4. Study on Press-in Force for No. B Shaft

Contents

Page

1. Plan for theory of settlen 1
(1) Self weight (Wc) 1
(2) Buoyancy(U) 1
(3) Resistance force of skin friction (F) 2
(4) Resistance of cutting edge (Q) 4
(5) Insertion pressure (P) 7
(6) Relationship diagram of theory of settlement 8
2. Analysis of anchor for press fit 9
(1) The number of anchors and drawing force 9
(2) Steel wire of the anchor 9
(3) Embedment length of anchors (La) 9
(4) Length of anchors 10
(5) Adhesion between steel wire of anchors and the body of anchors (cement base) 10

1. Plan for theory of settlement

In order for Caisson to reach a fixed depth due to gravitational act, the following formula shall be satisfied.

Insertion pressure + Self weight \geqq Buoyancy + Reaction force of skin friction + Resistance force of cutting edge
(1) Self weight (Wc)

Figure section 1

Figure section 2

Figure section 3

As setting unit volume weight of reinforcing concrete at $25.0\left(\mathrm{KN} / \mathrm{m}^{3}\right)$,

Lot	Volume of concrete (m)	Self weight (kN)	
		Weight of interval	Self weight
(1)	33.2	830.0	830.0
-..(2)	67.7	1692.5	2522.5
(3)	67.7	1692.5	4215.0.
(4).	67.7	1692.5	5907.5
(5)	67.7	1692.5	76000
(6)	67.7	1692.5	9292.5
(7)	17.3	432.5	9725.0

(2) Buoyancy (U)

As for setting groundwater level at -2.49 m

Lot	Depth (m)	Buoyancy (kN)
(1)..	2.500	
....2)	7.900	634.2
.-. 3	13.300	1311.1
...4)	18.700	1988.0
(5)	24.100	2664.8
-..6)	29.500	3341.7
(7)	32.300	3692.7

$F=L \cdot \mathrm{Ha} \cdot \mathrm{Fa}$

To this, F:Resistance force of skin friction (kN)
L:Perimeter of Caisson (m)
Ha: Ground contact height of perimeter of Caisson (m)
fa: Skin friction ($\mathrm{kN} / \mathrm{m}^{2}$)

The value of skin friction adopts recommended value from "Design guideline of press-in open Caisson" of the Hanshin Expressway Public Corporation as shown in below table.
However, in order to put NF sheet to the spot of friction cut, the value without combined use of promotion of settlement process in the interval from cutting edge to friction cut is calculated,
while the value with combined use of promotion of settlement in the interval of NF sheet is calculated.

Illustration by table-3.2(1) Table of skin friction ($\mathrm{kN} / \mathrm{m} 2$) (In case without combined use of promotion of settlement process)

	Resources			Actual measurements		Recomm ended value
Soil	Desing and construction of intrusion method (Ohmsha)	Civil engineering handbook	Specification of highway bridge	Section of Uozakihama	Section of Sukematsu	
Clay		$50.0 \sim 200.0$		32.0	$19.0 \sim 25.0$	
Silt	$2.0 \sim 7.0$	-	$5.0 \sim 10.0$	-	-	30.0
Well tight silt	$5.0 \sim 10.0$					
Well tight sand	$12.0 \sim 22.0$	$35.0 \sim 70.0$	$14.0 \sim 24.0$	15.0~ 25.0	20.0~36.0	30.0
Sand mixed with gravel	$14.0 \sim 24.0$			-	24.0~30.0	
Gravel mixed with sand	$17.0 \sim 26.0$		$22.0 \sim 31.0$		$24.0 \sim 44.0$	100.0
Well tight gravel	$22.0 \sim 31.0$	$50.0 \sim 100.0$		$80.0 \sim 130.0$		
Notes			Actual value in good condtion without resistance of cutting edge attached with friction cut	Interval without NF sheet	Interval without NF sheet	

Illustration by table-3.2(2) Table of skin friction ($\mathrm{kN} / \mathrm{m} 2$) (In case with combined use of promotion of settlement process)

Depth (m)	Literature $* 1$	Actual measurements by other organization		Bypass of Hamadera	Shinfujigawa river	Kishuoohashi bridge	Section of Uozakihama
	2.0				Section of Sukematsu	Recomm ended value	
$5 \sim 10$	6.0	$25.0 \sim 39.0$	15.0	17.0	6.0	7.0	5.0
$10 \sim 15$	10.0	(Average value)	(Average value)	(Average value)	$10.0 \sim 20.0$	14.0	10.0
$15 \sim$	12.0				$10.0 \sim 20.0$	$14.0 \sim 17.0$	15.0
Notes		NF sheet					

Literature*1:Recommended value of catalog of NF construction method

Resistance force of skin friction

Perimeter of Caisson

Interval between cutting edge and friction cut
Interval of NF sheet
$\pi \times 6.500=20.42(\mathrm{~m})$
$\pi \times 6.400=20.11(\mathrm{~m})$
(4) Resistance of cutting edge (Q) (from design and construction of intrusion published by Ohmsha)

As for the case of press-in Caisson, cutting edge is generally embedded in ground. In this situation, it cann be supposed that resistance force of cutting edge is bearring capacity in shallow ground.

Therefore, resistance on cutting edge is calculated from the formula which is generally used in construction of press-in Caisson.

$$
Q=A \cdot q d
$$

To this Q:Resistance force on cutting edge (kN)
A: Ground contact area of cutting edge (m^{2})
qd:Ultimate bearing capacity of ground contacted with cutting edge ($\mathrm{kN} / \mathrm{m}^{2}$)
General formula $\mathrm{qd}=\mathrm{C} \cdot \mathrm{Nc}^{\prime}+\gamma_{1} \cdot \mathrm{~B}^{\prime} \cdot\left(\mathrm{Nr}^{\prime} / 2\right)+\gamma_{2} \cdot \mathrm{Df}^{\prime} \cdot \mathrm{Na}^{\prime}$

To this C: Cohesion of soil ($\mathrm{kN} / \mathrm{m}^{2}$)
$\gamma 1, \gamma 2$: Unit volume weight of soil above and below cutting edge ($\mathrm{kN} / \mathrm{m}^{3}$)
$\mathrm{B} /$: Ground contact width of cutting edge (m)
Df/: Ground contact height of cutting edge (m)
$\mathrm{Nc} /, \mathrm{Nr} /, \mathrm{Nq} /$: Coefficient of bearing capacity

Coefficients of bearing capacity, $\mathrm{Nc} . \mathrm{Nr}$, and Nq decrease due to excavation condition in Caisson. This relatshionship is shown below formula with approximate reduction coefficient, kc, kr related to β, ϕ.

Reduction formula $\mathrm{qd}=\mathrm{kc} \cdot \mathrm{C} \cdot \mathrm{Nc} /+\mathrm{kr} \cdot \gamma 1 \cdot \mathrm{~B} / \cdot(\mathrm{Nr} / / 2)+\gamma 2 \cdot \mathrm{Df} / \cdot \mathrm{Nq} /$

To this, kc, kr :Reduction coefficient of bearing capacity

As for calculation for resistance on cutting edge, the values of various factors of soil, (C, ϕ), and embedment depth of cutting edge shall be noted because they influence resistance greatly. Therefore, embedment depth, (Df') and width of resistance of cutting edge, B^{\prime} shall be determined based on workability, and assuming the condition of engulfment of earth and sand around cutting edge, and the condition of the tightness of earth and sand by press-in.
Accuracy of calculation of resistance of cutting edge is influenced by whether the above assumption is good or bad, which affects economy of construction.
Therefore, deliberate consideration shall be necessary.

Form of excavation of cutting edge

4

Average value of cohesion, C and internal friction angle, ϕ of soil

Soil	$\phi[$ Degree $]$	$\mathrm{C}\left[\mathrm{N} / \mathrm{cm}^{2}\right]$
Mudy sand	30	2.0
Well tight sand	34	5.0
Fluid clay	0	0.5
Well soft clay	2	1.0
Soft clay	4	2.0
Medium soft clacy	6	5.0
Tight clay	8	7.5

Reduction coefficient, Kc , kr , from the value of $\mathrm{Nc}^{\prime}, \mathrm{Nr}^{\prime}$ by B^{\prime}

Lot	Soil	$\begin{gathered} \phi \\ \text { (Degree) } \end{gathered}$	$\begin{gathered} c \\ \left(\mathrm{kN} / \mathrm{m}^{2}\right) \end{gathered}$	$\gamma_{1.2}$ ($\mathrm{kN} / \mathrm{m}^{3}$)	B^{\prime} (m)	Df (m)	Nc ${ }^{\prime}$	Nr^{\prime}	Na^{\prime}	$\begin{gathered} \beta^{\prime} \\ \text { (Degree) } \end{gathered}$	kc	kr	qd ($\mathrm{kN} / \mathrm{m}^{2}$)
(1)	Muddy sand	30	. 20.00	9.00	0.48	0.60	16.0	7.0	12.0	26	0.56	0.28	2482.
(2)	Muddy sand	30	20.00	900	. 0.59	- 0.80	16.0.	7.0	. 12.0	. 26	. 0.56	028	2708
(3)	Muddy sand	. 30	-20.00	9000	- 0.59	. 0.80	. 16.0	. 7.0	...120	. 26.	. 0.56	. 0.28	270.8
(4)	Muddy sand_	. 30	20.00	900	-0.59	- 0.80	-16.0.	7.0	. 12.0	. 26.	-0.56	. 0.28	270.8
(5).	Muddy sand.-	. 30	. 20.00	9.00.	0.65	-0.90	16.0	70	-120	. 26	. 0.56	. 0.28	$282.1-$
(6)	Tight.sand.	...34	. 50.00	1000 0.31	- 0.30	--310-	---2000	--280	26	...0.51.	. 0.28	8832.2-
(7).	Tight.sand.	. 34	. 50.00	.1000.	-... 0.31	.. 0.30	-. 31.0	... 20.0	---28.0	---26.	-. 0.51	... 0.28	883.2-

Resistance force of cutting edge

Lot	Soil	$\begin{gathered} \phi \\ \text { (Degree) } \end{gathered}$	Df ${ }^{\prime}$ (m)	$\begin{aligned} & \mathbf{B}^{\prime} \\ & (\mathrm{m}) \end{aligned}$	qd ($\mathrm{kN} / \mathrm{m}^{2}$)	$\begin{gathered} \text { A } \\ \left(\mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} Q \\ (k N) \end{gathered}$
(1)	Muddy sand	30	0.60	0.48	248.2	9.1	2258.6
(2)	Muddy sand	30	0.80	0.59	270.8	11.0	2978.8
(3)	Muddy sand.	30	0.80	0.59	270.8	11.0	.2978.8
(4)	Muddy sand.	30	0.80	0.59	270.8	11.0	.2978.8
(5)	Muddy sand	30	0.90	0.65	282.1	11.9	3357.0
(6)	Tight sand .-.	. 34	-... 0.30	0.31	.883.2	6.0	5299.2
(7)	Tight sand.	. 34	-.. 0.30	0.31	883.2	. 6.0	5299.2

(5) Insertion pressure (P)
$P \geqq(U+F+Q)-W_{c}$

Lot	Load for sinking(kN)		Resistance force for sinking (kN)				Insertion pressure (kN) $P \geqq(U+F+Q)$ -Wc
	Depth (m)	Self weight (Wc)	Buoyancy (U)	Skin friction (F)	Resistance force on cutting edge (Q)	Total $(U+F+Q)$	
(1)	2.500	830.0		1275.5	2258.6	3534.1	2704.1
-2)	7.900	2522.	634.2	1908.9	2978.8	5521.9	2999.4
-(3)	13.300	42150	1311.1	3125.6	2978.8	7415.5	3200.5
-4)	18.700	5907.5	1988.0	4925.4	2978.8	9892.2	3984.7
-5	24.100	7600	26648	70973	33570	1319.1	5519.
-6)	29.500	9292.	3341.7	9269.2	5299.2	17910.1	86176
-7)	32.300	9725.	3692.7	10395.4	5299.2	19387	9662.3

(6) Examination for sinking

Examination for sinking of building the following lot after each lot immerses

Lot	Load in building next lot(kN)		Sinking resistance(kN)	Judgement
(7)	2522.5	$<$	3534.1	OK
(2)	4215.0	$<$	5521.9	OK
(3)	5907.5	$<$	7415.5	OK
(4)	7600.0	$<$	9892.2	OK
(5)	9292.5	$<$	13119.1	OK
(6)	9725.0	\ldots		OK
(7)				

※In the last embedment of lot
In case of complete excavation of cutting edge part in the last embedment
Sinking resistance force $=3692.7($ Buoyancy $)+10395.4($ Skin friction $)+0($ Resistance force of cutting edge $)$ $=14088.1>9725$ (Load for sinking) \cdots... OK

Therefore, there is no problem if the part of cutting edge is completely excavated.
(6) Relationship diagram of theory of settlement

2. Analysis of anchor for press fit

(1) The number of anchors and drawing force

If 4 anchors with the maximum pressure $\mathrm{P} \geqq 9662.3(\mathrm{kN})$ are laid and Caisson is pressed in, Drawing force (Pa) per one anshor shall be

$$
\mathrm{Pa}=\frac{9662.3}{4}=2415.58 \fallingdotseq 2420(\mathrm{kN} / \text { Number })
$$

(2) Steel wire of the anchor

JIS-G 3536

Nominal designation	Nominal cross sectional area $\left(\mathrm{mm}^{2}\right)$	Unit weight $(\mathrm{kg} / \mathrm{km})$	Tension load (kN)	Tensile stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Yield load (kN)	Yield stress $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Elong ation $\%$
	312.9	2,482	573	(1813)	495	(1568)	3.5

$$
\begin{aligned}
\text { Pta } & =0.65 \times \text { Tension load } \times 7 \text { Number }----------\quad \text { Temporary anchor } \\
& =0.65 \times 573 \times 7=2607(\mathrm{kN})>P a=2420(\mathrm{kN})---- \text { OK }
\end{aligned}
$$

(3) Embedment length of anchors (La)

$$
\mathrm{La}=\frac{\mathrm{Pa} \cdot \mathrm{Fs}^{2}}{\pi \cdot \mathrm{D} \cdot \tau \mathrm{a}}
$$

To this, La:Embedment length (cm)
$\mathrm{Pa}:$ Drawing force of the anchor $=2,420,000(\mathrm{~N})$
Fs: Safety factor $=1.5$
D : Diameter of body of the anchor $=13.5(\mathrm{~cm})$
τ a:Frictional resistance of peripheral surface of the body of anchors ($\mathrm{N} / \mathrm{cmi}^{2}$)
τ a1: $14.40\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 1=500(\mathrm{~cm})$
τ a2: $26.40\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 2=250(\mathrm{~cm})$
τ a3: $13.20\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 3=1000(\mathrm{~cm})$
τ a4: $35.00\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 4=950(\mathrm{~cm})$
$\tau \mathrm{a} 5: 10.80\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 5=600(\mathrm{~cm})$
$\tau \mathrm{a} 6: 35.00\left(\mathrm{~N} / \mathrm{cm}^{2}\right) \quad \mathrm{L} 6=\mathrm{X} \quad(\mathrm{cm})$
※It is supposed that N value of sandy soil in the depth, (X) with 66.5 m and deeper is 35 and over due to lack of information about soil boring log.
$\mathrm{Pa} \cdot \mathrm{Fs} \leqq \pi \cdot \mathrm{D} \quad(\mathrm{L} 1 \times \tau \mathrm{a} 1+\mathrm{L} 2 \times \tau \mathrm{a} 2+\mathrm{L} 3 \times \tau \mathrm{a} 3+\mathrm{L} 4 \times \tau \mathrm{a} 4+\mathrm{L} 5 \times \tau \mathrm{a} 5+\mathrm{L} 6 \times \tau \mathrm{a}$ 6)

$$
\begin{align*}
2,420,000 & \times 1.5 \leqq \pi \times 13.5 \quad \underset{35.00)}{(500 \times 14.40+250 \times 26.40+1000 \times 13.20+950 \times 35.00+600 \times 10.80+\mathrm{L} 6 \times} \\
\mathrm{L} 6 & \fallingdotseq 539(\mathrm{~cm}) \\
\mathrm{La} & =\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\mathrm{L} 5+\mathrm{L} 6 \\
& =500+250+1000+950+600+539=3839(\mathrm{~cm}) \fallingdotseq 38.5(\mathrm{~m})
\end{align*}
$$

Frictional resistance of peripheral surface of anchors

(4) Length of anchors
$L=L a+L f$
To this L: Length of anchors (m)
La:Embedment length $=38.5(\mathrm{~m})$
Lf: Free length $=33.5(\mathrm{~m})$
$L=38.5+33.5=72.0(\mathrm{~m})$
(5) Examining adhesion between steel wires of the anchor and the bodies of anchors (cement base)

Pta $=\mathrm{U} \cdot \mathrm{La} \cdot \tau 0$
To this, Pta:Adhesion betwen steel wires and bodies of anchor (N)
$U:$ Perimeter of steel wire $=(6+\pi) \times 2.18=19.93(\mathrm{~cm})$
La:Embedment length $=3850(\mathrm{~cm})$
$\tau 0$: Adhesive stress between steel wires and bodies of the anchor $=100\left(\mathrm{~N} / \mathrm{cm}^{2}\right)$

$$
\text { Pta }=19.93 \times 3,850 \times 100=7,673,050(\mathrm{~N})>\mathrm{Pa}=2,420,000(\mathrm{~N})---\mathrm{OK}
$$

5. Calculation Sheets on Jacking Force (Route A-B)

Contents

(1) input Condition

1) Calculation Condition
2) Construction Condition
(2) Calculation of Jacking Force
3) Formula
4) Uniform load applied to pipe
5) Calculation of Jacking Force
6) Calculation for loading capacity of pipe
7) Calculation for reaction force of bearing pressure
8) Maximum allowable Jacking Force
9) The number of intermediate Jacking station

Figure Schedule of quantities ($B-A$)

(1) Input condition

Calculation condition
Gravitational acceleration
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
-Specification of pipe
Pipe diameter
Pipe thickness
Exterior diameter of pipe
Standard strength against outer pressure
Weight of pipe
Type of pipe
Effective diamter of pipe

D	$=$	2.000 ml
t	$=$	0.175 m
Bc	$=$	2.350 m
P	$=$	$58.860 \mathrm{kN} / \mathrm{m}$
W	$=$	$(6.002 \mathrm{tf} / \mathrm{m})$
	$28.730 \mathrm{kN} / \mathrm{m}$	$(2.930 \mathrm{tt} / \mathrm{m})$
	$50 \mathrm{~N} / \mathrm{mm}^{2}$	$(500 \mathrm{kgfpipe})$
	2.310 ml	

-Soil condition
Unit volume weight of soil
Internal friction angle of earth
Soil cohesion
Adhesive force between pipe and soil
N Value
Groundwater level
Reduction coefficient of propulsion
$\begin{aligned} \gamma s & = & 16.2680 \mathrm{KN} / \mathrm{m}^{3} & \left(1.66 \mathrm{tf} / \mathrm{m}^{3}\right) \\ \phi & = & 10.000 & \\ \mathrm{C} & = & 17.787 \mathrm{kN} / \mathrm{m}^{2} & \left(1.815 \mathrm{tf} / \mathrm{m}^{2}\right) \\ \mathrm{C} & = & 4.900 \mathrm{kN} / \mathrm{m}^{2} & \left(0.5 \mathrm{tf} / \mathrm{m}^{2}\right) \\ \mathrm{N} & = & 20 & \\ \text { GL- } & = & 2.700 \mathrm{~m} & \\ \beta & = & 0.350 & \end{aligned}$

Table β Value in each soil
Soil Reduction coefficient of propulsion Cohesive soil 0.35 Sandy soil 0.45 Sandy gravel soil 0.60 Consolida ted soil 0.35

Soil	Adhesifve force between pipe and soil	
	($\mathrm{kN} / \mathrm{m}^{2}$)	$\left(\mathrm{tf} / \mathrm{m}^{2}\right)$
Cohesive soil	$\begin{gathered} (\mathrm{N}<10) \\ \text { 8. } 0 \mathrm{k} \mathrm{~N} / \mathrm{m}^{2} \end{gathered}$	0.8
Consolidated soil	$\begin{gathered} (\mathrm{N} \geqq 10) \\ 5.0 \mathrm{kN} / \mathrm{m}^{2} \end{gathered}$	
Sandy soil	$0.0 \mathrm{kN} / \mathrm{m}^{2}$	0.0

Borehole log

Measuring site map

Figure Borehole $\log A$

Figure Borehole log B Figure Borehole Iog C

- Construction condition

Earth covering
propulsion extension
Diamter of tumneling machine
Allowance under pipe
(Head from soffit of pipe to soffit of wall of bearing pressure)
Adoption for middle pushing method is necessary.
-Condition of curved pipe jacking
Radius of curve (R1)
Length of pipe jacking (11)

R1 $=$
$11=$
240. 000 m
2. 430 m

Distance of interval from departure to BC1	L 1	$=$	64.800 m
Distance of interval from BC 1 to EC 1	L 2	$=$	86.000 m
Distance of interval from EC 1 to arraival	L 3	$=$	123.800 m
(2) Calculation for propulsion			

1) Propulsion by pipe jacking method of reverse circulation type is calculated from the following formula.
```
F=F0+foxL
To the above formula
    F : Total propulsion (kN)
    F0:Resistance force of head (kN)
    Fo:Resistance force of head l
    L : propulsion extension
        (m)
```

 \(\mathrm{F}_{0}=(\mathrm{Pw}+\mathrm{Pe}) \times \pi \times\left(\frac{\mathrm{Bs}}{2}\right)^{2}\)
 \(\begin{array}{cl}\mathrm{P}_{\mathrm{n}}: \text { Pressure inside chamber } & (\mathrm{kN} / \mathrm{m2} 2) \\ \mathrm{Pw}=\gamma \mathrm{w} \times\left(\mathrm{h}^{\prime} \quad+\right. & \left.\frac{\mathrm{Bs}}{2}\right)+20\end{array}\)
 \(\gamma \mathbb{F}\) : Unit volume weight of water (\(\mathrm{KN} / \mathrm{m}^{3}\))
 \(\mathrm{h}^{\prime}\) : Groundwater level (m)
 \(\mathrm{h}^{\prime}=\mathrm{H}-(\mathrm{GL}-) \quad-\left(\frac{\mathrm{BS}}{2}-\frac{\mathrm{Bc}}{2}\right)\)
 $\mathrm{Pe} \quad \begin{aligned} & \text { : Cuting resistance } \\ & \mathrm{Pe}=\mathrm{N} \text { Value }\end{aligned} \times \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{Pe}=\mathrm{N}$ Value $\quad \times \quad 10 \quad$ (However, $150 \mathrm{kN} / \mathrm{m}^{2} \leqq \mathrm{Pe} \leqq 500 \mathrm{kN} / \mathrm{m}^{2}$)
Bs :Exterior diamter of excavator
(m)
$\mathrm{f} 0=\beta\left\{(\pi \times \mathrm{Bc} \times \mathrm{q}+\mathrm{W}) \times \mu^{\prime}+\pi \times \mathrm{Bc} \times \mathrm{C}^{\prime}\right\}$
$\beta \quad$: Reduction coefficient of propulsion
Bc : Exterior diamter of pipe
(m)
q : Uniform Ioad applied to pipe
$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
W : Unit weight of pipe
(kN / m)
μ^{\prime} : friction coefficient
C^{\prime} : Adhesifve force between pipe and soil
$(\tan (\phi / 2))$
($\mathrm{kN} / \mathrm{m}^{2}$)
(1)Design condition

Gravitational acceg $=$	9. 8		$\mathrm{m} / \mathrm{s} 2$			
- Specification for pipe						
Pipe diameter	D	$=$	2. 000	m		
Pipe thickness	t	=	0. 175			
Exterior dianter of pipe	B c	$=$	2.350			
Standard external pressure strength	P	=	58.860	kN/m	(6. 002 tf/m2)
Pipe weight	W	$=$	28.730	kN / m	(2. $930 \mathrm{tf} / \mathrm{m}$)
Pipe type			50	$\mathrm{N} / \mathrm{mm}^{2}$	($500 \mathrm{kgf} \mathrm{pipe})$

- Soil condition

Unit volume weight of soil	$\gamma \mathrm{s}$	=	16. 268	$\mathrm{kN} / \mathrm{m}^{3}$	$($	$1.66 \mathrm{tf} / \mathrm{m} 3$)
Internal frictional angle of soil	ϕ	$=$	10.0			
Cohesion of soil	C	=	17. 787	$\mathrm{kN} / \mathrm{m}^{2}$	($1.815 \mathrm{tf} / \mathrm{m} 2$)
Adhesifve force between pipe and soil	C'	$=$	3. 000	$\mathrm{kN} / \mathrm{m}^{2}$	($0.306 \mathrm{tf} / \mathrm{m} 2$)
N value	N	$=$	20			
Groundwater level	GL-	=	2. 700	m		
Reduction coefficient of propulsion	β	$=$	0. 350			

Table β value in each soil
Table β value in each soil

Soil	Reduction coefficient of propulsion
Cohesive soil	0.35
Sandy soil	0.45
Sandy gravel soil	0.60
Consolidated soil	0.35

- Construction condition

Earth covering
propulsion extension
Diamter of tunneling machine

H	$=$	25.000 m
L	$=$	274.600 m
B	$=$	2.370 m

2) Uniform load applied to pipe

Uniform load applied to pipe (q) is total of the following 2 types of load.

$q=w+p$

To the above formula

$\mathrm{q}:$ Uniform load :	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
w : Vertical uniform distribution load of soill	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{p}:$: Live load	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

($\mathrm{kN} / \mathrm{m}^{2}$)

- Vertical uniform distribution load of earth pressure (w) Calculation by Terzaghi's theory
$\mathrm{w}=\left(r s-\frac{2 \times \mathrm{C}}{\mathrm{Be}}\right) \times \mathrm{Ce}$
Ce: Coefficient of earth load of Terzaghi

To the above formula
γs : Unit volume weith of soil
$r s=$
C
$\mathrm{Bc}=$
$\mathrm{K}=$
$\phi=$
$\mu=$
$\mathrm{H}=$
$\mathrm{KN} / \mathrm{m}^{3}$
C : Cohesion of soil
Bc : Exterior dianter of pipe
K : Coefficient of lateral earth pressure of Terzaghi
ϕ : Internal frictional angle of soil $(=\tan \phi)$
Coefficient of friction of soil $(\tan \phi)$
$\mathrm{kN} / \mathrm{ml}^{2}$
m
-
m

Therefore

$$
\left.\begin{array}{rlrlll}
\mathrm{w} & =(16.268 & - & 2 \times 17.787 \\
5.254
\end{array}\right) \times \begin{array}{lll}
12.116 & \\
& =115.072 & (\mathrm{kN} / \mathrm{m} 2)
\end{array}
$$

- Live load

As for live load (p), load of rear wheel of $T-25$ stated in specification of road bridge and the interpretation is used. Generally, influence of front wheel is neglected.

To the above formula
p : Live load

Table1 Impact coefficient

$\mathrm{H}(\mathrm{m})$	$\mathrm{H} \leqq 1.5$	$1.5<\mathrm{H}<6.5$	$\mathrm{H} \geqq 6.5$
i	0.500	$0.65-0.1 \mathrm{H}$	0.000

$\begin{aligned} \mathrm{p} & =\frac{2 \times 100 \times(1+0.000) \times 0.900}{2.75(0.200+50.000 \times 1.000)} \\ & =\frac{(\mathrm{kN} / \mathrm{m} 2)}{1.304}(0.133 \mathrm{tf} / \mathrm{m} \mathrm{2})\end{aligned}$
From above resultsk, Uniform load applied to pipe (q) is the following

```
q=W+p
    = 115.072 + 1.304
```

 \(=116.375(\mathrm{kN} / \mathrm{m} 2) \quad(11.875 \mathrm{tf} / \mathrm{m} 2)\)
 3) Calculation for propulsion
(1) Propulsion in case of considering only straight line

- Propulsion resistance per 1.0 m
f $0=\beta\left\{(\pi \times B c \times a+W) \times \mu^{\prime}+\pi \times B c \times C^{\prime}\right\}$ To the above formula
β : Reduction coefficient of propulsion
$\beta=$

0. 350

Bc : Exterior diamter of pipe
q : Uniform load applied to pipe
W, : Unit weight of pipe
μ ' : Friction coefficient
C' : Adhesifve force between pipe and soil

(m)	$\beta=$	0.350
$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$		
$(\mathrm{kN} / \mathrm{m})$ $(=\tan (\phi / 2))$ $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$\mu^{\prime}=$	0.087

- Resistance force of head
$\mathrm{F}_{0}=\left(\mathrm{P}_{\mathrm{w}}+\mathrm{Pe}\right) \times \pi \times\left(\frac{\mathrm{Bs}}{2}\right)^{2}$

PW : Pressure inside chamber ($\mathrm{kN} / \mathrm{m}^{2}$)
$P_{W}=\gamma W \times\left(h^{\prime}+\frac{\mathrm{BS}}{2}\right)+20$

$=22.290 \quad(\mathrm{~m})$
P ॠ$=9.8 \times(22.290+1.185)+20$
$=250.055 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{Pe}:$ Cuting resistance $\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{Pe}=200.000$
($\mathrm{kN} / \mathrm{m}^{2}$)
Bs :Exterior diameter excavator
2. 370
(m)
$\mathrm{F} 0=(250.055+200.000) \times \pi \times 1.404$
$=1985.419(\mathrm{kN})$

- Total propulsion
$F=F 0+f 0 \times L$
L : propulsion extension
$\mathrm{F}=1985.419 \quad+\quad 39.850 \times \quad 274.600$
$=12928.175 \quad(\mathrm{kN}) \quad 39.850 \times \quad\left(\begin{array}{rr}274.600 \\ 1319.202 & \mathrm{tf})\end{array}\right.$
(2)Calculation for propulsion considering curve interval

pipe diamter	$\mathrm{D}=$	2. 000	mm			
pipe thickness	t	0. 175	mm			
The number of interval of curve line		1	Interval			
Head resistance	$\mathrm{FO}_{0}=$	1985.419	kN	(202. 594	tf)
Propulsion resistance per m	fo	39.850	kN / m	(4. 066	tf/m
Internal frictional angle of soil	¢	10.0				

Form of curved jacking
Radius of curve R $1=240.000$
Length of jacking pipe

R 1	$=$	240.000
I 1	$=$	2.430
L1	$=$	64.800
L 2	$=$	86.000
L 3	$=$	123.800

Distance of interval from departure to BCl
Distance of interval from BCl to
$\begin{array}{ll}\text { L. } 2 & = \\ & 86.000\end{array}$
$\begin{array}{llll}\text { Distance of interval of from EC1 to arrival } & \mathrm{L} 3 & = & 123.800\end{array}$
Calculation for propulsion resistance of curved line is generally from the following formula.

$$
F n=K n \times F 0+f^{\prime} \times \frac{K n+1-K}{K-1}
$$

> Fn : Propulsion resistance in B.C. point
: Length of a jucking pipe \fallingdotseq (m)
86. 000 /
2. 430
35.4 (Number)

K : Coefficient of propulsio

$$
=\frac{1}{\cos \alpha-\mathrm{k} \times \sin \alpha}
$$

α : Bend angle of pipe

$\alpha=$	$2 \sin ^{-1}$	$\frac{1}{2(\mathrm{R}-\mathrm{Bc} / 2)} \underset{\mathrm{I} \mathrm{~A}}{ }$		I A		
				$: \quad \frac{\mathrm{n}}{\text { Angle of intersection }}$		
	$2 \sin ^{-1}$					
-	$2 \sin$	21	240.000		2. 350	/2)
=	$2 \sin ^{-1}$	0.00509				
=	0. 583	(RAD	. 58297642			

```
    k : Resistivity of shear between pipe and natural ground \(=0.5\)
            \(\begin{array}{lll}0.5 & \times & 0.00977\end{array}\)
            \(=1.005\) 五
    Fo : Propulsion resistance in E, C point
    f' : Propulsion resistance per a jacking pipe
```

Calculation for propulsion of curved line interval
-Thrust of interval between arrival to E.C. 1
$\mathrm{F} 1=\mathrm{F} 0+\mathrm{L} 3 \times$ fo
fo: $\quad 39.850 \mathrm{kN} / \mathrm{m} \quad$ (1 Propulsion resistance per m)
$\begin{array}{cc}\text { 1985. } 419 & \mathrm{kN} \\ \times & 39.850\end{array}$
(Head resistance)
$=1985.419{ }^{\circ}+123.800$
$=1985.419^{\circ}$
$=6918.825$${ }_{(\mathrm{kN})}^{123.800}$
$=1985.419{ }^{\circ}+123.800$
rust of interval from arrival to B.C. 1
-Thrust of interval from arrival to B.C.I

Number (The number of jucking pipes from B. C. 1 to E. C. 1)

$$
\begin{aligned}
& =1.005 \\
& =\quad 11880.462 \quad(\mathrm{kN})
\end{aligned}
$$

-Thrust within interval between arrival to departure (Total thrust)

kN / m		$(1$ Propulsion resistance per $\mathbb{I})$
kN		
\times	39.850 1475.789	$\mathrm{tf})$

4) Calculation for loading capacity of pipe

- Vertical loading capacity of pipe

Vertical loading capacity of pipe (qr) is expressed by the following formula
$\mathrm{qr}=\frac{1}{0.275 \times \mathrm{r}^{2}} \times \mathrm{Mr}$
To the above formula
qi : Vertical loading capacity
Mr : Resisting moment of pipe calculated from external pressure intensity
(kN / m)
($\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$
$\mathrm{Mr}=0.318 \times \mathrm{P} \times \mathrm{r}+0.239 \times 28.730 \times 1.088$
P : External pressure intensity (from cracking load) $=58.860 \quad(\mathrm{kN} / \mathrm{m})$
W : Pipe weight
$\begin{aligned} \mathrm{Mr} & =0.318 \times 58.860 \times 1.088+0.239 \times 28.730 \times 1.088 \\ & =\underset{(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})}{27.823} \times \underset{(1.839}{ } \times \mathrm{tf} \cdot \mathrm{m} / \mathrm{m})\end{aligned}$
$\begin{aligned} \mathrm{qr} & =\frac{1}{0.275 \times 1.088^{2}} \times 27.823 \\ & =85.547\end{aligned}$

Moment (18) arising from pipe due to uniform load is the following considering free shoes with 120°.

```
M= 0.275 }\times\quad\times\quadq\quad\times\quad\mp@subsup{r}{}{2
    M : Bending moment arising from pipe due to vertical uniform load (kN·m)
    q : Uniform load (kN/m2)
M=0.275 < 116.375 
    = 37.849 (kN\cdotm/m) ( 3.862 tf fm/m)
```

Safety factor (f) of cracking arising from uniform load is calculated from ratio between resisting moment of pipe (Mr) and moment arising from pipe or ratio between loading capacity of pipe (qr) and uniform load (a).
$\mathrm{f}=\frac{\mathrm{Mr}}{\mathrm{M}}$
$=\frac{27.823}{37.849}$
$\mathrm{f} \quad=\frac{\mathrm{qr}}{\mathrm{q}}$
$=\begin{aligned} & \text { 37. } 8459\end{aligned}<1.200$

Therfore, pipe is not safety.
Therfore, type 2 pipe is required.
External (bending) strength of Type 2 pipe : $118 \mathrm{kN} / \mathrm{m}$
Therefore
$\mathrm{Mr}=0.318 \times 118.000 \times 1.088+0.239 \times 28.730 \times 1.088$
$=48.300 \quad(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}) \quad(15.140 \mathrm{tf} \cdot \mathrm{m} / \mathrm{m})$
$\begin{aligned} 1 \mathrm{r} & =\frac{1}{0.275 \times 1.088^{2}} \times 48.300 \\ & =\begin{array}{c}\text { 2 } \\ 148.374 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)\end{array}\end{aligned}$

$$
\begin{array}{rlrlr}
\mathrm{f} & =\frac{\mathrm{Mr}}{\mathrm{M}} & \text { or } & \mathrm{f} & =\frac{\mathrm{qr}}{\mathrm{q}} \\
& =\frac{48.300}{37.849} & & & \\
& =\frac{148.374}{116.375} \\
1.276 & >1.200 & & & =1.274>
\end{array}
$$

The above calculation was made based on $\phi=10$ and $\mathrm{C}=17.787 \mathrm{kN} / \mathrm{m} 2$.
Also in order to confirm stability, calculate as a clay of $\phi=0$ and $\mathrm{C}=35.28 \mathrm{kN} / \mathrm{m} 2$, which is a practical condition.

$$
\begin{aligned}
\mathrm{q} & =(\gamma-\mathrm{c} / \mathrm{Be}) \times \mathrm{H}+\mathrm{p} \\
& =(16.628-35.28 / 2.957) \times 25.0+1.304 \\
& =118.729 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\mathrm{f} & =\frac{\mathrm{gr}}{\mathrm{q}} \\
& =\frac{148.374}{118.729} \\
& =1.250>1.200
\end{aligned}
$$

- Loading capacity of pipe in the direction of propulsion

Allowable loading capacity of pipe (Fr) is expressed by the following formul
Fr= $10^{3} \times \quad \sigma$ па $\quad \times \quad A$

To the above formula
Fr : Allowable proof stress of pipe
σ ma: Allowable average compressive stress of concrete ($=13 \mathrm{~N} / \mathrm{mm} 2$)
A : Effective sectional area of pipe

$$
\begin{array}{cccc}
\mathrm{A}=\frac{1}{4} \times \pi \times\left(\quad \mathrm{Bg}^{2}\right. & - & \left.\mathrm{D}^{2}\right) \\
\mathrm{Bg}: \text { Effective diameter } & = & 2.310 & (\mathrm{~m}) \\
\mathrm{D} & : \text { Inner diameter of pipe } & & 2.000
\end{array}
$$

$$
\begin{array}{rlr}
\mathrm{A} & =\frac{1}{4} \times \pi \times\left(2.31^{2}-2^{2}\right) \\
& =1.049 & \left(\mathrm{~m}^{2}\right) \tag{2}
\end{array}
$$

$\mathrm{Fr}=1000 \times 13.000$
$=13641.816$
$\underset{\mathrm{kN})}{\times 1.049}$
1392.022
tf)
5) Calculatoin for reaction force of bearing pressure

Reaction force (R) is expressed by formula of passive earth pressure of Rankine.

$$
\mathrm{R}=\alpha \times \mathrm{B}\left(\gamma \mathrm{~s} \times \mathrm{H}_{0}{ }^{2} \times \frac{\mathrm{K} p}{2}+2 \times \mathrm{C} \times \mathrm{Ho} \times \mathrm{Kp}+\gamma \mathrm{s} \times \mathrm{Ho} \times \mathrm{h} \times \mathrm{Kp}\right)
$$

(Head drop from soffit of pipe to soffit of wall of bearing pressure)

6) Maximum allowable Jacking Force

According to the above results of calculation
Total propulsion

F 3	$=$	14462.729	(kN)	1475.789	(tf)
Fr	$=$	13641.816	(kN)	1392.022	(t)
R	$=$	21919.599	(kN)	2236.694	(t)
$\mathrm{Fm}=$	15680.000	(kN)	1600.000	(tf)	

Loading capacity of pipe
Reaction force of bearing pressure
Reaction force of bearing pressure
Effective propulsion of back pushing jack $\mathrm{R}=$
$\mathrm{Fme}=$
$=$ 15680. 000
$\mathrm{F} 3>\mathrm{Fr}$

Therefore,
Adoption of middle pushing method is necessary.
7) The number of intermediate Jacking Station
 Therefore,

$$
\begin{aligned}
\mathrm{Fm} & =\mathrm{F}-\mathrm{Fr} \\
& =14462.729-13641.816 \\
& =820.913 \quad(\mathrm{kN})
\end{aligned}
$$

$$
\text { (} 83.767
$$

tf)

As for above, middle pushing method is used to deal with.
In case of $\mathrm{D}=2000 \mathrm{~mm}$, the number of installation of hydraulic jack enabled to install into one location of middle pushing is,
$490(\mathrm{kN}) \times 18$ (Number) $=8820.000(\mathrm{kN}) \quad(900 \mathrm{tf})$
is the limit.
Possible propulsion in one location of middle pushing is
$\begin{array}{rlrlr}F j & =\frac{490.000}{}(\mathrm{kN}) \times & 18 & \text { (Number) } \\ & =8820.000 & \text { (kN) } & (900 \mathrm{tf}) & \end{array}$
Therefore, the number of intallation of middle pushing (n) is
$\mathrm{n}=\frac{\mathrm{Fm}}{\mathrm{Fj}}$
820.913
8820. 000
$=0.093$
Therefore, one location is necessary.
6. Calculation Sheets on Jacking Force (Route B-C)

Contents

(1) input Condition

1) Calculation Condition
2) Construction Condition
(2) Calculation of Jacking Force
3) Formula
4) Uniform load applied to pipe
5) Calculation of Jacking Force
6) Calculation for loading capacity of pipe
7) Calculation for reaction force of bearing pressure
8) Maximum allowable Jacking Force
9) The number of intermediate Jacking station

Figure Schedule of quantities (B-C)

(1) Input condition

Calculation condition

$$
\text { Gravitational acceleration } \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

-Specification for pipe

-Soil condition
Unit volume weith of soil $\quad \gamma s=$

Internal frictional angle of soil	$\phi=$	10.0	
Cohesion of soil	$\mathrm{C}=$	$17.787 \mathrm{kN} / \mathrm{r}\left(\mathrm{tf} / \mathrm{m}^{2}\right)$	
Cohesive between pipe and soil	$\mathrm{C}^{\prime}=$	$4.900 \mathrm{kN} / \mathrm{r}\left(\mathrm{tf} / \mathrm{m}^{2}\right)$	
N value	$\mathrm{N}=$	20	
Groundwater Ievel	GL- $=$	2.700 m	
Reduction coefficient of Propulsion	$\beta=$	0.350	

Table β value in each soil

Soil	Reduction coefficient of Propulsion
Cohesive soil	0.35
Sandy soil	0.45
Sandy gravel soil	0.60
Consolidated soil	0.35

Table the value of adhesive between pipe and soilC'

Borehole log

Measuring site map

Figure Borehole $\log B$

Figure Borehole $\log \mathrm{C}$

-Construction condition
Earth covering H
Extension of propulsion
External diameter of tunneling machine
L
$=25.000 \mathrm{~m}$
L
$=669.600 \mathrm{~m}$
Allowance under pipe
$\mathrm{Hb}=$
2. 370 m
0.800 m (Generally 0.80 m)
(Head drop from soffit of pipe to soffit of wall of bearing pressure)

Adoption of middle pushing method is necessary

- Condition of propulsion of curved line

Radius of curve	R $1=$	270.000 m
Length of jacking pipe (1 1)	$11=$	2.430 m
Distance of interval from departure to BC1	$\mathrm{L} 1=$	532.400 m
Distance of interval from BC1 to EC1	$\mathrm{L} 2=$	83.300 m
Distance of interval of from EC1 to arrival	$\mathrm{L} \mathrm{3}=$	53.900 m

(2) Calculation for propulsioid $2000 \times$ L $=669.6 \mathrm{~m}$

1) Propulsion by jacking method; muddy water system is calculated by the following formula.
```
F=F0+f0\timesL
    To the above formula
        F :Total propulsion (kN)
        Fo :Resistance force of head
        (kN)
    fo :Resistance force of jacking pipe (kN/m)
        L :Extension of propulsion (m)
    F0}=(\textrm{PF}+\textrm{Pe})\times\pi\times\frac{\times(\textrm{Bs}}{2})
        P : Pressure inside chamber (kN/m2)
            PW}=\gammaw\times(\mp@subsup{h}{}{\prime}+\frac{\textrm{Bs}}{2})+\quad2
                \gammaW : Unit volume weight of water (KN/m3)
                    h' : Groundwater level
                                (m)
                        h'=H-(GL-) - ( }\frac{\textrm{Bs}}{2}-\frac{-\textrm{BC}}{2}
        P :Cutting resistance (kN/m2)
            Pe}=\textrm{N}\mathrm{ value }\times\quad\mathrm{ (However, 150kN/m2 }\textrm{P}\mathrm{ e }\leqq500\textrm{kN}/\textrm{m}2
        B : Exterior diamter of excavator (m)
```



```
        \beta :Reduction coefficient of Propulsion
        Bc :Exterior diamter of pipe
        (m)
        q :Uniform load applied to pipe
        (kN/m2)
        W :Unit weight of pipe
        \mu
        (kN/m)
        (tan (\phi/2))
        C' :Adheisve force between pipe and soil
        (kN/m2)
```

(1)Design condition

Gravitational acceleration	$\mathrm{g}=10$		$\mathrm{m} / \mathrm{s}^{2}$		
-Specification for pipe					
Pipe diameter	D	=	2. 000	m	
Pipe thickness	t	$=$	0.175	m	
Exterior diamter of pipe	B c	=	2.35	m	
Standard external pressure s	strength P	=	58.86	kN / m	6. $002 \mathrm{tf} / \mathrm{m}^{2}$)
Pipe weight	W	=	28.73	kN/m	2. $930 \mathrm{tf} / \mathrm{m}$)
Pipe type			50	$\mathrm{N} / \mathrm{mm} 2$	$500 \mathrm{kgf} \mathrm{pipe)}$

- Soil condition

Unit volume weith of soi
$\begin{array}{ll} & \gamma s= \\ \text { Internal frictional angle of soil } & \phi= \\ \text { Cohesion of soil } & C=\end{array}$
Adheisve force between pipe and soil $\mathrm{C}^{\prime}=$
N value $\quad \mathrm{N}=$
Groundwater level GL- =
Reduction coefficient of Propulsion $\beta=$
$\left.\begin{array}{llll}16.268 \mathrm{kN} / \mathrm{m} 3 & (1.66 & \mathrm{tf} / \mathrm{m} 3\end{array}\right)$
/m 3)
t/m2)
tf/m2)

Table β value in each soil

Soil	Reduction coefficient of Propulsion
Cohesive soil	0.35
Sandy soil	0.45
Sandy gravel soil	0.6
Consolidated soil	0.35

-Construction condition			
\quad Earth covering	H	$=$	25 m
Extension of propulsion	L	$=$	669.6 m
External diameter of tunneling machine	B s	$=$	2.37 m

2) Uniform load applied to pipe

Uniform load applied to pipe (q) is sum of the following 2 types of loads.

```
\(\mathrm{q}=\mathrm{w}+\mathrm{p}\)
To the above formula
    q : Uniform load applied to pipe
    ( \(\mathrm{kN} / \mathrm{m} 2\) )
    w : Vertical uniform distribution load of soil
    ( \(\mathrm{kN} / \mathrm{m} 2\) )
    p : Live load
( \(\mathrm{kN} / \mathrm{m}\) 2)
- Vertical uniform distribution load of earth pressure (w) Calculation by Terzaghi's theory
\(w=\left(r s-\frac{2 \times C}{B e}\right) \times C e\)
Ce : Coefficient of earth load of Terzaghi
\(\mathrm{Ce}=\frac{\mathrm{Be}}{2 \times \mathrm{K} \times \mu} 1-\mathrm{e}-\frac{2 \times \mathrm{K} \times \mu}{\mathrm{Be}} \mathrm{H}\)
\(=\frac{5.254}{0.353} 1-\mathrm{e}-\frac{0.353}{5.254} \quad 25.000\)
\(=12.116\)
Be : Width of soil loosness (m)
\(\mathrm{Be}=\mathrm{Bt} \times \frac{+\sin (45-}{\cos (45-\infty / 2)}\)
\(\left.=2.450 \times \frac{1+\sin (45}{\cos (45-} 10 / 2\right)\)
\(=5.254\)
Bt : Inner diameter of tunnel (m)
\(B t=B c+0.1\)
\(=2.35+0.1\)
\(=2.450\)
```

To the above formula
$\gamma s:$ Unit volume weith of soil $\quad r s=16.268 \mathrm{KN} / \mathrm{m}^{3}$
$\mathrm{C}:$ Cohesion of soil $\quad \mathrm{C}=17.787 \mathrm{kN} / \mathrm{m}^{2}$
Bc : Exterior diamter of pipe
$\mathrm{Bc}=2.350 \mathrm{~m}$
K Coefficient of lateral earth pressure of
$K=1.000$
ϕ : Internal frictional angle of soil
$\phi=10.0^{\circ}$
μ : Coefficient of friction of soil $(=\tan \phi)$
$\dot{\mu}=0.176$
H : Earth covering
$\mathrm{H}=25.000 \mathrm{~m}$
Therefore

- Live load (p)

As for live load (p), load of rear wheel of T-25 stated in specification of road bridge and the interpretation is used. Generally, influence of front wheel is neglected.

$$
\mathrm{p}=\frac{2 \times \mathrm{Pt} \times(1+\mathrm{i}) \times \beta^{\prime}}{\mathrm{c}\left(\mathrm{a}+2 \mathrm{H} \times \tan 45^{\circ}\right)}
$$

To the above formula
p: Live load
PtLoad of 1 rear wheel $=\quad 100 \mathrm{kN}(10.204 \mathrm{tf})$
a: Ground contact length of wheels $=$
0.200 m
c : Occupied width of car body $=\quad 2.750 \mathrm{~m}$
i: Impact coefficient $\quad=\quad 0.000$
β^{\prime} Reduction coeffieicnt =
0.900

H : Earth covering =
25.000 m

Table 1 Impact coefficient

$\mathrm{H}(\mathrm{m})$	$\mathrm{H} \leqq 1.5$	$1.5<\mathrm{H}<6.5$	$\mathrm{H} \geqq 6.5$
i	0.500	$0.65-0.1 \mathrm{H}$	0.000

$$
\begin{aligned}
\mathrm{p} & =\frac{2 \times 100 \times(0.000) \times 0.90}{2.750}\left(\begin{array}{lll}
(0.200 & +50.000 \times{ }^{2} \times 1.000
\end{array}\right) \\
& =1.304\left(\mathrm{kN} / \mathrm{m}^{2}\left(0.133 \mathrm{tf} / \mathrm{m}^{2}\right)\right.
\end{aligned}
$$

From above results, uniform load applied to pipe (q) is the following

$$
\begin{aligned}
& \mathrm{q}=\mathrm{w}+\mathrm{p} \\
& =115.072+1.304 \\
& =116.375 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
& \text { (} 11.875 \\
& \mathrm{tf} / \mathrm{m}^{2} \text {) }
\end{aligned}
$$

3) Calculation of Jacking Force
(1)Propulsion in case of considering only straight line

- Propulsion resistance per 1.0 m
$\left.\mathrm{f} 0=\beta(\pi \times \mathrm{Bc} \times \mathrm{q}+\mathrm{W}) \times \mu^{\prime}+\pi \times \mathrm{Bc} \times \mathrm{C}^{\prime}\right)$
To the above formula
β :Reduction coefficient of Propulsion
Bc :Exterior diamter of pipe
q :Uniform load applied to pipe
W :Unit weight of pipe
μ^{\prime} :Friction coefficient
C^{\prime} :Adheisve force between pipe and soil

$$
\beta=0.35
$$

(m)
(kN/m2)
(kN/m)
$(=\tan (\phi / 2)) \mu=0.087$
(kN/m2)

$$
\begin{aligned}
& \mathrm{f}_{0}=0.35 \quad((\pi \times 2.35 \times 116.37539+28.73) \times 0.1 \\
& =+\underset{39.850}{\pi} \times 2.35 \times 4.9 \text { । }
\end{aligned}
$$

- Resistance force of head

$$
\mathrm{F}_{0}=(\mathrm{P} W+\mathrm{Pe}) \times \pi \quad \times\left(\frac{\mathrm{Bs}}{2}\right)^{2}
$$

$$
\begin{gathered}
\mathrm{Pw}: \text { Pressure inside chamber } \\
\mathrm{Pw}=\gamma \mathrm{w} \times\left(\mathrm{h},+\frac{\mathrm{Bs}}{2}\right)+20
\end{gathered}
$$

$$
\gamma \mathbb{W}: \text { Unit volume weight of water } \quad 9.800 \quad \text { (K }\left(1.0 \mathrm{tf} / \mathrm{m}^{3}\right)
$$

$$
\mathrm{h}^{\prime}: \text { Groundwater level } \quad 22.290 \quad(\mathrm{~m})
$$

$$
\mathrm{h}^{\prime}=\mathrm{H}-(\mathrm{GL}-)-\left(\frac{\mathrm{Bs}}{2}-\frac{\mathrm{Bc}}{2}\right)
$$

$$
\left.=25.000-2.700-\frac{2.370}{2}-\frac{2.350}{2}\right)
$$

$$
=22.290 \quad(\mathrm{~m})
$$

$$
\operatorname{Pw}=9.800 \times(22.290+1.185)+20
$$

$$
=250.055 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)
$$

Pe :Cutting resistance $\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{Pe}=200.000 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
Bs : Exterior diamter of excavator 2.370 (m)
$\mathrm{F}_{0}=(250.055+200.000) \times \pi \times 1.404$
$=1985.419 \quad(\mathrm{kN})$

- Total propulsion
$\mathrm{F}=\mathrm{F}_{0}+\mathrm{f} 0 \times \mathrm{L}$
L : Extension of propulsion

(2)Calculation for propulsion considering curve interval
pipe diamter
- $\mathrm{D}=$

The number of interval of curve line
Head resistance $\quad \mathrm{F}_{0}=$
Propulsion resistance per m fo=
Internal frictional angle of soil $\phi=$

D	$=$
t	$=$
F_{0}	$=$
$\mathrm{f}_{0}=$	
$\phi=$	

2 mm
0.175 mm

1 Interval
$1985.419 \mathrm{kN}(202.6 \mathrm{tf})$
$39.850 \mathrm{kN}(4.066 \quad \mathrm{tf} / \mathrm{m})$
10°
Form of curved jacking

Radius of curve	R 1	$=270 \mathrm{~m}$
Length of jacking pipe	l 1	$=2.43 \mathrm{~m}$
Distance of interval from departure to BC1	L 1	$=532.4 \mathrm{~m}$
Distance of interval from BC1 to EC1	L 2	$=83.3 \mathrm{~m}$
Distance of interval of from EC1 to arrival	L 3	$=53.9 \mathrm{~m}$

Calculation for propulsion resistance of curved line is generally from the following formula.

$$
\begin{aligned}
& \mathrm{Fn}=\mathrm{K}^{\mathrm{n}} \times \mathrm{F}_{0}+\mathrm{f}^{\prime} \times \frac{\mathrm{K}^{\mathrm{n}+1}-\mathrm{K}}{\mathrm{~K}-1} \\
& \text { Fn : Propulsion resistance in B. C. point } \\
& \mathrm{n} \text { : Number of pipe within curved line interval } \quad \fallingdotseq \mathrm{CL} / 1 \\
& \text { CL : Curved line length } \\
& 1 \text { : Length of a jucking pipe } \\
& \text { (m) } \\
& \text { (m) } \\
& \fallingdotseq 83.3 / 2.43 \\
& \mathrm{~K} \text { : Coefficient of propulsion resistance of } \\
& \fallingdotseq 34.3 \text { (Number) } \\
& \mathrm{K} \text { curved line } \\
& =\frac{1}{\cos \alpha-\mathrm{k} \times \sin \alpha} \\
& \alpha \text { : Bend angle of pipe } \\
& \alpha=2 \sin ^{-1} \frac{1}{2(\mathrm{R}-\mathrm{Bc} / 2)} \fallingdotseq \frac{\mathrm{IA}}{\mathrm{n}} \\
& \text { I A : Angle of intersection } \\
& =2 \sin ^{-1} \begin{array}{lll}
2(\quad 2.430 & 2.350 \quad / 2)
\end{array} \\
& =2 \sin ^{-1} 0.00452 \\
& =0.009039 \text { (RAD) } \quad\left(0.517918{ }^{\circ}\right) \\
& \mathrm{K}=\frac{1}{0.99996-1 \times 0.009} \\
& =1.004581371 \\
& k \quad: \text { Resistivity of shear between pipe and natural ground }=0.5 \\
& \text { Fo : Propulsion resistance in } E_{1} \text { C point } \\
& f^{\prime} \text { : Propulsion resistance per a jacking pipe } \\
& \text { Calculation for propulsion of curved line interval } \\
& \text {-Thrust of interval between arrival to E.C. } 1 \\
& \mathrm{~F} 1=\mathrm{F}+\mathrm{L} \times \mathrm{f}_{0} \\
& \text { fo: } \quad 39.850 \mathrm{k} \text { (} 1 \text { Propulsion resistance per } \mathrm{m} \text {) } \\
& \text { F } 0 \text { : } 1985.419 \mathrm{k} \text { (Head resistance) } \\
& =1985.42+54 \times \quad 39.850 \\
& =4133.3(\mathrm{kN}) \quad(\quad 421.8 \quad \mathrm{tf})
\end{aligned}
$$

-Thrust of interval from arrival to B. C. 1
$\mathrm{F}^{2}=\mathrm{K}^{\mathrm{n}} \times \mathrm{F} 1+\mathrm{f}^{\prime} \times \frac{\mathrm{K}^{\mathrm{n}+1}-\mathrm{K}}{\mathrm{K}-1}$
$\mathrm{K}: 1.004581371$
$\mathrm{n}: 34.27983539$ Number (The number of jucking pipes from
$\mathrm{f}^{\prime}: 96.83502566 \mathrm{kN} /$ Number (Frictional resistance force per a
$=1.0045834 .3 \times 4133.32+97 \times \frac{1.00458-1.004581371}{1.004581371-}$
$=8323.1 \quad(\mathrm{kN}) \quad(\quad 849.3 \quad t \mathrm{f})$
-Thrust within interval between arrival to departure (Total thrust)
F3 3 F+L×fo

> fo: $39.8498 \mathrm{kN} / \mathrm{m} \quad$ (1Propulsion resistance per m)
> F2: 8323.1 kN
> $\begin{aligned} & =8323.1 \\ & = \\ & 29539.2\end{aligned}+\underset{(\mathrm{kN})}{532.4} \times \begin{array}{r}39.8 \\ 3014.2\end{array}$
> tf)
4) Calculation for loading capacity of pipe

- Vertical loading capacity of pipe Vertical loading capacity of pipe (qr) is expressed by the following formula. $\mathrm{qr}=\frac{1}{0.275 \times \mathrm{r}^{2}} \times \mathrm{Mr}$

To the above formula
qr: Vertical loading capacity
Mr . Resisting moment of pipe calculated from external pressure intensity
r : Radius of center of pipe thickness
$(\mathrm{m})=1.0875$
$\mathrm{M}=0.318 \times \mathrm{P} \times \mathrm{r}+0.239 \times \mathrm{W} \times \quad \mathrm{r}$ P : External pressure intensity (from cracking load) $=58.9(\mathrm{kN} / \mathrm{m})$ W : Pipe weight $=28.7(\mathrm{kN} / \mathrm{m})$
$\mathrm{M}=0.318 \times 58.860 \times 1+0.239 \times 28.73 \times 1.0875$ $=27.8(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})(2.839 \quad \mathrm{tf} \cdot \mathrm{m} / \mathrm{m})$
$\begin{aligned} \mathrm{qr} & =\frac{1}{0.275 \times 1.0875} \times 27.823 \\ & =85.547(\mathrm{kN} / \mathrm{m} 2)\end{aligned}$
Moment (M) arising from pipe due to uniform load is the following considering free shoes with 120°.

$$
\begin{array}{rlrll}
\mathrm{M} & =0.275 \times \mathrm{q} \times \mathrm{r}^{2} & & \\
\mathrm{M} & : \text { Bending moment arising from pipe due to vertical uniform load } & (\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{q} & : \text { Uniform load } & & \left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\mathrm{M} & =0.275 \times 116 \times 1^{2} & & \\
& =37.85(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \quad(\quad 3.862 & \mathrm{t} \cdot \mathrm{~m} / \mathrm{m}) &
\end{array}
$$

Safety factor (f) of cracking arising from uniform load is calculated from the ratio between resistance moment of pipe (Mr) and moment arising from pipe or ratio between loading capacity of pipe (qr) and uniformn load (q),

$$
\begin{align*}
\mathrm{f} & =\frac{\mathrm{Mr}}{\mathrm{M}} \text { or } \\
& =\frac{27.823}{37.849} \\
& =0.7351<1.2 \tag{1. 2}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{f} & =\frac{\mathrm{qr}}{\mathrm{q}} \\
& =\frac{85.547}{116.3753891} \\
& =0.7351
\end{aligned}
$$

Therfore, pipe is not safety.
Therfore, type 2 pipe is required.
External (bending) strength of Type 2 pipe : $118 \mathrm{kN} / \mathrm{m}$
Therefore,
$\mathrm{Mr}=0.318 \times 118.000 \times 1.088+0.239 \times 28.730 \times 1.088$
$=48.300 \quad(\mathrm{k} . \quad(\# \# \mathrm{tf} \cdot \mathrm{m} / \mathrm{m})$
$\begin{aligned} \mathrm{qr} & =\frac{1}{0.275} \begin{array}{cc}\times 1.088^{2} \\ & \\ & =\# \# \\ & \\ & 148.374 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right.\end{array}\end{aligned}$
$\begin{array}{rlrl}\mathrm{f} & =\frac{\mathrm{Mr}}{\mathrm{M}} \\ & =\frac{48.300}{37.849} & \text { or } \quad \mathrm{f} & =\frac{\mathrm{qr}}{\mathrm{q}} \\ & =1.276 & =\frac{148.374}{116.375} \\ \# \# \# \# \#\end{array}$
The above calculation was made based on $\phi=10$ and $C=17.787 \mathrm{kN} / \mathrm{m} 2$.
Also in order to confirm stability, calculate as a clay of $\phi=0$ and $C=35.28 \mathrm{kN} / \mathrm{m} 2$, which is a practical condition.
$\mathrm{q}=(\gamma-\mathrm{c} / \mathrm{Be}) \quad \mathrm{x} \quad \mathrm{H}+\mathrm{p}$

$$
\begin{aligned}
& =(16.628-35.28 / 2.957) \times 25.0+1.304 \\
& =118.729 \quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f} & =\frac{\mathrm{q} \mathrm{I}}{\mathrm{q}} \\
& =\frac{148.374}{118.729} \\
& =1.250
\end{aligned}
$$

- Loading capacity of pipe in the direction of propulsion

Allowable loading capacity of pipe (Fr) is expressed by the following formula.
$\mathrm{Fr}=10^{3} \times \sigma$ ma $\times \mathrm{A}$ To the above formula

Fr : Allowable proof stress of pipe
σ ma : Allowable average compressive stress of concrete $=13.000 \quad(\mathrm{~N} / \mathrm{mm} 2)$
A : Effective sectional area of pipe
$\left(\mathrm{m}^{2}\right)$

$$
\begin{aligned}
& \mathrm{A}=\frac{1}{4} \times \pi \times\left(\mathrm{Bg}^{2}-\mathrm{D}^{2}\right) \\
& \mathrm{Bg} \text { : Effective diameter } \quad=\quad 2.310 \quad(\mathrm{~m}) \\
& \mathrm{D} \text { : Inner diameter of pipe } \quad=\quad 2.000 \quad(\mathrm{~m}) \\
& \text { A }=\frac{1}{4} \times \pi \times\left(2.310^{2}-\quad 2.000^{2}\right) \\
& =1.049 \mathrm{~m}^{2} \text {) } \\
& \mathrm{Fr}=1000 \times 13.000 \times 1.049 \\
& =13641.816 \quad(\mathrm{kN}) \quad(\mathrm{tf})
\end{aligned}
$$

5) Reaction force of bearing pressure

Reaction force (R) is expressed by formula of passive earth pressure of Rankine.

(Head drop from soffit of pipe to soffit of wall of bearing pressure)

$$
\begin{aligned}
\mathrm{R}= & 2.0 \times 4.8\left(16.268 \times 3.500 \quad 2 \times \begin{array}{l}
\text { (1.420 } \\
\\
\end{array}+2 \times \times 3.500 \times 1.420 \times 16.268\right. \\
& =21919.599(\mathrm{kN}) \quad(2236.694 \quad \mathrm{tf})
\end{aligned}
$$

6) Allowable extension of back pushing propulsion According to the above results of calculation

Total propulsion Loading capacity of pipe Reaction force of bearing pressure Effective propulsion of back pushing jack

F 3	$=$	29539	(kN)	$(3014.19917 \mathrm{tf})$	
Fr	$=$	13642	(kN)	$(1392.02207 \mathrm{tf})$	
R	$=$	21920	(kN)	$(2236.69382 \mathrm{tf})$	
Fme	$=$	15680	(kN)	$(1600$	$\mathrm{tf})$

Therefore
Adoption of middle pushing method is necessary.
7) The number of installation of middle pushing

Possible propulsion by back pushing method is determined by $\mathrm{Fr}=13641.8163(\mathrm{kN}) \quad\left(\begin{array}{l}\text { (f) }\end{array}\right.$
$\mathrm{Fm}=\mathrm{F}-\mathrm{Fr}$
$=29539.152-13641.82$
$=15897.336(\mathrm{kN}) \quad(1622.1771 \mathrm{tf} \quad)$
As for above, middle pushing method is used to deal with.
In case of $D=2000 \mathrm{~mm}$, the number of installation of hydraulic jack enabled to install into one location of middle pushing is,
$490(\mathrm{kN}) \times 18 \quad$ (Number) $=8820 \quad(\mathrm{kN}) \quad(900 \mathrm{tf})$ is limit.

Possible propulsion in one location of middle pushing is
$\mathrm{Fj}=490 \quad(\mathrm{kN}) \times 18 \quad$ (Number)
$=8802(\mathrm{kN})(900 \mathrm{tf})$
Therefore, the number of intallation of middle pushing (n) is
$\mathrm{n}=\frac{\mathrm{Fm}}{\mathrm{Fj}}$
$=\frac{15897}{8820}$
$=1.802$
Therefore, 2 locations are necessary.

4.2 推進管

推進管の外圧強き（曲げ強度）を表 1．4．2－1，外圧試験方法（曲げ強度詞験方法）を図1．4．2－1に示す。

表1．4．2－1 推進管の外圧強さ（曲げ強度）
単位： kN / m

呼 び 径	ひび割れ荷重		破 壊 荷 重	
	1 種	2 種	1 種	2 種
200	31.4	62.8	47.1	94.2
250	32.4	64.8	49.1	97.1
300	34.4	68.7	52.0	103
350	37.3	74.6	55.9	112
400	39.3	78.5	58.9	118
450	42.2	84.4	63.8	127
500	44.2	88.3	66.7	133
600	46.1	92.2	69.7	138
700	48.1	96.2	72.6	143
800	35.4	70.7	57.9	106
900	38.3	76.5	64.8	115
1000	41.2	82.4	71.6	124
1100	42.7	85.4	78.5	128
1200	44.2	88.3	86.3	133
1350	47.1	94.2	98.1	142
1500	50.1	101	110	151
1650	53.0	106	122	159
1800	55.9	112	134	168
2000	58.9	118	142	177
2200	61.8	124	149	186
2400	64.8	130	155	195
2600	67.7	136	163	203
2800	70.7	142	170	212
3000	73.6	148	177	221

備考 ひび割れ荷重とは，管に幅 0.05 mのひひび割れを生じたときの試験機が示す荷重を有効長 L で除した値をいい，破壊荷重とは，試験機が示す最大荷重を有効長 L で除した値をいう。
7. Study on Pit Mouth Protection by Chemical Grouting (Shaft A, B, and C)

Contents

1. Study on the Loosened Earth Cover Thickness
2. Study on Shaft Mouth Protection (Chemical Grouting) for Shaft A
3. Study on Shaft Mouth Protection (Chemical Grouting) for Shaft B
4. Study on Shaft Mouth Protection (Chemical Grouting) for Shaft C

1. Study on the Loosened Earthcover Thickness

As depth of Launch and Reception shaft is deep, thickness of earth covering for the ground improvement around the shaft mouth protection is defined as loosened height and to check.

Calculation of the loosened area

$$
\begin{aligned}
& h=\frac{D}{2}\left\{1+\sin \left(45^{\circ}-\frac{\phi}{2}\right)\right\} \\
& B_{0}=D \cos \left(45^{\circ}-\frac{\phi}{2}\right) \\
& B=B_{0}+2 h \tan \left(45^{\circ}-\frac{\phi}{2}\right) \\
& h_{0}=\frac{B}{2 K \tan \phi}\left(1-e^{-K \tan \phi(2 H / B)}\right)
\end{aligned}
$$

where;
B : Loosened width
ho : Loosened height
φ : Angle of internal friction
H: Earth cover
D: Tunnel diameter
h : Height of sliding surface
K : Coeffi. of active earth pressure
Y : Unit weight of soil

Tunnel Diameter

$$
D=\quad 2.350 \mathrm{~m}
$$

Earth Covering

$$
\mathrm{H}=25.825 \mathrm{~m}
$$

internal friction angle of soil

$$
\varphi=\quad 5.0^{\circ}
$$

Sliding suface height(h)

$$
\begin{aligned}
\mathrm{h} & =\mathrm{D} / 2 \cdot\left\{1+\sin \left(45^{\circ}-\varphi / 2\right)\right\} \\
& =1.97 \mathrm{~m}
\end{aligned}
$$

Loosened width (B)

$$
\begin{aligned}
B 0 & =D \cdot \cos \left(45^{\circ}-\varphi / 2\right) \\
& =1.73 \mathrm{~m} \\
B & =B 0+2 \cdot h \cdot \tan \left(45^{\circ}-\varphi / 2\right) \\
& =5.34 \mathrm{~m}
\end{aligned}
$$

Loosened height (ho)

$$
\mathrm{h} 0=\frac{\mathrm{B}}{2 \cdot \mathrm{~K} \cdot \tan \varphi} \quad \cdot\left\{1-\mathrm{e}^{\wedge}(-\mathrm{K} \cdot \tan \varphi \cdot(2 \mathrm{H} / \mathrm{B}))\right\}
$$

Coefficient of active earth pressure

$$
\begin{aligned}
\mathrm{K} & =\left\{\tan \left(45^{\circ}-\varphi / 2\right)\right\}^{\wedge} 2 \\
& =0.840
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{h} 0 & =36.346 \times(1-\quad 0.49138) \\
& =18.49 \mathrm{~m}
\end{aligned}
$$

Loosened height from pipe center

$$
\begin{aligned}
\mathrm{h} 0^{\prime} & =\mathrm{h} 0+\mathrm{D} / 2 \\
& =\quad 19.665 \mathrm{~m}
\end{aligned}
$$

2. Study on Shaft Mouth Protection(Chemical Grouti Vertical Shaft A

Vertical Shaft No.f Jacking Shaft
(Shield Center GL-27.Om)

1. Study Conditions

- Radius of Shaft Mouth $a=1.175 \mathrm{~m}$
- Diameter of Shaft Mouth $\quad D=2,350 \mathrm{~mm}$
- Depth from GL to center of, $\mathrm{H}=19.670 \mathrm{~m}$
- Groundwater level

GL- 2.830 m

- Surcharge
$\mathrm{q}=10.00 \mathrm{kN} / \mathrm{m}^{2}$

Soil Layer to shield center(jacking)

$\stackrel{\nabla \mathrm{G} . \text { Water }}{=}$	Type of Soil		G.L.	thickness	Yt	$Y^{\prime} \mathrm{t}$	$\mathrm{yt} \cdot \mathrm{h}$	$\mathrm{yt} \cdot \mathrm{h}$
	1st layer	Gravel	0.800		18.00		0.00	0.00
	2nd layer	Clay	2.830		14.00		0.00	0.00
	3rd layer	Clay	15.000	7.67	14.00	14.00	107.38	107.38
	4th layer	Clay	25.000	10.00	18.00	18.00	180.00	180.00
	5th layer	Clay	27.000	2.00	18.00	18.00	36.00	36.00
	6th layer							
	7th layer							
	8th layer							
	9th layer							
		計		19.67			323.38	323.38

※submerged unit weight of soil : $9.0 \mathrm{kN} / \mathrm{m} 3$

- Soil constants $\quad \begin{array}{rr}\mathrm{C}_{0} & = \\ & 100.0 \mathrm{kN} / \mathrm{m}^{2} \\ \varphi= & 5.0^{\circ} \\ & \mathrm{yt}= \\ & \quad 18.0 \mathrm{kN} / \mathrm{m}^{3}\end{array}$
- Design cohesion of groC' $=100.0 \mathrm{kN} / \mathrm{m}^{2}$
- Safety factor \quad Fs $=1.5$

2. Calculation of the Improved Section
1) Improved thickness for the Upper Side

Improved thickness for the upper side can be decided based on the following formula which additional stress(plastic area) occurred along the perimeter of the cutting surface due to tunneling is considered.

$$
\ln \mathrm{R}+\frac{\mathrm{R} \cdot \mathrm{\gamma t}}{2 \cdot \mathrm{C}^{\prime}}=\frac{\mathrm{H} \cdot \gamma \mathrm{t}}{2 \cdot \mathrm{C}^{\prime}}+\ln (\mathrm{a})
$$

Substituting the values, the above will be as follows:

$$
\ln (R)-0.090 R=1.828
$$

Obtain R by trial calculation, $R=4.25 \mathrm{~m}$

Therefore, the improved thickness H 1 is from $\mathrm{H} 1=\mathrm{Fs} \cdot(\mathrm{R}-\mathrm{a})$

$$
\mathrm{H}_{1}=4.62 \mathrm{~m} \quad \rightarrow \quad 4.70 \mathrm{~m}
$$

2) Improved thickness for the Lateral Side

Area to improve is defined as to an extent to a point of intersection of angle of collapse $\left(45^{\circ}+\phi / 2\right)$ and line H 1 obtained from the above.

$$
\beta=\cos ^{-1}\left(a / a+H_{1}\right)
$$

$\mathrm{a} / \mathrm{a}+\mathrm{H}_{1}=0.203$

$$
\beta=78.29^{\circ}
$$

$$
\begin{aligned}
\theta & =45^{\circ}+\varphi / 2 \\
& =47.50^{\circ} \\
\alpha & =360^{\circ}-\left(90^{\circ} \times 2+\beta+\theta\right) \\
& =180^{\circ}-(\beta+\theta) \\
& =54.21^{\circ}
\end{aligned}
$$

Define thickness of lateral improvement as B

$$
\begin{aligned}
B & =\left(a+H_{1}\right) \times \sin \alpha-a \\
& =\quad 3.53 \mathrm{~m}-\quad 3.60 \mathrm{~m}
\end{aligned}
$$

3) Improved thickness for the Bottom Side

Thickness can be obtained from force balance between uplift(U) acting on the bottom surface of thr improved body, weight of the improved body (W) and resistant shear force of the improved body (F)

$$
\begin{aligned}
& F s=\frac{W+F}{U} \\
& U=\left(H^{\prime}+H_{2}\right) \cdot D \cdot \gamma W \\
& W=y t \cdot H_{2} \cdot D \\
& F=2 \cdot H_{2} \cdot C
\end{aligned}
$$

where;

- pipe diameter $\quad \mathrm{D}=2.35 \mathrm{~m} \quad(\mathrm{a}=\quad 1.18 \mathrm{~m})$
- depth from GL to center of exc.
- unit weight of soil
$H^{\prime}=20.85 \mathrm{~m}$
- unit weight of water
$\mathrm{yt}=\quad 18.0 \mathrm{kN} / \mathrm{m}^{3}$
- design cohesion of the improved bod:
$\gamma w=\quad 10.0 \mathrm{kN} / \mathrm{m}^{3}$
- safety factor
$\mathrm{Fs}=1.5$
and therefore,
$U=489.9+23.5 \cdot \mathrm{H}_{2}$
$W=42.3 \cdot \mathrm{H}_{2}$
$\mathrm{~F}=200.0 \cdot \mathrm{H}_{2}$
$\mathrm{H}_{2}=3.55 \mathrm{~m}-3.60 \mathrm{~m}$

Minimum improvement thickness is to be applied as a design value in case calculation results are lower than the minimum values indicated below.

Accoraing to tne caiculation resuits, tne improved tnickness or tne upper, iaterai ana dottom side indicates more than the minimum values. However, as it is hard clay of N -value of 50 or more around the shaft mouth, minimum improved thickness can be applied for the purpose of water stnn

Calculation | Minimum |
| :--- |
| improvement area |\quad Applied

- Upper imp. Thk. $\mathrm{H} 1=$	4.7 m	2.0 m	\rightarrow
- Lateral imp. Thk. $\mathrm{B}=$	3.6 m	1.5 m	\rightarrow
- Bot. imp. Thk. $\mathrm{H} 2=$	3.6 m	1.5 m	
	1.5 m	\rightarrow	1.5 m

「Chemical Groutig work Design Manual Japan Grout Association

Minimum improvement thickness(m)

	$\mathrm{D}<1.0$	$1.0 \leqq \mathrm{D}$ <2.0	$2.0 \leqq \mathrm{D}$ <3.0	$3.0 \leqq \mathrm{D}$ <4.0	$4.0 \leqq \mathrm{D}$ <5.0	$5.0 \leqq \mathrm{D}$ <6.0	$6.0 \leqq \mathrm{D}$ <7.0	$7.0 \leqq \mathrm{D}$ <8.0
B	1.0	1.5	1.5	2.0	2.5	3.0	3.5	4.0
H_{1}	1.5	1.5	2.0	2.0	3.0	3.0	4.0	4.0
H_{2}	1.0	1.0	1.5	1.5	2.0	2.5	3.0	3.5
L	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0

4) Improved thickness at the front surface (at cutting edge)

Lamuate mproved mickness assumng trat puncming shear torce of ule mproved soll is resistant to the both earth and water pressure acting on the mouth rear as indicated holnus

$\begin{array}{llll}\text { Mouth perimeter } & \mathrm{L}=2 \times \pi \times \mathrm{a} & = & 7.38 \mathrm{~m} \\ \text { Mouth area } & \mathrm{S}=\pi \times \mathrm{a}^{2} & = & 4.34 \mathrm{~m}^{2} \\ & \tan (45-\varphi / 2) & =0.916\end{array}$

Earth pressure

$$
\begin{aligned}
\mathrm{Pa} & =\left(\mathrm{q}+\sum \mathrm{yt}\right) \times \tan ^{2}(45-\varphi / 2)-2 \times \mathrm{C} \times \tan (45-\varphi / 2) \\
& =279.72-183.20=96.52 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Water pressure
$\mathrm{Pw}=168.40 \mathrm{kN} / \mathrm{m}^{2}$
External Force

$$
\begin{aligned}
\mathrm{W} & =(\mathrm{Pa}+\mathrm{Pw}) \times \mathrm{S} \\
& =1149.77 \mathrm{kN}
\end{aligned}
$$

Therefore, required improved thickness of L will be as follows:

$$
\begin{aligned}
\mathrm{L} & =\mathrm{Fs} \times \mathrm{W} / \mathrm{I} \times \mathrm{C} \\
& =2.34 \mathrm{~m} \rightarrow 2.40 \mathrm{~m}
\end{aligned}
$$

Minimum value $=\quad 3.0 \mathrm{~m}$
Therefore,
Required imp. thickness $=3.0 \mathrm{~m}$

3. Study on Pit Mouth Protection(Chemical Grouting Vertical Shaf B

Vertical Shaft No.f Jacking Shaft

(Shield Center GL-27.0m)

1. Study Conditions

- Radius of Shaft Mouth
$a=\quad 1.175 \mathrm{~m}$
- Diameter of Shaft Mouth
$D=2,350 \mathrm{~mm}$
- Depth from GL to center of , $\mathrm{H}=19.670 \mathrm{~m}$
- Groundwater level

GL- $\quad 2.830 \mathrm{~m}$

- Surcharge
$q=\quad 10.00 \mathrm{kN} / \mathrm{m}^{2}$

Soil Layer to shield center(jacking)

$\stackrel{\nabla \mathrm{G} . \text { Water }}{=}$	Type of Soil		G.L.	thickness	yt	Y't	Yt'•h	$\mathrm{yt} \cdot \mathrm{h}$
	1st layer	Clay	2.490		14.00		0.00	0.00
	2nd layer	Clay	3.000		14.00	14.00	0.00	0.00
	3rd layer	Sand	4.000		17.00	17.00	0.00	0.00
	4th layer	Clay	10.000	2.67	14.00	14.00	37.38	37.38
	5th layer	Silt	13.000	3.00	16.00	16.00	48.00	48.00
	6th layer	Clay	15.000	2.00	18.00	18.00	36.00	36.00
	7th layer	Clay	25.000	10.00	18.00	18.00	180.00	180.00
	8th layer	Sand	27.000	2.00	19.00	19.00	38.00	38.00
	9th layer							
		計		19.67			339.38	339.38

※submerged unit weight of soil : $9.0 \mathrm{kN} / \mathrm{m} 3$

- Soil constants

$$
\begin{aligned}
\mathrm{C}_{0}= & 0.0 \mathrm{kN} / \mathrm{m}^{2} \\
\varphi= & 40.0^{\circ} \\
\mathrm{\gamma t}= & 19.0 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

- Design cohesion of groC' $=100.0 \mathrm{kN} / \mathrm{m}^{2} \quad$ (double packer method:sandy soil)
- Safety factor Fs= 1.5

2. Calculation of the Improved Section
1) Improved thickness for the Upper Side

Improved thickness for the upper side can be decided based on the following formula which additional stress(plastic area) occurred along the perimeter of the cutting surface due to tunneling is considered.

$$
\operatorname{lnR}+\frac{\mathrm{R} \cdot \mathrm{\gamma t}}{2 \cdot \mathrm{C}^{\prime}}=\frac{\mathrm{H} \cdot \mathrm{\gamma t}}{2 \cdot \mathrm{C}^{\prime}}+\operatorname{In}(a)
$$

Substituting the values, the above will be as follows:

$$
\ln (R)-0.095 R=1.908
$$

Obtain R by trial calculation, $\quad R=4.43 \mathrm{~m}$

Therefore, the improved thickness H 1 is from $\mathrm{H} 1=\mathrm{Fs} \cdot(\mathrm{R}-\mathrm{a})$

$$
H_{1}=4.89 \mathrm{~m} \quad \rightarrow \quad 4.90 \mathrm{~m}
$$

2) Improved thickness for the lateral side

Area to improve is defined as to an extent to a point of intersection of angle of collapse $\left(45^{\circ}+\phi / 2\right)$ and line H 1 obtained from the above.

$$
\beta=\cos ^{-1}\left(a / a+H_{1}\right)
$$

$\mathrm{a} / \mathrm{a}+\mathrm{H}_{1}=$
0.194

$$
\beta=78.81^{\circ}
$$

$$
\begin{aligned}
\theta & =45^{\circ}+\varphi / 2 \\
& =65.00^{\circ}
\end{aligned}
$$

$$
\alpha=360^{\circ}-\left(90^{\circ} \times 2+\beta+\theta\right)
$$

$$
=180^{\circ}-(\beta+\theta)
$$

$$
=36.19^{\circ}
$$

Define thickness of lateral improvement as B

$$
\begin{aligned}
B & =\left(a+H_{1}\right) \times \sin \alpha-a \\
& =\quad 2.41 \mathrm{~m}-\quad 2.50 \mathrm{~m}
\end{aligned}
$$

3) Improved thickness for the bottom side

Thickness can be obtained from force balance between uplift(U) acting on the bottom surface of thi improved body, weight of the improved body (W) and resistant shear force of the improved body (F)

$$
\begin{aligned}
& F s=\frac{W+F}{U} \\
& U=\left(H^{\prime}+H_{2}\right) \cdot D \cdot \gamma w \\
& W=\gamma t \cdot H_{2} \cdot D \\
& F=2 \cdot H_{2} \cdot C
\end{aligned}
$$

(per unit length)
where;

- pipe diameter	$\mathrm{D}=$	$2.35 \mathrm{~m} \quad$ ($\mathrm{a}=$	1.18 m)	
- depth from GL to center of exc.	H^{\prime}	$=$	20.85 m	
- unit weight of soil	$\mathrm{yt}=$	$19.0 \mathrm{kN} / \mathrm{m}^{3}$		
- unit weight of water	$\mathrm{yw}=$	$10.0 \mathrm{kN} / \mathrm{m}^{3}$		
- design cohesion of the improved bod.' $\mathrm{C}=$	$100.0 \mathrm{kN} / \mathrm{m}^{2}$	(粘土)		
- safety factor	$\mathrm{Fs}=$	1.5		

and therefore,

U	$=489.9+23.5 \cdot \mathrm{H}_{2}$
W	$=44.7 \cdot \mathrm{H}_{2}$
F	$=200.0 \cdot \mathrm{H}_{2}$
H_{2}	$=3.51 \mathrm{~m}-3.60 \mathrm{~m}$

Minimum improvement thickness is to be applied as a design value in case calculation results are lower than the minimum values indicated below.

Accoraing to the caiculation resuits, the improvea tnickness or the upper, laterai ana portom side indicates more than the minimum values. However, as it is hard clay of N -value of 50 or more around the shaft mouth, minimum improved thickness can be applied for the purpose of water ston

Calculation

- Upper imp. Thk. $\mathrm{H} 1=\quad 4.9 \mathrm{~m}$
- Lateral imp. Thk. B= 2.5 m
- Bot. imp. Thk. H2
3.6 m

Minimum improvement area
$2.0 \mathrm{~m} \quad \rightarrow \quad 2.0 \mathrm{~m}$
$1.5 \mathrm{~m} \quad \rightarrow \quad 1.5 \mathrm{~m}$
$1.5 \mathrm{~m} \quad \rightarrow \quad 1.5 \mathrm{~m}$

「Chemical Groutig work Design Manual Japan Grout Association

Minimum improvement thickness(m)										
	$\mathrm{D}<1.0$	$1.0 \leqq \mathrm{D}$ <2.0	$2.0 \leqq \mathrm{D}$ <3.0	$3.0 \leqq \mathrm{D}$ <4.0	$4.0 \leqq \mathrm{D}$ <5.0	$5.0 \leqq \mathrm{D}$ <6.0	$6.0 \leqq \mathrm{D}$ <7.0	$7.0 \leqq \mathrm{D}$ <8.0		
B	1.0	1.5	1.5	2.0	2.5	3.0	3.5	4.0		
H_{1}	1.5	1.5	2.0	2.0	3.0	3.0	4.0	4.0		
H_{2}	1.0	1.0	1.5	1.5	2.0	2.5	3.0	3.5		
L	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0		

4) Improved thickness at the front side (at cutting edge)

Calcuate miproveu mickness assumming mat puricimy shear orce of me mproved soll is resistant to the both earth and water pressure acting on the mouth rear as indicated halown


```
Mouth perimeter \(\mathrm{I}=2 \times \pi \times \mathrm{a}=7.38 \mathrm{~m}\)
Mouth area \(\quad \mathrm{S}=\pi \times \mathrm{a}^{2} \quad=4.34 \mathrm{~m}^{2}\)
    \(\tan (45-\varphi / 2)=0.466\)
```

Earth pressure

$$
\begin{aligned}
\mathrm{Pa} & =\left(q+\sum y \mathrm{y}\right) \times \tan ^{2}(45-\varphi / 2)-2 \times C \times \tan (45-\varphi / 2) \\
& =75.87-0.00=75.87 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Water pressure

$$
\mathrm{Pw}=168.40 \mathrm{kN} / \mathrm{m}^{2}
$$

External Force

$$
\begin{aligned}
\mathrm{W} & =(\mathrm{Pa}+\mathrm{Pw}) \times \mathrm{S} \\
& =1060.13 \mathrm{kN}
\end{aligned}
$$

Therefore, required improved thickness of L will be as follows:

$$
\begin{aligned}
\mathrm{L} & =\mathrm{Fs} \times \mathrm{W} / \mathrm{I} \times \mathrm{C} \\
& =2.15 \mathrm{~m} \rightarrow 2.20 \mathrm{~m}
\end{aligned}
$$

Minimum value $=$	3.0 m
Therefore,	
Required imp. thickness $=$	3.0 m

4. Study on Shaft Mouth Protection(Chemical Grouti Vertical Shaft C

Vertical Shaft No.f Jacking Shaft
(Shield Center GL-27.0m)

1. Study Conditions

- Radius of Shaft Mouth
$a=1.175 \mathrm{~m}$
- Diameter of Shaft Mouth $D=2,350 \mathrm{~mm}$
- Depth from GL to center of, $\mathrm{H}=19.670 \mathrm{~m}$
- Groundwater level GL- 2.430 m
- Surcharge $\quad q=10.00 \mathrm{kN} / \mathrm{m}^{2}$

Soil Layer to shield center(jacking)

$\stackrel{\nabla \mathrm{G} . \text { Water }}{=}$	Type of Soil		G.L.	thickness	Yt	Y't	yt'•h	$\mathrm{yt} \cdot \mathrm{h}$
	1st layer	Clay	2.430		14.00		0.00	0.00
	2nd layer	Clay	11.000	3.67	14.00	14.00	51.38	51.38
	3rd layer	Clay	16.000	5.00	16.00	16.00	80.00	80.00
	4th layer	Clay	19.000	3.00	18.00	18.00	54.00	54.00
	5th layer	Clay	21.000	2.00	18.00	18.00	36.00	36.00
	6th layer	Sand	24.000	3.00	19.00	19.00	57.00	57.00
	7th layer	Clay	27.000	3.00	18.00	18.00	54.00	54.00
	8th layer							
	9th layer							
		計		19.67			332.38	332.38

※submerged unit weight of soil : $9.0 \mathrm{kN} / \mathrm{m} 3$

- Soil constants

$$
\begin{array}{rc}
\mathrm{C}_{0}= & 100.0 \mathrm{kN} / \mathrm{m}^{2} \\
\varphi= & 5.0^{\circ} \\
\mathrm{yt}= & 18.0 \mathrm{kN} / \mathrm{m}^{3}
\end{array}
$$

- Design cohesion of gro $\mathrm{C}^{\prime}=100.0 \mathrm{kN} / \mathrm{m}^{2}$
- Safety factor \quad Fs $=\quad 1.5$

2. Calculation of the Improved Section
1) Improved thickness for the Upper Side

Improved thickness for the upper side can be decided based on the following formula which additional stress(plastic area) occurred along the perimeter of the cutting surface due to tunneling is considered.

$$
\ln R+\frac{R \cdot \gamma t}{2 \cdot \mathrm{C}^{\prime}}=\frac{\mathrm{H} \cdot \gamma \mathrm{t}}{2 \cdot \mathrm{C}^{\prime}}+\ln (\mathrm{a})
$$

Substituting the values, the above will be as follows:

$$
\ln (R)-0.090 R=1.873
$$

Obtain R by trial calculation, $R=4.39 \mathrm{~m}$

Therefore, the improved thickness H 1 is from $\mathrm{H} 1=\mathrm{Fs} \cdot(\mathrm{R}-\mathrm{a})$

$$
H_{1}=4.83 \mathrm{~m} \quad \rightarrow \quad 4.90 \mathrm{~m}
$$

2) Improved thickness for the lateral side

Area to improve is defined as to an extent to a point of intersection of angle of collapse $\left(45^{\circ}+\phi / 2\right)$ and line H 1 obtained from the above.

$$
\beta=\cos ^{-1}\left(a / a+H_{1}\right)
$$

$a / a+H_{1}=0.196$

$$
\begin{aligned}
\beta & =78.70^{\circ} \\
\theta & =45^{\circ}+\varphi / 2 \\
& =47.50^{\circ} \\
\alpha & =360^{\circ}-\left(90^{\circ} \times 2+\beta+\theta\right) \\
& =180^{\circ}-(\beta+\theta) \\
& =53.80^{\circ}
\end{aligned}
$$

Define thickness of lateral improvement as B

$$
\begin{aligned}
B & =\left(a+H_{1}\right) \times \sin \alpha-a \\
& =3.67 \mathrm{~m}-\quad 3.70 \mathrm{~m}
\end{aligned}
$$

3) Improved thickness for the bottom side

Thickness can be obtained from force balance between uplift(U) acting on the bottom surface of thi improved body, weight of the improved body (W) and resistant shear force of the improved body (F)

$$
F s=\frac{W+F}{U}
$$

(per unit length)

$$
U=\left(H^{\prime}+H_{2}\right) \cdot D \cdot \gamma w
$$

$$
W=\gamma t \cdot H_{2} \cdot D
$$

$$
\mathrm{F}=2 \cdot \mathrm{H}_{2} \cdot \mathrm{C}
$$

where;
$\begin{array}{lrrr}\text { - pipe diameter } & \mathrm{D}= & 2.35 \mathrm{~m} \quad \text { (} \mathrm{a}= & 1.18 \mathrm{~m} \text {) } \\ \text { - depth from GL to center of exc. } & \mathrm{H}^{\prime}= & 20.85 \mathrm{~m} & \\ \text { - unit weight of soil } & \mathrm{yt}= & 18.0 \mathrm{kN} / \mathrm{m}^{3} & \\ \text { - unit weight of water } & \mathrm{Yw}= & 10.0 \mathrm{kN} / \mathrm{m}^{3} & \\ \text { - design cohesion of the improved bod.' } \mathrm{C}= & 100.0 \mathrm{kN} / \mathrm{m}^{2} \\ \text { - safety factor } & \mathrm{Fs}= & 1.5\end{array}$
and therefore,
$\mathrm{U}=489.9+23.5 \cdot \mathrm{H}_{2}$
$W=\quad 42.3 \cdot \mathrm{H}_{2}$
$F=200.0 \cdot \mathrm{H}_{2}$
$\mathrm{H}_{2}=\quad 3.55 \mathrm{~m}-\quad 3.60 \mathrm{~m}$

Minimum improvement thickness is to be applied as a design value in case calculation results are lower than the minimum values indicated below.

Accoraing to the caiculation resuits, the improvea tnickness ot the upper, laterat and dottom side indicates more than the minimum values. However, as it is hard clay of N -value of 50 or more around the shaft mouth, minimum improved thickness can be applied for the purpose of water stnn

	Calculation	Minimum improvement area		Applied
- Upper imp. Thk. $\mathrm{H} 1=$	4.9 m	2.0 m	\rightarrow	2.0 m
- Lateral imp. Thk. B=	3.7 m	1.5 m	\rightarrow	1.5 m
- Bot. imp. Thk. H2=	3.6 m	1.5 m	\rightarrow	1.5 m

「Chemical Groutig work Design Manual Japan Grout Association

Minimum improvement thickness(m)

	$\mathrm{D}<1.0$	$1.0 \leqq \mathrm{D}$ <2.0	$2.0 \leqq \mathrm{D}$ <3.0	$3.0 \leqq \mathrm{D}$ <4.0	$4.0 \leqq \mathrm{D}$ <5.0	$5.0 \leqq \mathrm{D}$ <6.0	$6.0 \leqq \mathrm{D}$ <7.0	$7.0 \leqq \mathrm{D}$ <8.0
B	1.0	1.5	1.5	2.0	2.5	3.0	3.5	4.0
H_{1}	1.5	1.5	2.0	2.0	3.0	3.0	4.0	4.0
H_{2}	1.0	1.0	1.5	1.5	2.0	2.5	3.0	3.5
L	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0

4) Improved thickness at the front side (at cutting edge)
valculate mproved mickness assummy trat puncming snear iorce of me mindoved sum is resistant to the both earth and water pressure acting on the mouth rear as indicated halous

$$
\begin{array}{llll}
\text { Mouth perimeter } & \mathrm{L}=2 \times \pi \times \mathrm{a} & = & 7.38 \mathrm{~m} \\
\text { Mouth area } & \mathrm{S}=\pi \times \mathrm{a}^{2} & = & 4.34 \mathrm{~m}^{2} \\
& \tan (45-\varphi / 2) & =0.916
\end{array}
$$

Earth pressure

$$
\begin{aligned}
\mathrm{Pa} & =\left(\mathrm{q}+\sum \mathrm{y} t\right) \times \tan ^{2}(45-\varphi / 2)-2 \times C \times \tan (45-\varphi / 2) \\
& =287.28-183.20=104.08 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Water pressure

$$
\mathrm{Pw}=172.40 \mathrm{kN} / \mathrm{m}^{2}
$$

External Force

$$
\begin{aligned}
\mathrm{W} & =(\mathrm{Pa}+\mathrm{Pw}) \times \mathrm{S} \\
& =1199.91 \mathrm{kN}
\end{aligned}
$$

Therefore, required improved thickness of L will be as follows:

$$
\begin{aligned}
\mathrm{L} & =\mathrm{Fs} \times \mathrm{W} / \mathrm{I} \times \mathrm{C} \\
& =2.44 \mathrm{~m} \rightarrow 2.50 \mathrm{~m}
\end{aligned}
$$

Minimum vall $\quad 3.0 \mathrm{~m}$
Therefore,
Required imp $\quad 3.0$ m
8. Construction Schedule for the Pilot Project by Pipe Jacking Method

Contents

1. Construction Schedule for the Pilot Project by Pipe Jackng
2. Breakdown of Construction Schedule
3. Breakdown of Pipe Jacking Construction

1. Construction Schedule for the Pilot Project by Pipe Jacking Method

Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Mobilization (0.5)																								
Site Preparation (0.5)																								
Departure Shaft Construction (A) (12.0)																								
Pipe Jacking Preparation ($\mathrm{A} \rightarrow$ B) (0.4)																								
Pipe Jacking $(A \rightarrow B) L=279.9 m$ (2.1)																								
Arrival Shaft Construction (B) (8.7)																								
Departure Shaft Construction (C) (12.0)																								
Pipe Jacking Preparation ($\mathrm{C} \rightarrow$ B) (0.4)																								
Pipe Jacking ($C \rightarrow B$) L=670m																								
Preparation of Manhole Construction (0.4)																								
Construction of Manhole B (2.4)																								
Site Clearance (0.5)																								-
Demobilization (0.5)																								
Total Construction Period (24.0)																								

* Manhole A and Manhole C are not plan to be constructed under the Pilot Project.

2. Breakdown of Construction Schedule

2.1 Shaft Construction Schedule
Condition; Day time construction from 8:00 to 17:00
2.1.1 \quad Shaft A and C actual construction schedule days

1. Precedent drilling construction work 43
2. Construction of steel sheet pile cut-off wall 6
3. Ground anchor work 17
4. Bearing sand mounting 4
5. Steel cutting edge placement 2
6. $1^{\text {st }}$ Lot structure work 24
7. $2^{\text {nd }}-7^{\text {th }}$ Lot structure work (6 lot x 15 days $=90$ days) 90
8. $2^{\text {nd }}-7^{\text {th }}$ Press in excavation 60
9. Contact grouting, bottom surface leveling work and under water concrete work 20
10. Bottom slab concrete 7
11. Removal of cut-off wall 4
Total 277
Number of available day $=277 \times 1.3=360$ days, 360 days $/ 30$ days $/$ month $=12$ months
2.1.2 Shaft B actual construction schedule days
12. Precedent drilling construction work 25
13. Sheet pile cut-off wall 5
14. Ground anchor work 15
15. Bearing sand mounting 3
16. Steel cutting edge placement 1
17. $1^{\text {st }}$ Lot structure work 16
18. $2^{\text {nd }}-7^{\text {th }}$ Lot structure work (6 lot x 12 days $=72$ days $)$ 72
19. $2^{\text {nd }}-7^{\text {th }}$ Press in excavation 40
20. Contact grouting, bottom surface leveling work and under water concrete work 16
21. Bottom slab concrete 5
22. Removal of cut-off wall 3
Total 201
2.2 Manhole Construction Schedule (Manhole B)
Condition; Day time construction from 8:00 to 17:00

day

2.3 Pipe Jacking Construction Schedule

Condition; Day and Night time construction (two shifts)
First shift; from 8:00 am to $18: 00 \mathrm{pm}$, Second shift; from 20:00 pm to 6:00 am

2.3.1 Between Shaft A (internal diameter 8.4 m) and B (internal diameter 5.0m)

Distance between shaft A and $B=286.63 \mathrm{~m}$
Actual pipe jacking distance $=286.63-2.5-4.2=279.93 \mathrm{~m}$
Construction schedule $=279.93 \mathrm{~m} / 5.71 \mathrm{~m} /$ day $=49.0$ days,
Number of available day for pipe jacking construction schedule $=49.0 \times 1.3=63.7$ days, 63.7 days $/ 30$ days $/$ month $=2.1$ months
2.3.2 Between Shaft C (internal diameter 8.4 m) and B (internal diameter 5.0 m)

Distance between shaft C and $\mathrm{B}=676.3 \mathrm{~m}$
Actual pipe jacking distance $=676.3-2.5-4.2=669.6 \mathrm{~m}$
Construction schedule $=669.6 \mathrm{~m} / 6.10 \mathrm{~m} /$ day $=109.77$ days,
Number of available day for pipe jacking construction schedule $=109.77 \times 1.3=142.7$ days, 142.7 days $/ 30$ days $/$ month $=4.7$ months

3. Breakdown of Pipe Jacking Construction

Working Progress per Day		
	ordinary soil	hard soil
Diameter	sandy soil, viscous soil, gravel	
1800 mm	6.7	4.2
2000 mm	6.5	4
2200 mm	6.1	3.8

- Corrction of progress per day

Working progress $=$ Normal Progress Rate $\mathrm{x} \quad \mathrm{a} \times \beta \times \mathrm{Y}$

Y : compensation cosficient for curve constuction $250 \mathrm{~m} \leqq \mathrm{R}<300 \mathrm{~m}$ | δ : :compensation coefficient for Others ($61:$ great deep, $\delta 2:$ high water pressure) |
| :--- |
| 61 |
| 0.9 |
| 02 |

$\mathrm{L}<100 \mathrm{~m} \quad \delta=0.765$

Appendix-7

PREQUALIFICATION (P/Q) DOCUMENTS OF PILOT PROJECT

PILOT PROJECT OF
 SEWERAGE SYSTEM DEVELOPMENT IN
 DKI JAKARTA

PREQUALIFICATION DOCUMENT

October 2014

PILOT PROJECT OF SEWERAGE SYSTEM DEVELOPMENT IN DKI JAKARTA PRE QUALIFICATION DOCUMENT

TABLE OF CONTENTS

CHAPTER I GENERAL

Please use standard PQ document.

CHAPTER II PREQUALIFICATION ANNOUNCEMENT

Procurement Committee (ULP) of Pilot Project of Sewerage System Development in DKI Jakarta will implement a public auction with prequalification using method 2 steps 2 envelopes for construction work under multi years contract and with a unit price contract:

1. Work packages

1.1 Title of work package : Pilot Project of Sewerage System Development in DKI Jakarta
1.2 Scope of work:

The construction work to be carried out by the Contractor is specified as follows.

Description	Unit	Quantity
(1)Construction of Sewerage Pipeline Length of Pipeline is 962.9m in total. (286.6m between Shaft A and B, 676.3m between Shaft B and C) 1) Pipe Installation		
Length of Micorotunneling Method between Shaft A and B	m	279.9
Length of Micorotunneling Method between Shaft B and C	m	669.6
2)	Construction of Shaft and Manhole	
	Shaft A	unit
Shaft B and Manhole B	unit	1
Shaft C	unit	1

The Work shall be carried out in accordance with the drawings, the specifications and the directions of PPK (committing officer) and the supervision consultant of the project (hereinafter called "the Engineer").
The Contractor has to deeply investigate the exact location of existing underground utilities in advance to prevent the affection and to carry out the appropriate measures during the construction work. In addition, the contractor shall investigate the soil condition, groundwater level, and surrounding environment at the location of drive shaft and pipeline etc., in order to select an appropriate microtunneling technology. The construction work cannot make an impact to the neighboring private housing and the alignment of sewer main cannot be allowed to occupy the private lot. Moreover, the distance between the structures constructed in the project and the boundary of the inspection road shall be more than and equal to 5.2 m at the location of wastewater treatment plant (Manhole A and B).

In addition, the Contractor must carry out the construction work, environmental measures, and safety control carefully during the construction.

Particular attention shall be given as the general obligations of the Contractor when working in the vicinity of existing utility services, street trees, and boundary of private lot.
1.3 Total Budget HPS : IDR ${ }^{* * * * *}$
(HPS was calculation of the entire volume of work and the unit price with tax and profit)
1.4 Sources of Funding: APBN , budgeting 2015-2017
2. Requirement for Participant
2.1 Business License: Construction Services Business License in Indonesia and/or the country where J/O company registers
2.2 Job Classification: \quad Sewerage Works (No. SI002), Drainage Works (No. SI001)
2.3 Qualification : Non small
2.4 Participant will constitute:
a. Contractor which has the sufficient experience indicated in "c. Specific Construction Experience" in Clause D of Chapter IV, or
b. Contractor which has the Partnership/cooperation (KSO) with the contractor which has sufficient experience indicated in "c. Specific Construction Experience" in Clause D of Chapter IV, or
c. Contractor which will sublet the microtunneling and deep shafting works of the contract to the contractor which has sufficient experience indicated in "c. Specific Construction Experience" in Clause D of Chapter IV.
3. Schedule of Procurement

No.	Activity	Day and Date	Information
1	Announcement of Prequalification	Monday, November 3, 2014	
2	Registration and Retrieval of Prequalification documents	Monday, November 3, 2014	
3	Deadline for retrieval of Prequalification documents	Monday, November 10, 2014	
4	Deadline for Submission of Prequalification documents	Friday, November 21, 2014	PQ documents' preparation: 21 days
5	Prequalification Evaluation	Monday, November 24, 2014 Friday, December 5, 2014	
6	Proposal of the Evaluation results Prequalification	Monday, December 8, 2014	
7	Determination of the Evaluation result Prequalification	Thursday, December 11, 2014	
8	Announcement of the result Prequalification	Friday, December 12, 2014	
9	Exception (refutation) Time	Monday, December 15, 2014 Friday, December 19, 2014	

4. Bidding of Pilot Project of Sewerage System Development in DKI Jakarta is conducted by Full e-procurement with prequalification.
5. Qualification document can be taken in form of softcopy and can be downloaded through website www.pu.go.id.
6. A person prohibited representing more than one firm in registering and retrieves documents.
7. USER ID can be obtained online from the website, www.pu.go.id.
8. If the participant has the difficulties/impossible to insert the document into website, they will be a risk of participant.
9. If the fund is not available or not enough although the document has been approved, the limit of available budget for the activities will be increased. So the selection of the provider of materials and services (participant) is null and void (cancelled) and can not claim compensation.

CHAPTER III INSTRUCTIONS TO PARTICIPANTS (IKP)

Please use standard PQ document.

CHAPTER IV DATA SHEET OF QUALIFICATION (LDK)

A. Scope of Qualification
B. Source of Funds
C. Submission of Document Fields Qualification

1. ULP Working Group Name:

Procurement Unit of Pilot Project of Sewerage System Development in DKI Jakarta
2. WG-ULP address:
3. Websites: Ministry of Public Works (http:// www.pu.go.id)
4. a. Name of work package:

Pilot Project of Sewerage System Development in DKI Jakarta
b. A brief description of the work:

The construction work to be carried out by the Contractor is specified as follows.

Description	Unit	Quantity
(1) Construction of Sewerage Pipeline Length of Pipeline is 962.9m in total. (286.6m between Shaft A and B, 676.3m between Shaft B and C)		
1)	Pipe Installation	
Length of Micorotunneling Method between Shaft A and B	m	279.9
Length of Micorotunneling Method between Shaft B and C	m	669.6
2)Construction of Shaft and Manhole		
Shaft A	unit	1
Shaft B and Manhole B	unit	1
Shaft C	unit	1

The Contractor has to deeply investigate soil condition, groundwater level, and surrounding environment at the location of drive shaft etc., in order to select an appropriate microtunneling technology. The construction work cannot make an impact to the neighboring private housing and the alignment of sewer main cannot be allowed to occupy the private lot.

Fiscal Year : From 2015 to 2017
According to the schedule listed in the electronic procurement system.

1. Participants Qualifying entities must have a business license and construction permit

Construction Services Business License in Indonesia and/or the country where J/O company registers
2. Participants Qualifying Foreign Construction Services Business Entity must have proof of license Representative of Foreign Construction Services and conduct business cooperation with national companies in the form of partnerships, subcontracting, etc., in the event of a national company that has the ability in the field in question.
3. Has experience of construction work on subfields: Sewerage Works (No. SI002), Drainage Works (No. SI001)
a. Implementation of Work Experience / general construction work Experience the contract as the prime contractor, subcontractor, or management contractor at least three (3) contracts within 10 (ten) years, and the activity of at least 6 (six) months in each year.
b. Similar experiences Construction Work Participation as contractor, management contractor, or subcontractor, at least three (3) contracts within 10 (ten) years, each with a minimum value of $[R p$ \qquad ..] or equivalent, which has been successfully completed and has been handed to work with the kind of work tendered. The similarity is based on the physical size, complexity, methods, technology or other characteristics as described in Chapter, Technical Requirements.
c. Specific Construction Experience for the companies participate in the project:

Works Main Events / Principal for a job contract or other similar carried out during the period of implementation of the above, experience in basic activities / main as follows:
(i) Experience of long distance microtunneling works

The Contractors must have the experience of microtunneling works under the following conditions being satisfied together:

- the diameter of jacking pipe is more than and equal to $1,800 \mathrm{~mm}$ for sewer pipe
- the span between shafts is more than 500 m
(ii) Experience of curved microtunneling works

The Contractors must have the experience of curved microtunneling works under the curvature radius being not more than 250 m
(iii) Experience of microtunneling works under the high groundwater pressure

The Contractors must have the experience of microtunneling works under the groundwater pressure being more than more than $0.2 \mathrm{MPa}(20 \mathrm{~m})$.
(iv) Experience of the deep shafting work

The Contractor must have the experience of shafting works for which excavation depth is more than 30 m .
4. Has the capability of providing Personil ${ }^{1}$ necessary for execution of the work as follows:

No	level of Education	Positions in the proposed work	Work experience (years)	Profession / Expertise
1	2	3	4	5
1	Civil/ Bachelor	Project Manager (Team leader)	More than 15 years for the microtunneling works. More than 5 years for the team leader of the project.	Civil/ Field supervision
2	Civil/ Bachelor	Site Manager	More than 10 years for the construction works	Civil/ Field supervision
3	Civil/ Bachelor	Site Engineer manager	More than 10 years for the construction works	Civil/ Field supervision
4	Civil or Mechanical/ Bachelor	Jacking Operator	More than 10 years as a operator of jacking pipe.	Operator of microtunneling jacking machine
5	Civil/ Bachelor	Geotechnical_ Engineer	More than 10 years for the civil work including shaft work.	Civil/ Construction of deep shaft
6	Civil/ Bachelor	Quantity Surveyor Manager	More than 5 years for the construction works	Civil/ Field supervision
7	Civil/ Bachelor	Quantity Engineer	More than 5 years for the construction works	Civil/ Field supervision
8	Civil/ Bachelor	Quality Engineer	More than 5 years for the construction works	Civil/ Field supervision
9	Civil/ Bachelor	Supervisor	More than 5 years for the construction works	Civil/ Field supervision
10	Environment/ Bachelor	Environmental Specialist	More than 5 years for the construction works	Environment/ Field supervision
11	Civil or Social/ Bachelor	Social Expert	More than 5 years for the construction works	Social Field supervision

The participants can nominate the staff of related foreign companies with the letter of agreement for the cooperation to the project.
5. Has a letter of financial support from government banks / private for \qquad
[at least 10% (ten percent) of the total value of HPS];
6. Has the ability to provide the equipment and material to carry out the construction work, namely:

Equipment

No.	Type	Capacity	Number
1	Machines for long distance and curved microtunneling works	$\varphi 2000 \mathrm{~mm}$	1 unit
2	Slurry separation facilities		1 unit
3	Machines for press-in caisson method		3 unit
4	Clamshell		3 unit

The participants can nominate the equipment of related foreign companies with the letter of agreement for the cooperation to the project.

Material (Jacking pipe)

Item	Requirement
Type	Precast Reinforced Jacking Concrete Pipe with collar
External Strength	Class II
Concrete Compressive Strength	$50 \mathrm{~N} / \mathrm{mm}^{2}$
Dimension	2000 mm
Joint Specification	JC-0.3MPa
Water Resistance	0.3 MPa (Water resistant under 0.4Mpa shall be tested in the factory)
Hydrogen Sulfide $\quad\left(\mathrm{H}_{2} \mathrm{~S}\right)$ Resistance	Resistance under 10ppm of $\mathrm{H}_{2} \mathrm{~S}:$ The reinforced concrete jacking pipe which is made with the additive for $\mathrm{H}_{2} \mathrm{~S}$ resistance, or equivalent $\mathrm{H}_{2} \mathrm{~S}$ resistant jacking pipe shall be used. The inner lining pipe is not applicable considering the difficulty of quality control.

7. Has a TIN and has fulfilled tax obligations last tax year (the annual tax return) and has a monthly report of Article 21, article 23 (if there is a transaction), article 29 25/Pasal and VAT (for the Taxable Person) at least 3 (three) months in the current year. Participants can override this requirement by submitting a Certificate of Fiscal (SKF)

Annual tax returns for the years requested \qquad
[filled with attention to the bid submission and tax laws]
Tax returns for 3 (three) months starting in ... sd ...
[Name of the last month before the month names filled the deadline for bid submission date by taking into account tax laws]
F. Qualification

Document
(IKP_Clause 6)

Add following subparagraph to Sub- Clause 6:
6.4 Participants have to submit the work experience sheet and typical as-built drawings, such as plane and longitudinal drawings, for ALL works which satisfy the requirement for the project indicated in sub-clause 3.c in LDK 4 "Qualification Requirement" and which were carried out within last 10 years. The format of work experience sheet is attached in Appendix C in Chapter VI.
G. Language of \quad Replace the clause 7 to the following:

Qualification Qualification documents and all correspondence in the qualification process shall

Document
(IKP_Clause 7)
be written in Indonesian and/or English.
The Integrity Pact (Chapter V), 2) Qualification Form (Chapter VI), 3) Certification of Bank Financial Support (Chapter VII), and 4) Agreement of Partnership/ Joint Ventures (Chapter VII) shall be written in Indonesian.
And 5) Work Experienced Sheet and 6) evidence of the capability of participants to provide the equipment and material shall be written in English and with the explanation in Indonesian. The document which is written in foreign language other than English shall be translated in English.

1 The personnel in question is managerial personnel (skilled / unskilled) in the organization execution of work. For non-small enterprises do not include skilled workers and / or support personnel, while small enterprises implementing sufficient personnel (skilled labor).

CHAPTER V FORM OF INTEGRITY PACT

Please use standard PQ document.

CHAPTER VI QUALIFICATION FORM

I, the following:
Name: \qquad
[name of authorized representative of a business entity]
Occupation:
[fill in appropriate positions in the certificate of incorporation and amendments]
Acting for and on behalf of
: PT / CV / Firm / or other \qquad [select the appropriate and entity name]
Address:
No. \qquad Phone: \qquad No.. Fax: \qquad E-mail: \qquad
hereby certify that:

1. Legally I have the capacity to sign a contract by notarial act \qquad [corresponding deed of establishment / amendment / authorization letter, state clearly the number and date of the deed of establishment / change / power of attorney. If the partnership / KSO then included additional letter Partnership Agreement / KSO];
2. Mine not as an employee of K / L / D / I [for employees of K / L / D / I, who was on leave outside the responsibility of the $\mathrm{K} / \mathrm{L} / \mathrm{D} / \mathrm{I}$ is written as follows: "I am an employee of $\mathrm{K} / \mathrm{L} / \mathrm{D} / \mathrm{I}$ was on leave outside the dependents K / L / D / I "];
3. Mine was not under criminal sanction;
4. Mine not being and will not be involved in a conflict of interests with the parties concerned, directly or indirectly in this procurement process;
5. Entity I represent are not included in the Black List, not in the custody of the court, not bankruptcy, and activities that do not was discontinued;
6. Incorrect one and / or all of the management entity that I represent not included in the Black List;
7. Data I / entities I represent are as follows:
A. Data Administration

1. Name (PT / CV / Firm /or other.):

Status:
2. Centre Branch
3. Headquarters Address:

No.. Phone: \qquad
No.. Fax:
E-mail:
4. Branch Office Address

No.. Phone:
\qquad
No.. Fax:
E-mail:

B. Permits

1. Permit for Construction Services:
a. Number \qquad
b. Date
2. Validity of business license:
3. Institution issuing business licenses:
C. Certificate of Business Entity
4. Certificate Entity:
a. No.
b. Date
5. Validity period:
6. Institution issuing:
D. Permit or Other requirements (if required, in accordance with the work tendered)
7. Permit or conditions *):
c. No.
d. Date \qquad
8. Validity of license or terms:
9. Agency or licensing requirements:
*) Permit or conditions required under the legislation in force (eg for complex work may be required Certificate of Quality Management System (ISO) and / or Certificate Management System K3 (SMK3))
E. Legal Basis for Establishing Business Entities
10. Deed PT / CV / Firm / at
a. Deed No. /b. Date/ c. Name of Notary
11. Last Amendment
a. Deed No./b. Date/c. Name of Notary
F. business enterprises
12. Commissioner / Supervisor for a Limited Liability Company (PT)

No.	Name	KTP	Position in Enterprise

2. Directors / Management Entity

No.	Name	KTP	Position in Enterprise

G. Financial Data

1. Composition of Shareholding (PT) / composition of the partners (for CV / Firm)

No.	Name	KTP	Percentage

2. Tax

a. Taxpayer Identification Number:
b. Evidence Reports Last Tax Year (SPT Annual): No.. Date \qquad
c. Proof of Monthly Reports (Three months):

1) Article 21: No.. Date \qquad
2) Income Tax Article 23 (if there are transaction this week. Date \qquad
3) Income Tax Article 29 25/Pasal week. Date \qquad
4) VAT: No.. Date \qquad
d. Certificate of Fiscal *): No.. Date
*) When used by providers as a substitute letters b and c
H. Key Personnel Data (expert technical / business entities)

No	Name	Date / mm / yy birth rate	Education level	Position in work experience	experience Employment (years)	profession / expertise	year certificate / diploma
1	2	3	4		6	6	7
1				Project Manager (Team leader)			
2				Site Manager			

$\left.\left.\begin{array}{|c|l|l|l|l|l|l|l|}\hline 3 & & & & \begin{array}{l}\text { Site Engineer } \\ \text { manager }\end{array} & & & \\ \hline 4 & & & & \text { Jacking Operator }\end{array}\right) \quad \begin{array}{l}\text { Geotechnical } \\ \text { Engineer }\end{array}\right)$

The participants can nominate the staff of related foreign companies with the letter of agreement for the cooperation to the project.
I. Data Tools

No.	type of Equipment	number	Capacity or output at this time	Brands and types	year of manufact ure	Condition (\%)	Current Location	Status "Ownership" (Millik / Rent / Other)
1	2	3	4	5	6	7	8	9
	Machines for long distance and curved microtunneling works	lunit						
2	Slurry separation facilities	1 unit						
	Machines for press in caisson method	3unit						
4	Clamshell	3unit						
5	Jacking Pipe							

The participants can nominate the equipment of related foreign companies with the letter of agreement for the cooperation to the project.
J. Data Experience Company in the last 10 years (the highest value experience package according to the classification / subclassification required)

No.	Name of Work Package	Classification / subclassification Work	location	Task Giver / officer commitment		Contract		TEnd Date according to	
				Nama	Address and Phone	Number and Date	$\begin{aligned} & \hline \text { Value } \\ & (\mathrm{Rp}) \end{aligned}$	Kontrak	BA contracts Handove r(PHO) (PHO)
1	2	3	4	5	6	7	8	9	10
1	Microtunneling work								
2	Shaft work								

The participants can nominate the experience of related foreign companies with the letter of agreement for the cooperation to the project.

The detail information and typical drawing of the above projects shall be indicated in the Work Experience Sheet.
K. Data Company Experience in the last 5 years
(used for assessment or SKP SKP $=6=1.2 \mathrm{~N}$ for non-small work packages)

| No. | Name of Package | Job | Task Giver Location /
 Officer | | Contracts/Subcontracts | | Commitment
 End Date
 According to | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The detail information and typical drawing of the above projects shall be indicated in the Work Experience Sheet.
L. Work Being Performed data (for calculation SKP $=\mathrm{KP}-$ the number of packets being worked on)

No.	Name of Package	Job	Task Giver Location / Officer Committing		Contract		Plan the date the contract expires
			Nama	Address / Phone	Number and Date	Value (Rp)	
	2	3	4	5	6	7	

M. Working Capital

Letter of financial support from the Bank: Number:
Date: \qquad Name of Bank: \qquad
Value: USD \qquad
\qquad In case \qquad ..)

This statement I make with the real and full sense of responsibility. If later found that the data / documents that I submit are not correct and / or there is fraud, then I and I represent business entities willing to be liable to administrative penalties, sanctions inclusion in the Black List, a civil lawsuit, and / or reporting criminal to authorities in accordance with the provisions of the legislation.
\qquad [Place], [date] \qquad [month] 20 [Years]
PT / CV / Firm / or other
............ [Select the appropriate and name]
[Affix the seal of Rp 6.000, - and signature]
(Full name of authorized representative of a business entity)
[Office of the business entity]

CHAPTER VII. INSTRUCTIONS FOR FILLING FORM PART QUALIFICATION

A. ADMINISTRATIVE DATA

B. Business License
C. Certificate of Business Entity
D. Permit or Other requirements (if required, in accordance with the Bidding Document)
E. Business Establishment of the Legal Basis
F. Management Agency (Supervisory / Management)
G. Financial Data

H. Data of Core Personnel

I. Data Tools

Filled with the kind, quantity, capacity or output that can be achieved in this time, the brand and type, year of manufacture, condition (in percentage), and the location of the current status of ownership / rental support (can be charged as your own / lease purchase / lease / contract or otherwise which are not being used in the implementation) of each facilities / equipment / supplies as required for the main job is tendered in accordance with the Procurement Documents. Working Group if necessary to prove the existence of tools and evidence ownership status must be shown at time of Proof Qualifications.
The procurement of required jacking pipe must be explained in the Qualification Form by attaching the certification or agreement of supplier. The name and capabilities of manufacturer including method to produce the jacking pipe and its test facilities shall be indicated.

J. Data Company Experience

Filled with the name of the work packages are selected from the value The highest package, classification / subclassification work, the location where execution of the work, the name and address / telephone of the assignor / Committing Officer, number / date and contract amount, date of completion of work packages according to the contract, and the date of the Minutes, handover (PHO), for each work package for 10 (ten) years.
Participants have to submit the work experience sheet and typical as-built drawings, such as plane and longitudinal drawings, for ALL works which satisfy the requirement for the project indicated in sub-clause 3.c in LDK 4 "Qualification Requirement" and which were carried out by participants within last 10 years. "Participants" mean prime company (at a minimum), JO members, and/or the related companies which provide staff and facilities to the prime company for the project. If the participants nominate the experience of related companies, they shall submit the letter of agreement for the project. The format of work experience sheet is attached in Appendix C in Chapter VI.

K. Data Company Experience in the last 5 years

Filled with the name of the work packages, the location where the execution work, the name and address / telephone of the assignor / Committing Officer, number / date and value of the contract, the date of completion of work packages according to the contract, and the date of handover Minutes (PHO), for each work package for 5 (five) last year.
Participants have to submit the work experience sheet and typical as-built drawings, such as
plane and longitudinal drawings, for ALL works which satisfy the requirement for the project indicated in sub-clause 3.c in LDK 4 "Qualification Requirement" and which were carried out by participants, JO members, and subcontractors within last 10 years. The format of work experience sheet is attached in Appendix C in Chapter VI.

L. Data of Works Being Carried Out

M. Working Capital

N. Partnership / KSO

For participants who form partnerships / KSO each member partnership / KSO shall complete the form of qualification for each qualifying business entity.

Agreement or supporting letter shall be submitted when the participant register the subcontractor's experience.

APPENDIX A - FORM OF AGREEMENT OF PARTNERSHIP / JOINT VENTURES (KSO)

Please use the standard form.

APPENDIX B - FORM OF CERTIFICATE OF BANK FINANCIAL SUPPORT

Please use the standard form.

APPENDIX C - WORK EXPERIENCE SHEET

CHAPTER VIII EVALUATION PROCEDURE QUALIFICATION

A. Qualification Document will be evaluated from the data on Sheet Fields

9. Deliver / fill list acquisition work is being done;

Comments from JICA Study Team
Applicants must have the specific construction experience which is stipulated in "D. Qualification Requirements" in chapter IV. Therefore, the definition of NPt shall be amended to "value experience in the appropriate specific construction experience within 10 (ten) years"

Appendix-8

TENDER DOUCMENTS OF PILOT PROJECT

PILOT PROJECT OF SEWERAGE SYSTEM DEVELOPMENT IN
 DKI JAKARTA

TENDER DOCUMENT

October 2014

PILOT PROJECT OF SEWERAGE SYSTEM DEVELOPMENT IN DKI JAKARTA TENDER DOCUMENT

TABLE OF CONTENTS

CHAPTER I GENERAL

Please use standard document.

CHAPTER II INSTRUCTIONS TO BIDDERS (IKP)

Please use standard document.

CHAPTER III BID DATA SHEET (BDS)

A. Implementation of
IKP and LDP
B. Scope of Work

If there is conflict provisions written on Election Data Sheet (LDP) with instructions to participants (IKP) is used then the provisions of the Election Data Sheet (LDP).

1. a. WG-ULP:

Procurement Unit of Pilot Project of Sewerage System Development in DKI Jakarta
b. WG-ULP address:
2. Websites: Ministry of Public Works (http:// www.pu.go.id)
3. a. Name of work package:

Pilot Project of Sewerage System Development in DKI Jakarta
b. A brief description of the work:

The construction work to be carried out by the Contractor is specified as follows.

Description	Unit	Quantity
(1)Construction of Sewerage Pipeline Length of Pipeline is 962.9m in total. (286.6m between Shaft A and B, 676.3m between Shaft B and C) 1) Pipe Installation		
Length of Micorotunneling Method between Shaft A and B	m	279.9
Length of Micorotunneling Method between Shaft B and C	m	669.6
2)	Construction of Shaft and Manhole	unit
Shaft A	unit	1
Shaft B and Manhole B	unit	1
Shaft C		

The Work shall be carried out in accordance with the drawings, the specifications and the directions of PPK (committing officer) and the supervision consultant of the project.
The Contractor has to deeply investigate the exact location of existing underground utilities in advance to prevent the affection and to carry out the appropriate measures during the construction work. In addition, the contractor shall investigate the soil condition, groundwater level, and surrounding environment at the location of drive shaft and pipeline etc., in order to select an appropriate microtunneling technology. The construction work cannot make an impact to the neighboring private housing and the alignment of sewer main cannot be allowed to occupy the private lot. Moreover, the distance between the structures constructed in the project and the boundary of the inspection road shall be more than and equal to 5.2 m at the location of

C. Source of Funds	This work was funded by the funding sources: APBN for Fiscal Year 2015-2016-2017 Total budget of ****
D. Efficiency of	Price preference given to offer participants. Domestic Production Note: 1) price preference for goods / services in the country imposed on Procurement of Goods / Services financed pure dollars but only applies to the procurement of goods / services worth over Rp1.000.000.000, 00 (one billion IDR); and.
2) Preference is given to only the price of goods / services in the country with local content greater than or equal to 25\% (twenty five percent). If the tendered work packages that meet the requirements 1) and 2) the preferences apply and the price charged "given"	
E. Provision	1. Providing Explanations Bidding Document will be held on: Explanation According to the schedule listed in the electronic procurement system.
Delection and review of Field	2. Fieldwork will be held on: According to the schedule listed in the electronic procurement system.

1. Having the ability to provide the personnel ${ }^{6}$ necessary for the execution of the work as follows:

No	level of Education	Positions in the proposed work	Work experience (years)	Profession / Expertise
1	2	3	4	5
1 	Civil/ Bachelor	Project Manager (Team leader)	More than 15 years for the microtunneling works. More than 5 years for the team leader of the project.	Civil/ Field supervision
2	Civil/ Bachelor	Site Manager	More than 10 years for the construction works	Civil/ Field supervision
3	Civil/ Bachelor	Site Engineer manager	More than 10 years for the construction works	Civil/ Field supervision
4	Civil or Mechanical/ Bachelor	Jacking Operator	More than 10 years as a operator of jacking pipe.	Operator of microtunneling jacking machine
5	Civil/ Bachelor	Geotechnical Engineer	More than 10 years for the civil work including shaft work.	Civil/ Construction of deep shaft
6	Civil/ Bachelor	Quantity Surveyor Manager	More than 5 years for the construction works	Civil/ Field supervision
7	Civil/ Bachelor	Quantity Engineer	More than 5 years for the construction works	Civil/ Field supervision
8	Civil/ Bachelor	Quality Engineer	More than 5 years for the construction works	Civil/ Field supervision
9	Civil/ Bachelor	Supervisor	More than 5 years for the construction works	Civil/ Field supervision
10	Environment/ Bachelor	Environmental Specialist	More than 5 years for the construction works	Environment/ Field supervision
11	Civil or Social Bachelor	Social Expert	More than 5 years for the construction works	Social/ Field supervision

The participants can nominate the staff of related foreign companies with the letter of agreement for the cooperation to the project.
2. Having the ability to provide the equipment to carry out the construction work, namely:

No.	Type	Capacity	Number
1	Machines for long distance and curved microtunneling works	$\varphi 2000 \mathrm{~mm}$	1unit
2	Slurry separation facilities		1unit
3	Machines for press-in caisson method		3unit
4	Clamshell		3unit

The participants can nominate the equipment of related foreign companies with the letter of agreement for the cooperation to the project.
3. Subcontracted parts work ${ }^{7 \text { 7 }}$

No	Type of Work subcontracted
1	
2	

Requirements subcontract construction work:
value offers> $\mathrm{Rp} 25,000,000,000$, there Participants must subcontract, in the case of the Working Group set a list of work to be subcontracted, the Participant shall comply with the list.
Related to the job offer subcontracting eligible if:
a. Providers who bid at a price above IDR $25,000,000,000.00$ (twenty five billion IDR) in collaboration with providers of Micro, Small Businesses, and small cooperatives, namely the subcontract most of the work is not the main job.
b. Providers do not subcontract a part / whole main job.
c. Small providers (including micro and small cooperatives) not subcontract work obtained.
4. As the main work ${ }^{8)}$ is:

No	Main Job Type	
1	Microtunneling work	
2	Shafting work (press-in caisson)	
3	Procurement of jacking pipe as follows:	
	Item	Requirement
	Type	Precast Reinforced Jacking Concrete Pipe with collar
	External Strength	Class II
	Concrete Compressive Strength	$50 \mathrm{~N} / \mathrm{mm}^{2}$
	Dimension	2000 mm
	Joint Specification	JC-0.3MPa
	Water Resistance	0.3 MPa (Water resistant under 0.4 Mpa shall be tested in the factory)
	Hydrogen Sulfide	Resistance under 10ppm of $\mathrm{H}_{2} \mathrm{~S}$:

| $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ Resistance | The reinforced concrete jacking pipe
 which is made with the additive for
 $\mathrm{H}_{2} \mathrm{~S}$ resistance, or equivalent $\mathrm{H}_{2} \mathrm{~S}$
 resistant jacking pipe shall be used. The
 inner lining pipe is not applicable
 considering the difficulty of quality
 control. |
| :--- | :--- | :--- |

5. As auxiliary / temporary as the main supporter of the work is:

No	Type of Work Support / While
	Site preparation - 1
	Installation and removal of site sign board
	$-\quad$ Clearing and grubbing
	$-\quad$ Demolition and disposal of monument
$-\quad$ Remove and grub large trees and the plantation	
2	Soil investigation
3	Contractor's temporary facilities
Dst	

6. Identification of hazards ${ }^{9)}$

No	Type / Type of Work	 Risk type K3
1		
Dst		

6. Testing the quality / technical / function under certain conditions required for:
a. Permanent construction materials:

Precast Reinforced Jacking Concrete Pipe with collar
b. Tools that are part of the permanent construction:

No
G. Offer Currency and Payment
H. Period of Validity of Offer
I. Bid Security

1. Currency used Rupiah
2. Payments made by way of installment (termin)

The validity period of offers for 150 (one hundred fifty) calendar days after the deadline for bid submission.

1. Bid security amount is Rp. (.....)
[filled, large nominal between 1% to 3% of the total value of HPS]
2. Guarantee offer is valid for 150 (one hundred fifty) calendar days and the effective start date \qquad
[Filled in accordance with the submission deadline offers].
J. Submission of Bid According to the schedule listed in the electronic procurement system.

Documents
K. Deadline for According to the schedule listed in the electronic procurement system.

Submission of Offers
L. Bid Opening
M. Threshold
N. Disclaimer, Disclaimer and Appeals

According to the schedule listed in the electronic procurement system.
[for public tender if the evaluation of the technique using a knockout with a threshold, then the determination of elements and sub-elements were assessed technical and assessment criteria must be approved and / or using the criteria established by the first echelon of each Unit of Work Unit in accordance with the duties, the function and scope of the program;
Determination usage thresholds include:

1. The threshold value of each element:
a.

Dst \qquad
2. Threshold value total: \qquad .]

The technical evaluation of the project will be carried out by knockout method with a threshold. The financial proposal will be opened only for the bidder who passes the technical evaluation.
Technical evaluation will be carried out by the submittal documents (bidding proposal) and the interview. The representative of the bidder (such as proposed Team Leader) shall make a presentation to explain their technical proposal and participated in the interview to confirm the applicants' performance when WG-ULP requests.

1 The threshold value of following technical elements:
a. Construction method: evaluation weight 30%, threshold 70%;
b. Construction time schedule (do not exceed the time limit stipulated in the bidding document): evaluation weight 10%, threshold 70%;
c. Contractor's equipment and major materials: evaluation weight 20%, threshold 70\%;
d. Key personnel and staffing schedule: evaluation weight 30%, threshold 70\%;
e. Pre RK3K: evaluation weight 10%, threshold 70%.

2 Thresholds total: 80% of total score

1. Disclaimer addressed to Procurement unit of Pilot Project of Sewerage System Development in DKI Jakarta
2. Copies of objections addressed to:
a. KDP
[fill in name of KDP]
b. KPA [fill in the name of the KPA]
c. APIP [fill in name of APIP]
d. [Filled officials who received the assignment to answer an appeal, if delegated]
e. \qquad [Filled Minister / Head of Institution / Regional Head / Head
O. Warranty
Disclaimer Appeal
of Institution]
3. Disclaimer appeal addressed to
[fill in the name of the Minister / Head of Institution / Regional Head / Head of Institution or official who receives the assignment of answering an appeal, example: Minister of Public Works]
4. Copies of an appeal addressed to:
a. KDP [fill in name of KDP]
b. WG-ULP [fill in name of WG-ULP]
c. APIP [fill in name of APIP Ministry / Agency / Local Government / Institutions]
5. Guarantee Disclaimer Appeal addressed to Procurement unit of Pilot Project of Sewerage System Development in DKI Jakarta
[Fill in official name of WG-ULP].

P. Utilization of Domestic Production (IKP_Clause 6)
Q. Language Document Selection (IKP_Clause 10)

Replace the Sub-clause 6.1 as follows:
Participants are obliged to prioritize the Indonesian workers and domestic production for the execution of construction work in Indonesia except for the type of work which Indonesian worker has sufficient experience and the Indonesian manufacturer can provide required quality of production.

Replace the Clause 10 as follows:
Bidding documents and all correspondence in the procurement process shall be written in Indonesian and/or English as instructed hereunder.
Following documents indicated in Chapter IV shall be written in Indonesian.
A. FORM OF LETTER OF PARTICIPANTS SUPPLY AGENCY / PARTNERSHIP (KSO)
B. POWER OF ATTORNEY FORM
C. FORM PARTNERSHIP AGREEMENTS / JOINT VENTURES (KSO)
E. RECAP FORM SHAPE CALCULATION OF DOMESTIC COMPONENT (DCL)
F. FORM LIST OF IMPORTED GOODS
G. SHAPE SAFETY AND HEALTH PLAN CONTRACT (RK3K)
H. FORM DETAILS / DESCRIPTION UNIT PRICE WORK (HSP)
I. FORM OF BANK GUARANTEE OFFER

Following documents indicated in Chapter IV shall be written in English and with the explanation in Indonesian.
D. TECHNICAL BID FORM
R. Languages Offer (IKP_Clause 15)

Replace the Sub-clause 15.1 as follows:
Bidding documents and all correspondence in the procurement process shall be written in Indonesian and/or English as instructed hereunder.
Following documents indicated in Chapter IV shall be written in Indonesian.
A. FORM OF LETTER OF PARTICIPANTS SUPPLY AGENCY / PARTNERSHIP (KSO)
B. POWER OF ATTORNEY FORM
C. FORM PARTNERSHIP AGREEMENTS / JOINT VENTURES (KSO)
E. RECAP FORM SHAPE CALCULATION OF DOMESTIC COMPONENT (DCL)
F. FORM LIST OF IMPORTED GOODS
G. SHAPE SAFETY AND HEALTH PLAN CONTRACT (RK3K)
H. FORM DETAILS / DESCRIPTION UNIT PRICE WORK (HSP)
I. FORM OF BANK GUARANTEE OFFER

Following documents indicated in Chapter IV shall be written in English and with the explanation in Indonesian.

D. TECHNICAL BID FORM

Replace the word "foreign language" in the Sub-clause 15.2 to the following:
"English"

CHAPTER IV BID FORM

A. FORM OF LETTER OF PARTICIPANTS SUPPLY AGENCY / PARTNERSHIP (KSO)

Please use standard document.

B. POWER OF ATTORNEY FORM

Please use standard document.
C. FORM PARTNERSHIP AGREEMENTS / JOINT VENTURES (KSO)

Please use standard document.

D. TECHNICAL BID FORM

Technical Bid Documents

1. Comments and Suggestions on the Technical Specifications.
2. The method of execution of work [provide a viable method implementation, realistic and stages can be carried out for completion of the work and is believed to depict main mastery in the completion of the work, and the stages of implementation that illustrates how the implementation of the work from beginning to end and can be justified technically];
3. Implementation schedule [not exceed the deadline as stated in the BDS];
4. Lists the type, capacity, composition and amount of equipment (if filed main equipment of different minimum entry qualification documents);
5. The list of key personnel who are placed in full (if filed different core personnel of stuffing qualification documents);
6. Piece of work that will be subcontracted [in accordance with the requirements as stated in the BDS]; and
7. Procurement plan of precast reinforced jacking concrete pipe with collar including supplier, specification of jacking pipe, and its quality control plan.

Note:

1) Equipment and personnel are delivered in bidding for 1 (one) package tendered work, if need equipment and personnel for other work packages must be from the equipment (to lease, contract, or other) and different personnel.
2) In order to evaluate the bidding document, the interview will be carried out.
3) The contents of technical proposal shall be indicated in working programme, method statements, environmental and safety management plans if the bidder is awarded.

E. RECAP FORM SHAPE CALCULATION OF DOMESTIC COMPONENT (DCL)

Please use standard document.

F. FORM LIST OF IMPORTED GOODS

Please use standard document.
G. SHAPE SAFETY AND HEALTH PLAN CONTRACT (RK3K)

Please use standard document.

H. FORM DETAILS / DESCRIPTION UNIT PRICE WORK (HSP)

Please use standard document.

I. FORM OF BANK GUARANTEE OFFER

Please use standard document.

CHAPTER V DRAFT CONTRACT FORM

Please use standard document.

CHAPTER VI GENERAL CONDITIONS OF CONTRACT
 Please use standard document.

CHAPTER VII SPECIAL CONDITIONS OF CONTRACT (SCC)

A. Contact Address of the Parties as follows:	Unit CO: Name Address : Website E-mail Fax Provider: Name Address : E-mail Fax [Please fill in the required information]
B. The Parties Legal Representative	Authorized representative of the Parties as follows: For KDP For Providers : [Please fill in the required information]
C. Types Contract	Contract unit price
D. Effective Date of Contract	The contract is effective as of: \qquad to \qquad [Including the defect notification period]
E. Implementation Period	The implementation period for: Seven hundred thirty (730) calendar days from the date of start of work listed in SPMK.
F. Defect Notification Period	Defect Notification period is valid for: \qquad [Maintenance completed number of calendar days] from the date of first delivery (PHO) work; or Defect Notification period is valid for: 365 to 730 calendar days (to be discussed) from the date of first delivery (PHO) piece of work that was able to function if there is a partial handover .
G. Quality Defect Repair	Late fee due to quality defects for every day of delay is equal to $1 / 1000$ (one thousandth) of a quality defect repair costs. Timeline for quality defects in accordance with the estimated time needed for repairs and set by the KDP.
H. Lifespan of Construction	The design lifespan of the facilities constructed in the Contract is forty (40) years. The contractors shall insure against failure during a specified building: \qquad years from the date of final delivery. [Filled in accordance with the letter a design life for the life of the construction is not more than 10 (ten) years]
I. Guidelines for Maintenance Maintenance	Image "As built" and / or guidelines for the maintenance / maintenance must be submitted no later than: (...... in case) calendar days / months / years after the date Stories signing ceremony early.
J. Bill Payment	The deadline agreed to the issuance of the CO for the payment of fees by installment bill is \qquad (in letters \qquad .) calendar days after the bill and supporting documents are not received by the CO disputed. [Please fill in according to the normal condition in Indonesia]

K. Liquefaction Warranty	Warranty melted and deposited on \qquad [Fill in the name of the State Treasury Office / Regional Cash]
L. Actions Requires Provider	Other actions by providers who require the approval of KDP is: none [state other than those already listed in the GCC, if any]
M. Contracting CO or Supervisory Occupation	Other actions that require approval by the Provider Supervisor Job is: none [state other than those already listed in the GCC, if any]
M. Ownership Documents	Providers are allowed to use copies of documents and software resulting from the construction work with the following restrictions: \qquad [state restrictions / regulations are permissible in its use, for example : for research and research]
N. Facilities	KDP will provide facilities such as: none [State-owned facilities KDP can be used, if any]
O. Compensation events	Including compensation events that can be compensated is \qquad [filled if there are other provisions of]
P. Source of Funding	Procurement of contracts financed from the Construction Work APBN for Fiscal Year 2015-2016-2017
Q. Advance Payment	Advances given by 20\% (in case) of the Contract Value
R. Occupational Health and Safety	K3 personnel required: \qquad [Expert filled K3 for high risk or moderate risk officer for the K3 or small]
S. Payment Performance Work	Payment of work done by achievement: Monthly [filled by selecting Term / Monthly / Mass] Supporting documents required to apply for jobs bill payment achievements: \qquad Determination and the amount of payment for the item of equipment and / or materials that become a permanent part of the main work (the material on site), defined as follows: 1. Reinforced Concrete Jacking Pipe paid \% of the contract price 2 [fill in the items of equipment / materials] paid $\%$ of Contract price 3 ff . \qquad [examples of equipment: escalators, lifts, stationary water pumps, turbines, electromechanical equipment; examples of materials fabrication: sheet pile, geosynthetic, conductors, towers, insulators; so materials example: precast concrete]
T. Handover most jobs	In this contract enforced handover partly or partially to the following sections: 1. \qquad 2. \qquad 3. Etc. .. [filled part of the work function and immediately used (if any)]
U. Price adjustment (escalation / de-escalation)	Price adjustment given in terms of the formulation is given as follows: $\mathrm{Hn}=\mathrm{Ho}(\mathrm{a}+\mathrm{b} . \mathrm{Bn} / \mathrm{Bo}+\mathrm{c} . \mathrm{Cn} / \mathrm{Co}+\mathrm{d} . \mathrm{Dn} / \mathrm{Do}+\ldots .$. $\mathrm{Hn}=$ Unit Price at the time they are made

	worth the work which will be subcontracted specified in the bidding documents or in accordance with prevailing regulations, for example, was fined worth of work to be subcontracted are included in the bidding documents] c. If as a contractor, not a provider of Micro, Small and small cooperative major subcontract work, it would be a fine [this provision to the value of over USD 25 billion package, with a fine worth filling in the main job subcontracted or in accordance with prevailing regulations, for example, was fined worth of major work subcontracted]
X. Dispute Resolution / Dispute	In case of any dispute / disputes between the parties, the parties must first resolve the dispute through consultation and consensus. In terms of deliberation and consensus is not reached, the parties agreed to resolve the dispute / disputes through \qquad [filled court or arbitration]
Y. Language to be used for the correspondences	Replace the first sentence with following: "All notices, requests, and/or approval under this contract shall be made in writing both in Indonesian and English,"
Z. Supervision work	Supervision work for the Contract will be carried out by the consultant as authorized representative of PPK (the commissioning officer) who is responsible for the execution of the work. The supervision consultant will be procured by DGLHD.

Appendix A-Special Conditions of Contract

Unit Price List, Sub-providers, Key Personnel, and Equipment

1. Unit Price List

Not provided for this pilot project.

2. Sub-providers

Not specified in this pilot project.

3. Key-Personnel

The key personnel for the pilot project is listed below:

No	Level of Education	Positions in the proposed work	Work experience (years)	Profession / Expertise
1	2	3	4	5
1	Civil/ Bachelor	Project Manager (Team leader)	More than 15 years for the microtunneling works. More than 5 years for the team leader of the project.	Civil/ Field supervision
2	Civil/ Bachelor	Site Manager	More than 10 years for the construction works	Civil/ Field supervision
3	Civil/ Bachelor	Site Engineer manager	More than 10 years for the construction works	Civil/ Field supervision
4	Civil or Mechanical/ Bachelor	Jacking Operator	More than 10 years as a operator of jacking pipe.	Operator of microtunneling jacking machine
5	Civil/ Bachelor	Geotechnical Engineer	More than 10 years for the civil work including shaft work.	Civil/ Construction of deep shaft
6	Civil/ Bachelor	Quantity Surveyor Manager	More than 5 years for the construction works	Civil/ Field supervision
7	Civil/ Bachelor	Quantity Engineer	More than 5 years for the construction works	Civil/ Field supervision
8	Civil/ Bachelor	Quality Engineer	More than 5 years for the construction works	Civil/ Field supervision
9	Civil/ Bachelor	Supervisor	More than 5 years for the construction works	Civil/ Field supervision
10	Environment/ Bachelor	Environmental Specialist	More than 5 years for the construction works	Environment/ Field supervision
11	Civil or Social/ Bachelor	Social Expert	More than 5 years for the construction works	Social/ Field supervision

The participants can nominate the staff of related foreign companies with the letter of agreement for the cooperation to the project.

4. Special Equipment

The special equipment applied for the pilot project is listed below:

No.	Type	Capacity	Number
1	Machines for long distance and curved microtunneling works	$\varphi 2000 \mathrm{~mm}$	1unit
2	Slurry separation facilities		1unit
3	Machines for press-in caisson method		3 unit
4	Clamshell		3 unit

The participants can nominate the equipment of related foreign companies with the letter of agreement for the cooperation to the project.

CHAPTER VIII TECHNICAL SPECIFICATIONS AND DRAWINGS

1. Scope of Works

1.1 Scope of the Works

The construction work to be carried out by the Contractor is specified as follows.

Description	Unit	Quantity
(1) Construction of Sewerage Pipeline Length of Pipeline is 962.9 m in total. (286.6 m between Shaft A and B, 676.3 m between Shaft B and C)		
1) Pipe Installation		
Length of Micorotunneling Method between Shaft A and B	m	279.9
Length of Micorotunneling Method between Shaft B and C	m	669.6
2) Construction of Shaft and Manhole		
Shaft A	unit	1
Shaft B and Manhole B	unit	1
Shaft C	unit	1

The Work shall be carried out in accordance with the drawings, the specifications and the directions of PPK (committing officer) and the supervision consultant of the project.

The Contractor has to deeply investigate the exact location of existing underground utilities in advance to prevent the affection and to carry out the appropriate measures during the construction work. In addition, the contractor shall investigate the soil condition, groundwater level, and surrounding environment at the location of drive shaft and pipeline etc., in order to select an appropriate microtunneling technology. The construction work cannot make an impact to the neighboring private housing and the alignment of sewer main cannot be allowed to occupy the private lot. Moreover, the distance between the structures constructed in the project and the boundary of the inspection road shall be more than and equal to 5.2 m at the location of wastewater treatment plant (Manhole A).
In addition, the Contractor must carry out the construction work, environmental measures, and safety control carefully during the construction.

Particular attention shall be given as the general obligations of the Contractor when working in the vicinity of existing utility services, street trees, and boundary of private lot.

1.2 Time for Completion

Time for Completion is 24 months.

2. Technical Specifications

The Technical Specifications for the Contract Package are attached separately under separate cover titled as follows:
(a) Division I-General Requirements, and
(b) Division II-Civil Works.

3. Drawings

The Drawings are attached separately under separate cover titled as follows:
(c) Division III- Drawings.

4. Supplemental Information

4.1 Proposal of Requirement of Contractors

The project has the following particular features and site conditions.

1) Difficulty of the construction work

The sewer construction works of the project shall be carried out by long-distance and curved microtunneling technology to prevent the social impact by the traffic congestion during the construction. In addition, planned depth of the jacking pipe and shaft is so deep that contractor shall carry out the construction work under the high groundwater pressure (about 30 m).

2) Requirement of appropriate jacking pipe

Jacking pipe applied for the project requires enough strength enough to comply with the jacking force and external load. In addition, its joint has to withstand high groundwater pressure as mentioned above. The contractor needs to procure and apply appropriate jacking pipe.
The microtunneling technology with the conditions mentioned the above has not been applied in Indonesia and there is limited Indonesian contractor with the sufficient equipment and skill for the work.

Therefore, it is recommended for Indonesian contractor to establish JO or subcontract with foreign company which has sufficient experience and skill for the project.

4.2 Others

Please describe if any.

CHAPTER IX QUANTITY AND PRICE LIST

Information

1. Quantities shall be read in accordance with the Instructions to Bidders (IKP), General Conditions of Contract (GCC) and Special Conditions of Contract (SCC), Technical Specifications and Drawings.
2. Payments on achievement of work done by the actual quantity of work done as requested and measured by the Provider and verified by the Committing Officer (CO), and assessed according to the prices listed in the Bill of Quantities.
3. Prices in the Bill of Quantities shall be completed which has covered all the costs of work, personnel, supervision, materials, maintenance, taxes, profit, overhead (including the cost of K3) and set out in the Contract.
4. Prices must be included for each currency of payment. If the provider fails to include the price for a job then the work is deemed to have included in the price currency other payments in the Bill of Quantities.
5. All costs incurred to meet the provisions of the Contract shall be deemed to have been included in each eye of payment, and if there is no eye-related payments, the cost is to be deemed to have been included in the price of another currency payments.
6. WG-ULP will perform arithmetical correction for the error calculation with the following conditions:
a. if there is a difference between writing a value in the numbers and letters on the offer letter that noted the value of the letter;
b. multiplication result if an error occurs between the volume (units with a multiplication of quantity) at a unit price of rectification work is carried out, with the volume of work in accordance with the provisions specified in the Bidding Document and the unit price should not be changed; and
c. if there is not written with the kind of work it will be complete clarification and assessment to proceed or not proceed in the evaluation of bids.

	SUMMARY OF BILL OF QUANTITIES
Project Name:	Pilot Project of Sewerage System Development in DKI Jakarta
Location:	DKI Jakarta
Work Period :	$2016-2017-2018$ (24months)

$\begin{array}{\|c} \hline \text { BILL } \\ \text { No. } \end{array}$	DESCRIPTION	AMOUNT (IDR)	
1	Preparatory Works		-
2	Shaft Construction		-
3	Pipe Installation:		-
4	Construction of Manhole		-
	Sub-total		
	Contingency (10\%)		
	TOTÅL BID SUM	*	
	Value Andd Tax (10\%)		
	Grand Total		

(i) Total Bid Sum, written in words. IDR:
(*) Carry Forward to Bid
(**) Add 10% of the sum of items 1 to 4 inclusive, for both foreign and local currency components

Pilot Project of Sewerage System Development in DKI Jakarta

No.	Item of Works	UNIT	OUANTITY	UNIT RATE	AMOUNT
				IDR	IDR
1	Preparatory Works				
1-1	Installation and removal of Site Sign Board (height: 5m, width: 3m)	site	3.00		
1-2	Mobilization and Demobilization	LS	1.00		
1-3	Soil Investigation: including Mobilization and Demobilization, Test Boring, Laboratory Tests and Preparation of Report as specified in the specification				
1-3-1	Sewer Line between Shaft-A to Shaft-B	m	40.00		
1-3-2	Sewer Line between Shaft-B to Shaft-C	m	120.00		
	Sub Total-1-3				
1-4	Survey : including Establishment/Construction of BM, Topographical survey, Center line survey, Levelling survey and preparation of Reporting\& Drawings as specified in the specification.				
1-4-1	Topographical Survey	ha	5.0		
1-4-2	Line Survey	m	1,000.0		
1-4-3	Leveling Survey	m	1,000.0		
	Sub Total-1-4				
1-5	Clearing and Grubbing: including hauling to designated disposal Area(L=10km)				
1-5-1	Shaft-A site	m2	1,500.00		
1-5-2	Shaft-B site	m2	700.00		
1-5-3	Shaft-C site	m2	1,450.00		
	Sub Total-1-4				
1-6	Demolition and disposal of monument: including hauling to designated disposal Area(L=10km) (Shaft-C area)	LS	1.00		
1-7	Remove and grub large trees and the plantation due to 10 trees as compensation (Shaft-C area)	no.	2.00		
1-8	Transplantation of trees				
1-8-1	Shaft-A site	no.	5.00		
1-8-2	Shaft-C site	no.	7.00		
	Sub Total-1-7				
1-9	Contractor's Temporary Facilities				
1-9-1	Site Office	m2	150.00		
	Sub Total-1				

Pilot Project of Sewerage System Development in DKI Jakarta
Tender Document

No.	Item of Works	UNIT	OUANTITY	UNIT RATE	AMOUNT
				IDR	IDR
2	Shaft Construction				
2-1	Shaft A				
2-1-1	Earth-retaining work for Prevention of Collapse (Driving and removal of Steel Sheet PILE Type III $\quad \mathrm{L}=8.0 \mathrm{~m}$): including material supply and construction)	m	928.0		
2-1-2	Excavation of Shaft by Press in Caisson Construction Method: including hauling to designated disposal Area($\mathrm{L}=10 \mathrm{~km}$) and all associated works	m3	2,923.00		
2-1-3	Concrete of Wall and Basement ($\mathrm{Fc}=24 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply, placement and formwork	m3	1,085.00		
2-1-4	Underwater Concrete($\mathrm{Fc}=30 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply and placement	m3	167.00		
2-1-5	Deformed Reinforcing Bars(SD345)of Wall and Basement: including supply, bending and placement	t	83.30		
2-1-6	Concrete cover of Top of the Shaft	set	1.00		
2-1-7	Installation Chain Link Fence (height : 3.0m) : including supply, fabrication and installation	m	60.0		
	Sub Total 2-1				
2-2	Shaft B				
2-2-1	Earth-retaining work for Prevention of Collapse (Driving and removal of Steel Sheet PILE Type III $\mathrm{L}=8.0 \mathrm{~m}$): including material supply and construction)	m	656.0		
2-2-2	Excavation of Shaft by Press in Caisson Construction Method: including hauling to designated disposal Area $(\mathrm{L}=10 \mathrm{~km})$ and all associated works	m3	1,072.00		
2-2-3	Concrete of Wall and Basement ($\mathrm{Fc}=24 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply, placement and formwork	m3	418.00		
2-2-4	Underwater Concrete ($\mathrm{Fc}=30 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply and placement	m3	46.00		
2-2-5	Deformed Reinforcing Bars(SD345)of Wall and Basement: including supply, bending and placement	t	40.42		
2-2-6	Demolished Concrete wall Height 2.3m of Top of Shaft : including disposal demolished concrete	m3	17.34		
2-2-7	Sandy Soil Backfill: including supply and placement	m3	66.28		
	Sub Total 2-2				
2-3	Shaft C				
2-3-1	Earth-retaining work for Prevention of Collapse (Driving and removal of Steel Sheet PILE Type III $\mathrm{L}=8.0 \mathrm{~m}$): including material supply and construction)	m	928.0		
2-3-2	Excavation of Shaft by Press in Caisson Construction Method: including hauling to designated disposal Area $(\mathrm{L}=10 \mathrm{~km})$ and all associated works	m3	2,815.00		
2-3-3	Concrete of Wall and Basement ($\mathrm{Fc}=24 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply, placement and formwork	m3	1,046.00		
2-3-4	Underwater Concrete($\mathrm{Fc}=30 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply and placement	m3	167.00		
2-3-5	Deformed Reinforcing Bars(SD345)of Wall and Basement: including supply, bending and placement	t	79.97		
2-3-6	Concrete Cover of Top of the Shaft	set	1.00		
2-3-7	Installation Chain Link Fence (height : 3.0m) : including supply, fabrication and installation	m	60.0		
	Sub Total 2-3				
	Sub Total 2				

No.	Item of Works	UNIT	OUANTITY	UNIT RATE	AMOUNT
				IDR	IDR
3	Pipe Installation:				
3-1	Sewer Line between Shaft -A to Shaft-B				
3-1-1	Precast Reinforced Jacking Concrete Pipe (2000 dia): including supply and transportation to Site	m	279.93		
3-1-2	Laying of Precast Reinforced Jacking Concrete Pipe (2000 dia): including pipe jacking, hauling of excavation material to designated disposal Area($\mathrm{L}=10 \mathrm{~km}$) and all associated works	m	279.93		
3-1-3	Soil Improvement for Starting \& Finishing Area : including drilling ,material supply and grouting	L	51,549.00		
	Sub Total 3-1				
3-2	Sewer Line between Shaft -C to Shaft-B				
3-2-1	Precast Reinforced Jacking Concrete Pipe (2000 dia): including supply and transportation to Site	m	669.60		
3-2-2	Laying of Precast Reinforced Jacking Concrete Pipe (2000 dia): including pipe jacking, hauling of excavation material to designated disposal Area($\mathrm{L}=10 \mathrm{~km}$) and all associated works	m	669.60		
3-2-3	Soil Improvement for Starting \& Finishing Area : including drilling ,material supply and grouting	L	51,811.50		
	Sub Total 3-2				
	Sub Total 3				
4	Construction of Manhole Concrete $(\mathrm{Fc}=24 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply, placement and formwork				
4-1					
4-1-1	Slab	m3	36.44		
4-1-2	Staircase	m3	9.84		
	Sub Total 4-1				
4-2	Deformed Reinforcing Bars(SD345): including supply, bending and placement	t	6.40		
4-3	Invert Concrete ($\mathrm{Fc}=16 \mathrm{~N} / \mathrm{mm} 2$ with ordinary Portland cement): including supply, placement and formwork	m3	25.42		
4-4	Mortar finishing $\mathrm{t}=2 \mathrm{~cm}$: including supply and placement	m2	24.20		
4-5	Installation of Reinforced Concrete Manhole Block : including supply and installation.	set	1.00		
4-6	Cast-in-place Concrete Manhole (for maintenance) : including supply, placement, reinforcement and form works.	set	1.00		
4-7	Manhole Cover (RC cover $\varphi 600 \mathrm{~mm}$) : including supply and installation	set	1.00		
4-8	Manhole Cover (Concrete Cover): including supply and installation	no.	4.00		
4-9	Ladder Rungs: including supply and installation	no.	24.00		
4-10	Rear Guard : including supply, fabrication and installation	set	1.00		
4-11	Stainless-Steel Balustrade(staircase rail and post) : including supply, fabrication and installation	m	134.02		
	Sub Total 4				

CHAPTER X OTHER FORMS OF DOCUMENTS

Please use standard document.

