5.2 Comparison of Two Cases of one inlet pipe and two inlet pipes

5.2.1 Case Settings

In order to justify the trunk sewer plan in which the trunk sewer of $2,200 \mathrm{~mm}$ in diameter reaches to the WWTP at the invert level of about 28.175 m below the ground surface, the following study was conducted at the early stage in the JICA Supplementary Study.

In addition to the above plan and design as of Case 1: the original case in which the inlet pipe of $2,200 \mathrm{~mm}$ in diameter to the WWTP is installed at about 28.175 m below the ground surface (invert level).
the alternative Case 2 is set as follows: the alternative case in which two inlet pipes come to the WWTP, one inlet pipe of $1,800 \mathrm{~mm}$ is the main trunk sewer covering major sewerage service area and another inlet pipe of $1,350 \mathrm{~mm}$ is a sub trunk sewer covering the areas near the WWTP.

Figure 5.2.1 shows the major service areas covered by the main trunk sewer (1) and the service area near the WWTP covered by the trunk sewer (2). The service area near the WWTP and the trunk sewers (2) were selected among several options considering the road conditions.

Figure 5.2.1 Major service areas (green color) covered by the main trunk sewer (1) and the service area near the WWTP (blue color) covered by the trunk sewer (2)

Major sewerage facilities needed are summarized in the table below.

Table 5.2.1 Major features of the alternatives of trunk sewer planning

Item	Case 1	Case 2	Remarks
1. Design Flows			
1.1 Ave. Daily Flow	$\begin{aligned} & 197,900 \mathrm{~m}^{3} / \mathrm{d} \\ & =200,000 \mathrm{~m}^{3} / \mathrm{d} \end{aligned}$	1) Main Area: $141,700 \mathrm{~m}^{3} / \mathrm{d}$ 2) Area near WWTP: $56,200 \mathrm{~m}^{3} / \mathrm{d}$	
1.2 Max. Hourly Flow	$382,800 \mathrm{~m}^{3} / \mathrm{d}$	1) Main Area: $266,400 \mathrm{~m}^{3} / \mathrm{d}$ 2) Area near WWTP: $112,400 \mathrm{~m}^{3} / \mathrm{d}$	
2.1 Trunk Sewers (1)	a) $2,000 \mathrm{~mm}$, b) $1,396 \mathrm{~m}$, followed by a) $2,200 \mathrm{~mm}$, b) 955 m, c) -28.175m	a) $1,800 \mathrm{~mm}$, b) $2,351 \mathrm{~m}$ c) -29.970 m	a) diameter, b) length, c) invert level
2.2 Trunk Sewer (2)		a) $1,350 \mathrm{~mm}$, b) 955 m c) -15.910 m	
3. Pumping Facilities			
3.1 Type	Vertical shaft Volute type mixed flow pump	same as Case 1	
3.2 Diameter	700 mm	600 mm	
3.3 Capacity	$67 \mathrm{~m}^{3} / \mathrm{min}$	$46 \mathrm{~m}^{3} / \mathrm{min}$ and $39 \mathrm{~m}^{3} / \mathrm{min}$	
3.4 Pump Head	34.90 m	35.0 m and 23.0 m	
3.5 Motor Output	560 kW	400 kW and 250 kW	
3.6 Numbers	5 nos. include one stand-by	5 nos. include one stand-by and 3 nos. include one stand-by	

The sewer capacity calculation for Case 2 is referred to Table 5.2.2. The profiles of sewers needed are referred to the drawings attached finally for you reference.

The pumping facilities design for both cases are referred to Table 5.2.3.

5.2.2 Cost Comparisons

The cost required for both cases are estimated and compared.

First, the difference of construction cost of two cases are estimated as shown in Table 5.2.4. The construction cost of Case 2 is higher as 128 million Japanese yen than that of Case 1.

Second, the power cost as of major operation costs for two cases are estimated and compared as shown in Table 5.2.5. The annual power cost of Case 2 is lower as 9.3 million Japanese yen than that of Case 1.

Therefore, the construction cost difference in two cases of 128 million Japanese yen equivalents to the about 14 year of power costs needed.

5.2.3 Selection of the appropriate trunk sewer plan

In addition to the cost comparison, a construction work for the structure of pumping station at the WWTP is studied.

In the Case 2, since two trunk sewers having different invert levels come into the WWTP, then the receiving pumping well structures are more complicated to construct at a limited land space at the Pluit site. The construction of complicated civil structures needs higher cost.

The required pumps number are larger than that of Case 1 as shown in the previous section. More O\&M of pumping facilities are required for the Case 2 due to the increased number of pumping equipment.

These comparison results suggest that the trunk sewer plan in Case 1 would be appropriate.

Table 5.2.2 Trunk Sewer Capacity Calculation for Case 2

Trunk S	West	coverin	rea	WWTP				200	locd											
Line No. of		Sewer Le	gth (m)	Sewerage	Area (ha)	Popul	ation	Averas	Flow	3/d)		Max.	Flow (${ }^{\text {a }}$			Sewe	Line		Sewer Invert	Elevation (m)
Sewer	Sewer	Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total	Factor	Sewage	Infil.	Total	Dia. (mm)	Slope (o/o)	V (ms/)	Cap. (m ${ }^{3} / \mathrm{s}$)	Upper end	Lower end
ST-73	MT-32	756	756	55.0	55.0	40,142	40,142	8,028	0	8,028	2.917	0.272	0	0.272	700	2.2	1.129	0.434		
ST-74	MT-32	615	615	10.7	10.7	4,498	4,498	900	0	900	4.086	0.043	0	0.043	350	3.5	0.897	0.086		
MT-32	MT-33	704	2,075	30.3	96.0	12,746	57,386	11,477	0	11,477	2.761	0.367	0	0.367	800	2.0	1.176	0.591		
ST-75	MT-33	1,147		85.0	85.0	43,702	43,702	8,740	0	8,740	2.879	0.292	0	0.292	700	2.4	1.179	0.454		
MT-33	MT-35	629		81.1	262.1	18,470	119,558	23,912	0	23,912	2.466	0.683	0	0.683	1,000	1.8	1.295	1.017		
MT-17	MT-18	1,524		96.7	96.7	43,135	43,135	8,627	0	8,627	2.885	0.289	0	0.289	700	2.4	1.179	0.454		
ST-72	MT-18	482		18.7	18.7	4,160	4,160	832	0	832	4.135	0.040	0	0.040	350	3.5	0.897	0.086		
MT-18	MT-35	34		0.0	115.4	0	47,295	9,459	0	9,459	2.844	0.312	0	0.312	800	2.0	1.176	0.591		
MT-35	MT-34	545		72.2	449.7	16,441	183,294	36,659	0	36,659	2.309	0.980	0	0.980	1,100	1.6	1.301	1.237		
MT-34	ST-88	671		40.0	489.7	8,897	192,191	38,438	0	38,438	2.292	1.020	0	1.020	1,200	1.6	1.379	1.559		
ST-80	ST-77	787		64.4	64.4	6,357	6,357	1,271	0	1,271	3.874	0.057	0	0.057	350	3.5	0.897	0.086		
ST-76	ST-77	567		110.1	110.1	10,866	10,866	2,173	0	2,173	3.567	0.090	0	0.090	450	2.8	0.949	0.151		
ST-77	ST-78	2,558		116.9	291.4	11,534	28,757	5,751	0	5,751	3.071	0.205	0	0.205	600	2.6	1.107	0.313		
ST-81	ST-78	468		40.1	40.1	8,921	8,921	1,784	0	1,784	3.677	0.076	0	0.076	400	3.0	0.908	0.114		
ST-78	ST-79	128		0.0	331.5	0	37,678	7,536	0	7,536	2.945	0.257	0	0.257	700	2.2	1.129	0.434		
ST-82	ST-79	790		29.4	29.4	2,899	2,899	580	0	580	4.372	0.030	0	0.030	300	2.8	0.941	0.067		
ST-83	ST-79	475		43.4	43.4	9,654	9,654	1,931	0	1,931	3.633	0.082	0	0.082	400	3.5	0.980	0.123		
ST-79	ST-88	836		0.0	404.3	0	50,231	10,046	0	10,046	2.818	0.328	0	0.328	800	2.2	1.234	0.620		

Trunk Sew Line No. of Upper Sewer	lers West, $\begin{array}{l}\text { Line No. of } \\ \text { Lower } \\ \text { Sewer }\end{array}$	covering	area	WWTP				200 lpod ${ }^{\text {Average Flow (m3/d) }}$												
		Sewer Length (m)		Sewerage Area (ha)		Population					Peak Factor	Max. Flow ($\mathrm{m}^{3} / \mathrm{s}$)			Sewer Line				Sewer Invert Elevation (m)	
		Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total		Sewage	Infilt.	Total	Dia. (mm)	Slope (o/oo)	V (ms/)	Cap. ($\mathrm{m}^{3} / \mathrm{s}$)	Upper end	Lower end
ST-88	ST-89	323		0.0	894.0	0	242,422	48,484	0	48,484	2.211	1.241	0	1.241	1,350	1.5	1.444	2.067	-13.925	-14.410
ST-89	ST-90	640		144.0	1,038.0	14,204	256,626	51,325	0	51,325	2.192	1.303	0	1.303	1,350	1.5	1.444	2.067	-14.460	-15.360
This trunk sewers are installed parallel along the trunk sewer east																				
ST-84	ST-87	2,411		190.2	190.2	18,759	18,759	3,752	0	3,752	3.279	0.143	0	0.143	600	2.4	1.064	0.301	-2.000	-7.343
ST-86	ST-87	1,677		55.9	55.9	5,518	5,518	1,104	0	1,104	3.959	0.051	0	0.051	350	3.5	0.897	0.086	-2.320	-8.939
ST-87	ST-90	100		0.0	246.1	0	24,277	4,855	0	4,855	3.152	0.178	0	0.178	600	2.4	1.064	0.301	-9.388	-9.678
ST-90	WWTP	315		0.0	1,284.1	0	280,903	56,181	0	56,181	2.162	1.406	0	1.406	1,350	1.5	1.444	2.067	-15.510	-15.910
This trunk sewers are installed parallel along the trunk sewer east																				
										0.2837										

Trunk Sow	wer Central,	covering	jor sewer	rage area				200												
Line No. of		Sewer Le	gth (m)	Sewerage	rea (ha)	Popul		Averas	Flow (3/d)		Max.	Flow (1			Sewe	Line		Sewer Inver	Elevation (m)
(ex	Sewer	Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total	Factor	Sewage	Infil.	Total	Dia. (mm)	Slope (o/os)	V (ms/)	Cap. $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Upper end	Lower end
ST-6	ST-7	1,543	1,543	57.7	57.7	2,358	2,358	472	0	472	4.513	0.025	0	0.025						
ST-8	ST-7	168	168	2.0	2.0	81	81	16	0	16	7.600	0.002	0	0.002						
ST-7	ST-2	27	1,738	0.0	59.7	0	2,439	488	0	488	4.490	0.026	0	0.026						
ST-1	ST-2	2,434	2,434	125.5	125.5	12,614	12,614	2,523	0	2,523	3.486	0.102	0	0.102						
ST-2	ST-3	389	2,823	13.9	199.1	1,399	16,452	3,290	0	6,301	3.028	0.116	0	0.116						
ST-9	ST-3	752	752	74.3	74.3	7,471	7,471	1,494	0	1,494	3.779	0.066	0	0.066						
ST-3	ST-4	40		0.0	273.4	0	23,923	4,785	0	4,785	3.159	0.175	0	0.175						
ST-10	ST-4	637	637	16.3	16.3	1,635	1,635	327	0	327	4.775	0.019	0	0.019						
ST-4	ST-5	520		14.0	303.7	1,406	26,964	5,393	0	5,393	3.101	0.194	0	0.194						
ST-11	ST-5	602	602	31.7	31.7	9,566	9,566	1,913	0	1.913	3.638	0.081	0	0.081						
ST-5	MT-1	278	880	0.0	335.4	0	36,530	7,306	0	7,306	2.960	0.251	0	0.251						
ST-12	MT-1	653	653	90.1	90.1	19,640	19,640	3,928	0	3,928	3.256	0.149	0	0.149						
MT-1	MT-2	939	1,592	0.0	425.5	0	56,170	11,234	0	11,234	2.770	0.361	0	0.361						
ST-13	MT-2	964	964	54.5	54.5	13,430	13,430	2,686	0	2,686	3.453	0.108	0	0.108						
MT-2	MT-3	108		0.0	480.0	0	69,600	13,920	0	13,920	2.680	0.432	0	0.432						
ST-14	MT-3	814	814	107.2	107.2	9,830	9,830	1,966	0	1,966	3.623	0.083	0	0.083						
MT-3	MT-4	621		0.0	587.2	0	79,430	15,886	0	15,886	2.626	0.483	0	0.483						
ST-15	MT-4	588	588	34.8	34.8	5,806	5,806	1,161	0	1,161	3.929	0.053	0	0.053						
MT-4	MT-5	38		0.0	622.0	0	85,236	17,047	0	17,047	2.597	0.513	0	0.513						
ST-16	MT-5	634	634	65.5	65.5	6,703	6,703	1,341	0	1,341	3.842	0.060	0	0.060						
ST-17	MT-5	1,001	1,001	38.2	38.2	6,382	6,382	1,276	0	1,276	3.872	0.058	0	0.058						
MT-5	MT-6	803		6.1	731.8	2,631	100,952	20,190	0	20,190	2.531	0.592	0	0.592						
ST-18	MT-6	579	579	96.8	96.8	1,028	1,028	206	0	206	5.127	0.013	0	0.013						
MT-6	MT-7	710		7.2	835.8	3,114	105,094	21,019	0	21,019	2.515	0.612	0	0.612						

Trunk Sewer Central, covering major sewerage area																				
Line No. of Upper Sewer	$\begin{aligned} & \text { fin No. of } \\ & \text { Lower } \\ & \text { Sewer } \\ & \hline \end{aligned}$	Sewer Length (m)		Sewerage Area (ha)		Population		Average Flow (m3/d)			$\begin{aligned} & \text { Peak } \\ & \text { Factor } \end{aligned}$	Max. Flow ($\mathrm{m}^{3} / \mathrm{s}$)			Sewer Line				Sewer Invert Elevation (m)	
		Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total		Sewage	Infilt.	Total	Dia. (mm)	Slope (o/oo)	V (ms/)	Cap. (m/s)	Upper end	Lower end
ST-19	MT-7	263	263	42.4	42.4	450	450	90	0	90	5.825	0.007	0	0.007						
MT-7	MT-8	1,588		14.1	892.3	6,072	111,616	22,323	0	22,323	2.492	0.644	0	0.644						
ST-20	MT-8	734	734	33.6	33.6	6,280	6,280	1,256	0	1,256	3.881	0.057	0	0.057						
MT-8	MT-9	113		0.0	925.9	0	117,896	23,579	0	23,579	2.471	0.675	0	0.675						
ST-21	MT-9	105	105	33.4	33.4	6,232	6,232	1,246	0	1.246	3.886	0.057	0	0.057						
MT-9	MT-10	118		35.2	994.5	6.574	130,702	26,140	0	26,140	2.432	0.736	0	0.736						
ST-22	MT-10	2,248	2,248	25.4	25.4	8,562	8,562	1,712	0	1,712	3.701	0.074	0	0.074						
MT-10 	MT-11	37		0.0	1,019.9	0	139,264	27,853	0	27,853	2.408	0.777	0	0.777						
$\begin{array}{\|l} \\ \hline \text { ST-23 } \\ \hline \end{array}$	ST-24	1,124	1,124	28.4	28.4	4,020	4,020	804	0	804	4.157	0.039	0	0.039						
ST-25	ST-24	542	542	28.4	28.4	4,020	4,020	804	0	804	4.157	0.039	0	0.039						
ST-24	MT-11	1,222		34.4	91.2	7,582	15,622	3,124	0	3.124	3.373	0.122	0	0.122						
MT-11	MT-12	293		0.0	1,111.1	0	154,886	30,977	0	30,977	2.369	0.850	0	0.850						
ST-26	ST-27	1,048	1,048	49.6	49.6	7,022	7,022	1,404	0	1,404	3.815	0.062	0	0.062						
ST-28	ST-27	53	53	21.1	21.1	6,830	6,830	1,366	0	1,366	3.831	0.061	0	0.061						
ST-27	MT-12	1,222	2,323	35.1	105.8	11,390	25,242	5,048	0	5,048	3.133	0.184	0	0.184						
MT-12	MT-13	1,479		0.0	1,216.9	0	180,128	36,026	0	36,026	2.315	0.966	0	0.966						
ST-29	MT-20	663	663	81.1	81.1	41,245	41,245	8,249	0	8,249	2.905	0.278	0	0.278						
MT-20	MT-13	1,285	1,948	67.9	149.0	61,102	102,347	20,469	0	20,469	2.525	0.599	0	0.599						
MT-13	MT-14	33		0.0	1,365.9	0	282,475	56,495	0	56,495	2.160	1.413	0	1.413						
MT-21	MT-14	1,647	1,647	139.0	139.0	100,270	100,270	20,054	0	20,054	2.533	0.588	0	0.588						
MT-14	MT-15	642		0.0	1,504.9	0	382,745	76,549	0	76,549	2.061	1.827	0	1.827						
ST-30	MT-15	961	961	20.4	20.4	11,126	11,126	2,225	0	2.225	3.554	0.092	0	0.092						
MT-15	AT-1	329		0.0	1,525.3	0	393,871	78,774	0	78,774	2.052	1.871	0	1.871						

Trunk Sewer East, covering major sewerage ar								200 lodod			Peak Factor	Max. Flow (m ${ }^{3} / \mathrm{s}$)			Sewer Line													
Line No. Upper Sewer	Line No. ofLeoverSewer	Sewer Length (m)		Sewerage Area (ha)		Population					Sewer Invert Elevation (m)				Ground Elevation (m)	Earth Covering (m)												
		Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total		Sewage	Infilt.	Total					Dia. (mm)	Slope (0,0)	V (ms/)	Cap. (m³/s)	Upper end	Lower end	Upper end	Lower end	Upper end	Lower end
ST-31	ST-32	563	563	9.0	9.0	1,999	1,999	400	0	400		4.629	0.022	0	0.022	300	2.8	0.941	0.067	6.869	6.118	8.69	10.09	1.39	3.54			
ST-42	ST-32	217		27.0	27.0	6.013	6.013	1.203	0	1.203	3.907	0.055	0	0.055	400	3.0	0.908	0.114	6.068	3.432	10.09	7.53	3.59	3.66				
ST-32	ST-33	696		0.0	36.0	0	8.012	1,602	0	1,602	3.739	0.070	0	0.070	400	3.0	0.908	0.114										
ST-43	ST-33	246	246	40.8	40.8	9.098	9.098	1,820	0	1.820	3.666	0.078	0	0.078	450	3.0	0.982	0.156										
ST-33	ST-34	540	540	0.0	76.8	0	17,110	3,422	0	3,422	3.326	0.132	0	0.132	600	2.6	1.107	0.313	3.232	1.478	7.53	8.87	3.65	6.74				
ST-34	ST-35	60		0.0	76.8	0	17,110	3,422	0	3,422	3.326	0.132	0	0.132	600	2.6	1.107	0.313	1.428	1.272	8.87	8.54	6.79	6.62				
ST-44	ST-35	364	364	22.8	22.8	4,555	4,555	911	0	911	4.078	0.043	0	0.043	350	3.5	0.897	0.086										
ST-35	ST-36	351		0.0	99.6	0	21,665	4,333	0	4,333	3.207	0.161	0	0.161	600	2.6	1.107	0.313	1.222	0.160	8.54	6.95	6.67	6.14				
ST-45	ST-36	512	512	32.6	32.6	3,554	3,554	711	0	711	4.237	0.035	0	0.035	350	3.5	0.897	0.086										
ST-36	ST-37	803		0.0	132.2	0	25,219	5,044	0	5,044	3.133	0.183	0	0.183	600	2.4	1.064	0.301	0.110	-2.267	6.95	6.51	6.19	8.13				
ST-46	ST-37	561	561	45.8	45.8	5,002	5.002	1,000	0	1,000	4.020	0.047	0	0.047	350	3.5	0.897	0.086										
ST-37	ST-38	459		0.0	178.0	0	30,221	6,044	0	6.044	3.047	0.214	0	0.214	700	2.4	1.179	0.454	-2.367	-3.718	6.51	5.01	8.12	7.97				
ST-47	ST-38	296	296	31.9	31.9	4,086	4.086	817	0	817	4.147	0.040	0	0.040	350	3.5	0.897	0.086										
ST-38	ST-39	905		0.0	209.9	0	34,307	6,861	0	6,861	2.988	0.238	0	0.238	700	2.4	1.179	0.454	-3.768	-6.439	5.01	3.98	8.02	9.66				
ST-48	ST-39	180	180	39.6	39.6	421	421	84	0	84	5.887	0.006	0	0.006	200	3.0	0.743	0.023										
ST-39	ST-40	941		0.0	249.5	0	34,728	6,946	0	6,946	2.983	0.240	0	0.240	700	2.4	1.179	0.454	-6.489	-9.300	3.98	4.45	9.71	12.99				
ST-49	ST-40	954	954	64.7	64.7	687	687	137	0	137	5.460	0.009	0	0.009	200	3.0	0.743	0.023										
ST-40	ST-41	471		0.0	314.2	0	35,415	7,083	0	7,083	2.974	0.244	0	0.244	700	2.4	1.179	0.454	-9.350	-10.781	4.45	3.39	13.04	13.41				
ST-50	ST-41	390	390	12.6	12.6	1,434	1,434	287	0	287	4.872	0.017	0	0.017	250	2.8	0.833	0.041										
ST-41	MT-22	1,084		72.7	399.5	8,634	45,483	9,097	0	9,097	2.861	0.302	0	0.302	800	2.2	1.234	0.620	-10.881	-13.466	3.39	1.86	13.41	14.46				
MT-22	MT-23'	982		82.1	481.6	41,549	87,032	17,406	0	17,406	2.589	0.522	0	0.522	900	1.8	1.207	0.768	-13.566	-15.383	1.86	1.71	14.45	16.12				
MT-23'	MT-24'	690		0.0	481.6	0	87,032	17,406	0	17,406	2.589	0.522	0	0.522	900	1.8	1.207	0.768	-15.433	-16.825	1.71	1.38	16.17	17.23				
MT-23	MT-24	968		28.4	28.4	9,840	9.840	1,968	0	1,968	3.622	0.083	0	0.083	400	3.5	0.980	0.123										
ST-51	ST-52	1.542	1.542	61.5	61.5	2.590	2.590	518	0	518	4.449	0.027	0	0.027	300	2.8	0.941	0.067										
ST-52	ST-53	1,315	${ }^{2.857}$	60.6	122.1	21,212	23,802	4,760	0	4,760	3.161	0.175	0	0.175	600	2.4	1.064	0.301										
ST-53	MT-24	1,368		41.8	163.9	11,657	35,459	7.092	0	7.092	2.973	0.245	0	0.245	700	2.2	1.129	0.434										
MT-24	MT-25	290		0.0	192.3	0	45,299	9,060	0	9,060	2.863	0.301	0	0.301	800	2.2	1.234	0.620										
MT-30	MT-25	1,116		45.6	45.6	14,198	14,198	2,840	0	2,840	3.423	0.113	0	0.113	500	2.6	0.981	0.193										
MT-25	MT-26	462		0.0	237.9	0	59,497	11,899	0	11,899	2.745	0.379	,	0.379	800	2.2	1.234	0.620										
ST-55	ST-56	65	65	125.3	125.3	23,042	23,042	4,608	0	4,608	3.177	0.170	0	0.170	700	2.4	1.179	0.454										
ST-56	MT-26	1,616	1,681	20.9	146.2	2,242	25,284	5,057	0	5,057	3.132	0.184	0	0.184	700	2.4	1.179	0.454										

Trunk Sewer East, covering major sewerage a								200 lod			$\begin{aligned} & \text { Peak } \\ & \text { Factor } \end{aligned}$	Max. Flow (m³/s)			Sewer Line													
Line No. of Upper Sewer	Line No. ofLowerSewer	Sewer Length (m)		Sewerage Area (ha)		Population					Sewer Invert Elevation (m)				Ground Elevation (m)	Earth Covering (m)												
		Increment	Total	Increment	Total	Increment	Total	Sewage	Inlet	Total		Sewage	Infilt.	Total					Dia. (mm)	Slope (ofos)	V (ms/)	Cap. (m³/s)	Upper end	Lower end	Upper end	Lower end	Upper end	Lower end
MT-26	MT-27	97		0.0	384.1	0	84,781	16,956	0	16,956		2.600	0.511	0	0.511	900	2.0	1.273	0.810									
ST-54	MT-24'	583		130.1	130.1	44,960	44,960	8.992	0	8,992	2.866	0.299	0	0.299	800	2.2	1.234	0.620										
MT-24'	MT-25'	190		0.0	611.7	0	131,992	26,398	0	26,398	2.428	0.742	0	0.742	1,000	1.8	1.295	1.017	-16.925	-17.267	1.38	1.48	17.22	17.67				
MT-25'	MT-27	1,330		19.1	630.8	3,156	135,148	27,030	0	27,030	2.419	0.757	0	0.757	1,000	1.8	1.295	1.017	-17.317	-20.011	1.48	0.87	17.72	19.80				
(118ST-57)																												
MT-27	MT-28	152		0.0	1,014.9	0	219,929	43,986	0	43,986	2.245	1.143	0	1.143	1,200	1.6	1.379	1.559										
ST-58	MT-28	931		33.5	33.5	4,951	4,951	990	0	990	4.026	0.047	0	0.047	350	3.5	0.897	0.086										
MT-28	MT-29	420		0.0	1,048.4	0	224,880	44,976	0	44,976	2.237	1.165	0	1.165	1,200	1.6	1.379	1.559										
ST-64	ST-65	365		28.0	28.0	11,184	11,184	2,237	0	2,237	3.551	0.092	0	0.092	450	2.8	0.949	0.151										
ST-66	ST-65	171		7.6	7.6	4,182	4,182	836	0	836	4.132	0.040	0	0.040	350	3.5	0.897	0.086										
ST-65	MT-29	248		9.2	44.8	1,210	16,576	3,315	0	3,315	3.343	0.129	0	0.129	600	2.6	1.107	0.313										
ST-59	ST-60	508		31.9	31.9	1.262	1.262	252	0	252	4.971	0.015	0	0.015	250	2.8	0.833	0.041										
ST-62	ST-60	291		14.5	14.5	1,554	1.554	311	0	311	4.812	0.018	0	0.018	300	2.8	0.941	0.067										
ST-60	ST-61	378		31.9	78.3	3,420	6.236	1,247	0	1.247	3.886	0.057	0	0.057	400	3.0	0.908	0.114										
ST-63	ST-61	625		34.6	34.6	4,556	4.556	911	0	911	4.078	0.043	0	0.043	350	3.5	0.897	0.086										
ST-61	MT-29	256		9.2	122.1	1,210	12,002	2,400	0	2,400	3.513	0.098	0	0.098	500	2.6	0.981	0.193										
MT-29	AT-1	432		0.0	1,215.3	0	253,458	50,692	0	50,692	2.196	1.289	0	1.289	1,350	1.5	1.444	2.067										
AT-1	AT-2	420		0.0	2,740.6	0	647,329	129,466	0	129,466	1.901	2.849	0	2.849	1,800	1.2	1.565	3.982										
AT-2	AT-3	890		0.0	2,740.6	0	647,329	129,466	0	129,466	1.901	2.849	0	2.849	1,800	1.2	1.565	3.982										
ST-69	ST-70	3,335		193.5	193.5	7,658	7,658	1,532	0	1,532	3.764	0.067	0	0.067	400	3.0	0.908	0.114										
ST-71	ST-70	1,368		39.2	39.2	1,551	1,551	310	0	310	4.815	0.018	0	0.018	250	2.8	0.833	0.041										
ST-70	AT-3	742		10.6	243.3	2,371	11,580	2,316	0	2,316	3.532	0.095	0	0.095	450	2.8	0.949	0.151										
ST-67	ST-68	645		92.8	92.8	20,674	20,674	4,135	0	4,135	3.231	0.155	0	0.155	600	2.6	1.107	0.313										
ST-68	AT-3	1,227		74.4	167.2	16.566	37,240	7.448	0	7.448	2.951	0.255	0	0.255	700	2.2	1.129	0.434										
AT-3	AT-4	492		55.4	3,206.5	12,334	708,483	141,697	0	141,697	1.875	3.076	0	3.076	1,800	1.2	1.565	3.982										
AT-4	AT-5	904		0.0	3,206.5	0	708,483	141,697	0	141,697	1.875	3.076	0	3.076	1,800	1.2	1.565	3.982										
AT-5	AT-6	640		0.0	3,206.5	0	708,483	141,697	0	141,697	1.875	3.076	0	3.076	1,800	1.2	1.565	3.982										
AT-6	WWTP	315		0.0	3,206.5	0	708,483	141,697	0	141,697	1.875	3.076	0	3.076	1,800	1.2	1.565	3.982										
							In the are	ea near WW		56,181																		
								otal Area		197,878																		

Table 5.2.3 for Case 1: One Trunk Sewer (Dia. 2200mm)

Item	Final Phase Calculation					
1. Inlet Pipe						
1.1 Pipe Condition						
Design Flow rate						
Avegrage Daily Flow rate	=	200,0	$00 \mathrm{~m}^{3} / \mathrm{d}=$	2.315	$\mathrm{m}^{3} / \mathrm{s}$	
Maximum Daily Flow rate	=					
Maximum hourly Flow rate	$=$	382,8	$00 \mathrm{~m}^{3} / \mathrm{d}=$	4.431	$\mathrm{m}^{3} / \mathrm{s}$	
Pipe Diameter	=	2,200	mm			
Pipe Gradient	=	1.1	permill			
Invert Level	=	-28.175	M			
Manning's "n" value	=	0.013				
Full Flow rate	=	6.51	$\mathrm{m}^{3} / \mathrm{s}$			
Full Flow Velocity	$=$	1.713	m / s			
Water Depth						
Avegrage Daily Flow rate	$=$	0.837	m			
Maximum Daily Flow rate	=		m			
Maximum hourly Flow rate	$=$	1.331	m			
Water Level (above sea level)						
Avegrage Daily Flow rate	$=$	-28.175	+ 0.837	$=$	-27.338	M
Maximum Daily Flow rate	=					
Maximum hourly Flow rate	$=$	-28.175	+ 1.331	$=$	-26.844	M
1.2 Inlet Chamber						
Invert Elevation	=	-28.500	M (abo	sea lev		
Water depth at upstream of inlet Gate						
Avegrage Daily Flow rate	=	1.162	m			
Maximum hourly Flow rate	=	1.656	m			

Table 5.2.5 Comparison of Construction Cost of Sewers for Case 1 and Case 2
(1) Construction Cost of Case 1 (Sewer Dia. $\Phi 2,200 \mathrm{~mm}$, Excavation 31.5m)

Unit : Thousand Yen						
Item	Quantity	unit	Unit Price	Cost		
Departure Shaft	2	locations	280,000	560,000		
Arriving Shaft	1	location	135,000	135,000		
Pipe Jacking Work	960	m	700	672,000		
Total				$\mathbf{1 , 3 6 7 , 0 0 0}$		

(2-1) Constrution Cost of Case 2 (Sewer Dia. $\Phi 1,350 \mathrm{~mm}$, Excavation Depth 18.0m)

Unit : Thousand Yen						
Item	Quantity	unit	Unit Price	Cost		
Departure Shaft	3	locations	58,000	174,000		
Arriving Shaft	5	location	3,800	19,000		
Pipe Jacking Work	960	m	250	240,000		
Total				433,000		

(2-2) Construction Cost of Case 2 (Sewer Dia. $\Phi 1,800 \mathrm{~mm}$, Excavation Depth 31.5m)

Item	Quantity	unit	Unit Price	Cost
Departure Shaft	2	locations	260,000	520,000
Arriving Shaft	1	location	110,000	110,000
Pipe Jacking Work	960	m	450	432,000
Total				$1,062,000$

(2-3) Total Construction Cost of Case 2

(3) Differnce

The construction cost of Case 2 is higher than that of Case 1.
The difernece is :
$\mathbf{1 2 8 , 0 0 0}$ Thousand Yen

Appendix-6

DETAILED DESIGN OF THE SHAFT A, B AND C AND PIPE JACKING

Table of Contents

Page

1. Structural Calculation Sheet for No. A and No. C Shaft. 1
2. Study on Press-in Force for No. A and No. C Shaft. 82
3. Structural CalculationSheet for No. B Shaft. 95
4. Study on Press-in Force for No. B Shaft. 193
5. Calculation Sheets on Jacking Force (Route A-B) 206
6. Calculation Sheets on Jacking Force (Route A-B) 216
7. Study on Pit Mouth Protection by Chemical Grouting (ShaftA, B, and C) 229
8. Construction Schedule for the Plot Project by Pipe Jacking Method. 247
9. Structural Calculation Sheet for No. A and No. C Shaft

Contents

1. Setting condition

2. Structural drawing
3. Stability analysis

3-1. Design of bottom slab(underwater concrete)
$3-2$. Analysis for floating
3-3. Analysis for bearing capacity
4. Reviewing component during construction

4-1. Calculation on lateral wall
$4-2$. Calculation on cutting edge
$4-3$. Calculation on earth retaining wall
5. Reviewing contents at all times

5-1. Calculation on lateral wall
$5-2$. Calculation on lateral wall opening part
$5-3$. Design of top slab
$5-4$. Design of bottom slab
$5-5$. Design of middle slab
5-6. Design of stairs
$5-7$. Calculation on cleaning connection
6. Reviewing section during earthquake (levlel 1)
7. Results of computation

1. Design condition

The calculation of shaft A is adopted as a representative of the calculation of shaft C because both forms are almost same and the depth of A is deeper than shaft C.

1-1. Structural type
$\begin{array}{ll}\text { Structural type } & : \text { Strucuture of reinforced concrete } \\ \text { Foundation type } & : \text { Open Caisson foundation }\end{array}$

1-2. Load

1) Deal load

Material	Unit Weight	Notes	
	$\mathrm{kN} / \mathrm{m}^{3}$		
Reinforced concrete	24.5		
Plain concrete	23.0		
Backfill soil (wet weight)	19.0	Internal frictional angle	$\phi=30.0$
Backfill soil (submerged weight)	10.0		
Unit weight of water	10.0		

2) Vehicle load

If vehicle load is loaded, "load T-4" is considered.
The standard is shown in the following figure.
Gross weight $\quad W=40.0 \mathrm{kN}$

Rear wheel : $\mathrm{P}_{\mathrm{l}_{1}}=\frac{2 \times \text { Load of rear wheel }(\mathrm{kN})}{\text { Occupied width of a set of } T \operatorname{load}(\mathrm{~m}} \times(1+$ impact factor $)$

$$
=\frac{2 \times 15.0}{2.700} \times(1+\mathrm{i}) \mathrm{kN} / \mathrm{m}
$$

Front Wheel: $\mathrm{P}_{12}=\frac{2 \times \text { Load of front wheel }(\mathrm{kN})}{\text { Occupied width of a set of } \mathrm{T} \operatorname{load}(\mathrm{m}} \times(1+$ impact factor $)$

$$
=\frac{2 \times 5.0}{2.700} \times(1+\mathrm{i}) \quad \mathrm{kN} / \mathrm{m}
$$

To the above formula
i : Coefficient of impact

Type of culvert	Earth covering(h)	Coefficient of impact
- Box culvert	$\mathrm{h}<4 \mathrm{~m}$	0.3
- Arch culvert		
- Portal culvert	$4 \mathrm{~m} \leqq \mathrm{~h}$	0
- Corrugated metal culvert		
- Concrete pipe culvert	$\mathrm{h}<1.5 \mathrm{~m}$	0.5
- Ceramic pipe culvert	$1.5 \mathrm{~m} \leqq \mathrm{~h}<6.5 \mathrm{~m}$	0.65-0.1h
- Rigid polyvinyl chloride pipe culvert		
- Reinforced plastic composite pipe culvert	$6.5 \mathrm{~m} \leqq \mathrm{~h}$	0

a) Vertical load by live load which applies to top slab
i) Case of earth covering under 4 m

Rear wheel: $\mathrm{p}_{\mathrm{ll}}=\frac{\mathrm{P}_{\mathrm{ll}} \cdot \beta}{\mathrm{W}_{1}}=\frac{\mathrm{P}_{\mathrm{ll}}}{2 \cdot \mathrm{~h}+0.2} \mathrm{kN} / \mathrm{m}^{2}$
Front Wheel: $\mathrm{p}_{\mathrm{l} 2}=\frac{\mathrm{P}_{\mathrm{l} 2}}{\mathrm{~W}_{1}}=\frac{\mathrm{P}_{\mathrm{i} 2}}{2 \cdot \mathrm{~h}+0.2} \mathrm{kN} / \mathrm{m}^{2}$
To the above formula
$\mathrm{P}_{11} \quad$: Load of rear wheel per unit longitudianal length of calvert $(\mathrm{kN} / \mathrm{m})$
$P_{12} \quad$: Load of front wheel per unit longitudianal length of calvert $(\mathrm{kN} / \mathrm{m})$
$\mathrm{W}_{1} \quad$: Distribution width of wheel load(m)
ii). Case of earth covering of 4 m and over

In case of earth covering of 4 m and over, load, $10 \mathrm{kN} / \mathrm{m} 2$ equally to top side of top slab as vertical live load is considered.
b). Horizontal load by live load which applies to the side of a manhole

Load, $10 \mathrm{KN} / \mathrm{m} 2$ equally as live load of ground surface without considering impact is considered.
c). Sidewalk live load which applies to middle slab of a manhole

Sidewalk live load, $5.0 \mathrm{kN} / \mathrm{m} 2$ as live load loading to middle slab is considered.
3) Earth pressure
a) At Ordinary condition

Horizontal earth pressure in an optional depth is considered to be earth pressure at rest.
$\mathrm{pa}=\mathrm{k}_{0} \cdot \gamma \cdot \mathrm{~h}$
To the above formula

| pa | $:$ | Earth pressure at rest $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| k_{0} | $:$ | | |
| γ | Coefficient of earth pressure at rest $\quad\left(\mathrm{k}_{0}=\right.$ | $0.5 \quad$ Unit weight of soil $(\mathrm{kN} / \mathrm{m} 3)$ | |
| h | $:$ | | |
| | Optional depth (m) | | |

※When considering unit volume weight of soil in the calculation of earth pressure, earth pressure is generally seperated from water pressure.
b) At Earthquake condition

Earth pressure in earthquake is considered to be affected by load from earth pressure at rest at ordinary conditi including earth pressure calculated from response displacement method.
$1-3$. Soil condition

- Location
Bor.No.A
- Height of ground
E.L.+ 0.180 m
- Groundwater level
E.L. +-2.250 m
- Basement level
E.L.t -24.820 m

Elevation	Layer thickness	sign	N value	γ	γ^{\prime}	c	ϕ	E_{0}	α	$\alpha \cdot \mathrm{E}_{0}$
m	m			kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$	Degree	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$
-14.820	15.000	AcI	1.0	16.0	7.0	21.0	0.0	2,800	1	2,800
-24.820	10.000	Ac2	60.0	16.0	7.0	8.0	0.0	168,000	1.	168,000
-41.320	16.500	Ac3	18.0	16.0	7.0	144.0	0.0	50,400	1	50,400
-44.320	3.000	Ac4	50.0	16.0	7.0	-	0.0	140,000	1	140,000
-54.320	10.000	Ac5	25.0	16.0	7.0	-	0.0	70,000	1	70,000
-59.820	5.500	Ac6	40.0	16.0	7.0	-	0.0	112,000	1	112,000
-63.820	4.000	Ac7	60.0	16.0	7.0	-	0.0	168,000	1	168,000
-70.500	6.680	Ac8	18.0	16.0	7.0	-	0.0	50,400	1	50,400

No	Modulus of deformation in each following testing methodology $\mathrm{E}_{0}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
(1)	A half of modulus of deformation calculated from endurance cu of plate loading test by rigid disk of diameter with 0.3 m.
(2)	Modulus of deformation measured inside borehole.
(3)	Modulus of deformation calculated from unconsolidated compression test and triaxial compression test of specimen.
(4)	Modulus of deformation estimated with $\mathrm{E}=2800 \mathrm{~N}$ by N value from standard penetration test.

α	
Regular time	Earthquake
1	1
4	4
4	4
1	1

$1-4$. Use material and allowable stress

1) Reinforced concerete

Unit: $\mathrm{N} / \mathrm{mm}^{2}$		
Design strength		24.0
Compressive stress	Compressive stress due to bending	8.0
	Axial compressive stress	6.5
Shearing stress	In case of shearing stress burdened by only concrete $\left(\tau_{\mathrm{a} 1}\right)$	0.23
	In case of being burdened cooperated with diagonal tension $\operatorname{bar}\left(\tau_{\mathrm{a}} 2\right)$	1.7
	Punching shear unit stress $\left(\tau_{\mathrm{a} 3}\right)$	0.90
Bonding sress	To deformed reinforce bars	1.6
Bearing stress		7.2

Notel. Punching shear unit stress does not consider extra according to combination of load.
Note2. If there is no haunch, allowable compressive stress due to bending of conrner is decreased to " $3 / 4$ ".

Elastic modulus

$$
\begin{array}{llll}
\mathrm{E} & =2.5 & \times 10^{7} & \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{~T} & =1.0 & \times 10^{-5} & { }^{\circ} \mathrm{C}^{-1}
\end{array}
$$

Linear expansion coefficient
If shear force is caused only by concerete, allowable shearing stress intensity τ al is corrected considering following influence.
(1) Influence of effective depth, d of member section

Correction coefficient, Ce related to effective depth, d of member section.

Effective depth, $\mathrm{d}(\mathrm{mm})$	300 or lower	1,000	3,000	5,000	10,000 and over
C_{e}	1.4	1.0	0.7	0.6	0.5

(2) Influence of ration of axial stretched reinforcing bar, p_{t}

Correction coefficient, Cpt related to ration of axial stretched reinforcing bar, pt

Ration of axial stretched reinforcing bar, $\mathrm{p}_{\mathrm{t}}(\%)$	0.1	0.2	0.3	0.5	1.0 and over
C_{pt}	0.7	0.9	1.0	1.2	1.5

(3) If axial compressive force of member is large, correction coefficient, CN by axial compressive force calculated from the following formula is multiplied by τ al.

$$
C_{N}=1+\frac{M_{0}}{M}
$$

To the above formula
C_{N} : Correction coefficient by axial compressive force
M_{0} : Bending moment $\mathrm{N} \cdot \mathrm{mm}$ with stress intensity of concrete with zero in the edge of - tension member due to axial compressive force
$=\frac{\mathrm{N}}{\mathrm{Ac}} \cdot \frac{\mathrm{Ic}}{\mathrm{y}}$
$\mathrm{M}:$ Bending moment applying member section $\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{N}:$ Axial stress in compression applying member section N
Ic : Inertia moment related to centroid axis of member section mm^{4}
Ac : Sectional area of member
mm^{2}
y : Distance to the edge of tension member from centroid of y : sectional area of member
mm
2) Plain concrete

Unit: $\mathrm{N} / \mathrm{mm}^{2}$		
Type of stress intensity	Allowable stress intensity	Design strength
	24.0	
Compressive stress intensity	$\frac{\sigma \mathrm{ck}}{4} \leqq 5.5$	5.5
Tensile stress intensity due to bending	$\frac{\sigma \mathrm{ck}}{7} \leqq 0.3$	0.3
Bearing stress intensity	$0.3 \quad \sigma \mathrm{ck} \leqq 6.0$	6.0
Shearing unit stress	$\frac{\sigma \mathrm{ck}}{100}+0.15$Notes $1)$	0.39

Notes 1. Extra increase is not added according to combination of load.
3) Reinforcing bar

Unit: $\mathrm{N} / \mathrm{mm}^{2}$			
Variety of stress intensity and member			SD 345
	1) In case that main load without live load and impact is applied (like beam member,		100
	Basic value in case that influence of collision load and earthquake is not included in the combination of load	2) General member	180
		3) Member installed in water level or under groundwater level	160
	Basic value in case that influence of collision load and earthquake is included in the combination of load	4) Axial reinforcing bar	200
		5) Other than that above	200
	6) Basic value in case of calculating the length of lap joint of reinforcing bar or fixing length		200
7) Compressive stress intensity			200

3) As for extra increase for allowable stress intensity

Extra increase of allowable tensile stress intensity is the following according to the combination of load.

Combinations of loads	Overdesign factor	Notes
Regular time	1.0	
Construction time	1.5	
Earthquake time(L1)	1.5	

1-5. Application specification and references
*1 Earthworks of road-guideline of culvert work
*2 Specification of highway bridge and the manual, I common version
*3 Specification of highway bridge and the manual, IIIconcrete bridge version
*4 Specification of highway bridge and the manual, IVSubstructure version
Design manual of civil engineering(draft)-Civil engineering structure -
*5 Bridge version-
*6 Guideline and the manual for earthquake countermeasure of sewage facility
*7 Calculation examples for earthquake resistance of sewage facility
*8 Standard specification for tunnel [Open cut method version]•the manual
*9 Structural calculation criterion of reinforced concerete•the manual

Corporate juridical person Japan Road Association
Ministry of Land, Transport and Tourism
Corporate juridical person Japan
Sewage Works Association
Corporate juridical person Japan Sewage Works Association
Japan Society of Civil Engineering Architectural Institute of Japan

1-6. The others

- As for minimum reinforcement content

Minimum reinforcement content is 0.2 and over of effective sectional area of member.

2. Structural drawing

Section A-A
Section B-B

8
3. Stability computation
$3-1$. Design of bottom slab (underwater concrete)
Bottom slab (underwater concerete) is treated as plain concrete constructed in water.

1) Load calculation

As for design load, uplift pressure and self weight of bottom slab are considered.

Uplift pressure

$$
\mathrm{w}_{\mathrm{u}}=10.0 \times 30.070 \quad=300.70 \mathrm{kN} / \mathrm{m}^{2}
$$

Self weight of bottom slab of concrete

$$
\mathrm{w}_{\mathrm{c}}=23.0 \times 2.500 \quad=57.50 \mathrm{kN} / \mathrm{m}^{2}
$$

Design load

$$
\begin{aligned}
\mathrm{w} & =\mathrm{w}_{\mathrm{u}}-\mathrm{w}_{\mathrm{c}} \\
& =300.70-57.50
\end{aligned}
$$

$$
=243.20 \mathrm{kN} / \mathrm{m}^{2}
$$

2) Calculation of section force

As for cross sectional area, bottom slab is considered to be slab that the surrounding is simply supported.

Bending moement

$$
\operatorname{Mmax}=(3+v) \cdot \frac{\mathrm{w} \cdot \mathrm{R}^{2}}{16}
$$

$$
=\left(3+\frac{1}{6}\right) \times \frac{243.20 \times 2.950{ }^{2}}{16} \quad=418.88 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
$$

Shearing strength

$$
S=\frac{w \cdot R}{2}
$$

$$
=\frac{243.20 \times 2.950}{2} \quad=358.72 \mathrm{kN} / \mathrm{m}
$$

3) Checking sectional area

	Bottom slab			
M $\mathrm{kN} \cdot \mathrm{m}$	418.88			
$\mathrm{N} \quad \mathrm{kN}$	0.00			
$\mathrm{S} \quad \mathrm{kN}$	358.72			
b mm	1,000			
$\mathrm{h} \quad \mathrm{mm}$	2,500			
$\mathrm{Z} \mathrm{mm}^{3}$	1,041,666,667			
A mm^{2}	2,500,000			
$\sigma \mathrm{c}$ N/mm ${ }^{2}$	$0.4<8.25$			
$\sigma t \mathrm{~N} / \mathrm{mm}^{2}$	$0.4<0.45$			
$\tau \quad \mathrm{N} / \mathrm{mm}^{2}$	$0.14<0.39$			
Judgement	OK			

Section modulus	$Z=\frac{1}{6} b \cdot h^{2}$
Sectional area	$A=b \cdot h$

3-2. Consideration for lift

1) Construction time
a) Load calculation

- Body part

Elevation	Height	External diameter	Internal diameter	Cross sectional area	Average cross section area	Volume
m	m	m	m	m^{2}	m^{2}	m^{3}
0.180	2.000	10.600	9.800	12.818	12.818	25.635
-1.820		10.600	9.800	12.818		
	28.000	10.600	8.400	32.830	32.830	919.230
-29.820		10.600	8.400	32.830		
	1.000	10.700	8.400	34.503	31.801	31.801
-30.820		10.700	8.800	29.099		
	1.400	10.700	8.800	29.099	17.848	24.987
-32.220		10.700	10.300	6.597		
	0.100	10.700	10.300	6.597	3.299	0.330
-32.320		10.700	10.700	0.000		
Sum	32.500	-	-	-	-	1,001.983

- Bottom slab part (underwater concrete)

Elevation	Height	External diameter	Internal diameter	Cross sectional area	Average cross section area	Volume
m	m	m	m	m^{2}	m^{2}	m^{3}
-29.820	1.000	8.400	0.000	55.418	58.119	58.119
-30.820		8.800	0.000	60.821		
	1.400	8.800	0.000	60.821	72.072	100.901
-32.220		10.300	0.000	83.323		
	0.100	10.300	0.000	83.323	86.622	8.662
-32.320		10.700	0.000	89.920		
Sum	2.500	-	-	-	-	167.683

- Total weight
$\Sigma W=24.5 \times 1,001.983+23.0 \times 167.683 \quad=28,405.29 \mathrm{kN}$
- Buoyancy

$$
W_{u}=10.0 \times 30.070 \times{ }_{4}^{\pi} \times 10.700^{2} \quad=27,039.01 \mathrm{kN}
$$

b) Checking buoyancy

$$
\begin{aligned}
& F=\frac{\Sigma W}{W_{u}} \\
& =\frac{28,405.29}{27,039.01} \\
& =1.05>\mathrm{Fs}=1.0
\end{aligned}
$$

2) Completion time
a) Load calculation
$\nabla \quad 0.180$

Overburden load

$$
W_{s}=19.0 \times 2.000 \times \frac{\pi}{4} \times 10.600^{2} \quad=3,353.40 \mathrm{kN}
$$

Self weight of top slab

$$
\mathrm{W}_{\mathrm{t}}=24.5 \times 0.500 \times \frac{\pi}{4} \times 10.600^{2} \quad=1,081.03 \mathrm{kN}
$$

Self weight of lateral wall

$$
W_{w}=24.5 \times \frac{\pi}{4} \times\left(10.600^{2}-8.400^{2}\right) \times 26.000 \quad=20,912.48 \mathrm{kN}
$$

Self weight of bottom slab

$$
\mathrm{W}_{\mathrm{f}}=24.5 \times 1.500 \times-\frac{\pi}{4} \times 10.600^{2} \quad=3,243.09 \mathrm{kN}
$$

Cutting edge part (lower part than $\nabla-29.530 \mathrm{~m}$)
$\mathrm{W}_{\mathrm{n}}=24.5 \times(31.801+24.987+0.330) \quad=1,399.39 \mathrm{kN}$
Self weight of middle slab

$$
\mathrm{W}_{\mathrm{m}}=6 \times 24.5 \times 0.400 \times \frac{\pi}{4} \times 8.400{ }^{2} \quad=3,258.56{ }^{\mathrm{kN}}
$$

Bottom slab (underwater concrete)

$$
W=23.0 \times 167.683
$$

$$
=3,856.70 \mathrm{kN}
$$

$$
\Sigma W=37,104.65 \mathrm{kN}
$$

- Buoyancy

$$
W_{u} \quad=27,039.01 \mathrm{kN}
$$

b) Checking to buoyancy

$$
\begin{aligned}
& \mathrm{F}=\frac{\Sigma \mathrm{W}}{\mathrm{~W}_{\mathrm{u}}} \\
& =\frac{37,104.65}{27,039.01} \\
& =1.37>\mathrm{Fs}=1.2 \text {... OK }
\end{aligned}
$$

$3-3$. consideration for bearing capacity

1) Calculation for ultimate bearing capacity
$\mathrm{q}_{\mathrm{d}}=\alpha \cdot \mathrm{c} \cdot \mathrm{Nc}+1 / 2 \cdot \beta \cdot \gamma_{1} \cdot \mathrm{~B} \cdot \mathrm{~N}_{\gamma}+\gamma_{2} \cdot \mathrm{Df} \cdot \mathrm{Nq}$
To the above formula
$q_{d} \quad$: Ultimate bearing capacity $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
c : Adhesive force intensity of ground under faoudation base $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
γ_{1} : Unit volume weight of ground under foundation base $(\mathrm{kN} / \mathrm{m} 3)$
γ_{2} : Weight per unit volume of ground over foundation base $(\mathrm{kN} / \mathrm{m} 3)$
$\alpha, ~ \beta$: Form coefficient indicated in a table
Form coefficient

| Shape for load
 side of base | Shape
 like
 belt | Square, circle | Rectangle, oval | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| α | 1.0 | 1.3 | $1+0.3$ | $\cdot B / D$ |
| β | 1.0 | 0.6 | $1--0.4$ | $\cdot B / D$ |

B : Base width(m)
Df : Effective depth of foundation(m)
$\mathrm{Nc}, \mathrm{Nr}, \mathrm{Nq}$: Coefficient of bearing capacity shown in graph

$\phi\left(^{\circ}\right)$
Figure 11.4.2 Figure for coefficient of bearing stress

$$
\begin{aligned}
\mathrm{q}_{\text {d }}= & 1.30 \times 144.0 \times 7.0 \\
& +\frac{1}{2} \times 0.60 \times 7.0 \times 10.700 \times 0.0 \\
& +249.37 \times 1.0 \\
\mathrm{c} & =144.0 \mathrm{kN} / \mathrm{m}^{2} \\
\gamma_{1} & =7.0 \mathrm{kN} / \mathrm{m}^{3} \\
\alpha & =1.30 \\
\beta & =0.60 \\
\mathrm{~B} & =10.700 \mathrm{~m} \\
\gamma_{2} \cdot \mathrm{Df} & =249.37 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Calculation for $\gamma_{2} \cdot$ Df

Soil	Elevation	Depth	Thicknes s of layer	γ	γ^{\prime}	Vertical load	Notes
	m	m	m	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$	
Acl	0.180	0.000	0.000	16.0	7.0	0.00	Ground level
	-2.250	2.430	2.430	16.0	7.0	38.88	Groundw ater level
	-14.820	15.000	12.570	16.0	7.0	126.87	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	126.87	-
	-24.820	25.000	10.000	16.0	7.0	196.87	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	196.87	-
	-32.320	32.500	7.500	16.0	7.0	249.37	Cutting edge

$$
\mathrm{Nc}=7.0 \quad \mathrm{Nq}=1.0 \quad \mathrm{Nr}=0.0
$$

2) Checking bearing strength

By consideration for uplift in completion time
$\Sigma \mathrm{W} \quad=37,104.65 \mathrm{kN}$

$$
\begin{aligned}
\mathrm{q} & =\frac{37,104.65}{\pi / 4 \times 10.700^{2}}+10.00 \\
& =422.6 \mathrm{kN} / \mathrm{m}^{2}<\mathrm{q}_{\mathrm{a}}=\frac{1}{3} \times 1,559.77=519.9 \mathrm{kN} / \mathrm{m}^{2} \cdots \mathrm{OK}
\end{aligned}
$$

4. Checking member in construction

$4-1$. Calculation of sidawall

As for checking lateral wall in construction, consideration for the case of occurrence of difference of head of water in working state of sinking and after work of sinking

- As for working state of sinking

Active earth pressure adding hydrostatic pressure is acted into 4 directions. The acting directions are orthogonal direction towards lateral wall.
(2) A half of active earth pressure is acted into one direction as unbalanced load at the same time with (1). The acting direction is the direction with its decenterizing.
Active earth pressure is evaluated by formula of Coulomb's earth pressure. However, if coefficient of active earth pressure is under 0.5 , the coefficient is set with 0.5 .
Moreover, decrease of earth pressure by adhesion is not considered.
(3) In case of open caisson, external pressure is not different as the case of pneumatic caisson. However, internal pressure considers hydrastatic stress having the difference between external hydrastatic stress and internal pressure with 3.0 m .

- In case of occurrence of difference of head of water after sinking work

Stratified pressure including hydraostatic stress are acted into 4 directions in the situation of occurrence of difference of head of water between internal and external Caisson due to pump up after sinking. The acting directions are orthogonal direction towards lateral walls.

1) consideration in sinking working state
a) Load calculation

Calculation for coeffieicnet of active earth pressure
Coefficient of active earth pressure is calculated by the following formula. If the coefficient is under 0.5 , the value is set with 0.5.

$$
\mathrm{K}_{\mathrm{A}}=\frac{\cos ^{2}(\phi-\theta)}{\cos ^{2} \theta \cdot \cos (\theta+\delta) \cdot\left\{1+\sqrt{\frac{\sin (\phi+\delta) \cdot \sin (\phi-\alpha)}{\cos (\theta+\delta) \cdot \cos (\theta-\alpha)}}\right\}^{2}}
$$

To the above formula
K_{A} : Coefficient of active earth pressure by Coulomb's earth pressure
$\phi \quad$: Angle of internal friction of soil $\left({ }^{\circ}\right)$
α. Angle between ground surface
and horizontal surface
(${ }^{\circ}$)
θ : Angle between rear side of wall
and vertical plane
$\left(^{\circ}\right)$
$\left.\delta: \begin{array}{l}\text { Wall friction angle between rear } \\ \text { side of wall and ground }\end{array}{ }^{\circ}\right)=1 / 3 \phi$

	ϕ	α	θ	δ	K_{A}		
Soil	$\left.{ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	$\left({ }^{\circ}\right)$	Calculate d value	Minimum value	Adopted value
Ac1	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac2	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac3	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac4	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac5	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac6	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac7	0.0	0.0	0.0	0.0	1.000	0.5	1.000
Ac8	0.0	0.0	0.0	0.0	1.000	0.5	1.000

Calculation for earth pressure intensity
Active earth pressure

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{\mathrm{A}} \cdot\left[\mathrm{q}_{0}+\sum\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To the above formula
p_{a} : Active earth pressure
p_{w} : Hydrostatic stress (kN/m)
K_{A} : Coefficient of active earth pressure by Coulomb's earth pressure
$q_{0}:$ Vertical load (kN/m $\left.{ }^{2}\right)$

$$
=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}
$$

γ_{n} : Unit volume weight of soil in each strat. $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
(in case of under groundwater level, submerged weight)
γ_{w} : Weight per unit volume of groundwater ($\mathrm{kN} / \mathrm{m}^{3}$)
h_{n} : Layer thickness in each stratum (m)

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	γ_{w}	Vertical load	Coefficie nt of earth pressure	Horizontal earth pressure	Hydrostati c pressure	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	kN/m ${ }^{2}$	
Acl	0.180	0.000	0.000	16.0	7.0	10.0	10.00	1.000	10.00	0.00	Ground level
	-1.820	2.000	2.000	16.0	7.0	10.0	42.00	1.000	42.00	0.00	7R soffit
	-2.250	2.430	0.430	16.0	7.0	10.0	48.88	1.000	48.88	0.00	Groundw ater level
	-7.220	7.400	4.970	16.0	7.0	10.0	83.67	1.000	83.67	49.70	6R soffit
	-12.620	12.800	5.400	16.0	7.0	10.0	121.47	1.000	121.47	103.70	5R soffit
	-14.820	15.000	2.200	16.0	7.0	10.0	136.87	1.000	136.87	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	1.000	136.87	125.70	-
	-18.020	18.200	3.200	16.0	7.0	10.0	159.27	1.000	159.27	157.70	4R soffit
	-23.420	23.600	5.400	16.0	7.0	10.0	197.07	1.000	197.07	211.70	3R soffit
	-24.820	25.000	1.400	16.0	7.0	10.0	206.87	1.000	206.87	225.70	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	1.000	206.87	225.70	-
	-28.820	29.000	4.000	16.0	7.0	10.0	234.87	1.000	234.87	265.70	2R soffit ${ }^{\prime}$
	-29.820	30.000	1.000	16.0	7.0	10.0	241.87	1.000	241.87	275.70	Undersur face of bottom slab

b) Calculation of sectional force

- In case of bearing even load from 4 directions - In case of bearing unbalanced load from 1 direction (in case this, there is no bending moment) Bending moment
$\mathrm{M}_{\mathrm{A}}=0.163$
$\mathrm{M}_{\mathrm{B}}=-0.125$
$\mathrm{M}_{\mathrm{C}}=0 . \mathrm{p}^{\prime} \cdot \mathrm{r}^{2}$
$\mathrm{p}^{\prime} \cdot \mathrm{r}^{2}$
0.087
• $\mathrm{p}^{\prime} \cdot \mathrm{r}^{2}$

Axial force

$$
\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}
$$

Axial force

$\mathrm{N}_{\mathrm{A}}=0.212 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}$
$\mathrm{N}_{\mathrm{B}}=1.000$
$\mathrm{~N}_{\mathrm{C}}=-\mathrm{p}^{\prime} \cdot \mathrm{r}$
$\mathrm{N}^{\prime} \cdot 0.212$$\cdot \mathrm{p}^{\prime} \cdot \mathrm{r}$

Form and working load

Checking location	Internal diameter	Thicknes s of member	Shaft diameter of member	Radius of axis of member	Active earth pressure	Hydrostati c pressure	Unbalance d load	
	6 m soffit	8.400	1.100	9.500	4.750	83.67	30.00	41.84
2	$5 R$ soffit	8.400	1.100	9.500	4.750	121.47	30.00	60.74
3	$4 R$ soffit	8.400	1.100	9.500	4.750	159.27	30.00	79.64
4	$3 R$ soffit	8.400	1.100	9.500	4.750	197.07	30.00	98.54
5	$2 R$ soffit	8.400	1.100	9.500	4.750	234.87	30.00	117.44
6	Soffit of bottom slab	8.400	1.100	9.500	4.750	241.87	30.00	120.94

Calculation of sectional force

6R soffit		Coefficient	Uniform load	Unbalance d load	Radius	M	N
		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
Bending moment	M_{A}	0.163	-	41.84	4.750	153.86	-
	M_{B}	-0.125	-	41.84	4.750	-117.99	-
	M_{C}	0.087	-	41.84	4.750	82.12	-
Axial force	N_{A}	0.212	113.67	41.84	4.750	-	582.06
	$\mathrm{~N}_{\mathrm{B}}$	1.000	113.67	41.84	4.750	-	738.65
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	113.67	41.84	4.750	-	497.80

5R soffit		Coefficient	Uniform load	Unbalance d load	Radius	M	N
		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
Bending moment	M_{A}	0.163	-	60.74	4.750	223.36	-
	M_{B}	-0.125	-	60.74	4.750	-171.29	-
	M_{C}	0.087	-	60.74	4.750	119.22	-
Axial force	N_{A}	0.212	151.47	60.74	4.750	-	780.64
	$\mathrm{~N}_{\mathrm{B}}$	1.000	151.47	60.74	4.750	-	$1,007.97$
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	151.47	60.74	4.750	-	658.32

4R soffit		Coeffieicnet	Uniform load	Unbalance d load	Radius	M	N
		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
Bending moment	M_{A}	0.163	-	79.64	4.750	292.87	-
	M_{B}	-0.125	-	79.64	4.750	-224.60	-
	M_{C}	0.087	-	79.64	4.750	156.32	-
Axial moment	N_{A}	0.212	189.27	79.64	4.750	-	979.22
	$\mathrm{~N}_{\mathrm{B}}$	1.000	189.27	79.64	4.750	-	$1,277.30$
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	189.27	79.64	4.750	-	818.84

3R soffit		Coeffieicnet	Uniform load	Unbalance d load	Radius	M	N
			$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m
Bending moment	M_{A}	0.163	-	98.54	4.750	362.38	-
	M_{B}	-0.125	-	98.54	4.750	-277.90	-
	M_{C}	0.087	-	98.54	4.750	193.42	-
Axial force	N_{A}	0.212	227.07	98.54	4.750	-	$1,177.81$
	$\mathrm{~N}_{\mathrm{B}}$	1.000	227.07	98.54	4.750	-	$1,546.62$
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	227.07	98.54	4.750	-	979.36

2 C soffit		Coeffieicnet	Uniform load	Unbalance d load	Radius	M	N
		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
Bending moment	M_{A}	0.163	-	117.44	4.750	431.89	-
	M_{B}	-0.125	-	117.44	4.750	-331.20	-
	M_{C}	0.087	-	117.44	4.750	230.52	-
Axial force	N_{A}	0.212	264.87	117.44	4.750	-	$1,376.39$
	$\mathrm{~N}_{\mathrm{B}}$	1.000	264.87	117.44	4.750	-	$1,815.95$
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	264.87	117.44	4.750	-	$1,139.88$

Soffit of bottom slab	Coeffieicnet	Uniform load	Unbalance d load	Radius	M	N	
		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	m	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
Bending moment	M_{A}	0.163	-	120.94	4.750	444.76	-
	M_{B}	-0.125	-	120.94	4.750	-341.07	-
	M_{C}	0.087	-	120.94	4.750	237.39	-
Axial force	N_{A}	0.212	271.87	120.94	4.750	-	$1,413.16$
	$\mathrm{~N}_{\mathrm{B}}$	1.000	271.87	120.94	4.750	-	$1,865.82$
	$\mathrm{~N}_{\mathrm{C}}$	-0.212	271.87	120.94	4.750	-	$1,169.60$

c) Checking section

- As for minimum amount of reinforcing bar

Minimum amount of reinforcing bar is 0.2% and over of effective sectional area of member.

Member	b	h	d'	Formula							Arrangement of minimum reinforcing bar				
	mm	mm	mm	mm^{2}							mm^{2}				
Lateral wall	1000.0	1100.0	100.0	1000.0	\times	1000.0	\times	0.002	$=$	2,000.0	D	25	(1)	250	2,026.8

6R soffit		A point Inner surface		B point			C point				
		Exterior surface	Internal surface								
M	$\mathrm{kN} \cdot \mathrm{m}$				153.86	117.99			82.12		
N	kN		582.06	738.65			497.80				
b	mm		1000	1000			1000				
h	mm		1100	1100			1100				
d	mm		1000	1000			1000				
d'	mm		100	100			100				
As	cm^{2}	D 25	(0) 250	D 25	@	250	D 25	@	250		
			20.268	20.268			20.268				
As'	cm^{2}	D	@	D	(1)		D	@			
			0.000	0.000			0.000				
p			0.00203	0.00203			0.00203				
k			0.218	0.218			0.218				
j			0.927	0.927			0.927				
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	1.3	< 12.0	1.2	$<$	12.0	0.8	<	12.0		
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	2.8	< 240	-16.6	$<$	240	-11.3	<	240		
n		15		15			15				

5RSoffit		A point		B point		Cpoint	
		Inner surface		Exterior surface		Inner surface	
M	$\mathrm{kN} \cdot \mathrm{m}$		223.36		171.29		119.22
N	kN		780.64		1,007.97		658.32
b	mm		1000		1000		1000
h	mm		1100		1100		1100
d	mm		1000		1000		1000
d'	mm		100		100		100
As	cm^{2}	D 25	(@) 250	D 25	@ 250	D 25	@ 250
		20.268		20.268		20.268	
As'	cm^{2}	D	@	D	©	D	@
		0.000		0.000		0.000	
p		0.00203		0.00203		0.00203	
k		0.218		0.218		0.218	
j		0.927		0.927		0.927	
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	1.9	< 12.0	1.7	< 12.0	1.1	< 12.0
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	6.1	< 240	-23.3	< 240	-15.6	< 240
n		15		15		15	

4R soffit			point	B point		Cpoint		
		Inner surface		Exterior surface		Inner surface		
M	$\mathrm{kN} \cdot \mathrm{m}$	292.87		224.60		156.32		
N	kN	979.22		1,277.30		818.84		
b	mm	1000		1000		1000		
h	mm	1100		1100		1100		
d	mm	1000		1000		1000		
d'	mm	100		100		100		
As	cm^{2}	D 25	@ 250	D 25	@ 250	D 25	@	250
			20.268	20.268		20.268		
As'	cm^{2}	D	@	D	@	D	@	
		0.000		0.000		0.000		
p		0.00203		0.00203		0.00203		
k		0.218		0.218		0.218		
j		0.927		0.927		0.927		
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	2.5	< 12.0	2.2	< 12.0	1.5	<	12.0
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	9.6	< 240	-29.9	< 240	-1.5	<	240
n		15		15		15		

3R soffit		A point		B point		Cpoint		
		Inner surface		Exterior surface		Inner surface		
M	$\mathrm{kN} \cdot \mathrm{m}$	362.38		277.90		193.42		
N	kN	1,177.81		1,546.62		979.36		
b	mm	1000		1000		1000		
h	mm	1100		1100		1100		
d	mm	1000		1000		1000		
d'	mm	100		100		100		
As	cm^{2}	D 25	@ 250	D 25	@ 250		@	250
			20.268	20.268		20.268		
As'	cm^{2}	D	@	D	@	D	@	
		0.000		0.000		0.000		
p		0.00203		0.00203		0.00203		
k		0.218		0.218		0.218		
j		0.927		0.927		0.927		
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	3.1	< 12.0	2.7 < 12.0		1.9	<	12.0
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	13.3	< 240	-36.5	< 240	-1.4	$<$	240
n		15		15		15		

2R soffit		A point		B point		Cpoint		
		Inner surface		Exterior surface		Inner surface		
M	kN•m	431.89		331.20		230.52		
N	kN	1,376.39		1,815.95		1,139.88		
b	mm	1000		1000		1000		
h	mm	1100		1100		1100		
d	mm	1000		1000		1000		
d'	mm	100		100		100		
As	cm^{2}	D 25	@ 250	D 25	(C) 250	D 25	@	250
			20.268	20.268		20.268		
As'	cm^{2}	D	@	D	@	D	@	
		0.000		0.000		0.000		
p		0.00203		0.00203		0.00203		
k		0.218		0.218		0.218		
j		0.927		0.927		0.927		
σ c	$\mathrm{N} / \mathrm{mm}^{2}$	3.7	< 12.0	3.2 < 12.0		2.2	<	12.0
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	17.0	< 240	-43.2	< 240	-1.2	<	240
n		15		15		15		

Undersurfac e of base plate		A point		B point		Cpoint		
		Inner surface		Exterior surface		Inner surface		
M	$\mathrm{kN} \cdot \mathrm{m}$		444.76	341.07		237.39		
N	kN		1,413.16	1,865.82		1,169.60		
b	mm		1000	1000		1000		
h	mm		1100	1100		1100		
d	mm		1000	1000		1000		
d'	mm		100	100		100		
As	cm^{2}	D 25	@ 250	D 25	(0) 250	D 25.	@	250
			20.268	20.268		20.268		
As'	cm^{2}	D	@	D	@	D	©	
			0.000	0.000		0.000		
p			0.00203	0.00203		0.00203		
k			0.218	0.218		0.218		
j			0.927	0.927		0.927		
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	3.8	< 12.0	3.3	< 12.0	2.3	$<$	12.0
os	$\mathrm{N} / \mathrm{mm}^{2}$	17.7	< 240	-44.4	< 240	-1.2	<	240
n		15		15		15		

1) Consideration in case of occurence of difference of head of water after sinking
a) Load calculation

Calculation of earth pressure intensity
Earth pressure at rest

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\sum\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\begin{aligned}
\mathrm{p}_{\mathrm{w}}= & \gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}} \\
& \text { To the above formula }
\end{aligned}
$$

$\mathrm{p}_{0} \quad$: Earth pressure at rest
p_{w} : Hydrostatic pressure
($\mathrm{kN} / \mathrm{m}^{2}$)
K_{0} : Coefficient of earth pressure at rest
q_{0} : Vertical load
($\mathrm{kN} / \mathrm{m}^{2}$)
$=10.0 \mathrm{kN} / \mathrm{m}^{2}$
$\gamma_{\mathrm{n}} \quad:$ Unit volume weight of soil of each strat $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$ (in case under groundwater level, submerged weight)
γ_{w} : Unit volume weight of groundwater $\quad\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
h_{n} : Thickness of each stratum
(m)

Soil	Elevation	Depth	Thickness	γ	γ '	γ_{w}	Vertical load	Coefficie nt of earth	Horizontal earth pressure	Hydrostati c pressure	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
Ac1	0.180	0.000	0.000	16.0	7.0	10.0	10.00	0.500	5.00	0.00	Ground level
	-1.820	2.000	2.000	16.0	7.0	10.0	42.00	0.500	21.00	0.00	7R soffit
	-2.250	2.430	0.430	16.0	7.0	10.0	48.88	0.500	24.44	0.00	Groundw ater level
	-7.220	7.400	4.970	16.0	7.0	10.0	83.67	0.500	41.84	49.70	6R soffit
	-12.620	12.800	5.400	16.0	7.0	10.0	121.47	0.500	60.74	103.70	5R soffit
	-14.820	15.000	2.200	16.0	7.0	10.0	136.87	0.500	68.44	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	-
	-18.020	18.200	3.200	16.0	7.0	10.0	159.27	0.500	79.64	157.70	4R soffit
	-23.420	23.600	5.400	16.0	7.0	10.0	197.07	0.500	98.54	211.70	3R soffit
	-24.820	25.000	1.400	16.0	7.0	10.0	206.87	0.500	103.44	225.70	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	0.500	103.44	225.70	-
	-28.820	29.000	4.000	16.0	7.0	10.0	234.87	0.500	117.44	265.70	2R soffit
	-29.820	30.000	1.000	16.0	7.0	10.0	241.87	0.500	120.94	275.70	Undersur face of bottom slab

b) Calculation of section force

- In case of bearing equal load from 4 directions
(In this case, bending moment does not occure)
Axial force

$$
\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}
$$

Form and working load

Checking locatior	Internal diameter	Member thickness	Diamter of center line of member	Radius of center line of member	Active earth pressure	Hydrostati c pressure	Unbalance d load	
	m	m	m	m	$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
1	6 R soffit	8.400	1.100	9.500	4.750	41.84	49.70	0.00
2	5R soffit	8.400	1.100	9.500	4.750	60.74	103.70	0.00
3	4 R soffit	8.400	1.100	9.500	4.750	79.64	157.70	0.00
4	3R soffit	8.400	1.100	9.500	4.750	98.54	211.70	0.00
5	2R soffit	8.400	1.100	9.500	4.750	117.44	265.70	0.00
Undersur face of bottom slab	8.400	1.100	9.500	4.750	120.94	275.70	0.00	

Calculation for section force

Axial force	Uniform load	Radius	N
	$\mathrm{kN} / \mathrm{m}^{2}$	m	kN / m
6R soffit	91.54	4.750	434.79
5R soffit	164.44	4.750	781.07
4R soffit	237.34	4.750	$1,127.34$
3R soffit	310.24	4.750	$1,473.62$
2R soffit	383.14	4.750	$1,819.89$
Undersurface of bottom slab	396.64	4.750	$1,884.02$

c) Reviewing section

$$
\sigma_{c}=\frac{\mathrm{N}}{\mathrm{~A}}
$$

To the above forumia
σ_{c} : Compressive stress $\quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
A : Sectional area of member mm^{2}

Checking locatior-		N	b	h	A	σ_{c}	$\sigma_{\text {ca }}$	Judgement
		kN/m	mm	mm	mm^{2}	$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$	
1	6R soffit	434.79	1,000	1,100	1,100,000	0.40	12.00	\bigcirc
2	5R soffit	781.07	1,000	1,100	1,100,000	0.71	12.00	\bigcirc
3	4R soffit	1,127.34	1,000	1,100	1,100,000	1.02	12.00	\bigcirc
4	3R soffit	1,473.62	1,000	1,100	1,100,000	1.34	12.00	\bigcirc
5	2R soffit	1,819.89	1,000	1,100	1,100,000	1.65	12.00	\bigcirc
6	Undersur face of bottom slab	1,884.02	1,000	1,100	1,100,000	1.71	12.00	\bigcirc

$4-2$. Calculation of cutting edge

1) Consideration of vertical direction

Design for cutting edge is for just before final settlement of Caisson. In the design, design load from outside considers earth pressure at rest plus hydrostatic pressure, while design load from inside considers hydrostatic pressure having the difference of head of water with 3.0 m to outside hydrostatic pressure. In analytical model, span from cutting edge to bottom slab is regarded as cantilever. However, if there is no bottom slab, the span is set with 1.5 m .
a) Load calculation

Calculation of earth pressure intensity
Earth pressure at rest

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To the above formula
p_{0} : Earth pressure at rest
$\mathrm{p}_{\mathrm{w}}:$ Hydrostatic pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{K}_{0} \quad$: Coefficient of earth pressure at rest
q_{0} : Load placed on the top
$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$=10.0 \mathrm{kN} / \mathrm{m}^{2}$
γ_{n} : Unit volume weight of soil in each stra $\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
(submerged weight in case under groundwater level)
γ_{w} : Unit volume weight of groundwater ($\mathrm{kN} / \mathrm{m}^{3)}$
h_{n} : Layer thickness in each stratum (m)

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	$\gamma_{\text {w }}$	Vertical load	Coefficie nt of earth pressure	Horizont al earth pressure	Hydrosta tic pressure	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	kN/m ${ }^{2}$	
Ac1	0.180	0.000	0.000	16.0	7.0	10.0	10.00	0.500	5.00	0.00	Ground level
	-2.250	2.430	2.430	16.0	7.0	10.0	48.88	0.500	24.44	0.00	Groundwate r level
	-14.820	15.000	12.570	16.0	7.0	10.0	136.87	0.500	68.44	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	-
	-24.820	25.000	10.000	16.0	7.0	10.0	206.87	0.500	103.44	225.70	Change point of
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	0.500	103.44	225.70	-
	-29.820	30.000	5.000	16.0	7.0	10.0	241.87	0.500	120.94	275.70	Undersurfac e of bottom slab
	-30.820	31.000	1.000	16.0	7.0	10.0	248.87	0.500	124.44	285.70	$\begin{array}{\|c\|} \hline \text { Supporting } \\ \text { point of } \\ \text { cutting edge } \\ \hline \end{array}$
	-32.320	32.500	1.500	16.0	7.0	10.0	259.37	0.500	129.69	300.70	Cutting edge

b) Calculation of sectional force

Bending moment

$$
M=\left(\frac{1}{6} \times 154.44+\frac{1}{3} \times 159.69\right) \times 1.500^{2}=177.68 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
$$

Shear force

$$
S=\frac{1}{2} \times(154.44+159.69) \times 1.500 \quad=235.59 \mathrm{kN} / \mathrm{m}
$$

c) Reviewing section

- As for minimum volume of reinforcing bar

Minimum volume of reinforcing bar is 0.2% and over of effective sectional area of member.

Member	b	h	d'	Formula							Arrangement of minimum reinforcing bar				
	mm	mm	mm	mm^{2}							mm^{2}				
Lateral wall	1000.0	950.0	100.0	1000.0	\times	850.0	\times	0.002	$=$	1,700.0	D	22	@	200	1,935.5

2) Consideration just after immersion of first lot

After assumption of condition of simple support partially without ground reaction just after sinking work of Caissor. and condition of supporting by cantilever of partial bottom slab, considereation is carried out.

Case-1
Simple support

$$
\begin{aligned}
\mathrm{L} & =10.700 \mathrm{~m} \\
\mathrm{k} & =1 / 4 \\
\mathrm{k} \cdot \mathrm{~L} & =2.675 \mathrm{~m}
\end{aligned}
$$

Case-2
Cantilever

$\mathrm{L}=10.700 \mathrm{~m}$
$\mathrm{k}=1 / 5$
$\mathrm{k} \cdot \mathrm{L}=2.140 \mathrm{~m}$
a) Load calculation

Self weight of first lot

Elevation	Height	External diameter	Internal diameter	Sectional area	Average sectional area	Volume
m	m	m	m	m^{2}	m^{2}	m^{3}
-28.820	1.000	10.600	8.400	32.830	32.830	32.830
-29.820		10.600	8.400	32.830		
	1.000	10.700	8.400	34.503	31.801	31.801
-30.820		10.700	8.800	29.099		
	1.400	10.700	8.800	29.099	17.848	24.987
-32.220		10.700	10.300	6.597		
	0.100	10.700	10.300	6.597	3.299	0.330
-32.320		10.700	10.700	0.000		
Total	3.500	-	-	-	-	89.948

$$
\mathrm{W}=24.5 \times 89.948 \quad=2,203.72 \mathrm{kN}
$$

Perimeter of first lot
$\mathrm{U}=\pi \times 10.700$
$=33.615 \mathrm{~m}$

Design load

$$
\begin{aligned}
\mathrm{q} & =\frac{W}{\mathrm{U}} \\
& =\frac{2,203.72}{33.615}
\end{aligned}
$$

$$
=65.56^{\mathrm{kN} / \mathrm{m}}
$$

b) Calculation of section force

- Case-1 : Condition of simple supproting

Bending moment (tension of underside)

$$
M=\frac{1}{8} \times 65.56 \times 2.675^{2} \quad=58.64 \mathrm{kN} \cdot \mathrm{~m}
$$

Shear force

$$
\mathrm{S}=\frac{1}{2} \times 65.56 \times 2.675 . \quad=87.68 \mathrm{kN} / \mathrm{m}
$$

- Case-2 : Condition of canitilever supporting Bending moment (Upper side of tension)

$$
\mathrm{M}=\frac{1}{2} \times 65.56 \times 2.140^{2} \quad=150.11 \mathrm{kN} \cdot \mathrm{~m}
$$

Shear force

$$
\mathrm{S}=65.56 \times 2.140 \quad \cdot \quad=140.29 \mathrm{kN} / \mathrm{m}
$$

c) Checking section

Various constant of section

	Formula				A	y	Ay	Ay^{2}	I
					m^{2}	m	m^{3}	m^{4}	m^{4}
1		1.100	\times	1.000	1.100	3.000	3.300	9.900	0.092
2		0.950	\times	1.000	0.950	2.000	1.900	3.800	0.079
3	$1 / 2 \times$	0.200	\times	1.000	0.100	2.167	0.217	0.469	0.006
4		0.200	\times	1.400	0.280	0.800	0.224	0.179	0.046
5	$1 / 2 \times$	0.750	x	1.400	0.525	1.033	0.543	0.561	0.057
6	$1 / 2 \times$	0.200	\times	0.100	0.010	0.067	0.001	0.000	0.000
Total					2.965	2.086	6.184	14.909	0.279

Various constants of section in centroid axis
Geometrical accuracy moment of inertia

$$
\mathrm{I}=14.909+0.279-2.965 \times 2.086^{2}=2.292 \mathrm{~m}^{4}
$$

Modulus of section

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{U}}=\frac{2.292}{3.500-2.086}=1.620 \mathrm{~m}^{3} \\
& \mathrm{Z}_{\mathrm{L}}=\frac{2.292}{2.086}=1.099 \mathrm{~m}^{3}
\end{aligned}
$$

Checking section

4-3. Calculation for earth retaining wall
Design of earth retaining wall for temporaray work is carried out.
Load in that situation is considered to be active earth pressure plus hydrostatic pressure plus uneven earth pressure.

1) Calculation for load

Calculation for earth pressure intensity
Active earth pressure

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{\mathrm{A}} \cdot\left[\mathrm{q}_{0}+\sum\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\begin{aligned}
\mathrm{p}_{\mathrm{w}}= & \gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}} \\
& \text { To the above formula }
\end{aligned}
$$

p_{a} : Active earth pressure
$\mathrm{p}_{\mathrm{w}}:$ Hydrostatic pressure ($\mathrm{kN} / \mathrm{m}^{2}$)
K_{A} : Coefficient of active earth pressure by Coulomb's earth pressure
$\mathrm{q}_{0} \quad:$ Load placed on the top $\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$=10.0 \mathrm{kN} / \mathrm{m}^{2}$
$\gamma_{n}:$ Unit volume weight of soil in each stratum
$\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
(In case under groundwater, submerged weight)
γ_{w} : Unit volume weight of groundwater
$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
h_{n} : Layer thickness in each stratum
(m)

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	γ_{w}	Vercial load		Horizont al earth pressure	$\left\lvert\, \begin{gathered} \text { Hydrosta } \\ \text { tic } \\ \text { pressure } \end{gathered}\right.$	Notes
Ac1	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
	0.180	0.000	0.000	16.0	7.0	10.0	10.00	1.000	10.00	0.00	Ground level
	-1.820	2.000	2.000	16.0	7.0	10.0	42.00	1.000	42.00	0.00	7R soffit
	-2.250	2.430	0.430	16.0	7.0	10.0	48.88	1.000	48.88	0.00	Groundwater level

2) Calculation for sectional force

$$
\begin{array}{rlrl}
\mathrm{p}_{1} & =10.00+1 / 2 \times 10.00 & & =15.00 \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{p}_{1}=42.00+1 / 2 \times 42.00 & & =63.00 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

Bending moement

$$
M=\left(\frac{1}{3} \times 15.00+\frac{1}{6} \times 63.00\right) \times 2.000^{2}=62.00{ }^{\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}}
$$

Shear force

$$
S=\frac{1}{2} \times(15.00+63.00) \times 2.000 \quad=78.00 \mathrm{kN} / \mathrm{m}
$$

3) Checking section

- As for minimu volueme of reinforcing bar

Minimum volume of reinforcing bar is set with 0.2 and over of effective sectional area of member.

Member	b	h	d'	Formula							Arrangement of minimum reinforcing bar			
	mm	mm	mm	mm^{2}							mm^{2}			
Lateral wall	1000.0	400.0	100.0	1000.0	\times	300.0	\times	0.002	$=$	600.0	D 16	(1)	250	794.4

5. Checking member in regular time

5-1. Calculation for lateral wall
In regular time, only earth pressure at rest plus hydrostatic pressure is set as targes. The pressures are acted towards lateral wall with right angle from 4 directions.
Coefficient of earth pressure at rest adopts 0.5 without difference of sandy soil and cohesive soil. As for distribution of intensity of earth pressure at rest, if the depth is within 15 m , the distribution is set as triangular distribution, while if the depth is over 15 m , the distribution is considered to be same as intensity of earth pressure at rest.

1) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To the above formula
$p_{0} \quad$: Earth pressure at rest
$\mathrm{p}_{\mathrm{w}}:$ Hydrostatic pressure (kN/m)
$\mathrm{K}_{0} \quad$: Coefficient of earth pressure at rest
q_{0} : Load placed on the top
$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$=10.0 \mathrm{kN} / \mathrm{m}^{2}$
γ_{n} : Unit volume weight of soil in each stratum $\quad\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
(In case under groundwater level, submerged weight)
γ_{w} : Unit volume weight of groundwater
$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
$h_{n} \quad$: Layer thickness in each stratum
(m)

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	$\gamma_{\text {w }}$	Vertical load	Coefficie nt of earth pressure	Horizont al earth pressure	Hydrosta tic pressure	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
Acl	0.180	0.000	0.000	16.0	7.0	10.0	10.00	0.500	5.00	0.00	Ground level
	-1.820	2.000	2.000	16.0	7.0	10.0	42.00	0.500	21.00	0.00	7R soffit
	-2.250	2.430	0.430	16.0	7.0	10.0	48.88	0.500	24.44	0.00	Groundwat er level
	-7.220	7.400	4.970	16.0	7.0	10.0	83.67	0.500	41.84	49.70	6R soffit
	-12.620	12.800	5.400	16.0	7.0	10.0	121.47	0.500	60.74	103.70	5R soffit
	-14.820	15.000	2.200	16.0	7.0	10.0	136.87	0.500	68.44	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	-
	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	15m
	-18.020	18.200	3.200	16.0	7.0	10.0	159.27	0.500	68.44	157.70	4R soffit
	-23.420	23.600	5.400	16.0	7.0	10.0	197.07	0.500	68.44	211.70	3R soffit
	-24.820	25.000	1.400	16.0	7.0	10.0	206.87	0.500	68.44	225.70	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	0.500	68.44	225.70	-
	-28.820	29.000	4.000	16.0	7.0	10.0	234.87	0.500	68.44	265.70	2R soffit
	-29.820	30.000	1.000	16.0	7.0	10.0	241.87	0.500	68.44	275.70	Undersurfa ce of bottom slab

2) Calculation for sectional force

- In case of receiving equal loads from 4 directions
(In this case, there is no occurrence of bending momenet.)
Axial force

$$
\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}
$$

Form and working load

Checking location		Interior diameter	Thicknes s of member	Diamter of axis of member	Radius of axis of member	Active earth pressure		Unbalanc ed load$\mathrm{kN} / \mathrm{m}^{2}$
		m	m	m	m	$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
1	6R soffit	8.400	1.100	9.500	4.750	41.84	49.70	0.00
2	5 R soffit	8.400	1.100	9.500	4.750	60.74	103.70	0.00
3	4R soffit	8.400	1.100	9.500	4.750	68.44	157.70	0.00
4	3R soffit	8.400	1.100	9.500	4.750	68.44	211.70	0.00
5	2R soffit	8.400	1.100	9.500	4.750	68.44	265.70	0.00
6	Undersur face of bottom slab	8.400	1.100	9.500	4.750	68.44	275.70	0.00

Calculation for sectional force

Axial force	Uniform load	Radius	N
	m	kN / m	
6R soffit	91.54	4.750	434.79
5R soffit	164.44	4.750	781.07
4R soffit	226.14	4.750	$1,074.14$
3R soffit	280.14	4.750	$1,330.64$
2R soffit	334.14	4.750	$1,587.14$
Undersurface of bottom slab	344.14	4.750	$1,634.64$

c) Checking section

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{N}}{\mathrm{~A}}
$$

To the above formula
σ_{c} : Compressive stress $\quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
A : Sectional area of member mm^{2}

Checking locatior		N	b	h	A	σ_{c}	$\sigma_{c a}$	Judgement
		kN/m	mm	mm	mm^{2}	$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$	
1	6 R soffit	434.79	1,000	1,100	1,100,000	0.40	8.00	\bigcirc
2	5R soffit	781.07	1,000	1,100	1,100,000	0.71	8.00	\bigcirc
3	4 R soffit	1,074.14	1,000	1,100	1,100,000	0.98	8.00	\bigcirc
4	3R soffit	1,330.64	1,000	1,100	1,100,000	1.21	8.00	\bigcirc
5	2R soffit	1,587.14	1,000	1,100	1,100,000	1.44	8.00	\bigcirc
6	Undersur face of bottom slab	1,634.64	1,000	1,100	1,100,000	1.49	8.00	\bigcirc

5-2. Calculation for opening of lateral wall

1) Calculation for peripheral of opening of lateral wall (part of both ends fixed beam)

a) Calculation for load

Calclation for earth pressure intensity
Earth pressure at rest

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To this formula
$\mathrm{p}_{0} \quad$: Earth pressure at rest
$\mathrm{p}_{\mathrm{w}}:$ Hydrostatic pressure $\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
K_{0} : Coefficient of earth pressure at rest
$\mathrm{q}_{0}:$ Load placed on the top $\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

$$
=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}
$$

γ_{n} : Unit volume weight of soil in each stratum $\quad\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
(In case under groundwater, submerged weight)
$\gamma_{\mathrm{w}}:$ Unit volume weight of groundwater
$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
h_{n} : Layer thickness of each stratum
(m)

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	γ_{w}	Vertical load	Coefficint of earth pressure	Horizaon tal earth pressure	Hydrosta tic pressure	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{kN} / \mathrm{m}^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
Acl	0.180	0.000	0.000	16.0	7.0	10.0	10.00	0.500	5.00	0.00	Ground level
	-2.250	2.430	2.430	16.0	7.0	10.0	48.88	0.500	24.44	0.00	Ground water
	-14.820	15.000	12.570	16.0	7.0	10.0	136.87	0.500	68.44	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	-
	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	15m
	-24.820	25.000	10.000	16.0	7.0	10.0	206.87	0.500	68.44	225.70	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	0.500	68.44	225.70	-
	-25.120	25.300	0.300	16.0	7.0	10.0	208.97	0.500	68.44	228.70	Center of ring beam
	-28.670	28.850	3.550	16.0	7.0	10.0	233.82	0.500	68.44	264.20	Center of bottom slab
	-29.820	30.000	1.150	16.0	7.0	10.0	241.87	0.500	68.44	275.70	Undersur face of bottom slab

$\mathrm{p}_{1}=68.44+228.70$
$\mathrm{p}_{2}=68.44+264.20$
$=297.14 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{p}_{2}=68.44+264.20$
$=332.64 \mathrm{kN} / \mathrm{m}^{2}$
b) Calculation for sectional force

Bending moment of supporting point

$$
\begin{aligned}
& M_{A}=\left(\frac{1}{20} \times 297.14+\frac{1}{30} \times 332.64\right) \times 3.550^{2}=326.97 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m} \\
& M_{B}=\left(\frac{1}{20} \times 332.64+\frac{1}{30} \times 297.14\right) \times 3.550^{2}=334.42^{\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}}
\end{aligned}
$$

Bending moment of span

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}=\mathrm{p}_{1}+\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{~L}} \mathrm{x} \\
& \mathrm{~S}_{\mathrm{A}}=\frac{1}{2} \times\left(\mathrm{p}_{1}+\mathrm{p}_{\mathrm{x}}\right) \times \mathrm{x}
\end{aligned}
$$

From these

$$
\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{2 \cdot \mathrm{~L}} \mathrm{x}^{2}+\mathrm{p}_{1} \mathrm{x}-\mathrm{S}_{\mathrm{A}}=0
$$

Therefore

$$
\mathrm{x}=1.785 \mathrm{~m}
$$

Load intensity

$$
\begin{aligned}
\mathrm{p}_{\mathrm{x}} & =297.14+\frac{332.64-297.14}{3.550} \times 1.785=314.99 \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{M}_{\max }= & -326.97-546.32 \times 1.785 \\
& +\left(\frac{1}{3} \times 297.14+\frac{1}{6} \times 314.99\right) \times 1.785^{2}=165.36 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\end{aligned}
$$

Shear force

$$
\begin{array}{ll}
S_{A}=\left(\frac{7}{20} \times 297.14+\frac{3}{20} \times 332.64\right) \times 3.550 & =546.32 \mathrm{kN} / \mathrm{m} \\
S_{B}=\left(\frac{7}{20} \times 332.64+\frac{3}{20} \times 297.14\right) \times 3.550 & =571.52 \mathrm{kN} / \mathrm{m}
\end{array}
$$

c) Checking section

※ Calculation for diagonal tension bar

$$
\begin{aligned}
\text { Aw } & =\frac{1.15 \cdot \operatorname{Sh} \cdot \mathrm{a}}{\sigma \mathrm{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 352.44 \times 10^{3} \times 250}{160 \times 973} \times 10^{-2} \\
& =6.51 \mathrm{~cm}^{2} / \mathrm{m}<4 \quad \text { Number D } 16\left(=7.944 \quad \mathrm{~cm}^{2}\right) \text { are arranged. }
\end{aligned}
$$

Shear force received by concrete

$$
\begin{aligned}
\mathrm{Sc}= & \tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d} \\
= & 0.23 \times 1000 \times 973 \times 10^{-3} \\
= & 219.08 \mathrm{kN} \\
& \tau \mathrm{a}=0.23 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~b}=1000 \mathrm{~mm} \\
& \mathrm{~d}=973 \mathrm{~mm}
\end{aligned}
$$

Shear force received by diagonal tension bar

$$
\begin{aligned}
\mathrm{Sh} & =\mathrm{S}-\mathrm{Sc} \\
& =571.52-219.08 \\
& =352.44 \mathrm{kN} \\
& \mathrm{~S}=571.52 \mathrm{kN} \\
\mathrm{a} & =250 \mathrm{~mm} \\
\sigma \mathrm{sa} & =160 \mathrm{~N} / \mathrm{mm}^{2} .
\end{aligned}
$$

Arrangement of sphere of diagonal tension bar

- Calculation for L_{A}

$$
\begin{aligned}
& \mathrm{p}_{1}^{\prime}=\mathrm{p}_{1}+\frac{\mathrm{p}_{2}-\mathrm{p}_{\mathrm{L}}}{\mathrm{~L}} \mathrm{~L}_{\mathrm{A}} \\
& \mathrm{~S}_{\mathrm{A}}=\frac{1}{2} \times\left(\mathrm{p}_{1}+\mathrm{p}_{1}^{\prime}\right) \times \mathrm{L}_{\mathrm{A}}+\mathrm{S}_{\mathrm{c}}
\end{aligned}
$$

From these

$$
\frac{p_{2}-p_{1}}{2 \cdot L} L_{A}^{2}+p_{1} L_{A}+S_{c}-S_{A}=0
$$

Therefore

$$
\mathrm{L}_{\mathrm{A}}=1.082 \mathrm{~m}
$$

- Calculation for L_{B}

$$
\begin{aligned}
& \mathrm{p}_{2}^{\prime}=\mathrm{p}_{2}-\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{~L}} \mathrm{~L}_{\mathrm{B}} \\
& \mathrm{~S}_{\mathrm{B}}=\frac{1}{2} \times\left(\mathrm{p}_{2}^{\prime}+\mathrm{p}_{2}\right) \times \mathrm{L}_{\mathrm{B}}+\mathrm{S}_{\mathrm{c}}
\end{aligned}
$$

From these

$$
-\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{2 \cdot L_{B}^{2}}+\mathrm{p}_{2} \mathrm{~L}_{\mathrm{B}}+\mathrm{S}_{\mathrm{c}}-\mathrm{S}_{\mathrm{B}}=0
$$

Therefore
$\mathrm{L}_{\mathrm{A}}=1.077 \mathrm{~m}$
2) Calculatation for peripheral of opening of lateral wall(part of cantilever)

\qquad
a) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
$$

Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To this

p_{0}	$:$ Earth pressure at rest	
p_{w}	$:$ Hydrostatic pressure	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
K_{0}	$:$ Coefficient of earth pressure at rest	
q_{0}	$:$ Load placed on the top	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
	$=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}$	
γ_{n}	$:$	Unit volume weight of soil of each stratum
		$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
γ_{w}	$:$ Unit volume weight of groundwater	
h_{n}	$:$	Layer thickness of each stratum

Soil	Elevation	Depth	Layer thickness	γ	γ^{\prime}	$\gamma_{\text {w }}$	Vertical load	Coeffieic ne of earth	Horizont al earth pressure	$\begin{gathered} \hline \text { Hydrosta } \\ \text { tic } \\ \text { pressure } \end{gathered}$	Notes
	m	m	m	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	kN/m ${ }^{2}$		$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	
Acl	0.180	0.000	0.000	16.0	7.0	10.0	10.00	0.500	5.00	0.00	Ground level
	-2.250	2.430	2.430	16.0	7.0	10.0	48.88	0.500	24.44	0.00	Groundw ater level
	-14.820	15.000	12.570	16.0	7.0	10.0	136.87	0.500	68.44	125.70	Change point of stratum
Ac2	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	-
	-14.820	15.000	0.000	16.0	7.0	10.0	136.87	0.500	68.44	125.70	15 m
	-24.820	25.000	10.000	16.0	7.0	10.0	206.87	0.500	68.44	225.70	Change point of stratum
Ac3	-24.820	25.000	0.000	16.0	7.0	10.0	206.87	0.500	68.44	225.70	-
	-25.470	25.650	0.650	16.0	7.0	10.0	211.42	0.500	68.44	232.20	Soffit of ring beam
	-25.869	26.049	0.399	16.0	7.0	10.0	214.21	0.500	68.44	236.19	Soffit of upper side of opening
	-27.531	27.711	1.662	16.0	7.0	10.0	225.85	0.500	68.44	252.81	Soffit of lower side of opening
	-28.320	28.500	0.789	16.0	7.0	10.0	231.37	0.500	68.44	260.70	Upper side of bottom slab

$\mathrm{p}_{1}=68.44+232.20$
$\mathrm{p}_{2}=68.44+236.19$
$\mathrm{p}_{3}=68.44+252.81$
$\mathrm{p}_{4}=68.44+260.70$

$$
\begin{aligned}
& =300.64 \mathrm{kN} / \mathrm{m}^{2} \\
& =304.63 \mathrm{kN} / \mathrm{m}^{2} \\
& =321.24 \mathrm{kN} / \mathrm{m}^{2} \\
& =329.14 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

b) Calculation for sectional force

Bending moement of supporting point

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=\left(\frac{1}{6} \times 300.64+\frac{1}{3} \times 304.63\right) \times 0.399^{2}=24.16^{\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}} \\
& \mathrm{M}_{\mathrm{B}}=\left(\frac{1}{3} \times 321.24+\frac{1}{6} \times 329.14\right) \times 0.7899^{2}=100.85^{\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}}
\end{aligned}
$$

Shear force

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{A}}=\frac{1}{2} \times(300.64+304.63) \times 0.399 & =120.79 \mathrm{kN} / \mathrm{m} \\
\mathrm{~S}_{\mathrm{B}}=\frac{1}{2} \times(321.24+329.14) \times 0.789 & =256.62 \mathrm{kN} / \mathrm{m}
\end{array}
$$

c) Checking section

	On supporting point	Under supporting point		
	Exterior surface	Exterior surface		
M $\mathrm{kN} \cdot \mathrm{m}$	24.16	100.85		
$\mathrm{N} \quad \mathrm{kN}$	0.00	0.00		
S kN	120.79	256.62		
b mm	1000	1000		
h mm	1100	1100		
d' mm	125	125		
d mm	975	975		
As cm^{2}	D 25 @ 250	D 25 @ 250		
	20.268	20.268		
p	0.00208	0.00208		
k	0.220	0.220		
j	0.927	0.927		
$\sigma \mathrm{c} \quad \mathrm{N} / \mathrm{mm}^{2}$	$0.2<8.0$	$1.0<8.0$		
$\sigma \mathrm{s} \quad \mathrm{N} / \mathrm{mm}^{2}$	$13.2<160$	$55.1<160$		
$\tau \quad \mathrm{N} / \mathrm{mm}^{2}$	$0.12<0.21$	$0.26>0.21$		
$\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}$	0.23	0.23		
$\mathrm{C}_{\text {e }}$	1.014	1.014		
C_{pt}	0.908	0.908		
C_{N}	1.000	1.000		
n	15	15		

※ Calculation for diagonal tension bar

$$
\begin{aligned}
\text { Aw } & =\frac{1.15 \cdot \mathrm{Sh} \cdot \mathrm{a}}{\sigma \operatorname{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 50.12 \times 10^{3} \times 250}{160 \times 975} \times 10^{-2} \\
& =0.92 \mathrm{~cm}^{2} / \mathrm{m}<4 \quad \text { 本 D } 13\left(=5.068 \quad \mathrm{~cm}^{2}\right) \text { is arranged } /
\end{aligned}
$$

Shear force received by concrete

$$
\begin{aligned}
\mathrm{Sc}= & \tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d} \\
= & 0.21 \times 1000 \times 975 \times 10^{-3} \\
= & 206.50 \mathrm{kN} \\
& \tau \mathrm{a}=0.21 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~b}=1000 \mathrm{~mm} \\
& \mathrm{~d}=975 \mathrm{~mm}
\end{aligned}
$$

Shear force received by diagonal tension bar

$$
\begin{aligned}
\mathrm{Sh} & =\mathrm{S}-\mathrm{Sc} \\
& =256.62-206.50 \\
& =50.12 \mathrm{kN} \\
& \mathrm{~S}=256.62 \mathrm{kN} \\
\mathrm{a} & =250 \mathrm{~mm} \\
\sigma \mathrm{sa} & =160 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

3) Calculation for ring beam

Load applied into ring beam

Location of edge of opening part

Location of center of opening part
a) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest
$\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{h}_{\mathrm{n}}\right)\right]$
Hydrostatic pressure

$$
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
$$

To this formula

p_{0}	$:$ Earth pressure at rest	
p_{w}	$:$ Hydrostatic pressure	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
K_{0}	$:$ Coeffieicnet of earth pressure at rest	
q_{0}	$:$ Load placed on the top	$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
	$=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}$	
γ_{n}	$:$ Unit volume weight of soild of each stratum	$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
	(In case under groundwater level, submerged weight)	
γ_{w}	$:$ Unit volume weight of groundwater	$\left(\mathrm{kN} / \mathrm{m}^{3)}\right.$
h_{n}	$:$ Layer thickness of each stratum	(m)

b) Skeleton diagram

Coordinates of panel point

Panel point Number	Coordinates		Panel point Number	Coordinates		Panel point Number	Coordinates	
	$\mathrm{x}(\mathrm{m})$	y (m)		x (m)	y (m)		x (m)	$\mathrm{y}(\mathrm{m})$
1	0.000	4.750	19	0.000	-4.750	101	-4.602	1.175
2	0.825	4.678	20	-0.825	-4.678	102	-4.602	-1.175
3	1.625	4.464	21	-1.625	-4.464	-	-	-
4	2.375	4.114	22	-2.375	-4.114	-	-	-
5	3.053	3.639	23	-3.053	-3.639	-	-	-
6	3.639	3.053	24	-3.639	-3.053	-	-	-
7	4.114	2.375	25	-4.114	-2.375	-	-	-
8	4.464	1.625	26	-4.464	-1.625	-	-	-
9	4.678	0.825	27	-4.678	-0.825	-	-	-
10	4.750	0.000	28	-4.750	0.000	-	-	-
11	4.678	-0.825	29	-4.678	0.825	-	-	-
12	4.464	-1.625	30	-4.464	1.625	-	-	-
13	4.114	-2.375	31	-4.114	2.375	-	-	-
14	3.639	-3.053	32	-3.639	3.053	-	-	-
15	3.053	-3.639	33	-3.053	3.639	-	-	-
16	2.375	-4.114	34	-2.375	4.114	-	-	-
17	1.625	-4.464	35	-1.625	4.464	-	-	-
18	0.825	-4.678	36	-0.825	4.678	-	-	-

Sectional area and moment of second order

	Width	Height	Sectional area	Moment of second order
	b	h	A	I
	m	m	m^{2}	m^{4}
Ring beam	0.700	1.100	0.770	0.077642
Sectional area		$A=b \cdot h$		
Second moment of area		$I=\frac{I}{12} b \cdot h^{3}$		

Calculation for coefficient of ground reaction

Coefficient of horizontal ground reaction

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{H}}=\mathrm{k}_{\mathrm{H} 0} \cdot\left(\frac{\mathrm{~B}_{\mathrm{H}}}{0.3}\right)^{-3 / 4} \\
& \mathrm{k}_{\mathrm{HO}}=\frac{1}{0.3} \cdot \alpha \cdot \mathrm{E}_{0} \\
& \alpha=1 \\
& \mathrm{E}_{0}=50,400 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{~B}_{\mathrm{H}}=\sqrt{\mathrm{A}_{\mathrm{H}}} \\
& =15.409 \mathrm{~m} \geqq 10.0 \mathrm{~m} \\
& \mathrm{k}_{\mathrm{H}}=168,000 \times\left(\frac{10.000}{0.3}\right)^{-3 / 4} \\
& =12,110 \mathrm{kN} / \mathrm{m}^{3} \\
& k_{H 0}=\frac{1}{0.3} \times 1 \times 50,400 \\
& =\quad 168,000 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{~K}_{\mathrm{H}}=12,110 \times 0.700 \\
& =\quad 8,477 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

※ Only compression spring is valid.
c) Calculation for sectional force

Diagram of load

Diagram of transposition
$+\theta z^{+\overbrace{}^{+\delta y}}+\delta x$

Stress diagram

Diagram Mz of sectional force

$$
+M(\vec{i}-j)+M
$$

Diagram Sy of sectional force
$+S \uparrow i-j \downarrow+S$

Diagram Nx of sectional force
$+\mathrm{N} \leftarrow \mathrm{i} \longrightarrow \mathrm{j} \rightarrow+\mathrm{N}$

c) Checking section

- Checking to bending

- Checking to shear

5-3. Design of top slab

1) Calculation for load

Load of earth covering
$\mathrm{w}_{\mathrm{s}}=19.0 \times 2.000$
$=38.00 \mathrm{kN} / \mathrm{m}^{2}$

Empty load of top slab

$$
\mathrm{w}_{\mathrm{t}}=24.5 \times 0.500 \quad=12.25 \mathrm{kN} / \mathrm{m}^{2}
$$

Live load
q

	$=10.00 \mathrm{kN} / \mathrm{m}^{2}$
Σ_{w}	$=60.25 \mathrm{kN} / \mathrm{m}^{2}$

(Reference)

$$
\mathrm{w}_{1}=\frac{2 \times 15 \times(1+0.3) \times 1.0}{2.700 \times(2 \times 2.000+0.200)}=3.44 \mathrm{kN} / \mathrm{m}^{2}
$$

2) Calculation for sectional force

Peripheral of circular plate is supposed to be fixed on lateral wall and sectional force is calculated.

Bending moement

$$
\mathrm{Mr}=\frac{1}{16} \cdot \Sigma \mathrm{w} \cdot \mathrm{R}^{2} \cdot\left[(1+v)-(3 \div v) \cdot\left(\frac{\mathrm{a}}{\mathrm{R}}\right)^{2}\right]
$$

Shear force

$$
\mathrm{Qr}=\frac{1}{2} \cdot \Sigma \mathrm{w} \cdot \mathrm{a}
$$

To this

$$
\begin{array}{cl}
\mathrm{Mr} & : \text { Bending moment applied to top slab }(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\
\mathrm{Qr} & : \text { Shear force applied to top slab }(\mathrm{kN} / \mathrm{m}) \\
\Sigma \mathrm{w} & : \text { Applied load }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\mathrm{R} & : \text { Radius of circular plate }(\mathrm{m}) \\
v & : \text { Poisson's ration }=1 / 6 \\
\mathrm{a} & : \text { Distance from center of cirbular plate }(\mathrm{m})
\end{array}
$$

	R	a	$\Sigma \mathrm{w}$	Mr	Qr	Notes
	m	m	$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
0	4.750	0.000	60.25	99.12	0.00	Center part
1	4.750	1.000	60.25	87.20	30.13	
2	4.750	2.000	60.25	51.42	60.25	
3	4.750	2.883	60.25	0.01	86.85	Inflection point
4	4.750	3.000	60.25	-8.20	90.38	
5	4.750	3.950	60.25	-86.93	118.99	Checking shear $(\mathrm{H} / 2)$
6	4.750	4.000	60.25	-91.67	120.50	
7	4.750	4.750	60.25	-169.92	143.09	Edge

3) Checking section

5-4. Design of bottom slab

1) Calculation for load

Load of earth covering

$$
\mathrm{w}_{\mathrm{s}}=19.0 \times 2.000 \quad=38.00 \mathrm{kN} / \mathrm{m}^{2}
$$

Empty weight of top slab

$$
\mathrm{w}_{\mathrm{t}}=24.5 \times 0.500
$$

$=12.25 \mathrm{kN} / \mathrm{m}^{2}$
Live load

$$
\text { q }=10.00 \mathrm{kN} / \mathrm{m}^{2}
$$

Empty weight of lateral wall

$$
\mathrm{w}_{\mathrm{w}}=\frac{24.5 \times\left(10.600^{2}-8.400^{2}\right)}{10.700^{2}} \times 26.000 \quad=567.29 \mathrm{kN} / \mathrm{m}^{2}
$$

Empty weight of medium slab

$$
\mathrm{w}_{\mathrm{m}}=5 \times 24.5 \times 0.400 \quad=49.00 \mathrm{kN} / \mathrm{m}^{2}
$$

2) Calculation for sectional force

Circular plate, with the peripheral fixed on lateral wall is suuposed and sectional force is calculated.

Bending moment

$$
\mathrm{Mr}=\frac{1}{16} \cdot \Sigma \mathrm{w} \cdot \mathrm{R}^{2} \cdot\left[(1+v)-(3+v) \cdot\left(\frac{\mathrm{a}}{\mathrm{R}}\right)^{2}\right]
$$

Shear force

$$
\mathrm{Qr}=\frac{1}{2} \cdot \Sigma \mathrm{w} \cdot \mathrm{a}
$$

To this

$$
\begin{array}{cl}
\mathrm{Mr} & : \text { Bending moment applied to bottom slab }(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\
\mathrm{Qr} & : \text { Shear force applied to bottom slab }(\mathrm{kN} / \mathrm{m}) \\
\Sigma \mathrm{w} & : \text { Applied load }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\mathrm{R} & : \text { Radius of circular plate }(\mathrm{m}) \\
\nu & : \text { Poisson's ration }=1 / 6 \\
\mathrm{a} & : \text { Distance from the center of circular plates }(\mathrm{m})
\end{array}
$$

	R	a	$\Sigma \mathrm{w}$	Mr	Qr	Notes
	m	m	$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	kN / m	
0	4.200	0.000	676.54	870.19	0.00	Center
1	4.200	1.000	676.54	736.30	338.27	
2	4.200	2.000	676.54	334.60	676.54	
3	4.200	2.549	676.54	0.21	862.24	Inflection point
4	4.200	3.000	676.54	-334.89	1014.80	
5	4.200	3.450	676.54	-723.52	1167.02	Checking shear (H/2)
6	4.200	3.581	676.54	-846.85	1211.34	$1 / 2 A s$
7	4.200	4.000	676.54	-1272.17	1353.07	
8	4.200	4.200	676.54	-1491.76	1420.72	Edge

3) Checking section

※ Calculation for diagonal tension bar

$$
\begin{aligned}
\mathrm{Aw} & =\frac{1.15 \cdot \mathrm{Sh} \cdot \mathrm{a}}{\sigma \mathrm{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 770.49 \times 10^{3} \times 250}{160 \times 1390} \times 10^{-2} \\
& =9.96 \mathrm{~cm}^{2} / \mathrm{m}<4 \quad \text { Number } \quad \text { D } 19\left(=11.460 \quad \mathrm{~cm}^{2}\right) \text { are arranged. }
\end{aligned}
$$

Shear force received by concrete

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{Sc}= & \tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d} \\
= & 0.29 \times 1000 \times 1390 \times 10^{-3} \\
= & 396.54 \mathrm{kN} \\
& \tau \mathrm{a}=0.29 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~b}=1000 \mathrm{~mm} \\
& \mathrm{~d}=1390 \mathrm{~mm}
\end{aligned} \\
& \text { Shear force received by diagonal tension bar }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Sh} & =\mathrm{S}-\mathrm{Sc} \\
& =1167.02-396.54 \\
& =770.49 \mathrm{kN} \\
& \mathrm{~S}=1167.02 \mathrm{kN} \\
\mathrm{a} & =250 \mathrm{~mm} \\
\sigma \mathrm{sa} & =160 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Arranging distribution of diagonal tension bar

$$
\begin{aligned}
\mathrm{L} & =\mathrm{r}-\frac{\mathrm{a}}{\mathrm{~S}} \times \mathrm{S}_{\mathrm{c}} \\
& =4.200-\frac{3.450}{1167.02} \times 396.54 \\
& =3.028 \mathrm{~m}
\end{aligned}
$$

$5-5$. Design of medium slab

1) Calculation of from B1F to B4F

a). Calculation for load

Self weight of medium slab
$\mathrm{w}_{\mathrm{s}}=24.5 \times 0.400$
$=9.80 \mathrm{kN} / \mathrm{m}^{2}$

Sidewalk live load
q

	$=5.00 \mathrm{kN} / \mathrm{m}^{2}$
p	$=14.80 \mathrm{kN} / \mathrm{m}^{2}$

b). Calculation for stress

- Slab 1

Slab 1 is recognised as beam with both ends built-in and sectional force is evaluated.

Bending moment of supporting point

$$
\mathrm{M}=\frac{1}{12} \times 14.80 \times 8.400^{2} \quad=87.02 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
$$

Bending moment of span

$$
M_{B}=\frac{1}{24} \times 14.80 \times 8.400^{2} \quad=43.51 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
$$

Shear force

$$
\mathrm{S}=\frac{1}{2} \times 14.80 \times 8.400 \quad=62.16 \mathrm{kN} / \mathrm{m}
$$

- Slab 2

Slab 2 is recognized as cantilever and sectional force is estimated.

Bending moment of supporting point

$$
M=\frac{1}{2} \times 14.80 \times 2.700{ }^{2}
$$

$=53.95^{\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}}$

Shear force

$$
\mathrm{S}=14.80 \times 2.700 \quad=39.96 \mathrm{kN} / \mathrm{m}
$$

c). Checking section

	Slab 1				Slab 2		
	Supporting point		Span		Supporting point		
M $\mathrm{kN} \cdot \mathrm{m}$		87.02		43.51		53.95	
$\mathrm{N} \quad \mathrm{kN}$		0.00		0.00		0.00	
S kN		62.16		0.00		39.96	
$\mathrm{b} \quad \mathrm{mm}$		1000		1000		1000	
h mm		400		400		400	
d' mm		100		100		100	
d mm		300		300		300	
As	D 25	@ 250	D $\quad 19$	@ ${ }^{\text {@ }} 250$	D 19	@ 250	
		20.268		11.460		11.460	
p		0.00676		0.00382		0.00382	
k		0.360		0.286		0.286	
j		0.880		0.905		0.905	
$\sigma \mathrm{c} \quad \mathrm{N} / \mathrm{mm}^{2}$	6.1	< 8.0	3.7	< 8.0	4.6	< 8.0	
os $\quad \mathrm{N} / \mathrm{mm}^{2}$	162.6	< 180	139.9	< 180	173.4	< 180	
$\tau \quad \mathrm{N} / \mathrm{mm}^{2}$	0.21	< 0.42	0.00	< 0.35	0.13	< 0.35	
$\tau_{\mathrm{al} 1} \mathrm{~N} / \mathrm{mm}^{2}$		0.23		0.23		0.23	
$\mathrm{C}_{\text {e }}$		1.400		1.400		1.400	
C_{pt}		1.305		1.082		1.082	
C_{N}		1.000		1.000		1.000	
n		15		15		15	

3) Calculation for B5F

a). Calculation for load

Self weight of medium slab
$\mathrm{w}_{\mathrm{s}}=24.5 \times 0.400$
$=\quad 9.80 \mathrm{kN} / \mathrm{m}^{2}$

Sidewalk live load
q

	$=5.00 \mathrm{kN} / \mathrm{m}^{2}$
p	$=14.80 \mathrm{kN} / \mathrm{m}^{2}$

b). Calculation for stress

It is recognised as trilateral fixed slab by making axis of member side length.

X direction (Direction for short span)
Bending moment of supporting point
$\underset{\underset{\text { suppo }}{\mathrm{M}}}{\mathrm{rting}} \mathrm{C}=0.095 \times 14.80 \times 6.400^{2} \quad=57.59 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$

Bending moment of span
$\underset{\text { diameter }}{\mathrm{M}}=0.015 \times 14.80 \times 6.400^{2} \quad=9.09 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$

Shear force

- $\mathrm{x}=0$
$\mathrm{S}=0.23 \times 14.80 \times 6.400$
$=21.79 \mathrm{kN} / \mathrm{m}$
- $\mathrm{x}=0.200 \mathrm{~m}$ (located $\mathrm{h} / 2$ away from inside of lateral wall)
$S=\frac{1 \times 21.79}{6.400} \times\left(\frac{6.400}{1}-0.200\right)$
$=21.10^{\mathrm{kN} / \mathrm{m}}$

Y direction (direction for long span)
Bending moment of supporting point
M

| supporti
 ng point |
| :--- | :--- | :--- |
| Bending moement of span |$\quad=0.145 \times 6.400^{2} \times 87.90 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$

Shear force

$$
\begin{aligned}
\mathrm{x} & =0 \\
\mathrm{~S} & =0.30 \times 14.80 \times 6.400
\end{aligned}
$$

- $\mathrm{x}=0.200 \mathrm{~m}$ (Loacated $\mathrm{h} / 2$ away from inside of lateral wall)
$S=\frac{2 \times 28.42}{8.400} \times\left(\frac{8.400}{2}-0.200\right) \quad=27.06 \mathrm{kN} / \mathrm{m}$
c). Checking section

		X direction(direction for short span)						Y direction (direction for long span)					
		Supporting point			Span			Supporting point			Span		
M	$\mathrm{kN} \cdot \mathrm{m}$	57.59					9.09	87.90			38.80		
N	kN	0.00					0.00	0.00			0.00		
S	kN	21.10					0.00	27.06			0.00		
b	mm	1000					1000	1000			1000		
h	mm	400					400	400			400		
d'	mm	100					100	100			100		
d	mm	300					300	300			300		
As	cm^{2}	D 22	©	250	D 16	[@	250	D 25	@	250	D		250
		15.484			7.944			20.268			7.944		
p		0.00516			0.00265			0.00676			0.00265		
k		0.324			0.245			0.360			0.245		
j		0.892			0.918			0.880			0.918		
$\sigma \mathrm{c}$	$\mathrm{N} / \mathrm{mm}^{2}$	4.4	$<$	8.0	0.9	<	8.0	6.2	<	8.0	3.8	<	8.0
$\sigma \mathrm{s}$	$\mathrm{N} / \mathrm{mm}^{2}$	139.0	$<$	180	41.5	$<$	180	164.3	$<$	180	177.3	$<$	180
τ	$\mathrm{N} / \mathrm{mm}^{2}$	0.07	$<$	0.39	0.00	$<$	0.31	0.09	$<$	0.42	0.00	$<$	0.31
$\tau_{\text {al }}$	$\mathrm{N} / \mathrm{mm}^{2}$	0.23					0.23	0.23			0.23		
C_{e}		1.400					1.400	1.400			1.400		
C_{pt}		1.210					0.965	1.305			0.965		
C_{N}		1.000					1.000	1.000			1.000		
n		15					15	15			15		

5-6. Design of stairs
a). Calculation for load

Self weight of slab $\mathrm{w}_{\mathrm{s}}=24.5 \times 0.400$
$=9.80 \mathrm{kN} / \mathrm{m}^{2}$
Load on part of step
$\mathrm{w}_{\mathrm{s}}=24.5 \times \frac{1}{2} \times 0.200 \quad=2.45 \mathrm{kN} / \mathrm{m}^{2}$

Sidewalk live load q

	$=5.00 \mathrm{kN} / \mathrm{m}^{2}$
p	$=17.25 \mathrm{kN} / \mathrm{m}^{2}$

b). Calculation for stress

The model is set as beam with both ends built-in as shown in below diagram.

Stress diagram

Mz diagram for sectional force
$+M(\vec{i} \quad j)+M$

Sy diagram for sectional force

Nx diagram for sectional force

c). Checking section

- Checking to bending

5-7. Calculation for cleaning hole
1). Skelton diagram
a). Skelton diagram

b). Sectional area and second moment of area

Sectional area A
Second moment of area $\mathrm{I}=\frac{1}{12} \times 0.250{ }^{3}$
$=0.250 \mathrm{~m}^{2} / \mathrm{m}$
$=0.001302 \mathrm{~m}^{4} / \mathrm{m}$
c). Point specified for calculation

	Point specified for calculation (m)								
Member	Front face of bearing	(Haunch)	Haunch	$\mathrm{h} / 2$	$\mathrm{~h} / 2$	Haunch	(Haunch)	Front face of bearing	
$1-2$	0.125	0.000	0.125	0.250	3.000	3.125	3.250	3.125	
$3-4$	0.125	0.000	0.125	0.250	3.000	3.125	3.250	3.125	
$1-3$	0.125	0.000	0.125	0.250	2.000	2.125	2.250	2.125	
$2-4$	0.125	0.000	0.125	0.250	2.000	2.125	2.250	2.125	

2). Calculation for load

$$
\begin{array}{ll}
\text { Eartht pressure } \\
\begin{aligned}
\mathrm{p}_{\mathrm{a} 1} & =0.5 \times 19.0 \times 2.000 \\
& =19.00 \mathrm{kN} / \mathrm{m}^{2} \\
\text { Earth pressure of live load } & \\
\mathrm{p}_{\mathrm{q}}=0.5 \times 10.0 & \\
& =5.00 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned} \\
\end{array}
$$

3). Calculation for stress

- Diagram for bending moment

- Diagram for shear force

- Diagram for axial force

4). Checking section
- Checking to bending

	1-2,3-4					1-3,2-4					
	Supporting point (Exterior surface)		Span (inner surface)			Supporting point (Exterior surface)			Span (inner surface)		
M $\mathrm{kN} \cdot \mathrm{m}$		16.63			15.06			16.63			-1.44
$\mathrm{N} \quad \mathrm{kN}$		27.00			27.00			39.00			39.00
b mm		1000			1000			1000			1000
h mm		250			250			250			250
d' mm		100			150			100			150
d mm		150			100			150			100
As cm^{2}	D 19	@ 250	D 19	(1)	250	D 19	@	250	D 19		250
		11.460	11.460			11.460			11.460		
p		0.00764	0.01146			0.00764			0.01146		
k		0.378	0.439			0.378			0.439		
j		0.874	0.854			0.874			0.854		
$\sigma \mathrm{c} \quad \mathrm{N} / \mathrm{mm}^{2}$	4.3	< 8.0	7.3	<	8.0	4.3	<	8.0	0.3	<	8.0
$\sigma \mathrm{S} \quad \mathrm{N} / \mathrm{mm}^{2}$	93.1	< 160	125.1	<	160	85.4	$<$	160	-1.8	<	160
n	15		15			15			15		

- Checking to shear force

6. Checking section in earthquake (level 1)

Thickness of member is determined in analysis for buoyancy in construction. The amount of reinforcing bar is determined by the thickness of member.
Moreover, in calculation of shaft B, there is ample proof stress in checking section in earthquake. Therefore, it is assumed that pit A also have simlar trend.
Therefore, chekcing section in earthquake is omitted.
2. Study on Press-in Force for No. A and No. C Shaft

Contents

Page

1. Plan for theory of settlement 1
(1) Self weight (Wc) 1
(2) Buoyancy (U) 1
(3) Resistance force of skin friction (F) 2
(4) Resistance on cutting edge (Q) 4
(5) Insertion pressure (P) 7
(6) Relationship diagram of theory of settlement 8
2. Analysis of anchor for press fit 9
(1) The number of anchors and drawing force 9
(2) Steel wires of the anchor 9
(3) Embedment length of anchors (La) 9
(4) Length of anchors 10
(5) Adhesion between steel wire of anchors and the body of an anchors (cement base) 10

1. Plan for theory of settlement

In order for Caisson to reach a fixed depth due to gravitational act, the following formula shall be satisfied.

Insertion pressure + Self weight \geqq Buoyancy + Resistance force of skin friction + Resistance force on cutting edge

(Condition)

The calculation of shaft A is adopted as a representative of the calculation of shaft C because both forms are almost same and the depth of A is deeper than shaft C .
(1) Self weight (Wc)

Figure section 1

Figure section 2

Figure section 3

As setting unit volume weight of reinforcing concrete at $25.0\left(\mathrm{KN} / \mathrm{m}^{3}\right)$,

Lot	Volume of concrete (m^{3})	Self weight (kN)	
		Weight within interval	Self weight
(1)	90.4	2260.0	22600
.-.(2)	177.3	4432.5	6692.5
(3)	177.3	4432.5	11125.0
(4)	1773	4432.5	15557.5
(5)	177.3	4432.5	19990
-...6)	177	4432.5	24422.5
-.-(7)	25.6	640.0	25062.5

(2) Buoyancy (U)

As for setting groundwater level at $-2.83 m$

Lot	Depth (m)	Buoyancy (kN)
(1).	3.000	8.4
(2)	8.400	1583.4
...(3)	13.800	3356.2
...(4)	19.200	5129.0
(5)	24.600	6901.8
...6)	30.000	8674.6
---7)	32.500	9495.3

$$
\mathrm{F}=\mathrm{L} \cdot \mathrm{Ha} \cdot \mathrm{Fa}
$$

To this, F:Resistance force of skin friction (kN)
L:Perimeter of Caisson (m)
Ha: Ground contact height of perimeter of Caisson (m)
fa: Skin friction ($\mathrm{kN} / \mathrm{m}^{2}$)
The value of skin friction adopts recommended value from "Design guideline of press-in open Caisson" of the Hanshin Expressway Public Corporation as shown in below table.
However, in order to put NF sheet to the spot of friction cut, the value without combined use of promotion of settlement process in the interval from cutting edge to friction cut is calculated,
while the value with combined use of promotion of settlement in the interval of NF sheet is calculated.

Illustration by table-3.2(1) Table of skin friction ($\mathrm{kN} / \mathrm{m} 2$) (In case without combined use of promotion of settlement process)

Illustration by table-3.2(2) Table of skin friction ($\mathrm{kN} / \mathrm{m} 2$) (In case with combined use of promotion of settlement process)

Depth (m)	Literature *	Actual measurements by other organization			Actual measurements		Recomm ended value
		Bypass of Hamadera	Shinfujigawa river	Kishuoohashi bridge	Section of Uozakihama	Section of Sukematsu	
0~5	2.0				6.0	7.0	5.0
5~10	6.0	$25.0 \sim 39.0$	15.0	17.0	6.0	8.0	10.0
10~15	10.0	(Average value)	(Average value)	(Average value)	$10.0 \sim 20.0$	14.0	15.0
15~	12.0				$10.0 \sim 20.0$	14.0~17.0	20.0
Notes		NF sheet jetting	NF sheet jetting	$N F$ sheet jetting	NF sheet jetting	NF sheet jetting	

Literature*1:Recommended value of catalog of NF construction method

Resistance force of skin friction

Perimeter of Caisson

Interval between cutting edge and friction cut	$\pi \times 10.700=33.62(\mathrm{~m})$
Interval of NF sheet	$\pi \times 10.600=33.30(\mathrm{~m})$

(4) Resistance of cutting edge (Q) (from design and construction of intrusion method published by Ohmsha)

As for the case of press-in Caisson, cutting edge is generally embedded in ground. In this situation, it cann be supposed that resistance force of cutting edge is bearring capacity in shallow ground.

Therefore, resistance on cutting edge is calculated from the formula which is generally used in construction of press-in Caisson.
$Q=A \cdot q d$

To this Q : Resistance force on cutting edge ($k N$)
A : Ground contact area of cutting edge (m^{2})
qd :Ultimate bearing capacity of ground contacted with cutting edge ($\mathrm{kN} / \mathrm{m}^{2}$)

General formula $\mathrm{qd}=\mathrm{C} \cdot \mathrm{Nc}^{\prime}+\gamma_{1} \cdot \mathrm{~B}^{\prime} \cdot\left(\mathrm{Nr}^{\prime} / 2\right)+\gamma_{2} \cdot \mathrm{Df}^{\prime} \cdot \mathrm{Nq}^{\prime}$

To this C:Cohesion of soil $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\gamma 1, \gamma 2$: Unit volume weight of soil above and below cutting edge $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$B /$: Ground contact width of cutting edge (m)
Df/: Ground contact height of cutting edge (m)
$\mathrm{Nc} /, \mathrm{Nr} /, \mathrm{Nq} /:$ Coefficient of bearing capacity

Coefficients of bearing capacity, $\mathrm{Nc} . \mathrm{Nr}$, and Nq decrease due to excavation condition in Caisson.
This relatshionship is shown below formula with approximate reduction coefficient, kc, kr related to β, ϕ.

Reduction formula $\mathrm{qd}=\mathrm{kc} \cdot \mathrm{C} \cdot \mathrm{Nc} /+\mathrm{kr} \cdot \gamma 1 \cdot \mathrm{~B} / \cdot(\mathrm{Nr} / / 2)+\gamma 2 \cdot \mathrm{Df} / \cdot \mathrm{Nq} /$

To this, kc, kr :Reduction coefficient of bearing capacity

As for calculation for resistance on cutting edge, the values of various factors of soil, (C, ϕ), and embedment depth of cutting edge shall be noted because they influence resistance greatly.

Therefore, embedment depth, (Df) and width of resistance of cutting edge, B^{\prime} shall be determined based on workability, and assuming the condition of engulfment of earth and sand around cutting edge, and the condition of the tightness of earth and sand by press-in.
Accuracy of calculation of resistance of cutting edge is influenced by whether the above assumption is good or bad, which affects economy of construction.
Therefore, deliberate consideration shall be necessary.

Form of excavation of cutting edge

Angle of repose of soil

Soil	β^{\prime} [Degree]	
	In water	In
air		
Sand	26	32
Sand mixing clay	18	37
Gravel	16	25
Gravel mixing clay	27	35
Gravel mixing sand and clay	18	35

(Measured value by Seiichi liyoshi)

Average value of cohesion, C and internal friction angle, ϕ of soil

Soil	$\phi[$ Degree $]$	$\mathrm{C}\left[\mathrm{N} / \mathrm{cm}^{2}\right]$
Mudy sand	30	2.0
Well tight sand	34	5.0
Fluid clay	0	0.5
Well soft clay	2	1.0
Soft clay	4	2.0
Medium soft clacy	6	5.0
Tight clay	8	7.5

Reduction coefficient, Kc, kr, from the value of $\mathrm{Nc}^{\prime}, \mathrm{Nr}^{\prime}$ by B^{\prime}

The relationship with internal friction angle, ϕ and $\mathrm{Nc}^{\prime}, \mathrm{Nq}^{\prime}, \mathrm{Nr}^{\prime}$

Lot	Soil	$\begin{array}{\|c\|} \hline \phi \\ \text { (Degree) } \end{array}$	$\begin{array}{\|c\|} \hline c \\ \hline\left(\mathrm{kN} / \mathrm{m}^{3}\right) \\ \hline \end{array}$	$\begin{array}{\|c} \gamma_{1,2} \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{array}$	B^{\prime} (m)	Df ${ }^{\prime}$ (m)	No'	Nr^{\prime}	Na^{\prime}	$\begin{gathered} \beta^{\prime} \\ (\text { Degree) } \end{gathered}$	kc	kr	ad (kN/m)
(1)	Muddy sand	30	2000	..900.	0.68	1.00	16.0	7.0.	.120.	26	0.56	0.28	2932
(2)	Muddy sand	30	. 20.00	. 9.00	0.84	1.30	16.0	70	12.0	26	0.56	0.28	327.0
(3)	Muddy sand	. 30	.20.00	.9.00.	-. 0.90	. 1.40	.16.0	.-7.0	.-120	26.	. 0.56	. 0.28	338.3
(4)	Muddy sand	. 30	2000	-9.00	-...0.95	-. 1.50	..-16.0	7.0	..120	26	-.-0.56	.. 0.28	349.6.
(5)	Muddy sand	- 30	-20.00	. 9.00	-...0.95	-1.50	..-16.0	...70	. 12.0	. 26.	-.-0.56.	. 0.28	349.6
(6)	Tight sand	.. 34.	. 50.00	10.00.	. 0.41	.. 0.50	. 310	. 20.0	... 28.0	. 26	-...0.51.	-...028	.9420.
(7)	Tight sand	34	.50.00	-10.00	- 0.47	-.. 0.60	...310	---20.0	-- 28.0	--26	-- 0.51	... 0.28	..971.7.

Resistance force on cutting edge

Lot	Soil		Df (m)	B^{\prime} (m)	ad (kN/mi)	$\begin{gathered} \text { A } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} Q \\ (\mathrm{kN}) \end{gathered}$
(1)	Muddy sand	30	1.00	0.68	293.2	21.4	6274.5
(2)	Muddy sand	30	1.30	0.84.	. 327.0	26.0	8502.0
(3)	Muddy sand	30	1.40	0.90	- 338.3	27.7	9370.9
(4)	Muddy sand	. 30	1.50	0.95	- 349.6	. 29.1	10173.4
(5)	Muddy sand	30	1.50	0.95	. 349.6	29.1	10173.4
(6)	Tight sand	34	... 0.50	0.41	- 942.0	13.3	12528.6
(7)	Tight sand	34	0.60	0.47	971.7	15.1	14672.7.

(5) Insertion pressure (P)

$$
P \geqq(U+F+Q)-W c
$$

Lot	Load for sinking(kN)		Resistance force for sinking (kN)				Insertion pressure(kN)$\begin{gathered} P \geqq(U+F+Q) \\ -W_{c} \\ \hline \end{gathered}$
	Depth (m)	Empty weight (Wc)	Buoyancy (U)	Skin friction (F)	Resistance force on cutting edge (Q)	Total $(U+F+Q)$	
(1)	3.000	2260.0	8.4	2604.8	6274.5	88877	6627.7
(2)	8.400	6692.5	1583.4	3653.7	8502.0	13739.1	7046.6
(3)	13.800	111250	33562	5668.4	9370.9	18395.5	7270.5
(4)	19.200	15557.5	51290	8648.7	10173.4	23951.1	8393.6
(5)	24.60	19990.0	69018	12245.1	10173.4	29320.3	9330.3
(6)	30.00	24422.5	8674.6	15841.5	12528.6	37044.7	12622.2
(7)	-32.500	25062.5	9495.3	17506.5	14672.7	41674.5	166120

(6) Examination for sinking

Examination for sinking of building the following lot after each lot immerses

Lot	Load in building next lot(kN)		Sinking resistance(kN)	Judgement
(1)	6692.5	$<$	8887.7	OK
(2)	11125.0	$<$	13739.1	OK
(3)	15557.5	$<$	23951.5	OK
(4)	19990.0	$<$	29320.3	OK
(5)	24422.5		37044.7	OK
6	25062.5			
(7)				OK

※In the last embedment of lot
In case of complete excavation of cutting edge part in the last embedment
Sinking resistance force $=9495.3($ Buoyancy $)+17506.5($ Skin friction $)+0($ Resistance force on cutting edge $)$ $=27001.8>25062.5$ (Load for sinking) \cdots...OK

Therefore, there is no problem if the part of cutting edge is completely excavated.
(6) Relationship diagram of theory of settlement

2. Analysis of the anchor for press fit

(1) The number of anchors and drawing force

If 8 anchors with the maximum pressure $P \geqq 16612.0(\mathrm{kN})$ are laid and Caisson is pressed in, Drawing force (Pa) per one anchor shall be

$$
\mathrm{Pa}=\frac{16612.0}{8}=2076.50 \fallingdotseq 2080(\mathrm{kN} / \text { number })
$$

(2) Steel wire of the anchor

JIS-G 3536

Nominal designation	Nominal cross sectional area\qquad (min)	Unit weight(kg/km)	Tension strength		Yield strength		Elongation$\%$
			$\begin{gathered} \text { Tension load } \\ (\mathrm{kN}) \\ \hline \end{gathered}$	Tensile stress ($\mathrm{N} / \mathrm{mm}^{2}$)	Yield load (kN)	Yield stress ($\mathrm{N} / \mathrm{mm}^{2}$)	
$\phi 21.8$ over 19	312.9	2,482	573	(1813)	495	(1568)	3.5

$$
\begin{aligned}
\text { Pta } & =0.65 \times \text { Tension load } \times 6 \text { (number) }------------\quad \text { Temporary anchor } \\
& =0.65 \times 573 \times 6=2235(\mathrm{kN})>P a=2080(\mathrm{kN})--- \text { OK }
\end{aligned}
$$

(3) Embedment length of anchors (La)

$$
\mathrm{La}=\frac{\mathrm{Pa} \cdot \mathrm{Fs}_{\mathrm{s}}}{\pi \cdot \mathrm{D} \cdot \tau_{\mathrm{a}}}
$$

To this, La:Embedment length (cm)
Pa: Drawing force of the anchor $=2,080,000(\mathrm{~N})$
Fs: Safety factor $=1.5$
D : Diameter of body of the anchor $=13.5(\mathrm{~cm})$
τ a: Frictional resistance of peripheral surface of body of the anchor ($\mathrm{N} / \mathrm{cm}^{2}$)

.00 (N/	100
5.00 ($\left.\mathrm{N} / \mathrm{cm}^{2}\right)$	L3 $=100$
a4: $30.00\left(\mathrm{~N} / \mathrm{cm}^{2}\right)$	100 (cm)
. 20 (N / c	$\mathrm{L} 5=1000$ (cm)
00	L6= 950
	L7 $=600$
. 00	

※It is supposed that N value of sandy soil in the depth, (X) with 69.5 m and deeper is 35 and over due to lack of information about soil boring log.
$\mathrm{Pa} \cdot \mathrm{Fs} \leqq \pi \cdot \mathrm{D} \quad(\mathrm{L} 1 \times \tau \mathrm{a} 1+\mathrm{L} 2 \times \tau \mathrm{a} 2+\mathrm{L} 3 \times \tau \mathrm{a} 3+\mathrm{L} 4 \times \tau \mathrm{a} 4+\mathrm{L} 5 \times \tau \mathrm{a} 5+\mathrm{L} 6 \times \tau \mathrm{a} 6+$ L7 $\times \tau \mathrm{a} 7+\mathrm{L} 8 \times \tau \mathrm{a} 8)$

```
\(2,080,000 \times 1.5 \leqq \pi \times 13.5 \quad(750 \times 12.00+100 \times 30.00+100 \times 35.00+100 \times 30.00+1000 \times 13.20+950 \times\)
    \(35.00+600 \times 10.80+\mathrm{L} 8 \times 35.00\) )
    \(\mathrm{L} 8 \fallingdotseq 61(\mathrm{~cm})\)
    \(\mathrm{La}=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\mathrm{L} 5+\mathrm{L} 6+\mathrm{L} 7+\mathrm{L} 8\)
    \(=750+100+100+100+1000+950+600+61=3661(\mathrm{~cm}) \fallingdotseq 37.0(\mathrm{~m})\)

Frictional resistance of peripheral surface of anchors

(4) Length of anchors
\[
L=L a+L f
\]

To this L: Length of anchors (m)
La:Embedment length \(=37.0(\mathrm{~m})\)
Lf:Free length \(=33.5(\mathrm{~m})\)
\[
L=37.0+33.5=70.5(\mathrm{~m})
\]
(5) Examining adhesion between steel wires of the anchor and the bodies of anchors (cement base)
\[
P \operatorname{ta}=U \cdot L a \cdot \tau 0
\]

To this, Pta:Adhesion betwen steel wire and the body of anchors ( N )
\(U\) :Perimeter of the steel wire \(=(6+\pi) \times 2.18=19.93(\mathrm{~cm})\)
La:Embedment length \(=3700(\mathrm{~cm})\)
\(\tau 0\) : Adhesive stress between steel wires and the bodies of the anchor \(=100\left(\mathrm{~N} / \mathrm{cm}^{2}\right)\)

Pta \(=19.93 \times 3,700 \times 100=7,374,100(\mathrm{~N}) \quad>\mathrm{Pa}=2,080,000(\mathrm{~N})---\mathrm{OK}\)
3. Structural Calculation Sheet for No. B Shaft

\section*{Contents}

\section*{1. Design condition}
2. Structural drawing
3. Stability computation

3-1. Design of bottom slab (submerged concrete)
3-2. Analysis for floating
\(3-3\). Analysis for bearing capacity
4. Checking member in construction

4-1. Calculation for lateral wall
\(\qquad\)
\(\qquad\)
\(4-2\). Calculation on cutting edge
\(4-3\). Calculation for earth retaining wall
5. Checking member in regular time \(\qquad\)
5-1. Calculation for lateral wall
\(5-2\). Calculation for opening of lateral wail
\(5-3\). Design of top slab
\(5-4\). Design of bottom slab
\(5-5\). Design of medium slab
5-6. Design of stairs
5-7. Calculation for cleaning connection
6. Checking section in earthquake(level 1)
7. Results of computation
1. Design conditions

1-1. Structural type
Structural type : Structure of reinforced concrete
Foundation type : Open Caisson foundation

1-2. Load
1) Dead load
\begin{tabular}{|l|r|r|}
\hline \multicolumn{1}{|c|}{ Material } & Unit weight & \multirow{2}{*}{ Notes } \\
\hline & \(\mathrm{kN} / \mathrm{m}^{3}\) & \\
\hline Reinforced concrete & 24.5 & \\
\hline Plain concrete & 23.0 & \\
\hline Backfill soil (wet weight) & 19.0 & \begin{tabular}{c} 
Internal \\
frictional angle \(\quad \phi=30.0^{\circ}\) \\
\hline Backfill soil (submerged weight) \\
\hline Unit weight of water
\end{tabular} 10.0 \\
\hline
\end{tabular}
2) Vehicle load

If vehicle load is loaded, "load \(\mathrm{T}-4\) " is considered.
The standard is shown in the following figure.
Gross weight \(\mathrm{W}=40.0 \mathrm{kN}\)

※ The dimension of \(6 t\) vehicle is referred.
Rear wheel:Pl1 \(=\frac{2 \times \text { Load of rear wheel }(\mathrm{kN})}{\text { Occupied width of a set of } \mathrm{T} \operatorname{load}(\mathrm{m})} \times(1+\) impact factor \()\)
\[
=\frac{2 \times 15.0}{2.700} \times(1+\mathrm{i}) \quad \mathrm{kN} / \mathrm{m}
\]

Front Wheel: \(\mathrm{Pl} 2=\frac{2 \times \text { Load of front wheel }(\mathrm{kN})}{\text { Occupied width of a set of } \mathrm{T} \operatorname{load}(\mathrm{m})} \times(1+\) impact factor \()\)
\[
=\frac{2 \times 5.0}{2.700} \times(1+\mathrm{i}) \quad \mathrm{kN} / \mathrm{m}
\]

To this
i : Coefficient of impact
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Type of culvert } & Earth covering(h) & \begin{tabular}{c} 
Coefficient of \\
impact
\end{tabular} \\
\hline - Box culvert & \(\mathrm{h}<4 \mathrm{~m}\) & 0.3 \\
\hline - Arch culvert & \(4 \mathrm{~m} \leqq \mathrm{~h}\) & 0 \\
\hline - Portal culvert & \(\mathrm{h}<1.5 \mathrm{~m}\) & 0.5 \\
\hline - Corrugated metal culvert & \(1.5 \mathrm{~m} \leqq \mathrm{~h}<6.5 \mathrm{~m}\) & \(0.65-0.1 \mathrm{~h}\) \\
\hline - Concrete pipe culvert & \(6.5 \mathrm{~m} \leqq \mathrm{~h}\) & 0 \\
\hline -Ceramic pipe culvert & \\
\hline -Rigid polyvinyl chloride pipe culvert & & \\
\hline -Reinforced plastic composite pipe culvert & & 0.3 \\
\hline
\end{tabular}
a) Vehicle load by live load which applies to top slab
i) Case of earth covering under 4 m

Rear wheel: \(\mathrm{p}_{11}=\frac{\mathrm{P}_{11} \cdot \beta}{\mathrm{~W}_{1}}=\frac{\mathrm{P}_{\mathrm{ll}}}{2 \cdot \mathrm{~h}+0.2} \mathrm{kN} / \mathrm{m}^{2}\)
Front wheel: \(\mathrm{p}_{12}=\frac{\mathrm{P}_{12}}{\mathrm{~W}_{1}}=\frac{\mathrm{P}_{12}}{2 \cdot \mathrm{~h}+0.2} \mathrm{kN} / \mathrm{m}^{2}\)
To this
\(P_{11} \quad\) : Load of rear wheel per unit longitudianal length of calvert \((\mathrm{kN} / \mathrm{m})\)
\(P_{12}\) : Load of front wheel per unit longitudianal length of calvert ( \(\mathrm{kN} / \mathrm{m}\) )
\(W_{1}\) : Distribution width of wheel load \((\mathrm{m})\)
ii). Case of earth covering of 4 m and over

In case of earth covering of 4 m and over, load, \(10 \mathrm{kN} / \mathrm{m} 2\) equally to top side of top slab as vertical live load is considered.
b). Horizontal load by live load which applies to the side of manhole

Load, \(10 \mathrm{KN} / \mathrm{m} 2\) equally as live load of ground surface without considering impact is considered.
c). Sidewalk live load which applies to middle slab of manhole

Sidewalk live load, \(5.0 \mathrm{kN} / \mathrm{m} 2\) as live load loading to middle slab is considered.
3) Earth pressure
a) At Ordinary condition

Horizontal earth pressure in an optinal depth is considered to be earth pressure at rest.
\(\mathrm{pa}=\mathrm{k}_{0} \cdot \gamma \cdot \mathrm{~h}\)
To the above formula
pa : Earth pressure at rest \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(\mathrm{k}_{0}\) : Coefficient of earth pressure at rest \(\quad\left(\mathrm{k}_{0}=0.5\right.\) is used)
\(\gamma \quad:\) Unit volume weight of \(\operatorname{soil}\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
h : Optional depth(m)
※When considering unit volume weight of soil in the calculation of earth pressure, earth pressure is generally seperated from water pressure.
b) At earthquale condition

Earth pressure in earthquake is considered to be affected by load from earth pressure at rest at ordinary cond including earth pressure calculated from response displacement method.
\begin{tabular}{ll}
\(\square\) Location & Bor.No.B \\
\(\square\) Height of ground & E.L. \(+\quad 0.730 \mathrm{~m}\) \\
Groundwater level & E.L. \(+\quad-1.760 \mathrm{~m}\) \\
\(\square\) Basement level & E.L. +-24.270 m
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Elevation & Layer thickness & Sign & N value & \(\gamma\) & \(\gamma^{\prime}\) & c & \(\phi\) & \(\mathrm{E}_{0}\) & \(\alpha\) & \(\alpha \cdot \mathrm{E}_{0}\) \\
\hline m & m & & & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & Degree & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) \\
\hline -3.270 & 4.000 & Acl & 2.0 & 16.0 & 7.0 & 11.0 & 0.0 & 5,600 & 1 & 5,600 \\
\hline -12.270 & 9.000 & Ac2 & 1.0 & 16.0 & 7.0 & - & 0.0 & 2,800 & 1 & 2,800 \\
\hline -14.270 & 2.000 & Ac3 & 9.0 & 16.0 & 7.0 & 7.0 & 0.0 & 25,200 & 1 & 25,200 \\
\hline -24.270 & 10.000 & Ac4 & 60.0 & 16.0 & 7.0 & - & 0.0 & 168,000 & 1 & 168,000 \\
\hline -26.270 & 2.000 & Ac5 & 51.0 & 16.0 & 7.0 & 127.0 & 0.0 & 142,800 & 1 & 142,800 \\
\hline -49.270 & 23.000 & Ac6 & 31.0 & 16.0 & 7.0 & 93.0 & 0.0 & 86,800 & 1 & 86,800 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline \multirow{2}{*}{ No } & \multicolumn{1}{|c|}{ Modulus of deformation in each following testing methodology } & \multicolumn{2}{|c|}{\(\alpha\)} \\
\cline { 2 - 4 } & \multicolumn{1}{|c|}{\(\mathrm{E}_{0}\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)} & Regular time & Earthquake \\
\hline \multirow{2}{*}{ (1) } & A half of modulus of deformation calculated from endurance curve & 1 & 1 \\
\cline { 2 - 3 } of plate loading test by rigid disk of diameter with 0.3 m. & 4 & 4 \\
\hline (2) & Modulus of deformation measured inside borehole. & 4 & 4 \\
\hline (3) & \begin{tabular}{l} 
Modulus of deformation calculated from unconsolidated \\
compression test and triaxial compression test of specimen.
\end{tabular} & 1 & 1 \\
\hline (4) & \begin{tabular}{l} 
Modulus of deformation estimated with \(\mathrm{E} 0=2800 \mathrm{~N}\) by N value from \\
standard penetration test.
\end{tabular} & \begin{tabular}{l}
1 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

1-4. Use material and allowable stress
1) Reinforced concrete
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Unit: \(\mathrm{N} / \mathrm{mm}^{2}\)} \\
\hline \multicolumn{2}{|r|}{Design strength} & 24.0 \\
\hline \multirow[t]{2}{*}{Compressive stress} & Compressive stress due to bending & 8.0 \\
\hline & Axial compressive stress & 6.5 \\
\hline \multirow{3}{*}{Shearing stress} & In case of shearing stress burdened by only concrete ( \(\tau_{\text {al }}\) ) & 0.23 \\
\hline & In case of being burdened cooperated with diagonal tension bar ( \(\tau_{\mathrm{a} 2}\) ) & 1.7 \\
\hline & Punching shear unit stress \(\left(\tau_{\mathrm{a} 3}\right)\) & 0.90 \\
\hline Bonding sress & To deformed reinforce bars & 1.6 \\
\hline \multicolumn{2}{|r|}{Bearing stress} & 7.2 \\
\hline
\end{tabular}

Notel. Punching shear unit stress does not consider extra according to combination of load.
Note2. If there is no haunch, allowable compressive stress due to bending of conrner is decreased to " \(3 / 4\) ".

\section*{Elastic modulus}
\[
\begin{aligned}
& \mathrm{E}=2.5 \times 10^{7} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{~T}=1.0 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}
\end{aligned}
\]

Linear expansion coefficient

If shear force is caused only by concerete, allowable shearing stress intensity \(\tau \mathrm{a} 1\) is corrected considering following influence.
(1) Influence of effective depth, \(d\) of member section

Correction coefficient, Ce related to effective depth, d of member section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Effective \\
depth, d
\end{tabular} & 300 and fewer & 1,000 & 3,000 & 5,000 & \begin{tabular}{c}
10,000 and \\
over
\end{tabular} \\
\hline \(\mathrm{C}_{\mathrm{e}}\) & 1.4 & 1.0 & 0.7 & 0.6 & 0.5 \\
\hline
\end{tabular}
(2) Influence of ration of axial stretched reinforcing bar, \(\mathrm{p}_{\mathrm{t}}\)

Correction coefficient, Cpt related to ration of axial stretched reinforcing bar, pt
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Ration of axial stretched \\
reinforcing bar, \(\mathrm{p}_{\mathrm{t}}(\%)\)
\end{tabular} & 0.1 & 0.2 & 0.3 & 0.5 & \begin{tabular}{c}
1.0 and \\
over
\end{tabular} \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & 0.7 & 0.9 & 1.0 & 1.2 & 1.5 \\
\hline
\end{tabular}
(3) If axial compressive force of member is large, correction coefficient, CN by axial compressive force in comp calculated from the following formula is multiplied by \(\tau\) al.
\[
C_{N}=1+\frac{M_{0}}{M}
\]

To this
\(\mathrm{C}_{\mathrm{N}}\) : Correction coefficient by axial compressive force
\(\mathrm{M}_{0}\) : Bending moment \(\mathrm{N} \cdot \mathrm{mm}\) with stress intensity of concrete with zero in the edge of
\(=\frac{\mathrm{N}}{\mathrm{Ac}} \cdot \frac{\mathrm{Ic}}{\mathrm{y}}\)
M : Bending moment applying member section \(\mathrm{N} \cdot \mathrm{mm}\)
N : Axial stress in compression applying member section N
Ic : Moment of inertia related to centroid axis of member section \(\mathrm{mm}^{4}\)
\(\mathrm{Ac}:\) Sectional area of member \(\mathrm{mm}^{2}\)
y . Distance to the edge of tension member from centroid of
y : sectional area of member
mm
2) Plain concrete
\begin{tabular}{|c|c|r|}
\hline \multicolumn{2}{l|}{} & \multicolumn{1}{c|}{ Unit:N/mm \({ }^{2}\)} \\
\hline \begin{tabular}{c} 
Type of stress \\
intensity
\end{tabular} & Allowable stress intensity & \begin{tabular}{c} 
Design \\
strength
\end{tabular} \\
\cline { 2 - 3 } & 24.0 \\
\hline \begin{tabular}{c} 
Compressive \\
stress intensity
\end{tabular} & \(\frac{\sigma \mathrm{ck}}{4} \leqq 5.5\) & 5.5 \\
\hline \begin{tabular}{c} 
Tensile stress \\
intensity due to \\
bending
\end{tabular} & \(\frac{\sigma \mathrm{ck}}{7} \leqq 0.3\) & 0.3 \\
\hline \begin{tabular}{c} 
Bearing stress \\
intensity
\end{tabular} & \(0.3 \sigma \mathrm{ck} \leqq 6.0\) & 6.0 \\
\hline \begin{tabular}{c} 
Shearing unit \\
stress
\end{tabular} & \(\frac{\sigma \mathrm{ck}}{100}+0.15\) & Note1 \\
\hline
\end{tabular}

Note1. Extra increase is not added according to combination of load
3) Reinforcing bar
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Unit: \(\mathrm{N} / \mathrm{mm}^{2}\)} \\
\hline Varie & \(y\) of stress intensity and member & Variety of reinforcing bar & SD 345 \\
\hline \multirow[b]{6}{*}{} & \multicolumn{2}{|l|}{1) In case that main load without live load and impact is applied(like beam
member)} & 100 \\
\hline & \multirow[t]{2}{*}{Basic value in case that influence of collision load and earthquake is not included in the combination of load} & 2) General member & 180 \\
\hline & & 3) Member installed in water level or under groundwater level & 160 \\
\hline & \multirow[t]{2}{*}{Basic value in case that influence of collision load and earthquake is included in the combination of load} & 4) Axial reinforcing bar & 200 \\
\hline & & 5) Other than that above & 200 \\
\hline & \multicolumn{2}{|l|}{6) Basic value in case of calculating the length of lap joint of reinforcing bar or fixing length} & 200 \\
\hline \multicolumn{3}{|l|}{7) Compressive stress intensity} & 200 \\
\hline
\end{tabular}
3) As for extra increase for allowable stress intensity

Extra increase of allowable tensile stress intensity is the following according to the combination of load.
\begin{tabular}{|c|r|l|}
\hline \begin{tabular}{c} 
Combination \\
s of loads
\end{tabular} & \begin{tabular}{c} 
Overdesign \\
factor
\end{tabular} & Notes \\
\hline Regular time & 1.0 & \\
\hline \begin{tabular}{c} 
Construction \\
time
\end{tabular} & 1.5 & \\
\hline \begin{tabular}{c} 
Earthquake \\
time(L1)
\end{tabular} & 1.5 & \\
\hline
\end{tabular}

\section*{\(1-5\). Application specification and references}
*1 Earthworks of road-guideline of culvert work
*2 Specification of highway bridge and the manual, I common version
*3 Specification of highway bridge and the manual, IIIconcrete bridge version
*4 Specification of highway bridge and the manual, IVSubstructure version
\({ }_{5}\) Design manual of civil engineering(draft)-Civil engineering structure \(\cdot\)
*5 Bridge version-
*6 Guideline and the manual for earthquake countermeasure of sewage facility
*7 Calculation examples for earthquake resistance of sewage facility
*8 Standard specification for tunnel [Open cut method version]•the manual
*9 Structural calculation criterion of reinforced concerete \(\cdot\) the manual

Corporate juridical person Japan Road Association

Ministry of Land, Transport and Touris
Corporate juridical person Japan Sewage Works Association Corporate juridical person Japan Sewage Works Association
Japan Society of Civil Engineering
Architectural Institute of Japan

1-6. The others
- As for minimum reinforcement content

Minimum reinforcement content is 0.2 and over of effective sectional area of member.

\section*{2. Structural drawing}

Section A-A
Section B-B


Section C-C


\section*{3. Stability computation}

3-1. Design of bottom slab (underwater concrete)
Bottom slab (underwater concerete) is treated as plain concrete constructed in water.

1) Load calculation

As for design load, uplift pressure and self weight of bottom slab are considered.

Uplift pressure
\[
\mathrm{w}_{\mathrm{u}}=10.0 \times 29.810 \quad=298.10 \mathrm{kN} / \mathrm{m}^{2}
\]

Self weight of bottom slab of concrete
\[
\mathrm{w}_{\mathrm{c}}=23.0 \times 2.000
\]
\(=46.00 \mathrm{kN} / \mathrm{m}^{2}\)
Design load
\(\mathrm{w}=\mathrm{w}_{\mathrm{u}}-\mathrm{w}_{\mathrm{c}}\)
\(=298.10-46.00\)
\(=252.10 \mathrm{kN} / \mathrm{m}^{2}\)
2) Calculation of section force

As for cross sectional area, bottom slab is considered to be slab that the surrounding is simply supported.


Bending moment
\[
\begin{aligned}
\operatorname{Mmax} & =(3+v) \cdot \frac{\mathrm{w} \cdot \mathrm{R}^{2}}{16} \\
& =\left(3+\frac{1}{6}\right) \times \frac{252.10 \times 1.500 \quad{ }^{2}}{16} \quad=112.26 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\end{aligned}
\]

Shear force
\[
\begin{aligned}
\mathrm{S} & =\frac{\mathrm{w} \cdot \mathrm{R}}{2} \\
& =\frac{252.10 \times 1.500}{2}
\end{aligned}
\]
\[
=189.08^{\mathrm{kN} / \mathrm{m}}
\]
3) Checking sectional area
\begin{tabular}{|c|c|c|c|c|}
\hline & Bottom slab & & & \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & 112.26 & & & \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & 0.00 & & & \\
\hline S kN & 189.08 & & & \\
\hline \(\mathrm{b} \quad \mathrm{mm}\) & 1000 & & & \\
\hline h mm & 2000 & & & \\
\hline \(Z \quad \mathrm{~mm}^{3}\) & 666,666,667 & & & \\
\hline A \(\mathrm{mm}^{2}\) & 2,000,000 & & & \\
\hline  & \(0.2<8.25\) & & & \\
\hline \(\sigma \mathrm{t} \quad \mathrm{N} / \mathrm{mm}^{2}\) & \(0.2<0.45\) & & & \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & \(0.09<0.39\) & & & \\
\hline Judgement & OK & & & \\
\hline
\end{tabular}
Section modulus
\(Z=\frac{1}{6} b \cdot h^{2}\)
Sectional area
\(A=b \cdot h\)

3-2. Consideration for lift
1) Construction time
a) Load calculation
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation & Height & External diameter & Internal diameter & Cross sectional area & Average cross section area & Volume \\
\hline m & m & m & m & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{3}\) \\
\hline 0.730 & \multirow{2}{*}{2.300} & 6.400 & 5.600 & 7.540 & \multirow{2}{*}{7.540} & \multirow{2}{*}{17.342} \\
\hline \multirow{2}{*}{-1.570} & & 6.400 & 5.600 & 7.540 & & \\
\hline & \multirow{2}{*}{28.000} & 6.400 & 5.000 & 12.535 & \multirow{2}{*}{12.535} & \multirow{2}{*}{350.979} \\
\hline \multirow{2}{*}{-29.570} & & 6.400 & 5.000 & 12.535 & & \\
\hline & \multirow{2}{*}{1.100} & 6.500 & 5.000 & 13.548 & \multirow{2}{*}{12.747} & \multirow{2}{*}{14.022} \\
\hline \multirow{2}{*}{-30.670} & & 6.500 & 5.200 & 11.946 & & \\
\hline & \multirow{2}{*}{0.800} & 6.500 & 5.200 & 11.946 & \multirow[b]{2}{*}{7.952} & \multirow[b]{2}{*}{6.362} \\
\hline \multirow{2}{*}{-31.470} & & 6.500 & 6.100 & 3.958 & & \\
\hline & \multirow[b]{2}{*}{0.100} & 6.500 & 6.100 & 3.958 & \multirow[b]{2}{*}{1.979} & \multirow[b]{2}{*}{0.198} \\
\hline -31.570 & & 6.500 & 6.500 & 0.000 & & \\
\hline Total & 32.300 & - & - & - & - & 388.902 \\
\hline
\end{tabular}
- Bottom slab part (underwater concrete)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation & Height & External diameter & Internal diameter & Cross sectional area & \begin{tabular}{l}
Average \\
cross \\
section \\
area
\end{tabular} & Volume \\
\hline m & m & m & m & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{3}\) \\
\hline -29.570 & \multirow{2}{*}{1.100} & 5.000 & 0.000 & 19.635 & \multirow[b]{2}{*}{20.436} & \multirow[b]{2}{*}{22.480} \\
\hline \multirow{2}{*}{-30.670} & & 5.200 & 0.000 & 21.237 & & \\
\hline & \multirow[b]{2}{*}{0.800} & 5.200 & 0.000 & 21.237 & \multirow[b]{2}{*}{25.231} & \multirow[b]{2}{*}{20.185} \\
\hline \multirow{2}{*}{-31.470} & & 6.100 & 0.000 & 29.225 & & \\
\hline & \multirow[b]{2}{*}{0.100} & 6.100 & 0.000 & 29.225 & \multirow[b]{2}{*}{31.204} & \multirow[b]{2}{*}{3.120} \\
\hline \(-31.570\) & & 6.500 & 0.000 & 33.183 & & \\
\hline 合計 & 2.000 & - & - & - & - & 45.785 \\
\hline
\end{tabular}
- Total weight
\[
\Sigma W=24.5 \times 388.902+23.0 \times 45.785 \quad=10,581.14 \mathrm{kN}
\]
- Buoyancy
\[
W_{u}=10.0 \times 29.810 \times \frac{\pi}{4} \times 6.500^{2} \quad=9,891.87{ }^{\mathrm{kN}}
\]
b) Chekcking buoyancy
\[
\begin{aligned}
\mathrm{F} & =\frac{\Sigma \mathrm{W}}{\mathrm{~W}_{\mathrm{u}}} \\
& =\frac{10,581.14}{9,891.87} \\
& =1.07>\mathrm{Fs}=1.0
\end{aligned}
\]

\section*{2) Completion time}
a) Load calculation


Overburden load
\[
\mathrm{W}_{\mathrm{s}}=19.0 \times 2.300 \times \frac{\pi}{4} \times 6.400 \mathrm{~m}^{2} \quad=1,405.83 \mathrm{kN}
\]

Self weight of top slab
\[
\mathrm{W}_{\mathrm{t}}=24.5 \times 0.400 \times \frac{\pi}{4} \times 6.400^{2}=315.27^{\mathrm{kN}}
\]

Self weight of lateral wall
\[
W_{w}=24.5 \times \frac{\pi}{4} \times\left(6.400^{2}-5.000^{2}\right) \times 26.100 \quad=8,015.48{ }^{\mathrm{kN}}
\]

Self weight of bottom slab
\[
\mathrm{W}_{\mathrm{f}}=24.5 \times 1.500 \times \frac{\pi}{4} \times 6.400^{2} \quad=1,182.24{ }^{\mathrm{kN}}
\]

Cutting edge part (part of under undersurface of bottom slab)
\(\mathrm{W}_{\mathrm{n}}=24.5 \times(14.022+6.362+0.198)=504.24 \mathrm{kN}\)
Self weight of medium slab
\(\mathrm{W}_{\mathrm{m}}=6 \times 24.5 \times 0.300 \times \frac{\pi}{4} \times 5.000\)
\(=865.90 \mathrm{kN}\)

Bottom slab (underwater concrete)
\(\mathrm{W}=23.0 \times 45.785 \quad=1,053.05 \mathrm{kN}\)
- Buoyancy
\(\mathrm{W}_{\mathrm{u}} \quad=9,891.87 \mathrm{kN}\)
b) Checking to buoyancy
\[
\begin{aligned}
& \mathrm{F}=\frac{\Sigma W}{W_{\mathrm{u}}} \\
& =\frac{13,342.01}{9,891.87} \\
& =1.35>\mathrm{Fs}=1.2 \\
& \text { OK }
\end{aligned}
\]

3-3. consideration for bearing capacity
1) Calculation for ultimate bearing capacity
\(\mathrm{q}_{\mathrm{d}}=\alpha \cdot \mathrm{c} \cdot \mathrm{Nc}+1 / 2 \cdot \beta \cdot \gamma_{1} \cdot \mathrm{~B} \cdot \mathrm{~N}_{\boldsymbol{\gamma}}+\gamma_{2} \cdot \mathrm{Df} \cdot \mathrm{Nq}\)
To this
\(\mathrm{q}_{\mathrm{d}}\) : Ultimate bearing capacity \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
c : Adhesive force intensity of ground under faoudation base \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(\gamma_{1}\) : Unit volume weight of ground under foundation base \((\mathrm{kN} / \mathrm{m} 3)\)
\(\gamma_{2}\) : Weight per unit volume of ground over foundation base \((\mathrm{kN} / \mathrm{m} 3)\)
\(\alpha, ~ \beta\) : Form coefficient indicated in a table
Form coefficient
\begin{tabular}{|c|c|c|cc|}
\hline \begin{tabular}{c} 
Shape for load \\
side of base
\end{tabular} & \begin{tabular}{c} 
Shape \\
like \\
belt
\end{tabular} & \begin{tabular}{c} 
Squuare, \\
circle
\end{tabular} & Rectangle, oval \\
\hline\(\alpha\) & 1.0 & 1.3 & \(1+0.3 \quad\) B/D \\
\hline\(\beta\) & 1.0 & 0.6 & \(1-0.4 \cdot \mathrm{~B} / \mathrm{D}\) \\
\hline
\end{tabular}

B : Base width(m)
Df : Effective depth of foundation( \(m\) )
\(\mathrm{Nc}, \mathrm{Nr}, \mathrm{Nq}\) : Coefficient of bearing capacity shown in graph


Angle of shearing stress resistance \(\phi\left({ }^{\circ}\right)\)
Figure 11.4.2 Figure for coefficient of bearing stress
```

q}\mp@subsup{\mathbf{d}}{}{\prime}=1.30\times127.0\times7.
+\frac{1}{2}\times0.60\times7.0\times6.500\times0.0
+248.51 }\times1.
= 1,404.21 kN/m
c}=127.0 kN/\mp@subsup{m}{}{2
\mp@subsup{\gamma}{1}{}}==7.0\textrm{kN}/\mp@subsup{\textrm{m}}{}{3
\alpha=1.30
\beta=0.60
B}=6.500\textrm{m
\mp@subsup{\gamma}{2}{}}\cdot\textrm{Df}=248.51 kN/m2'\mp@code{m

```

Calculation for \(\gamma_{2} \cdot\) Df
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Soil} & Elevation & Depth & Thicknes s of layer & \(\gamma\) & \(\gamma\) ' & Vertical load & \multirow[t]{2}{*}{Notes} \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 0.00 & Ground level \\
\hline & -1.760 & 2.490 & 2.490 & 16.0 & 7.0 & 39.84 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 50.41 & \[
\begin{aligned}
& \text { Change } \\
& \text { point of } \\
& \text { stratum }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 50.41 & - \\
\hline & -12.270 & 13.000 & 9.000 & 16.0 & 7.0 & 113.41 & \[
\begin{gathered}
\text { Change } \\
\text { point of } \\
\text { stratum }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 113.41 & - \\
\hline & -14.270 & 15.000 & 2.000 & 16.0 & 7.0 & 127.41 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 127.41 & - \\
\hline & -24.270 & 25.000 & 10.000 & 16.0 & 7.0 & 197.41 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 197.41 & - \\
\hline & -26.270 & 27.000 & 2.000 & 16.0 & 7.0 & 211.41 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 211.41 & - \\
\hline & -31.570 & 32.300 & 5.300 & 16.0 & 7.0 & 248.51 & Cutting edge \\
\hline
\end{tabular}
\(\mathrm{Nc}=7.0 \mathrm{Nq}=1.0 \quad \mathrm{Nr}=0.0\)
2) Checking bearing strength

By consideration for uplift in completion time
\(\Sigma W\)
\(=13,342.01 \mathrm{kN}\)
\[
\begin{aligned}
\mathrm{q} & =\frac{13,342.01}{\pi / 4 \times 6.500^{2}}+10.00 \\
& =412.1 \mathrm{kN} / \mathrm{m}^{2}<\mathrm{q}_{a}=\frac{1}{3} \times 1,404.21=468.1 \mathrm{kN} / \mathrm{m}^{2} \cdots \mathrm{OK}
\end{aligned}
\]

\section*{4. Checking member in construction}

\section*{4-1. Calculation of sidawall}

As for checking lateral wall in construction, consideration for the case of occurrence of difference of head of water in working state and after work of sinking
- As for working state of sinking
(1) Active earth pressure adding hydrostatic pressure is acted into 4 directions. The acting directions are orthogonal direction towards lateral wall.
(2) A half of active earth pressure is acted into one direction as unbalanced load at the same time with (1). The acting direction is the direction with its decenterizing.
Active earth pressure is evaluated by formula of Coulomb's earth pressure. However, if coefficient of active earth pressure is under 0.5 , the coefficient is set with 0.5 .
Moreover, decrease of earth pressure by adhesion is not considered.
(3) In case of open caisson, external pressure is not different as the case of pneumatic caisson. However, internal pressure considers hydrastatic stress having the difference between external hydrastatic stress and internal pressure with 3.0 m .
- In case of occurrence of difference of head of water after sinking work

Stratified pressure including hydraostatic stress are acted into 4 directions in the situation of occurrence of difference of head of water between internal and external Caisson due to pump up after sinking. The acting directions are orthogonal direction towards lateral walls.
1) consideration in sinking working state
a) Load calculation

Calculation for coeffieicnet of active earth pressure
Coefficient of active earth pressure is calculated by the following formula. If the coefficient is under 0.5 , the value is set with 0.5 .
\[
\mathrm{K}_{\mathrm{A}}=\frac{\cos ^{2}(\phi-\theta)}{\cos ^{2} \theta \cdot \cos (\theta+\delta) \cdot\left\{1+\sqrt{\frac{\sin (\phi+\delta) \cdot \sin (\phi-\alpha)}{\cos (\theta+\delta) \cdot \cos (\theta-\alpha)}}\right\}^{2}}
\]

To the above formula
\(\mathrm{K}_{\mathrm{A}}\) : Coefficient of active earth pressure by Coulomb's earth pressure
\(\phi \quad\) : Angle of internal friction of soil ( \({ }^{\circ}\) )
\(\alpha \quad\) : Angle between ground surface
- and horizontal surface
( \({ }^{\circ}\) ) Angle between rear side of
- wall and vertical plane
\(\delta \quad: \begin{aligned} & \text { Wall friction angle between } \\ & \text { rear side of wall and ground }\end{aligned} \quad\left({ }^{\circ}\right)=1 / 3 \phi\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Soil} & \(\phi\) & \(\alpha\) & \(\theta\) & \(\delta\) & \multicolumn{3}{|c|}{\(\mathrm{K}_{\text {A }}\)} \\
\hline & \(\left({ }^{\circ}\right)\) & \(\left({ }^{\circ}\right)\) & \(\left({ }^{\circ}\right)\) & \(\left({ }^{\circ}\right)\) & Calculate d value & Minimum value & Adopted value \\
\hline Ac1 & 0.0 & 0.0 & 0.0 & 0.0 & 1.000 & 0.5 & 1.000 \\
\hline Ac2 & 0.0 & 0.0 & 0.0 & 0.0 & 1.000 & 0.5 & 1.000 \\
\hline Ac3 & 0.0 & 0.0 & 0.0 & 0.0 & 1.000 & 0.5 & 1.000 \\
\hline Ac4 & 0.0 & 0.0 & 0.0 & 0.0 & 1.000 & 0.5 & 1.000 \\
\hline Ac5 & 0.0 & 0.0 & 0.0 & 0.0 & 1.000 & 0.5 & 1.000 \\
\hline
\end{tabular}

Calculation for earth pressure intensity
Active earth pressure
\[
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{\mathrm{A}} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

Hydrostatic pressure
\[
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
\]

To this
\(\mathrm{p}_{\mathrm{a}} \quad\) : Active earth pressure
\(\mathrm{p}_{\mathrm{w}}\) : Hydrostatic stress ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(\mathrm{K}_{\mathrm{A}}\) : Coefficient of active earth pressure by Coulomb's earth pressure
\(\mathrm{q}_{0}:\) Vertical load
( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(=10.0 \mathrm{kN} / \mathrm{m}^{2}\)
\(\gamma_{\mathrm{n}}\) : Unit volume weight of soil in each \(\operatorname{strc}\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\) (in case of under groundwater level, submerged weight)
\(\gamma_{\mathrm{w}}\) : Weight per unit volume of groundwate \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(\mathrm{h}_{\mathrm{n}} \quad:\) Layer thickness in each stratum (m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{\text {w }}\) & Vertical load & Coefficie nt of earth pressure & Horizont al earth pressure & \[
\left\lvert\, \begin{gathered}
\text { Hydrosta } \\
\text { tic } \\
\text { pressure }
\end{gathered}\right.
\] & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{4}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 1.000 & 10.00 & 0.00 & Ground level \\
\hline & -1.570 & 2.300 & 2.300 & 16.0 & 7.0 & 10.0 & 46.80 & 1.000 & 46.80 & 0.00 & 7Rsoffit \\
\hline & -1.760 & 2.490 & 0.190 & 16.0 & 7.0 & 10.0 & 49.84 & 1.000 & 49.84 & 0.00 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 1.000 & 60.41 & 15.10 & \[
\begin{aligned}
& \text { Change } \\
& \text { point of } \\
& \text { stratum }
\end{aligned}
\] \\
\hline \multirow[b]{3}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 1.000 & 60.41 & 15.10 & , \\
\hline & -6.970 & 7.700 & 3.700 & 16.0 & 7.0 & 10.0 & 86.31 & 1.000 & 86.31 & 52.10 & 6Rsoffit \\
\hline & -12.270 & 13.000 & 5.300 & 16.0 & 7.0 & 10.0 & 123.41 & 1.000 & 123.41 & 105.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 1.000 & 123.41 & 105.10 & - \\
\hline & -12.370 & 13.100 & 0.100 & 16.0 & 7.0 & 10.0 & 124.11 & 1.000 & 124.11 & 106.10 & 5Rsoffit \\
\hline & -14.270 & 15.000 & 1.900 & 16.0 & 7.0 & 10.0 & 137.41 & 1.000 & 137.41 & 125.10 & Change point of stratum \\
\hline \multirow{4}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 1.000 & 137.41 & 125.10 & \\
\hline & -17.770 & 18.500 & 3.500 & 16.0 & 7.0 & 10.0 & 161.91 & 1.000 & 161.91 & 160.10 & 4Rsoffit \\
\hline & -23.170 & 23.900 & 5.400 & 16.0 & 7.0 & 10.0 & 199.71 & 1.000 & 199.71 & 214.10 & 3Rsoffit \\
\hline & -24.270 & 25.000 & 1.100 & 16.0 & 7.0 & 10.0 & 207.41 & 1.000 & 207.41 & 225.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 1.000 & 207.41 & 225.10 & - \\
\hline & -26.270 & 27.000 & 2.000 & 16.0 & 7.0 & 10.0 & 221.41 & 1.000 & 221.41 & 245.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 1.000 & 221.41 & 245.10 & - \\
\hline & -28.570 & 29.300 & 2.300 & 16.0 & 7.0 & 10.0 & 237.51 & 1.000 & 237.51 & 268.10 & 2Rsoffit \\
\hline & -29.570 & 30.300 & 1.000 & 16.0 & 7.0 & 10.0 & 244.51 & 1.000 & 244.51 & 278.10 & Undersur face of bottom slab \\
\hline
\end{tabular}
b) Calculation of sectional force

- In case of bearing even load from 4 direction: - In case of bearing unbalanced load from 1 direction (in case this, there is no bending moment) Bending moment
\(M_{A}=0.163 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}^{2}\)
\(\mathrm{M}_{\mathrm{B}}=-0.125 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}^{2}\)
\(\mathrm{M}_{\mathrm{C}}=0.087 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}^{2}\)

Axial force
Axial force
\[
\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}
\]
\(\mathrm{N}_{\mathrm{A}}=0.212 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}\)
\(\mathrm{N}_{\mathrm{B}}=1.000 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}\)
\(\mathrm{N}_{\mathrm{C}}=-0.212 \quad \cdot \mathrm{p}^{\prime} \cdot \mathrm{r}\)

Form and working load
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Checking location } & \begin{tabular}{c} 
Internal \\
diameter
\end{tabular} & \begin{tabular}{c} 
Thicknes \\
s of \\
member
\end{tabular} & \begin{tabular}{c} 
Shaft \\
diameter \\
of \\
member
\end{tabular} & \begin{tabular}{c} 
Radius of \\
axis of \\
member
\end{tabular} & \begin{tabular}{c} 
Active \\
earth \\
pressure
\end{tabular} & \begin{tabular}{c} 
Hydrosta \\
tic \\
pressure
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} \\
\cline { 3 - 10 } & m & \multicolumn{1}{c|}{m} & m & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) \\
\hline 1 & 6Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 86.31 & 30.00 & 43.16 \\
\hline 2 & 5Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 124.11 & 30.00 & 62.06 \\
\hline 3 & 4Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 161.91 & 30.00 & 80.96 \\
\hline 4 & 3Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 199.71 & 30.00 & 99.86 \\
\hline 5 & 2Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 237.51 & 30.00 & 118.76 \\
\hline & \begin{tabular}{c} 
Undersurfac \\
e of bottom \\
slab
\end{tabular} & 5.000 & 0.700 & 5.700 & 2.850 & 244.51 & 30.00 & 122.26 \\
\hline
\end{tabular}
※ Hydrostatic pressure in constructure
The difference of water level to inside caison is set with 3.0 m .
\[
\mathrm{p}_{\mathrm{w}}=10.0 \times 3.000 \quad=30.00 \mathrm{kN} / \mathrm{m}^{2}
\]

Calculation for sectional force
\begin{tabular}{|c|c|r|c|r|c|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
6Rsoffit
\end{tabular}} & \multirow{2}{*}{ Coefficient } & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 2 - 8 } & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 43.16 & 2.850 & 57.14 & - \\
\cline { 2 - 9 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 43.16 & 2.850 & -43.82 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 43.16 & 2.850 & 30.50 & - \\
\hline \multirow{3}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 116.31 & 43.16 & 2.850 & - & 357.56 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 116.31 & 43.16 & 2.850 & - & 454.48 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 116.31 & 43.16 & 2.850 & - & 305.41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|r|r|r|c|c|c|}
\hline \multicolumn{2}{|c|}{ 5Rsoffit } & Coefficient & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 3 - 8 } & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{c} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 62.06 & 2.850 & 82.16 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 62.06 & 2.850 & -63.01 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 62.06 & 2.850 & 43.85 & - \\
\hline \multirow{3}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 154.11 & 62.06 & 2.850 & - & 476.71 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 154.11 & 62.06 & 2.850 & - & 616.07 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 154.11 & 62.06 & 2.850 & - & 401.72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|r|c|r|c|c|c|}
\hline \multicolumn{2}{|c|}{ 4Rsoffit } & Coefficient & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 2 - 8 } & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 80.96 & 2.850 & 107.18 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 80.96 & 2.850 & -82.19 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 80.96 & 2.850 & 57.21 & - \\
\hline \multirow{4}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 191.91 & 80.96 & 2.850 & - & 595.86 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 191.91 & 80.96 & 2.850 & - & 777.67 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 191.91 & 80.96 & 2.850 & - & 498.03 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|r|r|r|c|c|c|}
\hline \multirow{2}{*}{ 3Rsoffit } & Coefficient & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 3 - 9 } & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 99.86 & 2.850 & 132.20 & - \\
\cline { 2 - 9 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 99.86 & 2.850 & -101.38 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 99.86 & 2.850 & 70.56 & - \\
\hline \multirow{4}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 229.71 & 99.86 & 2.850 & - & 715.01 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 229.71 & 99.86 & 2.850 & - & 939.26 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 229.71 & 99.86 & 2.850 & - & 594.34 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|r|r|r|c|c|c|}
\hline \multicolumn{2}{|c|}{ 2Rsoffit } & Coefficient & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 2 - 8 } & & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 118.76 & 2.850 & 157.23 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 118.76 & 2.850 & -120.57 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 118.76 & 2.850 & 83.92 & - \\
\hline \multirow{3}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 267.51 & 118.76 & 2.850 & - & 834.16 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 267.51 & 118.76 & 2.850 & - & \(1,100.86\) \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 267.51 & 118.76 & 2.850 & - & 690.65 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Undersurface of \\
bottom slab
\end{tabular}} & Coefficient & \begin{tabular}{c} 
uniform \\
load
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} & Radius & M & N \\
\cline { 2 - 8 } & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Bending \\
moment
\end{tabular}} & \(\mathrm{M}_{\mathrm{A}}\) & 0.163 & - & 122.26 & 2.850 & 161.86 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{B}}\) & -0.125 & - & 122.26 & 2.850 & -124.13 & - \\
\cline { 2 - 8 } & \(\mathrm{M}_{\mathrm{C}}\) & 0.087 & - & 122.26 & 2.850 & 86.39 & - \\
\hline \multirow{4}{*}{ Axial force } & \(\mathrm{N}_{\mathrm{A}}\) & 0.212 & 274.51 & 122.26 & 2.850 & - & 856.22 \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{B}}\) & 1.000 & 274.51 & 122.26 & 2.850 & - & \(1,130.78\) \\
\cline { 2 - 8 } & \(\mathrm{~N}_{\mathrm{C}}\) & -0.212 & 274.51 & 122.26 & 2.850 & - & 708.49 \\
\hline
\end{tabular}
c) Checking section
- As for minimum amount of reinforcing bar

Minimum amount of reinforcing bar is \(0.2 \%\) and over of effective sectional area of member.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\left.\begin{gathered}
\text { Memb } \\
\text { er }
\end{gathered} \right\rvert\,
\]} & b & h & d' & \multicolumn{7}{|c|}{Formula} & \multicolumn{4}{|l|}{Arrangement of minimum reinforcing bar} \\
\hline & mm & mm & mm & \multicolumn{7}{|c|}{\(\mathrm{mm}^{2}\)} & \multicolumn{4}{|c|}{\(\mathrm{mm}^{2}\)} \\
\hline \begin{tabular}{l}
Later \\
al wall
\end{tabular} & 1000.0 & 700.0 & 100.0 & 1000.0 & \(\times\) & 600.0 & \(\times\) & 0.002 & \(=\) & 1,200.0 & D 22 & (1) & 250 & 1,548.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{6Rsoffit}} & \multicolumn{2}{|l|}{A point} & \multicolumn{2}{|r|}{B point} & \multicolumn{2}{|r|}{C point} \\
\hline & & \multicolumn{2}{|l|}{Inner surface} & \multicolumn{2}{|l|}{Exterior surface} & \multicolumn{2}{|l|}{Inner surface} \\
\hline M & \(\mathrm{kN} \cdot \mathrm{m}\) & \multicolumn{2}{|r|}{57.14} & \multicolumn{2}{|r|}{43.82} & \multicolumn{2}{|r|}{30.50} \\
\hline N & kN & \multicolumn{2}{|r|}{357.56} & \multicolumn{2}{|r|}{454.48} & \multicolumn{2}{|r|}{305.41} \\
\hline b & mm & \multicolumn{2}{|r|}{1000} & \multicolumn{2}{|r|}{1000} & \multicolumn{2}{|r|}{1000} \\
\hline h & mm & \multicolumn{2}{|r|}{700} & \multicolumn{2}{|r|}{700} & \multicolumn{2}{|r|}{700} \\
\hline d & mm & \multicolumn{2}{|r|}{600} & \multicolumn{2}{|r|}{600} & \multicolumn{2}{|r|}{600} \\
\hline d' & mm & \multicolumn{2}{|r|}{100} & \multicolumn{2}{|r|}{100} & \multicolumn{2}{|r|}{100} \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D 22 & (1) 250 & D 22 & @ 250 & & (1) 250 \\
\hline & & & 15.484 & \multicolumn{2}{|r|}{\[
15.484
\]} & \multicolumn{2}{|r|}{15.484} \\
\hline \multirow[t]{2}{*}{As'} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D. & @ & D & @ \\
\hline & & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} \\
\hline p & & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} \\
\hline k & & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} \\
\hline j & & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} \\
\hline \(\sigma \mathrm{c}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 1.2 & < 12.0 & \multicolumn{2}{|l|}{1.1 < 12.0} & 0.8 & < 12.0 \\
\hline \(\sigma \mathrm{s}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0.8 & < 240 & -14.9 & < 240 & -10.1 & < 240 \\
\hline \multicolumn{2}{|r|}{n} & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{2}{*}{5Rsoffit}} & \multicolumn{2}{|r|}{A point} & \multicolumn{2}{|r|}{B point} & \multicolumn{2}{|r|}{C point} \\
\hline & & \multicolumn{2}{|l|}{Inner surface} & \multicolumn{2}{|l|}{Exterior surface} & \multicolumn{2}{|l|}{Inner surface} \\
\hline M & \(\mathrm{kN} \cdot \mathrm{m}\) & & 82.16 & & 63.01 & & 43.85 \\
\hline N & kN & & 476.71 & & 616.07 & & 401.72 \\
\hline b & mm & & 1000 & & 1000 & & 1000 \\
\hline h & mm & & 700 & & 700 & & 700 \\
\hline d & mm & & 600 & & 600 & & 600 \\
\hline d' & mm & & 100 & & 100 & & 100 \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D 22 & (1) 250 & D 22 & @ 250 & & (0) 250 \\
\hline & & \multicolumn{2}{|r|}{15.484} & \multicolumn{2}{|r|}{15.484} & \multicolumn{2}{|r|}{15.484} \\
\hline \multirow[t]{2}{*}{As'} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D & @ & D & @ \\
\hline & & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} \\
\hline p & & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} \\
\hline k & & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} \\
\hline j & & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} \\
\hline \(\sigma\) c & \(\mathrm{N} / \mathrm{mm}^{2}\) & 1.8 & < 12.0 & \multicolumn{2}{|l|}{1.6 < 12.0} & 1.1 & < 12.0 \\
\hline \(\sigma \mathrm{s}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 2.7 & < 240 & -20.6 & < 240 & -13.8 & < 240 \\
\hline \multicolumn{2}{|r|}{n} & & 15 & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{4Rsoffit}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{A point}} & \multicolumn{3}{|c|}{B point} & \multicolumn{3}{|c|}{C point} \\
\hline & & & & \multicolumn{3}{|l|}{Exterior surface} & \multicolumn{3}{|l|}{Inner surface} \\
\hline M & \(\mathrm{kN} \cdot \mathrm{m}\) & & 107.18 & \multicolumn{3}{|r|}{82.19} & \multicolumn{3}{|r|}{57.21} \\
\hline N & kN & & 595.86 & \multicolumn{3}{|r|}{777.67} & \multicolumn{3}{|r|}{498.03} \\
\hline b & mm & & 1000 & \multicolumn{3}{|r|}{1000} & \multicolumn{3}{|r|}{1000} \\
\hline h & mm & & 700 & \multicolumn{3}{|r|}{700} & \multicolumn{3}{|r|}{700} \\
\hline d & mm & & 600 & \multicolumn{3}{|r|}{600} & \multicolumn{3}{|r|}{600} \\
\hline d' & mm & & 100 & \multicolumn{3}{|r|}{100} & \multicolumn{3}{|r|}{100} \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D \({ }^{22}\) & (1) 250 & D 22 & 22 @| & 250 & D 22 & @ & 250 \\
\hline & & & 15.484 & \multicolumn{3}{|r|}{15.484} & \multicolumn{3}{|r|}{15.484} \\
\hline \multirow[t]{2}{*}{As'} & \multirow[b]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D & (1) & & D & @ & \\
\hline & & \multicolumn{2}{|r|}{0.000} & \multicolumn{3}{|r|}{0.000} & \multicolumn{3}{|r|}{0.000} \\
\hline p & & \multicolumn{2}{|r|}{0.00258} & \multicolumn{3}{|r|}{0.00258} & \multicolumn{3}{|r|}{0.00258} \\
\hline k & & \multicolumn{2}{|r|}{0.242} & \multicolumn{3}{|r|}{0.242} & \multicolumn{3}{|r|}{0.242} \\
\hline j & & \multicolumn{2}{|r|}{0.919} & \multicolumn{3}{|r|}{0.919} & \multicolumn{3}{|r|}{0.919} \\
\hline \(\sigma \mathrm{c}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 2.3 & < 12.0 & \multicolumn{3}{|l|}{2.0 < 12.0} & 1.4 & \multicolumn{2}{|l|}{< 12.0} \\
\hline \(\sigma \mathrm{s}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 4.8 & < 240 & -26.4 & < & 240 & -17.5 & \(<1\) & 240 \\
\hline \multicolumn{2}{|r|}{n} & \multicolumn{2}{|r|}{15} & \multicolumn{3}{|r|}{15} & \multicolumn{3}{|r|}{15} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{2Rsoffit}} & & point & \multicolumn{2}{|r|}{B point} & \multicolumn{3}{|c|}{C point} \\
\hline & & \multicolumn{2}{|l|}{Inner surface} & \multicolumn{2}{|l|}{Exterior surface} & \multicolumn{3}{|l|}{Inner surface} \\
\hline M & \(\mathrm{kN} \cdot \mathrm{m}\) & & 157.23 & \multicolumn{2}{|r|}{120.57} & \multicolumn{3}{|r|}{83.92} \\
\hline N & kN & & 834.16 & \multicolumn{2}{|r|}{1,100.86} & \multicolumn{3}{|r|}{690.65} \\
\hline b & mm & & 1000 & \multicolumn{2}{|r|}{1000} & \multicolumn{3}{|r|}{1000} \\
\hline h & mm & & 700 & \multicolumn{2}{|r|}{700} & \multicolumn{3}{|r|}{700} \\
\hline d & mm & & 600 & \multicolumn{2}{|r|}{600} & \multicolumn{3}{|r|}{600} \\
\hline d' & mm & & 100 & \multicolumn{2}{|r|}{100} & \multicolumn{3}{|r|}{100} \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D 22 & @ | 250 & D 22 & (1) 250 & D & 22 @ & 250 \\
\hline & & & 15.484 & \multicolumn{2}{|r|}{15.484} & \multicolumn{3}{|r|}{15.484} \\
\hline \multirow[t]{2}{*}{As'} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D & @ & D & @ & \\
\hline & & & 0.000 & \multicolumn{2}{|r|}{0.000} & \multicolumn{3}{|r|}{0.000} \\
\hline p & & & 0.00258 & \multicolumn{2}{|r|}{0.00258} & \multicolumn{3}{|r|}{0.00258} \\
\hline k & & & 0.242 & \multicolumn{2}{|r|}{0.242} & \multicolumn{3}{|r|}{0.242} \\
\hline j & & & 0.919 & \multicolumn{2}{|r|}{0.919} & \multicolumn{3}{|r|}{0.919} \\
\hline oc & \(\mathrm{N} / \mathrm{mm}^{2}\) & 3.3 & < 12.0 & 2.9 & < 12.0 & 2.0 & < & 12.0 \\
\hline \(\sigma \mathrm{s}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 9.2 & < 240 & -37.9 & < 240 & -3.4 & < & 240 \\
\hline \multicolumn{2}{|r|}{n} & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15.} & \multicolumn{3}{|r|}{15} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Undersurfac } \\
\text { e of bottom } \\
\text { slab }
\end{array} \\
\hline
\end{array}
\]}} & & A point & \multicolumn{3}{|c|}{B point} & \multicolumn{3}{|c|}{C point} \\
\hline & & \multicolumn{2}{|l|}{Inner surface} & \multicolumn{3}{|l|}{Exterior surface} & \multicolumn{3}{|l|}{Inner surface} \\
\hline M & \(\mathrm{kN} \cdot \mathrm{m}\) & & 161.86 & \multicolumn{3}{|r|}{124.13} & \multicolumn{3}{|r|}{86.39} \\
\hline N & kN & & 856.22 & \multicolumn{3}{|r|}{1,130.78} & \multicolumn{3}{|r|}{708.49} \\
\hline b & mm & & 1000 & \multicolumn{3}{|r|}{1000} & \multicolumn{3}{|r|}{1000} \\
\hline h & mm & & 700 & \multicolumn{3}{|r|}{700} & \multicolumn{3}{|r|}{700} \\
\hline d & mm & & 600 & \multicolumn{3}{|r|}{600} & \multicolumn{3}{|r|}{600} \\
\hline d' & mm & & 100 & \multicolumn{3}{|r|}{100} & \multicolumn{3}{|r|}{100} \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D 22 & @ \({ }^{\text {@ }} 250\) & D 22 & 22|@| & & D 22 & & 250 \\
\hline & & & 15.484 & \multicolumn{3}{|r|}{\[
15.484
\]} & \multicolumn{3}{|r|}{15.484} \\
\hline \multirow[t]{2}{*}{As'} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D & @ & & D & (1) & \\
\hline & & & 0.000 & \multicolumn{3}{|r|}{0.000} & \multicolumn{3}{|r|}{0.000} \\
\hline p & & & 0.00258 & \multicolumn{3}{|r|}{0.00258} & \multicolumn{3}{|r|}{0.00258} \\
\hline k & & & 0.242 & \multicolumn{3}{|r|}{0.242} & \multicolumn{3}{|r|}{0.242} \\
\hline j & & & 0.919 & \multicolumn{3}{|r|}{0.919} & \multicolumn{3}{|r|}{0.919} \\
\hline \(\sigma \mathrm{c}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 3.4 & < 12.0 & 3.0 & < & 12.0 & 2.1 & \multicolumn{2}{|l|}{< 12.0} \\
\hline \(\sigma s\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 9.7 & < 240 & -39.0 & \(<\) & 240 & -3.5 & \(<\) & 240 \\
\hline \multicolumn{2}{|r|}{n} & & 15 & \multicolumn{3}{|r|}{15} & \multicolumn{3}{|l|}{- 15} \\
\hline
\end{tabular}
1) Consideration in case of occurence of difference of difference of head of water after sinking
a) Load calculation

Calculation of earth pressure intensity
Earth pressure at rest
\[
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

Hydrostatic pressure
\[
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
\]

To the above formula
\(p_{0}\) : Earth pressure at rest
\(\mathrm{p}_{\mathrm{w}}\) : Hydrostatic pressure
\(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(\mathrm{K}_{0}\) : Coefficient of earth pressure at rest
\(\mathrm{q}_{0}\) : Vertical load
\(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\).
\(=10.0 \mathrm{kN} / \mathrm{m}^{2}\)
\(\gamma_{n}\) : Weight per unit volume of soil of each stratum ( \(\mathrm{kN} / \mathrm{m}^{3)}\)
(in case under groundwater level, submerged weight)
\(\gamma_{\mathrm{w}}\) : Weight per unit volume of groundwater
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(h_{n}\) : Thickness of each stratum
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vertical load & \[
\begin{array}{|c|}
\hline \text { Coefficie } \\
\text { nt of } \\
\text { earth } \\
\text { pressure } \\
\hline
\end{array}
\] & Horizont al earth pressure & Hydrosta tic pressure & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{4}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & -1.570 & 2.300 & 2.300 & 16.0 & 7.0 & 10.0 & 46.80 & 0.500 & 23.40 & 0.00 & 7Rsoffit \\
\hline & -1.760 & 2.490 & 0.190 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & \(-3.270\) & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -6.970 & 7.700 & 3.700 & 16.0 & 7.0 & 10.0 & 86.31 & 0.500 & 43.16 & 52.10 & 6Rsoffit \\
\hline & -12.270 & 13.000 & 5.300 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -12.370 & 13.100 & 0.100 & 16.0 & 7.0 & 10.0 & 124.11 & 0.500 & 62.06 & 106.10 & 5Rsoffit \\
\hline & -14.270 & 15.000 & 1.900 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow{4}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & - \\
\hline & -17.770 & 18.500 & 3.500 & 16.0 & 7.0 & 10.0 & 161.91 & 0.500 & 80.96 & 160.10 & 4Rsoffit \\
\hline & -23.170 & 23.900 & 5.400 & 16.0 & 7.0 & 10.0 & 199.71 & 0.500 & 99.86 & 214.10 & 3Rsoffit \\
\hline & -24.270 & 25.000 & 1.100 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 103.71 & 225.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 103.71 & 225.10 & - \\
\hline & -26.270 & 27.000 & 2.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 110.71 & 245.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 110.71 & 245.10 & - \\
\hline & -28.570 & 29.300 & 2.300 & 16.0 & 7.0 & 10.0 & 237.51 & 0.500 & 118.76 & 268.10 & 2Rsoffit \\
\hline & -29.570 & 30.300 & 1.000 & 16.0 & 7.0 & 10.0 & 244.51 & 0.500 & 122.26 & 278.10 & \begin{tabular}{l}
Undersur face of bottom \\
slab
\end{tabular} \\
\hline
\end{tabular}
b) Calculation for sectional force

- In case of bearing equal load from 4 directions
(In this case, bending moment does not occure)
Axial force
\[
\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}
\]

Form and working load
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
\(*\) \\
Checking locatior
\end{tabular}} & \begin{tabular}{c} 
Internal \\
diameter
\end{tabular} & \begin{tabular}{c} 
Member \\
thickness
\end{tabular} & \begin{tabular}{c} 
Dianter \\
of center \\
line of \\
member
\end{tabular} & \begin{tabular}{c} 
Radius of \\
center \\
line of \\
member
\end{tabular} & \begin{tabular}{c} 
Active \\
earth \\
pressure
\end{tabular} & \begin{tabular}{c} 
Hydrosta \\
tic \\
pressure
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} \\
\cline { 2 - 9 } & m & m & m & \multicolumn{1}{c|}{m} & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) \\
\hline 1 & 6Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 43.16 & 52.10 & 0.00 \\
\hline 2 & 5Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 62.06 & 106.10 & 0.00 \\
\hline 3 & 4Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 80.96 & 160.10 & 0.00 \\
\hline 4 & 3Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 99.86 & 214.10 & 0.00 \\
\hline 5 & 2Rsoffit & 5.000 & 0.700 & 5.700 & 2.850 & 118.76 & 268.10 & 0.00 \\
\hline & \begin{tabular}{c} 
Undersur \\
face of \\
bottom \\
slab
\end{tabular} & 5.000 & 0.700 & 5.700 & 2.850 & 122.26 & 278.10 & 0.00 \\
\hline
\end{tabular}

Calculation for sectional force
\begin{tabular}{|c|r|c|c|}
\hline Axial force & \begin{tabular}{c} 
Uniform \\
load
\end{tabular} & Radius & N \\
\cline { 2 - 4 } \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} / \mathrm{m}\) \\
\hline 6Rsoffit & 95.26 & 2.850 & 271.48 \\
\hline 5Rsoffit & 168.16 & 2.850 & 479.24 \\
\hline 4Rsoffit & 241.06 & 2.850 & 687.01 \\
\hline 3Rsoffit & 313.96 & 2.850 & 894.77 \\
\hline 2Rsoffit & 386.86 & 2.850 & \(1,102.54\) \\
\hline \begin{tabular}{c} 
Undersurface of \\
bottom slab
\end{tabular} & 400.36 & 2.850 & \(1,141.01\) \\
\hline
\end{tabular}
c) Checking section
\[
\sigma_{c}=\frac{\mathrm{N}}{\mathrm{~A}}
\]

To the above formula
\(\sigma_{\mathrm{c}}\) : Compressive stress
( \(\mathrm{N} / \mathrm{mm}^{2}\) )
A : Sectional area of member
\(\mathrm{mm}^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Checking locatior}} & N & b & h & A & \(\sigma_{c}\) & \(\sigma_{\text {ca }}\) & \multirow[t]{2}{*}{Judgement} \\
\hline & & kN/m & mm & mm & \(\mathrm{mm}^{2}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & \\
\hline 1 & 6Rsoffit & 271.48 & 1,000 & 700 & 700,000 & 0.39 & 12.00 & \(\bigcirc\) \\
\hline 2 & 5Rsoffit & 479.24 & 1,000 & 700 & 700,000 & 0.68 & 12.00 & \(\bigcirc\) \\
\hline 3 & 4Rsoffit & 687.01 & 1,000 & 700 & 700,000 & 0.98 & 12.00 & \(\bigcirc\) \\
\hline 4 & 3Rsoffit & 894.77 & 1,000 & 700 & 700,000 & 1.28 & 12.00 & \(\bigcirc\) \\
\hline 5 & 2Rsoffit & 1,102.54 & 1,000 & 700 & 700,000 & 1.58 & 12.00 & \(\bigcirc\) \\
\hline 6 & Undersur face of bottom slab & 1,141.01 & 1,000 & 700 & 700,000 & 1.63 & 12.00 & \(\bigcirc\) \\
\hline
\end{tabular}

4-2. Calculation of cutting edge
1) Consideration of vertical direction

Design for cutting edge is for just before final settlement of Caisson. In the design, design load from outside considers earth pressure at rest plus hydrostatic pressure, while design load from inside considers hydrostatic pressure having the difference of head of water with 3.0 m to outside hydrostatic pressure. In analytical model, span from cutting edge to bottom slab is regarded as cantilever. However, if there is no bottom slab, the span is set with 1.5 m .
a) Load calculation

Calculation of earth pressure intensity
Earth pressure at rest
\(\mathrm{p}_{\mathrm{e}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{h}_{\mathrm{n}}\right)\right]\)
Hydrostatic pressure
\(\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{h}_{\mathrm{n}}\)
To the above formula
\(\mathrm{p}_{0} \quad\) : Earth pressure at rest
\(\mathrm{p}_{\mathrm{w}}\) : Hydrostatic pressure
( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(\mathrm{K}_{0} \quad\) : Coefficient of earth pressure at rest
\(\mathrm{q}_{0} \quad\) : Load placed on the top \(\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(=10.0 \mathrm{kN} / \mathrm{m}^{2}\)
\(\gamma_{n}:\) Unit volume weight of soil in each stratum \(\quad\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\) (submerged weight in case under groundwater level)
\(\gamma_{w}\) : Unit volume weight of groundwater
\(h_{n} \quad\) : Layer thickness in each stratum
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vertical load & Coefficie nt of earth pressure & Horizont al earth pressure & \[
\left\lvert\, \begin{gathered}
\text { Hydrosta } \\
\text { tic } \\
\text { pressure }
\end{gathered}\right.
\] & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m3 & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & -1.760 & 2.490 & 2.490 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -12.270 & 13.000 & 9.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -14.270 & 15.000 & 2.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & - \\
\hline & -24.270 & 25.000 & 10.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 103.71 & 225.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 103.71 & 225.10 & - \\
\hline & -26.270 & 27.000 & 2.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 110.71 & 245.10 & Change point of stratum \\
\hline \multirow{4}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 110.71 & 245.10 & - \\
\hline & -29.570 & 30.300 & 3.300 & 16.0 & 7.0 & 10.0 & 244.51 & 0.500 & 122.26 & 278.10 & Undersur face of bottom slab \\
\hline & -30.070 & 30.800 & 0.500 & 16.0 & 7.0 & 10.0 & 248.01 & 0.500 & 124.01 & 283.10 & Supportin g point of cutting edge \\
\hline & -31.570 & 32.300 & 1.500 & 16.0 & 7.0 & 10.0 & 258.51 & 0.500 & 129.26 & 298.10 & Cutting edge \\
\hline
\end{tabular}
b) Calculation for sectional force


Bending moment
\[
M=\left(\frac{1}{6} \times 154.01+\frac{1}{3} \times 159.26\right) \times 1.500^{2}=177.19 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\]

Shear force
S \(=\frac{1}{2} \times(154.01+159.26) \times 1.500\)
\(=234.95^{\mathrm{kN} / \mathrm{m}}\)
c) Reviewing section
- As for minimum volume of reinforcing bar

Minimum volume of reinforcing bar is \(0.2 \%\) and over of effective sectional area of member.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Membe} & b & h & d' & \multicolumn{7}{|c|}{Formula} & \multicolumn{5}{|l|}{Arrangement of minimum reinforcing bar} \\
\hline & mm & mm & mm & \multicolumn{7}{|c|}{\(\mathrm{mm}^{2}\)} & \multicolumn{5}{|r|}{\(\mathrm{mm}^{2}\)} \\
\hline Later al wall & 1000.0 & 704.5 & 100.0 & 1000.0 & \(\times\) & 604.5 & \(\times\) & 0.002 & \(=\) & 1,209.1 & D & 19 & @ & 200 & 1,432.5 \\
\hline
\end{tabular}


\section*{2) Consideration just after immersion of first lot}

After assumption of condition of simple support partially without ground reaction just after sinking work of \(C\) and condition of supporting by cantilever of partial bottom slab, considereation is carried out.

Case-1
Simple support

\[
\begin{aligned}
\mathrm{L} & =6.500 \mathrm{~m} \\
\mathrm{k} & =1 / 4 \\
\mathrm{k} \cdot \mathrm{~L} & =1.625 \mathrm{~m}
\end{aligned}
\]

Case-2
Cantilever

\(\mathrm{L}=6.500 \mathrm{~m}\)
\(\mathrm{k}=1 / 5\)
\(\mathrm{k} \cdot \mathrm{L}=1.300 \mathrm{~m}\)
a) Load calculation

Simple weight of first lot
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation & Height & External diameter & Internal diameter & \[
\begin{gathered}
\text { Sectional } \\
\text { area }
\end{gathered}
\] & Average sectional area & Volume \\
\hline m & m & m & m & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{2}\) & \(\mathrm{m}^{3}\) \\
\hline -28.570 & \multirow[b]{2}{*}{1.000} & 6.400 & 5.000 & 12.535 & \multirow[b]{2}{*}{12.535} & \multirow[b]{2}{*}{12.535} \\
\hline \multirow{2}{*}{-29.570} & & 6.400 & 5.000 & 12.535 & & \\
\hline & \multirow[b]{2}{*}{1.100} & 6.500 & 5.000 & 13.548 & \multirow[b]{2}{*}{12.747} & \multirow[b]{2}{*}{14.022} \\
\hline \multirow{2}{*}{-30.670} & & 6.500 & 5.200 & 11.946 & & \\
\hline & \multirow[b]{2}{*}{0.800} & 6.500 & 5.200 & 11.946 & \multirow[b]{2}{*}{7.952} & \multirow[b]{2}{*}{6.362} \\
\hline \multirow{2}{*}{-31.470} & & 6.500 & 6.100 & 3.958 & & \\
\hline & \multirow[b]{2}{*}{0.100} & 6.500 & 6.100 & 3.958 & \multirow[b]{2}{*}{1.979} & \multirow[b]{2}{*}{0.198} \\
\hline -31.570 & & 6.500 & 6.500 & 0.000 & & \\
\hline Total & 3.000 & - & - & - & - & 33.116 \\
\hline
\end{tabular}
\[
W=24.5 \times 33.116 \quad=811.35 \mathrm{kN}
\]

Perimeter of first lot
\(\mathrm{U}=\pi \times 6.500\)
\(=20.420 \mathrm{~m}\)

Design load
\[
\begin{aligned}
\mathrm{q} & =\frac{W}{U} \\
& =\frac{811.35}{20.420}
\end{aligned}
\]
\[
=39.73^{\mathrm{kN} / \mathrm{m}}
\]
b) Calculation of section force
- Case-1 : Condition of simple supproting Bending moment (tension of underside)
\[
M=\frac{1}{8} \times 39.73 \times 1.625
\]
\(=13.11^{\mathrm{kN} \cdot \mathrm{m}}\)
Shear force
\[
\mathrm{S}=\frac{1}{2} \times 39.73 \times 1.625 \quad=32.28 \mathrm{kN} / \mathrm{m}
\]
- Case-2 : Condition of canitilever supporting

Bending moment (Upper side of tension)
\[
\begin{array}{rlrl}
\mathrm{M} & =\frac{1}{2} \times 39.73 \times 1.300^{2} & =33.57 \mathrm{kN} \cdot \mathrm{~m} \\
\text { Shear force } \\
\mathrm{S} & =39.73 \times 1.300 & & =51.65 \mathrm{kN} / \mathrm{m}
\end{array}
\]
c) Checking section

Various constant of section

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Formula } & A & y & Ay & \(\mathrm{Ay}^{2}\) & I \\
\cline { 3 - 10 } & \multicolumn{3}{|c|}{} & \(\mathrm{m}^{2}\) & m & \(\mathrm{~m}^{3}\) & \(\mathrm{~m}^{4}\) & \(\mathrm{~m}^{4}\) \\
\hline 1 & & 0.700 & \(\times\) & 1.000 & 0.700 & 2.500 & 1.750 & 4.375 & 0.058 \\
\hline 2 & & 0.650 & \(\times\) & 1.100 & 0.715 & 1.450 & 1.037 & 1.503 & 0.072 \\
\hline 3 & \(1 / 2 \times\) & 0.100 & \(\times\) & 1.100 & 0.055 & 1.633 & 0.090 & 0.147 & 0.004 \\
\hline 4 & & 0.200 & \(\times\) & 0.800 & 0.160 & 0.500 & 0.080 & 0.040 & 0.009 \\
\hline 5 & \(1 / 2 \times\) & 0.450 & \(\times\) & 0.800 & 0.180 & 0.633 & 0.114 & 0.072 & 0.006 \\
\hline 6 & \(1 / 2 \times\) & 0.200 & \(\times\) & 0.100 & 0.010 & 0.067 & 0.001 & 0.000 & 0.000 \\
\hline \multicolumn{4}{|c|}{ Total } & & 1.820 & 1.688 & 3.071 & 6.137 & 0.149 \\
\hline
\end{tabular}

Various constants of section in centroid axis
Geometrical accuracy moment of inertia
\(I=6.137+0.149-1.820 \times 1.688^{2}\)
\(=1.104 \mathrm{~m}^{4}\)

Modulus of section
\[
\begin{aligned}
& Z_{U}=\frac{1.104}{3.000-1.688}=0.841 \mathrm{~m}^{3} \\
& Z_{L}=\frac{1.104}{1.688}=0.654 \mathrm{~m}^{3}
\end{aligned}
\]

Checking section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{Case-1} & \multicolumn{3}{|c|}{Case-2} & & & & & \\
\hline & & \multicolumn{3}{|l|}{Under side tension} & \multicolumn{3}{|l|}{Upper side tension} & & & & & \\
\hline M & kN•m & \multicolumn{3}{|c|}{13.11} & \multicolumn{3}{|c|}{33.57} & & & & & \\
\hline N & kN & \multicolumn{3}{|c|}{0.00} & \multicolumn{3}{|c|}{0.00} & & & & & \\
\hline S & kN & \multicolumn{3}{|c|}{32.28} & \multicolumn{3}{|c|}{51.65} & & & & & \\
\hline \(\mathrm{Z}_{\mathrm{U}}\) & \(\mathrm{m}^{3}\) & \multicolumn{3}{|c|}{0.841} & \multicolumn{3}{|c|}{0.841} & & & & & \\
\hline \(\mathrm{Z}_{\mathrm{L}}\) & \(\mathrm{m}^{3}\) & \multicolumn{3}{|c|}{0.654} & \multicolumn{3}{|c|}{0.654} & & & & & \\
\hline A & \(\mathrm{m}^{2}\) & \multicolumn{3}{|c|}{1.820} & \multicolumn{3}{|c|}{1.820} & & & & & \\
\hline \(\sigma \mathrm{c}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0.02 & < & 8.25 & 0.05 & \(<\) & 8.25 & & & & & \\
\hline ot & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0.02 & < & 0.45 & 0.04 & < & 0.45 & & & & & \\
\hline \(\tau\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0.02 & \(<\) & 0.39 & 0.03 & < & 0.39 & & & & & \\
\hline \multicolumn{2}{|l|}{Judgement} & \multicolumn{3}{|c|}{OK} & \multicolumn{3}{|c|}{OK} & & & & & \\
\hline
\end{tabular}

\section*{4-3. Calculation for earth retaining wall}

Design of earth retaining wall for temporaray work is carried out.
Load in that situation is considered to be active earth pressure plus hydrostatic pressure plus uneven earth pressure.
1) Calculation for load

Calculation for earth pressure intensity
Active earth pressure
\[
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{\mathrm{A}} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

Hydrostatic pressure
\[
\begin{aligned}
\mathrm{p}_{\mathrm{w}}= & \gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}} \\
& \text { To the above formula }
\end{aligned}
\]
\(\mathrm{p}_{\mathrm{a}}\) : Active earth pressure
\(\mathrm{p}_{\mathrm{w}}:\) Hydrostatic pressure ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(\mathrm{K}_{\mathrm{A}}\) : Coefficient of active earth pressure by Coulomb's earth pressure
\(\mathrm{q}_{0}\) : Load placed on the top
\(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(=10.0 \mathrm{kN} / \mathrm{m}^{2}\)
\(\gamma_{\mathrm{n}}\) : Unit volume weight of soil in each stratum
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
(In case under groundwater, submerged weight)
\(\gamma_{w}\) : Unit volume weight of groundwater
( \(\mathrm{kN} / \mathrm{m}^{3)}\)
\(h_{n}\) : Layer thickness in each stratum
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Soil} & Elevation & Depth & Layer
thickness thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vercial load & \[
\begin{gathered}
\text { Earth } \\
\text { pressure } \\
\text { coefficien }
\end{gathered}
\] & Horizont al earth pressure & Hydrosta tic pressure & \multirow[t]{2}{*}{Notes} \\
\hline & m & m & m & kN/m \({ }^{3}\) & kN/m \({ }^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & kN/m \({ }^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 1.000 & 10.00 & 0.00 & Ground level \\
\hline & -1.570 & 2.300 & 2.300 & 16.0 & 7.0 & 10.0 & 46.80 & 1.000 & 46.80 & 0.00 & 7R soffit \\
\hline & -1.760 & 2.490 & 0.190 & 16.0 & 7.0 & 10.0 & 49.84 & 1.000 & 49.84 & 0.00 & Groundwater level \\
\hline
\end{tabular}
2) Calculation for sectional force

\[
\begin{array}{rlll}
\mathrm{p}_{1} & =10.00+1 / 2 \times 10.00 & & =15.00 \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{p}_{1}=46.80+1 / 2 \times 46.80 & & =70.20 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
\]

Bending moment
\[
M=\left(\frac{1}{3} \times 15.00+\frac{1}{6} \times 70.20\right) \times 2.300{ }^{2}=88.34 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\]

Shear force
\[
S=\frac{1}{2} \times(15.00+70.20) \times 2.300 \quad=97.98 \mathrm{kN} / \mathrm{m}
\]
3) Checking section
- As for minimu volueme of reinforcing bar

Minimum volume of reinforcing bar is set with 0.2 and over of effective sectional area of member.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Member} & b & h & d' & \multicolumn{7}{|c|}{Formula} & \multicolumn{5}{|l|}{Arrangement of minimum reinforcing bar} \\
\hline & mm & mm & mm & \multicolumn{7}{|c|}{\(\mathrm{mm}^{2}\)} & \multicolumn{5}{|c|}{\(\mathrm{mm}^{2}\)} \\
\hline Lateral wall & 1000.0 & 400.0 & 100.0 & 1000.0 & \(\times\) & 300.0 & \(\times\) & 0.002 & \(=\) & 600.0 & D & 16 & @ & 250 & 794.4 \\
\hline
\end{tabular}

5. Checking member in regular time

5-1. Calculation for lateral wall
In regular time, only earth pressure at rest plus hydrostatic pressure is set as targes. The pressures are acted towards lateral with right angle wall from 4 directions.
Coefficient of earth pressure at rest adopts 0.5 without difference of sandy soil and cohesive soil. As for distribution of intensity of earth pressure at rest, if the depth is within 15 m , the distribution is set as triangular distribution, while if the depth is over 15 m , the distribution is considered to be same as intensity of earth
1) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest
\[
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

\section*{Hydrostatic pressure}
\[
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
\]

To the above formula
\(\mathrm{p}_{0}\) : Earth pressure at rest
\(\mathrm{p}_{\mathrm{w}}:\) Hydrostatic pressure ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\(\mathrm{K}_{0} \quad\) : Coefficient of earth pressure at rest
\(\mathrm{q}_{0}:\) Load placed on the top \(\quad\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\[
=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}
\]
\(\gamma_{\mathrm{n}}\) : Unit volume weight of soil in each stratum \(\quad\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\)
(In case under groundwater level, submerged weight)
\(\gamma_{\mathrm{w}}\) : Unit volume weight of groundwater ( \(\mathrm{kN} / \mathrm{m}^{3)}\)
\(h_{n} \quad:\) Layer thickness in each stratum
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Soil} & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vertical load & Coeticie
nt of
earth
nressure & Horizont al earth pressure & \[
\begin{array}{|c|}
\hline \text { Hydrosta } \\
\text { tic } \\
\text { pressure }
\end{array}
\] & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{4}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & -1.570 & 2.300 & 2.300 & 16.0 & 7.0 & 10.0 & 46.80 & 0.500 & 23.40 & 0.00 & 7R soffit \\
\hline & -1.760 & 2.490 & 0.190 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -6.970 & 7.700 & 3.700 & 16.0 & 7.0 & 10.0 & 86.31 & 0.500 & 43.16 & 52.10 & 6R soffit \\
\hline & -12.270 & 13.000 & 5.300 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -12.370 & 13.100 & 0.100 & 16.0 & 7.0 & 10.0 & 124.11 & 0.500 & 62.06 & 106.10 & 5R soffit \\
\hline & -14.270 & 15.000 & 1.900 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow{5}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & \\
\hline & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & 15m \\
\hline & -17.770 & 18.500 & 3.500 & 16.0 & 7.0 & 10.0 & 161.91 & 0.500 & 68.71 & 160.10 & 4R soffit \\
\hline & -23.170 & 23.900 & 5.400 & 16.0 & 7.0 & 10.0 & 199.71 & 0.500 & 68.71 & 214.10 & 3R soffit \\
\hline & -24.270 & 25.000 & 1.100 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & - \\
\hline & -26.270 & 27.000 & 2.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & , \\
\hline & -28.570 & 29.300 & 2.300 & 16.0 & 7.0 & 10.0 & 237.51 & 0.500 & 68.71 & 268.10 & 2R soffit \\
\hline & -29.570 & 30.300 & 1.000 & 16.0 & 7.0 & 10.0 & 244.51 & 0.500 & 68.71 & 278.10 & Undersur face of bottom slab \\
\hline
\end{tabular}
2) Calculation for sectional force

- In case of receiving equal loads from 4 directions
(In this case, there is no occurrence of bending momenet.)
Axial force
\(\mathrm{N}=1.000 \cdot \mathrm{p} \cdot \mathrm{r}\)

Form and working load
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Checking location } & \begin{tabular}{c} 
Interior \\
diameter
\end{tabular} & \begin{tabular}{c} 
Thicknes \\
s of \\
member
\end{tabular} & \begin{tabular}{c} 
Diamter \\
of axis of \\
member
\end{tabular} & \begin{tabular}{c} 
Radius of \\
axis of \\
member
\end{tabular} & \begin{tabular}{c} 
Active \\
earth \\
pressure
\end{tabular} & \begin{tabular}{c} 
Hydrosta \\
tic \\
pressure
\end{tabular} & \begin{tabular}{c} 
Unbalanc \\
ed load
\end{tabular} \\
\cline { 2 - 10 } & m & m & m & \multicolumn{1}{c|}{m} & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) \\
\hline 1 & 6 R soffit & 5.000 & 0.700 & 5.700 & 2.850 & 43.16 & 52.10 & 0.00 \\
\hline 2 & 5R soffit & 5.000 & 0.700 & 5.700 & 2.850 & 62.06 & 106.10 & 0.00 \\
\hline 3 & 4R soffit & 5.000 & 0.700 & 5.700 & 2.850 & 68.71 & 160.10 & 0.00 \\
\hline 4 & 3R soffit & 5.000 & 0.700 & 5.700 & 2.850 & 68.71 & 214.10 & 0.00 \\
\hline 5 & 2R soffit & 5.000 & 0.700 & 5.700 & 2.850 & 68.71 & 268.10 & 0.00 \\
\hline & \begin{tabular}{c} 
Undersur \\
face of \\
bottom \\
slab
\end{tabular} & 5.000 & 0.700 & 5.700 & 2.850 & 68.71 & 278.10 & 0.00 \\
\hline
\end{tabular}

Calculation for sectional force
\begin{tabular}{|c|r|c|c|}
\hline Axial force & \begin{tabular}{c} 
Uniform \\
load
\end{tabular} & Radius & N \\
\cline { 2 - 4 } & \(\mathrm{kN} / \mathrm{m}^{2}\) & m & \(\mathrm{kN} / \mathrm{m}\) \\
\hline 6R soffit & 95.26 & 2.850 & 271.48 \\
\hline 5R soffit & 168.16 & 2.850 & 479.24 \\
\hline 4R soffit & 228.81 & 2.850 & 652.09 \\
\hline 3R soffit & 282.81 & 2.850 & 805.99 \\
\hline 2R soffit & 336.81 & 2.850 & 959.89 \\
\hline \begin{tabular}{c} 
Undersurface of \\
bottom slab
\end{tabular} & 346.81 & 2.850 & 988.39 \\
\hline
\end{tabular}
c) Checking section
\(\sigma_{\mathrm{c}}=\frac{\mathrm{N}}{\mathrm{A}}\)
to the above formula
\begin{tabular}{lll}
\(\sigma_{c}\) & \(:\) Compressive stress & \(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) \\
\(A\) & \(:\) & Sectional area of member
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|r|r|c|}
\hline \multicolumn{2}{|c|}{ Checking location } & \multicolumn{1}{c|}{N} & b & h & \multicolumn{1}{c|}{A} & \multicolumn{1}{c|}{\(\sigma_{\mathrm{c}}\)} & \(\sigma_{\mathrm{ca}}\) & \multirow{2}{*}{ Judgement } \\
\cline { 1 - 10 } & \(\mathrm{kN} / \mathrm{m}\) & mm & \multicolumn{1}{c|}{mm} & \(\mathrm{mm}^{2}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \\
\hline 1 & 6R soffit & 271.48 & 1,000 & 700 & 700,000 & 0.39 & 8.00 & O \\
\hline 2 & 5R soffit & 479.24 & 1,000 & 700 & 700,000 & 0.68 & 8.00 & \(\bigcirc\) \\
\hline 3 & 4R soffit & 652.09 & 1,000 & 700 & 700,000 & 0.93 & 8.00 & O \\
\hline 4 & 3R soffit & 805.99 & 1,000 & 700 & 700,000 & 1.15 & 8.00 & O \\
\hline 5 & 2R soffit & 959.89 & 1,000 & 700 & 700,000 & 1.37 & 8.00 & O \\
\hline & \begin{tabular}{c} 
Undersur \\
face of \\
bottom \\
slab
\end{tabular} & 988.39 & 1,000 & 700 & 700,000 & 1.41 & 8.00 & O \\
\hline
\end{tabular}

5-2. Calculation for opening of lateral wall
1) Calculation for peripheral of opening of lateral wall (part of both ends fixed beam)

a) Calculation for load

Calclation for earth pressure intensity
Earth pressure at rest
\[
\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

Hydrostatic pressure
\[
\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}}
\]

To the formula
\(\mathrm{p}_{0} \quad\) : Earth pressure at rest
\(\mathrm{p}_{\mathrm{w}}\) : Hydrostatic pressure
\(\mathrm{K}_{0}\) : Coefficient of earth pressure at rest
\(\mathrm{q}_{0}\) : Load placed on the top
( \(\mathrm{kN} / \mathrm{m}^{2}\) )
( \(\mathrm{kN} / \mathrm{m}^{2}\) )
\[
=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}
\]
\(\gamma_{\mathrm{n}}\) : Unit volume weight of soil in each stratum
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
(In case under groundwater, submerged weight)
\(\gamma_{w}\) : Unit volume weight of groundwater
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(h_{n}\) : Layer thickness of each stratum
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{\text {w }}\) & Vertical load & Coefficint of earth pressure & Horizaon tal earth pressure & \[
\begin{gathered}
\text { Hydrosta } \\
\text { tic } \\
\text { pressure }
\end{gathered}
\] & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & -1.760 & 2.490 & 2.490 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -12.270 & 13.000 & 9.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -14.270 & 15.000 & 2.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & - \\
\hline & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & 15 m \\
\hline & -24.270 & 25.000 & 10.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & Change point of stratum \\
\hline \multirow{3}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & - \\
\hline & -24.870 & 25.600 & 0.600 & 16.0 & 7.0 & 10.0 & 211.61 & 0.500 & 68.71 & 231.10 & \[
\begin{gathered}
\text { Center of } \\
\text { ring } \\
\text { beam } \\
\hline
\end{gathered}
\] \\
\hline & -26.270 & 27.000 & 1.400 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & Change point of stratum \\
\hline \multirow{3}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & - \\
\hline & \(-28.420\) & 29.150 & 2.150 & 16.0 & 7.0 & 10.0 & 236.46 & 0.500 & 68.71 & 266.60 & Center of bottom slab \\
\hline & -29.570 & 30.300 & 1.150 & 16.0 & 7.0 & 10.0 & 244.51 & 0.500 & 68.71 & 278.10 & Undersur face of bottom slab \\
\hline
\end{tabular}
```

$\mathrm{p}_{1}=68.71+231.10$
$=299.81 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{p}_{2}=68.71+266.60$
$=335.31 \mathrm{kN} / \mathrm{m}^{2}$

```
b) Calculation for sectional force


Bending moment of supporting point
\[
\begin{aligned}
& M_{A}=\left(\frac{1}{20} \times 299.81+\frac{1}{30} \times 335.31\right) \times 3.550^{2}=329.77 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m} \\
& M_{B}=\left(\frac{1}{20} \times 335.31+\frac{1}{30} \times 299.81\right) \times 3.550^{2}=337.23 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\end{aligned}
\]

Bending moment of span
\[
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}=\mathrm{p}_{1}+\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{~L}} \mathrm{x} \\
& \mathrm{~S}_{\mathrm{A}}=\frac{1}{2} \times\left(\mathrm{p}_{1}+\mathrm{p}_{\mathrm{x}}\right) \times \mathrm{x}
\end{aligned}
\]

From these
\[
\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{2 \cdot \mathrm{x}^{2}+\mathrm{p}_{1} \mathrm{x}-\mathrm{S}_{\mathrm{A}}=0}
\]

Therefore,
\[
\mathrm{x}=1.785 \mathrm{~m}
\]

Load intensity
\[
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}=299.81+\frac{335.31-299.81}{3.550} \times 1.785 \quad=317.65 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{M}_{\max }=-329.77-551.06 \times 1.785 \\
&+\left(\frac{1}{3} \times 299.81+\frac{1}{6} \times 317.65\right) \times 1.785^{2}=166.77 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}
\end{aligned}
\]

Shear force
\[
\begin{array}{ll}
\mathrm{S}_{\mathrm{A}}=\left(\frac{7}{20} \times 299.81+\frac{3}{20} \times 335.31\right) \times 3.550 & =551.06 \mathrm{kN} / \mathrm{m} \\
\mathrm{~S}_{\mathrm{B}}=\left(\frac{7}{20} \times 335.31+\frac{3}{20} \times 299.81\right) \times 3.550 & =576.26 \mathrm{kN} / \mathrm{m}
\end{array}
\]
c) Checking section

※ Calculation for diagonal tension bar
\[
\begin{aligned}
\mathrm{Aw} & =\frac{1.15 \cdot \mathrm{Sh} \cdot \mathrm{a}}{\sigma \mathrm{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 340.26 \times 10^{3} \times 250}{160 \times 574.5} \times 10^{-2} \\
& =10.64 \mathrm{~cm}^{2} / \mathrm{m}<4 \text { Number } \mathrm{D} \quad 19\left(=11.460 \mathrm{~cm}^{2}\right) \text { are arranged. }
\end{aligned}
\]

Shear force received by concrete
\[
\begin{aligned}
\mathrm{Sc}= & \tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d} \\
= & 0.41 \times 1000 \times 574.5 \times 10^{-3} \\
= & 236.00 \mathrm{kN} \\
& \tau \mathrm{a}=0.41 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~b}=1000 \mathrm{~mm} \\
& \mathrm{~d}=575 \mathrm{~mm}
\end{aligned}
\]

Shear force received by diagonal tension bar
\[
\begin{aligned}
\mathrm{Sh}= & \mathrm{S}-\mathrm{Sc} \\
= & 576.26-236.00 \\
= & 340.26 \mathrm{kN} \\
& \mathrm{~S}=576.26 \mathrm{kN} \\
\mathrm{a}= & 250 \mathrm{~mm} \\
\sigma \mathrm{sa}= & 160 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\]

Arrangement of sphere of diagonal tension bar

- Calculation for \(L_{A}\)
\(\mathrm{p}_{1}{ }^{\prime}=\mathrm{p}_{1}+\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{~L}} \mathrm{~L}_{\mathrm{A}}\)
\(S_{A}=\frac{1}{2} \times\left(p_{1}+p_{1}{ }^{\prime}\right) \times L_{A}+S_{c}\)
From these
\[
\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{2 \cdot \mathrm{~L}_{\mathrm{A}}^{2}}+\mathrm{p}_{1} \mathrm{~L}_{\mathrm{A}}+\mathrm{S}_{\mathrm{c}}-\mathrm{S}_{\mathrm{A}}=0
\]

Therefore
\(\mathrm{L}_{\mathrm{A}}=1.033 \mathrm{~m}\)
- Calculation for \(\mathrm{L}_{B}\)
\[
\begin{aligned}
& \mathrm{p}_{2}^{\prime}=\mathrm{p}_{2}-\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{~L}} \mathrm{~L}_{\mathrm{B}} \\
& \mathrm{~S}_{\mathrm{B}}=\frac{1}{2} \times\left(\mathrm{p}_{2}^{\prime}+\mathrm{p}_{2}\right) \times \mathrm{L}_{\mathrm{B}}+\mathrm{S}_{\mathrm{c}}
\end{aligned}
\]

From these
\[
-\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{2 \cdot L_{\mathrm{B}}^{2}}+\mathrm{p}_{2} \mathrm{~L}_{\mathrm{B}}+\mathrm{S}_{\mathrm{c}}-\mathrm{S}_{\mathrm{B}}=0
\]

Therefore
\[
\mathrm{L}_{\mathrm{A}}=1.031 \mathrm{~m}
\]
2) Calculatation for peripheral of opening of lateral wall(part of cantilever)

a) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest
\[
\mathbf{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{~h}_{\mathrm{n}}\right)\right]
\]

Hydrostatic pressure
\(\mathrm{p}_{\mathrm{w}}=\gamma_{\mathrm{w}} \cdot \Sigma \mathrm{h}_{\mathrm{n}}\)
From this
\(\mathrm{p}_{0} \quad\) : Earth pressure at rest
\(\mathrm{p}_{\mathrm{w}}:\) Hydrostatic pressure \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(\mathrm{K}_{0}\) : Coefficient of earth pressure at rest
\(\mathrm{q}_{0}:\) Load placed on the top \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\[
=10.0 \mathrm{kN} / \mathrm{m}^{2}
\]
\(\gamma_{\mathrm{n}}\) : Unit volume weight of soil in each stratum
(In case under groundwater, submerged weight)
\(\gamma_{w}\) : Unit volume weight of groundwater
\(h_{n} \quad\) : Layer thickness of each stratum
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\)
(m)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vertical load & Coefficint of earth pressure & Horizaon tal earth pressure & Hydrosta tic pressure & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & \(-1.760\) & 2.490 & 2.490 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & \(-3.270\) & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -12.270 & 13.000 & 9.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -14.270 & 15.000 & 2.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & - \\
\hline & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & 15m \\
\hline & \(-24.270\) & 25.000 & 10.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & Change point of stratum \\
\hline \multirow{4}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & - \\
\hline & -25.220 & 25.950 & 0.950 & 16.0 & 7.0 & 10.0 & 214.06 & 0.500 & 68.71 & 234.60 & Soffit of ring beam \\
\hline & \(-25.569\) & 26.299 & 0.349 & 16.0 & 7.0 & 10.0 & 216.50 & 0.500 & 68.71 & 238.09 & Soffit of upper side of opening \\
\hline & -26.270 & 27.000 & 0.701 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & Change point of stratum \\
\hline \multirow{3}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & - \\
\hline & -27.231 & 27.961 & 0.961 & 16.0 & 7.0 & 10.0 & 228.14 & 0.500 & 68.71 & 254.71 & Soffit of lower side of opening \\
\hline & -28.070 & 28.800 & 0.839 & 16.0 & 7.0 & 10.0 & 234.01 & 0.500 & 68.71 & 263.10 & Upper side of bottom slab \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{p}_{1}=68.71+234.60\) & \(=303.31 \mathrm{kN} / \mathrm{m}^{2}\) \\
\(\mathrm{p}_{2}=68.71+238.09\) & \(=306.80 \mathrm{kN} / \mathrm{m}^{2}\) \\
\(\mathrm{p}_{3}=68.71+254.71\) & \(=323.41 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}
```

p

```
b) Calculation for sectional force


Bending moment of supporting point
\[
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=\left(\frac{1}{6} \times 303.31+\frac{1}{3} \times 306.80\right) \times 0.349 \mathrm{~m}^{2}=18.63 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{m} \\
& \mathrm{M}_{\mathrm{B}}=\left(\frac{1}{3} \times 323.41+\frac{1}{6} \times 331.81\right) \times 0.839{ }^{2}=114.85^{\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}}
\end{aligned}
\]

Shear force
\[
\begin{array}{ll}
\mathrm{S}_{\mathrm{A}}=\frac{1}{2} \times(303.31+306.80) \times 0.349 & =106.51 \mathrm{kN} / \mathrm{m} \\
S_{B}=\frac{1}{2} \times(323.41+331.81) \times 0.839 & =274.91 \mathrm{kN} / \mathrm{m}
\end{array}
\]
c) Checking section

※ Calculation for diagonal tension bar
\[
\begin{aligned}
\text { Aw } & =\frac{1.15 \cdot \mathrm{Sh} \cdot \mathrm{a}}{\sigma \mathrm{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 116.23 \times 10^{3} \times 250}{160 \times 570} \times 10^{-2} \\
& =3.66 \mathrm{~cm}^{2} / \mathrm{m}<4 \text { Number } \quad \text { D } 13\left(=5.068 \mathrm{~cm}^{2}\right) \text { is arranged }
\end{aligned}
\]

Shear force received by concrete
\[
\mathrm{Sc}=\tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d}
\]
\(=0.28 \times 1000 \times 570 \times 10^{-3}\)
\(=158.68 \mathrm{kN}\)
\(\tau \mathrm{a}=0.28 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\mathrm{b}=1000 \mathrm{~mm}\)
\(\mathrm{d}=570 \mathrm{~mm}\)
Shear force received by diagonal tension bar
\[
\begin{aligned}
\text { Sh } & =\mathrm{S}-\mathrm{Sc} \\
& =274.91-158.68 \\
& =116.23 \mathrm{kN} \\
& \mathrm{~S}=274.91 \mathrm{kN} \\
\mathrm{a} & =250 \mathrm{~mm} \\
\sigma \mathrm{sa} & =160 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\]
3) Calculation for ring beam

Load applied into ring beam


Location of edge of opening part


Location of center of opening part
a) Calculation for load

Calculation for earth pressure intensity
Earth pressure at rest
\(\mathrm{p}_{\mathrm{a}}=\mathrm{K}_{0} \cdot\left[\mathrm{q}_{0}+\Sigma\left(\gamma_{\mathrm{n}} \cdot \mathrm{h}_{\mathrm{n}}\right)\right]\)
Hydrostatic pressure
\[
\begin{aligned}
\mathrm{p}_{\mathrm{w}}= & \gamma_{\mathrm{w}} \cdot \Sigma \mathrm{~h}_{\mathrm{n}} \\
& \text { From this }
\end{aligned}
\]
\begin{tabular}{lll}
\(\mathrm{p}_{0}\) & \(:\) Earth pressure at rest & \\
\(\mathrm{p}_{\mathrm{w}}\) & \(:\) Hydrostatic pressure & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) \\
\(\mathrm{K}_{0}\) & \(:\) Coeffieicnet of earth pressure at rest & \\
\(\mathrm{q}_{0}\) & \(:\) Load placed on the top & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) \\
& \(=\quad 10.0 \mathrm{kN} / \mathrm{m}^{2}\) & \\
\(\gamma_{\mathrm{n}}\) & \(:\) Unit volume weight of soild of each stratum & \(\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\) \\
& (In case under groundwater level, submerged weight) & \\
\(\gamma_{w}\) & \(:\) Unit volume weight of groundwater & \(\left(\mathrm{kN} / \mathrm{m}^{3)}\right.\) \\
\(\mathrm{h}_{\mathrm{n}}\) & \(:\) Layer thickness of each stratum & \((\mathrm{m})\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Soil & Elevation & Depth & Layer thickness & \(\gamma\) & \(\gamma^{\prime}\) & \(\gamma_{w}\) & Vertical load & Coefficient of earth pressure & Horizont al earth pressure & Hydrosta tic pressure & Notes \\
\hline & m & m & m & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{kN} / \mathrm{m}^{3}\) & kN/m \({ }^{3}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline \multirow{3}{*}{Acl} & 0.730 & 0.000 & 0.000 & 16.0 & 7.0 & 10.0 & 10.00 & 0.500 & 5.00 & 0.00 & Ground level \\
\hline & \(-1.760\) & 2.490 & 2.490 & 16.0 & 7.0 & 10.0 & 49.84 & 0.500 & 24.92 & 0.00 & Groundw ater level \\
\hline & -3.270 & 4.000 & 1.510 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac2} & -3.270 & 4.000 & 0.000 & 16.0 & 7.0 & 10.0 & 60.41 & 0.500 & 30.21 & 15.10 & - \\
\hline & -12.270 & 13.000 & 9.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac3} & -12.270 & 13.000 & 0.000 & 16.0 & 7.0 & 10.0 & 123.41 & 0.500 & 61.71 & 105.10 & - \\
\hline & -14.270 & 15.000 & 2.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & Change point of stratum \\
\hline \multirow[b]{3}{*}{Ac4} & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & - \\
\hline & -14.270 & 15.000 & 0.000 & 16.0 & 7.0 & 10.0 & 137.41 & 0.500 & 68.71 & 125.10 & 15m \\
\hline & -24.270 & 25.000 & 10.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & Change point of stratum \\
\hline \multirow{5}{*}{Ac5} & -24.270 & 25.000 & 0.000 & 16.0 & 7.0 & 10.0 & 207.41 & 0.500 & 68.71 & 225.10 & - \\
\hline & -24.520 & 25.250 & 0.250 & 16.0 & 7.0 & 10.0 & 209.16 & 0.500 & 68.71 & 227.60 & opper bed of ring \\
\hline & -25.220 & 25.950 & 0.700 & 16.0 & 7.0 & 10.0 & 214.06 & 0.500 & 68.71 & 234.60 & \begin{tabular}{l}
Sonatit of \\
ring \\
beam
\end{tabular} \\
\hline & -25.225 & 25.955 & 0.005 & 16.0 & 7.0 & 10.0 & 214.10 & 0.500 & 68.71 & 234.65 & Upper bed of opening \\
\hline & -26.270 & 27.000 & 1.045 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & Change point of stratum \\
\hline \multirow[b]{2}{*}{Ac6} & -26.270 & 27.000 & 0.000 & 16.0 & 7.0 & 10.0 & 221.41 & 0.500 & 68.71 & 245.10 & 仡 \\
\hline & -26.400 & 27.130 & 0.130 & 16.0 & 7.0 & 10.0 & 222.32 & 0.500 & 68.71 & 246.40 & Center of opening \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(\mathrm{p}_{1}=\) & \(68.71+\) & 227.60 & \(=296.31 \mathrm{kN} / \mathrm{m}^{2}\) \\
\(\mathrm{p}_{2}=\) & \(68.71+\) & \(=315.11 \cdot \mathrm{kN} / \mathrm{m}^{2}\) \\
\(\mathrm{p}_{2}{ }^{\prime}=\) & 23.40 & \(=303.36 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}
\[
\begin{array}{ll}
\mathbf{p}_{w 1}=\frac{1}{2} \times(296.31+315.11) \times 1.880 & =574.73 \mathrm{kN} / \mathrm{m} \\
\mathrm{p}_{\mathrm{w} 2}=\frac{1}{2} \times(296.31+303.36) \times 0.705 & =211.38 \mathrm{kN} / \mathrm{m}
\end{array}
\]
b) Skelton diagram


Coordinates of panel point
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Panel point & Coordi & tes & Panel point & & ates & Panel point & Coordin & \\
\hline Number & \(\mathrm{x}(\mathrm{m})\) & y (m) & Number & x (m) & \(y\) (m) & Number & \(\mathrm{x}(\mathrm{m})\) & y (m) \\
\hline 1 & 0.000 & 2.850 & 19 & 0.000 & -2.850 & 101 & 2.597 & 1.175 \\
\hline 2 & 0.495 & 2.807 & 20 & -0.495 & -2.807 & 102 & 2.597 & -1.175 \\
\hline 3 & 0.975 & 2.678 & 21 & -0.975 & -2.678 & 103 & 0.365 & -2.827 \\
\hline 4 & 1.425 & 2.468 & 22 & -1.425 & -2.468 & 104 & -0.833 & -2.725 \\
\hline 5 & 1.832 & 2.183 & 23 & -1.832 & -2.183 & 105 & -1.883 & -2.140 \\
\hline 6 & 2.183 & 1.832 & 24 & -2.183 & -1.832 & - & - & - \\
\hline 7 & 2.468 & 1.425 & 25 & -2.468 & -1.425 & - & - & - \\
\hline 8 & 2.678 & 0.975 & 26 & -2.678 & -0.975 & - & - & - \\
\hline 9 & 2.807 & 0.495 & 27 & -2.807 & -0.495 & - & - & - \\
\hline 10 & 2.850 & 0.000 & 28 & -2.850 & 0.000 & - & - & - \\
\hline 11 & 2.807 & -0.495 & 29 & -2.807 & 0.495 & - & - & - \\
\hline 12 & 2.678 & -0.975 & 30 & -2.678 & 0.975 & - & - & - \\
\hline 13 & 2.468 & -1.425 & 31 & -2.468 & 1.425 & - & - & - \\
\hline 14 & 2.183 & -1.832 & 32 & -2.183 & 1.832 & - & - & - \\
\hline 15 & 1.832 & -2.183 & 33 & -1.832 & 2.183 & - & - & - \\
\hline 16 & 1.425 & -2.468 & 34 & -1.425 & 2.468 & - & - & - \\
\hline 17 & 0.975 & -2.678 & 35 & -0.975 & 2.678 & - & - & - \\
\hline 18 & 0.495 & -2.807 & 36 & -0.495 & 2.807 & - & - & - \\
\hline
\end{tabular}

Sectional area and moment of second order
\begin{tabular}{|c|c|c|c|}
\hline & Width & Height & Sectional area \\
\hline & b & h & A \\
\hline & m & m & \(\mathrm{m}^{2}\) \\
\hline Ring beam & 0.700 & 0.700 & 0.490 \\
\hline \multicolumn{2}{|l|}{Sectional area} & \multicolumn{2}{|l|}{\(A=b \cdot h\)} \\
\hline \multicolumn{2}{|l|}{Second moment of area} & & 1 , \\
\hline & & & 12 \\
\hline
\end{tabular}

Calculation for coefficient of ground reaction

Coefficient of horizontal ground reaction
\[
\begin{aligned}
& \mathrm{k}_{\mathrm{H}}=\mathrm{k}_{\mathrm{H} 0} \cdot\left(\frac{\mathrm{~B}_{\mathrm{H}}}{0.3}\right)^{-3 / 4} \\
& \mathrm{k}_{\mathrm{H} 0}=\frac{\mathrm{I}}{0.3} \cdot \alpha \cdot \mathrm{E}_{0} \\
& \alpha=1 \\
& \mathrm{E}_{0}=142,800 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{~B}_{\mathrm{H}}=\sqrt{\mathrm{A}_{\mathrm{H}}} \\
& =\sqrt{0.8 \times 6.400 \times 30.100} \\
& =12.414 \mathrm{~m} \geqq 10.0 \mathrm{~m} \\
& \mathrm{k}_{\mathrm{H}}=476,000 \times\left(\frac{10.000}{0.3}\right)^{-3 / 4} \\
& =34,312 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{k}_{\mathrm{H} 0}=\frac{1}{0.3} \times 1 \times 142,800 \\
& =\quad 476,000 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{~K}_{\mathrm{H}}=34,312 \times 0.700 \\
& =24,019 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
\]
※ Only compression spring is valid.
c) Calculation for sectional force

Diagram of load


\section*{Diagram of transposition}
\[
+\theta z^{-\prod^{+\delta y}}+\delta x
\]


Stress diagram

Diagram Mz of sectional force


Diagram Sy of sectional force
\(+S \uparrow i-j \downarrow+S\)


Diagram Nx of sectional force
\(+\mathrm{N} \leftarrow \mathrm{i}-\mathrm{j} \rightarrow+\mathrm{N}\)

c) Checking section
- Checking to bending

- Checking to shear


5-3. Design of top slab
1) Calculation for load


Load of earth covering
\(\mathrm{w}_{\mathrm{s}}=19.0 \times 2.300\)
\(=43.70 \mathrm{kN} / \mathrm{m}^{2}\)

Empty load of top slab
\[
\mathrm{w}_{\mathrm{t}}=24.5 \times 0.400 \quad=9.80 \mathrm{kN} / \mathrm{m}^{2}
\]

Live load
\[
\text { q } \quad=10.00 \mathrm{kN} / \mathrm{m}^{2}
\]
(Reference)
\[
\mathrm{w}_{1}=\frac{2 \times 15 \times(1+0.3) \times 1.0}{2.700 \times(2 \times 2.300+0.200)}=3.01 \mathrm{kN} / \mathrm{m}^{2}
\]
2) Calculation for sectional force

Peripheral of circular plate is supposed to be fixed on lateral wall and sectional force is calculated.


Bending moment
\[
\mathrm{Mr}=\frac{1}{16} \cdot \Sigma \mathrm{w} \cdot \mathrm{R}^{2} \cdot\left[(1+v)-(3+v) \cdot\left(\frac{\mathrm{a}}{\mathrm{R}}\right)^{2}\right]
\]

Shear force
\[
\mathrm{Qr}=\frac{1}{2} \cdot \Sigma \mathrm{w} \cdot \mathrm{a}
\]

To the above formula
Mr : Bending moment applied to top \(\operatorname{slab}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})\)
Qr : Shear force applied to top slab ( \(\mathrm{kN} / \mathrm{m}\) )
\(\Sigma \mathrm{w}\) : Applied load ( \(\mathrm{kN} / \mathrm{m}^{2}\) )
R : Radius of circular plate (m)
\(v\) : Poisson's ration \(=1 / 6\)
a : Distance from center of cirbular plate(m)
\begin{tabular}{|c|c|c|r|r|r|l|}
\hline & R & a & \multicolumn{1}{c|}{\(\Sigma \mathrm{w}\)} & \multicolumn{1}{c|}{Mr} & \multicolumn{1}{c|}{Qr} & \multirow{2}{*}{ Notes } \\
\cline { 2 - 6 } & m & m & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) & \multicolumn{1}{|c|}{} \\
\hline 0 & 2.850 & 0.000 & 63.50 & 37.61 & 0.00 & Center part \\
\hline \(\mathbf{1}\) & 2.850 & 1.000 & 63.50 & 25.04 & 31.75 & \\
\hline 2 & 2.850 & 1.730 & 63.50 & -0.01 & 54.93 & Inflection point \\
\hline 3 & 2.850 & 2.000 & 63.50 & -12.66 & 63.50 & \\
\hline 4 & 2.850 & 2.300 & 63.50 & -28.87 & 73.03 & \begin{tabular}{l} 
Checking \\
shear \((\mathrm{H} / 2)\)
\end{tabular} \\
\hline 5 & 2.850 & 2.850 & 63.50 & -64.47 & 90.49 & Edge \\
\hline
\end{tabular}
3) Checking section


5-4. Design of bottom slab
1) Calculation for load


Load of earth covering
\[
\mathrm{w}_{\mathrm{s}}=19.0 \times 2.300 \quad=43.70 \mathrm{kN} / \mathrm{m}^{2}
\]

Empty load of top slab
\[
\mathrm{w}_{\mathrm{t}}=24.5 \times 0.400 \quad=9.80 \mathrm{kN} / \mathrm{m}^{2}
\]

Live load


Empty load of lateral load
\[
\mathrm{w}_{\mathrm{w}}=\frac{24.5 \times\left(6.400{ }^{2}\right.}{6.500} \frac{\left.-5.00 \mathrm{c}^{2}\right)}{2} \times 26.100 \quad=513.98 \mathrm{kN} / \mathrm{m}^{2}
\]

Empty load of medium slab
\[
\mathrm{w}_{\mathrm{m}}=11 \times 24.5 \times 0.300 \quad=80.85 \mathrm{kN} / \mathrm{m}^{2}
\]
2) Calculation for sectional force

Circular plate, with the peripheral fixed on lateral wall is supposed and sectional force is calculated.


Bending moment
\[
\mathrm{Mr}=\frac{1}{16} \cdot \Sigma \mathrm{w} \cdot \mathrm{R}^{2} \cdot\left[(1+v)-(3+v) \cdot\left(\frac{\mathrm{a}}{\mathrm{R}}\right)^{2}\right]
\]

Shear force
\[
\mathrm{Qr}=\frac{1}{2} \cdot \Sigma \mathrm{w} \cdot \mathrm{a}
\]

To the formula
Mr : Bending moment applied to bottom slab ( \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) )
Qr : Shear force applied to bottom slab \((\mathrm{kN} / \mathrm{m})\)
\(\Sigma \mathrm{w}:\) Applied \(\operatorname{load}\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(\mathrm{R} \quad\) : Radius of circular plate ( m )
\(v\) : Poisson's ration \(=1 / 6\)
a : Distance from the center of circular plates \((\mathrm{m})\)
\begin{tabular}{|c|c|c|c|r|r|l|}
\hline & R & a & \(\Sigma \mathrm{w}\) & \multicolumn{1}{c|}{Mr} & \multicolumn{1}{c|}{Qr} & \multirow{2}{*}{ Notes } \\
\cline { 2 - 7 } & m & m & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) & \(\mathrm{kN} / \mathrm{m}\) & \\
\hline 0 & 2.500 & 0.000 & 658.33 & 300.02 & 0.00 & Center part \\
\hline 1 & 2.500 & 1.000 & 658.33 & 169.73 & 329.17 & \\
\hline 2 & 2.500 & 1.517 & 658.33 & 0.17 & 499.34 & Inflection point \\
\hline 3 & 2.500 & 2.000 & 658.33 & -221.16 & 658.33 & \\
\hline 4 & 2.500 & 1.750 & 658.33 & -99.01 & 576.04 & \begin{tabular}{l} 
Checking shear \\
(H/2)
\end{tabular} \\
\hline 5 & 2.500 & 2.500 & 658.33 & -514.32 & 822.91 & Edge \\
\hline
\end{tabular}
3) Checking section

※ Calculation for diagonal tension bar
\[
\begin{aligned}
\text { Aw } & =\frac{1.15 \cdot \mathrm{Sh} \cdot \mathrm{a}}{\sigma \mathrm{sa} \cdot \mathrm{~d} \cdot(\sin \theta+\cos \theta)} \\
& =\frac{1.15 \times 314.25 \times 10^{3} \times 250}{160 \times 1390} \times 10^{-2} \\
& =4.06 \mathrm{~cm}^{2} / \mathrm{m}<4 \text { Number } \quad \text { D } 13\left(=5.068 \quad \mathrm{~cm}^{2}\right) \text { are arranged }
\end{aligned}
\]

Shear force received by concrete
\[
\begin{aligned}
\mathrm{Sc}= & \tau \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{~d} \\
= & 0.19 \times 1000 \times 1390 \times 10^{-3} \\
= & 261.79 \mathrm{kN} \\
& \tau \mathrm{a}=0.19 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~b}=1000 \mathrm{~mm} \\
& \mathrm{~d}=1390 \mathrm{~mm}
\end{aligned}
\]

Shear force received by diagonal tension bar
\[
\begin{aligned}
\mathrm{Sh} & =\mathrm{S}-\mathrm{Sc} \\
& =576.04-261.79 \\
= & 314.25 \mathrm{kN} \\
& \mathrm{~S}=576.04 \mathrm{kN} \\
\mathrm{a} & =250 \mathrm{~mm} \\
\sigma \mathrm{sa} & =160 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\]

Sphere of arrangement of diagonal tension bar
\[
\begin{aligned}
L & =r-\frac{a}{S} \times S_{c} \\
& =2.500-\frac{1.750}{576.04} \times 261.79 \\
& =1.705 \mathrm{~m}
\end{aligned}
\]
\(5-5\). Design of medium slab
1) Calculation for from \(B 1 F\) to \(B 5 F\)

a). Calculation for load

Self weight of medium slab
\(\mathrm{w}_{\mathrm{s}}=24.5 \times 0.300\)
\(=7.35 \mathrm{kN} / \mathrm{m}^{2}\)

Sidewalk live load
\begin{tabular}{rl} 
& \(=5.00 \mathrm{kN} / \mathrm{m}^{2}\) \\
p & \(=12.35 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}
b). Calculation for stress

Plate of fixed 2 sides making axis of member length is considered.


Attached diagram 10.5 stress diagram of slab with two free next edges in uniform load and deformation 01\()(\mathrm{v}=0\) ) of intersection point of free edge

X direction(Direction for short span)
Bending moment of supporting point m(sup
\(\underset{\text { g) }}{\underset{\text { portin }}{ }}=0.290 \times 12.35 \times 3.250 \quad 2 \quad=37.83 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Bending moment of span
\(\underset{\underset{\text { er }}{\mathrm{diamet}}}{\mathrm{M}}=0.041 \times 12.35 \times 3.250 \quad 2 \quad=5.35 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Shear force
\[
\begin{aligned}
\mathrm{x} & =0 \\
\mathrm{~S} & =\frac{12.35 \times 3.250 \times 3.250}{3.250+3.250} \\
\mathrm{x} & =0.150 \mathrm{~m} \text { (located } \mathrm{h} / 2 \text { away from inside of lateral wall) } \\
\mathrm{S} & =\frac{1 \times 20.07}{3.250} \times\left(\begin{array}{c}
3.250 \\
1
\end{array}-0.150\right)
\end{aligned} \quad=20.07 \mathrm{kN} / \mathrm{m} \mathrm{~m}
\]

Y direction (direction for long span)
Bending moment of supporting point


Bending moement of span
\(\mathrm{M}_{\text {diamete }}=0.041 \times 12.35 \times 3.250{ }^{2}=5.35 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Shear force
\[
\begin{aligned}
\mathrm{x} & =0 \\
\mathrm{~S} & =\frac{12.35 \times 3.250 \times 3.250}{3.250+3.250} \\
\mathrm{x} & =0.150 \mathrm{~m} \text { (Loacated } \mathrm{h} / 2 \text { away from inside of lateral wall) } \\
\mathrm{S} & =\frac{2 \times 20.07}{3.250} \times\left(\frac{3.250}{2}-0.150\right)
\end{aligned}
\]
c). Checking section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|l|}{X direction(direction for short span)} & \multicolumn{5}{|l|}{Y direction (direction for long span)} \\
\hline & \multicolumn{2}{|l|}{Supporting point} & \multicolumn{3}{|c|}{Span} & \multicolumn{3}{|l|}{Supporting point} & \multicolumn{2}{|c|}{Span} \\
\hline M kN \(\cdot \mathrm{m}\) & & 37.83 & & & 5.35 & \multicolumn{3}{|c|}{37.83} & \multicolumn{2}{|c|}{5.35} \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & & 0.00 & & & 0.00 & \multicolumn{3}{|c|}{0.00} & \multicolumn{2}{|c|}{0.00} \\
\hline S kN & & 19.14 & & & 0.00 & \multicolumn{3}{|c|}{18.22} & \multicolumn{2}{|c|}{0.00} \\
\hline \(\mathrm{b} \quad \mathrm{mm}\) & & 1000 & & & 1000 & \multicolumn{3}{|c|}{1000} & \multicolumn{2}{|c|}{1000} \\
\hline h mm & & 300 & & & 300 & \multicolumn{3}{|c|}{300} & \multicolumn{2}{|c|}{300} \\
\hline \(\mathrm{d}^{\prime} \mathrm{mm}\) & & 100 & & & 100 & \multicolumn{3}{|c|}{100} & \multicolumn{2}{|c|}{100} \\
\hline d mm & & 200 & & & 200 & \multicolumn{3}{|c|}{200} & \multicolumn{2}{|c|}{200} \\
\hline \multirow[b]{2}{*}{As \(\mathrm{cm}^{2}\)} & D 22 & @ 250 & D 13 & @ & 250 & D 22 & & 250 & D 13 & 250 \\
\hline & \multicolumn{2}{|r|}{15.484} & \multicolumn{3}{|r|}{5.068} & \multicolumn{3}{|c|}{15.484} & \multicolumn{2}{|c|}{5.068} \\
\hline p & \multicolumn{2}{|r|}{0.00774} & \multicolumn{3}{|r|}{0.00253} & \multicolumn{3}{|c|}{0.00774} & \multicolumn{2}{|r|}{0.00253} \\
\hline k & \multicolumn{2}{|r|}{0.380} & \multicolumn{3}{|r|}{0.240} & \multicolumn{3}{|c|}{0.380} & \multicolumn{2}{|c|}{0.240} \\
\hline j & \multicolumn{2}{|r|}{0.873} & \multicolumn{3}{|r|}{0.920} & \multicolumn{3}{|c|}{0.873} & \multicolumn{2}{|c|}{0.920} \\
\hline \(\begin{array}{lll}\sigma \mathrm{c} & \mathrm{N} / \mathrm{mm}^{2}\end{array}\) & 5.7 & < 8.0 & 1.2 & < & 8.0 & 5.7 & < & 8.0 & 1.2 & 8.0 \\
\hline \(\sigma \mathrm{s} \quad \mathrm{N} / \mathrm{mm}^{2}\) & 139.9 & < 180 & 57.4 & \(<\) & 180 & 139.9 & \(<\) & 180 & 57.4 & 180 \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & 0.10 & < 0.44 & 0.00 & < & 0.31 & 0.09 & < & 0.44 & 0.00 & 0.31 \\
\hline \(\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}\) & & 0.23 & & & 0.23 & \multicolumn{3}{|c|}{0.23} & \multicolumn{2}{|c|}{0.23} \\
\hline \(\mathrm{C}_{\text {e }}\) & & 1.400 & & & 1.400 & \multicolumn{3}{|c|}{1.400} & \multicolumn{2}{|c|}{1.400} \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & & 1.365 & & & 0.953 & \multicolumn{3}{|c|}{1.365} & \multicolumn{2}{|c|}{0.953} \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & & 1.000 & & & 1.000 & \multicolumn{3}{|c|}{1.000} & \multicolumn{2}{|c|}{1.000} \\
\hline n & \multicolumn{2}{|r|}{15} & & & 15 & \multicolumn{3}{|c|}{15} & \multicolumn{2}{|c|}{15} \\
\hline
\end{tabular}
2) Calculation for from BM2F to BM6F

a). Calculatioon for load

Self weight of medium slab
\(\mathrm{w}_{\mathrm{s}}=24.5 \times 0.300\)
\(=7.35 \mathrm{kN} / \mathrm{m}^{2}\)

Sidewalk live load
q

b). Calculation for stress

Plate of fixed 2 sides with making axis of member length is considered.


Attached diagram 10.5 stress diagram of slab with two free next edges in uniform load and deformation 01) \((v=0)\) of intersection point of free edge

X direction (Direction for short span)
Bending moment of supporting point
\(\underset{\text { supporti }}{\mathrm{M}}=0.290 \times 12.35 \times 1.63522=9.57 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Bending moement of span
\(\underset{\text { diame }}{\mathrm{M}}=0.041 \times 12.35 \times 1.635^{2} \quad=1.35 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Shear force
- \(\mathrm{x}=0\)
\[
\begin{aligned}
& \mathrm{S}=\frac{12.35 \times 1.635 \times 1.635}{1.635+1.635} \\
& \mathrm{x}=0.150 \mathrm{~m} \text { (located } \mathrm{h} / 2 \text { away from inside of lateral wall) } \\
& \mathrm{S}=\frac{1 \times 10.10}{1.635} \times\binom{ 1.635}{1}=10.10 \mathrm{kN} / \mathrm{m} \\
&
\end{aligned}
\]

Y direction (direction for long span)
Bending moment of supporting point
\(\underset{\text { supporti }}{\mathrm{M}}=0.290 \times 12.35 \times 1.635^{2}=9.57 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Bending moement of span
\(\mathrm{U}_{\text {diamete }}=0.041 \times 12.35 \times 1.635^{2}=1.35 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)

Shear force
- \(\mathrm{x}=0\)
\(\mathrm{S}=\frac{12.35 \times 1.635 \times 1.635}{1.635+1.635}\)
\(=10.10^{\mathrm{kN} / \mathrm{m}}\)
- \(\mathrm{x}=0.150 \mathrm{~m}\) (Loacated \(\mathrm{h} / 2\) away from inside of lateral wall)
\[
\mathrm{S}=\frac{2 \times 10.10}{1.635} \times\left(\begin{array}{c}
1.635 \\
2
\end{array}-0.150\right) \quad=8.24 \mathrm{kN} / \mathrm{m}
\]
c). Checking section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|l|}{X direction (direction for short span)} & \multicolumn{5}{|l|}{Y direction (direction for long span)} \\
\hline & \multicolumn{2}{|l|}{Supporting point} & \multicolumn{2}{|r|}{Span} & \multicolumn{2}{|l|}{Supporting point} & \multicolumn{3}{|c|}{Span} \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & & 9.57 & & 1.35 & & 9.57 & & & 1.35 \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & & 0.00 & & 0.00 & & 0.00 & & & 0.00 \\
\hline S kN & & 9.17 & & 0.00 & & 8.24 & & & 0.00 \\
\hline b mm & & 1000 & & 1000 & & 1000 & & & 1000 \\
\hline h mm & & 300 & & 300 & & 300 & & & 300 \\
\hline d' mm & & 100 & & 100 & & 100 & & & 100 \\
\hline d mm & & 200 & & 200 & & 200 & & & 200 \\
\hline \multirow[b]{2}{*}{As \(\mathrm{cm}^{2}\)} & D \(\quad 13\) & @ 250 & D 13 & (0) 250 & D 13 & @ 250 & D 13 & @ & 250 \\
\hline & & 5.068 & \multicolumn{2}{|r|}{5.068} & \multicolumn{2}{|r|}{5.068} & \multicolumn{3}{|r|}{5.068} \\
\hline p & & 0.00253 & \multicolumn{2}{|r|}{0.00253} & \multicolumn{2}{|r|}{0.00253} & \multicolumn{3}{|r|}{0.00253} \\
\hline k & & 0.240 & \multicolumn{2}{|r|}{0.240} & \multicolumn{2}{|r|}{0.240} & \multicolumn{3}{|r|}{0.240} \\
\hline j & \multicolumn{2}{|r|}{0.920} & \multicolumn{2}{|r|}{0.920} & \multicolumn{2}{|r|}{0.920} & \multicolumn{3}{|r|}{0.920} \\
\hline \(\begin{array}{lll}\sigma \mathrm{c} & \mathrm{N} / \mathrm{mm}^{2}\end{array}\) & 2.2 & < 8.0 & \multicolumn{2}{|l|}{0.3 < 8.0} & 2.2 & < 8.0 & 0.3 & < & 8.0 \\
\hline \%s \(\mathrm{N} / \mathrm{mm}^{2}\) & 102.7 & < 180 & 14.5 & < 180 & 102.7 & < 180 & 14.5 & < & 180 \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & 0.05 & < 0.31 & 0.00 & \(<0.31\) & 0.04 & < 0.31 & 0.00 & \(<\) & 0.31 \\
\hline \(\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}\) & \multicolumn{2}{|r|}{0.23} & \multicolumn{2}{|r|}{0.23} & \multicolumn{2}{|r|}{0.23} & \multicolumn{3}{|r|}{0.23} \\
\hline \(\mathrm{C}_{\text {e }}\) & \multicolumn{2}{|r|}{1.400} & \multicolumn{2}{|r|}{1.400} & \multicolumn{2}{|r|}{1.400} & \multicolumn{3}{|r|}{1.400} \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & \multicolumn{2}{|r|}{0.953} & \multicolumn{2}{|r|}{0.953} & \multicolumn{2}{|r|}{0.953} & \multicolumn{3}{|r|}{0.953} \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & \multicolumn{2}{|r|}{1.000} & \multicolumn{2}{|r|}{1.000} & \multicolumn{2}{|r|}{1.000} & \multicolumn{3}{|r|}{1.000} \\
\hline n & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} & \multicolumn{3}{|r|}{15} \\
\hline
\end{tabular}
3) Calculation for B 6 F

a). Calculation for load

Self weight of medium slab
\(\mathrm{w}_{\mathrm{s}}=24.5 \times 0.300\)
\(=7.35 \mathrm{kN} / \mathrm{m}^{2}\)

Sidewalk live load
q
\begin{tabular}{rl} 
& \(=5.00 \mathrm{kN} / \mathrm{m}^{2}\) \\
p & \(=12.35 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}
b). Calculation for stress

Plate of fixed 3 sides with making axis of member length is considered.


From the left diagram
\begin{tabular}{rl}
\(-\mathrm{M}_{\mathrm{x} 1}\) & \(=0.087\) \\
\(\mathrm{M}_{\mathrm{x} 2}\) & \(=0.015\) \\
\(\mathrm{Q}_{\mathrm{x} 1}\) & \(=0.22\) \\
\(-\mathrm{M}_{\mathrm{y} 1}\) & \(=0.131\) \\
\(\mathrm{M}_{\mathrm{y} 2 \max }\) & \(=0.059\) \\
\(\mathrm{Q}_{\mathrm{y} 1}\) & \(=0.28\)
\end{tabular}

Attached diagram 10.3 stress diagram of slab with three edge and 1 free edge and deformation \(\sigma 1(\nu\) \(=0\) ) of center of free edge in uniform load.
```

X direction(Direction for short span)
Bending moment of supporting point
IVI
supporti = 0.087 × 12.35 }\times4.000 2 = 17.19 kN\cdotm/m
Bending moement of span
M \iamet\epsilon }=0.015\times12.35\times4.000\mp@subsup{0}{}{2}=2.96 kN\cdotm/m
Shear force
- x = 0
S = 0.22 }\times12.35\times4.000 = = 10.87 kN/m
- }\textrm{x}=0.150\textrm{m}\mathrm{ (located h/2 away from inside of lateral wall)
S = \frac{1\times10.87}{4.000}\times(\frac{4.000}{1}-0.150)}=10.46 kN/
Y direction(direction for long span)
Bending moment of supporting point
supporti = 0.131 }\times12.35\times4.000 2 = 25.89 kN\cdotm/m
Bending moement of span
\mp@subsup{M}{\mathrm{ diamete }}{}=0.059 }\times12.35\times4.000\mp@subsup{}{}{2}=1.66 kN\cdotm/
Shear force

```
```

- x = 0

```
- x = 0
    S = 0.28 }\times12.35\times4.00
    S = 0.28 }\times12.35\times4.00
- }\textrm{x}=0.150\textrm{m}\mathrm{ (located h/2 away from inside of lateral wall)
- }\textrm{x}=0.150\textrm{m}\mathrm{ (located h/2 away from inside of lateral wall)
S = 2 < 13.83
S = 2 < 13.83
= 13.00 }\textrm{kN}/\textrm{m
```

= 13.00 }\textrm{kN}/\textrm{m

```
c). Checking section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|l|}{X direction(direction for short span)} & \multicolumn{5}{|l|}{Y direction (direction for long span)} \\
\hline & \multicolumn{2}{|l|}{Supporting point} & \multicolumn{2}{|r|}{Span} & \multicolumn{2}{|l|}{Supporting point} & \multicolumn{3}{|c|}{Span} \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & & 17.19 & & 2.96 & & 25.89 & & & 11.66 \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & & 0.00 & & 0.00 & & 0.00 & & & 0.00 \\
\hline S kN & & 10.46 & & 0.00 & & 13.00 & & & 0.00 \\
\hline b mm & & 1000 & & 1000 & & 1000 & & & 1000 \\
\hline h mm & & 300 & & 300 & & 300 & & & 300 \\
\hline d' mm & & 100 & & 100 & & 100 & & & 100 \\
\hline d mm & & 200 & & 200 & & 200 & & & 200 \\
\hline As \({ }^{2}\) & D 16 & @ 250 & D 13 & (1) 250 & D 19 & @ \#\# & D 13 & (1) & 250 \\
\hline & & 5.617 & & 3.584 & & 8.103 & & & 3.584 \\
\hline p & & 0.00281 & & 0.00179 & & 0.00405 & & & 0.0179 \\
\hline k & & 0.251 & & 0.207 & & 0.293 & & & 0.207 \\
\hline j & & 0.916 & & 0.931 & & 0.902 & & & 0.931 \\
\hline \(\sigma \mathrm{c} \quad \mathrm{N} / \mathrm{mm}^{2}\) & 3.7 & < 8.0 & 0.8 & < 8.0 & 4.9 & < 8.0 & 3.0 & < & 8.0 \\
\hline \(\sigma \mathrm{S} \quad \mathrm{N} / \mathrm{mm}^{2}\) & 167.0 & < 180 & 44.4 & < 180 & 177.0 & < 180 & 174.7 & < & 180 \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & 0.05 & < 0.32 & 0.00 & < 0.28 & 0.07 & \(<0.36\) & 0.00 & < & 0.28 \\
\hline \(\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}\) & & 0.23 & & 0.23 & & 0.23 & & & 0.23 \\
\hline \(\mathrm{C}_{\mathrm{e}}\) & & 1.400 & & 1.400 & & 1.400 & & & 1.400 \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & & 0.981 & & 0.858 & & 1.105 & & & 0.858 \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & & 1.000 & & 1.000 & & 1.000 & & & 1.000 \\
\hline n & & 15 & & 15 & & 15 & & & 15 \\
\hline
\end{tabular}
※ The amount of reinforcing bars adopted a decreased value considering skew angle, \(45^{\circ}\) on ※ arrangement of bar towards structure.

5-6. Design of stairs
a). Calculation for load

Self weight of slab
\(\mathrm{w}_{\mathrm{s}}=24.5 \times 0.300\)
\(=7.35 \mathrm{kN} / \mathrm{m}^{2}\)
Load on part of step
\(\mathrm{w}_{\mathrm{s}}=24.5 \times \frac{1}{2} \times 0.200\)
\(=2.45 \mathrm{kN} / \mathrm{m}^{2}\)

Sidewalk live load
q
\begin{tabular}{rl} 
& \(=5.00 \mathrm{kN} / \mathrm{m}^{2}\) \\
p & \(=14.80 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}

\section*{b). Calculation for stress}

The model is set as beam with both ends built-in as shown in below diagram.


Stress diagram

Sy diagram for sectional force


Sy diagram for sectional force

c). Checking section
- Checking to bending
\begin{tabular}{|c|c|c|c|c|}
\hline & Stairs & & & \\
\hline & Supporting point & Span & Supporting point & \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & 29.23 & 13.95 & 31.00 & \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & 0.00 & 0.00 & 0.00 & \\
\hline \(\mathrm{S} \quad \mathrm{kN}\) & 0.00 & 0.00 & 0.00 & \\
\hline b mm & 1000 & 1000 & 1000 & \\
\hline \(\mathrm{h} \quad \mathrm{mm}\) & 300 & 300 & 300 & \\
\hline \(\mathrm{d}^{\prime} \mathrm{mm}\) & \#REF! & \#REF! & \#REF! & \\
\hline d mm & \#REF! & \#REF! & \#REF! & \\
\hline & D 19 @ 250 & D 13 @ 250 & D 19 @ 250 & \\
\hline & 11.460 & 5.068 & 11.460 & \\
\hline p & \#REF! & \#REF! & \#REF! & \\
\hline k & \#REF! & \#REF! & \#REF! & \\
\hline j & \#REF! & \#REF! & \#REF! & \\
\hline \(\sigma \mathrm{c} \quad \mathrm{N} / \mathrm{mm}^{2}\) & \#\#\#\#\#\#\# 8.0 & \#\#\#\#\#\#\# 8.0 & \#\#\#\#\#\#\# 8.0 & \\
\hline \(\sigma \mathrm{S} \quad \mathrm{N} / \mathrm{mm}^{2}\) & \#\#\#\#\#\#\# 180 & \#\#\#\#\# \#\# 180 & \#\#\#\#\#\#\# 180 & \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & \#\#\#\#\#\#\#\#\#\#\# & \#\#\#\#\# \#\# \#\#\#\#\# & \#\#\#\#\# \#\# \#\#\#\#\# & \\
\hline \(\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}\) & 0.23 & 0.23 & 0.23 & \\
\hline \(\mathrm{C}_{\text {e }}\) & \#REF! & \#REF! & \#REF! & \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & \#REF! & \#REF! & \#REF! & \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & 1.000 & 1.000 & 1.000 & \\
\hline n & 15 & 15 & 15 & \\
\hline
\end{tabular}
- Checking to shear


5-7. Calculation for cleaning hole
1). Skelton diagram
a). Skelton diagram

b). Secional area and second moment of area
Sectional area
A
\(=0.250 \mathrm{~m}^{2} / \mathrm{m}\)
Moment of second ordeI
\(I=\frac{1}{12} \times\) 0.250
\(=0.001302 \mathrm{~m}^{4} / \mathrm{m}\)
c). Point specified for calculation
\begin{tabular}{|c|r|r|r|r|r|r|r|r|}
\hline \multirow{2}{*}{ Member } & \multicolumn{9}{|c|}{ Point specified for calculation (m) } \\
\cline { 2 - 10 } & \begin{tabular}{c} 
Front \\
face of \\
bearing
\end{tabular} & (Haunch) & Haunch & \(\mathrm{h} / 2\) & \multicolumn{1}{c|}{\(\mathrm{~h} / 2\)} & Haunch & (Haunch) & \begin{tabular}{c} 
Front \\
face of \\
bearing
\end{tabular} \\
\hline \(1-2\) & 0.125 & 0.000 & 0.125 & 0.250 & 1.000 & 1.125 & 1.250 & 1.125 \\
\hline \(3-4\) & 0.125 & 0.000 & 0.125 & 0.250 & 1.000 & 1.125 & 1.250 & 1.125 \\
\hline \(1-3\) & 0.125 & 0.000 & 0.125 & 0.250 & 1.100 & 1.225 & 1.350 & 1.225 \\
\hline \(2-4\) & 0.125 & 0.000 & 0.125 & 0.250 & 1.100 & 1.225 & 1.350 & 1.225 \\
\hline
\end{tabular}
2). Calculation for load


Earth pressure
\[
\mathrm{p}_{\mathrm{a} 1}=0.5 \times 19.0 \times 2.300
\]

Earth pressure of live load
\[
\mathrm{p}_{\mathrm{q}}=0.5 \times 10.0
\]
\begin{tabular}{rl} 
& \(=5.00 \mathrm{kN} / \mathrm{m}^{2}\) \\
\(\mathrm{p}_{\mathrm{a}}\) & \(=26.85 \mathrm{kN} / \mathrm{m}^{2}\)
\end{tabular}
3). Calculation for load
- Diagram of bending moment

- Diagram of shear force

- Diagram of axial force

4). Checkihg section
- Checkiong to bending
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{1-2,3-4} & \multicolumn{2}{|c|}{1-3,2-4} \\
\hline & Supporting point (Exterior surface) & Span (inner surface) & Supporting point (Exterior surface) & Span(inner surface) \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & 3.80 & 1.45 & 3.80 & 2.32 \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & 18.12 & 18.12 & 16.78 & 16.78 \\
\hline b mm & 1000 & 1000 & 1000 & 1000 \\
\hline h mm & 250 & 250 & 250 & 250 \\
\hline d' mm & 100 & 150 & 100 & 150 \\
\hline \(\mathrm{d} \quad \mathrm{mm}\) & 150 & 100 & 150 & 100 \\
\hline As \(\mathrm{cm}^{2}\) & D 13 @ 250 \\
\hline & 5.068 & 5.068 & 5.068 & 5.068 \\
\hline p & 0.00338 & 0.00507 & 0.00338 & 0.00507 \\
\hline k & 0.272 & 0.321 & 0.272 & 0.321 \\
\hline j & 0.909 & 0.893 & 0.909 & 0.893 \\
\hline \(\sigma \mathrm{c} \mathrm{N} / \mathrm{mm}^{2}\) & \(1.1<8.0\) & \(0.3<8.0\) & \(1.2<8.0\) & \(0.9<8.0\) \\
\hline os \(\mathrm{N} / \mathrm{mm}^{2}\) & \(28.2<160\) & \(-1.0<160\) & \(30.1<160\) & \(12.2<160\) \\
\hline n & 15 & 15 & 15 & 15 \\
\hline
\end{tabular}
- Checking to shear force
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{Long side} & \multicolumn{2}{|r|}{Shohrt side} \\
\hline & Supporting point & & Supporting point & \\
\hline M \(\mathrm{kN} \cdot \mathrm{m}\) & 0.44 & & 0.11 & \\
\hline \(\mathrm{N} \quad \mathrm{kN}\) & 18.12 & & 16.78 & \\
\hline S kN & 10.07 & & 11.41 & \\
\hline b mm & 1000 & & 1000 & \\
\hline h mm & 250 & & 250 & \\
\hline d' mm & 100 & & 100 & \\
\hline d mm & 150 & & 150 & \\
\hline As \({ }^{2}\) & D 13 @ 250 & & D 13@ 250 & \\
\hline & 5.068 & & 5.068 & \\
\hline p & 0.00338 & & 0.00338 & \\
\hline \(\tau \quad \mathrm{N} / \mathrm{mm}^{2}\) & \(0.07<0.67\) & & \(0.08<0.67\) & \\
\hline \(\tau_{\text {al }} \mathrm{N} / \mathrm{mm}^{2}\) & 0.23 & & 0.23 & \\
\hline \(\mathrm{C}_{\text {e }}\) & 1.400 & & 1.400 & \\
\hline \(\mathrm{C}_{\mathrm{pt}}\) & 1.038 & & 1.038 & \\
\hline \(\mathrm{C}_{\mathrm{N}}\) & 2.000 & & 2.000 & \\
\hline
\end{tabular}
6. Checking section in earthquake (level 1)
\(6-1\). Classification of ground on earthquake resistant design
Classification of ground on earthquake resistant design is classified by following table based on characteristic valu,TG calculated from the following formula in principle.
If ground level is same as faoundation bed level, I type ground is adopted.


To this
\(\mathrm{T}_{\mathrm{G}}\) : Characteristic value of ground, (s)
Hi : Layer thickness of number \(\mathrm{i}(\mathrm{m})\)
Vsi . Average shear wave velecity of leyer of number \(i(\mathrm{~m} / \mathrm{s})\). However, if there is no actual measurements, the value can be calculated from the following formula.
\begin{tabular}{lll} 
In case of cohesive soil & \(\mathrm{Vsi}=100 \mathrm{Ni}^{1 / 3}\) & \((1 \leqq \mathrm{Ni} \leqq 25)\) \\
In case of sandy soil & \(\mathrm{Vsi}=80 \mathrm{Ni}^{1 / 3}\) & \((1 \leqq \mathrm{Ni} \leqq 50)\)
\end{tabular}

Ni : Average N value of leyer of number I from standard penetation test
Number of layer of I number from ground level when classifying the layers into \(n\) layers from ground
i : level to foundation bed.
Foundation bed level is considered to be upper surface of strata in case of cohesive soil having N value with 25 and over and in case of sandy soil having \(N\) value with 50 and more, or upper surface of starata of shear wave velocity with around \(300 \mathrm{~m} / \mathrm{s}\) and over.

Classification of ground on earthquake
\begin{tabular}{|c|cc|}
\hline \begin{tabular}{c} 
Classificatio \\
n of ground
\end{tabular} & \begin{tabular}{c} 
Characteristic value of \\
ground, \(\mathrm{T}_{\mathrm{G}}(\mathrm{s})\)
\end{tabular} \\
\hline Class I & \(\mathrm{T}_{\mathrm{G}}<0.2\) \\
\hline Class II & 0.2 & \(\leqq \mathrm{~T}_{\mathrm{G}}<0.6\) \\
\hline Class III & 0.6 & \(\leqq \mathrm{~T}_{\mathrm{G}}\) \\
\hline
\end{tabular}

Judgement of classification of ground
\begin{tabular}{|c|r|c|c|c|r|c|}
\hline Classification & \multicolumn{1}{|c|}{\(\mathrm{Hi}(\mathrm{m})\)} & \multicolumn{2}{|c|}{ Name of layer } & Ni & Vsi(m/s) & \(\mathrm{Hi} / \mathrm{Vsi}(\mathrm{s})\) \\
\hline 1 & 4.000 & Ac1 & Cohesive soil & 2.0 & 126.0 & 0.03175 \\
\hline 2 & 9.000 & Ac2 & Cohesive soil & 1.0 & 100.0 & 0.09000 \\
\hline 3 & 2.000 & Ac3 & Cohesive soil & 9.0 & 208.0 & 0.00961 \\
\hline\(\Sigma\) & 15.000 & \multicolumn{2}{|c|}{-} & - & - & 0.13136 \\
\hline
\end{tabular}

\(\therefore\) Judged as ground, class II

6-2. Response displacement of ground
In seismic calculation method by response displacement method, displacement amplitude of horizontal direction of ground in depth, \(z\) from ground level is calculated from the following formula.
\[
\mathrm{U}_{\mathrm{h}}(\mathrm{z})=\frac{2}{\pi^{2}} \quad \cdot \mathrm{~Sv} \cdot \mathrm{Ts} \cdot \cos \quad \frac{\pi \mathrm{z}}{2 \cdot \mathrm{H}}
\]

To this
\(\mathrm{Uh}(\mathrm{z})\) : Horizontal displacement amplitude in depth, \(\mathrm{z}(\mathrm{m})\) from ground level ( m )
Sv : Designed response velocity ( \(\mathrm{m} / \mathrm{s}\) )
Ts : Natural period of subsurface ground(s)
\(\mathrm{Ts}=1.25 \cdot \mathrm{~T}_{\mathrm{G}}\)
z : Depth of optional point (m)
H : Thickness of subsurface ground (m)
1). Natural period
\[
\begin{array}{rlr}
\mathrm{Ts} & =1.25 \times \quad 0.525 \\
& =0.657 \mathrm{~s} \\
& \mathrm{~T}_{\mathrm{G}}= & 0.525
\end{array}
\]
2). Designed response velocity


A Area (Area is regarded as maximum)
\[
\begin{gathered}
0.50<\mathrm{Ts}=c \\
\mathrm{~Sv}=
\end{gathered}
\]
3). Calculation for displacement amplitude of ground
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|c|}
\hline Panel \\
point \\
Number
\end{tabular} & \begin{tabular}{l}
Elevation \\
(m)
\end{tabular} & Length of member (m) & \begin{tabular}{l}
Depth, z \\
(m)
\end{tabular} & \begin{tabular}{l}
Uh(z) \\
(m)
\end{tabular} & Notes & Sign \\
\hline - & 0.730 & 0.000 & 0.000 & 0.031944 & Ground level & \\
\hline 1 & \(-1.570\) & 2.300 & 2.300 & 0.031022 & Upside of upper slab & \\
\hline 2 & -1.970 & 0.400 & 2.700 & 0.030675 & Soffit of upper slab & Ac1 \\
\hline 3 & -3.270 & 1.300 & 4.000 & 0.029182 & Change point of stratum & \\
\hline - & -3.270 & 0.000 & 4.000 & 0.029182 & - & \\
\hline 4 & -3.970 & 0.700 & 4.700 & 0.028152 & Upside of medium slab & \\
\hline 5 & -4.270 & 0.300 & 5.000 & 0.027664 & Soffit of medium slab & \\
\hline 6 & -7.570 & 3.300 & 8.300 & 0.020618 & Upside of medium slab & \\
\hline 7 & -7.870 & 0.300 & 8.600 & 0.019842 & Soffit of medium slab & Ac2 \\
\hline 8 & -11.170 & 3.300 & 11.900 & 0.010189 & Upside of medium slab & \\
\hline 9 & -11.470 & 0.300 & 12.200 & 0.009233 & Soffit of medium slab & \\
\hline 10 & -12.270 & 0.800 & 13.000 & 0.006641 & Change point of stratum & \\
\hline - & -12.270 & 0.000 & 13.000 & 0.006641 & - & \\
\hline 11 & -14.270 & 2.000 & 15.000 & 0.000000 & Foundation bed level & Ac3 \\
\hline - & -14.270 & 0.000 & 15.000 & 0.000000 & - & \\
\hline 12 & -14.770 & 0.500 & 15.500 & 0.000000 & Upside of medium slab & \\
\hline 13 & -15.070 & 0.300 & 15.800 & 0.000000 & Soffit of medium slab & \\
\hline 14 & -18.370 & 3.300 & 19.100 & 0.000000 & Upside of medium slab & \\
\hline 15 & -18.670 & 0.300 & 19.400 & 0.000000 & Soffit of medium slab & Ac4 \\
\hline 16 & -21.970 & 3.300 & 22.700 & 0.000000 & Upside of medium slab & \\
\hline 17 & -22.270 & 0.300 & 23.000 & 0.000000 & Soffit of medium slab & \\
\hline 18 & -24.270 & 2.000 & 25.000 & 0.000000 & Change point of stratum & \\
\hline - & -24.270 & 0.000 & 25.000 & 0.000000 & - & \\
\hline 19 & -26.270 & 2.000 & 27.000 & 0.000000 & Change point of stratum & Ac5 \\
\hline - & -26.270 & 0.000 & 27.000 & 0.000000 & - & \\
\hline 20 & -28.070 & 1.800 & 28.800 & 0.000000 & Upside of bottom slab & Ac6 \\
\hline 21 & -29.570 & 1.500 & 30.300 & 0.000000 & Undersurface of bottom slab & \\
\hline
\end{tabular}

6-3. Calculation for vertical direction
1). Skelton diagram
a). Skelton diagram

b). Section modulus
\begin{tabular}{|c|r|r|r|c|}
\hline Section & Outside dimension & Inside dimension & \multicolumn{1}{c|}{\begin{tabular}{c}
A \\
\(\left(\mathrm{m}^{2}\right)\)
\end{tabular}} & \begin{tabular}{c}
I \\
\(\left(\mathrm{m}^{4}\right)\)
\end{tabular} \\
\hline 1 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 2 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 3 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 4 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 5 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 6 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 7 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 8 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 9 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 10 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 11 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 12 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 13 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline 14 & 6.400 & 5.000 & 12.535 & 51.675 \\
\hline 15 & 6.400 & 0.000 & 32.170 & 82.355 \\
\hline
\end{tabular}
c). Coefficient of ground reaction
i). Coefficient of horizontal ground reaction in lateral face

Coefficient of horizontal ground reaction is calculated from the following formula.
\(\mathrm{k}_{\mathrm{H}}=\mathrm{k}_{\mathrm{H} 0}\)
\(\left[-\frac{\mathrm{B}_{\mathrm{b}}}{0.3}\right]\)
\(-3 / 4\)

To the above formula
\(\mathrm{k}_{\mathrm{H}} \quad\) : Coefficient of horizontal ground reactionkN \(/ \mathrm{m}^{3}\) )
\(\mathrm{k}_{\mathrm{H} 0} \quad\) : Coefficient of horizontal ground reaction corresponding to the value of plate bearing test by rigid circular plate with diameter, \(0.3 \mathrm{~m} .(\mathrm{kN} / \mathrm{m} 3)\)
\[
\mathrm{k}_{\mathrm{H} 0}=\frac{1}{0.3} \cdot \alpha \cdot \mathrm{E}_{0}
\]
\(\alpha \quad: \quad\) Coefficient for estimation of coefficient of ground reaction
\(\mathrm{E}_{0} \quad: \quad\) Deformation modulus of ground \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(B_{h} \quad\) : Converted loaded width of foundation(m)
\[
\mathrm{B}_{\mathrm{h}}=\sqrt{\mathrm{Ah}}
\]
\(\mathrm{A}_{\mathrm{h}} \quad: \quad\) Horizontal loaded width(m)

The following table shows the result of calculation.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Member } \\
& \text { Number }
\end{aligned}
\] & \begin{tabular}{l}
Stratum \\
Sign
\end{tabular} & Section
Number & \[
\begin{gathered}
\alpha \cdot \mathrm{E}_{0} \\
\left(\mathrm{kN} / \mathrm{m}^{2}\right)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{k}_{\mathrm{HO}} \\
\left(\mathrm{kN} / \mathrm{m}^{3}\right)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{k}_{\mathrm{H}} \\
\left(\mathrm{kN} / \mathrm{m}^{3}\right)
\end{gathered}
\] & Loaded width B (m) & \[
\begin{gathered}
\mathrm{K}_{\mathrm{H}}=\mathrm{k}_{\mathrm{H}} \cdot \mathrm{~B} \\
\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\hline
\end{gathered}
\] \\
\hline 1 & Ac1 & 1 & 5,600 & 18,667 & 1,346 & 5.120 & 6,889 \\
\hline 2 & " & 2 & 5,600 & 18,667 & 1,346 & 5.120 & 6,889 \\
\hline 3 & Ac2 & " & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 4 & " & 3 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 5 & " & 4 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 6 & " & 5 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 7 & " & 6 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 8 & " & 7 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 9 & " & 8 & 2,800 & 9,333 & 673 & 5.120 & 3,445 \\
\hline 10 & Ac3 & " & 25,200 & 84,000 & 6,055 & 5.120 & 31,002 \\
\hline 11 & Ac4 & " & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 12 & " & 9 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 13 & " & 10 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 14 & " & 11 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 15 & " & 12 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 16 & " & 13 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 17 & " & 14 & 168,000 & 560,000 & 40,367 & 5.120 & 206,680 \\
\hline 18 & Ac5 & " & 142,800 & 476,000 & 34,312 & 5.120 & 175,678 \\
\hline 19 & Ac6 & " & 86,800 & 289,333 & 20,856 & 5.120 & 106,785 \\
\hline 20 & " & 15 & 86,800 & 289,333 & 20,856 & 5.120 & 106,785 \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{B}_{\mathrm{h}} & =\sqrt{143.360} \\
& =11.973 \mathrm{~m} \quad>10.0 \mathrm{~m} \\
& \mathrm{~A}_{\mathrm{h}}=0.8 \times 6.400 \times 28.000 \\
& =143.360 \mathrm{~m}^{2} \\
\mathrm{~B}_{\mathrm{h}} & =10.000 \mathrm{~m} \text { Bh is calculated by the above formula. }
\end{aligned}
\]
ii). Coefficient of vertical ground reaction in underside.

Coefficient of vertical ground reaction is calculated from the following formula.
\[
\mathrm{k}_{\mathrm{V}}=\mathrm{k}_{\mathrm{V} 0}\left[\frac{\mathrm{~B}_{\mathrm{v}}}{0.3}\right]^{-3 / 4}
\]

To the above formula
\(\mathrm{k}_{\mathrm{V}} \quad: \quad\) Coefficient of vertical groudn reaction \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(\mathrm{k}_{\mathrm{v} 0} \quad\) : Coefficient of vertical ground reaction corresponding to the value of plate bearing test by rigid circular plate with diamter, \(0.3 \mathrm{~m}(\mathrm{kN} / \mathrm{m} 3)\)
\[
\mathrm{k}_{\mathrm{V} 0}=\frac{1}{0.3} \cdot \alpha \cdot \mathrm{E}_{0}
\]
\(\alpha \quad: \quad\) Coefficient for estimation of coefficient of ground reaction
\(\mathrm{E}_{0} \quad: \quad\) Deformation modulus of ground \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\)
\(B_{v} \quad: \quad\) Converted loaded width of foundation (m)
\[
\mathrm{B}_{\mathrm{v}}=\sqrt{\mathrm{Av}}
\]
\(\mathrm{A}_{\mathrm{v}} \quad: \quad\) Vertical loaded width(m)
\[
\mathrm{k}_{V}=289,333 \times\left[\frac{5.672}{0.3}\right]^{-3 / 4}
\]
\[
=\quad 31,911 \mathrm{kN} / \mathrm{m}^{3}
\]
\[
\mathrm{k}_{\mathrm{Vo}}=\frac{1}{0.3} \times 86,800
\]
\[
=289,333 \mathrm{kN} / \mathrm{m}^{3}
\]
\[
\mathrm{B}_{\mathrm{v}}=\sqrt{32.170}
\]
\[
=5.672 \mathrm{~m}<10.0 \mathrm{~m}
\]
\[
\mathrm{A}_{V}=\frac{\pi}{4} \times 6.400
\]
\[
=\quad 32.170 \mathrm{~m}^{2}
\]
\[
B_{v}=5.672 \mathrm{~m} \mathrm{Bv} \text { is calculated by the above formula }
\]
```

K
= 32.170 }\times31,91
= 1,026,587 kN/m

```
iii). Shear spring coefficient in bottom face.

Shear spring coefficient is calculated from the following formula.
\[
\mathrm{k}_{\mathrm{s}}=\lambda \cdot \mathrm{k}_{\mathrm{v}}
\]

To the above formula
\(\mathrm{k}_{\mathrm{s}} \quad: \quad\) Shear spring coefficient in bottom face \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\(\lambda \quad\) : The ratio of shear spring coefficient, kS to coefficient of vertical ground reaction, kV in
bottom face \(=0.3\)
\(\mathrm{k}_{\mathrm{V}} \quad: \quad\) Coefficient of vertical ground reaction in bottom face \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\[
\begin{array}{rlrl}
\mathrm{k}_{\mathrm{S}} & =0.3 & \times 31,911 \\
& =9,573 & \mathrm{kN} / \mathrm{m}^{3}
\end{array}
\]
\[
K_{s}=A_{v} \times k_{s}
\]
\[
=32.170 \times 9,573
\]
\[
=\quad 307,976 \mathrm{kN} / \mathrm{m}
\]
iv). Rotary spring coefficient in bottom face

Rotary spring coefficient is calculated from the following formula.
\[
\mathrm{K}_{\theta}=\mathrm{k}_{\mathrm{V}} \cdot \mathrm{I}
\]

To the formula
\(\mathrm{K}_{\theta} \quad: \quad\) Rotary spring coefficient \((\mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})\)
\(\mathrm{k}_{\mathrm{V}} \quad: \quad\) Coefficient of vertical ground reaction in bottom face \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
I : Second moment of area in bottom face of manhole \(\left(\mathrm{m}^{4}\right)\)
\[
K_{\theta}=31,911 \times 82.355
\]
\(=\quad 2,628,061 \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad}\)
\[
\begin{aligned}
\mathrm{I} & =\frac{\pi}{64} \times 6.400 \\
& =82.355 \mathrm{~m}^{4}
\end{aligned}
\]
2). Calculation for load

Earth pressure from response displacement method based on the result of calculation for displacement amplitude is calculated.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Panel point & Uh(z) & \begin{tabular}{|c|}
\hline \(\mathrm{Uh}{ }^{\prime}(\mathrm{z})\) \\
\hline \(\mathrm{Uh}(\mathrm{z})-\mathrm{Uh}_{\mathrm{hB}} \mathrm{B}\) \\
\hline
\end{tabular} & \(\mathrm{K}_{\mathrm{H}}\) & \(\mathrm{Uh}{ }^{\prime}(\mathrm{z}) \cdot \mathrm{K}_{\mathrm{H}}\) & Displace ment of member & Displace ment distance & Ground reaction & Stratum \\
\hline Numb er & (m) & (m) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & (kN/m) & (m) & (m) & (kN/m) & Sign \\
\hline 1 & 0.031022 & 0.031022 & 6,889 & 213.72 & 0.0047652 & 0.026256 & 180.89 & Acl \\
\hline 2 & 0.030675 & 0.030675 & 6,889 & 211.33 & 0.0046661 & 0.026009 & 179.19 & " \\
\hline 3 & 0.029182 & 0.029182 & 6,889 & 201.04 & 0.0043443 & 0.024838 & 171.12 & " \\
\hline - & 0.029182 & 0.029182 & 3,445 & 100.52 & 0.0043443 & 0.024838 & 85.56 & Ac2 \\
\hline 4 & 0.028152 & 0.028152 & 3,445 & 96.97 & 0.0041711 & 0.023981 & 82.61 & " \\
\hline 5 & 0.027664 & 0.027664 & 3,445 & 95.29 & 0.0040969 & 0.023567 & 81.18 & " \\
\hline 6 & 0.020618 & 0.020618 & 3,445 & 71.02 & 0.0032587 & 0.017360 & 59.80 & " \\
\hline 7 & 0.019842 & 0.019842 & 3,445 & 68.35 & 0.0032126 & 0.016629 & 57.28 & " \\
\hline 8 & 0.010189 & 0.010189 & 3,445 & 35.10 & 0.0024230 & 0.007766 & 26.75 & " \\
\hline 9 & 0.009233 & 0.009233 & 3,445 & 31.80 & 0.0023528 & 0.006880 & 23.70 & " \\
\hline 10 & 0.006641 & 0.006641 & 3,445 & 22.88 & 0.0021673 & 0.004474 & 15.41 & " \\
\hline - & 0.006641 & 0.006641 & 31,002 & 205.90 & 0.0021673 & 0.004474 & 138.71 & Ac3 \\
\hline 11 & 0.000000 & 0.000000 & 31,002 & 0.00 & 0.0017165 & 0.001717 & 53.22 & 11 \\
\hline - & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0017165 & 0.001717 & 354.77 & Ac4 \\
\hline 12 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0016071 & 0.001607 & 332.16 & " \\
\hline 13 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0015421 & 0.001542 & 318.71 & " \\
\hline 14 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0008612 & 0.000861 & 177.99 & " \\
\hline 15 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0008025 & 0.000802 & 165.85 & " \\
\hline 16 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0001867 & 0.000187 & 38.60 & " \\
\hline 17 & 0.000000 & 0.000000 & 206,680 & 0.00 & 0.0001332 & 0.000133 & 27.53 & " \\
\hline 18 & 0.000000 & 0.000000 & 206,680 & 0.00 & \(-0.0002158\) & 0.000216 & 44.61 & /1 \\
\hline - & 0.000000 & 0.000000 & 175,678 & 0.00 & -0.0002158 & 0.000216 & 37.91 & Ac5 \\
\hline 19 & 0.000000 & 0.000000 & 175,678 & 0.00 & \(-0.0005540\) & 0.000554 & 97.32 & " \\
\hline - & 0.000000 & 0.000000 & 106,785 & 0.00 & -0.0005540 & 0.000554 & 59.16 & Ac6 \\
\hline 20 & 0.000000 & 0.000000 & 106,785 & 0.00 & -0.0008526 & 0.000853 & 91.05 & " \\
\hline 21 & 0.000000 & 0.000000 & 106,785 & 0.00 & -0.0010996 & 0.001100 & 117.42 & " \\
\hline
\end{tabular}

Self weight and so on
Vertical load applying into upper side of manhole Earth covering
\(\mathrm{P}=19.0 \times 2.300 \times 32.170 \quad=1,405.83 \mathrm{kN}\)

Empty weight
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Section 1 & \(\mathrm{w}_{1}\) & \(=24.5\) & \(x\) & 32.170 & \(=\) & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 2 & \(\mathrm{w}_{2}\) & \(=24.5\) & \(\times\) & 12.535 & = & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 3 & \(\mathrm{w}_{3}\) & \(=24.5\) & \(\times\) & 32.170 & = & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 4 & \(\mathrm{w}_{4}\) & \(=24.5\) & \(x\) & 12.535 & = & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 5 & \(\mathrm{w}_{5}\) & \(=24.5\) & \(\times\) & 32.170 & = & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 6 & \(\mathrm{w}_{6}\) & \(=24.5\) & \(x\) & 12.535 & \(=\) & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 7 & \(\mathrm{w}_{7}\) & \(=24.5\) & \(\times\) & 32.170 & = & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 8 & \(\mathrm{w}_{8}\) & \(=24.5\) & \(\times\) & 12.535 & \(=\) & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 9 & \(\mathrm{w}_{9}\) & \(=24.5\) & \(\times\) & 32.170 & \(=\) & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 10 & \(\mathrm{w}_{10}\) & \(=24.5\) & \(\times\) & 12.535 & \(=\) & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 11 & \(\mathrm{w}_{11}\) & \(=24.5\) & \(x\) & 32.170 & \(=\) & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 12 & \(\mathrm{w}_{12}\) & \(=24.5\) & \(\times\) & 12.535 & \(=\) & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 13 & \(\mathrm{w}_{13}\) & \(=24.5\) & \(\times\) & 32.170 & = & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 14 & \(\mathrm{W}_{14}\) & \(=24.5\) & \(\times\) & 12.535 & \(=\) & \(307.11 \mathrm{kN} / \mathrm{m}\) \\
\hline Section 15 & \(\mathrm{W}_{15}\) & \(=24.5\) & \(\times\) & 32.170 & \(=\) & \(788.16 \mathrm{kN} / \mathrm{m}\) \\
\hline
\end{tabular}
3). Calculation for stress

Diagram of sectional force, Mz


Diagram of sectional force, Sy


Diagram of sectional force, Nx

4). Calculation for section

Calculation for stress intensity
\begin{tabular}{|c|c|}
\hline Form/Name Title & [Circular shape ] \\
\hline  & \begin{tabular}{l}
3. 200 \\
2. 500 \(\qquad\)
\end{tabular} \\
\hline \[
\begin{array}{lll}
\because \text { Secticnat } & \mathrm{M} & \mathrm{kN}, \mathrm{~m} \\
\text { force } & \mathrm{N} & \mathrm{kN} \\
& \mathrm{~S} & \mathrm{kN}
\end{array}
\] & \[
\begin{array}{r}
7606.680 \\
6321.500 \\
795.030
\end{array}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { the amours } \\
& \text { ofterinocice } \\
& \text { ome }
\end{aligned}
\]} & \[
\binom{0.1000101 .360}{80.000-\mathrm{D} 13}
\] \\
\hline & \[
\binom{0.6000101 .360}{80.000-\mathrm{D} 33}
\] \\
\hline & 202. 720 \\
\hline \begin{tabular}{l}
istress \(\quad \sigma c \sigma c a\) \\
1 Intensity \(\sigma s, \sigma s a\) \\
\(\mathrm{N} / \mathrm{mm}_{2} \quad \sigma s^{\prime} \sigma \mathrm{sa}\)
\end{tabular} & \[
\begin{array}{rrr}
1.0 & <12.00 \\
-0.7 & <300.00 \\
-14.1 & <300.00
\end{array}
\] \\
\hline Sh kN & 795. 030 \\
\hline Sh'. kN & 0.000 \\
\hline Average m \(\mathrm{N} / \mathrm{mm} \mathrm{m}^{2}\) & 0.12 < 0.328 \\
\hline Average amax \(\mathrm{N} / \mathrm{mm} 2\) & 3.200 \\
\hline Suc kN & \(21446.9>\quad 795.0\) \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
=\mathrm{a}: \begin{array}{cc}
\text { Correttion } \\
\text { coeficient }
\end{array} & \mathrm{Ce} \\
& \mathrm{Cpt} \\
& \mathrm{CN} \\
& \mathrm{Cdc}
\end{aligned}
\]} & 0. 592 \\
\hline & 0.802 \\
\hline & 2.000 \\
\hline & 1. 000 \\
\hline \(\tau \max \quad \mathrm{N} / \operatorname{mm} 2\) & 0.13 \\
\hline \(\sigma x \quad N / m m^{2}\) & 0.5 \\
\hline \(\sigma\) I \(\quad \mathrm{N} / \mathrm{mmz}\) & 0.0 \\
\hline Vo(m) or \(j\) & 3. 2000 \\
\hline Asrea cm2 & \\
\hline Am (a) cm2 & ----- \\
\hline a & 100.0 \\
\hline \(\mathrm{Aw} \quad \mathrm{cm} 2\) & 0.000 \\
\hline 0 Degree & 90.0 \\
\hline Gs \(\quad \mathrm{N} / \mathrm{mm}^{2}\) & \(0.0<300.0\) \\
\hline Sc kN & 2196.781 \\
\hline Ss kN & 0.000 \\
\hline Sus kiv & \(2196.8>795.0\) \\
\hline Nentralais \(\mathrm{x} \quad \mathrm{m}\) & 6. 6253961 \\
\hline Gatio of Young's modulus & \(\mathrm{n}=15.00\) \\
\hline
\end{tabular}
\(X\), Vo shows distance from extreme compression fiber

6-4. Calculation for horizontal direction
Calculation of load in order to calulate horizontal direction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Panel point \\
Numb er
\end{tabular}} & Elevation & Depth & Earth pressure at rest & Water pressure & \multicolumn{2}{|l|}{Earth pressure by displacement difference} & Total & \multirow[t]{2}{*}{Location} \\
\hline & (m) & (m) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & kN & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{kN} / \mathrm{m}^{2}\) & \\
\hline - & 0.730 & 0.000 & 0.00 & 0.00 & - & - & - & Ground level \\
\hline 1 & \(-1.570\) & 2.300 & 18.40 & 0.00 & 180.89 & 35.33 & 53.73 & Upper side of upper slah \\
\hline - & -1.760 & 2.490 & 19.92 & 0.00 & - & - & - & Groundw ater level \\
\hline 2 & -1.970 & 2.700 & 20.66 & 2.10 & 179.19 & 35.00 & 57.75 & onaersur face of upper clah \\
\hline 3 & -3.270 & 4.000 & 25.21 & 15.10 & 171.12 & 33.42 & 73.73 & Change point of stratum \\
\hline - & -3.270 & 4.000 & 25.21 & 15.10 & 85.56 & 16.71 & 57.02 & - \\
\hline 4 & -3.970 & 4.700 & 27.66 & 22.10 & 82.61 & 16.13 & 65.89 & Upper
side of
medium
slab \\
\hline 5 & -4.270 & 5.000 & 28.71 & 25.10 & 81.18 & 15.86 & 69.66 & Undersur face of mnnediu m slab \\
\hline 6 & -7.570 & 8.300 & 40.26 & 58.10 & 59.80 & 11.68 & 110.03 & Upper side of medium slab \\
\hline 7 & -7.870 & 8.600 & 41.31 & 61.10 & 57.28 & 11.19 & 113.59 & Undersur face of medium slab \\
\hline 8 & -11.170 & 11.900 & 52.86 & 94.10 & 26.75 & 5.22 & 152.18 & Upper side of medium slab \\
\hline 9 & -11.470 & 12.200 & 53.91 & 97.10 & 23.70 & 4.63 & 155.63 & Undersur face of medium \\
\hline 10 & -12.270 & 13.000 & 56.71 & 105.10 & 15.41 & 3.01 & 164.82 & Change point of stratum \\
\hline - & -12.270 & 13.000 & 56.71 & 105.10 & 138.71 & 27.09 & 188.90 & - \\
\hline 11 & -14.270 & 15.000 & 63.71 & 125.10 & 53.22 & 10.39 & 199.20 & Foundati on bed level \\
\hline - & -14.270 & 15.000 & 63.71 & 125.10 & 354.77 & 69.29 & 258.10 & - \\
\hline 12 & -14.770 & 15.500 & 63.71 & 130.10 & 332.16 & 64.87 & 258.68 & Upper
side of
medium
slab \\
\hline 13 & -15.070 & 15.800 & 63.71 & 133.10 & 318.71 & 62.25 & 259.05 & Undersur face of medjum slab \\
\hline 14 & -18.370 & 19.100 & 63.71 & 166.10 & 177.99 & 34.76 & 264.57 & Upper side of medium slab \\
\hline 15 & -18.670 & 19.400 & 63.71 & 169.10 & 165.85 & 32.39 & 265.20 & Undersur ace of medium slab \\
\hline 16 & -21.970 & 22.700 & 63.71 & 202.10 & 38.60 & 7.54 & 273.34 & \begin{tabular}{c} 
Upper \\
side of \\
medium \\
slab \\
\hline
\end{tabular} \\
\hline 17 & -22.270 & 23.000 & 63.71 & 205.10 & 27.53 & 5.38 & 274.18 & Undersur face of medium slab \\
\hline 18 & -24.270 & 25.000 & 63.71 & 225.10 & 44.61 & 8.71 & 297.52 & Change point of stratum \\
\hline - & -24.270 & 25.000 & 63.71 & 225.10 & 37.91 & 7.41 & 296.21 & - \\
\hline 19 & -26.270 & 27.000 & 63.71 & 245.10 & 97.32 & 19.01 & 327.81 & Change point of stratum \\
\hline - & -26.270 & 27.000 & 63.71 & 245.10 & 59.16 & 11.55 & 320.36 & - \\
\hline 20 & -28.070 & 28.800 & 63.71 & 263.10 & 91.05 & 17.78 & 344.59 & Upper side of bottom slab \\
\hline 21 & -29.570 & 30.300 & 63.71 & 278.10 & 117.42 & 22.93 & 364.74 & Undersur face of bottom slab \\
\hline
\end{tabular}
※ Location with earth pressure by displacement distance maximum is set as target.

Calculation in panel point 11
1). Calculation for load

Earth pressure at rest
\(\mathrm{p}_{\mathrm{a}}\)
Water pressure
\(\mathrm{p}_{\mathrm{w}}\)
\(\mathrm{p}=188.81 \mathrm{kN} / \mathrm{m}^{2}\)
Response displacement earth pressure
\(\mathrm{p}_{\mathrm{ae}}\)
2). Calculation for stress

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Inner \\
diameter
\end{tabular} & \begin{tabular}{c} 
Thickness of \\
member
\end{tabular} & \begin{tabular}{c} 
Diameter of \\
member axis
\end{tabular} & \begin{tabular}{c} 
Radius of \\
member axis
\end{tabular} \\
\hline m & m & m & m \\
\hline 5.000 & 0.700 & 5.700 & 2.850 \\
\hline
\end{tabular}

Calculation for bending moment
\begin{tabular}{rlrlllll}
\(\mathrm{M}_{\mathrm{A}}\) & \(=\) & 0.163 & \(\times 69.29\) & \(\times 2.850\) & 2 & & \(=91.74 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) \\
\(\mathrm{M}_{\mathrm{B}}\) & \(=-0.125\) & \(\times\) & 69.29 & \(\times 2.850\) & 2 & & \(=-70.35 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\) \\
\(\mathrm{M}_{\mathrm{C}}\) & \(=\) & 0.087 & \(\times 69.29\) & \(\times 2.850\) & 2 & & \(=48.97 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}\)
\end{tabular}

Calculation for axial force
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{N}_{\text {A }}\) & ( & 0.212 & \(\times\) & 69.29 & + & 188.81 & ) \(\times\) & 2.850 & = & 579. & /m \\
\hline \(\mathrm{N}_{\mathrm{B}}\) & ( & 1.000 & \(\times\) & 69.29 & + & 188.81 & ) \(\times\) & 2.850 & & 735.57 & \(\mathrm{N} / \mathrm{m}\) \\
\hline \(\mathrm{N}_{\mathrm{C}}\) & ( - & 0.212 & \(\times\) & 69.29 & + & 188.81 & ) \(\times\) & 2.850 & = & 496.23 & \(\mathrm{k} / \mathrm{m}\) \\
\hline
\end{tabular}

There is no occurrence of shear force.
3). Checking section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{A Point} & \multicolumn{2}{|r|}{B point} & \multicolumn{2}{|c|}{C point} & \\
\hline & & \multicolumn{2}{|l|}{Inner surface} & \multicolumn{2}{|l|}{Exterior surface} & \multicolumn{2}{|l|}{Inner surface} & \\
\hline M & kN•m & & 91.74 & & 70.35 & & 48.97 & \\
\hline N & kN & & 579.96 & & 735.57 & & 496.23 & \\
\hline b & mm & & 1000 & & 1000 & & 1000 & \\
\hline h & mm & & 700 & & 700 & & 700 & \\
\hline d & mm & & 600 & & 600 & & 600 & \\
\hline d' & mm & & 100 & & 100 & & 100 & \\
\hline \multirow[t]{2}{*}{As} & \multirow[t]{2}{*}{\(\mathrm{cm}^{2}\)} & D 22 & @ 250 & D \(\quad 22\) & @ 250 & D \(\quad 22\) & @ 250 & \\
\hline & & & 15.484 & \multicolumn{2}{|r|}{15.484} & \multicolumn{2}{|r|}{15.484} & \\
\hline \multirow[b]{2}{*}{As'} & \multirow[b]{2}{*}{\(\mathrm{cm}^{2}\)} & D & @ & D & @ & D & @ & \\
\hline & & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} & \multicolumn{2}{|r|}{0.000} & \\
\hline p & & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} & \multicolumn{2}{|r|}{0.00258} & \\
\hline k & & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} & \multicolumn{2}{|r|}{0.242} & \\
\hline j & & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} & \multicolumn{2}{|r|}{0.919} & \\
\hline \(\sigma \mathrm{c}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 2.0 & < 8.0 & 1.8 & < 8.0 & 1.3 & < 8.0 & \\
\hline \(\sigma \mathrm{s}\) & \(\mathrm{N} / \mathrm{mm}^{2}\) & 1.1 & < 300 & -24.0 & < 300 & -16.4 & < 300 & \\
\hline \multicolumn{2}{|r|}{n} & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|r|}{15} & \multicolumn{3}{|r|}{15} \\
\hline
\end{tabular}```

