Japan International Cooperation Agency

National Power Transmission Network Development Project in Myanmar (Power Network System Plan) Project Completion Report

May 2015

Tokyo Electric Power Company Inc.

Contents

Chapter 1.	Introduction 1
Chapter 2.	Situations of Land Acquisition 3
Chapter 3.	Confirmation of the Latest Plans of Power Generation, Transmission lines
	and Substation 8
Chapter 4.	Power Flow Analysis for the 500 kV System of Phase 2 and 230 kV system
	in around Yangon 13
Chapter 5.	Recommendations for Future Power System Configuration 30
<appendix 1=""></appendix>	Questionnaire for the Counterparts during the First Site Survey
<appendix 2=""></appendix>	Presentation Material for Explanation of Power System Plan to the
	Counterparts during the Second Site Survey
<appendix 3=""></appendix>	Main Part of the Data for Power System Analysis of Base Case
<appendix 4=""></appendix>	Option of the System Configuration with 230 kV Interconnection between
	East and West and the Eastern 500 kV Substation around Yangon

Chapter 1. Introduction

1.1 Member of the Mission and His Duty

Masaharu Yogo, TEPCO, Power System Planner

1.2 Name of the Project

National Power Transmission Network Development Project in Myanmar

1.3 Purpose of this Investigation

Myanmar government cited the development of 500 kV transmission lines and substations as a matter of priority and issued a request of their development by utilizing yen loan. According to the request, the Japanese Government informed Myanmar government of a new yen loan project as the donor policy on March 24, 2014 targeting "National Power Transmission Network Development Project Phase 1" in Myanmar. Furthermore, following the Phase 1, the rapid development of Phase 2 are also needed. In this survey, engaged member will carry out the supplementary investigation in cooperation with his counterpart, the Myanmar Electric Power Enterprise, in order to examine and recommend the appropriate power system plan for preparation of yean loan project by collecting and organizing the relevant information based on the current plans and implementation of the transmission lines and substation projects by Myanmar Government, power generation plans utilizing IPP and the support planning and implementation status of other donors.

1.4 Methodology of Investigation

The necessary investigation has been carried out for making the reports required for yen loan appraisal regarding the power system plans of Myanmar by collecting its relevant information and reviewing them through the discussion with JICA Staff and Social & Environmental Specialist who has been also assigned in this task.

1.5 Work Schedule

Contract term: from January 16, 2015 to May 29, 2015 The First Site Survey: From January 18, 2015 to January 28, 2015 The Second Site Survey: From March 16, 2015 to March 21, 2015

1.6 Survey in Myanmar

On January 19, 21 and 22, 2015, the relevant information was collected through the

discussion with Power Transmission Project Department of MEPE and DEP based on the questionnaire listed in Appendix 1.

On January 26, the site surveys of future locations of Phayargyi and Hlaingtayar substations were carried out to confirm the latest situations regarding "Phase 2 Project". On March 18 and 19, the mission team had a meeting with MEPE' engineers to discuss the cost of the transmission lines and explain the some recommendations for power network system plan. The following sections describes the relevant information and the results of the study of the power system plans.

Chapter 2. Situations of Land Acquisition

2.1 500 kV Phayargyi Substation

During the first site investigation, it was found out that the location of the candidate site of 500 kV Phayargyi Substation had been moved to the outside of the military land by around 1 km in the south direction because the permission for its land usage had not been given by the military. The new site is a plane land without any hats or buildings, but with containing a wet land even in dry seasons. The 500 kV switch yard will be installed in the north and the 230 kV switch yard will be installed in the south where 230 kV transmission lines will be derived. The route of the transmission line from the original Pharyargyi substation to Hlaingtayar substation has not been changed from the results of the study in 2014. However, the new additional route from the new candidate site to the original site has to be required. The new route has no hats or buildings.

During the second site investigation, it was found out that the location of the candidate site of 500 kV Pharyargyi was moved to the north by around a hundred meter. The situations of the candidate sites of Pharyargyi are depicted in Figure 1 and 2.

2.2 500 kV Hlaingtayar Substation

During the first investigation, it can be found out that the land for the new 500 kV Hlaingtayar Substation was owned by seven households. The six of them had been already paid for land provision, however, one of them would not enter into negotiations with MEPE and it seemed difficult to negotiate him. Lacking of his land would increase in the cost of substation because it requires compact facilities such as Gas Insulated Switchgears (GIS). Thus, the new additional land acquisition neighbor to the original land in the east direction was proposed and MEPE was expected to study its adequacy. (Figure 3) The candidate site is a plain land with only a small hut utilized for agricultural works. The 500 kV switch yard will be installed in the north and the 230 kV switch yard will be installed in the south. During the second site survey, it was found out that the land depicted in Figure 4 had been acquired.

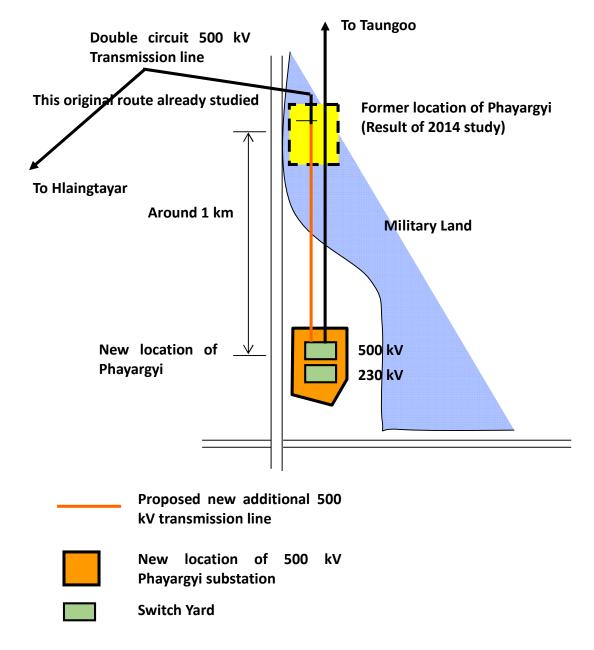


Figure 1 New Location of 500 kV Phayargyi Substation

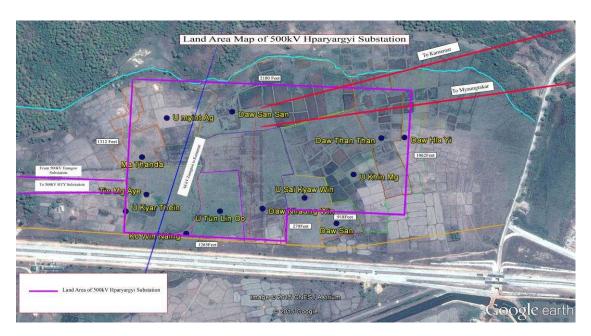
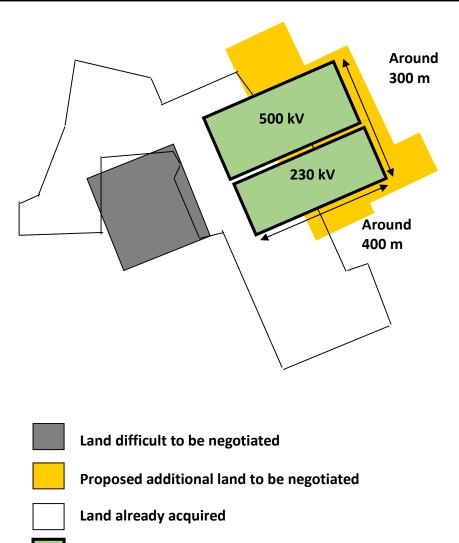



Figure 2 Land of 500 kV Phayargyi Substation (Google earth)

Switch Yard

Figure 3 Land of Hlaingtaryar

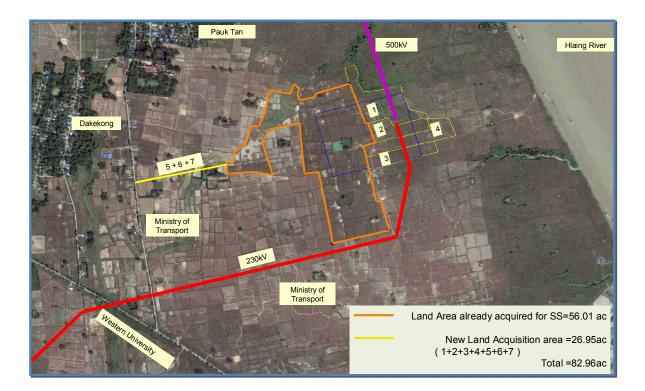


Figure 4 Land of Hlaingtaryar (Google earth)

Chapter 3. Confirmation of the Latest Plans of Power Generation, Transmission lines and Substation

3.1 Power Demand Forecast and Power Generation Plan

The maximum electric power demand during the peak demand period of time (from March to May) in 2015 was forecasted as 1,500 MW for Yangon and 2,500 MW for the system of the whole country. From 2015, the yearly growing ratio of the maximum power demand is expected over 15%. DEP expressed an opinion that the latest demand forecast was the result of its study of the JICA Master Plan. The total generation capacity of Yangon city is currently 370 MW and expected to become 800 MW at the end of 2015.

3.2 Plan of 230 kV Transmission Lines and Substations in Yangon

MEPE planned 230 kV transmission lines and substations in Yangon as shown in the following table.

Tuble I Hojeet Hun for Fungon Division			
No.	Name of Projects	Expected Fund	
1.	230 kV Ahlone-Thidar Transmission Line & Substation	China Exim Bank	
2.	230 kV Tharkata-Kyaikasan Transmission Line & Substation	ADB	
3.	230 kV Tharkata - Thidar Transmission Line	ADB	
4.	230 kV Ahlone Dala Transmission Line & Substation	MEPE	
5.	230 kV (Hlawga-Tharketa) In/Out Transmission Line & South	MEPE	
	Oakkalar Substation		
6.	230/66/11 kV, (2x125) MVA Bayintnaung Substation Extension	Deferred	
7.	230/33 kV, (2x100) MVA West University Substation	Deferred	

Table 1 Project Plan for Yangon Division

The number of circuits between Ahlone - Thidar was assumed two and Thidar - Thaketa single in this study according to the ADB's Report "TA 8342 MYA Preparing the Power Transmission and Distribution Improvement Project" by Fichtner".

The comments raised for the abovementioned list was as follows.

- All the projects were under discussion in the similar situation as "National Power Transmission Network Development Project Phase 2". However, MEPE hoped to complete all the project within two years. That was expected to be completed by the end of 2018.
- The 230 kV Ahlone-Dala transmission line listed in the number 4 probably to be carried out using its own funds of MEPE because the length of this transmission line was very short.
- Bayintnaung substation listed in 6 was expected to be completed in 2017 because this project contained just the expansion of substation.

• The projects of "Deferred" were still opened to the tenders.

The following comments were raised for the Project that were not listed in Table 1.

- The completion year was uncertain of 500 kV Phayargyi Dawei transmission line because it depended on the plan of the Dawei power station.
- Shweli 3 was scheduled to be completed in 2020. There was an enterprise company that expressed an interest in the installation of 500 kV transmission line from Shweli 3 to Meiktila and said that he might implemented.
- The survey of the transmission line from Mawlamyine to Dawei has been asked to China Exim Bank. Dawei would have large power demand forecast due to its SEZ.

3.3 Transmission Lines connected to New 500 kV Substations of Phase 2 Project just after their completion

According the information gathered during the first site survey, MEPE said that there were no changes from the results of the study in 2014 of the transmission line connection to new 500 kV substations of Phase 2 Project.

However, some 230 kV transmission lines connected to 500 kV substations were changed. Those should be confirmed at the stage of detailed design.

Current status of the progress of 230 kV transmission line connection to 500 kV substations are as follows.

• 500 kV Phatryargyi Substation

In 2019, the 500 kV Pharyargyi substation will be connected to the newly constructed 230 kV transmission line between Tharyargone - Kamarnat where 500 kV Pharyargyi substation is located in the middle of the line. The transmission line between Pharyargyi and East Dagon was not yet decided, however, it would take normally only three years from its plan to its operation in MEPE.

• 500 kV Hlaingtyar Substation

As mentioned later, 230/33 kV West University substation will be constructed in the same location as 500 kV Hlaingtayar Substation by ADB. 230/33 kV West University substation will collect the existing transmission line from Mayungtagar - 230 kV Hleingtayar. 500 kV Hlaingtayar Substation will be installed as the expanded substation of 230/33 kV West University.

3.4 Main Specifications of Phase 2

The mission team had discussions with Power Transmission Project Department of MEPE regarding the main specifications of Phase 2 Project based on the previous study in 2014.

No main specifications had been changed except for pollution level of insulators.

- MEPE hoped to apply the heavy pollution level to the route around 4 to 5 km before reaching 500 kV Hlaingtayar substation. On the other hand, the light pollution level was recommended to be applied for the whole of the transmission line routes by JICA team side based on the site survey in the 2014 previous study and this study. The applied pollution levels should be discussed with MEPE during the detailed design stage.
- MEPE raised a comment that they hoped to know the O&M methodology for Oil Forced Cooling System to maintain its better insulation. (Some know-hows are considered such as Dessolved Gas Analysis and Reduce Oil Circulator Speed)

3.5 Reviewing ADB's Report (by Fichtner)

The ADB's report "ADB - TA 8342 MYA Preparing the Power Transmission and Distribution Improvement Project" (Fichtner, Feb.2015) has been reviewed unofficially by the mission team (not through MEPE).

The demand forecast of ADB's Report was a little bit lower than that of JICA Master Plan as follows.

- The maximum demand for the whole system in ADB's Report Year 2020: 3,728 MW, Year 2030:7,498 MW
- The maximum demand for the whole system in JICA Master Plan Year 2020: High Case 4,531 MW, Low Case 3,862 MW Year 2030: High Case 14,542 MW, Low Case 9,100 MW

The following projects in around Yangon were recommended in the ADB's report. Thida - Thaketa TL, Thaketa SS (extension), Thaketa - Kyaikasan, Kyaikasan SS (new), South Oakkalarpa SS (new), West University SS (new)

The 230/33kV West University Substation that is listed above, was not informed in Table 1. However, this substation would have an effect on the Phase 2 Project because the ADB report described this substation was to be installed at the same location of 500 kV Hlaingtayar substation of Phase 2. JICA mission team had a discussion with MEPE regarding this substation.

3.6 230/33kV West University Substation

MEPE informed that The 230/33 kV West University Substation was planned to be installed

at the same land as the candidate site of the 500 kV Hlaingtayar Substation and the bus bars of 230/33 kV West University Substation would be expanded and connected to the 500 kV Hlaingtyar substation. Its implementation schedule was not yet decided.

Points to note regarding the connection of the 230/33 kV West University Substation and the 500 kV Hlaingtayar Substation are as follows.

(The design of both projects should be coordinated regarding the methodology of the expansion of 230/33 kV West University Substation to 500 kV Hlaingtayar substation at the detailed design stage.)

- The layout of the facilities of the foregoing ADB 230 kV West University substation should be necessarily incorporated with the future layout of Phase 2 500 kV Hlaingtayar Substation.
- It is necessary to study the treatment of the protection relays and supervisory control system of the foregoing ADB 230 k West University Substation when Phase 2 500 kV Hlaingtayar substation will be installed. Generally, it is not enough for connection of bus bars not only by the connection of bus bars itself. It also requires for changing the connection of the information-telecommunication system utilized for supervisory control system in the substation. (such as the selection of the locations of control rooms for both old and new substations or the selection of the protection scheme against bus fault)

In case of difficulties, an option can be considered that connects new and old buses by installation of the circuit breakers between them to ensure their independent operation as shown in the following figure.

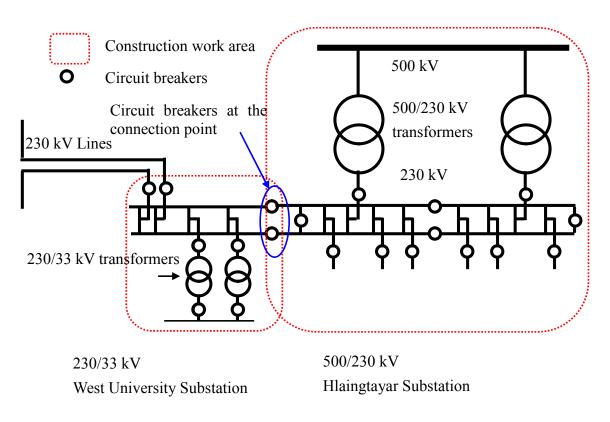


Figure 5 Covering areas of 230/33 kV West University Substation and 500/230 kV Hlaingtayar Substation

3.7 Prioritized Projects of Transmission Lines and Substations Except for the System from 500 kV Taungoo – Hlaingtayar

MEPE identified the study of the plan of the transmission lines from the hydropower stations located in the north of Meiktila substation as the prioritized projects.

3.8 Institutional Structure for O&M

Currently, there are fourteen Transmission Line Offices with 137 staffs per office on the average. One office maintains 700 - 800 km of lines by 30-40 persons. Safety trainings are held by Administration Office.

Chapter 4. Power Flow Analysis for the 500 kV System of Phase 2 and 230 kV system in around Yangon

4.1 500kV and 230kV System in around Yangon

Figure 3 shows the plan of the 500 kV and 230 kV power network system in around Yangon around 2020 after Phase 2 500 kV Project will be completed based on the information from MEPE.

The 230 kV system of Yangon will be divided into east and west, where eastern system will have Hlawga, East Dagon, Thaketa and Thanlyin and western system will have Hlaingtayar, Ywama, Bayintnaun and Ahlone. There will be no direct interconnection of 230 kV between them.

Two 500 MVA transformers of 500/230 kV will be installed in Phayargyi and Hlaingtayar respectively.

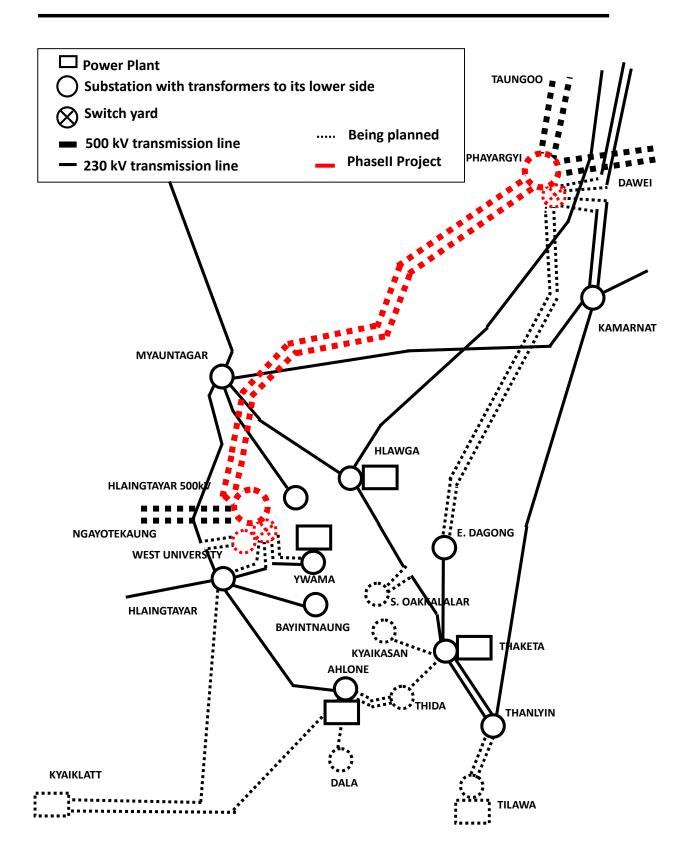


Figure 6 500 kV and 230 kV System in around Yangon around 2020

4.2 Load Forecast for 230 kV Substations in Yangon in 2020

The maximum power demand of Yangon in 2020 was set out as 2,869 MW from the result of JICA Master Plan Study. The insufficient energy will be taken from the outside of this area at Myauntagar, Payargyi and Kamarnat substations and the amount of its required energy will be determined only by the power demand supply balance in Yangon. The power generation plan outside of Yangon was used as the plan obtained in the study in 2014. Loads of 230 kV substations in Yangon were set out as follows.

- There are two ways of power supply from 230 kV substations, one is by 66 kV and another is 33 kV. Thus, the amount of loads of 230 kV substations has to be divided into loads of 66 kV system and 33 kV system. The maximum power demand in 2014 was 917 MW in Yangon. Around 40% (372 MW) was allocated to 66 kV system and around 60% (545 MW) was allocated to 33 kV system based on the current power supply information.
- The growing ratio of the maximum power demand in Yangon was assumed 20% per year for the first 5 years and 10% for the next 5 years and the growing ration of the maximum power demand of 33 kV system was assumed only 4% because the loads of 33 kV system were planned to be gradually switched to 66 kV based on the information obtained from YESB last year. This maximum power demand can be depicted as shown in Figure 7 that lies at the middle point between the high case and the low case in 2020 estimated in JICA Master Plan. The high case maximum power demand of JICA Master Plan was applied as the maximum power demand of this study for 2020.

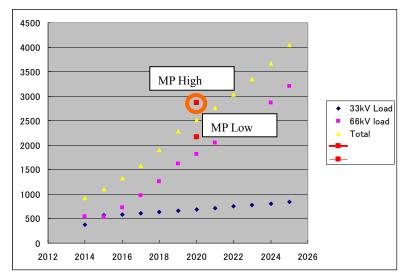


Figure 7 Maximum Power Demand Forecast in Yangon

 The ratio of the allocated load of 66 kV system was 72.5 % and 33kV system was 27.5%. Using those ratios, the maximum power demand of 66 kV system was calculated as around 2,081 MW and 33 kV was around 788 MW for 2020 based on the high case demand of JICA Master Plan, 2,869 MW in 2020.

• The capacities of the facilities of 230 kV substations in Yangon in 2020 were estimated as shown in the following table. The information about the expansion of Ahlone, Thakheta, Thanlyin and Iwama was obtained at the end of 2014. It was found out that the 66 kV system could have around 2,200 MW and the 33 kV system around 1,300 MW according to the following table assuming 90% as the power factor of transformers and 80% as the power supply ability ratio to the capacities of the transformers and generators.

230/66 kV Substation	66 kV Power Supply Facilities	Existing Capacities	Estimated Capacities After Expansion
Ablanc	66 kV Gen.	194 MW	
Ahlone	230/66 kV Trans.	2 x 100 MVA	3 x 100 MVA
Bayintnaung	230/66 kV Trans.	100 MVA	2 x 125 MVA
Hlawga	230/66 kV Trans.	60 MVA	
Thakheta	66 kV Gen.	84 MW	
	230/66 kV Trans.	2 x 100 MVA	3 x 100 MVA
T	66 kV Gen.	50 MW	
Iwama	230/66 kV Trans.	-	2 x 125 MVA
East Dagong	230/66 kV Trans.	-	2 x 125 MVA
South Okkalapa	230/66 kV Trans.	-	2 x 125 MVA
Kyaikkasan	230/66 kV Trans.	-	2 x 125 MVA
Thida	230/6 6kV Trans.	-	2 x 125 MVA
Tilawa	66 kV Gen.		50 MW
	230/66 kV Trans.	-	2 x 100 MVA

Table 2 Capacities of facilities at 230/66 kV Substations

Table 3 Capacities of facilities at 230/33 kV Substations

230/33 kV Substation	33 kV Power Supply Facilities	Existing Capacities	Estimated Capacities After Expansion
Ablanc	66/33 kV Trans.	60 MVA 100 MVA	
Ahlone	33 kV Gen.		
Hlaingtharyar	230/33 kV Trans.	2 x 100 MVA	
Illessee	230/33 kV Trans.	3 x 100MVA	
Hlawga	33 kV Gen.	210 MVA	
Thanlyin	230/33 kV Trans.	100 MVA	2 x 100 MVA
Wartayar	230/33 kV Trans.	100 MVA	
	230/33 kV Trans.	100 MVA	
Thakheta	33 kV Gen.	50 MVA	
Iwama	33 kV Gen.	36 MVA	
West University	230/33 kV Trans.	2 x 100 MVA	

• The maximum load of around 2,081 MW for 66 kV system and the maximum load of around 788 MW for 33 kV system were assumed to be supplied from 230 kV substations in proportion to their power supply capacities. The estimated loads of 230 kV substations were listed as Table 4.

66 kV	Load (MW)	33 kV	Load (MW)
Ahlone	391	Ahlone	84
Bayintnaung	189	Hlaingtharyar	99
Hlawga	45	Hlawga	263
Thakheta	298	Thanlyin	99
Iwama	231	Wartayar	49
East Dagong	189	Thakheta1	38
South Okkalapa	189	Thakheta2	38
Kyaikkasan	189	Iwama	20
Thida	189	West University	99
Tilawa	168	Total	788
Total	2,081		

Table 4 Maximum Power Demand Forecast for 230 kV Substations in 2020

The demand forecast apart from Yangon area was allocated based on the PSSE model used in "JICA Expert for Strengthening of Implementation Capacity for Transmission Line and Substation (2013)", however, the power demand of Yangon area was revised according to the results of JICA Master Plan and the power system plan of Yangon was updated according to the latest information. The system in the north and the east of Paryagyi and the north and the east of Hlaingtayar was modeled based on the previous data, however, the system model of the PSSE software by those information is considered enough for the analysis for this study because the system in around Yangon was reviewed reflecting the latest information. The following table shows the comparison of the demand forecasts between this Study and JICA Expert Study in 2013.

Power Demand Data of PSS/E used in JICA Expert Study in 2013

	1 5	
Yangon Total	Other areas	Whole system
1749.374 MW	5686.009 MW	3936.635 MW

Power Demand Data of PSS/E used in this study

Yangon Total	Other areas	Whole system
2869.0001 MW	6529.0927 MW	3660.0926 MW

4.3 Power Generation and Conductor of 230 kV Transmission Line

The power generators in around Yangon area were set out as shown in Table 5. The numerical values of power outputs from Thaketa, Ahlone, Ywama and Hlawga were used that were also used in the previous study.

	8
In service	Out of service
50 MW	0 MW
92.2 MW	0 MW
278.4 MW	0 MW
223.5 MW	0 MW
104.7 MW	51.1 MW
500 MW	0 MW
540 MW	0 MW
450 MW	0 MW
	In service 50 MW 92.2 MW 278.4 MW 223.5 MW 104.7 MW 500 MW 540 MW

Table 5 Power Outputs of Generators in around Yangon Area in Base Case

This case can be considered as the case with large power outputs of generators in around Yangon area. Thus, this case is the case with small power outputs from the hydropower stations located in the northern side of Myanmar.

The following two types of conductors are mainly used for 230 kV transmission lines in Myanmar.

- Twin bundle conductors of 605 MCM, its capacity is 288 MVA/cct
- Single conductor of 795 MCM and its capacity is 164 MVA/cct

The single of 795 MCM is used for Tharyargone - Hlawga that has a smaller capacity and the twin bundles of 605 MCM is mainly used for other intervals.

The ADB's Report that was mentioned in the previous section described the application of ACCC (Aluminum Conductor Composite Core) for the interval of Thida - Thaketa. This conductor can be used at high temperature with large capacity of 1,576 A (628 MVA) per circuit. Thus, only this interval was assumed to be equipped with this conductor.

(However, the ADB's report also mentioned that this conductor should not be applied for other intervals because it would produce huge losses when the power flow reached closed to its capacity.)

4.4 Base Case

The original plan of Yangon system by MEPE was analyzed with adding the model of part of the system of Yangon using PSS/E software that was also used in "JICA Expert for Strengthening of Implementation Capacity for Transmission Line and Substation". The main part of the power system analysis data are listed in Appendix 3.

Figure 4 shows the results of power flow calculation of the 500 kV and 230 kV system in around Yangon around 2020 (base case).

According to the original plan made by MEPE, the power flow at the intervals of Hlaingtayar - Ahlon and Kyaiklat-Ahlone exceed the capacity of their transmission lines. Some interval of the 230 kV transmission lines become overloaded around Hlawga, East Dagon and Ahlone when the single circuit is dropped.

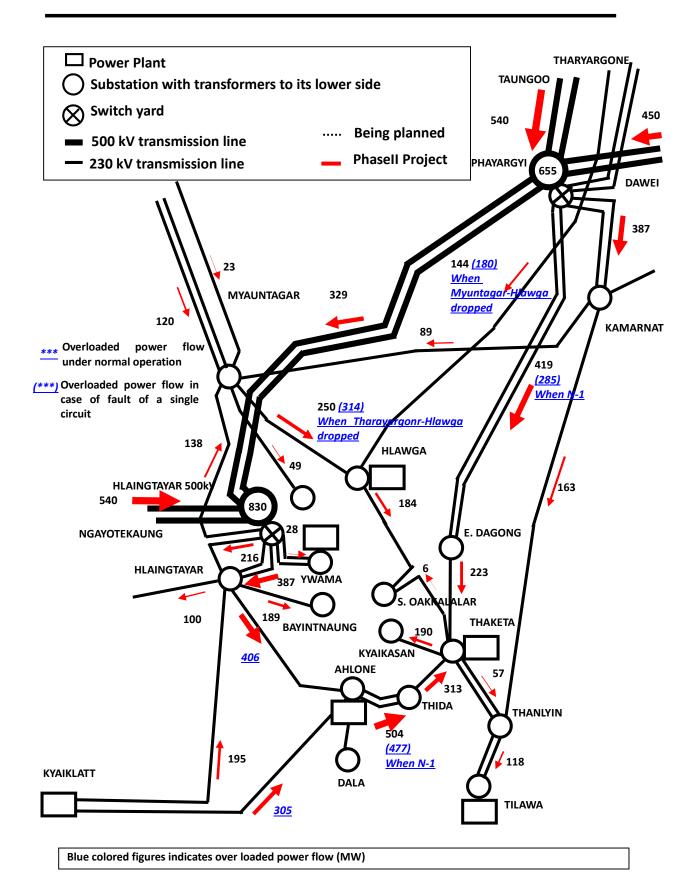


Figure 8 Power Flow for Base Case in 2020

4.5 Option of 230 kV Interconnection between East and West in Yangon around 2020

An option of the installation of the 230 kV transmission lines connecting the east and west in Yangon (they may be installed with underground cables due to their locations in a city area) is studied as a countermeasure against overloaded situations in Base Case.

This option assumes the installation of a single circuit between 230 kV Hlaingtayar and Bayintnaung and double circuits between Ywama and South Okkalar

The result of the calculation is shown in the following figure. Blue colored lines indicate newly installed transmission lines. There are no overloaded 230 kV transmission lines in normal operation although its overloaded situation still remains when a single circuit is dropped. Thus, this option can be recommended to avoid overloaded situations at normal operation.

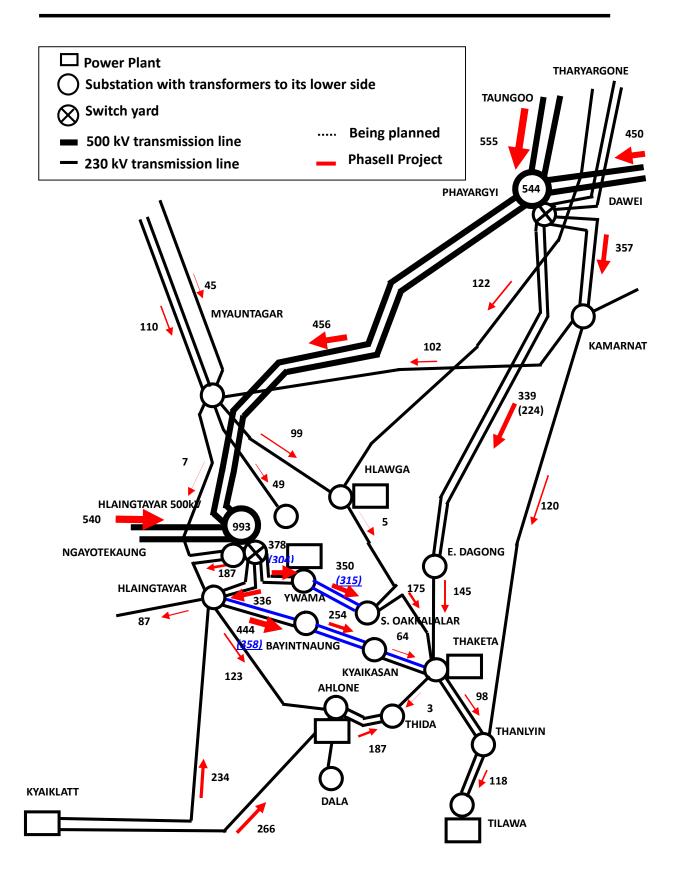


Figure 9 Power Flow in the 230 kV System with East-West Interconnection

4.6 Cases without Phase 2 Project

The power flow was calculated in case of not implementing Phase 2 Project for Base Case. Ngayotekaung and Dawei thermal power stations were assumed to be still connected to 500 kV transmission lines because they were independent from Phase 2 Project.

This case assumed that Phase 1 and the transmission line from Meikhtila to Pharyargyi through Taungoo were implemented.

From the result of the power flow analysis, the power flows at Tharyargone - Hlawga and East Dagone-Thaketa exceeded the capacities of their lines apart from Hlaingtayar - Ahlon and Kyaiklat-Ahlon if Phase 2 was not implemented.

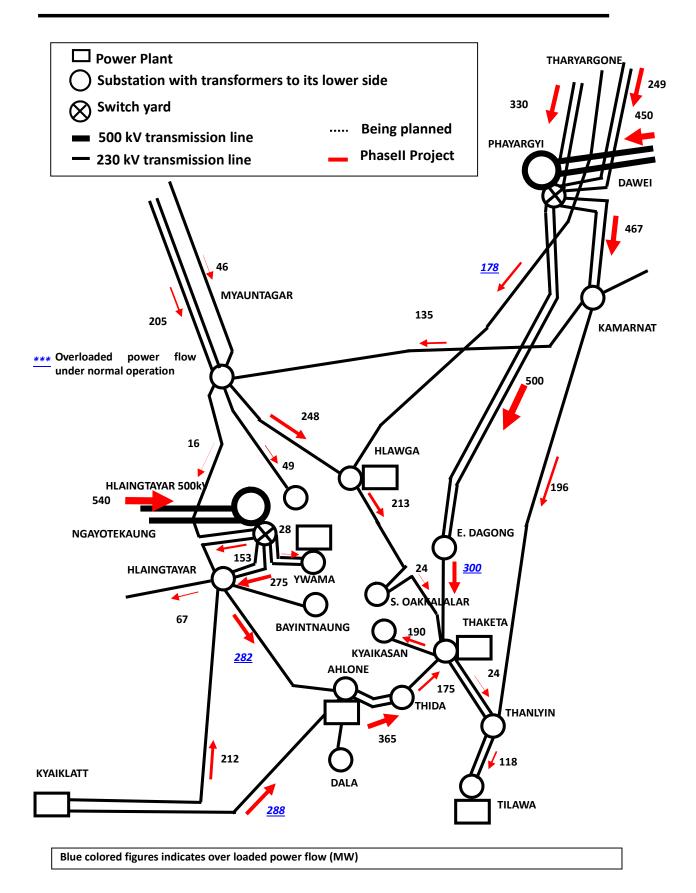


Figure 10 Power Flow in Case of Not Implementing Phase 2 Project for Base Case 2020

4.7 Effects on Loss Reduction of Transmission Lines by Phase 2 Project

The implementation of Phase 2 Project can reduce the loss of transmission lines. The loss of the 500 kV and 230 kV system in Myanmar in 2020 was calculated as shown in the following table.

CaseMyanmar 500 kV and 230 kV Transmission
System LossBefore Implementation204.4 MWAfter Implementation179.9 MWDifference (Effect on Loss Reduction)24.5 MWAnnual Loss Reduction64,386 MWhConversion for reduction of CO2 emission45,933 tCO2/Year

 Table 6 Difference of Transmission System Loss between Before and After Phase 2

Annual loss reduction of the system and its conversion for CO2 emission are estimated as 64,386 MWh and 45,933 tCO2/year respectively by using the loss reduction of transmission lines at the maximum power demand assuming its annual loss factor 0.3.

0.7134 tCO2/MWh* is used as CO2 emission factor

*) Averaged Grid Emission Factor of China/Myanmar listed in "List of Grid Emission Factor" posted on the Web site of Institute for Global Environmental Strategies in Japan http://pub.iges.or.jp/modules/envirolib/view.php?docid=2136

 Loss factor is often estimated by the following formula. Assuming Load Factor of 0.48 gives a Loss Factor of 0.3.

Loss Factor = k x Loss Factor +(1-k) x Loss Factor² (where k is often used as 0.3 for transmission system and 0.2 for distribution system)

If Phayargyi - Hlaingtayar transmission line is operated at 230 kV, its transmission line loss is increased by 2.7 MW for Base Case according to the power system analysis.

4.8 Power Flow in Case of Lower Power Outputs from Thermal Power Stations in 2020 (Power output from Ngayotekaug in the west is zero)

The power flow would be increased from the northern area where a lot of hydropower stations will be located to Yangon in case of the lower power outputs from the thermal power stations in Yangon. The power flow was calculated for the both cases with and without Phase 2 setting out no power outputs from Ngayotekaug power station located in the west of Yangon. The power outputs were set out as follows.

Table 7 Power Outputs of Generators in around Yagon in Case of Lower Power Outputsfrom Thermal Power Stations in 2020 (Power output from Ngayotekaug in thewest is zero)

Power StationOperated Power OutputsStopping PowerTilawa50 MW0 MWThakheta92.2 MW0 MWAhlone278.4 MW0 MW	
Thakheta92.2 MW0 MWAhlone278.4 MW0 MW	r Outputs
Ahlone 278.4 MW 0 MW	
Ywama 223.5 MW 0 MW	
Hlawga 104.7 MW 51.1 MW	
TWH Thailand500 MW0 MW	
Ngayotekaung 0 MW 540 MW	
Dawei 450 MW 0 MW	

Figure 10 shows the power flow with Phase 2 in this generation pattern.

In the similar manner to the base case, the power flows between Hlaingtayar - Ahlon and Kyaiklat – Ahlon exceed their capacity of transmission lines. There are some intervals of 230 kV transmission lines that have the over loading power flow in case of a fault of a circuit around Hlawga, East Dagon and Ahlone.

Without Phase 2, the power flow calculation was not converged. This means that the power transmission is not possible at the maximum power demand without Phase 2. Its calculation was converged when the maximum power demand was decreased. The power flow became not to exceed the capacities of the transmission lines when the power demand of Yangon was decreased by around 28%. The Figure 11 shows the results of the power flow calculation for this case.

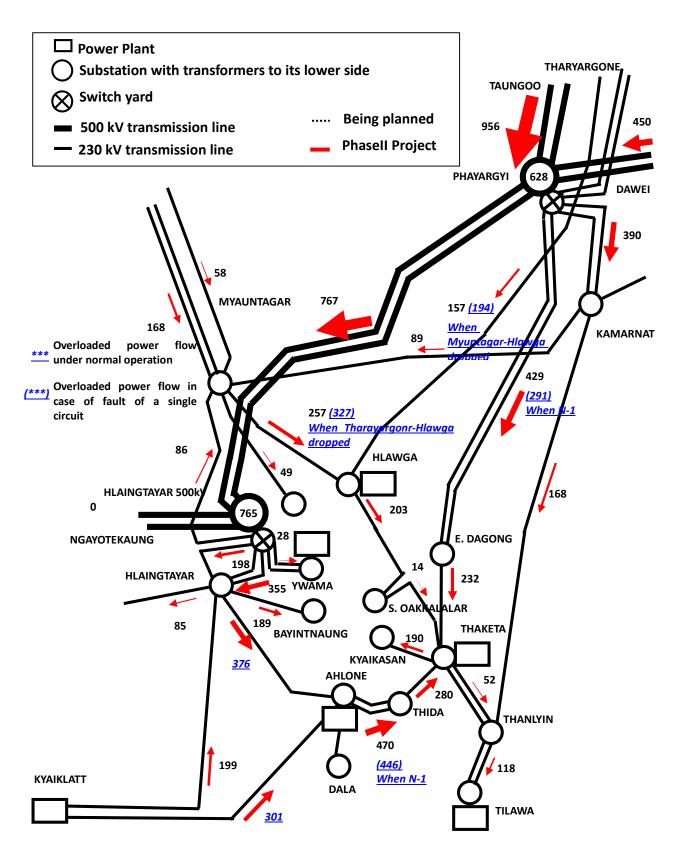


Figure 11 Case of Lower Power Outputs from Thermal Power Stations in 2020 (Power output from Ngayotekaug in the west is zero)

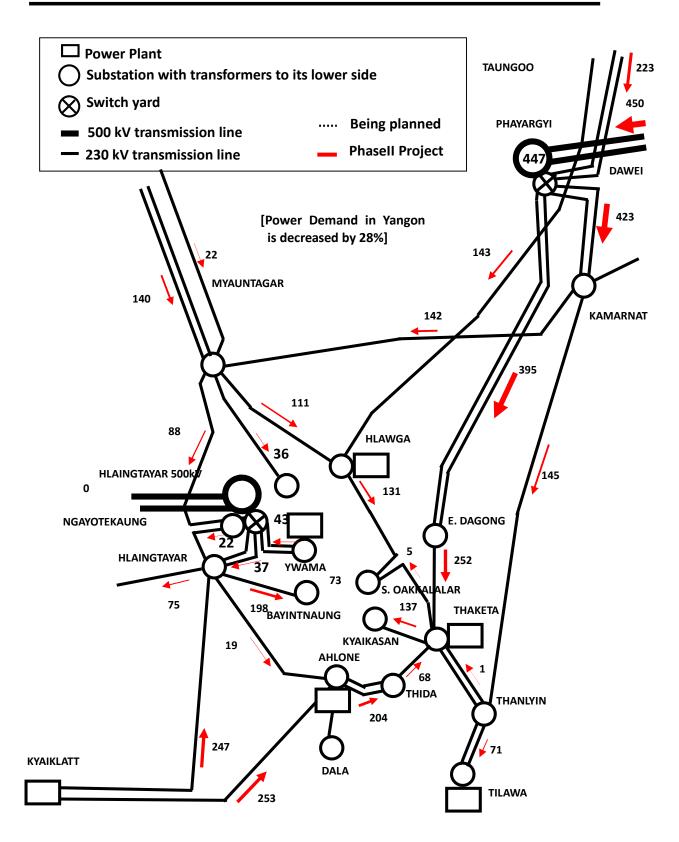


Figure 12 Case of Lower Power Outputs from Thermal Power Stations in 2020 (Power output from Ngayotekaug in the west is zero) without Phase 2 and decreasing power demand of Yangon by 28%

4.9 Recommendations for Power System Configuration in Yangon

The followings can be raised as the candidates of recommendations for power system configuration in Yangon.

- Implementation of 500 kV and 230 kV transmission lines and substations planned by MEPE including Phase 2 Project on schedule
- Installation of 230 kV transmission lines connecting the east and the west in Yangon through Ywama-S.Oakkalar and Bayintnaung-Kyaikasan and doubling circuits of Hlaigntayar-Bayintnaung and Thaketa-Kyaikasan up to around 2020. It will contribute to secure the power supply to the substations planed by MEPE responding to the rapid growing of power flow from the west to the east in Yangon.

For future power system, the followings can be recommended.

- When the maximum power demand of Yangon will reach 4,000 MW from 2,869 MW that is the maximum power demand of Yangon in 2020, it is considered that more substations at least four will be required even in consideration with the expansion of the existing substations.
- In future, Myanmar power system should become N-1 oriented system. The installation of the new 500 kV substation in the eastern part of Yangon in around East Dagon is recommended to supply power from the east to fulfill the N-1criteria. (Appendix 4) In order to prepare this, the transmission line from Pharyargi to East Dagon is considered to be constructed as 500 kV design lines. The future 500 kV and 230 kV system in Yangon is shown in the following figure.
- The further detailed studies will be required regarding the future power system in Yangon including the 500 kV new substations and 230 kV new substations from the view point of their optimization.

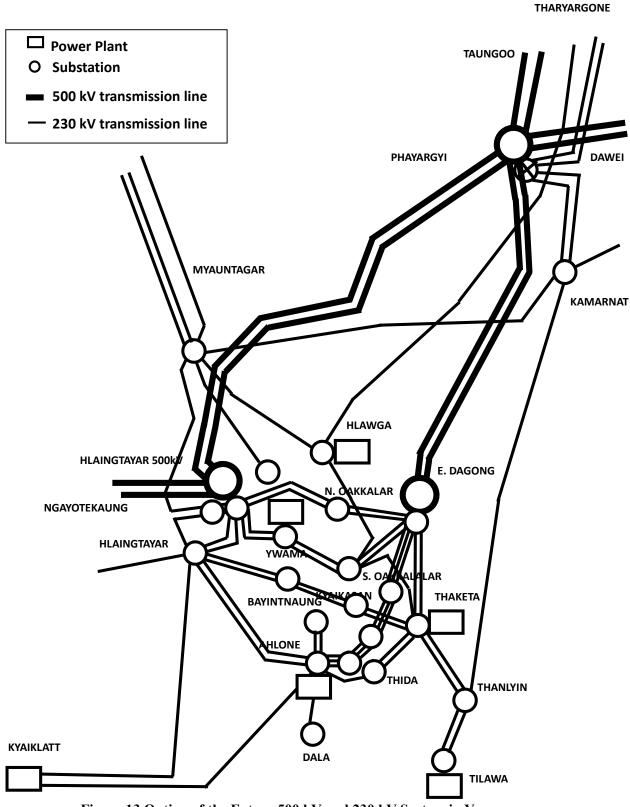


Figure 13 Option of the Future 500 kV and 230 kV System in Yangon

<Appendix 1>

Questionnaire for the Counterparts during the First

Site Survey

Questionnaire (Power System Plan) JICA 500 kV Phase 2

2015/01/19 M. YOGO, TEPCO JICA Mission

Purpose of this Study

To carry out the supplementary survey to prepare the JICA appraisal mission of 500 kV Phase II Project by examining and recommending the adequate system plan through reviews of the latest information.

Questionnaire (Power System Plan)

- 1. The latest nationwide power demand forecast (Maximum power as MW) (also the latest power demand forecast in Yangon)
- 2. The latest power generation plan and its on-going projects including their expected donors (also the latest power generation plan in around Yangon)
- The latest bulk power transmission line/substation plan and its on-going projects including their expected donors (also the latest 230 kV power transmission line/substation plan in around Yangon))
- 4. The prioritized projects except for 500 kV Phase II
- 5. Current situations and their main specifications of 500 kV Phase II
- 6. Any significant changes in the route of 500 kV Hpharyargyi Hlainghtaryar transmission line from the Previous Study?
- 7. Are there any significant changes in the location of 500 kV Hpharyargyi and Hlainghtaryar substations from the Previous Study?
- 8. Are there any significant changes in the main specifications of 500 kV transmission line from the Previous Study?
- 9. Are there any significant changes in the main specifications of 500 kV Hpharyargyi and Hlainghtaryar substations from the Previous Study?
- 10. Expected institutional arrangement for O&M
- 11. Current progress and main specifications of Meikhtila-Taungoo –Pharyargyi 500 kV transmission lines
 - JICA 500 kV Phase II Project means "500 kV Phatyargyi and Hleigntayar substation and their connecting 500 kV transmission line".
 - Previous Study means "JICA Expert for Strengthening of Implementation Capacity for Transmission Line and Substation, 2014".

<Reference>

Main Specifications of the Phase II Project

500 kV Hpharyargyi - Hlainghtaryar transmission line

- Conductor: Drake four (4) bundles
- Pollution level "Light"
- Insulators made in Japan
- Clearances are same as 500 kV Meikhtila Taungoo Transmission line

500 kV Hpharyargyi substation and 500 kV Hlainghtaryar substation

Number of Feeders, Transformers and Reactors

	Hpayargyi	Hlaingtharyar
Number of 500 kV Line feeders	6 Taungoo: 2, Hlaingtharyar: 2, Dawei: 2 (Final 8)	4 Hpayargyi: 2, West Yangon: 2 (Final 8)
Number of 230 kV Line feeders	6 Tharyargone: 2, Kamarnat: 2, Dagon East: 2 (Final 12)	6 Myaungtagar: 1, Ywama: 2, Hlaingtharyar: 3 (Final 12)
Number of 500/230/11 kV Transformer banks	2 (Final 4)	2 (Final 4)
Reserved transformer (Single Phase)	1	1
Reactor (100 MVA)	2 (Final 4)	2 (Final 4)

Specifications of the 500/230/11 kV Transformers

Туре	Outdoor type single phase Auto transformer
Capacity	500/3MVA/500/3MVA/75/3MVA
Shipping Mass	Less than 60t (Actual limit weight should be studied in the Detailed
	Design stage, Site-assembly type would be recommended.)
%Impedance	12.5% (P-S)
Тар	±50 kV 21 tap
Cooling system	OFAF (Oil Forced Air Forced)

Specification of the 500 kV Reactor

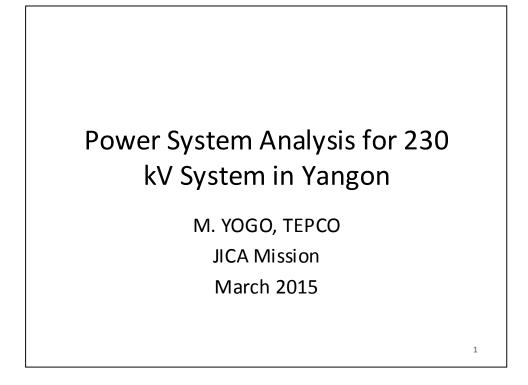
Туре	Outdoor type single phase
Capacity	100/3MVA
Cooling system	ONAN (Oil Natural Air Natural)
Shipping Mass	Less than 60t(Actual limit weight should be studied in the Detailed
	Design stage)
Connected	Bus bar

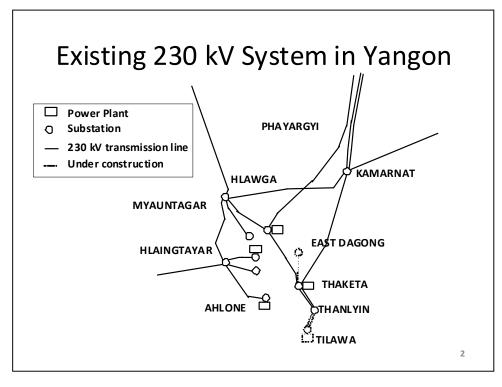
➢ Telecommunication

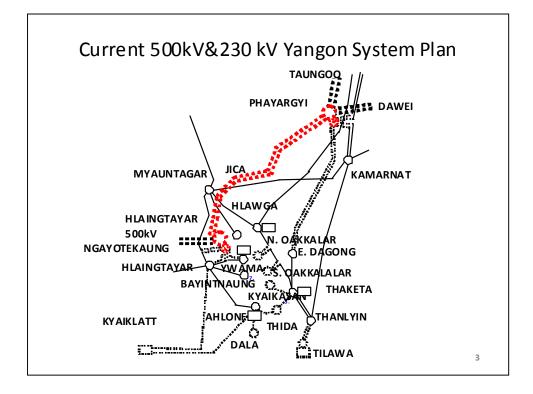
Media	Object	Notes
OPGW	PCM current differential relay for transmission line	
	protection	
	SCADA for National Control Center	
	High speed communication line in MEPE	For Intranet, VoIP
PLC	SCADA for National Control Center	For Backup
	Internal telephone line in MEPE	

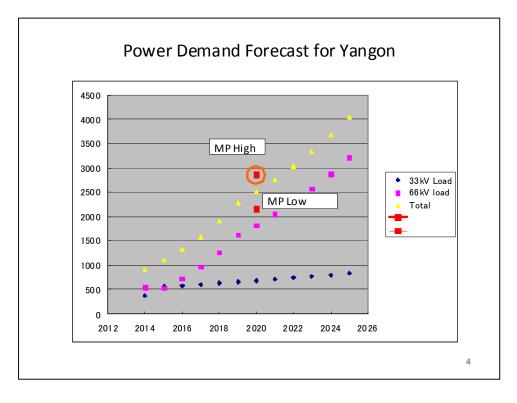
• Circuit Breaker

500 kV H-GIS50 kA	50 kA
220 kV Gas Circuit Breaker	40 kA

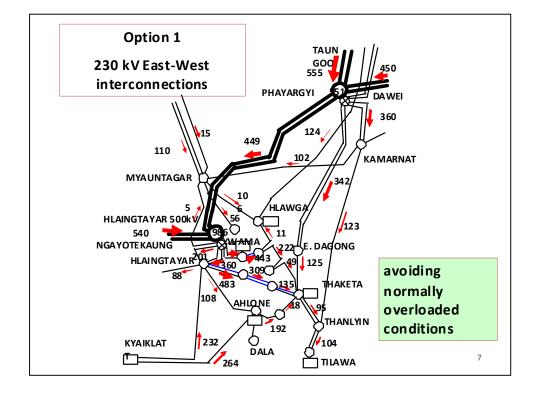

• Protection relay system

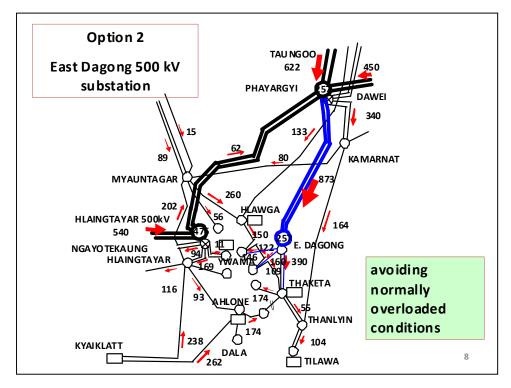

500 kV Line	Main	Digital PCM current differential relay with high speed
		multi-phase re-closing relay system
	Back-up	Distance Relay (2-4 stage)
230 kV line	Main	Digital PCM current differential relay with high speed
		re-closing relay system
	Back-up	Distance Relay (2-4 stage)
500 kV and 230		Current differential relay
kV bus		
Transformer	Main	Ratio Differential Relay, OCR, OCGR (Neutral Protection)
	Back-up	Distance Relay (2-4 stage)
500 kV Reactor		Ratio Differential Relay, OCR, OCGR (Neutral Protection)

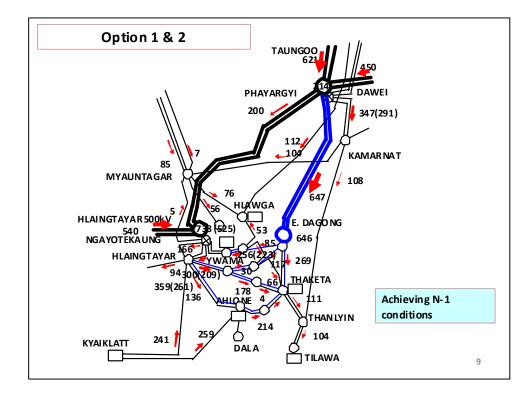

- The selection of seismic design standards applied to the 500 kV transmission system in Myanmar should be discussed in the detailed design stage.
- SCS (Substation Control System) of each substation will be connected to the National Control Center (NCC) for the supervision and monitoring done by

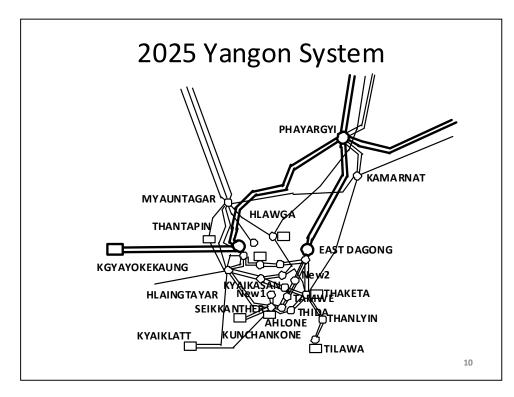

<Appendix 2>

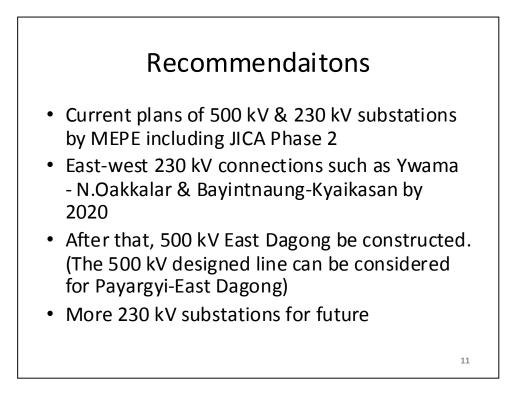

Presentation Material for Explanation of Power System Plan to the Counterparts during the Second Site Survey











<Appendix 3>

Main Part of the Data for Power System Analysis of

Base Case

1001 INPD33 1002 KBL33 1005 FP233 1 0.280734 0.677688 0.0006 1 1002 KBL33 1005 TP233 1 0.361207 1.08041 0.00079 27.3 1003 TYG33 1006 YNE33 1 0.361207 1.08041 0.00079 27.3 1004 TGO33 1007 KAP33 1 0.701326 0.933362 0.00074 24.4 1004 TGO33 1007 KAP33 1 0 0.0001 0 2001 TK766 2002 TH066 1 0.017976 0.091329 0.00145 10 2001 TK766 2002 TH066 2 0.02706 0.13758 0.00218 16.4 2001 TK766 2013 SM66 1 0.01774 0.016757 0 6 2002 TH066 2013 SML66 1 0.016737 0 6 2002 TK766 2	From Bus Number	From Bus	To Bus Number	To Bus Name	Id		Line R (pu)	Line X (pu)	Charging B (pu)	Length
1001 INPD33 1002 KBL33 1005 FP233 1 0.280734 0.677688 0.0006 1 1002 KBL33 1005 TP233 1 0.361207 1.08041 0.00079 27.3 1003 TYG33 1006 YNE33 1 0.361207 1.08041 0.00079 27.3 1004 TGO33 1007 KAP33 1 0.701326 0.933362 0.00074 24.4 1004 TGO33 1007 KAP33 1 0 0.0001 0 2001 TK766 2002 TH066 1 0.017976 0.091329 0.00145 10 2001 TK766 2002 TH066 2 0.02706 0.13758 0.00218 16.4 2001 TK766 2013 SM66 1 0.01774 0.016757 0 6 2002 TH066 2013 SML66 1 0.016737 0 6 2002 TK766 2	1001	NPD33	1002	KBL33		1	0.329913	0.882484	0.00079	25
1002 KBL33 1005 TPC33 2 0.250734 0.070688 0.00079 27.3 1003 TYG33 1006 YNE33 2 0.361207 1.08041 0.00079 27.3 1004 TGQ33 1007 KAP33 2 0.165005 0.831254 0.00014 24.4 1004 TGQ33 1007 KAP33 2 0.165005 0.831254 0.00014 21.6 2001 TKT66 2002 THD66 1 0.017976 0.091329 0.00145 10.0 2001 TKT66 2017 SPM66 1 0.02708 0.13758 0.00218 16.4 2001 TKT66 2013 AHL66 1 0.010757 0 6 2002 THD66 2013 AHL66 1 0.01045 0.39856 0.0006 4.4 2003 BYN66 2017 SPM66 1 0.018436 0.072499 0.00111 8.4 2003 BYN66 <	1001	NPD33	1002	KBL33		2	0.329913	0.882484	0.00079	25
1003 TYG33 1006 FYKG33 1 0.361207 1.08041 0.00079 27.7. 1004 TGG33 1006 FYKB33 2 0.361207 1.08041 0.00079 27.3. 1004 TGG33 1007 KAP33 2 0.155005 0.331254 0.00074 24.4 1012 HLG33 1007 KAP33 2 0.155005 0.331254 0.00074 24.4 1012 HLG33 1004 YMA33 1 0 0.00010 0 2001 TKT66 2002 THD66 2017 ISPM66 1 0.02708 0.13758 0.00218 16.4 2001 TKT66 2013 JHL66 1 0.007574 0.16757 0 6 2002 THD66 2013 JHL66 1 0.01045 0.039656 0.0006 4.4 2003 BYN66 2018 DYA66 1 0.01455 0.03666 0.000116 4.9 204 SH06 1 <td< td=""><td>1002</td><td>KBL33</td><td>1005</td><td>TPZ33</td><td></td><td>1</td><td>0.250734</td><td>0.670688</td><td>0.0006</td><td>19</td></td<>	1002	KBL33	1005	TPZ33		1	0.250734	0.670688	0.0006	19
1003 TYG33 1006 YKB33 2 0.361207 1.00041 0.00074 22.7. 1004 TGO33 1.007 KAP33 1 0.701326 0.93562 0.00074 24.4 1012 HLG33 1.007 KAP33 2 0.165005 0.6311254 0.00064 24.4 2001 TK766 2.002 THD66 1 0.017376 0.091329 0.00145 10 2001 TK766 2.0017576 0.017576 0.01757 0 6 2002 THD66 2.0107574 0.016757 0 6 2002 THD66 2.0107574 0.016757 0 6 2003 BYN66 2.0115 SML66 1 0.039656 0.0006 4.4 2003 BYN66 2.017 SPM66 1 0.017628 0.00011 8.4 2004 SHD66 2.011 0.27627 0.678753 0.00971 76 2005 SHT66	1002	KBL33	1005	TPZ33		2	0.250734	0.670688	0.0006	19
1004 TGO33 1007 KAP33 1 0.701326 0.935822 0.00084 24.3 1004 TGO33 1007 KAP33 2 0.165005 0.831254 0.00084 24.3 1012 HLG33 1094 YMA33 1 0 0.0010 0 2001 TK766 2002 THD66 1 0.017376 0.091329 0.00145 10 2001 TK766 2017 SPM66 1 0.007574 0.016757 0 6 2002 THD66 2013 AHL66 1 0.007574 0.016757 0 6 2003 BYN66 2015 SML66 1 0.01045 0.39656 0.0006 4.4 2003 BYN66 2018 PYA66 1 0.039656 0.0006 4.4 2003 BYN66 2018 PYA66 1 0.037628 0.030617 0.5 0.00116 9.4 2006 ATB66 2007						1				27.36
1004 TGO23 1007 KAP33 2 0.165005 0.831254 0.00084 24.5 1012 HLG33 1094 YWA33 1 0 0.0001 0 2001 TKT66 2002 THD66 1 0.017976 0.091329 0.00145 10 2001 TKT66 2017 SPM66 1 0.02708 0.13758 0.00218 16.6 2001 TKT66 2013 AHL66 1 0.00774 0.016757 0 6 2002 THD66 2013 AHL66 1 0.01045 0.039656 0.0006 4.0 2003 BYN66 2015 SML66 1 0.016757 0 6 2003 BYN66 2013 SML66 1 0.01754 0.016757 0 16 0.0 2003 BYN66 2017 SPM66 1 0.01752 0.037628 0.00011 0 10 16.3753 0.00071 6						2				27.36
1012 HLG33 109 YMA33 1 0 0.0001 0 2001 TKT66 2002 THD66 1 0.017976 0.091329 0.00145 10 2001 TKT66 2002 THD66 2 0.017976 0.091329 0.00145 10 2001 TKT66 2017 SPM66 2 0.02708 0.13758 0.00218 16. 2002 THD66 2013 AHL66 1 0.016757 0 6 2003 BYN66 2015 SML66 1 0.01045 0.039656 0.0006 4.0 2003 BYN66 2017 SPM66 1 0.037628 0.068691 0.0011 6 2004 SHD66 2018 PYA66 1 0.277527 0.678753 0.00971 76 2006 ATB66 2003 IKW66 1 0.12907 0.315691 0.00422 3.5. 2006 ATB66 2003 IKW										24.95
2001 TKT66 2002 THD66 1 0.017976 0.091329 0.00145 10 2001 TKT66 2001 SPM66 1 0.02708 0.13758 0.00218 16.4 2001 TKT66 2013 SPM66 2 0.02708 0.13758 0.00218 16.4 2002 THD66 2013 AHL66 1 0.007574 0.016757 0 6 2002 THD66 2013 SML66 2 0.01045 0.039656 0.0006 4.4 2003 BYN66 2015 SML66 2 0.01045 0.039656 0.0006 4.4 2003 BYN66 2015 SML66 1 0.018436 0.03768 1.0111 6.4 2003 BYN66 2017 SPM66 1 0.277527 0.678753 0.00971 76 2006 ATB66 2007 ZCY66-1 1 0.128078 0.315691 0.000452 35.7 200										24.95
2001 TKT66 2002 THD66 2 0.017976 0.091329 0.00145 10 2001 TKT66 2017 SPM66 1 0.02708 0.13758 0.00218 16. 2001 TKT66 2013 AHL66 1 0.007574 0.016757 0 6 2002 THD66 2013 AHL66 1 0.01045 0.039656 0.0006 4. 2003 BYN66 2015 SML66 1 0.01045 0.039656 0.0006 4. 2003 BYN66 2015 SML66 1 0.01045 0.039656 0.0006 4. 2003 BYN66 2017 SYM66 1 0.0137628 0.086691 0.0011 0 2004 SHD66 2018 PYA66 1 0.277527 0.678753 0.00971 76 2006 ATB66 2007 ZCY66-1 1 0.20528 0.130624 0 1335 2009										0
2001 TKT66 2017 SPM66 1 0.02708 0.13758 0.00218 16.4 2001 TKT66 2013 AHL66 1 0.007574 0.016757 0 6 2002 THD66 2013 AHL66 1 0.01045 0.039656 0.0006 4.4 2003 BYN66 2015 SML66 1 0.01045 0.039656 0.0006 4.4 2003 BYN66 2017 SPM66 1 0.01045 0.039656 0.00016 4.4 2004 SHD66 2017 SPM66 1 0.02762 0.68661 0.00111 8.4 2006 ATB66 2007 ZGY66-1 1 0.277527 0.678753 0.0061 0 2007 ZGY66-1 2019 ZGY66-2 1 0.053028 0.130624 0 133 2008 PAN66 1 0.12079 0.315691 0.00452 35.5 2010 KMM66 20217 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>10.9</td>					-	-				10.9
2001 TKT66 2017 SPM66 2 0.02708 0.13758 0.00218 16.2 2002 THD66 2013 AHL66 1 0.007574 0.016757 0 6 2003 BYN66 2015 SML66 1 0.01045 0.039656 0.0006 4.4 2003 BYN66 2017 SPM66 1 0.018436 0.072409 0.00111 8.4 2004 SHD66 2018 PYA66 1 0.037628 0.08661 0.0116 9.4 2006 ATB66 2007 ZQY66-1 1 0.277527 0.678753 0.00971 76 2006 ATB66 2009 PAN66 1 0.128079 0.315691 0.00452 35. 2009 PAN66 2020 MLM66 1 0.12828 0.055015 0.00871 65. 2011 OSP66 2037 MYN66 1 0.12828 0.055015 0.00871 65. 201					-					10.9
2002 THD66 2013 AHL66 1 0.007574 0.016757 0 6 2003 BYN66 2015 SML66 2 0.007574 0.016757 0 6 2003 BYN66 2015 SML66 2 0.01045 0.039656 0.0006 4.4 2003 BYN66 2015 SML66 1 0.018436 0.072409 0.00111 8.4 2004 SHD66 2018 PYA66 1 0.027521 0.678753 0.00971 76 2006 ATB66 2001 ZGY66-1 1 0.277527 0.678753 0.00971 76 2006 ATB66 2013 ZGY66-2 1 0.053028 0.130624 0 13 2008 THT66 2009 PAN66 1 0.16218 0.05071 55.2 2010 KMN66 2021 TU66 1 0.16218 0.055015 0.00871 65.6 2011 OSP66						-				
2002 THD66 2013 AHL66 2 0.007574 0.016757 0 6 2003 BYN66 2015 SML66 1 0.010045 0.039656 0.0006 4.0 2003 BYN66 2017 SPM66 1 0.01436 0.072409 0.00111 8.4 2004 SHD66 2007 ZGY66-1 1 0.277521 0.078733 0.00971 76 2006 ATB66 2003 KLW66 1 0 0.00001 0 2007 ZGY66-1 2012072 0.050241 0.014351 0.39916 0.00452 35. 2008 FAT66 2020 MLM66 1 0.163517 0.39916 0.00571 45. 2011 OSP66 2037 MYN66 1 0.163217 0.39916 0.00571 65.6 2011 OSP66 2037 MYN66 1 0.26446 1.042469 1.04791 0.01499 18.3 2014 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16.42</td></td<>										16.42
2003 BYN66 2015 SML66 1 0.010045 0.039656 0.0006 4.0 2003 BYN66 2015 SML66 2 0.010045 0.039656 0.0006 4.0 2004 SHD66 2017 SPM66 1 0.018436 0.072409 0.00111 8.4 2006 ATB66 2007 ZGY66-1 1 0.277527 0.678753 0.00971 76 2006 ATB66 2019 ZGY66-2 1 0.053028 0.130624 0 13 2008 FHT66 2009 PAN66 1 0.129079 0.315691 0.00452 35.7 2010 KMM66 2021 ZTU66 1 0.163278 0.055015 0.00871 65.6 2011 OSP66 2037 MYN66 2 0.10288 0.055015 0.00871 65.6 2012 N=MM66 2014 N=NBA 1 0.428469 1.04791 0.01499 118.3										6.5
2003 BYN66 2015 SML66 2 0.010436 0.039656 0.0006 4.4 2003 BYN66 2017 SPM66 1 0.037628 0.086691 0.00116 9.4 2006 ATB66 2003 KLW66 1 0.037628 0.086691 0.0011 0 2006 ATB66 2003 KLW66 1 0.277527 0.678753 0.00971 76 2008 FH766 2009 PAN66 1 0.129079 0.315691 0.00452 35. 2010 KM66 2020 MLM66 1 0.129079 0.315691 0.00757 45. 2011 OSP66 20237 MYN66 1 0.108288 0.055015 0.00871 65. 2013 AHL66 2014 N-NBA 1 0.428469 1.04791 0.01499 118. 2013 N-NBA 2022 KPT66 1 0.267445 0.654095 0.000768 67.						-				6.5
2003 BYN66 2017 SPM66 1 0.018436 0.072499 0.00111 8.4 2004 SHD66 2018 PYA66 1 0.037628 0.086691 0.00116 9.4 2006 ATB66 2001 ICY66-2 1 0.053028 0.130624 0 13 2008 HT66 2009 PAN66 1 0.129079 0.315691 0.00452 35.5. 2009 PAN66 2020 MLM66 1 0.103278 0.055015 0.00871 65.6 2011 OSP66 2037 MYN66 2 0.108288 0.055015 0.00871 65.6 2011 OSP66 2037 MYN66 1 0.22342 0.661395 0.0093 74.4 2013 AHL66 2014 N-NBA 1 0.428469 1.04791 0.01778 65.7 2014 N-NBA 2022 KPT66 1 0.223042 0.661395 0.00933 74.4						-				
2004 SHD66 2018 PYA66 1 0.037628 0.086691 0.00116 9.4 2006 ATB66 2007 ZGY66-1 1 0.277527 0.678753 0.00971 76 2007 ZGY66-1 2019 ZGY66-2 1 0.053028 0.130624 0 13 2008 THT66 2009 PAN66 1 0.120218 0.509241 0.00729 57.1 2010 KMN66 2021 ZTU66 1 0.108288 0.055015 0.00871 65.6 2011 OSP66 2037 MYN66 1 0.0108288 0.055015 0.00871 65.6 2012 N-BMW66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.0267445 0.654095 0.0093 74.4 2014 N-NBA 2029 MYP66 1 0.223042 0.667139 0.007768 67.3										
2006 ATB66 2007 ZGY66-1 1 0.277527 0.678753 0.00971 76 2007 ATB66 2031 KLW66 1 0 0.0001 0 2007 ZGY66-1 2019 PAN66 1 0.053028 0.315691 0.00452 35. 2009 PAN66 2020 MLM66 1 0.208218 0.55015 0.0057 45. 2011 CSP66 2037 MYN66 1 0.108288 0.055015 0.00871 65.6 2012 N-BMK66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.267445 0.654095 0.00933 74.4 2014 N-NBA 2023 KPT66 1 0.227445 0.667139 0.007768 67.3 2031 M-NEA 2023 MHY66 1 0.223042 0.667139 0.007788 63.3 2039										
2006 ATB66 2031 KLW66 1 0 0.0001 0 2007 ZGY66-1 2019 ZGY66-2 1 0.053028 0.136591 0.00452 35. 2009 PAN66 2020 MLM66 1 0.129079 0.315691 0.00452 35. 2010 KMN66 2021 ZTU66 1 0.13517 0.39916 0.00577 45. 2011 OSP66 2037 MYN66 1 0.108288 0.055015 0.00871 65. 2012 N-BMW66 2014 N-NBA 1 0.428469 1.04791 0.01499 118. 2013 AHL66 2015 SML66 1 0.01045 0.039656 0.0006 4. 2014 N-NBA 2022 KPF66 1 0.22042 0.667139 0.007768 67. 2031 KLW66 2044 U-BAL66 1 0.30801 0.921287 0.010728 93. 2031										<u>9.04</u> 76.8
2007 ZGY66-1 2019 ZGY66-2 1 0.053028 0.130624 0 13 2008 THT66 2009 PAN66 1 0.129079 0.315691 0.00452 35. 2019 PAN66 2020 MLM66 1 0.029218 0.00557 45. 2011 OSP66 2037 MYN66 1 0.108288 0.055015 0.00871 65. 2011 OSP66 2037 MYN66 1 0.0108288 0.055015 0.00871 65. 2013 AHL66 2015 SML66 1 0.01045 0.039856 0.0006 44. 2014 N-NBA 2022 KPT66 1 0.223042 0.667139 0.007788 67.5 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.0033 74. 2040 MGG66 2041 MTY1.66 0.223042 0.667139 0.007788 67.5 2041 MTY1.66 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>										0.0
2008 THT66 2009 PAN66 1 0.129079 0.315691 0.00452 35. 2009 PAN66 2020 MLM66 1 0.20218 0.509241 0.00729 57.0 2011 SP66 2037 MYN66 1 0.163517 0.399916 0.00871 65.6 2011 OSP66 2037 MYN66 2 0.108288 0.055015 0.00871 65.6 2012 N-BMW66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.267445 0.654095 0.00933 74.0 2014 N-NBA 2032 KPT66 1 0.22042 0.667139 0.007768 67.7 2031 KLW66 2044 M-BAL66 1 0.23042 0.667139 0.007788 67.7 2040 MG666 2043 WGM66 1 0.230801 0.921287 0.010728 93.3										13.4
2009 PAN66 2020 MLM66 1 0.208218 0.509241 0.00729 57.6 2010 KMN66 2021 ZTU66 1 0.163517 0.399916 0.005571 45.5 2011 OSP66 2037 MYN66 2 0.108288 0.055015 0.00871 65.6 2012 N=MW66 2014 N=NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.010045 0.654095 0.00933 74.0 2014 N=NBA 2023 MHY66 1 0.227445 0.654095 0.00933 74.0 2031 KLW66 2044 U=BAL66 1 0.01028 0.007768 67.3 2039 MHY66 2044 M=BAL66 1 0.223042 0.667139 0.007768 67.3 2040 MGG66 2041 MTY1.66 1 0.230801 0.921287 0.010728 93.3						-				
2010 KMN66 2021 ZTU66 1 0.163517 0.399916 0.00557 45.7 2011 OSP66 2037 MYN66 1 0.108288 0.055015 0.00871 65.6 2011 OSP66 2037 MYN66 2 0.108288 0.055015 0.00871 65.6 2012 N-BMK66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.267445 0.654095 0.00933 74.0 2014 N-NBA 2039 MHY66 1 0.223042 0.667139 0.007768 67.5 2031 KLW66 2044 U-BAL66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 1 0.223042 0.667139 0.00768 67.5 2045 SID66 2103 PON66 1 0.30801 0.921287 0.010728 93.3 2046										
2011 OSP66 2037 MYN66 1 0.108288 0.055015 0.00871 65.0 2012 N-BMW66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.3 2013 AHL66 2015 SML66 1 0.0267445 0.654095 0.00933 74.0 2014 N-NBA 2022 KPT66 1 0.267445 0.667139 0.007768 67.3 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.00399 32.1 2033 MHY66 2040 MGG66 1 0.021287 0.010728 93.3 2040 MGG66 2043 WGM66 1 0.30801 0.921287 0.010728 93.3 2044 MTY1_66 2043 WGM66 1 0.30801 0.921287 0.010728 93.3 2045 SID66 2103 PON66 1 0.30801 0.921287 0.010728 93.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45.25</td></t<>										45.25
2011 OSP66 2037 MYN66 2 0.108288 0.055015 0.00871 65.6 2012 N=BWW66 2014 N=NBA 1 0.428469 1.04791 0.01499 118.5 2013 AHL66 2015 SML66 1 0.010045 0.039656 0.00033 74.4 2014 N=NBA 2022 KPT66 1 0.223042 0.667139 0.007768 67.5 2039 MHY66 2044 U=BAL66 1 0.10621 0.317685 0.003899 32.5 2039 MHY66 2040 MGG66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.7 2045 SID66 2103 PON66 1 0.03801 0.921287 0.01728 93.3 2046 WZZ66 2050 HKK66 1 0.0159315 0.158843 0.00185 16.4										65.66
2012 N-BMW66 2014 N-NBA 1 0.428469 1.04791 0.01499 118.5 2013 AHL66 2015 SML66 1 0.010045 0.039656 0.0006 4.6 2014 N-NBA 2022 KPT66 1 0.267445 0.667139 0.007768 67.5 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.003699 32.7 2039 MHY66 2040 MGG66 1 0.1021 0.317685 0.003699 32.7 2040 MGG66 2041 MTY1_66 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.7 2045 SID66 2103 PON66 1 0.053105 0.178843 0.01728 93.3 2046 WZ266 2050 HKK66 1 0.053105 0.15843 0.001731 48.7						_				65.66
2013 AHL66 2015 SML66 1 0.010045 0.039656 0.0006 4.0 2014 N-NBA 2022 KPT66 1 0.267445 0.654095 0.00933 74.0 2014 N-NBA 2039 MHY66 1 0.223042 0.667139 0.007768 67.3 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.003699 32.3 2040 MGG66 2044 MTY1_66 1 0.223042 0.667139 0.007768 67.3 2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.3 2045 SID66 2103 PON66 1 0.159315 0.476528 0.005549 48.3 2046 WZZ66 2050 HKK66 1 0.159315 0.476528 0.005549 48.3 3001 APL132 3016 TGD132 1 0.004765 0.121698 0.02173 48						-				118.57
2014 N-NBA 2022 KPT66 1 0.267445 0.654095 0.00933 74.0 2014 N-NBA 2039 MHY66 1 0.223042 0.667139 0.007768 67.5 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.003699 32.1 2039 MHY66 2040 MGG66 1 0.1021287 0.010728 93.3 2040 MGG66 2041 MTY1_66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2043 WGM66 1 0.03801 0.921287 0.010728 93.5 2046 WZ266 2047 GWL66 1 0.05105 0.15843 0.001561 64.4 3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.01724 0.026393 0.004711 10.5						-				4.62
2014 N-NBA 2039 MHY66 1 0.223042 0.667139 0.007768 67.5 2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.003699 32.1 2039 MHY66 2040 MGG66 1 0.30801 0.921287 0.010728 93.5 2040 MGG66 2041 MTY1_66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.3 2046 WZ266 2047 GWL66 1 0.053105 0.158843 0.00178 93.3 2046 WZ266 2050 HKK66 1 0.053105 0.158843 0.00178 48.3 3001 APL132 3016 TGD132 1 0.007683 0.01766 0.53 3002 CHK132 3007 KCH132 1 0.01751 0.075269 0.01536 32.1						-				74.01
2031 KLW66 2044 U-BAL66 1 0.10621 0.317685 0.003699 32. 2039 MHY66 2040 MGG66 1 0.30801 0.921287 0.010728 93.3 2040 MGG66 2041 MTY1_66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2103 PON66 1 0.159315 0.476528 0.005549 48.3 2046 WZZ66 2047 GWL66 1 0.159315 0.476528 0.005549 48.3 2046 WZZ66 2050 HKK66 1 0.053105 0.158843 0.00185 16.4 3001 APL132 3016 TGD132 1 0.007946 0.026393 0.00471 10.5 3002 CHK132 3007 KCH132 1 0.008388 0.015662 0.003506 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.										67.58
2039 MHY66 2040 MGG66 1 0.30801 0.921287 0.010728 93.3 2040 MGG66 2041 MTY1.66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1.66 2043 WGM66 1 0.159315 0.476528 0.005549 48.2 2045 SID66 2103 PON66 1 0.159315 0.476528 0.005549 48.2 2046 WZZ66 2050 HKK66 1 0.159315 0.158843 0.00185 16.4 3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.006838 0.015662 0.003506 3002 CHK132 3010 MGW132 1 0.008757 0.04756 105.5 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002						-				32.18
2040 MGG66 2041 MTY1_66 1 0.223042 0.667139 0.007768 67.5 2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.2 2045 SID66 2103 PON66 1 0.30801 0.921287 0.010728 93.3 2046 WZZ66 2047 GWL66 1 0.053105 0.158843 0.00185 16.4 3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.006838 0.015662 0.003506 3002 CHK132 3007 KCH132 1 0.03857 0.102191 0.01825 40.6 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.7 3002 CHK132 3014 PT132 1 0.140751 0.075269 0.01536 32.7						_				93.32
2041 MTY1_66 2043 WGM66 1 0.159315 0.476528 0.005549 48.2 2045 SID66 2103 PON66 1 0.30801 0.921287 0.010728 93.3 2046 WZZ66 2047 GWL66 1 0.159315 0.476528 0.005549 48.2 2046 WZZ66 2050 HKK66 1 0.053105 0.158843 0.00173 48 3001 APL132 3016 TGD132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.00638 0.015662 0.003506 3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.6 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.7 3002 CHK132 3017 TNY132 1 0.014675 0.360687 0.064431 44.0						1				67.58
2045 SID66 2103 PON66 1 0.30801 0.921287 0.010728 93.3 2046 WZZ66 2047 GWL66 1 0.159315 0.476528 0.005549 48.3 2046 WZZ66 2050 HKK66 1 0.053105 0.158843 0.00185 16.4 3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.010294 0.026393 0.00471 10.5 3001 APL132 3003 APL_BLN_J 1 0.006838 0.015662 0.003506 3002 CHK132 3010 MGW132 1 0.08757 0.102191 0.01825 40.6 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3017 TNY132 1 0.140675 0.360687 0.06443 144.0	2041	MTY1_66				1				48.27
2046 WZZ66 2047 GWL66 1 0.159315 0.476528 0.005549 48.2 2046 WZZ66 2050 HKK66 1 0.053105 0.158843 0.00185 16.4 3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.010294 0.026393 0.00471 10.5 3001 APL132 3007 KCH132 1 0.00838 0.01562 0.003506 3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.6 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.7 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.7 3002 CHK132 3014 PPT132 1 0.140675 0.360687 0.06443 144.0	2045	SID66				1				93.32
3001 APL132 3015 SDG132 1 0.047465 0.121698 0.02173 48 3001 APL132 3016 TGD132 1 0.010294 0.026393 0.00471 10.5 3001 APL132 3023 APL_BLN_J 1 0.006838 0.015662 0.003506 3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.8 3002 CHK132 3010 MGW132 1 0.087357 0.263057 0.04756 105.9 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165077 0.02781 64.4 3003 KLW132 3019 TKY132 1 0.024477 0.01368 28.1 3003 <td>2046</td> <td>WZZ66</td> <td>2047</td> <td>GWL66</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>48.27</td>	2046	WZZ66	2047	GWL66		1				48.27
3001 APL132 3016 TGD132 1 0.010294 0.026393 0.00471 10.5 3001 APL132 3023 APL_BLN_J 1 0.006838 0.015662 0.003506 3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.6 3002 CHK132 3010 MGW132 1 0.087357 0.263057 0.04756 105.5 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.7 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.7 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165776 0.02781 64.7 3003 KLW132 3019 TKY132 1 0.024477 0.01368 28.7 3003 </td <td>2046</td> <td>WZZ66</td> <td>2050</td> <td>HKK66</td> <td></td> <td>1</td> <td>0.053105</td> <td>0.158843</td> <td>0.00185</td> <td>16.49</td>	2046	WZZ66	2050	HKK66		1	0.053105	0.158843	0.00185	16.49
3001 APL132 3023 APL_BLN_J 1 0.006838 0.015662 0.003506 3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.6 3002 CHK132 3010 MGW132 1 0.037357 0.263057 0.04756 105.9 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1	3001	APL132	3015	SDG132		1	0.047465	0.121698	0.02173	48.6
3002 CHK132 3007 KCH132 1 0.039857 0.102191 0.01825 40.8 3002 CHK132 3010 MGW132 1 0.087357 0.263057 0.04756 105.9 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 2 0.052932 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38	3001	APL132	3016	TGD132		1	0.010294	0.026393	0.00471	10.54
3002 CHK132 3010 MGW132 1 0.087357 0.263057 0.04756 105.9 3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165077 0.02792 64.4 3003 KLW132 3019 TKY132 1 0.023192 0.166077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 1 0.004378 0.013139 0.0024 5.5	3001	APL132	3023	APL_BLN_J		1	0.006838	0.015662	0.003506	7
3002 CHK132 3017 TNY132 1 0.01751 0.075269 0.01536 32.1 3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165077 0.02792 64.4 3003 KLW132 3019 TKY132 2 0.052932 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 1 0.004378 0.013139 0.0024 5.5<						1	0.039857	0.102191		40.81
3002 CHK132 3017 TNY132 2 0.01751 0.075269 0.01536 32.1 3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165746 0.02792 64.4 3003 KLW132 3014 PPT132 2 0.052932 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024					_					105.96
3002 CHK132 3018 TZI132 1 0.140675 0.360687 0.06443 144.0 3003 KLW132 3014 PPT132 1 0.053146 0.165746 0.02792 64.4 3003 KLW132 3014 PPT132 2 0.052932 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.02192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.5 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599					_	-				32.19
3003 KLW132 3014 PPT132 1 0.053146 0.165746 0.02792 64.4 3003 KLW132 3014 PPT132 2 0.052932 0.165077 0.02781 64.7 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.7 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.7 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.7 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.7 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.5 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.7 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383					<u> </u>					32.19
3003 KLW132 3014 PPT132 2 0.052932 0.165077 0.02781 64.1 3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.5 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.7 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 <					<u> </u>	_				144.04
3003 KLW132 3019 TKY132 1 0.023192 0.064477 0.01368 28.1 3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.5 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.7 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 <t< td=""><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>64.41</td></t<>					<u> </u>					64.41
3003 KLW132 3019 TKY132 2 0.023192 0.064477 0.01368 28.1 3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.3 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.7 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>64.15</td></t<>										64.15
3003 KLW132 3033 YPS132 1 0.031414 0.087335 0.018534 38.1 3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.3 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.3 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.5						-				28.15
3003 KLW132 3033 YPS132 2 0.031414 0.087335 0.018534 38.1 3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.3 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.3 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.5										28.15
3004 LTP132-2 3028 BHP132 1 0.004378 0.013139 0.0024 5.3 3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.3 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.5					<u> </u>					38.13
3004 LTP132-2 3101 BAL-3_132 1 0.004773 0.014374 0.002599 5.7 3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.9					┣──					38.13
3005 KTG132 3027 NMS132 1 0.098032 0.294207 0.05383 118 3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.9										5.31
3005 KTG132 3027 NMS132 2 0.098032 0.294207 0.05383 118 3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.9						-				5.79
3006 KDA132 3018 TZI132 1 0.039666 0.176084 0.03395 73.0 3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.9										118.9
3006 KDA132 3026 ING132 1 0.045834 0.117516 0.02099 46.9										118.9
						-				73.06
3007 KCH132 3013 NBG132 1 0.120888 0.362772 0.06637 146.6						1	0.045834		0.02099	46.93

Transmission Line Data (1)

Transmission Line Data (2)

From Bus Number	From Bus	To Bus Number	To Bus Name	Id	Line R (pu)	Line X (pu)	Charging B (pu)	Length
4003	HLG230	4215	N.OKKALAP	1	0.000601	0.004038	0.012423	6.685
4004	HTY230	4008	MTG230	1	0.003818	0.02418	0.086078	42.49
4004	HTY230	4034	ATK230	1	0.010315	0.069304	0.21403	114.78
4004	HTY230	4035	BYN230	1	0.000998	0.006708	0.02064	11.11
4004	HTY230	4035	BYN230	2	0.000998	0.006708	0.02064	11.11
4004	HTY230	4044	AHL230	1	0.002016	0.013546	0.04183	22.43
4004	HTY230	4044	AHL230	2	0.002016	0.013546		22.43
4004	HTY230	4108	KKL230	1	0.004339	0.027478	0.097817	48.28
4004	HTY230	4154	HTL230	1	0.000578	0.003663	0.01304	6.44
4004	HTY230	4154	HTL230	2	0.000578	0.003663	0.01304	6.44
4004	HTY230		HTL230	3	0.000397	0.003302		5.79
4004	HTY230	4235	THANTAPIN	1	0.001591	0.010687	0.032882	17.699
4004	HTY230	4250	KYAIKLATT	1	0.007447	0.050033	0.153947	82.864
4005	MSN230	4018	SSY230	1	0.017439	0.11044	0.3857	194.05
4005	MSN230	4018	SSY230	2		0.11044	0.3857	194.05
4005	MSN230	4051	SHW230	1	0.00862	0.054591	0.19064	95.92
4005	MSN230	4051	SHW230	2	0.00862	0.054591	0.19064	95.92
4005	MSN230	4115	TIN230	1	0.008681	0.054978	0.195714	96.6
4006	LPT230	4014	SHM230	1	0.017355	0.10991	0.391266	193.12
4006	LPT230	4017	TGO230	1	0.020983	0.123341	0.21817	154.06
4006	LPT230	4152	TUG230	1	0.010775	0.089648	0.310991	157.28
4006	LPT230	4152	TUG230	2	0.010775	0.089648	0.310991	157.28
4007	KMN230	4008	MTG230	1	0.005781	0.038842	0.11995	64.33
	KMN230	4019	TLY230	1	0.00882	0.059101	0.18468	98.43
	KMN230	4029	SIT230	1	0.005278	0.035367	0.1114	58.9
4007	KMN230	4153	PYG230	1	0.003326	0.021062	0.074977	37.01
4007	KMN230	4153	PYG230	2	0.003326	0.021062	0.074977	37.01
4008	MTG230	4016	SHD230	1	0.018809	0.119119	0.424047	209.3
4008	MTG230	4016	SHD230	2	0.018809	0.119119	0.424047	209.3
4008	MTG230	4030	MHL230	1	0.012225	0.081923	0.256	136.44
4008	MTG230	4154	HTL230	2	0.00323	0.021646	0.068179	36.5
4008	MTG230	4235	THANTAPIN	1	0.001735	0.011658		19.308
4008	MTG230	4245	WARTAYAR	1	0.001797	0.012076	0.037157	C
4009	PMN230		NPT230	1	0.00184	0.012333	0.03885	20.54
4009	PMN230	4011	PLG230	1	0.000882	0.007337	0.025452	12.87
4009	PMN230		PLG230	2	0.000882	0.007337	0.025452	12.87
	PMN230		SHM230	1	0.004332	0.025755	0.04389	31.74
4009	PMN230		TPU230	1	0.003752	0.022521	0.06511	35.98
	NPT230	4037	TDG230	1	0.00669	0.044829	0.1412	74.66
4011	PLG230	4053	NCO230	1	0.00347	0.021978	0.078237	38.62
4011	PLG230		M-PLG230	1	0.004325	0.028983	0.09129	
4013	OHT230	4027	NBG230	1	0.007883	0.050752	0.17088	87.59
4013	OHT230	4027	NBG230	2	0.007883	0.050752	0.17088	87.59
4013	OHT230	4119	NPD230	1	0.012146	0.076921	0.27383	135.16
4013	OHT230	4119	NPD230	2	0.012146	0.076921	0.27383	135.16
4014	SHM230	4038	TZI230	1	0.014054	0.083554	0.14239	102.97
4014	SHM230	4124	NPT2_230	1	0.001446	0.009157	0.032599	16.09
4016	SHD230	4030	MHL230	1	0.018412	0.123383	0.38556	205.49
4016	SHD230	4037	TDG230	1	0.012852	0.08612	0.26912	143.43
4016	SHD230	4037	TDG230	2		0.08612		143.43
4016	SHD230	4039	OSP230	1	0.0037	0.024858		41.17
4016	SHD230	4152	TUG230	1	0.015916	0.100793		177.1
4016	SHD230	4152	TUG230	2	0.015916	0.100793	0.358809	177.1
	TGO230	1	TYG230	1		0.058074		96.72
4017	TGO230	4024	TPU230	1		0.040573		64.82
	TGO230	1	KUN230	1		0.062928		59.68
	TGO230		TYK230	1	1	0.013451		22.53
	TGO230		TUG230	1		0.010635		17
	TGO230		TUG230	2		0.010635		17
	SSY230		MYP230	1		0.015789		

Transmission Line Data (3)

From Bus Number	From Bus	To Bus Number	To Bus Name	Id	Line R (pu)	Line X (pu)	Charging B (pu)	Length
4018	SSY230	4101	U-YW230	1	0.01157	0.073276	0.260851	128.75
4018	SSY230	4101	U-YW230	2	0.01157	0.073276	0.260851	128.75
4019	TLY230	4033	TKT230	1	0.011135	0.007052	0.02455	12.39
4019	TLY230	4033	TKT230	2	0.011135	0.007052	0.02455	12.39
	TLY230		THILAWA	1		0.005555	0.017092	9.2
4019	TLY230		THILAWA	2	0.000827	0.005555	0.017092	9.2
	TPW230		YYW230	1		0.063988	0.22197	112.26
	TPW230		YYW230	2		0.063988	0.22197	112.26
	TPW230	1	TDG230	1		0.090081	0.278188	149.19
	TPW230		TZI230	1		0.015125	0.04764	25.19
	TPW230		MTL230	1		0.014194		24.94
	TPW230	4151		3		0.009171	0.031815	16.09
	TPW230		MTL230	4		0.009171	0.031815	16.09
	TYG230		KUN230	1		0.051593		48.93
	TYG230		SKY230	1		0.024796	0.07658	41.07
	TYG230			1		0.010073	0.035859	32.18
	TYG230		PYG230	1		0.070878	0.252314	124.54
	TYG230		PYG230	2	1	0.070878	0.252314	124.54
	NBG230		CHU230	1		0.062041	0.2003	103.9
	NBG230	1	SWG230	1		0.009157	0.032599	16.09
	NBG230	1	KAL230	1		0.087049	0.309881	152.95
	NBG230		KAL230	2		0.087049	0.309881	152.95
	KUN230		PYC230	1		0.009661	0.03043	16.09
	SIT230		BEL230	1		0.030553	0.096235	50.88
	MHL230		HTD230	1		0.054978	0.195714	96.6
	THT230		MLM230	1		0.048305		80.45
	THT230		HTK230	1		0.054944		96.54
	THT230		HTK230	2		0.054944	0.195593	96.54
	THT230		BEL230	1		0.030553	0.096235	50.88
	TKT230		EDG230	1		0.009157	0.032599	16.09
	TKT230		EDG230	2		0.009157	0.032599	16.09
	TKT230		SOUTH OKK	1		0.005383	0.016565	8.92
	TKT230		KYAIKKASAN			0.004492	0.013822	7.44
	TKT230		KYAIKKASAN			0.004492	0.013822	7.44
	TKT230			1		0.004498	0.013841	7.45
	TKT230		THIDA	2		0.004498	0.013841	7.45
	ATK230		PTI230	1		0.036652	0.130476	64.4
	ATK230		HTD230	1		0.073304	0.260952	128.8
	BYN230 BYN230		SOUTH OKK SOUTH OKK	1	0.000289	0.002471	0.2792	8
			KYAIKKASAI	1				13
	BYN230 BYN230		KYAIKKASAI					13
	TDG230		MAN230	1		0.004015		136.85
	TDG230		MAN230 MAN230	2		0.077885		136.85
	OSP230		THA230	2		0.010088		130.65
	OSP230		HTD230	1		0.091837		152.95
	STM230		MTL230	1	1			78.8
	AHL230		THIDA	1		0.005193		6.4
	AHL230		THIDA	2				6.4
	AHL230		YESB OFFIC			0.001291		4.17
	AHL230		YESB OFFIC			0.001291		4.17
	AHL230		YESB OFFIC			0.001291		4.17
	AHL230		KUNCHANK		1	0.006038		10
	AHL230		KUNCHANKO			0.006038		10
	AHL230		KYAIKLATT	1		0.050033		82.864
	AHL230		NEW2	1		0.003088		10
	AHL230		NEW2	2				10
	MLM230		YE230	1		0.075137		132.02

Transmission Line Data (4)

From Bus Number	From Bus	To Bus Number	To Bus Name	Id	Line R (pu)	Line X (pu)	Charging B (pu)	Length
4045	MLM230	4118	KKR230	1	0.00723	0.045787	0.162994	80.4
4051	SHW230	4127	TGG230	1	0.012146	0.076921	0.27383	135.1
	SHW230		TGG230	2	0.012146	0.076921	0.27383	135.1
	NCO230		U-PLG230	1	0.001591	0.010073	0.035859	17.
	THA230		TOU230	1	0.001212	0.010088	0.034997	17.
	MYK230		TNT230	1	0.005784	0.036629	0.130395	64.3
	MYK230		DWI230	1	0.008676	0.054944	0.195593	96.5
	TMT230 TMT230		NBR230	1	0.024581	0.155674	0.554179	273.5
	MWL230		NBR230 KAL230	1	0.024581	0.155674 0.032051	0.554179 0.114096	273.5 56.3
	MPR230		KAL230	1	0.005061	0.032051	0.114096	56.3
	U-TLW230		TIN230	1	0.011279	0.071427	0.25427	125.
	U-TLW230		TIN230	2	0.011279	0.071427	0.25427	125.
	CBW230		LAZ230	1	0.010122	0.064101	0.228191	112.6
	CBW230		LAZ230	2	0.010122	0.064101	0.228191	112.6
	MAN230		CHK230	1	0.010128	0.064141	0.228333	112.
4102	MAN230	4111	KCH230	1	0.013022	0.082467	0.293571	144.
4102	MAN230	4117	ANN230	1	0.008818	0.07337	0.254522	128.7
4103	PON230	4117	ANN230	1	0.013227	0.110056	0.381783	193.0
	TOU230	4125	KKP230	1	0.015906	0.10073	0.358586	176.9
	EDG230		PYG230	1	0.008088	0.054342	0.167206	9
	EDG230		PYG230	2	0.008088	0.054342	0.167206	9
	EDG230		SOUTH OKK		0.001114		0.023037	12.
	EDG230		N.OKKALAPA	1	0.000719	0.00483	0.014863	
	EDG230		N.OKKALAPA	2	0.000719	0.00483	0.014863	
	EDG230		NEW1	1	0.000253	0.002162	0.2443	
	EDG230 EDG230		NEW1 NEW1	2		0.002162	0.2443	
	CHK230		MTL230	3	0.000253	0.068723	0.244643	120.7
	MWD230		KKR230	1	0.004338	0.027472	0.097796	48.2
	YE230		DWI230	1	0.007234		0.163095	80.
	ANN230		KKP230	1	0.014894	0.09432	0.335767	165.7
	NPD230		NBR230	1	0.013737	0.086994	0.309688	152.8
	NPD230		NBR230	2	0.013737	0.086994	0.309688	152.8
	NBR230		BMO230	1	0.012291	0.077837	0.277089	136.7
4120	NBR230	4121	BMO230	2	0.012291	0.077837	0.277089	136.7
4122	SHW3_230	4123	SHW2_230	1	0.002205	0.018343	0.063631	32.1
4122	SHW3_230	4123	SHW2_230	2	0.002205	0.018343	0.063631	32.1
4126	YWA230	4154	HTL230	1	0.001064	0.00674	0.023993	11.8
	YWA230		HTL230	2	0.001064	0.00674	0.023993	11.8
	YWA230		N.OKKALAP	1	0.000361	0.003088	0.349	1
	YWA230		N.OKKALAPA	21	0.000361	0.003088	0.349	1
4151	MTL230		TUG230	1	0.008346	0.116148	0.545955	
4151	MTL230		TUG230	2	0.008346	0.116148	0.545955	
	TUG230		PYG230	1	0.006687	0.093077	0.437512	
	TUG230 SOUTH OKK		PYG230 N.OKKALAPA	2		0.093077	0.437512 0.012423	6.60
	YESB OFFI		TAMWE TOW		0.000601		0.012423	6.68
	YESB OFFI		TAMWE TOV				0.2094	
	YESB OFFI		TAMWE TOV				0.2094	
	TAMWE TOW		NEW1	1		0.002162	0.2443	
	TAMWE TOW		NEW1	2			0.2443	
	TAMWE TOW		NEW1	3			0.2443	
5001	MTL500		TUG500	1			2.580126	
	MTL500		TUG500	2			2.580126	235
5001	MTL500	5006	BLN	1	0.001499	0.020861	2.189979	199
	MTL500	5006		2			2.189979	199
5002	TUG500	5003	PYG500	1	0.001415	0.019695	2.067635	188.3
	TUG500		PYG500	2			2.067635	188.3
	PYG500		HTL500	1	0.000676		0.987881	ç
	PYG500		HTL500	2			0.987881	9
	PYG500		KMB500	1	0.003215		4.697857	427.9
	PYG500		KMB500	2			4.697857	427.9
	PYG500		EAST DAGO	1	0.000676	0.00941	0.987881	9
	PYG500		EAST DAGO	2			0.987881	005.0
	HTL500		NYK500	1	0.001692		2.472557	225.2
	HTL500		NYK500	2			2.472557	225.2
	HTL500		KGYAYOKEK		0.001127		1.646469	15
	HTL500						1.646469	15
	SHW3_500 SHW3 500	5006		1	0.001499		2.189979	
	SHW3_500 SHW3 500	5006	BLN CBW500	2	0.001499		2.189979 4.379958	
5005					I U UUZ 99/	I U.U41/21	40/9900	

Generator Data (1)

Bus	Bus Name		Id	In	PGen	PMax	Mbase	X Source
Number	Bus Name		Ia	Service	(MW)	(MW)	(MVA)	(pu)
1018	KDA11-1	11.000	1	1	22.4	28	32.94	0.25
1019	KDA11-2	11.000	1	1	22.4	28	32.94	0.25
1024	KTG11-1	11.000	1	1	14.72	18.4	23	0.1509
1025	KTG11-2	11.000	1	1	14.72	18.4	23	0.1509
1026	KTG11-3	11.000	1	1	14.72	18.4	23	0.1509
1031	LPT11-1	11.000	1	1	28	28	31.11	0.23
1032	LPT11-2	11.000	1	1	28	28	31.11	0.23
1033	LPT11-3	11.000	1	1	28	28	31.11	0.23
1034	LPT11-4	11.000	1	1	28	28	31.11	0.23
1035	LPT11-5	11.000	1	1	28	28	31.11	0.23
1036	LPT11-6	11.000	1	1	28	28	31.11	0.23
	SDG11-1	11.000	1	1	10	12.5	13.89	0.2
1051	SDG11-2	11.000	1	1	10	12.5	13.89	0.2
1054	SHW11-1	11.000	1	1	80	100	117.65	0.2
1055	SHW11-3	11.000	1	1	80	100	117.65	0.2
1056	SHW11-6	11.000	1	1	80	100	117.65	0.2
1057	SKY11-1	11.000	1	1	10.8	13.5	15	0.16
1058	SKY11-2	11.000	1	1	10.8	13.5	15	0.16
1059	SKY11-3	11.000	1	1	10.8	13.5	15	0.16
1060	SKY11-4	11.000	1	1	10.8	13.5	15	0.16
1066	THT11-1	11.000	1	1	19.904	19.9	24.88	0.151
	THT11-2	11.000	1	0	19.904	19.9	24.88	0.151
1068	THT11-3	11.000	1	0	20	20	25	0.14
1070	TKT11-1	11.000	1	1	19.1	19.1	23.92	0.12
1071	TKT11-2	11.000	1	1	19.1	19.1	23.92	0.12
1072	TKT11-3	11.000	1	1	19.1	19.1	23.92	0.12
1073	TKT11-4	11.000	1	1	34.9	34.9	43.63	0.13
1083	YYW11-1	11.000	1	1	156.4	195.5	230	0.282
1084	YYW11-2	11.000	1	1	156.4	195.5	230	0.282
1085	YYW11-3	11.000	1	1	156.4	195.5	230	0.282
1086	YYW11-4	11.000	1	1	156.4	195.5	230	0.282
	ZGY11-1	11.000	1	1	4.8	6	7.5	0.175
1087	ZGY11-1	11.000	2	1	4.8	6	7.5	0.175
1087	ZGY11-1	11.000	3	1	4.8	6	7.5	0.175
1088	ZGY11-2	11.000	1	1	5.12	6.4	8	0.19
	ZGY11-2	11.000	2	1	5.12	6.4	7.5	0.19
	MYN11-1	11.000	1	1	20.2	20.2	25.31	0.21
	MYN11-2	11.000	1	0	19.9	19.9	24.88	
	PLG11-1	11.000	1	1	56.96		83.82	0.1879
	PLG11-2	11.000	1	1	56.96	71.2	83.82	0.1879
	PLG11-3	11.000	1		56.96		83.82	
	PLG11-4	11.000	1	1	56.96		83.82	0.1879
	AHL11-1	11.000	1		34.4			
	AHL11-2	11.000	1	1	34.4	34.4	43.05	
	AHL11-3	11.000	1	1	34.4	34.4	43.05	0.1078
	AHL11-4	11.000	1	1	54.3	54.3	67.88	0.13
	TKY11-1	11.000	1	0	60	60	75	0.139
	TKY11-2	11.000	1	0	60	60	78	0.139
	HLG11-1	11.000	1	1	34.9	34.9	43.58	0.1078
-	HLG11-2	11.000	1	1	34.9	34.9	43.58	
	HLG11-3	11.000	1	1	34.9	34.9	43.58	0.1078
	HLG11-4	11.000	1	0	51.1	51.1	63.85	0.13
	SHD11-1	11.000	1	0	20	20	25	0.166
	SHD11-2	11.000	1	0	20	20	25	0.166
	SHD11-3	11.000	1	0	27.3	27.3	34.13	
	MAN11-1	11.000	1	0	20	20	25	0.159
	MAN11-2	11.000	1		20	20	25	0.151
	MON11-1	11.000	1	1	20	25	29.41	0.2053
	MON11-2	11.000	1	1	20	25	29.41	0.2053
	MON11-3	11.000	1	1	20	25	29.41	0.2053
								014
1123	KCH11-1	11.000	1	0	20.5	20.5	25.6	
1123 1124	KCH11-1 KCH11-2	11.000	1	0	20.5	20.5	25.6	0.14
1123 1124 1125	KCH11-1			0				0.14

Generator Data (1)

Bus Number	Bus Name		Id	In Service	PGen (MW)	PMax (MW)	Mbase (MVA)	X Source (pu)
		44.000				• •		
	KYE11-2	11.000	1	1	34.8	43.5	51.21	0.261
	KUN11-1	11.000	1	1	17.04	21.3	25	0.16
	KUN11-2	11.000	1	1	17.04	21.3	25	0.16
	KUN11-3	11.000	1	1	16	20	25	0.16
	TYK11-1	11.000	1	1	32	40	47.06	0.1879
	TYK11-2	11.000	1	1	32	40	47.06	0.1879
	TYK11-3	11.000	1	1	32	40	47.06	0.1879
	TPZ11-1	11.000	1	1	8	10	12.5	0.19374
	TPZ11-2	11.000	1	1	8	10	12.5	0.19374
1136	TPZ11-3	11.000	1	1	8	10	12.5	0.19374
1137	KAP11-1	11.000	1	1	12.4	15.5	19.4	0.166
1138	KAP11-2	11.000	1	1	12.4	15.5	19.4	0.166
1139	BHP11-1	11.000	1	1	14	14	15.56	0.26
1140	BHP11-2	11.000	1	1	14	14	15.56	0.26
1141	YWA11-1	11.000	1	1	20	20	25	0.166
1142	YWA11-2	11.000	1	1	20	20	25	0.166
1143	YWA11-3	11.000	1	1	24.1	24.1	28.3	0.12
1144	YWA11-4	11.000	1	1	9.45	9.5	10.5	0.12
	KGYAYOKE		1	1	540	540	635.29	0.12
	KUNCHANK		1	1	300	300	470.59	0.12
	AHLONE	11.000	1	1	121	121	142.35	0.12
	THANTAPI		1	1	270	270	317.65	0.12
	THILAWA1	11.000	1	1	50	50	58.82	0.12
	THILAWA1	11.000	1	1	650	650	764.71	0.12
			1	1				
		11.000			150	150	176.47	0.12
	KYAIKLATT		1	1	500	500	588.24	0.125
	U-BAL66	66.000	1	1	23.2	29	34.12	0.25
		66.000	1	1	9.18	11.475	13.5	0.25
	WZZ66	66.000	1	1	7.2	9	10.59	0.25
	GWL66	66.000	1	1	12	15	17.65	0.25
3044	CWN132	132.00	1	1	11.88	14.85	17.47	0.25
	U-KTG132	132.00	1	1	40.8	51	60	0.25
3046	U-BUY132	132.00	1	1	120	150	176.47	0.25
3048	LGD132	132.00	1	1	52.2	65.25	76.76	0.25
3049	TGX132	132.00	1	1	38.4	48	56.47	0.25
3050	HKK132	132.00	1	1	16.8	21	24.71	0.25
3101	BAL-3_132	132.00	1	1	41.6	52	61.18	0.25
3106	TAP132	132.00	1	1	28.8	36	42.35	0.25
3107	TAP2 132	132.00	1	1	20.16	25.2	29.65	0.25
4033	TKT230	230.00	1	0	16.08	53.6	63.06	0.25
	TKT230	230.00	2	0	150.9	503	591.76	0.25
	TKT230	230.00	3					
	AHL230	230.00	1	0	36.3	121	142.35	0.25
	PYC230	230.00	1	1	32	40	47.06	0.25
	NCO230	230.00	1	1	32	40	47.00	0.25
	U-PLG230	230.00	1	1	112	140	164.71	0.25
	M-PLG230	230.00	1	1	80	100	117.65	0.25
	THA230	230.00	1	1	88.8	111	130.59	0.25
	BWG230	230.00	1	1	128	160	188.24	0.25
	SWG230	230.00	1	1	79.2	99	116.47	0.25
	TNT230	230.00	1	1	72	90	105.88	0.25
	TMT230	230.00	1	1	144	180	211.76	0.25
	MWL230	230.00	1	1	62.4	78	91.76	0.2
	HTK230	230.00	1	0	163.2	204	240	0.2
	MPR230	230.00	1	1	45.6	57	67.06	0.25
4065	U-TLW230	230.00	1	1	168	210	247.06	0.2
4066	BEL230	230.00	1	0	224	280	329.41	0.2
4068	LAZ230	230.00	1	1	228	285	335.29	0.2
	U-YW230	230.00	1	1	224	280	329.41	0.2
	ANN230	230.00	1	1	8	10	11.76	0.2
	SHW2_230	230.00	1	1	62.4	78	91.76	0.2
5005	SHW3_500	500.00	1	1	650.58	1050	1235.29	0.25
	NYK500	500.00	1	0	-1004	1300	1529.41	0.2
			1	1	150		588.24	0.25
5000					1 100	500	000.24	U.23
	KMB500	500.00				1000		
5008	KMB500 KMB500 CBW500	500.00 500.00 500.00	2	1	300 408	1000 510	<u>1176.47</u> 600	0.2

Load Data (1)

Bus Number	Bus Name	Area Num	Pload (MW)	Qload (Mvar)	
-	HLG33 33.000	2	262.7469	114.5287	
	HTY33 33.000	2	98.5301	42.9483	
	TKT33 33.000	2	38.3173	16.7021	-
	TKT33_2 33.000	2	38.3173	16.7021	
	TLY33 33.000	2	98.5301	42.9483	-
	AHL33 33.000	2	84.298	36.7446	
	YWA33 33.000	2	19.706		Yangon
	TILAWA 33.000	2	168.3462	73.3804	-
	WEST UNIV 33.000	2	98.5301		
		2		42.9483	
			297.9728	129.8833	_
	BYN66 66.000	2	189.3895		Yangon
	AHL66 66.000	2	390.5632	170.2426	-
	HLG66 66.000	2	45.4535	19.8127	
	EDG66 66.000	2	189.3895		Yangon
	IWAMA 66.000	2	231.4761	100.8981	-
	SOUTH OKKALA66.00	2	189.3895		Yangon
	KYAIKKASAN 66.000	2	189.3895		Yangon
	THIDA 66.000	2	189.3895	82.553	Yangon
2225	N.OKKALAPA 66.000	2	0		Yangon
4245	WARTAYAR 230.00	2	49.265	21.4741	Yangon
1003	TYG33 33.000	1	12.14	5.292	Other areas
1004	TGO33 33.000	1	16.9	7.367	Other areas
1008	ATB33 33.000	1	17	7.41	Other areas
1010	APL33 33.000	1	11	4.795	Other areas
1011	BLN33 33.000	1	15.6	6.8	Other areas
1016	ING33 33.000	1	18	7.846	Other areas
1017	ING33_2 33.000	1	0.98	0.427	Other areas
	KLW33 33.000	1	8.19	3.57	Other areas
	KMN33 33.000	1	30.1749		Other areas
	KPT33 33.000	1	9.12		Other areas
	YTB33 33.000	1	1.21		Other areas
	LPH33 33.000	1	12.9		Other areas
	MGW33 33.000	1	7.5		Other areas
	MGW33 2 33.000	1	7.9		Other areas
	MTG33 33.000	1	52.3313		Other areas
	MYP33 33.000	1	57.7		Other areas
	MYP33 33.000	1	38.32		Other areas
	NPT33 33.000	1	24.41		Other areas
	MTG33_2 33.000	1	15.6994		Other areas
	PMN33 33.000	1	38		Other areas
-	POL33 33.000	1	19.2		Other areas
	PMN33 33.000	1	22		Other areas
	SHM33 33.000	1	12.72		Other areas
	SSY33 33.000	1	43		Other areas
	STM33 33.000	1	42		Other areas
	TGD33 33.000	1	19.1		Other areas
1064	TGD11 11.000	1	14	6.102	Other areas
1065	THT33 33.000	1	18.7	8.151	Other areas
1076	TPU33 33.000	1	21.58	9.407	Other areas
1077	TPW33 33.000	1	26.31	11.468	Other areas
1077	TPW33 33.000	1	11.24	4.899	Other areas
1081	TZI33 33.000	1	19.9	8.674	Other areas
1082	YPS33 33.000	1	4.3	1.874	Other areas
1099	APL11 11.000	1	16.8	7.323	Other areas
	THD66 66.000	1	49.17		Other areas
	SHD66 66.000	1	43		Other areas
-	MYA66 66.000	1	13.5		Other areas
	MYA66 66.000	1	12.4		Other areas
	THT66 66.000	1	25.5		Other areas
	OSP66 66.000	1	23.2		Other areas
2011	00.000	1	20.2	10.113	

Load Data (2)

Data(2)				
Bus Number		Area Num	Pload (MW)	
2016	STTY66 66.000	1	0.86	0.375 Other area
2020	MLM66 66.000	1	5.72	2.493 Other areas
2026	KCH66 66.000	1	27.3	11.9 Other areas
2027	ATK66 66.000	1	45.6	19.877 Other area
2028	CHK66 66.000	1	28	12.205 Other area
2031	KLW66 66.000	1	34	14.82 Other area
2032	MAN66 66.000	1	1.89	0.824 Other areas
2033	MGN66 66.000	1	17	7.41 Other areas
2034	MSN66 66.000	1	23.1	10.069 Other area
2035	NMS66 66.000	1	8.71	3.797 Other areas
2036	TDG66 66.000	1	15	6.538 Other areas
2037	MYN66 66.000	1	17.1	7.454 Other areas
2038	TNY66 66.000	1	2.79	1.216 Other areas
2230	YESB OFFICE 66.000	1	242	
	TAMWE TOWNSH66.00	1	350	
	NEW1 66.000	1	323	156.4361 Other area
	NEW2 66.000	1	164	79.4288 Other area
-	APL132 132.00	1	78.371	37.96 Other area
	CHK132 132.00	1	78.935	
	KLW132 132.00	1	166.862	80.81 Other area
	LPH132 132.00	1	36.366	
-	MGW132 132.00	1	43.414	21.03 Other areas
		1		
	TGD132 132.00	1	93.312	45.19 Other area
	TNY132 132.00		7.865	3.81 Other area
	TZI132 132.00	1	56.1	27.17 Other areas
-	MGN132 132.00	1	47.925	23.21 Other areas
	ING132 132.00	1	53.506	25.91 Other areas
	NMS132 132.00	1	24.544	11.89 Other area
	TDG132 132.00	1	42.286	20.48 Other area
	MAN132 132.00	<u> </u>	5.328	2.58 Other areas
	KPT132 132.00	1	25.71	12.45 Other areas
	YPS132 132.00	1	0.26	0.113 Other area
	YPS132 132.00	1	12.855	6.23 Other area
	POL132 132.00	1	54.127	26.21 Other areas
	YTB132 132.00	1	3.411	1.65 Other area
	STTY132 132.00	1	2.424	1.17 Other areas
	BLN230 230.00	1	43.978	
	MSN230 230.00	1	65.121	31.54 Other area
	PMN230 230.00	1	169.146	81.92 Other areas
	NPT230 230.00	1	68.814	33.33 Other area
4013	OHT230 230.00	1	180.46	87.4 Other area
-	SHM230 230.00	1	35.859	17.37 Other area
4016	SHD230 230.00	1	121.221	58.71 Other area
4017	TGO230 230.00	1	47.643	23.07 Other area
4018	SSY230 230.00	1	121.221	58.71 Other area
4019	TLY230 230.00	1	72.25	34.99 Other areas
4020	TPW230 230.00	1	105.875	51.28 Other area
4021	TYG230 230.00	1	34.224	16.58 Other area
4024	TPU230 230.00	1	60.836	29.46 Other areas
4027	NBG230 230.00	1	73.015	35.36 Other area
4031	THT230 230.00	1	124.604	60.35 Other area
4033	TKT230 230.00	1	301.891	146.21 Other area
	ATK230 230.00	1	128.551	62.26 Other area
	OSP230 230.00	1	65.403	31.68 Other area
	OSP230 230.00	1	48.207	23.35 Other areas
	STM230 230.00	1	118.402	57.34 Other areas
	MYP230 230.00	1	90.23	43.7 Other area
	AHL230 230.00	1	137.163	66.43 Other area
	MLM230 230.00	1	16.125	7.81 Other area
	KCH230 230.00	1	76.961	37.27 Other area
4111	1.011200 200.00	1	70.801	UT.21 Other area

<Appendix 4>

Option of the System Configuration with 230 kV Interconnection between East and West and the Eastern 500 kV Substation around Yangon

• Option of the System Configuration with 230 kV Interconnection between East and West and the Eastern 500 kV Substation around Yangon

The original plan of Yangon system by MEPE was analyzed with adding the model of part of the system of Yangon using PSS/E software that was also used in "JICA Expert for Strengthening of Implementation Capacity for Transmission Line and Substation". The main part of the power system analysis data are listed in Appendix 3.

According to the original plan made by MEPE, the power flow at the intervals of Hlaingtayar – Ahlon and Kyaiklat-Ahlone exceed the capacity of their transmission lines. Some interval of the 230 kV transmission lines become overloaded around Hlawga, East Dagon and Ahlone when the single circuit is dropped. An option of the installation of both the 230 kV Interconnection between east and west in Yangon and the eastern 500 kV substation around Yangon as an countermeasure against overloaded conditions caused by dropping a single circuit of transmission lines as show in the following figure.

This option does not cause overloaded situations even when a 230 kV single circuit is dropped except for the lines from Kyaikalat power station. The loads of 500 kV transformers can be within 120 % of their capacity even when one of their banks is dropped in this option.

Thus, it is recommended that the installation of a new 500 kV substation in the east of Yangon or an equivalent power source to supply the power both from the east and the west of Yangon in addition to the 230 kV interconnection.

The short circuit currents in this system are calculated as under 30 kA that is within their permissible levels of both 500 kV and 230 kV as shown in the following table.

Bus name	Voltage	3phase shortt circuit current (kA)	Bus name	Voltage	3phase shortt circuit current (kA)
Hlaingtayar	230kV	20.3	South Okkala	230kV	28.2
Kamanat	230kV	16.5	Kyaikkasan	230kV	25.6
Myaungtagar	230kV	18.5	Thida	230kV	23.1
Thaketa	230kV	28.0	Thilawa	230kV	16.6
Ahlone	230kV	22.4	Phyaragyi	500kV	14.4
East Dagog	230kV	27.5	Hlaingtayar	500kV	12.4
Ywama	230kV	27.5	East Dagog	500kV	11.3
Phyaragyi	230kV	21.8			

 Table A4-1 Three Phase Short Circuit Current for the System with East-West

 Interconnection and East 500 kV Substation

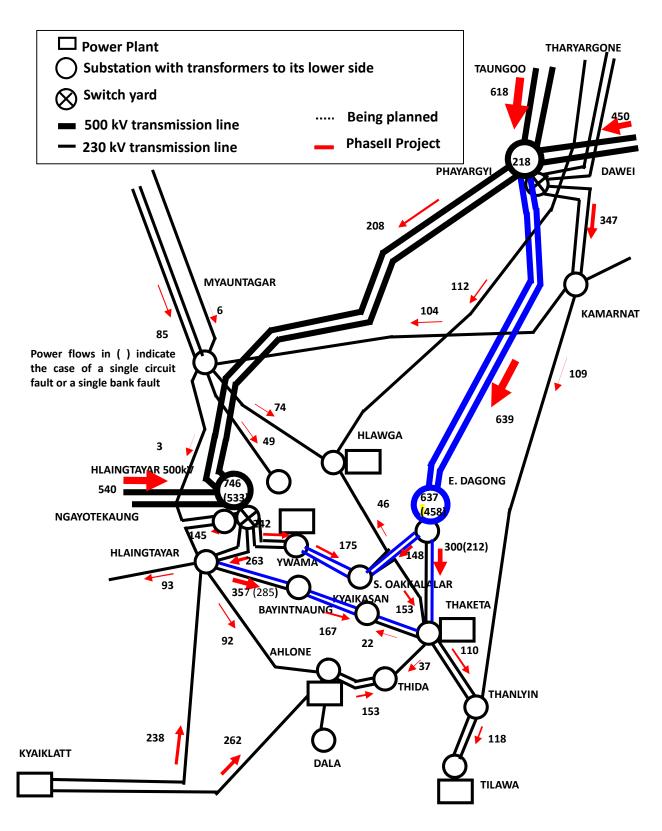


Figure A4-1 Power Flow in the System Fulfilling N-1 Criteria (East-West Interconnection and East 500 kV substation)