
資料 6 参考資料

管網計算書

	Ко	she < <haze< th=""><th>en-Willia</th><th>ms Formula></th><th>></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></haze<>	en-Willia	ms Formula>	>	-										
	Tank	1		Maximum EHP	42, 655	(m)	<<	Expl	anatory N	Notes >>						
	Node	55		Minimum EHP	1.657	(m)	-	Node				- Line -				
	Line	59		Maximum I	35. 878	(‰)		HP: GL:	Head Pr Ground	Level		L:	Diameter Length of Pi			
	Pump, Decom	0		Maximum V	0.852	(m/s)				al Head Pro tion of Wat		Q:	Friction Coe Quantity of	Flow		
Conve	rgence Gap	(cm)										1:	Velocity of Hydraulic Gr			
С	alculation	14 (times)											Head Loss Add Pressure	2		
	- NodeDat	a						- Lin	eData —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd(m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1:	1909.720	1909, 720		0.000	-9, 951	Reservoir Tank	1	2	150.0	147.747	110	9. 951	0, 563	3. 571	0, 528	0, 000
2	1909. 120	1905, 668		3, 524	0. 000	Reservoir Tank	2	3	150.0	939. 570	110	9.416	0, 533	3. 223	3. 029	0.000
3	1906, 164	1883. 071		23, 093	0.000		2	11	80.0	447. 777	110	0.535	0, 106	0.340	0. 152	0, 000
4	1906. 117	1882. 410		23. 707	0.000		3	4	150.0	17, 047	110	8.628	0.488	2.742	0. 047	0.000
5	1905. 536	1875, 284		30. 252	0.000		3	12	40.0	139.065	110	0. 253	0.202	2. 492	0, 347	0.000
6	1904. 511	1873, 565		30. 946	0.000		3	14	40.0	7. 269	110	0. 535	0.426	9. 944	0. 072	0.000
7	1902.502	1869. 147		33. 355	0.000		4	5	150.0	243. 235	110	8.006	0. 453	2. 387	0. 581	0.000
8	1900.765	1867, 137		33. 628	0.000		4	15	40.0	263. 560	110	0.622	0, 495	13. 131	3, 461	0.000
9	1900.758	1866, 658		34. 100	0.000		5	6	80.0	82. 144	110	3.745	0.745	12. 486	1. 026	0.000
10	1900.758	1869, 152		31, 606	0.000		5	56	50.0	191.080	110	0. 282	0. 143	1. 022	0. 195	0.000
11	1909. 040	1907. 383		1, 657	0. 535	WF	5	18	80. 0	97. 015	110	3. 979	0. 792	13. 970	1, 355	0.000
12	1905. 817	1884, 136		21. 681	0.000	477.5	6	7	80.0	453, 485	110	2, 140	0.426	4. 429	2, 009	0, 000
13	1905. 428	1879, 639		25. 789	0.000		6	45	50.0	144. 569	110	1.605	0.818	25. 651	3. 708	0.000
14	1906. 092	1883, 245		22. 847	0. 535	WF	7	8	65. 0	515. 025	110	1.070	0.323	3. 373	1. 737	0, 000
15	1902.656	1877. 529		25. 127	0.000	with:	7	50	50.0	243. 732	110	1.070	0.545	12. 106	2, 951	0.000
16	1901. 995	1875, 842		26. 153	0.000		8	9	65.0	7, 418	110	0.535	0.161	0.935	0.007	0.000
17	1904. 458	1883. 288		21. 170	0. 535	WF	8	54	50.0	110.719	110	0.535	0.273	3. 354	0, 371	0.000
18	1904. 181	1875, 885		28, 296	0.000		9	10	65.0	333. 226	110	0.000	0.000	0.000	0.000	0.000
19	1901. 574	1875. 026		26, 548	0.000		9	55	40.0	174. 199	110	0.535	0. 426	9. 944	1. 732	0, 000
20	1898. 876	1870, 555		28, 321	0.803	PS, SS	12	13	40.0	156, 330	110	0. 253	0. 202	2. 492	0. 390	0, 000
21	1896. 986	1864. 739		32. 247	0.000		15	16	40.0	50. 361	110	0.622	0.495	13. 131	0.661	0,000
22	1895. 569	1860. 993		34, 576	0.052	HC	18	19	80.0	186, 614	110	3.979	0.792	13, 970	2. 607	0, 000
23	1895. 146	1861. 332		33. 814	0.000	1986	18	25	40.0	158. 279	110	0.000	0.000	0.000	0.000	0,000
24	1895. 146	1869. 139		26. 007	0.000		19	20	80.0	220. 495	110	3.704	0. 737	12, 236	2. 698	0,000
21	1000.110	1000, 100		20.001	0. 000		1.0	20	00.0	220. 100	110	0.101	0.1.01	12, 200	2. 000	0, 000

NodeData ------ LineData ---HP G1. EHP EHP QcNode D L Coef Q 1 HL. Node Remarks (1/s)(m) (m) (1/s)(m) C (m/s)(%) (m) (m) 1st (m) 2nd (m) ST EN (mm) 1872.823 25 1904.181 31.358 0.000 19 27 303. 199 110 0.8970.4578,728 2.646 0,000 50.0 32.283 21 26 1904. 181 1871.898 0.000 20 80.0 261.639 110 2.7877.223 1.890 0.000 0.55527 1898, 928 33.908 0.000 20 32 222.294 0.0910.000 1865, 020 40.0 110 0.1150.5730. 127 28 1898.741 1863. 759 34.982 0.000 21 22 80.0 204, 163 110 2.728 0.543 6.944 1.418 0.000 1897.738 29 1862.937 34.801 0.000 21 33 50.0 129.327 0.059 0.030 0.056 0.007 0.000 110 30 1898.741 1856, 565 42.176 0.000 22 23 110 2.676 0.533 0.423 0.000 80.0 63.1266.700 1894.024 1875, 027 18.997 23 24 0.000 31 0.535 WF 40.0464.151 110 0.0000.0000.000 0.000 1898.749 23 32 1864.368 34.3810.000 34 80.0 38.208110 2.676 0.5336.700 0.2560.000 33 1896, 979 1861.995 34.984 0.535 25 26 40.0 37.965 110 0.000 0.000 0.000 0,000 0.000 WF 1894.890 1860.977 33.913 27 28 0.000 34 0.000 50.0 114.746 110 0.3620.184 1.625 0.1861894.829 33.886 1860, 943 0.000 27 31 493.119 0.5350.4269.944 4.903 0.000 35 40.0110 29 0.000 36 1892, 221 1871.908 20.313 0.53528 125, 131 0.3791.003 WF 40.0110 0.4768.016 37 1894, 513 1858, 187 36.326 0.000 28 30 40.0 130, 223 110 0.000 0.000 0.000 0.000 0.000 38 1892.699 1852, 591 40.108 0.000 34 35 80.0 13,664 110 2.141 0.4264.433 0.061 0.000 39 1891, 919 1849.846 42.073 0.535 34 37 65.0402.668 110 0.5350.1610.935 0.376 0.000 WF 1889.336 1860.315 29.021 0.000 35 36 777.601 110 0.535 0.2733.354 2.608 0.000 40 50.0 1883.866 1848.883 34.98335 40 213.887 25.680 5.493 0.000 41 0.00050.0 110 1.6060.81842 1882.400 1839.745 42.655 0.53637 38 182.455 0.4261.814 0.000 40.0 110 0.5359.944 WF 1889, 274 28.440 38 78. 437 0.000 43 1860, 834 0.535WF 39 40.0 110 0.5350.4269.944 0.78044 1886. 197 1868.769 17.4280.535 WF 40 41 40.0 548. 221 110 0.5360.4279.978 5.470 0.000 1900.803 1872.038 28.765 0.000 43 6.300 110 0.4269.944 0.063 0.000 45 40 40.0 0.5351897. 199 23.543 0.000 1873.656 0.53540 44 40.0 315.732 110 0.4269.944 3.140 46 WF 0.53547 1900, 523 1872.038 28.485 0.000 41 42 40.0 146.947 110 0.5360.4279.978 1.466 0.000 3.603 48 1898, 256 1870.005 28.251 0.535 45 46 40.0 362.364 110 0.5350.4269.943 0.000 WF 49 1900.428 1872.038 28.390 45 47 7.785110 1.070 0.85235.878 0.2790.000 0.535WF 40.0 50 1899.552 1867.845 31.707 0.000 47 48 40.0 227.992 110 0.5350.4269.943 2.267 0.000 51 1898.208 1867, 193 31.015 0,000 47 49 9.601 0.5350.4269.940 0.095 0.000 40.0 110 52 1896, 290 28,606 0.000 1867, 684 0.53550 51 40.0 135, 164 110 0.5350.4269.943 1.344 WF 53 1899, 526 1867.830 31.696 50 53 7.577 0.2733.354 0.0250.000 0.53550.0 110 0.535WF 1900.393 34.189 0.535 52 192.803 0.4269.943 1.917 0.000 54 1866, 204 51 40.0 110 0.535WF 55 1899.026 1868. 599 30, 427 0.535 29 33 40.0 94.730 0.3798.016 0.7590.000 WF 110 0.47656 1905.341 1879, 300 26.041 0.000 28 32 40.0 13.200 110 -0.115-0.091-0.573-0.0080.000 16 19 40.0 32.050 110 0.6220.49513.131 0.4210.000 13 56 40.0 34.710110 0.2530.2022.492 0.086 0.000

56

17

50.0

263.334

110

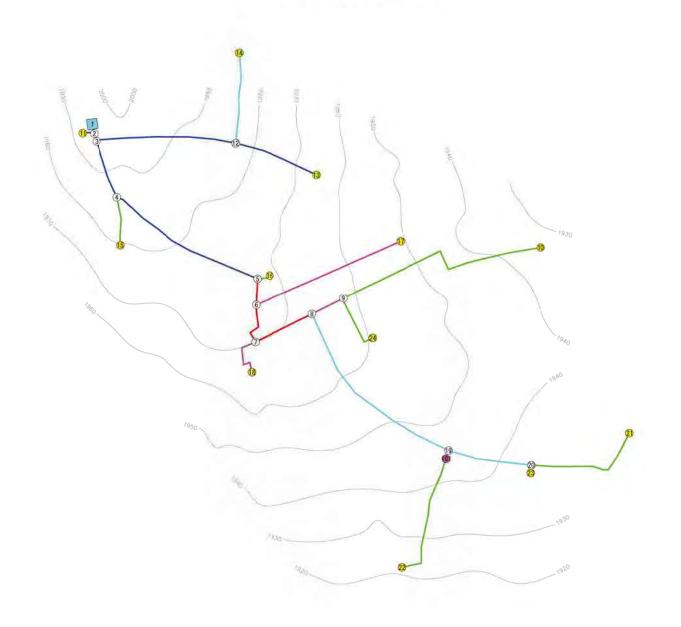
0.535

0.273

3.354

0.883

-:-	Ke	la < <hazen< th=""><th>-Williams</th><th>s Formula>>-</th><th></th><th>-8</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></hazen<>	-Williams	s Formula>>-		-8										
	Tank	1	1	Maximum EHP	45. 768	(m)	<<	Expla	natory	Notes >>						
	Node	70	A	Minimum EHP	0.000	(m)	-	Node				- Line -				
	Line	76)	Maximum I	39, 838	(‰)		GL:	Head Pr Ground	Level		L: 1	Diameter ⊒ength of P			
	Pump, Decom	1	N	Maximum V	0.901	(m/s)				ual Head Protion of Wa		Q: (Friction Co Quantity of	Flow		
Conve	rgence Gap	(cm)										T: I	Velocity of Hydraulic G			
С	alculation	15 (times)											lead Loss Add Pressur	e		
S-3-3	- NodeDat	a						- Line	Data —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	2033. 481	2033, 481		0.000	-5.055	Reservoir Tank	1	101	100	343. 295	110	5.055	0.644	7. 339	2.520	-63, 296
2	1965. 040	1948. 611		16, 429	0.000		2	3	100	210, 221	110	4.810	0.613	6. 694	1.407	0.000
3	1963. 632	1939, 003		24.629	0.000		2	16	40	17. 325	110	0.245	0. 195	2. 341	0.041	0.000
4	1961,979	1934. 691		27.288	0.000		3	4	80	111.520	110	4.110	0.818	14.830	1.654	0.000
5	1961. 114	1931. 676		29.438	0.000		3	17	40	279, 276	110	0.700	0. 558	16. 375	4.573	0.000
6	1960, 473	1929. 715		30.758	0.000		4	5	80	65. 349	110	3.865	0.769	13.234	0.865	0.000
7	1959, 924	1927, 879		32.045	0.000		4	23	40	109.816	110	0.245	0. 195	2.341	0.257	0.000
8	1958. 739	1921. 506		37. 233	0.000		5	6	80	54.666	110	3.620	0.720	11. 723	0.641	0.000
9	1958. 319	1920. 697		37.622	0.000		5	24	40	98. 500	110	0.000	0.000	0.000	0.000	0.000
10	1957, 427	1919. 230		38. 197	0.000		5	25	40	107.663	110	0.245	0. 195	2.341	0.252	0.000
11	1957. 301	1919, 382		37.919	0.000		6	7	80	46.860	110	3.620	0.720	11.723	0.549	0.000
12	1954. 764	1920. 142		34.622	0.000		6	26	40	98. 489	110	0.000	0.000	0.000	0.000	0.000
13	1953.589	1917. 509		36.080	0.000		7	8	80	171. 332	110	2.722	0.542	6.915	1. 185	0.000
14	1950,542	1910. 984		39, 558	0.000		7	27	40	96. 172	110	0.318	0. 253	3.801	0.366	0.000
15	1949, 916	1904. 148		45.768	0.245	WF	7	33	40	92. 568	110	0.579	0.461	11, 527	1.067	0.000
16	1964. 999	1947. 839		17. 160	0.245	WF	8	9	80	60.660	110	2.722	0.542	6. 915	0.419	0.000
17	1959, 059	1938. 153		20.906	0.000		8	49	40	82. 427	110	0.000	0.000	0.000	0.000	0.000
18	1957. 258	1933. 940		23.318	0.000		9	10	80	122. 894	110	2.795	0. 556	7. 263	0.893	0.000
19	1957.249	1933. 795		23, 454	0.000		9	70	40	197. 500	110	-0.073	-0.058	-0.251	-0.049	0.000
20	1957. 249	1930. 478		26.771	0.000		10	11	80	23.660	110	2.360	0.470	5. 309	0.126	0.000
21	1958. 753	1932. 350		26.403	0.245	WF	10	51	40	206.970	110	0.435	0.346	6. 783	1.404	0.000
22	1957.245	1933, 940		23. 305	0.245	WF	11	12	40	82, 703	110	0.983	0. 783	30, 676	2.537	0.000
23	1961. 721	1935. 409		26.312	0.245	WF	11	58	50	145. 391	110	1.377	0.702	19.314	2,808	0.000
24	1961. 114	1932. 389		28, 725	0.000		12	13	40	65. 294	110	0.737	0. 587	17. 995	1.175	0.000
25	1960. 862	1931. 725		29. 137	0.245	WF	12	65	40	115. 933	110	0.246	0. 196	2. 359	0.273	0.000

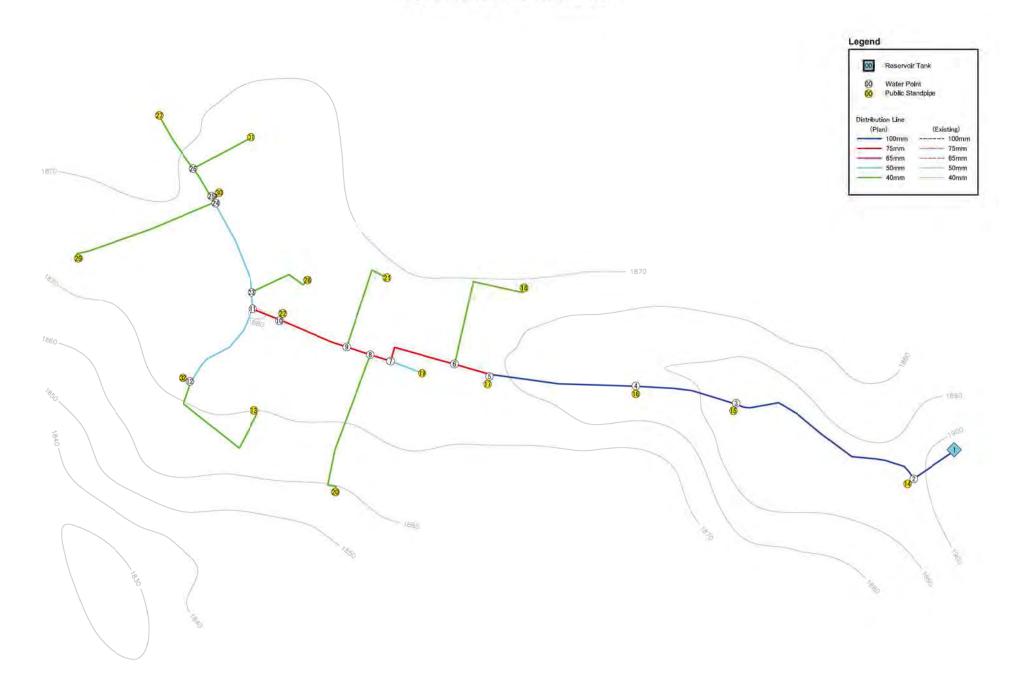

NodeData ------ LineData ---EHP P HP EHP Qc Q V HL. Node GL. Remarks Node D L Coef (m) (1/s)(m) (1/s)(m/s) (%) (m) C (m) (m) 1st (m) 2nd (m) ST EN (mm) 26 1960, 473 1930.360 30.113 0.000 13 14 40 359.190 110 0.4910.391 8.482 3.047 0.000 27 1959, 558 1928, 000 31.558 0.000 13 68 40 571.453 110 0.2460.196 2.359 1.348 0.000 28 1959, 452 1927. 934 31.518 0.000 14 15 40 267.493 110 0.2450.1952.341 0.626 0.000 35.629 69 245.917 2.359 0.000 29 1958.779 1923. 150 0.000 14 40 110 0.2460.196 0.580 30 1958. 582 1921. 437 37.145 0.000 17 18 40 244. 116 110 0.4550.363 7.379 1.801 0.000 1959. 514 1923, 394 36, 120 0.000 17 21 130.855 0.2452.341 0.000 31 40 110 0.1950.3065.072 32 1959. 493 1923.846 35.647 0.000 18 19 40 110 0.2100.1681.766 0.009 0.000 31.006 22 0.2452.341 0.000 33 1958.857 1927.851 0.000 18 40 5.679 0.195 0.013 110 34 1957.755 1927.888 29.867 0.000 19 20 40 136.507 0.0000.000 0.000 0.000 0.000 110 1957. 369 28, 988 19 37 40 115.628 0.21035 1928. 381 0.000 110 0.168 1.766 0.2040.000 1956, 956 1927.710 29.246 0.000 27 28 53. 117 0.2241.990 0.000 36 40 110 0.1790.106 27.888 27 37 1957.045 1929. 157 0.000 31 40 110.228 110 0.0940.075 0.396 0.000 0.04438 1957.045 1929.063 27.982 0.000 28 29 40 177,006 0.3180.253 3.801 0.673 0.000 110 28 32 102.017 39 1958.857 1922, 723 36.134 0.000 40 110 -0.094-0.075-0.396-0.0400.000 34.792 1957. 755 29 30 51.827 0.000 40 1922.963 0.000 40 110 0.3180.2533.801 0.197 1957, 348 1928, 381 28.967 31 32 54.418 0.0940.396 0.022 0.000 41 0.245WF 40 110 0.075 42 1956, 028 1925, 554 30.474 0.000 33 34 40 95. 542 110 0.579 0.461 11.5271.101 0.000 1955. 538 1925. 545 29.993 33 39 146.024 0.000 0.000 0.000 0.000 43 0.000 40 110 0.000 1955, 413 30.157 34 35 33.543 0.57911.527 0.000 44 1925, 256 0.000 40 110 0.4610.3871926.058 28.296 45 1954. 354 0.000 34 40 40 136.666 110 0.000 0.000 0.000 0.000 0.000 46 1954, 278 1923, 551 30.727 0.000 35 36 40 98.991 110 0.334 0.266 4. 166 0.412 0.000 1955. 395 0.195 47 1925. 554 29.841 0.245WF 35 41 40 8.815 110 0.2452.341 0.0210.000 27.276 -0.21048 1954. 286 1927.010 0.24536 37 40 50.163 110 -0.168-1.766-0.0890.000 WF 49 1958, 739 1921.905 36.834 0.000 36 42 40 90.239 110 0.5450.43410.285 0.9280.000 50 1957, 549 1918, 461 39.088 0.24537 38 40 138, 678 110 0.000 0.000 0.000 0.000 0.000 PS 51 1956. 023 1920. 945 35.078 0.000 42 43 40 52.927 110 0.5150.4109.269 0.4910.000 52 1955, 600 1921.917 33.683 0.000 42 51 40 113.817 0.030 0.0240.047 0.005 0.000 110 1922, 430 31.813 9.301 0.628 13.384 53 1954. 243 0.000 43 44 40 0.500 0.1240.000 110 54 1952. 914 1923, 896 29.018 0.000 43 52 40 110.842 -0.113-0.090-0.559-0.0620.000 110 1952. 914 32.368 45 197.707 0.383 55 1920. 546 0.000 44 40 110 0.305 5.357 1.059 0.000 1953. 426 39.277 47 7.621 0.2452.341 0.000 56 1914. 149 0.245 WE 44 40 110 0.195 0.018 1952, 801 1921.601 31.200 94.286 0.138 0.810 0.076 0.000 57 0.24545 46 40 110 0.110 WF 58 1954, 493 1920, 240 34.253 45 48 29, 162 0.2452.341 0.068 0.000 0.000 40 110 0.195 59 1934, 161 1918, 427 15.734 0.057 HC 51 52 40 55. 214 110 0.4650.370 7.667 0.4230.000 52 60 1933, 900 1918, 427 15.473 0.000 53 40 296, 448 110 0.352 0.2804.577 1.357 0.000 18.349 567. 522 1933, 432 1915, 083 53 61 0.245WF 54 40 110 0.2450.195 2.341 1.329 0.000 1954, 478 1919, 523 34.955 53 56 2.341 0.000 62 0.245WF 40 348.657 110 0.2450.195 0.816 63 1934. 148 1917. 143 17.005 0.245WF 54 55 40 165. 147 110 0.000 0.000 0.000 0.000 0.000 64 1929, 415 1909. 205 20.210 0.58554 57 40 48. 292 110 0.2450.195 2.341 0.113 0.000 WF, SS 510.374 65 1954. 491 1919, 576 34.915 0.000 58 59 40 110 1.132 0.901 39.838 20.332 0.000 66 1954. 491 1921, 720 32.771 0.000 58 62 40 6. 427 110 0.2450.1952.341 0.015 0.000

	- NodeDat	a						- Line	eData —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	Qc (1/s)	Remarks	No ST	de EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
	1,00000	3.8.75E	75-77 F X1119	77.71.31.72	5.47 472		9555	((665,0)	Activitie.	Year	(5)	1. S. T. S. T. S.			V-11.7	1.07
67	1953.804	1915. 690		38. 114	0.246	WF	59	60	40	11.632	110	0.830	0.661	22, 421	0.261	0.000
68	1952. 241	1912. 444		39.797	0.246	WF	59	63	40	5. 560	110	0.245	0. 195	2.341	0.013	0.000
69	1949. 962	1906. 120		43.842	0.246	WF	60	61	40	200.019	110	0.245	0. 195	2.341	0.468	0.000
101	1967.665	1967.665	63. 296	0.000	0.000	BPT	60	64	40	382. 306	110	0.585	0.466	11.733	4.485	0.000
70	1958. 369	1920. 520		37.849	0.000		65	66	40	198.090	110	0.000	0.000	0.000	0.000	0.000
							65	67	40	291.038	110	0.246	0.196	2.359	0.687	0.000
							101	2	100	357.760	110	5.055	0.644	7. 340	2.626	0.000
							46	53	40	43.300	110	0.138	0.110	0.810	0.035	0.000
							46 30	70	40	56. 200	110	0.318	0.253	3.801	0.214	0.000
							70	50	40	350, 370	110	0.245	0. 195	2.341	0.820	0.000

Tiya Pipe Networks Legend 00 ReservoirTank Water Point
Public Standpipe Distribution Line (Existing) 50mm 50mm 40mm

_	Ti	ya < <hazen< th=""><th>-Williams</th><th>s Formula>>-</th><th></th><th>-c</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></hazen<>	-Williams	s Formula>>-		-c										
	Tank	2	1	Maximum EHP	54. 503	(m)	<<	Expla	natory	Notes >>						
	Node	17	(1	Minimum EHP	5, 404	(m)	-	Node	- Head Pi	e-contro		- Line -	Diameter			
	Line	18	1	Maximum I	16.359	(‰)		GL:	Ground		anceur.	L:	Drameter Length of P Friction Co	The state of the s		
	Pump, Decom	0	1	Maximum V	0.557	(m/s)				ption of Wa		Q: (Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										1:1	Hydraulic G Head Loss			
C	alculation	12 (times)											Add Pressur	9		
<u></u>	- NodeDat	a						- Line	Data —							
Node	HP	GL	EHP	EHP	Qc	Remarks		ode	D	E.	Coef	Q	V	1	HL	P
	(m)	(m)	1st(m)	2nd (m)	(1/s)		ST	EN	(mm)	(m)	C	(1/s)	(m/s)	(%)	(m)	(m)
1	2374. 912	2364. 912		10.000	-1.582	Reservoir Tank	1	2	100	390. 441	110	1.582	0. 202	0.854	0.333	0.000
101	2330,000	2320.000		10.000	-1.400	Reservoir Tank	2	3	80	579.635	110	1.232	0.245	1.594	0.924	0.000
2	2374. 579	2358, 950		15.629	0.000		2	9	80	347. 633	110	0.350	0.070	0. 155	0.054	0.000
3	2373.655	2329. 119		44. 536	0.000		3	4	50	371.019	110	0.858	0.437	8.044	2.984	0.000
4	2370, 670	2320. 726		49.944	0.000		3	10	40	49.930	110	0.374	0.298	5. 124	0.256	0.000
5	2369.677	2319, 155		50.522	0.159	PS	4	5	50	325, 848	110	0.508	0.259	3.047	0.993	0.000
6	2368, 323	2328, 945		39.378	0.000		4	11	40	464. 270	110	0.350	0.279	4.532	2.104	0.000
7	2367. 138	2325. 923		41.215	0.000		4	12	50	13. 176	110	+++++	+++++	+++++	+++++	+++++
8	2366, 424	2332. 844		33. 580	0.349	WF	5	6	40	300. 499	110	0.349	0.278	4. 509	1.355	0.000
9	2374. 525	2369, 121		5. 404	0.350	WF	6	7	40	262, 755	110	0.349	0.278	4, 508	1. 185	0.000
10	2373. 399	2329, 274		44. 125	0.374	HC, WF	7	8	40	158. 304	110	0.349	0.278	4. 509	0.714	0.000
11	2368. 566	2314.063		54. 503	0.350	WF	12	13	80	162.770	110	-0.350	-0.070	-0. 155	-0.025	0.000
12	2329. 744	2319. 523		10.221	0.000		12	16	40	97. 124	110	0.350	0.279	4. 533	0.440	0.000
13	2329.770	2320. 552		9.218	0.000		13	14	40	134, 640	110	0.700	0.557	16. 359	2, 203	0.000
14	2327, 567	2315, 470		12.097	0.000		13	101	80	194. 340	110	-1.050	-0. 209	-1, 185	-0.230	0.000
15	2326, 290	2314. 275		12.015	0.350	WF	14	15	40	281. 725	110	0.350	0.279	4. 532	1. 277	0.000
16	2329. 304	2316. 806		12. 498	0.350	WF	14	18	40	6. 277	110	0.350	0.279	4. 532	0.028	0.000
17	2329, 719	2318, 590		11. 129	0.350	WF	17	101	40	62,000	110	-0.350	-0, 279	-4, 533	-0, 281	0,000
	2327. 539	2315, 341		12. 198	0.350	WF		215		640-16.4	F-57	95/5 3/5	110014	32, 23.5	10216	Sec. of the

Adilo Pipe Networks



Legend

	Ad	ilo < <haze< th=""><th>n-William</th><th>ns Formula>></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></haze<>	n-William	ns Formula>>		-										
	Tank	1	1	Maximum EHP	37. 280	(m)	<<	Expla	natory	Notes >>						
	Node	24	A	Minimum EHP	0.000	(m)	-	Node	- Head P	wa course		- Line -	Diameter			
	Line	24)	Maximum I	26.908	(‰)		GL:	Ground		eoccure	L: 1	Length of P Friction Co			
	Pump, Decom	1	N	Maximum V	0.914	(m/s)				ption of Wa		Q: (Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										T: I	Hydraulic G Head Loss			
С	alculation	13 (times)											Add Pressure	2		
3-3-	- NodeDat	a						- Line	Data —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	$\frac{Qc}{(1/s)}$	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	1995. 660	1995, 660		0.000	-7.175	Reservoir Tank	1	2	100	14. 989	110	7.175	0. 914	14, 039	0.210	0.000
2	1995, 450	1995. 123		0.327	0.000	18 N	2	3	100	31. 623	110	6.628	0.844	12. 122	0.383	0.000
3	1995. 066	1993. 448		1.618	0.218	SS	2	11	100	36, 077	110	0.547	0.070	0. 119	0.004	0.000
4	1993. 172 1989. 001	1986. 799 1972. 582		6.373 16.419	0.000		3	4 12	100 100	235. 094 539. 939	110	5.316 1.094	0. 677 0. 139	8. 057	1.894 0.233	0.000
5 6	1989, 001	1972. 582		13. 684	0.000		4	5	100	633. 009	110	4. 769	0. 608	0. 431 6. 589	4. 171	0.000
7	1985, 412	1970. 723		14. 689	0.340	no:		15	40	187. 221	110	0.547	0. 436		1. 940	0.000
8	1983, 652	1967. 145		16, 507	0. 000	PS	4 5	6	80	101. 589	110 110	4. 222	0. 430	10. 361 15. 589	1, 584	0. 000 0. 000
9	1983. 133	1962, 950		20. 183	0.045	HC	5	16	40	51. 803	110	0.547	0. 436	10. 361	0. 537	0. 000
10	1974. 212	1936. 932		37. 280	0. 547	WF	6	7	80	166. 330	110	3.675	0. 731	12. 057	2.005	0.000
11	1995. 445	1993. 855		1.590	0. 547	WF	6	17	65	609. 368	110	0.547	0. 165	0. 974	0. 593	0.000
12	1994. 833	1983. 879		10. 954	0.000	W.F.	7	8	80	243. 480	110	2.788	0. 555	7. 229	1. 760	0. 000
13	1994. 793	1964. 576		30. 217	0.547	WF	7	18	65	187. 393	110	0.547	0. 165	0. 974	0. 182	0.000
14	1993. 610	1985. 600		8.010	0.547	WF	8	9	65	136. 459	110	1.141	0. 344	3. 800	0.519	0.000
15	1991, 232	1979. 393		11.839	0.547	WF	8	19	50	775. 519	110	1.647	0.839	26, 908	20, 868	0.000
16	1988. 464	1971. 266		17. 198	0.547	WF	9	10	40	861.068	110	0.547	0. 436	10. 361	8. 921	0.000
17	1986, 824	1951. 391		35. 433	0.547	WF	9	24	40	224. 348	110	0.549	0. 437	10. 431	2.340	0.000
18	1985, 229	1965, 878		19. 351	0.547	WF	12	13	100	336, 413	110	0.547	0.070	0. 120	0.040	0.000
19	1962. 784	1944. 171		18, 613	0.000	335	12	14	50	350, 090	110	0.547	0.279	3. 495	1.223	0.000
20	1958. 642	1936. 631		22. 011	0.000		19	20	50	326. 115	110	1.098	0. 559	12. 700	4. 142	0.000
21	1953, 831	1932. 992		20.839	0.549	WF	101	22	40	528. 746	110	0.549	0.437	10. 431	5, 516	0.000
22	1938, 655	1920. 724		17.931	0.549	WF*	20	21	40	461, 222	110	0.549	0. 437	10. 431	4.811	0.000
23	1958, 588	1937. 036		21.552	0.549	WF	20	23	40	5. 143	110	0.549	0.437	10, 432	0.054	0.000
24	1980, 793	1959, 939		20, 854	0.549	WF	19	101	40	0.010	110	0.549	0, 437	10, 436	0,000	-18, 613
101	1944. 171	1944. 171	18.613	-0.000	0.000											

Teferi Kela Pipe Networks

-8	Te	feri Kela	< <case. 2<="" th=""><th>: Hazen-Wil</th><th>liams Fo</th><th>rmula>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></case.>	: Hazen-Wil	liams Fo	rmula>>										
	Tank	1	N	Maximum EHP	40.023	(m)	<<	Expla	natory	Notes >>						
	Node	31	A	Minimum EHP	9. 246	(m)	-	Node				- Line -				
	Line	31	N	Maximum I	24. 939	(‰)		GL:	Head Pr Ground	Level		T: 1	Diameter Length of P			
	Pump, Decom	0	N	Maximum V	0.803	(m/s)				ual Head Pi ption of Wa		Q: (riction Coe Quantity of	Flow		
Conve	rgence Gap	(cm)										T: I	/elocity of lydraulic G			
С	alculation															
Calculation 13 (times) NodeData Node HP GL EHP EHP Qc Remarks Node D L Coef Q (m) (m) 1st(m) 2nd(m) (1/s) ST EN (mm) (m) C (1/s)																
Node						Remarks				L (m)			V (m/s)	I (‰)	HL (m)	P (m)
1	1910, 320	1906. 320		4.000	-5. 158	Reservoir Tank	1	2	100	102. 978	110	5. 158	0.657	7. 620	0.785	0.000
2	1909, 535	1894.606		14, 929	0.000		2	3	100	458. 814	110	4.878	0.621	6.871	3, 152	0.000
3	1906. 383	1897. 137		9.246	0.000		2	14	40	3, 406	110	0.280	0. 223	2. 998	0.010	0.000
4	1904. 980	1883. 041		21.939	0.000		3	4	100	227.860	110	4.598	0.586	6. 159	1.403	0.000
5	1903. 155	1879. 119		24.036	0.000		3	15	40	10. 323	110	0.280	0. 223	2. 998	0.031	0.000
6	1901.993	1875. 998		25.995	0.000		4	5	100	332, 919	110	4.317	0.550	5. 480	1.824	0.000
7	1899. 822	1875, 025		24.797	0.000		4	16	40	15, 775	110	0.281	0. 224	3.018	0.048	0.000
8	1899, 309	1875. 119		24. 190	0.000		5	6	80	81.022	110	4.036	0.803	14. 342	1, 162	0.000
9	1898. 790	1875. 721		23.069	0.000		5	17	40	6. 642	110	0.281	0. 224	3.018	0.020	0.000
10	1897. 777	1878. 856		18. 921	0.000		6	7	80	173.090	110	3.755	0.747	12, 547	2.172	0.000
11	1897. 448	1880, 076		17.372	0.000		6	18	40	310, 555	110	0.281	0. 224	3.018	0.937	0.000
12	1895. 696	1874. 242		21.454	0.289	PS	7	8	80	47. 188	110	3.474	0.691	10.863	0.513	0.000
13	1894. 788	1869. 755		25.033	0.280	WF	7	19	40	75. 442	110	0.281	0. 224	3.018	0.228	0.000
14	1909. 525	1893, 912		15.613	0.280	WF	8	9	80	55. 860	110	3. 193	0.636	9. 293	0.519	0.000
15	1906, 352	1897. 024		9.328	0.280	WF	8	20	40	337, 855	110	0.281	0. 224	3.018	1.020	0.000
16	1904, 932	1881. 521		23.411	0.281	WF	9	10	80	162. 712	110	2.572	0.512	6. 226	1.013	0.000
17	1903, 135	1879. 242		23.893	0.281	WF	9	21	40	216. 773	110	0.621	0.494	13, 105	2.841	0.000
18	1901.056	1874, 315		26.741	0.281	WF	10	11	80	65. 413	110	2.291	0.456	5. 026	0.329	0.000
19	1899.594	1876. 166		23. 428	0.281	WF	10	22	40	10. 039	110	0.281	0. 224	3.018	0.030	0.000
20	1898, 289	1858. 266		40.023	0.281	WF	11	12	50	221.607	110	0.850	0.433	7. 905	1.752	0.000
21	1895. 949	1870. 395		25. 554	0.621	WF, SS	11	23	50	38. 925	110	1.441	0.734	21.008	0.818	0.000
22	1897. 747	1879. 255		18.492	0.281	WF	12	13	40	303, 023	110	0.280	0. 223	2. 998	0.908	0.000
23	1896, 630	1880. 192		16. 438	0.000		12	32	40	1. 015	110	0.281	0. 224	3, 018	0.003	0.000
24	1893,533	1877, 210		16, 323	0.000		23	24	50	220, 320	110	1.160	0. 591	14.059	3.098	0.000
25	1893. 226	1876. 525		16.701	0.000		23	28	40	142. 932	110	0.281	0. 224	3.018	0.431	0.000

--- NodeData ------ LineData ---HP Qc (1/s) V GL EHP EHP Remarks HL. Node Node D L Coef Q (m) (m) 1st(m) ST EN (m) C (1/s)(m/s) (%) (m) (m) 2nd (m) (mm) 26 1892, 280 1872.950 25 29 0.879 0.700 0.000 19.330 0.036 HC 24 40 12.300 110 24.939 0.307 27 1891.854 1863. 362 28.492 0.28124 40 335.896 110 0.2810.2243.018 0.000 WF 1.014 28 1896. 199 1877.847 18.352 25 26 12.221 0.281 40 77.446 110 0.5980.476 0.946 0.000 WF 1892. 519 1872.834 19.685 25 30 40 3.804 110 0.281 0.224 3.018 0.011 0.000 0.281WF 1893, 215 1876. 489 16.726 26 27 0.000 30 0.281WF 40 141.129 110 0.281 0.2243.018 0.42631 1891. 835 1877, 421 26 31 40 147.318

110

0.281

0.224

3.018

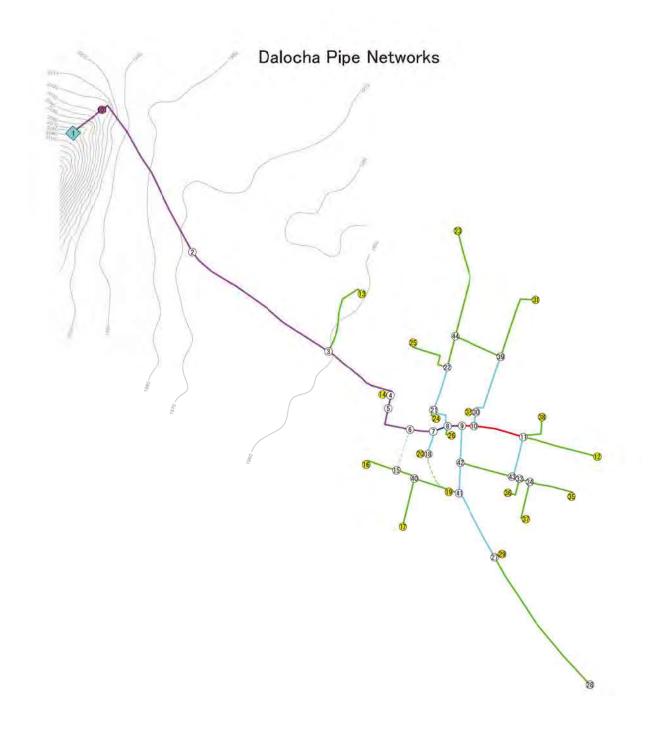
0.445

0.000

14, 414

21.170

32 1895, 693


1874. 523

0.281

0.281

WF

WF

	Da	locha < <ha< th=""><th>zen-Willi</th><th>ams Formula</th><th>a>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ha<>	zen-Willi	ams Formula	a>>											
	Tank	1	N	Maximum EHP	57.060	(m)	<<	Expla	natory	Notes >>						
	Node	44	M	Minimum EHP	0.000	(m)	-	Node				- Line -				
	Line	48	N	Maximum T	70.866	(‰)		GL:	Ground			L: 1	Diameter Length of P			
	Pump, Decom	1	N	Maximum V	1.230	(m/s)				ual Head Pi ption of Wa		Q: (Friction Co Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										T: I	Hydraulic G			
С	alculation	14 (times)												e		
(m) (m) $1st(m)$ $2nd(m)$ $(1/s)$ ST EN (mm) (m) C $(1/s)$ (m/s) $(%o)$ (m) (n)																
Node						Remarks				L (m)			sen Welling	I (‰)		P (m)
1	2074. 150	2074. 150		0.000	-10.340	Reservoir Tank	1	101	150	250.000	110	10.340	0. 585	3, 833	0. 958	-57. 064
2	2011. 566	1954. 506		57.060	0.000		2	3	150	1132. 693	110	10.340	0. 585	3, 833	4.342	0.000
3	2007. 224	1959, 680		47.544	0.000		3	4	150	528, 629	110	9.825	0.556	3. 487	1.844	0.000
4	2005. 381	1961. 978		43.403	0.000		3	13	40	516. 975	110	0.515	0.410	9. 266	4.790	0.000
5	2005.068	1963, 532		41.536	0.000		4	5	150	99. 128	110	9.310	0.527	3. 157	0.313	0.000
6	2004. 171	1964. 740		39. 431	0.000		4	14	40	16. 949	110	0.515	0.410	9. 262	0.157	0.000
7	2003, 788	1963, 941		39.847	0.000		5	6	150	284. 034	110	9.310	0. 527	3, 156	0.897	0.000
8	2002, 395	1963, 366		39, 029	0.000		6	7	150	154. 966	110	8.166	0.462	2. 476	0.384	0.000
9	2001.705	1963. 636		38.069	0.000		6	15	50	287. 861	110	1.144	0.583	13.694	3.942	0.000
10	2000, 578	1963, 271		37.307	0.000		7	8	100	101.834	110	7.074	0.901	13.676	1.393	0.000
11	1998,989	1964. 748		34. 241	0.119	HC	7	18	50	155. 341	110	1.092	0. 556	12. 571	1.953	0.000
12	1994.224	1965. 700		28.524	0.515	WF	8	9	100	96. 410	110	4.985	0.635	7. 153	0.690	0.000
13	2002. 434	1959. 427		43.007	0.515	WF	8	21	50	166.022	110	1.574	0.802	24. 738	4. 107	0.000
14	2005, 224	1961. 978		43.246	0.515	WF	8	26	40	74. 489	110	0.515	0.410	9. 266	0.690	0.000
15	2000, 229	1966. 988		33. 241	0.000		9	10	80	84, 469	110	3.882	0.773	13. 346	1. 127	0.000
16	1998. 317	1966. 448		31.869	0.515	WF	9	42	50	240. 480	110	1.103	0. 562	12.812	3.081	0.000
17	1995, 191	1965. 588		29, 603	0.515	WF	10	11	80	335. 784	110	2.218	0.442	4. 733	1.589	0.000
18	2001. 835	1966. 753		35.082	0.000		10	30	50	93. 921	110	1.664	0.848	27. 427	2, 576	0.000
19	1998, 136	1967. 018		31, 118	0.515	WF	11	12	40	514. 192	110	0.515	0.410	9. 266	4.764	0.000
20	2001.777	1966. 416		35, 361	0.515	WF	11	43	50	275, 240	110	1.069	0. 545	12.088	3. 327	0.000
21	1998. 288	1962. 708		35. 580	0.000		11	38	40	241. 592	110	0.515	0.410	9. 266	2.239	0.000
22	1994. 493	1964. 382		30.111	0.000		15	16	40	206. 408	110	0.515	0.410	9. 266	1.913	0.000
23	1985. 486	1969, 210		16. 276	0.515	WF	15	40	40	145. 900	110	0.629	0.500	13, 404	1.956	0.000
24	1997. 864	1962. 754		35, 110	0.515	WF	18	19	40	323, 390	110	0.577	0. 459	11. 437	3.698	0.000
25	1991. 519	1963, 988		27.531	0.515	WF	18	20	40	6. 230	110	0.515	0.410	9. 266	0.058	0.000

NodeData ------ LineData ---HP P Gl. EHP EHP Qc Q V HL. Node Remarks Node D L Coef (m) (m) (1/s)(m) (1/s)EN C (m/s) (m) Ist (m) 2nd (m) ST (mm) (%) (m) 26 2001.705 1964.676 37.029 0.515 21 22 50 319.590 110 1.059 0.540 11.875 3.795 0.000 WF 24 27 1993. 916 1965. 374 28.542 0.000 21 40 45.739 110 0.5159.266 0.4240.000 0.4102.537 10.253 28 1990. 540 1960, 212 30.328 0.28822 44 40 247.430 110 0.5440.433 0.000 SS 1993. 769 22 25 29 1965, 369 28.401 0.51540 320.993 110 0.5159.266 2.974 0.000 WF 0.41030 1998.002 1962, 358 35.644 0.000 27 28 40 1068.942 110 0.2880.2293, 158 3.376 0.000 1987. 200 1968.607 18, 593 27 29 40 15.806 9.266 31 0.515WF 110 0.5150.410 0.146 0.000 32 39 1997.941 1962, 450 35.491 0.515WF 30 50 438.749 0.586 13.815 6.061 0.000 110 1.1491992. 549 32 9.266 0.000 1965, 878 26,671 0.000 30 40 6.5600.515 0.061 33 110 0.41034 1991.740 1965, 616 26.124 0.000 33 34 50 71.717 1.030 11.281 0.809 0.000 110 0.5251988, 955 33 163.254 35 1964.764 24.191 0.515WF 36 40 110 0.515 0.4109.266 1.513 0.000 1991.037 24.543 0.515 9.266 2.785 0.000 36 1966, 494 0.515 WF 34 35 40 300.564 110 0.410 1989, 202 23.509 34 37 40 273.978 0.515 9.266 2.539 0.000 37 1965, 693 0.515 WF 110 0.41038 1996, 750 1963, 866 32.884 39 31 40 511.581 0.5159.266 4.740 0.000 0.515 WF 110 0.410 2 39 1991. 941 1963. 331 28.610 0.663PS 101 150 1189.920 110 10.340 0.585 3.834 4.562 0.000 2016, 128 0.000 101 2016, 128 57.064 0.000 BPT 40 17 40 332.690 110 0.5150.4109.266 3.083 0.000 1998. 274 1966, 782 40 243.680 -0.114-0.56440 31.492 0.000 19 40 110 -0.090-0.1370.000 41 1998.050 1966, 607 31.443 0.000 19 41 40 68, 410 110 0.176 0.1401.264 0.086 0.000 1998, 624 31.904 370.150 0.476 0.379 8.004 2.963 0.000 42 1966, 720 0.000 42 43 40 110 1995.662 42 50 0.627 4.504 43 1966, 200 29.462 0.000 41 127.510110 0.320 0.5740.000 44 1991. 956 1966, 870 25,086 0.000 41 27 50 581.103 110 0.803 0.4097. 114 4.134 0.000 43 33 40 43.915 110 1.545 1.230 70.866 3.112 0.000 39 44 40 336.640 110 -0.029-0.023-0.045-0.0150.000

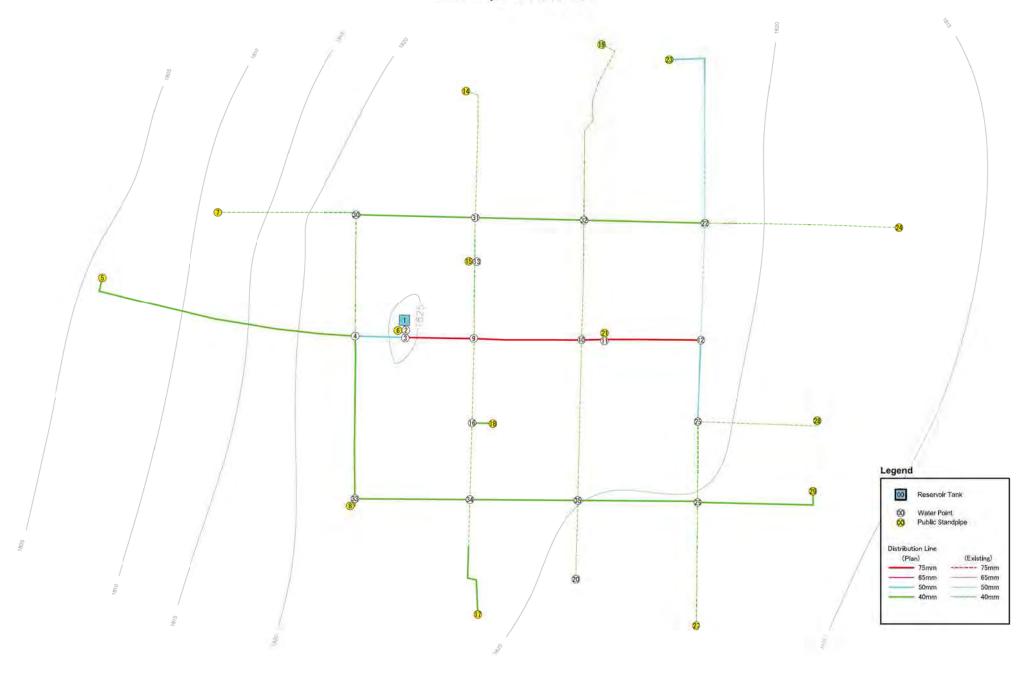
44

23

40

698, 259

110


0.515

0.410

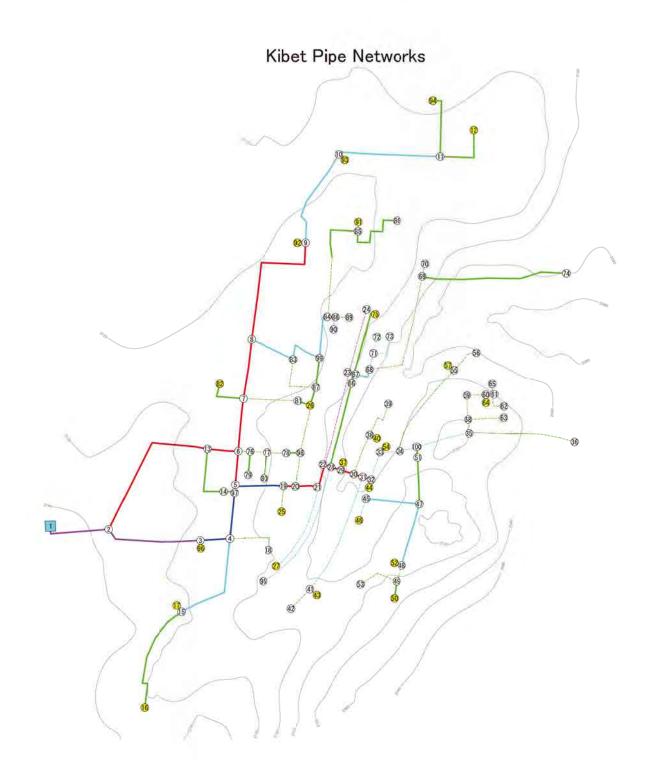
9.266

6.470

Mito Pipe Networks

	Mi	to < <hazen< th=""><th>-Williams</th><th>Formula>>-</th><th></th><th>=()</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></hazen<>	-Williams	Formula>>-		=()										
	Tank	1	M	Maximum EHP	22. 793	(m)	<<	Expla	natory	Notes >>						
	Node	34	M	finimum EHP	5, 619	(m)	-	Node		K-OMMET		- Line -				
	Line	40	M	Maximum I	28, 414	(%)		GL:	Head Programmer Ground		PAGGILBY:	L: 1	Diameter Length of P Friction Co			
	Pump, Decom	0	M	Maximum V	1.162	(m/s)				otion of Wa		Q: (Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										T; I	Hydraulic G Head Loss			
C	alculation	13 (times)											Add Pressur	e		
-	- NodeDat	a						- Line	Data —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	$\frac{Qc}{(1/s)}$	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	1834. 996	1824. 996		10.000	-5.838	Reservoir Tank	1	2	80	7. 878	110	5.838	1. 162	28. 414	0. 224	0.000
2	1834.772	1824, 930		9.842	0.000		2	3	80	11.048	110	5.481	1.091	25. 274	0.279	0.000
3	1834. 493	1824. 947		9.546	0.000		2	6	40	5. 836	110	0.357	0. 284	4.701	0.027	0.000
4	1832. 938	1824. 002		8.936	0.000		3	4	50	76. 917	110	1.411	0.719	20. 212	1.555	0.000
5	1830. 953	1808. 160		22.793	0.357	WF	3	9	80	106.868	110	4.070	0.810	14. 564	1.556	0.000
6	1834. 745	1824. 985		9.760	0.357	WF	4	5	40	422, 224	110	0.357	0.284	4.701	1.985	0.000
7	1829,969	1812. 037		17.932	0.357	WF	4	30	40	186. 700	110	0.549	0.437	10. 434	1,948	0.000
8	1830, 646	1823. 089		7.557	0.357	WF	4	33	40	245. 590	110	0.505	0.402	8. 936	2. 195	0.000
9	1832. 937	1824. 626		8.311	0.000		9	10	80	166. 444	110	2.707	0.539	6.847	1.140	0.000
10	1831. 797	1823, 384		8.413	0.000		9	13	40	119, 365	110	0.695	0.553	16, 131	1.925	0.000
11	1831, 675	1822, 668		9.007	0.000		9	16	40	129.907	110	0.668	0.532	14. 987	1.947	0.000
12	1831. 314	1820. 732		10.582	0.000		10	11	80	34. 476	110	1.899	0.378	3. 552	0.122	0.000
13	1831. 011	1825. 099		5.912	0.000		10	32	40	187.850	110	0.438	0.348	6.853	1.287	0.000
14	1829. 767	1823, 824		5.943	0.357	WF	10	35	40	241.840	110	0.370	0.295	5. 031	1.217	0.000
15	1830, 975	1825, 155		5.820	0.358	WF	11	12	80	149.570	110	1.541	0.307	2.413	0.361	0.000
16	1830, 990	1823, 778		7.212	0.000		11	21	40	7. 380	110	0.358	0. 285	4.725	0.035	0.000
17	1829, 115	1821.691		7.424	0.460	WF, SS	12	22	50	180, 771	110	0.795	0.405	6. 975	1.261	0.000
18	1830, 839	1823, 701		7.138	0.358	WF	12	25	50	126, 115	110	0.747	0.381	6, 222	0.785	0.000
19	1829, 131	1823. 348		5.783	0.358	WF	13	31	40	70.000	110	0.337	0. 268	4.218	0.295	0.000
20	1830. 569	1820.740		9.829	0.041	HC	13	15	40	7. 686	110	0.358	0.285	4. 726	0.036	0.000
21	1831, 640	1822.679		8.961	0.358	WF	16	34	40	113, 280	110	0.310	0.247	3.613	0.409	0.000
22	1830, 053	1821.300		8.753	0.000		16	18	40	31. 804	110	0.358	0.285	4. 725	0.150	0.000
23	1828, 401	1821.998		6.403	0.688	WF, PS	22	23	50	309.041	110	0.688	0.351	5. 343	1.651	0.000
24	1828.643	1816. 326		12, 317	0.358	WF	22	24	40	298. 334	110	0.358	0.285	4. 726	1.410	0.000
25	1830, 529	1820. 634		9.895	0.000		25	26	40	124. 290	110	0.389	0.310	5. 510	0.685	0.000

--- LineData ---NodeData ---V HP EHP GL EHP Qc Remarks Node D L HL. Node Coef (m) (m) (1/s)EN (m) (1/s)(m/s) (%) (m) (m) 1st (m) 2nd (m) ST C (mm) 28 4.726 26 1829.844 1817. 921 11.923 0.000 25 40 192, 253 110 0.3580.285 0.909 0.000 27 27 1828. 945 1818.886 190. 238 0.358 4.725 10.059 0.35826 40 110 0.2850.8990.000 WF 1829, 620 28 1817.623 11.997 29 40 200.001 0.358 0.285 4.726 0.945 0.000 0.358 WF 26 110 1828.899 13.715 30 7 40 0.3574.702 0.000 29 1815. 184 0.358217.127 110 0.2841.021 WF 1830.990 30 1824.012 6.9780.000 31 14 40 201.876 110 0.3570.2844.701 0.949 0.000 1830, 716 19 8 1825.097 5.619 0.000 32 40 291.784 110 0.3580.2854.725 1.379 0.000 31 1830. 510 1823, 650 33 40 20.887 0.3574.701 0.000 6.860 0.000 110 0.2840.098 1830.744 1823.070 17 194.934 0.4607.517 0.000 7.6740.000 34 40 110 0.3661.465 33 1822.980 34 1830, 580 7.600 0.000 35 20 40 127.638 110 0.0410.033 0.085 0.011 0.000 35 1830, 580 1821, 780 31 8.800 30 40 183.780 0.1921.493 0.2740.000 0.000 110 0.153 32 169.630 0.1721.215 0.206 31 40 0.000 110 0.137 32 22 0.25140 185.970 110 0.2002.458 0.457 0.000 33 34 40 177, 560 0.1480.921 0.163 0.000 110 0.118 35 0.000 34 40 167. 240 110 -0.002-0.0020.000 0.000 184. 210 0.32735 26 0.000 40 110 0.2603.997 0.736


Alem Gebeya Pipe Networks

-8	A16	em Gebeya	< <hazen-v< th=""><th>Williams For</th><th>mula>>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></hazen-v<>	Williams For	mula>>-											
	Tank	1	i i	Maximum EHP	29.790	(m)	<<	Expla	natory	Notes >>						
	Node	41	9	Minimum EHP	6, 952	(m)	-	Node				- Line -				
	Line	46	0	Maximum I	9.468	(%)		GL:	Head Pr Ground	Level		L: I	Diameter Length of Pi			
	Pump, Decom	0	1	Maximum V	0.645	(m/s)				ual Head Protion of Wa		Q: (Friction Coc Quantity of	Flow		
Conve	rgence Gap	(cm)										1:1	/elocity of Hydraulic G Head Loss			
С	alculation	14 (times)											Add Pressure	9		
-	- NodeDat	a						- Line	eData —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	1898. 748	1888. 748		10.000	-5. 431	Reservoir Tank	1	2	150	641. 861	110	5.431	0. 307	1. 163	0.747	0.000
2	1898. 001	1873. 394		24, 607	0.000		2	3	100	112. 130	110	5.062	0.645	7. 358	0.825	0.000
3	1897. 176	1872. 538		24.638	0.000		2	13	40	38, 633	110	0.369	0. 294	4. 998	0.193	0.000
4	1895. 502	1865. 712		29. 790	0.000		3	4	100	261. 695	110	4.693	0. 598	6. 396	1.674	0.000
5	1894. 236	1873, 525		20.711	0.000		3	14	40	178. 970	110	0.369	0. 294	4. 998	0.894	0.000
6	1893. 745	1873. 607		20.138	0.000		4	5	100	230. 432	110	4.323	0. 551	5. 494	1. 266	0.000
7	1892.617	1881. 471		11.146	0.056	HC	4	15	40	232. 775	110	0.370	0, 295	5, 023	1. 169	0.000
8	1891. 805	1883, 855		7. 950	0.000		5	6	100	89. 436	110	4.323	0. 551	5. 493	0.491	0.000
9	1890. 957	1883. 781		7. 176	0.000		6	39	100	111. 880	110	3.953	0. 504	4. 655	0.521	0.000
10	1890. 169	1881. 534		8. 635	0.000		6	16	40	69, 047	110	0.370	0. 295	5. 023	0.347	0.000
11	1886, 523	1878, 719		7. 804	0.131	SS	7	8	80	264. 707	110	1.754	0. 349	3. 066	0.812	0.000
12	1885. 742	1876. 339		9.403	0.436	PS	7	17	80	69. 998	110	0.571	0. 114	0. 383	0.027	0.000
13	1897. 808	1873. 126		24. 682	0.369	WF	8	9	80	300. 995	110	1.677	0. 334	2. 820	0.849	0.000
14	1896, 282	1873, 630		22.652	0.369	WF	8	31	65	137. 214	110	0.077	0. 023	0.026	0.004	0.000
15	1894. 333	1868, 081		26. 252	0.370	WF	9	10	80	442. 914	110	1.307	0. 260	1. 777	0.787	0.000
16	1893. 398	1871. 665		21. 733	0.370	WF	9	34	40	143. 188	110	0.370	0. 295	5. 023	0.719	0.000
17	1892. 590	1881. 108		11. 482	0.000		10	11	50	385. 110	110	0.937	0. 477	9. 468	3.646	0.000
18	1892. 481	1880. 013		12. 468	0.000		10	37	40	29. 502	110	0.370	0. 295	5. 023	0.148	0.000
19	1892. 496	1877. 150		15. 346	0.000		11	12	50	340. 005	110	0.436	0. 222	2. 296	0.781	0.000
20	1890, 717	1864. 591		26. 126	0.000		11	38	40	6. 975	110	0.370	0. 295	5. 023	0.035	0.000
21	1889, 339	1867. 189		22. 150	0.000	WITE .	17	18	50	98. 313	110	0.295	0. 150	1. 112	0.109	0.000
22	1888, 506	1876, 171		12. 335	0.370	WF	17	25	40	108. 697	110	0.276	0. 220	2. 920	0.317	0.000
23	1892. 371	1880, 381		11. 990	0.370	WF	18	19	50	169. 144	110	-0.075	-0. 038	-0. 089	-0.015	0.000
24	1888, 093	1868. 821		19. 272	0.370	WF	18	23	40	21. 975	110	0.370	0. 295	5. 023	0.110	0.000
25	1892. 273	1880. 324		11.949	0.000		19	41	50	32. 300	110	0.834	0. 425	7. 631	0.246	0.000

	- NodeDat	a						- Line	eData —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	Ţ (‰)	HL (m)	P (m)
26	1892, 125	1879. 357		12.768	0.000		20	21	50	225. 315	110	0.740	0.377	6. 116	1.378	0.000
27	1891.840	1870. 393		21.447	0.370	WF	21	22	50	491,656	110	0.370	0. 189	1.694	0.833	0.000
28	1892, 246	1876. 439		15, 807	0.000		21	24	40	247.970	110	0.370	0.295	5.023	1.246	0.000
29	1892. 165	1873. 446		18.719	0.000		25	26	40	91.063	110	0.201	0. 160	1.626	0.148	0.000
30	1892.052	1871, 508		20.544	0.000		25	28	50	306. 150	110	0.075	0.038	0.088	0.027	0.000
31	1891.802	1883, 168		8,634	0.000		26	27	40	392, 857	110	0.130	0.104	0.725	0.285	0.000
32	1892.039	1879.887		12. 152	0.370	WF	26	30	40	305.683	110	0.071	0.057	0.237	0.073	0.000
33	1891.756	1883. 391		8.365	0.370	WF	28	29	50	204.990	110	0.169	0.086	0.396	0.081	0.000
34	1890. 237	1883.060		7.177	0.000		31	32	50	215.918	110	-0.293	-0.149	-1.096	-0.237	0.000
35	1890, 237	1881.702		8, 535	0.000		31	33	50	27. 166	110	0.370	0. 189	1.694	0.046	0.000
36	1890, 210	1883, 258		6.952	0.370	WF	34	35	50	272.803	110	0.000	0.000	0.000	0.000	0.000
37	1890.021	1881. 444		8.577	0.370	WF	34	36	40	5. 506	110	0.370	0. 295	5.023	0.028	0.000
38	1886, 488	1878. 515		7.973	0.370	WF	39	40	100	69, 230	110	3.044	0.388	2, 869	0.199	0.000
39	1893. 224	1877. 280		15.944	0.000		40	7	100	224. 402	110	2.381	0.303	1.821	0.409	0.000
40	1893.026	1879. 140		13.886	0.000		41	20	50	250.626	110	0.740	0.377	6. 116	1.533	0.000
41	1892, 249	1876, 260		15.989	0.000		39	19	50	81.340	110	0.909	0.463	8.954	0.728	0.000
42	1892. 273	1880, 540		11.733	0.000		32	40	50	198. 100	110	-0.663	-0.338	-4.983	-0.987	0.000
							28	41	50	26. 450	110	-0.094	-0.048	-0.134	-0.004	0.000
							29	30	40	95. 790	110	0.169	0.134	1.174	0.112	0.000
							27	30	40	94. 160	110	-0.240	-0. 191	-2.253	-0.212	0.000
							25	42	40	320, 590	110	0.000	0.000	0.000	0.000	0.000

	Ki	bet < <haze< th=""><th>n-William</th><th>ns Formula>></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></haze<>	n-William	ns Formula>>		-										
	Tank	1	N	Maximum EHP	46.642	(m)	<<	Expla	natory	Notes >>						
	Node	99	N	Minimum EHP	8, 358	(m)	-	Node		K-OALWAYE		- Line -				
	Line	106	M	Maximum I	26, 282	(%0)		GL:	Head Pr			L: 1	Diameter Length of P Friction Cod			
	Pump, Decom	0	M	Maximum V	1.012	(m/s)				otion of Wa		Q: (Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										T; I	Hydraulic G Head Loss			
С	alculation	16 (times)											Add Pressure	9		
	- NodeDat	a						- Line	Data —							
Node	HP (m)	GL (m)	EHP lst(m)	EHP 2nd (m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	2150. 850	2140.850		10.000	-9.506	Reservoir Tank	1	2	150	270. 495	110	9.506	0. 538	3. 281	0.887	0.000
2	2149, 963	2139.079		10.884	0.000		2	3	150	414. 307	110	7.026	0.398	1.874	0.776	0.000
3	2149. 186	2127. 460		21.726	0.000		2	13	80	654. 797	110	2.480	0.494	5.822	3.812	0.000
4	2147, 640	2123. 382		24.258	0.000		3	4	100	126. 103	110	6.669	0.849	12, 259	1.546	0.000
5	2145. 566	2125, 171		20.395	0.000		3	96	40	3. 921	110	0.357	0.284	4.701	0.018	0.000
6	2145, 482	2122, 633		22.849	0.000		4	97	100	201. 859	110	5.707	0.727	9. 187	1.854	0.000
7	2144. 111	2124. 921		19. 190	0.000		4	15	50	432. 899	110	0.962	0.490	9. 941	4.304	0.000
8	2143, 243	2126, 090		17. 153	0.000		4	18	40	236. 547	110	0.000	0.000	0.000	0.000	0.000
9	2141.969	2122.030		19.939	0.000		5	6	80	150.876	110	0.697	0. 139	0. 555	0.084	0.000
10	2136, 691	2118.864		17.827	0.000		5	19	100	209, 879	110	5. 177	0.659	7.670	1.610	0.000
11	2134, 185	2115, 446		18.739	0.000		6	7	80	226. 922	110	2.531	0.504	6.046	1.372	0.000
12	2132.944	2113. 439		19.505	0.356	WF	6	76	40	51. 420	110	0.479	0.381	8.097	0.416	0.000
13	2146. 150	2124. 685		21.465	0.000		7	8	80	258, 050	110	1.844	0.367	3. 361	0.867	0.000
14	2145, 831	2125, 494		20, 337	0.000		7	81	40	247. 593	110	0.331	0.263	4.084	1.011	0.000
15	2143, 337	2131. 180		12.157	0.250	PS	7	82	40	170, 566	110	0.357	0. 284	4.701	0.802	0.000
16	2141.042	2132. 684		8.358	0.356	WF	8	9	80	609. 511	110	1.427	0. 284	2.091	1.275	0.000
17	2143, 321	2132. 326		10.995	0.356	WF	8	83	50	199.052	110	0.417	0.212	2. 110	0.420	0.000
18	2147, 640	2121. 059		26, 581	0.000		9	10	50	435. 924	110	1.070	0, 545	12. 106	5, 277	0.000
19	2143, 956	2118, 412		25.544	0.000		9	92	40	8. 011	110	0.357	0. 284	4.701	0.038	0.000
20	2142.953	2117.023		25.930	0.000		10	11	50	438. 914	110	0.713	0.363	5. 709	2.506	0.000
21	2140.780	2111. 295		29.485	0.000		10	93	40	4, 251	110	0.357	0.284	4.701	0.020	0.000
22	2138, 861	2109.638		29. 223	0.000		11	12	40	265. 486	110	0.356	0. 283	4.677	1.242	0.000
23	2136, 790	2110. 175		26.615	0.000		11	94	40	274. 941	110	0.357	0.284	4.701	1.293	0.000
24	2136, 790	2114. 186		22,604	0.000		13	6	80	130, 610	110	2.313	0.460	5. 115	0.668	0.000
25	2143. 441	2118. 110		25. 331	0.356	WF	13	14	40	275. 641	110	0.168	0. 133	1. 158	0.319	0.000

--- LineData ---NodeData ---P GL EHP EHP Qc Q V HL. Node Remarks Node D L Coef (m) 2nd (m) (1/s)(m) (1/s)(m/s) (%) (m) C (m) (m) 1st (m) ST EN (mm) 26 2142.917 2115.382 27.535 0.356WF 15 16 40 490.699 110 0.356 0.2834.677 2.2950.000 3.342 27 2140. 163 2119.354 20.809 0.35615 17 40 110 0.3560.283 4.677 0.016 0.000 WF 30.233 19.929 28 2138.498 2108. 265 0.000 19 20 80 50.343 110 4.821 0.960 1.003 0.000 2137. 799 35.347 19 25 40 4.677 0.000 2102.452 0.000 110.148 110 0.3560.2830.5152137, 102 30 2099.897 37.205 0.000 20 21 80 98.801 110 5.084 1.012 21.991 2.173 0.000 2136.679 2099.397 37.282 0.000 20 98 40 136.350 -0.263-2.675-0.3650.000 31 110 -0.21021 22 19.225 2136, 375 2099.958 36.417 0.000 80 99.817 110 4.728 0.9411.919 0.000 2134.010 36, 400 21 27 0.356 1.577 0.000 2097.610 0.000 50 391.161 0.181 0.617 33 110 34 2133.057 2101.605 31.452 0.000 22 23 50 409.489 110 0.6685.060 2.072 0.000 0.3402132, 339 22 28 22.058 80 25.044 0.000 35 2110.281 0.000 110 4.060 0.808 14.500 0.363 2132. 339 2085.697 46.642 0.000 23 24 281.908 0.000 0.000 0.000 36 50 110 0.000 0.000 2137.778 34.522 23 2103, 256 0.356 67 50 21.176 110 0.668 5.060 0.000 37 WF 0.3400.1072136, 256 2096.736 39.520 0.000 28 29 80 48, 215 4.060 14.500 0.699 0.000 38 110 0.808 43.092 66 39 2136, 256 2093. 164 0.000 28 40 387.735 110 0.000 0.000 0.000 0.000 0.000 2136, 242 38.912 28 590, 268 0.000 40 2097.330 0.356WF 95 50 110 0.0000.000 0.000 0.000 2135, 837 2112, 616 23, 221 29 30 56.962 3.704 12.234 0.000 41 0.000 80 110 0.7370.697 4. 425 42 2135, 837 2115, 240 20.597 0.000 29 37 40 110 0.356 0.2834.677 0.021 0.000 2135.762 2113.679 22.083 0.35630 80 41.701 0.4230.000 WF 31 110 3.348 0.666 10.146 34.692 4.677 44 2135, 456 30 38 40 180.957 0.356 0.000 2100.764 0.356 WF 110 0.2830.846 45 2134.636 2101.402 33.234 32 36. 952 2.992 8. 239 0.000 31 80 110 0.596 0.3040.000 46 2134, 185 2103, 583 30.602 0.356 WF 31 41 50 533.929 110 0.356 0.181 1.577 0.842 0.000 17.220 124.270 2132.542 32 19.025 47 2115. 322 0.000 33 50 110 1.366 0.696 2.364 0.000 16.825 34.970 2129.820 2112.995 0.000 32 44 50 110 1.626 0.829 26. 282 0.919 0.000 48 49 2128.928 2108.872 20.056 0.000 33 34 50 87.645 110 1.010 0.51510.876 0.953 0.000 2128,5832104.541 24.042 0.35633 54 40 30, 435 110 0.3560.283 4.677 0.142 0.000 50 WF 51 2132. 564 2106.378 26.186 0.250SS 34 100 50 70.910 110 0.6540.333 4.863 0.3450.000 52 2129.794 2112.844 16.950 0.356 34 55 40 427.802 110 0.356 0.2834.677 2.001 0.000 WF 2128.500 17.127 456. 267 0.000 0.000 2111.373 0.25035 36 40 0.000 0.000 0.000 53 110 PS 54 2133, 868 2097.537 36.331 0.35635 58 50 59.038 0.3561.577 0.000 WF 110 0.181 0.093 55 2131.057 34.101 38 39 180.786 0.000 2096, 956 0.000 40 110 0.000 0.000 0.000 0.000 2131.057 40.315 3.092 4.677 0.000 2090.742 0.000 38 40 40 110 0.3560.2830.01456 2131.009 2096.918 34.091 41 42 40 116. 135 0.000 0.000 0.000 0.000 0.000 57 0.356110 WF 2132, 246 2109.531 22.715 0.000 41 43 40 15.983 0.3560.2834.677 0.075 0.000 58 110 2132.081 28.414 59 2103.667 0.000 44 45 50 49. 257 110 1.270 0.647 16.632 0.8190.000 4.677 2131.676 2100.249 31.427 0.000 45 46 40 96.633 110 0.356 0.2830.4520.000 60 31.868 2131, 676 61 2099, 808 0.000 45 47 50 231.563 110 0.914 0.4669.046 2.095 0.000 2131.676 30.874 48 273.750 0.962 9.941 0.000 2100, 802 0.000 47 50 110 0.4902.7212132, 246 2103.362 28.884 0.000 47 51 40 199.262 110 -0.048-0.038-0.114-0.0230.000 64 2131.641 2101.405 30.236 0.35648 49 40 71. 217 110 0.606 0.482 12.525 0.892 0.000 WE 5. 532

48

49

52

50

40

40

110

110

73.854

0.356

0.356

0.283

0,283

4.677

4.677

0.026

0.345

0.000

0.000

65 2131, 676

66 2138, 498

2096, 788

2108, 323

34.888

30.175

0.000

--- LineData ---NodeData ---HP P GL EHP EHP D Q V HL. Node Qc Remarks Node L Coef (m) (1/s)(m) (1/s)(%0) (m) (m) 1st (m) 2nd (m) ST EN (mm) C (m/s)(m) 67 2136, 682 2108.095 28.587 0.000 49 53 40 176. 255 110 0.2500.199 2.430 0.4280.000 2136. 568 2102.470 34.098 0.000 55 56 40 131.054 110 0.000 0.000 0.000 0.000 0.000 10.240 69 2134.639 2106.042 28.597 0.061 55 57 40 110 0.3560.2834.677 0.048 0.000 HC 26.833 58 59 1.577 0.000 2134, 639 2107.806 0.000 50 104.191 110 0.3560.164 0.181 71 2136, 568 2105.941 30.627 0.000 58 63 40 152.352 110 0.0000.000 0.000 0.000 0.000 72 2136, 568 2106, 436 30, 132 0.000 59 60 40 86.780 4.677 0.000 110 0.3560.2830.40673 2136, 568 2102.376 34.192 0.000 60 61 40 24. 246 110 0.000 0.000 0.000 0.000 0.000 74 2133, 124 42.116 7.488 4.677 0.000 2091.008 0.25060 64 40 0.3560.2830.035 PS 110 75 2135.351 2112.332 23.019 61 62 40 88.867 0.0000.000 0.000 0.000 0.357WF 110 0.000 76 2145, 066 2122, 276 22.790 42.976 0.000 0.000 61 65 40 110 0.000 0.000 0.000 0.000 1.228 77 2144, 470 2121.038 23.432 0.000 93.469 0.000 67 68 50 110 0.3110.158 0.115 78 2143, 793 2119.135 24.658 0.000 67 75 40 283.306 0.3570.2844.701 1.332 0.000 110 79 2145, 066 2123.687 21.379 0.000 68 69 40 529.735 0.3113.641 1.929 0.000 110 0.24871 2144.470 2121. 325 23.1450.000 68 40 71.348 110 0.0000.000 0.000 0.000 0.000 2143.099 25.134 0.000 0.000 81 2117.965 0.000 69 70 40 58.494 110 0.0000.000 0.000 2143, 309 2128, 245 15.064 69 74 623, 395 2.430 0.000 0.35740 110 0.2500.199 1.515 WF 72 83 2142.823 2124.603 18.220 0.000 71 40 75.603 110 0.000 0.000 0.000 0.000 0.000 2141.679 2118.845 22.834 0.25071 73 133.830 0.000 0.000 0.000 0.000 PS 40 110 0.000 77 85 2139, 365 16.935 76 40 73.651 8.097 0.000 2122, 430 0.000 110 0.4790.3810.596 86 2139, 365 2114, 809 24.556 0.000 76 79 40 100.940 110 0.000 0.000 0.000 0.000 0.000 87 2142.798 2118.980 23.818 0.000 77 78 40 83.608 110 0.4790.381 8.097 0.677 0.000 77 88 2141.679 2117. 527 24.152 0.000 80 40 111.265110 0.000 0.000 0.000 0.000 0.000 89 2141.679 2114.879 26.800 0.000 83 99 50 180.990 110 0.3700.188 1.692 0.306 0.000 2141.679 2118.391 23.288 0.000 83 87 40 229, 783 110 0.0470.037 0.109 0.025 0.000 91 2139, 177 2122, 201 16.976 0.357 84 85 40 492. 333 110 0.357 0.2844.701 2.314 0.000 WF 92 2141.931 2121.967 19.964 0.357WF 84 88 40 29.543 110 0.0000.000 0.000 0.000 0.000 2136, 671 2118.914 17.757 0.357 85 86 40 308.178 0.000 0.000 0.000 0.000 0.000 WF 110 2132, 893 39.868 2107.830 25.063 0.357 85 91 40 0.357 0.2844.701 0.1870.000 110 WF 95 2138, 498 2120, 196 18.302 0.000 88 89 40 62. 123 0.000 0.000 0.000 110 0.000 0.000 96 2149, 168 88 90 59.718 2126, 958 22.210 0.357WF 40 110 0.000 0.000 0.000 0.000 0.000 2145. 786 20.908 5 22.660 9.693 0.000 2124.878 0.000 97 100 110 5.874 0.748 0.22097 2143.318 2116, 772 0.000 97 39.250 0.000 26.546 14 40 110 0.1680.1331.158 0.0452142.517 2121, 355 21.162 0.000 98 26 40 216.718 0.2160.1721.847 0.000 110 0.400100 2132.712 78 98 2105, 603 27.110 0.000 40 58.640 110 0.4790.381 8.097 0.4750.000 81 26 40 44.510 0.331 0.2634.084 0.182 0.000 110 81.230 26 87 40 110 0.190 0.152 1.468 0.119 0.000

99

87

100

51

84

99

35

100

50

40

50

40

197.720

127.390

236.832

44.050

110

110

110

110

0.607

0.237

0.356

-0.298

4.237

2.206

1.577

-3.361

0.309

0.189

0.181

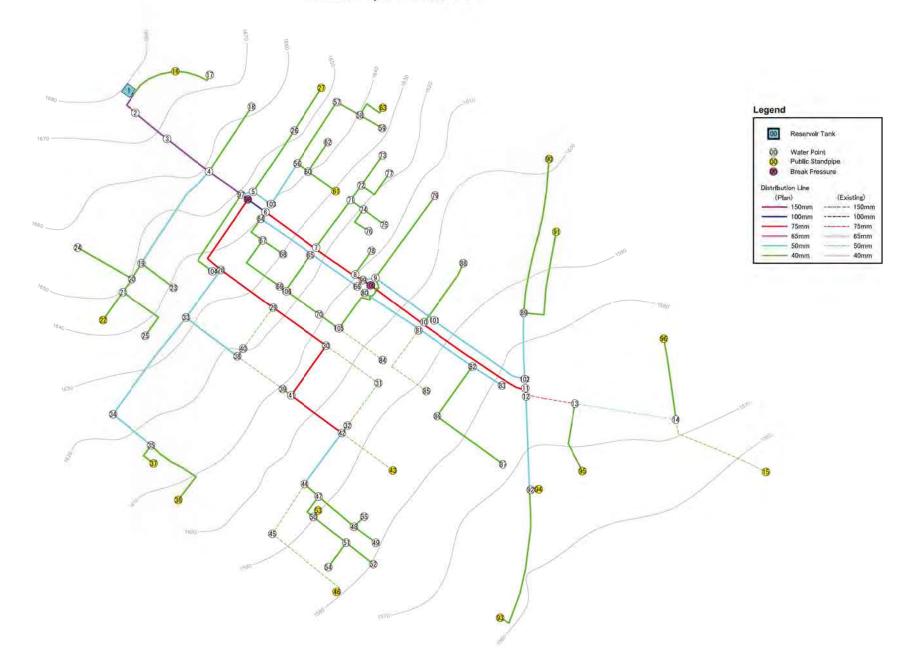
-0.237

0.000

0.000

0.000

0.000


0.838

0.281

0.374

-0.148

Tebela Pipe Networks

-8-	Tel	bela < <haz< th=""><th>en-Willia</th><th>ams Formula></th><th>></th><th>-0-3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></haz<>	en-Willia	ams Formula>	>	-0-3										
	Tank	1	1	Maximum EHP	61.561	(m)	<<	Expla	natory	Notes >>						
	Node	105	1	Minimum EHP	0.000	(m)	-	Node				- Line -				
	Line	110	1	Maximum T	18, 875	(‰)		GL:	Head Pr	Level		L: 1	Diameter Length of P			
	Pump, Decom	2	31	Maximum V	0.693	(m/s)				ual Head Pi otion of Wa		Q: (Friction Coo Quantity of Velocity of	Flow		
Conve	rgence Gap	(cm)										T: I	Hydraulic G Head Loss			
С	alculation	16 (times)											Add Pressure	9		
;—;—	- NodeDat	a						- Line	Data —							
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd(m)	Qc (1/s)	Remarks	No ST	ode EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
1	1678. 381	1678. 381		0.000	-8.058	Reservoir Tank	1	2	150	83. 441	110	7.630	0. 432	2. 183	0. 182	0.000
2	1678. 199	1676.007		2. 192	0.000		2	3	150	125, 506	110	7.630	0.432	2. 184	0.274	0.000
3	1677.925	1668, 631		9. 294	0.000		1	16	40	149.000	110	0.428	0.341	6. 578	0.980	0.000
4	1677. 566	1658. 226		19.340	0.000		3	4	150	164. 522	110	7.630	0.432	2. 184	0.359	0.000
5	1677. 260	1646. 157		31.103	0.000		16	17	40	114.000	110	0.000	0.000	0.000	0.000	0.000
6	1645,968	1639.002		6.966	0.000		4	18	40	238. 669	110	0.000	0.000	0.000	0.000	0.000
7	1644.782	1622, 461		22. 321	0.000		4	19	50	353. 552	110	0.428	0.218	2. 219	0.784	0.000
8	1643. 881	1609. 817		34.064	0.000		4	97	150	147. 141	110	7.202	0.408	1, 962	0.289	0.000
9	1643.512	1607. 250		36. 262	0.000		5	26	40	255. 729	110	0.428	0.341	6. 578	1.682	0.000
10	1606. 354	1594. 223		12. 131	0.000		5	103	50	66. 552	110	0.858	0.437	8.043	0.535	0.000
11	1604.665	1576. 966		27.699	0.000		6	7	80	190, 750	110	2.570	0. 511	6. 215	1. 186	0.000
12	1604. 599	1576. 369		28. 230	0.000		6	64	50	22. 396	110	0.462	0. 236	2. 561	0.057	0.000
13	1604. 334	1573. 896		30. 438	0.000		7	8	80	145.068	110	2.570	0. 511	6. 215	0.902	0.000
14	1601. 814	1571. 704		30. 110	0.000		7	71	40	185. 171	110	0.000	0.000	0.000	0.000	0.000
15	1599, 537	1554. 241		45. 296	0.428	WF	8	78	40	94.800	110	0.000	0.000	0.000	0.000	0.000
16	1677. 401	1674. 463		2. 938	0, 428	WF	8	99	80	59. 324	110	2.570	0. 511	6, 215	0.369	0.000
17	1677. 401	1672. 897		4. 504	0.000		9	79	40	346. 013	110	0.000	0.000	0.000	0.000	0.000
18	1677. 566	1661. 599		15. 967	0.000		9	105	40	160. 990	110	-0.462	-0.368	-7.592	-1.222	0.000
19	1676. 781	1648. 368		28, 413	0.000		9	101	50	201. 565	110	0.888	0. 452	8. 572	1.728	0.000
20	1676. 403	1650. 357		26.046	0.000		10	11	80	379. 980	110	2.144	0. 427	4. 445	1.689	0.000
21	1676. 077	1649, 234		26.843	0.000	poses.	10	88	40	228. 134	110	0.000	0.000	0.000	0.000	0.000
22	1675. 378	1643, 766		31.612	0.428	WF	11	12	80	14. 833	110	2.144	0. 427	4. 445	0.066	0.000
23	1676, 781	1637. 273		39. 508	0.000		12	13	80	153. 988	110	1.286	0. 256	1. 725	0.266	0.000
24	1676, 403	1658. 797		17, 606	0.000		12	92	50	293. 306	110	0.858	0. 437	8. 043	2.359	0.000
25	1676, 077	1636. 907		39. 170	0.000		13	14	50	313. 913	110	0.857	0.437	8. 026	2.519	0.000

NodeData ------ LineData ---HP P Gl. EHP EHP Q V HL. Node Qc Remarks Node D L Coef (m) (m) 2nd (m) (1/s)(m) (1/s)(m/s) (%) (m) C (m) 1st (m) ST EN (mm) 26 1675, 578 1651.057 24.521 0.000 13 95 40 216.040 110 0.4290.342 6.606 1.427 0.000 27 1674.548 1651, 380 23.168 0.42814 15 40 346.172 110 0.4280.341 6.578 2.277 0.000 WF 8,424 0.42928 1644.045 1635, 621 0.000 14 96 40 251.694 110 0.3426.606 1.663 0.000 1643. 271 20.618 19 20 6.578 0.000 29 1622, 653 0.000 40 57.525 110 0.4280.3410.37830 1642.713 1606, 313 36.400 0.000 19 23 40 124.015 110 0.000 0.000 0.000 0.000 0.000 31 1642, 272 1593, 231 49.041 0.000 20 21 49.567 0.4286.578 0.000 40 110 0.3410.3261641.889 48.258 20 32 1593, 630 0.000 24 40 193.066 110 0.000 0.000 0.000 0.000 0.000 1642. 480 9.933 21 22 106.207 0.4286.578 0.000 33 1632, 547 0.000 40 0.699110 0.341 34 1639.482 1624.862 14.620 0.000 21 25 40 206.667 110 0.0000.000 0.000 0.000 0.000 27 1638, 259 1615.631 22.628 26 40 156.576 0.000 35 0.000 110 0.4280.3416.578 1.030 1636, 555 29.715 0.42828 29 198.581 1.997 3.898 0.000 36 1606. 840 WF 80 110 0.3980.77424.218 33 37 1637.740 1613, 522 0.42828 50 183. 135 110 0.8870.4528.548 1.565 0.000 WF 38 1642, 476 1618, 695 23.781 0.240 29 30 80 202, 675 1.6560.330 2.755 0.558 0.000 PS 110 33.921 4.329 29 40 39 1642. 343 1608, 422 0.000 40 165. 594 110 0.3410.2720.7170.000 1642. 554 22.657 30 197.743 0.2392.230 0.000 40 1619, 897 0.000 31 40 110 0.190 0.4411642. 324 1606, 516 35.808 0.000 30 80 188.070 0.2822.065 0.388 0.000 41 41 110 1.41732 171.786 2.230 42 1641.848 1593. 133 48.715 0.000 31 40 110 0.2390.190 0.383 0.000 57.331 1640.565 1583. 234 0.42833 34 374. 326 0.856 8.009 2.998 0.000 43 WF 50 110 0.436 1638, 171 1595, 288 42.883 33 38 50 199.338 0.017 0.000 44 0.504SS 110 0.031 0.016 0.003 43.565 34 152, 730 8.009 45 1636, 966 1593, 401 0.000 35 50 110 0.8560.4361.223 0.000 46 1635, 119 1580, 862 54.257 0.428WF 35 36 40 259, 065 110 0.4280.341 6.578 1.704 0.000 78. 793 35 37 47 1638.041 1591, 871 46.170 0.000 40 110 0.428 0.341 6.578 0.518 0.000 53.688 48 1638.041 1584.353 0.000 38 39 40 178. 517 110 0.1320.105 0.746 0.133 0.000 49 1638.041 1580.780 57.261 0.000 41 42 80 195. 395 110 1.549 0.308 2.436 0.476 0.000 50 1637, 491 1590, 581 46.910 0.000 42 43 40 195.049 110 0.428 0.341 6.578 1.283 0.000 51 1637, 491 1583, 731 53.760 0.000 42 44 50 194.834 110 1.360 0.693 18.875 3.678 0.000 57.870 52 1637. 491 1579.621 0.000 45 40 183. 136 110 0.4280.341 6.578 1.205 0.000 44 46.953 0.42858. 412 0.4282.219 0.000 53 1637.394 1590, 441 47 50 0.218 0.130 44 110 WF 54 1637. 491 1583, 958 53.533 0.000 45 46 40 280, 895 0.4286.578 0.000 110 0.341 1.848 1638.041 53.825 48 143.082 0.000 55 1584, 216 0.000 47 40 110 0.000 0.000 0.000 0.000 1675, 278 1643. 225 32.053 50 83. 596 6.578 0.000 56 0.000 47 40 110 0.4280.3410.55057 1673. 786 1645. 217 28.569 0.000 48 49 83.846 0.000 0.000 0.000 0.000 40 110 0.000 58 1673, 249 1638, 793 34.456 0.000 48 55 40 44.387 0.000 0.000 0.000 0.000 0.000 110 42.985 59 1673. 249 1630, 264 0.000 50 51 40 127.588 110 0.000 0.000 0.000 0.000 0.000 14.837 60 1674. 995 1639, 154 35.841 0.000 50 53 40 110 0.4286.578 0.098 0.000 0.341 1674.312 51 61 1629, 658 44.654 0.429WF 52 40 107. 151 110 0.000 0.000 0.000 0.000 0.000 1674. 995 34.498 51 54 93. 297 0.000 0.000 0.000 62 1640, 497 0.000 40 110 0.000 0.000 39.200 225.926 63 1672. 573 1633.373 0.429WF 56 57 40 110 0.4290.342 6.606 1.493 0.000 56 64 1645, 910 1639.553 6.357 0.000 60 40 42.860 110 0.4290.342 6.606 0.2830.000 65 1645. 717 1622, 587 23.130 0.000 57 58 40 81.278 110 0.4290.342 6.606 0.5370.000 1645. 717 37.579

58

59

40

79.924

110

0.000

0.000

0.000

0.000

0.000

66

1608, 138

NodeData ------ LineData ---HP P GL. EHP EHP Q V HL. Node Qc Remarks Node D L Coef (m) (1/s)(m) (1/s)(%0) (m) (m) (m) 1st (m) 2nd (m) ST EN (mm) C (m/s) 67 1645. 782 1635, 190 10.592 0.000 58 63 40 102.334 110 0.4290.342 6.606 0.676 0.000 68 1645. 782 1629, 145 16.637 0.000 60 61 40 103.384 110 0.4290.3426.606 0.683 0.000 69 1645, 483 1624. 169 21.314 0.000 60 62 40 109.446 110 0.000 0.000 0.000 0.000 0.000 1645, 296 65 0.000 70 1611. 823 33.473 0.000 64 50 190.309 0.2811.017 110 0.1430.19471 1644. 782 1623, 759 21.023 0.000 64 67 40 95.919 110 0.1820.145 1.343 0.1290.000 72 1644. 782 1624, 408 20, 374 0.000 65 170.981 0.000 0.000 0.000 66 50 110 0.000 0.000 1644. 782 73 1625, 112 19.670 0.000 65 70 40 139.527 110 0.2810.2243.017 0.4210.000 1644. 782 25.899 0.000 0.000 1618, 883 0.000 67 68 40 75. 155 0.000 0.000 0.000 74 110 75 1644. 782 1612, 558 32.224 0.000 67 69 40 222.336 0.1821.343 0.2990.000 110 0.14576 1644, 782 30.192 71 72 55.825 1614. 590 0.000 40 110 0.0000.000 0.000 0.000 0.000 1644. 782 24.261 0.000 71 74 0.000 0.000 77 1620, 521 40 49.027 110 0.0000.000 0.000 1643, 881 72 1611, 385 32.496 0.000 73 40 114.836 110 0.000 0.000 0.000 0.000 0.000 78 1643. 512 1608, 420 35.092 0.000 72 77 40 130, 282 0.000 0.000 0.000 0.000 0.000 79 110 0.485 74 75 80 1607.2501606, 765 0.000 40 80.148 110 0.0000.000 0.000 0.000 0.000 1607.250 13.338 74 98.895 81 1593, 912 0.000 76 40 110 0.0000.000 0.000 0.000 0.000 1607, 250 1585, 177 22.073 80 202.079 0.000 0.000 82 0.000 81 50 110 0.000 0.000 0.000 28. 255 83 1607.250 1578.995 0.000 81 82 50 201.631 110 0.000 0.000 0.000 0.000 0.000 1644.734 1596.510 48.224 81 85 272.856 0.000 0.000 0.000 84 0.000 40 110 0.000 0.000 19.709 1607, 250 82 83 40 107.841 0.000 0.000 85 1587. 541 0.000 110 0.000 0.000 0,000 1607, 250 22, 562 82 86 86 1584, 688 0.000 40 187.837 110 0.000 0.000 0.000 0.000 0.000 87 1607. 250 1573, 056 34. 194 0.000 86 87 40 251.360 110 0.000 0.000 0.000 0.000 0.000 1606.354 88 1591.898 14.456 0.000 89 90 40 483.996 110 0.4290.3426.606 3.197 0.000 89 1636, 490 1584, 581 51.909 0.030 89 91 40 318.994 110 0.4290.342 6.606 2.107 0.000 HC 90 1633. 293 1601.293 32,000 0.42992 93 40 447.465 110 0.4290.3426.606 2.956 0.000 WF 91 1634. 383 1593, 500 40.883 0.42992 94 40 6.734 110 0.4290.342 6,606 0.044 0.000 WF 92 1602. 240 1568, 172 34.068 0.000 97 5 50 1.000 110 1.286 0.655 17.016 0.0170.000 93 1599, 284 1560, 623 38.661 0.42997 98 150 0.010 110 5.916 0.335 1.363 0.000 -31.120WF 1602, 196 1568.093 34.103 0.42998 6 100 66. 552 3.032 0.3862.848 0.190 0.000 94 WF 110 95 1602.9061566.688 36, 218 0.42998 28 80 274. 431 2.884 7.697 0.000 110 0.574 2.112 WF 1600. 151 99 9 0.010 0.222 96 1579.974 20, 177 0.429WF 80 110 0.4260.085 0.000 0.000 1677, 277 31.120 0.010 -36.26297 1646, 157 0.000 99 100 80 110 2.1440.4274.445 0.000 1646, 157 0.000 0.000 10 80 201.565 0.4274.445 0.000 98 1646. 157 31.120 100 110 2.144 0.896 1607, 250 99 1643. 512 36, 262 100 80 50 19,538 0.000 0.000 0.000 0.000 0.000 110 0.000 0.000 8.572 100 1607.250 1607.250 36. 262 0.000 101 102 50 379.980 110 0.8880.4523.2570.000 1641.784 1594, 223 47.561 0.000 102 89 50 237.629 0.888 0.452 8.572 2.037 0.000 101 110 1638, 527 102 1576.966 61.5610.000 103 56 50 179.831 110 0.858 0.4378.043 1.446 0.000 1676, 725 37.723 0.000 0.000 103 1639.002 0.000 97 104 40 274. 431 110 0.000 0.000 0.000 1635, 621 104 1677. 277 41.656 0.000 105 84 40 166.700 110 0.000 0.000 0.000 0.000 0.000 129.000 105 1644. 734 1606, 260 38.474 0.000 106 70 40 110 0.1820.145 1.343 0.1730.000 106 1645, 469 1622, 900 22, 569 0.000 69 106 40 10.200 110 0.1820.145 1.343 0.014 0.000

70

105

40

74.000

110

0.462

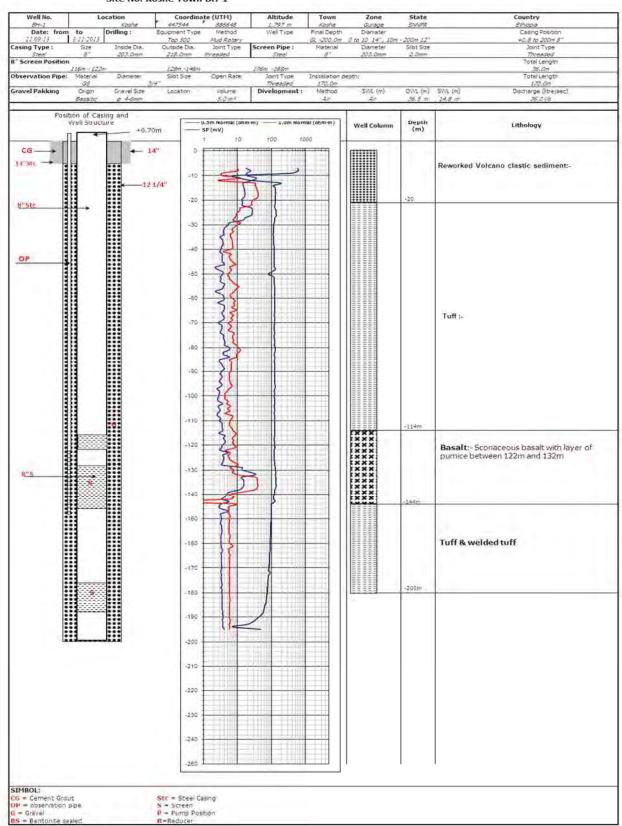
0.368

7.592

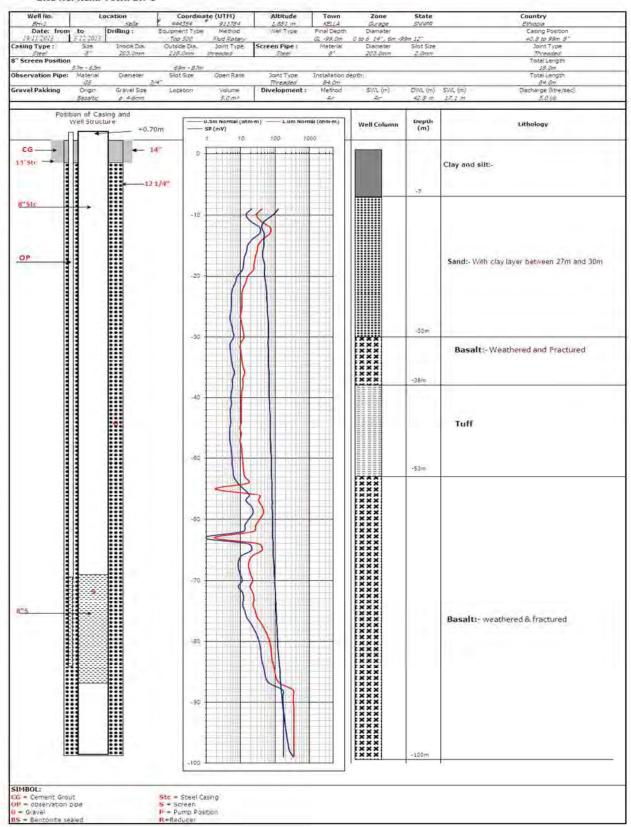
0.562

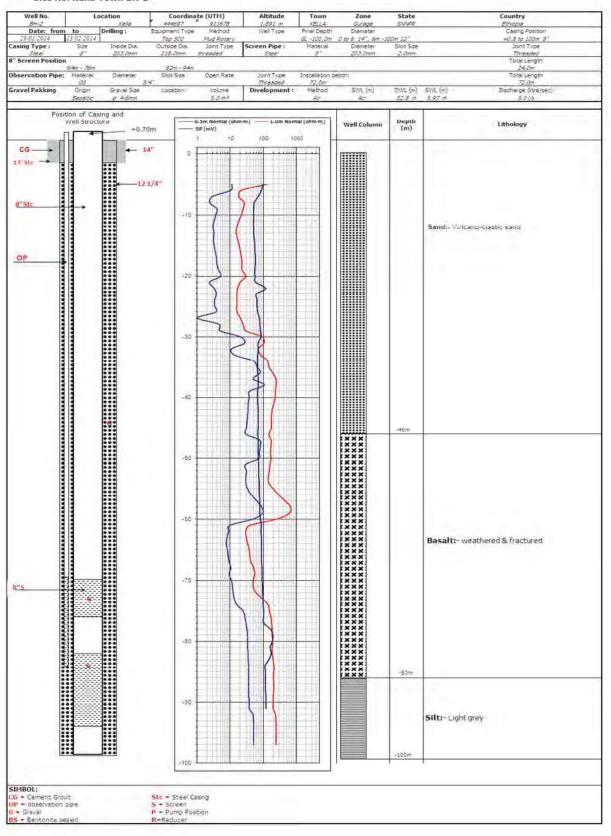
	NodeData		LineData													
Node	HP (m)	GL (m)	EHP 1st(m)	EHP 2nd (m)	$\frac{Qc}{(1/s)}$	Remarks	No ST	de EN	D (mm)	L (m)	Coef C	Q (1/s)	V (m/s)	I (‰)	HL (m)	P (m)
							40 39 32	38 41 42	40 40 40	18. 000 25. 000 18. 000	110 110 110	0.341 0.132 0.239	0. 272 0. 105 0. 190	4. 329 0. 746 2. 230	0. 078 0. 019 0. 040	0. 000 0. 000 0. 000

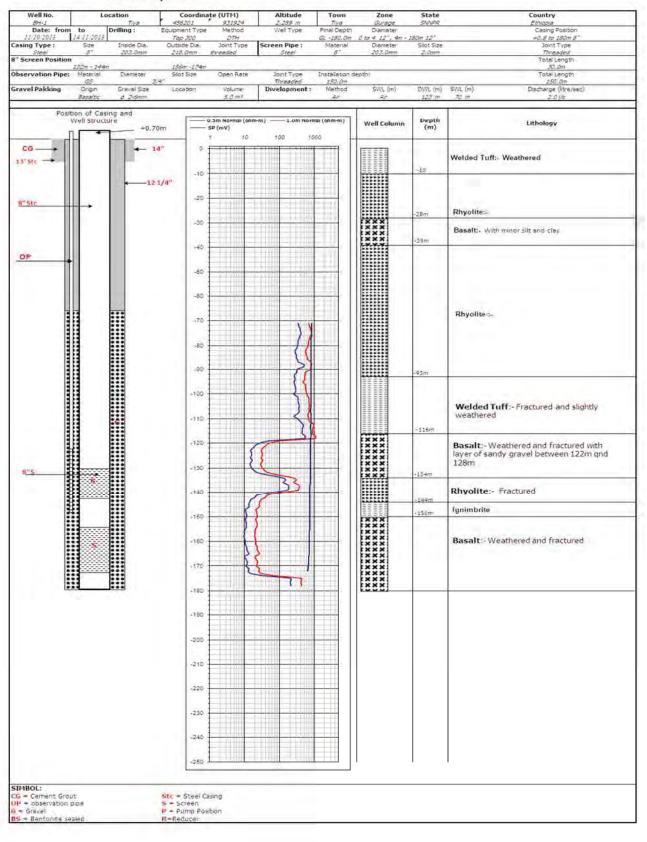
番号	名 称	形態 図書・ビデオ 地図・写真等	オリシ ナル・コピー	発行機関	発行年 1997	
- 9	Environmental Policy	電子ファイル	בנ"–	Federal Democratic Republic of Ethiopia Environmental Protection Authority		
2	Proclamation No. 89/1997 Federal Rural land Administration	電子ファイル	at°-	Federal Negarit Gazeta of the Federal Democratic Republic of Ethiopia	1997	
3	Ethiopian Water Resources Management Policy	図書	⊐ヒ°−	Federal Democratic Republic of Ethiopia Ministry of Water Resources	1999	
4	Environmental Impact Assessment Guideline Document	電子ファイル	3E-	Federal Democratic Republic of Ethiopia Environmental Protection Authority	2000	
5	Ethiopian Water Sector Strategy	図書	at'-	Federal Democratic Republic of Ethiopia Ministry of Water Resources	2001	
6	Ethiopian Water Sector Policy	電子ファイル	at'-	Federal Democratic Republic of Ethiopia Ministry of Water Resources	2001	
7	Environmental Impact Assessment Procedural Guideline Series 1	電子ファイル	⊒t'−	Federal Democratic Republic of Ethiopia Environmental Protection Authority	2003 Nov.	
8	Draft Rural Water Supply and Sanitation Design Criteria	電子ファイル	⊐t°−	Ministry of Water Resources, Rural Water Supply and Sanitation Department	2005 Apr.	
9	Gender Mainstreaming Field Manual For Water Supply & Sanitation Projects	電子ファイル	⊐t°−	Ministry of Water Resources Women's Affairs Department	2005 Dec.	
10	Council of Ministers Regulation No.115/2005 Ethiopian Water Resources Management Regulations	電子ファイル	at'-	Federal Negarit Gazeta of the Federal Democratic Republic of Ethiopia	2005 Mar.	
12	Southern Nations Nationalities and People's Region (SNNPR) Livelihood Profiles Regional Overview	電子ファイル	שנ"–	USAID	2005	
13	Urban Water Supply Design Criteria	電子ファイル	⊒t°−	Ministry of Water Resources. Urban Water Supply and Sanitation Department	2006 Jan.	
14	2004/5 Household Income, Consumption and Expenditure Survey (HICE) Volume I, II	電子ファイル	⊐t°−	Federal Democratic Republic of Ethiopia Central Statistical Agency (CSA)	2007	

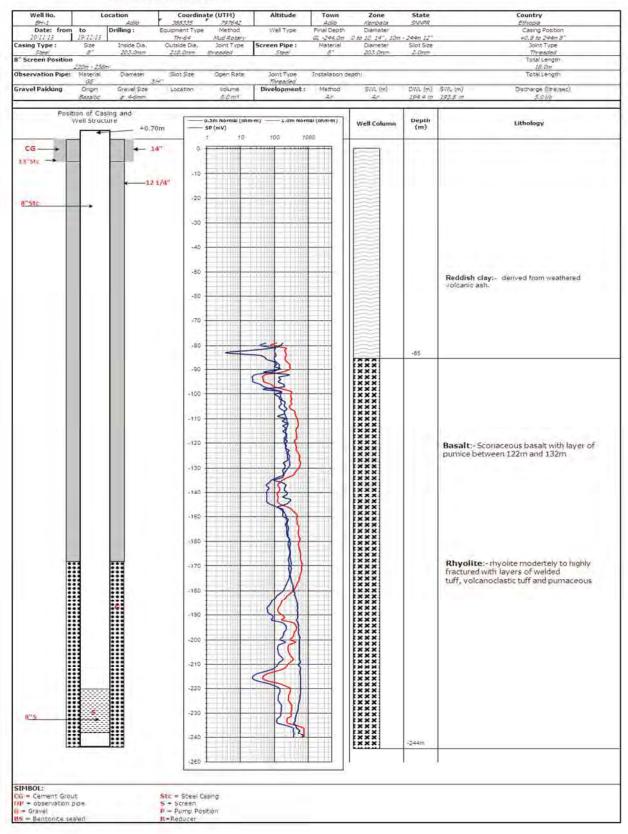

番号	名 称	形態 図書・ビデオ 地図・写真等	オリシ ナル・コピー	発行機関	発行年
15	Butajira – Ziway areas Development Study	電子ファイル	⊒ٰ−	Ministry of Water Resources (MoWS) Ethiopian Water Technology Centre (EWTEC)	2008 Jan.
16	Ethiopia: Overview of Selected Biodiversity	電子ファイル	⊐ť−	Biodiversity Indicators Development National Task Force for the Project of UNEP-WCMC	2010
17	Experience and Future Direction in Ethiopian Rural Land	電子ファイル	⊐t°−	World Bank Presented at the Annual World Bank Conference on Land and Poverty	2011 Apr.
18	The WaSH Implementation Framework	電子ファイル	コピー	Federal Democratic Republic of Ethiopia	2011 Aug.
19	The Study on Groundwater Resources Assessment in the Rift Valley Lakes Basin in Ethiopia, Final Report (Data Book)	電子ファイル	3t°-	JICA (Japan International Cooperation Agency)	2012
20	The 2010/11 Ethiopian Households Consumption - Expenditure (HCE) Survey, Result for : Country Level Statistical Report	電子ファイル	⊐t°−	Federal Democratic Republic of Ethiopia Central Statistical Agency (CSA)	2012 Dec.
21	Rural Land Policy, Rural Transformation and Recent Trends in Large-scale Rural Land Acquisitions in Ethiopia	電子ファイル	at"~	European Report Development	2012
22	Ethiopian Investment Commission Factor Cost	電子ファイル	שנ"–	Ethiopian Investment Commission	2014 Jun.
23	Geological Map, 838C2 KELLA	地形図図面	⊐t°−	EMA (Ethiopian Mapping Agency)	
24	Geological Map, 838C4 BUTAJIRA	地形図 図面	⊐t°−	ЕМА	
25	Geological Map, 838D1 BUI	地形図 図面	コピー	ЕМА	
26	Geological Map, 838D3 KOSHE	地形図 図面	⊐t°−	ЕМА	
27	Geological Map, 738A1 DALOCHA	地形図 図面	コピー	ЕМА	
28	Geological Map, 738A2 TORA	地形図 図面	コピー	ЕМА	
29	Geological Map, 738A3 WILBAREG	地形図 図面	⊐t°-	ЕМА	
30	Geological Map, 738A4 MITO	地形図 図面	⊐t°−	ЕМА	
31	Geological Map, 738B1 ZIWAY	地形図 図面	コヒー	ЕМА	

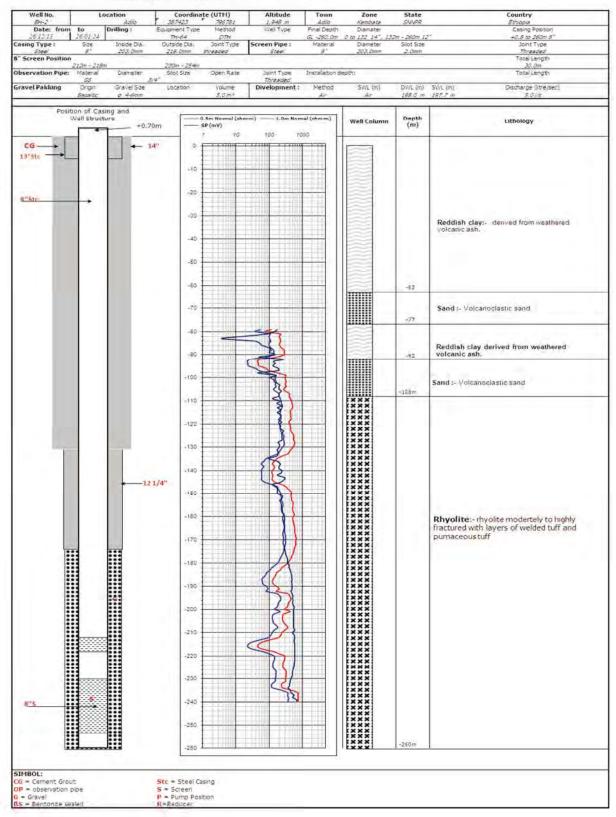
番号	名 称	形態 図書・ビデオ 地図・写真等	オリシ・ナル・ コピー	発行機関	発行年
32	Geological Map, 738B3 BULBULA	地形図 図面	コピー	ЕМА	
33	Geological Map, 737D4 SHONE	地形図 図面	⊐t°-	EMA	
34	Geological Map. 638A4 YIRGA ALEM	地形図 図面	コピー	ЕМА	
35	Geological Map, 638C3 DILA	地形図 図面	⊐£°−	EMA	
36	Geological Map, 637B2 SODO	地形図 図面	3t*-	EMA	
37	Geological Map, 637B3 GESUBA	地形図 図面	at'-	EMA	
38	Geological Map, 637B4 TEBELA	地形図 図面	コピー	EMA	

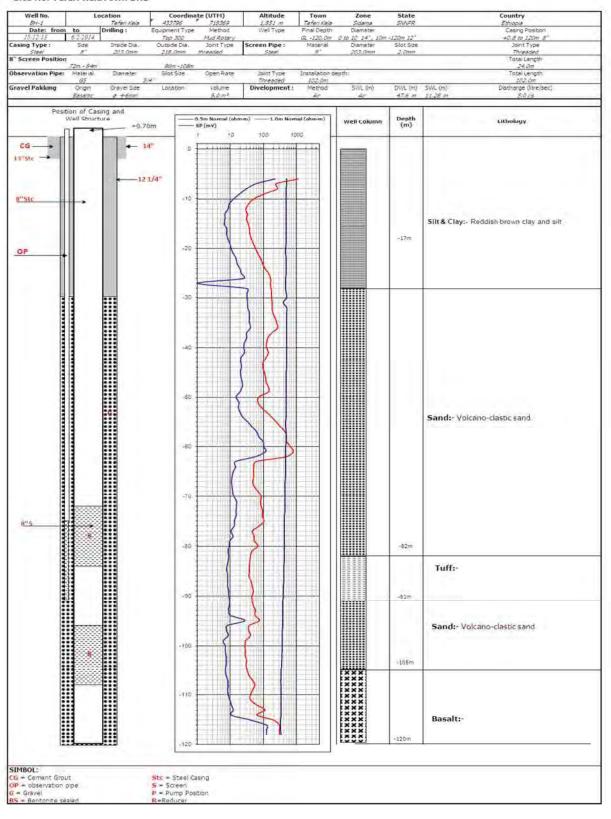

資料7 その他資料

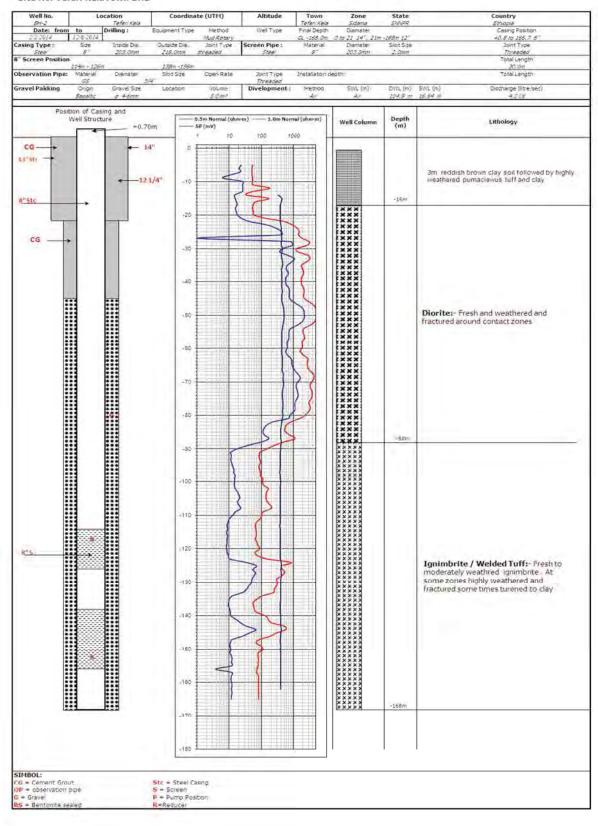

Site No. Koshe Town BH-1

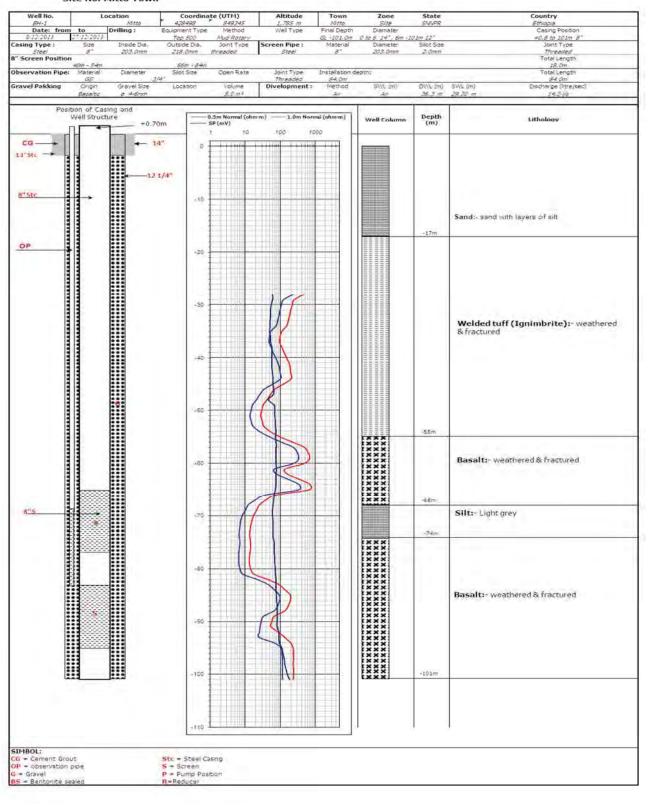

Site No. Kella Town BH-1

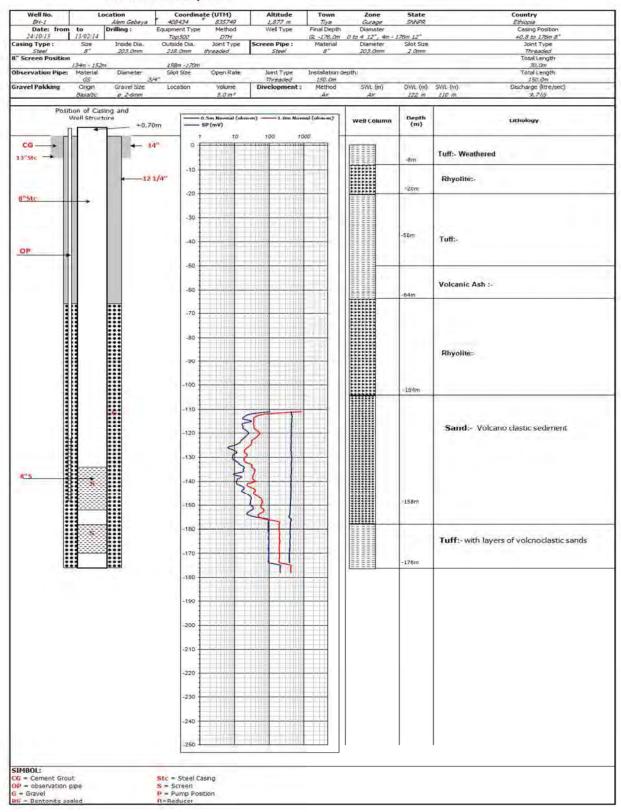

Site No. Kella Town BH-2

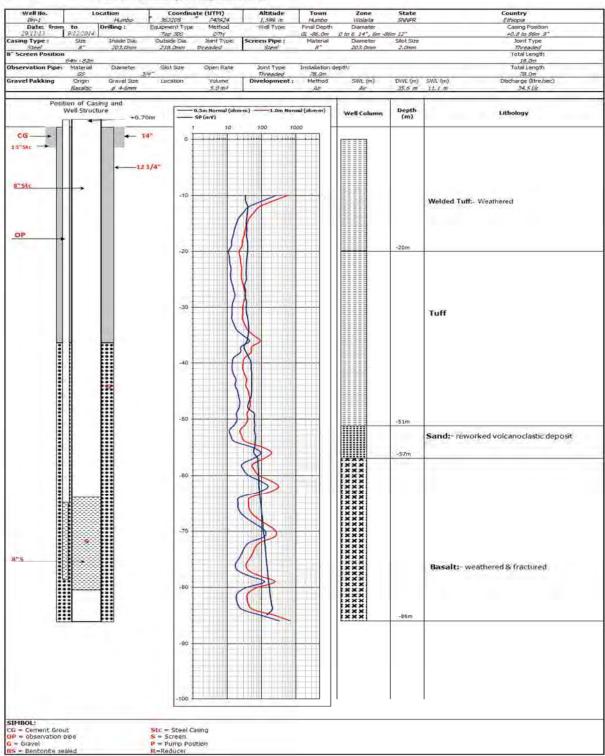

Site No. Tiya BH-1


Site No. Adilo Town BH-1


Site No. Adilo Town BH-2


Site No. Teferi KelaTown BH1


Site No. Teferi KelaTown BH2


Site No. Mitto Town

Site No. Alem Gebeya BH-1

Site No. Humbo (Tebela) Town BH-1

Well No. BH-1	L	xibet.		7136	ste (UTM) 888297		ltitude .083 m	Köet	Zone	State	Country Ethiopia
Date: from 18/09/2013	to 30/09/2013	Drilling:	Equipr	nent Type p 500		W	ell Type	Final Depth G2 -147.0m	Diamater 0 to 6 14", 6m		Casing Position +0.8 to 147m 8*
sing Type :	Size 8°	Inside Dia	. Out	ide Dia. 8.0mm	Joint Type threaded	Scree	n Pipe : Steel	Material 8"	Diameter 203.0mm	Slot Size	Joint Type Threaded
Screen Position	11.1m - 11.7i			3 <i>m-141</i> m				-		2,000	Total Length
servation Pipe:	Material GS	Diameter	3/4"	ot Size	Open Ratz		rit Type Yender	Installation (Septin:		Total Length £20.0m
avel Pakking	Origin Basaltic	Gravel St ø ≠-6mm		cation	Volume 5.0 ml		lopment:	Method	SV/L (m)	DWL (m) 87.0 m	SWL (m) Discharge (litre/sec) 78.0 m 13.1 (s
Darii	ion of Car				20010			-		1	
	Well Struck	ture	0.70m		0.5m Normal (r 60 (mV)				Well Column	Depth (m)	Lithology
cc		-	149	0 }		1 (1100)			mm		Soll:- Sanady soll
3°5tc		:::						=14	IXXX	-5	Basalt:- Vesicular fractured basalt
1			12 1/4"					31			
				-10		1110					District Control
"SIE	-			1							Rhyolite:- fractured
1								34			
1	1			-20			11111			-21	
op i											
1	1	***		-30					11111		
1				30			11100		111111		
1	1										
1				-40		11111					
1											
SPE SPE											Tuff:-pumaceous tufflight gray and
				-50			1.1411				reddish gray in weathered zones
1											
1				-60							
1		***									
3											
				-70			11146				
									25525	-75m	Edward Aug C
1				-80				113		-60m	Rhyolite:- fractured
1								114	111111		Reworked Volcanoclastic deposit-
				-90							reworked materials derived from volcanic ash, scoria, lithic tuffs and pumaceous tuffs
											and pullacious (uris
1				-100		11111	111111	111			
1								111			
		***								1	
1				-110				31		-111m	6
1	9							3.14			Scoria: reworked scoria deposit mixed with sands of different origin
1				-120						-120m	
1										-125m	Rhyolite/Ignimbrite:-Fractured and weathered
		***								-420111	Reworked Volcanoclastic deposit - reworked
Ave		章 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田		130		110	-114			-130m	materials derived from pyroclastic deposits
	Ä									-133m	Rhyolite/Ignimbrite:-Fractured and weathered
											Reworked Volcanoclastic deposit - reworked
:				-140		11110	11111				materials derived from pyroclastic deposits
										100	Rhyolite:- Fractured and weathered
12	1	Jiii							(11111)	~147m	
				-150 1		2.51116	W. E (317)		I	ı	I
mot -											
IBOL: = Cement Grou				Steel C	asing						
= observation ; Gravel			p = p	creen lump Pos	ition						
- Bentonte se	aled			ducer							

ራባ ሥራዎች ዲዛዴንና ቁጥጥር ደርጅት ሳቦራችል ስንልግሎት ንዑስ የሥረ ሂደት *የውሃ ፕሬት ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		Ethiopian
OCATION	Gurage Zone		Standard
ATE OF COLLECTION	14/6/2013		maximum
DATE RECEIVED	17/6/2013		allowable
	KOSHE 01		Concentration
CLIENTS ID.NO.	Other Paris		/ma/u
AB.ID NO.	2371/2005		
Colour (app)	Colourless		
Odor	Odourless		
Taste	Tasteless		7.0
Furbidity (NTU)	0.37		
Total Solids I05 °C (mg/l)	432.00	-	1776.0
T. Dissolved Solid 105°C(mg/l)	420.00		1770.0
Electrical Conductivity (µS/cm)	732.00		6.5-8.5
PH	7.48		2.0
Ammonia (mg/I NH ₃)	0.14		358.0
Sodium (mg/l Na)	136.00		350.0
Potassium (mg/l K)	17.00		392.0
Total Hardness (mg/l Ca CO ₃)	70.00		352.0
Calcium (mg/l Ca)	20.00		
Magnesium (mg/l Mg)	4.80		0.4
Total Iron (mg/l Fe)	0.03		0.13
Manganese (mg/l Mn)	0.03		3.0
Fluoride (mg/l F)	1.77	11	533.0
Chloride (mg/l Cl)	10.01		6.0
Nitrite (mg/I NO ₂)	0.01		50.0
Nitrate (mg/l NO ₃)	0.57	1 2	50.0
Alkalinity (mg/l CaCO ₃)	370.00		
Carbonate (mg/I CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	451.40		
Sulphate (mg/l SO ₄)	3.54		483.0
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_
Phosphate (mg/I PO ₄)	0.001	4	5.0
Copper(mg/I Cu)	0.006	1	0.4
Aluminum(mg/l Al)	0.000		0.1
Chromium(mg/I Cr)	0.002		0.3
Boron(mg/I B)	Nil Nil		
Lead (mg/l) Total Coliform Per 100 ml	1411		
Fecal Coliform Per 100 ml	-		

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by: Date:

17/2013

Approved by:

ምልዎች ደባደንና ቀምነር ተብሮልኖሉ አቶልባሶ ተዚብሄ ነወስ የሥራ ዓደት Pary 76.7 119:A

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et BELLECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

	Well				Ethiopian Standard
OURCE OF SAMPLE	Gurage Zone				maximum
OCATION	15/6/2013		1		allowable
DATE OF COLLECTION	17/6/2013	Legis	-		Concentration
DATE RECEIVED	KOSHE 02				(matt)
CLIENTS ID.NO.	2380/2005				
AB.ID NO.	Colourless				
Colour (app)	Odourless				
Odor	Tasteless	Ž+			7.0
Taste	Nil	1 =			
Turbidity (NTU)	464.00				1776.0
Total Solids I05 °C (mg/l)	460.00	-			1770.0
T. Dissolved Solid 105°C(mg/l)	772.00				6.5-8.5
Electrical Conductivity (µS/cm)	7.08				2.0
PH	0.18				358.0
Ammonia (mg/l NH ₃)	113.00				330.0
Sodium (mg/l Na)	13.50				392.0
Potassium (mg/I K)		-			332.0
Total Hardness (mg/I Ca CO ₃)	170.00				
Calcium (mg/l Ca)	54.40				0.4
Magnesium (mg/I Mg)	8.16	-			0.43
Total Iron (mg/l Fe)	0.03				3.0
Manganese (mg/l Mn)	0.01				533.0
Fluoride (mg/I F)	1.24	-			6.0
Chloride (mg/l Cl)					50.0
Nitrite (mg/l NO ₂)	0.02				50.0
Nitrate (mg/I NO ₃)	2.57				
Alkalinity (mg/I CaCO ₃)	378.00				To be the second
Carbonate (mg/I CO ₃)	Nil				
Bicarbonate (mg/I HCO ₃)	461.16				483.0
Bicarbonate (mg/ 11003)	15.06				
Sulphate (mg/l SO ₄)					5.0
Phosphate (mg/I PO₄)	0.006				0.4
Copper(mg/I Cu)	0.002				0.1
Aluminum(mg/I Al)	0.001				0.3
Chromium(mg/I Cr)	0.007				
Boron(mg/I B)	Nil				
Lead (mg/l)					
Total Coliform Per 100 ml Fecal Coliform Per 100 ml The test result of			011-	rd maximum	n allowable

The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client. Approved by: infer

Checked by: Date:

ሥሐዎች ዲዛደንና ቁጥጥር ድርቋት ሳቦራችል ስንሰግውት ንዑስ የሥረ ሂደት የውሃ ጥራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		Ethiopian
OCATION	Gurage Zone		Standard
DATE OF COLLECTION	15/6/2013		maximum
DATE RECEIVED	17/6/2013		allowable
CLIENTS ID.NO.	KELLA		Concentration
AB.ID NO.	2375/2005	. 11 1	
Colour (app)	Colourless		
Odor	Odourless		
Taste	Tasteless		7.0
Turbidity (NTU)	Nil		7.0
Total Solids 105 °C (mg/l)	386.00		
T. Dissolved Solid 1050C(mg/l)	380.00		1776.0
Electrical Conductivity (µS/cm)	573		
P ^H	6.40		6.5-8.5
Ammonia (mg/I NH ₃)	0.19		2.0
Sodium (mg/l Na)	18.50		358.0
Potassium (mg/l K)	4.70		
Total Hardness (mg/l Ca CO ₃)	250.00		392.0
Calcium (mg/l Ca)	81.60		_
Magnesium (mg/l Mg)	11.04		
Total Iron (mg/I Fe)	0.03		0.4
Manganese (mg/l Mn)	0.04		0.13
Fluoride (mg/l F)	0.51		3.0
Chloride (mg/I CI)	10.92		533.0
Nitrite (mg/I NO ₂)	0.01		6.0
Nitrate (mg/l NO ₃)	12.42		50.0
Alkalinity (mg/l CaCO ₃)	160		
Carbonate (mg/I CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	195.2		_
Sulphate (mg/l SO ₄)	133.23		483.0
Phosphate (mg/I PO ₄)			
Copper(mg/I Cu)	0.008		5.0
Aluminum(mg/l Al)	0.002		0.4
Chromium(mg/I Cr)	0.005		0.1
Boron(mg/l B)	0.057		0.3
Lead (mg/l)	Nil		
Total Coliform Per 100 ml			
Fecal Coliform Per 100 ml			

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by: _ Date:

17/2013

Approved by:

ተ ሥልዎች ዲባደንና ቁጥፕር ብዜቶት ሳቦራችል ስንልግሎት ኃዑስ የሥረ ዒደት የመሃ ተራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

BLLECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS

SOURCE OF SAMPLE	Well	Ethiopian
OCATION	Gurage Zone	Standard
DATE OF COLLECTION	17/6/2013	maximum
DATE RECEIVED	17/6/2013	allowable
CLIENTS ID.NO.	TIYA	Concentration
AB.ID NO.	2378/2005	
Colour (app)	Colourless	
Odor	Odourless	
Taste	Tasteless	7.0
Turbidity (NTU)	0.37	7.0
Total Solids I05 °C (mg/l)	212.00	
T. Dissolved Solid 105 ⁰ C(mg/l)	200.00	 1776.0
Electrical Conductivity (µS/cm)	354.00	
P ^{II}	6.60	6.5-8.5
Ammonia (mg/l NH ₃)	0.20	2.0
Sodium (mg/l Na)	11,50	358.0
Potassium (mg/l K)	7.70	
Total Hardness (mg/l Ca CO ₃)	160.00	392.0
Calcium (mg/l Ca)	47.20	and .
Magnesium (mg/l Mg)	10.08	
Total Iron (mg/l Fe)	0.05	0.4
Manganese (mg/l Mn)	0.01	0.13
Fluoride (mg/l F)	0.63	3.0
Chloride (mg/l Cl)	5.46	533.0
Nitrite (mg/l NO ₂)	0.01	6.0
Nitrate (mg/l NO ₃)	0.67	50.0
Alkalinity (mg/l CaCO ₃)	184.00	_
Carbonate (mg/l CO ₃)	Nil	_
Bicarbonate (mg/I HCO ₃)	224.48	_
Sulphate (mg/l SO ₄)	0.33	483.0
Phosphate (mg/I PO ₄)		
	0.006	5.0
Copper(mg/l Cu) Aluminum(mg/l Al)	0.002	0.4
Chromium(mg/I Cr)	0.002	0.1
Boron(mg/l B)	0.107	0.3
Lead (mg/l)	Nil	
Total Coliform Per 100 ml		
Fecal Coliform Per 100 ml		

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client:

Checked by: Date:

7/2013

Approved by:

Jate:

05/01/2013

የመሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ባቦራችል ስንልግሎት ንውስ የሥረ ሂደት *የውሃ ተራች ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01

Fax. 251 - 116 - 61 53 71/61 08 98 e-mail w.w.d.s.e@ethionet.et Addis Ababa

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Sodo	Standard
DATE OF COLLECTION	13/6/2013	maximum
DATE RECEIVED	14/6/2013	allowable
CLIENTS ID.NO.	ADILO	Concentration (mg/l)
LAB.ID NO.	2367/2005	
Colour (app)	Colourless	
Odor	Odourless	_
Taste	Tasteless	
Turbidity (NTU)	0.37	7.0
Total Solids 105 °C (mg/l)	190.00	<u> </u>
T. Dissolved Solid 105 ⁰ C(mg/l)	180.00	1776.0
Electrical Conductivity (µS/cm)	313	
P ^H	6.95	6.5-8.5
Ammonia (mg/l NH ₃)	0.14	2.0
Sodium (mg/l Na)	32.00	358.0
Potassium (mg/I K)	9.90	
Total Hardness (mg/l Ca CO ₃)	92.00	392.0
Calcium (mg/I Ca)	20.00	
Magnesium (mg/l Mg)	10.08	
Total Iron (mg/l Fe)	0.03	0.4
Manganese (mg/l Mn)	0.02	0.13
Fluoride (mg/l F)	0.65	3.0
Chloride (mg/l Cl)	3.64	533.0
Nitrite (mg/I NO ₂)	0.01	6.0
Nitrate (mg/I NO ₃)	0.78033	50.0
Alkalinity (mg/I CaCO ₃)	160	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	195.2	
Sulphate (mg/I SO ₄)	0.22	483.0
Phosphate (mg/I PO ₄)		
Copper(mg/I Cu)	0.004	5.0
Aluminum(mg/I Al)	0.002	0.4
Chromium(mg/l Cr)	0.006	0.1
Boron(mg/I B)	0.079	0.3
Lead (mg/l)	Nil	
Total Coliform Per 100 ml		
Fecal Coliform Per 100 ml	_	

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

and Super

Checked by:

517/2013

Approved by:

Date:

05/07/2013

ሙባ ሥራዎች ዲዛዶንና ቁጥጥር ድርጅት ሳቦራቶሪ ስንልግሱት ንዑስ የሥሪ ሂደት *የውሃ ጥራት ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax, 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS
Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well	1			Ethiopian
OCATION	Sodo		1 1		Standard
DATE OF COLLECTION	12/6/2013				maximum
DATE RECEIVED	14/6/2013				allowable
	TEFERI KELLA			1	Concentration
CLIENTS ID.NO.	The second second				(ma/l)
LAB.ID NO.	2370/2005				-
Colour (app)	Colourless				
Odor	Odourless				-
Taste	Tasteless			-	7.0
Turbidity (NTU)	0.37			-	1.0
Total Solids 105 °C (mg/l)	230.00				4770.0
T. Dissolved Solid 105°C(mg/l)	220.00				1776.0
Electrical Conductivity (µS/cm)	381.00				
PH	7.36	1			6.5-8.5
Ammonia (mg/l NH ₃)	0.16				2.0
Sodium (mg/l Na)	52.00				358.0
Potassium (mg/l K)	3.90				
Total Hardness (mg/l Ca CO ₃)	74.00				392.0
Calcium (mg/l Ca)	18.40	1			
Magnesium (mg/l Mg)	6.72				
Total Iron (mg/l Fe)	0.03				0.4
Manganese (mg/l Mn)	0.02				0.13
Fluoride (mg/l F)	0.86				3.0
Chloride (mg/I CI)	3.64			-	533.0
Nitrite (mg/I NO ₂)	0.01				6.0
Nitrate (mg/I NO ₃)	0.40				50.0
Alkalinity (mg/l CaCO ₃)	204.00				
Carbonate (mg/I CO ₃)	Nil				
Bicarbonate (mg/I HCO ₃)	248.88				
Sulphate (mg/l SO ₄)	0.11				483.0
Phosphate (mg/l PO ₄)					_
Copper(mg/l Cu)	0.005				5.0
Aluminum(mg/I AI)	0.002	1			0.4
Chromium(mg/I Cr)	0.002				0.1
Boron(mg/I B)	0.007				0.3
Lead (mg/l)	Nil				
Total Coliform Per 100 ml	_	7			
Fecal Coliform Per 100 ml	The second course management				

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by: Date: 2013 1000 PAR

Approved by:

ሥራዎች ዲዛዶንና ቁጥጥር ታይታት ሳቦራችሪ ስ7ልግሎት ግቡስ የሥረ ሂደት የውሂ ተራች ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well	Ethiopian
OCATION	Silte Zone	Standard
DATE OF COLLECTION	15/6/2013	maximum
DATE RECEIVED	17/6/2013	allowable
CLIENTS ID.NO.	DALOCHA	Concentration
LAB.ID NO.	2377/2005	
Colour (app)	Colourless	
Odor	Odourless	
Taste	Tasteless	7.0
Turbidity (NTU)	0.4	7.0
Total Solids I05 °C (mg/l)	220.00	
T. Dissolved Solid 105°C(mg/l)	210.00	1776.0
Electrical Conductivity (µS/cm)	358.00	
PH	6.83	6.5-8.5
Ammonia (mg/I NH ₃)	0.12	2.0
Sodium (mg/l Na)	49.00	358.0
Potassium (mg/l K)	9.40	_
Total Hardness (mg/l Ca CO ₃)	62.00	392.0
Calcium (mg/l Ca)	18,40	
Magnesium (mg/l Mg)	3.84	
Total Iron (mg/l Fe)	0.03	0.4
Manganese (mg/l Mn)	0.01	0.13
Fluoride (mg/l F)	1.45	3.0
Chloride (mg/I CI)	5.46	533.0
Nitrite (mg/I NO ₂)	0.02	6.0
Nitrate (mg/I NO ₃)	0.91	50.0
Alkalinity (mg/l CaCO ₃)	180.00	_
Carbonate (mg/l CO ₃)	Nil	<u></u>
Bicarbonate (mg/I HCO ₃)	219.60	_
Sulphate (mg/l SO ₄)	0.22	483.0
Phosphate (mg/l PO ₄)		
Copper(mg/l Cu)	0.002	5.0
Aluminum(mg/I Al)	0.002	0.4
Chromium(mg/I Cr)	0.001	0.1
Boron(mg/I B)	0.086	0.3
Lead (mg/l)	Nil	-
Total Coliform Per 100 ml		
Fecal Coliform Per 100 ml		

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by:

517/2013

Approved by:

ሥራዎች ዲባደንና ቁጥፕር ድርቶት ሳቦራችል ስንልግሎት ንዑስ የሥረ ሂደት የውሃ ጥራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		Ethiopian
LOCATION	Silte Zone		Standard
DATE OF COLLECTION	15/6/2013		maximum
DATE RECEIVED	17/6/2013		allowable
CLIENTS ID.NO.	MITTO		Concentration (mg/l)
LAB.ID NO.	2376/2005	16.	
Colour (app)	Colourless		
Odor	Odourless		
Taste	Tasteless		7.0
Turbidity (NTU)	Nil		 7.0
Total Solids I05 °C (mg/l)	278.00		
T. Dissolved Solid 105°C(mg/l)	270.00		1776.0
Electrical Conductivity (µS/cm)	429.00		
P ^H	7.09		6.5-8.5
Ammonia (mg/I NH ₃)	0.19		2.0
Sodium (mg/l Na)	58.00		358.0
Potassium (mg/l K)	10.00		
Total Hardness (mg/I Ca CO ₃)	126.00		392.0
Calcium (mg/l Ca)	28.00		_
Magnesium (mg/l Mg)	13.44		
Total Iron (mg/l Fe)	0.03	_	0.4
Manganese (mg/l Mn)	0.03		 0.13
Fluoride (mg/l F)	0.74	T.	3.0
Chloride (mg/l Cl)	7.28		533.0
Nitrite (mg/I NO ₂)	0.01		6.0
Nitrate (mg/I NO ₃)	3.31		50.0
Alkalinity (mg/l CaCO ₃)	226.00		_
Carbonate (mg/I CO ₃)	Nil		_
Bicarbonate (mg/I HCO ₃)	275.72		_
Sulphate (mg/l SO ₄)	0.89		483.0
Phosphate (mg/I PO ₄)			_
Copper(mg/I Cu)	0.004		5.0
Aluminum(mg/I Al)	0.002		0.4
Chromium(mg/I Cr)	0.005		0.1
Boron(mg/i B)	0.064		0.3
Lead (mg/l)	Nil		
Total Coliform Per 100 ml			****
Fecal Coliform Per 100 ml			_

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Cory Semice

Checked by: Date:

17 12013

Approved by: Date:

od by: 05/03/2013

ምራዎች ዲዛደንና ቁጥጥር ድርድት ሳቦራቸል ስ7ልግሎት ንውስ የሥረ ሂደት Pary TET hEA

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well			Ethiopian
OCATION	Silte Zone		17	Standard
DATE OF COLLECTION	14/6/2013			maximum
DATE RECEIVED	17/6/2013			allowable
CLIENTS ID.NO.	TORRA 01			Concentration
AB.ID NO.	2374/2005			-
Colour (app)	Colourless			
Odor	Odourless			-
Taste	Tasteless			7.0
Turbidity (NTU)	0.37			1.0
Total Solids 105 °C (mg/l)	612.00			1776.0
T. Dissolved Solid 105°C(mg/l)	600.00			1776.0
Electrical Conductivity (µS/cm)	971.00			6.5-8.5
PH	7.19			2.0
Ammonia (mg/I NH₃)	0.15			358.0
Sodium (mg/l Na)	180.00			350.0
Potassium (mg/l K)	22.00			392.0
Total Hardness (mg/I Ca CO ₃)	130.00			332.0
Calcium (mg/I Ca)	48.00			122
Magnesium (mg/l Mg)	2.40			0.4
Total Iron (mg/l Fe)	0.03			0.13
Manganese (mg/l Mn)	0.04		-	3.0
Fluoride (mg/l F)	1.64		-	533.0
Chloride (mg/l Cl)	23.66			6.0
Nitrite (mg/l NO ₂)	0.01			50.0
Nitrate (mg/I NO ₃)	1,18			
Alkalinity (mg/l CaCO ₃)	474.00	412		_
Carbonate (mg/I CO ₃)	Nil			-
Bicarbonate (mg/I HCO ₃)	578.28			400.0
Sulphate (mg/I SO ₄)	36.55			483.0
Phosphate (mg/I PO ₄)		11 -		
Copper(mg/I Cu)	0.001			5.0
Aluminum(mg/I Al)	0.002			0.4
Chromium(mg/I Cr)	0.004			0.1
Boron(mg/l B)	0.129			0.3
Lead (mg/l)	Nil			
Total Coliform Per 100 ml	_	*		
Fecal Coliform Per 100 ml	-			ioblo –

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and our laboratory by the client. submitted to

Checked by: Date:

Approved by: Date:

ሥራዎች ዲዛደንና ቁጥፕር ደርቋት መራችል ስንልግሎት ንውስ የሥረ ሂደት የመሃ ፕራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well	Ethiopian
OCATION	Silte Zone	Standard
DATE OF COLLECTION	14/6/2013	maximum
DATE RECEIVED	17/6/2013	allowable
CLIENTS ID.NO.	TORRA 02	Concentration
LAB.ID NO.	2373/2005	
Colour (app)	Colourless	
Odor	Odourless	_
Taste	Tasteless	
Turbidity (NTU)	0.37	7.0
Total Solids 105 °C (mg/l)	628.00	
T. Dissolved Solid 105°C(mg/l)	620.00	1776.0
Electrical Conductivity (µS/cm)	1002.00	
P ^H	7.48	6.5-8.5
Ammonia (mg/l NH ₃)	0.17	2.0
Sodium (mg/I Na)	166.00	358.0
Potassium (mg/l K)	21.00	
Total Hardness (mg/l Ca CO ₃)	122.00	392.0
Calcium (mg/l Ca)	46.40	
Magnesium (mg/I Mg)	1.44	
Total Iron (mg/l Fe)	0.03	0.4
Manganese (mg/l Mn)	0.03	0.13
Fluoride (mg/i F)	1.63	3.0
Chloride (mg/l Cl)	28.21	533.0
Nitrite (mg/I NO ₂)	0.02	6.0
Nitrate (mg/I NO ₃)	0.80	50.0
Alkalinity (mg/l CaCO ₃)	456.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	556.32	
Sulphate (mg/I SO ₄)	51.94	483.0
Phosphate (mg/I PO ₄)	_	
Copper(mg/I Cu)	0.005	5.0
Aluminum(mg/l Al)	0.006	0.4
Chromium(mg/l Cr)	0.007	0.1
Boron(mg/! B)	0.150	0.3
Lead (mg/l)	Nil	
Total Coliform Per 100 ml		_
Fecal Coliform Per 100 ml		tondard maximum allowable

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by: Date: 17 T 20/3

Approved by:

መባ ሥራዎች ዲዛዶንና ቁጥፕር ድርጅት ባቦራቸሪ ስ7ሰግሱት ንዑስ የሥሪ ሂደት የውሃ ተራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		Ethiopian
LOCATION	Sodo		Standard
DATE OF COLLECTION	13/6/2013		maximum
DATE RECEIVED	14/6/2013		allowable
CLIENTS ID.NO.	SANKURA		Concentration
LAB,ID NO.	2369/2005		
Colour (app)	Colourless		
Odor	Odourless		- Aust
Taste	Tasteless		
Turbidity (NTU)	0.4		7.0
Total Solids I05 °C (mg/l)	408.00		
T. Dissolved Solid 105°C(mg/l)	400.00		1776.0
Electrical Conductivity (µS/cm)	640.00		
PH	7.82		6.5-8.5
Ammonia (mg/I NH ₃)	0.15		2.0
Sodium (mg/l Na)	105.0		358.0
Potassium (mg/l K)	13.00		-
Total Hardness (mg/I Ca CO ₃)	136.00		392.0
Calcium (mg/l Ca)	44.00		
Magnesium (mg/l Mg)	6.24		_
Total Iron (mg/l Fe)	0.03		0.4
Manganese (mg/l Mn)	0.04		0.13
Fluoride (mg/l F)	1.63		3.0
Chloride (mg/l Cl)	5.46		533.0
Nitrite (mg/! NO ₂)	0.02		6.0
Nitrate (mg/I NO ₃)	0.44		50.0
Alkalinity (mg/l CaCO ₃)	338.00		
Carbonate (mg/I CO ₃)	Nil		9445
Bicarbonate (mg/I HCO ₃)	412.36		
Sulphate (mg/I SO ₄)	0.22		483.0
Phosphate (mg/I PO ₄)			
Copper(mg/I Cu)	0.005		5.0
Aluminum(mg/l Al)	0.002		0.4
Chromium(mg/I Cr)	0.004		0.1
Boron(mg/l B)	0.114		0.3
Lead (mg/l)	Nil	1	
Total Coliform Per 100 ml		41	
Fecal Coliform Per 100 ml			

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by:

Date:

17/2013

Approved by:

ቀነ ሥራዎች ዲዛደንና ቁጥጥር ደርጅት ባቦራቸል ስ70ግሎት ንውስ የሥረ ሂደት POY TET HEA

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

Addis Ababa

e-mail w.w.d.s.e@ethionet.et SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		Ethiopian
OCATION	Silte Zone		Standard
DATE OF COLLECTION	25/6/2013		maximum
DATE RECEIVED	17/6/2013		allowable
CLIENTS ID.NO.	KIBET-01		Concentration
LAB.ID NO.	2372/2005		
Colour (app)	Colourless		
Odor	Odourless		
Taste	Tasteless		7.0
Turbidity (NTU)	0.37		7.0
Total Solids I05 °C (mg/l)	316,00	L-	
T. Dissolved Solid 105°C(mg/l)	300.00		1776.0
Electrical Conductivity (µS/cm)	486.00		
p ^H	6.50		6.5-8.5
Ammonia (mg/I NH ₃)	0.15		2.0
Sodium (mg/l Na)	41.00		358.0
Potassium (mg/l K)	10.10		
Total Hardness (mg/l Ca CO ₃)	176.00		392.0
Calcium (mg/l Ca)	62.40		
Magnesium (mg/l Mg)	4.80	-	_
Total Iron (mg/l Fe)	0.03		0.4
Manganese (mg/l Mn)	0.03		0.13
Fluoride (mg/l F)	0.59	1	3.0
Chloride (mg/I CI)	7.28		533.0
Nitrite (mg/l NO ₂)	0.02		6.0
Nitrate (mg/I NO ₃)	12.25		50.0
Alkalinity (mg/I CaCO ₃)	226.00		_
Carbonate (mg/l CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	275.72		<u> </u>
Sulphate (mg/I SO ₄)	4.87		483.0
Phosphate (mg/I PO ₄)	_		
Copper(mg/I Cu)	0.005		5.0
Aluminum(mg/I AI)	0.002		0.4
Chromium(mg/I Cr)	0,001		0.1
Boron(mg/l B)	0.114		0.3
Lead (mg/l)	Nil	10	_
Total Coliform Per 100 ml			_
Fecal Coliform Per 100 ml	_		

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client:

Checked by: Date:

Approved by:

ሥራዎች ዲዛዶንና ቁጥፕር ዘርቋት ሳቦራችል ስንልግሱት ንዑስ የሥረ ሂደት የውሃ ተራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well		7	Ethiopian
OCATION	Silte Zone			Standard
DATE OF COLLECTION	15/6/2013			maximum
DATE RECEIVED	17/6/2013			allowable
CLIENTS ID.NO.	KIBET 02			Concentration (mg/l)
LAB.ID NO.	2379/2005			
Colour (app)	Colourless			
Odor	Odourless			
Taste	Tasteless			7.0
Turbidity (NTU)	Nil			7.0
Total Solids I05 °C (mg/l)	266,00			
T. Dissolved Solid 105°C(mg/l)	260.00			1776.0
Electrical Conductivity (µS/cm)	455.00			
PH	6.65			6.5-8.5
Ammonia (mg/I NH ₃)	0.19			2.0
Sodium (mg/l Na)	33.50			358.0
Potassium (mg/l K)	9,30			
Total Hardness (mg/I Ca CO ₃)	166.00	-		392.0
Calcium (mg/l Ca)	49.60			_
Magnesium (mg/l Mg)	10.08			
Total Iron (mg/l Fe)	0.04	1		0.4
Manganese (mg/l Mn)	0.01			0.13
Fluoride (mg/l F)	0.63	1 1		3.0 533.0
Chloride (mg/I CI)	6.37			
Nitrite (mg/I NO ₂)	0.02			6.0
Nitrate (mg/I NO ₃)	6.01			50.0
Alkalinity (mg/l CaCO ₃)	222.00			_
Carbonate (mg/l CO ₃)	Nil			_
Bicarbonate (mg/I HCO ₃)	270.84			
Sulphate (mg/I SO ₄)	1.77			483.0
Phosphate (mg/I PO ₄)				
Copper(mg/l Cu)	0.004			5.0
Aluminum(mg/l Al)	0.002			0.4
Chromium(mg/I Cr)	0.006			0.1
Boron(mg/I B)	0.007			0.3
Lead (mg/l)	Nil			
Total Coliform Per 100 ml	_			

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Soratory Carrie

Checked by:

17 12013

Approved by:

ate:

ምልዎች ደብደንና ቁጥጥር ያይታት ሳቦራችል ስ7<u>ስግሎት</u> ንቡስ የምረ ሂደት rary TEA hEA

Water Works ----Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01

Addis Ababa

Fax. 251 - 116 - 61 53 71/61 08 98 e-mail w.w.d.s,e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

OURCE OF SAMPLE	Well				Ethiopian Standard
OCATION	Silte Zone		1111111111111	1	maximum
DATE OF COLLECTION	15/6/2013				allowable
DATE RECEIVED	17/6/2013				Concentration
	LAKE				(mg/l)
CLIENTS ID.NO.					
ABJD NO.	2381/2003				
Colour (app)	Odourless				1
Odor	Tasteless				_
Lasto	0.73				7.0
Turbidity (NTU)	300.00		= 1		
Total Solids 105 °C (mg/l)					1776.0
I. Dissolved Solid 105°C(mg/l)	280.00				
Flectrical Conductivity (µS/cm)	438.00				6.5-8.5
\mathbf{P}^{H}	8.56				2.0
Ammonia (mg/I NH ₃)	0.19				358.0
Sodium (mg/l Na)	47.00		_		
Potassium (mg/LK)	12.00		_		392.0
Total Hardness (mg/l Ca CO ₃)	150.00				
Calcium (mg/l Ca)	33.60				
Magnesium (mg/l Mg)	15.84	-			0.4
Total Iron (mg/l Fe)	0.04				0.13
Manganese (mg/l Mn)	0.02				3.0
Fluoride (mg/LF)	0.55				533.0
Chloride (mg/l Cl)	10.01				6.0
Nitrite (mg/I NO ₂)	0.02				50.0
Nitrate (mg/I NO ₃)	0.46		_		
Alkalinity (mg/l CaCO ₃)	236.00				
Carbonate (mg/I CO ₃)	36.00				_
Bicarbonate (mg/I HCO ₃)	214.72				483.0
Sulphate (mg/I SO ₄)	0.29	11/2			403.0
Phosphate (mg/LPO ₄)					5.0
Phosphate (mg/1 var	0.005				0.4
Copper(mg/l Cu) Aluminum(mg/l Al)	0.004				0.4
Chromium(mg/I Cr)	0.002	The state of the s			0.1
Boron(mg/I B)	0.007				0.3
Lead (mg/l)	Nil				
Total Coliform Per 100 ml					
Fecal Coliform Per 100 ml REMARK: The test result can					

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client

Checked by:

የሙሃ ሥራዎች ዲዛይንና ቁጥጥ<u>ር</u> ድርጅት ባቦራቶል ስንሰግሎት ንዑስ የሥረ ሂደት POY TET HEA

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project:AG CONSULT, Consulting Hydrogeologyist and Engineers

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Sodo	Standard
DATE OF COLLECTION	13/6/2013	maximum
DATE RECEIVED	14/6/2013	allowable
CLIENTS ID.NO.	TEBELLA	Concentration
LAB.ID NO.	2368/2005	
Colour (app)	Colourless	
Odor	Odourless	
Taste	Tasteless	
Turbidity (NTU)	0.37	7.0
Total Solids I05 °C (mg/l)	172.00	
T. Dissolved Solid 105°C(mg/l)	160.00	1776.0
Electrical Conductivity (µS/cm)	260.00	
PH	6.90	6.5-8.5
Ammonia (mg/l NH ₃)	0.14	2.0
Sodium (mg/l Na)	15.00	358.0
Potassium (mg/l K)	4.90	
Total Hardness (mg/l Ca CO ₃)	104.00	392.0
Calcium (mg/l Ca)	29.60	
Magnesium (mg/l Mg)	7.20	
Total Iron (mg/l Fe)	0.03	0.4
Manganese (mg/l Mn)	0.02	0.13
Fluoride (mg/l F)	0.52	3.0
Chloride (mg/l Cl)	2,73	533.0
Nitrite (mg/l NO ₂)	0.01	6.0
Nitrate (mg/I NO ₃)	2.17	50.0
Alkalinity (mg/I CaCO ₃)	138.00	
Carbonate (mg/I CO ₃)	Nil	_
Bicarbonate (mg/I HCO ₃)	168.36	
Sulphate (mg/l SO ₄)	0.22	483.0
Phosphate (mg/I PO ₄)		
Copper(mg/I Cu)	0.001	5.0
Aluminum(mg/I AI)	0.002	0.4
Chromium(mg/I Cr)	0.002	0.1
Boron(mg/I B)	0.100	0.3
Lead (mg/l)	Nil	
Total Coliform Per 100 ml		
Fecal Coliform Per 100 ml		Ethiopian Standard, maximum allowable

The test result can be compared with the Ethiopian Standard maximum allowable REMARK:concentration (mg/l) presented on the last column. The water sample was collected and submitted to our laboratory by the client.

Checked by:

Approved by:

የሙሃ ሥራዎች ዲዛዶንና ቁጥጥር ድርጅት ባቦራቶሬ ስንሰግሎት ንዑስ የሥረ ሂደት POY TET HEA

Water Works Design and Supervision **Enterprise Laboratory Service Sub Process**

Water Quality Section P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

Addis Ababa

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Gurage Zone	Standard
DATE OF COLLECTION	26/11/2013	maximum
DATE RECEIVED	29/11/2013	allowable Concentration
CLIENTS ID.NO.	Tiya	(mg/l)
LAB.ID NO.	923/2006	 _
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	244.00	
T. Dissolved Solid 105°C(mg/l)	240.00	1776.0
Electrical Conductivity (µS/cm)	398.00	_
PH	7.60	 6.5-8.5
Ammonia (mg/l NH₃)	0.29	2.0
Sodium (mg/l Na)	25.00	358.0
Potassium (mg/l K)	7.90	
Total Hardness (mg/l Ca CO ₃)	172.00	392.0
Calcium (mg/l Ca)	44.00	
Magnesium (mg/l Mg)	14.88	_
Total Iron (mg/l Fe)	0.07	0.4
Manganese (mg/l Mn)	0.03	0.13
Fluoride (mg/l F)	0.86	3.0
Chloride (mg/l CI)	6.37	533.0
Nitrite (mg/I NO ₂)	0.04	6.0
Nitrate (mg/I NO ₃)	0.74	50.0
Alkalinity (mg/l CaCO ₃)	214.00	_
Carbonate (mg/I CO ₃)	Nil	_
Bicarbonate (mg/I HCO ₃)	261.08	
Sulphate (mg/I SO ₄)	0.22	483.0
Phosphate (mg/I PO ₄)		
Copper(mg/I Cu)	0.005	5.0
Aluminum(mg/I AI)	0.008	0.4
Chromium(mg/l Cr)	Trace	0.1
	4 4 4 4	

Boron(mg/I B) REMARK:-The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested	by:	11113	Processed	Ву

Checked by:

Approved by:

and Superv Coratory Service

Date: 23-12-2013

Date 23/12/2013

0.072

0.3

የሙሃ ሥራዎች ዲዛይንና ቁጥጥር ድርጅት ባቦፊቶፊ ስ7ልግሎት ንውስ የሥረ ሂደት የውሃ ተራት ክፍል

Water Works Design and Supervision **Enterprise Laboratory Service Sub Process**

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Gurage Zone	Standard
DATE OF COLLECTION	30/12/2013	maximum
DATE RECEIVED	2/1/2014	allowable
CLIENTS ID.NO.	Koshe	Concentration
LAB.ID NO.	1196/2006	
Colour (app)	Colourless	_
Odor	Odorless	_
Taste	Tasteless	_
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	470.0	_
T. Dissolved Solid 105°C(mg/l)	460.0	1776.0
Electrical Conductivity (µS/cm)	750	_
P ^H	7.97	6.5-8.5
Ammonia (mg/l NH ₃)	1.53	2.0
Sodium (mg/l Na)	138.00	358.0
Potassium (mg/l K)	8.60	
Total Hardness (mg/l Ca CO ₃)	70.00	392.0
Calcium (mg/l Ca)	16.80	
Magnesium (mg/l Mg)	6.72	
Total Iron (mg/l Fe)	0.17	0.4
Manganese (mg/l Mn)	0.06	0.13
Fluoride (mg/l F)	1.14	3.0
Chloride (mg/l Cl)	5.46	533.0
Nitrite (mg/I NO ₂)	Trace	6.0
Nitrate (mg/I NO ₃)	0.08	50.0
Alkalinity (mg/l CaCO ₃)	410.00	
Carbonate (mg/l CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	500.20	
Sulphate (mg/l SO ₄)	0.33	483.0
Phosphate (mg/I PO ₄)	0,49	
Copper(mg/l Cu)	Trace	5.0
Aluminum(mg/l Al)	0.012	0.4
Chromium(mg/I Cr)	0.002	0.1
Boron(mg/l B)	0.063	0.3

The test result can be compared with the Ethiopian Standard, maximum allowable concentration (mg/l) indicated on the last column The water sample was collected and 13 10 submitted to our laboratory by the client.

Tested	by:	Fues
Date:]	71	Lliy

Processed By Tefens Date 17/1/19

Checked by

Approved by

Date:

and Suger fotory Sarrice

የሙሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ሳቦራትሪ ስንሰግሱት ንዑስ የሥሪ ሂደት ያውሃ ጥራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

-		-
	e-mail w.w.d.s.e@ethionet.et	
	Fax. 231 - 110 - 01 33 / 1/01 00 30	

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Gurage Zone	Standard
DATE OF COLLECTION	2/1/2014	maximum
DATE RECEIVED	9/1/2014	allowable
CLIENTS ID.NO.	Kella	Concentration (mg/l)
LAB.ID NO.	1221/2006	_
Colour (app)	Colourless	_
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	388.00	
T. Dissolved Solid 105°C(mg/l)	380.00	1776.0
Electrical Conductivity (µS/cm)	570.00	
PH	7.12	6.5-8.5
Ammonia (mg/l NH ₃)	0.24	2.0
Sodium (mg/l Na)	21.50	358.0
Potassium (mg/l K)	7.00	
Total Hardness (mg/l Ca CO ₃)	264.00	392.0
Calcium (mg/l Ca)	84,00	
Magnesium (mg/l Mg)	12.96	
Total Iron (mg/l Fe)	0.10	0.4
Manganese (mg/l Mn)	Trace	0.13
Fluoride (mg/l F)	0.61	3.0
Chloride (mg/l Cl)	3.64	533.0
Nitrite (mg/I NO ₂)	Trace	6.0
Nitrate (mg/I NO ₃)	1.73	50.0
Alkalinity (mg/l CaCO ₃)	212.00	
Carbonate (mg/l CO ₃)	Nil	_
Bicarbonate (mg/I HCO ₃)	258.64	
Sulphate (mg/I SO ₄)	114.90	483.0
Phosphate (mg/I PO ₄)		
Copper(mg/l Cu)	0.033	5.0
Aluminum(mg/I Al)	Trace	0.4
Chromium(mg/l Cr)	0.001	0.1
Boron(mg/l B)	0.065	0.3
Zinc (mg/l)	5 - 5	15

Tested by: Processed By Tutul
Date: 17 01 14 Date 17 11 14

Checked by:

Approved by:_

Date 19/01/11

and Supervisi

Date: 12/01/19

የውሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ሳቦራችሪ ስንሰግሎት ንዑስ የሥሪ ሂደት *የውሃ ጥራት ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Wolaita	Standard
DATE OF COLLECTION	19/1/2014	maximum
DATE RECEIVED	28/1/2014	allowable
CLIENTS ID.NO.	Humbo	Concentration (mg/l)
LAB.ID NO.	1431/2006	_
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	216.00	
T. Dissolved Solid 105°C(mg/l)	210.00	1776.0
Electrical Conductivity (µS/cm)	352.00	
PH	6.88	6.5-8.5
Ammonia (mg/I NH ₃)	0.14	2.0
Sodium (mg/l Na)	35.50	358.0
Potassium (mg/l K)	8.90	
Total Hardness (mg/l Ca CO ₃)	108.00	392.0
Calcium (mg/l Ca)	27.20	
Magnesium (mg/l Mg)	9.60	
Total Iron (mg/l Fe)	0.03	0.4
Manganese (mg/l Mn)	Trace	0.13
Fluoride (mg/l F)	0.58	3.0
Chloride (mg/I CI)	3.64	533.0
Nitrite (mg/l NO ₂)	0.02	6.0
Nitrate (mg/I NO ₃)	0.74	50.0
Alkalinity (mg/l CaCO ₃)	180.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	219.60	
Sulphate (mg/I SO ₄)	0.22	483.0
Phosphate (mg/I PO ₄)	0.22	
Copper(mg/I Cu)	Trace	5.0
Aluminum(mg/l Al)	0.002	0.4
Chromium(mg/I Cr)	0.001	0.1
Boron(mg/l B)	0.120	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Date: 04-02-2014 Date 4/2/19

Checked by:

Approved by:

Date:

5/2/14

የሙሃ ሥራዎች ዲዛይንና ቁጥጥር ድርጅት ሳቦራቶሬ ስንስግሎት ንውስ የሥረ ሂደት POY TET HEA

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Silte	Standard
DATE OF COLLECTION	23/1/2014	maximum
DATE RECEIVED	28/1/2014	allowable
CLIENTS ID.NO.	Mito	Concentration (mg/l)
LAB.ID NO.	1432/2006	
Colour (app)	Colourless	_
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	272.00	_
T. Dissolved Solid 105 ⁰ C(mg/l)	260.00	1776.0
Electrical Conductivity (µS/cm)	430.00	_
D _H	7.56	6.5-8.5
Ammonia (mg/I NH ₃)	0.15	2.0
Sodium (mg/l Na)	53.00	358.0
Potassium (mg/l K)	10.00	_
Total Hardness (mg/l Ca CO ₃)	118.00	392.0
Calcium (mg/l Ca)	22.40	_
Magnesium (mg/l Mg)	14.88	_
Total Iron (mg/l Fe)	0.04	0.4
Manganese (mg/l Mn)	Trace	0.13
Fluoride (mg/l F)	1.96	3.0
Chloride (mg/l Cl)	7.28	533.0
Nitrite (mg/I NO ₂)	0.02	6.0
Nitrate (mg/I NO ₃)	4.14	50.0
Alkalinity (mg/l CaCO ₃)	214.00	_
Carbonate (mg/I CO ₃)	Nil	_
Bicarbonate (mg/I HCO ₃)	261.08	_
Sulphate (mg/I SO ₄)	0.33	483.0
Phosphate (mg/l PO ₄)	0.26	_
Copper(mg/I Cu)	0.007	5.0
Aluminum(mg/l Al)	Trace	0.4
Chromium(mg/I Cr)	Trace	0.1
Boron(mg/l B)	0.240	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample, was collected and submitted to our laboratory by the client.

Tested by: Processed By

Checked by:

Approved by:

Date:

Date: 04-02-2014 Date

የሙሃ ሥራዎች ዲዛይንና ቁጥጥር ድርጅት ባበፊቶሪ ስንልግሎት ንውስ የሥረ ሂደት 804 TG7 15A

Water Works Design and Supervision **Enterprise Laboratory Service Sub Process**

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SOURCE OF SAMPLE		Ethiopian
LOCATION	Silite Zone	Standard
DATE OF COLLECTION	4/2/2014	maximum
DATE RECEIVED	10/2/2014	Concentration
CLIENTS ID.NO.	Kibet No 1	(mg/l)
LAB.ID NO.	1525/2006	
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	1 1
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	312.00	_
T. Dissolved Solid 105°C(mg/l)	300.00	1776.0
Electrical Conductivity (µS/cm)	467.00	_
P ^H	6.69	6.5-8.5
Ammonia (mg/l NH ₃)	0.21	2.0
Sodium (mg/l Na)	33.00	358.0
Potassium (mg/l K)	8.70	
Total Hardness (mg/l Ca CO ₃)	184.00	392.0
Calcium (mg/l Ca)	63.20	_
Magnesium (mg/I Mg)	6.24	_
Total Iron (mg/l Fe)	0.02	0.4
Manganese (mg/l Mn)	0.06	0.13
Fluoride (mg/l F)	0.58	3.0
Chloride (mg/l Cl)	6.37	533.0
Nitrite (mg/I NO ₂)	0.06	6.0
Nitrate (mg/I NO ₃)	19.12	50.0
Alkalinity (mg/l CaCO ₃)	230.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/l HCO ₃)	280.60	_
Sulphate (mg/l SO ₄)	2.77	483.0
Phosphate (mg/l PO ₄)	0.19	
Copper(mg/I Cu)	0.0198	5.0
Aluminum(mg/l Al)	Trace	0.4
Chromium(mg/I Cr)	0.010	0.1
Boron(mg/l B)	0.233	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested by: It Date: 17/02/14

Processed By Date 17

Checked by

Approved by

oratory Service

የሙሃ ሥራዎች ዲዛዴንና ቁጥፕር ድርጅት ሳቦራቶሪ ስንልግሎት ንውስ የሥረ ሂደት 80.4 TET 19.A

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Gurage	Standard
DATE OF COLLECTION	15/2/2014	maximum
DATE RECEIVED	19/2/2014	allowable
CLIENTS ID.NO.	Kela No-2	Concentration (mg/l)
LAB.ID NO.	1604/2006	_
Colour (app)	Colourless	_
Odor	Odorless	_
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	288.00	
T. Dissolved Solid 105°C(mg/l)	280.00	1776.0
Electrical Conductivity (µS/cm)	422.00	
P ^H	6.57	6.5-8.5
Ammonia (mg/l NH ₃)	0.16	2.0
Sodium (mg/l Na)	33.00	358.0
Potassium (mg/l K)	5.50	= =====================================
Total Hardness (mg/l Ca CO ₃)	164.00	392.0
Calcium (mg/l Ca)	47.20	
Magnesium (mg/l Mg)	11.04	
Total Iron (mg/l Fe)	0.07	0.4
Manganese (mg/l Mn)	0.01	0.13
Fluoride (mg/l F)	1.06	3.0
Chloride (mg/l Cl)	7.28	533.0
Nitrite (mg/I NO ₂)	0.02	6.0
Nitrate (mg/I NO ₃)	1.01	50.0
Alkalinity (mg/l CaCO ₃)	180,00	
Carbonate (mg/I CO ₃)	Nil	-
Bicarbonate (mg/I HCO ₃)	219.60	<u></u>
Sulphate (mg/l SO ₄)	44.54	483.0
Phosphate (mg/I PO ₄)	0.24	_
Copper(mg/I Cu)	0.020	5.0
Aluminum(mg/l Al)	0.008	0.4
Chromium(mg/I Cr)	0.006	0.1
Boron(mg/l B)	0.006	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample collected and submitted to our laboratory by the client.

Tested by: 14

Processed By Justin

Approved by:

Date: 25/2/14

Date 25/2/14

የውሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ባቦራቶሬ ስ70ግሎት ንውስ የሥረ ሂደት 80.4 TET 1950

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Silte	Standard
DATE OF COLLECTION	18/2/2014	maximum
DATE RECEIVED	19/2/2014	allowable
CLIENTS ID.NO.	Alem gebeya	Concentration (mg/l)
LAB.ID NO.	1606/2006	
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	_
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	472.00	
T. Dissolved Solid 105°C(mg/l)	460.00	1776.0
Electrical Conductivity (µS/cm)	706.00	
P ^H	7.10	6.5-8.5
Ammonia (mg/l NH ₃)	0.12	2.0
Sodium (mg/l Na)	109.00	358.0
Potassium (mg/l K)	11.90	
Total Hardness (mg/l Ca CO ₃)	160,00	392.0
Calcium (mg/l Ca)	45,60	_
Magnesium (mg/l Mg)	11.04	_
Total Iron (mg/l Fe)	0.16	0.4
Manganese (mg/l Mn)	0.09	0.13
Fluoride (mg/I F)	2.04	3.0
Chloride (mg/l Cl)	5.46	533.0
Nitrite (mg/I NO ₂)	0.05	6.0
Nitrate (mg/I NO ₃)	0.25	50.0
Alkalinity (mg/l CaCO ₃)	384.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	468.48	
Sulphate (mg/l SO ₄)	0.44	483.0
Phosphate (mg/I PO ₄)	0.12	_
Copper(mg/I Cu)	0.040	5.0
Aluminum(mg/l Al)	0.010	0.4
Chromium(mg/l Cr)	0.004	0.1
Boron(mg/l B)	0.025	0.3

The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested by:	Processed By
Date: 25/2/14	Date 25/2/14

Date

Checked by:

Approved by:

የውሃ ሥራዎች ዲዛዶንና ቁጥጥር ድርጅት ሳቦራችል ስንልግሎት ንዑስ የሥረ ሂደት *የውሃ ጥራት ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Silte	Standard
DATE OF COLLECTION	13/2/2014	maximum
DATE RECEIVED	19/2/2014	allowable
	Mito	Concentration
CLIENTS ID.NO.	Mito	(mg/l)
LAB.ID NO.	1605/2006	_
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	270.00	
T. Dissolved Solid 105°C(mg/l)	260.00	1776.0
Electrical Conductivity (µS/cm)	420.00	
P ^H	7.33	6.5-8.5
Ammonia (mg/I NH ₃)	0.11	2.0
Sodium (mg/l Na)	46.50	358.0
Potassium (mg/l K)	9.60	
Total Hardness (mg/l Ca CO ₃)	132.00	392.0
Calcium (mg/l Ca)	33.60	_
Magnesium (mg/l Mg)	11.52	_
Total Iron (mg/l Fe)	0,04	0.4
Manganese (mg/l Mn)	0.01	0.13
Fluoride (mg/l F)	1.12	3.0
Chloride (mg/l Cl)	4.55	533.0
Nitrite (mg/l NO ₂)	0.01	6.0
Nitrate (mg/l NO ₃)	3.07	50.0
Alkalinity (mg/l CaCO ₃)	210.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	256.20	
Sulphate (mg/I SO ₄)	0.22	483.0
Phosphate (mg/l PO ₄)	0,17	<u></u>
Copper(mg/I Cu)	0.026	5.0
Aluminum(mg/l Al)	0.006	0.4
Chromium(mg/l Cr)	0.007	0.1
Boron(mg/l B)	0.051	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested by: Processed By July

Checked by:

Approved by:

Date: 2512/14

Date 25/2/14

Date 26/2/

ate: 26/2/1

የሙሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ባቦራቶሪ ስንሰግሎት ንውስ የሥረ ሂደት PO-4 TAA 19:0

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SELECTED PHY	SIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS
Client/Project:	TAM Geo-Engineering P.L.C.

SOURCE OF SAMPLE	Well	- 1 1	Ethiopian
LOCATION	Sidama Zone		Standard
DATE OF COLLECTION	19/2/2014		maximum
DATE RECEIVED	25/2/2014		allowable
CLIENTS ID.NO.	Teferi Kela		Concentration
LAB.ID NO.	1622/2006		
Colour (app)	Colourless		
Odor	Odorless		
Taste	Tasteless		_
Turbidity (NTU)	2.92		7.0
Total Solids 105 °C (mg/l)	216.00		
T. Dissolved Solid 105°C(mg/l)	200.00		1776.0
Electrical Conductivity (µS/cm)	302.00		
P ^H	6.97		6.5-8.5
Ammonia (mg/I NH ₃)	0.16		2.0
Sodium (mg/l Na)	51.50		358.0
Potassium (mg/l K)	8.30		
Total Hardness (mg/l Ca CO ₃)	50.00		392.0
Calcium (mg/l Ca)	12.80		
Magnesium (mg/l Mg)	4.32		
Total Iron (mg/l Fe)	0.32		0.4
Manganese (mg/l Mn)	0.01		0.13
Fluoride (mg/l F)	0.70		3.0
Chloride (mg/l Cl)	5.46		533.0
Nitrite (mg/I NO ₂)	0.13		6.0
Nitrate (mg/l NO ₃)	4.66		50.0
Alkalinity (mg/l CaCO ₃)	158.00		
Carbonate (mg/I CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	192.76	7	
Sulphate (mg/I SO ₄)	0.78		483.0
Phosphate (mg/l PO ₄)	0.26		
Copper(mg/I Cu)	0.05		5.0
Aluminum(mg/l Al)	Trace	7-	0.4
Chromium(mg/l Cr)	0.011		0.1
Boron(mg/l B)	Trace		0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Processed By

Checked by:

Approved by:

Date:

12014

Date 4/3/14

Date 2

የሙሃ ሥራዎች ዲዛደንና ቁጥጥር ድርጅት ባቦራቶሪ ስንልግሎት ንውስ የሥረ ሂደት 90.4 TGT 1950

Water Works Design and Supervision **Enterprise Laboratory Service Sub** Process

Water Quality Section P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

Addis Ababa

e-mail w.w.d.s.e@ethionet.et SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Wolaita	Standard
DATE OF COLLECTION	3/3/2014	maximum
DATE RECEIVED	3/3/2014	allowable Concentration
CLIENTS ID.NO.	Adilo No-1	(mg/l)
LAB.ID NO.	1682/2006	(mg//)
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	196,00	7.0
T. Dissolved Solid 105 ⁰ C(mg/l)	186.00	1776.0
Electrical Conductivity (µS/cm)	289.00	
P ^H	6.72	6.5-8.5
Ammonia (mg/l NH ₃)	0.15	2.0
Sodium (mg/l Na)	33.50	358.0
Potassium (mg/l K)	9.80	
Total Hardness (mg/l Ca CO ₃)	86.00	392.0
Calcium (mg/l Ca)	23.20	
Magnesium (mg/l Mg)	6.72	
Total Iron (mg/l Fe)	0.06	0.4
Manganese (mg/l Mn)	Trace	0.13
Fluoride (mg/l F)	0.71	3.0
Chloride (mg/l CI)	8.19	533.0
Nitrite (mg/I NO ₂)	0.01	6.0
Nitrate (mg/l NO ₃)	0.36	50.0
Alkalinity (mg/l CaCO ₃)	150.00	11.0
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	183.00	
Sulphate (mg/I SO ₄)	0.19	483.0
Phosphate (mg/I PO ₄)	0.65	100.0
Copper(mg/I Cu)	0.013	5.0
Aluminum(mg/l Al)	0.014	0.4
Chromium(mg/l Cr)	0.007	0.1
Boron(mg/I B)	0.042	0.3

esult can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested by: Date: 07/03/14

Processed By Date 3/14

Approved

Service

የውሃ ሥራዎች ዲዛጹንና ቁጥጥር ድርጅት ሳቦራችሪ ስንልግሱት ንዑስ የሥሪ ሂደት የውሃ ጥራት ክፍል

Water Works Design and Supervision Enterprise Laboratory Service Sub Process

Water Quality Section P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 Addis Ababa

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS

SOURCE OF SAMPLE	Well	Ethiopian
LOCATION	Wolaita	Standard
DATE OF COLLECTION	3/3/2014	maximum
DATE RECEIVED	3/4/2014	allowable Concentration
CLIENTS ID.NO.	Adilo No-2	(mg/l)
LAB.ID NO.	1683/2006	100507
Colour (app)	Colourless	
Odor	Odorless	
Taste	Tasteless	
Turbidity (NTU)	Trace	7.0
Total Solids I05 °C (mg/l)	198.00	
T. Dissolved Solid 105°C(mg/l)	190.00	1776.0
Electrical Conductivity (µS/cm)	295.00	
P ^H	6.75	6.5-8.5
Ammonia (mg/l NH ₃)	0.21	2.0
Sodium (mg/l Na)	36.50	358.0
Potassium (mg/l K)	10.10	
Total Hardness (mg/l Ca CO ₃)	92.00	392.0
Calcium (mg/l Ca)	24.00	
Magnesium (mg/l Mg)	7.68	
Total Iron (mg/l Fe)	0.11	0.4
Manganese (mg/l Mn)	Trace	0.13
Fluoride (mg/l F)	0.70	3.0
Chloride (mg/l Cl)	6.37	533.0
Nitrite (mg/I NO ₂)	0.01	6.0
Nitrate (mg/I NO ₃)	0.42	50.0
Alkalinity (mg/I CaCO ₃)	156.00	
Carbonate (mg/I CO ₃)	Nil	
Bicarbonate (mg/I HCO ₃)	190.32	-
Sulphate (mg/l SO ₄)	0.19	483.0
Phosphate (mg/I PO ₄)	0.27	
Copper(mg/I Cu)	0.020	5.0
Aluminum(mg/I AI)	0.018	0.4
Chromium(mg/l Cr)	0.009	0.1
Boron(mg/l B)	0.036	0.3

REMARK:- The test result can be compared with the Ethiopian Standard maximum allowable concentration (mg/l) indicated on the last column. The water sample was collected and submitted to our laboratory by the client.

Tested by: Adm Date: 07/03/14

Processed By ruful
Date 7/3/14

Checked by: Date 1003

Approved by:
Date: 10/3/14

የውሃ ሥራዎች ዲዛይንና ቁጥጥር ድርጅት ሳቦራትሪ ስንሰግሱት ንዑስ የሥረ ሂደት *የውሃ ጥራት ክፍል*

Water Works Design and Supervision Enterprise Laboratory Service Sub Process Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

Addis Ababa

SOURCE OF SAMPLE	Well		
LOCATION	Alemgeheya		
DATE OF COLLECTION	21/3/2014		
DATE RECEIVED	24/3/2014		
CLIENTS ID.NO.	Alemgebeya 8hr		
LAB.ID NO.	1997/2006		
Colour (app)	Colourless		
Odor	Odorless		
Taste	Tasteless		
Turbidity (NTU)	Trace		
Total Solids I05 °C (mg/l)	468.00		
T. Dissolved Solid 105°C(mg/l)	460.00		
Electrical Conductivity (µS/cm)	723.00		
P ^H	7.27		
Ammonia (mg/l NH ₃)	0.34		
Sodium (mg/l Na)	113,00		
Potassium (mg/l K)	12.90		
Total Hardness (mg/l Ca CO ₃)	160.00		
Calcium (mg/l Ca)	51.20		
Magnesium (mg/l Mg)	7.68		
Total Iron (mg/l Fe)	0.05		
Manganese (mg/l Mn)	0.00		
Fluoride (mg/l F)	1.57		
Chloride (mg/I CI)	5.46		
Nitrite (mg/I NO ₂)	0.01		
Nitrate (mg/l NO ₃)	1.17		
Alkalinity (mg/l CaCO ₃)	386.00		
Carbonate (mg/l CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	470.92		
Sulphate (mg/I SO ₄)	0.19		7
Phosphate (mg/l PO ₄)	0.27		31.2
Copper(mg/l Cu)	0.033		
Aluminum(mg/l Al)	0.006		
Chromium(mg/l Cr)	Trace		
Boron(mg/I B)	0.040		
Zinc (mg/l) REMARK:- The water sample wa	0.128		

Tested by: 44 Date: 09/04/14

Processed By Tolds

Checked by: Date

and Super

Approved by:

Date: 9/04/14

የውሃ ሥራዎች ዲዛዶንና ቁጥጥር ድርጅት ባቦራቶሪ ስንሰግሎት ንውስ የሥፈ ሂደት 90.4 TEA 15A

Water Works Design and Supervision Enterprise Laboratory Service Sub Process Water Quality Section

P.O.Box 2561

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98 e-mail w.w.d.s.e@ethionet.et Addis Ababa

SOURCE OF SAMPLE	Well		
LOCATION	Alemgeheya		P 1
DATE OF COLLECTION	22/3/2014		
DATE RECEIVED	24/3/2014		
CLIENTS ID.NO.	Alemgebeya 24hr		
LAB.ID NO.	1998/2006		
Colour (app)	Colourless		
Odor	Odorless		
Taste	Tasteless		
Turbidity (NTU)	Trace		
Total Solids I05 °C (mg/l)	490.0		
T. Dissolved Solid 105°C(mg/l)	480.0		
Electrical Conductivity (µS/cm)	737.00		
P ^H	7.2		
Ammonia (mg/I NH ₃)	0.32		
Sodium (mg/l Na)	112.00		
Potassium (mg/l K)	16.00		
Total Hardness (mg/I Ca CO ₃)	180.00	ľ	
Calcium (mg/l Ca)	56.00		
Magnesium (mg/l Mg)	9.60		
Total Iron (mg/l Fe)	0.07		
Manganese (mg/l Mn)	0.00		
Fluoride (mg/l F)	1.36		
Chloride (mg/l Cl)	6.37		
Nitrite (mg/I NO ₂)	0.09		
Nitrate (mg/I NO ₃)	2.33		
Alkalinity (mg/l CaCO ₃)	390.00		
Carbonate (mg/I CO ₃)	Nil		
Bicarbonate (mg/I HCO ₃)	475.80		
Sulphate (mg/I SO ₄)	0.19		
Phosphate (mg/I PO ₄)	0.21		
Copper(mg/I Cu)	0.0132		7.
Aluminum(mg/I AI)	0.014		
Chromium(mg/I Cr)	Trace		
Boron(mg/l B)	0.030		
Zinc (mg/l)	0.115		

/	0	1,00 4200 0
Tested by: A Date: Oglo4 / 14	Processed By To de Date OH IH	Checked by: Date: 9/04/11

boratory Service

የሙሃ ሥራዎች ዲዛዴንና ቁጥጥር ድርጅት ሳቦፊቶሪ ስንልግሎት ንውስ የሥፈ ሂደት POY TET 1950

Water Works Design and Supervision Enterprise Laboratory Service Sub **Process**

Water Quality Section

P.O.Box 2561 Addis Ababa

Tel. 251 - 116 - 18 55 16/61 45 01 Fax. 251 - 116 - 61 53 71/61 08 98

e-mail w.w.d.s.e@ethionet.et

SELECTED PHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS Client/Project: TAM Geo-Engineering P.L.C. SOURCE OF SAMPLE Well LOCATION Sidama DATE OF COLLECTION 15/6/2014 26/6/2014 DATE RECEIVED BH-2 Teferi CLIENTS ID.NO. Kella 2823/2006 LAB.ID NO. Colourless Colour (app) Odorless Odor Tasteless Taste Turbidity (NTU) Trace Total Solids I05 °C (mg/l) 248.00 240.00 T. Dissolved Solid 105°C(mg/l) Electrical Conductivity (µS/cm) 396.00 7.64 Ammonia (mg/I NH₃) 0.32 Sodium (mg/l Na) 63.00 4.00 Potassium (mg/l K) Total Hardness (mg/l Ca CO₃) 66.00 16.80 Calcium (mg/l Ca) 5.76 Magnesium (mg/l Mg) 0.02 Total Iron (mg/I Fe) Trace Manganese (mg/l Mn) 1.38 Fluoride (mg/l F) 10.01 Chloride (mg/l Cl) 0.002 Nitrite (mg/I NO₂) Nitrate (mg/I NO₃) 0.45 198.00 Alkalinity (mg/l CaCO₃) Carbonate (mg/I CO₃) Nil Bicarbonate (mg/I HCO₃) 241.56 Sulphate (mg/I SO₄) 0.33 Phosphate (mg/I PO₄) 0.19 0.040 Copper(mg/I Cu) 0.002 Aluminum(mg/l Al) Chromium(mg/I Cr) Trace 0.119 Boron(mg/l B) REMARK:- The water sample was collected and submitted to our laboratory by the client.

Tested by: Date: 27/6/14

Processed By

Checked Date

Approved by

hate:

aboratory Services and Supervi