THE HASHEMITE KINGDOM OF JORDAN MINISTRY OF WATER AND IRRIGATION (MWI) WATER AUTHORITY OF JORDAN (WAJ) YARMOUK WATER COMPANY (YWC)

THE PROJECT FOR THE STUDY ON WATER SECTOR FOR THE HOST COMMUNITIES OF SYRIAN REFUGEES IN NORTHERN GOVERNORATES IN THE HASHEMITE KINGDOM OF JORDAN

MASTER PLAN SEWERAGE

FINAL REPORT

JANUARY 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

TEC INTERNATIONAL CO., LTD. YACHIYO ENGINEERING CO., LTD. NIHON SUIDO CONSULTANTS CO., LTD.

THE HASHEMITE KINGDOM OF JORDAN MINISTRY OF WATER AND IRRIGATION (MWI) WATER AUTHORITY OF JORDAN (WAJ) YARMOUK WATER COMPANY (YWC)

THE PROJECT FOR THE STUDY ON WATER SECTOR FOR THE HOST COMMUNITIES OF SYRIAN REFUGEES IN NORTHERN GOVERNORATES IN THE HASHEMITE KINGDOM OF JORDAN

MASTER PLAN SEWERAGE

FINAL REPORT

JANUARY 2015

JAPAN INTERNATIONAL COOPERATION AGENCY

TEC INTERNATIONAL CO., LTD. YACHIYO ENGINEERING CO., LTD. NIHON SUIDO CONSULTANTS CO., LTD.

Currency Exchange Rates (JICA, September, 2014)

1 JD = 147.004 JPY = 1.4166 US\$ 1 US\$ = 103.77 JPY 1 US\$ =0.7059 JD

EXECUTIVE SUMMARY

1. Since the armed conflict in Syria in 2011 the influx of Syrian refugees has brought about large stress on the wastewater management facilities which cause overflows of wastewater and ceptage and insufficient wastewater treatment in the northern governorates in Jordan. In order to improve the sewerage service in northern governorates, the study has been initiated.

2. The Study is undertaken to formulate a master plan for sewerage system in order to identify the required improvements for the sewerage services in the Study area (Irbid, Ramtha, and Mafraq, refer to Figure 1.2 and 1.3 for locations), where the Syrian refugees are largely settled in the largest urban areas in the northern governorates. The Master Plan presents a sewerage development plan meeting the wastewater generation of 2035 Jordanian population, considering current level of Syrian refugees.

3. Even before the influx of Syrian Refugees, Water Authority of Jordan (WAJ) has developed and improved sewerage facilities to collect, convey and treat the wastewater generated in the Study area. At the Central Irbid wastewater treatment plant (WWTP) and Mafraq WWTP, the wastewater treatment process are modified enable to use the effluents for irrigation purposes and the construction work are underway.

4. Planning basis set for six sewerage district (SWD) are as shown below.

					D (1	34.0
	Central Irbid	Wadi Al-	Shallala	Wadi	Ramtha	Mafraq
Item	SWD	Arab SWD	SWD	Hassan	SWD	SWD
				SWD		
1) Service Area (ha) in 2035	696	4,613	6,523	1,453	2,483	3,770
2) Service Population in 2035	118,200	328,900	307,300	35,400	201,200	156,200
3) Design Flows						
Average Daily (m ³ /d)	10,880	28,430	22,520	2,490	17,270	14,360
Maximum Daily (m ³ /d)	12,720	33,260	26,360	2,920	20210	16,800
4) Design Influent Quality						
BOD_5 conc. (mg/L)	706	752	887	924	757	707
SS conc. (mg/L)	652	694	819	853	699	653
5) Design Effluent Quality						
BOD_5 conc.(mg/L)	30	30	30	30	30	60
SS conc.(mg/L)	30	30	30	30	30	60
NH_4^+ -N conc.(mg/L)	2.5	2.5	2.5	2.5	15	-
NO_3 -N conc. (mg/L)	30	30	30	30	25	70
T-N conc. (mg/L)	45	45	45	45	45	80

 Table 1 Planning Basis for Six SWDs

5. Based on the assessment results on capacity of the existing trunk sewers, lift pump station and WWTP, the required improvements are identified and the facility plan is prepared to achieve the design bases.

		Table 2 S	ewerage Improve	inent i fans foi	SIX S WDS	
Item	Central Irbid SWD	Wadi Al-Arab SWD	Shallala SWD	Wadi Hassan SWD	Ramtha SWD	Mafraq SWD
1) Branch Sewer	No need	200mm CP, 316 km	200mm CP, 257 km	200mm CP, 61 km	200mm CP, 216 km	200mm CP, 442km
2) Trunk Sewer	No need	No need	200mm CP 3.3km long, 400mm CP 4.6km long	No need	300mm CP, 4.3 km long, 150mm DIP, 2.4km long 200 mm DIP, 4.7km long, 200mm DIP, dual installation, 5.25km long, 200mm DIP, triple installation, 5.16km long	300mm CP, 19km, 200mm DIP, 23 km, 250mm DIP 4km
3) Lift Station	No need	Hakama LS increase capacity of 2.32 m ³ /min	Maghayer Manhole Pump and Al Hoson LS, capacity increase 1.42 m ³ /min.	(Al Hoson LS is to be shifted to Shallala SWD)	4 manhole pumps	Mansha LS, capacity of 3.25 m ³ /min, Mafraq LS, capacity of 2.14 m ³ /min
4) WWTP	Sludge De- hydrator	three sets of aeration tank and final sedimentation tank, capacity 3,500 m ³ /d each	one primary sedimentation tank, two oxidation ditches, and one final sedimentation tank, to cover the design flow increase of 8,520 m^3/d .	20 sludge drying beds. capacity is 1,200 m ³ /d.	two sets of aeration tank and final sedimentation tank and sludge de-hydrator, Capacity 4,400 m ³ /d each.	Two lines of treatment facilities, capacity 3,600 m ³ /d each

Table 2 Sewerage Improvement Plans for Six SWDs

6. Facility construction plan by three phases are proposed considering the priorities of new sewerage service area. The service population is assumed to set connection rate to identify the timing of expansion of treatment capacity at the respective WWTP. The project cost is estimated for each phases for six SWDs.

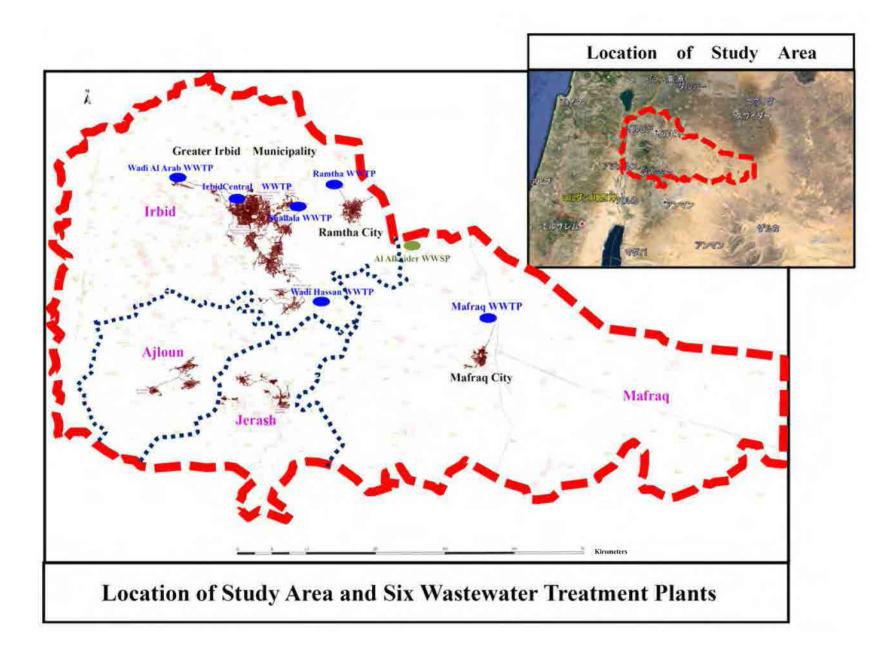
		uble o impleme				
Phase	Central Irbid SWD	Wadi Al-Arab SWD	Shallala SWD	Wadi Hassan SWD	Ramtha SWD	Mafraq SWD
Phase-1 (Y2017-21)	1) Sludge de-hydrator	1)Br. sewer 168km, 2)Hakama LS 2.32 m ³ /min, 3)WWTP: one set of aeration tank and final sedimentation tank, capacity 3,500 m ³ /d	1)Br. Sewer 90km, 2)Trunk sewer 3.3km, 3)Maghayer Manhole Pump	No plan	1)Br. Sewer 66km 2) Trunk Sewer 4.3 km (300CP) 3)One set of aeration tank and final sedimentation tank, capacity 4,400 m ³ /d and sludge de- hydrator	1)Br. Sewer 122km 2)Trunk Sewer, 15km(300CP), 3km (200DIP) 3) Mansha LS, capacity of 3.25 m ³ /min 4)One line of facilities, capacity 3,600 m ³ /d
Direct Cost (Million JD)	1.200	24.024	11.397	0	14.192	22.962
Indirect Cost (Million JD)	0.535	11.069	5.080	0	6.325	10.235

Table 3 Implementation Schedule and Cost Estimates

Phase	Central Irbid SWD	Wadi Al-Arab SWD	Shallala SWD	Wadi Hassan SWD	Ramtha SWD	Mafraq SWD
Phase-1 Project Cost (Million JD)	1.735	35.093	16.477	0	20.517	33.197
Phase-2 (Y2022-26)	No plan	1)Br. Sewer 88km 2)WWTP: one set of aeration tank and final sedimentation tank, capacity 3,500 m ³ /d	1)Br. Sewer 39km 2) Trunk Sewer 4.6km (400 CP) 3) Al Hoson LS is shifted from Wadi Hasan SWD, with capacity increase 1.42 m ³ /min	1)Br. Sewer 18km 2)WWTP: 20 sludge drying beds	1)Br. Sewer 53km	1)Br. Sewer 164km 2)Trunk Sewer, 4 km(300CP) 3) Mafraq LS, capacity of 2.14 m ³ /min 4)One line of facilities, capacity 3,600 m ³ /d
Direct Cost (Million JD)	-	13.700	5.965	2.403	6.355	25.691
Indirect Cost (Million JD)	-	6.413	2.660	1.070	2.833	11.451
Phase-2 Project Cost (Million JD)	-	20.113	8.625	3.473	9.188	37.142
Phase-3 (Y2027-32)	No plan	1)Br. Sewer 61km 2)WWTP: one set of aeration tank and final sedimentation tank, capacity 3,500 m ³ /d	1)Br. Sewer 129km 2) one primary sedimentation tank, two oxidation ditches, and one final sedimentation tank, to cover the design flow increase of 8,520 m ³ /d.	1) Br. Sewer 43km	1)Br. Sewer 97km 2)Trunk Sewer 150-200mm DIP 3) 4 manhole pumps 4)One set of aeration tank and final sedimentation tank	1)Br. Sewer 156km 2)Trunk Sewer, 4km (250DIP)
Direct Cost (Million JD)	-	10.549	24.967	5.137	19.616	19.584
Indirect Cost (Million JD)	-	5.008	11.128	2.289	8.742	8.728
Phase-3 Project Cost (Million JD)	-	15.557	36.095	7.426	28.358	28.312
Total Project Cost (Million JD)	1.735	70.763	61.197	10.899	58.063	98.651
Grand Total Project Cost (Million JD)						301.308

7. The economic evaluation is carried out based on the benefits and costs. The evaluation reveals that the EIRR of the project results in 18.6% as a whole, which exceed 10% of the opportunity cost of capital though the EIRRs vary from SWD to SWD. Therefore, the project is judged to be economically feasible.

8. The financial evaluation is carried out based on the revenues and costs. The evaluation reveals the


FIRRs of every SWD do not exceed 6% of the opportunity cost of capital. And the project results in - 11.6% as a whole. It is apparent that the low level of present sewerage tariff and the huge project costs are the major reasons for the negative FIRR. Therefore the increase of sewerage tariff and the government grant to a part of the project cost are recommended to make the project financially feasible. Meanwhile, even though tariff increase and grants, the project net cash flow will be negative until the end of the phase-3. For this, the WAJ subsidies are required until the phase-3 to sustain the project financially.

10. The phase-1 project of Central Irbid SWD is recommended to implement as soon as possible, because the proposed sludge dewatering facilities for Central Irbid SWD are essential to treat and dispose of properly.

11. To suggest implementation priorities to the proposed phase-1 projects of four SWD, these projects are compared and evaluated with four parameters: increased number of beneficiaries, need to expand the sewerage services, increased population coverage ratio, and cost performance. The phase-1 project of Shallala SWD gets the first priority and that of Wadi Al-Arab SWD gets the second priority. Both projects may be easier to implement because of less financial burdens to WAJ and YWC, in which the existing WWTP facilities could be used efficiently without any investment (Shallala SWD) and with smaller investment (Wadi Al-Arab) compared with cases of Ramtha SWD and Mafraq SWD. Therefore, JICA Study Team recommends both phase-1 projects of Shallala SWD and Wadi Al-Arab SWD are implemented as priority projects.

12. Due to the huge costs, the phase-1 project of Mafraq SWD may be difficult to implement. The project of Mafraq SWD is expected to mitigate the Syrian refugees impacts to the wastewater management of community. However, from the financial viewpoints, the phase-1 project should be modified to smaller investment plan such as service area would be limited only to urban city center and to stop the service provision to Manshiyah Bani Hassan. To realize the sewerage service provision to the area of Manshiyah Bani Hassan, financial supports from WAJ and foreign donors are indispensable.

13. Environmental and social impacts are expected during construction period like noise, vibration, odor etc., and the negative impacts are not expected to be significant. These impacts can be mitigated by appropriate measures. For this, monitoring plan is proposed. One more concern is occurrence of antiquities during excavation for construction. If found, the consultation with the concerned agency is required.

TABLE OF CONTENTS

СНА	PTER 1 INTRODUCTION ·····	1 - 1
1.1	Study Background	1 - 1
1.2	Goal, Outputs and Objectives of the Project ·····	1 - 1
1.3	Sewerage Component ·····	1 - 2
1.4	Study Area ·····	1 - 4
1.5	Planning Horizon ·····	1 - 6
1.6	Report Components	1 - 6
СНА	PTER 2 EXISTING CONDITIONS OF THE STUDY AREA	2 - 1
2.1	Socio-Economic Conditions	2 - 1
2	2.1.1 Administrative Organization and Boundary	2 - 1
	2.1.2 Economy	2 - 3
2	2.1.3 Population	2 - 4
2	2.1.4 Household Income and Expenditure	2 - 6
	2.1.5 Health Status	2 - 8
2.2	Natural Conditions	2 - 9
2	2.2.1 Meteorology	2 - 9
2	2.2.2 Topography	2 - 11
2	2.2.3 Hydrogeology ·····	2 - 11
2.3	City Plans ·····	2 - 14
2	2.3.1 Irbid and Surburbs	2 - 14
2	2.3.2 Ramtha City	2 - 17
2	2.3.3 Mafraq City	2 - 18
2.4	Institution and Organization of Water Sector	2 - 18
2	2.4.1 Policies, Laws, and Regulations	2 - 18
2	2.4.2 Organization	2 - 22
СНА	PTER 3 EXISTING WASTEWATER MANAGEMENT	3 - 1
3.1	Existing Wastewater Management in the Northern Governorates	3 - 1
	8.1.1 On-site Wastewater Treatment Facilities and Management	3 - 1
	8.1.2 Off-site Wastewater Treatment Facilities and Management	3 - 3
3.2	Existing Sewerage Facilities in Irbid, Ramtha and Mafraq Governorates	3 - 11
3	3.2.1 Iribid City and its suburbs ······	3 - 11
	8.2.2 Ramtha	3 - 13
3	3.2.3 Mafraq ·····	3 - 14

3.3		sisting Plans and On-going Projects	3 - 15
		Existing Plans ·····	3 - 15
3		On-going Projects	3 - 17
3.4		peration and Maintenance	3 - 19
3	8.4.1	YWC Organization	3 - 19
		Financial Conditions	3 - 26
3		YWC's Financial Status	3 - 29
3.5	Se	werage Improvement Plan	3 - 31
СНА			4 - 1
		nning and Design Basis ·····	4 - 1
		Service Area	4 - 1
		Service Population	4 - 1
		Design Flows	4 - 1
		Design Wastewater Quality	4 - 2
		eater Irbid Municipality	4 - 5
		Service Area	4 - 5
		Service Population	4 - 11
		Design Flows	4 - 13
		Design Wastewater Quality	4 – 16
		mtha District ·····	4 - 18
		Service Area	4 - 18
		Service Population	4 - 22
		Design Flows	4 - 22
2		Design Wastewater Quality	4 - 22
4.4		eater Mafraq Municipality	4 - 24
		Service Area	4 - 24
		Service Population	4 - 28
		Design Flows	4 - 30
Ζ	1.4.4	Design Wastewater Quality	4 - 31
CHA			5 - 1
5.1		isting Capacity of Sewerage Facilities	5 - 1
		Assessment of Trunk Sewers	5 - 1
		Assessment of Lift Stations and WWTPs	5 -14
5.2		tionale for Sewer Improvement ·····	5 -16
5	5.2.1	Trunk Sewers	5 -16

5.2.2 Branch Sewers ·····	5 -17
5.2.3 House Connection ·····	5 -18
5.3 Sewerage Improvement Plan in Central Irbid SWD	5 -18
5.3.1 WWTP Improvement Plan	5 -18
5.4 Sewerage Improvement Plan in Wadi Al-Arab SWD	5 -21
5.4.1 Trunk Sewer and Lift Stations	5 -21
5.4.2 Branch Sewers	
5.4.3 Wadi Al-Arab WWTP	5 -21
5.5 Sewerage Improvement Plan in Shallala SWD	5 -24
5.5.1 Sewer and Lift Station	····· 5 -24
5.5.2 Branch Sewers	
5.5.3 Shallala WWTP	5 -26
5.6 Sewerage Improvement Plan in Wadi Hassan SWD	5 -28
5.6.1 Lift Station	
5.6.2 Branch Sewers	
5.6.3 Wadi Hassan WWTP	5 -28
5.7 Sewerage Improvement Plan in Ramtha SWD	5 -31
5.7.1 Trunk Sewer and Manhole Pump ·····	
5.7.2 Branch Sewer ·····	
5.7.3 Ramtha WWTP	5 -33
5.8 Sewerage Improvement Plan in Mafrfaq SWD	
5.8.1 Sewer and Lift Station	
5.8.2 Branch Sewer ·····	
5.8.3 Mafraq WWTP	5 -36
CHAPTER 6 INSTITUTIONAL DEVELOPMENT PLAN	
AND CAPACITY DEVELOPMENT PLAN ·····	6-1
6.1 Institutional Development Plan	6 - 1
6.1.1 Organization Arrangement	
6.1.2 Key Issues for Institutional Development	
6.1.3 Staffing Plan	
6.2 Capacity Development Plan	6 -11
6.2.1 Outline of Capacity Development	
	_ 1

CHA	PTER 7 IMPLEMENTATION PLAN ······	7 -1
7.1	General Implementation Schedule	7 -1
7.2	Sewerage Facility Development Plan	7 -1

7.2.1 General	7 - 1
7.2.2 Central Irbid SWD	7 - 2
7.2.3 Wadi Al-Arab SWD	7 - 4
7.2.4 Shallala SWD	7 - 7
7.2.5 Wadi Hassan SWD	7 - 11
7.2.6 Ramtha SWD	7 - 14
7.2.7 Mafraq SWD	7 - 18
7.3 Construction Schedule for Sewerage Facilities	7 - 21
7.3.1 General	7 - 21
7.3.2 Construction Schedule ·····	7 - 21
CHAPTER 8 PROJECT COST ESTIMATE ·····	8 - 1
8.1 Basis of Cost Estimate	8 - 1
8.1.1 General	8 - 1
8.1.2 Basis of Cost Estimate	8 - 1
8.1.3 Direct Costs	8 - 1
8.1.4 Indirect Costs	8 - 7
8.1.5 Operation and Maintenance Cost	8 - 8
8.2 Project Cost by Sewerage District	8 - 9
8.2.1 Project Cost of Central Irbid SWD	8 - 9
8.2.2 Project Cost of Wadi Al-Arab SWD	8 - 10
8.2.3 Project Cost of Shallala SWD	8 - 12
8.2.4 Project Cost of Wadi Hassan SWD	8 - 13
8.2.5 Project Cost of Ramtha SWD	8 - 14
8.2.6 Project Cost of Mafraq SWD	8 - 16
8.3 Disbursement Schedule by Sewerage District	8 - 19
CHAPTER 9 ECONOMIC AND FINANCIAL EVALUATION	9 -1
9.1 Economic Evaluation ·····	9 -1
9.1.1 Specifications for Economic Evaluation	9 -1
9.1.2 Project Benefits	9 -1
9.1.3 Project Costs	9 -1
9.1.4 Results of Economic Evaluation	9 -2
9.2 Financial Evaluation	9 -4
9.2.1 Incremental Revenues	9 -4
9.2.2 Financial Costs	9 -5
9.2.3 Results of Financial Evaluation	9 -5

9.2.4	Financial Consideration for Investment Costs	9 -7
СНАРТЕ		10 - 1
	nvironmental and Social Considerations ·····	10 - 1
	Outline of the Sewerage Improvement Plan	10 - 1
10.1.2	Current Status of Environment and Society	10 - 3
10.1.3	Laws and Organization of Environmental and Social Considerations	10 - 7
10.1.4	Examination of Development Alternatives	10 -11
10.1.5	Scoping and Terms of Reference of Environmental and Social Considerations \cdots	10 -12
10.1.6	Result of the Survey on Environmental and Social Considerations	10 -15
	Evaluation of the Effect	10 -17
	Mitigation Measures and Cost	10 - 21
	Monitoring Plan	10 -23
10.1.10) Stakeholder's Meeting	10 - 25
10.2 La	and Acquisition and Resettlement	10 -26
10.3 O	thers ·····	10 -26
10.3.1	Draft Monitoring Form ·····	10 -26
10.3.2	Checklist for Environmental and Social Considerations	10 -26
	R 11 PRIORITY PROJECTS	11 1
CHAPTE	urpose	11 -1
		11 -1
	valuation Parameters	11 -1
11.3 Ir	nplementation Priorities for Phase-1 Projects	11 -3
СНАРТЕ	R 12 CONCLUSTION AND RECOMMENDATIONS	12 -1
12.1 C	onclusion ·····	12 -1
12.2 R	ecommendations ·····	12 -2

LIST OF APPENDICES

APPENDIX I ALLOCATION OF SERVICE POPULATION
FOR EACH SEWERAGE SUB DISTRICT ······ AppendixI-1
APPENDIX II REQUIRED LENGTH AND COST OF BRANCH SEWER
FOR EACH SEWERAGE DISTRICT ······ AppendixII-1
APPENDIX III-A CAPACITY CALCULATION FOR EXISTING AND
CONSTRUCTING FACILITIES OF EACH WWTP ····· AppendixIII-A-1
APPENDIX III-B CAPACITY CALCULATION FOR PLANNED FACILITY OF
EACH WWTP IN MASTER PLAN ······ AppendixIII-B-1
APPENDIX IV RESULTS OF ECONOMIC EVALUATION AppendixIV-1
APPENDIX V LEGAL FRAMEWORK AND PROCEDURE ON
LAND ACQUISITION ······ AppendixV-1

LIST OF TABLE

Table 2.1 GDP and its Growth Rate in Jordan	2 - 4
Table 2.2 Governorate Population	2 - 4
Table 2.3 Syrian Refugees Registered with UNHCR	2 - 5
Table 2.4 Syrian Refugees and Jordanian Population in the Northern Governorates	2 - 5
Table 2.5 Projected Jordanian Population and Syrian Refugees in the	
Northern Governorates ·····	2 - 6
Table 2.6 Average Households Income Employment of the Northern Governorates	2 - 7
Table 2.7 Distribution of Households by Governorate and	
Household Expenditure Group	2 - 7
Table 2.8 Birth and Mortality Rate of Irbid Governorate	2 - 8
Table 2.9 Birth and Mortality Rate of Mafraq Governorate	2 - 9
Table 2.10 Geological Formations	2 - 12
Table 2.11 Main Aquifer from the Top	2 - 14
Table 2.12 Existing Plans, Strategies, Polotics, and Legislations	2 - 19
Table 3.1 Sewerage Service Population in Four Northern Governorates,	
Amman and Jordan ·····	3 - 3
Table 3.2 Present Sewerage Services in Ajloun Governorate	3 - 4
Table 3.3 Outline of the Kufranjah WWTP in Ajloun Governorate	3 - 4
Table 3.4 SWMP Proposal on Sewerage Development for Ajloun Governorate	3 - 4
Table 3.5 Present Sewerage Services in Jerash Governorate	3 - 7
Table 3.6 General Information on Existing WWTPs in Jerash Governorate	3 - 9
Table 3.7 SWMP Proposal on Sewerage Development for Jerash Governorate	3 - 9
Table 3.8 Existing Sewers in Irbid and Suburbs	3 - 11
Table 3.9 Outline of Existing Lift Stations in Irbid and its suburbs	3 - 11
Table 3.10 Existing WWTPs in Irbid and its Suburbs	3 - 12
Table 3.11 Existing Sewers in Ramtha	3 - 13
Table 3.12 General Information on Ramtha WWTP	3 - 13
Table 3.13 Existing Sewers in Mafraq	3 - 14
Table 3.14 Outline of the Mafraq WWTP	3 - 15
Table 3.15 Water and Sanitation Sector Projects in National Resilience Plan	3 - 16
Table 3.16 Sewerage Plans to be Implemented (as of May 2014)	3 - 17
Table 3.17 Major On-going Sewerage Projects (as of May 2014)	3 - 17
Table 3.18 Staff composition of YWC by Cost Center	3 - 20
Table 3.19 Staff numbers and staffing ratio per connection (2006-2014)	3 - 21
Table 3.20 Activities of Directorates of the YWC	3 - 22

Table 3.21 Staff Composition of Sewerage Section in Irbid ROU	3 - 25
Table 3.22 The management system for WWTP and Lift stations	3 - 25
Table 3.23 Residential tariff structure	3 - 26
Table 3.24 Non-residential tariff structure	3 - 26
Table 3.25 Consolidated Profit and Loss Statement of WAJ (JD in thousands)	3 - 28
Table 3.26 Consolidated Balance Sheet of WAJ (JD in thousands)	3 - 28
Table 3.27 Consolidated Cash Flow (CF) Statement of WAJ (JD in thousands)	3 - 29
Table 3.28 Profits and Loss Statement of YWC (JD in thousands)	3 - 30
Table 3.29 Balance Sheet of YWC (JD in thousands)	3 - 31
Table 3.30 Cash Flow Statement of YWC (JD in thousands)	3 - 31
Table 4.1 Per Capita Water Consumption used for Wastewater Generation	4 - 1
Table 4.2 Peaking Factors	4 - 2
Table 4.3 Allowable Limits for Discharging to Stream, Wadis and Reservoirs (A)	4 - 3
Table 4.4 Allowable Limits for Groundwater Recharge (Ba)	4 - 4
Table 4.5 Allowable Limits for Irrigation Purposes (Bb)	4 - 4
Table 4.6 Allowable Limits of Hazardous Substances	4 - 4
Table 4.7 Present Sewerage Service Area in each Sewerage District	4 - 6
Table 4.8 Existing and Projected Population and	
Housing Units in the UGA of GIM	4 - 9
Table 4.9 Distribution of Syrian refugees	4 - 9
Table 4.10 Sewerage Service Area in Greater Irbid Municipality (GIM)	4 -10
Table 4.11 Sewerage Service Population for Four Sewerage Districts in GIM	4 -12
Table 4.12 Calculation of Design Flows for Central Irbid SWD	4 -13
Table 4.13 Calculation of Design Flows for Wadi Al-Arab SWD······	4 -14
Table 4.14 Calculation of Design Flows for Shallala SWD	4 -15
Table 4.15 Calculation of Design Flows for Wadi Hassan SWD	4 -15
Table 4.16 Design Influent Quality for Four Sewerage Districts in GIM	4 -16
Table 4.17 Current Use of Treated Effluent and Allowable Limits	
for Four WWTPs	4 -16
Table 4.18 Planned Design Treated Wastewater Quality for Two WWTPs	4 -17
Table 4.19 Applied Design Effluent Quality for Four WWTPs	4 -17
Table 4.20 Syrian Refugees Numbers in Ramtha District	4 -20
Table 4.21 Sewerage Service Area in Ramtha District	4 -20
Table 4.22 Sewerage Service Population for Ramtha District	4 -22
Table 4.23 Calculation of Design Flows for Ramtha SWD	4 -22
Table 4.24 Design Influent Quality for the Ramtha WWTP	4 -23

Table 4.25 Current Use of Treated Effluent at Ramtha WWTP and	
Allowable Limits in Treated Effluent	4 -23
Table 4.26 Design Effluent Quality for Ramtha WWTP	4 -23
Table 4.27 Syrians Refugees in Mafraq Oasabah District	4 -26
Table 4.28 Sewerage Service Area in Mafraq	4 -27
Table 4.29 (a) Present Population in Greater Mafraq Municipality	4 -29
Table 4.29 (b) Population in 2035 in Greater Mafraq Municipality	4 -29
Table 4.30 Calculation of Design Flows for Mafraq SWD	4 - 30
Table 4.31 Design Influent Quality for the Mafraq WWTP	4 -31
Table 4.32 Current Use of Treated effluent at Mafraq WWTP and Allowable Limits	4 -31
Table 4.33 Design Treated Effluent Quality for Mafraq WWTP	4 -31
Table 5.1 Minimum and Maximum Velocity	
Table 5.2 Minimum and Maximum Slope	
Table 5.3 Roughness Coefficients	5 - 3
Table 5.4 Standards for Concrete and Reinforced Pipes in Jordan	5 - 4
Table 5.5 Capacity Assessment of the Existing Trunk Sewers in Irbid Central SWD	5 - 6
Table 5.6 Capacity Assessment of the Existing Trunk Sewers in Wadi Al-Arab SWD	5 - 7
Table 5.7 Capacity Assessment of the Existing Trunk Sewers in Shallala SWD	5 - 8
Table 5.8 Capacity Assessment of the Existing Trunk Sewers in Wadi-Hassan SWD	5 - 9
Table 5.9 Capacity Assessment of the Existing Trunk Sewers in Ramtha SWD	5 -10
Table 5.10 Capacity Assessment of the Existing Trunk Sewers in Mafraq SWD (1)	5 -11
Table 5.11 Capacity Assessment of the Existing Trunk Sewers in Mafraq SWD (2)	5 -12
Table 5.12 Present Pump Capacity and the Design Flows for Each Lift Station	5 -14
Table 5.13 Present Treatment Capacity and Design Flows for Each WWTP	5 -15
Table 5.14 Actual and Design Influent and Effluent Quality for Each WWTP	5 -15
Table 5.15 Existing Branch Sewers Length Per Unit Service Area	5-18
Table 5.16 Expansion Plan for Central Irbid WWTP	5 -19
Table 5.17 Design Capacity of Wadi Al-Arab WWTP	5-21
Table 5.18 Expansion Plan for Wadi Al-Arab WWTP	5 -22
Table 5.19 Design Capacity of Shallala WWTP	5-26
Table 5.20 Expansion Plan for Shallala WWTP	5 -26
Table 5.21 Design Capacity of Wadi Hassan WWTP	5-28
Table 5.22 Expansion Plan for Wadi Hassan WWTP	5 -29
Table 5.23 Design Capacity of Ramtha WWTP	5-33
Table 5.24 Expansion Plan for Ramtha WWTP	5 -33
Table 5.25 Design Capacity of Mafraq WWTP	5-36

Table 5.26 Case 1 Expansion Plan for Mafraq WWTP	5 -37
Table 5.27 Case 2 Expansion Plan for Mafraq WWTP	5 -39
Table 6.1 Staffing for ROU Sewerage Station	6 - 2
Table 6.2 Staffing for Central Irbid WWTP	6 - 6
Table 6.3 Staffing for Wadi Al-Arab WWTP	6 - 6
Table 6.4 Staffing for Shallala WWTP	6 - 7
Table 6.5 Staffing for Wadi Hassan WWTP	6 - 7
Table 6.6 Staffing for Ramtha WWTP	6 - 8
Table 6.7 Staffing for Mafraq WWTP	6 - 8
Table 6.8 Staff for Sewer Maintenance by the ROU Office	6 - 9
Table 6.9 Staff required for Lift Stations	6 - 9
Table 6.10 Staff Numbers and Staffing Productivity per Connection (2006-2014)	6 -10
Table 6.11 Staff Productivity of Jordan and Other Upper-Middle Income Countries	6 -10
Table 6.12 Projection of Appropriate Staffing Level	6 -11
Table 6.13 Summary of Capacity Assessment	6 -13
Table 6.14 Training Areas for Capacity Development of YWC	6 -17
Table 7.1 House Connection Ratio for Central Irbid SWD	7 - 2
Table 7.2 House Connection Ratio for Wadi Al-Arab SWD	7 - 5
Table 7.3 Branch Sewers for Wadi Al-Arab SWD	7 - 5
Table 7.4 House Connection Ratio for Shallala SWD	7 - 9
Table 7.5 Branch Sewers for Shallala SWD	7 - 9
Table 7.6 Trunk Sewers for Shallala SWD	7 - 9
Table 7.7 House Connection Ratio for Wadi Hassan SWD	7 - 12
Table 7.8 Branch Sewers for Wadi Hassan SWD	7 - 12
Table 7.9 House Connection Ratio for Ramtha SWD	7 - 14
Table 7.10 Branch Sewers for Ramtha SWD	7 - 16
Table 7.11 Trunk Sewers for Ramtha SWD·····	7 - 16
Table 7.12 House Connection Ratio for Mafraq SWD	7 - 18
Table 7.13 Branch Sewers for Mafraq SWD	7 - 19
Table 7.14 Trunk Sewers for Mafraq SWD	7 - 19

Table 8.1 Unit Construction Cost of Concrete Pipe in SWMP	8 - 2
Table 8.2 Unit Construction Cost of Sewers based on 2014 Detailed Design	8 - 3
Table 8.3 Unit Construction Cost of Concrete Pipe for Trunk and Branch Sewers	8 - 3
Table 8.4 Unit Construction Cost of Ductile Iron Pipe for Trunk Sewers	8 - 3

Table 8.5 Share of Construction Cost among Facility Components	8 - 4
Table 8.6 Unit Construction Cost Used for Extended Aeration and	
Oxidation Ditch Processes	8 - 5
Table 8.7 Expansion Cost of Mafraq WWTP (Design Capacity of 6,550m³/d)	8 - 5
Table 8.8 Unit Construction Cost for New Lift Station	8 - 7
Table 8.9 Unit Construction Cost for Expansion of Existing Lift Station	8 - 7
Table 8.10 Construction Cost of Sludge Treatment Facilities at Central Irbid WWTP	8 - 9
Table 8.11 Project Cost by Phase for Central Irbid SWD	8 - 10
Table 8.12 Sewer Construction Cost by Phase for Wadi Al-Arab SWD	8 - 10
Table 8.13 Construction Cost for Expansion of Hakama LS	8 - 11
Table 8.14 Construction Cost of Wastewater Treatment Facilities at Wadi Al-Arab WWTP	8 - 11
Table 8.15 Project Cost by Phase for Wadi Al-Arab SWD	8 - 11
Table 8.16 Sewer Construction Cost by Phase for Shallala SWD	8 - 12
Table 8.17 Construction Cost for Expansion of Al Hoson Camp LS	8 - 12
Table 8.18 Construction Cost of Wastewater Treatment Facilities at Shallala WWTP	8 - 13
Table 8.19 Project Cost by Phase for Shallala SWD	8 - 13
Table 8.20 Sewer Construction Cost by Phase for Wadi Hassan SWD	8 - 14
Table 8.21 Project Cost by Phase for Wadi Hassan SWD	8 - 14
Table 8.22 Sewer Construction Cost by Phasing for Ramtha SWD	8 - 15
Table 8.23 Construction Costs of Wastewater Treatment Facilities at Ramtha WWTP	8 - 15
Table 8.24 Construction Cost of Sludge Treatment Facilities at Ramtha WWTP	8 - 16
Table 8.25 Project Cost by Phase for Ramtha SWD	8 - 16
Table 8.26 Sewer Construction Cost by Phase for Mafraq SWD	8 - 17
Table 8.27 Construction Cost of New Mansha LS	8 - 17
Table 8.28 Construction Cost of New Mafraq LS	8 - 17
Table 8.29 Construction Cost for One Series of Treatment Facilities at Mafraq WWTP	8 - 18
Table 8.30 Project Cost by Phase for Mafraq SWD	8 - 18
Table 8.31 Disbursement Schedule of Phase-1 Project for Central Irbid SWD	8 - 20
Table 8.32 Annual O&M Cost for Central Irbid SWD	8 - 20
Table 8.33 Disbursement Schedule for Wadi Al-Arab SWD	8 - 21
Table 8.34 Annual O&M Cost for Wadi Al-Arab SWD	8 - 22
Table 8.35 Disbursement Schedule for Shallala SWD	8 - 23
Table 8.36 Annual O&M Cost for Wadi Shallala SWD	8 - 24
Table 8.37 Disbursement Schedule for Wadi Hassan SWD	8 - 25
Table 8.38 Annual O&M Cost for Wadi Hassan SWD	8 - 26
Table 8.39 Disbursement Schedule for Ramtha SWD	8 - 27
Table 8.40 Annual O&M Cost for Ramtha SWD	8 - 28

Table 8.41 Disbursement Schedule for Mafraq SWD	8 - 29
Table 8.42 Annual O&M Cost for Mafraq SWD	
Table 9.1 Specification for Economic Evaluation	9 - 1
Table 9.2 Manners to estimate Sewage Disposal Expenditures	9 - 1
Table 9.3 Investment Costs (JD million)	9 - 2
Table 9.4 O & M Costs (JD million)	9 - 2
Table 9.5 Results of Economic Evaluation	9 - 3
Table 9.6 Sensitivity Analysis of Overall Project	9 - 3
Table 9.7 Specifications for Financial Evaluation	9 - 4
Table 9.8 Results of Financial Evaluation	9 - 5
Table 9.9 Results of Sensitivity Analysis	9 - 6
Table 9.10 Net Cash Flow (JD million)	9 - 7
Table 9.11 Expenditure Budget of Government (million JD)	9 - 7
Table 9.12 Expenditure Budget of WAJ (million JD)	9 - 8
Table 9.13 Capital Budget by Sector totaling MWI and WAJ (million JD)	9 - 8
Table 9.14 Annual Average Project Investment Costs by Phase (million JD)	9 - 8
Table 9.15 Comparison of Capex Budget to Investment Costs	9 - 9
Table 9.16 Sources of Funds for Sewerage Sector Capex (million JD)	9 - 9
Table 10.1 Components of the Sewerage Plans subject to Environmental and	
Social Considerations (1)	10-1
Table 10.2 Components of the Sewerage Plans subject to Environmental and	
Social Considerations (2) ·····	10-2
Table 10.3 Natural Conservation Area in the Northern 4 Governorates	10-4
Table 10.4 Sites around the Project Area where remains have been found in past	10-6
Table 10.5 Projects Subject to EIA and IEE	10-8
Table 10.6 Development Alternatives	10-11
Table 10.7 Scoping (the Master Plan for Wastewater)	10-12
Table 10.8 TOR of Examination of Environmental and Social Considerations	10-15
Table 10.9 Result of Examination of Environmental and Social Considerations	10-16
Table 10.10 Scoping Plan and Result of Examination	10-18
Table 10.11 Mitigation Measures and Cost	10-21
Table 10.12 Monitoring Plan	10-24
Table 10.13 Timetable and Agenda of the Stakeholder's Meeting	10-25

Table 11.1 Features of the Proposed Phase-1 Project of Four SWDs11-2

 Table 11.2 Priority Projects Among the Proposed Phase-1 Projects
 11-3

LIST OF FIGURES

Figure 1.1 Process for Formulation of Sewerage Development Plan	1 - 3
Figure 1.2 Northern Governorates (1)	1 - 4
Figure 1.3 Northern Governorates (2)	1 - 5
Figure 2.1 Liwa in Irbid Governorate	2 - 2
Figure 2.2 Greater Irbid Municipality with Urban Growth Area	2 - 3
Figure 2.3 Syrian refugees Registered with UNHCR.	2 - 5
Figure 2.4 Projected Jordanian Population and Total Population including	
Syrian Refugees	2 - 6
Figure 2.5 Household Expenditure Survey Results 2010	2 - 8
Figure 2.6 Mean Maximum and Minimum Temperature in Irbid City (30-years period) ·····	2 - 10
Figure 2.7 Mean Maximum and Minimum Temperature in Mafraq City (47-years period) ···	2 - 10
Figure 2.8 Mean Monthly Rainfall in Irbid City (30-year period)	2 - 10
Figure 2.9 Mean Monthly Rainfall in Mafraq City (58-year period)	2 - 11
Figure 2.10 Geology in Jordan ·····	2 - 13
Figure 2.11 Residential Intensification and Expansion Area in Irbid and its Suburbs	2 - 15
Figure 2.12 Land Use Plan in Irbid ·····	2 - 16
Figure 2.13 Land Use Plan in Ramtha City	2 - 17
Figure 2.14 Water Supply Plan of Mafraq	2 - 18
Figure 2.15 Organization of the Water Sector	2 - 22
Figure 3.1 Issues for On-site Sanitation Management in the Host Communities	3 - 2
Figure 3.2 Existing Sewerage System in Ajloun Governorate	3 - 5
Figure 3.3 Location Where No Sewerage System And Two	
Localities Proposed as Priority II project in SWMP	3 - 6
Figure 3.4 Existing Sewerage System in Jerash Governorate	3 - 8
Figure 3.5 Localities of Baliela and Kofor Khall,	
Proposed as Priority II project in SWMP ·····	3 - 10
Figure 3.6 Location of Existing Lift Stations in Irbid and its Suburbs	3 - 12
Figure 3.7 Location of Existing WWTPs in Irbid	3 - 13
Figure 3.8 Location of the Ramtha WWTP	3 - 14
Figure 3.9 Location of the Mafraq WWTP	3 - 15
Figure 3.10 Upgraded and Costructing Facilities at Mafraq WWTP	3 - 18
Figure 3.11 Rehabilitation Financed by KfW at Central Irbid WWTP	3 - 18
Figure 3.12 Organization Chart (YWC)	3 - 21
Figure 3.13 Organization Chart (O&M Directorate)	3 - 23

Figure 3.14 Organization Charts - Treatment plant Management Section and	
Lift Station Management Section	3 - 23
Figure 3.15 Typical Organization Chart (ROU) – Large Scale (Left), Small Scale (Right)…	3 - 24
Figure 4.1 Existing Four Sewerage Districts in the Greater Irbid Municipality	4 - 6
Figure 4.2 Priority II Area in the Greater Irbid Municipality as Proposed by SWMP	4 - 7
Figure 4.3 Urban Growth Area (UGA), the Urban Planning Area and the Greater Irbid	
Municipality (GIM) ·····	4 - 8
Figure 4.4 Syrian Refugees Distribution in Irbid	4 - 9
Figure 4.5 Planned Sewerage Service Area in GIM	4 -10
Figure 4.6 Method of Population Distribution into Each Sewerage District in GIM	4 -11
Figure 4.7 Existing Sewerage Service Area in Ramtha City	4 -18
Figure 4.8 Priority II Area in Ramtha District Proposed by SWMP	4 -19
Figure 4.9 Urban Growth Area in the Urban Plan of Ramtha District	4 -19
Figure 4.10 Planned Sewerage Service Area in Ramtha District	4 -21
Figure 4.11 Existing Sewerage Service Area in Mafraq	4 -24
Figure 4.12 Priority II Area in Mafraq Proposed by SWMP	4 -25
Figure 4.13 Syrian Refugees as Percentage of Total Population	4 - 26
Figure 4.14 Planned Sewerage Service Area in Greater Mafraq Municipality	4 -27
Figure 4.15 Localities in Greater Mafraq Municipality	4 -30
Figure 5.1 Capacity Assessment Process for Trunk Sewers	5 - 1
Figure 5.2 Hydraulic Elements for Circular Pipes and Allowance for Pipe Design	5 - 4
Figure 5.3 Concrete Pipes used in Jordan	5 - 5
Figure 5.4 Connection Alternatives for Capacity Assessment of	
Trunk Sewers in Mafraq SWD	5 -13
Figure 5.5 Location of Existing LSs and WWTPs	5 -14
Figure 5.6 Layout of Central Irbid WWTP	5 -20
Figure 5.7 Layout of Wadi Al-Arab WWTP	5 -23
Figure 5.8 New Trunk Sewers in Shallala SWD (1) ·····	5 -24
Figure 5.9 New Trunk Sewers in Shallala SWD (2)	5 -25
Figure 5.10 Layout of Shallala WWTP	5 -27
Figure 5.11 Layout of Wadi Hassan WWTP	5 -30
Figure 5.12 New Trunk Sewers in Ramtha SWD (1)	5 -31
Figure 5.13 New Trunk Sewers in Ramtha SWD (2)	5 -32
Figure 5.14 Layout of Ramtha WWTP	5 -34
Figure 5.15 New Trunk Sewers in Mafraq (1) SWD	5 - 35

Figure 5.16 New Trunk Sewers in Mafraq (2) SWD	5 -35
Figure 5.17 Case-1 Layout of Mafraq WWTP	5 -38
Figure 5.18 Case-2 Layout of Mafraq WWTP	5 -40
Figure 6.1 Proposed Organization Structure (YWC Overall)	6 -3
Figure 6.2 Proposed Organization Structure (O&M Directorate) ······	6 -4
Figure 6.3 Concept of Capacity Development	6 -12
Figure 6.4 Capacity Development Mechanism and Methods	6 -12
Figure 6.5 Number of Persons Trained (Left) and Training Hours (Right)	6 -16
Figure 7.1 General Implementation Schedule	7 -1
Figure 7.2 Estimated Service Population and Inflow to the Central Irbid WWTP	7 -3
Figure 7.3 Locations Where New Sewerage Service Will be	
Provided in Wadi Al-Arab SWD	7 -4
Figure 7.4 Estimated Service Population and Inflow to the WWTP and	
Design Capacity Improvement of Wadi Al-Arab WWTP	7 -6
Figure 7.5 Locations Where New Sewerage Service Will be	
Provided in Shallala SWD	7 -8
Figure 7.6 Estimated Service Population and Inflow to the WWTP and	
Design Capacity Improvement of Shallala WWTP	7 -10
Figure 7.7 Locations Where New Sewerage Service Will be	
Provided in Wadi Hassan SWD	7 -11
Figure 7.8 Estimated Service Population and Inflow to the WWTP and	
Design Capacity Improvement of Wadi Hassan WWTP	7 -13
Figure 7.9 Locations Where New Sewerage Service Will be	
Provided in Ramtha SWD	7 -15
Figure 7.10 Estimated Service Population and Inflow to the WWTP and	
Design Capacity Improvement of Ramtha WWTP	7 -17
Figure 7.11 Locations Where New Sewerage Service Will be	
Provided in Mafraq SWD	7 -18
Figure 7.12 Estimated Service Population and Inflow to the WWTP and	
Design Capacity Improvement of Mafraq WWTP	7 -20
Figure 7.13 General Construction Schedule for Sewerage Facilities For Each SWD	7 -22
Figure 8.1 Cost Curve of Sewer Construction	8 - 3
Figure 10.1 Locations of Main Sewerage Facilities	10 -4

Figure 10.2 Site Map of Project and Nature Reserve Area	10 -5
Figure 10.3 Antique Sites in and around the Project Areas	10 -7
Figure 10.4 Flow of EIA Procedures	10 -9
Figure 10.5 Organization of MOE and EIA Approval Organization	10 -10
Figure 10.6 Organization of WAJ PMU	10 -11

ABBREVIATION

BGR	Bundesanstalt für Geowissenschaften und Rohstoffe
BOD ₅ BOD	
CFU	Biological Oxygen Demand
	Colony Forming Units
CODcr	Chemical Oxygen Demand
CODcr	Chemical Oxygen Demand, measured using potassium dichromate
СР	Concrete Pipe
DIP	Ductile Iron Pipe
DMA	District metered area
DO	Dissolved Oxygen
DOS	Department of Statistics
E/N	Exchange of Notes
EIA	Environmental Impact Assessment
EIB	European Investment Bank
FOG	Fat, Oil and Grease
G/A	Grant Agreement
GCC	Gulf Cooperation Council
GDP	Gross Domestic Product
GIM	Greater Irbid Municipality
GIS	Geographic Information System
GRDP	Gross Regional Domestic Product
HDPE	High Density Polyethylene Pipe
HRD	Human Resource Development
IBNET	International Benchmarking Network for Water and Sanitation Utilities
ICT	Information Communication Technology
IEC	Information, Education and Communication
IEE	Initial Environmental Examination
ISSP	Institutional Support and Strengthening Program
JD	Jordanian Dinar
KfW	Kreditanstalt für Wiederaufbau
km	Kilometer
LLC	Limited Liability Company
lpcd	Liters Per Capita Per Day
LS	Lifting Station (Pumping Station)
m.a.s.l	Meters above sea level
	Milligram Per Litter
mg/l, mg/L m^3/d	Cubic Meter Per Day
m ³ /min	Cubic Meter Per Minute
mm	Millimeter Markala Darma
MP	Manhole Pump
MCM	Million Cubic Meters
MOE	Ministry of Environment
MOI	Ministry of Interior
MOMA	Ministry of Municipal Affairs
MOTA	Ministry of Tourism and Antiquities
MPWH	Ministry of Public Works and Housing
MPN	Most Provable Number
MWI	Ministry of Water and Irrigation
NGWA	Northern Governorates Water Administration
NH ₄ -N	Ammonium Nitrogen
NO ₃ -N	Nitrate Nitrogen
OD	Oxygen Ditch
O&M	Operation & Maintenance
OJT	On-the-Job Training

PF	Peaking Factor
pН	potential of hydrogen
PIs	Performance Indicators
PMU	Project Management Unit
pph	persons per hectare
RFP	Request for the Proposal
ROU	Regional Operating Units
RSCN	Royal Society for the Conservation of Nature
SCADA	Supervisory Control and Data Acquisition
SOP	Standard Operating Procedure
SS	Suspended Solids
SWD	Sewerage District
SWMP	Strategic Wastewater Mater Plan
TDS	Total Dissolved Solids
TOR	Terms of Reference
ТоТ	training of trainers
TSS	Total Suspended Solids
TSP	Total Suspended Particles
T-N	Total Nitrogen
UGA	Urban Growth Area
UN	United Nations
UNHCR	United Nations High Commissioner for Refugees
UNICEF	United Nations Children's Fund
USAID	United State Agency for International Development
UV	Ultraviolet
WAJ	Water Authority of Jordan
WASH	Water, Sanitation and Hygiene
WWTP	Wastewater Treatment Plant
YWC	Yarmouk Water Company

CHAPTER 1 INTRODUCTION

1.1 Study Background

Jordan is one of the four most water scarce countries in the world, having an annual per capita water availability of only 145 m³, far below the internationally recognized water scarcity level of 1000 m³. The increase in population and resulting water demand is putting enormous pressure on the limited water resources and creating a serious chronical water supply and demand imbalance. Furthermore, the sudden influx of thousands of Syrian refugees since March 2011 has left the Jordanian government and particularly the local authorities in the northern governorates, struggling to keep up with the demand for its scarce water resources.

Wastewater management is also a challenge. In areas where on-site wastewater treatment facilities such as cesspits or other underground simple storage tanks are commonly used, poor facility structure and infrequent removal of accumulated solids causes overflow of wastewater and septage. While in areas with sewerage service, the coverage ratios in Irbid, Mafraq and Ajloun governorates are lower than those of the national average. This poor wastewater management practices pose a serious threat to public health and the surrounding environment.

Jordan needs international support to improve the water supply services and wastewater management in affected areas. As part of the international effort, JICA (Japan International Cooperation Agency) and the Water Authority of Jordan (WAJ) met a number of times and signed the document on "Minutes of Meetings" on 30th in October 2013. JICA will work with WAJ on "The Project for the Study on Water Sector for the Host Communities of Syrian Refugees in the Hashemite Kingdom of Jordan (hereinafter called the Project)" as stated in the Record of Discussions signed on 13th in November 2013.

1.2 Goal, Outputs and Objectives of the Project

• Goal of the Project

The Project would contribute to achieving sustainable development of the water and sanitation sector in the communities hosting Syrian refugees.

• Outputs of the Project

The Project would provide an assessment of the impact of Syrian refugees on the water supply and sewerage services in the northern governorates, formulate a comprehensive plan for the improvement of these services and put forward a set of sustainable solutions.

The outputs are listed in the Record of Discussions as follows: Components A: Preparation of outline designs for the most prioritized projects Components B: Preparation of water supply and wastewater management plan Components C: Pilot activities

This document is for Component B and reports on the following 3 major undertakings towards achieving the objectives of Component B.

- Assessment of the impact of the influx of Syrian refugees on water supply and wastewater management services
- Formulation of a development plan for water supply and wastewater management in the affected areas
- Identification and priority setting for short- and mid- term projects

The short-term plan will be prepared with due consideration to the requirements for the water and sanitation sector for 2014-2016, as stated in the National Resilience Plan.

The priority projects will be unveiled in the mid-term plan. The mid-term plan aims to provide a strategic roadmap for the development of the sector in the coming three to five year period. The concerned authorities and organizations will share the comprehensive development policy and support the projects by aligning with the plan. Furthermore, both short and mid-term plans will be continuously revised according to the changes in circumstances with the Syrian refugee situation as well as those in the hosting communities in Jordan.

1.3 Sewerage Component

The steps taken in the formulation of the sewerage development plan are shown in Figure 1.1.

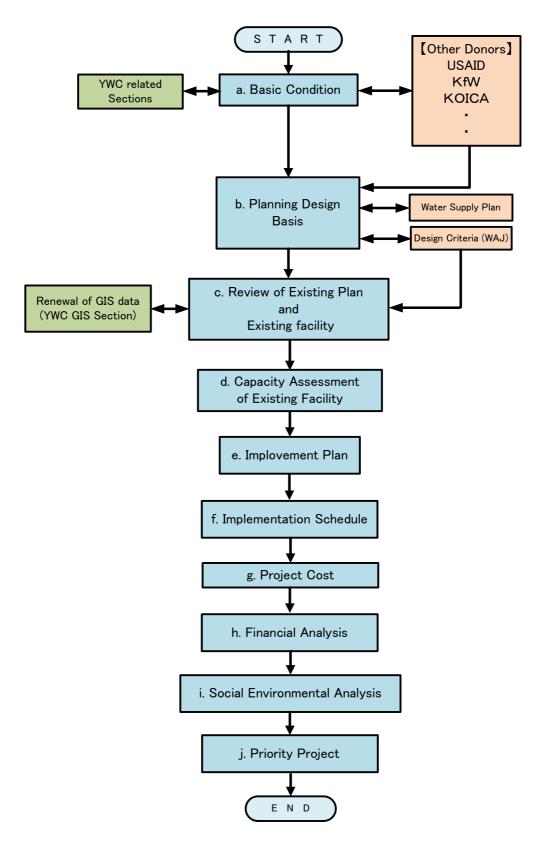


Figure 1.1 Process for Formulation of the Sewerage Development Plan

1.4 Study Area

The Study area is the northern governorates: Irbid, Ajloun, Jerash, and Mafraq. Maps of the northern governorates are shown in Figures 1.2 and 1.3.

Figure 1.2 Northern Governorates (1)

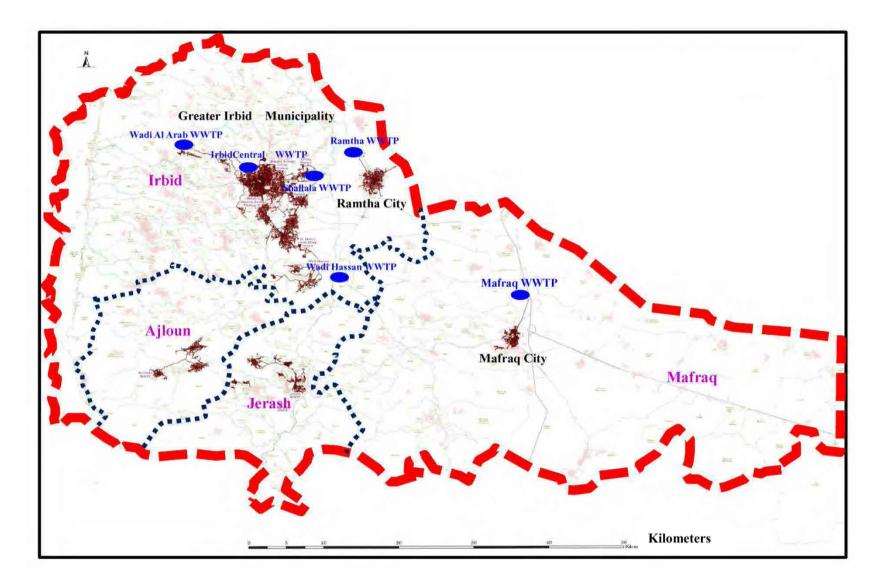


Figure 1.3 Northern Governorates (2)

1.5 Planning Horizon

The sewerage development plan is formulated looking 20 years ahead towards 2035, which matches the planning horizon used by WAJ. The capacity of the facilities, particularly the trunk sewers, are designed for this time frame.

1.6 Report Components

Chapter 1 is an introduction of the Study.

Chapter 2 explains the existing situation of the Study Area.

Chapter 3 presents the existing wastewater treatment facilities and the existing sewerage plans and projects to identify current issues and problems in the wastewater management in the Study Area.

Chapter 4 deals with sewerage service area, wastewater generation projection, design flow, and design wastewater quality.

Chapter 5 assesses the capacity of existing sewerage facilities for the design flows and pollutant loads, and prepares the sewerage development plan.

Chapter 6 deals with institutional development plan and capacity development plan, including operation and maintenance staff plan for the proposed sewerage facilities.

Chapter 7 proposes the implementation plan of the proposed sewerage facilities.

Chapter 8 estimates the project cost for the proposed sewerage development plan.

Chapter 9 conducts the economic and financial analysis for the proposed projects.

Chapter 10 describes the environmental and social considerations for the sewerage development plan.

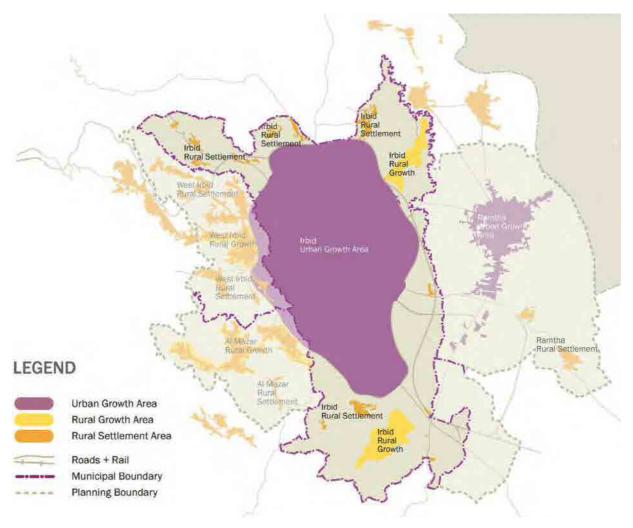
Chapter 11 compares the proposed phase-1 projects and suggests implementation priorities for these projects.

Chapter 12 presents conclusions and recommendations.

CHAPTER 2 EXISTING CONDITIONS OF THE STUDY AREA

2.1 Socio-Economic Conditions

2.1.1Administrative Organization and Boundary


Jordan consists of 12 governorates (see Figure 1.1), and the Irbid Governorate is divided into 9 Liwas (see Figure 2.1). "Liwa" is an administrative unit under governorate. For statistical purposes by Department of Statistics (DOS), Liwa is almost the same as "District," which has a hierarchy of Governorate – District – Sub-district – Locality. In addition, a large city has "Neighborhood" under Locality. In the Study, statistical classification is used for population distribution and water demand estimation because population data is available by this classification.

A municipality may be formed by combining several Liwas such as the Greater Irbid Municipality which consists of a part of the Qasabat (central) Irbid Liwa and all of the Bani Obaid Liwa; or it may be a part of a Liwa, such as, the Ramtha Liwa, which has two municipalities namely, the Ramtha Municipality and the Sahel Horan Municipality, as shown in Figure 2.1. The old Irbid Municipality was abolished and has become a part of the Greater Irbid Municipality since 2011. However, the old Irbid Municipality is often called Irbid city today. Following this custom, the old Irbid municipality is referred to as "Irbid city".

In addition, another classification for Irbid municipal area for planning purpose according to the Ministry of Municipal Affairs is: urban growth area, rural growth area and rural settlement (see Figure 2.2). The population distribution in the Study Area uses this classification.

Figure 2.1 Liwa and Municipalities in Irbid Governorate

Source: Irbid 2030* Greater Irbid Area Plan, the Ministry of Municipal Affairs **Figure 2.2** Greater Irbid Municipality with Urban Growth Area

2.1.2 Economy

Gross Domestic Product (GDP)

Table 2.1 shows the Gross Domestic Product (GDP) of Jordan. The nominal GDP in 2012 is 22 billion JD (approximately 3 trillion Yen), and the GDP growth rate compared to the previous year is 7.3%. The GDP growth rate in 2008 was 29% due to the contribution of the mineral resource sector and the government sector. GDP growth rate still remains high although it has slowed down after 2009.

Tertiary industry accounts for approximately 70% of the whole industry in Jordan, 30% of which is contributed by the government sector, followed by the finance, transport, and wholesale and retail sectors. The contribution of the agriculture sector (3%) and the manufacturing sector (18%) to the whole industry has been growing year after year.

Item	2008	2009	2010	2011	2012
GDP (Nominal) (Billion JD)	15.6	16.9	18.8	20.5	22.0
Primary industry	1.2	1.0	-	-	-
Secondary industry	3.9	4.3	-	-	-
Tertiary industry	10.5	11.6	-	-	-
GDP growth rate (%)	29.3	7.7	11.2	9.0	7.3
Primary industry	89.0	-16.7	-	-	-
Secondary industry	26.3	9.9	-	-	-
Tertiary industry	24.8	10.8	-	-	-
Contribution by industry (%)					
Primary industry	7.8	6.0	-	-	-
Secondary industry	24.9	25.3	-	-	-
Tertiary industry	67.3	68.7	-	-	-

 Table 2.1
 GDP and its Growth Rate in Jordan

Note: 1) GDP by industry after 2010 is void because the data have not been obtained.

2) GRDP of the Northern governorates is not available.
 Source: JICA Expert team based on Jordan Statistical Yearbook 2012 (2008-2009), Jordan in Figures, Department of Statistics (2010-2012)

The main economic sectors in Irbid are agriculture, real estate, transport and communication, electricity, water supply and public administration. The GDP of Greater Irbid has been estimated at 445 Million JD, with a GDP per capita of 978 JD in 2002 at current prices against 1,240 JD_per capita for Jordan.¹

2.1.3 Population

(1) Jordanian Population

Population growth rates in Jordan were high in the past: 4.8 % per annum (p.a.) during the period 1961–1979, 4.4 % p.a. between 1979 and 1994, 2.6 % p.a. between 1994 and 2004, and 2.2 % p.a. between 2004 and 2012. The high rates of growth were due to the influx from the West Bank in the late 1960s, the high rate of natural increase, and the return of Jordanians after the 1990 Gulf crisis and the 2003 Second Gulf War. On the other hand, fertility declines in Jordan have contributed to slowing down of the population growth rate from 3.2 % p.a. in the second half of the 1990s to 2.3 % p.a. in 2007 and 2.2 % p.a. in 2012^2 .

Populations in the Irbid Governorates and Jordan are shown in Table 2.2. Populations in Irbid, Ramtha and Mafraq cities in 2012 are estimated at 307,024 and 87,499, respectively.

Table 2.2	Governorate Population
-----------	-------------------------------

(Unit: persons)

			(Onite. persons)
Year/	1994 Census	2004 Census	2012 Estimate
Governorate	(persons)	(persons)	(persons)
Irbid	751,634	927,892	1,137,100
Mafraq	178,634	244,188	300,300
Jerash	123,190	153,602	191,700
Ajloun	94,548	118,725	146,900
4 Governorates	1,148,006	1,444,407	1,776,000
Jordan	4,139,458	5,103,639	6,388,000

Source: Department of Statistics (DOS)

¹ Meso-economic Analysis of the Greater Irbid, Jordan (2005)

² Population and Family Health Survey 2012, Department of Statistics

(2) Population of Syrian Refugees

As is seen in Figure 2.3, the influx of Syrian refugees started in the first quarter of 2012 and the number of Syrian refugees has increased drastically during the first quarter of 2013, reaching to about 500,000. Then, the growth was slowed down in April 2013 and the number of Syrian refugees reached to about 600,000 in April 2014. As of October 2014, this number is about 619,000. Half of the total Syrian refugees in Jordan, about 322,000 persons stay in the northern governorates.

				(Unit: persons
Northern G	overnorates	Other Gov	vernorates	Total
Mafraq	156,013	Amman	170,980	
Irbid	144,438	Zarqa	70,683	
Jerash	11,184	Balqa	19,695	
Ajloun	9,990	Other	25,610	
Sub-total	321,625	Sub-total	286,968	608,593

 Table 2.3
 Syrian Refugees Registered with UNHCR

Source: UNHCR: Date is not clear, however, probably as of July 2014.

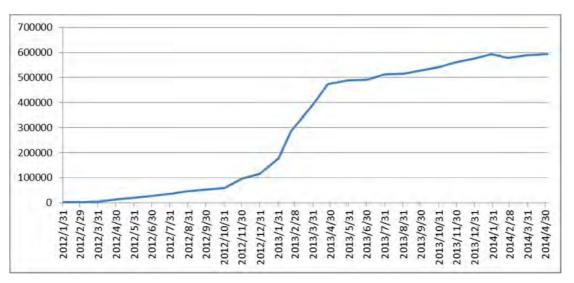


Figure 2.3 Syrian refugees Registered with UNHCR

The number of Syrian refugees in the northern governorates as of July 2013 was estimated separately by the Ministry of the Interior (MOI). This number is 394 thousands as shown in Table 2.4, which is larger than 322 thousands according to the UNHCR estimate. It seems MOI estimate includes un-registered persons, so the number is larger than that presented by the UNHCR. The total number of Syrian refugees including unregistered refugees is not known, but it is more than this figure.

Governorate	Refugees Population in July 2013	Jordanian Population in 2012	Total
Irbid	239,750	1,137,100	1,376,850
Mafraq	134,900	300,300	435,200
Jerash	10,218	191,700	201,918
Ajloun	9,066	146,900	155,966
Total	393,934	1,776,000	2,169,934

 Table 2.4
 Syrian Refugees and Jordanian Population in the Northern Governorates

Source: Ministry of Interior

In the Study, the MOI estimate for July 2013 is used as a fixed number for future refugee population because it may include un-registered persons also, and because the recent trend of change in the refugee population is relatively stable. The population estimated by the MOI is shown in Table 2.4 together with the Jordanian population in the northern governorates in 2012. The total population is approximately 2.2 million consisting of 1.8 million Jordanians and 0.4 million refugees. The refugee population accounts for 18 % of the total population.

Table 2.5 and Figure 2.4 show the projected Jordanian population and population of Syrian refugees. The sum of the current Jordanian population and refugee population is equivalent to the Jordanian population in 2022; the projected Jordanian population in 2035 is equivalent to the sum of the Jordanian population and the refugee population in 2028. If the number of refugees is counted in this master plan, the target year becomes 2028. In such a case, facilities need to be completed earlier than the planned implementation schedule.

In the Northern Governorates											
Year	Jordanian Population	Syrian Refugee Population	Population Including Refugees								
2012	1,776,000	393,934	2,169,934								
2015	1,890,248	393,934	2,284,182								
2020	2,097,312	393,934	2,491,246								
2022	2,185,447	393,934	2,579,381								
2025	2,327,175	393,934	2,721,109								
2026	2,375,590	393,934	2,769,524								
2028	2,477,087	393,934	2,976,290								
2030	2,582,356	393,934	2,976,290								
2035	2,865,668	393,934	3,259,602								

Table 2.5Projected Jordanian Population and Syrian Refugees
in the Northern Governorates

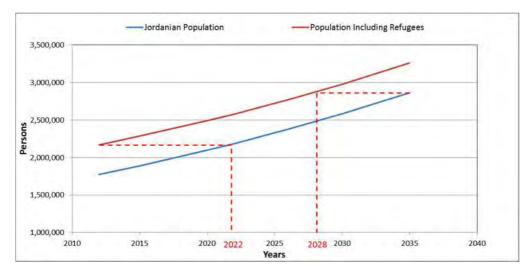


Figure 2.4 Projected Jordanian Population and Total Population including Syrian Refugees

2.1.4 Household Income and Expenditure

A main source of data for household income is the Household Expenditures and Income Survey in 2010 conducted by the DOS. The following table shows annual income from employment of the northern

governorates, Amman, and the country average. It shows that the income of Irbid is lower than that of the country average.

		(Ont. JD)		
Governorate	Household Income from Employment	Total Household Income		
Irbid	3442.2	7,877.2		
Mafraq	3606.3	7,276.3		
Jerash	3567.5	7,945.5		
Ajloun	3342.0	7,470.9		
Amman	4099.4	10,618.7		
Country Average	3842.8	8823.9		

Table 2.6	Average Household	Income from Employment	t of Northern Governorates
-----------	-------------------	------------------------	----------------------------

Note: Total income includes employment, own account, rent, transfer and property. Source: Household Expenditures & Income Survey 2010

Table 2.7 and Figure 2.5 show the results of expenditure survey for the northern governorates. In terms of the lowest expenditure decile, Ajloun and Irbid are less than 3,000 JD per year and Jerash is around 3,600 JD per year. The country average is less than 3,600 JD per year. These show that relatively low income people reside in the Study Area.

 Table 2.7
 Distribution of Households by Governorate and Household Expenditure Group

(Unit: %)

(Unit: JD)

						(01111: 70)
Household Expenditure Group (JD/year)	Irbid	Mafraq	Jerash	Ajloun	Amman	Average
<14,000	11.8	8.2	12.1	6.1	24.7	16.0
- 12,000	6.8	5.7	14.8	4.5	8.1	7.4
- 10,000	10.3	9.9	17.8	8.3	11.3	10.6
- 9,000	7.0	6.4	7.1	6.0	6.6	6.9
- 8,000	7.8	7.1	5.0	8.1	9.2	8.4
- 7,000	10.1	12.7	11.3	13.7	9.0	9.8
- 6,000	12.0	10.2	9.6	13.4	10.1	11.1
- 5,400	6.6	8.2	6.7	6.5	5.5	6.5
- 4,800	6.7	6.5	1.9	8.7	4.8	6.0
- 4,200	5.9	7.6	3.2	7.5	4.2	5.5
- 3,600	5.1	5.6	5.9	4.2	3.3	4.7
- 3,000	5.1	5.2	1.3	6.6	1.5	3.4
- 2,400	2.3	2.9	1.7	3.2	0.8	1.8
- 1,800	1.4	2.2	0.1	1.3	0.6	1.2
>1,800	1.0	1.6	1.4	1.8	0.2	0.8
	100.0	100.0	100.0	100.0	100.0	100.0

Source: Household Expenditure & Income Survey 2010, Department of Statistics

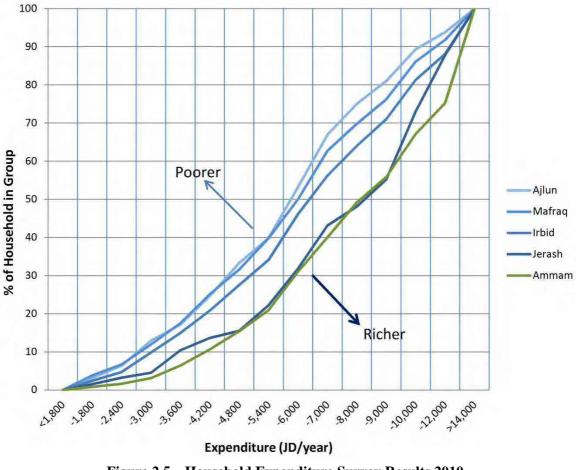


Figure 2.5 Household Expenditure Survey Results 2010

2.1.5 Health Status

The life expectancy of Jordan is 73.7 years - 72.1 years for males and 75.4 years for females in 2012 (World Bank). The table below shows the crude birth rate, crude death rate, and infant mortality rate of the Irbid Governorate from 2000 to 2009. The world median (2005-2010) and Jordan average (2012) are also shown in the same table.

Sr. No	Impact Indicators	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Jordan average 2012	World median 2005-2010
1	Crude Birth Rate	28.6	29.0	30.0	30.1	29.7	29.9	31.9	35.2	33.5	32.9	28.1	20.1
2	Crude Death Rate	2.8	3.3	3.2	3.2	3.1	3.2	3.4	3.5	3.1	3.3	7.0	8.1
3	Infant Mortality Rate	-	-	-	-	-	-	-	19.0	-	21.0	17.0	42.3

Table 2.8	Birth and Mortality Rate of Irbid Governorate
-----------	---

(Per 1,000 persons)

Source: KNOEMA.com, Web site, Development Statistics of Jordan, 2014 UN, World Population Prospects: The 2012 Revision

The crude death rate in Irbid Governorate is lower than the world median and Jordan average, but the crude birth rate is higher than the world median and Jordan average. It indicates that the population growth rate in Irbid governorate is higher than that of the country average and relatively high growth trend will continue. It also indicates that sanitary conditions including water supply surrounding infant is poor and need to be improved since the crude death rate in Irbid Governorate is lower but the infant mortality rate is higher than the Jordan average.

Sr. No	Impact Indicators	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Jordan average 2012	World median 2005-2010
1	Crude Birth Rate	23.9	30.6	27.4	27.8	25.9	23.7	24.3	27.0	25.4	23.8	28.1	20.1
2	Crude Death Rate	2.3	3.1	2.7	2.6	2.4	2.3	2.7	2.5	2.3	2.2	7.0	8.1
3	Infant Mortality Rate	-	-	-	-	-	-	-	29.0	-	30.0	17.0	42.3

 Table 2.9
 Birth and Mortality Rate of Mafraq Governorate

(Per 1,000 persons)

Source: KNOEMA.com, Web site, Development Statistics of Jordan, 2014

UN, World Population Prospects: The 2012 Revision

The crude death rate in Mafraq Governorate is also lower than the world median and Jordan average, but the crude birth rate is as same as the world median and Jordan average. It indicates that the population growth rate in Mafraq governorate is higher than that of the country average and relatively high growth trend tends to be continued. It also indicates that sanitary conditions including water supply surrounding infant is poor and need to be improved since the crude death rate in Marfraq Governorate is lower but the infant mortality rate is higher than the Jordan average.

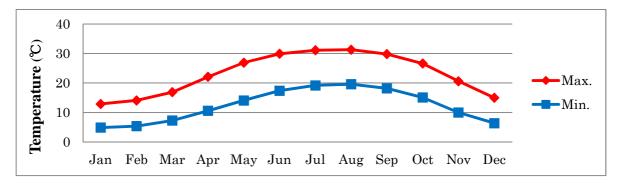
2.2 Natural Conditions

2.2.1 Meteorology

The water demand fluctuates in the Study Area during a year according to climate; high water demand in dry and hot summer and low demand in rainy and cold winter.

(1) Climate

Irbid and Ramtha have a hot, summer Mediterranean climate with two seasons as listed below. It has an annual rainfall of 470 mm/year, average temperature of 17.5°C, maximum mean temperature of 23.1°C, and minimum mean temperature of 12.4°C.


Summer season: April-October

Winter season: November-March

Mafraq is situated in the Northern Highlands Agro-Climatic Zone of Jordan, and is characterized as having a semiarid climate.

(2) Temperature

Figure 2.6 shows the mean maximum and minimum temperatures in Irbid City (30-year period). The difference between the monthly maximum and monthly minimum temperatures is about 10°C.

Source: World Weather Information Service, Web site

Figure 2.7 shows the mean maximum and minimum temperatures in Irbid City (47-year period). The difference between the monthly maximum and monthly minimum temperatures is about 17°C.

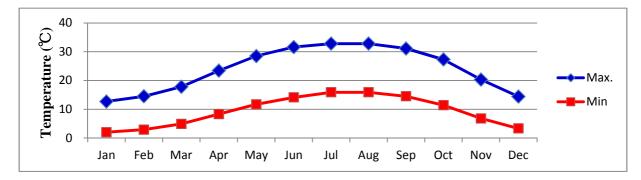


Figure 2.7 Mean Maximum and Minimum Temperatures in Mafraq City (47-year period)

(3) Rainfall

Figure 2.8 shows the monthly mean rainfall in Irbid. The annual mean rainfall is calculated at 470 mm. About 95% of the total rainfall throughout the year is from November to March.

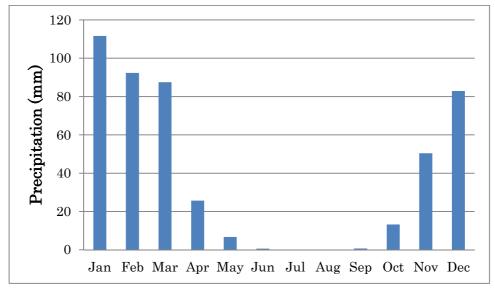
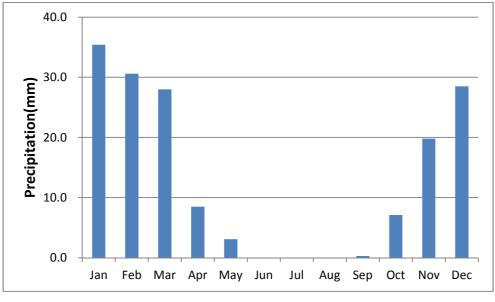



Figure 2.8 Mean Monthly Rainfall in Irbid City (30-year period)

Figure 2.9 shows the monthly mean rainfall in Mafraq. The annual mean rainfall is calculated at 161 mm. About 88% of the total rainfall throughout the year is from November to March.

Source: World Weather Information Service, Web site

Figure 2.9 Mean Monthly Rainfall in Mafraq City (58-year period)

2.2.2 Topography

The undulated topography in the Study Area makes water supply pressure control difficult. Irbid is situated on a large plateau with ground elevation ranging from 250 m to 750 m. Ramtha is situated on a small hill with elevation ranging from 400 m to 600 m. Mafraq is situated on a small hill with elevation ranging from 600 m to 700 m.

2.2.3 Hydrogeology

The geological structure of the Study Area is attributed to a large plateau with ground elevation ranging from 400 m to 700 m. The geological formations in the Study Area are classified into two main periods based on the geological age (from old to new): (1) the Upper Cretaceous Period and (2) the Paleogene Tertiary Period. The plateau consists of limestone, dolomite and chalk.

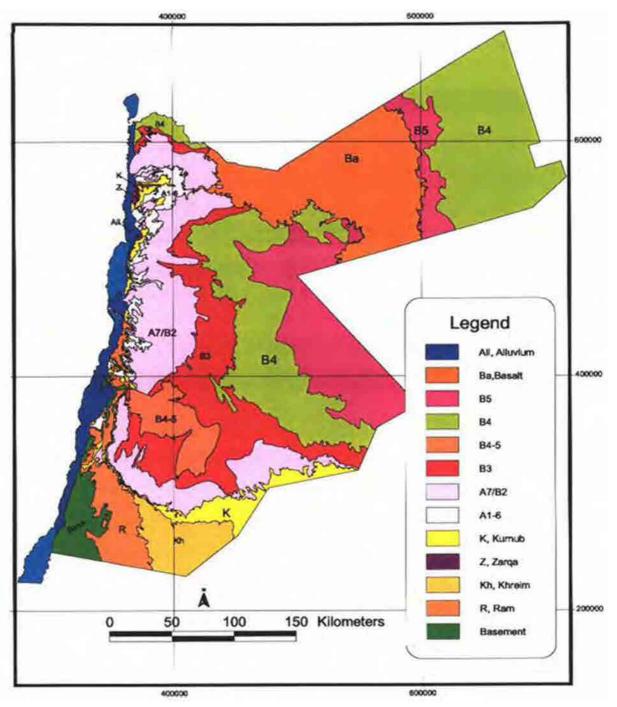

ERA	P	RIOD	ЕРОСН	Group	Formation	Symbol	Lithology	Aquifer Characteristics	Aquifer Cond. (m/s)
	larter		Holocene Pleistocene	Allovium	Fuviatile Laest and Eolian	Re	Soil, sand, and gravel	Poor to Good (Aquifer)	Not Available
CENOZOIC		eogene	Pliocene	J. Valley	Jafer – Azraq	Ja-Az	Marl, ctay, and evaporites conglomerate with silicous sand, gravel, and basalt	Poor Fair	Not Available
CEL	Tertiar	-	Miocene	Volcanics	Basalts	Ba	Basalı	Good (Aquifer)	4.0 E -04 *
- C	er t	•	Oligocene	Volcanics	Basalts	Ba	Basalt		
	F	5	Eocene	Balqa	Wadi Shallah Rijam Muwaqqar Amman Wadi Ghudran	85 84 83 82	Limestone, chalk, and marl	Good (Aquifer)	5.0 E -05 *
		Paleogene	Paleocene				Chert, limestone, chalk, and marl Marly limestone, and shale Chert, limestone, and phosphate	Good (Aquifer) Poor (Aquifer) Good (Aquifer)	5.0 E -05 * 1.0 E -09 ** 2.0 E -05 *
1			Meastrichtian			Bl	Chalk, marl, and marly limestone	Poor (Aquifer)	Not Available
		Upper	Campanian Santonian		1				
	SI		Taronian 22222	Ajlun	Wadi Sir Shueib	A7 A5, A6	Limestone, dolomite, and chert Limestone, and marly limestone	Very Good (Aquifer) Poor (Aquitard)	2.0 E +05 * 1.0 E +09 **
MESOZOIC	Cretaceous	9	Cenomanian		Hummar Fuheis Naur	A4 A3 A1, A2	Dolomite, and dolomitie limestone Marl, and marly limestone Limestone, and dolomitie limestone	Fair to Good (Aquifer) Poor (Aquitard) Good (Aquifer)	2.0 E -05 * 1.0 E -09 ** 1.0 E -05 **
SC	-		Albian	Kurnub	Subeihi	K2	Sand and shale	Fair to Good	3.0 E -05 *
ME		1DA	Aptian				Clay and sandy limestone	(Aquifer)	
-		Lower	Neocomian Berriasian		Aarda	KI	Sandstone, marl and shale		
			Tithomian	-	Aarga	NI I	samistone, mari and snate		
	Jurassic	Kimmeridgian W Oxfordian							

Table 2.10Geological Formations

(Source; Northern Governorates Water Transmission System Feasibility Study Final Report CDM International Inc. 2005, Modified from JICA 2001 and BGR 2001)

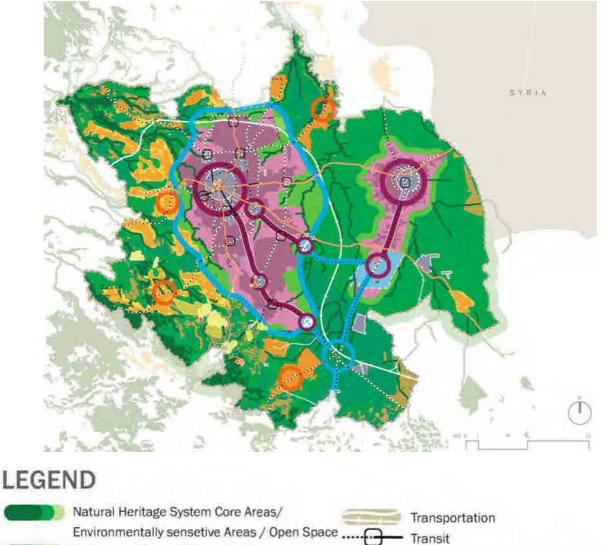
The main aquifer is following 6 aquifers from the surface and the salient features are shown in Table 2.10.

- 1) Basalt (BA, eruption in Oligocene Paleogene-Neogene Miocene)
- 2) Barqa group, Wadi Shallalah formation / Rijam formation (B5/B4, Paleogene Eocene/ Paleocene)
- 3) Barqa group, Wadi Amman formation / Ajloun group, Wadi Sir formation (B2/A7, Paleogene Paleocene/ Upper Cretaceous)
- 4) Ajloun group, Hummar formation (A4, Upper Cretaceous)
- 5) Ajloun group, Naur formation (A1, A2, Lower Cretaceous)
- 6) Kumub group, Subeihi formation, Aarda formation (K, Lower Cretaceous-Jurassic)

Source: Northern Governorates Water Transmission System Feasibility Study Final Report CDM International Inc. 2005, Modified from JICA 2001 and BGR 2001 Figure 2.10 Geology of Jordan

Symbol	Formation	Lithology	Formation Thickness (m)	Hydraulic Conductivity (m/s)	Specific Yield (m ³ /h/m)
BA	Basalts	Basalt	10->500	4.0E-04	0.01
B4/B5	Shallalah/Rijam	Limestone, Chert	0-850	5.0E-05	0.05
B2/A7	Amman/Wadi as Sir	Limestone	80-650	2.0E-05	0.05
A4	Hummar	Limestone	30-100	2.0E-05	0.01
A1/2	Naur	Chert, Limestone	90-220	1.0E-05	0.01
K	Kurnub	Sand and Shale	120-350	3.0E-05	0.025

Table 2.11Main Aquifers from the Top


Many wells abstract water from the B2/A7 deep aquifer in the northern governorates. Some wells take water from the B4/B5 shallow aquifer in Ramtha and Badia. Some wells take water from the BA aquifer (Basalt) in Badia, Mafraq, and Za'atary. Deeper aquifers are utilized by some wells in Ramtha, North Shouna, Ajloun and Jerash. Groundwater is extracted from all "A" aquifers in part of Irbid, from "K" aquifer of the deepest part in almost half of Jerash, and from the "K" aquifer in part of Ajloun.

2.3 City Plans

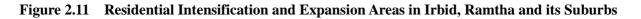
2.3.1 Irbid and Suburbs

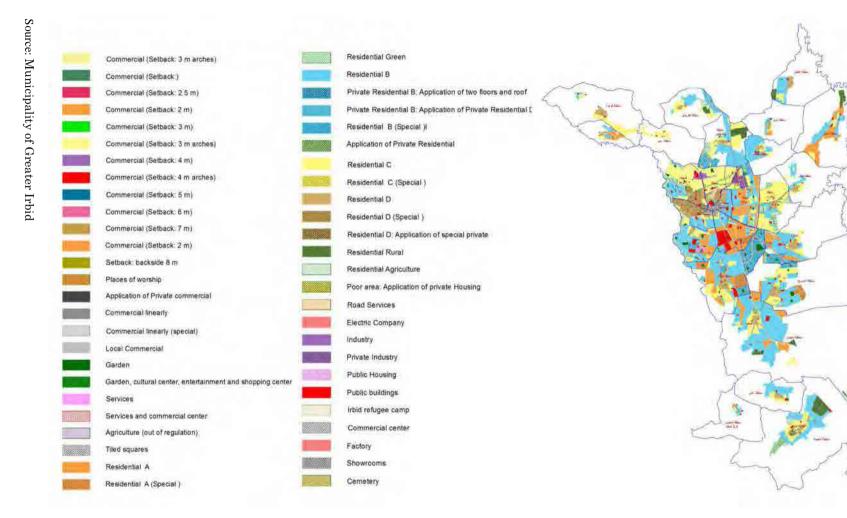
The existing municipal-level master plan is called "Irbid 2030: Greater Irbid Area Plan" (Ministry of Municipal Affairs: MOMA). The following are excerpts from the Plan related to the Study:

- Figure 2.11 shows the projected urban growth area for Irbid city and its suburbs. Appendix I shows the detailed maps
- Irbid and suburbs are classified as follows and are shown in Figure 2.11 as well.
 - a) Residential Stable
 - b) Residential Intensification
 - c) Residential Expansion
- Development is to be encouraged in designated residential intensification areas taking advantage of existing infrastructure and services on first priority, to be followed by new expansion areas that will accommodate the population and promote employment growth to 2030.
- Residential stable area is also defined with recommendation to avoid accepting additional population in such areas so as to prevent severe congestion that may lead to an unhealthy environment.
- Planned population densities for sound living environment are 100 persons per hectare (pph) for Irbid city and 30-50 pph for the suburbs in the urban growth area. Projected population densities for Irbid and suburbs are as shown in Appendix I.
- Population of Irbid city is not projected; however, total population of the Greater Irbid Municipality is projected to almost double from 395,472 in 2004 to 741,276 by 2030.

Agricultural Areas / Range Lands Resource Extracton Cultural Heritage Transit Metropolitan Growth Center + Corridor Regional Growth Center + Corridor Rural Growth Center

Source: Irbid 2030: Greater Irbid Area Plan of MOMA

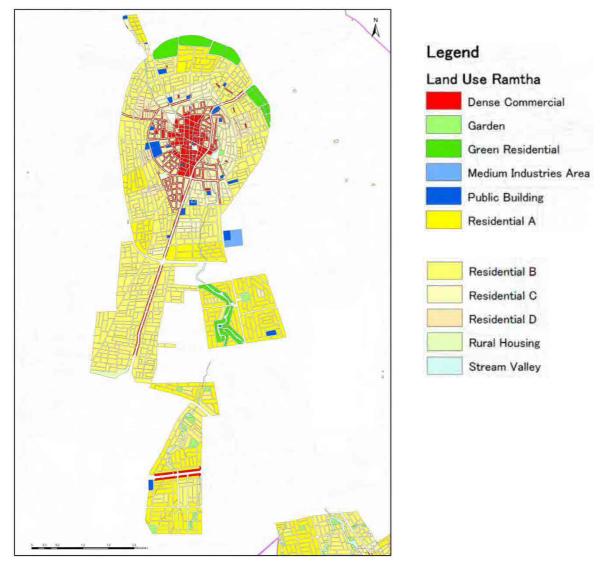

Planning Boundary


Urban Intensification + Expansion Areas Rural Intensification + Expansion Areas

Urban Fringe / Urban Agriculture

Employment Intensification + Expansion Areas

0.00



2.3.2 Ramtha City

Urbanization in Ramtha is planned southwards according to the Growth Plan on Regional Scale in the "Irbid 2030: Greater Irbid Area Plan" of MOMA (Refer to Appendix 2B). Ramtha is divided into mainly four(4) areas, such as urban intensification, rural intensification, urban fringe and agricultural area. They are shown in Figure 2.13.

Figure 2.13 shows the land use plan of Ramtha prepared by the Ramtha municipality. The central part of Ramtha is mainly occupied by dense commercial buildings. Commercial blocks are surrounded by residential areas. Some stretches of green residential areas lie on the outskirts.

Source: Ramtha Municipality and JICA Study Team

Figure 2.13 Land Use Plan in Ramtha City

2.3.3 Mafraq City

There is no existing urban plan for Mafraq area. But the water supply plan prepared by KfW covers the future expansion area in southern area, then the service area of water supply plan is used to define the sewerage service area. The general water plan showing the gravity service area under the Project is shown in Figure 2.14.

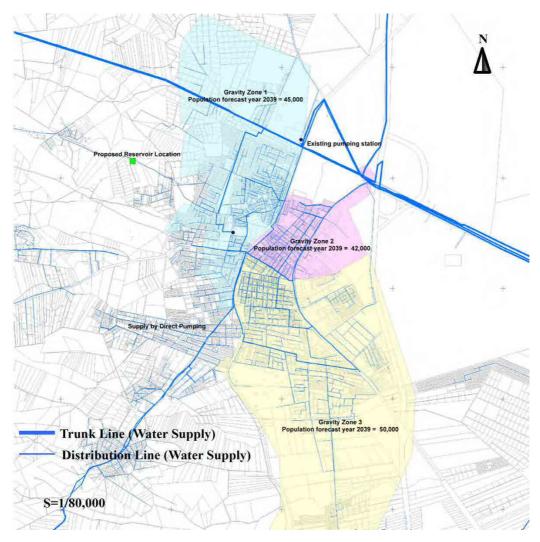


Figure 2.14 Water Supply Plan of Mafraq

2.4 Institution and Organization of Water Sector

2.4.1 Policies, Laws, and Regulations

A list of existing plans, strategies, policies, and legislations for the Water Sector of Jordan is given in the table below.

Year	Document Title	Туре	Theme
1988	Water Authority Law No. 18 of 1988	Law	Institutional
1992	Ministry of Water and Irrigation By-law No. 54 of 1992	By-law	Institutional
1994	Wastewater Regulation No. 66 of 1994	Regulation	Wastewater
	Drinking Water Subscription Regulation No. 67 of 1994	Regulation	Drinking water
1997	Water Strategy of Jordan 1997	Strategy	Water sector
	Water Utility Policy of 1997	Policy	Water utility
1998	Ground Water Management Policy of 1998	Policy	Groundwater
	Irrigation Water Policy of 1998	Policy	Irrigation
	Wastewater Management Policy of 1998	Policy	Wastewater
2001	Jordan Valley Development Law No. 30 of 2001	Law	Institutional
2002	Underground Water Control By-Law No. 85 of 2002 and its	By-law	Groundwater
	amendments of 2003, 2004 and 2007		
2003	JVA Strategy Plan for 2003 - 2008	Strategy	Water sector
2004	National Water Master Plan of 2004	Water master plan	Water sector
	Jordan's Water Strategy and Policies of 2004	Strategy and policy	Water, wastewater, and
			irrigation
2006	National Agenda 2006-2015	Strategy	All sectors
2008	Irrigation Equipment and System Design Policy of 2008	Policy	Irrigation
	Irrigation Water Allocation and Use Policy of 2008	Policy	Irrigation
	National Water Demand Management Policy of 2008	Policy	Water demand
			management
	Water Authority Strategic Plan 2008-2012	Strategy	Water sector
2009	Jordan's Water Strategy 2008-2022: Water for Life	Strategy	Water sector
2010	Water Reallocation Strategy between Governorates	Strategy	Water sector

 Table 2.12
 Existing Plans, Strategies, Policies, and Legislations

The following major policy documents for the Water Sector in Jordan are described below:

- Jordan's Water Strategy and Policies adopted by the Council of Ministers, 1997;
- The National Agenda, 2006-2015;
- Water for Life: Jordan's Water Strategy, 2008-2022.
- (1) Jordan's Water Strategy and Policies

Jordan's Water Strategy and Policies are strongly committed to:

- 1) Reducing groundwater extraction to renewable rates;
- 2) Ongoing monitoring effort to control groundwater withdrawals;
- 3) Careful planning and judicious withdrawals from fossil aquifers;
- 4) Quest for the highest possible efficiency in the conveyance, distribution, and use of water;
- 5) Integrated and temporally dynamic approach to the management of demand and supply;
- 6) Use of the most advanced technology to enhance resource management capabilities;
- 7) Keeping operation and maintenance costs as low as possible.

There was a commitment to increased co-operation and co-ordination among public and private entities involved in water development and management. The government promised to undertake periodic reviews of the existing institutional arrangements and legislation to assess the adequacy of the status quo in light of changed settings and circumstances. The government advocated frequent monitoring and scoring of the performance of water and wastewater systems.

The Ministry of Water and Irrigation (MWI) was directed to set municipal water and wastewater tariffs at levels that would cover the cost of operation and maintenance. The Ministry was also directed to launch a program to recover all or part of the capital costs of water infrastructure.

There was a rather modest commitment to cost recovery for operation and maintenance expenses for utilities. The recommendation was "capital cost recovery must be carefully approached," suggesting the political difficulties associated with this commitment. It is reported that the role of water tariffs should be considered to attract private investment in water projects.

With respect to groundwater, the government promoted irrigated agriculture in the arid southeast from 1984. The agriculture promoted by the government over two decades ago is now a threat to urban water supply. The report suggests that there will be a vigorous campaign focused on illegal drilling of tube wells—drilling will be stopped, rigs confiscated and legal action taken against violators. The Ministry is said to be implementing a program effective in gradually reducing groundwater withdrawals to the level of sustainability.

At the time of the report, the Ministry was providing wastewater collection and treatment services to 14 major populated areas. The Ministry was also reorganizing to become more effective in monitoring and enforcing wastewater regulations. The Ministry was directed by the Councils of Ministers to establish a unit responsible for planning, designing, constructing and managing sewerage system projects and for reusing treated effluent.

Wastewater was recognized as an essential component of renewable water resources and it was expected to become an integral part of the national water budget. Industries were encouraged to recycle part of their wastewater and to treat the remainder to meet specific standards. Priority was given to treated effluent for irrigation. Blending of treated wastewater with fresh water was encouraged where possible.

There is a commitment in this report to "institutional restructuring" in which proper legislation and effective law enforcement would form the basis of a new policy climate.

The MWI would play a central role in planning and development of the water sector, formulation of a coherent policy framework, and regulation of the sector. This new policy framework would have three general principles:

- 1) MWI would retain responsibility for sectoral governance. This would entail policy formulation, decision making, data collection, geo- referenced data systems, monitoring, and overall national planning;
- 2) The Water Authority of Jordan (WAJ) would separate its bulk water supply and retail functions shifting water delivery to the private sector. WAJ would monitor retail supply contracts, and would become a smaller organization. For those bulk supplies that are not privatized, WAJ would remain the purveyor of bulk supplies not privatized, and it would provide support to smaller retail distribution units not operated by the private sector;
- 3) The Jordan Valley Authority (JVA) has seen its programs in social infrastructure diminish in the recent past; so there was a call for the reassessment of its functions and programs. Jordan's Water Strategies and

Policies required the JVA to launch a new program to focus on tourism, industry, manufacturing, and advanced technologies. Law No. 19 of 1988 would remain a mandate of the water sector to the JVA. The private sector was expected to become more active in development and activities concerned with operation and maintenance.

(2) The National Agenda: 2006-2015

This document acknowledged the water sector as strategically important because water scarcity can significantly impede socio-economic growth. The document acknowledged that the water sector suffered from distribution inefficiencies, inadequate tariffs, limited wastewater treatment capabilities, and restricted private sector involvement in addition to the scarcity of renewable water resources and depletion of underground water.

Proposed initiatives pertinent to institutional assessment included:

- 1) Improvements in the efficiency of water distribution networks to decrease operational costs and non-revenue water;
- 2) Restructuring tariffs and gradual reductions in subsidies;
- 3) Development (and upgrading) of wastewater treatment facilities by using state-of-the-art technology and re-use of treated water for agriculture and industry; and
- Greater involvement of the private sector in developing the water sector and creating an investment-friendly environment. The National Water Master Plan of 2004 reinforced the importance of these reforms.

(3) Water for Life: Jordan's Water Strategy, 2008-2022

The government of Jordan is committed to:

- 1) Providing adequate, safe and secure drinking water supply;
- 2) Promoting greater understanding and more effective management of groundwater and surface water;
- 3) Providing healthy aquatic ecosystems;
- 4) Sustainable use of water resources;
- 5) Fair, affordable and cost-reflective water charges; and
- 6) Timely adaptation to increased population growth and economic development across the water sector and water users.

The ISSP (Institutional Support and Strengthening Project, USAID) Report analyzed this strategy and admitted that the prevailing motivation for water "management" in Jordan was dominated by the flawed imperative to supply water rather than the more logical approach that focuses on justified water needs. As a result, groundwater levels had dramatically declined, and the imbalance between supplies and claimed "needs" had grown to unsustainable levels. Moreover, the quality of the nation's water had declined significantly.

The Water for Life report calls for:

1) Efficient and effective institutional reforms;

- 2) More efficient use of water resources;
- 3) Dramatic reduction in the exploitation of groundwater;
- 4) Implementation of the Disi water conveyance and the Red-Dead conveyance projects
- 5) More attention to problems created by irrigated agriculture in the highlands; and
- 6) Appropriate water tariffs and water-conserving incentives.

2.4.2 Organization

The organizations responsible for water section are the Ministry of Water and Irrigation (MWI), Water Authority of Jordan (WAJ), and public operators namely, Miyahuna, the Aqaba Water Company and the Yarmouk Water Company (YWC). The organizational structure of the water sector is shown in the following figure:

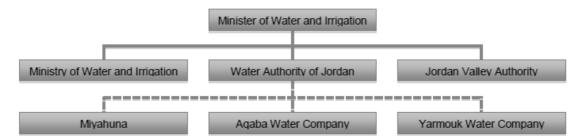


Figure 2.15 Organization of the Water Sector

The MWI, which is the main government agency entrusted with responsibility for water resources, drinking water supply and wastewater services, was formed in 1992 to manage the country's water resources. The MWI is responsible for formulating and implementing water and wastewater development programs and for recommending water sector policies and tariff revisions to the Council of Ministers for approval.

The WAJ established by the "Water Authority Law No.18 of 1988," is an autonomous entity with financial and administrative independence beholden to government and civil service regulations. The WAJ is governed by a Board of Directors chaired by the Minister for Water and Irrigation with representatives from the Ministries of Planning, Agriculture and Health, as well as the Secretary Generals of the WAJ and the JVA.

The WAJ is responsible for implementing policies related to the provision of water supply and wastewater disposal services. Its responsibilities include the design, construction, and operation of these services, as well as supervision and regulation of the construction of public and private wells, as well as licensing well drilling rigs and drillers, and issuing permits to engineers and licensed professionals to perform water and wastewater related activities.

The Yarmouk Water Company (YWC) was established in 2010, serves the four Northern Governorates of Jordan, namely Irbid, Jerash, Ajloun and Mafraq. The YWC is also a 100%-subsidiary of the WAJ and replaces the Northern Governorates Water Administration (NGWA).

CHAPTER 3 EXISTING WASTEWATER MANAGEMENT

3.1 Existing Wastewater Management in the Northern Governorates

3.1.1 On-site Wastewater Treatment Facilities and Management

(1) Present Conditions

On-site wastewater treatment facilities such as septic tanks, cesspits or other simple underground storage tanks are commonly used in the northern governorates. The report prepared by WASH in host communities in Jordan, "An interagency assessment, September-October 2013", points out that the septic tanks are really "improved pits" for the following reasons:

"The devices commonly called "septic tanks" in host communities do not have any outlet pipes, but are not designed to retain sludge and scum. No maintenance is performed on such "septic tanks", except for sporadic emptying by wastewater trucks. These are allowing wastewater septage into the ground. Regular sludge removal from these on-site sanitation facilities is required. In several cases, these are in fact pits dug in the ground and covered by concrete slabs equipped with apertures for emptying."

Based on site observations it is also reported that "Most improved pits are private, i.e. they are used by one household only, although some are shared by several households. The size of improved pits vary, ranging from 9 m^3 to 70 m^3 for private ones and 10 m^3 to 80 m^3 for shared ones".

To maintain the on-site system properly, de-sludging or empting the septage is essential. De-sludging services are provided by private companies using vacuum trucks. The average charge is about 4 JD/m^3 . Average cesspit tank capacity for each house-holds is about 6 m^3 , then about 24 JD is paid for each desludging service. The desludging service is required once monthly or bimonthly.

The collected sludge is delivered and treated at the Al Alkaider WWTP which has a pond system with a capacity of 4,000 m^3/d , specially designed for treating faecal sludge and septage¹.

In the rural area, separation of domestic wastewater at source is a wide spread practice²: black water from toilets is discharged to cesspools or septic tanks, while the grey water is discharged directly into the environment or used for irrigation without treatment.

(2) Impacts on host communities from the influx of Syrian refugees.

¹ "Options for Wastewater Treatment in the Context of Syrian Refugees in North Jordan, Fact Finding Mission 2013", KfW

² "Onsite Greywater Treatment Using Septic Tank Followed by Intermittent Sand Filter – A Case Stud of Abu Al Farth Village in Jordan", July 2010, Vol. 1, No.1, International Journal of Chemical and Environmental Engineering.

The on-site sanitation facilities such as cesspits are overloaded.. Wastewater often overflows from cesspits or temporally excavated pits to nearby shallow wells. The need for de-sludging (vacuum) services run by private companies increased twice after the inflow of Syrian refugees. The more frequent maintenance of these on-site sanitation facilities would deplete the budget for household services and the overflows of wastewater are sometimes overlooked.

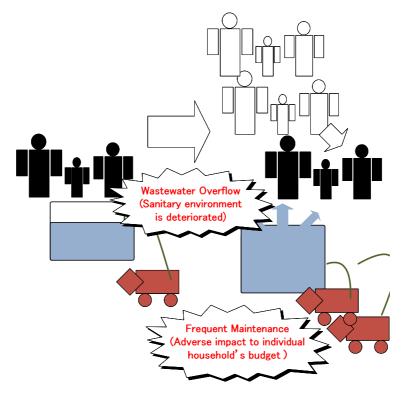


Figure 3.1 Issues for On-site Sanitation Management in the Host Communities

The improper practices of Syrian refugees when they use toilets have caused the following problems. Disposal of paper and garbage other than toilet tissues in toilets are more frequent. The per capita daily water consumption has been reduced because the water supply volume is limited and fixed. These situations cause more clogging and blocking of the sewers, resulting in more frequent overflows of wastewater from manholes.

3.1.2 Off-site Wastewater Treatment Facilities and Management

Table 3.1 summarizes the population with sewerage service in the four northern governorates, the capital of Amman, as well as nationally as of 2012.

	Totals by Governorate		Localities larger than 5,000people		Population Served with Wastewater Collection and Treatment Systems				
Governor ate	No. of Locali ties	Total Governorate Population 【2012】	No of Localiti es	Total Population in Localities	No. of Localities Served	Total Population Served	% of Total Governorate Population . 【2012】	% of Total Population Residing in Localities larger than 5,000 people	
Irbid	137	1,137,100	54	981,378	12	594,404	52%	61%	
Mafraq	172	300,300	12	139,102	1	24,000	8%	17%	
Jerash	55	191,700	10	131,808	16	113,031	69%	86%	
Ajloun	55	146,900	10	117,172	4	61,700	42%	53%	
Amman	157	2,473,400	32	2,345,764	25	2,080,112	84%	89%	
Jordan	1,042	6,388,000	173	5,456,136	91	3,951,465	62%	72%	

Table 3.1 Sewerage Service Population in Four Northern Governorates, Amman and Jordan

Source: SWMP (ISSP)

The population with sewerage service in Mafraq governorate is very low compared with other governorates, and even when compared with localities with more than 5,000 people. Jerash governorate has the highest served population among the four northern governorates, which is as high or closed to that of Amman governorate. But those of Irbid and Ajloun governorates are lower than Jordan.

The present status of sewerage services and the existing sewerage plans for Ajloun and Jerash Governorates are summarized based on the information provided in the Strategic Wastewater Master Plan (herein after referred as "SWMP") prepared by Institutional Support and Strengthening Program (herein after referred as "ISSP"). Existing services and plans for Irbid and Mafraq are described in Section 3.2, based on SWMP as well as field surveys, plus other data and information collected through WAJ, YWC and other related organizations.

(1) Sewerage Services in Ajloun Governorate

Sewerage services are provided to 61,700 people, which is about 42% of the total population of 146,900, in four localities in two districts in the Ajloun Governorate. There is one treatment plant called "Kufranjah" WWTP. Table 3.2 shows the present sewerage in Ajloun Governorate.

District	Localities	Population [2012]	Estimated Served Population	System		
	Anjarah	21,794	19,615	Ajloun sewer system		
Ajloun Qasabah	Ain Janna	10,841	9,757	Ajloun sewer system		
	Ajloun	9,018	8,116	Ajloun sewer system		
Kufranjah	Kufranjah	26,891	24,202	Ajloun sewer system		
Total Popula	ation Served	61,690				
Total Population in	the above Localities	68,544				
% Served in	the Localities	90%				
Total Governor	rate Population	146,900				
% Served in Ajle	oun Governorate	42%				

 Table 3.2 Present Sewerage Services in Ajloun Governorate.

Source: SWMP (ISSP)

Two trunk sewers (the 400 mm line that collects wastewater from the Ajloun and Ain Janna localities and the 300 mm line that collects wastewater from Anjararah) are connected to the 500 mm line that collects wastewater from Kufranjah and conveys it to the Kufranjah WWTP. The capacity of the Kufranjah WWTP and inflow is summarized in Table 3.3. The existing sewerage system in Ajloun governorate is shown in Figure 3.2.

 She che Gutime di the Rui	runjun () () II m	ijioun Governoru
Treatment Process	Design Capacity	Inflow to WWTP
Trickling filter process in	$1,900 \text{ m}^3/\text{d}$	about 2,763 m ³ /d
operation since 1989.		
Courses CWMD (ICCD)		

 Table 3.3
 Outline of the Kufranjah WWTP in Ajloun Governorate

Source: SWMP (ISSP)

The SWMP proposes to improve the sewerage service, including expanding the service area of the Sakhrah and Ebbien localities as a priority II project to be implemented by 2025. The location of the two population centers is shown in Figure 3.3.

Table 3.4 shows the target sewerage service coverage in 2035 compared to the current situation. It is reported that "WAJ is upgrading the Kufranjah WWTP to increase the treatment capacity to 9,000 m^3/d . The wastewater generated by the Sakhrah and Ebbien localities estimated at about 2,810 m^3/d by 2035 will be conveyed and treated at the Wadi Hassan WWTP in Irbid Governorate.

Table 3.4 SWMP Proposal on Sewerage Development for Ajloun Governorate

			Estimated Served	% of total	Projected	Projected
	Localities	WWTP	Population [2012]	Governorate	Population	Wastewater Flow
			(person)	Population	[2035] (person)	(2035) (m ^{3/} d)
Ī	Ajloun	Kufanjah	61,690	42%	101,151	8,092
	Sakhrah	-	12,736	9%	20,883	1,671
	Ebbien	-	8,686	6%	14,242	1,139

Source: SWMP (ISSP)

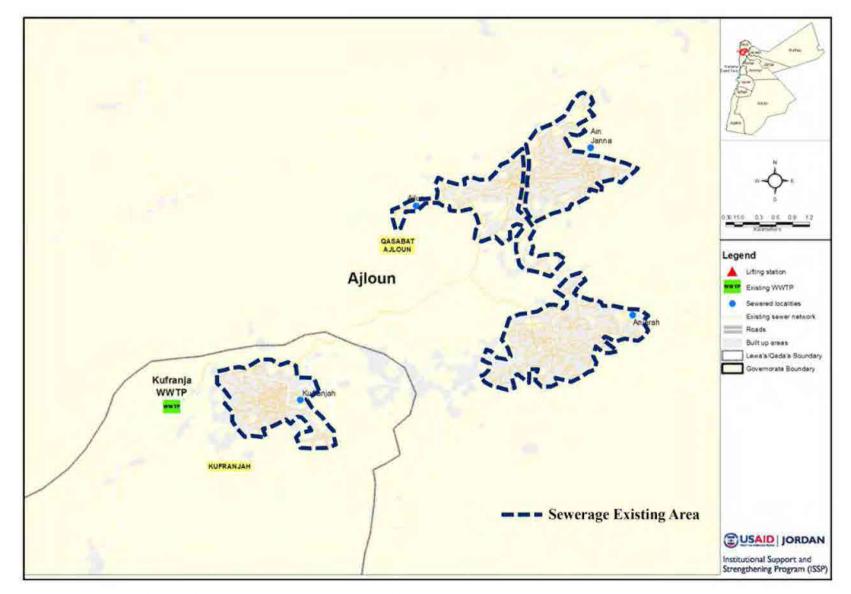


Figure 3.2 Existing Sewerage System in Ajloun Governorate (Source: SWMP (ISSP))

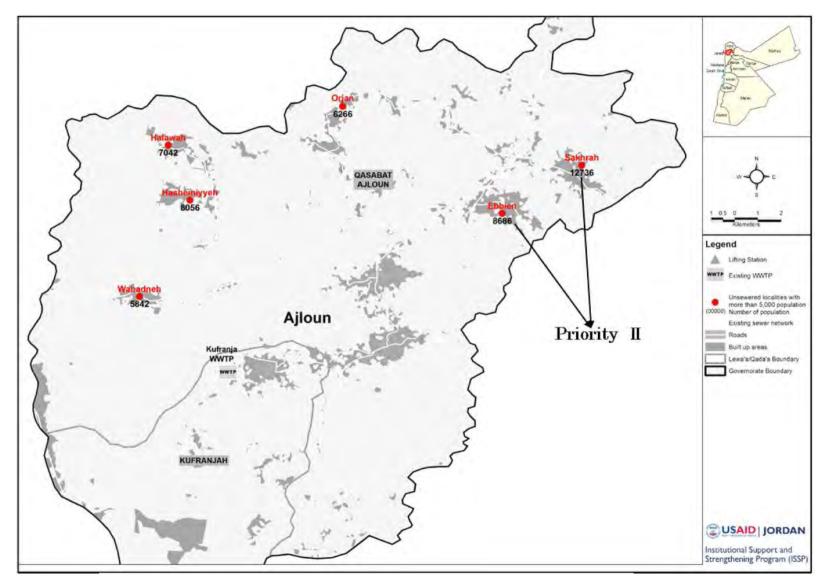


Figure 3.3 Localities where No Sewerage System and Two Localities Proposed as Priority II Project in SWMP (Source: SWMP (ISSP))

(2) Sewerage Services in Jerash Governorate

Table 3.5 summarizes the sewerage services currently provided to 16 localities (7 urban and 9 rural) in the Jerash Qasabah District, serving about 69% of the total population or about 132,200 people. There are two sewerage districts (SWD), the East SWD and the West SWD. Figure 3.4 shows the existing sewerage systems in Jerash Governorate.

District	Localities	Population 【2012】	System	
	Jarash	32,385	East	
	Soof	14,574	East	
	Mukhayyam Soof	13,299	East	
	Dair Elliyyat	3,029	East	
	Meqebleh	2,072	East	
	Asfoor	961	East	
	Nabi Hood	1,173	East	
Jerash	Mukhayyam Ghazzeh	17,750	West	
Qasabah	Sakeb	12,771	West	
	Raimoon	7,839	West	
	Ketteh	7,294	West	
	Dahr As-Srou	7,118	West	
	Nahleh	3,926	West	
	Hadadeh	2,776	West	
	Mansheiat Hashem	2,947	West	
	Ejbarat	2,229	West	
То	tal Population Served	132,144		
Total	Governorate Population	191,700		
	%Served	69%	6	

 Table 3.5
 Present Sewerage Services in Jerash Governorate

Source: SWMP

About 67,500 people are served in the East SWD. The wastewater is conveyed to the East WWTP by the 'Line A' interceptor and the 'Soof' interceptor with pipe diameters ranging from 200 mm to 500 mm. The West SWD serves about 64,650 people. Wastewater is conveyed by 'Line A' and 'Line B' trunk sewers with pipe diameters ranging from 200 mm to 400 mm, and from 200 mm to 500 mm, respectively. Both trunk sewers are connected to 'Line T' with a diameter of 600 mm and a length of 2,380 m, before reaching the West WWTP. General information on the two WWTPs is summarized in Table 3.6.

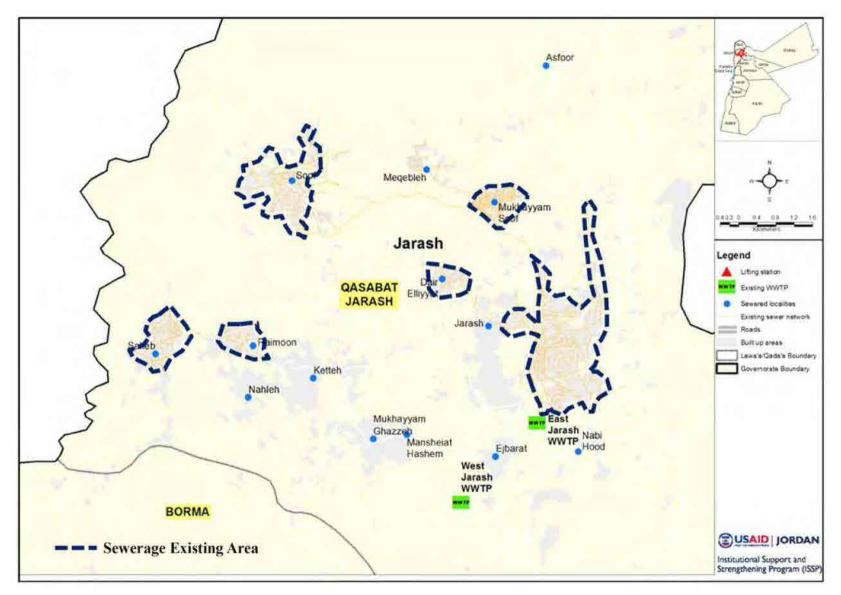


Figure 3.4 Existing Sewerage Systems in Jerash Governorate (Source: SWMP (ISSP))

	0									
WWTP	Treatment Process	Design Capacity	Inflow to WWTP	Remarks						
East	Activated sludge process upgraded with polishing ponds, in operation since 1993	3,750 m ³ /d	Estimated at about 5,399 m ³ /d	An extended aeration process having design capacity of 1,150 m^3/d , in operation since 1983						
West	Oxidation ditch process, providing nitrogen and phosphorus removal, in operation since 2011	9,550 m ³ /d, including 400 m ³ /d for septage	Estimated at about 5,172 m ³ /d	Sludge thickening and mechanical centrifugal dewatering equipment and sludge drying beds						

 Table 3.6 General Information on Existing WWTPs in Jerash Governorate

Source: SWMP (ISSP)

Approximately 53 km of new sewers have been designed for the West SWD in 2010. About 53 km of new sewers ranging from 200 mm to 500 mm in diameter and three lift stations are proposed to be constructed. The present design capacity of 9,550 m^3 /d at the West WWTP can cover the estimated wastewater generated in 2035 as shown in Table 3.7.

In addition, the SWMP proposes to expand the service area in Kofor Khall and Baliela localities in Jerash District as priority II project to be implemented by 2025. The East WWTP is to be expanded to a capacity of $8,000 \text{ m}^3/\text{d}$ from the present capacity of $3,750 \text{ m}^3/\text{d}$ by 2025 and to $10,800 \text{ m}^3/\text{d}$ by 2035.

SWD	WWTP	Status	Localities	Estimated Served Population [2012] (person)	% of total Governorate Population	Projected Population [2035] (person)	Projected Wastewater Flow (2035) (m ^{3/} d)
East	East	Existing	East	67,494	35%	113,323	9,066
		Existing	West	64,650	34%	105,876	8,470
West	West	Droposed	KoforKhall	7,007	4%	11,623	930
		Proposed	Baliela	6,195	3%	10,276	822

 Table 3.7 SWMP Proposal on Sewerage Development for Jerash Governorate

Source: SWMP (ISSP)

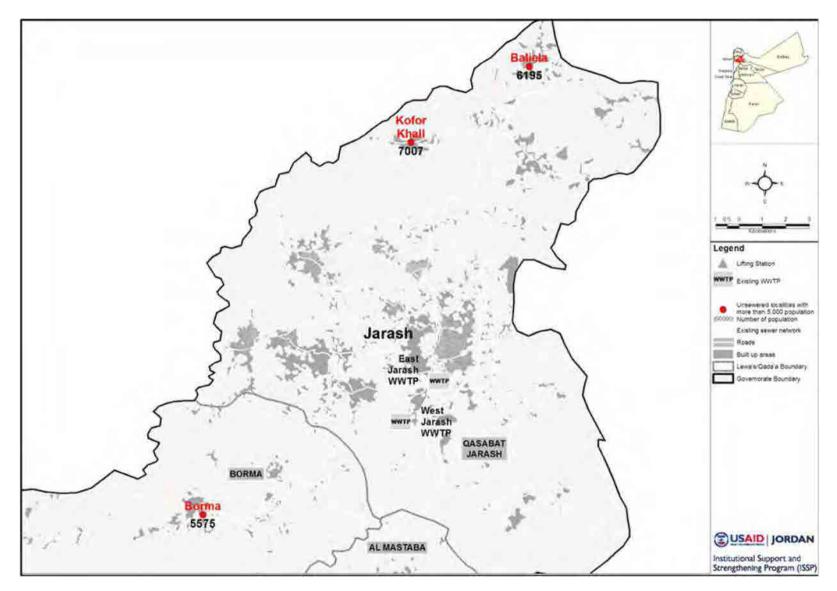


Figure 3.5 Localities of Baliela and Kofor Khall, Proposed as Priority II Project in SWMP (Source: SWMP (ISSP)

3.2 Existing Sewerage Facilities in Irbid, Ramtha and Mafraq Governorates

The current conditions of the sewerage system in Irbid city and its suburbs, Ramtha city and Mafraq city and any recent improvement plans and projects are explained in the following sub-sections.

3.2.1 Irbid City and its suburbs

(1) Sewers

The existing sewers in Irbid and its suburbs are about 1,408 km in total length, of which 6% or about 91 km are 300 mm or more in diameter. The rest are branch sewers of 200 mm in diameter. The lengths and diameters of the existing sewer pipes are shown in Table 3.8.

		Ta	able 3.8 E	Existing	Sewers	in Irbic	l and Su	iburbs			Unit: km
			Branch		Truel Course I an oth has size diamater (mar)					(mm)	
	District	Total	Sewer	Trunk Sewer Length by pipe diameter (mm)							
		Total	200	200	400	500	600	700	800	900	Sub
			200	300	300 400	300	000	700	800	900	Total
I	rbid area	1,407.5	1,317.0	29.1	7.3	15.0	11.3	8.5	13.2	6.1	90.5
	Wadi Al-Arab	477.3	440.1	9.9	2.2	8.0	5.0	4.6	2.7	4.8	37.1
	Central Irbid	114.8	105.3	4.4	1.6	1.8	0.5	-	-	1.3	9.5
	Shallala	646.2	613.2	10.4	2.2	5.2	5.8	3.9	5.4	-	33.0
	Wadi Hassan	169.2	158.4	4.5	1.2	-	-	-	5.1	-	10.8

Source: JICA Study Team, based on the YWC data and information

(2) Lift Stations

There are six lift stations in Irbid and its suburban area. The general information on the six lift stations are summarized in Table 3.9. Their locations are shown in Figure 3.6.

Table 3.7 Outline of Existing Lift Stations in 11 bid and its suburies									
Item	Dougrah	Hakama	Bushrah	Sal	Al-Huson	Wadi Hassan			
Item	LS	LS	LS	LS	Camp LS	LS			
Sewerage	Wadi	Wadi	Shallala	Shallala	Wadi Hassan	Wadi Hassan			
District	Al-Arab	Al-Arab	Shahala	Shahala	wadi Hassan	wadi Hassan			
Commissioning year	2008	2000	2012	2012	2005	2002			
Pump Type	Submersible	Submersible	Submersible	Submersible	Horizontal Shaft	Horizontal Shaft			
Capacity (m ³ /min)	6.0	3.9	3.8	3.8	4.2	6.7			
Head (m)	69.0	35.0	58.0	58.0	79.0	85.0			
Power (kWh)	50.0	45.0-50.0	52.7	-	132.0	160.0			
Number Total (Standby)	2 (1)	2 (1)	2 (1)	2 (1)	2 (1)	2 (1)			

 Table 3.9
 Outline of Existing Lift Stations in Irbid and its suburbs

*The Capacity is for one pump. The second pump is stand-by. Source: JICA Study Team

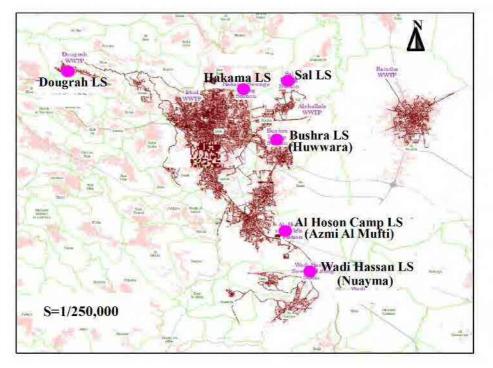


Figure 3.6 Location of Existing Lift Stations in Irbid and its Suburbs

(3) WWTP

There are four WWTPs in Irbid and its suburban areas. General information on the four WWTPs is summarized in Table 3.10 and their locations are shown in Figure 3.7.

The Central Irbid WWTP was the first to be constructed in Irbid City and has been operating for about 30 years since 1987. The Wadi Al-Arab WWTP at the bottom of the valley in the north western part of Irbid, has been in operation since 1999. The Wadi Hassan WWTP has been in operation since 2001 treating the wastewater generated in the "Al Huson" Palestinian refugee camp . The Shallala WWTP was put in operation in 2012 to cope with the further population increase and to reuse treated waste water more efficiently.

Table 3.10 Existing VV VV 11 S III 11 bid and its Suburbs								
WWTP	Wastewater Treatment Method	Design Capacity	First Operation	Improvement Project	Improved Design Capacity 11,950 m ³ /d (improved)			
Central Irbid	Trickling Filter + Activated Sludge Process	$6,000 \text{ m}^3/\text{d}$ (assumed)	1987	Modify the treatment process to Oxidation Ditch Process, under construction				
Wadi Al- Arab	Extended Aeration	20,800 m ³ /d	1999	No improvement	20,800 m ³ /d			
Shallala	Oxidation Ditch	$13,700 \text{ m}^3/\text{d}$	2012	Expansion (under construction)	13,700 m ³ /d			
Wadi Hassan	Oxidation Ditch	$1,600 \text{ m}^3/\text{d}$	2001	No improvement	1,600 m ³ /d			

Table 3.10 Existing WWTPs in Irbid and its Suburbs

Source: JICA Study Team

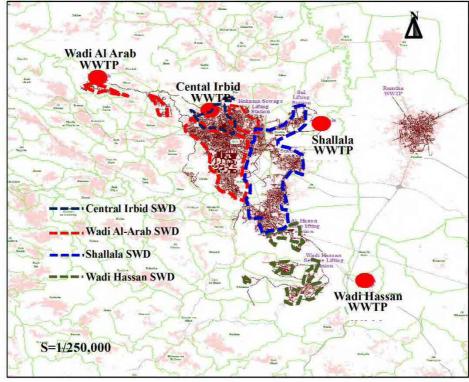


Figure 3.7 Locations of Existing WWTPs in Irbid

3.2.2 Ramtha

(1) Sewers

Total length of sewers in Ramtha is about 194 km. Table 3.11 shows the breakdown by pipe diameter. About 14 km or 7% of the total length have diameters of more than 300 mm. The remaining 93 % are made up of smaller pipes of 200 mm in diameter. All wastewater generated is conveyed by gravity.

		140100						
Branch Sewer	Trunk Sewer						Tetal	
200 mm	300 mm	400 mm	500 mm	600 mm	700 mm	800 mm	Subtotal	Total
180.0 km	3.8 km	5.0 km	0.4 km	1.5 km	0.0 km	3.3 km	14.0 km	194.0 km
	T							

Source: JICA Study Team

(2) WWTP

The wastewater generated in Ramtha City is treated at the Ramtha WWTP located at the northern part of the city as shown in Figure 3.8. General information on the Ramtha WWTP is shown in Table 3.12.

Wastewater Treatment Method	Design Capacity	First Operation	Improvement Project	Improved Design Capacity	
Stabilization Pond	2,700 m ³ /d (assumed)	1987	Modified to Activated Sludge Process in 2005	5,400 m ³ /day	

Source: JICA Study Team

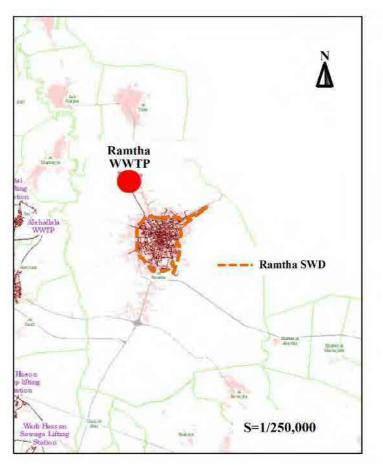


Figure 3.8 Location of the Ramtha WWTP

The Ramtha WWTP started its operation in 1987 at the same time as the Central Irbid WWTP. The treatment facilities were improved in 2005 to expand the sewerage services to meet the demands of the growing population and to distribute the treated wastewater for irrigation on the neighboring farm lands.

3.2.3 Mafraq

(1) Sewers

Table 3.13 shows the 152 km of sewers in Mafraq, of which 17 km (11%) are trunk sewers and the rest are 200 mm diameter branch sewers. All wastewater is conveyed by gravity.

Table 3.13 Existing Sewers in M	lafraq
---------------------------------	--------

	Branch Sewer	Trunk Sewer							Total
	200 mm	300 mm	400 mm	500 mm	600 mm	700 mm	800 mm	Subtotal	Total
	135.0 km	6.8 km	2.8 km	0.2 km	1.3 km	0.0 km	5.9 km	16.9 km	151.9 km
Source: IICA Study Team									

Source: JICA Study Team

(2) WWTP

Mafraq WWTP is located at the northern part of the city as shown in Figure 3.9. The outline of Mafraq WWTP is shown in Table 3.14.

The Mafraq WWTP was commissioned in 1988, one year after the commissioning of the Central Irbid WWTP and Ramtha WWTP. Improvements to the treatment facilities started in 2012 to expand the sewerage services and to promote the efficient reuse of treated wastewater for irrigation.

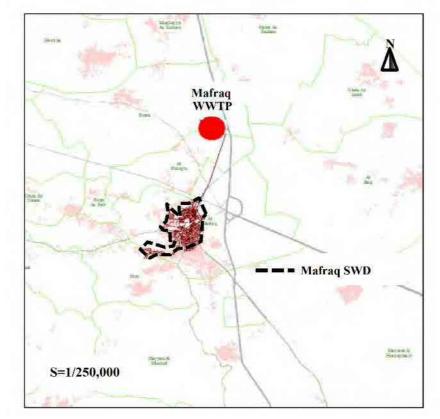


Figure 3.9 Location of the Mafraq WWTP

Wastewater Treatment Method	Original Design Capacity	First Operation	Improvement Project	Improved Design Capacity
Stabilization Pond	1,800 m ³ /d	1988	Modify the treatment process to Activated Sludge Process and improve the treatment capacity. The project is on-going.	3,250 m ³ /d, but after 2015 6,550 m ³ /d

Source: JICA Study Team

3.3 Existing Plans and On-going Projects

3.3.1 Existing Plans

(1) Strategic Wastewater Master Plan, October 2013

The "Strategic Wastewater Master Plan (SWMP), October 2013" was prepared by Institutional Support and Strengthening Program (ISSP) supported by USAID at the request of the Minister of Water and Irrigation. SWWP identified localities having a population greater than five thousand, set three levels of priorities as summarized below and prepared the investment plan for the prioritized sewerage systems. The required investment for the implementation of the prioritized sewerage schemes are estimated by the unit cost for sewerage development per capita multiplied by the number of beneficiaries. The design of the sewerage facilities were not prepared under the SWMP.

- Priority I Immediate: 2013 to 2015
 - Existing sewers and WWTP that are overloaded, and need rehabilitation and expansion immediately.
 - Localities with no sewer network and serious sanitation problems.

- Priority II Short Term: 2016 to 2025
 - Not overloaded but reaching design capacity of WWTP.
 - The localities with no existing sewerage system to protect groundwater or water spring sources which are major drinking water sources in the area.

Priority III Long Term: 2026 to 2035

- Localities greater than 5,000 people with no sewerage system. (Non-sewered area but not categorized as Priority I and II)
- Expansion of WWTP needed to serve the future population beyond the 2025.

(2) National Resilience Plan 2014–2016, Final Draft

The National Resilience Plan (NRP) is a three year program of high priority investments by the Government of Jordan in response to the impact of the Syrian crisis on the Kingdom of Jordan. Now in its fourth year, the crisis in Syria continues to adversely impact Jordan in a variety of ways. The NRP represents an attempt by the GOJ to take initial stock of its consequences in the primary sectors, locations and communities most affected. In doing so the GOJ has reached out to its national, regional and international partners for assistance, both in the preparation, as well as in the financing and implementation of the NRP. This plan will help mitigate the potentially destabilizing political, demographic, social, economic, and fiscal effects of the crisis. The overall sector objective and specific objectives are shown below.

Overall Sector	To enhance the capacity of the Government of Jordan, particularly the host
Objective:	communities to meet the increase in demand in water and sanitation services.
Specific Objective 1:	Improving the quantity, quality and efficiency of safe drinking water and
	delivery of the same.
Specific Objective 2:	Expanding and improving sanitation services.
Specific Objective 3:	Addressing cross cutting water and sanitation issues.

The total cost of response interventions contained within the NRP is about US\$2.48 billion. Critical investment area includes the Water & Sanitation (WASH) sector, with a cost of US\$670.8 million. The complete budget breakdown of annual sector requirements is illustrated in Table 3.15 below. A list of the projects related to water supply in the northern governorates is presented in Table 3.15.

				(USD)
Water and Sanitation	2014	2015	2016	All Years
Specific Objective 1: To enhance the GOJ water and sa	anitation man	agement and	l implementa	tion capacity
Project Summary 1.1: Establishment of YWC implementation capacity (IMU)	2,100,000	2,520,000	2,520,000	7,140,000
Project Summary 1.5: Performance-based contracting NRW reduction in Mafraq & Zarqa city	1,400,000	4,200,000	4,200,000	9,800,000
Specific Objective 2: Improving the quantity, quality a	nd efficiency	of water and	its delivery	
Project Summary2.1: Rehabilitation of wells in different governorates (Irbid, Jerash, Ajloun, Mafraq, Amman, Zarqa, Madaba, Balqa)	8,400,000	8,400,000	-	16,800,000
Project Summary2.2: Restructuring the YWC main transmission/ distribution systems & network reinforcement (Irbid, Jerash, Ajloun, Mafraq, Balqa)	14,000,000	49,000,000	35,000,000	98,000,000
Project Summary 2.3: Water network rehabilitation & reinforcement in Mafraq city	5,000,000	7,000,000		12,000,000
Project Summary2.6: Supply of materials & equipment to YWC	8,568,000	-	-	8,568,000
Total	39,468,000	71,120,000	41,720,000	152,308,000

 Table 3.15 Water and Sanitation Sector Projects in National Resilience Plan

Note: Only projects related to water supply in the northern governorates is extracted from the original list.

(3) Sewerage Plans not yet implemented

Table 3.16 summarizes the list of plans have yet to be implemented as of May 2014.

		1 (<u> </u>
Plan	The First Package: Sewerage Systems for the Manshyet Bani Hassan	The Second Package: Sewerage Systems for the Different Area in Mafraq	Sewerage Systems for the Bait-Ras
		Different Area in Marray	
Governorate	Mafraq	Mafraq	Irbid
Project Cost	6.200 Mil. JD (about 8.8 Mil	5.600 Mil. JD (about7.9 Mil.	not available
	USD)	USD)	
Project Area	Bani Hassan, 5 km West of	South Western Part of	Bait-Ras area, northern
	Mafraq City	Mafraq City	part of Irbid city
Project	Lift station, trunk sewers, and	Lift station, trunk sewers,	Branch sewers
Component	branch sewers	and branch sewers	

Table 3.16 Sewerage	Plans to be	Implemented	(as of May 2014)
iuble bito benerage		mprementeu	

Source: WAJ

3.3.2 On-going Projects

(1) On-going Projects

Table 3.17 shows the major on-going projects as of May 2014.

Project	Shallala Wastewater Treatment Plant	Mafraq Wastewater Treatment Plant
Project		
	Construction	Construction
Governorate	Irbid	Mafraq
Total Cost	51.340 Mil. JD	16.547 Mil JD
Financial	KfW Loan + Self Budget	USAID Loan + Self Budget
Source		
Project Place	South Eastern Part of Irbid City, Shallala	Mafraq WWTP
	WWTP	
Project	1) Expansion of WWTP	Expansion and Improvement of WWTP
Component	2) Expansion of Trunk Sewers	
	3) Expansion of Branch Sewers to Hawara	
	area	
Progress	1) WWTP: 100%	WWTP: 65%
	2) Trunk sewers: 100%	
	3) Branch sewers: 100%	
	4) Under completion procedures	

Table 3.17 N	Maior On-go	ing Sewerage	Projects ((as of May 2014)
I WOIC COLT I	ingor on go	mg benerage		

Source: WAJ

The treatment process at Mafraq WWTP is being upgraded using USAID funding, based on the plan "Upgrade of Mafraq Wastewater Treatment Plant, September 2012". The existing system (anaerobic pond, facultative pond and polishing pond) is being replaced by an advanced treatment system of nitrification and denitrification tank, aerated lagoon, facultative pond, sand filter, and reed bed. Half of the facilities at Mafraq WWTP have already been commissioned and the remaining half is under construction.



Figure 3.10 Upgraded and Constructing Facilities at Mafraq WWTP

(2) Other Improvement Projects for WWTPs

The on-going projects for improving the WWTPs are summarized as follows:

1) Central Irbid WWTP in Irbid Governorate

The existing wastewater treatment processes (trickling filter and conventional activated sludge process with aeration tank and final sedimentation tank) are not working effectively. They are being replaced with an oxidation ditch process using KfW financing.



Figure 3.11 Rehabilitation Financed by KfW at Central Irbid WWTP

2) Wadi Al-Arab WWTP in Irbid Governorate

KfW financing is used to install the sludge dewatering facilities and construct the building housing the facilities. The building construction is completed but the mechanical and electrical dewatering equipment has not been installed yet.

A study on the introduction of advanced treatment using sand filter and UV disinfection is just underway. The target water quality with the advanced treatment is not yet available.

3.4 Operation and Maintenance

3.4.1 YWC Organization

(1) Background

The "Al Yarmouk Water Company (YWC)" is the legal successor to the Northern Governorates Water Administration (NGWA), which is responsible for providing water supply and sewerage services in the Irbid, Jerash, Ajloun and Mafraq governorates. YWC is a limited liability company (LLC) registered in 1997. It is an independent government company fully owned by WAJ.

YWC provides water supply and sewerage services based on the assignment agreement between YWC and WAJ, by which the ownership of all assets was transferred from WAJ to YWC.

(2) Management by Contractor

1) Management contract

PMU of WAJ and YWC employed a service provider for providing management, operation and maintenance services related to the water and wastewater infrastructure through open competition in September 2010. PMU assigned Veolia Water MENA/ Aqua Treat to this task for five years starting September 2011.

2) Goals of the management contract

The major goals of the contract were as follows:

- To improve the water and wastewater services to customers in the northern governorates;
- To improve the financial position of YWC by realizing cost efficiency and by improving revenue management;
- To establish the foundation for sustainable operations, business effectiveness and efficiency for YWC; and
- To reduce the amount of water lost or unaccounted for by reducing leakage and unauthorized connections to the facilities.

The contract, however, was terminated in June 2013; hence the management provider was employed for less than 2 years. Organizational restructuring by the Veolia Water MENA/ Aqua Treat (the

Management Contractor) during the time of the Management Contract was deadlocked presumably due to sensitive labor relations, influence of the clan system, requests for early retirement, deposition and transfer, and strong labor union. Hence, organizational restructuring has become sensitive although the current organizational restructuring by the General Manager has made gradual progress.

(3) Organization Structure of the YWC

Since the termination of management contract, the operation and management of the waterworks of YWC have been taken over by General Manager of YWC.

1) Staffing

According to the cost center database, the total number of employees is 1,649 as of September 2014. This number indicates that the downsizing of employee made a progress from 1,740 in 2012. The current level of staffing for water and wastewater services is better than the 8.7 average of 3 utilities in Jordan, such as Aqaba Water Company, Water Authority Balqa and Zarqa, Madaba and Karak, Maan and Tafila, and Jordan Water Company Miyahuna. It is similar to other upper-middle income countries (5.2 - 6.2) according to IBNET database.

Forty-five (45) employees are directly hired by the YWC, and others are transferred from WAJ to YWC; they are entitled to government retirement benefits. Nearly one-fourth of the total staff members are engaged in customer service activities. Most of these staff members are operators at the Call Center and account for a relatively large part unlike the typical staff composition of a water and wastewater utility.

The number of employees as of October 2014 based on information from the Cost Center is shown in Table 3.18. Staffing productivity per connection is shown in Table 3.19.

	Table3.	18 Stall cor	composition of YWC by Cost Center					
Governorate	ROU or Area	Total	Water	Wastewater	Support Service	Customer Service		
Irbid	Head Office	253			224	29		
	Irbid	318	110	92	23	93		
	Bani Obaid	93	21	25	11	36		
	Bani Kinana	70	36		10	24		
	Al Koura	55	26		11	16		
	North Shouna	122	78		20	24		
	Ramtha	101	28	32	19	22		
	Wadi Shalala*	10		10				
	Za'atary*	15	15					
Ajloun	Ajloun	158	74	19	20	45		
Jerash	Jerash	163	43	26	49	45		
Mafraq	Mafraq	204	97	20	39	48		
	North Badia	87	59		12	16		
Total		1,649	587	224	438	398		

 Table3.18
 Staff composition of YWC by Cost Center

Note: * They are not ROU but facility office.

Source: YWC

	2006	2007	2008	2012	2013	2014
Total staff	1,761	1,801	1,673	1,740	1,671	1,649
Staff number W&WW/ W&WW 1,000 conn.	7.3	7.2	6.4	6.6	6.1	6.0
Note:						

1. Data source: 2006-2008 Management Contract for YWC LLC, 2012-2014 YWC Technical Directorate

2. Data from 2009-2011 are not available

Source: JICA Study Team

2) Organization Chart

After the Management Contractor left, the organization structure was reviewed by the General Manager. The new organization structure, however, has not yet been finalized as of September 2014, presumably due to the sensitive labor issues. Hence, the current organization structure was envisaged by the JICA Study Team through interviews and observations, as shown in Figure 3.12. It should be noted that this organization structure is different from the aforementioned classification by the Cost Center, which aims for cost control.

3) Directorate and its Functions

The YWC encompasses six directorates: O&M, Finance, Technical, Human Resources, Information Communication Technology (ICT), and Commercial. The major functions of the various directorates of YWC are summarized in Table 3.20.

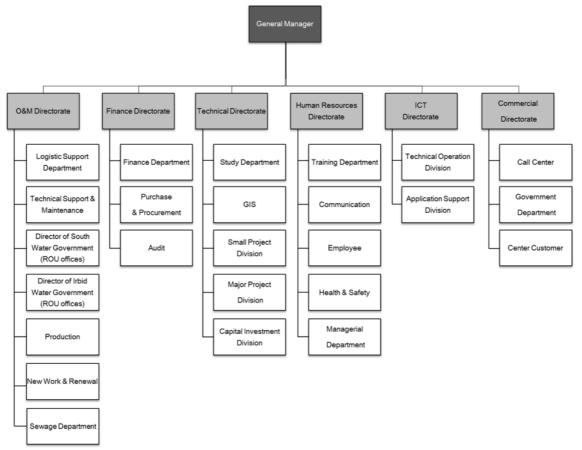


Figure 3.12 Organization Chart (YWC)

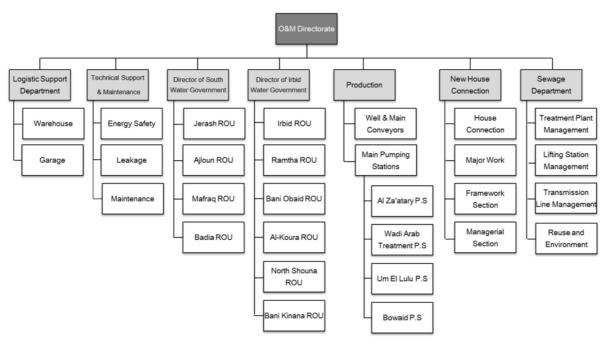
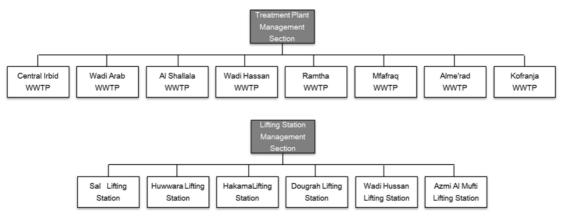

Directorate	Major activity		
O&M Directorate	 O&M of plant, network pipeline, pumping station and other water and wastewater facilities > Water production > New connection > Technical support service > Logistic support and stock management 		
Finance Directorate	 Overall financial management (budget, income, expense, tax, salary, audit, etc.) Planning and implementing cost reduction measures 		
Technical Directorate	 GIS database cleansing and updating Management of capital investment Preparation of contract and specification Project planning and management 		
Human Resource Directorate	 Optimal human resource management Management of payroll, staff allocation, personnel information, recruitment Planning and implementing staff training 		
ICT Directorate	• Introduction and maintenance of ICT including both software and hardware		
Commercial Directorate	 Billing and revenue collection management Meter reading Handling customer inquiries and complaints through the Call Center 		

Table1 3.20 Activities of Directorates of the YWC

Source: YWC

4) O&M Directorate

The O&M Directorate is one of the six directorates directly managed by the General Manager. It is a key directorate responsible for the daily operation and maintenance of water and wastewater facilities, such as intake wells, pumping station, water treatment plant, house connection, wastewater treatment plant, pumping station, pipeline and sewer networks, etc. Network operation and maintenance are under the responsibility of ROUs located in the ten regional areas of the northern governorates. The organization chart of O&M directorate is shown in Figure 3.13.



5) Sewerage Department

The Sewerage Department manages the wastewater facilities and consists of the following 4 sections.

- Treatment Plant Management
- Lift Station Management
- Transmission Line Management
- Reuse and Environment

The organization chart of the Treatment Plant Management Section and Lift Station Management Section are shown in the following figure.

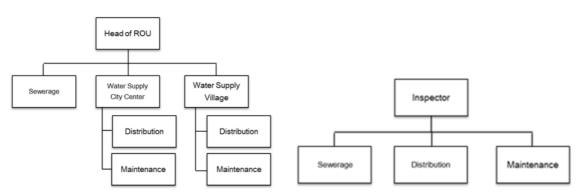

Source: JICA Study Team based on the information from YWC

Figure 3.14 Organization Charts - Treatment plant Management Section and Lift Station Management Section

6) Regional Operation Units (ROUs)

ROUs belong to the O&M Directorate, and are geographically divided into 2 groups: Irbid Water Governorate and South Water Governorates. The Irbid Water Governorate covers the Irbid center and the surrounding areas of the Irbid Governorate, and the South Water Governorates covers the remaining governorates of Jerash, Ajloun, Mafraq and Za'atary.

The organization structure of the ROU office can be categorized into two types: large scale and small scale. A large city such as Irbid City or Mafraq city has two separate sections for water supply: city center and village. There is no sewerage section if a sewerage system is not established in the area, such as Bani Kinana. The typical organization chart is shown in Figure 3.15.

Source: JICA Study Team based on the information from YWC

Figure 3.15 Typical Organization Chart (ROU) – Large Scale (Left), Small Scale (Right)

7) Sewerage Section

The sewerage section is in charge of sewer maintenance. These are established for each wastewater treatment area. For instance, Irbid ROU covers the northern area of Irbid city, and Beni Obeid ROU covers Sal, Bushra, Huwwara, a part of Zubda, Al Husn, Aydon, Al Sarih and East Irbid.

In the Irbid ROU, there are 6 cleaning teams for sewers and 1 cleaning and maintenance team for sewers and manholes. The cleaning teams are responsible for cleaning sewers to prevent sewer blockage and flooding, operates in 3 shifts on a 24 hours schedule. High pressure jet trucks are utilized for the cleaning. The maintenance team is responsible for finding the manholes which are paved over by road constructions, for leveling the manholes to the same level at pavement as well as cleaning. The staff composition of the sewerage section for each ROU is shown as the following Table.

	Irbid ROU	Beni beid ROU	Ramtha ROU	Ajloun ROU	Jerash ROU	Mafraq ROU
Position	Number					
Head	1	1	1	1	1	1
Chief	1	1	1	1	1	1
Cleaning team of sewer (6 teams)						
Worker	12	4	4	2	2	4
Driver	6	2	2	1	1	2
Repair and cleaning team of sewer and manhole (1 team)						
Worker	2					
Driver	1					
Total	23	8	8	7	7	7

Table 3.21 Staff Composition of Sewerage Section in Irbid ROU

Source: JICA Survey Team based on the information from YWC

8) Management of Sewer Networks

The management of the sewer networks is primarily done by each ROU. The cleaning of sewer networks is implemented by using high pressure jet tank. The ROU also responds to residents' complaints on sewer blockages.

9) Management of WWTPs and Lifting Stations

The management system for WWTPs and lifting stations are shown in the following Table.

Table 3.22	The management system.	IOP W W IF and LI	rung Stations (LS)
Governorate	WWTP/ Lifting Station	Staff Number	Management Type
	Central Irbid WWTP	22, 4 shifts	Residential
	Wadi Arab WWTP	21, 4 shifts	Residential
	Shallala WWTP	21, 4 shifts	Residential
	Wadi Hassan WWTP	12, 4 shifts	Residential
Irbid	Sal LS	14, 4 shifts	Residential
IIDia	Bushla LS	10, 4 shifts	Residential
	Hakama LS	4, 4 shifts	Residential
	Daugrah LS	4, 4 shifts	Residential
	Wadi Hassan LS	4, 4 shifts	Residential
	Al Hoson Camp LS	4, 4 shifts	Residential
Ramtha	Ramtha WWTP	15, 4 shifts	Residential
Mafraq	Mafraq WWTP	16, 4 shifts	Residential

Table 3.22 The management system for WWTP and Lifting Stations (LS)

Source: JICA Survey Team

The WWTPs are generally managed by a team of operators on a 24 hours-basis. The lift station is managed by one or two operator/s on a 24 hours-basis. Pumps are managed by an automated operation system sensitive to the wastewater level of the pump wells. The alarm is activated when a problem occurs.

10) Management of Wastewater Quality

The wastewater samples are taken by each WWTP and PS, and the wastewater quality tests are done by the laboratory at the Wadi Hassan WWTP. The results of both wastewater and water are collected and managed by the water quality section of the Central Irbid WWTP, which has one Section Head and 14 staff.

3.4.2 Financial Conditions

Water and wastewater services providers in Jordan were not financially independent organizations because of its public objective. However, the corporatization and privatization of the providers in recent years compelled them to adopt the corporate accounting system that conforms to international financial reporting standards. As a result, financial statements are now prepared by the providers, the so called "Water Company."

(1) Water Tariff

The tariff structure is described in Table 3.23 and 3.24. Billing is quarterly, that is, four times a year.

Consumption Block	Water rate (JD)	Sewerage rate (JD)	Additional fixed
(m ³)	Water Tate (JD)	Sewerage rate (JD)	charge (JD)
0-18	2.13 (fixed)	0.6 (fixed)	2.43
- 36	$0.145/m^3$	0.040/m ³	1.65
- 54	$0.500/m^{3}$	$0.250/m^3$	1.65
- 72	$0.935/m^{3}$	0.495/m ³	0.00
- 90	$1.150/m^{3}$	0.690/m ³	0.00
- 126	$1.610/m^{3}$	$0.805/m^3$	0.00
Above 126	$1.920/m^{3}$	$0.960/m^3$	0.00

Table3.23Residential tariff structure

The non-residential tariff structure is as follows.

Table 3.24Non-residential tariff structure

Water rate (JD)	Sewerage rate (JD)	Additional fixed charge (JD)	
$1.00/m^{3}$	$0.50/m^3$	2.00	

(2) WAJ's Financial Status

The WAJ prepares consolidated financial statements³, which are consolidated statements of these four affiliated water companies. The consolidated financial statements of the WAJ indicate the severe financial situation of the WAJ.

1) Profit and Loss

Table 3.25 shows the consolidated profit and loss statement of the WAJ in 2011 and 2012. The

³ Companies to be consolidated: Jordan Water Company – Miyahuna (JWCM), Aqaba Water Company (AWC), Yarmouk Water Company (YWC), Red Sea Water Company (RSWC).

operating revenues increased by 5%, but could not cover the total operating expenses. A huge loss was recorded because of the high non-operating expenses mostly composed of interest expenses for the loans. The operating expenses were 1.5 times more than the operating revenues; personnel expenses (20%), electricity expenses (28%) and depreciation expenses (31%) are the three major expenses and constitute 80% of the total expenses⁴.

2) Assets, Liabilities and Equities

Table 3.26 presents the consolidated balance sheet of the WAJ. The total capital used in the year 2012 was 1.7 billion JD on average. The current ratio (current assets/current liabilities) was only 32%, which is extremely low, and indicates the tight short-term finances of the WAJ. On the other hand, the fixed assets ratio (fixed assets/net worth) was 230%, which reveals that the procurement of fixed assets largely depended on external finances such as foreign loans.

Most of the account receivables for the year 2012 were outstanding unpaid amounts of subscribers (70 million JD), which represents the amount after the write-off of long-term doubtful receivables (50 million JD).

The account payables turnover period is 155 days, which is too long a period compared to 90 days regarded as a sound period in general. Most of the account payables consisted of unpaid expenses, which soared in 2012.

The financial position of the WAJ is propped up by loans from international donors (8 donors, 14 to 40 years of loan period, 0.2% to 5.78% of interest rate), issue of corporate bonds (amortization in 2015, 4 to 8% of coupon rate) and MOF financial support.

⁴ Water expenses in Japan : personnel 4.5%, electricity 3.3%, depreciation 9.4% (Japan Water Works Associations: Water Statistics Handbook, 2011)

					2011-12	
Account It	ems		2011	2012	Average	Constit ution
Operatin	Revenues	Water	112,618	115,177	113,898	66%
g		Sewerage and Drainage	39,134	43,678	41,406	24%
		Other Revenues	18,005	18,579	18,292	10%
		Total	169,757	177,434	173,596	100%
	Expenses	Procurement of Water	15,572	20,422	17,998	7%
		Personnel	49,238	55,143	52,191	20%
		Electricity	62,293	81,800	72,047	28%
		Depreciation	78,663	80,013	79,338	31%
		Write-off of receivables	5,598	3,819	4,709	2%
		Other Expenses	29,001	29,767	29,385	11%
		Total	240,365	270,964	255,668	100%
	Operating Prot	fit and Loss (-)	-70,608	-93,530	-82,072	-
Non-oper	Revenues	Foreign Exchange Gains	4,881	-	-	-
ating		Other Revenues	9,638	6,547	_	-
		Total	14,519	6,547	-	-
	Expenses	Financial Expenses	30,480	35,559	-	-
		Foreign Exchange Loss	-	3,527	-	-
		Other Expenses	3,622	8,092	-	-
		Total	34,102	47,178	-	-
Non-operating Profit and Loss (-)		-19,583	-40,631	_	-	
Profit and	Loss (-) of the Y	ear before Tax	-90,191	-134,161	-	-
Tax			318	186	-	-
Net Profit	and Loss (1) of t	the Year	-90,509	-134,347	-	-

Table3.25 Consolidated Profit and Loss Statement of WAJ (JD in thousands)

Table3.26 Consolidated Balance Sheet of WAJ (JD in thousands)

Account Ite	ms		2011	2012
Assets	Current Assets	Cash and the Equivalent	17,557	13,976
		Account Receivables	74,872	90,259
		Other Current Assets	68,879	51,556
		Total	161,308	155,791
	Net Fixed Assets		1,506,217	1,556,359
	Total		1,667,525	1,712,150
Liabilities	Current	Account Payables	38,551	64,753
	Liabilities	MOF Advancing Support	-	129,942
		External Loans (Due within 1 year)	19,934	21,196
		Corporate Bonds (Due within 1 year)	138,500	248,980
		Bank Overdraft Account	41,356	70,114
		Other Current Liabilities	52,198	34,804
		Total	290,539	569,798
	Fixed Liabilities	External Loans	213,718	233,984
		Corporate Bonds	392,980	220,000
		Other Fixed Liabilities	47,703	47,216
		Total	654,401	501,200
	Total		844,940	1,070,998
Equities	Own Equity	Paid-in Capital	2,004,697	2,056,936
-		Reserves	5,495	6,139
		Accumulated Profit & Loss(-)	-1,293,360	-1,427,895
		Total	716,832	635,180
	Minority Sharehol	ders' Interests	5,753	6,026
	Total		722,585	641,206
Total of Lia	bilities and Equities		1,667,525	1,712,204

Source of both Tables: Summarized by the JICA Study Team based on the Statements of WAJ

3) Cash Flow

Table 3.27 shows the cash flow (CF) statement of the WAJ. The statement clearly reveals that the capital investment of the WAJ is not covered by the operating net CF but with the financial net CF such as paid-in capital, loans and MOF support. CF at the end of 2012 was 35 million JD, which was only 6% of the current liabilities. A company is generally regarded to be solvent if this percentage is greater than 100. In this sense, the solvency of the WAJ is considered extremely low.

CF Items		2011	2012
CF from Operating	Net Profit	-90,071	-133,745
Activities	Depreciation	78,663	80,013
	Others	-6,202	-608
	Net CF	-17,610	-54,340
CF from Investment	Additional Assets	142,579	129,927
Activities	Additional Investment to DWCP	5,084	2,558
	Net CF	147,663	132,485
CF from Financial Activities	Paid-in Capital	29,019	52,228
	MOF Advancing Support	-	129,942
	External Loans	5,278	18,001
	Corporate Bonds	95,500	-62,500
	Bank Overdraft Account, etc.	9,158	27,679
	Net CF	138,955	165,350
Net CF Changes of the year		-26,318	-21,475
CF at the beginning of the Yea	ar	83,039	56,721
CF at the end of the Year		56,721	35,245

Table 3.27 Consolidated Cash Flow (CF) Statement of WAJ (JD in thousands)

Source: Summarized by the JICA Study Team based on the Statements of WAJ

3.4.3 YWC's Financial Status

The financial statements of the YWC also show the severe financial situation of the company.

(1) Profit and Loss

Table 3.28 presents the profit and loss statement of the YWC. The table shows that the operating revenues could not cover the operating expenses, and the YWC as well as the WAJ, recorded losses for three consecutive years. Therefore, adequate tariff setting and reduction in operating expenses are expected to be studied and analyzed. The operating expenses were 1.6 times more than the operating revenues; personnel expenses (26%), electricity expenses (33%) and depreciation expenses (10%) were the three major expenses and constituted 70% of total expenses. The unit cost of supplied water⁵ is estimated as lying between 0.9 and 1.0 JD/m³ in 2012, including indirect costs such as administrative and other miscellaneous costs.

(2) Assets, Liabilities and Equities

Table 3.29 shows the balance sheet of the YWC. The current ratio (current assets/current liabilities)

⁵ Water actually billed to the customers by the YWC.

was 110%, higher than 32% of the WAJ, but still lower than 200% which is generally regarded as a sound level. On the other hand, the ratio of fixed assets to long-term capital (fixed assets / (net worth + fixed liabilities)) was 97%, which is generally sound because fixed assets were appropriated mostly with long-term finances.

The account receivables in 2012 were 16 million JD as shown in Table 3.35. However, the total unpaid amount before the write-off was 29 million JD (amount unpaid over the half year was 20 million JD), which exceeded the operating revenue of 28 million JD in 2012. This stagnant amount of sales receivables compelled the YWC to raise loans of 10 million JD from the Housing Bank (5 years, 8.5% of interest) for securing working capital. The account payables turnover period was 205 days, which is greater than 155 days for the WAJ.

Account Items		2010	2011	2012	2010-12	
		2010	2011	2012	Average	Percentage
Revenues	Water Sales	13,127	19,745	20,284	17,719	73%
	Sewerage & Drainage Fees	1,196	2,170	2,213	1,860	8%
	Other Revenues	3,490	5,022	5,547	4,686	19%
	Total	17,813	26,937	28,044	24,265	100%
Expenses	Salary & Wages	7,773	9,882	11,766	9,807	26%
	Electricity	10,204	12,428	15,582	12,738	33%
	Fuels	1,424	1,407	1,210	1,347	4%
	Repair & maintenance	2,452	2,556	1,658	2,222	6%
	Water Purchase from Private Wells	1,476	2,961	3,408	2,615	6%
	Chemicals	227	312	252	264	1%
	Administration	675	762	704	714	2%
	Management Contract	-	909	1,451	787	2%
	Depreciation	3,288	3,392	4,842	3,841	10%
	Provision of Doubtful Receivables	-	2,228	2,820	1,683	4%
	Other Expenses	1,947	2,012	2,832	2,264	6%
	Total	29,466	38,849	46,525	38,282	100%
Profit & Lo	ss (-) of the Year	-11,653	-11,912	-18,481	-	-

Table3.28 Profit and Loss Statement of YWC (JD in thousands)

Source: Summarized by the JICA Study Team based on the Statements of YWC

(3) Cash Flow

Table 3.30 shows the cash flow of the YWC. The negative net operating CF as well as the capital investment was appropriated with bank loan and the WAJ credit for paid-in capital.

The CF at the end of 2012 was 3.9 million JD, which was only 20% of the current liabilities. In this sense, the solvency capacity of YWC as well as WAJ is considered extremely low.

Account Items 2010 2011 2012						
Assets	Current	Cash and the equivalent	3,776	1,126	3,984	
	Assets	Account Receivables	10,767	14,156	16,337	
		Inventories	2,215	3,087	3,083	
		Total	16,758	18,369	23,404	
	Fixed Assets	Net Fixed Assets	37,644	64,172	65,407	
		Under Construction	33,244	17,534	18,224	
		Total	70,888	81,706	83,631	
	Total of Asset	S	87,646	100,075	107,035	
Liabilities	Current	Account Payables	4,546	17,906	19,443	
	Liabilities	Short-term Loans	-		1,666	
		Total	4,546	17,906	21,109	
	Fixed	WAJ Credit	145,591	156,547	95,594	
	Liabilities	Long-term Loans	-	-	8,334	
		Total	145,591	156,547	103,928	
	Total of Liabi	lities	150,137	174,453	125,037	
Equities	Paid-in Capita	1	0	25	25	
	Accumulated	Accumulated Profit		-74,403	-18,027	
	Total of Equit	ies	-62,491	-74,378	-18,002	
Total of Lial	bilities and Equit	ies	87,646	100,075	107,035	

 Table3.29
 Balance Sheet of YWC (JD in thousands)

Source: Summarized by the JICA Study Team based on the Statements of YWC

Table3.30 Cash Flow Statement of YWC (JD in thousands)					
CF Items		2010	2011	2012	
CF from Operating Activities	Net Profit	-11,653	-11,912	-18,481	
	Depreciation	3,288	3,392	4,842	
	Others	-7,620	9,101	681	
	Net CF	-15,985	581	-12,958	
CF from Investment Activities	Additional Assets	8,064	7,939	5,128	
	Additional Assets under Construction	5,772	6,273	2,507	
	Net CF	13,836	14,212	7,635	
CF from Financial Activities	Paid-in Capital	-	25	-	
	WAJ Credit	31,949	10,956	13,451	
	Loans	-	-	10,000	
	Net CF	31,949	10,981	23,451	
Net CF Changes of the	Net CF Changes of the year		-2,650	2,858	
CF at the beginning of	f the Year	1,649	3,776	1,126	
CF at the end of the Y	ear	3,776	1,126	3,984	

Table3.30 Cash Flow Statement of YWC (JD in thousands)

Source: Summarized by the JICA Study Team based on the Statements of YWC

3.5 Sewerage Improvement Plan

As shown in Table 3.1 and Table 2.3, all governorates except Jerash have a sewerage service coverage that is lower than the national average, and the governorates of Irbid and Mafrqa receive 95% of Syrian refugees. Based on the current sewerage service coverage and the Syrian refugees number in the four northern governorates, the governorates of Irbid and Mafrqa are selected for further study and for preparing sewerage improvement plans.

CHAPTER 4 SEWERAGE PLANNING AND DESIGN BASIS

4.1 Planning and Design Basis

4.1.1 Service Area

The sewerage development plan has been prepared for the areas of Greater Irbid Municipality (GIM), Ramtha District, and Greater Mafraq Municipality. The service area is defined by reviewing the following information:

- 1) Existing sewerage service area
- 2) Priority area proposed in SWMP
- 3) Existing urban plan
- 4) Influx of Syrian Refugees

4.1.2 Service Population

The sewerage service population is set based on the future population in 2035 for each sewerage district.

4.1.3 Design Flows

Wastewater generation is calculated using the sewerage service population and per capita wastewater generation rate.

(1) Per Capita Water Consumption

According to the water supply plan in the JICA study, the per capita water consumption is set as follows:

Item	Urban Area (lpcd)	Rural/Sub-urban areas (lpcd)
1. Basic Water	100.0	80.0
2. Commercial Water	3.0	2.4
3. Industrial Water	5.0	1.6
4. Tourism Water	3.0	0.0
5. Contingency	5.0	4.0
6. Per Capita Water Consumption	116.0	88.0
7. Peak Supply (Peak Factor 17%)	135.7	103.0

Table 4.1 Per Capita Water Consumption used for Wastewater Generation

Source: JICA Study Team

The water consumption for the sub-urban areas in the sewerage service area is assumed to be the same as the rural areas.

(2) Per Capita Wastewater Generation

The wastewater generation rate is set at 80% of the per capita water consumption rate: that is 92.8 lpcd for the urban area and 70.4 lpcd for rural/sub-urban areas.

(3) Industrial Wastewater

The industrial wastewater is included in the above per capita wastewater generation. The planned industrial wastewater is generated from home industries or small scale industries. It is not planned to receive the wastewater generated from medium and large factories and treat at the municipal wastewater treatment plants, because the effluents of municipal wastewater treatment plant are used for irrigation and other purposes.

(4) Inflow and Infiltration of Groundwater

Groundwater infiltration and surface water inflow are not considered in the Study, because the groundwater level in the study area is low and there is little precipitation.

(5) Design Flows

The design flows for each sewerage district are estimated by multiplying the sewerage service population by the per capita wastewater generation rate.

The average daily flows are used for the management of the operation of the WWTP, including determining the O&M costs and user charge. Yearly, monthly or daily figures are applied for the calculations. The maximum daily flows are used for checking the treatment capacity of facilities such as aeration tanks. The design for pipes and channels at the wastewater treatment facilities is based on the maximum hourly flows. Although the sewers are designed based on maximum hourly flows, the Habit's coefficient is used for the calculation of the designed maximum hourly flows in Jordan.

The following peaking factors in Table 4.2 are used for calculating the design flows.

C		
Factor	Peaking	Remarks
Ratio between maximum daily flow and average daily flow	1.17	Calculated
Ratio between maximum hourly flow and maximum daily flow	1.50	Set
Ratio between maximum hourly flow and average daily flow	1.80	Calculated (1.756) from water supply data

Table 4.2 Peaking Factors

4.1.4 Design Wastewater Quality

(1) Design Influent Quality

The influent qualities in terms of BOD_5 and SS for the design of WWTP are estimated using the unit load of 65 g/capita • day for BOD and 60 g/capita • day for SS. The unit loads cover the pollutant loads of domestic, commercial, industrial (house industry level) wastewater. The BOD unit load is based on the figure provided in the SWMP.

(2) Design Effluent Quality

The design effluent quality is usually set to meet the national or regional effluent quality standards that are specified by the central and/or local environmental agencies. These vary depending on the sensitivity of receiving water bodies or reuse purposes of the treated wastewater.

The effluent standards in Jordan are summarized as follows:

1) Policies and Standards for Wastewater Management in Jordan

Water resources are scarce in Jordan. The national wastewater strategy, in the "Wastewater Management Policy of 1997" states that "the sewage should not be wasted, it should be used as one of the water resources."

Under the policy, "Reclaimed Domestic Wastewater Standard No 893/2006" was established to promote the use of reclaimed water. The allowable limits in the standards are specified for the following discharge cases:

A: Discharge to streams, wadis, and reservoirsBa: Groundwater rechargeBb: Irrigation purposes

The allowable limits for irrigation with treated effluent vary depending on the end use of the crop:

Bb-1 - vegetables that will be cooked, parks, playgrounds and side roads in populated areas;

- Bb-2 fruit trees, highway trees and green areas;
- Bb-3 feed crops, industrial crops and forest trees, and flowers.

Tables 4.3, 4.4 and 4.5 show the allowable limits for each type of discharge.

 Table 4.3
 Allowable Limits for Discharging to Streams, Wadis and Reservoirs (A)

Parameter	Allowable limit					
BOD ₅ (mg/l)	60					
CODcr (mg/l)	150					
DO (mg/l)	1					
TSS (mg/l)	60					
pH	6-9					
NO ₃ -N (mg/l)	70					
T-N (mg/l)	80					
E. coli (MPN or CFU/100ml)	1,000					
Intestinal Helminth Eggs (egg/1)	< or =1					
Fat, Oil and Grease (FOG) (mg/1)	8.0					

Parameter	Allowable limit
BOD ₅ (mg/l)	15
CODcr (mg/l)	50
DO (mg/l)	>2
TSS (mg/l)	50
рН	6-9
Turbidity (NTU)	2
NO ₃ -N (mg/l)	30
NH ₄ -N (mg/l)	5
T-N (mg/l)	45
E. coli (MPN or CFU/100ml)	< 2.2
Intestinal Helminth Eggs (egg/1)	< or =1

Table 4.4 Allowable Limits for Groundwater Recharge (Ba)

 Table 4.5
 Allowable Limits for Irrigation Purposes (Bb)

	Allowable concentr	ation according to aspe	ects of uses	
	vegetables that will be	Fruit trees, trees	Feed crops,	
Standards	cooked, parks, playgrounds	along highway and	industrial crops and	Cut flower
	and side roads in populated	green areas (Bb-2)*	forest trees (Bb-3)*	
	areas (Bb-1)*			
BOD ₅ (mg/l)	30	200	300	15
CODcr (mg/l)	100	500	500	50
DO (mg/l)	> 2	-	-	<2
TSS (mg/l)	30	200	300	15
pН	6-9	6-9	6-9	6-9
Turbidity (NTU)	10	-	-	5
NO ₃ -N (mg/l)	30	45	70	45
T-N (mg/l)	45	70	100	70
E. coli (MPN or	100	1.000		1.1
CFU/100ml)	100	1,000	-	1.1
Intestinal Helminth	< or =1	< or =1	< or =1	1 <
Eggs (egg/1)	< 01 =1	< 01 =1	< 01 =1	1 <
FOG (mg/1)	8.0	8.0	8.0	2.0

The allowable limits of hazardous substances in the effluents are stipulated as shown in the Table 4.6.

Table 4.0 Anowable Limits of Hazardous Substances								
Parameter	Streams, Valleys and	Groundwater	Irrigation	Purposes				
	Reservoirs (A)	Recharge (Ba)	(Bb-1, -2 and -3)	Cut flower				
Phenol (mg/l)	< 0.002	< 0.002	< 0.002	< 0.002				
MBAS* (mg/l)	25	25	100	15				
TDS** (mg/l)	1,500	1,500	1,500	1,500				
Total PO ₄ (mg/l)	15	15	30	30				
Cl (mg/l)	350	350	400	400				
SO ₄ (mg/l)	300	300	500	500				
HCO ₃ (mg/l)	400	400	400	400				
Na (mg/l)	200	200	230	230				
Mg (mg/l)	60	60	100	100				

 Table 4.6
 Allowable Limits of Hazardous Substances

Parameter	Streams, Valleys and	Groundwater	Irrigation	Purposes
	Reservoirs (A)	Recharge (Ba)	(Bb-1, -2 and -3)	Cut flower
Ca (mg/l)	200	200	230	230
SAR***	6.0	6.0	9.0	9.0
Al (mg/l)	2.0	2.0	5.0	5.0
As (mg/l)	0.05	0.05	0.1	0.1
Be (mg/l)	0.1	0.1	0.1	0.1
Cu (mg/l)	0.2	1.5	0.2	0.2
F (mg/l)	1.5	2.0	2.0	2.0
Fe (mg/l)	5.0	5.0	5.0	5.0
Li (mg/l)	2.5	2.5	2.5	0.075
			(0.075)	
Mn (mg/l)	0.2	0.2	0.2	0.2
Mo (mg/l)	0.01	0.01	0.01	0.01
Ni (mg/L)	0.2	0.2	0.2	0.2
Pb (mg/l)	0.2	0.2	0.2	0.2
Se (mg/l)	0.05	0.05	0.05	0.05
Cd (mg/l)	0.01	0.01	0.01	0.01
Zn (mg/L)	5.0	5.0	5.0	5.0
Cr (mg/l)	0.02	0.05	0.1	0.1
Hg (mg/l)	0.002	0.001	0.002	0.002
V (mg/l)	0.1	0.1	0.1	0.1
Co (mg/l)	0.05	0.05	0.05	0.05
B (mg/l)	1.0	1.0	1.0	1.0
CN (mg/l)	0.1	0.1	0.1	0.1

Note: *MBAS: Methylene Blue Active Substance, **TDS: Total Dissolved Solids, and ***SAR: Sodium Absorption Ratios Figure in the (): for citrus crops

Almost all of hazardous substances cannot be removed by typical biochemical treatment methods that are generally applied for municipal wastewater treatment plants. Therefore, when the industrial wastewater is received by a sewerage system, the qualities are regulated by laws and quality standards. In Jordan the industrial wastewater is allowed to be discharged to the sewer networks when discharge conditions between the industry and the authority concerns are satisfied, as it is stated in "Reclaimed Domestic Wastewater Standard No. 893/2006".

The design effluent quality is set based on the review of the uses of the treated wastewater for each WWTP. The result of the review for each treatment plant is explained in the following sections.

4.2 Greater Irbid Municipality

4.2.1 Service Area

(1) Existing sewerage service area

Four sewerage districts, Wadi Al-Arab, Central Irbid, Shallala, and Wadi Hassan, in the Greater Irbid Municipality, are shown in Figure 4.1. The boundary of Greater Irbid Municipality is presented in Figure 4.3. The sewerage service areas for each sewerage district are summarized in Table 4.7.

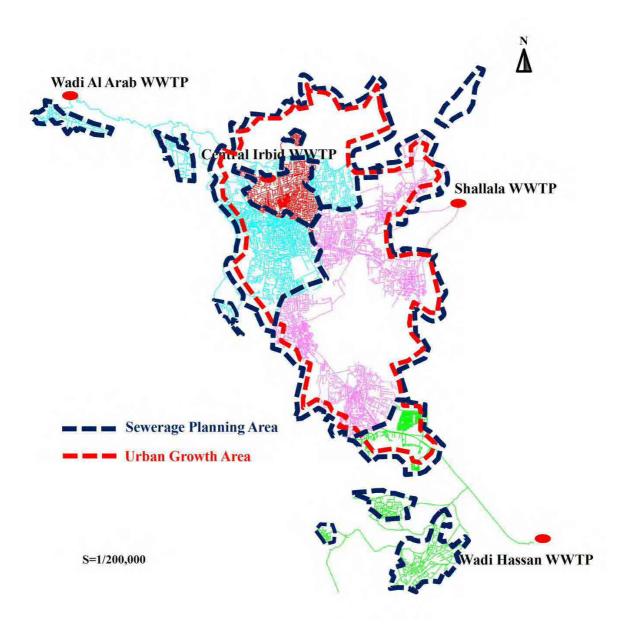


Figure 4.1 Existing Four Sewerage Districts in the Greater Irbid Municipality

1	Table 4.7 Tresent Sewerage Service Area in Each Sewerage District								
	Central Irbid	Wadi Al-Arab	Shallala	Wadi Hassan	Total				
	696 ha	2,409 ha	4,053 ha	1,124 ha	8,282 ha				

Table 4.7 Present	Sewerage	Service Area	in Each S	Sewerage District
Table 407 Tresent	Denerage	Der vice mica	III Lach k	Jewerage District

Source: JICA Study Team

(2) Priority Areas in SWMP

Figure 4.2 shows the priority areas in Irbid proposed in the SWMP. Mughyyir, Bait Ras, and Hakama are categorized as Priority II area.

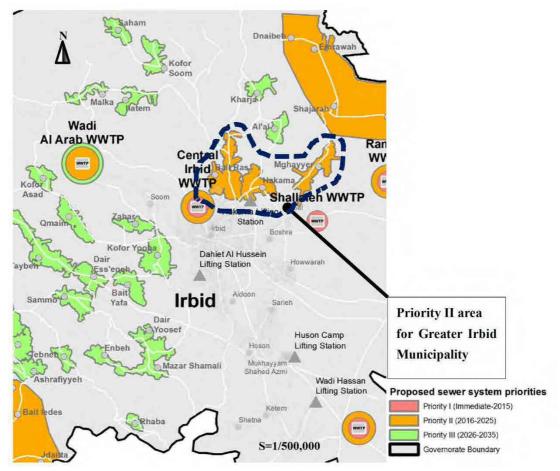


Figure 4.2 Priority II Area in the Greater Irbid Municipality as Proposed by SWMP

(3) Existing Urban Plan

Figure 4.3 shows the GIM (area in dark brown), the urban planning area (inside of broken white line) and the urban growth area (UGA) of the Greater Irbid Municipality. The UGA covering about 90% of the current population is expected to continue to grow.

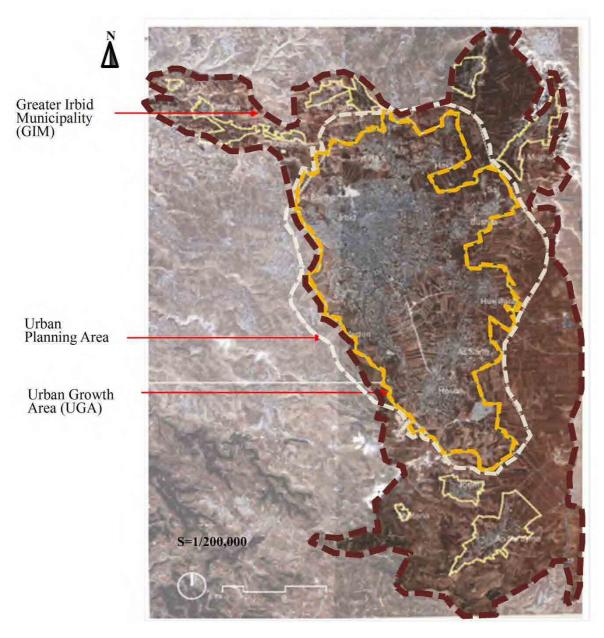


Figure 4.3 Urban Growth Area (UGA), the Urban Planning Area and the Greater Irbid Municipality (GIM)

The Urban Growth Area Plan to 2030, includes land use plan and the development of infrastructures such as roads. Table 4.8 shows that the UGA area currently includes about 90% of the population and housing units located in the Greater Irbid Municipality. This ratio is projected to be about the same in 2030.

		Existin	g【2004】		Urban Growth Area Plan [2030]			
Area	Population		Population Housing Units		Population		Housing Units	
	(person)	(%)	(unit)	(%)	(person)	(%)	(unit)	(%)
Greater Irbid Municipality	395,472	100.0	94,983	100.0	741,276	100.0	192,312	100.0
Urban Growth Area	355,363	89.9	85,731	90.3	671,165	90.5	175,579	91.3

Source: MOI

Bait Ras and Hakama are categorized as Priority II in the SWMP, and are located in the UGA.

(4) Influx of Syrian Refugees

According to the Ministry of the Interior (MOI), about 120,000 Syrian refugees are living in the GIM as of July 2013. Since the Jordanian population in the GIM is estimated at 514,395 in 2012, the ratio of Syrian refugees to Jordanians has reached about 23%.

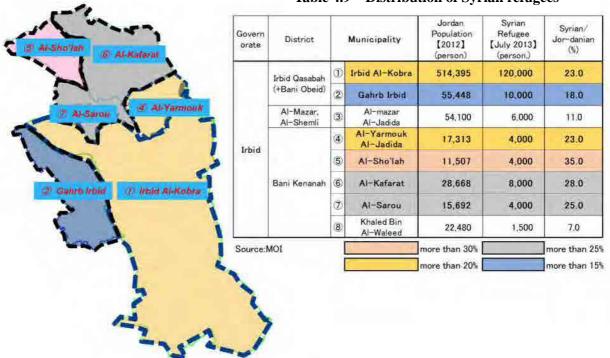


 Table 4.9
 Distribution of Syrian refugees

Figure 4.4 Syrian Refugees Distribution in Irbid

(5) Sewerage Service Area

The sewerage service area in the GIM is shown in Table 4.10 and Figure 4.5, covering the four sewerage districts, plus the UGA and Mughyyir proposed under this Study. The planning area covers the Priority II area in the SWMP. The UGA is densely populated and is receiving many Syrian refugees.

It should be noted that the Hoson Camp, currently covered by Wadi Hasan SWD, is planned to be covered by Shallala SWD in the future. Therefore, the area of 102 ha of Hoson Camp is included in the Shallala SWD in table below.

	Sev	Ratio (B/A)		
Sewerage District	Existing Area (A)	Planned Area (B)	Increased Area (B-A)	%
Central Irbid	696	696	0	100
Wadi Al-Arab	2,409	4,613	2,204	191
Shallala	4,053	6,523	2,470	161
Wadi Hassan	1,124	1,453	329	129
Total	8,282	13,285	5,003	160

 Table 4.10 Sewerage Service Area in Greater Irbid Municipality (GIM)

Source: JICA Study Team

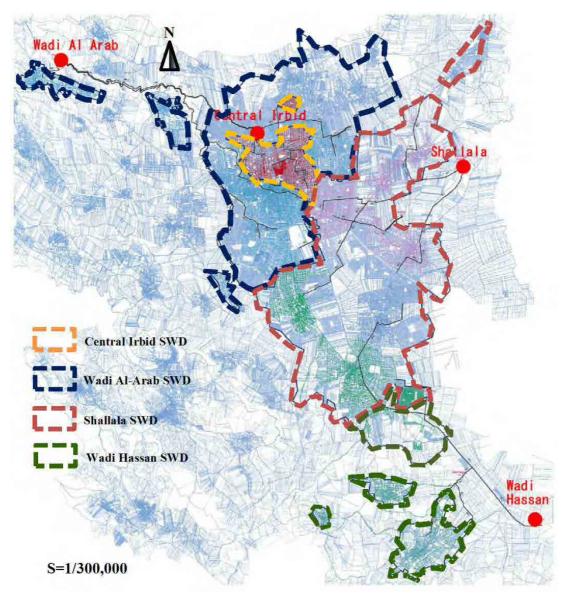


Figure 4.5 Planned Sewerage Service Area in GIM

4.2.2 Service Population

The population data for 2035 is available for each locality in the Greater Irbid Municipality and sub-locality in Irbid City. The population data is distributed into four sewerage districts, Wadi-Arab (A), Central Irbid (C), Shallala (S), and Wadi Hassan (H), based on the boundary of each locality or sub-locality and of each sewerage district. When an area or neighborhood is divided into two or more sewerage districts then the population attributed to each sewerage district is estimated based on the area.

Figure 4.6 shows sewerage service population for one neighborhood divided into two sewerage districts.

	NameArea	Neighborhood	Service Population [2035]	Population in SWD- A	Population in SWD- C	Population in SWD- S	Population in SWD- H
	Al Roudah	Al Sena'a	2,174	2,174			
ha] [Nasur] Wadi Al Arab	Al Barha	Al Basaten	11,768	11,768			
	Al Manara	Al Manara	21,481	21,481			
	Al Arabia	Al Ateba'a	11,868	11,868			
[AI Herafeyeen [AI Yarmouk]	Al Nouzha	Al Jamiah	13,591	13,591			
West] [Hanena]	Al Nouzha	Al Nouzha	6,896	6,896			
LAI Herateyeer	Al Arabia	As Surayj	4,992	4,992			
East Incid Control	Al Arabia	Zebdat	10,561	10,561			
	Al Arabia	Al Mohandisin	9,717	9,717			
[Al Marj] [Al Naser]	Al Arabia	Al Afraah	11,917	11,917			
Lit net amage	Al Reudah	Al Baqaa	6,340	6,340			
[AL saadah]	AI EmaalAl Roudah	Al Baiyda	2,943	2,943			and the second sec
Al Basaten] [Al Naser]	Al Nasur	Al Herafeyeen East	648	648			
	Al Barba	Al Herafeyeen West	997	997			
[Al Matla'a] [Al Audah] [Al Salam	Al SaAl Manara	Al Swaneh	7.201	7,201			
	Al Manara	Al Nadeef	8,904	8,904			Participanto Jacobiola
	Al Manara	Al Abrar	19,224	19,224	0101010101010101		1
TAL BOLD TAL TALET [AI Medan]	Al Manara	Al Qasela	10.397	10,397			
[A] Swaneh] [A] Setar [A] Ta[1] [A] Medan]	Al Hashimia	Al Jamee	1,730	1,730	essentitudente de la constantitudente de la constantitu		and of a new particular
[At Hashme]	Al Nasur		1,206	1,206			
[Al Manara] [Al Jamee]	Al Barha		12,453	12,453			
[AI Nadeef] [Articlata]	Al Nasur	Al Yarmouk	5,511	3,968	1,543		1
	Al Barha	Al Ashrafeeh	2,308	1,546	762		
	Al Barha	Al Seha	13,147	9,466	3,681		
[A] Abrar]	Al Roudah	Al Emaan	6,215	5,718	497		1
	Al Nouzha	Al Hekmah	7,562	3,554		4,008	
	Al Roudah	Al Rouda	7,684	7,300		384	
G 1/100 000	Al Roudah	Al Sahel Green	8.011	5,688		2,323	
S=1/100,000	Al Hashimia	Al Salam	14,272	and a state of the state of the	14,272		
	Al Barha	Al Matla'a	12,990		12,990		
	Al Hashimia	Al Medan	6,920		6,920		

Figure 4.6 Method of Population Distribution into Each Sewerage District in GIM

Table 4.11 shows the sewerage service population for 2035 for each sewerage district (SWD).

Total sewerage service population is about 790,000: 118,000 (15%) in Central Irbid SWD, 329,000 (42%) in Wadi-Arab SWD, 307,000 (39%) in Shallala SWD, and 36,000 (4%) in Wadi Hassan SWD.

The service population in Shalala SWD includes the population in Hoson Camp that is currently served by the sewerage system of Wadi Hassan SWD. WAJ plans to switch Hoson Camp from Wadi Hassan SWD to Shallala SWD.

NameArea	Neighborhood	Service Population [2035]	Population in SWD-	Population in SWD- C	Population in SWD- S	Population in SWD- H	
	11.0		A	C	5	н	
Al Roudah	Al Sena'a	2,174	2,174				IC DIAL
Al Barha	Al Basaten	11,768	11,768			-	[Sewerage District]
Al Manara	Al Manara	21,481	21,481				A Wadi A-Arab C Central Irbid
Al Arabia	Al Ateba'a	11,868	11,868				
Al Nouzha	Al Jamiah	13,591	13,591				H Wadi Hassan
Al Nouzha	Al Nouzha	6,896	6,896				S Shallaleh
Al Arabia	As Surayj	4,992	4,992				SWD Sewerage Distr
Al Arabia	Zebdat	10,561	10,561				
Al Arabia	Al Mohandisin	9,717	9,717				11
Al Arabia	Al Afraah	11,917	11,917				1
Al Roudah	Al Baqaa	6,340	6,340				-
M Roudah	Al Baiyda	2,943	2,943				
Al Nasur	Al Herafeyeen East	648	648				
Al Barha	Al Herafeyeen West	997	997	1			
Al Manara	Al Swaneh	7,201	7,201				
Al Manara	Al Nadeel'	8,904	8,904		1		
Al Manara	Al Abrar	19,224	19,224				
Al Manara	Al Qasela	10,397	10,397				
Al Hashimia	Al Jamee	1,730	1,730				
Al Nasur		1,206	1,206		ii		
Al Barha	distant and a	12,453	12,453		1		
Al Nasur	Al Yarmouk	5,511	3,968	1,543			
Al Barha	Al Ashrafeeh	2,308	1,546	762			
Al Barha	Al Seha	13,147	9,466	3,681			
Al Roudah	Al Emaan	6,215	5,718	497	1		
Al Nouzha	Al Hekmah	7,562	3,554		4,008		
Al Roudah	Al Rouda	7,684	7,300		384	1.100	14
Al Roudah	Al Sahel Green	8,011	5,688	a series and	2,323		
Al Hashimia	Al Salam	14,272	A	14,272			
Al Barha	Al Matla'a	12,990		12,990	1		
Al Hashimia	Al Medan	6,920		6,920			
Al Nasur	Al Audah	32,581		32,581			
Al Nasur	Hanena	17,089	7,519	9,570		1	
Al Nasur	Al Karama	13,814	4,697	9,117			
Al Barha	Al Marj	2,687	242	2,445			1
Al Barha	Al Saadah	8,446	3,547	4,899			
Al Hashimia	Al Mallab	4,512	1,128	3,384			1
Al Hashimia	Al Tall	1,908	687	1,221			
Al Hashimia	Al Hashme	2,732	1,065	1,667			
Al Nasur	Al Naser	10,871	2,283	8,588			
Al Nouzha	Al Werud	14,292	-,,-		14,292		1
Al Roudah	Zahra	3,707	-		3,707		
Al Roudah	Zahra	5,385			5,385		
Al Roudah	Andalus	4,015	-		4,015		
Al Roudah	Andalus	5,643			5,643		
D Ito Hand	[City Total]	389,310	235,416	114,137	39,757		
	Certy Forang	007,010	200,410	114,1.57			
Bait Ras	Bait Ras	50,036	46,033	4.003			
lakama	Hakama	14,404	14,404	4,003			
Maro	Maro	6,046	6,046	-		-	
Maro Miah	Aliah	5,197	5,197			-	
Iowwarah	Howwarah	31,955	5,197		31,955	-	1
Howwaran Sal	Sal	24,699			24,699		
11 - 3 - 21	Boshra	32,175			32,175		
Boshra			-				-
Aidoon	Aidoon	48,819			48,819		
Sarieh	Sarieh	47,359			47,359		
Hoson	Hoson	65,633			41,349		
loson	Shahed Azmi	1.4 104 -			24,284		
Mghayyer	Mghayyer	16,831			16,831	215	
Shatana	Shatana	540	-			540	
Ketem	Ketem	10,696				10,696	-
Soom		9,997	9,997				
No`ayymeh		24,141				24,141	1
Dougrah		9,154	9,154				
Natfeh		2,617	2,617		1	the second second	
	[Suburbs Total]	400,299	93,448	4,003	267,471	35,377	
	· · · · · · · · · · · · · · · · · · ·		328,864 A	118,140 C	307,228 S	35,377 H	

Table 4.11 Sewerage Service Population for Four Sewerage Districts in GIM

4.2.3 Design Flows

(1) Design Average Flow for Four Sewerage Districts in Greater Irbid Municipalities

Tables 4.12 to 4.15 show the design flows for each sewerage district. As explained in Section 4.1, the wastewater generation rate is calculated by multiplying the service population by per capita wastewater generation rate for urban and rural areas. The average flows are the same as the wastewater generation rate assuming no groundwater inflow and infiltration. The maximum daily and hourly flows are set using the peaking factor in Table 4.2.

NameArea	Locality Neighborhood	Population	Average Water Supply Volume	Wastewater Generation	Ground water I/I	Ave. Daily Flow	Max. Daily Flow	Max. Hourly Flow
		(pers.)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)
Al Nasur	Al Yarmouk	1,543	179	143	0	143	168	252
Al Barha	Al Ashrafeeh	762	88	70	0	70	83	125
Al Barha	Al Seha	3,681	427	342	0	342	400	600
Al Roudah	Al Emaan	497	58	46	0	46	54	81
Al Hashimia	Al Salam	14,272	1,656	1,325	0	1,325	1,549	2,324
Al Barha	Al Matla'a	12,990	1,507	1,206	0	1,206	1,410	2,115
Al Hashimia	Al Medan	6,920	803	642	0	642	751	1,127
Al Nasur	Al Audah	32,581	3,779	3,023	0	3,023	3,537	5,306
Al Nasur	Hanena	9,570	1,110	888	0	888	1,039	1,559
Al Nasur	Al Karama	9,117	1,058	846	0	846	990	1,485
Al Barha	Al Marj	2,445	284	227	0	227	265	398
Al Barha	Al Saadah	4,899	568	454	0	454	532	798
Al Hashimia	Al Mallab	3,384	393	314	0	314	367	551
Al Hashimia	Al Tall	1,221	142	114	0	114	133	200
Al Hashimia	Al Hashme	1,667	193	154	0	154	181	272
Al Nasur	Al Naser	8,588	996	797	0	797	932	1,398
	City Total	114,137	13,241	10,591	0	10,591	12,391	18,591
Bait Ras	Bait Ras	4,003	352	282	0	282	330	495
	Suburbse Total	4,003	352	282	0	282	330	495
	Total	118,140	13,593	10,873	0	10,873	12,721	19,086

 Table 4.12
 Calculation of Design Flows for Central Irbid SWD

NameArea	Locality Neighborhood	Population	Average Water Supply Volume	Wastewater Generation	Ground water I/I	Ave. Daily Flow	Max. Daily Flow	Max. Hourly Flow
		(pers).	(m ³ /day)	(m ³ /day)	(m ³ /dav)	(m ³ /day)	(m ³ /day)	(m ³ /day)
Al Roudah	Al Sena'a	2,174	252	202	0	202	236	354
Al Barha	Al Basaten	11,768	1,365	1,092	0	1,092	1,278	1,917
Al Manara	Al Manara	21,481	2,492	1.994	0	1,994	2,332	3,498
Al Arabia	Al Ateba'a	11,868	1,377	1,102	0	1,102	1,288	1,932
Al Nouzha	Al Jamiah	13,591	1,577	1,262	0	1,262	1,475	2,213
Al Nouzha	Al Nouzha	6,896	800	640	0	640	749	1,124
Al Arabia	As Suravi	4,992	579	463	0	463	542	813
Al Arabia	Zebdat	10,561	1,225	980	0	980	1,147	1,721
Al Arabia	Al Mohandisin	9,717	1.127	902	0	902	1.055	1,583
Al Arabia	Al Afraah	11,917	1,382	1,106	0	1,106	1.294	1.941
Al Roudah	Al Bagaa	6,340	735	588	0	588	688	1,032
Al Roudah	Al Baiyda	2,943	341	273	0	273	319	479
Al Nasur	Al Herafeyeen East	648	75	60	0	60	70	105
Al Barha	Al Herafeveen West	997	116	93	0	93	108	162
Al Manara	Al Swaneh	7,201	835	668	0	668	782	1,173
Al Manara	Al Nadeef	8,904	1.033	826	0	826	967	1,451
Al Manara	Al Abrar	19,224	2,230	1.784	0	1,784	2,087	3,131
Al Manara	Al Oasela	10,397	1,206	965	0	965	1.129	1,694
Al Hashimia	Al Jamee	1,730	201	161	0	161	1,122	282
Al Nasur	i ii buillee	1,206	140	101	0	112	130	197
Al Barha		12,453	1.445	1,156	0	1,156	1,352	2,028
Al Nasur	Al Yarmouk	3,968	460	368	0	368	431	647
Al Barha	Al Ashrafeeh	1,546	179	143	0	143	168	252
Al Barha	Al Seha	9,466	1.098	878	0	878	1,028	1,542
Al Roudah	Al Emaan	5,718	663	530	0	530	621	932
Al Nouzha	Al Hekmah	3,554	412	330	0	330	386	579
Al Roudah	Al Rouda	7,300	847	678	0	678	792	1,188
Al Roudah	Al Sahel Green	5,688	660	528	0	528	617	926
Al Nasur	Hanena	7,519	872	698	0	698	816	1.224
Al Nasur	Al Karama	4,697	545	436	0	436	510	765
Al Barha	Al Marj	242	28	22	0	22	26	39
Al Barha	Al Saadah	3,547	411	329	0	329	385	578
Al Hashimia	Al Mallab	1.128	131	105	0	105	122	183
Al Hashimia	Al Tall	687	80	64	0	64	75	113
Al Hashimia	Al Hashme	1,065	124	99	0	99	116	174
Al Nasur	Al Naser	2.283	265	212	0	212	248	372
	City Total	235,416	27,308	21,849	0	21,849	25,558	38,344
Bait Ras	Bait Ras	46,033	4,051	3,241	0	3,241	3,793	5,690
Hakama	Hakama	14,404	1,051	1.014	0	1,014	1,187	1,781
Maro	Maro	6,046	532	426	0	426	498	747
Aliah	Aliah	5,197	457	366	0	366	428	642
Soom	soom	9,997	880	704	0	704	824	1,236
Dougrah	Dougrah	9154	806	645	0	645	754	1,131
Natfeh	Natfeh	2617	230	184	0	184	216	324
	Suburbse Total	93.448	8.224	6,580	0	6,580	7,700	11,551
		23,110	0,224	0,500	0	0,200	7,750	11,001
	Total	328,864	35,532	28,429	0	28,429	33,258	49,895

Table 4.13Calculation of Design Flows for Wadi Al-Arab SWD

NameArea	Locality Neighborhood	Population	Average Water Supply Volume	Wastewater Generation	Ground water I/I	Ave. Daily Flow	Max. Daily Flow (m ³ /day)	Max. Hourly Flow (m ³ /day)
		(pers.)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)		
Al Nouzha	Al Hekmah	4,008	465	372	0	372	435	653
Al Roudah	Al Rouda	384	45	36	0	36	42	63
Al Roudah	Al Sahel Green	2,323	269	215	0	215	252	378
Al Nouzha	Al Werud	14,292	1,658	1,326	0	1,326	1,552	2,328
Al Roudah	Zahra	3,707	430	344	0	344	402	603
Al Roudah	Zahra	5,385	625	500	0	500	585	878
Al Roudah	Andalus	4,015	466	373	0	373	436	654
Al Roudah	Andalus	5,643	655	524	0	524	613	920
	City Total	39,757	4,613	3,690	0	3,690	4,317	6,477
Howwarah	Howwarah	31,955	2,812	2,250	0	2,250	2,633	3,950
Sal	Sal	24,699	2,173	1,738	0	1,738	2,035	3,053
Boshra	Boshra	32,175	2,831	2,265	0	2,265	2,651	3,977
Aidoon	Aidoon	48,819	4,296	3,437	0	3,437	4,023	6,035
Sarieh	Sarieh	47,359	4,168	3,334	0	3,334	3,902	5,853
Hoson	Hoson	41,349	3,639	2.911	0	2,911	3,407	5,111
Hoson	Shahed Azmi	24,284	2,137	1,710	0	1,710	2,001	3,002
Mghayyer	Mghayyer	16,831	1,481	1,185	0	1,185	1,387	2,081
	Suburbse Total	267,471	23,537	18,830	0	18,830	22,039	33,062
-	Total	307,228	28,150	22,520	0	22,520	26,356	39,539

 Table 4.14
 Calculation of Design Flows for Shallala SWD

 Table 4.15
 Calculation of Design Flows for Wadi Hassan SWD

NameArea	Locality Neighborhood	Population	Average Water Supply Volume	Wastewater Generation	Ground water I/I	Ave. Daily Flow	Max. Daily Flow	Max. Hourly Flow
		(pers.)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)
Shatana	Shatana	540	48	38	0	38	44	66
Ketem	Ketem	10,696	941	753	0	753	881	1,322
No`ayymeh		24,141	2,124	1,699	0	1,699	1,989	2,984
17 27 12	Suburbse Total	35,377	3,113	2,490	0	2,490	2,914	4,372
	Total	35,377	3,113	2,490	0	2,490	2,914	4,372

4.2.4 Design Wastewater Quality

(1) Design Influent Quality

Design influent BOD₅ and SS for the four WWTP are set as shown in Table 4.16.

Sewerage District	Population [2035]	Ave. Daily Flow	BOD Loads	SS Loads	Influent BOD Conc.	Influent SS Conc.
	(pers.)	(m ³ /day)	(kg/day)	(kg/day)	(mg/l)	(mg/l)
Wadi-Arab	328,864	28,429	21,376	19,732	752	694
Central Irbid	118,140	10,873	7,679	7,088	706	652
Shallala	307,228	22,520	19,970	18,434	887	819
Wadi Hassan	35,377	2,490	2,300	2,123	924	853
	Unit Pollution Lo	ad				
BOD	65	(g/capita/day)				
SS	60	(g/capita/day)				

 Table 4.16
 Design Influent Quality for Four Sewerage Districts in GIM

The BOD₅ concentrations are more than 700 mg/L for all districts. These values are very high; more than 2.3 to 3.5 times the typical BOD₅ concentrations in Japan which are in the range of 200 to 300 mg/L. The water supply volume is around 240 to 300 lpcd in Japan, which is about 3 times higher than Jordan, thus making the BOD₅ loading more comparable.

(2) Design Effluent Qualities

1) Current Use of Treated Effluent at the Existing WWTPs

The current use of treated effluent for the four WWTPs and allowable limits specified in the Jordanian Standards (No. 893/2006) are summarized in Table 4.17.

	Current Ose of freuten Enflictent and Antowable Enflicts for Four VVVIIIs					
SWD	Central Irbid	Wadi Al-Arab	Shallala	Wadi Hassan		
Category of Use	A*	A*	A*	Bb-2*		
Purpose or Place	Jordan River	Jordan River	Jordan River	Jordan university farmland		
BOD ₅ (mg/l)	60	60	60	200		
CODcr (mg/L)	150	150	150	500		
TSS (mg/l)	60	60	60	200		
T-N (mg/l)	80	80	80	70		
NO ₃ -N (mg/l)	70	70	70	45		

 Table 4.17
 Current Use of Treated Effluent and Allowable Limits for Four WWTPs

Note: Category A: Discharge to streams, wadis and reservoirs, Category Bb-2: Irrigation for fruit trees, trees along highways and green areas. (Refer to Table 4.3 and Table 4.5, respectively.)

2) Treated Wastewater Use in Future Plan

The design qualities of treated wastewater in the plan prepared by KfW are shown in Table 4.18.

Item	Wadi Al-Arab	Wadi Hassan
Category of Use	Bb-1*	Bb-1*
Discharge	Jordan River	Jordan university farmland
BOD ₅ (mg/l)	30	30
CODcr (mg/l)	100	100
TSS (mg/l)	30	30
NO ₃ -N (mg/l)	-	-
NH ₄ -N (mg/l)	2.5	2.5
T-N (mg/l)	-	-

 Table 4.18
 Planned Design Treated Wastewater Quality for Two WWTPs

Note: Category Bb-1: Irrigation of vegetables which will be cooked, parks, playgrounds and roadsides in populated areas (Refer to Table 4.5) Source: Wadi Al-Arab and Wadi Hassan are based on KfW plan

The KfW plan does not specify the concentrations of T-N and NO₃-N, but the design quality of T-N and NO₃-N for Wadi Al-Arab and Wadi Hassan would follow the allowable limits for Bb-1irrigation purposes: (Jordanian Standard No. 893/2006), because those parameters are the same as BOD₅, CODcr and TSS in the Standards. (Refer to Table 4.5).

The design effluent quality based on the treated effluent uses, shown in Table 4.19, are applied in the design of the WWTP. The design effluent quality of Wadi Al-Arab and Wadi Hassa WWTPs are used also for Central Irbid and Shallala WWTPs because they have the same treated effluent use.

	11	0	C	
Item	Central Irbid	Wadi Al-Arab	Shallala	Wadi Hassan
Category of Use	Bb-1*	Bb-1*	Bb-1*	Bb-1*
Discharge	Jordan River	Jordan River	Jordan River	Jordan university farmland
BOD ₅ (mg/l)	30	30	30	30
CODcr (mg/l)	100	100	100	100
TSS (mg/l)	30	30	30	30
NO ₃ -N (mg/l)	30	30	30	30
NH ₄ -N (mg/l)	**2.5	**2.5	**2.5	**2.5
T-N (mg/l)	45	45	45	45

Table 4.19Applied Design Effluent Quality for Four WWTPs

Note: * Category Bb-1: Irrigation, Cooked vegetables, parks, playgrounds and roadsides in populated area (Refer to Table 4.5), ** Value applied by KfW Projects is also applied for other WWTPs.

Source: Wadi Al-Arab and Wadi Hassan are based on KfW plan

4.3 Ramtha District

4.3.1 Service Area

(1) Existing sewerage service area

In Ramtha City, only parts of the central area, about 1,271 ha, are served by a conventional sewerage system as shown in Figure 4.7.

(2) Priority Areas in SWMP

Dnaibeh, Emrawah, Shajarah, and Torrah in the northern area shown in Figure 4.8 are selected as the Priority II area in the SWMP.

(3) Existing Urban Plan

The existing urban plan is used to define the sewerage plan area. The urban plan area is shown in Figure 4.9.

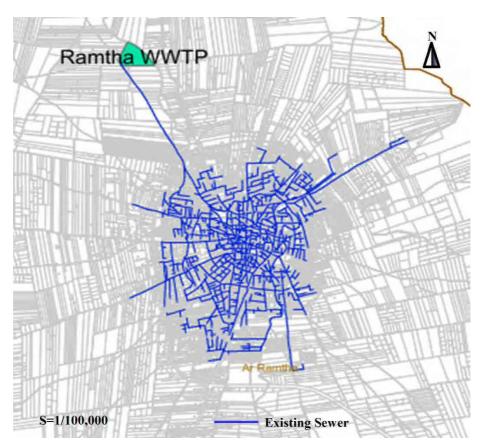


Figure 4.7 Existing Sewerage Service Area in Ramtha City

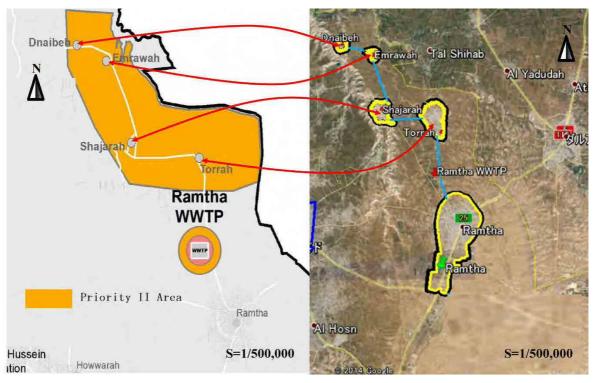


Figure 4.8 Priority II Area in Ramtha District Proposed by SWMP

Figure 4.9 Urban Growth Area in the Urban Plan of Ramtha District

(4) Influx of Syrian Refugees

Ramtha City and the four localities of Suhoul Horan, with the influx of Syrian refugees now making up 40% of the Al-Ramtha district's population (see Table 4.20), requires the urgent development of the sewerage system. The cesspits commonly used in these areas are overflowing and are causing serious deterioration to the environment.¹

Govern orate	District	Municipality	Locality	Jordanian Population 【2012】	Syrian Refugees [July 2013]	Syrian/ Jordanian (%)
Irbid Al-Ramtha	Al-Ramtha Al-Jadida	• Al-Buwayda	96,269	40,000	42	
	Suhoul Horan	 Dnaibeh Emrawah Shajarah Torrah 	40,391	15,000	37	
		Tot	al	136,660	55,000	40

 Table 4.20
 Syrian Refugee Numbers in Ramtha District

Source: MOI

(5) Sewerage Service Area

The area where sewerage development is being planned in the Ramtha District is in the Priority II area in the SWMP and the existing urban plan area with many Syrian refugees.

Table 4.21 and Figure 4.10 show the Sewerage Service area in Ramtha District.

x 1.	Sewerage Se	rvice Area (ha)	Increase: B-A	B/A
Locality	Existing (A)	Planned (B)	(ha)	(%)
Ramtha City	1,021	1,846	825	181
Dnaibeh	-	74	74	-
Emrawah	-	41	41	-
Shajarah	-	205	205	-
Torrah	-	317	317	-
Total	1,021	2,483	1,462	243

 Table 4.21 Sewerage Service Area in Ramtha District

¹ WASH in Hosting Communities in Jordan

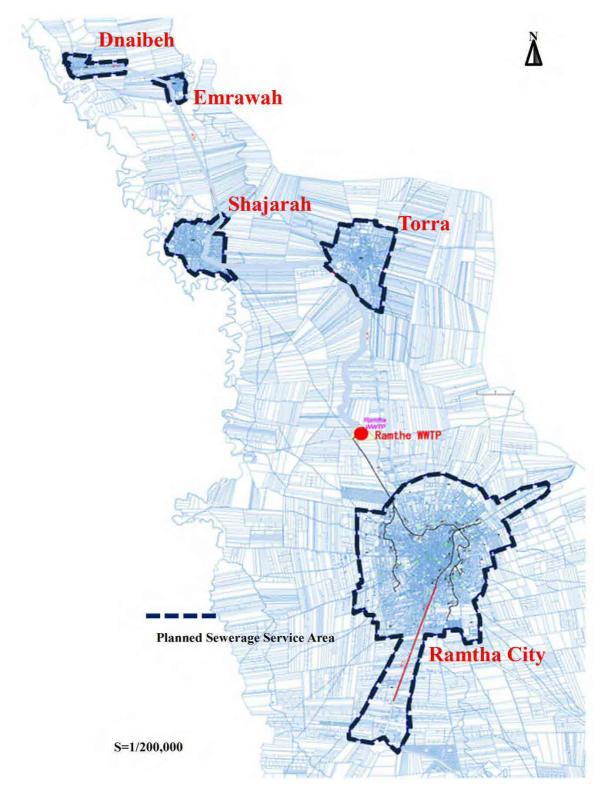


Figure 4.10 Planned Sewerage Service Area in Ramtha District

4.3.2 Service Population

The projected sewerage service population for Ramtha District is shown in Table 4.22, representing a sewerage coverage ratio of 100% in Ramtha City and the northern four localities. This planned sewerage service population of about 201,200 in 2035 includes about 62,600 in Dnaibeh, Emrawah, Shajarah and Torrah.

Bomtho City		Total					
Ramtha City		(person)					
(person)	Dnaibeh	Emrawah	Shajarah	Torrah	Sub-total	(person)	
138,605	4,109	7,322	22,359	28,803	62,593	201,198	

 Table 4.22 Sewerage Service Population for Ramtha District

Source: JICA Study Team

4.3.3 Design Flows

Table 4.23 summarizes the design flows for Ramtha SWD.

Table 4.23	Calculation of Design Flows for Ramtha SWD
-------------------	--

City and Locality	Population	Average Water Supply Volume	Wastewater Generation	Ground- water I/I	Ave. Daily Flow	Max. Daily Flow	Max. Hourly Flow
	(pers.)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)
Ramtha City	138,605	16,078	12,862	0	12,862	15,047	22,571
Dnaibeh	4,109	362	290	0	290	339	509
Emrawah	7,322	644	515	0	515	603	905
Shajarah	22,359	1,968	1,574	0	1,574	1,842	2,763
Torrah	28,803	2,535	2,028	0	2,028	2,373	3,560
Total	201,198	21,587	17,269	0	17,269	20,204	30,308

4.3.4 Design Wastewater Quality

(1) Design Influent Quality

Design influent BOD₅ and SS for the Ramtha WWTP are set as shown in Table 4.24.

Wasetwater Treatment District	Population 【2035】	Ave. Daily Flow	BOD Loads	SS Loads	Influent BOD Conc.	Influent SS Conc.
District	(pers.)	(m ³ /day)	(kg/day)	(kg/day)	(mg/l)	(mg/l)
Ramtha	201,198	17,269	13,078	12,072	757	699

 Table 4.24
 Design Influent Quality for the Ramtha WWTP

Unit Pollution Load				
BOD	65	(g/capita/day)		
SS	60	(g/capita/day)		

(2) Design Effluent Quality

1) Current Use of Treated Effluent at the Existing WWTPs

The current use of treated effluent at Ramtha WWTP and allowable limits specified in the Jordanian Standards (No. 893/2006) are summarized in Table 4.25.

 Table 4.25
 Current Use of Treated Effluent at Ramtha WWTP

 and Allowable Limits in Treated Effluent

iu Anowabie Linnis in Trateu Lin					
Category of Use	Bb-3*				
Purpose or Place	Feed Crop				
$BOD_5(mg/l)$	300				
CODcr (mg/l)	500				
TSS (mg/l)	300				
T-N (mg/l)	100				
NO ₃ -N (mg/l)	70				

Note: * Category Bb-3: Irrigation, Feed crops, industrial crops and forest trees (Refer to Table 4.5)

2) Design Effluent Quality

The design treated effluent quality for Ramtha WWTP by the OTV^2 project is shown in Table 4.26. This is used to determine the effluent quality for the expansion of the treatment facilities at Ramtha WWTP.

t 4.20 Design E	And the Quanty for Ramina W
Category of Use	Closed to Bb-1*
Discharge	Wadi and farmlands nearby
$BOD_5 (mg/l)$	30
CODcr (mg/l)	100
TSS (mg/l)	30
NO ₃ -N (mg/l)	25
NH ₄ -N (mg/l)	15
T-N (mg/l)	45
	Category of Use Discharge BOD ₅ (mg/l) CODcr (mg/l) TSS (mg/l) NO ₃ -N (mg/l) NH ₄ -N (mg/l)

Table 4.26 Design Effluent Quality for Ramtha WWTP

Note: * Category Bb-1: Irrigation, Cooked vegetables, parks, playgrounds and roadsides in populated area (Refer to Table 4.5) Source: OTV Report

 $^{^2}$ OTV is the associated company of Veolia Water Solutions & Technologies for engineering services

4.4 Greater Mafraq Municipality

4.4.1 Service Area

(1) Existing sewerage service area

The sewerage system is developed in parts of Mafraq as shown in Figure 4.11. The expansion of sewers and facilities at the WWTP have been implemented during 2011 and 2014 by USAID. The service area is about 879 ha.

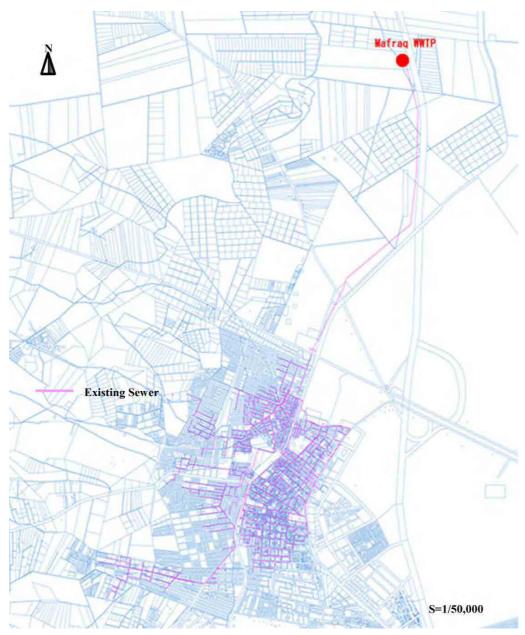


Figure 4.11 Existing Sewerage Service Area in Mafraq

(2) Priority Areas in SWMP

The Priority II areas for Mafraq defined in the SWMP are shown in Figure 4.12. Manshiyet Bani Hassan is close to Mafraq WWTP, but the southern three localities of Balama, Khaldiyah and Mabrookah are far from Mafraq WWTP but close to As Samra WWTP. The topographic features are advantageous for connecting these three localities to the As Samra WWTP.

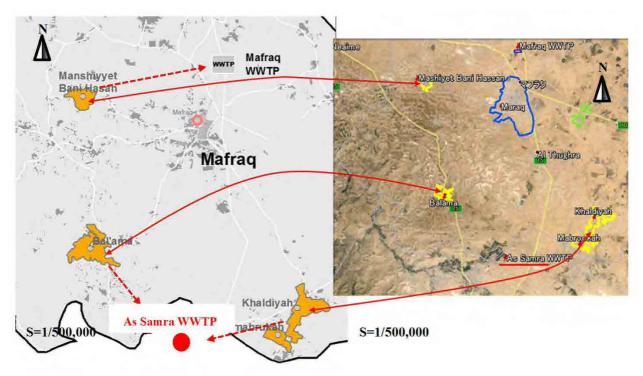


Figure 4.12 Priority II Area in Mafraq Proposed by SWMP

(3) Existing Urban Plan

As explained in Chapter 2, there is no urban plan for Mafraq area, but the water supply plan prepared by KfW covers the future (2039) expansion area.

The northern, southern and eastern boundaries of the water supply plan are used to define the sewerage plan. The western boundary follows the boundary of Mafraq City.

(4) Influx of Syrian Refugees

Figure 4.13 shows the influx of Syrian refugees to urban areas in Jordan. About 33% of Syrian refugees are living in $Mafraq^3$.

³ High level conference on Jordan's Water Crisis

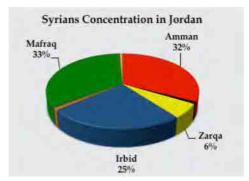


Figure 4.13 Syrian Refugees as Percentage of Total Population

Table 4.27 shows the number of Syrian refugees in the municipalities in Mafraq Oasabah District. The total of Jordanian population and number of Syrian refugees as of 2013 are compared with the projected Jordanian population in 2035. In the Mafraq Al-Koba municipality, the 90,000 Syrian refugees exceed the Jordanian population of 70,000, and the current Jordanian population and Syrian refugees exceed the projected Jordanian population for 2035.

District	Municipality	Jordanian Population [2012] (pers.)	Syrian Refugees [July 2013] (pers.)	Syrian/ Jordanian (%)	A: Jordanian+ Refugees (pers.)	B: Jordanian Population [2035] (pers.)	A/B (%)
	Mafraq Al-Kobra	70,050	90,000	128	160,050	113,546	141
Mafrag	Ba'ama Al-Jadida	25,570	7,500	29	33,070	41,447	80
Mafraq Oasabah	Irhab Al-Jadida	20,370	5,000	25	25,370	33,018	77
	Manshiyah Bani Hassan	9,090	2,500	28	11,590	14,734	79
	Total	125,080	105,000	-	230,080	202,745	-

 Table 4.27
 Syrian Refugees in Mafraq Oasabah District

Source: "Needs Assessment Review of the Impact Syrian Refugees on Jordan"

(5) Sewerage Service Area

Figure 4.14 shows the planned service area for Greater Mafraq Municipality. The service area is 3,770 ha in total, an increase of 349%, with 2,931 ha to be developed.

Bani Hassan located at the western part of the city is included in the sewerage service area, as a Priority II area in the SWMP and the KfW water supply area.

	Sewerage Ser	rvice Area (ha)	Increase	B/A
City/Locality	Existing (A)	Planned (B)	B-A (ha)	(%)
Mafraq City	839	3,409	2,570	406
Manhiyah Bani Hassan	-	240	240	-
Aidoon	-	121	121	-
Total	839	3,770	2,931	449

 Table 4.28
 Sewerage Service Area in Mafraq

Source:JICA Study Team

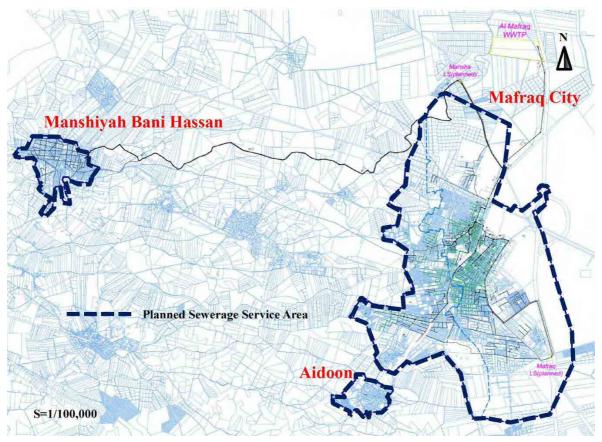


Figure 4.14 Planned Sewerage Service Area in Greater Mafraq Municipality

4.4.2 Service Population

Table 4.29 (a) shows the present population and refugee number in each locality and Figure 4.15 shows the geographical locations.

The 2012 population in the Mafraq-sub District is 70,050. About 90,000 Syrian refugees fled to Mafraq city and suburbs, bringing the total population to 160,050.

Mashiyet Bani Hassan has a total population of 10,854, with a local population of 8,354 and 2,500 refugees.

The population projection by DOS for 2035 for Mafraq-sub district is 113,546, lower than the present total population of 160,050. The projected population of 13,541 in Mashiyet Bani Hassan is higher than the present total population of 10,854.

The following adjustment is made to the projected population in Mafraq sub-district.

The total population of Mafraq sub-district in 2035 including refugees is fixed at 160,050. The number of refugees remaining in 2035 is estimated to be 46,505 which is the balance between the total population and the projected population of 113,545. These population projections are shown in Table 4.29 (b).

Based on the population set for the Mafraq area, the sewerage service population is 156,137, composed of the population of Mafraq City, Aidoon and Mashiyet Bani Hassan.

			【2012】	
City and Locality		Population	Refugee No.	Total
1	Mafraq City	58,736	79,980	138,716
2	Aidoon	2,608	3,551	6,159
3	Um Enna'am Sharqiyyeh	1,591	2,166	3,757
4	Um Enna'am Gharbiyyeh	1,436	1,955	3,391
5	Bwaidhet El-Hawamdeh	1,724	2,348	4,072
	Sub-total	66,095	90,000	156,095
6	Hayyan El-Meshref	1,172	-	1,172
\bigcirc	Mazzeh	1,091	-	1,091
8	Ghadier Abyadh	726	-	726
9	Teeb Isem	500	-	500
10	Rojom Essabi'e El-Shamali	466		466
	Total above	70,050	90,000	160,050
	Mafraq Sub-district	70,050	90,000	160,050
1	Mashiyet Bani Hassan	8,354	2,500	10,854

 Table 4.29 (a) Present Population in Greater Mafraq Municipality

Table 4.29 (b) Population in 2035 in Greater Mafraq Municipality

	· / I				
	City and Locality		Sewerage Plannig		
	City and Locality	Population	Refugee No.	Total	Population
1	Mafraq City	95,207	41,327	136,534	136,534
2	Aidoon	4,227	1,835	6,062	6,062
3	Um Enna'am Sharqiyyeh	2,579	1,119	3,698	
4	Um Enna'am Gharbiyyeh	2,328	1,011	3,339	
5	Bwaidhet El-Hawamdeh	2 794 1 213		4,007	
	Sub-total	107,135	46,505	153,640	
6	Hayyan El-Meshref	1,900	-	1,900	
\bigcirc	Mazzeh	1,768	-	1,768	
8	Ghadier Abyadh	1,177	-	1,177	
9	Teeb Isem	810	-	810	
10	Rojom Essabi'e El-Shamali	755	-	755	
	Total above	113,545	46,505	160,050	
	Mafraq Sub-district	113,546		160,050	
1	Mashiyet Bani Hassan	13,541	0	13,541	13,541
					156,137

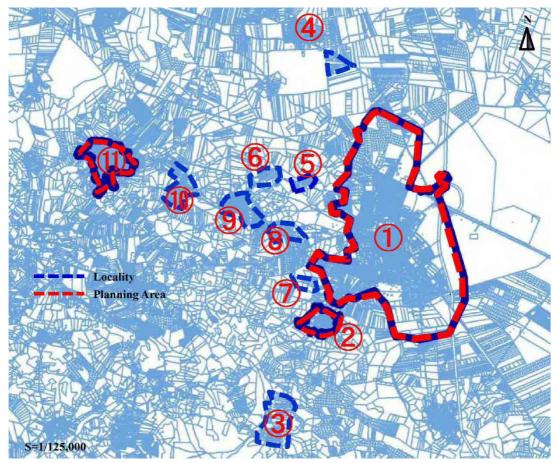


Figure 4.15 .Localities in Greater Mafraq Municipality

4.4.3 Design Flows

Table 4.30 summarizes the design flows for Mafraq SWD.

City and Locality	Population, (include refugees)	Average Water Supply Volume	Wastewater Generation	Ground- water I/I	Ave. Daily Flow	Max. Daily Flow	Max. Hourly Flow
	(pers.)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)	(m ³ /day)
Mafraq City	136,534	15,838	12,670	0	12,670	14,822	22,233
Aidoon	6,062	533	426	0	426	500	750
Mashiyet Bani Hassan	13,541	1,571	1,257	0	1,257	1,470	2,205
Total	156,137	17,942	14,353	0	14,353	16,792	25,190

 Table 4.30
 Calculation of Design Flows for Mafraq SWD

Source: JICA Study Team

4.4.4 Design Wastewater Quality

(1) Design Influent Quality

Design influent BOD₅ and SS for the Ramtha WWTP are set as shown in Table 4.31.

Wasetwater Treatment District	Population 【2035】	Ave. Daily Flow	BOD Loads	SS Loads	Influent BOD Conc.	Influent SS Conc.	
District	(pers.)	(m ³ /day)	(kg/day)	(kg/day) (kg/day)		(mg/Q)	
Mafraq	156,137	14,353	10,149	9,368	707	653	
	Unit Pollution Loa	ıd					
BOD	65	(g/capita/day)					

Table 4.31Design Influent Quality for the Mafraq WWTP

(2) Design Effluent Quality

SS

1) Current Use of Treated Effluent at the Mafraq WWTP

60 (g/capita/day)

The current use of treated effluent and allowable limits specified in the Jordanian Standards (No. 893/2006) for Mafraq WWTP are summarized in Table 4.32.

Table 4.32	Current Use of Treated Effluent at Mafraq WWTP and Allowable Limits
	Current Ose of freated Enfluent at Marray WW II and Milowable Enflues

iene ese or rieutea										
Category of Use	Bb-3*									
Discharge Place	Wadi and farmlands nearby									
BOD ₅ (mg/l)	300									
CODcr (mg/l)	500									
TSS (mg/l)	300									
T-N (mg/l)	100									
NO ₃ -N (mg/l)	70									

Note: * * Category Bb-3: Irrigation, Feed crops, industrial crops and forest trees (Refer to Table 4.5) Source: JICA Study Tea,

2) Design Effluent Quality.

The design effluent quality for Mafraq WWTP (USAID project) is shown in Table 4.33. This is used for the design effluent quality for the expansion of treatment facilities at Mafraq WWTP.

Category of Use	A*
Purpose or Place	Discharge to Wadi
$BOD_5 (mg/l)$	60
CODcr (mg/l)	150
TSS (mg/l)	60
NO ₃ -N (mg/l)	70
NH ₄ -N (mg/l)	-
T-N (mg/l)	80

 Table 4.33
 Design Treated Effluent Quality for Mafraq WWTP

Note: * Discharged to streams, wadis and reservoirs (Refer to Table 4.3) Source: USAID report

CHAPTER 5 SEWERAGE DEVELOPMENT PLAN

5.1 Existing Capacity of Sewerage Facilities

5.1.1 Assessment of Trunk Sewers

(1) Methodology

The design flow is compared with the present capacity following the process outlined in Figure 5.1.

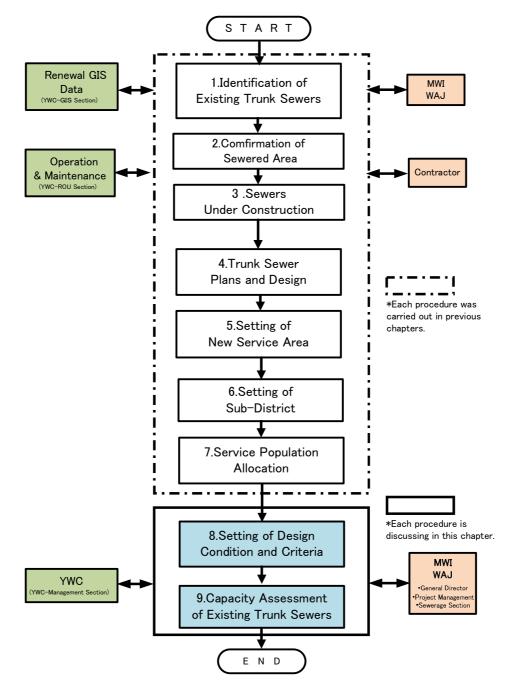


Figure 5.1 Capacity Assessment Process for Trunk Sewers

(2) Assessment

The sewerage plan for each sewerage district described in Chapter 3 is further studied to determine the design flows in the existing sewers. The detailed capacity assessment is explained in the following sub.sections.

The capacity of sewers is assessed based on the design standards of sewers prepared by WAJ. The main design criteria are as follows:

1) Peaking Factor The Peaking Factor (PF) is determined based on the size of the service population:

For a service population of less than 80,000: Babbit's Peaking Factor is calculated using the following equation:

 $PF = 5/(P/1000)^{(1/6)}$

Where, P: Planning Population. The PF value should be less than 4.5 (PF<4.5).

For a service population of more than or equal to 80,000: Babbit's Peaking Factor is calculated using the following equation:

 $PF = \{18 + (P/1,000)^{0.5}\} / \{4 + (P+1,000)^{0.5}\}$

The PF value should be less than 2.5 (PF<2.5).

Flow Velocity Equation
 Manning's formula is used for calculating the flow velocity.

 $V=(1/n)\times R^{2/3}\times S$

Where, V: flow velocity (m/s), R: wetted perimeter (m), S: slope (m/m), n: roughness coefficient

3) Minimum DiameterThe minimum diameter of sewers is 200 mm.

4) Minimum and Maximum FlowsTable 5.1 shows the minimum and maximum velocity set for pressured and free surface flow.

Item	Pressured flow	Free surface flow
Minimum Velocity	0.8 m/s	4.0 m/s
Maximum Velocity	0.9 m/s	4.5 m/s

 Table 5.1 Minimum and Maximum Velocity

5) Minimum and Maximum Slope

The minimum and maximum slopes for concrete pipes of different diameters with the roughness coefficient of 0.013, under pressured flow are shown in Table 5.2.

Table 5.2 William and Waxing Stope										
Pipe Diameter (mm)	Minimum Slope (m/km)	Maximum Slope (m/km)								
200	10.0	194.8								
300	5.8	114.0								
400	3.9	77.0								
500	2.9	57.3								
600	2.3	45.0								
700	1.9	37.0								
800	1.6	30.8								
900	1.3	26.3								
1,000	1.2	22.8								
1,200	1.0	17.8								

Table 5.2 Minimum and Maximum Slope

6) Roughness Coefficient

The roughness coefficient for calculating flow velocity using the Manning formula varies depending on the pipe material (see Table 5.3).

Table 5.5 Rouginess Coefficients									
Pipe Material	Roughness Coefficient								
Concrete pipe	0.013								
Plastic pipe or Inner coating with epoxy resin	0.012								
Ductile Cast Iron pipe	0.012								
PVC (polyvinyl chloride) pipe	0.010								

Table 5.3 Roughness Coefficients

7) Pipe Sizing and Design Allowance for Sewers Flowing Partly Full

In general sewers are designed to flow full only under maximum conditions. For optimum performance sewers are designed to flow partially full at design flows. For design purposes the ratio between design flow (q) and the maximum full pipe flow (Q) is usually taken as 0.75 or less. This (q/Q) ratio is equivalent to a depth of flow to the diameter ratio (h/D) of 0.67. The relationships between depth and flow for partly full and full pies are shown schematically in Figure 5.2 for a circular pipe.

The existing sewers are evaluated based on the ratio of depth to diameter h/D. When the ratio exceeds 0.67, the sewer does not have enough capacity.

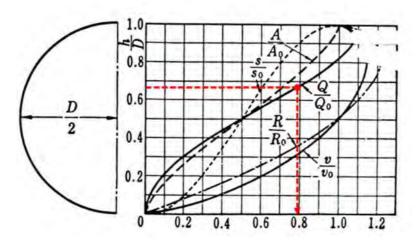
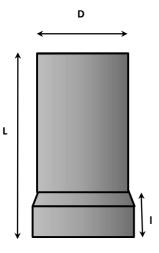



Figure 5.2 Hydraulic Elements for Circular Pipes and Allowance for Pipe Design

8) Concrete Pipe used in Jordan

The standards for concrete pipe commercially available in Jordan are as shown in Table 5.4 and Figure 5.3.

Table 5.4 Standards for Concrete and Reinforced Concrete Pipes in Jordan

Diameter: D	Effective	Pipe	Ring	Cut	Standard
Diameter: D	length: L	thickness	thickness	depth: I	weight
(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
100	1,000	24	12	56	30
150	1,000	40	12	65	72
200	1,000	40	12	68	90
250	1,000	40	14	63	92
300	1,000	44	16	68	102
400	1,000	50	16	97	195
500	1,000	60	15	105	245

Concrete Pipes

Reinforced Pipes

Diameter: D	Effective length: L	Pipe thickness	Ring thickness	Cut depth: I	Standard weight
(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
300	2,000	45	16	95	255
400	2,000	55	16	95	412
500	2,000	60	15	95	554
600	2,000	75	18	110	716
800	2,000	102	18	110	1,227
900	2,000	110	22	125	1,706
1,000	2,000	110	22	125	1,998
1,200	2,000	120	22	125	2,886

Source: Institution for Standard & Metrology

Figure 5.3 Concrete Pipes used in Jordan

(3) Assessment of the Existing Trunk Sewers

The topographic feature of hills and "Wadis" provides adequate slope such that almost all of the existing trunk sewers have enough capacity to handle the future wastewater flows. The ratio of water depth (h/D) is less than 0.67 for all trunk sewers in the Central Irbid Sewerage District (see Table 5.5), Wadi-Arab Sewerage District (see Table 5.6), Shallala Sewerage District (see Table 5.7), Wadi-Hassan Sewerage District (see Table 5.8). Therefore, the trunk sewers in these districts are judged to have enough capacity to meet the design flow.

The ratio of water depth is less than 0.67 for most of the trunk sewers in Ramtha Sewerage District, except for line no. 1990 which has the h/D value of 0.71 (see Table 5.9). This difference is too small to be of significance. Therefore, the sewers in Ramtha should have enough capacity to handle the planned flow.

Tables 5.10 and 5.11 show the assessment of trunk sewers in the Mafraq Sewerage District.

In Case-1 shown in Table 5.10, the wastewater is pumped by the proposed lift station at the south western part of Mafraq and conveyed to the trunk sewer (node no. 694). Wastewater collected in Aidoon is conveyed to node no. 1267 by new sewers. Several trunk sewers do not have enough capacity for the design flows.

Case-2 (Table 5.11) shows the changes to the locations of connections. Wastewater is pumped by the lift station to the trunk sewer (node no. 703), and the wastewater from Aidoon is conveyed to the trunk sewer (node no. 1319). The trunk sewer is diverted to the new trunk sewer line (NAH-1 and NAH-2)

and then connected to the existing trunk sewer line (node no. 168). The new connections can provide an h/D that is less than 0.67, and the sewers thus has enough capacity for the design flow.

													Urban	92.80{pcd		Rurul	70.40{pcd	1
	From		То						Pop	ulation				Pipe Flo	ow Data			
Line	М.Н.	Invert	М.Н.	Invert	Pipe	Pipe	Pipe	Pipe	Ľ	2035】	Peak	Total	Flow	Flow	Ratio	Actual	Ratio	Assessment
Name	No.	Level	No.	Level	Diameter	Material	Length	Slope	Each	integrated Value	Factor	Flow	Full	Vel.	q-part	Vel.	depth	【d/D<0.67】
	-	[m]	-	[m]	[¢mm]	[rial]	[m]	[1/1000]	[pers.]	-	[l/sec]	[l/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
779	779	-	523	-	300	CP	772.02	12.30	7,351	7,351	3.59	28.32	109.09	1.54	0.2595	1.30	0.34	ок
523	523	-	559	-	300	CP	540.52	28.60	13,297	20,648	3.02	66.96	166.33	2.35	0.4026	2.24	0.44	ок
559	559	-	1069	-	400	CP	339.79	8.90	4,071	24,720	2.93	77.80	198.80	1.58	0.3913	1.49	0.43	ок
1069	1069	-	685	-	400	CP	328.08	54.80	19,314	44,034	2.66	125.87	493.09	3.92	0.2553	3.30	0.34	ок
	flow into 68	5																ок
851	851	-	685	-	300	CP	714.88	8.70	16,011	16,011	3.15	54.17	91.75	1.30	0.5904	1.34	0.56	ок
685	685	-	476	-	400	CP	413.35	17.10	634	60,679	2.52	164.43	275.53	2.19	0.5968	2.26	0.56	ок
	flow into 476	5																ок
740	740	-	476	-	400	CP	478.34	39.50	3,527	3,527	4.05	15.35	418.68	3.33	0.0367	1.63	0.13	ОК
476	476	-	471	-	500	CP	253.48	27.30	160	64,366	2.50	172.72	627.77	3.20	0.2751	2.75	0.35	ОК
471	471	-	1394	-	600	CP	455.40	25.50	19,054	83,420	1.05	93.88	981.56	3.47	0.0956	2.22	0.21	ок
	flow into 13	94																ок
1776	1776	-	1762	-	300	CP	1004.00	16.40	4,003	4,003	3.97	12.94	125.97	1.78	0.1028	1.16	0.21	ок
1762	1762	-	1394	-	300	CP	754.25	11.30	1,543	5,546	3.76	22.39	104.57	1.48	0.2141	1.18	0.31	ОК
1394	1394	-	463	-	900	CP	698.19	1.50	4,397	93,363	1.05	104.81	692.73	1.09	0.1513	0.79	0.26	ок
463	463	-	WWTP	-	900	CP	624.69	4.60	869	94,232	1.05	105.77	1212.96	1.91	0.0872	1.20	0.20	ок
	flow into Irbi	d Central W	/WTP															
2736	2736	-	2292	-	300	CP	575.05	3.80	10,168	10,168	3.40	37.11	60.65	0.86	0.6119	0.89	0.57	ок
	flow into 22	92																
2765	2765	-	2292	-	500	CP	941.55	12.20	12,024	12,024	3.30	42.67	419.73	2.14	0.1017	1.39	0.21	ок
2292	2292	-	WWTP	-	500	CP	607.38	27.00	1,716	23,908	2.95	75.66	624.31	3.18	0.1212	2.19	0.23	ок
	flow into Irbi	d Central W	/WTP				9500.97	Total	118,140	118,140								
					CP:Concrete F	Pipe												
					DIP:Ductile Iror	n Pipe												
			1															

 Table 5.5 Capacity Assessment of the Existing Trunk Sewers in Central Irbid SWD

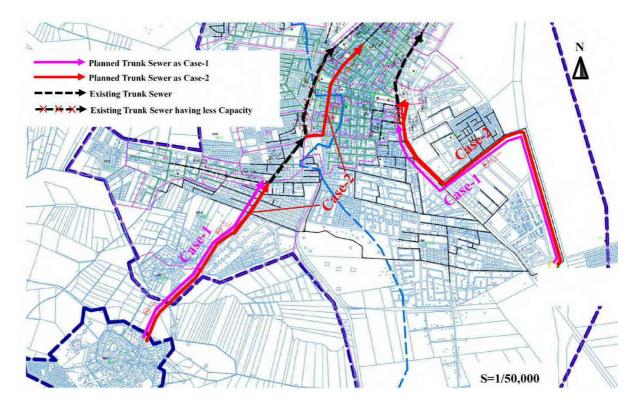
										70 40/ncd								
	Ener		T -		1		1		Day				orban			rtarai	ro.+otpcu	
	From		То						······	oulation			-	· · · · · · · · · · · · · · · · · · ·	ow Data		D (1)	
Line Name	M.H.	Invert	M.H.	Invert	Pipe Diameter	Pipe Material	Pipe Length	Pipe Slope	K	2035】	Peak Factor	Total	Flow	Flow	Ratio	Actual	Ratio	Assessment d/D<0.67
	No.	Level	No.	Level					Each	integrated Value		Flow	Full	Vel.	q-part	Vel.	depth	
	-	[m]	-	[m]	[¢ mm]	[rial]	[m]	[1/1000]	[pers.]	-	[l/sec]	[l/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
4280	-	-	-	-	300	CP	756.80	25.10	6,664	6,664	3.65	26.09	155.82	2.20	0.1674	1.65	0.27	ОК
2855	-	-	-	-	300	CP	772.80	12.20	5,705	12,369	3.29	43.69	108.65	1.54	0.4021	1.46	0.44	ОК
726	-	-	-	-	300	CP	962.10	14.40	2,718	15,087	3.18	51.55	118.04	1.67	0.4367	1.60	0.46	ОК
1560	-	-	-	-	500	СР	849.20	6.90	5,440	20,527	3.02	66.63	315.68	1.61	0.2111	1.29	0.31	ОК
6322	-	-	-	-	500	CP	443.50	32.70	10,370	30,897	2.82	93.69	687.02	3.50	0.1364	2.48	0.25	ОК
6788	-	-	-	-	500	CP	841.60	25.30	30,187	61,084	2.52	165.35	604.35	3.08	0.2736	2.65	0.35	ОК
2951	-	-	-	-	500	CP	125.40	26.50	9,153	70,237	2.46	185.75	618.50	3.15	0.3003	2.77	0.37	ОК
4336	-	-	-	-	600	CP	512.80	9.00	9,647	79,884	2.41	206.78	583.26	2.06	0.3545	1.90	0.41	ОК
4519	-	-	-	-	600	CP	432.60	20.50	6,723	86,608	1.05	97.39	880.13	3.11	0.1107	2.09	0.22	ОК
700	-	-	-	-	600	CP	774.40	53.90	7,161	93,769	1.05	105.26	1426.72	5.05	0.0738	3.03	0.18	ОК
2413	-	-	-	-	600	CP	951.90	47.70	9,166	102,935	1.04	115.32	1342.22	4.75	0.0859	2.94	0.19	ОК
3401	-	-	-	-	600	CP	845.10	37.70	6,701	109,636	1.04	122.68	1193.35	4.22	0.1028	2.74	0.21	OK
	flows into 6	L																
2170	-	-	-	-	500	СР	831.20	44.20	8,739	8,739	3.48	32.71	798.67	4.07	0.0410	2.03	0.13	ОК
	flows into 2	ı 097			1													
3090	-	-	-	-	300	СР	517.70	71.00	7,004	7,004	3.62	27.20	262.00	3.71	0.1038	2.41	0.21	ОК
2097	-	-	-	-	500	CP	1122.06	30.10	18,910	34,653	2.77	103.09	659.16	3.36	0.1564	2.48	0.26	ОК
6334	-	-	-	-	500	CP	745.60	47.60	4,900	39,553	2.71	115.10	828.80	4.22	0.1389	3.00	0.25	ОК
	flows into 2	574							.,===									
5641	-	-	-	-	300	CP	815.40	26.00	8,507	8,507	3.50	31.98	158.59	2.24	0.2017	1.77	0.30	ОК
5653		-		-	300	CP	933.90	23.60	2,617	11,124	3.35	39.99	151.10	2.14	0.2647	1.82	0.35	ОК
4156		-			300	CP	1642.90	22.10	0	11,124	3.35	39.99	146.22	2.07	0.2735	1.78	0.35	ок
2195	-	-	-	-	300	CP	1042.30	25.00	8,739	19,864	3.04	64.83	155.51	2.07	0.4169	2.09	0.33	ОК
2195		-		-	500	CP	496.40	18.50	5,877	65,294	2.49	174.79	516.82	2.20	0.4105	2.09	0.43	ОК ОК
2374		-		-	500	СР	1062.80	25.70	6,204	71,497	2.45	188.52	609.10	3.10	0.3302	2.37	0.39	<u></u> ОК
1929	-	-		-	500	CP	1356.40	23.70	2,253	73,750	2.43	193.46	553.24	2.82	0.3095	2.73	0.37	OK
6349		-			800	CP	2683.60	21.20	2,200	183,386	1.03	203.35	1954.11	3.89	0.3497	2.50	0.40	OK
0349	flows into 3	L		-	800	GF	2003.00	22.20	0	163,360	1.03	203.35	1954.11	3.09	0.1041	2.55	0.21	UK
0770	tiows into 3	r		-				45.00		0.400	4.00		404.07	4.70				01/
6772		-	-		300	CP	920.30	15.20	2,492	2,492	4.29	11.49	121.27	1.72	0.0948	1.10	0.20	ОК
1213	-	-	-	-	400	CP	446.80	7.50	15,320	17,811	3.09	59.20	182.50	1.45	0.3244	1.29	0.39	ОК
4799	-	-	-	-	500	CP	86.40	9.70	13,452	31,263	2.82	94.62	374.28	1.91	0.2528		0.34	ОК
5259	-	-	-	-	600	CP	288.30	6.20	3,609	34,872	2.77	78.62	484.13	1.71	0.1624	1.27	0.27	ОК
	flows into H												-		3.			
5047	-	-	-	-	400	DCIP	1784.10	-	0	34,872	2.77	103.64	Pressure		[6.218m ³ /m			ОК
1109	-	-	-	-	600	CP	688.80	36.50	44,121	78,994	2.41	155.41	1174.22	4.15	0.1324	2.91	0.24	ОК
1376		-	-	-	600	CP	437.20	20.10	12,057	91,051	1.05	77.59	871.51	3.08	0.0890	1.94	0.20	ОК
4644		-	-	-	600	CP	109.70	27.10	2,823	93,874	1.05	79.94	1011.87	3.58	0.0790	2.18	0.19	ОК
762		-	-	-	700	CP	655.20	18.80	22,134	116,008	1.04	98.37	1265.29	3.29	0.0777	2.01	0.19	ОК
3376	-	-	-	-	700	CP	3892.80	44.20	10,324	126,332	1.04	106.95	1939.59	5.04	0.0551	2.77	0.16	ОК
3097		-	-	-	900	CP	276.00	43.40	0	309,718	1.02	258.67	3723.74	5.85	0.0695	3.45	0.18	OK
6351		-	-	-	900	CP	276.00	50.00	9,997	319,715	1.02	266.91	3996.63	6.28	0.0668	3.64	0.17	ОК
6354	-	-	-	-	900	CP	2122.30			319,715	1.02	266.91	4060.02	6.38	0.0657	3.70	0.17	ОК
2790	-	-	-	-	900	CP	2122.30	41.80	0	319,715	1.02	266.91	3654.51	5.74	0.0730	3.45	0.18	ОК
	flows into V	/adi Arab W	WTP															
2240	-	-	-	-	300	CP	1505.30	172.50	9,154	9,154	3.46	36.63	408.23	5.78	0.0897	3.64	0.20	ОК
	flows into V	/adi Arab W	WTP				37137.46	Total	328,869	328,869								
	ļ																	
	ļ				ļ		ļ											
	ļ	ļ			CP:Concrete P	ipe												
					DIP:Ductile Iror													

													Urban	92.80{pcd		Rurul	70.40{pcd	
	From		То						Pop	oulation				Pipe Fl	ow Data			
Line	М.Н.	Invert	M.H.	Invert	Pipe	Pipe	Pipe	Pipe	[2035	Peak	Total	Flow	Flow	Ratio	Actual	Ratio	Assessment
Name	No.	Level	No.	Level	Diameter	Material	Length	Slope	Each	integrated Value	Factor	Flow	Full	Vel.	q-part	Vel.	depth	[d/D<0.67]
	-	[m]	-	[m]	[¢mm]	[rial]	[m]	[1/1000]	[pers.]	-	[ø/sec]	[ø/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
5884	-		-	-	300	CP	4554.70	6.00	13,416	13,416	3.24	35.46	76.20	1.08	0.4654	1.06	0.48	ОК
	flows into 1	7877-1																
AZMI-1	-	-	-	-	400	CP		6.00	24,284	24,284	2.94	58.15	163.23	1.30	0.3562	1.20	0.41	OK
5034	-	-	-	-	300	CP	300.00	16.00	9,382	9,382	3.44	26.32	124.42	1.76	0.2116	1.41	0.31	ОК
17877-1	-	-	-	-	600	CP	1580.00	2.30	28,889	75,970	2.43	150.44	294.90	1.04	0.5101	1.04	0.51	ОК
17877-2	-	-	-	-	600	CP	1000.00	2.30	13,148	89,118	1.05	75.98	294.90	1.04	0.2576	0.88	0.34	OK
17877-3			-	-	700	CP	850.00	1.90	11,957	101,075	1.04	85.94	402.37	1.05	0.2136	0.84	0.31	OK
17877-4		-		-	700	CP	1950.00	1.90	11,957	113,033	1.04	95.89	402.37	1.05	0.2383	0.86	0.32	OK
3524		-	-	-	700	CP	1130.00		2,312	115,344	1.04	97.81	402.37	1.05	0.2431	0.87	0.33	ОК
3569		-	-	-	800	CP	276.20	1.60	474	115,819	1.04	98.21	524.82	1.04	0.1871	0.80	0.29	ОК
3011				-	800	CP	960.00	1.60	13,143	128,962	1.04	109.13	524.82	1.04	0.2079	0.82	0.30	ОК
3058	-	-	-	-	800	CP	1130.00	1.60	7,681	136,643	1.04	115.51	524.82	1.04	0.2201	0.85	0.32	OK
3030	flows into 7	479.0		-	800	CP	2640.00	1.60	0	136,643	1.04	115.51	524.82	1.04	0.2201	0.85	0.32	ОК
3011	flows into 7-	478-2	<u> </u>	-	400	CP	4000.00	6.00	00.047	36.317	0.75	04.00	163.23	4.00	0.4982	1.00	0.49	OK
2091	-	-	-	-	500	CP	1690.00 1530.00	2.90	36,317 8,212	44,529	2.75	81.33 96.38	204.68	1.30 1.04	0.4982	1.30	0.49	OK OK
15879		-		-	500	CP	820.00	2.90	4 249	44,529	2.00	103.99	204.08	1.04	0.4709	1.03	0.48	OK
2158		-		-	500	CP	560.00	2.90	4,249	50,702	2.62	141.57	204.68	1.04	0.6917	1.04	0.50	ОК
2130	flows into 1	562		-	500		300.00	2.30	1,024	30,702	2.00	141.57	204.00	1.04	0.0317	1.10	0.02	UN
1605	10003 1110 1			-	300	CP	417.00	19.10	12,029	12,029	3.30	42.68	135.94	1.92	0.3140	1.71	0.38	ОК
	flows into 1	562							,									
7470					300	CP	940.00	6.00	9,013	9.013	3.47	33.56	76.20	1.08	0.4404	1.05	0.46	OK
7471			-	-	300	DCIP	2400.00	-	0	9,013	3.47	33.56	Pressure	-	[1.801m ³ /m			ОК
1562				-	600	CP	940.00	2.30	6.358	78,103	2.42	202.93	294.90	1.04	0.6881	1.11	0.61	OK
	flows into 1	1 553																
450	-		-	-	300	CP	220.90	24.80	6,392	6,392	3.67	25.20	154.89	2.19	0.1627	1.62	0.27	OK
521			-	-	300	CP	324.50	6.00	7,852	14,244	3.21	49.14	76.20	1.08	0.6449	1.13	0.59	ОК
511	-	-	-	-	400	CP	446.20	5.80	5,865	20,109	3.03	65.50	160.49	1.28	0.4081	1.21	0.44	ОК
521	-		-	-	500	CP	938.80	6.70	5,916	26,024	2.91	81.20	311.08	1.58	0.2610	1.35	0.35	ОК
1553	-		-	-	500	CP	400.40	23.10	1,730	105,857	1.04	118.53	577.48	2.94	0.2053	2.32	0.30	ОК
7427	-		-	-	500	CP	938.80	20.60	6,964	112,821	1.04	126.17	545.36	2.78	0.2314	2.28	0.32	ОК
7476	-			-	600	CP	251.10	6.20	12,416	125,237	1.04	139.78	484.13	1.71	0.2887	1.47	0.36	ОК
	flows into 7	478-2																
MHG-1	-	-	-	-	200	DIP	3300.00	-	16,831	16,831	3.12	42.84	Pressure	-	[2.570m ³ /m	in]		ОК
1257-1	-	-	-	-	300	CP	30.00	18.00	9,703	26,534	2.90	62.61	131.96	1.87	0.4744	1.85	0.48	ОК
1257	-	-	-	-	150	DIP	2237.50	-	0	26,534	2.90	62.61	Pressure	-	[3.929m ³ /m			ОК
1135		-		-	300	CP	145.90		7,052	33,587	2.78	76.20	228.93	3.24	0.3328	2.91	0.39	ОК
1413	-		-	-	300	CP	507.60	50.00	7,972	41,559	2.69	91.00	219.89	3.11	0.4138	2.96	0.45	ОК
7401		-		-	300	CP	398.50	50.00	3,239	44,798	2.65	96.87	219.89	3.11	0.4405	3.02	0.46	ОК
1422		-		-	300	CP	190.90	51.70	551	45,349	2.65	97.86	223.60	3.16	0.4377	3.04	0.46	ОК
7478-1				-	600	CP	2020.00	2.30	0	170,585	1.03	143.66	294.90	1.04	0.4872	1.03	0.49	ОК
7478-2		-1 -	-	-	800	CP	430.00	1.60	0	307,228	1.03	256.61	524.82	1.04	0.4890	1.03	0.49	ОК
	flows into S	hallala WWT	P				38449.00		307,228									
			<u> </u>															
		ļ	ļ															
			ļ		CP:Concrete Pip													
		<u> </u>	 		DIP:Ductile Iron	Pipe												
		1													L			

Table 5.8 Capacity Assessment of the Existing Trunk Sewers in Wadi-Hassan SWD

	-		_		1			-	_									
	From		То							oulation			(ow Data			
Line Name	М.Н.	Invert	М.Н.	Invert	Pipe Diameter	Pipe Material	Pipe Length	Pipe Slope	Ľ	2012 Total	Felew Factor	Flow	Ratio	Actual	Ratio			Assessment [d/D<0.67]
Name	No.	Level	No.	Level	Diameter	Waterial	Lengui	Stope	Each	integrated Value	Factor	Flow	Full	Vel.	q-part	Vel.	depth	[0/0<0.0/]
	-	[m]	-	[m]	[¢mm]	[rial]	[m]	[1/1000]		pers.]	-	[Ø/sec]	[ø/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
1653	1653	-	1860	-	300	CP	1411.99	17.50	10,582	10,582	3.38	29.10	130.12	1.84	0.2236	1.49	0.32	ОК
1860	1860	-	1800	-	300	CP	629.60	14.30	4,242	14,824	3.19	38.54	117.63	1.66	0.3276	1.48	0.39	ОК
1800	1800	-	1795	-	400	CP	304.20	15.90	0	14,824	3.19	38.54	265.69	2.11	0.1451	1.52	0.25	ок
1795	1795	-	1772	-	400	CP	435.20	15.40	10,696	25,520	2.91	60.61	261.48	2.08	0.2318	1.71	0.32	ОК
~~~~~	flows into 1	772																
1105	1105	-	1089	-	300	CP	877.70	13.40	9,107	9,107	3.46	25.68	113.87	1.61	0.2255	1.30	0.32	ок
1089	1089	-	1772	-	300	CP	1026.10	18.40	750	9,857	3.42	27.43	133.42	1.89	0.2056	1.49	0.30	OK
1772	1772	-	LS	-	400	CP	505.50	11.70	0	35,377	2.76	79.57	227.92	1.81	0.3491	1.65	0.40	ОК
	flows into V	Vadi hassan	LS															
1075	1075	-	1076-2	-	300	DIP	526.60	-	0	35,377	2.76	79.57	Pressure	1.50	[4.785m ³ /m	in]		ок
1076-2	1076-2	-	WWTP	-	800	CP	4145.20	1.60	0	35,377	2.76	79.57	524.82	1.04	0.1516	0.76	0.26	ОК
	flows into W	adi Hassan '	WWTP				10833.59	Total	35,377									
					CP:Concrete Pip	be												
					DIP:Ductile Iron	Pipe												

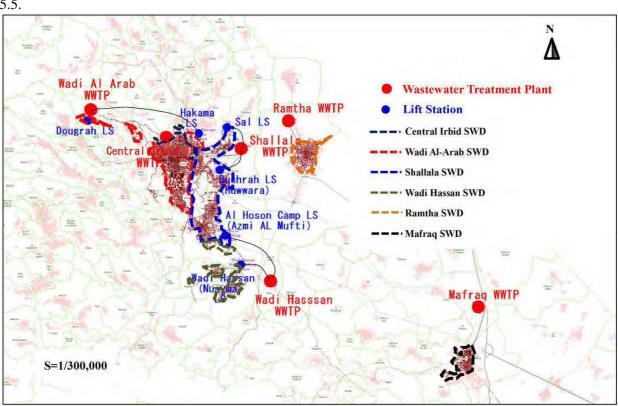
													Urban	92.80{pcd		Rurul	70.40{pcd	
	From		То						Por	ulation				Pipe Fl	ow Data			
Line	м.н.	Invert	M.H.	Invert	Pipe	Pipe	Pipe	Pipe		2035】	Peak	Total	Flow	Flow	Ratio	Actual	Ratio	Assessmen
Name	No.	Level	No.	Level	Diameter	Material	Length	Slope	Each	integrated	Factor	Flow	Full	Vel.	q-part	Vel.	depth	(d/D<0.67)
	-	[m]	-	[m]	[ømm]	[rial]	[m]	[1/1000]		Value	-	[l/sec]	[l/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
1828	1828		751	-	300	CP	1217.20	3.20	4,885	4,885	3.84	15.28	55.65	0.79	0.2746	0.68	0.35	ОК
751	751	-	1967	-	300	CP	328.70		3,290	8,175	3.52	23.47	52.06	0.74	0.4508	0.71	0.47	ОК
1967	1967		1188		300	CP	97.90	5.10	1,489	9,664	3.43	26.98	70.26	0.99	0.3840	0.92	0.43	ок
1188		-	544	-	300	CP	285.05		370	10,034	3.41	27.84	85.76	1.21	0.3246	1.08	0.43	ок
1100	flows intto 5			-	300	UF	205.05	7.00	370	10,034	3.41	27.04	05.70	1.21	0.3240	1.00	0.39	UK
		44																
1460	1460	-	544	-	300	CP	322.95		9,884	9,884	3.41	27.49	91.75	1.30	0.2996	1.13	0.37	OK
544	544	-	547	-	400	CP	431.85	4.50	1,629	21,546	3.00	52.63	141.37	1.12	0.3723	1.05	0.42	ОК
547	547	-	110	-	400	CP	627.85		4,191	25,738	2.91	61.04	142.93	1.14	0.4270	1.09	0.45	ОК
110	110	-	1193	-	400	CP	389.70	4.10	300	26,038	2.90	61.63	134.94	1.07	0.4567	1.04	0.47	OK
1193	1193	-	2204	-	500	CP	113.20	2.00	3,953	29,990	2.84	69.33	169.98	0.87	0.4079	0.82	0.44	OK
	flows into 22	204																
1966	1966	-	489	-	300	CP	306.50	6.60	2,927	2,927	4.18	9.97	79.92	1.13	0.1248	0.78	0.23	ОК
489	489	-	2204	-	400	CP	447.40	1.70	3,806	6,733	3.64	19.96	86.90	0.69	0.2298	0.56	0.32	ок
	flows into 22	204			1													
SEB-1	SEB-1	-	SEB-2	-	300	CP	2160.00	6.00	12,402	12,402	3.29	33.22	76.20	1.08	0.4359	1.03	0.46	ОК
SEB-2	SEB-2	-	2206	-	300	CP	2160.00	6.00	5,820	18,222	3.08	45.77	76.20	1.08	0.6007	1.12	0.56	OK
2206	2206	-	2207	-	300	CP	280.05		2,425	20.647	3.02	50.80	120.07	1.70	0.4231	1.63	0.45	OK
2207	2200		1990	-	300	CP	479.65		4,227	24,874	2.93	59.33	142.87	2.02	0.4152	1.92	0.45	ОК
		-		-	<u> </u>											·····		( Acceptable)
1990	1990	-	1565	-	300	CP	475.90		2,368	27,242	2.88	64.00	78.70	1.11	0.8132	1.20	0.71	
1565	1565	-	1565	-	400	CP	407.25	4.90	1,160	28,401	2.86	66.26	147.52	1.17	0.4492	1.14	0.46	ОК
1149		-	2204	-	400	CP	304.60		1,577	29,978	2.84	69.31	297.97	2.37	0.2326	1.94	0.32	ОК
2204	2204	-	1696	-	500	CP	276.75	5.90	151	66,853	2.48	135.23	291.92	1.49	0.4633	1.46	0.48	ОК
1696	1696	-	251	-	600	CP	535.95	2.70	9,670	76,523	2.43	151.35	319.51	1.13	0.4737	1.12	0.48	ОК
251	251	-	1226	-	600	CP	673.90	2.30	3,654	80,177	1.05	68.51	294.90	1.04	0.2323	0.86	0.32	ОК
1226	1226	-	119	-	600	CP	287.60	2.10	7,288	87,465	1.05	74.60	281.79	1.00	0.2647	0.85	0.35	OK
119	119	-	1613	-	800	CP	98.61	2.40	48	87,514	1.05	74.64	642.74	1.28	0.1161	0.87	0.23	ОК
1613	1613	-	90	-	800	CP	883.45	2.00	0	87,514	1.05	74.64	586.75	1.17	0.1272	0.81	0.24	ОК
	flows into 90	)																
112	112	-	190	-	400	CP	100.00	5.00	20,303	20,303	3.03	50.09	149.01	1.19	0.3361	1.07	0.39	ОК
190	190	-	1625	-	400	CP	495.50	7.60	2,498	22,801	2.97	55.17	183.71	1.46	0.3003	1.29	0.37	ОК
1625	1625	-	99	-	400	CP	785.05	8.20	15,989	38,789	2.72	85.91	190.82	1.52	0.4502	1.47	0.47	ОК
99		-	97	-	400	CP	175.00	16.50	698	39,487	2.71	87.20	270.65	2.15	0.3222	1.92	0.39	ОК
97	97	-	104	-	400	CP	354.90	10.80	3.634	43,121	2.67	93.84	218.98	1.74	0.4285	1.67	0.45	ОК
104		-	90	-	400	CP	504.50	5.30	1,519	44,640	2.66	96.58	153.42	1.22	0.6296	1.07	0.43	ОК
90			WWTP	-	800	CP	2347.10		6,451	138,605	1.04	117.14	586.75	1.17	0.0290	0.91	0.30	OK
90	flows into R	amthe \A/\A/			000	UF	2.041.10	2.00	0,401	130,005	1.04	(17.14	300.75	1.17	0.1990	0.91	0.30	UN
			,			DIP x 1						40			10 704 - 3			01/
DN-1	DN-1	-	EM-1	-	150		2400.00	-	4,109	4,109	3.95		Pressure		[0.794m ³ /m			ОК
EM-1	EM-1	-	SH-1	-	200	DIP×1	4680.00	-	7,322	11,431	3.33	31.03			[1.862m ³ /m			ОК
SH-1	SH-1	-	TOR-1	-	200	DIP×2	5250.00	-	22,359	33,790	2.78	76.58	Pressure		[4.595m ³ /m			ОК
TOR-1	TOR-1	-	WWTP	-	200	DIP × 3	5160.00	-	28,803	62,593	2.51	128.01	Pressure	1.50	[7.681m ³ /m	nin]		ОК
	flows into R	amtha WW	TP		L		14034.06	Total	201,198	201,198								
					CP:Concrete P	ipe												
					DIP:Ductile Iror	n Pipe												
			()		1						1							


# Table 5.9 Capacity Assessment of the Existing Trunk Sewers in Ramtha SWD

# Table 5.10 Capacity Assessment of the Existing Trunk Sewers in Mafraq SWD (1)

		•••			Urban 92.80tpcd Rurul[70.40tpcd													
	From		То			1			Por	oulation				Pipe Fl	ow Data			
Line	M.H.	Invert	м.н.	Invert	Pipe	Pipe	Pipe	Pipe		2035]	Peak	Total	Flow	Flow	Ratio	Actual	Ratio	Assessment
Name		invert		invert	Diameter	Material	Length	Slope	******	integrated	Factor				Ratio	Actual	Ratio	[d/D<0.67]
	No.	Level	No.	Level					Each	Value		Flow	Full	Vel.	q-part	Vel.	depth	
	-	[m]	-	[m]	[φmm]	[rial]	[m]	[1/1000]	[	pers.]	-	[ø/sec]	[ø/sec]	[m/sec]	[/q-full]	[m/sec]	[d/D]	-
1873	1873	-	694	-	300	CP	369.90	3.50	7,190	7,190	3.60	21.09	58.20	0.82	0.3623	0.76	0.41	ОК
MAF-1	MAF-1	-	694	-	300	CP	3750.00	-	16,611	23,802	2.95	57.19	Pressure Li	ne				ОК
694	694	-	698	-	300	CP	185.25	4.00	524	24,325	2.94	58.23	62.22	0.88	0.9359	0.93	0.83	NG!
698	698	-	703	-	300	CP	93.10	7.50	291	24,616	2.93	58.81	85.19	1.21	0.6903	1.28	0.62	OK
	flows into 7	4								· · · · ·								
1045		1	703	-	300	CP	657.60	6.70	5,687	5,687	3.74	17.34	80.52	1.14	0.2154	0.91	0.31	OK
703			706	-	400	CP	322.90		2,837	33,140	2.79	75.35	154.86	1.23	0.4866	1.22	0.49	ОК
705	706		710		400	CP	415.40		1,404	34,544	2.73	78.00	149.01	1.19	0.5235	1.22	0.43	ок
710	710	<u> </u>	1712		400	CP	227.80		276	34,820	2.77	78.52	199.91	1.13	0.3928	1.50	0.31	ок
1712	1712	h	1712	-	400	CP			2,306	· · · · · · · · · · · · · · · · · · ·	2.77	82.83	199.91					ОК
	h	<u> </u>	<u> </u>	-		<u> </u>	414.90		·····	37,127	·····	·····	·····	1.57	0.4190	1.49	0.45	
1733	1733		1906	-	500	CP	177.45		66	37,193	2.74	82.96	228.04	1.16	0.3638	1.07	0.41	OK
1906	1906		1826	-	600	CP	450.40	1.40	1,278	38,471	2.72	85.33	230.08	0.81	0.3708	0.76	0.42	ОК
	flows into 1	1	[							ļ								
168		<u> </u>	509	-	300	CP	364.30		6,871	6,871	3.63	20.31	108.20	1.53	0.1877	1.18	0.29	OK
509	509		475	-	400	CP	67.20		427	7,298	3.59	21.35	252.85	2.01	0.0844	1.25	0.19	ОК
475	475	-	193	-	400	CP	226.00	14.20	1,184	8,482	3.50	24.20	251.09	2.00	0.0964	1.30	0.21	ОК
193	193	-	1826	-	400	CP	226.00	13.50	1,320	9,803	3.42	27.30	244.82	1.95	0.1115	1.31	0.22	ок
1826	1826	-	494	-	600	CP	212.30	2.20	132	48,406	2.62	103.33	288.42	1.02	0.3583	0.94	0.41	ОК
	flows into 4	94																
AID-1	AID-1	-	AID-2	-	300	CP	1100.00	10.00	10,376	10,376	3.39	28.63	98.37	1.39	0.2910	1.21	0.37	ОК
AID-2	AID-2	-	1319	-	300	CP	1280.00	10.00	386	10,762	3.37	29.51	98.37	1.39	0.3000	1.22	0.37	ОК
1319	1319	-	1235	-	300	CP	719.95	8.00	3,282	14,044	3.22	36.84	87.99	1.24	0.4187	1.18	0.45	ОК
1235	1235	-	1267	-	300	CP	491.40	7.30	2,323	16,368	3.14	41.86	84.05	1.19	0.4980	1.19	0.49	ОК
1267	1267	-	1130	-	300	CP	697.50	7.80	1,535	17,903	3.09	45.10	86.88	1.23	0.5192	1.23	0.51	ОК
1130	1130	-	1138	-	300	CP	100.00		1,696	19,599	3.05	48.64	82.31	1.16	0.5909	1.20	0.56	OK
1138	1138		251	-	300	CP	100.00		13,188	32,787	2.80	74.68	82.31	1.16	0.9074	1.25	0.79	NG!
251	251	-	253	-	300	CP	246.85		388	33,175	2.79	75.42		0.77	1.3768	0.00	0.00	NG!
		+	<u> </u>	-		<u> </u>												
253	253		1568	-	300	CP	450.25		1,106	34,282	2.77	77.51	105.49	1.49	0.7348	1.60	0.65	OK
1568	1568	+	1312	-	300	CP	482.45		356	34,638	2.77	78.18	100.32	1.42	0.7793	1.52	0.68	NG!
1312	1312	<u> </u>	494	-	300	CP	337.08		805	35,444	2.76	79.69	112.58	1.59	0.7078	1.69	0.63	ОК
494	494		639	-	600	CP	366.35		0	83,849	1.05	71.58	336.79	1.19	0.2125	0.95	0.31	ОК
639	639	-	638	-	600	CP	239.60	11.60	586	84,435	1.05	72.07	662.14	2.34	0.1088	1.55	0.22	OK
	flows into 6	88																
935	935	-	20	-	300	CP	100.00	7.00	7,758	7,758	3.55	22.47	82.31	1.16	0.2730	1.00	0.35	ОК
20	20	-	1565	-	300	CP	482.45	12.50	3,308	11,066	3.35	30.21	109.98	1.56	0.2747	1.34	0.35	ок
1565	1565	-	84	-	300	CP	188.55	9.70	265	11,331	3.34	30.81	96.88	1.37	0.3180	1.22	0.38	ок
84	84	-	1107	-	400	CP	305.50	8.00	5,404	16,735	3.13	42.64	188.48	1.50	0.2262	1.21	0.32	ок
	flows into 1	107																
108	108	-	153	-	300	CP	348.10	11.60	2,293	2,293	4.35	8.14	105.95	1.50	0.0768	0.90	0.18	ОК
	flows into 1	53																
110	110	-	153	-	300	CP	309.25	9.50	11,924	11,924	3.31	32.15	95.88	1.36	0.3353	1.22	0.39	ОК
153	153		149		300	CP	83.10		294	14,512	3.20	37.86	187.89	2.66	0.2015		0.30	
149	<u> </u>		743		400	CP	142.70		2,188	16,699	3.13		190.82	1.52	0.2231	1.23	0.32	ок
743		<u> </u>	802		400	CP	356.00		7,041	23,740	2.95	57.06		1.32	0.3260	1.23	0.32	ОК
802	802	<u> </u>	1107		400	CP	211.75		7,812	31,552	2.33	72.33	177.56	1.41	0.4073	1.34	0.33	ОК
1107	1107		688		400	CP	15.20		7,012	48,286	2.61	103.12	337.75	2.69	0.4073	2.37	0.44	<u>ОК</u>
*****						}							*****	*****				
638	h	<u> </u>	1865		800	CP	554.30		652	133,373	1.04	112.80	540.97	1.08	0.2085	0.85	0.30	ОК
1865			674	-	800	CP	800.00		5,844	139,217	1.04	117.65		1.17	0.2005	0.92	0.30	ОК
674		<u> </u>	100-1	-	800	CP	303.30		3,378	142,595	1.04	120.45		1.17	0.2053	0.92	0.30	OK
100-1	100-1	1	100-2	-	800	CP	1000.00	2.00	0	142,595	1.04	120.45	586.75	1.17	0.2053	0.92	0.30	ОК
	flows into 1	00-2	ļ			ļ												
BH-1	BH-1	-	BH-2	-	300	CP	2000.00	6.00	13,541	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-2	BH-2	-	BH-3	-	300	CP	1800.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-3	BH-3	-	BH-4	-	300	CP	2900.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-4	BH-4	-	BH-5	-	300	CP	2900.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-5	BH-5	-	BH-6	-	300	CP	3500.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ок
BH-6	BH-6	-	MNS-1	-	300	CP	1500.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
MNS-1	MNS-1	-	100-2	-	300	DIP	2800.00	-	0	13,541	3.24	35.74	Pressure L	ine				ОК
100-2	100-2		100-3	-	800	CP	264.60		0	156,136	1.04	131.68	586.75	1.17	0.2244	0.95	0.32	ОК
100-3			100-4	-	800	CP	1283.90		0	156,136	1.04	131.68	586.75	1.17	0.2244	0.95	0.32	OK
100-0		+	100-5		800	CP	918.70		-	156,136	1.04	131.68		1.17	0.2244	0.95	0.32	ок
100-4			WWTP		800	CP	768.60		- 0	156,136	1.04			1.17	0.2244	0.95	0.32	ОК
		- Aafraq WWT	)		000		, 00.00	Z.00 Total	156,136	100,100	1.04	131.00	300.75	1.17	0.2244	0.95	0.32	UK
	now's into N	nan ay vvvv I	•		CD-C	{		I otal	100,136									
					CP:Concrete P													
					DIP:Ductile Iror	n Pipe												

Table 5.11 Capacity Ass	essment of the Existing	g Trunk Sewers i	n Mafraq SV	<b>VD</b> (2)


			-	•						0			Urban 92.80tpcd Rurul 70.40tpcd					
	From		То						Pop	oulation				Pipe Fl	ow Data			
Line	М.Н.	Invert	М.Н.	Invert	Pipe	Pipe	Pipe	Pipe	[:	2035】	Peak	Total	Flow	Flow	Ratio	Actual	Ratio	Assessment
Name	No.	Level	No.	Level	Diameter	Material	Length	Slope	Each	integrated	Factor	Flow	Full	Vel.	q-part	Vel.	depth	【d/D<0.67】
					[amm]	faiall	[]	[4/4000]		Value								-
1873	- 1873	[m] -	- 694	[m] -	[φmm] 300	[rial] CP	[m] 369.90	[1/1000] 3.50	7,190	7,190	- 3.60	[l/sec] 21.09	[l/sec] 58.20	[m/sec] 0.82	[/q-full] 0.3623	[m/sec] 0.76	[d/D] 0.41	ок
694	694	-	698	-	300	CP	185.25	4.00	524	7,130	3.56	21.03	62.22	0.88	0.3594	0.70	0.41	ОК
698	·	-	703	-	300	CP	93.10	7.50	291	8,005	3.54	23.06		1.21	0.2707	1.04	0.35	OK
	flows into 7	1 703																
1045	1045	-	703	-	300	CP	657.60	6.70	5,687	5,687	3.74	17.34	80.52	1.14	0.2154	0.91	0.31	OK
MAF-1	MAF-1	-	694	-	250	DIP	3750.00	-	16,611	22,298	2.98	54.16	Pressure	[3.250m ³ /n	nin]			OK
703	703	-	706	-	400	CP	322.90	5.40	2,837	33,140	2.79	75.35	154.86	1.23	0.4866	1.22	0.49	OK
706	706	-	710	-	400	CP	415.40	5.00	1,404	34,544	2.77	78.00	149.01	1.19	0.5235	1.20	0.51	ОК
710	710	-	1712	-	400	CP	227.80	9.00	276	34,820	2.77	78.52	199.91	1.59	0.3928	1.50	0.43	OK
1712	1712	-	1733	-	400	CP	414.90	8.80	2,306	37,127	2.74	82.83	197.68	1.57	0.4190	1.49	0.45	OK
1733	1733	-	1906	-	500	СР	177.45	3.60	66	37,193	2.74	82.96	228.04	1.16	0.3638	1.07	0.41	ОК
1906		;	1826	-	600	CP	450.40	1.40	1,278	38,471	2.72	85.33	230.08	0.81	0.3708	0.76	0.42	OK
	flows into 1	1											-					
AID-1	AID-1	-	AID-2	-	300	CP	1100.00	10.00	10,376	10,376	3.39	28.63	-	1.39	0.2910	1.21	0.37	OK
AID-2	AID-2		1319	-	300	CP	1280.00	10.00	386	10,762	3.37	29.51	98.37	1.39	0.3000	1.22	0.37	OK
1319	1319 1235		1235 1267	-	300 300	CP CP	719.95 491.40	8.00 7.30	3,282 2,323	14,044	3.22 3.14	36.84 41.86	87.99 84.05	1.24	0.4187	1.18	0.45	ок ОК
1235	1235	-	1267	-	300	CP CP	491.40 697.50	7.30	2,323	16,368 17,903	3.14	41.86		1.19	0.4980	1.19 1.23	0.49	OK
NAH-1	AID-1	-	AID-2	-	300	CP	1100.00	10.00	1,555	17,903	3.09	45.10	98.37	1.23	0.4585	1.23	0.31	OK
NAH-2	AID-1	-	1319		300	CP	1280.00	10.00	0	17,903	3.09	45.10	·····	1.39	0.4585	1.35	0.47	ОК
168	168	<u> </u>	509	-	300	CP	364.30	12.10	6,871	24,774	2.93	59.13	·····	1.53	0.5464	1.56	0.53	ок
509	509	-	475	-	400	CP	67.20	14.40	427	25,201	2.92	59.98	252.85	2.01	0.2372	1.65	0.32	ОК
475	475	-	193	-	400	CP	226.00	14.20	1,184	26,386	2.90	62.32	251.09	2.00	0.2482	1.66	0.33	ОК
193	193	-	1826	-	400	CP	226.00	13.50	1,320	27,706	2.87	64.90	244.82	1.95	0.2651	1.66	0.35	ОК
1826	1826	-	494	-	600	CP	212.30	2.20	132	66,309	2.49	134.32	288.42	1.02	0.4657	1.00	0.48	ОК
	flows into 4	94																
1130	1130	-	1138	-	300	СР	100.00	7.00	1,696	1,696	4.58	6.33	82.31	1.16	0.0769	0.70	0.18	ОК
1138	1138	-	251	-	300	CP	100.00	7.00	13,188	14,884	3.19	38.67	82.31	1.16	0.4698	1.14	0.48	ОК
251	251	-	253	-	300	CP	246.85	3.10	388	15,272	3.17	39.51	54.78	0.77	0.7213	0.83	0.64	ОК
253	253	<u> </u>	1568	-	300	CP	450.25	11.50	1,106	16,379	3.14	41.88		1.49	0.3970	1.40	0.43	ОК
1568	1568	<u> </u>	1312	-	300	CP	482.45	10.40	356	16,735	3.13	42.64	100.32	1.42	0.4250	1.36	0.45	ОК
1312	1312 494		494 639	-	300 600	CP CP	337.08 366.35	13.10 3.00	805 0	17,540 83,849	3.10	44.34 71.58	112.58 336.79	1.59	0.3939	1.50 0.95	0.43	OK OK
494			639	-	600	СР	239.60	3.00	586	83,849 84,435	1.05	71.58		2.34	0.2125	1.55	0.31	OK
639	flows into 6	£	030	-	600	CP	239.00	11.00	000	04,435	1.05	72.07	662.14	2.34	0.1000	1.55	0.22	UK
935	935	r	20	-	300	СР	100.00	7.00	7,758	7,758	3.55	22.47	82.31	1.16	0.2730	1.00	0.35	ОК
20			1565	-	300	CP	482.45	12.50	3,308	11,066	3.35	30.21	109.98	1.56	0.2747	1.34	0.35	OK
1565	1565	-	84	-	300	CP	188.55	9.70	265	11,331	3.34	30.81	96.88	1.37	0.3180	1.22	0.38	ОК
84	84	-	1107	-	400	CP	305.50	8.00	5,404	16,735	3.13	42.64	188.48	1.50	0.2262	1.21	0.32	ОК
	flows into 1	107																
108	108	-	153	-	300	CP	348.10	11.60	2,293	2,293	4.35	8.14	105.95	1.50	0.0768	0.90	0.18	ОК
	flows into 1	53																****
110		<u> </u>	153	-	300	CP	309.25	9.50	11,924	11,924	3.31	32.15		1.36	0.3353	1.22	0.39	ОК
153		<u>}</u>	149		300	CP	83.10	36.50	294	14,512	3.20	37.86		2.66	0.2015	2.10	0.30	ОК
149			743	-	400	CP	142.70	8.20	2,188	16,699	3.13	42.56		1.52	0.2231	1.23	0.32	OK
743			802	-	400	CP	356.00	6.90	7,041	23,740	2.95	57.06		1.39	0.3260	1.24	0.39	OK
802	802		1107 688		400 400	CP CP	211.75 15.20	7.10 25.70	7,812 0	31,552 48,286	2.81 2.62	72.33		2.69	0.4073	1.34 2.37	0.44	OK OK
638		<u> </u>	1865		800	CP	554.30	1.70	652	133,374	1.04	112.80		1.08	0.2085	0.85	0.37	ОК
1865	1865		674	-	800	CP	800.00	2.00	5,844	139,217	1.04	117.65		1.17	0.2005	0.92	0.30	ок
674		l	100-1	-	800	CP	303.30	2.00	3,378	142,595	1.04	120.45		1.17	0.2053	0.92	0.30	ОК
100-1	100-1	-	100-2	-	800	СР	1000.00	2.00	0	142,595	1.04	120.45	586.75	1.17	0.2053	0.92	0.30	ОК
	flows into 1	00-2																
BH-1	BH-1	-	BH-2	-	300	CP	2000.00	6.00	13,541	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-2	BH-2	-	BH-3	-	300	CP	1800.00	6.00	0	13,541	3.24	35.74	76.20	1.08	0.4690	1.06	0.48	ОК
BH-3	BH-3		BH-4	-	300	CP	2900.00	6.00	0	13,541	3.24	35.74		1.08	0.4690	1.06	0.48	ОК
BH-4	BH-4	<u>}</u>	BH-5		300	CP	2900.00	6.00	0	13,541	3.24	35.74		1.08	0.4690	1.06	0.48	ОК
BH-5	BH-5		BH-6		300	CP	3500.00	6.00	0	13,541	3.24	35.74		1.08	0.4690	1.06	0.48	ОК
BH-6	BH-6		MNS-1	-	300	CP	1500.00	6.00	0		3.24	35.74		1.08	0.4690	1.06	0.48	ок
MNS-1	MNS-1		100-2	-	200	DIP	2800.00	-	0		3.24		Pressure	[2.144m ³ /n				ОК
100-2	100-2 100-3		100-3 100-4	-	800	CP CP	264.60 1283.90	2.00	0	156,136 156,136	1.04	131.68 131.68		1.17	0.2244	0.95	0.32	ОК ОК
100-3	100-3		100-4	-	800	CP CP	1283.90 918.70	2.00	0	156,136	1.04	131.68		1.17	0.2244	0.95	0.32	OK OK
100-4	100-4		WWTP	-	800	CP	768.60	2.00	0	156,136	1.04	131.68	586.75	1.17	0.2244	0.95	0.32	OK
		) Nafraq WWT	£					Z.00 Total	156,136		1.04	.51.00	550.75	1.17	0.2244	0.00	0.02	
					CP:Concrete P	ipe												
					DIP:Ductile Iror													
	·	•	(								L	·	l		L	· · · · · ·		



Note: "x" in red-color shows the route of trunk sewers having insufficient capacity; bold red lines show the new trunk sewers required.

# Figure 5.4 Connection Alternatives for Capacity Assessment of Trunk Sewers in Mafraq SWD

#### 5.1.2 Assessment of Lift Stations and WWTPs



There are six LSs and six WWTPs in the sewerage service area, their locations are shown in Figure 5.5.

Figure 5.5 Location of Existing LSs and WWTPs

(1) Capacity of Lift Stations and the Design Flows

Table 5.12 summarizes the capacity of each lift station and the design flow required in the improvement plan.

Sewerage	Lift Station	Ca	apacity (m ³ /min	)	
District	(LS)	Existing	Design	Expansion required	Remarks
Wadi	Hakama	3.90	6.22	2.32	Need to Improve
Al-Arab	Dougrah	6.00	2.20	-	
Shallala	Sal	3.80	3.93	-	To be managed by operating the stand-by pump
	Bushra	3.80	1.80	-	
Wadi	Al Hoson Camp	4.20	5.62	1.42	Shift to Shallala SWD
Hassan	Wadi Hassan	6.70	4.79	-	

 Table 5.12
 Present Pump Capacity and the Design Flows for Each Lift Station

Source: JICA Study Team

(2) Present Treatment Capacity of WWTPs and Design Flows

Actual inflow and the present design capacity for the six existing WWTPs are shown in Table 5.13. In

Jordan the design capacity of WWTP is expressed as the average daily flow. The present design capacity (average daily flow) for each WWTP is compared with the design flows for 2035.

The design average daily flow in 2035 would exceed the capacity of all WWTPs except the Central Irbid WWTP, as indicated in red in Table 5.13.

	unient Cup	acity and D		for Luch v		tunn / u
WWTP	Central	Wadi	Shallala	Wadi	Ramtha	Mafraq
Item	Irbid	Al-Arab		Hassan		
Actual Inflow (2013)	8,104	11,281	3,497	1,277	4,477	1,710
Present Design Capacity (Average Daily Flow)	12,000	20,800	13,700	1,600*	5,400	6,550
Average Daily Flow (2035)	10,900	28,500	22,500	2,500	17,300	14,400
Maximum Daily Flow (2035)	12,700	33,300	26,400	2,900	20,200	16,800
Maximum Hourly Flow (2035)	19,100	49,900	39,600	4,400	30,308	25,200

Table 5.13 Present Treatment Capacity and Design Flows for Each WWTP Unit:m³/d

Note: * at the Wadi Hassan, the present wastewater treatment capacity is assessed to be 2,800  $\text{m}^3$ /day, but the sludge treatment capacity is assessed to be only 1,600  $\text{m}^3$ /day, then the treatment capacity of the Wadi Hassan WWTP is evaluated as 1,600  $\text{m}^3$ /day.

Source: JICA Study Team

The treatment facilities that are currently under construction at the Mafraq WWTP (USAID financing) have a capacity of 3,275 m³/day. The present capacity of 3,275 m³/day will be doubled to 6,550 m³/day by 2015 when the project is completed.

(3) Planned Effluent Quality and Present Treatment Condition

Actual (2013) and planned influent and effluent qualities for the six WWTPs are shown in Table 5.14. The influent and effluent quality data are not available for Shallala WWTP because it has just started its operation at the end of 2013.

WWTP Parameter	Central Irbid	Wadi Al Arab	Shallala	Wadi Hassan	Ramtha	Mafraq
Actual Influent BOD ₅ (mg/L)	930	893	_	1,184	873	_
Design Influent BOD ₅ (mg/L)	706	752	887	924	757	707
Actual Influent SS (mg/L)	758	518	_	781	386	(300)
Design Influent SS (mg/L)	652	694	819	853	699	653
Actual Effluent BOD ₅ (mg/L)	65	22	_	7	15	209
Design Effluent BOD ₅ (mg/L)	30	30	30	30	30	60
Actual Effluent SS (mg/L)	77	19	—	8	26	236
Design Effluent SS (mg/L)	30	30	30	30	30	60

 Table 5.14
 Actual and Design Influent and Effluent Quality for Each WWTP

Source: JICA Study Team

The treatment processes at the four WWTPs, (excluding Central Irbid WWTP and Mafraq WWTP), show good performance. At the Central Irbid and Mafraq WWTPs the  $BOD_5$  and SS concentrations (shown in red) exceed the design effluent quality which was set to comply with the standards

#### explained in Chapter 4.

Based on site inspection and data collection, the reasons for poor performance at the Central Irbid and Mafraq WWTPs are identified and summarized as follows:

#### 1) Central Irbid WWTP

The wastewater at Central Irbid WWTP is treated by a series of primary sedimentation tanks, trickling filters, aeration tanks (conventional activated sludge method), and final sedimentation tanks. The treated wastewater (effluent) quality does not meet the design effluent quality because the performance of the trickling filters and aeration tanks is poor. The trickling filters are frequently blocked by a film of slime and solids.

The oxidation ditch process under construction to replace the trickling filter, aeration tank and final sedimentation tank, will be able to achieve the design effluent quality.

#### 2) Mafraq WWTP

Wastewater at the Mafraq WWTP is treated by a system of anaerobic, facultative, and polishing ponds. The treated wastewater quality exceeds the design effluent quality and effluent quality standards.

The advanced treatment process under construction is comprised of nitrification and denitrification tanks, aerated lagoon, facultative pond, sand filter, and reed bed. Half of the existing facilities have been reconstructed and the new treatment process is in operation. The other half is still under construction. The design effluent quality will be achieved when all the facilities are in operation.

The capacity calculations for the existing and new facilities at each WWTP are presented in Appendix III-A of the Supporting Report.

## 5.2 Rationale for Sewer Improvement

## 5.2.1 Trunk Sewers

The need to improve trunk sewers is explained as follows:

- i) The new service area is far from the existing service area. New trunk sewers are required in the expanded service area to connect to the existing trunk sewers pumping facilities and the WWTP.
- ii) New trunk sewers are also needed in Mafraq to bring the capacity of the existing trunk sewers to the required level (as shown in Figure 5.4).

# 5.2.2 Branch Sewers

The need for new branch sewers is estimated in following manner:

- The length of branch sewer per unit area (m/ha) is calculated based on the existing branch sewer network.
- The length of new branch sewers for each SWD is calculated based on the expanded service area.

The specified minimum diameter for branch sewers is 200 mm.

The branch sewer length per unit area (m/ha) is estimated in the following manner:

The methodology for calculating the length per unit area is as follows. For each SWD the length of sewers in one square km is compiled for three types of areas: densely populated commercial, moderately populated urban residential, and sparsely populated sub-urban areas as shown in Table 5.15. Central Irbid SWD is excluded because there is no planned sewer expansion.

The average branch sewer length per unit area for all five SWD combined is 130.3 m/ha. The averages range from 108.7 m/ha for densely populated areas such as Wadi Hassan to 152.3 m/ha for sub-urban areas such as Ramtha. The highest average of 152.3 m/ha is used for estimating the branch sewer length for each SWD.

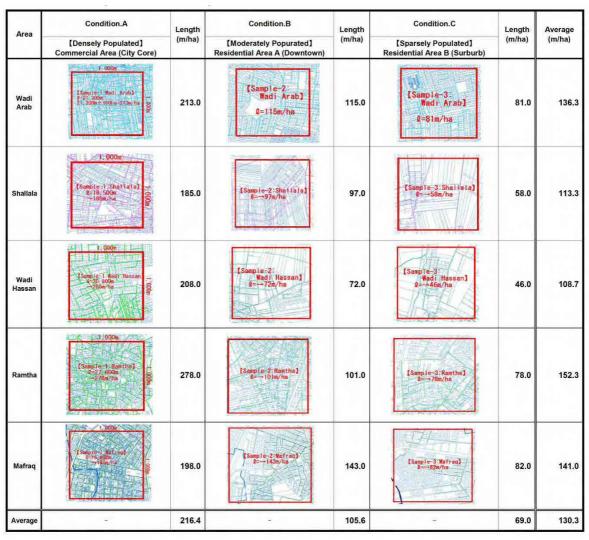



 Table 5.15
 Existing Branch Sewers Length Per Unit Service Area

Source: JICA Study Team

## 5.2.3 House Connection

The branch sewers can collects the wastewater through house connections of the individual houses or buildings. When a branch sewer is constructed near a house or building, the owner of the house or building shall connect to the branch sewer by regulation. The house connections are constructed by the expenses of owner of individual houses or buildings. Therefore, construction plan of house connections are not prepared in the sewerage improvement plan and cost estimation.

## 5.3 Sewerage Improvement Plan in Central Irbid SWD

# 5.3.1 WWTP Improvement Plan

As discussed in the previous section, additional sewers, lift stations and wastewater treatment facilities are not required for the Central Irbid SWD.

The existing sludge drying beds at the Central Irbid WWTP are not operated because of odor problems for the residential areas near the WWTP. Digested and thickened sludge is disposed of at the solid waste landfill sites.

Sludge treatment facilities with mechanical dewatering facilities which would replace the sludge drying beds are required, as summarized in Table 5.18.

	Dimension (m)			Existing	Future				
Component	Width/	Lonoth	Domth	-	Number	Remarks			
	diameter	Length	Depth	Number	number				
Coarse Screen				2	2				
Fine Screen				2	2				
Girt Chamber	2.2	10		2	2	Aerated			
Primary Sedimentation Tank	6	36	3.2	2	2				
Lift Pump Station				1	1				
Trickling Filter	20		7.5	2					
Aeration Tank	15	30	3	2					
Final Sedimentation Tank	22		3.8	2					
Oxidation Ditch	20	60	4.5	2	2				
Final Sedimentation Tank	30		3.5	2	2				
Disinfection (Chlorine Contact)	1.5	102	3	2	2				
Dewatering Machine					2				
Sludge Thickener	18		3.5	1	1				
Anaerobic Digestion Tank	26		7	1	1				
Sludge Holding Tank	24		4.5	1	1				
Sludge Drying Bed				9					

 Table 5.16
 Expansion Plan for Central Irbid WWTP

Note: green: existing facilities to be used without any changes, yellow: existing facilities to be abandoned, pink : facilities under construction in 2014, orange: facilities planned by other donors, blue: facilities planned in this Study. Source: JICA Study Team

Figure 5.6 is a proposed layout showing the mechanical sludge dewatering facilities in the present 7 ha site.

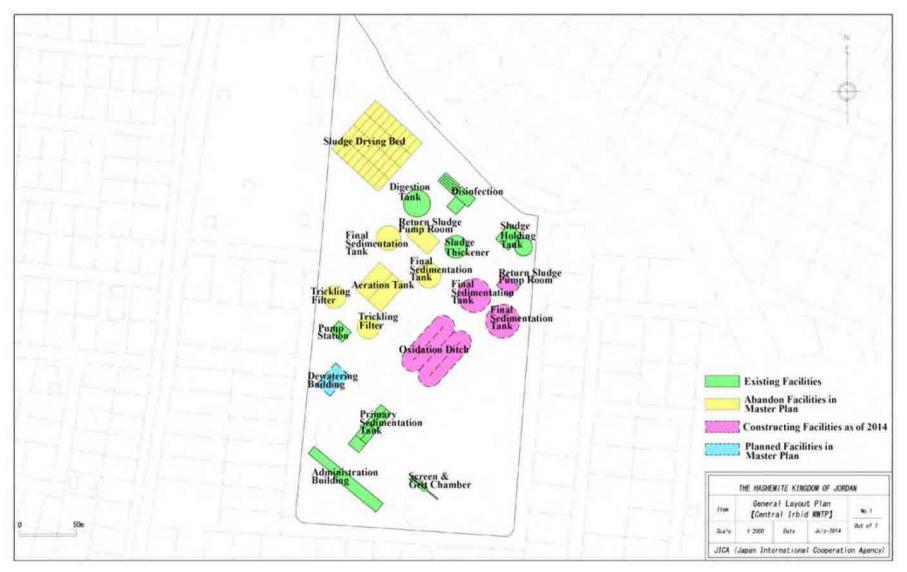



Figure 5.6 Layout of Central Irbid WWTP

#### 5.4 Sewerage Improvement Plan for Wadi Al-Arab SWD

#### 5.4.1 Trunk Sewers and Lift Stations

The existing trunk sewers can be used and no expansion is needed. The existing Hakama LS has to increase its capacity by  $2.32 \text{ m}^3/\text{min}$ , from  $3.9 \text{ m}^3/\text{min}$  to  $6.22 \text{ m}^3/\text{min}$  as shown in Table 5.12.

#### 5.4.2 Branch Sewers

The required length of branch sewer per ha (calculated to be 152.3 m/ha) is multiplied by the net area in the expanded service area to estimate the total length of branch sewer to be installed. The net area requiring branch sewers in this case is 2,075.8 ha (total expansion area of 2,204 ha minus 128.2 ha which already have branch sewers installed although the house connections have not been made). Therefore, the additional branch sewer requirement is about 316 km.

## 5.4.3 Wadi Al-Arab WWTP

Table 5.17 shows the capacity calculations, identifying the treatment facilities required. The capacity calculations for each treatment process are shown in Appendix III-B of the Supporting Report. The capacity calculations are based on the average and maximum daily flows.

Tuble ett. Design cupacity of tradition finds to the				
Item	Design			
Actual Average Flow in 2013	11,281 m ³ /d			
Present Design Capacity	21,000 m ³ /d			
(One train capacity x train nos.)	$(3,500 \text{ m}^3/\text{d} \text{ x } 6)$			
Planned Average Daily Flow	28,429 m ³ /d			
Improved Design Capacity	$31,500 \text{ m}^3/\text{d}$			
(One train capacity x train nos.)	$(3,500 \text{ m}^3/\text{d x 9})$			
Existing Sludge Treatment Capacity coverage	100 %			

Table 5.17 Design Capacity of Wadi Al-Arab WWTP

Source: JICA Study Team

Only three sets of aeration and final sedimentation tanks are required as shown in Table 5.18. The layout proposed in Figure 5.7, indicates that the additional facilities could be constructed on 27 ha.

Dimension (m)									
Component	Width/ diameter	Length		Existing Number	Future Number	Remarks			
Coarse Screen				2	2				
Fine Screen				2	2				
Girt Chamber	2.8	38	2	1	1	Aerated			
Grease Chamber	2.85	33		1	1				
Aeration Tank	18	72	4.5	6	9(+3)				
Final Sedimentation Tank	21		3.4	6	9(+3)				
Sand Filter				2	2	Planning by KfW			
UV disinfection				2	2	Planning by KfW			
Disinfection (Chlorine Contact)	2.45	150	2	2	2				
Sludge Holding Tank	12			1	1				
Sludge Holding Tank	8			2					
Dewatering Machine				3	3				
Sludge Drying Bed	6	25-30		73					

 Table 5.18
 Expansion Plan for Wadi Al-Arab WWTP

Source: JICA Study Team



Figure 5.7 Layout of Wadi Al-Arab WWTP

# 5.5 Sewerage Improvement Plan for Shallala SWD

### 5.5.1 Sewer and Lift Station

A 200 mm diameter and 3,300 m long new concrete trunk sewer, "MHG-1g", is required for the new service area of Mughayer, located at the north eastern part of Irbid urban area. A small manhole type pump is required to lift the wastewater at one point before the flow continues by gravity to the existing trunk sewers as shown in Figure 5.8. The existing Sal lift station can be used for the design flow as specified in Table 5.12.

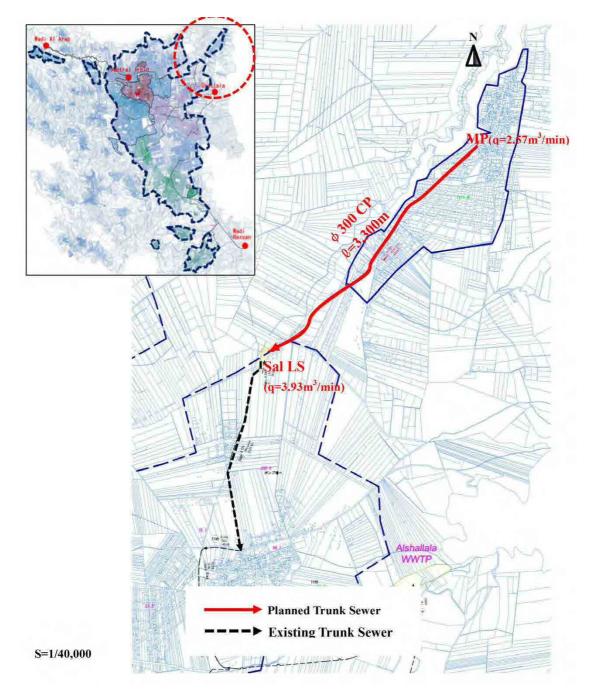



Figure 5.8 New Trunk Sewers in Shallala SWD (1)

New trunk sewer, "AZMI-1". having 400 mm diameter and 4,550 m long, is required for conveying the wastewater generated in Hoson Camp where it is belong to Wadi Hassan SWD but planned to be changed to Shallala SWD by WAJ.



Figure 5.9 New Trunk Sewer in Shallala SWD (2)

The capacity of Al Hoson LS is required to increase by  $1.42 \text{ m}^3/\text{min}$ , from  $4.20 \text{ m}^3/\text{min}$  to  $5.62 \text{ m}^3/\text{min}$  as shown in Table 5.12.

# 5.5.2 Branch Sewers

The required length of branch sewer per ha (calculated to be 152.3 m/ha) is multiplied by the net area in the expanded service area to estimate the total length of branch sewer to be installed. The net area in this case is 1,686.5 ha (total expansion area of 2,368 ha minus 681.5 ha which already have branch sewers installed although the house connections have not been made). The additional branch sewer requirement is about 257 km.

# 5.5.3 Shallala WWTP

Table 5.19 shows the capacity calculations, identifying the treatment facilities. The capacity calculations of each treatment process are shown in Appendix III-B of the Supporting Report. The capacity calculations are based on the average and maximum daily flows.

Item	Design
Actual Average Flow in 2013	3,497 m ³ /d
Present Design Capacity	$14,000 \text{ m}^3/\text{d}$
(One train capacity x train nos.)	$(7,000 \text{ m}^3/\text{d x 2})$
Planned Average Daily Flow	22,520 m ³ /d
Improved Design Capacity	$21,000 \text{ m}^3/\text{d}$
(One train capacity x train nos.)	$(7,000 \text{ m}^3/\text{d x 3})$
Existing Sludge Treatment Capacity coverage	100 %

Table 5.19 Design Capacity of Shallala WWTP

Note: * Nominal capacity, but facilities can cover the design flow. Source: JICA Study Team

As shown in Table 5.20, one primary sedimentation tank, two oxidation ditches, and one final sedimentation tank are required for the expansion of Shallala WWTP. Figure 5.10 is the proposed layout, showing the additional facilities to be constructed on the current site of 7ha.

	Dim	ension (r	n)	Evicting Eutone		
Component	Width/ diameter	Length	Depth	Existing Number	Future Number	Remarks
Coarse Screen				2	2	
Fine Screen				2	2	
Girt Chamber	3	30	4	2	2	Aerated
Grease Chamber	2	30		2	2	
Equalization Tank	10	72	5	5	5	
Primary Sedimentation Tank	7	32		2	3(+1)	
Oxidation Ditch	20	58	4.5	2	4(+2)	
Final Sedimentation Tank	42		3	2	3(+1)	
Disinfection (Chlorine Contact)				1	1	
Sludge Thickener	10		4	3	3	
First Digestion Tank	18		13	2	2	
Second Digestion Tank	12		10	1	1	
Belt Thickener				2	2	
Centrifugal Dehydrator				2	2	

Table 5.20Expansion Plan for Shallala WWTP



Figure 5.10 Layout of Shallala WWTP

### 5.6 Sewerage Improvement Plan for Wadi Hassan SWD

### 5.6.1 Sewer and Lift Station

The existing trunk sewers can be used and no expansion is required. The Wadi Hassan LS is not required to improve the capacity. Al Hoson Camp LS is planned to change to Shallala SWD.

# 5.6.2 Branch Sewers

The required length of branch sewer per ha (calculated to be152.3 m/ha) is multiplied by the net area in the expansion area. The net area in this case is 400.3 ha (total expansion area of 430 ha minus 29.7 ha which already have branch sewers installed although the house connections have not been made). The additional branch sewer requirement is about 61 km.

# 5.6.3 Wadi Hassan WWTP

Table 5.21 shows the capacity calculations, identifying additional treatment facilities are not required. The capacity calculations of each treatment process are reported in Appendix III-B of the Supporting Report. The capacity calculations are based on the average and maximum daily flows.

Item	Design
Actual Average Flow in 2013	1,277 m ³ /d
Present Design Capacity	2,800 m ³ /d
(One train capacity x train nos.)	$(1,400 \text{ m}^3/\text{d x 2})$
Planned Average Daily Flow	$2,490 \text{ m}^{3}/\text{d}$
Existing Sludge Treatment Capacity coverage	44 %

 Table 5.21 Design Capacity of Wadi Hassan WWTP

Source: JICA Study Team

It is proposed that 20 sludge drying beds for the design flow of 1,200 m³/d will be constructed in Phase-2 to increase the sludge treatment capacity of Wadi Hassan WWTP from 1,600 m³/d to 2,800 m³/d.

	Dim	ension (r	n)	Evictina	Future	
Component	Width/ diameter	Length	Depth	Existing Number	Number	Remarks
Coarse Screen				2	2	one for bypass
Fine Screen				1	1	
Girt Chamber	2	20	3	1	1	Aerated
Grease Chamber				1	1	
Oxidation Ditch	14	60	3	2	2	
Final Sedimentation Tank	15		3.8	2	2	
Polishing Pond	60	88	1.8	4	4	
Disinfection (Chlorine Contact)				1	1	
Sludge Holding Tank	11.2		10.2	1	1	
Sludge Drying Bed	6	30		16	36(+20)	

# Table 5.22 Expansion Plan for Wadi Hassan WWTP



Figure 5.11 Layout of Wadi Hassan WWTP

# 5.7 Sewerage Improvement Plan in Ramtha SWD

# 5.7.1 Trunk Sewer and Manhole Pump

To convey the wastewater generated in the four locations at the north western areas of Ramtha City, new trunk sewers, DN-1, EM-1, SH-1, TOR-1 and four small pumping facilities (manhole type) are required as shown in Figure 5.12.

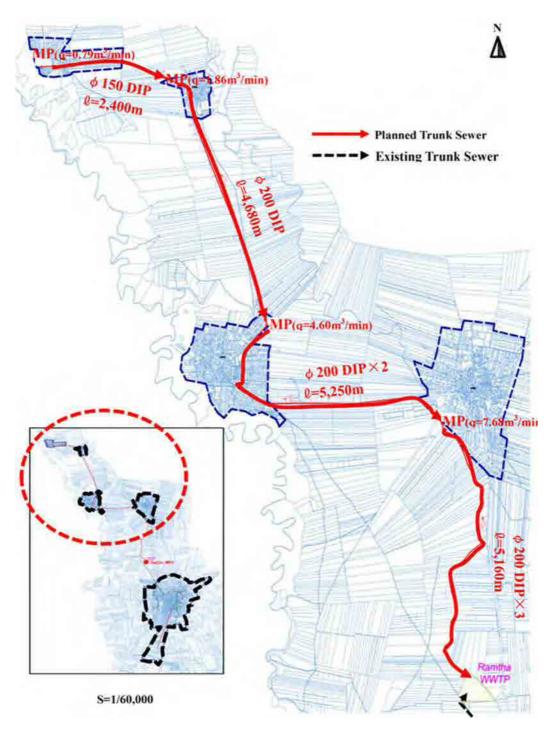



Figure 5.12 New Trunk Sewers in Ramtha SWD (1)

To convey the wastewater generated in the south western area of Ramtha City, new trunk sewers, SEB-1 and SEB-2, are required as shown in Figure 5.13.

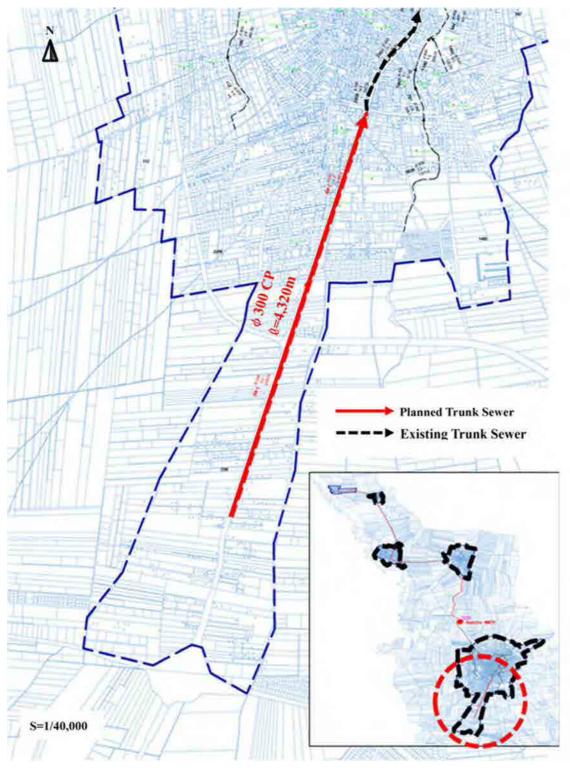



Figure 5.13 New Trunk Sewers in Ramtha SWD (2)

#### 5.7.2 Branch Sewer

The required length of branch sewer per ha (calculated to be 152.3 m/ha) is multiplied by the net area to estimate the total length of branch sewer to be installed. The net area requiring new branch sewers in this case is 1,415.5 ha (total expansion area of 1,462 ha minus 46.5 ha which already have branch sewers installed although the house connections have not been made). The additional branch sewer requirement is about 216 km.

## 5.7.3 Ramtha WWTP

Table 5.23 shows the capacity calculations, identifying the treatment facilities required. The capacity calculations of each treatment process are shown in Appendix III-B of the Supporting Report. The capacity calculations are based on the average and maximum daily flows.

Item	Design
Actual Average Flow in 2013	4,477 m ³ /d
Present Design Capacity	8,800 m ³ /d
(One train capacity x train nos.)	$(4,400 \text{ m}^3/\text{d x 2})$
Planned Average Daily Flow	17,269 m ³ /d
Improved Design Capacity	$17,600 \text{ m}^3/\text{d}$
(One train capacity x train nos.)	$(4,400 \text{ m}^3/\text{d x 4})$
Existing Sludge Treatment Capacity coverage	50 %

 Table 5.23 Design Capacity of Ramtha WWTP

Source: JICA Study Team

Two lines of aeration tanks and final sedimentation tanks and mechanical sludge drying facilities are required as shown in Table 5.24. It is difficult to expand the existing sludge drying beds within the present 18 ha site. These will be demolished and replaced by mechanical sludge drying facilities as shown in the proposed layout in Figure 5.14.

	Dim	ension (r	n)	Existing	Future	
Component	Width/ diameter	Length	Depth	Number	Number	Remarks
Coarse Screen				1	1	
Fine Screen				3	3	
Girt Chamber	5		3	2	2	
Equalization Ponds	25	70	3	2	2	
Lifting Station				1	1	4 pumps
Aeration Tank	33.4	50.1	4.5	2	4(+2)	
Final Sedimentation Tank	22		3	2	4(+2)	
Polishing Pond	30-36	70-94	2	10	10	
Disinfection (Chlorine Contact)	1.4	52.5	3.5	2	2	
Sludge Thickener	9		4	2	2	
Sludge Drying Bed	6	25		100		
Sludge Dewatering Machine					2	
Irrigation Reservoir	43	63.2	3.5	1	1	

Table 5.24Expansion Plan for Ramtha WWTP



Figure 5.14 Layout of Ramtha WWTP

# 5.8 Sewerage Improvement Plan for Mafraq SWD

# 5.8.1 Sewer and Lift Station

To convey the wastewater generated in the western area "Bani Hassan" of Mafraq City, new trunk sewers, BH-1 to BH-6 and MNS-1, are required as shown in Figure 5.15.

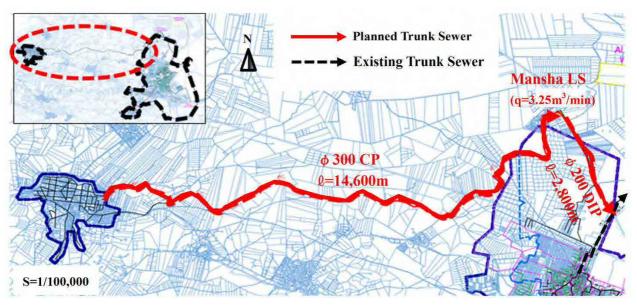



Figure 5.15 New Trunk Sewers in Mafraq (1)

To convey the wastewater generated in the south western area of "Aidoon" in Mafraq City, new trunk sewers, AID-1 and AID-2, are required as shown in Figure 5.15. In addition, to convey the wastewater generated in the south eastern part of Mafraq City, a new pumping station, and new trunk sewer, MNS-1, are required as shown in Figure 5.16.

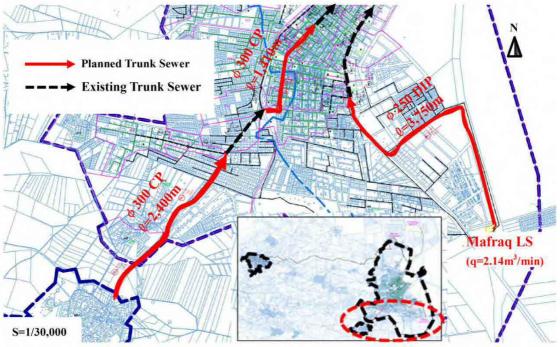



Figure 5.16 New Trunk Sewers in Mafraq (2)

# 5.8.2 Branch Sewer

The required length of branch sewer per ha (calculated to be 152.3 m/ha) is multiplied by the net area in the expansion area. The net area in this case is 2,901.2 ha (the expansion area of 2,931 ha minus 29.8 ha which already have branch sewers installed, although the house connections have not been made). The additional branch sewer requirement is about 442 km.

# 5.8.3 Mafraq WWTP

Table 5.25 shows the capacity calculations, identifying the treatment facilities required. The capacity calculations of each treatment process are shown in Appendix III-B of the Supporting Report. The capacity calculations are based on the average and maximum daily flows.

Tuble clie Design Cupuelly of Multuring (* ** 11				
Item	Design			
Actual Average Flow in 2013	1,710 m ³ /d			
Present Design Capacity	$7,200 \text{ m}^3/\text{d}$			
(One train capacity x train nos.)	$(3,600 \text{ m}^3/\text{d x 2})$			
Planned Average Daily Flow	14,353 m ³ /d			
Improved Design Capacity	$14,400 \text{ m}^3/\text{d}$			
(One train capacity x train nos.)	$(3,600 \text{ m}^3/\text{d x 4})$			
Existing Sludge Treatment Capacity coverage	50 %			

Table 5.25 Design Capacity of Mafraq WWTP

Source: JICA Study Team

Two options for the expansion of Mafraq WWTP are prepared based on the availability of additional land.

# 1) Case-1 (additional land is available)

The treatment process as shown in Table 5.26 would require an additional 13.2 ha of land adjacent to the present site. Figure 5.17 shows the proposed layout with the additional treatment facilities constructed on the adjacent land (minimum required area for the expansion is 6.5 ha). WAJ owns the land where the WWTP is located as well as 90 ha in the surrounding area.

	Dimension (m)			Existing	Future	
Component	Width/	Length	Depth	Number	Number	Remarks
	diameter	Length	Deptil	Number	Number	
Coarse Screen				1	2(+1)	for bypass
Fine Screen				2	4(+2)	
Wet Weather Storage Lagoon	62	62	5	1	1	
Oil & Grease Removal	5.9			2	4(+2)	
Sedimentation /Thickening Tank	4.3	8.3	6.75	2	4(+2)	
Denitrification Basins	15	26	3.5	2	4(+2)	
Aeration Stabilization Basins	88.4	35.5	3.5	10(+5)	20(+10)	
High Rate Nitrification Basin	14	20	3.5	2(+1)	4(+2)	
Facultative Lagoon	37	73	3.5	2(+1)	4(+2)	
Sand Filter	45	80		3	6(+3)	
Reed Bed	30	50		2	3(+1)	
Chlorine Disinfection	2	51	1.8	1	1(+1)	
Sludge Storage/Stabilization Lagoon	15	15	3	2	6(+4)	
Sludge Drying Bed	12	35		26	52(+26)	
Window Compositing				1	1	

 Table 5.26 Case 1 Expansion Plan for Mafraq WWTP

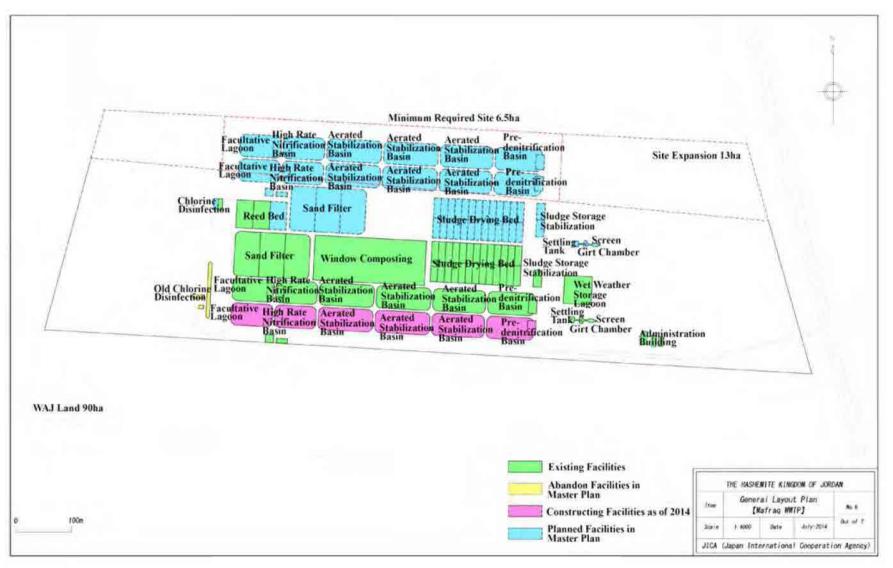



Figure 5.17 Case-1 Layout of Mafraq WWTP

5-38

# 2) Case-2 (no additional land is available)

If no additional land is available, the wastewater treatment process using "nitrification and denitrification tank, aerated lagoon, facultative pond, sand filter, and reed bed" would be replaced by a "three step feed nitrification-denitrification reactor, sedimentation tank, sand filter, and reed bed". Table 5.27 shows the expansion plan and Figure 5.18 the layout for Case-2.

	Dim	ension (r	n)	Evicting	Future	
Component	Width/	Length	Depth	Existing Number	Number	Remarks
	diameter	Longin	Deptii	Tumber	Tumber	
Coarse Screen				1	2(+1)	for bypass
Fine Screen				2	4(+2)	
Wet Weather Storage Lagoon	62	62	5	1	1	
Oil & Grease Removal	5.9			2	4(+2)	
Sedimentation /Thickening Tank	4.3	8.3	6.75	2	4(+2)	
Denitrification Basins	15	26	3.5	2	2	
Aeration Stabilization Basins	88.4	35.5	3.5	10(+5)	10	
High Rate Nitrification Basin	14	20	3.5	2(+1)	2	
Facultative Lagoon	37	73	3.5	2(+1)	2	
3 Steps Feed Ntirification-	0.5	70	4.5		4	
Denitrificaion Reactor	9.5	70	4.5		4	
Final Sedimentation Tank	17		3.4		4	
Sand Filter	45	80		3	6(+3)	
Reed Bed	30	50		2	3(+1)	
Chlorine Disinfection	2	51	1.8	1	1(+1)	
Sludge Storage/Stabilization Lagoon	15	15	3	2	6(+6)	
Sludge Drying Bed	12	35		26	60(+34)	
Window Compositing				1	1	

Table 5.27Case 2 Expansion Plan for Mafraq WWTP

Source: JICA Study Team

Since additional land will likely be available, the Case 1 expansion plan will be discussed in the following Chapters.

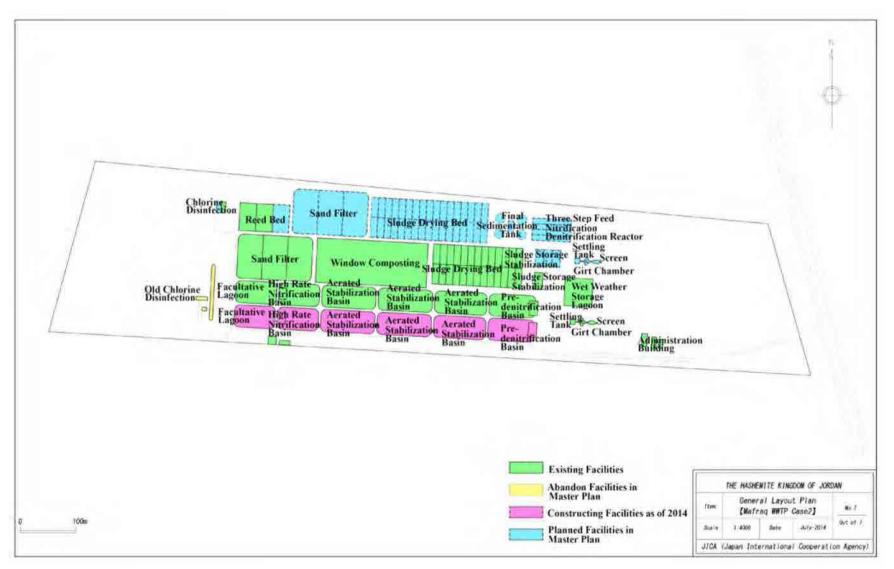



Figure 5.18 Case 2 Layout of Mafraq WWTP

# CHAPTER 6 INSTITUTIONAL DEVELOPMENT PLAN AND CAPACITY DEVELOPMENT PLAN

# 6.1 Institutional Development Plan

### 6.1.1 Organizational Arrangement

The Study Team proposes the following arrangement of YWC organization structure in view of the incremental responsibilities and workload arising from the additional facilities in the Master Plan and considering the optimization of the structure as a water and wastewater utility.

#### (1) Business Management and Quality Management Section

This section is suggested to be newly established directly under the General Manager to ensure its independent function. The main functions shall be 1) to prepare high level policies, plans and strategies, and to manage investment considering urgency, priority, weakness and development goals, 2) to regularly monitor the business performance of waterworks and wastewater works as a whole by using Performance Indicators (PIs), and 3) to initiate and enhance continuous improvement in the quality of services as a whole and, to increase customer satisfaction as a service provider.

The consistency among the corporate plan, operational plan and development plan will be secured by initiative taken by this section. Furthermore, this section will enhance the inter-directorate decision-making from the aspects of not only public services but also business activities. Hence, sustainability view point will be expected to be nurtured by this institutional arrangement.

YWC has been engaged with various donor-funded projects for many years since it was NGWA. These projects sometime tend to be patchworks without the consideration of a comprehensive planning and a middle- and long-term goal for development. Thus the function of this section for keeping its consistency shall be strengthened.

In addition, quality management system does not exist in YWC currently and the awareness on this concept is scarcely shared among the employees. Initially, an understanding of the concept needs to be promoted and awareness on the concept should be shared by all employees. Presumably the next step may be to obtain and translate ISO9001 and ISO24512, related to the management of drinking water utilities and for the assessment of drinking water services, and bring into practice in stages.

### (2) Technical Planning Division

This section is suggested to be newly established under the Technical Directorate. The expected functions of the section are 1) to develop, lead and coordinate the engineering plan and the design of sewerage facilities, mechanical and electrical equipment, water engineering, and 2) to monitor and assess wastewater demands and technical functionality of overall existing sewerage system and development projects. This section is also responsible for overall management of sewer network and

its planning and planning coordination.

### (3) Maintenance Section of Technical Support and Maintenance Division

Maintenance section in Technical Support and Maintenance Division needs to be strengthened by increasing the number of staffs and by providing more advanced training.

Only 3 persons consisting of the section head, mechanical engineer and electrical engineer exists in the section and cover technical service and maintenance for all pumping stations and treatment plants except for pipeline. Preventive maintenance was possible to be done under the YWC operation by the private contractor, however it seems to become not sufficiently functioning due to the reduction of staffs and availability of only one vehicle after the contractor left.

Since maintenance activities are very crucial to extend the lifetime of machine and electrical equipment and to contribute to sustainable utility's management by delaying rehabilitation and replacement investments, additional 3 engineers and at least one vehicle should be allocated. Current staff's motivation to learn advanced technique and technology should also be respected.

#### (4) ROU Sewerage Section

There are no remedial measures to immediately reduce sewer blockage and sewer flooding, which is considered to be mainly caused by residential people's behavior. The development of trunk lines and sewer network will be assumed in all four Governorates up to 2035. Hence, sewerage section of each ROU needs to be strengthened by increasing additional 21 staffs in accordance with the deployment of high power vacuum trucks (Table 6.1).

	8		<i>,</i>	
Governorate	ROU	Current Staff (Sep. 2014)	Additional Staff	Total (by 2035)
Irbid	Irbid sewerage section	21	8	29
	Bani Obaid sewerage section	5		5
	Ramtha sewerage section	7	4	11
Mafraq	Mafraq sewerage section	3	3	6
Ajloun	Ajloun sewerage section	3	3	6
Jerash	Jerash sewerage section	3	3	6
Total		42	21	63

 Table 6.1
 Staffing for ROU Sewerage Section

Source: JICA Study Team

### (5) Commercial Directorate

A Call Center in the head office receives customer's phone call on 24 hour basis. The customer complaints are categorized into mainly 11 areas and are statistically recorded. These customer complaints and inquiries are transferred and handled by each ROUs. Monitoring, tracking and providing feed-back on received complaints are not sufficiently practiced. A more functional system and an overall organizational capacity leading to substantial resolution need to be established between ROU Sewerage Section and Commercial Directorate. With regard to sewer blockage and sewer flooding, it is pointed out that a proactive approach of promoting IEC activities for the residents is

essential. This issue is described in the Section 6.1.2.

(6) Proposed Organization Structure

Proposed organization structure of YWC overall and O&M Directorate are presented in the following figures (Figure 6.1, and 6.2).

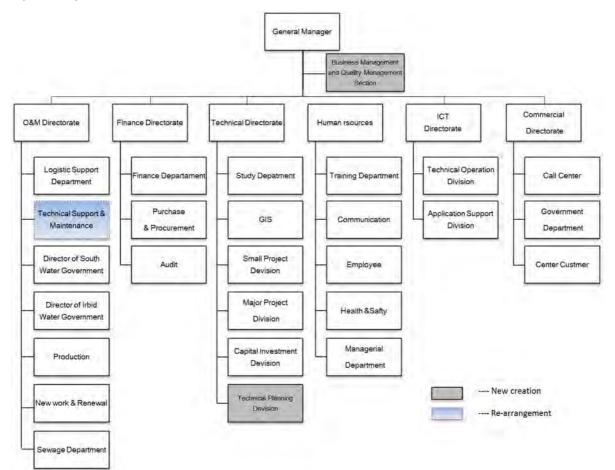



Figure 6.1 Proposed Organization Structure (YWC Overall)

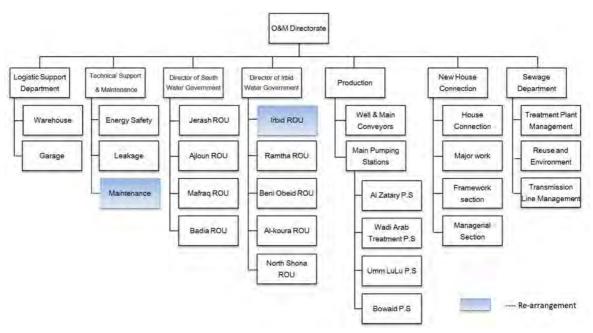



Figure 6.2 Proposed Organization Structure (O&M Directorate)

### 6.1.2 Key Issues for Institutional Development

(1) Cultural Change toward Service Provider with Business Awareness

- It is important to nurture corporate culture with business awareness and customer focus as a service provider from governmental institutions.
- Change to an administrative organization with technical specialization is required. The first step for this change could be started from the change of employee's mind and awareness at the individual level. In order to do that, strong leadership needs to be taken by the upper management class. The Sewerage Division is not the exception. YWCneeds to pay more attention to the cost recovery of sewerage service for their sustainability.
- (2) Efficient Usage of Performance Indicators (PIs)
  - Performance indicators for wastewater services should be effectively utilized in the business operation of sewerage facilities. PIs are an effective tool for evaluation of performance quantitatively. It enables to compare the utility's performance of the past, present and future periodically, and also to set up quantitative targets for future improvement. The state of existing business operation and target achievement status of sewerage service should be always monitored. It makes current management situation and achievement visible. Although key data is collected and some performance indicators are currently compiled by YWC, some parameters such as E-coliform, PO⁴, COD and BOD sometimes do not meet the standards and the countermeasure is not taken in such cases. Effective analysis should be carried out to clarify issues and improvement points to be undertaken should be suggested for reflecting the results on development of strategy and plan.

- (3) Setting Targets for Sewerage Works
  - Performance targets and achievement standards of sewerage service should be clearly established. Business Management and Planning Division should set up the key performance indicators and the achievement targets, and do their best for achievement of these targets. Then the performance results need to be reviewed and the results should be made best use for feedback to the development of strategy setting and target setting.

# (4) Clear Job Description and Standard Operating Procedures

- Limited job description and Standard Operating Procedure (SOP) is observed. In order to raise the level of staff's performance, job description and SOP need to be defined and delegation of responsibility should be clearly established in each section. Authority should be delegated to the lower level in the hierarchy. Thereby self-awareness and self-reliance of employees is encouraged more than ever before.
- (5) Building Up the Human Resource Management System
  - YWC should clearly understand internal human resources by establishing human resource management system which enables efficient use of human resources and their proper appointment. Evaluation standards need to be set up so as to objectively evaluate the performance of the employees. Incentive mechanism and promotion system needs to be formulated and employee's motivation should be enhanced.
- (6) Enhancement of People's Awareness through IEC Activities
  - Although commercial department is responsible for IEC activities, however its activities are
    limited due to lack of budget. Also they are basically busy in providing responses to customer's
    claim rather than IEC activities on water saving, leakage reduction and garbage disposal. Hence,
    establishment of IEC activity programs, its implementation and development of IEC materials in
    cooperation with outside institutions and experts need to be strengthened. People's education and
    awareness-raising by using media, publications and primary schools should be also proactively
    promoted. The intensive training for the department staffs needs to be carried out to implement
    the programs appropriately.

### 6.1.3 Staffing Plan

The appropriate number of YWC staffs by job type for the Master Plan up to Year 2035 is estimated. These are described in the following sections.

The estimation of specific number of O&M staff in water and wastewater sectors is based upon the current operation, the planned new facilities, the intended shift arrangement and the workload anticipated. It should be noted that the necessary staff number depends upon the quality of maintenance and the operational performance of the facilities.

#### (1) O&M for Wastewater Sector

#### 1) Central Irbid WWTP

Additional 4 operators will be necessary to be stationed when rehabilitation and expansion works are finished by KfW project which is currently ongoing (Table 6.2). The new facilities such as effluent filters, UV disinfection system, sludge stabilization and dewatering system, new odor control facilities will be constructed and the existing facilities will be partly upgraded. Hence, it is proposed that the total staff number be increased from 22 to 26 by 2035.

	8		
	Current Staff	Additional	Total
	(Sep. 2014)	Staff	(by 2035)
Plant manager	1		1
Engineer	1		1
Laboratory analyst	1		1
Plumber	1		1
Labor	2		2
Driver	1		1
Operator head	4		4
Operator	8	4	12
Other	3		3
Total	22	4	26

 Table 6.2
 Staffing for Central Irbid WWTP

Source: JICA Study Team

#### 2) Wadi Al-Arab WWTP

Additional 4 operators will be necessary when incremental three units of facilities such as aeration tanks and sedimentation tanks are constructed (Table 6.3). One operator will be allocated to each of 4 shift teams respectively.

SCADA system was already installed in 2008 and it is currently available, so that operation of the new aeration tank and sedimentation tank can be integrated into the comprehensive system. Hence, it is proposed that the total staff number be increased from 21 to 25 by 2035.

	Current Staff (Sep. 2014)	Additional Staff	Total (by 2035)
Plant manager	1		1
Engineer	2		2
Laboratory analyst	1		1
Plumber			
Labor			
Driver			
Operator head	4		4
Operator	6	4	10
Other	7		7
Total	21	4	25

Table 6.3Staffing for Wadi Al-Arab WWTP

#### 3) Shallala WWTP

Additional 2 operators will be necessary when incremental one unit of facilities such as oxidation ditch, and primary and final sedimentation tanks are constructed (Table 6.4).

Shallala WWTP was newly established in 2013 and the operation was just started in January 2014. SCADA system is available, so that operation of the new oxidation ditch, and primary and final sedimentation tanks can be integrated into the comprehensive system. Hence it is proposed that the total staff number be increased from 21 to 23 by 2035.

	8		
	Current Staff	Additional	Total
	(Sep. 2014)	Staff	(by 2035)
Plant manager	1		1
Engineer	2		2
Laboratory analyst	2		2
Plumber			
Labor	5		5
Driver	2		2
Operator head	5		5
Operator	4	2	6
Other			
Total	21	2	23

Table 6.4Staffing for Shallala WWTP

Source: JICA Study Team

#### 4) Wadi Hassan WWTP

Additional 2 operators will be necessary when incremental one unit of facilities such as oxidation ditch, final sedimentation tank, and sludge drying bed are constructed (Table 6.5).

SCADA system was already installed, however it is currently out of order. Hence, operation of the new oxidation ditch, final sedimentation tank, and sludge drying bed may need to be done manually, unless a new plan of the SCADA system either through repair or installation comes up and it becomes functional. Hence, it is proposed that the total staff number be increased from 12 to 14 by 2035.

	Staring for	i dui ilubbuli ii	=
	Current Staff	Additional	Total
	(Sep. 2014)	Staff	(by 2035)
Plant manager	1		1
Engineer			
Laboratory analyst	1		1
Plumber			
Labor			
Driver			
Operator head	4		4
Operator	4		4
Other	2		2
Total	12	0	12

 Table 6.5
 Staffing for Wadi Hassan WWTP

#### 5) Ramtha WWTP

Additional 4 operators will be necessary when incremental two units of aeration tanks and final sedimentation tanks, and sludge dewatering machine are constructed (Table 6.6). One engineer will be necessary when the MP is installed for the four remote areas for regular inspection and for emergency cases. SCADA system was available and functional, so that the operation of new facilities can be also integrated into the system. Hence, it is proposed that the total staff number be increased from 15 to 20 by 2035.

	Current Staff	Additional	Total				
	(Sep. 2014)	Staff	(by 2035)				
Plant manager	1		1				
Engineer		1	1				
Laboratory analyst							
Plumber							
Labor	1		1				
Driver	2		2				
Operator head	5		5				
Operator	4	4	8				
Other	2		2				
Total	15	5	20				

Table 6.6Staffing for Ramtha WWTP

Source: JICA Study Team

#### 6) Mafraq WWTP

Mafraq WWTP has been rehabilitated and upgraded under the USAID project. The first phase of the project was completed and the second phase will be finished in March 2015. Two (2) new operators was already allocated and partially trained, so that there are 16 staffs in total at present. Additional 4 operators will be necessary to be stationed when the second phase of the construction of treatment facilities is completed (Table 6.7).

Manual operations have been done since 1987, the commencement of WWTP, however the installation of SCADA system is underway by the project. Hence it is proposed that the total staff number be increased from 16 to 20 by 2035.

	Current Staff	Additional	Total				
	(Sep. 2014)	Staff	(by 2035)				
Plant manager	1		1				
Engineer							
Laboratory analyst							
Plumber	2		2				
Labor	3		3				
Driver	1		1				
Operator head	4		4				
Operator	4	4	8				
Other	1		1				
Total	16	4	20				

Table 6.7Staffing for Mafraq WWTP

# 7) ROU office

New trunk line is suggested to be constructed for Irbid Center, Waji Arab, Shalala, Waji Hassan, Ramtha and Mafraq areas in the M/P up to Year 2035. Generally, the new trunk line itself may not need particular maintenance, however sewer blockage may occur in the densely populated city areas sometime even in case of new line. Hence the following number of maintenance staffs is assumed to be necessary: Irbid Center 9, Ramtha 3, Mafraq 3. It is proposed that the total staff number be raised to 37 in Irbid ROU, 13 in Ramtha ROU and 13 in Mafraq ROU by 2035.

The summary of staffing plan by ROU office is shown in Table 6.8.

	Table 0.6 Star for Sewer Maintenance by the ROO Once							
ROU	Curren	nt Maintenanc	e Staff (Sep.	2014)	Propo	osed Mainten	ance Staff by	2035
	Chief	Worker	Driver	Total	Chief	Worker	Driver	Total
Irbid	1	12	6	19	1	18	9	28
						6	3	9
Ramtha	1	4	2	7	1	6	3	10
						2	1	3
Mafraq	1	4	2	7	1	6	1	10
						2	1	3

 Table 6.8
 Staff for Sewer Maintenance by the ROU Office

Note: Additional staff numbers are shown in red color., Source: JICA Study Team

# 8) Lift Station

Table 6.9 summarizes the staff required for the existing and new lift stations. For Mughyeer MP and 4 MP the operation will be regularly inspected by the engineers of Shallala WWTP and Ramtha WWTP respectively. For Mafraq LS and Mansha LS, 4 staffs will need to be newly appointed for the operation.

SWD	LS/MP	Status	Current Operator (Sep. 2014)	Proposal	Remarks
Wadi Al-Arab	Hakama LS	Exp.	4 no., 4 shifts	no change	
Shallala	Mughyeer MP	New		Regular inspection by 2 engineers at Shallala WWTP	no staff increase
Shallala (Wadi Hassan)	Al Hoson Camp LS	Exp.	4 no., 4 shifts	no change	it is planned to shift to the Shallala SWD
Ramtha	4 MP	New		Regular inspection by an engineer at Ramtha WWTP	
Mafraz	Mafraq LS	New	-	<b>4</b> nos. by 4 shifts	
Mafraq	Mansha LS	New	-	4 nos., 4 shifts	

Source: JICA Study Team

# (2) Overall

1) Current Staffing Level

The progress of downsizing staffs can be seen after the recent peak number of 1740 in 2012 (Table 6.10). The current number of staffs in 2014 is counted as 1,649 according to the information from YWC cost center. The staffing level per water and wastewater 1,000 connections of YWC in 2014 indicates even better performance than the average of available 3 utilities in Jordan (Table 6.11). In comparison to the level of other upper-middle income countries, the staff productivity of YWC is nearly similar to their performances except in case of Azerbaijan and Kazakhstan.

		0				
	2006	2007	2008	2012	2013	2014
Total staff number	1,761	1,801	1,673	 1,740	1,671	1,649
Staff number W&WW/ W&WW 1,000 conn.	7.3	7.2	6.4	 6.6	6.1	6.0

 Table 6.10
 Staff Numbers and Staffing Productivity per Connection (2006-2014)

[Note]

1. Data source: 2006-2008 Management Contract for YWC LLC, 2012-2014 YWC Technical Directorate 2. Data during 2009-2011 is not yet obtained by the Study Team

			•							
			Jorda	n						
IBNET Performance Indicators	YWC	Jordan Average of 3 Utilities	Aqaba Water Company, W.L.L.	Water Authority Balqa and Zarqa, Madaba and Karak, Maan and Tafila	Jordan Water Company (waters) Miyahuna	Albania	Azerbaijan	Bosnia & Herzegovina	Kazakh stan	Macedonia
12.2 Staff W&WW/1000 W&WW conn (#/1000 W&WW conn)	6.0	8.7	13.0	9.8	3.4	6.2	2.8	5.2	318.9	5.3
12.4 Staff W&WW/1000 W&WW Pop Served (#/1000 W&WW pop served)	0.7	0.9	1.3	1.2	0.2	1.7	0.7	1.3	2.1	1.0

 Table 6.11
 Staff Productivity of Jordan and Other Upper-Middle Income Countries

Source: JICA Study Team

[Note]

1. Data source: IBNET Database

2. Average of Jordan is calculated by using available results of 12.2 and 12.4v

### 2) Target of Staffing Level

In this M/P, JICA Study Team proposes "gradual reform" rather than "radical reform" considering local historical and cultural context, nature of employees and past experience. The appropriate target of the staffing level shall be proposed to be 4.5 staffs per 1,000 connections in Year 2035 (Table 6.12). If the number of subscribers for water and wastewater increase according to population growth of four northern governorates, it is estimated that the appropriate staffing level of YWC reaches to 2,345 staffs in Year 2035.

The projection and the estimation condition are shown as follows.

			0		
	2014	2020	2025	2030	2035
Number of Subscribers (connection) - Water supply	275,362	320,579	379,020	445,759	521,031
Number of Subscribers (connection) - Sewerage	180,590	215,469	238,084	262,226	286,737
Number of Subscriber - Total	420,326	536,048	617,105	707,985	807,768
Staff W&WW/1000 W&WW conn (#/1000 W&WW conn)	6.0	5.6	5.2	4.9	4.5
Number of Staffs (persons)	1,649	1,786	1,976	2,165	2,345

 Table 6.12
 Projection of Appropriate Staffing Level

Source: JICA Study Team [Note]

1. Data source: Year 2014 – YWC

2. Data source: Year 2020, 2025, 2030, 2035 - Estimation by JICA Study Team

3. Population for Northern 4 governorates: 2.87 million in 2035, Coverage ratio: 98% for water supply

Meanwhile it is important to keep in mind that "number of staffs per 1,000 connections" and "number of staffs per 1,000 population served" are benchmarking indicators, not standards. The staffing level should be flexible and appropriate for the actual management of waterworks and wastewater works. Also, staff productivity should not be utilized for the purpose of downsizing workforce without considering the local context, but should be balanced with the purpose of nurturing proactive workforce with high motivation and high skill. The arrangement of job description and terms of conditions of works could contribute to build up harmonious relations with employees.

# 6.2 Capacity Development Plan

# 6.2.1 Outline of Capacity Development

### (1) Concept of Capacity Development

Capacity development is defined as "the process by which individuals, organizations, institutions, and societies develop abilities to perform functions, solve problems and set and achieve objectives" by JICA. Capacity development not only in technical aspects but also in overall organizational aspects including management and financial issues is essential for water and sewerage utilities to operate their organization and infrastructure facilities in sustainable manner. In order to support this, capacity development at individual and social level also plays a crucial role.

Capacity development cannot be achieved without human resources. Any utility needs to address that human resources are the greatest assets of the utility and are the most valuable element of capacity development.



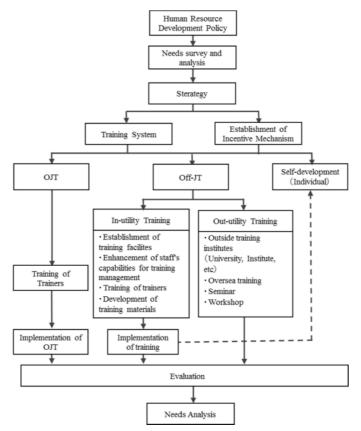

Source: JICA (2008) Capacity Assessment Handbook

Figure 6.3 Concept of Capacity Development

# (2) Capacity Development Methods

Training mechanism and capacity development methods are indicated in following figure. Capacity development should follow a utility's basic policy for human resource development and should be planned based on the result of needs assessment. Main methods of capacity development are the following three: (1) OJT, (2) Off-JT, (3) self-development.

OJT enhances capacity in terms of necessary technology and capability through a form of training on practical works and trial and error in normal working situation. Off-JT is a form of training through external lectures or education either inside or outside of utility. Self-development is a form of training to develop own capability by individual learning.



Source: JICA (2008) Capacity Assessment Handbook

#### Figure 6.4 Capacity Development Mechanism and Methods

For effective capacity development of YWC, combination of all training methods for capacity development such as OJT, Off-JT and self-training are essential. The training subjects of YWC in 2012 were varied from the areas of technical, management, information technology, health and safety and customer service partially funded by the USAID. One of weakness of the training system by YWC can be that most of training courses are contracted out to outside service providers. It naturally requires a large training budget amount. Alternatively the adoption of training of trainers (ToT) system could be a solution.

From the long-term view, it is expected to nourish resource persons effectively, and that they teach obtained knowledge and experiences to the next middle or young staff members. At the same time, creation of incentive mechanism and awareness-raising, and development of surrounding environment where the obtained lessons learnt by training are effectively utilized are necessary.

At the initial stage, it is considered that the assistance of dispatch of external experts by aid agencies etc. and a technical cooperation project are useful for entire capacity development.

(3) Capacity Assessment

1) Capacity Assessment by JICA's Tool

A capacity assessment of YWC is conducted in accordance with the JICA Capacity Assessment Handbook. The key items to be checked are selected in overall items since the number of check items in the list is many in various fields.

Assessment fields are categorized into the following three areas; (1) technical capacity, (2) core capacity (non-technical) capacity, (3) enabling environment.

The summary of the assessment is shown below (Table 6.13).

Category (large)	Category (middle)	Category (small)	Results
Technical capacity	Sewer network	Technology and skill for maintenance	<ul> <li>Maintenance unit exist under O&amp;M directorate</li> <li>Response to sewer flooding reported by customer is supportive</li> <li>Knowledge, equipment and facilities for reduction of sewer blockage are not sufficient</li> <li>No future plan on sewer blockage reduction</li> <li>Most of high pressure jet truck are aged</li> <li>No vacuum truck is owned</li> </ul>
	Water quality management Operation of waterworks and wastewater works facilities	<ul> <li>Operation records are basically reported on regular-basis.</li> <li>Some of discharge water quality from WWTP cannot be complied with the Jordanian standards, particularly in the WWTP of Fourah, Jerash, Mafraq, Akaider</li> </ul>	
		Water quality analysis	• Chemical, microbiological and biochemical sampling and analysis are done

Table 6.13Summary of Capacity Assessment

Category (large)	Category (middle)	Category (small)	Results
Core capacity (Non-technical aspects)	Financial strength	Financial stability	<ul> <li>No tariff setting guideline</li> <li>The trend of financial balance of current account of YWC has been in deficit</li> <li>The deficit amount has generally been subsidized by WAJ</li> <li>Revenue covers only about 50% of operating costs</li> <li>A concerned issue is a rapid growth of expenditure during 5 years, equivalent to 60%</li> </ul>
		Procurement of funds	• Fund sources for capital investment are generated fund by YWC, WAJ, international agencies
		Accounting	<ul> <li>Double-entry bookkeeping accounting system has been adopted</li> <li>Not financially autonomous</li> </ul>
		Tariff	<ul> <li>Metered rate is applied</li> <li>Increasing Block Tariff is applied for WS and SW</li> <li>In overall the tariff rate level presumably remain at low level</li> </ul>
		Revenue and subsidies	<ul> <li>YWC has the authority to levy, collect and retain revenue</li> <li>Subsidies are provided by WAJ if revenue cannot cover the expenses</li> </ul>
Core capacity (Non-technical aspects)		Meter reading, billing and collection	<ul> <li>Monthly reading and billing are done</li> <li>Average collection ratio is 77% (2013), relatively low</li> <li>Regional disparity exists, the collection ratio (Mafraq, Badia) is around 50%</li> </ul>
	Governance/ management/ personnel affairs	Organizational function and performance	<ul> <li>Organization restructuring has been reconsidered by Director, not yet clearly concluded</li> <li>Division of role and responsibility is partially defined, but very limited</li> <li>Some key information on PIs is collected but seems not sufficient and effectively utilized</li> </ul>
		Employment/ transfer/ turnover	<ul> <li>Personnel management is done by Human Resource Development Dept.</li> <li>Recruitment criteria is established</li> <li>Progress of staff transfer from WAJ to YWC is very slow, more than 95% still belongs to WAJ</li> </ul>
		Personnel management and incentives	<ul> <li>No commendation system</li> <li>Promotion criteria is not clear, it mostly depend upon personal connections</li> <li>Performance evaluation system does not exist</li> </ul>
		Communication	<ul><li>Regular meetings are held for management class</li><li>Communication between manager and lower staffs are not sufficient in general</li></ul>

Category (large)	Category (middle)	Category (small)	Results			
	Training	Plan and Budget	<ul> <li>Training is implemented every year, an annual training plan is developed</li> <li>Budget amount is decreasing during the recent 3 years</li> <li>Budget largely depends upon outside donor funding, very limited budget in 2014</li> </ul>			
		Training program	<ul> <li>Engineering training is done mostly by outside provider</li> <li>Materials: supplied by providers</li> <li>Trainer: outside service providers</li> <li>Effectiveness of training program is not sufficiently reviewed</li> </ul>			
		OJT	Rarely implemented			
		Training system	Training system exists			
		Knowledge sharing and culture	• There is a potential if systemized			
		Staff's motivation	<ul> <li>No regular evaluation system, no incentive mechanism for capacity development</li> <li>Training achievement appears to be not considered in the promotion stage</li> </ul>			
Enabling environment	External influence	Governance and political influences	<ul> <li>Independent utility as limited liability company, but owned by WAJ</li> <li>Influence on tariff setting is unknown</li> </ul>			
		Regulatory bodies	No regulatory agency			
		Procurement	No function for reduction of corruption			
		Cooperation with donors, other water utilities	<ul> <li>Cooperation by aid agencies both in WS and SW sectors</li> <li>Cooperation relations with WAJ can be seen in maintenance works</li> </ul>			
	Law, regulations and guidelines	Laws and regulatory framework	• National strategy and policy are established by WAJ			
		Regulation and standards	Licensing system of house connection works for contractor exists in water sector			
	Others	Public awareness and IEC	• Little or no IEC activities by YWC			

Source: JICA Study Team

# (4) Current Situation of Human Resource Development

# 1) Department of Human Resource Development (HRD)

Dept. of HRD was upgraded from one section to the department after Veolia Water company commenced their operation based upon the management contract for YWC with WAJ in 2012. The director was newly recruited from outside YWC, so that it is assumed that a dramatic change was expected.

# 2) Training Policy

Training policy was established in April 2012 and it states its objectives and training management

process which include strategy, training plan, training implementation, evaluation, reporting and so on. Transportation provision and internal trainer's bonus according to their working years were also mentioned.

The following training objectives were defined in the policy.

- Developing staff competencies
- Improving staff performance in accordance with the Training Needs Assessment as defined by each line manager
- Developing staff attitude as required by each job, and in parallel with the Corporate Culture of the company

# 3) Training Budget

The training budget was accounted for 189,000 JD in 2012, however it has been reducing since 2012. The budget for 2014 allocated is 50,000 JD as less than one-third of the peak and the downward trend remarkably appeared after the completion of donor funding by USAID and the Contractor's left. The training budget for 2014 accounts for only 0.1% of the total expenditure of YWC in 2013.

### 4) Training Achievements

Based upon the needs assessment initiated by department of HRD, the training areas were divided into the following six: Technical, Safety, Management, ICT, Customer Service, Miscellaneous.

The main types of trainings in YWC are internal session and workshop, while outside course organized by external training institutions are very limited. The number of trainees and the training hours in 2012 was doubled in comparison to the past yearly achievement during 2009-2011. In the aspect of training hours, internal sessions shares most of training hours as 93%. These training achievements will be dramatically declined in 2014 according to the manager of training division.

The number of persons trained and the training hours in the past 5 years are shown as below (Figure 6.5).

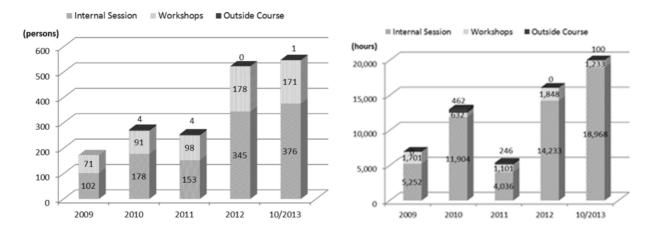



Figure 6.5 Number of Persons Trained (Left) and Training Hours (Right)

# 5) Training Institutions

Most of training courses aforementioned have been implemented by external service providers, even in the internal training case according to Training Department. The lecturers are mostly asked and dispatched from external service providers arranged by department of HRD.

# 6) Challenges

Major challenges of training are observed as follows.

- Internal budget for training department has been decreasing since the termination of Contractor due to severe financial situation of YWC
- Training budget largely depends upon external funding, mostly from development agencies, but the funding is lacked at present
- Most training courses are rely on outside providers, thereby the training costs becomes high
- Training of trainers (ToT) and OJT need to be enhanced by effectively using internal resource persons
- A strategic training plan with prioritization should be prepared to substantially improve staff competence considering current urgent needs of YWC

# (5) Capacity Development Plan

The necessary areas for capacity development of YWC in water supply and wastewater sectors in the short- and middle-term up to 2025 are summarized in the following Table 6.14. Priority is given in the range of high and low. High priority means that the training is urgently necessary within 3 years. While, low priority indicates that the training for the area need to be done up to 2025 and the degree of urgency is not high, and it does not mean that the training needs are low.

Category		Necessary areas for capacity development		Priority		
			3y	5y	$\sim 2025$	
			high		> low	
Technical – capacity –	Plan and Design	1. Wastewater Sector Policy				
		2. Development Plan				
		3. Design of Wastewater System and Facilities				
		4. Strategic Business Plan				
		5. Human Resource Management Plan				
		6. Budgetary Planning				
	Civil works	7. Plumbing Works for New Sewer Connection				
	O&M	8. Operation Manual				
		9. O&M Recording and Reporting				
		10. Operation - WWTP				
		11. Operation - PS & Reservoir				
		12. Maintenance - Mechanical Corrective Maintenance				
		13 Maintenance - Mechanical Preventive Maintenance				
		14. Maintenance - Electrical Corrective Maintenance				

Table 6.14Training Areas for Capacity Development of YWC

			Priority		
Category		Necessary areas for capacity development	3y high	5y	$\sim$ 2025 $\sim$ low
		15. Maintenance - Electrical Preventive Maintenance	mgn		10w
		16. SCADA System Monitoring and Evaluation			
		17. Programmable Logical Control			
		18 Sampling Plan and Skill			•
		19. Skill and Knowledge for Water Quality Test			•
	Water quality Sewer	20. Technique for Quality Analysis and Data Analysis		•	
		21. Monitoring and Advanced Water Quality Analysis (Trace contaminant, Biological analysis)		•	
-		22. Sewer Flooding Reduction Plan			+
		23. Basics for Sewer Network			-
		24. Maintenance - Sewer Cleaning	•		-
		25. Corporate Culture and Business Mind	•		+
		26. KAIZEN Method			
		27 Division of Role and Duty			
	Organization	28 Time Management			
	C	29 Personnel Management			
Core capacity (Non-technica		30 Good Governance and Prevention Measure for Corruption		•	
	Management	31 Sustainable Waterworks/Wastewater Works Management (ISO24512)		•	
l capacity)		32 Performance Indicators (PIs) and Management Tools			
		33 Performance Monitoring and Evaluation		•	
		34 Quality Management (ISO9001, ISO14001)			
		35 Management Information System (MIS)			
		36 Public Procurement Management and Supervision			
		37 Occupational Health and Safety Management			
		38 Computerization and Data Processing and Editing		•	
		39 Computer Literacy and Skill (MS Word, Excel, PPT)			
		40 Advanced Computer Skill (Oracle, Unix, etc.)			
	Finance	41 Cost Recovery/ Water Tariff Setting			
		42 Financial Analysis/ Financial Projection			
		43 Asset Management			
Core capacity (Non-technical capacity)		44 Effective Billing and Collection	•		
	Public/Society	45 Customer Relation/ Customer Satisfaction			
		44 Public Awareness and Education for People			
		47 Social Responsibility and Accountability for People			
		48 People's Participation and Public Involvement		•	
		49 Environmental Impact Assessment			
Enabling Environment	Regulatory framework	50 Water & Wastewater Sector Policy/ Regulatory Framework		•	
		51 Water Quality Standards/ Effluent Standards			
		52 Other relevant legislation (Road, Building, Land etc.)			

### (6) Priority Areas for Capacity Development

# 1) Technical Capacity

The daily operation practice of some WWTPs such as Fourah and Mafraq should be enhanced through training in order to meet its discharge water quality of the Jordanian standards. The demand of corrective maintenances for mechanical and electrical matters is large in YWC, thus the competence level of YWC staffs still needs to be developed. In Irbid city many sewer blockages and flooding are occurred, so that a series of training in this area from planning to practice at the field level is necessary. At the same time, supervising capacity of YWC's staffs on new sewer connection and its system has to be strengthened.

### 2) Core Capacity

The first priority should be given to an organizational area such as corporate culture and business mind, role and duty and continuous improvement, for instance through the KAIZEN method. In addition, an understanding and a practice of utility management by PIs and quality management in the managerial area are essential for an efficient management by using tangible indicators. To reduce sewer blockages and flooding, the nurturing public awareness by campaign and media and the education could be required as well as physical cleaning. In financial management area, the disparity of collection ratio should be improved, since it will contribute to decrease commercial loss of non-revenue water significantly. The awareness on cost recovery of YWC staffs is weak at present, because the deficit is compensated by the central government. Hence it should be enhanced toward a self-sustainable financial management of YWC.

# CHAPTER 7 IMPLEMENTATION PLAN

# 7.1 General Implementation Schedule

Sewerage improvements are proposed to be implemented in three phases according to the following schedule .

Year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Preparation of Phase-1 Projec																					
Phase-1 Project Implementation																					
Preparation of Phase-2 Projec																					
Phase-2 Project Implementation																					
Preparation of Phase-3 Projct																					
Phase-3 Project Implementation																					

**Figure 7.1 General Implementation Schedule** 

Each phase would take two to two and half years for the preparation of financing arrangements, selection of consultants and detailed design of the sewerage facilities. The construction of the sewerage facilities in each phase will take 5 to 6 years.

The proposed implementation schedule is applied to each SWD for comparison. The actual schedule for each SWD would be changed depending on financing arrangements.

# 7.2 Sewerage Facility Development Plan

# 7.2.1 General

(1) Service Area Expansion

The priority for sewerage development is determined in consultation with WAJ. The following facts are noted in the preparation of the development plan:

- 1) The service area will be expanded from the city center to the urban area.
- 2) Priority II areas are proposed by the SWMP.
- 3) Detailed Plans including detailed design report are readily available.
- 4) Some donors will assist with the expansion of the service area.

The details of prioritized areas are explained for the each of the SWD.

# (2) House Connection

The branch sewers can collects the wastewater through house connections of the individual

houses or buildings, that is, the actual influent flow rates to a WWTP depend on the number of house connections to the branch sewers. The predicted influent flow rates to each WWTP are used as basic data for calculations of revenue of sewerage service, O&M costs such as power and chemicals, and for preparation of phased improvement plan of treatment capacity.

To predict the influent flow rates, the growth in sewerage service population are estimated by the growth in house connections multiplied by the average number of person per household. in the following manners.

The installation of branch sewers are planned to completed by 2032, and the house connections are assumed to be completed by the target year of 2035.

# 7.2.2 Central Irbid SWD

# (1) Service Area Expansion

The service area is not planned as explained in Chapter 4.

# (2) House Connection Ratio

House Connection Ratio will be slightly increased to 100% by target year as shown Table 7.1.

Item	2013	2035
Population Planned (pers.)	104,440	118,140
Population Connected (pers.)	88,043	118,140
House Connection (units)	16,185	21,717
House Connection Ratio (%)	84.3	100.0
Note: Number of persons living in ho	usebold $\cdot 5.4/$	1 parsons/unit

#### Table 7.1 House Connection Ratio for Central Irbid SWD

Note: Number of persons living in household : 5.44 persons/unit Source: JICA Study Team

# (3) Branch Sewers

Because the service area is not planned, new branch sewers are not planned.

# (4) Trunk Sewers

The existing trunk sewers can be used for the design flow for 2035.

# (5) Lift Stations

There are no lift stations.

# (6) WWTP

The service population is estimated based on the connection rate and the wastewater flow to the Central Irbid WWTP as shown in Figure 7.2.

In Phase-1 mechanical dewatering equipment will be installed at the treatment plant and the building housing the equipment will be constructed.

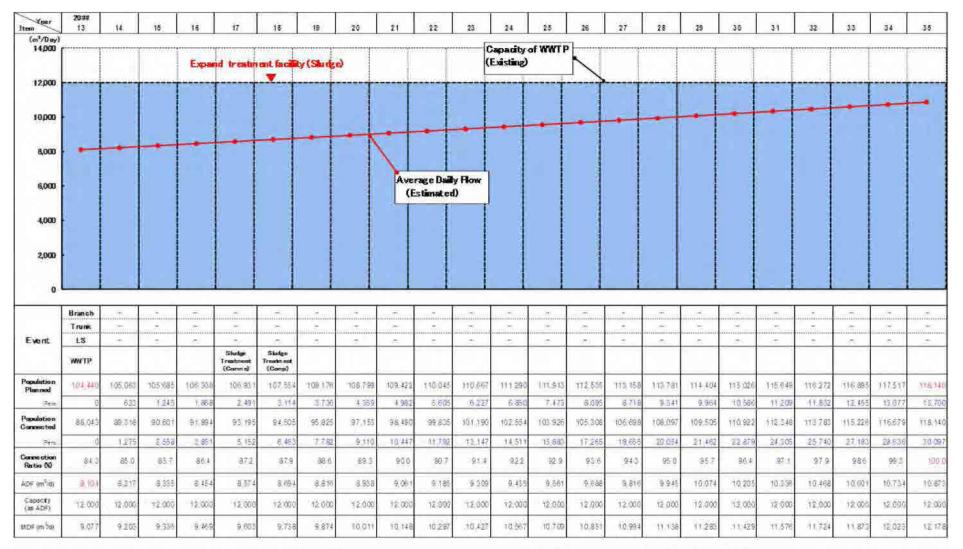



Figure 7.2 Estimated Service Population and Inflow to the Central Irbid WWTP

7-3

# 7.2.3 Wadi Al-Arab SWD

# (1) Service Area Expansion

Figure 7.3 shows the locations where the sewerage services will be provided by the proposed projects in Wadi Al-Arab SWD.

At Bait Ras the sewerage service will be expanded in Phase-1. The area is proposed as a Priority II area in the SWMP. The population density is as high as 60 person/ha. KfW plans to assist with the construction of branch sewers.

The sewerage service at Hakama will be expanded in Phase-2. This area is also proposed as a Priority II area in the SWMP. The population density is as high as 60 person/ha. Gulf Cooperation Council (GCC) is interested in assisting with the construction of branch sewers.

The sewerage services in the remaining areas of Zebdah, Ariah and Basaten, Al Barha will be expanded from the urban area to sub-urban areas in Phase-3.

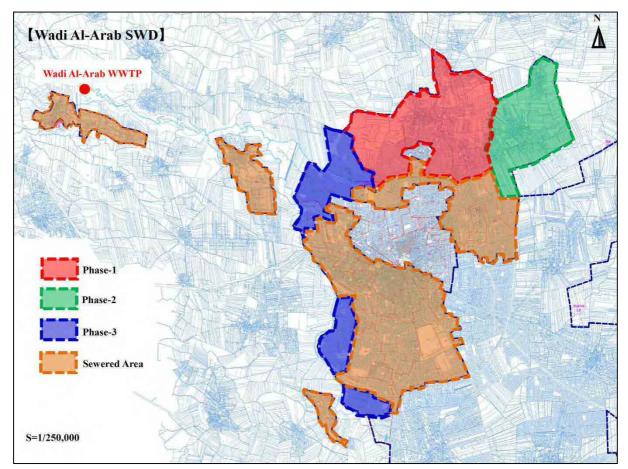



Figure 7.3 Locations Where New Sewerage Services Will Be Provided in Wadi Al-Arab SWD

# (2) House Connection Ratio

House Connection Ratio will be slightly increased to 100% by target year, the ratio in each phases is as shown Table 7.2.

Item	Phase-1	Phase-2	Phase-3
Population Planned (pers.)	279,677	308,588	328,864
Population Connected (pers.)	224,660	283,564	328,864
House Connection (units)	41,298	52,126	60,453
House Connection Ratio (%)	80.3	91.9	100.0
Neter Neuropen of a surgery listing in he			

### Table 7.2 House Connection Ratio for Wadi Al-Arab SWD

Note: Number of persons living in household : 5.44 persons/unit Source: JICA Study Team

# (3) Branch Sewers

The required branch sewers for each phase are shown in following table.

Pha	se-1	Pha	se-2	Phase-3									
Expanded Area	Required	Expanded Area	Required	Expanded Area	Required								
(ha)	Length (km)	(ha)	Length (km)	(ha)	Length (km)								
1098.90	167.36	574.20	87.45	402.70	61.33								

### Table 7.3 Branch Sewers for Wadi Al-Arab SWD

Note: Unit required length of sewers per area is 152.3 m/ha. Source: JICA Study Team

### (4) Trunk Sewers

New trunk sewers are not required.

#### (5) Lift Stations

The pump capacity at the Hakama LS will be increased from  $3.90 \text{ m}^3/\text{min}$  to  $6.22 \text{ m}^3/\text{min}$  in Phase-1.

# (6) WWTP

The inflow of wastewater from the expansion area and the increase in service population are estimated as shown in the following Figure. The treatment facilities plan is prepared based on the inflow estimates. One line of aeration and final sedimentation tanks are proposed to be constructed in each phase to meet the design daily average flow of  $3,500 \text{ m}^3/\text{d}$ .

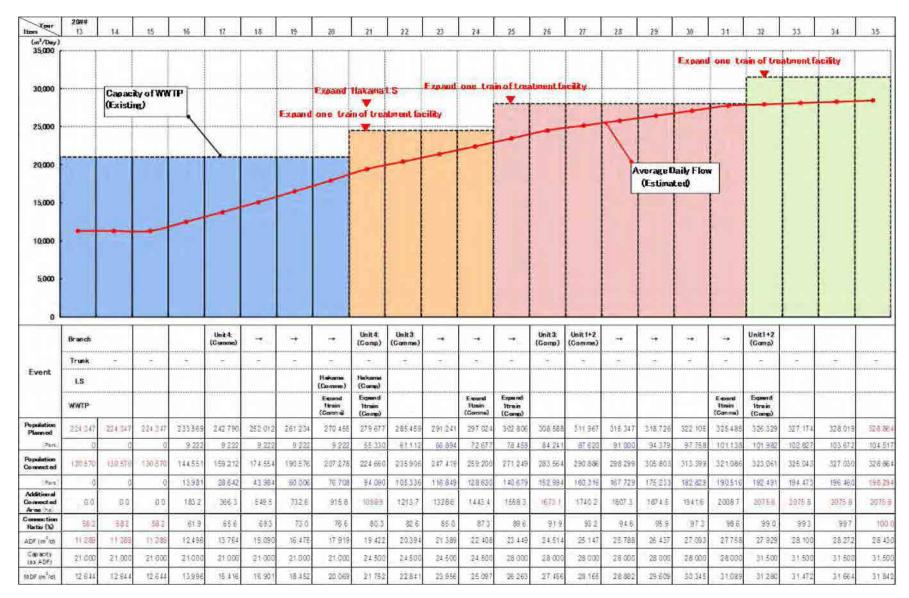



Figure 7.4 Estimated Service Population and Inflow to the WWTP and

Design Capacity Improvements of Wadi Al-Arab WWTP

7-6

### 7.2.4 Shallala SWD

#### (1) Service Area Expansion

Figure 7.5 shows the locations where the sewerage services will be provided in Shallala SWD.

The services in Mughayeri and Howwarah will be expanded in Phase-1. Mughayeri is proposed as a Priority II area in the SWMP. It has a population density of 60 person/ha which is expected to increase to 95 person/ha. GCC is interested in assisting with the construction of branch sewers in Mughayeri. Lots of new housing is being developed in Howwarah. The population density of about 22 person/ha is expected to increase to 45 person/ha by 2035.

The sewerage services in Boshra and Sal will be developed in Phase-2. These areas are close to the urban center and the Shallala WWTP. The population densities in Boshra and Sal are about 11 and 20 person/ha and expected to increase to 31 and 47 person/ha by 2035. It is also proposed that the Hoson Camp will be switched from Wadi Hasan SWD to Shallala SWD after implementation of additional trunk sewer installation and Al Hoson Camp LS improvement work in the phase-2 project.

The sewerage services at Hoson, Aidoon, and Sarie are proposed to be developed in Phase-3. The population densities in Hoson, Aidoon, and Sarie are about 17 to 21 person/ha and expected to increase to 38 to 49 person/ha by 2035.

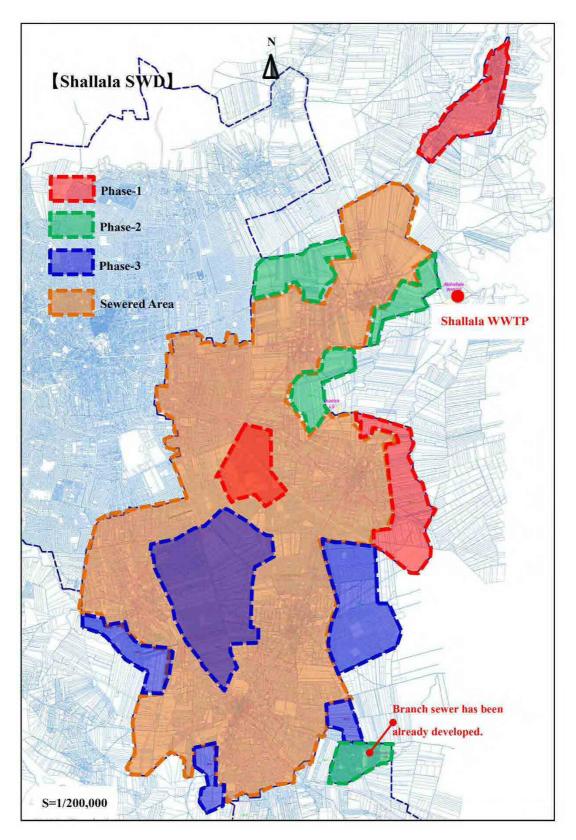



Figure 7.5 Locations Where New Sewerage Services Will Be Provided in Shallala SWD

# (2) House Connection Ratio

House Connection Ratio will be slightly increased to 100% by target year, the ratio in each phases is as shown Table 7.4.

Item	Phase-1	Phase-2	Phase-3
Population Planned (pers.)	187,080	221,430	307,228
Population Connected (pers.)	82,143	132,735	307,228
House Connection (units)	15,100	24,400	54,476
House Connection Ratio (%)	43.9	60.0	100.0

#### Table 7.4 House Connection Ratio for Shallala SWD

Note: Number of persons living in household : 5.44 persons/unit Source: JICA Study Team

### (3) Branch Sewers

The required branch sewers for each phase are shown in the following table.

Table 7.5Branch Sewers for Shallala SWD													
Pha	se-1	Pha	se-2	Phase-3									
Expanded Area	Required	Expanded Area	Required	Expanded Area	Required								
(ha)	Length (km)	(ha)	Length (km)	(ha)	Length (km)								
586.80	89.37	255.20	38.87	844.50	128.62								

Note: Unit required length of sewers per area is 152.3 m/ha.. Source: JICA Study Team

#### (4) Trunk Sewers

The required trunk sewers for each phase are shown in following table.

Dina		Total (km)					
Pipe	Phase-1	Phase-2	se-2 Phase-3				
200mm CP	3.30	-	-	3.30			
400mm CP	-	4.55	-	4.55			

#### Table 7.6 Trunk Sewers for Shallala SWD

Source: JICA Study Team

# (5) Lift Station

A small manhole type pump station, Mughyeer MP, will be constructed in Phase-1. The capacity of the Al Hoson Camp LS will be increased from  $4.20 \text{ m}^3/\text{min}$  to  $5.62 \text{ m}^3/\text{min}$  in Phase-2.

# (6) WWTP

The inflow of wastewater from the expansion area and the increase in service population are estimated as shown in the following Figure. The plan for the treatment facilities is prepared based on the inflow estimates.

One primary sedimentation tank, two oxidation ditches and one final sedimentation tank will be constructed additionally in Phase-3 to meet the design daily average flow of  $22,520 \text{ m}^3/\text{d}$  in total.

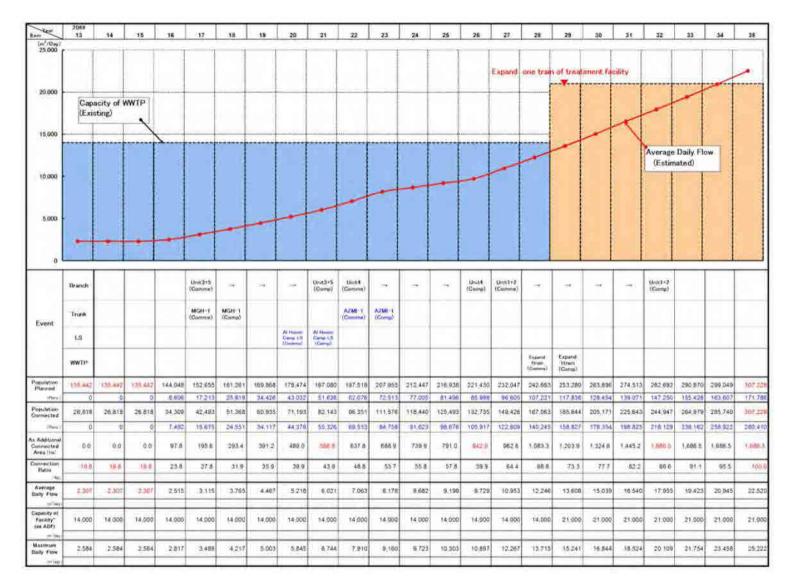



Figure 7.6 Estimated Service Population and Inflow to the WWTP and

Design Capacity Improvements of Shallala WWTP Figure

# 7.2.5 Wadi Hassan SWD

### (1) Service Area Expansion

Figure 7.7 shows the locations where the sewerage services will be provided in Wadi Hassan SWD.

No sewerage service expansion will take place in Phase-1. The sewerage service in Noayemeh will be developed in Phase-2. The area is quickly becoming urbanized and the population currently at 26 person/ha is expected to increase to 41 person/ha by 2035.

The sewerage services in Hoson-A and Hoson-B are proposed to be developed in Phase-3. The population density is about 17 person/ha at present.

As stated in Shallala SWD, WAJ plans Hoson Camp to shift to the Shallala Shallala SWD, after completion of additional trunk sewers installation and Al Hoson LS improvement work, which are scheduled in Phase-2.

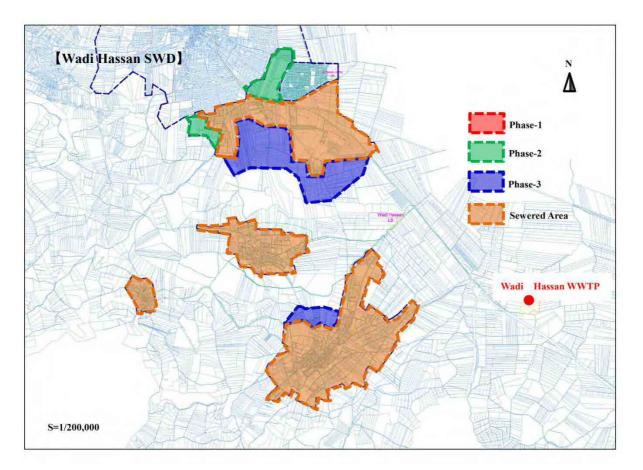



Figure 7.7 Locations Where New Sewerage Services Will Be Provided in Wadi Hassan SWD

# (2) House Connection Ratio

House Connection Ratio will be increased to 100% by target year, the ratio in each phases is as shown Table 7.7.

Item	Phase-1	Phase-2	Phase-3
Population Planned (pers.)	17,345	10,213	35,377
Population Connected (pers.)	15,205	8,455	35,377
House Connection (units)	2,795	1554	6,503
House Connection Ratio (%)	87.7	82.8	100.0

### Table 7.7 House Connection Ratio for Wadi Hassan SWD

Note: Number of persons living in household : 5.44 persons/unit Source: JICA Study Team

# (3) Branch Sewers

The required branch sewers for each phase are shown in the following table.

Pha	se-1	Pha	se-2	Phase-3									
Expanded Area	Required	Expanded Area	Required	Expanded Area	Required								
(ha)	Length (km)	(ha)	Length (km)	(ha)	Length (km)								
-	-	120.70	18.38	279.60	42.58								

#### Table 7.8Branch Sewers for Wadi Hassan SWD

Note: Unit required length of sewers per area is 152.3 m/ha.. Source: JICA Study Team

# (4) Trunk Sewers

New trunk sewers are not required.

# (5) WWTP

The inflow of wastewater from the expansion area and the increase in service population are shown in the following Figure. The plan for the treatment facilities is prepared based on the inflow estimates.

In Phase-2, when the Hoson Camp is shifted from Wadi Hassan SWD to Shallala SWD, the inflow of wastewater will be decreased as shown in Figure 7.8.

20 sludge drying beds for the design flow of 1,200  $\text{m}^3/\text{d}$  will be constructed in Phase-2 to increase the sludge treatment capacity of Wadi Hassan WWTP from 1,600  $\text{m}^3/\text{d}$  to 2,800  $\text{m}^3/\text{d}$ . While the existing wastewater treatment facilities have the capacity of 2,800  $\text{m}^3/\text{d}$ , based on the results of capacity calculation of Wadi Hassan WWTP in Appendix-IIIA.

item	20## 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
(200E)				1		······1	T	1					1			- Eap	and tree	atriant Ja	wility (Si	udger)	T		1
2,500	_	Capacity		P				1	_	-							_					-	~
7,000		IL AISUNG	1				-	-					-								1		
1,500																			1				
1,000	-	•	+	-	-	+	•	-	-						-	-+	-	-			Average (Estim	Daily Flo ated)	*
500											-	-	-										
0.6	Branch		_			- 1				Unit1+2 +2		_		Unit 1+2 +3	Unit4					Unit4		-	
	Cor Mentery								_	(Countrie)		_		(Comp)	(Control)	<u> </u>				(Comp)			
Event	Trunk	×.		-	~	~	-	~	$\sim$	AZMI-I (Convec)	AZMI-1 (Comp)	-	÷	÷	-	-	÷	~	-	*	-	-	
CYCH	15							At House (Samp (Comme)	Ai Hasan Camp (Comp)														
	wwtp																	Stolga Shakkasi Granes and Datagi					
Population Planned	16 377	福.377	10,377	16,679	16,840	17,002	17,163	10.1305-21	17,345	12,545	7,503	8,407	9,311	10,213	12,425	14,637	16,848	19,060	21,272	24,798	28,324	37,851	35.37
(Pers.) Population	14 245		14,248		403	14,864	15.024	16.125	15.205	10 585	-8,874 6,072	6.856	7.651	8,455	10.474	12 560	471	2.683	4 895	8.421	11 B47 26.958	31.082	19,00
Connected (Fark)	14,240	_	14,240		456	616	776	15,185	857	-3.682	-8,178	1 192	-6.597	5,753	-2,774	1 688	484	2,084	(4.971	8,755	12.710	16.834	21,12
As Additional Connected Area (hs)	00		0.0	6.2	9,8	13.2	16-6	20.0	20.4	44.5	63.5	82.6	101.7	120.7	167.3	213.9	260 5	307.1	353.7	400.3	100.3	400.3	H00 (1
Connection Ratio	187.0	87.0	82.0	87.2	87.3	87.4	875	87.6	87.2	84-4	80.9	615	62.7	B2 B	64.3	85.6	87.3	66.8	90.3	92.8	95.2	97.6	100
Average Daily Flow	1.0400	1,050	1.000	1.024	1,035	1,048	1.058	1.069	1.070	745	427	483	539	595	737	884	1,036	1,192	1.353	1,819	1.898	2.185	2.49
Capacity of Facility" (as ADF)	1.600	1,600	1,600	1,600	1,600	1.800	1.600	1,600	1,600	1,600	1,600	1,600	1,600	1,600	1,600	1 600	1.600	2,800	2.800	2,800	2,800	2,800	2,80
CALCULATION OF A																							

Figure 7.8 Estimated Service Population and Inflow to the WWTP and Design Capacity Improvements of Wadi Hassan WWTP

### 7.2.6 Ramtha SWD

#### (1) Service Area Expansion

Figure 7.9 shows the locations where sewerage service will be provided. The Ramtha city boundary areas will be developed in Phase-1. The current population density in these areas is about 31 to 58 person/ha. The remaining southern area of Ramtha city will be developed in Phase-2.

The remaining northern four localities of Torra, Sharjarah, Emrawah, and Dnaibeh are identified as Priority II areas in the SWMP. The current population densities in these areas are as high as 35 to 89 person/ha. This study proposes the sewerage services to be provided to the four localities in Phase-3. The boundary and surrounding areas of Ramtha city can be developed with a smaller investment. The construction costs required for sewers and lift stations in the areas in Ramtha city under Phases-1 and 2 are much lower than those required for sewers and lift stations in the four localities to be developed under Phase-3, as shown in Table 8.26.

#### (2) House Connection Ratio

House Connection Ratio will be increased to 100% by target year, the ratio in each phases is as shown Table 7.9.

Item	Phase-1	Phase-2	Phase-3
Population Planned (pers.)	156,402	172,168	201,198
Population Connected (pers.)	89,312	124,308	201,198
House Connection (units)	16,418	22,851	36,985
House Connection Ratio (%)	57.1	72.2	100.0

Table 7.9 House Connection Ratio for Ramtha SWD

Note: Number of persons living in household : 5.44 persons/unit Source: JICA Study Team



Figure 7.9 Locations Where New Sewerage Services Will be Provided in Ramtha SWD

### (3) Branch Sewers

The required branch sewers for each phase are shown in following table.

Pha	se-1	Pha	se-2	Phase-3			
Expanded Area	Required	Expanded Area	Required	Expanded Area	Required		
(ha)	Length (km)	(ha)	Length (km)	(ha)	Length (km)		
433.00	65.95	345.80	52.67	636.69	96.97		

#### Table 7.10 Branch Sewers for Ramtha SWD

Note: Unit required length of sewers per area is 152.3 m/ha.. Source: JICA Study Team

#### (4) Trunk Sewers

The required trunk sewers for each phase are shown in following table.

Dimo		Length (km)		Total(1-m)
Pipe	Phase-1	Phase-2	Phase-3	Total(km)
300mm CP	4.32	-	-	4.32
150mm DIP	-	-	2.40	2.40
200mm DIP	-	-	15.09	15.09

# Table 7.11Trunk Sewers for Ramtha SWD

Source: JICA Study Team

### (5) Lift Stations

Four small manhole type pumps stations, at the localities of Dnaibeh, Emrawah, Shajarah and Torrah will be constructed in Phase-3.

# (6) WWTP

The inflow of wastewater from the expansion area and the increase in service population are estimated as shown in the following Figure. The plan for treatment facilities is prepared based on the inflow estimates.

One aeration tank and final sedimentation tank to meet the design daily average flow of  $4,400 \text{ m}^3/\text{d}$  and mechanical sludge de-watering equipment with a building will be constructed in Phase-1.

Another aeration tank and final sedimentation tank to meet the design daily average flow of 4,400  $m^3/d$  will be constructed in Phase-3.

line	20##	14	16	16	17	18	19	20	21	22	23	24	25	25	27	28	29	30	31	32	33	34	35
20,000							1	1	f	1	T	-	1								1	-	
18,000														spand 1	one krain	of trea	-14 - 14 - 14 - 14 - 14 - 14 - 14 - 14						
16.000											_												
14,000								apand o	ne traint	of treat	nent fap	dity.						-					
100000000		Capacity	of WW1	P					r		+					-							
12,000		(Existing	0											-	-								
10,000											1												
8,000									-							and the second second	e Daily F mated)	low					
6,000	1															(Cart	1						
4,000	-	-		-																			
NAMES OF A								1			- 1	- 1											
2,000																							
0									-	-	-		-			-	-				-	-	
	Branch				Qnit: 1.45		90	а	Unit 14.5	Unit E3.67	-	14	40	Gmii 2,3,6,7	Unit S151 IO-11	- 20		14	-	5194 5194 10+11			
		1			(Correct)				(Carren)	(Canno)	-			(Camp)	(Cosmin)				_	(Camp)			
-	Trunk				(Comm)		Seb7 (Camp)			Set1 (Comme)	*	Seb I (Camp)			109-1 109-1 10-1100-0 10-1100-0	$\sim$	- 15	-	-	100-1 MA-1 Compt			
Event	Calatta														MP1~4	-		MP1~4		- Carrolin			
	LS(MP)									21.3			_		(0		~	(Comp)					
	WWIP							Espand (train (Comme)	~	Expand Strain (Camp)		_			Expand (Comme)	Expand Itrain (Camp)							
Population . Planned	150 660	1.MI MIO	7 No. 660	139,950	143,241	148,531	149,821	153,111	158,402	159 555	162,708	165.861	189.015	172,158	177,006	181.844	188,882	191,520	196,358	197,568	198,778	199,968	201
(Perc) Population	0	0	0	3 290	6.581	9.671	13.161	16,451	19.742	22.695	26.048	29,201	32,355	35.508	40:346	45,184	50.022	54.860	59.698	80.908	62.116	63.325	63
Sounderstand	52,204	52.204	52.204	57.870	83.744	69.825	76.113	82.609	89.312	95,930	102,739	109,738	_	124.308		146,143	160,733	173.772	187.258	190.684	194.138	197.620	201
Pers.				5,666	11.540	17,621	23.909	30,465	37,106	43,726	50.535	57,534	64,724	72,104	85,797	95,939	108.529	121,568	135,054	138,480	141,934	145.415	145
Area Dial	0.0	0.0	0.0	72.2	144.3	216.5	288.7	360.8	43010	502.2	571.3	640.5	709.9	178.9	884.9	991.0	1.097.1	1,203 3	1,309-4	1.418.8	1,415.5	1,415.5	1/4
Comection Natio	36.2	38.7	387	41.4	44.5	47:7	50.8	54.0	57:1	60.1	63 1	66.2	69.2	72.2	76.8	81.5	86.1	90.7	95.4	96.5	97,7	98.8	- 1
1963													_			_					1	_	
Average July Flow	A/A72	4,477	\$,472	4.965	5,469	5.991	6.531	7,088	7,663	8.231	8,815	9,418	10.032	10.666	11,669	12,711	13.791	14.910	16,067	16.361	18.657	16.956	37
Capacity of	8,800	6,800			6.600	6.000		0.000	( and the second	15 000	SEM64	10.000	45.700	10.000	10.1000	12.000	STREE.	17.854	17 800	17.004	164.800	17 800	
Facility" (at ADF)	0,000	0,000	8,800	6,600	6,500	8,809	6,800	8,800	8,890	13,200	13.200	13,200	13,200	13,200	13,200	17,600	17,600	17,800	17,600	17,600	17.600	17,600	37
Maximum	5,014	5.014	5.014	5.561	6.126	6,710	7.314	7,938	8,583	9,219	9,873	10,545	11,236	11.945	13.069	14.236	15.446	16,699	17,995	18,324	18,656	18.990	15
Daily Flow	0.02530	100.0010	1 100 H 123	- AA251	10000000			1.1.5703		27.51			14.14.010	11	0 10000251	- 76 - 17 D.S.		10.000	10. F 11. 19.	THEAT		1.12	- 120

Figure 7.10 Estimated Service Population and Inflow to the WWTP and Design Capacity Improvements of Ramtha WWTP

7-17

# 7.2.7 Mafraq SWD

#### (1) Service Area Expansion

Figure 7.11 shows the locations where the sewerage services will be developed in Mafraq SWD.

The southern part of Mafraq city and Bani Hassan are proposed to be developed in Phase-1. The southern part of Mafraq city is a residential area and a part of the urban center. Bani Hassan is proposed as a Priority II area in the SWMP. Bani Hassan experiences frequent wastewater overflows and the associated sanitation problems. Therefore there is the strong need for sewerage development. It is also worth noting that the water supply system in Bani Hassan has been rehabilitated recently.

Aidoon and the northern part of Mafraq city will be developed in Phase-2. These areas are still developing. The remaining eastern part of the city, will be developed in Phase-3 after the water supply system is put in place.

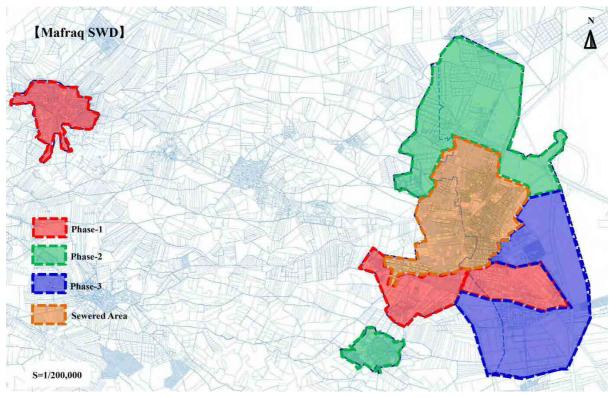



Figure 7.11 Locations Where New Sewerage Services Will be Provided in Mafraq SWD

#### (2) House Connection Ratio

House Connection Ratio will be increased to 100% by target year, the ratio in each phases is as shown Table 7.12.

		· · · · · · · · · · · · · · · · · · ·	
Item	Phase-1	Phase-2	Phase-3
Population Planned (pers.)	155,842	155,933	156,137
Population Connected (pers.)	72,874	115,527	156,137
House Connection (units)	13,396	21,237	28,702
House Connection Ratio (%)	46.8	74.1	100.0

Table 7.12 House Connection Ratio for Mafraq SWD

Note: Number of persons living in household : 5.44 persons/unit, Source: JICA Study Team

### (2) Branch Sewers

The required branch sewers for each phase are shown in following table.

Pha	se-1	Pha	se-2	Phase-3		
Expanded Area	Required	Expanded Area	Required	Expanded Area	Required	
(ha)	Length (km)	(ha)	Length (km)	(ha)	Length (km)	
800.60	121.93	1078.60	164.27	1022.00	155.65	

#### Table 7.13 Branch Sewers for Mafraq SWD

Note: Unit required length of sewers per area is 152.3 m/ha.. Source: JICA Study Team

### (3) Trunk Sewers

The required trunk sewers for each phase are shown in following table.

			<b>1</b>	
Dina		Total(1rm)		
Pipe	Phase-1	Phase-2	Phase-3	Total(km)
300mm CP	14.60	3.81	-	18.41
200mm DIP	2.80	-	-	2.80
250mm DIP	-	-	3.75	3.75

# Table 7.14Trunk Sewers for Mafraq SWD

Source: JICA Study Team

### (4) Lift Stations

Two new lift stations are required.

Mansha LS with a design capacity of  $3.25 \text{ m}^3/\text{min}$  will be constructed in Phase-1 to convey the wastewater collected from Bani Hassan.

Mafraq LS with a design capacity of  $2.14 \text{ m}^3/\text{min}$  will be constructed in Phase-2 to convey the wastewater collected from the southern part of Mafraq city.

# (5) WWTP

The inflow of wastewater from the expansion area and the increase in service population are estimated as shown in the following Figure. The treatment facilities plan is prepared based on the inflow estimates.

One line of wastewater treatment facilities with the design capacity of  $3,600 \text{ m}^3/\text{d}$  will be constructed in Phase-1.

A second line of wastewater treatment facilities with the design capacity of  $3,600 \text{ m}^3/\text{d}$  will be constructed in Phase-2.

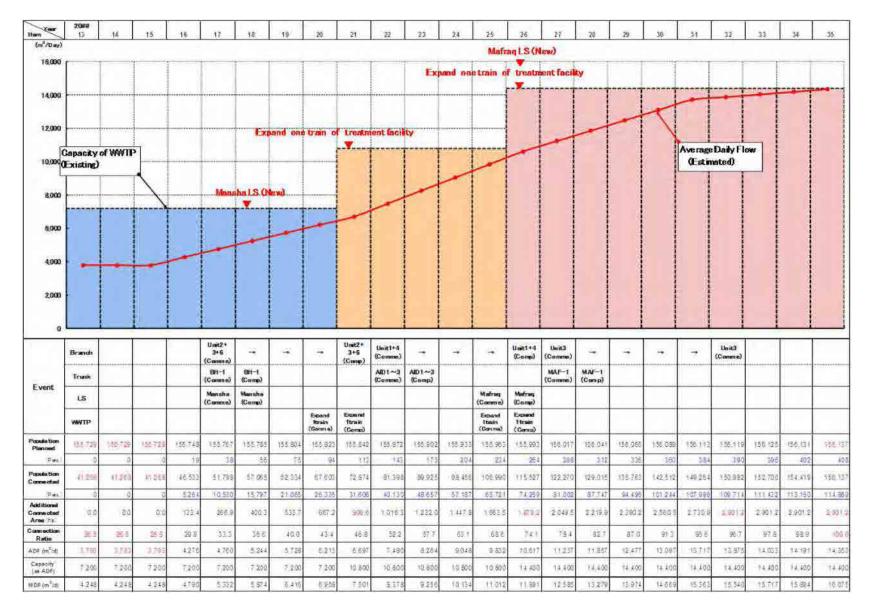
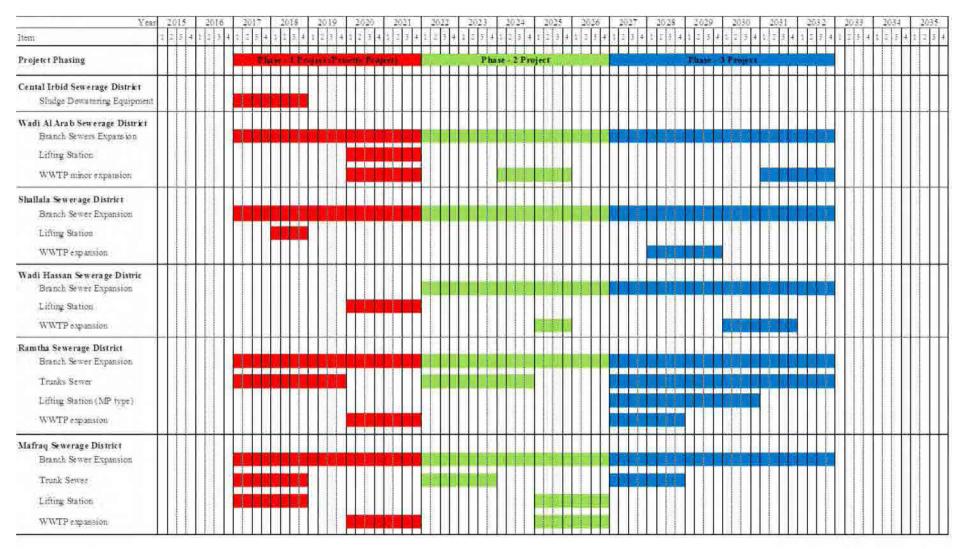



Figure 7.12 Estimated Service Population and Inflow to the WWTP and

**Design Capacity Improvements of Mafraq WWTP** 

# 7.3 Construction Schedule for Sewerage Facilities


# 7.3.1 General

The following construction periods including procurement of equipment are proposed:

- 1) Branch Sewers: 4 or 5 years
- 2) Trunk Sewers: depending on the work required
- 3) Lift Stations: Two years, except for one manhole type pump which would only require one year
- 4) WWTPs: Two years generally, because only expansion of existing facilities is involved

# 7.3.2 Construction Schedule

Figure 7.13 summarizes the proposed 3-phase construction plan for the sewerage facilities for each SWD.





# CHAPTER 8 PROJECT COST ESTIMATE

#### 8.1 Basis of Cost Estimate

#### 8.1.1 General

The total project cost is the sum of the direct and indirect costs shown below:

1) Direct Costs

Construction of Sewers, Lift Stations (LS) and Wastewater Treatment Plants (WWTPs)

2) Indirect Costs

Engineering Services Land Acquisition Project Administration Physical Contingency Value Added Tax (VAT)

# 8.1.2 Basis of Cost Estimate

The project cost is estimated based on the following conditions.

(1) Price Level

Prices are estimated based on the average exchange rate as of September 2014 in accordance with the official announcement by JICA:

1 US Dollar (USD) = 0.7059 Jordanian Dinar (JD) = 103.8 Japanese Yen (JPY)

(2) Foreign and Local Currency Portions

The project cost includes a foreign currency (F.C.) portion in US Dollar (USD) and a local currency (L.C.) portion in Jordanian Dinar (JD). The estimates for imported goods and services are allocated in the F.C. portion. Costs are allocated to the F.C. or L.C. portions according to their assumed share in each work item.

#### 8.1.3 Direct Costs

(1) Sewers

Pipe materials used in the construction of trunk and branch sewers are locally available. The pipes are installed by the open-cut method. The construction cost can be allocated in the L.C. portion.

Construction cost is estimated by unit cost or cost curves. The unit cost and cost curves are prepared by studying the data available in previous studies or sewerage projects and from information provided

by Jordanian consultants.

The cost curves for sewer construction are prepared based on two references: one is the SWMP and the other is the latest detailed designs (2014) provided by Jordanian consultants.

### 1) SWMP (Strategic Wastewater Master Plan prepared by USAID/ISSP)

The SWMP proposes three phased investments for the sewerage sector in Jordan. The unit cost in SWMP is based on "Water/Wastewater Infrastructure Project/Tafileh Water Master Plan, February 2013". The unit cost is prepared using the construction costs of 25 cities, including Amman and Jerash city. It could serve as an average unit cost in Jordan. The unit costs of sewer (concrete pipe: CP) construction by diameter including 30% overhead are shown in Table 8.1.

Diameter	Unit Constru	ction Cost (JD/m)	)
(mm)	Construction Cost (a+b)	Direct Cost (a)	Overhead (b)
150	130	91	39
200	140	98	42
300	160	112	48
400	170	119	51
500	200	140	60
600	210	147	63
700	240	168	72
800	290	203	87
900	330	231	99
1,000	380	266	114
1,200	460	322	138
1,500	640	448	192
1,800	910	637	273
2,000	1,100	770	330

Table 8.1 Unit Construction Cost of Concrete Pipe in SWMP

#### 2) Detailed Design in 2014

The unit cost for sewer construction is also obtained from a Jordanian consultant, who prepared the cost data while working on some detailed designs in 2014. The cost data reflect the most up to date cost information. The unit cost for sewer construction by pipe diameter is presented in Table 8.2, including 30% overhead.

The unit cost for this study is established by taking the average of the above two reference data. The cost curve is calculated by the least-square method as shown in Figure 8.1. The formula for the cost curve is shown in Equation 8.1.

Source: SWMP (ISSP)

Sewers	Unit Cost (JD/m)					
Dia. (mm)	Total Cost (a+b)	Direct Cost (a)	Overhead (b)			
150 CP	59	45	14			
200 CP	124	95	29			
300 CP	169	130	39			
400 CP	195	150	45			
500 CP	260	200	60			
150 DIP	85	65	20			
200 DIP	165	115	50			

 Table 8.2 Unit Construction Cost of Sewers based on 2014 Detailed Design

Note: Asphalt Pavement, DIP Pipe Cost: 150mm about 52JD, 200mm about 70 JD

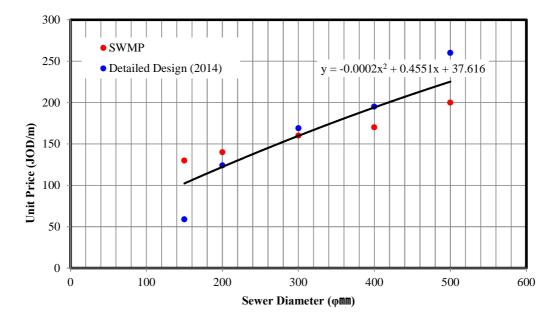



Figure 8.1 Cost Curve of Sewer Construction

 $y = -0.0002 X^{2} + 0.4551 X + 37.616$  ------ Equation 8.1 where, X (mm) is Sewer Diameter

The unit construction costs (JD/m) of CP for trunk and branch sewers are summarized in Table 8.3 using equation 8.1. Table 8.4 shows those of DIP for trunk sewers, based on the data shown in Table 8.2.

Table 8.3	Unit Construction Cost of Concrete Pipe for Trunk and Branch Sev	vers
1 a DIC 0.5		VCI S

CP Diameter 1	150 mm	200 mm	250 mm	300 mm	400 mm
Unit Cost 101	1.38 JD/m	120.64 JD/m	138.89 JD/m	156.15 JD/m	187.66 JD/m

Source: JICA Study Team

 Table 8.4
 Unit Construction Cost of Ductile Iron Pipe for Trunk Sewers

DIP Diameter	150 mm		200 1	nm	250 mm		
	F.C.	L.C.	F.C.	L.C.	F.C.	L.C.	
Unit Cost	74 USD/m	33 JD/m	99 USD/m	80 JD/m	163 USD/m	100 JD/m	
	(52 JD/m)		(70 JD/m)		(115 JD/m)		

Source: JICA Study Team

(2) Wastewater Treatment Plant (WWTP)

1) Wastewater Treatment Facilities

The following cost data and information is used to set the unit construction cost.

- a) Construction cost information (without breakdowns) of the two most recently developed WWTPs using extended aeration process, is provided by a Jordanian consultant:
  - Design capacity of 7,500 m³/d: 13,367,800 JD (1,782 JD/m³)
  - Design capacity of 10,000 m³/d: 16,241,600 JD (1,624 JD/m³)
- b) Design Report¹ prepared by the USAID project, on Mafraq WWTP using the advanced aerated lagoon system: design capacity of 6,550 m³/d: 10,227,372 JD (1,561 JD/m³) (2012 price)

Based on the cost information of the two most recently developed WWTPs, the unit cost of WWTP using extended aeration and oxidation ditch process is set at 1,800 JD/m³, considering inflation rate of  $5\%^2$  to the average:  $(1,782 + 1,624) / 2 \times 1.05 = 1,788 \text{ JD/m}^3 => 1,800 \text{ JD/m}^3$  (2014 unit price).

However, since the proposed wastewater treatment processes, shown in the following, will be added to the existing facilities, the above unit cost cannot be applied directly.

- Wadi Al-Arab WWTP: Aeration tank and final sedimentation tank
- Shallala WWTP: Primary sedimentation tank, oxidation ditch, and final sedimentation tank
- Wadi Hassan WWTP: Oxidation ditch and final sedimentation tank
- Ramtha WWTP: Aeration tank and final sedimentation tank

Based on Japanese experience, the construction cost of primary and secondary unit processes is about 40% of the total construction cost of the treatment plant, as shown in Table 8.5. Considering miscellaneous costs, the unit construction cost for upgrades to existing wastewater treatment facilities is set at 900 JD/m³, assuming 50% of the unit cost of a new WWTP.

			8 1	L	
Component	Pump Station and	Wastewater	Sludge Treatment	Other Facilities	Total
Component	Pretreatment	Treatment Facilities	Facilities	(Administration)	Total
Share	15%	40%	35%	10%	100%

 Table 8.5 Share of Construction Cost among Facility Components

Source: JICA Study Team

The construction of wastewater treatment facilities can be divided into civil/architectural and mechanical/electrical components. The cost ratios of 40% and 60% are used for civil/architectural and mechanical/electrical components, respectively. The installation cost is 20% of the mechanical and electrical component. The costs of the civil/architectural component and installation of equipment are counted in the L.C. portion. The mechanical/electrical costs which involved mostly imported

¹ "Upgrade of Mafraq Wastewater Treatment Plant, Final Design Report", September 2012.

² 5% is the average of cost of living index of 4.4 (2011), 4.8 (2012) and (5.6) 2013 in Jordan,

[&]quot;General Government Finance Bulletin, Vol.16-No.9, October 2014"

equipment are counted in the F.C. portion.

The applied unit cost for wastewater treatment facilities for extended aeration and OD processes is summarized in the following table.

Currency	Civil & Architect Works	Mechanical & Elect	Unit Construction					
Portion	Construction Cost	Equipment Cost	Installation Cost	Cost				
F.C. Portion	-	450 JD/m ³ (50%)	-	450 JD/m ³ (637.5 USD/m ³ )				
L.C. Portion	360 JD/m ³ (40%)		90 JD/m ³ (10%)	$450 \text{ JD/m}^3$				

 Table 8.6
 Unit Construction Cost Used for Extended Aeration and Oxidation Ditch Processes

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

At Mafrqa WWTP, one full line of treatment facilities are constructed, the cost information in the design report is used directly with the inflation rate of  $5\%^3$ .

The total cost for the capacity of 6,550  $\text{m}^3/\text{d}$  is estimated to be 9,500,000 JD, as shown in the following table.

	Component	2012 Price (USD)	2014 Price (USD)	Expansion Cost (USD)
1	Drying Beds	918,010	1,012,106	1,012,106
2	Head Works	401,700	442,874	442,874
3	Wet Weather Storage	363,785	401,073	0
4	Chambers	108,530	119,654	119,654
5	Primary Settling Tank	553,716	610,472	610,472
6	Pre-denitrification Tank	1,137,810	1,254,436	1,254,436
7	Nitrification Tank	1,517,245	1,672,763	1,672,763
8	Disinfection Basin	46,200	50,936	50,936
9	Sludge Digester	399,800	440,780	440,780
10	Retaining Walls	36,000	39,690	39,690
11	Composting	414,000	456,435	456,435
12	Sand Filter	306,523	337,942	337,942
13	Reed Beds	148,000	163,170	163,170
14	Recirculating Pumping Station	288,000	317,520	317,520
15	Buildings	636,000	701,190	0
16	900mm inlet trunk	80,000	88,200	88,200
17	Ponds	1,668,100	1,839,080	1,839,080
18	Site Works	122,000	134,505	134,505
19	Miscellaneous	2,100,000	2,315,250	2,315,250
20	Electrical Works	1,896,000	2,090,340	2,090,340

Table 8.7 Expansion Cost of Mafraq WWTP (Design Capacity of 6,550 m³/d)

³ 5% is the average of cost of living index of 4.4 (2011), 4.8 (2012) and (5.6) 2013 in Jordan, "General Government Finance Bulletin, Vol.16-No.9, October 2014"

Component		2012 Price (USD)	2014 Price (USD)	Expansion Cost (USD)
	Total (USD)	13,141,419	14,488,414	13,386,151
	Total (JD)	9,276,528	10,227,372	9,449,284 => <b>9,500,000</b>

Note: The construction cost of wet weather storage and buildings are excluded. Source: USAID Report

# 2) Sludge Treatment Facilities

Mechanical sludge de-watering facilities are planned for Central Irbid WWTP and Ramtha WWTP, and sludge drying beds are planned for Wadi Hassan WWTP and Mafraq WWTP.

Since no information is available on the local cost of mechanical sludge de-watering facilities, the following is assumed: screw type dewatering machine (capacity 20  $m^3$ /hour) USD 168,000 for one unit, plus installation cost of USD 28,000. The equipment cost is USD 140,000.

The construction cost of sludge drying beds is estimated using the cost estimates in the design of Mafraq WWTP by the USAID project: 1,012,106 JD / 6,550  $\text{m}^3/\text{d} = 155 \text{ JD/m}^3$ . This unit cost is used to estimate the construction cost of sludge drying beds at Wadi Hassan WWTP.

# (3) Lift Station

The unit construction cost of a new lifting station is set as follows:

a) the unit construction cost of a WWTP excluding a lift station is  $1,800 \text{ JD/m}^{3...}$ 

b) the pumping facilities (including a building) at the WWTP represents is 15% of the total cost as shown in Table 8.5.

c) the unit construction cost of a new lift station is estimated to be 300 JD/m³ (=1,800 JD/m³ /0.85 x  $0.15 = 317 \text{ JD/m}^3 => 300 \text{ JD/m}^3$ ).

The construction of a lift station can be divided into civil/architectural and mechanical/electrical components. The cost ratios of 40% and 60% are applied for the civil/architectural and mechanical/electrical components, respectively. The installation cost is 20% of the mechanical and electrical cost. The costs of civil/architectural component and installation of equipment are counted in the L.C. portion. The mechanical/electrical costs which covers mostly imported equipment are counted in the F.C. portion.

The unit construction cost used for a new lift station is shown in following tables.

Currency	Civil & Architect Works	Mechanical & Elect	Unit Construction	
Portion	Construction Cost	Equipment Cost	Cost	
F.C. Portion	-	150 JD/m ³ (50%)	-	150 JD/m ³ (212.5 USD/m ³ )
L.C. Portion	$120 \text{ JD/m}^3 (40\%)$		30 JD/m ³ (10%)	$150 \text{ JD/m}^3$

 Table 8.8
 Unit Construction Cost for New Lift Station

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

In case of expansion of the existing LS, the construction component is increased by 50%. The unit cost is shown in the following table.

		Mechanical & Electrical Works		
Construction Cost	Equipment Cost	Cost		
-	150 JD/m ³ (42%)	-	150 JD/m ³ (212.5 USD/m ³ )	
$180 \text{ JD/m}^3 (50\%)$		$30 \text{ JD/m}^3 (8\%)$	$210 \text{ JD/m}^3$	
	-	- 150 JD/m ³ (42%)	- 150 JD/m ³ (42%) -	

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

For a small lifting station (manhole type pump facilities), the following unit costs are used:

F.C. portion: USD 118,000 (JD 83,000)

L.C. portion: JD 17,000

The unit cost is set as follows:

- The total cost of 140,000 JD (about 20 million JPY, based on Japanese cost estimation) is used as a base cost for one manhole type pump facility. About three quarter of the total cost is the cost of equipment and installation, and assuming about 80% of Japanese price, then the cost of equipment and installation (F.C. portion) are: 14,000 x 3/4 x 0.8 = 84,000 JD (=> adjusted to JD 83,000).
- The remaining one quarter of the total cost is construction cost and assuming about 50% of Japanese price, this cost (L.C. portion) is: 14,000 x 1/4 x 0.5 =18,000 JD (=> adjusted to JD 17,000).
- The total cost is JD 102,000, rounded to JD 100,000. The F.C. and L.C. portions are allocated as shown above.

# 8.1.4 Indirect Costs

The costs for engineering services, land acquisition, project administration and value added tax (VAT) are included in the indirect costs.

# (1) Engineering Services

The engineering services cost includes the cost for detailed design, surveys, tender assistance and

construction supervision services. The cost of engineering services is estimated to be 10% of the total direct cost.

(2) Land Acquisition Cost

The land acquisition cost for the expansion of WWTP or lift station should be calculated based on land price. This cost is not considered in this project cost estimation because land acquisition is not required.

(3) Project Administration Cost

The administration costs necessary for establishing the PIU (Project Implementation Unit) and other organizations required for project management are assumed to be 3.0 % of the sum of the direct cost, the engineering services cost and physical contingency.

(4) Physical Contingency

Physical contingency is estimated to be 10% of the total direct cost and the engineering services cost.

(5) Value Added Tax (VAT)

Value added tax is assumed to be 16 % of the total cost of the direct cost and the engineering services cost.

#### 8.1.4 Operation and Maintenance Cost

The O&M costs are estimated as the expenditure needed for personnel, power supply and other costs.

(1) Personnel cost

The personnel cost is estimated based on the staff requirement to operate and maintain the completed branch sewers, trunk sewers, LS and WWTP. The annual personnel cost is calculated by multiplying the incremental staff number by the average staff salary of 8,040 JD/year.

(2) Power cost

Power is required to operate the mechanical equipment at the LSs and the WWTPs. The amount of power required depends on the volume of wastewater pumped and treated. The power cost is estimated by multiplying the unit power cost (0.08 JD/kWh) by the power requirements (0.7 kWh/m³).

#### (3) Other costs

Other costs are estimated to be about 10% of the power cost. These include: chemicals, sludge disposal, routine equipment repair and inspection, cleaning and repair. The chemical cost include chlorination of secondary effluent, mechanical sludge dewatering, and water quality measurement. The sludge disposal cost include the loading of sludge at the WWTP, and transportation to the disposal site. Mechanical and electrical equipment needs routine maintenance and repair, including the purchase and installation of spare parts. Sewers must be inspected and cleaned on a regular basis.

# 8.2 Project Cost by Sewerage District

The estimated project cost is presented for the three development phases for each sewerage district. The operation and maintenance cost will be shown in the disbursement schedule.

# 8.2.1 Project Cost of Central Irbid SWD

Introduction of mechanical dewatering equipment and building construction are proposed for the Central Irbid WWTP in Phase-1. The cost is estimated as follows:

Equipment capacity: 30 m³/hour, the equipment cost for one unit is USD 140,000 x 30/20 = USD 210,000.

Other facilities for sludge treatment such as sludge receiving tanks with agitators, sludge pumps, hopper, and electrical equipment are needed and will be installed in buildings. The total sludge facilities cost is estimated to be double the equipment cost: the installation cost is about 20% and building construction about 80% of the total sludge facilities cost.

Total sludge facilities cost: 210,000 USD/unit x 2 units x 2.0 = 840,000 USD => 600,000 JD Installation cost: 600,000 JD x 0.2 = 120,000 JD Building construction cost: 600,000 JD x 0.80 = 480,000 JD

Currency	Civil & Architect Works	Mechanical &	Construction Cost				
Portion	Construction Cost	Equipment Cost	Installation Cost	Construction Cost			
F.C. Portion	-	600,000 JD (50%)	-	600,000 JD (840,000 USD)			
L.C. Portion	480,000 JD (40%)	-	120,000 JD (10%)	600,000 JD			

<b>Table 8.10</b>	Construction Cost of Sludge Treatment Facilities at Central Irbid WWT	ΓР
-------------------	-----------------------------------------------------------------------	----

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

Based on the construction plan, the project cost for the Central Irbid SWD is estimated as shown in the following table.

		•	-					
	Phas	se-1	Pha	se-2	Phas	se-3	То	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC
	x1000 USD	x1000 JD						
Branch Sewer	0	0	0	0	0	0	0	0
Trunk Sewer	0	0	0	0	0	0	0	0
Lifting Station	0	0	0	0	0	0	0	0
Wastewater Treatment Plant	850	600	0	0	0	0	850	600
<b>Total Construction Cost</b>	850	600	0	0	0	0	850	600
Engineering Service	85	60	0	0	0	0	85	60
Administration	0	44	0	0	0	0	0	44
Physical Contingency	94	66	0	0	0	0	94	66
VAT	165	123	0	0	0	0	165	123
Total of Indirect Cost	344	293	0	0	0	0	344	293
Total Cost	1,194	893	0	0	0	0	1,194	893

Table 8.11 Project Cost by Phase for Central Irbid SWD

Source: JICA Study Team

# 8.2.2 Project Cost of Wadi Al-Arab SWD

#### (1) Direct Costs

### 1) Trunk and Branch Sewers

The required trunk and branch sewers for each phase are shown in following table.

		Phase-1			Phase-2			Phase-3	
Pipe	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)
200mm CP	167.36	120.64	20,190	87.45	120.64	10,550	61.33	120.64	7,399

 Table 8.12
 Sewer Construction Cost by Phase for Wadi Al-Arab SWD

Source: JICA Study Team

# 2) Lift Station

The capacity of the Hakama LS will be improved from  $3.90 \text{ m}^3/\text{min}$  to  $6.22 \text{ m}^3/\text{min}$ . The construction cost is estimated to be USD 404,000 for the F.C. portion and JD 399,000 for the L.C. portion in the Phase-1.

The cost is estimated as follows:

The improved capacity is  $2.32 \text{ m}^3$ /min as maximum hourly flow. The average flow is calculated to be about 1,900 m³/d, using the peaking factor of 1.756.

Currency	Civil & Architect Works	Mechanical & Elect	Construction Cost	
Portion	rtion Construction Cost Equipment Cost Installation Cos		Installation Cost	Construction Cost
F.C. Portion		150 x 1,900		JD 285,000
F.C. Portion	-	= 285,000	-	(USD 404,000)
L C Domtion	180 x 1,900		30 x 1,900	ID 200 000
L.C. Portion	= 342,000	-	= 57,000	JD 399,000

 Table 8.13
 Construction Cost for Expansion of Hakama LS

Note: Exchange rate 1.00 USD = 0.7059 JD

Source: JICA Study Team

# 3) WWTP

One line of aeration tank and final sedimentation tank with the design daily average flow of  $3,500 \text{ m}^3/\text{d}$  will be constructed in each phase. The construction cost is estimated to be USD 2,231,000 for the F.C. portion and JD 1,575,000 for the L.C. portion for each phase, as shown in the following figure.

Currency	Civil & Architect Works	Mechanical & Elect	Construction Cost	
Portion	Construction Cost	Equipment Cost	Construction Cost	
F.C. Portion		450 x 3,500		JD 1,575,000
F.C. FOILIOII	-	=1,575,000	-	(USD 2,231,000)
L.C. Portion	360 x 3,500		90 x 3,500	JD 1,575,000
L.C. Foltion	=1,260,000	-	=315,000	JD 1,575,000

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

# 4) Indirect costs

The indirect costs are estimated according to the method stated in the section 8.1.4.

# 5) Project Cost

Based on the direct and indirect costs, the Project cost is summarized in the following table.

	Phase-1		Phase-2		Phase-3		Total		
Component	FC	LC	FC	LC	FC	LC	FC	LC	
	x1000 USD	x1000 JD							
Branch Sewer	0	20,190	0	10,550	0	7,399	0	38,139	
Trunk Sewer	0	0	0	0	0	0	0	0	
Lift Station	404	399	0	0	0	0	404	399	
Wastewater Treatment Plant	2,231	1,575	2,231	1,575	2,231	1,575	6,693	4,725	
Total Construction Cost	2,635	22,164	2,231	12,125	2,231	8,974	7,097	43,263	
Engineering Service	264	2,216	223	1,213	223	897	710	4,326	
Administration	0	872	0	497	0	383	0	1,752	
Physical Contingency	290	2,438	245	1,334	245	987	780	4,759	
Taxes	510	4,430	432	2,427	432	1,799	1,374	8,656	
Total of Indirect Cost	1,064	9,956	900	5,471	900	4,066	2,864	19,493	
Total Cost	3,699	32,120	3,131	17,596	3,131	13,040	9,961	62,756	

 Table 8.15
 Project Cost by Phase for Wadi Al-Arab SWD

Source: JICA Study Team

# 8.2.3 Project Cost of Shallala SWD

### (1) Direct Costs

### 1) Trunk and Branch Sewers

The required trunk and branch sewers for each phase are shown in following table.

	Phase-1			Phase-2			Phase-3		
Pipe	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)
200mm CP	89.37	120.64	10,782	38.87	120.64	4,689	128.62	120.64	15,517
300mm CP	3.30	156.15	515	-	-	-	-	-	-
400mm CP	-	-	-	4.55	187.66	854	-	-	-
Total	-	-	11,297	-	-	5,543	-	-	15,517

<b>Table 8.16</b>	<b>Sewer Construction</b>	Cost by Phase f	for Shallala SWD
-------------------	---------------------------	-----------------	------------------

Source: JICA Study Team

#### 2) Lift Station

A small manhole type pump, at Mughyeer, Mughyeer MP, will be constructed in Phase-1. The construction cost is estimated to be USD 118,000 for the F.C. portion and JD 17,000 for the L.C. portion.

The design capacity of the Al Hoson Camp LS will be increased from 4.20 m³/min to 5.62 m³/min in Phase-2. The construction cost is estimated to be USD 249,000 for the F.C. portion and JD 246,000 for the L.C. portion.

The improved capacity is  $1.42 \text{ m}^3/\text{min}$  as maximum hourly flow. The average flow is calculated to be about 1,170 m³/d, using the peaking factor of 1.756 that is the value (rounded 1.80) shown in Table 4.2.

		-		-
Currency	Civil & Architect Works	Mechanical & Elect	Construction Cost	
Portion	Construction Cost	Equipment Cost Installation Co		
F.C. Portion		150 x 1,170		JD 176,000
F.C. Portion	-	= 175,500	-	(USD 249,000)
L C Dortion	180 x 1,170		30 x 1,170	JD 245,700
L.C. Portion	= 210,600	-	=35,100	=> JD 246,000

 Table 8.17
 Construction Cost for Expansion of Al Hoson Camp LS

Note: Exchange rate 1.00 USD = 0.7059 JD

Source: JICA Study Team

#### 3) WWTP

One primary sedimentation tank, two oxidation ditches and one final sedimentation tank with the design daily average flow of 7,000  $\text{m}^3/\text{d}$  will be constructed in Phase-3. The construction cost is estimated to be USD 6,693,000 for the F.C. portion and JD 4,725,000 for the L.C. portion, as shown in

the following table.

Component	Cumpanau	Civil & Architect Works	Mechanical & Ele						
	Currency Portion	Construction Cost Equipment Cost		Installation Cost	Construction Cost				
One line of	F.C.	_	450 x 7,000	-	JD 3,150,000				
PSD, OD,	Portion		=3,150,000		(USD 4,462,000)				
and FSD	L.C.	360 x 7,000	_	90 x 7,000	JD 3,150,000				
und 15D	Portion	=2,520,000		=630,000	32 3,130,000				
	F.C.		225 x 7,000		JD 1,575,000				
00D	Portion	-	=1,575,000	-	(USD 2,231,000)				
One OD	L.C.	180 x 7,000		45 x 7,000	JD 1,575,000				
	Portion	=1,260,000	-	=315,000	JD 1,575,000				
	F.C.		4,725,000		JD 4,725,000				
T= 4=1	Portion	-	4,723,000	-	(USD 6,693,000)				
Total	L.C.	3,780,000		945.000	JD 4,725,000				
	Portion	3,780,000	-	743,000	JD 4,725,000				

 Table 8.18
 Construction Cost of Wastewater Treatment Facilities at Shallala WWTP

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

# 4) Indirect costs

The indirect costs are estimated according to the method stated in the section 8.1.4.

### 5) Project Cost

Based on the direct and indirect costs, the Project cost is summarized in the following table.

	Phase-1		Phase-2		Phase-3		Total	
Component	FC	LC	FC	LC	FC	LC	FC	LC
	x1000 USD	x1000 JD						
Branch Sewer	0	10,782	0	4,689	0	15,517	0	30,988
Trunk Sewer	0	515	0	854	0	0	0	1,369
Lift Station	118	17	249	246	0	0	367	263
Wastewater Treatment Plant	0	0	0	0	6,693	4,725	6,693	4,725
Total Construction Cost	118	11,314	249	5,789	6,693	20,242	7,060	37,345
Engineering Service	12	1,131	25	579	669	2,024	706	3,734
Administration	0	414	0	217	0	906	0	1,537
Physical Contingency	13	1,245	27	637	736	2,227	776	4,109
Taxes	23	2,257	48	1,156	1,296	4,064	1,367	7,477
Total of Indirect Cost	48	5,047	100	2,589	2,701	9,221	2,849	16,857
Total Cost	166	16,361	349	8,378	9,394	29,463	9,909	54,202

 Table 8.19
 Project Cost by Phase for Shallala SWD

Source: JICA Study Team

#### 8.2.4 Project Cost of Wadi Hassan SWD

### (1) Direct Costs

#### 1) Trunk and Branch Sewers

The required trunk and branch sewers for each phase are shown in following table.

	Phase-1				Phase-2			Phase-3		
Pipe	Length (km)	Unit Cost (JD/m)	Cost (x100 0 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	Length (km)	Unit Cost (JD/m)	Cost (x1000 JD)	
200mm CP	-	-	-	18.38	120.64	2,217	42.58	120.64	5,137	

 Table 8.20
 Sewer Construction Cost by Phase for Wadi Hassan SWD

Source: JICA Study Team

# 2) Lift Station

It is not required to expand the capacity of Wadi Hassan LS as specified in Table 5.12.

# 3) WWTP

The existing treatment capacity of Wadi Hassan is evaluated to have the capacity of 1,600 m³/d equivalent to the wastewater treatment, due to lack of sludge treatment capacity. Additional 20 sludge drying beds with the design flow of 1,200 m³/d equivalent will be constructed in Phase-2. Then, the capacity of WWTP is increased to 2,800 m³/d covering the design average flow of 2,490 m³/d.

The construction cost of 20 sludge drying beds is estimated to be JD 186,000 (=155 JD/m³ x 1,200  $m^3$ ) for the L.C. portion only.

# 4) Indirect costs

The indirect costs are estimated according to the method stated in the section 8.1.4.

# 5) Project Cost

Based on the direct and indirect costs, the Project cost is summarized in the following table.

	Phase-1		Pha	se-2	Pha	se-3	Total	
Component	FC	LC	FC	LC	FC	LC	FC	LC
	x1000 USD	x1000 JD						
Branch Sewer	0	0	0	2,217	0	5,137	0	7,354
Trunk Sewer	0	0	0	0	0	0	0	0
Lift Station	0	0	0	0	0	0	0	0
Wastewater Treatment Plant	0	0	0	186	0	0	0	186
Total Construction Cost	0	0	0	2,403	0	5,137	0	7,540
Engineering Service	0	0	0	240	0	514	0	754
Administration	0	0	0	87	0	186	0	273
Physical Contingency	0	0	0	264	0	565	0	829
Taxes	0	0	0	479	0	1,024	0	1,503
Total of Indirect Cost	0	0	0	1,070	0	2,289	0	3,359
Total Cost	0	0	0	3,473	0	7,426	0	10,899

# Table 8.21Project Cost by Phase for Wadi Hassan SWD

Source: JICA Study Team

# 8.2.5 Project Cost of Ramtha SWD

#### (1) Direct Costs

# 1) Trunk and Branch Sewers

The required trunk and branch (200mm CP) sewers for each phase are shown in following table.

		DI 1			DI 0		0		DI 0		
		Phase-1			Phase-2	-		-	Phase-3	-	
	Length	Unit	Cost	Length	Unit	Cost	Length	Unit Cost	Unit Cost	Cost	Cost
Sewer Pipe	(km)	Cost	(x1000	(km)	Cost	(x1000	(km)	F.C.	L.C.	F.C.	L.C.
-		(JD/m)	JD)		(JD/m)	JD)		USD/m	(JD/m)	(x1000U	(x1000
										SD)	JD)
200mm CP	65.95	120.64	7,957	52.67	120.64	6,355	96.97	-	120.64	-	11,698
300mm CP	4.32	156.15	675	-	-	-	-	-	-	-	
150mmDIP	-	-	-	-	-	-	2.40	74	33	178	79
200mmDIP	-	-	-	-	-	-	4.68	99	80	463	374
200mmDIP							5.25	109	20	1.040	420
(Dual)	-	-	-	-	-	-	5.25	198	80	1,040	420
200mmDIP							516	207	00	1.522	412
(Triple)	-	-	-	-	-	-	5.16	297	80	1,532	413
Total	-	-	8,632	-	-	6,355	-	-	-	3,213	12,984

 Table 8.22
 Sewer Construction Cost by Phasing for Ramtha SWD

Source: JICA Study Team

### 2) Lift Station

Four small manhole type pumps, at the localities of Dnaibeh, Emrawah, Shajarah and Torrah, will be constructed in Phase-3. The total construction cost is estimated to be USD 472,000 for the F.C. portion and JD 68,000 for the L.C. portion.

# 3) WWTP

One line of aeration tank and final sedimentation tank with the design daily average flow of 4,400  $m^3/d$  and mechanical sludge de-watering equipment with a building will be constructed in Phase-1. The construction cost is estimated to be USD 3,938,000 for the F.C. portion and JD 2,780,000 for the L.C. portion.

In addition, one line of aeration tank and final sedimentation tank with the design daily average flow of  $4,400 \text{ m}^3/\text{d}$  will be constructed in Phase-3. The construction cost is estimated to be USD 2,805,000 for the F.C. portion and JD 1,980,000 for the L.C. portion.

The construction costs are estimated as shown in the table below.

Currency	Civil & Architect Works	Mechanical & Elect	trical Works	Construction Cost	
Portion	Construction Cost	Equipment Cost	Installation Cost		
F.C. Portion	-	450 x 4,400 =1,980,000	-	JD 1,980,000 (USD 2,805,000)	
L.C. Portion	360 x 4,400 =1,584,000	-	90 x 4,400 =396,000	JD 1,980,000	

 Table 8.23
 Construction Costs of Wastewater Treatment Facilities at Ramtha WWTP

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

Mechanical dewatering equipment and the building construction are proposed for Phase-1. The cost is estimated as follows:

Equipment capacity: 40 m³/hour. Equipment cost is USD 140,000 x 40/20 = USD 280,000 for one unit.

Other facilities for sludge treatment such as sludge receiving tanks with agitators, sludge pumps, hopper, and electrical equipment are needed and will be installed in the buildings. Therefore, the total sludge facilities cost is estimated to be double the equipment cost: with the installation cost about 20% and building construction about 80% of the total sludge facilities cost.

Total sludge facilities cost: 280,000 USD/unit x 2 units x 2.0 = 1,120,000 USD => 800,000 JD Installation cost: 800,000 JD x 0.2 = 160,000 JD Building construction cost: 800,000 JD x 0.80 = 640,000 JD

Currency	Civil & Architect Works	Mechanical & Elect	Construction Cost	
Portion	Construction Cost	Equipment Cost	Installation Cost	Construction Cost
F.C. Portion	-	JD 800,000 (50%)	-	JD 800,000 (USD 1,133,000)
L.C. Portion	JD 640,000 (40%)		JD 160,000 (10%)	JD 800,000

Table 8.24	<b>Construction Cost of Sludge Treatment Facilities at Ramtha WWTH</b>	Р
	Construction Cost of Studge Treatment I achieves at Ramena WWT	£

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

### 4) Indirect Costs

The indirect costs are estimated according to the method stated in the section 8.1.4.

#### 5) Project Cost

Based on the direct and indirect cost, the Project cost is summarized in the following table.

	Phase-1		Pha	Phase-2		Phase-3		Total	
Component	FC	LC	FC	LC	FC	LC	FC	LC	
	x1000 USD	x1000 JD							
Branch Sewer	0	7,957	0	6,355	0	11,698	0	26,010	
Trunk Sewer	0	675	0	0	3,217	1,286	3,217	1,961	
Lift Station	0	0	0	0	472	68	472	68	
Wastewater Treatment Plant	3,938	2,780	0	0	2,805	1,980	6,743	4,760	
Total Construction Cost	3,938	11,412	0	6,355	6,494	15,032	10,432	32,799	
Engineering Service	394	1,141	0	636	649	1,503	1,043	3,280	
Administration	0	515	0	231	0	712	0	1,458	
Physical Contingency	433	1,255	0	699	714	1,654	1,147	3,608	
Taxes	762	2,292	0	1,267	1,257	3,024	2,019	6,583	
Total of Indirect Cost	1,589	5,203	0	2,833	2,620	6,893	4,209	14,929	
Total Cost	5,527	16,615	0	9,188	9,114	21,925	14,641	47,728	

<b>Table 8.25</b>	<b>Project Cost by</b>	Phase for	Ramtha SWD
-------------------	------------------------	-----------	------------

Source: JICA Study Team

# 8.2.6 Project Cost of Mafraq SWD

(1) Direct Costs

#### 1) Trunk and Branch Sewers

The required trunk and branch sewers for each phase are shown in following table.

										1			
			Phase-1				Phase-2				Phase-3		
Sewer	Length	Unit Cost	Unit Cost	Cost	Cost	Length	Unit Cost	Cost	Length	Unit Cost	Unit Cost	Cost	Cost
	(km)	F.C.	L.C.	F.C.	L.C.	(km)	L.C.	L.C.	(km)	F.C.	L.C.	F.C.	L.C.
Pipe		(USD/m)	(JD/m)	(x1000	(x1000		(JD/m)	(x1000		(USD/m)	(JD/m)	(x1000	(x1000
				USD)	JD)			JD)				USD)	JD)
200mm CP	121.93	-	120.64	-	14,710	164.27	120.64	19,818	155.65	-	120.64	-	18,778
300mm CP	14.60	-	156.15	-	2,280	3.81	156.15	595	-	-	-	-	-
200mm DIP	2.80	99	80	277	224	-	-	-	-	-	-	-	-
250mm DIP	-	-	-	-	-	-	-	-	3.75	163	100	611	375
Total	-	-	-	277	17,214	-	-	20,413	-	-	-	611	19,153

Table 8.26Sewer Construction Cost by Phase for Mafraq SWD

Source: JICA Study Team

#### 2) Lift Station

Mansha LS with the design capacity of  $3.25 \text{ m}^3/\text{min}$  will be constructed in Phase-1. The construction cost is estimated to be USD 568,000 for the F.C. portion and JD 401,000 for the L.C. portion.

Mafraq LS with the design capacity of 2.14 m³/min will be constructed in Phase-2. The construction cost is estimated to be USD 374,000 for the F.C. portion and JD 264,000 for the L.C. portion.

The capacity is expressed as the maximum hourly flow. Using the peaking factor of 1.756, the design capacity of 3.25 m³/min and 2.14 m³/min are converted into the average flow 2,670 m³/d and 1,760 m³/d, respectively. The construction of the new LSs are calculated in table below.

Currency	Civil & Architect Works	Construction Cost							
Portion	Construction Cost	Equipment Cost	Installation Cost	Construction Cost					
F.C. Portion		150 x 2,670		JD 400,500					
	-	= 400,500	-	=> JD 401,000					
		- 400,300		(US 568,000)					
L.C. Portion	120 x 2,670		30 x 2,670	JD 400,500					
L.C. Fortion	= 320,400	-	= 80,100	=> JD 410,000					

 Table 8.27
 Construction Cost of New Mansha LS

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

<b>Table 8.28</b>	Construction	Cost of New	Mafrag LS
	Construction	0050 01 1000	man ag Eo

Currency	Civil & Architect Works	Mechanical & Elect	rical Works	Construction Cost	
Portion	Construction Cost	Equipment Cost	Installation Cost		
EC Dortion		150 x 1,760		JD 264,000	
F.C. Portion	-	= 264,000	-	(USD 374,000)	
L.C. Portion	120 x 1,760		30 x 1,760	JD 264,000	
L.C. I OIUOII	= 211,200	-	=52,800	JD 204,000	

Note: Exchange rate 1.00 USD = 0.7059 JD Source: JICA Study Team

# 3) WWTP

The construction cost of Mafraq WWTP is JD 9,500,000 for the design capacity of 6,550 m³/d. But JICA Study team judged the facility have the capacity of 7,200 m³/d.

The design capacity of the phase-1 and the phase-2 projects will be  $3,600 \text{ m}^3/\text{d}$  each and the estimated cost for each phase is JD 4,750,000.

The construction of the wastewater treatment facilities can be divided into civil/architectural and mechanical/electrical components. The cost ratios of 40% and 60% are used for the civil/architectural and mechanical/electrical components respectively. The installation cost is 20% of the mechanical and electrical component. The costs of construction and installation of equipment are accounted in the L.C. portion. The imported equipment is accounted in the mechanical/electrical component in the F.C. portion.

One line of wastewater treatment facilities with the design capacity of  $3,600 \text{ m}^3/\text{d}$  will be constructed in Phase-1 and a second line in Phase-2. The construction cost for each phase is estimated to be USD 3,365,000 for the F.C. portion and JD 2,375,000 for the L.C. portion, as shown in the following table.

<b>Table 8.29</b>	<b>Construction Cost for</b>	r One Series of Treatment	Facilities at Mafraq WWTP

Currency Portion	Civil & Architect Works	Mechanical & Electri	cal Works	Construction Cost
Portion	Construction Cost	Equipment Cost	Installation Cost	
F.C. Portion		JD 2,375,000 (50%)		JD 2,375,000
F.C. Foluon	-	JD 2,373,000 (30%)	-	(USD 3,365,000)
L.C. Portion	JD 1,900,000 JD (40%)	-	JD 475,000 (10%)	JD 2,375,000

Note: Exchange rate 1.00 USD = 0.7059 JD

Source: JICA Study Team

# 4) Indirect Costs

The indirect costs are estimated according to the method stated in the section 8.1.4.

# 5) Project Cost

Based on the direct and indirect costs, the Project cost is summarized in the following table.

	1abic 0.50	TTOJEC	i Cost by	1 11450 101	man ay k			
	Phas	e-1	Pha	se-2	Pha	se-3	То	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC
	x1000 USD	x1000 JD	x1000 USD	x1000 JD	x1000 USD	x1000 JD	x1000 USD	x1000 JD
Branch Sewer	0	14,710	0	19,818	0	18,778	0	53,306
Trunk Sewer	278	2,504	0	595	611	375	889	3,474
Lift Station	568	401	374	264	0	0	942	665
Wastewater Treatment Plant	3,365	2,375	3,365	2,375	0	0	6,730	4,750
Total Construction Cost	4,211	19,990	3,739	23,052	611	19,153	8,561	62,195
Engineering Service	421	1,999	374	2,305	61	1,915	856	6,219
Administration	0	834	0	933	0	711	0	2,478
Physical Contingency	463	2,199	411	2,536	67	2,107	941	6,842
Taxes	815	4,004	724	4,612	118	3,822	1,657	12,438
Total of Indirect Cost	1,699	9,036	1,509	10,386	246	8,555	3,454	27,977
Total Cost	5,910	29,026	5,248	33,438	857	27,708	12,015	90,172

 Table 8.30
 Project Cost by Phase for Mafraq SWD

# 8.3 Disbursement Schedule by Sewerage District

The annual project cost and annual O&M cost for Central Irbid SWD are presented in Table 8.31 and Table 8.32, respectively.

The annual project cost and annual O&M cost for Wadi Al-Arab SWD are presented in Table 8.33 and Table 8.34, respectively.

The annual project cost and annual O&M cost for Shallala SWD are presented in Table 8.35 and Table 8.36, respectively.

The annual project cost and annual O&M cost for Wadi Hassan SWD are presented in Table 8.37 and Table 8.38, respectively.

The annual project cost and annual O&M cost for Ramtha SWD are presented in Table 8.39 and Table 8.40, respectively.

The annual project cost and annual O&M cost for Ramtha SWD are presented in Table 8.41 and Table 8.42, respectively.

Phase-1	FC: x10001	USD. LC: x	1000 JD															
Comment	20	15	20	16	20	17	20	18	20	19	20	20	20	21	-		To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
BranchSewer																	0	0
Trank Sewer										1					A 1 1 1 1		.0	0
Lifting Station					1												0	0
Wastewater Treatment Plant					340	360	510	240	1								850	600
Total Construction Cost	0	0	0	0	340	360	510	240	0	0	0	0	0	0	0	0	850	600
Engineering Service		1000 C	43	.30	21	15	21	15		1					a	11	85	60
Administration	1	7		15		11		11		1							.0	- 44
Physical Contingency	0	0	4	3	37	37	53	26									94	66
Taxes	0	1	8	8	64	67.	93	.47		1							165	123
Total of Indirect Cost	0	8	55	56	122	130	167	99	0	0	0	0	0	0	0	0	344	293
Total Cost	0	8	55	56	462	490	677	339	0	0	0	0	0	0	0	0	1,194	893

# Table 8.31 Disbursement Schedule of Phase -1 Project for Central Irbid SWD

Source: JICA Study Team

	_	2 ° A. T. A.	- 20		1774 B. 474				Unit: x100	)0JD
Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost		.0	32	32	32	32	32	32	32	32
Power Cost	10	12	15	17	20	22	25	27	30	32
Other Cost	1	1	1	2	2	2	2	3	3	3
Total O&M Cost	11	13	48	51	54	56	59	62	65	68

Table 8.32 Annual O&M Cost for Central Irbid S
------------------------------------------------

Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035
Personnel Cost	.32	32	32	32	32	32	32	32	32
Power Cost	35	38	40	43	46	48	51	54	57
Other Cost	3	4	4	4	5	5	5	5	6
Total O&M Cost	71	74	76	79	82	85	88	91	94

Phase-1	FC: x1000	USD, LC: x	1000 JD	-								M. 1972.		-				_
Component	20	15	201	16	201	7	20	18	201	9	2.02	0	202	21			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						4,038		4,038		4,038		4,038		4,038			0.	20,190
Trunk Sewer			-														0	(
Lifting Station											162	239	242	160			404	395
Wastewater Treatment Plant											892	945	1339	630			2.231	1.575
Total Construction Cost	0	0	0	0	0	4,038	0	4,038	0	4,038	1,054	5,222	1,581	4,828	0	0	2,635	22,164
Engineering Service			106	665	26	310	26	310	26	310	40	310	40	310			264	2,216
Administration	0	130	0	217	0	105	0	105	0	105	0	105	0	105			0	87.
Physical Contingency	0	0	11	67	3	435	3	43.5	3	435	109	553	161	514			2.90	2,438
Taxes	0	21	19	152	5	782	5	782	5	782	193	990	285	921			510	4,430
Total of Indirect Cost	0	151	136	1,101	34	1,632	34	1,632	34	1,632	342	1,958	486	1,850	0	0	1,064	9,956
Total Cost	0	151	136	1,101	34	5,670	34	5,670	34	5,670	1,396	7,180	2,067	6,678	0.	0	3,699	32,120
Phase-2	FC: x1000	USD, LC: x	1000 JD															
Constant of	20	20	202	21	202	2	201	23	201	24	202	5	202	26			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer			-			2.110		2.110		3.110		2.110		2,110			0	10.550
Trunk Sewer						1.1					1						0	0
Lifting Station																	0	0
Wastewater Treatment Plant									892	945	1339	630					2.231	1.575
Total Construction Cost	0	0	0	0	0	2,110	0	2.110	892	3.055	1.339	2,740	0	2.110	0	0	2.231	12.125
Engineering Service			89	364	22	170	22	170	33	170	33	170	22	170			2.23	1.213
Administration	0	75	0	123	Ũ	60	0	60	Ũ	60	0	60	0	60			0	497
Physic al Contingency	0	0	9	36	2	228	2	22.8	93	3.23	137	291	2	228			245	1,334
Taxes	0	12	16	83	- 4	411	4	411	163	577	241	522	4	411			432	3.427
Total of Indirect Cost	0	87	114	606	28	869	28	869	289	1,130	411	1.043	28	869	0	0	900	5,471
Total Cost	0	87	114	60.6	28	2,979	28	2,979	1,181	4,185	1,750	3,783	28	2,979	0	0	3,131	17,596
Phase-3	FC: x1000	USD LC 8	1000 JD															
	20.		202	26	202	7	200	28	202	9	203	0	203	31	203	2	To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						1.233		1,233		1233		1.233		1.233		1.233	0	7.399
Trunk Sewer																	0	0
Lifting Station			-														0	0
Wastewater Treatment Plant													892	945	1339	630	2.231	1.575
Total Construction Cost	0	0	0	0	0	1.233	0	1.233	0	1,233	0	1,233	892	2.178	1,339	1,863	2.231	8.974
Engineering Service			89	269	17	108	17	108	17	108	17	108	33	99	33	99	2.23	897
Administration	Ġ.	57	0	95	0	38	0	38	0	38	0	38	0	38	0	38	0	383
Physical Contingency	0	0	9	26	2	134	2	13.4	2	134	2	134	92	228	136	196	245	98
Taxes	0	9	16	61	3	242	3	242	3	242	3	242	163	407	241	351	432	1.799
Total of Indirect Cost	0	66	114	451	22	522	22	522	22	522	22	522	288	772	410	684	900	4.064
		66		451					22		22				-			
Total Cost	.0	00	114	451	22	1,755	22	1,755	22	1,755	22	1,755	1,180	2,950	1,749	2,547	3,131	13,040

# Table 8.33 Disbursement Schedule for Wadi Al-Arab SWD

# Table 8.34 Annual O&M Cost for Wadi Al-Arab SWD

Unit: x1000JD

Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost		0	0	0	0	16	16	16	40	56
Power Cost	51	78	106	136	166	186	206	227	249	270
Other Cost	5	8	11	14	17	19	21	23	25	27
Total O&M Cost	56	85	117	149	183	221	243	266	314	354

Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035
Personnel Cost	56	56	.56	56	56	56	56	56	56
Power Cost	283	296	310	323	337	340	344	347	350
Other Cost	28	30	31	32	34	34	34	35	35
Total O&M Cost	368	382	397	412	427	430	434	438	442

Table 8.35 Disbursement Schedule for Shallala S	SWD	
-------------------------------------------------	-----	--

Phase-1	FC: x1000	USD, LC:	x1000 JD															
Component	20	15	20	16	20	17	20	18	20	19	200	20	20	21			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						2,156		2,156		2.156		2,157		2,157			0	10,78
Trunk Sewer				-		258		257						-			0	51
Lift Station	-						118	17									118	1
Wastewater Treatment Plant																	0	1.0
Total Construction Cost	0	0	0	0	0	2,414	118	2,430	0	2,156	0	2,157	0	2,157	0	0	118	11,314
Engineering Service			0	339	3	158	9	158	0	158	0	159	0	159			12	1,13
Administration	0	61	0	103	0	50	0	50	0	50	0	50	0	50			0	41-
Physical Contingency	0	0	0	34	0	257	13	258	0	232	0	232	0	232			13	1,24
Taxes	- 0	10	0	76	0	461	23	463	0	415	0	416	0	416			23	2,25
Total of Indirect Cost	0	71	0	552	3	926	45	929	0	855	0	857	0	857	0	0	48	5,047
Total Cost	0	71	0	552	3	3,340	163	3,359	0	3,011	0	3.014	0	3,014	0	0	166	16,361
Phase-2	FC: x1000	USD. LC:	x1000 ID															
		20	20.	21	20	22	202	23	20	24	202	25	20	26			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						938		938		938		938		937			0	4,685
Trunk Sewer						427		427									0	854
Lift Station					100	148	149	98									249	246
Wastewater Treatment Plant				1													0	(
Total Construction Cost	0	0	0	0	100	1.513	149	1,463	0	938	0	938	0	937	0	0	249	5,789
Engineering Service			8	174	9	81	8	81	0	81	0	81	0	81			25	579
Administration	0	33	0	54	0	26	0	26	0	26	0	26	0	26			0	217
Physical Contingency	0	0	1	17	11	159	15	154	0	102	0	102	0	103			27	637
Taxes	0	5	1	39	19	285	28	275	0	184	0	184	0	184			48	1.156
Total of Indirect Cost	0	38	10	284	39	551	51	536	0	393	0	393	0	394	0	0	100	2,589
Total Cost	0	38	10	284	139	2,064	200	1,999	0	1.331	0	1,331	0	1,331	0	0	349	8,378
Phase-3	EC: +1000	USD, LC:	-1000 ID															
		125 LC.	20	26	20	27	200	28	20	29	203	30 1	20	31	20	32	Tot	tal
Component	FC	LC	FC I	LC	FC	LC	FC I	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer	10	10	10		10	2.586	10	2.586	10	2.586	10	2.586	10	2.586	10	2.587	0	15.517
Trunk Sewer			-		-			2,200	-	2,000		-,500		2,200	-		0	0
Lift Station	-											-		-			0	0
Wastewater Treatment Plant	-						2.677	2.835	4,016	1,890		-					6,693	4,725
Total Construction Cost	0	0	0	0	0	2.586	2.677	5,421	4,016	4,476	0	2,586	0	2.586	0	2.587	6,693	20.242
Engineering Service	0	Q.	268	607	50	243	100	243	100	243	50	243	50	2,000	51	2222	669	2.024
Administration	0	135	0	226	0	90	0	91	0	91	0	91	0	91	0	91	009	906
Physical Contingency	0	0	27	61	5	283	278	566	411	472	5	283	5	281	5	281	736	2.22
Taxes	0	22	47	143	9	512	489	1.011	724	845	9	513	9	509	9	509	1,296	4.064
Total of Indirect Cost	0	157	342	1.037	64	1,128	867	1.911	1.235	1.651	64	1.130	64	1.104	65	1,103	2,701	9.221
Total Cost	0	157	342	1,037	64	3,714	3,544	7.332	5,251	6,127	64	3,716	64	3,690	65	3.690	9.394	29,463
TOTALCOST	0	157	342	1,0.57	04	2,714	2.244	1,254	5,251	0,127	04	3,710	0.9	5,020	0.5	5,090	9,394	22,403

A second s			1						Unit: x100	0JD
Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost	0	0	0	0	0	0	0	16	40	40
Power Cost	17	30	44	60	76	97	120	130	141	152
Other Cost	2	3	4	6	8	10	12	13	14	15
Total O&M Cost	18	33	49	65	84	107	132	159	195	207
	S			19					-	1.11
Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035	
Personnel Cost	40	40	40	56	56	56	56	56	56	
Personnel Cost Power Cost	40	40 203	40 231	56 260	56 291	56 320	56 350	56 381	56 413	

# Table 8.36 Annual O&M Cost for Shallala SWD

# Table 8.37 Disbursement Schedule of for Wadi Hassan SWD

Component	20				i i i i i i i i i i i i i i i i i i i													
Component	20	015	20	16	20	17	201	18	.20	19	20.	20	20	21	-		Total	
	FC	LC	FC	LC	FC	LC	FC	IC	FC	LC	FC	LC	FC	LC	TC	LC	FC	LC
Branch Sewer					1.00.00										1.1		0	0
Trunk Sewer	· · · · · · · · ·				-									1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			0	0
Lift Station		1															0	0
Wastewater Treatment Plant	1											· · · · · · · · ·					0	6
Total Construction Cost	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Engineering Service																	0	(
Administration		1															0	(
Physical Contingency																	0	(
Taxes	1																0	(
Total of Indirect Cost	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Total Cost	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	1	ALCOLUL CO																
Phase-2		USD, LC:		21 1	20	22	202	in 1	20		200	× 1	20	26 1			- 291	
Component		20	20		20		202		20		20.		20		+ I		To	
	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer				-	1	443		443		443		444		444	-		0	2,217
Trunk Sewer	-				1					-		1	-	-	-	-	0	0
Lift Station																-	0	0
Wastewater Treatment Plant											0	186					0	186
Total Construction Cost	0	0	0	0	0	443	0	443	0	443	0	630	0	444	0	0	0	2,403
Engineering Service	0	0	0	72	0	34	0	33	0	33	0	34	0	34			0	240
Administration	0	-	0	21	0	11	0	11	0	- 11	0	11	0	10		-	0	87
Physical Contingency	0	0	0	7	0	48	0	48	0	48	0	65	0	48			0	264
Taxes	0	2	-0	16	0	- 86	0	86	0	86	0	117	.0	86			0.	479
Total of Indirect Cost	0	14	0	116	0	179	0	178	.0	178	0	227	0	178	0	0	0	1,070
Total Cost	0	14	0	116	0	622	0	621	0	621	0	857	0	622	0	0	0	3,473
Phase-3	EC: -1000	USD, LC:	1000 10															
		125	20	26	20	27	202	28	20	29	20.	30 1	20	31	203	32	To	tal
Component	FC	LC	FC	LC	FC	LC	FC	IC	FC	LC	FC	LC	FC	LC	FC	IC	FC	LC
Branch Sewer						856		856		856		856		856		857	0	5.137
Trunk Sewer														54.0			0	0
Lift Station																	0	(
Wastewater Treatment Plant												1					0	(
Total Construction Cost	0	0	0	0	0	856	0	856	0	856	.0	856	0	856	0	857	0	5.137
Engineering Service	0		0	144	0	62	0	62	0	62	0	62	0	61	0	61	0	514
Administration	0	27	0	45	0	19	0	19	0	19	0	19	0	19	0	19	0	180
Physical Contingency	0	0	0	14	0	92	0	92	0	92	0	92	0	91	0	92	0	56
Taxes	0	4	0	32	0	165	0	165	0	165	0	164	0	164	0	165	0	1.02-
Total of Indirect Cost	0	31	0	235	0	338	0	338	0	338	0	337	0	335	0	337	0	2,289
Total Cost	0	31	0	235	0	1.194	0	1.194	0	1,194	0	1,193	0	1.191	0	1.194	0	7,426

									Unit: x1000.	D
Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost	0	0	0	0	0	0	0	0	0	0
Power Cost	0	0	0	0	0	0	0	1	2	3
Other Cost	0	0	0	0	0	0	0	0	0	0
Total O&M Cost	0	0	0	0	0	0	0	1	2	3
Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035	
Personnel Cost	24	24	24	24	24	24	24	24	24	
Power Cost	6	9	12	16	19	24	30	36	42	
Other Cost	1	1	1	2	2	2	3	4	4	
Total O&M Cost	31	34	38	41	45	51	57	64	70	

# Table 8.38 Annual O&M Cost for Wadi Hassan SWD

<b>Table 8.39</b>	Disbursement Schedule of for Ramtha SWD

Phase-1	FC: x1000	a first of the second second							_		_		_		_			
Component	20	15	201	16	20	17	20	18	20	19	20.	20	20				То	tal
component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						1,591		1,591		1,591		1,592		1,592			0	7.95
Trunk Sewer				-		225		225		225							0	6
Lift Station				-											1		0	
Wastewater Treatment Plant					-						1,575	1.668	2,363	1,112			3,938	2,78
Total Construction Cost	0	0	0	0	0	1,816	0	1,816	0	1,816	1,575	3,260	2,363	2,704	0	0	3,938	11,41
Engineering Service			158	342	40	160	39	160	39	160	59	160	59	159			394	1.1-
Administration	0	77	0	128	0	62	0	62	0	62	0	62	0	62		1	0	5
Physical Contingency	0	0	16	34	4	198	4	198	4	198	163	342	242	285	1	1	433	1,2
Taxes	0	12	27	80	7	358	7	358	7	358	288	612	426	514		1	762	2.2
Total of Indirect Cost	0	89	201	584	51	778	50	778	50	778	510	1,176	727	1,020	0	0	1,589	5,20
Total Cost	0	89	201	584	51	2,594	50	2.594	50	2,594	2.085	4.436	3.090	3,724	0	0	5,527	16,61
Phase-2	FC: x1000	USD. LC	x1000 JE	)														
	200		202		20.	22	202	23	20	24	20	25	20	26			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						1.271		1.271		1.271		1.271		1.271			0	6.3
Trunk Sewer																	0	
Lift Station		-															0	
Wastewater Treatment Plant																	0	
Total Construction Cost	0	0	0	0	0	1,271	0	1.271	0	1.271	0	1.271	0	1,271	0	0	0	6.3
Engineering Service	-		0	191	0	89	0	89	0	89	0	89	0	89			0	6
Administration	0	34	0	57	0	28	0	28	0	28	0	28	0	28		-	0	2
Physical Contingency	0	0	0	19	0	136	0	136	0	136	0	136	0	136			0	6
Taxes	0	5	0	43	0	244	0	244	0	244	0	244	0	243			0	1.20
Total of Indirect Cost	0	39	0	310	0	497	0	497	0	497	0	497	0	496	0	0	0	2.8
Total Cost	0	39	0	310	0	1,768	0	1,768	0	1,768	0	1,768	0	1,767	Ő	0	0	9,18
Phase-3	FC: x1000	USD LC	- 1000 IF															
	20		202		20	27	. 20.	28	20	29	20	30 1	20	31	20	32	To	tal
Component	FC	LC	FC ]	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer						1,950		1,950		1.950		1.950		1.949		1.949	0	11.69
Trunk Sewer					536	214	536	214	536	214	536	214	536	215	537	215	3.217	1.2
Lift Station					118	17	118	17	118	17	118	17	500		201	-14	472	1
Wastewater Treatment Plant					1,122	1.188	1.683	792	110		1.10		1.1	1.0		1000	2,805	1.9
Total Construction Cost	0	0	0	0	1.776	3,369	2.337	2.973	654	2,181	654	2.181	536	2.164	537	2,164	6,494	15.0
Engineering Service	0	0	195	451	84	225	84	225	78	150	78	150	65	151	65	151	649	1.5
Administration	0	108	0	179	04	71	0	71	0	71	0	71	0	71	0	70	045	7
Physical Contingency	0	0	20	45	186	359	242	320	73	233	73	233	60	232	60	232	714	1.6
Taxes	0	17	34	108	327	644	426	574	129	422	129	422	106	419	106	419	1.257	3.0
Total of Indirect Cost	0	125	249	783	597	1,299	752	1,190	280	876	280	876	231	873	231	872	2,620	6,8
											1965414-1							
Total Cost	0	125	249	783	2,373	4,668	3,089	4,163	934	3,057	934	3,057	767	3,037	768	3,036	9,114	21,9

<b>Table 8.40</b>	Annual	O&M Cost for	Ramtha SWD
1 a die 8.40	Annual	U&M Cost for	Ramtha SWD

Unit: x1000JD

Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost	0	0	0	0	0	16	16	16	40	40
Power Cost	21	32	44	55	68	79	90	102	114	126
Other Cost	2	3	4	6	7	8	9	10	11	13
Total O&M Cost	23	35	48	61	74	103	115	128	166	179

Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035
Personnel Cost	40	48	64	64	64	64	64	.64	64
Power Cost	147	168	190	213	237	243	249	255	261
Other Cost	15	17	19	21	24	24	25	26	26
Total O&M Cost	202	233	274	299	325	332	338	345	352

Table 8.41	Disbursement Schedule of for Mafraq SWD

	20	15	20	16	2017 2018			20	10	201	20 1	20	21		Total			
Component	FC	LC	FC FC	LC	FC 20	LC	FC FC	LC	FC FC	LC	FC.	LC	FC 20	LC	FC	LC	FC	LC
Branch Sewer	FC	LC	FC	LC	ru	2.942	FC	2.942	rt	2.942	FC	2.942	rc	2.942	FC	LC	FC 0	14.71
Trink Sewer					139	1.252	139	1.252		2,942		4,744		#177#		-	278	2.50
		-			227				_		-	-	-	-			568	
Lifting Station					22/	241	341	160			1.512	1.45.6	2.010	0.00	_			40
Wastewater Treatment Plant											1,346	1,425	2,019	950			3,365	2,37
Total Construction Cost	0	0	0	0	366	4,435	480	4,354	0	2,942	1,346	4,367	2,019	3,892	0	0	4,211	19,99
Engineering Service			168	600	42	280	42	280	42	280	63	280	63	280	-		421	1,99
Administration	0	126	0	210	0	100	0	100	0	100	0	100	0	100	-		0	83
Physical Contingency	0	0	17	60	41	472	52	4.63	4	322	141	465	207	416			463	2,19
Taxes	0	2.0	30	140	72	846	93	\$32	7	583	248	834	366	749			815	4,00
Total of Indirect Cost	0	146	215	1,010	155	1,698	187	1,675	53	1,285	452	1,679	636	1,545	0	0	1,699	9,03
Total Cost	0	146	215	1,010	521	6,133	667	6,029	53	4,227	1,798	6.046	2,655	5,437	0	0	5,910	29,02
Phase-2	FC: x1000	USD, LC	: x1000 J	D														
Comment	20	20	20.	21	20.	22	20	23	20	24	201	25	20	26			To	tal
Component	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer					_	3.964		3.964		3.964		3.964		3,964			0	19.81
Trunk Sewer						298		298									0	59
Lifting Station				-							150	158	224	106	-	-	374	26
Wastewater Treatment Plant							-				1.346	1.425	2.019	950			3.365	2.37
Total Construction Cost	0	0	0	0	0	4.261	0	4.261	0	3.964	1.496	5.547	2.243	5,020	0	0	3.739	23,05
Engineering Service		~	150	692	37	323	37	323	37	323	56	323	56	323		~	374	2.30
Administration	0	140	0	232	0	112	0	112	0	112	0	112	0	112		-	0	93
Physical Contingency	0	0	15	69	4	458	4	458	4	429	154	587	230	534		-	411	2.53
Taxes	0	22	26	159	7	825	7	825	7	772	273	1.051	405	958			724	4.61
Total of Indirect Cost	0	162	191	1.152	48	1.718	48	1.718	48	1.636	483	2.073	691	1.927	0	0	1.509	10.38
Total Cost	0	162	191	1,152	48	5.979	48	5.979	48	5.600	1.979	7.620	2.934	6.947	0	0	5.248	33,43
Total Cost	0	102	191	1,1,52	40	3,919	40	3,9/9	40	3,000	1.9/9	7,020	2,934	0,947	V	V	3,240	33,43
Phase-3	FC; x1000		: x1000 J		20		20	10	20	20	203	10	20	24	20	12		tal
Component										22								
5 10	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Branch Sewer			_			3.130		3.130		3.130		3,130		3,130		3,130	0	18,77
Trunk Sewer					306	188	306	188									611	37
Lifting Station					1			-						-		1	0	
Wastewater Treatment Plant	-																0	
Total Construction Cost	0	0	0	0	306	3,317	306	3.317	0	3,130	0	3,130	0	3,130	0	3,130	611	19,15
Engineering Service			18	575	9	287	9	287	6	192	6	192	6	192	6	192	61	1,91
Administration	0	108	0	179	0	71	0	71	0	71	0	71	0	71	0	71	0	71
Physical Contingency	0	0	2	57	31	360	31	360	1	332	1	332	1	332	1	332	67	2,10
Taxes	0	17	3	130	56	647	56	647	1	596	1	596	1	596	1	596	118	3.82
Total of Indirect Cost	0	125	23	941	96	1.365	96	1.365	8	1,191	8	1,191	8	1,191	8	1,191	246	8.55
Total Cost	0	125	23	941	402	4,682	402	4,682	8	4,321	8	4.321	8	4,321	8	4.321	857	27.70

Table 8.42	Annual O&M Cost for Mafraq SWD

									Unit: x100	DID
Annual O&M Cost	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Personnel Cost		32	32	32	32	48	48	48	72	72
Power Cost	20	30	40	49	59	75	91	107	123	139
Other Cost	2	3	4	5	6	8	9	11	12	14
Total O&M Cost	22	65	76	87	97	131	149	166	208	226

Annual O&M Cost	2027	2028	2029	2030	2031	2032	2033	2034	2035
Personnel Cost	121	121	121	121	121	121	121	121	121
Power Cost	152	165	178	190	203	206	209	213	216
Other Cost	15	16	18	19	20	21	21	21	22
Total O&M Cost	288	302	316	330	344	347	351	354	358

# **CHAPTER 9 ECONOMIC AND FINANCIAL EVALUATION**

#### 9.1 Economic Evaluation

### 9.1.1 Specifications for Economic Evaluation

An economic evaluation on the project proposed in the Chapter 5 is carried out in this chapter based on the specifications as presented in Table 9.1.

Table 3.1 Specifications for Economic Evaluation					
Project			Project Cost		Project Benefit
6 SWDs:	1.	Constru	uction and procurem	ent	Reduction of current sewage
1) Central Irbid, 2) Wadi Al-Arab, 3) Shallala,	2.	Increm	ental operation	and	disposal expenditures by the
4) Wadi Hassan, 5) Ramtha, 6) Mafraq		mainter	nance		project
<concept and="" assumptions=""></concept>					
1.Evaluation Measure			Economic Internal Rate of Return (EIRR)		
2.Opportunity Cost of Capital			10% (Referring to Water Resources Management Master		
			Plan of the Hashemite Kingdom of Jordan, JICA, 2001)		
3.Evaluation Period			30 years from the operation start year of the project		
4. Economic Life of Facilities & Equipr	nent		30 years from the construction/installation year		
5.Replacement Costs		Disregarded due to the above 3 and 4			
6.Economic Conversion Factor			0.9 (estimated by the JICA Study Team based on the		
			external trade of the country, DOS)		

### Table 9.1 Specifications for Economic Evaluation

Source: JICA Study Team

### 9.1.2 **Project Benefits**

Currently the cesspits are utilized broadly in the project areas,. The project will make them of disuse anymore. Apparently the sewage disposal expenditures of the cesspits are not necessary anymore on completion of the project. Therefore the project benefit is defined as "the reduction of current sewage disposal expenditures by the project" as presented in Table 9.1. The sewage disposal expenditures are estimated on the basis of manners as presented in Table 9.2.

	Items	Estimates	Note
1.	Capacity of cesspit	$6 \text{ m}^3$	Average of residential houses in Irbid
2.	Frequency of vacuuming the cesspit	Once/month	Once or twice a month are common in Irbid
3.	Vacuuming service charges	$4 \text{ JD/m}^3$	Market price commonly charged in Irbid
4.	Household expenditures for vacuuming	24 JD/month	-

 Table 9.2 Manners to estimate Sewage Disposal Expenditures

Source: JICA Study Team based on the interview in the Irbid suburbs

# 9.1.3 Project Costs

The project costs comprise two items 1) construction and procurement costs (herein after referred to as investment costs), and 2) operation and maintenance costs (herein after referred to as "O&M costs).

In the economic evaluation, the project cost is classified as an "economic cost". The economic cost is calculated by subtracting taxes from the ordinary project costs (namely, financial costs) and multiplying the local portion costs by the economic conversion factor (0.9 for this project as given in Table 9.1). Price escalation due to inflation is disregarded. The item-by-item economic costs are

shown below.

#### (1) Investment Costs

Table 9.3 shows the investment costs of the project.

Table 9.5 Investment Costs (JD million)								
Droigat	Cast	Phase-1	Phase-2	Phase-3	Total			
Project	Cost	2016-2021	2022-2026	2027-2032	Total			
Overall Project	Economic cost	83.3	61.0	90.3	234.6			
	(Ref: Financial cost)	106.7	77.2	115.4	300.3			
1.Central Irbid	Economic cost	1.4	0.0	0.0	1.4			
	(Ref: Financial cost)	1.7	0.0	0.0	1.7			
2.Wadi Al-Arab	Economic cost	27.1	15.5	11.9	54.5			
	(Ref: Financial cost)	34.7	19.8	15.3	69.8			
3.Shallala	Economic cost	12.7	6.7	28.3	47.7			
	(Ref: Financial cost)	16.6	8.6	36.0	61.2			
4.Wadi Hassan	Economic cost	0.0	2.7	5.8	8.5			
	(Ref: Financial cost)	0.0	3.5	7.4	10.9			
5.Ramtha	Economic cost	16.1	7.1	22.3	45.5			
	(Ref: Financial cost)	20.5	9.2	28.4	58.1			
6.Mafraq	Economic cost	26.0	29.0	22.0	77.0			
	(Ref: Financial cost)	33.2	37.1	28.3	98.6			

Table 9.3 Investme	nt Costs (JD million)
--------------------	-----------------------

Note: The financial cost includes taxes. Source: JICA Study Team

# (2) O&M Costs

The economic O&M costs comprise three items as discussed in the Chapter 8: 1) personnel costs, 2) electricity costs, and 3) other miscellaneous costs such as repair/maintenance and chemical. Table 9.4 summarizes the O&M costs of the project.

Table 7.4 Own Costs (5D minon)							
Costa	Phase-1	Phase-2	Phase-3	2022 2047	Total		
Costs	2016-2021	2022-2026	2027-2032	2033-2047	Total		
Economic cost	1.4	3.7	7.8	22.9	35.8		
(Ref: Financial cost)	1.7	4.1	8.6	25.4	39.8		
Economic cost	0.2	0.3	0.4	1.1	2.0		
(Ref: Financial cost)	0.2	0.3	0.5	1.3	2.3		
Economic cost	0.5	1.3	2.2	5.6	9.6		
(Ref: Financial cost)	0.6	1.4	2.4	6.2	10.6		
Economic cost	0.2	0.7	1.7	6.4	9.0		
(Ref: Financial cost)	0.3	0.8	1.9	7.0	10.0		
Economic cost	0.0	0.0	0.2	0.9	1.1		
(Ref: Financial cost)	0.0	0.0	0.2	1.0	1.2		
Economic cost	0.2	0.6	1.6	4.4	6.8		
(Ref: Financial cost)	0.2	0.7	1.7	4.9	7.5		
Economic cost	0.3	0.8	1.7	4.5	7.3		
(Ref: Financial cost)	0.4	0.9	1.9	5.0	8.2		
	CostsEconomic cost(Ref: Financial cost)Economic cost	Phase-1CostsPhase-12016-2021Economic cost1.4(Ref: Financial cost)1.7Economic cost0.2(Ref: Financial cost)0.2Economic cost0.5(Ref: Financial cost)0.6Economic cost0.2(Ref: Financial cost)0.6Economic cost0.2(Ref: Financial cost)0.3Economic cost0.0(Ref: Financial cost)0.0Economic cost0.2(Ref: Financial cost)0.2Economic cost0.2(Ref: Financial cost)0.2Economic cost0.2(Ref: Financial cost)0.2Economic cost0.2	$\begin{tabular}{ c c c c c c } \hline Phase-1 & Phase-2 \\ \hline Phase-1 & 2016-2021 & 2022-2026 \\ \hline Economic cost & 1.4 & 3.7 \\ (Ref: Financial cost) & 1.7 & 4.1 \\ \hline Economic cost & 0.2 & 0.3 \\ (Ref: Financial cost) & 0.2 & 0.3 \\ \hline Economic cost & 0.5 & 1.3 \\ (Ref: Financial cost) & 0.6 & 1.4 \\ \hline Economic cost & 0.2 & 0.7 \\ (Ref: Financial cost) & 0.3 & 0.8 \\ \hline Economic cost & 0.0 & 0.0 \\ (Ref: Financial cost) & 0.0 & 0.0 \\ (Ref: Financial cost) & 0.0 & 0.0 \\ \hline (Ref: Financial cost) & 0.2 & 0.7 \\ \hline (Ref: Financial cost) & 0.0 & 0.0 \\ \hline (Ref: Financial cost) & 0.0 & 0.0 \\ \hline Economic cost & 0.2 & 0.6 \\ (Ref: Financial cost) & 0.2 & 0.7 \\ \hline Economic cost & 0.3 & 0.8 \\ \hline \end{tabular}$	Phase-1         Phase-2         Phase-3           2016-2021         2022-2026         2027-2032           Economic cost         1.4         3.7         7.8           (Ref: Financial cost)         1.7         4.1         8.6           Economic cost         0.2         0.3         0.4           (Ref: Financial cost)         0.2         0.3         0.5           Economic cost         0.5         1.3         2.2           (Ref: Financial cost)         0.6         1.4         2.4           Economic cost         0.2         0.7         1.7           (Ref: Financial cost)         0.6         1.4         2.4           Economic cost         0.2         0.7         1.7           (Ref: Financial cost)         0.3         0.8         1.9           Economic cost         0.0         0.0         0.2           (Ref: Financial cost)         0.2         0.6         1.6           (Ref: Financial cost)         0.2         0.	Costs         Phase-1         Phase-2         Phase-3         2033-2047           Economic cost         1.4         3.7         7.8         22.9           (Ref: Financial cost)         1.7         4.1         8.6         25.4           Economic cost         0.2         0.3         0.4         1.1           (Ref: Financial cost)         0.2         0.3         0.4         1.1           (Ref: Financial cost)         0.2         0.3         0.5         1.3           Economic cost         0.5         1.3         2.2         5.6           (Ref: Financial cost)         0.6         1.4         2.4         6.2           Economic cost         0.2         0.7         1.7         6.4           (Ref: Financial cost)         0.3         0.8         1.9         7.0           Economic cost         0.0         0.0         0.2         0.9           (Ref: Financial cost)         0.0         0.0         0.2         0.9           (Ref: Financial cost)         0.0         0.0         0.2         0.9           (Ref: Financial cost)         0.0         0.0         0.2         1.0           Economic cost         0.2         0.6 <t< td=""></t<>		

Table 9.4 O&M Costs (JD million)

Source: JICA Study Team

# 9.1.4 Results of Economic Evaluation

The economic evaluation is carried out based on the above benefits and costs. The evaluation reveals

that the EIRR of the project results in 18.8% as a whole, which exceed 10% of the opportunity cost of capital (see Table 9.1) though the EIRRs vary from SWD to SWD. Therefore, the project is judged to be economically feasible.

Table 9.5 Results of Economic Evaluation					
Project	EIRR				
Overall Project	18.6%				
1.Central Irbid	50.2%				
2.Wadi Al-Arab	24.6%				
3.Shallala	32.6%				
4.Wadi Hassan	11.9%				
5.Ramtha	18.3%				
6.Mafraq	6.3%				

Source: JICA Study Team

< Sensitivity analysis >

Table 9.6 shows the results of sensitivity analysis on the project as a whole (note: the results of 6 SWDs are attached in Appendix IV respectively.). It must be remarked that the EIRR of the base case 1 maintains a relevant value of 15.1% even if the costs increase by 20%.

Items		Benefits						
Ite		+20%	+10%	base case 1	-10%	-20%		
Investment	-20%	31.9%	28.0%	24.5%	21.3%	18.3%		
costs	-10%	27.0%	23.9%	21.1%	18.5%	16.0%		
	base case 2	23.4%	20.9%	18.6%	16.4%	14.3%		
	+10%	20.8%	18.6%	16.6%	14.7%	13.0%		
	+20%	13.7%	16.9%	15.1%	13.5%	11.9%		

**Table 9.6 Sensitivity Analysis of Overall Project** 

Source: JICA Study Team

< Qualitative analysis >

Obviously the above economic evaluation is figured out only from the monetarily measurable aspects. However, it must be noted that the above project will bring forth many invaluable effects described below, which are difficult to estimate monetarily.

- · Improvement of public hygiene that decreases the incidences of diseases and protects the citizens' health and welfare
- Preservation of natural environment by decreasing the pollutant materials
- Provision of re-usable treated wastewater especially for agriculture
- Improvement of citizens' living environment by exclusion of filthy water ٠
- Improvement of land use, which elevates the land value as a result

Therefore, when considering the foreseeable growing urbanization of the northern governorates, conducting the feasibility study of the above projects is worthy.

### 9.2 Financial Evaluation

A financial evaluation of the project proposed in the Chapter 5 is carried out in this chapter based on the specifications presented in Table 9.7.

Project Component		Costs		Revenues		
6 Sewerage plans as presented in	1.	Investment		Incremental revenues generated		
Chapter 9-1	2.	Incremental operation	and	by the project		
	1	maintenance		(1) Sewerage tariff revenues		
				(2) Sewerage tax revenues		
< Concept and Assumptions>	< Concept and Assumptions>					
1.Evaluation Measure		Financial Internal Rate of Return (FIRR)				
2.Opportunity Cost of Capital		6%: real interest rate as of September 2014				
		= 9% of long-term interest rate (-) 3% of CPI				
3.Evaluation Period		30 years from the operation start year of the project				
4. Economic Life of Facilities & Equipment		30 years from the construction/installation year				
5.Replacement Costs		Disregarded due to the above 3 and 4				

<b>Table 9.7 Specifications</b>	for Financial Evaluation
---------------------------------	--------------------------

Source: JICA Study Team

#### 9.2.1 Incremental Revenues

The incremental revenues are estimated below.

(1) Increase of Revenues from Sewerage Tariffs

Revenues = Incremental treated wastewater flows of the project (X) Present sewerage tariff  $(JD/m^3)$ 

The YWC issues the bill and collects the fees from the customers quarterly. The bill is a combination of 3 categories of tariffs: 1) fixed tariff, 2) variable tariff of water and 3) variable tariff of sewage. So, the total sewerage tariff is unclear because the fixed tariff contains both water and sewerage tariffs. For this, the total sewerage tariff is estimated by the JICA Study Team on the basis of the 2013 financial statement of the YWC as follows. (Incidentally, the YWC will make an accounting of the water and sewerage tariff more clearly from the 2014 financial statement.)

Combined YWC tariff of 2013	$: 0.578 \text{ JD/m}^3$
-Water	: 0.524 (90%)
-Sewerage	: 0.054 (10%)

Thus, a tariff of 0.054 JD/m³ is applied for this financial evaluation (for reference: this tariff is likely to cover only 10% of the entire sewerage cost including the indirect costs such as administration, according to the examination by the JICA Study Team.)

(2) Increase of Revenues from Sewerage Tax

The city and municipality levy the subscribers a tax on their properties by 3% and contribute the collected tax to the YWC. The contribution is estimated at 20 JD/subscriber a year on the basis of the 2013 financial statements and the number of subscribers.

### 9.2.2 Financial Costs

The financial costs of the project are already presented in the Chapter 9.1.3. Incidentally, it should be carefully noted that the financial cost contains only the incremental costs generated by these project.

#### 9.2.3 Results of Financial Evaluation

The financial evaluation is carried out based on the above revenues and costs. The evaluation reveals the FIRRs of every SWD do not exceed 6% of the opportunity cost of capital as presented in Table 9.8. And the project results in -11.6% as a whole. Therefore the benefit-to-cost ratios (B/C ratio) are computed for reference and shown in the table. If the B/C ratio is more than 1.0, a project is judged to be feasible. However, the ratios of the projects are extremely lower than 1.0. It is apparent that the low level of present sewerage tariff is a major reason for the negative FIRR and the low B/C ratios.

Tuble 7.6 Results of T manchar D valuation					
Project	FIRR	B/C Ratio			
Overall Project	-11.6	0.18			
1.Central Irbid	0.1	0.67			
2.Wadi Al-Arab	-9.7	0.24			
3.Shallala	-8.5	0.26			
4.Wadi Hassan	-14.9	0.12			
5.Ramtha	-12.1	0.17			
6.Mafraq	$n/a^{1)}$	0.10			

**Table 9.8 Results of Financial Evaluation** 

Note: 1) Not applicable due to the consecutive negative cash flows of the project through all over the years Source: JICA Study Team

< Sensitivity analysis >

Table 9.9 summarizes the results of sensitivity analysis by applying the conditions that lift the FIRR of the project more than 6%.

• Case 1: tariff increase

The FIRR of the project reaches to higher than 6% as a whole if the tariff increases 14.1 times as much as the current tariff. However, the tariff after increase will be far beyond the affordable level of 0.309  $JD/m^3$  (estimated based on the affordability-to-pay for sewerage service, which is 1% of household income a month, 500 JD, and water consumption/capita).

- Case 2: grant to the investment costs
   The FIRR of the project will exceed 6% as a whole without any increase of tariff if the investment costs are granted as much as 89%.
- Case 3: combination of tariff increase and government grant Table 9-9 shows that the FIRR of the project exceed 6% as a whole if the combination is applied: the tariff increases by 5.7 times and the grant to the investment costs up to 60%. The tariff after the increase will be 0.308 JD/m³, which goes into the affordable level.

Basically, a financial analysis of the project is carried out applying the own funds such as incremental

revenues generated by the project. As a result, the FIRR indicates negative as a whole (see Table 9.8). Meanwhile, as discussed in the above sensitive analysis, the tariff increase and/or the government grant to the investment costs will lift the FIRR of the project to the feasible level of 6%. However, the substantial increase of the tariffs may be hardly put in effect¹. Therefore, the government grants as a part of the investment costs, that is case 2, are considered as the most desirable measures to make the project viable.

Ducient	(a) Increas	se of tariff	(b) G	FIRR	
Project	Multiples	JD/m ³	% of Inv. Costs	JD million	FIKK
Case 1: Increase of ta	riff (no	te: affordable tariff i	s estimated at: 0.309)	)	
Overall Project	14.2	0.77	-	-	6.1%
1.Central Irbid	2.8	0.15	-	-	6.1%
2.Wadi Al-Arab	11.2	0.61	-	-	6.1%
3.Shallala	9.7	0.53	-	-	6.1%
4.Wadi Hassan	22.8	1.24	-	-	6.0%
5.Ramtha	13.9	0.76	-	-	6.0%
6.Mafraq	29.0	1.58	-	-	6.0%
Case 2: Grant to invest	tment costs				
Overall Project	-	-	89%	267.0	6.3%
1.Central Irbid	-	-	65%	1.1	6.4%
2.Wadi Al-Arab	-	-	86%	60.0	6.3%
3.Shallala	-	-	80%	49.6	6.2%
4.Wadi Hassan	-	-	92%	10.0	6.1%
5.Ramtha	-	-	89%	51.7	6.2%
6.Mafraq	-	-	96%	94.6	6.3%
Case 3: Combination of	of tariff increase ar	nd grant			
Overall Project	5.7	0.308	58%	176.1	6.2%
1.Central Irbid	2.8 ¹⁾	0.15 2)	-	-	6.1%
2.Wadi Al-Arab	5.7	0. 308	47%	32.8	6.1%
3.Shallala	5.7	0. 308	38%	23.3	6.1%
4.Wadi Hassan	5.7	0. 308	74%	8.0	6.0%
5.Ramtha	5.7	0. 308	57%	33.1	6.1%
6.Mafraq	5.7	0. 308	80%	78.9	6.2%

 Table 9.9 Results of Sensitivity Analysis

Note: 1) and 2) - same as the case 1 because of less than affordable level Source: JICA Study Team

#### < Cash flow analysis >

Table 9.10 presents the phase-by-phase net cash flow of the above case 2 over the project evaluation period. The net cash flow will continue to be negative until the end of the phase-3 mainly due to the remaining burden of the investment costs, but turn out to be continuously positive from 2030 after completion of the construction and also to be black cumulatively from 2037. The accumulated negative net cash flow will reach to 12.2 million JD by the end of phase-3. This amount averages 0.76 million JD per annum, which is estimated at less than 10% of the annual average WAJ subsidies contributed to the YWC from 2011 and 2013. If the said negative amount is covered with the similar

¹ According to the YWC top management, the water and sewerage tariff change is the political issues in the country. The cabinet committee under the prime ministry will decide the tariff un-periodically. The water companies inclusive the WAJ can hardly intervene in it. The sewerage tariff of the YWC increases only by 15%, meter reading basis from October 2014 and billing basis from January 2015: however, no water tariff change is instructed in this year.

subsidies, the project could be financially sustained during the period in the red.

(For reference: in terms of covering the incremental O&M cost only, the current tariff may sufficiently cover it from the phase-1: see Table 9.10.)

Table 9.10 Net Cash Tiow (SD minion)									
Casa	Account Items	Phase-1	Phase-2	Phase-3	ACOC	Total			
Case	Account items	2016-2021	2022-2026	2027-2032	2033-2047	2016-2047			
Case 2 of Table 9-9	Incremental costs	13.5	12.4	21.0	27.0	73.9			
(Overall Project)	Incremental revenues	4.4	10.0	20.3	67.4	102.1			
	Net cash flow (CF)	-9.1	-2.4	-0.7	40.4	28.2			
	Accumulated CF	-9.1	-11.5	-12.2	28.2	-			
Reference: if to cover incremental O&M costs only									
Base Case: current tariff	Net CF	2.7	6.0	11.7	40.7	61.1			

Table 9.10 Net Cash Flow (JD million)

Note: ACOC = after completion of construction Source: JICA Study Team

### 9.2.4 Financing Consideration for Investment Costs

#### (1) Government Budget

Table 9.11 presents the budget of the Government from 2013 to 2016. The budget of 2014 totals up to 8,100 million JD; that is 6,800 million JD for current expenditures and 1,300 billion JD for capital expenditures (herein after referred to as Capex). Meanwhile, the Capex budget allocated to the MWI is 65 million JD, 5% of the Jordanian Government Capex budget. Only a small amount, 2 or 3 million JD, of the Capex of the MWI will be allocated to subsidize to the WAJ from 2014.

Tuble 7111 Expenditure Dudget of Government (minion 0D)								
Organizations	Europhitumos	2013	2014	2015	2016			
Organizations	Expenditures	Re-estimate	Budget	Indicative	Indicative			
Jordanian		6,155	6,828	7,168	7,515			
Government (JG)	Capital	1,021	1,268	1,333	1,401			
	Total	7,176	8,096	8,501	8,916			
- Allocated/to be	Current	2	2	2	2			
allocated to	Capital	63	65	55	33			
MWI	Total	65	67	57	35			
Capital Budget of MWI to JG (%)		6%	5%	4%	2%			

 Table 9.11 Expenditure Budget of Government (million JD)

Note: The figures of the Jordanian Government are inclusive of the MWI. Source: General Budget Department, Ministry of Economy and Finance

# (2) Budget of WAJ

Table 9.12 shows the expenditure budget of the WAJ. The Capex of the WAJ amounts to 260 million JD in 2014, 75% of total expenditure budget. The YWC budget is not presented because almost all Capex for the development project are financed by the Government including that of the WAJ.

Europelitures	2013	2014	2015	2016
Expenditures	Re-estimate	Budget	Indicative	Indicative
Current	85	86	79	79
Capital	168	260	270	270
Total	253	346	349	349

Table 9.12 Expenditure Budget of WAJ (million JD)

Source: General Budget Department, Ministry of Economy and Finance

(3) Capex Budget of MWI and WAJ for Water and Sewerage

Table 9.13 illustrates the sector-wise Capex budget by organization (the MWI and the WAJ) and reveals that around 40% goes to the sewerage sector. The annual average Capex for the sewerage sector over the 4-year period from 2013 up to 2016 is estimated at 102 million JD.

Table 7.15 Capital budget of W1 w1 and WAS by Sector (minion 5D)								
Sectors	Organizations	2013	2014	2015	2016	Average		
Sectors	Organizations	Re-estimate	Budget	Indicative	Indicative	of 4 years		
Water	MWI	48	48	35	9			
	WAJ	84	156	165	162			
	Total	132	204	200	171	176.7		
Sewerage	MWI	15	17	20	24			
	WAJ	72	87	88	87			
	Total	87	104	108	111	102.1		
Total	MWI	63	65	55	33			
	WAJ	155	243	252	249			
	Total	218	308	307	282	278.8		
% by Sector	Water	61%	66%	65%	61%	63%		
	Sewerage	39%	34%	35%	39%	37%		

Table 9.13 Capital Budget of MWI and WAJ by Sector (million JD)

Note: The difference between this table and Table 9-8 and -9 is the indirect Capex such as administration. Source: General Budget Department, Ministry of Economy and Finance

#### (4) Financial Appropriation for Investment Costs

Table 9.14 is a summary of the phase-wise annual average investment costs calculated based on Table 9.3. The annual required costs for the 3 phases are 17.8 million JD, 15.6 million JD and 19.2 million JD, respectively.

	Phase-1		Phase-2		Phase-3		Total		
Project	2016-2	2021	2022-2026		2027-	2027-2032		2016-2032	
Floject	Entire	Year	Entire	Year	Entire	Year	Entire	Year	
	Phase	Average	Phase	Average	Phase	Average	Phase	Average	
Overall Project	106.6	17.8	78.2	15.6	115.5	19.2	300.3	17.6	
1.Central Irbid	1.7	0.3	-	-	-	-	1.7	0.1	
2.Wadi Al-Arab	34.7	5.8	19.8	4.0	15.3	2.6	69.8	4.1	
3.Shallala	16.5	2.7	8.6	1.7	36.1	6.0	61.2	3.6	
4.Wadi Hassan	0.0	0.0	3.5	0.7	7.4	1.2	10.9	0.6	
5.Ramtha	20.5	3.4	9.2	1.8	28.4	4.7	58.1	3.1	
6.Mafraq	33.2	5.5	37.1	7.4	28.3	4.7	98.6	5.8	

 Table 9.14 Annual Average Project Investment Costs by Phase (million JD)

Source: JICA Study Team

Table 9.15 shows the sources of funds for the sewerage sector Capex. It reveals that large part of

funds for the entire Jordanian sewerage project is derived from the WAJ domestic funding including the own revenues, debts, and the foreign grants. Also the foreign loans play an important role in the sewerage sector. Apparently, the Government guaranty enables and secures the WAJ to raise funds from the internal and external loans including bond issues.

Sources of Funds	2013	2014	2015	2016	Ave	erage
Sources of Funds	Re-estimate	Budget	Indicative	Indicative	of 4years	%
1.Government Budget	15	16	20	24	19	19%
2. WAJ	65	87	88	87	81	81%
1) Domestic Funding	24	26	32	33	28	28%
2) Foreign Loans	10	25	25	24	21	21%
3) Foreign Grants	31	36	31	30	32	32%
Total	80	103	108	111	100	100%

Table 9.15 Sources of Funds for Jordanian Sewerage Sector Capex (million JD)

Note: The difference form Table 9-10 is the government subsidies to the WAJ which is disregarded because it is already contained in the Government budget.

Source: General Budget Department, Ministry of Economy and Finance

For financing the project, 3 sources of funds are expected as shown in Table 9.16: 20% from the government budget, 30% from the WAJ own funds and 50% from international donors' funds, assuming he current financing situation of Table 9.13 would continue.

The annual burden of the WAJ will be 5.3 million JD that equal to 18.9% of the WAJ own funds. Up to 10% is empirically assumed to be an affordable level for one project. To reduce the burden of the WAJ and cover these excessive costs, it is proposed a supplementary government budget appropriation and additional international donors' funds.

<b>–</b>		U V	,		
	Phase-1	Phase-2	Phase-3		
Items	Items				
	6 years	5 years	6 years		
1. Annual Average Investment Costs (se	17.8	15.6	19.2		
2.Expected Source of Funds based on cu	urrent financing (see Table 9-14)	17.8	15.6	19.2	
1) Government Budget:	20%	3.6	3.1	3.8	
2) WAJ own Funds:	30%	5.3	4.7	5.8	
3) International Donors' Funds	8.9	7.8	9.6		
3.Annual burden of WAJ (average of 17	5.3 (equal t	to18.9% of WAJ	own funds)		

Table 9.16 Expected Source of Funds for the Project (million JD)

# CHAPTER10 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

#### **10.1 Environmental and Social Considerations**

The purpose of the Environmental and Social Considerations is to ensure that sewerage improvement plans are environmentally and socially sound and sustainable and that the environmental consequences of the project are recognized early and taken into account in the project design. The procedures should follow the Jordanian Laws and JICA's Guidelines for Environmental and Social Considerations are also taken into account.

# 10.1.1 Outline of the Sewerage Improvement Plan

Components of the sewerage improvement plan subject to Environmental and Social Considerations are shown in and Table 10.2.

<b>Table 10.1</b>	Components	of the Sewerage Improvement Plans subject to Environmental and
Social Cons	iderations (1)	- Sewerage Planning Bases and Sewers and Lifting Stations -

Item	Sewerage District (SWD)	Central Irbid	Wadi Al-Arab	Shallala	Wadi Hassan	Ramtha	Mafraq
1. Service Planning Area (ha)							
	Existing(A)	696	2,409	4,053	1,124	1,021	839
	Planning(B)	696	4,613	6,523	1,453	2,483	3,770
	Increase(B-A)	0	2,204	2,470	329	1,462	2,931
	[B/A×100-100(%)]	0	91	61	29	143	349
2. Se	rvice Population (person)						
[	Population [2012]	104,440	202,796	135,442	37,928	127,013	155,729
	Population Projected [2035]	118,200	328,900	307,200	25,400	201,200	156,200
3. Fl	ow (m ³ /day)						
[	Actual Flow [2013]	8,104	11,281	3,497	1,277	4,477	1,710
Ì	Ave. Daily Flow [2035]	10,900	28,500	22,500	2,500	17,300	14,400
4. De	esign Capacity(m ³ /day)	,				· · · · · · · · · · · · · · · · · · ·	
[	<b>P</b> 1 (1)	12,000	21,000	14,000	2,800	8,800	7,200
	Existing (A)	(6,000×2)	(3,500×6)	(7,000×2)	(1,400×2)	(4400×2)	(3,600×2)
	Dianning (D)	12,000	31,500	21,000		17,600	14,400
	Planning (B)	(6,000×2)	(3,500×9)	(7,000×3)	-	(4,400×2)	(3,600×4)
5. Li	fting Station Capacity (m ³ /n	nin)					
	Existing(A)	-	Hakama q=3.90	Sal q=3.80	Al Hoson Camp q=4.20	-	-
	Planning(B)	-	Hakama q=6.22	Sal q=3.93 Al Hoson Camp q=5.62	-	-	Mafraq q=2.14 Mansha q=3.25
6.Tru	nk Sewer Planned	-	-	φ 200DIP L=3.30 km φ 300CP L=4.55 km	-	φ 150DIP L=2.40 km, φ 200DIP, L=15.09 km, φ 300CP, L=4.32 km	φ 200DIP, L=2.80 km φ 250DIP, L=3.75 km φ 300CP, L=18.41 km
7.Bra	unch Sewer Planned(km)	-	316.14	256.85	60.97	215.58	441.85

# Table 10.2 Components of the Sewerage Improvement Plans subject to Environmental and **Social Considerations (2)**

		1	2	3	4	5
	WWTP Name Item	Irbid Central	Wadi Al-Arab	Shallala	Wadi Hassan	Ramtha
1	Coarse Screen	(2)	(2)	(2)	(2)	(1)
2	Fine Screen	(2)	(2)	(2)	(1)	(3)
3	Grit Chamber	(2)	(1)	(2)	(1)	(2)
4	Grease Chamber		(1)	(2)	(1)	
5	Equalization Pond					(2)
6	Equalization Tank		(1)	(5)		
7	Primary Sedimentation Tank	(2)		(2) <b>+1</b>		
8	Lifting Station					(1)
9	Lift Pump Station	(1)				
10	Trickling Filter					
11	Aeration Tank		(6) <b>+3</b>			(2) <b>+2</b>
12	Oxidation Ditch	(2)*		(2)+1	(2)+1	
13	Final Sedimentation Tank	(2)*	(6) <b>+3</b>	(2) <b>+1</b>	(2)+1	(2) <b>+2</b>
14	Polishing Pond				(4)	(10)
15	Sand filter		(2)*			
16	UV disinfection		(2)*			
17	Disinfection (Chlorine Contact)	+2	2	(1)	(1)	(2)
18	Sludge Thickener	1		(3)		(2)
19	Dewatering Machine	+2	3			+2
20	First Digestion Tank			(2)		
21	Second Digestion Tank			(1)		
22	Belt Thickener			(2)		
23	Centrifugal Dehydrator			(2)		
24	Anaerobic Digestion Tank	1				
25	Sludge Holding Tank	1	1		(1)	
26	Sludge Drying Bed				(16)+44	
27	Irrigation Reservoir					(1)

- Proposed plans of wastewater treatment facilities in the respective WWTP-

Note; (): Existing, ()*: Under construction, +: Proposed new construction in the Study

		6-1
	WWTP Name Item	Mafraq
1	Coarse Screen	(1) <b>+1</b>
2	Fine Screen	(2) <b>+2</b>
3	Wet Weather Storage Lagoon	(1)
4	Oil & Grease Removal	(2) <b>+2</b>
5	Sedimentation/ Thickening Tank	(2) <b>+2</b>
6	Denitrification Basins	(2) <b>+2</b>
7	Aeration Stabilization Basins	(10) <b>+10</b>
8	High Rate Nitrification Basin	(2) <b>+2</b>
9	Facultative Lagoon	(2) <b>+2</b>
10	3 Steps Fed Nitrification-Denitrification Reactor	
11	Final Sedimentation Tank	
12	Sand Filter	(3) <b>+3</b>
13	Reed Bed	(2) <b>+1</b>
14	Chlorine Disinfection	(1) <b>+1</b>
15	Sludge Storage/Stabilization Lagoon	(2)+4
16	Sludge Drying Bed	(26) <b>+26</b>
17	Window Compositing	(1)

Note; ( ): Existing, ( )*: Under construction, +: Proposed new construction in the Study Source: JICA Study Team

# 10.1.2 Current Status of Environment and Society

# (1) Land Use

Project area is shown in satellite picture, google map (Figure 10.1). Land use of each sub project is described below.

#### Surrounding area of target WWTP

The WWTPs are i) Central Irbid WWTP, ii) Wadi Al-Arab WWTP, iii) Wadi Shallala WWTP, iv) Wadi Hassan WWTP, v) Ramtha WWPT, vi) Mafraq WWTP. These WWTPs, except for Central Irbid WWTP, are located in farmland, wasteland or on both side of Wadi, and at least a few km apart from residential area. But the Central Irbid WWTP is located in the northwestern of Irbid city area, and is surrounded by many of stone processing plants, slaughterhouse, and general housing.

# 2) Trunk Sewer

The target new trunk sewers are planned in i) Shallala SWD, ii) Ramtha SWD and iii) Mafraq SWD. The sewers will be installed along the existing roads running the local cities or small towns.

#### 3) Branch Sewer

Branch sewers are planned to collect the wastewater generated in the new sewerage service area in the i) Wadi Al Arab WSD, ii) Wadi Shallala SWD, iii) Wadi Hassan SWD, iv) Ramtha SWD, and v) Mafraq SWD. These are local cities and small towns.

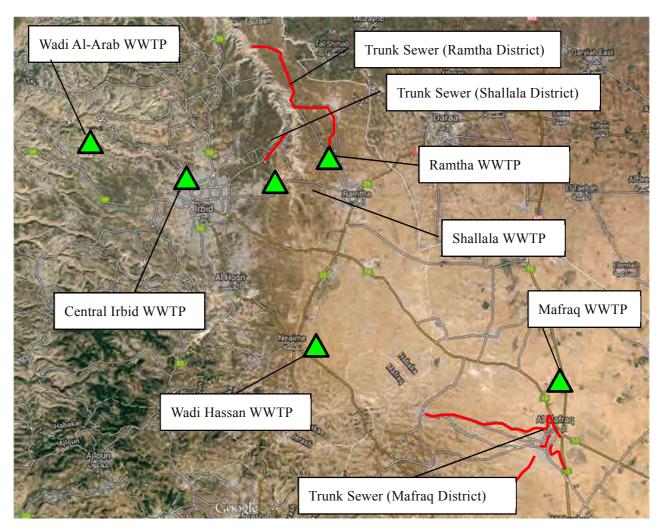



Figure 10.1 Locations of Main Sewerage Facilities

# (2) Natural Environment

# 1) Reserve Area

Nature reserve areas in the northern 4 governorates are shown in and Figure 10.2. Nature reserves are located very far from target areas of the sewerage MP at a distance of more than 10 km. Hence, the implementation of the proposed sewerage components could not have any adverse impacts for these nature reserves.

Name of Decomin	Ailann Fanast Dasamus	Dihaan Fanat Dagama	Vouus aula Notana Dogoma	
Name of Reserve	Ajloun Forest Reserve	Dibeen Forest Reserve	Yarmouk Nature Reserve	
Year of the	1988	2004	2010	
establishment				
Management	RSCN	RSCN	RSCN	
organization				
Purpose of	Forest conservation,	Forest conservation,	Natural Conservation	
establishment	evergreen oak forest	pine-oak forest		
Relevant laws	National parks and	National parks and	Proposed by RSCN,	
	natural reserves	natural reserves	unspecified	
	regulation No.29, 2005	regulation No.29, 2005		
Relevant Ministry	Relevant Ministry Ministry of Environment		—	
	(MOE)	(MOE)		

 Table 10.3
 Natural Conservation Area in the Northern 4 Governorates

Name of Reserve	Ajloun Forest Reserve	Dibeen Forest Reserve	Yarmouk Nature Reserve
Area	$13 \text{ km}^2$	$8.5 \text{ km}^2$	$20 \text{ km}^2$
Distance from the	19 km	23km	11 km
target area			

Note) RSCN: Royal Society for the Conservation of Nature Source: JICA Study Team

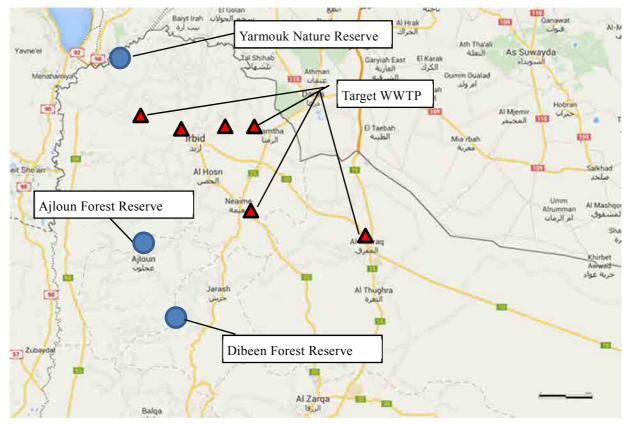


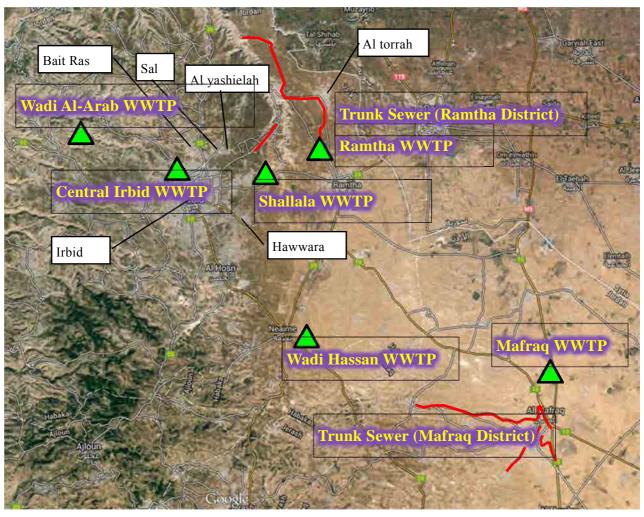

Figure 10.2 Site Map of Project and Nature Reserve Area

# 2) Conservation of River Basin

The watershed exists on the eastern side near the center of Irbid urban area. Wadi Al-Arab Basin is located on the western side. Wadi Shallala Basin in Yarmouk River system lies on the eastern side. Wadi Al-Arab basin with well-field area is not designated specifically as a conservation area.

# (3) Historical and Cultural Heritage Area

The sites around the Project area where remains and relics have been found are shown in Table 10.4 and Figure 10.3. According to Antiquities Law No. 23, 2004 (Antiquities Law No.12, 1987 revised), Department of Antiquities in Ministry of Tourism and Antiquities is responsible for excavation and investigation of remains and relics. Remains and relics are excavated following the Old Stone Age around the proposed sewerage areas. The sites where remains and relics have been found are located along the old highway from Palestine to Damascus and Baghdad.


The sites of remains and relics related to the proposed sewerage areas are mainly in Irbid, surrounding Hawwara, Bait Ras, Sal, Al Yasielah and Al Turra. In Hawwara, the site of remains is

Ayyubid/Mamluk as listed in Table 10.4. In the past, Roman grave and ceramics were found and investigated during the installation of pipeline in Hawwara.(Ismael Melhem and other, Three Buriaks from Roman era at Hawwara/ Irbid, ANNUAL OF THE DEPARTMENT OF ANTIQUITIES OF JORDAN, Volume 55, 2011).

Era	Irbid	Hawwara	Bait Ras	Sal	Al Yasielah	Al Turra
Umayyad	0	0	0	0	0	0
Abbasid	-	0	0	0	0	0
Ayyubid/Mamluk	0	0	0	0	0	0
Ottoman	0	_	0	0	0	0
Hellenistic	-	_	-		_	_
Roman	0	_	0	0	_	0
Late Byzantine	0	-	0	-	-	-
Middle Byzantine	0	-	-	0	-	-
Early Byzantine	0	_	_	0	_	_
Iron Age	0	_	_	0	_	0
Late Bronze	_	_	_	_	_	-
Middle Bronze	-	-	—	-	-	-
Early Bronze	_	_	_	_	_	-
Chalcolithic	-	-	-	-	-	-
Neolithic	-	-	-	-	-	_
Epi-Paleolithic	-	-	-	-	-	-
Paleolithic	_	_	_	_	_	_

 Table 10.4
 Sites around the Project Area where remains have been found in past

○ Sites where Remains and relic have been found in past (Source: Dar As-Saraya Museum Guide, 2007, Department of Antiquities)



*Exact locations of sites where remains and relics have been found are not shown Source: JICA Study Team

# Figure 10.3 Antique Sites in and around the Project Areas

# 10.1.3 Laws and organization of Environmental and Social Considerations

# (1) Laws and regulations related to Environmental and Social Considerations

The Environmental Impact Assessment (EIA) is mainly enforced by the following Law and Regulation in Jordan.

- Environmental Protection Law No. 52 of 2006
- •Environmental Impact Assessment Regulations No. 37 of 2005

Projects subject to the EIA are designated in Annex 2 (for comprehensive EIA) and Annex 3 (for Initial Environmental Examination (IEE)) of EIA Regulations No. 37 of 2005 as shown in Table 10.5. According to the EIA Regulations, the proposed projects are subject to the IEE as described in the item 6 of Annex 3, "Infrastructure projects including housing projects". In the examination of the Master Plan (M/P), Environmental and Social Considerations at IEE level was conducted in

accordance with the EIA Regulations and the JICA's Guideline for Environmental and Social Considerations.

		Projects subject to EIA	Projects subject to IEE	
	1.	Raw petroleum Refining	1. Agriculture Projects:	
	2.	Electricity generating plants	- Poultry Farms if the capacity exceed 30.000	
	2. 3.	An establishments designed as permanent	birds	
	5.	stores or as landfills for the irradiant nuclear	- Caws Farms if the capacity exceed 50.000 caws	
	wastes		- Sheep Farms Caws Farms if the capacity exceed	
	4.	Iron and steel factories	1.000 sheep	
	ч. 5.	Establishments for extracting, treatment,	2.Minerals treatment projects:	
	5.	conversion the asbestos and the substances	<ul> <li>Iron and steel works including galvanizing,</li> </ul>	
		which asbestos part of its structure	varnish factories	
	6.	Integrated chemical industries such as:	<ul> <li>Establishments producing non-irony</li> </ul>	
	- U.	Petrochemicals	minerals including production, purification	
	_	Fertilizers, pesticides and peroxides	(washing), liquefying, demonetizing	
		industries	(pulling) and galvanizing processes	
	_	Chemical products, petrochemicals and	<ul> <li>Compressing Bullions</li> </ul>	
		petroleum storage facilities	<ul> <li>Treatment of minerals surfaces and covering</li> </ul>	
	7.	Roads, airports and rails constructing projects	(coating)	
	8.	Hazardous wastes treatment plants and	<ul> <li>Boilers, cisterns, tanks, industrialized from</li> </ul>	
		disposal from these wastes.	minerals plates	
	9.	Establishing the industrial cities	<ul> <li>Establishments for felting and scorching</li> </ul>	
		Extraction industries:	(roasting) raw minerals	
	-	The excavating processes for water and the	<ul> <li>Complexes industry and aligning</li> </ul>	
Ħ		geo- thermal digging except the digging for	(collecting).	
Items		investigating the soil	3.Food Industries:	
su	-	Mining processes and relevant industries	- Oils, animal and vegetarian fats.	
	-	Natural fortunes extraction	- Bottling, Packaging the animal and	
	11.	Generating energy industries	vegetarian products	
	-	The industrial establishments which	<ul> <li>Milk products industry</li> </ul>	
		producing electricity, vapor, hot water	4.Fabric, leather, wood, papers and tissues	
	-	The industrial establishments which	industries	
		conveying gas, vapor, hot water and	5.Rubber industry	
		electrical energy	6.Infrastructure projects including housing	
	-	Natural gas surface storage	projects	
	-	Flammable gases storage underground	7.Other projects:	
		surface	- Municipal landfills	
	-	Fossil fuels surface storage	- Landfill for disposal from junk.	
		Tanning (leathers) factories	- Sports activities centers.	
		Sugar factories	- Junk storage establishments.	
		Yeast factories	8. Any additions, amendments on the projects that	
		Building up Marine ports	mentioned in this annex.	
	16.	Establishing ships and boats for industrial		
	1 -	and recreational purposes		
	17.	Sea dumping for using the land in industrial		
	10	and recreational uses		
		Glass factories		
		Establishing slaughterhouses (abattoirs)		
	Ar	nnex 2, EIA Regulations No. 37 of 2005	Annex 3, EIA Regulations No. 37 of 2005	
Legal basis				
jal				
<u> </u>		MOE		

Table 10.5Projects Subject to EIA and IEE

Source: MOE

EIA is enforced by the following procedures in Jordan.

- i) Project implementation organization submits the project overview document for examination to Directorate of Licensing & Guidance in MOE.
- ii) MOE calls the meeting of central license committee. If necessary the committee will confirm current status of construction site. Based on the review by the committee, it will be decided to implement the Comprehensive EIA (Holding of Public Hearings), IEE (No Holding of Public Hearings), or no EIA. The result is noticed by the MOE to the Project implementation organization within 45 days of the submission of the document.
- iii)Based on the result of decision in the committee, if needed, Project implementation organization implements EIA and submits the result to MOE. The committee meeting is held and the authorization or modified instructions is given as applicable.
- iv) After approval of EIA (for the Projects that require EIA), construction or project is permitted.
- v) MOE implements the monitoring for checking the parameters included in EIA during the construction period

Flow of EIA procedures is shown in Figure 10.4.

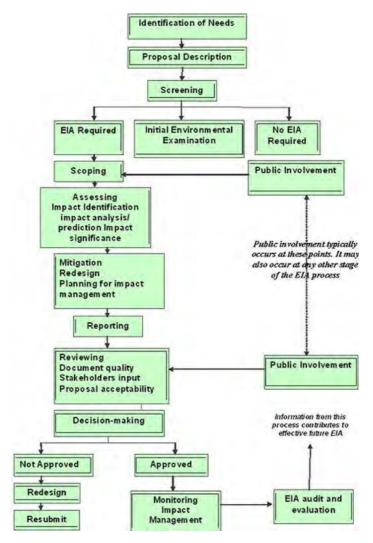



Figure 10.4 Flow of EIA Procedures

Regarding the contents of Project documents to be submitted for the examination, Directorate Licensing & Guidance in MOE and WAJ (Water Authority of Jordan) in charge of environment explained that there is no standard form and explained to submit project outline, planning and drawing for confirmation of project site, specifications and catalog of main installation equipment, document for Environmental evaluation.

# (2) Relevant organization

# 1) MOE

Organization chart of MOE is shown in Figure 10.5.

The department responsible for supervision and EIA approval is Directorate of Licensing & Guidance under MOE.

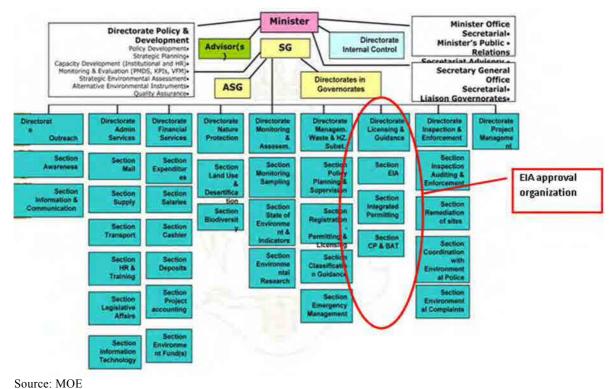
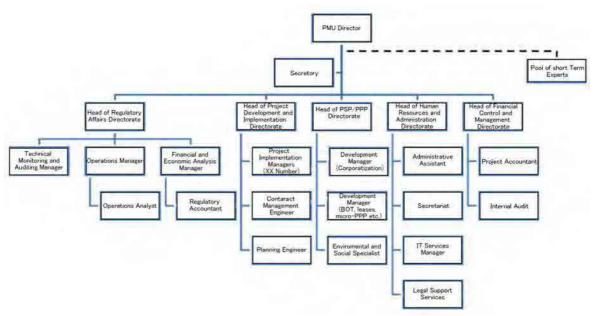




Figure 10.5 Organization of MOE and EIA Approval Organization

# 2) WAJ

The division responsible for EIA management in WAJ is PMU: Project Management Unit. For this purpose, in PMU there is technical monitoring, Department of inspection, and Environmental and Social expert. Organization chart of WAJ PMU is shown in Figure 10.6.



Source: WAJ

Figure 10.6 Organization of WAJ PMU

## **10.1.4** Examination of Development Alternatives

### (1)Examination of Development Alternatives at Concept Level

Development alternatives at concept level were not examined in the sewerage improvement plan but in the M/P for water supply, because the M/P for wastewater management should be elaborated according to the prospected increase of water consumption proposed in the M/P for water supply.

### (2) Examination of Development Alternatives at Component Level

As well as the M/P for water supply, the components of the sewerage plans are mainly the improvement of existing facilities and network. There were two development alternatives: a new WWTP construction in consideration of gravity discharge system without LS, or expansion of existing WWTP in line with new construction of LS in Ramtha north area. As shown in Table 10.6, considering the scale of land acquisition, improvement of existing WWTP and necessary new construction of LS are recommended in the proposed sewerage improvement plan.

		Development Alternatives				
	Without Sewerage	Ontion	Proposed Sewerage			
	Improvement Plan	Option	Improvement Plan			
		- Expansion of existing WWTP in YWC land area				
	N/A	- Expansion of trunk sewer and branch sewer				
Contents		- In Ramtha north area, a new WWTP construction in consideration of	-Expansion of existing WWTP in YWC's land areas.			
		gravity discharge system without LS	- New construction of LS in Ramtha north area			

<b>Table 10.6</b>	<b>Development Alternatives</b>
-------------------	---------------------------------

	Development Alternatives					
	Without Sewerage	Ontion	Proposed Sewerage			
	Improvement Plan	Option	Improvement Plan			
	<-> Over flow of <+> Improvement of wastewater management condition					
	wastewater in	<-> Temporary inconvenience related to construction				
Anticipated	residents' areas	<-> Land acquisition for a new	<-> Land acquisition for a new			
Anticipated impact	<-> Serious	WWTP	LS			
mpact	deterioration of	>>>New construction of LS is considered to have less negative impact				
	wastewater	than new WWTP construction in view of environmental				
	treatment capacity	consideration.				

Source: JICA Study Team

# **10.1.5** Scoping and Terms of Reference of Environmental and Social Considerations

Scoping of Environmental Item and Reason of evaluation in this Project (Component B) is shown in Table 10.7.

			Evaluation		
Category	No.	Item	Before and during construction	Operation	Reason of evaluation
	1	Air quality	B-	D	Construction Stage: Temporary deterioration in air quality is expected by construction activity. Operation Stage: Negative impact is not expected.
	2	Water quality	B-	D	Construction Stage: Water pollution by discharge from construction site, Operation Stage: Negative impact is not expected assuming that the proper processing of discharge and sludge is conducted.
Environmental consideration-	3	Wastes	D	D	Construction Stage: Small amount of wastes such as packing materials for construction materials, etc. Operation Stage: Negative impact is not expected.
pollution control	4	Soil pollution	B-	D	Construction Stage: Possibility of the soil pollution by oil from construction machines and vehicles. Operation Stage: Negative impact is not expected.
	5	Noise and vibration	B-	D	Construction Stage: Noise is expected from construction machines and vehicles. Operation Stage: Negative impact is not expected.
	6	Land subsidence	D	D	Land subsidence is not expected.
	7	Offensive odor	B-	B-	Construction Stage: There is a possibility that a bad smell occurs temporarily at the time of joining new house connection pipe to

 Table 10.7
 Scoping (the Master Plan for Wastewater)

			Evaluation		
Category	No.	Item	Before and during construction	Operation	Reason of evaluation
					branch sewer. Operation Stage: Offensive odor might affect on residential area (e.g. Irbid central WWTP)
	8	Substratum	D	D	The work that modifies on substratum is not included.
	9	Reserve area	D	D	Reserve Area does not exist in and around the target site of the sewerage improvement plans.
Environmental consideration- natural	10	Ecosystem	D	D	Project area is urban and its suburbs where people are living. The area does not include any protected animals and plants. No negative influence on ecosystem is expected.
environment	11	Hydrology	D	D	Alteration of Hydrology is not expected.
	12	Topography, geological feature	D	D	Alteration of Topography, geological feature is not expected from expansion of existing WWTP, construction of trunk sewers, and expansion of branch sewer along existing roads.
	13	Resettlement	D	D	No resettlement due to the Project is expected.
	14	Poor classes	D	B+	Construction Stage: No negative impact on poor class is expected. Operation Stage: Residents including the poor can enjoy the improvement of wastewater management
	15	Ethnic minorities and indigenous peoples	D	D	Ethnic Minorities and Indigenous Peoples do not inhabit in the project area.
Social consideration	16	Refugees	D	B+	Construction Stage: No negative impact is expected. Operation Stage: Residents including refugees can enjoy the improvement of wastewater management
	17	Local economy	B-	D	Construction Stage: Construction might temporarily affect on offices/shops close to construction site Operation Stage: No negative impact is expected.
	18	Land use and local resource use	D	D	No negative impact on land use and local resource use is expected.
	19	Water use	D	D	No negative impact on water use is expected.
	20	Existing social infrastructure and social	B-	B+	Construction Stage: In the case that the measures for sewage leakage are insufficient, there is a

			Evaluation		
Category	No.	Item	Before and during construction	Operation	Reason of evaluation
	21	service Social capital and social	D	D	possibility of water source contamination. During the construction, some inconveniences such as temporary interruption of sewage services and traffic regulation may occur. Operation Stage: Positive impacts such as the improvement of wastewater management are expected. No negative impact on social capital and social organizations is
	22	organizations Imbalance of profit and	D	D	expected. No negative impact on the balance of profit and damage is expected.
	23	damage Local conflict	D	D	No conflict in local community due to the Project is expected.
	24	Cultural heritage	C-	D	Construction Stage: There is possibility to find remains and relics during the excavation. Operation Stage: Negative impact on cultural heritage is not expected.
	25	Landscape	D	D	No negative impact on landscape is expected.
	26	Gender	D	D	No negative impact on gender is expected.
	27	Rights of the child	D	D	No negative impact on the rights of the child is expected.
	28	Infectious diseases such as HIV/AIDS	C-	D	Construction Stage: There is a possibility to spread infectious diseases due to the inflow of labor if there is no appropriate health and hygiene instruction. Operation Stage: Negative impact is not expected.
	29	Work Environment	B-	D	Construction Stage: Working environment of labor is expected to deteriorate temporarily by aggravation of the air quality, noise, vibration. Operation Stage: Negative impact is not expected.
Others	30	accident	В-	D	Construction Stage: The consideration for the accidents such as traffic accidents is necessary. Operation Stage: T Negative impact is not expected if safety measures are appropriately taken.

Note) Evaluation A+/-: Significant positive / negative impact is expected.
 Evaluation B+/-: Positive / negative impact is expected to some extent.
 Evaluation C+/-: Positive / Negative impact is not clear. (Further examination is necessary, and level of impact becomes clear by the progress of the examination.)
 Evaluation D: No impact is expected

Source: JICA Study Team

TOR of examination of Environmental and Social Considerations based on above Scoping is shown in Table 10.8.

Environmental Item	Item of Examination	Means of Examination
Air Quality	<ol> <li>Environmental standard (Jordan standard)</li> <li>Impact during construction</li> </ol>	<ol> <li>Existing report</li> <li>Contents of construction, method, period, and site</li> <li>Confirmation of type of construction machine, number of machine, working site, working period</li> </ol>
Water Quality	<ol> <li>Environmental standard (Jordan standard)</li> <li>Situation of water sources (Production wells)</li> <li>Impact during construction</li> </ol>	<ol> <li>Existing report</li> <li>Confirmation of water use and discharge condition during construction period</li> </ol>
Soil Pollution	1) Preventive measures against oil leaks under construction	1) Confirmation of type of construction machine and vehicles, working area and working period
Noise and Vibration	<ol> <li>Environmental standard (Jordan standard)</li> <li>Impact during construction &amp; operation</li> </ol>	<ol> <li>Existing report</li> <li>Site investigation for confirmation</li> </ol>
Offensive Odor	<ol> <li>Environmental standard (Jordan standard)</li> <li>Impact during construction &amp; operation</li> </ol>	<ol> <li>Existing report</li> <li>Site investigation for confirmation</li> </ol>
Local economy	<ol> <li>Situation of commercial activity in the project site</li> <li>Impact during construction</li> </ol>	<ol> <li>Site investigation for confirmation</li> <li>Procedure for traffic control and avoidance of traffic blocking for approach to commercial facilities</li> </ol>
Existing Social Infrastructure and Social Service	<ol> <li>Possibility of impact of water source contamination by sewage leakage</li> <li>Duration of stop of sewage use and degree of traffic congestion</li> </ol>	<ol> <li>Examination of similar cases</li> <li>Procedure for sewage leakage, shortening duration of interruption, and traffic congestion reduction</li> <li>Site investigation for confirmation</li> </ol>
Cultural Heritage	<ol> <li>Existence of ruins and relics in the project site</li> <li>Correspondence method before and during construction</li> </ol>	<ol> <li>Existing report</li> <li>Inquiry to the related organization for confirmation of procedure during construction</li> </ol>
Infectious Diseases such as HIV/AIDS	1) Guidance on health and hygiene for labor	<ol> <li>Examination of similar cases</li> <li>Site investigation for confirmation</li> </ol>
Work Environment	1) Labor safety measures	<ol> <li>Examination of similar cases</li> <li>Confirmation of approach in the Similar example</li> </ol>
Accident	1) Traffic safety measures during construction stage	<ol> <li>Examination of similar cases</li> <li>Site investigation for confirmation</li> </ol>

 Table 10.8
 TOR of Examination of Environmental and Social Considerations

Source: JICA Study Team

## 10.1.6 Result of the Survey on Environmental and Social Considerations

Result of examination of Environmental and Social Considerations based on Scoping is shown in Table 10.9.

<b>Table 10.9</b>	<b>Result of Examination of Environmental and Social Considerations</b>
-------------------	-------------------------------------------------------------------------

Environmental Item	Result of examination
Air Quality	<ul> <li>According to Environmental standard of Air Quality in Jordan, the maximum emission levels are:</li> <li>SO₂: 0.135 ppm (1 hour), 0.130 ppm (24 hours), 0.03 ppm (1 year),</li> <li>CO: 26 ppm (1 hour), 9 ppm (8 hours), NO₂: 0.21 ppm (1 hour), 0.08 ppm (24 hours), 0.05 ppm (1 year),</li> <li>Total suspended particles (TSP): 260 µg/m³ (24 hours), 75 mg/m³(1 year). (The Jordan Standard No.1140 for ambient air quality, 1996)</li> <li>Air pollution is caused by exhaust gas from Construction machines and transportation vehicles, Air dust is caused by machine digging of ditch along road side for laying trunk sewers or sewer net.</li> <li>Mitigation measures should be examined before construction, Monitoring and correspondences based on monitoring results will be required.</li> </ul>
Water Quality	<ul> <li>Drinking Water Quality standard in Jordan is provided in Standard for Drinking Water No. 286, 2001 (Revised 2008). The quality of the water source is analyzed regularly by YWC and WAJ, and water quality management is carried out.</li> <li>Well fields near the target area of the sewerage improvement plans are Hakama Well field and Bushra Well field.</li> <li>The aquifer is the deep part of B2/A7.</li> <li>Depth of Hakama Well field is 510-540 m and water table is 480-620 m.</li> <li>Depth of Bushra Well field is 530 m and water table is 610 m.</li> <li>There is possibility of water source contamination due to sewage leakage in case of insufficient measures for leakage at sewer net jointing work and detaching or left of old sewer pipes.</li> <li>The discharges from sprinkling to restrain air dust and washing of equipment and vehicles are not in high amount.</li> <li>It is expected that the influence on water source will be small.</li> <li>Considering if there is a certain level influence to production well water quality, the measures or monitoring procedure will be examined.</li> </ul>
Soil Pollution	<ul> <li>During construction period, leakage of small amount of oil may occur from Construction machines and vehicles that cause soil pollution.</li> <li>Although, it is small amount, measures of oil spill prevention and collection of soil contaminated by spilled oil should be examined.</li> </ul>
Noise and Vibration	<ul> <li>According to standard in Jordan, the maximum level of Noise is:</li> <li>City township (daytime: 60 dB, night: 50dB),</li> <li>Commercial area (daytime: 65 dB, night: 55 dB),</li> <li>Education, hospital, mosque (daytime: 45 dB, night: 35 dB). (MOE, 1997)</li> <li>Limitation of Load Vibration is: <ul> <li>Residential area (daytime: 65 dB, night: 60 dB),</li> <li>Commercial, industrial area (daytime: 70 dB, night: 65 dB) (General rule of the Japanese local government)</li> </ul> </li> <li>Noise and Vibration occur due to transportation vehicles and machine excavation work for foundation of WWTP facilities, and trunk sewers and sewer net pipes buried construction.</li> <li>Monitoring implementation and mitigation measures during construction are required.</li> <li>In operation stage, many of WWTP facilities are located away from the residential areas; there are no effect of noise and vibration.</li> <li>In Central Irbid WWTP which locates close to residential area, there may be a small influence of noise and vibration.</li> </ul>
Offensive Odor	<ul> <li>measures such as refraining from night work is necessary.</li> <li>In construction stage, bad smell occurs when new sewage pipes are connected to existing sewer net and old existing pipes are disconnected=</li> </ul>

Environmental Item	Result of examination
	- In operation stage of WWTP facilities and process of sludge drying, offensive odor may occur Most of the WWTP is apart from the residential areas, there is no effect.
	- In the Central Irbid WWTP (under construction), after the completion of renovation, monitoring and, if necessary, deodorizing measures are required.
	- The dewatering facility planned is effective in reducing odor measures.
Local Economy	<ul> <li>During buried construction work of trunk sewers and sewer net in urban commercial area, traffic may be regulated, and some sort of interruption to approach to commercial facilities may occur.</li> <li>Mitigation measures for blocking such as securement of small path should be examined.</li> </ul>
Existing Social	- There is a possibility of water sources contamination in the case of insufficient measures for sewage leakage during construction. It is common with the above mentioned in "Water quality".
Infrastructure and Social Service	- The temporary interruption of sewer service and traffic congestion due to traffic control occurs in the construction period. It is necessary to consider measures such as shortening of the construction period of each construction section.
Cultural Heritage	<ul> <li>If the remains and relic related to cultural heritage are located on ground, it can be avoided.</li> <li>However, it is difficult to check if these are buried underground.</li> <li>In Irbid, Bait ras, Hawwara, Sal, Al Yasielah, and Al Turra, there is possibility of occurrence of Roman remains and relic and attention is necessary during construction.</li> <li>During construction, care should be taken during excavation and if any such remains or relics are observed, information should be sent to Department of Antiquities in Ministry of Tourism and Antiquities (MOTA) to get relevant expert assigned for further instruction about handling of such relics in order to continue excavation work.</li> </ul>
Infectious	- Since there is a possibility that the workers fall ill with infection including the
Diseases such as	HIV/AIDS, the measures such as guidance of health management for workers
HIV/AIDS Work Environment	<ul> <li>should be examined.</li> <li>During machine excavation, air pollution may occur due to exhaust gas and dust, and noise and vibration may occur.</li> <li>These factors may pose risk on workers' health.</li> <li>The measures that the impact can be mitigated such as use of the dust protective mask and noise reduction appliance should be examined.</li> </ul>
Accident	- There is possibility of traffic jam and traffic accident due to regulated traffic and temporary interruption of traffic during construction. In the similar project, use of sign boards indicating construction works at sites and instruction by the traffic man are implemented.

Source: JICA Study Team

## **10.1.7** Evaluation of the Effect

Based on Result of examination of Environmental and Social Considerations, Result of Evaluation of impacts is shown in Table 10.10.

			of Imp	Evaluation bact in ping	Impact b	tion of based on ion result	
Category	No	Environmental Item	Before &under constru c- tion	Opera- tion	Before & under constru c- tion	Opera- tion	Reason of evaluation
	1	Air Quality	B-	D	B-	N/A	<ul> <li>Air pollution occurs by dust from digging, and due to exhaust gas from construction machines and vehicles during construction.</li> </ul>
Pollution Control	2	Water Quality	В-	D	В-	D	<ul> <li>There is possibility of water source contamination due to sewage leakage in case of insufficient measures during construction.</li> <li>There is almost no impact, the water source contamination from discharge amount of watering and car wash because of small amount of discharge.</li> <li>Water quality monitoring for water source will be conducted at the areas close to water source such as Hakama, Bushra, Al Turra, etc. during construction.</li> <li>In operation stage, the sewer net pipes have been buried and improved sewage leakage so as not to cause.</li> <li>In WWTPs Negative impact is not expected in the case of accrete reuse of discharge to agriculture and disposal of sludge to specified duping site.</li> </ul>
ol	3	Wastes	D	D	D	N/A	<ul> <li>A small amount of waste such as packaging materials of construction materials is expected, but the problem does not occur by the transport to the specified disposal site.</li> <li>In operation stage, the network pipes have been buried, waste does not occur.</li> </ul>
	4	Soil pollution	B-	D	B-	N/A	- Soil pollution is expected due to leakage of small amount of oil from construction machines, vehicles during construction.
	5	Noise and Vibration	В-	C-	В-	C-	<ul> <li>In construction stage, noise and vibration is expected to occur from construction machine and vehicles.</li> <li>The impact is limited to residential area.</li> <li>Almost of WWTP facilities located far from residential area.</li> <li>In operation stage, The impact of noise and vibration of WWTP facilities operation is a little.</li> </ul>

<b>Table 10.10</b>	Scoping Plan and Result of Examination
--------------------	----------------------------------------

			Scoping Evaluation of Impact in Scoping		Evaluation of Impact based on examination result		
Category	No	Environmental Item	Before &under constru c- tion	Opera- tion	Before & under constru c- tion	Opera- tion	Reason of evaluation
							<ul> <li>Only, in Central Irbid WWTP, monitoring is necessary after completion of renovation, and if necessary, measures will be</li> </ul>
	6	Subsidence	D	D	N/A	N/A	<ul> <li>required.</li> <li>Modification regarding subsidence is not carried out.</li> </ul>
	7	Offensive odor	В-	В-	B-	C-	<ul> <li>In construction stage, there is possibility that bad smell occurs in accordance with connection work of new sewage pipes and existing sewer net.</li> <li>In operation stage, the offensive odor occurs in operation of WWTP facilities.</li> <li>Most of the WWTP is apart from the residential areas, there is no effect.</li> <li>In the Central Irbid WWTP, after completion, confirmation by monitoring is necessary, and if necessary, the measures will be required.</li> </ul>
	8	Substratum	D	D	N/A	N/A	- Modification regarding substratum is not carried out.
	9	Reserve Area	D	D	N/A	N/A	- Reserve areas are over 10km away from the target areas.
Natural Environment	10	Ecosystem	D	D	D	N/A	<ul> <li>In construction stage, modification regarding ecosystem is not conducted because of construction in existing operating WWTPs for WWTP facilities, and in residential areas of urban, suburban and along existing road with traffic for trunk sewers and sewer net.</li> <li>In operation stage, no effect because the conduit is embedded in A.</li> </ul>
	11	Hydrology	D	D	N/A	N/A	<ul> <li>Modification regarding hydrology is not carried out.</li> </ul>
	12	Topography, geological feature	D	D	N/A	N/A	<ul> <li>Modification regarding topography and geological feature is not carried out.</li> </ul>
$\mathbf{v}$	13	Resettlement	D	D	N/A	N/A	- Resettlement does not occur.
ocial Ei	14	Poor classes	D	B+	N/A	B+	<ul> <li>Residents including the poor can enjoy the improvement of sewage service conditions</li> </ul>
Social Environment	15	Ethnic Minorities & Indigenous Peoples	D	D	N/A	N/A	<ul> <li>Ethnic minorities and indigenous peoples are not resident.</li> </ul>
	16	Refugees	D	B+	N/A	B+	- Project activities will not have any

			of Imp	Evaluation bact in ping	Impact l	ttion of based on ion result	
Category	No ·	Environmental Item	Before &under constru c- tion	Opera- tion	Before & under constru c- tion	Opera- tion	Reason of evaluation
							discrimination against Refugee; rather sewage service is expected to
	17	Local economy	В-	D	В-	N/A	<ul> <li>improve for all.</li> <li>During construction, traffic may be regulated and traffic interruption may be caused, and approach to commercial places is expected to be limited.</li> <li>In operation stage, the branch sewers have been buried,</li> <li>There is no impact on the local economy.</li> </ul>
	18	Land use & local resource use	D	D	D	D	- The construction is carried out in existing WWTP and along existing roads, change of land use and local resource use do not occur.
	19	Water use	D	D	D	N/A	<ul> <li>Construction Stage: Small amount of water is used for watering for dusting reduction and washing construction machines and vehicles</li> <li>Operation Stage: Public supply water is not used without workers' daily life water.</li> </ul>
	20	Existing social infrastructure & social service	В-	B+	В-	B+	<ul> <li>Construction Stage: There is possibility of water source contamination in the case of insufficient measures for sewage leakage.</li> <li>Temporary stop of sewage service and inconvenience in traffic condition occur.</li> <li>Operation Stage: Positive impacts such as the improvement of sewerage and sewer capacity is expected</li> </ul>
	21	Social capital & social organizations	D	D	D	B+	<ul> <li>Construction Stage: No negative impact on social capital and social organizations is expected.</li> <li>Operation Stage: Positive impacts such as the improvement of water supply system in which leakage is difficult to occur, are expected.</li> </ul>
	22	Imbalance of profit & damage	D	D	N/A	N/A	- No negative impact on the balance of profit and damage is expected.
	23	Local conflict	D	D	N/A	N/A	<ul> <li>No conflict in local community due to the sewerage improvement plan is expected.</li> </ul>
	24	Cultural Heritage	C-	D	C-	N/A	- There is possibility to find remains and relic during excavation work.
	25	Landscape	D	D	N/A	N/A	- No negative impact on landscape is

			of Imp	Scoping Evaluation of Impact in Scoping		tion of based on ion result	
Category	No	Environmental Item	Before &under constru c- tion	Opera- tion	Before & under constru c- tion	Opera- tion	Reason of evaluation
							expected
	26	Gender	D	D	N/A	N/A	<ul> <li>No negative impact on Gender is expected.</li> </ul>
	27	Rights of the child	D	D	N/A	N/A	- No negative impact on the rights of the child is expected.
	28	Infectious diseases including HIV/AIDS	C-	D	C-	N/A	<ul> <li>Construction Stage: There is a possibility to spread infectious diseases due to the inflow of labor if there is no appropriate health and hygiene instruction.</li> <li>Operation Stage: Negative impact is not expected</li> </ul>
	29	Work Environment	B-	D	B-	N/A	<ul> <li>Construction activities are expected to have some negative impact on working environment of Labor in terms of air quality, noise, and vibration due to operation of construction machines.</li> </ul>
Others	30	Accident	B-	D	B-	D	<ul> <li>Construction Stage: There is possibility of occurrence of traffic jam and traffic accident due to regulated and interrupted traffic.</li> <li>Operation Stage: Negative impact is not expected assuming accurate sewerage and sewer operation.</li> </ul>

Note: N/A: Not applicable

Source: JICA Study Team

### 10.1.8 Mitigation Measures and Cost

Mitigation measures and related cost on Environmental Items which is expected to have negative impact in this Project is shown inTable10.11. The Project activities are only expected to have negative impacts during construction, and not during operation.

<b>Table 10.11</b>	Mitigation Measures and Cost
--------------------	------------------------------

No.	Environmental Item	Proposed Environmental management plan	Implement-i ng Agency	Responsi- ble Agency	Cost (1,000 JD)
1	Air Quality	<ul> <li>To suppress the scattering of excavation dust occurring during construction, regular sprinkling of water is needed.</li> </ul>	Contractor	YWC, WAJ	169.7
2	Water Quality	<ul> <li>In the case of construction in the vicinity of production well, the water quality of the production wells should be checked, and also, protection measures of sewage leakage and limit of discharge</li> </ul>	Contractor	YWC, WAJ	19.2

No.	Environmental Item	Proposed Environmental management plan	Implement-i ng Agency	Responsi- ble Agency	Cost (1,000 JD)
		should be carried out as much as possible.			
4	Soil pollution	<ul> <li>Construction machines and vehicles need to be checked regularly for any oil leakage and carry out repair if required. If leakage occurs, the soil containing leaked oil should be collected and disposed appropriately.</li> </ul>	Contractor	YWC, WAJ	33.5
5	Noise and Vibration	<ul> <li>The construction section moves by week to 10 days, so the noise emitting period in each section is short, and the impact to daytime activity can be small.</li> <li>Construction is planned such that noise during construction does not occur night.</li> <li>In operation stage, the WWTP facilities operation noise in the WWTP and lift stations closed to resident area will affect sleep disorder.</li> <li>Noise reduction measures are required.</li> <li>The monitoring of Central Irbid WWTP (under rehabilitation) is necessary after renovation completion.</li> </ul>	Contractor, Consultant for planning and design	YWC, WAJ	239.0
7	Offensive Odor	<ul> <li>In construction stage, there is possibility that bad smell occurs at joining or release of existing sewer net. The shortening procedure should be figured out.</li> <li>In operation stage, offensive order occurs in WWTP facilities operation.</li> <li>In Central Irbid WWPT, the monitoring and measures if necessary should be examined.</li> <li>Other WWTPs are apart from residential area.</li> </ul>	Contractor, Consultant for planning and design	YWC, WAJ	425.6
17	Local Economy	<ul> <li>During construction, to mitigate the impact on traffic and people daily life, approach side walk needs to be set appropriately and a traffic regulating person is needed to provide direction on site for safe and smooth traffic during construction works.</li> </ul>	Contractor	YWC, WAJ	Same as 2.Water Quality
20	Existing social infrastructure and social service	<ul> <li>Common with "2 Water Quality"</li> <li>In the case of construction in the vicinity of production well, the water quality of the production wells should be</li> </ul>	Contractor	YWC, WAJ	Including in 30. Accident

No.	Environmental Item	Proposed Environmental management plan	Implement-i ng Agency	Responsi- ble Agency	Cost (1,000 JD)
		checked, and also, protection measures of sewage leakage and limit of discharge should be carried out as much as possible.			
24	Cultural Heritage	<ul> <li>Construction plans should be submitted to MOTA in advance requesting assignment of a monitoring person for occurrence of any remains or relics.</li> <li>If relics or remains are found during excavation, the instruction from monitoring person should be followed for continuing the excavation work.</li> </ul>	МОТА	МОТА	-
28	Infectious diseases including HIV/AIDS	- For protection of infectious diseases including HIV/AIDS, contractor should distribute brochures and other documents and provide guidance to workers.	Contractor	YWC, WAJ	22.3
29	Work Environment	<ul> <li>Public and workers safety and sanitation measures should be taken during the construction period.</li> <li>Safety management rules should be prepared and implemented on site.</li> <li>Construction area indicator, protection fence, and provision of watchmen at construction sites should be provided to avoid occurrence of any accident.</li> <li>For the workers, provision of mask against dust, and earmuffs or plugs against noise should be made.</li> <li>Workers in construction site should wear Work clothes, helmet, safety jacket, and safety shoes.</li> </ul>	Contractor	YWC, WAJ	90.5
30	Accident	<ul> <li>During construction period, it is necessary to isolate the construction sites, and implement traffic restriction.</li> <li>For this purpose, it is important to install construction plan at site, indicate construction area, provide protection fence, watchmen, and especially at night provide lighting arrangements at construction site with appropriate traffic indicators in order to avoid accident.</li> </ul>	Contractor	YWC, WAJ	1,492.5

Source: JICA Study Team

# 10.1.9 Monitoring Plan

Monitoring plan, which is mainly required for construction stage, is shown in Table 10.12.

Environmental Item	Item	Place	Frequency	Responsible institution
Air Quality	Dust	Construction site and residential neighborhood	1 time /month	Contractor YWC, WAJ
Water Quality	Water quality analysis for general items, coliform and inorganic items	Production wells nearby construction section (before commencement, under construction, and after completion)	3 times/ construction section nearby water source	Contractor YWC, WAJ
Soil pollution	Checking of oil leakage from construction machines and vehicles, and status of repairing Situation of locations where soil is affected by oil leakage	Construction site, construction machinery, vehicle parking places	1 time /month	Contractor YWC, WAJ
Noise and Vibration	Noise and Vibration	Construction site and residential neighborhood, In operation stage, WWTP and Residential neighborhood	1 time /month	Contractor YWC, WAJ
Offensive Odor	Odor (Ammonia, methylmercaptan, hydrogen sulfide, methyl sulfide)	Construction site and residential neighborhood, In operation stage, WWTP and Residential neighborhood	1 time /month	Contractor YWC, WAJ
Local Economy	Condition of blocking, limited approach of commercial facilities	Surrounding Construction site	1 time /week	Contractor YWC, WAJ
Cultural Heritage	Existence of remains and relics	Construction site	MOTA coordination	Contractor MOTA
Infectious Diseases	Confirmation of implementation of worker education for health management	Field office, worker accommodation	4 times/ year	Contractor YWC, WAJ
Work Environment	Situation of wearing working clothes, safe shoes, masks, and other safety related accessories of Workers. Enforcement situation of the safety measures of neighboring inhabitants	Construction site surrounding construction site	1 time /week	Contractor YWC, WAJ
Accident	Enforcement situation of traffic safety measures. Traffic man work situation	Surrounding construction site	1 time /week	Contractor YWC, WAJ

# Table10.12Monitoring Plan

Source: JICA Study Team

### 10.1.10 Stakeholder's Meeting

Stakeholder's meeting was held for the purpose of explaining the M/P for both water supply and sewerage under examination to participants and collecting wide range opinions on environmental and social issues from stakeholders. The detail is shown below.

Date and time: 16th September 2014, 10:00 - 11:00

Venue: WAJ PMU Meeting Room

Participating Organizations: Ministry of Environment, Ministry of Water and Irrigation, Organizations of EIA Technical Committee (Ministry of Agriculture, Ministry of Industry and Trade, Ministry of Hearth, Ministry of Municipality, Ministry of Energy and Mineral Resources), Water Authority of Jordan, Yarmouk Water Company, JICA Jordan Office, JICA Expert Team.

No.	Title	Main Contents	Presenter
1	Opening Remarks 1		WAJ PMU
2	Opening Remarks 2	Significance of SEA for M/P	MOE Directorate of
			Licensing & Guidance
3	Outline of draft master	1) Concept of M/P,	Water supply engineer of
	plan for water supply	2) Population growth,	JICA Study Team
	improvement &	3) Unit of supply amount & water demand,	
	rehabilitation	4) Water sources,	
		5) Water allocation,	
		6) 6) WS facilities improvement &	
		rehabilitation	
4	Outline of draft master	1) Concept,	Team Leader of JICA
	plan for sewerage and	2) Unit discharge requirement & target	Study Team
	sewer improvement &	sewerage service area,	
	rehabilitation	3) Target effluent quality,	
		4) Sewerage facilities improvement plan	
5	Pre-examination on	1) Concept of SEA,	Environmental & social
	environmental and	2) Examination of development alternatives	considerations expert of
	social considerations	in view of Environmental and Social	JICA Study Team
	for the M/P	Consideration,	
		3) Anticipated environmental impacts,	
		4) Anticipated social impacts	
7	Discussion	1) Issues & opinion on environmental &	
		social considerations	
8	Closing Remarks		JICA Jordan Office

 Table 10.13
 Timetable and Agenda of the Stakeholder's Meeting

Source: JICA Study Team

There were two major opinions and comments addressed in the discussion.

Firstly, a participant from the Ministry of Environment emphasized the importance of the consideration of risk for accident during construction. JICA Study Team answered that safety measures not only during construction but also during operation will be proposed in the M/P.

Secondly, a participant from the Ministry of Water and Irrigation asked JICA Study Team the measures for energy efficiency improvement and wastewater reuse. JICA Study Team answered to propose the gravity water supply system as wide as possible as the conversion from pumping system for energy saving, and to set treated wastewater quality to meet the standard for irrigation water in Jordan for wastewater reuse.

The meeting was concluded by the remark that all opinions and feedbacks of stakeholders will be considered and monitored during the project.

## 10.2 Land Acquisition and Resettlement

Since all of the components of the proposed sewerage plans are the improvement and expansion of existing WWTP facilities and pipelines under the right of way, land acquisition and resettlement due to the sewerage improvement plans are not anticipated.

As a reference, the legal overview of the land acquisition procedure in Jordan is shown in Appendix V-1.

### 10.3 Others

### **10.3.1 Draft Monitoring Form**

Draft monitoring form is shown in Appendix V-2.

### **10.3.2** Checklist for Environmental and Social Considerations

Environmental check list is shown in Appendix V-3.

# CHAPTER 11 PRIORITY PROJECT

### 11.1 Purpose

As described in Chapter 7, in four of six sewerage districts (SWD), phase-1 projects are required to expand the sewerage service area. In Central Irbid SWD, the sludge dewatering facilities are recommended to install as soon as possible, because the facilities are essential to treat the sludge properly before disposal. In Wadi Hassan SWD, the sewerage service is planned to expand from the second phase.

This chapter compares the phase-1 projects of four SWD: Wadi Al-Arab, Shallala, Ramtha, and Mafraq and suggests implementation priorities for these projects.

#### **11.2 Evaluation Parameters**

Table 11.1 summarizes the salient features of the phase-1 projects in four SWD and the key points are as follows:

- The project in Wadi Al-Arab SWD has the highest number of beneficiaries.
- The project in Shallala SWD has the highest service population per service area and that in Mafraq SWD has the lowest service population per service area.
- The projects in Wadi Al-Arab and Shallala SWDs can provide sewerage services to more people with a smaller per capita investment. The low investments of WWTP per capita, 33JD/capita for Wadi Al-Arab and 0 JD/capita for Shallala SWD, would contribute the high cost performance.
- The projects in Mafraq and Shallala SWDs have the highest need for increasing the coverage ratio.

To identify priorities among the phase-1 projects, evaluation is made considering the following parameters:

- 1) Number of beneficiaries (service population increased) by implementation of phase-1 project
- 2) Need to increase the service population coverage ratio
- 3) Increased population coverage ratio by implementation of phase-1 project
- 4) Cost performance based on the cost required to provide the sewerage service to one person

	Item	Wadi Al-Arab SWD	Shallala SWD	Ramtha SWD	Mafraq SWD
I.	Service Area expanded	Locality of Bait Ras, about 1,100 ha.	Localities of Mghayyer and Hawwara, about 590 ha.	Surrounded area of Ramtha city, about 440 ha.	Locality of Manshiyah Bani Hassan and the southern part of Mafraq city, about 800 ha.
2.	1) Service Population Increase by Project *	94,090	55,330	37,110	31,610
	2) 1) per service area	86 capita/ha	94 capita/ha	85 capita/ha	40 capita/ha
3.	1) Population Cover- age Ratio in 2021	80 %	44 %	57 %	47 %
	2) Increase in Pop. Coverage between 2017 and 2021	15 % (14.7=80.3-65.6)	16 % (16.1=43.9-27.8)	13 % (12.6=57.1-44.5)	14 % (13.5=46.8-33.3)
4.	Proposed Sewerage Facilities	<ol> <li>Branch Sewer: 168 km</li> <li>Trunk Sewer: Not required</li> <li>Hakama LS: increased capacity of 2.32 m³/min,</li> <li>WWTP: one line of aeration tank and final sedimentation tank, capacity of 3,500 m³/d</li> </ol>	<ol> <li>Branch Sewer: 90 km</li> <li>Trunk Sewer: 3.3 km (200mm CP)</li> <li>New Mghayyer Manhole Pump,</li> <li>WWTP: No expansion required</li> </ol>	<ol> <li>Branch Sewer: 66 km</li> <li>Trunk Sewer: 4.3 km (300mm CP)</li> <li>LS: not required,</li> <li>WWTP: one line of aeration tank and final sedimentation tank, capacity of 4,400 m³/d, and sludge de-hydrator.</li> </ol>	<ol> <li>Branch Sewer: 122km</li> <li>Trunk Sewer: 14.6 km (300mm CP) and 2.8 km (200mm DIP),</li> <li>New Mansha LS: capacity of 3.25 m³/min,</li> <li>WWTP: one line of waste- water treatment facilities, capacity of 3,600 m³/d</li> </ol>
5.	Direct Cost**	24.0 million JD	11.4 million JD	14.2 million JD	23.0 million JD
6.	Direct Cost per service population increase	255 JD/capita To improve sewerage service, all components of sewerage facilities except trunk sewers are required. About 87% of the direct cost or 222 JD/Capita is for construction of branch sewers and LS. While 33JD/capita is for construction of WWTP.	206 JD/capita To expand sewerage service to Mghayyer, all components of sewers and lift pump facilities are required. But to expand the service to Howwala only branch sewers are required. The WWTP is not required to extend the capacity. The highest service population per service area and no need to expand the capacity of WWTP contribute to the lowest direct cost per service pop. increase.	382 JD/capita To expand the sewerage service all components of sewerage facilities except lift pump are required. About 61% of the direct cost or 233 JD/Capita is for construction of branch and trunk sewers. 149 JD/capita is for construction of WWTP. The high investment cost for WWTP is disadvantage compared with that of Wadi Al-Arab SWD.	726 JD/capita To expand the sewerage service all components of sewerage facilities are required with the longest trunk sewer construction among four SWD. The lowest service population per service area and need to expand the capacity of WWTP make for the highest direct cost per service pop increase. (150 JD/capita for WWTF and 576 JD/capita for Sewers and LS)

#### Table 11.1 Features of the Proposed Phase-1 Projects in Four SWDs

Note: * Refer to Figure 7.4, Figure 7.6, Figure 7.10, Figure 7.12, respectively. ** Refer to Table 8.15, Table 8.19, Table 8.25, and Table 8.30, respectively. Source: JICA Study Team

#### **11.3** Implementation Priorities for Phase-1 Projects

The phase-1 projects of four SWD are assigned scores in terms of each evaluation parameter.

Table 11.2 shows the result of scores and priorities given to phase-1 projects of four SWD. The priorities are defined considering the total score.

	Table 11.2 Thority of Projects Among the Proposed Phase-1 Projects						
	Evaluation Parameter	Wadi Al-Arab SWD	Shallala SWD	Ramtha SWD	Mafraq SWD		
1.	Service Population (Beneficiaries)	94,090	55,330	37,110	31,610		
	Score-1	4	3	2	2		
2.	Needs to Increase the Population Coverage Ratio (100%-coverage ratio)	20 %	56 %	43 %	53 %		
	Score-2	2	4	3	4		
3.	Increase in population coverage ratio	15 %	16 %	13 %	14 %		
	Score-3	2	2	2	2		
4.	Cost Performance	255 JD/capita	206 JD/capita	382JD/capita	726 JD/capita		
т.	Score-4	3	4	2	1		
5.	Total Score	11	13	9	9		
6.	Priority based on the Score	2nd	1st	3rd	3rd		
7.	JICA Study Team Suggestion	Priority Project	Priority Project	Modify to smaller investment plan	Modify to smaller investment plan		

 Table 11.2
 Priority of Projects Among the Proposed Phase-1 Projects

Source: JICA Study Team

Based on the score of evaluated parameters, the phase-1 project of Shallala SWD gets the first priority and that of Wadi Al-Arab SWD gets the second priority. The phase-1 project of Shallala SWD receives the highest score in terms of the cost performance and with respect to the needs to increase the population coverage ratio. On the other hand, the phase-1 project of Wadi Al-Arab WSD scores the highest in terms of the service population increase and the second highest in terms of the cost performance.

The Phase-1 project of Mafraq SWD gets the third priority considering parameter scores; it is assigned the highest score in terms of the needs to increase the population coverage ratio but received the lowest score in terms of the cost performance. The Phase-1 project of Ramtha SWD also gets the third priority: the moderate scores in terms of all parameters.

JICA Study Team recommends both of the phase-1 projects of Shalla SWD and Wadi Al-Arab SWD are implemented as priority projects. Because the provision of sewerage service could be accomplished for the most densely populated area without expansion of WWTP in Shallala SWD. The

sewerage service could be provided with much less per capita investment to WWTP in Wadi Al-Arab SWD. In other words, the service expansion could be accomplished by using the current WWTP capacity.

Due to the huge costs, the phase-1 project of Mafraq SWD may be difficult to implement. The project of Mafraq SWD is expected to increase the population service ratio and mitigate the Syrian refugees impacts to the wastewater management in community: worsen the public hygiene and the citizens' living environment due to frequent overflows of wastewater after the influx of Syrian refugees, where the current Syrian refugees are over the Jordanian population. But the service population density (service population per service area) is 40 capita/ha, which is the lowest among the four SWD and about 42% to 47% of other 3 SWD. The per capita investment required of 726 JD/ciapita is highest (worst) among four SWD, about 3.5 times of Shallala SWD, 2.8 times of Wadi Al-Arab and 1.9 times of Ramtha SWD. These disadvantages make the phase-1 project of Mafraq difficult to implement financially.

The phase-1 project of Mafraq SWD expand the service area, about 800 ha of Manshiyah Bani Hassan and the southern part of Mafraq city. From the financial viewpoints, the phase-1 project should be modified to smaller investment plan: service area is limited only to urban city center where the population density is relatively high and to stop the sewerage service provision to Manshiyah Bani Hassan, for which it is required to construct a long trunk sewers (15km, 300mmCP) and Mansha LS (3.25 m³/min) because the area of Manshiyah Bani Hassan is located little bit far from the Mafraq city. To realize the sewerage service provision to the area of Manshiyah Bani Hassan, financial supports from WAJ and foreign donors are indispensable.

# CHAPTER 12 CONCLUSION AND RECOMMENDATIONS

## 12.1 Conclusion

WAJ has developed the sewerage facilities in northern governorates. The sewerage systems are expected to contribute the improve public hygiene, preservation of natural environment, and provision of re-usable treated effluents for agriculture..

To manage the wastewater properly in the communities even though the impacts of influx of Syrian refugees, the sewerage facilities are planned to expand and improved, based on the capacity assessment of the existing main facilities such as trunk sewers, lift stations and wastewater treatment plants.

The project implementation plans have been prepared for six independent sewerage districts (SWD) in Irbid and Mafraq governorates, including the project cost estimates by each phase and disbursement schedule and annual O&M cost estimates. Total project cost required for six sewerage districts are about 302 million JD: 2 million JD for Central Irbid SWD, 71 million JD for Wadi Al-Arab SWD, 61 million JD for Shallala SWD, 11 million JD for Wadi Hassan SWD, 58 million Ramtha SWD, and 99 million JD for Mafraq SWD.

The projects are evaluated to be economically feasible. However, the project costs are huge. To realize the implementation of the projects, continuous financial assistance by WAJ and foreign donors is indispensable.

Among the phase-1 projects, that of Central SWD is proposed to implement immediately, because the equipment proposed are required for the existing facilities. To give implementation priorities, the phase-1 projects are evaluated by four evaluation parameters: increased number of beneficiaries, cost performance and need to expand the sewerage services. As a results, the phase-1 project of Shallala SWD gets the first priority and that of Wadi Al-Arab SWD gets the second priority, and those of Ramtha and Mafraq get the third priority.

JICA Study Team recommends both of the phase-1 projects of Shalla SWD and Wadi Al-Arab SWD are implemented as priority projects. Because the provision of sewerage service could be accomplished for the most densely populated area without expansion of WWTP in Shallala SWD. The sewerage service could be provided with much less per capita investment to WWTP in Wadi Al-Arab SWD. In other words, the service expansion could be accomplished by using the current WWTP capacity effectively.

Due to the huge costs, the phase-1 project of Mafraq SWD may be difficult to implement. The project of Mafraq SWD is expected to increase the population service ratio and mitigate the Syrian refugees impacts to the wastewater management in community. But the financial viewpoints, the phase-1

project should be modified to smaller investment plan: service area is limited only to urban city center and to stop the sewerage service provision to Manshiyah Bani Hassan. Especially to realize the sewerage service provision to the area of Manshiyah Bani Hassan, financial supports from WAJ and foreign donors are indispensable.

# 12.2 Recommendations

- ✓ This Report on Master Plan for Sewerage are expected to use as a basis for preparation of sewerage facility plan, identification of promising projects and implementation of sewerage projects.
- ✓ To implement the priority project and the phase-1 projects, funding of project need to be secured.
- ✓ The sludge de-hydrator for the Central Irbid SWD are required immediately installed to treat and disposal of the sludge properly.

Appendix

# TABLE OF CONTENTS

APPENDIX I ALLOCATION OF SERVICE POPULATION
FOR EACH SEWERAGE SUB DISTRICT ······ Appendix I-1
APPENDIX II REQUIRED LENGTH AND COST OF BRANCH SEWER
FOR EACH SEWERAGE DISTRICT ······ Appendix II-1
APPENDIX III-A CAPACITY CALCULATION FOR EXISTING AND
CONSTRUCTING FACILITIES OF EACH WWTP ····· Appendix III-A-1
APPENDIX III-B CAPACITY CALCULATION FOR PLANNED FACILITY OF
EACH WWTP IN MASTER PLAN ······ Appendix III-B-1
APPENDIX IV RESULTS OF ECONOMIC EVALUATION Appendix IV-1
APPENDIX V LEGAL FRAMEWORK AND PROCEDURE ON
LAND ACQUISITION ······Appendix V-1

# APPENDIX I ALLOCATION OF SERVICE POPULATION FOR EACH SEWERAGE SUB DISTRICT

Whole service population that allocated to each sewerage sub district are shown as follows.

## 1. Basis Idea for the Allocation

When an area of sub district belongs to both A and B, then the population for each sewerage sub district is estimated based on the area ratio of A and B.

# 2. Calculation for Central Irbid WWTP

	Locality/	1	2	3	4	5	6	Ø	8	9	0	13	14	15	16	D	(18)	Remote	Total
	Neighborhood	Al Mallab	Al Medan	Al Salam	Al Hashme	Al Tall	Al Audah	Al Emaan	Al Naser	Al Karama	Hanena	Al yarmouk	Al Marj	Al Ashrafeeh	Al Saadah	Al Matla'a	Al Seha	Bait Ras	]
Trunk Sewer	Urban/Rulal	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	R	
	Population (pers.)	3,384	6,920	14,272	1,667	1,221	32,581	497	8,588	9,117	9,570	1,543	2,445	762	4,899	12,990	3,681	4,003	118,140
779	Area	32.78	21.32								4.10							L	
	Ratio Population	100%	57%																
523	Area	3,384	3,967 15.87	42.84	13.19														7,351 71.90
525	Ratio		43%	42.84 61%	100%														
	Population		2,953	8,677	1,667														13,297
559	Area			20.10															20.10
	Ratio Population			29%															
1069	-Hanned			4,071 7.52		7.48	41.50											<u> </u>	4,071 56.50
1009	Area Ratio			11%		100%	41.30 51%												50.50
ľ	Population			1,523		1,221	16,570												19,314
851	Area						40.10												40.10
	Ratio Population						49%											L	
	- Henry A						16,011												16,011
685	Area Ratio								2.70 3%	2.00 4%									4.70
	Population								262	372								<u> </u>	634
740	Area							2.00	202	16.30							18.30		034
Ī	Ratio							100%		33%									
	Population							497		3,030									3,527
476	Area							0.50	0.60							1.10			
	Ratio Population							1%	1% 49	112									160
471	Area							39.98	30.14	54.68							124.	80	100
	Ratio							45%	61%	100%									
	Population								3,881	5,603	9,570								19,054
1776	Area							35.70	35.70										
	Ratio Population							100%	-										
1762	Area							20.60							20.60			4,003	4,003
1702	Ratio							100%							20.00				
	Population											1,543							1,543
1394	Area							45.30							45.3	)		[	
	Ratio Population							51%											
	-lleasted								4,397									<u> </u>	4,397
463	Area Ratio												14.70 36%						14.70
	Population												869						869
2765	Area														26.41	25.23	13.86	1	65.50
[	Ratio														90%	30%	100%	[	-
	Population		]												4,399	3,944	3,681	L	12,024
2736	Area							10.53		3.0		7		71.40					
	Ratio Populanon							25%		10%	70%		622	····	500	9,046			10,168
2292	Area							16.14	34.9	5			022	51.10	550	2,070			10,100
	Ratio							39%	100%					-					
	Population												954	762					1,716
Total	Area	32.78	37.19	70.46	13.19	7.48	81.60	2.00	88.48	49.04	54.68	20.60	41.37	34.96	29.41	83.10	13.86	35.70	695.90
	Ratio Population	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	-

# 3. Calculation for Wadi Al-Arab WWTP

	II AI-AI			•																																						
Trunk	Locality/ Neighborhood Urban/Rulal	l Al Mohandisin		Al Jamiah	4 5 Al A Tall Has	Al A	7 1 Al nah Nouzhal	Al Mallab Al J	Jamee	10 1 Al A Abrar Nec	Al Al leef Seh:	13 Al Sadah	14 Al Ashrafeeh U	15 Al Nasur	16 Al Burha	17 Al Manara	18 Al Swaneh	19 Al Basaten	20 Al Ateba'a U		Remote 23 Natfeh	24 Zebdat	25 As Surayj U	Remote 26 Soom	27 Al Rouda	28 Al Sahel Green	29 Al Emaan U	30 Al Baqaa	31 Al Sena's	32 Al Karama		34 35 Henena Haka	i 3 ima M	6 37 aro Bait Ras		39 Al Naser	40 Al Herafeyee I	41 — AI Herafeyee DU		Remote 43 Dougrah	44 Unspecified (blank)	Total
Sewer	Population	9,717		1 -	-		3,554 6,896		-		8,904 9,4		7 1,546		<u> </u>			11,768			97 2,617					5,688				4,697		7,519 14,	,404	6,046 46,03	1	2,283		997	242	9,154		328,869
4280	(pers.) Area Ratio Population allocated Area		51 90.0 5% 28 51 3,30				1.88		185.6 6,664	1			49.10																													
	Ratio Population allocated Area Ratio		56.2	21% 2,805 5		2	82% .900 7.19 18%						5,705 63.44																													
	Population allocated		2,06	4			654 15.68 100%						2 718 42.60										$\square$																			
	Area Ratio Population allocated					26.92 63%	100%	1,128					+	5,440																												
	Area Ratio Population allocated			34.53 41% 5,624		1.00 100% 1,065	16.13 37% 2,584		12.14 63% 1,097							83.80 10,370																										
	Area Ratio Population allocated Area			31.69 38% 5,162	687	870	1.00		7.00 37% 633	77.79 100% 19,224	4	3.00 47% 482	9.70					30,1	1																							
4336	Area Ratio Population allocated Area						1.00 3% 8,904	249	37.89					9,153		70.50																										
	Ratio Population allocated Area					32.6 26% 2.00	5.626		37.89 39%	4,021 30.50 24%							9,647	7.75																								
700	Area Ratio Population allocated Area			+		5% 17.0 45%	198 3.9 18%			24%	5,262	963 30.50							6,723 .43																							
2413	Area Ratio Population allocated Area Ratio						4,238	649 46.69 24%			23.18 15%	19%	2,275					123.45		7,161															+					<u> </u>		
	Population allocated Area Ratio						2,898 10.00 5%	1,546	2,99 71.90 46%	5		,727	+	[		96.90			9,166																							
	Population allocated Area Ratio	94.	17 1%				395	543 105.83 00% \$197		5,364					200.00	>	6,701																							_		
5653	Population allocated Area Ratio	3,3	10			68.50 100%		\$197				68.50			8,507																											
4156	Population allocated Area Ratio Population allocated					0.00	2,617						2,617																													
2195	Area Ratio Population allocated		89.2 27 3,27	5					71.44 36% 4.328	1%							171.40 - 8,739																									
	Area Ratio Population allocated Area	86.		5 5				53.04	71.44 6% 4.328	10.71		9.03					171.40 - 8,739		148.70																							
	Area Ratio Population allocated	3,0	1%					\$3.04 27% 3,213				7% 745							-																							
2097	Area Ratio Population allocated					38.66 39%	4,103	118.9 93%	52.72 100%	6 4,992						210.30	18,910																									
	Area Ratio Population allocated Area					28.40 23%	1,900					28.40	4,900																											<u> </u>		
	Ratio Population allocated Area Ratio					33.00 27% 33.00 84%	1.00 3% 5,693 2.00 1%	183					35.00	5,877																												
	Population allocated					84% 30.20 19%	5,054	149				30.20		6,204																										<u> </u>		
6349	Area Ratio Population allocated Area Ratio					0.00	2,253						2,253																													
	Population allocated			1		1.00	17.62	2.00	25.07							6.50					+																					
6772	Population allocated					1%	24% 84 1,3 40.70	2.00 2% 9 35.00	182	926 27.00		17.00					2,492	17	75.70																							
	Area Ratio Population allocated						100%	,/10	30.00 100%	0 4,057		2%	350							15,320																						
4799	Area Ratio Population allocated					99%	30.9 42% 7,216	36.48 41%	2,58		26.28 44%	,285						179.60	13,452																							
(to LS)	Area Ratio Population allocated Area					50.80 57% 0.00	8,609					50.80	3,609																													
(from LS)	Ratio Population allocated					-																																				0
	Area Ratio Population allocated																														7.00 12% 342	7% 494 9,	63% 022	35.73 280.90 100% 619 6,046 28,217	6							
4644	Area Ratio Population allocated Area																																4.57 35% .032	28.10								273.00 - 12,057 56.20
	Ratio Population allocated													<b> </b>																				28.10 69 2,82 149.26	6	15.00	24.15		2.00		28.10 17% 0 136.20	- 2,823
	Area Ratio Population allocated		-		<u> </u>																-		<u> </u>		<u> </u>									339	6 100% 3,968	100%	100%		100% 242		83% 0	- 22,134
3376 (from TP)	Area Ratio Population allocated			-										11.03 42% 511	137.19 71% 8,816																							23.40 100% 997				171.62
	Area Ratio Population allocated				 								<u> </u>																													0.00
	Area Ratio Population allocated Area			+																				195.20 100% 9,997																		195.20 - 9,997 0.00
2790	Area Ratio Population allocated Area																																						<u></u>	<u> </u>		
( to TP) 2240	Ratio Population allocated Area																																							191.30		
(to TP)	Ratio Population allocated Area Ratio	276.4	11 324.7	5 83.44	7.56	1.00 39	9.07 43.05	15.68	19.14	77.79	8.70 38.	.02 21.38	36.23	26.03	193.79	124.51	39.25	157.75	195.92	97.97 105.3	3 68.50	127.95	52.72	195.20	86.98	74.44	40.70	89.23	60.97	30.00	60.28	30.43 700	0.04 13	5.73 458.26	48.35	15.00	24.15	23.40	2.00	9 154		9,154 4613.20
	Ratio Population allocated	9,7	% 100% 7 11,91	6 100% 7 13,591	100% 1 687 1	00% 10 ,065 3,	00% 100% ,554 6,896	100% 1 1,128	100% 1,730	100% 1 19,224 8	00% 100 i,904 9,4	0% 100% 466 3,54	100% 1,546	100%	100% 12,453	100% 21,481	100% 7,201	100% 11,768	100% 11,868	97.97 105.3 100% 100 10,397 5,1	% 100% 07 2,617	100% 10,561	4,992	100% 9,997	100% 7,300	100% 5,688	100% 5,718	100% 6,340	100% 2,174	100% 4,697	100% 2,948	100% 10 7,519 14,4	0% 1 404 (	00% 100%	100% 3,968	100% 2,283	100% 648	100% 997	100% 242	100% 9,154	100% 0	- 328,869

# 4. Calculation for Shallala WWTP

			2		3	4	5		7	8	9	10		1.2	Remote													
	Locality/ Neighborhood	1 Hoson	Hoson	2 Sarieh		4 Al Hekmah	5 Al Werud	6 Zahra	/ Andalus	8 Howwarah	Boshra	10 Al Rouda	11 Al Sahel Green	12 Sal	13 Mghayyer	14 Unspecified	Total	450	Area	1			I	46.90		3.00		
Trunk	Urban/Rulal	R	(Al Azmi) R	R	R	U	U	U	U	R	R	U	U	R	R	(blank) R			Ratio Population allocated					98% 3,924	16%	3% 241		
Sewer	Population					+								-		ĸ		521	Area					3,024	2,220	21.21	1 53.2	.22
	(pers.)	41,349	24,284	47,359	48,819	4,008	14,292	9,092	9,658	31,955	32,175	384	2,323	24,699	16,831		307,228		Ratio Population allocated							19% 1,706		11% 993
5884	Area Ratio	498.58														326.09	824.67	511	Area							31.50	37.0	.00
		34%				ļ										42%			Ratio							28%	6 29	9%
	Population allocated	13,887										ļ				0	13,887	521	Population allocated Area							2,534 23.50	4 2,71	76
Azmi-1 (from LS)	Area		101.50											+			101.50	521	Ratio							23.30		30%
(from LS)	Population allocated		24,284			+											- 24,284		Population allocated							1,891		,89
5034	Area	365.70	24,204														365.70	1553	Area									
	Ratio	25%												+			-		Population allocated								+	
	Population allocated	10,186												1			10,186	7427	Area									
17877-1		590.44		63.98													686.70		Ratio Population allocated								+	
	Ratio	40%		22%													-	7476	Area								+	+
	Population allocated	16,445		10,296													27,675		Ratio									
17877-2	Area Ratio			81.70 28%													81.70	MGH-1	Population allocated Area								<u> </u>	_
	Population allocated			28%		+								+			- 13,148		Ratio								+	
17877-3	Area			74.30													74.30		Population allocated								1	
	Ratio			25%								<u>}</u>					-	1257-1 (to LS)	A rea Ratio									
	Population allocated			11,957		+								<u> </u>			11,957	(to LS)	Population allocated								+	
	Area			74.30													74.30	1257	Area									
	Ratio			25%													-	(from LS)	Ratio Population allocated								+	
	Population allocated			11,957													11,957	1135	Area								+	+
	Area					+				43.88						102.12	146.00		Area Ratio								1	1
	Ratio Population allocated					+				7% 2,312				+		13%	- 2,312	1413	Population allocated								<u> </u>	_
3569	Area									9.00						0	9.00	1415	Area Ratio								+	
5507	Ratio	•								1%							-		Population allocated									
	Population allocated				1	1				474							474	7401	Area									
3011	Area									249.48						102.92			Population allocated								+	
	Ratio				ļ					41%						13%	-	1422	Area									
2050	Population allocated									13,143 145.80		ļ				0	13,143 145.80		Ratio Population allocated								+	
3058	Area Ratio	•				+	+			24%							-	7478-1	Area								<u> </u>	+
	Population allocated					+	+			7,681				+			7,681		Ratio									
3030	Area									7,001							0.00	7478-2	Population allocated Area									+
	Ratio																-		Ratio									
	Population allocated																0		Population allocated									_
3011	Area Ratio	29.86			1224.64											156.30	1410.80	Total	Area Ratio	1484.58 100% 41,349	0.00		1687.72 100% 48,819	47.90 100% 4,008	141.90 100% 14,292	113.01 100% 9,092	1 128.7	.72 )0% 558
		2%			73%								<b></b>			20%	-		Ratio Population allocated	41,349	0% 0	47,359	48,819	4,008	14,292	9,092	9,6	58
2091	Population allocated Area	832			35,424 283.90							<u> </u>	<u> </u>			0	36,256 283.90											
2091	Ratio	•			17%									+			283.90											
	Population allocated				8,212		+							+			8,212											
15879	Area				146.90												146.90											
	Ratio				9%												-											
	Population allocated				4,249												4,249											
	Area						2.00			32.70							34.70											
	Ratio						1%			5%		ļ					- 1,924											
7470	Population allocated Area						201			1,723 125.70	42.30						1,924											
	Ratio									21%	42.30						-											
(10 11)	Population allocated				+	+	+			6,622	2,391			+			9,013											
7471	Area																0.00											
(from LS)	Ratio																-											
	Population allocated																0											
1605	Area					1.00		1.00	8								119.80											
	Ratio				<b> </b>	2%		1%				<b> </b>	<b></b>	+			- 12,029											
1562	Population allocated Area	<u>                                      </u>				84	11,865	80 32.80			65.80		<u> </u>	-			12,029 98.60											
1.002	Ratio	t			+	+	+	52.80 29%			12%			+			- 98.00											
	Population allocated				+	+	+	2,639			3,719		t	+			6,358											
		4							*								المراجعة فتراجعها											

1								72.00
T								-
Г								6,392
-				25.27				99.70
Γ				93%				-
Γ	1			2,153				7,852
			5.00	2.00				75.50
			100%	7%				-
			384	170				5,865
		20.10						82.10
		4%						-
	1	1,136						5,916
		30.60						30.60
		5%						-
		1,730						1,730
		123.20						123.20
		22%						-
		6,964						6,964
		214.90			5.00			219.90
-		38%			1%			-
		12,148			268			12,416
						177.90	20.01	197.91
						100%	3%	
						16,831	0	16,831
					180.79		20.01	200.80
-					39%		3%	-
					9,703		0	9,703
								0.00
-								0
					131.40		10.00	141.40
					29%		1%	-
-					7,052		0	7,052
		10.00			138.00			148.00
-		2%			30%			-
		565			7,407			7,972
		57.30						57.30
		10%						-
-		3,239						3,239
		5.00			5.00		28.50	38.50
-		1%			1%		4%	-
-		283			268		0	551
							12.90	12.90
							2%	-
-							0	0
								0.00
								-
-								0
-	606.56	569.20	5.00	27.27	460.19	177.90	778.85	6523.08
-	100%	100%	100%	100%	100%	100%	100%	-
-	31,955	32,175	384	2,323	24,699	16,831	0	307,228

	Locality/	1	2	3	Tota
	Neighborhood	No'ayymeh	Ketem	Shatana	
Trunk Sewer	Urban/Rulal	R	R	R	
	Population (pers.)	24,141	10,696	540	35,37
3738	Area				0.00
(from LS)	Ratio				-
	Population allocated				0
1076-1	Area				0.00
	Ratio				-
	Population allocated				0
1653	Area	386.80		43.00	429.8
	Ratio	38%		100%	-
	Population allocated	9,067		540	9,60
1860	Area	163.40			163.4
	Ratio	16%			-
	Population allocated	3,830			3,83
1800	Area				0.00
	Ratio				-
	Population allocated				0
1795	Area		379.80		379.8
	Ratio		100%		-
	Population allocated		10,696		10,69
1105	Area	450.80			450.8
	Ratio	44%			-
	Population allocated	10,567			10,56
1089	Area	28.90			28.9
	Ratio	3%			-
	Population allocated	677			677
1772	Area				0.00
(to LS)	Ratio				-
	Population allocated				0
1075	Area				0.00
(from LS)	Ratio				-
	Population allocated				0
1076-2	Area				0.00
(to TP)	Ratio				-
	Population allocated				0
Total	Area	1029.90	379.80	43.00	1452.
	Ratio	100%	100%	100%	-
	Population allocated	24,141	10,696	540	35,37

# 6. Calculation for Ramtha WWTP

								1 .	1 .	1 4			10 0			1			1																					
	Locality/		2 3			8	6	2	8	9		5 a	10 9 10 12	9 (13)	Remote (1)	(15) Remote	Remote 16	Remote ①	(18)	Total																				
	Neighborhood		Sades-B Sade		Sabea-A	3	+			-+				Tesea-B				Dnaibeh	Unspecified	- 10121																				
Trunk Sewer		Sabea-B				Thamen	+							<b>.</b>			Emrawah		(blank)	-																				
Sewer	Urban/Rulal	U	U U	J	U	U	U	U	U	U	τι	U	U U	U	R	R	R	R	R																					
	Population (pers.)	1,917	10,485 1	2,398	20,012	13,731	2,61	2 10,500	3,861	1 21	1,950	8,253	16,923 13,020	2,93	7 28,803	22,359	7,322	4,109		201,198																				
1828 Area				72.18			+	-			72 18	-		1							2204		1	1	1r							1	F		r	c				F
Ratio	*******************	+		39%			+									+					2204	Area											2.20			+				2.20
Pop	ulation allocated			4,885			1				4,885					1	1	1				Population allocated			++								151							151
751 Area	a			37.01				7.80							44.87						1696				İ İ	İ	1					8.85	127.35							136.20
Ratio				20%				79						ļ								Ratio										11%								· ·
	pulation allocated			2,505				785		_					_					3,290 14.90		Population allocated									_	907			L					9,670
1967 Area Ratie								14.90		-+							+				251	Area			<u>↓</u>								53.10		·	·				53.10
- Cutter	oulation allocated	+					+	147								+		+	+	1,489		Ratio Population allocated		<u> </u>									22% 3,654		·	/ <u>+</u> -				3.654
1188 Area							1	3.70	_											3.70	1226	Area	-								37.90	1	3,034		<b>├</b>	-+				55.10
Ratio	io						1	49	%									+		-	1220	Ratio									28%		7%		()					
Pop	ulation allocated						1	370									1			370		Population allocated			1						6,104		1,184	· · · · · · · · · · · · · · · · · · ·						7,288
1460 Area	a			74.00			30.5													127.19	119	Area									0.30			[]	L					0.30
Ratio		+		40%			100									+			<u> </u>			Ratio									0.2%		L		Į					
1	ulation allocated			5,008			2,61	2 2,264		-					_	-				9,884		Population allocated									48	Į	L	<u> </u>	───┦	<del>_</del>				48
544 Area Ratio							+	16.3		-+				}		+	+	+	+	- 16.30	1613	Area										<u> </u>		+/						0.00
	ulation allocated	+		+			+	1.629								+			+	1,629		Population allocated			tt						•+		<u> </u>	+	·	/	+			0
547 Area	a						1	27.4	5 26.75	5										54.20	112	Area				98.05	132.37							$\vdash$		-+				230.42
Ratio	io							269	% 389	%										-		Ratio				46%	81%								1					-
	oulation allocated							2,743		9										4,191		Population allocated				9,172	11,131									$ \longrightarrow $				20,303
110 Area								3.00						ļ			L			3.00	190	Area			ļ	26.70						ļ		+'	J	J				26.70
Ratio	io ulation allocated							39						ļ		+	<b> </b>	<u> </u>		- 300		Population allocated			++	12% 2.498									+	,				- 2.498
1193 Area							+	9.28		6		15.23			+	+				51.57	1625	Area				2,498	30.92				43.74			29.63	33.37	-+				137.66
Ratie							+	99		inknonen.		19%		l			+	+		-	1020	Ratio					19%				32%			42%		t				
Pop	ulation allocated			+			+	92				1,560				+			+	3,953		Population allocated					2,600				7,045	1		5,493	850					15,989
1966 Area	a						1		17.48			19.33							97.30		99	Area												1.00						21.10
Ratio									259			24%					l		879			Ratio											ļ	1%						
	oulation allocated						1	_	947	7		1,980		8					(		0.5	Population allocated		<u> </u>								<u> </u>		185		,				698 60.60
489 Area							+					37.16		ļ					13.94		97	Area Ratio												13.07		·				
Ratio	oulation allocated				+		+					46% 3,806				+	+	+	139	6 - 3,806		Population allocated			<b>+</b> +									2.423						3.634
SEB-1 Area		209.06	110.59				+	+		+		5,000							<u> </u>	319.65	104	Area												6.55		-+				18.50
Ratio		100%					+		-											-		Ratio			1							1		9%	10%	1				-
Pop	ulation allocated	1,917	10,485				1		-								1		1	12,402		Population allocated												1,214		<u> </u>				1,519
SEB-2 A rea					62.22															62.22	90	Area										ļ	39.07			J				61.35
Ratio	io				29%															·		Ratio Population allocated			<b>∤</b> ∤						+	<b> </b>	16% 2,689			·				- 6,451
Pop	ulation allocated			_	5,820 24.20		-			-	1.00	_				-	-			5,820 25.20	DN-1		-								-	-	2,089	3,704	29	-+			74.00	6,451 74.00
2206 Area Ratio		h			24.20		+				1.00			ŀ						- 25.20	21	Ratio										1		t	[	+			100%	
	oulation allocated	+			2,264		+	-+			161					+		+	+	2,425		Population allocated		<u> </u>	1						-	t	†		[				4,109	4,109
2207 Area		1			2,204		1	1			24.64				1	1	1	1		27.40	EM-1	Area			I										L			40.80		40.80
Ratio	io				1%		1				18%			l	1	1	1	1	1	-		Ratio		ļ	ļ	T						ļ	ļ	ļ		,T	7	100%		
Pop	ulation allocated				258					_	3,969									4,227	CII :	Population allocated		<u> </u>									<u> </u>	<u> </u>	┥───┦	,	201.20	7,322		7,322
1990 Area							4				14.70									14.70	SH-1	Area			<u></u> +							<b> </b>		+		·	204.70 100%			204.70
Ratio											11%					+		<u> </u>	<u> </u>	-		Population allocated		<u> </u>	+									+			22.359			22,359
-1	ulation allocated	+					-	-	-	_	2,368 7.20				-	-	-	-		2,368 7.20	TOR-1					+						1		H +	$\square$	317.19				317.19
1565 Area Ratio							+				7.20			<b> </b>	-+	+	+	+	+	- 1.20		Ratio		1	1	1					1	t		1	1	100%				
	oulation allocated	+		+			+		-+		1,160				-+	+	+	+	+	1,160		Population allocated														28,803				28,803
1149 Area		İ					1		1		6.80		7.00	Í			1	İ	1	13.80	Total	Area			183.19		163.29		105.15			80.57		70.23						111.30 2483.27
Ratio							1				5%		3%	L					<u> </u>	-		Ratio Population allocated	100%		100% 12,398	100%										100% 28,803			100% 4,109	100% - 0 201,198
Por	ulation allocated	1	ll				1			1	1,095		482	1	1	1	1	1	1	1,577		p opulation anocated	1,917	į 10,485	14,598	20,012	13,/31	2,012	10,500	3,80.	41,950	ğ 0,453	10,923	1 13,020	4,957	20,000	44,339	1,344	4,109	0 201,198

# 7. Calculation for Mafraq WWTP

	Locality/	0	2		Ð	5 6	Remot	8	g		0	11	12 13		19 (5				(§) Total																				
	Neighborhood	Al-Malik Abdullah			adah Z	Al-Amee	er	on Harra	eer				Nuzhah Al-Hus		Fadeen Nowwar	Al-Ameer Al-An	eerah Bani	Unst	pecified blank)																				
Trunk Sewer	Urban/Rulal	U	U	U U	J	Zahoor U U	R				J	U	U U		U U				R		1312	Area				1	6.10	1-		1	-t		· · · · · · · · · · · · · · · · · · ·	11				-1	6.10
Sewer	Population	15,348	4,448	3,172 2	25,483	164 8,95	6,0	062 2,1	156 1	12,288	731	12,462	5,682	7,814	10,809 7,0	064 12,499	7,457 13,54	1	156,136			Ratio Population allocated					9% 805												- 805
1873 A	(pers.) rea	10.57								2.56						35.21						Population allocated Area					805											4	.10 4.10
Ri	itio	12%			6.06 5% 1,176					1%						-						Ratio																	0% - 0 0
Po	pulation allocated	1,913								147									7,190			Population allocated Area									-					3.00		-	0 0
MAF-1 A (fromLS) R	rea	74.25 88%		176.68 83%	2.34	12.54 49%													1001.04 1266.85 50% -			Ratio														5%			.90 5.90 0% - 0 586
	pulation allocated	13,435		2,641	454	80													0 16,611	~ _		Population allocated									20.1	1 10.0		14.02		586			0 586
694 A	rea		2.00	2.00															4.00		935	Area Ratio									28.1			14.27					53.06
Ri	ntio opulation allocated		11% 494	1%															- 524			Population allocated									3,13	0 2,159		2,469					7,758
698 A			474	50	1.50														1.50		20	Area											5.00						5.00
	ıtio				1%														-	-		Population allocated											3,308						3,308
1045 A	pulation allocated rea				291 29.30		_											_	291 29.30		1565	Area											0.40						0.40
1045 A	atio				29.30																	Population allocated											265						- 265
Pe	pulation allocated	*******	***********		5,687														5,687			Area											6.41			5.95			12.36
	rea				14.15														20.20			Ratio Population allocated											54%			9%			- 5,404
	utio opulation allocated				11% 2,746														- 2,837			Area									26.3	8	9,291	18.31	73.90	1,105		36	16 154.7:
	rea				5.54														2,007			Ratio Population allocated									249	%		29% 3,168	82% 5,818				2% - 0 11,92
R	itio			10%	4%															-1  -	108										2,93	8 6.50	)	3,168 5.66			-+-	+	11,92
	pulation allocated rea		+ +		1,075 1.00		-		_					_		+ +		+	1,404 6.50			Ratio										239	6	9%					12.16
R	ıtio	**********		3%	1%														-			Population allocated Area										1,314	1	979 1.70				-	2,293
	pulation allocated			82	194														276			Ratio										1	1	3%				-	
1712 A	rea				9.16	13.01 3.3 51% 59	.37												2.00 27.54			Population allocated												294				_	294
Po	pulation allocated				7% 1,778	84 44	45												0 2,306		149	Area Ratio					3.78							9.76 16%					13.54
1733 A						0.5	.50												4.50 5.00			Population allocated					499							1,689					2,188
R	atio					19	1%												0% -		743	Area					22.20					-		12.77 20%	11.82	4.96			51.75
	rea					6 9.6		-						-				-	0 66 55.45 65.13			Population allocated					2,931							2,210	931	969			7,041
	ntio					149													3% -		802	Area					1.00									38.91	1.22		41.13
	pulation allocated					1,27	.78												0 1,278			Ratio Population allocated					1%									61%	1%		- 7,812
	rea atio				35.40 27%														35.40		1107	Area					152									7,005			0.00
1 22	pulation allocated				6,871														6,871			Ratio																	- 0
509 A	rea				2.20														2.20	]  -		Population allocated Area									_					2.20	3.50		5.70
Ra	ntio opulation allocated				2% 427														427			Ratio														3%	3%		-
-	rea				427	7.5	.50							-					427		1865	Population allocated									-					430 7.45	222 69.26		652
R	ıtio				1%	119																Ratio														12%	59%		76.71
	pulation allocated				194	99												_	1,184			Population allocated Area													4.00	1,456 1.50	4,388 43.72	20	5,844
193 A	rea					10.0													- 10.00		074	Ratio													4.00	2%	43.72		0% - 0 3,378
Po	pulation allocated					1,32	20												1,320			Population allocated													315	293	2,770		
1826 A	rea					1.0	.00												5.60 6.60		100-1	Area																	0.00
Ri	pulation allocated					13	32												0% -			Population allocated																	
AID-1 A	rea						120.		3.43	47.85									33.29 325.37		BH-1	Area															240.1		240.1
Ra	ıtio						100	0% 7		22%									2% -			Population allocated															13,54		- 13,54
	pulation allocated rea						6,0		563 ).50	2,752								_	0 10,376 33.29 63.79		BH-2	Area																	0.00
Ri	atio								18%									1	2% -			Ratio Population allocated																	- 0
Po	pulation allocated								386										0 386			Area										1							0.00
1319 A	rea atio									53.46 25%									21.87 91.71			Ratio Population allocated										+	+	Ī					- 0
Po	opulation allocated									3,074									0 3,282	-1  -		Area							<u> </u>			1	1				-+	+	0.00
1235 A	rea									40.40									40.40			Ratio																	
Ra	atio opulation allocated		-							19% 2,323									2,323		BH-5	Population allocated Area						<u> </u>	<u> </u>			+	+				-+	+	0
	rea							+		26.70						+ +		+	2,323		-	Ratio										1	1	11				1	
Ri	atio									12% 1,535									-		BH-6	Population allocated													T		-+		0
	opulation allocated		├		0.50		_									+ +		-	1,535		(to LS)	Ratio																	0.00
1130 A	rea atio				0.50					27.80 13%									28.30			Population allocated																	0
Pe	pulation allocated				0% 97					1,599									1,696	6	MNS-1 from LS)																		0.00
1138 A					15.44							57.42	10.93						107.69			Population allocated																	0
	atio opulation allocated				12% 2,997					7% 857		51% 6,394	39%						- 13,188		100-2	Area																	0.00
251 A					2.00			1				0,074				1 1		+	2.00			Ratio Population allocated										+	+						- 0
R	ıtio				2.00 2% 388														-		100-3	Area										1							0.00
	pulation allocated							_								+ +		-	388			Ratio Population allocated																	- 0
253 A	rea atio				5.70 4%														5.70	-   -	100-4	Area				<u> </u>			<u> </u>		-	1	+	<u>   </u>			-+	+	0.00
Po	pulation allocated				1,106														1,106	-	(to TP)	Ratio Population allocated																	-
	rea					2.7													2.70		Total		84.82	18.02	212.19	131.29 25	.55 67.83	120,80	170.31 2	13.67 9.0	0 1119	1 28.11	11.81	62.47	89.72	63,97	117.70 240	0 1991	0
	atio					49													- 254			Ratio	100%	100%	100%	100% 10	0% 100%	100%	100%	100% 100%	% 100%	6 100%	100%	100%	100%	100%	117.70 240.1 100% 100% 7,457 13,54	% 10	% -
P	paration anotated	L			4_		∽⊥					L							1_ <u></u>	.J L		Population allocated	15,348	4,448	3,172	25,483	164 8,956	6,062	2,156 1	2,288 73	1 12,46	2 5,682	7,814	10,809	7,064	12,499	7,457 13,54	11	0 156,1

#### APPENDIX II REQUIRED LENGTH AND COST OF BRANCH SEWER FOR EACH SEWERAGE DISTRICT

Required length and cost of branch sewer for each sewerage districts are shown in Table II--1.-

#### 1. Length of Branch Sewer

The unit length of 152.3m/ha is used in this study.

#### 2. Cost of Branch Sewer

The unit cost of 120.64 JD/m is used this study.

			2013 in									e=	152.3m	C=	120.64JD/m				III           7.45         61.3           4.20         402.7           3.55         7.4           1523         0.152           8.87         128.6           1523         0.152           8.87         128.6           1523         0.152           8.87         128.6           1523         0.152           8.38         42.53           0.152         0.152           8.38         42.53           0.70         279.60           2.22         5.1           1523         0.152           2.67         96.9           5.35         11.7           1523         0.152
n	Dist rict	Sub -District	Area (ha)	Length (km)	Cost (Million JD)	Dist riet	Suh -District	Area (ha)	Leugth (km)	Cost (Million JD)	Dist rict	Sub -District	Area (ha)	Length (km)	Cost (Million JD)				
1		Wa	udi Al-Arat	,	1			Shallala				i.	Wadi Hassa	n		Planning		Priority	
I	Unit-12	cebdat, Aidoon](I	П)	6		[Unit-1	Hoson](III)				[Unit-1:	Noayemeh](II)	1			Area	L	Ш	11
		1 (5641)	134.40	20.47	2.47	1	1 (5034)	56.40	8.59	1,04		1 (1653)	40.40	6.15	0.74	Wadi	167.36	87.45	6
		2 (2097)	151.00	23.00	2.77	1.000	2 (5034)	49.10	7.48	0.90	[Unit-2:	Hoson-A](II)				Al-Arab	1098.90	574.20	400
	Unit-2:2	Al Basaten Al Bar	ha](III)	_		[Unit-2:	Aidoon.Sarie](III)					2 (5884)	55,50	8,45	1.02		20,19	10.55	
		3 (3401)	\$7.70	8.79	1.06	1	3-(3011)	120.10	18.29	2.21	[Unit-3:]	Hoson-B](I)					0 1523	0.1523	0
f		4 (24(3)	59 60	9.08	-1.10	-	4 (17877-1)	81.00	12.34	1.49		3 (5884)	24.80	3.78	0.46				
	Unit-31	lakama](II)			1		5 (3012)	240.40	36.61	4.42	[Unit-4:	Hoson-C](III)			11	Shallala	89.37	38.87	12
ľ	. Dansecon	5 (1109)	574.20	87.45	10.55	1	6 (17877-4)	297.50	45.31	5.47	the second second second second second second second second second second second second second second second se	4 (5884)	279.60	42.58	5.14				
	Unit-4:	Bait Ras] (I)			- (A.D. 41.4)	[Unit-3:	Howwarah](1)			1	Total		400.30	60.97	7.35		Area         I         II           Wadi         167.36 $87.45$ d-Arab         1098.90 $574.20$ 20.19         10.55           0.1523         0.1523           ihallala $89.37$ $38.87$ 586.8         255.2           10.78 $4.69$ 0.1523         0.1523           Wadi         0.00         18.38           Hassan         0.00         18.38           0.000         18.38         0.1523           0.1523         0.1523         0.1523           0.1523         0.1523         0.1523           0.000         18.38         0.00         120.70           0         2.22         0         0.1523           0.1523         0.1523         0.1523           0.01523         0.1523         0.1523           0         0.1523         0.1523           0         0.1523         0.1523           0.1523         0.1523         0.1523           0         1523         0.1523           0         1523         0.1523           0         1523         0.1523 <td></td>		
ľ		6 (1109)	289.90	44.15	5.33		7 (15879)	1.16.90	22.37	2.70	the second second second second second second second second second second second second second second second s		-				- Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Antonio - Anto	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	-
ł		7 (1376)	273.00	41.58	5.02	-	8 (3011)	262.00	39.90	4.81			Ramtha			1.0		10 × 10 400	
ł				14,000				209.00	39,90	4.01	-	e contract ,			-		II         III           87.45         61           574.20         402           10,55         7/           0.1523         0.15           38.87         128.0           255.2         844           4,69         15.           0.1523         0.15           4,69         15.           0.1523         0.15           255.2         844           4,69         15.           0.1523         0.15           2.22         5.           0.1523         0.15           52.67         96.9           345.80         636.9           6.35         11           0.1523         0.15           164.27         155.0           1078.60         1022.3           19.82         18.		
ł	_	8 (762)	285 (4)	43.50	the second second second second second second second second second second second second second second second se	[Unit-4:	Bushra,Sal](Ⅱ)	Provide				Sabea-A](I)	22202	a. 196.4	10.00	100 Mar 11		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	II         III           87.45         61.3           574.20         402.7           10,55         7.4           0.1523         0.15           38.87         128.6           255.2         844.5           4.69         15.5           0.1523         0.15           18.38         42.5           120.70         279.6           2.22         5.1           0.1523         0.15           52.67         96.5           345.80         636.6           6.35         11.5           164.27         155.6           078.60         1022.0           19.82         18.3
	-	9 (3376)	250,40	38,14	4.60		9 (7427)	110.60	16.84	2.03		1 (SEB-1)	330.60	50.35	6.07	Hassan	0.00	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	
L	Total		2075.80	316.14	38.14	1	10 (1135)	72.30	11.01		a provide series and the series of the	Sabca-A](II)			23		0		
L						Land, A	11 (1413)	72.30	11.01	1,33		2 (SEB-2)	40,20	6.12	0.74		0	0.1523	
I			Mafraq			[Unit-5:	Mugheyerl](1)				[Unit-3:	Thamen](II)				1			
ľ	Unit-1:2	Aidoon](II)					12 (MGH-1)	1,77.90	27.09	3.27		3 (112)	67.20	10.23	1.23	Ramtha	65.95	52.67	9
Г		1 (AID-1)	120.80	18.40	2.22	Total		1686.50	256.85	30,99	Unit-4:	Sades-A1(I)					435.00	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	63
0	Unit-2:	Ameer Himzaha,S				1					-	4 (1460)	27.80	4.23	0.51		7.96	6.35	_
T		2 (AID-1)	30.50	4.65	0.56	-					[Unit-5:	Arraba, Aththalth)		- Chi	1		and the second second		
Ľ	1000	3 (AID-2)	205.60	31.31	3.78							5 (547)	22.60	3.44	0:42		COLORE A	101.101	
		4 (1319)	44:70	6,81	0.82	1					-	6 (1193)	18.20	2.77	0.33	Mafran	121.93	164.27	15
	-	5 (1235)	26.70	4.07	0.49						-	7 (1966)	33.80	5.15	0.62	manual			
	1 Init. 24	South-West Area				-					I Unit.6	Aasher](II)	1000	0.00	0.02		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	and the second second second second second second second second second second second second second second second	and the second second
ľ	Com-54	6 (MAF-1)	253 (0)	38.53	4.65	-					L'united	8 (1696)	80.90	12.32	1.49		the second second second second second second second second second second second second second second second s	and the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division	
	That dis	South-East Area]	1	30.33	830	-				-		9 (90)	56.70	8.64	1.04		01563	01563	0.
ľ	Come-45	7 (MAF-1)	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	155 65	18.78					-	Tilute 20	Tesea-B](II)	240.00	0.04	1.04				
	The sa	the second second second second second second second second second second second second second second second s	1022,00	155.05	10.70	-	-				LOBN-7	10 (1652)	48.00	7:31	0.88				
		North Area](II)	541.14	7.07	11173	-						and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s							
Ŀ		8 (1906)		7.63		-				-	-	11 (99)	15,30	2.33	the second second second second second second second second second second second second second second second s				
ł	_	9 (110)		10.13	1.22	-			-		Tree to ma	12 (97)	57,50	5.71	0,69				
	William and	10 (MAN-1)	841.20	128.11	15.46					-	LUmi-8:	Forrah](III)	200.00	10.21					III           45         61           20         402           55         7           23         0.15           57         128.0           23         0.15           87         128.0           23         0.15           23         0.15           38         42.1           70         27.9           22         5           23         0.15           67         96.9           57         10           567         96.9           35         11           23         0.15           67         96.9           50         636.0           35         11           23         0.15           67         96.9           60         636.0           35         11           23         0.15           27         155.6           30         1022.3           82         18
1	Unit-6:1	3ani Hassan](I)		-12.24		-						13 (TOR-1)	317,19	48.31	5.83				
ŀ	-	11 (BH-1)	240.10		4.41	-					- Francisco - Contractor	Shajarah](III)	20000						
	Total		2901.20	441.85	53,30	1						14 (SH-1)	204770	31,18	3.76				
L						1					[Unit-H	Emrawah](III)							
					1	1						15 (EM-1)	40.80	6.21	0.75				
											[Unit-1]	Dnaibeh](III)			1				
				20	3	1						16 (DN-1)	74.00	11.27	36				
											Total		1415.49	215.58	26.01				
										5									
1												(Million JD)	8479.3	1,291.4	155.79				
1												(Million USD)	and the set	1	220,70				

# Table II-1 Direct Construction Cost for Branch Sewer by Each SWD

# APPENDIX III-A CAPACITY CALCULATION FOR EXISTING AND CONSTRUCTING FACILITIES OF EACH WWTP

The capacity calculations on exiting and constructing facilities of each WWTP are shown as follows.

#### 1. Basis of Capacity Calculation

The capacity calculation is based on design flow of existing plan and actual quality (or design quality if design quality is more concentrated than actual).

The WWTPs of Central Irbid and Mafraq are constructing new water treatment facilities on July in 2014. The capacity calculation is considered to these new facilities.

The dimensions of each tank are referred to the drawings, hearing and site investigations.

## 2. Capacity Calculation for Central Irbid WWTP

Design Flow						
Average Daily Flow (ADF)	=	11,950	$m^3/day$			
Maximum Daily Flow (MDF)	=		$m^{3}/day$			
• • • •	=		$m^{3}/day$			
Maximum Hourly Flow (MHF)	_	21,000	m /day			
Actual Influent Quality						
BOD	=			luding return water =	930	mg/l)
SS	=	689	9 mg/l (Inc	luding return water =	758	mg/l)
Temperaure	15	$\sim 28$	3 °C			
Removal Efficiency						
Primary Sedimentation Tank						
BOD	=	40.0%				
SS	=	50.0%				
Oxdation Ditch						
BOD	=	95.0%				
SS	=	95.0%				
Total Removal Efficiency						
BOD	=	97.0%				
SS	=	97.5%				
Treated Wastewater Quality						
After primary sedimentation tank						
BOD	=	557.7	mg/l			
SS	=	379.0	mg/l			
After trickling filter						
BOD	=	27.9	mg/l (<	30 mg/L )		
SS	=	18.9	mg/1 (<	30 mg/L )		
			0			
Generated Sludge Amount						
Removal Solid Weight	=	757.9	mg/l $ imes$	14,000 $\text{m}^3/\text{day} \times$	97.5%	
	=	10.3	t/day			
Sludge Thickener						
Collection Rate	=	80.0%				
Tickenered Sludge Weight	=	8.3	t/day			
Solid Concentration	=	3.0%				
Dewatered Sludge Volume	=	275.9	m ³ /day			
Digested Sludge						
Digestive Efficiency	=	50.0%				
Organic Matter Content Rate	=	85.0%				
Digested Sludge Solid Weight	=	4.8	t/day			
Solid Concentration	=	1.7%				
		275.9	m ³ /day			

Sludge Holding Tank			
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	3.8	t/day
Solid Concentration	=	2.5%	
Dewatered Sludge Volume	=	152.3	m ³ /day

Pretreatment Facilities Coarse Screen	Manual	
Fine Screen	Automatical	
Grit Chamber	Aerated Grit Chamber with Grea	ise Trap
	L= 10 m, W= 2.2	m, D = 2 m, N = 2
	Volume = $44 \text{ m}^3 \times$	$2 = 88 m^3$
	Retention Time = $6.03$ min	
Primary Sedimentation Tank	Rectanglar Tank	
5	L = 36.0  m, W = 6.0	m, D= 3.2 m, N= 2
	A= 216 $m^2 \times 2$	= 432 m ²
	Required Surface Load =	
	•	$= 35 \text{ m}^{3}/\text{m}^{2}/\text{day}$
	Actual Surface Load =	= 32.41 m ³ /m ² /day
Biocemical Facilities		
Aeration Tank	Oxidation Ditch	
	L= 60.0 m, $W=$ 20.0	m, D= $4.5$ m, N= 2
	$V = 5,014 m^3 \times 2$	= 10,027 m ³
	MLSS	= 5,000 mg/l
	MLVSS (MLSS *0.85)	= 4,250 mg/l
	Design BOD/MLVSS Load	= 0.200 kgBOD/kgSS/d
	Actual BOD/MLVSS Load	= BOD * MDF / MLVSS / V
		= 0.183 kgBOD/kgSS/d
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Lo
	2	= 0.66 days
	Actual Retention Time ( $\theta$ )	= 0.72 days
Sedimentation Tank	Circular Tank	
	Diameter = $30$ m, D=	3.5 m, N= 2
	$A=707 m^2 \times 2$	= 1,414 m ²
	Maximum SVI	= 200
	Required Surface Load =	$= 10.79 \text{ m}^3/\text{m}^2/\text{day}$
	(= 4.8*10^6*Min Temp^0.95*MI	5
	Actual Surface Load =	
	Actual Surface Load –	= 9.90 m ³ /m ² /day
Disinfection Facilities	Chlorine Contact Basin L= 102 m, W= 1.50	m, D= 3.00 m, N= 2
	,	, , ,
	$V= 459  m^3 \times 2$	= 918 m ³
	Design Retention Time	= 20.0 minutes
	Actual Retention Time	= 62.9 minutes

Sludge Thickener	Diameter = 18.0 m, N=	1
	Surface Area	$= 254.5 \text{ m}^2$
	Design Surface Load	= 90.00 kg/m ² /day
	Actural Surface Load	= 40.65 kg/m ² /day
Sludge Digestion Tank	Diameter = $26.0 \text{ m, L}=$	7 m, N= 1
	Tank Volume	$=$ 3,717 $m^3$
	Design Surface Load	= 15.0 days
	Actural Retention Time	= 13.5 days
Sludge Holding Tank	Diameter = $8.0 \text{ m, N}=$	1
	Surface Area	= 50.3 m ²
	Design Surface Load	= 90.00 kg/m ² /day
	Actural Surface Load	= 94.67 kg/m ² /day

## 3. Capacity Calculation for Wadi Al-Arab WWTP

Design Flow		20.000	3		
Average Daily Flow (ADF)	=		$m^3/day$		
Maximum Daily Flow (MDF)	=		$m^{3}/day$		
Maximum Hourly Flow (MHF)	=	36,500	m ³ /day		
Actual Influent Quality					
BOD	=		•	luding return water =	892 mg/l
SS	=	471	mg/l (Inc	luding return water =	518 mg/l
Temperaure	15	$\sim 28$	3℃		
Removal Efficiency					
<b>Biochemical Treatment</b>					
BOD	=	95.0%			
SS	=	95.0%			
Sand Filter					
BOD	=	40.0%			
SS	=	60.0%			
Total Removal Efficiency					
BOD	=	97.0%			
SS	=	98.0%			
Treated Wastewater Quality After biochemical treatment					
BOD	=	44.6	mg/l (<	60 mg/L after Biocer	nical treatment)
SS	=	25.9	mg/l (<	60 mg/L after Biocer	
After sand filter					
BOD	=	26.8	mg/l (<	30 mg/L after sand fi	lter)
SS	=	10.4	mg/l (<	30 mg/L after sand fi	lter)
Generated Sludge Amount					
Removal Solid Weight	=	518.1	mg/l $ imes$	24,300 $\text{m}^3/\text{day} \times$	98.0%
-	=	12.3	t/day	····y	
Sludge Thickener					
Collection Rate	=	80.0%			
Tickenered Sludge Weight	=	9.9	t/day		
Solid Concentration	=	3.0%	-		
Dewatered Sludge Volume	=	329.0	m ³ /day		
Mechanical Dewatering					
Collection Rate	=	95.0%			
Dewatered Sludge Weight	=	9.4	t/day		
Solid Concentration	=	20.0%			

Pretreatment Facilities		
Coarse Screen	Manual	
Fine Screen	Automatical	
Grit Chamber	Aerated Grit Chamber with Grea	ase Trap
	L= 38 m, $W=$ 2.8	m, D= 2 m, N= 1
	Volume = $212.8 \text{ m}^3 \times$	$1 = 212.8 \text{ m}^3$
	Retention Time = $8.40$ mir	
		15
<b>Biocemical Facilities</b>		
Aeration Tank	Extended Aeration Activated Sh	-
	L= 72.0 m, $W=$ 18.0	m, D= 4.5 m, N= 6
	$V = 5,832 m^3 \times 6$	= 34,992 m ³
	MLSS	= 4,000 mg/l
	MLVSS (MLSS *0.85)	= 3,400 mg/l
	Design BOD/MLVSS Load	= 0.200 kgBOD/kgSS/d
	Actual BOD/MLVSS Load	= $BOD * MDF / MLVSS / V$
		= 0.182 kgBOD/kgSS/d
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Load
	-	= 1.31 days
	Actual Retention Time ( $\theta$ )	= 1.44 days
Sedimentation Tank	Circular Tank	
Sedimentation Turk	Diameter = $21$ m, D=	3.4 m, N= 9
	$A = 346  m^2 \times 9$	= 3,117 m ²
	Maximum SVI	= 200
	Required Surface Load =	= 14.59 m ³ /m ² /day
	(= 4.8*10^6*Min Temp^0.95*Mi	
	Actual Surface Load =	= 7.80 m ³ /m ² /day
Sand Filer	Filtration Rate	= 300 m/day
	Required Filtration Area	$=$ 81 $m^2$
	L= 10 m, W= 6.00	m, N= 2
	Design Area	= 120 m2
Disinfection Facilities	Chlorine Contact Basin	
	L= 150 m, W= 2.45	m, D= 2.00 m, N= 2
	$V = 735 m^3 \times 2$	= 1,470 m ³
	Design Retention Time	= 20.0  minutes
	Actual Retention Time	= 58.0 minutes
		50.0 minutes
Sludge Thickener	Diameter = $12.0$ m, N=	2
	Surface Area	= 226.2 m ²
	Design Surface Load	= 90.00 kg/m ² /day
	Actural Surface Load	= 54.55 kg/m ² /day
Dewatering Machine	Centrifugal Dewatering	
	Operation Time (in a day)	= 8 hours/day
	Operation rulle (III a day)	5
		- 50 down/woolr
	(in a week)	= 5.0 days/week
	(in a week) Required Capacity	= 58 m ³ /hour
	(in a week)	5

## 4. Capacity Calculation for Shallala WWTP

Design Flow Average Daily Flow (ADF)	=	13 700	0 m ³ /day			
<b>e y ( )</b>			•			
Maximum Daily Flow (MDF)	=		$m^3/day$			
Maximum Hourly Flow (MHF)	=	24,000	0 m ³ /day			
Design Influent Quality (no actual data)						
BOD	=			luding return water =	972	mg/l
SS	=	816	6 mg/l (Inc	luding return water =	898	mg/l
Temperaure	15	$\sim$ 28	3 °C			
Removal Efficiency						
Primary Sedimentation Tank						
BOD	=	50.0%				
SS	=	60.0%				
Oxidation Ditch						
BOD	=	95.0%				
SS	=	95.0%				
Total Removal Efficiency						
BOD	=	97.5%				
SS	=	98.0%				
Treated Wastewater Quality						
After primary sedimentaiton tank						
BOD	=	486.2	mg/l			
SS	=	359.0	mg/l			
After oxidation ditch						
BOD	=	24.3	mg/l (<	30 mg/L )		
SS	=	18.0	mg/l (<	30 mg/L )		
Generated Sludge Amount						
Primary Removal Solid Weight	=	897.6	mg/l $ imes$	16,000 m ³ /day $\times$	60.0%	
	=	8.6	t/day			
Secondary Removal Solid Weight	=	359.0	mg/l ×	16,000 ${ m m}^3/{ m day}  imes$	95.0%	
	=	5.5	t/day	-		

Sludge Gravity Thickener		00.00/	
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	6.9	t/day
Solid Concentration	=	4.0%	
Dewatered Sludge Volume	=	172.3	m ³ /da
Belt Thickener			
Collection Rate	=	95.0%	
Tickenered Sludge Weight	=	5.2	t/day
Solid Concentration	=	4.0%	•
Dewatered Sludge Volume	=	129.6	m ³ /da
Digested Sludge (First Stage)			
Digestive Efficiency	=	50.0%	
Organic Matter Content Rate	=	85.0%	
Digested Sludge Solid Weight	=	6.9	t/day
Solid Concentration	=	2.3%	-
Dewatered Sludge Volume	=	302.0	m ³ /da
Digested Sludge (second Stage)			
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	5.6	t/day
Solid Concentration	=	3.0%	-
Dewatered Sludge Volume	=	185.2	m ³ /da
Sludge Dewatering			
Collection Rate	=	95.0%	
Tickenered Sludge Weight	=	5.3	t/day
Solid Concentration	=	20.0%	5
Dewatered Sludge Volume	=	26.4	m ³ /da
2 e l'atorea Shauge Volume			III / ua

Pretreatment Facilities Coarse Screen	Manual	
Fine Screen	Automatical	
Grit Chamber	Aerated Grit Chamber with Grea	ise Trap
	L= 30 m, W= 3	m, D= 2 m, N= 2
	Volume = $180 \text{ m}^3 \times$	$2 = 360 \text{ m}^3$
	Retention Time = $21.60$ mir	
		_
Equalization Tank (for rain seas		
	L= 72.0 m, W= 10.0	
	$V = 3,493 m^3 \times 5$	= 17,463 m ³
	Retenciotn Time (at MHF)	= 17.5 hours
Primary Sedimentation Tank	Rectanglar Tank	
Fillinary Sedimentation Tank	L = 32.0  m, W = 7.0	m, D= 3 m, N= 2
	,	
	$A= 224  m^2 \times 2$	
	Required Surface Load =	$= 35 \text{ m}^3/\text{m}^2/\text{day}$
	Actual Surface Load =	= 35.71 m ³ /m ² /day
<b>Biocemical Facilities</b>		
Aeration Tank	Oxidation Tank	
	L = 58.0  m, W = 20.0	m, D= 4.5 m, N= 2
	$V = 4,834 \text{ m}^3 \times 2$	$= 9,667 \text{ m}^3$
	MLSS	= 5,000 mg/l
	MLVSS (MLSS *0.85)	= 4,250  mg/l
	Design BOD/MLVSS Load	= 0.200  kgBOD/kgSS/d
	Actual BOD/MLVSS Load	= BOD * MDF / MLVSS / V
		= 0.189  kgBOD/kgSS/d
	Design Retention Time $(\theta)$	= BOD / MLVSS / Design Loa
		= 0.57 days
	Actual Retention Time $(\theta)$	= 0.60 days
Sedimentation Tank	Circular Tank	
	Diameter = $42$ m, D=	3 m, N= 2
	A= 1,385 $m^2 \times 2$	= 2,771 m ²
	Maximum SVI	= 200
	Required Surface Load =	$= 10.79 \text{ m}^3/\text{m}^2/\text{day}$
	(= 4.8*10^6*Min Temp^0.95*MI	
	Actual Surface Load =	= 5.77 m ³ /m ² /day
Disinfection Facilities	Chlorine Contact Basin	
	No Data	

Sludge Gravity Thickener	Diameter = $10.0 \text{ m, N}=$	3
Sludge Gravity The Kener	Surface Area	$= 235.6 \text{ m}^2$
	Design Surface Load	118/111/awy
	Actural Surface Load	= 36.57 kg/m ² /day
	0.111 W. 1.14	5 46 41
Belt Thickener	Solid Weight	= 5.46  t/day
	Solid Concentration	= 0.80%
	Required Capacity	= 682 m3/day
		= 28 m3/hour
	Actual Capacity	$=$ 65 m3/hour $\times$ 2
		(45 - 90 m3/hour)
Sludge Digestion Tank		
Fist Stage	Diameter 18.0 m, L=	13 m, N= 3
Tist Stage	Tank Volume	$= 9,924 \text{ m}^3$
	Design Surface Load Actural Retention Time	J
	Actural Retention 1 line	= 32.9 days
Second Stage	Diameter 12.0 m, L=	10 m, N= 1
	Surface Area	= 113.1 m ²
	Design Surface Load	= 90.00 kg/m ² /day
	Actural Surface Load	$= 60.95 \text{ kg/m}^2/\text{day}$
Dewatering Machine	Centrifugal Dewatering	
	Operation Time (in a day)	= 8 hours/day
	(in a week)	= 5.0 days/week
	Required Capacity	= 32.41 m ³ /hour
	Design Machine Capacity	= 30 m ³ /hour/machine
	Design Machine Number	= 2 (including sdand-by)
	0	

## 5. Capacity Calculation for Wadi Hassan WWTP

Design Flow					
Average Daily Flow (ADF)	=		) m ³ /day		
Maximum Daily Flow (MDF)	=	1,900	) m ³ /day		
Maximum Hourly Flow (MHF)	=	2,800	0 m ³ /day		
Actual Influent Quality					
BOD	=			luding return water =	1,184 mg/
SS	=	710	) mg/l (Inc	luding return water =	781 mg/
Temperaure	15	$\sim$ 28	3 °C		
Removal Efficiency					
Oxidation Ditch					
BOD	=	95.0%			
SS	=	95.0%			
Polishing Pond					
BOD	=	50.0%			
SS	=	50.0%			
Total Removal Efficiency					
BOD	=	97.5%			
SS	=	97.5%			
Treated Wastewater Quality					
After oxidation ditch					
BOD	=	59.2	mg/l		
SS	=	39.1	mg/l		
After polishing pond					
BOD	=	29.6	mg/l (<	30 mg/L )	
SS	=	19.5	mg/l (<	30 mg/L )	
Generated Sludge Amount					
Removal Solid Weight	=	781	mg/l $ imes$	1,900 $m^3/day \times$	95.0%
	=	1.4	t/day		
Sludge Gravity Thickener					
Collection Rate	=	80.0%			
Tickenered Sludge Weight	=	1.1	t/day		
Solid Concentration	=	3.0%			
Dewatered Sludge Volume	=	37.6	m ³ /day		
Sludge Drying Bed					
Collection Rate	=	90.0%			
Tickenered Sludge Weight	=	1.0	t/day		
Solid Concentration	=	50.0%			
Dewatered Sludge Volume	=	2.0	m ³ /day		

Pretreatment Facilities		
Coarse Screen	Manual	
Fine Screen	Automatical	
Grit Chamber	Aerated Grit Chamber with Grea	ase Trap
	L=20 m, $W=2$	*
	Volume = $64 \text{ m}^3 \times$	, , ,
	Retention Time = $32.91$ min	
	Retention Time $-$ 52.71 mm	15
<b>Biocemical Facilities</b>		
Aeration Tank	Oxidation Tank	
	L= 60.0 m, W= 14.0	m, D= 3 m, N= 2
	$V = 2,394 m^3 \times 2$	= 4,788 m ³
	MLSS	= 4,000 mg/l
	MLVSS (MLSS *0.85)	= 3,400 mg/l
	Design BOD/MLVSS Load	= 0.300  kgBOD/kgSS/d
	Actual BOD/MLVSS Load	= BOD * MDF / MLVSS / V
		= 0.138 kgBOD/kgSS/d
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Load
		= 1.16 days
	Actual Retention Time ( $\theta$ )	= 2.52 days
Sedimentation Tank	Circular Tank	
Sedimentation Tank	Diameter = $15$ m, D=	3.8 m, N= 2
	$A = 177  m^2 \times 2$	·
	Maximum SVI	= 200
	Required Surface Load =	5
	(= 4.8*10^6*Min Temp^0.95*M	
	Actual Surface Load =	= 5.38 m ³ /m ² /day
Polishing Pond	2 Steps	
	L= 88.0 m, W= 60.0	
	$V = 9,504 m^3 \times 4$	= 38,016 m ³
	Actual Retention Time ( $\theta$ )	= 20.01 days
	BOD Reduction ( $k=$ 0.1	$= 1/(1+k\theta/n)^n = 0.25$
Disinfection Facilities	Chlorine Contact Basin	
	$V = 100 m^3 \times 1$	= 100 m ³
	Design Retention Time	= 20.0 minutes
	Actual Retention Time	= 51.4 minutes
Sludge Gravity Thickener	Diameter = $11.2$ m, N=	1
Shuge Gravity Hilekeller	Surface Area	$= 98.5 \text{ m}^2$
	Design Surface Load	$= 90.0 \text{ kg/m}^2/\text{day}$
	Actural Surface Load	= 14.3 kg/m ² /day
Sludge Drying Bed	Solid Weight (for ADF)	= 0.95 t/day
		= 347 t/year
	L= 30.0 m, W= 6.0	m, N= 16
	$A=180 m2 \times 16$	= 2,880 m ²
	Required Surface Load =	= 120 kg/m ² /year
	Actual Surface Load =	= 120 kg/m ² /year
	Actual Surface Load	Kg/III / yeai

Appendix III-A-13

## 6. Capacity Calculation for Ramtha WWTP

Design Flow						
Average Daily Flow (ADF)	=	5,400	$m^{3}/day$			
Maximum Daily Flow (MDF)	=		$m^3/day$			
Maximum Hourly Flow (MHF)	=		$m^{3}/day$			
		- ,	III / dd y			
Actual Influent Quality						
BOD	=	794	mg/l (Incl	luding return water =	873 mg	g/l)
SS	=	351	mg/l (Incl	luding return water =	386 mg	g/l)
Temperaure	15	$\sim 28$	°C			
Temperaule	10	20				
Removal Efficiency						
Extended Aeration Activated Sludge						
BOD	=	95.0%				
SS	=	95.0%				
Polishing Pond BOD	=	30.0%				
SS	=	30.0%				
35	_	50.070				
Total Removal Efficiency						
BOD	=	96.5%				
SS	=	96.5%				
Tarata d Wasternatan Oralita						
Treated Wastewater Quality After extended aeration activated slug	lao					
BOD	ige =	43.7	mg/l			
SS	=	19.3	mg/l			
After polishing pond						
BOD	=	30.6	mg/l (<			
SS	=	13.5	mg/l (<	30 mg/L )		
Generated Sludge Amount						
Removal Solid Weight	=	386.1	mg/l ×	6,300 $m^3/day \times$	96.5%	
Removal Solid Weight	=	2.3	t/day	0,500 m/day ~	J0.570	
		2.5	t/day			
Sludge Gravity Thickener						
Collection Rate	=	80.0%				
Tickenered Sludge Weight	=	1.9	t/day			
Solid Concentration	=	3.0%				
Dewatered Sludge Volume	=	62.6	m ³ /day			
Sludge Drying Bed						
Collection Rate	=	95.0%				
Tickenered Sludge Weight	=	1.8	t/day			
Solid Concentration	=	20.0%	2			
Dewatered Sludge Volume	=	8.9	m ³ /day			
			-			

Pretreatment Facilities Coarse Screen Fine Screen Grit Chamber Equalization Tank (for rain seaso	Manual Automatical Aerated Grit Chamber with Grea Diameter = $5.0$ m, D= Volume = $64.8$ m ³ × Retention Time = $19.64$ min n) L= $70.0$ m, W= $25.0$	3.3 m, N= 2 2 = 129.6 $m^3$
	$V = 5,250 \text{ m}^3 \times 2$ Retenciotn Time (at MHF)	$= 10,500 \text{ m}^{3}$ $= 26.5 \text{ hours}$
Biocemical Facilities		
Aeration Tank	Extended Aeration Activated Slu	dge
	L= 50.1 m, W= 33.4 V= 7,530 $m^3 \times 2$ MLSS MLVSS (MLSS *0.85) Design BOD/MLVSS Load Actual BOD/MLVSS Load	-
	Design Retention Time $(\theta)$	= BOD / MLVSS / Design Load = 1.03 days
	Actual Retention Time ( $\theta$ )	= 2.39 days
Sedimentation Tank	Circular Tank Diameter = 22 m, D= $A= 380 \text{ m}^2 \times 2$ Maximum SVI Required Surface Load = $(= 4.8*10^{6} \text{Min Temp}^{0.95} \text{MI})$ Actual Surface Load =	LSS^(-1.35)*SVI^(-0.77))
Polishing Pond	5 Steps	
r onsini g r ond	L= $33.0$ m, W= $82.0$ V= $5,412$ m ³ × $10$ Actual Retention Time ( $\theta$ )	m, D= 2 m, N= 10 = $54,120 \text{ m}^3$ = $8.59 \text{ days}$ )= $1/(1+k\theta/n)^n = 0.34$
Disinfection Facilities	Chlorine Contact Basin L= 52.5 m, W= 1.40 V= 257 $m^3 \times 2$ Design Retention Time Actual Retention Time	m, D= $3.50$ m, N= 2 = $515 \text{ m}^3$ = 20.0 minutes = $78.0$ minutes
Irrigation Reservoir (for rain seas	son) L= 63.2 m, W= 43.0 V= 8,123 m ³ × 1 Retenciotn Time (at MDF)	m, D= $3.5$ m, N= $1$ = $8,123$ m ³ = $30.9$ hours

Sludge Gravity Thickener	Diameter = $9.0 \text{ m, N}=$	3
	Surface Area	= 190.9 m ²
	Design Surface Load	= 90.0 kg/m ² /day
	Actural Surface Load	$= 12.3 \text{ kg/m}^2/\text{day}$
Sludge Drying Bed	Solid Weight (for ADF)	= 1.61 t/day
	L= 25.0 m, W= 6.0	= 587 t/year m, N= 100
	A= 150 $m^2 \times 100$	= 15,000 m ²
	Required Surface Load =	= 200 kg/m ² /year
	Actual Surface Load =	= $39 \text{ kg/m}^2/\text{year}$

## 7. Capacity Calculation for Mafraq WWTP

Design Flow			2			
Average Daily Flow (ADF)	=		$m^{3}/day$			
Maximum Daily Flow (MDF)	=		) m ³ /day			
Maximum Hourly Flow (MHF)	=	11,500	) m ³ /day			
Design Influent Quality (no actual deta)						
BOD	=			luding return water =	778	mg/l
SS	=	653	B mg/l (Inc	luding return water =	718	mg/l
Temperaure	15	$\sim 28$	3℃			
Removal Efficiency						
Sedimentation Tank						
BOD	=	35.0%				
SS	=	60.0%				
MBBR						
BOD	=	30.0%				
SS	=	0.0%				
Aerated Stabilization Pond + FacItat	tive Pond					
BOD	=	90.0%				
SS	=	90.0%				
Sand Filter + Reed Beds						
BOD	=	50.0%				
SS	=	50.0%				
Total Removal Efficiency						
BOD	=	97.7%				
SS	=	98.0%				
Treated Wastewater Quality						
After Sedimentation Tank						
BOD	=	505.5	mg/l			
SS	=	287.3	mg/l			
After MBBR						
BOD	=	353.9	U			
SS	=	287.3	mg/l			
After Aerated Stablization Pond + F	acultativ					
BOD	=	35.4	mg/l (<	60 mg/L )		
SS	=	28.7	mg/l (<	60 mg/L )		
After Sand Filter + Reed Beds						
BOD	=	17.7	mg/l			
SS	=	14.4	mg/l			

					2	
From Sedimentation Tank	=	718.3	mg/l $ imes$	7,700	$m^3/day \times$	60.0%
	=	3.3	t/day			
From Facalutative Pond	=	258.6	mg/l $ imes$	7,700	${ m m}^3$ /day $ imes$	90.0%
	=	1.8	t/day			
Sludge Stabilization Basin from Sedi	mentatio	on Tank				
Tickenered Sludge Weight	=	3.3	t/day			
Solid Concentration	=	3.0%				
Dewatered Sludge Volume	=	110.6	m ³ /day			
Required Retention Time	=	15.0	days			
Required Tank Volume	=	1,659	m ³			
Solids in Faculatative Basin						
Tickenered Sludge Weight	=	1.8	t/day			
Reduction Rate in Pond	=	66%				
Solid Concentration	=	15.0%	(after cor	solidation	n)	
Dewatered Sludge Volume	=	7.9	m ³ /day			
Sludge Drying Bed from Sludge Sta	bilizatior	n Basin				
Reduaction Rate in Basin	=	86%				
Tickenered Sludge Weight	=	2.9	t/day			
Solid Concentration	=	50.0%				
Dewatered Sludge Volume	=	5.7	m ³ /day			

0	Manual				
Coarse Screen Fine Screen	Manual Automatical				
Oil & Grease Removal	Diameter = $5.9 \text{ m, D}=$	3	m, N=	2	
on & Grease Keniovan	Volume = $82.0 \text{ m}^3 \times$	2 =	· ·	$m^3$	
	Actural Retention Time	2 =			
Primary Settling Tank with Grit		_	20.54	mins	
Thinkiy Sound Tunk with Sik	L = 8.3  m,  W = 4.3	m, D=	= 6.75	m, N=	2
	Area = $35.7 \text{ m}^2 \times$	2 =		$m^2$	-
	Design Surface Load	- =		$m^3/m^2/day$	
				-	·
	Actural Surface Load	=	107.9	$m^3/m^2/day$	y
Wet Weather Strage Lagoon (fo	· · · · · · · · · · · · · · · · · · ·		- 1		1
	,	m, D=		m, N=	1
	$V = 14,400 \text{ m}^3 \times 1$	=	$14,400 \text{ m}^3$		
	Retenciotn Time (at MHF)	=	30.1 hou	rs	
Biocemical Facilities					
Denitrification Tank (MBBR)	NO ₃ -N Concentration of Circulat	ion ·	15.0 mg/	$I_{(\pi/m^3)}$	
Demunication Tank (WDDR)	Circulation Rate for Denitrificaito		5.0 time		
	NO ₃ -N Load		578 kg/d		
	Denitrificaiton Rate	=	1.24 g/m	-	
			-	•	
	Plastic Media Specific Surface	=	$500 \text{ m}^2/\text{I}$	n	
	Volume of Denitrification Media	=	931 $m^3$		
	Media Volume / Tanks Volume	=	0.45		
	Effective Tank Volume	=	$2,070 \text{ m}^3$		
	L= 26.0 m, W= 15.0	m, D=		m, N=	2
	V= 1,365 $m^3 \times 2$	=	$2,730 \text{ m}^3$		
	Retenciotn Time (at MDF)	=	8.5 hou		
	BOD Removal Rate	=	e	DD/gNO ₃ -1	N
	BOD Removal Amount	=	1,964 kgB	2	
	BOD Concentration of Circulation	1:	40.0 mg/		
	Influent BOD	=	5,990 kgB	OD/day	
	Toatl Removal Rate of BOD	= .	32.8%		
Aeration Stablization Basins	5 Steps				
Actation Stabilization Dashis	L = 84.0  m, W = 34.0	m, D=	= 3.5	m, N=	10
	$V = 9,996 \text{ m}^3 \times 10$	=	99,960 m ³	ш, т	10
	Actual Retention Time ( $\theta$ )		12.98 days	2	
	BOD Reduction $(k=0.3)$		$(+k\theta/n)^n =$	0.056	
		) 1/(1	110,11) 11		
			115.0	$I_{(\alpha/m^3)}$	
Denitrification Tank (MBBR)	TKN Concentration of Influent =		115.0 mg/		
Denitrification Tank (MBBR)			115.0 mg/ 15.0 mg/		
Denitrification Tank (MBBR)	TKN Concentration of Influent = TKN Concentration of Effluent = TKN Load	=	15.0 mg/	$L(g/m^3)$	
Denitrification Tank (MBBR)	TKN Concentration of Effluent = TKN Load		15.0 mg/ 770 kg/d	L (g/m ³ ) lay	
Denitrification Tank (MBBR)	TKN Concentration of Effluent = TKN Load Nitrificaiton Rate	=	15.0 mg/ 770 kg/c 0.95 g/m	$L (g/m^3)$ lay $^2/day$	
Denitrification Tank (MBBR)	TKN Concentration of Effluent = TKN Load	=	15.0 mg/ 770 kg/d	$L (g/m^3)$ lay $^2/day$	

Appendix III-A-19

	Effective Tank Volume = $2,419 \text{ m}^3$ L= 26.0 m, W= 15.0 m, D= 3.5 m, N= 2 V= $1,365 \text{ m}^3 \times 2 = 2,730 \text{ m}^3$ Retenciotn Time (at MDF) = 8.5 hours
Facultative Pond with Rock Filter	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Sand Filter	L= 80.0 m, W= 45.0 m, N= 3 V= 3,600 m ² × 3 = 10,800 m ² Design Surface Load = 0.80 m ³ /m ² /day Actual Surface Load = 0.71 m ³ /m ² /day
Reed Beds	L= 50.0 m, W= 30.0 m, N= 2 V= 1,500 m ² × 2 = 3,000 m ² Design Surface Load = 2.60 m ³ /m ² /day *2.60 m ³ /m ² /day=80kg/ha/day(NO ₃ -N)/0.003kg/m ³ Actual Surface Load = 2.18 m ³ /m ² /day
Disinfection Facilities	Chlorine Contact Basin L= 50 m, W= 2.00 m, D= 1.80 m, N= 1 V= 180 m ³ × 1 = 180 m ³ Design Retention Time = 20.0 minutes Actual Retention Time = 22.5 minutes
Sludge Strage Tank	L= 15.0 m, W= 15.0 m, D= 3 m, N= 2 V= 675 m ³ × 2 = 1,350 m ³ Design Retention Time = 15.00 days Actual Retention Time = 12.20 days
Sludge Drying Bed	Solid Weight (for ADF) = $2.43 \text{ t/day}$ = $886 \text{ t/year}$ L= $35.0 \text{ m}$ , W= $12.0 \text{ m}$ , N= $26$ A= $420 \text{ m}^2 \times 26$ = $10,920 \text{ m}^2$ Required Surface Load = = $100 \text{ kg/m}^2/\text{year}$ Actual Surface Load = = $81 \text{ kg/m}^2/\text{year}$

#### APPENDIX III-B CAPACITY CALCULATION FOR PLANNED FACILITIES OF EACH WWTP IN MASTER PLAN

The capacity calculations on planned facilities of each WWTP in this master plan are shown as follows.

#### **1. Basis of Capacity Calculation**

The capacity calculation is based on design flow and quality in this master plan.

The dimensions of each tank are referred to the drawings, hearing and site investigations as Appendix III-A.

The capacity calculations of Mafraq WWTP are conducted two cases.

## 2. Capacity Calculation for Central Irbid WWTP

Design Flow		10.05	2			
Average Daily Flow (ADF)	=		³ m ³ /day			
Maximum Daily Flow (MDF)	=	12,721	m ³ /day			
Maximum Hourly Flow (MHF)	=	19,086	⁵ m ³ /day			
Design Influent Quality						
BOD	=			luding return water =	777	mg/l)
SS	=	652	2 mg/l (Inc	luding return water =	717	mg/l)
Temperaure	15	$\sim 28$	3 °C			
Removal Efficiency						
Primary Sedimentation Tank						
BOD	=	50.0%				
SS	=	60.0%				
Oxdation Ditch						
BOD	=	95.0%				
SS	=	95.0%				
Total Removal Efficiency						
BOD	=	97.5%				
SS	=	98.0%				
Treated Wastewater Quality						
After primary sedimentaiton tank						
BOD	=	388.3	mg/l			
SS	=	286.9	mg/l			
After trickling filter						
BOD	=	19.4	mg/l (<	30 mg/L )		
SS	=	14.3	mg/l (<	30 mg/L )		
Generated Sludge Amount						
Removal Solid Weight	=	717.2	mg/l $ imes$	12,721 $m^3/day \times$	98.0%	
	=	8.9	t/day			
Sludge Thickener						
Collection Rate	=	80.0%				
Tickenered Sludge Weight	=	7.2	t/day			
Solid Concentration	=	3.0%	2			
Dewatered Sludge Volume	=	238.4	m ³ /day			
Digested Sludge						
Digestive Efficiency	=	50.0%				
Organic Matter Content Rate	=	85.0%				
Digested Sludge Solid Weight	=	4.1	t/day			
Solid Concentration	=	1.7%				
Dewatered Sludge Volume	=	238.4	m ³ /day			

Sludge Holding Tank			
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	3.3	t/day
Solid Concentration	=	2.5%	
Dewatered Sludge Volume	=	131.6	m ³ /day
Sludge Dewatering			
Collection Rate	=	95.0%	
Tickenered Sludge Weight	=	3.1	t/day
Solid Concentration	=	20.0%	
Dewatered Sludge Volume	=	15.6	m ³ /day

Pretreatment Facilities Coarse Screen	Manual	
Fine Screen	Automatical	
Grit Chamber	Aerated Grit Chamber with Grea	ase Trap
	L= 10 m, W= 2.2	m, D = 2 m, N = 2
	Volume = $44 \text{ m}^3 \times$	$2 = 88 m^3$
	Retention Time = $6.64$ min	
Primary Sedimentation Tank	Rectanglar Tank	
5	L = 36.0  m,  W = 6.0	m, D= 3.2 m, N= 2
	A= 216 $m^2 \times 2$	= 432 m ²
	Required Surface Load =	$= 35 \text{ m}^3/\text{m}^2/\text{day}$
	Actual Surface Load =	= 29.45 m ³ /m ² /day
Biocemical Facilities		
Aeration Tank	Oxidation Ditch	
	L= 60.0 m, $W=$ 20.0	m, D= $4.5$ m, N= $2$
	$V = 5,014 \text{ m}^3 \times 2$	= 10,027 m ³
	MLSS	= 5,000 mg/l
	MLVSS (MLSS *0.85)	= 4,250 mg/l
	Design BOD/MLVSS Load	= 0.200 kgBOD/kgSS/d
	Actual BOD/MLVSS Load	= $BOD * MDF / MLVSS / V$
		= 0.116 kgBOD/kgSS/d
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Lo
		= 0.46 days
	Actual Retention Time ( $\theta$ )	= 0.79 days
Sedimentation Tank	Circular Tank	
	Diameter = $30$ m, D=	3.5 m, N= 2
	$A=707 m^2 \times 2$	= 1,414 m ²
	Maximum SVI	= 200
	Required Surface Load =	$= 10.79 \text{ m}^3/\text{m}^2/\text{day}$
	$(= 4.8*10^{6} \text{Min Temp}^{0.95} \text{Min}$	2
	Actual Surface Load =	$= 9.00 \text{ m}^{3}/\text{m}^{2}/\text{day}$
	Actual Surface Load -	– 9.00 m /m /day
Disinfection Facilities	Chlorine Contact Basin L= $102$ m, W= $1.50$	m, D= 3.00 m, N= 2
	·	, ,
	$V = 459  m^3 \times 2$	= 918 m ³
	Design Retention Time	= 20.0 minutes
	Actual Retention Time	= 69.3 minutes

Sludge Thickener	Diameter = 1	8.0 m, N=	1		
	Surface Area		=	254.5	$m^2$
	Design Surface L	oad	=	90.00	kg/m ² /day
	Actural Surface L	load	=	35.14	kg/m ² /day
Sludge Digestion Tank	Diameter = 2	26.0 m, L=	7	m, 1	N= 1
	Tank Volume		=	3,717	m ³
	Design Surface L	oad	=	15.0	days
	Actural Retention	Time	=	15.6	days
Sludge Holding Tank	Diameter =	8.0 m, N=	1		
	Surface Area		=	50.3	$m^2$
	Design Surface Lo	oad	=	90.00	kg/m²/day
	Actural Surface L	load	=	81.82	kg/m ² /day
Dewatering Machine	Centrifugal Dewa	tering			
	Operation Time	(in a day)	=	8	hours/day
		(in a week)	=	5.0	days/week
	Required Capacity	y	=	23	m ³ /hour
	Design Machine C	Capacity	=	30	m ³ /hour/machine
	Design Machine N	Number	=	2	(including sdand-by)

## 3. Capacity Calculation for Wadi Al-Arab WWTP

Design Flow			2		
Average Daily Flow (ADF)	=		m ³ /day		
Maximum Daily Flow (MDF)	=	33,258	³ m ³ /day		
Maximum Hourly Flow (MHF)	=	49,895	5 m ³ /day		
Design Influent Quality					
BOD	=		U V	luding return water =	827 mg/l
SS	=	694	1 mg/l (Inc	luding return water =	763 mg/l
Temperaure	15	$\sim$ 28	3℃		
Removal Efficiency					
<b>Biochemical Treatment</b>					
BOD	=	95.0%			
SS	=	95.0%			
Sand Filter					
BOD	=	40.0%			
SS	=	60.0%			
Total Removal Efficiency					
BOD	=	97.0%			
SS	=	98.0%			
Treated Wastewater Quality					
After biochemical treatment					
BOD	=	41.4	mg/l (<	60 mg/L after Biocem	
SS	=	38.2	mg/l (<	60 mg/L after Biocem	nical treatment)
After sand filter					
BOD	=	24.8	mg/l (<	30 mg/L after sand fil	· ·
SS	=	15.3	mg/l (<	30 mg/L after sand fil	ter)
Generated Sludge Amount					
Removal Solid Weight	=	763.4	mg/l $\times$	33,258 ${ m m}^3$ /day $ imes$	98.0%
	=	24.9	t/day		
Sludge Thickener					
Collection Rate	=	80.0%			
Tickenered Sludge Weight	=	19.9	t/day		
Solid Concentration	=	3.0%			
Dewatered Sludge Volume	=	663.5	m ³ /day		
Mechanical Dewatering					
Collection Rate	=	95.0%			
Dewatered Sludge Weight	=	18.9	t/day		
Solid Concentration	=	20.0%			
Dewatered Sludge Volume	=	94.5	m ³ /day		

Coarse ScreenManualFine ScreenAutomaticalGrit ChamberAerated Grit Chamber with Grease TrapL=38m, W=2.8m ³ ×1=212.8m ³ ×9532m ³ ×9532m ³ ×925,488m ³ MLSS=4,000mg/lMLSSDosin Retention Time (0)=9=1.524xitum SV1=200Required Surface Load ==14.59m ³ /m ² /day(= 4.8*10*6*min Temp*0.95*MLSS*(-1.35)*SVI*(-0.77))Actual Surface Load ==10.679=30010mlea=10m, W=6.0010m, W=6.0011m ² 12Design Area=<
Fine Screen Grit ChamberAutomatical Acrated Grit Chamber with Grease Trap $L = 38$ m, $W = 2.8$ m, $D = 2$ m, $N = 1$ $Volume = 212.8$ m ³ $\times$ 1 = 212.8 m ³ Retention Time = 6.14 minsBiocemical Facilities Acration TankExtended Acration Activated Sludge $L = 72.0$ m, $W = 18.0$ m, $D = 4.5$ m, $N = 9$ $V = 5.832$ m ³ $\times$ 9 = 52.488 m ³ MLSS = 4,000 mg/l MLVSS (MLSS *0.85) = 3,400 mg/l Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = BOD * MDF / MLVSS / V $= 0.154$ kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = 1.52 days Actual Retention Time ( $\theta$ ) = 1.58 daysSedimentation TankCircular Tank Diameter = 21 m, $D = 3.4$ m, $N = 9$ $A = 346$ m ² $\times$ 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = 10.67 m ³ /m ² /day ( $= 4.8*10^{\circ}6*Min$ Temp'0.95*MLSSY(-1.35)*SVI'(-0.77)) Actual Surface Load = $= 10.67$ m ³ /m ² /day ( $= 10$ m, $W = 6.00$ m, $N = 2$ Design Area $= 120$ m ²
Grit ChamberAerated Grit Chamber with Grease Trap L = 38 m, W = 2.8 m, D = 2 m, N = 1 Volume = 212.8 m ³ × 1 = 212.8 m ³ Retention Time = 6.14 minsBiocemical Facilities Aeration TankExtended Aeration Activated Sludge L = 72.0 m, W = 18.0 m, D = 4.5 m, N = 9 V = 5.832 m ³ × 9 = 52.488 m ³ MLSS = 4,000 mg/l Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Actual BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = BOD * MDF / MLVSS / V = 0.154 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = BOD * MDF / MLVSS / V = 0.154 kgBOD/kgSS/d Actual Retention Time ( $\theta$ ) = 1.58 daysSedimentation TankCircular Tank Diameter = 21 m, D = 3.4 m, N = 9 A = 346 m ² × 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (=4.8*10*6*Min Temp*0.95*MLSSY(-1.35)*SVI'(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /daySand FilerFiltration Rate = 300 m/day Required Filtration Area = 111 m L = 10 m, W = 6.00 m, N = 2 Design Area = 120 m ²
$ \begin{array}{rcrcr} L = & 38 & m, W = & 2.8 & m, D = & 2 & m, N = & 1 \\ Volume = & 212.8 & m^3 \times & 1 = & 212.8 & m^3 \\ Retention Time = & 6.14 & mins \\ \end{array} \\ \begin{array}{rcrcrcr} Biocemical Facilities \\ Aeration Tank & Extended Aeration Activated Sludge \\ L = & 72.0 & m, W = & 18.0 & m, D = & 4.5 & m, N = & 9 \\ V = & 5,832 & m^3 \times & 9 & = & 52,488 & m^3 \\ MLSS & = & 4,000 & mg/1 \\ MLVSS (MLSS *0.85) & = & 3,400 & mg/1 \\ Design BOD/MLVSS Load & = & 0.160 & kgBOD/kgSS/d \\ Actual BOD/MLVSS Load & = & 0.164 & kgBOD/kgSS/d \\ Design Retention Time (\theta) & = & BOD * MDF / MLVSS / V \\ & = & 0.154 & kgBOD/kgSS/d \\ Design Retention Time (\theta) & = & BOD / MLVSS / Design Load \\ & = & 1.52 & days \\ Actual Retention Time (\theta) & = & 1.58 & days \\ \end{array} \\ \begin{array}{r} Sedimentation Tank & Circular Tank \\ Diameter = & 21 & m, D = & 3.4 & m, N = & 9 \\ A = & 346 & m^2 \times & 9 & = & 3,117 & m^2 \\ Maximum SVI & = & 200 \\ Required Surface Load = & = & 10.67 & m^3/m^2/day \\ (= 4.8*10^{\circ}6^{\circ}MI \ Temp'0.95^{\circ}MLSS'(-1.35)^{\circ}SVI'(-0.77)) \\ Actual Surface Load = & = & 10.67 & m^3/m^2/day \\ Required Filtration Rate & = & 300 & m/day \\ Required Filtration Area & = & 111 & m^2 \\ L = & 10 & m, W = & 6.00 & m, N = & 2 \\ Design Area & = & 120 & m^2 \\ \end{array} $
Volume = $212.8 \text{ m}^3 \times 1 =$ $212.8 \text{ m}^3$ Retention Time = $6.14 \text{ mins}$ Biocemical Facilities Aeration TankExtended Aeration Activated Sludge $L =$ $72.0 \text{ m}, W =$ $18.0 \text{ m}, D =$ $4.5 \text{ m}, N =$ $9$ $V =$ $5,832 \text{ m}^3 \times 9$ = $52.488 \text{ m}^3$ MLSS= $4.000 \text{ mg/l}$ MLVSS (MLSS *0.85)= $3,400 \text{ mg/l}$ Design BOD/MLVSS Load= $0.160 \text{ kgBOD/kgSS/d}$ Actual BOD/MLVSS Load= $0.154 \text{ kgBOD/kgSS/d}$ Design Retention Time ( $\theta$ )= $0.154 \text{ kgBOD/kgSS/d}$ Design Load $=$ 1.52 days Actual Retention Time ( $\theta$ )= $1.52 \text{ days}$ Actual Retention Time ( $\theta$ )Sedimentation TankCircular Tank Diameter = $21 \text{ m}, D =$ $3.4 \text{ m}, N =$ $9$ A = $3,117 \text{ m}^2$ Maximum SVISedimentation TankCircular Tank Diameter = $200 \text{ Required Surface Load =}$ $=$ $10.67 \text{ m}^3/\text{m}^2/\text{day}$ ( $= 4.8*10^{\circ}6\text{Min Temp'0.955*MLSSY(-1.35)*SVI'(-0.77))$ Actual Surface Load = $=$ $10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand FilerFiltration Rate= $300 \text{ m/day}$ Required Filtration Area $=$ $111 \text{ m}^2$ $L =$ $10 \text{ m}, W =$ $6.00 \text{ m}, N =$ $2$ Design Area $=$ $120 \text{ m}^2$
Retention Time = $6.14 \text{ mins}$ Biocennical Facilities Aeration TankExtended Aeration Activated Sludge $L = 72.0 \text{ m}, W = 18.0 \text{ m}, D = 4.5 \text{ m}, N = 9$ $V = 5,832 \text{ m}^3 \times 9 = 52,488 \text{ m}^3$ MLSS = 4,000 mg/l MLVSS (MLSS *0.85) = 3,400 mg/l Design BOD/MLVSS Load = $0.160 \text{ kgBOD/kgSS/d}$ Actual BOD/MLVSS Load = $0.160 \text{ kgBOD/kgSS/d}$ Design Retention Time ( $\theta$ ) = $0.154 \text{ kgBOD/kgSS/d}$ Design Retention Time ( $\theta$ ) = $1.52 \text{ days}$ Actual Retention Time ( $\theta$ ) = $1.58 \text{ days}$ Sedimentation TankCircular Tank Diameter = $21 \text{ m}, D = 3.4 \text{ m}, N = 9$ A = 346 m ² × 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (=4.8*10'6*Min Temp'0.95*MLSS'(-1.35)*SVI'(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day (=1.8*10'6*Min Temp'0.95*MLSS'(-1.35)*SVI'(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day (= 10 m, W = 6.00 m, N = 2 Design Area = 111 m ² L = 10 m, W = 6.00 m, N = 2
Biocemical Facilities Aeration Tank Extended Aeration Activated Shdge $L = 72.0 m, W = 18.0 m, D = 4.5 m, N = 9$ $V = 5,832 m^{3} \times 9 = 52,488 m^{3}$ MLSS = 4,000 mg/l MLVSS (MLSS *0.85) = 3,400 mg/l Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V = 0.154 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = BOD / MLVSS / Design Load = 1.52 days Actual Retention Time ( $\theta$ ) = 1.58 days Sedimentation Tank Circular Tank Diameter = 21 m, D = 3.4 m, N = 9 A = 346 m^{2} \times 9 = 3,117 m^{2} Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (= 4.8*10^{6*Min} Temp'0.95*MLSS'(-1.35)*SVI'(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day Required Filtration Area = 111 m ² L = 10 m, W = 6.00 m, N = 2 Design Area = 120 m ²
Aeration TankExtended Aeration Activated Sludge L= 72.0 m, W= 18.0 m, D= 4.5 m, N= 9 V= 5,832 m ³ × 9 = 52,488 m ³ MLSS = 4,000 mg/l MLVSS (MLSS *0.85) = 3,400 mg/l Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Actual BOD/MLVSS Load = 0.160 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = BOD / MLVSS / V = 0.154 kgBOD/kgSS/d Design Retention Time ( $\theta$ ) = 1.58 daysSedimentation TankCircular Tank Diameter = 21 m, D= 3.4 m, N= 9 A= 346 m ² × 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (= 4.8*10'6*Min Temp'0.95*MLSS'(-1.35)*SVI'(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day Equired Filtration Area = 111 m ² L= 10 m, W= 6.00 m, N= 2 Design Area = 120 m ²
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$V = 5,332 \text{ m}^{3} \times 9 = 52,488 \text{ m}^{3}$ $MLSS = 4,000 \text{ mg/l}$ $MLVSS (MLSS *0.85) = 3,400 \text{ mg/l}$ $Design BOD/MLVSS Load = 0.160 \text{ kgBOD/kgSS/d}$ $Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V$ $= 0.154 \text{ kgBOD/kgSS/d}$ $Design Retention Time (\theta) = BOD / MLVSS / Design Load$ $= 1.52 \text{ days}$ $Actual Retention Time (\theta) = 1.58 \text{ days}$ $Sedimentation Tank$ $Circular Tank$ $Diameter = 21 \text{ m}, D = 3.4 \text{ m}, N = 9$ $A = 346 \text{ m}^{2} \times 9 = 3,117 \text{ m}^{2}$ $Maximum SVI = 200$ $Required Surface Load = 14.59 \text{ m}^{3}/\text{m}^{2}/\text{day}$ $(= 4.8*10^{\circ}6^{\circ}\text{Min Temp^{\circ}0.95*MLSS^{\circ}(-1.35)*SVI^{\circ}(-0.77))$ $Actual Surface Load = 111 \text{ m}^{2}$ $L = 10 \text{ m}, W = 6.00 \text{ m}, N = 2$ $Design Area = 120 \text{ m}^{2}$
$MLSS = 4,000 mg/l$ $MLVSS (MLSS *0.85) = 3,400 mg/l$ $Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d$ $Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V$ $= 0.154 kgBOD/kgSS/d$ $Design Retention Time (\theta) = BOD / MLVSS / Design Load$ $= 1.52 days$ $Actual Retention Time (\theta) = 1.58 days$ $Sedimentation Tank$ $Circular Tank$ $Diameter = 21 m, D= 3.4 m, N= 9$ $A= 346 m^2 \times 9 = 3,117 m^2$ $Maximum SVI = 200$ $Required Surface Load = 14.59 m^3/m^2/day$ $(= 4.8*10^{\circ}6*Min Temp^{\circ}0.95*MLSS^{\circ}(-1.35)*SVI^{\circ}(-0.77))$ $Actual Surface Load = 110.67 m^3/m^2/day$ $Filtration Rate = 300 m/day$ $Required Filtration Area = 111 m^2$ $L= 10 m, W= 6.00 m, N= 2$ $Design Area = 120 m^2$
$MLVSS (MLSS *0.85) = 3,400 mg/l$ $Design BOD/MLVSS Load = 0.160 kgBOD/kgSS/d$ $Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V$ $= 0.154 kgBOD/kgSS/d$ $Design Retention Time (\theta) = BOD / MLVSS / Design Load$ $= 1.52 days$ $Actual Retention Time (\theta) = 1.58 days$ $Sedimentation Tank$ $Circular Tank$ $Diameter = 21 m, D= 3.4 m, N= 9$ $A= 346 m^{2} \times 9 = 3,117 m^{2}$ $Maximum SVI = 200$ $Required Surface Load = = 14.59 m^{3}/m^{2}/day$ $(= 4.8*10^{\circ}6*Min Temp'0.95*MLSS'(-1.35)*SVI'(-0.77))$ $Actual Surface Load = = 10.67 m^{3}/m^{2}/day$ $Filtration Rate = 300 m/day$ $Required Filtration Area = 111 m^{2}$ $L= 10 m, W= 6.00 m, N= 2$ $Design Area = 120 m^{2}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$= 0.154 \text{ kgBOD/kgSS/d}$ Design Retention Time ( $\theta$ ) = BOD / MLVSS / Design Load = 1.52 days Actual Retention Time ( $\theta$ ) = 1.58 days Sedimentation Tank Circular Tank Diameter = 21 m, D= 3.4 m, N= 9 A= 346 m ² × 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (= 4.8*10^6*Min Temp^0.95*MLSS^(-1.35)*SVI^(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day Filtration Rate = 300 m/day Required Filtration Area = 111 m ² L= 10 m, W= 6.00 m, N= 2 Design Area = 120 m ²
Sand Filer Design Retention Time ( $\theta$ ) = BOD / MLVSS / Design Load = 1.52 days Actual Retention Time ( $\theta$ ) = 1.58 days Circular Tank Diameter = 21 m, D= 3.4 m, N= 9 A= 346 m ² × 9 = 3,117 m ² Maximum SVI = 200 Required Surface Load = = 14.59 m ³ /m ² /day (= 4.8*10^6*Min Temp^0.95*MLSS^(-1.35)*SVI^(-0.77)) Actual Surface Load = = 10.67 m ³ /m ² /day Filtration Rate = 300 m/day Required Filtration Area = 111 m ² L= 10 m, W= 6.00 m, N= 2 Design Area = 120 m ²
Sedimentation Tank $= 1.52 \text{ days}$ $= 1.58 \text{ days}$ $Circular Tank$ $Diameter = 21 \text{ m}, D = 3.4 \text{ m}, N = 9$ $A = 346 \text{ m}^2 \times 9 = 3,117 \text{ m}^2$ $Maximum SVI = 200$ $Required Surface Load = 14.59 \text{ m}^3/\text{m}^2/\text{day}$ $(= 4.8*10^{\circ}6*\text{Min Temp}^{\circ}0.95*\text{MLSS}^{\circ}(-1.35)*\text{SVI}^{\circ}(-0.77))$ $Actual Surface Load = 10.67 \text{ m}^3/\text{m}^2/\text{day}$ $Filtration Rate = 300 \text{ m/day}$ $Required Filtration Area = 111 \text{ m}^2$ $L = 10 \text{ m}, W = 6.00 \text{ m}, N = 2$ $Design Area = 120 \text{ m}^2$
Sedimentation Tank Sedimentation Tank Circular Tank Diameter = 21 m, D= $3.4$ m, N= 9 A= $346$ m ² × 9 = $3,117$ m ² Maximum SVI = 200 Required Surface Load = = $14.59$ m ³ /m ² /day (= $4.8*10^{\circ}6*Min$ Temp $^{\circ}0.95*MLSS^{\circ}(-1.35)*SVI^{\circ}(-0.77)$ ) Actual Surface Load = = $10.67$ m ³ /m ² /day Filtration Rate = $300$ m/day Required Filtration Area = $111$ m ² L= $10$ m, W= $6.00$ m, N= 2 Design Area = $120$ m ²
Sedimentation TankCircular Tank Diameter = $21 \text{ m}, D =$ $3.4 \text{ m}, N =$ $9$ $A =$ $346 \text{ m}^2 \times$ $9$ $=$ $3,117 \text{ m}^2$ Maximum SVI $=$ $200$ Required Surface Load = $=$ $14.59 \text{ m}^3/\text{m}^2/\text{day}$ (= $4.8*10^{6*}\text{Min Temp}^{0.95*}\text{MLSS}^{(-1.35)*}\text{SVI}^{(-0.77)}$ ) Actual Surface Load = $=$ $10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand FilerFiltration Rate $=$ $300 \text{ m/day}$ Required Filtration Area $=$ $111 \text{ m}^2$ L= $100 \text{ m}, W =$ $6.00 \text{ m}, N =$ $2$ Design Area $=$ $120 \text{ m}^2$
Diameter = 21 m, D= 3.4 m, N= 9 A= 346 m ² × 9 = $3,117 \text{ m}^2$ Maximum SVI = 200 Required Surface Load = = $14.59 \text{ m}^3/\text{m}^2/\text{day}$ (= $4.8*10^{6*}$ Min Temp $^{0.95*}$ MLSS $^{(-1.35)*}$ SVI $^{(-0.77)}$ ) Actual Surface Load = = $10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand Filer Filtration Rate = $300 \text{ m/day}$ Required Filtration Area = $111 \text{ m}^2$ L= $10 \text{ m}$ , W= $6.00 \text{ m}$ , N= 2 Design Area = $120 \text{ m}^2$
$A = 346 \text{ m}^{2} \times 9 = 3,117 \text{ m}^{2}$ $Maximum SVI = 200$ $Required Surface Load = = 14.59 \text{ m}^{3}/\text{m}^{2}/\text{day}$ $(= 4.8*10^{6} \text{*Min Temp}^{0.95*}\text{MLSS}^{(-1.35)*}\text{SVI}^{(-0.77)})$ $Actual Surface Load = = 10.67 \text{ m}^{3}/\text{m}^{2}/\text{day}$ $Filtration Rate = 300 \text{ m/day}$ $Required Filtration Area = 111 \text{ m}^{2}$ $L = 10 \text{ m}, W = 6.00 \text{ m}, N = 2$ $Design Area = 120 \text{ m}^{2}$
Maximum SVI = $200$ Required Surface Load = $= 14.59 \text{ m}^3/\text{m}^2/\text{day}$ (= $4.8*10^6*$ Min Temp $^0.95*$ MLSS $^(-1.35)*$ SVI $^(-0.77)$ ) Actual Surface Load = $= 10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand Filer Filtration Rate $= 300 \text{ m/day}$ Required Filtration Area $= 111 \text{ m}^2$ L= $10 \text{ m}$ , W= $6.00 \text{ m}$ , N= $2$ Design Area $= 120 \text{ m}^2$
Maximum SVI = $200$ Required Surface Load = $= 14.59 \text{ m}^3/\text{m}^2/\text{day}$ $(= 4.8*10^{\circ}6*\text{Min Temp}^{\circ}0.95*\text{MLSS}^{\circ}(-1.35)*\text{SVI}^{\circ}(-0.77))$ Actual Surface Load = $= 10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand Filer Filtration Rate $= 300 \text{ m/day}$ Required Filtration Area $= 111 \text{ m}^2$ L= $10 \text{ m}, W= 6.00 \text{ m}, N= 2$ Design Area $= 120 \text{ m}^2$
Required Surface Load = = $14.59 \text{ m}^3/\text{m}^2/\text{day}$ (= $4.8*10^{6*}$ Min Temp $^{0.95*}$ MLSS $^{(-1.35)*}$ SVI $^{(-0.77)}$ ) Actual Surface Load = = $10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand Filer Filtration Rate = $300 \text{ m/day}$ Required Filtration Area = $111 \text{ m}^2$ L= $10 \text{ m}$ , W= $6.00 \text{ m}$ , N= $2$ Design Area = $120 \text{ m}^2$
Sand Filer $(= 4.8*10^{6*}Min Temp^{0.95*}MLSS^{(-1.35)*}SVI^{(-0.77)})$ Actual Surface Load = = 10.67 m ³ /m ² /day Filtration Rate = 300 m/day Required Filtration Area = 111 m ² L= 10 m, W= 6.00 m, N= 2 Design Area = 120 m ²
Actual Surface Load == $10.67 \text{ m}^3/\text{m}^2/\text{day}$ Sand FilerFiltration Rate= $300 \text{ m/day}$ Required Filtration Area= $111 \text{ m}^2$ L=10 m, W= $6.00 \text{ m}, N=$ 2Design Area= $120 \text{ m}^2$
Sand Filer Filtration Rate = $300 \text{ m/day}$ Required Filtration Area = $111 \text{ m}^2$ L= $10 \text{ m}, W= 6.00 \text{ m}, N= 2$ Design Area = $120 \text{ m}^2$
Required Filtration Area = $111 \text{ m}^2$ L= 10 m, W= 6.00 m, N= 2 Design Area = $120 \text{ m}^2$
L= 10 m, W= 6.00 m, N= 2 Design Area = $120 \text{ m}^2$
Design Area = $120 \text{ m}^2$
Disinfection Facilities Chlorine Contact Basin
L=150 m, $W=2.45$ m, $D=2.00$ m, $N=2$
$V = 735 \text{ m}^3 \times 2 = 1,470 \text{ m}^3$
Design Retention Time = $20.0$ minutes
Actual Retention Time = $42.4$ minutes
Sludge Thickener $Diameter = 12.0 \text{ m, N} = 2$
Surface Area = $226.2 \text{ m}^2$
Design Surface Load = $90.00 \text{ kg/m}^2/\text{day}$
Actural Surface Load = $110.00 \text{ kg/m}^2/\text{day}$
Dewatering Machine Centrifugal Dewatering
Dewatering Machine Centrifugal Dewatering Operation Time (in a day) = 8 hours/day
$(in a week) = 5.0  ext{ days/week}$
Design Machine Capacity = $40 \text{ m}^3/\text{hour/machine}$
Design Machine Number = 3

AppendixIII-B-7

## 4. Capacity Calculation for Shallala WWTP

Design Flow			
Average Daily Flow (ADF)	=	22,520 $m^3/day$	
Maximum Daily Flow (MDF)	=	$26,356 \text{ m}^3/\text{day}$	
Maximum Hourly Flow (MHF)	=	39,539 m ³ /day	
Design Influent Quality			
BOD	=	887  mg/l (Including return water = $976  n$	ng/l)
SS	=	819 mg/l (Including return water = 901 n	ng/l)
Temperaure	15	$\sim$ 28 $^\circ\mathrm{C}$	
Removal Efficiency			
Primary Sedimentation Tank			
BOD	=	50.0%	
SS	=	60.0%	
Oxidation Ditch			
BOD	=	95.0%	
SS	=	95.0%	
00		75.070	
Total Removal Efficiency			
BOD	=	97.5%	
SS	=	98.0%	
Treated Wastewater Quality			
After primary sedimentaiton tank			
BOD	=	487.9 mg/l	
SS	=	360.4 mg/l	
After oxidation ditch			
BOD	=	24.4 mg/l (< 30 mg/L )	
SS	=	18.0  mg/l(< 30  mg/L)	
22			
Generated Sludge Amount			
Primary Removal Solid Weight	=	900.9 mg/l $\times$ 26,356 m ³ /day $\times$ 60.0%	
	=	14.2 t/day	
Secondary Removal Solid Weight	=	$360.4 \text{ mg/l} \times 26,356 \text{ m}^3/\text{day} \times 95.0\%$	
	=	9.0 t/day	
		, ,	

Sludge Gravity Thickener			
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	11.4	t/day
Solid Concentration	=	4.0%	5
Dewatered Sludge Volume	=	284.9	m ³ /day
Belt Thickener			
Collection Rate	=	95.0%	
Tickenered Sludge Weight	=	8.6	t/day
Solid Concentration	=	4.0%	
Dewatered Sludge Volume	=	214.3	m ³ /da
Digested Sludge (First Stage)			
Digestive Efficiency	=	50.0%	
Organic Matter Content Rate	=	85.0%	
Digested Sludge Solid Weight	=	11.5	t/day
Solid Concentration	=	2.3%	
Dewatered Sludge Volume	=	499.2	m ³ /da
Digested Sludge (second Stage)			
Collection Rate	=	80.0%	
Tickenered Sludge Weight	=	9.2	t/day
Solid Concentration	=	3.0%	
Dewatered Sludge Volume	=	306.2	m ³ /da
Sludge Dewatering			
Collection Rate	=	95.0%	
Tickenered Sludge Weight	=	8.7	t/day
		00.00/	
Solid Concentration	=	20.0%	

Coarse Screen	Manual						
Fine Screen	Automatical						
Grit Chamber	Aerated Grit Chamber with Grea	ase Trap					
	L= 30 m, W= 3	m, D = 2 m, N = 2					
	Volume = $180 \text{ m3} \times$	$2 = 360 \text{ m}^3$					
	Retention Time = $13.11$ min						
Equalization Tank (for rain seas	son) $L = 72.0 \text{ m}, W = 10.0$	m, D= 5 m, N= 5					
	<i>,</i>	$= 17,463 \text{ m}^3$					
	Retenciotn Time (at MHF)	= 10.6 hours					
Primary Sedimentation Tank	Rectanglar Tank						
	L= 32.0 m, W= 7.0	m, D= 3 m, N= 3					
	A= 224 $m^2 \times 3$	= 672 m ²					
	Required Surface Load =						
	•	5					
	Actual Surface Load =	= 39.22 m ³ /m ² /day					
Biocemical Facilities							
Aeration Tank	Oxidation Tank						
	L= 58.0 m, W= 20.0	m, D= 4.5 m, N= 4					
	$V = 4,834 m^3 \times 4$	= 19,335 m ³					
	MLSS	= 5,000 mg/l					
	MLVSS (MLSS *0.85)	= 4,250 mg/l					
	Design BOD/MLVSS Load	= 0.200 kgBOD/kgSS/d					
	Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V						
		= 0.156 kgBOD/kgSS/d					
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Lo					
		= 0.57 days					
	Actual Retention Time $(\theta)$	= 0.73 days					
C. Freedorf Trail							
Sedimentation Tank	Circular Tank	2					
		3 m, N= 3					
	A= 1,385 $m^2 \times 3$	= 4,156 m ²					
	Maximum SVI	= 200					
	Required Surface Load = = $10.79 \text{ m}^3/\text{m}^2/\text{day}$						
	(= 4.8*10^6*Min Temp^0.95*MLSS^(-1.35)*SVI^(-0.77))						
	Actual Surface Load =	$= 6.34 \text{ m}^3/\text{m}^2/\text{day}$					
Disinfection Facilities	Chlorine Contact Basin						
	No Data						
	110 Data						

	D'	2		
Sludge Gravity Thickener	Diameter = $10.0$ m, N=	3	235.6	2
	Surface Area	=		$m^2$
	Design Surface Load	=	90.00	kg/m ² /day
	Actural Surface Load	=	60.46	kg/m²/day
			0.02	. ( ]
Belt Thickener	Solid Weight	=	9.02	t/day
	Solid Concentration	=	0.80%	3/ .
	Required Capacity	=	1,128	m ^{3/} day
		=	47	m ³ /hour
	Actual Capacity	=	60	$m^3$ /hour $\times$ 2
		(	45 -	90 $m^3$ /hour)
Sludge Digestion Tank				
Fist Stage	Diameter 18.0 m, L=	1	3 m, 1	N= 3
-	Tank Volume	=	9,924	$m^3$
	Design Surface Load	=	20.0	days
	Actural Retention Time	=	19.9	days
Second Stage	Diameter 12.0 m, L=	1	0 m, 1	N= 1
C	Surface Area	=	113.1	$m^2$
	Design Surface Load	=	90.00	kg/m ² /day
	Actural Surface Load	=	100.77	kg/m ² /day
Dewatering Machine	Centrifugal Dewatering			
	Operation Time (in a day)	=	8	hours/day
	(in a week)	=	5.0	days/week
	Required Capacity	=	53.58	m ³ /hour
	Design Machine Capacity	=	30	m ³ /hour/machine
	Design Machine Number	=	2	(including sdand-by)
	č			

## 5. Capacity Calculation for Wadi Hassan WWTP

Design Flow			2			
Average Daily Flow (ADF)	=		) m ³ /day			
Maximum Daily Flow (MDF)	=	2,914	⁴ m ³ /day			
Maximum Hourly Flow (MHF)	=	4,372	² m ³ /day			
Design Influent Quality						
BOD	=		•	luding return water =		mg/l)
SS	=	853	8 mg/l (Inc	luding return water =	938	mg/l)
Temperaure	15	$\sim 28$	3 ℃			
Removal Efficiency						
Oxidation Ditch						
BOD	=	95.0%				
SS	=	95.0%				
Polishing Pond						
BOD	=	50.0%				
SS	=	50.0%				
Total Removal Efficiency						
BOD	=	97.5%				
SS	=	97.5%				
Treated Wastewater Quality						
After oxidation ditch						
BOD	=	50.8	mg/l			
SS	=	46.9	mg/l			
After polishing pond						
BOD	=	25.4	mg/l (<			
SS	=	23.5	mg/l (<	30 mg/L )		
Generated Sludge Amount						
Removal Solid Weight	=	938.3	mg/l $\times$	2,914 $m^3/day \times$	95.0%	
	=	2.6	t/day			
Sludge Gravity Thickener						
Collection Rate	=	80.0%				
Tickenered Sludge Weight	=	2.1	t/day			
Solid Concentration	=	3.0%	2			
Dewatered Sludge Volume	=	69.3	m ³ /day			
Sludge Drying Bed						
Collection Rate	=	90.0%				
Tickenered Sludge Weight	=	1.9	t/day			
Solid Concentration	=	50.0%				
Dewatered Sludge Volume	=	3.7	m ³ /day			

Pretreatment Facilities								
Coarse Screen	Manual							
Fine Screen	Automatical							
Grit Chamber	Aerated Grit Chamber with Grease Trap							
	L= 20 m, W= 2							
	Volume = $64 \text{ m}^3 \times$	$1 = 64 m^3$						
	Retention Time = $21.08$ min	15						
Discoursional De cilities								
Biocemical Facilities Aeration Tank	Oxidation Tank							
Actation Talik	L = 60.0  m, W = 14.0	m, D= 3 m, N= 2						
	$V = 2,394 \text{ m}^3 \times 2$	$= 4,788 \text{ m}^3$						
	MLSS	= 5,000 mg/l						
	MLVSS (MLSS *0.85)	= 3,000 mg/l = 4,250 mg/l						
	Design BOD/MLVSS Load	= 0.200  kgBOD/kgSS/d						
	Actual BOD/MLVSS Load	= BOD * MDF / MLVSS / V						
	Tettul DODATE VSS Loud	= 0.146  kgBOD/kgSS/d						
	Design Retention Time ( $\theta$ )	= BOD / MLVSS / Design Load						
		= 1.20 days						
	Actual Retention Time ( $\theta$ )	= 1.64 days						
Sedimentation Tank	Circular Tank	28						
	Diameter = $15 \text{ m, D}=$	*						
	$A = 177 \text{ m}^2 \times 2$	$= 353 \text{ m}^2$						
	Maximum SVI	= 200						
	Required Surface Load =	· · · · · · · · · · · · · · · · · · ·						
	(= 4.8*10^6*Min Temp^0.95*MI							
	Actual Surface Load =	$= 8.24 \text{ m}^3/\text{m}^2/\text{day}$						
Polishing Pond	2 Steps							
	L= 88.0 m, W= 60.0	m, D= 1.8 m, N= 4						
	$V = 9,504 m^3 \times 4$	= 38,016 m ³						
	Actual Retention Time ( $\theta$ )	= 13.05 days						
	BOD Reduction ( $k=$ 0.1	$= 1/(1+k\theta/n)^n = 0.37$						
Disinfection Facilities	Chlorine Contact Basin							
	$V = 100 \text{ m}^3 \times 1$	= 100 m ³						
	Design Retention Time	= 20.0 minutes						
	Actual Retention Time	= 32.9 minutes						
Sludge Gravity Thickener	Diameter = $11.2$ m, N=	1						
	Surface Area	= 98.5 m ²						
	Design Surface Load	= 90.0 kg/m ² /day						
	Actural Surface Load	$= 26.4 \text{ kg/m}^2/\text{day}$						
Shudao Daring Dod	Solid Waight (for ADE)	= 1.78 t/day						
Sludge Drying Bed	Solid Weight (for ADF)	= $1.78 \text{ t/day}$ = $648 \text{ t/year}$						
	L= 30.0 m, W= 6.0	m, N = 36						
	$A = 180  \text{m}^2 \times 36$	$= 6,480 \text{ m}^2$						
	Required Surface Load =	$= 100 \text{ kg/m}^2/\text{day}$						
	Actual Surface Load =							
	Actual Sulface Load =	$= 100 \text{ kg/m}^2/\text{day}$						

AppendixIII-B-13

# 6. Capacity Calculation for Ramtha WWTP

Design Flow	_	17.000	3			
Average Daily Flow (ADF)	=		$m^3/day$			
Maximum Daily Flow (MDF)	=		¹ m ³ /day			
Maximum Hourly Flow (MHF)	=	30,308	³ m ³ /day			
Design Influent Quality						
BOD	=		Ū (	luding return water =	833	mg/l)
SS	=	699	9 mg/l (Inc	luding return water =	769	mg/l)
Temperaure	15	$\sim 28$	3℃			
Removal Efficiency						
Extended Aeration Activated Sludge						
BOD	=	95.0%				
SS	=	95.0%				
Polishing Pond						
BOD	=	30.0%				
SS	=	30.0%				
Total Removal Efficiency						
BOD	=	96.5%				
SS	=	96.5%				
The state where the one in						
Treated Wastewater Quality						
Ireated Wastewater Quality After extended aeration activated slue	lge					
-	lge =	41.6	mg/l			
After extended aeration activated slue	-	41.6 38.4	mg/l mg/l			
After extended aeration activated slue BOD	=	38.4	-			
After extended aeration activated slug BOD SS After polishing pond BOD	=	38.4 29.1	mg/l mg/l (<			
After extended aeration activated slug BOD SS After polishing pond	=	38.4	mg/l	30 mg/L ) 30 mg/L )		
After extended aeration activated slug BOD SS After polishing pond BOD	=	38.4 29.1	mg/l mg/l (<	•		
After extended aeration activated slug BOD SS After polishing pond BOD SS	=	38.4 29.1	mg/l mg/l (<	30 mg/L )	96.5%	
After extended aeration activated slug BOD SS After polishing pond BOD SS Generated Sludge Amount	= = =	38.4 29.1 26.9	mg/l mg/l (< mg/l (<	30 mg/L )	96.5%	
After extended aeration activated slug BOD SS After polishing pond BOD SS Generated Sludge Amount	= = =	<ul> <li>38.4</li> <li>29.1</li> <li>26.9</li> <li>768.9</li> <li>15.0</li> </ul>	mg/l (< mg/l (< mg/l ×	30 mg/L )	96.5%	
After extended aeration activated slug BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate	= = =	38.4 29.1 26.9 768.9 15.0 80.0%	mg/l (< mg/l (< mg/l ×	30 mg/L )	96.5%	
After extended aeration activated slud BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight	= =	38.4 29.1 26.9 768.9 15.0 80.0% 12.0	mg/l (< mg/l (< mg/l ×	30 mg/L )	96.5%	
After extended aeration activated slug BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate	= = =	38.4 29.1 26.9 768.9 15.0 80.0%	mg/l mg/l (< mg/l (< mg/l × t/day	30 mg/L )	96.5%	
After extended aeration activated slud BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight	= = = =	38.4 29.1 26.9 768.9 15.0 80.0% 12.0	mg/l mg/l (< mg/l (< mg/l × t/day	30 mg/L )	96.5%	
After extended aeration activated sluc BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight Solid Concentration		38.4 29.1 26.9 768.9 15.0 80.0% 12.0 3.0%	mg/l (< mg/l (< mg/l × t/day	30 mg/L )	96.5%	
After extended aeration activated slug BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight Solid Concentration Dewatered Sludge Volume		38.4 29.1 26.9 768.9 15.0 80.0% 12.0 3.0%	mg/l (< mg/l (< mg/l × t/day	30 mg/L )	96.5%	
After extended aeration activated sluc BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight Solid Concentration Dewatered Sludge Volume		<ul> <li>38.4</li> <li>29.1</li> <li>26.9</li> <li>768.9</li> <li>15.0</li> <li>80.0%</li> <li>12.0</li> <li>3.0%</li> <li>399.8</li> </ul>	mg/l (< mg/l (< mg/l × t/day	30 mg/L )	96.5%	
After extended aeration activated slue BOD SS After polishing pond BOD SS Generated Sludge Amount Removal Solid Weight Sludge Gravity Thickener Collection Rate Tickenered Sludge Weight Solid Concentration Dewatered Sludge Volume Sludge Dewatirn Machine Collection Rate		38.4 29.1 26.9 768.9 15.0 80.0% 12.0 3.0% 399.8 95.0%	mg/l mg/l (< mg/l × t/day t/day m ³ /day	30 mg/L )	96.5%	

Pretreatment Facilities	
Coarse Screen	Manual
Fine Screen	Automatical
Grit Chamber	Aerated Grit Chamber with Grease Trap
	Diameter = $5.0 \text{ m}$ , D= $3.3 \text{ m}$ , N= 2
	Volume = $64.8 \text{ m}^3 \times 2 = 129.6 \text{ m}^3$
	Retention Time = $6.16$ mins
Equalization Tank (for rain	season)
	L= 70.0 m, W= 25.0 m, D= 3 m, N= 2
	$V = 5,250 \text{ m}^3 \times 2 = 10,500 \text{ m}^3$
	Retenciotn Time (at MHF) = $8.3$ hours
<b>Biocemical Facilities</b>	
Aeration Tank	Extended Aeration Activated Sludge
	L=50.1 m, $W=33.4$ m, $D=4.5$ m, $N=4$
	$V = 7,530 \text{ m}^3 \times 4 = 30,120 \text{ m}^3$
	MLSS = 4,000  mg/l
	MLVSS (MLSS *0.85) = 3,400 mg/l
	Design BOD/MLVSS Load = $0.200$ kgBOD/kgSS/d
	Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V
	= 0.164  kgBOD/kgSS/d
	Design Retention Time ( $\theta$ ) = BOD / MLVSS / Design Loa
	= 1.22 days
	Actual Retention Time ( $\theta$ ) = 1.49 days
Sedimentation Tank	Circular Tank
	Diameter = $22 \text{ m}, \text{ D} = 3.0 \text{ m}, \text{ N} = 4$
	$A = 380 \text{ m}^2 \times 4 = 1,521 \text{ m}^2$
	Maximum SVI = $200$
	Required Surface Load = = $14.59 \text{ m}^3/\text{m}^2/\text{day}$
	$(= 4.8*10^{\circ}6*Min Temp^{\circ}0.95*MLSS^{\circ}(-1.35)*SVI^{\circ}(-0.77))$
	Actual Surface Load = = $13.29 \text{ m}^3/\text{m}^2/\text{day}$
Polishing Pond	5 Steps
	L= 33.0 m, W= 82.0 m, D= 2 m, N= 10
	$V = 5,412  m^3 \times 10 = 54,120 \ m^3$
	Actual Retention Time ( $\theta$ ) = 2.68 days
	BOD Reduction (k= $0.14$ )= $1/(1+k\theta/n)^n = 0.70$
Disinfection Facilities	Chlorine Contact Basin
	L= 52.5 m, W= 1.40 m, D= 3.50 m, N= 2
	$V = 257 m^3 \times 2 = 515 m^3$
	Design Retention Time = $20.0$ minutes
	Actual Retention Time = 24.4 minutes
Irrigation Reservoir (for ra	in season)
- ``	L= 63.2 m, W= 43.0 m, D= 3.5 m, N= 1
	V= $8,123 \text{ m}^3 \times 1$ = $8,123 \text{ m}^3$
	Retenciotn Time (at MDF) = $9.6$ hours
	× /

AppendixIII-B-15

Sludge Gravity Thickener	Diameter =	9.0 m, N=	3		
	Surface Area		=	190.9	$\theta_{\rm m}^2$
	Design Surface L	oad	=	90.0	) kg/m²/day
	Actural Surface I	Load	=	78.5	5 kg/m²/day
Dewatering Machine	Centrifugal Dewa	itering			
	Operation Time	(in a day)	=	8	hours/day
		(in a week)	=	5.0	days/week
	Required Capacit	у	=	69.96	m ³ /hour
	Design Machine	Capacity	=	40	m ³ /hour/machine
	Design Machine	Number	=	2	(including sdand-by)

# 7.1 Capacity Calculation for Mafraq WWTP (Case 1 with site expansion)

Design Flow			
Average Daily Flow (ADF)	=	$14,353 \text{ m}^3/\text{day}$	
Maximum Daily Flow (MDF)	=	$16,792 \text{ m}^3/\text{day}$	
Maximum Hourly Flow (MHF)	=	25,190 m ³ /day	
Design Influent Quality			
BOD	=	707  mg/l (Including return water = $778$	U /
SS	=	653 mg/l (Including return water = 718	3 mg/l)
Temperaure	15	$\sim$ 28 °C	
Removal Efficiency			
Sedimentation Tank			
BOD	=	35.0%	
SS	=	60.0%	
MBBR			
BOD	=	30.0%	
SS	=	0.0%	
Aerated Stabilization Pond + Facilitativ	ve Pond		
BOD	=	90.0%	
SS	=	90.0%	
Sand Filter + Reed Beds			
BOD	=	50.0%	
SS	=	50.0%	
Total Removal Efficiency			
BOD	=	97.7%	
SS	=	98.0%	
Treated Wastewater Quality			
After Sedimentation Tank		505.5	
BOD	=	505.5 mg/l	
SS	=	287.3 mg/l	
After MBBR			
BOD	=	353.9 mg/l	
SS	=	287.3 mg/l	
After Aerated Stablization Pond + Fa	cultativ	Pond	
BOD	=	35.4  mg/l (< 60  mg/L)	
SS	=	28.7 mg/l (< 60 mg/L )	
After Sand Filter + Reed Beds			
BOD	=	17.7 mg/l	
SS	=	14.4 mg/l	

Removal Solid Weight			
From Sedimentation Tank	=	718.3	mg/l $\times$ 16,792 m ³ /day $\times$ 60.0%
	=	7.2	t/day
From Facalutative Pond	=	258.6	mg/l $\times$ 16,792 m ³ /day $\times$ 90.0%
	=	3.9	t/day
Sludge Stabilization Basin from Sedi	mentatio	on Tank	
Tickenered Sludge Weight	=	7.2	t/day
Solid Concentration	=	3.0%	
Dewatered Sludge Volume	=	241.2	m ³ /day
Required Retention Time	=	15.0	days
Required Tank Volume	=	3,619	$m^3$
Reduaction Rate in Basin	=	78%	
Tickenered Sludge Weight	=	5.6	t/day
Solids in Faculatative Basin			
Generated Sludge Weight	=	3.9	t/day
Reduction Rate in Pond	=	30%	
Solid Concentration	=	15.0%	(after consolidation)
Consolidated Sludge Weight		1.2	t/day
Consolidated Sludge Volume	=	7.8	m ³ /day
Sludge Drying Bed from Sludge Stal	oilization	n Basin	
Toatl Sludge		6.8	t/day
Solid Concentration	=	50.0%	
Dewatered Sludge Volume	=	13.6	m ³ /day

Pretreatment Facilities				
Coarse Screen	Manual			
Fine Screen	Automatical	2	<b>N T</b>	
Oil & Grease Removal	Diameter = $5.9 \text{ m}, \text{ D}=$	3	,	4
	Volume = $82.0 \text{ m}^3 \times$	4 =	$328.1 \text{ m}^3$	
	Actural Retention Time	=	18.75 mii	ns
Primary Settling Tank with Grit C			6.75 m,	N= 4
	ý	m, D= 4 =		
	Design Surface Load	=		/m ² /day
	Actural Surface Load	=	$117.6 \text{ m}^3$	/m²/day
Wet Weather Strage Lagoon (fo		-		
	L = 60.0  m, W = 60.0	m, D=		N= 1
	$V = 14,400 \text{ m}^3 \times 1$		$4,400 \text{ m}^3$	
	Retenciotn Time (at MHF)	=	13.7 hours	
Discomical Eastities				
Biocemical Facilities Denitrification Tank (MBBR)	NO N Concentration of Circulation	ion :	15.0 7	, 3
Denitrification Tank (MBBR)	NO ₃ -N Concentration of Circulati Circulation Rate for Denitrification		15.0 mg/L (g 5.0 times	g/m )
	NO ₃ -N Load	n. =		
			1,259  kg/day	
	Denitrificaiton Rate	=	$1.24 \text{ g/m}^2/\text{da}$	У
	Plastic Media Specific Surface	=	$500 \text{ m}^2/\text{m}^3$	
	Volume of Denitrification Media	=	$2,031 \text{ m}^3$	
	Media Volume / Tanks Volume	=	0.45	
	Effective Tank Volume		$4,514 \text{ m}^3$	
	L= 26.0 m, W= 15.0	m, D=	,	N= 4
	V= 1,365 $m^3 \times 4$	=	$5,460 \text{ m}^3$	
	Retenciotn Time (at MDF)	=	7.8 hours	
	BOD Removal Rate	=	3.40 gBOD/	0
	BOD Removal Amount		4,282 kgBOD	•
	BOD Concentration of Circulation		40.0 mg/L (g	
	Influent BOD		.3,062 kgBOD	/day
	Toatl Removal Rate of BOD	= 32	2.8%	
Aeration Stablization Basins	5 Steps			
Actuation Sublization Dusing	L = 84.0  m, W = 34.0	m, D=	3.5 m,	N= 20
	$V = 9,996 \text{ m}^3 \times 20$	,	9,920 m ³	
	Actual Retention Time ( $\theta$ )		1.91 days	
	BOD Reduction ( $k = 0.3$		2	0.068
	× ×	<i>,</i> , ,	,	
Denitrification Tank (MBBR)	TKN Concentration of Influent =		115.0 mg/L (g	$y/m^3$ )
	TKN Concentration of Effluent =		15.0 mg/L (g	
	TKN Load	=	1,679 kg/day	, ,
	Nitrificaiton Rate	=	$0.95 \text{ g/m}^2/\text{da}$	v
	Plastic Media Specific Surface	=	$500 \text{ m}^2/\text{m}^3$	ب
	Volume of Denitrification Media		$3,535 \text{ m}^3$	
	Media Volume / Tanks Volume	=	0.67	
	riedau volume / rumo volume		,	

AppendixIII-B-19

	Effective Tank Volume = $5,276 \text{ m}^3$ L= 26.0 m, W= 15.0 m, D= 3.5 m, N= 4 V= 1,365 m ³ × 4 = $5,460 \text{ m}^3$ Retenciotn Time (at MDF) = 7.8 hours
Facultative Pond with Rock Filter	1 Steps L= 73.0 m, W= 37.0 m, D= 3.5 m, N= 4 V= 9,454 m ³ × 4 = 37,814 m ³ Actual Retention Time ( $\theta$ ) = 2.25 days BOD Reduction (k= 0.1) = 1/(1+k\theta/n)^n = 0.816 Rcok Media Load = 1.00 m ³ /m ³ of rock /day Required Rock Volume = 16,792 m ³ = 6,298 m ³ /basin
Sand Filter	$L = 80.0 \text{ m, W} = 45.0 \text{ m, N} = 6$ $V = 3,600 \text{ m}^{2} \times 6 = 21,600 \text{ m}^{2}$ Design Surface Load = 0.80 m ³ /m ² /day Actual Surface Load = 0.78 m ³ /m ² /day
Reed Beds	L= 50.0 m, W= 30.0 m, N= 4 V= 1,500 m ² × 4 = 6,000 m ² Design Surface Load = 2.60 m ³ /m ² /day *2.60 m ³ /m ² /day=80kg/ha/day(NO ₃ -N)/0.003kg/m ³ Actual Surface Load = 2.39 m ³ /m ² /day
Disinfection Facilities	Chlorine Contact Basin L= 50 m, W= 2.00 m, D= 1.80 m, N= 2 V= 180 $\text{m}^3 \times 2 = 360 \text{m}^3$ Design Retention Time = 20.0 minutes Actual Retention Time = 20.6 minutes
Sludge Strage Tank	L= 15.0 m, W= 15.0 m, D= 3 m, N= 6 V= 675 $m^3 \times 6 = 4,050 m^3$ Design Retention Time = 15.00 days Actual Retention Time = 16.79 days
Sludge Drying Bed	Solid Weight (for ADF) = $5.83 \text{ t/day}$ = $2,127 \text{ t/year}$ L= $35.0 \text{ m}$ , W= $12.0 \text{ m}$ , N= $52$ A= $420 \text{ m}^2 \times 52$ = $21,840 \text{ m}^2$ Required Surface Load = = $100 \text{ kg/m}^2/\text{year}$ Actual Surface Load = = $97 \text{ kg/m}^2/\text{year}$

# 7.2 Capacity Calculation for Mafraq WWTP (Case 2 without site expansion)

Average Daily Flow (ADF)	=	7,177	m ³ /day			
Maximum Daily Flow (MDF)	=	8,396	m ³ /day			
Maximum Hourly Flow (MHF)	=	12,595	m ³ /day			
Design Influent Quality						
BOD	=			luding return water =	778	mg/
SS	=	653	mg/l (Inc	luding return water =	718	mg/
Temperaure	15	$\sim$ 28	$^{\circ}$ C			
Removal Efficiency						
Sedimentation Tank						
BOD	=	35.0%				
SS	=	60.0%				
Three Steps Ntrification-Denitrifica	ation Reac	etor				
BOD	=	90.0%				
SS	=	90.0%				
Sand Filter + Reed Beds						
BOD	=	50.0%				
SS	=	50.0%				
Total Removal Efficiency						
BOD	=	96.8%				
SS	=	98.0%				
Treated Wastewater Quality						
After Sedimentation Tank						
BOD	=	505.5	mg/l			
SS	=	287.3	mg/l			
After Three Steps Nitrification-De	nitrication					
BOD	=	50.6	mg/l			
SS	=	28.7	mg/l			
After Sand Filter + Reed Beds						
BOD	=	25.3	mg/l (<	60 mg/L )		
SS	=	14.4	mg/l (<	60 mg/L )		

erated Sludge Amount Removal Solid Weight						
From Sedimentation Tank	=	718.3	mg/l ×	8,396	$m^{3}/day \times$	96.0%
(Primary and Final)	=	5.8	t/day			
Sludge Stabilization Basin from Sed	imentatio	on Tank				
Tickenered Sludge Weight	=	5.8	t/day			
Solid Concentration	=	3.0%				
Dewatered Sludge Volume	=	193.0	$m^3/dav$			
Required Retention Time	=	15.0	days			
Required Tank Volume	=	2,895	m ³			
Sludge Drying Bed from Sludge Sta	bilizatior	n Basin				
Reduaction Rate in Basin	=	86%				
Tickenered Sludge Weight	=	5.0	t/day			
Solid Concentration	=	50.0%				
Dewatered Sludge Volume	=	10.0	m ³ /day			

Coarse Screen	Manual						
Fine Screen	Automatical						
Oil & Grease Removal	Diameter = $5.9 \text{ m}, \text{ D} = 3 \text{ m}, \text{ N} = 4$						
	Volume = $82.0 \text{ m}^3 \times 4 = 328.1 \text{ m}^3$						
	Actural Retention Time = 37.51 mins						
Primary Settling Tank with Gri							
	L= 8.3 m, $W=$ 4.3 m, $D=$ 6.75 m, $N=$ 4						
	Area = $35.7 \text{ m}^2 \times 4 = 142.8 \text{ m}^2$						
	Design Surface Load = $120.0 \text{ m}^3/\text{m}^2/\text{day}$						
	-						
Wet We the Otres of Lease							
Wet Weather Strage Lagoon (							
	L= 60.0  m, W= 60.0  m, D= 4  m, N= 1						
	$V = 14,400 \text{ m}^3 \times 1 = 14,400 \text{ m}^3$						
	Retenciotn Time (at MHF) = $27.4$ hours						
Biocemical Facilities	A SPT-20 7. 0 102T						
Three Step Feed Nitrification Denitrification	ASRT=29.7 • e-0.102T T= $15 ^{\circ}\text{C}$						
Numeation Denumeation	ASRT = 6.4  days						
	MLSS= 3000						
	$VDN=\theta CA \cdot Q \cdot (a \cdot SCS + b \cdot SSS)/(N \cdot XN \cdot (1+C \cdot \theta))$						
	$= Q_X  0.29764$						
	$=$ 2,499 m ³ $\rightarrow$ 7.14 hrs						
	Rate of Concentration						
	N1 = (0.5+1)/(0.5+1/3) = 1.80						
	N1 = (0.5+1)/(0.5+1/3) = 1.00 $N2 = (0.5+1)/(0.5+2/3) = 1.29$						
	Required Retention Time for a Tank						
	$V1 = VDN/N1 = 1,388 \text{ m}^3 = 3.97 \text{ hours}$						
	$V2 = VDN/N2 = 1,944 \text{ m}^3 = 5.56 \text{ hours}$						
	$Total = (VDN+V1+V2) \times 2$ 33.3 hours						
	Reactor Volume						
	VT= $8,396 \text{ x}$ $33.3 / 24 = 11,662 \text{ m}^3$						
	L= 70.0 m, W= 9.5 m, D= 4.5 m, N= 4						
	$V = 2,993 \text{ m}^3 \times 4 = 11,970 \text{ m}^3$						
	MLSS = 3,000 mg/l						
	MLVSS (MLSS $*0.85$ ) = 2,550 mg/l						
	Design BOD/MLVSS Load = 0.150 kgBOD/kgSS/d						
	Actual BOD/MLVSS Load = BOD * MDF / MLVSS / V						
	= 0.139 kgBOD/kgSS/d						
	Design Retention Time ( $\theta$ ) = 1.39 days						
	Actual Retention Time ( $\theta$ ) = 1.43 days						
Sedimentation Tank	Circular Tank						
Sequinentation 1 ank	Diameter = $17 \text{ m}, D= 3.4 \text{ m}, N= 4$						
	•••• •••						
	Maximum SVI = $200$						

	Required Surface Load = = $21.51 \text{ m}^3/\text{m}^2/\text{day}$ (= 4.8*10^6*Min Temp^0.95*MLSS^(-1.35)*SVI^(-0.77))
	Actual Surface Load = $= 9.25 \text{ m}^3/\text{m}^2/\text{day}$
Sand Filter	L= 80.0 m, W= 45.0 m, N= 3
	$V = 3,600 \text{ m}^2 \times 3 = 10,800 \text{ m}^2$
	Design Surface Load $= 0.80 \text{ m}^3/\text{m}^2/\text{day}$
	Actual Surface Load = $0.78 \text{ m}^3/\text{m}^2/\text{day}$
Reed Beds	L= 50.0 m, W= 30.0 m, N= 2
	V= 1,500 $\text{m}^2 \times$ 2 = 3,000 $\text{m}^2$
	Design Surface Load = $2.60 \text{ m}^3/\text{m}^2/\text{day}$
	*2.60 m ³ /m ² /day=80kg/ha/day(NO ₃ -N)/0.003kg/m ³
	Actual Surface Load = $2.39 \text{ m}^3/\text{m}^2/\text{day}$
Disinfection Facilities	Chlorine Contact Basin
	L= 50 m, W= 2.00 m, D= 1.80 m, N=
	$V = 180 \text{ m}^3 \times 2 = 360 \text{ m}^3$
	Design Retention Time = $20.0$ minutes Actual Retention Time = $41.2$ minutes
	Actual Retention Time = $41.2$ minutes
Sludge Strage Tank	L= 15.0 m, W= 15.0 m, D= 3 m, N=
	$V = 675 \text{ m}^3 \times 6 = 4,050 \text{ m}^3$
	Design Retention Time $=$ 15.00 days
	Actual Retention Time $= 20.99$ days
Sludge Drying Bed	Solid Weight (for ADF) = $4.26 \text{ t/day}$
	= 1,553 t/year L= 35.0 m, W= 12.0 m, N= 36
	L= 35.0 m, W= 12.0 m, N= 36 A= 420 m ² × 36 = 15,120 m ²
	Actual Surface Load = = $103 \text{ kg/m}^2/\text{year}$

#### APPENDIX IV RESULTS OF ECONOMIC EVALUATION

### 1. Overall Evaluation consolidating 6 SWDs

EIRR (Economic Internal Rate of Return) 18.6%

			~			(JD millio
Year		Investment	Cost estment O&M Total		Benefit	Net Benefit
2016	-1	0.0	0.0	0.0	0.0	0.0
2017	0	15.2	0.1	15.4	3.8	-11.0
2018	1	15.4	0.2	15.6	5.8	-9.8
2019	2	12.3	0.3	12.6	7.8	-4.3
2020	3	20.2	0.4	20.5	10.0	-10.
2021	4	20.2	0.4	20.7	12.2	-8.
2022	5	10.9	0.6	11.4	14.4	3.
2023	6	10.8	0.6	11.5	16.7	5.
2024	7	11.6	0.7	12.3	18.6	6.
2025	8	14.9	0.9	15.7	20.5	4.
2026	9	12.9	0.9	13.8	22.5	8.
2027	10	14.5	1.1	15.6	24.9	9.
2028	11	19.9	1.2	21.1	27.4	6.
2029	12	17.2	1.3	18.5	30.0	11.
2030	13	11.7	1.4	13.1	32.7	19.
2031	14	13.4	1.4	14.9	35.5	20.
2032	15	13.5	1.5	14.9	37.1	22.
2033	16	0.0	1.5	1.5	38.9	37.
2034	17	0.0	1.6	1.6	40.6	39
2035	18	0.0	1.6	1.6	42.5	40
2036	19	0.0	1.7	1.7	42.5	40.
2037	20	0.0	1.7	1.7	42.5	40.
2038	21	0.0	1.7	1.7	42.5	40.
2039	22	0.0	1.7	1.7	42.5	40.
2040	23	0.0	1.7	1.7	42.5	40.
2041	24	0.0	1.7	1.7	42.5	40.
2042	25	0.0	1.7	1.7	42.5	40.
2043	26	0.0	1.7	1.7	42.5	40.
2044	27	0.0	1.7	1.7	42.5	40.
2045	28	0.0	1.7	1.7	42.5	40
2046	29	0.0	1.7	1.7	42.5	40.
2047	30	-59.7	1.7	-58.0	42.5	100.

Note: Salvage value is estimated at 59.7 in 2047.

#### 2. Each SWD

#### (1) Central Irbid

EIRR (Economic Internal Rate of Return)
-----------------------------------------

(JD million)

				(JD million)			
Yea	r		Cost		Benefit	Net Benefit	
	-	Investment	O&M	Total			
2016	-1	0.00	0.00	0.00	0.00	0.00	
2017	0	0.69	0.01	0.70	0.3	-0.43	
2018	1	0.70	0.01	0.71	0.3	-0.37	
2019	2	0.00	0.04	0.04	0.4	0.37	
2020	3	0.00	0.05	0.05	0.5	0.44	
2021	4	0.00	0.05	0.05	0.6	0.50	
2022	5	0.00	0.05	0.05	0.6	0.57	
2023	6	0.00	0.05	0.05	0.7	0.64	
2024	7	0.00	0.06	0.06	0.8	0.71	
2025	8	0.00	0.06	0.06	0.8	0.78	
2026	9	0.00	0.06	0.06	0.9	0.85	
2027	10	0.00	0.06	0.06	1.0	0.92	
2028	11	0.00	0.07	0.07	1.1	1.00	
2029	12	0.00	0.07	0.07	1.1	1.07	
2030	13	0.00	0.07	0.07	1.2	1.14	
2031	14	0.00	0.07	0.07	1.3	1.21	
2032	15	0.00	0.08	0.08	1.4	1.29	
2033	16	0.00	0.08	0.08	1.4	1.36	
2034	17	0.00	0.08	0.08	1.5	1.43	
2035	18	0.00	0.08	0.08	1.6	1.51	
2036	19	0.00	0.09	0.09	1.6	1.50	
2037	20	0.00	0.09	0.09	1.6	1.50	
2038	21	0.00	0.09	0.09	1.6	1.50	
2039	22	0.00	0.09	0.09	1.6	1.50	
2040	23	0.00	0.09	0.09	1.6	1.50	
2041	24	0.00	0.09	0.09	1.6	1.50	
2042	25	0.00	0.09	0.09	1.6	1.50	
2043	26	0.00	0.09	0.09	1.6	1.50	
2044	27	0.00	0.09	0.09	1.6	1.50	
2045	28	0.00	0.09	0.09	1.6	1.50	
2046	29	0.00	0.09	0.09	1.6	1.50	
2047	30	-0.02	0.09	0.07	1.6	1.52	

Note: Salvage value is estimated at 0.02 in 2047.

#### (2) Wadi Al-Arab

EIRR (Economic Internal Rate of Return)	24.6%
-----------------------------------------	-------

### (JD million)

			Cost		D (7)	N. ( D. C)	
Yea	r	Investment	O&M	Total	Benefit	Net Benefit	
2016	-1	0.0	0.0	0.0	0.0	0.0	
2017	0	4.5	0.1	4.6	1.5	-3.1	
2018	1	4.5	0.1	4.6	2.3	-2.3	
2019	2	4.5	0.1	4.6	3.2	-1.5	
2020	3	6.7	0.1	6.9	4.1	-2.8	
2021	4	6.7	0.2	6.9	5.0	-1.9	
2022	5	2.4	0.2	2.6	5.6	3.0	
2023	6	2.4	0.2	2.6	6.2	3.6	
2024	7	4.2	0.2	4.4	6.8	2.4	
2025	8	4.2	0.3	4.5	7.4	3.0	
2026	9	2.4	0.3	2.7	8.1	5.4	
2027	10	1.4	0.3	1.7	8.5	6.8	
2028	11	1.4	0.3	1.7	8.9	7.2	
2029	12	1.4	0.4	1.7	9.3	7.5	
2030	13	1.4	0.4	1.8	9.7	7.9	
2031	14	3.2	0.4	3.6	10.1	6.5	
2032	15	3.2	0.4	3.6	10.2	6.6	
2033	16	0.0	0.4	0.4	10.3	9.9	
2034	17	0.0	0.4	0.4	10.4	10.0	
2035	18	0.0	0.4	0.4	10.5	10.1	
2036	19	0.0	0.4	0.4	10.5	10.1	
2037	20	0.0	0.4	0.4	10.5	10.1	
2038	21	0.0	0.4	0.4	10.5	10.1	
2039	22	0.0	0.4	0.4	10.5	10.1	
2040	23	0.0	0.4	0.4	10.5	10.1	
2041	24	0.0	0.4	0.4	10.5	10.1	
2042	25	0.0	0.4	0.4	10.5	10.1	
2043	26	0.0	0.4	0.4	10.5	10.1	
2044	27	0.0	0.4	0.4	10.5	10.1	
2045	28	0.0	0.4	0.4	10.5	10.1	
2046	29	0.0	0.4	0.4	10.5	10.1	
2047	30	-11.3	0.4	-10.9	10.5	21.4	

Note: Salvage value is estimated at 11.3 in 2047.

### (3) Shallala

EIRR (Economic Internal Rate of Return)	32.6%
-----------------------------------------	-------

### (JD million)

			Cost			
Yea	r	Investment	O&M	Total	Benefit	Net Benefit
2016	-1	0.0	0.0	0.0	0.0	0.0
2017	0	2.7	0.0	2.7	0.8	-1.9
2018	1	2.8	0.0	2.9	1.3	-1.6
2019	2	2.4	0.1	2.5	1.8	-0.7
2020	3	2.4	0.1	2.5	2.3	-0.1
2021	4	2.4	0.1	2.5	2.9	0.4
2022	5	1.8	0.1	1.9	3.7	1.8
2023	6	1.8	0.1	1.9	4.5	2.6
2024	7	1.1	0.1	1.2	4.9	3.7
2025	8	1.1	0.2	1.2	5.2	4.0
2026	9	1.1	0.2	1.2	5.6	4.4
2027	10	2.9	0.2	3.1	6.5	3.4
2028	11	8.3	0.2	8.5	7.4	-1.1
2029	12	8.4	0.2	8.6	8.4	-0.2
2030	13	2.9	0.3	3.2	9.4	6.3
2031	14	2.9	0.3	3.2	10.5	7.3
2032	15	2.9	0.3	3.2	11.5	8.3
2033	16	0.0	0.4	0.4	12.6	12.2
2034	17	0.0	0.4	0.4	13.7	13.3
2035	18	0.0	0.4	0.4	14.8	14.4
2036	19	0.0	0.4	0.4	14.8	14.4
2037	20	0.0	0.4	0.4	14.8	14.4
2038	21	0.0	0.4	0.4	14.8	14.4
2039	22	0.0	0.4	0.4	14.8	14.4
2040	23	0.0	0.4	0.4	14.8	14.4
2041	24	0.0	0.4	0.4	14.8	14.4
2042	25	0.0	0.4	0.4	14.8	14.4
2043	26	0.0	0.4	0.4	14.8	14.4
2044	27	0.0	0.4	0.4	14.8	14.4
2045	28	0.0	0.4	0.4	14.8	14.4
2046	29	0.0	0.4	0.4	14.8	14.4
2047	30	-14.2	0.4	-13.8	14.8	28.7

Note: Salvage value is estimated at 14.2 in 2047.

#### (4) Wadi Hassan

EIRR (Economic Internal Rate of Return)	11.9%

### (JD million)

			Cost			
Yea	r	Investment	O&M	Total	Benefit	Net Benefit
2016	-1	0.00	0.00	0.00	0.00	0.00
2017	0	0.00	0.00	0.00	0.00	0.00
2018	1	0.00	0.00	0.00	0.00	0.00
2019	2	0.00	0.00	0.00	0.00	0.00
2020	3	0.00	0.00	0.00	0.00	0.00
2021	4	0.00	0.00	0.00	0.00	0.00
2022	5	0.50	0.00	0.50	0.00	-0.50
2023	6	0.50	0.00	0.50	0.00	-0.50
2024	7	0.50	0.00	0.50	0.04	-0.46
2025	8	0.71	0.00	0.71	0.08	-0.62
2026	9	0.50	0.00	0.50	0.13	-0.37
2027	10	0.96	0.03	0.99	0.23	-0.76
2028	11	0.96	0.03	0.99	0.34	-0.65
2029	12	0.96	0.03	0.99	0.46	-0.54
2030	13	0.96	0.04	1.00	0.57	-0.42
2031	14	0.96	0.04	1.00	0.70	-0.30
2032	15	0.96	0.05	1.01	0.90	-0.11
2033	16	0.00	0.05	0.05	1.11	1.05
2034	17	0.00	0.06	0.06	1.32	1.27
2035	18	0.00	0.06	0.06	1.55	1.49
2036	19	0.00	0.06	0.06	1.55	1.49
2037	20	0.00	0.06	0.06	1.55	1.49
2038	21	0.00	0.06	0.06	1.55	1.49
2039	22	0.00	0.06	0.06	1.55	1.49
2040	23	0.00	0.06	0.06	1.55	1.49
2041	24	0.00	0.06	0.06	1.55	1.49
2042	25	0.00	0.06	0.06	1.55	1.49
2043	26	0.00	0.06	0.06	1.55	1.49
2044	27	0.00	0.06	0.06	1.55	1.49
2045	28	0.00	0.06	0.06	1.55	1.49
2046	29	0.00	0.06	0.06	1.55	1.49
2047	30	-3.14	0.06	-3.08	1.55	4.63

Note: Salvage value is estimated at 3.14 in 2047.

# (5) Ramtha

Year			Cost			
		Investment	O&M	Total	Benefit	Net Benefit
2016	-1	0.0	0.0	0.0	0.0	0.0
2017	0	2.0	0.0	2.1	0.6	-1.4
2018	1	2.0	0.0	2.1	1.0	-1.1
2019	2	2.0	0.0	2.1	1.3	-0.8
2020	3	5.0	0.1	5.0	1.7	-3.4
2021	4	5.0	0.1	5.1	2.0	-3.0
2022	5	1.4	0.1	1.5	2.4	0.9
2023	6	1.4	0.1	1.5	2.7	1.
2024	7	1.4	0.1	1.5	3.1	1.:
2025	8	1.4	0.1	1.6	3.4	1.
2026	9	1.4	0.2	1.6	3.8	2.:
2027	10	5.3	0.2	5.4	4.4	-1.
2028	11	5.3	0.2	5.5	5.1	-0.
2029	12	3.0	0.2	3.2	5.7	2.
2030	13	3.0	0.3	3.3	6.4	3.
2031	14	2.9	0.3	3.2	7.1	4.
2032	15	2.9	0.3	3.2	7.3	4.
2033	16	0.0	0.3	0.3	7.5	7.
2034	17	0.0	0.3	0.3	7.7	7.
2035	18	0.0	0.3	0.3	7.9	7.
2036	19	0.0	0.3	0.3	7.9	7.
2037	20	0.0	0.3	0.3	7.9	7.
2038	21	0.0	0.3	0.3	7.9	7.
2039	22	0.0	0.3	0.3	7.9	7.
2040	23	0.0	0.3	0.3	7.9	7.
2041	24	0.0	0.3	0.3	7.9	7.
2042	25	0.0	0.3	0.3	7.9	7.
2043	26	0.0	0.3	0.3	7.9	7.
2044	27	0.0	0.3	0.3	7.9	7.
2045	28	0.0	0.3	0.3	7.9	7.
2046	29	0.0	0.3	0.3	7.9	7.
2047	30	-12.4	0.3	-12.1	7.9	20.

EIRR (Economic Internal Rate of Return) 18.3%

Note: Salvage value is estimated at 12.4 in 2047.

### (6) Mafraq

EIRR (Economic Internal Rate of Return)	6.3%
	0.070

### (JD million)

17			Cost		Denset	
Yea	r	Investment	O&M	Total	Benefit	Net Benefit
2016	-1	0.0	0.0	0.0	0.0	0.0
2017	0	5.3	0.0	5.3	0.6	-4.7
2018	1	5.3	0.1	5.3	0.8	-4.5
2019	2	3.3	0.1	3.4	1.1	-2.3
2020	3	6.0	0.1	6.1	1.4	-4.7
2021	4	6.1	0.1	6.1	1.7	-4.5
2022	5	4.8	0.1	4.9	2.1	-2.8
2023	6	4.8	0.1	4.9	2.6	-2.3
2024	7	4.4	0.1	4.6	3.0	-1.6
2025	8	7.5	0.2	7.7	3.5	-4.2
2026	9	7.5	0.2	7.7	3.9	-3.8
2027	10	4.0	0.3	4.2	4.3	0.1
2028	11	4.0	0.3	4.2	4.6	0.4
2029	12	3.5	0.3	3.8	5.0	1.2
2030	13	3.5	0.3	3.8	5.4	1.6
2031	14	3.5	0.3	3.8	5.7	1.9
2032	15	3.5	0.3	3.8	5.8	2.0
2033	16	0.0	0.3	0.3	5.9	5.6
2034	17	0.0	0.3	0.3	6.0	5.7
2035	18	0.0	0.3	0.3	6.1	5.8
2036	19	0.0	0.3	0.3	6.1	5.8
2037	20	0.0	0.3	0.3	6.1	5.8
2038	21	0.0	0.3	0.3	6.1	5.8
2039	22	0.0	0.3	0.3	6.1	5.8
2040	23	0.0	0.3	0.3	6.1	5.8
2041	24	0.0	0.3	0.3	6.1	5.8
2042	25	0.0	0.3	0.3	6.1	5.8
2043	26	0.0	0.3	0.3	6.1	5.8
2044	27	0.0	0.3	0.3	6.1	5.8
2045	28	0.0	0.3	0.3	6.1	5.8
2046	29	0.0	0.3	0.3	6.1	5.8
2047	30	-18.6	0.3	-18.2	6.1	24.3

Note: Salvage value is estimated at 18.6 in 2047.

# Sensitivity Analysis

# (1) Central Irbid

Iterate		Benefits					
11	Items		+10%	base case	-10%	-20%	
Investment	-20%	90.1%	77.5%	66,7%	57.4%	49.2%	
costs	-10%	74.4%	65.2%	57.1%	49.8%	43.2%	
	base case	64.0%	56.8%	50.2%	44.3%	38.7%	
	+10%	56.6%	50.6%	45.1%	40.1%	35.3%	
	+20%	50.9%	45.9%	41.2%	36.7%	32.5%	

### (2) Wadi Al-Arab

Items		Benefits					
		+20%	+10%	base case	-10%	-20%	
Investment	-20%	47.2%	40.3%	34.3%	29.0%	24.3%	
costs	-10%	38.4%	33.3%	28.6%	24.5%	20.7%	
	base case	32.5%	28.4%	24.6%	21.2%	18.0%	
	+10%	28.1%	24.7%	21.6%	18.6%	15.8%	
	+20%	24.8%	21.9%	19.2%	16.6%	14.1%	

### (3) Shallala

Itoma		Benefits					
Itt	Items		+10%	base case	-10%	-20%	
Investment	-20%	58.0%	50.6%	43.9%	37.8%	32.3%	
costs	-10%	48.5%	42.7%	37.4%	32.4%	27.8%	
	base case	41.7%	37.0%	32.6%	28.4%	24.5%	
	+10%	36.7%	32.7%	28.9%	25.3%	21.9%	
	+20%	32.8%	29.3%	26.0%	22.8%	19.8%	

### (4) Wadi Hassan

Itoms		Benefits					
Ite	Items		+10%	base case 1	-10%	-20%	
Investment	-20%	17.2%	16.0%	14.6%	13.2%	11.8%	
costs	-10%	15.6%	14.4%	13.2%	11.8%	10.4%	
	base case 2	14.2%	13.1%	11.9%	10.7%	9.3%	
	+10%	13.0%	12.0%	10.9%	9.6%	8.4%	
	+20%	12.0%	11.0%	9.9%	8.8%	7.6%	

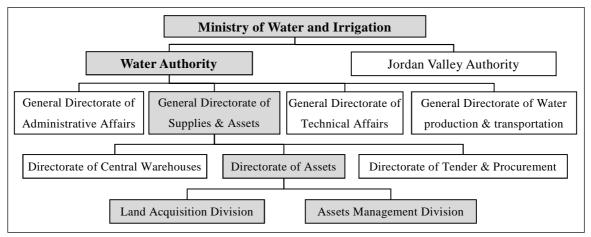
### (5) Ramtha

Items		Benefits					
		+20%	+10%	base case	-10%	-20%	
Investment	-20%	32.2%	28.2%	24.5%	21.2%	18.1%	
costs	-10%	27.1%	23.9%	21.0%	18.2%	15.6%	
	base case	23.4%	20.8%	18.3%	15.9%	13.6%	
	+10%	20.7%	18.4%	16.2%	14.1%	12.1%	
	+20%	18.5%	16.5%	14.6%	12.6%	10.8%	

# (6) Mafraq

Itama		Benefits				
10	Items		+10%	base case	-10%	-20%
Investment	-20%	11.5%	10.2%	8.8%	7.5%	6.2%
costs	-10%	9.8%	8.6%	7.5%	6.3%	5.0%
	base case	8.5%	7.4%	6.3%	5.2%	4.1%
	+10%	7.4%	6.4%	5.4%	4.4%	3.3%
	+20%	6.4%	5.5%	4.6%	3.6%	2.6%

# APPENDIX V LEGAL FRAMEWORK AND PROCEDURE ON LAND ACQUISITION


#### V-1-1 Legal framework and institutional responsibility for implementing land acquisition

Land acquisition in Jordan is implemented in accordance with Land Acquisition Law No. 12, 1987. According to the Land Acquisition Law, general process of land acquisition can be summarized as shown below.

- 1) Announcement of the intention of land acquisition by the implementer to the Council of Ministers
- 2) Issuing of the decision of the Council of Ministers on land acquisition (within 6 months)
- 3) Investigation on current status of the real estate subject to land acquisition by the implementer
- 4) Detail announcement of land acquisition by the implementer to the owner of the real estate
- 5) Negotiation with the owner to fix the amount of compensation (within 30 days)
- 6) Ownership transfer from the owner to the implementer after the payment of compensation to the owner

WAJ, the responsible body for land acquisition in the implementation of the M/P, has the Directorate of Assets which is in charge of all procedures in relation to land acquisition.

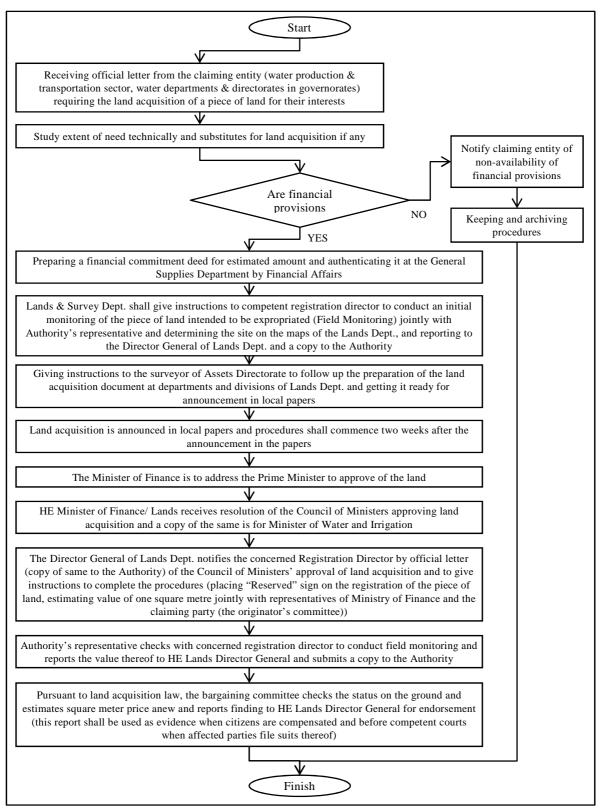
Figure V-A-1 shows the organization structure of the Directorate, followed by main tasks and duties of Land Acquisition Division and Assets Management Division under the Directorate as shown in Table V-A-1.

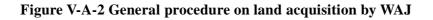


Source: WAJ

#### Figure V-A-1Organogram of the Directorate of Assets

Main tasks and duties of Divisions under the Directorate of Assets


Table V-A-1


Division	Land Acquisition Division	Assets Management Division
	· Verify land acquisition requirements for the various Water	• Leasing of buildings in
Main	Authority's sites in respect of areas, sites, roads, etc.	favour of the Water
tasks	· Participate in the Technical Committees with respect to	Authority
and	land acquisition, assessment of values of lands and	• Evacuate buildings and
duties	damages arising out of the land acquisition	hand them over to their
	· Participate with the Lands & Survey Department in	owners

Division	Land Acquisition Division	Assets Management Division
	<ul> <li>determining the parts to be expropriated and delimiting it in-situ</li> <li>Verify and demarcate the expropriated parts and organize the land acquisition transactions for the purpose of advertising same in the local newspapers</li> <li>Indexing and classifying the files of expropriated plots of land</li> <li>Enter the land acquisition particulars and archive documents in the computerized systems</li> <li>Follow up land acquisition compensation, allocation, leasing and other cases with the Legal Department and Authority's Lawyer</li> <li>Follow up the land acquisition transactions with the governmental departments and official parties as well as acceleration thereof such as Lands &amp; Survey Department, Amman Municipality, Ministry of Municipalities, and Council of Ministers, etc.</li> <li>Compensate citizens for the land acquisition located in their lands</li> <li>Follow up obtaining the deeds of registration of the expropriated lands and the compensation of owners thereof has been finalized</li> </ul>	<ul> <li>Compensations in lieu of damages (water lines- wastewater lines)</li> <li>Compensate citizens in lieu of irrigation rights</li> <li>Follow up encroachments on properties of Authority</li> <li>Follow up lease contracts of the Electricity Company to the Authority's sites</li> <li>Follow up of settlement works with the lands</li> <li>Pay in lieu of buildings lease which are leased in favour of the Water Authority</li> <li>Participate in the Technical Committees pertaining to encroachments upon the Authority's properties</li> <li>Establish the Authority's properties on the digital maps (GIS)</li> </ul>

#### General procedure on land acquisition

General procedure on land acquisition by WAJ is shown in Figure V-A-2.





Requirements for the implementation of land acquisition in WAJ are shown in Table V-A-2.

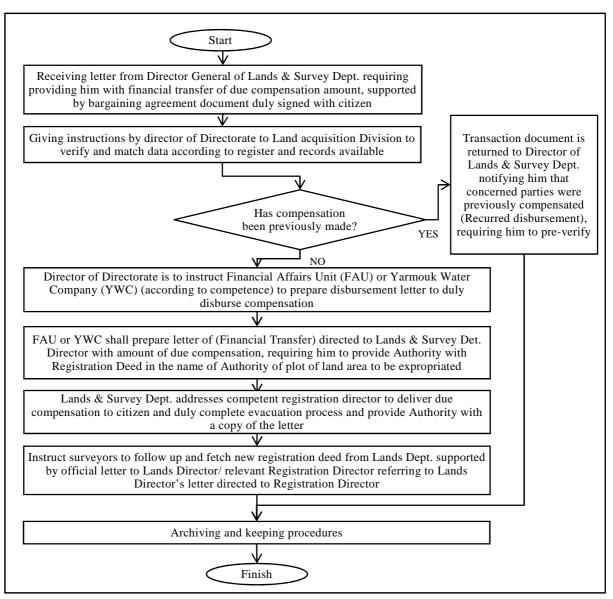

No.	Implementation requirements	Provider	Partners in WAJ	Partners out of WAJ
1.	Official letter from entity requiring land acquisition including (plot number, basin number, neighborhood number, size area of plot to be expropriated and purpose of land acquisition)	Entity requiring land acquisition	Technical Affairs Sector, Water Production & Transport Sector, Water Depts. & Directorates in	Council of Ministers, Ministry of Finance, Lands & Survey Dept., Registration Depts. in governorates and districts, Ministry of
2.	Financial allocation	Financial Affairs Unit	governorates, Financial Affairs	Municipalities. Settlement
3.	Recent registration deed of the plot of land	Requiring entity	Unit	Directorates, Grand Amman Municipality,
4.	Recent plan of the plot of land	Requiring entity		Municipalities in
5.	Recent regulatory site scheme of the plot of land	Requiring entity		governorates
6.	Estimation of preliminary value of land acquisition	Requiring entity		

 Table V-A-2
 Requirements for the implementation of land acquisition in WAJ

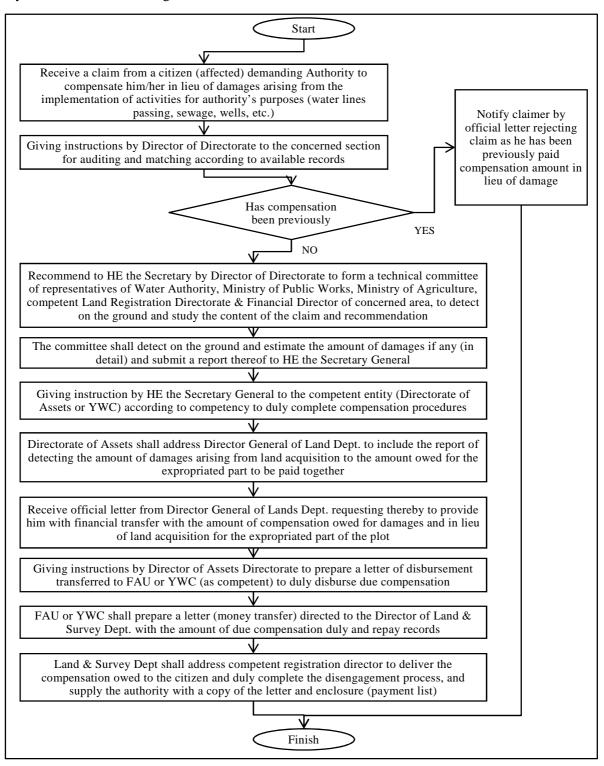
Source: WAJ

#### **10-3-1.1** Measures for compensation and grievance redress

Compensation procedure for land acquisition is shown in Figure V-A-3.



Source: WAJ


#### Figure V-A-3 Procedure of compensation for land acquisition

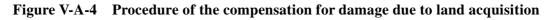

Requirements for disbursement as compensation for land acquisition are shown in Table A-3.

Table V-A-3	<b>Requirements</b>	for compensation	disbursement
-------------	---------------------	------------------	--------------

No.	Implementation requirements	Provided entity	Partners within Authority	Partners out of Authority
1.	Bargaining Agreement	Lands and Survey	-Financial Affairs	- Lands and
2.	Report of Bargaining Committee	Dept.	Unit (FAU)	Survey Dept.
3.	Recent registration deed of plot of land		- Legal Department	- Registration Directorates at
4.	Any other requirements / Inheritance deed, proxy for someone		- YWC	governorates - Owner of plot or his agent

Procedure of the compensation for damage due to land acquisition in accordance with grievance by citizens is shown in Figure V-A-4.





Requirements of the compensation for damage due to land acquisition in accordance with grievance by citizens are shown in Table V-A-4.

	Implementation requirements	Provided entity	Partners within Authority	Partners out of Authority
1.	Claim from affected citizen	Affected citizen		
2.	Official letter from Water Departments/ based on affected citizen's claims	Water departments		
3	Memo from assistant secretary for production / based on affected citizen's claim	Water Production & Transport sector	Tasknissl Affairs	
4	Official letter from HE Director General/ to form a technical committee to identify & estimate amount of damages caused by authority's activities referred to in the claim	Secretary General	Technical Affairs Sector, Water Production & Transport Sector, Water Depts. & Directorates in	Land & Survey Dept. / Registration Directorates in governorates
5	Committee report identifying damages, estimating their amount and recommending disbursement of amount in lieu of damages	Formed committee	governorates	
6	The placement of HE the Secretary General to duly disburse the amount of damages	Secretary General		

 Table V-A-4
 Requirements of the compensation for damage due to land acquisition

# APPENDIX V-2 Monitoring Form (Example)

The latest results of the below monitoring items shall be submitted to the lenders as part of Progress Report throughout the construction phase.

#### **Construction Phase**

#### 1. Response/ Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
Number and contents of formal comments made by the public	
Number and contents of responses from Government agencies	

### 2. Pollution

#### Air Quality (Ambient Air Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Standards for Contract	Referred International Standards	Measurement Point	Frequency
Dust	mg/m ³					0.1(24h), 0.2(1h)		Monthly

# Water

Appendix V-8

	Water	Quality
--	-------	---------

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Standards for Contract	Referred International Standards	Measurement Point	Frequency
Total coliforms	MPN/100mL			<1.1	1	0/100mL		
Fecal coliforms	MPN/100mL			0		0/100mL		
pH	-			6.5-8.5	-	-		
TDS	mg/L			<500-1500		1000		
Chloride	mg/L			200-500		250		3 times /
Sodium	mg/L			200-400		200		construction
Manganese	mg/L			0.1-0.5	1	0.1-0.5		section nearby
Nitrate	mg/L			50-70		50		water source
Nitrite	mg/L			2		3		
Total hardness	mg/L			100-500		-		
Iron	mg/L			0.3-1.0		0.3		

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Standards for Contract	Referred International Standards	Measurement Point	Frequency
Copper	mg/L	-		0.1-1.5		1-2		
Lead	mg/L			0.01		0.01		
Zinc	mg/L			<3.5		3		
Turbidity	NTU			1-5	1	-		

Note: Drainage is the sprinkling water for dust control during excavation and washing water for construction machines and vehicles, the using water volume is little, the raw water is well water in the vicinity, and the water use will be saved near the water source well. Although the impact on the water source is considered to be little, for the confirmation, the above water quality analysis will be carried out in water sources nearby construction section operating.

Noise

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Standards for Contract	Referred International Standards	Measurement Point	Frequency
Noise Level.	dB			35-55 (night)				Monthly
Vibration Level.	dB			55-60 (night)				Monthly

#### **Offensive Odor**

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Standards for Contract	Referred International Standards	Measurement Point	Frequency
Ammonia	ppm					2		
Methylmercaptan	ppm					0.04		11-11-1
ydrogen sulfide	ppm					0.06		Monthly
nethyl sulfide	ppm					0.05		

#### Soil pollution

Monitoring Item	Contents	Monitoring Results during Report Period	Measures to be Taken
Oil leakage condition	Check of oil leakage situation from construction machines and vehicles, and repairmen situation Confirmation of remove of contaminated soil, and dumpling to the specified disposal site (Weekly)		

# 3. Social Environment

Monitoring Item	Contents	Monitoring Results during Report Period	Measures to be Taken
Local Economy	Confirmation of securement of approach paths to commercial places on traffic control for construction work		
Existing Social Infrastructure and Social Service	Same in "Water Quality"		
Cultural Heritage	Confirmation of accurate inspection by MOTA		
Infectious Diseases including HIV/AIDS	Confirmation of education of health management for workers (monthly)		
Work Environment	Confirmation of wearing of specified wearing goods for work (weekly)	N	
Accident	Confirmation of accurate traffic control and securement situation of safety for workers (weekly)	-	

Classifi cation	Environmental Item	Major Check Items	Yes: Y No: N	Specific Environmental and Social Considerations (Reason for the Yes / No, basis, mitigation, etc.)
kplanation	(1) EIA and Environmental licensing	<ul><li>(a) Environmental assessment report (EIA report), etc. was created?</li><li>(b) EIA report was either approved by the country's government?</li><li>(c) Approved EIA report has collateral condition?</li><li>If there is a collateral condition, the conditions are satisfied?</li><li>(d) In the case other than the above, if necessary, environmental licensing from the competent authority of the local was acquired?</li></ul>	(a) N (b) N (c) N (d) N	<ul> <li>(a)</li> <li>(b)</li> <li>(c)</li> <li>(d)</li> <li>EIA at the planning stage (MP) is not legalized in Jordan, but SEA was conducted according to JICA's Environmental and Social Consideration Guideline.</li> </ul>
1 licensing and explanation	(2) Explanation to local stakeholders	<ul><li>(a) About the impact and the contents of the project, an appropriate description to local stakeholders including information disclosure was carried out, and the understanding was gained?</li><li>(b) The comments from the residents were reflected on project content ?</li></ul>	(a) Y (b) Y	<ul> <li>(a)</li> <li>(b)</li> <li>Stakeholder's meeting as a part of SEA was held, and the opinions and comments from participants were collected to reflect on the finalization of the MP.</li> </ul>
	(3) Consideration of alternatives	(a) Multiple alternatives of the project plan (when studying, and including items related to environmental and social) were considered?	(a) Y	(a) Development alternatives at concept level (new water source development or rehabilitation of existing facilities) and component level (land acquisition for new facilities or reinforcement of existing facilities, etc.) were examined in view of environmental and social impacts.
	(1) Water quality	<ul><li>(a) SS, BOD, COD, pH, and the like item of sewerage effluent are consistent with drainage standards of the country?</li><li>(b) Does untreated waste water contain heavy metals?</li></ul>	(a) Y (b) Y	<ul> <li>(a) Drainage standard is stipulated in "Jordanian Reclaimed Wastewater Standard-JS 893/2006.</li> <li>(b) Untreated waste water contains heaveay metal.</li> </ul>
easures	(2) Waste	(a) Waste sludge generated in accordance with the facility operation is either treated and disposed of properly in accordance with the provisions of the country?	(a) Y	(a) Sludges generated from wast water treatment plans in YWC is diiposed in Al Akaydar Landfill.
2 Pollution measures	(3) Soil pollution	(a) In the case that the content of heavy metals in sludge or other waste is suspected, are countermeasures taken for prevention of the pollution of groundwater and soil due to the leakage of wastewater from the waste?	(a) Y	(a) Sludges and wastes with heavy metals are desposed in Al Akaydar final landfill.
	(4) Noise and vibration	(a) Noise and vibration from waste water treatment plant and pump facilities, etc., are consistent with the standards of the country?	(a) Y	(a) Noise and vibration levels of waste water treatment plants in YWC are within the Jordanian standard.
	(5) Offensive odor	(a) Are preventive measures of offensive odor from sludge treatment facilities taken?	(a) N	(a) Dewatering facilities incorporate from new construction or rehabilitation of waste water treatment plant, but many WWTPs use suludge drying beds because many WWTPs locate away from residential area.

Classifi cation	Environmental Item	Major Check Items	Yes: Y No: N	Specific Environmental and Social Considerations (Reason for the Yes / No, basis, mitigation, etc.)
	(1) Protected areas	(a) Are the site and treated water discharge point located in protected areas designated by laws of the country or international treaties and conventions? Project affects the protected areas?	(a)N	(a) The project area has more than 10km away from the Reserves the country specify, the impact does not affect.
3 Natural environment	(2) Ecosystem	<ul> <li>(a) Do the site and treated water discharge point include virgin forest, tropical natural forest, habitat ecologically important (coral reefs, mangrove swamps, tidal flats, etc.)?</li> <li>(b) Do the site and treated water discharge point include the habitats of endangered species required protection by law of the country or international treaties and conventions?</li> <li>(c) If a significant impact on the ecosystem is concerned, measures to reduce the impacts on the ecosystem is conducted?</li> <li>(d) Water intake (surface water, underground water) by the project affects the aquatic environment such as rivers? Measures to reduce the impacts on the aquatic organisms, etc., are carried out?</li> </ul>	(c) N/A	<ul> <li>(a)</li> <li>(b)</li> <li>(c)</li> <li>(d)</li> <li>The project site locates in urban area and suburb area of Irbid, Ramtha, and Mafraq, important species, rare species and endangered critical species of fauna and flora do not exist.</li> <li>In addition, since the components of the MP are rehabilitation of facilities and water supply network, and new construction of reservoir and pump station, the project does not participate in the intake of water sources, the significant impact on the ecosystem is not concerned.</li> </ul>
4 Social environment	(1) Resettlement	<ul> <li>(a) With the implementation of the project, involuntary resettlement occurs ?</li> <li>If that occurs, efforts to minimize the impact of relocation is conducted?</li> <li>(b) For residents to transfer , appropriate description of compensation and life reconstruction measures would be done before the transfer ?</li> <li>(c) Search for residents relocation was carried out, and the resettlement plan including compensation by the replacement cost and the recovery of livelihoods after relocation is conducted ?</li> <li>(d) Payment of compensation is either carried out in the pre-transfer ?</li> <li>(e) Compensation policy has been developed in the document ?</li> <li>(f) The plan, among the relocated residents, in particular for socially vulnerable such as women, children, the elderly, the poor, ethnic minorities, indigenous peoples, etc. has been made with appropriate consideration ?</li> <li>(g) For relocated residents, the pre-transfer agreement can be gotten ?</li> <li>(h) The organizational framework established to properly implement the resettlement is considered ? Enough capacity to implement the plan and budget measures can be secured ?</li> <li>(i) Monitoring for the impacts of resettlement is planned ?</li> <li>(j) System for the complaint process is built ?</li> </ul>	(d) N/A (e) N/A (f) N/A (g) N/A (h) N/A	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) In this project, resettlement does not occur.
	(2) Life and livelihood	<ul><li>(a) Do the changes of land use and water area use due to the project affect negatively on the life of residents?</li><li>(b) Does the project affect negatively on the life of residents? Adequate measures is considered to reduce the negative impacts, if necessary?</li></ul>	(a) N (b) N	<ul> <li>(a) The projects planned in the MP are expantion of facilities in the existing WWTP lands or in land owned by YWC, and along existing roads. Change of land use is not implemented.</li> <li>(b) Element affects on the life of residents is not expected.</li> </ul>

Classifi cation	Environmental Item	Major Check Items	Yes: Y No: N	Specific Environmental and Social Considerations (Reason for the Yes / No, basis, mitigation, etc.)
4 Social environment	(3) Cultural heritage	(a) Is there risk by the project to heritages and historical sites which are archeologically, historically, culturally, and religiously precious ? In addition, measures that have been stipulated in accordance with the country's laws are taken into account ?	(a) Y	(a) There is a possibility to find archaeological remains during construction. If any, construction activity will be implemented under the supervision of the Ministry of Tourism and Antiquities.
	(4) Landscape	(a) When the landscape to be considered particularly presents, the project adversely affects to it? If it is affected, necessary precautions is taken?	(a) N	(a) Since the MP is composed of the rehabilitation of existing waste water treatment facilities and network, adverse effect to landscape is not expected.
	(5) Ethnic minorities, indigenous	<ul><li>(a) Consideration to reduce the impact to minority of the country, indigenous cultures and lifestyle have been made?</li><li>(b) Rights related to land and resources of ethnic minorities and indigenous people are respected?</li></ul>	(a)N/A (b)N/A	<ul> <li>(a)</li> <li>(b)</li> <li>Distinction of ethnic minorities and indigenous peoples is not performed. Original Palestine refugees, Syria refugees in recent years has been living. Discrimination to minorities does not occur through rehabilitation of waste water treatment facilities.</li> </ul>
	(6) Working environment	<ul> <li>(a) In the project, the Act on the working environment of the country must be observed is kept?</li> <li>(b) Safety considerations in in the hard part of the individuals involved in the project such as installation of safety equipment according to industrial accident prevention, management of hazardous substances, etc. are being measures?</li> <li>(c) Support implementation in the soft part of the individuals involved in the project such as the establishment of safety and health plan and safety training for workers (including public health and traffic safety) is planned and implemented?</li> <li>(d) Appropriate measures that security personnel involved in the project make sure not to violate the safety of the project stakeholders and local residents are taken ?</li> </ul>	(a) Y (b) Y (c) Y (d) Y	<ul> <li>(a) Adhering to the law is stipulated in the contract, and supervision is also carried out.</li> <li>(b) Dress code related to industrial accident prevention, measures for necessary equipment handling safety check or the like are performed.</li> <li>(c) Formulation of safety and health plan, safety training is carried out.</li> <li>(d) Prior guidance and OJT is performed.</li> </ul>
5 Others	(1) Impact under construction	<ul> <li>(a) Mitigation measures are prepared against pollution during construction (noise, vibration, turbid water, dust, exhaust gas, waste, etc.) ?</li> <li>(b) The construction adversely affects the natural environment (ecosystem) ?</li> <li>In addition, adequate measures considered to reduce impacts is prepared?</li> <li>(c) The construction adversely affects the social environment construction ? In addition, adequate measures considered to reduce impacts is prepared?</li> <li>(d) The construction causes road congestion? Adequate measures considered to reduce impacts are prepared?</li> </ul>	(a) Y (b) N (c) Y (d) Y	<ul> <li>(a) Vibration, Noise; Construction work is carried out during the day time. Dust; Periodical watering will be conducted. Waste is ensured to the disposal site.</li> <li>(b) The construction work is in existing operationg WWTP and along existing road with traffic. The impact to the natural environment (ecosystem) is very small.</li> <li>(c) During the construction period, approach to commercial places is disturbed by traffic control in construction section, mitigation measures is carried out by ensuring the approach pathes for passers.</li> <li>(d) Enclosure of construction section, installation of signs, placement of traffic-induced persons are carried out to secure the traffic safety.</li> </ul>

Classifi cation	Environmental Item	Major Check Items	Yes: Y No: N	Specific Environmental and Social Considerations (Reason for the Yes / No, basis, mitigation, etc.)
5 Others	(2) monitoring	<ul><li>environment items, monitoring of project operators are planned and implemented?</li><li>(b) How item of the plan, method, frequency, etc. are determined?</li></ul>	(b) Y (c) Y (d) Y	<ul> <li>(a) Monitoring plan is implemented.</li> <li>(b) The patrol check of working environment, measures for residents, impact for cultural heritage is conducted once a week during construction.</li> <li>(c) Monitoring system is established.</li> <li>(e) Report is done once a month.</li> </ul>
oint	Notes on using the	(a) If necessary, it should also be confirmed if the impact might cross the border or affect on global environmental issues.		(a) The MP considers the impact of corresponds to the population growth due to the influx of refugees

Note 1) For the "standard of the country concerned" in the table, when there is a significant deviation as compared to the baseline which is internationally recognized, countermeasures are examined, if necessary. Items, which are not yet to be established in the local environmental regulations of the country, is examined by comparison with appropriate standards other than the country (including experience in Japan).

Note 2) Environmental Checklist is intended only to show the standard environment check items. Depending on the condition of the project and the local, it is necessary to add or delete items.