 1533/16	25.01.2008	the Prescribed Activities for which a License is Required
	Order published under the Gazette Notification No. 1534/18	01.02.2008	 Issue of Environmental Protection License for Emission or Disposal of Waste Issue of License for the Management of Waste
	Regulations published under the Gazette Notification No. 850/4	20.12.1994	 Regulation of Ozone depleting materials The permissible ambient air quality standards
Water Quality	Specification for Potable Water Quality SLS 614:2013	2013	• Drinking water quality standards under Sri Lanka Institute of Standards (SLS)
	Proposed Ambient Water Quality Standards	2001	• Proposed standard prepared by CEA
	Regulations published under the Gazette Notification No. 1534/18	01.02.2008	 License for discharge, emission or disposal of waste/scheduled waste management Discharge standards
Air Quality	Regulations published under the Gazette Notification No. 1295/11	30.06.2003	• Vehicular Exhaust Emission Standards •
	Order published under the Gazette Notification No. 1557/14	09.07.2008	• List of vehicle exhaust emission standards
	Regulations published under the Gazette Notification No. 1562/22	15.08.2008	Permissible Ambient Air Quality Standards in relation to class of Air Pollutants
	Amended Regulations published under the Gazette Notification No. 1887/20	05.11.2014	Air emission, fuel & vehicle Importation standards
Noise	Order published under the Gazette Notification No. 924/12	23.05.1996	• permissible Noise Level
	Order published under the Gazette Notification No. 973/7	30.04.1997	• Amendment above
	Order published under the Gazette Notification No. 1738/37	29.12.2011	National Environmental (vehicle horns) Regulations
Waste Management	Order published under the Gazette Notification No. 1466/5	10.10.2006	Prohibition of Polythene or any Polythene product
	Regulations published under the Gazette Notification No. 1534/18	01.02.2008	 License for discharge, emission or disposal of waste/scheduled waste management Discharge standards
	Order published under the Gazette Notification No. 1627/19	10.11.2009	Municipal Solid Waste Regulations

Table 8.3-3 Regulations to Follow

Source: CEA, web site of Government of Sri Lanka (http://www.lawnet.lk/)

There are no legal basis for the enforcement of the water quality standards for drinking water and ambient water. The ambient water quality standard is still a proposed guideline.

8.3.2 Change of Environmental Standards

The project has to observe the criteria and standards for the protection of environment, human health and security. The important standards were listed up in the F/S report. And the activities of the proposed project were carefully examined the compliance with standards.

After three years, a couple of standard sets have been revised, i.e., drinking water standard and discharge standards for Petrol Vehicles.

8.3.2.1 Specification for Potable Water (SLS 614)

This is a standard for drinking water approved by the Sectoral Committee on Agricultural and Food Products. It had been effective since 1983 with the authorization by Sri Lanka Standards Institution (SLSI) and revised in 2013 for the first amendment. The new criteria were reviewed with the latest scientific information, accumulated study and knowledge. The old version of standards had two kinds of criteria for some parameters as 'Highest desirable level' and 'Maximum permissible level'. But new version of the standards only has one criteria for each parameter. Other notable differences are the change of criteria concentration for some parameters, such as fluoride (1.5 mg/l to 1.0 mg/l), arsenic (0.05 mg/l to 0.01 mg/l), and addition of some parameters like nickel, total dissolved solid etc. The table for comparison between 1983 version and 2013 version is shown as **Table 8.3-4**. SLS 614 (2013) is attached as **Appendix 8.3-1**.

Table 8.3-4 Sri Lanka Drinking Water Standard in 1983 and 2013

Physical	and	organolep	tic rec	uirements

			SLS 614	1983	SLS 614 2013	
PARAMETER		Unit	Highest Desirable level	Maximum permissible level	Requirement (Maximum) 15 Unobjectionable	
Electrical conductivity at 25°C	EC	μs/cm	750	3500		
Total solids		mg/l	500	2000		
Colour		(Hazen Units)	5	30	15	7
Taste			Unobjectionable	-	Unobjectionable	
Odour			Unobjectionable	-	Unobjectionable	
Turbidity		NTU	2	8	2	=
рН			7.0 - 8.5	6.5 - 9.0	6.5 - 8.5	

Chemical requirement

			SLS 614	1983	SLS 614 2013	
PARAMETER		Unit	Highest Desirable level	Maximum permissible level	Requirement (Maximum)	
Aluminium	Al	mg/l			0.2	New
Free Ammonia	NH3	mg/l	-	0.06	0.06	=
Albuminoid ammonia		mg/l			0.15	New
Anionic detergents (as MBAS)		mg/l			0.2	New
Calcium	Ca	mg/l	100	240	100	=
Chloride	Cl	mg/l	200	1200	250	7
Chemical Oxygen Demand	COD	mg/l	-	10	10	=
Copper	Cu	mg/l	0.05	1.5	1.0	7
Fluoride	F-	mg/l	0.6	1.5	1.0	\searrow
Free Residual Chlorine		mg/l	-	0.2	1	7
Iron	Fe	mg/l	0.3	1	0.3	=
Magnesium	Mg	mg/l	30	150	30	=
Manganese	Mn	mg/l	0.05	0.5	0.1	7
Nitrate	NO3-	mg/l	-	45	50	7
Nitrite	NO2-	mg/l	-	0.01	3	7
Nickel	Ni				0.02	New
Grease & Oil			-	1	0.2	\searrow
Phenolic compounds			0.001	0.002	0.001	=
Sodium	Na				200	New
Sulphate	SO42-	mg/l	200	400	250	7
Total Alkalinity (as CaC03)		mg/l	200	400	200	=
Total dissolved solid	TDS				500	New
Total Hardness (as CaC03)		mg/l	250	600	250	=
Total Phosphates	PO43-	mg/l	-	2	2.0	=
Zinc (Zn) (mg/l)	Zn	mg/l	5	15	3.0	\searrow

Limits for toxic substances

			SLS 614	1983	SLS 614 2013	
PARAMETER		Unit	Highest Desirable level	Maximum permissible level	Requirement (Maximum)	
Arsenic	As	mg/l	-	0.05	0.01	\checkmark
Cadmium	Cd	mg/l	-	0.005	0.003	\checkmark
Chromium	Cr	mg/l	-	0.05	0.05	=
Cyanide	CN	mg/l	-	0.05	0.05	=
Lead	Pb	mg/l	-	0.05	0.01	\searrow
Mercury	Hg	mg/l	-	0.001	0.001	=
Selenium	Se	mg/l	-	0.01	0.01	=

Bacteriological requirement				
	SLS 614	SLS 614 1983 SLS 614 2013		
Total Coliforms / 100 ml	Absent in	10	3 for treatment	
	(i) 95% of the		works and piped	
	samples in a year di		distribution	
	and system		systems,	
	(ii) in any two 10 for ind		10 for individual	
	consecutive		or small	
	samples		commnunity	
			supplies	
E.Coli/100ml	Absent	Absent	Absent	

Table 8.3-5	Sri Lanka Drinking Water Standard in 1983 and 2013 (continued)
-------------	--

Source: SLS 614 (1983) and SLS 614 (2013)

NWSDB continues the monthly monitoring of water quality at Wahalkada tank. **Table 8.3-6** is a summary of the monitoring results from June 2012 to October 2015. It is a list of maximum, minimum observed value and average of all results during the monitoring period. The whole report is attached as **Appendix 8.3-2**.

	parameter	standard	max	min	average
1	Colour (Hazen Unit)	15	83	13	33
2	Turbidly (NTU)	2	57.6	2.47	14
3	pН	6.5 - 8.5	8.67	6.73	8
4	Electrical conductivity at 25°C (µs/cm)	-	360	180	255
5	Chloride (as Cl ⁻) - mg/L	250	60	12	29
6	Total Alkalinity (as CaCO ₃) -mg/L	200	180	60	95
7	Total Hardness (as CaCO ₃) -mg/L	250	182	48	94
8	Nitrate (as N) -mg/L	11.3*	4.8	0	0.71
9	Nitrite (as N) -mg/L	0.91*	0.3	0.001	0.01
10	Sulphate (as SO_4^{2-}) - mg/L	250	8	1	2
11	Fluoride (as F ⁻) - mg /L	1.0	0.44	0.12	0.27
12	Phosphate (as PO_4^{3-}) -mg/L	2.0	0.89	0.05	0.28
13	Total Iron (as Fe) -mg/L	0.3	0.99	0	0.14
14	Total Coliform /100 ml	3	820	0	153
15	Escherichia Coli /100 mL	0	296	0	52

Table 8.3-6 Summary of Monitoring Result of Wahalkada Tank Water

:* converted from standards

Source: NWSDB- RSC-NC

Concentration of fluoride has not exceeded the requirement. The parameters which exceeded the standard value are colour, turbidity, iron and bacteriological parameters are able to be removed by the usual water treatment procedure. NWSDB monitors the 15 parameters shown in the table. Toxic substances are not measured by usual NWSDB monitoring. The F/S team measured toxic substances from December 2011 to June 2012, and all reported results satisfied the requirements of the updated standards.

8.3.2.2 Air Emission, Fuel and Vehicle Importation Standards

The Air Emission standards was established in 2003 and amended in 2008. It was again amended in 2014. The type of vehicle is changed and criteria value of emission gas is revised. A copy of Gazette is attached as **Appendix 8.3-3**.

The Old is		Pollution St		
Issued year	Type of Vehicle	Carbon Monoxide (CO (% vol.)	Hydrocarbon HC (ppm v/v)	Remarks
2008	Petrol wo/cc	a. > 5 years 3.0 < 5 years	1200	Low idling
	Petrol w/cc	2	400	
	Petrol Vehicles	3.0	1000	
2014 (New)	Petrol Motor Cycles	4.0	1000	Both idling and 2500 RPM/no load
	Petrol Motor Tricycles	4.0	6000	2000 10 10/110 10 uu

Where:

wo/cc - Without catalytic converter

w/cc - with catalytic converter

> 5 years - vehicles more than 5 years old from the year of manufacture (used / unused)

< 5 years - vehicles less than 5 years old from the year of manufacture

Source: Gazette Notification No. 1887/20-2014

Table 8.3-8 Discharge Standards for Diesel Vehicles	Table 8.3-8	Discharge	Standards	for	Diesel	Vehicles
---	-------------	-----------	-----------	-----	--------	----------

Issued year	Type of Vehicle	Smoke Capacity % (k factor m-	l)
2008		Idle	Load
	Diesel – Tare less than 1728 kg	65 (2.44)	75 (3.22)
	Including three wheelers		
	Diesel – Tare more than 1728 kg	65 (2.44)	75 (3.22)
		Emission Standards Remarks	
		/K Factor (m-1)	
		based on Smoke Capacity	
2014	Diesel Vehicles		On Snap
		4.0	Acceleration
			Abbreviations

K factor: Absorption Coefficient

Source: Gazette Notification No. 1887/20-2014

8.3.3 Approval

This project is not requested EIA and IEE. The any projects to establish industrial activities, which are not subject to EIA are advised to obtain Environmental Recommendation from the Central Environmental Authority (hereinafter referred to as "CEA") for the proposed sites. The purpose of environmental recommendation is to minimize the environmental impact with respect to the zoning plans of relevant

local authorities. The document contains the conditions, and the project should take mitigation measures to satisfy the conditions.

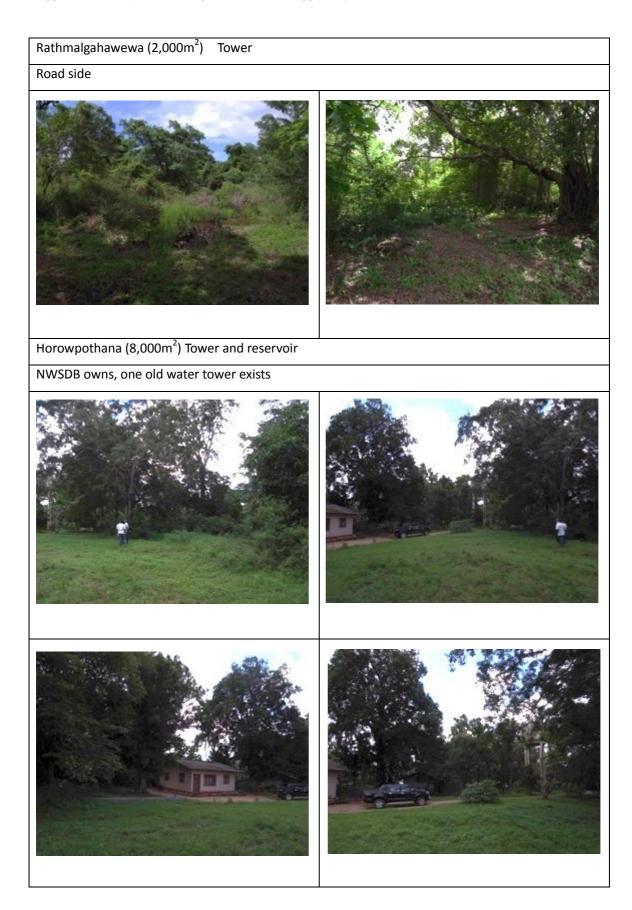
Environmental Recommendation for the Phase 2 project was issued by the CEA NCR (North Central Region) office on 23rd September 2015, with the reference to the application form which had been submitted to CEA by NWSDB. The copy is attached as **Appendix 8.3-4**. NWSDB received Environmental Recommendation on the date of 23rd February 2013 previously, which was valid for a year. NWSDB again submitted the application and received updated one. The conditions noted here are exactly same as before so that CEA's standpoint for the project is not changed. This document provides the permission to the project proponent to carry out the proposed project under the conditions. NWSDB should obtain Environmental Protection License (EPL) 3 months before starting operation.

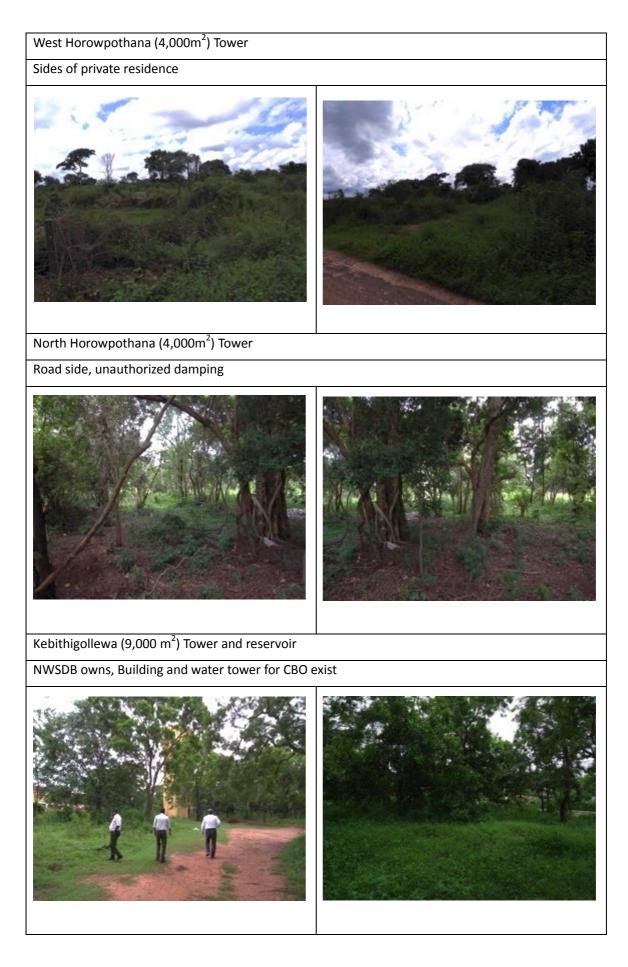
8.3.4 Current status of the Land Acquisition for the Phase 2

NWSDB completed all clearance of the land necessary for the Phase 1 project. NWSDB also completed the resettlement and compensation for the encroaching one household in the Mahakanadarawa WTP site according with the World Bank safe guard policy. NWSDB valuated the house worth LKR 977,421 based on the reacquisition price, and decided to provide doubled price as LKR 2,000,000 which included the cost of construction of new house on sympathetic grounds. The owner accepted the offer willingly. The NWSDB Project Management Unit (herein after referred to as "PMU") officials monitored the correctness of the procedure and gave the assistance to the house owner to move to the new constructed house in the proposed land of the Division Secretary There was no grievance throughout the processes. The report of compensation, photos of new house and oath of the house owner are attached as **Appendix 8.3-5**.

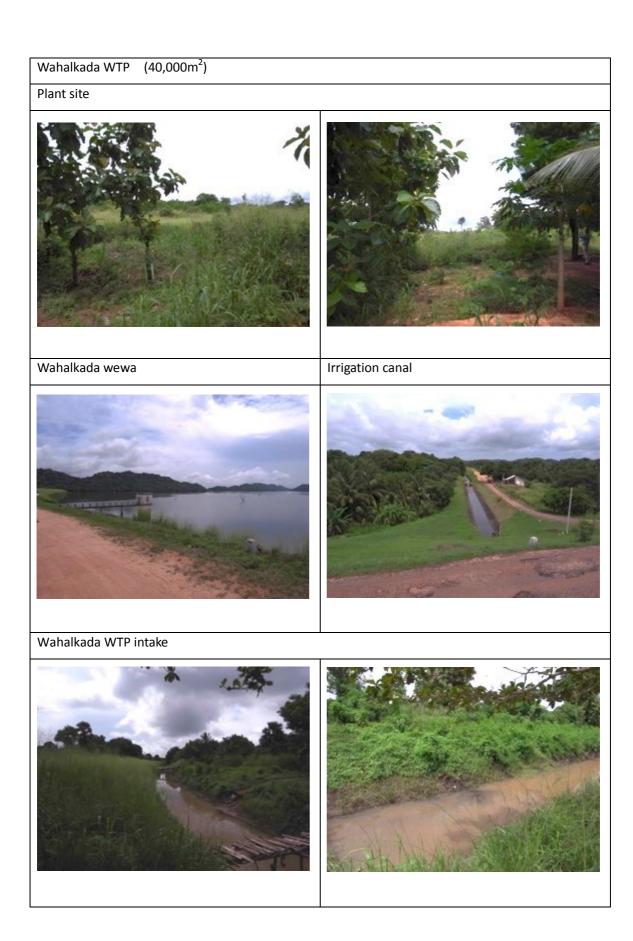
NWSDB has started the land acquisition procedure for the Phase 2 project. **Table 8.3-9** shows current status of proposed sites of Phase 2. The ownership transfer of sites is proceeding smoothly. Currently, there is no possibility of resettlement and NWSDB will pay the effort to avoid relocation of resident in future. But if needs arise, NWSDB will follow the JICA guidelines of resettlement.

The S/S team visited the sites and observed the situation. The brief description of observation and photo of each site are shown in Photo 8-1. There is no encroachment. The many of sites are covered by shrubs, bush and secondary forest. Therefore, the possibility of encroachment in the future is less.


No	Name of Site	Major Facilities*	Area (m ²)	Current Owner	Present Status of Land Clearance
1	Kahatagasdigiliya	WR, WT, PH, CH, GR, OF, SQ,	7,000m ²	NWSDB	ok
2	Hamillewa	WT, CH, SQ	4,000m ²	Government	Approval letter to be received from Divisional Secretary (DS).
3	Rathmalgahawewa	WT, CH, SQ	2,000 m ²	Government	Land commission's Approval to be received for prepares a survey plan.
4	Horowpothana	WR, WT, PH, GR, CH, OF, WS, SQx2	8,000 m ²	NWSDB	ok
5	West Horowpothana	WT, CH, SQ	4,000 m ²	FOREST Dpt	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of Divisional Forest Officer (DFO).
6	North Horowpothana	WT, CH, SQ	2,000 m ²	FOREST Dpt	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of DFO.
7	Weerasole	WR, PH, GR, CH, SQ	4,000 m ²	FOREST Dpt	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of DFO.
8	Kebithigollewa	WR, WT, PH, GR, WS, CH, SQx2, OF	9,000 m ²	NWSDB	ok
9	KAH-KEB	WT, CH, SQ	$2,000 \text{ m}^2$	Government	Local authority approval to be received.
10	Kahatagollewa – 1	WT, CH	$2,000 \text{ m}^2$	Government	Local authority approval was received.
11	Kahatagollewa – 2	WR, PH, GR, SQ,	4,000 m ²	Government	Local authority approval was received.
12	Bogahawewa	WT, OF, CH, SQx2	4,000 m ²	Government	Lease application and relevant documents to be forwarded to Land Commissioner (LC) through the Provincial Land Commissioner (PLC) by DS.
13	Wahalkada - 1	Water Treatment Plant, WT	40,000 m ²	FOREST Dpt	Approval from the Forest department was received. Annual rental to be paid amount of LKR 160,000.00 to the Forest Department.
14	Wahalkada – 2	Intake and PH	2,000 m ²	FOREST Dpt	Approval granted by the Forest Conservator. Position to be transferred. Constructions can be commenced under the supervision of DFO.
15	Mahakanadarawa System service area	Water Tower (750m ³)	Approx 4,000 m ²	Not yet identified	Sites are not yet identified. They shall be identified during Phase 2 D/D stage. It will be selected in a property of Forest department or local government property for obtaining clearance smoothly.
16	Mahakanadarawa System service area	Water Tower (250m ³)	Approx 2,000 m ²	Not yet identified	Same to above.
17-19	Wahalkada System service area	Water Tower (250m ³) x 3	Approx $2,000 \text{ m}^2$ each	Not yet identified	Same to above.


Table 8.3-9 Current Status of Land Acquisition (as of 3rd November 2015)

*: Abbreviations


WR; Ground Reservoir, WT; Water Tower (Elevated Tank), PH; Pump House, CH; Chlorination House, GR; Generator Room, OF; Office, SQ; Staff Quarters, Source: NWSDB- RSC-NC

8.4 Lessons learned from Phase 1 Project

The Phase 2 project is quite similar to the Phase 1 project, such as background, design policy, environmental and social conditions, etc. The Phase 2 project could learn from the lessons from Phase 1 project and minimize the problems.

8.4.1 Issues of Effluent Management

The water treatment system generates effluent from the treatment process. The amount of the effluent is reduced as much as possible by use of recycling system. The largest amount of the effluent generated through usual operation is separated water from sludge at sedimentation tanks. The sludge from sedimentation tanks is transferred to thickener tanks and the thickened sludge is introduced to drying beds. The separated water at the thickener is transferred to a backwash waste tank for recycling. The water in sludge will be evaporated on the drying bed, and underdrain from drying beds is discharged after discharge water quality will meet the requirement. The diagram of the system is described in the **Figure 8.4-1**.

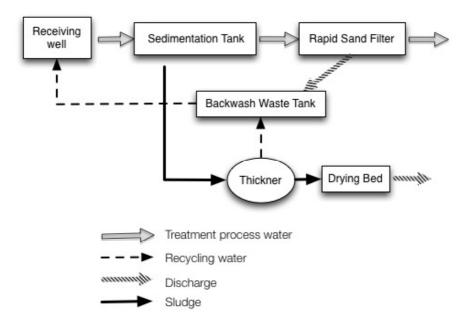


Figure 8.4-1 Diagram of Treatment Process

Source: F/S Final Report

The Irrigation Department does not allow NWSDB to discharge effluent into nearby irrigation canal even if the water quality meets the effluent standards. The Irrigation Department requested that the discharge water quality has to meet the drinking water quality standards because the residents living alongside the canal usually use the canal water for drinking and cooking purpose.

The Phase 1 D/D team carried out the study and prepared the report titled "Proposed Mahakanadarawa WTP Effluent Discharge Method". The report concluded that the NWSDB would discharge water to a drainage canal which connects to the larger stream; Weli Oya.

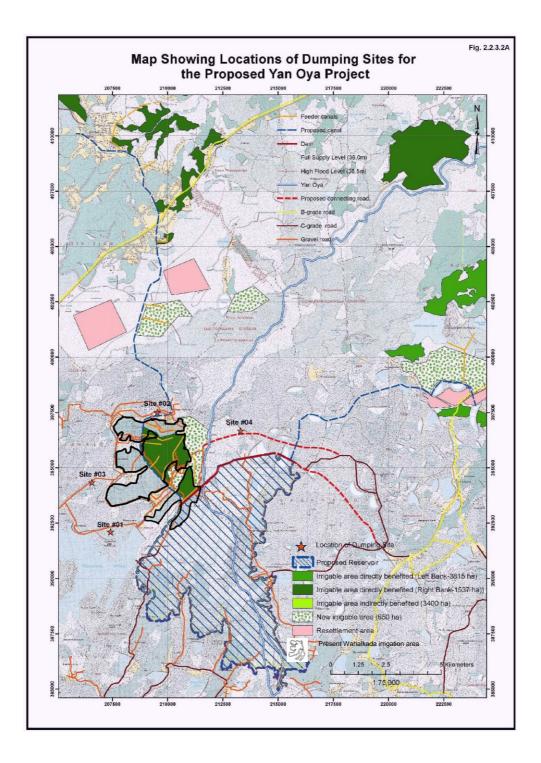
In case of the Wahalkada WTP, similarly, NWSDB will be requested to take measures for effluent management. NWSDB can treat effluent in order to satisfy the drinking water quality standard with the additional treatment processes or, discharge water to the drainage canal. Both procedures decrease the negative impact caused by the effluent.

About sludge management, NWSDB is practicing at other treatment plant such as the Thuruwila WTP in Anuradhapura. NWSDB makes a contract of sludge disposal which includes the services of collection, transport, carrying into the dumping site, with the approval letter of the landowner. The dumping yard is inspected and approved by the NWSDB who bear the cost by O&M budget. Phase 2 will follow the same procedure.

8.4.2 Issues of Water Intake Design

The project was requested to construct the water intake at the irrigation canal because the Irrigation Department did not allow any construction work at the weir of tank. The Irrigation Department will let the water flow only the amount of drinking water treatment use during non-irrigation season. Therefore, the Irrigation Department requested NWSDB to bear the cost to automate the main gate due to the difficulty of the manual gate operation of the Mahakanadarawa scheme. Similar request might come to Wahalkada. In case of the Wahalkada, there is unlined extent at upper stream of the proposed intake point. It is expected that the Irrigation Department will request NWSDB to campshed the upper distance of the intake point.

The man-made canal and channel have the reserved land at the both sides. NWSDB can construct the conveyance conduit across the reservation of canal. There is no issue about the land clearance with the Irrigation Department on the water intake.


8.4.3 Protest Movement

During the F/S period, there were multiple protest movement at the surroundings of the Wahalkada WTP planned site. The F/S was conducted after severe draughts, and the sentiments of farmers were so negative. Besides, the false rumour spread. It resulted in the growth of opposition thought against the sharing water of irrigation to drinking water use. The fact that they are not the direct beneficiaries is

considered one of the reasons of negative impression. NWSDB held the meetings to explain to resident consecutively in order to develop understanding about the Project and importance of safe water supply. The project director visited the temple in Wahalkada several times, and explained the details of the Project to residents and a monk of the temple who was the leader of the protest activities, and made them aware about benefit of the Project. The meeting record is not remained, but after that, every conflict seemed settled down. The Phase 1 project has not faced such protest activities. On the other hand, the new development plan of irrigation system is ongoing in the vicinity of the Wahalkada, which is named Yan Oya Project. The potential irrigation area will be expanded and some extent of the area presently covered by the Wahalkada is also covered by the new project. **Figure 8.4-2** shows the plan of Yan Oya Project.

Reservoir capacity	169 million m ³
Length of main dam	2.34 km
Length of saddle dam	3.56 km
Length of left bank canal	22 km
Irrigable area under left bank canal	4,190 ha
Number of benefit families	14,000
Length of right bank canal	14 km
Irrigable area under right bank canal	1,812 ha

The specifications of the dam of Yan Oya are as follows.

Figure 8.4-2 Present Irrigation Area of Wahalkada and Planned Irrigation Area of Yan Oya Project

Revision of the Figure in 'Yan Oya Project Environmental Impact Assessment Final Report'

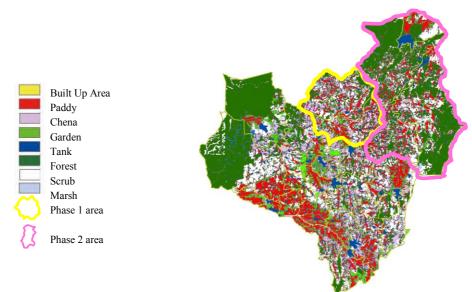
8.4.4 Pipe laying at Road Reservation

There was some confusion about the pipe laying at roadside in Phase 1. The roads are categorized into five groups in Sri Lanka like as follows.

- Road A and B: Under responsibility of Road Development Authority (RDA)
- Road C and D: Under Provincial Road Development Authority (PRDA)
- Road E: Under local government

According to the information obtained interview of Chief Engineer of the RDA-NCR, the road development or improvement in the Phase 2 Project area has finished already. PRDA has a plan to develop or rehabilitate roads in the area, but there is no specific plan until now. The road reservation and building limit are discussed at National Thoroughfares Act (**Appendix 8.4-1** and **8.4-2**). The Act states that the construction work can be conducted within the reservation with the permission of Executive Engineer of the authority. Therefore, the pipelines of the Project can be laid within the road reservation. If there is any damage on the road and/or shoulder by the construction work, the contractor will have an obligation of restoration. The land acquisition beside the road is not required.

8.5 Environmental Management


The environment of the project area has not changed significantly for these three years. Therefore, the reported contents of environmental and social consideration in the F/S report are still effective. The environmental management and mitigation measures are part of the report and the concept is succeeded by the Environmental Management Plan (EMP).

The EMP is included in the requirement of a contract package. The JICA Study team obtained the copy of the EMP of Phase 1 (**Appendix 8.5-1**). The EMP is also included in bidding document and contractor has an obligation to take care of this issue.

The EMP of Phase 1 consists of 9 chapters and it directs the environmental protection measures. It explains the project background and environmental and social requirement of Sri Lanka from Chapters 1 to 5, organizational arrangement of implementing EMP in Chapter 6, environmental monitoring in Chapter 7, public consultation activities in Chapter 8, and environmental monitoring plan in Chapter 9. The document requests the contractor to appoint an Environmental and Safety Officer (ESC) and establish an Environmental Team for the implementation of the EMP. After completion of construction, the responsibility of the monitoring will stay with NWSDB and relevant stakeholders.

The location of the planned project sites are not in any protected area. But the main part of the project site

is forest and rich of nature. **Figure 8.5-1** is a land use map of Anuradhapura. The area surrounded by yellow colour line indicates Phase 1 project area and the area surrounded by the pinkish colour line indicates Phase 2 project area is located in forest-rich area compared with Phase 1, so that the protection of flora and fauna is important. The main possible adverse effects to be considered at any project for fauna and flora are loss or separation of living place, disturbance of living, and danger of life. Pipeline of water supply is usually laid underground, so that the laid pipe is not effective environmentally and socially. On the other hand the pipe laying construction work could affect negatively to the fauna and flora. In same sense, the negative effect is considerable at the construction mainly, but not significant at the operation stage for the water supply project. The JICA Study team observed a traffic sign notifying elephant crossing. The most effective preventive action to traffic accident is training and education of site workers and drivers. The awareness raising program is very effective and the EMP put the importance on the educational program. Many of mitigation measures are listed in the document and the responsibility in implementation is assigned for every activities. The strong monitoring and appropriate advising by supervising stakeholders should be conducted as the document requests.

Source: NWSDB-NCR

Figure 8.5-1 Land Use Map of Anuradhapura

The revised EMP draft is attached as Appendix 8.5-2.

8.6 Environmental Monitoring and Implementation Framework

The monitoring item for the project activity, expected impact, mitigation measures, responsibility, frequency, etc. are clearly mentioned in the EMP of Phase 1. The EMP is prepared to meet the requirements in final report of the F/S, and it seems acceptable for the environmental and social impact

mitigation.

The Contractor is to submit his/her proposal for the Environmental Management Implementation Plan (EMIP) at the beginning of the contract and obtain the Engineer's approval and is to employ a competent Officer (Health & Safety / Accident Prevention) to monitor the EMP requirements. The contractor will submit a monthly environment and safety status report on the basis of EMIP, and is requested to conduct internal auditing in every six months. **Figure 8.6-1** shows the proposed organizational arrangement for the implementation of the EMP in the report.



Figure 8.6-1 Proposed Organizational Arrangement

The PMU is a kind of monitoring committee under the Project Director and responsible for the implementing environmental monitoring.

The concerns of stakeholders such as EPA, Forest department, Wildlife department, etc. should be secured. There is not mentioned the frequency of the stakeholder meeting. The revised Environmental Monitoring Plan is attached as **Appendix 8.6-1** and revised Monitoring Form is attached as **Appendix 8.6-2**.

The current Phase 1 Project management framework is shown in Figure 8.6-2 and Figure 8.6-3.

Figure 8.6-2 shows the organization structure of the PMU. **Figure 8.6-3** shows the structure of the Project Manager's Office.

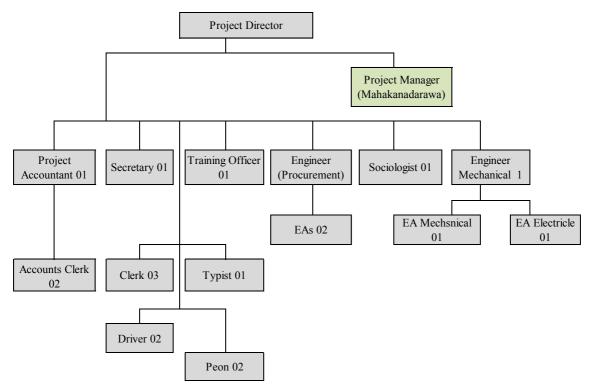


Figure 8.6-2 Project Management Unit (PMU)

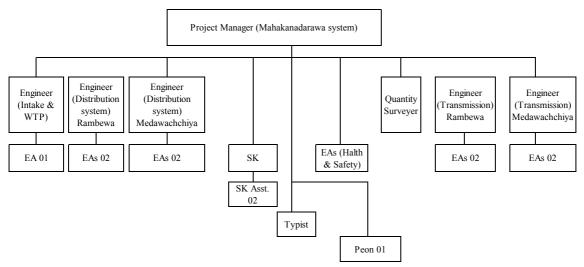


Figure 8.6-3 Organization Chart of Project Manger's Office

The person who is responsible for the environmental and social issues has not been decided as of the end of November 2015. The PMU has a plan to assign one engineer to meet the requirement of the EMP. The monitoring during construction stage shall be secured so that EMP and the EMIP are effectively working. The monitoring during the operation stage will be conducted by NWSDB in compliance with the stakeholders.

8.7 Environmental Check List

Table 8.7-1 describes the necessary considerations with the difference of the project scope between the F/S and the S/S.

Ι	tem	Stage of	of study	Description	Impact
		F/S	S/S		_
Water treatm	ent capacity	13,700m ³ /day	15,000m ³ /day	The increase of capacity and	Same
Treatment pr	ocedure	Coagulating sedimentation	Dissolved Air Floatation and Granular Activated Carbon Filtration	addition of facilities don't need the increase of land always. Phase 1 solves the same issues by the arrangement of facilities. Phase 2 will be able to solve it same way and impact will not be significant.	
Elevated tanks and reservoirs for isolated area		0	5 (2 in Phase 1) (3 in Phase 2)	The new project land will be acquired. The locations are in remote area and the resettlement is avoidable by selecting unused lands. Impact to the natural environment should be carefully considered.	Increase negative but minor
Length of	Transmission	117.3 km	126.1 km	Laying pipe at road doesn't require land. The longer construction distance will create	Increase negative but minor
pipe works	Distribution -sub	633.0 km	720.7 km	the negative impact during construction stage.	
Supply procedure to isolated area		Bowser supply Piped supply		Users can access water dramatically easier. They are free from inconvenience of water fetching.	Positive impact

Table 8.7-1 Necessary Considerations with Review of Phase 2

The treatment procedure was changed in the Phase 1 D/D, and the D/D team managed the increase of facilities by adjusting arrangement of facilities within a proposed land. Phase 2 also solves the problem by taking same way, and extension of land will not be required.

The supply method for remote areas was changed from bowser supply to piped supply. It requires the increase of elevated tanks. Tentatively, the JICA Study team estimated 2 towers for Phase 1 and 3 towers for Phase 2. The extent of the land will be about 2,000m² for each tower and the location will be finalized in D/D for Phase 2. Because the location of target area is in a remote area, NWSDB will be able to find suitable project sites easily without problem of land acquisition.

NWSDB and the Irrigation Department reached an agreement about water extraction volume and signed in August 2012 on Minutes of Understanding (**Appendix 8.7-1**). In this document, the agreed extraction volume for the Wahalkada WTP was mentioned as 10,500 m³/day in 2016 and 28,800m³/day in 2034. The long-term requirement volume (2034) is not changed but short-term requirement was changed. NWSDB has to confirm the increased amount of water use with the Irrigation Department.

The review of JICA checklist with the S/S is shown in **Table 8.7-2.** And the revised checklist for Phase 2 is attached as **Appendix8.7-2**.

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures) in F/S	Yes: Y No: N	Results of Review in S/S
1 Permits	(1) EIA and Environmental Permits	 (a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government? 	(a) N/A (b) N/A (c) N/A (d) ongoing	 (a) (b) (c) Under currently proposed project condition, EIA is not required. On the other hand, IEE level research is ongoing by the project. (d) Required clearances are as follows; Clearance of Archaeological dept. (5 new sites are remaining) Clearance of Irrigation dept. (obtained) Clearance of Forest dept. (letter for release of forest reserve is preferable) Clearance of CEA (obtained) 	(a) N/A (b) N/A (c) N/A (d) Y	(a) (b) (c) <u>No</u> <u>Change</u> (d) All clearances are obtained.
and Explanati on	(2) Explanation to the Local Stakeholders	 (a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design? 	(a) ongoing (b) ongoing	 (a) Protest against extracting water is revealed. The water board carried out the explanation session on 7th August. After election (8th September), Water Board will hold the stakeholder meeting. (b) The water intake procedure is changed due to the comment of the Irrigation Dept. 	(a) Y (b) Y	 (a) Water Board held explanation meetings several times to the stakeholders. (b) Water Board has continued discussion with the Irrigation Department about water sharing.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a) Y	(a) Water intake procedure, location of facilities, course of pipe laying, treatment procedure are examined.	(a) Y	(a) <u>No Change</u>

Table 8.7-2	Environmental	Checklist
10010 000 =	2	eneemov

Category	Environmental Item	Main Check Item	IS	Yes: Y No: N		Confirmat Co easons, N	onside	erations ion Mea		Yes: Y No: N	Results of Review in S/S
		 (a) Is there a possibility chlorine from chlorine storage facilities and chlorine injection facili will cause air pollution any mitigating measure taken? (b) Do chlorine concentrations within tworking environments comply with the count occupational health an safety standards? 	the ry's	(a) N (b) N	prot leak auto insti (b) S Star exis to sa Ope	Neutraliz tection is detector omatically rument w Sri Lanka ndards fo t. The fac atisfy the eration of standard	establ s are p y run t vith the an Occ r chlor cility y Amer Sexhau	ished. T blaced ar the neutr e detection cupationa rine does will be d rican star ust fan ac	he gas ad it can alization on. al Health s not esigned adards.	(a) N (b) N	(a) (b) <u>No Change</u>
			0	ccupational	Safe	ety and H	ealth	Guideline	e for Chlori	ine	
				-		p	om	mg/m3			
				ible exposu	re lir		1	3	US dept o	of Labor	
			Advisab	le limit on standar	А).5).5	1.5 1.5	NIOSH Japan		_
			_valuati	on standar			1.5	Japan			
			Ambient	t Air Quality							I
			Pollutan	t		Averaging Time*	Ma µgm·	aximum -3 ppm	Method o measurer		
			Particul	late Matter -		Annual	50		Hi-volume	e samplin	-
				hamic diamet han 10 µm ir		24 hrs.	100) _	and Gravi Attenuati		Beta
2 Pollution	(1) Air Quality		Particulate Matter -			Annual	25		Hi-volume		Ig
Control	(I) I III Quuity	2	-	namic diamet	1	24 hrs.	50	_	and Gravi		Beta
				han 2.5 µm i	n	、24 hrs.		0.05	Attenuation Colorimetric using		
		3	3 Nitrogen Dioxide (NO ₂)			011101		0.08			
						1hr. 24 hrs.	250 80				ase
		4	Sulphur	Sulphur Dixoxide (SO ₂)		8 hrs.		0.05	Method o		ent
						1hrs.	200	0.08	Pulse Flou		
		5	5 Ozone (O ₃)			1 hr.	200	0.1	Chemilum Method o Ultraviole	r equival	
						8 hrs.	10,00	00 9	Non-Disp		
		6	Carbon	Monoxide (C	- i -	1 hr.	30,00		Infrared		
					4	Any time	58,00	00 50	Spectroso	сору"	

CategoryEnvironmental ItemMain Check ItemsYes: Y No: NConsideration (Reasons, Mitigation M F/S	
(a) Do pollutants, such as SS, BOD, COD contained in effluents discharged by the facility operations comply with the country's effluent standards?(a) Y(a) Turbid water generat construction work is intr the sedimentation pond a down. Domestic wastew usual operation is treated pit and infiltrate to the g expected discharge by th plant operation is seepin from sludge mainly. It w introduced into the lagoo final discharge will satis Lankan standards.	oduced to und settled ater of l by soak round. The g water ill be mill be on. Andgenerated by construction work is introduced to the sedimentation pond and settled down. Domestic wastewater of usual operation is treated by soak pit and infiltrate to the
Tolerable limit of discharge to inland surface water	operation is
No Parameter Unit type of limit Tolerand 1 Total suspended solids mg/L, max.	50 seeping water from
2 Particle size of the total µm, less than	⁵⁰ sludge mainly. It
suspended solids 3 pH at ambient temperature - 6	will be introduced
4 Biochemical oxygen demand mg/L, max.	into the lagoon.
(BOD ₅ 5 days at 20°C or BOD3 ₃ days at 27°C)	And final discharge will
	15 m down stream
from the effluent of	utlet.
(2) Water 6 Oils and greases mg/L, max. 7 Phenolic compounds (as C ₆ H ₅ OH) mg/L, max.	10 Irrigation Department might
Quality 8 Chemical oxygen demand (COD) mg/L, max.	
9 Colour Wavelength Range Maximum spectra	absorption coefficient request to meet the
436 nm (Vellow range)	^{7m⁻¹} drinking water
525nm (Red range) 620nm (Blue range)	^{5m⁻¹} standards. The use
10 Dissolved phosphates (as P) mg/L, max.	^{3m⁻¹} of drainage canal
11 Total Kjeldahl nitrogen (as N) mg/L, max.	will be required.
12 Ammoniacal nitrogen (as N) mg/L, max.	50
13 Cyanide (as CN) mg/L, max.	0.2
14 Total residual chlorine mg/L, max.	1
15 Flourides (as F) mg/L, max.	2
16 Sulphide (as S) mg/L, max.	2
17 Arsenic (as As) mg/L, max. 18 Cadmium (as Cd) mg/L, max.	0.2
19 Common (us cu) mg/L, max.	0.5
20 Chromium, Hexavalent (as Cr6+) mg/L, max.	0.1
21 Copper (as Cu) mg/L, max.	3
22 Iron (as Fe) mg/L, max.	3
23 Lead (as Pb) mg/L, max.	0.1
24 Mercury (as Hg) mg/L, max. (25 Nickel (as Ni) mg/L, max.	3
25 [Nickel (as Ni) mg/L, max. 26 [Selenium (as Se) mg/L, max.	0.05
27 Zinc (as Zn) mg/L, max.	2
	0.005
29 Detergents/surfactants mg/L, max.	5
30 Faecal Coliform MPN/100 ml, max	40
31 Radio Active Material : (a) Alpha emitters micro curie/ml, max (b) beta emitters micro curie/ml, max	10 ⁻⁸ 10 ⁻⁷
	$(c) \mathbf{V}$
(a) Are wastes, such as (a) (a) The sludge treatment	
sludge generated by the Studying designed.	No Change
(2) Wester facility operations properly	
(3) Wastes reated and disposed in	
accordance with the	
country's regulations?	
(a) Do noise and vibrations (a) Y (a) The main noise and y	
generated from the generating machineries a	re No Change
facilities, such as pumping generator and pump. The	
stations comply with the type and low- vibration	
country's standards? machinery is selected fo	he other
(4) Noise and (4	
(4) Noise and Vibration. T measures are also taken	
(4) Noise and Vibration T measures are also taken reduction of noise level,	for
(4) Noise and Vibration T Vibration defined and the second	for vel satisfy
(4) Noise and Vibration T measures are also taken reduction of noise level, accordingly, the noise le the Sri Lankan standards	for vel satisfy . The
(4) Noise and Vibration T Vibration of noise and vibration. T measures are also taken reduction of noise level, accordingly, the noise le	for vel satisfy . The

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of E Considera (Reasons, Mitigatio F/S	Yes: Y No: N	Results of Review in S/S		
				Maximum permissible Boundaries of the land source of noise is loca Laeq', T Day time Night time Maximum permissible N Boundaries in LAeq, T, Area Rural Residential Area Urban Residential Area Urban Residential Area Noise Sensitive Area Mixed Residential Commercial Areas Industrial Area Japanese Environmenta A (residential area)	l in which t ted in Laeo 75 50 loise Levels for industria Day time 55 60 50 63 63 65 70	he at al activ Nigh 2 2 2 2 2 3 2 5 6	ities t time 45 55 55 55 50 45	
	(5) Subsidence	(a) In the case of extraction of a large volume of groundwater, is there a possibility that the extraction of groundwater will cause subsidence?	(a) N	(a) The project does groundwater.	not extract		(a) N	(a) <u>No Change</u>
	(1) Protected Areas	(a) Is the project site or discharge area located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a) N	(a) The project area is located outside of protected area. However, the environmental impact should be minimized.			(a) N	(a) <u>No Change</u>
3 Natural Environm ent	(2) Ecosystem	 (a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site or discharge area encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by project will adversely affect aquatic 	(a) N (b) studying (c) studying (d) N	 (a) Some part of project area is located in the forest but it is not special forest. (b) Ecological survey is ongoing. The result of literature survey does not indicate the existence of endangered species. (c) The significant ecological impact is not expected currently. The study is ongoing. (d) The project takes water from irrigation canal so the adverse effect to the aquatic environment is limited. Furthermore, the purpose of the use of the project, the water will let flow on a steady basis. It will improve the environment. 		(a) N (b) N (c) N (d) N	 (a) Some part of project area is located in the forest but it is not special forest. (b) There are no endangered species. (c) The significant ecological impact is not expected. (d) The project takes water from irrigation canal so the adverse effect to the aquatic environment is limited. Furthermore, the purpose of the 	

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures) in F/S	Yes: Y No: N	Results of Review in S/S
		environments, such as rivers? Are adequate measures taken to reduce the impacts on aquatic environments, such as aquatic organisms?				use of the project, the water will let flow on a steady basis. It will improve the environment.
	(3) Hydrology	(a) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by the project will adversely affect surface water and groundwater flows?	(a) N	(a) Currently, the water is used only the purpose of irrigation. The project will share a part of current water use, so the effect is negligible.	(a) N	(a) <u>No Change</u>
3 Natural Environm ent	(1) Resettlement	 (a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement? (b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Is the compensation going to be paid prior to the resettlement? (e) Is the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, and people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? 	(a) Y (b) Studying (c) Studying (d) Studying (e) Y (f) Studying (i) Y (j) Y	 (a) Three houses are located in the proposed site. RAP will be prepared in accordance with the guidelines. (b) Studying (c) Studying (d) Studying (e) Sri Lanka has 'National Involuntary Resettlement Policy' approved by Cabinet in 2001. And there is no big gap from JICA Guideline. (f) Studying (g) Studying (i) Monitoring plan will be included in the RAP. (j) Grievance mechanism will be included in the RAP. 	(a) N (b) N/A (c) N/A (d) N/A (e) N/A (f) N/A (j) N/A (j) N/A	(a) One household was the only identified in the Phase 1 project site finally, and resettlement was done properly. There is no any resettlement in Phase 2 site. (b), (c), (d), (e), (f), (g), (h), (i), (j) There is no object person.

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures) in F/S	Yes: Y No: N	Results of Review in S/S
4 Social Environm ent	(2) Living and Livelihood	 (a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary? (b) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by the project will adversely affect the existing water uses and water area uses? 	(a) Y (b) N	 (a) Currently, the farmers in the area feel that the water supply capacity is not sufficient, but the other parallel going project for integration of irrigation system will increase the water supply in the area and the total water demand will be secured. (b) The villagers living the surrounding of the tank use tank water for domestic use. But same reason described above can solve the potential problem. 	(a) N (b) N	 (a) The other irrigation project (Yan Oya Reservoir Project) is ongoing and the water scarcity will be mitigated. (b) The villagers living the surrounding of the tank use tank water for domestic use. But same reason described above can solve the potential problem.
	(3) Heritage	(a) Is there a possibility that the project will damage the local archaeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a) N	(a) The project area is not located in archaeological reserves. However, the project will take care and make an action plan in the case of excavating antiquities.	(a) N	(a) <u>No Change</u>
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a) N	(a) The size of all facilities are small and the effect on the landscape is ignorable.	(a) N	(a) <u>No Change</u>
4 Social Environm	(5) Ethnic Minorities and Indigenous Peoples	 (a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples? (b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected? 	(a) N/A (b) N/A	There is no indigenous group. The minority will be taken care of.	(a) N/A (b) N/A	(a), (b) <u>No Change</u>
ent	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, 	(a) N (b) Y (c) Y (d) Y	 (a) NWSDB follows the Labour law, Factories Ordinance. (b) The contract condition is made under the 'Standard Bidding Document Procurement of Works' or 'Conditions of Contract'. And the Occupational safety and hazardous management will be secured. (c) It will be included in a contract document. (d) It will be included in a contract document. 	(a) N (b) Y (c) Y (d) Y	(a), (b), (c), (d) <u></u> <u>No Change</u>

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures) in F/S	Yes: Y No: N	Results of Review in S/S
		and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents?				
	(1) Impacts during Construction	 (a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts? (d) If the construction activities might cause traffic congestion, are adequate measures considered to reduce impacts? 	(a) Y (b) Y (c) Y (d) Y	 (a) Reduction and mitigation measures are taken. (b) The protection and mitigation measures are taken. (c) The people living in the project area will be taken care under the RAP. (d) It is solved by the adjustment of construction plan. 	(a) Y (b) Y (c) Y (d) Y	(a), (b), (c), (d) <u>No Change</u>
5 Others	(2) Monitoring	 (a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts? (b) What are the items, methods and frequencies of the monitoring program? (c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities? 	(a) ongoing (b) ongoing (c) ongoing (d) Y	The project is preparing the monitoring plan (d) The project is requested to obtain the EPL (Environmental Protection License). The reporting format is included. The license is fixed-term and reporting is requested.	(a) Y (b) (c) ongoi ng(d) Y	The project is preparing the monitoring plan (d) The project is requested to obtain the EPL (Environmental Protection License). The reporting format is included. The license is fixed-term and reporting is requested.

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures) in F/S	Yes: Y No: N	Results of Review in S/S
5 Others	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Dam and River Projects checklist should also be checked.	(a) N/A	(a) The project does not develop the dam and canal. The project only uses the existing facilities for irrigation. There is no item to conflict with the Dam and River Projects checklist.	(a) N/A	(a) <u>No Change</u>
6 Note	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a) N/A	(a) There is no negative impact to transboundary or global issues because the project is small scale water supply scheme targeting the improvement of living standards.	(a) N/A	(a) <u>No Change</u>

8.8 Recommendation

There are some ongoing development projects for irrigation, and the negative feeling of the farmers seems settled down. However, NWSDB has to continue the discussions with stakeholders. Sharing information of the project activities and progress, explanation of positive and negative aspects honestly are important for succeeding the project. The meeting records of these discussions should be kept.

The environmental adverse effect is generally limited in a water supply project. The impact is mainly created at the construction period. Therefore the EMP and the EMIP are important, and the establishment of monitoring body and its active contribution are highly appreciated. The project site is outside of the natural reserves or other protected area, however, the all concerning parties should be aware of protection of environment.

Currently, there are no squatters and illegal cultivation at the planned project sites. Many of sites are covered by the trees and bushes and difficult to start living. However, NWSDB is better to establish a signboard, fence or some kind of notice at the land to reduce the possibility of the encroachment. The clear statement of the cut-off date is recommended. After cut-off date, the compensation is not required on the basis of the JICA guideline requirement and safe guard policy OP 4.12 of World Bank.

If the additional land is required for the reviewed project activities, the land acquisition will not be problem without the case of protected area and reserved forest. In such case, the prompt decision of the land selection is required.

APPENDICES

CHAPTER 7

OPERATION AND EFFECT INDICATORS

Appendix 7.2-1	Water Quality of CBO	Water Supply Systems
----------------	----------------------	----------------------

S/N	Name of CBO	Water	Т.	Iron	Manganese	Water Qua Fluoride		Color	Turbidity		E. Condictivit
		Source	Hardness (CaCO3.mg/L)	(Fe, mg/L)	(Mg, mg/L)	(F-, mg/L)	Odour	(Hazen Unit)	(NTU)	рН	(µS/cm)
laha	kanadaraw a Water Supply Sy	stem Are	a								
01	Sw ashakthi CBO	S	-			0.85	None	Clear	0.05	7.86	860
02	lkra CBO	D-1, S-1	-	-	-	0.83	None	Clear	0.06	7.72	950
03	Arunalu CBO	S	-	-	-	0.59	Fishy	Clear	0.1	7.93	940
04	Samagi CBO	D	-			1.01	None	Clear	0	7.76	930
05	Ekamuthu CBO	S	-			0.32	None	Clear	0.08	7.74	700
	Ekamuthu CBO - Katukaliyaw a	3				1.19	-	Clear	0.03	7.77	880
06	Rangiri CBO	D	-			0.88	None	Clear	0.03	7.79	1080
07	Nildiyadahara CBO	S	360/280	-	-	0.72	-	Clear	0.15	7.77	740
08	Eksath CBO	S	340	-	-	0.4/0.78	None	Clear			
09	Mahasen CBO	S	80	-	-	0.39	-	clear	0.08	7.6	730
10	Dimuthu CBO	S	312	-	-	0.57	-	Clear	0.12	7.91	610
11	Pragathi CBO	S	344	-	-	1.38	-	Clear	0.05	7.7	1450
12	Jayashakthi CBO	D	-	-	-	1.9	None	Clear	0.06	7.76	1570
13	Samagi CBO	D	332/270/330	-	-	1.08	None	Clear	0.07	7.8	1000
14	Samagi CBO	S	-	-	-	0.5	-	<5	0.02	-	590
15	Ekamuthu CBO	D	-	-	-	0.81	-	<5	0.02	-	650
16	Ran Arulnalu CBO	D	490/720/640	0.03/-/-	-	1.55/1.1/0.36		-			
17	Isuru CBO	D	High	-	-	0.98	None	Clear	0.05	7.84	1060
18	Randiya Dhahara CBO	S	-	-	-	1.15	None	Clear	0.09	7.76	840
19	Nelum CBO	S	-	-	-	1.13	None	Clear	0.05	7.86	970
			-	-							
20	Diriyamatha CBO	S	250/261/284	-	-	0.83	-	Clear	0.1	7.75	700
	Diriyamatha CBO - Mahakubugollaw a	S	-	-	-	0.69	-	Clear	0.12	7.79	870
21	Gemunu CBO	S	-	-	-	0.75	-	<5	0.21	-	950
22	Sisila Diyadahara CBO	S	-	-	-	0.75	None	Clear	0.21	7.86	880
22		S	373/342			0.76	None	Clear	0.00	7.64	1220
	Diriya Shakthi	S		-	-						
24	Ridi Nadee		-	-	-	0.21	None	Clear	0.06	7.75	610
	Ikada Water Supply System A		00.4					N1/A			
25	Shakthi CBO	D	324	3.3	-	0.1		N/A			
26	Al-Naja	D	-	-	-	-					
27	CBO not formed & Scheme Not	-		-	-						
28	Parakum CBO	D	108	0.14	-	1.04	-	Clear	0	7.76	740
29	Suw asehana CBO	D	1.13	-	-	1.13		Clear	0.07	7.76	740
30	Suw asetha CBO	S	-	-	-	0.96		Clear	0.04	7.63	740
31	Vajira CBO	D	262/204	-	-	1.5/1.54					
32	Pragathi CBO	D	-	-	-	0.58	None	Clear	0.08	7.54	1430
33	Janasetha CBO	S	-	-	-	1.37		Clear	0.01	7.85	670
34	Sobasisila CBO	S	-	-	-	0.67		Clear	0.02	7.64	810
35	Randiya	S-2	-	-	-	0.31		Clear	0.14	7.76	760
36	Nilmini	D	-	-	-	-					
37	Senath CBO	D	-	-	-	1.9	None	Clear	0.02	7.75	1240
38	Eksath CBO	S	296	-	-	1.62	None	Clear	0.02	7.78	860
39	Praja Shakthi	D	-	-	-	0.42	None	Clear	0.01	7.85	520
40	Apsara	S	-	-	-	1.35		Clear	0.14	7.69	1380
41	Pinibindu CBO	R		upply implmer	nted in 60 House		Water \$			1	· · · ·
42	Sham Sham	-	-	-	-	-					
43	Ekamuthu CBO	S	264	-	-	0.14		Clear	0.05	7.6	640
44	Pradeepa	D	448	-	-	0.82		Clear	0.01	7.8	1150
45	Upul CBO	D	290	-	-	0.92		Clear	0.01	7.83	1000
45	Jalasavi	D	-	-	-	1.58		Clear	0.02	7.74	1330
46 47	Tristar CBO	D	300	-	-	0.001		2.5>	4.1	8.3	1330
							NI/A				
48	Alhidra CBO	D	300	-	-	0.04	N/A	2.5	1.3	6.9	-
49	Adhikw a CBO	D	280	-	-	0.7	N/A			-	
50	Hansajala CBO	S	442 250	- 0.3	-	1.8 1	N/A #	<5 15	1	7.6 6.5-8.5	
. .	anka Standard SLS 614:2013				0.1						

S: Shallow Well, D: Deep Well, R: Rain water tank, Figures after "-" means number of water source. Shaded figure exceeds standard value.

Appendix 7.2-2 List of CBO Water Supply Systems

		Location			Population of GND			
S/N Name of CBO DS		DS	GND Village		No of Village Covered		Population in Service GND	Population served
Mahal	kanadarawa Water Suppl	y System Area						
01	Swashakthi CBO	Rambewa	Kendewa (97), Galkandagama (85)	Kendewa (97), Galkandagama (85) Kendewa		-	3000	755
02	Ikra CBO	Rambewa	Ikkirigollawa (102)	Ikkirigollawa	3	-	-	3015
03	Arunalu CBO	Rambewa	Sangilikandarawa (111)	Sangilikandarawa	5	-		915
04	Samagi CBO	Rambewa	Thalgahawewa (84)	Thalgahawewa	2	0		660
05	Ekamuthu CBO	Rambewa	Wahamalgollawa (109)	Wamalgollawe	1	-		1220
06	Rangiri CBO	Rambewa	Wewalkatiya (82)	Wewalkatiya	2	-		590
07	Nildiyadahara CBO	Rambewa	Maha Kandarawa yaya -01 (94)	Maha Kandarawa Yaya	1	-	1080	715
08	Eksath CBO	Rambewa	Katukeliya (106)	Katukeliya	3	-	1080	575
09	Mahasen CBO	Rambewa	Mahakandarayaya - 02 (93)	Weliwewa	3	-	-	755
10	Dimuthu CBO	Rambewa	Ihala Kolangaswewa (87)	Ihala Kolangaswewa	3	-	1050	325
11	Pragithi CBO	Rambewa	Bala Honda Wewa(86), Ihala olangaswewa (87)	Bala Hondawewa	4	-	885	635
12	Jayashakthi CBO	Medawachchiya	Katuwela (66)	Katuwela	3	1		1090
13	Samagi CBO	Medawachchiya	Halambagaswewa (70)	Halambagaswewa, Palukandawewa	2	-		935
14	Samagi CBO	Medawachchiya	Ataweeragollewa (56)	Pahala Thammannagama, Kubukkollawa,	3	-	1580	540
15	Ekamuthu CBO	Medawachchiya	Hirulugama (54)	Hirulugama	1	-		855
16	Ran Arulnalu CBO	Medawachchiya	Wiralmurippu (64)	Wiralmurippu, Kulikkada	2	-	1375	945
17	Isuru CBO	Medawachchiya	Kadawathgama (60)	Kadawathgama	3	-	2640	895
18	Randiya Dhahara CBO	Medawachchiya	Unagaswewa (75)	Unagaswewa	3	-		520
19	Nelum CBO	Medawachchiya	Kirigalwewa (72)	Kirigalwewa	4	-		680
20	Diriyamatha CBO	Medawachchiya	Maha Kumbugollawa (46)	Maha Kumbugollawa, Kuda	3	-		890
21	Gemunu CBO	Medawachchiya	Maha Divulwewa (57)	Halmillawa Maha Divulwewa	1	2		345
22	Sisila Diyadahara CBO	Medawachchiya	Kidawarankulama (42)	Kidawarankulama	2	-		935
23	Diriya Shakthi	Medawachchiya	Periyakulama (49), Yakkawewa (50)	Periyakulama	3	1		675
24	Ridi Nadi	Medawachchiya	Athakade (55)	Athakade	2	1		600
25	Shakthi CBO	Medawachchiya	Ayyatigewewa (24)	Ayyatigewewa	1	-	2015	1165
Waha	lkada Water Supply Syst	em Area						
26	Al-Naja	Kebitigollewa	Muslim Attaweerawewa (32)	Attaweerawewa (Paranagama, Aluthgama, Kurulugama)	2	-	2050	Connection not given yet
27	CBO not formed & Scheme Not implemented	Kebitigollewa	Gonumariyaya (25)	Gonumariyaya	-	-	-	-
28	Parakum CBO	Padaviya	Parakramapura(06), Buddhangala(05), Elikumbulagala (07)	Parakiramapura Town	11	5	-	2820
29	Suwasehana CBO	Padaviya	18 Kanuwa (02)	18 Kanuwa, Deewara Gammanan, Isipathana gama	3	-	1750	945
30	Suwasetha CBO	Padaviya	Bogahawewa (14)	Bogahawewa	6	-	1750	910
31	Vajira CBO	Kahadagasdigiliya	Maha Kumbukwewa (222)	Maha Kumbukwewa	2	-		665
32	Pragathi CBO	Kahadagasdigiliya	Moragahawela (202)	Moragahawela	3	1		640
33	Janasetha CBO	Kahadagasdigiliya	Ratmalgahawewa(225), Paalishpothana(224), Kirigallawa (226)	Palispothana	5	5	1500	920
34	Sobasisila CBO	Kahadagasdigiliya	Pandarella(210), Panwella (211)	Kokabe, Panderellawewa, Panwella, Thimbiriwewa	4	3		875
35	Randiya	Kahadagasdigiliya	Ranpathwila (196)	Rotapukuna	2	-		1130

Appendix 7.2-2 List of CBO Water Supply Systems (cont'd)

	1	Location			Population of GND			
S/N	Name of CBO	DS	GND	Village	No of Village Covered	No of Village Excluded	Population in Service GND	Population served
36	Nilmini	Kahadagasdigiliya	Kokmaduwa(201)	Kokmaduwa	1	3		795
37	Senath CBO	Kahadagasdigiliya	Gonamaruwewa (223)	Gonamaruwewa, Nelugolla Kade	2	1		385
38	Eksath CBO	Kahadagasdigiliya	Turukkuragama (234), Maha Kiri Ibbawa (233)	Aluthwattha, Galwala, Hijra Mawatha,	4	3		470
39	Praja Shakthi CBO	Kahadagasdigiliya	Mahawewa (221)	Wirandagollawa, Mahawewa	5	1		810
40	Apsara	Kahadagasdigiliya	Meekumbukwewa (212)	Meeminnawala, Aluthwewa, Kumbukwewa	3	-		1480
41	Pinibindu CBO	Kahadagasdigiliya	Ambagahawewa (213)	Rainwater supply imp	lmented in	60 Househo	lds. No Piped	Water Supply
42	Sham Sham	Kahadagasdigiliya	Weligollawa (218), Kuncha Halmillawa (219)	Weligollawa, Kunchahalmillawa, Ihalamillawa	3	-		210
43	Ekamuthu CBO	Kahadagasdigiliya	Kumbukgollawa (209)	Kumbukgollawa	1	2		380
44	Pradeepa	Horowpothana	Wadigewewa (126)	Wadigewewa	5	1		805
45	Upul CBO	Horowpothana	Parangiwadiya (149)	Parangiwadiya	2	-		905
46	Jalasavi	Horowpothana	Kapugollewa (140)	Kapugollewa	2	1		785
47	Tristar CBO	Horowpothana	Agunuchchiya (119)	Parangiwadiya	2	1		215
48	Alhidra CBO	Horowpothana	Anolondawewa (138)	Alondawewa	2	1		730
49	Adhikwa CBO	Horowpothana	Weerasole (139)	Weerasole	1	1		-
50	Hansajala CBO	Horowpothana	Maradankadawala (133)	Maradankadawala	3	2		565

CHAPTER 8

ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

Standard 0066

Appendix 8.3-1

SRI LANKA STANDARD 614 : 2013 UDC 663.6

SPECIFICATION FOR POTABLE WATER (First Revision)

SRI LANKA STANDARDS INSTITUTION

Sri Lanka Standard SPECIFICATION FOR POTABLE WATER (First Revision)

SLS 614:2013

Gr. 6

Copyright Reserved SRI LANKA STANDARDS INSTITUTION 17, Victoria Place Elvitigala Mawatha Colombo – 08 Sri Lanka Sri Lanka Standards are subject to periodical revision in order to accommodate the progress made by industry. Suggestions for improvement will be recorded and brought to the notice of the Committees to which the revisions are entrusted.

This standard does not purport to include all the necessary provisions of a contract.

© SLSI 2013

All right reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the SLSI.

Sri Lanka Standard SPECIFICATION FOR POTABLE WATER (First Revision)

FOREWORD

This standard was approved by the Sectoral Committee on Agricultural and Food Products and was authorized for adoption and publication as a Sri Lanka Standard by the Council of the Sri Lanka Standards Institution on 2013-08-28.

This standard is intended mainly to guide food processing industry in judging the suitability of a particular supply/source of water for that industry and in planning the type of treatment required for available supplies/sources of water.

This standard was first published in 1983 as two parts; namely; Part 1-Physical and chemical requirements and Part 2 - Bacteriological requirements. While reviewing this standard, it was considered desirable to amalgamate both parts into one comprehensive standard, for ease of reference to users.

This revision has been undertaken to take into account the uptodate information available about the nature and effect of various contaminants and also the new techniques for identifying and determining their concentrations.

In this revision, additional requirements for sodium, nickel and for biological requirements have been incorporated while the requirements for other parameters have been modified considering the results of water quality surveillance done in Sri Lanka and also the WHO Guidelines, wherever applicable. Details on methods of sampling and testing have been removed from this standard and are now covered in separate standards, reference to which have been made at appropriate places.

While revising this standard, the Committee had taken note of the limited testing facilities available in the country. Therefore, requirements specified in 4.2 and 4.4 should be examined either when a doubt arises or the potability of water from a new source is to be established.

Routine surveillance of drinking water supplies should be carried out by the relevant authorities to monitor the risk of specific pathogens and to define proper control procedures. The WHO Guidelines for Drinking Water Quality (latest edition) may be referred for specific recommendations on using a water safety approach incorporating risk identification. Precautions / care should be taken to prevent contamination of drinking water from chlorine resistant parasites such as *Cryptosporidium* species and *Giardia* species.

This standard is subject to the restrictions imposed under the Sri Lanka Food Act No. 26 of 1980 and the regulations framed thereunder, wherever applicable.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated expressing the result of a test or analysis shall be rounded off in accordance with **SLS 102**. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

3

In revising this standard, the assistance derived from the World Health Organization's (WHO) Guidelines for drinking water quality (Fourth edition, 2011) and Guidelines for United States Environmental Protection Agency (USEPA) is gratefully acknowledged.

1 SCOPE

This standard prescribes the requirements, test methods and sampling procedure for ascertaining the suitability of water for drinking, culinary and food industry purposes irrespective of the water source, treatment or distribution system whether it is from a public or private supply.

2 **REFERENCES**

Analytical methods for drinking water and ground water US Environmental Protection Agency (USEPA)

- SLS 102 Rules for rounding off numerical values
- SLS 1461 Microbiological test methods for water
 - Part 1 Detection and enumeration of Eschrichia coli and coliform bacteria
 - Section 1 Membrane filtration method

Section 2 Most probable number method

Section 3 Reference method

SLS 1462 Methods for Sampling of water

Part 1 Guidance on the design of sampling programmes and sampling techniques

Part 2 Preservation and handling of water samples

Part 3 Guidance on sampling from lakes, natural and man- made

Part 4 Guidance on sampling of rivers and streams

Part 5 Guidance on sampling of drinking water from treatment works and piped distribution system

Part 6 Guidance on sampling of ground waters

Part 7 Guidance on the design and installation of groundwater monitoring points

Part 8 Guidance on sampling of drinking water distributed by tankers or means other than distribution pipes.

Part 9 Guidance on passive sampling in surface waters

Part10 Sampling for microbiological analysis

Standards Methods for the Examination of Water and Wastewater, 21st edition (2005) published by American Public Health Association, USA (APHA).

3 DEFINITIONS

For the purpose of this standard, the following definitions shall apply :

3.1 cyanobacteria: Bacteria containing chlorophyll and phycobilins, commonly known as "blue green algae."

3.2 cyanotoxin : A toxin secreted by certain cyanobacteria.

3.3 potable water : Water from any source with or without treatment complying with the requirements specified in this standard.

3.4 raw water : Water which has received no treatment whatsoever, or water entering a plant for treatment or further treatment.

4 **REQUIREMENTS**

4.1 Physical, organoleptic and chemical requirements

Potable water shall conform to the requirements given in Table 1, 2 and 3, when tested in accordance with the methods given in the Columns 4 or 5 of relevant tables.

Table 1- Physical and organoleptic requirements

Characteristic	Requirement	Method of test
(2)	(3)	(4)
Colour, Hazen Units, (max.)	15	APHA 2120 B
Odour	Unobjectionable	Sensory evaluation ^{a)}
Taste	Unobjectionable	Sensory evaluation ^{b)}
Turbidity, NTU,* (max.)	2	APHA 2130 B
$pH at 25 °C \pm 2 °C$	6.5 to 8.5	APHA 4500-H ⁺ B
	(2) Colour, Hazen Units, (max.) Odour	(2)(3)Colour, Hazen Units, (max.)15OdourUnobjectionableTasteUnobjectionableTurbidity, NTU,* (max.)2

^{*a*)} Test cold and when heated; Test at several dilutions (Alternative method -Threshold odour test, APHA 2150 B)

^{b)} Test to be conducted only after safety has been established (Alternative method APHA 2160 B, C)

* NTU Nephelometric Turbidity Units

Table 2- Chemical requirement

SI No.	Substance or Characteristic	Requirement mg/l	Method of test		
1101		(maximum)	Referee method	Alternative method	
(1)	(2)	(3)	(4)	(5)	
i)	Aluminium (as Al)	0.2	APHA 3113 B	Principal - 1716	
ii)	Ammonia;				
	Free ammonia (as NH ₃)	0.06	Appendix A		
	Albuminoid ammonia	0.15	Appendix A	-	
iii)	Anionic detergents (as MBAS)	0.2	APHA 5540 C	-	
iv)	Calcium (as Ca)	100	APHA 3500 Ca B		
v)	Chloride (as Cl ⁻)	250	APHA 4500-Cl B	APHA 4110 B	
vi)	Chemical Oxygen Demand (COD)	10	APHA 5220 B	-	
vii)	Copper (as Cu)	1.0	APHA 3111 B	ICP-MS (APHA	
				3125,EPA 200.8)	
viii)	Fluoride (as F)	1.0	APHA 4500-F ⁻ C	APHA 4110 B	
ix)	Free residual chlorine	1	APHA 4500-Cl G		
x)	Iron (as Fe) ^{c)}	0.3	APHA3500-Fe B	APHA 3111B	
xi)	Magnesium (as Mg) ^{d)}	30	APHA 3500-Mg B		
xii)	Manganese (as Mn) ^{c)}	0.1	APHA 3111 B	ICP-MS (APHA	
				3125,EPA 200.8)	
xiii)	Nitrate (as NO ₃ ⁻)	50	APHA 4500 -NO ₃ ⁻ E	APHA 4110 B	
xiv)	Nitrite (as NO_2^{-})	3	APHA 4500 -NO2 ⁻ B	APHA 4110 B	
xv)	Nickel (as Ni)	0.02	APHA 3113 B	ICP-MS (APHA	
				3125,EPA 200.8)	
xvi)	Oil and grease	0.2	APHA 5520 B		
xvii)	Phenolic compounds (as C ₆ H ₅ OH)	0.001	APHA 5530 B & D		
xviii)	Sodium (as Na)	200	APHA 3111 B	indexes a - tark of a	
xix)	Sulphate (as SO_4^{2-})	250	APHA 4500 SO4 ²⁻ E	APHA 4110 B	
xx)	Total alkalinity (as CaCO ₃)	200	APHA 2320 B		
xxi)	Total dissolved solids, mg/l, (max.)	500	APHA 2540-C	Andre Friedrick	
xxii)	Total hardness (as CaCO ₃), mg/l, (max.)	250	APHA 2340-C	-	
xxiii	Total phosphates (as PO_4^{3-})	2.0	APHA 4500-PC	APHA 4110 B	
xxiv)	Zinc (as Zn)	3.0	APHA 3111 B	-	

^{c)} Total concentration of Manganese (as Mn) and Iron (as Fe) shall not exceed 0.3 mg/l ^{d)} Not more than 30 mg/l, if there is 250 mg/l sulphate. If there is less sulphate, magnesium upto 150 mg/l may be allowed

6

SI No.	Characteristic	Limit mg/l (maximum)	Method of test			
		al quesa	Referee method	Alternative method		
(1)	(2)	(3)	(4)	(5)		
i)	Arsenic (as As)	0.01	APHA 3114C	ICP-MS(APHA 3125, EPA 200.8)		
ii)	Cadmium (as Cd)	0.003	APHA 3113B	ICP-MS(APHA 3125, EPA 200.8)		
iii)	Chromium(as Cr)	0.05	APHA 3114C	ICP-MS(APHA 3125, EPA 200.8)		
iv)	Cyanide (as CN)	0.05	APHA (4500-CN C;	APHA 4500-CN G		
			EPA 335.4)	APHA 4500-CN H		
v)	Lead(as Pb)	0.01	APHA 3113B	ICP-MS(APHA 3125, EPA 200.8)		
vi)	Mercury (as Hg)	0.001	APHA 3111B	ICP-MS(APHA 3125, EPA 200.8)		
vii)	Selenium (as Se)	0.01	APHA 3114C	ICP-MS(APHA 3125, EPA 200.8)		

Table 3- Limits for toxic substances

4.2 **Pesticide residues**

Pesticide residues shall not exceed the guideline values specified in WHO Guidelines for Drinking Water Quality^{*}. The analysis of pesticide residues shall be conducted preferably by an accredited laboratory using internationally established test methods (see 6).

* The latest edition should be used.

NOTE : Tests for Pesticide residues may not be necessary for routine analysis and carried out only if required or requested.

4.3 Bacteriological requirements

The bacteriological requirements for potable water are based on the examination of several samples taken from the supply source under different conditions. The samples obtained as prescribed in 5, when examined by the methods given in SLS 1461 Part 1/ Section 1 or Section 2 or Section 3, shall comply with the following requirements:

4.3.1 Treatment works and piped distribution systems

4.3.1.1 *E. coli* or thermotolerant coliform bacteria^{**} shall not be detectable in any 100 ml sample.

4.3.1.2 Total coliform bacteria shall not exceed 3 in any 100 ml sample. Total coliform bacteria shall not be detectable in 100 ml of any two consecutive samples.

4.3.1.3 In the case of large supplies, where sufficient samples are examined total coliform bacteria shall not be present in 95 per cent of samples taken throughout any 12 month period. In the remaining 5 per cent sample total coliform bacteria shall not exceed 10 per 100 ml.

7

4.3.2 Individual or small community supplies***

4.3.2.1 *E.coli* or thermotolerant coliform bacteria** shall not be detectable in any 100 ml sample.

4.3.2.1 Total coliform bacteria shall not exceed 10 in any 100 ml sample.

** Although E.coli is the more precise indicator of faecal pollution, the count of thermotolerant coliform bacteria is an acceptable alternative. If necessary, proper confirmatory tests must be carried out. *** Individual or small community supplies include wells, bore holes and springs.

NOTE : Immediate investigation action must be taken if E. coli are detected.

4.4 Biological requirements

4.4.1 The potable water shall be free from microscopic organisms such as algae, zooplanktons, flagellates, parasites and toxin producing organisms.

4.4.2 Cylindrospermopsin****

Based on health considerations, the concentration of anatoxin-a(S) in potable water shall not exceed 0.002 mg/l.

Referee method - LC-MS (Eaglesham et al 1999; Dell'Aversano et al 2004). Alternative method - HPLC-PDA (Harada et al 1994; Torokne et al 2004).

4.4.3 Microcystins****

Based on health considerations, the concentration of microcystins (measured as MC-LR toxicity equivalents) in potable water shall not exceed 0.001mg/l.

Referee method - HPLC-UV/PDA (Lawton et al 1994: Meriluoto 1997). **Alternative methods** - LC –MS (Zweigenbaum et al 2000; (Barco et al 2002; (Spoof et al 2003), ADDA – ELISA (Fisher et al 2001).

**** Toxins of Cyanobacteria

NOTE : Examination for biological requirements may not be necessary for routine analysis and carried out only if required or requested.

5 SAMPLING

5.1 For physical, organoleptic and chemical requirements

Representative samples of potable water shall be drawn as prescribed in SLS 1462.

The recommendations given in Part 1 of SLS 1462 shall be used as the basis for a sampling programme, and the recommendations given in Part 2, 3, 4, 5, 6, 7, 8 and 9 of SLS 1462 shall be used as the basis for implementing the sampling programme.

NOTE: Sampling frequency should be increased at times of flooding or emergency operations and following repair work or interruptions to supply.

5.2 For bacteriological and biological requirements

5.2.1 Representative samples of water shall be drawn as prescribed in Part 1 and Part 10 of SLS 1462.

5.2.2 In addition, the recommended minimum number of samples to be examined each month are given in Table 4.

Type of water supply and population	Total number of samples per month
Point sources	Progressive sampling of all sources over 3- to 5- year cycles
Piped supplies	(maximum)
r iped supplies	or sheatening builter to plast bid work. Mendinger She
< 5000	01
5000-100 000	01 per 5000 population
>100 000 - 500 000	01 per 10 000 population plus an additional 10 samples
>500 000	01 per 50 000 population plus an additional 50 samples

Table 4- Frequency of sampling for distribution networks

5.2.3 Sample bottles for bacteriological testing shall be brought to the laboratory for testing within 12 h of sampling. If this is not possible, the samples shall be stored below 10 $^{\circ}$ C and transported to the testing laboratory within 24 hours.

6 METHODS OF TEST

6.1 Samples obtained as described in 5 shall be tested for the relevant requirements of this standard as prescribed in following publications and also in Appendix A.

1 Standards Methods for the Examination of Water and Wastewater , 21st edition (2005) published by the American Public Health Association, USA (APHA).

2 Analytical methods for drinking water and ground water US Environmental Protection Agency (USEPA) 2003.

6.2 Bacteriological tests shall be carried out according to methods given in sections 1, 2 and 3 of SLS 1461 Part 1.

7 CRITERIA FOR CONFORMITY

The sample of potable water obtained for testing shall be considered as conforming to the requirements of this standard, when tested as in 6, satisfies all the relevant requirements.

APPENDIX A DETERMINATION OF FREE AMMONIA AND ALBUMINOID AMMONIA

A.1 REAGENTS

A.1.1 Magnesium carbonate, solid

A.1.2 *Permanganate solution*, alkaline

A.1.2.1 Dissolve 8 g potassium permanganate in distilled water, add 200 g of sodium hydroxide, dissolve and make up to one litre. Before using the solution, add an equal volume of distilled water, and then boil until the solution is restored to its original volume.

A.1.3 *Mercuric iodide*, alkaline solution (Nessler reagent)

A.1.3.1 Prepare a cold saturated solution of mercuric chloride - (a). Dissolve 35 g of potassium iodide in 100 ml, of distilled water - (b). Pour (a) into (b) until, after thorough agitation, a slight red precipitate remains permanent. Now add 120 g of sodium hydroxide and, when dissolved, dilute to one litre. Finally, add a little more of the mercuric chloride solution to produce a red colour. Set aside to clear.

A.1.3.2 The delicacy of the reagent appears to be increased by keeping for a few weeks before use, and it should be shaken occasionally.

A.1.4 Distilled water, ammonia - free

A.1.4.1 This can be prepared by re-distillation of distilled water after the addition of a few drops of dilute sulphuric acid. Alternatively, free ammonia may be removed by passing the distilled water through a bed of suitable ion-exchange resin (strong cation exchanger); if this method is adopted it is desirable to use an analytical grade of resin (a mixed cation and anion exchange resin is recommended) or a commercial deionization apparatus may be employed.

A.1.4.2 A further alternative is to treat the distilled water with sufficient hypochlorite to oxidize the ammonia (use an available chlorine base equal to at least 10 times the ammoniacal nitrogen content): excess of chlorine may then be dissipated by allowing the water to stand in direct sunlight. This method, while satisfactory, has the disadvantage that, even in strong sunlight, the excess of chlorine may persist for over a week.

A.1.5 Ammonium chloride, standard solution

A.1.5.1 Dissolve 3.82 g of ammonium chloride, dried at 100 °C, in distilled ammonia-free water and make up to one litre.

Dilute 10 ml, with ammonia-free water to 1 000 ml when required for use.

1 ml = 0.01 mg N

A.2 PROCEDURE

A.2.1 General procedure for determination of ammoniacal nitrogen by nesslerization

A.2.1.1 For the determination of ammonia by Nesslerization, 50-ml, Nessler cylinders of colourless glass and of uniform height of graduation are required.

A.2.1.2 To prepare standards place appropriate amounts of dilute standard ammonium chloride solution within the range of 0.3 ml to 3.0 ml into 50-ml Nessler cylinders and dilute to the mark with ammonia-free distilled water.

A.2.1.3 Place 50 ml of the unknown solution into a Nessler cylinder, add 2 ml of Nessler reagent and mix well. At the same time add 2 ml of Nessler reagent to each of the standards. Allow to stand 5 minutes and match.

A.2.1.4 Alternatively, permanent colour standards in a suitable colorimeter may be employed, provided such standards are checked frequently, using the dilute standard ammonium chloride solution to ascertain any correction which must be applied owing to variations in the Nessler reagent.

A.2.1.5 In all determinations of ammoniacal and albuminoid nitrogen care must be taken to avoid contamination of the solutions and the apparatus by fumes of ammonia derived from other operations in the laboratory.

A.2.1.6 The results calculated in terms of ammonia :

 $NH_3 = N \times 1.216$

A.2.2 Determination of free ammonia

A.2.2.1 Use a 1ℓ distillation flask with a suitable condenser. Ensure that it is free from ammonia by distilling a little water in it until the distillate is ammonia-free.

A.2.2.2 Empty the flask and add 500 ml of the sample followed by approximately 0.2 g of magnesium carbonate. Distil over four 50-ml portions, commencing the distillation slowly. Add Nessler reagent to the portions and match as described above. If the content of free ammonia is expected to be high, however, collect the first 100 ml of distillate, mix and take an aliquot portion for ammonia determination ; and subsequent 50-ml portions of the distillate should then be tested according to the general procedure.

8.3-1 - 12

A.2.2.3 If the fourth 50-ml portion contains ammonia, distil over further portions until it is absent, and finally add ammonia-free distilled water to make up the volume of residue in the distillation flask to 300 ml.

A.2.3 Determination of albuminoid ammonia

A.2.3.1 Add 25 ml of alkaline permanganate solution to the 300 ml of boiling water left after the distillation of free ammonia. If desired, add some coarsely-ground ignited pumice to avoid bumping. Distil over four 50-ml portions, the total time of distillation being not less than 15 minutes or more than 25 minutes. Determine the ammonia in each portion as previously described.

A.2.3.2 If the content of albuminoid nitrogen is considerable it is more convenient to collect the first 100 ml of distillate and take an aliquot portion for ammonia determination, subsequent 50 ml portions of the distillate then being tested according to the general procedure.

SLS CERTIFICATION MARK

The Sri Lanka Standards Institution is the owner of the registered certification mark shown below. Beneath the mark, the number of the Sri Lanka Standard relevant to the product is indicated. This mark may be used only by those who have obtained permits under the SLS certification marks scheme. The presence of this mark on or in relation to a product conveys the assurance that they have been produced to comply with the requirements of the relevant Sri Lanka Standard under a well designed system of quality control inspection and testing operated by the manufacturer and supervised by the SLSI which includes surveillance inspection of the factory, testing of both factory and market samples.

Further particulars of the terms and conditions of the permit may be obtained from the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08.

Printed at SLSI (Printing Unit)

SRI LANKA STANDARDS INSTITUTION

The Sri Lanka Standards Institution (SLSI) is the National Standards Organization of Sri Lanka established under the Sri Lanka Standards Institution Act No. 6 of 1984 which repealed and replaced the Bureau of Ceylon Standards Act No. 38 of 1964. The Institution functions under the Ministry of Technology & Research.

The principal objects of the Institution as set out in the Act are to prepare standards and promote their adoption, to provide facilities for examination and testing of products, to operate a Certification Marks Scheme, to certify the quality of products meant for local consumption or exports and to promote standardization and quality control by educational, consultancy and research activity.

The Institution is financed by Government grants, and by the income from the sale of its publications and other services offered for Industry and Business Sector. Financial and Administrative control is vested in a Council appointed in accordance with the provisions of the Act.

The development and formulation of National Standards is carried out by Technical Experts and representatives of other interest groups, assisted by the permanent officers of the Institution. These Technical Committees are appointed under the purview of the Sectoral Committees which in return are appointed by the Council. The Sectoral Committees give the final Technical approval for the Draft National Standards prior to the approval by the Council of the SLSI.

All members of the Technical and Sectoral Committees render their services in an honorary capacity. In this process the Institution endeavours to ensure adequate representation of all view points.

In the International field the Institution represents Sri Lanka in the International Organization for Standardization (ISO), and participates in such fields of Standardization as are of special interest to Sri Lanka.

Printed at the Sri Lanka Standards Institution, 17, Victoria Place, Elvitigala Mawatha, Colombo 08

Escherichia Coli at 44 C/100 mL	Nil	4	IN	NI	Nil	Nil	NI	4	9	Nil	Nil	9	NI	NI	NI	Nil	Ni	9	Nil	40	
Total Coliform at 35 C /100 ml	10	20	8	10	Nil	IIN	30	18	18	IIN	10	28	IN	40	40	56	14	180	38	99	
J/gm- (93 zs) norl lstoT	0.00	0.24	0.07	0.07	0.13	0.05	0.04	0.04	0.72	0.03	0.04	0.04	0.06	0.07	0.22	0.02	0.02	0.14	0.17	0.05	
I/gm- (^{-t} , Of ss) 93shq2odf	0.21	0.31	0.23	0.13	NT	NT	NT	0.89	0.18	0.38	0.40	0.48	0.26	0.43	0.47	0.40	0.20	0.38	0.11	0.17	
J\ дт - (Я гв) эbiruolA	0.30	0.26	0.43	0.44	0.31	0.18	0.15	0.15	0.12	0.35	0.36	0.34	0.26	0.24	0.18	0.15	0.25	0.14	0.26	0.36	
J/gm -(102 2s) 91shqlu2	2	2	1	1	NT	ΤN	ΤN	8	ΤN	1	2	1	10	04	02	03	02	50	04	01	
J\gm- (N 26) stirtiV	I	0.026	0.005	0.004	0.001	0.008	0.004	0.003	0.002	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.002	0.001	0.004	0.002	
J'ym- (N 26) sitrate	1.10	4.80	0.20	0.40	NT	IN	ΤN	0:30	3.00	070	05.0	09.0	0.10	0.10	0.20	0.10	0.30	09.0	0.50	0.10	
Total Hardness (as CaCO3)- Mg/L	112	110	96	100	100	68	100	100	96	48	09	72	88	72	80	88	92	89	80	72	- Not tested
Total Alkaliniity (as CaCO3) 	92	110	100	104	80	88	84	96	92	9/	80	88	100	96	100	96	96	96	68	88	N - TN
J'gm - (I) 88) Shirofd	28	20	32	36	20	32	28	24	24	09	56	4	36	20	32	30	20	28	24	09	
Electrical conductivity at 25 (µs/cm)	270	280	300	290	280	210	200	200	210	230	220	230	220	240	260	270	290	230	250	260	
Hq	8.52	8.31	8.48	8.32	8.00	7.74	7.23	7.53	7.64	7.60	7.45	7.41	7.69	8.37	7.72	7.88	7.71	8.02	7.39	7.32	ıt
Turbity (NTU/FTU)	33.80	4.94	18.88	29.70	29.00	7.57	7.48	3.01	5.63	2.47	7.63	5.84	20.60	10.45	66.6	69.6	8.90	17.77	12.95	8.84	Numerous to count
Color (HAZAEN UNIT)	<20	<20	<20	<20	<20	17	17	19	28	28	36	29	29	29	15	16	38	80	80	83	Numerou
Date	2012.06.19	2012.07.05	2012.08.14	2012.09.13	2012.10.10	2012.11.13	2012.12.05	2013.01.07	2013.02.13	2013.03.01	2013.04.10	2013.05.17	2013.06.03	2013.07.03	2013.08.06	2013.09.08	2013.10.15	2013.11.26	2013.12.26	2014.01.20	TNTC - Too I
noitsool alqmsZ	Wahalkada wewa																				
Region	Anuradhapura																				
0 _N	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	

Wahalkada Raw - Water Quality Report

Escherichia Coli at 44 C /100 mL	0	30	0	6	0	30	12	82	176	0	0	104	212	296	64	0	TNTC	148	0	60	60	
Total Coliform at 35 C /100 ml	66	94	120	86	110	400	60	186	392	0	820	300	432	TNTC	550	100	TNTC	348	84	432	184	
J'gm- (97 ss) norl lstoT	0.10	0.05	0.06	0.10	0.08	0.06	0.08	0.02	0.17	0.07	0.99	0.98	0.08	0.28	0.02	0.01	0.01	0.06	0.10	0.07	0.13	
J\zm- (⁻¹ , OA 26) 936Aq200	0.18	0.10	0.20	0.21	0.17	0.32	0.32	0.17	0.07	0.21	0.19	0.19	0.28	0.38	0.40	0.60	0.31	0.33	0.26	0.16	0.05	
J\ дт - (Я sв) эbiruolA	0.30	0.19	0:30	0.20	0.28	0.32	0.36	0.34	0.30	0.39	0.33	0.21	0.18	0.28	0.24	0.27	0.22	0.22	0.32	0.24	0.34	
J\zm -(102 2s) 91shqlu2	01	1	2	02	02	03	04	04	05	05	07	05	<01	01	01	01	01	01	01	01	00	
J/gm- (N 26) stirtiV	0.004	<0.001	0.00	0.001	<0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.004	0.004	0.052	0.002	0.017	0.300	0:030	0.003	0.013	0.020	
J'gm- (V 26) 936731	0:30	<0.1	0.10	0.20	<0.1	0.10	0.20	0.20	<0.1	09.0	0.20	0.20	0.70	09.0	0.10	1.76	3.52	3.52	0.88	0.88	00.00	
Total Hardness (as CaCO 3)- mg/L	78	70	100	130	100	100	110	110	100	110	96	96	80	110	130	80	08	120	182	88	76	- Not tested
Total Alkaliniity (as CaCO3) mg/L	80	92	80	100	100	80	80	110	100	06	80	60	06	180	120	100	06	100	140	100	110	N - NC
J\gm - (I) ss) sbiroldD	24	20	20	28	28	36	4	40	24	24	12	12	12	24	20	25	20	6	30	32	28	
Electrical conductivity at 25 (µs/cm)	271	260	270	280	290	300	360	310	300	270	180	180	190	280	220	230	250	260	270	30E	877	
Hq	7.58	7.95	7.76	8.23	8.17	8.67	7.44	7.60	8.43	7.09	6.73	7.16	7.17	8.18	7.88	8.45	8.11	8.29	7.89	8.35	7.90	ıt
Turbity (NTU/FTU)	14.96	14.04	7.06	9.49	3.12	18.30	10.98	4.28	57.60	24.30	11.33	6.81	2.95	5.56	53.60	18.34	10.07	15.41	12.90	14.24	11.25	Numerous to count
Color (HAZAEN UNIT)	68	38	22	28	14	35	28	18	09	50	30	21	13	15	65	28	20	22	21	20	18	Numerou
Date	2014.02.08	2014.03.19	2014.04.21	2014.05.25	2014.06.16	2014.07.08	2014.08.15	2014.09.13	2014.10.12	2014.11.16	2014.12.23	2015.01.11	2015.02.25	2015.03.31	2015.04.29	2015.05.26	2015.06.29	2015.07.22	2015.08.19	2015.09.28	2015.10.28	TNTC - Too N
noitsool slqmsZ	Wahalkada wewa																					
noigəX	Anuradhapura																					
oN	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	

Wahalkada Raw - Water Quality Report

ශී ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ ගැසට් පතුය

14

The Gazette of the Democratic Socialist Republic of Sri Lanka

අංක 1887/20 - 2014 නොවැම්බර් මස 05 වැනි බදාදා - 2014.11.05 No. 1887/20 - WEDNESDAY, NOVEMBER 05, 2014

(Published by Authority)

PART I : SECTION (I) — GENERAL

Government Notifications

L .D. B. 4/81(II).

NATIONAL ENVIRONMENTAL ACT, No. 47 OF 1980

REGULATIONS made by the Minister of Environment and Renewable Energy under Section 32 of the National Environmental Act, No. 47 of 1980 read with Section 23J and 23K of the aforesaid Act.

SUSIL PREMAJAYANTHA, Minister of Enviornment and Renewable Energy.

Colombo, 17th October 2014.

Regulations

The National Environmental (Air Emission, Fuel and Vehicle Importation Standards) Regulations No. 01 of 2003, published in the Gazette Extraordinary No. 1295/11 and dated June 30, 2003 as amended by the regulations published in the Gazette Extraordinary No. 1557/14 dated July 09, 2008, are hereby amended as follows :-

- (1) by the repeal of paragraphs (1) and (2) of regulation 4 thereof, and the substitution therefor of the following :-
 - "4. (1) The Commissioner General of Motor Traffic and the Director General of the Central Enviornmental Authority shall, for the purpose of these regulations, authorize any vehicle emission testing center to be an accredited vehicle emission testing center for the purpose of testing and certifying the vehicular exhaust emission levels of any motor vehicle.
 - (2) No person shall operate a vehicle emission testing centre without a valid Environmental Protection License obtained under Section 23A of the National Environmental Act, No. 47 of 1080.";

This Gazette Extraordinary can be downloaded from www.documents.gov.lk

2A I කොටස : (I) ජෛදය - ශී ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ අති විශෙෂ ගැසට් පනුය - 2014.11.05 PART I : Sc. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 05.11.2014

(2) by the repeal of Schedule I thereof and the substitution therefor of the following :-

"FIRST SCHEDULE

(A) Petrol Vehicles

Type of Vehicle	Emission	Standards	Remarks	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Carbon Monoxide CO (%V/V)	Hydrocarbon HC (ppm V/V)		
Petrol Vehicles other than Motor Cycles and Motor Tricycles	3.0	1000	Both Idling and 2500 RPM/no load	
Petrol Motor Cycles	4.0	6000	Both Idling and 2500 RPM/no load	
Petrol Motor Tricycles	4.0	6000	Both Idling and 2500 RPM/no load	

Abbreviations :

% V/V	-	percent by volume
ppm V/V	-	parts per million by volume
RPM	-	Revolutions per minute

(B) Diesel Vehicles

Type of Vehicle	Emission Standards /K Factor (㎡) based on Smoke Opacity	Remarks
Diesel Vehicles	4.0	On Snap Acceleration

Abbreviations :

K factor	-	Absorption Coefficient		
Snap Acceleration	-	Has the same meaning as defined in SAE	RECOMMENDED	PRACTICE J 1667".

11- 560

PRINTED AT THE DEPARTMENT OF GOVERNMENT PRINTING, SRI LANKA.
--

ඔබේ යොමුව உமது தொடர்பு Your Ref. අපේ යොමුව	Appendix 8.3 மத்திய சுற்றாடல் அதிகாரசபை
எமது தொடர்பு Our Ref. ஜீலக திகதி Date	முடாலாகம், மைக்கியில் விடையில் விடியில் விடியில் விடையில் விடியில் விடையில் விடியில் விடையில் விடியில் விடையி
Chairmen.	

>012

_/

Chairmen, Horowpothana Pradeshiya Sabha, Horowpothana.

Obtaining Enviromental Recommendation From The Central Enviromental Authority For The Water Purification Plant At Wahalkada North Water Supply Project Phase 2 Proposed By The National Water Supply And Drainage Board

This has reference to National Water Supply and drainage board application dated 31st August 2015 regarding the above matter.

This is to inform you that this authority recommended granting approval to establish the above proposed water Purification plant at the above location subject to the following conditions. Which should strictly adhered by the developer to abate Environmental impact likely to arise from the construction of the said activities.

CONDITION

1.4

01

02

Dear Sir,

1.1 The location of the proposed activities at the above site should conform to the zoning plan of the area.

Consent from the land owner should be obtained in prior to commence any activity within the site.

The ownership consent of the relevant land of this project shall be confirmed to this Authority by the project proponent before commencing the construction activities.

No construction activity either temporary or permanent will be allowed in the reservation area. Landscaping could be carried out to enhance the Visual Environmental of the area.

Noise levels at the boundary of the project premises should be maintained at or below
 55 dB (A) during day (between 6.00 hrs to 18.00 hrs) and at or below 45 dB(A) during the night time (between 18.00 hrs to 06.00 hrs)

2.2 Noise levels at the boundary of the project activities during the construction stage should be maintained at or below 75 dB (A) during day (between 6.00 hrs to 21.00 hrs) and at or below 50 dB (A) during the night time (between 21.00 hrs to 06.00 hrs)

	2872361,2872348 2872347						277-280, 287344	8 Complain Unit : 071 3603333
	HRD. Admin & Finar Tel : 2865296 Fa	nce Division Env x : 2877515 [Tel.	. Pollution Control :2873453 Fax	57.1101.011	Envt. Mgt & Assess fel. : 2872388 F	Division ax : 2872296		Awareness Division Fax : 2872609
Гel	2872607 (Admin), 78 2872301 (HRD), 787 2872601 (Admin), 28	7288 (Planning)	2873452 (EPC), 2872606 (Lab) 2882335 (WM)	2872346 (J 2867263 (J Fax : 2872		Fax : 287	2609	2872604 (Legal) Western Province) Fel: 2862831 Fax : 2865293

றைகள் கலிக்கு கல்கு கலைகள் கான் குறுவியில்கு குற்றும் கற்றாடல் அமைச்சு | Ministry of Mahaweli Development & Environment

- 2.3 Operation of the excessive noise generating activities should be carried out in the enclosed area.
- 2.4 Installations of excessive noise and vibration generation activities shall be installed on a resilient foundation.
- 2.5 If you use the electricity generators, they should be installed in an enclosed area such a way to maintain the noise levels at the boundary as given in the No 2.1.
- 03 Adequate soil conservation & drainage management measures should be taken during construction and operation in consultation with the department of Agriculture, department of Irrigation & relevant Local Authority of the area.
- 04 4.1 Effluent arising from the domestic activities shall be released into a proper designed Septic tank / soakage pit.
 - 4.2 Waste water (treated or untreated) should not be discharged into irrigation canals or Tanks.
 - 4.3 Oil or grease should not be discharged into surface water drainage or on the ground.
- 05 5.1 The method of disposal of solid waste should be intimated to the relevant local authority and approval obtained.
 - 5.2 Solid waste arising from the project activities should not be allowed to stagnate within the premises or dumped in neighboring lands and should not be disposed into any water body.
 - 5.3 Solid waste should not be burnt in the open at any time.
 - 5.4 Necessary arrangements should be provided to segregate the waste at the point of generation.
 - 5.5 All recyclable solid waste such as polythene, Plastic, Glass Metal and Paper should be collected separately and dispatched to recycling centers periodically.
 - 5.6 Solid waste, which cannot be used for recycling should be disposed in consultation with the Horowpothana Pradeshiya Sabha.
 - 5.7 Effort should be taken to reduce the use of polythene, plastic, water bottles and cans etc.
 - 5.8 Necessary guidelines for proper management of solid waste could be obtained from the solid waste Management division of the Central Environmental Authority.
- 06 Polythene or any polythene product of 20μm (20 microns) or below thickness shall not be used for the activity of the industry or domestic purposes.
- 07 The use of roads for transport particularly for heavy loads should be in agreement with the conditions stipulated by the respective Local Authority.
- 08 Suitable native tree species should be planted by the operator to minimize wind erosion and to enhance the aesthetic quality of the surroundings.

- 09 Any type of construction shall not be done within 100m limit from the full supply level of the tank of Wahalkada.
- 10 Prior approval of the Central Environmental Authority shall be obtained for installation or operation of any machinery other than those stated in the application dated 31-08-2015.
- 11 Prior approval of the Central Environmental Authority shall be obtained for any expansions, extensions or changes to the industry process or operation stated in the application dated 31-08-2015.
- 12 Any additional condition stipulated by the Central Environmental Authority as and when required for controlling any kind of pollution created by the operations of this project shall be strictly adhered to.
- 13 Good house keeping practices shall be adopted at every time.
- 14 The developer should obtain an Environmental Protection License in terms of the National Environmental (Protection and quality) Regulations No. 01 of 1990 published in the gazette Extra-Ordinary No 1533/16 dated 2008-01-25 from the Central Environmental Authority. three months prior to operation of the project and terms and conditions there in should be strictly adhere to.
- 15 This approval letter issued in relation to the above project should in no way be considered as a final approval granted for the sitting of the said project at this location. In order for this project to be established at the proposed location the written approval of the Horowpothana Pradeshiya Sabha is required.
- 16 This Environmental Recommendation letter is valid only for one-year period from the date of issue.

Yours faithfully,

G.M.K. Perera, Deputy Director, Central Environmental Authority, North Central Provincial office.

Cc:

1. Divisional Secretary, Divisional Secretariat Office, Horowpothana.

2. Director, Department of Irrigation, Anuradhapura.

- 3. District Forest Officer, District Forest Office, Anuradhapura.
- 4. Deputy Director General (EM&A), Central Environmental Authority, Battaramulla

5. Chief Engineer, Regional support Center, National Water Supply

W& Drainage Board, Godage Mawatha, Anuradhapura.

Tele: 025 - 7877282

- For your Information Please.

- For your Information Please.

- For your Information Please
- For your Information Please

- For your Information Please.

Fax: 025 – 2225999

Appendix 8.3-5 Compensation Report

Non-disclosure Information

Appendix 8.4-1

Thoroughfares (Amendment) Act, No. 9 of 1988

[Certified on 25th March, 1988]

L.D.-O. 24/85

AN ACT TO AMEND THE THOROUGHFARES ORDINANCE

BE it enacted by the Parliament of the Democratic Socialist Republic of Sri Lanka as follows : ---

1. This Act may be cited as the Thoroughfares (Amend-Short title. ment) Act, No. 9 of 1988.

2. Section 4 of the Thoroughfares Ordinance (hereinafter Replacereferred to as the " principal enactment ") as amended by Law No. 37 of 1973, is hereby repealed and the following new section substituted therefor : ---

'Appointment and powers &c., of officers and servants.

4. (1) There may be appointed all such officers and servants as may be necessary for the purposes of this Ordinance.

(2) Subject to the general direction and control of the Director, the Chief Engineer of each region and the Executive Engineer of each division shall be responsible for the administration of this Ordinance in his region or division.

(3) In this Ordinance- '

(a) "region", when used with reference to 'a Chief Engineer, means the area for which he is appointed ;

(b) "division", when used with reference to an Executive Engineer, means the area for which he is appointed.

(4) It shall be lawful for the Director to discharge any function assigned to the Chief Engineer by this Ordinance and 'it shall be lawful for the Chief Engineer to discharge any function assigned to the Executive Engineer by this Ordinance.

(5) It shall be lawful for the Director to authorize in writing any officer of the Department not being the Chief Engineer or the Executive Engineer to discharge any function assigned to the Chief Engineer or the Executive Engineer by this Ordinance, and it shall be lawful for such officer to discharge that function.'.

CA 101438-8,340 (02/88)

ment of

section 4 &Chapter

8.4-1 - 1

Appendix \$.4-1

Thoroughfares (Amendment) Act, No. 9 of 1988

Amendment of section 7 of the principal enactment.

Insertion of new sections 7A, 7B, 7C and 7p in the principal enactment. 3. Section 7 of the principal enactment is hereby amended by the substitution for the words, "on behalf of the Government" wherever such words occur in that section of the words, "on behalf of the 'Authority".

4. The following new sections are hereby inserted immediately after section '7 and shall have effect as sections 7A, 7B, 7c and 7D of the principal enactment :-

" Persons to make use of road only on the authority of agreement.

7A. No person shall for the purpose of any public service or any private enterprise or object make use of a read or thoroughfare to which this Ordinance applies or execute any work, or set up or maintain any plant or erection therein, except under, and in accordance with the terms and conditions of an agreement referred to in section 7:

Provided 'that before any excavation'or digging or cutting of any road is allowed to commence in pursuance of any such agreement, the cost of reinstatement or repair of such road after such excavation or digging or cutting, as estimated by the Chief Engineer, together with an additional deposit amounting to ten per *cent* of the estimated cost of such : reinstatement or repair, shall b, paid to the Chief Engineer :

Provided further that the requirement for the payment of the additional deposit roforred to in the proviso shall not apply in tho case of a Government department.

7B. Any person who has entered into an agreement under section 7 and who excavates, digs, cuts or does any other thing which causes damage to a road, shall, immediately after the completion of the work for which such excavation, digging or cutting was necessary, and in no case later than any time stipulated therefor in the agreement under section 7, backfill to a level indicated by the Executive Engineer,, 'the trench or hole created by his excavation, digging or cutting, in layers of such compaction as specified by

Persons to backfill hole or trench.

the Executive Engineer, and using fill material approved by the Executive Engineer. Upon the Executive Engineer being satisfied that the backfilling has been satisfactorily completed, the additional deposit of ten per *cent* referred to in section 7_A shall be refundted to the promotor :

Provided that, in the event of such person failing to carry out the backfilling within the time stipulated in such agreement or in the event of the backfilling not being completed. in the manner directed by the Executive Engineer, then the Executive Engineer may cause the backfilling to be completed and shall set off the cost of backfilling against the amounts deposited under section 7_{A} .

7c. Any person who makes use of any road or thoroughfare to which this Ordinance applies or executes works or maintains any plant or erection therein in contravention of section 7A shall be guilty of an offence and shall on conviction be liable to a fine not exceeding ten thousand rupees.

7D. Notwithstanding anything contained in any agreement referred to in section 7 or anything contrary in any written law, it shall be lawful for the Executive Engineer to issue notice to any person who has in pursuance of an agreement referred to in section 7 caused an obstruction to any road or thoroughfare, to remove or abate such obstruction to the satisfaction of the Executive Engineer, within such time as may be specified in that behalf and if such person fails or neglects to remove or abate such obstruction within such time or if such person cannot be traced, it shall be lawful for the Executive Engineer' or any person authorized by him, to remove or abate such obstruction and recover the costs incurred thereby in the manner provided in section 33. No compensation shall be payable to such person for any breach of such agreement occasioned by such removal or abatement.",

Contravention of section 7A an offence.

Abatement of obstruetions. 3 -

Amendment of section 24 of the principal enactment. 41

5. Section 24 of the principal enactment is hereby amended as follows :---

(1) by the repeal of subsection (1) of that section and the substitution therefor of the following subsection :-

- (1) From and after the date on which this subsection comes into force it shall not be lawful for any person-
 - (a) except under the authority of a licence granted by the Executive Engineer of the division, to erect any building, boundary wall, gateway or any other structure or construct a basement or other underground structure or dig a well, pond or shaft, within a limit (hereinafter referred to as the "build" ing. limit.") of-
 - (i) fifteen metres from the contre of the road in the case of a road declared by the Director to be an "A" class road in charge of the Department of Highways by notification published in the Gazette ;
 - (ii) twelve metres from the centre of the road in the case of a road declared by the Director to be a " B " class road in charge of the Department of Highways by notification published in the Gazette ;
 - (iii) seven decimal point five metres from the centre of the read in the case of a read declared by the Director to be a "C" or "D" class read in charge of the Department of Highways by notification published in the Gazette;
 - (b) except under the authority of a licence granted by the Executive Engineer of the division to re-erect, or to make any addition to, any building, boundary wall, gateway or any other structure or

any basement or other underground structure or any well, pond or shaft within the building limit of any such road :

Provided, however, that nothing in the preceding provisions of this subsection shall be deemed to apply to any repairs effected to any building, boundary wall, gateway or any other structure or basement, other underground structure or any well, pond or shaft existing on the date this subsection comes into force; not being repairs to any building, boundary wall or gateway for effecting which a license was necessary prior to the coming into force of this subsection.'; and

(2) in subsection (2) by the substitution for the expressions "building, boundary wall or gateway", or "building, wall or gateway" wherever such expressions occur in that subsection of the expressions "building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft ".

6. The following new section is hereby inserted immedia-Insertion tely after section 24 and shall have effect as section 24A of of new the principal'enactment : --- 24A of the

"No building approval to be granted without permission" of the Executive Engineer.

24A. No authority whose approval is required for the erection or re-erection of a building, boundary wall, gateway or other structure or any 'basement or other underground structure or any well, pond or shaft shall grant such approval for the erection or re-erection of a building within the building limit specified in section 24 unless such erection or re-erection has been authorized by a licence granted under that section. "

1 7. The following new section is hereby inserted immediately after section 25 and shall have effect as section 25A of the principal enactment : -

"Declaration of a reservation for anew 25A. On the recommendation of the Director, the Minister may, by Order published in the *Gazette*, declare that the area of land depicted in a survey plan described in such Order in sufficient detail, and specifying the .

Insertion of new section 25A in the principal enactment

principal enactment.

length and breadth of the road, as to facilitate identification, is intended to be used for the construction of a public road of such class as is specified in the Order. Upon the publication of the Order in the Gazette,' the provisions of this Ordinance prohibiting the erection or re-erection of any building, boundary wall, gateway or other structure or any well, pond or shaft, within the building limits applicable to the class of road specified in the Order shall apply to and in relation to the width of the area of land specified in such Order. ".

Replacement of! section 26 of the principal enactment. 8. Section 26 of the principal enactment is hereby repealed and the following new section substituted therefor :---

"Procedure to be followed upon contravention of section 24.

26. (1) If any person crects or, re-crects any building, boundary wall, gatoway or other structure or any basement, or other underground structure, or any well, pond or shaft or makes any addition to any building, boundary wall, gateway or other structure or any basement, or other underground structure or any well, pond or shaft in contravention of any of the provisions of section 24, the Executive Engineer shall, by written notice require such person to demolish or remove such building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft or any addition thereto, on or before such day as shall be specified in such notice, not being less than seven days from the date thereof. 5

(2) It shall be the duty of the person on whom a notice is issued under subsection (1) to comply with any requirement specified in such notice within the time specified therein, or within such extended time as may be granted by the Executive Engineer, on appliration made in that behalf.

7

(3) (a) Where in pursuance of a notice issued under subsection (1), any building, boundary wall, gateway, or other structure or any basement or other underground structure or any well, pond or shaft, is 'not demolished or removed, within the time specified in the notice or within such extended time, as may have been granted by the Executive Engineer, the Executive Engineer may apply to the Magistrate to make a mandatory order, authorizing the Executive Engineer to demolish or remove such building, boundary wall, gateway or other structure or any basement, or other underground structure, or any well, pond or shaft, and the Magistrate on issuing notice on the person, who had failed to comply with the requirement of the Executive Engineer under subsection (1), to demolish or remove such building, boundary wall, gateway, or other structure, or any basement, or other underground structure or any well, pond or shaft, may, if he is satisfied to the same effect, make order accordingly.

(b) If such'person undertakes to demolish or remove such building, boundary wall, gateway or other structure or 'any basement or other underground structure or any well, pond or shaft, the Magistrate may if he thinks fit, postponethe operation of the Order for 'such time not exceeding two months as he thinks sufficient for the purpose, of giving the person an opportunity of demolishing or removing such building, 'boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft.

(4) Where a mandatory order has been made under subsection (3), it shall be the duty of the police authorities to renderall 'necessary assistance to the Executive Engineer in carrying out the order.

(5) The Executive Engineer shall be entitled to recover any reasonable expenses incurred by him in demolishing or removing any building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft in pursuance of an order made by the Magistrate under subsection (3). ".

9. Section 27 of the principal enactment is hereby amended by the substitution for the expression "building, boundary wall or gateway" wherever such expression occurs in that section (except in paragraph (d) thereof) of the expression "building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft ".

Amendment of section 28 of the principal

enactment.

Amendment of section 27 of the

principal enactment.

10. Section 28 of the principal enactment is hereby amended as follows : -

 by the substitution, in subsection (1) of that section for the expression "any building, boundary 'wall or gateway" wherever that expression occurs in that subsection, of the expression "building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft";

(2) by the substitution, in paragraph (a) of subsection
(2) of that section, for the expression "building, boundary wall or gateway" wherever that expression occurs in that subsection, of the expression "building, boundary. wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft";

(3) by the substitution, in paragraph (b) of subsection(2) of that section-

(i) for the expression " building, boundary wall or gateway " wherever such expression occurs in that paragraph (except in sub-paragraph (ii) thereof) of the expression " building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft "; and

8

- (ii) for the words "in the case of a boundary wall or gateway, "appearing in sub-paragraph (ii) thereof, the words "in the case of a boundary wall, gateway or other structure or any basement or other underground structure or any well, pond or shaft "; and
- (4) by the substitution in subsection (3) of that section for the expression, "building, boundary wall or gateway" wherever that expression occurs in that section, of the expression, "building, boundary wall, gateway or other structure or any basement: or other underground structure or any well, pond or shaft".

11. Section 30 of the principal enactment is hereby amended in subsection (2) thereof by the substitution, for the expression "building, boundary wall or gateway" occurring in that section of the expression, "building, boundary wall, gateway or other structure or any basement or other underground structure or any well, pond, or shaft".

12. Section 33 of the principal enactment is hereby amended by the substitution for the words "It shall be lawful for the Executive Engineer to give order verbally or by notice' in writing, to any person obstructing or encroaching upon- any thoroughfare, forthwith to remove or abate the same; and if any such person to whom such order shall have been given shall refuse or neglect to comply with the same within a reasonable time," of the words "It shall be lawful for the Executive Engineer to give order by notice 'in writing, to any person obstructing or encroaching upon any thoroughfare, forthwith to remove or abate the same on or before a specified date; and if any such person to whom such order shall have been given shall refuse or neglect to comply with the same. ".

13. The following, new section is hereby inserted immediately after section 33 and shall have effect as section 33A of the principal enactment :-

rted Insertion of new section 33A in the tion principal

33A of the princi "Action 3 where of presistance is of anticipated (R

33A. For the purpose of the application of the provisions of the State Lands (Recovery of Possession). Act, No. 7 of 1979 to any road to which this Ordinance applies-

> (a) every written notice given under section 33 of this Ordinance shall be deemed to be a notice served under section. 3 of that Act;

9

Amendment of section

30 of the

principal

enactment.

Amendment of section 33 of the

principal enactment.

- (b) the expression " competent authority " in that Act shall be deemed to include a reference to the Director, the Chief Engineer and the Executive Engineer ;
- (c) the expression "State Land " shall be deemed to include a reference to every road to which this Ordinance applies.".

14. Section 35 of the principal enactment 'is hereby amended as follows:---

- (1) by the substitution for the words "fifty rupees" occurring in that section of the words "five thousand rupees ";
- (2) by the addition, immediately after paragraph (8) of that section, of the following new paragraphs which shall have effect as paragraphs (9); (10) and (11) of that section :-
 - " (9) whosoever shall cause the opening of any culvert, bridge. or side drain to be completely or partially blocked to prevent, obstruct or impede the free passage of water through it or causes a structure to be erected, a dam to be built, or the ground to be raised, or carry out any other act in any land contiguous to a road in the vicinity of a culvert or a bridge, so as to cause any interruption to or impede the free flow of water through a culvert, bridge or side 'drain ;
 - (10) whosoover shall cause damage to a thoroughfare by any excavation of any thoroughfare with-, out authority or by the kxcavation of any land adjoining or near any thoroughfare ;
 - (11) whosoever shall drive, tow or cause to be moved along or across any public road a vehicle which has a device for traction other than wheels or tyres and which bears directly on the road suface. ".

Amendment of section 35 of the principal enactment.

15. The following new sections are hereby inserted immediately after section 35 and shall have effect as sections 35A and 35B of the principal enactment :---

Continuing offences,

35A. Any person convicted of an offence under section 35 shall. if the off ence is continued after conviction, be liable to a fine not exceeding two hundred rupees for each day during which such offence is continued after conviction.

Abatement of injuries to thoroughfares.

35B. Notwithstanding. the provisions, of section 35, it shall be lawful for the Executive Engineer to order either verbally or in writing any person who is' committing or who has committed any act referred to in section 35, to forthwith abate the same, and if such person to whom such order is given shall refuse or neglect to comply with the order within the period specified therein, or if there be any doubt as to the proper person to whom such order should be given, it shall be lawful for the Executive Engineer or any person authorized in writing in that behalf by the Executive Engineer, to enter or cause to enter any house, garden, enclosure or other premises with such persons, instruments and things as may be. necessary and to do or cause to be done therein all such . things as may be necessary for such abatement ; and the Executive' Engineer may recover the costs incurred in such abatement. in the manner provided in section 33 for the recovery of costs therein mentioned. ".

-16. Section 37 of the principal enactment is hereby Amendment amended as follows : _________ 37 of the

of section 37 of the principal enactment.

(1) by the substitution for the words "less than four" feet of the length of such drain " occurring in that section, of the words "less than 25 metres of the length of such drain, and which shall provide an opening the cross section of which shall not be less than 3720 square centimetres or such other area as the Executive Engineer may, by notice in writing direct. ". and

Insertion

of new

Sections 35A and 35B in the

principal

enactment.

(2) by the substitution for the words "costs therein mentioned", of the following :---

" Costs therein mentioned :

Provided that if the Executive Engineer gives notice to the public of the intention to construct or excavate such a drain the preceding provision of this section shall apply in the same manner as if there was a drain in existence by the side of such road.".

17. Section 38 of the principal enactment is hereby amended as follows : -

Amendment of section 38 of the principal enactment. 12

- by the substitution for the words " Alty rupees " occurring in that section, of the words "five thousand rupees ";
- (2) in the proviso to paragraph (2) of that soution-
 - (u) by the substitution for the words "one rupee" wherever those words occur in that proviso, of the words "seventy-five rupees"; and
 - (b) by the substitution for the words "thirty ' cents", of the words "ton rupoon";
- (3) by the deletion in paragraph (9) of that section of all the words from " and shall allow " to " removal thereof"; and
- (4) by the insertion, immediately after paragraph (14) of that section, of the following new paragraphi which shall have effect as paragraphs (18), (10) and (17) of that section :-
 - "(15) whoever shall erect any sign board, direction board, or hoarding on a thoroughtare without the permission of the Executive Engineer ;
 - (16) whosoever without lawful authority shall the a rope or wire or lay a tube or a pipe or any other thing across or alongside 'any road ;
 - (17) whosoever without lawful authority shall wash any carriage, motor vehicle, cart, or other thing or any cattle or any other animal on any road ; ".

ed Insertio of new s sections 38A and 38B in the principal

enactmerit.

13

18. The following new sections are hereby inserted immediately after section 38 and shall have effect as sections 38A and 38B of the principal enactment : — in

" Continuing

38A. Any person convicted of an offence under section 38 shall, if the offence is confinued after conviction, be liable to a fine not exceeding two hundred rupees for each day during which such offence is continued after conviction.

Abatement of nuisances. on thoroughfares.

38B. Notwithstanding the provisions of section 38, it shall be lawful for the Executive Engineer to order either verbally or in writing any person committing or who has committed any act referred to in section 38, to forthwith abate the same, and if such person to whom such order is given shall refuse or neglect to comply with the order within the period specified therein, or if there be any doubt as to the proper person to whom such order should be given, it shall be lawful for the Executive Engineer or any peace officer to take all such action as may be necesary to abate such nuisance, including the taking into custody and removal of any animal, vehicle, object or thing which is the cause of, or contributory to, such nuisance and the Executive Engineer may recover the costs incurred thereby in the manner provided in section .33 for the recovery of costs. ".

19. The following new section is hereby inserted immediately after section 39 and shall have effect as section 39_{Λ} of the principal enactment : --

Insertion of new section 39A in the principal

"Regulations.

39A. (1) The Minister may make regula- enactment. tions for or in respect of all or any of the following matters : —

(a) the general specifications to which the construction of any public road or bridge should conform;

- (b) the prevention of ribbon development along public roads;
- (c) the regulation, control and management of access to principal thoroughfares :
- (d) 'the maximum load and other related characteristics of vehicles which may be permitted for use on a public road or any class of public road;

(2) Every regulation made under subsection (1) shall be published in the Gazette and shall come into operation on the date of such publication or on such later date as may be specified in the regulation.

(3) Every regulation made under subsection (1) shall as soon as convenient after its publication in the Gazette, be brought before Parliament for approval. Every regulation not so approved shall be deemed to have been rescinded as from the date of such disapproval but without prejudice to anything pre viously done thereunder.

(4) The date on which any regulation is deemed to be so rescinded shall be published in the Gazette.

(5) The contravention of any regulation shall be an offence under this Ordinance and shall be punishable with a fine not exceeding five thousand rupees. "...

20. Section 40 of the principal enactment is hereby amended as follows :--

mondment

ection ('the

einient.

(1) by the insertion? immediately before the definition of "canal " occurring in that section, of the following new definition : --

|--|

PARLIAMENT OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

NATIONAL THOROUGHFARES ACT, No. 40 OF 2008

[Certified on 01st December, 2008]

Printed on the Order of Government

Published as a Supplement to Part II of the Guzette of the Democratic Socialist Republic of Sri Lanka of December 05, 2008

FRANCED AT THE DIPANTALENT OF COVERCIENT TRUNDER, SNLLANKA

10 REFORCHALL AT THE GOVERNMENT RULE WAY WAY AND WE REALL COMMIND 5

Postage : Rs. 15.00

Price : Rs. 34.00

National Thoroughfares Act, No. 40 of 2008

[Certified on 01st December, 2008]

L. D. --- O. 34/2004

AN ACT TO PROVIDE FOR THE PLANNING, DESIGN, CONSTRUCTION, DEPELIDARENT, MARTESANCE AND ADMINISTRATION OF AN ENTERANTED PUBLIC ROAD NETWORK IN SHI LANKA, TO PROVIDE THE LEGAL FRAMEWORK NECTESANY 'DI GAULTARIE PRIVATE SECTOR ENVERTHEST AND PARTICIPATION IN ROAD CONSTRUCTION, DEVELOPMENT AND FRAMEWORK FROM CONSTRUCTION, DEVELOPMENT AND PROMOTE AND FACLUATIVE COMMUNITY DAGED ORGANISATIONS ENGLADE AND FUELIC ROADS, AND TO PROVIDE FOR MANTENS CONNECTED THEREWITH OR INCIDAL/FOL THEREFO. WHEREAS it is the National Policy of Sri Lanka to formulate Preamht. and implement within Sri Lanka a policy in relation to its National Highways whereby the Government is committed to provide for its citizens a modernised and integrated public road network operative within Sri Lanka, which network will be the result of a process of planning, design, construction, maintenance, development and administration:

NOW THEREFORE BE it enacted by the Parliament of the Democratic Socialist Republic of Sri Lanka as follows :----

 This Act may be cited as the National Thoroughfares Short title and Act, No. 40 of 2008 and shall come into operation on such date of date as the Minister may appoint by Order published in the operation. *Gazette* (hereinafter referred to as "the appointed date").

PART 1

GENTHAL.

2. Subject to the provisions hereinafter provided, this Application of Act shall apply to all national highways and to all foads and the Act. all public roads declared under section 4, other than roads maintained and administered respectively by a Provincial Council or a local authority.

2--PL 003220-- 4,250 (09/2008)

2

Administration of the Act.

3. (1) The Road Development Authority established ander Act, No. 73 of 1981, (hereinafter referred to as "the Authority") shall subject to the general directions and policy guidelines of the Minister, have the exclusive power of implementation and administration of the provisions of this Act in consultation with such other government departments or institutions as may be referred to in this Act. (2) The Authority may also exercise all or any of the powers conferred upon the Authority by the Road Development Authority Act. No. 73 of 1981 in the implementation and administration of the provisions of this Act.

 (1) The Minister may in consultation with the District Road Network Development Co-ordinating Committee established under section 8. by Order published in the Gazette declare a road to be a public road :

Declaration of a road as a public

Road.

Provided that, any road which prior to the coming into operation of this Act has been declared to be a public road, shall from and after the date of the coming into operation of this Act, be deemed to be a public road, within the meaning of this section. (2) Every public road declared under subsection (1) shall vest in the Authority and accordingly every such public oad shall be administered and maintained by the Authority.

(3) For the purposes of this Act a public road includes a canal or river.

5. (1) Subject to the general direction and control of the Authority, the Director-General, the Provincial Director. Chief Engineer and Executive Engineer of the Authority shall be responsible for the implementation and administration of the provisions of this Act.

National Thoroughfares Act, No. 40 of 2008 3

(2) (a) It shall be lawful for the Director-General to delegate any function assigned to him by this Act, to the Provincial Director, Chief Engineer, Executive Engineer, any officer of the Authority or any community based organization as the case may be.

(b) It shall be lawful for the Provincial Director to delegate any function assigned to him by this Act, to the Chief Engineer or Executive Engineer or any community based organization as the case may be. (c) It shall be lawful for the Chief Engineer to delegate any function assigned to him by this Act, to the Executive Engineer or any community based organization as the case may be.

(d) It shall be lawful for the Executive Engineer to delegate any function assigned to him by this Act to any community based organization.

(e) It shall be lawful for the Director-General to authorize any officer of the Authority, not being the Provincial Director, Chief Engineer or the Executive Engineer or a community based organization to discharge any function assigned by this Act to the Director-General. Provincial Director, Chief Engineer, Executive Engineer or the community based organization as the case may be.

PART II

ADVISORY BODIES

 (1) There shall be established a Road Network Establishment of Development Advisory Council (hereinafter Referred to as Road Network the "Advisory Council") consisting of the following: — Advisory Advisory Council"

(a) Ex officio members ---

 the Secretary to the Ministry of the Minister in charge of the subject of Highways. who shall be the Chairman of the Advisory Council;

ব

- a representative from the Civil Engineering Department of the University of Sri Lanka, Moratuwa. nominated by the Head of the Department:
- a representative of the Institute of Chamber of Construction Industries nominated by the Institute;
- (iv) a representative of the Chamber of Commerce nominated by the Chamber;
- a representative of the Institute of Engineers of Sri Lanka established under the Institute of Engineers of Ceylon Act, No. 17 of 1968, nominated by the Institute;
- (vi) the Director-General of the National Physical Planning Department or his representative;
- (vii) the Inspector-General of Police or an officer not below the rank of Deputy Inspector-General nominated by him;
- a representative of the Land Use Policy Planning Division of the Ministry of Lands nominated by the Minister in charge of the subject of Lands;
- (ix) a representative of the National Planning Department of the Ministry of the Minister in charge of Finance, nominated by such Minister;
- a representative of the Ministry of the Minister in charge of the subject of Industries. nominated by such Minister;
- (xi) a representative of the Ministry of the Minister in charge of the subject of Tourism, nominated by such Minister;

- (xii) a representative of the Ministry of the Minister in charge of the subject of Transport, nominated by such Minister;
- (xiii) the Surveyor-General or his representative;
- (xiv) a representative from the Institute of Town Planners established by the Town Planners Act, No. 23 of 1986, nominated by the Institute: and
- (xv) the Commissioner of Motor Traffic Commissioner or an officer not below the rank of an Assistant Commissioner of Motor Traffic nominated by him;
- (b) five members nominated by the Minister from among persons who are qualified and have experience in the fields of economics, infrastructure development, banking, power and energy. telecommunication and law.
- (2) The functions of the Advisory Council shall be-
- (a) to advise the Minister in the formulation of the Hierarchical Public Road Network Policy of Sri Lanka (hereinafter referred to as "the Network Policy") including bridges and ferry services with a view to, facilitate travel time and providing easy movement with improved facility;
- (b) to advice the Minister on the development of a hierarchical road network strategy designed to improve the quality of the roads;
- (c) to advise the Minister on measures required to be taken in relation to road research. road planning, road development technology and road safety measures:

...

National Thoroughfures Act, No. 40 of 2008

9

- to tender advise when required to do so on matters relating to planning of roads, national highways, expressways and restricted access highways that may be referred to the Advisory Council by the Authority: જી
- to tender advise on any other matter that may from time to time be referred to the Advisory Council by the Minister. ંગ

office by death, resignation or removal hold office for a appointed by the Minister and shall, unless he earlier vacates oc cligible for re-appointment. The Minister may, if he (3) (a) Every member of the Advisory Council shall be period of three years from the date of appointment and shall considers it expedient to do so, by Order published in the Guzette. remove from office any member of the Advisory Council for reasons assigned therefor.

(b) A member of the Advisory Council may at any time resign his office by letter to that effect addressed to the Minister. (c) Where any member of the Advisory Council dies. resigns or is removed from office, the Minister may appoint any other person to be a member in place of the member who dies, resigns or is removed from office. (d) A member appointed under paragraph (c) shall, unless hold office for the unexpired period of the term of office of he carlier vacates office by death, resignation or removal. his predecessor.

(c) The Advisory Council may discharge its functions notwithstanding any vacancy among its members or any defect in the appointment of any such member. (/) Eight members of the Advisory Council shall constitute a quorum for any meeting of the Advisory Council

~ National Thoroughfares Act, No. 40 of 2008 and subject to the provisions of this Act, the Advisory Council may regulate the procedure in regard to its meetings and the transaction of business at meetings.

such remuneration as may be determined by the Minister in (g) The members of the Advisory Council may be paid consultation with the Minister in charge of the subject of Finance.

District Road 7. (1) There shall be established a District Road (hereinafter referred to as the "District Co-ordinating Committee") for each District in Sri Lanka consisting of the Network Development Co-ordinating Committee following members---

- Co-ordinating Committee. Development Network
- appointed by the President of Sri Lanka under the Constitution, from among the members of Parliament who represent that District in all Cabinet Ministers and other Ministers Parliament; E
- the Chief Minister of the relevant provincial Council: Ð
- all Ministers in the Board of Ministers of the relevant Provincial Council; ত্র
- all members of the Parliament representing the relevant District; જી
- all members of the Provincial Council representing the relevant District: છ
- all Heads of Local Authorities within the relevant District; S
- Chief Secretary of the relevant Provincial Council; (S)
- District Secretary of the relevant District: S

National Thoroughfares Act, No. 40 of 2008 9

- (i) all Divisional Secretaries of the relevant District;
- (j) relevant Provincial Director of the Road Development Authority who shall be the Secretary of the District Co-ordinating Committee;
- (k) all District Heads of all Government Agencies of the relevant district;
- a representative from each of the Community Based Organizations formed by the road user communities in the Districts.

(2) The Minister may nominate a person from among the members referred to in paragraphs (a) and (b) to be the Chairman of the District Co-ordinating Committee.

(3) The functions of the District Co-ordinating Committee shall be----

- (i) to formulate an Integrated Road Network Development and Maintenance Action Plan for the District;
- (ii) to co-ordinate and supervise all road network development and maintenance activities, within the District;
- (iii) to direct with the concurrence of the Minister, any Government Agency or any person to undertake any road network development project of scheme within the District and to regulate and supervise the implementation of such projects or schemes;
- (iv) to recommend the Minister to undertake and execute the road development projects including new constructions or any widening or deviation of an existing road.

(4) The Integrated Road Network Development and Maintenance Action Plan specified in subsection (3) means a plan specifying road development projects in the District to be undertaken by the Road Development Authority, the relevant Provincial Council, the relevant local authorities and other relevant agencies. Such Plan shall be prepared for a period of five years and shall include a Schedule of the required capital for the implementation of the development and mintenance projects set out therein. (5) The provisions of subsection (3) of section 6 shall *mutatis mutantis* apply to and in relation to the period of membership, vacation of membership, appointment of a member to a vacant post in the District Co-ordinating Committee and other related matters of a District Co-ordinating Committee.

PART III

NATIONAL HIGHWAYS

8. (1) The Minister may by Order published in the U Gazette declare any road or public road or classes of roads or P public roads to be a national highway or national highways, as the case may be.

d in the Declaration of roads or National ighways.

(2) The Minister may declare a road or a public road as a national highway under subsection (1) if he is satisfied that—

- (a) the road or public road crosses at least one provincial boundary and connects two or more provincial centres and is a principal thoroughfare for long distance movement of vehicular traffic;
- (b) the road or public road connects two trunk roads on which the volume of vehicular traffic is more than two hundred and fifty vehicles per day;
- (c) the road or public road passes through important town centres;

		Requirements of	under sections 8 and 9.						Minister to designate user fee national hiehways.	
National Thoroughfures Act. No. 40 of 2008 11	(4) The Minister may designate a national highway to be a restricted access highway under subsection (1), if he is satisfied that the number of interchanges affecting high	highway is relatively more in number. 10. (1) Every declaration under sections 8 and 9 shall—	(a) be accompanied by a plan—(i) specifying the land area which comprises the national highway;	 (ii) specifying the interchanges along the national highway; (iii) specifying the components of the national 		(iv) specifying the building limits and the length and breath of the right of way; and	(b) specify the name by which such national highway shall be identified.	PART IV User fee National Highways	11. (1) The Minister may by Order published in the <i>Gazette</i> , designate the whole or part of an expressway, as a user fee national highway.	(2) The designation referred to in subsection (1) may if so required, specify a period during which such designation shall be in operation.
10 National Thoronglifures Act. No. 40 of 2008	(d) the road or public road has strategic bridge crossing points across major rivers. providing connection to other national highways;	 (e) the road or public road provides access to a place of national importance or a special project of the government; or 	(f) the road or public road provides access to an institution, structure, site or area the subject matter of which is set out in the List II (Reserved List) of the Constitution.	9. (1) The Minister may by Order published in the <i>Gazette</i> designate a national highway declared in terms of section 8, to be	(a) an expressway; or	(b) a restricted access highway.	(2) For a national highway to be designated as an expressway or as a restricted access highway, as the case may be, under subsection (1)—	 (a) the national highway should be designed specially for high speed movement of vehicular traffic with minimum interference to such high speed traffic movements; 	(b) the national highway should not serve the properties bordering it.	(3) The Minister may designate a national highway to be an expressway under subsection (1), if he is satisfied that the number of interchanges that affects high speed movement of vehicular traffic along that national highway is minimal.
				Declaration of Expressways &c						

•

Authority to enter into agreements regarding user fee national highway.

12. (1) The Authority may enter into an agreement with any person including a Government Department, Public Corporation or Private Institution (hereinafter in this part referred to as the "operator") in respect of the design, construction, operation, maintenance, development and overall management of a user fee national highway. (2) The Director-General may by Order published in the *Gazette* delegate to the operator such powers, duties and functions of the Authority as may be specified therein. The Director-General may notwithstanding such delegation continue to exercise, perform and discharge the powers, duties and functions so delegated.

(3) The agreement referred to in subsection (1) may provide for-

- (a) the provision of funds for financing the design, construction, operation. development and maintenance of a user fee national highway or part thereof;
- (b) the purchase, lease or assignment of land for a use. fee national highway;
- (c) the operation. management, maintenance and improvement of a user fee national highway;
- (d) the allocation of rights, liabilities and dutics of each party to the agreement;
- (e) the mode of adjusting of transactions in conformity with foreign currency fluctuations and inflation;
- (f) the re-negotiation of the terms of such agreement and provisions for contingencies;
- (g) the mode of collecting user fees from the users of the user fee national highway;

- National Thoroughfares Act, No. 40 of 2008 13
- (h) the payment of reinuncration of the operators and other employees;
- (i) the allocation and distribution of income derived from the fees referred to in paragraph (g);
- (j) the specifying of performance requirements, performance measures and consequences arising from failure to meet such performance requirements; and;
- (k) the settlement by conciliation or arbitration of disputes relating to the agreement including mandatory procedures, evidentiary provisions and allocation of the cost of conciliation or arbitration.

13. The Minister may, prescribe the fees to be levied from all vehicles used in a user fee national highway and may prescribe different fees for different categories of vehicles. The Minister may also prescribe the categories of vehicles exempted from the payment of the fee.

user fee national

highway.

prescribe fees to be levied for

Minister to

14. (1) The driver of a vehicle used on a user-fec national highway shall pay the fee referred to in section 13 at the prescribed places and to the prescribed persons.

vehicle on a user

Driver of a

fee national highway to pay the fee.

(2) The driver of a vehicle who contravenes the provisions of subsection (1) shall commit an offence and shall on conviction after summary trial by a Magistrate be liable, in the case of —

- (i) first offence to a fine not exceeding five thousand rupces ; and
- (b) second or subsequent offence to a fine not exceeding fifty thousand rupees.

National Thoroughfares Act, No. 40 of 2008

14

PART V

ACQUISITION OF LANO FOR CONSTRUCTION OF ROADS

Construction of a **15.** (1) The Minister may, on the recommendation of new road. **15.** (1) The Minister Road Network Co-ordinating the relevant District Road Network Co-ordinating Committee. or Provincial Council or Local Authority as may be relevant, or the appropriate Divisional Secretary of the relevant area or Community Based Organization operating within such area, authorize — (α) the construction of a new road or a public road ; or

(b) the widening of an existing road or public road or any deviations to such road or public road. (2) The Minister shall, where he authorizes the construction of a new road or public road under subsection (1) direct the Authority to prepare a survey plan depicting the land area required for the construction of such road or public road, specifying the length and breadth of such road, including its reservations and its building limits.

(3) The Minister shall, where he authorizes the widening, improvement or any deviation of a road or a public road under subsection (1) direct the Authority to prepare a survey plan depicting the land required for such road or public road widening or for such deviation specifying the new length and breadth of such road, including its reservations and its new building limits. (4) The Minister shall by Order published in the Gazente declare the land area or any interest therein depicted in the survey plan referred to in subsection (2) or subsection (3) as the case may be. to be a road reservation or a public road reservation as the case may be.

(5) Upon publication of the Order in the *Gazette*, the provisions of this Act. relating to the prohibition of the crection or re-erection of any structures within a building limit shall apply to and in relation to the area of land specified in such Order.

National Thoroughfares Act, No. 40 of 2008 15

16. (1) The Minister may on the recommendation of the Advisory Council or the Authority or the Director-General as the case may be, authorize the construction of a new national highway.

Construction of new National Highways.

(2) The Minister shall where he authorizes the construction of a new national highway direct the Authority to prepare a survey plan of the proposed national highway depicting the area of land required for construction of such national highway including the facilities for recreation. leisure, marketing and other ancillary services, the length and breadth of such national highway, the reservations and the building limits, proposed interchanges and intersections along such highway, if any.

(3) The Minister may on the recommendation of the Advisory Council or the Authority or the Director General authorize the widening improvement or deviation of an existing national highway.

(4) The Minister shall where he authorizes widening improving or deviation of a national highway under subsection (3), direct the Authority to prepare a survey plan depicting the area of land that is required for such widening or for such deviation, including the facilities for recreational, leisure, marketing and other ancillary services specifying the new length and breadth of such national highway including its reservation and its new building limits and interchangers and intersections if any.

(5) The Minister shall by Order published in the Gazette declare the land area or any interest therein depicted in the survey plan referred to in subsection (2) or subsection(4). as the case may be, to be a national highway reservation.

(6) Upon publication of the Order in the *Gazette*, the provisions of this Act relating to the prohibition of the erection or re-erection of any structures within a building limit shall apply to and in relation to the area of land specified in such Order.

Acquisition of land vested in a Local Authority.		Special grants under Crown Land Ordinance.	Purchasing of land for re- settlement.
19. (1) Where the Minister certifies that any land or interest in land in any road reservation, or public road reservation or national highway reservation vested in a Local Authority, is required for the purposes of this Act, the Minister, in consultation with the Minister in charge of the subject of Local Government in the relevant Provincial Council may, by Order published in the <i>Gazette</i> vest such land or interest in such land in the Authority, with effect from such date as shall be specified in the Order, subject to such conditions. If any, as may be so specified.	(2) An Order made under subsection (1) shall confer on the Authority absolute title to any land or interest in land and to any buildings or structures on such land as are specified in such Order with effect from the date specified therein, free from all encumbrances. Compensation shall be payable by the Authority in respect of such land or interest in such land or buildings or other structures thereon.	 20. (1) Where any crown land or part thereof is required for any of the purposes specified under this part of this Act, such purpose shall be deemed to be a purpose for which a special grant or lease to be made under section 6 of the Crown Lands Ordinance (Chapter 454). (2) All assets including any right of way over all national highways and other structures in the possession of, or which are being used by the Authority on the date immediately preceding the appointed date and which are specified in an Order made by the Minister and published in the <i>Gazette</i>, shall be transferred to and shall vest in the Authority with effect from the appointed date. 	21. (1) The Authority may with the approval of the Minister and with the consent of the owners purchase any land or any interest therein specified in the survey plan and the Order referred to in sections 15. I6 and 19 of this Act.
 Upon declaration of a road reservation or a public road reservation or a national highway reservation under this part of the Act, no development work shall be executed or caused to be executed by any Government agency or any other person within the area so declared as a reservation. except with the prior written approval of the Authority. 18. (1) Where any land or any interest in Jand is declared as a road reservation or as national highway reservation, as the case may be — 	 (a) such land or interest therein shall for the purposes of the Land Acquisition Act (Chapter 460) be deemed to be required for a public purpose ; and (b) that land or interest therein maybe acquired under the Land Acquisition Act (Chapter 460) by the Government for the Authority. 	(2) Where the President is of opinion, upon the recommendation of the Minister, that any land or interest in land on which a reservation is declared to be a road reservation or a public road reservation or a national highway reservation is required for the purpose of carrying out a "public road project" or a "national highway project" as the case may be, and that such project would serve the just requirements of the general welfare of the people, the President may by Order published in the <i>Gazette</i> , declare such land or interest in land on which a road reservation is declared, as the case may be, such project.	(2) Upon the protice tool of the Order and a subsection (2), the provisions of sections 3, 4, 5, 6, 7 and 8 of the Urban Development Projects (Special Provisions) Act. No 2 of 1980 shall <i>mutatis mutandis</i> apply to and in relation to the acquisition of the land under the provisions of this Act.
Prohibition of development work within a road reservation. Application of the Land Acquistion Act.			

[] National Thoroughfares Act, No. 40 of 2008

National Thoroughfares Act, No. 40 of 2008

16

.

8.4-2 - 9

		Direction and control of works to be vested in Director- General.	Minister may order temporary	closurc of a road, public road or a national hishum,	112C H 67.					No services to be carried on a road, a public	road or a national highway without the permission of the Authority.
Pan VI	EXECUTION OF WORKS	24. The direction and control of all work to be undertaken under this Act shall be vested in the Director- General subject to the general direction and control of the Authority.	25. (1) The Minister on the recommendation of the Authority or the Director-General acting under the deleasion of nowers to him by the Authority may by Order	published in the <i>Gazette</i> order — (a) the temporary or permanent closure of —	(i) an existing road or a public road or national highway ; or	(ii) a section of a road or a public road or national highway : or	(iii) a bridge on a road or a public road or national highway : or	 (b) substitution of an alternate route or alternate section of a road, in lieu of an existing section of a road or a public road or a national highway. 	(2) In the execution of any order under this section if it becomes necessary to acquire any land for such purpose, such land shall be deemed to be required for a public purpose and the provisions of Part V shall apply to and in relation to such acquisition.	26. (1) No person, Government Department, local authority or any other institution shall use the reservation of a road or a mational hichway for the number of	carrying on any gas, water, electricity, telecommunication or any other service, without the prior written approval of the Director General, Provincial Director, Chief Engineer or Executive Engineer of the Authority as the case may be.
(2) The Authority may with the approval of the Minister purchase any land required for re-settlement of persons disclored or affected due to the implementation of any of	the provisions of this Act.	22. Purchase price of a land under section 21 and other related matters shall be determined by a Committee comprising —	(a) the Secretary to the Minister in charge of the subject of Highways or his representative ;	(b) the Secretary to the Minister in charge of the subject of Finance or his representative ;	(c) the Secretary to the Minister in charge of the subject of Lands or his representative ;	(a) the Chief Valuer or his representative ;	(e) the registered licensed Valuer nominated by the Institute of Valuers.	23. (1) The Authority may with the approval of the Minister for the purpose of maintenance of a road or a public	road or a national highway, alienate any land or any interest therein held by the Authority, subject to such terms and conditions as may be determined by the Minister.	(2) The provisions of the Crown Lands Orginance shall not apply in relation to the alienation of any land by the Authority under this section.	(3) For the purposes of this section alienation includes sale, lease, rent, rent purchase or grant.
		Determination to be made by a Committee.						Power of Authority to	alicnate land.		

61

National Thoroughfares Act, No. 40 of 2008

National Thoroughfares Act. No. 40 of 2008

18

.

.

,

(2) The Authority may, with the approval of the Minister. charge a rental from any person referred to in this section for using a road reservation. a public road reservation or a national highway reservation for any of the services referred to in this section. (3) Minister may from time to time on recommendation of the Advisory Council, prescribe the appropriate rental to be charged and other matters relating to charging of rental under this section. (4) The Director-General, the Provincial Director, the Chief Engineer or the Executive Engineer as the case may be, may on behalf of the Authority enter into agreements, subject to the provisions of any special enactment in that behalf and subject to the approval of the Minister, with any person or Government Department, local authority or any other institution to authorize and regulate the use by such person or Government Department or local authority or any other institution of any road reservation, a public road reservation or any other institution of any road reservation for the purpose of carrying on gas, water, clectricity, telecommunication or any other service.

(5) In the event of the widening or the improvement or deviation of a road, a public road or a national highway, the Director-General or the Provincial Director or the Chief Engineer or the Executive Engineer, as the case may be, may by notice require any person to remove or shift any physical structure or pipe line erected or laid by such person at the own cost of that person within the time period specified in the notice.

(6) Where the Executive Engineer is unable or unwilling to remove any obstruction referred to in this section due to any resistance or if the person responsible for causing such obstruction cannot be found the Executive Engineer may make an application in that behalf to the Magistrate's Court having jurisdiction.

(7) The Magistrate may after considering the facts of the case. direct the fiscal to remove such obstruction forthwith.

(8) The provisions of this section shall from and after the appointed date, apply to any person. Government Department, local authority or other institution using any road reservation, public road reservation or a national highway reservation for any of the purposes connected with the supply of any of the services specified in the aforesaid provisions of this section, subject however to the provisions of paragraph (α) of subsection (2) of section 90 of this Act.

27. (1) No person shall, for the purpose of any public service. or private enterprise. make use of a road or a public road or a national highway or execute any work thereon. or set up or maintain any plant or erection thereupon, except under and in accordance with, the terms and conditions of agreement referred to in section 26:

Provided that before any excavation, digging or cutting of any road, any public road, or any national highway is allowed to commence in pursuance of any such agreement, the cost of restoration or repair of such road, public road or national highway after such excavation, digging or cutting as estimated by the Chief Engineer, and an additional refundable deposit as prescribed by the Director-General shall be paid to the Authority: Provided further, if there is any additional cost incurred by the Authority outside of any amount estimated, such amount shall be deducted from the additional refundable deposit paid to the Authority and the balance remaining shall be thereafter be refunded. (2) Any person who contravenes or fails to comply with any provision of this section shall be guilty of an offence, and shall, on conviction after summary trial by a Magistrate be liable to a fine not exceeding fifty thousand rupees.

No public service. or private enterprise. to make use of a road a public road or a national highway without authority.

Executive Engineer may remove obstructions.

28. (1) Notwithstanding anything contained in any agreement referred to in section 26 or anything to the contrary in any other written law, it shall be lawful for the Executive Engineer to issue notice to any person who has, in pursuance of an agreement referred to in section 26, caused an obstruction to any road, any public road or any national highway. or caused obstruction to the widening or improvement or deviation of a road, a public road, or a national highway, to remove or abate such obstruction to the satisfaction of the Executive Engineer, within such period of time as may be specified in that notice.

(2) Where such person fails or neglects to remove or abatc such obstruction or to remove or shift such physical structure or pipelinc, within such period of time it shall be lawful for the Executive Engineer or any person authorized by him to remove or abate such obstructions or to remove or shift such physical structure or pipeline and recover the costs incurred in that connection.

(3) No compensation shall be payable to such person for any breach of such agreement resulting from such removal or abatement or shifting, as the case may be. 29. (1) Any officer or servant authorized by the Director-General may at all reasonable times of the day, and upon notifying the occupier thereof of their intention, enter upon any land adjacent to any existing or proposed road, public road or national highway or upon any land to be declared in future as new road reservation, new public road reservation or new national highway reservation with all necessary vchicles, equipment, tools and other requisites and perform all acts and things as may be necessary for the purpose of ----

 surveying, measuring, tracing, working, opening, altering, turming, repairing, clearing, improving or fencing thereupon ;

- (b) constructing, excavating, repairing, clearing or improving any bridge, causeway, earth retaining structure, culvert, drain, fence or ditch thereupon; and
- (c) erecting of temporary quarters or repairing any building for the use of any such officer and his workmen.

(2) Any officer or servant authorized by the Director-General may at all reasonable times of the day and upon notifying the occupier thereof, of their intention, enter upon any land adjacent to any existing or proposed road, public road or national highway to search for, dig, cut, take and carry away water, timber, brushwood, stone gravel, sand or any other material from any land adjacent or near to any existing or proposed road or highway or national highway for the purpose of —

- (a) surveying, measuring, tracing, making, working, opening, altering, turning, repairing, clearing, improving or fencing thereupon;
- (b) constructing, repairing, clearing or improving any bridge, causeway, culvert, earth retaining structure, fence or ditch thereupon; and
- (c) crecting or repairing any temporary quarters or building for the use of any such officer and his workmen and labourers.

30. (1) In the event of the necessity arising to effect emergency repairs to a road, a public road or to a national highway, it shall be lawful for any officer or servant authorized by the Director-General to carry away from any land in the vicinity of any such road, public road or national highway, any material, which is required for such purpose.

Right of cntry to

lands in the vicinity of a road, a public

road or a national highway.

Certain persons to be empowered to survey. measure &c.. a road. a public road or a national highway.

d, Rubble and ag waste to be he adjacent land. 12	5 2 2 2 2	5 = 5	At Construction Id of temporary Iy roads.	<u>ج</u>	y II	5	it Cutting. Jopping II &c. of trees to facilitate construction of a d road a milio	
32. (1) When surveying for a new road, public road, national highway, bridge, causeway, culvert or carth retaining structure or during the progress of work connected with the maintenance, repair or construction of a road, public road, national highway, bridge, causeway, culvert or earth retaining	structure, or clearing any earthslip, it shall be lawful for any officer or servant authorized by the Director-General to dispose of any rubble or waste material by dumping the same on any land adjacent thereto.	(2) An officer or servant authorized by the Director General under the provisions of subsection (1) shall take all necessary steps to avoid unnecessary hardship to the owner or occupants of such land.	33. It shall be lawful for any officer or servant authorized by the Director-General to make a temporary road for the diversion of traffic through an adjacent land at any time during	(a) closure of bridge, causeway, culvert or earth retaining structure for repairs or re-construction ; or	 (b) closure of a road, a public road or a national highway or section of a road, a public road or a national highway for rehabilitation or reconstruction : 	provided that such diversion shall not require the demolition of any building nor encroach on any enclosed garden or yard.	34. It shall be lawful for any officer or servant authorized by the Director-General to cut and remove all trees. bushes, shrubs, branches, leaves or roots that cause damage to a road, a public road or an national highway and	obstruction to the passage of traffic, street lighting, visibility, road signs, traffic light signals and road furniture. and for that purpose to enter upon any land or premises with the
(2) An officer or servant authorized by the Director-General to carry out any activity under the provisions of subsection (1) shall not be deemed to be a trespasser.(3) No officer or servant authorized by the Director General	under the provisions of subsection (1) shall obtain any material from any land if such materials can be conveniently obtained from any adjacent state land. (4) The Authority shall pay to the owner of the land from	which any material has been removed reasonable compensation for the material so removed and for any damage caused in obtaining and transporting the same.	(5) An officer or servant authorized by the Director- General under the provisions of subsection (1) shall take all safety measures for fencing or barricading of pits and quarries from where any such materials had been removed.	21. (1) It shall be lawlur for any officer of serving authorized by the Director-General when carrying out a survey for the improvement or construction of any road, any public road or any national highway, bridge, causeway, culvert or earth retaining structure, or carrying out	improvements or repairs thereto, or constructing any new road, new public road or new national highway, bridge, causeway, culvert or earth retaining structure, to make and erect temporary buildings on any land adjacent thereto for	the accommodation of such officers, workmen, machinery and equipment.	(2) No officer, or servant authorized by the Director- General under the provisions of subsection (1), shall erect a building on any land under cultivation or on any developed land if there is suitable waste land or state land within close proximity available for the purpose.	(3) The Authority shall pay reasonable compensation for the use of such land for any damages done thereto, to the owner of such land.

25

National Thoroughfares Act, No. 40 of 2008

National Thoroughfares Act, No. 40 of 2008

24

. . Erection of temporary buildings on land for construction of a road. a public road or a national higbway.

•

	Owners or occupiers of land adjacent to a national	ngmay nave no ris'hi of access Iliereto			No building to commence on fand adjacent to a road, a public road or a national highway without notice.
PART VII	PROTECTION OF ROADS, PUBLIC ROADS AND NATIONAL HIGHWAYS 39. (1) The owner or occupier of a land which abuts or adjoins a national highway declared to be as expressway or restricted access highway shall not—	 (a) cnjoy the right of access to, or cgress from. the expressway or restricted access highway ; (b) have any right of passage, right of use or right of way between the land and the expressway or restricted access highway ; and 	 (c) be entitled to any rights which in anyway affect the expressway or restricted access highway. (2) The Authority shall, before declaring a national highway to be an expressway or a restricted access highway, provide appropriate alternate access to an owner or occupier where access is curreled indication (1). 	(3) Any person who acts in contravention of the provisions of subsection (1), shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate. in the case of first offence for a fine not exceeding ten thousand rupees and in the case of second or subsequent offence to a fine not exceeding one hundred thousand rupees.	40. (1) Notwithstanding the provisions of any other written law, no person shall commence any building, or erect any wall, fence or any other structure alongside any road, public road or national highway or place any temporary fence or enclosure on or alongside, any road, public road or national highway, for commencing or repairing any such building, fence, wall or any other structure, without giving one calendar month's notice in writing to the Executive Engineer of such intention.
necessary workmen, tools and equipment for the cutting. lopping and the removal of such trees, bushes, shrubs, branches or roots, as the case may be.	35. It shall be lawful for any officer or servant authorized by the Director-General to put up or make fences. barricades. ditches, drains or bank alongside any road, public road or national highway.	36. An officer or servant authorized by the Director- General shall have power to make, scour, cleanse and keep open all ditches, drains, culverts and bridge openings, water courses. No owner or occupier of any adjacent lands shall do any act or thing that would interfere with or cause damage to the aforesaid acts.	37. (1) Any person who sustains any loss or damage as a result of the exercise by any officer or servant authorized to carry out any act, in the exercise of any power conferred by this Act shall be entitled to receive compensation for the same.	 (2) A person referred to in subsection (1) shall make an application to the Divisional Seerctary of the area within a period of three months from the date on which the alleged damage had been caused requesting the payment of compensation for the same. No application made after this period shall be considered for this purpose. (3) Where the amount of compensation cannot be agreed 	upon then such amount may be decided by arbitration by the arbitrator appointed by the Divisional Secretary. 38. Any officer or servant exercising or discharging any power or function under this Act, who behaves or conducts finmself in a vexatious manner or resorts to violence shall be guilty of an offence, and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding twenty five thousand rupces.
	Erection of fences &c alongside a road, a public road or a national highway.	Drains & c. to be kept open if so required for the construction of a road, a public road or a national	Authorized Authorized officers to pay compensation for damage to property.		Veratious conduct of officers.

27

National Thoroughfares Act, No. 40 of 2008

National Thoroughfares Act. No. 40 of 2008

26

.

(2) Where any person fails to give notice under subsection (1). it shall be lawful for the Executive Engineer with the sanction of the Chief Engineer to cause any such building to be demolished or any such fence, wall or structure to be dismantled and removed and to recover the costs of such removal from such person: Provided that any such demolition, dismantling and removal shall be carried out only upon giving the owner or occupier adequate notice of such impending demolition, dismantling and removal as the case may be.

- (a) that the person to whom permission is granted shall at night-time keep a light of sufficient intensity upon the premises for so long as such temporary enclosure or structure is in existence; and
- (b) that sufficient room on the road, public road or national highway shall be made available for the movement of traffic and pedestrians without hindrance.

(2) Any public officer connected with the distribution of any service to the public may, notwithstanding the provisions of section 40 or subsection (1) of section 41 make temporary use of any part of a road, public road or a national highway.

National Thoroughfares Act, No. 40 of 2008 29

42. (1) The Minister may by Order published in the *Gazette* specify the building limit alongside a road, public road or a national highway or part of a road, a public road or a national highway.

(2) Where a building limit of a road, a public road or a national highway has not been specified under subsection (1), the building limit for that road or public road or national highway shall be —

- (a) fifteen metres from the Centre of the carriageway of that national highway;
- (b) seven decimal point five metres from the centre of the carriageway of that public road; and
- (c) five metres from the centre of the carriageway of that road.

(3) No person shall after the appointed date except under the authority of licence granted by the Executive Engineer erect, recrect or make any addition to any building, gateway or any other structure or construct a basement or other underground structure or dig a well, pond shaft or any other structure (hereinafter in this Part of this Act referred to as "structure") within a building limit. (4) (a) No licence, for the crection of any structure, shall be granted under subsection (3) by the Executive Engineer within ten (10) metres from the centre of a carriageway of national highway within a town limit and seven point five (7.5) metres from the centre of a carriageway of a national highway outside a town limit.

(b) For the purpose of this subsection the word "structure" does not include a boundary wall. (c) No licence for the erection of any structure shall be granted under subsection (3) by the Executive Engineer between the limits prescribed in paragraph (a) and the

enclosures.

permission for erection of temporary

Obtaining

Building limits alongside a road, a public road or a national highway to be declared by Order.

building limit. unless he is satisfied that the prohibition against the crection of any structure within such limit will cause serious hardship to the owner of the land on which such structure is to be crected and the written consent of the Provincial Director for the granting of the licence is obtained by the Executive Engineer. The Provincial Director shall not give such consent unless he is satisfied, having regard to the width of the road, public road or national highway, the visibility available for traffic and the proper upkeep of the road, public road or national highway, that the enforcement of the aforesaid prohibition is not for the time being essential.

- (i) in respect of such structure or part thereof within such building limit if such land is acquired under the Land Acquisition Act (Chapter 460); or
- (ii) in respect of any improvement or adaptation of the remaining part of such structure after the severance or removal of such structure within such limit for any purpose whatsoever.

(e) It shall be a condition of any licence granted by the Executive Engineer under subsection (3) for the re-erection of, or for any addition, any structure that if possession for the public use is taken at any time of the land on which such structure is situated or if such land is acquired under the Land Acquisition Act (Chapter 460), the compensation payable in respect of such structure shall be determined in accordance with the provisions of sections 46 and 47.

(5) (a) The Executive Engineer, shall not grant a licence under subsection (3), without the approval of the Provincial Director where the structure is of religious significance.

(b) Where the Executive Engineer secks approval under paragraph (α) , the Provincial Director shall hold an appropriate inquiry in respect of the matter, before granting the approval.

(c) Where the Provincial Director refuses approval under this subsection he shall give reasons in writing for such refusal.

(6) (*a*) Full particulars of every licence granted under subsection (3) including particulars of the condition set out in subsection (4) and of the land and the structure to which the condition relates and the value thereof shall be entered by the Executive Engineer in a register to be kept for the purpose at his office; and the Executive Engineer shall cause a ccrifted copy of every such entry to be registered in the office of the such land situated. The Registrar of Lands shall register all such land is situated. The Registrar of Lands shall register all such copies free of any charge or duty.

(b) Upon the registration of any entry under paragraph (a). the conditions attached to such licence shall be binding upon the land and the structure affected thereby in accordance with the tenor of such condition, and to whomsoever the ownership or possession of the fand, building or structure may at any time pass. (c) Every register kept under paragraph (a) at the office of the Executive Engineer shall be made available for inspection to any person interested at any time when the office is open for the transaction of business.

43. Notwithstanding any provision in any other written law no Agency nor Authority whose approval is required for the erection of a structure shall grant approval for the erection of a structure within the building limit specified in section 42 unless such erection has been authorized by a licence granted by the Executive Engineer in accordance with the provisions of this Act.

Building approval only on obtaining licence of Executive Engineer. â

Modification of building limit.

44. The Minister may, upon the recommendation of the Authority or the Dircctor-General by Notice published in he Gazerre modify or extend the building limit in respect of iny road, public road or national highway or part of a road, public road or a national highway :

General shall, before making such recommendation, have regard to the convenience of the public and to the need for preserving and continuing the amenities of the locality and or ensuring that the modification or extension shall not diversion. deviation or widening of the road, public road or nercase the cost of any proposed scheme for the development. national highway or part of the road, public road or national highway or any part of the road, public road or national highway as the case may be which will be affected by such Provided however, that the Authority or the Directornodification.

addition to an existing structure in contravention of the provisions of section 42. the Executive Engineer shail, by written notice, require such person to demolish or remove such structure or any addition thereto on or before such date (1) If any person crects any structure or makes any as may be specified in such notice, being a date not earlier han seven days from the date thereof. £. contravention of Procedure to be followed in case

(2) It shall be the duty of the person on whom a notice is issued under subsection (1) to comply with the requirements specified in such notice within the time specified therein or within such extended time as may be granted by the Executive Engineer, on application made in that behalf.

within such time or extended time as the case may be, the Executive Engineer may apply to the Magistrate for a Mandatory Order, authorizing the Executive Engineer to (3) (a) Where in pursuance of a notice issued under subsection (1), any structure, is not demolished or removed. cause such structure to be demolished or removed;

by the Executive Engineer under subsection (1) to dinolish (b) The Magistrate, may if he is satisfied as to the existence of the facts, issue notice on the person who had failed to comply with the requirements of the notice issued or remove such structure and thereafter make order accordingly: (c) If the person who had erected the structure in contravention of the provisions of section 42, undertakes to demolish or remove such structure, the Magistrate may, if he thinks fit, postpone the operation of the order for a period not exceeding sixty days, allowing time for such person to demolish or remove such structure.

paragraph (a) of subsection (3) for the removal of a structure of religious significance and where such structure can be safely removed, then subject to the provisions of paragraph (b) of subsection (3) such structure shall be removed and handed over to the organization or institution responsible (4) (a) Where a mandatory order has been made under for erecting such structure. (b) Where the Executive Engineer is unable to hand over the structure as specified in paragraph (a), the Executive Engineer shall notify the same to the Magistrate and dispose of the structure on the instructions of the Magistrate with duc respect and care. (5) Where a mandatory order has been made under subsection (3) it shall be the duty of the Police to render all necessary assistance to the Executive Engineer in the execution of such order.

any reasonable expenses incurred by him in demolishing or (6) The Executive Engineer shall be entitled to recover removing any structure in pursuance of an order made by he Magistrate under subsection (3).

of erection of structures in section 42.

Determination of compensation in case of lands with buildings on it.

46. Where any addition to a structure which has been built under the authority of a licence under section 42, is situated on any portion of land of which possession for the public use is taken under sections 15 and 18 of this Act, the determination of the compensation payable in such case shall, notwithstanding anything to the contrary in the Land Acquisition Act, (Chapter 460) be subject to the following provisions :---

- (a) where the whole of the structure is situated within the building limit, the value assigned to the structure as distinct from the land acquired shall be the value entered in the register under subsection (6) of section 42 or the market value of the structure at the time of the acquisition, whichever is the less and for the purpose aforesaid, such market value shall be the difference between the market value of the structure together with the land. and the market value at that time of the land as distinct from the structure :
- the building limit and the value entered in the value shall for the aforesaid purpose be the difference between the market value of the entire structure with the land attached thereto at the time where only a part of the structure is situated within register under subsection (6) of section 42 is the value of the entire structure in accordance with paragraph (a) of subsection (2) of section 47, the from the land acquired, shall be the value so entered or the market value of the entire structure at the ime of the acquisition, whichever is the less: Market of acquisition, and the market value assigned at value assigned to that part of the structure. as distinct hat time to the land so attached as distinct from the entire structure; *(q)*

National Thoroughfures Act, No. 40 of 2008 35

- (c) where only a part of the structure is situated within the building limit and the value entered under subsection (6) of section 42 is the value of that part in accordance with paragraph (b) of subsection (2) of section 47 the value assigned to that part of the structure, as distinct from the land acquired, shall be the value so entered in the register or the value of the part of the structure within the building limit at the time of the acquisition, whichever is less, and for the purpose aforesaid such value shall be the aggregate of —
- the estimated cost of the severance and removal of that part of the structure at that time : and
- (ii) the estimated cost in the case of a building, of adapting at that time the part of the building which will then remain to the purpose for which the building is used at that time, and in the case of a boundary wall or gateway, of completing at that time such additions or repairs as may be necessary;
- (d) the value assigned to the land as distinct from the buildings thereon shalf be the market value of the land at the time of the acquisition.

47. (1) The value of any structure, for the purpose of subsection (4) of section 42 —

Valuation of buildings &c.. within building

limits.

- (a) shall be fixed by agreement between the Chief Engineer and the owner or owners of the structure; or
- (b) where it is not fixed by agreement, shall be determined by an arbitrator, appointed by the Provincial Director.

(2) In determining the value of any structure or any part thereof for the purposes of subsection (4) of section 42, the following principles shall be followed :---

- (*a*) where any structure or any part thereof the removal of which would render the remaining part useless, is situated within the building limit of any road, public road or national highway, and where, for that reason, the removal of the entire structure will become necessary in the event of the road, public road or national highway being widened or deviated, the value of the entire structure shall be determined; and such value of the premises, that is to say, of the structure together with the land attached thereto, at that time of the land as distinct from the structure ;
- (b) where only a part of a structure is situated within the building limit of any road, public road or national highway and after the severance and removal of such part, the remaining part will be capable of adaptation either to the original purpose of the structure or to any other purpose permitted by law, the value of the part within the building limit shall alone be determined and such value shall be the aggregate of —
- (i) the estimated cost of the severance and removal of that part of the structure; and
- (ii) the estimated cost, in the case of buildings, of adapting the part of the building, which will then remain to the purpose for which the building was used at the time of the valuation. and in the case of a boundary wall, gateway or other structure or any basement or other underground structure or any pond. well or shaft of completing such additions or repairs as may be necessary :

National Thoroughfares Act, No. 40 of 2008 37

(c) where at the time of valuation of any structure, the value of such structure, is found to have been increased by any alteration or improvement effected in the structure, then notwithstanding that the alteration or improvement may have been authorized by a licence under subsection (3) of section 42, the amount of the increase shall not be taken into account unless the alteration or improvement was necessary for the maintenance of the structure in a proper state of repair.

(3) Every award or agreement made or entered into as the case may be, under subsection (1) in respect of the value of any structure or part thereof, shall specify the particular paragraph or paragraphs of subsection (2) in accordance with which the value aforesaid was fixed or determined. (1) Where the right of the owner of the land, part of which is situated within the building limit of any road, public oad or national highway, to erect a building on the land, is for him at his expense, and the Minister may, upon the (acting under the delegation of the powers to him by the estricted by reason of the provisions of section 42, such o the Minister requesting that the portion of vacant land at the rear of his land, of sufficient extent to afford him building facilities of the same nature as he would have enjoyed had the provisions of section 45 not been in force, be acquired Authority) and after such inquiry as he may deem necessary. order that a specified extent of the portion of vacant land at he rear of the land of such owner be acquired for him and he provisions of sections 15 and 18 of this Act, shall hereupon apply for the purposes of the acquisition of such owner, may if he desires to erect a building, make application recommendation of the Authority or the Director-General extent of land. 18.

(2) All costs, charges and other expenses incurred in the acquisition of any extent of land in pursuance of an order under subsection (1) shall be paid by the owner of the land upon whose application such extent of a land is acquired.

Acquisition of adjacent land for owners affected by building limits.

(1) For the purposes of sections 42 to 48 a road, a public road or a national highway shall be deemed to be under the control of the Authority if it is maintained by the Authority from funds provided by the Authority. A certificate road, public road or national highway is under the control of under the hand of the Director-General to the effect that any the Authority shall be admissible in evidence and shall be prima facie evidence of that fact. . 64 the provisions of Application of sections 42 to

8<u>4</u>

material and in whatever manner constructed, and every fence (2) For the purposes of sections 42 to 48 the expression "boundary wall" includes every structure of whatever of whatever description, which serves or is intended to serve he purposes of a boundary wall.

(1) The Executive Engineer may, where it appears **50.** (1) Th to him that — જ kc., of a road, a public road or a encroachment Obstruction. national

- any road, public road or national highway has been obstructed or encroached ; or
- that the boundary line of any road, public road or national highway has been altered without proper authority ; or <u>(</u>
- that any road, public road or national highway has been barricaded without proper authority. છ

by any person, direct such person by notice in writing to remove the said obstruction encroachment, alteration or barricade within the time as the Executive Engincer has specified in the Notice.

or alteration is not removed and the road, public road or national highway is not cleared or the boundary line is not restored within the time specified by the Executive Engineer. the Executive Engineer shall cause such obstruction. encroachment, barricade of alteration to be removed or (2) Where any such obstruction, encroachment, barricade cleared or restored as the case may be. Any expense incurred yy the Executive Engineer in doing so shall be recovered from the offender as a debt due to the State.

jurisdiction over the area where the road, public road or barricaded or altered is situated, praying for an order of the Court directing the Fiscal to take down and remove or clear be or is likely to be offered, he will be unable to remove or clear to restore the road, public road or national highway of he obstruction. encroachment, barricade or alteration as the case may be, the Executive Engineer shall on application made in that behalf to the Magistrate's Court having (3) Where the Executive Engineer is unable or apprehends that due to any obstruction or resistance as will national higbway which was obstructed, encroached, or restore such obstruction, encroachment, barricade or alteration as the case may be.

and shall thereafter in writing report to Court such fact along (4) Where an Order under subsection (3) is issued to the Fiscal by a Magistrate, he shall forthwith execute such Order with a narrative of the manner in which it was executed. Any plan or survey made under the authority of the Director-General shall be admissible in evidence and shall De prima facie proof of the facts stated therein. 51.

Survey to be prima facie proof.

> For the purpose of the application of the provisions of the State Lands (Recovery of Possession) Act, No. 7 of 1979 to any road or public road or national highway to which this Act applies – 22.

the provisions of

Application of the State Lands Recovery of

ossession) Act.

- section 3 of the State Lands (Recovery of every written notice issued under any provision of this Act shall be deemed to be a notice served under Possession) Act, No. 7 of 1979 ; 3
- the expression "competent authority" in the State Lands (Recovery of Possession) Act No. 7 of 1979, shall deemed to include a reference to the Director-General, Provincial Director. Chief Engineer or Executive Engineer as the case may be of the Authority : (9)

highway.

the expression "state lands" in the State Lands deemed to include a reference to every road or (Recovery of Possession) Act, No. 7 of 1979, shall public road or national highway to which this Act applies. <u></u>

of rights by virtue of possession or user shall not apply to road or public roads or national highways ; and no person The Provisions of the Prescription Ordinance (Chapter 68) or of any other law relating to the acquisition shall be entitled to any exclusive rights of ownership. possession or user over or in respect of, a road or public road or national highway. 53. Ordinance not to

apply to lands

Prescription

required for a

road. a public

road or a

highway.

national

public road or national highway without any hindrance or 54. (1) It shall be the duty of the Authority to permit and protect the rights of the public to the use of any road, inconvenience.

road, a public

road or a

highway.

national

Protection of right to use a (2) It shall be the duty of the Authority to prevent. as far as possible, the temporary or permanent closure or obstruction of any road, public road or national highway. (1) Every person who, without lawful authority or SS. excuse

road, a public

road or a

Damaging a

highway to be

offence.

national

- public road or a national highway which consists digs a drain or excavates on any part of a road of a carriageway ; or છ
- purpose of improving the road, public road or a national highway without the consent of the removes the soil or turf from any part of a road, public road or a national highway except for the Executive Engineer or Chief Engineer ; or 3
- lights any fire or discharges any material on a road. public road or a national highway, causing damage to the same ; or ত

I

projecting from the vehicle damages the operates a vehicle in such a manner that the materials carriageway of a road, a public road or a national highway. S

shall be guilty of an offence under this Act and shall be rupces and in the case of second or subsequent offence, to a fine not exceeding fifty thousand rupees and in the case of continuing offence to a fine of five thousand rupces for each liable on conviction after summary trial by a Magistrate in the case of a first offence to a fine not exceeding five thousand day after conviction during which the offence is continued.

excuse damages, pulls down or obliterate a traffic sign, a traffic signal placed on or over a road, a public road or a national highway or a kilometer stone or a lamp post or a direction post or any other similar contrivance or device so trial by a Magistrate be liable in the case of first offence to a fine not exceeding five thousand rupees and in the case of thousand rupees and in the case of a continuing offence to a fine of five thousand rupces for each day after conviction (2) Every person who, without lawful authority or placed on a road, a public road or a national highway, shall second or subsequent offence to a fine not exceeding fifty be guilty of an offence and shall on conviction after summary during which the offence is continued. 56. (1) Every person who, without either the prior exceeding fifty thousand rupees and in the case of a continuing offence to a fine of five thousand rupees for each letter. sign, statue, hoarding or other mark upon the furniture shall be guilty of an offence and shall on conviction and in the case of second or subsequent offence to a fine not consent of the Executive Engincer or without reasonable excuse. paints or inscribes or affixes or creates any picture, carriageway of a road, a public road or national highway or in a road, public road or national highway or on any road after summary trial by a Magistrate be liable in the case of first offence to a fine not exceeding five thousand rupees day after conviction during which the offence is continued.

Painting pictures highway without lawful excuse an road. a public &c, along a road or a national offence. Vational Thoroughfures Act, No. 40 of 2008

National Thoroughfares Act, No. 40 of 2008 긲

(2) It shall be lawful for the Executive Engineer to remove any picture, letter, sign, statue. hoarding. notice or other mark referred to in the subsection (1). (1) The Director-General may, having regard to the safety of the users of a road. a public road or a national highway, impose temporary load restrictions on any road, on any public road or on any national highway or section of a road, a public road or a national highway or on any bridge. 57.

Director General

to impose

restrictions on a temporary load

road, a public

road or a highway national

summary trial by a magistrate. be liable, in the case of a first offence to a fine not exceeding ten thousand rupees and in the case of a second or subsequent offence to a fine not (2) A person who contravenes the provisions of subsection (1) shall be guilty of an offence and shall on conviction after exceeding one hundred thousand rupees.

(1) Where the foot walk of a road, a public road or a national highway is damaged-<u>3</u>8

work being carried out on the land adjacent to the by, or in consequence of any excavation or other road, public road or national highway; છ

by a motor vehicle being driven onto the road. public road or national highway. (*q*)

and recover the expenses as are reasonably incurred by him in doing so, from the owner of the land or the person the Executive Engineer may forthwith repair the damage responsible for causing the damage. (2) Where the foot walk of a road, public road or a national highway is obstructed by the parking of a vehicle. the person responsible for such parking shall be guilty of an summary trial before a Magistrate to a fine not exceeding offence under this Act and be liable on conviction after five thousand rupces and in the case of a second or subsequent offence to a fine not exceeding fifty thousand rupees and in

the case of a continuing offence to a fine of five thousand rupecs for each day in respect of which such offence is continued after conviction.

of vehicles or pedestrians along a road, public road or or subsequent offence to a fine not exceeding fifty thousand rupces and in the case of the continuing offences to a fine of five thousand rupees for each day after conviction during (1) Every person who, without lawful authority or reasonable excuse, in any way wilfully obstructs the passage national highway, shall be guilty of an offence and be liable on conviction after summary trial by a Magistrate to a fine not exceeding five thousand rupees and in the case of second which the offence is continued. 59.

road or national Obstruction of

road, public

highway to be

an offence.

(2) A police officer may arrest without warrant any person who is committing an offence under this section. Every person who without lawful authority or excuse and shall be liable on conviction after summary trial by a deposits sand, stone, timber or any other material on a road. public road or national highway, shall be guilty of an offence Magistrate in the case of first offence to a fine not exceeding offence to a fine not exceeding fifty thousand rupees and in the case of a continuing offence to a fine of five thousand rupees for each day after conviction during which the offence five thousand rupees and in the case of second or subsequent is continued. 60.

61. (1) It shall be lawful for the Executive Engineer or a police officer to require the owner of the sand, stone, timber, or any other material so deposited within the right of way of the road, public road or national highway to remove or rc-deposit the same or cause it to be removed or re-deposited. away from the road, public road or national highway.

Removal of sand. stone, timber &c..

> (2) A person required to remove and re-deposit any sand. stone. timber or any other material under subsection (1) shall comply with the requirement within a period of three days.

&c.. on a road, a public road or a highway to be Depositing of sand, timber an offence. national

43

8.4-2 - 22

excavation &c. obstruction to foot walk by

Damage and

Depositing of dropping things or pitching.		Dropping carth, sand or stoncs &c on a road, a public road or a national highway to bc an offence.	Erection of barriers &c across a road, a públic road or a national highway.
 (2) The Executive Engineer may permit a person or a body of persons to undertake the planting and maintenance of a specified area along a highway. The person or body of persons so responsible shall be permitted to place a name board not exceeding zero point seven five (0.75) metres height from the ground indicating the name of such person or body or persons. 64. Any persons. 64. Any person who— 64. Any person who— 63. and point condon and or highway, any matter or rubbish; or 	 (b) pitches a booth, stall or stand on a road, public road or national highway; or (c) sends waste water or any other liquid waste from a house, building or garden to any part of a road, public road or national highway, shall be guilty of an offence under this Act. 	65. Any person who, without lawful authority or excuse drops earth, sand, stone or any such material or spills water, oil or any such fluid while transporting it in a vehicle, on a road, public road or national highway, shall be guilty of an offence under this Act.	66. No person other than a police officer or a member of the Armed Forccs shall erect a gate or barrier across a road, public road or national highway without obtaining the prior permission of the Executive Engineer. Any person who so erccts a gate or barrier shall be guilty of an offence under this Act.
of a bod boa boa boa crei	Sha I	dro oil o offe	the pub pub erco
and if he fails to do so, he shall be guilty of an offence and shall be liable on conviction after summary trial by a magistrate in the case of first offence to a fine not exceeding five thousand rupees for each day after conviction during which the offence is continued. (3) Where the owner fails to remove sand, stone, timber or any such material in compliance with the requirements set out in subsection (2), it shall be lawful for the Executive Engineer with the assistance of a police officer to cause such material to be removed to a suitable location away from the road, public road or national highway and to charge the costs of removal to the owner.	62. (1) Every person who. without the lawful authority or excuse, plants a tree or shrub in a made up carriageway. traffic island, shoulder or footwalk of a road. public road or national highway shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate in the case of the first offence to a fine not exceeding five thousand rupees and in the case of a continuing offence to a fine of five thousand rupees for each day after conviction during which the offence is continued.	 (2) It shall be lawful for the Executive Engineer to require the person who planted such tree or shrub to remove it within three days or cause it to be removed. (3) (1) The Executive Engineer may permit any person to alore within a minimum charks trace acres and alore within a minimum charks. 	
	Restriction of planting trees. shrubs in or near a carriageway.	Executive Engineer may	grant permission to plant trees, shrubs, grass, plants &c

4

National Thornughfures Act. No. 40 of 2008

44 National Thoroughfares Act, No. 40 of 2008

.

The Executive Engineer may, by notice in writing

67.

public road or a Preventing soil being washed onto a road, a highway. national

coad or national highway or into a gully thereof so as to highway or choke the gully. Any person who fails to give effect to such notice within the stipulated time period shall hat land being washed or carried on to the road or a public damage or obstruct the road or public road or national to the owner or occupier of a land adjoining a road, public coad or national highway, require him, within twenty eight days of the date of service of the notice, to carry out such works thereon as are necessary to prevent soil or refuse from be guilty of an offence.

or placed in front of a building which causes an obstruction public road or national highway. Any person who fails to give effect to such a notice within a reasonable time, shall or occupier of any building, require him to remove or alter any unauthorised porch. projecting roof, projecting window. step. wall, gate or any such thing and which has been erected to the safe passage of vehicles and pedestrians along a road. The Executive Engineer may, by notice to the owner be guilty of an offence. 68. public road or a across a road, a projections &c.

in writing to the person committing the offence. that he 69. (1) Where an offence is committed under the provisions of sections 64, 65, 66. 67 and 68 the Executive Engineer shall on being informed of such fact, give notice shall forthwith take measures to stop or abate the commission of the offence.

commission of

Notice of

offence to be Executive

given to Engineer.

and shall on conviction be liable to a fine not exceeding ten (2) If the person on whom notice is served under subsection (1) fails to comply with the requirements therein. such person shall be subject to summary trial by a Magistrate thousand rupces and in the case of a continuing offence be liable to a fine of rupees five thousand for each day after conviction during which the offence is so continued.

4 National Thoroughfares Act, No. 40 of 2008

the Magistrate may issue a Mandatory Order authorizing the Executive Engineer to demolish or remove the structure or thing which is the subject of the offence. The Executive Engineer shall with the assistance of the Police cause such structure or thing to be removed and recover the cost so (3) Where an offence under sections 64 to 68 is continued incurred from the offender. 70. (1) No person shall put-up any door or gate upon any premises to open outwards on to a national highway except with written consent of the Executive Engineer given in exceptional circumstances with the concurrence of the Chief Engineer.

highways not to open outwards.

road, a public Doors along road or a [Enoiten

> (2) Where a door or gate is put-up in contravention of subsection (1), the Executive Engineer may, by notice to the occupier, require him to alter the door or gate, so as not o open outward on to the national highway.

(3) A notice under subsection (2) may be served on the owner of the premises instead of on the occupier or may be served on both the owner and the occupier of the premises. (4) Any person aggricved by the refusal of consent under subsection (1) or by a requirement of a notice under subsection (2) may appeal to the Provincial Director.

of the notice within fourteen days from the date of service of (5) Subject to any order made on appeal, if a person on whom notice is served under subsection (2) requiring him to Ģ conviction after summary trial by a Magistrate, be liable to a comply with the notice. fails to comply with the requirement the notice he shall be guilty of an offence and shall fine not exceeding one thousand rupees.

under subsection (2) and he is guilty of an offence under (6) Where a notice has been served upon any person subsection (5). then whether or not proceedings are instituted

highways.

national

Power to

теточе

may carry out the work required by the notice and recover the expenses reasonably incurred by him in so doing from against him in respect of the offence, the Executive Engincer the owner or occupier of the premises.

obstruct or endanger the passage of vehicles or any user of owner or occupier of the land on which the tree, shrub or public road or national highway in such a manner as to a road, public road or national highway or interferes with the view of drivers of vehicles or the light from a public lamp. the Executive Engineer may, by notice issued either to the hedge is located, require him within seven days to lop or cut it so as to remove the cause of the danger or interference as **71.** (1) Where a tree, shrub or hedge overhangs a road. the case may be.

public road or a

highways.

national

felling of trees onto a road, a overhanging

Cutting and

Any person aggrieved by a notice under subsection (1) may appeal to the Provincial Director. ପ

Subject to any order made on appeal. if a person to period, the Executive Engineer may carry out the work with the requirements of the notice within the specified required to be made by the notice and recover the expenses whom a notice is served under subsection (1). fails to comply reasonably incurred in so doing from such person. <u>6</u>

(1) If an animal is at any time found straying or lying on or within the reservation of a road, a public road or a national highway, its keeper or owner or both shall be guilty of an offence. ц.

> public road or a animals to stray

highways an

offence.

national

on a road, a

Permitting

In this section 'keeper' in relation to an animal means the person in whose possession the animal is or should have bcen.

shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding one thousand rupees for (2) Any person guilty of an offence under subsection (1). the first offence and a fine not exceeding five thousand rupees for every subsequent offence.

49 National Thoroughfares Act, No. 40 of 2008

shall be seized by a cattle scizer authorized by the Executive Engineer and shall be tied in a premises owned or rented by (3) Any animal straying or lying on the national highway such authorized Cattle Seizer and approved by the Executive Engineer : Provided that such authorized Cattle Scizer is on contract with the Executive Engineer and every such animal seized by him shall be reported forthwith by the Executive Engineer o the nearest Police Station and to the Magistrate having urisdiction over such place. (4) The Executive Engineer shall ensure the safe custody of the animal seized and shall ensure the feeding of such animal.

(5) No such animal seized shall be delivered to the owner unless upon the payment of the fine imposed by the Magistrate.

public auction and pay the proceeds from such sale to the (6) If no person claims the animal and pays the fine within seven days from the date of imposition of such fine, it shall be lawful for the Executive Engineer, to sell the animal by Magistrate having jurisdiction over such place to be credited to the Consolidated Fund after the expenses reasonably ncurred by the Executive Engineer in connection with scizing and feeding the animal being recovered. (7) If a person, without lawful authority or excuse, releases is impounded, he shall be guilty of an offence and be liable case of first offence to a fine not exceeding five thousand rupces and in the case of a continuing offence to a fine of five thousand rupees for each day after conviction during any animal seized for the purpose of being impounded or already impounded or damages any place where the animal on conviction after summary trial by a Magistrate in the which the offence is continued.

National Thoroughfares Act, No. 40 of 2008

50

Depositing or throwing anything onto a road, a public road or a national highway to be an offence.

73. (1) If a person without lawful authority or excuse deposits or throws anything whatsoever on or onto a road, public road or national highway as a result of which a user of a road, public road or national highway is injured or likely to be injured or endangered, he shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate in the case of first offence to a fine not exceeding five thousand rupees for each day after conviction during which the offence is continued.

(2) If a person without lawful authority or excuse, lights any fire or discharges any fire work so as to injure or endanger a user of a road, public road or national highway, he shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate in the case of first offence to a fine not exceeding five thousand rupees and in the case of a continuing offence to a fine of five thousand rupees for each day after conviction during which the offence is continued. (3) If a person without lawful authority or excuse, allows any dirt, fiith or offensive matter or thing to run or flow unto a road, public road or national highway from any premises. he shall be guitty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding five thousand rupees and in the case of a continuing offence to a fine of five thousand rupces for each day after conviction during which the offence is continued.

74. A person who places a rope or any apparatus across a road or public road or national highway. for any purpose in such a manner so as to cause danger to users of a road or a public road or a national highway shall. unless he proves that adequate warning of the danger was given by him to such users, be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding two thousand rupees.

across a road, a public road or a

lacing ropes

highway to be

national

an offence.

National Thoroughfures Act. No. 40 of 2008 51

75. (1) The Executive Engineer may, by notice to the accupier of a premises adjoining a road, a public road or a national highway, require him within twenty eight days from the date of service of the notice to construct or erect and therafter maintain such gutters as may be necessary to prevent water from the roof or any other part of the premises falling upon the road. public road or the national highway.

Engineer may require occupier of premises to do certain acts.

Executive

(2) A person aggrieved by a requirement of a notice made under this section may appeal to the Divisional Secretary of the area.

(3) Subject to any order made on appeal, if a person to whom notice is served under this section fails to comply with the requirements of the notice within the period of time specified in subsection (1), he shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding one thousand rupees and if the offence is continued after conviction, he shall be guilty of a further offence and be liable to a fine not exceeding one hundred rupees for each day on which the offence is so continued.

Licence to be a public road &c., on road, or a national obtained for scaffoldings the erection highway. ٥ (1) No person shall, in connection with any public road or national highway any scaffolding or other structure which obstructs the road or public road or national by the Executive Engineer and complies with the terms and building or demolition or alteration, repair, maintenance or cleaning of any building. erect or retain, on or over a road, highway, unless he is authorized to do so by a licence issued conditions of the licence. 76.

(2) If a person applies to the Executive Engineer for a licence in respect of any structure referred to in subsection (1) and furnishes the Executive Engineer with such particulars relating to the structure as the Executive Engineer

Engineer to issue a licence unless he considers---

- that the structure would cause an obstruction to a road, public road or national highway; and E
- by the applicant would cause less obstruction to the road, public road or national highway than the that a structure erected otherwise than as proposed proposed structure. S

(3) If on an application for a licence under subsection (2), the Executive Engineer refuses to issue a licence or issues a licence containing terms to which the applicant objects. the applicant may appeal to the Provincial Director against the refusal or the terms of the licence and on such appeal the provincial Director may-

- Executive Engineer to issue a licence in respect of in the case of an appeal against a refusal, direct the the application ; or ા
- in the case of an appeal against the terms of the licence, alter or vary the terms. Ð

(4) It shall be the duty of a person to whom a licence is issued by the Executive Engineer in respect of a structure---

- to ensure that the structure is adequately lit during the hours of darkness; and E
- to comply with any directions given to him in writing by the Executive Engineer with respect to the erection and maintenance of any traffic control devices. Ē

the terms of a licence issued under subsection (1) or to (5) A person who contravenes the provisions of subsection (1) or who fails without reasonable excuse to comply with

perform a duty imposed on him under subsection (4), shall be guilty of an offence and shall on conviction after summary trial by a Magistrate be liable to a fine not exceeding five thousand rupces.

things on a road, public road or national highway or make (1) A person may, with the consent of the Executive Engineer, temporarily deposit building materials or other temporary excavations in it. 77.

public road or a along a road, a

national

Depositing of materials &c..

building

highway to he consent of the

done with Executive Engineer.

(2) The Executive Engineer may give his consent under subsection (1), subject to such conditions as he thinks fit, including in particular, conditions for preventing damage or ensuring access, to utility services.

subsection (1) or any person to whom such a consent is (3) Any person aggrieved by the refusal of consent under Director, against the refusal or the conditions, as the case given, subject to conditions, may appeal to the Provincial mav bc. (4) It shall be the duty of the person who makes such a deposit or excavation under subsection (1), to comply with any directions given to him in writing by the Executive engineer with respect to the erection and maintenance of traffic signs in connection with such deposit or excavation.

other thing on. or makes an excavation in a road, public road or national highway he shall not allow the obstruction (5) Where a person places any building materials or any or excavation to remain in the road, public road or national the highway any longer than the period allowed by Executive Engineer and in addition he shall-

- ensure that the obstruction or excavation to be properly fenced and to be properly lit during the hours of darkness; and (a)
- if required by the Executive Engineer, remove the obstruction or fill in the excavation. <u>(9</u>

							Prohibited users.								
National Thoroughfares Act, No. 40 of 2008 55	culheertinn (1) far-th-annual a	of a road, public road or national highway of any obstruction or for the purpose of protecting the users of the road, public road or national highway from	uauger artsing out of an obstruction; and (b) extinguishes a light so placed.	shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding	rour thousand rupecs. PART VIII	Use of Expressways and Restricted Access Highways	79. (1) A person shall not walk on an expressway or a restricted access highway.	(2) On an expressway or a restricted access highway, a person shall not —	(a) ride or take an animal other than an animal being conveyed in a motor vchicle or the trailer of a motor	vehicle; or	(b) drive a three wheeler, hand tractor or ride or take a bicycle; or	(c) drive a vehicle other than —	(i) a motor vehicle; or	(ii) the trailer of a motor vehicle; or	 (d) drive a vehicle or combination of vehicles that is or are not capable of attaining and maintaining on a level road such speed as is prescribed ; or
24 INUIIONAL INOIOUGUJARES ACI, NO. 4U OJ 2008	(6) any person who	(a) without reasonable cause or excuse fails to comply with any condition subject to which a consent is given under subsection (1): or	(b) without reasonable cause or excuse fails to perform the duty imposed on him under subsection (4): or	(c) fails to perform a duty imposed on him under subsection (5) ,	shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding five thousand rupees in respect of each day on which such	contravention or failure occurs.	 78. (1) A person or contractor who is responsible for cxecuting works on a road or public road or national highway shall— 	(a) erect such barriers and traffic signs as are required by the Executive Engineer for preventing danger to traffic, for regulating traffic and warning traffic	of danger, until the work is completed and shall remove them as soon as the work is completed; and	(b) ensure that the works to be properly guarded and lit during the hours of darkness.	(2) If any person or contractor fails to comply with	requirements of subsection (1), he shall be guilty of an offence and, shall on conviction after summary trial by a Manitered in a bind of a fine not exceeding five hundred	rupees in respect of each day on which failure continues.	(3) Any person who, without lawful authority or excuse—	(a) takes down, removes or alters any barrier, traffic sign, or light erected or placed in pursuance of
							Precautions to be taken when carrying out road works.								

National Thoroughfares Act, No. 40 of 2008

54

.

•

•

											Language of notices.		Entering and leaving an expressway.	,
National Thoroughfares Act. No. 40 of 2008 57	(4) The terms and conditions of the agreement referred to in subsection (3) shall <i>inter alia</i> include —	(a) the provision of technical or financial assistance to the community based organization by the Authority or the relevant Divisional Content of the	Local Authority;	contributions by the community based organization;	(c) the administration and auditing of the accounts of the community based organization ;	(<i>d</i>) the duties and obligations of the community based organization, the user community the Authority.	the relevant Divisional Secretary and the relevant Local Authority towards the operation and	maintenance of such road.	PART X	M4scial ANEOUS	81. (1) Every notice required to be served under this Act shall be in the Sirhala, Tamil and English Languages.	(2) Every notice addressed to any pcrson may be sent by registered post or served personally upon such person or such notice may be left with some member of his household or it may be affixed to some conspicuous part of his house and a notice served in any of foregoing methods shall be deemed to be personal service.	82. (1) The driver of a vehicle cntering an expressway or restricted access highway shall —	(a) if there is no acceleration lane, give way to vehicle traveling on the expressway or restricted access highway ;
56 National Thoroughfures Act. No. 40 of 2008	(e) drive a vehicle of a prescribed type.	(3) The driver of a vehicle on an expressway or restricted access highway shall not make a "U" turn except at a place indicated by a sign permitting "U" turns.	(4) For the purpose of subsection (3) a "U" turn occurs when a vehicle turns to travel in the opposite direction along the same or a parallel carriageway.	(5) The provisions of this section shall not apply to any	person engaged in maintenance or construction work on an expressway or a restricted access highway.	(6) A person who fails to comply with requirements of this section shall be guilty of an offence and be liable on	conviction after summary trial by a Magistrate in the case of first offence to a fine not exceeding five thousand rupces	and in the case of a second of subsequent offence, to a line not exceeding fifty thousand rupees.	PART IX		80. (1) The Minister may, whenever it appears necessary	so to do for ensuring the participation of all persons living in the area or in the human settlement within any Divisional Secretariat Division by Order, published in the <i>Gazette</i> . handover the operation and maintenance of any road or public road other than a national highway to a community based organization formed by such persons.	(2) An Order referred to in subsection (1) shall specify the length and width of such road and road reservations if any.	(3) Before an Order under subsection (1) is published in the <i>Gazette</i> the Executive Engineer shall sign an agreement with the relevant community based organization.

.

Maintenance of roads by community based organizations.

(b) if there is an acceleration lane, use it and when merging into the traffic on the expressway or restricted access highway, show due diligence not to endanger other road users. (2) The driver of a vehicle leaving an expressway or restricted access highway shall —

- (a) move into the traffic lane appropriate to the expressway or restricted access highway exit in proper time ; and
- (b) enter the deceleration lane, if there is one, as soon as is practicable.

(3) The driver of a vehicle shall not enter an expressway or a restricted access highway at a place other than at the authorized access point. (4) A person who fails to comply with requirements of this section shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate in the case of first offence to a fine not exceeding five thousand rupees and in the case of a second or subsequent offence to a fine not exceeding fifty thousand rupees. 83. (1) A driver of a vehicle on an expresswary or restricted access highway shall not stop the vehicle except —

Stopping of vehicles.

- (a) at a marked parking site in accordance with any restrictions applying to the use of that site ;
- (b) where necessary to avoid injury to a person or damage to property;
- (c) in obedience to a signal or other instruction which the person is required by law to obey ;

- (d) where necessary for the purpose of facilitating the carrying out of maintenance or construction on the expressway or restricted access highway authorized by the Authority ;
- (e) where the vehicle is so disabled that it is impossible to avoid stopping;
- (f) where the vehicle is stopping in compliance with a request to render assistance to a disabled vehicle ;
- (g) where the person is reporting a traffic accident or other situation.or incident to the police, the Authority or other traffic authority, either directly or by means of an emergency telephone or similar device ; or
- (*li*) where the vehicle is being operated in accordance with an agreement with the Authority to remove impediments to traffic.

(2) A driver of a vehicle which is stopped on an expressway or restricted access highway shall move the vehicle off the carriageway.

(3) A person who is unable to move a stopped vehicle off the carriageway and roadside of an expressway or restricted access highway as required by subsection (2) shall signal the presence of the vchicle by means of a triangle warning device at a distance, sufficient to provide adequate warning to the drivers of approaching vehicles.

(4) A person who fails to comply with requirements of this section shall be guilty of an offence and be liable on conviction after summary trial by a Magistrate in the case of first offence to a fine not exceeding five thousand rupces and in the case of a second or subsequent offence to a fine not exceeding fifty thousand rupces.

(1) No person shall place or fix any traffic sign,

Зŗ.

Restriction on placing beams &c..

overhead beam, pipc, cable. wirc, guntries hoardings or rail or other similar apparatus over, along or across a road, a public road or a national highway without the consent of the Executive Engineer. The Executive Engineer may when giving his consent attach such reasonable terms and conditions thereto as he thinks fit. (2) Subject to subsection (3) a person aggrieved by the refusal of a consent under subsection (1), or by the terms and conditions attached to such a consent, may appeal to the Provincial Director.

(3) No appeal lies under subsection (2) against any term or condition attached by the Executive Engineer to a consent given by him under this section, if he declares the terms or condition to be necessary for the purpose of ensuring the safety of persons using a road, public road or national highway to which the consent relates or for preventing interference with traffic thereon.

(4) A person who contravenes the provisions of subsection (1), or the terms or conditions of any consent given thereunder shall be guilty of an offence and be liable on conviction after summary trial by a Magistrate to a fine not exceeding five hundred rupees for each day on which the offence is so continued. 85. (1) No person shall construct a vault, mine, pit or any such thing under any road, public road or national highway without the consent of the Executive Engineer, and Executive Engineer may, by notice served on a person who has constructed a vault, mine, pit or any such thing in contravention of the provisions of this section require him to remove it or to alter or modify it, as specified in the notice.

(2) No person shall carry out any excavation exceeding three meters in depth, within a distance of fifty meters from the centre of a road, public road or national highway without the consent of the Executive Engineer.

(3) No person shall carry out any sand mining at or near any bridge, causeway or any structure within a distance of one hundred and fifty meters from the extreme edge of the bridge, causeway or structure, or at or near any road, public road or national highway within a distance of one hundred meters from the extreme edge of the roadway without the consent of the Executive Engineer. (4) A person aggriceed by a refusal of consent or by a requirement of a notice under subsection (1), may appeal to the Divisional Secretary.

(5) Any person who contravenes the provisions of subsection (1), (2), or (3) shall be guilty of an offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding two thousand rupees.

(6) Subject to an order made on appeal, if a person fails to comply with a requirement of a notice served on him under subsection (1), or with the provisions of subsection (2) or (3), he shall be guilty of a further offence and shall be liable on conviction after summary trial by a Magistrate to a fine not exceeding five hundred rupees for each day during which the failure continues.

(7) It shall be lawful for the Executive Engineer to close any vault. mine, pit or any such thing constructed in contravention of the provisions of subsection (1), (2) or (3) and to recover expenses reasonably incurred by him in so doing from the offender. **86.** (1) The Minister may, for reason to be stated, by Order published in the Gazette. prohibit or restrict access by the public to or from any public road or national highway or any part of such public road or national highway.

(2) Upon the making of an Order under subsection (1) no person shall connect any access way to that public road or national highway, without the approval in writing of the Executive Engineer given in concurrence with the Chief Engineer of the relevant District.

Power to restrict access to a road, a public road or a national highway.

Control of constructions &c..

(3) Any person who contravenes the provisions of subsection (2) shall be guilty of an offence and shall on conviction after summary trial before a Magistrate be liable to a fine not exceeding twenty five thousand rupces. He shall also be liable to pay to the Executive Engineer the cost incurred by the Engineer in restoring the public road or national highway to its original state by removing the connection made by such person.

(4) The Executive Engineer may, where he deems it expedient in the circumstances in lieu of instituting action under subsection (3) —

- (a) require the offender to forthwith remove the connection made by him and restore the public road or national highway to its original state ; or
- (b) if the offender fails to remove the connection made by him, proceed to remove such connection and take steps to restore the public road or national highway to its original state and recover the cost incurred by him in doing so, from the offender.

87. Notwithstanding anything to the contrary in any other written law, it shall be the duty of any individual, authority or institution. granting licences for carrying on any business abutting any road, public road or national highway, to obtain the consent of the Executive Engineer of the area before issuing such licence.

Clearance of

Executive Engineer essential. **88.** It shall be the duty of all police officers and all Grama Niladharis to aid and assist in the prevention of any offence as may be committed in contravention of the provisions of this Act within their respective jurisdictions.

Duty of Police

officers and

Niladharis.

Grama

89. (1) The Minister may make regulations for the purpose of carrying out or giving effect to any matter which is prescribed under this Act, or in respect of which regulations are required to be made.

Regulations.

National Thoroughfares Act, No. 40 of 2008 63

(2) In particular and without prejudice to the generality of the powers conferred on him by subsection (1), the Minister may make regulations in respect of all or any of the following matters, namely :---

- (a) the speed which a motor vehicle must be capable of attaining in order to use a expressway or restricted access highway;
- (b) the types of vehicle which may be used on a road, a public road, national highway or expressway or restricted access highway;
- (c) the collection and payment of fecs in respect of user fee national highways;
- (d) the form to be used in giving notice of infringement of the provisions of this Act;
- (e) restrictions on the use of national highways or cxpressways or restricted access highways including the time at which prescribed vehicles may not be used on national highways or expressways or restricted access highways;
- (f) the prevention of ribbon development along the roads, public roads or national highways or expressways or restricted access highways;
- (g) duties and obligations of the Authority under the agreements it may enter in pursuant to section 12 of this Act.

(3) Every regulation made by the Minister shall be published in the *Gazette* and shall come into operation on the date of such publication or on such later date as may be specified therein.

ļ

	Sinhafa text to prevail in case of inconsistency.	Interpretation.						
(d) all declarations, notifications, licences and orders made or issued under the repealed Ordinance and subsisting on the day immediately preceding the appointed date, shall be decmed with effect from the appointed date to be declarations, notifications, icences and orders made or issued under the provisions of this Act and shall be construed accordingly.	91. In the event of any inconsistency between the Sinhala and Tamil texts of this Act, the Sinhala text shall prevail.	92. In this Act, unless the context otherwise requires	"carriageway" means the travel way of a road, a public road or a national highway designed for use by	vehicular traffic and does not include the shoulder and verge ; .	"centre of the national highway for a single carriageway" means the centre of the carriageway as determined in the survey plan or as determined by the Executive Engineer at the site ;	"centre of the national highway for a dual carriageway" means the centre of the centre median of the national highway;	"Chief Engineer" means the Chief Engineer of the Road Development Authority designated under the Road Development Authority (Special Provisions) Act, No. 5 of 1988 ;	"Director-General" means the Director-General of the Road Development Authority appointed under section 12 of the Road Development Authority
 (4) Every regulation shall, as soon as convenient after publication in the <i>Gazette</i> be brought before Parliament for approval. Any regulation which is not so approved shall be deemed to be rescinded as from the date of the disapproval, but without prejudice to anything previously done thereunder. (5) Notification of the date on which any regulation made 	by the Minister is so deemed to be rescrinced, share of published in the Gazette.	be repealed with effect from appointed date.	(2) Notwithstanding the repeal of the Thoroughfares Ordinance (Chapter 193) —	 (α) all contracts and agreements entered into under the Thoroughfares Ordinance (hereinafter referred to 	as the "repealed Ordinance") and subsisting on the day preceding the appointed date shall be deemed, with effect from the appointed date to be contracts and agreements entered into by the Authority and may be enforced accordingly ;	(b) all actions, matters, proceedings or things instituted under the repealed Ordinance and pending on the day preceding the appointed date shall be deemed.	with effect from the appointed date to be proceedings instituted by or against the Authority and may be enforced accordingly :	(c) all decrees or orders entered by any court or tribunal under the repealed Ordinance shall be deemed with effect from the appointed date to be decrees or orders entered by or against the Authority and may be

65

National Thoroughfares Act, No. 40 of 2008

National Thoroughfares Act, No. 40 of 2008

64

effect from the appointed date to be decrees or orders entered by or against the Authority and may be enforced accordingly ; nn alle ં

Act, No 73 of 1981 ;

Repeal of Thoroughfares Ordinance and Transitional Provisions.

Executive Engineer" means the Executive Engineer of the Road Development Authority for any division designated under the Road Development Authority (Special Provisions) Act, No. 5 of 1988;

- "inter changes" means the points along an expressway or a restricted access highway at which access may be gained by motor vehicles to or from other public roads ;
- prescribed" means prescribed by regulation made by the Minister in charge of the subject ;
- "Provincial Director" means the Provincial Director of the Road Development Authority for any Province;
- "public road" means any road intended for normal motor vehicular traffic including national highways, except the streets within a Town Plan area or Municipality Plan area ;
- 'reservation" in relation to a road, a public road or national highways means all land adjoining and beyond the drains or the verge of a public road or highway or national highway which has been reserved for its safety, protection and benefit and for the future development of the road, public road or national highway ;
- "right of way" includes the carriageway. shoulders, verge drains and the reservations of a road or public road or national highway ;

'road" includes ---

 all public carriageways, fly overs, viaducts, interchanges, cart ways and pathways, as well as all bridges, drains and embankments, causeways and ditches belonging or appertaining to a road;

National Thoroughfares Act, No. 40 of 2008 67

- (b) all land adjoining any road, which has been reserved for its protection or benefit;
- (c) all land which has been marked off and reserved for the construction of any road; and
- (d) all waste land which, not being private property, lies within a distance of ten metres of the centre of public carriageways and cart ways and three metres of the centre of public pathways. (The burden of proving that such waste land is private property lying on the person asserting the same :)
- "Road Development Authority" means Road Development Authority established under the Road Development Authority Act. No. 73 of 1981 and shall be deemed to include any Authority or other body which may be established by or under any written law, in place of the Road Development Authority, or to which the powers in relation to "roads" or any part thereof presently exercised by the Road Development Authority may be transferred;
- "uscr-fee national highway" means , an expressway, in respect of which a fee is chargeable from the users thereof or part thercof;
- "vchicle" means a conveyance that is designed to be propelled or drawn by any means whether or not it is capable of being so propelled or drawn and includes ----
- (a) a bicycle or other pedal powered vehicle ; and

(b) a trailer;

68 National Thoroughfares Act, No. 40 of 2008

"works" means all road works and shall include ---

- (a) works associated with the erection or creation of a structure ;
- (b) creation, modification or felling of a trench;
- (c) carthwork;
- (d) interference with land or a structure.

Annual subscription of English Bills and Acts of the Parliament Rs. 885 (Local), Rs. 1,180 (Forcign), Payable to the Surgusstent Government Publications Bureau, Devartment of Government Istromanton, No. 163, KiguLapoxa Mawattla, Poutescooa, Cononno 05 before 15th December each year in respect of the year following.

.

· .

Anuradhapura North Integrated Water Supply Project

ENVIRONMENTAL MANAGEMENT PLAN

Prepared By:

EML Consultants (Pvt.) Ltd www.emlconsultants.com

TABLE OF CONTENTS

1	ENVIRONMENTAL MANAGEMENT PLAN (EMP)	4
1.1	Introduction	4
1.2	Objectives of the EMP	4
2	BRIEF DESCRIPTION OF THE PROJECT ENVIRONMENT	5
2.1	Purpose and objectives of the proposed Project	5
2.2	Project Implementation	5
2.3	Proposed water supply system	6
2.4	Construction packaging	6
3	TRANSMISSION SYSTEM	7
4	POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK FOR ENVIRONMENTAL	
	MANAGEMENT	9
4.1	Major Environmental policies in Sri Lanka	9
4.2	Applicability to the project	9
5	ENVIRONMENTAL STANDARDS AND CLEARANCE	11
6	ORGANIZATIONAL ARRANGEMENT	12
6.1	Organizational arrangement for the implementation of the EMP	12
6.2	The responsibilities of the Environmental Team	13
6.3	Responsibility of Construction Team	13
6.4	Training of personnel	13
6.5	Reporting	14
6.6	Auditing	14
7	ENVIRONMENTAL MONITORING	15
7.1	Compliance Monitoring	15
7.2	Effects Monitoring	15
8	PUBLIC CONSULTATION ACIVITIES	16
	FUBLIC CONSOLITATION ACTIVITIES	-0

LIST OF FIGURES

Figure 1	Google map of proposed water intake and the WTP	5
Figure 2	Proposed schematic diagram for the "Treated Water Transmission System" and th	
	existing environment of the site locations	8
Figure 3	Proposed Organizational arrangement for the implementation of the EMP1	2

LIST OF ANNEXES

Annex 1	PROPOSED CONTRACT PACKAGES FOR MAHAKANADARAWA PROJECT	31
Annex 2	transmission key map	33
Annex 3	Important Environmental Legislative Instruments	34
Annex 4	National Environmental Act (NEA)	36
Annex 5	Basis of regulations and standards and a summary of Environmental requirements for the project activities	•
Annex 6	Environmental standards applicable to the project	

1 ENVIRONMENTAL MANAGEMENT PLAN (EMP)

1.1 INTRODUCTION

An EMP is an activity specific plan developed to ensure that all necessary measures are identified and implemented in order to protect the environment and comply with environmental legislation. The EMP defines the mitigation measures for significant impacts, responsibility of implementation of mitigation measures, monitoring of environmental compliance and effects.

This Environmental Management Plan (EMP) is also developed to provide guidance to the Contractor to develop his/her Environmental Management Implementation Plan (EMIP). The EMIP shall be a comprehensive proposal by the Contractor explaining his/her plans to ensure that the key environmental objectives as outlined in here are achieved during construction. It will also help the contractor to assign sufficient resources to carry out necessary environmental and social safeguards and actions. The information contained in the EMP is a guideline and the Contractor is fully responsible for meeting the national environmental policies, standards, laws and regulations as well as obtaining the necessary permits and approvals.

1.2 OBJECTIVES OF THE EMP

This EMP expects to guide the project so it;

- Applies good environmental management practices through planning and commitment to environmental issues.
- Complies with national environmental policies, regulations, standards and guidelines in all activities associated with the work including all supporting activities.
- Incorporates mitigation measures to minimize disturbances of the natural environment.
- Adopts best practices to prevent or minimize adverse environmental impacts; develop waste management practices within the project.
- Achieves a safe and healthy environment for workers and the public during construction and minimizes risk through planning and implementation of specific safeguards.
- Employs and trains staff and sub-contractors to be aware of the environmental obligations under this contract.
- Carries out monitoring and reporting of environmental performances on behalf of the stakeholders.
- Has a good Environmental Management System in place to guide the contractors.

2 BRIEF DESCRIPTION OF THE PROJECT ENVIRONMENT

2.1 PURPOSE AND OBJECTIVES OF THE PROPOSED PROJECT

The implementation of this project will provide safe drinking water in the northern part of Anuradhapura district in Sri Lanka. The current main water source in this area is groundwater, usually supplied by small scale piped water supply systems or from individual wells.

The proposed project will establish a water supply system in the area using water from a surface water body. The planned project is expected to create a positive impact on people in the area by improving their living standards.

2.2 **PROJECT IMPLEMENTATION**

The project consists of a water treatment plant (WTP), storage/pumping facilities and a network of transmission lines which connect the WTP and the storage facilities. The WTP; originally planned to extract water direct from the Mahakanadarawa tank. However, later the water intake was changed to the main irrigation canal and the location is now outside the tank. Locations of the water treatment plant and intake point are at a distance of about 100m from the bund of the tank, thus keeping a safe buffer between the tank and the WTP. The Google map showing the locations of the proposed water intake (marked as a star) and the WTP (located in 8°23'36.6"N 80°31'41.3"E) (marked as a square) and the proposed point of discharge (marked in red) are given in the Figure 1.

FIGURE 1 GOOGLE MAP OF PROPOSED WATER INTAKE AND THE WTP

The Estimated requirement for distribution under the first phase of the project is 9,900m³ per day and this will rise to about 19,000m³ per day by 2020, when the project reaches its third phase.

The treatment facility will have intake, clarifiers, filters, run thru settlement ponds and chemical treatment (alum and chlorine) before pumping out. There will be an emergency retention pond, discharge outlets, and required buildings including a workshop, pump and generator house on the 6 acres of land on the left bank of a canal adjacent to the Mahakandarawa tank.

The effluent released after treatment is to be discharged into a small natural drainage canal on right bank which has an active flow only during the wet season. It currently is overgrown with plants and serves as a path for overflowing water from the irrigation canal during rainy seasons.

A list of storage and pump locations to be constructed under this project is given in Table 1.

Name of project Location	Code	Main Habitat/ Vegetation Types
Mahakanadarawa Water Treatment Plant Location	(M1)	Dry area with associated vegetation, Home garden, Secondary forests, Scrublands, and a small patch of wetland vegetation
Rambewa Sump & Water Tank Location	(M2)	Home garden
Medawachchiya Sump Location	(M3)	Secondary forest
Isenbessagala Water Tank Location	(M4)	Abandoned land, secondary shrub land
Ethakada Water Tank Location	(M5)	Abandoned land, Secondary forest
East Rambewa Water Tank Location	(M6)	Secondary forest

TABLE 1	LIST OF SITES INCLUDED IN THIS PROJECT (MAHAKANADARAWA SCHEME)
TADLL I	LIST OF SITES INCLODED IN THIS PROJECT (INAHAKANADAKAWA SCHEIVIE)

Source: Preparatory Survey on Anuradhapura North Integrated Water Supply Project [Final Report]

2.3 PROPOSED WATER SUPPLY SYSTEM

The Irrigation Department, as the management entity for the Mahakanadarawa tank, has directed that, only the canal intake method can be allowed. As the tank is intended primarily for the purpose of providing irrigation water, the supply of drinking water will be provided based on an agreement on quantities to be supplied; between the Irrigation Department and NWSDB. No residual water after treatment is allowed to be put back into the canal.

2.4 CONSTRUCTION PACKAGING

There will be two main development/construction packages under this project.

- 1. Intake point and the Water Treatment Plant (WTP)
- Transmission and distribution system that contains
 Service stations with storage tanks and pumping stations

Main and sub-main Transmission lines

Proposed package for the transmission of water under the Mahakanadarawa Project is given in Annex 1.

3 TRANSMISSION SYSTEM

There are 56 water supply schemes in total in the project area that include 50 Community Based Organizations (CBO) facilities and 6 NWSDB facilities. The NWSDB systems, covering 25 Grama Niladhari Divisions, are located in the core area(s). Generally, each CBO covers a part of a GND.

The transmission system from the Mahakanadarawa Wewa is named as the Mahakanadarawa System, which will cover the Divisional Secretariat Division (DSD) of Rambewa. The transmission system is composed of a transmission main system and a sub-main system. The main system is formed to cover the entire supply zone from the respective water treatment plant and the sub-system supplements the main system to convey bulk water to the elevated tanks. These elevated tanks are placed at strategic locations to distribute water to the new system of GNDs and transmit bulk water to the existing CBOs.

The transmission main system is composed of transmission mains and service centers where a pumping station and an elevated tank are provided. In addition, booster pump stations are provided at strategic locations. The transmission main route of each system is, in general, selected to run along the main roads mentioned above, from the water treatment plant and between service centers. Elevated tanks are provided at key locations to distribute treated water directly to the new distribution systems of GNDs.

The Transmission key map is given in Annex 2 and the proposed schematic diagram for the "treated water transmission system" and the existing environment of the site locations are given in figure 2.

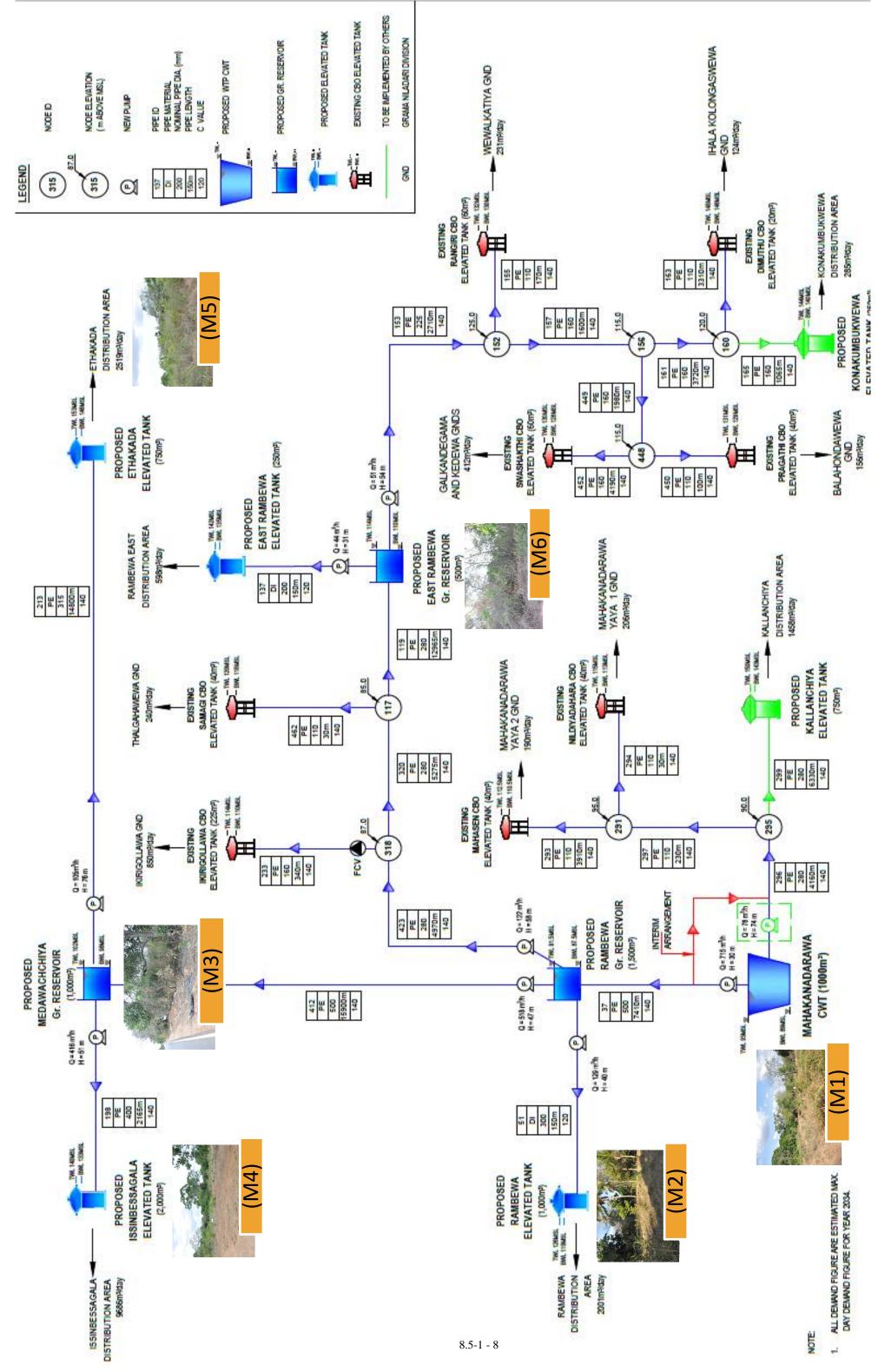


FIGURE 2 PROPOSED SCHEMATIC DIAGRAM FOR THE "TREATED WATER TRANSMISSION SYSTEM" AND THE EXISTING ENVIRONMENT OF THE SITE LOCATIONS

4 POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK FOR ENVIRONMENTAL MANAGEMENT

4.1 MAJOR ENVIRONMENTAL POLICIES IN SRI LANKA

Major Environmental Policies in Sri Lanka mainly includes the following (For more details please see Annex 3)

- National Environment Policy 2003
- National Forestry Policy 1995
- The National Policy on Wildlife Conservation 2000
- National Air Quality Management Policy 2000
- National Watershed Management Policy 2004
- Cleaner Production Policy 2004
- National Biosafety Policy 2005
- National Air Quality Management Policy 2000
- National Policy on Wetlands 2005
- National Policy on Sand as a Resource for the Construction Industry 2006
- National Policy on Elephant Conservation 2006
- National Policy on Solid Waste Management 2007

4.2 APPLICABILITY TO THE PROJECT

The National Environmental Act (1980, 1997) is the highest level environmental legal basis in Sri Lanka, and there are enacted regulations under the Act regarding environmental issues such as EIA, natural resource management, waste management, environment protection, environmental qualities and environmental sensitive areas (Annex 4)

According to the regulations stipulated by CEA, following conditions could relate with the project.

- •Construction and operation of Water treatment plants of capacity exceeding 500,000 cubic meters per day
- discharged of the effluent waters and
- disposal of sludge

However if the supplementary construction activities such as supply of construction material or disposal of waste involve any of the sensitive areas listed in regulations specified by CEA, an environmental clearance in the form of EIA approval or an Environmental protection license (EPL) is required. Hence the construction contractors must obtain such supply of materials needed; only from sources with required environmental approval and ensure that such demands do not violate environmental regulations.

Following is an indicative list of regulations and laws and the limits where such regulations are applicable. All contracted staff should be aware and comply these provisions during the implementation of the project activities.

1) Any erodible area declared under the Soil Conservation Act (1951, 1953)

2) Any Flood Area declared under the Flood Protection Ordinance (1924, 1955) and any Flood Protection Area declared under the Sri Lanka Land Reclamation and Development Corporation Act (1968, 1982)

3) Any reservation declared or demarcated beyond the Full Supply Level of a reservoir

4) Any archaeological reserve, ancient or protected monument as defined or declared under the Antiquities Ordinance (1965)

5) Any area declared under the Botanic Gardens Ordinance (1928, 1973)

6) Areas within or less than 100m from the boundaries of any area declared under the National Heritage and Wilderness Act (1988): the Forest Ordinance

7) Areas within or less than 100m from the boundaries of any area declared as a protected area under the Fauna and Flora Protection Ordinance (1937)

8) Areas within, or less than 100m from the high flood level contour of a public lake as defined by the Crown Lands Ordinance (1947, 1949, 1956) including those declared under Section 71 of the Ordinance

9) Areas 60m or less from the bank of a public stream as defined in the Crown Lands Ordinance, with a width of more than 25m at any point.

There are several protected areas under the purview of the Forest Department, located within the project area that includes Mihintale, Madawachchiya, Issanbessawewa, Hinna, Etakaduwa and Wesakada. Mahakanadarawa tank and its surrounding area have been declared as one of the protected areas under the purview of the Department of Wildlife Conservation. It has been named as a sanctuary and has an area of 1,679.7 ha. Several archaeological reserves and protected monuments are located within the project area.

However, the planned construction sites are located outside the protected sites. And also the Irrigation Department has set aside reservations for protection and safety of the structural components of all the schemes by the Department Circular No. 10/1986. This will apply to all the schemes managed by the Irrigation Department within the project area. On the other hand, under the law of Urban Development Authority (U.D.A.), Mihintale Pradeshiya Saba and Medawachchiya Pradeshiya Saba have been declared as a development area for the better Physical & Economic utilization of such areas.

5 ENVIRONMENTAL STANDARDS AND CLEARANCE

The specific regulations and standards regarding environment and social consideration that is applicable to the project are given in Annex 5.

Environmental standards : (noise, vibration and Air quality,)

Main expected sources of noise and vibration are due to the operation of vehicles and heavy machinery used for construction work. The permissible noise level for construction work is set by Gazette 924/12 21th May 1996. It is said that noise levels caused by such activity shall not be carried on for a period which in aggregate exceeds three months at any given point, without the written consent of the Authority given in respect of a particular activity. Maximum permissible noise levels at the boundaries during the construction and operational stages are given in Annex 6.

One of the possible causes of air pollution during construction is the dust due to excavations along the transmission lines. This will increase the particulate matter in the air during the dry weather and windy conditions and hence should be prevented thru regular wetting. Another air quality problem that can arise near the WTP area is due to accidental chlorine gas leakage from gas storage place and chlorine injection facility. The discharge standards and air quality standards as well as standards for chlorine emission are also given in Annex 6. In addition to the above possibilities that directly affect the air quality, exhaust gas by vehicles and heavy machineries especially during the construction phase may decrease the air quality in the area surrounding the work sites.

6 ORGANIZATIONAL ARRANGEMENT

6.1 ORGANIZATIONAL ARRANGEMENT FOR THE IMPLEMENTATION OF THE EMP

An effective arrangement must be established by the contractor within the organization to implement the EMIP. The organizational arrangements with clearly defined responsibilities and procedures are important and necessary for the successful implementation of the EMP recommendations. As per the EMP the contractor is expected to appoint an Environmental and Safety Officer (ESO), to be the primary focal point of contact on all environment and safety related issues. This person should be appointed at early stages since many initial activities involving land clearance, training of the deployment of contract staff etc, have to comply with the EMP recommendations. If delayed the damage done to the environment by oversight actions may not be repaired and could be costly. Moreover, considering the extent of the project and for the safety issues the contractor should establish much broader institutional arrangements for EMP implementation not leaving the responsibility only to the Environmental Officer alone. Also the responsibility of compliance with the EMP rests fully with the contractor and his senior management. Proposed organizational arrangement for implementing EMP is given in figure 3.

FIGURE 3 PROPOSED ORGANIZATIONAL ARRANGEMENT FOR THE IMPLEMENTATION OF THE EMP

6.2 THE RESPONSIBILITIES OF THE ENVIRONMENTAL TEAM

Environmental team during the construction comprises all the players listed above figure. Once the construction phase is over the responsibility of environmental safeguards and compliance monitoring will stay with the NWSDB and the respective stakeholder organizations having the jurisdiction over subject areas. Hence it is important to fully define the tasks and responsibilities of personnel/organizations involved with the EMP implementation. The tasks assigned to the environmental team in the EMP matrix given in this report can provide guidance in defining the tasks and responsibilities of the staff and organizations.

6.3 **RESPONSIBILITY OF CONSTRUCTION TEAM**

The implementation of the environmental management plan is a joint responsibility of the project proponent, management and construction teams of the Contractor. The responsibility of implementing regular environmental safeguards and mitigation measures mentioned in the EMP and reflected in the EMIP shall rest with the construction staff. The overall implementation of the EMP/EMIP should therefore form a part of the contract agreement with all the construction companies hired for performing different tasks under the project. Hence the environmental responsibilities entrusted on construction team members shall be included in their job descriptions.

6.4 TRAINING OF PERSONNEL

The contractor shall ensure employees/sub-contractors are adequately experienced and trained to conduct work in a manner to minimize environmental impacts and carry out responsibilities under the EMIP. The following measures but not limiting to following only, are recommended.

- Consider previous experience in environmental management of construction activities when recruiting executive and supervisory level staff and selection of sub-contractors.
- Recruit a suitable candidate or assign task to a person with experience the responsibilities of ESO early on (before deployment of contractor's staff) in the contract implementation.
- Provide construction staff and sub-contractors briefings on environmental management requirements and how they are to be implemented prior to commencement of the works.
- Develop written instructions on the implementation of EMIP measures and provide to relevant staff and display at sites.
- Provide induction and training to relevant employees on implementation of the EMP measures, if necessary using experienced trainers and/or training institutions.
- Those who are deployed for work near or in environmentally protected and/or sensitive areas must be given strict instructions on importance of compliance with the relevant laws and regulations.
- The EMIP should be prepared and approved by the project proponent (NWSDB project office) who shall ensure the adequacy and compliance of the mitigation action proposed by the contractor prior to deployment of the contractor's staff in the field.

6.5 REPORTING

The Contractor will provide the Environment and safety status reports based on the implementation of the EMIP on a monthly basis. First report shall cover the baseline status on the parameters to be monitored. Parameters are given later in this report (section 9) The reports will cover all environmental aspects that include: (a) a construction activity summary for the month; (b) environmental issues that may be encountered; (c) safeguard and mitigation measures implemented; (d) effectiveness of the measures implemented; (e) test or audit results, if any done during the reporting period; (f) visits and recommendations given by inspecting authorities during the reporting period (g) corrective actions taken if any; (h) environmental induction and training provided; (i) a complaints summary; (j) a non-compliance report; (l) a monitoring report; and (m) any other relevant information.

The report of each calendar month shall be submitted by the ESO on an agreed upon date of the month. The ESO should submit the report to Project Director, with his comments thru the Senior Manager of the Project contractor. The Project Director shall share this report with the Team Leader of the Consultants and seek advice as needed to make decisions.

In the event the employee is from a sub-contractor, the main contractor who hires such sub contractors shall be responsible for all the actions and compliance and should have the ESO tasked with monitoring the work of sub contractors (such as labour or transport or machine operator contractors).

6.6 AUDITING

The Contractor shall carry out internal audits to ensure that the EMP is properly implemented. This responsibility will rest with the ESO. The Contractor agrees to provide all necessary support to his Project Manager and ESO in carrying out independent audits on implementation of the EMP. It is recommended that compliance auditing be performed at least once in six months to ensure that the project complies with al recommendations of the EMP.

7 ENVIRONMENTAL MONITORING

Environmental monitoring falls into two areas: i.e. compliance monitoring and effect monitoring. The Contractor shall establish an arrangement for self-monitoring of the environmental performance (compliance and effect) as part of its EMS. The Engineer/Employer will carry out independent supervision and monitoring of the Contractor's environmental performance as is deemed necessary.

7.1 COMPLIANCE MONITORING

The Contractor shall carry out compliance monitoring of: (a) the effectiveness of the EMS installed within its organization; and (b) compliance with the mitigation and safeguard measures during construction.

7.2 EFFECTS MONITORING

Effects monitoring evaluates the residual environmental impacts/effects which could not be contained by the mitigation measures and validity of assessments made in the EMP. This should be carried out by the proponent who may hire consultants or use one of its trained staffs to do this on regular basis. Thus it can also determine the effectiveness of the mitigation measures. This report shall be used by the Project director in making decisions and adjustments to minimize or avoid potential environmental impacts or consult and seek advice from or inform the relevant authorities as necessary. The PD of the PMU may table this report at the monthly progress review meeting of the project as status of Environment safeguard report.

8 PUBLIC CONSULTATION ACIVITIES

The contractor together with ESO shall organize public meetings in collaboration with the project proponents' representatives in the project area. Awareness programs must be carried out in-order to create awareness on project information, requirements of Environmental protection and its guidelines, anticipated impacts during preparation, and about implementation and operation of the project. Notifications should be given to the local communities when project activities are going to take place. In case the operational activities are going to adversely affect the quantity or quality for irrigation or other water uses, a serve notice must be given to the relevant authorities and downstream users of water, sufficiently in advance. Comments given by the public shall be made use to improve the EMIP. A complains/comments book shall be maintained at the site office for public comments from the beginning to the end of the project. Stakeholder consultation is also recommended during the preparation of final monitoring and close out reporting.

Cost estimates			No additional Pavment	1		No additional Payment
Responsibility in compliance monitoring and Supervising		CEA, FD, and DWLC RDC, ID or any other depending on the area of jurisdiction	Wildlife department, CEA	PMU, Wildlife department, CEA		PMU (CEA)
Responsibility in implementation			ESO/Contractor supervised by PMU/NWSDB			NWSDB, RDC, AD, PCEA
Frequency			Before clearing is done			
Location		All related sites where clearing and land preparations is involved	Where clearance of land is needed	Where clearance of land is needed		Where land clearing is needed
Parameters to be monitored		Complete Land clearing site inspections and the site baseline report compiled with pictures		conduct		Map the vulnerable structure and monitor them before and after
Mitigation measures		Cut and filling of land and cutting trees for clearing the land must be planned to avoid unnecessary destruction of the habitats in and around the work sites or workers camp sites.	Workers must be made aware of any important flora and fauna inhabiting the sites and adjacent areas be identified if encountered and not to harm them unknowingly.	The contractor to prepare a code of conduct for the workers which should explain how the workers should react if encountered with rare wildlife, protected archeological reserves etc. If the contractor field staff encounters accidentally or otherwise, any rare or endangered wild species or archeological items they should be instructed to stop work immediately and inform the ESO		Due consideration must be paid on vibration impacts on adjoining structures. If any vulnerable structures such as bunts, ancient building are found precautions should be taken to avoid
Level of risk and its (possibility)		minor (remote)		Medium (medium)		Minor to major (common)
Impact	onments	Destruction of habitats can occur during land clearing activities in pre-construction phase		damage on special habitats if any (rare flora and fauna species) and archeological items in the project site in the groject site	uc	Noise and Vibration during land preparation operations may cause damages to the structures and the ambient environment
t Activity/ objects wh pacts	A. Effect on the surrounding environments		Clearing land		B. Effect due to Noise and Vibration	Vibration due to moment of testing and land preparation and from vehicles
Project Stage				ะเรื่องกลาย เป็นการเริ่า เป็นการเรา เป็น เป็น เป็นการเรา เป็นการเรา เป็นการเรา เป็นการเรา เป็น เป็น เป็น เป็นการเรา เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น	puel	bne noitourtenoo-91

Anuradhapura North Integrated Water Supply Project

9 EMP

Cost estimates	No additional Payment			No additional Payment				No cost
Responsibility in compliance monitoring and Supervising	PMU (CEA)			DMA				PMU, PCC
Responsibility in implementation	NWSDB, RDC, PCEA	NWSDB, HO		ESO/Contractor				NWSDB,
Frequency				During the usage of	venicies			During the pre construction phase
Location	Where land clearing is needed	Where land clearing is needed		Where pre construction activities are	taking place			At all project community interaction locations
Parameters to be monitored	Map the items to be monitored			Vehicle maintenance procedure and road	chines ection			Community views
Mitigation measures	Adequate notice should be given if access roads are to be blocked or noise and vibration to be created. Especially if schools, hospitals and temples are nearby be mindful of the events taking place and schedule activities accordingly	All machinery and equipment should be well maintained and fitted with noise reduction devices in accordance with manufacturer's instructions.	Vehicle/machinery and equipment servicing and maintenance work shall be carried out only in designated locations/ service stations	Waste oil, other petroleum products and untreated wastewater shall not be discharged on ground.	Adequate measures shall be taken against pollution of soil by spillage of various contaminants.	All contaminants shall be disposed of in accordance with the guidelines issued by the CEA	-	Discussion and making agreement about construction schedule, procedure and project benefits and impacts should be done through conducting stakeholder meeting
Level of risk and its (possibility)	Minor to medium and temporary (common)	Minor (common)	Minor (common)		Minor (common)			Medium (common)
Impact	Parking and maneuvering of heavy land clearance vehicles may interfere with the other day to day activities in the area	Noise will be generated due to improper maintenance of the land machinery.	Vehicle/Machinery or equipment servicing, maintenance or accidents during pre-construction phase may contaminate soil and nearby water bodies.		Contamination of soil can be occurred by fuel and lubrications emitted by vehicles, machinery and equipment		_	If the community is not fully aware of the project benefits and proposed activities may stage protests fearing possible land acquisitions or prevention of access to resources
Project Activity/ objects which cause the impacts				Contaminants			C. Social impacts	Unfounded fears and concerns
Project Stage								

Anuradhapura North Integrated Water Supply Project

Cost estimates	No cost	Separate budget allocation is required	No cost				OZ	additional Payment
Responsibility in compliance monitoring and Supervising	PMU,DS	PMU, DS	AN		PMU, DS, CEA			DMU
Responsibility in implementation	NWSDB, RSC	NWSDB, RSC	PMU NWSDB		NWSDB, RSC			ESO Contractor
Frequency			Na		During clearing operation		Whenever new vehicle is enlisted	Every week during the dry weather and windy conditions
Location	At all project community interaction locations	Where such resettlement is needed eg WTP	Along the roads		Land clearing sites		At the project contractors office	Where there is sensitive public buildings or activities
Parameters to be monitored	Community views	Resettlement arrangements, compensation payment and house construction	No monitoring needed		Disposal site		Inspection of vehicles road worthiness certificate	Dust levels to be monitored visually daily during dry period extending for
Mitigation measures	Public relation activities/ meetings must be held to provide explanations to the local residents and to develop understanding about construction work schedule, expected impacts, mitigation measures, etc. during the initial stages of the project.	resettlement be arranged resettlement uld be well-	Proper coordination with the other utilities provided including RDC/PRDC and Local authorities will be useful when scheduling the excavation process to minimize road blockages		All disposal sites should be approved by relevant local authority/ies. It should not be disposed in any place that may not cause disruption to wildlife or human activities. Temporally dumping area or a pit for the purpose must be secured.		Actions must be taken to ensure the use of vehicles and machineries officially registered, and also the vehicles must be properly maintained.	The earth or dusty materials used during construction must be covered properly stored and handled to reduce dust emission. If needed spray water to prevent dust in sensitive areas where
Level of risk and its (possibility)	Medium (common)	Minor (common)	Medium (Common)		Minor (common) Minor and Temp (but common)		Minor (common)	Minor (common)
Impact		Only a one family Resettlement is required to continue with the proposed project at the WTP as of present Other sites are being purchased either from state or private parties on payment of land prices	The road sides are to be excavated and if not times properly with other road works will inconvenient many road users as the road will be blocked for prolong time periods	Waste Generation during land clearance	If not properly disposed could cause public nuisance during transportation and disposal Disposal sites may create problems to other land users		Emission of exhaust gas from the transporting land vehicles will generate air pollutants	Emission of dust from the site during construction will cause air pollution.
Project Activity/ objects which cause the impacts		Resettlement	Timing of work on road excavations	D. Effect due to Solid Waste Gener	Land clearance waste	A. Effect on physical environment	Exhaust gas	Dust
Project Stage							e	send noitourtenoD

Anuradhapura North Integrated Water Supply Project

Management Plan	
Environmental	

Cost estimates				No additional	Payment		No additional Payment
Responsibility in compliance monitoring and Supervising				DMU			∩ ₩ 4
Responsibility in implementation				ESO/Contractor			ESO/Contractor
Frequency							At the time of vehicle enlisting or replacement
Location			work sites				Work sites
Parameters to be monitored	more than one week (5 days) at marked locations	storage practices	Work sites	Road along the pipe laying path	Transport routes and excavated areas		Vehicle road worthiness and drivers licenses and vehicle registrations are valid and current
Mitigation measures	public is frequented.	Storage locations of sand, cement and metal, soil should be located away from settlements. Cement should be stored safely away from workers quarters and public places	Measures must be taken to minimize dust generation during handling of material. Make the workers aware of the health hazards involved and encourage them to use masks	All access roads within the storage site and roads used for material transportation should be sprinkled with water for dust suspension.	To sprinkle water to prevent the dust during dry periods.	Guidance of proper installation must be followed Safety training on this matter should be given to laborers	It must be ensured that the vehicles and machineries used are officially registered, and properly maintained and carry a road worthiness certificate issued by DoM. All machinery and equipment should be fitted with noise reduction devices in accordance with manufacturer's instructions. Maintenance of vehicles, equipment and machinery shall be regular and proper, to the satisfaction of the relevant
Level of risk and its (possibility)						Minor (rare)	Minor and temporary (common)
Impact						Leakage of Chlorine gas can cause adverse effects during construction	Heavy equipment and trucks for construction will increase noise and vibration
Project Activity/ objects which cause the impacts						Leakage of Chlorine gas	Vehicles and machinery
Project Stage						I J	

Management Plan	
Environmental	

Cost estimates			No additional	Payment		No additional	Payment	No additional Payment
Responsibility in compliance monitoring and Supervising			PMU			PMU		D M d
Responsibility in implementation			ESO			ESO/ Contractor		ESO/Contractor
Frequency			When complaints are received	when consulted		tị L e	near maın water bodies	Monthly and more often during the rainy seasons
Location			Boundary of the sites where	construction takes place		t wa ss that ructior	sites to be predetermined in consultation with the PMU	Along the transmission excavations and construction sites
Parameters to be monitored			Measure Noise levels during construction	from the boundary of the sites	Water bodies near the construction sites to be inspected on	monthly basis. Water quality samples from the water bodies near each	construction sites to be taken for measure of COD, BOD and turbidity levels by a reputed laboratory.	General practices along the excavation sites and construction sites to be monitored for signs of erosions
Mitigation measures	guidelines, to keep noise from these at a minimum level. Unnecessary idling must not be allowed Route of transportation must be properly and regularly examined	to prevent noise or other effect on vicinity.	Actions should be taken to avoid noise and vibration generating activities at nighttime and during festival times.	If generators are to be used for construction work use sound prof or minimizing devices	Proper guidelines must be given to contractors and the ESO for protecting water bodies from being polluted		Avoid/ minimize construction works near/ at such drainage or water bodies during heavy rain seasons	Actions must be taken to prevent the mixing of muddy materials with the clean water in the tank and water canals near the sites and road sides Turbid water generated by earthwork can be leached to water bodies
Level of risk and its (possibility)				(temporary)		Medium (common)		Medium (common)
Impact			Construction activities will	פרובומנב ווטואל מווע אוטומנוטוו		Water source can be polluted due to the mixing of construction debris or oil from the vehicle washing and hence	the water quality will be reduced.	Turbid water can be generated during construction activities due to erosion of soil into the water bodies
Project Activity/ objects which cause the impacts			Construction Work				Discharge of pollutants and soil to Water bodies	
Project Stage								

Management Plan	
Environmental	

Anuradhapura North Integrated Water Supply Project

Cost estimates	No additional Payment	No additional Payment	No additional Payment				No additional Payment	
Responsibility in compliance monitoring and Supervising	PMU	PMU	DMA				PMU	
Responsibility in implementation	Contractor	Contractor	Contractor				ESO/Contractor	
Frequency		Monthly	Monthly				Monthly	
Location		Work sites	Work sites				Work sites	
Parameters to be monitored			Vehicle service records from the hired vehicles to be made mandatory for	20 E E			Waste generation	
Mitigation measures	The domestic effluent can be treated using the soak pit to reduce the level of pollution due to its mixing with natural water body.	Oil and grease should be collected separately in a container.	All vehicle and plant maintenance and servicing stations shall be located and operated as per the conditions and /or guidelines stipulated under the EPL issued by CEA. All vehicles to be services in the certified service stations and avoid doing such services in adhoc manner by the drivers and	owners in unautionized places by insisting on proper service to be done on all vehicles used for the project work (hired or owned)		Request that waste reduction plan and disposal method to be proposed in the tender document	The temporally dumping yard or pits for construction waste must be secured for depositions	Segregate waste in order to be used in the recycling purpose. Recyclable material can be transferred to the recycling agents
Level of risk and its (possibility)	Minor (remote)	Minor (remote)	Minor (remote)				Minor (common)	
Impact	Domestic effluent may be mixed with the water body.	Oil and grease may be leaked during construction activities	Contamination of water can occur due to fuel and lubricants emitted during construction and also from transportation vehicles		Waste Generation during construction		Waste materials will be generated during construction	
Project Activity/ objects which cause the impacts	Domestic effluent from worker camps		Oil and Grease from machines		B. Effect due to Solid Waste Gener		Construction Waste	
Project Stage								

Anuradhapura North Integrated Water Supply Project

Cost estimates	20% of the Payment should be held back until the debris from completed tasks is cleared.	No additional Payment	A separate payment will be made			No additional Payment	
Responsibility in compliance monitoring and Supervising	PMd	PMU	DMA			DMd	
Responsibility in implementation	ESO/Contractor	ESO/ Contractor	ESO/ Contractor			ESO, Contractor	
Frequency	Monthly and before the release of payments for work completed	Before finalizing the contract	Regularly			Monthly	
Location	Along the roads and work sites	Sites for disposal	Work camps and work sites			All construction sites and camp sites	
Parameters to be monitored	Debris on site and road sides	Disposal sites nominated and to be used	Work camps to be monitored and inspected for hygiene conditions			General ecos system and environmental practices as recommended in code of conduct	
Mitigation measures	Disposal of construction waste and debris must be carefully taken away immediately from the work sites and disposed properly as these could lead to accidents if left on road sides or work sites	All disposal sites should be approved by the relevant local authority/ ies.	Domestic waste is placed at the temporally dumping yard, and transferred to the officially operated disposal sites. Burning of the waste with the plastics are not advisable and should be avoided. Advise the workers from dumping waste along the road sites indiscriminately while working.		The activities approved in the construction plan should be strictly adhered to.	Training and awareness program for laborer must be done. Scheduled patrol of the site must be done in regular basis and the officer incharge should be held responsible of rules are violated.	Clearing land should be minimized and the large tree must remain as far as possible
Level of risk and its (possibility)			Minor (common)			Minor (rare)	Minor (Common)
Impact			Domestic waste will be generated by the laborer's activities			These activities could affect other social and ecological elements in the neighborhood and create problems	Trees may be cut in selected areas and hence reduce the habitat diversity
Project Activity/ objects which cause the impacts			Domestic Waste generated by the laborer	C. Effect on the Ecological systems		Contractors may carry out unscheduled activities such as earth cuts and diversion of natural streams, cutting or burning vegetation to facilitate clearing that could have ecological and hydrological consequences	1
Project Stage			I				

Management Plan	
Environmental I	

Project Activ the impacts	Project Activity/ objects which cause the impacts	Impact	Level of risk and its (possibility)	Mitigation measures	Parameters to be monitored	Location	Frequency	Responsibility in implementation	Responsibility in compliance monitoring and Supervising	Cost estimates
				Prepare a code of conduct for the work forces to avoid accidentally breaching the rules.						
		Adverse effect may be occurs on rare species	Minor (remote)	If the special species found out at the site, it should be reported to NWSDB and the guidance of CEA or Wildlife department must be received before taking actions.				Contractor	PMU, CEA, Wildlife Department	No additional Payment
с С	Archaeological impacts			-	-		-			
00 b0	Excavating antiquity	If any sites/places of archaeological importance found in the site there is a possibility of them to be excavated during construction	Medium to high (remote)	If the antiquity will be excavated at the site, report to NWSDB and receive the guidance of Archaeological Department During construction activities all necessary and adequate care should be taken to minimize impacts on cultural properties found on the site and the vicinity. Precaution must be taken to prevent the workmen or any other persons from removing and damaging any such article or thing if found from the site	Daily work practices and reports	All excavated sites	As and when the locations are excavated	Contractor	PMU, Archaeological Department	No additional Payment
) Ci	Social impacts					•				
l ll	Social conflict caused by migratory laborers	Conflicts may arise among the workers and the villagers specially if the work force involves migratory labor special attention should be extended to HIV and similar ST diseases that can be introduced to the community	Minor (common)	Training and awareness program for laborer are to be planned and conducted Labour camps should be located in a manner that ongoing settlements activites are not disturbed. Provide sufficient health care and advises to work force resident in the work camps.	Labor camp sanitary facilities and health care	Labor camps	Once In every three months	ESO/Contractor	DMq	No additional Payment
en	Inconvenience to livelihood and social activities	Construction activities may impose disturbances to the existing community livelihood by way limiting accessibility (shops and workplaces), noise	Minor and temp (common in townships involved)	Any noise generating activity / high voice which disturb the livelihood should be minimized and reduced to shortest possible time	Measure the noise levels	Noise generating locations	When complaints are received	Contractor	PMU	No additional Payment
								-		

Anuradhapura North Integrated Water Supply Project

' Management Plan	
Environmental	

Cost estimates												No	additional Pavment	l ayment					No additional	Payment				
Responsibility in compliance monitoring and Supervising													PMU						IMI					
Responsibility in implementation													Contractor						Senior management/FSO	Contractor staff				
Frequency	When traffic is to be blocked to lay pipelines												Regularly											
Location	Road sides	Road sides											Work sites						Workers	camps				
Parameters to be monitored	Review Construction process	Review Traffic control										Issue and Use	of safety gear					General		conditions in workers	quarters			
Mitigation measures	Pipe laying work on the road is planned carefully to prevent inconvenience as much as possible witout hindering accessibility	Refraining from working during peak hours should be done to prevent road traffic blocks	It would be useful if a public notice is given prior to construction	The maintenance and rehabilitation of any irrigation	canal during construction should not cause inconvenience to the	livelihood	The maintenance and	rehabilitation of any access roads during construction should not	cause inconvenience to the livelihood		Workers in vicinity of strong noise and workers working with		batching or concrete mixing	protective gear and make it	to wear them.	Locating, sanitation and waste disposal in construction camps	workers camps should be provided with adequate and	appropriate facilities for disposal	or sewerage and solid waste. The sewage systems shall be properly	designed, built and operated so that no pollution to ground or	ier	bodies/watercourses takes place. Garhage hins shall he provided	the camps and regularly emptied.	Garbage should be disposed off in a hygienic manner, to the
Level of risk and its (possibility)												Minor	(common)						Minor	(common)				
Impact	generation (teaching), religious and private functions									ı for the workers		Workers can be affected by the	construction activities						's can be sanitary fa	vector control in workers				
Project Activity/ objects which cause the impacts										F. Effect on the working condition for the workers							Occumational Safaty							
Project Stage											•													

Cost estimates																										
Responsibility in compliance monitoring and Supervising																										
Responsibility in implementation																										
Frequency		When new contract is signed																								
Location		Work place																								
Parameters to be monitored		No of training programs and number of workers	General sanitary conditions																							
Mitigation measures	satisfaction of the relevant norms. Compliance with the relevant regulations and guidelines issued by the CEA/LA shall be strictly adhered to.	Training and awareness program for laborer should be done	Necessary measures shall be taken to prevent breeding of vectors at work sites	If any outbreak of infectious in a labour camp is identified that	must be informed to the ESO and the Medical Officer of Health	(MOH) or to the Public Health Inspector (PHI) of the area	immediately.	At every workplace, first aid kit	shall be provided as per the regulations. At every workplace	an ambulance room containing	the prescribed equipment and	At every workplace and labour	camps sufficient number of	bathing facilities, latrines and urinals shall he provided in	ince with the Heal	Safety regulations. These	batriroom and tollet lacilities shall be suitably located within	the workplace/buildings. Latrines	shall be cleaned at least three	times daily in the morning,	v and evening and kept in	strict sanitary condition. If	latrines and urinals, screened	se for men a	vernacular shall	provided. There shall be adequate supply of water, within
Level of risk and its (possibility)			I	1																						
Impact																										
Project Activity/ objects which cause the impacts																										
Project Stage																										

Cost estimates			No additional Payment			No additional Payment	No additional Payment	
Responsibility in compliance monitoring and Supervising			٩			NWSDB HO	NWSDB HO	
Responsibility in implementation			NWSDB			NWSDB,RSC	NWSDB,RSC	
Frequency			When needed	Before road work begins at the planning time		During storage		
Location			All affected road sides	Road sides		Storage rooms		
Parameters to be monitored			Traffic flow during construction times and adequacy of warning signage	No monitoring task		Conditions of the gas storage and its monitoring devises		
	and close to latrines and urinals.		empo ol tra id si sing at tu adequ fety ta ork au ould b	Special consideration shall be given to schedule the road side works to continue immediately after or before the other road repair or excavation works begin or end to avoid repetitive closure or breaking of roads surfaces and causing inconveniences to public.		It should be monitored that whether the Gas monitor is working always at proper condition or not. Chlorine Gas leakage detectors to be installed Safety training should be given to the laborer	Storage locations of sand, metal, soil should be located away from settlements and other sensitive receptors and must be covered (with artificial barriers or natural vegetation).	Measures should be taken to minimize dust during handling of material during operational phase
Level of risk and its (possibility)			Minor (common)			Minor (rare)	Minor (common)	
Impact		ion phase	sary traffic will d due to unsched tion activities ad work areas are	properly illuminated and warned (signage) can cause accidents.	environment (air, water and land)	chlorine gas of leakage from chlorine gas storage place and chlorine injection facility may generate air pollution	Dust will be emitted during operational activities.	
Project Activity/ objects which cause the impacts		G. Traffic Control during construction phase	Traffic and road blockages and safety issues		A. Impact on physical environment	Leakage of chlorine gas	Emission of dust	
Project Stage							əseyd	lenoitereqC

Anuradhapura North Integrated Water Supply Project

Cost estimates				No additional Payment	No additional Payment			No additional Payment
Responsibility in compliance monitoring and Supervising				NWSDB HO	NWSDB HO			NWSDB HO
Responsibility in implementation				NWSDB RSC	NWSDB RSC			NWSDB RSC
Frequency								Weekly
Location								Discharged point of the WTP
Parameters to be monitored								Water quality standards as specified in CEA regulations
	Vehicle speed limits should be enforced and followed to minimize dust generation.	The sites which prone to dust emission and the roads used for transportation during operational phase should be sprinkled with water for dust suspension.		Maintenance of vehicles, equipment and machinery shall be regular and proper, to keep noise from these at a minimum. Low noise/ vibration pump and generator must be used as specified in tender document.	Due consideration must be paid on vibration impacts of blasting on adjoining structures.		Water from sludge drying bed should be managed to meet the standards before discharging	Treated effluent to be discharged during operation should be introduced to the sedimentation basin and turbidity must be treated. The effluent discharged should meet the CEA stipulated standards for effluent discharged into inland surface flowing water body In case the operational activities going to adversely affect the quantity or quality of water, a serve notice must be given to the relevant authorities and downstream users of water sufficiently in advance.
Level of risk and its (possibility)				Minor (common)	Minor (common)			Major (common)
Impact			to noise and vibration	The machinery, equipment and other noise generating activities may cause noise pollution Noise pollution and vibration can occur due to the use of pumps and the generators at site.	Vibration during operations may cause damages to the structures and the environment			Water source will be polluted if discharged into potable water sources and hence the water quality will be reduced.
Project Activity/ objects which cause the impacts			B. Adverse effects due to noise an	Noise generation due to Pump, generator and other noise generating activities	vibration	C. Adverse effect on water Quality		Discharge water
Project Stage				1				

Anuradhapura North Integrated Water Supply Project

Anuradhapura North Integrated Water Supply Project	

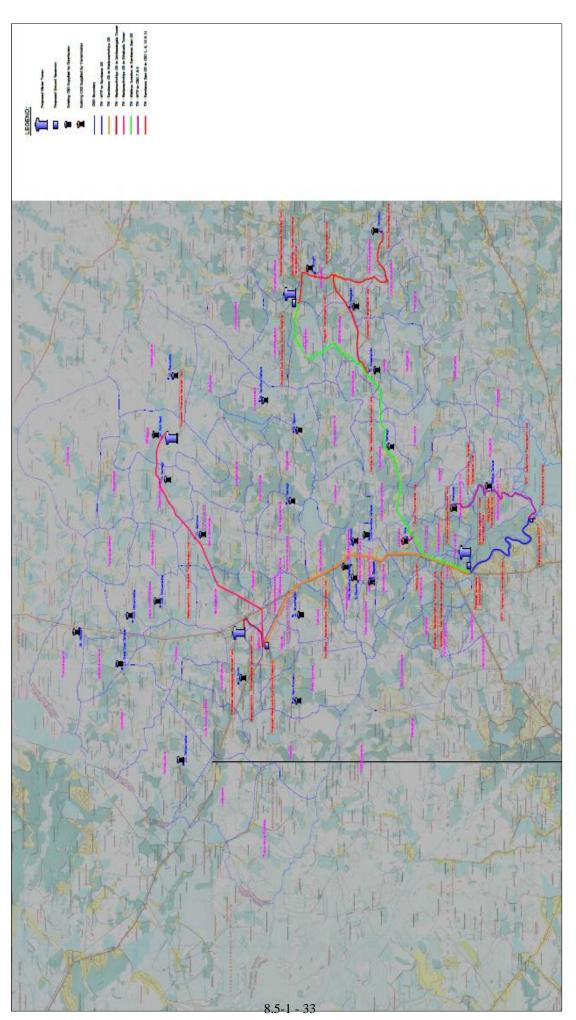
Cost estimates		No additional Payment	No additional Payment		- 	additional Payment	No additional	Payment					No	Payment				
Responsibility in compliance monitoring and Supervising		NWSDB HO	NWSDB HO			NWSDB HO												
Responsibility in implementation		NWSDB RSC	NWSDB RSC			NWSDB RSC	NW/SDB RSC											
Frequency					Regularly	Regularly		kegularıy										
Location						Work sites		Sluage beas in WTP										
Parameters to be monitored		Domestic effluent discharge			Domestic garbage	disposal		əluage produced										
Mitigation measures	Employees must be made aware on water conservation and waste minimization.	Effluent should be treated by the soak pit.	Oil and grease must be kept separately in the container		Domestic waste should be placed at the temporally collection place, and transferred to the officially operated disposal field	Garbage bins must be provided in the work sites and regularly emptied and the garbage disposed off in a hygienic manner.	Sludge should be dried up at the drying bed to reduce its quantity and properly disposed	Dried sludge should be dumped by the contract with the approval of land owner		The sources of water (potable or otherwise) used by the settled	unity must be protected continued use of th	water sources will not be disrupted by the	There shall not be any diversion, closure or blocking existing canals	and streams in a manner that	adversely affect down – stream intakes. If diversion or closure or	blocking of canals and streams is	required during operational	phase of work, relevant approval in writing must be obtained.
Level of risk and its (possibility)		Minor (common)	Minor (rare)		Minor	(common)	Minor	(common)						MINOL				
Impact		Domestic waste will be generated by the work force laborer activities	Oil and grease will be added during operational activities	to Solid Waste Generation	waste will during	operational phase that may impact surrounding areas if discharged indiscriminately	Sludge will be generated during	operational activities					The proposed system may cause	problems with irrigation during dry seasons				
Project Activity/ objects which cause the impacts		Domestic effluent	Oil and grease	D. Effect on the environment due to Solid Waste Generation		Waste			E. Watershed Protection				of irrigation canal or	aisruption to regular irrigation patterns				
Project Stage																		

Management Plan	
Environmental	

iect	
Pro	
2	•
20	
3	
S	
Water Suppi	
7	
arated V	
ntec	
th I	
a North I	
adhapura	
3	
B	
4	
2	
Anu	
A	

Project Stage	Project Activity/ objects which cause the impacts	Impact	Level of risk and its (possibility)	Mitigation measures	Parameters to Location be monitored	Frequency	Responsibility in implementation	Responsibility in compliance monitoring and Supervising	Cost estimates
	temporary structures	Existing temporary structures will create problems to the society	Minor	On completion of the works, all temporary obstructions to shall be cleared away.			NWSDB RSC	NWSDB HO	No additional Payment
	F. Environmental Enhancement								
	Destructions to the existing landscape	Roadside Landscape will be affected by operational activities	Minor (common)	Road landscape plantation, re- vegetation of road embankments and other slopes, edge treatment of water bodies shall be established			NWSDB RSC	NWSDB HO	No additional Payment
	G. Effect on the working condition	condition for the workers							
	Safety and health	Workers can be affected by accidents during operational	Minor (common)	At every workplace, first aid kit shall be provided as per the regulations. At every workplace an ambulance room containing the prescribed equipment and nursing staff shall be provided.			NWSDB RSC	OH 80208 HO	No additional
		activities		In every workplace and labour camps portable water shall be available throughout the day in sufficient quantities.					ауленс

Package	Components	Cost (million Yen)	Period (month)	Procurement
Package 1	Intake, WTP, Ground Sumps and Elevated Tanks	1,712	30	ICB
Package 2	Transmission/Distribution Mains	1,263	33	ICB
Package 3	Distribution Sub-System	534	27	LCB
Package 4	O&M Goodss	68	12	LCB
Package 5	Installation of Distribution Sub-System and House Connections	56	27	-


Following items are to be established in the site locations according to the "Lot A" contract package.

Contract Package	Location	Items
	Mahakanadarawa LB Canal	19,800 m ³ /day Intake Structure including Low Lift Pump House Raw Water Pumps for Stage 1 capacity (9,900
	Raw Water Transmission System	m ³ /day) Supply and Laying of 300 m length of 450 mm dia. DI pipes
	Mahakanadarawa WTP	9,400 m ³ /day production capacity WTP and all incorporated facilities
		Construction of 1,000 m ³ Clear Water Reservoir High Lift Pump House and treated water transmission pumps
	Rambewa	Construction of 1,500 m ³ ground reservoir
		Construction of 1,000 m ³ elevated water tank
		Construction of building facilities including pump house
"Lot A" Contract		Supply and installation of transmission pumps
		Supply and installation of Chlorination facilities
Package	Medawachchiya	Construction of 1,000 m ³ ground reservoir
		Construction of building facilities including pump house
		Supply and installation of transmission pumps
		Supply and installation of Chlorination facilities
	Rambewa East	Construction of 500 m ³ ground reservoir
		Construction of 250 m ³ elevated water tank
		Construction of building facilities including pump house
		Supply and installation of transmission pumps
		Supply and installation of Chlorination facilities
	Issinbassagala	Construction of 2,000 m ³ elevated water tank
	Ethakada 8.5-1	- Gonstruction of 750 m ³ elevated water tank

Table	Definitions of "Lo	ot B" and "Lot C"	contract packages
TUDIC			contract packages

Contract Package	Pipe Category / Sub Contract Package	Proposed Pipe Material	Pipe Nominal Diameter (mm)	Pipe Length (m)	
			110	7,780	
			160	11,830	
			225	2,710	
	Transmission	HDPE	280	27,370	
	System		315	14,800	
			400	2, 1 65	
			500	23,310	
"Lot B"		Sul	p-Total	89,965	
Contract Package			110	68,730	
(Supply and			160	28,055	
Lay)	Distribution Sub Mains		180	11,575	
		HDPE -	225	30,605	
			250	10,695	
			315	9,925	
			355	2,830	
			400	395	
		Sul	162,810		
	Total of	"Lot B" Contract P	252,775		
	"Lot C1" Contract	PVC	110	25,890	
	Package (Supply	PVC	160	5,065	
	and Lay)	Total		30,955	
	"Lot C2 " Contract	PVC	63	234,920	
"Lot C" Contract Package	Package (Supply	FVC	90	109,895	
	Only)	Total		344,815	
	"Lot C3" Contract Package (Laying	PVC	90	109,895	
	Only)	Total		109,895	
Total of "Lot C" Contract Package (supply) 375,770					

ANNEX 2 TRANSMISSION KEY MAP

ANNEX 3 IMPORTANT ENVIRONMENTAL LEGISLATIVE INSTRUMENTS

National Environment Policy – 2003

The policy aims to promote the sound management of Sri Lanka's environment balancing the needs for social and economic development and environment integrity. It also aims to manage the environment by linking together the activities, interests and perspectives of stakeholders and to assure environmental accountability.

National Forestry Policy – 1995

The policy was drawn up to provide clear directions for safeguarding the remaining natural forests of the country in order to conserve biodiversity, soil and water resources.

The National Policy on Wildlife Conservation – 2000

The policy renews the commitment of the government to conserve wildlife resources through promoting conservation, maintaining ecological processes and life sustaining systems, managing genetic diversity and ensuring sustainable utilization and sharing of equitable benefits arising from biodiversity. It emphasizes the need for effective protected area management with the participation of local communities.

National Air Quality Management Policy – 2000

The policy aims to maintain good air quality to reduce morbidity due to air pollution and in turn reduce national health expenditures.

National Watershed Management Policy – 2004

The policy aims to conserve, protect, rehabilitate, sustainably use and manage the watersheds while managing their environment characteristics with the involvement of people.

Cleaner Production Policy – 2004

The objective of this policy is to incorporate the cleaner production concept and practices into all development sectors of the country.

National Biosafety Policy – 2005

The policy on biosafety set the overall framework in which adequate safety measures will be developed and put into force to minimize possible risks to human health and the environment while extracting maximum benefits from any potential that modern bio technology may offer.

National Air Quality Management Policy – 2000

The purpose of this policy is to maintain good air quality to reduce morbidity due to air pollution and in turn reduce national health expenditures.

National Policy on Wetlands – 2005

The policy seeks to give effect to National Environment Policy and other relevant national policies, while respecting national commitments towards relevant international conventions, protocols, treaties and agreements to which Sri Lanka is a party.

National Policy on Sand as a Resource for the Construction Industry – 2006

The policy statement reflects Sri Lanka's constitutional, international and national obligations, including the Mines and Minerals Act No. 33 of 1992, the National Environmental Act of 1980, the Coast Conservation Act of 1981 and other relevant legislation, regulations and policy statements. It defines the commitment of Government, in partnership with the people, to effectively manage the construction-sand resource for the benefit of present and future generations.

National Policy on Elephant Conservation – 2006

The policy was developed to ensure the long-term survival of the elephant in the wild in Sri Lanka through the mitigation of the human-elephant confect.

National Policy on Solid Waste Management – 2007

The policy has been prepared to ensure integrated, economically feasible and environmentally sound solid waste management practices for the country at national, provincial and Local Authority level. The main objectives of the policy are (a) to ensure environmental accountability and social responsibility of all waste generators, waste managers and service providers (b) to actively involve individuals and all institutions in integrated and environmentally sound solid waste management practices (c) to maximize resource recovery with a view to minimize the amount of waste for disposal and (d) to minimize adverse environmental impacts due to waste disposal to ensure health and well being of the people and on ecosystems.

ANNEX 4 NATIONAL ENVIRONMENTAL ACT (NEA)

The NEA was established as No.47 of 1980 and it was amended (Act No. 56 of 1988) to include a provision relating to EIA Regulations contained in Part IV C of the statute entitled "Approval of Projects". This section was further amended by Act No. 53 of 2000.

Prescribed project and EIA/IEE procedure

The prescribed projects which are requested to implement EIA/IEE are defined and listed in the Gazette no 772/22 of 24th June, 1993 and 859/14 of 23rd February 1995. Only large-scale development projects that are likely to have significant impacts on the environment are listed as prescribed projects. There are two categories.

1. By type and the magnitude

In case of Water Supply Project, the conditions are;

- All ground water extraction projects of capacity exceeding 1/2 million cubic meters per day.
- Construction of water treatment plans of capacity exceeding 1/2 million cubic meters
- 2. By location (e.g. if projects are located wholly of partially within environmentally sensitive areas such as forest and wildlife reserves, stream or lake reservation, archaeological reserve, declared erodible areas etc.

Environmental recommendation

The any projects to establish industrial activities, which are not subject to EIA are advised to obtain environmental recommendation from the CEA for the proposed sites. The purpose of environmental recommendation is to minimize the environmental impact. The potential of the environmental impact of a proposed project is evaluated with respect to the zoning plans of relevant local Authorities surrounding land use, land availability for buffer zones, and the capacity of the area to receive additional pollution load and waste disposal requirements. The document contains the conditions, and the project should take mitigation measures to satisfy the conditions.

EPL

The potential polluting activities are requested to obtain Environmental Protection License (EPL) under the section 23.A of NEA. The prescribed activities for which a license is required are listed in the Gazette Notification No 1533/16 dated 25.01.2008. Water treatment plants having a treatment capacity of 10,000 or more cubic meters per day is stated as the prescribed activity in part A. The license for a project is issued by Provincial Offices or District Offices of the CEA, and it has maximum one year validity. The project proponent has to renew the license. ANNEX 5 BASIS OF REGULATIONS AND STANDARDS AND A SUMMARY OF ENVIRONMENTAL COMPLIANCE REQUIREMENTS FOR THE PROJECT ACTIVITIES

Table	Summar	of basis of regulations and the standards
-------	--------	---

Air Quality (discharge	Discharge: No standard			
and ambient)	Ambient: The National Environmental (Ambient Air Quality) Regulations, 1994, published in Gazette Extraordinary, No. 850/4 of December, 1994 amended No. 1562/22 - Friday, August 15, 2008			
Water Quality (discharge and ambient)	Discharge: National Environmental (Protection and Quality) Regulations, No. 1 of 2008 - Schedule I			
	Ambient: Proposed standard			
Drinking Water Quality	Sri Lanka Standards for potable water – SLS 614: 1983			
Wastes (domestic and water treatment operation)	As specified in Environmental Protection License			
Noise and Vibration	Noise: National Environnemental (Noise Control) Régulations No.1 1996			
	Vibration: Proposed standards			
Forest	Forest Ordinance No. 16 of 1907 (as amended) and the Rules and Regulations under the Ordinance			
Wildlife	Fauna and Flora Protection Ordinance No. 2 of 1937 (as amended by Act Nos. 49 of 1993, 12 of 2005) and the Regulations under the Ordinance			
Landscape	UDA Act No. 41 1978 and No. 4 of 1982			
Heritage (Archeology)	Antiquities Ordinance No. 9 of 1940 as amended			
Involuntary Resettlement	National Involuntary Resettlement Action Plan; Land Acquisition Act No.09 of 1950 (As Amended)			
Protection of minority	The Constitution of Sri Lanka, 1978 as amended			
Land expropriation and compensation	National Involuntary Resettlement Action Plan; Land Acquisition Act No.09 of 1950 (As Amended)			
Safety of Labor	Factories Ordinance			

Table Summary of Environmental Compliance Requirements for the Project Activities

	Project activity	Applicable Legislation	Statutory Requirement	Authorizing Body
1	Groundwater extraction projects of capacity exceeding 500,000 cubic meters per day	jects of capacity eeding 500,000 cubic		Central Environment Authority (CEA)
2	Water treatment plant	NEA	EC	CEA

	exceeding 500,000 cubic			
	meters per day			
3	All activities in sensitive areas	NEA	EC	CEA
4	All activities that require site clearance	Municipal Councils Ordinance No. 29 of 1947, the Urban Councils Ordinance No. 61 of 1939 and the Pradeshiya Sabha Act No. 15 of 1987 as amended	Clearance	Municipal Councils, Urban Councils and Pradeshiya Sabhas
5	All activities that require cutting of trees	Felling of Trees (Control) Act No 9 of 1951	Tree-cutting Permit	Forest Department
6	All s activities within a 1 mile (1.6 km) radius of a national reserve	Section 14 of Fauna and Flora Protection (Amendment) Act, No. 22 of 2009	Clearance	Department of Wildlife Conservation
7	All activities in close proximity of a reserve forest	Forests Ordinance No. 16 of 1907 as amended	Clearance	Forest Department
8	All s activities in and around fishery reserves	Fisheries and Aquatic Resources Act No. 2 of 1996	Clearance	Director of Fisheries and Aquatic Resources
9	All activities in proximity of archaeological reserves	Antiquities Ordinance No. 9 of 1940 as amended	Clearance	Department of Archaeology
1 0	All activities in and around irrigation development	Irrigation Development Act	Clearance	Director, Irrigation Department
1 1		Urban Development Authority Act No. 41 1978 and No. 4 of 1982	Clearance	Regional Director UDA
1 2	Water treatment plants having a treatment capacity of 10,000 or more cubic meters per day.	Gazette Notification No 1533/16 dated 25.01.2008	Environmental Protection License	CEA

ANNEX 6 ENVIRONMENTAL STANDARDS APPLICABLE TO THE PROJECT

Air quality standards

Table Discharge Standards for Petrol Vehicles

Type of Vehicle	Pollution Standard	Remarks	
	Carbon Monoxide(CO (%vol)	Hydrocarbon	
		HC (ppm v/v)	
Petrol wo/cc	a. > 5 years	1200	Low idling
	3.0 < 5 years		
Petrol w/cc	2	400	Low idling

wo/cc - Without catalytic converter

w/cc - with catalytic converter

>5 years - vehicles more that 5 years old from the year of manufacture (used / unused)

< 5 years - vehicles less than 5 years old from the year of manufacture

Table Discharge Standards for Diesel Vehicles

Type of Vehicle	Smoke Capacity% (k factor m-1)	
	Idle	Load
Diesel – Tare less than 1728 Kg	65 (2.44)	75 (3.22)
Including three wheelers		
Diesel – Tare more than 1728 kg	65 (2.44)	75 (3.22)

Table Ambient Air Quality Standards

	Pollutant	Averaging Time*	Permissible Level		
			µgm ⁻³	ppm	
1	Particulate Matter -	Annual	50	_	Hi-volume sampling and Gravimetric or Beta
	Aerodynamic diameter	24 hrs.	100	-	Attenuation
	is less than 10 μm in size (PM_{10})				Hi-volume sampling and Gravimetric or Beta Attenuation
2	Particulate Matter -	Annual	25	_	
	Aerodynamic diameter is less than 2.5 μ m in size (PM $_{2.5}$)	24 hrs.	50	_	
3	Nitrogen Dioxide (NO ₂)	24 hrs.	100	0.05	Colorimetric using Saltzman Method or
		8 hrs.	150	0.08	equivalent Gas phase chemiluminescence
		1hr.	250	0.13	
4	Sulphur Dixoxide (SO ₂)	24 hrs.	80	0.03	Pararosaniliene Method or equivalent Pulse
		8 hrs.	120	0.05	Flourescent

	Pollutant	Averaging Time*	Maxin Permissib		
		Time	µgm ⁻³	ppm	
		1hrs.	200	0.08	
5	Ozone (O ₃)	1 hr.	200	0.1	Chemiluminescence Method or equivalent Ultraviolet photometric
6	Carbon Monoxide (CO)	8 hrs.	10,000	9	Non-Dispersive Infrared
		1 hr	30,000	26	Spectroscopy"
		Anytime	58,000	50	

Table Occupational Safety and Health Guideline for Chlorine

	ppm	mg/m3	Source
Permissible exposure limit	1	3	United States Department of Labor
Advisable limit	0.5	1.5	National Institute of Occupational Safety & Health
Evaluation standard	0.5	1.5	Notification No. 53 Department of Labor (Japan)

Water quality standards

Table Tolerable Limit of Discharge to Inland Surface Water

No.	Parameter	Unit type of limit	Tolerance Limit values
1	Total suspended solids	mg/1, max.	50
2	Particle size of the total suspended solids	μm, less than	50
3	pH at ambient temperature	-	6.0 - 8.5
4	Biochemical oxygen demand (BOD ₅ 5 days at 20°C or BOD3 $_3$ days at 27°C)	mg/1, max.	30
5	Temperature of discharge	°C, max.	Shall no exceed 400°C in any section of the stream within 15 m down stream from the effluent outlet.
6	Oils and greases	mg/1, max.	10
7	Phenolic compounds (as C ₆ H₅OH)	mg/2, max.	1
8	Chemical oxygen demand (COD)	mg/3, max.	250
9	Colour	Wavelength Range 436 nm (Yellow range) 525nm (Red range) 620nm (Blue range)	Maximum spectral absorption coefficient 7m ⁻¹ 5m ⁻¹

No.	Parameter	Unit type of limit	Tolerance Limit values
			3m ⁻¹
10	Dissolved phosphates (as P)	mg/1, max.	5
11	Total Kjeldahl nitrogen (as N)	mg/1, max.	150
12	Ammoniacal nitrogen (as N)	mg/1, max.	50
13	Cyanide (as CN)	mg/1, max.	0.2
14	Total residual chlorine	mg/1, max.	1
15	Flourides (as F)	mg/1, max.	2
16	Sulphide (as S)	mg/1, max.	2
17	Arsenic (as As)	mg/1, max.	0.2
18	Cadmium (as Cd)	mg/1, max.	0.1
19	Chromium, total (as Cr)	mg/1, max.	0.5
20	Chromium, Hexavalent (as Cr6+)	mg/1, max.	0.1
21	Copper (as Cu)	mg/1, max.	3
22	Iron (as Fe)	mg/1, max.	3
23	Lead (as Pb)	mg/1, max.	0.1
24	Mercury (as Hg)	mg/1, max.	0.0005
25	Nickel (as Ni)	mg/1, max.	3
26	Selenium (as Se)	mg/1, max.	0.05
27	Zinc (as Zn)	mg/1, max.	2
28	Pesticides	mg/1, max.	0.005
29	Detergents/surfactants	mg/1, max.	5
30	Faecal Coliform	MPN/100 ml, max	40
31	Radio Active Material :		
	(a) Alpha emitters	micro curie/ml, max	10 ⁻⁸
	(b) beta emitters	micro curie/ml, max	10 ⁻⁷

Noise and vibration

Table Maximum permissible noise levels

	Duration	Laeq', T
Day time	6:00 ~ 18:00	75
Night time	18:00 ~ 6:00	50

Table Maximum Permissible Noise Levels at Boundaries in LAeq, T, for Industrial Activities

Area	Day time	Night time		
Rural Residential Area	55	45		
Urban Residential Area	60	50		
Noise Sensitive Area	50	45		
Mixed Residential	63	55		
Commercial Areas	65	55		
Industrial Area	70	60		
Japanese Environmental Standard				
A (residential area)	55	45		

Appendix 8.5-2 Environmental Management Plan for Phase 2

Impact	Object	Mitigation measures	Impact	In charge or implemented by	Supervising
Noise and vibration	Provision of procurement of pump, generator and other noise generation facility	 Low noise/vibration pump and generator are specified in tender document. Building is designed with the consideration to decrease noise and vibration to meet the requirement. Location of these facilities is examined. 	Minor	NWSDB HO	PMU (CEA)
Waste	Provision of treatment method of construction waste and Domestic waste	 Waste management plan is prepared under discussion with CEA and DS. The dumping site should not disturb wildlife. Temporally dumping area is secured. 	Minor	NWSDB RSC	PMU DS CEA
Ecological impact	Clearing land	 Clearing land and cutting tree are planned under the discussion with Forest Dept and/or CEA to avoid destruction of habitat. These activities will be monitored and inspected. The contractor shall submit report with photos. 	Minor	ESO/ Contractor	NWSDB RSC
	Rare species	 The contractor prepares code of conduct if workers encounter the rare species, and provides appropriate training to workers. Making a plan of transplant and recovery of habitat in case. 	Minor	ESO/ Contractor	NWSDB RSC
Archaeological impact	Excavating antiquity	• The contractor prepares code of conduct if workers excavate antiquity, and provides appropriate training.	Minor	ESO/ Contractor	NWSDB RSC Archaeological dept.
Social impact	Stakeholder meeting	 Discussion and making agreement about construction schedule, procedure, and impact 	Minor	NWSDB RSC	PMU DS
	Public relation activities for local residents	• Explanation for local residents and to develop understanding about construction work schedule, expected impacts, mitigation measures etc.	Minor	NWSDB RSC	PMU DS

Pre construction and Land Clearance Stage

Construction Stage

Impact		Mitigation measures		In charge or implemented by	Supervisin g
Air pollution	Exhaust gas	• To ensure the use of vehicles and machineries officially registered, and properly maintained.	Minor	ESO/ Contractor	PMU
	Dust	 To cover the earth or dusty materials and store properly. To sprinkle water to prevent the dust raising if necessary. 	Minor	ESO/ Contractor	PMU
	Leakage of chlorine gas	Guidance of proper installationSafety training to laborer	Minor	ESO/ Contractor	PMU
Noise	Vehicles and machinery	 To ensure the use of vehicles and machineries officially registered, and properly maintained. Unnecessary idling is not allowed. Route of transportation is examined to prevent noise or other effect on vicinity. 	Minor	ESO/ Contractor	PMU
	Construction work	 To avoid doing the work generating noise and vibration at nighttime. Sound insulation wall will be used if necessary. 	Minor	ESO/ Contractor	PMU
Water quality	Water source	 Making water resource protection plan with the commitment of relevant authority 	Minor	PMU	PD
	Discharge water	 Clean water such as rain water is separately collected to prevent from mixing with muddy materials Turbid water generated by earthwork is introduced to the sedimentation basin and turbid material will be settled. If necessary further treatment (use of coagulant) is done. 	Minor	ESO/ Contractor	PMU
	Domestic effluent	• Effluent is treated by the soak pit.	Minor	ESO/ Contractor	PMU
	Oil and grease	 Oil and grease are kept separately in the container. Oil absorbent is prepared. All vehicles are serviced at proper station. 	Minor	ESO/ Contractor	PMU
Waste	Construction waste	 The waste reduction plan and dumping procedure will be proposed at the tender document and implemented. The temporally dumping yard for construction waste is secured. Waste is segregated in order to recycling purpose. Recyclable material is transferred to the recycling manufacturer. Waste which is not recyclable is disposed to follow the fixed rule of 	Minor	ESO/ Contractor	PMU

Impact		Mitigation measures	Impact	In charge or implemented by	Supervisin g
		relevant DS.			
	Domestic waste generated by laborer	• Domestic waste is placed at the temporally damping yard, and transferred to the officially operated disposal field.	Minor	ESO/ Contractor	PMU
Ecological environment	Violation to ecosystem	 Training and awareness program for laborer must be planned and conducted. Code of conduct to prevent the violation to ecosystem is prepared. The all construction activities should follow the approved procedure. Scheduled patrol and inspection will must be conducted. Special measures to prevent traffic accidents will be taken. 	Minor	ESO/ Contractor	PMU
	Trees and plant	• Clearing land is minimized and the large tree is remained as far as possible, or transplanted.	Minor	ESO/ Contractor	PMU
	Rare species	 If the special species will be found out at the site, the contractor has to report immediately to NWSDB and receive the guidance of CEA or wildlife dept. before taking any actions. The training for protection of rare species is conducted. 	Minor	ESO/ Contractor	PMU CEA Wildlife dept
Archaeologic al impact	Excavating antiquity	• If the antiquity will be excavated at the site, report to NWSDB and receive the guidance of Archaeological dept.	Minor	ESO/ Contractor	PMU Archaeolog ical dept.
Social impact	Social conflict caused by laborer	 Training and awareness program for laborer are planned and done. Security guard is appointed. 	Minor	ESO/ Contractor	PMU
	Inconvenience of livelihood	 Pipe laying work on the road is planned carefully to prevent inconvenience as much as possible. Refraining from working during peak hours to prevent road traffic blocks Public notice prior to construction 	Minor	ESO/ Contractor	PMU
Working condition	Occupational safety	 Training and awareness program for laborer is planned and done. Safety tools are provided to laborer by Contractor. 	Minor	ESO/ Contractor	PMU

Operation Stage

Impact		Mitigation measures	Impact	In charge or implemented by	Supervising
Air pollution	Leakage of chlorine gas	 Chlorine gas concentration is monitored by appropriate device. Safety training to laborer 	Minor	NWSDB RSC	NWSDB HO
Noise	Noise generation facility (pump etc)	 To ensure the proper operation and maintenance To control the noise and vibration to meet the CEA recommendation. 	Minor	NWSDB RSC	NWSDB HO
Water quality	Discharge water	• Under drain water from sludge drying bed should be managed to satisfy the request of Irrigation dept.	Minor	NWSDB RSC	NWSDB HO
	Domestic effluent	• Effluent is treated by the soak pit.	Minor	NWSDB RSC	NWSDB HO
	Oil and grease	• Oil and grease are kept separately in the container and discarded in proper way.	Minor	NWSDB RSC	NWSDB HO
Waste	Domestic waste	• Domestic waste is placed at the temporally collection place, and transferred to the officially operated disposal field	Minor	NWSDB RSC	NWSDB HO
	Sludge	 Sludge is dried up at the drying bed to reduce its quantity Dried sludge is dumped by the contract with the approval of land owner. 	Minor	NWSDB RSC	NWSDB HO
Working condition	Safety and health	 Safety and emergency tool is always ready. Safety training is provided on schedule. Newly hired employee shall have safety training. 	Minor	NWSDB RSC	NWSDB HO

NWSDB RSC : National Water Supply and Drainage Board Reginal Support Center NWSDB HO : National Water Supply and Drainage Board Head Office PMU: Project Management Unit PCC: Project Coordination Committee DS: Divisional Secretariat

ESO: Environment and safety officer

Items	Monitoring parameters	Procedure	Frequency	Implemented and reported by	Report to
Designing stage					
Procurement	Suitability of specification	Checking the specification to meet the proposed mitigation measures	1 time	NWSDB	PMU
Waste	Waste management procedure	Checking dumping plan and obtaining agreement with local authority	1 time	NWSDB	PMU
Ecological environment	Clearing land procedure	Checking the plan of clearing and obtaining permission	1 time	NWSDB	PMU
	Rare species	Checking the plan of transplant and recovery of habitat	1 time	NWSDB	PMU
Social impact caused by laborer of construction	Awareness raising program	Checking the training plan of laborer	1 time	NWSDB	PMU
Construction stage					
Air quality	Vehicle registration	To register all vehicles for the project activities and inspect its certification	New vehicle is enlisted	Contractor	PMU
	Vehicle maintenance condition	Checking the registered vehicles and its maintenance record	Once a month	Contractor	PMU
	Dust	Visual observation at the site	Once a week	Contractor	PMU
	Chlorine gas emission	To check and calibrate the gas leak detector	Once a month	Contractor	PMU
Water quality	Discharge water quality	Measurement of turbidity	Every day during soil work	Contractor	PMU
		Monitoring discharge water quality (Minimum items are pH, TSS, Oil and grease, COD, Iron, Faecal Coliform)	Once a month	Contractor	PMU

Appendix 8.6-1 Monitoring Plan for Phase 2

Items	Monitoring parameters	Procedure	Frequency	Implemented and reported by	Report to
Noise	Working time of construction	Checking working record	Once a week	Contractor	PMU
	Noise at boundary	Measurement of noise at the boundary of the site	Once a month both in daytime and night time	Contractor	PMU
Ecological environment	Violation to ecosystem, such as cutting tree, hunting, killing taking plants and animals, disturbing	To examine code of conduct for prevention measures	Before starting construction	NWSDB	PMU
	habitat etc.	Patrol of construction site and submission of the record	Once a week	Contractor	PMU
		Checking training record of awareness raising	Two times a year	Contractor	PMU
		To check the monthly report whether there is any violation to code of conduct.	Once a month	Contractor	PMU
	Trees and Plant	To check the extent of clearing land whether it is same as planned.	Stage of clearing land	Contractor	PMU
		Observation of the planting condition of the project site	End of construction work at each site	Contractor	PMU
	Rare species	To check the description about environmental protection activities at the monthly report.	Once a month	Contractor	PMU
Waste	Construction waste	To check condition of segregation at the dumping site. To check past record of recycling .	Every 3 months	Contractor	PMU
	Domestic waste	Observation of temporally dumping yard.	Every 3 months	Contractor	PMU

Items	Monitoring parameters	Procedure	Frequency	Implemented and reported by	Report to
Operation stage					
Air quality	Chlorine gas leakage	Measurement of gas concentration and check and calibration of gas leak detector	Once a week	NWSDB RSC	NWSDB
Raw water quality	Parameters listed in drinking water quality	Chemical analysis by laboratory	Once a month	NWSDB RSC	NWSDB
Distributing water quality	Parameters listed in drinking water quality	Chemical analysis by laboratory	Once a month	NWSDB RSC	NWSDB
Discharge water quality	Parameters listed in discharge water quality	Chemical analysis by laboratory	Every 3 months	NWSDB RSC	NWSDB
Occupational safety	Chlorine gas leakage	Measurement of gas concentration	Checking the daily record	NWSDB RSC	NWSDB
Noise	Noise at the boundary	Measurement of noise	Every 3 months	NWSDB RSC	NWSDB
Waste	Sludge	Observation of the drying bed Checking the record of sludge disposal	Every 4 months	NWSDB RSC	NWSDB

NWSDB : National Water Supply and Drainage Board NWSDB RSC : National Water Supply and Drainage Board Reginal Support Center PMU: Project Management Unit ESO: Environment and safety officer

Appendix 8.6-2 MONITORING FORM

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
Obtaining Environmental Protection License	
Stakeholder meeting	

2. Mitigation Measures

- Air Pollution

Monitoring Item	Monitoring Results during Report Period
Inventory of registered vehicle and maintenance	
record	

- Water Quality (Discharge Water Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred International Standards (Japanese standard)	Remarks (Measurement Point, Frequency, Method, etc.)
Turbidity	NTU			Proposed	200mg/L as Total Suspended Solid	Measurement at discharge point by turbidity meter, daily during earth work Management value is to be 50 NTU (10 times as much as ambient standard)
рН				$6.0 \sim 8.5$	5.8 ~ 8.6	Measurement at discharge point by laboratory test,
Total Suspended Solid (TSS)	mg/l			50		Monthly in construction stage, every three months
Oil and grease	mg/l			10	5 (as mineral oil) 30 (as oil extracted from animals and plants)	
COD	mg/l			250	160	
Iron	mg/l			3	10	
Faecal Coliform	MPN/ 100m1, max.			40	3,000/ml as Total Coliform	

Sri Lanka discharge standard is attached as Appendix 8.6-3.

- Waste

Monitoring Item	Monitoring Results during Report Period
Operation of temporal dumping area	

- Noise / Vibration

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred Inter- national Standard	Remarks (Measurem ent Point, Frequency, Method,
Noise level	dB (A)			75dB (A) from 6:00 to 18:00 50dB(A) from 18:00 to 6:00 (Environmental Recommendation for construction stage)	85dB for construction machinery (Japan)	Measured at boundary by noise meter, monthly at day and night in construction stage, every three months in operation stage

3. Natural Environment

- Ecosystem

Period

4. Social Environment

- Living / Livelihood

Monitoring Item	Monitoring Results during Report Period
Implementation of awareness training for laborer	

I කොටස : (I) ජෛදය - ශී ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ අති විශෙෂ ගැසට් පතුය - 2008.02.01 7A PART I : Sec. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 01.02.2008

SCHEDULE I

No.	Parameter	Unit type of limit	Tolerance Limit values
01.	Total suspended solids	mg/1, max.	50
02.	Particle siz of the total suspended solids	μm, less than	850
03.	pH at ambient temperature	-	6.0 - 8.5
04.	Biochemical oxygen demand		
	$(BOD_5 \text{ in five days at } 20^\circ \text{c or BOD}_3 \text{ in three days at } 27^\circ \text{c})$	mg/1, max.	30
05.	three days at 27 [°] c) Temperature of discharge	0 C, max.	Shall no exceed 40° C in
05.	Temperature of discharge	°C, max.	
			any section of the stream within 15 m down stream
			from the effluent outlet.
06.	Oils and grasses	ma/1 may	10
08. 07.	Oils and greases	mg/1, max.	10
	Phenolic compounds (as C_6H_5OH)	mg/1, max.	1
08.	Chemical oxygen demand (COD)	mg/1, max.	250
09.	Colour	Wavelength	Maximum spectral
		Range	absorption coefficient
		436 nm	7m ⁻¹
		(Yellow range)	
		525 nm	5m ⁻¹
		(Red range)	
		620 nm	3m ⁻¹
		(Blue range)	
10.	Dissolved phosphates (as P)	mg/1, max.	5
11.	Total Kjeldahl nitrogen (as N)	mg/1, max.	150
12.	Ammoniacal nitrogen (as N)	mg/1, max.	50
13.	Cyanide (as CN)	mg/1, max.	0.2
14.	Total residual chlorine	mg/1, max.	1.0
15.	Flourides (as F)	mg/1, max.	2.0
16.	Sulphide (as S)	mg/1, max.	2.0
17.	Arsenic (as As)	mg/1, max.	0.2
18.	Cadmium (as Cd)	mg/1, max.	0.1
19.	Chromium, total (as Cr)	mg/1, max.	0.5
20.	Chromium, Hexavalent (as Cr ⁶⁺)	mg/1, max.	0.1
21.	Copper (as Cu)	mg/1, max.	3.0
22.	Iron (as Fe)	mg/1, max.	3.0
23.	Lead (as Pb)	mg/1, max.	0.1
24.	Mercury (as Hg)	mg/1, max.	0.0005
25.	Nickel (as Ni)	mg/1, max.	3.0
26.	Selenium (as Se)	mg/1, max.	0.05

TOLERANCE LIMITS FOR THE DISCHARGE OF INDUSTRIAL WASTE IN TO INLAND SURFACE WATERS

8A I කොටස : (I) ජෛදය - ශ් ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ අති විශෙෂ ගැසට් පතුය - 2008.02.01 PART I : SEC. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 01.02.2008 SCHEDULE I (Contd.)

No.	Parameter	Unit type of limit	Tolerance Limit values
27. 28. 29. 30.	Zinc (as Zn) Pesticides Detergents/surfactants Faecal Coliform	mg/1, max. mg/1, max. mg/1, max. MPN/100 ml, max	2.0 0.005 5 40
31.	Radio Active Material : (a) Alpha emitters (b) Beta emitters	micro curie/ml, max micro curie/ml, max	10 ⁻⁸ 10 ⁻⁷

TOLERANCE LIMITS FOR THE DISCHARGE OF INDUSTRIAL WASTE IN TO INLAND SURFACE WATERS

Note 1 : All efforts should be made to remove unpleasant odour as far as possible.

- *Note 2 :* These values are based on dilution of effluents by at least 8 volumes of clean receiving water. If the dilution is below 8 times, the permissible limits are multiplied by the 1/8 of the actual dilution.
- *Note 3* : The above mentioned general standards shall cease to apply with regard to a particular industry when industry specific standards are notified for that industry.
- *Note 4 :* Pesticides as per World Health Organization (WHO) and Food and Agriculture Organization (FAO) requirements.

No.	Parameter	Unit type of limit	Tolerance Limit value
1.	Total dissolved solids	mg/1, max.	2100
2.	pH at ambient temperature	-	5.5 - 9.0
3.	Biochemical oxygen demand	mg/1, max.	250
	$(BOD_5 in five days at 20^{\circ} C or BOD_3 in$		
	three days at 27 ^o c)		30
4.	Oils and greases	mg/1, max.	10
5.	Chemical Oxygen Demand (COD)	mg/1, max.	400
6.	Chlorides (as C1)	mg/1, max.	600
7.	Sulphates (as SO_4)	mg/1, max.	1000
8.	Boron (as B)	mg/1, max.	2.0
9.	Arsenic (as As)	mg/1, max.	0.2
10.	Cadmium (as Cd)	mg/1, max.	2.0
11.	Chromium, total (as Cr)	mg/1, max.	1.0
12.	Lead (as Pb)	mg/1, max.	1.0
13.	Mercury (as Hg)	mg/1, max.	0.01
14.	Sodium adsorption ratio (SAR)	-	10-15
15.	Residual sodium carbonate (RSC)	mo1/1, max.	2.5

LIST II

TOLERANCE LIMITS FOR INDUSTRIAL WASTE DISCHARGED ON LAND FOR IRRIGATION PURPOSE

I කොටස : (I) ජෛදය - ශී ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ අති විශෙෂ ගැසට් පතුය - 2008.02.01 9A PART I : Sec. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 01.02.2008

LIST II (Contd),

TOLERANCE LIMITS FOR INDUSTRIAL WASTE DISCHARGED ON LAND FOR IRRIGATION PURPOSE

No.	Parameter	Unit Type of limit	Tolerance Limit Values
16. 17. 18. 19. 20.	Electrical conductivity Faecal coliform Copper (as Cu) Cyanide (as CN) Radio Active Material :	μS/cm. max. MPN/100m1, max. mg/1, max. mg/1, max.	2250 40 1.0 0.2
	(a) Alpha emitters(b) Beta emitters	Micro curie./m1, max. Micro curie/m1, max.	10 ⁻⁹ 10 ⁻⁸

Hydraulic Loading Applicable for Different Soils :

Soil Texture Class	Recommended dosage of settled Industrial Effluents (m ³ /hectare, day)	
1. Sandy	225 - 280	
2. Sandy laom	170 - 225	
3. loam	110 - 170	
4. Clay loam	55 - 110	
5. Clay	35-55	

LIST III

TOLERANCE LIMITS FOR INDUSTRIAL AND DOMESTIC WASTE DISCHARGED INTO MARINE COASTAL AREAS

No.	Parameter	Unit	Tolerance Limit
		Type of limit	Values
1.	Total suspended solids	mg/1, max.	150
2.	Particle size of -		
	(a) Floatable solids	mm, max.	3
	(b) Settlabe solids	μm, max	850
3.	pH at ambient temperature	-	5.5 - 9.0
4.	Biochemical oxygen demand	mg/1, max.	100
	$(BOD_5 \text{ in five days at } 20^{\circ} \text{ C or BOD}_3 \text{ in})$		
	three days at 27 ° C)		
5.	Temperature	°C, max	45°C at the point
			of discharge
6.	Oils and greases	mg/1, max.	20

10A I කොටස : (I) ඡෙදය - ශී ලංකා පුජාතාන්තික සමාජවාදී ජනරජයේ අති විශෙෂ ගැසට් පතුය - 2008.02.01 Part I : Sec. (I) - GAZETTE EXTRAORDINARY OF THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA - 01.02.2008

No.	Parameter	Unit Type of limit	Tolerance Limit Values
7.	Phenolic compunds (as Phenolic OH)	mg/1, max.	5
8.	Chemical oxygen demand (COD)	mg/1, max.	250
9.	Total residual chlorine	mg/1, max.	1.0
10.	Ammoniacal Nitrogen (as N)	mg/1, max.	50
11.	Cyanide (as CN)	mg/1, max.	0.2
12.	Sulphides (as S)	mg/1, max.	5.0
13.	Fluorides (as F)	mg/1, max.	15
14.	Arsenic (as As)	mg/1, max.	0.2
15.	Cadmium (as Cd)	mg/1, max.	2.0
16.	Chromium, total (as Cr)	mg/1, max.	2.0
17.	Chromium, Hexavalent (as Cr ⁶⁺)	mg/1, max.	1.0
18.	Copper (as Cu)	mg/1, max.	3.0
19.	Lead (as Pb)	mg/1, max.	1.0
20.	Mercury (as Hg)	mg/1, max.	0.01
21.	Nickel (as Ni)	mg/1, max.	5.0
22.	Selenium (as Se)	mg/1, max.	0.1
23.	Zinc (as Zn)	mg/1, max.	5.0
24.	Pesticides	mg/1, max.	0.005
25.	Organo-Phosphorus compounds	mg/1, max.	1.0
26.	Chlorinated hydrocarbons (as C1)	mg/1, max.	0.02
27.	Faecal coliform	MPN/100m1, max.	60
28.	Radio Active Material :		
	(c) Alpha emitters	micro curie/m1, max	10-8
	(d) Beta emitters	micro curie/m1, max	10-7

LIST III (Contd.,)

TOLERANCE LIMITS FOR INDUSTRIAL AND DOMESTIC WASTE DISCHARGED INTO MARINE COASTAL AREAS

Note 1 : All efforts should be made to remove unplesant odour and colour as far as practicable.

Note 2 : These values are based on dilution of effluents by at least 8 volumes of clean receiving water. if the dilution is below 8 times, the permissible limits are multiplied by the 1/8 of the actual dilution.

		වාටීමාර්ග දෙපාර්තමේන්තුව நீர்ப்பாசனத் திணைக்களம் IRRIGATION DEPARTMENT			
230	ට, බෞද්ධාලෝක මාවත , කොළඹ 07	230, பௌத்தாலோக வீதி, கொழும்பு 07.	230, Bauddhaloka Mawath Colombo 07 SRI LANKA	a, 0%. 00. g. Guin, 1138 P.O. Box	
മൂറ്റങ്ങം കോറാര് പഞ്ഞിവണ്ണ് ഉണ്ടക്ക Director-General	දුරකථන . අதாනතා ඔ ස් - 2584984 T elephone	ஜாவீப் தொலைநகல் 2505890 Fax	E- mail dir_gen@irrigati	on.slt.lk, dgiirrig@sltnet.lk	
இசன் අංභාය எனது இலக்க 7() () My No	00 673/WS	மெலி අංකය உமது இலக்கம் Your No.	ஜலை திக்கி 13 Date	-08-2012.	

General Manager National Water Supply & Drainage Board

Sub: MOU for extracting water from Mahakanadarawa wewa and Wahalkada wewa for the Anuradhapura North Water Supply Scheme

Original copy of signed MOU for extracting water from Mahakanadarawa wewa and Wahalkada wewa for the Anuradhapura North Water Supply Scheme is sent herewith please.

ようつ

Eng. Y. Abdul Majeed Director (Irrigation & Water Management) For Director General of Irrigation

Directors					
Planning & Designs	2588879	Assets Management	2588625	Regional Development & Construction	2586839
Specialized Services & Training	2584485	Irrigation & Water Management	2586311 -	Pian Implementation	2588127

Memorandum of Understanding between the Irrigation Department of Sri Lanka and National Water Supply & Drainage Board for extracting water from Mahakanadarawa wewa and Wahalkada wewa for the Anuradhapura North Water Supply Scheme.

This memorandum of understanding is made and entered into by and between the National Water Supply & Drainage Board, a body corporate established under law No. 2 of 1974 and having its office at Galle Road, Ratmalana (hereinafter called and referred to as the NWSDB) on one part

AND

The Irrigation Department of Sri Lanka, having its office at No.230, Bauddhaloka Mawatha, Colombo 07 (hereinafter called and referred as the ID) which term of expression as herein used shall as and where the context so requires or admits and include the aforesaid and his successors in the said office for the time being, and the officers who for the time being are acting in the office of or are performing the functions now exercised by the Director General of Irrigation acting herein for and on behalf of the Democratic Socialist Republic of Sri Lanka of the other part.

WHEREAS

- (A) Implementation of the Anuradhapura North Water Supply Scheme proposed under JICA Loan funding is to be executed by the NWSDB.
- (B) It has become necessary to form a Memorandum of Understanding for extraction of water from the Mahakanadarawa wewa and Wahalkada wewa for Anuradhapura North Water Supply Scheme.

It is hereby mutually agreed by and between the parties as follows:

- 1. The Mahakanadarawa wewa and Wahalkada wewa will be used as the Prime Water Source for the Anuradhapura North Water Supply Project.
- 2. Mahagalkadawala wewa will be developed as a supplementary source to Mahakanadarawa wewa to ensure continuous extraction. Mahagalkadawala wewa will be developed utilizing GOSL fund.

- 3. ID agrees to the NWSDB to extract the short term (2016) requirement of 6,700 m³/d water from Mahakandarawa wewa after the completion of Mahakandarawa water treatment plant, the long term (2034) requirement of 18,800 m³/d after the completion of Upper Elahara Canal project and short term (2016) requirement of 10,500 m³/d and the long term requirement (2034) of 28,800 m³/d water from Wahalakada wewa and that NWSDB undertakes to facilitate such process and to not take any steps to hinder such extraction other than as provided in this agreement.
- 4. Staff of the NWSDB attached to the intake facilities shall be responsible for and shall have free access for the operation and maintenance of the intake facilities and shall be allowed to be stationed at the intake facilities.
- NWSDB shall request the Secretary in charge of subject of Irrigation to appoint a representative of NWSDB as member of the Project Management Committee of affected Irrigation schemes established under the Irrigation Ordinance and any amendment there to.
- The NWS&DB should obtain approval from ID for design and construction of control gate structure, flow measuring devices and any other connected infrastructure for the above water supply project.
- 7. The NWSDB must permit ID to inspect the operation of its Intake, and to scrutinize and copy any records it has kept about its operations and shall submit any calibration reports if the ID were to request calibration of its intake facilities where necessary.
- 8. It shall be obligatory on the NWSDB to allow the ID to inspect and observe any water supply structure under the Project or part of it at any time.
- 9. During the periods of exceptional water scarcity, priority of water allocation between the irrigation and drinking water will be decided at a meeting of officers from ID, Irrigation Management Division and NWSDB. Divisional Secretary and Members of Project Management Committee established under the Irrigation ordinance and chaired by the District Secretary, and if NWS&DB has to reduce the extraction then the NWSDB shall work out the figures pertaining to this essential survival level supply and shall keep to that level of extraction.

- 10. The ID shall arrange a meeting at least one for each cultivation season during the year or when changes of extraction is required, with the representatives of ID, IMD, NWSDB, Project Management Committees of the Irrigation Schemes and other sharing Stake holders and decide on the water that would be extracted under this project and the NWSDB shall comply with such decisions. These meetings will be chaired by the District Secretary.
- 11. If the NWSDB wishes to upgrade, modernize or replace any of the installed facilities of the intake to increase efficiency, to improve performance or to make operation more economical, It has to obtain prior approval of the ID of the intended changes. However, such changes shall not be constructed as an implicit approval for the NWSDB to increase its daily extraction rates.
- 12. Any increase in the rate or any change in the scope of project in the future shall be the subject of a future agreement similar to this. Without such agreement, the daily extraction rate shall not be increased by the NWSDB under any circumstances.
- 13. Any conflicts arising in implementation of this agreement shall be referred to the Secretaries of the Ministries of the first and second part.
- 14. This MOU is subjected to NWS&DB to obtain all other necessary clearances including environmental clearance for the implementation of the Project.
- 15. NWS&DB shall make arrangements for the provision of funds amounting to Rs. 500 million from the GOSL fund to the ID for the following improvements to the Irrigation system in Mahakanadarawa wewa and Wahalkada wewa.

	Scheme	Cost (Rs. Million)
1	Mahakanadarawa wewa main and sub system rehabilitation	300
2	Wahalkada wewa main and sub system rehabilitation	200
	Total	500

The ID and NWSDB shall plan and implement public awareness campaign to make stake holders understand the importance of water supply scheme and accept the scheme implementation. IN WITNESSED WHERE OF of the parties hereto have unto set their respective hands and seals on the day and year first before written.

Colombo, in the presence of following witnesses.

M

Chairman **NATIONAL WATER SUPPLY & DRAINAGE BOARD**

WITNESS(1)	100	WITNESS(2)	
Signature	APDING C	Signature	m eme
Address	NWSEDB, Gialle Road.	Address	JAPANENZ PROJECTS UNIG.
	Ralmalana		NWSOB, GALLERDAD, RAFNALM
Occupation	Secretary.	Occupation	ASSIST HOUS GISOVERAL MANDGER
Signed by	K·K· Chandrasiri	Signed by	MM UMAR LEBBS

Signed for and on behalf of Irrigation Department of Sri Lanka, Eng Badra Kamaladasa Director **Colombo** in the presence of the following witnesses.

Snukenh dana

Director General of Irrigation Eng. Badra Kamaladasa Irrigation Department of Sri Lanka Director General of Irrigation

WITNESS(1) \	WITNESS(2)	
Signature	die	Signature	Then gas to
Address	Eng. Y. Abdul Majeed Director of Irrigation (Imgation & Water Management) Irrigation Department	Address	Eng. (Ms) T. J. Meegastenna Deputy Director (Water Management)
Occupation		Occupation	Irrignsion Department
Signed by		Signed by	•

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
1 Permits and	(1) EIA and Environmental Permits	 (a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government? 	(a) N/A (b) N/A (c) N/A (d) Y	 (a) (b) (c)Under currently proposed project condition, EIA is not required. On the other hand, IEE level research is ongoing by the project. (d) All clearances are obtained
Explanation	(2) Explanation to the Local Stakeholders	 (a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design? 	(a) Y (b) Y	(a) Water Board held explanation meetings several times to the stakeholders.(b) Water Board has continued discussion with the Irrigation Department about water sharing.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a) Y	(a) Water intake procedure, location of facilities, course of pipe laying, treatment procedure are examined.

		(a) Is there a possibility that chlorine from chlorine storage facilities and chlorine injection facilities will cause air pollution? Are any mitigating measures taken?(b) Do chlorine concentrations within the working environments comply with the country's occupational health and safety standards?	(a) N (b) N	 (a) Neutralization facility leak detectors are placed neutralization instrument (b) Sri Lankan Occupatio existing. The facility will Operation of exhaust fan Occupational Safet 	and the in with the onal Healt be desig achieves	t can au detection th Stand ned to s the star	tomation. lards fo atisfy idard r	cally run the or chlorine is not the American equirement.
					ppr	n m	g/m3	
				Permissible exposure lim	it 1		3	US dept of Labor
				Advisable limit	0.	5	1.5	NIOSH
				Evaluation standard	0.	5	1.5	Japan
	(1) Air Quality			Ambient Air Quality				
				Pollutant	Averaging	Maxi		Method of
2 Pollution					Time*	µgm-3	ppm	measurement
Control				1 Aerodynamic diameter	Annual	50	_	Hi-volume sampling and Gravimtric or Beta
				is less than 10 µm in	24 hrs.	100		Attenuation
					Annual	25	-	Hi-volume sampling
				² Aerodynamic diameter is less than 2.5 µm in	24 hrs.	50	-	and Gravimtric or Beta Attenuation
			_		24 hrs.	100	0.05	Colorimetric using
				3	8 hrs.	150	0.08	saltzman Method or
					1hr. 24 hrs.	250 80	0.13	equivalent Gas phase Pararosaniliene
				4 Sulphur Dixoxide (SO ₂)	8 hrs.	120	0.05	Method or equivalent
					1hrs.	200	0.08	Pulse Flourescent
					2.200.000			Chemiluminescence
				5 Ozone (O ₃)	1 hr.	200	0.1	Method or equivalent Ultraviolet
				8	8 hrs.	10,000	9	Non-Dispersive
				6 Carbon Monoxide (CO)	1 hr.	30,000	26	Infrared
					Any time	58,000	50	Spectroscopy"

	(a) Do pollutants, such as SS, BOD, COD contained in effluents discharged by the facility operations comply with the country's effluent standards?	(a) Y	ope exp slu wil req wil	imentation pond and so pration is treated by soa pected discharge by the dge mainly. It will be i l satisfy the Sri Lankar	ettled down. Do ak pit and infiltra usual plant ope ntroduced into t a standards. Irrig ng water standar	ration is seeping water from
			1	Total suspended solids	mg/1, max.	50
			2	Particle size of the total suspended solids	µm, less than	50
			3	pH at ambient temperature		6.0 - 8.5
			190	Biochemical oxygen demand (BOD ₅ 5 days at 20°C or BOD3 3 days at 27°C)	mg/1, max.	30
			5	Temperature of discharge	°C, max.	Shall no exceed 400°C in any section of the stream within 15 m down stream from the effluent outlet.
			6	Oils and greases	mg/1, max.	10
				Phenolic compounds (as C ₆ H ₅ OH)	mg/2, max.	1
			8	Chemical oxygen demand (COD) Colour	mg/3, max. Wavelength Range	250 Maximum spectral absorption coefficient
(2) Water			5	Colour	436 nm (Yellow range)	Maximum spectral absorption coefficient 7m ⁻¹
Quality					525nm (Red range)	
Quanty					620nm (Blue range)	5m ⁻¹
				Dissolved phosphates (as P)	mg/1, max.	3m ⁻¹ 5
				Total Kjeldahl nitrogen (as N)	mg/1, max. mg/1, max.	150
				Ammoniacal nitrogen (as N)	mg/1, max.	50
				Cyanide (as CN)	mg/1, max.	0.2
				Total residual chlorine	mg/1, max.	1
				Flourides (as F)	mg/1, max.	2
			16	Sulphide (as S)	mg/1, max.	2
				Arsenic (as As)	mg/1, max.	0.2
				Cadmium (as Cd)	mg/1, max.	0.1
			19	Chromium, total (as Cr)	mg/1, max.	0.5
		1		Chromium, Hexavalent (as Cr6+)	mg/1, max.	0.1
		1		Copper (as Cu)	mg/1, max.	3
		1		Iron (as Fe)	mg/1, max.	3
				Lead (as Pb)	mg/1, max.	0.1
		1		Mercury (as Hg)	mg/1, max.	0.0005
				Nickel (as Ni)	mg/1, max.	3
				Selenium (as Se)	mg/1, max.	0.05
		1		Zinc (as Zn)	mg/1, max.	2
		1		Pesticides	mg/1, max.	0.005
				Detergents/surfactants	mg/1, max.	5
		1		Faecal Coliform	MPN/100 ml, max	40
			31	Radio Active Material : (a) Alpha emitters (b) beta emitters	micro curie/ml, max micro curie/ml, max	10 ³ 10 ⁻⁷
(3) Wastes	(a) Are wastes, such as sludge generated by the facility operations properly treated and disposed in accordance with the country's regulations?	(a) Studying	(a)	The sludge treatment s	ystem is designe	ed.

	(a) Do noise and vibrations generated from the facilities, such as pumping stations comply with the country's standards?	(a) Y	 (a) The main noise and vibration generating machineries are generator and pump. The low-noise type and low- vibration type machinery is selected for reduction of noise and vibration. The other measures are also taken for reduction of noise level, accordingly, the noise level satisfy the Sri Lankan standards. The standards to be followed is shown below. Maximum permissible Noise Levels at Boundaries of the land in which the source of noise is located in Laeq', T Day time 75 Night time 50 Maximum permissible Noise Levels at Boundaries in LAeq, T, for industrial activities		
(4) Noise and			Area	Daytime	Night time
Vibration			Rural Residential Area	50	45
			Urban Residential Area	60	50
			Noise Sensitive Area	50	45
			Mixed Residential	63	55
			Commercial Areas	65	55
			Industrial Area	70	60
			Japanese Environmental Stand	lard	
			A (residential area)	55	45

	(5) Subsidence	(a) In the case of extraction of a large volume of groundwater, is there a possibility that the extraction of groundwater will cause subsidence?	(a) N	(a) The project does not extract groundwater.
3 Natural Environment	(1) Protected Areas	(a) Is the project site or discharge area located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a) N	(a) The project area is located outside of protected area. However, the environmental impact should be minimized.
3 Natural Environment	(2) Ecosystem	 (a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site or discharge area encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by project will adversely affect aquatic environments, such as rivers? Are adequate measures taken to reduce the impacts on aquatic environments, such as aquatic organisms? 	(a) N (b) N (c) N (d) N	(a) Some part of project area is located in the forest but it is not special forest.(b) There are no endangered species.(c) The significant ecological impact is not expected.(d) The project takes water from irrigation canal so the adverse effect to the aquatic environment is limited. Furthermore, the purpose of the use of the project, the water will let flow on a steady basis. it will improve the environment.
	(3) Hydrology	(a) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by the project will adversely affect surface water and groundwater flows?	(a) N	(a) Currently, the water is used only the purpose of irrigation. The project will share a part of current water use, so the effect is negligible.
4 Social Environment	(1) Resettlement	 (a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement? (b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Is the compensation policies prepared in document? (e) Is the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? 	(a) N (b) N/A (c) N/A (d) N/A (e) N/A (f) N/A (g) N/A (i) N/A (j) N/A	 (a) One household was the only identified in the Phase 1 project site, and resettlement was done properly. There is no any resettlement in Phase 2 site. (b), (c), (d), (e), (f), (g), (h), (i), (j) There is no object person.

	(2) Living and Livelihood	(a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary?(b) Is there a possibility that the amount of water used (e.g., surface water, groundwater) by the project will adversely affect the existing water uses and water area uses?	(a)N (b) N	(a) The other irrigation project (Yan Oya Reservoir Project) is ongoing and the water scarcity will be mitigated(b) The villagers living the surrounding of the tank use tank water for domestic use. But same reason described above can solve the potential problem.
	(3) Heritage	(a) Is there a possibility that the project will damage the local archaeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a) N	(a) The project area is not located in archaeological reserves. However, the project will take care and make an action plan in the case of excavating antiquities.
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a) N	(a) The size of all facilities are small and the effect on the landscape is ignorable.
4 Social Environment	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources respected?	(a) N/A (b) N/A	There is no indigenous group. The minority will be taken care of.
	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents? 	(a) N (b) Y (c) Y (d) Y	 (a) NWSDB follows the Labor law, Factories Ordinance. (b) The contract condition is made under the 'Standard Bidding Document Procurement of Works' or 'Conditions of Contract'. And the Occupational safety and hazardous management will be secured. (c) It will be included in a contract document. (d) It will be included in a contract document.
5 Others	(1) Impacts during Construction	 (a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts? (d) If the construction activities might cause traffic congestion, are adequate measures considered to reduce impacts? 	(a) Y (b) Y (c) Y (d) Y	 (a) Reduction and mitigation measures are taken. (b) The protection and mitigation measures are taken. (c) The people living in the project area will be taken care under the RAP. (d) It is solved by the adjustment of construction plan.

5 Others	(2) Monitoring	 (a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts? (b) What are the items, methods and frequencies of the monitoring program? (c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities? 	(a) ongoing (b) ongoing (c) ongoing (d) Y	(a)(b)(c)The project is preparing the monitoring plan (d) The project is requested to obtain the EPL (Environmental Protection License). The reporting format is included. The license is fixed-term and reporting is requested.
	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Dam and River Projects checklist should also be checked.	(a) N/A	(a) The project does not develop the dam and canal. The project only use the existing facilities for irrigation. There is no item to conflict with the Dam and River Projects checklist.
6 Note	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a) N/A	(a) There is no negative impact to transboundary or global issues because the project is small scale water supply scheme targeting the improvement of living standards.