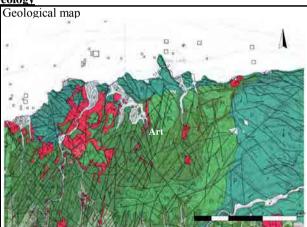
Attachment —8 Geothermal Profile

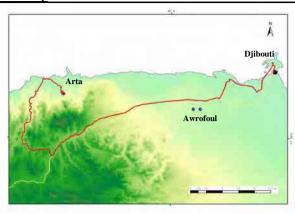
Geothermal Prospect Profile Sheet

as of Octber 2014


A-3

4

No. 1 Arta Region Arta Topography **Development Priority** Geothermal Potential ODDEG Priority

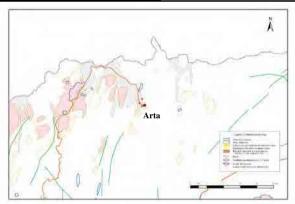

- Deeply dissected with ragged hills on both side along the access road
- The fumarole point and alteration zone are located on a edge of wadi where widely eroded;
- The mountains around are deeply dissected showing older

Geology

- Dalha basalt together with NS oriented Ribta rhyolite that runs through the fumarole point
- Rock outcrops are generally weathered
- NS oriented fractures
- NS oriented distribution of three fumaroles described on the geological map
- The fumaroles seemingly along the rhyolite outcrops

Access map

Sampling location N 11°33'44.50", E42°50'48.70"


Accessibility

Inhabitant

- Located on the southern coast of Tadjoura Bay; about 2.5 km from the coast to the fumarole point - ca. 2.5 km from the coastal line to the fumarole point

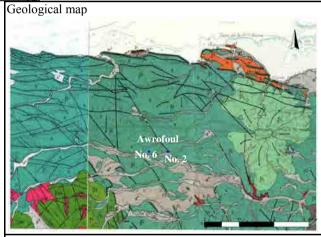
- ca. 40 min. from Djibouti city to the junction, ca. 45 min. on unpaved road to the fumarole point through military training field

Satellite Imagery Analysis Result

Acidic alteration spot and broad weak alterated halo. Associated with rhyolite.

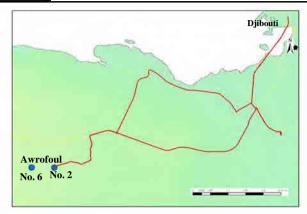
ļ	valuations of Geothermal Resources			I.
	Temp. of formation	200-150	degree C.	l
	Fumarolic Gas Origin	-	degree C.	l
	Geochemical Temperature	-	degree C.	ŀ
	Salinity	>30,000	μ S/cm	

Transmission Condition Required T/L km substation (city) Connection Socio-Environmental Aspect Barren Natutral Condition


a few

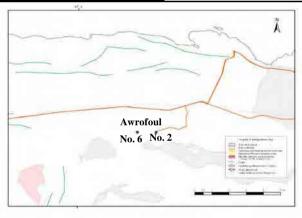
Locatio			Arts 2014/5/20
Tempe	esture (*C	ij	98.7
H ₂ O and NCG	H,O	(vet(4)	
(total 100%)	NCO	(volta)	100
NO	H ₂ S	(vol%)	.0
composition	CO	(vol%)	0
(total 100%)	R par	(vsffs)	100
	H ₂	(107%)	0.002
	N ₂	(volta)	78.3
Rgai	CH4	(vel%)	<0.01
(tetal ~100%)	0,	(volf4)	20.8
P. C.	He	(vn?'-)	0.0003
	Ar	(V07%)	0.92

- Hot water temperature= 73°C
- No other geothermal manifestation
- Water level G.L- 130m


Geology

- Tadjoura basalt 3.4-1.2 Ma
- no remarkable structures observed

Djibouti Sampling location N 11°33'44.50", E42°50'48.70' Development Priority
Survey team Priority ODDEG Priority


Access map

Accessibility

A few km from N.1 road

Satellite Imagery Analysis Result

no

E	valuations of Geothermal Resources		
	Temp. of formation	-	degree C.
	Fumarolic Gas Origin	-	degree C.
	Geochemical Temperature	52-191	degree C.
			Q /

Salinity $\pm 1,000$ μ S/cm

T	ransmission Condition	
	Required T/L	km
	Connection	substation (city)
S	ocio-Environmental Aspect	
	Natutral Condition	-

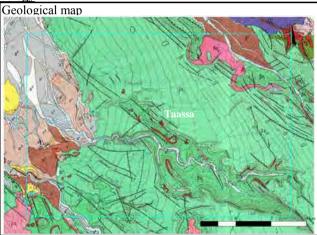
Inhabitant

Location	Data	Temperature (°C)	lift.	Conductivity (mS/m)	SiO ₂ (mg L)	Cl _{gm}	SO ₁ (mg/L)	T-CO ₁ (mg-L)
Awrofinl No.2	41,781	-56	80	156	88	253	100	318
		HCO ₁ (mg/L)	cost.)	Li ing/Li	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)
		158	1	10.01	158.	22	54	31
		Al. (mg/L)	Tile (mg/L)	H ₂ S (mg/L)	H (mg/L)	As (mg/L)	I-Hg (mg/L)	
		<0.01	0	<0.5	<0.01	0	<0.0005	
		T quartz (°C)	T chalcedony	TNi-K	UNn-K-Cu ⁻¹ (*C)	T K-Mg ** ('C)		
		118	103	233	188	29()		

*1	Applements (2000)), condition	diam'r.

² Founier (1977) 1 Amórsson (2000)

*5 Giggenbuch (1988)

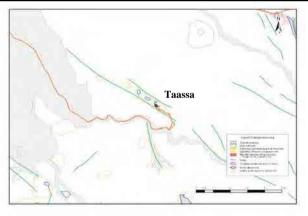

Locution	Date	Lumperature (°C)	Telf	(mS/m)	(mg/L)	(mg/L)	50 ₁ (ng/L)	(ng L)
Awarfuul No.6	41,806	74	- 8	321	(114)	(221)	70	30
		HCO, (mgT)	CO, (aug.L)	(ii (ing/L)	No mg/L)	K (mg/L)	Ca (reg/L)	Mg (mg/L)
		129	0.	0	199	34	28	- 5
		Al (mg/L)	T-Fe (m)/L)	.H ₂ S (mg/L)	B (mg/L)	As (mg/L)	1-tlg (ng/L)	
		0	0	<0.5	<0.01	0	<0.0003	
		T quarte"	T chalcedony (C)	T Na ₂ K ^{**} (*C)	TNa-K-Ca** (°C)	T.K-Mg ('C)		
		133.	:139	:219	E196	96		

4 Fourner and Truesdell (1973)

- SW declining tilted slope
- NW or WNW oriented dissected valley;
- NW oriented narrow ridge, underlain by rhyolitic veins.

Geology

- Afar stratoid basalt (2.0 2.7 Ma) covered by Afar stratoid basalt (1.8 2.2 Ma);
- Vein or dyke of rhyolite
- NW oriented fractured zones;
- Geothermal manifestation along this orientations


Access map

Accessibility

- Located on mountainous area on a SE rim of Gaggade plain 20-25km south of Lac Asal
- ca. 2 hours from Djibouti to Lake Goubet, ca. 20 min. to the junction of unpaved road, ca. 1.5 hours on jaggy road, ca. 1.0 hours on desert, ca. 1.5 hours on food on ragged path

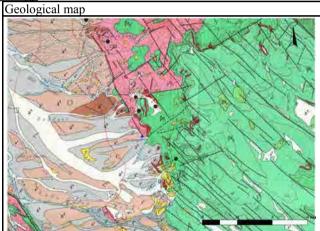
Satellite Imagery Analysis Result

acidic alteration spots and weak alterated halo. Associated with fractures.

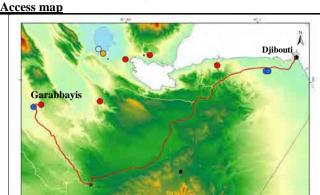
E	valuations of Geothermal Resources		
	Temp. of formation	200-250	degree C.
	Fumarolic Gas Origin		degree C.
	Geochemical Temperature		degree C.
	Salinity	±5,000	μ S/cm

Transmission Condition					
	Required T/L	<u>40</u>	km		
	Connection	P.K.51	substation (city)		
S	ocio-Environmental	Aspect			
	Natutral Condition		Barren		
	Inhabitant		None		

Locatio		Taassa				
Date	Date					
Tempe	Temperature (°C)					
H ₂ O and NCG	H_2O	(vo1%)	0			
(total 100%)	NCG	(vo1%)	100			
NCG	H ₂ S	(vol%)	0			
composition	CO ₂	(vo1%)	0			
(total 100%)	R gas	(vo1%)	100			
	H ₂	(vol%)	0.003			
	N_2	(vo1%)	79.3			
R gas	CH ₄	(vo1%)	0.13			
composition (total ~100%)	O ₂	(vo1%)	19.5			
	He	(vo1%)	0.0027			
	Ar	(vo1%)	1.1			

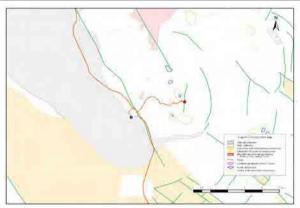

No. 6 Garabbayis Region Hanle Sampling location N 11°24'23.33", E42°10'50.48'

Topography Development Priority 1
Survey team Priority A-1
ODDEG Priority 2



- On the boundary zone between the Hanle Plain and the northern mountainous slope
- NW oriented boundary zone, parallel to the Hanle Plain,
- Fumaroles on steep slope facing south,

Geology


- Afar stratoid basalt (2.0-2.7 Ma) covered by Afar stratoid basalt (1.8 2.2 Ma)
- A large mass of rhyolite in the northern part of Garabbayis, western Yoboki
- NW oriented lineaments, parallel to Hanle plain

Accessibility

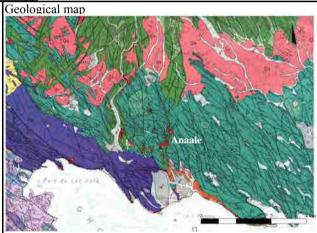
- Located on a north edge of southern part of the great Hanle plain
- ca. 2.5 hours from Djibouti city to Dikhil town, ca. a hour to the junction on N.1 road, ca. 2.5 km to the fumarole point by car, fairly good access conditions.

Satellite Imagery Analysis Result

acidic alteration spots and weak altered halo in recent cinder cones.

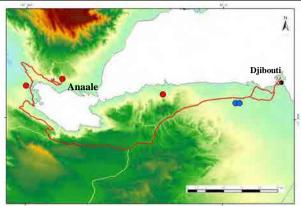
Broad acidic alteration with rhyolite.

E	valuations of Geothermal Resources			T	r
	Temp. of formation	150-200	degree C.		I
	Fumarolic Gas Origin	266	degree C.		(
	Geochemical Temperature		degree C.	S	00
					1
	Salinity	$\pm 5,000$	μ S/cm		

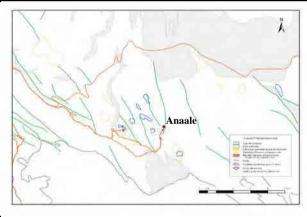

T	ransmission Conditio	<u>on</u>	
	Required T/L	<u>45</u>	km
	Connection	Dikhil	substation (city)
S	ocio-Environmental A	Aspect	
	Natutral Condition		Barren
	Inhabitant		None

Locatio	Garabbayis						
Date			2014/5/30				
Tempe	Temperature (°C)						
H ₂ O and NCG	H_2O	(vo1%)	99.98				
(total 100%)	NCG	(vo1%)	0.02				
NCG	H ₂ S	(vo1%)	0.0				
composition (total 100%)	CO ₂	(vo1%)	45.0				
	R gas	(vo1%)	55.0				
	H_2	(vo1%)	0.054				
	N_2	(vo1%)	93.5				
R gas	CH4	(vo1%)	1.0				
composition (total ~100%)	O_2	(vo1%)	3.6				
	He	(vo1%)	0.019				
	Ar	(vo1%)	1.8				

- Fumaroles located in a NS oriented, dissected valley with a relatively wide wadi
- Ragged mountainous topo around


Geology

- Dalha basalt on the floor part of valley, covered by Stratoid basalt (Tadjoura basalt 3.4 1.2 Ma)
- Spotted Ribta rhyolite on valley floor
- NS oriented structures


Access map

Accessibility

- Located on the northern coast of Goubet lake, west end of Tadjoura Bay
- ca. 30 min from the national road by car, ca 15 min. on foot to a fumarole point, ca. 2.5 hours to a strong fumarole point

Satellite Imagery Analysis Result

acidic alteration spot-mound (sinter cone) and weak alterated halo.

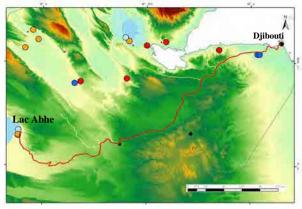
E	valuations of Geothermal Resources		
	Temp. of formation	100-150	degree C.
	Fumarolic Gas Origin	##	degree C.
	Geochemical Temperature		degree C.
	Salinity	±5 000	G/
	Salinity	$\pm 5,000$	u S/cm

T	ransmission Condition	<u>on</u>	
	Required T/L	<u>50</u>	km
	Connection	P.K.51	substation (city)
S	ocio-Environmental	<u>Aspect</u>	
	Natutral Condition		Barren
	Inhabitant		a few

Locatio	Location					
Date						
Tempe	rature (°C)	98.0			
H ₂ O and NCG	H_2O	(vol%)	99.88			
(total 100%)	NCG	(vo1%)	0.12			
NCG composition	H ₂ S	(vol%)	0.0			
	CO ₂	(vo1%)	94.1			
(total 100%)	R gas	(vo1%)	5.9			
	H_2	(vol%)	0.57			
	N_2	(vol%)	91.7			
R gas	CH ₄	(vo1%)	3.2			
composition (total ~100%)	O_2	(vol%)	2.4			
(He	(vol%)	0.14			
	Ar	(vol%)	2.0			

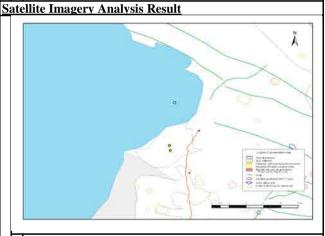
No. 12 SP 2 Region La Topography

- Boiling hot water (ca. 100 l/min), EC in a range of 6,000μ S/cm


- weak fumaroles on the top of two travertine

Geology

Geological map


- Lake deposit, desert deposit
- Stratoid basalt on north to east
- No remarkable structures observed on the plain
- No regularities in the travertine distribution observed

Access map

Accessibility

- Located on the western border of Ethiopia - ca. 2.5 hour from Djibouti to Dikhil, ca. 2.5 hour on desert from Dikhil to Lac Abhe

acidic-intermediate alteration spots in recent cinder cone. Acidic alteration mound (sinter cone).

E	valuations of Geothermal Resources		
	Temp. of formation		degree C.
	Fumarolic Gas Origin		degree C.
	Geochemical Temperature	136-158	degree C.
	Salinity	±5,000	μ S/cm
	Sammy	$\pm 3,000$	μ S/CIII

Location	Dine	Temperature (PG)	pft.	Conductivity (mS/m)	SiO ₃ (mg/L)	cr ingl)	so, mgt)	T-CO ₂ (mg·L)
Loc Abbe SP-1	41,786	90	100	582	108	1,080	348	- 0
		HCO ₁	co, (mgL)	L) (mg1.)	Na (mg L)	K (rog L)	Ca (nu:1.)	Mg (mg/L)
		12	- 4		956	156	220	- 0
		Al (mg L)	T-Fe (mg-L)	H ₂ S.	B (mg/L)	As ung L)	Telly (mg/L)	
		+0.01	0.5	10.5		. 0	< 0.0005	
		T quern	T chalcedony	T NarK ''	T Na-K-Cu ⁻¹ (°C)	T K-Mg " ("C)		
		/130	116	240	220	210		

1 Amorsson (2000), conductive cooling

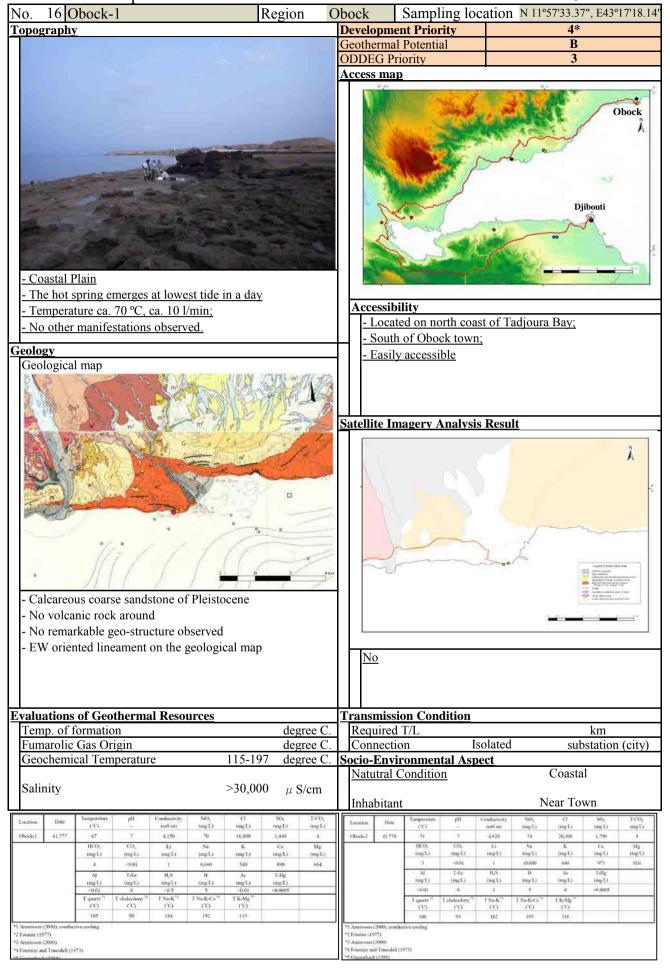
*3 Actorsson (200

*4 Fournier and Truesdell (197

T	ransmission Conditi	on	
	Required T/L	<u>75</u>	km
	Connection	Dikhil	substation (city)

Socio-Environmental Aspect

Natutral Condition Registered


Inhabitant a few

Location	Date	(°C)	yH.	(mS/m)	(mg.f.)	(mg1)	(mg 1.)	(mg/L)
Lac Abbe SP-2	41.786	96	18	581	124	1,690	345	
		HCO;	(mg L)	Li (mg/L)	Na (mg L)	K (mj:1)	(eg L)	Mg (mg·L)
		10	0	.0	948	172	221	.0
		Af img Ur	T-Fe (mg/L)	H,S (mg/L)	B ing Li	As (mg/L):	1-Hg (mg L)	
		+0.0	TE.	+0.5	1	0	V0.0005	
		T quarte*	T chalcodony: " (*C)	T.NeK.	T Na-K-Ca ¹³ T'Ci	TK-Mg ^H PCi		
		138	124	269	226	228		

*1 América (2000), conductive cooling

*2 Founier (1977) *3 American (2000)

*4 Fourney and Truesdell (1973)

Attachment —9 Draft Final Report Presentation Material

ODDEG's Comments reflected (02 Dec. 14)

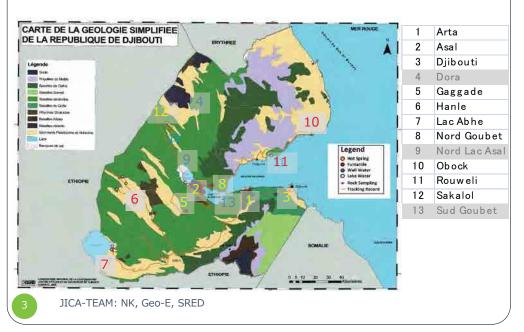
DATA COLLECTION SURVEY ON GEOTHERMAL DEVELOPMENT IN DJIBOUTI

Draft Final Report Presentation

November, 2014 Sheraton Hotel, Djibouti

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
 - Sumiko Resources Exploration and Development Co. Ltd. (SRED)


Acknowledgement

- The field survey was conducted jointly with the ODDEG and CERD in the hottest months of May and June, 2014.
- Our greatest thanks to be directed toward the ODDEG, who made various arrangements, as the counterpart.
- The same thanks directed to the CERD, who conducted geochemical analysis and useful technical communications also.
- We would also appreciate all the other Djiboutian officers who provided us with kind cooperation.

JICA-TEAM: NK, Geo-E, SRED

Location Map

Contents of the Presentation (1/2)

- 1. Background, Purpose
- 2. Background Information
 - 1. Present Situation of the Electric Sector
 - 2. National Development Strategy
- 3. Institutional Set-up: Our understandings ODDEG CERD
- 4. Donors' Assistance
- 5. Reconnaissance Survey and Analysis Conducted
 - a. Remote Sensing
 - b. Geology Rock thin sections, XRD, XRF
 - c. Geochemistry

4

Contents of the Presentation (2/2)

- 6. Selection of Prospective Sites (Resource)
- 7. Socio-Environmental Review
- 8. Proposed Site Selection for a Next Step of IICA's Assistance
- 9. Proposed Approach up to Test Drilling
- 10. Way Forward General Issues
- 11. Data Base
- 12.Photos

JICA-TEAM: NK, Geo-E, SRED

Background Information

 Why is geothermal energy to be developed in Djibouti?

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

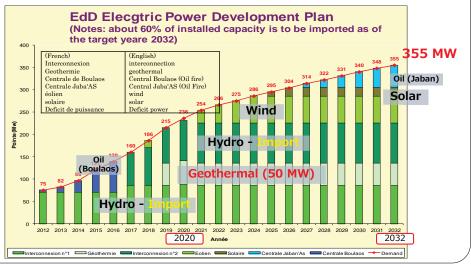
1. Back Ground, Purposes

- Background
 - ① Djibouti imports more than 80 % of electric energy from Ethiopia as of 2013;
 - ② No indigenous energy is available at present, except geothermal energy for electric generation;
 - 3 Geothermal development is a top priority.
- Activities and Purposes
 - To collect existing information and its review,
 - ② To conduct a reconnaissance survey,
 - To analyze the data collected for consideration of Japanese assistance approach on geothermal development
- 6

JICA-TEAM: NK, Geo-E, SRED

Present Situations of the Electric Sector

- Installed capacity:
 - Diesel engine generation system
 - Rated: 135 MW, Operational: 101 MW
- Energy supply and self-sufficiency


	2011	2012	2013
(a) Total Supply (GWh)	232.0	387.0	354.9
(b) Self Supply (GWh)	77.0	24.0	67.5
Self- Sufficient Ratio (%)	33.2	6.2	19.0
			Source: EdD

• Note: Djibouti started to import Electric energy *from Ethiopia* in November 2011

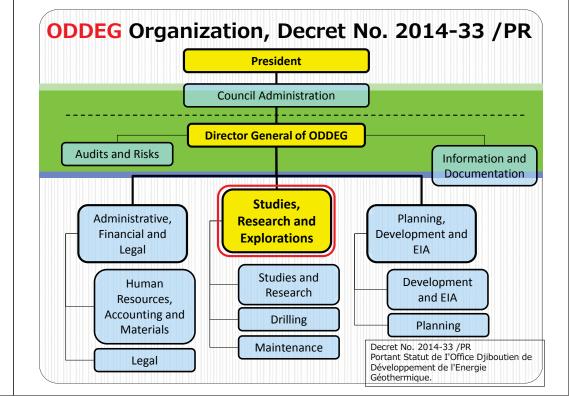
National development strategy

- VISION Djibouti 2035
 - The Djiboutian country revolutionizes 100% of thermal power generation dependence of 2010, for 100% of renewable energy use by 2020.

Institutional set-up: Our understanding

- 1. ODDEG
- 2. CERD

JICA-TEAM: NK, Geo-E, SRED


JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

Institutional set-up: ODDEG

Organization in charge of Geothermal Development:

- ODDEG (Djiboutian Office for Development of Geothermal Energy) was newly established in 2014
- Task: Up to resource confirmation (test wells), thereafter IPP is to be introduced.

Officers already assigned to ODDEG

Officers of ODDEG (as of July 2014)

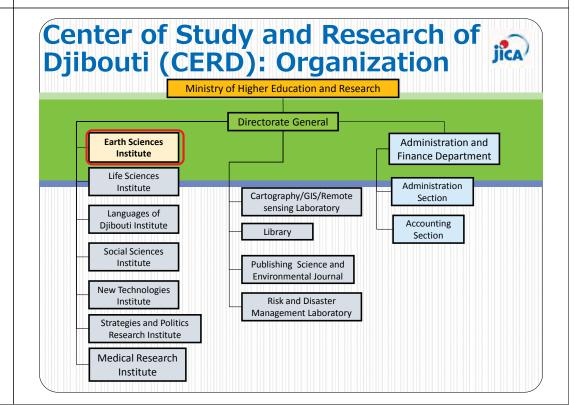
ODDEG	Former assignment	Person
Director	ISERST → EdD	1
Geophysicist (Ph.D)	CERD	1
Geophysical Engineer	CERD	1
Physicist	CERD	1
Reservoir Engineer (Ph.D)	CERD	1
Technician	CERD	1
Drilling Engineer	MENR	3
Planning	MENR	1
Development	MENR	1
tota	al	11

Corrected

13

JICA-TEAM: NK, Geo-E, SRED

Institutional set-up: CERD


- ISERST was first established in 1979.
- ISERST was re-organized to CERD in 2001.
 - CERD is the Djiboutian national researching center consisting of seven (7) research institutes.
 - Earth Science Institute is the one that conducts scientific researches on earth sciences.

ODDEG: Major Activities being conducted

Major Activities being conducted:

- The ODDEG handles the preparation work for the Assal test well drilling project.
- Ten 10 officers were officially transferred to ODDEG (July, 2014). Among those, <u>five</u> <u>professionals were from CERD.</u>
- The new office of ODDEG is now being constructed at P.K. 20, where then "Agriculture zone" was located.
- A set of drilling rig is being procured from Turkey.

14

Earth Sciences
Institute

Geology

Geochemistry

Geothermal

Applied Geophysics

New Energy and Energy Management

Geophysical Observatory Of Arta

17

JICA-TEAM: NK, Geo-E, SRED

AS of June, 2014

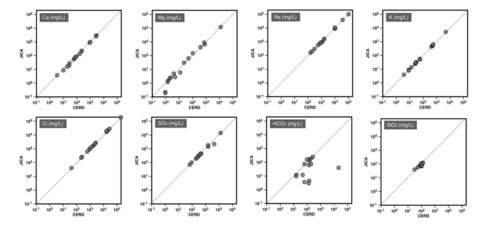
	PhD	Maste r	Bachelo r	others	Subtota l
Geology	2		1		3
Geothermal	1				1
Metallogeny	1				1
Geophysics	1	2			3
Cartography		3			3
Risk Management		1			1
Hydrogeology	1	1		3	5
Geochemist	1	4		2	7
Seismology		1		3	4
Drilling				2	2
Total	7	12	1	10	30

CERD: Geochemical Equipment Available

	Equipment	Model	Nos.	Notes
1	GC-MS (Gas chromatography-mass spectrometry)	Agilent Technologies 7890A&5975C	1	
2	ICP-OES (Inductively coupled plasma optical emission	HORIBA AS500	1	
3	HPLC (High performance liquid chromatography)	DIONEX ICS3000	1	Ion chromatography
4	Spectrophotometer (UV-VIS)	Lab Medic UV-VIS 1129	1	
5	Spectrophotometer (VIS)	JENWAY 6310	1	
6	Spectrophotometer (FT-IR) (Fourier-Transform-InfraRed-spectroscopy photometer)	BRUKER ALPHA-P	1	
7	FL-AAS (Flama Atomic absorption spectrometer)	AGA LABS 1381	1	Na and K only measurable
8	FL-AAS (Flama Atomic absorption spectrometer)	GBC SB-906	1	Not operational (Hollow cathode lumps N/A
9	pH. Conductivity meter	-	1	
10	Microscope	-	1	
the	ers available	•		,

Major items of water analysis: Generally operational

Gas analysis: Not available


FL-AAS: Hollow cathode lumps not available

Consumables (gas, reagents, glassware): running short

JICA-TEAM: NK, Geo-E, SRED

Counter-checking: Lab analysis results of CERD and JICA

Most of analysis results are in good agreement.

19

JICA-TEAM: NK, Geo-E, SRED

CERD Geochemistry: Issues identified

- Budgetary constraints partially due to free-services to other governmental organizations,
- Techniques to be enhanced, using updated analysis technologies, and
- Technical supports was requested to JICA

20

CERD(→ODDEG?): Geophysical survey equipment available

Survey	Туре	Producer	Quantity	Status	Installed Year
	ADU-07e (Receiver)	Metronix	2	Good	2010, 2012
МТ	MFS-06e (Induction Coil)	Metronix	6 (2 sets)	Good	2010, 2012
	EFP-06	Metronix	18 (3 sets)	Good	2010, 2012, 2014
TEM	Terra TEM	Monex GeoScope	1	Good	2012
Gravity	CG-5 Autograv	Scintrex	1	Good	2013
Electric	McOHM Profiler-4	ОУО	1	Good	2014

"Metronix" is usually used **for academics purposes**. Few Japanese industrial practitioners are familiar with it.

JICA-TEAM: NK, Geo-E, SRED

CERD (→ODDEG) Geophysical: Issues identified

- Not sufficient computer software available for TEM and MT data analysis: i.e. computer software for 2D analysis not available,
- Review of the existing MT-survey results to be needed for further capacity enhancement,

Note: Japanese Consultants are not familiar with the Metronix MT survey equipment; for rather academic use than practical use.

CERD: Geophysical survey conducted for geothermal

Survey	Туре	Producer	Quantity		
N. Goubet	TDEM	2010	32		
N. Goubet	MT	2010	30		
	TDEM	2011	35		
Lac Abhe	MT	2011	34		
	Gravity	2012	85		
	TDEM		46		
Obock	MT	2013	46		
	Gravity		122		

- Pre-feasibility studies were conducted for these prospectives.
- The studies were not made available for the JICA Team for review.

JICA-TEAM: NK, Geo-E, SRED

CERD Geology: Requests to JICA

- CERD wishes to have the following equipment for geological analysis
 - Rock thin section making facility
 - Polarized microscope
 - Stereo microscope
 - XRD equipment
 - XDF equipment
 - Fluid inclusion analysis equipment

Donors' Assistance

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

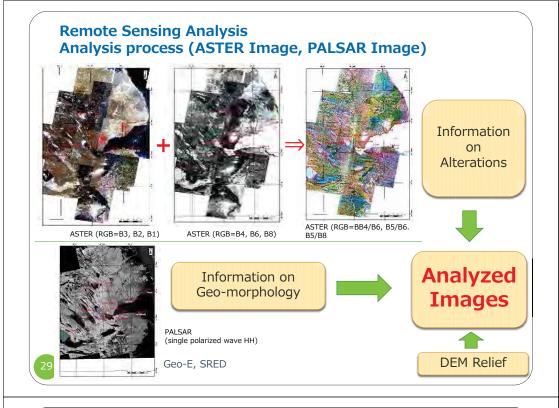
JICA-TEAM: NK, Geo-E, SRED

Reconnaissance Survey and Analysis Conducted

General Purpose:

Verification/Confirmation of the existing data as a base data for possible future JICA assistance

JICA Survey Team

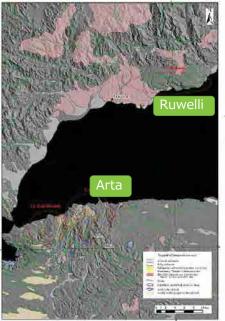

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

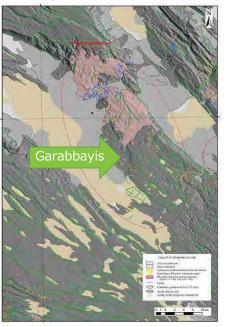
Other Donors' Assistance

Organization		Progra	ams
- 6	1. Past Record (1989 - 2013):	- 8	
	Short Course		20 person
	Six months Trai	nings	9 person
	Master degree of	ourse	1 person
UN-GTP	PhD		1 person
	2. This Year (2014)		
	Short Course		3 person
	Six months Tra		2 person
	Master degree o	ourse	-
	I		
	1. Technical Training for drilling Supervis	ion (2014	- 2016)
ICEIDA	2. Knowledge improvement of geotherma	explorat	ion and review of studies at Arta and Gaggad
	3. Improvement of management capacity	of geother	rmal development
		8	
	Application was submitted to GRMF for co	nfirmatio	on drilling at Hanle and the Nord Ghoubbet,
GRMF	but not accepted due to clerical reasons.		
WB, AfDB-ADF,	Test drilling at Asal-Fiale site		
SEFA, GEF, OFID,	- Project Managing Director		
AFD, ESMAP	- Engineering Consultant for technical sup	ervision	
	- Drilling contractor		
1. WB: World Bank		7. OFII	D: OPEC Fund for Internationla Development
AfDB: African Develop 2. ADF: African Develop		SEEA.	A joint initiative of the Danish government and the
	energy Fund for Africa implemented by AfDB		F. Environment and Climate Change Department
4. GEF: Grobal Enviro			C) of AfDB
5. AFD: Agence Franca	ise de Developpemet	ADF: t	he concessional window of the AfDB Group.
	rmal Development Plan through ESMAP		
6. ESMAP: Energy Sec	tore Management Assistance Program		

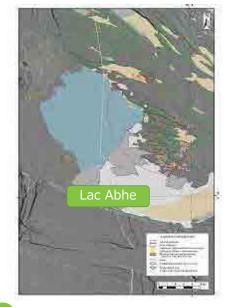
Remote sensing

Photo: a giant travertine in Lac Abhe


Remote Sensing Analysis



What are identified?


- Alluvial sediments
- 2 Salty sediments
- ③ Calcareous sediments (Lacustrinetravertine)
- 4 Volcanic cones
- 5 Rhyolitic instruction and/or Pyroclastic
- 6 Faults
- ? Acidic Altered spot
- Weakly acidic propylitic altered spot

Remote Sensing Analysis

Remote Sensing Analysis

JICA-TEAM: NK, Geo-E, SRED

JICA-TEAM: NK, Geo-E, SRED

1 IICA-T

Remote Sensing Summery of the Results

Acidic altered rock, or Weakly acidic altered rock;	Not particular alteration identified
Arta	Djibouti-Awrofoul
Asal	Dorra
Gaggade-Taassa	Obock
Hanle-Garabbayia	Salalol-AsbouDara
Lac Abhe	
Nord Goubet	
Nord Lac Asal	
Rouweli	
Sud Goubet	

33

JICA-TEAM: NK, Geo-E, SRED

Geology-Rock thin sections, XDR, XRF

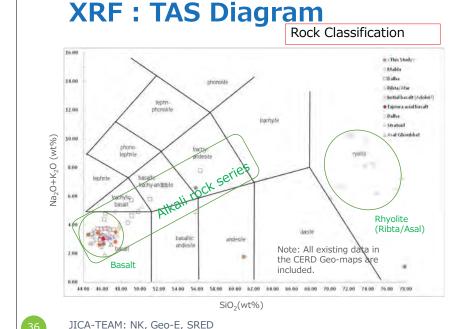
Purposes:

- Observation of rock thin sections
 - Visual observations of rock minerals/textures
- XRF: X-Ray Fluorescence analysis
 - Rock classification (TAS: Total Alkaline-Silica)
- XRD: X-Ray Diffraction analysis
 - Alteration clay mineral identifications

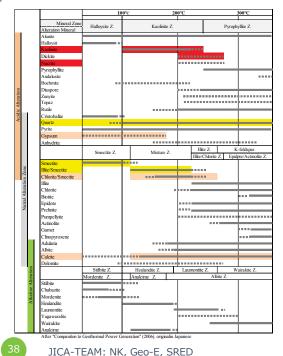
34

JICA-TEAM: NK, Geo-E, SRED

Rock thin sections


- Left: Course grained Basalt (Garabbayis)
- Right: Andesite (N. Goubet-Anaale)

JICA-TEAM: NK, Geo-E, SRED


Visual observation of rock forming minerals/textures under polarized microscope

General Observations

- Alteration minerals are observed: such as Secondary Qz, Calcite, Zeolite, clay and others.
- → Rock samples have generally undergone alteration process.

XRD: An example (Arta) Alteration mineral identification 1 85-10547 Guertz - SiGZ 05-0588) Delete syn - CaCO3 07-1480) Acopydite, syn - CaCO4 170-3152) Adote - (Nelt,09CaQO2)(A)) 025/23808) Chlorite/smectite Arta: Strong alteration, observed JICA-TEAM: NK, Geo-E, SRED

Geothermometer

Hydro-thermal alteration clays:

→ a guide of pastunderground temperatures under which the clays formed.

Clays Identified:

Kaolinite, Nacrite, Quartz, Smectite, Illite/Smectite, Gypsum, Calcite Chlorite/Smectite,

Summary – Clay Geothermometer

			Clay N	Minera	1	Zec	olite gr	oup		others			Clay mineral
Site Name	Rock Name	Sme	Mix.	Chl /Ser	Kao /Nac	Sti	Nat	Lau	Gyp	Cal	Qz	Notes	Formaion Temperature (°C)
N. Goubet	Calcite									0		Cal. only	-
N. Goubet	calcite									0		Cal. only	-
Arta	Gypsum	0		0					0	+	+	Smc-Chl, Gyp (vein)	150-200
Arta	Rhyolite?	0	0							0	+	Smc-Mix, Chl	100-150
Arta	White clay				0						0	Nac.	200-250
Arta	White clay		0		0						0	Nac. & mix.	200-250
Arta	Gypsum								0			Gyp. only	-
Asal (2km east)	White clay, layered			0						0		Chl-Cal	150-200
Lac Asal	White clay								0			Gyp. only	-
N. Goubet Anaale	Andesitic	0									+	Smc-Qz	100-150
N. Goubet_Anaale	White vein, calcite	0								0	+	Smc-Cal	100-150
Hanle-Garabbayis	Basalt	0	0	0		0	0	0				Smc-Chl+Zeolite	150-200
Hanle-Yoboki (hill)	Rhyolite	0	0	0							0	Smc-Mix-Chl-Qz	150-200
Hanle-Yoboki (hill)	Rhyolite									+	0	Qz-Cal	-
Gaggade-Taassa	Reddish clay				0						0	Nac.	200-250
Gaggade-Taassa	Rhyolite	0								+	+	Smc-Cal-Qz	100-150
	nlorite, Ser: Sericite, Sti: St				ntite,							(Source: JICA Study	Team)

Arta, Gaggade → max. 200 - 250 °C → max. 150 - 200 °C

An evidence of hydrothermal activities in the past.

Geochemistry

JICA Survey Team

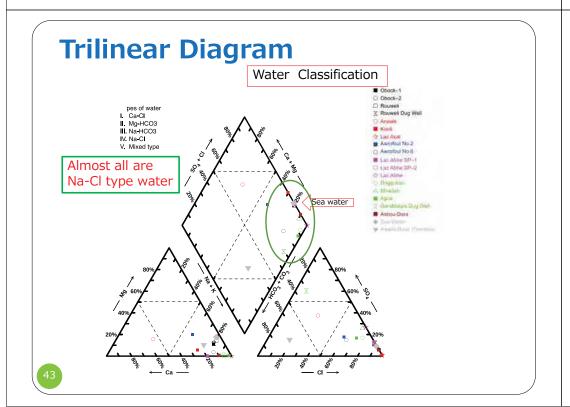
- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

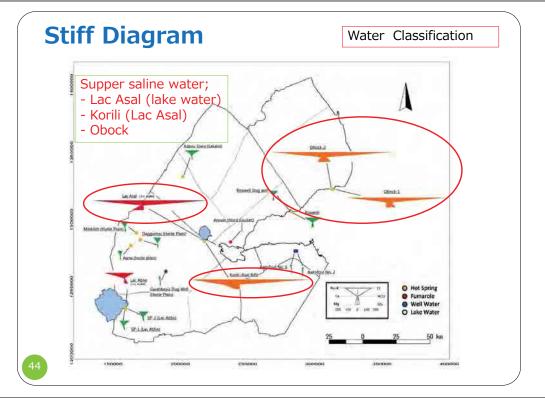
JICA-TEAM: NK, Geo-E, SRED

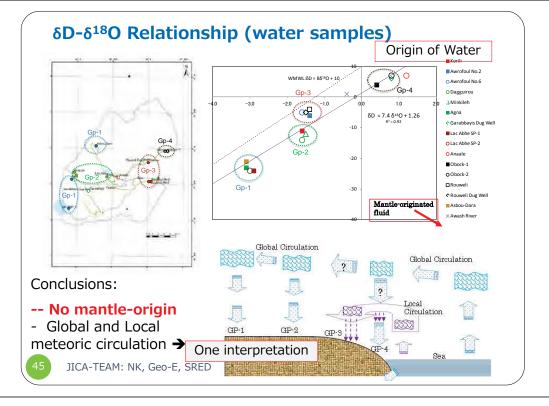
Garabbayis

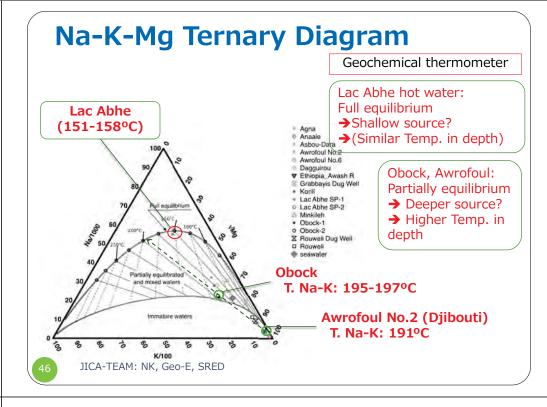
Gyp: Gypsum, Qz: Quartz, Cal: Calcite, Mix: Mixed layer minerals

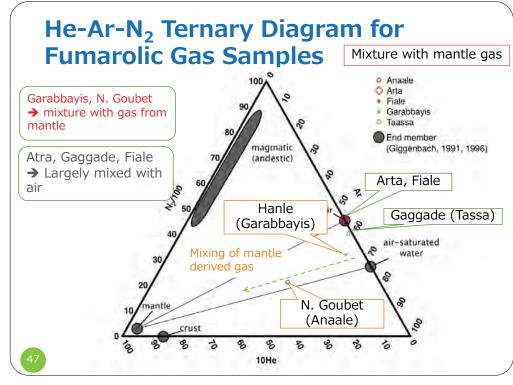
List of Samples

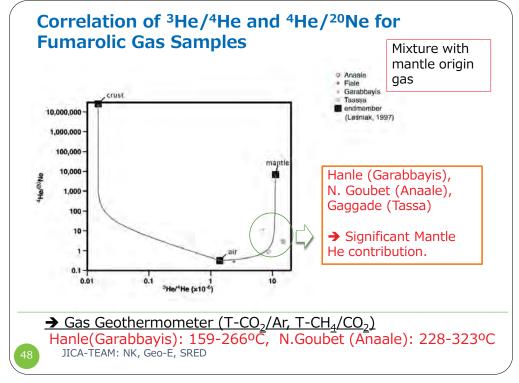

No.	Sampling location	Fumarolic gas	Hot spring	Well	Lake	
1.	Arta	1	0	0	0	
2.	Asal	1	1	0	1	
3.	Djibouti	0	0	2	0	
4.	Dorra	Failed to sam	ple due to ro	ad damage		
5.	Gaggade	1	0	0	0	
6.	Hanle	1	3	1	0	
7.	Lac Abhe	0	2	0	1	
8.	Nord Goubet	1	1	0	0	
9.	Nord Lac Asal	Failed to sam	ple due to no	access way		
10.	Obock	0	2	0	0	
11.	Rouweli	0	1	1	0	
12.	Sakalol	0	1	0	0	
13.	Sud Goubet	Failed to sam	ple due to no	access way		
Num	ber of samples	5				


JICA-TEAM: NK, Geo-E, SRED


Chemical Analysis Items


Fumarolic gas samples	H_2O , H_2S , CO_2 , H_2 , N_2 , CH_4 , O_2 , He , Ar , $^3He/^4He$, $^4He/^{20}Ne$, and $δ^{13}C(CO_2)$
Water samples	pH, Conductivity, Li, Na, K, Ca, Mg, Cl, SO ₄ , CO ₂ , H ₂ S, SiO ₂ , B, Fe, Al, As, Hg, δ D, and δ ¹⁸ O


42



Summary of Geochemical Survey

No	Sampling	Fumarole				Water			
.c	location	Feature	CH ₄ / CO ₂	Feature	Cond. (mS/m)	T chalcedony	T Na-K	T Na-K-Ca	Evaluation
1.	Arta	Very weak (Air mixed)	-	-	-	-	-	-	-
2.	Asal	Slightly mixed with Mantle derived gas	-	Na-Cl, Meteoric	5,050	96	177	167	Prospective
3.	Djibouti	-	-	Na-Cl, Meteoric	121 -156	103 -119	169 -191	136 -143	Probability
5.	Gaggade	Significantly mixed with Mantle derived gas	-	-	-	-	-	-	Prospective
_	Garabba yis	Significantly mixed with Mantle derived gas	266	-	-	-	-	-	Prospective
6.	Hanle	-		Na-Cl, Meteoric	283 -396	92 -103	126 -173	116 -165	
7.	Lac Abhe	-	-	Na-Cl, Meteoric	581 -582	115 -124	151 -158	130 -136	
8.	Nord Goubet	Significantly mixed with Mantle derived gas	323	-	-	-	-	-	Prospective
10	Obock	-	-	Na-Cl, Meteoric	4,150 -4,820	90-93	195 -197	192 -193	Probability
11	Rouweli	-	-	Na-Cl, Meteoric	896	79	160	152	
12	Sakalol	-	-	Na-Cl, Meteoric	750	115	164	150	

JICA-TEAM: NK, Geo-E, SRED

Selection of Prospective Sites

- Survey on Natural Conditions Explained
 - Satellite Image Analysis
 - Geological Reconnaissance
 - Site survey
 - · Rock Thin Section Observation
 - XRF
 - XRD analysis for Alteration Clay Identification
 - Geochemical Analysis
 - → Selection of prospective sites for a next step of survey.

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

50

JICA-TEAM: NK, Geo-E, SRED

Comparison of the Sites Surveyed

_		_							_			
N	Ño.	Survey Site	Regional Gelogy	Geoth.l	Alteration	Fumarolic	Geochemical therm.	Evalua	ation			
L		2 42 × 53	Geological Characteristic	Intensity	Temp. (℃)	Gas	Alkali Temp. (℃)	E vara				
L	1	Arta	Associated with Rhyolite	severest	max. 200- 250	(Air mixed)	-	★Good	A-3	4		
	2	Asal_Fiale	Recent basaltic lava	-	-	Mixed with mantle origin gas		(★Good)	(Not for evaluation	WB		
L		Asal_Koril		-			116-177	poor		-		
	3	Djiboubi_Awrof oul_No.2	Basalt	-	-	•	- 52-191		С			
	4	Dorra	Basalt	Not accessible				(Not acc	(Not accessible)			
C	5	Gaggade_Taassa	Associated with Rhyolite	severest	Max. 200- 250	Mixed with mantle origin gas		★good A-1				
6	i.1	Hanle-Garabbayis	Neighboring larger scale Rhyolite	severe	150-200	Mixed with gas of mantle origin T(CH ₄ /CO ₂)=266		★good	A-1			
6	.2	Hanle-Dagguirou	Basalt	-	-		113-170	Poor	-			
6	.3	Hanle_Minkileh	Basalt	-			91-126	Poor	-			
6	.4	Hanle-Agna	Basalt	-	-		107-173	Poor	-			
Ľ	7	Lac Abhe	Basalt and lake deposit	-		-	136-158	Poor	-			
	8	Nord Goubet	Dotted rhyolite and andesite	fair	100-150	Mixed with gas of mantle origin T(CH4/CO2)=323 ℃	-	★good	A-2			
	9	Nord Lac Asal	Basalt	Not acce	ssible			(Not acc	essible)			
L	10	Obock	Calcareous deposit	-	-	-	115-197	(★Fair)	В			
1	11	Rouweli	Basalt	-	-	-	75-160	poor	-			
1	12	Sakalol_Asbou-	Basalt	-	-	-	116-164	poor				
1	13	Sud Goubet	Basalt	Not acce	ssible			(Not acc	J			

JICA-TEAM: NK, Geo-E, SRED

Prospective Sites Selected by Natural Conditions – 6 Sites

	.т	G*4	Regional Gelogy	Geoth.l	Alteration		Geochemical therm.	Evaluation	
1	No.	Site			Temp. (℃)	Fumarolic Gas	Alkali Temp.	Alkali Temp.	
	1	Arta	Associated with Rhyolite	Sever -est	max. 200 -250	(Air mixed)	-	★Good	A-3
	3	Djibouti_ Awrofoul_ No.2	Basalt	-	-	-	52-191	(★Fair)	С
	5	Gaggade	Associated with Rhyolite	Sever -est	Max. 200-250	Mixed with mantle origin gas	-	★good	A-1
	5.1	Garabbayis	Neighboring larger scale Rhyolite	Severe	150-200	Mixed with mantle origin gas T(CH ₄ /CO ₂)=26	-	★good	A-1
	8	Nord Goubet	Dotted Rhyolite and andesite	Fair	100-150	Mixed with mantle origin gas T(CH ₄ /CO ₂)=323 ℃	-	★good	A-2
	10	Obock	Calcareous deposit	-	-	-	115-197	(★Fair)	В

Socio-Environmental Review

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

JICA-TEAM: NK, Geo-E, SRED

Protected Area

- Nine (9) Protected Areas
- Demarcation of the protected areas is not established (except Djalélo Valley & Addaoua Bourale mountain area).
- Exploitation to be allowed in the protected areas depends on local conditions (types of zone in the area), the zoning is now on preparation.
- Discussions with the Dept. of Environment are requested to confirm the possibility of the exploitation to be conducted. JICA-TEAM: NK, Geo-E, SRED

EIA condition

- Procedure of EIA is written in Decree 2011-029/PR/MHUEAT,
- Drilling is a target of the EIA study,
- No Environmental Standards (currently they follow the international standards),
- No environmental consultant firm in Djibouti (there are a few individual experts).

Proposed Site selection for A next step of JICA's assistance

JICA Survey Team

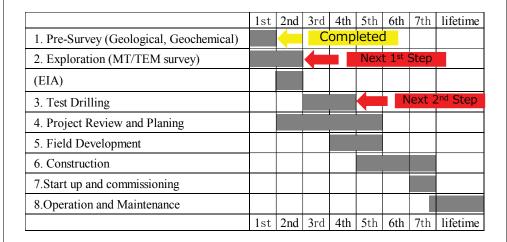
- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
 - Sumiko Resources Exploration and Development Co. Ltd. (SRED)

Site Selection for JICA Assistance

		hermal ources	W	orkabili	ty	Soci -Enviror	-	Reference	Priority
Site name	Resources	CL (mg/L)	Accessi- bility	Landform	Well Drilling Water	Natural conditions	In- habitant	Distance to transmission line	rec'nded
Garabbayis	☑ A-1	±1,000	C Fair	B Plain -ragged hill	☑ A Ground water in Hanle Plain	☑ A Barren	A none	45 km to Dikhil	1
Arta	☑ A-3	☑ D ±15,000	B Good	B Plain - ragged hill	C Sea	✓ A Out of a registered protection area	B a few	6 km to N.1	2
Nord Goubet	☑ A-2	☑ D ±15,000	C-D Poor-fair	C Plain - ragged hill	C Sea	A Barren, Desolate	B a few	50 km to P.K. 51	2
Gaggade	☑ A-1	±5,000	☑ D Poor	☑ D Ragged hill	☑ A Ground water in Hanle Plain	☑ A Barren	A none	40 km to P.K 51	3
Obock *	В	5,000 - 40,000	A Excellent	A plain, costal	C Sea	B Coastal	near town	Isolated	4*
Djibouti	С	±5,000	A Excellent	A Plain	C Sea	-	-	-	5
Lac Abhe	-	±5000	C Fair	A Plain	C Lac Abhe	☑ D Registered	B a few	75 km to Dikhil	-

Obock *: Survey of a next stage, separately from survey for a flash type may be recommended if a binary type is considered.

JICA-TEAM: NK, Geo-E, SRED


Proposed Approach up to **Test drilling**

NIPPON KOEL Ge⊕-E ##の未来を創造する質量コンサルタント 住鉱資源開発株式会社


JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

Overall time schedule up to Start up - 6 years at least

JICA-TEAM: NK, Geo-E, SRED

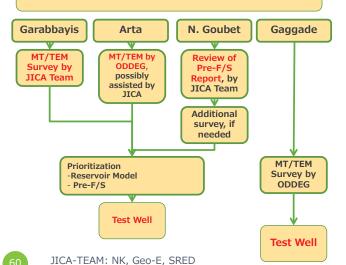
TYPE

Obock

Review of

Pre-F/S

Report, by


JICA Team

Additional

Survey if

needed

Test Well

Recommendations

- 1. In Garabbays and Arta, MT/TEM survey shall be conducted, ASAP;
- 2. For N. Goubet, the Pre-feasibility study shall be reviewed for comparison with Garabays and Arta, ASAP;
- 3. In Gaggade, MT/TEM survey may be conducted, thereafter:
- 4. For Obock, the Pre-feasibility study shall be reviewed for consideration of Binary development, ASAP;
- 5. In (a) priority site/s, test well drillings shall be implemented, ASAP

JICA-TEAM: NK, Geo-E, SRED

Way Forward: General Issues

JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

JICA-TEAM: NK, Geo-E, SRED

Overall time schedule up to commissioning – 6 years at least

ODDEG

ODDEC								
	1st	2nd	3rd	4th	5th	6th	7th	lifetime
1. Pre-Survey (Geological, Geochemical)								
2. Exploration (MT/TEM survey)								
(EIA))					
3. Test Drilling								
4. Project Review and Planing								
5. Field Development								
6. Construction								
7.Start up and commissioning								
8.Operation and Maintenance								
	1st	2nd	3rd	4th	5th	6th	7th	lifetime

IPP?

JICA-TEAM: NK, Geo-E, SRED

General issues for geothermal development - Capacity required

- Exploration stage, and Test Well drilling stage
 - MT/TEM survey (ODDEG)
 - Field survey, 2D analysis
 - Gradient/slim holes and test wells
 - Drilling supervision
 - Well geology
 - Well geochemistry
 - Well logging
 - EIA
 - Reservoir modeling
 - Reservoir potential assessment
 - (Pre-)feasibility study

- Procurement of contractors (ODDEG):
 - Drillina
 - Civil work
 - Material supply
 - Supervisory consultant

Recommendations

- 1. Institutional set-up shall be addressed with;
 - 1. Clearer goal of ODDEG,
 - 2. Clearer work allocations among governmental organizations,

To attract subject-focused donors' attentions, particularly for capacity building!

JICA-TEAM: NK, Geo-E, SRED

Data base

JICA Survey Team

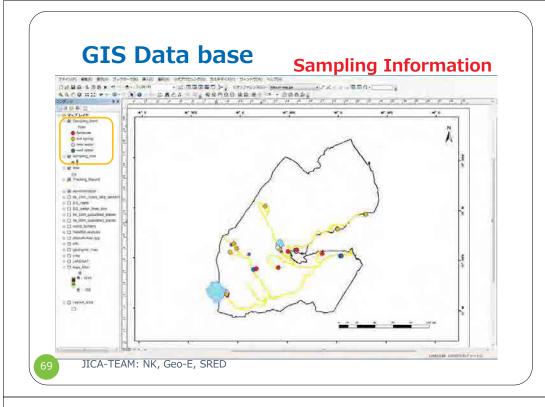
- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)

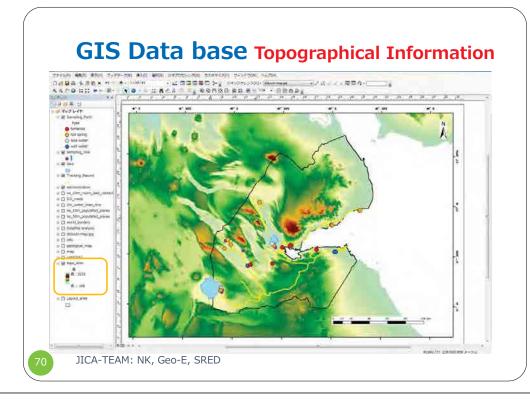
Urgent Requirement of Personnel for ODDEG (Suggested)

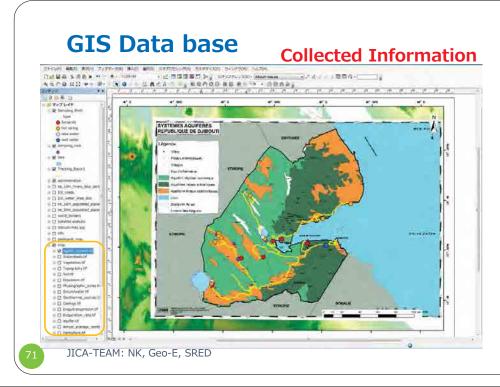
Urgent requirement of Personnel for ODDEG (Suggested)

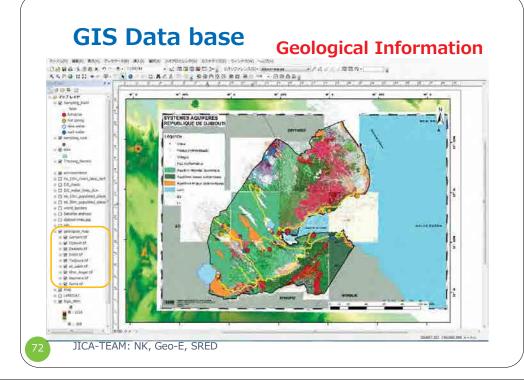
	Fosicion	VssiRued	Desirable	Dalance
1 Dir	ector General	1	1	0
(Ac	cting Director)	0	1	1
2 Inf	ormation and Documentation	0	2	2
3 Au	3 Audits and Risks		1	1
4 Stu	udy, Research and Explorations			
•	Studies and Research			
	Geologist	0	3	3
	Geophysicist (Ph.D)	1	1	0
	Geophysical Engineer	1	1	0
	Physicist	1	1	0
	Reservoir Engineer (Ph.D)	1	1	0
	Reservoir Engineer	0	1	1
	Geochemist	0	2	2
	Technician	1	3	2
	Drilling			
	Drilling Engineer	3	3	0
	Civil Engineer	0	2	2
	Maintenance		•	
	Mechanical Engineer	0	2	2
5 Ad	ministrative, Financial and Legal			
•	Human Resources, Accounting and	l Materials		
	Human Resources	0	1	1
	Accounting	0	1	1
	Material	0	1	1
	Legal	0	1	1
6 Pla	nning, Development and EIA			
	Development and EIA	1	2	1
	Planning	1	2	1
Total		11	33	22

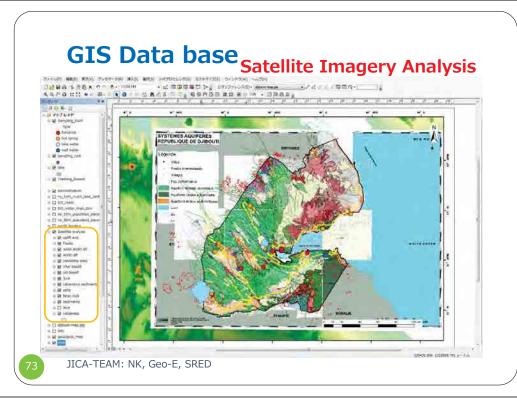
Corrected

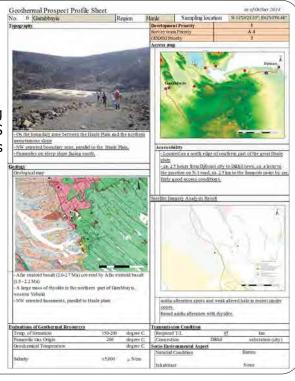

JICA-TEAM: NK, Geo-E, SRED


Data Information


The following information was compiled for GIS database.


Site survey information


- Sampling points, Track record of the survey, Delineation of protection zones.
- Information from in-door analysis and laboratory analysis
 - Satellite Imagery analysis, Geochemical analysis and geological analysis.
- Existing information
 - Figures (Geological maps, Rainfall distribution map, etc) and Positional information with attribute data
- Basic information
 - International borders, district boarders, topographic map (90 m mesh), etc.

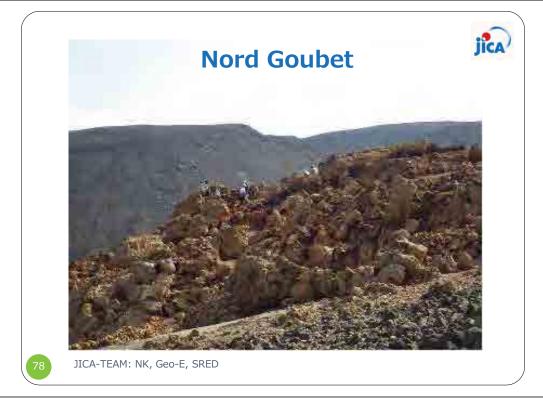


Geothermal Profiling Sheet

 We prepared the profiling sheets based on the GIS database and the results of the priority selections.

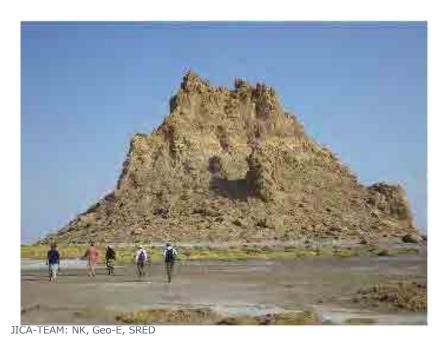
JICA-TEAM: NK, Geo-E, SRED

Photographs



JICA Survey Team

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)



Lac Abhe

Sakalol

82

jica

NIPPON KOEL

Geothermal Engineering Co., Ltd

接導の未来を制造する資連コンサルタント

Djibouti-Awrofoul

DATA COLLECTION SURVEY ON GEOTHERMAL DEVELOPMENT IN DJIBOUTI

Thank you, Merci and Arigatoh!

To discussion session

November, 2014 Sheraton Hotel, Djibouti

- Nippon Koei co. Ltd.,
- Geothermal Engineering Co. Ltd.
- Sumiko Resources Exploration and Development Co. Ltd. (SRED)