PREPARATORY SURVEY REPORT ON THE PROJECT FOR ASMALA WATER SUPPLY DEVELOPMENT IN THE STATE OF ERITREA

July 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

PREPARATORY SURVEY REPORT ON THE PROJECT FOR ASMALA WATER SUPPLY DEVELOPMENT IN THE STATE OF ERITREA

July 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

PREFACE

In response to a request from the Government of the State of Eritrea, the Government of Japan decided to conduct a preparatory survey for a Grant Aid Project for the rehabilitation and expansion of the water supply facility in Asmara and entrusted the survey to the Japan International Cooperation Agency (JICA).

JICA sent to Eritrea a survey team from March 22, 2015 to May 3, 2015 and from May 31, 2015 to June 5, 2015.

I hope that this report will be utilized as a reference by the person concerned.

I wish to express my sincere appreciation to the officials concerned of the Government of the State of Eritrea for their close cooperation extended to the survey team.

July, 2015

Kunihiro Yamauchi General Manager, Global Environment Dept. Japan International Cooperation Agency

Location Map

Preparatory Survey on Asmara Water Supply Development

Preface Location Map / Photos Table of Contents List of Tables & Figures / Abbreviations

Table of Contents

Chapter	1	Outline of the Survey	1
1.1	Bac	kground and Contents of the Request for Grant Aid Project	1
1.2	Obj	ective of the Survey	3
1.3	Me	mber of the Survey Team	3
1.4	Sur	vey Schedule	4
1.5	Ma	jor Contact Person	5
1.6	Out	line of Survey Results	5
1.6	.1	Results of First Field Survey	5
1.6	.2	Results of Discussion with the Eritrean Side	б
Chapter	2	Present Condition Related to the Requested Project	7
2.1	Out	line of the Request for Grant Aid Project	7
2.1	.1	Background of the Request	7
2.1	.2	Contents of the Requested Project	7
2.2	Pre	sent Water Supply Condition in Eritrea	9
2.2	.1	Government Organizations Related to Water Supply Sector	9
2.2	.2	Laws and Regulations Related to Water Supply Sector in Eritrea	9
2.2	.3	National Plan Related to Water Supply Sector 1	1
2.2	.4	Activities of the Other Donors	3
2.2	.5	Past Project with Assistance of Japan	4
2.3	Pre	sent Situation and Issues in the Water Supply in Asmara1	4
2.3	.1	Water Supply Utility in Asmara	4
2.3	.2	Present Condition of the Water Supply Business1	8
2.3	.3	Present Condition of the Existing Water Supply Facility	2
2.3	.4	Operation and Maintenance (O&M)	0
2.3	.5	Water Quality Control	б
2.4	Env	vironmental and Social Consideration5	8
2.5	Wat	ter Demand Projection and Water Balance6	2
2.5	.1	Condition of Water Demand Projection	2
2.5	.2	Results of Water Demand Projection	4
2.5	.3	Water Balance	4

Chapter 3	Consideration of the Contents of the Request	67
3.1 Co	nsideration of Effectiveness and Sustainability of the Grant Aid Project	67
3.1.1	Examination of the Prerequisites (Water Source and Power Supply)	67
3.1.2	Consideration of the Possibility of Assistance (Facility Construction)	70
3.1.3	Consideration of the Possibility of Assistance on O&M	77
3.1.4	Consideration of the Possibility of Assistance on Organization Strengthening	79
3.1.5	Consideration Results of the Contents of the Requested Grant Aid Project	80
3.2 Co	nsideration of the Conceivable Assistance	82
3.2.1	Issues and Countermeasures for Improvement of Asmara Water Supply	82
3.2.2	Consideration of Assistance Item	97
3.3 Co	nclusion	97

Appendices

- 1. Minutes of Discussions
- 2. List of Contacted Person
- 3. List of Collected Data
- 4. Reference
 - 1) Presentation materials in the first field survey
 - 2) Presentation materials in the second field survey
 - 3) Calculation for available intake water amount from each dam
 - 4) Electric power condition
 - 5) Schematic drawings of each dam and WTP
 - 6) Water demand projection
 - 7) Pipeline network analysis
 - 8) Water quality standards in Eritrea
 - 9) Flow chart of environmental assessment procedure
 - 10) Answer to the Questionnaire
 - 11) Photos

List of Tables

Table 1.1.1	Contents of the Request	2
Table 2.1.1	Contents of the Requested Project	7
Table 2.2.1	Role of Organizations Related to Water Supply Sector)
Table 2.2.2	Population with Access to Safe Water in Eritrea13	3
Table 2.2.3	Works to be Conducted in the Action Plan (2013-2017)	3
Table 2.2.4	Project Features of the Project for Urban Water Supply in Debub Region14	1
Table 2.3.1	Divisions and Roles of AWSD	5
Table 2.3.2	Staff Number of AWSD	7
Table 2.3.3	Number of Staff with Technical School or Higher Educational Background 17	7
Table 2.3.4	Machine/Vehicle Owned by AWSD18	3
Table 2.3.5	Population of 13 sub-Zobas of Asmara)
Table 2.3.6	Water Supply Condition in 2014	1
Table 2.3.7	Distribution Zone for Water Rationing	3
Table 2.3.8	Contents of AWSD Annual Report	5
Table 2.3.9	Executed Construction Work by AWSD	5
Table 2.3.10	Water Production Volume and Amount of Chemicals Used (2013)	5
Table 2.3.11	Water Production Volume and Amount of Chemicals Used (2014)27	7
Table 2.3.12	Water Volume Transmitted from Toker Dam and Amount of Diesel Consumed in	
	2013	7
Table 2.3.13	Water Sold to Water Truck and Amount of Money	7
Table 2.3.14	Materials Taken from AWSD Store	3
Table 2.3.15	Annual Revenue and Expenditure of AWSD)
Table 2.3.16	Tariff of AWSD)
Table 2.3.17	Long-term Objectives of AWSD)
Table 2.3.18	Various factors or elements of each dam in S.V W.T.P system	5
Table 2.3.19	Various factors or elements of S.V W.T.P	7
Table 2.3.20	Present Condition and Problems of the Intake, Transmission, and Distribution	
	Facility of Stretta Vaudetto WTP System	3
Table 2.3.21	Various factors or elements of Toker dam	l
Table 2.3.22	Various factors or elements of Toker W.T.P42	2
Table 2.3.23	Present Condition and Problems of Intake, Transmission and Distribution Facility o	f
	Toker WTP System	3
Table 2.3.24	Various factors or elements of Mai Nefhi dam40	5
Table 2.3.25	Various factors or elements of Mai Nefhi W.T.P47	7
Table 2.3.26	Present Condition and Problems of Intake, Transmission and Distribution Facility o	f
	Mai Nefhi WTP System	3
Table 2.3.27	Possible items of water quality test at National Water Quality Laboratory	5
Table 2.3.28	Implementation plan for monitoring of water quality by National Water Quality	
	Laboratory	7

Table 2.3.29	Results of lake water quality test at 4 dams	.57
Table 2.3.30	Results of treated water quality test at 3 W.T.Ps	.58
Table 2.5.1	Conditions of 2015 Potential Demand	. 62
Table 2.5.2	Conditions of Water Demand Projection in 2020 and 2025	.63
Table 2.5.3	Projected Water Demand	.64
Table 2.5.4	Potential Water Demand in 2015 and Actual Supply in 2014	.64
Table 2.5.5	Water Demand and Supply Capacity	.65
Table 3.1.1	Potential and available quantity of water intake from each dam	.67
Table 3.1.2	Supply and demand of electricity	.68
Table 3.1.3	Operational states of W.T.Ps	. 69
Table 3.1.4	Conceivable Project Components of Stretta Vaudetto System	.71
Table 3.1.5	Expected Project Effect (Stretta Vaudetto WTP System)	.73
Table 3.1.6	Conceivable Project Components of Toker System	.74
Table 3.1.7	Expected Project Effect (Toker WTP System)	.75
Table 3.1.8	Conceivable Project Components of Mai Nefhi System	.76
Table 3.1.9	Expected Project Effect (Mai Nefhi WTP System)	.77
Table 3.1.10	Present Condition and Problems on AWSD Operation	.79
Table 3.2.1	Issues and Countermeasures for Improvement of Asmara Water Supply	.83
Table 3.3.1	Issues and Countermeasures (Urgency A) (1/4)	.98
Table 3.3.2	Priority Issues (Information management*) (1/2)	102

List of Figure

Figure 2.1.1	Outline of the Water Supply Facility of Asmara
Figure 2.3.1	Organizational Chart of Zoba Maekel Administration14
Figure 2.3.2	Organizational Chart of AWSD16
Figure 2.3.3	AWSD Service Area
Figure 2.3.4	Water Distribution Zone
Figure 2.3.5	Outline of Water Supply Facility of Asmara
Figure 2.3.6	Location of the Distribution Facility in the Service Area
Figure 2.3.7	Configuration of Stretta Vaudetto WTP System
Figure 2.3.8	Flow chart of S.V W.T.P
Figure 2.3.9	Configuration of Toker WTP System
Figure 2.3.10	Flow chart of Toker W.T.P
Figure 2.3.11	Configuration of Mai Nefhi WTP System45
Figure 2.3.12	Flow chart of Mai Nefhi W.T.P
Figure 2.3.13	Flow chart of operation and maintenance50
Figure 3.1.1	Exclusive distribution lines required in the future plan70
Figure 3.1.2	Configuration of the Stretta Vaudetto WTP System71
Figure 3.1.3	Configuration of the Toker WTP System73
Figure 3.1.4	Configuration of the Mai Nefhi WTP System

Abbreviations

Africa Development Bank
Aluminum sulfate
Asmara Water Supply and Sewerage Department
Environmental Evaluation
Eritrean Electric Corporation
Environmental Evaluation Clearance Form
Environmental Evaluation Questionnnaire
Environmental Impact Assessment
Environmental Sensitive Area
Eritrean Standard Institute
Initial Environmental Examination
Interim Poverty Reduction Strategy Paper
Minutes of Discussion
Ministry of Agriculture
Ministry of Energy and Mine
Ministry of Health
Ministry of Land, Water and Environment
Ministry of National Development
Ministry of Trade and Industry
Pump Station
Stretta Vaudetto
Water Resources Department
Water Treatment Plant

Chapter 1 Outline of the Survey

1.1 Background and Contents of the Request for Grant Aid Project

Since its independence in 1993, the State of Eritrea has been in a difficult socio-economic condition due to the several armed conflict with its neighboring countries, especially the armed conflict with Ethiopia from 1998 to 2000. Asmara, the capital city of Eritrea, which has a population of approximately 400,000, is facing a serious shortage of water supply (only 30% of the potential demand is being supplied, as of 2009) due to the increasing demand and deterioration of the existing facilities.

In the Interim Poverty Reduction Strategy Paper (I-PRSP) of Eritrea prepared in 2004, improvement of sanitary environment including water supply condition is one of the important components for human resource development in the country. Thus, improvement of water supply system in the urban area such as Asmara City is being set as one of the national development goals. Under these circumstances, the Government of Eritrea submitted an application form for the Japanese Grant Aid in August 2013. The contents of the requested project were for rehabilitation and expansion of the water supply system as shown in Table 1.1.1.

	Summary of Detailed Contents of the Project					
No.	ACTIVITY	SIZE	QUANTITY	COST (USD)	PRIORITY	
I.	Construction of New Treated Water Transmission Pipe Line from Mai-Nefhi W.T.P to Sembel Pump Station.	DCI Dia.600mm	25KM	9,212,916	1	
2.	Rehabilitation of Stretta Vaudetto Raw Water Transmission line	PVC & DI Dia.300mm	2.6 km	777,370	1	
3.	Upgrading of the Stretta Vaudetto system raw water pumping stations					
3a.	Stretta Vaudetto Pumping Stations	Q=180m ³ /h H=23m	l unit	67,710	2	
3b.	Mai Serwa Raw Water Pumping Stations	Q=200m³/h H≕61m	2 units	136,620	2	
4.	Upgrading of the Stretta Vaudetto clear water pumping station	Q=380m ³ /h H=93m	4 units	294,753	1	
5.	Upgrading of the distribution system pumping stations					
5a.	Mai Chehot pumping station	Q=200m ³ /h H=85m	2 units	160,082	3	
5b.	Denden pumping station	Q=170m ³ /h H=50m	2 units	53,200	3	
6.	Rehabilitation of Stretta Vaudetto W.T.P and Construction of New S.V W.T.P	15,000m ³ /day	1 unit	2,798,260	1	
7.	Rehabilitation of the Existing Distribution Reservoirs.					
7a.	Monopolio Distribution Reservoir	300m ³	2 units	104,679	2	
7b.	Tsetserat Distribution Reservoir	500m ³	2 units	140,623	3	
7c.	Haz Haz Distribution Reservoir	500m ³	2 units	121,458	2	
8.	Construction of New Distribution Reservoirs.					
8a.	New Arbate Asmara Distribution Reservoir	1,000m ³	1 unit	323,174	1	
8b.	Cherkos Distribution Reservoir	1,000m ³	l unit	339,862	1	
9.	Rehabilitation and Extension of Primary Distribution Network.	PVC & DI Dia.150mm Dia.200mm Dia.250mm	3.3 km 17.3 km 7.0 km	3,798,982	1	
		Dia.300mm	13.0 Km			
10.	Rehabilitation and Extension of Secondary Distribution Network	Dia.63mm Dia.90mm Dia.110mm Dia.160mm	7.6 km 9.9 km 8.9 km 3.0 km	2,619,263	2	
11.	Soft Component			219,800		
	TOTAL			21,168,752		

Table 1.1.1Contents of the Request

Source: Application form (2013)

1.2 Objective of the Survey

Before and after submission of this application form, preliminary surveys were conducted: 1) First preliminary survey conducted prior to official submission of this application form by the Government of Eritrea (August 2010) and 2) Second preliminary survey conducted after the adoption of the application form by the Government of Japan. However, the collected information on existing facilities, present water supply condition, and operation and maintenance condition was still insufficient. Thus, it was decided to conduct this preparatory survey in order to collect necessary information for evaluating the necessity of the Grant aid project and the readiness for conducting the preparatory survey (outline design) of the Grant aid project, and considering if the requested Grant aid project is technically effective and sustainable or not.

1.3 Member of the Survey Team

	Name	Job Title	Organization	Period
1	Yoshiki Omura	Leader	Senior Advisor, JICA	2015/3/21 -2015/3/28
2	Masanori Yamazaki	Program officer	Water Resources Management Team 2, JICA	2015/3/21 -2015/3/28
3	Hidehisa Tamura	Civil Engineer (Water Supply Planning)	Nippon Koei Co., Ltd.	2015/3/21 -2015/5/4
4	Koji Yoshikawa	Civil Engineer (Facility Planning / Operation and Maintenance)	Consultant	2015/3/21 -2015/5/4

(1) First Field Survey

(2) Second Field Survey

	Name	Job Title	Organization	Period
1	Akihiro Miyazaki	Leader	Manager, Water Resources Management Team 2, JICA	2015/6/3 -2015/6/7
2	Yoshiki Omura	Senior advisor (Water Supply Planning)	Senior Advisor, JICA	2015/5/30 -2015/6/7
3	Kensuke Ochima	Program officer 1	Africa unit 1 Africa Dept., JICA	2015/5/30 -2015/6/7
4	Keisuke Yamagami	Program officer 2	Water Resources Management Team 2, JICA	2015/5/30 -2015/6/7
5	Hidehisa Tamura	Civil Engineer (Water Supply Planning)	Nippon Koei Co., Ltd.	2015/5/30 -2015/6/7
6	Koji Yoshikawa	Civil Engineer (Facility Planning / Operation and Maintenance)	Consultant	2015/5/30 -2015/6/7

1.4 Survey Schedule

(1) First Field Survey

			JL	CA	Cons	ultant
			Mr. Omura	Mr. Vamazaki	Mr Temura	Mr Voebikewe
				init Fundean	init i dilidi d	Obdit Engineera
	Date					Givil Engineer
			Leader	Program Officer	Civil Engineer	(Facility Planning /
					(Water Supply Planning)	Operation and
						Maintenance)
	0015 (0 (01		NARITA → ISTANBUL			
1	2015/3/21	sat	ISTANBUL →			
2	2015/2/22		Maating w/ Mr Tauruaaki (IIC)	(Event)		
2	2015/3/22	sun	Site Visit: Recencir & Pump S	tation in Asmara City		
			Site visit. Reservoir & Fullip 3	Cation in Asinara City		
			Site Visit:: Dam & Water Trea	tment Plant (Stretta Vaudetto)	WTP System)	
3	2015/3/23	mon	Meeting with Minister of Nation	nal Development and Minister o	of Land, Water and Environment	@MoND
Ŭ	2010/0/20	mon	Meeting with Zoba Maekel Adm	ninistrator and Asmara Water Su	upply and Sewerage Department	ι, Chaired by Minister of
			MoLWE @ Zoba Administration.			
4	2015/3/24	tue	Site Visit:: Dam & Water Trea	tment Plant (Tokar WTP Syster	m. Mai Nefhi WTP System)	
			Meeting with Ministry of Nation	nal Development and Zoba Mae	kel Administration (Confirming)	Minutes of Discussion)
5	2015/3/25	wed	Meetiing with Eritrean Electric	Corporation	_	
			Meeting with Ministry of Land,	Water and Environment		
				15 1 1 14.11	CL 1.W. 1E	(C) : (N) : (
			Discussion)	hal Development and Ministry o	and, water and Environment	(Signing of Minutes of
6	2015/3/26	thu	Cite Visite Laboratory of Mal W	E Turining Conton of AWED		
			Site visit: Laboratory of MoLW	E, Training Center of AWSD		
			Report to Mr.			
_	2015/2/27	£:	Analysis of survey results		Maating with AWOD	Maating with AWOD
'	2015/3/2/	T	Preparation of report	ASIMARA → ISTANBUL →	Weeting with AWSD	Meeting with AWSD
8	2015/3/28	sat	ASMARA → CAIRO	→ NARITA	Data analysis	Data analysis
	2015/2/20	Jac			Data analysis	Dete analysis
9	2015/3/29	sun	1\	Ν		
10	2015/3/30	mon	1	1\	Data collection (Water supply	Site survey (Stretta Vaudetto
			1 \	\	condition)	System)
11	2015/3/31	tue		\	Data collection (AWSD	Site survey (Stretta Vaudetto
	2010/ 0/ 01		1 \		business operration)	System)
12	2015/4/1	wed			Site survey (Mai Nefhi	Site survey (Mai Nefhi
	2010/ 4/ 1		4 \		System)	System)
13	2015/4/2	thu			Site survey (Distribution	Data collection (WRD)
	2010/ 1/2		4 \		System)	
14	2015/4/3	fri			Data collection (AWSD	Site survey (Toker System)
	2010/ 1/ 0				business operration)	
15	2015/4/4	sat	4 \		Data analysis	Data analysis
16	2015/4/5	sun	4 \		Data analysis	Data analysis
17	2015/4/6	mon			Site survey (Mai Nefhi	Site survey (Mai Nefhi
			4 \		System)	System)
18	2015/4/7	tue			Data collection (Water supply	Site survey (Toker System)
			- \		condition)	(2) (2) (3)
19	2015/4/8	wed			Data collection (Water supply	Site survey (Distribution
			1 \		Condition)	System)
20	2015/4/9	thu			business enerration	Site survey (Distribution
			1 \		Site output (New	Site suprav (New
21	2015/4/10	fri			Development Area)	Development Area)
22	2015/4/11	cat			Data analysis	Data analysis
22	2015/4/11	cup	1 \		Asmara -	→ Nairobi
20	2015/4/12	Sull		\		
24	2015/4/13	mon	4 \	\	Interim Reporting @	JIGA KENTA Office
25	2015/4/14	tue	4 \	\	Nairobi -	→ Asmara
26	2015/4/15	wed	1	\	Data collection (AWSD	Data collection (WRD)
	0045		4 \		business operration)	
27	2015/4/16	thu	4 \	\	Data collection (WRD)	Data collection (AWSD)
28	2015/4/17	tri	ι \	\	Data analysis	Data analysis
29	2015/4/18	sat	4 \	\	Data analysis	Data analysis
30	2015/4/19	sun	1 \	\		Data analysis
31	2015/4/20	mon	1	\	Suctorn)	Data collection (WRD)
<u> </u>				\	System)	
32	2015/4/21	tue	1	\	Suctorn)	Data collection (EEC)
<u> </u>			1 \	\	System/	Data collection (tion
33	2015/4/22	wed			Site survey (Toker System)	maintenance)
<u> </u>			1 \	\	Site survey (Mai Nefhi	
34	2015/4/23	thu			System)	Site survey (Electric facility)
			1 \	\	Site survey (Distribution	Data collection (operation and
35	2015/4/24	fri	1	\	System)	maintenance)
36	2015/4/25	sat	1	\	Data analysis	Data analysis
37	2015/4/26	sun	1	\	Data analysis	Data analysis
	004 5 / 20		1	\	Data collection (Water supply	Supplementary data collection
38	2015/4/27	mon		\	condition)	(WRD, AWSD)
	0015 / 1 / 20		1		Data collection (Water supply	Supplementary data collection
39	2015/4/28	tue			condition)	(WRD, AWSD)
40	2015 /4 /20			\	Data collection (AWSD	Supplementary data collection
40	2015/4/29	wed			business operration)	(WRD, AWSD)
41	2015/4/20	thu			Data collection (AWSD	Supplementary data collection
41	2010/4/30	unu			business operration)	(WRD, AWSD)
42	2015/5/1	fri	1 /	\	Data analysis	Data analysis
43	2015/5/2	sat	1 \	/	Data analysis	Data analysis
44	2015/5/3	sun			ASMARA \rightarrow ISTANBUL \rightarrow	
45	2015/5/4	mon	1	V V	NARITA	

(2) Second Field Survey

				JICA			Consultant	
			Mr.Miyazaki	Mr. Omura	Mr. Oshima	Mr. Yamagami	Mr.Yoshikawa	
			Leader	Senior Advisor (Water Supply Planning)	Program Officer1	Program Officer2	Civil Engineer (Facility Planning / Operation and Maintenance)	Civil Engineer (Water Supply Planning)
1	2015/5/30	sat		NARITA → ISTANBU	L→			DAKAR → ISTANBUL →
2 2015/5/31 sun →ASMARA Meeting w/ Mr.Tsurusaki (JICA Expert) and Internal meeting								
3	2015/6/1	mon		Explanation of Result of the Survey (MoND, MoLWE, AWSD, Zoba Maekel, Ministry of Foreign Affairs) Internal meeting				
4	2015/6/2	tue	DAR ES SALAAM → DOHA→	Discussion w∕ related organization (WRD, AWSD) Internal meeting				
			→ASMARA	-				
5	5 2015/6/3 wed Site Visit: Stretta Vaudetto and and Tokor Purification plan in Asmara City Discussion w/ related organization (MoND, MoLWE, AWSD, Zoba Maekel, Ministry of Foreign Affairs) Discussion w/ related organization (WRD, AWSD)							
6	2015/6/4	thu	Discussion w/ related organization (Confirmation of M/D) (WRD, AWSD) Internal meeting					
7	2015/6/5	fri	Signing of M∕D Meeting w∕ Mr.Tsurusaki (JICA	Signing of M∕D Meeting w∕ Mr.Tsurusaki (JICA Expert)				
8	2015/6/6	sat	ASMARA \rightarrow CAIRO \rightarrow DOHA	ASMARA → CAIRO -	→ ISTANBUL →			
9	2015/6/7	sun	DOHA → NARITA	→ NARITA				ASMARA → ISTANBUL → DAKAR

1.5 Major Contact Person

(1) Eritrean Side

No	Institution	Name	Position	
1	Ministry of National Development	Dr. Giorgis Tekelemikael	Minister	
2	Ministry of National Development	Mr. Solomon Tecle	Senior Expert	
3	Ministry of Land, Water and	Mr. Tesfai	Minister	
	Environment	Ghebreselassie		
4	Ministry of Land, Water and	Mr. Mebrahtu Iyassu	Director General	
	Environment / Water Resource			
	Department			
5	Ministry of Land, Water and	Mr. Tecle Yemane	Unit Leader,	
	Environment / Water Resource		Information service	
	Department		unit	
6	Asmara Water Supply and Sewerage	Mr. Gebrekidan	Director General	
	Department	Gabretsiun		
7	Asmara Water Supply and Sewerage	Mr. Yohannes Mulu	Unit Leader, Planning	
	Department		and Supervision unit	
Othe	rs: Refer to the Appendix.			

(2) JICA Eritrea

Tsuneo Tsurusaki JICA Expert

1.6 Outline of Survey Results

1.6.1 Results of First Field Survey

Data collection / analysis and filed investigation were conducted for the following item regarding the present situation and issues of the water supply in Asmara:

- 1) Organization of the implementing agency of water supply in Asmara
- 2) Present condition of water supply business operation
- 3) Present condition of water supply facility

- 4) Present condition of operation and maintenance and water quality management
- 5) Water demand projection and water supply balance
- 6) Prerequisite for operation of the facility
- 7) Consideration of assistance component of facility construction
- 8) Consideration of assistance of operation and maintenance

Then, the contents of the requested grant aid project were examined from the three viewpoints as follows:

- 1) Prerequisite No.1 (Availability of water source)
- 2) Prerequisite No.2 (Power supply condition)
- 3) Sustainability of O&M of the constructed facility

As a result of the examination, the proposed grant aid project was evaluated, at this moment, not to be technically appropriate for grant aid for its effectiveness and sustainability.

1.6.2 Results of Discussion with the Eritrean Side

(1) Reporting of the Results of the First Field Survey

The survey team explained to the Eritrean side the present issues of the water supply in Asmara identified through the first field survey. The Eritrean side agreed the contents of it and it was compiled as Annex-1 of the Minutes of Discussion.

(2) Preparatory Survey (Outline Design) of the Project.

The survey team explained to the Eritrean side that the preparatory survey (outline design) of the project will not be commenced, because it is difficult to secure the effectiveness and sustainability, at this moment.

The survey team also explained that the appropriate operation and maintenance of the existing facility should be prioritized over the implementation of the requested grant aid project.

The Eritrean side agreed on the above.

(3) The Possibility of the Japanese Assistance

The survey team explained that, for the proper operation and maintenance, information management on the inventory and operational condition of the facility should be prioritized. The survey team also explained that JICA may consider the implementation of the technical assistance on the information management as the technical cooperation scheme of JICA.

The above discussion results were compiled as Annex-2 of the Minutes of Discussion. It was confirmed that Eritrean side may submit a request for the technical cooperation of JICA on the basis of the Annex-2 of the Minutes of Discussion. It was also confirmed, if the Eritrean side wishes to request the technical cooperation in this fiscal year, the application form needs to be submitted from the Government of Eritrea to the Government of Japan by the end of July, 2015.

Chapter 2 Present Condition Related to the Requested Project

2.1 Outline of the Request for Grant Aid Project

2.1.1 Background of the Request

Since its independence in 1993, the State of Eritrea has been in a difficult socio-economic condition due to the several armed conflict with its neighboring countries. Asmara, the capital city of Eritrea, which has a population of approximately 400,000, is facing a serious shortage of water supply (only 30% of the potential demand is being supplied) due to the increasing demand and deterioration of the existing facilities.

In 2006, under these circumstances, the Government of Eritrea conducted a Feasibility Study on the Development of Asmara Water Supply (hereinafter referred to as FS) with funding assistance by the Asian Development Bank (ADB). Following that, the detailed design of the priority components was prepared in 2007. However, the construction stage has not been commenced.

In 2010, the Japan International Cooperation Agency (JICA) made a discussion with the Government of Eritrea regarding the implementation of the construction works under the Japanese Grant Aid Scheme. As a result, the Government of Eritrea submitted an application form for the Japanese Grant Aid in August 2013.

2.1.2 Contents of the Requested Project

The objectives of the project are i) to improve the water supply condition and ii) to provide a stable and safe water supply in Asmara.

The water source of Asmara Water Supply is the dam lake as shown in Figure 2.1.1. The raw water is treated at the three water treatment plants (WTP) and then transmitted to the supply area in Asmara City. The contents of the requested project are summarized in Table 2.1.1. The colored items are those which were prioritized by the Eritrean government at the inception meeting of the survey held in March 2015.

Facility	Requested Contents (August 2013)		
Stretta Vaudetto WTP System			
Raw water transmission facility	Replacement of intake pump (Q= 200 m ³ /h, H=61 m)		
from Mai Serwa Dam	Replacement of existing AC pipe (D300, L=2.7 km) with PVC/DCI pipe (DN300, L= 2.7 km)		
Raw water transmission facility from Stretta Vaudetto Dam	Replacement of intake pump, Submersible pump ($Q=180 \text{ m}^3/\text{h}$, $H=23 \text{ m}$) x 2 nos.		
Stretta Vaudetto WTP	Rehabilitation of existing WTP (8,00 m ³ /day) Construction of new WTP (15,000 m ³ /day)		
Treated water transmission pump from Stretta Vaudetto WTP	Replacement of existing pumps (300 m ³ /h x 3 nos.) with new pumps (380 m ³ /h, H=93 m x 4 nos.)		
Toker WTP System			
Mai Nefhi WTP System			
Treated water transmission pipeline from Mai Nefhi WTP to Sembel PS	Laying of new pipeline (DCI D600) along the existing pipeline (STP D500, $L= 16$ km), then abolish the existing pipeline.		

 Table 2.1.1
 Contents of the Requested Project

Distribution Facility in the city	
Pump Station (PS)	Mai Chehot PS: Replacement of pump (Q=200 m ³ /h, H=85 m) x 2 nos. Denden PS: Replacement of pump (Q=170 m ³ /h, H=50 m) x 2 nos.)
Distribution Reservoir	Monopolio Reservoir (300 m^3 x 2): Rehabilitation Tsetserat Reservoir (500 m^3 x 2): Rehabilitation Hazhaz Reservoir (500 m^3 x 2): Rehabilitation
	New Arbate Asmara Reservoir (500 m^3 x 2): New construction Cherkos Reservoir (500 m^3 x 2): New construction
Distribution pipeline	Pipe laying
(Primary pipeline)	PVC DN300 L=13 km, PVC DN250 L=7 km, PVC DN200 L=17.3 km, DCI DN150 L=3.3 km
Distribution pipeline (Secondary pipeline)	Supply of pipes and fitting including 10,000 nos. of water meter PVC DN150–DN50

Source: Survey Team

Figure 2.1.1 Outline of the Water Supply Facility of Asmara

2.2 Present Water Supply Condition in Eritrea

2.2.1 Government Organizations Related to Water Supply Sector

The contact authority of the official development assistance (ODA) in Eritrea is the Ministry of National Development. The regulatory agency of water supply business is the Water Resources Department (WRD), Ministry of Land, Water and Environment. The business operation is being undertaken by the regional government (Zoba) or water supply utilities of the town administration under the regional government. The role of each organization is shown in Table 2.2.1.

Table 2.2.1Role of Organizations Related to Water Supply Sector

Organization	Role	
Ministry of National Development	Contact office for ODA	
Water Resources Department, Ministry of Land,	Policy-making; Supervision of water supply	
Water and Environment	business; Establishing technical standard; and	
	Technical support to the water utilities.	
Water Supply Utilities under the Regional	Plan and construction of water supply facility;	
Government or Town Administration	Operation of water supply business	
Source: Survey Team		

Source: Survey Team

The water supply business in Asmara is being undertaken by the Asmara Water Supply and Sewerage Department (AWSD) under the Regional Government of Central Region (Zoba Maekel).

2.2.2 Laws and Regulations Related to Water Supply Sector in Eritrea

The laws and regulations related to water supply sector in Eritrea are:

(1) Proclamation No. 162/2010 Eritrean Water Proclamation (2010)

In 2010, "Proclamation No. 162/2010 Eritrean Water Proclamation" entered into force in 2010. The outline of this proclamation is as follows:

1) Objectives

- Conservation and protection from pollution and related risk factors of the country's water resources.
- Systematization of studies and documentation of data on water resources.
- Promotion of integrated water resources management and development as well as judicious prioritization of allocation and use of the same.
- Establishment of pertinent legal framework and institutions with clear mandate in consonance with the principles of Integrated Water Resources Management.
- Promotion of public awareness on participation in water conservation, protection and management, and proper utilization.
- Ensuring equity in the use, management, and development of resources.
- 2) Main Provisions
 - All resources in the country are common property of the people of Eritrea and the state shall regulate them to ensure their management in a balanced and sustainable manner.

- Any person shall have the right to use water resources in compliance with the provisions of this proclamation.
- The use of water for domestic purposes shall have priority over any other water-use rights.
- A permit shall be required for the use and development of water resources.
- A permit shall be required for wastewater disposal.
- No permit shall be issued under this proclamation without prior submission of the environmental impact assessment and its acceptability by the ministry.
- The Ministry of Land, Water and Environment shall be responsible for the effective, efficient, and sustainable development and protection of Eritrea's water resources.
- The ministry shall assess and evaluate the water resources potential of the country.
- The ministry shall formulate the national water policies, development strategies and plans.
- The water resources and related ecosystem of the country shall be protected against pollution and abatement.
- No person may intentionally and/or negligently pollute or contaminate water resources by direct or indirect means.
- The ministry shall set standards and prescribe guidelines for water quality.
- Water charges shall be applied on the use of water resources allowed under this proclamation.
- The state shall exert all effort to ensure that every citizen exercises the right of access to basic supply of clean and safe water.
- Any person wishing to carry out investigations, studies, designs, and supervisions on water works as consultant or supplier shall acquire a permit.

(2) Eritrean Water Resources Policy (Final Draft 2008)

The WRD drafted the Water Resources Policy in Eritrea in June 2008. The objectives of Water Resources Policy are:

- Establish and maximize the available potential of the national water resources.
- Efficient, equitable, and optimum utilization of the available water resources.

The policy presents the basic principle in the following aspects and served as the basis in the establishment of Proclamation No. 162/2010 Eritrean Water Proclamation.

- Assessment, development, protection, allocation and utilization of water resources
- Disaster management
- Institutional frames and mandates
- Financing mechanisms

(3) Eritrean Guidelines for Evaluation of Drinking Water Quality (Draft 2004)

WRD drafted guidelines for the evaluation of drinking water quality in 2004. The guidelines are based primarily on the World Health Organization (WHO) recommendations, and due attention is given to present water quality of the country.

In the guideline, water is to be classified into four groups based on the concentration and values of the following physio-chemical parameters:

Group A: Water with an excellent quality

Group B: Water with good quality

Group C: Water with low health risk

Group D: Water with a higher risk or water unsuitable for human consumption

The group in which the water is classified is decided by a parameter, which falls in the least groups of A, B, C, and D.

Ideally, water for drinking should be Group A or Group B, however, in practice, many of the parameters could be outside the limits for these groups. Based on the practical water quality situation in the country:

- In Zobas Maekel, Debub, Gash-Barka, and Anseba the water quality for consumption should be within groups A or B.
- But, in both Northern and Southern Red Sea Zobas, water for drinking should not exceed Group C.

If the classification of water falls in Group C, attention should be given to this problem, although the situation is not critical yet. If the classification of water falls in Group D, urgent and immediate attention should be given to this problem, and remedial procedures should also be taken.

2.2.3 National Plan Related to Water Supply Sector

 The State of Eritrea Five-Year Indicative Development Plan 2014-2018 (Ministry of National Development)

The Government of Eritrea made a five-year national development plan (2014-2018) in July 2014. In the plan, the development plans of the following eight sectors are indicated:

1) Agriculture (Food production)

2) Fisheries

3) Construction

4) Energy

- 5) Transportation and Communication
- 6) Land, Water, and Environment
- 7) Health Care

8) Education

In the water sector development plan as presented in item 6) above, the following ten policies are presented:

- 1) Develop institutional capacity for assessment of water resource potential.
- 2) Conservation and sustainable use of surface and ground water.
- 3) Establishment of flood and drought early warning system.
- 4) Conduct studies on national water balance.
- 5) Sustainable water resources development.
- 6) Protection of water resources from all types of pollution.
- 7) Optimization of allocation and use of water resource.
- 8) Enhance appropriate and integrated national water resource information system.
- 9) Enhance water resources regulatory instrument.
- 10) Improve working system and practices.

The policy item no."5) Sustainable water resources development" includes:

- Increase domestic water supply system of beneficiaries in urban, semi-urban, and rural areas by 4%.
- Enhance water development works for irrigation, industries, and other economic sectors by 5%.

(2) Action Plan for the Integrated Water Resources Management (IWRM) in Eritrea WRD WRD made an action plan for the Integrated Water Resources Management (2009-2017) in December 2009. In this action plan, the action plans of the following seven action areas are presented, aiming to strengthen the country's capacity of water resources management.

Action area -1: Water resources assessment, development, and protection

Action area -2: Water resources allocation and use

Action area -3: Disaster management

- Action area -4: Implementation and financial mechanism
- Action area -5: Research and information exchange
- Action area -6: Basin management plan
- Action area -7: Enabling environment (gender mainstreaming)

The activities related to water supply development are:

Action area -1: Water resources assessment, development, and protection

- Develop water quality standards for rural, municipal, and irrigation water supplies.
- Provide equipment and facilities that enhance the water quality monitoring and regulating capacity of relevant institutions.

Action area -2: Water resources allocation and use

- Prepare guidelines and procedure for the operation and maintenance of municipal, industrial, commercial, and agricultural water supply facilities including rural water supply facilities.
- Set up standards of water utility equipment and spare parts. _
- Capacity development for water-use planning
- (3) National Water Supply Action Plan 2013-2017 (WRD)

WRD made the National Water Supply Action Plan (2013-2017) in March 2012. In the action plan, the population with access to safe water, as of 2011, is indicated in Table 2.2.2.

_	Tuble 1111 - I optimient with Hecebs to Build Water in Elitered				
Zoba	Population with access to safe	Total population	%		
	water				
Anseba	307,389	434,994	71		
Debub	560,380	794,538	71		
Gash Barka	506,035	735,977	69		
Maekel	611,470	625,667	98		
SK Bahri	265,339	374,086	71		
DK Bahri	51,703	70,343	74		
Total	2,302,316	3,035,605	76		

Table 2.2.2 Population with Access to Safe Water in Eritrea

Source: National Water Supply Action Plan 2013-2017 (2012 WRD)

The goal of this 'Action Plan' is to ensure that all people are provided with at least a minimum supply of 20 L (minimal 20 L and 40 L per capita per day in rural areas and towns, respectively) of safe potable water. Under this objective, the following works are to be conducted during the planning period.

	New Facility	Rehabilitation of	Total	
	Construction	Existing Facility		
Beneficially	674,953	430,837	1,105,790	
population				
Construction cost	2,422 million nakfa	743 million nakfa	3,165 million nakfa	

Table 2.2.3 Works to be Conducted in the Action Plan (2013-2017)

Source: National Water Supply Action Plan 2013-2017 (2012 WRD)

By this action plan, the 670,000 people's access to 20 L/day of safe water will be made possible. The requested project does not have a direct relation to the action plan but it will help in attaining this goal.

2.2.4 Activities of the Other Donors

The United Nations Children's Fund (UNICEF) has been working in the water sector in Eritrea for many years. The ongoing project (2013-2016) is the rural water supply project in the six regions in the whole Eritrea. By this project, an approximately 40 water supply systems with solar pump (11 has been completed; 25 under construction) will be constructed. In addition, the construction of shallow well with hand pump and rainwater harvesting facility will be constructed in approximately 40 villages. The main features of the water supply system with solar pump are:

- Planned supply population: Approximately 1,000
- Main facility: Well, solar pump, treated water transmission pipeline, reservoir, distribution pipeline, public hydrant.
- Approximate cost: USD 200,000 250,000

2.2.5 Past Project with Assistance of Japan

The water supply project entitled "The Project for Urban Water Supply in Debub Region" with a budget of JPY 1.6 billion was implemented from 2007 to 2010. The project involved the construction of water supply facilities in four towns in Debub Region. The water source of the facility is the groundwater. The project features are shown in Table 2.2.4.

		0		0
	Debarwa	Mai-dima	Dekemhare	Adi-keyih
Planned Supply	$1,370 \text{ m}^{3}/\text{day}$	550 m ³ /day	$1,800 \text{ m}^3/\text{day}$	2,420 m ³ /day
Volume				-
Borehole Construction	6 nos.	9 nos.	-	4 nos.
Pump Facility	10 nos.	10 nos.	8 nos.	11 nos.
Transmission Pipeline	14,800 m	12,400 m	23,040 m	19,790 m
Booster Pumping	-	-	-	1 no.
Station				
Reservoir	500 m ³ , 50 m ³	300 m ³	$1,100 \text{ m}^3$	$700 \text{ m}^3, 50 \text{ m}^3$
Distribution Pipeline	9,834 m	5,681 m	13,800 m	1,091 m
Service Facility				
(Public Fountain)	4 nos.	9 nos.	10 nos.	6 nos.

 Table 2.2.4
 Project Features of the Project for Urban Water Supply in Debub Region

Source: Survey Team

2.3 Present Situation and Issues in the Water Supply in Asmara

2.3.1 Water Supply Utility in Asmara

(1) Asmara Water Supply and Sewerage Department (AWSD)

The executing agency of the water supply project in Asmara is the Asmara Water Supply and Sewerage Department (AWSD), which is one of the nine departments under the Zoba Maekel Administration. Figure 2.3.1 shows the organizational chart of Zoba Maekel Administration.

Source: Zoba Maekel Administration (Job Description)

Figure 2.3.1 Organizational Chart of Zoba Maekel Administration

(2) Organization of AWSD

1) Organization and Staffing

AWSD consists of three divisions, namely: water supply division, administration and finance division, and sewerage division as shown in Table 2.3.1.

Division/Unit	Roles
Department Head	Overall management of AWSD activity; and Reporting to the Zoba Administrator
Water Supply Division	Planning and execution of water-supply works; Operation and maintenance of water-supply facility; Installation of new connection; and Reporting to the head of AWSD.
Water Distribution Unit	Planning and execution of distribution control.
New Connection and Maintenance Unit	Monitoring of pipeline condition and water leakage; Repairing of house connection facility; and Installation of new connection.
Unit	Operation and maintenance of the facility.
Planning and Supervision Unit	Planning and supervision of facility construction works and new connection installation works.
Administration and Finance Division	Planning and execution of business operation of AWSD; Management of material store; Financial management; Customer management; Tariff collection management; and Reporting to AWSD head and Finance Department of Zoba Administration.
Finance Unit	Financial management; Financial reporting; and Tariff collection management.
Personnel Unit	Personnel management; Staff training; and Archive.
General Service Unit	General service in AWSD; Operation of water truck.
Customer Service Unit	Receiving connection request; Receiving customer's complaint; Arrangement for new connection work; Management of water truck; And Water billing.
Store Unit	Material store management
Sewerage Division	Planning and execution of sewerage service; Operation and maintenance of sewerage facility; and Reporting to AWSD head.
Source: Answers from the Questionnai	re and Hearing from AWSD Staff

Table 2.3.1Divisions and Roles of AWSD

The organizational chart of AWSD is shown in Figure 2.3.2.

Preparatory Survey on Asmara Water Supply Development

Figure 2.3.2

The staff number of each division is shown in Table 2.3.2.

Division	Proper Staff	Contract Staff	National Service	Total
Department Head	1			1
Water Supply	55	129	74	258
Administration and Finance	35	46	63	144
Sewerage	7	9	18	34
Total	98	184	155	437

Table 2.3.2Staff Number of AWSD

Source: Answers from the Questionnaire

The number of connection, as of the end of 2014, was 35,483. Thus, the staff number (excluding Sewerage Division) per 1,000 connections is 11.4 persons. The desirable figure of this number is around five. However, in the case of AWSD,

- Most of the national service staff do not come to the office due to a very low salary. If the number of national service staff is excluded from the staff number, the figure becomes 7.7 persons.
- AWSD does not sublet any of the works.

Considering the above, AWSD is understaffed rather than overstaffed.

AWSD reported in the annual report that AWSD is in shortage of staff for operation and maintenance. However, AWSD cannot employ new staff due to low salary scale.

The number of staff who has technical school or higher educational background is shown in Table 2.3.3.

Education/Position	Department Head	Water Supply Division	Administration and Finance Division	Sewerage Division
Civil Engineer		1		
Assistant Engineer		1		
(Diploma)				
Junior Assistant		2		
Engineer (Technical				
School Diploma)				
Public Administration			1	
Accountant			2	

 Table 2.3.3
 Number of Staff with Technical School or Higher Educational Background

Source: Answers from the Questionnaire

As shown in the table, there are only four staffs with engineering background in the Water Supply Division. This figure is far below the necessary level for the water utilities with served population of 400,000. Moreover, serious personnel loss has been observed such as retirement and external migration of engineers who were in charge of the 2006 FS.

2) Number of O&M Machine/Vehicle

AWSD owns only four machines/vehicles as shown in Table 2.3.4.

Equipment	Type/Specification	Number
Truck with hydraulic lift	Renault (France)	1
Trench excavator	Luilong (China)	1
Dump truck	Fiat 110 (Italy)	1
4WD vehicle	4WD Toyota Hilux	1

Table 2.3.4Machine/Vehicle Owned by AWSD

Source: Answers from the Questionnaire

As shown above, AWSD is facing serious shortage of machines/vehicles necessary for the usual maintenance activities. AWSD does not have a welding machine necessary for repairing the leakage of treated water transmission pipeline. AWSD has to rent the welding machine from the national construction company if the need arises. Thus, it is difficult to conduct timely maintenance.

2.3.2 Present Condition of the Water Supply Business

(1) Service Area and its Population

The service area of AWSD is basically the 13 sub-Zobas of Asmara. The treated water from the three WTPs is supplied to the customers in the service area. AWSD also sells water to water trucks. The service area is shown in Figure 2.3.3.

The population of the 13 sub-Zobas is presented in Table 2.3.5.

Sub-Zoba	2008 Census	2015 Census	Annual growth rate
1. Paradiso	29,442	32,457	1.0140
2. Maitemenai	24,482	24,257	0.9987
3. Edaga Hamus	32,179	34,016	1.0080
4. Akiria	51,182	55,057	1.0105
5. Abazhawl	40,342	40,957	1.0022
6. Arbate Asmara	35,197	34,484	0.9971
7. Tsetserat	19,851	22,532	1.0183
8. Maekel Ketema	21,312	21,868	1.0037
9. Tiravolo	20,955	21,260	1.0021
10. Geza banda	36,306	36,092	0.9992
11. Sembel	16,861	20,076	1.0252
12. Godaif	43,280	44,645	1.0044
13. Gejeret	39,487	39,728	1.0009
	410,876	427,429	1.0057

Table 2.3.5Population of 13 sub-Zobas of Asmara

Source: Zoba Maekel Administration

As shown in the above table, the population of Asmara is 427,429. The Asmara area includes the northern and eastern mountainous areas where few people are living. Thus, the above population can be regarded as the population in the AWSD service area. In addition, the people in the Daero Paulos area, although located outside of Asmara, are served with water from AWSD three days a week. The total population in AWSD service area is 427,429 + 6,900 (Daero Paulos) = 4345,329.

In addition, a part of the population in the nine villages located outside the west and south of Asmara (total population: 44,000) are purchasing the water from AWSD through the private water trucks.

At present, the distribution pipelines are laid within the area surrounded by the red line in Figure 2.3.3 (approximately 30 km²). The pipeline will be extended to the area marked with green circle, in the future.

(2) Water Supply Condition

The water supply condition in 2014 is shown in Table 2.3.6. It should be noted that the billed water volume is the amount of water paid during 2014 and is not the amount consumed in 2014.

	Unit	2014	Remarks
1. Population in the Service Area	No.	434,329	427,429 + 6,900
2. Served Population in the Service Area		409,329	434,329 - 25,000 (assumed)
By Piped Supply	None	339,472	409,329 - 69,857
By Water Truck	None	69,857	339,971 x (3/4) x 1000/365/10
3. Population Outside of Asmara Served by Water Truck	None	23,286	339,971 x (1/4) x 1000/ 365/10
4. Number of Connection	None	35,483	
Domestic	None	29,722	Answer from the questionnaire
Non-domestic	None	5,761	Ditto
5. Billed Water	m ³ /year	2,611,509	7,155 m ³ /day
Piped supply (Domestic)	m ³ /year	1,552,317	Answer from the questionnaire
Piped supply (Non-domestic)	m ³ /year	519,144	Ditto
Sold to water truck (Domestic)	m ³ /year	339,971	2014 Annual Report
Sold to truck (Non-domestic)	m ³ /year	200,077	Ditto
6. Water Production (sent from WTP)	m ³ /year	6,659,541	18,245 m ³ /day
Stretta Vaudetto WTP	m ³ /year	756,575	2014 Annual Report
Toker WTP	m ³ /year	2,740,396	Ditto
Mai Nefhi WTP	m ³ /year	3,162,570	Ditto
7. Ratio of Non-revenue Water ((6 -5)/6) x 100	%	61	

Table 2.3.6Water Supply Condition in 2014

Source: Zoba Administration (population), Answers from the Questionnaire, Annual Report of AWSD, Arranged by the Survey Team

The explanation on the table is described below.

- 1) Population
 - a) Population in the Service Area

As described above, the population in the service area is 427,429 in the 13 sub-Zobas of Asmara and 6,900 in the Daero Paulos area, totaling to 434,329.

b) Served Population in the Service Area

WRD presumes that the number of population who uses the groundwater is increasing due to the decrease in AWSD water supply. According to the well inventory survey conducted by WRD in 2014, there are more than 550 wells (most of them are dug well before the water supply service commenced) in Asmara. Among them, 20 wells had a sufficient yield for selling water by barrel (200 L). The maximum daily yield in such well is approximately 20 m³, although most of them are not suitable for drinking purposes.

Therefore, the possible amount of domestic water supplied from wells in Asmara is estimated to be 20 x 20 m³ = 400 m³/day at maximum. If the per capita consumption is 10 L/day, 40,000 people can be served with water from wells at maximum.

However, according to AWSD, the people in Asmara rely on the AWSD water as much as possible due to the low quality of groundwater. Therefore, it is estimated that 25,000 people are using groundwater only. The AWSD's served population in the service area is estimated to be at: 434,329 - 25,000 = 409,329 (94%).

c) Population Served by Water Truck

The population inside and outside of Asmara served by water truck was estimated by the following:

- Among the water volume of 339,971 m³/year sold to water truck (domestic), 3/4 is for the inside of Asmara (AWSD service area) and 1/4 is for the outside villages (outside of the AWSD service area). [Information from AWSD]
- The per capita consumption of water from the water truck is assumed to be $10 \ l/c/d$.

Therefore,

- Population inside the service area who is served by water truck: $339,972 \ge (3/4) \ge 1000/365/10 = 69,857$
- Population outside the service area who is served by water truck:

339,972 x (1/4) x 1000/365/10 (1/c/d) = 23,286

d) Population Served by Piped Water Supply

The population served by piped water supply in 2014 is estimated to be at 409,329 (served population in the service area) - 69,857 (population inside the service area who is served by water truck) = 339,472 (approx. 340,000).

Moreover, among the 69,875 of population inside the service area who are served by water truck, around 10,000 are supplied water from water truck due to the poor supply condition of piped water, even though they have house connection. The potential population with piped water supply service is around 350,000 (= 340,000 + 10,000). By dividing this population of 350,000 with the number of connections (domestic) of 29,722, the population of one service connection comes to 11.8 (2–3 households). This figure is consistent with the information from AWSD and the people in Asmara.

- 2) Water Supply Amount
 - a) Average Daily Water Supply and Maximum Daily Water Supply

The average daily water supply in 2014 was 7,155 m^3/day .

Regarding the fluctuation in supply amount, the water transmission amount in May was 1.36 times of the annual average in 2013. However, this fluctuation is due to the factor of supply side (water resource availability and electricity) and is not due to the fluctuation of demand under the current severe water rationing.
b) Per Capita Consumption

By dividing the billed water by piped water (domestic) of $1,552,317 \text{ m}^3/\text{year}$ with the population served by piped water of 339,472, the per capita consumption comes to 12.5 1/c/d. This figure seems very low for the capital city.

The billed water is likely to be measured lower than the actual amount due to the deterioration of water meter.

3) Non-Revenue Water Ratio

The non-revenue water ratio calculated by the billed water and the water production (transmitted from WTP) is 61%. However, it is presumed that the water leakage ratio is not so high under the current condition where the water is not filled in the pipeline all the time.

The transmitted water volume from Stretta Vaudetto WTP and Mai Nefhi WTP are estimated by the pump running hours. So the transmitted water volume is likely to be overestimated.

(3) Water Rationing Condition

For the purpose of equitable supply of the current limited water, water rationing is implemented dividing the service area into 25 distribution zones in Table 2.3.7. Each zone is supplied with water for 4-10 days a month. The supply time is around half-day per day (16 hours a day from Sembel PS).

Zone No.	Name	Supply	
		Days	
Toker WTP S	upply Area		
1	Maitemenai, Edaga Hamus, Vilaggio, Adi segdo, Paradizo,	5 days	
	Embagaliano		
2	Abashawl + shuk, around Saint Mary Church	3 days	
3	Center Town (Marcato)	3 days	
4	Taba (Cinema Roma + muagna)	3 days	
5	Monopolio + Mufti	3 days	
6	Denden Camp (Algien + Tsetserat)	3 days	
7	Alformaio	3 days	
8	Around San Francesco Church	3 days	
1 cycle = 26 days			
Stretta Vaude	tto WTP Supply Area		
9	Haz HAz, Mihram Chira, Viya Jida	3 days	
10	Akria (Left, Right)	3 days	
11	Akria (Saint Gebriel Church), Edaga Arbi	3 days	
12	Around 2 nd Police Station (Hadish Adi), Geza Brhanu (Geza Banda	3 days	
	Habesha)		
13	Arbaete Asmara, Debozito	3 days	
1 cycle = 15 days			
Mai Nefhi WTP Supply Area			
Distribution fr	Distribution from Transmission between Mai Nefhi WTP – Sembel PS		

Table 2.3.7Distribution Zone for Water Rationing

Preparatory Survey on Asmara Water Supply Development

14	Daero Paulos	3 days a
		week
From Sembel	PS via Godaif PS	
15	Kehawta	6 days
16	Geza Banda (Adis Alem)	6 days
17	Mai Chihot	6 days
1 cycle = 180	days	
From Sembel	PS	
18	Space, Enda Germen	3 days
19	Enda Shewit, Michael Tedros	2 days
20	Jekaranda, Space 1	4 days
21	Tiravolo, Campopolo	3 days
22	Around Asmara Brewery, Around Enda Kisha	3 days
23	Barjima, Gejeret, Around Enda Nora (Lime Factory)	4 days
24	Godaif	3 days
25	Sembel + Dembe Sembel	Every
		day
1 cycle = 22 days		

Source: AWSD

For example, the valves to zones 10-13 are closed when the water is distributed to zone 9. After supplying water to zone 9 for three days, the distribution zone is shifted to zone 10. The next distribution to zone 9 is after 12 days. According to the people in zone 9, when the water comes, every tap is opened at the same time. Thus, the water reaches only to the lower area for the first and second days. The people in the high area can receive the water only on the third day. Every house has a water storage tank.

Under the above circumstances, the existing distribution reservoirs (Hazhaz, Tsetserat, Monopolio) in zones 1, 5, and 6 are not functioning in their original designated way. The small amount of water flows into the reservoir at the last day of each distribution period. The reservoir is functioning just as the storage tank for the neighboring people.

The water distribution zone is as shown in Figure 2.3.4.

Source: AWSD Figure 2.3.4 Water Distribution Zone

- (4) Business Operation Condition
 - 1) AWSD Annual Report

AWSD submits an annual report to the Administration of Zoba Maekel. The contents of the annual report are shown in Table 2.3.8.

Item	Contents	Remarks
A. Executed	New connection; Replacement of water	Only the number of work
construction work	meter; Repair of distribution/service	section is written.
	pipe	
B. Water production	Monthly water volume sent from each	Only the annual total amount is
volume and amount	WTP.	written for 2014.
of chemicals used	Monthly chemical amount (aluminum	Only the annual total amount is
	sulfate and gaseous chlorine) for each	written for 2014.
	WTP.	

 Table 2.3.8
 Contents of AWSD Annual Report

C. Toker raw water	Monthly water volume transmitted from	Not written in the 2014 report	
transmission PS	Toker Dam		
	Monthly amount of diesel consumed.		
D. Number of staff	Number of staff by division		
E. Water volume sold	Sold volume and received amount of	The selling price to private	
to water truck	money by category (AWSD,	water truck is ERN 1.5/m ² .	
	Government, Private, Military)	The selling price by the private	
		water truck to the people is	
		prescribed to be less than ERN	
		$45/m^3$.	
F. Number of	Number of connection at the beginning	Not written in the 2014 report.	
connection	and at the end of the period.		
G. Materials used	The materials taken from AWSD store and	d used for maintenance work are	
(amount of money)	described in terms of amount of mon	ey by category use (O&M of	
	transmission and distribution facility, i	nstallation of new connection;	
	maintenance of water truck; O&M of WT	Ϋ́P).	
H. Annual revenue	For 2013, the data up to November 2013 is written.		
and expenditure	For 2014, the data up to June 2014 is wri	tten.	

Source: Survey Team based on the AWSD Annual Report

The contents of the 2013 and 2014 annual reports are described hereunder.

a) Executed Construction Work

AWSD executed the works in 2013 and 2014 as shown in Table 2.3.9.

Table 2.3.9	Executed	Construction	Work by	v AWSD
	Lincouvou	Compet action		

Item	2013	2014
Installation of new connection	93 nos.	16 nos.
Replacement of water meter	99 nos.	91 nos.
Replacement of existing GI	207 nos.	108 nos.
pipe with PVC pipe		
Repair of water leakage	782 nos.	422 nos.

Source: AWSD Annual Report

The above works are executed by the AWSD staffs. The works of the sewerage pipeline are entrusted to the contractors. The cost of the sewerage works is being shouldered by the beneficiary residents.

b) Water Production Volume and Amount of Chemicals Used

The water production volume and amount of chemicals used in 2013 and 2014 are shown in Table 2.3.10 and Table 2.3.11, respectively.

Table 2.3.10 Water Production Volume and Amount of Chemicals Used (2013)

WTP Water Production		Aluminum Sulfate	Gaseous Chlorine
	(Transmitted from WTP)	(kg)	(kg)
	(m ³)		
Stretta Vaudetto WTP	1,126,855	30,900	2,373
Toker WTP	3,929,120	91,072	6,869
Mai Nefhi WTP	3,654,972	51,000	19,470

Source: AWSD Annual Report

WTP	Water Production (Transmitted from WTP) (m ³)	Aluminum Sulfate (kg)	Gaseous Chlorine (kg)
Stretta Vaudetto WTP	756,575	15,100	1,413
Toker WTP	2,740,396	80,500	5,450
Mai Nefhi WTP	3,162,570	51,600	15,760

 Table 2.3.11
 Water Production Volume and Amount of Chemicals Used (2014)

Source: AWSD Annual Report

c) Toker Raw Water Transmission PS

The water volume transmitted from Toker Dam and amount of diesel consumed in 2013 are shown in Table 2.3.12. The data of 2014 is not written in the 2014 Annual Report.

Table 2.3.12 Water Volume Transmitted from Toker Dam and Amount of Diesel Consumed

in	2013
111	4015

Water Volume Transmitted from Toker Dam	Diesel Consumed	
(m ³)	(liter)	
4,178,520	949,900	

Source: AWSD Annual Report

d) Number of Staff

Number of staff by division is presented in the annual report. The contents are as shown in Table 2.3.13.

e) Sold Volume to Water Truck

The water volume sold and the amount of money by the water truck category are shown in Table 2.3.13.

Category of	20	13	20	14
Water Truck	Water Volume	Sales	Water Volume	Sales
	(m^3)	(Nakfa)	(m ³)	(Nakfa)
AWSD	54,126	1,539,015	42,528	1,698,203
Government	121,882	2,316,480	106,356	1,359,232
Military	46,684	562,374	51,443	617,304
Private	640,584	960,449	339,971	509,581
Total	863,276	5,378,319	540,048	4,184,132

 Table 2.3.13
 Water Sold to Water Truck and Amount of Money

Source: AWSD Annual Report

The customers of each water truck category are:

AWSD water truck	: Hospital, embassy, important government facilities
Government truck	: Government facility
Military truck	: Military facility
Private truck	: The people who are not served through piped water and cannot
	receive sufficient water through pipe connection.

The selling price to private water truck is ERN $1.5/m^3$. The selling price by the private water truck to the people is prescribed to be less than ERN $45/m^3$.

f) Number of Connection

According to the 2013 Annual Report, the number of connection at the beginning of 2013 (January 2013) and at the end of 2013 (to be exact, November 2013) was 33,609 and 33,923, respectively.

g) Materials Used (amount of money)

The materials taken from the store in terms of amount of money are as shown in Table 2.3.14.

Category	2013		2014	
	Amount (Nakfa)	%	Amount (Nakfa)	%
O&M of transmission and distribution facility	724,384	5.0	596,404	2.8
Installation of new	516,632	3.5	7,780,779	36.3
connection				
Maintenance of water	213,871	1.5	680,341	3.2
truck				
O&M of WTP	12,020,205	83.0	12,061,006	56.2
Others	995,680	6.9	324,625	1.5
Total	14,470,775	100.0	21,443,157	100.0

Table 2.3.14Materials Taken from AWSD Store

Source: AWSD Annual Report

In 2014, a lot of materials for the installation of new connection were taken from the store. This is in addition to the 16 new connection works in the existing distribution pipeline. There were 960 new connection works conducted in the Daero Paulo area where distribution pipeline was newly installed.

h) Annual Revenue and Expenditure

In the annual reports of 2013 and 2014, the data up to November 2013 and up to June 2014 were presented.

The data of the whole year was obtained through the questionnaire.

2) Annual Revenue and Expenditure

The annual revenue and expenditure of AWSD for 2012, 2013, and 2014 are in Table 2.3.15.

	2012		2013		2014	
Revenue	(Thousan	%	(Thousan	%	(Thousan	%
	d		d		d	
	Nakfa)		Nakfa)		Nakfa)	
Water charge (Domestic)	17,971	35	23,154	31	20,693	24
Water charge (Commercial)	21,175	41	12,678	17	11,665	14
Water charge (Water Truck)	5,017	10	5,377	7	4,183	5
Other (Connection works, penalty,	7,388	14	33,608	45	44,744	52
etc.)						
Subsidy	0	0	37	0	4,449	5
Total	51,551	100	74,854	100	85,734	100
Expenditure	(Thousan	%	(Thousan	%	(Thousan	%
	d		d		d	
	Nakfa)		Nakfa)		Nakfa)	
Personnel	6,726	12	6,891	16	6,113	11
Electricity	15,387	29	8,069	19	7,286	14
Fuel for Toker raw water	24,941	46	17,287	40	16,977	32
transmission PS						
Fuel for AWSD water truck	861	2	1,158	3	1,039	2
Chemicals	266	0.5	1,244	3	1,252	2
Connection works	1,119	2	3,585	8	13,265	25
Maintenance, repair	4,054	8	2,462	6	3,888	7
Other	579	0.5	2,304	5	3,835	7
Total	53,963	100	43,000	100	53,655	100

Table 2.3.15Annual Revenue and Expenditure of AWSD

Source: Answers from the Questionnaire

For data of 2012, Preliminary Survey Report in 2014

In the revenues of 2013 and 2014, the revenue from the new connection work and penalty formed a large part. The annual report states that this is the reason why the revenue far exceeded the expenditure in 2013 and 2014. In 2014, 960 new connections were installed. Accordingly, both the revenue and expenditure for new connection work were increased.

As shown above, the fuel for Toker raw water transmission PS formed a large part of the annual expenditure. It is desirable that the existing diesel engine pump be replaced with the electric motor driven pump.

The Survey Team requested AWSD to provide the budget for 2015. However, AWSD replied that it cannot be provided until it is approved by Zoba.

3) Tariff Collection

The tariff of AWSD is shown in Table 2.3.16. This tariff has not been changed since November 2003.

Tariff	Zone 1	Zone 2	Zone 3	Commerce
Meter rent	50	40	30	50
Unit price by m ³				
$1-10 \text{ m}^3$	5	4	3	15
$10-20 \text{ m}^3$	7.5	5	4	20
$20-30 \text{ m}^3$	10	7.5	5	20
$30-50 \text{ m}^3$	15	10	7.5	20
> 50	20	15	10	20

 Table 2.3.16 Tariff of AWSD

Source: AWSD

According to AWSD, the water meter is installed on all the house connections.

The customer will pay the water charge every three months based on his own meter reading. If the customer does not pay for more than four months, a penalty will be charged. If it exceeds seven months, the water supply will be stopped.

The tariff should be revised because the current price is more than five times of that in 2003 (IMF World Economic Outlook Database).

4) Long-term Objective/Strategy of AWSD

AWSD prepares a paper which describes its long-term objective/strategy every year. The contents related to water supply as of 2014 are in Table 2.3.17.

0	·	
Objective	Strategy	
1. Increase of supply amount; Improvement in	- Conduct survey	
water quality	- Construction of new dam and WTP	
1.1 Daily supply is increased to 61,000	- Rehabilitation and expansion of the existing	
m ³ /day	facility	
1.2 Water quality is improved from Group B	- Increase in number of staff	
to Group A		
2. Capacity development of staff	- Raise the salary level	
2.1 Age of 25% of the staff is under 40 years	- New employment	
old.	- Training of staff	
2.2 The number of skilled labor is increased	- Purchasing of new tools	
by 15%.	-	
3. Strengthening of business transaction	- Establishment of new tariff collection offices	
capacity	- Tariff collection unit is established	
3.1 Tariff collection office is increased to	- Building the information system	
four	- Replacement of water meter	
3.2 Introduction of information system	- Introduction of GIS	

Table 2.3.17 Long-term Objectives of AWSD

Source: AWSD

Although the AWSD sets the above objectives, it does not have a practical plan for realization. AWSD is in short of staff in terms of its number and capacity. The staffs are busy handling the complaint regarding the shortage of water supply and they seem not to have a capacity to make a long-term plan.

According to AWSD's staff, AWSD recognizes the following matters as important issues for its business operation:

- Increasing the number of staff, especially the young staff (raising the salary level).
- Timely procurement of materials for house connection and spare parts of the equipment.
- Increasing the number of construction machine and vehicle.
- Reducing the fuel cost of Toker PS by electrification.

The current problems/issues of AWSD are described in the following sections.

2.3.3 Present Condition of the Existing Water Supply Facility

(1) Outline

The source of Asmara Water Supply is the dam lake as shown in Figure 2.3.5. The raw water is treated at the three water treatment plants and then transmitted to the supply area in Asmara City.

Figure 2.3.5 Outline of Water Supply Facility of Asmara

The location of the water distribution facility in the city is shown in Figure 2.3.6. The north east area, northwest area, and south area of the city are being supplied by Stretta Vaudetto WTP System, Toker WTP System, and Mai Nefhi WTP System.

Source: Survey Team added the information on the figure in the FS Report

Figure 2.3.6 Location of the Distribution Facility in the Service Area

The current condition and problems of each facility are described by the three WTP systems in the following order: 1) Water resource facility (dam), 2) WTP, and 3) Intake, transmission and distribution facility.

(2) Stretta Vaudetto WTP System

The water source of Stretta Vaudetto WTP System is Adi Sheka Dam and Mai Serwa Dam, as shown in Figure 2.3.7. The intake facility of Stretta Vaudetto Dam was abandoned. The temporary intake pump is being installed on the crest of Stretta Vaudetto Dam and is operated if need arises.

Figure 2.3.7 Configuration of Stretta Vaudetto WTP System

1) Dam

The various factors or elements of each dam on the S.V W.T.P system are indicated in Table 2.3.18.

Currently, AWSD is taking the raw water from Adi Sheka, Mai Serwa, and S.V dams. AWSD is not able to take the raw water from Valle Gnecchi and Ela Nahib dams because mud is clogged into the water intake pipes, the raw water is not too much for the water-intake, and the raw water is used in agriculture and for daily life. The water right of Beleza dam was transferred to AWSD from EEC, but EEC is using the water as cooling water of thermal power generation.

The penetration water is confirmed from the bottom of the dam at the downstream side of 3 earth-fill dams (Valle Gnecchi, Ela Nahib and Adi Sheka). However, it cannot be said that there is much penetration water. There are no problems because it isn't thought that there is a clear streamline of penetration water.

Among the concrete gravity dams, there is leakage of approximately 0.1ℓ / sec from the joint between the lower left in the S.V dam and the bedrock. It's necessary to monitor this in the future.

There is much sedimentary soil in each dam lake, and the sludge discharge pipes of each dam are clogged up. However, AWSD never has removed the sedimentary soil in the past. Particularly, the S.V dam is remarkable, and the sedimentary soil into the dam lake is estimated to be 61% of gross storage capacity of the S.V dam. (Refer to Appendices 4.3)

Furthermore, the construction is old, and the drawings lost, and nobody can judge whether the gross storage capacity of each dam is exact. In the future, it is necessary to make the exact drawings by carrying out surveying of each dam lake in order to grasp the size of the dam body and the gross storage capacity exactly.

		N 1 0 1		.		51 N I I	21
I	Items	Mai Serwa	Adi Sheka	S.V	Valle Gnecchi	Ela Nahib	Beleza
Current cituatio	n of utilization	Utilization	Utilization	Utilization	Contents	Contents	EEC is using the water new
Current situation		Duizauon		Dian to use	Not using	Not using	Diag to using the water now
Puture plan of u	ulizauon	-il	-il	Plan to use	-il	-il	Plan to use
Design documer	its	nii Aaraa ka wixaa ayaataan	nii Aaaaba wixaa ayabaas Tahaa wixaa	Anarcha minan avertare	nii Aasa ka siyaa ayata a	nii Aaaaba wuxaa ayataas	Anarka siyan ayatan
River name		Anseba river system	Ariseba river system Tokar river	Anseba river system	Ariseba river system	Anseba river system	Ariseba river system
Intended use		Drinking water	Drinking water	Drinking water	The water used as drinking water once, but the water is using as a domestic animal, agriculture and daily life now.	The water used as drinking water once, but the water is using as a domestic animal, agriculture and daily life now.	generation (The water right of Beleza dam was transferred to AWSD from EEC, but EEC is using the water as a cooling water of the thermal power generation.)
Structure Type		Concrete gravity dam (non-overflow dam)	Earthfill dam(The surface of upstream slope is lock, the downstream slope is soil)	Concrete gravity dam (overflow dam)	Earthfill dam (The surface of upstream slope is lock, the downstream slope is soil)	Earthfill dam (The surface of upstream slope is lock, the downstream slope is soil)	Concrete gravity dam (non-overflow dam)
Construction ve	ar	1960	1938	1941	1940	1941	1953
Design or Const	raction company	Unconfirmed(Italy rule age)	Unconfirmed(Italy rule age)	Unconfirmed(Italy rule age)	Unconfirmed(Italy rule age)	Unconfirmed(Italy rule age)	Italy (SEDAO)
Source of funds		Unconfirmed	Unconfirmed(Italy rule age) The water was used for old hydraulic power generation	Unconfirmed(Italy rule age)	Unconfirmed(Italy rule age) The water was used for old hydraulic power generation	Unconfirmed(Italy rule age) The water was used for old hydraulic power generation	Unconfirmed
	l ength	Approx 125m	Approx 390m	Approx 55m	Approx 200m	Approx 170m	Approx 138m
1	Height(Max)	Approx. 20m	Approx. 25m	Approx. 25m	Approx. 15m	Approx. 15m	Approx. 25m
Dam body	I Inner Wide(Max)	Approx 3.5m	Approx 32m	3.5m	3m	3m	Approx 45m
,	Bottom Wide(Max)	Approx. 18m (inference)	Approx. 153m (inference)	Approx. 18m (inference)	Approx, 48m (inference)	Approx. 33m (inference)	Approx. 44m (inference)
I.	Dam volume	Approx. 7.500 m ² (inference)	Approx 250.000 m ² (inference)	Approx. 4.300 m ² (inference)	Approx. 25.000 m ² (inference)	Approx. 15.000 m ² (inference)	Approx. 28.000 m ² (inference)
	Intake pipe	Water intake from sludge discharge pipe φ 150mm. 2 valves of intake pipe φ 200mm (from 2 nos vertical intake pipe in dam lake) are out of order.	Underground pipe into dam body: Ø 400mm	Temporary pump was installed in the dam top. Original intake tower is out of order. Old intake pump at dam downstream is out of order.Old.	Underground pipe into dam body: Ø 150mm	Underground pipe into dam body: ¢ 200mm	Multistage-type gate (?stages) (Permission of the inspection is not granted by ECC)
Attached structure of dam	Spillway (flood way)	New spillway: Depth 3m, Wide 10m It has been placed in emergency because the old spillway at the downstream side collapsed in 2009. New spillway is a possibility of damage to Asmara Flower at the time of severe flood.	Spillway: Depth 2m, Wide 50m Open channel: Depth 3m, Wide 3m	Wide 16.5m, Depth 3m in dam body	Wide 2m, Depth Im	Wide 5m, Depth I.5m (Combined use with open channel to Valle Gnecchi dam)	Wide 12m, Depth 1.3m
I	Sludge discharge pipe	4 nos ϕ 150mm Unusable for mud clogging 1 no ϕ 150mm Use as a intake pipe	1no ∲300mm Notused	5 nos ϕ 150mm Uusable for mud clogging	Unconfirmed	Unconfirmed	Unconfirmed
I	Discharge pipe	Substitute sludge discharge pipe	Substitute sludge discharge pipe	Substitute sludge discharge pipe	Unconfirmed	Unconfirmed	Unconfirmed
ļ	Water level gauge	nil	nil	nil	nil	nil	nil
Catchment area		Approx. 8.8km	Approx. 37.3km [®]	Approx. 8.6km [®]	Approx. 3.0km [®]	Approx. 4.3km [*]	Approx. 6.1km [®]
Water surface a	rea	Approx. 0.18km (inference)	Approx. 0.36km² (inference)	Approx. 0.13km (inference)	Approx. 0.08km (inference)	Approx. 0.15km (inference)	Approx. 0.18km (inference)
Gross storage c	apacity	Approx. 2.1mill m	Approx. 6.0 mill m	Approx. 0.32 mill m	Approx. 0.6 mill m	Approx. 0.6 mill m	Approx. 1.2 mill m
Effective storage	e capacity	Approx. 1.785 mill m (inference)	Approx. 4.05 mill m (inference)	Approx. 0.125 mill m (inference)	Approx. 0.496 mill m (inference)	Approx. 0.45 mill m (inference)	Approx. 1.022mill m (inference)
Source of powe	l into the dam's lake r for Raw-water pump	Approx. 0.315 mill m (inference) Commercial power (EEC) 1 no Pump, Pump discharge:200m²/h, Pump head:75m	Approx. 1.35 mill mi (inference) Commercial power (EEC) 2 nos Pump, Pump discharge:450 m²/h, Pump head:40.5m	Approx. o.195 mill m (inference) Commercial power (EEC) 1 no Pump, Pump discharge:180 m ² /h, Pump head:20m, 132kw	Approx. 0.104 mill m (inference) Unnecessary(Gravity)	Approx. 0.15 mill m (inference) Unnecessary(Gravity)	Approx. 0.178 mill m (inference) Unconfirmed EEC is using the water now.
Generator for ba	ackup	nil	265KVA Maide in Italy Out of order	nil	Unnecessary	Unnecessary	Unconfirmed EEC is using the water now.
Operation time f	or Raw-water pump	Approx. 12hours(No record)	Approx. 12hours(No record)	Approx. 10hours(No record)	Unnecessary	Unnecessary	Unconfirmed EEC is using the water now.
Water quality		No record of water analysis Light green (as of Mar, 2015)	WRD enforces it once a year. The water is satisfied with Eritrea water quality standard. Light green (as of Mar, 2015)	WRD enforces it once a year. The water is satisfied with Eritrea water quality standard. Light green (as of Mar, 2015)	No record of water analysis Light green (as of Mar, 2015)	No record of water analysis Light green (as of Mar, 2015)	No record of water analysis Light green (as of Mar, 2015)
Landownership		Government	Government	Government	Government	Government	Government
Landownership		AWSD	AWSD	AWSD	AWSD	AWSD	AWSD
Ownership of st							
Ownership of st Water rights		AWSD	AWSD	AWSD	AWSD	AWSD	AWSD (EEC is using the water now)
Ownership of st Water rights Conservation-M	anagement for	AWSD MoA & Zoba Maekel	AWSD MoA & Zoba Maekel	AWSD MoA & Zoba Maekel	AWSD MoA & Zoba Maekel	AWSD MoA & Zoba Maekel	AWSD (EEC is using the water now) MoA & Zoba Maekel

Table 2.3.18 Various factors or elements of each dam in S.V W.T.P system

Source: Survey Team

2) WTP

The various factors or elements of S.V W.T.P are indicated in Table 2.3.19.

Items	Contents
Design documents	Plans of Elocculation and sedimentation basins
	Main: Adi Sheka, Mai Serwa, S.V dams and overflow of Toker W.T.P
Water source	Emergency: Toker dam
	Unused Valle Gnecchi and Ela Nahib dams
Construction year	1941
Design or Constraction	
company	Unconfirmed(Italy rule age)
Source of funds	Unconfirmed(Italy rule age)
Treatment method	Rapid filtration system
Design treatment capacity	8,000 m²/day
	Commercial power (EEC)
Source of power	4 nos treated water pump, Pump discharge: 500m³/h (2nos pumps are out of
	order)
	230KW
Generator for backup	It is not operating the treated water pump because generator capacity is small.
	10 hours
Operation time	(1 no treated water pump)
Operation mathod	Manual operation
	ALUM (Aluminum Sulfate) is dosed into the receiving well directly.
Floceularits (Coagulation)	The chemical mixing and injection equipment are out of order for a long time.
	Currently unused
ph control chemicals	The chemical mixing and injection equipment are out of order for a long time.
	Chlorine gas
Chlorination	Chlorine gas is injected directly into the receiving well by the rubber tube.
	Sodium hypochlorite had been using in the past.
Other chemicals	nil
Inlat and Outlat flow	No record (Outlet flow understand by the pump operating time.)
Inlet and Outlet now	(Inference 5,000 m³/day)
Water quality (Outlet)	WRD enforces it once a year.
	E. coli and fecal coliform bacteria have been detected.
Sludge disposal	Sludge has discharged into SV dam directly.
Water quality laboratory	nil
Landownership	AWSD
Ownership of structure	AWSD
Management for W.T.P.	IAWSD

Table 2.3.19 Various factors or elements of S.V W.T.P

Source: Study Team

The flow chart of S.V. W.T.P is indicated in Figure 2.3.8.

Figure 2.3.8

S.V W.T.P was built in 1941 when the area was ruled by Italy, and the deterioration of the facilities is remarkable.

The present situations are indicated as follows.

- There are no inlet and outlet water meters.
- The chemical mixers and injection equipment has been out of order for a long time. Therefore, it can be said appropriate water treatment is not done. The solid alum is sporadically dosed into the receiving well directly without adjusting its concentration.
- The chlorinator has not been out of order for a long time. And chlorine gas is injected directly into the clear water reservoir by rubber tube.
- Several deflectors in the flocculation basin are corroded.
- The sludge in the sedimentation basin is not discharged because the sludge discharge pipes are corroded, and several sludge valves are inoperable.
- Back-wash isn't done effectively so that there is thick sludge on the filter beds. Therefore, the filter beds have break through cracks and holes
- Water is leaking approximately 1 m^3 / hours at the clear water reservoir.
- The land subsidence of approximately 5 cm is confirmed at the building of the filtration basin and the clear water reservoir.
- The deterioration of the building of the filtration basin and the clear water reservoir is remarkable.
- Most of the valves are deteriorated due to old age.
- The raw water transmission pump in Adi Sheka is stopped for 2 months in the rainy season because the muddy soil flows into the open channel.
- Two clear water transmission pumps are deteriorated due to old age. (Refer to transmission facilities)
- The clear water transmission pump (500m³/h) is operated only about 10 hours/day due to the blackout. (Refer to transmission facilities)
- Total coliform bacteria and fecal coliform bacteria are detected.
- 3) Intake, Transmission, and Distribution Facility

The present condition and problems of each facility are as shown in Table 2.3.20.

Table 2.3.20Present Condition and Problems of the Intake, Transmission, and DistributionFacility of Stretta Vaudetto WTP System

Facility	Feature/Present Condition	Problems			
Adi Sheka - St	Adi Sheka - Stretta Vaudetto WTP Raw Water Transmission Facility				
Adi Sheka PS					
Receiving tank	- There is no receiving tank. Raw water intake				
	pipe is directly connected to the pump via D700				
	strainer.				
Pump facility	Dam: HWL = 2,395, LWL = 2,362	- One pump including the			
features		control panel must be			
	P1: $(Q = 450 \text{ m}^3/\text{h}, H = 40 \text{ m}) 85 \text{ kW}$	replaced.			
	P2: $(Q = 450 \text{ m}^3/\text{h}, H = 40 \text{ m}) 85 \text{ kW}$	- All the instrumentation			
	- The gear of the P2 pump is damaged frequently.	facility must be replaced.			
	The setting seems to be inappropriate.				
	- All the pressure gauges are out of order.				

	- The magnetic flow meter is not damaged but the	
	data recording system is out of order.	
	- Leakage is observed from the air valve in the	
	D700 strainer.	
	- The power receiving facility is deteriorated and	
Installation	in a dangerous condition.	
year	- The pump was replaced in 2000 with the French	
	assistance. The pump station itself was	
	constructed 27 years ago.	
Operating/	- Only P1 pump is operated when the electricity is	
functioning	available. (12 h/day)	
condition	- The emergency generator installed 27 years ago	
	is out of order.	
	- No operation record was kept.	
Raw Water Tra	nsmission Pipeline from Adi-Sheka Dam	
Pipeline	D300 Cast iron pipe $L = 400 \text{ m}$	No particular problem
Open Channel	from Adi Sheka to Beleza	
Concrete open	Width: $1.5 \text{ m} - 1.6 \text{ m}$, Depth: 20 cm , $L = 8 \text{ km}$	- Due to soil clogging
channel	i = 0.002, n = 0.032	during the rainy season, the
	EL 2426 – EL 2410	transmission must be
	- The 8 km length of concrete open channel was	stopped around two months
	constructed on the hillside. The channel was	every year.
	clogged by the surrounding soil in the flood	- The six tunnels are
	season.	deteriorated.
	- The soil is removed by manpower (30 persons x	- To solve these problems, it
	120 days) every year.	is necessary to change from
	- There are six tunnels. $(L = 150 \text{ m} - 400 \text{ m})$	open channel to pipeline.
	- Falling of the upper part of lining concrete is	- 2 km of AC pipeline
	observed.	should be replaced to
	- It is necessary to check the necessity of repair	PVC/DCI pipe.
	work of the tunnel but it is dangerous.	
Raw Water T	ransmission Pipeline from Beleza to Stretta	
Vaudetto WTP		
Pipeline	Starting point – Beleza Lake: $D300$, Cast iron L =	
	Beleza Lake – S.V. WTP: D300, AC L = 3 km $(1 - 1)$	
	(1 km was replaced by	
Dam Water Tue	DCI)	
Kaw water Ira	ismission facility from Mai Serwa Dam to Strett	
Dessiving tonk	The new water is taken via the and discharge	All the facilities of DS are
Receiving tank	- The raw water is taken via the sand discharge	- All the facilities of FS are
	Proceeding tank $(V = 50 \text{ m}^3)$ HWI = 2.305 LWI	needed to be thoroughly
	-2.302	replaced
Pump facility	- Leakage from the valves and wall of the tank	Teplacea.
feature	Leakage from the valves and wall of the tank	- The AC pipe $(L = 2.600)$
Touture	P1: $(O = 200 \text{ m}^3/\text{h} \text{ H} = 75 \text{ m})$	m) needs to be replaced
	- Large amount of leakage from the bearings	with PVC/DCI pipe.
	- Pump is seriously deteriorated.	······································
	- There is no instrumentation.	
Installation	- Electric facility is in a dangerous condition.	
year	- Unknown	
Operating/	- All facilities are heavily deteriorated.	
functioning	- One pump is operated when the electricity is	
condition	available.	
	- No operation record was kept.	

Raw Water Tra WTP	ansmission Pipeline from Mai Serwa PS to S.V.	
Pipeline	D300 Cast iron $L = 100 \text{ m}$	
1	- In the downstream of the spillway of the dam,	
	the pipe is exposed.	
	D300 AC pipe L = 2,600 m	
Treated Water	Transmission Facility from Stretta Vaidetto WTP	
Treated Water	Transmission Pump at SV WTP	
Clear water	- The clear water reservoir is located under the	
reservoir	rapid sand filter.	The pump facility is
	$V = 600 \text{ m}^3$, HWL = 2,353, L = 2,350	seriously deteriorated as a
	- Leakage from the valves and reservoir wall is	whole.
	observed.	
Pump facility		
feature	P1: $Q = 510 \text{ m}^3/\text{h}$, $H = 85 \text{ m}$, 200 kW	
	- Pressure gauge is out of order.	
	P2: $Q = 500 \text{ m}^3/\text{h}$, $H = 80 \text{ m} 200 \text{ kW}$	
	- Leakage from the bearings and pipe connection.	
	- Pressure gauge is out of order.	
	- There is no instrumentation.	
Installation	One pump is recently replaced.	
year	The other is heavily deteriorated.	
Operating/	Two pumps are operated by rotation when the	
functioning	electricity is available.	
condition		
Treated Water Service Area	Transmission Pipeline from S.V. WTP to the	
Pipeline	D300 PVC L = 5,000 m	- Original AC pipe was
1	Air valve: 3 nos., Drain: 1 no.	replaced to PVC after 1997.
	- The pipeline was thoroughly replaced from AC	Therefore, there is no
	pipe to PVC pipe after 1997.	particular problem.
		- Pipeline must be extended
		to the planned New Arbate
		Asmara Reservoir.
Distribution Fa	cility in the Service Area	
Distribution	- Existing two steel-made reservoirs are	- There is no functioning
Reservoir	deteriorated and no more used. They cannot be	reservoir.
	used due to heavy rust.	
Distribution	PVC DN150 – DN250	- The pipe was replaced to
pipeline	- The valve facility is deteriorated.	PVC pipe after 1997 but the
(Primary		exact locations of the valves
pipeline)		are not recorded.
Distribution	PVC DN50 – DN150, GI DN20 – DN50	- There remains an
pipeline	- The valve facility is deteriorated.	approximately 900 m of
(Secondary		deteriorated GI pipe.
pipeline)		- Exact locations of the
		valves are not recorded.

Source: Survey Team

(3) Toker WTP System

The water source of Toker WTP System is Toker Dam as shown in Figure 2.3.9.

Source: Survey Team

Figure 2.3.9 Configuration of Toker WTP System

1) Dam

The various factors or elements of Toker dam is indicated in Table 2.3.21.

Items		Contents	Items	Contents
Current situation of utilization		Utilization	Catchment area	Approx. 69.6km
Future plan	of utilization	Plan to use	Water surface area	Approx. 0.18km (inference)
Design docu	iments	CAD drawing Document is only Technical Memorandum.	Gross storage capacity	Approx. 13.6 mill m
River name		Anseba river system	Effective storage capacity	Approx. 0.425 mill m³ (inference)
Intended us	e	Drinking water	Sedimentary soil into the dam's lake	Approx. 12.576 mill m [°] (inference)
Structure T	уре	Concrete gravity dam (overflow dam)	Source of power for Raw- water pump	Diesel engine pump(CAT) 990 m²/h×10hours=9900 m²/day
Construction year		2002	Generator for backup	Transmission line of 15KV has been completed up to near the dam. Available at the receiving device and the pump motor replacement.
Design or C	onstraction company	National budget and soft loans	Operation time for Raw-	Day average of 10 hours (20:00-6:00)
Source of funds		Korean construction company accepted the order.	Water quality	WRD enforces it once a year. The water is satisfied with Eritrea water quality standard. Light green (as of Apr. 2015)
	Length	Approx. 240m	Landownership	Government
	Height(Max)	Approx. 74m	Ownership of structure	AWSD
Dam body	Upper Wide(Max)	Approx. 8.2m	Water rights	AWSD
	Bottom Wide(Max)	Approx. 57m	Conservation-Management	MoA & Zoba Maekel
	Dam volume	Approx. 174,000 m (inference)	Management for Structure	AWSD
	Intake pipe	Multistage-type gate (6 stages) No.1-5 stage: □1,050mm intake gate		
Attached	Spillway (flood way)	Wide 34m, Depth 10m in dam body		
structure of	Sludge discharge pipe	No.6 stage: 1,050mm sludge gate		
dam	Discharge pipe	Substitute sludge discharge pipe and intake pipe		
	Water level gauge	Lower scale of gauge is disappeared.]	

Table 2.3.21 valious factors of cicilicity of force ua
--

Water level gauge Source: Survey Team

Toker dam is a new concrete gravity dam, which was built in 2002. The sedimentary soil was discharged several times in the past. There is no outstanding problem.

2) WTP

The various factors or elements of Toker W.T.P are indicated in Table 2.3.22.

Items	Contents
Design documents	CAD drawing
Water source	Toker dam
Construction year	2002
Design or Constraction	DIMATED in South Africa
company	DIWATER IN South Africa
Source of funds	Kuwait fund is 50%, the government funds 50%
Treatment method	Rapid filtration system
Design treatment capacity	18,000 m ³ /day
Same af a sure	Commercial power (EEC)
Source of power	3 nos treated water pump, Pump discharge: 450m³/h (1 no pump is spare)
Generator for backup	800KVA(600KW)
Onevention time	9 hours/day
Operation time	For raw water pump is running only 9 hours.
Operation mathod Manual operation (Centralized automatic control system is out of order in 20	
Flocculants(Coagulation)	ALUM (Aluminum Sulfate)
	At the time of a blackout, ALUM is dosed directly into the mixing pond.
all control chamicals	Currently unused
	Sodium hydroxide was used during the 2002 operation.
	Chlorine gas
Chlorination	Chlorine gas is injected directly into the clear water reservoir by the rubber tube.
	Sodium hypochlorite generation apparatus was out of order in 2009.
	Inventories of PAC and carbon at the oparation time in 2002 are using.
Other chemicals	Potassium permanganate, Filter Aid and Coagulant aid were used at the oparation
	time in 2002.
Inlat and Outlat flow	No record (Outlet flow understand by the pump operating time.)
	(Inference 8,000m³/day)
Watar quality (Outlat)	WRD enforces it once a year.
water quality (Outlet)	E. coli has been detected.
Sludge disposal	Sedimantation basin for sludge
Water quality laboratory	Jar tester, pH meter, turbidimeter and residual chlorine meter are not using.
Landownership	AWSD
Ownership of structure	AWSD
Management for W.T.P.	AWSD

 Table 2.3.22
 Various factors or elements of Toker W.T.P

Source: Survey Team

The flow chart of Toker W.T.P is indicated in Figure 2.3.10.

Figure 2.3.10 Flow chart of Toker W.T.P

Toker W.T.P was built in 2002 as the central control management system, but it is under manual operation at the present.

The present situation is indicated as follows.

- The inlet and outlet water meters are out of order.
- W.T.P has been operated manually from 2007 because the central control system was out of order.
- Various chemicals were used at the starting time of the operation in 2002, but ALUM and chlorine gas are used mainly at the present.
- The solid alum is dosed into the mixing basin directly at the time of the blackout.
- The sodium hypochlorite generation apparatus was out of order in 2009, and chlorine gas is injected directly into the clean water reservoir without the chlorinator by rubber tube.
- Only the water of 9,900m³/day (990m³/hour ×10 hours) is supplied to the W.T.P from Toker dam in spite of the design treatment capacity of 18,000m³/ day due to deterioration and the huge fuel consumption of the engine pump. (Refer to transmission facilities)
- Total coliform bacteria are detected.
- The jar test has not been practiced.
- 3) Intake, Transmission, and Distribution Facility

The present condition and problems of each facility is as shown in Table 2.3.23.

Table 2.3.23 Present Condition and Problems of Intake, Transmission and Distribution Facility of Toker WTP System

Facility	Feature/ Present Condition	Problem						
Toker Dam - T	Toker Dam - Toker WTP Raw Water Transmission Facility							
Toker Raw Wat	ter PS							
Receiving tank	- There is no receiving tank. Raw water intake							
_	pipe is directly connected to the pump.							
	Dam: HWL = 2,210, LWL = 2,172	- The diesel pump can be						
Pump facility		operated only 10 h/day,						
feature	P1: $(Q = 990 \text{ m}^3/\text{h}, H = 235 \text{ m})$ 2000 rpm Diesel	because the pump is heated						
	engine	up and the huge fuel						
	P2: $(Q = 990 \text{ m}^3/\text{h}, \text{H} = 235 \text{ m}) 2000 \text{ rpm}$ Diesel	consumption.						
	engine	- Thus, the WTP can also be						
	- Pressure gauges are out of order.	operated only 10 h/day.						
	- There is no flow meter							
Installation		- AWSD intends to replace						
year	2002	the pump with the electric						
		motor driven pump and the						
Operating/		power distribution line						
functioning	- Only P1 pump is operating 10 h/day during night	comes near the PS.						
condition	time.	- However, the work						
	- P2 pump is under maintenance.	schedule of replacement is						
		not fixed.						
	Only the pump operation hour and consumption of							
	diesel are recorded.							
Remarks	The detailed design and tender document of the	electrification work of this						
	pumping station have been prepared by NRCE (the	e consultant of Toker project)						

	in 2007. However, because of the trouble with AWSD, the tender document has							
	not been delivered to AWSD.							
	The contract for the construction of access road for this electrification work was							
	concluded with BDHO, the national construction company in 2010. (The							
	contract price was approximately USD 0.5 million). However, the work has not							
	yet commenced because this was not prioritized by the government.							
	The AWSD estimates the cost for this electrification work including the above							
	access road to be approximately USD 10 million.							
Raw Water Tra	ansmission Pipeline from Toker Raw Water PS to							
Toker WTP								
Pipeline	D600 DCI L = 13 km	No particular problem						
	Air valve: 15 nos., Drain: 14 nos.							
	- Leakage occurred in the past.							
Treated Water	Transmission Facility from Toker WTP							
Treated Water	Transmission Pump at Toker WTP							
Clear water	*	No particular problem						
reservoir	$V = 3000 \text{ m}^3$. HWL = 2384. LWL = 2379	1 1						
Pump facility	· · · · · · · · · · · · · · · · · · ·							
feature	P1. P2. P3: (O = 450 m ³ /h. H = 65 m) 132 kW							
	Instrumentation and electric facility: Fair							
	condition							
Installation								
vear	2002							
<i>y</i> =								
Operating/	- Transmission pump is also operated at 10:00							
functioning	p.m6:00 a.m.							
condition	- From $6:00$ a.m1:00 p.m., the water is							
	transmitted by gravity to the water truck filling							
	station located at the entrance of the city area.							
	During this period the pipeline to the service area							
	is closed by the valve.							
Treated Water	Transmission Pipeline from Toker WTP							
Pipeline	D500 DCI L = 3.600 m Air valve: 6 nos. Drain:	No particular problem						
I · ·	4 nos.	1 1						
Distribution Fa	cility in the Service Area							
Monopolio	$V = 300 \text{ m}^3 \text{ x}$ 2. HWL = 2364, LWL = 2360	- Existing three reservoirs						
Reservoir	- Cracks are observed on the wall	are almost not used.						
iteser von	- Valves and piping are all rusted and should be	- They are all deteriorated						
	thoroughly replaced.	and all the piping must be						
Hazhaz	$V = 500 \text{ m}^3 \text{ x } 2 \text{ HWL} = 2366 \text{ LWL} = 2361$ thoroughly replaced							
Reservoir	- Cracks are observed on the wall.	- It is difficult to continue						
	- Many leakages are observed.	using the existing reservoir						
	- Valves and piping are all rusted and should be	by repairs.						
	thoroughly replaced.	- In order to secure the						
Tsetserat	$V = 500 \text{ m}^3 \text{ x}$ 2 HWL = 2366 LWL = 2361	appropriate water						
Reservoir	- Cracks are observed on the wall	distribution in the service						
Reservon	- Leakages are reported although the tank is	area, it is necessary to						
	covered by the earth	construct new reservoirs.						
	- Valves and piping are all rusted and should be	- It is also necessary to						
	thoroughly replaced	construct the distribution						
	thoroughly replaced.	nipeline from the new						
		reservoir						
Mai Chohot								
nump station								
Receiving	$V = 500 \text{ m}^3$ HWL = 2340 LWL - 2336	- Rehabilitation of the						
tank	-2570, 100 = 2570, 100 = 2550	inside coating is necessary						
tuin		more couring to necessary.						

Pump facility feature Operating/ functioning condition	 P1: Q = 150 m³/h, H = 30 m, 67 kW P2: Q = 200 m³/h, H = 8 0m, 90 kW P1 pump is deteriorated and needs to be replaced. Instrumentation is out of order. Operated only when electricity is available. 	 P1 pump needs to be replaced. Piping and instrumentation need to be replaced.
Denden pump		
station Receiving tank Pump	$V = 3000 \text{ m}^3$, $HWL = 2351$, $LWL = 2347$	- All the facilities are deteriorated.
facility Feature	P1: Feature is unknown.Instrumentation is out of order.Control panel and electric facility are heavily deteriorated and in a dangerous condition.	- This pump station is used for a limited area. Thus, the need for priority for rehabilitation is not so high.
Operating/ functioning condition	Operated only when electricity is available.	
Distribution	PVC DN150 – DN300	- The pipe was replaced to
pipeline	- The valve facility is deteriorated.	PVC pipe after 1997. But
(Primary		the exact locations of the
pipeline)		valves are not recorded.
		- Extension to the newly
Distribution	DVC DN50 DN150 CI DN20 DN50	There remains on
pipeline	- The valve facility is deteriorated	approximately 1100 m of
(Secondary	The varve facility is deteriorated.	deteriorated GI pipe.
pipeline)		- Exact locations of the
		valves are not recorded.

Source: Survey Team

(4) Mai Nefhi WTP System

The water source of Mai Nefhi WTP System is the Mai Nefhi Dam. The raw water is treated at Mai Nefhi WTP located just downstream of Mai Nefhi Dam and then transmitted to the reservoir at Sembel PS. Then the treated water is distributed to the service area from Sembel PS, as shown in Figure 2.3.11.

Source: Survey Team

Figure 2.3.11 Configuration of Mai Nefhi WTP System

1) Dam

The various factors or elements of Mai Nefhi dam are indicated in Table 2.3.24.

Items		Contents	Items	Contents	
Current situ	uation of utilization	Utilization	Catchment area	Approx. 94.5km	
Future plan	of utilization	Plan to use	Water surface area	Approx. 0.8km (inference)	
Design doci	uments	schematic plan	Gross storage capacity	Approx. 26 mill㎡	
River name		Mereb river system Nefhi river	Effective storage capacity	Approx. 23.912 mill m³ (inference)	
Intended use		Drinking water	Sedimentary soil into the dam's lake	Approx. 2.088 mill m (inference)	
Structure T	уре	Concrete gravity dam (non−overflow dam)	Source of power for Raw- water pump	Unnecessary (Gravity)	
Constructio	on year	1968	Generator for backup	unnecessary	
Design or C	Constraction company	Unconfirmed(Degremont:France)	Operation time for Raw- water pump	unnecessary(Operation time of treated water pump is 18 hours.)	
Source of funds		Unconfirmed	Water quality	WRD enforces it once a year. The water is satisfied with Eritrea water quality standard. Light green (as of Mar, 2015)	
	Length	Approx. 220m	Landownership	Government	
	Height(Max)	Approx. 35m	Ownership of structure	AWSD	
Dam body	Upper Wide(Max)	6.5m	Water rights	AWSD	
	Bottom Wide(Max)	Approx. 30m	Conservation-Management	MoA & Zoba Maekel	
	Dam volume	Approx. 38,000 m (inference)	Management for Structure	AWSD	
Attachad	Intake pipe	2 nos Multistage-type gate (5 stages) ϕ 500mm Lower two stages are clogged with mud.			
Attached structure of dam	Spillway (flood way)	Wide 10m, Depth 3m			
	Sludge discharge pipe	5nos sludge discharge pipes are clogged with mud.			
	Discharge pipe	Substitute sludge discharge pipe]		
	Water level gauge	nil	J		

 Table 2.3.24
 Various factors or elements of Mai Nefhi dam

Source: Survey Team

There is much sedimentary soil in the dam lake, and the sludge discharge pipes are clogged up. However, AWSD has never removed the sedimentary soil in the past.

Furthermore, the construction is old, and the drawings are lost, and nobody can judge whether the gross storage capacity of the dam is exact. In the future, it is necessary to make exact drawings by carrying out surveying of the dam in order to grasp the size of the dam body and the gross storage capacity exactly.

2) WTP

The various factors or elements of Mai Nefhi W.T.P is indicated in Table 2.3.25.

Items	Contents					
Design documents	Drawing in 1967 remains partially.					
Water source	Mai Nefhi dam					
Construction year	1967					
Design or Constraction	Descenant in Evenes					
company						
Source of funds	unconfirmed(France ?)					
Tue etmont meethod	Rapid filtration system(Pulsator type coagulation-sedimentation pond and Akazuru					
Treatment method	type filtration system)					
Design treatment capacity	20,000 m²/day					
Sauraa of annou	Commercial power (EEC)					
Source of power	3 nos treated water pump, Pump discharge: 500 m³/h (1 no pump is spare)					
Generator for backup	nil					
Operation time	18 hours (2 nos treated water pumps)					
Operation mathod	Manual operation					
	ALUM (Aluminum Sulfate) is dosed into the receiving well directly.					
Flocculants(Coagulation)	The chemical mixing and injection equipment were out of order in 1995.					
	And it was rehabilitated in 2000, but it was used one year only.					
	Currently unused					
pH control chemicals	The chemical mixing and injection equipment were out of order in 1995.					
	And it was rehabilitated in 2000, but it was used one year only.					
Chloringtion	Chlorine gas					
Chiorination	Chlorine gas is injected directly into the receiving well by the rubber tube.					
Othan chamicala	Currently unused					
Other chemicals	Polymer was used one year only in 2000.					
Index and Outlet flam	No record (Outlet flow understand by the pump operating time.)					
Inlet and Outlet now	(Inference 18,000m³/day)					
Water mulity (Outlat)	WRD enforces it once a year.					
water quality (Outlet)	The water is within Eritrea water quality standard.					
Sludge disposal	Sludge has discharged into dam's channel directly.					
Weter multiple leberaters	Jar tester is not using.					
water quality laboratory	pH meter and turbidimeter are out of order.					
Landownership	AWSD					
Ownership of structure	AWSD					
Management for W.T.P.	AWSD					

Table 2.3.25 Various factors or elements of Mai Nefhi W.T.P

Source: Survey Team

The flow chart of Mai Nefhi W.T.P is indicated in Figure 2.3.12.

Figure 2.3.12 Flow chart of Mai Nefhi W.T.P

Mai Nefhi W.T.P was built in 1967 composed of the flocculating sedimentation basin of pulsator type and the filtration basin of aquazur type.

The present situation is indicated as follows.

- The inlet and outlet water meters are out of order.
- After the chemical mixers (alum and lime), the chemical dosing pimps and the vacuum pumps were out of order more than 20 years ago, France donated the equipment of the chemical mixers (alum, lime and polymer), the chemical dosing pumps and the vacuum pumps in 2000. But those were out of order 1 year later. The solid alum is sporadically dosed into the receiving well directly without adjusting its concentration.
- The chlorinator has been out of order for a long time. And chlorine gas is injected directly into the receiving well by rubber tube.
- The pulsator system isn't functioning because of the failure of the vacuum pumps.
- Most of equipment of the vacuum tower are out of order due to corrosion.
- Water is leaking at the link channel between the flocculating sedimentation basin and the filtration basin.
- The crack valves, the partialization boxes and the clogging indicators (pressure) in each filtration basin are out of order.
- Most of the valves are deteriorated due to old age.
- There are no spare of the back-wash pump and air-brow pump.
- Water is leaking at the transmission pumps and the valves. (Refer to transmission facilities)
- The water quality satisfies with the national water quality standard.
- 3) Intake, Transmission and Distribution Facility.
 - The present condition and problems of each facility are as shown in Table 2.3.26.

Table 2.3.26Present Condition and Problems of Intake, Transmission and DistributionFacility of Mai Nefhi WTP System

Facility	Feature/ Present Condition	Problems							
Treated Water	Treated Water Transmission Facility from Mai Nefhi WTP								
Treated Water	Transmission Pump at Mai Nefhi WTP								
Clear water	2								
reservoir	$V = 800 \text{ m}^3$, $HWL = 2154$, $LWL = 2150$	- Checking and							
Pump facility		maintenance of the pumps							
Feature	P1, P2, P3: $(Q = 500 \text{ m}^3/\text{h}, H = 215 \text{ m}), 450 \text{ kW}$	are necessary.							
	- The pump capacity has been reduced due to the	- Instrumentation and water							
	wearing of the bearings and impellors.	hammer prevention							
	- Pressure gauges are out of order.	equipment need to be							
	- The Woltman water meter is installed but the	replaced.							
	AWSD does not adopt the figure of the meter.								
	- Air chamber for water hammer prevention is out								
	of order.								
Installation									
Year	2001								
Operating/	Two out of three pumps are operated by rotation								
functioning	16 h/day.								
condition	The water flow (by two pumps) is 680 m ³ /h								

	according to the Woltman flow meter	
Treated Water	Transmission Pipeline from Mai Nefhi WTP to	- The pipeline was laid
Sembel PS	runsmission ripenne nom mar nem will to	more than 40 years ago
Pipeline	D500 Steel nine $I = 17$ km	The leakage due to the
1 ipenne	Air value: 8 nos : Drain: 8 nos	deterioration of the nine
	- Leakage occurred at:	occurs
	I = 13.14 km I = 10 km I = 8.5 km I = 6 km	- The leakage firstly
	$L = 13^{-14}$ km, $L = 10$ km, $L = 0.5$ km, $L = 0$ km, I = 3.5 km	occurred at $I = 13-14$ km in
	- Especially the leakage occurs every year at I	2001 Formerly the
	13-14 km	leakage location was
	- It takes a day to repair the leakage	limited. However, after
	it tailes a day to repair the realinger	2013, the leakage also
		occurs at other locations.
		- It will be difficult to
		manage the leakage through
		supportive repair for the
		future. The replacement of
		the pipeline is needed.
Remarks	- Four distribution reservoirs (total of 1,600 m ³) w	ere constructed at the newly
	developed area near Semble PS. The transmission p	ipeline to the new reservoir is
	to be branched from the existing transmission pipeli	ine. The construction contract
	was already concluded with the Chinese contractor	·.
	- The elevation of the new reservoir is higher than	that of Sembel PS but lower
	than the highest point of the existing transmission	pipeline.
	- The measure for water allocation between the new	reservoir and the reservoir at
G L L DG	Sembel PS is not yet determined.	
Sembel PS		XX7' 1 ' 1 /1
Reservoir	$V = 300 \text{ m}^{\circ} \text{ x } 2$, $HWL = 2364$, $LWL = 2360$	- windows equipped on the
footure	P1 P2 P2 : $(0 - 500 \text{ m}^3/\text{h} \text{ H} - 00 \text{ m}) = 200 \text{ kW}$	broken. It must be repaired
reature	11, 12, 13. (Q = 500 m/n, 11 = 50 m/, 200 KW	to prevent possible
	- Chlorine gas injector is out of order	contamination of the stored
	- Instrumentation and electric facility is in fair	water.
	condition.	- No particular problems in
	- The emergency generator is not equipped.	the pump facility
Installation		
year	2002	
Operating/		
functioning	Operated 16 h/day	
condition		
Distribution Fa	cility in the Service Area	
station		
Receiving	$V = 200 \text{ m}^3$ HWI = 2323 IWI = 2320	- The facility is heavily
tonk	V = 200 III, $HWL = 2525$, $LWL = 2520$	- The facility is heavily
Pump	ficavity deteriorated.	- The elevation is almost
facility	P1: $O = 300 \text{ m}^3/\text{h}$ H = 88 m	the same as Sembel PS
Feature	- Only one nump is operated	Thus, it is proposed to
reature	- Instrumentation is out of order	abolish this PS in the FS
	- Control panel and electric facility is in fair	
	condition.	
Operating/		
functioning	Operated only when electricity is available.	
condition	· · · · · · · · · · · · · · · · · · ·	
Distribution	PVC DN150 – DN300	- The pipe was replaced to
pipeline	- The valve facility is deteriorated.	PVC pipe after 1997. But
(Primary		the exact locations of the
pipeline)		valves are not recorded.
		- Extension to the newly
		developed area is needed.

Distribution	PVC DN50 – DN150, GI DN20 – DN50	- There remains an
pipeline	- The valve facility is deteriorated.	approximately 1200 m of
(Secondary		deteriorated GI pipe.
pipeline)		- Exact locations of the
		valves are not recorded.

Source: Survey Team

2.3.4 Operation and Maintenance (O&M)

(1) Outline

The current state of operation and maintenance is divided as indication Figure 2.3.13.

Common O&M items

O&M items in each Facility

Source: Survey Team

Figure 2.3.13 Flow chart of operation and maintenance

- (2) Current state of O&M in each facility
 - 1) Water source and intake facilities

The water sources and the water intake facilities (dams) are not managed as follows, and the staff is not enough.

- There isn't an engineer for managing the O&M of each water resource and dam.
- There are no vehicles to manage each water source and intake facility.
- Young and middle-aged workers are lacking.
- The preservation of water sources (patrol, cleaning, etc.) isn't practiced.
- There are no water level indicators. However, there is only a water level indicator at Toker dam, but the lower scale of the gauge has disappeared.
- There is no water quality equipment (turbidity, pH, electrical conductivity etc.) at each dam, in other words, AWSD does not enforce the water quality test. However, WRD

enforces the water quality test at the planed facilities (Adi Sheka, S.V, Toker and Mai Nefhi dams) once a year.

- A daily record of checking, repairing and operating isn't kept.
- There is much sedimentary soil in each dam lake. Particularly, S.V dam is remarkable, and it is inferred to be 61% of the gross storage capacity of S.V dam.
- There is no outlet and inlet water meter at each intake facility.

2) Raw water transmission facilities

CAT agency carries out the management of the diesel engine pumps at Toker raw water pumping station, and the maintenance is perfect. AWSD staff has implemented the oil change and the other checks based on the guidance of the CAT agency. But, there aren't enough management records in other raw water pumping stations.

Accepting the report of water leakage in the raw water pipeline from the residents, AWSD makes an investigation and repairs it. The record has been recorded in the PC at the head office.

The O&M situation is as follows.

- Young and middle-aged workers are lacking.
- A daily record (Checking, repairing and operating) of the pumps and the pipelines isn't kept. However, AWSD records only the daily record about the engine pump at Toker raw water pumping station.
- There is no outlet water meter at each raw water pump.
- The mechanic who repairs the pumps doesn't have enough technical know-how.
- The repairing materials aren't purchased in a timely manner. In particular, the purchase of the large size materials is difficult. (due to foreign currency shortage)
- Spare parts aren't purchased in a timely manner. (due to foreign currency shortage)

3) W.T.P facilities

Each W.T.P cannot be said to be managed properly because of the following.

S.V W.T.P

AWSD staff is recording the working hour and the operation time of the pump and the amount of consumption of chlorine gas and ALUM in the diary record every day. (other notices are contained in the remarks .) In addition, the staff carries out to repair of water leakage from valves (abrasion of the packing), to operate the back-wash and to clean the site regularly. However, AWSD doesn't carry out the water quality test because there is no equipment for the test.

The AWSD chief staff grasps the whole W.T.P facilities and is managing the O&M while materials and equipment aren't timely supplied. But it is difficult for O&M to be carried out continuously because young and middle-aged workers are lacking.

Mai Nefhi W.T.P

AWSD staff is recording the working hours and the operation time of the pump and the amount of consumption of chlorine gas and ALUM in the diary record every day. (other notices are contained in the remarks .) The jar tester is not used. In addition, the turbidimeter and the pH-meter are broken and are left unused.

The AWSD chief staff grasps the situation of all W.T.P facilities and is managing the O&M while materials and equipment aren't timely supplied. The operation system in the W.T.P is organized into 3 shifts and 3 teams. Each team leader grasps the W.T.P facilities and carries out the back-wash and air-blow. But it may be said that it is difficult to decide whether the O&M are carried out continuously because young and middle-aged workers are lacking.

Toker W.T.P

The facilities have been in manual operation since the central control system was broken in 2007. When the computer didn't operate well, the system engineer in South Africa (origin of design) couldn't come immediately. Therefore, the staff attempted to repair it, and it was further worsened. Because it is difficult to manage the central control system in AWSD, we think that AWSD should continue the manual operation in the future.

In addition, only Toker W. T. P has not been keeping the diary record and does not have exact management of records.

The AWSD chief staff grasps the situation of all W.T.P facilities and is managing the O&M while any materials and equipment aren't supplied timely. All W.T.P staff (30 staff at that time) received OJT about the O&M for 6 months at the time of the W.T.P completion in 2002. For that reason, even if the central control system was broken, the manual operation was put into effect with no problem.

Though the staff can operate the water quality tests which are jar tester, pH meter, turbidity meter and residual chlorine meter (without reagent) in the W.T.P, the staff doesn't carry out these tests at the present.

The situation of the O&M at 3 W.T.Ps is as follows.

- There isn't an engineer for managing the O&M of the 3 W.T.Ps.
- There are no vehicles to manage the W.T.Ps
- Young and middle-aged workers are lacking.
- A daily record about checking, repairing and operating has not been arranged.
- There isn't any equipment and staff for the chemical dosing test.
- (But, there is the Jar tester and Staff is assigned at Toker W.T.P. The staff has six months OJT experience of water quality testing.)

- There is no water quality equipment (Turbidity, pH and electrical conductivity meters etc.) at the W.T.Ps. However, WRD enforces it once a year at each W.T.P.
- There are no inlet and outlet water meters at the W.T.Ps.
- The repairing materials aren't purchased timely. In particular, the purchases of the large size materials are difficult.
- Spare parts aren't purchased timely.
- 4) Clear water transmission facilities

In the same situation as the raw water transmission, it is not managed as properly indicated below. However, the record of water leakage repair has been recorded in the PC at the head office.

- Young and middle-aged workers are lacking.
- A daily record (Checking, repairing and operating) of the pumps and the pipelines isn't being kept. However, AWSD records only the operation time of the clear water transmission pumps at S.V and Mai Nefhi W.T.Ps.
- There are no inlet and outlet water meters at each pumping station and reservoir.
- The mechanic who repairs the pumps doesn't have enough technical know-how.
- The repairing materials aren't purchased timely. In particular, the purchase of large size materials is difficult.
- Spare parts aren't purchased timely.
- The repairing works of water leakage are behind schedule due to the shortage of the construction vehicles, the repairing machines and tools.
- 5) Reservoirs and pump stations

There is only an old staff, and the record keeping isn't done at all. Each reservoir carries out cleaning periodically. The staff of the pumping station is working only for ON /OFF of the pump. In other words, the staff only guards the facilities.

The O&M situations are as follows.

- Young and middle-aged workers are lacking.
- A daily record (Checking, repairing and operating) of the pumps and the pipelines isn't being kept.
- There are no inlet and outlet water meters at each pumping station and reservoir.
- The mechanic who repairs the pumps doesn't have enough technical know-how.
- The level indicator of each reservoir is out of order.
- The water quality management (Residual chlorine) is not being carried out.
- The repairing materials aren't purchased timely. In particular, the purchases of the large size materials are difficult. (due to foreign currency shortage)
- Spare parts aren't purchased timely. (due to foreign currency shortage)

6) Distribution network

Maintenance is practiced by CAD drawing of "F / S AfDB 2006". Accepting the report of the water leakage in the distribution network from the residents, AWSD makes an investigation and repairs it. The record has been recorded in the PC at the head office. However, it is necessary to specify the repair place on the CAD drawing because the identification of the place is difficult in the management of the tabular format.

The valves of the distribution network are operated to solve the shortage of water flow by 4 staff in the distribution unit.

The O&M situation is as follows.

- Young and middle-aged workers are lacking.
- A daily record (Checking and repairing) of the pipelines isn't being kept. But AWSD has managed water leakage repair records in the PC.
- There are no water meters for block management of the distribution network.
- The repairing materials aren't purchased timely. In particular, the purchase of the large size materials is difficult. (due to foreign currency shortage)
- Spare parts aren't purchased timely. (due to foreign currency shortage)
- The repairing works of water leakage are behind schedule due to the shortage of the construction vehicles, the repairing machines and the tools. (due to foreign currency shortage)
- 7) Service pipes

AWSD is repairing the clogged pipes and water leakage from complaints by customers. Then, the record of the water leakage repair has been recorded in the PC at the head office.

There is no management drawing for the service pipe. Therefore, AWSD repairs the clogged pipes by excavating in order from the meter.

The two water filling stations are operated mainly, and three staff is working at each water filling station in the container office.

Each outlet meter at the water filling station is out of order, and the amount of outlet flow is calculated by the capacity of the water truck which was indicated on the sold ticket. The vehicle number and tank capacity are listed on the sold ticket, and the water charge is paid at the collection desk in AWSD head office.

The O&M situation is as follows.

- Young and middle-aged workers are lacking.
- There are no management drawings for the service pipes.
- AWSD carries out repair with the materials in the stockyard (Grant aid in 2000 by France).

- There are no outlet and inlet water meters at each filling station.
- The water quality management (Residual chlorine) is not carried out.
- (3) Common O&M items in each facility
 - 1) Water leakage
 - AWSD has only worked to handle a lot of current complaints, and can't do other work.
 - Young and middle-aged workers are lacking.
 - The repairing materials aren't purchased timely. In particular, the purchase of the large size materials is difficult. (due to foreign currency shortage)
 - Spare parts aren't purchased timely. (due to foreign currency shortage)
 - Most of the repairing works of pipe clogging are left.
 - The repairing works of water leakage are behind schedule due to the shortage of the construction vehicles, the repairing machines and the tools. (due to foreign currency shortage)
 - There is no leak detection equipment, and there are no staff stationed.
 - 2) Meter repairing
 - AWSD has repaired the water meters by using a meter checking machine, only when there were customer complaints.
 - There are no water meters in the warehouse. For that reason, there is a lot of work remaining in the new pipe connection and meter repairing.
 - 3) Drawing and documents
 - AWSD has not kept any past complete drawings and documents.
 - (Most of the past drawings and documents are lost.)
 - There are few staff who can operate CAD.
 - (There isn't any staff to update and manage the CAD drawings.)
 - The pipeline drawings of transmission and distribution pipelines aren't being managed.
 - (The pipe diameter, the pipe class and the valve position are not specified in the drawing.)

Confirmed drawing:

- CAD drawing of Toker W.T.P system (dam, raw water transmission, W.T.P, clear water transmission).
- Plan of flocculation and sedimentation at S.VW.T.P.
- Facilities drawing at Mai Nefhi W.T.P. (Lost some)
- Vertical section of clear water transmission between Mai Nefhi W.T.P and New Sembel Pumping Station.
- Facilities drawing at New Sembel Pumping Station.

- CAD drawing of distribution network by "F/S AfDB 2006"

Confirmed documents:

- Technical memorandum report of Toker dam
- 4) Water quality
 - There isn't a water quality laboratory in AWSD.
 - There are no analyses of water quality test in AWSD.
- 5) Vehicles and machines
 - There aren't sufficient construction vehicles.
 - There aren't sufficient vehicles for management.
 - The mechanic who repairs the vehicles doesn't have enough technical know-how.
 - There aren't sufficient tools and the repairing machines.
- 6) Inventories
 - The inventories are managed correctly.
 - Spare parts aren't purchased timely. (due to foreign currency shortage)

2.3.5 Water Quality Control

The water quality test is not conducted in AWSD. In addition, there is no water quality laboratory. On the other hand, National water quality laboratory in WRD enforces it. WRD is responsible for monitoring the water quality at the rivers, the water supply facilities and the wells in Eritrea. National water quality laboratory is managed by only 1 chief who graduated the chemistry department of a university. The chief is requesting an assistant, but it's uncertain. He is hardly in the laboratory because he is monitoring the nationwide by himself.

Other water quality laboratories are ESI (Eritrean Standards Institute) in MoTI, MoH and MoEM. But National water quality laboratory is the responsibility institution for the water supply.

Currently, 27 possible items are shown in Table 2.3.27.

 Table 2.3.27
 Possible items of water quality test at National Water Quality Laboratory

	Parameters	Items		Parameters	Items
1	EC	Conductivity	15	Mg	Magnessium
2	PH	pН	16	Na	Sodium
3	Turbidity	Turbidity	17	К	Potassium
4	TDS	Total dissolved solids	18	Fe	Iron
5	Total alkalinity	Total alkalinity	19	Mn	Manganese
6	Total hardness	Total hardness	20	Color	Colour
7	HCO3	Hydrogen Carbonate Ion	21	odor	odor
8	CI	Chloride	22	CI2	Residual chlorine
9	NO3	Nitrate	23	Total coliform bacteria	Total coliform bacteria
10	NO2	Nitrite	24	Faecal coliform bacteria	Faecal coliform bacteria
11	NH3	Ammonia	25	Ва	Barium
12	SO4	Sulfate	26	BOD	Biochemical Oxygen Demand
13	F	Fluoride	27	COD	Chemical Oxygen Demand
14	Са	Calcium			

Source: Survey Team on the basis of WRD hearing

The reagents are replenished by requesting to Unicef.

The water quality standards are in accordance with the "Eritrean water quality standard (Draft) Aug, 2004" based on WHO.

The drinking water is evaluated by dividing into Group A, B, C and D as follows. And Group A, B and C are judged that there are no problem.

Group A:	Water	with an	excellent	quality.
010up 11.	mater	witti un	encomont	quanty.

Group B: Water with good quality.

Group C: Water with low health risk.

Group D: Water with a higher risk or water unsuitable for human consumption.

The drinking water quality standard and river water quality standard are shown in Appendices 4.8.

The implementation plan for the monitoring of water quality by National water quality laboratory is shown in Table 2.3.28.

Table 2.3.28 Implementation plan for monitoring of water quality by National WaterQuality Laboratory

		-	
Parameters group	parameters	Sampling points	Sampling frequency
General	Temp, EC, PH, DO, TDS	3 dams	Every 6 month
Nutrients	NH3, NO3, NO2, total P	12 Points	Once every year
Organic matter	BOD, COD	-	-
Major ions	Ca++, Mg++, K+,Na+, HCO3, SO4, C⊢, F,	12 Points	Once every year
Metals	Fe, Mn,	3 dams	Once every year
Hydrocarbon	BTEX , oil and grease	3 dams	-
Microbiological	Total and faecal coliform bacteria	12 Points	Once every 6-month
3 Dams	Mai-Nefhi、Toker、S.V dam		
2. The set of the last	Mai Nafli Talaa CVWTD		

3 Treatment plantMai-Nefhi、Toker、S.V W.T.P3 Pumping stationsNew Sembel、Denden、Mai Chehot

3 Reservoirs Tsetserat, Monopolio, Hazhaz

Source: Survey Team on the basis of WRD document

However, the water quality tests are really carried out once a year only at 4 dams (Mai Nefhi, Toker, S.V, Adi Sheka dam) and 3 W.T.Ps. The results of the lake water quality tests at the 4 dams are shown in Table 2.3.29, and the results of treated water quality tests at 3 W.T.Ps are shown in Table 2.3.30.

 Table 2.3.29
 Results of lake water quality test at 4 dams

Parameters	July, 2013			May, 2014				Standards	Standards for	
	Mai-nefhi	TOKER	S.V	Adi-shaka	Mai-nefhi	TOKER	S.V	Adi-shaka	for Rivers	Drinking Water(C)
Turbidity (NTU)	3.5	3.3	3.5	3.32	2.12				-	<10
EC	254	273	280	263	265	296	279	268	-	<3000
PH	6.78	8.31	8.43	8.43	8.3	8.23	8.21	7.78	5.5-9	5.5-9.5
TDS	1 70	182.9	187	157	159	198	186	179	<2000	<2000
Total hardness	100	160	112	110	130	124	115	108	-	<600
Total alkalinity	63.9	212	72	76	110	80	104	122	-	-
Coliform bacteria	many	many	many	many	many	many	many	many	<20000	Nil

Source: WRD

Parameters	July. 2013			May. 2014			Standards
	Mai-nefhi	TOKER	S.V	Mai-nefhi	TOKER	S.V	for Drinking Water(C)
EO in µs/cm	310	314	310	320		330	<3000
РН	177	177	207.7	214.4		221	5.5-9.5
Turbidity NTU	7.43	8.3	8.3	6.92		7.36	<10
TDS	1.21	2.32	1.33	1.12	-	10	<2000
Total alkalinity	36.9	101	128	64		112	5
Total hardness r	112	120	148	112		108	<600
HCO3	43.9	123	156	78	_	136.4	
CI	8	8	4	6		8	<600
NO3	3.5	8.8	4.43	6.67		4.8	<50
NO2	0.0012	0.017	0	0		0	<3
NH3	0.01	0.15	0.22	0.13	0.16	0.75	<1.5
S04	36	36	25	47		41	<500
F	0.31	0.12	0.11	0.28	-	0.21	<3
Ca	24	35	33.3	32		30.4	-C 11
Mg	6.7	7.6	15.3	7.68		7.6	<80
Na	21	6.9	28	19		21	<400
К	1.2	1.2	1.24	1.29		1.33	<20
Fe	0.04	0.03	0.04	0.06		0.16	< 0.3
Mn	0.01	0.01	0.1	0.02		0.15	< 0.5
Color	Agreeable	Agreeable	Agreeable	Agreeable		disagreeable	<20
odor	Agreeable	agreeable	Agreeable	agreeable		disagreeable	1
CI2	<1ppm	<1ppm	0.12	11		low	-
Total coliform bacteria	No	10	5	No		15	Nil
Faecal coliform bacteria	No	по	no	no		2	Nil

 Table 2.3.30
 Results of treated water quality test at 3 W.T.Ps

Source: WRD

The problem about the lake water quality at the 4 dams hasn't been found from the results.

E.coli was detected in the treated water at Toker and S.V W.T.Ps from the results. Furthermore, fecal coliform bacteria were detected at the S.V W.T.P because the chlorine is not injected properly.

In addition, turbid water is confirmed every year in Asmara city because the raw water cannot be treated sufficiently in W.T.Ps and the muddy water flows into the dam lake in the rainy season of July and August. Therefore, AWSD is necessary to carries out the water quality test and grasp the data at each dam lake and W.T.P at that time.

In addition, as a turbid water measure in the rainy season, the citizens dose a few ALUM into the turbid water in a personal tank and precipitate the floating particles and using the surface of the water.

2.4 Environmental and Social Consideration

The initial investigation of important matters for the environment (Confirmation of current states) was carried out as follows.

- (1) Authorization and explanation
 - 1) EIA and environmental authorization

The environment procedures (EIA and environmental authorization) for the contents of the request letter were not performed at the time of the site survey because it was in the middle of confirmation of the validity for the project.
In addition, the general environment authorization procedure in Eritrea is indicated in the following for reference.

- The draft of the environmental law made in 2002 and revised editions in 2012 have not yet been approved. Therefore, the procedure is proceeding in accordance with "National Environmental Assessment procedures and guideline Mar, 1999".
- IEE (Initial Environmental Examination) has not been carried out in WRD and AWSD.
- The enforcement organization makes the project environmental screening form (PSF) by the requested project contents and submits it to the environment department in MoLWE.
- The environment department in MoLWE checks and evaluates category A, B, C.
 - Category A: The project that enforcement of EIA (Environmental Impact Assessment) is necessary
 - Category B: The project that enforcement of EE (Environmental Evaluation) is necessary
 - Category C: The project that environmental assessment isn't necessary any more
- If the project is evaluated as "category B", the enforcement of EE (Environmental Evaluation) is necessary. In that case, the enforcement organization makes ① EEQ (Environmental Evaluation Questionnaire) and ② EECF (Project Environmental Evaluation Clearance Form) with the stakeholder, and submits them to the environment department in MoLWE.
- The environment department judges them and announces the evaluation results.
- 2) Explanation to local residents

The explanation of the contents in the request letter has not been carried out for stakeholders at the time of this survey.

However, if EE and EIA are carried out before the start of the project, an evaluation of stakeholders is required. In other words, the enforcement organization gives an appropriate explanation to the local residents and is required to get there understanding.

- (2) Pollution abatement
 - 1) Air quality

Chlorine gas is injected directly into the clean water reservoir or the receiving well by rubber tube at the present. Therefore, it is necessary to install a chlorinator in 3 W.T.Ps, and it is necessary to carry out safety training and to purchase safety equipment.

In particular, a chloric smell fills the whole Mai Nefhi W.T.P due to the previous chlorine injection, and it is dangerous for human health. It is necessary to inform the appropriate chlorine injection rate due to avoiding excessive chlorine injection by measuring the residual chlorine and inspecting E.coli.

However, the survey as to whether chlorine satisfies Eritrean labor safety standards couldn't be carried out.

2) Water quality

The waste water quality standard has not been legalized in Eritrea. It's unclear about whether the sludge water which discharges from W.T.P satisfies the waste water quality standard (SS, BOD, COD, pH etc.).

However, "Eritrean water quality standard (Draft) Aug, 2004" describes the waste water discharge standards for rivers, the contents are pH: 5.5-9.0, BOD: $30mg / \ell$ or less, COD: $70mg / \ell$ or less. Because it is not monitoring sludge water which discharges from W.T.P, it's unclear about whether the sludge water satisfies the waste water discharge standards for rivers.

3) Waste

It could not survey the disposal of waste in Eritrea.

However, if a sludge water treatment system is built at each W. T. P, the dry sludge is possible to be used in a field of the neighborhood.

4) Noise and vibration

It could not survey whether there is a noise and vibration standard in Eritrea.

However, noise and vibration problems will not occur because each facility is for away from the neighborhood houses.

5) Ground subsidence

Ground subsidence will not occur because there is no pumping up of groundwater.

(3) Natural environment

1) Protected areas

There is no influence on protected areas because each facility is not in the area.

2) Ecosystem

There is no influence on the ecosystem because each facility is not in the area.

- (4) Social environment
 - 1) Resettlement (Targeted for new S.V W.T.P)

Only the requested new construction of S. V W. T. P needs new land. But the government land is approximately 300 m between Toker W.T.P and S.V W.T.P (from the hill top to S.V dam) and only there are only three staff houses (the neighborhood of the top hill at Toker W.T.P). And there are small apple groves belonging to the Ministry of Defense approximately 200m along the river from the existing SV W.T.P. Therefore, there is enough land for new S.V W.T.P and there is no resettlement problem.

2) Living and livelihood

There is no influence on living and livelihood in particular because the water sources of this project and the living water of the residents are different.

3) Heritage

There isn't valuable heritage and ruins around the facilities which this project is intended for.

But, there are a lot of historical structures built before 1940 in the city, and it's necessary to pay attention to these at the time of the rehabilitation of the pipeline.

Italy constructed an open channel of a gravity-type (approximately 7km) from the Adi Sheka dam to the Beleza dam for hydraulic power generation built before 1940. It's even used now as the raw water transmission channel of S.V W.T.P. And it is necessary to confirm the environmental department in MoLWE at the time of the rehabilitation because the open channel is thought to be historically valuable.

4) Landscape

There is no influence on the landscape in particular.

5) Ethnic minorities and indigenous peoples

There is no influence on ethnic minorities and indigenous peoples in particular.

(5) Other

1) Impact during construction

If this project is carried out, it is necessary to consider the pollution (noise, vibration, turbid water, dust, exhaust gas, waste, etc.) during the construction. But the natural environment (ecosystem) and social environment will not have a bad influence from the construction.

In addition, safety training will be required for the workers engaged in the project.

2) Monitoring

A monitoring plan (water quality, Heritage, Pollution under construction, etc.) of the enforcement organization will be necessary.

(6) Important notice

There is an Adinfase gold mining development plan about 5 km from the east side of S.V dam. But, it is necessary to consider the drainage treatment method because the influence of health hazard from the mining drainage is a concern. Currently, the plan of mining drainage is expected to discharge to the sea side, which will not influence the S.V dam. The Eritrean government is not going to authorize the plan, if the plan is to discharge mining drainage in the drinking water area and will not install a waste water treatment facility.

2.5 Water Demand Projection and Water Balance

2.5.1 Condition of Water Demand Projection

(1) Potential Water Demand in 2015

Recently, the amount of treated water sent from the WTPs is only $18,000 \text{ m}^3/\text{day}$ in average due to: 1) Shortage of available water due to drought; 2) Decline of the WTP capacity; 3) Limited operation hour of the transmission pumps due to malfunction/deterioration and; 4) Limited operation hour of the facilities due to frequent power cut. The potential water demand in 2015 on the assumption that these constraints are taken way and the 24 h of supply is made possible has been estimated on the condition as shown in Table 2.5.1.

Item	Condition
 Population in the service area (13 sub-Zobas and Daero Paulos area) 	427,429 + 6,900 = 434,329, as shown in Table 2.3.6
2) Population served by piped water supply	As explained in Section 2.3.2, the potential piped water supply population is estimated to be around 350,000 (80% of the population in the service area: 348,699)
3) Per capita consumption (Piped water supply)	It was set at 50 l/c/d on average as a result of the consultation with AWSD. This figure can be considered reasonable compared with that of other African countries.
4) Population served by water truck (inside Asmara)	The service ratio in Asmara has been assumed to be 98% based on AWSD's suggestion. Then, the population ratio served by water truck is estimated to be 18% (98% - 80% of piped supply).
5) Population served by water truck (outside villages)	As shown in Table 2.3.6, 23,000 people (52%) out of 44,000 of villagers are being supplied with the AWSD water by water truck. Thus, the potential demand has been set to be 60%.
6) Per capita consumption (water truck)	There was 15 l/c/d as a result of the consultation with AWSD. This figure seems to be nearly the maximum considering the transportation of the water from the water truck to each house.
7) Non-domestic water	The amount of non-domestic water can be estimated in proportion to the domestic water. Therefore, it was estimated by the non-domestic water demand (2010) projected by the FS multiplied by the ratio of the potential domestic water demand in 2015 estimated by this survey, and the domestic water demand (2010) projected by the FS.
8) Water loss (%)	In the FS, it is assumed to be 33% on the condition that the pipe is filled with water all the time. Accordingly, the same figure was assumed in this survey.

 Table 2.5.1
 Conditions of 2015 Potential Demand

Source: Survey Team

(2) Projection of Water Demand in 2020 and 2025

Based on the estimated potential demand in 2015, the water demand in 2020 and 2025 has been projected on the conditions as shown in Table 2.5.2.

Item	Condition
1) Population in the service area	The annual population growth rate of Asmara was 0.57% as shown in Table 2.3.5. The population in 2020 and 2025 were projected applying this growth rate to the population in 2015.
2) Population served by piped water supply	Present ratio of 80% was assumed to be increased to 82% and 84 % in 2020 and 2025, respectively.
3) Per capita consumption (Piped water supply)	50 l/c/d was assumed to be unchanged.
4) Population served by water truck (inside	The AWSD service ratio of 98% was assumed to
Asmara)	be unchanged. The service ratio by water truck
	was assumed to decrease in relation to the
	increase in service ratio by piped water supply.
5) Population served by water truck (outside villages)	60% was assumed to be unchanged.
6) Per capita consumption (water truck)	Assumed to be the same as of 2015 (15 l/c/d)
7) Non-domestic water	The potential demand in 2015 was assumed to
	be increased in proportion to the increase in domestic demand.
8) Water loss (%)	For the year 2020, it was assumed to be 33%, same as of 2015.
	For the year 2025, it was assumed to be 32%
	(reduced by 1%), considering that there will be
	not so much leakage from the newly installed
	pipe.

Table 2.5.2Conditions of Water Demand Projection in 2020 and 2025

2.5.2 Results of Water Demand Projection

Under the abovementioned conditions, the water demand was estimated/projected as shown in Table 2.5.3.

1,513 285
,513
285
285
285
285
285
285
285
,,205
,359
,356
,402
,998
456
,212
,076
i,456
i,409
<u>,3</u> <u>,3</u> <u>,4</u> <u>,9</u> <u>4</u> <u>,9</u> <u>4</u> <u>,9</u> <u>4</u> <u>5,4</u> <u>5,4</u>

Table 2.5.3Projected Water Demand

Source: Survey Team

2.5.3 Water Balance

(1) Potential Water Demand in 2015 and Actual Supply in 2014

The potential water demand estimated in Section 2.5.2 and actual supplied amount in 2014 (the figure was converted to daily amount from the annual amount indicated in Table 2.3.6) are indicated in Table 2.5.4 by each WTP system.

Table 2.5.4Potential Water Demand in 2015 and Actual Supply in 2014

		Stretta	Toker	Mai Nefhi
		Vaudetto	System	System
		System		
Potential demand in 2015 (m^3/day)	(A)	5,627	15,498	13,287
Actual supply in 2014 (m ³ /day)	(B)	2,073	7,508	8,665
(Volume sent from WTPs)				
Balance	(B)/(A)	0.37	0.48	0.65

Source: Survey Team

As shown above, the actual supply amount is below the potential demand in all systems. Especially, the actual supply amount in Strettta Vaudetto System is less than 40% of the potential demand.

(2) Water Demand in 2020 and 2025 and Supply Capacity

The water demand projected in Section 2.5.2 and the supply capacity of each WTP systems are indicated in Table 2.5.5.

		Stretta	Toker	Mai Nefhi
		Vaudetto	System	System
		System	-	-
Projection of 2020				
Water demand (m^3/day)	(A)	5,816	16,189	13,829
Expected capacity of the facility after	(B)	8,000	18,000	20,000
rehabilitation (m ³ /day)				
Possible intake amount from the dam	(C)	8,770	16,040	17,360
(Note*) (m^3/day)				
Water Balance	(B)/(A)	1.38		
	(C)/(A)		0.99	1.26
Projection of 2025				
Water demand (m^3/day)	(A)	6,456	16,409	14,211
Expected capacity of the facility after	(B)	8,000	18,000	20,000
rehabilitation (m ³ /day)				
Possible intake amount from the dam	(C)	8,770	16,040	17,360
(Note*) (m^3/day)				
Water Balance	(B)/(A)	1.24		
	(C)/(A)		0.98	1.22

Table 2.5.5Water Demand and Supply Capacity

Note*: Refer to Section 3.1.1

Source: Survey Team

As shown above, the existing supply facility of each system can meet the water demand in 2025 if the capacity is returned to its original by rehabilitation.

However, it was presumed that the possible intake amount from Toker Dam and Mai Nefhi Dam is less than the respective design capacity of the WTPs, as described in Section 3.1.1. Thus, the possible supply capacity of Toker System and Mai Nefhi System is the possible intake amount from the dam at maximum.

Accordingly, the water demand in the Toker System after 2020 is expected to exceed the supply capacity.

Chapter 3 Consideration of the Contents of the Request

3.1 Consideration of Effectiveness and Sustainability of the Grant Aid Project

3.1.1 Examination of the Prerequisites (Water Source and Power Supply)

(1) Available quantity of water intake from each dam

The annual average rainfall is 419mm from the rainfall data for 22 years (1992-2014) of Asmara Airport meteorological station. The potential quantity of water intake from each dam is calculated based on those values. The results are indicated in Table 3.1.1. (Refer to Appendices 4.3. for the detailed calculation.)

W.T.P Group	Dam's Name	Potential quantity of water intake (m3/day)	Available quantity of water intake (m3/day)	Notes
	Vall Gnecchi	150	0	The water isn't used as drinking water for a long time. The water is used for agriculture at present.
	Ela Nahib	0	0	The water isn't used as drinking water for a long time. The water is used for agriculture at present.
Stretta Vaudetto W.T.P	Stretta Vaudetto	440	0	There are much sediment into the dam lake. Potential quantity of water intaken is little.
	Beleza	730	0	EEC has used the water as the cooling water of generator.
	Mai Serwa	2,350		Raw water transmission pipe is AC pipe.
	Adi Sheka 6,420	6,420	8,770	The pump stops for 2 months in the rainy season because muddy water inflow into the open channel.
Toker W.T.P	Toker	16,040	16,040	As a result of changing the average
Mai Nefhi W.T.P	Mai Nefhi	17,360	17,360	annual rainfall to 419mm from 500

 Table 3.1.1
 Potential and available quantity of water intake from each dam

Source: Survey Team

1) Stretta Vaudetto (S.V) W.T.P system

Valle Gnecchi dam hasn't been used for a long time and is used for agricultural water at the present. And Beleza dam is used for the cooling water of diesel power station by the EEC. Furthermore, S.V dam does not have enough water storage capacity because there is much sedimentary soil in the dam lake. Therefore, the water intake from Mai Serwa dam and Adi Sheka dam is regarded as the best plan for the water sources of S.V W.T.P system from this aspect. The available quantity of water intake from the two dams is inferred at 8,770 m³/ day. Therefore, $8,000m^3/$ day is proper for S.V W.T.P (Design treatment capacity $8,000m^3/$ day).

2) Toker W.T.P system

The available quantity of water intake from the Toker dam is inferred at 16,040 m^3 / day. In addition, the design treatment capacity of Toker W.T.P is 18,000 m^3 / day because the available quantity of water intake was calculated by the annual average rainfall of 500mm/ year at the time of the design.

3) Mai Nefhi W.T.P system

The available quantity of water intake from Mai Nefhi dam is inferred at 17,360 m³/ day. In addition, the design treatment capacity of Mai Nefhi W.T.P is 20,000 m³ / day because the available quantity of water intake was calculated by the annual average rainfall of 500mm/ year at the time of the design.

- (2) Electric power supply
 - 1) Current electric power supply and production, future plans

Currently, electricity is supplied for about 14 hours per day in Asmara city. Electricity is supplied from Beleza diesel power station (5MW X 3=15KW) in Asmara city and Hirgigo diesel power station (22MW X 4=88KW) in Massawa city. Therefore, electric production is possible up to 103MW.

Currently, electricity generates only 44MW at Hirgigo diesel power station because the two generators are being maintained of the four generators. Furthermore, electricity generates only 5MW at Beleza diesel power station because the two generators are maintained of the three generators. The quantity of current electric demand is estimated to be 65-70MW, but only 49MW is produced. Therefore, when the quantity of electricity demanded exceeds the quantity of the electric supply, the electricity stops accidentally or deliberately. However, the future electric state is expected to be better than the current one because the maintenance of all generators is going to be finished in 2 or 3 months.

The two generators $(23MW \times 2=46MW)$ in the Hirgigo diesel power station are going to be completed by of SFECO construction company (Chinese company) in early 2016 because EEC is thinking there will be more than 80 MW of electricity demand in the future. Therefore, electric production capacity will be 99MW (Total capacity of the facilities is 149MW) beyond 80 MW of future prediction electricity demand.

But, it is questionable whether electricity can be supplied for 24 hours, because the purchase of the spare parts and diesel is difficult in Eritrea where the acquisition of foreign currency is difficult. The supply and demand of electricity is indicated in Table 3.1.2.

	Existing facilities	Maximum amount of production	As of Apr, 2015	2016	After 2016
Demand forecast in Asmara city			60-70MW	80MW	80MW
Hirgigo Diesel power station	22MW*4 generators (1 generator is a spare)	66MW	44MW (2 nos generators are under maintenance)	New 2 generators (23MW*2) will be completed. (1 generator is a spare)	89MW
Beleza Diesel power station	5MW∗3 generators (1 generator is a spare)	10MW	44MW (2 nos generators are under maintenance)		10MW
Total		76MW	49MW		99MW

Table 3.1.2Supply and demand of electricity

Source: Survey Team on the basis of EEC hearing

2) Electricity states in water supply facilities

The Operation time of each raw water transmission pump is not recorded except for the Toker raw water transmission pump. Therefore, the operational states of W.T.Ps are indicated in Table 3.1.3.

W.T.P	Daily mean operation time of treated water transmission pump (as of Apr, 2015)
S.V	10 hours/day (1 no treated water transmission pump)
Mai Nefhi	18 hours/day (2 nos treated water transmission pump)
Toker	9 hours/day (2 nos treated water transmission pump) A raw water transmission pump (diesel pump) can operate only at night.
C C (I T	

Table 3.1.3Operational states of W.T.Ps

Source: Study Team

Electricity is supplied for 24 hours at Mai Nefhi W.T.P because the exclusive distribution line is drawn from a nearby substation. But, the operation time in S.V W.T.P is only ten hours because it is influenced by the operation time of each raw water transmission pump at each dam.

The exclusive distribution lines are drawn to Mai-Nefhi W.T.P and Toker dam. The other water supply facilities are drawing general power distribution lines where electricity is delivered to each family. And the switch of general power distribution line at a substation is turned off in a time of power shortage.

Therefore, if the two exclusive distribution lines from Beleza substation to 3 facilities (Mai Serwa dam, S.V W.T.P and Toker W.T.P) and Adi sheka dam are drawn, the water supply for 24 hours in Asmara city is also possible under the current situation. (Refer to Appendices 4.4. for the details.)

Preparatory Survey on Asmara Water Supply Development

Source: Survey Team **Figure 3.1.1 Exclusive distribution lines required in the future plan**

3.1.2 Consideration of the Possibility of Assistance (Facility Construction)

(1) General

The effect of the water supply project is generated only after the treated water is delivered to the people in the service area. Thus, the project component of each system was designed so that all the facilities from raw water intake facility to their distribution facility function appropriately.

It was confirmed that existing WTPs can meet the water demand in 2025 if their capacity are returned to their original by rehabilitation, as described in Section 2.5.

Regarding the transmission/distribution facility, it was confirmed that by pipe network analysis the demand in 2025 can be met by constructing the facility listed in the application form of the project.

The conceivable items for construction/rehabilitation for each WTP system are presented hereunder, together with the expected effects.

(2) Stretta Vaudetto WTP System

1) Water Treatment Plant

The existing receiving well, the flocculation basin and the sedimentation basin will be rehabilitated, and the structure of the filtration basin and the clear water reservoir will be constructed newly because the deterioration is remarkable.

- Improvement of inlet pipes (pipes and inlet water meters from 7 routes)
- Rehabilitation of chemical dosing equipment(ALUM) by using the existing chemical house
- Construction of turbid water treatment facilities (sedimentation system) for rainy season
- Rehabilitation of deflectors in existing flocculation basin
- Rehabilitation of sludge pipes and valves in sedimentation basin
- Construction of structure of filtration basin and clear water reservoir
- (Inc. filtration basin, clear water reservoir, back-wash pumps, air-blow pumps, clear water transmission pumps, chlorinator etc.)
- Installation of outlet water meter
- Installation of generator and fuel tank
- Construction of sludge treatment facility
- Repairing of water leakage in existing facilities

2) Intake, Transmission and Distribution Facility

The configuration of the Stretta Vaudetto WTP System is shown in Figure 3.1.2.

Figure 3.1.2Configuration of the Stretta Vaudetto WTP System

The feature, present condition, and problems of each facility are described in Table 2.3.20. The conceivable construction/rehabilitation works as the countermeasure to the problems are shown in Table 3.1.4.

 Table 3.1.4
 Conceivable Project Components of Stretta Vaudetto System

Facility	Present Condition/Problems	Proposed Construction
Adi Sheka PS	One pump including the control panel must be replaced.All the instrumentation facilities must be replaced.	

r		
	- The open channel will be changed to the pipeline. Accordingly, the pump capacity needs to be increased.	- Thorough replacement of pump facility: $(Q = 300 \text{ m}^3/\text{h}, H = 60 \text{ m}) \ge 2$ (1 w+1 s)
Raw water transmission facility from Adi Sheka Dam	 Due to soil clogging during the rainy season, the transmission must be stopped around two months every year. The six tunnels are deteriorated. To solve these problems, it is necessary to change from open channel to pipeline. 	 Open channel (L = 8 km) to be changed to DCI DN300 pipeline. AC pipe pipeline (L = 2 km) to be replaced to PVC DN300 pipeline.
	- 2 km of AC pipeline should be replaced to PVC/DCI pipe.	
Mai Serwa PS	- All the facilities of PS are heavily deteriorated and need to be thoroughly replaced.	- Thorough replacement of pump facility: $(Q = 130 \text{ m}^3/\text{h}, H = 61 \text{ m}) \ge 2$ (1w+1s)
Raw water transmission pipeline from Mai Serwa PS	- The AC pipe (L = 2,600 m) needs to be replaced with PVC/DCI pipe.	- Replacement to DCI DN300 L = 2.7 km
Treated water transmission pump at SV WTP	The pump facility is seriously deteriorated as a whole.	- Thoroughly replacement of pump facility: $(Q = 170 \text{ m}^3/\text{h}, H = 93 \text{ m}) \times 3$ (2w+1s)
Treated water transmission pipeline from SV WTP to the service area	- Pipeline must be extended to the planned New Arbate Asmara Reservoir.	- Construction of PVC DN 250 pipeline (L = 1,340 m)
Distribution Reservoir	 There is no functioning reservoir. The capacity should be 4 h not 3 has proposed in the FS considering the fire-fighting capacity. 	- Construction of New Arbate Asmara Reservoir (700 m ³ x 2)
Distribution pipeline (Primary pipeline)	- The pipe was replaced to PVC pipe after 1997. But the exact locations of the valves are not recorded.	- Construction of PVC D250 pipeline (L = 250 m) (Outlet from the newly constructed reservoir)
Distribution pipeline (Secondary pipeline)	 There remains an approximately 900 m of deteriorated GI pipe. Exact locations of the valves are not recorded. 	Supply of: - PVC pipe: DN 150, DN100, DN75, DN50 L = 2,500 m each - House connection materials and
	It is necessary to supply materials for: - 450 house connections until 2020 - Extension of 9,000 m distribution pipeline - Replacement of 900 m distribution pipeline	water meter: 450 nos.

3) Project Effect

The expected project effect is shown in Table 3.1.5.

1	9	Ŭ /
Present Condition	After the Project (2025)	Project Effect
Piped supply population: 77,736	Piped supply population: 92,873	Increase in piped supply population: 15,537
Total water supply volume (Sent form WTP): 2,073 m ³ /day	Total water supply volume (Sent form WTP): 2,073 m ³ /day	Increase in total water supply volume: 4,380 m ³ /day
		Per capita consumption: $12 \ l/c/d => 50 \ l/c/d$ Water rationing => 24 h supply

 Table 3.1.5
 Expected Project Effect (Stretta Vaudetto WTP System)

(3) Toker WTP System

1) Water Treatment Plant

Even if the central control management system is rebuilt, electricity for 24 hours is necessary. Therefore, it cannot be said that this is the best plan in the current electric situation. In addition, it is similar in the rehabilitation of the sodium hypochlorite generation apparatus* which was used before. Therefore, it is considered to install the chlorinator which is used at present as the best plan for now.

Notes : *Sodium hypochlorite generation apparatus It supplies a purified salt solution (water and refined salt) to an electrolyzer and produces sodium hypochlorite by turning on a direct current.

2) Intake, Transmission and Distribution Facility

The configuration of the Toker WTP System is shown in Figure 3.1.3.

Source: The Survey Team Figure 3.1.3 Configuration of the Toker WTP System

The feature, present condition, and problems of each facility are described in Table 2.3.23. The conceivable construction/rehabilitation works as the countermeasure to the problems are shown in Table 3.1.6.

Facility	Present Condition/Problems	Proposed Construction
Toker Dam PS	 The diesel pump can be operated only 10 h/day because the pump is heated up and there is huge fuel consumption. Thus, the WTP can also be operated 	- Replacement of the engine pumps with the electric motor driven pumps $(Q = 990 \text{ m}^3/\text{h}, \text{H} = 235 \text{ m}) \text{ x}$ 2(1W+1S)
	only for 10 h/day.	- Construction of access road
Raw water transmission pipeline from Toker Dam Treated water	- No particular problem	-
transmission pump at Toker WTP		-
Treated water transmission pipeline from Toker WTP	- No particular problem	-
Distribution reservoir	 Existing three reservoirs are almost not used. They are all deteriorated and all the piping must be thoroughly replaced. It is difficult to continue using the existing reservoir by repairs. In order to secure the appropriate water distribution in the service area, it is necessary to construct new reservoirs. It is also necessary to construct the distribution pipeline from the new reservoir. The capacity should be 4 h not 3 has proposed in the FS considering the fire-fighting capacity. 	Monopolio Reservoir: - Demolishing the existing facility - New construction (350 m ³ x 2) - Distribution pipe DN200 x 400 m Tsetserat Reservoir: - Demolishing the existing facility - New construction (575 m ³ x 2) - Distribution pipe DN300 x 400 m Hahaz Reservoir: - Demolishing the existing facility - New construction (575 m ³ x 2) - Distribution pipe DN250 x 400 m
Distribution pipeline (Primary pipeline)	- Extension to the newly developed area is needed.	 Construction of PVC D300 pipeline (L = 4,320 m) Construction of PVC D200 pipeline (L = 7,470 m)
Distribution pipeline (Secondary pipeline)	 There remains an approximately 1,100 m of deteriorated GI pipe. Exact locations of the valves are not recorded. It is necessary to supply materials for: 1,100 house connections until 2020 Extension of 22,000 m distribution pipeline Replacement of 1,100 m distribution pipeline 	Supply of: - PVC pipe: DN 150, DN100, DN75, DN50 L = 5,800 m each - House connection materials and water meter: 1,100 nos.

 Table 3.1.6
 Conceivable Project Components of Toker System

3) Project Effect

The expected project effect is shown in Table 3.1.7

Present Condition	After the Project (2025)	Project Effect
Piped supply population: 134,303	Piped supply population:150,308	Increase in piped supply population: 16,005
Total water supply volume (Sent form WTP): 7,508	Total water supply volume (Sent form WTP): 14,993	Increase in total water supply volume: 7,485 m ³ /day
m ³ /day	m ³ /day	Per capita consumption: $12 l/c/d \Rightarrow 50 l/c/d$
		Water rationing => 24 h supply

Table 3.1.7	Expected Project	ct Effect (Toker	WTP System)
--------------------	------------------	------------------	-------------

Source: Survey Team

(4) Mai Nefhi WTP System

1) Water Treatment Plant

The equipment in the flocculating sedimentation basin of pulsator type was broken, and the process of the flocculating sedimentation isn't performed at the present. Therefore, the rehabilitation of equipment will be mainly carried out.

- Improvement of inlet pipe (φ500mm valves and inlet water meters)
- Rehabilitation of chemical dosing equipment (ALUM, Lime, Polymer) by using existing chemical house
- Installation of chlorinator
- Rehabilitation of vacuum pumps and equipment of vacuum towers
- Rehabilitation of crack valves, partialization boxes, clogging indicators (pressure) and siphons in each filtration basin of aquazur type
- Installation of back-wash pump and air-blow pump for spare
- Rehabilitation of each valve on flocculating sedimentation basin and filtration basin
- Installation of outlet water meter
- Installation of generator and fuel tank
- Constriction of sludge treatment facility
- Repairing of water leakage in existing facilities (Link channel between flocculating sedimentation basin, filtration basin etc.)
- 2) Intake, Transmission, and Distribution Facility

The configuration of the Mai Nefhi WTP System is shown in Figure 3.1.4.

Figure 3.1.4 Configuration of the Mai Nefhi WTP System

The feature, present condition, and problems of each facility are described in Table 2.3.26. The conceivable construction/rehabilitation works as the countermeasures to the problems are shown in Table 3.1.8.

	v i	l l
Facility	Present Condition/Problems	Proposed Construction
Treated water	- Checking and maintenance of the	- Checking and repairing of the
transmission pump	pumps are necessary.	pumps:
at Mai Nefhi WTP	- Instrumentation and water hammer	$(Q = 500 \text{ m}^3/\text{h}, \text{H} = 215 \text{ m}) \times 3 \text{ nos}.$
	prevention equipment need to be	- Replacement of instrumentation
	replaced.	- Replacement of water hammer
		prevention equipment
Treated water	- The pipeline was laid more than 40	- Thorough replacement of the
transmission	years ago. The leakage due to the	existing pipeline with D500 DCI
pipeline from Mai	deterioration of the pipe occurs.	pipeline ($L = 16.1 \text{ km}$)
Nefhi WTP to	- The leakage firstly occurred at L =	
Sembel PS	13-14 km in 2001. Formerly, the	
	leakage location was limited.	
	However, after 2013, the leakage	
	occurs also at other locations.	
	- It will be difficult to manage the	
	leakage by the supportive repair for	
	the future. The replacement of the	
	pipeline is needed.	
Sembel PS	- The chlorine gas injection equipment	- Replacement of the chlorine gas
	is out of order.	injection equipment.
Distribution	- Extension to the newly developed	- Construction of PVC D300
pipeline (Primary	area is needed.	pipeline ($L = 2,700 \text{ m}$)
pipeline)		- Construction of PVC D200
		pipeline ($L = 2,530 \text{ m}$)
Distribution	- There remains an approximately	
pipeline (Secondary	1,200 m of deteriorated GI pipe.	Supply of:
pipeline)	- Exact locations of the valves are not	- PVC pipe: DN 150, DN100,
	recorded.	DN75, DN50 $L = 4,800 \text{ m each}$
		- House connection materials and
	It is necessary to supply materials for:	water meter: 890 nos.
	- 890 house connections until 2020	
	- Extension of 18,000 m distribution	
	pipeline	
	- Replacement of 1,200 m distribution	
	pipeline	

 Table 3.1.8
 Conceivable Project Components of Mai Nefhi System

Source: Survey Team

3) Project Effect

The expected project effect is shown in Table 3.1.9

-		
Present Condition	After the Project (2025)	Project Effect
Piped supply population: 128,312	Piped supply population:143,104	Increase in piped supply population: 14,792
Total water supply volume (Sent form WTP): 8,665	Total water supply volume (Sent form WTP): 15,626	Increase in total water supply volume: 6,961 m ³ /day
m ³ /day	m ³ /day	Per capita consumption:
		$12 \ 1/c/d => 50 \ 1/c/d$
		Water rationing $=> 24$ h supply

Table 3.1.9	Expected Project Effect (Mai Nefhi WTP System)
--------------------	--

Source: Survey Team

3.1.3 Consideration of the Possibility of Assistance on O&M

The support possibility for O&M is considered as follows. The necessary support contents in facilities maintenance are considered for AWSD. It should be noted that the prerequisite of technical assistance is to secure young staffs and to make them continue working. If the human resources are not continuously provided, O&M of the facilities is difficult. Securing human resources is a responsibility of AWSD.

Necessary main human resources are indicated as follows.

- Engineers to manage water sources and dams
- Engineers to manage 3 W.TPs
- Engineers to manage raw and clear water transmission and distribution facilities
- Staff of water quality test
- Young and middle-aged workers

(1) Support contents of O&M in each facility

Securing human resources in the following supports is a responsibility of AWSD. In addition, it is necessary to solve the foreign currency shortage in Eritrea for the purchase of repairing material and spare parts.

- 1) Water source and intake facilities
 - Purchase of vehicle for management
 - Preparation and training of daily record (Patrol, cleaning etc.) for water source preservation
 - Purchase and training of equipment of water qualities. (pH, turbidity, EC meters etc.)
 - Preparation and training of daily record (Checking, repairing etc.) at dam body.
- 2) Raw and clear water transmission facilities and distribution network
 - Preparation and training of daily record (Checking, repairing, operation etc.) for pipeline

- Installation of outlet and inlet water meters for raw and clear water transmission and blocked distribution network
- Capacity development of pump mechanic
- Purchase of construction vehicle, repairing machine and tools
- 3) W.T.P facilities
 - Purchase of vehicle for management
 - Preparation and training of daily record (Checking, repairing, operation etc.)
 - Purchase and training of chemical dosing test (Jar tester)
 - Purchase and training of equipment of water qualities. (pH, turbidity, EC meters etc.)
 - Installation of outlet and inlet water meters
- 4) Reservoir and pumping station facilities
 - Preparation and training of daily record (Checking, repairing, operation etc.)
 - Installation of outlet and inlet water meters at reservoirs and pumping stations
 - Capacity development of pump mechanic
 - Installation of level indicator at reservoirs
 - Purchase and training of equipment of water qualities. (Residual chlorine meter etc.)
- 5) Service pipe facilities
 - Installation of outlet water meters at filling stations
 - Purchase and training of equipment of water qualities. (Residual chlorine meter etc.)
- (2) Cooperation contents of common O&M items in each facility
 - 1) Water leakage
 - Training of repairing for clogged pipe
 - Purchase of construction vehicles and machines and tools
 - Purchase and training of water leakage detectors
 - 2) Meter repairing
 - Purchase of water meters for service pipe
 - 3) Drawing and documents
 - Arrangement of depository for drawing and documents
 - Preparation of past drawing and documents
 - Capacity development of CAD operator
 - Update and preparation of drawing of raw and clear water transmission and distribution network (Pipe diameter, pipe type, valve position etc.)
 - 4) Water quality
 - Arrangement of water quality laboratory in AWSD
 - Purchase and training of equipment of water qualities. (pH, turbidity, EC meters etc.)

- 5) Vehicles and machines
 - Purchase of motorbikes for management and water leakage repair
 - Purchase of vehicles for management.
 - Capacity development of auto-mechanic
- (3) Summary of support contents
 - ① Preparation and training of daily record for required facilities (Water source, dam body, raw and clear water transmission, W.T.P, reservoir, pumping station, distribution network etc.)
 - ⁽²⁾ Training of water quality test. (Water source, W.T.P, reservoir, service pipe, head office)
 - ③ Training of chemical dosing test (Jar tester)
 - ④ Training of water leakage repairing
 - (5) Update and preparation of drawing of raw and clear water transmission and distribution network (Pipe diameter, pipe type, valve position etc.)
 - 6 Training of CAD operation
 - ⑦ Training of water leakage detector
 - 8 Capacity development of pump mechanic
 - (9) Capacity development of auto-mechanic

3.1.4 Consideration of the Possibility of Assistance on Organization Strengthening

(1) Present Condition of the AWSD Operation

The present condition and problems regarding AWSD's operation is described in Table 3.1.10 by the following categories:

- 1) Personnel Management
- 2) Customer Service
- 3) Financial Management
- 4) Business Plan

Table 3.1.10 Present Condition and Problems on AWSD Operation

Item	Present Condition/Problems					
1) Personnel Managem	1) Personnel Management					
Recruitment	The government assigns around 30 people to AWSD every year as national service. However, most of them started to go missing shortly. It is difficult to recruit the staff due to low salary scale.					
Training	30-day trainings are provided to the newly employed national service staff. The head staff of each unit works as an instructor. There is a training center but the training text book is not prepared. After the training, most of them disappear from the office within one year.					
2) Customer Service						
Complaint desk	Two staffs are assigned to the complaint desk. They handle the complaints regarding water charge, water leakage, etc.					
New connection	One staff is handling the application. Due to the shortage of water meter,					

	it is difficult to meet the increasing demand for new connection.
Operation of water	There are two water truck filling stations. Three staffs are assigned for
truck filling station	each filling station. The operation is being executed fairly.
Supply by water truck	AWSD's water truck is supplying water to hospitals, embassies,
	government facilities, etc. The operation is being executed fairly.
Meter reading	35,000 of water meter reading are being conducted by 18 staffs every 3
	months.
	The operation is being executed fairly.
Water charge	Four collection counters are handling the collection task.
collection	The receipt is being issued by using computer. The collected charge is
	totaled up every day.
	Water meter is installed in all houses with connection.
	The customer will pay the water charge every three months based on his
	own meter reading. If the customer does not pay for more than four
	months, the penalty will be imposed. If it exceeds seven months, the
	water supply will be cut.
	The tariff should be revised to meet the current condition. However, it
	needs the approval of Zoba. The tariff has not been revised since 2003.
3) Financial Manageme	ent
Financial Statements	The property ledger has not been prepared. Only the revenue and
	expenditure statements are being prepared monthly and annually.
Budgeting	AWSD is a semi-financially independent organization. Government
	subsidy is provided only when it is necessary.
4) Business Plan	
Annual reporting	Each unit leader submits the work report to the AWSD head every three
	months. The AWSD submits the annual report to Zoba.
Business plan	Annual business plan and work plan is submitted to Zoba in January.
Non-revenue water	Accurate measuring of the water volume sent from the WTP is not
management	conducted. Accordingly, the accurate grasping of non-revenue water is
	not being conducted.
Procurement of spare	The procurement is not being conducted in a planned manner. Zoba's
parts	approval is necessary for the procurement of more than USD 2,000. Due
	to shortage of foreign currency of the government, timely procurement is
	difficult.
Facility improvement/	AWSD is lacking with competent staff for facility
construction plan and	improvement/construction planning, and facility maintenance planning.
maintenance plan	Thus, AWSD is being operated without appropriate facility planning.

(2) Consideration of the Possibility of Assistance

As shown above, the customer service, financial management, and annual reporting are being fairly conducted by AWSD. The urgent assistance for these areas is not required.

The current problems are mainly on human resources, tariff, and procurement of water meter and spare parts. However, these problems are related to the social and economic policy of the whole country. Thus, these problems cannot be solved by assistance to AWSD.

3.1.5 Consideration Results of the Contents of the Requested Grant Aid Project

The contents of the requested grant aid project were examined from the three viewpoints as follows:

- 1) Prerequisite No.1 (Availability of water source)
- 2) Prerequisite No.2 (Power supply condition)

- 3) Sustainability of O&M of the constructed facility
- (1) Prerequisite No.1 (Availability of water source)

As a result of re-calculation of possible intake volume from each dam as described in Section 3.1.1 (1), it was presumed that:

1) The possible intake volume from the water source of Stretta Vaudetto WTP System (Adi Sheka Dam and Mai Serwa Dam) is $8,770 \text{ m}^3/\text{day}$ and slightly exceeds the design capacity of Stretta Vaudetto WTP ($8,000 \text{ m}^3/\text{day}$).

2) However, the possible intake volume from the water source of Toker WTP System and Mai Nefhi WTP System is less than the design capacity of the respective WTPs.

That is, even if the WTPs are rehabilitated, the WTP will not be able to thoroughly demonstrate their capacity.

(2) Prerequisite No.2 (Power supply condition)

Recently, power supply condition in Asmara is around 14 h/day by rolling blackout. According to EEC, this is because the power station is under rehabilitation. EEC explained that the power supply condition in Asmara will return to 24 h/day after several months.

However, even if the rehabilitation is completed, considering the present political and economic situation of Eritrea, it is doubtful whether the sufficient foreign currency for importing the fuel and spare parts for operation of the power plant is secured by the government. That is, uncertainty of power supply still remains.

All the water supply systems in Asmara require power supply for running the transmission pumps. Therefore, the water supply facilities do not demonstrate their capacity without continuous power supply.

(3) Sustainability of O&M of the Constructed Facility

As described in Section 2.3.4, the existing water supply facilities are in very poor O&M condition. The facilities are not performing their planned capacities. This is mainly because of the shortage of human resources (resigning of young staff) and the shortage of spare parts (shortage of foreign currency). These are related to the social and economic policy of the whole country. It seems to be difficult to resolve these situations in a short period.

Therefore, if the new facility is constructed, it will be difficult to secure the sustainability of its O&M.

Considering the above, it is difficult to say that the proposed grant aid project is technically appropriate for grant aid for its effectiveness and sustainability.

3.2 Consideration of the Conceivable Assistance

As a result of the discussions held in the second field survey, it was confirmed that at the moment the outline design for the grant aid project is not commenced. However, in order to improve the water supply condition in Asmara, the possibility of implementation of the technical assistance is considered.

3.2.1 Issues and Countermeasures for Improvement of Asmara Water Supply

The present condition and problems of the water supply in Asmara were clarified by the first field survey. The Survey Team prepared the summary of these findings as shown in Table 3.2.1.

Table 3.2.1 describes the issues and countermeasures for improvement of Asmara Water Supply for each facility having common issue on O&M and business operation. The urgency of each issue is indicated by the following category:

Urgency A: Countermeasure can be conducted immediately

Urgency B: To be conducted

Urgency C: Countermeasure needs a long-term approach

The Survey Team explained the contents of Table 3.2.1 to the Eritrean side and it was attached on M/D as Annex-1.

Facilities	Issues	Countermeasures			Urgency
		Components	Effects	Necessary Resources	
1. Raw water	O&M Conditions				
storage facilities (Dam)	1.1 There is no water level indicator in each dam except for Toker Dam.	- Installation of water level indicators.	- The water availability at the dam is confirmed, and restriction on water intake is implemented.	- Water level indicator × 5 dams (Toker, Adi-Sheka, Mai-Serwa, Stretta Vaudetto, Mai-Nefhi)	С
	1.2 There is no engineer for O&M of each water resources and dam.	 Recruitment of an engineer. Purchase of a vehicle for management. 	 The management of each water source and dam is strengthened. The management of preservation of water source is strengthened. 	 Engineer ×1 4WD pickup or motorcycle ×1 	A or B
	1.3 The preservation of water source (patrol, cleaning, etc.) is not managed.	 Recruitment of workers. Arrangement of daily reporting. 	- The O&M of facilities is strengthened and information is shared.	 2 workers × 5 dams Training of daily reporting Water quality equipment (turbidity, 	A
	1.4 A daily record about checking and repairing is not kept.	 OJT on daily reporting. Purchase of water quality analysis equipment. 	- The causes of a breakdown and leakage are clarified and repaired quickly.	EC) × 5 dams (Toker, Adi-Sheka, Mai-Serwa, Stretta Vaudetto, Mai Nefhi)	
	1.5 Water quality test (turbidity, pH, electrical conductivity, etc.) is not		- The water quality management is strengthened.	- Training for water quality test	
	practiced in each dam.		- The cause of water quality problem (filth, agricultural chemicals, etc.) is detected in the early stages.	- Annual water quality analysis (incl. herbicides and pesticides)	С
	1.6 There are no drawings such as dam bodies and plan of lakes, except for Toker Dam.	- Arrangement of the drawings.	- The remaining water quantity at the dam can be understood, and restriction on water intake can be implemented.	- A survey company for survey and drafting the drawings × 4 dams (Adi-Sheka, Mai-Serwa, Stretta Vaudetto, Mai Nefhi)	С
	1.7 There are so much sediments into each dam lake, Stretta Vaudetto Dam in particular.	- Dredging the sediments of each dam lake.	- Storage capacity of the dam increases, and quantity of water intake increases.	- Contracting a construction company for dredging the sediments	С
2. Intake	Physical Conditions				
facility (Intake pump station)	 2.1 Malfunction/Deterioration of the pump equipment a) Adi-Sheka Pump Station b) Mai – Serwa Pump Station 	- Renewal of the facility	 Interruption time of pump operation is reduced. Increasing water supply and improvement in stable water supply 	- Design engineer - Pump with electrical facility Adi-Sheka PS: $Q = 450 \text{ m}^3/\text{h}$ Mai-Serwa PS: $Q = 200 \text{ m}^3/\text{h} \times 2 \text{ pos}$	В

Table 3.2.1 Issues and Countermeasures for Improvement of Asmara Water Supply

-83-

Facilities	Issues	Countermeasures			Urgency
		Components	Effects	Necessary Resources	
	2.2 Tokor Pump Stationa) Limited operation hour (10 h/day) of diesel engine driven pump due to the overheat of diesel engine and availability of diesel.b) The diesel fuel cost is a huge financial burden on AWSD.	- Replacement with the electric motor driven pump.	 Pump operation hours is extended, increasing water supply amount. Improvement in financial condition of AWSD, thus improvement in business stability and sustainability. 	- Design engineer - Electric motor driven pump with associated electrical facilities $Q = 990 \text{ m}^3/\text{h}, \text{H} = 235 \text{ m} \text{ x } 2 \text{ nos}.$	В
	O&M Conditions				-
	2.3 O&M activity according to the O&M manual is not being conducted.	- Training on O&M activity according to the O&M manual.	- Life span of the facility is extended, thus improvement in business stability and sustainability.	Technical guidance trainerTrainee	Α
	2.4 Check and maintenance record is not maintained properly.	- Training on checking the facility condition and repairing.	- Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability.	 Technical guidance trainer Trainee 	А
	2.5 Delay of replacement of spare parts.	 Prepare a stock of spare parts. Timely procurement of the spare parts. 	 Interruption of pump operation is reduced. Increasing water supply and improvement in stable water supply. 	- Budgeting for procurement of spare parts.	В
	2.6 Drawings and technical documents of the facility are not being filed and updated.	- Establishment of information management system.	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling the quick repair. Improvement in business stability and sustainability. 	 Recruitment of personnel with experience in information management. Installation of personal computers. 	А
	2.7 The water flow amount is not measured and recorded.	 Installation of instrumentation facility. Training on measurement and recording. 	 Upgrading of the water flow monitoring. Enabling to grasp the water leakage, thus enabling to work out the leakage reduction plan. 	 Instrumentation system for the three intake facilities (Adi-Sheka, Mai-Serwa, Tokor) Trainer on instrumentation 	А

Facilities	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
	2.8 The pump operation record is not compiled as a database.	- Training on recording and database construction.	 By monitoring the pump operation, the proper renewal plan of the facility can be established. Improvement in business stability and sustainability. 	Trainer on recording and database construction.Installation of personal computers.	A
3. Raw water	Physical Conditions				
transmission facility	3.1 Open channel from Adi-Sheka to Beleza.a) The soil enters the channel due to heavy rainfall and the water transmission is interrupted every year.b) The six tunnels are all deteriorated.	 It is difficult to protect the open channel from the soil entering. The channel should be replaced to the pipeline as a fundamental solution. 	 Enabling to send the raw water throughout the year. Increasing in water supply amount. Improvement in stable water supply. 	- Design engineer - Pipeline (D300 L = 8 km)	В
	 3.2 Deterioration of pipeline of asbestos cement pipe. a) Raw water transmission pipeline from Beleza to Stretta Vaudetto WTP. b) Raw water transmission pipeline from Mai-Serwa Dam to Stretta Vaudetto WTP. 	- Renewal to PVC pipeline.	 Reduction of water leakage. Reduction of pipe burst accident, thus improvement in stable water supply. 	 Design engineer Pipeline (Beleza to Stretta Vaudetto WTP D300 L= 2 km) (Mai-Serwa to Stretta Vaudetto WTP D300 L = 2.7 km) 	В
	O&M Conditions				
	3.3 Drawings and technical documents of the facility is not being filed and updated.	- Establishment of information management system.	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling the quick repair. Improvement in business stability and sustainability. 	 Recruitment of personnel with experience in information management. Installation of personal computers. 	A
	3.4 Checking and maintenance record is not maintained properly.	- Training on checking of facility condition and repairing.	- Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability	 Technical guidance trainer Trainee 	А
	3.5 The water flow amount is not	- Installation of	- Upgrading of the water flow	- Instrumentation system for the three	

Facilities	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
	measured and recorded.	instrumentation facility. - Training on measurement and recording.	monitoring - Enabling to grasp the water leakage, thus enabling to work out the leakage reduction plan.	raw water transmission facilities. (Adi-Sheka, Mai-Serwa, Tokor) - Trainer on instrumentation	А
4. Water	4.1 S.V. WTP		1		
treatment	Physical Conditions				
facility	4.1.1 The chemical mixing and injection equipment are out of order for a long time.	- Replacement of alum tank and providing gravity injection system.	Turbidity is improved.Workload in the filter is reduced.	- 1,000 L chemical tank × 2 nos.- Pipe laying to four receiving wells.	А
	4.1.2 Several deflectors in the flocculation basin are corroded.	- Checking and repairing of the 190 deflectors.	- Flocculation is promoted by adjusting the water flow speed, and turbidity is reduced.	- Contracting a plumbing company for repairing of several deflectors.	A or B
	4.1.3 Sludge in the sedimentation basin is not discharged. Several sludge valves are inoperable.	- Elimination of clogging into the sludge pipes and exchange of sludge valves.	 Sludge in the sedimentation basin is discharged. Turbidity is reduced so that the workload in the filter is reduced. 	- Cleaning five sludge pipes and replacing/repairing five sludge valves.	A or B
	4.1.4 Backwash is not done effectively hence there is a thick sludge on the filter beds.	- Cleaning of sludge in the filter media.	Turbidity is improved.Workload in the filter is reduced.	 Manpower cleaning on the filter surface periodically × 6 filters Exchange of a filter media × 6 filters 	А
	 4.1.5 Water of approximately 1 m³/h is leaking on the clear water reservoir. 4.1.6 Land subsidence of approximately 5 cm is confirmed at the building of filtration and clear water reservoir. 4.1.7 The structure of filter basin is deteriorated due to old age. 4.1.8 Most of valves in the filter basin are deteriorated due to old age. 4.2 Toker WTP 	- New construction of the filtration facilities and the clear water reservoir.	- The water quality is improved and safe water is supplied.	- Contracting a consultant company for the design of new facilities.	C
	Physical Conditions				
	4.2.1 WTP is operated manually in 2007	- Repairing of the central	- Work force is reduced.	- Placing an order with a consultant	-

Facilities	Issues Countermeasures			Urgency	
		Components	Effects	Necessary Resources	
	because the central control system was out of order.	control system.	However, the manual operation is effective under the current power supply condition.	company.	
	4.2.2 The sodium hypochlorite generation apparatus was out of order in 2009.	- Study the introduction of liquid chlorine.	- Use of the sodium hypochlorite generation apparatus is not appropriate under the current power condition.	- Placing an order with a consultant company.	С
	O&M Conditions				
	4.2.3 Jar test is not practiced.	- OJT on Jar test.	- The water quality management is strengthened and safe water is supplied.	- Lecturer on Jar test	А
	4.3 Mai Nefhi WTP				
	Physical Conditions				
	4.3.1 The chemical mixing and injection equipment are out of order for a long time.	- Installation of a chemical tank for alum and injection equipment.	Turbidity is improved.Workload in the filter is reduced.	 - 1,000 L chemical tank × 2 nos. - Pipe laying to the receiving well - Dosing pump × 2 nos. 	А
	 4.3.2 The pulsator is not functioning because of the failure of vacuum pumps and equipment. 4.3.3 Water is leaking at the link channel between the pulsators and filters. 4.3.4 The cracking valve, partialization box, and the clogging indicator in each filtration basin are out of order. 4.3.5 There are no spare pumps of backwash and air blow. 4.3.6 Most of valves in the filter basin are 	 Rehabilitation of overall equipment. Repairing of leakage. 	- The water quality is improved and safe water is supplied.	 3 vacuum pumps and equipment Most of equipment at the vacuum tower × 2 towers Most of valves in pulsator × 2 systems. Cracking valve, the partialization box and the clogging indicator × 6 filters. Most of valves in the filter basin ×6 filters. Spare pumps of backwash and air 	C
	deteriorated due to old age.			blow.	
	4.3.7 Sludge remained on the surface of filter sand.	- Cleaning the sand surface.	- Safe drinking water is supplied.	- Closely monitoring backwashing results.	А
	4.3.8 Many breakthrough (holes) are found.				

Facilities	Issues		Countermeasures		Urgency		
		Components	Effects	Necessary Resources			
	4.4 Common Issues in the Three WTPs						
	Physical Conditions						
	4.4.1 There are no water meters to manage the inflow and outflow at the	- Installation of inflow and outflow water meters.	- The rates of water leakage and non-revenue water are revealed, and	- Stretta Vaudetto : φ 300 water meter \times 3 nos., φ 500 water meter \times 1 no.	C		
	WTPs.		target planning can be drafted. - Stable water quality is supplied	- Toker : $\varphi 500$ water meter $\times 2$ nos., $\varphi 150$ water meter $\times 1$ no.	А		
			 because water quantity is controlled. Chemical injecting quantity is injected properly. The quantity of water supply is controlled deliberately at the time of drought. 	- Mai Nefhi : φ500 water meter × 2 nos.			
	4.4.2 Chlorine gas is injected directly into the clear water reservoir or the receiving basin by the plastic tube without the chlorinator.	- Installation of chlorinator.	 Chlorine gas injecting quantity is injected properly. Staff's health problem with regard to chlorine is reduced. 	- Chlorinator × 3 WTPs - OJT	A or B		
	O&M Conditions						
	4.4.3 Water quality test is not practiced at the WTPs.	 Recruitment of water quality analyst. Purchasing of water quality equipment. OJT on water quality analysis. 	 The water quality management is strengthened and safe water is supplied. The cause of the water quality problem (filth, agricultural chemicals, etc.) is detected in the early stages. Chlorine gas injecting quantity is injected properly by measuring the residual chlorine. 	 Water quality analyst × 3 WTPs Water quality equipment (pH, turbidity, EC, total coliform bacteria, general bacteria, residual chlorine, Jar testing) × 3 WTPs Lecturer on water quality test 	A		
	4.4.4 A daily record about checking, repairing, and operating is not kept.	 Arrangement of daily reporting OJT on daily reporting 	 The O&M of the facilities is strengthened and information is shared. The causes of the breakdown and leakage are clarified and repaired quickly. 	- Training on daily reporting	А		

Facilities	Issues		Countermeasures		Urgency
		Components	Effects	Necessary Resources	
	4.4.5 There is no engineer for the O&M of the three WTPs.	- Recruitment of an engineer - Purchasing of a vehicle for management.	 The management of the WTPs is strengthened. The problem is settled early because information is transmitted to the headquarters early. Technique is shared among the three WTPs. 	 Engineer × 1 4WD pickup or motorcycle × 1 	A
	4.4.6 There are very few young and middle-aged workers and lack of core engineers.	- Recruitment of young and middle-aged workers.	 The technical capacity is transferred and continued. Customer's complaints are dealt quickly. The O&M of the facilities is reinforced. 	- Improvement of salary treatment.	С
	4.4.7 There is no staff for the chemical dosing test.	 Recruitment of dosing test staff OJT on dosing test (Jar test) 	- The water quality management is strengthened and safe water is supplied.	 Technician × 2 persons (Stretta Vaudetto and Mai Nefhi) Lecturer on Jar test 	В
	4.4.8 AWSD does not properly file the past drawings and documents, although some of them are kept in the cabinet.	 Production of the drawings (Stretta Vaudetto). Arrangement of the drawings and documents (Toker and Mai Nefhi). 	 For information to be shared, the breakdown and leakage in case of emergency are corresponded quickly. A future pipeline repairing plan can be drafted. A future water supply plan can be drafted. 	 Placing an order with a consultant company (Stretta Vaudetto). Establishment of a depository. 	A
	4.4.9 Spare parts are not purchased timely.	- Inventory is checked periodically.	 Customer's complaints are dealt quickly. The breakdown and leakage in the facilities are repaired quickly. The rate of water leakage and non-revenue water are reduced. Stable quantity of water and safe water is supplied. Securing hard currency. 	- Budgeting for the procurement of spare parts.	С

-89-

Facilities	Issues	Countermeasures			Urgency
		Components Effects		Necessary Resources	
5. Treated	Physical Conditions				
water	5.1 Malfunction/Deterioration of pump		- Interruption time of pump operation	- Design engineer	D
ransmission	equipment	- Renewal of the pump	is reduced.	- Pump with electrical facility	В
acility	Stretta Vaudetto WTP.	facility.	- Increasing water supply and improvement in stable water supply.	$Q = 1/0 \text{ m}^2/\text{h} \ge 3 \text{ nos.}$	
	5.2 Reduced pump capacity	- To identify possible causes	- The transmission water amount is	- Repair of pumps/motors.	
	Treated water transmission pump at Mai Nefhi WTP.	(e.g., worn out of impellor).	increased.		В
	5.3 Deterioration and reduced flow capacity of treated water transmission		- Reduction in pipe burst accident.	- Design engineer	В
	pipeline a) The treated water transmission pipeline from Mai Nefhi WTP	- Renewal of the pipeline.	- Increasing transmission of water amount, thus increasing the water supply amount.	- Pipeline (D500 L = 16 km)	
	deteriorates and suffers from frequent water leakage accident.				
	b) The flow capacity of the pipeline has been reduced.				
	5.4 Malfunction of chlorine injection facility at Sembel PS	- Renewal of the chlorine injection facility.	- Reducing water quality degradation.	- Chlorine injector	A
	5.5 The reservoir has large openings.	- To provide closures.	- Safe water is provided.	- Closure	A
	O&M Conditions				
	5.6 O&M activity according to its manual	- Training on O&M activity	- Life span of the facility is extended,	- Technical guidance trainer	А
	is not being conducted.	according to its manual.	thus improvement in business stability and sustainability.	- Trainee	
	5.7 Checking and maintenance record is	- Training on checking of	- Enabling to establish the proper	- Technical guidance trainer	
	not kept properly.	facility condition and repairing.	renewal plan of the facility, thus improvement in business stability and	- Trainee	A

Facilities	Issues	Countermeasures			Urgency	
		Components	Effects	Necessary Resources		
			sustainability.			
	5.8 Delay of replacement of spare parts.	 Conducting inventory survey of spare parts and keep stocks. Timely procurement of the spare parts. 	 Interruption of pump operation is reduced. Increasing water supply and improvement in stable water supply. 	- Budgeting for procurement of spare parts.	В	
	5.9 Drawings and technical documents of the facilities are not being filed and updated.	- Establishment of information management system.	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling its quick repair. Improvement in business stability and sustainability. 	 Recruiting personnel with experience in information management. Installation of personal computers. 	A	
	5.10 The water flow rate is not measured and recorded.	 Installation of the instrumentation facility. Training on measurement and recording. 	 Upgrading of the water flow monitoring. Enabling to grasp the water leakage, thus enabling to work out the leakage reduction plan. 	 Instrumentation system for the three treated water transmission facilities (Stretta Vaudetto, Toker, Mai Nefhi) Trainer on instrumentation 	А	
	5.11The pump operation record is not compiled as a database.	- Training on recording and database construction.	 By monitoring the pump operation, the proper renewal plan of the facility can be established. Improvement in business stability and sustainability. 	 Trainer on recording and database construction. Installation of personal computers. 	А	
6. Distribution	Physical Conditions					
facility	6.1 Shortage of distribution reservoir There is no distribution reservoir in Stretta Vaudetto System.	- Construction of distribution reservoir.	- The proper distribution during the peak demand is made possible, thus increasing in water supply amount.	 Design engineer Distribution reservoir (V= 1,400 m³ or more) 	В	

-91-

ties	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
	6.2 Deterioration of existing distribution reservoir.a) Existing three reservoirs in Tokor System are deteriorated. There are leakages in the tank. The valves are all deteriorated and not functioning.	- Renewal of the reservoir	- The proper distribution during the peak demand is made possible, thus increasing in water supply amount.	 Design engineer Construction of reservoir (Monopolio: 300 m³ x 2 nos.) (Tsetserat: 500 m³ x 2 nos.) (Hazhaz: 500 m³ x 2 nos.) 	В
	6.3 Deterioration of the distribution pump station.The pump facilities in the two distribution pump stations in Tokor System are deteriorated and the pump capacity is reduced.	- Renewal of the pump facility	- Increasing in water pressure in the distribution pipe, thus extending the water supply area.	- Design engineer - Pump equipment in Mai Chohot PS $(Q = 150 \text{ m}^3/\text{h})$ and Denden PS $(Q = 300 \text{ m}^3/\text{h})$	В
	6.4 Deteriorated pipeline There remains an approximately 3,000 m of aged GI pipelines.	- Replacement of the pipe	- Reduction of water leakage. Increasing in flow capacity of the pipe, thus extending the water supply area.	- Design engineer - PVC pipe (D75-D200, L = 3,000 m)	С
	6.5 Delay of extension of distribution pipeline.The extension of distribution pipeline in the newly developed area in the west and south part of Asmara is delayed.	- Installation of pipeline	- Expansion of the water supply area.	- Design engineer - PVC pipe (D200-D300, L = 6,500 m)	С
	O&M Conditions				
	6.7 O&M activity according to its manual is not being conducted.	- Training on O&M activity according to its manual	- Life span of the facility is extended, thus improvement in business stability and sustainability.	- Technical guidance trainer	А
	6.8 Checking and maintenance record is not kept properly.	- Training on checking of facility condition and repairing.	- Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability.	- Technical guidance trainer	А

Facilities	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
	6.9 Delay of replacement of spare parts.	- Conducting inventory	- Interruption of facility operation is	- Budgeting for the procurement of	В
		survey of spare parts and	reduced.	spare parts.	
		keep stocks.	- Increasing the water supply and		
		- Timely procurement of the	improvement in stable water supply.		
		spare parts.			
	6.10 Drawings and technical documents	- Establishment of	- Enabling to establish the proper	- Recruitment of personnel with	
	of the facilities are not being filed and	information management	renewal plan of the facility.	experience in information	А
	updated.	system.	- The cause of facility failure can be	management.	
			detected easily, thus enabling the	- Installation of personal computers.	
			quick repair.		
			- Improvement in business stability		
			and sustainability.		
	6.11Drawings of the distribution pipeline	- Establishment of	- Enabling information sharing, thus	- Recruitment of personnel with	
	are not being filed and updated.	information management	enabling quick repair on the facility's	experience in information	А
		system.	failure or leakage.	management.	
		- Updating of pipeline	- Enabling proper valve operation for	- Installation of personal computers.	
		information (pipe material,	distribution control.	- Metal pipe detector, non-metal pipe	
		diameter, valve location,	- Enabling to establish the proper	detector, metal detector	
		etc.).	renewal plan of the facility and water		
			distribution plan.		
	6.12 The water flow amount is not	- Installation of the	- Upgrading of the water flow	- Instrumentation system for the three	
	measured and recorded.	instrumentation facility.	monitoring.	distribution systems (Stretta Vaudetto	А
		- Training on measurement	- Enabling to work out the leakage	System, Tokor System, Mai Nefhi	
		and recording.	reduction plan.	System)	
				- Trainer on instrumentation	
	6.13 The pump operation record is not	- Training on recording and	- By monitoring the pump operation,	- Trainer on recording and database	А
	compiled as a database.	database construction.	the proper renewal plan of the facility	construction.	
			can be established.	- Installation of personal computers.	
			- Improvement in business stability		
			and sustainability.		

Facilities	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
	6.14 The water quality control is not conducted.	- Establishment of water quality management system.	- Enabling to upgrade the water quality of the supplied water.	 Water quality test equipment and chemicals. Recruitment of water quality monitoring staff. 	А
7. Service	Physical Conditions				
facility	7.1 Shortage of house connections Approximately two to three households are using one house connection.	- Installation of new connections.	- Upgrading of water supply service level.	 Design engineer Service facility including water meter 	С
	7.2 Deterioration of the water meter The water volume is measured less than the actual consumed amount.	- Replacement of water meter.	- Reduction of non-revenue water, thus improvement in business stability and sustainability.	 Staff for inspection and replacement of water meter Water meter (approx. 30,000 nos.) 	С
	O&M Conditions				
	7.3 Checking and maintenance record is not maintained properly.	- Training on checking of facility condition and repairing.	- Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability.	Technical guidance trainerTrainee	Α
	7.4 Delay of replacement of the water meter.	 Prepare the stock of water meter. Timely procurement of the water meter.	- Upgrading the accuracy of measuring water volume, thus reduction in non-revenue water, and improvement in business stability and sustainability	- Budgeting for procurement of water meter.	В
	7.5 The water quality control is not conducted.	- Establishment of water quality management system.	- Enabling to upgrade the water quality of the supplied water.	 Water quality test equipment and chemicals. Recruitment of water quality monitoring staff. 	А
	7.6 Drawings and technical documents of the facility are not being filed and updated.	- Establishment of information management system.	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling the quick repair. Improvement in business stability and sustainability. 	 Recruitment of personnel with experience in information management. Installation of personal computers. 	A

Facilities	Issues	Countermeasures			
		Components	Effects	Necessary Resources	
8. Common O&M issue	8.1 Poor performance of the technicians who repair the mechanical and electrical equipment.	- Capacity development of the technicians.	- Enabling quick repair of the facility, thus improvement in stability of water supply.	- Trainer on repair of mechanical and electrical equipment.	A or B
	8.2 Shortage of technicians who are engage in leakage detection and repair, and installation of new house connections.	- Recruitment of new staff and continual employment of staff.	- Enabling quick repair of the facility, thus improvement in stability and service level of water supply.	Experienced staff who provides training to the new junior staff.Junior staff	A or B
	8.3 Shortage of engineer for water quality control.	- Recruitment of new staff and continual employment of staff.	- Enabling to upgrade the water quality management of AWSD.	 Experienced staff who provides training to the new junior staff. Junior staff 	A or B
	8.4 Shortage of CAD operator.	 Recruitment of new staff and continual employment of staff. Training on CAD operation. 	- Upgrading of the water distribution pipeline drawings.	Experienced staff who provides training to the new junior staff.Junior staff	А
	8.5 Aging of the AWSD employees.	- Recruitment of new junior staff and continual employment of staff.	- Enabling the succession of the technical information/knowledge, thus improvement in business sustainability.	- Junior staff	С
	8.6 Absence of vehicle for the supervision and execution of the O&M works.	- Procurement of vehicle for O&M works.	- Upgrading the technical management of water supply works, thus improvement in business stability, sustainability and advancement.	- Vehicle (4WD pickup double cabin)	В
	8.7 Shortage of construction machineries/equipment and tools causing delay of the works.	- Procurement of construction machinery/ equipment and tools.	 Upgrading of the technical management of the water supply works, thus improvement in business stability, sustainability and advancement. Enabling quick repair of the facility, thus improvement in stability and service level of water supply. 	- Construction equipment (Excavator, truck with crane, welder, etc.)	В

-95-
Facilities	Issues	Countermeasures					
		Components	Effects	Necessary Resources			
9. Business	9.1 Grasping of the water supply amount	- Reduction in the period for	- Upgrading of the business		В		
administration	It takes more than six months to bill the water amount. Thus, timely grasping of the water supply amount is not conducted.	settlement of the consumed water volume through the establishment of an AWSD branch office. - Establishment of information management system.	monitoring, thus improvement of business stability and sustainability.Enabling to grasp the water leakage, thus enabling to work out the leakage reduction plan.	 Branch office (three locations) Installation of personal computers. 			
	9.2 Water tariff Water tariff has not been changed since 2003. Thus, AWSD is in the chronic state of deficit.	- Revision of water tariff (Approval of Zoba is necessary).	- Improvement in financial condition, thus improvement in business stability and sustainability.	- Supporting staff for financial management.	В		
	9.3 Water rationing Present supply capacity of AWSD is far below the potential demand. Thus, water rationing is executed.	- Increasing supply capacity.	- Water rationing is abolished.	 Recruitment of technical staff Renewal/construction of the water supply facility. 	С		
	9.4 Water supply and demand balance It is projected that the water demand will exceed the available intake amount in the present water sources.	- Increasing water source facility and water supply facility.	- Water supply and demand balance is improved.	 Recruitment of technical staff Renewal/construction of the water resource/supply facility. 	С		
	9.5 Electric Power Supply The operation of the water supply facility is being affected by the frequent interruption of power supply.	- Electricity is supplied for 24 h/day.	- Improvement in the stability of water supply.	- Arrangement of power supply by EEC.	С		

Note: Urgency A: Countermeasure can be conducted immediately, Urgency B: To be conducted, Urgency C: Countermeasure needs a long-term approach. Source: Survey Team

3.2.2 Consideration of Assistance Item

The survey team indicated "Issues and Countermeasures in AWSD" shown in Table 3.2.1 and carried out discussion with the stakeholders in Eritrea.

In the process of the discussion, the survey team extracted the items shown "Urgency A: The countermeasure that can be commenced immediately", and classified those items into [X]: Information Management, [Y]: Water Quality Improvement, [Z]: Increasing Water Supply and [-]: Others (Human resource mainly). The results are shown in Table 3.3.1 as "Issues and Countermeasures (Urgency A)".

As a result of the discussion, unless the collection and filing of data are done by [X] shown in the Table 3.3.1, the sustainability of the maintenance cannot be expected even if [Y] and [Z] are done. Therefore, [X] should be the top priority. Its contents are shown in Table 3.3.2 as "Priority Issues". (Attached to Annex-2 in MD)

After having discussed its contents with the stakeholders in Eritrea, it was agreed that [X] should be the top priority. In addition, both parties confirmed the matters which request the support from the Japanese side in particular.

3.3 Conclusion

- The support by technical cooperation should be considered that [X]: Information Management of Annex-2 (shown in Table 3.3.2) is the highest priority matter based on a request from Eritrea.
- In addition, [Y] and [Z] should be considered as the next support items after [X] are executed without any challenges.

Concluded.

Facilities			Issues	Counter	measures	Efforts	Urgonev
racinties	1550(5			Components	Necessary Resources	Ellects	Urgency
Raw water storage	O&M Conditions			•	•		
facilities (Dam)	Human resources	[-]	1.2 There isn't an engineer for O&M of each water resources and dam.	 Recruitment of an engineer Purchase of a vehicle of management 	 Engineer × 1 4WD Pickup or Motorcycle × 1 	 The management of each water source and dam is strengthened. The management of preservation of water source is strengthened. 	А
	Preservation	[X] [Y]	 The preservation of water source (patrol and cleaning etc.) isn't managed. 	 Recruitment of workers Arrangement of a daily report OJT of the daily reporting 	- 2 workers × 5 Dams - Training of daily reporting	The preservation of water source is strengthened and information is shared. The water quality management is strengthened.	А
	Recording	[X]	 A daily record of the dams about checking and repairing isn't kept. 	 Arrangement of a daily report OJT of the daily reporting 	- Training of daily reporting	 The O&M of facilities is strengthened and information is shared. The cause of a breakdown and leakage are clarified and repaired quickly. 	A
	Water quality	[X] [Y]	 1.5 Water quality test (turbidity, pH, electrical conductivity etc.) is not practiced at each dam. 	- Purchase of water quality analysis equipment	 Training of water quality test Water quality equipment (turbidity, EC) ×5 dams(TOKER, ADI SHEKA, MAI SERWA, SV, MAI NEFHI) 	- The water quality management is strengthened.	А
Water treatment	Physical Condition	s					
facility	Chemical mixing and injection	[Y]	4.1.1 (S.V. WTP) The chemical mixing and injection equipment are out of order for a long time	- Replacement of alum tank and providing gravity injection system	 1000L chemical tank × 2nos Pipe laying to 4 receiving wells 	Turbidity is improved.Workload in the filter is reduced.	А
	equipment		4.3.1 (Mai Nefhi WTP) The chemical mixing and injection equipment are out of order for a long time.	- Installation of a chemical tank for alum and a injection equipment	 1000L chemical tank × 2nos Pipe laying to the receiving well Dosing pump × 2nos 	 Turbidity is improved. Workload in the filter is reduced. 	A
	Filter	[Y] [Z]	4.1.4 (S.V. WTP) Back-wash isn't done effectively so that there are thick sludge on the filter beds.	- Cleaning of sludge on the filter media	 Manpower cleaning on the filter surface periodically × 6 filters Exchange of a filter media × 6 filters 	- Turbidity is improved. - Workload in the filter is reduced.	A
			 4.3.7 (Mai Nefhi WTP) Sludge remained on surface of filter sand 4.3.8 (Mai Nefhi WTP) Many breakthrough (holes) are found. 	- Cleaning the sand surface	- Closely monitoring backwashing results	- Safe drinking water is supplied	A

Table 3.3.1Issues and Countermeasures (Urgency A)(1/4)

Category: [X]: Information Management, [Y]: Water Quality Improvement, [Z]: Increasing Water Supply, [-]: Others

Engilities			Isonos	Counter	measures	Ffforts	Ungonov
Facilities		155005		Components	Necessary Resources	Ellects	orgency
Water treatment	sludge valve	[Y]	4.1.3 (S.V. WTP) Sludge in the	- Elimination of clogging into the	- Cleaning 5 sludge pipes and	- Sludge in the sedimantation basin	А
facility			sedimentation basin is not	sludge pipes and exchange of sludge	replacing/repairing 5 sludge valves	is discharged.	
			discharged. And several sludge	valves		- Turbidity is reduced so that	
			valves are inoperable.			workload in the filter is reduced.	
	Bulk meter	[X]	4.4.1 (3 WTPs) There are no	- Installation of inflow and outflow	- SV : ϕ 300 water meter × 3 nos, ϕ	- The rate of water leakage and	
			water meters to manage the inflow	water meters.	500 water meter $\times 1$ no	non-revenue water are revealed,	
			and outflow at the W.T.Ps.		- Toker : $\phi 500$ water meter $\times 2$	and target planning can be drafted.	
					nos, φ 150 water meter × 1 no	- Stable water quality is supplied	
					- Mai Nefhi : : : : : : : : : : : : : : : : : : :	because water quantity is controlled	
					$\times 2 \text{ nos}$	and chemical injecting quantity is	А
						injected properly.	
						- The quantity of water supply is	
						controlled deliberately at the time	
						of a drought.	
	Chlorinator	[Y]	4.4.2 (3 WTPs) Chlorine gas is	- Installation of chlorinator	- chlorinator × 3 W.T.Ps	- Chlorine gas injecting quantity is	А
			injected directly into the clear		- QJT	injected properly.	
			water reservoir or the receiving			- The healthy obstacle with	
			basin by the plastic tube without			chlorine to staff is reduced.	
			the chlorinator.				
	O&M Conditions						
	Jar test	[Y]	4.2.3 (Toker WTP) Jar test is not	- OJT of Jar test	- Lecturer of Jar test	- The water quality management is	А
			practiced.			strengthened and safe water is	
			*			supplied.	
	Water quality	[X]	4.4.3 (3 WTPs) Water quality test	- Recruitment of water quality	- Water quality analyst × 3 W.T.Ps	- The water quality management is	А
		[Y]	is not practiced at the W.T.Ps.	analyst	- Water quality equipment (pH,	strengthened and safe water is	
			_	- Purchase of water quality	Turbidity, EC, Total coliform	supplied.	
				equipment	bacteria, General bacteria, Residual	- A cause of the water quality	
				- OJT of water quality analysis	chlorine, Jar test) × 3 W.T.Ps	problem (filth and agricultural	
					- Lecturer of water quality test	chemicals, etc.) is detected in early	
						stages.	
						- Chlorine gas injecting quantity is	
						injected properly by measuring the	
						residual chlorine.	
	Recording	[X]	4.4.4 (3 WTPs) A daily record	- Arrangement of a daily report	- Training of daily reporting	- The O&M in facilities is	А
	Ű		about checking, repairing and	- OJT of the daily report		strengthened and information is	
			operating isn't kept			shared.	
						- The cause of a breakdown and	
						leakage are clarified and repaired	
						quickly.	

-99-

Table 3.3.1Issues and Countermeasures (Urgency A)(2/4)

Category: [X]: Information Management, [Y]: Water Quality Improvement, [Z]: Increasing Water Supply, [-]: Others

To the second			Tana a s	Counter	measures	TOPP of a	
Facilities			Issues	Components	Necessary Resources	Effects	Urgency
Water treatment facility	Human resources	[-]	4.4.5 (3 WTPs) There isn't an engineer for O&M of 3 W.T.Ps	 Recruitment of an engineer Purchase of a vehicle of management 	 Engineer × 1 4WD Pickup or Motorcycle × 1 	 The management of the W.T.Ps is strengthened. A problem is settled early because information is transmitted to the headquarters early. Technique is shared among 3 W.T.Ps. 	A
	Drawings and documents	[X]	4.4.8 (3 WTPs) AWSD are not properly filing past drawings and documents, although some of them are kept in the cabinet.	 Producing of drawings (SV) Arrangement of drawings and documents (Toker and Mai Nefhi) 	 Placing an order with a consultant company (SV) Establishment of depository 	 For information to be shared, a breakdown and leakage in case of emergency are corresponded quickly. A future pipeline repairing plan can be drafted. A future water supply plan can be drafted. 	A
Intake,	Physical Conditions	5	•	·	•	· · · · ·	
Transmission, Distribution, and	Chlorinator	[Y]	5.4 Malfunction of chlorine injection facility at SembelPS	 Renewal of the chlorine injection facility 	- Chlorine injector	 Reducing water quality degradation 	А
Service facility	Reservoir	[Y]	5.5 The reservoir at Sembel PS has large openings.	- To provide closures	- Closure	- Safe water is provided	А
	O&M Conditions		•	•			
	Proper O&M	[Z]	2.3, 5.6, 6.7 O&M activity according to the O&M manual is not being conducted.	- Training for OM activity according to the OM manual	- Technical guidance trainer	 Life span of the facility is extended, thus improvement in business stability and sustainability 	А
	Bulk meter	[X]	2.7, 3.5, 5.10, 6.12 The water flow amount is not measured and recorded	 Installation of instrumentation facility Training on measurement and recording 	 Instrumentation system for three intake facility (Adi-Sheka, Mai- Serwa, Tokor) and three transmission mains and distribution network Trainer on instrumentation 	 Upgrading of the water flow monitoring Enabling to grasp the water leakage, thus enabling to work out leakage reduction plan 	A
	Recording	[X]	2.4, 3.4, 5.7, 6.8, 7.3 Check and maintenance record is not maintained properly	- Training on checking of facility condition and repairing	- Technical guidance trainer	 Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability 	A
			2.8, 5.11, 6.13 The pump operation record is not compiled as a database	- Training on recording and database construction	 Trainer on recording and database construction Installation of personal computers 	 By monitoring the pump operation, the proper renewal plan of the facility can be established. Thus, improvement in business stability and sustainability 	А

3/4)

Category: [X]: Information Management, [Y]: Water Quality Improvement, [Z]: Increasing Water Supply, [-]: Others

Facilities			Issues	Counter	measures	Efforts	Urgonov	
racinties			155005	Components	Necessary Resources	laleets	Urgency	
Intake, Transmission, Distribution, and Service facility	Drawing management	[X]	2.6, 3.3, 5.9, 6.10 Drawings and technical documents of the facilities are not being filed and updated	- Establishment of information management system	 Recruitment of the personnel with experience of information management Installation of personal computers 	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling the quick repairing. Thus, improvement in business stability and sustainability. 	А	
			6.11, 7.6 Drawings of the distribution pipeline is not being filed and updated	 Establishment of information management system Updating of pipeline information (pipe material, diameter, valve location, etc.) 	 Recruitment of the personnel with experience of information management Installation of personal computers Metal pipe detector, Non-metal pipe detector, Metal detector 	 Enabling information sharing, thus enabling quick repair of the facility failure or leakage. Enabling proper valve operation for distribution control. Enabling to establish the proper renewal plan of the facility and water distribution plan. 	А	
	Water quality control	[Y]	6.14, 7.5 The water quality control is not conducted.	- Establishment of water quality management system	 Water quality test equipment and chemicals Recruitment of water quality monitoring staff 	- Enabling to upgrade the water quality of the supplied water.	A	
Common O &M issue	Human resources	[-]	8.4 Shortage of the technicians who are engaged in leakage detection and repair and installation of new house connections	- Recruitment of the new staff and continual Employment of the staff	 Experienced staff who provide training to the new junior staff Junior staff 	 Enabling quick repair of the facility, thus improvement in stability and service level of water supply. 	А	
			8.5 Shortage of chemist/biologist for water quality control	- Recruitment of the new staff and continual Employment of the staff	 Experienced staff who provide training to the new junior staff Junior staff 	- Enabling to upgrade the water quality management of AWSD.	А	
			8.6 Shortage of the CAD operator	 Recruitment of the new staff and continual Employment of the staff Training of CAD operation 	 Experienced staff who provide training to the new junior staff Junior staff 	- Upgrading of water distribution pipeline drawings.	А	
	Capacity of employee	[-]	8.3 Poor performance of the technicians who repair the mechanical and electrical equipment	- Capacity development of the technicians	- Trainer for repair of mechanical and electrical equipment	 Enabling quick repair of the facility, thus improvement in stability of water supply. 	A	

Table 3.3.1Issues and Countermeasures (Urgency A)(4/4)

Category: [X]: Information Management, [Y]: Water Quality Improvement, [Z]: Increasing Water Supply, [-]: Others

Source: Study Team

Table 3.3.2 Priority Issues (Information management*) (1/2)

					Areas assistance requested							
Facilities			Issues	Components	Effects	Necessary Resources	to JICA					
Raw water storage	O&M Conditions			•	•	•						
facilities (Dam)	Preservation	[X] [Y]	1.3 The preservation of water source (patrol and cleaning etc.) isn't managed.	 Recruitment of workers Arrangement of a daily report OJT of the daily reporting 	 The preservation of water source is strengthened and information is shared. The water quality management is strengthened. 	 2 workers × 5 Dams Training of daily reporting 						
	Recording	[X]	1.4 A daily record of the dams about checking and repairing isn't kept.	 Arrangement of a daily report OJT of the daily reporting 	 The O&M of facilities is strengthened and information is shared. The cause of a breakdown and leakage are clarified and repaired quickly. 	- Training of daily reporting						
	Water quality	[X] [Y]	1.5 Water quality test (turbidity, pH, electrical conductivity etc.) is not practiced at each dam.	- Purchase of water quality analysis equipment	- The water quality management is strengthened.	 Training of water quality test Water quality equipment (turbidity, EC) ×5 dams (TOKER, ADI SHEKA, MAI SERWA, SV, MAI NEFHI) 	~ ~					
Water treatment	Physical Condition	sical Conditions										
facility	Bulk meter	[X]	4.4.1 (3 WTPs) There are no water meters to manage the inflow and outflow at the W.T.Ps.	- Installation of inflow and outflow water meters.	 The rate of water leakage and non-revenue water are revealed, and target planning can be drafted. Stable water quality is supplied because water quantity is controlled and chemical injecting quantity is injected properly. The quantity of water supply is controlled deliberately at the time of a drought. 	- SV : φ300 water meter × 3 nos, φ500 water meter × 1 no '- Toker : φ500 water meter × 2 nos, φ 150 water meter × 1 no '- Mai Nefhi : : φ500 water meter × 2 nos	~ ~ ~					
	O&M Conditions											
	Water quality	[X] [Y]	4.4.3 (3 WTPs) Water quality test is not practiced at the W.T.Ps.	 Recruitment of water quality analyst Purchase of water quality equipment OJT of water quality analysis 	 The water quality management is strengthened and safe water is supplied. A cause of the water quality problem (filth and agricultural chemicals, etc.) is detected in early stages. Chlorine gas injecting quantity is injected properly by measuring the residual chlorine. 	 Water quality analyst × 3 W.T.Ps Water quality equipment (pH, Turbidity, BC, Total coliform bacteria, General bacteria, Residual chlorine, Jar test) × 3 W.T.Ps Lecturer of water quality test 	~					
	Recording	[X]	4.4.4 (3 WTPs) A daily record about checking, repairing and operating isn't kept	 Arrangement of a daily report OJT of the daily report 	- The O&M in facilities is strengthened and information is shared. - The cause of a breakdown and leakage are clarified and repaired quickly	- Training of daily reporting						

Category: [X]: Information Management, [Y]: Water Quality Improvement / *Data Collection and Information Management

Table 3.3.2 Priority Issues (Information management*) (2/2)

E			T		Areas assistance requested		
Facilities			Issues	Components	Effects	Necessary Resources	to DPs
Water treatment facility	Drawings and documents	[X]	4.4.8 (3 WTPs) AWSD are not properly filing past drawings and documents, although some of them are kept in the cabinet.	 Producing of drawings (SV) Arrangement of drawings and documents (Toker and Mai Nefhi) 	 For information to be shared, a breakdown and leakage in case of emergency are corresponded quickly. A future pipeline repairing plan can be drafted. A future water supply plan can be drafted. 	- Placing an order with a consultant company (SV) - Establishment of depository	
Intake,	O&M Conditions						
Transmission, Distribution, and Service facility	Bulk meter	[X]	2.7, 3.5, 5.10, 6.12 The water flow amount is not measured and recorded	 Installation of instrumentation facility Training on measurement and recording 	 Upgrading of the water flow monitoring Enabling to grasp the water leakage, thus enabling to work out leakage reduction plan 	 Instrumentation system for three intake facility (Adi-Sheka, Mai-Serwa, Tokor) and three transmission mains and distribution network Trainer on instrumentation 	
	Recording	[X]	2.4, 3.4, 5.7, 6.8, 7.3 Check and maintenance record is not maintained properly	- Training on checking of facility condition and repairing	 Enabling to establish the proper renewal plan of the facility, thus improvement in business stability and sustainability 	- Technical guidance trainer	
			2.8, 5.11, 6.13 The pump operation record is not compiled as a database	- Training on recording and database construction	 By monitoring the pump operation, the proper renewal plan of the facility can be established. Thus, improvement in business stability and sustainability. 	- Trainer on recording and database construction - Installation of personal computers	v
	Drawing management	[X]	2.6, 3.3, 5.9, 6.10 Drawings and technica documents of the facilities are not being filed and updated	- Establishment of information management system	 Enabling to establish the proper renewal plan of the facility. The cause of facility failure can be detected easily, thus enabling the quick repairing. Thus, improvement in business stability and sustainability. 	 Recruitment of the personnel with experience of information management Installation of personal computers 	~
			6.11, 7.6 Drawings of the distribution pipeline is not being filed and updated	 Establishment of information management system Updating of pipeline information (pipe material, diameter, valve location, etc.) 	 Enabling information sharing, thus enabling quick repair of the facility failure or leakage. Enabling proper valve operation for distribution control. Enabling to establish the proper renewal plan of the facility and water distribution plan. 	 Recruitment of the personnel with experience of information management Installation of personal computers Metal pipe detector, Non-metal pipe detector, Metal detector 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Category: [X]: Information Management, [Y]: Water Quality Improvement / *Data Collection and Information Management

Source: Survey Team