**Attachments** 

Attachment-1

List of Received Quality Related Documents

Field Density Test Report No.1 Quality Control Document Sub-grade (Embankment, Sub-grade) Field Density Test Report Embankment Material Test report Trial Embankem<u>nt Report</u> Field Density Test Report No.2 Quality Control Document Base Course (Base course) Field Density Test Report Sub-Base Course Material Test Report Trial Mix No.3 Quality Control Document Pavement Surface Smoothness Test Report (Surface Course, Binder Course) Field Density Test Report Surface Course Field Density Test Report Binder Course Field Density Test Report Surface Course Field Density Test Report Binder Course Material Test report Trial Mix Report No.4 Request for Inspection No.1 Completion of Base course Completion of Sub-base course Completion of Subgrade Proof rolling Shoulder Proof rolling Subgrade No.5 Request for Inspection No.2 Tack Coat Prime Coat Urban District Road Box Culvert Surface Course Binder Course No.6 Request for Inspection No.3 Material for Cross Drainage RC Pipe Cross Draiange Work Access Road Cross Draiange Work Section 1 Cross Draiange Work Section 2 No.7 Photograph No.1 Earth Work Removal fo Asphalt (Before and Completion) Removal fo Structure Embankment Sub-grade Pavement work Replacement sub-grade Sub-base course Base course Asphalt road base Surface course Shoulder pavement Access road pavement No.8 Photograph No.2 Road Facilitties Work Road Signs Guide Posts Road Marking **Reflective Pavement Studs** Drainage Structure Work Drainage Pipe Installation Box culvert Earth Ditch **Precast Sideditch** Photograph Album No.2 No.9 Sec 2 Sta.18-23+700 Earth Work Sub-base course work **Base Course** Binder Course Surface Course Box culvert **Cross Drainage** Road Facility Work Access Road Work Hump Work Sign Board Fence Guide Posts **Road Marking** No.10 Pavement Surface Smoothness Test Report Photograph No.3 (Qality Control) Sampling of FDT Material test for Asphalt

Quality Specification Documents Received from Nishimatsu Construction

#### Quality Specification Documents Received from NIPPO

| No.1  | Quality Control | Sub-base course. Base course            | Material Test Report                                            |
|-------|-----------------|-----------------------------------------|-----------------------------------------------------------------|
|       | Document        |                                         | Trial Mix Report                                                |
|       |                 |                                         | Field density test for Sub-base course                          |
|       |                 |                                         | Field density test for Base course                              |
| No 2  | Quality Control | Replacement sub-grade                   | Material Test Report                                            |
| 110.2 | Document        | Replacement sub grade                   | Trial Mix Report                                                |
|       | Boodinone       |                                         | Field density test for Replacement Sub-grade                    |
|       |                 | Sub-grade, Shoulder sub-grade           | Material Test Report                                            |
|       |                 |                                         | Field density test for Sub-grade                                |
|       |                 |                                         | Field density test for Shoulder sub-grade                       |
| No 3  | Quality Control | Asphaltic base course                   | Material Test Report                                            |
| 100.0 | Document        |                                         | Trial Mix Report                                                |
|       | Doodmone        |                                         | Tomporature of acabalt at the plant                             |
|       |                 |                                         | Temperature of asphalt at the plant                             |
|       |                 |                                         | Marshall Stability Test                                         |
|       |                 |                                         | Aggregate grading Test                                          |
|       |                 |                                         | Aggregate graving rest<br>Savhlat Danaity Taat of Cara Sampling |
|       |                 | Surface course                          | Meterial Test Denoit                                            |
|       |                 | Surface course                          | Trial Mix Depart                                                |
|       |                 |                                         | Trial Mix Report                                                |
|       |                 |                                         | Temperature of asphalt at the plant                             |
|       |                 |                                         | I emperature of asphalt on the road                             |
|       |                 |                                         | Marshall Stability Test                                         |
|       |                 |                                         | Aggregate grading of Mix                                        |
|       |                 |                                         | Soxniet Extraction                                              |
| NI 4  |                 |                                         | Field Density Test of Gore Sampling                             |
| INO.4 | Quality Control | Shoulder surface course                 | Temperature of asphalt at the plant                             |
|       | Document        |                                         | I emperature of asphalt on the road                             |
|       |                 |                                         | Marshall Stability Test                                         |
|       |                 |                                         | Aggregate grading of Mix                                        |
|       |                 |                                         | Soxhiet Extraction                                              |
|       |                 |                                         | Field Density Test for Gore Sampling                            |
|       |                 | Access Road                             | Field Density Test for Sub grade                                |
|       |                 |                                         | Field density test for Base course                              |
|       |                 |                                         | I emperature of asphalt at the plant                            |
|       |                 |                                         | I emperature of asphalt on the road                             |
|       |                 |                                         | Marshall Stability Test                                         |
|       |                 |                                         | Soxhlet Extraction                                              |
|       |                 |                                         | Field Density Test of Core Sampling for Surface course          |
| No.5  | Quality Control | Surface course                          | Smooth Test for Gross section                                   |
|       | Document        |                                         | Smooth Test for Londitudinal Direction                          |
| No.6  | Regest for      | Drainage Pipe Installation              |                                                                 |
|       | Inspection No I | Drainegae Pipe Installation             | Extension                                                       |
| No./  | Regest for      | Drainage Pipe Installation              | Access to Road                                                  |
|       | Inspection No2  | Drainage Pipe Installation              | Access to House                                                 |
| No.8  | Regest for      | Box culvert                             |                                                                 |
|       | Inspection No3  | Precast side ditch                      |                                                                 |
|       |                 | completion of extension for replacement | nt sub-grade                                                    |
|       |                 | completion of replacement sub-grade     |                                                                 |
|       |                 | Density test for Sub-grade              |                                                                 |
|       |                 | Proof Rolling for Sub-grade             |                                                                 |
|       | -               | Proof Rolling for Shoulder sub-grade    |                                                                 |
| No.9  | Regest for      | Completionf of Sub-base course          | elevation, width                                                |
|       | Inspection No4  | Thichness of Sub-base course            |                                                                 |
|       |                 | Density test for Sub-base course        |                                                                 |
| No.10 | Regest for      | Completion of Base Course               |                                                                 |
|       | Inspection No5  | Thickness of Base course                |                                                                 |
|       |                 | Density test for Base course            |                                                                 |
|       |                 | Completion of Asphaltic Road Base       |                                                                 |
|       |                 | Core sampling of Asphaltic road base    | l                                                               |
|       |                 | Completion of Surface course and sho    | ulder surface course                                            |
|       |                 | Core sampling of surface course and s   | houlder surface course                                          |
|       |                 | Prime coat                              |                                                                 |
|       |                 | Tack coat                               |                                                                 |

Quality Specification Documents Received from Katahira

| No | No Documents                                       |
|----|----------------------------------------------------|
| 1  | Design statement                                   |
| 2  | Quantity statement                                 |
| 3  | Document overview of project cost estimation       |
| 4  | Design drawings                                    |
| 5  | Cerificaiton report                                |
| 6  | Tender document at first phase                     |
| 7  | Tender document at second phase                    |
| 8  | Defect liability inspection report at first phase  |
| 9  | Defect liability inspection report at second phase |

Attachment-2

Record of Minute of Meeting with JICA and MOT

# Minutes of Discussions on

#### the Ex-Post Situation Survey for

the Project for the Improvement of Dusty-Nizhniy Pyandzh Road

in

the Republic of Tajikistan

In response to requests from Ministry of Transport, the Government of Tajikistan (hereinafter referred to as the "MOT"), Japan International Cooperation Agency (hereinafter referred to as "JICA"), decided to conduct an Ex-Post Situation Survey (hereinafter referred to as the "Survey") for the Project for the Improvement of Duisty-Nizhniy Pyandzh Road (hereinafter referred to as the "Project"). JICA dispatched the Survey team headed by Mr. Kenshiro TANAKA, an Advisor of Grant Aid Project Management Division 1, Financing Cooperation Implementation Department, JICA, and had a series of discussions on the Survey from May 5 to 7, 2014 in Dushanbe, Tajikistan.

As the result of the discussions, both parties confirmed the main items for the Survey described on the attached sheets hereto;

Dushanbe, May 7, 2014

Mr. Kenshird TANAKA Leader of Survey Team Advisor of Grant Aid Project Management Division 1 Financing Cooperation Implementation Department, JICA

Mr. Sherali Gangalzoda First Deputy Minister Ministry of Transport The Republic of Tajikistan

# ATTACHMENT

## 1. Objective of the Survey

- The Survey will identify the causes of the damages happened on Duisty-Nizhniy Pyandzh Road developed by the Project.
- For the steep section around 14k300m of Duisty-Nizhniy Pyandzh Road, which is damaged significantly and requires an urgent repair work, the Survey will recommend emergency repair methods, which Tajikistan local road management offices are capable of managing effectively, and support the emergency repair work technically, which will be conducted by the Tajikistan side.
- For the flat sections, which are damaged seriously, the Survey will recommend repair and maintenance methods, which Tajikistan local road management offices are capable of managing for repair and maintenance works.

#### 2. Survey Site

Duisty-Nizhniy Pyandzh Road developed by the Project (approx. 23.7km, see Attachment)

### 3. Survey Items and Schedule of the Survey

• MOT was presented the Survey items and schedule by the Survey team. MOT agreed them principally.

#### 4. Undertakings of JICA

- The Survey team will bring "Technical Report 1", including the result of the first field survey and proposals of methods for repair works for damaged sections, on the middle of June at the beginning of the second field survey to have technical discussion with MOT for selection of methods of the repair works.
- The Survey team will send "Technical Report 2", including repair techniques and methods, quantity and cost of the repair works, to MOT by the end of mid-July 2014, which will make MOT able to prepare for the repair works.
- The Survey team will send "Technical Report 3", including technical consideration of the result of the repair work and the final result of the Survey to MOT by the end of mid-September 2014, which will make MOT be able to comment of technical issues. The Survey team will reflect the comments and send a final report to MOT by the end of October 2014.

#### 5. Undertakings of MOT

- MOT will ensure the security of the field survey conducted by the Survey team.
- MOT will accommodate the Survey team with following items for the first field survey.
  - Assistance of obtaining necessary permission for the various tests on the survey road,

A2-12

- Provision of weather data,
- Provision of vehicle type loading data,
- Provision of unit price and suppliers of materials and equipment for the emergency repair work,
- Provision of unit price of work items,
- Implementation of traffic census (two days (May 6 and 7), two places, three shifts),
- Lending tools (shovel, pickaxe, etc.) for sampling,
- Tests of pavement materials in MOT Lab.,
- Recovery of trial pits,
- Assistance of sampling pavement materials,
- Ensuring traffic safety measures for the on-road survey works, and
- Provision of other necessary data.

MOT will accommodate the Survey team with a following item for the second field survey. Details will be discussed in the beginning of the second filed survey.

> Provision of insufficient data in the first field survey and additional data.

MOT will accommodate the Survey team with following items for third field survey (technical assistance for the emergency repair work). Details will be discussed in the beginning of the third filed survey.

- MOT will conduct the emergency repair work, agreed between MOT and the Survey team. MOT will bear the cost of the emergency repair work.
- MOT will assign counterpart engineers for technical transfer by the Survey team.
- > MOT will ensure traffic safety measures for the emergency repair work.

(End)

Attachment: Survey Site Map

A2-3



ita)

# LOCATION MAP

Attachment-3

Result of Pavement Inventory Survey












































A3-22





|                           |                                                                                                                                                                                       |           |               |                   |               |                   |               | Repair            | Туре          |                   |               |                   |               |                   | No Popair Soction |                   | Total Total of                | Total of                     | Total of<br>Damage                        |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|-------------------|-------------------|-------------------------------|------------------------------|-------------------------------------------|
|                           | Length                                                                                                                                                                                |           |               | 1                 | :             | 2                 | î             | 3                 | 2             | 1                 | :             | 5                 |               | 5                 | по кера           | r Section         | Length of                     | Damage<br>Rate of            | Rate(                                     |
| Section                   | (m)                                                                                                                                                                                   | Direction | Length<br>(m) | Damage<br>rate(%) | Length<br>(m)     | Damage<br>rate(%) | Each Repair<br>Section<br>(m) | Each<br>Repair<br>Section(%) | Repair +<br>Unrepair)(<br>%)<br>(23.650m) |
|                           |                                                                                                                                                                                       | Inbound   |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 950.00            | 21.00             |                               |                              | 21.00                                     |
| 1<br>(0+000 to 0+950)     | 950                                                                                                                                                                                   | Outbound  |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 950.00            | 7.68              |                               |                              | 7.68                                      |
|                           |                                                                                                                                                                                       | Total     |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,900.00          | 14.34             |                               |                              | 14.34                                     |
|                           |                                                                                                                                                                                       | Inbound   |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,400.00          | 14.36             |                               |                              | 14.36                                     |
| 2<br>(0+950 to 2+350)     | 1,400                                                                                                                                                                                 | Outbound  |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,400.00          | 17.79             |                               |                              | 17.79                                     |
|                           |                                                                                                                                                                                       | Total     |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 2,800.00          | 16.07             |                               |                              | 16.07                                     |
| 3<br>(2+350 to 3+100) 750 |                                                                                                                                                                                       | Inbound   |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 750.00            | 17.33             |                               |                              | 17.33                                     |
|                           | 750                                                                                                                                                                                   | Outbound  |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 750.00            | 8.40              |                               |                              | 8.40                                      |
|                           |                                                                                                                                                                                       | Total     |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,500.00          | 12.87             |                               |                              | 12.87                                     |
|                           |                                                                                                                                                                                       | Inbound   | 890.00        | 13.82             |               |                   |               |                   | 920.00        | 6.36              | 260.00        | 4.35              |               |                   | 1,830.00          | 3.44              | 2,070.00                      | 8.18                         | 6.99                                      |
| 4<br>(3+100 to 7+000)     | 3,900                                                                                                                                                                                 | Outbound  | 960.00        | 9.79              |               |                   |               |                   | 500.00        | 4.40              | 180.00        | 4.72              |               |                   | 2,260.00          | 5.80              | 1,640.00                      | 6.30                         | 6.18                                      |
|                           |                                                                                                                                                                                       | Total     | 1,850.00      | 11.81             |               |                   |               |                   | 1,420.00      | 5.38              | 440.00        | 4.54              |               |                   | 4,090.00          | 4.62              | 3,710.00                      | 7.24                         | 6.58                                      |
|                           |                                                                                                                                                                                       | Inbound   | 1,450.00      | 9.28              | 860.00        | 6.10              |               |                   | 1,030.00      | 7.52              | 180.00        | 13.33             |               |                   | 3,480.00          | 5.09              | 3,520.00                      | 9.06                         | 8.26                                      |
| 5<br>(7+000 to 14+000)    | 7,000                                                                                                                                                                                 | Outbound  | 960.00        | 6.98              | 440.00        | 2.05              |               |                   | 520.00        | 3.75              | 390.00        | 3.21              |               |                   | 4,690.00          | 3.84              | 2,310.00                      | 3.99                         | 3.96                                      |
|                           |                                                                                                                                                                                       | Total     | 2,410.00      | 8.13              | 1,300.00      | 4.08              |               |                   | 1,550.00      | 5.64              | 570.00        | 8.27              |               |                   | 8,170.00          | 4.46              | 5,830.00                      | 6.53                         | 6.11                                      |
|                           |                                                                                                                                                                                       | Inbound   |               |                   |               |                   | 870.00        | 3.91              |               |                   |               |                   | 60.00         | 10.83             | 7,270.00          | 5.80              | 930.00                        | 7.37                         | 6.85                                      |
| 6<br>(14+000 to 22+000)   | 8,200                                                                                                                                                                                 | Outbound  |               |                   |               |                   | 250.00        | 6.20              |               |                   |               |                   |               |                   | 7,950.00          | 5.01              | 250.00                        | 6.20                         | 5.60                                      |
|                           |                                                                                                                                                                                       | Total     |               |                   |               |                   | 1,120.00      | 5.05              |               |                   |               |                   | 60.00         | 10.83             | 15,220.00         | 5.41              | 1,180.00                      | 7.94                         | 7.10                                      |
|                           |                                                                                                                                                                                       | Inbound   |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,450.00          | 15.48             |                               |                              | 15.48                                     |
| 7<br>(22+000 to 23+650)   | 1,450                                                                                                                                                                                 | Outbound  |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 1,450.00          | 14.52             |                               |                              | 14.52                                     |
|                           |                                                                                                                                                                                       | Total     |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   | 2,900.00          | 15.00             |                               |                              | 15.00                                     |
| Total of E:               | Total of Each Repair Type(%)     4,260.00     9.82     1,300.00     4.73     1,120.00     4.42     2,970.00     5.98     1,010.00     8.42     60.00     10.83     36,580.00     7.44 |           |               |                   |               |                   | 10,720.00     | 7.45              | 7.44          |                   |               |                   |               |                   |                   |                   |                               |                              |                                           |
|                           |                                                                                                                                                                                       |           |               |                   |               |                   |               |                   |               |                   |               |                   |               |                   |                   |                   | (To                           | tal)                         | J                                         |

Attachment-4

Result of Axle Load Measurement

| No      | Wheel   | Load   | Front wheel load | Rear wheel load | Before ESAL | After ESAL | Total ESAL |
|---------|---------|--------|------------------|-----------------|-------------|------------|------------|
| 1       | 6       | 18.16  | 1.65             | 3.30            | 0.00        | 0.14       | 0.14       |
| 2       | 5       | 20.39  | 2.27             | 4.53            | 0.01        | 0.39       | 0.40       |
| 3       | 5       | 20.39  | 2.27             | 4.53            | 0.01        | 0.39       | 0.40       |
| 4       | 5       | 24.78  | 2.75             | 5.51            | 0.01        | 0.85       | 0.87       |
| 5       | 5       | 31.40  | 3.49             | 6.98            | 0.03        | 2.20       | 2.24       |
| 6       | 5       | 16.40  | 1.82             | 3.64            | 0.00        | 0.16       | 0.17       |
| 7       | 6       | 19.06  | 1.73             | 3.47            | 0.00        | 0.17       | 0.17       |
| 8       | 6       | 19.46  | 1.77             | 3.54            | 0.00        | 0.18       | 0.18       |
| 9       | 6       | 27.75  | 2.52             | 5.05            | 0.01        | 0.75       | 0.76       |
| 10      | 6       | 21.00  | 1.91             | 3.82            | 0.00        | 0.25       | 0.25       |
| 11      | 5       | 36.26  | 4.03             | 8.06            | 0.06        | 3.92       | 3.98       |
| 12      | 5       | 28.40  | 3.16             | 6.31            | 0.02        | 1.47       | 1.50       |
| 13      | 4       | 34.24  | 4.89             | 9.78            | 0.13        | 6.38       | 6.52       |
| 14      | 4       | 34.36  | 4.91             | 9.82            | 0.13        | 6.47       | 6.61       |
| 15      | 4       | 33.70  | 4.81             | 9.63            | 0.12        | 5.99       | 6.11       |
| 16      | 4       | 34.01  | 4.86             | 9.72            | 0.13        | 6.21       | 6.34       |
| 17      | 6       | 35.16  | 3.20             | 6.39            | 0.02        | 1.94       | 1.96       |
| 18      | 6       | 35.83  | 3.26             | 6.51            | 0.03        | 2.09       | 2.12       |
| 19      | 5       | 37.97  | 4.22             | 8.44            | 0.07        | 4.71       | 4.78       |
| 20      | 4       | 36.62  | 5.23             | 10.46           | 0.17        | 8.35       | 8.53       |
| 21      | 4       | 34.96  | 4.99             | 9.99            | 0.14        | 6.94       | 7.08       |
| 22      | 4       | 47.96  | 6.85             | 13.70           | 0.51        | 24.57      | 25.08      |
| 23      | 5       | 32.47  | 3.61             | 7.22            | 0.04        | 2.52       | 2.56       |
| 24      | 6       | 37.95  | 3.45             | 6.90            | 0.03        | 2.63       | 2.67       |
| 25      | 5       | 18.96  | 2.11             | 4.21            | 0.00        | 0.29       | 0.30       |
| Total   |         | 737.64 |                  |                 |             |            | 91.71      |
| Average | per veh | 29.51  |                  |                 |             |            | 3.67       |

#### Attachment-4 Heavy Vehicle Weight Measurement Survey (Total Weight, Axle Load) / conducted on Jun. 10, 11, 20

Trailer

|    |       |        |                  | Truck           |             |            |            |
|----|-------|--------|------------------|-----------------|-------------|------------|------------|
| No | Wheel | Load   | Front wheel load | Rear wheel load | Before ESAL | After ESAL | Total ESAL |
| 1  | 4     | 45.02  | 6.43             | 12.86           | 0.40        | 19.08      | 19.48      |
| 2  | 4     | 33.63  | 4.80             | 9.61            | 0.12        | 5.94       | 6.06       |
| 3  | 4     | 33.24  | 4.75             | 9.50            | 0.12        | 5.67       | 5.79       |
| 4  | 4     | 33.18  | 4.74             | 9.48            | 0.12        | 5.63       | 5.75       |
| 5  | 4     | 32.47  | 4.64             | 9.28            | 0.11        | 5.16       | 5.27       |
| 6  | 4     | 32.00  | 4.57             | 9.14            | 0.10        | 4.87       | 4.97       |
| 7  | 4     | 29.72  | 4.25             | 8.49            | 0.08        | 3.62       | 3.70       |
| 8  | 4     | 29.47  | 4.21             | 8.42            | 0.07        | 3.50       | 3.58       |
| 9  | 4     | 28.00  | 4.00             | 8.00            | 0.06        | 2.85       | 2.91       |
| 10 | 4     | 22.49  | 3.21             | 6.43            | 0.02        | 1.19       | 1.21       |
| 11 | 3     | 15.30  | 3.06             | 6.12            | 0.02        | 0.65       | 0.67       |
| 12 | 3     | 14.80  | 2.96             | 5.92            | 0.02        | 0.57       | 0.59       |
| 13 | 4     | 18.32  | 2.62             | 5.23            | 0.01        | 0.52       | 0.53       |
| 14 | 4     | 18.10  | 2.59             | 5.17            | 0.01        | 0.50       | 0.51       |
| 15 | 4     | 18.05  | 2.58             | 5.16            | 0.01        | 0.49       | 0.50       |
| 16 | 4     | 18.02  | 2.57             | 5.15            | 0.01        | 0.49       | 0.50       |
| 17 | 4     | 18.00  | 2.57             | 5.14            | 0.01        | 0.49       | 0.50       |
| 18 | 4     | 18.00  | 2.57             | 5.14            | 0.01        | 0.49       | 0.50       |
| 19 | 4     | 18.00  | 2.57             | 5.14            | 0.01        | 0.49       | 0.50       |
| 20 | 4     | 18.00  | 2.57             | 5.14            | 0.01        | 0.49       | 0.50       |
| 21 | 4     | 17.46  | 2.49             | 4.99            | 0.01        | 0.43       | 0.44       |
| 22 | 4     | 17.34  | 2.48             | 4.95            | 0.01        | 0.42       | 0.43       |
| 23 | 4     | 17.24  | 2.46             | 4.93            | 0.01        | 0.41       | 0.42       |
| 24 | 4     | 16.93  | 2.42             | 4.84            | 0.01        | 0.38       | 0.39       |
| 25 | 4     | 16.72  | 2.39             | 4.78            | 0.01        | 0.36       | 0.37       |
| 26 | 4     | 16.66  | 2.38             | 4.76            | 0.01        | 0.36       | 0.37       |
| 27 | 4     | 16.60  | 2.37             | 4.74            | 0.01        | 0.35       | 0.36       |
| 28 | 4     | 16.55  | 2.36             | 4.73            | 0.01        | 0.35       | 0.36       |
| 29 | 4     | 16.55  | 2.36             | 4.73            | 0.01        | 0.35       | 0.36       |
| 30 | 4     | 16.54  | 2.36             | 4.73            | 0.01        | 0.35       | 0.35       |
| 31 | 4     | 16.44  | 2.35             | 4.70            | 0.01        | 0.34       | 0.35       |
| 32 | 4     | 16.42  | 2.35             | 4.69            | 0.01        | 0.34       | 0.34       |
| 33 | 4     | 16.42  | 2.35             | 4.69            | 0.01        | 0.34       | 0.34       |
| 34 | 4     | 16.39  | 2.34             | 4.68            | 0.01        | 0.34       | 0.34       |
| 35 | 4     | 16.39  | 2.34             | 4.68            | 0.01        | 0.34       | 0.34       |
| 36 | 4     | 16.24  | 2.32             | 4.64            | 0.01        | 0.32       | 0.33       |
| 37 | 4     | 16.21  | 2.32             | 4.63            | 0.01        | 0.32       | 0.33       |
| 38 | 4     | 15.90  | 2.27             | 4.54            | 0.01        | 0.30       | 0.30       |
| 39 | 4     | 15.39  | 2.20             | 4.40            | 0.01        | 0.26       | 0.27       |
| 40 | 4     | 15.39  | 2.20             | 4.40            | 0.01        | 0.26       | 0.27       |
| 41 | 4     | 15.09  | 2.16             | 4.31            | 0.01        | 0.24       | 0.25       |
| 42 | 4     | 15.09  | 2.16             | 4.31            | 0.01        | 0.24       | 0.25       |
| 43 | 4     | 13.90  | 1.99             | 3.97            | 0.00        | 0.17       | 0.18       |
| 44 | 5     | 14.48  | 1.61             | 3.22            | 0.00        | 0.10       | 0.10       |
| 45 | 4     | 27.60  | 3.94             | 7.89            | 0.06        | 2.69       | 2.75       |
| 46 | 4     | 14.22  | 2.03             | 4.06            | 0.00        | 0.19       | 0.19       |
|    |       | 923.97 |                  |                 |             | Total      | 74.78      |
|    |       | 20.09  |                  |                 |             |            | 1.63       |

A4-1

Attachment-5

Technical Note-1

## **Republic of Tajikistan**

# Ex-Post Situation Survey for the Project for the Improvement of Dusty-Nizhniy Pyandzh Road

## **Technical Data-1**

June 2014

Japan International Cooperation Agency CTI Engineering International Co., Ltd.

### Table of Content

| 1.  | First Survey Result in Tajikistan                                                            | 1    |
|-----|----------------------------------------------------------------------------------------------|------|
| 1.1 | Confirmation of Damage Condition                                                             | 1    |
| 1.2 | Survey for the Grasp of the Damage Factor                                                    | 1    |
| 1.3 | Traffic Volume Survey                                                                        | 4    |
| 1.4 | Axle Load Survey                                                                             | 4    |
| 1.5 | Material Procurement                                                                         | 5    |
| 1.6 | The Budget of the Qumsangir Road Maintenance Office (SEHM)                                   | 8    |
| 1.7 | Soil Test Result at MOT                                                                      | 8    |
| 2.  | The Differences of the Traffic Load                                                          | 9    |
| 2.1 | Traffic Load (W18) of Dusti-Nizhniy Pyandzh Road                                             | 9    |
| 2.2 | Comparison of the Traffic Load (W18) within the Kurgan Tyube-Dusti Road                      | 9    |
| 2.3 | Traffic Load Prediction from the Current Traffic Volume                                      | 9    |
| 2   | .3.1 Estimation of Equivalent Single Axle Load (ESAL)(18kip) of Trailer                      | 9    |
| 2   | .3.2 Estimation of ESAL value (18kip)                                                        | 10   |
| 3.  | Pavement Evaluation                                                                          | . 11 |
| 3.1 | Current Condition of the Pavement Structure                                                  | . 11 |
| 3.2 | Pavement Life Prediction from the SN Value and the Current Traffic Volume                    | .13  |
| 3.3 | The Difference between the Design Pavement Strength and the Current Pavement Strength        | . 14 |
| 3.4 | Excessive Traffic Load in the Past                                                           | .15  |
| 3.5 | Conclusion                                                                                   | .15  |
| 4.  | Urgent Repair of the Damaged Sections                                                        | .16  |
| 4.1 | Selection of the Repair Location (Section with traffic safety problem at Grade Section and I | Flat |
| Sec | tion)                                                                                        | . 16 |
| 4.2 | Current Condition of the Selected Locations (Damage condition, Pavement Structure, Sur       | vey  |
| Res | ult are summarized in the table)                                                             | .16  |
| 4.3 | Examination of the Permanent Repair Cross Section                                            | . 17 |
| 4.4 | Examination of the Repair Method                                                             | .18  |
| 5.  | Future Repair                                                                                | 21   |
| 6.  | Attachment Data                                                                              | .21  |

#### 1. First Survey Result in Tajikistan

#### 1.1 Confirmation of Damage Condition

The damage condition of the whole target roads has been grasped from the inventory survey. See the table of the inventory file 1. As a result, the damage has been classified as the following.

- Transverse crack(cross section direction)
- Longitudinal crack(Profile direction)
- Alligator crack (Record in 3 steps as Big/Medium/Small)
- Damaged by the sliding of the AS pavement
- Crescent-shaped gaps/cracks considered to be the initial stage of the sliding

Damage condition of the each section and its characteristics are as in the attachment-1.

#### 1.2 Survey for the Grasp of the Damage Factor

In order to grasp the damage factors, the confirmation of the subgrade, cement stabilized base at the severe damage location and lesser location had been conducted. Also the physical tests of the collected samplings are conducted if required. The details are as followings.

### ① Test date: 6<sup>th</sup> May, 2014

Test location: Sta. 12+607 (shoulder of the out-bound lane) good road surface condition section

| Pavem           | nent Struct         | ure  |        | Strength Test                                         | Pomork                                          |  |
|-----------------|---------------------|------|--------|-------------------------------------------------------|-------------------------------------------------|--|
| Structure       | ture Design Measure |      | Design | Measure value                                         | Kelliark                                        |  |
| AS<br>thickness | 3cm                 | 3cm  | _      | -                                                     |                                                 |  |
| Sub course      | 15cm                | 15cm | 30     | Cement stabilized base course top<br>CBR: 300,578,590 | Material: Sand + pebble<br>Collection of sample |  |
| Subgrade        |                     | 30cm | 5.9    | Subgrade CBR: 15,9,12                                 | Clay: yellow<br>Collection of sample            |  |
|                 |                     | _    | 5.9    | Road Top - 50cmCBR: 28,9,13                           | Clay: dark brown<br>Collection of sample        |  |

#### ② Test date: 9<sup>th</sup> May, 2014

Test location: Sta. 6+352 (Shoulder of out-bound lane) good road surface condition section

| Paven           | nent Struct  | ure  |        | Strength Test                                         | Pomark                                             |  |
|-----------------|--------------|------|--------|-------------------------------------------------------|----------------------------------------------------|--|
| Structure       | re Design Me |      | Design | Measure value                                         | кетагк                                             |  |
| AS<br>thickness | 3cm          | 3cm  |        | l                                                     | _                                                  |  |
| Base course     | 15cm         | 15cm | 30     | Cement stabilized base course top<br>CBR: 118,128,118 | Material: Sand + pebble<br>Collection of sample    |  |
|                 | _            | 40cm | 8.7    | Sub-grade top CBR: 12,19,12                           | Clay: yellow                                       |  |
|                 |              |      |        | Road top-50cm CBR: 7,9,13                             | Collection of sample                               |  |
| Subgrade        |              | 62cm | 8.7    |                                                       | Base course of old road: sand mixed pebble         |  |
|                 |              |      |        | Road top-110cmCBR : 31                                | Subgrade of old road: sand<br>Collection of sample |  |

Rutting depth: 1.3cm, no underground water

## ③ Test date: 9<sup>th</sup> May 2014

| Paven             | Pavement Structure |         |        | Strength Test                                      | Domorit                                                                |  |
|-------------------|--------------------|---------|--------|----------------------------------------------------|------------------------------------------------------------------------|--|
| Structure         | Design             | Measure | Design | Measure value                                      | Кетак                                                                  |  |
| As<br>thickness   | 5cm                | 5cm     | _      | -                                                  | _                                                                      |  |
| Base<br>course    | 25                 | 13cm    | 30     | Cement stabilized base course<br>CBR: 118,26,21    | Material: Sand + pebble<br>Collection of sample                        |  |
|                   | 25cm               | 9cm     | 30     | Cement stabilized sub-base course<br>CBR: 10,10,10 | Material: clay(yellow)<br>Collection of sample                         |  |
| Existing pavement | As                 | 10cm    | _      | -                                                  | —                                                                      |  |
| Subgrade          | _                  | _       | 8.7    | Road-46cm CBR: 80,112,112                          | Base course of old road: sand<br>mixed boulder<br>Collection of sample |  |

#### Test location: Sta.4+480 (in-bound lane) damage section.

## (4) Test date: $10^{th}$ May, 2014

#### Test location: Sta. 2+416(in-bound lane) damage section

| Pavement Structure |        |         |                      | Strength Test                                                     | Pamark                                          |  |
|--------------------|--------|---------|----------------------|-------------------------------------------------------------------|-------------------------------------------------|--|
| Structure          | Design | Measure | Design Measure value |                                                                   | Keinark                                         |  |
| As<br>thickness    | 10cm   | 8cm     |                      | l                                                                 | Collection of sample                            |  |
|                    | —      | 9cm     |                      |                                                                   | Material: gravel                                |  |
| Base               | 35cm   | 12cm    | 30                   | Cement stabilized base course<br>Base course top CBR: 118,112,128 | Material: sand + pebble<br>Collection of sample |  |
| course             |        | 18cm    | 30                   | Cement stabilized sub-base course<br>Road top-29cm CBR: 23,63,49  | Material: sand + pebble                         |  |
| Subgrade           | _      |         | 3                    | Road top-46cm CBR: 21,21,21                                       | Sand                                            |  |

Rutting depth of carriageway: middle lane side 0.8cm, shoulder side 3.6cm

Middle lane side 0.6cm, shoulder side 3.9cm

### (5) Test date: $10^{\text{th}}$ May, 2014

#### Test location: Sta. 2+425 (out-bound shoulder) damage section

| Paven           | nent Struct | ture    |        | Strength Test                                                     | Pomork                  |  |
|-----------------|-------------|---------|--------|-------------------------------------------------------------------|-------------------------|--|
| Structure       | Design      | Measure | Design | Measure value                                                     | Remark                  |  |
| As<br>thickness | 3cm         | 4.5cm   | _      | -                                                                 | _                       |  |
| Base<br>course  | 15cm        | 12cm    | 30     | Cement stabilized base course<br>Base course top CBR: 26,23,43,34 | Material: sand + pebble |  |
| ~               | _           | 40cm    | 3      | Subgrade top CBR: 12,13,10                                        | Clay: yellow(fill)      |  |
| Subgrade        |             | 55cm    | 3      | Road top -110cm CBR: 6,6                                          | Sand(mixed with dust)   |  |

No underground water (-110cm from the road surface)

### 6 Test date: 10<sup>th</sup> May, 2014

#### Test location: Sta. 15+458(in-bound lane) (pavement sliding) section

| Paver     | nent Struc | ture    |        | Strength Test | Remark                     |  |
|-----------|------------|---------|--------|---------------|----------------------------|--|
| Structure | Design     | Measure | Design | Measure value |                            |  |
| As        | 10cm       | 10cm    | —      | —             | Grooving process according |  |

| thickness      |      |                 |    |                                                                              | to the repair record but |
|----------------|------|-----------------|----|------------------------------------------------------------------------------|--------------------------|
|                |      |                 |    |                                                                              | cannot confirm           |
| Base<br>course | 30cm | Not<br>measured | 30 | Cement stabilized base course<br>Base course top CBR: too hard to<br>measure | Material: sand + pebble  |

#### ⑦ Test date: 10th May, 2014

Test location: Sta. 5+030(middle of lane) damage section

| Pavement Structure   |        |         |        | Strength Test                                                   | Demark                                         |  |
|----------------------|--------|---------|--------|-----------------------------------------------------------------|------------------------------------------------|--|
| Structure            | Design | Measure | Design | Measure value                                                   | Remark                                         |  |
| As<br>thickness      | 5cm    | 5cm     |        | _                                                               |                                                |  |
| Base<br>course       | 25     | 16.5cm  | 30     | Cement stabilized base course<br>Base course top CBR: 21,31,34  | Material: sand + Pebble                        |  |
|                      | 25cm   | 3.5cm   | 30     | Cement stabilized sub-base course<br>Top of 3.5cm CBR: 13,17,36 | Material: Clay(yellow)<br>Collection of sample |  |
| Existing As pavement |        | _       | _      | _                                                               | _                                              |  |

## (8) Test date:12<sup>th</sup> May, 2014

Test location: Sta. 1+317(middle lane) damage section

| Pavement Structure |        |         | Strength Test        |                                                              | Domort                                         |  |
|--------------------|--------|---------|----------------------|--------------------------------------------------------------|------------------------------------------------|--|
| Structure          | Design | Measure | Design Measure value |                                                              | Kennark                                        |  |
| As<br>thickness    | 8cm    | 8cm     |                      |                                                              | _                                              |  |
| Base<br>course     | 30cm   | 15.0cm  | 30                   | Cement stabilized base course<br>Top CBR: error, error, 566% | Material: sand +pebble<br>Collection of sample |  |
|                    |        | 15.0cm  | 30                   | Cement stabilized sub-base                                   | Material: sand + pebble                        |  |
|                    |        | 27cm    | 5.2                  | Top CBR: 17,19,19                                            | Clay: dark brown                               |  |
| Subgrade           |        | _       | 5.2                  | Top CBR: 60,67,52                                            | Clay: red<br>Collection of sample              |  |

## (9) Test date: 12<sup>th</sup> May, 2014

## Test location: Sta. 5+028 (Middle of lane) good section (next to damage section)

| Pavement Structure |                                                                    |         | Strength Test |                                                                               | Domort                  |  |
|--------------------|--------------------------------------------------------------------|---------|---------------|-------------------------------------------------------------------------------|-------------------------|--|
| Structure          | Design                                                             | Measure | Design        | Measure value                                                                 | Kelliark                |  |
| As<br>thickness    | 5cm                                                                | 5cm     | _             | l                                                                             | _                       |  |
| Base<br>course     | Base ourse $25 \text{cm}$ $17.5 \text{cm}$ $3$ $4.0 \text{cm}$ $3$ |         | 30            | Cement stabilized base course<br>Top of base course CBR: 195%,<br>209%, error | Material: sand + pebble |  |
|                    |                                                                    |         | 30            | Cement stabilized sub-base                                                    | Material: clay (yellow) |  |

The CBR value above was measured by using the Simple Soil Strength Tester.

#### 1.3 Traffic Volume Survey

The traffic volume survey was conducted near the Sta.2+400 and Sta. 3+300 for two days on May  $8^{th}$ ,  $9^{th}$ . The result is as below.

|              | To Duchanho | To Afghanistan  | Total          | Total         |
|--------------|-------------|-----------------|----------------|---------------|
|              | To Dushanbe | 10 Alginanistan | (per two days) | (per one day) |
| Car          | 3,993       | 3,700           | 7,693          | 3,846         |
| Pick-up      | 2           | 3               | 5              | 2             |
| Bus/Mini Bus | 128         | 219             | 347            | 173           |
| Truck        | 160         | 186             | 346            | 173           |
| Trailer      | 122         | 104             | 226            | 113           |
| Total        | 4,405       | 4,212           | 8,617          | 4,307         |

Sta.2+400

Sta.3+300

|              | To Dushanbe | To Afghanistan | Total<br>(per two days) | Total<br>(per one day) |
|--------------|-------------|----------------|-------------------------|------------------------|
| Car          | 1,842       | 1,941          | 3,783                   | 1,891                  |
| Pick-up      | 18          | 14             | 32                      | 16                     |
| Bus/Mini Bus | 30          | 36             | 66                      | 33                     |
| Truck        | 166         | 114            | 280                     | 140                    |
| Trailer      | 196         | 95             | 291                     | 145                    |
| Total        | 2,252       | 2,200          | 4,452                   | 2,225                  |

#### 1.4 Axle Load Survey

Installation of the easy Vehicle Weight Measure Device since 2011 in front of the gate at the border with Afghanistan to measure the over load of large vehicles. The truck scale had been placed since 2014 and the measurement is conducting 24 hours. Nevertheless, the measurement of the vehicle weight was started in 2006.



Truck Scale Placed in front of the Border Gate



Vehicles Waiting for the Night Passing

Currently, there is a load limit restriction carrying on the road MD9 (Dushanbe-Kurgan Tyube lower Pianj border). According to the hearing survey at the weight measurement administration office, there is a measure to unload overweight vehicle.

| Period | All seasons (except summer)       | Summer(May to August/ 10AM to<br>8PM)<br>XAt day which the temperature is<br>over 25°C |
|--------|-----------------------------------|----------------------------------------------------------------------------------------|
| Total  | < 40tonnes                        |                                                                                        |
| Load   |                                   |                                                                                        |
| Axle   | 2 axles:                          | Axle load: < 6tonnes                                                                   |
| Load   | 7.2tonnes to less than 10.8tonnes |                                                                                        |
|        | 3axles:                           |                                                                                        |
|        | 9.6tonnes to less than 13.5tonnes |                                                                                        |

Load Limit on MD9

Vehicles are waiting near the gate of Afghanistan side at the border till night and the heavy vehicles are normally travelling even at daytime from Tajikistan side at the present. The vehicles which are waiting for the night travelling are usually loading with cement from the Afghanistan side. Fuel and agriculture products were transported from Tajikistan. The transportation from Afghanistan is much more than the transportation from Tajikistan.

Furthermore, the survey was conducted for 24 hours. As a result, the load limit as described above is abiding until now. However, it was mentioned in the defect liability inspection report that the overload vehicles of about 70tonnes were passing through the target road.

The results of vehicle weight measurement (total weight, axle number) are shown in the attachment-2.

#### 1.5 Material Procurement

Procurement survey had been done for the materials required for the urgent repair.

#### Crusher Run (Rumi Quarry)

Crusher run has been produced from the river gravel in Rumi village 30km north of the target road at the start point by the private company.

The crusher run produced has only size dimension of 5mm×15mm, 5mm×20mm.

The production volume is  $300t \sim 400t / days$  possible to produce year round. The price is as following.

#### Price of Crusher Run

| Material Price(m3) |          | Remark                                                |  |
|--------------------|----------|-------------------------------------------------------|--|
| 5mm×15mm           | 80Somoni | Transportation fee of 25 Somoni/km is calculated.     |  |
| 5mm×20mm           | 60Somoni | Possess 3 dump trucks which can load up to 16m3 each. |  |



Plant



Aggregate

#### Crusher Run (Jirikuru quarry)

Crusher run has been produced from the river gravel along the river 14km south west of Rumi village 30km north of the target road at the start point by the private company. The crushing plant was bought from the World Kaihatsu Kogyo which was subcontracted from Dai Nippon Construction by the private company.

The product of crusher run has 3 types of size dimension of 0mm to 5mm, 0mm to 15mm, 0mm to 25m. Size of 40mm is available only by order. The product volume is 100t to 120t per hour and the production is possible year round. The prices are as following.

| Material            | Price(m3) | Remark                                                  |
|---------------------|-----------|---------------------------------------------------------|
| 0mm to 5mm 45Somoni |           | Pick-up unit price is excluding the transportation fee. |
| 0mm to 15mm         | 45Somoni  |                                                         |
| 0mm to 25mm         | 35Somoni  |                                                         |

Price of the Crusher Run



Plant-1





Collection of Aggregate

#### Straight Asphalt

Straight Asphalt can be procured from the Qumsangir Salosa company which is near Dusti city of the target road.

#### Construction Equipment / Plant

It has been confirmed that the Rohid Tajik Company owns the following construction equipment / plant.

| 1 1                       | 5 5 1 5        |
|---------------------------|----------------|
| Name of Equipment / Plant | Specifications |
| Asphalt Plant             | 1260 ton / day |
| Milling Machine           | 120 ton / hr   |
| Asphalt finisher          |                |
| Macadam Roller            | 16 ton         |
| Tire Roller               | 13 ton         |
| Small Roller              | 4 ton          |
| Motor Grader              |                |

List of Equipment / Plant owned by Rohid Tajik Company

#### 1.6 The Budget of the Qumsangir Road Maintenance Office (SEHM)

The budget and the expense for the road maintenance from 2011 to 2013 of 3 years is 260,222Somoni (or 5,200,000¥).

#### 1.7 Soil Test Result at MOT

| Sta    | Component  | Depth(from | CBR   | PL,LL,PI         | Moisture | Usage |
|--------|------------|------------|-------|------------------|----------|-------|
|        |            | pavement)  | (%)   |                  | conte    |       |
|        |            |            |       |                  | nt (%)   |       |
| 12+607 | Subgrade   | -30cm      | 11.9  | NP               | 11.9     |       |
|        |            | -50cm      | 16.7  | NP               | 10.9     |       |
| 6+352  | Subgrade   | -50cm      | 11.4  | 32.4, 20.8, 11.6 | 11.8     |       |
|        |            | -110cm     | 19.59 | NP               | 4.0      |       |
| 4+480  | Subgrade   | -46cm      | 19.59 | 21.8, 17.2, 4.6  | 6.5      |       |
| 2+425  | Subgrade   | -50cm      | 10.3  | NP               | 15.7     |       |
| 5+030  | Cement     | Upper      |       | NP               | 5.7      |       |
|        | stabilized | layer      |       |                  |          |       |
|        | sub-base   | Lower      |       | 32.7, 20.3, 12.4 | 12.5     |       |
|        |            | layer      |       |                  |          |       |
| 1+317  | Subgrade   | -70cm      | 18.9  | NP               | 4.5      |       |

Table of Soil Test Results in Tajikistan (MOT)

Note NP: Non-Plastic

### Comparison of Clegg Hummer and CBR Value

| Test Location |        | Clegg Hummer    | CBR (%) |
|---------------|--------|-----------------|---------|
| 12+607        | -30cm  | 12(15,9,12)     | 11.9    |
|               | -50cm  | 16.6(28,9,13)   | 16.7    |
| 6+352 -50cm   |        | 16.6(28,9,13)   | 11.4    |
|               | -110cm | 31(31)          | 19.59   |
| 4+480         | -46cm  | 101(80,112,112) | 19.59   |
| 2+425         | -50cm  | 11.6(12,13,10)  | 10.3    |
| 1+317         | -70cm  | 62(67,67,52)    | 18.9    |

#### 2. The Differences of the Traffic Load

2.1 Traffic Load (W<sub>18</sub>) of Dusti-Nizhniy Pyandzh Road

Traffic load of the approach road of Nizhniy Pyandzh Bridge (open to the public in spring 2005) which is located at the end of the project has been adopted for this project.

| Day traffic volume             | 1,000vehicles per day                                    |  |
|--------------------------------|----------------------------------------------------------|--|
| Rate of mixed heavy vehicles   | $7\% \rightarrow 1,000 \times 7\% = 70$ vehicles per day |  |
| Equivalent Single Axle Load    | 0.931                                                    |  |
| (ESAL)(18kip) of heavy vehicle |                                                          |  |
| Service period (10 years) ESAL | 70/2×0.931×365day×10years =118,940                       |  |

| Traffic roa | d condition | of this | project |
|-------------|-------------|---------|---------|
|             |             |         |         |

2.2 Comparison of the Traffic Load (W<sub>18</sub>) within the Kurgan Tyube-Dusti Road

| 1                  |                     |                                 |  |  |  |  |  |  |
|--------------------|---------------------|---------------------------------|--|--|--|--|--|--|
| Day traffic volume | Kurgan Tyube city   | 9,671vehicles per day           |  |  |  |  |  |  |
|                    | Kurgan Tyube - Rumi | 5,740vehicles per day           |  |  |  |  |  |  |
|                    | Rumi – Dusti        | 6,920vehicles per day           |  |  |  |  |  |  |
| Service period(10  | Kurgan Tyube city   | 20,400,000( <b>※</b> 176 times) |  |  |  |  |  |  |
| years) ESAL        | Kurgan Tyube - Rumi | 16,500,000( <b>%</b> 139 times) |  |  |  |  |  |  |
|                    | Rumi – Dusti        | 20,100,000( <b>%</b> 169 times) |  |  |  |  |  |  |

Traffic Load Comparison within the Kurgan Tyube - Dusti Road

і / 118,940

#### 2.3 Traffic Load Prediction from the Current Traffic Volume

#### 2.3.1 Estimation of Equivalent Single Axle Load (ESAL)(18kip) of Trailer

The ESAL values of trailer and truck (18kip) were calculated by using the result of axle load survey in June 10<sup>th</sup>, 11<sup>th</sup>, 2014 as per the attachment-2. The target vehicles of this survey were the vehicles with freight cargo, thus the ESAL values of trailer and truck without freight cargo were computed based on the 70% of the average of the vehicle's weight from the axle load survey as follows.



## ESAL value of trailer without much cargo

:  $(2.3/8.1)^4 + (4.6/8.1)^4 \times 4 = 0.423$ 



ESAL value of truck without much load :  $(2.0/8.1)^4 + (4.0/8.1)^4 \times 3 = 0.182$ 

#### **2.3.2** Estimation of ESAL value (18kip)

ESAL values (18kip) from 2009 to 2018 are estimated based on the traffic survey on 8<sup>th</sup> and 9<sup>th</sup> May, 2014 and the economic growth rate per year computed by the World Bank. The ESAL values (18kip) computed in the attachment-2 are used for the half of the traffic volume and the ESAL values (18kip) computed in 2.3.1 are used for another half of the traffic volume.

|           | Economic<br>Grow<br>Rate (%) | Day Traffic<br>Volume(Heavy<br>Vehicle) | Annual Traffic<br>Volume(Heavy<br>Vehicle) | Truck Mixed<br>Rate (0.634) | Trailer Mixed<br>Rate(0.366) |
|-----------|------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------|------------------------------|
| 2009      | 3.9                          | 208                                     | 75,815                                     | 48,067                      | 27,748                       |
| 2010      | 6.5                          | 216                                     | 78,722                                     | 49,941                      | 28,831                       |
| 2011      | 7.4                          | 230                                     | 83,892                                     | 53,188                      | 30,704                       |
| 2012      | 7.5                          | 247                                     | 90,100                                     | 57,123                      | 32,977                       |
| 2013      | 7.4                          | 265                                     | 96,858                                     | 61,408                      | 35,450                       |
| 2014      | 6.2                          | 285                                     | 104,025                                    | 65,952                      | 38,073                       |
| 2015      | 6.2                          | 303                                     | 110,475                                    | 70,041                      | 40,434                       |
| 2016      | 6.2                          | 321                                     | 117,324                                    | 74,383                      | 42,941                       |
| 2017      | 6.2                          | 341                                     | 124,598                                    | 78,995                      | 45,603                       |
| 2018      | 6.2                          | 363                                     | 132,323                                    | 83,893                      | 48,430                       |
| Sub total |                              |                                         | 1,014,181                                  | 642,991                     | 371,190                      |
|           |                              |                                         |                                            | ×1.63/2/2                   | ×3.67/2/2                    |
|           |                              |                                         |                                            | ×0.182/2/2                  | ×0.423/2/2                   |
| Total ES  | SAL 1,34                     | 2,190(11.3times/                        | 582,550                                    | 759,640                     |                              |

Predicted ESAL Value from Year 2009 to Year 2018

### **3**. **Pavement Evaluation**

#### 3.1 Current Condition of the Pavement Structure

#### Initial Required Pavement Structure Number (SN)

|                                                                         | 1,3     | 2     | 4      | 5     | 6     | 7     |  |  |
|-------------------------------------------------------------------------|---------|-------|--------|-------|-------|-------|--|--|
| Accumulated 18kip Equivalent<br>Single Axle Load loading<br>number(W18) | 118,940 |       |        |       |       |       |  |  |
| Standard Deviation (Z0)                                                 | -0.841  |       |        |       |       |       |  |  |
| Standard Error                                                          | 0.45    |       |        |       |       |       |  |  |
| Performance Service Index ΔPSI                                          | 1.7     |       |        |       |       |       |  |  |
| Мр                                                                      | 4,500   | 7,800 | 13,050 | 8,850 | 5,700 | 6,150 |  |  |
| CBR                                                                     | 3.0     | 5.2   | 8.7    | 5.9   | 3.8   | 4.1   |  |  |
| Required Structural Number(SN)                                          | 2.755   | 2.288 | 1.819  | 2.121 | 2.515 | 2.442 |  |  |



#### Pavement Structures

11 A5-15

| -                               |             |
|---------------------------------|-------------|
| Pavement material               | Layer       |
|                                 | Coefficient |
| Asphalt Surface Course          | 0.39        |
| Bituminous Stabilized Sub-base  | 0.30        |
| Cement Stabilized Sub-base      | 0.108       |
| Granular Upper Sub-base(CBR=80) | 0.135       |
| Granular Lower Sub-base(CBR=30) | 0.108       |

Layer Coefficient of the Pavement

|               | Required   | Own Pavement | Check |
|---------------|------------|--------------|-------|
|               | Pavement   | Structure    |       |
|               | Structure  | Number(SN)   |       |
|               | Number(SN) |              |       |
| Section – 1,3 | 2.755      | 2.846        | OK    |
| Section – 2   | 2.288      | 2.398        | OK    |
| Section – 4   | 1.819      | 1.831        | OK    |
| Section – 5   | 2.121      | 2.256        | OK    |
| Section – 6   | 2.515      | 2.634        | OK    |
| Section – 7   | 2.442      | 2.610        | OK    |

Pavement Structure Number

After the construction completed based on the initial design, the defects had been found during the defect liability period. The repair was done based on the following types.



Repair Types during the Defect Liability Period



#### 3.2 Pavement Life Prediction from the SN Value and the Current Traffic Volume

The ESAL is calculated from the CBR of subgrade and Own SN of each section. The year achieved (design period) of ESAL value is calculated from the current traffic volume as below. Most of the design period of each section and type is less than 5 years.

|             | Pavement type  | Unrepai | Type-1  | Type-2  | Type-3  | Type-4  | Type-5   | Type-6   |
|-------------|----------------|---------|---------|---------|---------|---------|----------|----------|
| &SN Value   |                | r       |         |         |         |         |          |          |
| Type of Sub | grade          |         |         |         |         |         |          |          |
| Section1,3  | SN value       | 2.85    | 2.69    | 2.47    | 2.85    | 3.00    | 3.72     | 3.40     |
| CBR:3.0     | ESAL Value     | 146     | 103     | 62      | 146     | 198     | 735      | 423      |
|             | Service Period | 2 years | 1 year  | 1 year  | 2 years | 2 years | 7 years  | 4 years  |
| Section 2   | SN value       | 2.40    | 2.39    | 2.17    | 2.55    | 2.70    | 3.72     | 3.10     |
| CBR:5.2     | ESAL Value     | 186     | 181     | 102     | 267     | 377     | 2,634    | 867      |
|             | Service Period | 2 years | 2 years | 1 year  | 3 years | 4 years | 16years  | 7 years  |
| Section 4   | SN value       | 1.83    | 2.05    | 1.83    | 2.21    | 2.36    | 3.72     | 3.19     |
| CBR:8.7     | ESAL Value     | 123     | 239     | 123     | 374     | 554     | 8,692    | 3,400    |
|             | Service Period | 2 years | 3 years | 2 years | 4 years | 5 years | 31 years | 19 years |
| Section 5   | SN value       | 2.26    | 2.48    | 2.26    | 2.63    | 2.79    | 3.72     | 3.19     |
| CBR:5.9     | ESAL Value     | 174     | 303     | 174     | 431     | 616     | 3,531    | 1,381    |
|             | Service Period | 2 years | 3 years | 2 years | 4 years | 6 years | 19 years | 10 years |
| Section 6   | SN value       | 2.63    | 2.48    | 2.26    | 2.63    | 2.79    | 3.72     | 3.19     |
| CBR:3.8     | ESAL Value     | 155     | 109     | 63      | 155     | 222     | 1,272    | 498      |
|             | Service Period | 2 years | 1 year  | 1 year  | 2 years | 3 years | 10 years | 5 years  |
| Section 7   | SN value       | 2.61    | 2.61    | 2.38    | 2.76    | 2.91    | 3.72     | 3.32     |
| UDK:4.1     | ESAL Value     | 177     | 177     | 102     | 248     | 341     | 1,518    | 756      |
|             | Service Period | 2 years | 3 years | 1 year  | 3 years | 4 years | 11 years | 7 years  |

Pavement Life Prediction from the SN Value and the Current Traffic Volume

Note) ESAL value (×1000)

#### 3.3 The Difference between the Design Pavement Strength and the Current Pavement Strength

Based on the trial digging of the cement stabilized sub-base at two locations Sta.4+480 and Sta.5+029 of the first survey, the followings are confirmed:

- The design strength of the cement stabilized sand + boulder at the damage section is not secured. The condition of loosen due to the pavement damage has been confirmed
- The moisture content of cement stabilized lower sub-base layer is high and clayey. The cement stabilized sub-base course is divided into 2 layers which are sandy and gravel base course and clayey sub-base course. The strength of the entire base course seems to be not enough.





Cement Stabilized Base course of Sand + Cement Stabilized Sub-base of Clay Gravel

The followings are confirmed in MOT laboratory.

|                  | Upper      | Sub-base | Lower         | Sub-base |
|------------------|------------|----------|---------------|----------|
|                  | Course     |          | course        |          |
| PL, LL, PI       | Non plasti | c        | 32.7, 20.3, 1 | 2.4      |
| Moisture Content | 5.7        |          | 12.5          |          |
| Fine (<0.075mm)  | <5%        |          | >20%          |          |

Comparison of the Upper Sub-base and Lower Sub-base Course Layer

The base course is of sandy soil, where the sub base-course is having highly PL 32.7% and classified as silt. The moisture content is high and the fine grain is more than 20%.

The subgrade is extremely firm at the existing AS pavement. The average 3 times of clegg hummer is over 100%. Thus, the damage at these two locations seemed to be caused by the heavy traffic load and the stagnated water on the existing AS pavement penetrated from the damaged surface.

However, the causes of the damages could not be concluded because there are still many things to clarify

such as the impact of the thin clayey sub-base course to entire pavement and the variation of the quality of the cement stabilized base-course.

From the hearing survey, upper sub-base course and the lower sub-base course material were taken from the same borrow pit (Sta. 13). The cause for the large percentage of the fine particle mixed in the sub-base layer were unclear whether during the construction the fine particle were mixed in the sub-base course or the unevenness of the quality of the borrow pit.

#### 3.4 Excessive Traffic Load in the Past

There were a report of the trailer full loaded with cement having total weight of 69.3 ton (axle load 13.86 ton) were passing through the target road after the completion of road construction in the defect liability inspection report in 2013. The ESAL value of the trailer in the past in Chapter 2.3.2 is only 3.67 but the ESAL value of axle load 13.86ton was 42.8 which is by far higher than the current value. This is one factor to accelerate the damage of the road surface.

#### 3.5 Conclusion

The main cause of the damages on the target road seems to be by the increased traffic volume (11 times of designed ESAL value).

It was also confirmed that the cement stabilized sub-base didn't attain the design strength. The deterioration of the sub-base seems to be caused by the seepage water from cracks caused by the excessive increased traffic volume. However, the impact of this deteriorated clayey sub-base cannot be so big since the thickness of the sub-base is very thin.

Further, CBR value of base-course on the good section exceeds 3 times of design (30%) and the lengthening of the service period can be expected. The prevention of the seepage water from the cracks is very important for the maintenance.

## 4. Urgent Repair of the Damaged Sections

4.1 Selection of the Repair Location (Section with traffic safety problem at Grade Section and Flat Section)

|      | Start Point | End point | Lane       | Length | Area    | Usage                     |
|------|-------------|-----------|------------|--------|---------|---------------------------|
|      | (Sta)       | (Sta)     |            |        |         |                           |
| 1    | 14+420      | 14+460    | Both sides | 40m    | 280.0m2 |                           |
| 2    | 15+448      | 15+463    | North side | 15m    | 52.5m2  |                           |
| Tota | al          |           |            |        | 332.5m2 | US10,000~US46,000         |
|      |             |           |            |        |         | $(US3,000 \sim US14,000)$ |
|      |             |           |            |        |         | /100m <sup>2</sup> )      |

## Grade Section

#### Flat Section

|      | Start Point | End Point | Lane       | Length | Area    |                      |
|------|-------------|-----------|------------|--------|---------|----------------------|
|      | (Sta)       | (Sta)     |            |        |         |                      |
| 1    | 4+475       | 4+508     | North side | 33m    | 115.5m2 |                      |
| 2    | 5+023       | 5+036     | Both sides | 13m    | 91.0m2  |                      |
| 3    | 6+895       | 6+912     | North side | 17m    | 59.5m2  |                      |
| 4    | 9+204       | 9+216     | North side | 12m    | 42.0m2  |                      |
| 5    | 10+610      | 10+620    | North side | 10m    | 35.0m2  |                      |
| 6    | 11+860      | 11+870    | North side | 10m    | 35.0m2  |                      |
| 7    | 12+050      | 12+060    | South side | 10m    | 35.0m2  |                      |
| Tota | al          |           |            |        | 413m2   | US12,390~US41,300    |
|      |             |           |            |        |         | (US3,000~US10,000    |
|      |             |           |            |        |         | /100m <sup>2</sup> ) |

4.2 Current Condition of the Selected Locations (Damage condition, Pavement Structure, Survey Result are summarized in the table)

#### Grade Section

|      | Ν | Location | Secti | Components     | Condition                            |
|------|---|----------|-------|----------------|--------------------------------------|
|      | 0 | (Start)  | on    |                |                                      |
|      |   | (End)    |       |                |                                      |
| u    | 1 | 14+4201  | 6     | 10cm(AS        | Asphalt pavement is sliding          |
| ade  |   | 4+460    |       | Concrete)      | significantly though the condition   |
| Gra  | 2 | 15+448   |       | 30cm(Sub-base) | under the sub-base is firm.          |
| Г    |   | 15+463   |       |                |                                      |
|      | 1 | 4+475    | 4     | 5cm(AS         | Surface is drastically deformed      |
|      |   | 4+508    |       | Concrete)      | along with the alligator crack.      |
|      | 2 | 5+023    |       | 25cm(Sub-base) | Cement stabilized sub-base is        |
|      |   | 5+036    |       |                | spouting out which interrupts the    |
| on   |   |          |       |                | traffic.                             |
| Flat | 3 | 6+895    |       |                | Surface is drastically deformed      |
| L of |   | 6+912    |       |                | along with the alligator crack which |
|      | 4 | 9+204    | 5     | 5cm(AS         | interrupts the traffic. The          |
|      |   | 9+216    |       | Concrete)      | deformation is expected to be        |
|      | 5 | 10+610   |       | 35cm(Sub-base) | drastic in future.                   |
|      |   | 10+620   |       |                |                                      |

| 6 | 11+860   |
|---|----------|
|   | 11 + 870 |
| 7 | 12+050   |
|   | 12+060   |

#### 4.3 Examination of the Permanent Repair Cross Section

#### (Large scale repair)

The urgent repair locations are selected from the section4, 5, 6. and the pavement cross sections of the 3 sections are examined. To satisfy the required SN which was calculated from the ESAL (10 years) in Chapter 2.3.2, it is necessary to add the AS binder course of 13cm to 15 cm.

|                                     |       | Section4<br>(CBR: 8.7%)    |                 | Section<br>(CBR: 5.9       | Section5<br>(CBR: 5.9%) |                                    | Section6<br>(CBR: 3.8%) |  |
|-------------------------------------|-------|----------------------------|-----------------|----------------------------|-------------------------|------------------------------------|-------------------------|--|
|                                     |       | Thickness(in ch)           | SN              | Thickness(inc h)           | SN                      | Thickness(inch)                    | SN                      |  |
| AS<br>Concrete<br>surface<br>course | 0.390 | 1.97(5cm)                  | 0.768           | 1.97(5cm)                  | 0.768                   | 1.97(5cm)                          | 0.768                   |  |
| AS<br>Concrete<br>binder<br>course  | 0.300 | 5.12(13cm)<br>(additional) | 1.535           | 5.12(13cm)<br>(additional) | 1.535                   | 7.87(20cm)<br>(15cm<br>additional) | 2.362                   |  |
| Sub-base                            | 0.108 | 4.72(12cm)                 | 0.510           | 8.66(22cm)                 | 0.935                   | 5.91(15cm)                         | 0.638                   |  |
| Total                               |       |                            | 2.813><br>2.734 |                            | 3.238><br>3.175         |                                    | 3.768><br>3.752         |  |

#### (Overlay)

The overlay thickness was designed by using the ESAL value of 15 years from 2009 and by considering the remaining SN of the present pavement cross section. However, the damage of the lower sub-base which is not caused by the traffic volume factors shall repair separately.

|            | Economic                                                                            | Day Traffic      | Annual Traffic | Truck Mixed    | Trailer Mixed  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------|------------------|----------------|----------------|----------------|--|--|--|--|--|
|            | Grow                                                                                | Volume(Heavy     | Volume(Heavy   | Rate(0.634)    | Rate(0.366)    |  |  |  |  |  |
|            | Rate (%)                                                                            | Vehicle)         | Vehicle)       |                |                |  |  |  |  |  |
| Subtotal   | from Year 20                                                                        | 009 to Year 2018 | 1,014,181      | 642,991        | 371,190        |  |  |  |  |  |
| 2019       | 6.2                                                                                 | 385              | 140,527        | 89,094         | 51,433         |  |  |  |  |  |
| 2020       | 6.2                                                                                 | 409              | 149,240        | 94,618         | 54,622         |  |  |  |  |  |
| 2021       | 6.2                                                                                 | 434              | 158,493        | 100,484        | 58,008         |  |  |  |  |  |
| 2022       | 6.2                                                                                 | 461              | 168,319        | 106,714        | 61,605         |  |  |  |  |  |
| 2023       | 6.2                                                                                 | 490              | 178,755        | 113,331        | 65,424         |  |  |  |  |  |
| Subtotal   |                                                                                     |                  |                | 1,147,233      | 662,283        |  |  |  |  |  |
|            |                                                                                     |                  | Axle load      | ×1.63 / 2 / 2  | ×3.67 / 2 / 2  |  |  |  |  |  |
|            |                                                                                     |                  | survey         |                |                |  |  |  |  |  |
|            |                                                                                     |                  | Other          | ×0.182 / 2 / 2 | ×0.423 / 2 / 2 |  |  |  |  |  |
| Total of I | Total of ESAL from year 2009 to year 2023     2,494,755     1,039,393     1,355,362 |                  |                |                |                |  |  |  |  |  |

|          | Section 1,3 | Section 2 | Section<br>4 | Section<br>5 | Section<br>6 | Section<br>7 |
|----------|-------------|-----------|--------------|--------------|--------------|--------------|
| CBR      | 3.0         | 5.2       | 8.7          | 5.9          | 3.8          | 4.1          |
| Required | 4.501       | 3.688     | 3.030        | 3,516        | 4.139        | 4.026        |

| SN           |        |       |       |       |        |        |
|--------------|--------|-------|-------|-------|--------|--------|
| Having SN    | 2.846  | 2.398 | 1.831 | 2.256 | 2.634  | 2.610  |
| Insufficient | 1.636  | 1.290 | 1.199 | 1.260 | 1.505  | 1.416  |
| SN           |        |       |       |       |        |        |
| Required     | 10.8cm | 8.4cm | 7.8cm | 8.2cm | 9.8cm  | 9.2cm  |
| AS           | (11cm) | (9cm) | (8cm) | (9cm) | (10cm) | (10cm) |
| thickness    |        |       |       |       |        |        |

#### 4.4 Examination of the Repair Method

The procurement of material in Tajikistan and the possible repair method had been examined. The urgent repair method and permanent repair method was not clearly classified but the low durability method (urgent repair) to the high durability method (permanent repair) are lining up in order from up to bottom.

A plan of using the hot mixture material was adopting since it was confirmed to be produced in Dushanbe. The road planers are possible to be procured in Dushanbe. It is necessary to examine the AS material for the possibility of usage of modified material, possibility of the procurement of straight AS with hard penetration and the usage of gap grade.

|              | Damage<br>type                                | Location                                                 | No. | Durability | Service<br>Period | Measurement                                                                                                                                                                                                                                                                                    | Cost<br>(/100m2)                                 | Method                                                                                 | Construction method                                                                                                                                                                                                                                                                                                   | Material (per<br>100m2)                                                                                                                                   | Machine                                                                                                                                                | Notes                                                                                                                                                                                 | Issue/Valuation                                                                                                                      |
|--------------|-----------------------------------------------|----------------------------------------------------------|-----|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|              | Repair<br>Large<br>scale                      | 7 loc.<br>413m3                                          | 1   | D          | 0.3<br>~<br>0.5   | (Existing Pavement)     AS Concrete Sem     Cement<br>Sub-base     Concrete sub-base material<br>and open to the traffic. Replace it with<br>AS Concrete sub-base     Replace to sub-base material<br>after the removal of cement<br>Sub-base     25 to 35cm     Existing AS Pavement/Subgrade | US\$<br>3,000<br>(M)2,000<br>(E)500<br>(L)500    | Sub-base<br>temporary<br>rehab method                                                  | After removing the cement<br>sub-base, backfill sub-base<br>material till the head of<br>pavement. Open to the traffic,<br>level the surface by filling the<br>settlement location with<br>sub-base material. Continue<br>until the settlement is not<br>occurring and replace the<br>surface when the AS is secured. | Sub-base material<br>40cm3                                                                                                                                | Concrete cutter,<br>hand guide roller                                                                                                                  | Continue supplying the<br>material after opening to<br>the traffic.                                                                                                                   | Necessary to<br>reconstruct the<br>surface layer<br>earlier.<br>The lowest price<br>but time<br>consuming.                           |
|              |                                               |                                                          | 2   | С          | 0.5<br>~<br>1.0   | (Existing Pavement) (Existing Pavement)   AS Concrete Scm Cold Mix   Cement<br>Stabilized<br>Sub-base<br>25 to 35cm Replace to sub-base material<br>after the removal of cement<br>stabilized sub-base   Existing AS Pavement/Subgrade                                                         | US\$<br>4,500<br>(M)3,000<br>(E)1,000<br>(L)500  | Replacement<br>of sub-base<br>+<br>Cold mixture<br>pavement(5cm                        | Remove cement sub-base,<br>backfill it till the head of the<br>sub-base and compact it.<br>Construct the surface with cold<br>mixture pavement.                                                                                                                                                                       | Cold mixture<br>11.5t<br>Tack coat material<br>501                                                                                                        | Concrete cutter<br>Mixer(pug mill or<br>continuity)<br>AS finisher<br>Tire roller<br>Macadam roller<br>Hand guide roller                               | Binder volume<br>Patticle size of the<br>mixture<br>Examine the finished<br>thickness                                                                                                 | Question of the<br>curability of the<br>cold mixture<br>material.                                                                    |
| Flat section |                                               |                                                          | 3   | C'         | 0.8<br>~<br>1.5   | (Existing Pavement) (Existing Pavement)<br>AS Concrete Scm<br>Cement<br>Stabilized<br>Stub-base<br>25 to 35cm<br>Existing AS Pavonent/Subgrado                                                                                                                                                 | US\$<br>4,700<br>(M)3,200<br>(E)1,000<br>(L)500  | Replacement<br>of sub-base<br>+<br>Cold mixture<br>pavement(30-0<br>)pavement(5c<br>m) | Remove cement sub-base,<br>compact the backfill till the<br>head of sub-base. Construct the<br>surface with cold mixture<br>(30-0) pavement.                                                                                                                                                                          | Crusher run 30-0<br>13.5 m <sup>2</sup><br>Cold mixture :1.5t<br>Tack coat material<br>501                                                                | Concrete cutter<br>Dump truck<br>Motor grader<br>Mixer(pug mill or<br>continuity)<br>AS finisher<br>Tire roller<br>Macadam roller<br>Hand guide roller | Compaction of sub-base<br>Binder volume<br>Particle size of the<br>mixture<br>Examine the finished<br>thickness<br>The particle size of the<br>crusher run must be<br>continuous size | Expect the<br>curability since the<br>aggregate is<br>including.                                                                     |
|              | -                                             |                                                          | 4   | В          | 1.5<br>~<br>2.0   | (Existing Pavement) Macadam Pavement 5cm (Existing Pavement)   AS Concrete Scm (Existing Pavement)   Cement<br>Stabilized<br>Sub-base<br>25 to 35cm Replace to sub-base material<br>after the removal of cement<br>sabilized sub-base   Existing AS Pavement/Subgrade                          | US\$<br>5,000<br>(M)3,200<br>(E)1,000<br>(L)800  | Replacement<br>of sub-base<br>+<br>Permeable<br>macadam<br>pavement<br>(5cm)           | Remove cement sub-base,<br>compact the backfill well till the<br>head of sub-base head.<br>Construct the surface with the<br>permeable macadam pavement<br>(5cm).                                                                                                                                                     | Crush run 30-20<br>50 m <sup>2</sup><br>Crusher run 10-5<br>20 m <sup>2</sup><br>Crusher run 5-2.5<br>10 m <sup>2</sup><br>Binder 750 kg<br>(Straight AS) | Concrete cutter<br>Macadam roller<br>(Tire roller)<br>(Hand guide roller)<br>Binder spray machine<br>(Distributor)<br>(Engine sprayer)                 | It is necessary to do<br>training one week for the<br>crusher run spreading.<br>Single size of the crusher<br>run is required.                                                        | Expect the<br>curability to some<br>cegree.<br>Preparation of<br>spreading machine<br>and method of<br>heating the binder<br>are ok? |
|              | -                                             |                                                          | 5   | A          | 5                 | (Existing Pavement) AS Concrete Pavement (Existing Pavement)   AS Concrete Scm Surface Course(Scm).   Cement Binder Course(Scm).   Stabilized Binder Course(Scm).   Sub-base Binder Course(Scm).   25 to 35cm Binder Course(Scm).   Existing AS Pavement/Subgrade                              | US\$<br>10,000<br>(M)7,000<br>(E)2,500<br>(L)500 | Replacement<br>of sub-base<br>+<br>Hot AS<br>pavement                                  | Remove cement sub-base,<br>compact backfill well till the<br>depth of -10cm from the head<br>of pavement head. Construct the<br>surface with AS(10cm).                                                                                                                                                                | Hot AS<br>mixture(5cm) 12<br>ton<br>Tack coat material<br>501                                                                                             | Concrete cutter<br>AS finisher<br>Macadam roller<br>Tire roller<br>Hand guide roller<br>Rake                                                           | Mechanical leveling<br>Manual leveling<br>Method to prevent<br>sliding of the mixture                                                                                                 | Method to procure<br>the AS.<br>Expect the most<br>curability.                                                                       |
|              | Alligator<br>crack<br>Crack<br>Small<br>scale | Same as<br>the<br>attached<br>Same as<br>the<br>attached |     |            |                   | Asphalt overlay<br>8cm to 11cm(see 4.3)<br>sealing                                                                                                                                                                                                                                             |                                                  | Hot Mix<br>Asphalt<br>Pavement                                                         |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                       |                                                                                                                                      |

#### Table of Counter Measures

| Grade section | Repair 21<br>Large 33<br>scale | 2loc.<br>332.5m2 | 1 | С  | 0.5<br>~<br>1.0 | (Existing Pavement) (Existing Pavement)<br>AS Pave (Surface)Sem<br>AS Pave (Binder)Sem<br>Cement Stabilized Sub-base 30em<br>Subgrade                       | US\$<br>3,000<br>(M)2,300<br>(E) 500<br>(L) 200   | Cold mixture<br>pavement(cm)<br>method                             | Construct the bare surface<br>location with cold mixture<br>pavement.                                                                            | Cold mixture<br>11.5t<br>Tack coat material<br>50.1                                                                                                                  | Concrete cutter<br>Mixer (pug mill or<br>continuity)<br>AS finisher<br>Tire roller<br>Macadam roller<br>Hand guide roller                               | Binder volume<br>Particle size of the<br>mixture                                                                                                               | Question of the<br>curability of the<br>cold mixture.<br>Require the check<br>of finished<br>trickness.<br>No counter<br>measure for sliding                                                  |
|---------------|--------------------------------|------------------|---|----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                |                  | 2 | C' | 0.8<br>~<br>1.5 | (Existing Pavement) (Existing Pavement)   AS Pave (Surface)Sem Cold Mix / 30-0   AS Pave (Binder)Sem Cement Stabilized Sub-base 30em                        | US\$<br>3,300<br>(M)2,600<br>(E) 500<br>(L) 200   | Cold<br>mixture(30-0)p<br>avement(5cm)                             | Construct the bare surface<br>location with cold mixture<br>pavement (30-0).                                                                     | Crusher run 30-0<br>13.5 m <sup>2</sup><br>Cold mixture 1.5t<br>Tack coat material<br>50 l                                                                           | Concrete cutter<br>Dump truck<br>Motor grader<br>Mixer (pug mill or<br>continuity)<br>AS finisher<br>Tire roller<br>Macadam roller<br>Hand guide roller | Binder volume<br>particle size for the<br>mixture<br>examine the finished<br>thickness<br>Particle size of crusher<br>run must be continuous<br>particle size. | Expect the<br>curability since the<br>aggregate is<br>including.<br>No counter<br>measure for sliding.                                                                                        |
|               |                                |                  | 3 | В  | 1.5<br>~<br>2.0 | (Existing Pavement) Macadam Pavement 13cm (Existing Pavenent)<br>AS Pave (Surface)Sem<br>AS Pave (Binder)Sem<br>Cement Stabilized Sub-base 27cm<br>Subgrade | US\$<br>7,000<br>(M)2,500<br>(E)4,000<br>(L)500   | Surface<br>removal +<br>Permeable<br>macadam<br>pavement<br>(13cm) | Cut the surface 3cm as a<br>measure to prevent sliding.<br>Construct the surface with<br>permeable macadam pavement<br>(13cm).                   | Crusher run 30-20<br>15.0 m <sup>2</sup><br>Crusher run 10-5<br>50 m <sup>2</sup><br>Crusher run 5-2.5<br>25 m <sup>2</sup><br>Binder 2,000 kg<br>(Straight Asphalt) | Concrete cutter<br>Road planer<br>Macadam roller<br>(Tire roller)<br>(Hand guide roller)<br>(Binder spray machine)<br>(Distributor)<br>(Engine sprayer) | Require one week to do<br>training for the crusher<br>run spreading.<br>Single size of crusher<br>run is necessary.                                            | Expect the<br>ron-sliding from<br>the surface cutting<br>Preparation of<br>spreading machine<br>and method of<br>heating the binder<br>are ok?<br>Expect the<br>curability to some<br>cegree. |
|               |                                |                  | 4 | А  | 5               | (Existing Pavement) (Existing Pavement)<br>AS Pave (Surface)5cm<br>AS Pave (Binder)5cm<br>Cement Stabilized Sub-base 25cm<br>Subgrade                       | US\$<br>14,000<br>(M)8,500<br>(E)2,000<br>(L) 500 | Surface<br>removal + hot<br>AS pavement                            | Cut the surface 5cm to prevent<br>sliding and secure the thickness<br>of the pavement. Construct the<br>surface with hot AS pavement.            | Hot asphalt<br>mixture(5cm) 12<br>ton<br>Tack coat material<br>501                                                                                                   | Concrete cutter<br>Road planer<br>AS finisher<br>Macadam roller<br>Tire roller<br>Hand guide roller<br>Rake                                             | Mechanical leveling<br>Manual leveling<br>Method to prevent<br>sliding of the mixture                                                                          | Expect the<br>ron-sliding from<br>the surface cutting<br>Method to procure<br>the AS.<br>Expect the<br>curability.                                                                            |
|               |                                |                  | 5 | A  | 5               | (Existing Pavement) (Existing Pavement)<br>AS Pave (Surface)Sem<br>AS Pave (Binder)Sem<br>Cement Stabilized Sub-base 25em<br>Subgrade                       | US\$<br>9,500<br>(M)2,000<br>(E)2,500<br>(L)2,000 | Surface<br>removal +<br>Cement<br>concrete<br>pavement(15)         | Cut the surface 5cm to prevent<br>sliding and secure the thickness<br>of the pavement. Construct the<br>surface with cement concrete<br>pavement | Cement concrete<br>mixture 20.8 m                                                                                                                                    | Concrete cutter<br>Road planer<br>Concrete mixer<br>Mixture truck<br>(one wheel)<br>Scope<br>prod                                                       | Security of curing time<br>and pavement method is<br>required                                                                                                  | Expect the<br>ron-sliding from<br>the surface cutting<br>Secure the<br>curability by<br>concrete pavement.                                                                                    |

Note) Durability : A to E/ high to low

(M): (Material), (E): (Eq.ipment), (L): (Labor)
## 5. Future Repair

For the future repair, the initial design traffic volume and the current traffic volume which is confirmed from the survey are having a big different volume. Clay lump are found in the cement stabilized sub-base, giving notice that the layer thickness and its strength are not in conformity and was not reached its design strength. Thus, it is necessary to examine the remaining bearing force of the existing road.

However, checking the remaining bearing force of the whole target roads in the survey are limit so as it is necessary to plan according to the below method.



# 6. Attachment Data

Attachment 1: Pavement Inventory

Attachment 2: Result of Vehicle Weight Measurement

Attachment-6

Record of Meeting about the Selection of the Urgent Repair Work

### Minutes of Discussion for the Second Survey

Project Name : Ex-Post Situation Survey for the Project for the Improvement of Dusty-Nizhniy Pyandzh Road

| Participants | MOT                          | Mr. Olim Yatimov               | Head of Department on<br>Cooperation with foreign<br>investment, Ministry of<br>Transport, Republic of Tajikistan |  |  |  |  |  |  |
|--------------|------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | Survey                       | Mr. Furuki Moriyasu :          | Road Planning / Design /                                                                                          |  |  |  |  |  |  |
|              | leam                         | <b>B A C C C C C C C C C C</b> | Construction                                                                                                      |  |  |  |  |  |  |
|              |                              | Mr. Miura Minoru               | Chief Engineer / Road Design                                                                                      |  |  |  |  |  |  |
|              |                              | Mr. Noda Yoshihisa :           | Road Design / Pavement Survey                                                                                     |  |  |  |  |  |  |
|              |                              |                                | II                                                                                                                |  |  |  |  |  |  |
|              |                              | Mr. Oguro Koichi ;             | Pavement Construction                                                                                             |  |  |  |  |  |  |
|              | JICA<br>Tajikistan<br>Office | Ms. Murakami Masayo            | Project Formulation Adviser                                                                                       |  |  |  |  |  |  |
| Date, Time   | July 01, 2014 16:00~17:00    |                                |                                                                                                                   |  |  |  |  |  |  |
| Venue        | MOT Conference Room          |                                |                                                                                                                   |  |  |  |  |  |  |

The contents of the discussion on the Technical Data-1 are as follows.

| ~      |                                                                             |  |  |  |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Survey | Survey Team explained the causes of defects, traffic volume and axle load   |  |  |  |  |  |  |  |  |  |
| Team   | survey results, several types of urgent repair method and the necessa       |  |  |  |  |  |  |  |  |  |
|        | expenses to MOT which have been prepared in accordance with the MOD         |  |  |  |  |  |  |  |  |  |
|        | concluded on May 7th, 2014 between First Deputy Minister and Mr.            |  |  |  |  |  |  |  |  |  |
|        | Kenshiro TANAKA / JICA,                                                     |  |  |  |  |  |  |  |  |  |
| MOT    | MOT expressed appreciation for the Survey Team's effort and accepted        |  |  |  |  |  |  |  |  |  |
|        | the proposal in general. MOT will select the proper urgent repair methods   |  |  |  |  |  |  |  |  |  |
|        | in consultation with First Deputy Minister. Regarding the maintenance       |  |  |  |  |  |  |  |  |  |
|        | budget, they must consult with the Minister. MOT asked the timing of        |  |  |  |  |  |  |  |  |  |
|        | implementation of urgent repair works to the Survey Team.                   |  |  |  |  |  |  |  |  |  |
| Survey | The Survey Team answered that the repair works are supposed to be           |  |  |  |  |  |  |  |  |  |
| Team   | implemented in August 2014 in accordance with the MOD.                      |  |  |  |  |  |  |  |  |  |
| МОТ    | The maintenance budget for the urgent repair works is not allocated in      |  |  |  |  |  |  |  |  |  |
|        | the MOT budget for 2014. However, they will consider the issue of budget    |  |  |  |  |  |  |  |  |  |
|        | from MOT budget for 2014. If not, the maintenance budget for the urgent     |  |  |  |  |  |  |  |  |  |
|        | repair works is to be allocated in the MOT budget for 2015. The fiscal year |  |  |  |  |  |  |  |  |  |
|        | in Tajikistan starts on January 1 <sup>st</sup> .                           |  |  |  |  |  |  |  |  |  |

au.M.

| Survey | The Survey Team requested that the MOT inform JICA as soon as      |
|--------|--------------------------------------------------------------------|
| Team   | possible in case MOT cannot prepare the budget from MOT budget for |
|        | 2014 because the third mission is scheduled in August.             |
| MOT    | MOT promised to have contact with JICA continuously.               |

Dushanbe, July 3, 2014

Mr. Minoru Miura

Mr. Minoru Miura Chief Engineer / Road Design of Survey Team

Attachment-7

Letters of Request for the Selection of Repair Method

CTI Engineering International Co., Ltd.

C o n s u l t i n g E n g i n e e r s Tachibana Annex Building, 2-25-14 Kameido, Koto-ku, Tokyo 136-0071 Japan TEL: +81-3-3638-2586, FAX: +81-3-3638-2620

> Date: 22th July 2014 Our Ref. No. :CTII/MOT/001

#### Mr. Sherali Gangalzoda,

First Deputy Minister, Ministry of Transport, Republic of Tajikistan

Project: Ex-Post Situation Survey for the Project for the Improvement of Dusty-Nizhniy Pyandze Road

Subject: Necessary Budget for Respective Repair Type

Dear Sir,

We are pleased to propose and share following estimations of costs for respective repair type for the sections that require urgent repair works, which has been reported in the Technical Data-1 Report. (The unit costs in the tables are based on our market price survey.)

In this connection, you are kindly requested to estimate and ensure your necessary budget for the urgent repair works referring to our proposal and inform us of the result.

| No | Type of<br>Measurement                                                             | Repair Work Procedure                                                                                                                                                                                                                                               | Propose Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit Price<br>(USD/100m <sup>2</sup> )     | Amount<br>(USD) |
|----|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|
| 1  | Sub-base<br>Temporary<br>Rehab Method                                              | <ol> <li>To remove existing asphalt<br/>pavement and cement stabilized<br/>sub-base</li> <li>To backfill granular material till<br/>the top</li> <li>To open to the traffic</li> <li>To replace top 5cm with asphalt<br/>concrete pavement in the future</li> </ol> | (Existing Percentar)<br>AS Concrete Sem<br>AS Concrete Sem<br>Control<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,000<br>(M)2,000,<br>(E)500,<br>(L)500    | 12,390          |
| 2  | Replacement of<br>Sub-base &<br>Cold Asphalt<br>pavement<br>Method (5cm)           | <ol> <li>To remove existing asphalt<br/>pavement and cement stabilized<br/>sub-base</li> <li>To backfill granular material till<br/>the top of base-course</li> <li>To construct cold asphalt<br/>pavement</li> </ol>                                               | (Existing Process) (Existing Process)<br>A5 Coerrie Sen Cold Mix<br>Courset<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Stabilized<br>Stabilized<br>Courset<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Subliced<br>Su | 4,500<br>(M)3,000,<br>(E)1,000,<br>(L)500  | 18,585          |
| 3  | Replacement of<br>Sub-base &<br>Cold Asphalt<br>Pavement (30-0)<br>Method (5cm)    | <ol> <li>To remove asphalt pavement<br/>and cement stabilized sub-base</li> <li>To backfill granular material till<br/>the top of base-course</li> <li>To construct cold asphalt mixed<br/>with gravel(30-0)</li> </ol>                                             | (Existing Pavencet) (Existing Pavencet)<br>AS Concrete Sem<br>Stabilized<br>Subbase<br>25 to 35 cm<br>(Existing Pavencet)<br>(Existing Pavencet)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,700<br>(M)3,200,<br>(E)1,000,<br>(L)500  | 19,411          |
| 4  | Replacement of<br>Sub-base &<br>Penetration<br>Macadam<br>Pavement<br>Method (5cm) | <ol> <li>To remove asphalt pavement<br/>and cement stabilized sub-base</li> <li>To backfill granular material till<br/>the top of base-course</li> <li>To construct penetration<br/>macadam pavement (5cm)</li> </ol>                                               | (Existing Pavement)<br>AS Coccete Sen<br>Created<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabilized<br>Stabiliz                                                                                                                                                                                                                                                                                                                                         | 5,000<br>(M)3,200,<br>(E)1,000,<br>(L)800  | 20,650          |
| 5  | Replacement of<br>Sub-base &<br>Hot Asphalt<br>Pavement<br>Method (10cm)           | <ol> <li>To remove asphalt pavement<br/>and cement stabilized sub-base</li> <li>To backfill granular material till<br/>the top of base-course</li> <li>To construct hot asphalt<br/>concrete pavement (10cm)</li> </ol>                                             | (Existing Pavences) AS Concrete Pavences AS Concrete Services (Existing Pavences) AS Concrete Services (Surface Course(Services)) (Existing Pavences) (Existing Pavenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000<br>(M)7,000,<br>(E)2,500,<br>(L)500 | 41,300          |

Table-1 Flat Sections (Sta. 0 - Sta. 14+140) / 413.0m<sup>2</sup>

A7-1

# Table-2 Steep Sections (Sta. 14+140 - Sta.23+700) / 332.5m<sup>2</sup>

| No | Type of<br>Measurement                                                    | Repair Work Procedure                                                                                                                                                                                         | Proposed Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit Price<br>(USD/100m <sup>2</sup> )      | Amount<br>(USD) |
|----|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|
| 1  | Cold Asphalt<br>Pavement<br>Method (5cm)                                  | <ol> <li>To fill widely cracked and/or<br/>uneven asphalt pavement with<br/>cold asphalt material to make<br/>the surface flat</li> </ol>                                                                     | (Existing Process) (Existing Process)<br>A 5 Proc (Biolog) Sca<br>A 5 Proc (Biolog) Sca<br>Cold Mix<br>Censes 5 stabilized Sub-5 sase Social<br>Sub-5 sase S | 3,000<br>(M)2,300,<br>(E)500,<br>(L)200     | 9,975           |
| 2  | Cold Asphalt<br>(30-0) Pavement<br>Method (5cm)                           | <ol> <li>To fill the widely cracked and/or<br/>uneven asphalt pavement with<br/>cold asphalt material mixed with<br/>gravel(30-0) to make the surface<br/>flat</li> </ol>                                     | (Existing Provement)       (Existing Provement)     (Existing Provement)       Af Prove(Binder)Sen     Cold Mix / 300       Af Prove(Binder)Sen     Cold Mix / 300   Contrast Stabilized Sub-Asse Storm       (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,300<br>(M)2,600,<br>(E)500,<br>(L)200     | 10,973          |
| 3  | Surface Removal<br>& Penetration<br>Macadam<br>Pavement<br>Method (13cm)  | <ol> <li>To remove the slipped asphalt<br/>pavement</li> <li>To mill the cement stabilized<br/>base-course 3cm from the<br/>surface</li> <li>To construct penetration<br/>macadam pavement (13cm)</li> </ol>  | (Existing Provensen) Micodem Pavement 13xm (Existing Provensen)<br>AS Prive (Surface) Ken<br>AS Prive (Binder) Sen<br>Cement Sub-Bise 27xm<br>Cement Sub-Bise 27xm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,000<br>(M)2,500,<br>(E)4,000,<br>(L)500   | 23,275          |
| 4  | Surface Removal<br>& Hot Asphalt<br>Concrete<br>Pavement<br>Method (15cm) | <ol> <li>To remove the slipped asphalt<br/>pavement</li> <li>To mill the cement stabilized<br/>base-course 5cm from the<br/>surface</li> <li>To construct hot asphalt<br/>concrete pavement (15cm)</li> </ol> | (Existing Preesen)<br>AS Proc (Backer)Sea<br>AS Proc (Backer)Sea<br>AS Conceres Preesent 13ea<br>Cruced Stabilized Sub-base 25ca<br>Subgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14,000<br>(M)8,500,<br>(E)5,000,<br>(L)500  | 46,550          |
| 5  | Surface Removal<br>& Cement<br>Concrete<br>Pavement<br>Method (15cm)      | <ol> <li>To remove the slipped asphalt<br/>pavement</li> <li>To mill the cement stabilized<br/>base-course 5cm from the<br/>surface</li> <li>To construct concrete pavement<br/>(15cm)</li> </ol>             | (Existing Pavenens)<br>A5 Pave (Surface)Sem<br>A5 Pave (Binder)Sem<br>Concrete Pavenenel ISem<br>Centent Stabilized Sub-base 28em<br>Curring Sem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,500<br>(M)2,000,<br>(E)5,500,<br>(L)2,000 | 31,588          |

Note) (M):Material, (E):Equipment, (L):Labor

Your kind understanding on the above would be highly appreciated.

Very truly yours,

aul. Olivra

Minoru MIURA Chief Engineer / Road Design of Survey Team

c.c.: JICA Tajikistan Office Attachment: Technical Data-1 Report Attachment-8

Table of Result of Soil Test

| No. | Sta.             | Location    | Surface                    | Pavement         | Thic<br>Design | kness<br>Measur | Test<br>laborator | Depth | MDD               | омс      | CBR  | Clegg<br>Hummer | PL       | LL   | PI    | Classifi<br>cation | Water<br>conten | Particle<br>size<br>distributi | Cement<br>volume | Permeabl<br>e<br>coefficient | Remark     |  |      |      |  |  |  |
|-----|------------------|-------------|----------------------------|------------------|----------------|-----------------|-------------------|-------|-------------------|----------|------|-----------------|----------|------|-------|--------------------|-----------------|--------------------------------|------------------|------------------------------|------------|--|------|------|--|--|--|
|     |                  |             | condition                  | structure        | cm             | ement<br>cm     | У                 |       | g/cm <sup>3</sup> | %        | %    | %               | %        | %    | %     |                    | ر<br>%          | on (silt)<br>%                 | %                | cm/s                         |            |  |      |      |  |  |  |
|     |                  |             | Huge alligator             | Upper/lower base | 30             | 30              |                   |       | 0.                |          |      | Impossible      |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 1   | 1+317            | Carriageway | crack                      | Subgrade         | -              | -               | мот               | -0.7  | 1.810             | 10.8     | 18.9 | 59.7            | NP       | NP   | NP    |                    | 4.5             | 70.8                           |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            | AS Surface       | 10             | 8               |                   |       |                   |          |      | 119             |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 2   | 2+416            | Carriageway | Huge alligator<br>crack    | Base course      | 35             | 39              |                   |       |                   |          |      |                 |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            | Subgrade         | -              | -               |                   |       |                   |          |      | 21              |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 2   | 2 425            | Chouldor    | Carriageway                | Base             | 15             | 12              |                   |       |                   |          |      | 31              |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 3   | 2+425            | Shoulder    | allogator crack            | Subgrade         | -              | -               | MOT               | -0.5  | 1.815             | 10.2     | 10.3 | 11.6            | NP       | NP   | NP    |                    | 15.7            | 48.9                           |                  |                              |            |  |      |      |  |  |  |
|     |                  |             | Huge                       | Upper base       | 15             | 13              | Road laboratory   |       |                   |          |      | 24              | NP       | NP   | NP    | SF                 |                 | 24.1                           | Impossible       |                              |            |  |      |      |  |  |  |
| 4   | 4+476            | Carriageway | v alligator                | Lower base       | 10             | 9               | Road laboratory   |       |                   |          |      | 10              | 37.4     | 18.1 | 19.3  | GF                 |                 | 36.0                           | Impossible       |                              |            |  |      |      |  |  |  |
|     |                  |             | crack                      | Subgrade         | -              | -               | MOT               | -0.46 | 1.927             | 8.7      | 19.6 | 101             | NP       | NP   | NP    |                    | 6.5             | 81.9                           |                  |                              |            |  |      |      |  |  |  |
| 5   | 5+028            | Carriageway | Good part by               | Upper base       | 15             | 17.5            |                   |       |                   |          |      | Impossible      |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 5   | 3+028            | carriageway | alligator crack            | Lower base       | 10             | 4.0             |                   |       |                   |          |      | 18              |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
|     | 5+029 Carriagewa | Carriageway | Huge<br>alligator<br>crack | Upper base       | 15             | 16.5            | МОТ               |       |                   |          |      | 28.7            | NP       | NP   | NP    |                    | 5.7             | 4.16                           |                  |                              |            |  |      |      |  |  |  |
|     |                  | carragenay  |                            | Lower base       | 10             | 3.5             | MOT               |       |                   |          |      | 22              | 32.7     | 20.3 | 12.4  |                    | 12.5            | 22.6                           |                  |                              | Additional |  |      |      |  |  |  |
| 6   | 5+029            | Carriageway | Huge<br>alligator<br>crack | Upper base       | 15             | 16.5            | Road laboratory   |       |                   |          |      | 28.7            | NP       | NP   | NP    | GF                 |                 | 16.2                           | Impossible       |                              | laboratory |  |      |      |  |  |  |
|     |                  |             |                            | Lower base       | 10             | 3.5             | Road laboratory   |       |                   |          |      | 22              | 37.2     | 17.8 | 19.4  | GF                 |                 | 37.1                           | Impossible       |                              | afterward  |  |      |      |  |  |  |
|     |                  |             |                            | Lower base       | -              | -               | Center            |       |                   |          |      |                 |          |      |       |                    |                 |                                | 16.6             |                              |            |  |      |      |  |  |  |
|     |                  |             | Good                       | Base             | 15             | 15              |                   |       |                   |          |      | Impossible      |          |      |       |                    |                 |                                |                  |                              | -          |  |      |      |  |  |  |
| 7   | 6+352            | Shoulder    |                            | Subgrade —       | -              | -               | мот               | -0.5  | 1.817             | 11.8     | 11.4 | 16.6            | 32.4     | 20.8 | 11.6  |                    | 11.8            | 40.6                           |                  |                              | -          |  |      |      |  |  |  |
|     |                  |             |                            |                  | -              | -               | _                 | -1.1  | 1.997             | 6.4      | 19.6 | 31              | NP       | NP   | NP    |                    | 4.0             | 17.2                           |                  |                              |            |  |      |      |  |  |  |
| 8   | 6+904            | Carriageway | Type-4                     | Upper/lower base | 18             | 18              |                   |       |                   |          |      | 28.7            |          |      |       | -                  |                 |                                |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            |                  |                |                 |                   |       | Repair/Defect     | Subgrade | -    | -               | MOT      | -0.4 | 1.875 | 10.6               | 18.9            | 11                             | 25.8             | 19.4                         | 6.4        |  | 10.6 | 43.6 |  |  |  |
| 9   | 9+960            | Carriageway | Good                       | Upper/lower base | 25             | 25              |                   |       |                   |          |      | Impossible      |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            | Subgrade         | -              | 33              |                   |       |                   |          |      | 21              |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            | Base             | 15             | 15              |                   |       |                   |          |      |                 |          |      |       |                    |                 |                                |                  |                              |            |  |      |      |  |  |  |
| 10  | 12+607           | Shoulder    | Good                       | Subgrade         | -              | -               | мот               | -0.3  | 1.879             | 7.7      | 11.9 | 12              | NP       | NP   | NP    |                    | 11.9            | 23.9                           |                  |                              |            |  |      |      |  |  |  |
|     |                  |             |                            |                  | -              | -               |                   | -0.5  | 1.926             | 10.4     | 16.7 | 16.6            | NP       | NP   | NP    |                    | 10.9            | 60.9                           |                  |                              |            |  |      |      |  |  |  |
| 11  | 5+029            | Shoulder    |                            | -                | -              | -               | Road laboratory   |       |                   |          |      |                 |          |      |       | _                  |                 |                                |                  | 1.44E-05                     |            |  |      |      |  |  |  |
| 12  | STA22            | Borrow pit  |                            | Specimen-2       | -              | -               | Road laboratory   |       |                   |          |      |                 | 48.0     | 22.9 | 25.1  | Fm                 | 2.5             | 66.2                           |                  |                              |            |  |      |      |  |  |  |
| 14  | STA22            | Borrow pit  |                            | Specimen-1       | -              | -               | Road laboratory   |       |                   |          |      |                 | 85.3     | 29.1 | 20.2  |                    | 3.6             | 40.5                           |                  |                              |            |  |      |      |  |  |  |
| 10  | STA12            | Borrow pit  |                            | Specimen-2       | -              | -               | Road laboratory   |       |                   |          |      |                 | 54<br>ND | 23.7 | 28.3  |                    | 4.3             | 22.3<br>۸ ۸                    |                  |                              |            |  |      |      |  |  |  |
| 12  | STAT2            |             |                            | specifien-4      | -              | -               | nuad laboratory   |       |                   |          |      |                 | INP      | INP  | -     |                    | 0.1             | 4.4                            |                  |                              |            |  |      |      |  |  |  |

Table of Execution of Soil Tests

SF: Fine particle mix sand GF: Fine particle mix gravel Fn MDD: Max dry density OMC:Optimum moisture