添付-5 調査方法(地化学・地質)

調査方法

(1) 地化学調査

(a) 試料の採取方法

噴気ガスの採取方法を図 a に示す。ガス組成分析用の試料採取時は、噴気ガスの噴出地点に ゴム管を接続した漏斗を被せ、それと CO₂および H₂S を吸収する水酸化カリウム溶液(5 mol/L) を充填したガスビュレット(ガス採取装置)とをつなぎ、噴気ガスを導いた。噴気ガスの導入 は、水酸化カリウム溶液に吸収されない R gas (Residual gas) が約 8 ml 捕集できたところで終 了する。

図a噴気ガスの採取方法

ガスビュレット内の液温が外気温と等しくなるまで放冷した後、R gas 量および封液溜の水位 (水酸化カリウム溶液の増加量)を読み取る。R gas をガスコレクターに移し換え、ガスビュレ ット内の水酸化カリウム溶液は、CO₂と H₂S の分析用に分取した。H₂S 分析用試料には酢酸カド ミウム溶液を添加し、溶液中の H₂S を硫化カドミウムとして固定する。

He 同位体比分析用試料は、水封したガスコレクターに噴気ガスを導入して採取する。また、 噴気ガスを水酸化カリウム溶液(5 mol/L)に通じて CO_2 ガスを吸収させたものを $\delta^{13}C$ 分析用 試料とする。

温泉水、井戸水および湖水については、試料水を取手付きビーカーですくい取り、試料容器 に注ぎ入れ密栓する。この際、分析成分によっては、試料の保存中に成分濃度が変化しないよ う、表 A に示す前処理を施す。

(b) 分析方法

本調査で採取した水試料(温泉水、井戸水および湖水)および噴気ガス試料の分析は表 A に 示す方法にて行う。

国際協力機構

表 A 化学分析方	法一覧
-----------	-----

分析項目	前処理方法	分析方法	分析下限または精度	分析規格
水試料			•	
рH	無処理	ガラス電極法	0.1	JS K 00-12.1
電気伝導率	無処理	導伝率計による	± 5%	JS & 00-13
N a	無処理	フレーム光度法	0.021m/L	JS & 00-48.1
К	無処理	フレーム光度法	0.01Im/L	JS K 00-49.1 m
Са	試料500 ml対して, H 21 6o1/L) 5 岐氏	ICP発光分光分析法	0.01Im/L	JS K 00-50.3 m
Мg	試料500 ml対して, H 21 6o1/L) 5 動氏	ICP発光分光分析法	0.01Im/L	JS K 00-51.3 m
L i	試料500 ml対して, H 21 6o1/L) 5 岐氏	ICP発光分光分析法	0.01 m/L	
C 1	無処理	イオンクロマトグラフ法	0.01Im/L	JS K 0D-35.3
SO4	無処理	イオンクロマトダラフ法	0.1 Im/L	JS K 00-41.3
T-CO ₂	試料100mLに対して, KOH(2 0wt%)2mLを加える。	赤外線分析法	5 fb/L	JS K 00-25.2
H ₂ S	試料500 ml対して, 酢酸カドミウム 縦 ぺ え 酸 ナトリウムg(m2L) (治10 nb456) え	よう素滴定法	0.5 Im/L	JS K 00-39.2
В	無処理	ICP発光分光分析法	0.01Im/L	JS K 00-47.3
S i O 2	試料500 mi対して, H Cl 6ol/L) 5 mbB	重量法	0.01Im/L	JS K 00-44.3.m2
T-F e	試料500 ml対して, H 21 6o1/L) 5 mbB	ICP発光分光分析法	0.01Im/L	JS K 00-57.4 m
A 1	試料500 ml対して, H 21 6o1/L) 5 mbB	ICP発光分光分析法	0.01Im/L	JS K 0D-58.4
T-H g	試料100mLに対して, HNO3を1 m力成るg	加熱気化原子吸光法	0.0005 m/L	JS MK 0D-66.1.2
δD	無処理	質量分析法	±1‰驗0W	実化学講座
δ ¹⁸ Ο	無処理	質量分析法	±0.1驗 SOW	実化学講座
噴気ガス試料				
H ₂ O		容量法		
H ₂ S	KOH水溶液 (5mo1/L) に吸収させた後, 酢酸カドミウ ム (5wt%)	よう素滴定法	0.5 Im/L	JS K 00-39.2
CO ₂	KOH水溶液 (5mo1/L) に吸収させる。	赤外線分析法	5 th/L	JS K 00-25.2
H 2		ガスクロマトグラフ法		JS K230
N 2		ガスクロヤトグラフ法		JS K230
CH ₄		ガスクロヤトグラフ法		JS K 280
H e		ガスクロヤトグラフ法		JS K 280
A r		ガスクロヤトグラフ法		JS K 280
O 2		ガスクロヤトグラフ法		JS K 280
³ H e ∕ ⁴ H e		質量分析法	分析值每 実決 定	新験化学講座
⁴ H e ∕ ²⁰ N e		質量分析法	±10 実	新験化学講座
δ ¹³ C	KOH水溶液 (5mb1/L) に吸収させる。	質量分析法	±0.2験 PB	実化学講座

(出典:JICA 調査団)

(2) 地質調査

(a) 岩石薄片作成及び鑑定

採取した試料について岩石薄片観察を行う。岩石薄片は、岩石試料を約35×25mmに切り 出し作製する。

偏光顕微鏡観察は単ニコル及び直交ニコルにて岩石全体の岩石名及び組織を記載する。岩石片については、形、大きさ、色及び基質(大きさ 30 µ m 以下とする)との関係を記載する。鉱物については、形、大きさ、色、双晶及び基質との関係等を記載する。基質、岩石片、結晶片などの変質状態や生成した変質鉱物については詳細に記載する。鉱物脈については、その構成鉱物種、他の鉱物脈や変質鉱物との新旧関係について記載する。

鉱物の量比は鏡下観察による目分量とし、多量(30%以上)、中量(10~30%)、少量(3~10%)、微量(3%未満)とする。また変質度については5段階で、1(非変質~虫食い状)、2(マフィック鉱物が部分変質)、3(マフィック鉱物の大半が変質)、4(マフィッ ク鉱物は残存せず、フェルシック鉱物の大半が変質)、5(全体的に変質)とする。

偏光顕微鏡観察結果は薄片毎に顕微鏡観察記載カードに記入し、代表的な岩石・鉱物組 成を表す部分を単ニコルと直交ニコル下でカラー写真撮影をする。

観察に使用した機器は下記のとおりである。

偏光顕微鏡: ECLIPSE LV100POL (株)ニコン製

写真撮影装置: IUC-300CN2 USB カメラ (有) トリニティ製

- (b) X 線回折分析
- (b)-1 試料調整

粉末X線回折分析は無定方位試料及び定方位試料を作成して実施する。無定方位試料は 岩石をステンレス乳鉢内で粉砕して 50~100 メッシュとし、それをさらにメノウ乳鉢内で 粉末化(指頭に感じない程度)することにより作成する。

分析の結果、14~15Åの反射が認められた試料については水ひ法により定方位試料を作成して、エチレングリコール(以下 EG)処理を行う。

定方位試料は水ひ法により作成する。すなわち、ステンレス乳鉢内で 50~100 メッシュ に粉砕した岩石試料をビーカー内に蒸留水とともに分散させ、8 時間放置後上澄み液 500mL を回収する。回収した試料をさらに24時間放置後、沈殿物を分析用ガラスホルダーに塗り、 風乾させることにより定方位試料を作成する。

(b)-2 分析装置及び分析方法

使用する機器及び測定条件は次のとおりである。

測定装置:株式会社リガク製X線回折装置 MultiFlex

国際協力機構

測定条件:X線:CuK α_1

管電圧・管電流:40kV・20mA

ゴニオメータ:広角ゴニオメータ

カウンタモノクロメータ:全自動モノクロメータ

カウンタ:シンチレーションカウンタ

スリット:1°(発散)、0.3mm(受光)、1°(散乱)

測角範囲(2θ):全岩無定方位試料;2θ=2~62° 定方位試料(未処理);2θ=2~32° 定方位試料(EG 処理):2θ=2~22°

スキャンスピード:2°/分(不定方位分析) 1°/分 定方位試料(未処理、EG 処理)

スキャンステップ:0.02

- (c) 蛍光X線分析
 - (c)-1 分析方法

粉体試料を作成し、蛍光X線装置にて主成分元素 (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) 及び微量元素 (Cr, Ni, Nb, Rb, Sr, Y, Zr) の含有成分の濃度を測定する。定量方法は検量線法による。検量線の作成にあたっては、地質調査総合センターより発行された日本国内の標準岩石試料のうち、11 個の火成岩 (JA-1, JA-2, JB-3, JF-1, JG-1a, JG-2, JGb-1, JGb-2, JH-1, JR-1, JR-3) を用いる。

(c)-2 使用機器および測定条件

測定装置:エネルギー分散型蛍光 X 線分析装置 EDX-720(島津製作所社製)

測定条件

X線管球ターゲット:Rh

管電圧・管電流: 15kV・100 µ A (Si,Al,Mg,Ca,Na,K,P,Rb,Sr,Y,Zr,Nb)

50kV · 100μ A (Ti,Fe,Mn,Cr,Ni)

測定時雰囲気:真空

定量方法 : 検量線法

- 試料名 140518-1
- 岩石名 粗粒玄武岩
- 変質度 2
- 地域 ジブチ Rwelli
- 記事 オフィティック組織。径2mm以下の斜長石,径1.5mm以下の単斜輝石が多量,径0.5mm 以下のカンラン石が微量,径0.2mm以下の不透明鉱物が少量認められる。その他,褐 色粘土鉱物に変質した径0.5mm以下の鉱物仮像(球状~不定形)が中量認められる。 斜長石はほぼ自形である。単斜輝石は他形で斜長石,カンラン石,鉱物仮像の粒間を 埋めるように生成している。カンラン石は部分的に褐色粘土に変質している。斜長石に 無色の微細粘土鉱物が虫食い状に少量生成する。 岩石は概ね新鮮である。岩石中には径2mm以下の球状の不定形の空隙が中量分布

し、その内部は炭酸塩鉱物が埋めている。空隙の壁側には無色の微細粘土鉱物が縁 取るように生成していることが多い。

試料名 140519-2

岩石名 粗粒玄武岩

- 変質度 1
- 地域 ジブチ N. Goubet
- 記事 オフィティック組織。径1.5mm以下の斜長石,径2mm以下の単斜輝石が多量,径1mm以 下のカンラン石が中量,径0.3mm以下の不透明鉱物が少量認められる。カンラン石は部 分的に褐色粘土鉱物に変質している。斜長石は自形,カンラン石は自形〜他形で斜長 石を取り込んでいることがある。単斜輝石は他形で,斜長石,カンラン石,不透明鉱物の 粒間を埋めて生成している。

 $1\,\mathrm{mm}$

岩石は概ね新鮮である。ただし岩石中には径3mm以下の不定形な空隙が中量分布し, 内部に炭酸塩鉱物が生成していることがある。

クロスニコル

記事

SN. 18

試料名 140521-1

岩石名 玄武岩

変質度 1

ジブチ Fiale 地域

斑状組織。斑晶鉱物として,径3mm以下の斜長石が微量認められる。 記事 石基は自形の斜長石(長さ0.1mm以下), 単斜輝石(径0.05mm以下), 不透明鉱物から なる。石基では主に自形の斜長石、針状~不定形の不透明鉱物(長さ0.1mm程度)の粒 間を微細な単斜輝石,不透明鉱物がびっしりと埋めている組織が広く分布している。また 微量の褐色粘土鉱物が局所的に生成する。

岩石は概ね新鮮である。ただし石基中には径0.2mm以下の不定形の空隙が中量分布 し、これを埋めて局所的に炭酸塩鉱物が生成していることがある。

- 試料名 140523-1
- 岩石名 安山岩
- 変質度 1
- 地域 ジブチ N. Goubet-2
- 記事 斑状組織。斑晶鉱物として、径0.5mm以下の斜長石が微量,径0.5mm以下の褐色粘土 鉱物からなる鉱物仮像が微量認められる。石基は自形の斜長石(長さ0.1mm以下),単 斜輝石(径0.05mm以下),無色の微細鉱物(微細のため同定困難),不透明鉱物(長さ 0.1mm程度)からなる。石基では主に自形の斜長石,針状~不定形の不透明鉱物の 粒間を微細な単斜輝石,微細鉱物,褐色粘土鉱物が埋めている組織が広く分布して いる。また、石基中の斜長石はある一方向に向かって配列しており,流理構造が認め られる。岩石は概ね新能である。ただし局所的にスメクタイト(X線回折分析結果と合わ せて同定した),方沸石が石基の空隙を埋めて生成している。また,幅0.1mmの石英脈 が石基中に微量分布する。

SN. 29

クロスニコル

- 試料名 140527-1 岩石名 粗粒玄武岩
- 変質度 2
- 地域 ジブチ Lac Abhe
- 記事 全体として空隙に富む。等粒状組織(部分的にオフィティック組織がみられる)。径1mm 以下の斜長石が多量,径1mm以下の単斜輝石が中量,径0.5mm以下のカンラン石が 微量,径0.1mm以下の不透明鉱物が微量認められる。その他,褐色粘土鉱物に変質 した径0.2mm以下の鉱物仮像(球状を呈し,他形の単斜輝石と形状が異なることから 元々はカンラン石の可能性が大きい)が中量認められる。斜長石はほぼ自形である。 単斜輝石は他形で,斜長石,カンラン石,鉱物仮像の粒間を埋めるように生成してい る。カンラン石は部分的に褐色粘土鉱物に変質している。 岩石は概ね新鮮である。ただし,局所的に透明微細粘土鉱物,褐色粘土鉱物が初生 鉱物の粒間を埋めて生成していることがある。

 $1\,\mathrm{mm}$

 хързенъв

 Заковка

 Авда

 Авда

 Дип
 Рада-ари

- 試料名 140530-1
- 岩石名 粗粒玄武岩
- 変質度 2
- 地域 ジブチ Hanle Garabbayis
- 記事 オフィティック組織。径2mm以下の斜長石が多量,径1.5mm以下の単斜輝石が多量, 径0.2mm以下の不透明鉱物が中量認められる。その他,褐色粘土鉱物に変質した径 0.5mm以下の鉱物仮像が少量認められる。斜長石はほぼ自形である。単斜輝石は他 形で斜長石,鉱物仮像,不透明鉱物の粒間を埋めるように生成している。斜長石には スメクタイト(X線回折分析結果と合わせて同定した)が虫食い状に少量生成する。 岩石は概ね新鮮である。ただし,岩石に中量分布する空隙(径10mm以下)を埋めるように微細な針状のトムソン沸石,および径1mm以下の柱状の束沸石が生成している。さ らに沸石結晶の内部や境界にスメクタイトには充填された杏状の球状物(径0.1mm以 下)が多数分布している。

試料名 140530-4

岩石名 流紋岩

- 変質度 2
- 地域 ジブチ Hanle Yoboki
- 記事 本試料は流紋岩の様々なサイズの礫から構成されており、自破砕したものと考える。斑 晶鉱物として、径1mm以下の斜長石が少量、径1mm以下のカリ長石が微量認められる。 斜長石は虫食い状に、方解石に変質している。石基の大部分は自形~半自形の斜長 石(長さ0.1mm以下),長石(微細なため同定困難),微細石英、不透明鉱物からなる。 岩石は概ね新鮮である。ただし、岩石には径0.2mm以下の空隙が少量分布し、それを埋 めるように方解石が生成していることがある。また、微量の二次石英脈(脈幅0.2mm以下) が石基に分布する。

- 試料名 140531 - 1
- 岩石名 玄武岩 変質度 1
- 地域 ジブチ Hanle Dahotto
- 記事 斑状組織。斑晶鉱物として,径1mm以下の斜長石が少量,径2mm以下のカンラン石及 び単斜輝石が中量認められる。カンラン石は縁部が,単斜輝石は部分的に,それぞれ 褐色粘土鉱物に変質している。石基には自形~半自形の斜長石(径0.2mm以下)が多 量,単斜輝石(径0.1mm以下)が少量,カンラン石(径0.1mm以下)が少量,不透明鉱物 (径0.2mm以下)が少量分布している。

岩石は概ね新鮮である。ただし、岩石中には径1mm以下の空隙が中量分布しており、空 隙内には局所的に炭酸塩鉱物が生成していることがある。

- 試料名 140601-1
- 岩石名 玄武岩
- 変質度 1
 - ジブチ Hanle Agna 地域
 - 記事 斑状組織。斑晶鉱物として,径0.5mm以下の斜長石が少量,径1mm以下のカンラン石が 少量,径1mm以下の単斜輝石が少量認められる。カンラン石は主に縁部が褐色粘土鉱 物に変質している。石基は自形~半自形の斜長石(径0.2mm以下)が多量,単斜輝石 (径0.1mm以下)が中量, カンラン石(径0.1mm以下)が少量, 不透明鉱物(径0.2mm以 下)が少量, 無色の微細鉱物(微細なため同定困難)が微量からなる。 岩石は概ね新鮮である。ただし、局所的に炭酸塩鉱物が上述した造岩鉱物の粒間を埋 めて生成していることがある。

 $1\,\mathrm{mm}$

クロスニコル

変質度

地域

記事 本岩石は淡褐灰〜褐灰色の礫が集積して互いにくっついて生成している。礫は主に褐 色粘土鉱物(径0.005mm以下)や微細石英に変質した流紋岩からなり,流理構造が認め られる。その他に、凝灰岩の礫を少量伴う。 変質は、流紋岩礫(褐色粘土鉱物、微細石英)で認められる。他に、礫の間の空隙を無 色微細粘土鉱物、不透明鉱物、二次石英が埋めて生成している。

SN. 43

試料名 140606-3

岩石名 石灰質砂岩

- 変質度 4
- ジブチ Gaggade 地域
- 記事 本岩石は炭酸塩鉱物片(径1mm以下)および凝灰岩片(径2mm以下)が集積した堆積岩 である。凝灰岩片は,全体が褐色粘土鉱物,二次石英,炭酸塩鉱物,無色微細粘土鉱 物および不透明鉱物に変質している。その他の砕屑粒子として、斜長石(径0.5mm以 下)を微量,不透明鉱物(径0.3mm以下)を少量伴う。 変質は凝灰岩礫(褐色粘土鉱物,二次石英,炭酸塩鉱物,無色微細粘土鉱物および不

透明鉱物)で認められる。他に、鉱物脈として、脈幅0.2mm以下の炭酸塩鉱物脈が基質 および凝灰岩礫中に少量認められる。

- 試料名 140608-1 岩石名 粗粒玄武岩
- 変質度 2
- ジブチ Sakalol 地域
- 記事 オフィティック組織。径0.5mm以下の斜長石が中量,径1.5mm以下の単斜輝石が多 量,径1mm以下のカンラン石が少量,径0.2mm以下の不透明鉱物が中量認められる。 斜長石, カンラン石は自形である。単斜輝石は他形で, 斜長石, カンラン石, 不透明鉱 物の粒間を埋めて生成しており、単斜輝石の結晶中に比較的小さい斜長石が多数取 り込まれている組織が確認できる。単斜輝石は部分的に褐色粘土鉱物及び方解石に変質している。カンラン石は主に窓部が褐色粘土鉱物に変質している。岩石は概ね新 鮮である。ただし、局所的に炭酸塩鉱物が上述した造岩鉱物の粒間を埋めて生成して いることがある。

偏光顕微鏡観察結果一覧表(1)

	ink due	堆積岩・火山 試料								砕 屑	岩				火	:	成		岩														
	武 科		綽	晶片			基質			岩石片		talk and a		耳 初	短晶 生錠	• 、物				石	基					変	質鉱	物				変質	備考
SN	試料番号	岩 石 名	Qtz P	1 Cab	0pq	Qtz P	91 Ui	i Opq	量	岩石種	組織	構造	Qtz F	P1 Ki	f Cpx	01v	* 01	oq Qt:	z P1	Fs Cp	ox 01v	Ui O	lpq Qt	z Tm	Stb Ai	nl Chl	Sme	Clay C	al Ca	ь #	0pq	度	
1	140518-1 Rouweli	粗粒玄武岩									オフィラ 組	ティック 繊	0	0	0	•	0	þ										0	0	0	-	2	岩石中には径2mm以下の球状の不定形の空隙が中量分布し,その内部は 炭酸塩鉱物が埋めている。
5	140519-2 Nord Goubet	粗粒玄武岩									オフィラ 組	ティック 繊	0	0	0	0	c	>											•	0		1	岩石中には径3mm以下の不定形な空隙が中量分布し,内部に炭酸塩鉱物 が生成していることがある。
10	140520-1 Arta	玄武岩									斑状	組織					•		0			0	0	>		0			0	•		2	岩石中には径10mm以下の不定形な空隙が中量分布し,その内部には縁 部から中央に向かって微細な二次石英,水晶,炭酸塩鉱物の順に充填 して生成していることが多い。
18	140521-1 Asal-Fiale	玄武岩									斑状	組織		•					0	C	0	(0						•	•		1	岩石中には径0.2mm以下の不定形の空隙が中量分布し, これを埋めて局 所的に炭酸塩鉱物が生成していることがある。
26	140523-1 N.Goubet- Anaale	安山岩									斑状	組織		•			•		0	C		0	•	•		•	•			0		1	局所的にスメクタイト(X線回折分析結果と合わせて同定した), 方沸 石が石基の空隙を埋めて生成している。また, 幅0.1mmの石英脈が石基 中に微量分布する。
29	140527-1 Lac Abhe	粗粒玄武岩									等粒状 紛 分 う イック	L織(部 オフィ 7 組織)	(Ð	0	•	•	•										•		•		2	局所的に透明微細粘土鉱物、褐色粘土鉱物が初生鉱物の粒間を埋めて 生成していることがある。
33	140530-1 Garabbayis	粗粒玄武岩									オフィラ 組	ティック 繊	(Ð	0		0 (0						•	•		0			0		2	岩石に中量分布する空隙(径10mm以下)を埋めるように微細な針状の トムソン沸石,および径1mm以下の柱状の束沸石が生成している。さら に沸石結晶の内部や境界にスメクタイトには充填された杏状の球状物 (径0.1mm以下)が多数分布している。
	[鉱物名] Qtz 石英, P1 余 物, Kf カリ長石 Lm 濁沸石, Tm メクタイト, C1	料長石, Cab 5, Cpx 普通 トムソン沸石 ay 無色微細	炭酸均 ((() () () () () () () () (氲鉱ャ 01v b す 広物,	勿, 力 求 Ca	0pq ンラ 石, 1 方	不 ズ 石 Anl 解 石	, 朝 新 新 新 新 井 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	よ物 鉱 新 部 部 石 祥	Ui 同定 (物仮像, , Chl 緑) (50) (50) (50) (50) (50) (50) (50) (50	不能な行 Fs 長石 尼石, Sn 物	微細鉱 ī類, ne ス		[1 30 10	本積) vo)~3(3~; 3 v(割合 1.% 0 vo 10 v 51.%	·] 以上 ol. % rol. ° %未?	, 》, ※, 満,	© 0 •	多量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量量			変質 1 : 2 : 3 : 5 :	[度 変 フ フ フ マ マ く 体	 イツ: イツ: イツ:	- 食い 全 の の の な に に い に い に い に い に い に い に い に い に い に い い い い い い い い い い い い い	- い 物 物 の は	- 部分 大半 残存	- 変 変 変 変 ず		- フェ	ルシ	√ック鉱物の大半が変質

※SN 1, 5, 29, 33, 46の粗粒玄武岩では初生の造岩鉱物の粒度は類似しており(等粒状組織に近い), 斑晶と基質の区別が困難なため, すべて初生鉱物として記載した。

偏光顕微鏡観察結果一覧表(2)

	堆積岩 · 火山 砕 屑 岩 試 料											岩				火		成	ļ	岩															
	武 科		ŕ	皆晶	片		ł	甚質			岩石片				政 初	E晶 生鉱	物				石	ī基						変質	f鉱	物				変質	備考
SN	試料番号	岩 石 名	Qtz]	Р1 с	ab Oj	pq Qt	z P.	1 Ui	i Opo	量	岩石種	組縮	_銭 構造	Qtz P	1 Kf	Срх	01v	* 0p	q Qtz	P1 1	Fs C	px 01	v Ui	0pq	Qtz T	m Stł	b An1	Ch1	Sme C	'lay Ca	al Ca	ab ‡	‡ 0p	度 q	
36	140530-4 Yoboki	流紋岩										斑状	く組織	C	•				0	0	0			0	•						•			2	自破砕した流紋岩からなる。岩石には径0.2mm以下の空隙が少量分布 し、それを埋めるように方解石が生成していることがある。また、微 量の二次石英脈(脈幅0.2mm以下)が石基に分布する。
38	140531-1 Hanle- Dagguirou	玄武岩										斑状	く組織	C		0	0			0		0 0		0								•	•	1	岩石中には径1mm以下の空隙が中量分布しており,空隙内には局所的に 炭酸塩鉱物が生成していることがある。
40	140601-1 Hanle-Agna	玄武岩										斑状	代組織	C	>	0	0			0	(0 0	•	0								•	•	1	局所的に炭酸塩鉱物が進岩鉱物の粒間を埋めて生成していることがあ る。
41	140606-1 Gaggade- Taassa	礫岩								© 0	流紋岩 凝灰岩	一砕屑岩	計状組織												0					0		0		4	変質は流紋岩礫(褐色粘土鉱物, 微細石英) で認められる。他に, 礫 の間の空隙を無色微細粘土鉱物, 不透明鉱物, 二次石英が埋めて生成 している。
43	140606-3 Gaggade- Taassa	石灰質砂岩		0 (0	•				0	凝灰岩	砕屑岩	計状組織												0					0	C		0	4	変質は凝灰岩礫(褐色粘土鉱物、二次石英、炭酸塩鉱物、無色微細粘 土鉱物および不透明鉱物)で認められる。他に、鉱物脈として、脈幅 0.2mm以下の炭酸塩鉱物脈が基質および凝灰岩礫中に少量認められる。
46	140608-1 Sakalol-Asbou Dara	粗粒玄武岩										オフィ 縦	ティック 1繊	C		0	0	С													C		•	2	局所的に炭酸塩鉱物が造岩鉱物の粒間を埋めて生成していることがある。 る。
	[鉱物名] Qtz 石英, Pl 新 物, Kf カリ長石 Lm 濁沸石, Tm メクタイト, Cl	料長石, Cab 石, Cpx 普通 トムソン沸石 ay 無色微細	炭酸石 5, S	塩 (((((((((((((((((((s物 lv 東	, Or カン 沸石 Cal	oq ジラ i, 」	不透 ン石 Anl 解石	§明 (方 (方)	転 1 1 1 1 1), Ui 同) 鉱物仮像, , Chl 緑 褐色粘土	定不能な Fs 長石 泥石, S 鉱物	微細鉱 石類, me ス		[存 30 10 3	×積割 vol ~30 3 ~1 3 vo	則合 .% vo 0 v 1.%] 以上 1.% o1.% (未清	, , 〈, 岢,	© 0 •	多中世少微	量量量量		[変 1 2 3 4 5	質非マママ全	〕 変 フ イ フ イ イ イ イ	ー・シッシッに	食鉱鉱鉱質	い状 が りの こ	部分 大半 残存	変質が多せす	変質 デ,	フュ	⊆ /V	シック鉱物の大半が変質

※SN 1, 5, 29, 33, 46の粗粒玄武岩では初生の造岩鉱物の粒度は類似しており(等粒状組織に近い), 斑晶と基質の区別が困難なため, すべて初生鉱物として記載した。

調査対象地点		1	Asal	Djit	outi		Ha	anle			Lac Abhe		N. Goubet	Ob	ock	Ro	uweli	Sakalol
試料採取地点		Korili	Lac Asal	Awrofoul No.2	Awrofoul No.6	Dagguirou	Minkileh	Agna	Garabbayis Dug Well	Lac Abhe SP-1	Lac Abhe SP-2	Lac Abhe	Anaale	Obock-1	Obock-2	Rouweli	Rouweli Dug Well	Asbou-Dara
試料タイプ		Spring	Lake	Well water	Well water	Spring	Spring	Spring	Well water	Spring	Spring	Lake	Spring	Spring	Spring	Spring	Well water	Spring
試料採取日		2014/5/21	2014/5/21	2014/5/22	2014/6/16	2014/5/31	2014/5/31	2014/6/1	2014/6/1	2014/5/27	2014/5/27	2014/5/27	2014/5/23	2014/5/18	2014/5/19	2014/5/18	2014/5/18	2014/6/8
緯度		N 11°36′13.32″	N 11°37'13.69"	N 11°32'29.15"	N 11°32′25.91″	N 11°36′31.00″	N 11°39′15.23″	N 11°34'03.47"	N 11°23'52.51″	N 11°08'50.82"	N 11°08'41.28"	N 11°10'13.10"	N 11°35′58.42″	N 11°57′33.37″	N 11°57'31.03″	N 11°48'31.36"	N 11°48'39.78"	N 12°02'00.24"
経度		E 42°24'50.58"	E 42°23'46.00"	E 43°02'30.23"	E 43°01'47.82"	E 41°58'37.42"	E 41°57'01.84"	E 41°54'46.76"	E 42°09'08.24"	E 41°52'52.68"	E 41°52'53.98"	E 41°53'01.40"	E 42°35'29.04"	E 43°17'18.14"	E 43°17'09.20"	E 43°00'09.90"	E 42°59'53.92"	E 42°15'46.73"
高度	(m)	-140	-149	123	135	131	119	144	218	254	261	247	168	0	0	0	3	19
気温	(°C)	41.1	40.9	36.0	35.2	35.6	30.0	34.8	37.2	33.4	32.1	38.5	35.5	30.6	28.1	30.8	32.3	39.0
泉温・水温	(°C)	77.5	40.7	56.2	73.6	40.4	57.7	42.7	33.7	99.2	96.2	35.2	98.0	67.0	70.7	40.7	35.0	61.8
流量	(L/s)				7.6	16		2.9		1.7	3.4		few	0.1	0.2	few		80
pН	-	6.8	6.9	7.9	7.6	8.0	7.9	8.3	8.5	8.3	8.3	9.7	7.7	6.9	6.8	7.4	7.7	7.1
Conductivity	(mS/m)	5050	16500	156	121	391	396	283	145	582	581	8860	39	4150	4820	896	486	750
SiO ₂	(mg/L)	78	15	88	114	76	88	73	40	108	124	98	52	70	74	58	78	108
Cl	(mg/L)	22200	197000	253	221	953	924	636	41	1680	1690	28800	32	16800	20300	2720	1320	2320
SO_4	(mg/L)	239	2200	100	70	291	453	207	377	348	345	14300	55	1440	1790	448	246	197
T-CO ₂	(mg/L)	3.6	58	118	99	121	56	142	182	8.7	7.5	40	47	4.2	3.0	58		10
HCO3	(mg/L)	3.6	62	158	129	163	74	192	245	12	10	40	61	4.5	3.0	74		12
CO3	(mg/L)	< 0.01	0.04	0.95	0.39	1.2	0.45	2.9	5.9	0.18	0.15	15	0.23	< 0.01	< 0.01	0.14		0.01
Li	(mg/L)	1.5	3.9	< 0.01	0.04	0.02	0.05	< 0.01	< 0.01	0.43	0.41	< 0.01	< 0.01	1.1	1.2	0.05	< 0.01	0.08
Na	(mg/L)	9520	98500	158	199	775	751	556	295	956	948	38300	22	8660	10600	1600	820	1390
K	(mg/L)	440	5200	9.0	8.0	32	14	24	4.0	32	28	500	2.5	540	640	56	31	52
Ca	(mg/L)	3000	2540	54	28	19	65	8.6	16	220	221	3.7	38	890	973	90	76	136
Mg	(mg/L)	415	12100	31	5.0	2.8	2.5	2.3	1.5	0.22	0.19	1.2	6.6	664	910	150	64	5.9
Al	(mg/L)	< 0.01	< 0.01	< 0.01	0.04	0.04	0.08	0.03	0.08	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
T-Fe	(mg/L)	0.10	0.17	0.04	0.06	0.30	0.97	0.28	0.20	0.03	0.72	0.01	< 0.01	0.08	0.09	0.30	< 0.01	0.09
H_2S	(mg/L)	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	1.5	<0.5	<0.5	< 0.5
В	(mg/L)	3.6	27	< 0.01	< 0.01	0.37	0.58	< 0.01	0.13	0.81	0.94	50	< 0.01	4.7	5.4	0.23	< 0.01	0.28
As	(mg/L)	< 0.01	< 0.01	0.01	0.01	0.01	0.24	0.02	0.01	0.02	0.06	0.59	< 0.01	< 0.01	0.01	0.01	0.01	< 0.01
T-Hg	(mg/L)	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	< 0.0005		0.011	< 0.0005	< 0.0005	< 0.0005		< 0.0005
δD	(‰ SMOW)	-11	11	-6	-5	-14	-12	-23	6	-24	-24	46	7	4	7	-4	-5	-21
$\delta^{18}\!O$	(‰ SMOW)	-1.6	unmeasurable	-1.4	-1.6	-1.6	-1.5	-3.1	0.8	-2.9	-3.0	unmeasurable	1.2	0.4	0.8	-1.4	-1.5	-3.1
T quartz *1	(°C)	111		118	133	109	118	107	78	130	138		90	105	108	95	111	130
T chalcedony *2	(°C)	96		103	119	94	103	92	61	115	124		74	90	93	79	96	115
T Na-K *3	(°C)	177		191	169	170	126	173	111	158	151		242	197	195	160	165	164
T Na-K-Ca ^{*4}	(°C)	167		143	136	162	116	165	101	136	130		147	192	193	152	147	150
T K-Mg ^{*5}	(°C)	116		52	69	113	91	107	67	154	152		41	115	116	75	71	116

温泉水、井戸水および湖水の分析結果

*1 Amórsson (2000), conductive cooling

*2 Founier (1977)

*3 Giggenbach (1988) *4 Fournier and Truesdell (1973) *5 Giggenbach (1988)

調査対象	2地点		Arta	Asal	Gaggade	Hanle	N. Goubet
試料採取	Z地点		Arta	Fiale	Taassa	Garabbayis	Anaale
試料採取	又曰		2014/5/20	2014/5/21	2014/6/6	2014/5/30	2014/5/23
緯度			N 11°33′44.50″	N 11°34′55.78″	N 11°25′17.98″	N 11°24′23.33″	N 11°35′58.42″
経度			E 42°50′48.70″	E 42°29′56.87″	E 42°24′12.42″	E 42°10′50.48″	E 42°35′29.04″
高度		(m)	156	120	285	319	168
気温		(°C)	35.6	34.5	33.4	32.3	35.5
噴気温度	£	(°C)	98.7	87.5	95.3	99.8	98.0
噴気の強	首さ	-	weak	weak	strong	strong	strong
H ₂ O and NCG	H_2O	(vol%)	0	0	0	99.98	99.88
(total 100%)	NCG	(vol%)	100	100	100	0.02	0.12
NCG	H_2S	(vol%)	0	0	0	0.0	0.0
composition	CO_2	(vol%)	0	0	0	45.0	94.1
(total 100%)	R gas	(vol%)	100	100	100	55.0	5.9
	H_2	(vol%)	0.002	0.008	0.003	0.054	0.57
	N_2	(vol%)	78.3	78.3	79.3	93.5	91.7
R gas	CH_4	(vol%)	<0.01	< 0.01	0.13	1.0	3.2
composition (total ~100%)	O_2	(vol%)	20.8	20.7	19.5	3.6	2.4
(10111 10070)	He	(vol%)	0.0003	0.0015	0.0027	0.019	0.14
	Ar	(vol%)	0.92	0.93	1.1	1.8	2.0
	H_2	(vol%)			0.041	0.066	0.64
R gas	N_2	(vol%)			94.2	96.7	93.4
composition (total ~100%)	CH_4	(vol%)			1.8	1.2	3.6
Air correct)	He	(vol%)			0.037	0.022	0.16
	Ar	(vol%)			3.9	2.0	2.2
³ He/ ⁴ He		(×10 ⁻⁶)		2.39 ± 0.03	8.46 ± 0.07	7.13 ± 0.06	15.0 ± 0.1
⁴ He/ ²⁰ Ne		-		0.280	0.883	11.6	2.91
δ^{13} C (CC) ₂)	(% PDB)					
T CO ₂ /At	r *1	(°C)				159	228
TH ₂ /Ar [*]	[*] 1	(°C)			36	72	138
T CH ₄ /C	O_2^{*1}	(°C)				266	323

噴気ガスの分析結果

*1 Giggenbach (1991)

	0	Ca	N	1g	1	Na	ŀ	ĸ	I	.i	НС	2 O ₃	C	O ₃		
試料採取地点	(m)	g/L)	(m)	g/L)	(m)	g/L)	(m)	g/L)	(m)	g/L)	(m)	g/L)	(m	g/L)	(m)	g/L)
	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団
Korili	2848	3000	385	415	10175	9520	415	440		1.5	63.5	3.6	0	<0.01	21985	22200
Lac Asal	2645	2540	12177	12100	101155	98500	4770	5200		3.9	136	62	0	0.037	198537	197000
Awrofoul No.2	58.09	54	22.73	31	153.14	158	8.39	9.0	0.029	<0.01	140.5	158	0	0.95	245.1	253
Awrofoul No.6	28.2	28	3.94	5.0	196.44	199	8.48	8.0	0.049	0.04	148.85	129	0	0.39	219.62	221
Dagguirou	26.95	19	5	2.8	766.4	775	31.2	32	0.0862	0.02	97.98	163	31.91	1.2	917	953
Minkileh	72.09	65	2.24	2.5	787.65	751	13.6	14	0.0486	0.05	63.5	74	0	0.45	947	924
Agna	10.21	8.6	2	2.3	540	556	24.87	24	0.019	<0.01	195.8	192	0	2.9	612.83	636
Garabbayis Dug Well	19.09	16	1.49	1.5	291.97	295	3.65	4.0	0.028	<0.01	262.13	245	0	5.9	42.02	40.5
Lac Abhe SP-1	232	220	0.94	0.22	1096	956	31.5	32	0.34	0.43	15.67	12	0.22	0.18	1721	1680
Lac Abhe SP-2	225	221	0.93	0.19	1074	948	27	28	0.29	0.41	15.26	10	0.15	0.15	1737	1690
Lac Abhe	3.4	3.7	1.4	1.2	36623	38300	497.05	500	0.0086	<0.01	21622.3	40	8085.8	15	27548	28800
Obock-1	881	890	797	664	9640.4	8660	515	540	1.85	1.1	140.38	4.5	0	<0.01	16711	16800
Obock-2	1000.5	973	727	910	9565	10600	550	640	2.6	1.2	131.8	3.0	0	<0.01	16698	20300
Rouweli	98	90	103	150	1615.15	1600	55.97	56	0.05	0.05	193.3	74	0	0.14	2599.94	2720
Rouweli Dug Well	73.7	76	48.35	64	796	820	26.93	31	0.1	<0.01	188	_	0		1225	1320
Asbou-Dara	166.09	136	12.07	5.9	1426.22	1390	59.07	52	0.25	0.08	46.8	12	0	0.01	2296.5	2320

CERD と本調査団の分析結果比較

	s	O_4	Si	O_2	A	AI .	T-	Fe	I	3	A	As	T-	Hg
試料採取地点	(mg	g/L)	(m)	g/L)	(m;	g/L)	(m;	g/L)	(m;	g/L)	(m)	g/L)	(m;	2/L)
	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団	CERD	調査団
Korili	248	239		78		<0.01		0.10	—	3.6		< 0.01	< 0.0013	<0.0005
Lac Asal	4399	2200		15		<0.01		0.17	_	27		< 0.01	< 0.0013	
Awrofoul No.2	92.42	100	90.65	88	0.01	<0.01	0.06	0.04	< 0.0003	<0.01		0.01	< 0.0013	<0.0005
Awrofoul No.6	67.12	70	105.1	114	0.02	0.04	0.07	0.06	< 0.0003	<0.01	< 0.0012	0.01	< 0.0013	<0.0005
Dagguirou	293.63	291	81.9	76	0.1	0.04	0.32	0.3	0.73	0.37	0.009	0.01	< 0.0013	<0.0005
Minkileh	471.09	453	95.92	88	0.01	0.08	0.07	0.97	0.61	0.58	0.009	0.24	< 0.0013	<0.0005
Agna	205.86	207	70.2	73	0.02	0.03	0.06	0.28	0.34	<0.01	< 0.0012	0.02	< 0.0013	< 0.0005
Garabbayis Dug Well	367.63	377	30	40	0.09	0.08	0.13	0.2	0.37	0.13	0.009	0.01	< 0.0013	
Lac Abhe SP-1	348	348	115.06	108	0.0425	<0.01	0.0064	0.03	2.4	0.81		0.02	< 0.0013	< 0.0005
Lac Abhe SP-2	349	345	129.01	124	0.046	<0.01	0.0071	0.72	5.11	0.94		0.06	< 0.0013	< 0.0005
Lac Abhe	13126.1	14300		98	0.06	<0.01	0.07	0.01	18.86	50	0.12	0.59	< 0.0013	
Obock-1	1562	1440	101.65	70		<0.01		0.08	4.37	4.7		< 0.01	< 0.0013	< 0.0005
Obock-2	1503	1790	91.98	74		<0.01		0.09	4.25	5.4		0.01	< 0.0013	<0.0005
Rouweli	423	448	52.16	58	0.01	<0.01	0.06	0.30	0.39	0.23	< 0.0012	0.01	< 0.0013	<0.0005
Rouweli Dug Well	248.5	246	105.38	78	0.03	<0.01	0.08	<0.01	< 0.0003	<0.01		0.01	< 0.0013	
Asbou-Dara	194.01	197	90.74	108	0.02	<0.01	0.07	0.09	0.28	0.28	< 0.0012	< 0.01	< 0.0013	<0.0005

He (vol%)

Ar

(vol%)

0.0027

1.1

Geo	othermal Prospec	ct Profile Sheet						as of Octber 2014
No.	6 Garabbayis		Region I	Iar	le	Sampling loca	ation N 11	°24'23.33", E42°10'50.48
Торо	graphy			De	evelopm	ent Priority		1
				Su	rvey tear	m Priority		A-1
				Ol	DDEG P	riority		2
				A	ccess ma	<u>p</u>		
	n the boundary zone b thern mountainous slo	etween the Hanle Pla	in and the		Gara	bbayis		Djibouti
- N	W oriented boundary	zone, parallel to the 1	Hanle Plain.	[Accessib	oility		
- Fi	umaroles on steep slop	be facing south,	<u> </u>		- Loca	ted on a north edg	e of southe	rn part of the great
	······································			-	Hanle	<u>plain</u>		
Geolo	ogy				<u>- ca. 2</u> .	.5 hours from Djil	pouti city to	Dikhil town, ca. a
Geo		HOILY IL	A HA		hour to	o the junction on l	N.1 road, ca	a. 2.5 km to the
M	Te .	Aller			fumaro	ole point by car, fa	airly good a	ccess conditions.
S	Sol - he	XXX M	OR AL	Sa	tellite In	nagery Analysis R	esult	
- A bas - A wes - N	far stratoid basalt (2.0 alt (1.8 - 2.2 Ma) large mass of rhyolite stern Yoboki W oriented lineaments	-2.7 Ma) covered by A in the northern part s, parallel to Hanle pla	Afar stratoid of Garabbayis, ain	-	acidic cinder Broad	alteration spots an cones. acidic alteration v	nd weak alter	ered halo in recent
Evan Ter	np of formation	<u>150-20</u>	00 degree C	ᅻᅻ	ransmiss Required	TON CONDITION	45	km
Fur	narolic Gas Origin	266	degree C.	1	Connecti	ion D	ikhil	substation (city)
Geo	ochemical Temperatur	e	degree C.	So	cio-Env	ironmental Aspe	<u>ct</u>	
				Π	Natutral	Condition		Barren
Sal	inity	±5,000	μ S/cm		Inhabitaı	nt		None
H2O at (total N comp (total	Location Garabbayis Date 2014/3/30 Temperature (°C) 99.8 100%) NCG NCG (vol%) 0.0 0.02 CG H ₂ S 100%) R gas Vol%) 55.0	Chemical composition of fu	marolic gases					

 H2
 (vol%)

 N2
 (vol%)

 CH4
 (vol%)

 O2
 (vol%)

 He
 (vol%)

 Ar
 (vol%)

R gas composition (total ~100%) 0.054 93.5 1.0 3.6 0.019 1.8

91.7

3.2

2.4

0.14

(vol%)

(vol%)

CH₄ (vol%)

O2 (vol%)

He (vol%)

R ga

(total ~100%)

No.	12 SI	P 2						Regi	on	Lac	. Abl	ne S	ampli	ng lo	catio	n N 119	08'41.2	8", E42	°52'53.98'
Торор	raphy									D	evelop	oment	t Prior	ity			-		
To all and	NER 36								_	G	eother	mal F	otentia	.1			-		
and the second								10-2	2	0	DDEC	3 Prio	rity				5		
and a							-		-	A	ccess 1	ma <u>p</u>							
- Bo S/cm - we Geolo Geo	iling ha ak fum gy logical	ot water aroles o	(ca. 10)	00 l/m	nin),	EC :	in a ran	nge of	6,000µ		Access - Lc - ca desr	c Abhee c Abhee c abhee c action c acti	ty l on the hour from Dik	e weste om Dj: hil to J	ern bor ibouti Lac At	eder of I to Dikh ohe	Ethiopia il, ca. 2	D. D. D. D. D. D. D. D. D. D. D. D. D. D	r on
										Ľ									
										Sa	atellite	e Ima	gery A	nalysi	is Resi	<u>ult</u>			
- La - Str - Nc - Nc	ke depo atoid b remarl	osit, desa asalt on kable str rities in	ert dep north t ructure: the tra	osit to eas s obsi vertir	st erve ne di	d on istrib	the pla ution o	ain observ	ed		acic Aci	lic-in dic al	termed teration	iate alt	teration nd (sin	n spots ter con	in recer e).		er cone.
Evalu	ations	of Geot	herma	l Res	our	ces				T	ransm	issio	n Cond	lition					
Tem	p. of fo	ormatior	1					d	legree C		Requi	red T	/L			<u>75</u>		km	
Fum	arolic (Gas Oriș	gin					d	legree C		Conne	ection	1		Dikhil		sul	ostatio	n (city)
Geo	chemic	al Temp	erature	e			136-1	58 d	legree C	S	ocio-E	nviro	onment	al As	pect				
											Natut	ral Co	ondition	<u>1</u>		1	Register	red	
Sali	nity						±5,0	00	u S/cm		Inhab	itant					a few		
Location	Date	Temperature	pH	Conductiv	vity	SiO ₂	Cl	SO4	T-CO2	חר	Location	Date	Temperature	pH	Conductivit	ty SiO ₂	Cl (mr1)	SO ₄ (mgT)	T-CO ₂ (meL)
Lac Abhe SP-1	41,786	(°C) 99	8	(mS/m) 582	0	(mg L) 108	(mg/L) 1,680	(mg/L) 348	(mg L) 9	旧	Lac Abhe SP-2	41,786	96	8	581	124	1,690	345	7
		HCO ₃ (mg/L)	CO3 (mg/L)	Li (mg/L)	,	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)				IICO ₃ (mg/L)	CO3 (mg/L)	Li (mg L)	Na (mg L)	K (mg L)	Ca (mg/L)	Mg (mg L)
		12	0	0		956 P	156	220	0				10 Al	0 T-Fe	0 H ₁ S	948 B	172 As	221 T-Hg	0
		(mg/L)	(mg/L)	H2S (mg/L))	(mg/L)	(mg/L)	(mg/L)					(mg/L) <0.01	(mg/L)	(mg/L) <0.5	(mg L)	(mg L) 0	(mg L) <0.0005	<u> </u>
		T quartz "	T chalcedony*2	T Na-K	*) T	Na-K-Ca ^{*4}	T K-Mg ¹³	~0/0005		11			T quartz*1	T chalcedony	*2 T Na-K*2	T Na-K-Ca	T K-Mg ¹⁵		
		130	115	250		220	219			1 I L			138	124	263	226	228		
*1 Amorsson (*2 Founier (19	2000), conductive 77)	cooling								*1 *2	Amórsson (200 Founier (1977)	0), conductive	cooling						
*3 Amórsson (*4 Fournier an	2000) I Truesdell (1973)									*3 *4	Amórsson (200 Fournier and Tr	0) ruesdell (1973))						
*5 Giggenbach	(1988)									*5	Giggenbach (19	188)							

No.	16 C	bock-	1]	Regio	n C	bo	ck	Samp	ling lo	catior	N 11°	257'33.3	7", E43'	°17'18.14'
Topog	raphy	/							De	velopme	ent Prio	rity			4*		
									Ge	otherma	Potenti	al			B		
										DEG PI	iority				3		
- <u>Co</u>	astal H	Plain Plain		at log	ast tida	in a day									D,	jibouti	Dbock
- Te	mpera	ture ca.	70 °C.	ca. 10	l/min:	<u> u uuy</u>			Ι	Accessib	ility						
- No	other	manife	station	s obser	ved.					- Locat	ed on n	orth coa	ast of T	adjour	a Bay;		
Geolo	σv								Н	- South	of Obo	ck towi	<u>n;</u>				
Geo	gy logica	l map		n m	A.			13		<u>- Easily</u>	y access	<u>ible</u>		_			
	1 St	For E	m	Silv	m ¹	APP 3	2	i ze	Sat	tellite In	nagery	Analysi	is Resu	lt			
- Ca - No	lcareo	us coarr	Se sand	stone o	of Pleist	ocene						5	<u> </u>	J.		Land A dataset	
- No	rema	rkable g	eo-stru	icture o	observed	1											
- Ev	v orier	ited line	eament	on the	geolog	ical map				<u>No</u>							
Evalu	ations	of Geo	therm	al Res	ources				Tr	ansmiss	ion Con	dition					
Tem	p. of f	ormatio	on · ·				deg	gree C.	F	Required	T/L		1	-		km	
Fum	arolic	Gas Or	igin	ro		115 10	deg	gree C.	(6	Connecti	on	tol A	solated	1	sut	ostatior	n (city)
0.00	chenn		iperatu	IC		115-19	, ueș		300	Jatutral	Condition	nai ASI Di	<u>Ject</u>		Coasta	ıl	
Sali	nity					>30,00	0 μ	S/cm	I	nhabitar	ıt			N	lear To	wn	
Location	Date	Temperature (°C)	pH -	Conductivity (mS/m)	SiO ₂ (mg/L)	Cl (mg/L)	SO ₄ (mg L)	T-CO ₂ (mg/L)	Lo	zation Date	Temperature (°C)	pH -	Conductivity (mS/m)	SiO ₂ (mg/L)	Cl (mg/L)	SO4 (mg/L)	T-CO2 (mg.L)
Obock-1	41,777	67 HCO ₃	7 CO3	4,150 Li	70 Na	16,800 K	1,440 Ca	4 Mg	Ot	ock-2 41,778	71 HCO ₃	7 CO ₃	4,820 Li	74 Na	20,300 K	1,790 Ca	3 Mg
		(mg/L) 4	(mg/L) <0.01	(mg.L) 1	(mg/L) 8,660	(mg/L) 540	(mg L) 890	(mg/L) 664			(mg/L) 3	(mg/L) <0.01	(mg/L) 1	(mg/L) 10,600	(mg/L) 640	(mg/L) 973	(mg L) 910
		Al (mg/L)	T-Fe (mg/L)	H ₂ S (mg/L)	B (mg/L)	As (mg/L)	T-Hg (mg L)				Al (mg L)	T+Fe (mg/L)	H ₂ S (mg/L)	B (mg/L)	As (mg/L)	T+Hg (mg/L)	
		<0.01 T quartz "	0 T chalcedony	<0.5 T Na-K ¹	5 T Na-K-Ca ^{*4}	<0.01 T K-Mg ¹⁹	<0.0005				<0.01 T quartz*1	0 T chalcedony*2	T Na-K*3	5 T Na-K-Ca ¹⁴	0 T K-Mg ⁺⁵	<0.0005	+
		105	90	164	192	115					108	93	162	193	116		
*1 Arnórsson *2 Founier (19 *3 Arnórsson *4 Fournier ar	(2000), conduc (77) (2000) d Truesdell (19	tive cooling							*1 Aa *2 Fe *3 Aa *4 Fe *5 Gi	nörsson (2000), cons unier (1977) nörsson (2000) urnier and Truesdell ggenbach (1988)	(1973)						