APPENDIX 5

OTHER RELEVANT DATA

- 5.1 Final Evaluation of Villages
- 5.2.1 Location of Geophysical Survey
- 5.2.2 Result of Geophysical Survey
- 5.2.3 Evaluation of Groundwater Development
- 5.3.1 Result of Field Water Quality Measurement
- 5.3.2 Measurement Situation
- 5.4 Evaluation of Villages (Step5)
- 5.5 Number of Wells to be drilled by the Procured Rigs in Phase 2 Project
- 5.6 Total Dynamic Head of Submersible Pumps to be Installed
- 5.7 Summary of Socio-Economic Survey Results
- 5.8 Breakdown of the Cost to be Borne by Myanmar Side

Appendix 5 Other Relevant Data

Appendix 5.1	List of Evaluation Result of the Target V	<i>'illages</i>
--------------	---	-----------------

				mated	Estimated			Char 0			Oton D		Estimated	Thickness	of Geology	Problem	n on Existin	ng Water
Regio	Villages	ID	feet	g Depth m	SWL. m	Results of Hydrogeological Field Reconnaissance	Step-1 Hydro	Step-2 Deman d	Step-3 W.Q.	Step-4 O.M.	Step-5 Possibilit	Step-6 Priority	Q2 +	Irrawaddi	Pegu	Water	Sources Water	Distance to Water
			ieel		SWE. III	Old Alluvial Plane(Q2).Existing Well Dep.=150m, EC=<1500uS/cm. However,NO3=20,		ŭ			У		Surface	ITawauui	regu	Quantity	Quality	Sources
	Yonedaw	SA2-01	530	160	40	F=1.5 in Dep=160m TW by Pack Test. Water Quality shall be carried out.	Δ	0	0	0	С	-1	10 m	150 m	0 m	×	Δ	0
	Nyaungbinthar	SA2-02	530	160	40	(EC=2,470uS/cm). 82m TW (EC=1500uS/cm & Yield=800GPH). Sufficient water amount is expected in more deeper layer than 100m.	0	0	-	0	А	-1	10 m	150 m	0 m	_	_	_
	Maunghtaung	SA2-03	500	150	40	Irrawaddi formation area. 112m TW (EC=620uS/cm, Yield=800GPH), 73m TW (EC=2,610µS/cm, and NO3 more than 45mg/l. It is considered that contamination from surface layer).	0	0	-	0	В	-1	16 m	134 m	0 m	_	_	_
	Maunghaung	572-05	500	150	40	Irrawaddi formation area. 122m & 62m TW (EC is lower than 1000uS/cm). 10 private TW (Average dep.=61m) exist and drinking water is enough. However, domestic water and	0	0	-	0	С	-1	10 111	104111	0 111	Δ	0	0
	Kantawthar	SA2-04	420	125	39	livestock water is necessary. Border area between Irrawaddi and Alluvium. 115m TW (EC=6280uS/cm, Sulfurous smell), 146m TW drilled by DRD, salty). Neighbor village Twogyi has 115m TW	Δ	0	0	0	A	-1	3 m	122 m	0 m	x	x	0
	Mhonehtoo	SA2-05		100	30	(EC=1700uS/cm). VES survey is necessary to evaluate groundwater condition. Irrawaddi formation gentle hill area. 70m TW (EC:1,000µS/cm). 20 private wells were		0		0	С С	-1	3 m	3 m		×		0
	Watluu-I	SA2-06	330	100	36	constructed in 2013 cause of drought. Irrawaddi formation area. Only one TW. 152m (MONO pump, 2500GPH, F=0.8) Drinkable water. 192m TW constructed by UNICEF two years ago has problem with submersible	Δ	0	0	0	A	-1	6 m	94 m	0 m	Δ	Δ	0
	Thanbinkan	SA2-07	500	150	70	pump). Irrawaddi formation area. 173m TW (Mono pump, EC=2,820µS/cm, F=0.8mg/l). People						-1	5 m	145 m	0 m	Δ	Δ	
	Natyaygan	SA2-08	660	200	61	use water reservoir. Try to find drinkable water layer up to 100m or more deeper than 200m.	Δ	0	0	0	В	-1	5 m	195 m	0 m	Δ	×	0
	Sithar	SA2-09	330	100	44	Irrawaddi formation area. Existing wells drilled around 100m. EC:650µS/m to 1300µS;/m. Irrawaddi formation area. 224m Artesian TW (EC:861µS/cm).	0	0	-	0	A	-1	5 m	95 m	0 m	۵ ×	۵ 0	0
b	Oakkan	SA2-10	760	230	3	Irrawaddi formation area. 244m TW donated by NAG (EC=920µS/cm). Private 60m TW	0	0	-	0	C A	-1 -1	20 m	210 m	0 m	× x	0	0
Sagaing		SA2-11 SA2-12	830 350	250 105	55 43	(EC=720µS/cm)。Both shallow TW and deep TW can be developed. Irrawaddi formation area. 97m TW (MONO pump, EC=912µS/cm, 7000GPH)	0	0	-	0	C	-1	5 m 5 m	145 m 100 m	100 m 0 m	Δ	Δ	Δ
Sa	Yathar	SA2-13				Old alluvium old terrace. 61m TW (EC1250µS/cm), 182m (EC=4470µS/cm). Aquifer below 200m shall be confirm by geophysical survey.	Δ	0	-	0	D-2							
			420	130	50	Irrawaddi formation hill area. 107~137m 6 TW (EC:700µS/cm). Aquifer below 100m will be	0	0	-	0	С	-1	5 m	125 m	0 m	×	0	0
	Zeepinlel	SA2-14	430	130	50	constructed. Alluvium(Q2), 91m TW used by monastery on top of the small hill (EC:18,060µS/cm) can be dicible for the small hill (EC:18,060µS/cm) using							5 111	123111	0111			
		0.4.0.45				not drink. Next village 3km west far from the village has 50m TW (EC:1183µS/cm) using as a village water supply system for several villages. Groundwater condition in deeper	Δ	0	-	0	D-2							
	Yonebinyoe Minntaw	SA2-15 SA2-16	- 560	- 170	- 40	than 100m shall be surveyed by geophysical survey. Alluvium(Q2). 121m TW (high salinity and can not drink). Same condition as SA2-15.	Δ	0	-	0	В	-1	20 m	0 m	150 m	_	_	_
	Kine	SA2-17	394	120	40	Pegu formation area. Gentle hill area. Only one water source is reservoir. No experience of drilling TW. Good aquifer shall be checked by geophysical survey.	Δ	0	-	0	D-1	6	5 m	115 m	0 m	_	_	-
	Kalarpyan	SA2-18	660	200	36	lrrawaddi formation area. 50 ~ 60m TW (EC=3600µS/cm, F=1.5mg/l by pack test). Low salinity groundwater development below 100m is expected.	Δ	0	0	0	А	-1	5 m	175 m	20 m	×	×	0
		SA2-19		195	121	Alluvium (Q2). 152m TW (EC:1050µS/cm, 450GPH). Groundwater level is too deep (115m) therefore probably can not much water withdraw by air lift.	0	0	-	0	С	-1	40 m	155 m			^	0
	Hlayookan	5AZ-19	050	195	121	Alluvium (Q2). No deep well. Suction system from 2 shallow wells(24mx2) are used and							40 111	155 111	0 111	^		0
	l					water send to the elevated tank. It provide water to each household by gravity. Good water quality and sufficient water amount. New well construction is not necessary.	×	0	-	0	-							
	Makyeekan	SA2-20		-	-	Border area between Irrawaddi and Pegu formation. Village has a gravity water supply												
	Watkya	SA2-21	660	200	36	system using two wells (167m each). EC=2310µS/cm, Total water amount is 800m3/month (5800GPD).	0	0	-	0	С	-1	5 m	50 m	145 m	×	×	0
	Thahtaykone (Ywarma)	SA2-22	600	180	55	Border area between Irrawaddi and Pegu formation. Hard rock sheet sandwiched under 30m and under 90m distribute hard rock. Below 30m identified Pegu formation.	0	0	-	0	С	-1	5 m	25 m	150 m	0	×	0
	Magyidaw	SA2-23			_	Alluvium (Q2). 10 Suction systems from 21m well are existing for agriculture. Muu River water is used for drinking. No issue for water quality the result of Pack Test, however river water should be tested by laboratory.	Δ	0	0	0	D-2							
						Alluvium(Q2). 116m TW (EC=34,800µS/cm), 82m(EC=1053µS/cm). There is a big difference in water quality place by place. It supposed that is difference of aquifer in these	0	0	-	0	A	-1				×	Δ	Δ
		SA2-24		80	50	TW. Irrawadd formation gentle hill area. 150m TW for drinking however, water amount is small	0	0	_	0	В	-1	10 m	70 m		×	0	0
	Lwingyi Koetaungboh	SA2-25		220	31	and not reach to water demand. Alluvium(Q2). 152m TW and 85m are exist, however people don't like drink it cause of bad	Δ	0	0	0	С	-1	5 m	215 m	0 m	x	x	0
	(Kyunkone)	SA2-26	610	185	60	taste. People are using reservoir。152m TW water smells slight sulfurous smell. Irrawaddi formation. 。60m TW in monastery are drinking by people, however, water							30 m	20 m	135 m			
	Inngoteto	SA2-27	500	150	50	amount is small and new well construction is necessary. Aquifer is locating sub- consolidated Irrawaddi sand layer. Geophysical survey below 60m is necessary.	Δ	0	0	0	С	-1	5 m	145 m	0 m	_	_	-
	Myayhtoo	SA2-28	656	200	150	Irrawaddi formation area. 100m TW (EC<1000uS/cm). Water level is deep as more than 60m and slightly turbid. It is consider that capacity of aquifer is low. Try to fined good aquifer below 100m.	Δ	0	-	0	D-1	6	5 m	195 m	0 m	_	_	_
		SA2-29		215	30	Irrawaddi formation area. Several TW 110 ~ 116m are existing. Half of them are salty water. South-East area is good water quality compare to north west area.	0	0	-	0	С	-1	5 m	210 m	0 m	_	_	_
		0,12 20				Irrawaddi formation area. 45mTW (EC=693uS/cm), 122m TW (EC=1,905uS/cm), However, every well's water amount is too small in total 200GPD. These are categorized in	Δ	0	0	0	С	-1		2.0.11				
	Nyuangkanthar	SA2-30	580	175	50	unsuccessful well. Try to develop good aquifer below 120m. Irrawaddi formation area. North part of village's wells are more salty, therefore, drinking						-1	5 m	145 m	25 m			
6	Myaymon	SA2-31	510	155	80	water amount is not enough. No construction experience deeper than 100m. Try to develop good aquifer below 100m.	۵	0	0	0	A	-1	5 m	150 m	0 m	×	×	0
Sagaing	Layytwinzin	SA2-32	690	210	120	Alluvium (Q2). However, change to Irrawaddi formation in very shallow part. 116m and 146m test wells are dry well and 50GPH respectively unsuccessful well. Only one water source for drink is Dug well and very severe condition.	Δ	0	-	0	С	-1	10 m	50 m	150 m	_	_	_
S		SA2-32		205	60	Irrawaddi formation area. 50m TW produce good quality water, however amount is small.	0	0	-	0	В	-1	5 m	200 m			_	_
	Chaungefial	0/72-00	000	200	00	Therefore in this project, drill more deep and get more water. Alluvium(Q2). Change to Irrawaddi formation in below layer. Only dug well is exist in this willage. 10 $^{\circ}$ m TW (Moore Pump, EC= 1224) s(or SMI = CI_3 2m) is in the next village. It	0	0		0	С	4	5 111	200 10	UIII			
	Minyogone	SA2-34	370	110	3	village. 103m TW (Mono Pump, EC= 1224µS/cm, SWL=GL-3.2m) is in the next village. It is close to the artesian well. Irrawaddi formation area. No permanent water source. People get water at the bottom of		0	-		U	-1	50 m	60 m	0 m	_	_	_
	Shandaw	SA2-35	830	250	0	the irrigation canal. In the neighbour village has 247m TW (2000GPH, EC=1564µS/cm).	0	0	-	0	С	-1	5 m	245 m	0 m	-	-	-
		SA2-35		100	68	Alluvium (Q2). Flat plane. 100m TW (1000GPH) has already damaged at 1995. Similar	Δ	0	-	0	С	-1	20 m	245 m	0 m	_	_	_
	Kyuntaw (S) PalaeThwe					type of well will be constructed. Irrawaddi formation hill area. Wide flat area in the hill. 109m TW (Constructed in 2013, EC-0204.95(cm). Tifficiare, and much alay by weathering.	0	0	-	0	A	-1				×	Δ	0
	(Ywarthit)	SA2-37	430	130	55	EC=924µS/cm). Tuffasious and much clay by weathering. Irrawaddi formation area. Flat plane rice. NO deep well. Drinking water was taken from							5 m	125 m	0 m			
	Poukkan	SA2-38	492	150	30	dugwell. 31 Shallow well max 40m however can not use for drinking. 38m TW (EC:1500µS/cm) locating 2 km northeast far from the village is artesian well.	0	0	-	0	D-1	6	5 m	145 m	0 m	_	_	-
	Shwenyaungta w	SA2-39	-	-	-	Irrawaddi formation area. Top of the hill. Water source is only Dug well. Groundwater condition will be evaluate by 2D geophysical survey.	0	0	-	0	D-2							
						Irrawaddi formation area. Flat plane and using as rice field. No deep well experience. 10m dug well with hand pump is using as existing water source. Groundwater level is –1.5m												
	Sabeidaw	SA2-40	-	-	- I	(almost artesian). Surface is covered by clayey soil. In 2km north, three 122m TW of artesian are exist.	0	0	-	0	D-2							

				mated	Estimated						_		Estimated	Thickness	of Geology	Problem	n on Existin	g Water
Region	Villages	ID	Drilling	g Depth	Lotandiou	Results of Hydrogeological Field Reconnaissance	Step-1	Step-2 Deman	Step-3	Step-4	Step-5 Possibilit	Step-6					Sources	Distance
			feet	m	SWL. m		Hydro	d	W.Q.	O.M.	У	Priority	Q2 + Surface	Irrawaddi	Pegu	Water Quantity	Water Quality	to Water Sources
	Htantawgyi	MA2-01	500	150	60	Irrawaddi formation area. 15m Dug Well (EC:2300~3500µS/cm) can not drink except one dug well. 55m TW use for only Events. Try to find good aquifer in 60 ~ 100m.	0	0	-	0	С	-1	5 m	95 m	50 m	Δ	×	o
						Pegu formation. No experience of deep well construction. One public shallow well(for drinking). Many household has shallow well. In the rainy season, they use reservoir water.										_	_	_
	Asone	MA2-02	500	150	60	Pegu formation. No deep well experience. There are few shallow wells, however, high	0	0	-	0	В	-1	5 m	145 m	0 m			
	Khinthar(S)	MA2-03	890	270	60	salinity and can not drink. Reservoir is used together with neighbor village. Pegu formation. EC of Aquifer of GL-50 ~-80m is high (EC:2000 ~ 3000µS/cm). Therefore,	0	0	-	0	С	-1	5 m	0 m	265 m	-	-	_
	Chaysay	MA2-04	530	160	50	aquifer more than 100m is targeted for the new well construction.	0	0	0	0	Α	-1	5 m	0 m	155 m	×	×	0
	Talgyi	MA2-05	560	170	50	Border area between Irrawaddi and Alluvium. Many TWs in the village can not drink cause of salinity.	0	0	-	0	С	-1	5 m	65 m	100 m	_	_	_
	Kuywar	MA2-06	-	-	-	Border area between Pegu formation and Alluvium. EC>20,000µS/cm, F=2~4. People are using Dug Well water for drinking. Water is sent from dug well by pump. They	Δ	0	0	0	D-2							
	X 11					can drink and amount is enough. 100m TW (EC=7300 ~ 8000µS/cm). Pegu formation area.		0		0	•	2	-	100		×	×	o
	Yonehto Nyaungwum	MA2-07 MA2-08	541 -	165 -	60 -	60 ~ 100m TW High EC can not drink. Try to find aquifer deeper than 100m	× 0	0	-	0	A D-2	3	5 m	160 m	0 m			
						Many abandon well exist (screen clogging, water quality change to bad, etc.). Shallow water quality is bad. 130m TW also high salinity. Base rock is Pegu layer. Therefore it is												
	Konelel	MA2-09	-	-	-	considered that new well construction is difficult.	×	0	-	0	-							
						There are many private wells. However, they don't use it now because of water quality problems. 200m TW (Ec=6470µS/cm). Therefore, it is considered that new well												
ay	Phaungkadaw	MA2-10	-	-	-	construction is difficult. Border area between Pegu and Irrawaddi formation. 10m Dug Well (EC=2000µS/cm,	×	0	-	0	-							
Mandalay	Kaungzin	MA2-11	830	250	100	Fe=0.6). No deep well. Pegu formation. Dug well (EC=3300uS/cm). 97m and 213m TWs are also bad water	0	0	-	0	С	-1	5 m	95 m	150 m	×	×	0
Mar	Ywarsite	MA2-12				quality. Addition, more deep area distribute Pegu formation. Therefore, it is considered that new well construction is difficult.	×	0	_	0	_							
	1 Warshe	10172-12	-	-	-	Pegu formation. 78m TW (11,800µS/cm). Deep area is also considered low possibility				Ŭ								
	Kyaungnan	MA2-13	-	-	-	from the hydrogeological view point. Suction system from 4 shallow wells(18mx4) are used (EC=1,342µS/cm, slightly smell). Therefore, it is considered that new well construction is difficult.	×	0	-	0	-							
	Kyaungkangyib in	MA2-14	660	200	167	Pegu formation. 127m TW (EC=2,120µS/cm) 234m TW constructed DRD in February 2015 (EC=6,540µS/cm).	Δ	0	_	0	с	-1	5 m	0 m	195 m	Δ	×	o
						Pegu formation. 91m TW (2800µS/cm)で、61m TW located out of village for agriculture (EC=1,192µS/cm). GL-200~300m aquifer shall be consider with electric survey result.												
	Nyaunggone	MA2-15	500	150	61		Δ	0	0	0	С	-1	5 m	0 m	145 m	×	Δ	0
		MA2-16	-	-	-	Border area between Pegu formation and Alluvium. They are using dug well beside stream (F=1.5mg/L). However, water amount become small in dry season.	Δ	0	0	0	D-2							
	Chaungsone(L a)	MA2-17	460	140	98	Irrawaddi formation. 135m TW (EC = 1483µS/cm). According to the geophysical survey, drilling depth will be decided.	Δ	0	-	0	А	-1	5 m	135 m	0 m	Δ	×	0
	Kyaukkartaung					Pegu formation. Dug Well (low yield and slow recovery). Try to find good aquifer by												
	kone	MA2-18	-	-	-	geophysical survey up to 100m. Irrawaddi formation. 250m TW (EC=1609µS/cm). Cooked rice turn to yellow. According to	Δ	0	-	0	D-2							0
	Tharzi	MA2-19	960	290	154	the geophysical survey, drilling depth will be decided. Irrawaddi formation. 250m TW (EC=1516µS/cm). Cooked rice turn to yellow. According to	0	0	-	0	С	-1	5 m	175 m	110 m	×	×	
	Kanaye	MA2-20	870	265	105	the geophysical survey, drilling depth will be decided. Border area between Pegu and Irrawaddi formation. 12 TW (36~55m), however slightly	0	0	-	0	С	-1	5 m	195 m	65 m	Δ	×	0
	Tharyarmyaing	MA2-21	660	200	150	high in F and NO3. It is expected to find aquifer around 150m by geophysical survey.	Δ	0	0	0	В	-1	5 m	15 m	180 m	×	×	0
						Alluvium (Q2). Below alluvium Irrawaddi formation distribute. 80 and 230m TW (Total yield 2000GPH). However 230m TW has engine trouble and under repair. Possibility of high												
	Oakpo	MA2-22	860	260	30	calcium content because some people has calculosis. According to the geophysical survey, drilling depth will be decided.	Δ	0	0	0	с	-1	30 m	120 m	110 m	×	0	0
		MA2-23		350	200	Irrawaddi formation. 50m, 220m, 300m (EC=2,000µS/cm F=1.5). Getting water from 300m	Δ	0	0	0	С	-1	20 m	110 m	220 m	×	×	0
						TW need much cost. Therefore they use it very few. Irrawaddi formation. 12m dug well and 138m TW. Village does not have drilling experience					_						_	
	Htanekan Waryonesu	MA2-24 MA2-25		270 305	30 11	over 200m. Irrawaddi formation. 100m TW. Water shortage in dry season.	0	0	-	0	C A	-1 -1	5 m 5 m	175 m 175 m	90 m 125 m			_
			,			Irrawaddi formation. Inside of the village has unsuccessful TW. People get water form next												
	Talkone	MA2-26	910	275	150	village far from 2 miles. 244m TW constructed by DDA in 2008(JICA) located in the 3 miles east from village.	0	0	-	0	А	-1	5 m	270 m	0 m	_	_	_
	Tawbyar	MA2-27	870	265	176	Irrawaddi formation. 244m TW drilled by DRD at 2 mile east. 198m TW at 1.5 mile east. Good water quality. No deep well inside of the village.	0	0	-	0	В	-1	5 m	260 m	0 m	×	0	×
	Setsetyo	MA2-28	1,290	390	269	Irrawaddi formation. One TW. Low yield. Pump installation is 286m (EC=1800, Fe=1.0, F=0.8)	Δ	0	0	0	А	-1	5 m	385 m	0 m	×	o	0
	Kanzauk	MA2-29	660	200	65	200m TW constructed by BJA in the main village in 2003. Pump position is 128m.	0	0	-	0	Α	-1	5 m	195 m	0 m	Δ	Δ	×
	Talbindel	MA2-30	990	300	210	Irrawaddi formation. Rehabilitated by BAJ in 2003 (MONO Pump, EC=1200µS/cm, sand contain, Fe=1.0 mg/l, F=0.5mg/l)	0	0	-	0	А	-1	5 m	295 m	0 m	×	×	Δ
Mandalay	Mongywettaw	MA2-31	890	270	210	Irrawaddi formation. Main village has a deep well, however, target village does not have deep well.	0	0	-	0	А	-1	5 m	265 m	0 m	-	_	_
lanc						Irrawaddi formation. Close to the Pegu formation. 3 wells constructed in this village, however, high arsenic. 150m to 200m TW constructed and good water. According to the										×	Δ	Δ
2	Phoenekan	MA2-32	420	125	35	geophysical survey, drilling depth will be decided. Close to the Pegu formation. 230m(750ft) TW (High Fe and salinity) can not use.	0	0	-	0	С	-1	5 m	0 m	120 m			
	Nyaungbinthar	MA2-33	660	200	100	According to the 2D survey well depth will be decided.	0	0	-	0	А	-1	5 m	195 m	0 m	-	_	-
	Saingkan(Tetid e)	MA2-34	1,220	370	263	Irrawaddi formation. JICA well exist in the main village.	0	0	-	0	А	-1	5 m	365 m	0 m	_	_	-
	Byugyi	MA2-35		310	230	309.08m(JICAWELL),DWL=239,SWL=236, constructed in 2003 (EC=900µS/cm)	0	0	-	0	A	-1	5 m	305 m	0 m	Δ	Δ	0
						Irrawaddi formation. Water quality is bad in south part of village. Good water quality in north part. Static water level is around 150m. New well will be constructed in the middle										×	×	0
	Aleywar-2	MA2-36	760	230	150	area. Fe content Is high in the surrounding wells. There is a trend water quality is better in eastern village.	Δ	0	0	0	А	-1	5 m	225 m	0 m	*	*	0
						Irrawaddi formation. No deep well in the village. Dagagyi village which is located 1 mile south from the village. SWL=150m. Close to the MA2-36. High Fe content (1~3mg/L).												
	Tangakan	MA2-37	-	-	-	Therefore, it is considered that new well construction is difficult.	×	0	-	0	-							
				_		Covered by volcanic mudflow. There is some possibility in 300-350m. TW drilled in 1994 rehabilitated however water quality is not good (EC=1200µS/cm, Fe=5.0mg/L,			_	_						Δ	×	×
	Lelgyi(Ma)	MA2-38	1,150	350	51.5	F = 0.6mg/L). Irrawaddi formation area. 390m TW (Yield 600GPH). In the 2 mile far form the village there	Δ	0	0	0	С	-1	5 m	0 m	345 m			-
		MA2-39		350	223	is a well produce good water quality. Irrawaddi formation. TW drilled in 1992 (EC=790µS/cm, F=0.2mg/L).	0	0	-	0	C A	-1 -1	5 m	195 m	150 m	×	Δ	0 ¥
	Nakyatkhwal	MA2-40	970	295	67		U	U	-	0	А	-1	5 m	290 m	0 m	×	0	×

			Esti	mated	Estimated						-		Estimated ⁻	Thickness c	of Geoloay	Problem	on Existin	a Water
Region	Villages	ID	feet	m	SWL. m	Results of Hydrogeological Field Reconnaissance	Step-1 Hydro	Step-2 Deman d	Step-3 W.Q.	Step-4 O.M.	Step-5 Possibilit y	Step-6 Priority	Q2 + Surface	Irrawaddi	Pegu	Water Quantity	Water Quality	Distance to Water Sources
	Natkan	MG2-01	600	180	75	Irrawaddi formation. 173m (SWL:73m, 1,100GPH, MONO pump).	0	0	-	0	А	-1	5 m	175 m	0 m	×	Δ	0
	Thanbo(Ywarthi t)	MG2-02	400	120	73	Irrawaddi formation. 120m TW constructed by PDC in 1999 (SWL:84m, EC=1494µS/cm).	0	0	-	0	С	-1	5 m	115 m	0 m	Δ	×	o
	Nyaungbinthar	MG2-03	660	200	150	Irrawaddi formation. 200m TW constructed in 1983 by WRUD (SWL:154m, 1400GPH). BAJ repair MONO pump in 2014.	0	0	-	0	А	-1	5 m	195 m	0 m	×	Δ	Δ
	Konegyi	MG2-04	790	240	134	Irrawaddi formation. 195m TW (SWL:137m). BAJ repaired engine in 2014.	0	0	-	0	А	-1	5 m	235 m	0 m	Δ	Δ	Δ
	Sainggya	MG2-05		200	162	Irrawaddi formation. TW BAJ replaced MONO Pump in 2014 (Yield 1,200GPH).	0	0	-	0	В	-1	5 m	195 m	0 m	×	×	Δ
	Thapyaysan(N)	MG2-06	630	190	108	Irrawaddi formation. 192m TW abandoned by screen broken (SWL:97m, Yield :2000GPH).	0	0	_	0	А	-1	5 m	185 m	0 m	0	×	o
		MG2-00		200	89	Irrawaddi formation. TW 1986 constructed by UNICEF. (MONO pump. SWL:83m. Yield:1500GPH).	0	0	-	0	A	-1	5 m	195 m	0 m	Δ	×	Δ
	Leikkan	MG2-08		120	100	Irrawaddi formation. 175m TW constructed by WRUD in 1981. BAJ repair MONO pump in 2014 (Yield 1300GPH).	0	0	_	0	А	-1	5 m	115 m	0 m	Δ	×	Δ
ΥĒ	Ywarthitgyi	MG2-00		180	105	Irrawaddi formation. 176m TW drilled by SPDC (SWL=103m).	0	0	-	0	A	-1	5 m	175 m	0 m	Δ	×	Δ
gwa	Kanyaygyi	MG2-10	1,090	330	212	Irrawaddi formation. 327m TW repaired by BAJ in 2007 (SWL:210m, EC:1000µS/cm).	Δ	0	0	0	С	-1	5 m	325 m	0 m	×	×	Δ
Magway	Myaysoon (Ywarthit)	MG2-11	860	260	150	Irrawaddi formation. 259m TW locating next village constructed in 1971 (EC=1100µS/cm).	Δ	0	0	0	А	-1	5 m	255 m	0 m	0	×	Δ
	Zeebwar	MG2-12		135	80	Irrawaddi formation. Beside fault and Pegu formation will come in in the deep. 152m TW (EC:1040µS/cm).	Δ	0	0	0	В	-1	5 m	75 m	55 m	-	_	_
	Yenpyay	MG2-13		170	115	Alluvium (Q2). People use water form next village's well (EC:2100µS/cm)	0	0	-	0	A	-1	40 m	130 m	0 m	Δ	×	×
	Kyatesu(N)	MG2-14	480	145	23	Alluvium (Q2). 67m private TW (EC=3000µS/cm).	Δ	0	-	0	Α	-1	50 m	95 m	0 m	_	-	_
	Winkshor	100 45	270	440	20	Alluvium (Q2). 110m TW (SWL:30.4m). Groundwater comes from Irrawaddi river. People	Δ	0	0	0	٨	1	50 m	60	0	×	0	0
	Winkabar Kyatkan	MG2-15 MG2-16		110 170	30 100	use water from Irrawaddi river. Alluvium (Q2). 170m TW (300gph, EC:1570µS/cm, Oil content.	0	0	-	0	A A	-1 -1	50 m 40 m	60 m 130 m	0 m 0 m	×	×	Δ
						Irrawaddi formation. DRDが380m TW constructed by DRD (JICA Phase 1, SWL=146m).		0		 0								
	Sudat	MG2-17		370	270	Irrawaddi formation. Excluded in Phase 1 JICA project. However, 244m TW (SWL:137m)			-		A	-1	5 m	195 m	170 m	×	Δ	×
	Myaynilain	MG2-18	830	250	160	is exist in the 5km far from the village. Irrawaddi formation. Pegu formation comes into deep area. 248m TW constructed by BAJ	0	0	0	0	В	-1	5 m	245 m	0 m	^	Δ	
	Legyinyo	MG2-19	920	280	134	in next village is bad water quality (EC=2400µS/cm, High F and Fe). 278m TW constructed in 1981 (SWL:134m、EC:1410µS/cm) is containing sand.	Δ	0	0	0	А	-1	5 m	195 m	80 m	Δ	×	Δ
	Laytinesin(S)	MG2-20	660	200	109	Irrawaddi formation. 200m TW. constructed in 2003 by DDA (JICA project, SWL:110m、3500GPH)	0	0	-	0	А	-1	5 m	195 m	0 m	Δ	Δ	Δ
	Tharmyar	MG2-21	660	200	120	Irrawaddi formation. 198m TW constructed in 2003 by DDA -JICA project (SWL:119m、54m'/h)	0	0	-	0	А	-1	5 m	195 m	0 m	Δ	o	Δ
		MG2-22		120	55	Irrawaddi formation.	0	0	-	0	C	-1	5 m	115 m	0 m	×	Δ	Δ
	Ngwelay	MG2-23	380	115	52	Irrawaddi formation. 116m TW constructed by WPDP in 1980. Water quality has worsened.	0	0	-	0	В	-1	5 m	110 m	0 m	Δ	Δ	Δ
	Indaw(N)	MG2-24		145	55	Irrawaddi formation. 110m TW constructed by DDA in 2011 (800GPH by airlift).	0	0	-	0	С	-1	5 m	140 m	0 m	Δ	Δ	Δ
						Hill consisting of Pegu formation approaches the vicinity. More than 30 shallow wells constructed and operated by hand pump, however already dried up. Bad water quality in												
	Htanaungkwin	MG2-25	-	_	-	Deep aquifer in this area because of Pegu formation area. Therefore, it is considered that new well construction is difficult.	×	0	-	0	-							
	Manawtgone			130	24	Irrawaddi formation covered by Alluvium(Q1) sediment. 128m TW (SWL=24m, 230GPH). Close to the Irrawaddi river.	Δ	0	0	0	А	-1	10 m	120 m	0 m	-	-	_
	Kangyigone			220	141	Inrawaddi formation. Pegu formation comes in at the deep area. 219m TW constructed by WRUD (EC=3000µS/cm).	0	0	-	0	A	-1	5 m	145 m	70 m	-	_	_
						Border area between Pegu and Irrawaddi formation. 105m TW (Good water quality). 150m TW (salty water). 3 mile far from village, JICA Well in Thetwin village also high salinity.										×	0	Δ
	Htonepoutchine	MG2-28	370	110	70	150m and 173m TW constructed by DRD were dry well. 183m TW constructed by WRUD	0	0	-	0	В	-1	5 m	15 m	90 m			
alay	Padaukngote	400.00				(EC2,950µS/cm, Fe=3mg/I) and Iron smell. Therefore, it is considered that new well	×	0		0								
Mandalay		MG2-29		-	-	construction is difficult. Irrawaddi formation. In the shallow area Pegu layer will comes in. There is groundwater			-		-							
Š	Sellel	MG2-30	-	-	-	below 260m according to the information of BAJ. Pegu formation. Both shallow well and Deep well are high salinity. Hard limestone nodule	Δ	0	-	0	D-2							
	Padaukgone	MG2-31	-	-	-	is in the Irrawaddi formation and difficult to drill by existing rotary drilling system. Therefore, it is considered that new well construction is difficult.	×	0	-	0	-							
	Ywartharlay	MG2-32	-	-	-	Border area between Pegu and Irrawaddi formation. Pegu formation comes in at the deep area.	Δ	0	0	0	D-2							
						Border area between Pegu and Irrawaddi formation. Hilly terrain. Many nodule contain. 215m TW (high salinity), 100m TW (good water quality). Oakpho village next to the target										_	_	_
	Wayonegone	MG2-33	400	120	70	village has JICA Phase 1 TW (EC=5330µS/cm, SWL=35m). Border area between Pegu and Irrawaddi formation. Complex geology.	Δ	0	-	0	С	-1	5 m	0 m	115 m			
	Nyaunggone	MG2-34	370	110	70	Boros area between riegu and indiaduu formation. Complex geology.	0	0	-	0	А	-1	5 m	0 m	105 m	_	_	_
	Kyugyaung	MG2-35	730	220	140	Irrawaddi formation. No Deep well experience. Pegu formation comes in lower layer.	0	0	-	0	В	-1	5 m	145 m	70 m	_	_	_
	Kokkohla	MG2-36	804	245	100	Border area between Alluvium (Q2) and Irrawaddi formation. 116m TW located in the 1km far from the village (EC=1500µS/cm)	Δ	0	0	0	D-1	6	5 m	240 m	0 m	×	×	0
		MG2-37	755	230	70	Irrawaddi formation. 195m TW (EC=4520µS/cm, F=3mg/L). Water quality test shall be done.	۵	0	0	0	С	-1	5 m	225 m	0 m	×	×	0
	Htaukkyantgwi n	MG2-38	1,060	320	100	Irrawaddi formation. 165m TW constructed by DRD and 233m TW constructed by RED CROSS were dry well. Drilling over 300m is necessary.	0	0	-	0	А	-1	5 m	315 m	0 m	_	-	_
	Hlebwegyi	MG2-39		255	100	Irrawaddi formation. Pegu formation comes in at the deep area.	0	0	-	0	A	-1	5 m	145 m	105 m	_	-	_
	Yayhtwetgyi	MG2-40		180	40	Irrawaddi formation. Pegu formation comes in at the deep area.	0	0	-	0	А	-1	5 m	145 m	30 m	-	_	-
		Total	######	20,005	J								883 m	########	4,434 m			

(Legend of Step 1~4) [-]: Not performed [°]: No problem []: Need to consideration [×]: Difficult to development

(Legend of Step 5) [A]~[D-2] shows possibility of groundwater development. [A] shows highest possibility. (Legend of Step 6) [1] ~ [6] shows priority of groundwater development. [1] shows highest priority.

20,005 m

× : Problem - : No deep well use

Region	Township	Village Tracks	Villages	No.	iD		nate of Surve NGS84 UTM	1.000	Survey	Surveyor	Remarks
region	1 Stringing	vinage riddina	, mages	1461	1.5	x	v	2	Method	Carroya	1. Contrainte
		Htanaungkona	Yonedaw	1	SA2-01	721,184	2,468,685	110	VES	DRD	
		Ngapayin	Nyaungbinthar	2	SA2-02	720.885	2,486,381	108	VES	DRD	
	A	Maunghtaung	Maunghtaung	3	SA2-03	712,894	2,487.822	121	VES	DRD	
	Budalin	Ywarthit	Kantawthar	4	SA2-04	704,295	2,487.734	157	VES	DRD	
		Konethar	Mhonehtoo	5	SA2-05	729,874	2,471,014	108	VES	DRD	
		Watluu-I	Watlou-I	6	SA2-06	700,719	2,482,574	114	VES	DRD	
1	12.000000	Thanbinkan	Thanbinkan	7	SA2-07	742,454	2,430,400	171	VES	DRD	
	Chaungoo	Natyaygan	Natyaygan	8	SA2-08	743,821	2,426,594	144	VES	DRD	
1		Ngarrtowma	Sithar	9	SA2-09	742,840	2,472,680	220	VES	DRD	
	1.000	Leinhla	Oakkan	10	SA2-10	747,838	2.482,552	138	VES	DRD	
	1000	Warryaung	Warryaung	11	SA2-11	748,170	2,458,383	220	VES	DRD	
	Ayadaw	Yechinn	Warrtannkalay	12	SA2-12	750,823	2,470,044	170	VES	DRD	
	1.000	Nyaungchayhtauk	Yathar	13	SA2-13	766,166	2,449,638	212	VES	DRD	No position
	11	Warryaung	Zeepinlel	14	SA2-14	751,516	2.457,534	212	VES	DRD	
		Yonebinyoe	Yonebinyoe	15	SA2-15	711.426	2.428.059	131	VES	DRD	IND DOWNOW
	Salingyi	Yonebinyoe	Minntaw	16	SA2-16	712,670	2.428,751	142	VES	DRD	
		Moe Kyo Pyin	Kina	17	SA2-17	711,640	2,437,561	151	VES/2D	DRD/ESS	No possibili
- 1		Kalarpyan	Kalarpyan	18	SA2-18	749,957	2,422,670	89	VES	DRD	
Sagaing		Nyaungbinkan	Hlayookan	19	SA2-19	758,107	2,439,343	166	VES	DRD	
19	Myinmu	Latpankyin	Watkya	20	SA2-21	745,604	2,447.822	252	VES	DRD	
a	1.1.1.1.1.1.1.1	Latpankyin	Thahlaykone(Ywarma)	21	SA2-22	747,673	2.446,221	254	VES	DRD	
00		Inma	Magyidaw	22	SA2-23	774,423	2,444,592	72	VES	DRD	(NOC) 10259-000
1	· · · · · · · · · · · · · · · · · · ·	Thindaw	Thindaw	23	SA2-24	773,385	2.613,108	209	VES	DRD	
	1.0.0.1.0	Thindaw	Lwingyi	24	SA2-25	772.013	2,612,839	215	VES	DRD	
		Koetaungboh	Koetaungboh(Kyunkone)	25	SA2-26	773,590	2,620,729	223	VES	DRD	
		Nyaungkanthar	Inngoteto	26	SA2-27	768,388	2,598,038	219	VES	DRD	-
	Harton	Myayhtoo	Myayhtoo	27	SA2-28	745,839	2,565,464	158	VES	DRD	No possibili
	Kanbalu	Khaowntar	Khaowntar	28	SA2-29	776,585	2,551,429	191	VES	DRD	
		Nyuangkanthar	Nyuangkanthar	29	SA2-30	770.771	2,597,741	217	VES	DRD	
		Myaymon	Myaymon	30	SA2-31	785,110	2,544,263	214	VES	DRD	
	1.000	Pazigyi	Layytwinzin	31	SA2-32	800,148	2,549,708	147	VES	DRD	
	1	Paygone(S)	Chaungchar	32	SA2-33	762.397	2.587,371	213	VES	DRD	
		Intimelay	Minyogone	33	SA2-34	731,866	2.513,234	112	VES	DRD	
	Dabayin	Mintelgone	Shandaw	34	SA2-35	725,913	2,501,505	132	VES	DRD	
		Satoyargyin	Kyuntaw (S)	35	SA2-36	728,632	2,505,189	121	VES	DRD	
T		Sharkwal	PalaeThwe (Ywarthit)	36	SA2-37	798,805	2,492,481	167	VES	DRD	
	Market	Poukkan	Poukkan	37	SA2-38	796,554	2:461,964	105	VES	DRD	We processory
	Wetlet	Yanepingane	Shwenyaungtaw	38	SA2-39	803,378	2,470,867	105	VES	DRD	Ren (Master 10)
	the second second second	Khawtaw	Sabeidaw	39	SA2-40	786,537	2,473,987	99	VES	DRD	NA WARDING

Appendix 5.2.1 Location of the Geophysical Survey

Location of Vertical Electric Sounding (VES) at Sagaing Region

Location of Vertical Electric Sounding (VES) at Mandalay Region

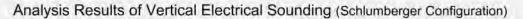
Region	Township	Village Tracks	Villages	No.	ID		nate of Surve WGS84 UTM	A	Survey	Surveyor	Remarks
region	rownship	village Hauks	vinages	140.	iu.	X	VGSB4 OTN	1) Z	Method	Surveyor	mernans
	1	Yayhtwet	Htantawgyi		MAZ-01	-	lo activitica	-	30	ESS	
	Mahlaing	Kyatse	Asone	1	MA2-02	769,139	2,329,229	283	VES	GH	
	-	Yaychobutar	Khinthar(S)	2	MA2-03	782.173	2.317.120	305	VES	GH	
		Chaysay	Chaysay	3	MA2-04	753,016	2,368,981	130	VES	DRD	
	diaman l	Pinlai	Talgyi	4	MA2-05	758,848	2,404,789	105	VES	DRD	
	Myingyan -	Kuywar	Kuywar	5	MA2-06	750.116	2,369,227	117	VES/2D	DRD/ESS	No poseb
		Phatpin-I	Nyaungwum	6	MA2-08	755.305	2,403,440	106	VES	GH	Micposetal
1	Ngazon	Kaungzin	Kaungzin	12	MAZELT	Deventer	er at sporensee	=h0.524	20	ESS	
		Myinni	Kyaungkangyibin	1.5	MA2-12	File ye hav	er til understoren	1918524	20	ESS	
	Natogyi	Nyaunggone	Nyaunggone	5	MAX-15	Passel se	er lo apoenoer	1,78,5.24	20	ESS	
1	-	Obo	Chaungnar	1	MAZ-16	Prouse No	he was a read	100103.2	39	ESS	No possibili
		Zagyan	Chaungsone(La)	7	MA2-17	735,402	2,354,865	169	VES	GH	
	Contract 1	Kyaukkar	Kyaukkartaungkone	10	MA2-18	Physican art	ha price and	Line 5.24	20	ESS	No possibili
	Taungtha -	Kanmyel	Tharzi	8	MA2-19	740,013	2,346,810	192	VES	GH	
		Kanmyel	Kanaye	9	MA2-20	740.583	2.349,003	181	VES	GH	
Mandalay	1	Tharyarmyaing	Tharyarmyaing	1.2	MA2-21	Come M	he provide rates	NUL 6 34	30	ESS	
a	0	Myinnar	Oakpo	10	MA2-22	826,979	2,270,938	187	VES	DRD	
E	Yamethin	Nabukyin	Kangyi	11	MA2-23	828,886	2,246,238	214	VES	DRD	
Ma	Distance	Seitcho	Htanekan	12	MA2-24	804,460	2,275,571	230	VES	DRD	
-	Pyawbwe	Seitcho	Waryonesu	13	MA2-25	804,970	2,275,449	226	VES	DRD	
		Sinthamway	Talkone	14	MA2-26	721,119	2,347,365	248	VES	DRD	
		Tawbyar	Tawbyar	15	MA2-27	726,266	2,345,916	304	VES	DRD	
		Setsetyo	Setsetyp	16	MA2-28	721.827	2,329,520	442	VES	DRD	
		Pyon	Kanzauk	17	MA2-29	709,761	2,328,732	351	VES	DRD	
	Alexander 1	Kantain	Talbindel	18	MA2-30	719,641	2,332,401	378	VES	DRD	
	Nyaungoo	Tawpyar	Mongywettaw	19	MA2-31	724,287	2,337.251	286	VES	DRD	
		Tuywintaung	Phoenekan	19	MA2-ou!	Trans al	er la auneroes	1010021	25	ESS	
		Nyaungbinthar	Nyaungbinthar	-	MA7-33	Plesneyes	er anapatennies	AN 82-	25	ESS	
		Kudaw	Saingkan(Tetide)	20	MA2-34	724,351	2,328,820	427	VES	DRD	
		Byugyi	Byugyi	21	MA2-35	724,225	2,325,313	467	VES	DRD	
1		Tangkan	Aleywar-2	1	MA2-30	Mure M	le que notes	Inclusion	20	ESS	
	Kusulmadaus	Lelgyi(N)	Lelgyi(Ma)	1.	MA2-30	Dession	er la ayneriu a	$\mathrm{rat}_{\mathrm{ord}} \in \mathbb{R}^{d}$	20	ESS	
	Kyaukpadaung	Kannbyu	Thayattaw	22	MA2-39	729,095	2,325,329	394	VES	DRD	
		Nakyatkhwal	Nakyatkhwal	23	MA2-40	720,311	2,312,065	433	VES	DRD	

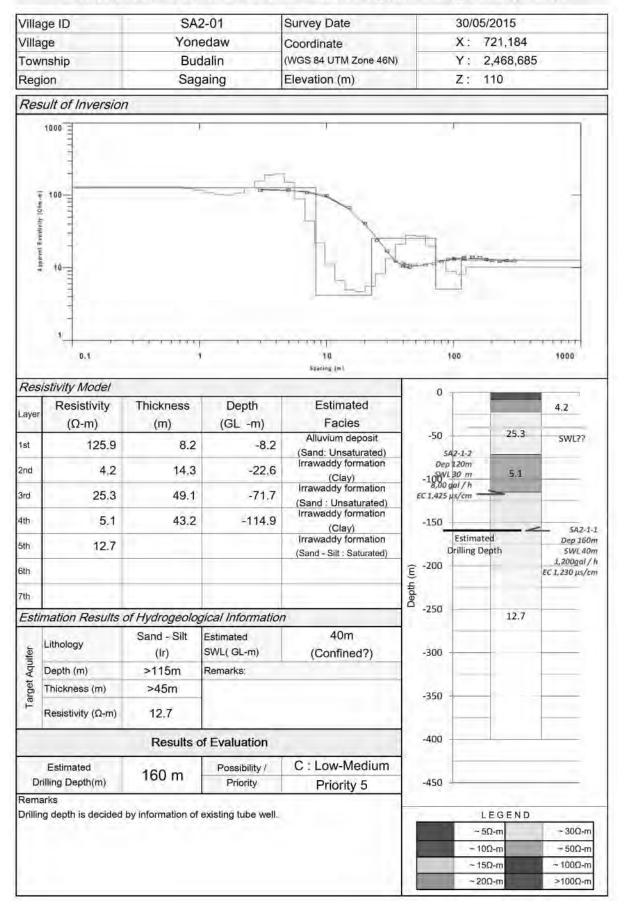
		Antice Cale in .	- American				nate of Surv		Survey		-
Region	Township	Village Tracks	Villages	No.	ID	×	WGS84 UTI	A) Z	Method	Surveyor	Remarks
-		Natkan	Natkan	1	MG2-01	706,551	2,233,834	167	VES	ESS	-
		Sharzaungkan	Thanbo(Ywarthit)	2	MG2-02	716.284	2.216.242	156	VES	ESS	
		Kyarkan	Nyaungbinthar	3	MG2-03	737,918	2 244,076	267	VES	ESS	
		Nyaungbinthar	Konegvi	4	MG2-04	718,820	2.237.250	263	VES	ESS	
	Magway	Paypinsan	Sainggya	5	MG2-05	725.337	2.213,980	232	VES	ESS	
	1000104	Thapyaysan	Thapyaysan(N)	6	MG2-06	712,481	2.227,459	174	VES	ESS	
	-	Supyitsan	Shwekyaw	7	MG2-07	733,733	2.207,455	235	VES	ESS	
		Nyaungkan	Leikkan	8	MG2-08	727.137	2.239,525	168	VES	ESS	
		Nyaungkan	Ywarthitgyi	9	MG2-09	722.040	2,238,165	211	VES	ESS	
9		Thanbo	Kanyaygyi	10	MG2-10	702.719	2.281,976	319	VES	GH	
		Myaysoon	Myaysoon(Ywarthit)	11	MG2-11	698,121	2,277,376	231	VES	GH	-
		Zeebwar	Zeebwar	-	1/02-12	Planerici	or he ape arreed	1300535	-20	ESS	
		Chaungtat	Yenpyay	12	MG2-13	691,263	2,301,508	164	VES	GH	-
	Chauk	Pakhannge	Kyatesu(N)	13	MG2-14	685,564	2.292.820	95	VES	GH	
	a second in	Salintaung	Winkabar	14	MG2-15	684,439	2.287,271	64	VES	GH	
2.1		Magyikone	Kyatkan	15	MG2-16	685,567	2.292,822	95	VES	GH	
2		Gwaypin	Sudat	16	MG2-17	706.601	2,285,682	386	VES	GH	
ay		Nyaungzin	Myaynilain	17	MG2-18	698,822	2.287,046	306	VES	GH	
Magway	Yenangyaung	Indaw	Legyinya	-	MG2-19	Floaserek	or to approvide	11a0le 5.25	20	ESS	
la,		Laylinesin	Laytinesin(S)	18	MG2-20	732,777	2,235,825	166	VES	GH	
2		Laytinesin	Tharmyar	19	MG2-21	736,054	2,241,105	217	VES	GH	
1.1	Myathit	Laytinesin	Aungmyinthar	20	MG2-22	733,165	2,231,570	154	VES	GH	
	Myomiz	Wargyiini	Ngwelay	21	MG2-23	738,865	2.222,523	125	VES	GH	
		Htauksharkari	Indaw(N)	22	MG2-24	742,485	2,229,625	131	VES	GH	
		Manawtkone	Manawtgone	23	MG2-26	731.842	2,222,261	96	VES	GH	
100		I-Sauk	Kangyigone	24	MG2-27	742,472	2,259,236	269	VES	ESS	
		Htonepoutchine	Htonepoutchine	-	MG2-28	Pleasanch	a- To Laboarda	1011 575	30	ESS	
		Sellel	Sellei	1.0	M02-90	TRease rela	ai ta iyozanda	tTable 5:23	-20	ESS	No possib
	Natmauk	Tegyr	Ywarthariay	25	MG2-32	730,882	2,275,379	292	VES	ESS	No pressio
		Wayonegone	Wayonegone	1.5	T/G2-32	Flease (el	er lo ancence	119218 5.25	-20	ESS	
		Htonepoutchine	Nyaunggone	26	MG2-34	732.712	2,256,221	303	VES	ESS	
1.1		I-Zauk	Kyugyaung	27	MG2-35	744,680	2.259,329	241	VES	ESS	
		Pantwinlay	Kokkohla	28	MG2-36	765,975	2,218,607	153	VES	ESS	No passibi
		Payatkyal	Kangyigone	1.	MG2-ST	Floris ist	er to spectade	1429 5,75	20	ESS	
	Taungdwingvi	Warthonepyu	Htaukkyantgwin	29	MG2-38	772,133	2.184,859	168	VES/2D	ESS/GH	
	Contraction of the	Hlebwegyi	Hlebwegyi	30	MG2-39	747,687	2,200,683	147	VES	VES	
		Hlebwegyi	Yayhtwetgyi	31	MG2-40	743,050	2,197,425	230	VES	VES	

Location of Vertical Electric Sounding (VES) at Magway Region

Region	Township	Village Tracks	Villages	No.	ID	Line	Station		rdinate 84 UTM)	Remarks
Region	rownanip.	vinage macks	Vinagos	raio.	10	No.	No. (m)	x	y	Normarina
				-			0	711.302	2.437,665	
	in the second	1. 12. 2.1		1.1		1	315	711,589	2,437,534	The possibility
Sagaing	Salingyi	Moe Kyo Pyin	Kine	1	SA2-17	10.5	470	711,732	2,437,475	cannot be found.
							VES	711,640	2,437,561	
	-				1	-	0	766,801	2,339,158	· · · · · · · · · · · · · · · · · · ·
	Total and an						315	767,110	2,339,198	
	Mahlaing	Yayhtwet	Htantawgyi	1	MA2-01	1	450	767.245	2,339,217	Recommended DP
							630	767,418	2,339,235	Hacommensed of
						-	0	748,929	2,369,485	
						1	155	749,074	2,369,535	The possibility
	Myingyan	Kuywar	Kuywar	2	MA2-06		470	749,373	2,369,634	cannot be found.
					1.00		and the second second	and the second second	a contract of the second	carnot be round.
						2	VES	750,116	2,369.227	
						120	0	754,847	2,403,319	
	Ngazon	Kaungzin	Kaungzin	3	MA2-11	1	155	765,000	2,403,339	
	1					111	310	765,154	2,403,359	
	-			-			Projected	764,968	2,403,452	Recommended DP
					1	173	0	757,235	2,368,537	
		Myinni	Kyaungkangyibin	4	MA2-14	1	120	757,350	2,368,566	Recommended DP
	1.000		,,		- 4 (CO) (D		470	757,696	2,368,613	
	Natogyi						630	757,855	2,368,617	
	(unita).						0	771,985	2,368,620	
		Nyaunggone	Nyaunggone	5	MA2-15	4	155	772,054	2,368,758	
	1 C 1 C 1	Ayadinggone	rtyaunggone	~	MICH2-10	100	175	772,061	2,368,773	Recommended DP
						1.00	310	772,141	2,368,884	
		· · · · · · · · · · · · · · · · · · ·				144	Q	751,231	2,358,085	The second state
		Obo	Chaungnar	6	MA2-16	1	315	751,538	2,358,137	The possibility
		and the second		11	10000	120	630	751,852	2,358,169	cannot be found.
				12			0	748,976	2,341,550	The possibility
1.00	Taungtha	Kyaukkar	Kyaukkartaungkone	1	MA2-18	1	470	749,365	2.341.816	cannot be found.
À.							0	745,606	2.342,673	
Mandalay		Lee		1.1		1.1	275	745,860	2,342,787	Recommended DP
pu		Tharyamyaing	Tharyamyaing	8	MA2-21	1	315	745,889	2,342,809	
٨a							630	746,181	2,342,934	
						-	0	703,831	2,333,926	
	100					1	155	703,700	2,334,000	The possibility
							470	703,454	2,334,189	cannot be found.
						-	0	703,400	2:334,497	The second second
					12773	2	295	703,693	2,334,484	The survey line for gras to resistivity distributio
		Tuywintaung	Phoenekan	9	MA2-32	*			2,334,484	of existing tube well
					10000	-	450	703,844		or entening rates then
	Nyaungoo						0	703,720	2,334,028	
	1000					3	155	703,880	2,334,002	0
	Nyaungoo						160	703.892	2,333,983	Recommended DP
				-	-	-	.310	704,023	2.333,971	
		· · · · · · · · · · · · · · · · · · ·					0	712,198	2,322,461	
		Nyaungbinthar	Nyaungbinthar	10	MA2-33	1	100	712,282	2,322,514	Recommended DP
		Contraction of the local data	P. Sand Street and		100.00		320	712,472	2.322.617	
				-			470	712,599	2,322,697	
	the second second						0	718,310	2,309,421	
						1	310	718,443	2,309,695	
				1.1	2000		520	718,526	2,309,861	Recommended DP
		Tangkan	Aleywar-2	11	MA2-36		630	718,601	2,309,973	
							0	718,393	2,309,558	The possibility
	Kyaukpadaung					2	315	718,678	2,309,584	The possibility cannot be found.
						191	470	718,819	2,309,749	cannot de round.
					1		Q	734;329	2,325,827	
		1 december	1 - In State St	10	1110.00		175	734,376	2,325,660	Recommended DP
		Lelgyi(N)	Lelgyi(Ma)	12	MA2-38	1	315	734,415	2,325,527	

Location of 2 Dimensional (2D) Electric Survey at Sagaing and Mandalay Region


Region	Township	Village Tracks	Villages	No.	iD	Line	Station		rdinate 84 UTM)	Remarks
						No.	No. (m)	x	y.	
							0	711.578	2,299,014	
	Chauk	Zeebwar	Zeebwar	1	MG2-12		275	711,799	2,299,179	Recommended DP
	Griaun	Zeeuwar	26607741	1.1	1002-12		315	711,836	2,299,204	
							470	711,959	2,299,298	
	1						0	723,913	2,266,597	
	Vanagaugung	Indaw	Legyinyo	2	MG2-19	4	315	724,163	2,266,788	
	Yenangyaung	indaw	Legyinyo	2	W02-19		380	724,221	2,266,827	Recommended DP
							630	724,418	2,266,972	
							0	730,842	2,255,340	
		Htonepoutchine	Htonepoutchine	3	MG2-28	1	210	731,018	2,255,457	Recommended DP
N				1.			470	731,237	2,255,605	
Magway	Natmauk	Sellel	Sellel	4	MG2-30	4	0	782,988	2,258,915	The possibility
ag	Ivamauk	Seller	Geller	4	1002-30		440	783,428	2,258,888	cannot be found.
Σ		1. 20. 10. 10.	and the second sec	12	the second		0	734,840	2,268,012	
		Wayonegone	Wayonegone	5	MG2-33	1	310	735,144	2,268,061	Recommended DP
				111		_	630	735,455	2,268,109	
		1					0	762,199	2,193,020	
		Developed	Kanadinana	6	MG2-37	4	160	762,353	2,192,994	
	A	Payatkyal	Kangyigone	0	MG2-37	1	330	762,531	2,193,000	Recommended DP
	Thursday			111		_	470	762,666	2,193,006	
	Taungdwingyi						0	771,970	2,184,938	The possibility
	Warthonepyu Htaukkyantgwin 7 MG2-38 1	155	772,122	2,184,918	cannot be found on					
		wannonepyu	паиккуапtgwin	1	MG2-38		470	772.431	2,184.874	2D electrical soundin
				1.00		-	VES	772,133	2,184,859	Recommended DP

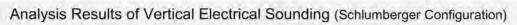

Location of 2 Dimensional (2D) Electric Survey at Magway Region

Appendix 5.2.2 Result of the Geophysical Survey

Vertical Electric Sounding (VES) at Sagaing Region

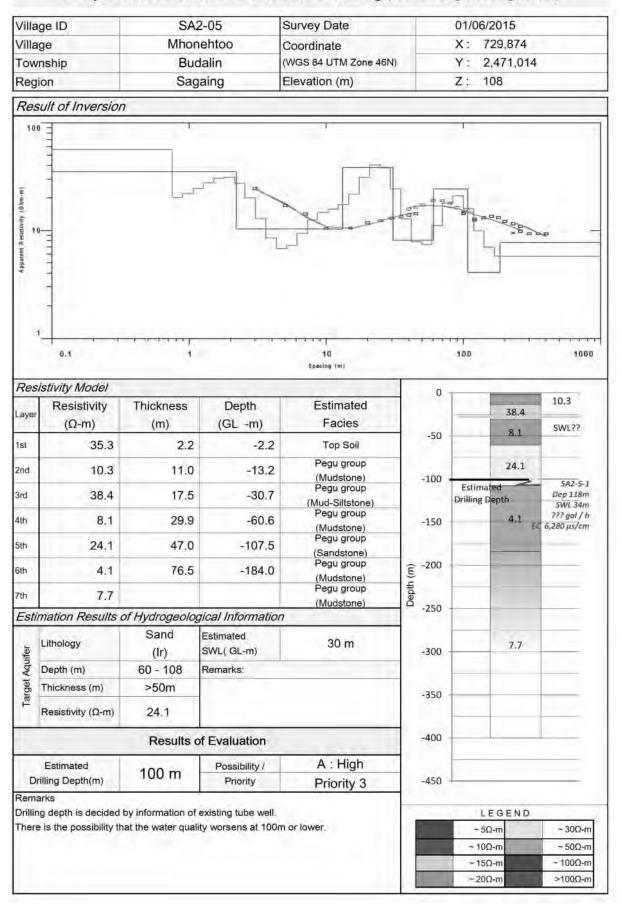
SA2-01	Yonedaw Village
SA2-02	Nyaungbinthar Village
SA2-03	Maunghtaung Village
SA2-04	Kantawthar Village
SA2-05	Mhonehtoo Village
SA2-06	Watluu-I Village
SA2-07	Thanbinkan Village
SA2-08	Natyaygan Village
SA2-09	Sithar Village
SA2-10	Oakkan Village
SA2-11	Warryaung Village
SA2-12	Warrtannkalay Village
SA2-13	Yathar Village
SA2-14	Zeepinlel Village
SA2-15	Yonebinyoe Village
SA2-16	Minntaw Village
SA2-17	Kine Village
SA2-18	Kalarpyan Village
SA2-19	Hlayookan Village
SA2-21	Watkya Village
SA2-22	Thahtaykone(Ywarma) Village
SA2-23	Magyidaw Village
SA2-24	Thindaw Village
SA2-25	Lwingyi Village
SA2-26	Koetaungboh(Kyunkone) Village
SA2-27	Inngoteto Village
SA2-28	Myayhtoo Village
SA2-29	Khaowntar Village
SA2-30	Nyuangkanthar Village
SA2-31	Myaymon Village
SA2-32	Layytwinzin Village
SA2-33	Chaungchar Village
SA2-34	Minyogone Village
SA2-35	Shandaw Village
SA2-36	Kyuntaw (S) Village
SA2-37	PalaeThwe (Ywarthit) Village
SA2-38	Poukkan Village
SA2-39	Shwenyaungtaw Village
SA2-40	Sabeidaw Village

SA2-01 Yonedaw Village

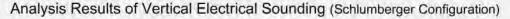

Villa	ge ID	SA	2-02	Survey Date	01/	06/2015	
Villa	ge	Nyaun	gbinthar	Coordinate	X:	720,885	
Tow	nship	Bu	dalin	(WGS 84 UTM Zone 46N)	Y:	2,486,381	
Reg	ion	Sag	gaing	Elevation (m)	Z:	108	
Res	sult of Inversion	7					
	1000			1 -	.чг.		
Apparent Rentervis (Ohm-m)	10- 1- 1- 0.1		· · · ·	10	100		1000
	_			Spacing (m)		_	_
Res	istivity Model		1	-	0	-	30.7
Layer	Resistivity	Thickness	Depth	Estimated			
1.	(Ω-m)	(m)	(GL -m)	Facies	-50	4.3	SWL??
1st 2nd	157.2 30.7	0.8	-0.8 -5.3	Top Soil Alluvium deposit (Silt: Unsaturated)	-100	2	SA2-2-1 Dep 82m SWL 37m
3rd	4.3	65.1	-70.3	Irrawaddy formation	-100	20.2	800 gal / h EC 1,4 75µs/cm
4th	20.2	105.5	-175.9	(Clay) Irrawaddy formation	-150		12.20
-	1			(Sand : Saturated) Irrawaddy formation	Estimat	ed	SA2-1-1 Dep 160m
5th	10.9			(Silt : Saturated)	Drilling D		SWL 40m 1,200gal / h
6th					E -200		EC 1,230 µs/cm
7th					(E) -200		
Esti	mation Results	of Hydrogeolo	gical Information	n	-250		
ifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	40m (Confined?)	-300	10.9	
Aqu	Depth (m)	70.3-176m	Remarks:			10.00	
Target Aquifer	Thickness (m)	>90m			-350	-	
Ŧ	Resistivity (Ω-m)	20.2				_	
		Results	of Evaluation		-400	-	
	Estimated	160 m	Possibility /	A : High			_
	rilling Depth(m)	100 m	Priority	Priority 3	-450		
Rem		ided by aviation		b is located man the		LEGEND	
site.		ided by existin	ig tube well whit	ch is located near the		~5Ω-m	~ 30Ω-m
one.						10Ω-m	~ 50Ω-m
						15Ω-m	- 100Ω-m

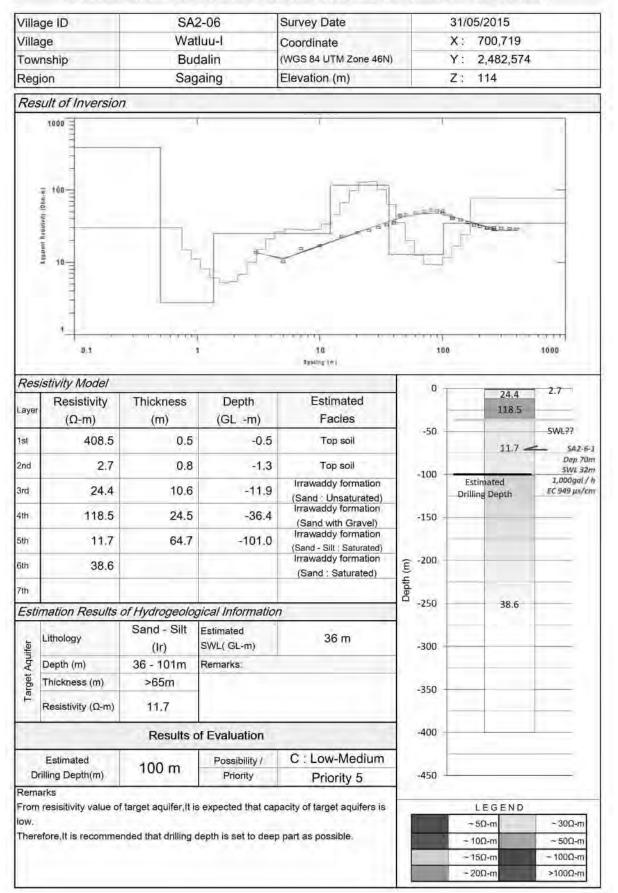
SA2-02 Nyaungbinthar Village

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

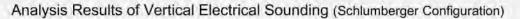

Villa	ige ID	SA	2-03	Survey Date	01/	/06/2015	
Villa	ige	Maun	ghtaung	Coordinate	X :	712,894	
Tow	nship	Bu	Idalin	(WGS 84 UTM Zone 46N)	Y:	2,487,822	-
Reg	ion	Sa	gaing	Elevation (m)	Z:	121	
Res	sult of Invers	sion					
	1000 1000 1000 1000 1000 1000 1000 100	sion	1	10	100		1000
0				Specing (m)	100	_	1000
res	Resistivity Mode	1	Depth	Estimated	0		7.4
ayer	(Ω-m)	(m)	(GL -m)	Facies		- 114.7	199
st	21				-50		SWL??
2nd		.4 8.2	×-7.	Top soil / Alluvium deposit (Silt-Sand)	542-3- Dep 731	m 13.6	
		28 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	1.2.7	Irrawaddy formation	-12000 gal /		
3rd	114	.7 23.8	-40.5	(Sand with Gravel)	EC 2,600 µs/ci	m	5A2-3- Dep 122n
4th	13	.6 80.0	-120.5	(Silt ; Saturated)	-150	Ectimated	SWL 37n 800 gal /)
5th	42	.9		Irrawaddy formation		Estimated Drilling Depth	EC 620 µs/cn
				(Sand: Saturated)	€ -200		
6th			-		(iii) -200		
7th					a -250		
Esti	mation Resu	Its of Hydrogeold	1	n		42,9	
er	Lithology	Sand (Ir)	Estimated SWL(GL-m)	40 m	-300		
Aquit	Depth (m)	>120m	Remarks:	1			
Target Aquifer	Thickness (m)				-350		
Tal	Resistivity (Ω-r	m) 42.9			-530		
		Results	of Evaluation		-400		
	Estimated	150 -	Possibility /	B : Medium			
D	rilling Depth(m)	150 m	Priority	Priority 4	-450		_
		otential of upper anu	ifer(40 5 120 5m) is	low and water quality has	-	LECEND	_
	etimated that -		ner(40.0-120.0m) Is	s low, and water quality has	-	LEGEND	1
t is e	oroblem. (Salty)				the second se	~ 5Q-m	~ 30Q-m
t is e ittle j	problem. (Salty)		een set to more de	eeper part.		~ 5Ω-m - 10Ω-m	~ 30Ω-m ~ 50Ω-m
ittle j	problem. (Salty)		een set to more de	eper part.		- 5Ω-m - 10Ω-m - 15Ω-m	~ 30Ω-m ~ 50Ω-m ~ 100Ω-m

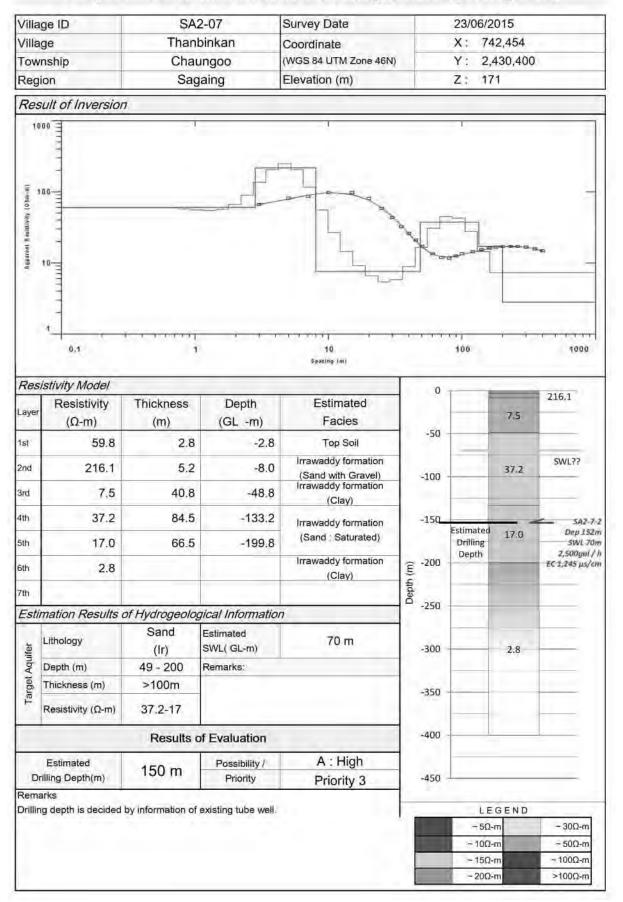
SA2-03 Maunghtaung Village

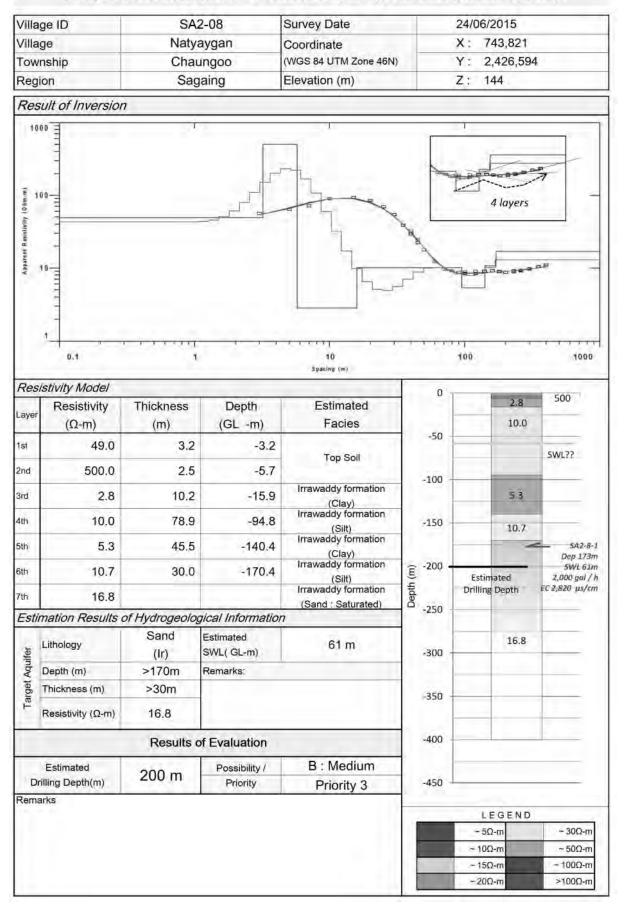



Villa	ge ID SA2-04 Survey Date		Survey Date		31/05/2015			
Village Township		Kanta	awthar	Coordinate		X: 70	04,295	
		Buc	dalin	(WGS 84 UTM Zone 46N)		Y: 2,	487,734	8
Reg	ion	Sag	gaing	Elevation (m)		Z: 1	57	
Res	ult of Inversion	7						
Supered Resetvity (Dam on)	1000						28.0.ed	
	1 0,1	() 1	- <i>n</i> - i- i-	10 Rating (m)		00	hiri	1000
Res	istivity Model		1		0	-	40.5	4.7
Layer	Resistivity	Thickness	Depth	Estimated		-	37.5 112.1	
	(Ω-m)	(m)	(GL -m)	Facies	-50			SWL??
1st	163.0	0.6	-0,6	Top Soil		5A2-4-2 Dep 62m	-	5,0211
2nd	4.7	1.3	-2.0	100,000	-100	SWL 32m 800gal / h	12.9	
3rd	37.5	14.8	-16.8	Irrawaddy formation		663 µs/cm		542-4-1
4th	112.1	22.4	-39.2	(Sand-Silt Unsaturated) Irrawaddy formation	-150	Estimated Drilling Depth		Dep 122m 5WL 39m
				(Sand with Gravel) Irrawaddy formation	-130	Unifing Dep)th	1,200gal / h EC 534 µs/em
5th	12.9	82.3	-121.4	(Sand :Saturated) Irrawaddy formation	200			Le sur por chi
6th	48.5			(Coarse Sand? :Saturated)	(m) -200			
7th					Dept			
Esti	mation Results	of Hydrogeolog	gical Information	7	-250		48.5	
lifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	39 m	-300			
Target Aquifer	Depth (m)	>39m	Remarks					
arge	Thickness (m)	>85m			-350	-		
۲	Resistivity (Ω-m)	12.9 - 48.5						
		Results of	of Evaluation		-400		_	
	Estimated	125 m	Possibility /	C : Low-Medium		-		
	illing Depth(m)	125 11	Priority	Priority 5	-450	-		-
Rema Drilli		ided by inform	ation of exisiting	g tube well.		L Ε ~ 5Ω	GEND	- 30Ω-m
						~ 10Ω	-	~ 50Ω-m
							-	
						~ 15Ω	-m	- 100Ω-m

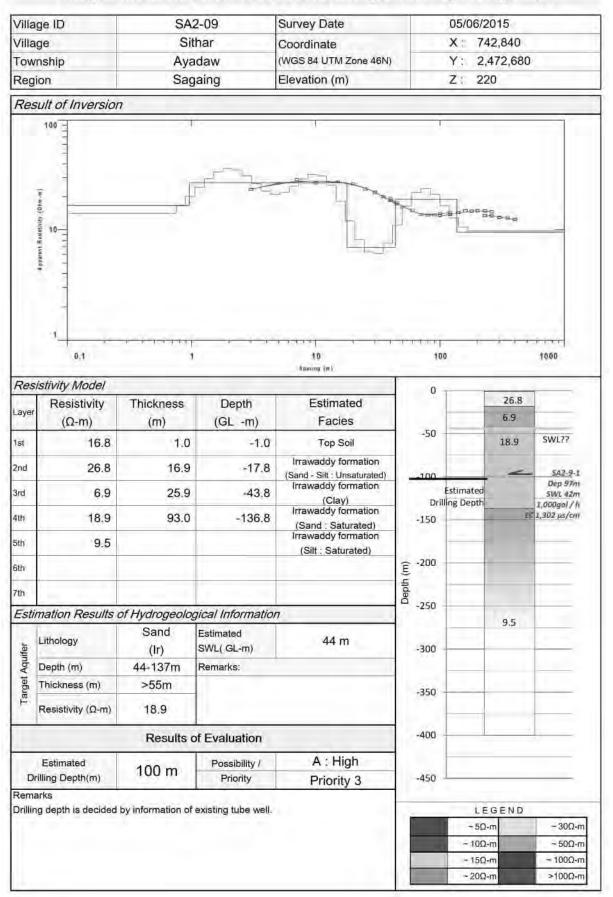
SA2-04 Kantawthar Village



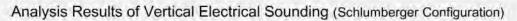

SA2-05 Mhonehtoo Village



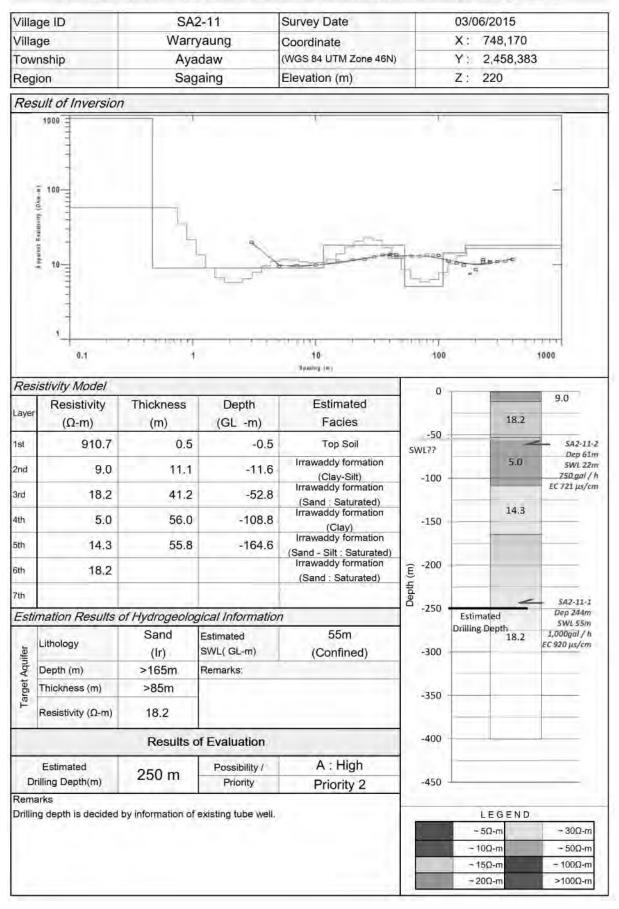
SA2-06 Watluu-I Village



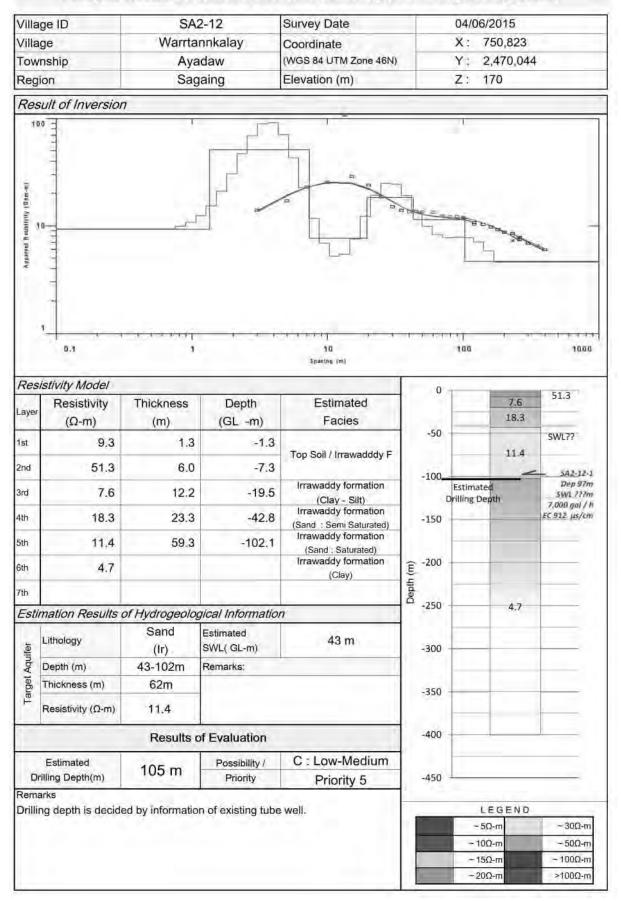
SA2-07 Thanbinkan Village



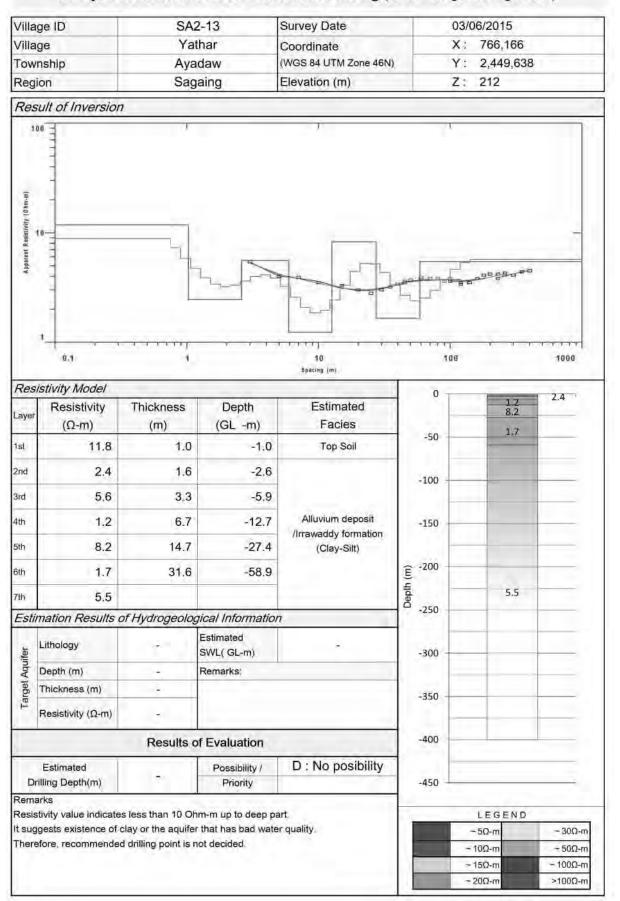
SA2-08 Natyaygan Village

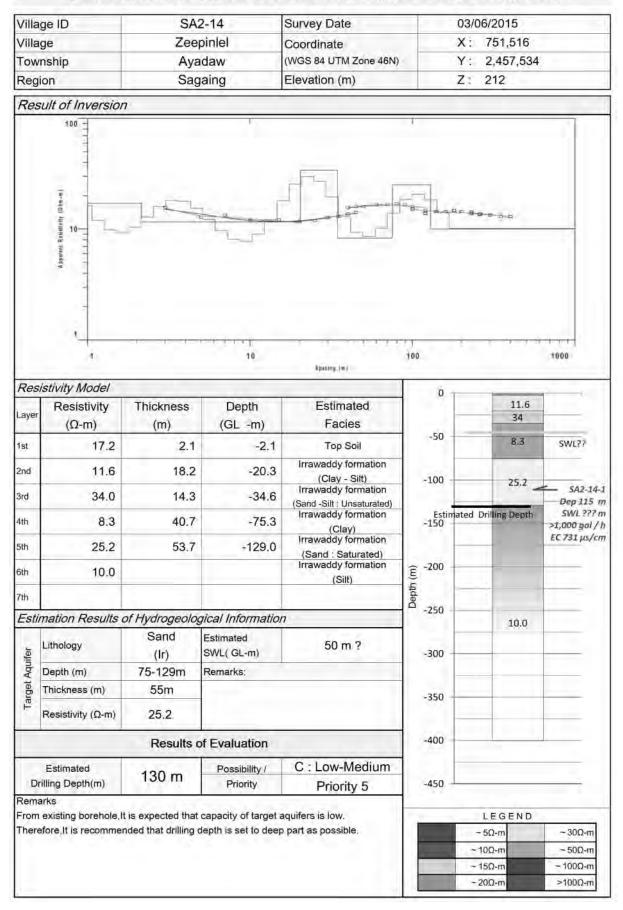

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

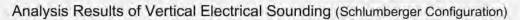
SA2-09 Sithar Village



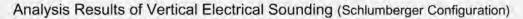
Villa	age ID SA2-10 Survey Date		Survey Date		04/06/	- 10 Y - 1			
Village		the second se		Coordinate			(: 747,838		
Tow	nship		idaw	(WGS 84 UTM Zone 46N)	100		2,482,552	5 -	
Regi	on	Sag	Elevation (m)		Z: 1	38			
Res	ult of Inversion	1							
dy (Ghm.m)	10						Ales		
	1		al - 1 - 10	10 4 mazing inci	 1	00	i a a	1000	
Resi	istivity Model		-	ter det ante	0	1		23.2	
Layer	Resistivity	Thickness	Depth	Estimated			7.8		
	(Ω-m)	(m)	(GL -m)	Facies	-50		130		
1st	51.4	0.8	-0.8	Top Soil					
2nd	23.2	8.4	-9.2	Alluvium deposit (Silt : Unsaturated)	-100			-	
3rd	7.8	44,7	-53.9	Alluvium / Irrawaddy F (Silt : Unsaturated)					
4th	11.9	223.2	-277.2	Irrawady formation	-150				
1				(Altenation of Clay and Sand?) Irrawady formation	150		11.9		
5th	9.9			(Clay?)	200				
6th					(m) -200				
7th					- Depth	Estin	nated	Dep 224m	
Estir	nation Results	of Hydrogeolo	gical Information	7	-250	Drilling [Depth	5WL 3 m >350 gal / h	
	Lithology	Altenation of Citay and Sand? (Ir)		3m (Confined)	-300			EC 861-µs/cm Flowing tesian Well	
Aqu	Depth (m)	54 - 277 m	Remarks:			_	M	Lesian wen	
Target Aquifer	Thickness (m)	?			-350		9.9		
Ta	Resistivity (Ω-m)	11.9			944	_			
-		Resulte	of Evaluation		-400				
	4 an 100 mil	nesuits (O Leve Maailwaa		-			
Dr	Estimated illing Depth(m)	230 m	Possibility / Priority	C : Low-Medium	-450				
Rema			i nong	Priority 4	450				
	ng depth is decide	ed by informatio	n of existing tube	well	-	Ļ	EGEND	-	
					-	~ 50		~ 30Ω-m	
						- 100	2-m	~ 50Ω-m	
						~ 150	2	~100Ω-m	

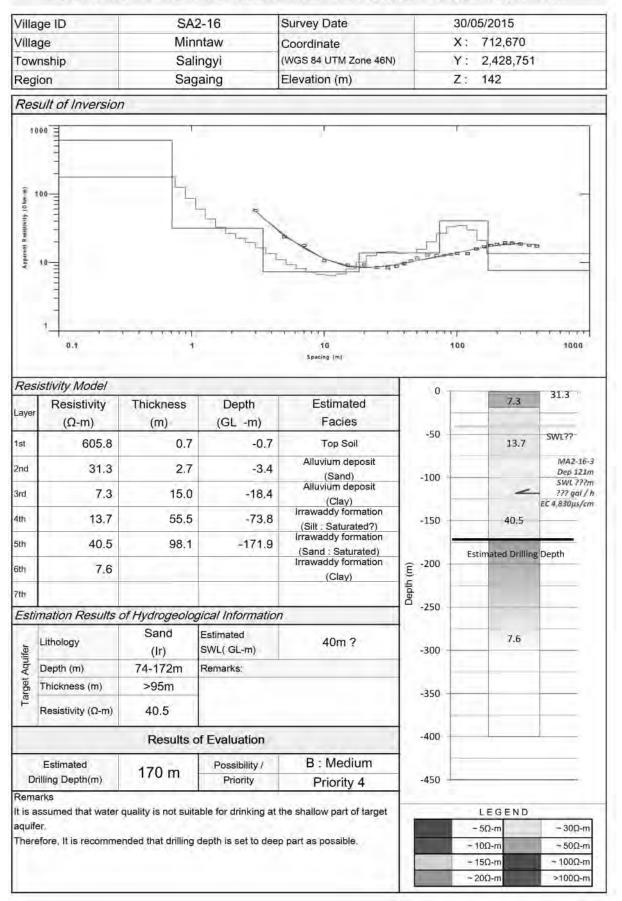

SA2-10 Oakkan Village


SA2-11 Warryaung Village


SA2-12 Warrtannkalay Village

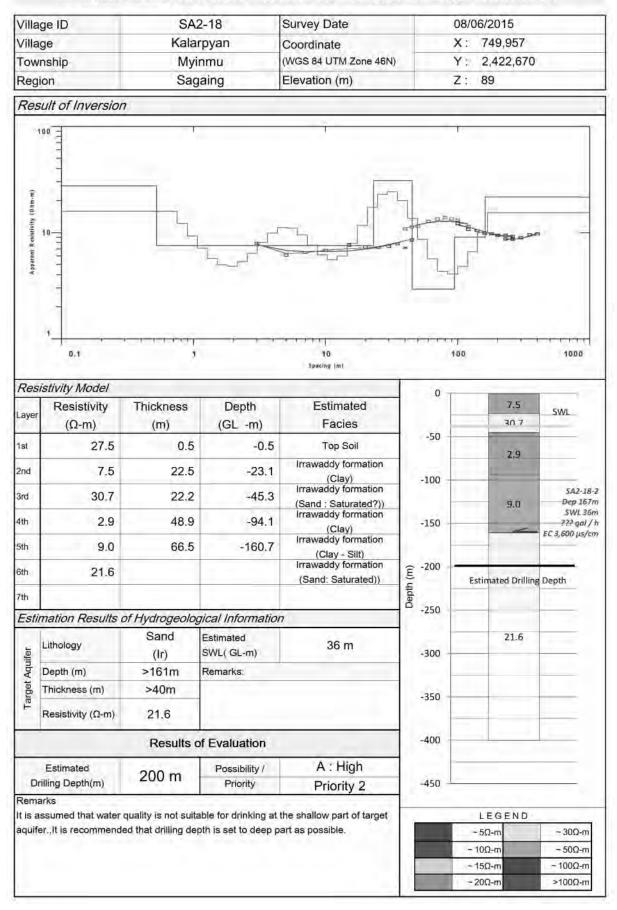
SA2-13 Yathar Village




SA2-14 Zeepinlel Village

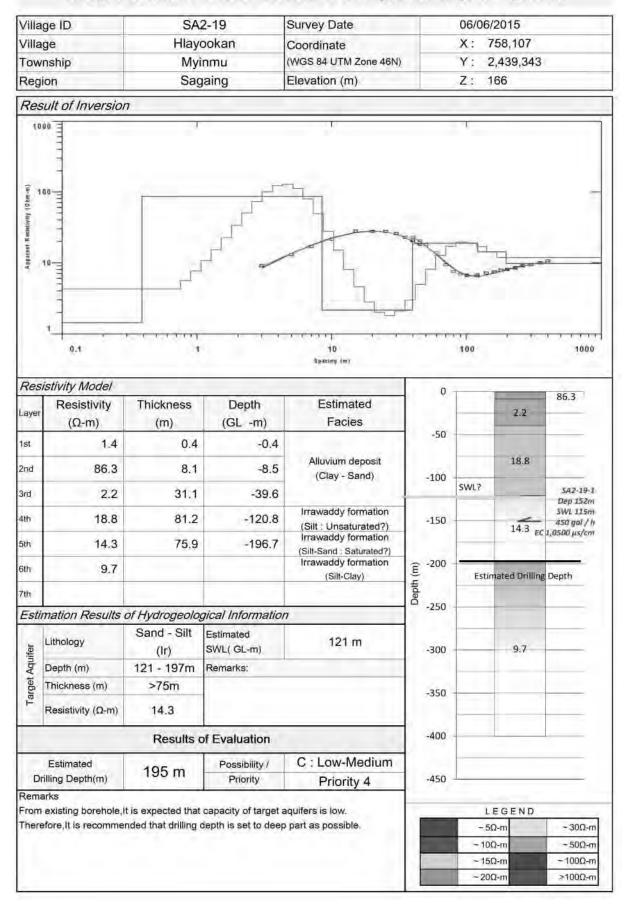
Villa	ge ID			/05/2015			
Villa	ge	Yone	binyoe	Coordinate		711,426	
Tow	nship		ingyi	(WGS 84 UTM Zone 46N)			
Reg	ion	Sag	gaing	Elevation (m)	Z	131	
Res	sult of Inversion	1					
1	100	خس	<u> </u>		1		
	(ur. edD) (thother) interest interest in the second		L				a
Res	0.1 istivity Model		1	10 Brokeing (m.)	100		1000
	Resistivity	Thickness	Depth	Estimated			7.4
Layer	(Ω-m)	(m)	(GL -m)	Facies			
1st	68.6	2.5	-2.5	Top Soil	-50		
2nd	7.4	17.2	-19.7	Irrawaddy formation (Silt)	-100	3.2	5A2-15-1 Dep 91m
3rd	3.2	174.5	-194.2	Irrawaddy formation	_	3.6	SWL 100 m 1,000 gal / h
4th	2.5			(Sand : Aquifer) (Not suirabele for drinking)	-150	EC)	8,060 µs/cm
5th					-		
6th					-200		
			-		(i) -200		-
7th					-250	-	
Esti	mation Results	of Hydrogeolo		7			
uifer	Lithology	÷	Estimated SWL(GL-m)		-300	2.5	
Target Aquifer	Depth (m)	4	Remarks;		-		
arge	Thickness (m)	*			-350		
F	Resistivity (Ω-m)	1 (C			-		
		Results	of Evaluation		-400		
D	Estimated Possibility / D : No posibility Drilling Depth(m) Priority			-450			
Rem	arks	A					
	stivity value indicate				(and the second	LEGEND	1
Resis	inonto eviateras -4			~ 5Ω-m	~ 30Ω-m		
Resis It sug	gests existence of effore, recommende				-		
Resis It sug	gests existence of efore, recommende					~ 10Ω-m ~ 15Ω-m	~ 50Ω-m

SA2-15 Yonebinyoe Village

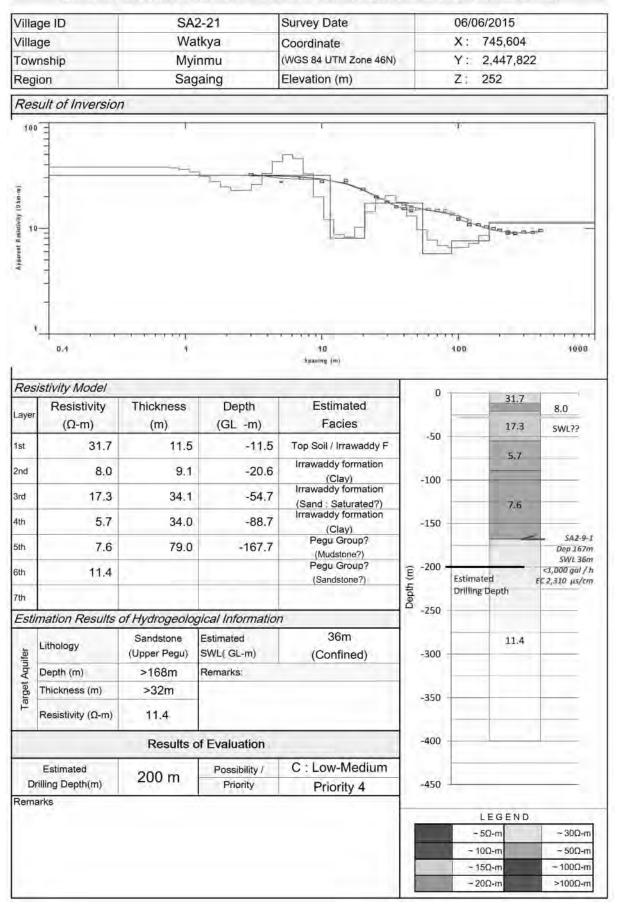


SA2-16 Minntaw Village

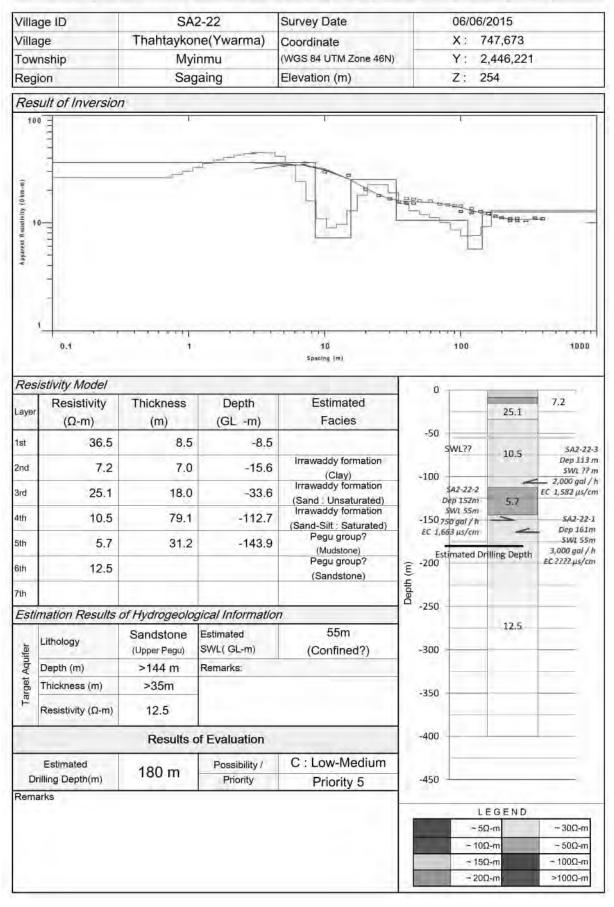
Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)


Villa	ge ID	SA	2-17	Survey Date	2		
Villa	ge	K	ine	Coordinate)	X: 711,640	
Tow	nship	Sal	ingyi	(WGS 84 UTM Zone 46N)	1	2,437,56	1
Regi	on	Sag	aing	Elevation (m)	Z	: 151	
Res	ult of Inversion	N.					
A result of the second second second					Sala a tape	era o o o o o o o	
1.0	0,1	1 1 1 1 1 1 1		10 Specing (m l		00	1600
res.	istivity Model Resistivity	Thickness	Depth	Estimated	0 -	1.5	6.4
ayer.	Resistivity (Ω-m)	(m)	(GL -m)	Facies	-		
Ist	74.3	1.1	-1.1		-50		
-					-	-	
2nd	6.4	4.0	-5.0		-100	-	
3rd	1.5	12.8	-17.8		-	_	
1th	6.8		1.		-150	-	-
5th			1.		-		
Sth					Ê -200	6.8	_
7th					(m) -200	0.0	-
	mation Desults	Flinderseals	ningt Informatio		ص -250 —		
CSII	mation Results o	n nyurogeolog	Estimated	/	-		
ifer	Lithology		SWL(GL-m)		-300		
Target Aquifer	Depth (m)		Remarks:				
arget	Thickness (m)		-		-350		
Ŧ	Resistivity (Ω-m)		1		_		
		Poculte /	of Evaluation		-400		1
	Puesto T	nesuits (D - Na and Bills			
Dr	Estimated Drilling Depth(m)		Possibility / Priority	D : No posibility	-450		-
Rema							
					-	LEGEND	1
D	tivity value indicates			~ 5Ω-m	~ 30Ω-m		
	gests existence of r	lay or the adulte		100			
It sug	gests existence of c fore, recommended			er quality.		~ 10Ω-m ~ 15Ω-m	~ 50Ω-m

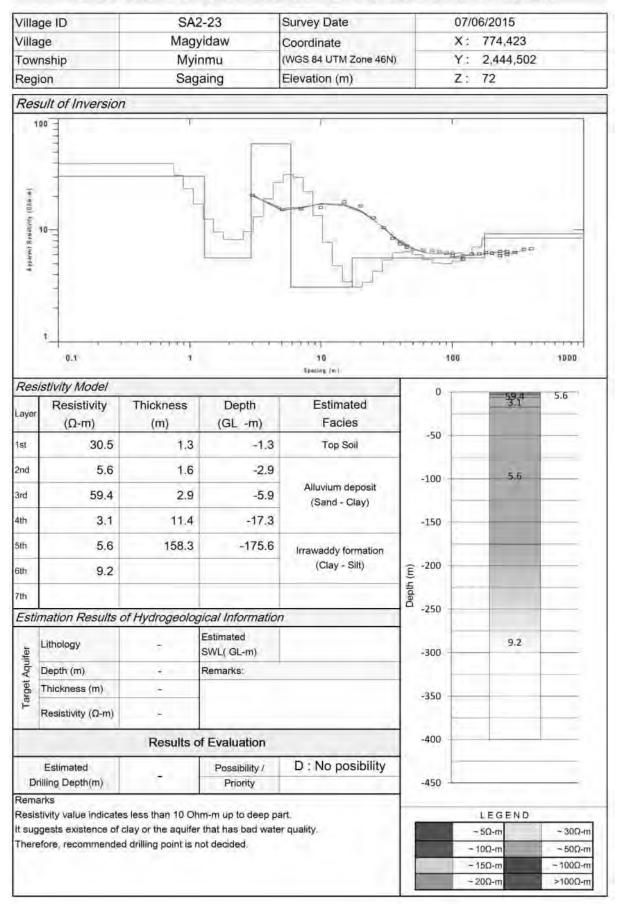
SA2-17 Kine Village



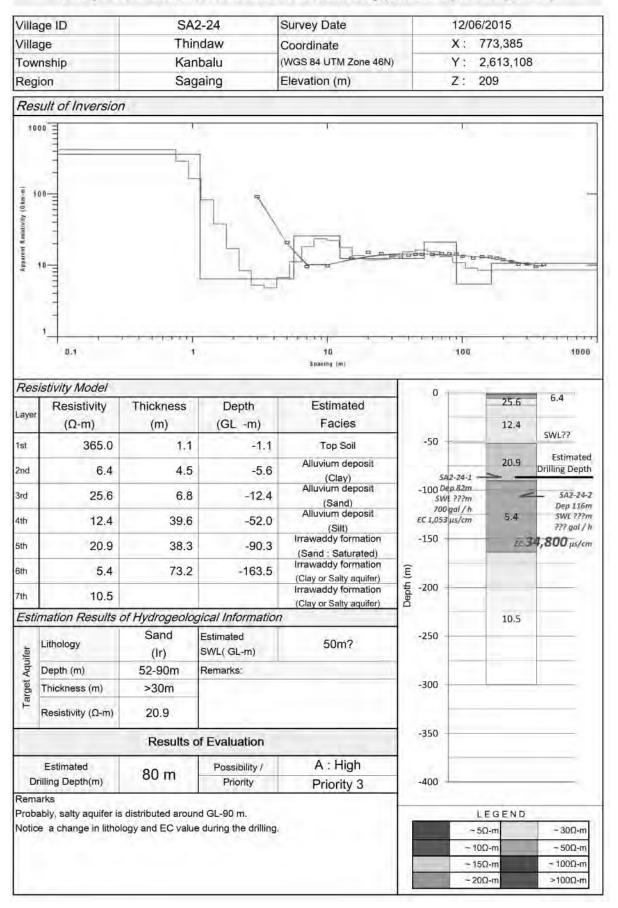
SA2-18 Kalarpyan Village


Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

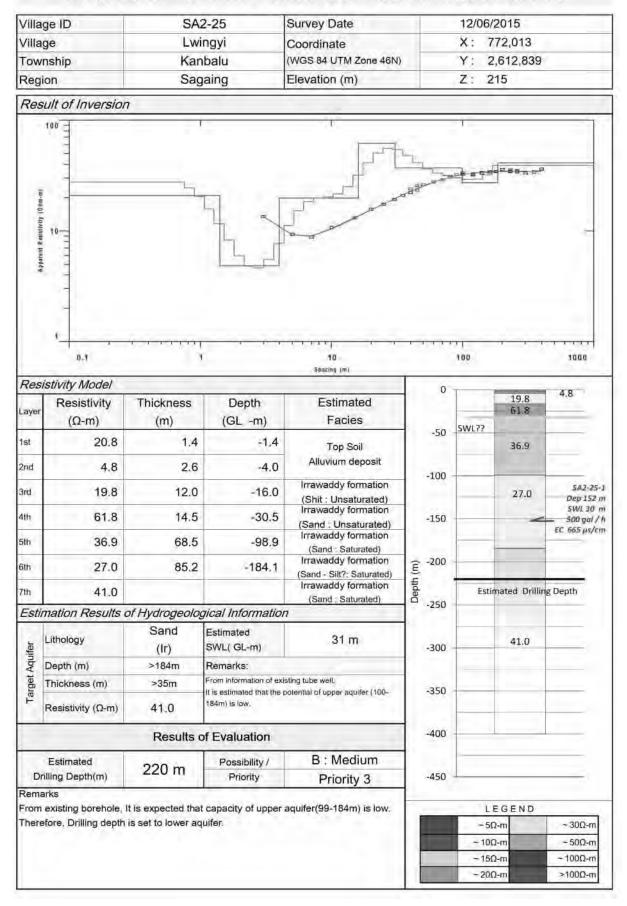
SA2-19 Hlayookan Village



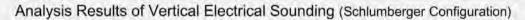
SA2-21 Watkya Village



Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

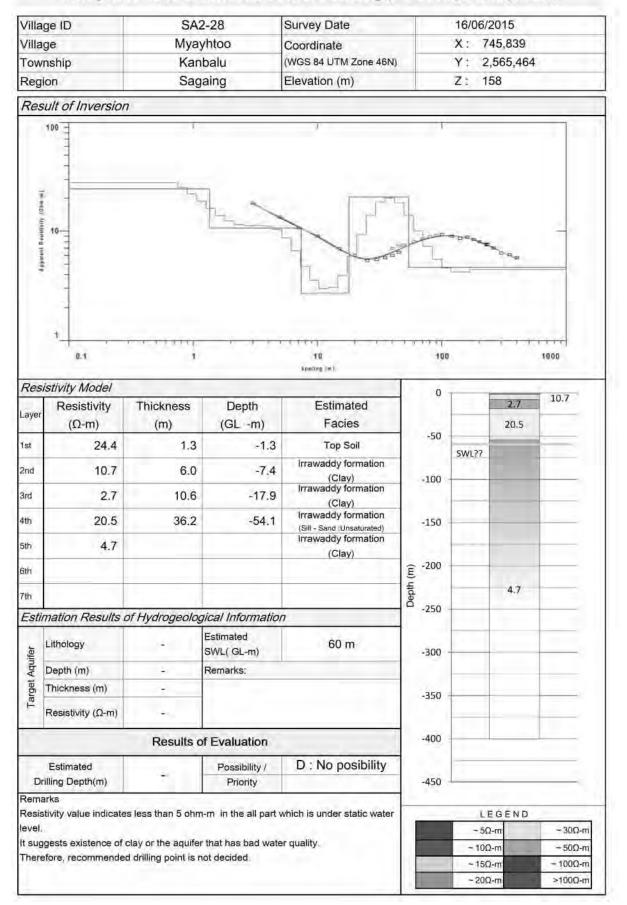

SA2-22 Thahtaykone(Ywarma) Village

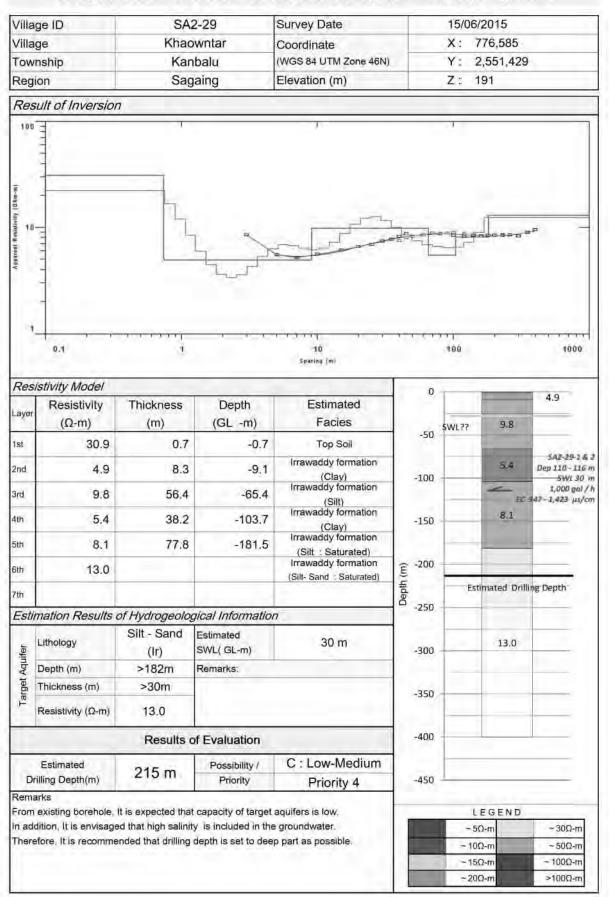
SA2-23 Magyidaw Village


SA2-24 Thindaw Village

SA2-25 Lwingyi Village

Villa	ge ID	SA	2-26	Survey Date	13/06/2015			
Villa	ge		h(Kyunkone)	Coordinate		X: 773,590		
Tow	nship	Kar	nbalu	(WGS 84 UTM Zone 46N)		Y: 2	,620,729	
Reg	ion	Sag	aing	Elevation (m)		Z: 2	23	
Res	ult of Inversion	n						
1	000	1		-1-	-	1		
Å pparent Resistivity (Onm-m)	100					8-8- ^{0.00}	⁴ 88-2,*	
	0.1	1		10. Specing (m)		100		1000
Res	istivity Model	-		- Wards A	0	-	14,9	
ayer	Resistivity	Thickness	Depth	Estimated	1.0		1	
	(Ω-m)	(m)	(GL -m)	Facies	-50		136.8	_
ist	45.4	0.8	-0.8	Top Soil		5A2-26-2 Dep 85 m		SWL??
2nd	14.9	15.6	-16.5	Alluvium deposit (Silt - Sand)	-100	SWL ?? m 550 gal / h 450 μs/cm		
3rd	136.8	43.5	-60.0	Alluvium deposit / Irrawsddy f (Sand with Gravel)	EC 1,	450 μs/cm	28.9	SA2-26-1 Dep 152 m
4th	28.9	84.3	-144.3		-150		_	5WL ?? m 400 gol / h
		04.0	111.0	Irrawaddy formation (Sand - Silt : Saturated)	-150		E	C 1,113 µs/cm
5th	37.9	_		(oans - 2007 - 2004 - 2004)		1		<u> </u>
5th					Ê -200		Estimated Drilling Depth	
7th					Depth (m)	-		
Esti	mation Results	of Hydrogeolo	gical Informatio	п	-250	-		_
		Sand - Silt	Estimated	1	1		37.9	
lifer	Lithology	(lr)	SWL(GL-m)	60m ?	-300			
Target Aquifer	Depth (m)	>144m	Remarks:				-	
arge	Thickness (m)	>40m	From information of ex It is estimated that the	isting tube well, potential of upper aquiter (60-	-350	_	-	
÷	Resistivity (Ω-m)	37.9	144m) is low.					
		Results of	-400					
	Estimated		Possibility /	C : Low-Medium		-		
Dr	illing Depth(m)	185 m	Priority	Priority 4	-450	-		
Rema		and a seco	in and the last	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			
From	existing borehole,			aquifers is low. p part as possible.			EGEND	~ 30Ω-m
There	isto, it is recomme	anaos anac animity	asput to set to dee	P Puir do Possibio.	_	- 50	-	A.A.Y. A.Y.
There							- m	
There					-	~ 100		~ 50Ω-m

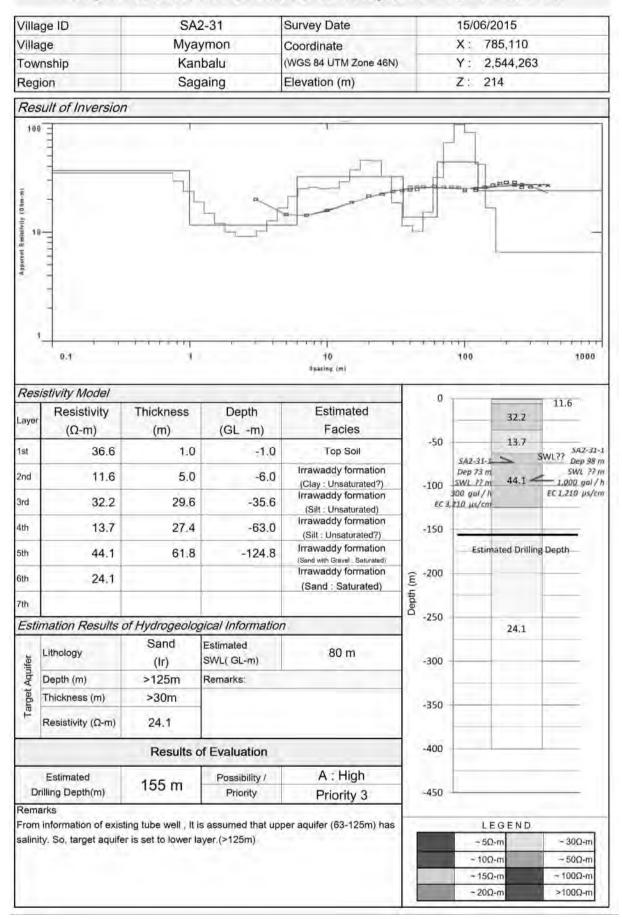

SA2-26 Koetaungboh(Kyunkone) Village


Villa	ge ID SA2-27 Survey Date		Survey Date		13/06	6/2015		
Village Township		Inngoteto		Coordinate	-	X:	768,388	
		Kar	balu	(WGS 84 UTM Zone 46N)		Y:	2,598,038	3
Regi	on	Sag	gaing	Elevation (m)		Z:	219	
Res	ult of Inversion	6						
100	0 =	1		1		T		
Apparent Resistivity (Charm)							and	N-2
	1, 0.1			tu tu Specing (m)		100		4000
Resi	istivity Model				0	1	-	16.9
Layer	Resistivity	Thickness	Depth	Estimated			70.7	10.5
-	(Ω-m)	(m)	(GL -m)	Facies	-50 SWL?7			
1st	122.1	1.1	-1.1	Top Soil		SWL??	-	SA2-27-
2nd	16.9	6.3	-7.4	Irrawaddy formation (Silt : Unsaturated)	100	1.0	29.3	SWL 77 n <100 gal /)
3rd	70.7	11.6	-19.0	Irrawaddy formation	-100		49.0	EC 796 µs/cr
				(Sand : Unsaturated) Irrawaddy formation	1.42	1.	24.2	
4th	29.3	70.0	-89.0	(Sand - Silt : Saturated) Irrawaddy formation	-150		-	Estimated
5th	49.0	37.4	-126.4	(Sand ; Saturated)			D	rilling Depth
Bth	24.2	30.3	-156.7	Irrawaddy formation (Sand - Silt : Saturated)	€ ~200	-		
7th	4.8			Irrawaddy formation	Depth	-	-	-
-	mation Results of	of Hydrogeolo	dical Information	(Clay)	a -250	-		-
		Sand - Silt	Estimated	10 m	-300		4.8	
ifer	Lithology	(lr)	SWL(GL-m)	50m?		-		_
Target Aquifer	Depth (m)	<157m	Remarks:					
arge	Thickness (m)	>90m			-350	-	-	-
÷	Resistivity (Ω-m)	24 - 49						
		Results	of Evaluation		-400	-		
	Estimated	450	Possibility /	C : Low-Medium				
Dr	illing Depth(m)	150 m	Priority	Priority 5	-450	-		_
Rema		no arranta -		COLUMN T	-			
	existing borehole, It fore, It is recommen		the set of an and the set of the set of the		-		LEGEND 5Ω-m	~ 30Ω-m
	and the resentioned	and annuly	The set to add	Free and baganaras		_		
						~ 11	10-m	~ 500-m
					_	_	0Ω-m 5Ω-m	- 50Ω-m

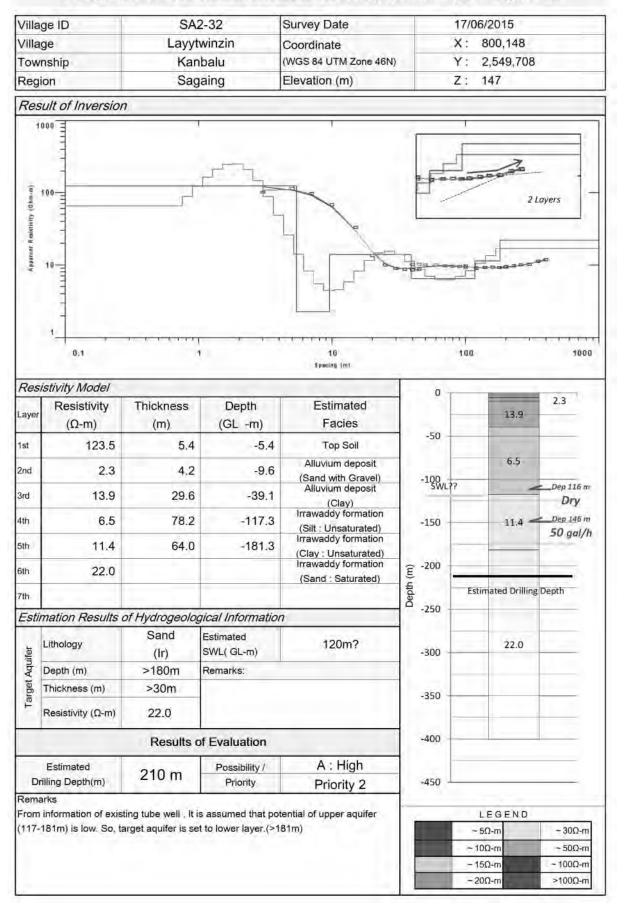
SA2-27 Inngoteto Village

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

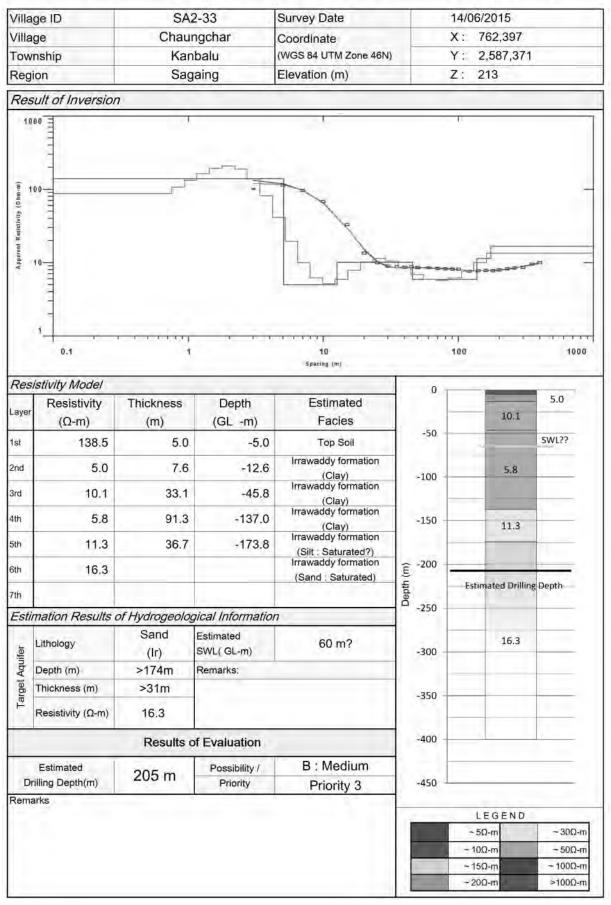
SA2-28 Myayhtoo Village

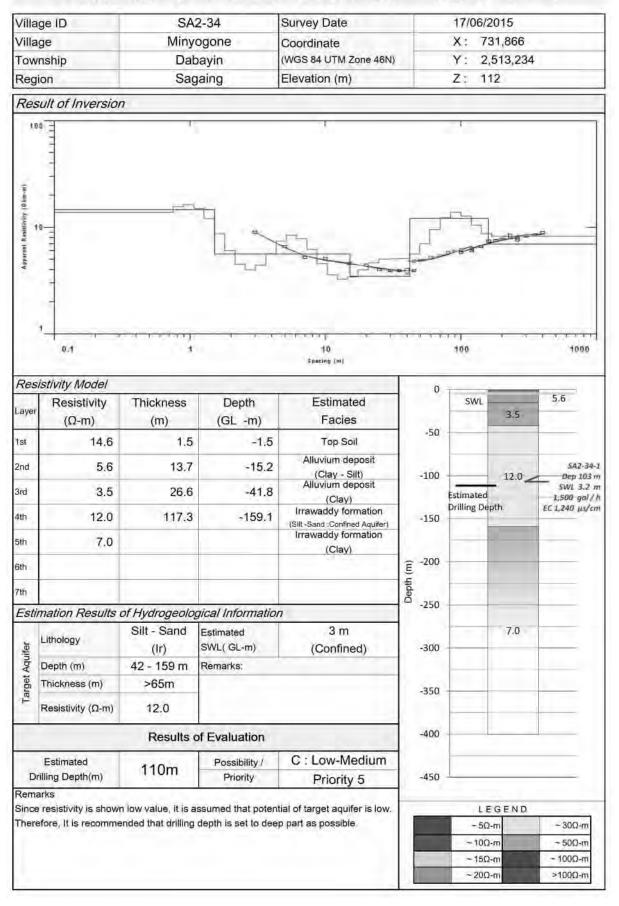

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

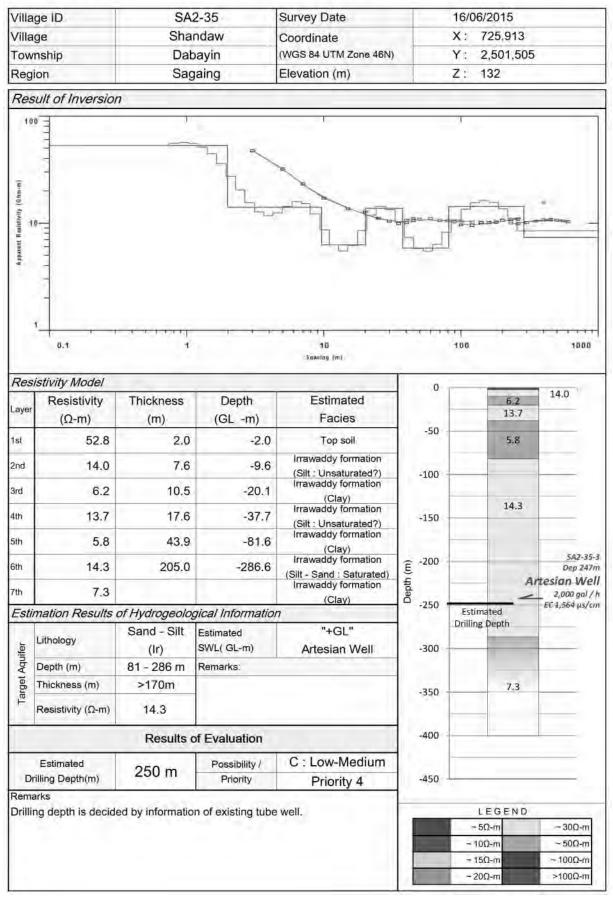
SA2-29 Khaowntar Village

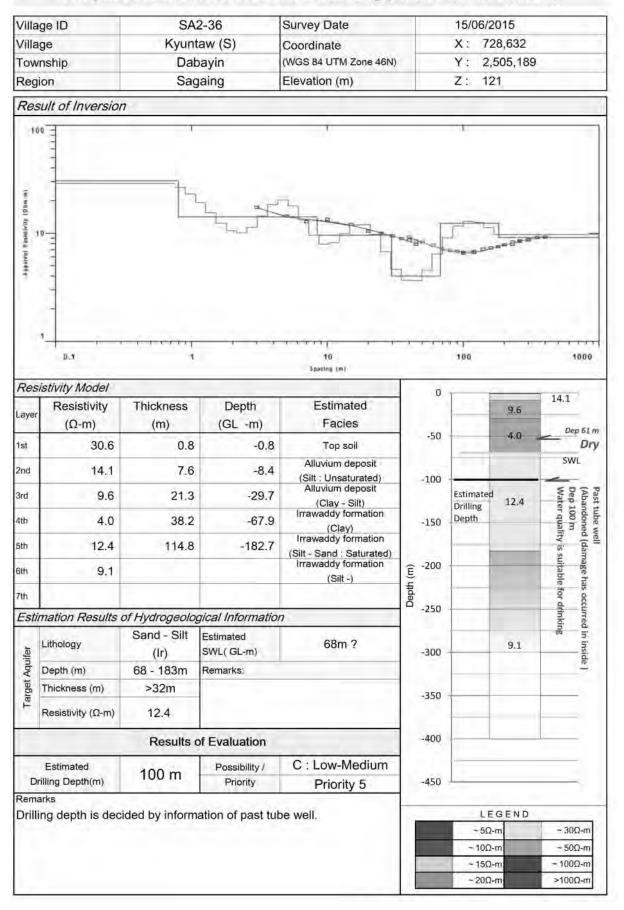

Village ID SA2-30 Survey Date 14/06/2015 Village Nyuangkanthar X : 770,771 Coordinate Township Kanbalu (WGS 84 UTM Zone 46N) Y : 2,597,741 Region Sagaing Elevation (m) Z : 217 Result of Inversion 100 10 0.1 1 10 100 1000 Spacing (m) Resistivity Model 0 Resistivity Thickness Depth Estimated 22.7 Laye (Ω-m) (m) (GL -m) Facies SA2-30-2 SWL?? 31,3 -50 pep 60 m 3.3 4.5 -4.5 Top Soll 1st SWL ??? m 1 gal/h 15.3 Irrawaddy formation SA2-30-1 -100 µs/cm 22.7 17.8 -22.3 2nd Dep 122 m SWL ??? m (Silt : Unsaturated) Irrawaddy formation 3rd 31.3 40.3 -62.5 (Sand : Semi saturated) 3 gal/h 5.4 1,905 µs/cm Irrawaddy formation 4th 15.3 35.7 -98.2 -150 (Silt : Unsaturated) 12.1 Irrawaddy formation 5th 5.4 39.7 -138.0 Estimated Drilling Depth (Clay : Semi saturated) Irrawaddy formation -200 12.1 51.4 -189.4 Depth (m) 6th (Sand - Silt : Saturated) Pegu Group? 42.3 7th (Sandstone) -250 Estimation Results of Hydrogeological Information Sand - Silt Estimated 50 m Lithology 42.3 SWL(GL-m) Target Aquifer (lr)-300 138 - 189m Depth (m) Remarks: Thickness (m) >35m -350 Resistivity (Q-m) 12.1 -400 **Results of Evaluation** C: Low-Medium Estimated Possibility / 175m Drilling Depth(m) Priority -450 Priority 5 Remarks LEGEND ~ 5Ω-m ~ 30Q-m - 10Ω-m ~ 50Ω-m ~ 100Ω-m - 15Q-IT - 20Q-m >100Q-m

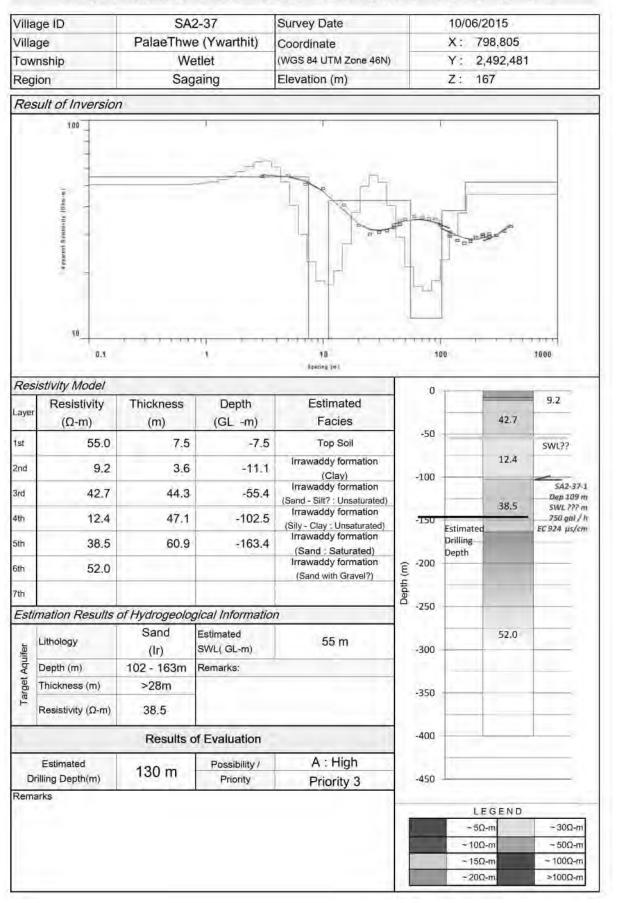
Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)


SA2-30 Nyuangkanthar Village

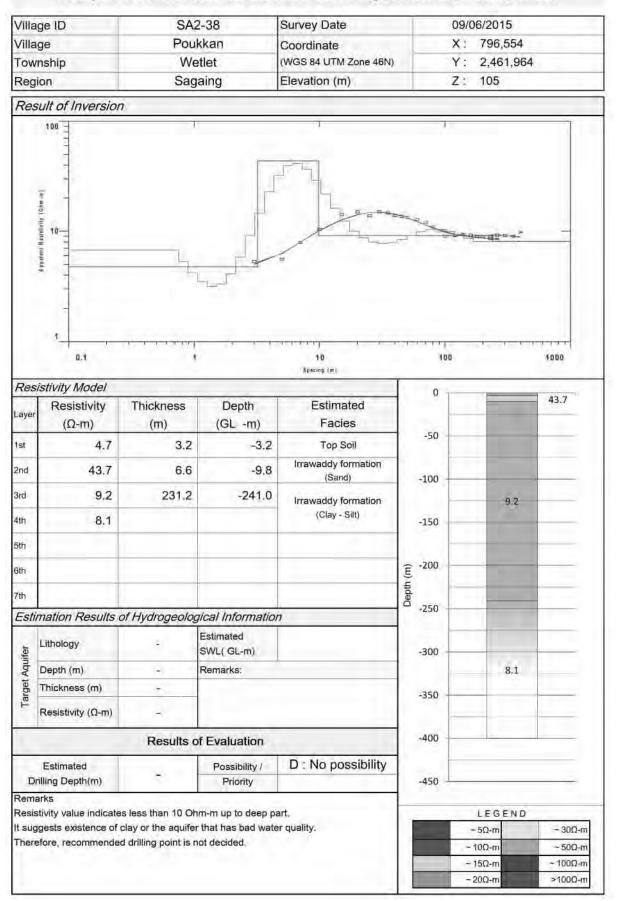

SA2-31 Myaymon Village


SA2-32 Layytwinzin Village

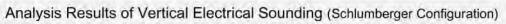

SA2-33 Chaungchar Village


SA2-34 Minyogone Village

SA2-35 Shandaw Village

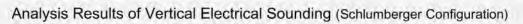


SA2-36 Kyuntaw (S) Village



Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

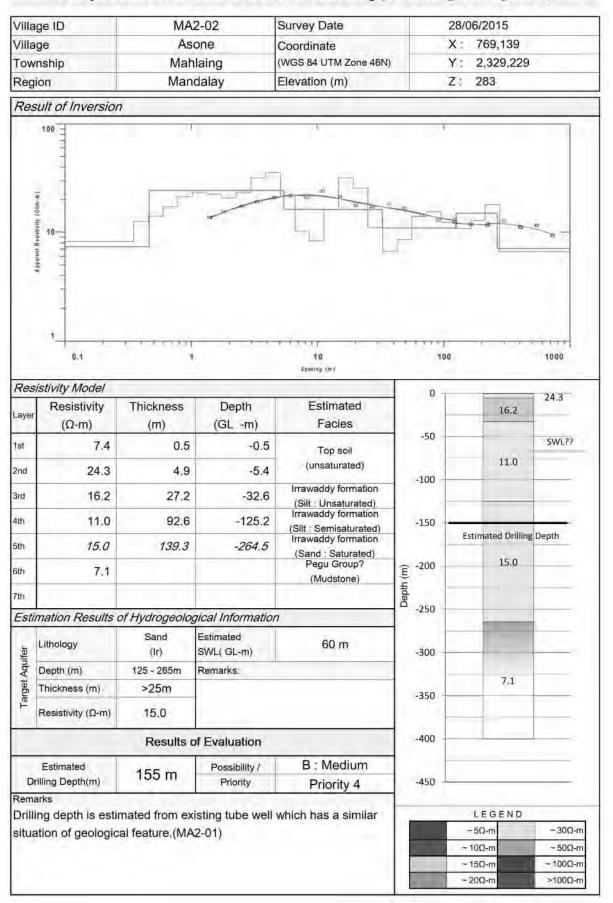
SA2-37 PalaeThwe (Ywarthit) Village



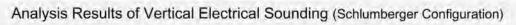
SA2-38 Poukkan Village

Villa	ge ID	SA	2-39	Survey Date	1	0/06/2015			
Villa	ge	Shweny	aungtaw	Coordinate)	X: 803,378			
Tow	nship	W	etlet	(WGS 84 UTM Zone 46N		1: 2,470,8	67		
Reg	ion	Sag	gaing	Elevation (m)	2	Z: 105			
Res	ult of Inversion								
	100 100 100 100 100 100 100 100 100 100					10, 5			
Dee	istivity Model	~	10	Roeting (m.f.	100	1 4.51	1000		
Res	Resistivity	Thickness	Depth	Estimated	0	10.6	27.8		
Layer	(Ω-m)	(m)	(GL -m)	Facies	-	3.6			
1st	56.9	1.3		Top Soil	-50	5.0			
2nd	27.8	5.0	-6.4	Irrawaddy formation					
-				(Sand) Irrawaddy formation	-100				
3rd	10.6	18.3	-24.6	(Silt)	-				
4th	3,6	24.7	-49.3	Irrawaddy formation	-150		-		
5th	5.6			(Clay)			_		
6th		_			€ -200				
7th			7		Depth (m)	5.6	-		
	mation Results c	of Hydrogeolo	nical Information	2	ے ₋₂₅₀ -	-	_		
LSU		n nyurugeolo	Estimated						
ifer	Lithology		SWL(GL-m)		-300	-	-		
Target Aquifer	Depth (m)		Remarks:				_		
arget	Thickness (m)				-350		-		
Ŧ	Resistivity (Ω-m)	4			-				
		Results	of Evaluation		-400				
	Estimated	and a provide a	Possibility /	D : No possibility					
	illing Depth(m)		Priority	and the second of	-450				
Dr	arks	1	Sec. Malera	(A)					
Rema	and an of the second second second	s less than 10 O	hm-m up to deep pa	art.	-	LEGEN	D		
Rema Resis	tivity value indicates		r that has had wate	er quality		- 50 -			
Rema Resis It sug	tivity value indicates gests existence of c fore, recommended	ay or the aquife		er quality.	-	~ 5Ω-m	and the second se		
Rema Resis It sug	gests existence of c	ay or the aquife		er quality.		~ 5Ω-m - 10Ω-m ~ 15Ω-m	- 30Ω-m - 50Ω-m - 100Ω-m		

SA2-39 Shwenyaungtaw Village

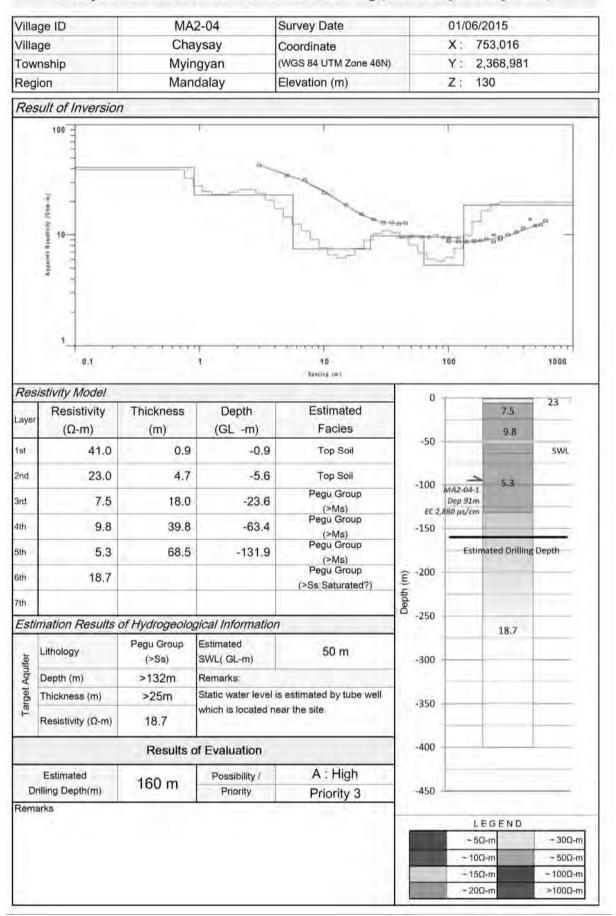


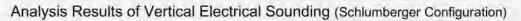
Villa	ige ID	SA	2-40	Survey Date	(09/06/2015	
Villa	ige	0021		Coordinate)	X: 786,537	7
Tow	nship	W	2.2267	(WGS 84 UTM Zone 46N)		Y: 2,473,9	87
Reg	ion	Sag	gaing	Elevation (m)	2	Z: 99	
Res	sult of Inversion	1					
A ppacent Rs							
7.00	0.1	1		10 Spacing (m.)	100		1000
res	Resistivity Model	Thickness	Depth	Estimated	° –	34.1	5.4
ayer	Resistivity (Ω-m)	(m)	(GL -m)	Facies		3,2	
Ist	1.6	2.1	-2.1	Top Soil	-50		
-		1.1.0		Irrawaddy formation	-	6.0	
2nd	5.4	1.4	-3.5	(Clay) Irrawaddy formation	-100	_	-
3rd	-34.1	5.5	-9.1	(Sand)	1		
4th	3.2	27.1	-36.1		-150	_	_
ōth	6.0	83.2	-119.3	Irrawaddy formation (Clay)		_	-
5th	4.4			(Oldy)	€ -200 -	-	-
					(m) +1de		
7th	Barting Deputter	611	and the former attended		ے -250 –		
ESU	mation Results o	or Hyarogeolo	Estimated	7		4,4	211
fer	Lithology		SWL(GL-m)		-300		-
Aqui	Depth (m)		Remarks:				
Target Aquifer	Thickness (m)	-			-350		
Ţ	Resistivity (Ω-m)	- 4					
		Results	of Evaluation		-400		_
-	Estimated	Second and	Possibility /	D : No Possibility			
D	rilling Depth(m)	-	Priority	D. NOT OSSIDILITY	-450		
1.00	arks						
	stivity value indicate		hm-m up to deep pa		1	LEGEN	
Resis	the second	lav or the aduite					
Resis It sug	gests existence of o			r quanty.		~ 5Q-m	~ 30Ω-m
It sug	gests existence of a			r quaity.		~ 10Ω-m ~ 15Ω-m	~ 30Ω-m ~ 50Ω-m ~ 100Ω-m


SA2-40 Sabeidaw Village

Vertical Electric Sounding (VES) at Mandalay Region

MA2-02	Asone Village
MA2-03	Khinthar(S) Village
MA2-04	Chaysay Village
MA2-05	Talgyi Village
MA2-06	Kuywar Village
MA2-08	Nyaungwum Village
MA2-17	Chaungsone(La) Village
MA2-19	Tharzi Village
MA2-20	Kanaye Village
MA2-22	Oakpo Village
MA2-23	Kangyi Village
MA2-24	Htanekan Village
MA2-25	Waryonesu Village
MA2-26	Talkone Village
MA2-27	Tawbyar Village
MA2-28	Setsetyo Village
MA2-29	Kanzauk Village
MA2-30	Talbindel Village
MA2-31	Mongywettaw Village
MA2-34	Saingkan(Tetide) Village
MA2-35	Byugyi Village
MA2-39	Thayattaw Village
MA2-40	Nakyatkhwal Village

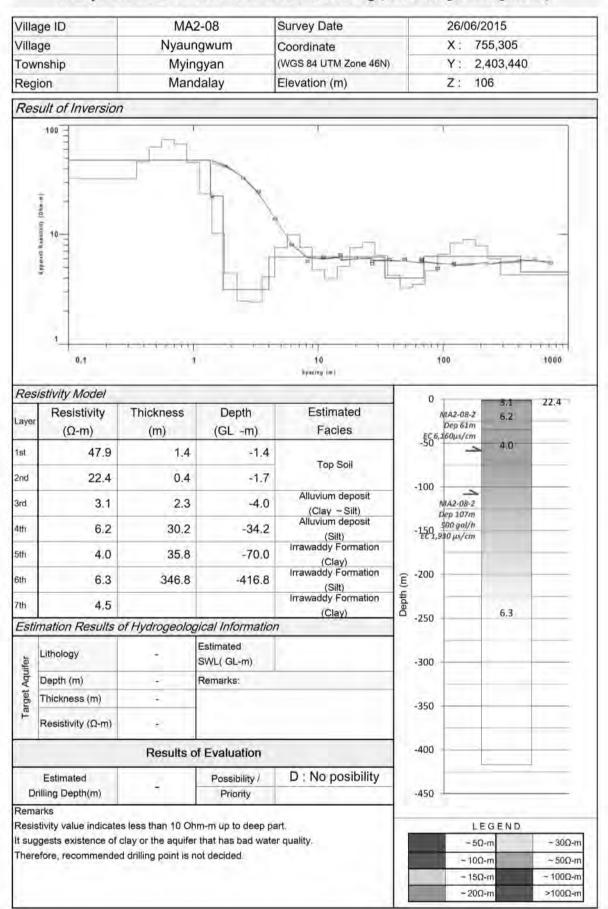

MA2-02 Asone Village


Villa	ige ID	MA	2-03	Survey Date	6	28/06/20)15	
Villa	ige		har(S)	Coordinate	-		2,173	
	nship		laing	(WGS 84 UTM Zone 46N)		V	17,120	
Reg	ion	Man	dalay	Elevation (m)	5	Z: 305	5	
Res	sult of Inversion	7						
Asperedi Rematicity (Onm-m)	100				B			N
	s,	1		f0. Specing (m)	10	0		1000
Res	istivity Model	_		-	0 1		F 4.	46.7
Layer	Resistivity	Thickness	Depth	Estimated		-	5.7	
	(Ω-m)	(m)	(GL -m)	Facies	-50	_	_	SWL??
lst	15.0	0.4	-0.4	Top soil	-	_	-	Siver
2nd	46.7	2.0	-2.4	Top soil	-100	_	_	
Brd	5.7	14.6	-17,0	Pegu Group (Mudstone/silt?)		_	7.2	
\$th	7.2	218.4	-235.4	Pegu Group (Mudstone/silt?)	-150 -			-
5th	10.4			Pegu Group				
Sth	1000			(Sandstone?)	€ -200 -	_	_	
					(m) Hda			
7th					-250 -			
Esti	mation Results		1	7		-		_
fer	Lithology	Pegu Group (Sandstone?)	Estimated SWL(GL-m)	60 m	-300	Estima	ted Drillin	g Depth
Target Aquifer	Depth (m)	>-235m	Remarks:				10.4	
arget	Thickness (m)	>25m			-350			
Ť,	Resistivity (Ω-m)	10.4						
		Results	of Evaluation		-400	- le		
-	Estimated		Possibility /	C : Low-Medium		-	_	
D	rilling Depth(m)	270 m	Priority	Priority 4	-450	_		
Rem	arks					. 2.	-	
						- 5Ω-m	SEND	~ 30Ω-m
					-	~ 10Ω-n	_	~ 50Ω-m
						~ 15Ω-n	0	~ 100Ω-m

MA2-03 Khinthar(S) Village

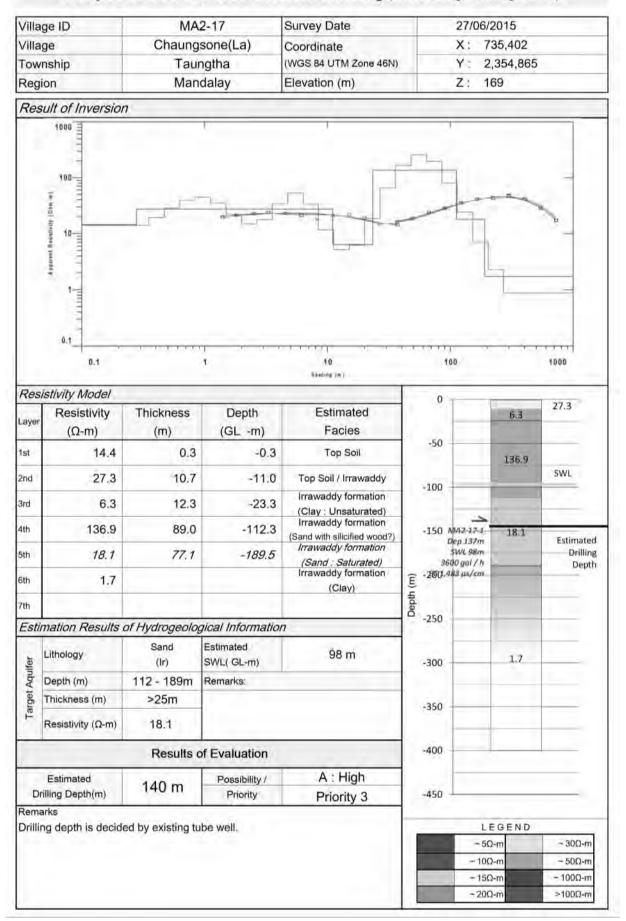
Analysis results of ventical Electrical Souriority (schumberger configuration)

MA2-04 Chaysay Village

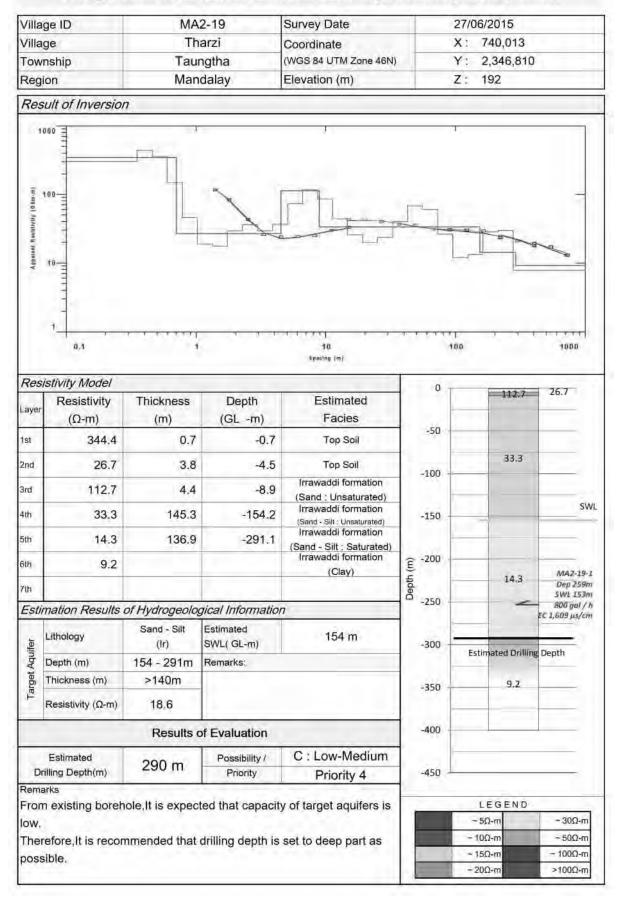

Villa	ige ID	MA	2-05	Survey Date		02/06/20	15	
Villa		Та	ılgyi	Coordinate		X: 758	,848	
Tow	nship	Myir	ngyan	(WGS 84 UTM Zone 46N)	Y: 2,40	4,789	
Reg	ion	Man	dalay	Elevation (m)	4	Z: 105		
Res	sult of Inversion	0						
	100			· F	1			
	4					(shape of V	begu Group Es curve is	? not smoothly)
	0.1		a - 1 - 3 -	10 Noncing (m)	100	4	i-i-i	1000
Res	istivity Model		-		0 -	_	_	
ayer	Resistivity	Thickness	Depth	Estimated			2.9	6.4
.uyu	(Ω-m)	(m)	(GL -m)	Facies	-50		6.7	
st	12.5	1.5	-1.5	Top Soil	-50			1.1
nd	6.4	6.7	-8.3	Alluvium Deposit? Irrawaddi formation?		A2-05-1 Dep 72m 3 μs/cm	3.0	
Brd	2.9	10.5	-18.7	(Clay) Irrawaddi formation?	-		_	-
th	6.7	26.5	-45.3	(Silt)	-150	-	-	
ith	3.0	90.3	-135.6	Irrawaddi formation? (Clay)		Estimate	ed Drilling	Depth
ith	14.0			Pegu Group? (>Ss)	002- 000			1
'th					Cepth			
Esti	imation Results of	of Hydrogeolo	gical Informatio	n	250		14.0	1
ifer	Lithology	Pegu Group? (>Ss)	Estimated SWL(GL-m)	?	-300		14.0	
Target Aquifer	Depth (m)	>136m	Remarks:					
arget	Thickness (m)	>34m			-350		1.1	
Te	Resistivity (Ω-m)	14.0						
		Results	of Evaluation		-400		-	
	Estimated	170 m	Possibility /	C : Low-Middle				
_	rilling Depth(m)	in s in	Priority	Priority 5	-450 -			
Rem	arks					LEG	END	
						~ 5Ω-m	ENU	~ 30Ω-m
						~ 10Ω-m	1	~ 50Ω-m
							-	
						~ 15Ω-m	1.000	~ 100Ω-m

MA2-05 Talgyi Village

Villa	ge ID	MA	2-06	Survey Date	01	1/06/2015	
Villa	ge			Coordinate	X		
	nship			(WGS 84 UTM Zone 46N)		and the second second	
Reg	ion	Man	dalay	Elevation (m)	Z	: 117	
Res	sult of Inversion	1					
	100	5				under s ^o	T
Pag	1		· · · · · · ·	10 Ipacing (m)	100	···· · · ·	1000
	Resistivity	Thickness	Depth	Estimated	0	1.5	18.1
Layer	(Ω-m)	(m)	(GL -m)	Facies		17.9	
1st	1.3	0.6	-0.6	1 1 1 1 1 1 1 1 1	-50	2.9	-
2nd	18.1	1.6	-2.2			1.1	
3rd		8.4		_	-100		
	1.5		-10.6		5.0		
4th	17.9	16.0	-26.6		-150		
5th	2.9	33.4	-59.5				-
6th	8.1		1		Ê -200		
7th					(iii) -200	8.1	-
-	mation Results	of Hydrogeolo	gical Information	1	-250		-
	Lithology	-	Estimated SWL(GL-m)	ł	-300		
Target Aquifer	Depth (m)	4	Remarks:				
arge	Thickness (m)	۲.			-350		
F	Resistivity (Ω-m)				_		
		Results	of Evaluation		-400		
-	Estimated rilling Depth(m)	6	Priority	No Possibility	-450		_
Rem	arks					LEGEND	
			on		The second se	~5Ω-m	~ 30Ω-m
Refe	er to 2D results i		information			~ 10Ω-m ~ 15Ω-m	~ 50Ω-m

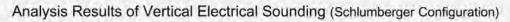

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

MA2-06 Kuywar Village

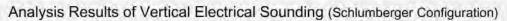

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

MA2-08 Nyaungwum Village

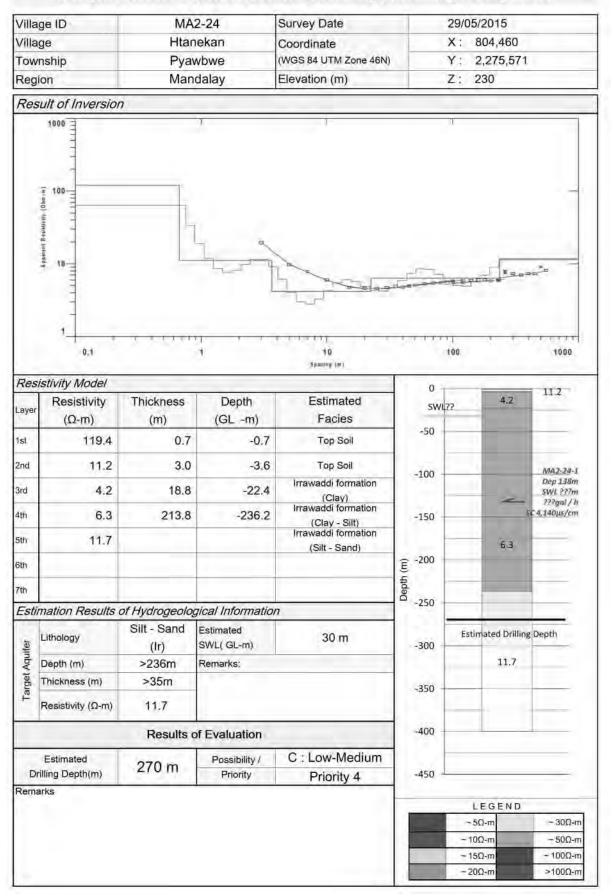
Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)


MA2-17 Chaungsone(La) Village

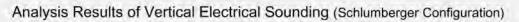
MA2-19 Tharzi Village


Villa	ge ID			Survey Date		26/06/2015	
Villa			naye	Coordinate		X: 740,58	
	nship		ngtha (WGS 84 UTM Zone 46N)			Y: 2,349,	003
Reg	ion	Man	lalay Elevation (m)			Z: 181	
Res	sult of Inversion	1					
10	00			· ·		r	
arent Resistivity (00m		jer.					/
	1		1. A.F	10 10 Ipecing (m)	1 1 1 1 1 1	ι	1000
Doc	istivity Model				r	-	
nes	Resistivity	Thickness	Depth	Estimated	0		
Layer	(Ω-m)	(m)	(GL -m)	Facies		13	3.3
1st	29.8	2.7	-2.7	Top Soil	-50		~
2nd	13.3	30.9	-33.6	Irrawaddi formation		28	.0
				(Clay -Silt :Unsaturated) Irrawaddi formation	-100 -	-	SWL
3rd	28.0	71.6	-105.2	(Sand - Silt :Unsaturated) Irrawaddi formation		_	SVVL
4th	17.8	162.4	-267.6	(Sand : Saturated)	-150		
5th	9.3		1000	Irrawaddi formation (Silt: Saturated)		17	8
6th				(and additional)	€ -200		MA2-20-1
7th					(m) -200		Dep 244n SWL 105n
124	mation Results	of Hydrogoolo	nical Informatio	2	ص -250	-	200 gal / 1 EC 1,516 µs/cm
LSU		Sand	Estimated			Test in the	
ifer	Lithology	(lr)	SWL(GL-m)	105 m	-300 -	Estimated D	ning pepti
Aqu	Depth (m)	105 - 268m	Remarks:				
Target Aquifer	Thickness (m)	>160m			-350 -	9.	5
P	Resistivity (Ω-m)	17.8					
		Results of	of Evaluation		-400		
-	Estimated		Possibility /	C : Low-Medium			
D	rilling Depth(m)	265 m	Priority	Priority 4	-450	_	
low. The	n existing boreh			y of target aquifers is set to deep part as		LEGE ~ 5Ω-m ~ 10Ω-m ~ 15Ω-m	N D ~ 30Ω-m ~ 50Ω-m ~ 100Ω-m

MA2-20 Kanaye Village


/illag	e ID	MA	2-22	Survey Date	3	0/05/2015			
/illag	e	Oa	kpo	Coordinate	×	: 826,979	826,979		
Town	ship	Yam	ethin	(WGS 84 UTM Zone 46N)	Ŷ	Y: 2,270,938			
Regio	n	Man	dalay	Elevation (m)	Z	: 187			
Resu	It of Inversion	1							
	100					× 0 0 0 0	-		
	1	· · · · ·		Epscing (m.)	100		1000		
Resis	tivity Model		1		0 -	-	2.6		
ayer	Resistivity	Thickness	Depth	Estimated		6.0	-		
	(Ω-m)	(m)	(GL -m)	Facies	-50		SWL?? MA2-22-2		
st	6.3	1.6	-1.6	Top Soil		3.6	Dep 82n		
Ind	2,6	5.7	-7.3	Top Soil / Alluvium	-100	3.0	SWL ???n ??? gal /)		
ird	6.0	16.1	-23.4	Allvium Deposit	-100		EC 919 μs/cn		
th	3.6	102.5	-125.9	(Silt : Unsaturated) Irrawaddi formation	150				
				(Silt - Clay : Saturated) Irrawaddi formation	-150				
ith	11.1	137.3	-263.1	(Silt - Sand : Saturated)	-	11.1	MA2-22-2		
ith	6.0			Irrawaddi formation (Silt : Saturated)	£ -200	11,1	Dep 235n		
th			1	And a second second	(m) -200	-	SWL ???n 1000 gal / I		
Estim	ation Results	of Hydrogeolo	gical Information	7	-250		EC 635 µs/cn		
		Silt - Sand	Estimated	30m	H C F	Estimated Drilli	ng Depth		
lifer	ithology	(lr)	SWL(GL-m)	(Confined?)	-300				
Aqu	Depth (m)	126 - 263m	Remarks:			6.0			
Target Aquifer	hickness (m)	>100m			-350	0.0			
FR	Resistivity (Ω-m)	11.1							
		Results of	of Evaluation		-400				
i	Estimated	000	Possibility /	C : Low-Medium	l F				
	ling Depth(m)	260 m	Priority	Priority 4	-450				
Remarl			Anno 14	a national and a set			_		
			capacity of target a o deep part as pos	aquifers is low.Therefore,It sible.	(Internet)	LEGEND ~5Ω-m	~ 30Ω-m		
			- seek herr no hoo		_	~ 5Ω-m ~ 10Ω-m	~ 30Ω-m		
					Concession in the local division of the loca		~ 50Ω-m		
					-	~ 15Ω-m ~ 20Ω-m	~ 100Ω-m		
					_	~ 15Ω-m			

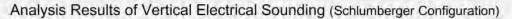
MA2-22 Oakpo Village

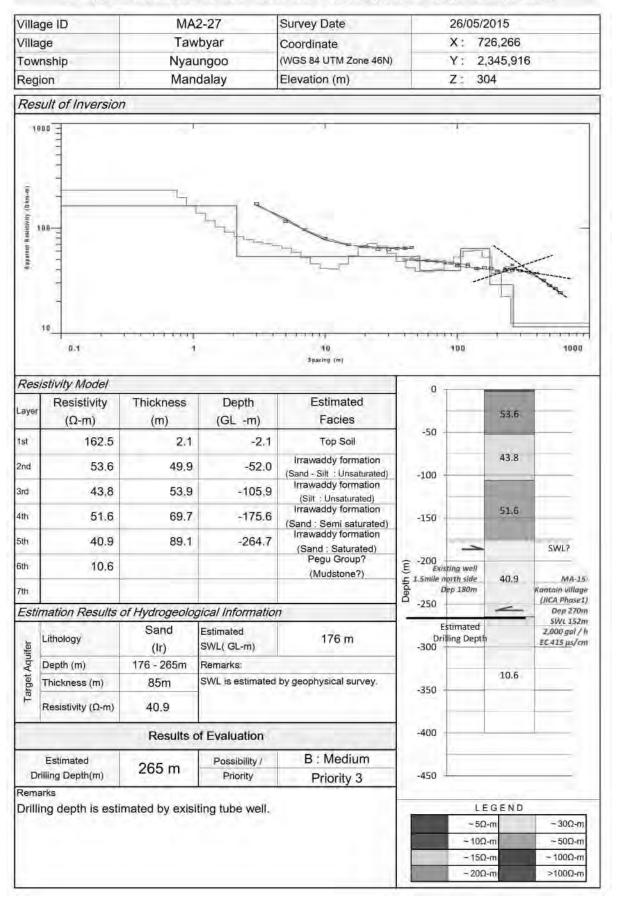

Villa	ge ID			Survey Date		30/05/2015			
Villa	ge		ngyi	Coordinate		X: 828,886			
Tow	nship	Yan	nethin	(WGS 84 UTM Zone 46N)		Y: 2	2,246,238	L	
Reg	ion	Man	dalay	Elevation (m)		Z: 2	214		
Res	sult of Inversion	6							
	00	1		T	1	-			
	-								
		1	. 4						
Dhm									
A passed Reusilally (Dim.m.)	10-			1				-	
ant Rad				a paar	-		PE	R.	
A past			1 1			82326	0 1 1 1 1 1		
	-					5			
	-								
	0.1	1 1 1 1 1 1		10	100		1.4.4	1000	
				Specing (m)	Jue			1000	
Res	istivity Model				0	-		(and the second	
ayer	Resistivity	Thickness	Depth	Estimated				5.4	
	(Ω-m)	(m)	(GL -m)	Facies	-50		-		
lst	21.4	2.3	-2.3	Top Soil					
2nd	5.4	18.0	-20.3	Alluvium Deposit?	-100	-			
Brd	4.5	190.5	-210.7	Irrawaddi formation	100		4.5		
ŧth	5.8	103.2	-313.9	(Clay) Irrawaddi formation	-150				
		100.2	010.0	(Silt - Clay) Irrawaddi formation	-150				
ōth	13.7	_		(Silt - Sand)		SWL??		MA2-23-1 Dep 220m	
Sth			(Charles of the second		Ê -200			5WL 200m 800 gal / h	
7th					(m) (m)			EC 1,983 µs/cm	
Esti	mation Results of	of Hydrogeolo	gical Information	7	-250		5.8	-	
	Lithology	Silt - Sand	Estimated	200 m	10207				
uifer		(lr)	SWL(GL-m)	200 m	-300				
t Ag	Depth (m)	>314m	Remarks:				13.7		
Target Aquifer	Thickness (m)	>35m			-350	-	19.1		
F	Resistivity (Ω-m)	13.7				Estim	nated Drilling	Depth	
		Results	of Evaluation		-400				
-	Estimated	And a second	Possibility /	C : Low-Medium					
D	rilling Depth(m)	350 m	Priority	Priority 3	-450				
Rem	arks								
					-		EGEND	1	
							Ω-m	~ 30Ω-m	
						- 104	0.00	- 500	
					-	- 10	_	~ 50Ω-m	

MA2-23 Kangyi Village

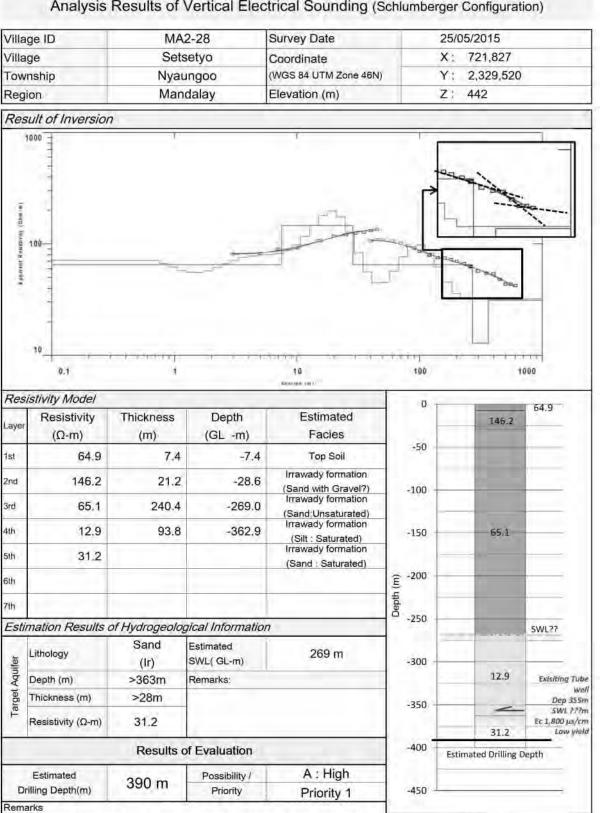
Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)

MA2-24 Htanekan Village




Villa	age ID	MA	2-25	Survey Date	1	29/05/2015	_	
Villa	age		onesu	Coordinate)	X: 804,970		
Tow	nship		wbwe	(WGS 84 UTM Zone 46N)		Y: 2,275,4	49	
Reg	lion	Man	dalay	Elevation (m)	2	Z: 226		
Res	sult of Inversion	1						
and a state	10-100 1000000 100000000000000000000000			10 Specing (m)	10	0	1000	
Res	sistivity Model			a fast (14 f a f	0 -			
	Resistivity	Thickness	Depth	Estimated		3.6	SWL??	
ayer	(Ω-m)	(m)	(GL -m)	Facies		5,0	,	
Ist	21.9	3.4	-3.4	Top Soil	-50	18.3	3	
Znđ	3.6	33.4	-36.8	Irrawaddy formation (Clay) Irrawaddy formation	-100		MA2-25-1 Dep 116m SWL 11m	
3rd	18.3	34.7	-71.6	(Sand)			300 gal / h EC 1,986 μs/cm	
tth	7.6	206.3	-277.8	Irrawaddy formation (>Silt: Confined Aquifer?)	-150			
ōth	22.4			Irrawaddy formation (Sand : Saturated)	-	7.6		
Sth				(ound : outplated)	Ê -200	-	-	
7th					(m) +1de)	_		
1	imation Results of	of Hydrogeolo	nical Informatio	8	ص -250	_		
_00	-	Sand	Estimated	11m	-		-	
ifer	Lithology	(lr)	SWL(GL-m)	(Confined?)	-300	22.4	*	
Target Aquifer	Depth (m)	>278m	Remarks:			Estimated Dr	illing Depth	
arge	Thickness (m)	>25m			-350		_	
F	Resistivity (Ω-m)	22.4						
		Results	of Evaluation		-400		_	
	Estimated	305 m	Possibility /	A : High	-	-		
	rilling Depth(m)	305 m	Priority	Priority 1	-450			
1.00								
1.00					1	LEGEN	D	
1.00					-	LEGEN ~ 5Ω-m	D ~ 30Ω-m	
1.00						LEGEN ~ 5Ω-m ~ 10Ω-m		
D						~ 5Ω-m	~ 30Ω-m	

MA2-25 Waryonesu Village

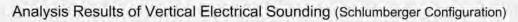

Villa	ge ID	MA	2-26	Survey Date	-	26/05/20	015	
Villa	ge	Tal	kone	Coordinate		X: 72	1,119	
Tow	nship	Nya	ungoo	(WGS 84 UTM Zone 46N)	Y: 2,3	47,365	
Regi	on	Man	dalay	Elevation (m)	-	Z: 24	В	
Res	ult of Inversion	1						
	1000 -		15		T			
1					Co Shape of VES of	mplicated		7
	10,		10	Spaning (m)	100.	<i>u</i>		1000
Res	istivity Model				0 .			
	Resistivity	Thickness	Depth	Estimated			-	283.6
Layer	(Ω-m)	(m)	(GL -m)	Facies			88.9	
1st	182.2	4.0	-4.0	Top Soil	-50	-		
2nd	283.6	12.6	-16.6	Irrawaddy formation	1		43.6	
3rd	88.9	41.5	-58.1	(Sand with Gravel?) Irrawaddy formation	-100	-	See.	
			1.000	(Sand with Gravel?) Irrawaddy formation	-		173.2	SWL??
4th	43.6	48.8	-106.9	(Silt with Gravel?)	-150	1		JWEIT
5th	173.2	34.4	-141.2	Irrawaddy formation (Sand with Gravel?)	1		-	-
6th	79.4	103.8	-245.0	Irrawaddy formation	£ -200	-	79.4	
7th	21.9			(Sand with Gravel?) Irrawaddy formation	Depth (m)	-		-
2.24		of Hydroneolo	gical Information	(Sand : Saturated?)	ص -250 -	-	-	
		Sand?	Estimated			Estimate	ed Drilling	Depth
ifer	Lithology	(Ir)	SWL(GL-m)	150 m	-300			-
Aqu	Depth (m)	>245m	Remarks:				21.9	
Target Aquifer	Thickness (m)	>25m			-350			-
Ţ	Resistivity (Ω-m)	21.9						
	1	Results	of Evaluation		-400			
1	Estimated	27E	Possibility /	A : High			_	
1-1-1	illing Depth(m)	275 m	Priority	Priority 2	-450 -		_	
Rema		material for the late	0/11/0 071	ab baa e staril		1.8.	SENS	
	ng depth is estination of geologic		=3(MA2-27) Whi	ch has a similar	(Internal I	~5Ω-r	GEND	- 30Ω-m
Situa	aion of geologic	a leature.			-	~ 10Q-r	-	~ 50Ω-m
						~ 15Ω-r	n	~ 100Q-m

MA2-26 Talkone Village

MA2-27 Tawbyar Village

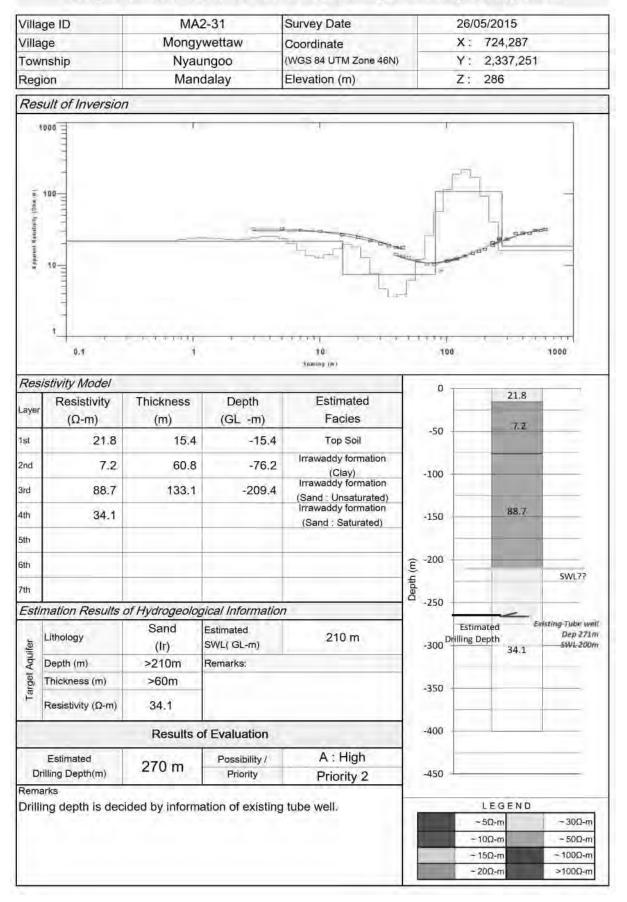
From existing borehole. It is expected that capacity of target aquifers is low.

Therefore, It is recommended that drilling depth is set to deep part as possible.


LEGENI	D
~ 5Ω-m	~ 30Ω-m
~ 10Ω-m	~ 50Ω-m
~15Ω-m	~ 100Ω-m
- 20Ω-m	>100Ω-m

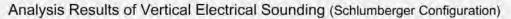
MA2-28 Setsetyo Village

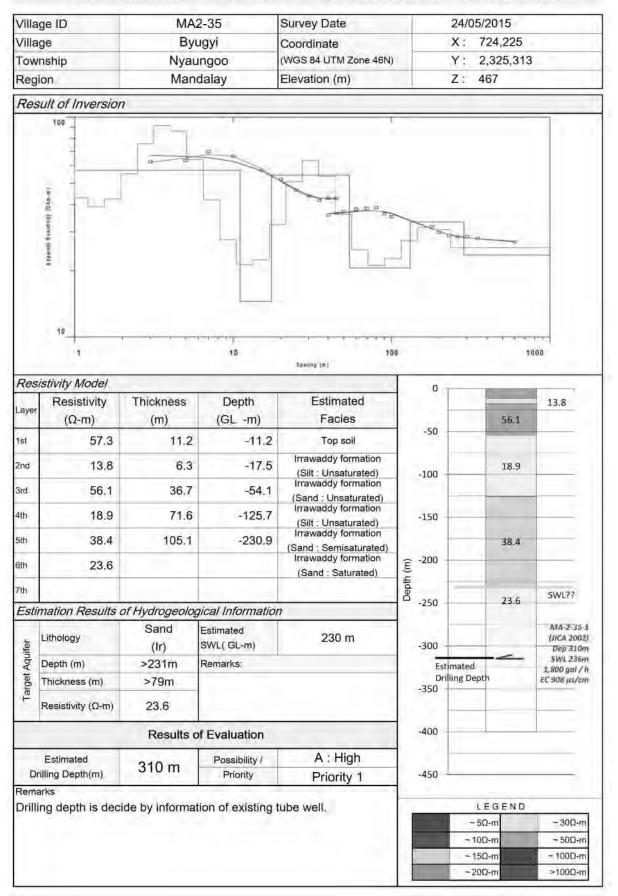
Analysis Results of Vertical	Electrical Sounding	(Schlumberger Configuration)
------------------------------	---------------------	------------------------------


Village ID MA2-29			2-29	Survey Date	24/05/2015			
		nzauk Coordinate		X: 709,761				
Township Nyau		ungoo	(WGS 84 UTM Zone 46N)		Y: 2,32	8,732		
		dalay	Elevation (m)		Z: 351	1	1	
Res	ult of Inversion	1						
4	000 =				- 11	_		
	1							
Ŧ	100-							-
8 pparent Resistivity (Ohm an)	111		LA			-		
wistight	1		4		4	BBBB		
rent R.e	-		45	a	I_	F		
a ppar	10-		-		-			-
	91							
	-							
	-							
	1					a - 1		
	0.1	1		10 Spacing (m)	100			1000
Res	istivity Model				0 -		_	
	Resistivity	Thickness	Depth	Estimated				6
ayer	(Ω-m)	(m)	(GL -m)	Facies			60	11.00
Ist	164.9	1.2	-1.2	Top soil	-50			
2nd	6.0	1.4	-2.6	Top soil				SWL??
Brd	60.0	62.3	-64.9	Irrawaddy formation	-100		-	
			0.002	(Sand : Unsaturated) Irrawaddy formation			17.9	MA2-29-1
4th	17.9	128.9	-193.8	(Sand - Silt : Saturated)	-150 -	-		Dep 200m
5th	49.0			Irrawaddy formation (Sand : Saturated)				SWL ???m 1,300 gal / h
Sth	1.000			(ound) outdition/	€ -200 -		2	EC 1,036 μs/km
					(m) the depth (m)	Estima Drilling I		
7th					ے -250 –	Diming	Depth	_
Esti	mation Results d		1	7				
e.	Lithology	Sand - Silt (Ir)	Estimated SWL(GL-m)	65 m	-300		49.0	
Aquif	Depth (m)	>65m	Remarks:		500			
Target Aquifer	Thickness (m)	>135m?	SWL is estimated by Jica tube well(MA-18) and geophysical survey results.		1000			
Tan	Resistivity (Ω-m)	17.9-49			-350			
-	recoluting (11-11)				-400			
Results of Evaluation								
Estimated 200 m Possibility / A : High								
	illing Depth(m)	200 11	Priority	Priority 2	-450 -			_
Rema	arks ng depth is deci	ded by inform	ation of evicting	tube well		LEGI	END	_
	ng deput is deci	ded by morn	ation of existing			~ 5Ω-m	2.110	~ 30Ω-m
D'IIII							-	
						~ 10Ω-m		~ 50Ω-m
51111						~ 10Ω-m ~ 15Ω-m		~ 50Ω-m

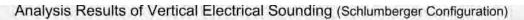
MA2-29 Kanzauk Village

Villa	ige ID			2	5/05/2015				
Village Talb		Talbindel Coordinate			(: 719,641				
Tow	nship		oognu	(WGS 84 UTM Zone 46N))	: 2,332,401			
Reg	ion	Man	dalay	Elevation (m)	Z	: 378			
Res	sult of Inversion	1							
	10			A CONTRACTOR		COLUMN COLUMN			
	1,	• • • • • • • • • •		1D Specing (m)	100	• • • • • • • • •	1000		
Res	istivity Model			A 10 10 10	0 -	-	24.0		
ayer	Resistivity	Thickness	Depth	Estimated	-	_			
	(Ω-m)	(m)	(GL -m)	Facies	-50	-			
st	160.1	3.3	-3.3	Top soil	-	-			
nd	24.0	2.2	-5.5	Top soil	-100				
Ind	76.1	205.7	-211.1	Irrawaddy formation (Sand : Unsaturated)		76.1	_		
th	26.9	88.8	-300.0	Irrawaddy formation	-150	_			
ith	13.8			(Sand : Saturated) Irrawaddy formation					
	13.0			(Silt : Saturated)	-200				
ith					(m) +tideo		SWL27		
ťth					deg .250				
Esti	mation Results of		gical Information	7	-230	26.9	MA2-30-1: Dep 280m		
er	Lithology	Sand (Ir)	Estimated SWL(GL-m)	210 m	-300	-	SWL 219m 800 gal / h EC 1,239 µs/cm		
Target Aquifer	Depth (m)	211-300m	Remarks:			Estimated			
rgel ,	Thickness (m)	90m			- Drillir -350	ng Depth 13.8			
Ta	Resistivity (Ω-m)	26.9			-330	15.0			
		Results of	of Evaluation		-400				
Estimated 200 - Possibility / A : High									
Drilling Depth(m) 300 m Priority Priority 1				-450					
	arks	in a name		1. State 1.					
וויזכ	ing depth is deci	ded by inform	ation of existing	tube well.		LEGEND ~5Ω-m	~ 30Ω-m		
						~ 10Ω-m	~ 50Ω-m		
						~ 15Ω-m	~ 100Ω-m		

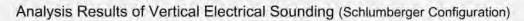

MA2-30 Talbindel Village

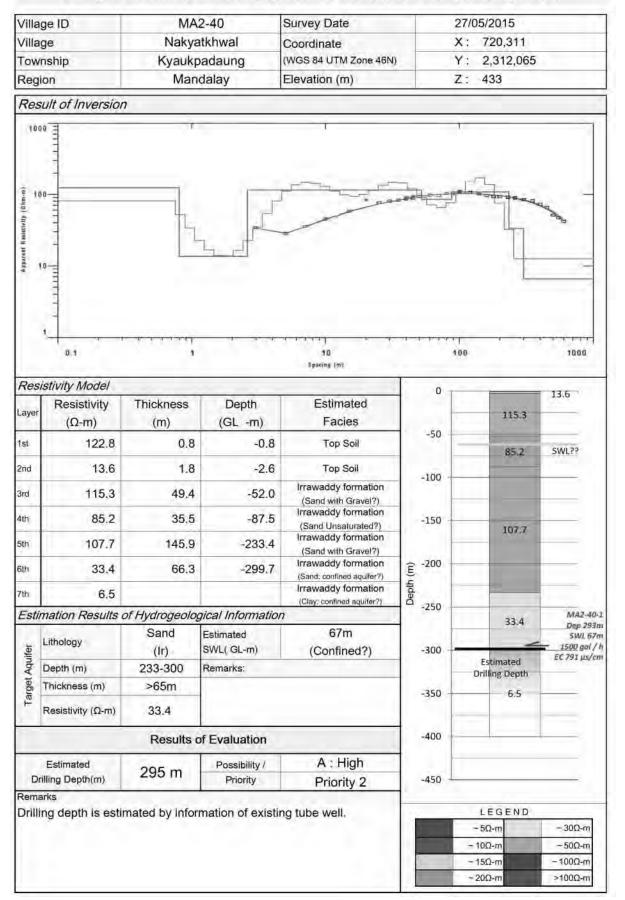


MA2-31 Mongywettaw Village


Villa	fillage ID MA2-34		2-34	Survey Date	27/05/2015			
Village Saing Township Ny		Saingka	Saingkan(Tetide) Coordin			X :		
		Nyaungoo		(WGS 84 UTM Zone 46N)		Υ:	2,328,820	£
		Man	dalay	Elevation (m)	-	Z:	427	_
Res	ult of Inversion							
	1000		ī	Ť		r		
Appendent Rashelivity (256m m)	100						-Be-Bas	ad one
	0,1		1	10 Spacing (m)		100		1000
Res	istivity Model				0	-	141.8	
ayer	Resistivity	Thickness	Depth	Estimated				
	(Ω-m)	(m)	(GL -m)	Facies	-50		50	-
st	42.9	1.9	-1.9	Top Soil		110		
nď	141.8	13.1	-15.0	Irrawaddy formation (Sand with Gravel)	-100			-
ird	50.0	32.7	-47.7	Irrawaddy formation (Sand: Unsaturated)			94.2	
łth	94.2	124.2	-171.9	Irrawaddy formation	-150		-	
ōth	37.9	91.5	-263.4	(Sand with Gravel) Irrawaddy formation			-	
		91.0	-200.4	(Sand - Silt: Unsaturated) Irrawaddy formation	€ -200			
ith	19.9			(Sand: Saturated)	(m) -200		37.9	
'th			1.1.24		Dep Dep			
Esti	mation Results o	of Hydrogeolog	gical Informatio	n	-250	_		SWL??
ifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	263 m	-300			SVVLFF
t Aqu	Depth (m)	>263m	Remarks:			-	19.9	MA2-34-1
Target Aquifer	Thickness (m)	>150m?			-350	-		Kantain village (JICA Phase 1
F	Resistivity (Ω-m)	19.9			-	E	-	Dep 365n SWL ???n
Results of Evaluation							nated g Depth	??? gal /) EC 814 µs/cm
	Estimated	370 m	Possibility /	A : High				
-	illing Depth(m)	570 11	Priority	Priority 1	-450			-
Rema	arks ng depth is deci	ded by inform	ation of evicting	tube well			LEGEND	
2000	ng doparto deol	act by monit	adon of existing	g 1000 Woll			5Ω-m	~ 30Ω-m
					1	- 10	-m	~ 50Ω-m
					-	_	5Ω-m	~ 100Ω-m

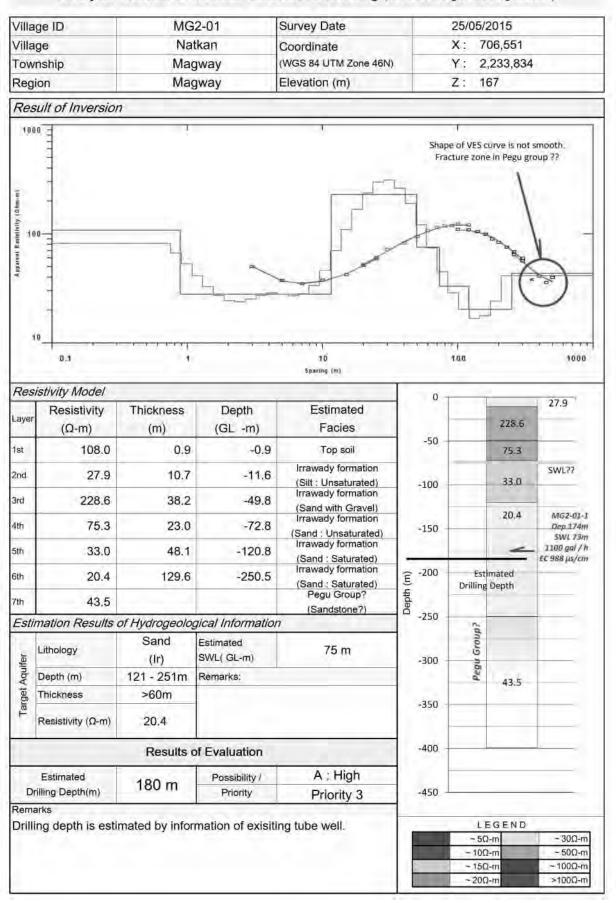
MA2-34 Saingkan(Tetide) Village

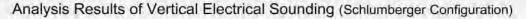


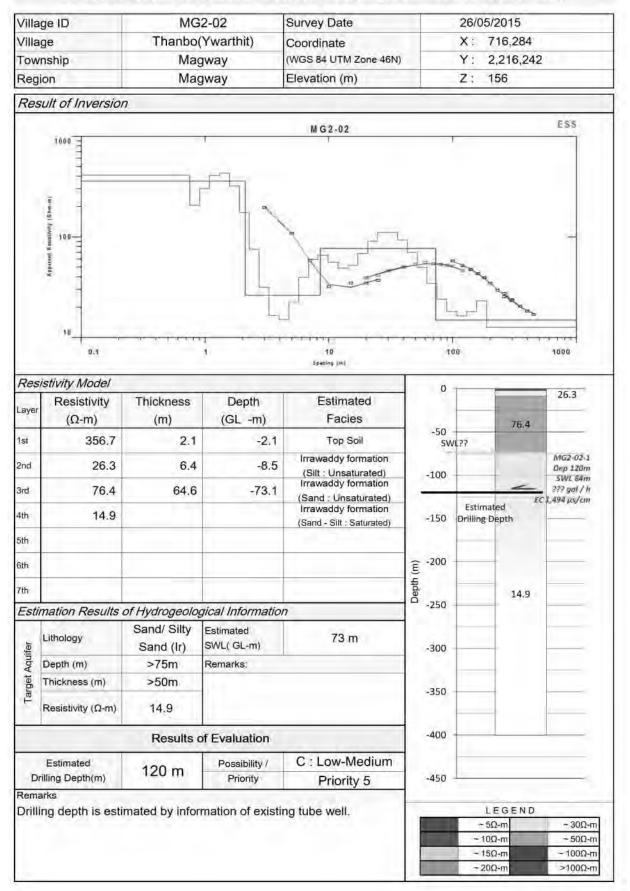

MA2-35 Byugyi Village

age ID	MA2-39 Surve		Survey Date	27/05/2015			
Township Kyauk		yattaw Coordinate		X: 729,095			
		Kyaukpadaung		(WGS 84 UTM Zone 46N)		Y: 2,325,329	(i
		dalay	Elevation (m)		Z: 394		
sult o	of Inversion	1					
00-		1		T	1		1
							-
ro	, , , a			10 Spacing (m)	100		1000
sistivit	ty Model		-	append (m)	0 -		
Re	esistivity	Thickness	Depth	Estimated			118.8
0	(Ω-m)	(m)	(GL -m)	Facies			
	26.9	2.4	-2.4	Top Soil	-50	44.6	
	118.8	3.2	-5.6	Irrawaddy formation (Sand with Gravel)	-100		
	44.6	94,5	-100.1	Irrawaddy formation (Silt - Sand: Unsaturated)			
	23.6	76.8	-176.9	Irrawaddy formation	-150	23.6	_
			14.64	(Silt : Unsaturated) Irrawaddy formation			
	71.7	46.4	-223.2	(Sand: Unsaturated) Irrawaddy formation	-		
	38.7			(Sand Saturated)	£ -200	71.7	
					(ju) -200		SWL??
imatic	on Results	of Hydrogeolo	gical Informatio	n	-250		MA2-22-
		Sand	Estimated				Dep 300n
Lithol	logy	(Ir)	SWL(GL-m)	223 m	-300		SWL 222.5r -600gal /
Depth	h (m)	>223m	Remarks:			38.7	EC 947 μs/cz
Thick	mess (m)	>125m			-350	_	
Resis	stivity (Ω-m)	38.7				Estimated Drillin	g Depth
		Results of	of Evaluation		-400		
Estimated 250 Possibility / C : Low-Medium							
350 m				Priority 3	-450		_
arks	and and and			and the second		322.011	
		and the second second will	capacity of target	aquifers is low. p part as possible.	in the second se	LEGEND	- 200 -
olore, li	ris recommen	add that unning t	acpuris secto dee	h hau as hossing.	-	- 5Ω-m	~ 30Q-m
						~ 10Ω-m	~ 50Ω-m
						~15Ω-m	~ 100Ω-m

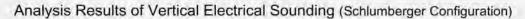
MA2-39 Thayattaw Village

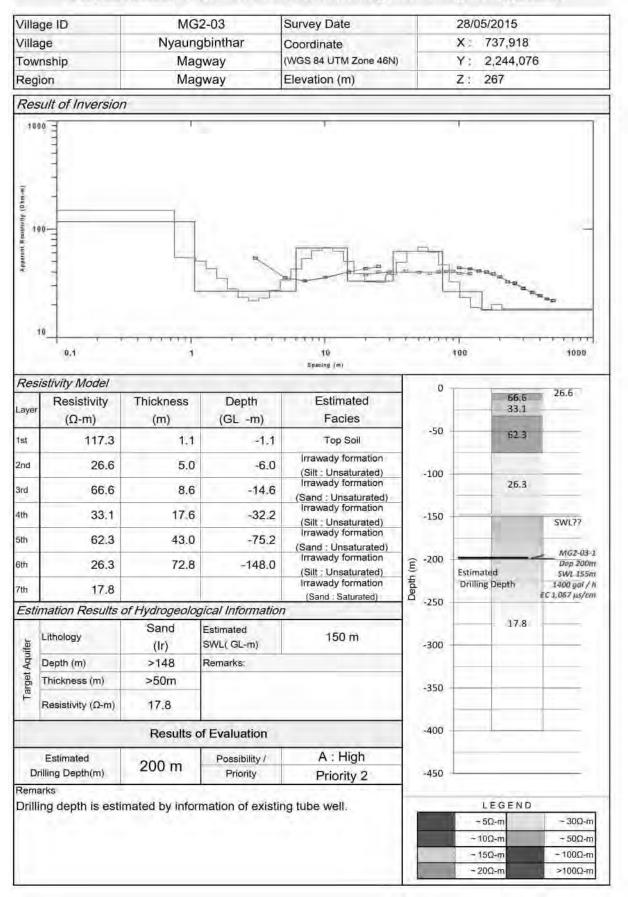


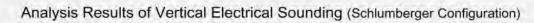

MA2-40 Nakyatkhwal Village


Vertical Electric Sounding (VES) at Magway Region

MG2-01	Natkan Village
MG2-02	Thanbo(Ywarthit) Village
MG2-03	MG2-01 Natkan Village
MG2-02	Thanbo(Ywarthit) Village
MG2-03	Nyaungbinthar Village
MG2-04	Konegyi Village
MG2-05	Sainggya Village
MG2-06	Thapyaysan(N) Village
MG2-07	Shwekyaw Village
MG2-08	Leikkan Village
MG2-09	Ywarthitgyi Village
MG2-10	Kanyaygyi Village
MG2-11	Myaysoon(Ywarthit) Village
MG2-13	Yenpyay Village
MG2-14	Kyatesu(N) Village
MG2-15	Winkabar Village
MG2-16	Kyatkan Village
MG2-17	Sudat Village
MG2-18	Myaynilain Village
MG2-20	Laytinesin(S) Village
MG2-21	Tharmyar Village
MG2-22	Aungmyinthar Village
MG2-23	Ngwelay Village
MG2-24	Indaw(N) Village
MG2-26	Manawtgone Village
MG2-27	Kangyigone Village
MG2-32	Ywartharlay Village
MG2-34	Nyaunggone Village
MG2-35	Kyugyaung Village
MG2-36	Kokkohla Village
MG2-38	Htaukkyantgwin Village
MG2-39	Hlebwegyi Village
MG2-40	Yayhtwetgyi Village

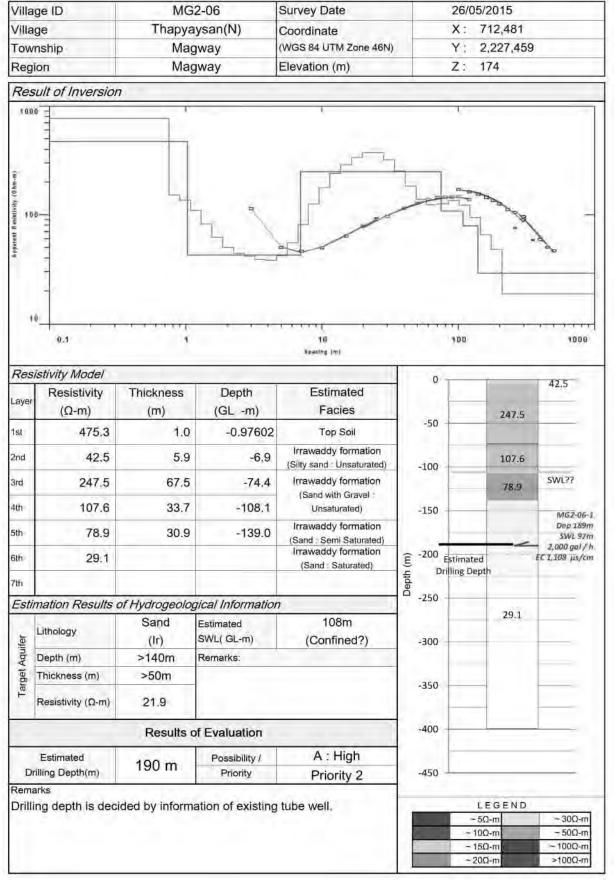



MG2-01 Natkan Village



MG2-02 Thanbo(Ywarthit) Village

MG2-03 Nyaungbinthar Village

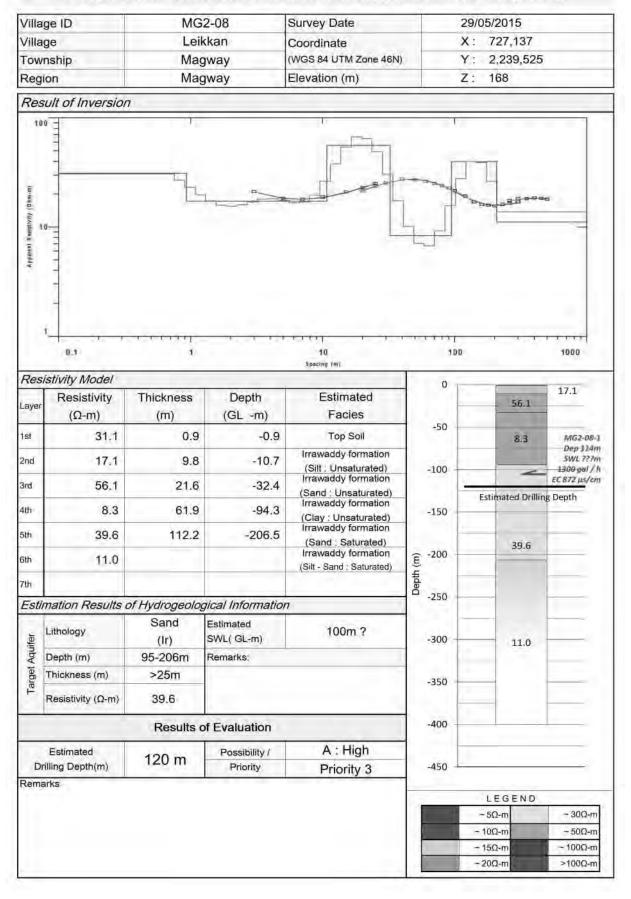

Villa	ge ID	MG	2-04	Survey Date	2	8/05/2015		
Villa	ge	Kor	negyi	Coordinate	×	: 718,820		
Tow			gway	(WGS 84 UTM Zone 46N)	Y	: 2,237,250	50	
Reg	ion	Mag	gway	Elevation (m)	Z	: 263		
Res	sult of Inversion	,						
1	000 -	1		1	1	-	1	
Apparent Resulvity (Olim-m)	100						-	
	0.1	(i x i	10 Spacing (m)	1.9.000111	0	1000	
Res	istivity Model				0 -	1	70.9	
Layer	Resistivity	Thickness	Depth	Estimated			1000	
	(Ω-m)	(m)	(GL -m)	Facies	-50	129.8	-	
1st	15.0	0.9	-0.9	Top Soil		125.0		
2nd	70.9	8.2	-9.0	Irrawaddy formation (Sand : Unsaturated)	-100		_	
3rd	129.8	88.7	-97.7	Irrawaddy formation	100			
4th	446.7	115.3	-213.0	(Sand with gravel :	150		SWL??	
		115.3	-213.0	Unsaturated) Irrawaddy formation	-150	446.7	1	
5th	36.4	-		(Sand - silt : Saturated)			MG2-01-1	
6th	1		1		Ê -200		Dep 220m SWI 134m	
7th					Depth (m)	~	- 2000 gal / h EC 1,010 µs/cm	
	mation Results of	of Hydrogeolo	gical Information	7	-250 -	Estimated Drill		
	and the second s	Sand	Estimated	134m	-			
ifer	Lithology	(Ir)	SWL(GL-m)	(Confined aquifer?)	-300	36.4		
Target Aquifer	Depth (m)	>213m	Remarks:		-	199.4		
arget	Thickness (m)	>25m			-350			
Ť	Resistivity (Ω-m)	36.4				_		
		Results	of Evaluation		-400 —			
	Estimated	240 m	Possibility /	A : High			_	
1	rilling Depth(m)	LIVIII	Priority	Priority 2	-450		-	
Rem: Drilli		ted by informa	tion of existing tu	pe well and resistivity	-	LEGEND		
value		and a finite finite	and or evicening ful			~5Ω-m	~ 30Ω-m	
						~ 10Ω-m	~ 50Ω-m	
						~ 15Ω-m	~ 100Ω-m	

MG2-04 Konegyi Village

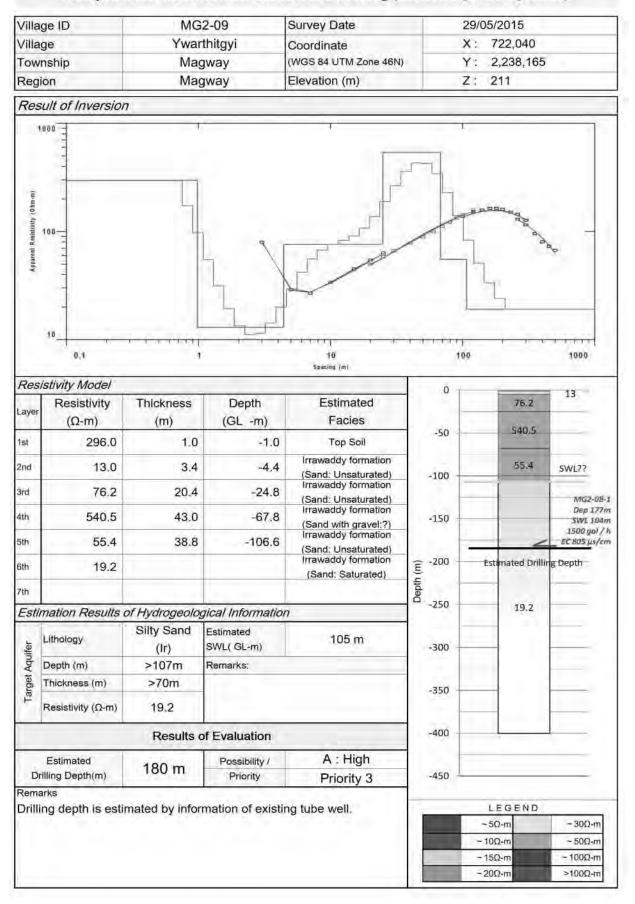
Analysis Results of Vertical Electrica	Sounding (Schlumberger Configuration)
--	---------------------------------------

Village ID MG2-			2-05	Survey Date		27/05/2	2015	
Villa	ge	Sair	iggya	Coordinate		X: 7	25,337	
Tow	nship	Mag	gway	(WGS 84 UTM Zone 46N)		Y: 2	,213,980)
Regi	ion	Mag	gway	Elevation (m)		Z: 2	32	
Res	ult of Inversion	1						
Apperent Realitivity (Ohn.m) 001	0							~
	0,1	1 1 1 1 1 1 1	-1 - , <i>T</i> , - <i>T</i>	10 Spacing (m)		100	an an	1000
Res	istivity Model	771.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Dest	Tothe stad	0	1		182.3
Layer	Resistivity (Ω-m)	Thickness (m)	Depth (GL -m)	Estimated Facies	il ret		73.3	
lst	13.5	0.8	-0.8	Top Soil	-50	-		
	1.	1010	1.	Irrawaddy formation				
2nd	182.3	2.3	-3.1	(Sand with Gravel)	-100	-		
3rd	73.3	54.4	-57.4	Irrawaddy formation (Sand : Unsaturated)		_	44.8	
4th	44.8	105.0	-162.4	Irrawaddy formation (Sand : Semi saturated)	-150			-
5th	15.8	1.01		Irrawaddy formation		SWL??		MG2-05-1 Dep 200n
	10.0			(Sand : Saturated))	-200	_		SW1 153n - 1200 gal / i
6th					(m) (m)	Estimated Drilling De	oth	EC 1,460 µs/cm
7th					de -250	J. Millig De	put	
Estil	mation Results of		gical Information	7	-250			
lifer	Lithology	Sand - Silty Sand(Ir)	Estimated SWL(GL-m)	162 m	-300	_	15.8	
it Aq	Depth (m)	>162m	Remarks:		1.			
Target Aquifer	Thickness (m)	>35m			-350	-		
-	Resistivity (Ω-m)	15.8						
		Results	of Evaluation		-400		_	
-	Estimated		Possibility /	B : Medium		-		
Dr	illing Depth(m)	200m	Priority	Priority 3	-450	L		
Rema				The second				
Drillin		a by information	or existing tube wel	I and geophysical survey		~ 50	GEND	~ 30Ω-m
						~ 100	_	~ 50Ω-m
					a second second second	- 1023	-10	- 5042-11
						- 150	-	~ 100Ω-m

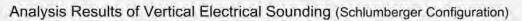
MG2-05 Sainggya Village



MG2-06 Thapyaysan(N) Village


Villa	ge ID	MG	2-07		2015			
and the second se			ekyaw	Coordinate	X : 733,7		33,733	
	nship		gway	(WGS 84 UTM Zone 46N)			,207,455	
Reg	ion	Mag	gway	Elevation (m)		Z: 2	35	
Res	sult of Inversion	7						
10 III	10					,	The second secon	AA
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			1D Spacing (m)		100	<i>р</i> . – 4	1000
Res	istivity Model		1		0 -	_	-	-
Layer	Resistivity	Thickness	Depth	Estimated		_	62.9	14 million (1997)
	(Ω-m)	(m)	(GL -m)	Facies	-50 -	_		
1st	26.9	3.1	-3.1	Top Soil			165.4	
2nd	62.9	33.5	-36.6	Irrrawaddy formation (Sand : Unsaturated)	-100 -	_	-	
3rd	165.4	52.8	-89.4	Irrrawaddy formation	100			SWL??
4th	18.2	127.5	-216.9	(Sand with gravel) Irrrawaddy formation	-150			1.1
	10.4 42.5	121.9	-210.5	(Sand : Saturated) Irrrawaddy formation			18.2	MG2-07-
5th	8.7			(Clay)				Dep 198r SWL 82.2r
6th					E -200	ated		3,500 gal / EC 1,352 µs/cn
7th					the Drillin	ng Dept		1.00.000
Esti	mation Results	of Hydroaeolo	gical Information	n	-250	-		
	Lithology	Sand (Ir)	Estimated SWL(GL-m)	89 m	-300			
Target Aquifer	Depth (m)	89 - 217m	Remarks:				8.7	
rget.	Thickness (m)	>85m			-350			
Ta	Resisitivty (Ω-m)	18.2			-520			
	-	Results	of Evaluation		-400 -	_	1	
-	Estimated	000	Possibility /	A : High				
D	rilling Depth(m)	200 m	Priority	Priority 2	-450			
Rem Drill	arks ing depth is esti	mated by infor	mation of exisit	ing tube well.		L - 50 - 100 - 150 - 200	Ω-m Ω-m	- 30Ω-m - 50Ω-m - 100Ω-m >100Ω-m

MG2-07 Shwekyaw Village



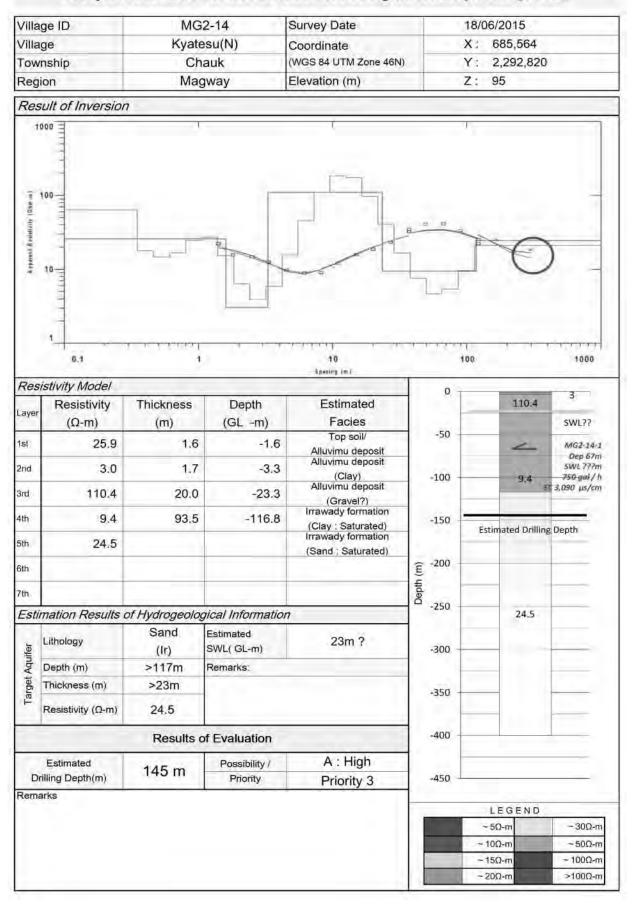
MG2-08 Leikkan Village

Analysis Results of Vertical Electrical Sounding (Sc	hlumberger Configuration)
--	---------------------------

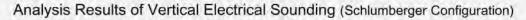
MG2-09 Ywarthitgyi Village

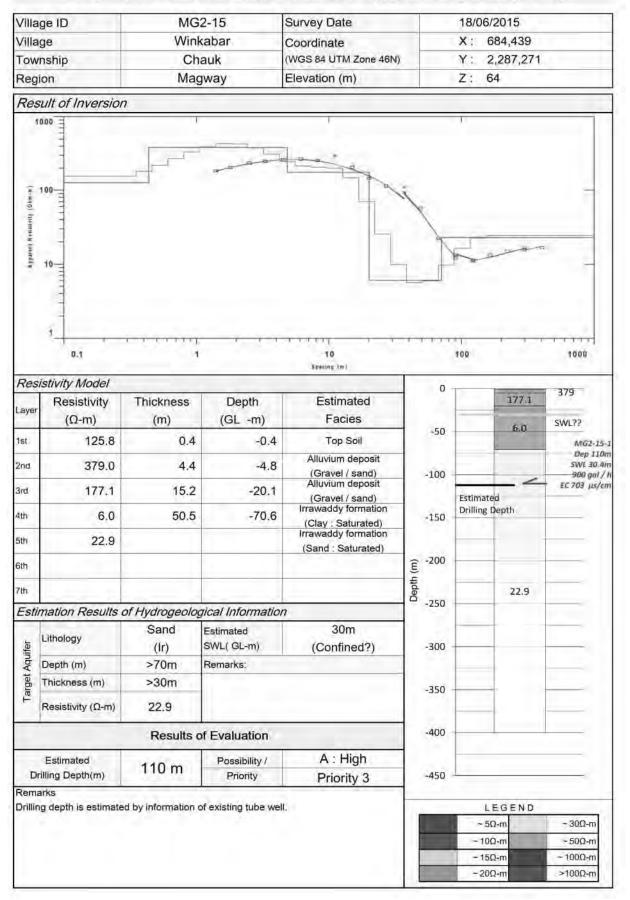
Villa	ge ID	MG	2-10	Survey Date		19/06/	2015	
Villa			/aygyi	Coordinate			02,719	
Tow	nship	Ch	auk	(WGS 84 UTM Zone 46N)			2,281,976	1.
Regi	ion	Mag	gway	Elevation (m)		Z: 3	19	
Res	ult of Inversion	í						
	1000 (man) (grant)					-		/
200	0,1		1	10 Specing (m)	É.	100		1000
tes	istivity Model Resistivity	Thickness	Depth	Estimated	0		64.5	10.4
ayer	(Ω-m)	(m)	(GL -m)	Facies		-		
st	143.3	1.8	-1.8	Top Soil	-50			
_			186	Irrawaddy formation			188.8	
2nd	10.4	2.0	-3.7	(Clay : Unsaturated)	-100 -		-	
ird	64.5	12.9	-16.6	Irrawaddy formation				
th	188.8	133.7	-150.3	(Silt - Sand with Gravel?)	-150 -			
ith	122.8	61.9	-212.2	(Unsaturated)		_	122.2	
-	9 A 37	01.0	212.2	Irrawaddy formation	€ -200	1	122.8	
ith	56.2			(Sand? : Saturated)	Depth (m)	-	-	SWL??
th					Dep 250		56.2	
Estir	mation Results c	and the second Product of the	gical Information	n	-250 -			
uifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	212 m	-300			MG2-10-1 Dep 327m SWL 210m
Target Aquifer	Depth (m)	>212m	Remarks:			-	1	900 gal / h EC 1,013 µs/cm
arge	Thickness (m)	>100m	-		-350 -	Estin	ated Drilling	Depth
-	Resistivity (Ω-m)	56.2						
		Results of	of Evaluation		-400	-		
	Estimated	330 m	Possibility /	C : Low-Medium				
	illing Depth(m)	000 11	Priority	Priority 3	-450 -			
Rema	arks Ig depth is estimated	d by information	of exisiting tube we	11.		- 0	EGEND	
	a separate commence		- enering tabe we				2-m	~30Ω-m
						- 100	1.00	~ 50Ω-m
						~ 150	Ω-m	~ 100Ω-m

MG2-10 Kanyaygyi Village

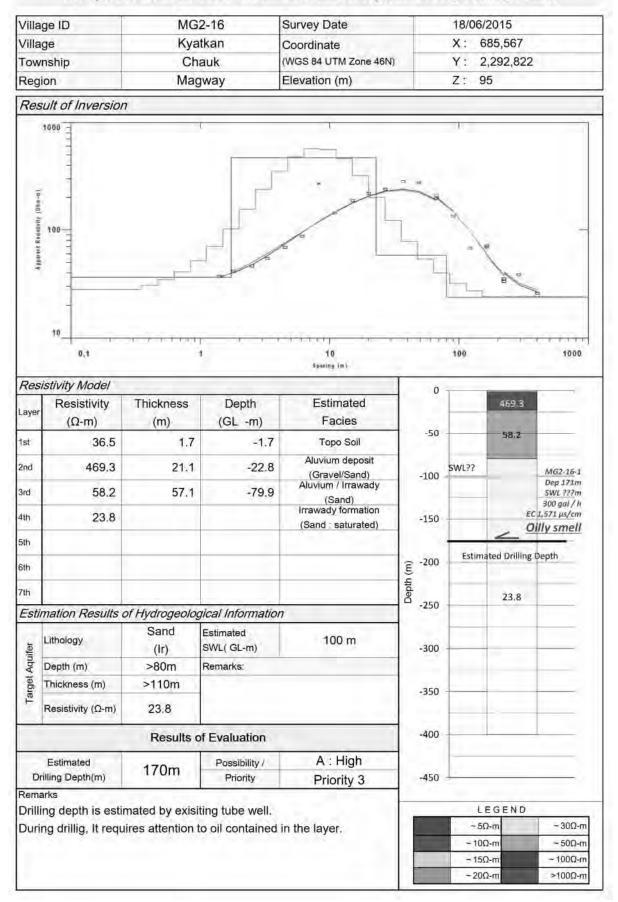

Village ID MO			2-11	Survey Date					
			n(Ywarthit)				X: 698,121		
Tow	nship	Ch	auk	(WGS 84 UTM Zone 46N)			2,277,376	51 =	
Reg	ion	Mag	gway	Elevation (m)		Z:	231		
Res	sult of Inversion	1							
vity (u/m-m)			2.~~				l'and		
	t0,			1 		100		1000	
Res	istivity Model	the last second	1		0	1	-	15.8	
Layer	Resistivity	Thickness	Depth	Estimated		-	323.6		
	(Ω-m)	(m)	(GL -m)	Facies	-50	_			
1st	218.3	1.0	-1.0	Top Soil			_	1	
2nd	15.8	4.0	-5.0	Irrawaddy formation (Clay : Unsaturated)	-100	_	70.8	-	
3rd	323.6	39.5	-44.5	Irrawaddy formation	1.00			1	
4th	70.8	105.4	-149.9	(Sand with Gravel) Irrawaddy formation	-150			SWL?7	
	1.0.0	100.1	110.0	(Sand : Unsaturated) Irrawaddy formation	-150				
5th	31.2			(Sand : Saturated)			31.2		
6th	A		1.0		Ê -200			MG2-11-1 Dep 259m	
7th					Depth (m)		-	SWL???m 1500 gal / h	
Esti	imation Results of	of Hydroaeolo	gical Informatio	n	-250	-	_ <	EC 1,109 µs/cm	
	Lithology	Sand (Ir)	Estimated SWL(GL-m)	150 m	-300	Estimate Drilling.l			
Target Aquifer	Depth (m)	>150m	Remarks:						
rget	Thickness (m)	>110m			-350	-			
Ta	Resistivity (Ω-m)	31.2					_		
	1	Results	of Evaluation		-400				
	Estimated	260 m	Possibility /	A : High		-	_		
1 Contraction	rilling Depth(m)	200 11	Priority	Priority 2	-450	1	_		
Rem Drill	^{arks} ing depth is estir	nated by infor	mation of exisit	ing tube well.		1 1 2	LEGEND 5Ω-m 0Ω-m	~ 30Ω-m ~ 50Ω-m	

MG2-11 Myaysoon(Ywarthit) Village

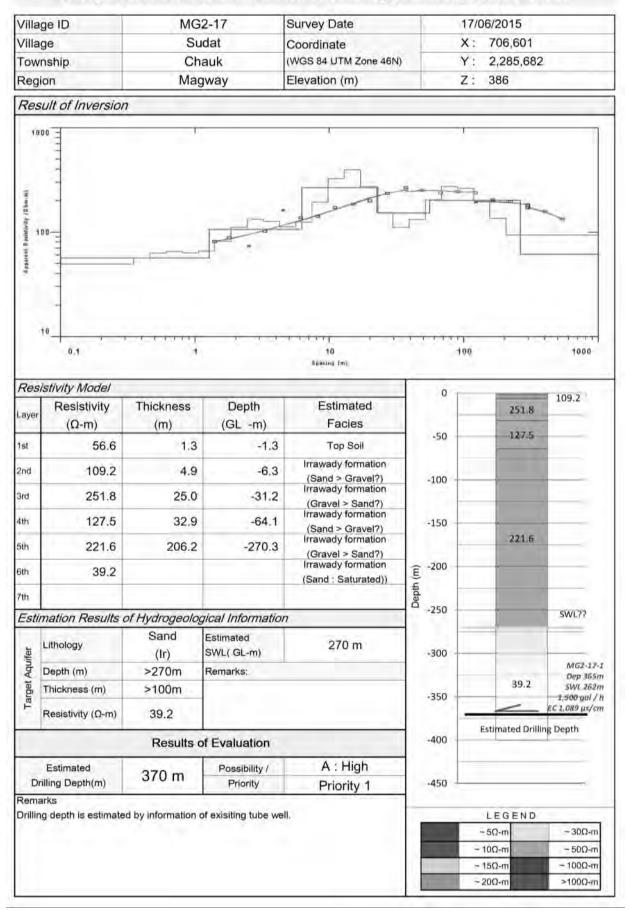

Villa	ige ID	MG	2-13	Survey Date		19/06	/2015		
Villa	ge		npyay Coordinate		_	X: 691,263			
Township		Chauk		(WGS 84 UTM Zone 46N))	Y: :	2,301,508	3	
		Mag	gway	Elevation (m)		Z: '	1,364		
Res	sult of Inversion	1							
1 1	1000								
7.4	0.1			10 Spacing (m)	1	100		1000	
tes	Resistivity	Thickness	Depth	Estimated	0 -	1	- 352.4	25.6	
ayer	Resistivity (Ω-m)	(m)	(GL -m)	Facies	1		-	1	
st	195.3	0.5	-0.5	Top Soil	-50		109.2		
				Alluvium deposit		-	103.2	<u> </u>	
2nd	25.6	0.7	-1.2	(Silt?: Unsaturated) Alluvium deposit	-100	SWL?	,	MG2-13-	
Brd	352.4	5.7	-6.9	(Gravel?)		-		Dep 148n SWL 104n	
łth	109.2	108.5	-115.4	Alluvium/ Irrawaddy? (Sand with Gravel?)	-150 -		-	1000 gal / 1 EC 2,150 ps/cn	
ōth	22.2			Irrawaddy formation			and Delille		
Sth				(Sand: Saturated)	€ -200	Esti	mated Drillin	R Debru	
					Depth (m)				
7th					250				
Esti	mation Results u		F.	7	-		22.2		
uifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	115 m	-300 -	_	-	-	
Target Aquifer	Depth (m)	>115m	Remarks:						
arge	Thickness (m)	>55m			-350	_			
÷	Resistivity (Ω-m)	22.2							
		Results of	of Evaluation		-400 -				
	Estimated	170m	Possibility /	A : High					
-	rilling Depth(m)	170m	Priority	Priority 3	-450 -	-	_		
Rem	arks g depth is estimated b	v information of evi	sting tube well		-		EGEND	_	
Besid	es, VES point is locate	ed 20 m higher than	existing tube well				EGEND Ω-m	-30Ω-m	
	e recommended depth n + 20m = 160m)	n is set to plus 20 r	Π.			-	Ω-m	~ 50Ω-m	
1/10-	1 2011 - 10011)				-		-		
148n						~ 15	Ω-m	- 100Ω-m	

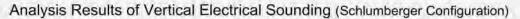

MG2-13 Yenpyay Village

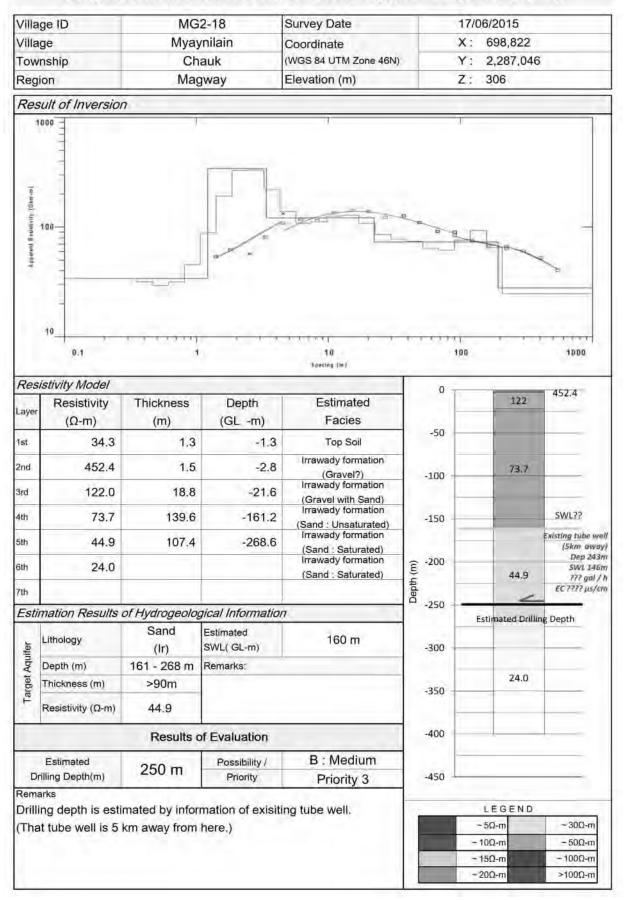
Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)



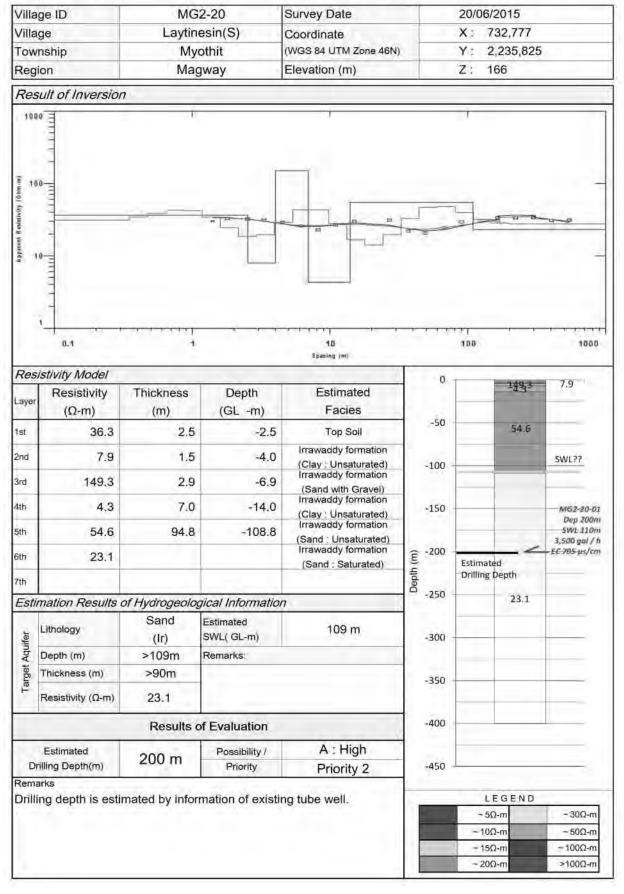
MG2-14 Kyatesu(N) Village



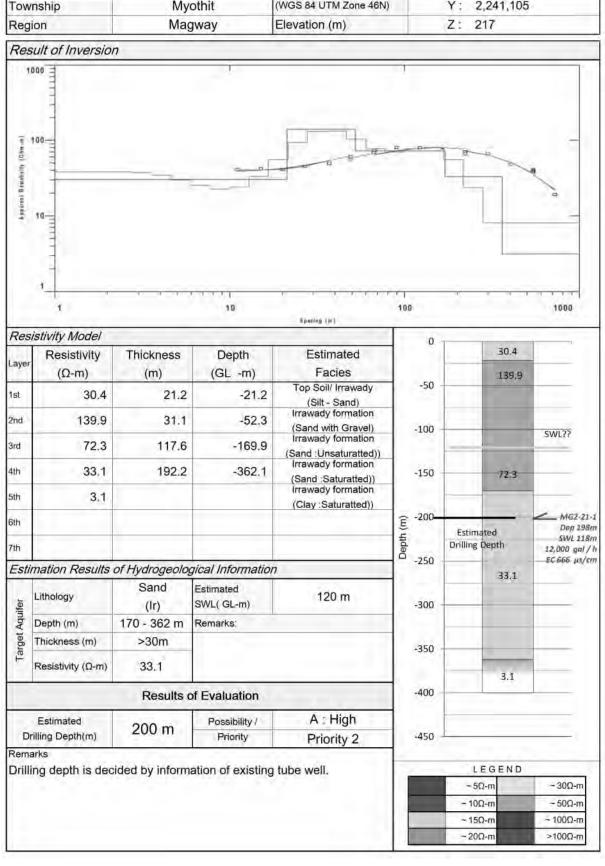

MG2-15 Winkabar Village

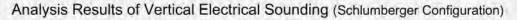


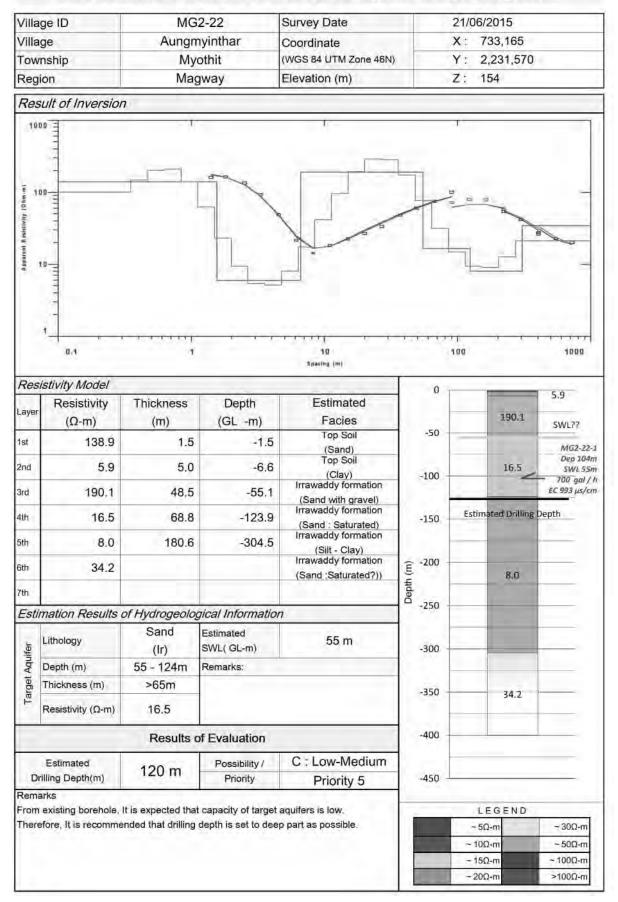
MG2-16 Kyatkan Village



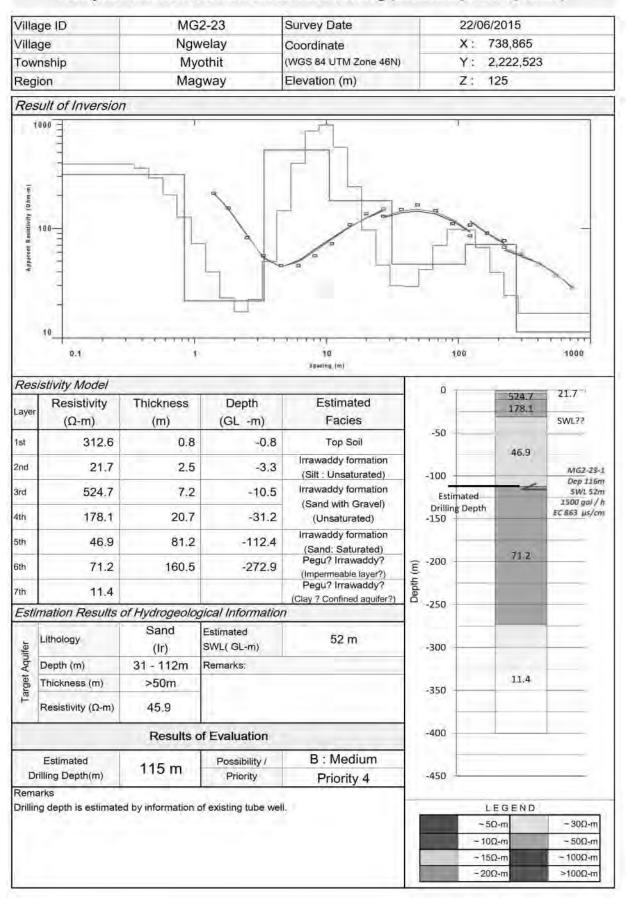
MG2-17 Sudat Village

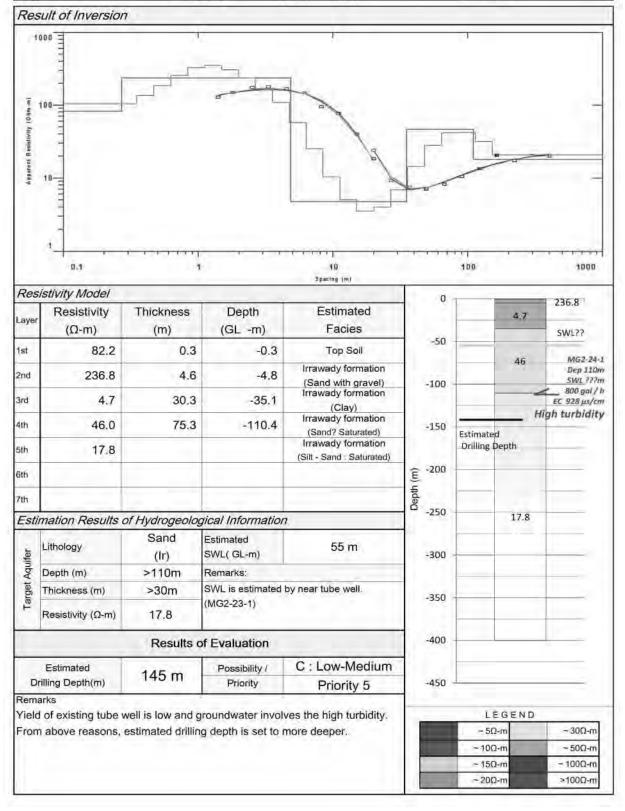

MG2-18 Myaynilain Village


MG2-20 Laytinesin(S) Village

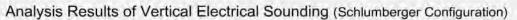

Village ID	MG2-21	Survey Date	21/06/2015
Village	Tharmyar	Coordinate	X: 736,054
Township	Myothit	(WGS 84 UTM Zone 46N)	Y: 2,241,105
Region	Magway	Elevation (m)	Z: 217

Analysis Results of Vertical Electrical Sounding (Schlumberger Configuration)


MG2-21 Tharmyar Village


MG2-22 Aungmyinthar Village

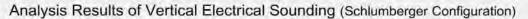
Analysis Results of Vertical Electrical Sounding (Schlumberger Config	uration)
---	----------

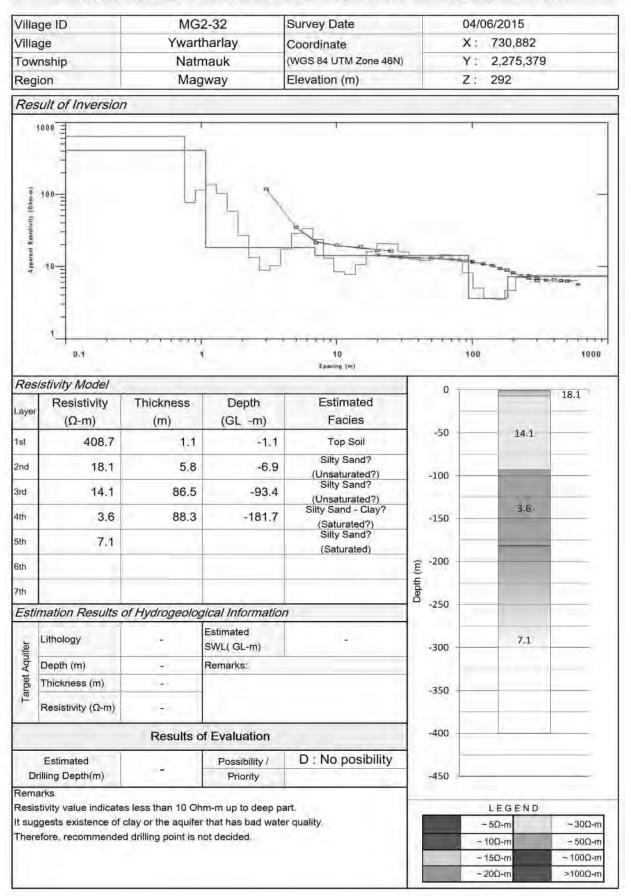


MG2-23 Ngwelay Village

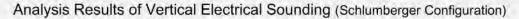
Village ID	MG2-24	Survey Date	20/06/2015
Village	Indaw(N)	Coordinate	X: 742,485
Township	Myothit	(WGS 84 UTM Zone 46N)	Y: 2,229,625
Region	Magway	Elevation (m)	Z: 131

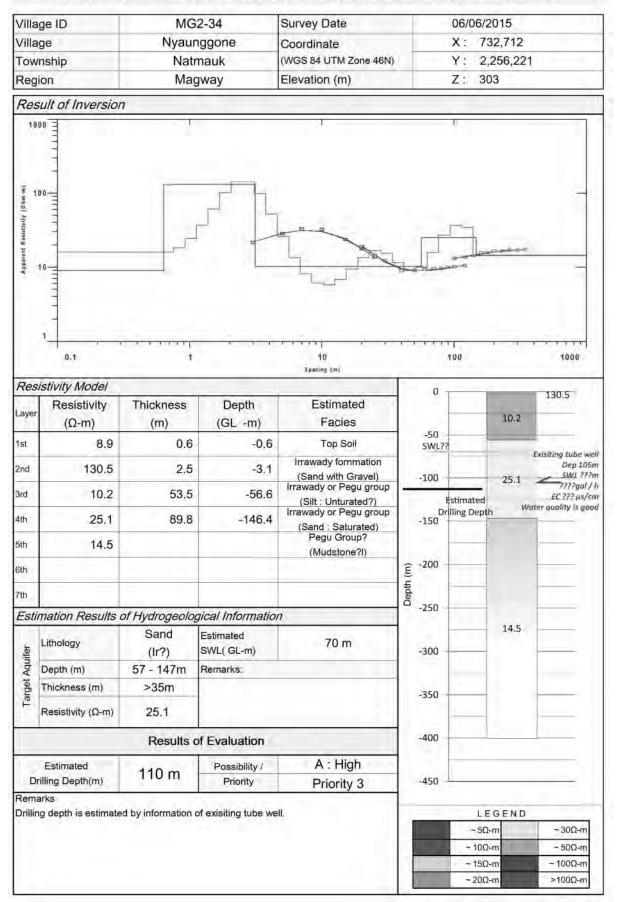
MG2-24 Indaw(N) Village

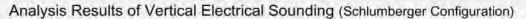


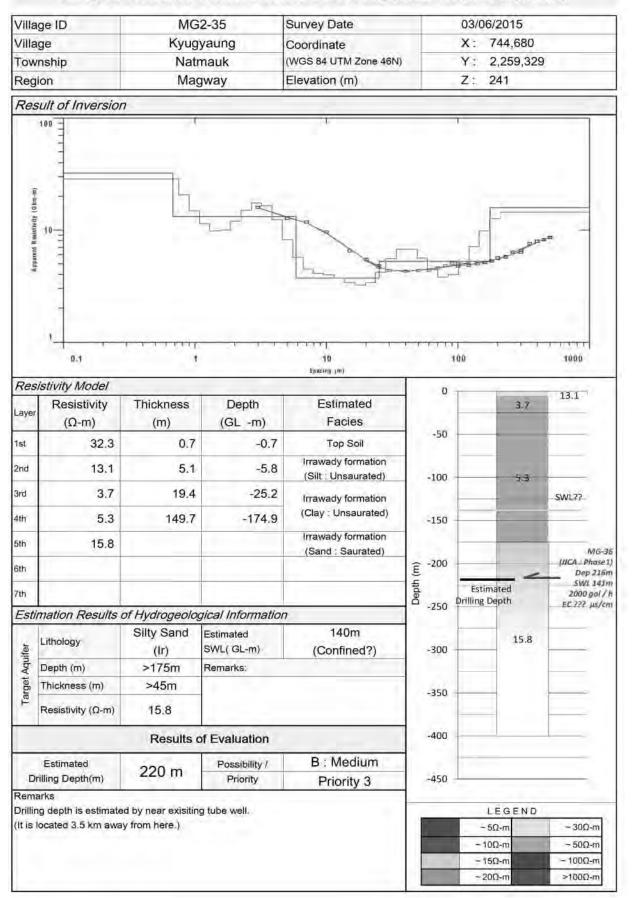

		MG2-26 Survey Date						
		Mana	wtgone Coordinate			X: 73	81,842	
	nship		othit	(WGS 84 UTM Zone 46N)		Y: 2,	222,261	
			gway	Elevation (m)		Z: 96	5	
Res	sult of Inversion	1						
	100		1	1		С.		
	() () () () () () () () () () () () () (ß					2
	1 0.1	- <u>i-i-i</u> -i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i	1	10 kunsing (m)		100	a - 3-	1000
Res	istivity Model		5.00	Fallensford	0	T	18.7	
Layer	Resistivity (Ω-m)	Thickness (m)	Depth (GL -m)	Estimated Facies	1.64	-		SWL??
1st	(12-11)	0.3	(GL -III) -0.3	Top Soil	-50		11.9	SWEIT
				Top Soil / Irrawaddy F				
2nd	18,7	12.7	-13.0	(Silt : Unsaturated)	-100	+ +	-	MG2-26-1 Dep 128m
3rd	11.9	85.1	-98.1	Irrawaddy formation (Silt : Saturated?)	1.15		/	SWL 24m
4th	28.5	206,4	-304.5	Irrawaddy formation (Sand : Saturated)	-150	Estimated		2,300 gal / 1 EC 662 µs/cn
5th	6.1			Irrawaddy formation		Drilling Dep	th	
	0.1			(Clay)	€ -200		28.5	
6th					epth (m)		20.5	
7th					de -250			
Esti	mation Results of			n				
ifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	24 m	-300		_	
t Aqu	Depth (m)	98 - 305m	Remarks:					
Target Aquifer	Thickness (m)	>30m			-350	-	6.1	
H	Resistivity (Ω-m)	28.5			1 66			
		Results	of Evaluation		-400		_	
D	Estimated rilling Depth(m)	130 m	Possibility / Priority	A : High Priority 3	-450			
	arks		motion of output	na tubo woll		1.e	GEND	
Rem		motod by infer		no moe well	I VSS	L E	GEND	
Rem	ing depth is estin	mated by infor	mation of exist	ing table wear.		~ 5Ω·	m	- 30Ω-m
Rem		mated by infor	mation of exist			~ 5Ω- - 10Ω-	-	- 30Ω-m
Rem		nated by infor	mation of exist				m	

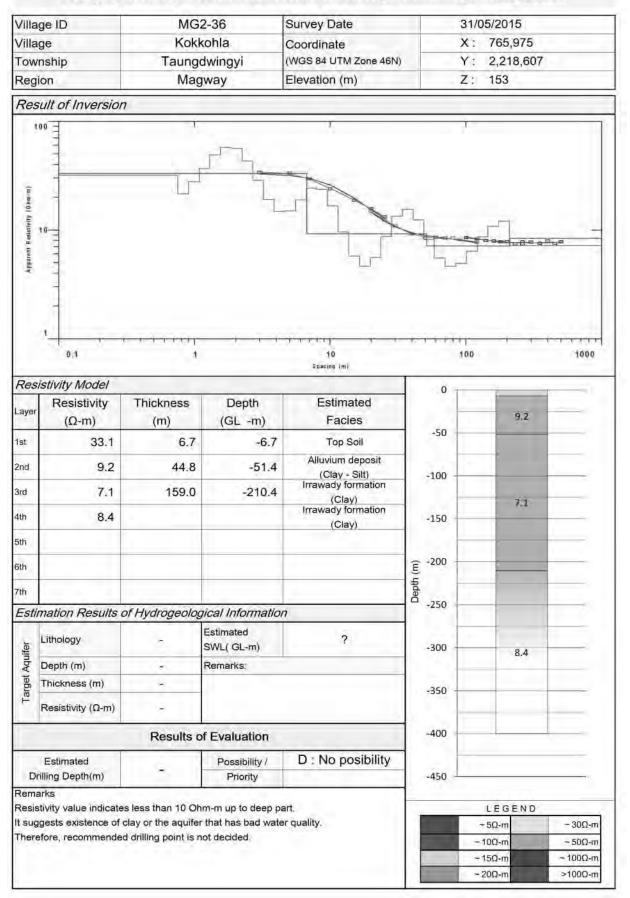
MG2-26 Manawtgone Village


Village ID MG2		2-27						
Township Nati		yigone Coordinate			X: 7	742,472		
			nauk	(WGS 84 UTM Zone 46N)			2,259,236	3
		Mag	gway	Elevation (m)		Z: 2	269	
Res	ult of Inversion	1						
Apparent Resistivity (D km-m)	100					A A A A A A A A A A A A A A A A A A A	and a star	
	1, 0,1		(i – i – i -)	10 Spacing (m)		0	$\overline{T}_{1} \rightarrow \overline{T}_{1} \rightarrow 0$	1000
Res	istivity Model				0	-		
Layer	Resistivity	Thickness	Depth	Estimated		_	1	16.1
- Jul	(Ω-m)	(m)	(GL -m)	Facies	-50		4.0	1.
Ist	10.4	1.5	-1.5	Top Soil	-50			
2nd	16.1	6.1	-7.5	Irrawaddy formation (Silt : Unsaturated)	100			1
Brd	4.0	66.6	-74.1	Irrawaddy formation	-100			- course
		00.0	1.65,491	(Clay : Unsaturated) Irrawaddy formation	- 54.5		1	SWL??
4th	26.2	-		(Silt / Sand :	-150			
5th	_			Unsaturated - Saturated)	-	-		MG-36 (IICA : Phose1)
Sth					€ -200	-	1	Dep 216m SWL 141m
7th					epth (m)	Estima	ted 26.2	2000 gal / h EC ??? μs/cm
Esti	mation Results of	of Hydrogeolo	gical Informatio	7	-250	Drilling De	pth	-
	Lithology	Sand (Ir)	Estimated SWL(GL-m)	141 m	-300	_		
Aqu	Depth (m)	141-220	Remarks:					
Target Aquifer	Thickness (m) Resistivity (Ω-m)	>75m 26.2	SWL is estimated is located near the (MG-36:JICA pha	-350				
-		Results	of Evaluation		-400			
-		Toouto	1	A Link		_		
D	Estimated rilling Depth(m)	220 m	Possibility / Priority	A : High Priority 2	-450			
Rem	arks	1.00		Server Manager				
		ated by informat	tion of existing tu	be well which is located	(interest	-	EGEND	1
near the site.						-5	Ω-m	~ 30Ω-m
(It is located 1.8km away from here.)							_	
(It is						- 15	Q-m	- 100Ω-m


MG2-27 Kangyigone Village

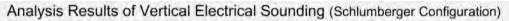



MG2-32 Ywartharlay Village



MG2-34 Nyaunggone Village

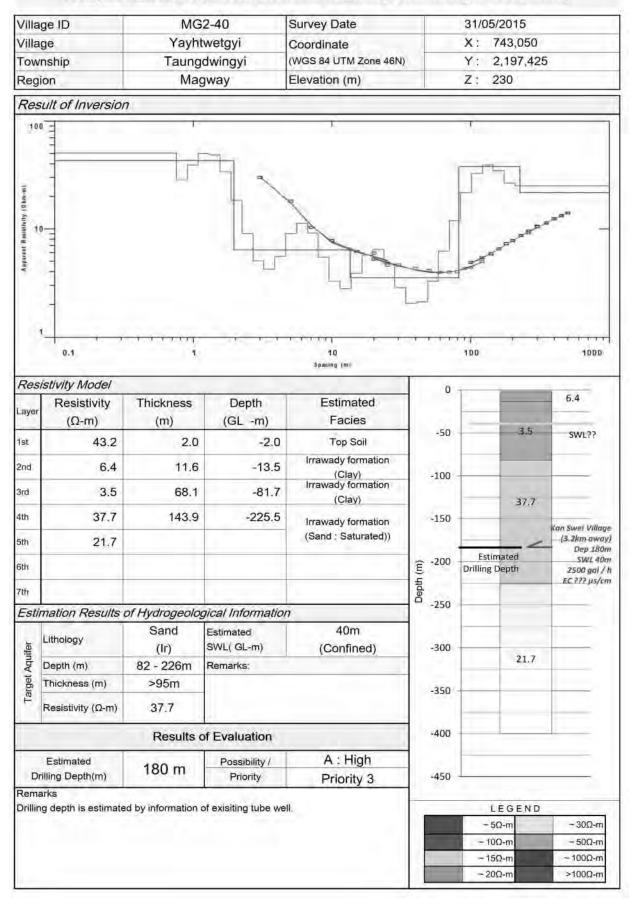
MG2-35 Kyugyaung Village



MG2-36 Kokkohla Village

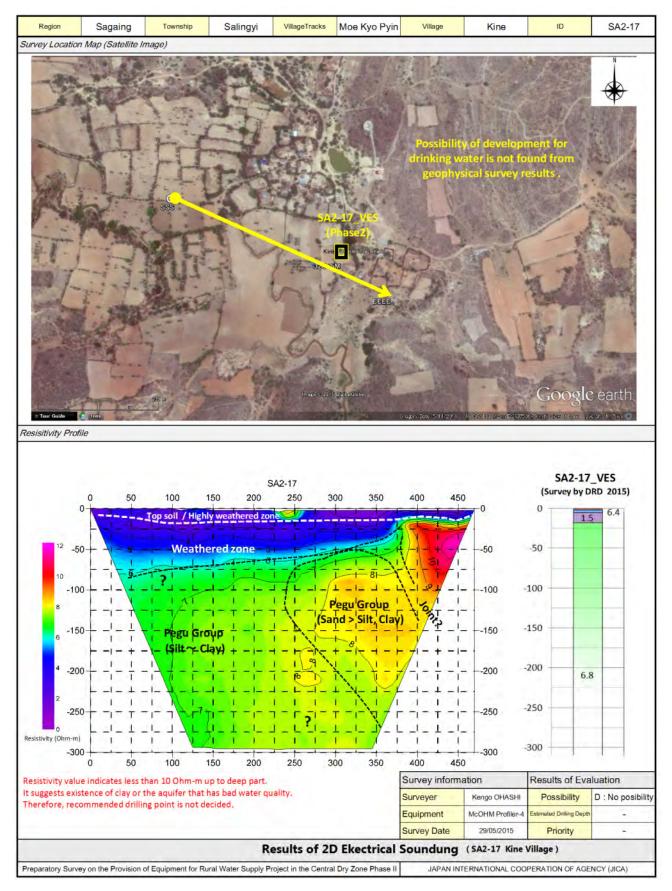
Analysis Results of Vertical Electrical Sounding (Schlumberger	Configuration)
--	----------------

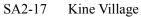
Village Htaukk		1G2-38 Survey Date			01/06/2015				
		Htaukk	yantgwin Coordinate			X:	772,133		
		Taung	dwingyi	(WGS 84 UTM Zone 46N)	Y: 1	2,184,859	<u>[1]</u>	
Reg	ion	Mag	gway	Elevation (m)		Z:	168		
Res	ult of Inversion	7							
A pasent Resultanty (Oim-m)	100				B 8				
Res	1		<u>, , , ,</u>	-)	r i	100	(_)_(1000	
Tes.		Thickness	Depth	Estimated	0	1	-	8.4	
Layer	Resistivity (Ω-m)	(m)	(GL -m)	Facies		-		1	
1st	16.6	3.3	-3.3	Top Soil	-50	-	4.7		
2nd	8.4	7.1	-10.4	Irrawady formation	-100	ng. 300m		SWL??	
3rd	4.7	90.8	-101.2	(Silt - Clay) Irrawady formation	-	o GL-3	8.6		
				(Silt - Clay) Irrawady formation	-150	up t	0.0		
4th	8.6	59.6	-160.8	(Silt - Clay)	-	2D electrical sounding. detected up to GL-300m	E	xisiting borehole Dep 180m	
5th	10.7	129.1	-289.9	Irrawady formation (Silt : Saturated)	-200	e Results of 2D electri bility is not detected		Very low yield	
6th	18.7	187.0	-476.9	Irrawady formation (Sand : Saturated)	Ê	Results of illty is not	10.7		
7th	13.7		2.5.0	Irrawady formation	(m) -250	e Rest billty	T	-	
1000	mation Results	of Hydrogeolo	dical Informatio	(Silt - Sand : Saturated)	1.00	In the Possibi			
	Lithology	Sand (Ir)	Estimated SWL(GL-m)	100 m	-300		18.7	-	
Target Aquifer	Depth (m)	290 - 477m	Remarks:		-350	-	-	Estimated	
argel	Thickness (m)	>30m				-	Dri	lling Depth	
F	Resistivity (Ω-m)	18.7			-400				
		Results	of Evaluation		-450	-			
-	Estimated	000	Possibility /	A : High		-	40.0		
Dr	illing Depth(m)	320 m	Priority	Priority 1	-500		13.7	<u> </u>	
Rema	arks						FORME		
					1		EGEND Ω-m	~ 30Ω-m	
							Ω-m	~ 50Q-m	
						~ 15	Ω-m	- 100Ω-m	

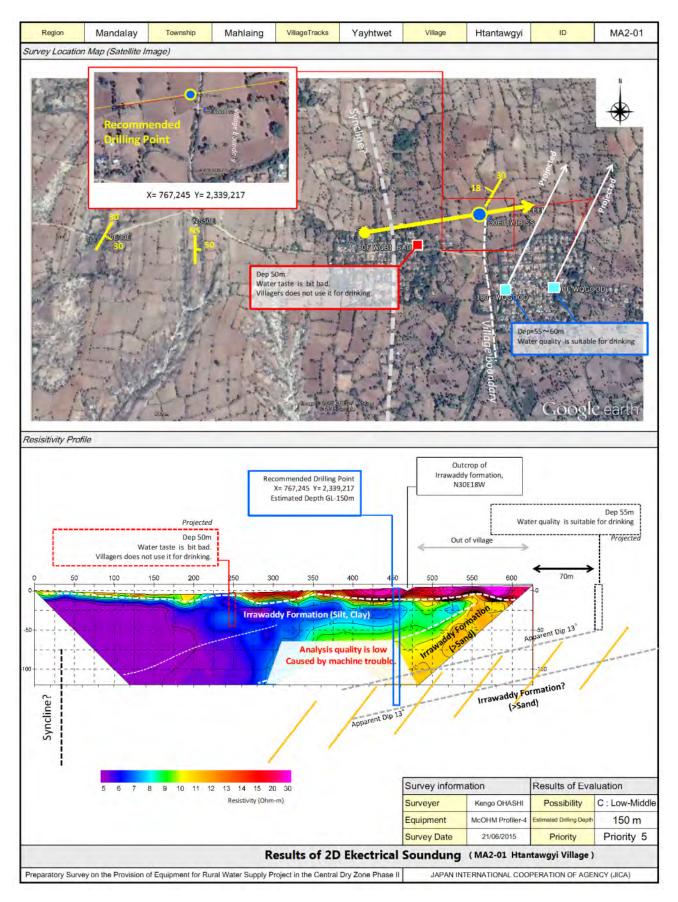

MG2-38 Htaukkyantgwin Village

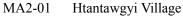
Village Hlet Township Taung		MG	AG2-39 Survey Date			30/05/2015				
		wegyi Coordinate			X: 7	: 747,687				
		Taung	dwingyi	(WGS 84 UTM Zone 46N)		2,200,683			
		Mag	gway	Elevation (m)		Z: 1	47			
Res	ult of Inversion	P.								
A sourcest in existingly. I G Am-an J				and the second			and and a			
	1 1	1 1 1	10	Spacing (m)	100		i i j-	1000		
Res	istivity Model	-		F-March - A	0	-		· · · ·		
Layer	Resistivity	Thickness	Depth	Estimated Facies				-		
1st	(Ω-m) 37.7	(m) 6.1	(GL -m) -6.1	Top Soil	-50	-	5,2			
				Irrawady formation						
2nd	5.2	83.0	-89.1	(Clay)	-100	SWL??	-			
3rd	2.5	134.4	-223.6	Irrawady formation (Clay)						
4th	22.0			Irrawady formation	-150		- 3.5			
5th	1.7.1			(Sand : Saturated)			2.5			
-					€ -200					
6th					Depth (m)					
Zth					d .250					
Estir	mation Results o				-250	Estin	nated Drilling	Depth		
uifer	Lithology	Sand (Ir)	Estimated SWL(GL-m)	100m (Confined?)	-300		22.0			
Target Aquifer	Depth (m)	>225m	Remarks:							
arge	Thickness (m)	>30m	-		-350		1 . A			
F	Resistivity (Ω-m)	22.0				-				
		Results of	of Evaluation		-400					
-	Estimated		Possibility /	A : High						
Drilling Depth(m) 255 m		255 m	Priority	Priority 2	-450			_		
Dr	arks							_		
					-		EGEND			
						~ 64	D-m	~ 300 m		
						~ 50				
Dr Rema						~ 100	Ω-m	~ 30Q-m ~ 50Q-m ~ 100Q-m		

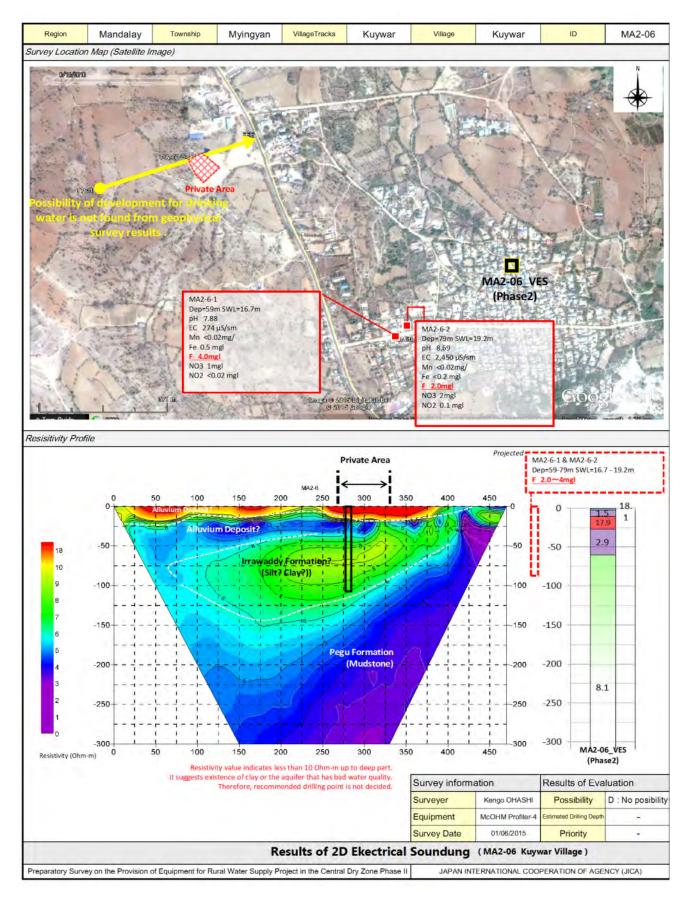
MG2-39 Hlebwegyi Village

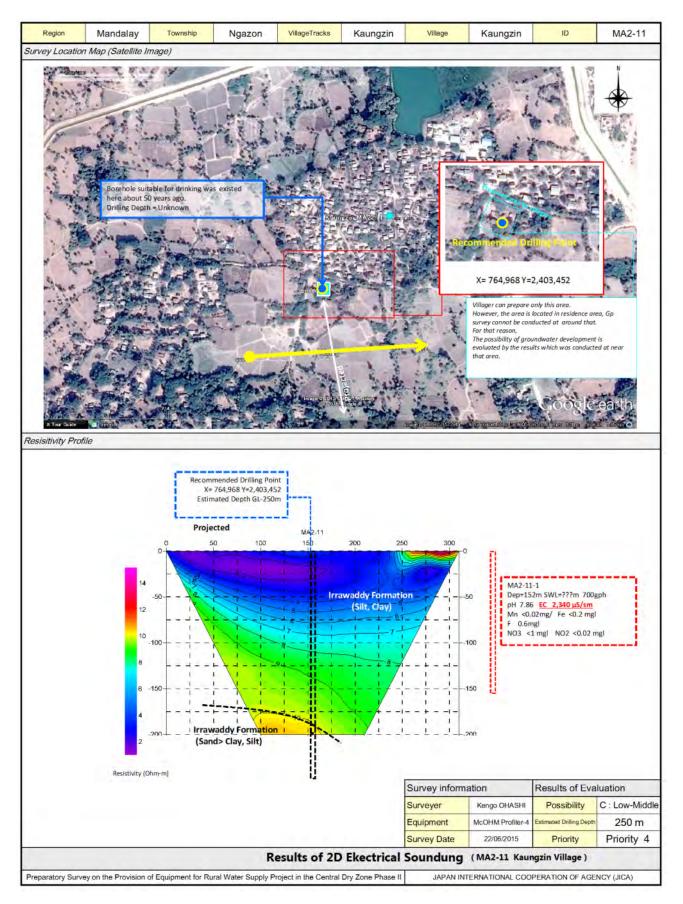

Analysis Results of Vertical El	lectrical Sounding	(Schlumberger Configuration)
---------------------------------	--------------------	------------------------------

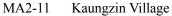


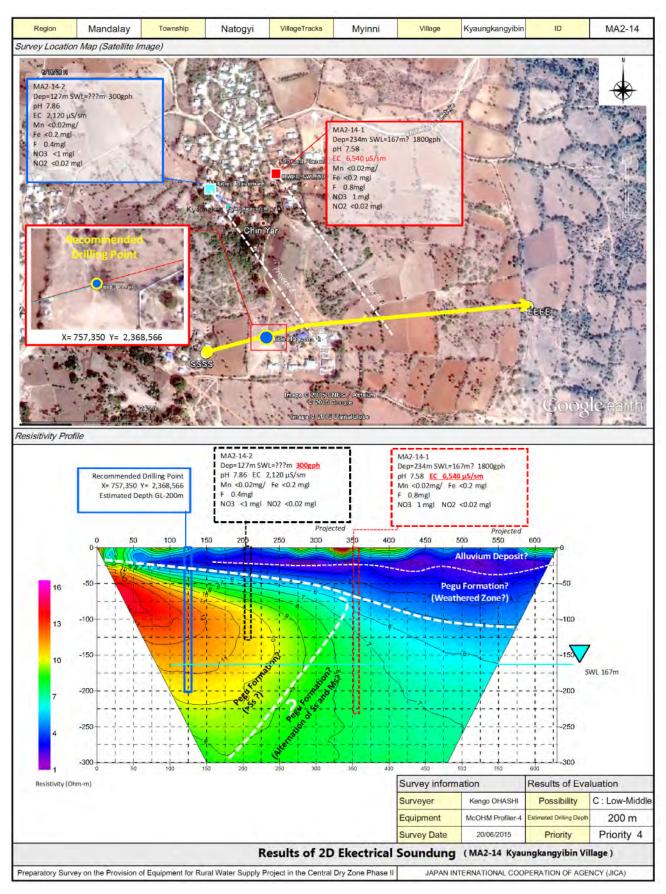

MG2-40 Yayhtwetgyi Village

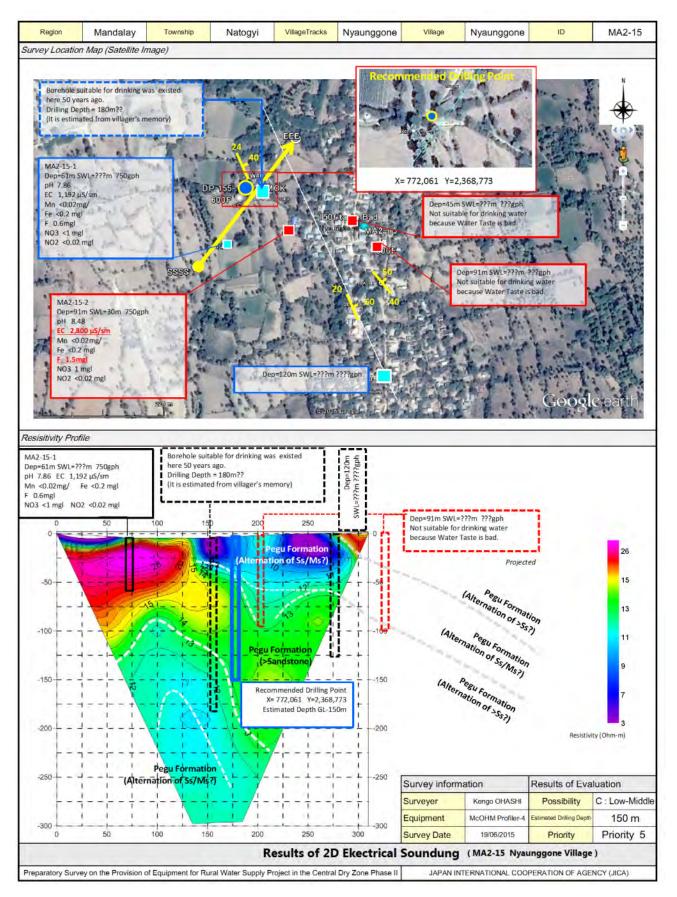

2D (Dimensional) Electric Survey

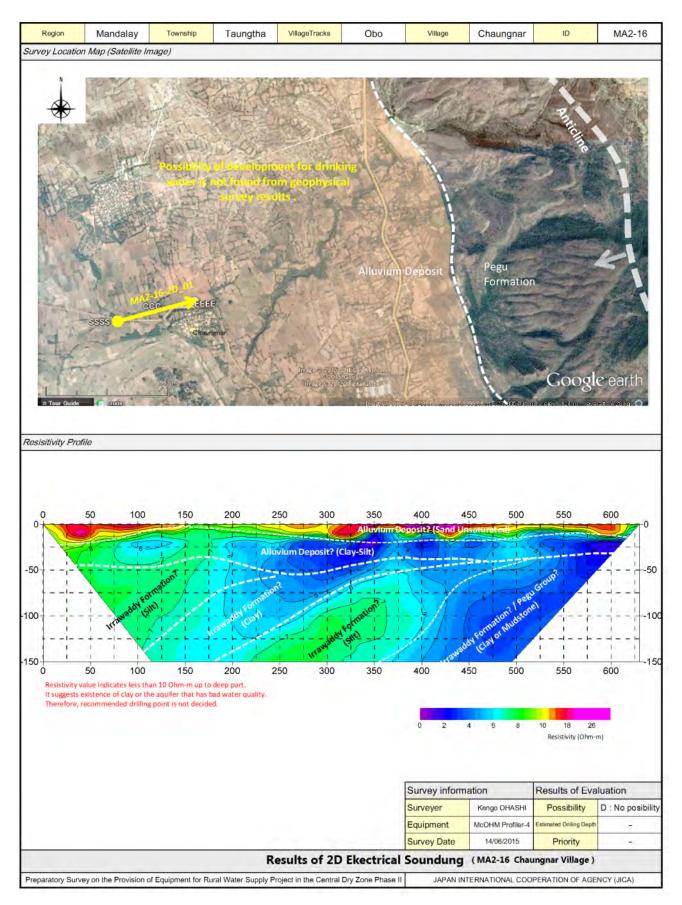

SA2-17	Kine Village
MA2-01	Htantawgyi Village
MA2-06	Kuywar Village
MA2-11	Kaungzin Village
MA2-14	Kyaungkangyibin Village
MA2-15	Nyaunggone Village
MA2-16	Chaungnar Village
MA2-18	Kyaukkartaungkone Village
MA2-21	Tharyarmyaing Village
MA2-32	Phoenekan Village
MA2-33	Nyaungbinthar Village
MA2-36	Aleywar-2 Village
MA2-38	Lelgyi(Ma) Village
MG2-12	Zeebwar Village
MG2-19	Legyinyo Village
MG2-28	Htonepoutchine Village
MG2-30	Sellel Village
MG2-33	Wayonegone Village
MG2-37	Kangyigone Village
MG2-38	Htaukkyantgwin Village

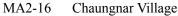


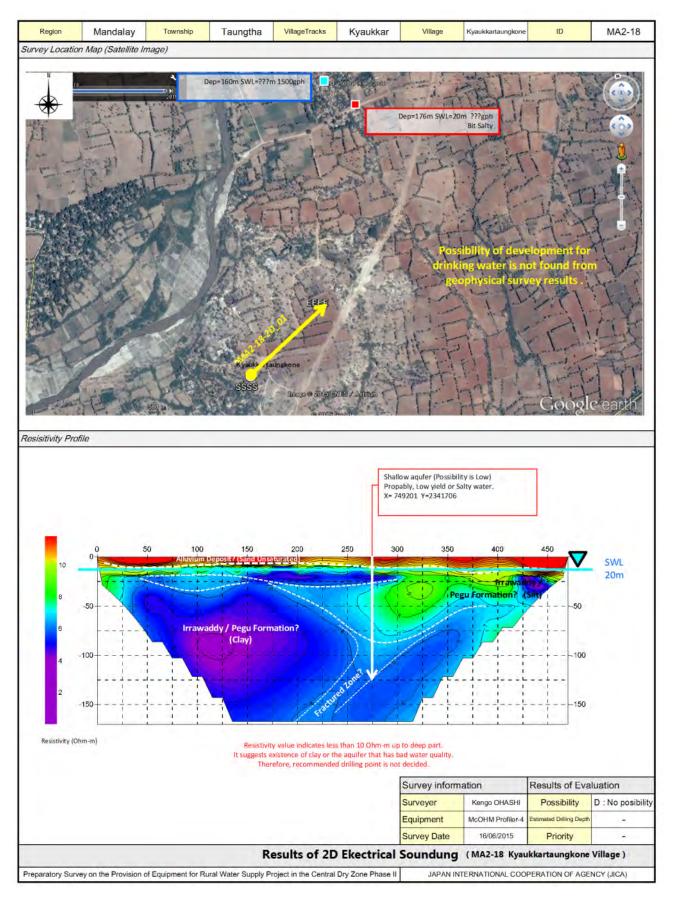


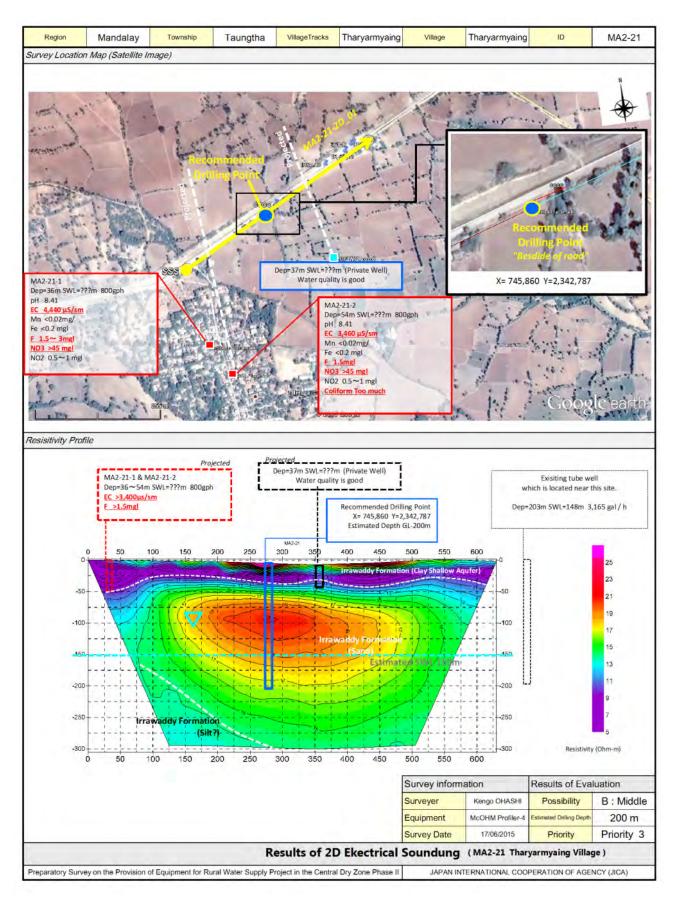


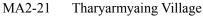

MA2-06 Kuywar Village

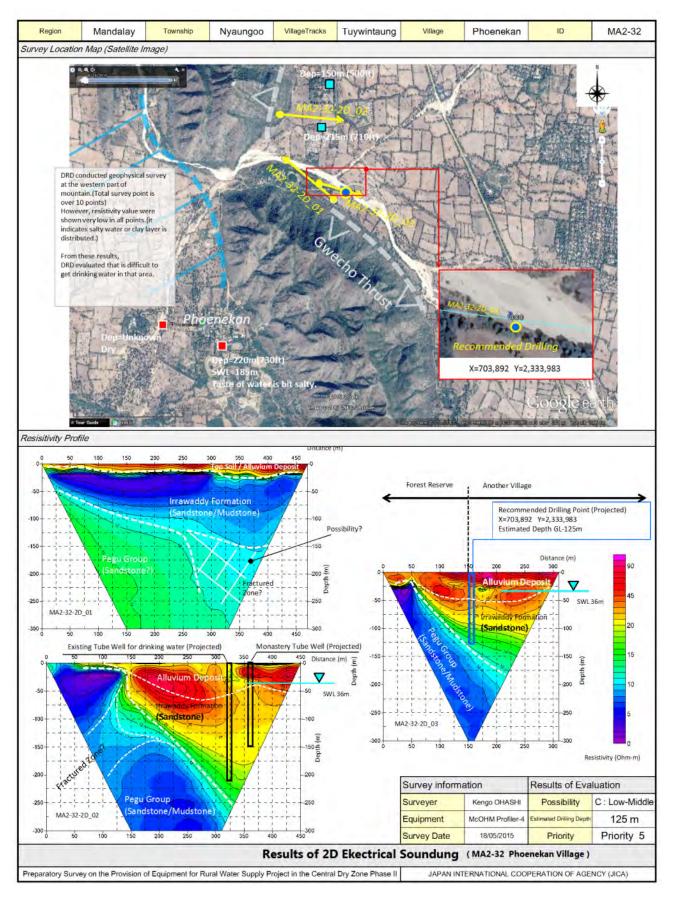




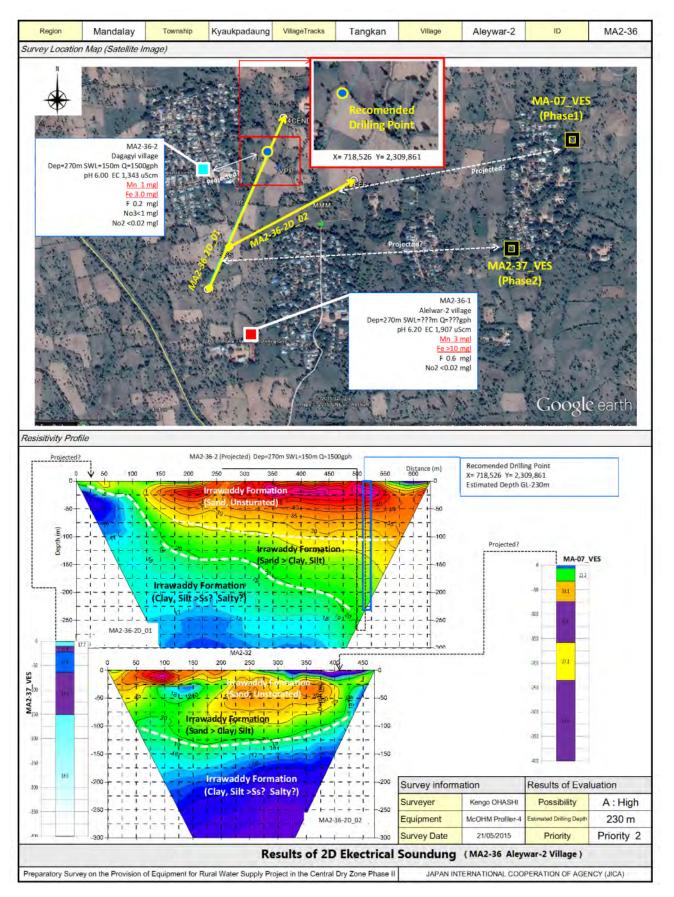

MA2-14 Kyaungkangyibin Village

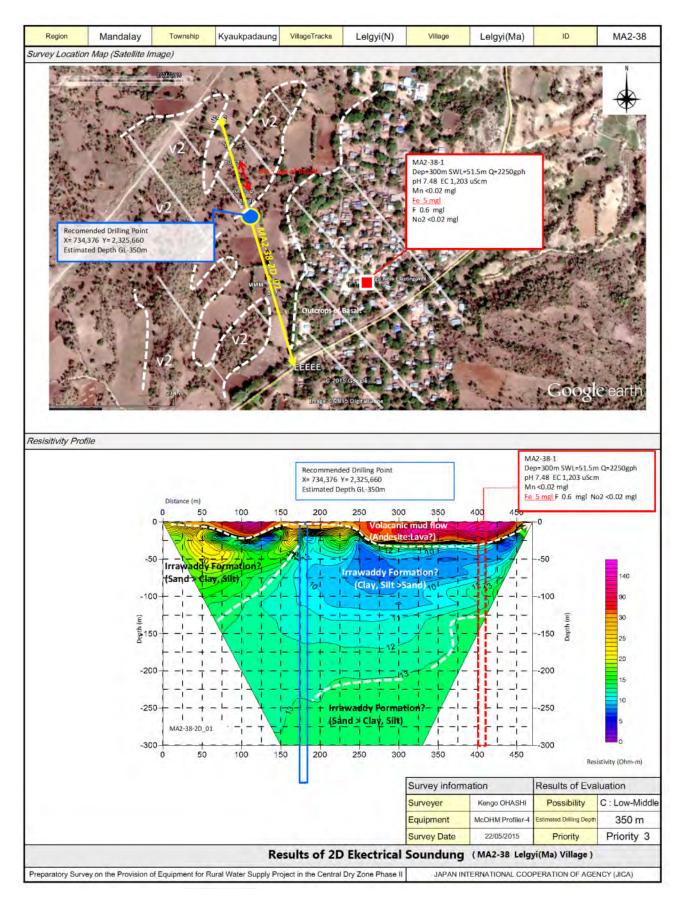

MA2-15 Nyaunggone Village

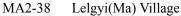


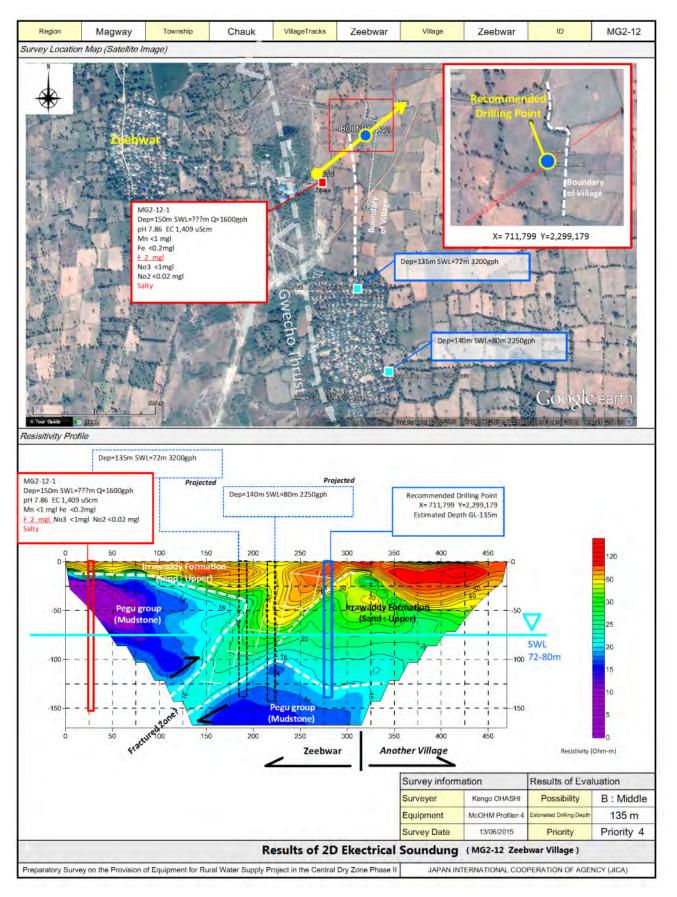


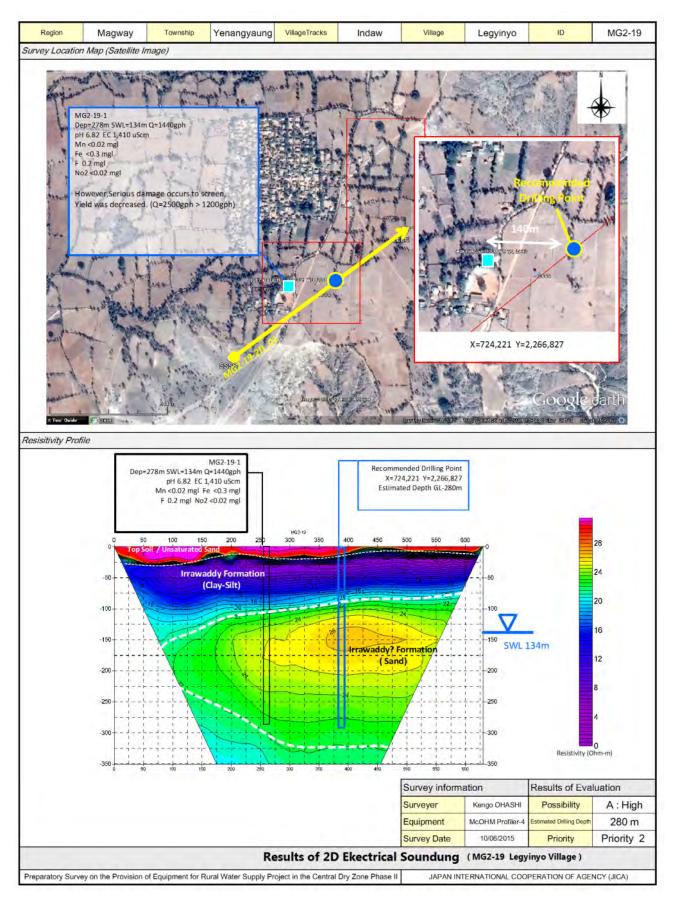
MA2-18 Kyaukkartaungkone Village

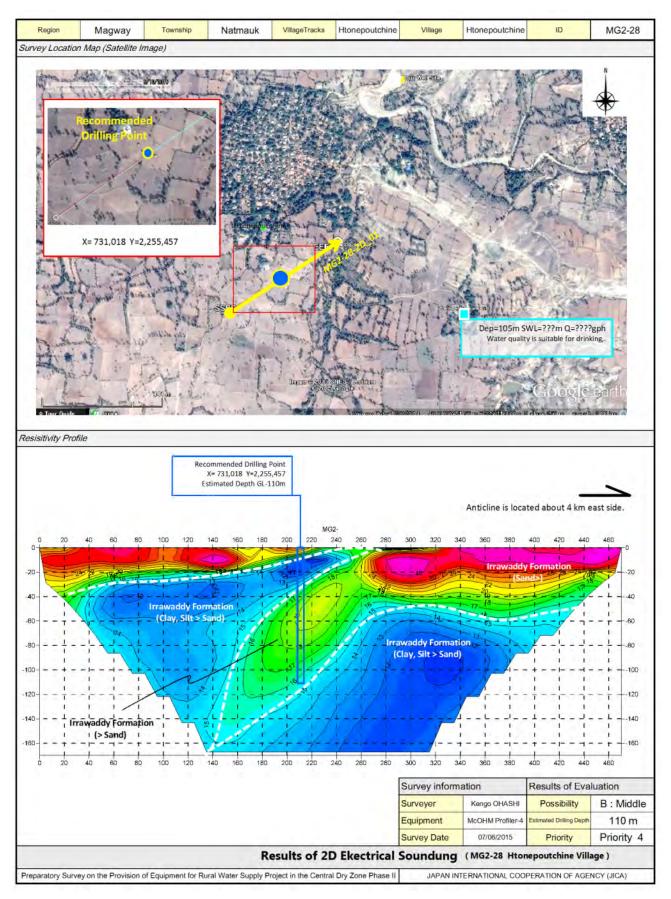


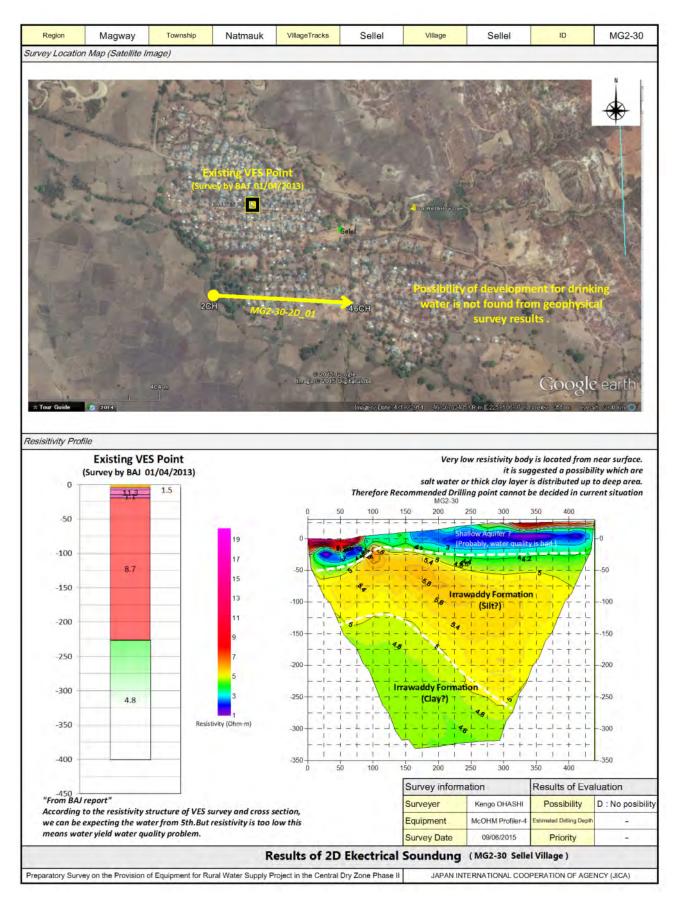

MA2-32 Phoenekan Village

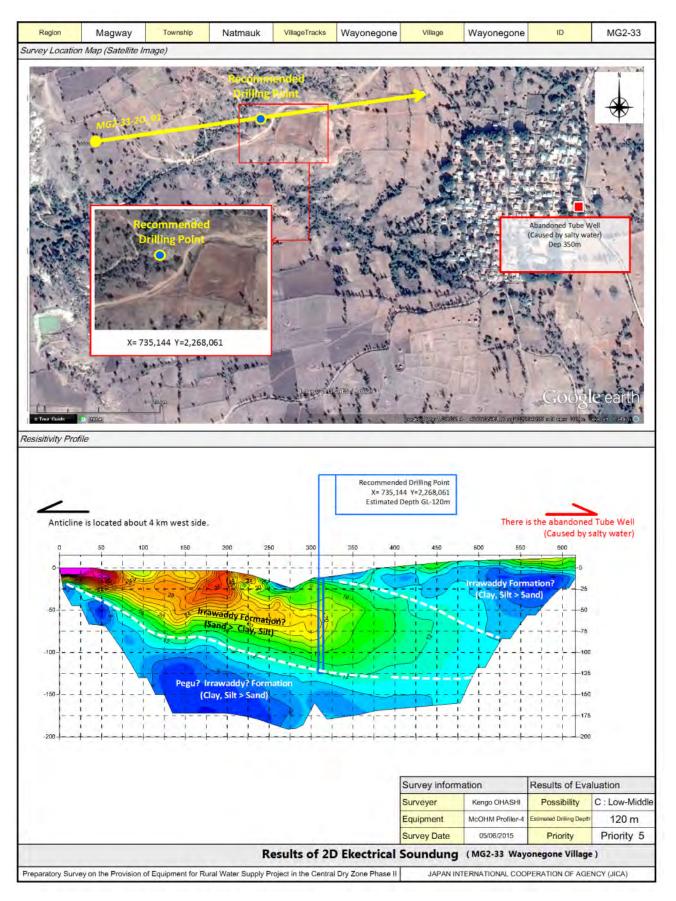


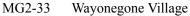

MA2-33 Nyaungbinthar Village

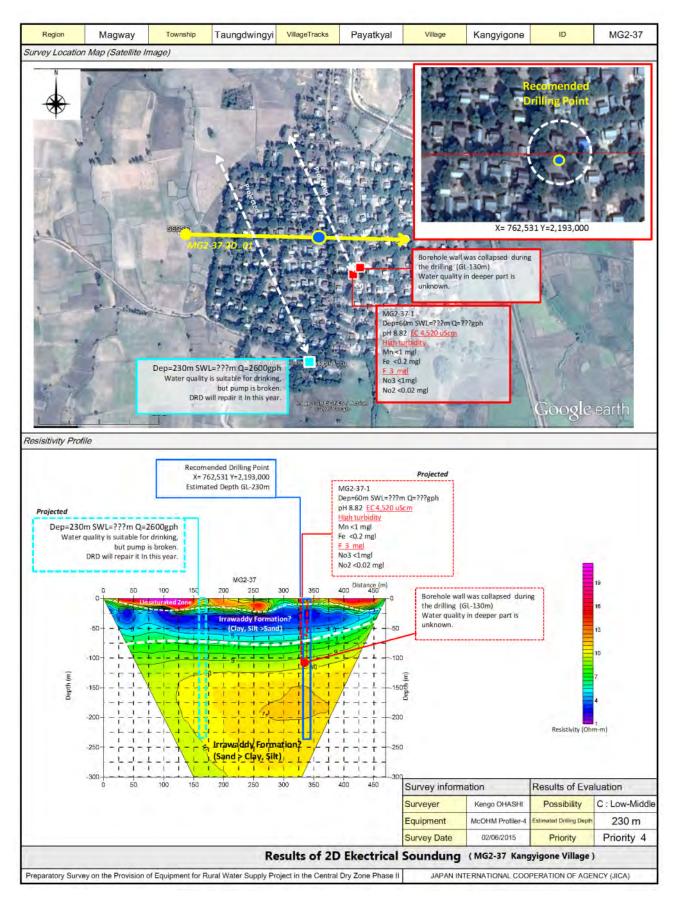

MA2-36 Aleywar-2 Village

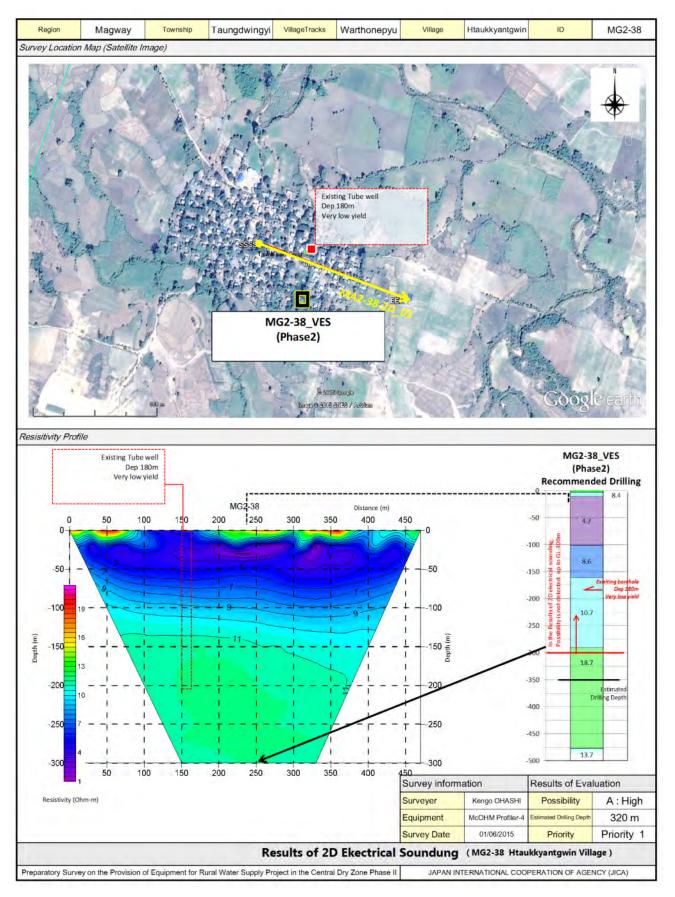





MG2-19 Legyinyo Village




MG2-28 Htonepoutchine Village



MG2-37 Kangyigone Village

MG2-38 Htaukkyantgwin Village

Appendix 5.2.3 Evaluation of Groundwater Development Potential in the Target Villages

_											Results of Geophysical Survey					4
Region			Village Tracks	Villages		1		Estimated Results of Target Aquifer				Estimated	Estimated	Recommended	Evaluation for possibility C	1
	No	Township			D	Survey Method	Surveyor	Distribution Depth (m)	Resistivity Value (Ω-m)	Thickness (m)	Remarks	Drilling Depth (m)	SWL Bm)	Screen	for	Priori
	1	-	Htanaungkone	Yonedaw	SA2-01	VES	DRD	>115	12.7	45	Drilling depth is decided by information of existing tube well.	160	40	18m	C	Priorit
	2		Ngapayin	Nyaungbinthar	SA2-02	VES	DRD	70 - 176	20.2	.90	Drilling depth is decided by existing lube well which is located near the site	160	40	12m	A	Priori
	з	Budaha	Maunghtaung	Maunghtaung	SA2-03	VES	DRD	>120	42.9	30	Potential of upper equifer(40.5-120.5m) is low, and water quality has little problem. (Salty)	150	40	12m	В	Prior
	4	Budalin	Ywarthit	Kantawthar	SA2-04	VES	DRD	>39	12.9 - 48.5	85	Drilling depth is decided by information of existing tube well.	125	39	18m	C	Prior
	5		Konethar	Mhonehtoo	SA2-05	VES	DRD	60 - 108	24.1	40	There is the possibility that the water quality worsens at 100m or lower.	100	30	12m	A	Prior
	6		Watluu-I	Watluu-I	SA2-06	VES	DRD	36 - 101	11.7	64	It is expected that capacity of target aquifers is low.	100	36	18m	C	Prior
	7		Thanbinkan	Thanbinkan	SA2-07	VES	DRD	49 - 200	37.2 - 17	101	Drilling depth is decided by information of existing tube well.	150	70	12m	A	Prior
	8		Natyaygan	Natyaygan	SA2-08	VES	DRD	>170	16.8	-30	Main selecton basis of drilling depth is resistivity value.	200	61	18m	в	Prior
	9	Ayadaw	Ngantowma	Sithar	SA2-09	VES	DRD	44 - 137	18.9	56	Drilling depth is decided by information of existing tube well.	100	44	12m	A	Prior
	10		Leinhla	Oakkan	SA2-10		DRD	54 - 277	11.9	176	Drilling depth is decided by information of existing tube well.	230	3	18m	с	Prior
	11 12 13 14 15 16 17 18 19 21 21 22 23		Warryaung	Warryaung	SA2-11		DRD	>165	18.2	85	Drilling depth is decided by information of existing tube well.	250	55	12m	A	Prior
			Yechinn	Warrtannkalay	SA2-12		DRD	43 -102	11.4	62	Drilling depth is decided by information of existing tube well.	105	43	18m	с	Prior
			Nyaungchayhtauk	Yathar	SA2-13		DRD		<10	-		-	1.4	4	D	1
			Wanyaung	Zeepinlel	SA2-14		DRD	75 - 129	25.2	55	It is expected that capacity of target aquifers is low.	130	50	18m	C	Prior
				Yonebinyoe	SA2-15		DRD		<10	-		1000		+	D	1
		Salingy	Yonebinyoe	Minntaw	SA2-16	-	DRD	74 - 172	40.5	96	It is assumed that water quality is not suitable for drinking at the shallow part of target aquifer	170	40	12m	в	Prior
			Moe Kyo Pyin	Kine	SA2-17				<10	-	1. States and the local field is not shown of shire fields in states. Local of \$1, states.		1		D	1.000
			Kalarovari	Kalarpyan	SA2-18		DRD	>161	21.6	39	It is assumed that water quality is not suitable for drinking at the shallow part of target equitar.	200	36	12m	A	Prior
9		Myinmu	Nyaungbinkan	Hlayookan	SA2-19		DRD	121-197	14.3	74	From existing borehole it is expected that capacity of target squifers is low	195	121	18m	c	Prior
			(Appride/inst)	Watkya	SA2-21		DRD	>168	11.4	32	Main selection basis of drilling depth is resistivity value	200	36	18m	c	Prior
RingRoo			Latpankyin	Thahtaykone(Ywarma)	SA2-22	and the second se	DRD	>144	12.5	36	Main selection base of chilling depth is resistivity value.	180	55	18m	C	Prior
,			Inma	Magyidaw	SA2-23		DRD	~ ~ ~	<10		umu seusenni nase ni muulii aakuu su sen suuri taas	,,,,,		10m	D	Pater
	24	-	unna,	Thindaw	SA2-24	-	DRD	52 - 90	20.9	28	- Main selection basis of drilling depth is resistivity value.	80	50	12m	A	Prior
	24		Thindaw	Lwingyi	SA2-25	A Constant of the local	DRD	>184	41	36	From existing borshole. It is expected that capacity of upper aquifer(99-184m) is low	220	31	12m	в	Prior
	26		Koetaungboh) SA2-26	-	DRD	>144	37.9	41	From existing borehole. It is expected that capacity of larget aquifer(32-rup-m) is low.	185	60	18m	C	Prior
	27	-		Koetaungboh(Kyunkone	SA2-20		DRD	<157	24 - 49	126		150	50	18m	c	Prior
	28	Kanbalu	Nyaungkanthar	Inngoteto	-	-	DRD	\$157	<10	120	From existing borehole it is expected that capacity of target equifiers is low	150	50	IOIII	D	FILO
	10000		Myayhtoo	Myayhtoo	SA2-28 SA2-29		and a second second second					215	20	-	c	Prior
	29		Khaowntar	Khaowntar	SA2-28	1.1.1.1	DRD	>182	13	33	Main selection basis of drilling depth is resistivity value.	175	30 50	18m 18m	c	Prior
	30 31		Nyuangkanthar	Nyuangkanthar	10000000		DRD		12.1	30	Main selection basis of drilling depth is resistivity value.	155	80		A	Prior
			Myaymon	Myaymon	SA2-31		-	>125	24.1		From information of existing tube well . It is assumed that upper aquifer (63-125m) has selinity. So, target equifer is set to lower layer (>125m)		-	12m		And Personnelle
	32		Pazigyi	Layytwinzin	SA2-32		DRD	>181	22	29	From information of existing tube wall . It is assumed that potential of upper equifer (117-161m) is low. So, target equifer is set to lower layer. (>181m)	210	120	18m	A	Prior
	33		Paygone(S)	Chaungchar	SA2-33	-	DRD	>174	16.3	31	Main selection basis of dnling depth is resistivity value.		60	18m	В	Prior
	34	Dahaur	Intimelay	Minyogone	SA2-34		DRD	42 - 159	12	68	Main selection basis of drilling depth is resistivity value.	110	3	18m	c	Prior
	35	Dabayin	Mintelgone	Shandaw	SA2-35		DRD	81 - 286	14.3	169	Drilling depth is decided by information of existing tube well.	250	0	18m	C	Prior
	36		Satpyargyin	Kyuntaw (S)	SA2-36	-	DRD	68-183	12.4	32	Drilling depth is decided by information of existing tube well.	100	68	18m	C	Prior
	37		Sharkwal	PalaeThwe (Ywarthit)	SA2-37	-	DRD	102-163	38.5	28	Main selection basis of drilling depth is resistivity value:	130	55	12m	A	Prior
	38	Wetlet	Poukkan	Poukkan	SA2-38		DRD	-	<10	~	-	-	~	-	D	
	39		Yonepingone	Shwenyaungtaw	SA2-39		DRD	-	<10	-		(*) ···	181	(max)	D	
	40		Khawtaw	Sabeidaw	SA2-40	VES	DRD	4	<10	-	-		-		D	

Result of Evaluation (Sagaing Region)

1		· · · ·		1	-			_		Results of Geophysical Survey		1	1	1	1
		Village Tracks				1.00	Estimated Results of Target Aquifer			Estimated	Estimated	WL Screen m) range	Evaluation		
No	Township		Villages	ID	Survey Method	Surveyor	Distribution Depth (m)	Resistivity Value (Ω-m)	Thickness (m)	Remarks	Drilling Depth (m)	SWL 8m)	Screen	for possibility	Pnorit
41		Yayhtwet	Htantawgyi	MA2-01	20	ESS	100 - 150	>11	50	Main selection basis of drilling depth are resistivity value and geological cross section.	150	60	18m	C	Priori
42	Mahlaing	Kyatse	Asone	MA2-02	VES	GH	125 - 265	15	25	Mein selection basis of drilling depth is resistivity value.	150	60	18m	Б	Prior
43		Yaychobutar	Khinthar(S)	MA2-03	VES	GH	>235	10.4	35	Main selection basis of drilling depth is resistivity value.	270	60	18m	с	Prior
44		Chaysay	Chaysay	MA2-04	VES	DRD	>132	18.7	28	Main selection basis of drilling depth is resistivity value.	160	50	12m	A	Prio
45	Munanan	Pintai	Talgyi	MA2-05	VES	DRD	>136	14	34	Main selection basis of drilling depth is resistivity value.	170	50	18m	С	Pric
46	Myingyan	Kuywar	Kuywar	MA2-06	VES/2D	DRD/ESS		<10					-	D	
48		Phatpin-I	Nyaungwum	MA2-08	VES	GH		<10	1.00		1.020	8	18.	D	1.00
51	Ngazon	Kaungzin	Kaungzin	MA2-11	2D	ESS	>200	>10	70	Main selection basis of drilling depth is resistivity value.	250	100	18m	C	Prio
54	bistoria	Myinni	Kyaungkangyibin	MA2-14	2D	ESS	167-200	10 - 11	33	Main selection basis of drilling depth is resistivity value.	200	167	18m	С	Pric
55	Natogyi	Nyaunggone	Nyaunggone	MA2-15	2D	ESS	100 - 150	13-14	50	Main selection basis of dilling depth is resistivity value.	150	61	18m	С	Pric
56		Obo	Chaungnar	MA2-16	2D	ESS	-	<10			0.9	() (1	1.1	D	1.77
57		Zagyan	Chaungsone(La)	MA2-17	VES	GH	112-189	18.1	28	Drilling depth is decided by Information of existing tube well	140	98	12m	A	Pric
58	Toungtha	Kyaukkar	Kyaukkartaungkone	MA2-18	2D	ESS		<10	-	-	-	-	-	D	
59	Taungtha —	Venmuel	Tharzi	MA2-19	VES	GH	154-290	14.3	137	From Information of existing tube well. It is assumed that potential of target aquifer is low:	290	154	18m	С	Pric
60		Kanmyel	Kanaye	MA2-20	VES	GH	105-268	17.8	160	From information of existing tube well. It is assumed that potential of target aquifer is low.	265	105	18m	С	Pric
61		Tharyarmyaing	Tharyarmyaing	MA2-21	2D	ESS	150 - 250	16-17	50	Drilling depth is decided by information of existing tube well.	200	150	18m	В	Pric
62	Yamethin	Myinnar	Oakpo	MA2-22	VES	DRD	126-263	11.1	134	From information of existing tube well. It is assumed that potential of target aquifer is low:	260	30	18m	C	Pric
63	(officiality	Nabukyin	Kangyi	MA2-23	VES	DRD	>314	13.7	36	Main selection basis of drilling depth is resetivity value.	350	200	18m	С	Prie
64	Pupulawa	Seitcho	Htanekan	MA2-24	VES	DRD	>236	11.7	34	Main selection basis of drilling depth is resetivity value.	270	30	18m	С	Pri
65	Pyawbwe	Selutio	Waryonesu	MA2-25	VES	DRD	>278	22.4	27	Main selection basis of drilling depth is reastivity value.	305	11	12m	A	Prie
66		Sinthamway	Talkone	MA2-26	VES	DRD	>245	21.9	30	Main selection basis of drilling depth is resistivity value.	275	150	12m	A	Pric
67		Tawbyar	Tawbyar	MA2-27	VES	DRD	176-265	40.9	89	Drilling depth is decided by information of existing tube well.	265	176	12m	В	Pric
68		Setsetyo	Setsetyo	MA2-28	VES	DRD	>363	31.2	27	Main selection basis of drilling depth is resistivity value.	390	269	12m	A	Pric
69		Pyon	Kanzauk	MA2-29	VES	DRD	>65	17.9-49.0	1357	Drilling depth is deaded by information of existing tube well.	200	65	12m	A	Pric
70	Nyaungoo	Kantain	Talbindel	MA2-30	VES	DRD	211-300	26.9	90	Drilling depth is decided by information of existing tube well	300	210	12m	A	Pric
71	nyyadnigoo.	Tawpyar	Mongywettaw	MA2-31	VES	DRD	>210	34.1	60	Drilling depth is decided by information of existing tube well.	270	210	12m	A	Pric
72		Tuywintaung	Phoenekan	MA2-32	2D	ESS	<125	14 -30	90	Drilling depth is decided by information of existing tube well.	125	35	18m	С	Pri
73		Nyaungbinthar	Nyaungbinthar	MA2-33	2D	ESS	150 -200 (<200)	19-20	50	Main selection basis of dnling depth is resistivity value.	200	100	12m	A	Pric
74		Kudaw	Saingkan(Tetide)	MA2-34	VES	DRD	>263	19.9	107	Drilling depth is decided by information of existing tube well.	370	263	12m	Α	Prie
75		Byugyi	Byugyi	MA2-35	VES	DRD	>231	23.6	79	Drilling depth is decided by information of existing tube well	310	230	12m	A	Pric
76		Tangkan	Aleywar-2	MA2-36	2D	ESS	<230	20-30	80	Dnilling depth is decided by information of existing tube well.	230	150	12m	A	Pric
78	Kyaukoadauaa	Leigyi(N)	Leigyı(Ma)	MA2-38	2D	ESS	>300	>13	50	Main selection basis of drilling depth is resistivity value.	350	51.5	18m	С	Pric
79	Kyaukpadaung -	Kannbyu	Thayattaw	MA2-39	VES	DRD	>223	38,7	127	From information of existing tube well. It is assumed that potential of target aquater is low.	350	223	18m	С	Pric
80		Nakyatkhwal	Nakyatkhwal	MA2-40	VES	DRD	233-300	33.4	62	Drilling depth is decided by information of existing tube well	295	67	12m	A	Prio

Result of Evaluation (Mandalay Region)

Result of Evaluation (Magway Region)

				ii -	-	_	-	T			Results of Geophysical Survey	1	1		1	
Region		Township	Village Tracks	Villages				Estimated Results of Target Aquifer			Estimated	Estimated	Recommended	Evaluation		
	No.				ID	Survey Method	Surveyor	Distribution Depth (m)	Resistivity Value (Ω-m)	Thickness (m)	Pemarks	Dolling Depth (m)	SWL 8m)	Screen	for possibility	Prior
8	81		Natkan	Natkan	MG2-01	VES	ESS	121 - 251	20.4	59	Drilling depth is decided by information of existing fube well.	180	75	12m	A	Priori
	82		Sharzaungkan	Thanbo(Ywarthit)	MG2-02	VES	ESS	>73	14.9	47	Drilling depth is decided by information of existing tube well.	120	73	18m	C	Prior
	83 84		Kyarkan	Nyaungbinthar	MG2-03	VES	ESS	>148	17.8	52	Drilling depth is geoded by information of existing tube well.	200	150	12m	A	Prior
			Nyaungbinthar	Konegy	MG2-04	VES	ESS	>213	36.4	27	Main selection basis of drilling depth is resistivity value.	240	134	12m	A	Prio
	85	Magway	Paypinsan	Sainggya	MG2-05	VES	ESS	>162	15.8	38	Drilling depth is decided by information of existing tube well.	200	162	18m	в	Prio
	86		Thapyaysan	Thapyaysan(N)	MG2-06	VES	ESS	>139	29.1	51	Drilling depth is decided by information of existing tube well.	190	108	12m	A	Prior
	87		Supyitsan	Shwekyaw	MG2-07	VES	ESS	89 - 217	18.2	117	Drilling depth is decided by information of existing tube well.	200	89	12m	A	Prior
	88		Nyaungkan	Leikkan	MG2-08	VES	ESS	95-206	39.6	25	Main selection basis of drilling depth is resistivity value.	120	100	12m	A	Prior
	89		нуаридкан	Ywarthitgyi	MG2-09	VES	ESS	>107	19.2	73	Drilling depth is decided by information of existing tube well.	180	105	12m	A	Prior
	90		Thanbo	Kanyaygyi	MG2-10	VES	GH	>212	56.2	118	It is assumed that potential of target aquifer is low.	330	212	18m	С	Prior
	91 92 93 94 95 96 97 98 99 100 101 102 103 104	Chauk	Myaysoon	Myaysoon(Ywarthit)	MG2-11	VES	GH	>150	31.2	110	Drilling depth is decided by information of existing tube well.	260	150	12m	A	Prior
			Zeebwar	Zeebwar	MG2-12	2D	ESS	<135	15-21	55	Drilling depth is decided by information of existing tube well.	135	80	18m	В	Prior
			Chaungtat	Yenpyay	MG2-13	VES	GH	>115	22.2	55	Drilling depth is decided by information of existing tube well.	170	115	12m	A	Prior
			Pakhannge	Kyatesu(N)	MG2-14	VES	GH	>117	24.5	28	Main selection basis of drilling depth is resistivity value.	145	23	12m	A	Prior
			Salintaung	Winkabar	MG2-15	VES	GH	>71	22,9	39	Drilling depth is decided by information of existing tube well.	110	30	12m	A	Prio
			Magyikone	Kyatkan	MG2-16	VES	GH	>80	23.8	90	Drilling depth is decided by information of existing tube well.	170	100	12m	A	Prior
			Gwaypin	Sudat	MG2-17	VES	GH	>270	39.2	100	Drilling depth is decided by information of existing tube well	370	270	12m	A	Prior
(pagena)			Nyaungzin	Myaynilain	MG2-18	VES	GH	160 - 268	44.9	89	Drilling depth is decided by information of existing tube well.	250	160	12m	В	Prior
50		Yenangyaung	Indaw	Legyinyo	MG2-19	2D	ESS	134-280	23-25	146	Drilling depth is decided by information of existing tube well.	280	134	12m	A	Prior
		Myothit		Laylinesin(S)	MG2-20	VES	GH	>109	23.1	91	Drilling depth is decided by information of existing tube well.	200	109	12m	A	Prior
			Laytinesin	Tharmyar	MG2-21	VES	GH	170-362	33.1	30	Drilling depth is decided by information of existing tube well	200	120	12m	A	Prior
				Aungmyinthar	MG2-22	VES	GH	55-124	16.5	65	From information of existing tube well, it is assumed that potential of target aquifer is low.	120	55	18m	С	Prior
			Wargyiini	Ngwelay	MG2-23	VES	GH	52-112	46.9	63	Drilling depth is decided by information of existing tube well.	115	52	12m	В	Prior
			Htauksharkan	Indaw(N)	MG2-24	VES	GH	>110	17.8	30	From information of existing tube well, it is assumed that potential of target equifer is low.	145	55	18m	C	Prior
	106		Manawikone	Manawtgone	MG2-26	VES	GH	98-305	28.5	32	Drilling depth is decided by information of existing tube well	130	24	12m	A	Prior
	107	Natmauk	I-Sauk	Kangyigone	MG2-27	VES	ESS	141-220	26.2	79	Drilling depth is decided by information of existing tube well.	220	141	12m	A	Prior
	108 110 112 113 114 115		Htonepoutchine	Htonepoutchine	MG2-28	2D	ESS	60-110	15-17	50	M≊in selection basis of drilling depth is resistivity value.	110	70	18m	В	Prior
			Sellel	Sellel	MG2-30	2D	ESS		<10	-			-	-	D	
			Tegyi	Ywartharlay	MG2-32	VES	ESS		<10	-				-	D.	
			Wayonegone	Wayonegone	MG2-33	2D	ESS	<120	12-20	40?	Meim selection basis of drilling depth is resistivity value.	120	70	18m	C	Prior
			Htonepoutchine	Nyaunggone	MG2-34	VES	ESS	57-147	25.1	53?	Drilling depth is decided by information of existing tube well.	110	70	12m	A	Prior
			I-Zauk	Kyugyaung	MG2-35	VES	ESS	>175	15.8	45	Drilling depth is decided by information of existing tube well.	220	140	18m	В	Prior
-	116		Pantwinlay	Kokkohla	MG2-36	VES	ESS	-	<10	-		1.25	-	-	D	1
-	117		Payatkyal	Kangyigone	MG2-37	2D	ESS	150 - 230	11	80	Dilling dapth is decided by information of existing tube well.	230	70	18m	c	Prior
	118	Faungdwingyi	Warthonepyu	Htaukkyantgwin	MG2-38		ESS/GH	290-477	18.7	30	Main selection basis of dnilling depth is resistivity value.	320	100	12m	A	Prio
	119			Hlebwegyi	MG2-39	VES	ESS	>225	22	30	Main selection basia of drilling depth is resistivity value.	255	100	12m	A	Priori
1	120		Hlebwegyi	Yayhtwelgyi	MG2-40		ESS	82-226	37.7	98	Drilling depth is decided by information of existing tube well	180	40	12m	٨	Priori