ROADS AND HIGHWAYS DEPARTMENT MINISTRY OF ROAD TRANSPORTATION AND BRIDGES THE PEOPLE'S REPUBLIC OF BANGLADESH

PREPARATORY SURVEY ON WESTERN BANGLADESH BRIDGES IMPROVEMENT PROJECT

FINAL REPORT VOLUME 1: MAIN REPORT

APRIL 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

ORIENTAL CONSULTANTS GLOBAL CO., LTD. KATAHIRA & ENGINEERS INTERNATIONAL

ROADS AND HIGHWAYS DEPARTMENT MINISTRY OF ROAD TRANSPORTATION AND BRIDGES THE PEOPLE'S REPUBLIC OF BANGLADESH

PREPARATORY SURVEY ON WESTERN BANGLADESH BRIDGES IMPROVEMENT PROJECT

FINAL REPORT VOLUME 1: MAIN REPORT

APRIL 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

ORIENTAL CONSULTANTS GLOBAL CO., LTD. KATAHIRA & ENGINEERS INTERNATIONAL

The exchange rates applied in this study are; USD 1.0= BDT 77.9 = JPY 119.0 BDT: Bangladesh TAKA

- ■Language: Bengali
- ■Religion: Muslim (89.7%), Hinduism (9.2%), Buddhism (0.7%), Christianity (0.3%)
- ■Major industry: Clothing goods, Sewing
- ■GDP: USD 766.5 (2012)
- ■Price Escalation: 7.97% (2012)
- Economic growth: 6.3%(2012)

(Petroleum products, Fiber, Chemical product, Mechanical component)

- ■Exchange rate: USD1=BDT 77.5(2012)
- ODA Performance of GOJ(2011)
 (1)Government loans : JPY 59.97 billion
 (2)Grant aid: : JPY 12.67billion
 (3)Technical assistance: : JPY 29.04billion

Veiw of Steel-I Girder Bridge

Veiw of PC-I Girder Bridge

Outline of the Project

	Itline of the Project
1.	Country: The People'S Republic of Bangladesh
	Project Name: Preparatory Survey on Western Bangladesh Bridges Improvement Project
	Execution Agency: Roads and Highways Department under Ministry of Road Transport and Bridges
	Survey Objectives: The Objective of the Survey is to obtain all the data and information required for appraisal of the Project as Japanese ODA loan project, such as defining the project objectives and preparing project summary, project cost, implementation structure, implementation schedule, implementation method (procurement, construction), implementation plan, operation and maintenance plan, environment and social considerations, etc.
5.	Survey Contents: [Stage 1] Affirmation of the Project and Selection of Project Bridges Phase 1: Understanding of Basic Information, Study on Framework of the Project, and Selection of Candidate Bridges [Stage 2] Study on Main Content of the Project
	Phase 2: Site Survey and Determination of Bridge Type Phase 3: Preliminary Design Phase 4: Selection of Project Bridges, Preparation for Appraisal of Japanese ODA Loan
	[Stage 3] Reporting and Support for JICA Appraisal Mission Phase 5: Reporting and Support for JICA Appraisal Mission
	 Conclusions and Recommendations: Conclusions The Project is technically and economically feasible and environmentally sound. Hence, it is justified to implement the Project for national and people's benefits. The Project is comprised of 60 small- and middle-size bridges in Western Bangladesh and the EZ Bridge and Road.
(2)	 <u>Confidential</u> Three types of bridges are constructed in the Project, namely, PC-I girder bridge, steel-I girder bridge, and steel-box girder bridge. Weathering steel is applied for steel bridges. Recommendations
(2)	 Asphalt pavement was selected as a general pavement type in the preliminary design. Adoption of other pavement types such as concrete pavement or stone mastic asphalt (SMA) shall be considered, especially for some sections of the EZ approach road in the detailed design, since a number of heavy vehicles will utilize the EZ Bridge and Road.
	 The EZ Bridge and Road will be connected to the existing regional road (R301). The improvement of R301 shall be considered during detailed design stage, since R301 is very narrow and damaged in some sections. R301 may not provide required capacity for increased traffic volume by the construction of the EZ Bridge and Road.
	 In this Preparatory Survey, the recommendation for EZ Bridge's foundation type in the river is Cast-in-Place Concrete Pile (φ1500, L=54m, n=16). However, it shall be finally determined by confirming the supporting layer at each pier position based on the geotechnical investigations during the detailed design stage. 60 bridges are planned to be constructed at 60 river/water crossings in Western
	 Bangladesh. Construction of box culverts shall be considered for some locations, such as pond crossings not having water flow, as a cost reduction measure in the detailed design. Safety measures such as providing road marking, road hump, guardrails, etc. shall be
	 considered in the detailed design. Specifically, the countermeasure for ship collisions to piers of the EZ Bridge shall be important. Detailed surveys for public utilities such as waterworks, telephone lines, power lines, etc. shall be conducted in the detailed design. The bridge and road design shall be
	 RHD shall undertake the tasks for the EIA and ARP during the entire project period in order to implement the Project successfully.

PREPARATORY SURVEY ON WESTERN BANGLADESH BRIDGES IMPROVEMENT PROJECT EXECUTIVE SUMMARY

1. INTRODUCTION

1.1 Background

Aiming at becoming a middle income country by 2021, the People's Republic of Bangladesh (hereinafter referred to as Bangladesh) is experiencing robust economic growth while maintaining a GDP growth rate of around 6% for several years. With its continued economic development, cargo transportation volume of the country increased eightfold in 30 years from 1975 to 2005, and in recent years transportation volume of both passengers and cargo is increasing at an annual rate of 6 - 7 %. To meet the increasing demands for domestic transportation, the Government of Bangladesh (hereinafter referred to as GOB) has been actively developing its road network. As a result, in 2005, road transport accounted for around 80% of the domestic transportation, surpassing inland water transport and railway transport. The Road and Highways Department (hereinafter referred to as RHD) is responsible for the construction and the maintenance of the major road and bridge network of Bangladesh.

Most of the approximately 4,500 bridges operated and maintained by RHD have been found to be aging and deteriorated. 1,500 of these bridges are said to be unsafe, since they have significant structural damages.

In addition, another 1,000 bridges are bailey bridges, which are prefabricated steel truss bridges for temporary purpose and not suitable for road bridges due to lack of capability and safety function. Most of these bailey bridges under RHD's control are in unsafe condition; the bridges have already become deteriorated and damaged, and in the some serious cases, bridges have already collapsed.

In the 6th Five-Year Plan of Bangladesh (between F.Y. 2011/12 and 2015/16, hereinafter referred to as 6FYP), it was declared that, in the highway sector, modernized and efficient road transportation systems would take a vital role in accomplishing the 6FYP as well as Vision 2021, the medium-term target of the nation. Rebuilding of the existing bridges, the total length of which reaches around 10,000 km, was listed as one of the major targets in the 6FYP. In National Land Transport Policy in 2004 (hereinafter referred to as NLTP), implementing safety measures to the entire medium and small bridges in the country was featured as one of the major policies. The Road Master Plan in 2009, designed based on

NLTP, states that one of the major goals is rebuilding all bailey bridges as permanent structures.

Assisting RHD in improving its road bridges matches the aid policies of the Government of Japan (hereinafter referred to as GOJ). Also, Japan International Cooperation Agency (hereinafter referred to as JICA) considers the nation-wide development of transport and traffic system to be one of the important issues for the country. In the Country Assistance Policy for Bangladesh, drawn up in June 2012, the GOJ considered the development of infrastructures for traffic and transport to be one of the major goals to enhance efficiency in human and cargo transportation in Bangladesh.

1.2 Objective of the Survey

The Objective of the Survey is to obtain all the data and information required for appraisal of the Project as Japanese ODA loan project, such as defining the project objectives and preparing project summary, project cost, implementation structure, implementation schedule, implementation method (procurement, construction), implementation plan, operation and maintenance plan, environment and social considerations, etc.

2. NECESSITY OF THE PROJECT

The implementation of the Project (i.e. the WBBIP) is important and necessary from the following points of view.

(1) Conformity with Upper Level Plan

Upper plans or programs such as Vision 2021, 6th Five Years Plan, National Land Transport Policy and Road Master Plan state that the development and improvement of the road network and bridges are important and necessary to encourage the economic growth in Bangladesh.

In Western Bangladesh, there are many bridges which are severely damaged and do not have the required carriageway width (at least 7.3m). These bridges should be improved in order to provide smooth traffic flow and ensure road safety.

(2) Not Enough Projects by Other Donors

Some bridges will be improved using funds from other donors such as Chinese government and GOB's own programs, PMP and ADP. A study to improve the road network is ongoing under SASEC financed by ADB.

However, these projects are not enough to develop the efficient road network or to provide safety for the bridges in Western Bangladesh, since approximately 700 bridges are categorized as C (major element damage) or D (major structural damage).

(3) Securing Good Traffic Condition of Asian Highway

As stated in Vision 2021, it is very important to secure the good traffic conditions in the Asian Highway network which connects neighboring countries with Bangladesh, in order to achieve the ultimate goal of becoming a middle-income country.

However, there are many damaged or narrow bridges in the Asian Highway network in Western Bangladesh. These bridges tend to act as bottlenecks in the network, and thus should be improved.

(4) Securing Good Traffic Condition of Important Corridor

There are seven corridors with India in Western Bangladesh, including one railway and six highways. As India is major trading country for Bangladesh, it is very important to secure good traffic conditions in these corridors

There are three EPZs in Western Bangladesh. In addition, GOB has decided to establish thirty economic zones through the Nation, suspending the development of new EPZs, since EPZs have several issues such as full capacity and little impact on domestic industries. In Western Bangladesh, there are two short-listed candidate SEZs.

There are many damaged and/or narrow bridges on corridors with India and EPZs, SEZs in Western Bangladesh. These bridges act as bottlenecks in the network. Improvement of the bridges in the Project shall improve traffic conditions in these corridors, which in turn will contribute to the economic growth of Bangladesh.

(5) Damage Progression of the Bridge

In the past, bridge condition surveys for all bridges managed by RHD were carried out two times; first one was carried out when Bridge Maintenance Management System (BMMS) was established in 2006, second one was carried out in 2014 as a part of Eastern Bangladesh Bridge Improvement Project (EBBIP).

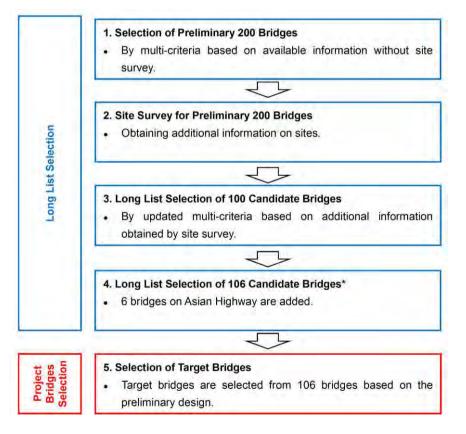
In order to assess the need of repair, rehabilitation and reconstruction of bridges, the existing condition of the classified structures is divided into four categories:

- Category A: Good
- Category B: Minor Element Damage
- Category C: Major Element Damage
- Category D: Major Structural Damage

As result of comparing these data, number of bridges categorized B, C and D has increased, although that of A has decreased from 2004-2006 (the year of the BMMS survey), to 2013 (the year of the EBBIP). This result implies the importance of the necessity of improvement of

the bridges which are seriously damaged.

(6) Increase of Traffic Volume


In the 10 years from 2004 to 2014, traffic volume has increased at a rate of 6.25% p.a., 5.62% p.a. and 5.15% p.a. for national roads, regional roads and Zilla roads, respectively.

Road transport is becoming increasingly important among all transport modes. It is very important to provide good traffic conditions in the road network, especially of National Road.

3. SELECTION OF PROJECT BRIDGES

3.1 Selection Approach

Project bridges are selected from approximately 1,700 bridges operated and maintained by RHD in Western Bangladesh. Selection procedure is divided into 2 steps, namely "Long List Selection of Candidate Bridges" and "Selection of Project Bridges", as shown in following figure.

 $^{\ast}\,$ 6 bridges were added to "Long List of 100 Candidate Bridges" based on the discussion with MORTB as well as RHD.

Source: JICA Survey Team

Figure S 3.1 Procedure for Project Bridges Selection

3.2 Selection of Preliminary 200 Bridges

(1) Removal from Candidate List

From approximately 1,700 candidate bridges in Western Bangladesh, bridges fitting the following criteria were dropped from the candidate list.

- Bridges whose length is less than 20m
- Box culverts (not bridge)
- Bridges to be constructed under funding from other external donors such as ADB, WB, etc., or under funding from GOB itself
- Bridges located in national parks, wildlife sanctuaries and world heritage sites

As a result, the candidate list was narrowed down to approximately 1,000 bridges.

(2) Multi-criteria

In order to select 200 bridges, remaining 1,000 are evaluated by multi-criteria. Multi-criteria are shown in following table.

Ite	m		Weight	Point		Criteria			
1. Recommendation			30	4	Recommende	d bridges by RHD			
T. Recommendation	by RHD		50	0	Other bridges				
	2.1 Tra	iffic		4	on National ro				
	volu	ume on	50	2	on Regional ro	bad			
	the	route		0	on Zilla road				
					Burimari	N5,N,405,N506,N509			
			N5,N405						
2. Bridge on the important route	portant route	4	Hili	N5,N405,R550,R585,Z5503,Z5 507,Z5509,Z5854,Z5855,Z585 6					
	Ind		20	т	Sonamasjid	N6,N507,R680,Z6801,N405			
	india			Benapole	N7,N8(To Madaripur), N702,N706,N804				
					Bhomra	N7,N8,N702,N804,R755,R760, Z7062			
				0	Other roads				
	3.1 Co	Corridor to		4	Sirajgonj	N405,R450,R451			
		ned SEZs	5	4	Mongla	N7,N8,N702,N709			
	pia			0	Other roads				
		unial a u ta			Uttra	N5,N6,N7,N405,N502,N704,R5 70			
3. Impact on	exis	rridor to sting	5	4	Ishwardi	N6,N405,N507,R680,N704,N7 05,Z6801			
business activity	EP	ZS			Mongla	N7,N8,N702,N709,R850,R856			
				0	Other road				
	3.3 Oth	ner			Rangpur	N5(To Rangpur),N405			
		eign siness	10	4	Ishwardi	N6(To Baraigram), N405,N507N704,N705			
	acti	ivities		0	Other Roads				
4. Necessity of	4.1 Pop	nulation	10	4	≥2,000,000				
community	4.1 P0	pulation	10	2	2,000,000>Population≥1,000,000				

Table S 3.1 Multi-criteria for Selecting Preliminary 200 Bridges

activity			0	1,000,000
			4	≥800mil BDT
	4.2 GDP	10	2	800mil BDT>GDP≥400mil BDT
			0	400mil BDT
	5.1 EBBIP		4	Grade-D
5. Degree of	damage	50	2	Grade-C
damage and	level		0	Grade-A,B
structural deficit	5.2 Bridge type	20	4	Bailey bridge (Temporary bridge)
	5.2 Bridge type	20	0	Other bridge type
				N: Carriageway<6.2m
			4	R: Carriageway<5.5m
				Z: Carriageway<3.7m
6. Lack of traffic lane	e	40		N: 6.2m≤Carriageway<7.3m
			2	R: 5.5m≤Carriageway<7.3m
				Z: 3.7m≤Carriageway<7.3m
			0	Carriageway≥7.3
	Total	score		
	=1,000			

Note: Bridges having all of "not recommended by RHD (Item 1)", "Grade-A, B of EBBIP damage level (Item 5.1)", "not bailey bridge (Item 5.2)" and "having more than 7.3 m of carriage way (Item 6)" are dropped from the candidate list.

Source: JICA Survey Team

(3) Site Survey for Preliminary 200 Bridges

Site surveys were carried out for the selected 200 bridges in order to obtain additional information. Using this information, EBBIP damage level and width were re-evaluated. In addition that, bridges requiring the resettlement of more than 200 affected persons (APs) would be dropped from the candidate list.

(4) Long List Selection of 106 Candidate Bridges

The JICA Survey Team discussed the 100 bridge candidate bridges with RHD in a meeting held on January 26th, 2014. In the meeting, additional chief engineers (ACEs) from five zones requested that some bridges should be deleted from the list, and that some should be added to the list.

In addition, RHD requested the inclusion of the bridges on Asian Highways with EBBIP damage levels of C or D. It was agreed in further discussion with JICA, RHD and JICA Survey Team that 6 bridges on Asian Highways would be included as candidate project bridges in addition to the previously selected 100 bridges. Therefore, 106 bridges were ultimately selected.

3.3 Selection of Project Bridges

Project bridges are selected through screening of 106 bridges based on the preliminary design, cost estimates and project effect evaluation. Selection of Project bridges will be discussed in "15.1 Selection of Project Bridges".

4. TRAFFIC DEMAND FORECAST

Traffic demand forecast is conducted by following procedure.

- i) Estimating the forecast future traffic demand using growth rate of traffic indicators.
- ii) Considering the traffic demand induced by large scale developments in western Bangladesh.
- (1) Future Traffic Growth

Past traffic growth rates were applied as traffic indicators in this study. The traffic growth was calculated based on the results attained from preparatory surveys and other surveys conducted by RHD from 2004 to 2011, under the assumption that the traffic growth rate will remain fairly constant until 2031. The annual traffic growth rates in western Bangladesh were found to be 6.25% for national roads, 5.62% for regional roads and 5.15% for zilla roads.

(2) Adjustment in Consideration of Large Scale Development

Two large-scale development projects, the construction of Padma Bridge and the improvement of AH1 (part of Road Master Plan 2009), are expected to influence traffic demand, so these were both considered in calculations of the traffic demand forecast.

(3) Result of Traffic Demand Forecast in 2031

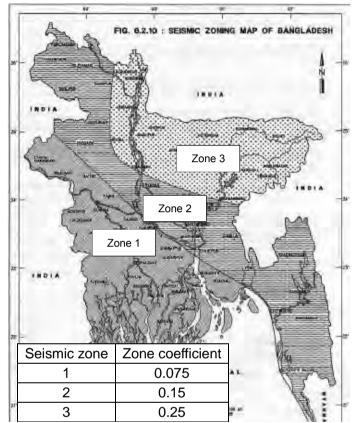
The estimated peak hourly traffic volume was used in the determination of the required number of lanes. The peak rate was calculated to be 8% for national roads and 10% for both regional roads and zilla roads based on RHD road standards. It was predicated that, Asian Highways and national roads connecting to bridges crossing Jamuna river and Padma river will have high peak traffic volume due to the concentration of vehicles on these bridge.

(4) Number of Lane in the Project

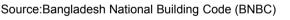
In the Project, the bridges including those that require more than 4 lanes based on the traffic demand forecast, will be constructed as 2-lane bridges based on the following considerations:

- As many bridges as possible should be constructed on a limited budget.
- Even if 4-lane/6-lane bridges are constructed, only 2 lanes will be used since the approach roads (adjacent embankment section) only have 2 lanes.
- Even if 4-lane/6-lane bridges are constructed in anticipation of widening of the approach roads, this widening may not occur soon. Deterioration of the bridge will progress even if all lanes are not used, meaning funds will have been wasted.

However, in the meeting between JICA, MORTB, RHD and JICA Survey Team held on April 27, 2014, it was determined that 5 bridges on Asian Highway 1 (AH1) will be constructed with 4 lanes in conformity with a future 4-lane widening plan


5. DETERMINATION OF BRIDGE TYPE

(1) Methodology of Bridge Type Decision


This Project includes the construction of small and mid-sized bridges, but no large bridges.

For small bridges, PC-I girder is widely recognized as the most suitable and economical bridge type in almost all site conditions. For mid-sized bridges, the most appropriate bridge type shall be selected upon comparison of multiple bridge type candidates.

For bridge design, all bridges are classified into 2 groups: Small sized bridge (Group A) and Mid-sized bridge (Group B). Earthquake streng in consideration of bridge length and height as well as seismic coefficient, which is different for each zone.

Group A is defined as follows:

Figure S 5.1 Seismic Zoning Map (BNBC)

- North zone (Z = 0.15 or 0.25):
- South zone (Z = 0.075):

length < 150 m and height < 15 m

length < 100 m and height < 10 m

Group B is defined as bridges falling outside of the above definition.

(2) Bridge Type for Group A

Group A Bridges are shorter and lower. Accordingly, PC-I girder bridges are to be used for Group A Bridges.

(3) Bridge Type for Group B

Group B bridges (all of which are in the northern zone) are longer and higher. As the result of the comparison among PC-BOX girder, Steel-I girder and Weathering Steel-I girder, Weathering Steel-I girder bridges are recommended as the most appropriate bridge type for Group B bridges from following points.

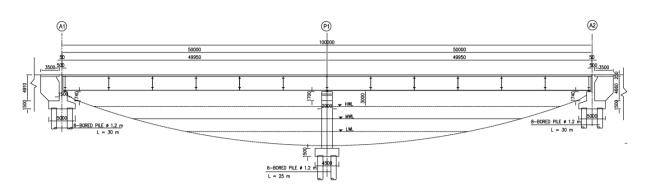
- Advantage to earthquake resistance
- Short construction period
- Easy maintenance
- No specific environmental impact
- Fair initial and life cycle costs
- Good technical transfer

6. PRELIMINARY DESIGN

6.1 Design Criteria for Roads

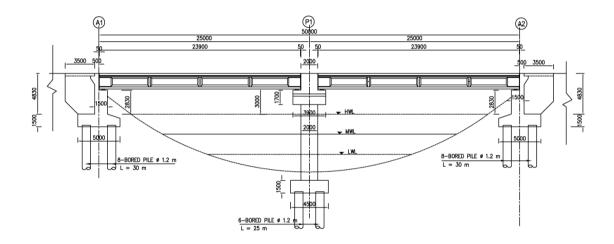
- Design speeds for national road, regional road and zilla road are 80km/h, 65km/h and 50km/h respectively.
- Priority standard used for road design is "Geometric Design Standards for RHD", Reference standard is AASHTO Standard.
- For national road, new bridge is constructed next to existing bridge in consideration of future widening. For regional road and zilla road, new bridge is constructed at existing bridge location (replacement existing bridge) in consideration of initial coat.

6.2 Design Criteria for Bridges


As mentioned in Chapter-5, the bridge type (super structure) is determined as follows.

```
Northern zone (55 bridges): 38 small PC-I girder bridges, and
```

17 mid-sized Steel-I (weathering steel) girder bridges


Southern zone (50 bridges): All small PC-I girder bridges

The bridge span length is standardized with some series of spans to apply easily to all bridge locations. Some examples of side view are shown in following figures.

Source: JICA Survey Team

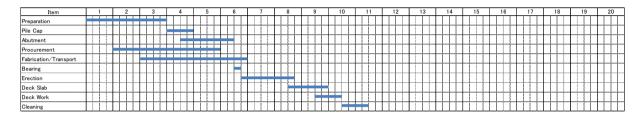
Figure S 6.1 Steel-I Girder (Continuous Girder)

Source: JICA Survey Team

Figure S 6.2 PC-I Girder (Chaired Single Span Girders)

A summary of preliminary design of superstructure and substructure for project bridges is shown in Table S 10.1.

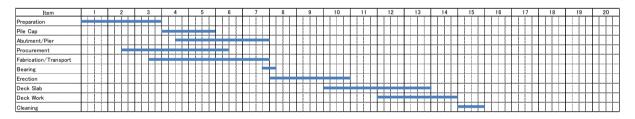
7. APPLICATION OF MODERN TECHNOLOGIES


Weathering steel is to be adopted for all mid-sized bridges in this Project. Weathering steel girders have the advantages, which are described in Cap5, over PC box girders, (which are generally adopted for mid-sized bridges). Weathering steel is a high-strength steel that resists corrosion. It resists the corrosive effects of rain, snow, ice, fog, and other meteorological conditions by forming adherent protective rust over the metal. Weathering steel has a low corrosion rate, and bridges fabricated from unpainted weathering steel can achieve long design life with only normal maintenance. In order to confirm whether weathering steel can be applied in Bangladesh, exposure tests and airborne salt tests are carried out in the Survey.

As a result of airborne salt tests as well as exposure tests, it is concluded that weathering steel bridges can be adopted for all mid-sized bridges to be constructed in northern Bangladesh as part of the WBBIP.

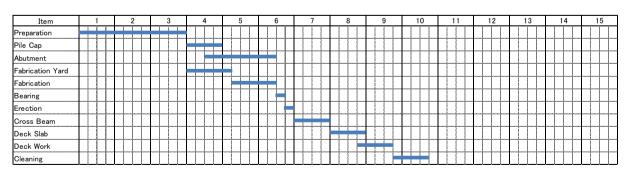
8. CONSTRUCTION PLAN

The typical construction schedules for each bridge type are planned. Some examples are shown in following Figure.


(1) Case-1: Steel-I Girder L=60m

Source: JICA Survey Team

Figure S 8.1 Construction Schedule for Steel-I Girders of Length 60m


(2) Case-2: Steel-I Girder L=180m (60m x 3)

Source: JICA Survey Team

Figure S 8.2 Construction Schedule for Steel-I Girders of Length 180m (60m x 3)

(3) Case-3: PC-I Girder L=40m

Source: JICA Survey Team

Figure S 8.3 Construction Schedule for PC-I Girders of Length 40m

(4) Case-4: PC-I Girder L=120m (40m x 3)

Item	1	T		2		3			4		Γ	5	;	T	(6		7			8			9		10			11		12		Τ	1	3	1	4	1	5	1
Preparation			1		1	1	1																							-	_									1
Pile Cap	Π		Τ								1				Τ		Τ			Τ				Τ		Τ			Τ	Ι						Τ				ĺ
Abutment/Pier	Ш			<u> </u>							T L			1	T											Ι				J]
Fabrication Yard	П	Τ	Τ	Π	Τ		-				Γ		Τ		Τ	Π	Τ			Τ	Γ	Π		Τ	Τ	Т	Π	Π	Т	Τ	Τ	Τ			Τ	Τ	Π			1
Fabrication	П	Τ	Τ	Π	Τ	Τ		Π	Т		T		-	T	1			1	-	Τ	Γ	Π		Τ	Τ	Т	Π	Π	Т	Τ	Τ	Τ		Π	Τ	Τ	Π		Π	1
Bearing	Π		Τ		Τ				Τ	Τ					Τ		Τ							1	Τ	Т			Τ	Ι		Τ				Τ				l
Erection	Π		Τ						Τ						Τ		Τ				1					Τ			Τ	Ι						Τ				ĺ
Cross Beam	Π		Τ	Π	Τ	Τ			Τ	Τ					Τ	Π	Τ			Τ	Γ		-	-	Τ	Т	Γ		Τ	Τ	Τ	Τ				Τ	Π			1
Deck Slab															Ι																					Τ]
Deck Work	Π																														T				T		Π			
Cleaning																							T									Ι								

Source: JICA Survey Team

Figure S 8.4 Construction Schedule for PC-I Girders of Length 120m (40m x 3)

9. OPERATION AND MAINTENANCE PLAN

In order to maintain sound conditions to sustain smooth and safe traffic flows, appropriate maintenance should be carried out. The maintenance methodology for weathering steel bridges, which are constructed in Bangladesh for first time, is described in this section.

For weathering steel bridges, it is necessary for weathering steel bridge to take care of chlorides and humidity that can adversely affect the stability of the protective rust and cause excessive corrosion. Surface contamination can be caused by accumulation of dirt, dust and bird droppings that absorb moisture (e.g. due to rain), and hence surfaces should be periodically cleaned. Furthermore, Removal of overhanging vegetation, cleaning/repair for drainage systems should be conducted. In addition to above routine and periodic maintenance, it is desirable to conduct to following:

- Visual Inspection (at least every two years)
- Monitoring by equipment (every six years)

10. COST ESTIMATES

In this chapter, civil costs are estimated for the project candidate bridges. Civil cost for 60 project bridges which are finally selected in "Cap. 14" is summarized in following table.

Table S 10.1 Design Summary and Civil Work Cost for 60 bridges in Western Bangladesh

Confidential

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges

11. PROJECT EFFECT

(1) Operation and Effect Indicators

Operation and effect indicators are selected based on data availability, validity and reliability in both the current year (taken as the baseline) and 2 years after project completion. Selected operation and effect indicators and example values are shown in following table.

	Indicater	SN	ZONE	Bri_ID	Bri_Name	2014	2023
Oper ation	Freight Traffic Volume (pcu/day)	8	Khulna	N7 020a	Karimpur Pridaa	5,826	8,907
Indic ators	Passenger Vehicle Traffic Volume (pcu/day)	0	Khuina	N7_039a	Karimpur Bridge	7,248	11,082
Effec	Travel Cost from Detour when Bridge Collapsed (1000 taka/year)	4	Rangpur	R545_115c	Mongle bari kuthibari Bridge	114,428	0
Indic	Reduction of Detour Days during Flooding (days)	5	Rangpur	N509_19a	Sharnamoti Bridge	60	0
ators	Unserviceability rate	13	Khulna	N7_141b	Buri Bhairab Bridge	24%	0

 Table S 11.1 Selection of Operation and Effect Indicators

Source: JICA Study team

(2) Economic Evaluation

A substantial portion of the benefits derived from construction of new bridges is the reduction of Vehicle Operation Cost (VOC) and Travel Time Cost (TTC) of passing vehicles, by reducing the probability of bridge collapse. In the case of collapse, vehicles crossing the bridge will be forced to take another bridge located along a detour route that normally requires a longer travel distance with worse surface conditions. The difference between VOC/TTC in regular routes and detour routes will be considered a benefit. The economic life is assumed to be 25 years (2021 - 2045).

In this section, economic evaluations for the 105 project candidate bridges are conducted. Economic evaluations for project bridges which finally selected are summarized in "14.4 Project Effect for 61 Bridges"

12. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

12.1 Environmental and Social Considerations

Various impacts of bridge construction during pre-construction, construction and operation stages are indicted in following table.

No.Items of ImpactBefore/ During Construction StageOperation StageBefore/ During Construction Stage1Air pollutionB-DB-2Water pollutionB-DB-3Soil pollutionB-DB-4WasteB-DB-5Noise and vibrationB-DB-6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and local social service facilitiesA-A-19PoorA-A-B-	Discretion Stage Discretion
2Water pollutionB-DB-3Soil pollutionB-DB-4WasteB-DB-5Noise and vibrationB-DB-6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and local social service facilitiesCA-A-19PoorA-A-B-	
3Soil pollutionB-DB-4WasteB-DB-5Noise and vibrationB-DB-6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18social institutions and local decision-making institutions and local service facilitiesA-A-B-19PoorA-A-B-A-A-	
4WasteB-DB-5Noise and vibrationB-DB-6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and local social service facilitiesA-A-19PoorA-A-B-	D
5Noise and vibrationB-DB-6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and local social service facilitiesA-A-B-19PoorA-A-B-B-	D
6Ground subsidenceDDD7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and local social service facilitiesA-A-B-19PoorA-A-B-B-	D
7Offensive odorsDDD8Global warming/Climate changeDDD9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesA-A-B-19PoorA-A-B-B-	В-
8Global warming/Climate changeDDD9Topography and geologyDDDD10Bottom sedimentDDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesA-A-19PoorA-A-B-	D
9Topography and geologyDDD10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesA-A-B-	D
10Bottom sedimentDDD11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and social service facilitiesCB+B-19PoorA-A-B-	D
11Biota and ecosystemCCD12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
12HydrologyB-CD13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local social service facilitiesCB+B-19PoorA-A-B-	D
13Water useCCD14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local social service facilitiesCB+B-19PoorA-A-B-	D
14Protected areaDDD15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
15Involuntary resettlementA-DB-16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesCB+19PoorA-A-B-	D
16Local economies, such as employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
16employment, livelihood, etc.B-/B+CB-17Land use and utilization of local resourcesDDD18Social institutions and local decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
17resourcesDDDSocial institutions and local decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
18decision-making institutions and social service facilitiesCB+B-19PoorA-A-B-	D
	D
	D
20Indigenous or ethnic minority peopleCCD	D
21 Misdistribution of benefits and D D D	D
22 Local conflicts of interest D D D	D
23 Gender A- D	D
24 Children's right C C D	D
25 Cultural heritage C C D	D
26Infectious diseases such as HIV/AIDSB-DB-	D
27 Landscape D D D	D
28 Working conditions B- D B-	D
29 Social consensus A- D B-	D
30 Accident B- D B-	В-

Table S 12.1 Comparison of Scoping before/after EIA Study

Note: A: Remarkable negative impact is predicted.

B: Negative impact is expected to some extent.

C: Extent of impact is unknown. (Further examination is needed and the impact could be defined

as study progresses)

D: Impact is very small or nil and further survey is not required

Source: JICA Survey Team

12.2 Land Acquisition and Resettlement

For 60 project bridges which are selected in Cap.14, out of the total 1,564 affected units, 1,018 commercial enterprises, 501 residential households and 45 community properties were identified on the Corridor of Impact (CoI). A total of 20.99 ha of land will need to be acquired of which 10.51 ha in Rangpur zone, 6.40 ha in Rajshahi zone, 0.90 ha in Gopalganj zone, 1.67 ha in Khulna zone, 1.50 ha in Barisal zone and 12.89 ha. As a result, 346 households and 1,628 people must be displaced.

N.L.				Zones			Tetal
No	Loss type	Rangpur	Rajshahi	Gopalganj	Khulna	Barisal	Total
1	Total number of bridges	19	16	7	9	9	60
2	Total quantity of land (ha) affected	10.51	6.41	0.90	1.67	1.50	20.99
2.a	Total quantity of Residential/Commercial land (ha) affected	1.16	1.82	0.19	0.42	0.84	4.43
2.b	Total quantity of Agriculture/Others land (ha) affected	9.62	4.32	0.72	1.25	0.66	16.56
3	Total of displaced households	64	126	76	62	18	346
4	Total of displaced people	301	561	345	337	84	1,628
5	Total Project Affected Units (PAUs)	426	349	45	285	459	1,564
6	Total Households affected ^{*1}	100	167	25	121	88	501
7	Total commerce and business enterprises (CBEs) affected ^{*1}	304	176	20	156	362	1,018
8	Total community property (CPR) affected	22	6	0	8	9	45
9	Total number of structures affected	10.7876	6.1337	0.9034	1.6661	1.4999	21
9.a	Total quantity of all structure (sqm) affected	1	2	0	0	1	4
9.b	Total quantity of residential structure (sqm) affected	10	4	1	1	1	17
9.c	Total quantity of commercial structure (sqm) affected	426	349	45	285	459	1,564
9.d	Total quantity of CPR structures (sqm) affected	100	167	25	121	88	501
10	Total no. of toilets affected	304	176	20	156	362	1018
11	Total no. of tube wells affected	22	6	0	8	9	45
12	No. of trees on private land affected	13,171	8,413	2,156	6,935	3,689	34,364
13	No of trees on government land affected	1,970	1,374	1,408	1,153	334	6,239

Table	S	12.2	Distributi	on of	Impacts	by Zone
10010	-		Diotinoati	••.	mpaolo	

*1: Households (HHs) are defined as land with residential structures & trees, residential structures, rented residential structures, private trees, and other various items (ponds, fish, gate etc.)

*2: Commerce, Businesses and Enterprises (CBEs) are defined as land with business structures & trees, business structures, or rented business structures

*3The number in the table is not for 105 project candidate bridges but for 60 project bridges selected in Cap.14. Source: JICA Survey Team

Mitigation of above impacts will be undertaken through implementation of this Abbreviated Resettlement Plan (ARP), addressing the gaps between national legislation and the

requirements of Development Partner (such as JICA)'s Policy on Involuntary Resettlement.

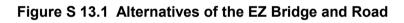
ARP report was prepared and submitted to RHD for obtaining the approval from the GoB side and accordingly Ministry of Highway Transportation and Bridges approved the ARP report on November 28, 2012.

13. THE EZ BRIDGE AND ROAD

13.1 Introduction

Due to the capacity saturation of existing economic zones (EZ) in Bangladesh, it is an urgent requirement to swiftly launch new economic zones to meet the rising industrial demand, as well as to further enhance foreign direct investment in Bangladesh. For a smooth launch and efficient use of an economic zone, it is essential to develop appropriate road and bridge infrastructures to access the site in a timely manner.

Some EZs have been planned in and around Dhaka, the capital city of Bangladesh. The Survey studied the development of bridge and road access to the EZ planned in Narsingdi (hereinafter referred to as the EZ Bridge and Road) as one of the important EZs in Bangladesh.


13.2 Route Alternatives

The eight route alternatives as shown in following figure for the EZ Bridge and Road were planned. As the result of comparison analysis, Alternative 2 is selected from following points.

- Cheaper construction cost
- Cheaper L/A and resettlement cost
- Small affected house number
- Present accessibility is poor, but it can be improved in the future.

Source: JICA Survey Team

13.3 Traffic Demand Forecast

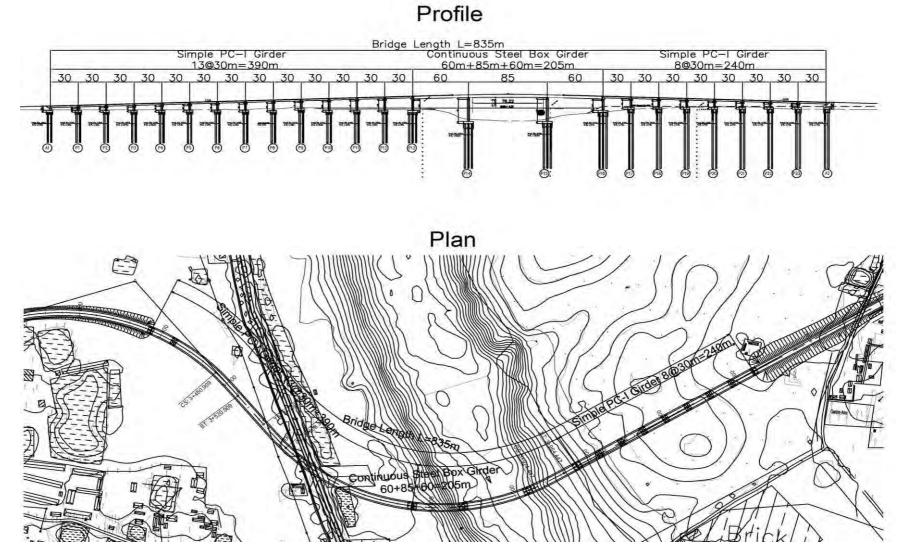
(1) Traffic Demand Forecast Methodology

The Panchdona-Danga Road (Z2047) of the east access road is only approximately 5 meters wide and identified as an alternative to the one-way road for cars or freight vehicles. The road condition of a certain section (approximately 11.5 km length) of national highway Dhaka-Sylhet (N2) is unsatisfactory. In addition, there is no realistic plan for road development; it is costly due to requiring improvement over a long distance and also acquiring land acquisition. Therefore, it is expected that all trips which relate to the EZ will use the EZ bridge and west access road, and through traffic will not exist after construction of the EZ bridge and west access road. Commuting Trips, Business Trip and Cargo Trip are set as considerable trip in this traffic demand forecast The target years of the traffic demand forecast are set for 3 specific years: 2021 (opening year of EZ bridge), 2023 (evaluation year of operation and effect indicator) and 2031 (10 years after EZ construction).

(2) Result of Traffic Demand Forecast and Number of Lanes

The forecasted peak hour traffic volumes are 1,318 in 2021, 1,694 in 2023 and 3,834 in 2031 as shown in following table. The required number of lanes was 2, thus the number of lanes was determined as 2 lanes (both directions).

	Dai	ly Traffic Volu (pcu /day)	ime	Peak Ratio	Traffic Volume of Peak Hour (pcu /day)					
	2021	2023	2031	(%)	2021	2023	2031			
Commuting Trips	853	1,747	7,260	25.0% ¹	213	437	1,815			
Business Trip	639	1,260	4,564	12.5% ²	80	158	571			
Cargo Trip	16,398	17,580	23,166	6.3% ³	1,025	1,099	1,448			
Total	17,890	20,587	34,990	-	1,318	1,694	3,834			


Table S 13.1 Future Traffic Volume of Western Access Road of EZ and EZ Bridge

Source: JICA Study Team

13.4 Preliminary Design

As a result of preliminary design, bridge type and length were summarized as below;

- The Superstructure
- Main Bridge (L=205 m): Steel-Box Girder
- Approach Bridge (L=630 m): PC-I Girder
- The Substructure
- Foundations inside River: Cast-in-Place Concrete Pile (φ1500, L=54m, n=16)
- Foundations on Land: Cast-in-place Concrete Pile (φ1500-4, L=73.0m, n=4)
- The Approach Road (L=4,193 m)

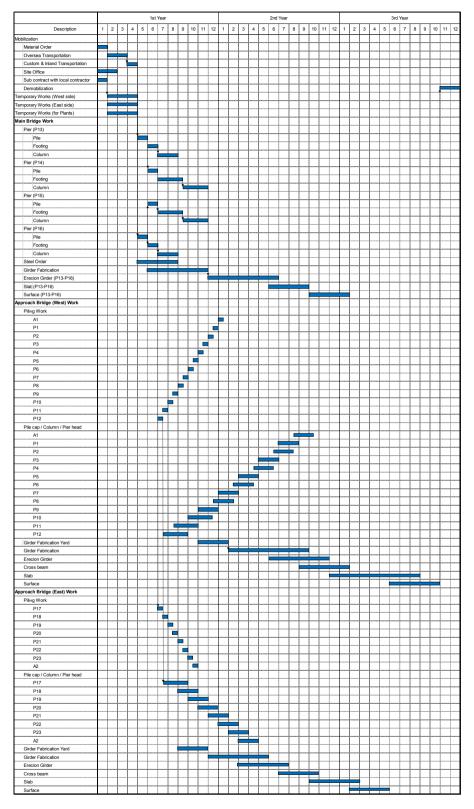

Source: JICA Survey Team

Figure S 13.2 General View of the EZ Bridge

Preparatory Survey on Western Bangladesh Bridges Improvement Project Final Report

13.5 Construction Plan

The construction period for the EZ is 36 months as shown in following figure.

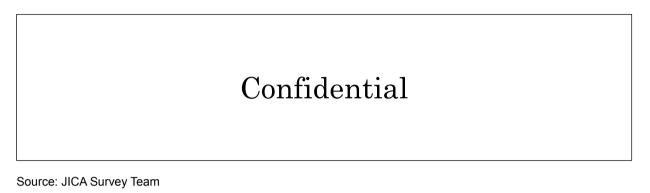

Source: JICA Survey Team

Figure S 13.3 Construction Schedule

13.6 Cost Estimates

Civil work cost for the EZ Bridge and Road are calculated by unit price and quantities, as shown in following table.

TableS 13.2 Summary of Civil Works Cost by Bridge/Road Component

13.7 Project Effect

(1) Operation and Effect Indicator

The freight and passenger traffic volume and reduction of travel cost were selected as an operational indicator and effect indicator respectively. The calculated operation and effect indicators of the baseline and 2 years after the project completion are shown in following table.

	Indicator	Target	Baseline	2 years after project completion
Operation	Freight Traffic Volume (pcu/ day)	EZ la vialara	NA	17,580
Indicator	Passenger Vehicle Traffic volume (pcu/ day)	EZ bridge	NA	3,007

Reduction of Travel Cost

(Million taka/ year)

 Table S13.3 Proposed Operation and Effect Indicators

0

2,810

Total

(2) Economic Analysis

1) General

Effect

Indicator

(

The economic analysis of the EZ Bridge and approach road construction is carried out by comparing the economic cost of the project with economic benefits, which will be generated by the reduction of (VOC) and (TTC) of passing. Project life is assumed to be 25 years from 2023 -2047 and an opportunity cost of capital is assumed at 12% per annum.

2) Economic Analysis

Economic evaluations for all project bridges which finally selected in Cap.14 are summarized in "14.4 Project Effect for 61 Bridges"

13.8 Environmental and Social Considerations

13.8.1 Environmental and Social Considerations

Methodology of environmental and social considerations is same as of 106 project candidate bridges in Western Bangladesh. Refer to 13.1.

13.8.2 Land Acquisition and Resettlement

(1) Necessity of Land Acquisition and Resettlement

The project is to provide a new bridge, which will connect the existing R301 and the EZ, including an access road. It is observed that only a small number of people (less than 200 or maybe even fewer) are to be affected due to the relevant activities. By following OP 4.12 of WB when impacts on the entire displaced population are minor, or if fewer than 200 people are displaced at a site, an Abbreviated Resettlement Plan (ARP) needs to be prepared for the project.

(2) Census and Socio-economic Survey

39 units are affected in other residential households wards identified on the Corridor of Impact (CoI). All the affected households are losing land, structures, and trees. A total of affected household is 3,709 square meters. The impact of this project is shown in following table.

SI No	Loss type	No/Total
1	Total quantity of land (hectares) affected	12.49
2	Total number of households (land with structures) affected	39
3	Total number of structures affected	81
4	Total quantity of structures (Sqm) affected	3,709
5	Total no. of toilets affected	36
6	Total no. of tube wells affected	34
7	Total no. of trees on private land affected	12,259

 Table S 13.4
 Distribution of Impacts of the Project

Source: Census & Socioeconomic survey, July 2014

14. IMPLEMENTATION PLAN

14.1 Selection of Project Bridges

(1) Project Bridges Selection Criteria

The Project bridges are selected from the 106 candidate bridges using selection criteria.

Item	Weight	Point	Criteria			
1 Domago Lovel & Construction		4	Level D, and 30 years old			
1. Damage Level & Construction Year	7	2	Level D, but less than 30 years old			
fear		0	Other Levels			
2. Middle-size Bridge	7	4	Middle-size bridge			
	1	0	Small-size bridge			
		4	National highway			
3. Road Type	5	2	Regional highway			
		0	Zilla road			
		4	Expected by stakeholders in the			
4. Expectation by Stakeholders	stakeholder meetings					
	0	0	Not expected by stakeholders in the			
		•	stakeholder meetings			
			Not requiring special soft soil treatment			
		4	(cement mix, piled slab, etc.) in approach			
5. Constructability	3		road			
·····	-	-	Requiring special soft soil treatment			
		0	(cement mix, piled slab, etc.) in approach			
C. Feenenicelly, Net Vieble			road			
6. Economically Not Viable	Dro	р	EIRR Less than 12 %			
7. Inclusion in Other Projects	Dro	n	Already included or to be included in			
		•	other projects			
8. Difficulties for Construction	Dro		Significant difficulties for Construction			
	Total sco	re=100				

Table S14.1	Project	Bridges	Selection	Criteria
-------------	---------	---------	-----------	----------

Source: JICA Survey Team

(2) Project Bridges Selection

As a result of evaluation by the project bridge selection criteria, the top 60 bridges were initially selected as the project target bridges. However, 2 bridges were dropped from the list and another 2 bridges were added to the list.

Finally, 61 bridges including 60 bridges in Western Bangladesh and the EZ Bridge were selected as the project target bridges.

14.2 Contract Package for 61 Bridges

Confidential

14.3 Cost Estimates for 61 Bridges

The project cost for 61 bridges is shown in following Table Table S14.2 Project Cost

Confidential

Unit: (JPY million)

Notes: 1. Exchange Rate: US\$ 1= Tk 77.5 = JPY119

2. Price Escalation: 2.0% per annum (Foreign Currency Portion), 4.9% per annum (Local Currency Portion)

- 3. Physical Contingency: 5% for consulting services, 10% for civil works
- 4. Base Year for Cost Estimation: January 2015

Source: JICA Survey Team

14.4 Project Effect for 61 Bridges

The result of the economic analysis for 61 bridges is shown in following table.

EIRR (%)	25.48
BCR	2.72
NPV (BDT million)	161.03

Source: JICA Survey Team

14.5 Implementation Schedule

15. CONCLUSION AND RECOMMENDATIONS

15.1 Conclusion

A summary of the Project is shown in following table.

Confidential

15.2 Recommendations

Recommendations for further studies and tasks are as follows:

- Asphalt pavement was selected as a general pavement type in the preliminary design. Adoption of other pavement types such as concrete pavement or stone mastic asphalt (SMA) shall be considered, especially for some sections of the EZ approach road in the detailed design, since a number of heavy vehicles will utilize the EZ Bridge and Road.
- The EZ Bridge and Road will be connected to the existing regional road (R301). The improvement of R301 shall be considered during detailed design stage, since R301 is very narrow and damaged in some sections. R301 may not provide required capacity for increased traffic volume by the construction of the EZ Bridge and Road.
- In this Preparatory Survey, the recommendation for EZ Bridge's foundation type in the

river is Cast-in-Place Concrete Pile (ϕ 1500, L=54m, n=16). However, it shall be finally determined by confirming the supporting layer at each pier position based on the geotechnical investigations during the detailed design stage.

- 60 bridges are planned to be constructed at 60 river/water crossings in Western Bangladesh. Construction of box culverts shall be considered for some locations, such as pond crossings not having water flow, as a cost reduction measure in the detailed design.
- Safety measures such as providing road marking, road hump, guardrails, etc. shall be considered in the detailed design. Specifically, the countermeasure for ship collisions to piers of the EZ Bridge shall be important.
- Detailed surveys for public utilities such as waterworks, telephone lines, power lines, etc. shall be conducted in the detailed design. The bridge and road design shall be conducted in consideration of that information.
- RHD shall undertake the tasks for the EIA and ARP during the entire project period in order to implement the Project successfully.

People's Republic of Bangladesh

Preparatory Survey on Western Bangladesh Bridges Improvement Project

Final Report Volume 1

Main Report

Table of Contents

Page

1. IN	ITRO		1-1
1.1	Ва	ckground	1-1
1.2	Со	ntents of the Request	1-2
1.3	Ob	jective of the Survey	1-2
1.4	Su	rvey Area	1-2
1.5	Sta	aging and Phasing of the Survey	1-4
2. N	ECE	SSITY OF THE PROJECT	2-1
2.1	Re	view of Relevant Plans and Programs	2-1
2.	.1.1	Vision 2021	2-1
2.	.1.2	Sixth Five Year Plan, 6FYP (2011-2015)	2-2
2.	.1.3	National Land Transport Policy, NLTP (2004)	2-4
		Road Master Plan, RMP (2009)	
2.2	Re	view of Relevant Projects	2-8
2.	.2.1	Project for Provision of Portable Steel Bridges on Upazila and Union Roads	2-8
2.	.2.2	Eastern Bangladesh Bridges Improvement Project (EBBIP)	-10
2.	.2.3	Kanchpur, Meghna, and Gumti 2nd Bridges Construction and Existing Bridge	ges
		Rehabilitation Project2	-11
2.3	Bri	dge Rehabilitation/Reconstruction Project by Other Donors2-	-14
2.4	Ro	ads and Bridges in Bangladesh2-	-16
2.	.4.1	Introduction2	-16
2.	.4.2	Important Corridors and Zones	-17
2.	.4.3	Traffic Volume Growth by Road Type24	-21
2.	.4.4	Local Community Activity 2-	-22
2.5	Bri	dge Conditions in Western Bangladesh2-	-22
2.	.5.1	Bridge Condition Survey 2-	-22
2.	.5.2	Analysis of Bridge Conditions in Western Bangladesh24	-24
2.6	Ne	cessity of the Project2-	-28
2.	.6.1	Conformity with Upper Level Plan	-28
~	62	Not Enough Projects by Other Donors	-29

	2.6.3	Securing Good Traffic Condition of Asian Highway	2-29
	2.6.4	Securing Good Traffic Condition of Important Corridor	2-29
	2.6.5	Damage Progression of the Bridge	2-30
	2.6.6	Increase of Traffic Volume	2-30
_			
		CTION OF PROJECT BRIDGES	
		lection Approach	
3		lection of Preliminary 200 Bridges	
		Dropping from Candidate List	
		Multi-criteria	
		Selection of Preliminary 200 Bridges	
3	.3 Sit	e Survey for Preliminary 200 Bridges	
3	.4 Lo	ng List Selection of 100 Candidate Bridges	
3		ng List Selection of 106 Candidate Bridges	
	3.5.1	Introduction	3-12
	3.5.2	Bridges Deleted from 100 Candidate Bridges	3-12
	3.5.3	Bridges Added in 100 Bridges	3-13
	3.5.4	Long List Selection of 106 Candidate Bridges	3-13
3	.6 Se	lection of Project Bridges	3-23
4.		RAL CONDITIONS	
4		ysiography	
4		ology	
		Overview of Geological Condition	
		Boring Investigation and Lab Test	
		Bearing Layer	
4		teorological and Hydrological Conditions	
	4.3.1	General	4-14
	4.3.2	Meteorological Condition	4-18
	4.3.3	Hydrological Condition	4-29
	4.3.4	Navigation Clearance	4-38
4	.4 Cli	mate Change	
	4.4.1	Introduction	4-40
	4.4.2	Temperature Change	4-41
	4.4.3	Sea Level Change	
	4.4.3 4.4.4	Sea Level Change Impact of Sea Level Change	4-41
	4.4.4	-	4-41 4-42
F	4.4.4 4.4.5	Impact of Sea Level Change Impact of Precipitation Projection	4-41 4-42 4-45
5.	4.4.4 4.4.5 TRAF	Impact of Sea Level Change Impact of Precipitation Projection FIC DEMAND FORECAST	4-41 4-42 4-45 5-1
5	4.4.4 4.4.5 TRAF .1 Int	Impact of Sea Level Change Impact of Precipitation Projection	4-41 4-42 4-45 5-1 5-1

5.2	.1 Current Traffic Volume	5-1
5.2	.2 Future Traffic Growth	5-6
5.2	.3 Adjustment in Consideration of Large Scale Development	5-6
5.3	Result of Traffic Demand Forecast in 2031	
5.4	Traffic Capacity	
5.5	Number of Lanes	
5.5	.1 Required Number of Lanes based on Traffic Demand Forecast	5-13
5.5	.2 Number of Lane in the Project	5-15
6. DE	TERMINATION OF BRIDGE TYPE	6-1
6.1	Methodology of Bridge Type Decision	6-1
6.2	Grouping for Bridge Design	6-2
6.3	Bridge Type for Group A	6-4
6.4	Bridge Type for Group B in Northern Zone	
6.5	Bridge Length and Span Arrangement	6-7
6.6	Girder Type in Consideration of Earthquakes	
7. PR	ELIMINARY DESIGN	7-1
7.1	Design Criteria for Roads	7-1
7.1	.1 Design Standards	7-1
7.1	.2 Standard for Roads in Bangladesh	7-1
7.1	.3 Typical Cross Section	
7.1	.4 Basic Principle for the Location of New Bridge	
7.2	Design Criteria for Bridges	
7.2	.1 Design Standards to be followed in Bangladesh	
7.2	.2 Navigation Waterway Limitation and Design High Water Level	
7.2	.3 Design Loads	
7.2	.4 Technical Specifications for Construction Materials	
7.3	Road Design	7-15
7.3	.1 Design Speed	
7.3	.2 Horizontal Alignment	
7.3	.3 Vertical Alignment	
7.3	.4 Crossfall	
7.3	.5 Superelevation	
7.3	.6 Embankment	
7.3	.7 Pavement Design	
7.4	Bridge Design	7-24
7.4	.1 Superstructures	
7.4	.2 Substructures	
7.4	.3 Summary of Preliminary Design	

7.5	Right of Way	7-31
8. Al	PPLICATION OF MODERN TECHNOLOGIES	8-1
8.1	Introduction	
8.2	Weathering Steel	
8.3	Tests of Weathering Steel	
8.	3.1 Test Criteria for Weathering Steel	8-3
8.	3.2 Test Locations	
	Test Method and Schedule	
8.	4.1 Airborne Salt Test	8-6
8.	4.2 Exposure Test for Weathering Steel	
	4.3 Installation of Test Specimens	
8.5	Test Results	
8.	5.1 Airborne Salt Test Results	8-9
8.	5.2 Exposure Test Results	8-12
8.6	Evaluation and Conclusion	
8.	6.1 Evaluation	8-16
8.	6.2 Conclusion	8-19
9. C	ONSTRUCTION PLAN	
9.1	Introduction	
9.2	Bored Pile	
9.3	Pile Cap	
9.4	Pier	
9.5	Superstructure (Steel-I Girder)	
9.6	Superstructure (PC-I girder)	
9.7	Traffic Control during Construction	
9.8	Construction Schedule	
	8.1 Steel Bridge (Steel-I Girder)	
9.	8.2 Concrete Bridge (PC-I Girder)	
10 0	PERATION AND MAINTENANCE PLAN	10-1
	Operation and Maintenance Plan for the Project Bridges	
).1.1 General	
	0.1.2 Inspection	
).1.3 Maintenance	
	0.1.4 Special Maintenance for Weathering Steel Bridge	
	2 Organization	
	0.2.1 Ministry of Road Transportation and Bridges	
	0.2.2 Roads and Highways Department (RHD)	
	0.2.3 Department Relevant to Bridge Management	

10.3 Budgetary Situation of Road and Bridge Development and Maintenance	10-12
10.3.1 National Revenue and Expenditure	10-12
10.3.2 Development and Maintenance Allocation for RHD Roads and Bridges	10-12
10.4 Current Issues faced in Bridge Operation and Maintenance	10-13
10.4.1 Lack of Budget	10-13
10.4.2 Inappropriate Operation and Maintenance Work	10-13
10.4.3 Ineffective Utilization of BMMS	10-14
10.4.4 Overloaded Vehicle	10-14
10.5 Recommendations for Operation and Maintenance	10-14
10.5.1 Stable Financing for Roads and Bridges Maintenance	10-14
10.5.2 Establishment of Efficient Maintenance Plan	10-15
10.5.3 Prohibition and Control of Overloaded Vehicles	10-15
10.6 Proposal of Future Japanese Support	10-15
10.6.1 Technical Cooperation Project Regarding Bridge Operation & Maintenance .	10-15
10.6.2 Overseas Training on Weathering Steel	10-17
10.7 Operation and Maintenance Cost	10-18
11. COST ESTIMATES	11-1
11.1 Introduction	11-1
11.2 General Condition of Cost Estimates	11-1
11.3 Civil Work Cost	11-3
11.3.1 Unit Rate of Major Pay Items	11-3
11.3.2 Cost Calculation for Standard Bridges (18 types)	11-6
11.3.3 Unit Prices for Bridge Component	11-6
11.3.4 Civil Work Cost of 105 Bridges	11-7
12. PROJECT EFFECT	12-1
12.1 Operation and Effect Indicators	12-1
12.1.1 Selection of Operation and Effect Indicators	12-1
12.1.2 Proposed Operation and Effect Indicators	12-3
12.2 Economic Evaluation	12-6
12.2.1 General	12-6
12.2.2 Basic Assumptions and Conditions	12-6
12.2.3 Economic Cost Estimate	12-8
12.2.4 Benefit Measurement	12-8
12.2.5 Results of Economic Evaluation	12-19
13. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	13-1
13.1 Environmental and Social Considerations	13-1
13.1.1 Project Components which may cause Impacts	13-1
13.1.2 Present Natural and Social Condition	13-1

13.1.3 EIA System in Bangladesh	13-11
13.1.4 Alternatives	13-13
13.1.5 Scoping and ToR on EIA	13-15
13.1.6 Result of EIA Survey	13-18
13.1.7 Assessment of Impacts	13-23
13.1.8 Mitigation Measures and its Cost	13-25
13.1.9 Environmental Management Plan (EMP)	13-27
13.2 Land Acquisition and Resettlement	13-30
13.2.1 Necessity of Land Acquisition and Resettlement	13-30
13.2.2 Legal Framework of Land Acquisition and Resettlement	13-30
13.2.3 Gap between JICA's Guidelines and related Ordinance in Bangladesh	13-31
13.2.4 Census and Socio-economic Survey	13-35
13.2.5 Eligibility Policy and Entitlement Matrix	13-41
13.2.6 Grievance Redress Committee	13-45
13.2.7 Implementation Organization	13-46
13.2.8 Implementation Schedule	13-49
13.2.9 Resettlement and Compensation Costs & Budget	13-51
13.2.10 Monitoring and Evaluation	13-51
13.2.11 Local Stakeholder Meeting (SHM)	13-54
14. THE EZ BRIDGE AND ROAD	14-1
14.1 Introduction	14-1
14.2 Route Alternatives	14-2
14.3 Route Evaluation	14-3
14.4 Alignment Alternatives and Evaluation	
14.5 Natural Conditions	14-8
14.5.1 Physiography	14-8
14.5.2 Geology	14-8
14.5.3 Hydrological Conditions	14-10
14.6 Traffic Demand Forecast	14-26
14.6.1 Traffic Demand Forecast Methodology	14-27
14.6.2 Result of Traffic Demand Forecast and Number of Lanes	14-32
14.7 Preliminary Design	
14.7.1 Design Criteria for Road	14-33
14.7.2 Design Criteria for Bridge	14-33
14.7.3 Road Design	14-40
14.7.4 Bridge Design	14-49
14.7.5 Right of Way	14-63
14.8 Construction Plan	
14.9 Operation and Maintenance Plan	14-67

14.9.1 Oj	peration and Maintenance Plan for EZ Bridge	
14.9.2 Oj	peration and Maintenance Cost	
14.10 Co	ost Estimates	
14.11 Pr	oject Effect	
14.11.1	Operation and Effect Indicator	
14.11.2	Economic Analysis	
14.12 Er	vironmental and Social Considerations	
14.12.1	Environmental and Social Considerations	
14.12.2	Land Acquisition and Resettlement	
15. IMPLEM	ENTATION PLAN	15-1
15.1 Introd	uction	
15.2 Select	tion of Project Bridges	
15.2.1 Pr	oject Bridges Selection Criteria	
15.2.2 Pr	oject Bridges Selection	15-3
15.3 Contra	act Package for 61 Bridges	
15.4 Cost I	Estimates for 61 Bridges	
15.4.1 Ci	vil Work Cost for 61 Bridges	
15.4.2 Pr	oject Cost for 61 Bridges	
15.5 Projec	t Effect for 61 Bridges	
15.6 Land	Acquisition and Resettlement for 61 Bridges	
15.7 Implei	nentation Organization	
15.8 Implei	nentation Schedule	
16 CONCU	JSION AND RECOMMENDATIONS	16-1
	usion	
	nmendations	
		10-4

Final Report Volume 2: Drawings

Final Report Volume 3: Appendix 1

Appendix 1.1	The Result of Site Survey for 200 Bridges
Appendix 1.2	Minutes of Discussion (M/D) with RHD at 26th January
Appendix 1.3	List of 105 Bridges with Score and Photos
Appendix 1.4	Geological Survey Works
Appendix 1.5	Additional investigation for application of weathering steel

Final Report Volume 4: Appendix 2

Appendix 2.1	EIA Report (For 105 Bridges)
Appendix 2.2	ARP Report (For 105 Bridges)
Appendix 2.3	EIA Report (For EZ bridge)
Appendix 2.4	ARP Report (For EZ Bridge)
Appendix 2.5	Form of Monitoring
Appendix 2.6	TOR for IA for ARP Implementation
Appendix 2.7	TOR for External Monitoring Consultant

List of Figure

	Page
Figure 1.4.1 Survey Area	1-3
Figure 2.1.1 Bridges/Culverts Constructed in Bangladesh	2-5
Figure 2.2.1 Project Image	2-8
Figure 2.2.2 Cross Section of the Bridge	2-9
Figure 2.2.3 Project Image	2-10
Figure 2.2.4 Project Image	2-12
Figure 2.3.1 Corridor Improvement Project (SASEC) by ADB	2-15
Figure 2.4.1 Asian Highway Network	2-17
Figure 2.4.2 Asian Highway Network in Bangladesh	2-18
Figure 2.4.3 Location of Land Ports in Western Bangladesh	2-19
Figure 2.4.4 The Trend of EPZs Performance	
Figure 2.4.5 The Overview of EPZs in Western Bangladesh	2-20
Figure 2.4.6 The Location of SEZs Candidate Site in Western Bangladesh	2-21
Figure 2.4.7 High GRDP District in Western Bangladesh	2-22
Figure 2.5.1 Comparison of Damage Level between BMMS and EBBIP	2-25
Figure 3.1.1 Procedure for Project Bridges Selection	3-1
Figure 3.3.1 Sample of Survey Sheet (Specifications and Sketches)	3-6
Figure 3.3.2 Sample of Survey Sheet (Bridge Photos)	3-7
Figure 3.3.3 Sample of Survey Sheet (Photos and information of bridge damage)	3-8
Figure 3.5.1 Map of Long Listed 106 Candidate Bridges	3-22
Figure 4.1.1 Physiographic Division of Bangladesh	4-2
Figure 4.1.2 Main Rivers of Bangladesh	4-4
Figure 4.2.1 Geological Framework of Bangladesh	4-6

Figure 4.2.2 Tectonic Setting of Bengal Basin	4-7
Figure 4.3.1 River System of Bangladesh	4-15
Figure 4.3.2 Location of Meteorological Stations for Data Collection	4-16
Figure 4.3.3 Location of Hydrological Stations for Data Collection	4-17
Figure 4.3.4 Monthly Maximum and Minimum Temperature at 6 stations	4-19
Figure 4.3.5 Monthly Mean Temperature at 18 Stations	4-19
Figure 4.3.6 Monthly Mean Relative Humidity at 17 Stations	4-20
Figure 4.3.7 Monthly Maximum Wind Speed at 17 Stations	4-22
Figure 4.3.8 Monthly Mean Wind Speed at 18 Stations	4-23
Figure 4.3.9 Monthly Mean Sunshine Hours at 18 Stations	4-24
Figure 4.3.10 Monthly Mean Rainfall at 18 Stations	4-25
Figure 4.3.11 Monthly Rainfall Contour Map at July, 2013	4-26
Figure 4.3.12 Long-term Fluctuation of Annual Rainfall at 6 Stations	4-27
Figure 4.3.13 Annual Rainfall and 5 Year Running Mean Rainfall at Jessore and	
Rangpur (1970-2013)	4-27
Figure 4.3.14 Rainfall Intensity Curve at Dhaka	4-28
Figure 4.3.15 Interpolation of HWL by TIN method	4-31
Figure 4.3.16 Correlation between the Flood Return Period and the Maximum Discharge	
each Gauging Station	4-37
Figure 4.3.17 (Official) Navigation Channel in Bangladesh	4-39
Figure 4.4.1 Areas Affected by Different Types of Climate-related Disaster,	4-40
Figure 4.4.2 Global Surface Temperature Change	4-41
Figure 4.4.3 Observed and Projected Relative Net Sea Level Change	4-42
Figure 4.4.4 Increase in Water Level in Meghna Estuary due to 88 cm Sea Level Rise	4-43
Figure 4.4.5 Simulation of Sea Level Rise	4-44
Figure 4.4.6 Likely Salinity Ingress in Southern Coastal Areas due to Different Sea	
Level Rise	4-44
Figure 5.2.1 Cumulative Distribution and Probability Density by Road Class	5-4
Figure 5.2.2 Vehicle Share by Road Class (PCU)	5-5
Figure 5.2.3 Vehicle Share by Road Class (Vehicles)	5-5
Figure 5.2.4 Location of Padma Bridge and Route of AH1	5-7
Figure 5.2.5 Projection of Induced Traffic Volume on Padma Bridge	5-7
Figure 5.3.1 Result of Traffic Demand Forecast (North area)	5-9
Figure 5.3.2 Result of Traffic Demand Forecast (South area)	5-10
Figure 5.5.1 Required Number of Lane (1)	5-14
Figure 5.5.2 Required Number of Lane (2)	5-15
Figure 5.5.3 4-lane Bridges on Asian Highway	5-16
Figure 6.2.1 Seismic Zoning Map (BNBC)	6-2
Figure 6.2.2 Grouping of Bridges	6-3
Figure 6.2.3 55 Bridges in Northern Zone	6-3

Figure 6.2.4 51 Bridges in Southern Zone	
Figure 6.5.1 Concept of Span Arrangement of New Bridge	6-7
Figure 6.6.1 Traditional PC-I Girder Bridge (Single Span Girders)	6-8
Figure 6.6.2 Steel-I Girder Bridge in WBBIP (Continuous Girder)	6-8
Figure 6.6.3 PC-I Girder Bridge in WBBIP (Chaired Single Span Girders)	6-8
Figure 7.1.1 Typical Cross Section for National, Regional and Zilla Roads	7-6
Figure 7.1.2 Typical Cross Section for AH1	7-7
Figure 7.2.1 Design Truck Load	7-11
Figure 7.2.2 Seismic Zoning Map of Bangladesh	. 7-12
Figure 7.2.3 Design Response Spectrum	7-14
Figure 7.3.1 Embankment	. 7-18
Figure 7.3.2 Detail for Bench Cut	7-18
Figure 7.3.3 Pavement Layer Thickness for National Roads	7-22
Figure 7.3.4 Pavement Layer Thickness for Regional Roads	. 7-23
Figure 7.3.5 Pavement Layer Thickness for Zilla Roads	7-24
Figure 7.4.1 Steel-I Girder (Continuous Girder)	. 7-25
Figure 7.4.2 PC-I Girder (Chaired Single Span Girders)	. 7-25
Figure 7.4.3 Cross Section for PC-I Girder	. 7-26
Figure 7.4.4 Cross Section for Steel-I Girder	. 7-26
Figure 7.4.5 Standard Abutment and Pier	7-28
Figure 7.4.6 Pile Arrangement	7-29
Figure 7.5.1 Corridor of Impact (COI)	7-32
Figure 7.5.2 Outside of Existing ROW	7-32
Figure 7.5.3 Inside of Existing ROW	7-32
Figure 8.2.1 Mechanism of Corrosion Resistance of Weathering Steel	8-2
Figure 8.2.2 Chemical Composition of Weathering Steel	8-2
Figure 8.2.3 Corrosion Rate of Weathering Steel	8-2
Figure 8.3.1 TOW in Bangladesh and Japan	8-4
Figure 8.3.2 Locations for Exposure Tests and Airborne Salt Tests	8-6
Figure 8.4.1 Gauze Frame for Airborne Salt Test	8-7
Figure 8.4.2 Exposure Test Specimen	8-7
Figure 8.4.3 Installation of Test Specimens on Office Rooftops	8-8
Figure 8.4.4 Installation of Exposure Test Specimens at Existing Bridges	8-9
Figure 8.5.1 Airborne Salt Test Results	8-11
Figure 8.5.2 Wind Directions and 30-year Accumulated Values of Wind Speed in Jessore	8-12
Figure 8.5.3 Exposure Test Results	8-15
Figure 8.6.1 Areas where Airborne Salt Test is not Required	. 8-18
Figure 8.6.2 First Weathering Steel Bridge in Japan	8-18
Figure 8.6.3 Weathering Steel Bridge in Japan	8-18
Figure 8.6.4 Share of Weathering Steel Bridge in Japan	8-19

Figure 9.2.1 Construction Method for Bored Piles	9-1
Figure 9.3.1 Construction Method for Pile Caps	9-2
Figure 9.4.1 Construction Method for Piers	9-3
Figure 9.5.1 Construction of Superstructure using "Truck Crane and Bent" Method	9-4
Figure 9.5.2 Construction of Superstructure using Erection Girder Method	9-4
Figure 9.7.1 Detour during Construction	9-5
Figure 9.7.2 Traffic Control during Construction	9-5
Figure 9.8.1 Construction Schedule for Steel-I Girders of Length 60m	9-6
Figure 9.8.2 Construction Schedule for Steel-I Girders of Length 100m (60m + 40m)	9-6
Figure 9.8.3 Construction Schedule for Steel-I Girders of Length 180m (60m x 3)	9-6
Figure 9.8.4 Construction Schedule for Steel-I Girders of Length 160m (40m x 4)	9-6
Figure 9.8.5 Construction Schedule for Steel-I Girders of Length 200m (40m x 5)	9-7
Figure 9.8.6 Construction Schedule for PC-I Girders of Length 40m	9-7
Figure 9.8.7 Construction Schedule for PC-I Girders of Length 80m (40m x 2)	9-7
Figure 9.8.8 Construction Schedule for PC-I Girders of Length 120m (40m x 3)	9-8
Figure 10.1.1 Maintenance Procedure	. 10-1
Figure 10.1.2 Weathering Steel Bridge Survey	. 10-4
Figure 10.2.1 Organization Chart of Road Transport and Highways Division, MORTB	. 10-6
Figure 10.2.2 Organization Chart of RHD	. 10-8
Figure 12.2.1 Travel Distance of Regular Route vs Detour Route	. 12-7
Figure 12.2.2 Relation between Probability and its Cumulative of Unserviceability and	
Figure 12.2.2 Relation between Probability and its Cumulative of Unserviceability and Timing of New Bridge Construction by Bridge Age	12-12
	12-12
Timing of New Bridge Construction by Bridge Age	
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and	12-12
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age	12-12 13-12
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC	12-12 13-12 13-12
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations	12-12 13-12 13-12 13-28
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring	12-12 13-12 13-12 13-28 13-46
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism.	12-12 13-12 13-12 13-28 13-46 13-48
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram	12-12 13-12 13-28 13-46 13-48 13-50
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule	12-12 13-12 13-28 13-46 13-48 13-50 . 14-1
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi	12-12 13-12 13-28 13-46 13-48 13-50 . 14-1 . 14-3
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road	12-12 13-12 13-28 13-46 13-48 13-50 . 14-1 . 14-3 . 14-9
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road Figure 14.5.1 Location of Borings in Dhaka Zone (Narsingdi)	12-12 13-12 13-28 13-46 13-46 13-50 . 14-1 . 14-3 . 14-9 14-11
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road Figure 14.5.1 Location of Borings in Dhaka Zone (Narsingdi) Figure 14.5.2 Lakhya River and Meghna Riverine System	12-12 13-12 13-28 13-46 13-46 13-50 . 14-1 . 14-3 . 14-9 14-11
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road Figure 14.5.1 Location of Borings in Dhaka Zone (Narsingdi) Figure 14.5.2 Lakhya River and Meghna Riverine System Figure 14.5.3 Location of Proposed Bridge and Gauging Stations	12-12 13-12 13-28 13-46 13-48 13-50 . 14-1 . 14-3 . 14-9 14-11 14-11
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road Figure 14.5.1 Location of Borings in Dhaka Zone (Narsingdi) Figure 14.5.2 Lakhya River and Meghna Riverine System Figure 14.5.3 Location of Proposed Bridge and Gauging Stations Figure 14.5.4 Relationship between "astronomical tide of outer sea (Chittagong)" and	12-12 13-12 13-28 13-46 13-46 13-48 13-50 . 14-1 . 14-3 . 14-9 14-11 14-11 14-13
Timing of New Bridge Construction by Bridge Age Figure 12.2.3 Relation between Cumulative Probability Rate of Unserviceability and Bridge Age Figure 13.1.1 Procedure to obtain ECC Figure 13.1.2 Organogram of RHD on Environmental and Social Considerations Figure 13.1.3 Institutional Framework for Environmental Management and Monitoring Figure 13.2.1 Grievance Redress Mechanism Figure 13.2.2 ARP implementation organogram Figure 13.2.3 ARP 13.2.7 Implementation Schedule Figure 14.1.1 Location Map of Planned EZ in Narsingdi Figure 14.2.1 Alternatives of the EZ Bridge and Road Figure 14.5.1 Location of Borings in Dhaka Zone (Narsingdi) Figure 14.5.2 Lakhya River and Meghna Riverine System Figure 14.5.3 Location of Proposed Bridge and Gauging Stations Figure 14.5.4 Relationship between "astronomical tide of outer sea (Chittagong)" and "daily high / low tide of related stations (Demra, Narayanganj)" at 2005	12-12 13-12 13-28 13-46 13-46 13-46 13-50 . 14-1 . 14-3 . 14-9 14-11 14-11 14-13 14-13

Figure 14.5.8 Hydraulic Calculation Model at Proposed Bridge	14-20
Figure 14.5.9 Hydraulic Cross-sectional profile of Proposed Bridge	14-21
Figure 14.5.10 Simple schematic representation of scour at a cylindrical pier	14-24
Figure 14.5.11 Scouring Computation Result at Proposed Bridge	14-25
Figure 14.6.1 Planned construction site of EZ and Access Road (Plan)	14-27
Figure 14.7.1 Characteristics of Design Truck (HS20-44)	14-34
Figure 14.7.2 Seismic Zone Map	14-35
Figure 14.7.3 Design Response Spectra	14-36
Figure 14.7.4 Pavement Layer Thickness	14-43
Figure 14.7.5 Plan for No. 1 Intersection	14-45
Figure 14.7.6 Section A-A	14-46
Figure 14.7.7 Section B-B	14-46
Figure 14.7.8 Section C-C	14-46
Figure 14.7.9 Turning Path at No.1 Intersection	14-47
Figure 14.7.10 No.2 Intersection	14-47
Figure 14.7.11 Section A-A	14-48
Figure 14.7.12 Section B-B	14-48
Figure 14.7.13 Turning Path at No. 2 Intersection	14-48
Figure 14.7.14 Turning Path at No.2 Intersection (Alternative-1)	14-49
Figure 14.7.15 Turning Path at No.2 Intersection (Alternative-2)	14-49
Figure 14.7.16 Bore Log of EZ Bridge	14-51
Figure 14.7.17 Bridge Composition	14-56
Figure 14.7.18 Alternatives for EZ Bridge	14-58
Figure 14.7.19 General View of the EZ Bridge	14-61
Figure 14.7.20 Cross-section of Steel Box Girder for Main Bridge	14-62
Figure 14.7.21 Cross-section of PC-I Girder for Approach Bridge	14-62
Figure 14.7.22 Substructure and Foundation Shapes for EZ	14-63
Figure 14.8.1 Work Flow of Pavement Work	14-65
Figure 14.8.2 Construction Schedule	14-66
Figure 14.11.1 Setting of Trips of EZ by Directions	14-71
Figure 14.11.2 Setting of With-Without Route	14-72
Figure 15.2.1 Map of Final Project Bridges	15-6
Figure 15.3.1 Area of 5 Packages in Western Bangladesh	15-8
Figure 15.7.1 Organization Diagram of Interim PIU	15-18
Figure 15.7.2 Organization Diagram of PIU	15-19
Figure 15.8.1 Implementation Schedule	15-21
Figure 16.1.1 Summary of the Project	16-3

List of Table

	Page
Table 2.1.1 RHD Physical Targets for the 6FYP	2-4
Table 2.1.2 Role of RMP to Implementing the Road Sector Policy	2-7
Table 2.2.1 Summary of the Projects	2-9
Table 2.2.2 Summary of the Projects	2-14
Table 2.3.1 Bridge Rehabilitation/Reconstruction Projects by GOB and China Fund	2-15
Table 2.4.1 Road Network in Bangladesh	
Table 2.4.2 The Number of Road Structures on RHD Road Network	2-17
Table 2.4.3 Trade Performance between Bangladesh and India	
Table 2.4.4 Average Annual Traffic Volume Growth Rate	
Table 2.5.1 Bridge Condition Category in BMMS	2-23
Table 2.5.2 Bridge Condition Category in EBBIP Bridge Condition Survey	
Table 3.2.1 Evaluation Item and Weight	3-3
Table 3.2.2 Multi-criteria for Selecting Preliminary 200 Bridges	
Table 3.2.3 List of Preliminary 200 Bridges	3-5
Table 3.4.1 Updated Multi-criteria for Selecting 100 Bridge Candidates	3-10
Table 3.4.2 Long List of 100 Candidate Bridges	3-12
Table 3.5.1 List of 106 Candidate Bridges by Divisions (Summary)	3-14
Table 3.5.2 List of 106 Candidate Bridges by Divisions	3-15
Table 4.2.1 List of Bearing Layer (Barisal Zone)	4-9
Table 4.3.1 Inventory of Meteorological Stations for Data Collection	4-16
Table 4.3.2 Monthly Maximum, Mean and Minimum Temperature	4-18
Table 4.3.3 Monthly Mean Relative Humidity at 17 Stations	4-20
Table 4.3.4 Monthly Maximum Wind Speed at 17 Stations (in m/s)	4-21
Table 4.3.5 Monthly Mean Wind Speed at 18 Stations (in m/s)	4-22
Table 4.3.6 Monthly Mean Sunshine Hours at 18 Stations	4-23
Table 4.3.7 Monthly Mean Rainfall at 18 Stations	4-25
Table 4.3.8 Long-term Fluctuation of Annual Rainfall at 6 Stations	4-27
Table 4.3.9 Rainfall-Intensity each Return Period at Dhaka	4-28
Table 4.3.10 Rainfall Intensity Formula in Dhaka	4-29
Table 4.3.11 Estimation of HWL at each gauging station (1)	4-32
Table 4.3.12 Estimation of HWL at each gauging station (2)	4-33
Table 4.3.13 Design HWL for each proposed bridge (1)	4-34
Table 4.3.14 Design HWL for each proposed bridge (2)	4-35
Table 4.3.15 Standard High Water Level at proposed Bridges (in meters)	4-36
Table 4.3.16 Standard High and Low Water Level at Stations (in meters above PWD)	4-36
Table 4.3.17 Estimation of Probable Maximum Discharge each Gauging Station	4-37

Table 4.3.18 Fairway Limitation in Bangladesh	4-38
Table 4.4.1 Propagation of Sea Level into the River and Estuary Region Including the	
Change in Water Level at Various Locations	4-43
Table 4.4.2 Temperature and Precipitation Projections by the CMIP5 Global Models	4-45
Table 5.2.1 24 Hour Traffic Volume (vehicle/day) (1)	5-2
Table 5.2.2 24 Hour Traffic Volume (vehicle/day) (2)	5-3
Table 5.2.3 PCU Factor	5-4
Table 5.2.4 Standard Deviation, Kurtosis and Skewness by Road Class	5-5
Table 5.2.5 Recent Traffic Growth	5-6
Table 5.3.1 Result of Traffic Demand Forecast (1)	5-11
Table 5.3.2 Result of Traffic Demand Forecast (2)	5-12
Table 5.4.1 Traffic Capacity and Number of Lane	5-13
Table 5.5.1 Required Number of Lanes	5-13
Table 6.1.1 Applicable Bridge Span for Bridge Type	6-1
Table 6.2.1 Earthquake Zone Coefficient Z (BNBC)	6-2
Table 6.4.1 Comparison of Bridge Type for Group B Bridge in Northern Zone	6-6
Table 7.1.1 Design Standards for the Road	7-1
Table 7.1.2 Functional Road Class	7-2
Table 7.1.3 Road Design Types	7-2
Table 7.1.4 Geometric Design Criteria for National Roads	7-3
Table 7.1.5 Geometric Design Criteria for Regional Road	7-4
Table 7.1.6 Geometric Design Criteria for Feeder Roads (Zilla Roads)	7-5
Table 7.1.7 The Location of New Bridge	7-8
Table 7.2.1 Navigation Waterways Limitation	7-10
Table 7.2.2 Design High Water Level and Bridge Girder Bottom Height	7-10
Table 7.2.3 Unit Weight of Bridge Materials for Dead Load Calculation	7-11
Table 7.2.4 Lane Load Specification for Girder and Substructure Design	7-12
Table 7.2.5 Zone Coefficient Z (BNBC)	7-13
Table 7.2.6 Site Coefficient S for Seismic Lateral Forces (BNBC)	7-13
Table 7.2.7 Strength Requirements of Concrete for Bridges	7-14
Table 7.2.8 Nominal Stress of Reinforcing Steel Bars for Bridges and ancillary Works	7-15
Table 7.2.9 Nominal Stress of Prestressing Steel	7-15
Table 7.2.10 Nominal Stress of Steel	7-15
Table 7.3.1 Design Speed for National, Regional and Zilla Road	7-16
Table 7.3.2 Minimum Horizontal Curve Radius	7-16
Table 7.3.3 Minimum Transition Length	7-16
Table 7.3.4 Minimum Vertical Curve, K	7-17
Table 7.3.5 Crossfall for Road and Bridge	7-17
Table 7.3.6 Superelevation for Radius of Curve	7-17
Table 7.3.7 Axle Load Equivalency Factor	7-20

Table 7.3.8 Predicted Number of 18-kip Equivalent Single Axle Load Applications (W_{18})	
for National Roads	7-20
Table 7.3.9 Predicted Number of 18-kip Equivalent Single Axle Load Applications (W18)	
for Regional Roads	7-20
Table 7.3.10 Predicted Number of 18-kip Equivalent Single Axle Load Applications (W_{18})	
for Zilla Roads	7-20
Table 7.3.11 Standard Normal Deviate (Z _R)	7-21
Table 7.3.12 Serviceability Index Difference, $P_t (\Delta PSI)$	7-21
Table 7.3.13 SN for National, Regional, Zilla Road	7-21
Table 7.3.14 Pavement Layer Thickness for National Roads	7-22
Table 7.3.15 Pavement Layer Thickness for Regional Roads	7-23
Table 7.3.16 Pavement Layer Thickness for Zilla Roads	7-23
Table 7.4.1 Summary of Preliminary Design of PC-I	7-27
Table 7.4.2 Summary of Preliminary Design of Steel-I	7-27
Table 7.4.3 Design Summary of 105 Bridges (1)	7-30
Table 7.4.4 Design Summary of 105 Bridges (2)	7-31
Table 7.4.5 Comparison of Existing and New Bridges	7-31
Table 8.3.1 Locations for Exposure Tests and Airborne Salt Tests	8-5
Table 8.5.1 Airborne Salt Test Results	8-10
Table 8.5.2 Exposure Test Results after 6 Months	8-13
Table 8.5.3 Exposure Test Results after 1 Year	8-14
Table 8.5.4 Exposure Test Results at Exiting Bridge	8-16
Table 8.6.1 Summary of Airborne Salt Test and Exposure Test Results	8-17
Table 10.1.1 Classification of Inspection Work	10-2
Table 10.2.1 MORTB's Officers Class and Number (Road transport and Highways	
Division)	10-7
Table 10.2.2 Summary of Staff of RHD	10-8
Table 10.3.1 Consolidated Receipts and Expenditures of the Government of Bangladesh	10-12
Table 10.3.2 Development and Maintenance Allocation for RHD Roads and Bridges	10-13
Table 10.3.3 Requested and Allocated Maintenance Budget	10-13
Table 10.6.1 Overseas Training Program on Weathering Steel (Draft)	10-18
Table 10.7.1 Operation and Maintenance Costs (1)	10-19
Table 10.7.2 Operation and Maintenance Costs (2)	10-20
Table 11.2.1 Rate of Import Tax	11-3
Table 11.3.1 Consumer Price Index (CPI)	11-4
Table 11.3.2 Unit Rate of Major Pay Items for Civil Works	11-5
Table 11.3.3 Standard Bridges to be Calculated	11-6
Table 11.3.4 Unit Prices for Bridge Component	11-7
Table 11.3.5 Summary of Civil Work Costs by Bridge Component	11-7
Table 11.3.6 Summary of Civil Works Cost by Bridge Type	11-7

Table 11.3.7 Civil Work Cost for 105 Bridges (1)	11-8
Table 11.3.8 Civil Work Cost for 105 Bridges (2)	11-9
Table 12.1.1Selection of Operation and Effect Indicators	12-2
Table 12.1.2 Proposed Operation and Effect Indicator 1	12-4
Table 12.1.3 Proposed Operation and Effect Indicator 2	12-5
Table 12.2.1 Economic Cost Estimate	12-8
Table 12.2.2 Vehicle Operating Cost by Road Roughness (as of 2014 Prices)	12-9
Table 12.2.3 IRR by Road Condition	12-10
Table 12.2.4 CPI Index and Growth Index	12-10
Table 12.2.5 Travel Time Cost (TTC) by Vehicle Type (as of 2014 Prices)	12-10
Table 12.2.6 Probability Rate of Unserviceability by Bridge Types	12-13
Table 12.2.7 Probability Density of Bridge Unserviceability for Temporary Bridges	12-15
Table 12.2.8 Period Required for Temporary Restoration	12-16
Table 12.2.9 Maintenance Cost Required for Temporary Bridge	12-18
Table 12.2.10 Maintenance Costs for Temporary Bridges	12-18
Table 12.2.11 Results of Economic Evaluation by Region	12-19
Table 12.2.12 Summary of Economic Evaluation by Bridge (1)	12-20
Table 12.2.13 Summary of Economic Evaluation by Bridge (2)	
Table 13.1.1 Monthly Rainfall and Temperature for Khulna, Rajshahi, Barisal Divisions	13-2
Table 13.1.2 National Air Quality Standards for Bangladesh	13-3
Table 13.1.3 National Standards for Island Surface Water	13-4
Table 13.1.4 National Standards for Drinking Water	13-4
Table 13.1.5 National Standards for Sound for Different Areas	13-6
Table 13.1.6 Status of the Resident Inland Vertebrate Species in Bangladesh	13-7
Table 13.1.7 National Health Services Facilities Available in Bangladesh	13-9
Table 13.1.8 Total Number and Types of Academic Institutions in Bangladesh	13-9
Table 13.1.9 Comparison of Alternatives	13-14
Table 13.1.10 Predicted Scoping Matrix	13-15
Table 13.1.11 ToR on EIA	13-17
Table 13.1.12 Result of EIA Survey	13-19
Table 13.1.13 Comparison of Scoping before/after EIA Study	13-23
Table 13.1.14 Mitigation Measures during Pre-construction/Construction Stage	13-25
Table 13.1.15 Mitigation Measures in Operation Stage	13-27
Table 13.1.16 Environmental Monitoring Plan in Construction Stage	13-29
Table 13.1.17 Environmental Monitoring Plan in Operation Stage	13-29
Table 13.1.18 Estimates for Environmental Monitoring Costs Borne by Contractor	13-30
Table 13.1.19 Estimates for Environmental Monitoring Costs Borne by RHD	13-30
Table 13.2.1 Gap and Gap Filling Measure	13-32
Table 13.2.2 Zone-wise Number of Bridges and Project affected Units	13-36
Table 13.2.3 Displaced Number of Households by Bridge	13-37

Table 13.2.4 Distribution of Impacts by Zone	13-39
Table 13.2.5 Number of Male and Female Population by Zone	13-40
Table 13.2.6 Affected Household Heads by Zone and Gender	13-40
Table 13.2.7 Poverty Level and Annual income of head of the households by Zone	13-40
Table 13.2.8 Compensation and Entitlement Matrix	13-42
Table 13.2.9 Format for ARP Implementation Monitoring	13-52
Table 13.2.10 Potential Monitoring Indicators	13-52
Table 13.2.11 Stakeholders Consultation Phase I	13-56
Table 13.2.12 Stakeholders Consultation Phase II	13-57
Table 14.3.1 Route Evaluation of the EZ Bridge and Road	14-4
Table 14.4.1 Alignment Evaluation of the EZ Bridge and Road	14-7
Table 14.5.1 Summary of Boring Investigation at Narsingdi	14-10
Table 14.5.2 Collected Hydrological Data at Related Gauging Stations in Lakhya River	14-12
Table 14.5.3 Bathymetric Survey Data List	14-15
Table 14.5.4 Collection Data List for Annual Maximum Discharge	14-17
Table 14.5.5 Probable Flood Calculation at 2 Demra Stations	14-18
Table 14.5.6 Probable High Flood Level	14-18
Table 14.5.7 Results of Hydraulic Analysis	14-21
Table 14.5.8 Results of Scouring Computation	14-25
Table 14.6.1 Area of the EZ and Employee Number (Plan)	14-26
Table 14.6.2 Freight Demand of EZ	14-28
Table 14.6.3 Freight Vehicle Volume	14-29
Table 14.6.4 Number of Commuting Trips (Full Operation: 2031)	14-30
Table 14.6.5 Traffic Volume by Transport Mode of Commuting Trips	14-31
Table 14.6.6 Traffic Volume of Business Trip	14-32
Table 14.6.7 Future Traffic Volume of Western Access Road of EZ and EZ Bridge	14-32
Table 14.7.1 Unit Weight of Bridge Materials	14-34
Table 14.7.2 Site Coefficient (BNBC)	14-36
Table 14.7.3 Ambient Temperature at Dhaka	14-37
Table 14.7.4 Strength Requirements of Concrete for Bridges	14-38
Table 14.7.5 Nominal Stress of Reinforcing Steel Bars	14-38
Table 14.7.6 Nominal Stress of Prestressing Steel	14-38
Table 14.7.7 Nominal Stress of Weathering Steel	14-39
Table 14.7.8 Navigation Height of Existing Bridges	14-39
Table 14.7.9 Required Navigation Clearance of Class 2 Waterway	14-39
Table 14.7.10 Navigation Clearance of EZ Bridge	14-40
Table 14.7.11 Minimum Radius of Curve	14-40
Table 14.7.12 Minimum Vertical Curve, K	14-41
Table 14.7.13 Axle Load Equivalency Factor	14-41
Table 14.7.14 Predicted Number of 18-kip Equivalent Single Axle Load Applications	

(W18) for Approach Road	. 14-42
Table 14.7.15 Standard Normal Deviate (Z _R)	. 14-42
Table 14.7.16 Pavement Layer Thickness	. 14-43
Table 14.7.17 Location of Intersections	. 14-43
Table 14.7.18 Dimension of Trailer (Unit: m)	. 14-44
Table 14.7.19 Applicability Criteria of Foundation Types (inside River)	. 14-52
Table 14.7.20 Comparison of Foundation Types (P15)	. 14-54
Table 14.7.21 Comparison of Diameter of Cast-in-place Concrete Pile (P17)	. 14-55
Table 14.7.22 Alternatives for Approach Bridge Type	. 14-56
Table 14.7.23 Applicable Span Length on Bridge Type	. 14-57
Table 14.7.24 Alternatives for Main Bridge Type	. 14-57
Table 14.7.25 Comparison Table of Bridge Types for Approach Bridge	. 14-59
Table 14.7.26 Comparison Table of Bridge Types for Main Bridge	. 14-59
Table 14.9.1 Operation and Meintenance Cost for EZ bridge	. 14-67
Table 14.10.1 Summary of Civil Works Cost by Bridge/Road Component	. 14-68
Table 14.10.2 Civil Works Cost of the EZ Bridge and Road	. 14-69
Table 14.11.1 Selection of Operation and Effect Indicator	. 14-70
Table 14.11.2 Traffic Demand in 2023 (vehicles/day)	. 14-71
Table 14.11.3 Traffic Demand by Direction in 2023 (vehicles/day)	. 14-71
Table 14.11.4 Proposed Operation and Effect Indicators	. 14-72
Table 14.11.5 Traffic Demand Forecast in EZ	. 14-73
Table 14.11.6 Financial Cost and Economic Cost	. 14-74
Table 14.11.7 Travel Time Cost (TTC) by Vehicle Type (as of 2014 Prices)	. 14-75
Table 14.11.8 Vehicle Operating Cost by Road Roughness (prices as of 2014)	. 14-75
Table 14.11.9 Vehicle Operating Cost by Road Roughness (prices as of 2014)	. 14-76
Table 14.11.10 Estimation of Economic Benefits by Construction of the EZ Bridge and	
Road	. 14-76
Table 14.11.11 Result of Economic Analysis	. 14-76
Table 14.11.12 Discounted Cost and Benefit Flow	. 14-77
Table 14.11.13 Sensitivity Analysis	. 14-78
Table 14.12.1 Air Pollution Data at EZ Bridge Site	. 14-79
Table 14.12.2 Water Pollution Status at EZ Bridge Site	. 14-79
Table 14.12.3 Noise Level at EZ Bridge Site	. 14-79
Table 14.12.4 Estimates for Environmental Monitoring Costs borne by Contractor	. 14-82
Table 14.12.5 Estimates for Environmental Monitoring Costs borne by RHD	14-82
Table 14.12.6 Project Affected Households for Each Upazila	. 14-83
Table 14.12.7 Distribution of Impacts of the Project	. 14-83
Table 14.12.8 Land Acquisition and Resettlement Budget	. 14-84
Table 14.12.9 Stakeholders Consultation Phase I	. 14-86
Table 14.12.10 Stakeholders Meeting Phase II	. 14-87

Table 14.12.11 Stakeholders Meeting Phase III	14-89
Table 14.12.12 Stakeholders Meeting Phase IV	
Table 15.2.1 Project Bridges Selection Criteria	15-3
Table 15.2.2 2 Bridges Dropped from the List	
Table 15.2.3 2 Bridges Added to the List	
Table 15.2.4 2 List of Final Project Bridges	
Table 15.3.1 List of Project Bridges in 6 Packages	
Table 15.4.1 Civil Work Cost for 60 bridges in Western Bangladesh	15-11
Table 15.4.2 Project for 61 Bridges	15-12
Table 15.5.1 Result of Economic Analysis for 61 Bridges	15-12
Table 15.6.1 Distribution of Impacts by Zone	
Table 15.6.2 Displaced Number of Households by Bridge	15-15
Table 15.6.3 Zone-wise Number of Bridges and Project affected Units	15-16
Table 15.6.4 Project Affected Households for Each Upazila	15-17
Table 15.6.5 Distribution of Impacts of the Project	15-17
Table 16.1.1 Summary of the Project	

List of Abbreviations

AASHTO	: American Association of State Highway and Transportation Officials
ACE	: Additional Chief Engineer
AD	: Assistant Director
ADB	: Asian Development Bank
ADP	: Annual Development Program
AH	: Asian Highway
AID	: Acquired Immunodeficiency Syndrome
ARIPO	: Acquisition and Requisition of Immovable Property Ordinance
ARP	: Abbreviated Resettlement Plan
ASTM	: American Society for Testing Materials
BCS	: Basic Catalog Structure
BDT	: Bangladeshi Taka
BEPZA	: The Bangladesh Export Processing Zones Authority
BEZA	: Bangladesh Economic Zones Authority
BFD	: Bangladesh Forest Department
BIMST	: Bay of Bengal Institute for Multi-sectoral Technical and Economic Cooperation
BMD	: Bangladesh Meteorological Department
BMMS	: Bridge Maintenance Management System
BNBC	: Bangladesh National Building Code
BOD	: Biochemical Oxygen Demand
ВОТ	: Build-Operate-Transfer

BRP	: Bridge Replacement Program	
BWDB	: Bangladesh Water Development Board	
CBR	: California Bearing Ratio	
CE	: Chief Engineer	
CEGIS	: Center for Environmental and Geographic Information Services	
CMIP5	: Coupled Model Intercomparison Project Phase 5	
CMP	: Current Market Price	
СО	: Carbon Monoxide	
COI	: Corridor of Impact	
CPI	: Consumer Price Index	
C/S	: Construction Supervision	
DC	: Deputy Commissioner	
D/D	: Detail Design	
DO	: Dissolved Oxygen	
DoE	: Department of Environment	
DPP	: Development Project Proposal	
EA	: Executing Agency	
EBBIP	: Eastern Bangladesh Bridges Improvement Project	
EC	: Electrical Conductivity	
ECC	: Environmental Clearance Certificate	
ECR	: Environment Conservation Rules	
EIA	: Environmental Impact Assessment	
EIRR	: Economic Internal Rate of Return	
EPZ	: Export Processing Zone	
ESU	: Engineering Service Unit	
EZ	: Economic Zones	
FML	: Fortnightly Mean Water Level	
F/S	: Feasibility Study	
FYP	: Five Years Plan	
JVS	: Joint Verification Survey	
GBM	: The Ganges-Brahmaputra-Meghna	
GDP	: Gross Domestic Product	
GRDP	: Gross Regional Domestic Product	
GOB	: Government of Bangladesh	
GOJ	: Government of Japan	
GRC	: Grievance Redress Committee	
HIV	: Human Immunodeficiency Virus	
HWL	: High Water Level	
IA	: Implementing Agency	
IACCCZB	: Impact Assessment of Climate Changes on the Coastal Zone of	Bangladesh

IACCSLRMF	: Impact Assessment of Climate Change and Sea Level Rise on Monsoon Flooding
ICB	: International Competitive Bidding
IMF	: International Monetary Fund
INGO	: Implementing Non-Government Organization
IPCC	: Intergovernmental Panel on Climate Change
IRC	: Indian Road Congress
IRI	: International Roughness Index
ISD	: Intermediate Sight Distance
IUCN	: International Union for Conservation of Nature,
JDCF	: Japan Debt Cancellation Fund
JICA	: Japan International Cooperation Agency
JJA	: June-July-August
JRA	: Japan Road Association
LAO	: Land Acquisition Officer
LCC	: Location Clearance Certificate
LGD	: Local Government Division
LGED	: Local Government Engineering Department
LIRP	: Livelihood and Income Restoration Program
LMS	: Land Market Survey
LRFD	: Load and Resistance Factor Design
M/D	: Minutes of Discussion
MoD	: Ministry of Defence
MORTB	: Ministry of Road Transport and Bridges
MoL	: Ministry of Lands
MoLGRD&C	: Ministry of Local Government Rural Development and Co-operatives
MoWR	: Ministry of Water Resources
NHWL	: Normal High water Level
NRS	: National Resettlement Consultant
NMV	: Non-Motorized Vehicle
NLTP	: National Land Transport Policy
NOx	: Nitrogen oxide
ODA	: Official Development Assistance
OSD	: Overtaking Sight Distance
PD	: Project Director
PIU	: Project Implementation Unit
PMBDP	: Padma Multipurpose Bridge Design Project
PMP	: Periodic Maintenance Program
PAPs	: Project Affected Persons
PPP	: Public Private Partnership

PPR	: Project Progress Report		
The Project	: Western Bangladesh Bridges Improvement Project		
PSB	: Portable Steel Bridges		
PVAT	: Property Value Assessment Team		
RCP	: Representative Concentration Pathways		
RMP	: Road Master Plan		
RHD	: Road and Highways Department		
ROW	: Right Of Way		
RS	: Response Spectrum		
RU	: Resettlement Unit		
RUC	: Road User Cost		
RV	: Replacement Value		
SAARC	: South Asian Association for Regional Cooperation		
SASEC	: South Asia Sub-regional Economic Cooperation		
The Survey	: Preparatory Survey on Western Bangladesh Bridges Improvement Project		
SES	: Socio-Economic Survey		
SEZ	: Special Economic Zone		
SHM	: Stake Holder Meeting		
SHWL	: Standard High water Level		
SLR	: Sea Level Rise		
SN	: Structural Number		
SO2	: Sulfur dioxide		
SPSP	: Steel Pipe Sheet Pile		
SPM	: Suspended Particulate Matters		
SSD	: Stopping Sight Distance		
ТА	: Technical Assistance		
TIN	: Triangulated Irregular Network		
ToR	: Terms of Reference		
TTC	: Travel Time Cost		
TSS	: Total Suspended Solid		
VOC	: Vehicle Operation Cost		
WARPO	: The Water Resources Planning Organization		
WB	: World Bank		
WBBIP	: Western Bangladesh Bridges Improvement Project		

1. INTRODUCTION

1.1 Background

Aiming at becoming a middle income country by 2021, the People's Republic of Bangladesh (hereinafter referred to as Bangladesh) is experiencing robust economic growth while maintaining a GDP growth rate of around 6% for several years. With its continued economic development, cargo transportation volume of the country increased eight times in 30 years from 1975 to 2005, and in recent years transportation volume of both passengers and cargo is increasing at an annual rate of 6 - 7 %. To meet the increasing demands for domestic transportation, the Government of Bangladesh (hereinafter referred to as GOB) has been actively developing its road network. As a result, in 2005, road transport accounted for around 80% of the domestic transportation, surpassing inland water transport and railway transport. The Road and Highways Department (hereinafter referred to as RHD) is responsible for the construction and the maintenance of the major road and bridge network of Bangladesh.

Most of the approximately 4,500 bridges operated and maintained by RHD have been found to be aging and deteriorated. 1,500 of these bridges are said to be unsafe, since they have significant structural damages.

In addition, another 1,000 bridges are bailey bridges, which are prefabricated steel truss bridges for temporary purpose and not suitable for road bridges due to lack of capability and safety function. Most of these bailey bridges under RHD's control are in unsafe condition; the bridges have already become deteriorated and damaged, and in the some serious cases, bridges have already collapsed.

In the 6th Five-Year Plan of Bangladesh (between F.Y. 2011/12 and 2015/16, hereinafter referred to as 6FYP), it was declared that, in the highway sector, modernized and efficient road transportation systems would take a vital role in accomplishing the 6FYP as well as Vision 2021, the medium-term target of the nation. Rebuilding of the existing bridges, the total length of which reaches around 10,000 km, was listed as one of the major targets in the 6FYP. In National Land Transport Policy in 2004 (hereinafter referred to as NLTP), implementing safety measures to the entire medium and small bridges in the country was featured as one of the major policies. The Road Master Plan in 2009, designed based on NLTP, states that one of the major goals is rebuilding all bailey bridges as permanent

structures.

Assisting RHD in improving its road bridges matches the aid policies of the Government of Japan (hereinafter referred to as GOJ). Also, Japan International Cooperation Agency (hereinafter referred to as JICA) considers the nation-wide development of transport and traffic system to be one of the important issues for the country. In the Country Assistance Policy for Bangladesh, drawn up in June 2012, the GOJ considered the development of infrastructures for traffic and transport to be one of the major goals to enhance efficiency in human and cargo transportation in Bangladesh.

1.2 Contents of the Request

In May 2013, GOB requested JICA to carry out the preparatory survey on bridge improvement project in 5 zones in western Bangladesh: Rangpur, Rajshahi, Gopalganj, Khulna and Barisal, covering 37 districts to the west of Padma River.

1.3 Objective of the Survey

A Preparatory Survey (hereinafter referred to as the Survey) on Western Bangladesh Bridges Improvement Project (hereinafter referred to as WBBIP) is carried out in accordance with GOB's above-stated request.

The Objective of the Survey is to obtain all the data and information required for appraisal of the Project as Japanese ODA loan project, such as defining the project objectives and preparing project summary, project cost, implementation structure, implementation schedule, implementation method (procurement, construction), implementation plan, operation and maintenance plan, environment and social considerations, etc.

1.4 Survey Area

The survey area is comprised of 5 zones in western Bangladesh, Rangpur, Rajshahi, Gopalganj, Khulna and Barisal.

A location map of the survey area is shown in Figure 1.4.1.

Source: JICA Survey Team

Figure 1.4.1 Survey Area

1.5 Staging and Phasing of the Survey

The survey work can be broken down into 5 phases in 3 main stages as shown below.

Stage 1: Affirmation of the Project and Selection of Project Bridges
Phase 1: Understanding of Basic Information, Study on Framework of the Project, and Selection of Candidate Bridges
Stage 2: Study on Main Content of the Project
Phase 2: Site Survey and Determination of Bridge Type
Phase 3: Preliminary Design
Phase 4: Selection of Project Bridges, Preparation for Appraisal of Japanese ODA Loan
Stage 3: Reporting and Support for JICA Appraisal Mission
Phase 5: Reporting and Support for JICA Appraisal Mission

2. NECESSITY OF THE PROJECT

2.1 Review of Relevant Plans and Programs

2.1.1 Vision 2021

Bangladesh achieved independence in 1971 and will celebrate its fifty years of independence in the year 2021, the golden jubilee of the nation. Bangladesh is aiming to become a middleincome country by that time, through the execution of eight identified goals which are referred to as Digital Bangladesh Vision 2021. This vision will meet the hopes and aspirations of the citizens of the country for an economically inclusive and politically accountable society. The eight goals are outlined as

- Goal one: To become a participatory democracy
- Goal two: To have an efficient, accountable, transparent and decentralized system of governance
- Goal three: To become a poverty-free middle-income country
- Goal four: To have a nation of healthy citizens
- Goal five: To develop skilled and creative human resources
- Goal six: To become a globally-integrated regional economic and commercial hub
- Goal seven: To be environmentally sustainable
- Goal eight: To be a more inclusive and equitable society

Of the eight goals, Goal six comprises a building of super highway connecting the mega port with the neighboring countries Nepal, Bhutan, Eastern India with Bangladesh and onward to Myanmar, South Western China and Thailand, though the Asian Highway and Railway networks. Such highway and railway networks would serve the national goal by making the use of the mega port. It is planned that the highway network extends southwards to Cox's Bazaar, so that it can be further connected with Myanmar, Thailand, and China through a southern route.

2.1.2 Sixth Five Year Plan, 6FYP (2011-2015)

In order to achieve an average GDP growth rate of 7 percent per annum, the transport sector growth rate is projected to increase by 7.5 percent per annum. In order to achieve this goal, the 6FYP (2011-2015) was formulated to develop a balanced and integrated transport network through the adoption of several strategies/programs:

(1) Outline of strategies and policies

Some key strategies and policies for the road sector to be undertaken in accordance with the 6FYP are outlined as:

- i. Inclusion of a limited number of projects into Annual Development Program (ADP) on a priority basis
- ii. Allocation of adequate funds for domestically funded projects
- iii. Implementation of RHD Road Master Plan (2009)
- iv. Selection of locally funded projects in consideration of socio-economic merits
- v. Establishment of Road Maintenance Fund
- vi. Involvement of the private sector by taking up projects on BOT/PPP basis

Moreover, GOB has been following the strategy of road network development on the basis of five important corridors:

- a) Dhaka-Chittagong (N1)
- b) Dhaka-Northwest (N4)
- c) Dhaka-Khulna (N7)
- d) Dhaka-Sylhet (N2)
- e) Khulna-Northwest
- (2) Strategy on development of regional and international connectivity

Bangladesh will actively pursue an open-door policy to international traffic by taking advantage of its strategic location in terms of large access to sea and being the gateway between Eastern and Southern parts of Asia. Accordingly, the Government has been making efforts to improve the road connectivity with neighboring countries through various regional cooperation forums such as South Asian Association for Regional Cooperation (SAARC), South Asia Sub-regional Economic Cooperation (SASEC), Bay of Bengal Institute for Multi-sectoral Technical and Economic Cooperation (BIMSTEC) and Bangladesh-China-India Myanmar (BCIM).

Bangladesh has acceded to the Asian Highway Network on 8 November 2009. The physical alignment of Asian Highway Route in Bangladesh is more or less completed so far as the road connectivity is concerned. GOB has planned to upgrade almost the whole part of the AH Network in Bangladesh by phases in order to bring the same in harmony with such network outside Bangladesh.

(3) RHD Goal and Objectives set forth with 6FYP

The contribution of the road sector to the national income is around 8 percent at current market prices. The prime goal of RHD is to make the growth sustainable, which can be achieved by developing a well-maintained, cost effective and safe road network in the country. RHD objectives necessary to achieve the road sector goal are:

- To develop and manage strategic road corridors to underpin the economic development of all regions of the country and contribute to the Government's poverty reduction objectives.
- To link all rural areas with the national road network to provide basic social access and promote "pro-poor growth".

With a view to address the vision of SYFP, RHD is going to take up several new projects under the following programs and subsequently has set up the some physical targets which are summarized in Table 2.1.1.

- i. General Road Network Development
- ii. Construction of Bridges
- iii. Congestion Reduction in Greater Dhaka and other big cities
- iv. Development of Asian Highway Network
- v. Regional Connectivity
- vi. Construction of Padma Bridge Access Roads/Bridges
- vii. Construction of Bypass Roads
- viii. Technical Assistance (TA) Projects
- ix. Construction of Zilla Roads (new project)

4,672 km
8,433 km
23,777 meter
10,362 meter
5,400 meter

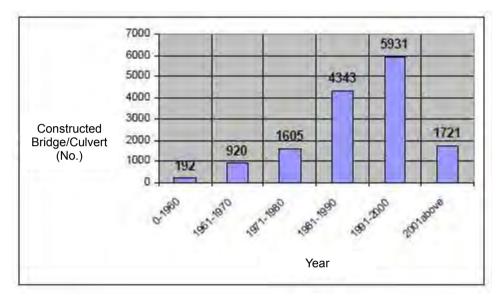
Table 2.1.1 RHD Physical Targets for the 6FYP

Source: SYFP (2011-2015)

2.1.3 National Land Transport Policy, NLTP (2004)

To face the challenges of the twenty-first century, Bangladesh needs to take its place in the world as a developed country. Integrated development and growth of all the sectors are the necessary means to achieve this goal. The Land Transport Policy has been formulated to meet the needs of the twenty first century. Accordingly Government has introduced a long-term network planning as is stated in NLTP. The road sector policies contained in the NLTP are designed to:

- Develop a long-term (20-year) Road Master Plan (2009)
- Clarify government responsibilities for Roads and Highways
- Maintain the road network at a level that protects the value of investment
- Rehabilitate those roads no longer capable of being maintained
- Secure a sustainable means of funding for road expenditure
- Improve management of traffic on the network to make the best use of assets
- Manage road side activities in a way that maximizes use of road assets
- Develop an integrated planning approach
- Involve the private sector more in infrastructure, services and maintenance
- Develop rational bridge policies


RHD in conjunction with other concerned agencies will be responsible to define the geometric standards for all bridges in the main road network (National, Regional and Feeder Roads). A priority program for widening bridges on National Roads up to the carriageway width will be developed, and where demand exists, incorporating non-motorized vehicle lanes will be considered. This program aims to:

- Improve the quality of the contracting industry
- Foster inter-regional links

Inter-National Links will be encouraged in the greater national interest. Bangladesh will play an active role in the field of international road communications. These actions shall improve management and operations of the Roads and Highways Department

2.1.4 Road Master Plan, RMP (2009)

Several thousand bridges and culverts have been constructed on RHD road network over last four decades, but of these, many were built many years ago and obviously do not meet the current design standards. Moreover, they are undergoing severe damage due to inadequate periodic and routine maintenance.

Source: RMP (2009)

Figure 2.1.1 Bridges/Culverts Constructed in Bangladesh

The GOB prepared a Road Master Plan, RMP (2009) in order to guide the development and maintenance of RHD's road infrastructure over the next 20 years. It provides a physical plan for new road/bridge construction, rehabilitation and maintenance over the next 20 years, and sets out a spending program for the sector. Following subsections briefly demonstrate the overall objectives, issues and policy development, and implementation plan under RMP.

a) Objectives

The overall objectives of RMP have been set out a comprehensive investment program in order to:

- Protect the value of RHD's road and bridge assets
- Improve the connectivity of the road network
- Enhance and develop the strategic road network to meet economic and traffic growth targets

- Improve the Zilla Road network to enhance the connectivity to the growth centers
- Improve road safety and reduce road accidents
- Provide environmental and social protection
- Outline the institutional improvements required for RHD
- b) Some key issues

The development of RMP is based on several key issues addressing the existing problems faced by the road and bridge network. Some of the key issues on road network maintenance/development are listed below:

- i. The strength of national and regional highway network is largely affected by inadequate maintenance
- ii. Vehicle overloading considerably deteriorates the target life span of road/bridge strength
- iii. The operation of national highway network is severely affected by poor local traffic management.
- iv. Zilla road network is not fulfilling its role in rural connectivity and has also suffered from lack of maintenance.
- v. Bridges that have not been properly maintained will shortly need replacement, or major repairs
- vi. Traffic is expected to increase by a factor of at least three over the next 20 years, and accordingly, the major strategic corridors require increases in traffic capacity.

In addressing the above issues, RMP has prepared road sector policy and subsequently their implementation plans which are stated hereunder in Table 2.1.2.

Road Sector Policy	Implementation plan
Govt. will create Road Fund and autonomous Board	Government had already decided to promulgate Road Maintenance Fund
RHD road network to be maintained to a set of agreed	Target to upgrade network in accordance with "Geometric Design Standards of RHD"
standards	
All roads under RHD to be placed under routine maintenance	a) For national highways,
contracts	 Three-year contracts of total length 150 km, and seven/eight contracts to be let annually
	- Executive Engineer
	b) For regional and Zilla roads (3 options)
	 Annual contract for 40 km road and Sub-divisional Engineer is responsible for supervision
	 - 330 km road under contract and Sub-divisional Engineer from respective division is responsible for supervision
	 - 1,200 km road under contract and Executive Engineer from respective circle is responsible for supervision
RHD to install 18 weighbridges across the country	 Locations are selected on major roads where traffic volume is high, on roads where trucks routinely carry heavy goods
	 Moreover, police is empowered to stop and weigh vehicles, and equipped with portable weighing pads
The Zilla road network will be rehabilitated over the next ten years to ensure minimum	 All growth centers, Upazilla headquarters, land and sea ports should have all weather year round vehicular access
accessibility level	 Zilla road is prioritized on the basis of road condition, socio-economic score, and included for implementation under Zilla road program which is reviewed at every five years
Bridges in poor condition will be replaced or undergo major works	 2,091 Bridges with minor damage ("Category B") are considered as repairable to bring their status up to A condition.
to ensure safety and access over the next 10 years	- 418 bridges with major damage ("Category C") should be repaired.
	 133 bridges with major damage, narrow carriageway ("Category D") should be replaced.
All narrow bridges (less than 7.3m) on National Highways will	 18 bridges on national highways and 108 bridges on regional highways are undertaken into narrow bridge replacement program
be replaced over next 20 years by bridges having at least 7.3m carriageway	 A Bridge Replacement Program (BRP) project replacing narrow bridges on mainly Zilla roads began in 2003-04.
All Portable Steel Bridges (PSB) will be replaced by permanent structures over next 20 years	 262 bridges on highways (D category=62, and C category=200) are undertaken into PSB replacement program
Regular bridge maintenance will	- A comprehensive bridge survey is recommended to update BCS database
be introduced and enhanced	 A maintenance manual for different types of bridge structures should be prepared
	 Maintenance should be given high priority and separate provision of budget shall be made

Table 2.1.2 Role of RMP to Implementing the Road Sector Policy

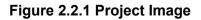
Source: RMP (2009)

2.2 Review of Relevant Projects

2.2.1 Project for Provision of Portable Steel Bridges on Upazila and Union Roads

(1) General Information

This Project was implemented as a Japanese Grant Aid Project. Objective of the Project is to improve the road network in these rural areas. Approximately 80% of the entire population is living in these areas. Steel superstructures of the road bridges were provided in the Project.


The responsible organization of the Project was Local Government Division (hereinafter referred to as LGD), Ministry of Local Government Rural Development and Cooperatives (hereinafter referred to as MoLGRD&C). And the implementing agency was Local Government Engineering Department (hereinafter referred to as LGED).

The Project was implemented in three (3) phases under LGED as stated below. Another similar project for national, regional, and zilla roads was also implemented under RHD, Ministry of Road Transport and Bridges (hereinafter refer to as MORTB).

- Phase 1 : 74 bridges by LGED in 1994-1996
- Phase 2 : 80 bridges by LGED in 2000-2003
- Phase 3 : 92 bridges by LGED in 2010-2012
- Similar : 76 bridges by RHD in 2001-2004

Source: JICA Survey Team

(2) Project Data

Portable steel truss bridges were constructed in the Project. Responsibilities of GOJ and GOB were as follows:

- GOJ: Procurement of superstructures (steel bridge)
- GOB: Construction of substructures and approach roads, and erection of superstructure

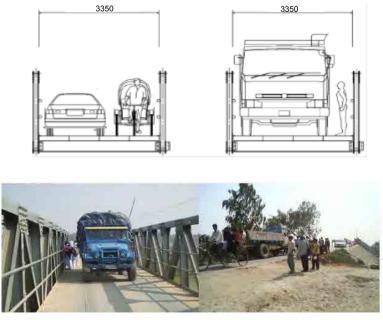

	Implementing	olementing No of Total Project Cost (mil. Yen)					Schedule
	Agency B		Length	GOJ	GOB	Total	Schedule
Phase 1	LGED	74 Br	3,445 m	1,503	533	2,036	1994-1997
Phase 2	LGED	80 Br	4,395 m	1,800	590	2,390	2000-2003
Similar	RHD	76 Br		950			2001-2004
Phase 3	LGED	92 Br *(4 Br)	4,885 m	1,971	657	2,628	2010-2012

 Table 2.2.1 Summary of the Projects

Note * including replacement of existing bridge

Source: JICA Survey Team

Effective width of the bridges is 3.35m. This narrow width has not been able to manage increased traffic volume in recent years. Such narrow bridges are prone to pedestrian-vehicle accidents.

Source: JICA Survey Team

2.2.2 Eastern Bangladesh Bridges Improvement Project (EBBIP)

(1) General Information

Objective of this project is to improve reliability of the road network by improving small and medium sized bridges in Eastern Bangladesh, and thereby to contribute to the advancement of the local economy, and to improve economic and social disparity among regions.

This project, financed by a Japanese ODA Loan, saw the improvement 63 bridges in Eastern Bangladesh (Dhaka, Chittagong, Comilla and Sylhet). The executing agency was RHD/MORTB. This project is comprised of following two major components:

- Improvement of 63 bridges in Eastern Bangladesh (Dhaka, Chittagong Comilla and Sylhet)
- Capacity Building of RHD: Improving the institutional capacity of RHD in bridge inspection and maintenance through improvement of the existing BMMS.

Source: JICA Survey Team

Figure 2.2.3 Project Image

(2) Project Data

The EBBIP is a similar project to the WBBIP. The EBBIP is summarized as follows:

- Loan Agreement (L/A): 2008
- Project Cost: Approximately 9.3 billion JPY (GOJ Portion: 7.8 billion JPY, GOB Portion: 1.5 billion JPY)
- Number of Bridges: 63 bridges (Constructed by 4 packages)
- Bridge Type: PCI Girder Bridge
- Contractor: Bangladesh Contractor for 3 packages, Indian Contractor for 1 package
- Project Period: Will be completed in March 2015

2.2.3 Kanchpur, Meghna, and Gumti 2nd Bridges Construction and Existing Bridges Rehabilitation Project

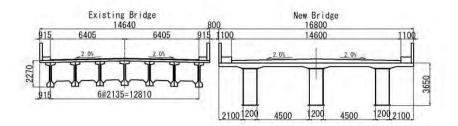
(1) General Information

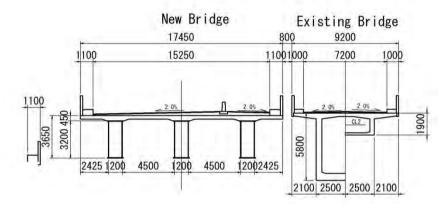
Since 2008, GOB has been widening National Highway No.1 (NH1) to 4 lanes along its entire length, with the exception of three existing large-scale bridges, namely Kanchpur Bridge, Meghna Bridge and Gumti Bridge. The objective of this project is to construct secondary bridges adjacent to each of these existing bridges, and also to rehabilitate existing three bridges. The project is implemented financed by Japanese ODA Loan (L/A signed Mar 2013). The executing agency is RHD/MORTB.

The existing Kanchpur, Meghna, Gumti bridges were constructed in 1997, 1991 and 1995 respectively, originally with earthquake design standard of seismic coefficients of 0.05, which was increased to 0.15 under the new standards defined by the Bangladesh National Building Code (BNBC) in 2006. This change shall be considered in design of the secondary bridges and rehabilitation of the existing bridges.

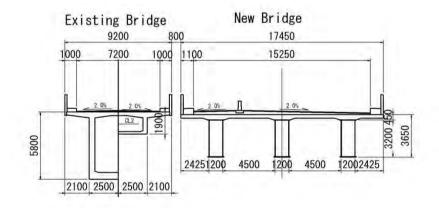
Steel bridges were selected for the secondary bridges mainly because of their light weight which is advantageous against earthquakes. A special rehabilitation method for the existing bridges was adopted to increase earthquake resistance. The number of lanes for the secondary bridges was decided based on the traffic demand forecast and assuming a new 4-lane expressway construction between Dhaka and Chittagong.

- Kanchpur Bridge (Length 396.5 m): Existing bridge (4-lane), New bridge (4-lane)
- Meghna Bridge (Length 930.0 m): Existing bridge (2-lane), New bridge (4-lane)
- Gumti Bridge (Length 1,410 m): Existing bridge (2-lane), New bridge (4-lane)


Source: JICA Survey Team


(2) Project Data

This project concerned the new construction of the secondary bridges and rehabilitation of existing bridges. A summary of this project is shown in Table 2.2.2. The total civil works cost including both GOJ and GOB portions is approximately 60,000 million JPY. Experience in the installation of steel narrow box girders and steel sheet piles is required in this project. Therefore construction by sufficiently-experienced foreign contractors is expected through the ICB procurement process.


• Kanchpur Bridge: 42.7 + 85.4 + 97.6 + 73.2 + 54.9 + 42.7 = 396.5 m (6 spans)

• Meghna Bridge: 48.5 + 9*87.0 + 73.5 + 25.0 = 930 m (12 spans)

• Gumti Bridge: (52.5 + 8*87.0 = 748.5) + (7*87.0 + 52.5 = 661.5) = 1,410 m (17 spans)

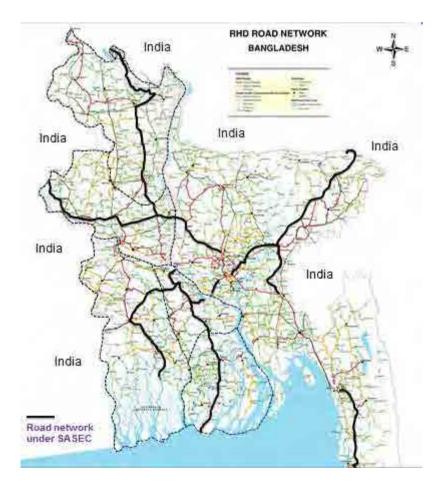
		New bridge		Existing Br.	Tota	Civil Work	Cost
	Br. Type	Width	Length	rehabilitation	GOJ	GOB	Total
Kanchpur	Steel narrow box girder	el narrow 17.45 m 930 m		<u>Repair</u> (cracks/rebar, connecting			
Meghna	Steel narrow box girder			girders, center hinge)	36,999	24,120	60,299
	01	17.45 m	1,410 m	Strengthening	Mil. JPY	Mil. TK	Mil. JPY
Gumti	Steel narrow box girder	(4-lane)	(17-span)	(deck, piers, foundation, fall-safe connection)			

Table 2.2.2 Summary of the Projects

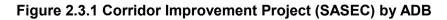
Source: JICA Survey Team

2.3 Bridge Rehabilitation/Reconstruction Project by Other Donors

It was confirmed that eleven (11) bridges are under construction/rehabilitation or scheduled to be constructed/rehabilitated using funding from the Chinese government, or GOB itself, under its Periodic Maintenance Program (PMP) and Annual Development Program (ADP), as shown in Table 2.3.1. PMP, which handles reconstruction, rehabilitation and repairing of bridges and culverts, was started in 2005 – 2006, with financing from the Japan Debt Cancellation Fund (JDCF).


These bridges under PMP, ADP or Chinese-funded projects have been removed from consideration as candidate bridges to be improved under WBBIP.

Furthermore, another feasibility study on corridor improvement is ongoing under South Asia Subregional Economic Cooperation (SASEC) project by ADB. The study area of SASEC project is shown in Figure 2.3.1. The SASEC project is still in the feasibility stage, and no specific plans have been set out. Therefore any bridges that overlap with SASEC project are not to be removed from consideration as candidate bridges to be improved under WBBIP.


Table 2.3.1 Bridge Rehabilitation/Reconstruction Projects by GOB and China Fund

Bridge ID	Zone	Division	Description	N8 Baligaon Reverbanch
N8_200c	Barisal	Patuakhali	Under construction by PMP	Sadarpur
Z8806_46a	Barisal	Patuakhali	Included in PMP (2013-2014)	
N8_096a	Gopalganj	Madaripur	Included in PMP (2013-2014)	78072
R860_21a	Gopalganj	Shariatpur	Overlapped by China fund	Noyanagar
Z8404_002a	Gopalganj	Faridpur	Included in PMP (2013-2014)	Shibchar (28065)
N8_098a	Gopalganj	Madaripur	Included in PMP (2013-2014)	
R860_17a	Gopalganj	Shariatpur	Overlapped by China fund	ZB602 Gorishar Z1402
R860_17d	Gopalganj	Shariatpur	Overlapped by China fund	Ma San Ma
N708_1a	Khulna	Jessore	Under constrction by ADP	Bangladesh-China friendship bridge Chandpur
Z5452_27b	Rajshahi	Naogaon	Under ADP	Mada
Z6809_7a	Rajshahi	Rajshahi	Included in PMP (2013-2014)	1/0 R860 R860
				บamugya (มางศาสติ) 76603
				Alkini C Meghna

Source: RHD

Source: RHD edited by JICA Survey Team

2.4 Roads and Bridges in Bangladesh

2.4.1 Introduction

(1) Roads

The road network consists of six road categories: National Highways, Regional Highways, Zilla Roads, Upazila Roads, Union Roads and Village Roads. The Road and Highways Department (RHD), under the Ministry of Road Transport and Bridges (MORTB) of Bangladesh, manages 21,453 km of roads including National Highways, Regional Highways, and Zilla Roads (see Table2.4.1). The total road length managed by RHD makes up 8% of the total road network in Bangladesh. The density of National Roads is 15 km per 100 km² of land and 144 km / 1 million people. The Project area (Western Bangladesh) has approximately 7000 km of RHD-managed roads.

Road Class	Definition	Length (km)	Operator
National Highways	Highways connecting National capital with Divisional HQ's or sea ports or land ports or Asian Highway.	3,569.09	RHD
Regional Highways	Highways connecting District HQ's or main river or land ports or with each other not connected by National Highways.	4,222.36	RHD
Zilla Roads	Roads connecting District HQ's with Upazilla HQ's or connecting one Upazilla HQ to another Upazilla HQ by a single main connection with National/Regional Highway, through shortest distance/route.	13,169.48	RHD
	Sub-Total	20,960.93	
Upazila Road	Roads connecting Upazila HQs with growth center with another growth center by a single main connection or connecting growth center to higher road system through shortest distance/route	37,335	LGD
Union road	Roads connecting Union HQs with Upazila HQs, growth centers or local markets or with each other	44,202	LGD
Village Road	a) Roads connecting villages with Union HQs local markets, farms and ghats or with each other. b) Roads within a village	222,842	LGD
	Total	325,968	

Source: RHD website, LGED website

As of 2014

(2) Bridge and Other Structures

The number of structures on the RHD road network (National highways, regional highways and Zilla roads) has increased dramatically since 1991. The number of road structures in the

last 20 years is shown in Table 2.4.2. The number of structures managed by RHD in 2013 is 21,482 which is approximately seven times the number in 1991.

	No. of o	culverts and b	oridges	No. of Bridges					
	1991	2006	2013	1991	2006	2013			
National Highways	1,012	3,617	4,345	-	864	819			
Regional Highways	302	3,535	4,118	-	846	741			
Zilla Roads	1,843	7,560	13,029	-	2,083	2,292			
Total	3,157	14,712	21,492	-	3,793	3,852			

Table 2.4.2 The Number of Road Structures on RHD Road Network

Source: Road Master Plan (2009), BMMS database, RHD website, SAPROF Report on EBBIP and EBBIP Bridge condition survey

2.4.2 Important Corridors and Zones

(1) Asian Highways

The Asian Highways (AH) project was initiated in 1959 with the aim of promoting the development of international road transport in the region. Presently, AH network covers 141,000 km of roadways traversing 32 Asian countries, even having linkages to Europe.

Source: United Nation ESCAP Website: http://www.unescap.org/TTDW/index.asp?MenuName=AsianHighway

Figure 2.4.1 Asian Highway Network

GOB has acceded to the Asian Highway Network on 8 November, 2009 to connect the country with 28 countries. The total length of AH Network in Bangladesh is 1,761 km. There are 3 routes in Bangladesh; two routes are considered international trade routes and one route is considered a sub-regional route. The following is a summary of the 3 AH routes in Bangladesh:

International Routes:

(i) Route AH-1:

Benapole–Jessore–Narail–Bhatiapara– Mawa–Dhaka–Katchpur–Sarail–Sylhet– Tamabil (length 495 km)

(ii) Route AH-2:

Banglabandh–Panchagarh–Rangpur–Bogra–Hatikamrul–JamunaBridge–Tangail–Dhaka–Katchpur–Sarail–Sylhet–Tamabil (length 805 km including 283 kmwhich is overlapped with AH1)

Sub-Regional Routes:

(i) Route AH-41:

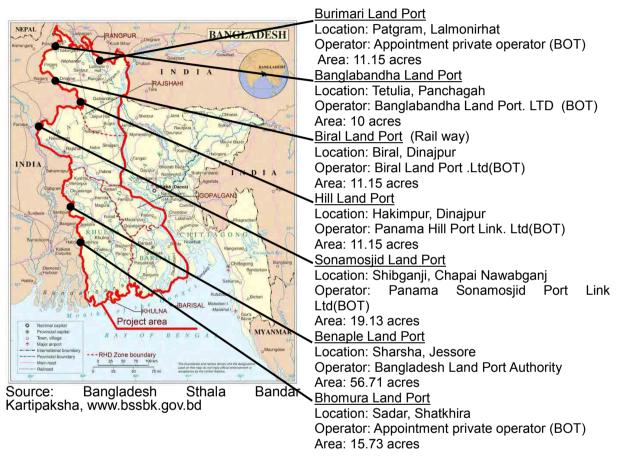
Mongla Port–Jessore–Bonpara– Hatikamrul–Katchpur–Comilla– Chittagong–Cox's Bazar–Teknaf Myanmar Border (length 752 km)

Source: STATUS PAPER ON ASIAN HIGHWAY BANGLADESH, MORTB

Figure 2.4.2 Asian Highway Network in Bangladesh

(2) Corridor to India

Bangladesh and India share a land border of 4,094 km and have an intimate relationship. The two countries are undertaking strategic partnerships in developing regional infrastructure, greater trade, environmental protection, energy, and cultural relations.

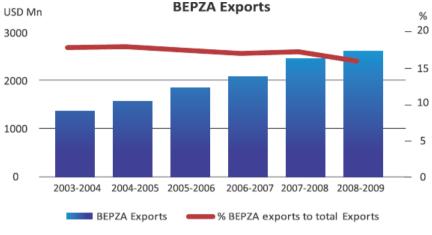

India is major trading country for Bangladesh, ranking second for import and sixth for export. The two-way trade in FY 2011-2012 was US\$5.242 billion (with imports from India accounting for US\$4.743 billion and exports to India accounting for US\$498 million), an increase of 150% since 2005-2006. Table 2.4.3 Trade Performance between Bangladesh and India shows the trade between the two countries in the last six years.

Financial ye (July to June	05-06	06-07	07-08	08-09	09-10	10-11	11-12
Imports from I	ndia 1,864.	7 2,268.0	3,364.0	2,841.1	3,202.0	4,586.8	4,743.3
Export to Inc	lia 242.	0 289.4	358.1	276.6	305.0	512.5	498.4
Total trade	2,106.	7 2,557.4	3,722.1	3,117.6	3,507.0	5,099.3	5,241.7

Source :Bangladesh Bank

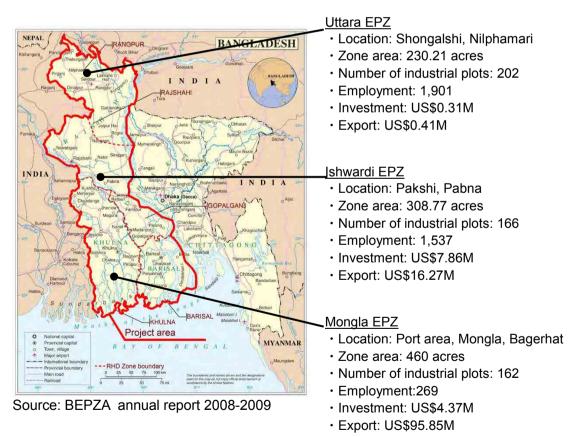
Figures in US\$ million

The project area has seven corridors to India (comprised of one railway and six highways), all of which are important trunk roads.



(3) Export Processing Zones (EPZs)

In order to stimulate economic growth of the country, particularly through industrialization, the GOB has adopted an 'Open Door Policy' to attract foreign investment in Bangladesh. The Bangladesh Export Processing Zones Authority (BEPZA) is an official organization of the government to whose task is to promote, attract and facilitate foreign investment in all of the Export Processing Zones (EPZs) of the country. The effect of EPZs on exports is shown in Figure 2.4.4. During past 10 years, BEPZA's export has increased every years, and its annual average contribution to national export stands at 17.23%. EPZs have an impact on national economy. Improvement of the transportation route to EPZs in a timely manner is


very important in Bangladesh.

Source: BEPZA annual repot 2008-09

Figure 2.4.4 The Trend of EPZs Performance

There are eight EPZs (existing or planned) nationwide, three of which are located in the Project area. The location of EPZs in the Project area is shown in Figure 2.4.5.

Figure 2.4.5 The Overview of EPZs in Western Bangladesh

(4) Special Economic Zones (SEZs)

GOB has been involved in the development of eight EPZs. However, there are several issues

relating to these EPZs:

- The major EPZs are almost at capacity.
- Due to companies inside EPZs not having relationships with domestic industries outside EPZ, these domestic industries receive little impact in terms of development and skills transfer.
- GOB has no financial leeway to invest in development of new industrial parks.

In light of this situation, GOB has decided to suspend the development of new EPZ and to establish thirty Economic Zones throughout the Nation. In 2012, BEZA, which is responsible for the development and operation of Special Economic Zones (SEZs), chose 7 candidate sites out of 30 long-listed

Source: Data Collection Survey on the Special Economic Zones in the People's Republic of Bangladesh, JICA

Figure 2.4.6 The Location of SEZs Candidate Site in Western Bangladesh

candidates, and they plan to conduct a Preliminary Feasibility Study.

In Western Bangladesh, there are 2 short-listed candidate SEZs, namely Sirajganj and Mongla.

2.4.3 Traffic Volume Growth by Road Type

The traffic volume growth rate for each road type, i.e. national roads, regional roads and Zilla roads, was estimated based on the traffic count survey result in 2004 - 2014 by RHD.

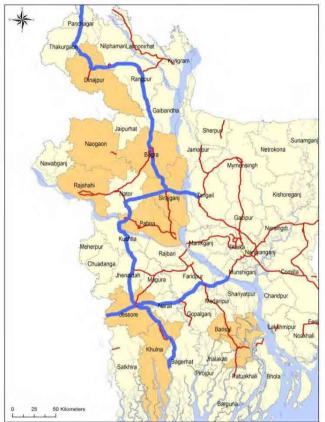
The average annual traffic volume growth rate for each road type is shown in Table 2.4.4 Average Annual Traffic Volume Growth Rate.

No. or	Traffic Volume Growth Rate (%/year)									
Year	National Roads	Regional Roads	Zilla Roads							
2004 - 2014	6.25	5.62	5.15							

Table 2.4.4 Average Annual Traffic Volume Growth Rate

Source: JICA Survey Team

The traffic volume on national roads has the highest growth rate, followed by regional roads,


then Zilla roads. It can be said that national roads are the most important roads, and requires the upgrade or improvement according to the increase of traffic volume.

2.4.4 Local Community Activity

There are 37 districts in Western Bangladesh. Local community activity as well as national economic activity should be considered when planning the infrastructure development.

Nine of these districts (namely Barisal, Bogra, Dinajpur, Jessore, Khulna, Naogaon, Pabna, Rajshahi and Sirajganj) are economically dynamic with GRDP of more than 800 million BDT (see Figure 2.4.7).

Enhancement of the road network will contribute to the local community and economic growth.

Source: JICA Survey Team

Figure 2.4.7 High GRDP District in Western Bangladesh

2.5 Bridge Conditions in Western Bangladesh

2.5.1 Bridge Condition Survey

(1) Bridge Maintenance Management System (BMMS)

Established in 2006, the Bridge Maintenance Management System (BMMS) is an application-based database on the management of information regarding all structures undertaken by RHD. BMMS is an integral part of the RHD Management Information System as it establishes transparency for all bridge projects handled by RHD. The BMMS application has direct links to all major RHD databases, including the Contract Monitoring System database, Road Maintenance Management System database, and the Project Monitoring System Database.

In order to assess the need of repair, rehabilitation and reconstruction of bridges, RHD adopted a simple but effective way of reporting the condition of bridges/structures. This method is set out in their Bridge Condition Survey (BCS) Manual. Accordingly, RHD conducted Bridge Condition Surveys for culverts and bridges on all types of roads to assess their damage condition. The existing condition of the classified structures is divided into four categories:

- Category A: Good
- Category B: Minor Element Damage
- Category C: Major Element Damage
- Category D: Major Structural Damage

From the damage description of damage categories "C" and "D", it appears that category "C" is used when the repair or replacement are restricted to limited structural components, while for category "D", repair or replacement is to be carried out for the entire structure.

Most of the data was obtained from 2004 to 2006. The BMMS database lists 4517 bridges, 1730 of which are located in Western Bangladesh. The result of bridge condition survey is shown in Table 2.5.1.

Table 2.5.1 Bridge C	Condition	Category in BM	IMS
----------------------	-----------	----------------	-----

Damage		A	ł			J	3			С				D			
Zone	Ν	R	Z	Σ	N	R	Z	Σ	N	R	Ζ	Σ	N	R	Ζ	Σ	
Barisal	28	15	212	255	9	4	28	41	10	6	46	62	4	0	16	20	
Gopalganj	35	22	102	159	8	12	27	47	22	2	42	66	6	2	15	23	
Khulna	22	61	100	183	9	9	27	45	9	20	49	78	0	2	27	29	
Rajshahi	47	20	110	177	10	6	44	60	12	11	45	68	4	12	14	30	
Rangpur	37	15	192	244	11	3	40	54	11	7	38	56	4	4	25	33	
Total	169	133	716	1,018	47	34	166	247	64	46	220	330	18	20	97	135	
															Total	1,730	

Western Bangladesh

Eastern Bangladesh

Damage		A	A		-	В				(2		D			
Zone	N	R	Ζ	Σ	Ν	R	Ζ	Σ	Ν	R	Ζ	Σ	N	R	Ζ	Σ
Chittagong	71	53	211	335	52	25	41	118	67	56	119	242	6	11	41	58
Comilla	24	11	197	232	18	24	94	136	15	45	144	204	2	9	65	76
Dhaka	83	47	198	328	56	36	107	199	60	122	143	325	7	34	61	102
Sylhet	71	63	97	231	21	32	28	81	16	45	36	97	2	4	17	23
Total	249	174	703	1,126	147	117	270	534	158	268	442	868	17	58	184	259
															Total	2,787

Source: BMMS database, RHD, www.rhd.gov.bd

(2) Survey in the Eastern Bangladesh Bridge Improvement Project (EBBIP)

GOB/RHD is currently implementing the Eastern Bangladesh Bridge Improvement Project

(EBBIP), financed by a Japanese ODA Loan. One of the EBBIP objectives is to improve the RHD's BMMS and to provide technical assistance for enhancing the RHD's bridge inspection and maintenance capability. As part of the project, the EBBIP team conducted a bridge condition survey to update the existing BMMS inventory. The survey, which was held from February to October, 2013, covered all RHD's bridges on national roads, regional roads and Zilla roads. The survey did not cover box culverts or slab culverts.

The EBBIP bridge condition survey was conducted for 4,480 structures thought to be bridges. However, it was found that many of these structures were other kind of structures such as box culverts that had been misclassified as bridges by the BMMS database, and there were in fact only 3,832 bridges. Of these bridges on the RHD road network, 1,539 are in Western Bangladesh. The result of the bridge condition survey is shown in Table 2.5.2.

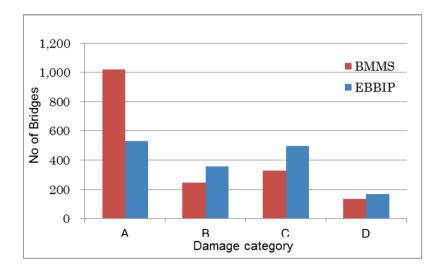
Table 2.5.2 Bridge Condition Category in EBBIP Bridge Condition Survey

Western Bangladesh

Damage		A	1			В				С				D			
Zone	N	R	Ζ	Σ	Ν	R	Z	Σ	N	R	Ζ	Σ	N	R	Z	Σ	
Barisal	11	11	75	97	10	8	51	69	6	4	120	130	1	0	26	27	
Gopalganj	38	12	64	114	15	3	29	47	16	4	44	64	6	4	26	36	
Khulna	17	32	32	81	10	24	46	80	11	18	58	87	6	4	26	36	
Rajshahi	15	16	56	87	31	9	32	72	21	10	74	105	10	3	29	42	
Rangpur	28	17	103	148	20	8	61	89	14	81	5	100	5	3	40	48	
Total	109	88	330	527	86	52	219	357	68	117	301	486	28	13	128	169	
															Total	1.539	

Eastern Bangladesh

Damage		A	ł			В				С				D			
Zone	Ν	R	Ζ	Σ	Ν	R	Z	Σ	Ν	R	Ζ	Σ	Ν	R	Z	Σ	
Chittagong	61	42	111	214	43	28	67	138	39	32	94	165	12	17	84	113	
Comilla	21	21	114	156	26	25	119	170	10	19	84	113	3	13	40	56	
Dhaka	109	53	134	296	78	61	118	257	13	43	105	161	1	20	65	86	
Sylhet	62	42	42	146	39	31	68	138	10	19	41	70	1	4	9	14	
Total	253	158	401	812	186	145	372	703	72	113	324	509	17	54	198	269	
															Total	2,293	


Source: EBBIP bridge condition survey

2.5.2 Analysis of Bridge Conditions in Western Bangladesh

(1) Evaluation from Bridge Inventory Data

The condition of bridges in Bangladesh has been worsening due to the limited maintenance budget as well as lack of technology/experience in bridge rehabilitation.

The number of bridges in Western Bangladesh categorized by damage level in both BMMS data base and EBBIP data base is shown in Figure 2.5.1. Number of bridges categorized B, C and D has increased, although that of A has decreased from 2004-2006 (the year of the BMMS survey), to 2013 (the year of the EBBIP).

This result shows that the damage of bridges has been progressing in Western Bangladesh.

Source: BMMS database, RHD, www.rhd.gov.bd, EBBIP bridge condition survey

Figure 2.5.1 Comparison of Damage Level between BMMS and EBBIP

(2) Current Conditions of Existing Bridges

The following summarizes current conditions of existing bridges in Bangladesh:

1) Temporary (Bailey) or Narrow Bridges

Temporary (Bailey) bridges have been constructed with limited truck load capacity of 10-15 tons, and therefore cannot bear the recent increased truck load of 20 tons. Furthermore, these bridges have thin steel deck plates or even timber floors which are easily damaged by repeated truck loading, and they have been left in hazardous conditions without sufficient maintenance.

Many of these Bailey bridges are only one-lane, providing enough space for vehicles to pass each other, which causes traffic bottlenecks. The bridges that are two-lane have narrower widths than their approach roads, which is known to cause high speed vehicles to have traffic accidents on national roads.

2) Old Bridges

There remain many old bridges with weak reinforced concrete structures, most of which were constructed in 1960s. These bridges were designed for a small truck live load of HS-14 and a small earthquake strength of 0.05 (the updated earthquake design code requires 0.075-0.25). Therefore these bridge structures seem top-heavy and very weak to earthquakes and increased truck live loads.

These old bridges have had no rehabilitation works and thus their current conditions are very dangerous for future increasing traffic or medium-sized earthquakes. Their floor beam structures and sub structures have been damaged so severely that it appears they could collapse at any time. These old bridges shall be replaced with great haste.

3) Severe Damage on Deck Slabs

Deck slabs incur visible damage the most quickly of all bridge component s (due to receiving direct vehicle load); therefore damage on deck slabs is a key indicator for bridge diagnosis. Even though the rehabilitation of deck slabs is quite a straightforward process, not much of it has taken place in Bangladesh due to a lack of maintenance budget. In most of these bridges, the damage condition of deck slabs seems to have progressed so much that rehabilitation works will no longer be effective, and now the only solution is replacement.

4) Insufficient Clearance for Rivers

In several cases, water flow of rivers is inducing scouring on bridge substructures due to insufficient bridge length. Additionally, the vertical clearance for water under the bridge may be insufficient, and bridge girders close to the water are subjected to material deterioration on concrete and steel surface.

When designing new bridges on the water, sufficient bridge length and vertical clearance are required to maintain bridges for their design lives. In order to apply weathering steel, sufficient vertical and horizontal distance from the water surface shall be kept so as to develop stabilized rust on the steel surface.

2.6 Necessity of the Project

The implementation of the Project (i.e. the WBBIP) is important and necessary from the following points of view.

2.6.1 Conformity with Upper Level Plan

(1) Vision 2021

In Vision 2021, it is declared that a highway network will be built to connect the SAARC countries, Nepal, Bhutan, and Eastern India with Bangladesh, and that through the Asian Highway network, trade with Myanmar, South Western China and Thailand will be energized.

To achieve this goal of Vision 2021, it is vital to enhance the road network, which includes the improvement of bridges, especially in the Asian Highway network.

(2) Sixth Five-Year Plan (6FYP)

In 6FYP, it is declared that RHD objectives necessary to achieve the road sector vision are:

- To develop and manage strategic road corridors to underpin the economic development of all regions of the country and contribute to the Government's poverty reduction objectives.
- To link all rural areas with the national road network to provide basic social access and promote "pro-poor growth".

In order to achieve the above RHD objectives, it is very important to provide a reliable road network including feeder roads such as Zilla roads as well as national roads and regional roads.

There are many temporary bridges and narrow bridges on Zilla roads. Bridges on these roads should be improved since they tend to act as bottlenecks in the network.

(3) National Land Transport Policy (NLTP)

The bridge policy of NLTP sets the widening of bridges on national roads (incorporating nonmotorized vehicle lane where demand exist) as a priority program.

Some bridges on national roads as well as regional roads and Zilla roads in Western Bangladesh do not have the required carriageway width (at least 7.3m). These bridges

should be improved in order to provide smooth traffic flow and ensure road safety.

(4) Road Master Plan, RMP (2009)

RMP formulated its road sector policy in response to the existing problems it is dealing with in regards to its roads and bridges. RMP's major road sector policy is as follows:

- Bridges in poor condition will be replaced or repaired.
- All narrow bridges on National Road will be replaced.
- All portable steel bridges will be replaced by permanent structures.
- Zilla road network will be rehabilitated.

Objectives of the Project, Western Bangladesh Bridges Improvement Project (WBBIP), are consistent with above road sector policy.

The Project should be implemented based on the road sector policy, following the EBBIP.

2.6.2 Not Enough Projects by Other Donors

Some bridges will be improved using funds from other donors such as Chinese government and GOB's own programs, PMP and ADP. A study to improve the road network is ongoing under SASEC financed by ADB.

However, these projects are not enough to develop the efficient road network or to provide safety for the bridges in Western Bangladesh, since approximately 700 bridges are categorized as C (major element damage) or D (major structural damage).

2.6.3 Securing Good Traffic Condition of Asian Highway

As stated in Vision 2021, it is very important to secure the good traffic conditions in the Asian Highway network which connects neighboring countries with Bangladesh, in order to achieve the ultimate goal of becoming a middle-income country.

However, there are many damaged or narrow bridges in the Asian Highway network in Western Bangladesh. These bridges tend to act as bottlenecks in the network, and thus should be improved.

2.6.4 Securing Good Traffic Condition of Important Corridor

(1) Corridor to India

There are seven corridors with India in Western Bangladesh, including one railway and six highways. As India is major trading country for Bangladesh, it is very important to secure good traffic conditions in these corridors

However, there are many damaged and/or narrow bridges on corridors with India in Western Bangladesh. These bridges act as bottlenecks in the network. Improvement of the bridges in the Project shall improve traffic conditions in these corridors, which in turn will contribute to the economic growth of Bangladesh.

(2) Corridor to EPZs and SEZs

There are three EPZs in Western Bangladesh. In addition, GOB has decided to establish thirty economic zones through the Nation, suspending the development of new EPZs, since EPZs have several issues such as full capacity and little impact on domestic industries.

In Western Bangladesh, there are two short-listed candidate SEZs.

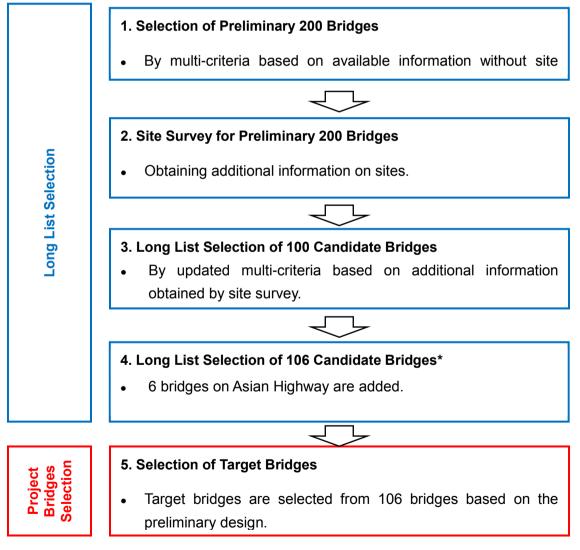
As with the corridors with India, there are some bottleneck bridges on the corridors to EPZs and SEZs. In order to promote the economic growth of Bangladesh, it is very important to ensure good traffic conditions in corridors to SEZs and EPZs through the improvement of the bridges in the Project.

2.6.5 Damage Progression of the Bridge

The conditions of bridges were evaluated in 2006 by BMMS and in 2013 by EBBIP. In the 7 years from 2006 to 2013, the number of bridges categorized as B (minor element damage), C (major element damage) and D (major structural damage) has increased, and the number categorized as A (not damaged) has decreased.

This damage progression implies the importance of the adequate maintenance of the existing bridges, and the necessity of improvement of the bridges which are seriously damaged, such as bridges categorized as D. Approximately 200 bridges are categorized as D in Western Bangladesh at present.

2.6.6 Increase of Traffic Volume


In the 10 years from 2004 to 2014, traffic volume has increased at a rate of 6.25% p.a., 5.62% p.a. and 5.15% p.a. for national roads, regional roads and Zilla roads, respectively.

Road transport is becoming increasingly important among all transport modes. It is very important to provide good traffic conditions in the road network, especially of National Road.

3. SELECTION OF PROJECT BRIDGES

3.1 Selection Approach

Project bridges are selected from approximately 1,700 bridges operated and maintained by RHD in Western Bangladesh. Selection procedure is divided into 2 steps, namely "Long List Selection of Candidate Bridges" and "Selection of Project Bridges", as shown in Figure 3.1.1.

* 6 bridges were added to "Long List of 100 Candidate Bridges" based on the discussion with MORTB as well as RHD.

Source: JICA Survey Team

Figure 3.1.1 Procedure for Project Bridges Selection

3.2 Selection of Preliminary 200 Bridges

3.2.1 Dropping from Candidate List

From approximately 1,700 candidate bridges in Western Bangladesh, bridges fitting the following criteria were dropped from the candidate list.

- Bridges whose length is less than 20m
- Box culverts (not bridge)
- Bridges to be constructed under funding from other external donors such as ADB, WB, etc., or under funding from GOB itself
- Bridges located in national parks, wildlife sanctuaries and world heritage sites

As a result, the candidate list was narrowed down to approximately 1,000 bridges.

3.2.2 Multi-criteria

200 bridges were selected from the remaining 1,000 using the following multicriteria selection process.

- Each evaluation item is assigned a weight, varying from 5 to 50
- Each bridge is evaluated for each evaluation item, receiving a score of 0, 2, or 4.
- The total score of each bridge is the sum of weight x score for each evaluation item, with a maximum score of 1000.

The weight of evaluation items is classified into 3 levels: high weight, middle weight and low weight. The weight of each evaluation item is shown in Table 3.2.1.

Weigh	t	Item	Note
	50	Traffic volume on the route (Bridge on the important route)	 It is very important to ensure the good traffic conditions for highly-utilized bridges. National roads have the highest traffic volume.
High weight	50	EBBIP damage level (Degree of damage and structural deficit)	 Highly-damaged bridges should be improved as a priority.
weight	40	Lack of traffic lane	 It is very important to ensure enough traffic lane width on bridges, since bridges having insufficient width become bottlenecks. Such bridges should be considered for improvement even if the damaged condition is not bad.
	30	Recommendation by RHD	- Recommendation by management agency should be considered.
Middle weight	20	Corridor to India (Bridge on the important route)	- It is important to ensure the smooth traffic flow in corridors to India, since the export and import trade with India is important to promote economic activity in Bangladesh
	20	Bridge type (Degree of damage and structural deficit)	- Temporary bridges should be considered for improvement even if the damaged condition is not bad.
	10	Other foreign business activities (Impact on business activity)	 There are some foreign industries in Rangpur and Ishwardi. It is important to ensure the smooth traffic flow in corridors to such areas to promote foreign industry's as well as economic activities in Bangladesh. This evaluation item should be considered even though it is assigned low weight.
Low	10	Population (Necessity of community activity)	- Local community activity as well as national economic activity should be
weight	10	GDP (Necessity of community activity)	 considered. These evaluation items should be considered even though they are assigned low weight.
	5	Corridor to planed SEZs (Impact on business activity)	- It is important to ensure the smooth traffic flow in corridors to SEZs and
	5	Corridor to existing EPZs (Impact on business activity)	 EPZs to promote Bangladesh economic activity. These evaluation items should be considered even though they are assigned low weight.

Table 3.2.1 Evaluation Item and Weight

Source: JICA Survey Team

Multi-criteria for selecting preliminary 200 bridges are shown in Table 3.2.2.

Ite	em		Weight	Point		Criteria		
1. Recommendati			30	4		ed bridges by RHD		
	on by	RHD	30	0	Other bridge	S		
	2.1	Traffic		4	on National r	oad		
		volume on	50	2	on Regional	road		
		the route		0	on Zilla road			
					Burimari	N5,N,405,N506,N509		
					Banglaban dha	N5,N405		
2. Bridge on the important					Hili	N5,N405,R550,R585,Z5503 ,Z5507,Z5509,Z5854,Z5855		
route	2.2	Corridor to	20	4		,Z5856		
		India	20		Sonamasjid	N6,N507,R680,Z6801,N405		
					Benapole	N7,N8(To Madaripur), N702,N706,N804		
					Bhomra	N7,N8,N702,N804,R755,R7 60,Z7062		
				0	Other roads			
	3.1	Corridor to		4	Sirajganj	N405,R450,R451		
		planed	5	4	Mongla	N7,N8,N702,N709		
		SEZs		0	Other roads			
					Uttara	N5,N6,N7,N405,N502,N704 ,R570		
3. Impact on	3.2	Corridor to existing	5	4	Ishwardi	N6,N405,N507,R680,N704, N705,Z6801		
business activity		EPZs	-		Mongla	N7,N8,N702,N709,R850,R8 56		
				0	Other road			
	3.3	Other foreign business activities			Rangpur	N5(To Rangpur),N405		
			10	4	Ishwardi	N6(To Baraigram), N405,N507N704,N705		
				0	Other Deede			
		activities		0	Other Roads			
		Demulation	10	4	≥2,000,000			
4. Necessity of	4.1	Population	10	2	· · · · ·	opulation≥1,000,000		
community				0	1,000,000	-		
activity	10		40	4	≥800mil BDT			
	4.2	GDP	10	2		·GDP≥400mil BDT		
	F 4			0	400mil BDT			
5. Degree of	5.1	EBBIP	50	4	Grade-D			
damage and	1	damage	50	2	Grade-C			
structural	F 0	level		0	Grade-A,B	(Tomporen (bridge))		
deficit	5.2	Bridge	20	4		e (Temporary bridge)		
	1	type		0	Other bridge			
				4	N: Carriagew			
				4	R: Carriagew			
			40		Z: Carriagew			
6. Lack of traffic lane		40	~	N: 6.2m≤Carriageway<7.3m				
		2	R: 5.5m≤Carriageway<7.3m					
			Z: 3.7m≤Carriageway<7.3m					
			Tatal	0	Carriageway	21.3		
			10tai =1,0	score				
Note: Bridges havin	a all o	f "not recomme			」)""Grade-A_B (of EBBIP damage level (Item 5.1)".		

 Table 3.2.2 Multi-criteria for Selecting Preliminary 200 Bridges

Note: Bridges having all of "not recommended by RHD (Item 1)", "Grade-A, B of EBBIP damage level (Item 5.1)", "not bailey bridge (Item 5.2)" and "having more than 7.3 m of carriage way (Item 6)" are dropped from the candidate list.

Source: JICA Survey Team

3.2.3 Selection of Preliminary 200 Bridges

As a result of the evaluation by the multi-criteria, the preliminary 200 bridges were selected as listed in Table 3.2.3.

	Ra	anp	ur				Raj	shał	ni			Gop	algo	nj			Ba	risa	I			K	huln	a	
	Ν	R		Z	Total		Ν	R	Ζ	Total		Ν	R	Ζ	Total		Ν	R	Ζ	Total			R	Ζ	Total
Bogra	2		0	9	11(10)	Natore	1	1	1	3(3)	Faridpur	9	0	3	12(9)	Barguna	0	0	4	4(4)	Bagerha t	4	1	1	6(4)
Dinajpur	3		1	6	10(7)	Naogao n	0	1	1	2(2)	Gopalga nj	0	0	1	1(1)	Barisal	7	0	7	14(9)	Chuada nga	0	1	0	1(0)
Gaiband a	2		1	2	5(4)	Nawabg anj	0	0	0	0	Madarip ur	5	0	0	5(3)	Bhola	0	6	1	7(4)	Jessore	4	0	0	4(1)
Joypurh at	0		2	0	2(2)	Pabna	7	0	0	7(6)	Rajbari	1	0	0	1(0)	Jhalokat i	0	0	13	13(13)	Jhenaid ah	3	0	0	3(0)
Kurigra m	0		0	1	1(0)	Rajshahi	0	2	2	4(3)	Shariatp ur	0	8	1	9(5)	Patuakh ali	2	0	11	13(11)	Khulna	0	2	0	2(1)
Lalmonir hat	3		0	0	3(1)	Serajga nj	11	2	2	15(12)						Pirojpur	0	0	17	17(14)	Kushtia	3	0	1	4(2)
Nilpham ari	1		0	6	6(4)																Magura	1	0	0	1(0)
Pancha garh	2		0	0	2(0)																Meherp ur	0	0	0	0(0)
Rangpur	5		0	2	7(5)																Narail	0	2	1	3(2)
Thakurg aon	1		0	0	1(0)																Satkhira	1	1	0	2(2)
Zone Total	19		4	26	49(33)	Zone Total	19	6	6	31(26)	Zone Total	15	8	5	28(18)	Zone Total	9	6	53	68(55)	Zone Total	16	7	3	26(12)
																					Total	78	31	93	202(144)

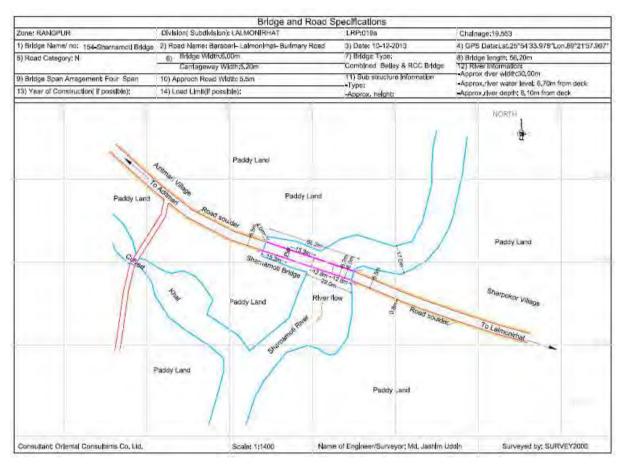
Table 3.2.3 List of Preliminary 200 Bridges

Note: () : Number of bridges recommended by RHD

Source: JICA Survey Team

3.3 Site Survey for Preliminary 200 Bridges

Site surveys were carried out for the selected 200 bridges in order to obtain additional information. This information was utilized to narrow the list down to the "Long List Selection of 100 Candidate Bridges".


Information obtained by the site surveys included the following:

1) Bridge and approach road specifications

- Road category
- Bridge width
- Bridge type
- Bridge length
- Bridge span arrangement
- Approach road width

- GPS data
- Year of construction (if possible for each bridge)
- Load limit (if possible for each bridge)
- 2) Sketches around the bridge site
- 3) Bridge photos from various angles
- 4) Photos and information of bridge damage

Sample of survey results are shown in Figure 3.3.1 to Figure 3.3.3.

Source: JICA Survey Team

	Photo Sheet of	the Bridge 1/3	APPENDIX 3-1
Zone Rangpur	Division (Sub-division) :Lalmonirhat	LRP:19a	Chainage : 19.553 (km)
1) Bridge Name: 154-Shamamoti Bridge	2) Road Name : Barabari Lalmonirhat- Burimary Road	3) Date & Time :10/12/2013; 09:00 am	4) GPS Data :Latitude:25° 54' 33.978'' Longitude:89° 21' 57.997''
Photo of the Bridge Photo ①		Photo	Photo ®
Photo (3)			Photo (s)

Photo Sheet of the Bridge 2/3

APPENDIX 3-2

Zone :Rangpur	Division (Sub-division): Lalmoninhat	LRP:19a	Chainage :19.553 (km)		
1) Bridge Name :154-Sharnamoti	2) Road Name : Barabari- Lalmonirhat- Burimary Road	3) Date & Time :10/12/2013; 09:00 am;	 4) GPS Data Latitude:25° 54' 33.978 Longitude:89° 21' 57.997" 		
Photo of the Bridge Photo ©	Pho Pho	to ⑦	Photo ®		
Photo @	Pho	bto ®	Photo ®		

Source: JICA Survey Team

Photo Sheet of the Bridge 3/3

APPENDIX 3-3 APPENDIX 4

1.	Description of Damages	(Present	Condition)	of the Bridge
----	------------------------	----------	------------	---------------

Damage of the Bridge (1/2)

Zone :Ra	mgpur.	Division (S	ub-division) :Lalmonirhat	LRP :19a		Chainage	e :19.553 (km)			
I) Bridge	e Name :154-Shamamoti	2) Road Na Burimary F	nne : Barabari-Lalmonirhat- load	3) Date &	z Time :10/12/2013; 09:00 am:	4) GPS Data 'Latitude:25° 54' 33.978" Longitude:89° 21' 57.997"				
1	Damage 1		Damage 2	N 1	Damage 3		Damage 4			
Damage Location	JSlab, Girder, Pier Abutment	Damage Location	∫Slab, Girder, Pier, Abutment	Damage Location	/Slab, Girder, Pier, Abutment	Damage Location	/Slab, Girder, Pier, Abutment			
Damage Type	For Concrete Structure Crack, Spalling, Rebar exposure Others () For Steel Structure Comosion, Missing bolt, //Deformed section Others ()	Damage Type	For Concrete Structure Crack, Spalling, Rebar exposure Others () For Steel Structure Corrosion, Missing bolt, //Deformed section Others ()	Damage Type	For Concrete Structure Crack, Spalling, Rebar exposure Others () For Steel Structure Corrosion, Missing bolt, //Deformed section Others ()	Damage Type	For Concrete Structure Crack, Spalling, Rebar exposure Others (For Steel Structure Corrosion, Missing bolt, /Deformed section Others (
Coments						A				

Damage of the Bridge (2/2)

Zone :Ra	ngpur	Division	(Sub-division) : Lalmonirhat	LRP :19a		Chainage	e :19.553 (km)		
1) Bridge Bridge	Name :154-Shamamoti	2) Road Burimar	Name : Barabari-Lalmonirhat- y Road	3) Date &	t Time :10/12/2013; 09:00 am;	4) GPS Data :Latitude:25° 54' 33.978" Longitude:89° 21' 57.997" Damage 12			
21	Damage 9		Damage 10		Damage 11				
Damage Location	Slab, Girder, Pier, Abutment, /Railing	Damage Location	Slab, Girder, Pier, Abutment, /Railing	Damage Location	Slab, / Girder, Pier, Abutment	Damage Location	Slab, Ginder, /Pier, Abutment		
Damage Type	For Concrete Structure Crack, Spaling, /Rebar exposure Others { } For Steel Structure Corrosion, Missing bolt, Deformed section Others { }	Damage Type	For Concrete Structure Orack, Spailing, Rebar exposure Others (Missing) For Steel Structure Corrosion, Missing bolt, Deformed section Others ()	Damage Type	For Concrete Structure Crack, Spalling, /Rebar exposure Others () For Steel Structure Corrosion, Missing bolt, Deformed section Others ()	Damage Type	For Concrete Structure Crack, Spalling, /Rebar exposure Others () For Steel Structure Corrosion, Missing bolt, Deformed section Others ()		
	1/25	7							

Source: JICA Survey Team

Figure 3.3.3 Sample of Survey Sheet (Photos and information of bridge damage)

The result of site survey for 200 bridges is shown in Appendix 1.1.

3.4 Long List Selection of 100 Candidate Bridges

100 Candidate Bridges were selected from 200 bridges by updated multi-criteria based on additional information obtained from site survey.

"Resettlement" was added as a new evaluation item in the updated multi-criteria. It was decided that bridges requiring the resettlement of more than 200 affected persons (APs) would be dropped from the candidate list. However, according to the site survey results, none of the 200 bridges require the resettlement of more than 200 APs, so no bridges were dropped as a result of this evaluation item.

Updated multi-criteria for selecting 100 bridge candidates is shown in Table 3.4.1.

lt	em		Weight	Point		Criteria			
1. Recommenda	tion h		30	4	Recommended	bridges by RHD			
			50	0	Other bridges				
	2.1	Traffic		4	on National road	1			
		volume on	50	2	on Regional roa	d			
		the route		0	on Zilla road				
					Burimari	N5,N,405,N506,N509			
					Banglabandha	N5,N405			
2. Bridge on the important	2.2	Corridor to		4	Hili	N5,N405,R550,R585,Z5503 ,Z5507,Z5509,Z5854,Z5855 ,Z5856			
route	2.2	India	20	4	Sonamasjid	N6,N507,R680,Z6801,N405			
		mula			Benapole	N7,N8(To Madaripur), N702,N706,N804			
					Bhomra	N7,N8,N702,N804,R755,R7 60,Z7062			
				0	Other roads				
	3.1	Corridor to		4	Sirajganj	N405,R450,R451			
		planed	5	-	Mongla	N7,N8,N702,N709			
		SEZs		0	Other roads				
					Uttara	N5,N6,N7,N405,N502,N704 ,R570			
3. Impact on	3.2	Corridor to existing EPZs	5	4	Ishwardi	N6,N405,N507,R680,N704, N705,Z6801			
business activity					Mongla	N7,N8,N702,N709,R850,R8 56			
				0	Other road	1			
	3.3	Other foreign business			Rangpur	N5(To Rangpur),N405			
			10	4	Ishwardi	N6(To Baraigram), N405,N507N704,N705			
		activities		0	Other Roads	11405,1150711704,11705			
				4	≥2,000,000				
	4.1	Population	10	2		ulation≥1,000,000			
4. Necessity of		· openetion		0	1,000,000>				
community				4	≥800mil BDT				
activity	4.2	GDP	10	2	800mil BDT>GD)P≥400mil BDT			
			-	0	400mil BDT>				
	5.1	EBBIP		4	Grade-D				
5. Degree of		damage	50	2	Grade-C				
damage and		level		0	Grade-A,B				
structural				4	,	emporary bridge)			
deficit	5.2	Bridge type	20	0	Other bridge typ				
				-	N: Carriageway				
				4	R: Carriageway				
					Z: Carriageway				
6. Lack of traffic	lane		40		N: 6.2m≤Carriag				
			-	2					
					R: 5.5m≤Carriageway<7.3m Z: 3.7m≤Carriageway<7.3m				
			0	Carriageway≥7.3					
7. Resettlement		Drop fro candida	om the	APs≥200					
			Total s =1,0	score					
]				
THE BUILDER DESIGN	· · · · II	. F 4 1							

Note: Bridges having all of "not recommended by RHD (Item 1)", "Grade-A, B of EBBIP damage level (Item 5.1)", "not bailey bridge (Item 5.2)" and "having more than 7.3 m of carriage way (Item 6)" are dropped from the candidate list.

Source: JICA Survey Team

The 200 bridges were re-evaluated and scored by the updated multi-criteria. Examples of the re-evaluation are shown below.

Example 1 (Revision of "5.1 EBBIP damage level" evaluation)

As a result of site survey, it was confirmed that this bridge has more than two major structural defects. Therefore, its score for this evaluation item was updated from 2 points (corresponding to damage level C) to 4 points (corresponding to damage level D).

Crack in Slab

Crack at wing wall

Spalling at girder

EBBIP Damage Level

- Damage Level A: No damage
- Damage Level B: Minor defects
- Damage Level C: One major structural defect
- Damage Level D: Two or more major structural defects

Example 2 (Revision of "6. Lack of traffic lane" evaluation)

_ _ _ _ _ _ _ _ _

As a result of the site survey, it was confirmed that the carriageway width of this bridge on a national road is less than 7.3 m, although its width was recorded as more than 7.3 m in the EBBIP survey. Thus its score for this evaluation item was updated from 0 points (corresponding to a carriageway width of more than 7.3 m) to 2 points (a carriageway width between 6.2 m and 7.3 m).

As a result of re-evaluation for 200 bridges by the updated multi-criteria, 100 candidate bridges were selected as listed in Table 3.4.2.

	Ra	npu	r			Raj	shal	ni			Gop	algo	nj			Ba	arisa	I			Kh	ulna	1	
	Ν	R	Ζ	Total		Ν	R	Ζ	Total		Ν	R	Ζ	Total		Ν	R	Ζ	Total		Ν	R	Ζ	Total
Bogra	2	0	3	5(5)	Natore	1	1	0	2(2)	Faridpur	8	0	0	8(6)	Barguna	0	0	0	0	Bagerha t	2	0	0	2(2)
Dinajpur	3	0	4	7(4)	Naogao n	0	1	1	2(2)	Gopalga nj	0	0	0	0	Barisal	4	0	1	5(3)	Chuada nga	0	0	0	0
Gaiband a	2	0	1	3(3)	Nawabg anj	0	0	0	0(0)	Madarip ur	4	0	0	4(3)	Bhola	0	4	0	4(4)	Jessore	2	0	0	2(1)
Joypurh at	0	2	0	2(2)	Pabna	7	0	0	7(6)	Rajbari	0	0	0	0	Jhalokat i	0	0	2	2(2)	Jhenaid ah	2	0	0	2(0)
Kurigra m	0	0	0	0	Rajshahi	0	1	2	3(3)	Shariatp ur	0	5	0	5(3)	Patuakh ali	1	0	2	3(2)	Khulna	0	1	0	1(1)
Lalmonir hat	2	0	0	2(1)	Serajga nj	10	2	0	12(10)						Pirojpur	0	0	1	1(1)	Kushtia	3	0	0	3(2)
Nilpham ari	1	0	3	4(3)																Magura	1	0	0	1(0)
Pancha garh	2	0	0	2(0)																Meherp ur	0	0	0	0
Rangpur	4	0	0	4(3)																Narail	0	1	0	1(1)
Thakurg aon	0	0	0	0																Satkhira	0	1	0	1(1)
Zone Total	16	2	11	29(21)	Zone Total	18	5	3	26(23)	Zone Total	12	5	0	17(12)	Zone Total	5	4	6	15(12)	Zone Total	10	3	0	13(8)
																				Total	61	19	20	100(76)

Table 3.4.2 Long List of 100 Candidate Bridges

Note: (): Number of bridges recommended by RHD Source: JICA Survey Team

3.5 Long List Selection of 106 Candidate Bridges

3.5.1 Introduction

The JICA Survey Team discussed the 100 bridge candidate bridges with RHD in a meeting held on January 26th, 2014. In the meeting, additional chief engineers (ACEs) from five zones requested that some bridges should be deleted from the list, and that some should be added to the list. Minutes of the discussion (M/D) are attached in Appendix 1.2.

In a series of subsequent discussions with RHD, it was agreed that 16 bridges would be removed and 16 bridges would be added (leaving the total number of candidate bridges at 100).

3.5.2 Bridges Deleted from 100 Candidate Bridges

It was agreed that the following 16 bridges would be deleted from 100 candidate bridges.

- 8 bridges overlapping with other projects such as ADP (Annual Development Program), PMP (Periodic Maintenance Program) and Chinese-funded projects.
- 7 bridges without major defects in their main structures that seem to be structurally sound.

• 1 bridge that is integrated with an adjacent sluice gate. This bridge, together with the sluice gate, is to be improved in another project.

Damaged Expansion Joint (Not Damaged in Main Structures)

Bridge Integrated with Sluice Gate

3.5.3 Bridges Added in 100 Bridges

It was agreed that the following 16 bridges would be added in 100 candidate bridges.

- 22 bridges were requested to include in 100 bridges by ACEs of 5 zones.
- 22 bridges were re-evaluated by the multi-criteria, and only 8 bridges were included among them (Another 2 bridges are already included in Top-100 bridges).
- Another 8 bridges were included from out of Top-100 bridges based on the score.

3.5.4 Long List Selection of 106 Candidate Bridges

In the meeting between JICA, RHD, and the JICA Survey Team held on February 6th, 2014, it was agreed that the selected 100 bridges would be the candidate Project bridges.

In addition, RHD requested the inclusion of the bridges on Asian Highways with EBBIP damage levels of C or D. It was agreed in further discussion with JICA, RHD and JICA Survey Team that 6 bridges on Asian Highways would be included as candidate project bridges in addition to the previously selected 100 bridges. Therefore, 106 bridges were ultimately selected.

The 106 selected candidate bridges are listed in Table 3.5.1, Table 3.5.2 and their locations are shown in Figure 3.5.1.

The scores used for evaluation and photos of the 106 candidate bridges can be seen in Appendix 1.3.

Zone	Division	R	CC Bridg		F	PC Bridg	e	S	teel Brid	ge	Ba	ailey Brid	ge	Othe	r Type E	Division	Zone Tota					
Zone	Division	Ν	R	Z	N	R	Z	N	R	Z	Ν	R	Z	N	R	Z	Total					
Ranpur	Bogra	2	0	1	0	0	0	0	0	0	0	0	3	0	0	0	6	_				
	Dinajpur	2	0	1	0	0	0	0	0	1	0	1	3	0	0	0	8					
	Gaibanda	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3					
	Joypurhat	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2					
	Kurigram	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	32				
	Lalmonirhat	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	32				
	Nilphamari	1	0	0	0	0	0	0	0	0	0	0	3	0	0	0	4					
	Panchagarh	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	-				
	Rangpur	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5					
	Thakurgaon	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1					
Rajshahi	Natore	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2					
	Naogaon	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	23				
	Nawabganj	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
	Pabna	5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	6					
	Rajshahi	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	2					
	Serajganj	8	0	0	0	0	0	1	0	0	0	2	1	0	0	0	12					
opalgor	Faridpur	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	15				
	Gopalganj	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1					
	Madaripur	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2					
	Rajbari	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
	Shariatpur	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5					
	Barguna	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
	Barisal	3	0	1	1	0	0	0	0	0	2	0	5	0	0	0	12	- 20				
Desirel	Bhola	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4					
Barisal	Jhalokati	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2					
	Patuakhali	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1					
	Pirojpur	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1					
	Bagerhat	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2					
	Chuadanga	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1				
	Jessore	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2					
	Jhenaidah	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3					
Khulne	Khulna	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	16				
Khulna	Kushtia	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1 10				
	Magura	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1				
	Meherpur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1				
	Narail	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	4	1				
	Satkhira	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1				
Duider	Turne Tetal	49	7	6	2 0 0			3	1	1	2	14	20	1	0	0	Т	otal				
Bridge	Type Total	62			2			5				36			1	1	106					

 Table 3.5.1 List of 106 Candidate Bridges by Divisions (Summary)

Source: JICA Survey Team

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
1	N8_178a	Barisal	Barisal	Bailey with Steel Deck,	39.7	1990	4	D			
12	N8_182a	Barisal	Barisal	Bailey with Steel Deck,	33.6	1990	4	с			
56	N8_152c	Barisal	Barisal	PC Girder Bridge,	56.9	1991	7.1	A			
57	N8_127b	Barisal	Barisal	RCC Girder Bridge,	33.7	1995	7.2	В			
64	N8_123a	Barisal	Barisal	RCC Girder Bridge,	30.8	1992	8.6	D			
69	N8_129a	Barisal	Barisal	RCC Girder Bridge,	27.4	1984	7.2	C			
82	Z8033_017a	Barisal	Barisal	RCC Girder Bridge,	42.4	1981	4.3	D			
92	Z8810_13a	Barisal	Barisal	Bailey with Steel Deck,	50	2000	4.25	C			
94	Z8033_008a	Barisal	Barisal	Bailey with Steel Deck,	105.4	1997	5	C			
95	Z8033_019a	Barisal	Barisal	Bailey with Steel Deck,	31.3	1996	3.9	C			
96	Z8034_011a	Barisal	Barisal	Bailey with Steel Deck,	33.7	1996	4.5	С			
97	Z8044_004a	Barisal	Barisal	Bailey with Steel Deck,	30.7	1988	4.1	C			

Barisal Division

Bhola Division

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
42	R890 45a	Barisal	Bhola	Bailey with Steel Deck,	62.3	1990	5.03	C			
70	R890 16a	Barisal	Bhola	Bailey with Steel Deck,	37.7	1989	4.1	Α			
71	R890_21a	Barisal	Bhola	Bailey with Steel Deck,	24.55	1987	4.15	В			
72	R890 28a	Barisal	Bhola	Bailey with Steel Deck.	30.85	1995	4.22	В			

Jhalokati Division

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
78	Z8708 1c	Barisal	Jhalokati	Bailey with Steel Deck,	26	1990	4	D			
81	Z8708 12b	Barisal	Jhalokati	Bailey with Steel Deck,	51	1996	3.8	D			

Patuakhali Division

1000	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
58	Z8052 009d	Barisal	Patuakhali	Bailey with Steel Deck,	22.8	1986	3.9	D			

Pirojpur Division

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
65	Z8701_3d	Barisal	Pirojpur	Bailey with Steel Deck,	22	1985	4.01	D			

C1	D
Shariatpur	Division
onarracpar	DIVIDIOII

Rank	Bridge Data										
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
77	R860_31a	Gopalganj	Shariatpur	Bailey with Steel Deck,	28.89	1991	4.8	A			
83	R860_34a	Gopalganj	Shariatpur	Bailey with Steel Deck,	33.5	1990	4.8	A			
84	R860_44c	Gopalganj	Shariatpur	Bailey with Steel Deck,	111.2	2001	5	В			
85	R860_53d	Gopalganj	Shariatpur	Bailey with Steel Deck,	93	1989	4	A			
99	R860 35a	Gopalganj	Shariatpur	Bailey with Steel Deck,	30.6	1989	5.1	C			

Madaripur Division

1	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
26	N8_095a	Gopalganj	Madaripur	RCC Girder Bridge,	37	1972	7	D			
86	N8 69a	Gopalganj	Madaripur	RCC Girder Bridge,	110	1990	8.9	C			

Faridpur Division

Rank	Bridge Data										
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
13	N7_025a	Gopalganj	Faridpur	RCC Girder Bridge,	27.4	1990	7.2	D			
14	N7_039a	Gopalganj	Faridpur	RCC Girder Bridge,	51.65	1978	7	D			
15	N7_049a	Gopalganj	Faridpur	RCC Girder Bridge,	24.7	1980	7	D			
23	N7 054a	Gopalganj	Faridpur	RCC Girder Bridge,	82.6	1982	7.8	D			
29	N7 036c	Gopalganj	Faridpur	RCC Girder Bridge,	27.5	1982	7.1	C			
30	N7 048a	Gopalganj	Faridpur	RCC Girder Bridge,	24.9	1982	7	С			
32	N7 047a	Gopalganj	Faridpur	RCC Girder Bridge,	50	1985	7	D			

Gopalganj Division

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
IV	N805_24a	Gopalganj	Bhatiapara	PC Girder Bridge,	105.05	2004	10	C			

Bagerhat Division

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
22	N7 248c	Khulna	Bagerhat	RCC Box girder bridge,	25.7	1983	9.4	D			
25	N7 246a	Khulna	Bagerhat	RCC Girder Bridge,	56	X	9.54	D			

Rank		Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
39	N7_141b	Khulna	Jessore	RCC Girder Bridge,	30.9	1976	8.7	D			
1	N706 14b	Khulna	Jessore	RCC Girder Bridge,	118.67	1968	7.3	C			

Jessore Division

Jhenaidah Division

Rank	Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level		
41	N703_Sd	Khulna	Jhenaidah	RCC Girder Bridge,	134.5	1978	6.1	D		
43	N704 14a	Khulna	Jhenaidah	RCC Girder Bridge,	97.9	1978	7.2	D		
Ш	N704 12c	Khulna	Jhenaidah	RCC Girder Bridge,	24.2	1992	7.5	C		

Khulna Division

Rank	Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level		
98	R760 003a	Khulna	Khulna	RCC Girder Bridge,	57.6	1960	8.4	D		

Kushtia Division

Rank		Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
21	N704_43a	Khulna	Kushtia	RCC Girder Bridge,	31.5	1987	7.15	D			
44	N704 33b	Khulna	Kushtia	RCC Girder Bridge,	26	1978	7.2	D			
67	N704 27b	Khulna	Kushtia	RCC Girder Bridge,	33.5	1978	7.3	C			

Narail Division

Rank		Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
40	R720_44a	Khulna	Narail	RCC Girder Bridge,	33	1993	4.8	D			
68	R750_22c	Khulna	Narail	RCC Girder Bridge,	31.2	1968	4.3	C			
V	R750_25a	Khulna	Narail	RCC Girder Bridge,	91.5	1964	8.23	D			
VI	Z7503_5a	Khulna	Narail	RCC Girder Bridge,	26.1	1976	7.9	C			

Satkhira Division

Rank		Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
63	R760_049c	Khulna	Satkhira	RCC Girder Bridge,	36.1	1968	7.1	С			

land.	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage Ievel			
28	R548_28b	Rajshahi	Naogaon	Truss with Steel Deck,	140.08	1994	4	D			

Naogaon Division

Natore Division

Rank		Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
17	N6 97a	Rajshahi	Natore	RCC Girder Bridge,	30	1968	6.9	D			
73	R548 40a	Rajshahi	Natore	Bailey with Steel Deck,	33	2006	4.1	B			

Pabna Division

Rank	Bridge Data										
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
3	N5_119a	Rajshahi	Pabna	RCC Girder Bridge,	43.3	1963	7.1	D			
4	N5_127a	Rajshahi	Pabna	RCC Girder Bridge,	43.2	1968	6.9	D			
7	N5 120a	Rajshahi	Pabna	RCC Girder Bridge,	41.4	1963	7.1	D			
20	N5 118a	Rajshahi	Pabna	RCC Girder Bridge,	82	1963	7	C			
27	N505 2a	Rajshahi	Pabna	Truss with Steel Deck,	135.2	2011	4.3	C			
37	N5 126a	Rajshahi	Pabna	RCC Girder Bridge,	59.1	1965	7.1	В			

Rajshahi Division

Rank	Bridge Data									
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level		
18	R681 10a	Rajshahi	Rajshahi	Bailey with Steel Deck,	39.3	X	3.4	D		
87	Z6010 12b	Rajshahi	Rajshahi	RCC Girder Bridge,	21.7	1985	4.7	D		

				Bridge Data				
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level
5	N5_176a	Rajshahi	Serajganj	RCC Girder Bridge,	72.8	1975	7.2	D
8	N5_128a	Rajshahi	Serajganj	RCC Girder Bridge,	43.7	1968	7	D
9	N5_158a	Rajshahi	Serajganj	RCC Girder Bridge,	70	1965	7	D
16	N5 134a	Rajshahi	Serajganj	RCC Girder Bridge,	44.8	1964	7.3	D
19	N5_140a	Rajshahi	Serajganj	RCC Girder Bridge,	53	1975	8.6	D
33	N5_156a	Rajshahi	Serajganj	RCC Girder Bridge,	43	1964	7.5	C
34	N5_172a	Rajshahi	Serajganj	RCC Girder Bridge,	43.3	1972	7.6	С
35	N5_179a	Rajshahi	Serajganj	RCC Girder Bridge,	54.1	1975	7.5	С
54	N5xx Sa	Rajshahi	Serajganj	Steel Beam & RCC Slab,	39.1	1961	5.6	C
74	R451_1a	Rajshahi	Serajganj	Bailey with Steel Deck,	50	1980	8.2	C
75	R451_7a	Rajshahi	Serajganj	Bailey with Steel Deck,	50.2	1985	8.3	С
100	Z5041_2a	Rajshahi	Serajganj	Bailey with Steel Deck,	60	1985	4.2	C

Serajganj Division

Bogra Division

Rank	Bridge Data										
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
6	N5_235a	Rangpur	Bogra	RCC Girder Bridge,	77.3	1957	7.2	D			
36	N5 188a	Rangpur	Bogra	RCC Girder Bridge,	52	1988	7	В			
50	Z5401_45a	Rangpur	Bogra	Bailey with Steel Deck,	61.8	1991	4.3	D			
51	Z5072 14a	Rangpur	Bogra	Bailey with Steel Deck,	57.8	1998	5	D			
53	Z5472_6a	Rangpur	Bogra	Bailey with Steel Deck,	60.9	2006	4.9	D			
91	Z5040 4a	Rangpur	Bogra	RCC Girder Bridge,	26.9	1968	4.8	D			

Dinajpur Division

	Bridge Data											
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level				
31	N5_378a	Rangpur	Dinajpur	RCC Girder Bridge,	53.9	1978	7.2	D				
46	N5_382a	Rangpur	Dinajpur	RCC Girder Bridge,	55	1983	7.8	D				
48	Z5025_55a	Rangpur	Dinajpur	Bailey with Steel Deck,	153.9	1992	4.3	D				
49	Z5025 64a	Rangpur	Dinajpur	Bailey with Steel Deck,	73.6	1989	4.2	D				
52	Z5025_60a	Rangpur	Dinajpur	Bailey with Steel Deck,	87	1990	4.2	D				
88	Z5008_1a	Rangpur	Dinajpur	Steel Beam & RCC Slab,	42.2	1956	4.05	D				
90	Z5025_46a	Rangpur	Dinajpur	RCC Girder Bridge,	45.7	1969	3.7	D				
93	R585 80a	Rangpur	Dinajpur	Bailey with Steel Deck,	24.9	1988	8.4	В				

Gaibanda Division

Rank	Bridge Data											
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level				
10	N5_265a	Rangpur	Gaibanda	RCC Girder Bridge,	42.2	1960	7.1	D				
55	Z5552_10a	Rangpur	Gaibanda	Bailey with Steel Deck,	52,5	2010	4	D				
66	N5 260b	Rangpur	Gaibanda	RCC Girder Bridge,	158.6	1972	7.3	В				

· · · · · · · · · · · · · · · · · · ·	n
Joypurhat	Division
of pulling.	DIVISION

	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
62	R545_115c	Rangpur	Joypurhat	RCC Girder Bridge,	78.8	1960	7.1	D			
76	R550 28b	Rangpur	Joypurhat	RCC Girder Bridge,	65.4	1982	6.9	C			

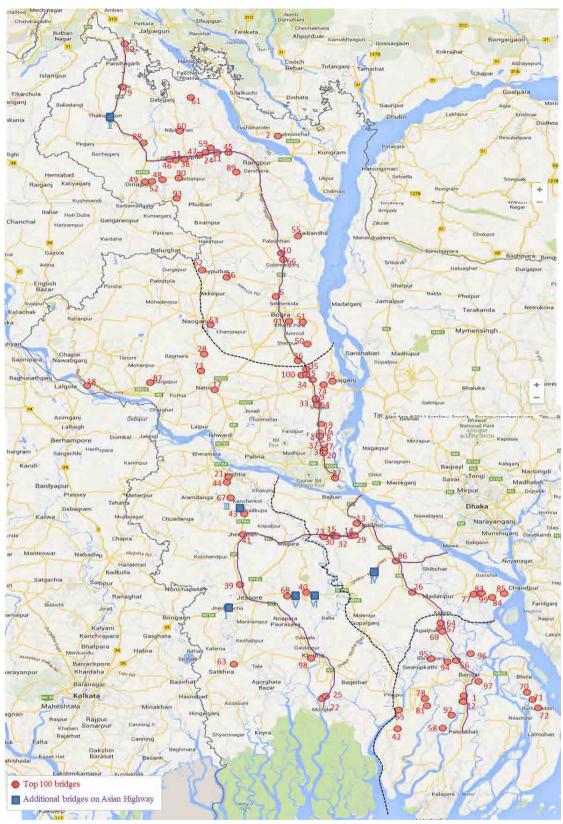
Lalmonirhat

Rank	Bridge Data										
	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
2	N509_19a	Rangpur	Lalmonirhat	RCC Girder Bridge, Bailey with Steel Deck	56.2	1960	6	D			

Nilphamari Division

	Bridge Data											
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level				
38	N518 4a	Rangpur	Nilphamari	RCC Girder Bridge,	49.5	1985	5.2	D				
59	Z5015_22a	Rangpur	Nilphamari	Bailey with Steel Deck,	189	1990	5.3	D				
60	Z5701_1a	Rangpur	Nilphamari	Bailey with Steel Deck,	24.39	1991	4.04	D				
61	Z5701 9a	Rangpur	Nilphamari	Bailey with Steel Deck,	37.37	1990	4.52	D				

Panchagarh


	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
79	N5_458a	Rangpur	Panchagarh	Steel Beam & RCC Slab,	28.5	1967	7.1	C			
80	N5 488a	Rangpur	Panchagarh	RCC Girder Bridge,	49.3	1994	7.1	C			

Rangpur Division

	Bridge Data											
Rank	Bridge 1D	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level				
11	N5_350b	Rangpur	Rangpur	RCC Girder Bridge,	135.4	1991	7.2	D				
24	N5_356a	Rangpur	Rangpur	RCC Girder Bridge,	20.7	1992	7.2	C				
45	N5_344e	Rangpur	Rangpur	RCC Girder Bridge,	26.2	1991	7.1	В				
47	N5_360a	Rangpur	Rangpur	RCC Girder Bridge,	49.2	1991	7.1	С				
89	Z5024_5c	Rangpur	Rangpur	RCC Girder Bridge,	22.3	1978	4	D				

	Thakurga	ion									
	Bridge Data										
Rank	Bridge ID	Zone	Division	Bridge Type	Total Length (m)	Year of Constructi on	Width (m)	Damage level			
П	N5_435a	Rangpur	Thakurgaon	RCC Girder Bridge,	38.3	1985	7.8	С			

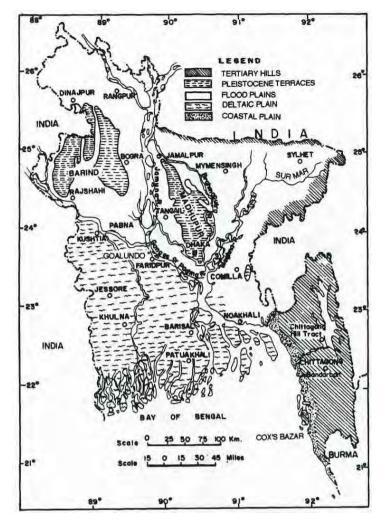
Source: JICA Survey Team

Source: JICA Survey Team

3.6 Selection of Project Bridges

Project bridges are selected through screening of 106 bridges based on the preliminary design, cost estimates and project effect evaluation in Phase 3, following site surveys such as topographic surveys, geological surveys and determination of bridge type in Phase 2.

Selection of Project bridges will be discussed in "15.2.2 Project Bridges Selection".


4. NATURAL CONDITIONS

4.1 Physiography

The physiography of Bangladesh is characterized by two distinctive features: a broad deltaic plain subject to frequent flooding, and a small hilly region crossed by swiftly-flowing rivers.

Roughly 80 percent of the landmass of Bangladesh is made up of fertile alluvial lowland called the Bangladesh Plain. The plain is part of the larger Plain of Bengal, which is sometimes called the Lower Gangetic Plain. Although altitudes up to 105 meters above sea level occur in the northern part of the plain, most elevations are less than 10 meters above sea level; elevations decrease in the coastal south, where the terrain is generally at sea level. With such low elevations and numerous rivers, water--and concomitant flooding--is a predominant physical feature. About 10,000 square kilometers of the total area of Bangladesh is covered with water, and larger areas are routinely flooded during the monsoon season.

The only exceptions to Bangladesh's low elevations are the Chittagong Hills in the southeast, the Low Hills of Sylhet in the northeast, and highlands in the north and northwest. The Chittagong Hills constitute the only significant hill system in the country and, in effect, are the western fringe of the north-south mountain ranges of Burma and eastern India. At 1,046 meters, the highest elevation in Bangladesh is found at Keokradong, in the southeastern part of the hills. Fertile valleys lie between the hill lines, which generally run north-south.

Source: Encyclopedia of European and Asian Regional Geology

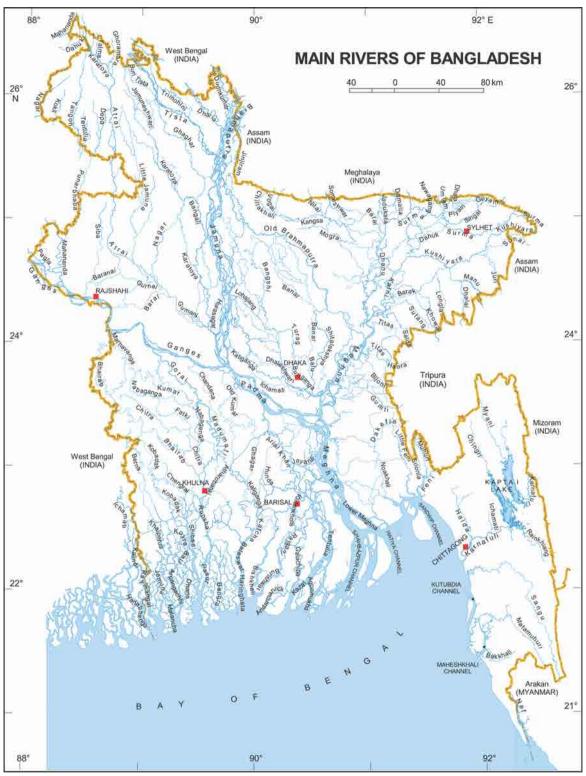
Figure 4.1.1 Physiographic Division of Bangladesh

Figure 4.1.1 explains physiographic divisions of Bangladesh. Geomorphologically, Bangladesh has five basic landscape categories:

- Tertiary hills, which include the hills of Chittagong and the Chittagong Hill Tracts and hills in Sylhet, all marked by deeply weathered lateritic red soils.
- Pleistocene terraces which include the Barind Tract (North Bengal), the Madhupur Tract (Tangail and Dhaka), the Lalmi Tract (Comilla) and some higher ground in Sylhet; these areas are also lateritic.
- The Flood Plain, which is the broad area mainly north and east of the Padma River, which includes the Sylhet Basin, the Faridpur Trough and the piedmont alluvial plain of north Bengal. The soils are little-weathered gray silts and clays; locally there are nearsurface peats.
- The Deltaic Plain which covers the area between the Ganges and the Bay of Bengal, passing southwards into the Sundarbans the low tidal area of Khulna and Patuakhali.

• The South Coastal Plain, the low coastal area extending from Noakhali to south of Cox's Bazar.

Figure 4.1.2 shows main rivers of Bangladesh. As most parts of Bangladesh are composed of alluvial lowland, major rivers in the country play vital roles in forming, deforming, and eroding alluvial soil layers covering the lowland. Bangladesh has 4 major rivers flowing down through its territory; the Ganges, Brahmaputra, Suma and Karnaphuli.


The main channel of the lower Ganges (the Ganges or Padma River) with increasing sluggishness debouches into the shallow northeast corner of the Bay of Bengal between Barisal and Noakhali. It has been migrating progressively eastward, and many of its former distributaries are partly abandoned or even dried up.

The Brahmaputra River rises in Tibet and flows first to the east and then southwest, in a manner of cutting through the Himalayas as an antecedent stream. After flowing through Assam, it enters northwest Bangladesh, where it is joined by the Tista and another river from the Himalayas. In Bangladesh, The Brahmaputra has a N-S course known as the Jamuna, which now joins the Ganges near Goalundo, but formerly the Brahmaputra flowed to the east of the Madhupur Jungle. Through history, it has been gradually shifting its braided system westward, and it made its present junction near Goalundo only in the 19th century.

The northeast part of Bangladesh is drained by the Surma River, which rises from the mountains near Manipur (India). At Bhairab Bazar (about 60 km NW of Dhaka), it joins with the old course of the Brahmaputra (presently an abandoned channel that takes the name Meghna).

In the south-east area of Bangladesh, in the Chittagong Hill Tracts and Chittagong, the Karnaphuli is the main river. It rises from the Lushai Hills (India) and flows to the Bay of Bengal near Chittagong city.

These for rivers play the major roles in the drainage pattern of Bangladesh, which is generally dendritic, except in the south-east part where trellis pattern is dominant.

Source: Geology of Bangladesh, University Press Limited, Dhaka, 1991

Figure 4.1.2 Main Rivers of Bangladesh

4.2 Geology

4.2.1 Overview of Geological Condition

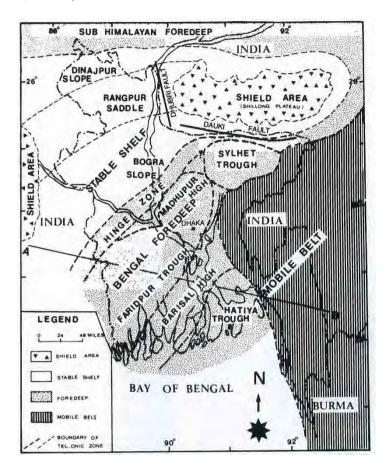
Figure 4.2.1 summarizes geological condition in Bangladesh. Candidate sites of the Project scatter in the western Bangladesh where various types of Holocene sediments cover the lowland. According to Figure 4.2.1, clear difference can be understood between both sides of the Ganges-Padma River; the northern part of the survey area, Rangpur and Rajshahi, is composed of alluvial deposits, alluvial fan deposits and residual deposits, whereas the southern part of the study area, Khulna, Gopalganj, and Barisal, is made up of deltaic deposits. Marsh clay and peat of paludal deposits are distributed in both sides of the Ganges-Padma except Rangpur, but mainly occur in the southern part and are scattered in the areas of deltaic silt and tidal deltaic deposits.

In the survey area, the deltaic deposits mainly consist of deltaic silt and tidal deltaic deposits. Deltaic sand is distributed along the Ganges-Padma. Estuarine deposits form barrier islands at the estuaries of the Padma. According to the construction record of Rupsa Bridge in Khulna where the tidal deltaic deposits are distributed, thick strata of soft silt are deposited down to 60 meters below sea level and underlain by thick strata of silty fine sand. The silty fine sand contains plenty of mica and, in particular condition, decreases its shear strength even under an increased confined pressure.

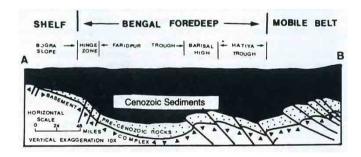
The alluvial deposits consist of sand and silt. The alluvial fan deposits are composed of gravelly sand and distributed in Rangpur, the northwest boundary of the country. The residual deposits occur on the Pleistocene terrace of Barind and supposed to be rather hard compared with clay of Holocene sediments.

Source: Geological Survey of Bangladesh

Figure 4.2.1 Geological Framework of Bangladesh


Figure 4.2.2 summarizes tectonic setting and profile of the Bengal Basin. The modern Bengal delta and offshore fan complex associated with the Ganges, Brahmaputra and Meghna rivers form one of the world's largest depositional systems.

The Bengal Basin has long history of subsidence and deposition. Sedimentation in the Bengal Basin started about 290 Ma ago in the Permian Period. Since then, through a series of transgression and regression which left a numbers of unconformity in local stratigraphic succession and dissection of unconsolidated sediments, deposition has developed in the basin and formed the succession of thick sedimentary strata.


Major uplift in Himalayas began during Miocene and has continued through Neogene and Quaternary. Uplift in Himalayas has provided rainfall (and hence stream flow intensity) and clastic material to be transported to the Bengal Basin by the major river system, and

quickened development of sedimentary strata in the basin.

Along with subsidence of the Bengal Basin, a massive amount of clastic material provided with abundant flow of the major rivers from the Himalayas has made the Quaternary strata much thicker than in usual depositional basins. In the central part of the basin, the Quaternary layer is probably over 500 meters thick.

(Tectonic Setting)

(E-W Profile) Source: Encyclopedia of European and Asian Regional Geology

Figure 4.2.2 Tectonic Setting of Bengal Basin

4.2.2 Boring Investigation and Lab Test

Boring investigation was carried out at the 106 bridge sites. For each bridge, 1 borehole was drilled.

Along with drilling, standard Penetration Test (hereinafter referred to as SPT) conformig to ASTM D1586 was carried out at each 1.0 meter interval. Until confirming STP N-value of 50 or more for at least 5 meters deep, drillings were executed. To counteract erratic situation of the ground, much deeper drilling was done at some sites.

With the disturbed samples obtained through SPT, the following lab tests were carried out to determine soil classification of the strata:

- Specific Gravity (ASTM D 854)
- Natural Moisture Content (ASTM D 2216)
- Atterberg Limits (ASTM D 4318)
- Sieve Analysis (ASTM D 422)

Classification of soil conforms to ASTM D 2487 or ASTM D 2488.

The results of boring, SPT, and lab tests were organized into borehole logs and attached to Appendix 1.4.

4.2.3 Bearing Layer

Based on the results of drilling, SPT, and lab tests, possible bearing layers for each bridge sites are proposed in Table 4.2.1.

At two bridge sites in Barisal Zone, R890_16a and R890_28a, due to lower SPT-N Values confirmed through the drilling, no appropriate bearing layer was found.

At one bridge site in Khulna Zone, N7_248c, and one in Rajshahi Zone, N5_176a, due to micaceous sand, no appropriate bearing layer was found. Micaceous sand contains much mica particles and shows a lesser value of specific gravity than ordinary sand. The highest specific gravity of micaceous sand recorded in the Study was 2.57 g/cm3; most of the results of micaceous sand show specific gravity of around 2.4~2.5 g/cm3. Mica is a luster mineral with flat fragile structure and slippery surface and usually found in the sediments underlying Bangladesh flatland. With its fragile and slippery property, mica richly contained in micaceous sand provides much lower bearing capacity and/or skin friction than expected from SPT-N value of a layer and has caused a number of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction than expected in the set of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction than expected in the set of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction than expected in the set of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction than expected in the set of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction capacity and/or skin friction than expected in the set of problems in construction of pile foundations in Bangladesh. Based on the experience in Bangladesh, bearing capacity and/or skin friction capacity and/or skin friction capacity and/or skin friction than expected in micaceous sand.

		Bridg	je Data			Bearing	Layer	
SN	Bridge ID	Zone	Division	Sub-Division	Depth (GL-m)	Soil Type	SPT N Value	Remarks
1	N8_178a	Barisal	Barisal	Barisal	46	Silty Sand w Gravel, SM	50<	
2	N509_19a	Rangpur	Lalmonirhat	Lalmonirhat	23	Poorly Graded Sand w Gravel, SP	50 <	
3	N5_119a	Rajshahi	Pabna	Pabna-1	29	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
4	N5_127a	Rajshahi	Pabna	Ullahpara	28	Silty Sand w Gravel, SM	50 <	
5	N5_176a	Rajshahi	Sirajganj	Serajganj-2	No	Micaceous Silty Sand w Gravel, SP-SM	50 < (28m~)	Micaceous sand shall not be used as a bearing layer.
6	N5_235a	Rangpur	Bogra	Bogra	25	Silty Sand w Gravel, SM	50 <	
7	N5_120a	Rajshahi	Pabna	Pabna-1	27	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
8	N5_128a	Rajshahi	Sirajganj	Ullahpara	31	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
9	N5_158a	Rajshahi	Sirajganj	Ullahpara	24	Silty Sand w Gravel, SM	50 <	
10	N5_265a	Rangpur	Gaibandha	Palashbari	22	Poorly Graded Sand w Gravel, SP	50 <	
11	N5_350b	Rangpur	Rangpur	Rangpur	22	Silty Sand w Gravel, SM	50 <	
12	N8_182a	Barisal	Barisal	Barisal	40	Silty Sand w Gravel, SM	30<	
13	N7_025a	Gopalganj	Faridpur	Faridpur-2	38	Silty Sand w Gravel, SM	50<	
14	N7_039a	Gopalganj	Faridpur	Faridpur-1	45	Silty Sand w Gravel, SM	50<	
15	N7_049a	Gopalganj	Faridpur	Faridpur-1	33	Poorly Graded Sand w Gravel, SP	50<	
16	N5_134a	Rajshahi	Sirajganj	Ullahpara	29	Poorly Graded Sand w Gravel, SP	50 <	
17	N6_97a	Rajshahi	Natore	Natore-2	27	Poorly Graded Sand w Gravel, SP	50 <	Thickness shall be confirmed during D/D.
18	R681_10a	Rajshahi	Rajshahi	Rajshahi-1	29	Silty Sand w Gravel, SM	50 <	Thickness shall be confirmed during D/D.
19	N5_140a	Rajshahi	Sirajganj	Ullahpara	23	Poorly Graded Sand w Gravel, SP	50 <	
20	N5_118a	Rajshahi	Pabna	Pabna-1	25	Silty Sand w Gravel, SM	50<	

Table 4.2.1 List of Bearing Layer (Barisal Zone)

		Bridg	je Data			Bearing	Layer	
SN	Bridge ID	Zone	Division	Sub-Division	Depth (GL-m)	Soil Type	SPT N Value	Remarks
21	N704_43a	Khulna	Kushtia	Kushtia	30	Silty Sand w Gravel, SM	50<	
22	N7_248c	Khulna	Bagerhat	Bagerhat-2	No	Micaceous Silty Sand w Gravel, SP-SM	50 < (51m~)	Micaceous sand shall not be used as a bearing layer.
23	N7_054a	Gopalganj	Faridpur	Faridpur-1	52	Silty Sand w Gravel, SM	50<	
24	N5_356a	Rangpur	Rangpur	Rangpur	24	Silty Sand w Gravel, SM	50 <	
25	N7_246a	Khulna	Bagerhat	Bagerhat-2	54	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
26	N8_095a	Gopalganj	Madaripur	Madaripur	36	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
27	N505_2a	Rajshahi	Pabna	Pabna-1	29	Silty Sand w Gravel, SM	50 <	
28	R548_28b	Rajshahi	Naogaon	Naogaon	28	Silty Sand w Gravel, SM	50 <	Thickness shall be confirmed during D/D.
29	N7_036c	Gopalganj	Faridpur	Faridpur-1	33	Silty Sand w Gravel, SM	50<	
30	N7_048a	Gopalganj	Faridpur	Faridpur-1	34	Poorly Graded Sand w Gravel, SP	50<	
31	N5_378a	Rangpur	Dinajpur	Dinajpur	25	Silty Sand w Gravel, SM	50 <	
32	N7_047a	Gopalganj	Faridpur	Faridpur-1	36	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
33	N5_156a	Rajshahi	Sirajganj	Ullahpara	28	Silty Sand w Gravel, SP-SM	50 <	
34	N5_172a	Rajshahi	Sirajganj	Sirajganj-2	32	Silty Sand w Gravel, SM	50 <	
35	N5_179a	Rajshahi	Sirajganj	Sirajganj-2	25	Silty Sand w Gravel, SM	50 <	
36	N5_188a	Rangpur	Bogra	Sherpur	21	Silty Sand w Gravel, SM	50 <	
37	N5_126a	Rajshahi	Pabna	Pabna-1	24	Poorly Graded Sand w Gravel, SP	50 <	
38	N518_4a	Rangpur	Nilphamari	Nilphamari	31	Fine Sand, SM	50 <	
39	N7_141b	Khulna	Jessore	Jessore-1	38	Silty Sand w Gravel, SM	50<	
40	R720_44a	Khulna	Narail	Narail	48	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
41	N703_Sd	Khulna	Jhenaidah	Jhenaidah	30	Poorly Graded Silty Sand w Gravel, SP-SM	50<	

		Bridg	je Data			Bearing	Layer	
SN	Bridge ID	Zone	Division	Sub-Division	Depth (GL-m)	Soil Type	SPT N Value	Remarks
42	R890_45a	Barisal	Bhola	Bhola	45	Silty Sand w Gravel, SM	50<	
43	N704_14a	Khulna	Jhenaidah	Jhenaidah	31	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
44	N704_33b	Khulna	Kushtia	Kushtia	27	Silty Sand w Gravel, SM	50<	
45	N5_344c	Rangpur	Rangpur	Rangpur	26	Silty Sand w Gravel, SM	50 <	
46	N5_382a	Rangpur	Dinajpur	Dinajpur	38	Silty Sand w Gravel, SM	50 <	
47	N5_360a	Rangpur	Rangpur	Rangpur	28	Silty Sand w Gravel, SM	50 <	
48	Z5025_55a	Rangpur	Dinajpur	Dinajpur	23	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
49	Z5025_64a	Rangpur	Dinajpur	Dinajpur	22	Silty Sand w Gravel, SM	50 <	
50	Z5401_45a	Rangpur	Bogra	Sherpur	24	Silty Sand w Gravel, SM	50 <	
51	Z5072_14a	Rangpur	Bogra	Sherpur	23	Silty Sand w Gravel, SM, Shale	50 <	
52	Z5025_60a	Rangpur	Dinajpur	Dinajpur	50	Clay w Sand, CL or CH	20<	
53	Z5472_6a	Rangpur	Bogra	Bogra	19	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
54	N5xx_Sa	Rajshahi	Sirajganj	Ullahpara	18	Silty Sand w Gravel, SP-SM	50 <	
55	Z5552_10a	Rangpur	Gaibandha	Gaibandha	21	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
56	N8_152c	Barisal	Barisal	Barisal1	39	Silty Sand w Gravel, SM	50<	
57	N8_127b	Barisal	Barisal	Barisal1	59	Silt w Sand, ML	50<	
58	Z8052_009d	Barisal	Patuakhali	Patuakhali	53	Silty Sand w Gravel, SM	50<	
59	Z5015_22a	Rangpur	Nilphamari	Nilphamari	23	Poorly Graded Sand w Gravel, SP	50 <	
60	Z5701_1a	Rangpur	Nilphamari	Nilphamari	26	Silty Sand w Gravel, SM	50 <	
61	Z5701_9a	Rangpur	Nilphamari	Nilphamari	18	Poorly Graded Sand w Gravel, SP	50<	
62	R545_115c	Rangpur	Joypurhat	Joypurhat	21	Poorly Graded Sand w Gravel, SP	50 <	
63	R760_049c	Khulna	Satkhira	Satkhira-1	66	Fine Sand, SM	50<	

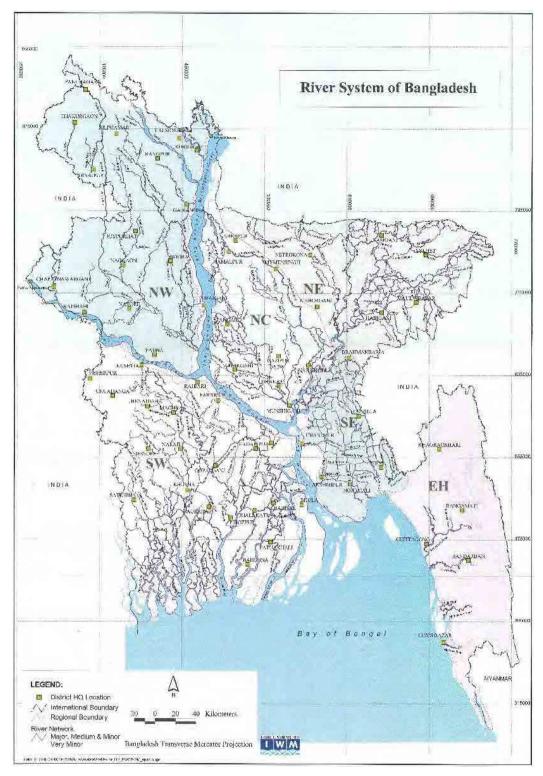
		Bridg	e Data			Bearing	Layer	
SN	Bridge ID	Zone	Division	Sub-Division	Depth (GL-m)	Soil Type	SPT N Value	Remarks
64	N8_123a	Barisal	Barisal	Barisal1	44	Silty Sand w Gravel, SM	50<	
65	Z8701_3d	Barisal	Pirojpur	Kawkhali	37	Silty Sand w Gravel, SM	50<	
66	N5_260b	Rangpur	Gaibandha	Palashbari	28	Silty Sand w Gravel, SM	50 <	
67	N704_27b	Khulna	Kushtia	Kushtia	24	Silty Sand w Gravel, SM	50<	
68	R750_22c	Khulna	Narail	Narail	45	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
69	N8_129a	Barisal	Barisal	Barisal1	44	Low Plasticity Clay w Sand, CL	30<	
70	R890_16a	Barisal	Bhola	Bhola	No			No appropriate bearing layer was found.
71	R890_21a	Barisal	Bhola	Bhola	50	Silty Sand w Gravel, SM	50<	
72	R890_28a	Barisal	Bhola	Bhola	No			No appropriate bearing layer was found.
73	R548_40a	Rajshahi	Natore	Natore-1	24	Silty Sand w Gravel, SM	50 <	
74	R451_1a	Rajshahi	Sirajganj	Sirajganj-2	33	Silty Sand w Gravel, SM	50 <	
75	R451_7a	Rajshahi	Sirajganj	Sirajganj-2	43	Sand w Gravel, SP	50 <	
76	R550_28b	Rangpur	Joypurhat	Joypurhat	12	Silty Sand w Gravel, SM	50 <	
77	R860_31a	Gopalganj	Shariatpur	Shariatpur	41	Silty Sand w Gravel, SM	50<	
78	Z8708_1c	Barisal	Jhalokati	Jhalokati	37	Silty Sand w Gravel, SM	50<	
79	N5_458a	Rangpur	Panchagarh	Panchagarh	17	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
80	N5_488a	Rangpur	Panchagarh	Panchagarh	14	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
81	Z8708_12b	Barisal	Jhalokati	Jhalokati	36	Fine Sand, SM	50<	
82	Z8033_017a	Barisal	Barisal	Barisal1	49	Silty Sand w Gravel, SM	50<	
83	R860_34a	Gopalganj	Shariatpur	Shariatpur	31	Silty Sand w Gravel, SM	50<	
84	R860_44c	Gopalganj	Shariatpur	Shariatpur	48	Silty Sand w Gravel, SM	50<	
85	R860_53d	Gopalganj	Shariatpur	Shariatpur	38	Poorly Graded Sand w Gravel, SP	50<	

		Bridg	je Data			Bearing	Layer	
SN	Bridge ID	Zone	Division	Sub-Division	Depth (GL-m)	Soil Type	SPT N Value	Remarks
86	N8_69a	Gopalganj	Madaripur	Bhanga	41	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
87	Z6010_12b	Rajshahi	Rajshahi	Rajshahi-2	26	Silty Sand w Gravel, SM	50 <	Thickness shall be confirmed during D/D.
88	Z5008_1a	Rangpur	Dinajpur	Dinajpur	18	Silty Sand w Gravel, SM	50 <	
89	Z5024_5c	Rangpur	Rangpur	Rangpur-1	25	Silty Sand w Gravel, SP-SM	50 <	
90	Z5025_46a	Rangpur	Dinajpur	Dinajpur	34	Fine Sand, SM	50 <	
91	Z5040_4a	Rangpur	Bogra	Sherpur	25	Sand w Gravel, SP	50 <	
92	Z8810_13a	Barisal	Barisal	Barisal1	57	Silty Sand w Gravel, SM	30<	
93	R585_80a	Rangpur	Dinajpur	Phulbari	24	Silty Sand w Gravel, SM	50 <	
94	Z8033_008a	Barisal	Barisal	Barisal1	51	Silty Sand w Gravel, SM	50<	
95	Z8033_019a	Barisal	Barisal	Barisal1	45	Low Plasticity Clay w Sand, CL	20<	
96	Z8034_011a	Barisal	Barisal	Barisal1	38	Silty Sand w Gravel, SM	50<	
97	Z8044_004a	Barisal	Barisal	Barisal2	39	Silty Sand w Gravel, SM	50<	
98	R760_003a	Khulna	Khulna	Khulna-2	50	Silty Sand w Gravel, SM	50<	
99	R860_35a	Gopalganj	Shariatpur	Shariatpur	34	Poorly Graded Silty Sand w Gravel, SP-SM	50<	
100	Z5041_2a	Rajshahi	Sirajganj	Sirajganj-2	30	Silty Sand w Gravel, SM	50 <	
I	N706_14b	Khulna	Jessore	Jessore-1	39	Silty Sand w Gravel, SM	50<	
Π	N5_435a	Rangpur	Thakurgaon	Thakurgaon	18	Poorly Graded Silty Sand w Gravel, SP-SM	50 <	
ш	N704_12c	Khulna	Jhenaidah	Jhenaidah	37	Silty Sand w Gravel, SM	50<	
IV	N805_24a	Gopalganj	Gopalganj	Bhatiapara	34	Silty Sand w Gravel, SM	50<	
v	R750_25a	Khulna	Narail	Narail	37	Silty Sand w Gravel, SM	50<	
VI	Z7503_5a	Khulna	Narail	Narail	44	Silty Sand w Gravel, SM	50<	

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

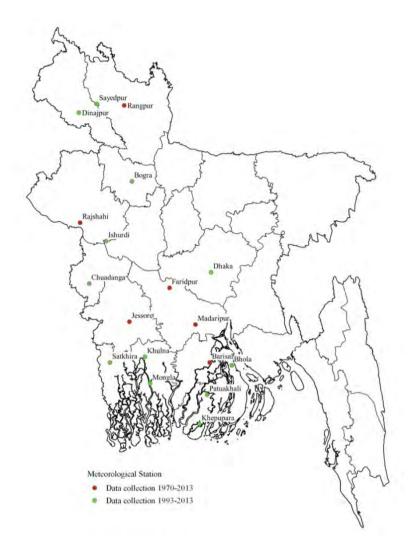
4.3 Meteorological and Hydrological Conditions

4.3.1 General


Bangladesh is located in the tropical monsoon region, and the climate of Project area is characterized by high temperatures, heavy rainfall, extreme humidity, and considerable seasonal variation. The most notable feature of its climate is the alternation of the wind circulation between summer and winter, which is an integral part of the circulation system of the South Asian subcontinent. With regards to the climate, three distinct seasons can be recognized in Bangladesh: the cool dry season from November through February, the premonsoon hot season from March through May, and the rainy monsoon season from June through October.

Bangladesh has to drain water from lands with a combined area of 12 times of its own size. The amount of water that annually reaches Bangladesh from outside the country would form a lake of the size of the country of 10.3m depth. A flat, low-lying topography is the most characteristic geomorphological feature: 60 percent of the country lies less than 6m above sea-level. Therefore, floods occur in Bangladesh frequently, and on-average, 20 percent of Bangladesh is flooded annually. Bangladesh has riverine systems with a total of about 700 rivers including tributaries, which have a total length of about 24,140km, as shown in Figure 4.3.1. In these riverine systems, Bangladesh predominantly has three major river systems - (1) the Brahmaputra-Jamuna, (2) the Ganges-Padma, and (3) the Surma-Meghna river system. These 3 rivers are international and trans-boundary river systems. 8% of the total catchment area is located within Bangladesh, with 62% in India, 18% in China, 8% in Nepal and 4% in Bhutan.

In Bangladesh, the collection of meteorological data is managed by BMD (Bangladesh Meteorological Department) under MoD (Ministry of Defence), while the collection of hydrological data such as water level, discharge and sediment-flow is managed by BWDB (Bangladesh Water Development Board) under MoWR (Ministry of Water Resources).


There are 35 synoptic observation stations for climatic data under BMD. Of these stations, climatic data of 18 stations (as shown in Figure 4.3.2 and listed in Table 4.3.1) was collected.

Of approximately 500 hydrological stations under BWDB, water level data of 86 stations (as shown in Figure 4.3.3) was collected. (Also, discharge data at 5 stations was collected.)

Source: BWDB, Institute of Water Modeling (IWM)

Figure 4.3.1 River System of Bangladesh

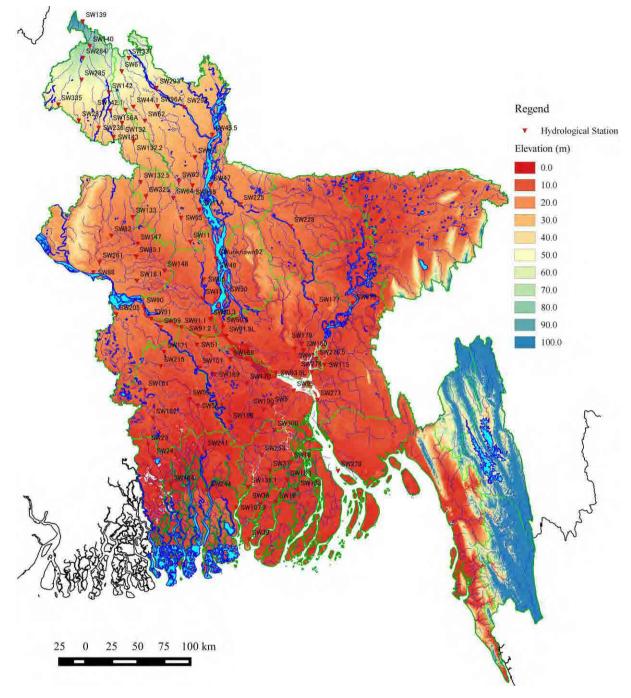

Source: JICA Survey Team, BMD

Figure 4.3.2 Location of Meteorological Stations for Data Collection

Table 4.3.1 Inventory of Meteorological Stations for Data Collection

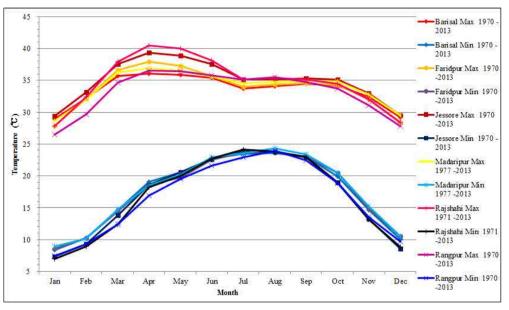
No.	Name	Station ID	Year of	Elevation	Latitude	Longitude		Р	eriod of Reco	rd		Remarks
INO.	Ivallie	(WMO)	Establishment	(m)	Latitude	Longitude	Temperature	Humidity	Wind	Sunshine Hrs.	Rainfall	Kennarks
1	Barisal	41950	1883	2.10	22.71667	90.36667	1970-2013	1969-2012	2003-2013	1970-2013	1970-2013	
2	Faridpur	41929	1883	8.10	23.60000	89.85000	1970-2013	1969-2012	2003-2013	1985-2013	1970-2013	
3	Jessore	41936	1867	6.10	23.20000	89.33333	1970-2013	1969-2012	2003-2013	1970-2013	1970-2013	
4	Madaripur	41939	1976	7.00	23.16667	90.18333	1977-2013	1977-2013	2003-2013	1985-2013	1977-2013	
5	Rajshahi	41895	1883	19.50	24.36667	88.70000	1971-2013	1969-2013	2003-2013	1979-2013	1971-2013	
6	Rangpur	41859	1883	32.61	25.73333	89.26667	1970-2013	1969-2013	2003-2013	1979-2013	1970-2013	
7	Dhaka	41923	1949	8.45	23.78333	90.38333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
8	Ishwardi(Ishrdi)	41907	1963	12.90	24.15000	89.03333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
9	Bogra	41883	1884	17.90	24.85000	89.36667	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
10	Dinajpur	41863	1883	37.58	25.65000	88.68333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
11	Sayedpur(Sydpur)	41858	1980	39.60	25.75000	88.91667	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
12	Khulna	41947	1921	2.10	22.78333	89.53333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
13	Mongla	41958	1988	1.80	22.46667	89.60000	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
14	Satkhira	41946	1877	3.96	22.71667	89.08333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
15	Chuadanga	41926	1986	11.58	23.65000	88.81667	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
16	Patuakhali	41906	1973	1.50	22.33333	90.33333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
17	Khepupara	41984	1973	1.83	21.98333	90.23333	2003-2013	2003-2013	2003-2013	2003-2013	1993-2013	
18	Bhola	41951	1965	4.30	22.68333	90.65000	2003-2013	2006-2010	2003-2013	2003-2013	1993-2013	

Source: JICA Survey Team, BMD

Source: JICA Survey Team, BWDB

4.3.2 Meteorological Condition

- (1) General Weather Conditions
- 1) Temperature


The monthly mean temperature at 18 stations is shown in Figure 4.3.5, and the mean monthly maximum and minimum temperature at 6 of these stations is shown in Figure 4.3.4. (The corresponding data is shown in Table 4.3.2.).

Station	Item	Period of Record	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	Remarks
	Maximum	1970 -2013	28.9	32.2	35.7	36.0	35.8	35.4	33.8	34.1	34.5	34.2	32.4	29.2	33.5	
Barisal	Average	1970 -2013	18.4	21.6	26.1	28.5	28.9	28.7	28.2	28.3	28.3	27.5	24.0	19.7	25.7	
	Minimum	1970 -2013	8.4	10.3	14.6	19.1	20.6	22.7	23.5	23.6	23.0	19.9	14.6	10.0	17.5	
	Maximum	1970 -2013	27.9	32.1	36.6	38.0	37.3	35.7	34.0	34.4	34.6	34.2	32.0	28.5	33.8	
Faridpur	Average	1970 -2013	18.0	21.2	26.0	28.6	28.8	28.9	28.6	28.8	28.7	27.6	23.9	19.5	25.7	
	Minimum	1970 -2013	8.5	10.3	14.4	18.7	19.8	22.6	23.7	23.6	23.0	20.5	14.8	10.5	17.5	
	Maximum	1970 -2013	29.4	33.2	37.5	39.3	38.9	37.5	35.1	35.1	35.3	35.1	33.0	29.5	34.9	
Jessore	Average	1970 -2013	18.1	21.4	26.4	29.6	30.0	29.6	29.0	29.0	28.9	27.6	23.7	19.2	26.1	gap 1978
	Minimum	1970 -2013	7.4	9.3	13.8	18.6	20.5	22.6	24.0	23.7	23.1	19.0	13.3	8.6	17.0	gap 1978
	Maximum	1977 -2013	28.6	32.0	36.2	36.9	36.5	35.6	34.6	34.8	34.9	34.8	32.8	29.5	33.9	gap 1979
Madaripur	Average	1977 -2013	18.7	21.5	26.1	28.5	28.9	29.1	28.8	29.0	29.0	27.9	24.6	20.3	26.0	gap 1979
	Minimum	1977 -2013	8.9	10.2	14.8	18.5	20.2	22.9	23.6	24.3	23.4	20.5	15.2	10.6	17.8	gap 1979
	Maximum	1971 -2013	27.8	32.4	38.0	40.4	40.0	38.2	35.1	35.4	35.1	34.5	32.0	28.4	34.8	
Rajshahi	Average	1971 -2013	17.2	20.4	25.4	29.5	29.6	29.7	29.0	29.2	28.8	27.2	23.2	18.9	25.7	gap 1977_1981-1982
	Minimum	1971 -2013	6.9	8.9	12.4	18.2	20.0	22.7	24.2	23.8	22.9	18.9	13.2	8.9	16.8	gap 1977_1981-1982
	Maximum	1970 -2013	26.5	29.7	34.6	36.5	36.5	35.8	35.1	35.5	34.7	33.7	31.1	27.8	33.1	gap 1973-1977
Rangpur	Average	1970 -2013	16.7	19.5	23.6	26.4	27.5	28.5	28.7	29.1	28.3	26.5	22.8	18.8	24.7	gap 1973-1977
	Minimum	1970 -2013	7.5	9.4	12.5	16.9	19.5	21.6	22.9	23.9	22.5	18.9	13.5	9.7	16.6	gap 1973-1977
	Maximum	2003 -2013	28.3	32.3	36.0	36.9	36.8	36.0	34.8	35.0	35.1	34.9	32.3	29.2	34.0	
Dhaka	Average	2003 -2013	18.2	22.5	26.7	28.8	29.3	29.2	29.0	29.0	28.7	27.6	24.0	20.1	26.1	
	Minimum	2003 -2013	9.8	12.6	16.5	19.5	20.7	22.6	24.1	24.2	24.1	20.9	15.6	11.7	18.5	
	Maximum	2003 -2013	27.5	32.7	37.7	39.7	39.5	38.2	35.6	36.0	35.6	34.8	32.1	28.9	34.9	
Ishwardi (Ishrdi)	Average	2003 -2013	15.7	20.1	25.3	28.8	29.3	29.4	28.9	29.0	28.5	26.5	22.2	17.9	25.1	
(Isnidi)	Minimum	2003 -2013	6.3	9.4	12.7	18.7	20.6	22.8	24.5	24.9	23.9	19.0	12.6	8.1	17.0	
	Maximum	2003 -2013	27.8	31.7	35.5	37.2	38.4	37.1	35.5	36.0	36.1	35.1	32.6	29.8	34.4	
Bogra	Average	2003 -2013	16.4	20.8	25.3	27.8	28.8	29.1	29.2	29.3	28.8	27.1	23.2	18.9	25.4	
	Minimum	2003 -2013	7.4	10.6	14.6	19.4	20.7	22.8	24.7	24.6	24.0	19.9	13.9	9.9	17.7	
	Maximum	2003 -2013	26.9	30.7	35.4	37.2	38.1	37.4	35.4	35.8	35.4	33.9	31.5	28.1	33.8	
Dinajpur	Average	2003 -2013	15.3	19.8	24.2	26.7	28.2	28.9	29.1	29.3	28.7	26.4	22.1	17.8	24.7	
	Minimum	2003 -2013	6.8	9.3	13.5	18.0	20.1	22.0	24.3	24.8	23.6	18.5	12.5	8.8	16.9	
	Maximum	2003 -2013	27.0	30.9	35.2	36.5	37.7	37.0	35.6	36.3	35.7	34.4	31.4	28.5	33.9	
Sayedpur	Average	2003 -2013	15.8	20.2	24.3	26.6	28.0	28.9	29.1	29.4	28.7	26.5	22.3	18.3	24.8	
(Sydpur)	Minimum	2003 -2013	6.8	10.0	13.7	17.8	19.7	21.4	23.9	24.4	23.3	18.6	12.8	9.0	16.8	
	Maximum	2003 -2013	28.9	33.1	36.6	38.2	38.0	37.3	35.1	35.2	35.3	35.1	32.3	29.2	34.5	
Khulna	Average	2003 -2013	18.1	22.3	26.8	29.6	30.1	29.9	29.0	29.1	28.9	27.6	24.0	19.6	26.2	
	Minimum	2003 -2013	9.4	12.0	15.7	20.1	21.4	23.1	24.6	24.5	24.3	20.4	15.3	10.9	18.5	
	Maximum	2003 -2013	29.3	33.6	37.0	38.2	38.5	37.0	34.8	35.0	35.3	35.1	32.5	29.4	34.6	
Mongla	Average	2003 -2013	18.6	22.6	27.0	29.5	30.0	29.6	28.7	28.7	28.6	27.6	24.2	20.1	26.3	
	Minimum	2003 -2013	9.9	12.8	16.9	20.6	21.5	23.5	24.5	24.6	24.5	21.3	16.0	11.8	19.0	
	Maximum	2003 -2013	28.7	33.0	36.5	38.0	38.2	37.4	34.8	35.0	34.9	34.5	32.0	28.8	34.3	
Satkhira	Average	2003 -2013	17.7	21.9	26.5	29.4	30.2	30.0	29.0	29.0	28.7	27.2	23.3	19.0	26.0	
	Minimum	2003 -2013	8.5	11.3	15.0	19.9	21.3	23.2	24.4	24.6	24.2	20.0	14.1	9.3	18.0	
	Maximum	2003 -2013	28.2	33.5	38.1	40.1	39.8	38.9	35.7	36.0	35.7	35.1	32.3	28.8	35.2	
Chuadanga	Average	2003 -2013	15.9	20.4	25.5	28.9	29.7	29.4	28.5	28.6	28.2	26.4	22.2	17.7	25.1	
0.1	Minimum	2003 -2013	6.6	9.6	12.8	19.4	20.8	22.8	24.6	24.7	23.8	18.9	12.7	7.9	17.0	
	Maximum	2003 -2013	29.5	33.3	36.3	37.0	37.0	35.9	34.0	34.9	35.0	35.2	32.6	30.2	34.2	
Patuakhali	Average	2003 -2013	18.3	22.2	26.5	28.8	29.5	29.2	28.5	28.6	28.4	27.5	23.9	19.8	25.9	
	Minimum	2003 -2013	9.7	11.9	15.9	20.2	21.5	23.3	24.5	24.5	24.1	20.9	15.3	10.9	18.6	
	Maximum	2003 -2013	29.6	32.8	35.5	36.2	35.8	35.3	33.7	33.9	34.4	34.7	32.3	30.0	33.7	
Khepupara	Average	2003 -2013	18.6	22.4	26.6	29.0	29.8	29.4	28.6	28.6	28.5	27.5	24.0	19.9	26.1	1
	Minimum	2003 -2013	9.7	11.8	15.9	20.4	21.7	23.6	24.0	24.4	24.0	20.8	15.1	10.6	18.5	
	Maximum	2003 -2013	29.0	32.2	35.4	35.6	35.9	35.4	33.7	34.2	34.3	34.5	32.2	29.4	33.5	
			- 27.0	24.4	22.4	22.0	22.9	20.4	22.1	27.4	27.3	54.5	22.2		55.5	1
Bhola	Average	2003 -2013	17.7	21.7	26.0	28.4	29.1	28.9	28.3	28.5	28.2	27.4	23.7	19.4	25.6	

Table 4.3.2 Monthly Maximum, Mean and Minimum Temperature

Source: JICA Survey Team, BMD

The temperature data of all 18 stations shows similar trends. January is the coldest month in the Project area. However, there is variation in the warmest month: the highest monthly maximum temperature is in April, while the highest monthly minimum temperature is in July-August. The highest monthly mean temperature is in August in the 4 northwestern cities (Rangpur, Dinajpur, Syedpur, Bogra) and is in June or May at other areas. The mean temperature in Western Bangladesh varies approximately from 17°C to 29°C.

Source: JICA Survey Team, BMD

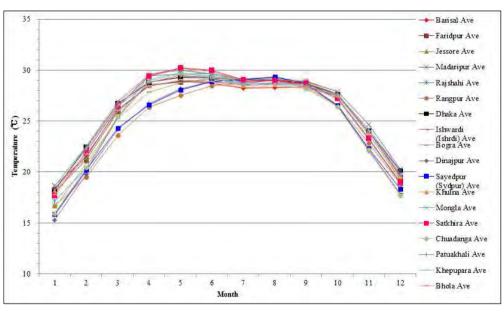
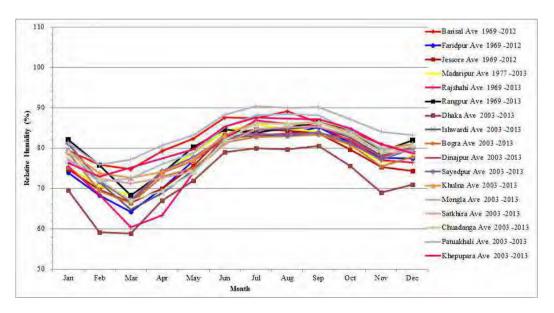


Figure 4.3.4 Monthly Maximum and Minimum Temperature at 6 stations

Source: JICA Survey Team, BMD

2) Relative Humidity


The monthly mean relative humidity (RH) at 17 stations is shown in Figure 4.3.6 (with corresponding data in Table 4.3.3).

The lowest average monthly RH is occurs in February-March and the highest average RH occurs throughout the rainy season. However, the RH is high throughout the entire year, and often reaches extreme levels.

Station	Item	Period of Record	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	Remarks
Barisal	Average	1969 -2012	79.5	75.9	74.8	79.3	82.3	87.6	87.4	89.1	86.3	84.2	81.0	79.2	82.2	Gap 2002
Faridpur	Average	1969 -2012	74.0	68.4	64.2	70.0	76.8	83.4	82.8	83.5	85.2	81.4	77.6	77.5	77.1	Gap 2002
Jessore	Average	1969 -2012	74.8	69.7	66.5	70.0	75.6	83.4	84.6	84.3	83.6	79.7	75.3	74.3	76.8	Gap 1978_2002
Madaripur	Average	1977 -2013	75.1	70.6	68.2	74.0	78.7	84.2	85.8	84.7	84.1	80.6	76.7	76.5	78.3	Gap 1979_2002
Rajshahi	Average	1969 -2013	75.4	68.4	60.4	63.4	73.9	82.7	86.8	86.0	85.4	81.8	77.0	76.4	76.5	Gap 2002
Rangpur	Average	1969 -2013	82.1	75.7	68.3	73.7	80.2	84.6	83.8	85.0	86.4	84.4	79.1	81.9	80.4	Gap 2002
Dhaka	Average	2003 -2013	69.5	59.2	58.8	67.0	71.9	79.0	80.0	79.6	80.5	75.6	69.0	71.0	71.8	
Ishwardi	Average	2003 -2013	79.5	71.5	64.8	68.8	74.5	81.9	84.6	84.7	85.3	82.7	78.1	79.8	78.0	
Bogra	Average	2003 -2013	78.8	69.4	66.4	72.9	75.0	81.4	82.7	83.0	83.3	81.0	75.5	77.9	77.3	
Dinajpur	Average	2003 -2013	81.3	71.9	66.5	73.9	76.9	82.3	83.2	83.6	83.7	82.3	77.7	80.2	78.6	
Sayedpur	Average	2003 -2013	81.1	71.7	67.2	74.4	77.7	82.7	83.6	83.1	83.9	81.3	77.1	79.8	78.6	
Khulna	Average	2003 -2013	79.4	73.7	72.6	74.0	77.1	83.3	86.3	86.0	86.5	84.0	79.9	80.9	80.3	
Mongla	Average	2003 -2013	77.0	71.7	72.5	76.1	78.8	85.2	88.1	88.4	88.2	84.3	79.9	79.3	80.8	
Satkhira	Average	2003 -2013	77.3	72.5	71.3	72.7	74.3	80.9	84.7	85.2	85.3	83.2	78.9	79.1	78.8	
Chuadanga	Average	2003 -2013	79.1	72.2	67.0	69.5	73.8	81.9	86.2	85.9	86.3	83.5	79.1	80.6	78.8	
Patuakhali	Average	2003 -2013	81.3	75.9	77.1	80.6	83.3	88.3	90.5	89.9	90.1	87.1	84.1	83.2	84.3	
Khepupara	Average	2003 -2013	76.3	72.9	75.2	77.4	79.7	85.3	87.6	87.3	87.1	84.9	80.9	78.7	81.1	
Bhola	Average	2006 -2010	86.0	99.0	93.5	83.5	101.5	90.0	89.0	103.0	90.5	89.0	98.0	94.5	93.1	
Bangaldesh	Average		78.2	72.8	69.7	73.4	78.5	83.8	85.4	86.2	85.7	82.8	79.2	79.5	79.6	

 Table 4.3.3 Monthly Mean Relative Humidity at 17 Stations

Source: JICA Survey Team, BMD

Source: JICA Survey Team, BMD

Figure 4.3.6 Monthly Mean Relative Humidity at 17 Stations

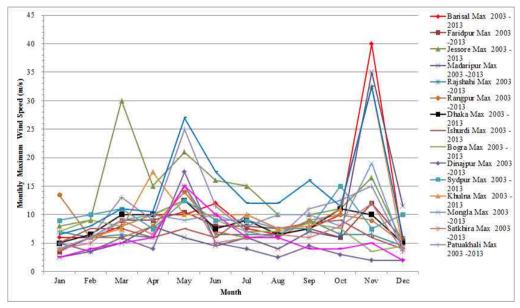
3) Wind Speed and Direction

The monthly maximum wind speed at 17 stations and the monthly mean wind speed at 18 stations are shown in Figure 4.3.7 (data in Table 4.3.4) and Figure 4.3.8 (data in Table 4.3.5) respectively.

The wind-direction in Bangladesh is characterized by seasonal alternation between summer and winter. During the winter season, a high-pressure center lies over northwestern India. A stream of cold air flows eastward from this high pressure and enters the country through its northeast corner by changing its course clockwise, almost at a right-angle. This wind is the part of the winter monsoon circulation of the South Asian subcontinent. During this season, the wind inside the country generally has a northerly component. On the other hand, during the summer season, a low-pressure center develops over the west-central part of India because of intense surface heat. As a result, a stream of warm and moist air from the Bay of Bengal flows toward the above-mentioned low pressure through Bangladesh. This wind is the part of the summer monsoon circulation of the sub-continent. Therefore, the prevailing wind direction in Bangladesh during the summer season generally has a southerly component.

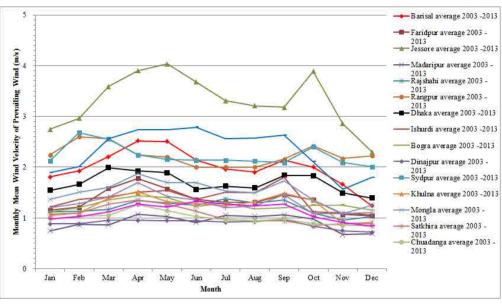
The mean wind speed is in the range of about 1-3m/s, except in Jessore where it can reach about 4m/s. The data given for the maximum wind speed has been affected by a cyclone in Southern Bangladesh in 2007 (which explains why monthly maximum wind speeds in Barisal were recorded at 40m/s).

Station	Item	Period o	f Record	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Max	Remarks
Dhaka	Maximum	2003	-2013	5.0	6.5	10.0	10.0	12.5	7.5	9.0	6.5	7.5	11.0	10.0	5.0	12.5	
Faridpur	Maximum	2003	-2013	3.5	6.0	9.0	9.0	10.5	8.0	8.0	7.5	7.5	6.0	12.0	5.5	12.0	
Madaripur	Maximum	2003	-2013	2.5	3.5	5.0	8.0	6.0	4.5	6.0	4.0	7.0	6.0	35.0	11.5	35.0	
Rajshahi	Maximum	2003	-2013	7.0	6.0	6.5	6.0	15.0	6.5	6.5	6.5	9.0	6.5	6.5	4.5	15.0	
Ishurdi	Maximum	2003	-2013	5.0	7.5	7.5	6.0	7.5	6.0	10.0	7.5	8.5	9.0	6.0	4.0	10.0	
Bogra	Maximum	2003	-2013	7.0	9.0	8.0	10.0	12.5	9.0	7.0	7.0	8.5	7.5	3.5	4.5	12.5	
Rangpur	Maximum	2003	-2013	13.5	6.0	6.0	8.0	14.0	7.0	6.0	6.0	9.0	10.0	9.0	5.0	14.0	
Dinajpur	Maximum	2003	-2013	5.0	3.5	6.0	4.0	17.5	5.0	4.0	2.5	4.5	3.0	2.0	2.0	17.5	
Sydpur	Maximum	2003	-2013	9.0	10.0	11.0	7.5	12.5	9.0	9.0	7.5	7.5	15.0	7.5	10.0	15.0	
Khulna	Maximum	2003	-2013	4.0	6.0	7.5	17.5	10.0	10.0	10.0	7.5	8.0	11.0	32.5	4.0	32.5	
Mongla	Maximum	2003	-2013	4.0	6.0	9.0	10.0	9.0	10.0	8.0	10.0	10.0	8.0	19.0	4.0	19.0	
Satkhira	Maximum	2003	-2013	4.0	5.0	9.0	6.5	15.0	5.0	6.0	6.5	6.0	8.0	12.0	3.5	15.0	
Jessore	Maximum	2003	-2013	8.0	9.0	30.0	15.0	21.0	16.0	15.0	10.0	10.0	11.0	16.5	5.0	30.0	
Barisal	Maximum	2003	-2013	6.0	6.0	8.0	10.0	10.0	12.0	7.5	6.5	7.5	10.0	40.0	5.0	40.0	
Patuakhali	Maximum	2003	-2013	4.0	6.0	13.0	9.0	25.0	11.5	7.0	6.0	11.0	12.5	15.0	4.0	25.0	
Khepupara	Maximum	2003	-2013	6.5	8.0	11.0	10.5	27.0	17.5	12.0	12.0	16.0	11.5	32.5	6.0	32.5	
Bhola	Maximum	2003	-2013	2.5	4.0	5.0	6.0	15.0	10.0	6.0	6.0	4.0	4.0	5.0	2.0	15.0	
Bangladesh	Maximum	2003	-2013	13.5	10.0	30.0	17.5	27.0	17.5	15.0	12.0	16.0	15.0	40.0	11.5	40.0	


Table 4.3.4 Monthl	y Maximum Win	nd Speed at 17	Stations (in m/s)
--------------------	---------------	----------------	-------------------

Source: BMD

Station	Item	Period o	f Record	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	Remarks
Dhaka	Average	2003	-2013	1.55	1.66	1.99	1.93	1.89	1.56	1.63	1.59	1.84	1.83	1.49	1.39	2.0	
Faridpur	Average	2003	-2013	1.15	1.21	1.58	1.78	1.57	1.36	1.31	1.31	1.46	1.36	1.07	1.04	1.8	
Madaripur	Average	2003	-2013	0.75	0.87	0.86	1.07	1.03	0.91	1.05	1.03	1.06	0.98	0.67	0.69	1.1	
Rajshahi	Average	2003	-2013	1.12	1.13	1.16	1.35	1.29	1.25	1.37	1.29	1.35	1.10	0.95	1.03	1.4	
Ishurdi	Average	2003	-2013	1.22	1.36	1.42	1.51	1.54	1.36	1.51	1.50	1.80	1.12	1.10	1.06	1.8	
Bogra	Average	2003	-2013	1.12	1.20	1.36	1.44	1.40	1.22	1.30	1.18	1.20	1.25	1.25	1.15	1.4	
Rangpur	Average	2003	-2013	2.24	2.60	2.56	2.24	2.20	2.00	2.00	2.00	2.16	2.42	2.18	2.23	2.6	
Dinajpur	Average	2003	-2013	0.88	0.88	0.95	0.95	0.95	0.95	0.92	0.93	0.97	0.84	0.75	0.72	1.0	
Sydpur	Average	2003	-2013	2.13	2.68	2.55	2.25	2.15	2.14	2.14	2.12	2.09	2.40	2.09	2.01	2.7	
Khulna	Average	2003	-2013	1.05	1.10	1.39	1.52	1.32	1.28	1.24	1.32	1.48	1.35	0.89	0.88	1.5	
Mongla	Average	2003	-2013	1.36	1.51	1.60	1.87	1.70	1.69	1.53	1.49	1.73	1.36	1.09	1.25	1.9	
Satkhira	Average	2003	-2013	1.07	1.09	1.27	1.35	1.27	1.14	0.97	0.95	0.94	0.85	0.88	0.91	1.4	
Jessore	Average	2003	-2013	2.75	2.96	3.59	3.90	4.04	3.68	3.31	3.21	3.18	3.89	2.86	2.30	4.0	
Chuadanga	Average	2003	-2013	0.98	1.04	1.05	1.26	1.15	1.03	0.96	0.95	0.98	0.89	0.86	0.84	1.3	
Barisal	Average	2003	-2013	1.81	1.93	2.21	2.52	2.51	2.15	1.96	1.90	2.14	2.00	1.66	1.24	2.5	
Patuakhali	Average	2003	-2013	1.20	1.28	1.42	1.69	1.43	1.35	1.20	1.24	1.46	1.08	1.09	1.11	1.7	
Khepupara	Average	2003	-2013	1.89	2.01	2.56	2.74	2.74	2.79	2.56	2.57	2.63	2.11	1.57	1.80	2.8	
Bhola	Average	2003	-2013	0.98	1.03	1.12	1.27	1.22	1.34	1.27	1.24	1.27	1.03	0.91	0.84	1.3	
Bangladesh	Average	2003	-2013	1.40	1.53	1.70	1.81	1.74	1.62	1.57	1.54	1.65	1.55	1.30	1.25	1.8	


Table 4.3.5 Monthly Mean Wind Speed at 18 Stations (in m/s)

Source: BMD

Source: BMD

Figure 4.3.7 Monthly Maximum Wind Speed at 17 Stations

Source: BMD


4) Sunshine Hours

The monthly mean sunshine hours at 18 stations is shown in Figure 4.3.9 and Table 4.3.6.

The sunshine-hours have two opposing seasonal patterns, coinciding with the winter monsoon and the summer monsoon. With the progression of the rainy season, the cloud-cover increases, and the sunshine hours decrease.

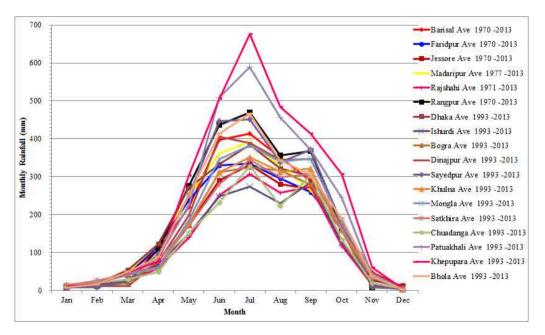
Station	Item	Period of Record	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average	Remarks
Barisal	Average	1970 -2013	7.8	8.1	8.2	8.1	6.8	4.2	4.1	4.4	5.0	7.1	7.8	7.7	6.6	Gap 1978
Faridpur	Average	1985 -2013	7.0	8.0	7.9	8.1	7.0	5.0	4.5	5.0	5.0	7.0	7.7	7.2	6.6	
Jessore	Average	1970 -2013	6.8	7.6	7.6	7.8	7.2	4.7	3.9	4.4	4.7	6.5	7.1	6.8	6.3	Gap 1971
Madaripur	Average	1985 -2013	6.1	7.1	7.2	7.2	6.0	3.9	3.6	4.0	4.3	5.9	6.7	5.9	5.7	Gap 1985-1986_1989
Rajshahi	Average	1979 -2013	6.8	8.2	8.4	8.2	7.4	5.5	4.6	5.1	5.4	7.3	8.0	7.3	6.8	Gap 1980_2007
Rangpur	Average	1979 -2013	6.2	7.5	7.8	7.1	6.5	4.8	4.3	5.1	5.2	7.2	8.1	6.9	6.4	
Dhaka	Average	2003 -2013	5.3	7.1	7.4	7.4	6.7	3.6	4.2	4.5	4.1	5.6	6.7	5.3	5.7	
Ishurdi	Average	2003 -2013	5.7	7.8	8.0	8.0	7.3	5.2	4.8	5.2	5.5	6.8	7.3	5.8	6.5	
Bogra	Average	2003 -2013	4.6	7.1	7.4	7.0	6.5	4.3	4.4	4.8	4.8	6.5	7.3	5.4	5.8	
Dinajpur	Average	2003 -2013	5.0	7.2	8.0	7.0	6.9	4.7	4.6	5.2	5.3	6.8	7.4	5.8	6.2	
Sydpur	Average	2003 -2013	4.6	6.9	7.6	6.6	6.4	4.3	4.7	5.2	5.3	6.8	7.1	5.0	5.9	
Khulna	Average	2003 -2013	6.6	8.0	8.0	8.5	7.5	4.6	4.0	4.4	4.7	6.5	7.5	6.4	6.4	
Mongla	Average	2003 -2013	6.9	8.0	8.2	8.6	7.2	4.3	3.8	4.2	4.6	6.2	7.6	6.8	6.4	
Satkhira	Average	2003 -2013	6.5	7.8	7.8	8.5	7.8	4.9	4.3	4.5	4.9	6.5	7.5	6.4	6.4	
Chuadanga	Average	2003 -2013	5.8	7.6	7.7	8.1	7.6	5.3	4.4	5.0	5.1	6.5	7.2	5.9	6.4	
Patuakhali	Average	2003 -2013	7.0	8.3	8.0	8.1	6.9	3.7	3.7	4.2	4.6	6.6	7.6	6.7	6.3	
Khepupara	Average	2003 -2013	7.1	8.0	7.8	7.9	6.7	3.9	4.1	4.0	4.2	6.1	7.2	6.7	6.1	
Bhola	Average	2003 -2013	6.1	7.6	7.4	7.6	6.3	3.6	3.6	4.2	4.2	6.1	7.3	6.1	5.8	
Bangaldesh	Average		6.2	7.7	7.8	7.8	6.9	4.5	4.2	4.6	4.8	6.6	7.4	6.3	6.2	

Source: JICA Survey Team, BMD

Source: JICA Survey Team, BMD

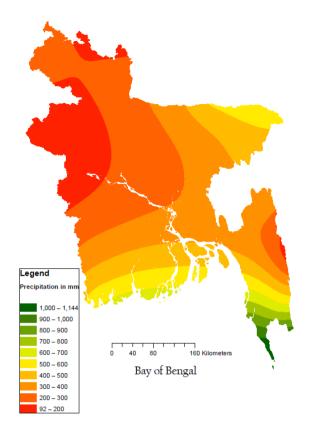
Figure 4.3.9 Monthly Mean Sunshine Hours at 18 Stations

- (2) Rainfall
- 1) Monthly and Annual Mean Rainfall


The monthly mean rainfall at 18 stations is shown in Figure 4.3.10 Figure 4.3.11 and Table 4.3.7.

Bangladesh is in the tropical monsoon region, the amount of rainfall is very high. And, there is a distinct seasonal pattern in the annual cycle of rainfall, which is much more pronounced than the annual cycle of temperature. The winter season accounts for only 2%-4% of the total annual rainfall. Rainfall during the rainy season is caused by the tropical depressions that enter the country from the Bay of Bengal. For example, the amount of rainfall in July 2013 covers a wide range, varying from 101mm in mid-western Rajshahi to over 1000mm in southeastern Cox's Bazar, as shown in Figure 4.3.11. Geographic distribution of annual mean rainfall in Western Bangladesh shows a variation from 1456mm in mid-western Ishwardi to 2910mm in southern Khepupara.

Station	Item	Period Recor		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Remarks
Barisal	Average	1970 -	-2013	8	22	45	108	220	398	415	351	289	178	48	11	2085	
Faridpur	Average	1970 -	-2013	7	25	43	117	237	329	335	296	260	161	33	11	1854	
Jessore	Average	1970 -	-2013	13	22	42	66	173	291	332	281	267	132	27	13	1654	
Madaripur	Average	1977 -	-2013	8	22	49	124	249	361	392	328	264	161	34	4	1981	
Rajshahi	Average	1971 -	-2013	9	14	23	58	139	251	308	258	274	119	15	9	1473	
Rangpur	Average	1970 -	-2013	8	11	23	110	275	437	470	356	367	164	8	7	2237	
Dhaka	Average	1993 -	-2013	7	19	54	122	271	333	384	322	301	175	28	8	2024	
Ishurdi	Average	1993 -	-2013	7	15	28	69	150	247	274	230	286	126	18	5	1456	
Bogra	Average	1993 -	-2013	9	12	20	79	175	313	325	317	279	158	10	3	1700	
Dinajpur	Average	1993 -	-2013	9	11	12	76	198	405	388	345	346	178	9	4	1980	
Sayedpur	Average	1993 -	-2013	9	8	26	97	252	447	451	338	371	176	11	4	2189	
Khulna	Average	1993 -	-2013	15	24	46	57	177	312	352	314	321	161	38	3	1821	
Mongla	Average	1993 -	-2013	10	20	43	60	186	346	382	341	349	177	44	3	1960	
Satkhira	Average	1993 -	-2013	14	26	40	80	170	281	344	299	306	158	35	4	1757	
Chuadanga	Average	1993 -	-2013	12	19	29	49	152	232	328	223	304	134	20	5	1507	
Patuakhali	Average	1993 -	-2013	8	20	43	87	224	509	589	457	371	244	39	1	2593	
Khepupara	Average	1993 -	-2013	11	16	47	77	303	506	677	485	414	307	62	5	2910	
Bhola	Average	1993 -	-2013	8	16	49	88	251	414	466	343	306	191	38	4	2173	
Bangaldesh	Average			9	18	37	85	211	356	401	327	315	172	29	6	1964	


Table 4.3.7 Monthly Mean Rainfall at 18 Stations

Source: JICA Survey Team, BMD

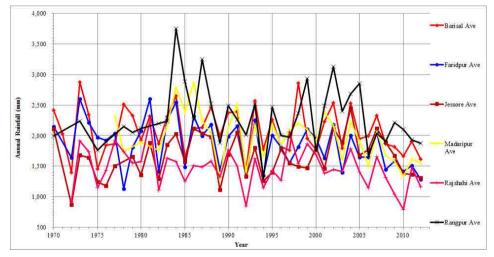
Source: JICA Survey Team, BMD

Figure 4.3.10 Monthly Mean Rainfall at 18 Stations

Source: BMD

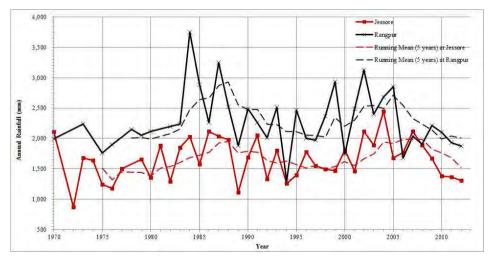
Figure 4.3.11 Monthly Rainfall Contour Map at July, 2013

2) Long-term Fluctuation of Annual Rainfall

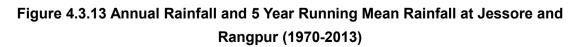

The long-term fluctuation of annual rainfall at 6 stations is shown in Figure 4.3.12 (with corresponding data in Table 4.3.8).

Each station has undergone significant rainfall fluctuation, with fluctuations ranging from 1500mm to 2400mm. However, as an example, Figure 4.3.13 Annual Rainfall and 5 Year Running Mean Rainfall at Jessore and Rangpur (1970-2013) shows the long-term fluctuation of annual rainfall using a 5-year "running mean" (moving average) at Jessore and Rangpur. Although the cycle of wet and droughty periods is not clear, periods of high rainfall and drought can be recognized with this figure. (However, in this figure, the rising trend of annual rainfall in recent years cannot be observed.)

 Table 4.3.8 Long-term Fluctuation of Annual Rainfall at 6 Stations


a:	1070	1071	1072	1072	1074	1075	107(1077	1070	1070	1000	1001	1002	1002	1004	1005	1007	1007	1000	1000	1000	1001	1002	1002	1004					
Station	1970	19/1	1972	19/3	1974	1975	1976	1977	19/8	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994					
Barisal	2413	2025	1396	2877	2346	1450	1845	1862	2516	2325	1919	2322	1868	2312	2649	1645	2119	2129	2464	1994	2378	2392	1439	2566	1777					
Faridpur	2152	****	1642	2599	2211	1969	1924	2039	1130	1809	2072	2599	1410	2251	2544	1482	2319	1993	2183	1438	1985	2156	1336	2256	1344					
Jessore	2108	****	870	1678	1640	1243	1179	1500	****	1651	1358	1879	1295	1848	2031	1576	2118	2039	1976	1117	1686	2052	1333	1802	1260					
Madaripur	-	-	-	-	-	-	-	2321	1748	****	1892	****	1758	2164	2790	2390	2865	2246	2041	1304	2127	2511	1407	2184	1663					
Rajshahi	-	****	921	1914	1736	1144	1427	1918	1734	1548	1576	2241	1103	1629	1575	1252	1510	1487	1584	1325	1767	1498	843	1623	1142					
Rangpur	1997	****	****	2237	****	1763	1895	****	2145	2048	2120	****	2201	2238	3748	2882	2264	3247	2524	1878	2487	2263	2007	2510	1301					
Station	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013			Rem	arks							
Barisal	2258	1819	1758	2858	1955	1770	2228	2537	1795	2529	1943	1998	2328	1864	1820	1662	1909	1617	****	Gap 2	.013									
Faridpur	2006	1810	1548	1818	2105	1952	1634	2179	1400	2001	1650	1649	2040	1443	1584	1409	1509	1279	****	Gap 1	971_2	013								
Jessore	1397	1775	1553	1490	1467	1811	1457	2120	1892	2444	1678	1769	2119	1888	1668	1380	1361	1305	****	Gap 1	971_1	978_2	013							
Madaripur	2189	1847	2087	2200	2099	1917	2379	2165	1608	2221	1905	1503	2061	1679	1580	1330	1613	1546	****	Gap 1979_1981_2013										
Rajshahi	1432	1269	2062	1540	1862	1690	1382	1445	1412	1786	1405	1145	1658	1315	1043	792	1475	1164	****	Gap 1	Gap 1971_2013									
Rangpur	2461	2004	1971	2365	2931	1745	2492	3127	2402	2680	2853	1682	2037	1907	2217	2102	1932	1877	****	Gap 19'	Gap 1971_2013 Gap 1971-1972_1974_1977_1981_2013									

Source: JICA Survey Team, BMD



Source: JICA Survey Team, BMD

3) Exceedance Probability and Intensity Curve of Rainfall

The exceedance probability and the intensity curve for rainfall in Dhaka are indicated in the "Urban Drainage Manual" published by the Local Government Engineering Department in 1998, as shown in Figure 4.3.14 (with corresponding data in Table 4.3.9) and. The design rainfall intensity can be calculated by multiplying Dhaka's value by conversion factors each district, as shown in Table 4.3.10.

Return			Rainfall Inter	nsity (mm/hr) ir	n given duration	l		
Period	15minutes	30minutes	60minutes	120minutes	180minutes	360minutes	720minutes	Remarks
(years)	0.25 hours	0.50 hours	1 hours	2 hours	3 hours	6 hours	12 hours	
1.1	73.5	59.9	39.6	22.0	14.0	7.1	4.3	
2	92.4	78.6	56.2	36.7	27.0	15.4	9.4	
5	109.7	95.7	71.4	50.1	39.0	23.0	14.1	
10	121.3	107.0	81.4	58.9	46.9	28.0	17.3	
25	135.6	121.3	94.1	70.1	56.9	34.3	21.2	
50	146.3	132.0	103.5	78.4	64.3	39.0	24.1	

Table 4.3.9 Rainfall-Intensity each Return Period at Dhaka

Source: Urban Drainage Manual (1998), Local Government Engineering Department

Source: Urban Drainage Manual (1998), Local Government Engineering Department

Figure 4.3.14 Rainfall Intensity Curve at Dhaka

Table 4.3.10 Rainfall Intensity Formula in Dhaka
--

Return Period (years)	a	b	с
1.1	72	1.29	0.81
2	110.6	1.02	0.95
5	153.8	0.95	1.12
10	186.8	0.93	1.25

 $i = \frac{a}{T^b + c} * m$

i: Rainfall Intensity (mm/hr) T: Given Duration (hr) a, b, c: Constants m: Conversion Factor each District (0.84~1.79)

Source: Urban Drainage Manual (1998), Local Government Engineering Department

4.3.3 Hydrological Condition

(1) Data Collection

The Bangladesh Water Development Board (BWDB) manages gauge station records for large rivers in Bangladesh.

For studying hydrological conditions in the Project area, the observed data of 86 stations for annual highest/lowest water level and 6 stations for annual maximum/minimum discharge was collected.

- (2) Estimation of Probable Water Levels
- 1) Design High Flood Level (HFL)

There are two different methods for the estimation of Design High Water Level (High Flood Level, HFL) generally. They are (a) Log-Pearson's Type-3, and (b) Gumbel's Extreme Value Type-1 distribution method. The calculations for this DHWL will be done using method (b) which is most commonly practiced in Bangladesh.

The following outlines Gumbel's distribution method.

Computation for Probable Flood Level (Gumebel's Extreme Value Type-1 distribution method)

$$K_T = \frac{\sqrt{6}}{\pi} \left[0.5772 + ln \left\{ ln \left(\frac{T}{T-1} \right) \right\} \right]$$

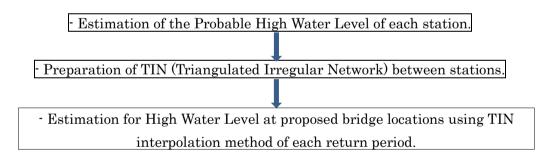
And the Extreme Value within that distribution is given by:

$$X_T = \bar{X} + K_T \times \sigma_{n-1}$$

where $X_T = Extreme Value$

T = return period in years.

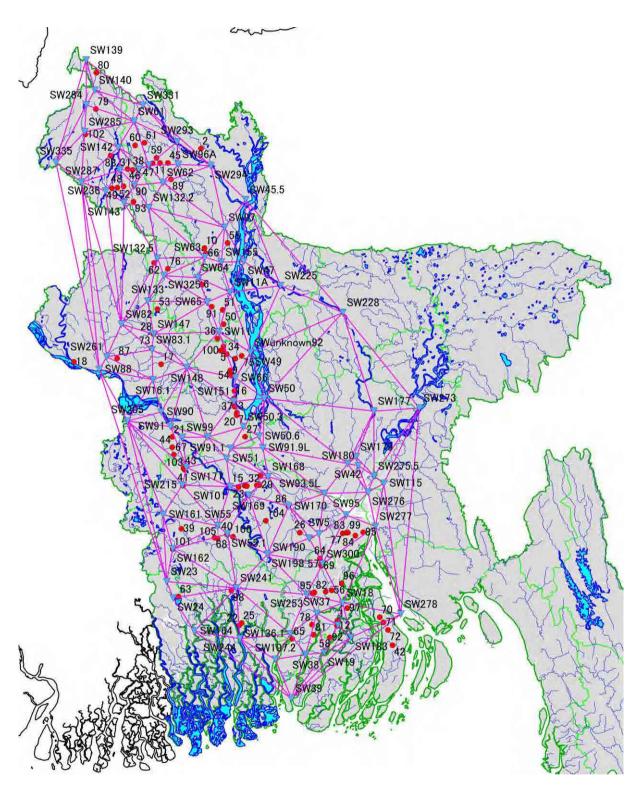
$$\bar{X} = Mean = \frac{\sum x_i}{n}$$


 x_i =annual high flood level (HFL)

n=numbers pf years of records available

 $\sigma_{n-1} = Standard Deviation$

The calculated probable high water levels at 86 gauge stations are shown in Table 4.3.11 and Table 4.3.12. Return periods by Gumbel's distribution are for 1.1, 5, 10, 20, 25, 50 and 100 years. Also, 13 station's results for HFL are added from National Water Management Plan in 1999.


The design high water level at proposed bridge sites is calculated using the following procedure:

After calculation based on above procedure, the calculated probable high water levels of each bridge will be re-examined by checking the historical water level (acquired through interviews), the topographical conditions and the river condition, etc.

The criterion for calculation of the HFL depends on the classification of proposed bridges: a 20-year flood is used for Zilla roads, and a 50-year flood is used for national roads and regional roads (in reference to the RHD standards). The freeboard of each bridge (taken as the clearance with girder) is set to 30cm or more. For steel-girder bridges, a clearance of 3.0m for a 1.1-year flood is taken. Also, special designated clearances against SHWL are ensured if the bridge crosses an official navigable waterway. (Refer to 4.3.4.)

Design high water levels (HFL) are shown for each bridge in Table 4.3.13 and Table 4.3.14.

Source: JICA Survey Team

Table 4.3.11 Estimation of HWL at each gauging station (1)

						_			-			Water I av	we wath Retard	Parriet (vaul)	In PARY		Water	Linux and	Raturn Par	od (vsar) (m. h	121									Parom	is of Annual	High Flood Le	val								-1
and and			Longau	Lature	-	Easter	iert.	No.		9				20 25		cnc			10 20		50 10				TT	1.1	1	TT	1.			ingir land co		T T	TT	1.1	1	TT	1	TT	-
Fisher / Baston	Name Station	NO.	=.00	100.	Flow No.	Area (k	m ²) East	807	pie Man	Devia 0			5	-					Re			1981	1982 1983	1984 1985	1986 198	97 1588 1	989 1990	1991 15	92 1993	1904 190	6 1995	1997 1998	1.999 2000	2001 200	2 2003 200	2005 20	166 2007	7 2996	2009 201	ð 3917 7	2012 Remarks
		-	-		1.1	-	1	-		100	-14	32 0.719	1.306 1	865 2.044	2,592	3.137	-1.132 0.	19 1.30	1.865	2.044 2	592 3.13				100		-		1	1.0	1.		(1994) - Area			1000	-			100	_
< Water Lawel > Anali Khan	Maganpur	545	64.101	23 tà7	289		438 Weer 1		0 44	101 0	1506 3.91	19 4 855	5.151 5	435 5.525	5.902	Sarr	3.455 4.	95 1.65	1 1975	FAFE A	542 5 61		2.47	444 470	344 .	12 2 60 1	-	1.140 3	16	2.00	11 100	100 2.00	125 2.20		5 8 68 5.0	1 400 2		1 200	100 44	a in	2.00
	Khanpur	5011		24.620			100 Wimi I					09 14 402		683 16/113				42 14.65		15 653 16	362 17.08														F 13.80 13.8						
Saval	Mandangachi	SWIS		24.203			772 11-04		12			17 13.704		122 15.411					14.722		458 15.36			12.69				1.1.1.1.1.1	11-1-1-1					1	10100	11100		a participation of the		and a state of the second	Deselection
Barise-Buriswar	Bakergan	SW18.1		22.544			579 Willet				336 2.03			040 3 100				97 2.31			.623 3.00	1													3 2.87 2.3				2.27 2.6		
	Bartsak	GW18		22.700			1671 Weser 1				224 2.22			844 2 800				150 2.2			533 2.64		2.51	265 2.54	2.85 2.9	62 2.88 1									0 230 25						2.47
	Mirzəganı	SW18		22,352			671 Wgmr 1				356 240			556 3.619				2.85			354 3.54		200												5 278 2.9 5 4.83 5.6				337 25		1.0
and the second second	Kataroa Elemanosa	6W23 SW24		22.872			1847 William				0.786 2.90 0.422 2.90			252 5.993 221 4.263			2.440 3.	193 4.36 271 3.52			362 5.79 072 4.30			369 281											3 3 15 3-7						
and the second	.stajokat	BA37	90.163				5/97 Water				2.02			736 2.778			1.572 2				446 2.57														7 238 24					2 242	
Bistikhali	Barinta	SW38		22.344		.26	(997 Water)	910 3			2.59	91 3.135		471 3.524				175 2.84			225 3,38		2.85	3 04 3 32	3.15 3	10 3.15 1	2.76 2.80	2.64 2	95 3.02	2.58 2.7	80 8.37	2.31 2.75	2.60 2.85	2.95 2.8	3 2.78 2.9	8 2.88 2	99 3 16	6 3.25	3.40 3.6	6 3,15	2.85
	Patharghata	EM/39		22.037			577 War	Section 11			1423 2.72			992 4.05				461 3.25			539 .4 071														5 340 3,4					5 3.55	
	Dhaks_MS Sa Nation Print Co.			23.676			253 Weet				1713 4.8 1340 35.3	12 6 132		949 7.076 338 38 484				572 5.08	0 6.439		007 7.39														2 5.87 5.5 5 36.43 36.7						4.95
a contrata anti-	Sinasoni	SW49		24.471			000 Waav 1		-			19 27.374		338 38 485			12 926 13		14 574		450 35.94														8 14 34 14 8						2.04
	Mamura	SW50.3		23.950			590 Water					10 614			11.623		- 10.				153 11.45		(ton National				44 10.0	1.000	40 10119	10.00	1.4.91	10.00 10.70	14.14 14.04	10.00 10.0	1.0.00	L LUCAL TRO	100 100.00	1	10.90 10.0	10.04	100
Brahmapurza-Jamona	Archa	SW60.6		27 831		3	000 Wmm	evel 3			550 8 96				11:339			548 B 81		10.071 10	579 18.87		8.62	945 8.97	9.03 10	18 10.57 8	172 9.21	965 8	50 9 18	911 93	9.78	9.20 10.75	9.82 3.75	957 10.2	10.08 10.3	9.72 9	20 10.67	17 982	8.26 9.6	03.8 0	9.22
Chipa	Khatur Magura	s 5W55	29.445	23.259	264		SOS Weer	eyel 3	0 3.5	309 0	2.662 2.55	51 3.775	4,162 4	634 4.852	5.814	5,374	2.091 33	3.70	4.074	4.192 4	954 4,91	4	3.04	3/7 313	4,36 .4	12 2.74 3	31 3.4	2.15 3	03 3.5t	3.23 13	241	3.65 3.62	3,75 3.70	3,34 2.0	0 3,30 43	2 422 2	57 238	6 3,33	2.89 2.9	5 2.39	248
Deona Charaikata làmute sean Karaca	Botagam	SW61	88.849	25.108	83	1.1	750 Witer I	eni 3	0 519	989 0	645 51.26	69 62.453	52,830 53	192 53.307	53.880	54.011	50,799 51.	62.3	62 732	52.847 53	200 53.55		51.48	52 25 51 85	52.10 52	47 52.24 5	78 51.92	53.00 51	96 51.67	50.99 52.	62.53	51 97 52.84	62.47 52.37	51.98 51.7	50.65 50.9	5 53 13 51.	98 52.32	12 51.82	51.70 52.5	2 52 16 5	£ 38
Decnie_Charalling_lamate	Badaman	5962	29 (48	35 675		1	750 Wine 1		8 31.	105 0	1.907 30.80	19 32 489	33.018	527 23 685	34 185	14.5AD	30 345 32	10 10 10	32.067	33 229 33	728 14.22		31,74	32.01 32.41	31.29 32	15 32 85 3	26 30 20	10.01 31	01 30.03	39 32 32	15 37 54	10 23 23 10	32.27 30193	1233	1164 314	4 33.29 30	51 31 81	1 33 22	310	1 31.83 3	0.85
SMBIT_KBIBIDB		Contraine of	-						-	-		1	202.2	3					1.000				-				120	1000	-	2.5				1200			-		_	-	
INOT NECTON	Chak-Rahimpu	ur 91163	89.381	25 146	73	1.	250 Ware 1	erel 31	0 20.0	498 0	1715 19.68	89 21 012	21.430 21	832 21.956	22.351	22 740	19.229 201	52 25.97	21.372	21 499 21	.891 22.28		\$0.96	21.19 20.74	20.23 201	83 20.82 2	28 20 46	21 16 20	47 20.23	17.97 21.3	38 20.42	20.75 20.88	21.39 19.73	20.58 21.3	4 20.88 20.3	3 21.11 19.	01 23.73	3 20.33	20.54 19.6	7 20.07 2	3:33
Decria_ChareR.ss_vamure	Begrs	SWES	19 394	24.831	67	1	750 Wimer's	anti 3	0 152	312 0	14.31	10 15 949	16.457 16	984 17.122	17 607	15.080	13 850 15	18.00	16.504	18 682 17	147 17.62		15.49	15.75 15.33	16.12 17.	08 17.02 14	27 15.16	16.29 14	ST 15.05	13.88 18.	19 14 83	18 27 15 57	16.53 14.78	14.59 15.5	8 14.71 153	5 15.82 16	48 15 70	0 14 95	15 10 128	9 15:20	3.68
SWERT_KERENE	- W.		-		-					-	-	1																			1	- Pyre	1.50	100			-			-	
swart_Karatoa	Destruction of	. proves		24.794	-		250 W-		1.1	1.1	100	65 12 465			14.248			12.58			796 14:305			12.12 10.55				and the second s		1.1.1.1.1.1.1.1.1		1.21	1	1	12.48 12.6		1.0	a Castro			and the second se
	Nationg a_Ry Ch			24.501			250 Water 1				3619 9181			850 14.812			11.450 13				854 15,35			13.56 13.40										13.12 12.5		3 13.64 10					
	Ragnati: Tabaria	SW68 SW91		24368			279 Weet 1 279 Weet 1					12 18.811	18,257 19 13,789 14	677 13.813							767 20.17			1914 1881											9 18 85 17 4						
Ganges-Padmie Shaoyf	Gabandha	SW91		25.367			720 Water 1						23.454 24																						2 21.49 22.8						
Oorei-Madhumati-	Grai Reiway B		-	23.884		-	568 Aleer						13.204 13	-						10000				Contraction of the local division of the loc		-	the second s							and the second	6 11.94 12.3						the second se
Harvighten Belenwar Goral-Malmuthal-	OND HEIMIN S	ande outes				-			4 125	400 9	1.0001 1111	to izabit	10,004 10	644 (9.02)	10.000			al telle	197019	12.177 13	-		19.91	12-29 1 12-12	15/1 120	40 10.00 1	100 12.40	13.00 11	31 12.05	12.99 16.5	12.05	11.30 12.40			1			-	inati tra	1 12.42 3	2.00
Harzghas-Baesasi	KamarknailTra	not Swidt	189.543	23.532	- 245	4	568 War I	tve 2	5 82	384 9	506 7.81	12 8.748	8.044 9	327 8-417	9.665	8970	7.352 8.	88 8.58	4 8.BE7	8.967 9	235 9.51		5 98	8 81 8.57	883 81	25	- 1	8.84 7	84 8.12		8 74	8.26 9.27	8.73 9.43	6.38 6.4	2 8.51 B1	8 8.39 7	48 8.02	2 8.19	7 84 7.8	4 8,44	1.46
Gora-Madhumia-	Revenda	BW107 :	39,862	22.313	417	1	456 Winer	100 3	g 3.	343 0	2.93	39 3 600	3.809 4	610 4.073	4.255	4.463	2479 3	40 3.34	19 3 550	3.613 2	age 4 00	1	3.31	3.95 3.60	3.21 3	19 361 0	83 34	3 23 3	21 3.28	3.24 34	17 2.45	2.30 2.55	2.57 2.38	348 31	8 337 33	9 328 3	10 3.04	14 3.08	3 80 4.2	0 3.75	2.99
Haringhata-Bateswar Litte Jemunia	Philipate	SW132.	2 89.954	25,600	389		270 Wenr 1		5 29.5	202 0	28.22	22 29.973	30.526 31	057 31 225	31.744	32 259	27 762 29	513 30.00	30.597	20.765 21	284 31.79		-								27.16	30 17	20.26 30.05	25.47 20.0	3 30 04 29 7	2 20 26 22	01 00 03	7 20 26 3	20.63 20.7	1 20.44	ani
	Soypurhat	SW1321		25 144			000 Wast					77 20 751		DOE 22.233						21 772 22	and a state		20.61	21 33 20 44	20 32 213	89 21 33 13	19 19 20	21 165 20	40 20.40	13 80 21 3	1 20.59				1 19.58 19.4					8 19 17 1	
Life Jámuna	Mannahpur	\$11132	88.848	25.859			000 Wmr 1				35.02			298 38.068																					9 38.13 38.E					8 34.76 3	
	Naogaon	SW133		24.844			160 10-1		0 15.			53 15.622								15.84R 15			15,49	15.42 15.46	15.48 15.	51 15.63 1-									4 15 41 15.2						
Frank & Start Con Contan	Utradiour	SW136		22,490	-		100 Water		-		0.125 2.40			819 2.841				2.20	-		448 2.61		-				- Andrews	-					2.49 2.67		-	5 2.75 2					100.00
Hurasagar	Elercleswan	SW139	39.481	28.542	35	1	267 Willey 1	ave Z	9 85.9	890 1	1.025 84.83	30 35 727	97.326 87	902 89 054	32,545	59,204 6	54,270 R6;	167 B5.84	87.442	87 824 88	195 88.74	4	88.25	86 06 86 35	55.68 B6	65 85 32 56	38 88 58	36.97 36	35 87 67	86.10 85.	11 82 13	86.00 37.00	88.00	86.25 84.0	2 35.45 85.4	2 85.85 94	41 85 18	18 BE 68 i	85.78 84.0	5 35.69 8	4.70
Karaba-Ara-Dur-Dumeni-	Panchaganh	SW140	88.547	26 330	374		267 Weer	evel 3	0 703	525 0	58.93	35 70.954	71.821 71	683 71.771	72.105	72 438	59.375 76	04 70.86	71.203	71311 71	645 71.97		70.79	70.96 70.63	70.03 71	42 70.85 70	181 75.40	71.81 00	93 71.00	69.78 70.8	1 71 77	69.75 71.08	71.12 70.78	70 58 70 5	5 71.00 20.1	0 69.42 69.	78 70 2	70.28	69.88 70.1	0 69.90 7	0.20
Hurasagar Karatoa Airá-Gur-Giomani-	Ekustiktionstat	SW142						-	n 305	-	1578 20.25	10 200	40.547 40	972 41 079	11 300	#1 707	18 778 36	uio	40.512	40 515 40	932 41 24			40.56 30.00	-	-		-	01 8110					-	-					4 40 08 3	
Hurasagar	Distriction of the	511142	38./35	25,767	60		654 Wmp+1	av8 3	e 39.8	083 10	10/3 . 39.2	30 447,309	-0.04/ 40	812 41.082	41,502	41.707	20 1 08 391	and with 15	40.012	-40.0101 40	1802 41.24		39.81	AN'DO 199 68	38.90 40-	an 147.24 147	124 411	40.81 39	** #U.02	ad.89 40.4	NO 41709	ast.02 40.80	-41.79 a9.80	39.84 39.5	0 40.26 38.9	0 28.3/ 38.	11 34 R	NO ISKOU	78.97 48.4	+400 3	148
Karaton-Arta-Gut-Gotsani- Huracagat	Kransame	SW142	B8:774	25.925	263	1	257 Witter	and 2	9 453	239 1	437 48.81	12 46.273	47.113 47	920 48 176	48.584	49 745	43,152 451	45.68	47.460	47.716 45	504 49.28		44.92	40.45 46.62	45 25 45	62 45.51 4	103 45 89	46.51 45	91 46.23	45 33 45.8	1 46.85	45.59 45.65	46.22 46.15	42.92	45.00 45.5	2 45.84 43.	57 44 07	17 44:24 4	22 30 22 3	8 44.75 0	3.45
Катара-Ала-Вых-Золар-	Shemblachat	3W143	68.747	25.537	435	1	267 Num	-	d 31.3	314 5	1769 30.42	21 31.882	32343 32	786 32 921	33.358	33.789	N 951 34	22 31.88	3 32 326	32 457 30	699 33 32		31,65	31.88 31.44	30.25 22	38 32 81 3	24 31.94	32.43 34	18 31 35	30 20 251	20 10 10	30 00 32 01	31 88 31 14	31 48 31 1	7 31 80 31.5	3 31.15 20	45 25 44	4 30.87	33.68 31.0	8 31 70 -	135
Honstagar Karatoa-Atrai-Gut-Gumani-	er mit mit oge	100 M	1.000		-			<u>~~</u>	1 11	100			10000		1.000	1000	View IIV.	- en 1			100			0.91.8.9	1.00-1.00		1100			10 and 10 a		1000	110601100			1.1.1	100	1.00			2247
Hurasagar	Atra Riy Bridg	20 Sil\147	69.977	24.611	17	2	770 War 1	541 3	e tae	603 0	1517 1201	18 13(975	18.277 14	5/57 14 855	14,542	15.224	12,555 13.	13.8	14 107	14.199 14	482 14 764	4	17.62	13 38 18 79	18 08 14	18 14.31 19	558 13 39	14.10 12	98 13.68	1228 183	18:94	13 48 13 87	14,38 19.22	13.85 13.7	7 14:02 138	9 14:54 12	37 12.90	0 12.80	13.66 13.4	8 1401 1	\$.57
Karalos Atal-Gut-Gumber	Charchiar	SW149	#3.229	24:373	51	3	250 Wert	evel 3.	0 11.	731 0	10.95	68 12.216	12611 12	989 13 109	12479	13.546	11.505 11	156 11.1t	12.525	12.649 13	019 13.38		11 28	12.03 11.35	11.01 12.	69 12.24 1	54 12.08	12 00 10	67 11.44	10.95 12.4	11.50	11.25 12.15	12.29 11.34	1135 123	6 12:57 12:8	2 11:56 10.	68 115	1133	19 15 19 5	11.36	1.56
Hurasəgər Kərəlçə-Airai-Sul-Sümani-	Rathatian	SWIST	min	24/129					6 112	ine i	1752 10 14	46 11.804	12.065 12	507 12 14	13.070	13.507	2768 11	11.00	12 047	12 197 13	610 13:00		12.00	10 03 10 18				line -	60 10.44	1.00	ulur	11.35 12 11	11.61 11.52	10.81 11.4	5 1220 118	7 10/6 6	-	al way	10.23	2 11 48 1	
Honessigner	and all a	510151	89.565	29 129	20	2,	770 West	ere 3	e 114	uab D	1014	11.004	12.000 12	oy/ 12,84	10.079	10,201	5.000 11	unal 17.62	12.047	(2)8/ 12	1019 13/04	-	10 58	10.93 10.18	8.90 11.	pu 12.32 0	A.11 10/80	10.94 9	Der 19.44	3.95 17.3	30 11.18	11-40 12 11	11.01 11.32	10-81 114	a 12.20 11.8	10.35 5	.se 111.58	11-J4	10.74 10.5	2 17 48 1	2.90
	Mohimaganj Raiway Cross	SW155	\$9.508	25 109	321	.8	200 Womi 1	ivit 3	0 18-	409 0	0.821 17.75	05 (8,855	18.220 19	569 19.675	20.020	20,359	17.248 18.	18 78	10.101	10.219 19	660 19'89		18.36	18.48 15.63	18:28 19	35 19.74 (3	28 13.41	18.73 18	31 18.28	15.33 19	14 18.44	18.42 18.87	18.78 17.68	18:47 18.5	8 18.58 18.6	5 18.81 17	34 17.68	18 18 19 1	18.45 18.2	0 18:54 1	8.36
	Kundal	341564	188 581	25.771	273		285 Weier 1		8 19.	161 0	5.726 38.34	40 39.688	40.108 40	\$15 40.544	41 042	41.437	37.860 393	23 39 64	40.555	40 184 40	582 40.97		39 56	39 13 39 30	38.98 39.1	82 39 60 39	8.40 38.64	38.22 38	20 38.85	36.27 39.5	13 39.43	39.11 39.55			1 39.66 38.9						
	Tatiepur	SW161	89,030				800 Wite+ 1				1.013 4.54			078 7.256				6.04			354 7.90			8.76 4.42											0 5.55 6.6						
(obada)	Jhkargacha	SM162		23,101			800 W == 1				0.843 2.11			640 5.790				210 4.70			782 0.25			4.38 2.42	4.98 4.	72 3.70 ;	2.97 7.15	3.08 2	92 3,43	2.90	174	4.04 4.40	3 03 5.45	3.85 4.3	8 477 62	7 4.65 2	59 4.74	4 528	4.81 28	0 4 99	
	Ibrahmdi Faridgur	\$1¥167 \$1¥168		23.582			620 Ween 1 620 Ween 1				1.181 7.81 1.276 4.14			224 3-256 999 3-226				57 7.58 177 ± 81			466 8 16			7.78	2.65 2	38 9.74	104 4 44	537	10 514	4.80 2	1 630	485 454	£11 533	1 120 23	4 470 82	1 174 2	03 7.49	5 1.80	149 11	3 5.15	Deselection
	Mazatda	SW160		23.469			620 Wim+				1.289 2.85			756 6.986				13 5.57			233 7.93			617 5.09											1 3.52 51					0 4.20	
	Brianga	SW170		23.386			620 Wart				3814 371			157 8.300				164 5.24			289 6.73												4.88 4.81			4.05 3.				8 4.42	
	Garagan	58171	59.214	28.671	151		950 Withr J	sve 3	0 84	499 1	220 5 11	18 7.376	8.090 8	774 8.991	9.660	10.324	A.658 83	7.53	8,314	8.531 9	200 9.85		7,37	7.85 5.97	8.33 3	25 7:11 3	5 65 6.42	6.42 8	05 8,18	6.00 3.	3 8 75	6.32 6.67	5.64 7.60	5.34 8.6	8 8.55 8.4	5 7.48 8	42 7.75	5 6.56		9 5.48	
11	Haridaspur	570198		23.062		-	Water				2 696 2 70			192 A 916			2.245 3.5				838 5,217			4.25 3 34		50 485 2						2.25 5.05			5 290 20					3.62	
	ineraldaha	SW2td SW241		23.548			000 Weer 6				0.829 5.47			189 8.107 588 3.621			5.015 6.5				102 8,553 268 3,375			8.96 0.85		65 7.23 8				6.38 5.		174 7 10			6 5.64 7.4						
	Khung Monda	SW244		22.820			935 Water 425 Witter				0.198 2.00			588 3.621 388 3.758					5 3.228		268 3376 516 3731		2.92	268 2.38	294 2	12 341 2	18 083	315 3	10 125 RE 305	322 3	13 325	292 391	3.44 2.25	524 32	7 828 30	2 385 E	36 2.07	3.00	0 84 32	0 3.43	245
ahog,qow.	TELETURE	377244	00.038	C2.404	025	1	760 11201	210 0	1 23	0 0 0	2,000 2,49	0 0 200	2,400 -5	nup 6./08	3.316	4.121	6.3638 Z.I	3.00	9 3.228	0.230 3.	110 213		5.39	200 200	211 2	ur (200 3	1.06 2.08	2.50 2	ve 2.90	930 93	191	6.96 0.91	233 235			3.33 2.	w.	1 3.00	2.04 2.	7 2.43	1.79

Source: JICA Survey team

										Std.		Water Le	vel each R	eturn Perio							riod (year)											Record	Is of Annu	al High Floo	d Level												
Divers / Ctor	on Name, Station No		Longitud La	attude	Row No.	Catchmen		No. in	Mean	Std. Deviator	1.	1 5	10	20	25	50	100	1.1	5	10 2	0 25	50	100																							T	Remark
TWEIT OBS	on reality, orapoint to		e (X)	(M)	1000 100.	Area (km ²)	"" sampl	e	Ø _{n1}				KT						KT				1981 1982	1983 1984	4 1985 19	36 198	37 1988	1989 199	0 1991 199	2 1993	1994 199	95 1996	1997 1	998 19	99 2000	2001 20	02 200	.3 2004	2005	2006	2007 20	.008 20	.009 201	J10 201	1 2012	2
											-1.13	2 0.719	1.305	1.866	2.044	2.592	3.137 -	1.132 0.1	19 1.3	05 1.86	6 2.044	2.592	3.137																_				\rightarrow	\rightarrow	_	_	
Water Level >							-	-												-				_														-						_	_		
varupkati	Swarupkat	SW253	90.111				Water Le		2.362						2.821			1.648 2.0					2.607							8 2.18 2.1						10 2.41			33 2.10						2.64 2.4		
va-Barnal-Gurnal	Nawhata	SW261	88.615		352		50 Water Le		14.687								960 1						16.500			1 14.49 153 6 4.72 4				0 15.15 13.1 6 4.81 4.4																	
urma-Meghna	Chandpur	SW277	90.642		84		85 Water Le						5.180	5.364	5.423								5.322							6 4.81 4.4 8 4.10 3.8							4.57 4.				4.25						
urma-Meghna	Daulatkhan	SW278	90.818 88.464		116		85 Water Le		3.988				4.519		4.820		265 4	3.067 3.8		9 4.288 4 50.520			4.805							8 4.10 3.8 4 51.11 49.1															4.38 4.2		
angon	Thakurgaon	SW285 SW293					00 Water Le		50.063 40.556		92 49.506 73 40.021			50.980 41.438			038 3			4 50.520 2 40.978										4 51.11 49.1 5 40.68 40.1															0.12 50.3		
esta vesta	Kaliganj	SW293 SW294	89.181 89.440				19 Water Le 19 Water Le				3 40.021 55 29.184			41.438 30.579						2 40.978 8 30.119																											
	Kaunia	SW294 SW300				1,71			3.005			30.046	30.318		4.497			8.724 29.5 1.718 3.0					4.835		30.12 30.0	5 30.02 293	87 30.4	46 30.41	30.10 30.0	6 30.49 29.1	1 30.18	29.48 29.1			4.65 3.					28.80	28.58				3.28 2.5		
orki	Gournadi		90.235 89.063				Water Le		16.813				3.957	4.367				1.718 3.0 5.460 16.9					4.835							9 17.30 15.3															3.28 2.5 3.43 16.7		
ulshiganga	Sonaimukhi	SW325 SW331					50 Water Le 70 Water Le					58 888	59.047	59.201	18.425 59.249								59.088		17.16 17.0	3 17.15 17.	20 18.3			4 59.31 59.1							58.50 58								3.92 58.5		
uri Teesta Jik	Utar Gomanati Bhutdanoi	SW331 SW335	88.920	26.220			0 Water Le		58.691								.823 3			9 40.119			41.363		+					4 59.31 59. 2 40.53 38.0							40.03 39								3.92 58.5 7.73 38.5		
	Meghna Ferrygh		90.642				00 Water Le 03 Water Le		5,479				6.316	6.675	40.753 6.789			4.294 5.4						5.40 5.19	5.56 5.7	3 5.44 5.		40.40				5.06 5.1		5.53 6		76 38.66 93 5.68								8.31 37. 5.12 5.0		3 37.41	
eghna umt	Daudkandi	SW115	90.642				13 Water Le 11 Water Le		5.564				6.316	6.684	6.789			4.294 5.4 4.425 5.5						5.40 5.19								4.82 5.		5.53 6										5.12 5.1			
	Demra	SW115 SW179	90.716			4	Water Le		5.564				6.462	6,738	6.825			4.425 5.5						5.55 5.20					5.08 5.1			4.82 5. 5.07 6					5.26 6										
ihkya		SW1/9 SW51	89.521						8,858				10.057	10.572	10.736			7.359 9.0					11.279		10.53 9.7							9.60 8.				95	0.00 0.	0.1	1 0.00	0.00	0.12	0.20 0	3.94 0	3.42 0.	.30		
handana Arkandikhal htra	Ramdia	SW51 SW55.1	89.521				25 Water Le 05 Water Le		3.708				4.676		5.225			2.407 3.7					5.577	9.31 9.37	439 47				3.53 3.6				25 7.85			95 03 3.92	2.10	3.3		3.54		3.18 3			3.60 3.6		
ura U Karatoa	Ratandanga	SW64	89.324				50 Water Le		17.754					19.098	19.226		013 1							7 50 17 81						3 19.02 17.1																	3
J Karatoa kirni Barnai	Shibganj Jote Bazar (Offital		89.324			1,25	Water Le		16.434					19.098	19.226			5.373 16.3												3 19.02 17.1															5.37 17.1		
	Sureswar	SW95	90.424				Water Le		4.850				5.630		6.071			3.714 4.8					6.264	0.45 10.23	3.01 5.0					0 4.82 4.4																	
anges obadak	Chandkhali	SW95 SW164	89.254				00 Water Le		3.331					4.842	4.986			1.954 3.4						245 200						4 3.16 3.1						87 3.27	2.90	00 3.7	2 0.70	0.10	4.31	0.30 0	3.20 4	1.00 4.1	.92 4.0	3 4.02	2
hala		SW164 SW183	90.437				58 Water Le		2.684				2.816	2.873	2.891			2.110 2.2					2.541	3.15 3.00	3.05 3.0	5 3.11 3.	03 3.7	10 3.00	3.04 3.4	4 3.10 3.	0 3.20	3.24 2.1		2.70		64 2.80		0 07								2.56	
malia Iwer Kumar	Kaltpara Mostafaour	SW103 SW190	90.437			40	Water Le		4.015				4.742		5 154			2.924 3.9					5.303		200 44	7 267 2			2.70 4/	0 4.22 3.4	2.04	200 4				97 3.84				2.04	2.00	2 40 2	250 1	205 4			
wer Kumar Inarbhaba	Pulhat	SW190 SW236	88.622				Water Le		33.211				33,977	34,306	34.411		052 3						34.592		3.00 4.1	1 3.07 3.	92 4.0	50 5.50	3.70 4.0	4.22 3.4	0 3.64	3.00 4.					33.53 32										
		SW230 SW284	88.479				0 Water Le		61.284				65.262		67.516		848 5			2 66.513				0.75 50.40	0.24 044	C CO CO CO			0007 500	7 60.72 60.0	0 50 00	0 40 60		61.09 6			60.40 57								9.43 59.1		
angon angali	Raniganj Sharia Kandi	SW204 SW11A	89.570				0 Water Le		16.384			16.812	17 160	17 494	17.600			5.250 16.3												4 17.30 16.0				15.90 16			16.19 16								5.73 16.1		
aral	Malanchi	SW16.1	88.967				2 Water Le		13,196				14.668	15.302	15.503			1.458 13.5												1 12.71 12.5		12.72 12		13.62 1		52 13.88	13.79 14								1.92 13.5		
naoot	Jafarganj Rd.Cross		89.188				2 Water Le		34.021				35.047	35.488	35.628			2.671 34.1												9 35.05 33.0				34.35 34				73 34.8							3 66 33 8		
nagot Ihkva		SW180	90.524			12	Water Le		5 749				6.464	6771	6.868			4.669 5.6						5.19 5.20		2 35.43 33.	53 34.0	53 34.57	33.51 33.5	9 35.05 33.0	33,44	52.74 34.1		5.59 (24 33.30 99 5.92									5.28 5.3		
angon	Narayanganj Kodalkatigaon	SW100 SW287	88.434				Water Le		34.376		39 32.916		36.058	36,782	37.011			2.456 34.8								24.00 24	10 25 3	72 25 00	24.04 24.5	9 35.79 33.0	1 22.00	0.47 26															
ingon irma-Mechna	Satnal	SW207 SW276	90.594				13 Water Le		5.136				5.888		6.315			4.023 5.0												9 35.79 33.0 8 5.11 4.3																	
~v	Lakhour	SW276 SW177	90.653			2,10	Water Le		6.523				7.353		7.824			5.343 6.5					8.059	0.24 4.02						1 6.78 5.4							6.42 6					4.13 0	3.12 4		5.49 6.3		
ihkya ahmaputra-Jamuna	Chilmari	SW177 SW45.5	89.704						0.023	0.03	0.000	24.371		7.710		24.942 2		- 23.9			24.345				National Water				0.17 0.2	0.76 0.7	0.71	0.20	0.03	0.30	1.0/ 0.	02 0.11	0.42 0.	0.1	0 0.13	0.01	5.21				.49 0.3	3 0.00	
ahmaputra-Jamuna	Bahadurabad	SW45.5 SW47	89.680		99		Water Le Water Le		· · · · ·				20.281			20.484 2		- 19.6			19.953				National Water				+					+													
		SW205	88.767		257		Water Le		· · · · ·			16.023					834	- 15.5			16.057				National Water				+					+													
athabhanga	Kazipur	SW200 SWatknown92	89,718				Water Le		· · · · ·			14.249				15.424 1		- 13.7			14.674				National Water				+					+													
muna ahmaputra-Jamuna	Serajganj Porabari	SW50	89.718		432		Water Le		+	ļ	-+	12.648				13.206 1			39 14.28 38 12.40		14.674				National Water				+					+						+							
			89.818				Water Le		+	ļ	-+	12.648				15.135 1			38 12.40 08 14.39		12.622				National Water				+					+						+							
anges	Hardinge Bridge Sengram	SW90 SW91.1	89.026				Water Le		+	ļ	-+	14.008				12.902 1		- 14.2			14.5//				National Water				+					+						+							
anges anges	Mahendrapur	SW91.1 SW91.2	89.378				Water Le		+	ļ	-+	12.155			12.716	12.902 1.		- 11.6			12.256				National Water				+					+						+							
		SW91.2 SW91.9L	89.554						+	ļ	-+	8.565			9.215		817	- 10.6			8,755		9.357		National Water				+					+						+							
anges	Baruria						Water Le		+	· · · ·	-+		8.842 6.548	· · · · ·	9.215		545	- 8.1			6.453		9.357						+	+				+						+							
anges	Mawa	SW93.5L	90.261				Water Le			ļ		6.291		· · · ·	6.913 7.462		.545				6.453				National Water				+					+						+							
irma-Meghna	Bhairab Bazar	SW273	91.002				Water Le			ļ		6.982		· · · ·				- 6.5					7.279		National Water				+					+						+							
d Brahmaputra	Jamalpur Mymensingh	SW225 SW228	89.961 90.434				Water Le Water Le			ļ			17.519 13.078	· · · · ·	17.590	17.617 1.	.633	- 16.9 - 12.3			17.130				National Water	Management Management			+					+						+							

Table 4.3.12 Estimation of HWL at each gauging station (2)

Source: JICA Survey team

4-33

~		The state of	Provide St.								Water	.evel (m. M	dSL)					3	/entica	al Clearanc	e (m. MSL)	
SN	Bridge ID	Zone	Division	Latitude	Longqude	Bridge Name	1.1 yr (NHWL)	10 yr	20 yr (Design	50 yr (Désign	100 yr	App Calculat	sted ion High	Historie (by Inte			d Design Iter Level	Botom of Existing		Necessar y	Design Bottom	Free board
-	N8_178a	Barisal	Barisal	22 57523	90.33665	Boalia Bazar	1.61	2.36	HM1) 2.54	HW() 2.76	2.93	Water 2.76	d evel 50yr	22	2007	278	Interview	A 767	1	Ereeboar 3.08	1 eust 4.77	1.99
-						Bodge Shamamoti			-					-								-
- 10	N509_19a	Rangpur	Lamonrhal	25.90944	89,36611	Bridae	33.52	34.66	34.92	35.26	35.52	35.26	50yr	32.91	1988	35.26	50yr	34.352	3	35.56	35.56	0.3
-	N5_119a	Rajshahi	Pabna	24.04596	89.60433		10.92	11.25	11.64	12.14	12.51	12.14	50ут	10.21	1988	1214	50yr	12.547	3	12.44	12.55	0.4
-	N5_127a	Rajshahi	Pabna	24,10685	89.58131	Palgari Bridge	9.59	11.52	11.95	12.51	12,92	12.51	50yr	10.70	1988	12.51	50yr	11.918	3	12.81	12.81	0.3
8	N5_176a	Rajshahi	Serajganj	24 49098	89.50970	Bhuyagati Bridae	11.03	13.80	14.44	15.26	15.88	15.26.	50ут	12.43	1988	15.26	50yr	16 592	3	15.56	16.59	13
2	N5_235a	Rangput	Bogra	24 95429	89 35218	Mohosthan Bridge	15.77	17.64	18.06	18.58	19.00	18 58	50yr	18 13	1988	18 58	50yr	19.504	4	18.88	19.50	0.92
	N5_120a	Rajshahi	Pabna	24.05006	89.60539	Chanda Bridge	9.56	11.30	11.59	12.14	12.51	12.14	50yr	10.29	1988	12.14	50yr	12.803	3	12.44	12.80	0.6
ŝ	N5_128a	Rajshahi	Seraganj	24,10884	89 58032	Goilhar Bridge	9.59	11.52	11.95	12.51	12.92	12.51	50ут	10.51	1988	12.51	50yr	12.424	3	12.81	12.81	0.3
N.	N5_158a	Rajshahi	Serajganj	24.34696	89.56022	Purbodalua	10.43	12.80	13.35	14.09	14.63	14.09	50yr	11.93	1988	14.09	50yr	14.192	3	14.39	14.39	0.3
1	N5_265a	Rangput	Gaibanda	25 20998	89 37933	Bindae Bupinath Bridge	20.02	21.87	22.36	22.90	23.58	22.90	50yr	20.00	1988	22.90	50yr	22.030	3	23 20	23.20	0.3
1	N5_350b	Rangpur	Rangpur	25 81133	89.04645	P1512-0120026	34.71	36.82	37.37	37.59	38.03	37.59	50yr	37.61	1988	37.61	Interview	38 652	1	37.91	38.65	10
-	N8_182a	Bansal	Bansal	22.54080	90.33331	Bakerganj Steel	1.60	2.41	2.59	2.84	3.02	2.84	50yr	2.57	2007	2.84	50yr	4.249	2	3.14	4.25	1.4
	Constant Descent	34 12-0	24 67 1	23.60797	89.77770	Bridge Jhuldibazar	4.45	7.29	7.89	8.75	9.39	875	100	15-37453	1988	875	50yr	8.956	2	9.05	9.05	0.3
-	N7_025a	Gopalgar	CARADIT			Bridge	2 1 1 2 1 1 1		Conversion of	a start to			50yr	7.62		1.000	1.1.1.1.1	127.128.411	100		1 12291775	
-	N7_039a	Gopalgar		23 53718	89.74696	Karimpur Bridge	3.39	6.25	6.96	7 97	8.64	7.97	50yr	6.34	1988	7.97	50yr	10.140	3	8.27	10 14	21
1	N7_049a	Gopalgar	Fandpur	23.53743	89.65488	Poskilpur Bridge	5.27	7.26	7.84	8.45	9 16	8 45	50yr	7.81	1988	8 45	50yr	7 878	2	8 75	8.75	0.3
1	N5_134a	Rajshah	Serajganj	24.15113	89.58649	Nukali Bridge	9.74	11.70	12.15	12,73	13.17	12.73	50yr	10.86	1988	12.73	50yr	12314	4	13.03	13.03	0.3
1	N6_97a	Raishahi	Natore	24.39912	89.03121	Datapara Bridge	11.21	13.44	13.96	14.65	15.15	14.65	50yr	14.29	1988	14.65	50yr	15.380	2	14.95	15.38	0.7
1	R681_10a	Rajshahi	Rajshahi	24,42377	88 36178	Honsonkorpur Bridae	16.95	18.79	19.22	19.77	20 18	19.77	50yr	21.61	1998	21.61	Interview	21.072	1	21.91	21.91	0.3
1	N5_140a	Rajshahi	Serajganj	24 20225	89.58975	Jugnidaha Bridae	9.91	12.05	12.53	13.09	13.57	13.09	50ут	11,45	1988	13.09	50ут	13.330	3	13.39	13.39	0.3
2	N5_118a	Rajshahi	Pabria	24,03262	89.60422	Punduria Bridge	9.59	11.21	11.58	12.06	12.47	12.06	50ут	10.36	1988	12.06	50yr	12.028	4	12.59	12,59	0.5
2	N704_43a	Khuina	Kushtia	23 88814	89.10800	G.K. Bridge	10.57	12.24	12.62	13.06	13.45	13.05	50yr	14.11	1988	14.11	Interview	13 6 15	1	14.41	14.41	0.3
2	N7_248c	Khuina	Bagerhat	22 55598	89.59497	Gora bridge	2.17	3.01	3.20	3.44	3.64	3.44	50yr	536	1988	5.36	Interview	4 547	1	5.66	5.66	0.3
	N7_054a	Gopalgar	1.00	23 52929	89 60843	Barashia Bridge	5.86	7.80	8.22	872	9.14	872	50yr	8.77	1988	877	Interview	9.886	1	9.07	9.89	11
	N5_356a		2010000	25.81108	88 98938	torionina progre	35.34	37.58	38.03	38.37	38.82	38.37	50yr	38.19	1988	38.37	50yr	39.267	2	38.67	39.27	0.8
			Rangpur	CONSTRAINT.	CONSIGNA-	Distance -	221031471	CITE CONT	1.000	0.032711	0.000.000	10000			2007 (14) a	- parte an		Stensor 1	1	100455500	0.000200	10000
	N7_246a	Khuina	8agerhat	22,57306	100000.000.00	Balai bridge	2.19	2.97	3.16	3.36	3.54	3 36	50yr	4.75	1988	4 75	Interview	7 342	1	5.05	7.34	2.5
	N8_095a	Gopalgar	Madanpur	23 19906	90.06697		2.93	4.47	4.82	5.29	5.63	5.29	50yr	7.05	1988	7.05	Interview	7.465	1	7.35	7.47	0.42
2	N505_2a	Rajshahi	Pabna	23,88051	89.66450	Kazir Hat Bridge	8.65	10.18	10.54	11.03	11.38	11.03	50yr	11.72	1988	11.72	Interview	11.778	1	12:02	12.02	0.3
2	R548_28b	Rajshahi	Naogaon	24 61256	88.97474	Atrai Bridge	12.58	13.85	14:14	14.52	14.81	14.52	50yr	14.00	1988	14.52	50yr	17.890	4	18.84	18.84	43
2	N7_036c	Gopalgar	Fandpur	23.53911	89,76787	Kanaipur Bridge	3.11	6.18	711	7.88	8.57	7.88	50yr	6.81	1988	7.88	50yr	8 761	2	8 18	8.76	0.8
3	N7_048a	Gopalgar	Fandpur	23.53526	89.66585	Brahmonkanda Bindoe	5.12	7.22	7.75	8.44	8.99	8.44	50yr	7.69	1988	8.44	50yr	8.017	2	8,74	8.74	0.30
3	N5_378a	Rangpur	Dinajpur	25 76659	88 83297	Gaudangi Bridae	37.95	39 77	40.16	40.54	40.92	40.54	50yr	39.85	1988	40.54	50yr	40 393	3	40.84	40.84	0.3
3	N7_047a	Gopalgar	Fandpur	23.53437	89.67187	Rimankanda bridae	4.94	7.12	7.67	8.48	8.99	8.48	50yr	7.68	1988	8.48	50yr	10.092	3	878	10.09	1.6
3	N5_156a	Rajshahi	Seragaru	24 33330	89,56192	Chowkidhon	10.35	12.69	13:23	14.01	14.45	14.01	50yr	11.01	1988	14.01	50yr	13.822	3	14.31	14.31	0.3
- 3	N5_172a	Rajshahi	Serajganj	24.46282	89.53583	Bridge Notun Dhoh	10.89	13.67	14.28	15.12	15.74	15.12	50yr	13.38	1988	15.12	50yr	15.577	3	15.42	15.58	0.4
_	N5_179a	NAME OF A		24.51525	89.51174	Bridge Dhata Bridge	11.13	13.93	14.61	15.43	16.22	15.43	50yr	13.51	1988	15.43	50yr	14.367	3	15.73	15.73	0.30
- /-	1105251 V 121.			CONTRACTOR STORES	2523572000	1210232212222	<u>1.10.02</u>	14.26	110.2003	15.82	1	1122023	21210	13.08	1010-000	15.82	1.0000	N. 1988.	3	16.12	282465	1.000
	N5_188a	- 2001	Bogta	24 57326	89 46623	1 X	11.34	DOCS	14.93	0.000	16.47	15.82	50yr	0.000	1988	0.0200	50yr	15 625	-	8/235	16 12	0.3
-	N5_126a	Rajshahi	Pabna	24,09295	APRICE AND	Vitapara Bridge	9.64	11.43	11.89	12.38	12.83	12.38	50yr	10.68	1988	12.38	50yr	12,784	4	12.68	12.78	0.4
			Niphaman	25,77357	88.87754	Khorkhon bridge Bun Bharab	37.99	39.50	40.02	40.45	41 25	40.45	50ут	39.83	1988	40.45	50yr	39771	3	40,75	40.75	0.3
3	N7_141b	Khulna	Jessore	23.24180	89.16655	Bodae	2.89	5.00	5.49	6.11	6.58	6.11	50ут	5.43	1988	6.11	50yr	6.595	2	6.41	6.60	0.4
4	R720_44a	Khulna	Narail	23.19756	89 51 320	Gurakhat Bridge	2.41	4.21	4.63	5.14	5.54	5.14	50yr	6.16	1971	6.16	Interview	5 108	1	646	6.46	0.3
4	N703_Sd	Khulna	Jhenaidah	23.54434	89.18502	Dhopa Ghata Bridge	5.03	7.04	7:50	8 D4	8.53	8.04	50yr	4.28	1972	8.04	50yr	7.721	3	8.34	8.34	0.30
4	R890_45a	Bansal	Bhola	22 39444	90.75028	Dawrey Bndge	2.74	3.50	3.68	3.87	4.04	3.87	50yr	3.39	2007	3.87	50yr	4.334	3	4.17	4.33	0.4
4	N704_14a	Khuina	Jhenaidah	23.66693	89 19069	Barda Bridge	5.61	8.11	8.68	9.42	9.98	9.42	50yr	6.93	2004	9.42	50ут	9.344	3	972	9.72	0.3
4	N704_33b	Khulna	Kushta	23.81508	89 10669	Balipara Bridge	9 59	10.59	11,67	11.76	12.43	11.76	50ут	11 13	1988	11.76	50ут	11.019	2	12.06	12.06	0.3
		Access of the	And the second second	25,81161	89 10748	12001070200000000	33.87	36.06	36.49	36.81	37.24	36.81	50yr	37.55	1988	37.55	Interview	38,710	1	37.85	38.71	1.13
-	ALC: NOT THE REAL	CONTRACTOR OF A		25 77362	100-120 Vo	Ichamoti Bridge	38:51	39.96	40.32	40.95	41.31	40.95	50yr	41.61	1.222.00	41.61	Interview	42 006	1	41.91	42.01	0.4
-	ALC: UNK		1.1	25 79629	10000007.50	Chikli Bridge	35.48	37.31	37.84	38.40	39.24	38.40	50yr	37.89	Report	38.40	50yr	37.143	3	38.70	38.70	0.3
	25025_554	200	a dia si	0.000000000		Name and Address	- 20/00-4	0002512	Concernant I	C. S. Salar P.	a secondo	Lincole.c	0.00	125.1557		SZ com Pit	POAR C	0.0000000		danta a	0.02.4.1	1.000
	Concentration of the second se	Rangpur	Photo April 1	25.65236	2 2 2011 Control 2	Kakra Bridge	34.35	35.95	36.35	36,88	37.26	36.35	20yr	35.72		36.35	20yr	36.024	4	37.35	37.35	0.9
	1	Rangpur		25.63913	worklob et	Gabura Bridge	33.05	34 52	34.88	35.38	35.72	34.88	20ут	35.16	Contract Sector	35,16	Interview	35.912	1	35.46	35.91	0.7
5	Z5401_45a	Rangpur	Bogra	24.67306	POTENCIA'S	Mathpara Bridge	12.47	15.12	15.73	16.51	17.11	15.73	20yr	14.61	1988	15.73	20yr	15.416	4	16.03	16.03	0.3
- 5	Z5072_14a	Rangpur	Bogra	24 77375	89.51114	Bombgara Bridge	13.54	1573	16.27	15.94	17.49	16.27	20yr	15.71	1988	16.27	20yr	15 478	3	16.57	16.57	0.30
5	Z5025_60a	Rangpur	Dinajpur	25.64322	88.71289	Madarganj Bodoe	33.75	35.64	35.91	36.13	36.56	35,91	20yr	35.05	1988	35.91	20yr	35.614	3	36,21	36.21	0.3(
5	Z5472_6a	Rangpur	Bogra	24,78607	89.00834	Raktodaho	13,65	14.91	15.20	15.58	15,86	15.20	20yr	13.32	1995	15 20	20ут	14.047	3	15.50	15.50	0.3

Table 4.3.13 Design HWL for each proposed bridge (1)

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

		L.	6	55.	lt de						Water)	evel (m.)	(SL)					1	/ertit	al Clearanc	e (m. MSL)	
SN	Bridge 10	Zone	Divessio	Lastude	Longitude	Bridge Name	1.1 ye	10 yr	20 yr (Design	50 yr (Design	100 yr		pted ton High	Flistone (by Inte			d Design Iter Level	Botom of Existing	T	Necessar	Design Botom	Free
54	N5xx_Sa	Rajshahi	Serajganj	24.31051	89.56874	Pura Mukto	(NHWL) 10.29	12.60	HNAL 1 1313	HW/ \ 13.80	14 32	13.80	d puel 50yr	13.08	L.	-13 80	50yr	Hat Gueler 14 133	2	Feedboar 14.10	14.13	0.33
-	25552, 10a	Rangpur	Gaibanda	25 24301	89 55842	Monch Bridge Barodia Khali	19.03	21.57	22 14	22.82	23.38	22 14	2017	19.00	1988	22.14	2017	21 565	4	22.44	22.44	0.30
	1000 12070	Bansal	Bansal	22,78977	90 29966	Bridge Rahamatpur	1.74	284	2.84	311	3.26	3.11	50yr	3.42	2007	342	Interview	6.004	-	372	6.00	2.56
-	Con Sector	Bansal	Bansal	22.97476	90.22227	ounagata	173	3.49	3.89	441	4.83	4.41	50yr	3.47	2007	441	50yr	5 /76	2	471	5.79	1.36
			Patuakhati	22 36149	90 23581	brvíce Gabtala Steel	202	2.88	307	3,33	352	3.07	201	2.93	2007	3.0/	20yi	2 534	2	3.97	3.37	0.30
-	I ST LOT	Bansal		25 84820	89.01941	Badde	A. 19	38.42	-	39.63	40.03	38.84	1.11	39.64	1988	39.64	1.1.1.1.1.1	39.493	1 T	39.94	39.94	0.30
-	25045_22a	Rangpur	Nilphaman	25.93820	88 85464	Baltagili Endge Anandababur	36.90		38.84 45.54	46 23	4/ 75	45.54	20yr 20yr	46.67	-	-	Interview		1	46.97		0.85
-	25/01_1a	Rangpur	Niphaman			Pool	42.68	45 80			-			1.00	1983	45.67	Interview	47.561	2		47.56	1
-	25701_9a	Rangpur	Niphaman	25.95899		Duhuli Endge Mongle ban	43.13	14 85	45.25	45.75	46.15	45.25	ZOYT	44.90	1988	45.25	20yı	45.089		45.55	45.55	0.30
	100 00. 10	Rangpur	Joypurhat	25.11105	88.98848	kuthiban Bindoe Shakdaha	18 17	20.70	21.29	22.04	22.61	22.04	50yr	21.82	1995	22.04	50yr	22 542	4	22.34	22.54	0.50
- 34	R760_0496	Khuha	Satkhira	22 76601	89 13783	bodac Souderkhal	2.48	348	371	4.00	4.22	4.00	50yr	2.18	2004	4.00	50yt	1748	2	4 30	4-30	0.30
	N8_123a	Bansal	Bansal	23 01499	90.21573	bridge	1.95	3.68	4.07	4 57	4.94	4.57	50¥1	4.11	1988	4.57	50yr	4.554	2	4.87	4.87	0.30
		Bansal	Fingour	22.45557	State of the second second	Rottala Bridge	2.05	2.47	2.58	2.67	2.17	2.58	2017	3.92	2007	3.62	Interview	2378	11	3.32	3.32	0.30
	N6_260b	Rangpur	Gaibanda	25 17302		Katakhali Bridge	19.47	21.27	21.69	22.29	22.70	22.29	60yr	21.85	1988	22/29	50yı	22.587	4	22.59	22 59	0.30
	N704_270	Khuina	Kushta	2376316		Bitipara Bridge Bhanioura	872	9,60	10.87	10.90	11.62	10.90	50yr	9 12	2007	10.90	50yr	9.522	.2	11:20	11.20	0.30
	R750_220	Khulna	Naral	23 17611	89 41748	Bridde	247	3.58	3.90	4.32	4.63	4.32	60yr	3.16	1988	4.32	5/Dyr	4 144	2	4.62	462	0.30
- 1	N8_129a	Bansal	Bansal	22.96278		Asokot bodge Barigtabazar	1.72	3.40	3.79	4.29	4.67	4.29	50yr	351	1988	4.29	50yr	4.676	2	4.59	4.68	0.39
- 1		Bansal	Bhola	22 59354	90.65823	Bridae	2.64	3.38	3.55	3.17	3.93	377	50yr	3.56	1988	377	.50yr	4.294	2	4.07	4:29	0.53
-	R890_21a	Bansal	Bhola	22,55647		Box n-tal Bridge.	2.74	3.50	3.68	3.87	4.04	3.87	50yr	198	1988	3.87	50yt	3789	2	4.17	4.17	0.30
72	R890_28a	Bansal	Bhola	22 50263	90.71806	Borhanuddin Bridge Mohis Mari	2.74	3,50	3.68	3.87	4.04	3.87	50yr	3.09	1989	3.87	50yr	3.760	2	4 17	4.17	0.30
13	R548_40a	Rajshahi	Natore	24 51 393	88.95990	Badde	11.67	13.68	14.27	14 85	15.41	14.85	50yr	12.94	1988	14.85	50yt	13.417	2	15 15	15.15	0.30
74	R451_1a	Rajshahi	Serajganj	24.42991	89.60143	Naion Bhdge	11.34	13.50	13.92	14.46	14.87	14/16	50yr	12.81	1988	14.46	50yr	13.155	3	14,76	14.76	0.30
75	R451_7a	Rajshahi	Semigan	24.44847	89.65045	Chondr Das Bridge	12.01	13.84	14:32	14.81	15 32	1481	50yr	13.91	1988	14.61	:50yr	14/041	4	15.11	15 11	0.30
76	R550_28b	Rangpur	Joypurhat	25.06914	89 09408		16.65	18 59	19.06	19.81	20,28	19.81	50yr	19:31	iuti est	19.81	50yi	20.041	1	20.11	2011	0.30
11	R\$60_31a	Gopalgar	Shariapur	23 18750	90.39278	Paprail Balley Bodge	3,65	4.52	4.86	5 29	5,61	5.29	50yr	4.81	1989	5,29	50yr	5 479	2	5.59	5.59	0.30
79	Z8708_10	Bansal	Jhalokali	22 55173	90.14478	Afalbanir Khai Bridde	1.75	231	2.44	2.64	277	2.44	20yr	2.96	2007	2.96	Internew	3,028	1	3.26	3.26	0.30
79	N5_458a	Rangput	Panchagart	26 19750	88 55333		55.81	61.30	62.84	64.37	66.93	64.37	50 <u>y</u> r	63.41	1988	61.37	50yr	63 9 10	2	64.67	64.67	0.30
80	N5_488a	Rangput	Panchagan	26 45259	88 56027	Chawai Bridge	77.43	79.45	7991	80.52	80.97	80.52	50yr	80.86	1988	50 B6	Interview	81710	1	81 16	81.71	0.85
81	Z8708, 125	Bansal	Jhalokali	22 48093	90 15608	Boda Bodge	1,85	2.53	2.68	2.89	3.04	2.68	20ут	270	2007	270	Interview	3.846	1	3.00	3 85	1.15
82	28033_017*	Bansal	Bansal	22,77733	90 16790	Rayer hall	1.68	2.36	2.52	2.67	2.88	2.52	20yr	2.81	1988	281	Interview	4 179	1	311	4.10	1.37
83	R860_34a	Gopalgar	Sharungar	23 19173	90.42214	taihat Bridge	3,16	4.52	4.84	5.28	5.60	5.28	50yr	4 24	1988	5.28	50y	5 187	2	5,58	5.58	0.30
84	R860_44a	Gopalgar	Shanapur	23 16974	90 48852	Gazipur Bridge	322	4.43	471	5.65	531	5.05	500	4.88	1988	5.05	.50yr	11061	3	5.35	11.06	6.02
85	R860_534	Gopalgar	Shanatpur	23 19181	50.54877	Nalar Bazar Bodoe	3.50	4.50	4.74	5 09	5.32	5.09	50yr	5.51	1988	5.51	Interview	6.604	1	5.81	6.60	\$ 10
86	N8_69a	Gopalgar	Madanpuit	23 38619	89 98333		3.25	5.22	5.68	6.28	6.72	6.28	50yr	6.39	1988	6.39	Interview	12.157	1	6.69	12 16	577
87	20010_120	Rajshahi	Rajshahi	24.44441	88 69412	Faliarbil Bridge	12:94	14 87	15,31	15.92	16.37	15.31	20yr	13.84	1998	15,31	2017	15,080	2	15.61	15,61	0.30
88	Z5008_1a	Ranggur	Dinajpur	25 96823	88.66274	Choio Dhepa	40.50	43.50	44-20	45.09	4575	44.20	20/7	42.99	1988	44 20	2017	43 685	3	44.50	44,50	0.30
-	75074_5c	Rangpur		25 69610	89 12868	bodde Shampur	30.10	32.09	32.56	33 20	33.65	32.56	20/	33.09	1988	33.09	Interview	33 577	1	33 39	33.58	0.49
-	-	Rangpur	-	25.66035	88 84279	Bodge Sontiorer priol	34.60	37 00	37.53	38 05	38.58	37.53	20yr	36.56	1988	37.53	20yr	36.837	3	37.83	37.83	0.30
	10.000		-	24 79717	89 42718	Badoe Khotapara	13.49	15.79	16.32	17.01	17.52	16.32	20yr	15.73	1988	16.32	20yı	16.555	2	16.62	16.62	0.30
-		Bansal	Bansal	22 45972	90 27722	Banogram	179	260	2.79	3.04	323	279	20yr	1000	2007	3.25	Interview	5 787	1	3.55	5.79	253
		Rangpur	Dinziput	25 54303		Badoe Bhela Bridge:	29.80	32.03	32.52	32.96	33.48	32.96	50yr	32.36	-	32.96	50%	32 310	2	33.26	33.26	0.30
-	10.00	Barsal	Bansal	22.78109	1.0.20.00.00	Kalura bridge	172	2.49	2.67	2.90	3.08	2.67	20yr	CONTRACT OF	2007	4 44	Interview	6.409	1	474	641	197
- 11	-	Bansal	Bansal	22.77402		Mastong bridge	1.67	233	2.49	2.69	2.76	2.49	20yr	-	2007	280	Interview	2.687	1	3.10	3.10	0.30
		Bansal	Bansal	22 83763	5	Pacamer bridge	2.03	2.00	3.10	3 36	3.56	310	20yr	3.30	1988	3.30	Interview	3 883	1	3.60	3.88	0.59
-	29084_0044	Bansal	Bansal	22 66268	9041371	Talukdarhat	188	2.37	2.52	2.67	273	2.52	20yr	2 19	1988	2.52	20yr	3 602	2	2.82	3.60	1.06
						Balev Badue Shajonpur	3.20	4.51	-	5.26	557				1988	5.26	50yt	6 327	2	5.56	6.33	1.06
_		10000	Sharataa	23 19230	90,43252	Balley Endou Debokhazar		10.00	4.82	1.5	100.00	5.26	50yr	4.17	10.00		1	-	1	1.000		0.30
		0.75	Seraigani	24 48767	89.48966	Badae Jiskorgacha	10.99	13.76	14.39	15.11	15.71	14.39	20jr	14.63	1000	14.63	Merview	14.259	10	14.93	14.93	1000
-		Khulea	Jessone	23.10002	89.09856	Bildae	2.65	4.58	5.16	5.11	6.23	577.	50yr		2000	5.77	BOyr	4.790	3	6.07	6.07	0.30
-	N5_435a		Thekurgeor	26.01972	88,46917	Chandi Pur	48.28	49.59	49.90	50.07	50.58	50.07	50yr	52.76	1000	52.76	Interview .	52,497	11	53.06	53.06	0,30
		Khulna	Jhenaidah	23,65560	89 19864	Bridae	5.19	7,76	8.36	9.21	08.9	921	50yr	6.93	7	9,21	50yr	9.834	2	9.51	9.83	0.62
-	N805_24a			23 28/78	- C.	Garakola Bridge Tularampur	2.55	4 87	5.40	6.07	659	6.07	50yr	1.5.57	1988	6.07	50yr	8 691	3	6.37	8.69	262
		Khulna	Natal	23.16694	89-44167	Badae Hawai khait	2.18	3.57	3 89	4,30	4.61	4.30	50ja	3.39	1971	4.30	50yr	5704	3	4.60	5.70	1.40
106	Z7503_5a	Khulaa	Nara)	23 18000	89.55861	Bindoe	2.39	4.20	4.62	5.10	5.60	5.10	50yr	6.03	1971	6.03	Interview	5761	1	6.33	5.33	0.30

Table 4.3.14 Design HWL for each proposed bridge (2)

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

2) Standard High Water Level (SHWL)

Standard High Water Level (SHWL) is known as the overhead clearance datum which will rarely be exceeded. SHWL at stations near proposed bridges, have been determined by BIWTA (Inland Waterways of Bangladesh, 1991). SHWL at the stations and one of the proposed bridges are shown in the following Tables.

No.	Bridge	River	Downstream Station	Distance from	Upstream Station	Distance to Upstream	SH	WL
_	Name	Name	Name	Downstream Station(km)	Name	Station(km)	(m,PWD)	(m,MSL)
28	Atrai rly	Atrai	Atrai rly Bridge	0.0	-	-	14.30	13.84

Source: JICA Survey Team

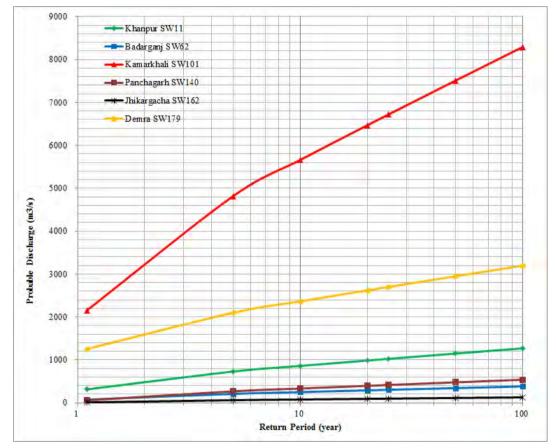
Table 4.3.16 Standard High and Low Water Level at Stations (in meters above PWD)

ſ	SL No.	Station Name	River Name	Longitude (X)	Latitude (Y)	Station Number	SLWL (m)	SHWL (m)	Observed Years	Remarks
- H										
	8	Atrai rly. Bridge	Atrai	88.9770	24.6110	147	7.83	14.30	4	
	45	Demra	Lakhya	90.5101	23.7217	179	0.73	6.65	9	
Ī	52	Ghorashal	Lakhya	90.6199	23.9384	3240	0.76	6.88	10	
	93	Lakhpur	Lakhya	90.6534	24.0397	177	0.81	8.50	7	

Note: Standard High Water Level (SHWL) is Fortnightly Mean Water Level (FML) with 5% exceedance, and Standard Low Water Level (SLWL) is FML with 95% exceedance. The difference between MSL (Mean Sea Level) and PWD (Public Works Datum) is 46cm.

Source: JICA Survey Team

(3) Estimation of Probable Maximum Discharge


Probable maximum discharge is estimated using the same method used to calculate the HFL, based on annual maximum records at stations. The extreme value (annual maximum discharge) is collected for 6 gauging stations. The calculated probable discharges at each station are shown in Table 4.3.17, and the correlation between the return period of flood and the maximum discharge is shown in Figure 4.3.16. From the correlation seen in this figure, we can see that there is a large difference between the "specific discharges" (a ratio of the flow rate to the catchment area) of each gauging station, regardless of the low-lying rivers.

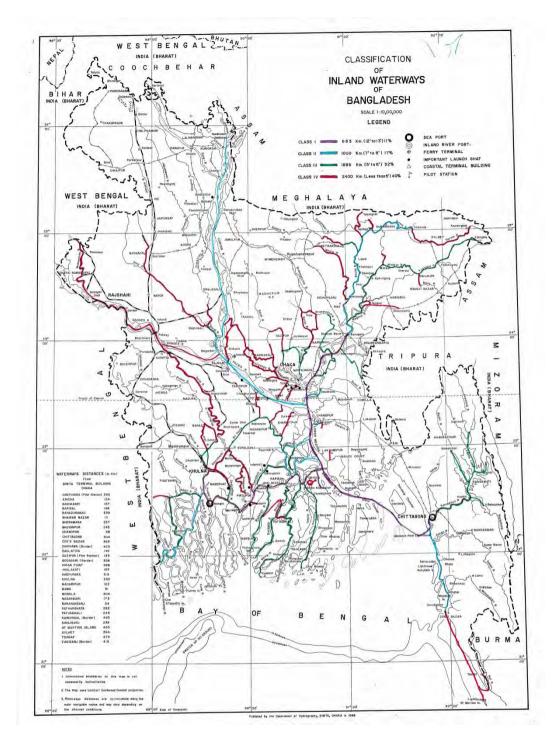
In this study, the maximum discharge estimated here is only used as reference. The reason for this is that, due to the many tributary and distributary systems in Bangladesh's rivers, the true boundaries of the catchment area and the system itself are difficult to define. Further detailed study is needed for accurate estimation of the discharge. Hence, the estimation of maximum discharge at proposed bridges will require much time and effort.

					Catchme				Std.		Discha	arge each	Return Per	iod (year)	(m^3/s)		
Divor / Sta	tion Name, Stat	ion No.	Longitud	Latitude	nt Area	No. in	Collected	Mean	Deviation	1.1	5	10	20	25	50	100	Remarks
Rivel / Sta	non mane, stat	IOII INO.	e (X)	(Y)		sample	year	Ivican					K _T				Remarks
					(km²)				σ_{n-1}	-1.132	0.719	1.305	1.866	2.044	2.592	3.137	
< Discharge >																	
Bangali	Khanpur	SW11	89.4781	24.6197	1,100	26	1985-2011	567.676	224.040	314.1	728.9	860.0	985.7	1025.6	1148.5	1270.4	
DCJ Karatoa	Badarganj	SW62	89.0653	25.6749	750	14	1998-2012	156.011	72.155	74.3	207.9	250.1	290.6	303.5	343.1	382.3	
Gorai-Madhumot	i Kamarkhali	SW101	89.5427	23.5315	4,568	25	1983-2012	3782.338	1438.417	2154.1	4817.2	5658.8	6466.2	6722.2	7511.1	8294.2	
Karatoa-Atrai-GGH	Panchagarh	SW140	88.547	26.3295	1,267	31	1982-2012	186.219	112.302	59.1	267.0	332.7	395.8	415.7	477.3	538.5	
Kobadak	Jhikargacha	SW162	89.0994	23.1011	800	19	1982-2011	40.704	27.706	9.3	60.6	76.8	92.4	97.3	112.5	127.6	*****
Lakhya	Demra	SW179	90.5101	23.7217	1,500	33	1973-2011	1771.851	454.634	1257.2	2098.9	2364.9	2620.1	2701.1	2950.4	3197.9	*****
		****								1257.2	(2197.0)	(2350.0)	(2456.0)	(2484.0)	(2553.0)	(2605.0)	

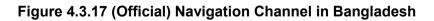
Table 4.3.17 Estimation of Probable Maximum Discharge each Gauging Station

Source: JICA Survey Team

Source: JICA Survey Team


Figure 4.3.16 Correlation between the Flood Return Period and the Maximum Discharge each Gauging Station

4.3.4 Navigation Clearance


BIWTA has specified the minimum vertical and horizontal clearance for free navigation, in consideration of the type of navigational routes (classified as Class I through Class IV as given in Table 4.3.18 Fairway Limitation in Bangladesh). According to Classification of BIWTA, the river passing under Atrai Bridge (R548_28b) is classified as Class IV.

Classification of Waterways	Minimum Vertical Clearance	Minimum Horizontal Clearance	Remarks
Class-I	18.30m	76.22m	
Class-II	12.20m	76.22m	
Class-III	7.62m	30.48m	
Class-IV Including seasonal rivers	5.00m	20.00m	Atrai River (Atrai bridge)

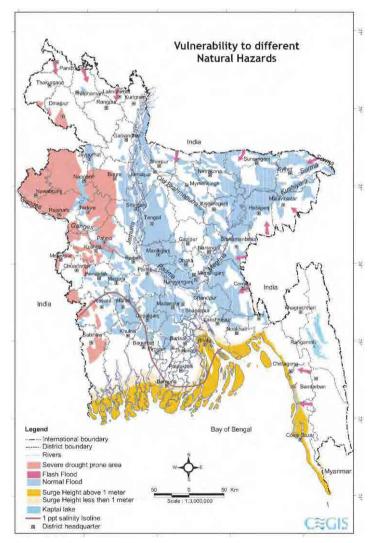
Source: BIWTA, 1991

Source: BIWTA

4.4 Climate Change

4.4.1 Introduction

Bangladesh is a low-lying deltaic country in South Asia formed by the Ganges (Padma), the Brahmaputra (Jamuna) and the Meghna rivers and their respective tributaries (GBM basin). The country has been suffering from various types of major natural disasters like floods, cyclones, storm-surges, tidal bores, river bank erosion, salinity intrusion and drought etc. Due to its geophysical setting, the country is extremely vulnerable to climate change. With the increase of precipitation and rising sea levels, the devastation caused by monsoon flooding is expected to escalate. (Impact Assessment of Climate Change and Sea Level Rise on Monsoon Flooding, November 2008, Climate Change Cell, Bangladesh).



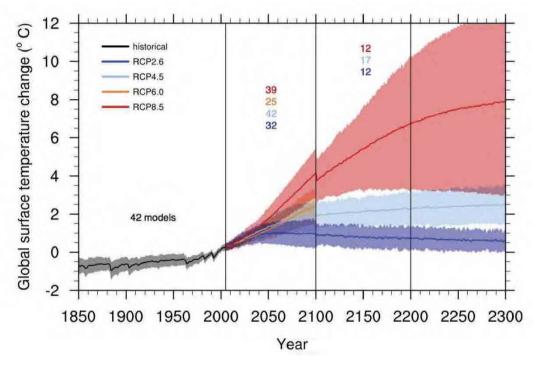
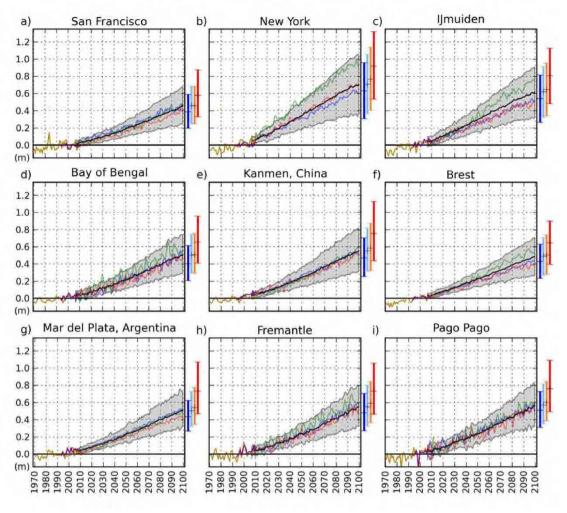

Figure 4.4.1 Areas Affected by Different Types of Climate-related Disaster,

Figure 4.4.1 shows the areas affected by different types of climate-related disasters. The northwestern areas including Rangpur and Rajshahi are so-far relatively unscathed from the effects of flooding, but southwestern areas have already begun to feels the effects of salinity

(source: CEGIS Dhaka, Bangladesh Climate Change Strategy and Action Plan, 2009).

4.4.2 Temperature Change

The final draft Report, dated 7 June 2013, of the Working Group I contribution to the IPCC (Intergovernmental Panel on Climate Change) 5th Assessment Report "Climate Change 2013" explained that global mean temperature will continue to rise over the 21st century if greenhouse gas emissions continue unabated. Figure 4.4.2 shows the projections of global surface temperature change (°C) for varying RCP (Representative Concentration Pathways), with the projected temperature change by 2100 ranging from 0.3°C to 5.0°C.



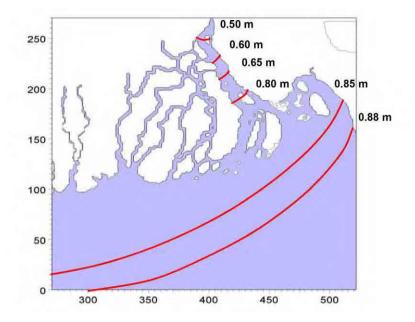
Source: IPCC WGI 5th Assessment Report)

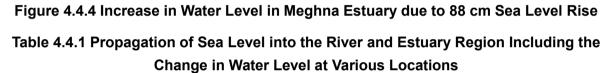
Figure 4.4.2 Global Surface Temperature Change

4.4.3 Sea Level Change

Figure 4.4.3 (also in accordance with the final draft report of IPCC WGI 5th Assessment Report) shows observed and projected relative net sea level change near nine representative coastal locations for which tide-gauge measurements and satellite records are available. Vertical bars on the right side of each panel represent ensemble spread of sea level change by the year 2100 inferred from the four RCPs 2.6 (dark blue), 4.5 (light blue), 6.0 (yellow), and 8.5 (red). In Bay of Bengal sea level rise is projected range of 0.2m to 0.98m.

Source: IPCC WGI 5th Assessment Report

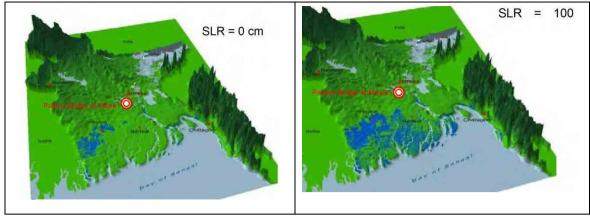

Figure 4.4.3 Observed and Projected Relative Net Sea Level Change


4.4.4 Impact of Sea Level Change

(1) Water Level and Inundation

The studies of river water level and inundation due to sea level rise were carried out in "Impact Assessment of Climate Changes on the Coastal Zone of Bangladesh (IACCCZB)" by WARPO in 2005 and in Padma Multipurpose Bridge Design Project (PMBDP) in 2010. The result of IACCCZB shows water level along the Shahbazpur channel (Figure 4.4.4) in the case of a 0.88m-sea level rise.

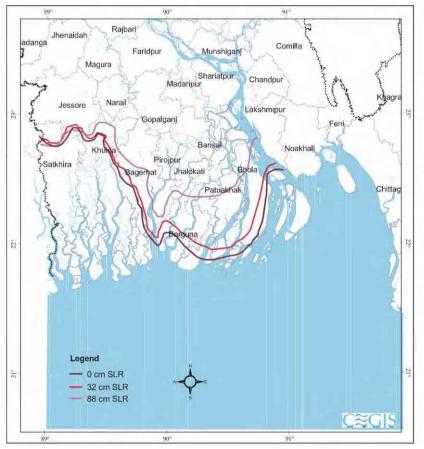
Table 4.4.1 shows the predicted water levels for differing scenarios of sea level rise (0.26m, 0.60m, 0.88m and 1.00m). In the case of a sea level rise of 0.98m, a rise of water level of around 0.2m is projected at the confluence of Padma and Jamuna river, and water is not predicted to rise near Jamuna Bridge (at Bahadurabad).



Distance from the	Sea Level Rise (SLR in m)								
outer most boundary of SLR in	0.88	1.00	0.60	0.26					
estuary (Km) ⁸	Rise in water level due to SLR (m, PWD)								
26 (Doulat khan)	0.85	0.96	0.55	0.19					
105	0.80	0.90	0.52	0.18					
131	0.65	0.73	0.42	0.15					
149	0.60	0.68	0.39	0.14					
168 (Chandpur)	0.50	0.56	0.33	0.11					
240 (Padma Bridge)	0.42	0.47	0.27	0.09					

Source: PMBDP

Figure 4.4.5 shows the simulation of water level rise and its propagation into inland areas due to a sea level rise of 1.00m, and in this case the coastal area is affected widely.



Source: PMBDP

Figure 4.4.5 Simulation of Sea Level Rise

(2) Intrusion of Saline Water

Sea level rise leads saline water intrusion up coastal rivers. Figure 4.4.6 shows salinity ingress in southern coastal areas due to differing sea level rise projections by CEGIS.

Source: BCCSAP, Original source: CEGIS

Figure 4.4.6 Likely Salinity Ingress in Southern Coastal Areas due to Different Sea Level Rise

4.4.5 Impact of Precipitation Projection

In the IACCSLRMF report (2008), inflow in the major rivers was generated using calibrated GBM basin model by increasing the precipitation by 13% (under A1F1 scenario; very high emission) in accordance with the 4th IPCC prediction to establish flood level during monsoon in 2040. Increase of peak flood level was calculated as about 37cm in a moderate flood event (2004 flood event) and 27cm in a normal flood event (2005 flood event) at Bahadurabad in the Jamuna river.

Table 4.4.2 shows the temperature and precipitation projections by the CMIP5 global models (scenario RCP4.5). The peak flood levels are predicted based on hypothesis of proportion of precipitation increasing percentile between 4th IPCC predictions and CMIP5 ones. In case of precipitation increasing percentile 33% in max in JJA of 2065 and 37% in 2100 the peak flood level at Bahadurabad in the Jamuna River are calculated as 94cm and 105cm respectively.

RCP4.5		Temperature (°C)					Precipitaion (%)					
REGION	MONTH ^a	Year	min	25%	50%	75%	max	min	25%	50%	75%	max
South Asia	DJF	2035	0.1	0.7	1.0	1.1	1.4	-18	6	-1	4	8
		2065	0.6	1.6	1.8	2.3	2.6	-17	-3	4	7	13
		2100	1.4	2.0	2.3	3.0	3.7	-14	0	8	14	28
	JJA	2035	0.3	0.6	0.7	0.9	1.3	-3	2	3	6	9
		2065	0.9	1.1	1.3	1.7	2.6	-3	5	7	11	33
		2100	0.7	1.4	1.7	2.2	3.3	-7	8	10	13	37
	Annual	2035	0.2	0.7	0.8	1.0	1.3	-2	1	3	4	7
		2065	0.8	1.4	1.6	1.9	2.5	-2	3	7	9	26
		2100	1.3	1.7	2.1	2.7	3.5	-3	6	10	12	27

Table 4.4.2 Temperature and Precipitation Projections by the CMIP5 Global Models

5. TRAFFIC DEMAND FORECAST

5.1 Introduction

This chapter outlines the forecast of future traffic volume on the 105 Project bridges¹ (whose selection is detailed in "Chapter 3 Selection of Project Bridges"). National OD and network data prepared for the National Road Master Plan in 2009 was considered for use in the forecast, as data had not updated since the report's completion, but this data was difficult to apply to the Project. Therefore, the growth rate of traffic indicators was used to forecast future traffic demand, and traffic demand induced by large scale developments in western Bangladesh were considered. This chapter summarizes the traffic indicators used for traffic demand forecast, large scale development plans, and the results of the traffic demand forecast. (The target year of traffic demand forecast is 2031, 10 years of construction, in accordance with RHD standards.)

5.2 Traffic Demand Forecast Methodology

5.2.1 Current Traffic Volume

(1) Current Traffic Volume on Selected Bridges

24-hour traffic count surveys were conducted from February 2014 to March 2014 to understand the current traffic volume. Current Traffic Volume on selected bridges is shown in Table 5.2.1 and Table 5.2.2.

¹ Although 106 candidate bridges were selected (as shown in Chapter 3), 1 bridge was found to be under construction in another project, so the number of bridges for preliminary design was reduced to 105.

SN	Zone	Bridge ID	Name of Bridge	Road Class	Truck	Bus	Minibus	Utility	Car	Auto- Rickshaw	Motor Cycle	Total
2		N509_19a	Sharnamoti Bridge		231	92	110	169	61	1,027	1,485	3,175
6		N5_235a	Mohosthan Bridge		4,800	3,039	1,473	1,288	907	3,912	1,996	17,415
10		N5_265a	Bupinath Bridge		2,628	1,863	727	555	568	1,541	1,705	9,587
11		N5_350b	Barati Bridge	-	891	680	359	468	297	373	1,563	4,631
24		N5_356a	Nangtichara (Taraganj) Bridge		891	680	359	468	297	373	1,563	4,631
31		N5_378a	Gaudangi Bridge		827	449	398	422	307	1	1,601	4,005
36		N5_188a	Ghogar Bridge	National	6,183	4,250	1,820	1,322	1,586	1,738	1,649	18,548
38		N518_4a	Khorkhori bridge	Road	827	449	398	422	307	1	1,601	4,005
45		N5_344c	Kharobaj Bridge	-	891	680	359	468	297	373	1,563	4,631
46 47		N5_382a	Ichamoti Bridge	-	827	449	398	422	307	1	1,601	4,005
		N5_360a	Chikli Bridge	-	891	680	359	468	297	373	1,563	4,631
66		N5_260b	Katakhali Bridge	-	2,628	1,863	727	555	568	1,541	1,705	9,587
79 80		N5_458a N5_488a	Pathoraj Bridge	-	623	223	377 704	276	130 454	535	4,453	6,617
102		N5_486a N5_435a	Chawai Bridge	-1 -	1,450	132		855		530	1,779	5,904
62		R545 115c	Sattapir Bridge Mongle bari kuthibari Bridge		1,073 750	396 260	470 554	418 657	188 480	306	4,270	7,121
76	Rangpur	R545_1150 R550_28b	Bottoli Bridge	Regional	977	260	554 622	298	480 224	2,263	2,769	7,733 5,376
93		R585 80a	Bhela Bridge	Road	1,372					718		
48		Z5025 55a	Kakra Bridge		439	293 126	685 277	311 271	251 132	169 33	2,582 2,458	5,663 3,736
40		Z5025_55a	Gabura Bridge.	-	439	126	277	271	132	33	2,458	3,736
50		Z5401 45a	Matpara Bridge	-	881	458	328	319	264	2,720	2,450	7,178
51		Z5072 14a	Bombgara Bridge	-	373	450	20	15	204	2,720	1,321	2,718
52		Z5025 60a	Madarganj Bridge	-1	439	126	20	271	132	33	2,458	3,736
53		Z5472 6a	Rakhta Dha Bridge		433	120	7	4	132	67	2,450	219
55		Z5552 10a	Barodia Khali Bridge		224	52	172	292	99	1,351	2,028	4,218
59		Z5015 22a	Bahagili Bridge	 Zilla Road 	77	20	42	63	21	82	1,146	1,451
60		Z5701 1a	Anandababur Pool		187	34	100	167	28	563	2,850	3,929
61		Z5701 9a	Duhuli Bridge		96	24	100	236	39	662	1,441	2,599
88		Z5008 1a	Choto Dhepa bridge.		214	65	256	163	140	84	3,312	4,234
89		Z5024 5c	Shampur Bridge.		224	1	73	67	61	-	790	1,216
90		Z5025 46a	Bondorer pool Bridge		458	17	236	253	176	477	2,014	3,631
91		Z5040 4a	Khottapara Bridge		446	2	11	29	18	2.339	569	3,414
3		N5 119a	Chanda Bridge		1.332	942	743	540	518	1,388	835	6.298
4		N5 127a	Palgari Bridge	1 1	1,332	942	743	540	518	1,388	835	6,298
5		N5 176a	Bhuyagati Bridge	1	5,029	2,751	1,410	1,320	1,021	1,980	1,146	14,657
7		N5_120a	Chanda Bridge		1,332	942	743	540	518	1,388	835	6,298
8		N5_128a	Goilhar Bridge]	1,458	512	322	326	482	1,845	1,999	6,944
9		N5_158a	Purbodalua Bridge] [2,078	947	820	935	474	2,238	1,171	8,663
16		N5_134a	Nukali Bridge		1,458	512	322	326	482	1,845	1,999	6,944
17		N6_97a	Dattapara Bridge	National	3,407	1,138	677	642	383	1,512	2,790	10,549
19		N5_140a	Jugnidaha Bridge	Road	1,458	512	322	326	482	1,845	1,999	6,944
20		N5_118a	Punduria Bridge] [1,332	942	743	540	518	1,388	835	6,298
27	Rajshahi	N505_2a	Kazir Hat Bridge] [81	3	43	26	16	286	537	992
33		N5_156a	Chowkidhoh Bridge	_	2,078	947	820	935	474	2,238	1,171	8,663
34		N5_172a	Notun Dhoh Bridge	4	5,029	2,751	1,410	1,320	1,021	1,980	1,146	14,657
35		N5_179a	Dhatia Bridge	4 1	6,183	4,250	1,820	1,322	1,586	1,738	1,649	18,548
37		N5_126a	Vitapara Bridge	4	1,332	942	743	540	518	1,388	835	6,298
54		N5xx_Sa	Pura Mukto Monch Bridge		2,078	947	820	935	474	2,238	1,171	8,663
18		R681_10a	Horisonkorpur Bridge	4	167	12	35	46	12	310	695	1,277
28		R548_28b	Atrai Bridge	Regional	219	-	104	274	104	370	1,928	2,999
73		R548_40a	Mohis Mari Bridge	Road	190	134	198	294	39	662	1,212	2,729
74		R451_1a	Naiori Bridge	-	1,510	761	1,241	1,269	882	3,565	1,640	10,868
75		R451_7a	Chondi Das Bridge		1,510	761	1,241	1,269	882	3,565	1,640	10,868

Table 5.2.1 24 Hour Traffic Volume (vehicle/day) (1)

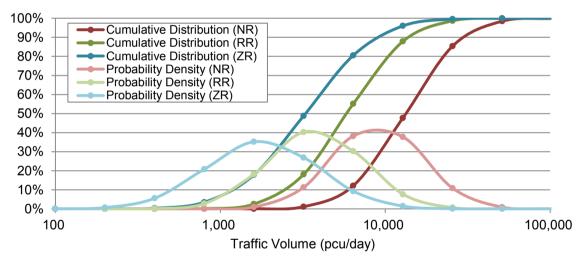
*:SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: Traffic Count Survey Result 2014, JICA Survey Team

100 1 12 26 56 57 64	Rajshahi	Z6010_12b Z5041_2a	Faliarbil Bridge					Utility	Car	Rickshaw	Cycle	Total
100 1 12 26 56 57 64	rajonani	75041 2a	, anaron Driago	Zilla Road	185	-	18	63	11	392	754	1,423
12 26 56 57 64		20041_20	Debokbazar Bridge	Zilla Road	362	31	205	208	68	893	863	2,630
26 56 57 64		N8_178a	Boalia Bazar Bridge		1,556	1,076	1,504	1,859	1,150	1,510	3,473	12,128
56 57 64		N8_182a	Bakerganj Steel Bridge		1,556	1,076	1,504	1,859	1,150	1,510	3,473	12,128
57 64		N8_095a	Amgram bridge		965	904	596	590	305	795	1,232	5,387
64		N8_152c	Rahamatpur bridge	National	1,034	1,167	520	557	253	1,548	2,967	8,046
		N8_127b	gounagata bridge	Road	796	939	459	295	199	1,369	2,452	6,509
		N8_123a	Souderkhal bridge		796	939	459	295	199	1,369	2,452	6,509
69		N8_129a	Asokoti bridge		796	939	459	295	199	1,369	2,452	6,509
86		N8_69a	Kumar Bridge		1,683	1,165	1,250	1,273	409	3,037	2,692	11,509
104		N805_24a	Garakola Bridge		2,335	1,427	1,549	1,116	936	725	1,429	9,517
42		R890_45a	Dowry Bridge		1,596	975	1,166	1,590	771	1,460	2,514	10,072
70		R890_16a	Bangla Bazar Bridge		495	235	255	286	220	354	1,467	3,312
71		R890_21a	Boksheali Bridge] [495	235	255	286	220	354	1,467	3,312
72		R890_28a	Sheyali Bailey Bridge	Designal	495	235	255	286	220	354	1,467	3,312
77	Barisal	R860_31a	Paprail Bailey Bridge	Regional Road	498	96	286	306	161	773	754	2,874
83	Dansai	R860_34a	Jajihar Bridge	Road	498	96	286	306	161	773	754	2,874
84		R860_44c	Gazipur Bridge] [498	96	286	306	161	773	754	2,874
85		R860_53d	Balar Bazar Bridge] [498	96	286	306	161	773	754	2,874
99		R860_35a	Shajonpur Bailey Bridge] [498	96	286	306	161	773	754	2,874
58		Z8052_009d	Gabtala Steel Bridge		155	50	294	239	177	465	2,147	3,527
65		Z8701_3d	Bottala Bridge] [230	175	149	228	159	669	1,346	2,956
78		Z8708_1c	Algy Bridge] [3	2	26	20	13	389	963	1,416
81		Z8708_12b	Satani Bridge	1 [235	-	135	216	236	333	1,653	2,808
82		Z8033_017a	Raiyer hat bridge	700-0	169	641	108	253	127	1,934	1,500	4,732
92		Z8810_13a	Madhabkhali bridge	Zilla Road	155	50	294	239	177	465	2,147	3,527
94		Z8033_008a	Kalijira bridge] [112	134	178	255	86	1,460	1,046	3,271
95		Z8033_019a	Masrong bridge] [351	759	589	508	260	827	1,341	4,635
96		Z8034_011a	Padarhat bridge	1 [45	106	27	110	48	10	2,900	3,246
97		Z8044_004a	Talukdarhat Bailey Bridge	1 [317	8	456	232	146	234	2,973	4,366
13		N7_025a	Jhuldibazar Bridge		2,799	1,352	307	483	561	664	1,472	7,638
14		N7_039a	Karimpur Bridge	1 [1,942	1,214	400	650	296	552	1,394	6,448
15		N7 049a	Porkitpur Bridge	1 [1,984	1,202	394	728	330	669	1,067	6.374
21		N704 43a	Khulna-Kushtia-Churash Bridge	1 1	6,577	2,124	1,717	1,269	939	4,796	5,358	22,780
22		N7 248c	Gora bridge	1 1	1,322	205	374	324	224	258	1,229	3,936
23		N7 054a	Barashia Bridge	1 1	1,984	1,202	394	728	330	669	1,067	6,374
25		N7_246a	Balai bridge.] [1,322	205	374	324	224	258	1,229	3,936
29		N7 036c	Kanaipur Bridge	1	1,942	1,214	400	650	296	552	1,394	6,448
30		N7 048a	Brahmonkanda Bridge	- National Road	1,984	1,202	394	728	330	669	1,067	6,374
32		N7 047a	Bimankanda bridge	Road	1,984	1,202	394	728	330	669	1,067	6,374
39	1/1	N7 141b	Buri Bhairab Bridge	1 1	2,797	569	364	612	305	803	1,552	7,002
41	Khulna	N703 Sd	Dhopa Ghata Bridge	1 1	1,373	922	815	758	675	5,794	5,353	15,688
43		N704 14a	Barda Bridge	1 1	4,343	1,535	1.385	1.098	828	1,126	1,713	12.028
44		N704 33b	Balipara Bridge	1 1	3,761	1,046	709	1,003	544	986	1,417	9,466
67		N704 27b	Bittipara Bridge	1 1	3,761	1,046	709	1,003	544	986	1,417	9,466
101		N706 14b	Jhikorgacha Bridge	1 1	4,320	1,723	1,302	1,060	1,160	1,647	5,058	16,270
103		N704 12c	Chandi Pur Bridge	1 1	4,343	1,535	1,385	1,098	828	1,126	1,713	12,028
40		R720 44a	Gurakhali Bridge		144	65	29	52	35	403	1,157	1,885
63		R760_049c	Shakdaha bridge	Regional	1,146	443	160	341	291	649	2,812	5,842
68		R750 22c	Bhangura Bridge	Road	660	587	337	438	267	243	1,196	3,728
105		R750 25a	Tularampur Bridge	1 1	660	587	337	438	267	243	1,196	3,728
106		Z7503 5a	Hawai khali Bridge	Zilla Road	1,034	565	701	1,037	473	1,020	2,002	6,832

Table 5.2.2 24 Hour Traffic Volume (vehicle/day) (2)

*1:: Bridge No.98 was excluded from 106 candidate bridges, but it was included to calculate the traffic growth rate

*2:SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: Traffic Count Survey Result 2014, JICA Survey Team


(2) Traffic Volume by Road Class

Based on the results of the 2014 traffic count survey and the PCU (Passenger Car Unit) factors shown in Table 5.2.3, the traffic volume characteristics were identified by road class.

Vehicle Type	PCU Factor
Truck	3.0
Bus	3.0
Minibus	3.0
Utility	1.0
Car	1.0
Auto-Rickshaw	0.75
Motorcycle	0.75

Table	5.2.3	PCU	Factor
IUNIC	0.2.0		1 40101

As a result, trends of cumulative distribution and probability density were identified by road class as shown in Figure 5.2.1.

Source: JICA Study Team made this data based on Traffic Count Survey Result 2014

Figure 5.2.1 Cumulative Distribution and Probability Density by Road Class

Table 5.2.4 lists each the average traffic volume (pcu/day), median (pcu/day), standard deviation, kurtosis² and skewness for each road class. The standard deviation was 9,378 for national roads, 4,793 for regional roads, and 2,311 for zilla roads. The kurtosis was negative at -0.06 for regional roads, but positive at 1.60 for national roads, and 2.21 for zilla roads. The skewness was positive for all roads: 1.38 for national roads, 1.05 for regional roads, and 1.19 for zilla roads.

Source: Geometric Design of RHD Roads Ver.4

² The kurtosis indicates degree of peakedness of cumulative probability distribution and the skewness indicates a measure of the asymmetry of the probability distribution. Both measures are zero for a normal distribution.

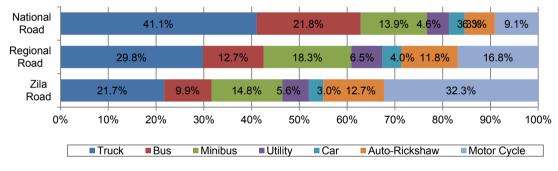
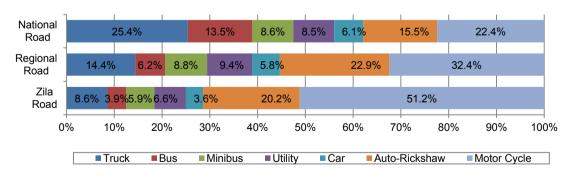

Items	National Roads	Regional Roads	Zilla Roads
Average Traffic Volume (pcu/day)	15,722	7,214	4,023
Median (pcu/day)	13,074	4,827	3,718
Standard Deviation	9,378	4,793	2,311
Kurtosis	1.60	-0.06	2.21
Skewness	1.38	1.05	1.19

 Table 5.2.4 Standard Deviation, Kurtosis and Skewness by Road Class

Source: Analysis by JICA Study Team based on Traffic Count Survey Result 2014


(3) Vehicle Share by Road Class

Using PCU factors specified by RHD (Table 5.2.3) and the results of the above-mentioned traffic count survey, the vehicle share in western Bangladesh was calculated by road class. The results indicate that the road classes have different vehicle-share characteristics. The share of large vehicles (trucks, buses, etc.) increases with increasing road class (ZR, RR, NR), while the share of small vehicles (motorcycles, auto-rickshaws, etc.) decreases. The vehicle share by road class is shown in Figure 5.2.2 and Figure 5.2.3.

Source: JICA Survey Team

Source: JICA Survey Team

Figure 5.2.3 Vehicle Share by Road Class (Vehicles)

5.2.2 Future Traffic Growth

Past traffic growth rates were applied as traffic indicators in this study. The traffic growth was calculated based on the results attained from preparatory surveys and other surveys conducted by RHD from 2004 to 2011, under the assumption that the traffic growth rate will remain fairly constant until 2031. The annual traffic growth rates in western Bangladesh were found to be 6.25% for national roads, 5.62% for regional roads and 5.15% for zilla roads. It is observed that high-class roads have higher growth rate than low-class roads. The annual number of registered vehicles was also considered for use as a traffic indicator, but it was not selected due to the possibility of a large discrepancy between the number of registered vehicles on the road.

			Traffic	Volume of N	Notorized Ve	ehicles (PC	:U/Day)		Average
SN	Bridge ID	Name of Bridge	2007	2008	2009	2011	2014	Annual Growth Rate	Annual Growth Rate
14	N7_039a	Karimpur Bridge	-	-	-	4,827	6,448	10.1%	
16	N5_134a	Nukali Bridge	-	-	-	5,624	6,944	7.3%	
17	N6_97a	Dattapara Bridge	-	-	6,845	-	10,549	9.0%	
21	N704_43a	Khulna-Kushtia-Churash Bridge	12,380	-	-	-	22,780	9.1%	
22	N7_248c	Gora bridge	-	-	-	3,510	3,936	3.9%	
26	N8_095a	Amgram bridge	-	-	4,335	-	5,387	4.4%	
34	N5_172a	Notun Dhoh Bridge	-	-	13,873	-	14,657	1.1%	6.25%
46	N5_382a	Ichamoti Bridge	-	-	-	3,253	4,005	7.2%	
56	N8_152c	Rahamatpur bridge	-	-	-	6,338	8,046	8.3%	
57	N8_127b	gounagata bridge	-	-	4,335	-	6,509	8.5%	
66	N5_260b	Katakhali Bridge	-	-	7,471	-	9,587	5.1%	
80	N5_488a	Chawai Bridge	5,091	-	-	_	5,904	2.1%	
101	N706_14b	Jhikorgacha Bridge	11,475	-	-	-	16,270	5.1%	
28	R548_28b	Atrai Bridge	2,752	-	-	-	2,999	1.2%	
40	R720_44a	Gurakhali Bridge	1,404	-	-	-	1,885	4.3%	
62	R545_115c	Mongle bari kuthibari Bridge	6,664	-	-	_	7,733	2.1%	
63	R760_049c	Shakdaha bridge	-	3,349	_	_	5,842	9.7%	E com
71	R890_21a	Boksheali Bridge	2,840	-	-	-	3,312	2.2%	5.62%
75	R451_7a	Chondi Das Bridge	6,761	-	-	-	10,868	7.0%	
93	R585_80a	Bhela Bridge	-	2,454	-	_	5,663	15.0%	
98	R760_003a	Gollamari bridge	9,828	-	-	-	12,385	3.4%	
50	Z5401_45a	Matpara Bridge	4,849	-	-	-	7,178	5.8%	
55	Z5552_10a	Barodia Khali Bridge	3,555	-	-	-	4,218	2.5%	
58	Z8052_009d	Gabtala Steel Bridge	-	2,640	-	-	3,527	4.9%	
59	Z5015_22a	Bahagili Bridge	-	1,056	-	-	1,451	5.4%	5.15%
87	Z6010_12b	Faliarbil Bridge	-	1,010	-	-	1,423	5.9%	
90	Z5025_46a	Bondorer pool Bridge	3,263	-	-	-	3,631	1.5%	
96	Z8034 011a	Padarhat bridge	1,666	-	_	_	3.246	10.0%	

Table 5.2.5 Recent Traffic Growth

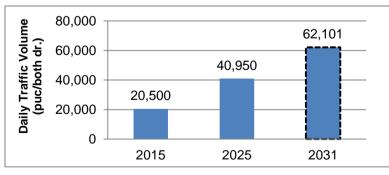
*1: The traffic growth rate was calculated after the converted by PCU factor due to the difference of vehicle classification in the survey years. The regional growth rate was not adapted to achieve the accuracy *2:SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

5.2.3 Adjustment in Consideration of Large Scale Development

Two large-scale development projects, the construction of Padma Bridge and the improvement of AH1 (part of Road Master Plan 2009), are expected to influence traffic demand, so these were both considered in calculations of the traffic demand forecast.

(1) Location of Padma Bridge and Route of AH1

The location of Padma Bridge and the route of AH1 are shown in Figure 5.2.4. After the construction of Padma Bridge, vehicles will be able to move between Dhaka and western Bangladesh/India without the need for a car ferry. In addition, this improved connectivity is expected to induce significant traffic volume on AH1.



Source: JICA Survey Team

Figure 5.2.4 Location of Padma Bridge and Route of AH1

(2) Induced Traffic Volume of Padma Bridge

Induced traffic volume on Padma Bridge in 2031 is forecasted assuming of the continuation of the growth rate from 2015 and 2025 as described in "The Feasibility Study of Padma Bridge in the People's Republic of Bangladesh 2005, JICA".

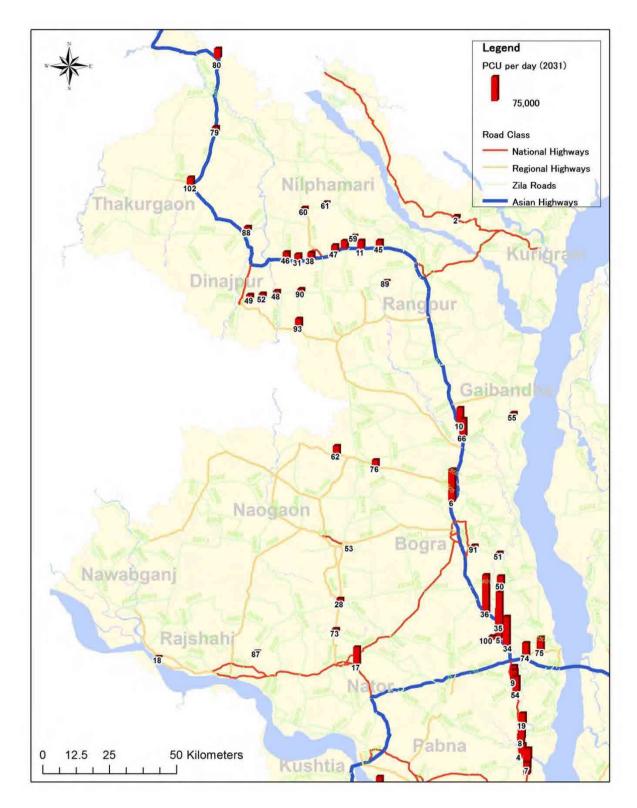
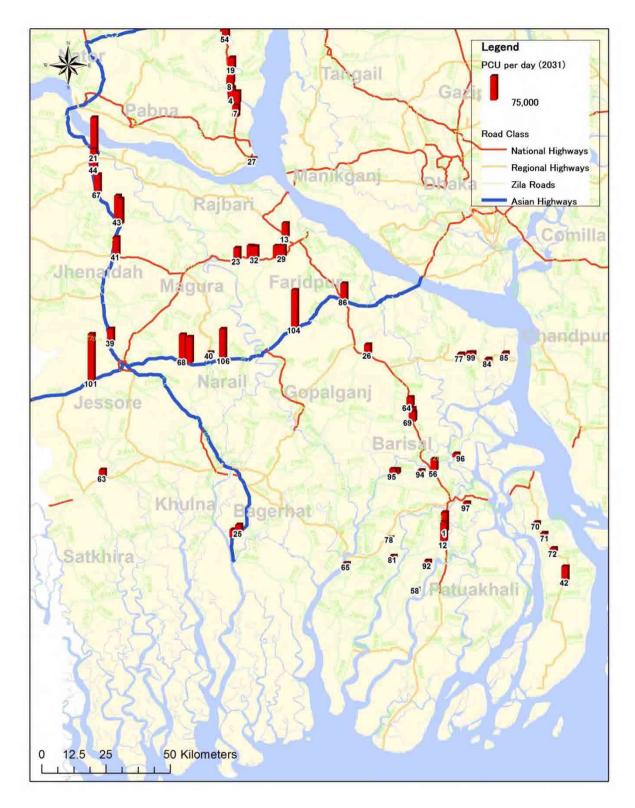

Source: The Feasibility Study of Padma Bridge in the People Republics of Bangladesh, 2005 JICA Study (only 2015 and 2025)

Figure 5.2.5 Projection of Induced Traffic Volume on Padma Bridge

5.3 Result of Traffic Demand Forecast in 2031


The traffic demand forecast for 2031 is summarized in Figure 5.3.1 and Figure 5.3.2. The estimated peak hourly traffic volume was used in the determination of the required number of lanes. The peak rate was calculated to be 8% for national roads and 10% for both regional roads and zilla roads based on RHD road standards.

As shown in Figure 5.3.1 and Figure 5.3.2, Bangladesh can be divided into 3 parts (eastern Bangladesh, northwestern Bangladesh, and southwestern Bangladesh) by two major rivers: the Padma which divides east and west, and the Jamuna which divides western Bangladesh into north and south. It was predicated that, Asian Highways and national roads will have high peak traffic volume in both directions (north-south and east-west) due to the concentration of vehicles on bridges crossing these rivers.

Note: The number in the map indicates the serial number of the project candidate bridges. Source: JICA Survey Team

Figure 5.3.1 Result of Traffic Demand Forecast (North area)

Note: The number in the map indicates the serial number of the project candidate bridges. Source: JICA Survey Team

Figure 5.3.2 Result of Traffic Demand Forecast (South area)

							2014		2	031	
		Bridge		Road	Asian	Induced	Daily	Base	Induced	Daily Traffic	Peak Hour
SN	Zone	ID	Name of Bridge	Class	Highway	Traffic	Traffic	Traffic	Traffic	Volume	Traffic
					5.,		Volume	Volume		(pcu/day)	Volume
							(pcu/day)	(pcu/day)	(pcu/day)	(F) /	(pcu/hr.)
2		N509_19a	Barodia Khali Bridge				3,487	9,777	-	9,777	782
6		N5_235a	Bahagili Bridge		×		35,903	100,671	-	100,671	8,054
10		N5_265a	Shakdaha bridge		1		20,082	56,308	-	56,308	4,505
11		N5_350b	Souderkhal bridge		1		8,466	23,738	-	23,738	1,899
24		N5_356a	Paprail Bailey Bridge		1		8,466	23,738	-	23,738	1,899
31 36	-	N5_378a N5_188a	Gazipur Bridge		1		7,882	22,099	-	22,099	1,768
36		-	Shampur Bridge.	National	✓ ✓		43,832	122,904	-	122,904	9,832
45		N518_4a N5 344c	Khottapara Bridge Gollamari bridge	Road			7,882	22,099	-	22,099	1,768
45		N5 382a	Shajonpur Bailey Bridge				8,466 7,882	23,738	-	23,738 22,099	1,899
40		N5 360a	Debokbazar Bridge		↓ ↓		8,466	22,099 23,738	-		1,768
66		N5 260b	Katakhali Bridge		¥ - 1		20,082	56,308	-	23,738 56,308	1,899 4,505
79		N5 458a	Pathoraj Bridge		¥ - 1		8,088	22,678	-	22,678	1,814
80		N5 488a	Chawai Bridge		¥ •		10,904	30,574	-	30,574	2,446
102		N5 435a	Sattapir Bridge		· ·		10,304	29,114	-	29,114	2,329
62		R545 115c	Mongle bari kuthibari Bridge		v		11,493	29,114	-	29,114	2,323
76	Rangpur	R550 28b	Bottoli Bridge	Regional			9,269	23,478	-	23,110	2,348
93		R585 80a	Bhela Bridge	Road			10.847	27,475	-	27,475	2,340
48		Z5025 55a	Jhikorgacha Bridge				5,672	13,317		13,317	1,332
40		Z5025_64a	Sattapir Bridge				5,672	13,317	-	13,317	1,332
50		Z5401 45a	Chandi Pur Bridge				11,990	28,149		28,149	2,815
51		Z5072 14a	Garakola Bridge				3,423	8,035	-	8,035	803
52		Z5025 60a	Tularampur Bridge				5,672	13,317	-	13,317	1,332
53		Z5472 6a	Hawai khali Bridge	1			201	472	-	472	47
55		Z5552 10a	Barodia Khali Bridge	1			4,713	11,065		11,065	1,107
59		Z5015 22a	Bahagili Bridge	Zilla Road			2,027	4,759	-	4,759	476
60		Z5701 1a	Anandababur Pool				3,872	9,090	-	9,090	909
61		Z5701 9a	Duhuli Bridge				2,725	6,398	-	6,398	640
88		Z5008 1a	Choto Dhepa bridge.				6,017	14,126	-	14,126	1,413
89		Z5024 5c	Shampur Bridge.				1,978	4,643	-	4.643	464
90		Z5025 46a	Bondorer pool Bridge	1			5,056	11,870	-	11,870	1,187
91		Z5040_4a	Khottapara Bridge	1			3,716	8,724	-	8,724	872
3		N5_119a	Rahamatpur bridge				13,371	37,492	-	37,492	2,999
4		N5_127a	gounagata bridge	1			13,371	37,492	-	37,492	2,999
5		N5_176a	Gabtala Steel Bridge	1	1		34,053	95,482	-	95,482	7,639
7		N5_120a	Anandababur Pool	1			13,371	37,492	-	37,492	2,999
8		N5_128a	Duhuli Bridge				12,437	34,873	-	34,873	2,790
9		N5_158a	Mongle bari kuthibari Bridge				17,310	48,536	-	48,536	3,883
16		N5_134a	Asokoti bridge				12,437	34,873	-	34,873	2,790
17		N6_97a	Bangla Bazar Bridge	National			21,033	58,974	-	58,974	4,718
19		N5_140a	Sheyali Bailey Bridge	Road			12,437	34,873	-	34,873	2,790
20		N5_118a	Mohis Mari Bridge				13,371	37,492	-	37,492	2,999
27	Rajshahi	N505_2a	Chawai Bridge				2,346	6,579	-	6,579	526
33		N5_156a	Kumar Bridge				17,310	48,536	-	48,536	3,883
34		N5_172a	Faliarbil Bridge		1		34,053	95,482	-	95,482	7,639
35	ļ	N5_179a	Choto Dhepa bridge.		1		43,832	122,904	-	122,904	9,832
37		N5_126a	Bondorer pool Bridge				13,371	37,492	-	37,492	2,999
54		N5xx_Sa	Pura Mukto Monch Bridge				17,310	48,536	-	48,536	3,883
18		R681_10a	Boksheali Bridge				2,513	6,364	-	6,364	636
28		R548_28b	Satani Bridge	Regional			5,298	13,418	-	13,418	1,342
73	ļ	R548_40a	Mohis Mari Bridge	Road			4,040	10,232	-	10,232	1,023
74		R451_1a	Naiori Bridge				17,433	44,155	-	44,155	4,415
75		R451_7a	Chondi Das Bridge				17,433	44,155	-	44,155	4,415

Table 5.3.1 Result of Traffic Demand Forecast (1)

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

SN Zone Bridge D Name of Bridge Name of Bridge Asian Case Induced France Case Dask Trance Volume (pcudwr) Base Trance Volume (pcudwr) Base Trance Trance Volume (pcudwr) Dask Trance Trance Volume (pcudwr) Dask Trance Trance Volume (pcudwr) Dask Trance Volume (pcudwr) Dask Trance Volume (pcudwr) 67 Rajshah 2501 (2) Falarbh Bridge Zill Road 2.004 4.704 4.704 4.704 71 Na 172 Na Trance Trance 2.004 4.704 4.704 4.704 72 Na 172 Bridge Trance 2.1401 60.008 6.60.08 4.801 73 Na 172 Palar Abridge Trance 1.152 3.577 2.571 2.278 74 Na 172 Sandrafta Unity 1.152 3.577 2.5721 2.278 2.771 2.781 2.271 2.278 2.771 2.781 2.322 1.322 3.722 1.322 3.722 1.322 3.722 1.322 3.721 2.271 2.231 1.322 3.723<								2014		2	031	
Bit Papetan Z6010, 12 Fallarbil Bridge Zilla Road Cloudings/ C	SN	Zone		Name of Bridge				Traffic	Traffic		Volume	Traffic
100 Hajinan Zosti 2.2 Debkokazr Bridge (Jal Köda) 4.317 10.135								(pcu/day)	(pcu/day)	(pcu/day)	(pcu/uay)	(pcu/hr.)
100 26/41 2a Uebokbazar Enroge 4,317 10,135 - 10,135 10	87	Raishahi	Z6010_12b	Faliarbil Bridge	Zilla Road			2,004	4,704	-	4,704	470
12 Na Bestale Bridge 21.401 40.009 4.80.008 4.80.008 26 Na 152 Bahnangur bridge 10.835 30.382 2.431 26 Na 152. Rohangur bridge 10.835 30.382 2.431 86 Na 123.5 Souderchail bridge 10.600 29.721 - 29.71 2.972 27 Na Souderchail bridge 10.600 29.721 - 29.71 2.972 27 R890, 16a Bangala Bazar Bridge - 10.600 29.721 - 29.71 2.972 77 R890, 16a Bangala Bazar Bridge - 21.119 59.221 13.223 13.223 13.223 13.223 13.223 13.223 1.322 1.322 1.230 </td <td></td> <td>rtajonam</td> <td>-</td> <td>v</td> <td>Zilla Road</td> <td></td> <td></td> <td>4,317</td> <td>10,135</td> <td>-</td> <td>10,135</td> <td>1,013</td>		rtajonam	-	v	Zilla Road			4,317	10,135	-	10,135	1,013
Bit National National National 66 NB, 127b. Rahamagun bindge 10,835. 90,382 - 90,382 2.950 67 NB, 127b. Rahamagun bindge 10,600. 29,721 -29,721 29,721 <td< td=""><td></td><td></td><td>-</td><td>Pura Mukto Monch Bridge</td><td></td><td></td><td></td><td>21,401</td><td>60,008</td><td>-</td><td>60,008</td><td>4,801</td></td<>			-	Pura Mukto Monch Bridge				21,401	60,008	-	60,008	4,801
56 N8 125:2 Rahamargur bridge National 69 N8 123:52 86:78 2.950 69 N8 523 Asoloti bridge 10.600 29:71 29:721 29:			_	v				21,401	60,008	-	60,008	
F7 National Road No.602 29.721 29.			-							-		
64 N88 23 Souderkhal bridge 103.00 29.71 29.721<			-		National					-		
669 10.600 29.71 29.721 49.721 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.223 13.230 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 12.303 <td></td> <td></td> <td>-</td> <td></td> <td>Road</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-		Road							
86 √ 19.06 54.419 54.419 43.63 104 104 105 24.2 Garakola Bridge ✓ 21.119 59.215 62.011 121.316 9705 70 R890_16a Magridge ✓ 21.119 59.215 62.011 121.316 9705 77 R890_21a Doksheal Bridge 5.221 13.223 13.233 1.2303 12.303			-	v						-		
104 Hofs 24a Garakola Bridge ✓ ✓ 21,119 59,215 62,101 121,316 9,705 42 R890_45a Masrong bridge 18,504 47,070<			-	-		,				-		
42 R890_45a Masrong bridge 18,584 47,070 4			-							-		
Protect Reson 16a Bangla Bazar Bridge 5.221 13.223 13.223 1.3233 1.2303			-	v		*	*	,		62,101		
71 R890_21a Boksheali Bridge 5.221 13.223 13.223 1.322 77 R800_28a Sheyali Baley Bridge 5.221 13.223 1.322 1.3223 1.322 83 R800_31a Pagai Baley Bridge 6.5.21 13.223 1.322 1.3223 1.322 84 R800_34a Jajinar Bridge 4.857 12.303 1.2303			-							-		
Barisal Regional Reformational Barisal Regional Reformational Reformational Barisal Regional Reformational Reformational Barisal Regional Reformational Barisal Regional Reformational Barisal <threformational Barisal Reformationa</threformational 			-	v								
Parisal Reso Paprai Bailey Bridge Reginal 4.857 12.303 12.303 1.2303			-	-								
Bansal R860_34a Jajihar Bridge Koad 4,857 12,303 1,2303			-							-		
84 R860_44c Gazipur Bridge 4,857 12,303 123,03 1,23,03 <td< td=""><td></td><td>Barisal</td><td>_</td><td></td><td>Road</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Barisal	_		Road							
B6 R860_53d Balar Bazar Bridge 4.867 12.303 12.303 1.23.03			-		1 1					-		
99 R860_35a Shajonpur Bailey Bridge 4.867 12,303 - 12,303 1,230 58 Z8052_009d Gabtala Steel Bridge 5.494 12.898 - 12,898 1.290 65 Z8708_1C Algy Bridge 4.066 9.546 9.530 - 2.925 1.230 1.1232 1.123 1.151			-									
58 28052_009d Gabtala Steel Bridge 5.494 12.898 - 12.898 1.290 65 28701_3d Bottala Bridge 4.066 9.546 - 9.546 9.556 78 28708_12b Satani Bridge 12.462 2.925 - 2.925 2.925 2.925 2.925 2.925 - 1.2898 1.229 9.340 - 9.340			-	v						-	,	
65 28701_3d Bottala Bridge 78 28701_3d Bottala Bridge 78 28708_1c Algy Bridge 28708_12b Satani Bridge 1,246 2,925 2,925 2,925 94 28033_017a Raiyer hat bridge 3,379 9,340 - 9,44 9,44 9,44 9,44 1,246 2,925 - 2,925 1,5407 1,5407 1,5417 94 28033_008a Kalijira bridge 4,766 11,232 1,9623 3,677 14 N7_025a Katakhali Bridge 1,344 3,7835 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35 3,778,35								-		-		
78 Z8708_1c Algy Bridge 81 Z8708_1c Satani Bridge 2005_12b Satani Bridge 3,979 9,340 9,343	65		Z8701 3d	v	1 1					-		
82 Z8033_017a Raiyer hat bridge Zilla Road 6.663 16.407 - 15.407 92 Z8033_008a Kalijra bridge Zilla Road 5.494 12.898 - 12.998 19.622 19.622 19.622 19.622 19.622 19.622 19.622 19.622 19.623 11.232 11.233 13.076 13.733 <	78		Z8708_1c		1 1					-		
92 Z8810_13a Madnabkhali bridge Zlla Road 5.494 12.996 12.998 1.299 94 Z8033_009a Kalijra bridge 4.127 9.688 968 969 96 Z8033_019a Masrong bridge 8.366 19.622 19.622 1.962 97 Z8044_004a Talukdarhat bridge 6.127 14.386 14.385 1.438 13 NT_025a Katakhali Bridge 6.127 14.386 14.385 1.438 14 NT_025a Katakhali Bridge 13.494 37.835 37.835 3.027 15 NT_043a Bittipara Bridge 13.713 38.451 3.8451 3.076 21 NT_044a Bottol Bridge 13.713 38.451 38.451 3.076 22 NT_044a Jajihar Bridge NT_044a Jajihar Bridge 13.713 38.451 3.076 30 NT_047a Balar Bazar Bridge 13.713 38.451 3.037 3.027 31 NT_047a	81		Z8708_12b	Satani Bridge				3,979		-		
92 Z8810_13a Madhabkhali bridge 5,494 12,898 - 12,898 1,290 94 Z8033_008a Kalijira bridge 4,127 9,688 9,693 969 95 Z8033_019a Masrong bridge 8,356 19,622 - 19,688 969 96 Z8034_011a Padarhat bridge 8,356 11,232 - 11,232 1,1233 1,4385 1,30765	82		Z8033_017a	Raiyer hat bridge	7.11- D				15,407	-	15,407	1,541
1 1	92		Z8810_13a	Madhabkhali bridge	Zilla Road			5,494	12,898	-	12,898	1,290
96 Z8034_011a Padarhat bridge 97 Z8034_004a Talukdarhat Bailey Bridge 6,127 14,385 - 14,385 1,438 13 N7_025a Katakhali Bridge 6,127 14,385 - 45,963 3,677 14 N7_025a Bitipara Bridge 13,494 37,835 - 37,835 3,027 15 N7_049a Bhangura Bridge 13,494 37,835 - 37,835 3,027 21 N7_043a Naiori Bridge 13,713 38,451 - 38,451 3,076 22 N7_054a Bottoli Bridge - 8,532 23,924 - 23,924 1,914 23 N7_048a Jajihar Bridge - 13,713 38,451 - 38,451 3,076 30 N7_048a Jajihar Bridge - 14,864 41,679 - 41,679 3,334 41 Mr04_14a Padarhat bridge - 28,451 - 30,765 - 31,985 - 37,835 3,027 344 Mr04_33b Talukdarhat Baley B	94		Z8033_008a	Kalijira bridge] [4,127	9,688	-	9,688	969
97 Z8044_004a Talukdarhat Bailey Bridge 6,127 14,386 - 14,386 1,4386 13 N7_025a Katakhali Bridge 16,392 45,963 - 45,963 3,677 14 N7_039a Bittipara Bridge 13,494 37,835 - 37,835 3,027 15 N7_04_33 Naioni Bridge 13,713 38,451 - 38,451 3,076 22 N7_04_33 Naioni Bridge ✓ 44,923 125,961 125,961 10,077 23 N7_044a Bottoli Bridge ✓ 8,532 23,924 23,924 1,914 23 N7_046a Jajihar Bridge N7_048a Jajihar Bridge ✓ 8,532 23,924 23,924 1,914 23 N7_044a Jajihar Bridge No 13,494 37,835 3,027 343 N70_35d Kalijira bridge No 13,113 38,451 - 38,451 3,076 39 N704_13b Balakbarakha	95		Z8033_019a					8,358	19,622	-	19,622	1,962
13 N7_025a Katakhali Bridge 14 N7_025a Katakhali Bridge 14 N7_039a Bittipara Bridge 15 N7_049a Bhangura Bridge 16 N7_049a Bhangura Bridge 17 N7_049a Bhangura Bridge 17 N7_049a Bhangura Bridge 18 N704_43a Naiori Bridge 19 N7_248c Chondi Das Bridge N7_248a Algy Bridge N7_045a Bottoli Bridge N7_046a Jajihar Bridge N7_048a Jajihar Bridge N7_048a Jajihar Bridge N7_047a Balar Bazar Bridge N7_047a Balar Bazar Bridge N7_047a Balar Bazar Bridge N7_047a Sd N70_14a Padarhat bridge N70_4_7b Bittipara Bridge N70_4_7b Bittipara Bridge N70_4_7b Bittipara Bridge N70_4_7b Bittipara Bridge N70_4_74 Salar Bazar Bridge			Z8034_011a	Padarhat bridge				4,785	11,232	-	11,232	1,123
14 N7_039a Bittipara Bridge 13,494 37,835 - 37,835 3,027 15 N7_04_43a Naiori Bridge 13,713 38,451 - 38,451 3,076 22 N7_04_43a Naiori Bridge 13,713 38,451 - 23,924 125,961 10,077 22 N7_04_43a Bottoli Bridge 13,713 38,451 - 38,451 3,076 23 N7_04_43a Bottoli Bridge 13,713 38,451 - 38,451 3,076 29 N7_04_43a Jajihar Bridge 13,713 38,451 - 33,451 3,076 30 N7_048a Jajihar Bridge National Road 13,713 38,451 - 38,451 3,076 31 N7_047a Balar Bazar Bridge N704 13,713 38,451 - 30,76 - 41,679 - 41,679 3,334 44 N704_14a Padarhat bridge 20,795 58,307 - 66,319 - 21,466 60,191 - 60,191 4,661 101 N704_27b			_	Talukdarhat Bailey Bridge				6,127	14,385	-	14,385	1,438
15 NT_049a Bhangura Bridge 13,713 38,451 - 38,451 3,076 21 NT_04_43a Naiori Bridge 13,713 38,451 - 38,451 10,077 22 NT_04_43a Naiori Bridge 13,713 38,451 - 23,924 125,961 - 125,961 10,077 23 NT_054a Bottoli Bridge 13,713 38,451 - 38,451 3,076 25 NT_246a Algy Bridge 13,713 38,451 - 38,451 3,076 30 NT_036c Raiyer hat bridge 13,713 38,451 - 38,451 3,027 30 NT_047a Balar Bazar Bridge NT,047a Balar Bazar Bridge 13,713 38,451 - 38,451 3,076 41 N704_14a Padarhat bridge N704_14a Padarhat bridge ✓ 14,864 41,679 - 41,679 41,679 4,815 101 N704_27b Bittipara Bridge ✓			-	0						-		
21 N704_43a Naiori Bridge 22 N724ka Chondi Das Bridge 44,923 125,961 125,961 10,077 23 N7_248c Chondi Das Bridge 13,713 38,451 38,451 3,076 25 N7_246a Algy Bridge 13,713 38,451 38,451 3,076 30 N7_047a Balar Bazar Bridge N7,047a Balar Bazar Bridge 13,713 38,451 38,451 3,076 41 N704_33b Talukdarhat Baileg N704 National Koad 13,713 38,451 38,451 3,076 44 N704_7a Balar Bazar Bridge N714 National Koad 13,713 38,451 3,076 43 N704_14a Padarhat bridge 20,795 58,307 58,307 4,665 44 N704_27b Bittipara Bridge ✓ 21,466 60,191 60,191 4,815 101 N704_27b Bittipara Bridge ✓ 21,466 60,191 60,191 4,815 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>			_							-		
22 N7_248c Chondi Das Bridge 23 N7_054a Bottoli Bridge 25 N7_054a Bottoli Bridge 29 N7_036c Raiyer hat bridge 30 N7_047a Balar Bazar Bridge N703_Sd Kalijira bridge N704_14a Padarhat bridge N704_27b Bittipara Bridge N704_12c Chandi Pur Bridge N704_12c Chandi Pur Bridge N704_12c Chandi Pur Bridge R760_049c Shakdaha bridge R760_049c Shakdaha bridge R750_22c Bhangura Bridge R750_22c Bh			_							-		
23 NT_054a Bottoli Bridge 13,713 38,451 30,076 25 NT_045a Algy Bridge 13,713 38,451 23,924 23,924 1,914 29 NT_045a Jajihar Bridge 13,494 37,835 37,835 3,027 30 NT_045a Jajihar Bridge 13,494 37,835 37,835 3,027 32 NT_047a Balar Bazar Bridge 13,713 38,451 38,451 30,076 32 NT_047a Balar Bazar Bridge 13,713 38,451 38,451 3,076 34 NT04_14b Madhabkhali bridge N704_14a Padarhat bridge 20,795 58,307 58,307 58,307 4665 44 N704_33b Talukdarhat Bailey Bridge ✓ 21,466 60,191 60,191 48,15 101 N704_12c Chandi Pur Bridge ✓ 21,466 60,191 60,191 48,15 103 N704_12c Chandi Pur Bridge ✓ 28,169 78,986 78,986			-	· · · · · · · · · · · · · · · · · · ·						-		· · · · ·
Z5 NT_246a Algy Bridge 29 N7_036c Raiyer hat bridge 30 N7_047a Balar Bazar Bridge 32 N7_047a Balar Bazar Bridge 41 N7_141b Madhabkhali bridge N704_7a Balar Bazar Bridge N7_047a Balar Bazar Bridge N7_141b Madhabkhali bridge N704_3Sd Kalijira bridge N704_14a Padarhat bridge N704_33b Talukdarhat Bailey Bridge N704_27b Bittipara Bridge N704_27b Bittipara Bridge N704_12c Chandi Pur Bridge R760_049c Shakdaha bridge R760_049c Shakdaha bridge R750_22c Bhangura Bridge R750_22c Bhangura Bridge V 7,059 19,794 Kali			-	v		1				-		
29 NT_036c Raiyer hat bridge National 30 NT_048a Jajihar Bridge 13,494 37,835 - 37,835 3,027 30 NT_048a Jajihar Bridge National 13,494 37,835 - 37,835 3,027 32 NT_047a Balar Bazar Bridge 13,713 38,451 - 38,451 3,076 39 NT_047a Balar Bazar Bridge 13,713 38,451 - 38,451 3,076 41 M703_Sd Kalijira bridge 20,795 58,307 - 58,307 4,665 N704_14a Padarhat bridge ✓ 21,466 60,191 - 60,191 4,815 41 N704_27b Bittipara Bridge ✓ 21,466 60,191 - 60,191 4,815 101 N704_12c Chandi Pur Bridge ✓ 23,1265 87,665 62,101 149,766 11,981 103 N704_12c Chandi Pur Bridge ✓ 2,442 6,84			-	v		,				-	,	
30 NT_048a Jajihar Bridge National			-			1				-		
32 NT_047a Balar Bazar Bridge Road 11.10 20.10 <th20.10< th=""></th20.10<>			_							-		
39 N7_141b Madhabkhali bridge 41 N703_Sd Kalijira bridge 43 N704_14a Padarhat bridge 44 N704_14a Padarhat bridge 44 N704_33b Talukdarhat Bailey Bridge 101 N704_27b Bittipara Bridge 101 N704_12c Chani Pur Bridge 103 N704_12c Chani Pur Bridge 104 N704_12c Chani Pur Bridge 107 N704_12c Chani Pur Bridge 108 R720_44a Bhela Bridge R750_22c Bhangura Bridge 105 R750_22c Bhangura Bridge 105 X 7,059 19,794 105 R750_25a Tularampur Bridge X			_		Road						,	
41 Khulna N703_Sd Kalijira bridge 20,795 58,307 58,307 68,307 4,665 43 N704_14a Padarhat bridge 20,795 58,307 58,307 58,307 4,665 44 N704_33b Talukdarhat Bailey Bridge 21,466 60,191 60,191 4,815 67 N704_27b Bittipara Bridge 21,466 60,191 60,191 4,815 101 N704_12c Chandi Pur Bridge 31,265 87,665 62,101 149,766 11,981 103 N704_12c Chandi Pur Bridge 28,169 78,986 - 78,986 6,319 40 R720_44a Bhela Bridge 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Regional 9,566 24,229 2,422 2,422 2,422 2,422 2,422 2,422 2,423 2,422 2,422 2,422 2,422			-	-		í						
43 N704_14a Padarhat bridge ✓ 28,169 78,986 - 78,986 6,319 44 N704_33b Talukdarhat Bailey Bridge ✓ 21,466 60,191 - 60,191 4,815 67 N704_27b Bittipara Bridge ✓ 21,466 60,191 - 60,191 4,815 101 N704_12c Chandi Pur Bridge ✓ 31,265 87,665 62,101 149,766 11,981 103 N704_12c Chandi Pur Bridge ✓ 28,169 78,986 - 78,986 6,319 40 R720_44a Bhela Bridge ✓ 28,169 78,986 - 78,986 6,319 40 R760_049c Shakdaha bridge ✓ 28,169 78,986 - 78,986 6,319 40 R760_049c Shakdaha bridge ✓ 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Road ✓ 7,059 19,794		Khulna	_			v						
44 N704_33b Talukdarhat Bailey Bridge 67 N704_27b Bittipara Bridge 101 N706_14b Jhikorgacha Bridge 103 N706_14b Jhikorgacha Bridge 40 R720_44a Bhela Bridge 63 R760_049c Shakdaha bridge 68 R750_22c Bhangura Bridge 105 R750_25a Tularampur Bridge			_			1			-	-		
67 N704_27b Bittipara Bridge ✓ 21,066 60,191 - 60,191 4,815 101 N706_14b Jhikorgacha Bridge ✓ 21,466 60,191 - 60,191 4,815 103 N704_12c Chandi Pur Bridge ✓ 23,1265 87,665 62,101 149,766 11,981 40 R720_44a Bhela Bridge ✓ 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Regional 9,566 24,229 - 24,229 2,423 68 R750_22c Bhangura Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552			-	v								
101 N706_14b Jhikorgacha Bridge ✓ 31,265 87,665 62,101 149,766 11,981 103 N704_12c Chandi Pur Bridge ✓ 28,169 78,986 - 78,986 6,319 40 R720_44a Bhela Bridge ✓ 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Regional 9,566 24,229 - 24,229 2,423 68 R750_22c Bhangura Bridge Road ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552												
103 N704_12c Chandi Pur Bridge ✓ 28,169 78,986 - 78,986 6,319 40 R720_44a Bhela Bridge ✓ 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Regional 9,566 24,229 - 24,229 2,423 68 R750_22c Bhangura Bridge Road ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552			_			-	1			62,101		
40 R720_44a Bhela Bridge ✓ 2,442 6,847 - 6,847 548 63 R760_049c Shakdaha bridge Regional 9,566 24,229 - 24,229 2,423 68 R750_22c Bhangura Bridge Road ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552			-									
63 R760_049c Shakdaha bridge Regional 9,566 24,229 - 24,229 2,423 68 R750_22c Bhangura Bridge Road ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552			-	· · · · · ·						-		
68 R750_22c Bhangura Bridge Road ✓ 7,059 19,794 62,101 81,895 6,552 105 R750_25a Tularampur Bridge ✓ ✓ 7,059 19,794 62,101 81,895 6,552	63		-		Regional					-		
105 R750_25a Tularampur Bridge 🗸 🗸 7,059 19,794 62,101 81,895 6,552	68		-	v		1	1			62,101		
	105		R750_25a			1	1			,	,	
	106		Z7503_5a	Hawai khali Bridge	Zilla Road	1	1	11,793	33,066	62,101		

Table 5.3.2 Result of Traffic Demand Forecast (2)

*SN(Serial Number) is equivalent to rank in selection of 106 project candidate bridges Source: JICA Survey Team

5.4 Traffic Capacity

Traffic capacity is set based on Geometric Design Standard for RHD. The traffic capacities and required lane numbers for national roads, regional roads and zilla roads are shown in below table.

Road Type	Traffic Capacity (pcu/direction/peak hour)	Number of Lanes				
	4500 - 8500	6 lanes (Design Type 1)				
National Roads	2100 - 4500	4 lanes (Design Type 2)				
	800 - 2100	2 lanes (Design Type 3 or 4)				
Degional Deado	2100 - 4500	4 lanes (Design Type 2)				
Regional Roads	400 - 2100	2 lanes (Design Type 3, 4 or 5)				
Zille Deede	400 - 1600	2 lanes (Design Type 4 or 5)				
Zilla Roads	- 400	1 lanes (Design Type 6)				

Source: Geometric Design Standard for RHD

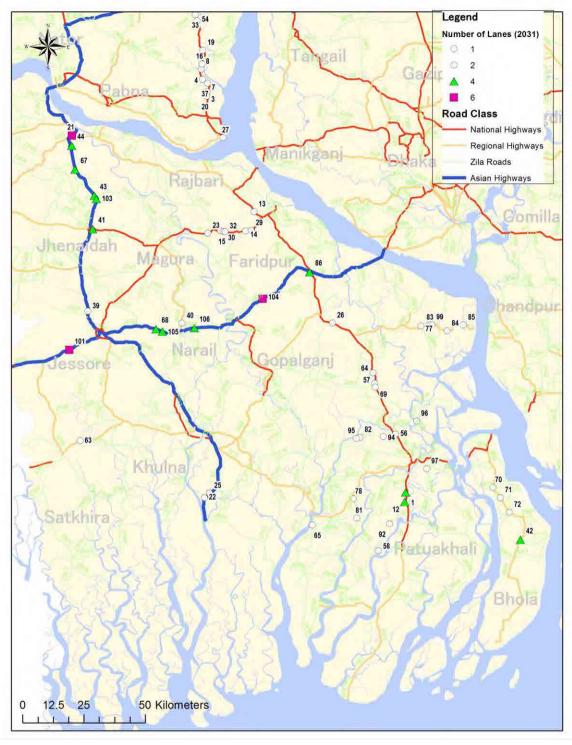
5.5 Number of Lanes

5.5.1 Required Number of Lanes based on Traffic Demand Forecast

The required number of lanes for each of the 105 Project bridges estimated based on the traffic demand forecast and traffic capacity is shown in Table 5.5.1 and Figure 5.5.1 to Figure 5.5.2.

25 bridges (19 bridges for national roads, 5 bridges for regional roads and 1 bridge for zilla road) out of 105 bridges require 4 or 6 lanes. On the Asian Highway network, 18 bridges (15 bridges for national roads, 2 bridges for regional roads and 1 bridge for zilla roads) out of 32 bridges require 4 or 6 lanes.

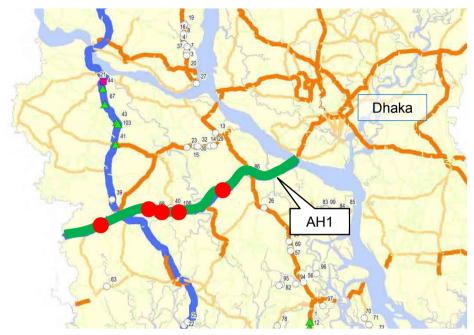
Road Type	Required Number of Lanes	Number of Bridges (Number of Bridge on Asian Highway)	
National Roads	6 lanes	5 bridges (AH: 5 bridges)	
	4 lanes	14 bridges (AH: 10 bridges)	
	2 lanes	38 bridges (AH: 13 bridges)	
	Total	57 bridges (AH: 28 bridges)	
Regional Roads	4 lanes	5 bridges (AH: 2 bridges)	
	2 lanes	16 bridges (AH: 1 bridge)	
	Total	21 bridges (AH: 3 bridges)	
Zilla Roads	4 lanes	1 bridges (AH: 1 bridges)	
	2 lanes	26 bridges (AH: 0 bridge)	
	Total	27 bridges (AH: 1 bridges)	
Total		105 bridges (AH: 32 bridges)	


Table 5.5.1 Required Number of Lanes

Source: JICA Survey Team

Source: JICA Survey Team

Source: JICA Survey Team



5.5.2 Number of Lane in the Project


In the Project, the majority the bridges, including those that require more than 4 lanes based on the traffic demand forecast, will be constructed as 2-lane bridges based on the following considerations:

- As many bridges as possible should be constructed on a limited budget.
- Even if 4-lane/6-lane bridges are constructed, only 2 lanes will be used since the approach roads (adjacent embankment section) only have 2 lanes.
- Even if 4-lane/6-lane bridges are constructed in anticipation of widening of the approach roads, this widening may not occur soon. Deterioration of the bridge will progress even if all lanes are not used, meaning funds will have been wasted.

However, in the meeting between JICA, MORTB, RHD and JICA Survey Team held on April 27, 2014, it was determined that 5 bridges on Asian Highway 1 (AH1) will be constructed with 4 lanes in conformity with a future 4-lane widening plan (see Figure 5.5.3).

Source: JICA Survey Team

6. DETERMINATION OF BRIDGE TYPE

6.1 Methodology of Bridge Type Decision

In the bridge selection process in Chapter 3, 106 bridges were selected as the candidate bridges of the Project. However, the preliminary design was conducted for 105 bridges since it was confirmed that 1 bridge is under construction in another project.

This Project includes the construction of small and mid-sized bridges, but no large bridges.

For small bridges, PC-I girder is widely recognized as the most suitable and economical bridge type in almost all site conditions, and many PC-I girder bridges have been constructed in Bangladesh by RHD.

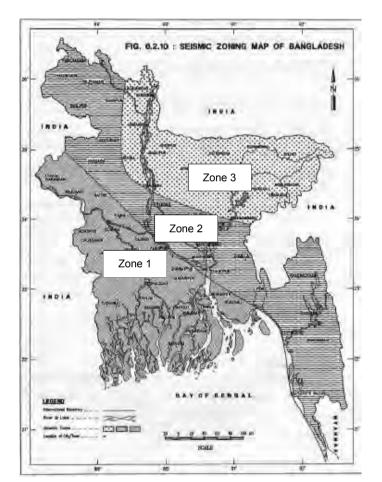
For mid-sized bridges, the most appropriate bridge type shall be selected upon comparison of multiple bridge type candidates (PC-Box girder and Steel-I girder). Conditions for comparison include earthquake strength, construction difficulties, cost efficiency, owner's maintenance performance, and others.

Small size bridge:	PC-I	
Middle size bridge:	PC-Box, Steel-I (painted or weathering steel)	Range of WBBIP

Large size bridge: PC-extra dosed, Cable-stayed, Suspension, others

Bridge size	Applicable bridge span							
		3	30 4	0 50	0 6	0 7	0 8	0 (m)
Small size	PC-I							
	PC-Box							
Middle size	Steel-I							
	Steel-Box							
		Range of WBBIP						

Table 6.1.1 Applicable Bridge Span for Bridge Type

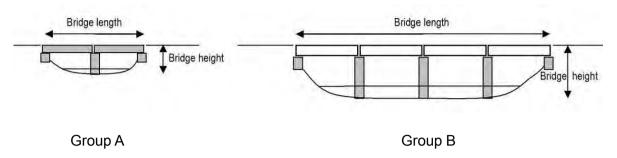

Source: JICA Survey Team

6.2 Grouping for Bridge Design

For bridge design, all bridges are classified into 2 groups: Group A and Group B. Earthquake strength shall be considered for the grouping, since it affects bridge design and its cost. Grouping for bridge design is defined in consideration of bridge length and height as well as seismic coefficient, which is different for each zone.

Table 6.2.1 Earthquake Zone Coefficient Z (BNBC)

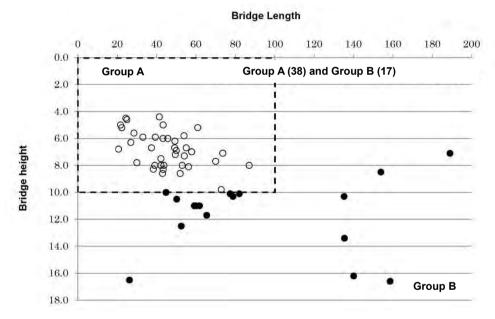
Seismic zone	Zone coefficient		
1	0.075		
2	0.15		
3	0.25		


Source: Bangladesh National Building Code (BNBC)

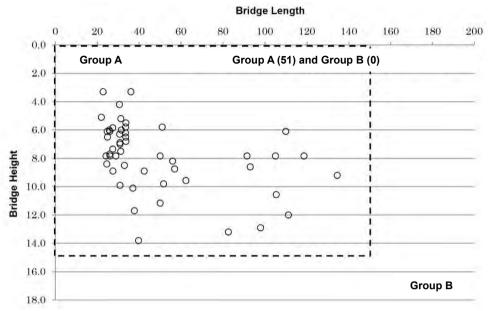
Source: Bangladesh National Building Code (BNBC)

Figure 6.2.1 Seismic Zoning Map (BNBC)

Group A in each zone is defined as follows:


- North zone (Z = 0.15 or 0.25): length < 100 m and height < 10 m
- South zone (Z = 0.075): length < 150 m and height < 15 m

Group B is defined as bridges falling outside of the above definition.



Using the above-stated definition, all bridges in the WBBIP are plotted in Figures 6.2.3 and Figure 6.2.4. Note that bridges in northern zones belong to both Group A and Group B bridges, whereas all bridges in the southern zone (zone 1) belong to Group A.

Source: JICA Survey Team

Source: JICA Survey Team

6.3 Bridge Type for Group A

Group A Bridges are shorter and lower. Accordingly, as these are small bridges having short span length (Span < 40m), PC-I girder bridges are to be used for Group A Bridges.

6.4 Bridge Type for Group B in Northern Zone

Group B Bridges (all of which are in the northern zone) are longer and higher. Accordingly as these are mid-size bridge having medium-span length (40m < Span < 60m), both PC-Box girder bridges and Steel-I girder bridges are compared for use. For the Steel-I girders, both ordinary painted steel and weathering steel are considered in the comparison.

As the result of the comparison of PC-Box girder bridges, Painted Steel-I girder bridges and Weathering Steel-I girder bridges (as shown in Table 6.4.1), Weathering Steel-I girder bridges are recommended as the most appropriate bridge type for Group B bridges. Reasons include the following:

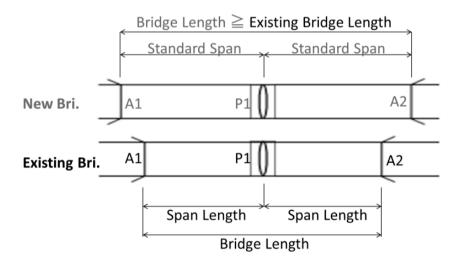
- Constructability: While PC box girder bridges require longer construction periods due to on-site girder construction, weathering steel bridges require shorter periods for construction due to the use of pre-fabricated girders. Thus, the negative impact on regional economy due to construction is less in the case of weathering steel.
- Maintenance: In order to increase the durability of bridges, PC box girders may require surface treatment, which in turn requires periodic retreatment. However, weathering steel does not require such treatment or painting.

- Structural performance: Weathering steel bridges have an advantage in earthquake resistance over PC box girder bridges, which have to be heavier and more costly in order to ensure the earthquake resistance. Note that all Group B bridges are in northern Bangladesh, which is categorized as Seismic Zone II (medium-level seismic activity) and III (high-level seismic activity).
- Technology transfer: While Bangladesh already has experience in PC box girder bridge construction, it does not yet have experience in weathering steel bridge construction. Thus, selection of weathering steel bridges as the bridge type would bring weathering steel technology to Bangladesh through good technological transfer from Japan, which has good experience in this technology. The skills gained will surely prove to be indispensable for future bridge construction in Bangladesh.

Bridge type		PC Box Girder	Steel I Girder (Painting)	Steel I Girder (Weathering Steel)	
	Image	HAR			
Otructural	Durability	- Enough durability. (Fair)	- Enough durability. (Fair)	- Enough durability. (Fair)	
Structural Performance	Earthquake Resistance	- Disadvantage due to heavyweight. (Poor)	- Advantage due to light weight. (Good)	- Advantage due to light weight. (Good)	
Constructability	Construction Difficulty	- Normal construction method (Cantilever). (Fair)	- Normal construction method (Erection by truck crane). (Fair)	- Normal construction method (Erection by truck crane). (Fair)	
	Quality Control	- Normal quality control. (Fair)	- Normal quality control. (Fair)	- Normal quality control. (Fair)	
	Construction Period	- Long period with girder construction at site. (Poor)	- Short period with pre-fabricated girder. (Good)	- Short period with pre-fabricated girder. (Good)	
Maintenance	Re-painting/Surface Treatment	- Need surface treatment.(Poor)	- Need painting. (Poor)	- No need painting. (Good)	
En	vironmental Impact	- No specific environmental impact. (Good)	- Special care is required when re-painting. (Poor)	 No specific environmental impact. (Good) 	
	Initial Cost	- 1.00 (Good)	- 1.15 (Fair)	- 1.19 (Fair)	
Cost	Regular Maintenance Cost (% of Initial Cost, Annual)	- 1.5% (Fair)	- 1.5% (Fair)	- 1.5% (Fair)	
	Re-painting/Surface Treatment Cost (% of Initial Cost)	- 4.0% (by 30 Years) (Fair)	- 12.0% (by 15 Years) (Poor)	- No painting (Good)	
	LCC for 50 Years (Price Increase 6% per Annual)	- 1.00 (Good)	- 1.21 (Fair)	- 1.18 (Fair)	
Т	echnical Transfer	- Expected but experienced in Bangladesh. (Fair)	- Expected for new technology in Bangladesh. (Good)	 Expected for new and modern technology in Bangladesh. (Good) 	
	Evaluation			Recommended - Advantage to earthquake resistance - Short construction period - Easy maintenance - No specific environmental impact - Fair initial and life cycle costs - Good technical transfer	

Table 6.4.1 Comparison of Bridge Type for Group B Bridge in Northern Zone

6.5 Bridge Length and Span Arrangement


The bridge span lengths are standardized with a series of spans in order to be easily applied to all 105 bridge locations. Standard bridge spans are as follows:

- PC-I : standard span 25, 30, 35, 40 m
- Steel-I : standard span 40, 50, 60 m

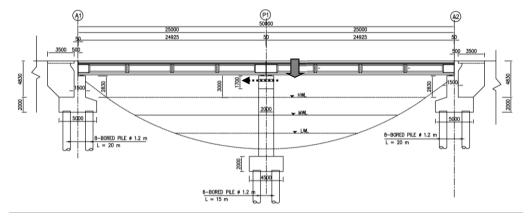
The following two points should be considered when determining the bridge length and span arrangement of new bridges.

- Pier locations of new bridges shall be matched with the existing bridges as much as possible so as not to obstruct the river flow.
- Bridge lengths and span lengths shall generally be longer than that of the existing bridges in order to secure sufficient cross-sectional area for the river flow.

Figure 6.5.1 shows the general concept of the span arrangement for new bridges.

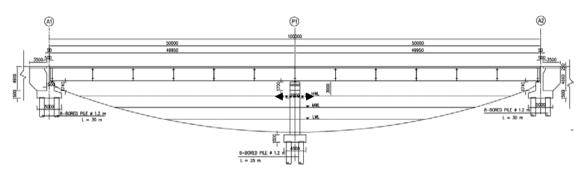
Source: JICA Survey Team

Figure 6.5.1 Concept of Span Arrangement of New Bridge


6.6 Girder Type in Consideration of Earthquakes

Seismic design must be considered to avoid crucial disasters in Bangladesh. In order to deal with seismic loading, measures to prevent superstructure collapse shall be considered.

So far PC-I girder bridges in Bangladesh have been constructed as shown in Figure 6.6.1. When a large earthquake occurs, this structure may induce large motion of pier head and there is possibility of girder collapse.


Accordingly, measures to prevent superstructure collapse are proposed for both selected girders types. Continuous girders are proposed for Steel-I girder bridges as shown in Figure

6.6.2. "Chaired girders" (in which pier head movement is restricted by connecting girders) are proposed for PC-I girder bridges as shown in Figure 6.6.3.

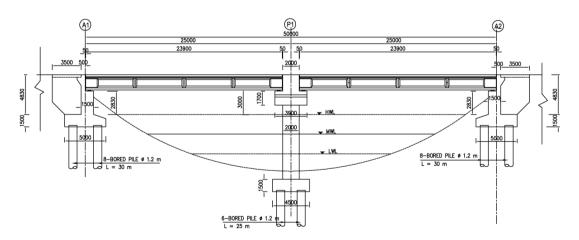

Source: JICA Survey Team

Figure 6.6.1 Traditional PC-I Girder Bridge (Single Span Girders)

Source: JICA Survey Team

Figure 6.6.2 Steel-I Girder Bridge in WBBIP (Continuous Girder)

Source: JICA Survey Team

